1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 19 #include <linux/kvm_host.h> 20 #include "irq.h" 21 #include "ioapic.h" 22 #include "mmu.h" 23 #include "i8254.h" 24 #include "tss.h" 25 #include "kvm_cache_regs.h" 26 #include "kvm_emulate.h" 27 #include "x86.h" 28 #include "cpuid.h" 29 #include "pmu.h" 30 #include "hyperv.h" 31 #include "lapic.h" 32 33 #include <linux/clocksource.h> 34 #include <linux/interrupt.h> 35 #include <linux/kvm.h> 36 #include <linux/fs.h> 37 #include <linux/vmalloc.h> 38 #include <linux/export.h> 39 #include <linux/moduleparam.h> 40 #include <linux/mman.h> 41 #include <linux/highmem.h> 42 #include <linux/iommu.h> 43 #include <linux/intel-iommu.h> 44 #include <linux/cpufreq.h> 45 #include <linux/user-return-notifier.h> 46 #include <linux/srcu.h> 47 #include <linux/slab.h> 48 #include <linux/perf_event.h> 49 #include <linux/uaccess.h> 50 #include <linux/hash.h> 51 #include <linux/pci.h> 52 #include <linux/timekeeper_internal.h> 53 #include <linux/pvclock_gtod.h> 54 #include <linux/kvm_irqfd.h> 55 #include <linux/irqbypass.h> 56 #include <linux/sched/stat.h> 57 #include <linux/sched/isolation.h> 58 #include <linux/mem_encrypt.h> 59 60 #include <trace/events/kvm.h> 61 62 #include <asm/debugreg.h> 63 #include <asm/msr.h> 64 #include <asm/desc.h> 65 #include <asm/mce.h> 66 #include <linux/kernel_stat.h> 67 #include <asm/fpu/internal.h> /* Ugh! */ 68 #include <asm/pvclock.h> 69 #include <asm/div64.h> 70 #include <asm/irq_remapping.h> 71 #include <asm/mshyperv.h> 72 #include <asm/hypervisor.h> 73 #include <asm/intel_pt.h> 74 #include <asm/emulate_prefix.h> 75 #include <clocksource/hyperv_timer.h> 76 77 #define CREATE_TRACE_POINTS 78 #include "trace.h" 79 80 #define MAX_IO_MSRS 256 81 #define KVM_MAX_MCE_BANKS 32 82 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P; 83 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported); 84 85 #define emul_to_vcpu(ctxt) \ 86 ((struct kvm_vcpu *)(ctxt)->vcpu) 87 88 /* EFER defaults: 89 * - enable syscall per default because its emulated by KVM 90 * - enable LME and LMA per default on 64 bit KVM 91 */ 92 #ifdef CONFIG_X86_64 93 static 94 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 95 #else 96 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 97 #endif 98 99 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 100 101 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 102 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 103 104 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 105 static void process_nmi(struct kvm_vcpu *vcpu); 106 static void enter_smm(struct kvm_vcpu *vcpu); 107 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 108 static void store_regs(struct kvm_vcpu *vcpu); 109 static int sync_regs(struct kvm_vcpu *vcpu); 110 111 struct kvm_x86_ops kvm_x86_ops __read_mostly; 112 EXPORT_SYMBOL_GPL(kvm_x86_ops); 113 114 static bool __read_mostly ignore_msrs = 0; 115 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 116 117 static bool __read_mostly report_ignored_msrs = true; 118 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 119 120 unsigned int min_timer_period_us = 200; 121 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 122 123 static bool __read_mostly kvmclock_periodic_sync = true; 124 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 125 126 bool __read_mostly kvm_has_tsc_control; 127 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 128 u32 __read_mostly kvm_max_guest_tsc_khz; 129 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 130 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits; 131 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits); 132 u64 __read_mostly kvm_max_tsc_scaling_ratio; 133 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio); 134 u64 __read_mostly kvm_default_tsc_scaling_ratio; 135 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio); 136 137 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 138 static u32 __read_mostly tsc_tolerance_ppm = 250; 139 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 140 141 /* 142 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 143 * adaptive tuning starting from default advancment of 1000ns. '0' disables 144 * advancement entirely. Any other value is used as-is and disables adaptive 145 * tuning, i.e. allows priveleged userspace to set an exact advancement time. 146 */ 147 static int __read_mostly lapic_timer_advance_ns = -1; 148 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 149 150 static bool __read_mostly vector_hashing = true; 151 module_param(vector_hashing, bool, S_IRUGO); 152 153 bool __read_mostly enable_vmware_backdoor = false; 154 module_param(enable_vmware_backdoor, bool, S_IRUGO); 155 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 156 157 static bool __read_mostly force_emulation_prefix = false; 158 module_param(force_emulation_prefix, bool, S_IRUGO); 159 160 int __read_mostly pi_inject_timer = -1; 161 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 162 163 #define KVM_NR_SHARED_MSRS 16 164 165 struct kvm_shared_msrs_global { 166 int nr; 167 u32 msrs[KVM_NR_SHARED_MSRS]; 168 }; 169 170 struct kvm_shared_msrs { 171 struct user_return_notifier urn; 172 bool registered; 173 struct kvm_shared_msr_values { 174 u64 host; 175 u64 curr; 176 } values[KVM_NR_SHARED_MSRS]; 177 }; 178 179 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; 180 static struct kvm_shared_msrs __percpu *shared_msrs; 181 182 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 183 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 184 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 185 | XFEATURE_MASK_PKRU) 186 187 u64 __read_mostly host_efer; 188 EXPORT_SYMBOL_GPL(host_efer); 189 190 static u64 __read_mostly host_xss; 191 u64 __read_mostly supported_xss; 192 EXPORT_SYMBOL_GPL(supported_xss); 193 194 struct kvm_stats_debugfs_item debugfs_entries[] = { 195 VCPU_STAT("pf_fixed", pf_fixed), 196 VCPU_STAT("pf_guest", pf_guest), 197 VCPU_STAT("tlb_flush", tlb_flush), 198 VCPU_STAT("invlpg", invlpg), 199 VCPU_STAT("exits", exits), 200 VCPU_STAT("io_exits", io_exits), 201 VCPU_STAT("mmio_exits", mmio_exits), 202 VCPU_STAT("signal_exits", signal_exits), 203 VCPU_STAT("irq_window", irq_window_exits), 204 VCPU_STAT("nmi_window", nmi_window_exits), 205 VCPU_STAT("halt_exits", halt_exits), 206 VCPU_STAT("halt_successful_poll", halt_successful_poll), 207 VCPU_STAT("halt_attempted_poll", halt_attempted_poll), 208 VCPU_STAT("halt_poll_invalid", halt_poll_invalid), 209 VCPU_STAT("halt_wakeup", halt_wakeup), 210 VCPU_STAT("hypercalls", hypercalls), 211 VCPU_STAT("request_irq", request_irq_exits), 212 VCPU_STAT("irq_exits", irq_exits), 213 VCPU_STAT("host_state_reload", host_state_reload), 214 VCPU_STAT("fpu_reload", fpu_reload), 215 VCPU_STAT("insn_emulation", insn_emulation), 216 VCPU_STAT("insn_emulation_fail", insn_emulation_fail), 217 VCPU_STAT("irq_injections", irq_injections), 218 VCPU_STAT("nmi_injections", nmi_injections), 219 VCPU_STAT("req_event", req_event), 220 VCPU_STAT("l1d_flush", l1d_flush), 221 VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns), 222 VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns), 223 VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped), 224 VM_STAT("mmu_pte_write", mmu_pte_write), 225 VM_STAT("mmu_pte_updated", mmu_pte_updated), 226 VM_STAT("mmu_pde_zapped", mmu_pde_zapped), 227 VM_STAT("mmu_flooded", mmu_flooded), 228 VM_STAT("mmu_recycled", mmu_recycled), 229 VM_STAT("mmu_cache_miss", mmu_cache_miss), 230 VM_STAT("mmu_unsync", mmu_unsync), 231 VM_STAT("remote_tlb_flush", remote_tlb_flush), 232 VM_STAT("largepages", lpages, .mode = 0444), 233 VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444), 234 VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions), 235 { NULL } 236 }; 237 238 u64 __read_mostly host_xcr0; 239 u64 __read_mostly supported_xcr0; 240 EXPORT_SYMBOL_GPL(supported_xcr0); 241 242 static struct kmem_cache *x86_fpu_cache; 243 244 static struct kmem_cache *x86_emulator_cache; 245 246 static struct kmem_cache *kvm_alloc_emulator_cache(void) 247 { 248 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 249 unsigned int size = sizeof(struct x86_emulate_ctxt); 250 251 return kmem_cache_create_usercopy("x86_emulator", size, 252 __alignof__(struct x86_emulate_ctxt), 253 SLAB_ACCOUNT, useroffset, 254 size - useroffset, NULL); 255 } 256 257 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 258 259 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 260 { 261 int i; 262 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 263 vcpu->arch.apf.gfns[i] = ~0; 264 } 265 266 static void kvm_on_user_return(struct user_return_notifier *urn) 267 { 268 unsigned slot; 269 struct kvm_shared_msrs *locals 270 = container_of(urn, struct kvm_shared_msrs, urn); 271 struct kvm_shared_msr_values *values; 272 unsigned long flags; 273 274 /* 275 * Disabling irqs at this point since the following code could be 276 * interrupted and executed through kvm_arch_hardware_disable() 277 */ 278 local_irq_save(flags); 279 if (locals->registered) { 280 locals->registered = false; 281 user_return_notifier_unregister(urn); 282 } 283 local_irq_restore(flags); 284 for (slot = 0; slot < shared_msrs_global.nr; ++slot) { 285 values = &locals->values[slot]; 286 if (values->host != values->curr) { 287 wrmsrl(shared_msrs_global.msrs[slot], values->host); 288 values->curr = values->host; 289 } 290 } 291 } 292 293 void kvm_define_shared_msr(unsigned slot, u32 msr) 294 { 295 BUG_ON(slot >= KVM_NR_SHARED_MSRS); 296 shared_msrs_global.msrs[slot] = msr; 297 if (slot >= shared_msrs_global.nr) 298 shared_msrs_global.nr = slot + 1; 299 } 300 EXPORT_SYMBOL_GPL(kvm_define_shared_msr); 301 302 static void kvm_shared_msr_cpu_online(void) 303 { 304 unsigned int cpu = smp_processor_id(); 305 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 306 u64 value; 307 int i; 308 309 for (i = 0; i < shared_msrs_global.nr; ++i) { 310 rdmsrl_safe(shared_msrs_global.msrs[i], &value); 311 smsr->values[i].host = value; 312 smsr->values[i].curr = value; 313 } 314 } 315 316 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) 317 { 318 unsigned int cpu = smp_processor_id(); 319 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 320 int err; 321 322 value = (value & mask) | (smsr->values[slot].host & ~mask); 323 if (value == smsr->values[slot].curr) 324 return 0; 325 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value); 326 if (err) 327 return 1; 328 329 smsr->values[slot].curr = value; 330 if (!smsr->registered) { 331 smsr->urn.on_user_return = kvm_on_user_return; 332 user_return_notifier_register(&smsr->urn); 333 smsr->registered = true; 334 } 335 return 0; 336 } 337 EXPORT_SYMBOL_GPL(kvm_set_shared_msr); 338 339 static void drop_user_return_notifiers(void) 340 { 341 unsigned int cpu = smp_processor_id(); 342 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 343 344 if (smsr->registered) 345 kvm_on_user_return(&smsr->urn); 346 } 347 348 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 349 { 350 return vcpu->arch.apic_base; 351 } 352 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 353 354 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 355 { 356 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 357 } 358 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 359 360 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 361 { 362 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 363 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 364 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff | 365 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 366 367 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 368 return 1; 369 if (!msr_info->host_initiated) { 370 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 371 return 1; 372 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 373 return 1; 374 } 375 376 kvm_lapic_set_base(vcpu, msr_info->data); 377 kvm_recalculate_apic_map(vcpu->kvm); 378 return 0; 379 } 380 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 381 382 asmlinkage __visible void kvm_spurious_fault(void) 383 { 384 /* Fault while not rebooting. We want the trace. */ 385 BUG_ON(!kvm_rebooting); 386 } 387 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 388 389 #define EXCPT_BENIGN 0 390 #define EXCPT_CONTRIBUTORY 1 391 #define EXCPT_PF 2 392 393 static int exception_class(int vector) 394 { 395 switch (vector) { 396 case PF_VECTOR: 397 return EXCPT_PF; 398 case DE_VECTOR: 399 case TS_VECTOR: 400 case NP_VECTOR: 401 case SS_VECTOR: 402 case GP_VECTOR: 403 return EXCPT_CONTRIBUTORY; 404 default: 405 break; 406 } 407 return EXCPT_BENIGN; 408 } 409 410 #define EXCPT_FAULT 0 411 #define EXCPT_TRAP 1 412 #define EXCPT_ABORT 2 413 #define EXCPT_INTERRUPT 3 414 415 static int exception_type(int vector) 416 { 417 unsigned int mask; 418 419 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 420 return EXCPT_INTERRUPT; 421 422 mask = 1 << vector; 423 424 /* #DB is trap, as instruction watchpoints are handled elsewhere */ 425 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR))) 426 return EXCPT_TRAP; 427 428 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 429 return EXCPT_ABORT; 430 431 /* Reserved exceptions will result in fault */ 432 return EXCPT_FAULT; 433 } 434 435 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu) 436 { 437 unsigned nr = vcpu->arch.exception.nr; 438 bool has_payload = vcpu->arch.exception.has_payload; 439 unsigned long payload = vcpu->arch.exception.payload; 440 441 if (!has_payload) 442 return; 443 444 switch (nr) { 445 case DB_VECTOR: 446 /* 447 * "Certain debug exceptions may clear bit 0-3. The 448 * remaining contents of the DR6 register are never 449 * cleared by the processor". 450 */ 451 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 452 /* 453 * DR6.RTM is set by all #DB exceptions that don't clear it. 454 */ 455 vcpu->arch.dr6 |= DR6_RTM; 456 vcpu->arch.dr6 |= payload; 457 /* 458 * Bit 16 should be set in the payload whenever the #DB 459 * exception should clear DR6.RTM. This makes the payload 460 * compatible with the pending debug exceptions under VMX. 461 * Though not currently documented in the SDM, this also 462 * makes the payload compatible with the exit qualification 463 * for #DB exceptions under VMX. 464 */ 465 vcpu->arch.dr6 ^= payload & DR6_RTM; 466 467 /* 468 * The #DB payload is defined as compatible with the 'pending 469 * debug exceptions' field under VMX, not DR6. While bit 12 is 470 * defined in the 'pending debug exceptions' field (enabled 471 * breakpoint), it is reserved and must be zero in DR6. 472 */ 473 vcpu->arch.dr6 &= ~BIT(12); 474 break; 475 case PF_VECTOR: 476 vcpu->arch.cr2 = payload; 477 break; 478 } 479 480 vcpu->arch.exception.has_payload = false; 481 vcpu->arch.exception.payload = 0; 482 } 483 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 484 485 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 486 unsigned nr, bool has_error, u32 error_code, 487 bool has_payload, unsigned long payload, bool reinject) 488 { 489 u32 prev_nr; 490 int class1, class2; 491 492 kvm_make_request(KVM_REQ_EVENT, vcpu); 493 494 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 495 queue: 496 if (has_error && !is_protmode(vcpu)) 497 has_error = false; 498 if (reinject) { 499 /* 500 * On vmentry, vcpu->arch.exception.pending is only 501 * true if an event injection was blocked by 502 * nested_run_pending. In that case, however, 503 * vcpu_enter_guest requests an immediate exit, 504 * and the guest shouldn't proceed far enough to 505 * need reinjection. 506 */ 507 WARN_ON_ONCE(vcpu->arch.exception.pending); 508 vcpu->arch.exception.injected = true; 509 if (WARN_ON_ONCE(has_payload)) { 510 /* 511 * A reinjected event has already 512 * delivered its payload. 513 */ 514 has_payload = false; 515 payload = 0; 516 } 517 } else { 518 vcpu->arch.exception.pending = true; 519 vcpu->arch.exception.injected = false; 520 } 521 vcpu->arch.exception.has_error_code = has_error; 522 vcpu->arch.exception.nr = nr; 523 vcpu->arch.exception.error_code = error_code; 524 vcpu->arch.exception.has_payload = has_payload; 525 vcpu->arch.exception.payload = payload; 526 if (!is_guest_mode(vcpu)) 527 kvm_deliver_exception_payload(vcpu); 528 return; 529 } 530 531 /* to check exception */ 532 prev_nr = vcpu->arch.exception.nr; 533 if (prev_nr == DF_VECTOR) { 534 /* triple fault -> shutdown */ 535 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 536 return; 537 } 538 class1 = exception_class(prev_nr); 539 class2 = exception_class(nr); 540 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 541 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 542 /* 543 * Generate double fault per SDM Table 5-5. Set 544 * exception.pending = true so that the double fault 545 * can trigger a nested vmexit. 546 */ 547 vcpu->arch.exception.pending = true; 548 vcpu->arch.exception.injected = false; 549 vcpu->arch.exception.has_error_code = true; 550 vcpu->arch.exception.nr = DF_VECTOR; 551 vcpu->arch.exception.error_code = 0; 552 vcpu->arch.exception.has_payload = false; 553 vcpu->arch.exception.payload = 0; 554 } else 555 /* replace previous exception with a new one in a hope 556 that instruction re-execution will regenerate lost 557 exception */ 558 goto queue; 559 } 560 561 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 562 { 563 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 564 } 565 EXPORT_SYMBOL_GPL(kvm_queue_exception); 566 567 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 568 { 569 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 570 } 571 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 572 573 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 574 unsigned long payload) 575 { 576 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 577 } 578 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 579 580 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 581 u32 error_code, unsigned long payload) 582 { 583 kvm_multiple_exception(vcpu, nr, true, error_code, 584 true, payload, false); 585 } 586 587 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 588 { 589 if (err) 590 kvm_inject_gp(vcpu, 0); 591 else 592 return kvm_skip_emulated_instruction(vcpu); 593 594 return 1; 595 } 596 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 597 598 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 599 { 600 ++vcpu->stat.pf_guest; 601 vcpu->arch.exception.nested_apf = 602 is_guest_mode(vcpu) && fault->async_page_fault; 603 if (vcpu->arch.exception.nested_apf) { 604 vcpu->arch.apf.nested_apf_token = fault->address; 605 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 606 } else { 607 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 608 fault->address); 609 } 610 } 611 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 612 613 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 614 struct x86_exception *fault) 615 { 616 struct kvm_mmu *fault_mmu; 617 WARN_ON_ONCE(fault->vector != PF_VECTOR); 618 619 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 620 vcpu->arch.walk_mmu; 621 622 /* 623 * Invalidate the TLB entry for the faulting address, if it exists, 624 * else the access will fault indefinitely (and to emulate hardware). 625 */ 626 if ((fault->error_code & PFERR_PRESENT_MASK) && 627 !(fault->error_code & PFERR_RSVD_MASK)) 628 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address, 629 fault_mmu->root_hpa); 630 631 fault_mmu->inject_page_fault(vcpu, fault); 632 return fault->nested_page_fault; 633 } 634 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 635 636 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 637 { 638 atomic_inc(&vcpu->arch.nmi_queued); 639 kvm_make_request(KVM_REQ_NMI, vcpu); 640 } 641 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 642 643 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 644 { 645 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 646 } 647 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 648 649 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 650 { 651 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 652 } 653 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 654 655 /* 656 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 657 * a #GP and return false. 658 */ 659 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 660 { 661 if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl) 662 return true; 663 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 664 return false; 665 } 666 EXPORT_SYMBOL_GPL(kvm_require_cpl); 667 668 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 669 { 670 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 671 return true; 672 673 kvm_queue_exception(vcpu, UD_VECTOR); 674 return false; 675 } 676 EXPORT_SYMBOL_GPL(kvm_require_dr); 677 678 /* 679 * This function will be used to read from the physical memory of the currently 680 * running guest. The difference to kvm_vcpu_read_guest_page is that this function 681 * can read from guest physical or from the guest's guest physical memory. 682 */ 683 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 684 gfn_t ngfn, void *data, int offset, int len, 685 u32 access) 686 { 687 struct x86_exception exception; 688 gfn_t real_gfn; 689 gpa_t ngpa; 690 691 ngpa = gfn_to_gpa(ngfn); 692 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception); 693 if (real_gfn == UNMAPPED_GVA) 694 return -EFAULT; 695 696 real_gfn = gpa_to_gfn(real_gfn); 697 698 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len); 699 } 700 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); 701 702 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 703 void *data, int offset, int len, u32 access) 704 { 705 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, 706 data, offset, len, access); 707 } 708 709 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 710 { 711 return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) | 712 rsvd_bits(1, 2); 713 } 714 715 /* 716 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 717 */ 718 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) 719 { 720 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 721 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; 722 int i; 723 int ret; 724 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 725 726 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, 727 offset * sizeof(u64), sizeof(pdpte), 728 PFERR_USER_MASK|PFERR_WRITE_MASK); 729 if (ret < 0) { 730 ret = 0; 731 goto out; 732 } 733 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 734 if ((pdpte[i] & PT_PRESENT_MASK) && 735 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 736 ret = 0; 737 goto out; 738 } 739 } 740 ret = 1; 741 742 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 743 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 744 745 out: 746 747 return ret; 748 } 749 EXPORT_SYMBOL_GPL(load_pdptrs); 750 751 bool pdptrs_changed(struct kvm_vcpu *vcpu) 752 { 753 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; 754 int offset; 755 gfn_t gfn; 756 int r; 757 758 if (!is_pae_paging(vcpu)) 759 return false; 760 761 if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR)) 762 return true; 763 764 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT; 765 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1); 766 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), 767 PFERR_USER_MASK | PFERR_WRITE_MASK); 768 if (r < 0) 769 return true; 770 771 return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; 772 } 773 EXPORT_SYMBOL_GPL(pdptrs_changed); 774 775 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 776 { 777 unsigned long old_cr0 = kvm_read_cr0(vcpu); 778 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP; 779 780 cr0 |= X86_CR0_ET; 781 782 #ifdef CONFIG_X86_64 783 if (cr0 & 0xffffffff00000000UL) 784 return 1; 785 #endif 786 787 cr0 &= ~CR0_RESERVED_BITS; 788 789 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 790 return 1; 791 792 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 793 return 1; 794 795 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 796 #ifdef CONFIG_X86_64 797 if ((vcpu->arch.efer & EFER_LME)) { 798 int cs_db, cs_l; 799 800 if (!is_pae(vcpu)) 801 return 1; 802 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 803 if (cs_l) 804 return 1; 805 } else 806 #endif 807 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 808 kvm_read_cr3(vcpu))) 809 return 1; 810 } 811 812 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 813 return 1; 814 815 kvm_x86_ops.set_cr0(vcpu, cr0); 816 817 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 818 kvm_clear_async_pf_completion_queue(vcpu); 819 kvm_async_pf_hash_reset(vcpu); 820 } 821 822 if ((cr0 ^ old_cr0) & update_bits) 823 kvm_mmu_reset_context(vcpu); 824 825 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 826 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 827 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 828 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 829 830 return 0; 831 } 832 EXPORT_SYMBOL_GPL(kvm_set_cr0); 833 834 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 835 { 836 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 837 } 838 EXPORT_SYMBOL_GPL(kvm_lmsw); 839 840 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 841 { 842 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 843 844 if (vcpu->arch.xcr0 != host_xcr0) 845 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 846 847 if (vcpu->arch.xsaves_enabled && 848 vcpu->arch.ia32_xss != host_xss) 849 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 850 } 851 852 if (static_cpu_has(X86_FEATURE_PKU) && 853 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || 854 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) && 855 vcpu->arch.pkru != vcpu->arch.host_pkru) 856 __write_pkru(vcpu->arch.pkru); 857 } 858 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 859 860 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 861 { 862 if (static_cpu_has(X86_FEATURE_PKU) && 863 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || 864 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) { 865 vcpu->arch.pkru = rdpkru(); 866 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 867 __write_pkru(vcpu->arch.host_pkru); 868 } 869 870 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 871 872 if (vcpu->arch.xcr0 != host_xcr0) 873 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 874 875 if (vcpu->arch.xsaves_enabled && 876 vcpu->arch.ia32_xss != host_xss) 877 wrmsrl(MSR_IA32_XSS, host_xss); 878 } 879 880 } 881 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 882 883 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 884 { 885 u64 xcr0 = xcr; 886 u64 old_xcr0 = vcpu->arch.xcr0; 887 u64 valid_bits; 888 889 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 890 if (index != XCR_XFEATURE_ENABLED_MASK) 891 return 1; 892 if (!(xcr0 & XFEATURE_MASK_FP)) 893 return 1; 894 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 895 return 1; 896 897 /* 898 * Do not allow the guest to set bits that we do not support 899 * saving. However, xcr0 bit 0 is always set, even if the 900 * emulated CPU does not support XSAVE (see fx_init). 901 */ 902 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 903 if (xcr0 & ~valid_bits) 904 return 1; 905 906 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 907 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 908 return 1; 909 910 if (xcr0 & XFEATURE_MASK_AVX512) { 911 if (!(xcr0 & XFEATURE_MASK_YMM)) 912 return 1; 913 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 914 return 1; 915 } 916 vcpu->arch.xcr0 = xcr0; 917 918 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 919 kvm_update_cpuid(vcpu); 920 return 0; 921 } 922 923 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 924 { 925 if (kvm_x86_ops.get_cpl(vcpu) != 0 || 926 __kvm_set_xcr(vcpu, index, xcr)) { 927 kvm_inject_gp(vcpu, 0); 928 return 1; 929 } 930 return 0; 931 } 932 EXPORT_SYMBOL_GPL(kvm_set_xcr); 933 934 #define __cr4_reserved_bits(__cpu_has, __c) \ 935 ({ \ 936 u64 __reserved_bits = CR4_RESERVED_BITS; \ 937 \ 938 if (!__cpu_has(__c, X86_FEATURE_XSAVE)) \ 939 __reserved_bits |= X86_CR4_OSXSAVE; \ 940 if (!__cpu_has(__c, X86_FEATURE_SMEP)) \ 941 __reserved_bits |= X86_CR4_SMEP; \ 942 if (!__cpu_has(__c, X86_FEATURE_SMAP)) \ 943 __reserved_bits |= X86_CR4_SMAP; \ 944 if (!__cpu_has(__c, X86_FEATURE_FSGSBASE)) \ 945 __reserved_bits |= X86_CR4_FSGSBASE; \ 946 if (!__cpu_has(__c, X86_FEATURE_PKU)) \ 947 __reserved_bits |= X86_CR4_PKE; \ 948 if (!__cpu_has(__c, X86_FEATURE_LA57)) \ 949 __reserved_bits |= X86_CR4_LA57; \ 950 if (!__cpu_has(__c, X86_FEATURE_UMIP)) \ 951 __reserved_bits |= X86_CR4_UMIP; \ 952 __reserved_bits; \ 953 }) 954 955 static int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 956 { 957 if (cr4 & cr4_reserved_bits) 958 return -EINVAL; 959 960 if (cr4 & __cr4_reserved_bits(guest_cpuid_has, vcpu)) 961 return -EINVAL; 962 963 return 0; 964 } 965 966 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 967 { 968 unsigned long old_cr4 = kvm_read_cr4(vcpu); 969 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | 970 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE; 971 972 if (kvm_valid_cr4(vcpu, cr4)) 973 return 1; 974 975 if (is_long_mode(vcpu)) { 976 if (!(cr4 & X86_CR4_PAE)) 977 return 1; 978 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 979 && ((cr4 ^ old_cr4) & pdptr_bits) 980 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 981 kvm_read_cr3(vcpu))) 982 return 1; 983 984 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 985 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 986 return 1; 987 988 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 989 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 990 return 1; 991 } 992 993 if (kvm_x86_ops.set_cr4(vcpu, cr4)) 994 return 1; 995 996 if (((cr4 ^ old_cr4) & pdptr_bits) || 997 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 998 kvm_mmu_reset_context(vcpu); 999 1000 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 1001 kvm_update_cpuid(vcpu); 1002 1003 return 0; 1004 } 1005 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1006 1007 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1008 { 1009 bool skip_tlb_flush = false; 1010 #ifdef CONFIG_X86_64 1011 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 1012 1013 if (pcid_enabled) { 1014 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1015 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1016 } 1017 #endif 1018 1019 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { 1020 if (!skip_tlb_flush) { 1021 kvm_mmu_sync_roots(vcpu); 1022 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1023 } 1024 return 0; 1025 } 1026 1027 if (is_long_mode(vcpu) && 1028 (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63))) 1029 return 1; 1030 else if (is_pae_paging(vcpu) && 1031 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) 1032 return 1; 1033 1034 kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush); 1035 vcpu->arch.cr3 = cr3; 1036 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3); 1037 1038 return 0; 1039 } 1040 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1041 1042 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1043 { 1044 if (cr8 & CR8_RESERVED_BITS) 1045 return 1; 1046 if (lapic_in_kernel(vcpu)) 1047 kvm_lapic_set_tpr(vcpu, cr8); 1048 else 1049 vcpu->arch.cr8 = cr8; 1050 return 0; 1051 } 1052 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1053 1054 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1055 { 1056 if (lapic_in_kernel(vcpu)) 1057 return kvm_lapic_get_cr8(vcpu); 1058 else 1059 return vcpu->arch.cr8; 1060 } 1061 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1062 1063 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1064 { 1065 int i; 1066 1067 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1068 for (i = 0; i < KVM_NR_DB_REGS; i++) 1069 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1070 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD; 1071 } 1072 } 1073 1074 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1075 { 1076 unsigned long dr7; 1077 1078 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1079 dr7 = vcpu->arch.guest_debug_dr7; 1080 else 1081 dr7 = vcpu->arch.dr7; 1082 kvm_x86_ops.set_dr7(vcpu, dr7); 1083 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1084 if (dr7 & DR7_BP_EN_MASK) 1085 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1086 } 1087 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1088 1089 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1090 { 1091 u64 fixed = DR6_FIXED_1; 1092 1093 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1094 fixed |= DR6_RTM; 1095 return fixed; 1096 } 1097 1098 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1099 { 1100 size_t size = ARRAY_SIZE(vcpu->arch.db); 1101 1102 switch (dr) { 1103 case 0 ... 3: 1104 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1105 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1106 vcpu->arch.eff_db[dr] = val; 1107 break; 1108 case 4: 1109 /* fall through */ 1110 case 6: 1111 if (val & 0xffffffff00000000ULL) 1112 return -1; /* #GP */ 1113 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1114 break; 1115 case 5: 1116 /* fall through */ 1117 default: /* 7 */ 1118 if (!kvm_dr7_valid(val)) 1119 return -1; /* #GP */ 1120 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1121 kvm_update_dr7(vcpu); 1122 break; 1123 } 1124 1125 return 0; 1126 } 1127 1128 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1129 { 1130 if (__kvm_set_dr(vcpu, dr, val)) { 1131 kvm_inject_gp(vcpu, 0); 1132 return 1; 1133 } 1134 return 0; 1135 } 1136 EXPORT_SYMBOL_GPL(kvm_set_dr); 1137 1138 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1139 { 1140 size_t size = ARRAY_SIZE(vcpu->arch.db); 1141 1142 switch (dr) { 1143 case 0 ... 3: 1144 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1145 break; 1146 case 4: 1147 /* fall through */ 1148 case 6: 1149 *val = vcpu->arch.dr6; 1150 break; 1151 case 5: 1152 /* fall through */ 1153 default: /* 7 */ 1154 *val = vcpu->arch.dr7; 1155 break; 1156 } 1157 return 0; 1158 } 1159 EXPORT_SYMBOL_GPL(kvm_get_dr); 1160 1161 bool kvm_rdpmc(struct kvm_vcpu *vcpu) 1162 { 1163 u32 ecx = kvm_rcx_read(vcpu); 1164 u64 data; 1165 int err; 1166 1167 err = kvm_pmu_rdpmc(vcpu, ecx, &data); 1168 if (err) 1169 return err; 1170 kvm_rax_write(vcpu, (u32)data); 1171 kvm_rdx_write(vcpu, data >> 32); 1172 return err; 1173 } 1174 EXPORT_SYMBOL_GPL(kvm_rdpmc); 1175 1176 /* 1177 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1178 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1179 * 1180 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) 1181 * extract the supported MSRs from the related const lists. 1182 * msrs_to_save is selected from the msrs_to_save_all to reflect the 1183 * capabilities of the host cpu. This capabilities test skips MSRs that are 1184 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs 1185 * may depend on host virtualization features rather than host cpu features. 1186 */ 1187 1188 static const u32 msrs_to_save_all[] = { 1189 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1190 MSR_STAR, 1191 #ifdef CONFIG_X86_64 1192 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1193 #endif 1194 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1195 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1196 MSR_IA32_SPEC_CTRL, 1197 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1198 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1199 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1200 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1201 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1202 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1203 MSR_IA32_UMWAIT_CONTROL, 1204 1205 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1206 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3, 1207 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1208 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1209 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1210 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1211 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1212 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1213 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9, 1214 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11, 1215 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13, 1216 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15, 1217 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17, 1218 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1219 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1220 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1221 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1222 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9, 1223 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11, 1224 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13, 1225 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15, 1226 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17, 1227 }; 1228 1229 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)]; 1230 static unsigned num_msrs_to_save; 1231 1232 static const u32 emulated_msrs_all[] = { 1233 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1234 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1235 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1236 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1237 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1238 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1239 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1240 HV_X64_MSR_RESET, 1241 HV_X64_MSR_VP_INDEX, 1242 HV_X64_MSR_VP_RUNTIME, 1243 HV_X64_MSR_SCONTROL, 1244 HV_X64_MSR_STIMER0_CONFIG, 1245 HV_X64_MSR_VP_ASSIST_PAGE, 1246 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1247 HV_X64_MSR_TSC_EMULATION_STATUS, 1248 HV_X64_MSR_SYNDBG_OPTIONS, 1249 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1250 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1251 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1252 1253 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1254 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1255 1256 MSR_IA32_TSC_ADJUST, 1257 MSR_IA32_TSCDEADLINE, 1258 MSR_IA32_ARCH_CAPABILITIES, 1259 MSR_IA32_PERF_CAPABILITIES, 1260 MSR_IA32_MISC_ENABLE, 1261 MSR_IA32_MCG_STATUS, 1262 MSR_IA32_MCG_CTL, 1263 MSR_IA32_MCG_EXT_CTL, 1264 MSR_IA32_SMBASE, 1265 MSR_SMI_COUNT, 1266 MSR_PLATFORM_INFO, 1267 MSR_MISC_FEATURES_ENABLES, 1268 MSR_AMD64_VIRT_SPEC_CTRL, 1269 MSR_IA32_POWER_CTL, 1270 MSR_IA32_UCODE_REV, 1271 1272 /* 1273 * The following list leaves out MSRs whose values are determined 1274 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs. 1275 * We always support the "true" VMX control MSRs, even if the host 1276 * processor does not, so I am putting these registers here rather 1277 * than in msrs_to_save_all. 1278 */ 1279 MSR_IA32_VMX_BASIC, 1280 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1281 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1282 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1283 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1284 MSR_IA32_VMX_MISC, 1285 MSR_IA32_VMX_CR0_FIXED0, 1286 MSR_IA32_VMX_CR4_FIXED0, 1287 MSR_IA32_VMX_VMCS_ENUM, 1288 MSR_IA32_VMX_PROCBASED_CTLS2, 1289 MSR_IA32_VMX_EPT_VPID_CAP, 1290 MSR_IA32_VMX_VMFUNC, 1291 1292 MSR_K7_HWCR, 1293 MSR_KVM_POLL_CONTROL, 1294 }; 1295 1296 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1297 static unsigned num_emulated_msrs; 1298 1299 /* 1300 * List of msr numbers which are used to expose MSR-based features that 1301 * can be used by a hypervisor to validate requested CPU features. 1302 */ 1303 static const u32 msr_based_features_all[] = { 1304 MSR_IA32_VMX_BASIC, 1305 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1306 MSR_IA32_VMX_PINBASED_CTLS, 1307 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1308 MSR_IA32_VMX_PROCBASED_CTLS, 1309 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1310 MSR_IA32_VMX_EXIT_CTLS, 1311 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1312 MSR_IA32_VMX_ENTRY_CTLS, 1313 MSR_IA32_VMX_MISC, 1314 MSR_IA32_VMX_CR0_FIXED0, 1315 MSR_IA32_VMX_CR0_FIXED1, 1316 MSR_IA32_VMX_CR4_FIXED0, 1317 MSR_IA32_VMX_CR4_FIXED1, 1318 MSR_IA32_VMX_VMCS_ENUM, 1319 MSR_IA32_VMX_PROCBASED_CTLS2, 1320 MSR_IA32_VMX_EPT_VPID_CAP, 1321 MSR_IA32_VMX_VMFUNC, 1322 1323 MSR_F10H_DECFG, 1324 MSR_IA32_UCODE_REV, 1325 MSR_IA32_ARCH_CAPABILITIES, 1326 MSR_IA32_PERF_CAPABILITIES, 1327 }; 1328 1329 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)]; 1330 static unsigned int num_msr_based_features; 1331 1332 static u64 kvm_get_arch_capabilities(void) 1333 { 1334 u64 data = 0; 1335 1336 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 1337 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1338 1339 /* 1340 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1341 * the nested hypervisor runs with NX huge pages. If it is not, 1342 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other 1343 * L1 guests, so it need not worry about its own (L2) guests. 1344 */ 1345 data |= ARCH_CAP_PSCHANGE_MC_NO; 1346 1347 /* 1348 * If we're doing cache flushes (either "always" or "cond") 1349 * we will do one whenever the guest does a vmlaunch/vmresume. 1350 * If an outer hypervisor is doing the cache flush for us 1351 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1352 * capability to the guest too, and if EPT is disabled we're not 1353 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1354 * require a nested hypervisor to do a flush of its own. 1355 */ 1356 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1357 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1358 1359 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1360 data |= ARCH_CAP_RDCL_NO; 1361 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1362 data |= ARCH_CAP_SSB_NO; 1363 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1364 data |= ARCH_CAP_MDS_NO; 1365 1366 /* 1367 * On TAA affected systems: 1368 * - nothing to do if TSX is disabled on the host. 1369 * - we emulate TSX_CTRL if present on the host. 1370 * This lets the guest use VERW to clear CPU buffers. 1371 */ 1372 if (!boot_cpu_has(X86_FEATURE_RTM)) 1373 data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR); 1374 else if (!boot_cpu_has_bug(X86_BUG_TAA)) 1375 data |= ARCH_CAP_TAA_NO; 1376 1377 return data; 1378 } 1379 1380 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1381 { 1382 switch (msr->index) { 1383 case MSR_IA32_ARCH_CAPABILITIES: 1384 msr->data = kvm_get_arch_capabilities(); 1385 break; 1386 case MSR_IA32_UCODE_REV: 1387 rdmsrl_safe(msr->index, &msr->data); 1388 break; 1389 default: 1390 if (kvm_x86_ops.get_msr_feature(msr)) 1391 return 1; 1392 } 1393 return 0; 1394 } 1395 1396 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1397 { 1398 struct kvm_msr_entry msr; 1399 int r; 1400 1401 msr.index = index; 1402 r = kvm_get_msr_feature(&msr); 1403 if (r) 1404 return r; 1405 1406 *data = msr.data; 1407 1408 return 0; 1409 } 1410 1411 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1412 { 1413 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1414 return false; 1415 1416 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1417 return false; 1418 1419 if (efer & (EFER_LME | EFER_LMA) && 1420 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1421 return false; 1422 1423 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1424 return false; 1425 1426 return true; 1427 1428 } 1429 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1430 { 1431 if (efer & efer_reserved_bits) 1432 return false; 1433 1434 return __kvm_valid_efer(vcpu, efer); 1435 } 1436 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1437 1438 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1439 { 1440 u64 old_efer = vcpu->arch.efer; 1441 u64 efer = msr_info->data; 1442 1443 if (efer & efer_reserved_bits) 1444 return 1; 1445 1446 if (!msr_info->host_initiated) { 1447 if (!__kvm_valid_efer(vcpu, efer)) 1448 return 1; 1449 1450 if (is_paging(vcpu) && 1451 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1452 return 1; 1453 } 1454 1455 efer &= ~EFER_LMA; 1456 efer |= vcpu->arch.efer & EFER_LMA; 1457 1458 kvm_x86_ops.set_efer(vcpu, efer); 1459 1460 /* Update reserved bits */ 1461 if ((efer ^ old_efer) & EFER_NX) 1462 kvm_mmu_reset_context(vcpu); 1463 1464 return 0; 1465 } 1466 1467 void kvm_enable_efer_bits(u64 mask) 1468 { 1469 efer_reserved_bits &= ~mask; 1470 } 1471 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1472 1473 /* 1474 * Write @data into the MSR specified by @index. Select MSR specific fault 1475 * checks are bypassed if @host_initiated is %true. 1476 * Returns 0 on success, non-0 otherwise. 1477 * Assumes vcpu_load() was already called. 1478 */ 1479 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1480 bool host_initiated) 1481 { 1482 struct msr_data msr; 1483 1484 switch (index) { 1485 case MSR_FS_BASE: 1486 case MSR_GS_BASE: 1487 case MSR_KERNEL_GS_BASE: 1488 case MSR_CSTAR: 1489 case MSR_LSTAR: 1490 if (is_noncanonical_address(data, vcpu)) 1491 return 1; 1492 break; 1493 case MSR_IA32_SYSENTER_EIP: 1494 case MSR_IA32_SYSENTER_ESP: 1495 /* 1496 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1497 * non-canonical address is written on Intel but not on 1498 * AMD (which ignores the top 32-bits, because it does 1499 * not implement 64-bit SYSENTER). 1500 * 1501 * 64-bit code should hence be able to write a non-canonical 1502 * value on AMD. Making the address canonical ensures that 1503 * vmentry does not fail on Intel after writing a non-canonical 1504 * value, and that something deterministic happens if the guest 1505 * invokes 64-bit SYSENTER. 1506 */ 1507 data = get_canonical(data, vcpu_virt_addr_bits(vcpu)); 1508 } 1509 1510 msr.data = data; 1511 msr.index = index; 1512 msr.host_initiated = host_initiated; 1513 1514 return kvm_x86_ops.set_msr(vcpu, &msr); 1515 } 1516 1517 /* 1518 * Read the MSR specified by @index into @data. Select MSR specific fault 1519 * checks are bypassed if @host_initiated is %true. 1520 * Returns 0 on success, non-0 otherwise. 1521 * Assumes vcpu_load() was already called. 1522 */ 1523 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1524 bool host_initiated) 1525 { 1526 struct msr_data msr; 1527 int ret; 1528 1529 msr.index = index; 1530 msr.host_initiated = host_initiated; 1531 1532 ret = kvm_x86_ops.get_msr(vcpu, &msr); 1533 if (!ret) 1534 *data = msr.data; 1535 return ret; 1536 } 1537 1538 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1539 { 1540 return __kvm_get_msr(vcpu, index, data, false); 1541 } 1542 EXPORT_SYMBOL_GPL(kvm_get_msr); 1543 1544 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1545 { 1546 return __kvm_set_msr(vcpu, index, data, false); 1547 } 1548 EXPORT_SYMBOL_GPL(kvm_set_msr); 1549 1550 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 1551 { 1552 u32 ecx = kvm_rcx_read(vcpu); 1553 u64 data; 1554 1555 if (kvm_get_msr(vcpu, ecx, &data)) { 1556 trace_kvm_msr_read_ex(ecx); 1557 kvm_inject_gp(vcpu, 0); 1558 return 1; 1559 } 1560 1561 trace_kvm_msr_read(ecx, data); 1562 1563 kvm_rax_write(vcpu, data & -1u); 1564 kvm_rdx_write(vcpu, (data >> 32) & -1u); 1565 return kvm_skip_emulated_instruction(vcpu); 1566 } 1567 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 1568 1569 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 1570 { 1571 u32 ecx = kvm_rcx_read(vcpu); 1572 u64 data = kvm_read_edx_eax(vcpu); 1573 1574 if (kvm_set_msr(vcpu, ecx, data)) { 1575 trace_kvm_msr_write_ex(ecx, data); 1576 kvm_inject_gp(vcpu, 0); 1577 return 1; 1578 } 1579 1580 trace_kvm_msr_write(ecx, data); 1581 return kvm_skip_emulated_instruction(vcpu); 1582 } 1583 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 1584 1585 bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 1586 { 1587 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 1588 need_resched() || signal_pending(current); 1589 } 1590 EXPORT_SYMBOL_GPL(kvm_vcpu_exit_request); 1591 1592 /* 1593 * The fast path for frequent and performance sensitive wrmsr emulation, 1594 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 1595 * the latency of virtual IPI by avoiding the expensive bits of transitioning 1596 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 1597 * other cases which must be called after interrupts are enabled on the host. 1598 */ 1599 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 1600 { 1601 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 1602 return 1; 1603 1604 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 1605 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 1606 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 1607 ((u32)(data >> 32) != X2APIC_BROADCAST)) { 1608 1609 data &= ~(1 << 12); 1610 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32)); 1611 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32)); 1612 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data); 1613 trace_kvm_apic_write(APIC_ICR, (u32)data); 1614 return 0; 1615 } 1616 1617 return 1; 1618 } 1619 1620 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 1621 { 1622 if (!kvm_can_use_hv_timer(vcpu)) 1623 return 1; 1624 1625 kvm_set_lapic_tscdeadline_msr(vcpu, data); 1626 return 0; 1627 } 1628 1629 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 1630 { 1631 u32 msr = kvm_rcx_read(vcpu); 1632 u64 data; 1633 fastpath_t ret = EXIT_FASTPATH_NONE; 1634 1635 switch (msr) { 1636 case APIC_BASE_MSR + (APIC_ICR >> 4): 1637 data = kvm_read_edx_eax(vcpu); 1638 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 1639 kvm_skip_emulated_instruction(vcpu); 1640 ret = EXIT_FASTPATH_EXIT_HANDLED; 1641 } 1642 break; 1643 case MSR_IA32_TSCDEADLINE: 1644 data = kvm_read_edx_eax(vcpu); 1645 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 1646 kvm_skip_emulated_instruction(vcpu); 1647 ret = EXIT_FASTPATH_REENTER_GUEST; 1648 } 1649 break; 1650 default: 1651 break; 1652 } 1653 1654 if (ret != EXIT_FASTPATH_NONE) 1655 trace_kvm_msr_write(msr, data); 1656 1657 return ret; 1658 } 1659 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 1660 1661 /* 1662 * Adapt set_msr() to msr_io()'s calling convention 1663 */ 1664 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1665 { 1666 return __kvm_get_msr(vcpu, index, data, true); 1667 } 1668 1669 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1670 { 1671 return __kvm_set_msr(vcpu, index, *data, true); 1672 } 1673 1674 #ifdef CONFIG_X86_64 1675 struct pvclock_clock { 1676 int vclock_mode; 1677 u64 cycle_last; 1678 u64 mask; 1679 u32 mult; 1680 u32 shift; 1681 u64 base_cycles; 1682 u64 offset; 1683 }; 1684 1685 struct pvclock_gtod_data { 1686 seqcount_t seq; 1687 1688 struct pvclock_clock clock; /* extract of a clocksource struct */ 1689 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 1690 1691 ktime_t offs_boot; 1692 u64 wall_time_sec; 1693 }; 1694 1695 static struct pvclock_gtod_data pvclock_gtod_data; 1696 1697 static void update_pvclock_gtod(struct timekeeper *tk) 1698 { 1699 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 1700 1701 write_seqcount_begin(&vdata->seq); 1702 1703 /* copy pvclock gtod data */ 1704 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 1705 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 1706 vdata->clock.mask = tk->tkr_mono.mask; 1707 vdata->clock.mult = tk->tkr_mono.mult; 1708 vdata->clock.shift = tk->tkr_mono.shift; 1709 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 1710 vdata->clock.offset = tk->tkr_mono.base; 1711 1712 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 1713 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 1714 vdata->raw_clock.mask = tk->tkr_raw.mask; 1715 vdata->raw_clock.mult = tk->tkr_raw.mult; 1716 vdata->raw_clock.shift = tk->tkr_raw.shift; 1717 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 1718 vdata->raw_clock.offset = tk->tkr_raw.base; 1719 1720 vdata->wall_time_sec = tk->xtime_sec; 1721 1722 vdata->offs_boot = tk->offs_boot; 1723 1724 write_seqcount_end(&vdata->seq); 1725 } 1726 1727 static s64 get_kvmclock_base_ns(void) 1728 { 1729 /* Count up from boot time, but with the frequency of the raw clock. */ 1730 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 1731 } 1732 #else 1733 static s64 get_kvmclock_base_ns(void) 1734 { 1735 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 1736 return ktime_get_boottime_ns(); 1737 } 1738 #endif 1739 1740 void kvm_set_pending_timer(struct kvm_vcpu *vcpu) 1741 { 1742 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu); 1743 kvm_vcpu_kick(vcpu); 1744 } 1745 1746 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) 1747 { 1748 int version; 1749 int r; 1750 struct pvclock_wall_clock wc; 1751 u64 wall_nsec; 1752 1753 if (!wall_clock) 1754 return; 1755 1756 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 1757 if (r) 1758 return; 1759 1760 if (version & 1) 1761 ++version; /* first time write, random junk */ 1762 1763 ++version; 1764 1765 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 1766 return; 1767 1768 /* 1769 * The guest calculates current wall clock time by adding 1770 * system time (updated by kvm_guest_time_update below) to the 1771 * wall clock specified here. We do the reverse here. 1772 */ 1773 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 1774 1775 wc.nsec = do_div(wall_nsec, 1000000000); 1776 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 1777 wc.version = version; 1778 1779 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 1780 1781 version++; 1782 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 1783 } 1784 1785 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 1786 { 1787 do_shl32_div32(dividend, divisor); 1788 return dividend; 1789 } 1790 1791 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 1792 s8 *pshift, u32 *pmultiplier) 1793 { 1794 uint64_t scaled64; 1795 int32_t shift = 0; 1796 uint64_t tps64; 1797 uint32_t tps32; 1798 1799 tps64 = base_hz; 1800 scaled64 = scaled_hz; 1801 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 1802 tps64 >>= 1; 1803 shift--; 1804 } 1805 1806 tps32 = (uint32_t)tps64; 1807 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 1808 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 1809 scaled64 >>= 1; 1810 else 1811 tps32 <<= 1; 1812 shift++; 1813 } 1814 1815 *pshift = shift; 1816 *pmultiplier = div_frac(scaled64, tps32); 1817 } 1818 1819 #ifdef CONFIG_X86_64 1820 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 1821 #endif 1822 1823 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 1824 static unsigned long max_tsc_khz; 1825 1826 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 1827 { 1828 u64 v = (u64)khz * (1000000 + ppm); 1829 do_div(v, 1000000); 1830 return v; 1831 } 1832 1833 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 1834 { 1835 u64 ratio; 1836 1837 /* Guest TSC same frequency as host TSC? */ 1838 if (!scale) { 1839 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 1840 return 0; 1841 } 1842 1843 /* TSC scaling supported? */ 1844 if (!kvm_has_tsc_control) { 1845 if (user_tsc_khz > tsc_khz) { 1846 vcpu->arch.tsc_catchup = 1; 1847 vcpu->arch.tsc_always_catchup = 1; 1848 return 0; 1849 } else { 1850 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 1851 return -1; 1852 } 1853 } 1854 1855 /* TSC scaling required - calculate ratio */ 1856 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits, 1857 user_tsc_khz, tsc_khz); 1858 1859 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) { 1860 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 1861 user_tsc_khz); 1862 return -1; 1863 } 1864 1865 vcpu->arch.tsc_scaling_ratio = ratio; 1866 return 0; 1867 } 1868 1869 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 1870 { 1871 u32 thresh_lo, thresh_hi; 1872 int use_scaling = 0; 1873 1874 /* tsc_khz can be zero if TSC calibration fails */ 1875 if (user_tsc_khz == 0) { 1876 /* set tsc_scaling_ratio to a safe value */ 1877 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 1878 return -1; 1879 } 1880 1881 /* Compute a scale to convert nanoseconds in TSC cycles */ 1882 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 1883 &vcpu->arch.virtual_tsc_shift, 1884 &vcpu->arch.virtual_tsc_mult); 1885 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 1886 1887 /* 1888 * Compute the variation in TSC rate which is acceptable 1889 * within the range of tolerance and decide if the 1890 * rate being applied is within that bounds of the hardware 1891 * rate. If so, no scaling or compensation need be done. 1892 */ 1893 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 1894 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 1895 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 1896 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); 1897 use_scaling = 1; 1898 } 1899 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 1900 } 1901 1902 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 1903 { 1904 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 1905 vcpu->arch.virtual_tsc_mult, 1906 vcpu->arch.virtual_tsc_shift); 1907 tsc += vcpu->arch.this_tsc_write; 1908 return tsc; 1909 } 1910 1911 static inline int gtod_is_based_on_tsc(int mode) 1912 { 1913 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 1914 } 1915 1916 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 1917 { 1918 #ifdef CONFIG_X86_64 1919 bool vcpus_matched; 1920 struct kvm_arch *ka = &vcpu->kvm->arch; 1921 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1922 1923 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1924 atomic_read(&vcpu->kvm->online_vcpus)); 1925 1926 /* 1927 * Once the masterclock is enabled, always perform request in 1928 * order to update it. 1929 * 1930 * In order to enable masterclock, the host clocksource must be TSC 1931 * and the vcpus need to have matched TSCs. When that happens, 1932 * perform request to enable masterclock. 1933 */ 1934 if (ka->use_master_clock || 1935 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 1936 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 1937 1938 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 1939 atomic_read(&vcpu->kvm->online_vcpus), 1940 ka->use_master_clock, gtod->clock.vclock_mode); 1941 #endif 1942 } 1943 1944 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset) 1945 { 1946 u64 curr_offset = vcpu->arch.l1_tsc_offset; 1947 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset; 1948 } 1949 1950 /* 1951 * Multiply tsc by a fixed point number represented by ratio. 1952 * 1953 * The most significant 64-N bits (mult) of ratio represent the 1954 * integral part of the fixed point number; the remaining N bits 1955 * (frac) represent the fractional part, ie. ratio represents a fixed 1956 * point number (mult + frac * 2^(-N)). 1957 * 1958 * N equals to kvm_tsc_scaling_ratio_frac_bits. 1959 */ 1960 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 1961 { 1962 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits); 1963 } 1964 1965 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc) 1966 { 1967 u64 _tsc = tsc; 1968 u64 ratio = vcpu->arch.tsc_scaling_ratio; 1969 1970 if (ratio != kvm_default_tsc_scaling_ratio) 1971 _tsc = __scale_tsc(ratio, tsc); 1972 1973 return _tsc; 1974 } 1975 EXPORT_SYMBOL_GPL(kvm_scale_tsc); 1976 1977 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 1978 { 1979 u64 tsc; 1980 1981 tsc = kvm_scale_tsc(vcpu, rdtsc()); 1982 1983 return target_tsc - tsc; 1984 } 1985 1986 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 1987 { 1988 return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc); 1989 } 1990 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 1991 1992 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1993 { 1994 vcpu->arch.l1_tsc_offset = offset; 1995 vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset); 1996 } 1997 1998 static inline bool kvm_check_tsc_unstable(void) 1999 { 2000 #ifdef CONFIG_X86_64 2001 /* 2002 * TSC is marked unstable when we're running on Hyper-V, 2003 * 'TSC page' clocksource is good. 2004 */ 2005 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2006 return false; 2007 #endif 2008 return check_tsc_unstable(); 2009 } 2010 2011 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr) 2012 { 2013 struct kvm *kvm = vcpu->kvm; 2014 u64 offset, ns, elapsed; 2015 unsigned long flags; 2016 bool matched; 2017 bool already_matched; 2018 u64 data = msr->data; 2019 bool synchronizing = false; 2020 2021 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2022 offset = kvm_compute_tsc_offset(vcpu, data); 2023 ns = get_kvmclock_base_ns(); 2024 elapsed = ns - kvm->arch.last_tsc_nsec; 2025 2026 if (vcpu->arch.virtual_tsc_khz) { 2027 if (data == 0 && msr->host_initiated) { 2028 /* 2029 * detection of vcpu initialization -- need to sync 2030 * with other vCPUs. This particularly helps to keep 2031 * kvm_clock stable after CPU hotplug 2032 */ 2033 synchronizing = true; 2034 } else { 2035 u64 tsc_exp = kvm->arch.last_tsc_write + 2036 nsec_to_cycles(vcpu, elapsed); 2037 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2038 /* 2039 * Special case: TSC write with a small delta (1 second) 2040 * of virtual cycle time against real time is 2041 * interpreted as an attempt to synchronize the CPU. 2042 */ 2043 synchronizing = data < tsc_exp + tsc_hz && 2044 data + tsc_hz > tsc_exp; 2045 } 2046 } 2047 2048 /* 2049 * For a reliable TSC, we can match TSC offsets, and for an unstable 2050 * TSC, we add elapsed time in this computation. We could let the 2051 * compensation code attempt to catch up if we fall behind, but 2052 * it's better to try to match offsets from the beginning. 2053 */ 2054 if (synchronizing && 2055 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2056 if (!kvm_check_tsc_unstable()) { 2057 offset = kvm->arch.cur_tsc_offset; 2058 } else { 2059 u64 delta = nsec_to_cycles(vcpu, elapsed); 2060 data += delta; 2061 offset = kvm_compute_tsc_offset(vcpu, data); 2062 } 2063 matched = true; 2064 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation); 2065 } else { 2066 /* 2067 * We split periods of matched TSC writes into generations. 2068 * For each generation, we track the original measured 2069 * nanosecond time, offset, and write, so if TSCs are in 2070 * sync, we can match exact offset, and if not, we can match 2071 * exact software computation in compute_guest_tsc() 2072 * 2073 * These values are tracked in kvm->arch.cur_xxx variables. 2074 */ 2075 kvm->arch.cur_tsc_generation++; 2076 kvm->arch.cur_tsc_nsec = ns; 2077 kvm->arch.cur_tsc_write = data; 2078 kvm->arch.cur_tsc_offset = offset; 2079 matched = false; 2080 } 2081 2082 /* 2083 * We also track th most recent recorded KHZ, write and time to 2084 * allow the matching interval to be extended at each write. 2085 */ 2086 kvm->arch.last_tsc_nsec = ns; 2087 kvm->arch.last_tsc_write = data; 2088 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2089 2090 vcpu->arch.last_guest_tsc = data; 2091 2092 /* Keep track of which generation this VCPU has synchronized to */ 2093 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2094 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2095 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2096 2097 if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) 2098 update_ia32_tsc_adjust_msr(vcpu, offset); 2099 2100 kvm_vcpu_write_tsc_offset(vcpu, offset); 2101 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2102 2103 spin_lock(&kvm->arch.pvclock_gtod_sync_lock); 2104 if (!matched) { 2105 kvm->arch.nr_vcpus_matched_tsc = 0; 2106 } else if (!already_matched) { 2107 kvm->arch.nr_vcpus_matched_tsc++; 2108 } 2109 2110 kvm_track_tsc_matching(vcpu); 2111 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); 2112 } 2113 2114 EXPORT_SYMBOL_GPL(kvm_write_tsc); 2115 2116 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2117 s64 adjustment) 2118 { 2119 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2120 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2121 } 2122 2123 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2124 { 2125 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio) 2126 WARN_ON(adjustment < 0); 2127 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment); 2128 adjust_tsc_offset_guest(vcpu, adjustment); 2129 } 2130 2131 #ifdef CONFIG_X86_64 2132 2133 static u64 read_tsc(void) 2134 { 2135 u64 ret = (u64)rdtsc_ordered(); 2136 u64 last = pvclock_gtod_data.clock.cycle_last; 2137 2138 if (likely(ret >= last)) 2139 return ret; 2140 2141 /* 2142 * GCC likes to generate cmov here, but this branch is extremely 2143 * predictable (it's just a function of time and the likely is 2144 * very likely) and there's a data dependence, so force GCC 2145 * to generate a branch instead. I don't barrier() because 2146 * we don't actually need a barrier, and if this function 2147 * ever gets inlined it will generate worse code. 2148 */ 2149 asm volatile (""); 2150 return last; 2151 } 2152 2153 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2154 int *mode) 2155 { 2156 long v; 2157 u64 tsc_pg_val; 2158 2159 switch (clock->vclock_mode) { 2160 case VDSO_CLOCKMODE_HVCLOCK: 2161 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 2162 tsc_timestamp); 2163 if (tsc_pg_val != U64_MAX) { 2164 /* TSC page valid */ 2165 *mode = VDSO_CLOCKMODE_HVCLOCK; 2166 v = (tsc_pg_val - clock->cycle_last) & 2167 clock->mask; 2168 } else { 2169 /* TSC page invalid */ 2170 *mode = VDSO_CLOCKMODE_NONE; 2171 } 2172 break; 2173 case VDSO_CLOCKMODE_TSC: 2174 *mode = VDSO_CLOCKMODE_TSC; 2175 *tsc_timestamp = read_tsc(); 2176 v = (*tsc_timestamp - clock->cycle_last) & 2177 clock->mask; 2178 break; 2179 default: 2180 *mode = VDSO_CLOCKMODE_NONE; 2181 } 2182 2183 if (*mode == VDSO_CLOCKMODE_NONE) 2184 *tsc_timestamp = v = 0; 2185 2186 return v * clock->mult; 2187 } 2188 2189 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2190 { 2191 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2192 unsigned long seq; 2193 int mode; 2194 u64 ns; 2195 2196 do { 2197 seq = read_seqcount_begin(>od->seq); 2198 ns = gtod->raw_clock.base_cycles; 2199 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2200 ns >>= gtod->raw_clock.shift; 2201 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2202 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2203 *t = ns; 2204 2205 return mode; 2206 } 2207 2208 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2209 { 2210 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2211 unsigned long seq; 2212 int mode; 2213 u64 ns; 2214 2215 do { 2216 seq = read_seqcount_begin(>od->seq); 2217 ts->tv_sec = gtod->wall_time_sec; 2218 ns = gtod->clock.base_cycles; 2219 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2220 ns >>= gtod->clock.shift; 2221 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2222 2223 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2224 ts->tv_nsec = ns; 2225 2226 return mode; 2227 } 2228 2229 /* returns true if host is using TSC based clocksource */ 2230 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2231 { 2232 /* checked again under seqlock below */ 2233 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2234 return false; 2235 2236 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2237 tsc_timestamp)); 2238 } 2239 2240 /* returns true if host is using TSC based clocksource */ 2241 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2242 u64 *tsc_timestamp) 2243 { 2244 /* checked again under seqlock below */ 2245 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2246 return false; 2247 2248 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2249 } 2250 #endif 2251 2252 /* 2253 * 2254 * Assuming a stable TSC across physical CPUS, and a stable TSC 2255 * across virtual CPUs, the following condition is possible. 2256 * Each numbered line represents an event visible to both 2257 * CPUs at the next numbered event. 2258 * 2259 * "timespecX" represents host monotonic time. "tscX" represents 2260 * RDTSC value. 2261 * 2262 * VCPU0 on CPU0 | VCPU1 on CPU1 2263 * 2264 * 1. read timespec0,tsc0 2265 * 2. | timespec1 = timespec0 + N 2266 * | tsc1 = tsc0 + M 2267 * 3. transition to guest | transition to guest 2268 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2269 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2270 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2271 * 2272 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2273 * 2274 * - ret0 < ret1 2275 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2276 * ... 2277 * - 0 < N - M => M < N 2278 * 2279 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2280 * always the case (the difference between two distinct xtime instances 2281 * might be smaller then the difference between corresponding TSC reads, 2282 * when updating guest vcpus pvclock areas). 2283 * 2284 * To avoid that problem, do not allow visibility of distinct 2285 * system_timestamp/tsc_timestamp values simultaneously: use a master 2286 * copy of host monotonic time values. Update that master copy 2287 * in lockstep. 2288 * 2289 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2290 * 2291 */ 2292 2293 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2294 { 2295 #ifdef CONFIG_X86_64 2296 struct kvm_arch *ka = &kvm->arch; 2297 int vclock_mode; 2298 bool host_tsc_clocksource, vcpus_matched; 2299 2300 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2301 atomic_read(&kvm->online_vcpus)); 2302 2303 /* 2304 * If the host uses TSC clock, then passthrough TSC as stable 2305 * to the guest. 2306 */ 2307 host_tsc_clocksource = kvm_get_time_and_clockread( 2308 &ka->master_kernel_ns, 2309 &ka->master_cycle_now); 2310 2311 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2312 && !ka->backwards_tsc_observed 2313 && !ka->boot_vcpu_runs_old_kvmclock; 2314 2315 if (ka->use_master_clock) 2316 atomic_set(&kvm_guest_has_master_clock, 1); 2317 2318 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2319 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2320 vcpus_matched); 2321 #endif 2322 } 2323 2324 void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2325 { 2326 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2327 } 2328 2329 static void kvm_gen_update_masterclock(struct kvm *kvm) 2330 { 2331 #ifdef CONFIG_X86_64 2332 int i; 2333 struct kvm_vcpu *vcpu; 2334 struct kvm_arch *ka = &kvm->arch; 2335 2336 spin_lock(&ka->pvclock_gtod_sync_lock); 2337 kvm_make_mclock_inprogress_request(kvm); 2338 /* no guest entries from this point */ 2339 pvclock_update_vm_gtod_copy(kvm); 2340 2341 kvm_for_each_vcpu(i, vcpu, kvm) 2342 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2343 2344 /* guest entries allowed */ 2345 kvm_for_each_vcpu(i, vcpu, kvm) 2346 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 2347 2348 spin_unlock(&ka->pvclock_gtod_sync_lock); 2349 #endif 2350 } 2351 2352 u64 get_kvmclock_ns(struct kvm *kvm) 2353 { 2354 struct kvm_arch *ka = &kvm->arch; 2355 struct pvclock_vcpu_time_info hv_clock; 2356 u64 ret; 2357 2358 spin_lock(&ka->pvclock_gtod_sync_lock); 2359 if (!ka->use_master_clock) { 2360 spin_unlock(&ka->pvclock_gtod_sync_lock); 2361 return get_kvmclock_base_ns() + ka->kvmclock_offset; 2362 } 2363 2364 hv_clock.tsc_timestamp = ka->master_cycle_now; 2365 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 2366 spin_unlock(&ka->pvclock_gtod_sync_lock); 2367 2368 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 2369 get_cpu(); 2370 2371 if (__this_cpu_read(cpu_tsc_khz)) { 2372 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL, 2373 &hv_clock.tsc_shift, 2374 &hv_clock.tsc_to_system_mul); 2375 ret = __pvclock_read_cycles(&hv_clock, rdtsc()); 2376 } else 2377 ret = get_kvmclock_base_ns() + ka->kvmclock_offset; 2378 2379 put_cpu(); 2380 2381 return ret; 2382 } 2383 2384 static void kvm_setup_pvclock_page(struct kvm_vcpu *v) 2385 { 2386 struct kvm_vcpu_arch *vcpu = &v->arch; 2387 struct pvclock_vcpu_time_info guest_hv_clock; 2388 2389 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time, 2390 &guest_hv_clock, sizeof(guest_hv_clock)))) 2391 return; 2392 2393 /* This VCPU is paused, but it's legal for a guest to read another 2394 * VCPU's kvmclock, so we really have to follow the specification where 2395 * it says that version is odd if data is being modified, and even after 2396 * it is consistent. 2397 * 2398 * Version field updates must be kept separate. This is because 2399 * kvm_write_guest_cached might use a "rep movs" instruction, and 2400 * writes within a string instruction are weakly ordered. So there 2401 * are three writes overall. 2402 * 2403 * As a small optimization, only write the version field in the first 2404 * and third write. The vcpu->pv_time cache is still valid, because the 2405 * version field is the first in the struct. 2406 */ 2407 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); 2408 2409 if (guest_hv_clock.version & 1) 2410 ++guest_hv_clock.version; /* first time write, random junk */ 2411 2412 vcpu->hv_clock.version = guest_hv_clock.version + 1; 2413 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2414 &vcpu->hv_clock, 2415 sizeof(vcpu->hv_clock.version)); 2416 2417 smp_wmb(); 2418 2419 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 2420 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); 2421 2422 if (vcpu->pvclock_set_guest_stopped_request) { 2423 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 2424 vcpu->pvclock_set_guest_stopped_request = false; 2425 } 2426 2427 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 2428 2429 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2430 &vcpu->hv_clock, 2431 sizeof(vcpu->hv_clock)); 2432 2433 smp_wmb(); 2434 2435 vcpu->hv_clock.version++; 2436 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2437 &vcpu->hv_clock, 2438 sizeof(vcpu->hv_clock.version)); 2439 } 2440 2441 static int kvm_guest_time_update(struct kvm_vcpu *v) 2442 { 2443 unsigned long flags, tgt_tsc_khz; 2444 struct kvm_vcpu_arch *vcpu = &v->arch; 2445 struct kvm_arch *ka = &v->kvm->arch; 2446 s64 kernel_ns; 2447 u64 tsc_timestamp, host_tsc; 2448 u8 pvclock_flags; 2449 bool use_master_clock; 2450 2451 kernel_ns = 0; 2452 host_tsc = 0; 2453 2454 /* 2455 * If the host uses TSC clock, then passthrough TSC as stable 2456 * to the guest. 2457 */ 2458 spin_lock(&ka->pvclock_gtod_sync_lock); 2459 use_master_clock = ka->use_master_clock; 2460 if (use_master_clock) { 2461 host_tsc = ka->master_cycle_now; 2462 kernel_ns = ka->master_kernel_ns; 2463 } 2464 spin_unlock(&ka->pvclock_gtod_sync_lock); 2465 2466 /* Keep irq disabled to prevent changes to the clock */ 2467 local_irq_save(flags); 2468 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz); 2469 if (unlikely(tgt_tsc_khz == 0)) { 2470 local_irq_restore(flags); 2471 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 2472 return 1; 2473 } 2474 if (!use_master_clock) { 2475 host_tsc = rdtsc(); 2476 kernel_ns = get_kvmclock_base_ns(); 2477 } 2478 2479 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 2480 2481 /* 2482 * We may have to catch up the TSC to match elapsed wall clock 2483 * time for two reasons, even if kvmclock is used. 2484 * 1) CPU could have been running below the maximum TSC rate 2485 * 2) Broken TSC compensation resets the base at each VCPU 2486 * entry to avoid unknown leaps of TSC even when running 2487 * again on the same CPU. This may cause apparent elapsed 2488 * time to disappear, and the guest to stand still or run 2489 * very slowly. 2490 */ 2491 if (vcpu->tsc_catchup) { 2492 u64 tsc = compute_guest_tsc(v, kernel_ns); 2493 if (tsc > tsc_timestamp) { 2494 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 2495 tsc_timestamp = tsc; 2496 } 2497 } 2498 2499 local_irq_restore(flags); 2500 2501 /* With all the info we got, fill in the values */ 2502 2503 if (kvm_has_tsc_control) 2504 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz); 2505 2506 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 2507 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 2508 &vcpu->hv_clock.tsc_shift, 2509 &vcpu->hv_clock.tsc_to_system_mul); 2510 vcpu->hw_tsc_khz = tgt_tsc_khz; 2511 } 2512 2513 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 2514 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 2515 vcpu->last_guest_tsc = tsc_timestamp; 2516 2517 /* If the host uses TSC clocksource, then it is stable */ 2518 pvclock_flags = 0; 2519 if (use_master_clock) 2520 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 2521 2522 vcpu->hv_clock.flags = pvclock_flags; 2523 2524 if (vcpu->pv_time_enabled) 2525 kvm_setup_pvclock_page(v); 2526 if (v == kvm_get_vcpu(v->kvm, 0)) 2527 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 2528 return 0; 2529 } 2530 2531 /* 2532 * kvmclock updates which are isolated to a given vcpu, such as 2533 * vcpu->cpu migration, should not allow system_timestamp from 2534 * the rest of the vcpus to remain static. Otherwise ntp frequency 2535 * correction applies to one vcpu's system_timestamp but not 2536 * the others. 2537 * 2538 * So in those cases, request a kvmclock update for all vcpus. 2539 * We need to rate-limit these requests though, as they can 2540 * considerably slow guests that have a large number of vcpus. 2541 * The time for a remote vcpu to update its kvmclock is bound 2542 * by the delay we use to rate-limit the updates. 2543 */ 2544 2545 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 2546 2547 static void kvmclock_update_fn(struct work_struct *work) 2548 { 2549 int i; 2550 struct delayed_work *dwork = to_delayed_work(work); 2551 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 2552 kvmclock_update_work); 2553 struct kvm *kvm = container_of(ka, struct kvm, arch); 2554 struct kvm_vcpu *vcpu; 2555 2556 kvm_for_each_vcpu(i, vcpu, kvm) { 2557 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2558 kvm_vcpu_kick(vcpu); 2559 } 2560 } 2561 2562 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 2563 { 2564 struct kvm *kvm = v->kvm; 2565 2566 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 2567 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 2568 KVMCLOCK_UPDATE_DELAY); 2569 } 2570 2571 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 2572 2573 static void kvmclock_sync_fn(struct work_struct *work) 2574 { 2575 struct delayed_work *dwork = to_delayed_work(work); 2576 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 2577 kvmclock_sync_work); 2578 struct kvm *kvm = container_of(ka, struct kvm, arch); 2579 2580 if (!kvmclock_periodic_sync) 2581 return; 2582 2583 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 2584 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 2585 KVMCLOCK_SYNC_PERIOD); 2586 } 2587 2588 /* 2589 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 2590 */ 2591 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 2592 { 2593 /* McStatusWrEn enabled? */ 2594 if (guest_cpuid_is_amd_or_hygon(vcpu)) 2595 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 2596 2597 return false; 2598 } 2599 2600 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2601 { 2602 u64 mcg_cap = vcpu->arch.mcg_cap; 2603 unsigned bank_num = mcg_cap & 0xff; 2604 u32 msr = msr_info->index; 2605 u64 data = msr_info->data; 2606 2607 switch (msr) { 2608 case MSR_IA32_MCG_STATUS: 2609 vcpu->arch.mcg_status = data; 2610 break; 2611 case MSR_IA32_MCG_CTL: 2612 if (!(mcg_cap & MCG_CTL_P) && 2613 (data || !msr_info->host_initiated)) 2614 return 1; 2615 if (data != 0 && data != ~(u64)0) 2616 return 1; 2617 vcpu->arch.mcg_ctl = data; 2618 break; 2619 default: 2620 if (msr >= MSR_IA32_MC0_CTL && 2621 msr < MSR_IA32_MCx_CTL(bank_num)) { 2622 u32 offset = array_index_nospec( 2623 msr - MSR_IA32_MC0_CTL, 2624 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL); 2625 2626 /* only 0 or all 1s can be written to IA32_MCi_CTL 2627 * some Linux kernels though clear bit 10 in bank 4 to 2628 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 2629 * this to avoid an uncatched #GP in the guest 2630 */ 2631 if ((offset & 0x3) == 0 && 2632 data != 0 && (data | (1 << 10)) != ~(u64)0) 2633 return -1; 2634 2635 /* MCi_STATUS */ 2636 if (!msr_info->host_initiated && 2637 (offset & 0x3) == 1 && data != 0) { 2638 if (!can_set_mci_status(vcpu)) 2639 return -1; 2640 } 2641 2642 vcpu->arch.mce_banks[offset] = data; 2643 break; 2644 } 2645 return 1; 2646 } 2647 return 0; 2648 } 2649 2650 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) 2651 { 2652 struct kvm *kvm = vcpu->kvm; 2653 int lm = is_long_mode(vcpu); 2654 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 2655 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; 2656 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 2657 : kvm->arch.xen_hvm_config.blob_size_32; 2658 u32 page_num = data & ~PAGE_MASK; 2659 u64 page_addr = data & PAGE_MASK; 2660 u8 *page; 2661 int r; 2662 2663 r = -E2BIG; 2664 if (page_num >= blob_size) 2665 goto out; 2666 r = -ENOMEM; 2667 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); 2668 if (IS_ERR(page)) { 2669 r = PTR_ERR(page); 2670 goto out; 2671 } 2672 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) 2673 goto out_free; 2674 r = 0; 2675 out_free: 2676 kfree(page); 2677 out: 2678 return r; 2679 } 2680 2681 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 2682 { 2683 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 2684 2685 return (vcpu->arch.apf.msr_en_val & mask) == mask; 2686 } 2687 2688 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 2689 { 2690 gpa_t gpa = data & ~0x3f; 2691 2692 /* Bits 4:5 are reserved, Should be zero */ 2693 if (data & 0x30) 2694 return 1; 2695 2696 vcpu->arch.apf.msr_en_val = data; 2697 2698 if (!kvm_pv_async_pf_enabled(vcpu)) { 2699 kvm_clear_async_pf_completion_queue(vcpu); 2700 kvm_async_pf_hash_reset(vcpu); 2701 return 0; 2702 } 2703 2704 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 2705 sizeof(u64))) 2706 return 1; 2707 2708 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 2709 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 2710 2711 kvm_async_pf_wakeup_all(vcpu); 2712 2713 return 0; 2714 } 2715 2716 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 2717 { 2718 /* Bits 8-63 are reserved */ 2719 if (data >> 8) 2720 return 1; 2721 2722 if (!lapic_in_kernel(vcpu)) 2723 return 1; 2724 2725 vcpu->arch.apf.msr_int_val = data; 2726 2727 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 2728 2729 return 0; 2730 } 2731 2732 static void kvmclock_reset(struct kvm_vcpu *vcpu) 2733 { 2734 vcpu->arch.pv_time_enabled = false; 2735 vcpu->arch.time = 0; 2736 } 2737 2738 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 2739 { 2740 ++vcpu->stat.tlb_flush; 2741 kvm_x86_ops.tlb_flush_all(vcpu); 2742 } 2743 2744 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 2745 { 2746 ++vcpu->stat.tlb_flush; 2747 kvm_x86_ops.tlb_flush_guest(vcpu); 2748 } 2749 2750 static void record_steal_time(struct kvm_vcpu *vcpu) 2751 { 2752 struct kvm_host_map map; 2753 struct kvm_steal_time *st; 2754 2755 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 2756 return; 2757 2758 /* -EAGAIN is returned in atomic context so we can just return. */ 2759 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, 2760 &map, &vcpu->arch.st.cache, false)) 2761 return; 2762 2763 st = map.hva + 2764 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS); 2765 2766 /* 2767 * Doing a TLB flush here, on the guest's behalf, can avoid 2768 * expensive IPIs. 2769 */ 2770 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 2771 st->preempted & KVM_VCPU_FLUSH_TLB); 2772 if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB) 2773 kvm_vcpu_flush_tlb_guest(vcpu); 2774 2775 vcpu->arch.st.preempted = 0; 2776 2777 if (st->version & 1) 2778 st->version += 1; /* first time write, random junk */ 2779 2780 st->version += 1; 2781 2782 smp_wmb(); 2783 2784 st->steal += current->sched_info.run_delay - 2785 vcpu->arch.st.last_steal; 2786 vcpu->arch.st.last_steal = current->sched_info.run_delay; 2787 2788 smp_wmb(); 2789 2790 st->version += 1; 2791 2792 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false); 2793 } 2794 2795 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2796 { 2797 bool pr = false; 2798 u32 msr = msr_info->index; 2799 u64 data = msr_info->data; 2800 2801 switch (msr) { 2802 case MSR_AMD64_NB_CFG: 2803 case MSR_IA32_UCODE_WRITE: 2804 case MSR_VM_HSAVE_PA: 2805 case MSR_AMD64_PATCH_LOADER: 2806 case MSR_AMD64_BU_CFG2: 2807 case MSR_AMD64_DC_CFG: 2808 case MSR_F15H_EX_CFG: 2809 break; 2810 2811 case MSR_IA32_UCODE_REV: 2812 if (msr_info->host_initiated) 2813 vcpu->arch.microcode_version = data; 2814 break; 2815 case MSR_IA32_ARCH_CAPABILITIES: 2816 if (!msr_info->host_initiated) 2817 return 1; 2818 vcpu->arch.arch_capabilities = data; 2819 break; 2820 case MSR_EFER: 2821 return set_efer(vcpu, msr_info); 2822 case MSR_K7_HWCR: 2823 data &= ~(u64)0x40; /* ignore flush filter disable */ 2824 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 2825 data &= ~(u64)0x8; /* ignore TLB cache disable */ 2826 2827 /* Handle McStatusWrEn */ 2828 if (data == BIT_ULL(18)) { 2829 vcpu->arch.msr_hwcr = data; 2830 } else if (data != 0) { 2831 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 2832 data); 2833 return 1; 2834 } 2835 break; 2836 case MSR_FAM10H_MMIO_CONF_BASE: 2837 if (data != 0) { 2838 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 2839 "0x%llx\n", data); 2840 return 1; 2841 } 2842 break; 2843 case MSR_IA32_DEBUGCTLMSR: 2844 if (!data) { 2845 /* We support the non-activated case already */ 2846 break; 2847 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { 2848 /* Values other than LBR and BTF are vendor-specific, 2849 thus reserved and should throw a #GP */ 2850 return 1; 2851 } 2852 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", 2853 __func__, data); 2854 break; 2855 case 0x200 ... 0x2ff: 2856 return kvm_mtrr_set_msr(vcpu, msr, data); 2857 case MSR_IA32_APICBASE: 2858 return kvm_set_apic_base(vcpu, msr_info); 2859 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2860 return kvm_x2apic_msr_write(vcpu, msr, data); 2861 case MSR_IA32_TSCDEADLINE: 2862 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2863 break; 2864 case MSR_IA32_TSC_ADJUST: 2865 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 2866 if (!msr_info->host_initiated) { 2867 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 2868 adjust_tsc_offset_guest(vcpu, adj); 2869 } 2870 vcpu->arch.ia32_tsc_adjust_msr = data; 2871 } 2872 break; 2873 case MSR_IA32_MISC_ENABLE: 2874 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 2875 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 2876 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 2877 return 1; 2878 vcpu->arch.ia32_misc_enable_msr = data; 2879 kvm_update_cpuid(vcpu); 2880 } else { 2881 vcpu->arch.ia32_misc_enable_msr = data; 2882 } 2883 break; 2884 case MSR_IA32_SMBASE: 2885 if (!msr_info->host_initiated) 2886 return 1; 2887 vcpu->arch.smbase = data; 2888 break; 2889 case MSR_IA32_POWER_CTL: 2890 vcpu->arch.msr_ia32_power_ctl = data; 2891 break; 2892 case MSR_IA32_TSC: 2893 kvm_write_tsc(vcpu, msr_info); 2894 break; 2895 case MSR_IA32_XSS: 2896 if (!msr_info->host_initiated && 2897 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 2898 return 1; 2899 /* 2900 * KVM supports exposing PT to the guest, but does not support 2901 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 2902 * XSAVES/XRSTORS to save/restore PT MSRs. 2903 */ 2904 if (data & ~supported_xss) 2905 return 1; 2906 vcpu->arch.ia32_xss = data; 2907 break; 2908 case MSR_SMI_COUNT: 2909 if (!msr_info->host_initiated) 2910 return 1; 2911 vcpu->arch.smi_count = data; 2912 break; 2913 case MSR_KVM_WALL_CLOCK_NEW: 2914 case MSR_KVM_WALL_CLOCK: 2915 vcpu->kvm->arch.wall_clock = data; 2916 kvm_write_wall_clock(vcpu->kvm, data); 2917 break; 2918 case MSR_KVM_SYSTEM_TIME_NEW: 2919 case MSR_KVM_SYSTEM_TIME: { 2920 struct kvm_arch *ka = &vcpu->kvm->arch; 2921 2922 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) { 2923 bool tmp = (msr == MSR_KVM_SYSTEM_TIME); 2924 2925 if (ka->boot_vcpu_runs_old_kvmclock != tmp) 2926 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2927 2928 ka->boot_vcpu_runs_old_kvmclock = tmp; 2929 } 2930 2931 vcpu->arch.time = data; 2932 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2933 2934 /* we verify if the enable bit is set... */ 2935 vcpu->arch.pv_time_enabled = false; 2936 if (!(data & 1)) 2937 break; 2938 2939 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm, 2940 &vcpu->arch.pv_time, data & ~1ULL, 2941 sizeof(struct pvclock_vcpu_time_info))) 2942 vcpu->arch.pv_time_enabled = true; 2943 2944 break; 2945 } 2946 case MSR_KVM_ASYNC_PF_EN: 2947 if (kvm_pv_enable_async_pf(vcpu, data)) 2948 return 1; 2949 break; 2950 case MSR_KVM_ASYNC_PF_INT: 2951 if (kvm_pv_enable_async_pf_int(vcpu, data)) 2952 return 1; 2953 break; 2954 case MSR_KVM_ASYNC_PF_ACK: 2955 if (data & 0x1) { 2956 vcpu->arch.apf.pageready_pending = false; 2957 kvm_check_async_pf_completion(vcpu); 2958 } 2959 break; 2960 case MSR_KVM_STEAL_TIME: 2961 2962 if (unlikely(!sched_info_on())) 2963 return 1; 2964 2965 if (data & KVM_STEAL_RESERVED_MASK) 2966 return 1; 2967 2968 vcpu->arch.st.msr_val = data; 2969 2970 if (!(data & KVM_MSR_ENABLED)) 2971 break; 2972 2973 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2974 2975 break; 2976 case MSR_KVM_PV_EOI_EN: 2977 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8))) 2978 return 1; 2979 break; 2980 2981 case MSR_KVM_POLL_CONTROL: 2982 /* only enable bit supported */ 2983 if (data & (-1ULL << 1)) 2984 return 1; 2985 2986 vcpu->arch.msr_kvm_poll_control = data; 2987 break; 2988 2989 case MSR_IA32_MCG_CTL: 2990 case MSR_IA32_MCG_STATUS: 2991 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 2992 return set_msr_mce(vcpu, msr_info); 2993 2994 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 2995 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 2996 pr = true; /* fall through */ 2997 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 2998 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 2999 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3000 return kvm_pmu_set_msr(vcpu, msr_info); 3001 3002 if (pr || data != 0) 3003 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 3004 "0x%x data 0x%llx\n", msr, data); 3005 break; 3006 case MSR_K7_CLK_CTL: 3007 /* 3008 * Ignore all writes to this no longer documented MSR. 3009 * Writes are only relevant for old K7 processors, 3010 * all pre-dating SVM, but a recommended workaround from 3011 * AMD for these chips. It is possible to specify the 3012 * affected processor models on the command line, hence 3013 * the need to ignore the workaround. 3014 */ 3015 break; 3016 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3017 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3018 case HV_X64_MSR_SYNDBG_OPTIONS: 3019 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3020 case HV_X64_MSR_CRASH_CTL: 3021 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3022 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3023 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3024 case HV_X64_MSR_TSC_EMULATION_STATUS: 3025 return kvm_hv_set_msr_common(vcpu, msr, data, 3026 msr_info->host_initiated); 3027 case MSR_IA32_BBL_CR_CTL3: 3028 /* Drop writes to this legacy MSR -- see rdmsr 3029 * counterpart for further detail. 3030 */ 3031 if (report_ignored_msrs) 3032 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", 3033 msr, data); 3034 break; 3035 case MSR_AMD64_OSVW_ID_LENGTH: 3036 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3037 return 1; 3038 vcpu->arch.osvw.length = data; 3039 break; 3040 case MSR_AMD64_OSVW_STATUS: 3041 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3042 return 1; 3043 vcpu->arch.osvw.status = data; 3044 break; 3045 case MSR_PLATFORM_INFO: 3046 if (!msr_info->host_initiated || 3047 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3048 cpuid_fault_enabled(vcpu))) 3049 return 1; 3050 vcpu->arch.msr_platform_info = data; 3051 break; 3052 case MSR_MISC_FEATURES_ENABLES: 3053 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3054 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3055 !supports_cpuid_fault(vcpu))) 3056 return 1; 3057 vcpu->arch.msr_misc_features_enables = data; 3058 break; 3059 default: 3060 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) 3061 return xen_hvm_config(vcpu, data); 3062 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3063 return kvm_pmu_set_msr(vcpu, msr_info); 3064 if (!ignore_msrs) { 3065 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n", 3066 msr, data); 3067 return 1; 3068 } else { 3069 if (report_ignored_msrs) 3070 vcpu_unimpl(vcpu, 3071 "ignored wrmsr: 0x%x data 0x%llx\n", 3072 msr, data); 3073 break; 3074 } 3075 } 3076 return 0; 3077 } 3078 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 3079 3080 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 3081 { 3082 u64 data; 3083 u64 mcg_cap = vcpu->arch.mcg_cap; 3084 unsigned bank_num = mcg_cap & 0xff; 3085 3086 switch (msr) { 3087 case MSR_IA32_P5_MC_ADDR: 3088 case MSR_IA32_P5_MC_TYPE: 3089 data = 0; 3090 break; 3091 case MSR_IA32_MCG_CAP: 3092 data = vcpu->arch.mcg_cap; 3093 break; 3094 case MSR_IA32_MCG_CTL: 3095 if (!(mcg_cap & MCG_CTL_P) && !host) 3096 return 1; 3097 data = vcpu->arch.mcg_ctl; 3098 break; 3099 case MSR_IA32_MCG_STATUS: 3100 data = vcpu->arch.mcg_status; 3101 break; 3102 default: 3103 if (msr >= MSR_IA32_MC0_CTL && 3104 msr < MSR_IA32_MCx_CTL(bank_num)) { 3105 u32 offset = array_index_nospec( 3106 msr - MSR_IA32_MC0_CTL, 3107 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL); 3108 3109 data = vcpu->arch.mce_banks[offset]; 3110 break; 3111 } 3112 return 1; 3113 } 3114 *pdata = data; 3115 return 0; 3116 } 3117 3118 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3119 { 3120 switch (msr_info->index) { 3121 case MSR_IA32_PLATFORM_ID: 3122 case MSR_IA32_EBL_CR_POWERON: 3123 case MSR_IA32_DEBUGCTLMSR: 3124 case MSR_IA32_LASTBRANCHFROMIP: 3125 case MSR_IA32_LASTBRANCHTOIP: 3126 case MSR_IA32_LASTINTFROMIP: 3127 case MSR_IA32_LASTINTTOIP: 3128 case MSR_K8_SYSCFG: 3129 case MSR_K8_TSEG_ADDR: 3130 case MSR_K8_TSEG_MASK: 3131 case MSR_VM_HSAVE_PA: 3132 case MSR_K8_INT_PENDING_MSG: 3133 case MSR_AMD64_NB_CFG: 3134 case MSR_FAM10H_MMIO_CONF_BASE: 3135 case MSR_AMD64_BU_CFG2: 3136 case MSR_IA32_PERF_CTL: 3137 case MSR_AMD64_DC_CFG: 3138 case MSR_F15H_EX_CFG: 3139 /* 3140 * Intel Sandy Bridge CPUs must support the RAPL (running average power 3141 * limit) MSRs. Just return 0, as we do not want to expose the host 3142 * data here. Do not conditionalize this on CPUID, as KVM does not do 3143 * so for existing CPU-specific MSRs. 3144 */ 3145 case MSR_RAPL_POWER_UNIT: 3146 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 3147 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 3148 case MSR_PKG_ENERGY_STATUS: /* Total package */ 3149 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 3150 msr_info->data = 0; 3151 break; 3152 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3153 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3154 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3155 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3156 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3157 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3158 return kvm_pmu_get_msr(vcpu, msr_info); 3159 msr_info->data = 0; 3160 break; 3161 case MSR_IA32_UCODE_REV: 3162 msr_info->data = vcpu->arch.microcode_version; 3163 break; 3164 case MSR_IA32_ARCH_CAPABILITIES: 3165 if (!msr_info->host_initiated && 3166 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 3167 return 1; 3168 msr_info->data = vcpu->arch.arch_capabilities; 3169 break; 3170 case MSR_IA32_POWER_CTL: 3171 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 3172 break; 3173 case MSR_IA32_TSC: 3174 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset; 3175 break; 3176 case MSR_MTRRcap: 3177 case 0x200 ... 0x2ff: 3178 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 3179 case 0xcd: /* fsb frequency */ 3180 msr_info->data = 3; 3181 break; 3182 /* 3183 * MSR_EBC_FREQUENCY_ID 3184 * Conservative value valid for even the basic CPU models. 3185 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 3186 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 3187 * and 266MHz for model 3, or 4. Set Core Clock 3188 * Frequency to System Bus Frequency Ratio to 1 (bits 3189 * 31:24) even though these are only valid for CPU 3190 * models > 2, however guests may end up dividing or 3191 * multiplying by zero otherwise. 3192 */ 3193 case MSR_EBC_FREQUENCY_ID: 3194 msr_info->data = 1 << 24; 3195 break; 3196 case MSR_IA32_APICBASE: 3197 msr_info->data = kvm_get_apic_base(vcpu); 3198 break; 3199 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 3200 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 3201 case MSR_IA32_TSCDEADLINE: 3202 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 3203 break; 3204 case MSR_IA32_TSC_ADJUST: 3205 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 3206 break; 3207 case MSR_IA32_MISC_ENABLE: 3208 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 3209 break; 3210 case MSR_IA32_SMBASE: 3211 if (!msr_info->host_initiated) 3212 return 1; 3213 msr_info->data = vcpu->arch.smbase; 3214 break; 3215 case MSR_SMI_COUNT: 3216 msr_info->data = vcpu->arch.smi_count; 3217 break; 3218 case MSR_IA32_PERF_STATUS: 3219 /* TSC increment by tick */ 3220 msr_info->data = 1000ULL; 3221 /* CPU multiplier */ 3222 msr_info->data |= (((uint64_t)4ULL) << 40); 3223 break; 3224 case MSR_EFER: 3225 msr_info->data = vcpu->arch.efer; 3226 break; 3227 case MSR_KVM_WALL_CLOCK: 3228 case MSR_KVM_WALL_CLOCK_NEW: 3229 msr_info->data = vcpu->kvm->arch.wall_clock; 3230 break; 3231 case MSR_KVM_SYSTEM_TIME: 3232 case MSR_KVM_SYSTEM_TIME_NEW: 3233 msr_info->data = vcpu->arch.time; 3234 break; 3235 case MSR_KVM_ASYNC_PF_EN: 3236 msr_info->data = vcpu->arch.apf.msr_en_val; 3237 break; 3238 case MSR_KVM_ASYNC_PF_INT: 3239 msr_info->data = vcpu->arch.apf.msr_int_val; 3240 break; 3241 case MSR_KVM_ASYNC_PF_ACK: 3242 msr_info->data = 0; 3243 break; 3244 case MSR_KVM_STEAL_TIME: 3245 msr_info->data = vcpu->arch.st.msr_val; 3246 break; 3247 case MSR_KVM_PV_EOI_EN: 3248 msr_info->data = vcpu->arch.pv_eoi.msr_val; 3249 break; 3250 case MSR_KVM_POLL_CONTROL: 3251 msr_info->data = vcpu->arch.msr_kvm_poll_control; 3252 break; 3253 case MSR_IA32_P5_MC_ADDR: 3254 case MSR_IA32_P5_MC_TYPE: 3255 case MSR_IA32_MCG_CAP: 3256 case MSR_IA32_MCG_CTL: 3257 case MSR_IA32_MCG_STATUS: 3258 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3259 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 3260 msr_info->host_initiated); 3261 case MSR_IA32_XSS: 3262 if (!msr_info->host_initiated && 3263 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3264 return 1; 3265 msr_info->data = vcpu->arch.ia32_xss; 3266 break; 3267 case MSR_K7_CLK_CTL: 3268 /* 3269 * Provide expected ramp-up count for K7. All other 3270 * are set to zero, indicating minimum divisors for 3271 * every field. 3272 * 3273 * This prevents guest kernels on AMD host with CPU 3274 * type 6, model 8 and higher from exploding due to 3275 * the rdmsr failing. 3276 */ 3277 msr_info->data = 0x20000000; 3278 break; 3279 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3280 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3281 case HV_X64_MSR_SYNDBG_OPTIONS: 3282 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3283 case HV_X64_MSR_CRASH_CTL: 3284 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3285 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3286 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3287 case HV_X64_MSR_TSC_EMULATION_STATUS: 3288 return kvm_hv_get_msr_common(vcpu, 3289 msr_info->index, &msr_info->data, 3290 msr_info->host_initiated); 3291 case MSR_IA32_BBL_CR_CTL3: 3292 /* This legacy MSR exists but isn't fully documented in current 3293 * silicon. It is however accessed by winxp in very narrow 3294 * scenarios where it sets bit #19, itself documented as 3295 * a "reserved" bit. Best effort attempt to source coherent 3296 * read data here should the balance of the register be 3297 * interpreted by the guest: 3298 * 3299 * L2 cache control register 3: 64GB range, 256KB size, 3300 * enabled, latency 0x1, configured 3301 */ 3302 msr_info->data = 0xbe702111; 3303 break; 3304 case MSR_AMD64_OSVW_ID_LENGTH: 3305 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3306 return 1; 3307 msr_info->data = vcpu->arch.osvw.length; 3308 break; 3309 case MSR_AMD64_OSVW_STATUS: 3310 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3311 return 1; 3312 msr_info->data = vcpu->arch.osvw.status; 3313 break; 3314 case MSR_PLATFORM_INFO: 3315 if (!msr_info->host_initiated && 3316 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 3317 return 1; 3318 msr_info->data = vcpu->arch.msr_platform_info; 3319 break; 3320 case MSR_MISC_FEATURES_ENABLES: 3321 msr_info->data = vcpu->arch.msr_misc_features_enables; 3322 break; 3323 case MSR_K7_HWCR: 3324 msr_info->data = vcpu->arch.msr_hwcr; 3325 break; 3326 default: 3327 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3328 return kvm_pmu_get_msr(vcpu, msr_info); 3329 if (!ignore_msrs) { 3330 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n", 3331 msr_info->index); 3332 return 1; 3333 } else { 3334 if (report_ignored_msrs) 3335 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", 3336 msr_info->index); 3337 msr_info->data = 0; 3338 } 3339 break; 3340 } 3341 return 0; 3342 } 3343 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 3344 3345 /* 3346 * Read or write a bunch of msrs. All parameters are kernel addresses. 3347 * 3348 * @return number of msrs set successfully. 3349 */ 3350 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 3351 struct kvm_msr_entry *entries, 3352 int (*do_msr)(struct kvm_vcpu *vcpu, 3353 unsigned index, u64 *data)) 3354 { 3355 int i; 3356 3357 for (i = 0; i < msrs->nmsrs; ++i) 3358 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 3359 break; 3360 3361 return i; 3362 } 3363 3364 /* 3365 * Read or write a bunch of msrs. Parameters are user addresses. 3366 * 3367 * @return number of msrs set successfully. 3368 */ 3369 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 3370 int (*do_msr)(struct kvm_vcpu *vcpu, 3371 unsigned index, u64 *data), 3372 int writeback) 3373 { 3374 struct kvm_msrs msrs; 3375 struct kvm_msr_entry *entries; 3376 int r, n; 3377 unsigned size; 3378 3379 r = -EFAULT; 3380 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 3381 goto out; 3382 3383 r = -E2BIG; 3384 if (msrs.nmsrs >= MAX_IO_MSRS) 3385 goto out; 3386 3387 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 3388 entries = memdup_user(user_msrs->entries, size); 3389 if (IS_ERR(entries)) { 3390 r = PTR_ERR(entries); 3391 goto out; 3392 } 3393 3394 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 3395 if (r < 0) 3396 goto out_free; 3397 3398 r = -EFAULT; 3399 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 3400 goto out_free; 3401 3402 r = n; 3403 3404 out_free: 3405 kfree(entries); 3406 out: 3407 return r; 3408 } 3409 3410 static inline bool kvm_can_mwait_in_guest(void) 3411 { 3412 return boot_cpu_has(X86_FEATURE_MWAIT) && 3413 !boot_cpu_has_bug(X86_BUG_MONITOR) && 3414 boot_cpu_has(X86_FEATURE_ARAT); 3415 } 3416 3417 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 3418 { 3419 int r = 0; 3420 3421 switch (ext) { 3422 case KVM_CAP_IRQCHIP: 3423 case KVM_CAP_HLT: 3424 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 3425 case KVM_CAP_SET_TSS_ADDR: 3426 case KVM_CAP_EXT_CPUID: 3427 case KVM_CAP_EXT_EMUL_CPUID: 3428 case KVM_CAP_CLOCKSOURCE: 3429 case KVM_CAP_PIT: 3430 case KVM_CAP_NOP_IO_DELAY: 3431 case KVM_CAP_MP_STATE: 3432 case KVM_CAP_SYNC_MMU: 3433 case KVM_CAP_USER_NMI: 3434 case KVM_CAP_REINJECT_CONTROL: 3435 case KVM_CAP_IRQ_INJECT_STATUS: 3436 case KVM_CAP_IOEVENTFD: 3437 case KVM_CAP_IOEVENTFD_NO_LENGTH: 3438 case KVM_CAP_PIT2: 3439 case KVM_CAP_PIT_STATE2: 3440 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 3441 case KVM_CAP_XEN_HVM: 3442 case KVM_CAP_VCPU_EVENTS: 3443 case KVM_CAP_HYPERV: 3444 case KVM_CAP_HYPERV_VAPIC: 3445 case KVM_CAP_HYPERV_SPIN: 3446 case KVM_CAP_HYPERV_SYNIC: 3447 case KVM_CAP_HYPERV_SYNIC2: 3448 case KVM_CAP_HYPERV_VP_INDEX: 3449 case KVM_CAP_HYPERV_EVENTFD: 3450 case KVM_CAP_HYPERV_TLBFLUSH: 3451 case KVM_CAP_HYPERV_SEND_IPI: 3452 case KVM_CAP_HYPERV_CPUID: 3453 case KVM_CAP_PCI_SEGMENT: 3454 case KVM_CAP_DEBUGREGS: 3455 case KVM_CAP_X86_ROBUST_SINGLESTEP: 3456 case KVM_CAP_XSAVE: 3457 case KVM_CAP_ASYNC_PF: 3458 case KVM_CAP_ASYNC_PF_INT: 3459 case KVM_CAP_GET_TSC_KHZ: 3460 case KVM_CAP_KVMCLOCK_CTRL: 3461 case KVM_CAP_READONLY_MEM: 3462 case KVM_CAP_HYPERV_TIME: 3463 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 3464 case KVM_CAP_TSC_DEADLINE_TIMER: 3465 case KVM_CAP_DISABLE_QUIRKS: 3466 case KVM_CAP_SET_BOOT_CPU_ID: 3467 case KVM_CAP_SPLIT_IRQCHIP: 3468 case KVM_CAP_IMMEDIATE_EXIT: 3469 case KVM_CAP_PMU_EVENT_FILTER: 3470 case KVM_CAP_GET_MSR_FEATURES: 3471 case KVM_CAP_MSR_PLATFORM_INFO: 3472 case KVM_CAP_EXCEPTION_PAYLOAD: 3473 case KVM_CAP_SET_GUEST_DEBUG: 3474 r = 1; 3475 break; 3476 case KVM_CAP_SYNC_REGS: 3477 r = KVM_SYNC_X86_VALID_FIELDS; 3478 break; 3479 case KVM_CAP_ADJUST_CLOCK: 3480 r = KVM_CLOCK_TSC_STABLE; 3481 break; 3482 case KVM_CAP_X86_DISABLE_EXITS: 3483 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE | 3484 KVM_X86_DISABLE_EXITS_CSTATE; 3485 if(kvm_can_mwait_in_guest()) 3486 r |= KVM_X86_DISABLE_EXITS_MWAIT; 3487 break; 3488 case KVM_CAP_X86_SMM: 3489 /* SMBASE is usually relocated above 1M on modern chipsets, 3490 * and SMM handlers might indeed rely on 4G segment limits, 3491 * so do not report SMM to be available if real mode is 3492 * emulated via vm86 mode. Still, do not go to great lengths 3493 * to avoid userspace's usage of the feature, because it is a 3494 * fringe case that is not enabled except via specific settings 3495 * of the module parameters. 3496 */ 3497 r = kvm_x86_ops.has_emulated_msr(MSR_IA32_SMBASE); 3498 break; 3499 case KVM_CAP_VAPIC: 3500 r = !kvm_x86_ops.cpu_has_accelerated_tpr(); 3501 break; 3502 case KVM_CAP_NR_VCPUS: 3503 r = KVM_SOFT_MAX_VCPUS; 3504 break; 3505 case KVM_CAP_MAX_VCPUS: 3506 r = KVM_MAX_VCPUS; 3507 break; 3508 case KVM_CAP_MAX_VCPU_ID: 3509 r = KVM_MAX_VCPU_ID; 3510 break; 3511 case KVM_CAP_PV_MMU: /* obsolete */ 3512 r = 0; 3513 break; 3514 case KVM_CAP_MCE: 3515 r = KVM_MAX_MCE_BANKS; 3516 break; 3517 case KVM_CAP_XCRS: 3518 r = boot_cpu_has(X86_FEATURE_XSAVE); 3519 break; 3520 case KVM_CAP_TSC_CONTROL: 3521 r = kvm_has_tsc_control; 3522 break; 3523 case KVM_CAP_X2APIC_API: 3524 r = KVM_X2APIC_API_VALID_FLAGS; 3525 break; 3526 case KVM_CAP_NESTED_STATE: 3527 r = kvm_x86_ops.nested_ops->get_state ? 3528 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 3529 break; 3530 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 3531 r = kvm_x86_ops.enable_direct_tlbflush != NULL; 3532 break; 3533 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 3534 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 3535 break; 3536 default: 3537 break; 3538 } 3539 return r; 3540 3541 } 3542 3543 long kvm_arch_dev_ioctl(struct file *filp, 3544 unsigned int ioctl, unsigned long arg) 3545 { 3546 void __user *argp = (void __user *)arg; 3547 long r; 3548 3549 switch (ioctl) { 3550 case KVM_GET_MSR_INDEX_LIST: { 3551 struct kvm_msr_list __user *user_msr_list = argp; 3552 struct kvm_msr_list msr_list; 3553 unsigned n; 3554 3555 r = -EFAULT; 3556 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 3557 goto out; 3558 n = msr_list.nmsrs; 3559 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 3560 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 3561 goto out; 3562 r = -E2BIG; 3563 if (n < msr_list.nmsrs) 3564 goto out; 3565 r = -EFAULT; 3566 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 3567 num_msrs_to_save * sizeof(u32))) 3568 goto out; 3569 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 3570 &emulated_msrs, 3571 num_emulated_msrs * sizeof(u32))) 3572 goto out; 3573 r = 0; 3574 break; 3575 } 3576 case KVM_GET_SUPPORTED_CPUID: 3577 case KVM_GET_EMULATED_CPUID: { 3578 struct kvm_cpuid2 __user *cpuid_arg = argp; 3579 struct kvm_cpuid2 cpuid; 3580 3581 r = -EFAULT; 3582 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 3583 goto out; 3584 3585 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 3586 ioctl); 3587 if (r) 3588 goto out; 3589 3590 r = -EFAULT; 3591 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 3592 goto out; 3593 r = 0; 3594 break; 3595 } 3596 case KVM_X86_GET_MCE_CAP_SUPPORTED: 3597 r = -EFAULT; 3598 if (copy_to_user(argp, &kvm_mce_cap_supported, 3599 sizeof(kvm_mce_cap_supported))) 3600 goto out; 3601 r = 0; 3602 break; 3603 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 3604 struct kvm_msr_list __user *user_msr_list = argp; 3605 struct kvm_msr_list msr_list; 3606 unsigned int n; 3607 3608 r = -EFAULT; 3609 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 3610 goto out; 3611 n = msr_list.nmsrs; 3612 msr_list.nmsrs = num_msr_based_features; 3613 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 3614 goto out; 3615 r = -E2BIG; 3616 if (n < msr_list.nmsrs) 3617 goto out; 3618 r = -EFAULT; 3619 if (copy_to_user(user_msr_list->indices, &msr_based_features, 3620 num_msr_based_features * sizeof(u32))) 3621 goto out; 3622 r = 0; 3623 break; 3624 } 3625 case KVM_GET_MSRS: 3626 r = msr_io(NULL, argp, do_get_msr_feature, 1); 3627 break; 3628 default: 3629 r = -EINVAL; 3630 break; 3631 } 3632 out: 3633 return r; 3634 } 3635 3636 static void wbinvd_ipi(void *garbage) 3637 { 3638 wbinvd(); 3639 } 3640 3641 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 3642 { 3643 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 3644 } 3645 3646 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 3647 { 3648 /* Address WBINVD may be executed by guest */ 3649 if (need_emulate_wbinvd(vcpu)) { 3650 if (kvm_x86_ops.has_wbinvd_exit()) 3651 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 3652 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 3653 smp_call_function_single(vcpu->cpu, 3654 wbinvd_ipi, NULL, 1); 3655 } 3656 3657 kvm_x86_ops.vcpu_load(vcpu, cpu); 3658 3659 /* Save host pkru register if supported */ 3660 vcpu->arch.host_pkru = read_pkru(); 3661 3662 /* Apply any externally detected TSC adjustments (due to suspend) */ 3663 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 3664 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 3665 vcpu->arch.tsc_offset_adjustment = 0; 3666 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3667 } 3668 3669 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 3670 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 3671 rdtsc() - vcpu->arch.last_host_tsc; 3672 if (tsc_delta < 0) 3673 mark_tsc_unstable("KVM discovered backwards TSC"); 3674 3675 if (kvm_check_tsc_unstable()) { 3676 u64 offset = kvm_compute_tsc_offset(vcpu, 3677 vcpu->arch.last_guest_tsc); 3678 kvm_vcpu_write_tsc_offset(vcpu, offset); 3679 vcpu->arch.tsc_catchup = 1; 3680 } 3681 3682 if (kvm_lapic_hv_timer_in_use(vcpu)) 3683 kvm_lapic_restart_hv_timer(vcpu); 3684 3685 /* 3686 * On a host with synchronized TSC, there is no need to update 3687 * kvmclock on vcpu->cpu migration 3688 */ 3689 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 3690 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 3691 if (vcpu->cpu != cpu) 3692 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 3693 vcpu->cpu = cpu; 3694 } 3695 3696 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3697 } 3698 3699 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 3700 { 3701 struct kvm_host_map map; 3702 struct kvm_steal_time *st; 3703 3704 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3705 return; 3706 3707 if (vcpu->arch.st.preempted) 3708 return; 3709 3710 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map, 3711 &vcpu->arch.st.cache, true)) 3712 return; 3713 3714 st = map.hva + 3715 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS); 3716 3717 st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 3718 3719 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true); 3720 } 3721 3722 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 3723 { 3724 int idx; 3725 3726 if (vcpu->preempted) 3727 vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu); 3728 3729 /* 3730 * Disable page faults because we're in atomic context here. 3731 * kvm_write_guest_offset_cached() would call might_fault() 3732 * that relies on pagefault_disable() to tell if there's a 3733 * bug. NOTE: the write to guest memory may not go through if 3734 * during postcopy live migration or if there's heavy guest 3735 * paging. 3736 */ 3737 pagefault_disable(); 3738 /* 3739 * kvm_memslots() will be called by 3740 * kvm_write_guest_offset_cached() so take the srcu lock. 3741 */ 3742 idx = srcu_read_lock(&vcpu->kvm->srcu); 3743 kvm_steal_time_set_preempted(vcpu); 3744 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3745 pagefault_enable(); 3746 kvm_x86_ops.vcpu_put(vcpu); 3747 vcpu->arch.last_host_tsc = rdtsc(); 3748 /* 3749 * If userspace has set any breakpoints or watchpoints, dr6 is restored 3750 * on every vmexit, but if not, we might have a stale dr6 from the 3751 * guest. do_debug expects dr6 to be cleared after it runs, do the same. 3752 */ 3753 set_debugreg(0, 6); 3754 } 3755 3756 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 3757 struct kvm_lapic_state *s) 3758 { 3759 if (vcpu->arch.apicv_active) 3760 kvm_x86_ops.sync_pir_to_irr(vcpu); 3761 3762 return kvm_apic_get_state(vcpu, s); 3763 } 3764 3765 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 3766 struct kvm_lapic_state *s) 3767 { 3768 int r; 3769 3770 r = kvm_apic_set_state(vcpu, s); 3771 if (r) 3772 return r; 3773 update_cr8_intercept(vcpu); 3774 3775 return 0; 3776 } 3777 3778 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 3779 { 3780 return (!lapic_in_kernel(vcpu) || 3781 kvm_apic_accept_pic_intr(vcpu)); 3782 } 3783 3784 /* 3785 * if userspace requested an interrupt window, check that the 3786 * interrupt window is open. 3787 * 3788 * No need to exit to userspace if we already have an interrupt queued. 3789 */ 3790 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 3791 { 3792 return kvm_arch_interrupt_allowed(vcpu) && 3793 !kvm_cpu_has_interrupt(vcpu) && 3794 !kvm_event_needs_reinjection(vcpu) && 3795 kvm_cpu_accept_dm_intr(vcpu); 3796 } 3797 3798 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 3799 struct kvm_interrupt *irq) 3800 { 3801 if (irq->irq >= KVM_NR_INTERRUPTS) 3802 return -EINVAL; 3803 3804 if (!irqchip_in_kernel(vcpu->kvm)) { 3805 kvm_queue_interrupt(vcpu, irq->irq, false); 3806 kvm_make_request(KVM_REQ_EVENT, vcpu); 3807 return 0; 3808 } 3809 3810 /* 3811 * With in-kernel LAPIC, we only use this to inject EXTINT, so 3812 * fail for in-kernel 8259. 3813 */ 3814 if (pic_in_kernel(vcpu->kvm)) 3815 return -ENXIO; 3816 3817 if (vcpu->arch.pending_external_vector != -1) 3818 return -EEXIST; 3819 3820 vcpu->arch.pending_external_vector = irq->irq; 3821 kvm_make_request(KVM_REQ_EVENT, vcpu); 3822 return 0; 3823 } 3824 3825 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 3826 { 3827 kvm_inject_nmi(vcpu); 3828 3829 return 0; 3830 } 3831 3832 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu) 3833 { 3834 kvm_make_request(KVM_REQ_SMI, vcpu); 3835 3836 return 0; 3837 } 3838 3839 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 3840 struct kvm_tpr_access_ctl *tac) 3841 { 3842 if (tac->flags) 3843 return -EINVAL; 3844 vcpu->arch.tpr_access_reporting = !!tac->enabled; 3845 return 0; 3846 } 3847 3848 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 3849 u64 mcg_cap) 3850 { 3851 int r; 3852 unsigned bank_num = mcg_cap & 0xff, bank; 3853 3854 r = -EINVAL; 3855 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 3856 goto out; 3857 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000)) 3858 goto out; 3859 r = 0; 3860 vcpu->arch.mcg_cap = mcg_cap; 3861 /* Init IA32_MCG_CTL to all 1s */ 3862 if (mcg_cap & MCG_CTL_P) 3863 vcpu->arch.mcg_ctl = ~(u64)0; 3864 /* Init IA32_MCi_CTL to all 1s */ 3865 for (bank = 0; bank < bank_num; bank++) 3866 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 3867 3868 kvm_x86_ops.setup_mce(vcpu); 3869 out: 3870 return r; 3871 } 3872 3873 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 3874 struct kvm_x86_mce *mce) 3875 { 3876 u64 mcg_cap = vcpu->arch.mcg_cap; 3877 unsigned bank_num = mcg_cap & 0xff; 3878 u64 *banks = vcpu->arch.mce_banks; 3879 3880 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 3881 return -EINVAL; 3882 /* 3883 * if IA32_MCG_CTL is not all 1s, the uncorrected error 3884 * reporting is disabled 3885 */ 3886 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 3887 vcpu->arch.mcg_ctl != ~(u64)0) 3888 return 0; 3889 banks += 4 * mce->bank; 3890 /* 3891 * if IA32_MCi_CTL is not all 1s, the uncorrected error 3892 * reporting is disabled for the bank 3893 */ 3894 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 3895 return 0; 3896 if (mce->status & MCI_STATUS_UC) { 3897 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 3898 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 3899 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3900 return 0; 3901 } 3902 if (banks[1] & MCI_STATUS_VAL) 3903 mce->status |= MCI_STATUS_OVER; 3904 banks[2] = mce->addr; 3905 banks[3] = mce->misc; 3906 vcpu->arch.mcg_status = mce->mcg_status; 3907 banks[1] = mce->status; 3908 kvm_queue_exception(vcpu, MC_VECTOR); 3909 } else if (!(banks[1] & MCI_STATUS_VAL) 3910 || !(banks[1] & MCI_STATUS_UC)) { 3911 if (banks[1] & MCI_STATUS_VAL) 3912 mce->status |= MCI_STATUS_OVER; 3913 banks[2] = mce->addr; 3914 banks[3] = mce->misc; 3915 banks[1] = mce->status; 3916 } else 3917 banks[1] |= MCI_STATUS_OVER; 3918 return 0; 3919 } 3920 3921 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 3922 struct kvm_vcpu_events *events) 3923 { 3924 process_nmi(vcpu); 3925 3926 /* 3927 * In guest mode, payload delivery should be deferred, 3928 * so that the L1 hypervisor can intercept #PF before 3929 * CR2 is modified (or intercept #DB before DR6 is 3930 * modified under nVMX). Unless the per-VM capability, 3931 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of 3932 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we 3933 * opportunistically defer the exception payload, deliver it if the 3934 * capability hasn't been requested before processing a 3935 * KVM_GET_VCPU_EVENTS. 3936 */ 3937 if (!vcpu->kvm->arch.exception_payload_enabled && 3938 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload) 3939 kvm_deliver_exception_payload(vcpu); 3940 3941 /* 3942 * The API doesn't provide the instruction length for software 3943 * exceptions, so don't report them. As long as the guest RIP 3944 * isn't advanced, we should expect to encounter the exception 3945 * again. 3946 */ 3947 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) { 3948 events->exception.injected = 0; 3949 events->exception.pending = 0; 3950 } else { 3951 events->exception.injected = vcpu->arch.exception.injected; 3952 events->exception.pending = vcpu->arch.exception.pending; 3953 /* 3954 * For ABI compatibility, deliberately conflate 3955 * pending and injected exceptions when 3956 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 3957 */ 3958 if (!vcpu->kvm->arch.exception_payload_enabled) 3959 events->exception.injected |= 3960 vcpu->arch.exception.pending; 3961 } 3962 events->exception.nr = vcpu->arch.exception.nr; 3963 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 3964 events->exception.error_code = vcpu->arch.exception.error_code; 3965 events->exception_has_payload = vcpu->arch.exception.has_payload; 3966 events->exception_payload = vcpu->arch.exception.payload; 3967 3968 events->interrupt.injected = 3969 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 3970 events->interrupt.nr = vcpu->arch.interrupt.nr; 3971 events->interrupt.soft = 0; 3972 events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu); 3973 3974 events->nmi.injected = vcpu->arch.nmi_injected; 3975 events->nmi.pending = vcpu->arch.nmi_pending != 0; 3976 events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu); 3977 events->nmi.pad = 0; 3978 3979 events->sipi_vector = 0; /* never valid when reporting to user space */ 3980 3981 events->smi.smm = is_smm(vcpu); 3982 events->smi.pending = vcpu->arch.smi_pending; 3983 events->smi.smm_inside_nmi = 3984 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 3985 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 3986 3987 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 3988 | KVM_VCPUEVENT_VALID_SHADOW 3989 | KVM_VCPUEVENT_VALID_SMM); 3990 if (vcpu->kvm->arch.exception_payload_enabled) 3991 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 3992 3993 memset(&events->reserved, 0, sizeof(events->reserved)); 3994 } 3995 3996 static void kvm_smm_changed(struct kvm_vcpu *vcpu); 3997 3998 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 3999 struct kvm_vcpu_events *events) 4000 { 4001 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 4002 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 4003 | KVM_VCPUEVENT_VALID_SHADOW 4004 | KVM_VCPUEVENT_VALID_SMM 4005 | KVM_VCPUEVENT_VALID_PAYLOAD)) 4006 return -EINVAL; 4007 4008 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 4009 if (!vcpu->kvm->arch.exception_payload_enabled) 4010 return -EINVAL; 4011 if (events->exception.pending) 4012 events->exception.injected = 0; 4013 else 4014 events->exception_has_payload = 0; 4015 } else { 4016 events->exception.pending = 0; 4017 events->exception_has_payload = 0; 4018 } 4019 4020 if ((events->exception.injected || events->exception.pending) && 4021 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 4022 return -EINVAL; 4023 4024 /* INITs are latched while in SMM */ 4025 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 4026 (events->smi.smm || events->smi.pending) && 4027 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 4028 return -EINVAL; 4029 4030 process_nmi(vcpu); 4031 vcpu->arch.exception.injected = events->exception.injected; 4032 vcpu->arch.exception.pending = events->exception.pending; 4033 vcpu->arch.exception.nr = events->exception.nr; 4034 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 4035 vcpu->arch.exception.error_code = events->exception.error_code; 4036 vcpu->arch.exception.has_payload = events->exception_has_payload; 4037 vcpu->arch.exception.payload = events->exception_payload; 4038 4039 vcpu->arch.interrupt.injected = events->interrupt.injected; 4040 vcpu->arch.interrupt.nr = events->interrupt.nr; 4041 vcpu->arch.interrupt.soft = events->interrupt.soft; 4042 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 4043 kvm_x86_ops.set_interrupt_shadow(vcpu, 4044 events->interrupt.shadow); 4045 4046 vcpu->arch.nmi_injected = events->nmi.injected; 4047 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 4048 vcpu->arch.nmi_pending = events->nmi.pending; 4049 kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked); 4050 4051 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 4052 lapic_in_kernel(vcpu)) 4053 vcpu->arch.apic->sipi_vector = events->sipi_vector; 4054 4055 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 4056 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 4057 if (events->smi.smm) 4058 vcpu->arch.hflags |= HF_SMM_MASK; 4059 else 4060 vcpu->arch.hflags &= ~HF_SMM_MASK; 4061 kvm_smm_changed(vcpu); 4062 } 4063 4064 vcpu->arch.smi_pending = events->smi.pending; 4065 4066 if (events->smi.smm) { 4067 if (events->smi.smm_inside_nmi) 4068 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 4069 else 4070 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 4071 } 4072 4073 if (lapic_in_kernel(vcpu)) { 4074 if (events->smi.latched_init) 4075 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 4076 else 4077 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 4078 } 4079 } 4080 4081 kvm_make_request(KVM_REQ_EVENT, vcpu); 4082 4083 return 0; 4084 } 4085 4086 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 4087 struct kvm_debugregs *dbgregs) 4088 { 4089 unsigned long val; 4090 4091 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 4092 kvm_get_dr(vcpu, 6, &val); 4093 dbgregs->dr6 = val; 4094 dbgregs->dr7 = vcpu->arch.dr7; 4095 dbgregs->flags = 0; 4096 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 4097 } 4098 4099 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 4100 struct kvm_debugregs *dbgregs) 4101 { 4102 if (dbgregs->flags) 4103 return -EINVAL; 4104 4105 if (dbgregs->dr6 & ~0xffffffffull) 4106 return -EINVAL; 4107 if (dbgregs->dr7 & ~0xffffffffull) 4108 return -EINVAL; 4109 4110 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 4111 kvm_update_dr0123(vcpu); 4112 vcpu->arch.dr6 = dbgregs->dr6; 4113 vcpu->arch.dr7 = dbgregs->dr7; 4114 kvm_update_dr7(vcpu); 4115 4116 return 0; 4117 } 4118 4119 #define XSTATE_COMPACTION_ENABLED (1ULL << 63) 4120 4121 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu) 4122 { 4123 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave; 4124 u64 xstate_bv = xsave->header.xfeatures; 4125 u64 valid; 4126 4127 /* 4128 * Copy legacy XSAVE area, to avoid complications with CPUID 4129 * leaves 0 and 1 in the loop below. 4130 */ 4131 memcpy(dest, xsave, XSAVE_HDR_OFFSET); 4132 4133 /* Set XSTATE_BV */ 4134 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE; 4135 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv; 4136 4137 /* 4138 * Copy each region from the possibly compacted offset to the 4139 * non-compacted offset. 4140 */ 4141 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 4142 while (valid) { 4143 u64 xfeature_mask = valid & -valid; 4144 int xfeature_nr = fls64(xfeature_mask) - 1; 4145 void *src = get_xsave_addr(xsave, xfeature_nr); 4146 4147 if (src) { 4148 u32 size, offset, ecx, edx; 4149 cpuid_count(XSTATE_CPUID, xfeature_nr, 4150 &size, &offset, &ecx, &edx); 4151 if (xfeature_nr == XFEATURE_PKRU) 4152 memcpy(dest + offset, &vcpu->arch.pkru, 4153 sizeof(vcpu->arch.pkru)); 4154 else 4155 memcpy(dest + offset, src, size); 4156 4157 } 4158 4159 valid -= xfeature_mask; 4160 } 4161 } 4162 4163 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src) 4164 { 4165 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave; 4166 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET); 4167 u64 valid; 4168 4169 /* 4170 * Copy legacy XSAVE area, to avoid complications with CPUID 4171 * leaves 0 and 1 in the loop below. 4172 */ 4173 memcpy(xsave, src, XSAVE_HDR_OFFSET); 4174 4175 /* Set XSTATE_BV and possibly XCOMP_BV. */ 4176 xsave->header.xfeatures = xstate_bv; 4177 if (boot_cpu_has(X86_FEATURE_XSAVES)) 4178 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED; 4179 4180 /* 4181 * Copy each region from the non-compacted offset to the 4182 * possibly compacted offset. 4183 */ 4184 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 4185 while (valid) { 4186 u64 xfeature_mask = valid & -valid; 4187 int xfeature_nr = fls64(xfeature_mask) - 1; 4188 void *dest = get_xsave_addr(xsave, xfeature_nr); 4189 4190 if (dest) { 4191 u32 size, offset, ecx, edx; 4192 cpuid_count(XSTATE_CPUID, xfeature_nr, 4193 &size, &offset, &ecx, &edx); 4194 if (xfeature_nr == XFEATURE_PKRU) 4195 memcpy(&vcpu->arch.pkru, src + offset, 4196 sizeof(vcpu->arch.pkru)); 4197 else 4198 memcpy(dest, src + offset, size); 4199 } 4200 4201 valid -= xfeature_mask; 4202 } 4203 } 4204 4205 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 4206 struct kvm_xsave *guest_xsave) 4207 { 4208 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 4209 memset(guest_xsave, 0, sizeof(struct kvm_xsave)); 4210 fill_xsave((u8 *) guest_xsave->region, vcpu); 4211 } else { 4212 memcpy(guest_xsave->region, 4213 &vcpu->arch.guest_fpu->state.fxsave, 4214 sizeof(struct fxregs_state)); 4215 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = 4216 XFEATURE_MASK_FPSSE; 4217 } 4218 } 4219 4220 #define XSAVE_MXCSR_OFFSET 24 4221 4222 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 4223 struct kvm_xsave *guest_xsave) 4224 { 4225 u64 xstate_bv = 4226 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; 4227 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)]; 4228 4229 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 4230 /* 4231 * Here we allow setting states that are not present in 4232 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility 4233 * with old userspace. 4234 */ 4235 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask) 4236 return -EINVAL; 4237 load_xsave(vcpu, (u8 *)guest_xsave->region); 4238 } else { 4239 if (xstate_bv & ~XFEATURE_MASK_FPSSE || 4240 mxcsr & ~mxcsr_feature_mask) 4241 return -EINVAL; 4242 memcpy(&vcpu->arch.guest_fpu->state.fxsave, 4243 guest_xsave->region, sizeof(struct fxregs_state)); 4244 } 4245 return 0; 4246 } 4247 4248 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 4249 struct kvm_xcrs *guest_xcrs) 4250 { 4251 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 4252 guest_xcrs->nr_xcrs = 0; 4253 return; 4254 } 4255 4256 guest_xcrs->nr_xcrs = 1; 4257 guest_xcrs->flags = 0; 4258 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 4259 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 4260 } 4261 4262 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 4263 struct kvm_xcrs *guest_xcrs) 4264 { 4265 int i, r = 0; 4266 4267 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 4268 return -EINVAL; 4269 4270 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 4271 return -EINVAL; 4272 4273 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 4274 /* Only support XCR0 currently */ 4275 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 4276 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 4277 guest_xcrs->xcrs[i].value); 4278 break; 4279 } 4280 if (r) 4281 r = -EINVAL; 4282 return r; 4283 } 4284 4285 /* 4286 * kvm_set_guest_paused() indicates to the guest kernel that it has been 4287 * stopped by the hypervisor. This function will be called from the host only. 4288 * EINVAL is returned when the host attempts to set the flag for a guest that 4289 * does not support pv clocks. 4290 */ 4291 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 4292 { 4293 if (!vcpu->arch.pv_time_enabled) 4294 return -EINVAL; 4295 vcpu->arch.pvclock_set_guest_stopped_request = true; 4296 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4297 return 0; 4298 } 4299 4300 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 4301 struct kvm_enable_cap *cap) 4302 { 4303 int r; 4304 uint16_t vmcs_version; 4305 void __user *user_ptr; 4306 4307 if (cap->flags) 4308 return -EINVAL; 4309 4310 switch (cap->cap) { 4311 case KVM_CAP_HYPERV_SYNIC2: 4312 if (cap->args[0]) 4313 return -EINVAL; 4314 /* fall through */ 4315 4316 case KVM_CAP_HYPERV_SYNIC: 4317 if (!irqchip_in_kernel(vcpu->kvm)) 4318 return -EINVAL; 4319 return kvm_hv_activate_synic(vcpu, cap->cap == 4320 KVM_CAP_HYPERV_SYNIC2); 4321 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4322 if (!kvm_x86_ops.nested_ops->enable_evmcs) 4323 return -ENOTTY; 4324 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 4325 if (!r) { 4326 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 4327 if (copy_to_user(user_ptr, &vmcs_version, 4328 sizeof(vmcs_version))) 4329 r = -EFAULT; 4330 } 4331 return r; 4332 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4333 if (!kvm_x86_ops.enable_direct_tlbflush) 4334 return -ENOTTY; 4335 4336 return kvm_x86_ops.enable_direct_tlbflush(vcpu); 4337 4338 default: 4339 return -EINVAL; 4340 } 4341 } 4342 4343 long kvm_arch_vcpu_ioctl(struct file *filp, 4344 unsigned int ioctl, unsigned long arg) 4345 { 4346 struct kvm_vcpu *vcpu = filp->private_data; 4347 void __user *argp = (void __user *)arg; 4348 int r; 4349 union { 4350 struct kvm_lapic_state *lapic; 4351 struct kvm_xsave *xsave; 4352 struct kvm_xcrs *xcrs; 4353 void *buffer; 4354 } u; 4355 4356 vcpu_load(vcpu); 4357 4358 u.buffer = NULL; 4359 switch (ioctl) { 4360 case KVM_GET_LAPIC: { 4361 r = -EINVAL; 4362 if (!lapic_in_kernel(vcpu)) 4363 goto out; 4364 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 4365 GFP_KERNEL_ACCOUNT); 4366 4367 r = -ENOMEM; 4368 if (!u.lapic) 4369 goto out; 4370 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 4371 if (r) 4372 goto out; 4373 r = -EFAULT; 4374 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 4375 goto out; 4376 r = 0; 4377 break; 4378 } 4379 case KVM_SET_LAPIC: { 4380 r = -EINVAL; 4381 if (!lapic_in_kernel(vcpu)) 4382 goto out; 4383 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 4384 if (IS_ERR(u.lapic)) { 4385 r = PTR_ERR(u.lapic); 4386 goto out_nofree; 4387 } 4388 4389 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 4390 break; 4391 } 4392 case KVM_INTERRUPT: { 4393 struct kvm_interrupt irq; 4394 4395 r = -EFAULT; 4396 if (copy_from_user(&irq, argp, sizeof(irq))) 4397 goto out; 4398 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 4399 break; 4400 } 4401 case KVM_NMI: { 4402 r = kvm_vcpu_ioctl_nmi(vcpu); 4403 break; 4404 } 4405 case KVM_SMI: { 4406 r = kvm_vcpu_ioctl_smi(vcpu); 4407 break; 4408 } 4409 case KVM_SET_CPUID: { 4410 struct kvm_cpuid __user *cpuid_arg = argp; 4411 struct kvm_cpuid cpuid; 4412 4413 r = -EFAULT; 4414 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4415 goto out; 4416 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4417 break; 4418 } 4419 case KVM_SET_CPUID2: { 4420 struct kvm_cpuid2 __user *cpuid_arg = argp; 4421 struct kvm_cpuid2 cpuid; 4422 4423 r = -EFAULT; 4424 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4425 goto out; 4426 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 4427 cpuid_arg->entries); 4428 break; 4429 } 4430 case KVM_GET_CPUID2: { 4431 struct kvm_cpuid2 __user *cpuid_arg = argp; 4432 struct kvm_cpuid2 cpuid; 4433 4434 r = -EFAULT; 4435 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4436 goto out; 4437 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 4438 cpuid_arg->entries); 4439 if (r) 4440 goto out; 4441 r = -EFAULT; 4442 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4443 goto out; 4444 r = 0; 4445 break; 4446 } 4447 case KVM_GET_MSRS: { 4448 int idx = srcu_read_lock(&vcpu->kvm->srcu); 4449 r = msr_io(vcpu, argp, do_get_msr, 1); 4450 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4451 break; 4452 } 4453 case KVM_SET_MSRS: { 4454 int idx = srcu_read_lock(&vcpu->kvm->srcu); 4455 r = msr_io(vcpu, argp, do_set_msr, 0); 4456 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4457 break; 4458 } 4459 case KVM_TPR_ACCESS_REPORTING: { 4460 struct kvm_tpr_access_ctl tac; 4461 4462 r = -EFAULT; 4463 if (copy_from_user(&tac, argp, sizeof(tac))) 4464 goto out; 4465 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 4466 if (r) 4467 goto out; 4468 r = -EFAULT; 4469 if (copy_to_user(argp, &tac, sizeof(tac))) 4470 goto out; 4471 r = 0; 4472 break; 4473 }; 4474 case KVM_SET_VAPIC_ADDR: { 4475 struct kvm_vapic_addr va; 4476 int idx; 4477 4478 r = -EINVAL; 4479 if (!lapic_in_kernel(vcpu)) 4480 goto out; 4481 r = -EFAULT; 4482 if (copy_from_user(&va, argp, sizeof(va))) 4483 goto out; 4484 idx = srcu_read_lock(&vcpu->kvm->srcu); 4485 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 4486 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4487 break; 4488 } 4489 case KVM_X86_SETUP_MCE: { 4490 u64 mcg_cap; 4491 4492 r = -EFAULT; 4493 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 4494 goto out; 4495 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 4496 break; 4497 } 4498 case KVM_X86_SET_MCE: { 4499 struct kvm_x86_mce mce; 4500 4501 r = -EFAULT; 4502 if (copy_from_user(&mce, argp, sizeof(mce))) 4503 goto out; 4504 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 4505 break; 4506 } 4507 case KVM_GET_VCPU_EVENTS: { 4508 struct kvm_vcpu_events events; 4509 4510 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 4511 4512 r = -EFAULT; 4513 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 4514 break; 4515 r = 0; 4516 break; 4517 } 4518 case KVM_SET_VCPU_EVENTS: { 4519 struct kvm_vcpu_events events; 4520 4521 r = -EFAULT; 4522 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 4523 break; 4524 4525 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 4526 break; 4527 } 4528 case KVM_GET_DEBUGREGS: { 4529 struct kvm_debugregs dbgregs; 4530 4531 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 4532 4533 r = -EFAULT; 4534 if (copy_to_user(argp, &dbgregs, 4535 sizeof(struct kvm_debugregs))) 4536 break; 4537 r = 0; 4538 break; 4539 } 4540 case KVM_SET_DEBUGREGS: { 4541 struct kvm_debugregs dbgregs; 4542 4543 r = -EFAULT; 4544 if (copy_from_user(&dbgregs, argp, 4545 sizeof(struct kvm_debugregs))) 4546 break; 4547 4548 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 4549 break; 4550 } 4551 case KVM_GET_XSAVE: { 4552 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 4553 r = -ENOMEM; 4554 if (!u.xsave) 4555 break; 4556 4557 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 4558 4559 r = -EFAULT; 4560 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 4561 break; 4562 r = 0; 4563 break; 4564 } 4565 case KVM_SET_XSAVE: { 4566 u.xsave = memdup_user(argp, sizeof(*u.xsave)); 4567 if (IS_ERR(u.xsave)) { 4568 r = PTR_ERR(u.xsave); 4569 goto out_nofree; 4570 } 4571 4572 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 4573 break; 4574 } 4575 case KVM_GET_XCRS: { 4576 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 4577 r = -ENOMEM; 4578 if (!u.xcrs) 4579 break; 4580 4581 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 4582 4583 r = -EFAULT; 4584 if (copy_to_user(argp, u.xcrs, 4585 sizeof(struct kvm_xcrs))) 4586 break; 4587 r = 0; 4588 break; 4589 } 4590 case KVM_SET_XCRS: { 4591 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 4592 if (IS_ERR(u.xcrs)) { 4593 r = PTR_ERR(u.xcrs); 4594 goto out_nofree; 4595 } 4596 4597 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 4598 break; 4599 } 4600 case KVM_SET_TSC_KHZ: { 4601 u32 user_tsc_khz; 4602 4603 r = -EINVAL; 4604 user_tsc_khz = (u32)arg; 4605 4606 if (user_tsc_khz >= kvm_max_guest_tsc_khz) 4607 goto out; 4608 4609 if (user_tsc_khz == 0) 4610 user_tsc_khz = tsc_khz; 4611 4612 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 4613 r = 0; 4614 4615 goto out; 4616 } 4617 case KVM_GET_TSC_KHZ: { 4618 r = vcpu->arch.virtual_tsc_khz; 4619 goto out; 4620 } 4621 case KVM_KVMCLOCK_CTRL: { 4622 r = kvm_set_guest_paused(vcpu); 4623 goto out; 4624 } 4625 case KVM_ENABLE_CAP: { 4626 struct kvm_enable_cap cap; 4627 4628 r = -EFAULT; 4629 if (copy_from_user(&cap, argp, sizeof(cap))) 4630 goto out; 4631 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 4632 break; 4633 } 4634 case KVM_GET_NESTED_STATE: { 4635 struct kvm_nested_state __user *user_kvm_nested_state = argp; 4636 u32 user_data_size; 4637 4638 r = -EINVAL; 4639 if (!kvm_x86_ops.nested_ops->get_state) 4640 break; 4641 4642 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 4643 r = -EFAULT; 4644 if (get_user(user_data_size, &user_kvm_nested_state->size)) 4645 break; 4646 4647 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 4648 user_data_size); 4649 if (r < 0) 4650 break; 4651 4652 if (r > user_data_size) { 4653 if (put_user(r, &user_kvm_nested_state->size)) 4654 r = -EFAULT; 4655 else 4656 r = -E2BIG; 4657 break; 4658 } 4659 4660 r = 0; 4661 break; 4662 } 4663 case KVM_SET_NESTED_STATE: { 4664 struct kvm_nested_state __user *user_kvm_nested_state = argp; 4665 struct kvm_nested_state kvm_state; 4666 int idx; 4667 4668 r = -EINVAL; 4669 if (!kvm_x86_ops.nested_ops->set_state) 4670 break; 4671 4672 r = -EFAULT; 4673 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 4674 break; 4675 4676 r = -EINVAL; 4677 if (kvm_state.size < sizeof(kvm_state)) 4678 break; 4679 4680 if (kvm_state.flags & 4681 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 4682 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 4683 | KVM_STATE_NESTED_GIF_SET)) 4684 break; 4685 4686 /* nested_run_pending implies guest_mode. */ 4687 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 4688 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 4689 break; 4690 4691 idx = srcu_read_lock(&vcpu->kvm->srcu); 4692 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 4693 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4694 break; 4695 } 4696 case KVM_GET_SUPPORTED_HV_CPUID: { 4697 struct kvm_cpuid2 __user *cpuid_arg = argp; 4698 struct kvm_cpuid2 cpuid; 4699 4700 r = -EFAULT; 4701 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4702 goto out; 4703 4704 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid, 4705 cpuid_arg->entries); 4706 if (r) 4707 goto out; 4708 4709 r = -EFAULT; 4710 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4711 goto out; 4712 r = 0; 4713 break; 4714 } 4715 default: 4716 r = -EINVAL; 4717 } 4718 out: 4719 kfree(u.buffer); 4720 out_nofree: 4721 vcpu_put(vcpu); 4722 return r; 4723 } 4724 4725 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 4726 { 4727 return VM_FAULT_SIGBUS; 4728 } 4729 4730 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 4731 { 4732 int ret; 4733 4734 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 4735 return -EINVAL; 4736 ret = kvm_x86_ops.set_tss_addr(kvm, addr); 4737 return ret; 4738 } 4739 4740 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 4741 u64 ident_addr) 4742 { 4743 return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr); 4744 } 4745 4746 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 4747 unsigned long kvm_nr_mmu_pages) 4748 { 4749 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 4750 return -EINVAL; 4751 4752 mutex_lock(&kvm->slots_lock); 4753 4754 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 4755 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 4756 4757 mutex_unlock(&kvm->slots_lock); 4758 return 0; 4759 } 4760 4761 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 4762 { 4763 return kvm->arch.n_max_mmu_pages; 4764 } 4765 4766 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 4767 { 4768 struct kvm_pic *pic = kvm->arch.vpic; 4769 int r; 4770 4771 r = 0; 4772 switch (chip->chip_id) { 4773 case KVM_IRQCHIP_PIC_MASTER: 4774 memcpy(&chip->chip.pic, &pic->pics[0], 4775 sizeof(struct kvm_pic_state)); 4776 break; 4777 case KVM_IRQCHIP_PIC_SLAVE: 4778 memcpy(&chip->chip.pic, &pic->pics[1], 4779 sizeof(struct kvm_pic_state)); 4780 break; 4781 case KVM_IRQCHIP_IOAPIC: 4782 kvm_get_ioapic(kvm, &chip->chip.ioapic); 4783 break; 4784 default: 4785 r = -EINVAL; 4786 break; 4787 } 4788 return r; 4789 } 4790 4791 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 4792 { 4793 struct kvm_pic *pic = kvm->arch.vpic; 4794 int r; 4795 4796 r = 0; 4797 switch (chip->chip_id) { 4798 case KVM_IRQCHIP_PIC_MASTER: 4799 spin_lock(&pic->lock); 4800 memcpy(&pic->pics[0], &chip->chip.pic, 4801 sizeof(struct kvm_pic_state)); 4802 spin_unlock(&pic->lock); 4803 break; 4804 case KVM_IRQCHIP_PIC_SLAVE: 4805 spin_lock(&pic->lock); 4806 memcpy(&pic->pics[1], &chip->chip.pic, 4807 sizeof(struct kvm_pic_state)); 4808 spin_unlock(&pic->lock); 4809 break; 4810 case KVM_IRQCHIP_IOAPIC: 4811 kvm_set_ioapic(kvm, &chip->chip.ioapic); 4812 break; 4813 default: 4814 r = -EINVAL; 4815 break; 4816 } 4817 kvm_pic_update_irq(pic); 4818 return r; 4819 } 4820 4821 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 4822 { 4823 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 4824 4825 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 4826 4827 mutex_lock(&kps->lock); 4828 memcpy(ps, &kps->channels, sizeof(*ps)); 4829 mutex_unlock(&kps->lock); 4830 return 0; 4831 } 4832 4833 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 4834 { 4835 int i; 4836 struct kvm_pit *pit = kvm->arch.vpit; 4837 4838 mutex_lock(&pit->pit_state.lock); 4839 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 4840 for (i = 0; i < 3; i++) 4841 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 4842 mutex_unlock(&pit->pit_state.lock); 4843 return 0; 4844 } 4845 4846 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 4847 { 4848 mutex_lock(&kvm->arch.vpit->pit_state.lock); 4849 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 4850 sizeof(ps->channels)); 4851 ps->flags = kvm->arch.vpit->pit_state.flags; 4852 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 4853 memset(&ps->reserved, 0, sizeof(ps->reserved)); 4854 return 0; 4855 } 4856 4857 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 4858 { 4859 int start = 0; 4860 int i; 4861 u32 prev_legacy, cur_legacy; 4862 struct kvm_pit *pit = kvm->arch.vpit; 4863 4864 mutex_lock(&pit->pit_state.lock); 4865 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 4866 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 4867 if (!prev_legacy && cur_legacy) 4868 start = 1; 4869 memcpy(&pit->pit_state.channels, &ps->channels, 4870 sizeof(pit->pit_state.channels)); 4871 pit->pit_state.flags = ps->flags; 4872 for (i = 0; i < 3; i++) 4873 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 4874 start && i == 0); 4875 mutex_unlock(&pit->pit_state.lock); 4876 return 0; 4877 } 4878 4879 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 4880 struct kvm_reinject_control *control) 4881 { 4882 struct kvm_pit *pit = kvm->arch.vpit; 4883 4884 /* pit->pit_state.lock was overloaded to prevent userspace from getting 4885 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 4886 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 4887 */ 4888 mutex_lock(&pit->pit_state.lock); 4889 kvm_pit_set_reinject(pit, control->pit_reinject); 4890 mutex_unlock(&pit->pit_state.lock); 4891 4892 return 0; 4893 } 4894 4895 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 4896 { 4897 /* 4898 * Flush potentially hardware-cached dirty pages to dirty_bitmap. 4899 */ 4900 if (kvm_x86_ops.flush_log_dirty) 4901 kvm_x86_ops.flush_log_dirty(kvm); 4902 } 4903 4904 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 4905 bool line_status) 4906 { 4907 if (!irqchip_in_kernel(kvm)) 4908 return -ENXIO; 4909 4910 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 4911 irq_event->irq, irq_event->level, 4912 line_status); 4913 return 0; 4914 } 4915 4916 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4917 struct kvm_enable_cap *cap) 4918 { 4919 int r; 4920 4921 if (cap->flags) 4922 return -EINVAL; 4923 4924 switch (cap->cap) { 4925 case KVM_CAP_DISABLE_QUIRKS: 4926 kvm->arch.disabled_quirks = cap->args[0]; 4927 r = 0; 4928 break; 4929 case KVM_CAP_SPLIT_IRQCHIP: { 4930 mutex_lock(&kvm->lock); 4931 r = -EINVAL; 4932 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 4933 goto split_irqchip_unlock; 4934 r = -EEXIST; 4935 if (irqchip_in_kernel(kvm)) 4936 goto split_irqchip_unlock; 4937 if (kvm->created_vcpus) 4938 goto split_irqchip_unlock; 4939 r = kvm_setup_empty_irq_routing(kvm); 4940 if (r) 4941 goto split_irqchip_unlock; 4942 /* Pairs with irqchip_in_kernel. */ 4943 smp_wmb(); 4944 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 4945 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 4946 r = 0; 4947 split_irqchip_unlock: 4948 mutex_unlock(&kvm->lock); 4949 break; 4950 } 4951 case KVM_CAP_X2APIC_API: 4952 r = -EINVAL; 4953 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 4954 break; 4955 4956 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 4957 kvm->arch.x2apic_format = true; 4958 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 4959 kvm->arch.x2apic_broadcast_quirk_disabled = true; 4960 4961 r = 0; 4962 break; 4963 case KVM_CAP_X86_DISABLE_EXITS: 4964 r = -EINVAL; 4965 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 4966 break; 4967 4968 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 4969 kvm_can_mwait_in_guest()) 4970 kvm->arch.mwait_in_guest = true; 4971 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 4972 kvm->arch.hlt_in_guest = true; 4973 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 4974 kvm->arch.pause_in_guest = true; 4975 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 4976 kvm->arch.cstate_in_guest = true; 4977 r = 0; 4978 break; 4979 case KVM_CAP_MSR_PLATFORM_INFO: 4980 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 4981 r = 0; 4982 break; 4983 case KVM_CAP_EXCEPTION_PAYLOAD: 4984 kvm->arch.exception_payload_enabled = cap->args[0]; 4985 r = 0; 4986 break; 4987 default: 4988 r = -EINVAL; 4989 break; 4990 } 4991 return r; 4992 } 4993 4994 long kvm_arch_vm_ioctl(struct file *filp, 4995 unsigned int ioctl, unsigned long arg) 4996 { 4997 struct kvm *kvm = filp->private_data; 4998 void __user *argp = (void __user *)arg; 4999 int r = -ENOTTY; 5000 /* 5001 * This union makes it completely explicit to gcc-3.x 5002 * that these two variables' stack usage should be 5003 * combined, not added together. 5004 */ 5005 union { 5006 struct kvm_pit_state ps; 5007 struct kvm_pit_state2 ps2; 5008 struct kvm_pit_config pit_config; 5009 } u; 5010 5011 switch (ioctl) { 5012 case KVM_SET_TSS_ADDR: 5013 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 5014 break; 5015 case KVM_SET_IDENTITY_MAP_ADDR: { 5016 u64 ident_addr; 5017 5018 mutex_lock(&kvm->lock); 5019 r = -EINVAL; 5020 if (kvm->created_vcpus) 5021 goto set_identity_unlock; 5022 r = -EFAULT; 5023 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 5024 goto set_identity_unlock; 5025 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 5026 set_identity_unlock: 5027 mutex_unlock(&kvm->lock); 5028 break; 5029 } 5030 case KVM_SET_NR_MMU_PAGES: 5031 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 5032 break; 5033 case KVM_GET_NR_MMU_PAGES: 5034 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 5035 break; 5036 case KVM_CREATE_IRQCHIP: { 5037 mutex_lock(&kvm->lock); 5038 5039 r = -EEXIST; 5040 if (irqchip_in_kernel(kvm)) 5041 goto create_irqchip_unlock; 5042 5043 r = -EINVAL; 5044 if (kvm->created_vcpus) 5045 goto create_irqchip_unlock; 5046 5047 r = kvm_pic_init(kvm); 5048 if (r) 5049 goto create_irqchip_unlock; 5050 5051 r = kvm_ioapic_init(kvm); 5052 if (r) { 5053 kvm_pic_destroy(kvm); 5054 goto create_irqchip_unlock; 5055 } 5056 5057 r = kvm_setup_default_irq_routing(kvm); 5058 if (r) { 5059 kvm_ioapic_destroy(kvm); 5060 kvm_pic_destroy(kvm); 5061 goto create_irqchip_unlock; 5062 } 5063 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 5064 smp_wmb(); 5065 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 5066 create_irqchip_unlock: 5067 mutex_unlock(&kvm->lock); 5068 break; 5069 } 5070 case KVM_CREATE_PIT: 5071 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 5072 goto create_pit; 5073 case KVM_CREATE_PIT2: 5074 r = -EFAULT; 5075 if (copy_from_user(&u.pit_config, argp, 5076 sizeof(struct kvm_pit_config))) 5077 goto out; 5078 create_pit: 5079 mutex_lock(&kvm->lock); 5080 r = -EEXIST; 5081 if (kvm->arch.vpit) 5082 goto create_pit_unlock; 5083 r = -ENOMEM; 5084 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 5085 if (kvm->arch.vpit) 5086 r = 0; 5087 create_pit_unlock: 5088 mutex_unlock(&kvm->lock); 5089 break; 5090 case KVM_GET_IRQCHIP: { 5091 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 5092 struct kvm_irqchip *chip; 5093 5094 chip = memdup_user(argp, sizeof(*chip)); 5095 if (IS_ERR(chip)) { 5096 r = PTR_ERR(chip); 5097 goto out; 5098 } 5099 5100 r = -ENXIO; 5101 if (!irqchip_kernel(kvm)) 5102 goto get_irqchip_out; 5103 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 5104 if (r) 5105 goto get_irqchip_out; 5106 r = -EFAULT; 5107 if (copy_to_user(argp, chip, sizeof(*chip))) 5108 goto get_irqchip_out; 5109 r = 0; 5110 get_irqchip_out: 5111 kfree(chip); 5112 break; 5113 } 5114 case KVM_SET_IRQCHIP: { 5115 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 5116 struct kvm_irqchip *chip; 5117 5118 chip = memdup_user(argp, sizeof(*chip)); 5119 if (IS_ERR(chip)) { 5120 r = PTR_ERR(chip); 5121 goto out; 5122 } 5123 5124 r = -ENXIO; 5125 if (!irqchip_kernel(kvm)) 5126 goto set_irqchip_out; 5127 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 5128 set_irqchip_out: 5129 kfree(chip); 5130 break; 5131 } 5132 case KVM_GET_PIT: { 5133 r = -EFAULT; 5134 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 5135 goto out; 5136 r = -ENXIO; 5137 if (!kvm->arch.vpit) 5138 goto out; 5139 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 5140 if (r) 5141 goto out; 5142 r = -EFAULT; 5143 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 5144 goto out; 5145 r = 0; 5146 break; 5147 } 5148 case KVM_SET_PIT: { 5149 r = -EFAULT; 5150 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 5151 goto out; 5152 mutex_lock(&kvm->lock); 5153 r = -ENXIO; 5154 if (!kvm->arch.vpit) 5155 goto set_pit_out; 5156 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 5157 set_pit_out: 5158 mutex_unlock(&kvm->lock); 5159 break; 5160 } 5161 case KVM_GET_PIT2: { 5162 r = -ENXIO; 5163 if (!kvm->arch.vpit) 5164 goto out; 5165 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 5166 if (r) 5167 goto out; 5168 r = -EFAULT; 5169 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 5170 goto out; 5171 r = 0; 5172 break; 5173 } 5174 case KVM_SET_PIT2: { 5175 r = -EFAULT; 5176 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 5177 goto out; 5178 mutex_lock(&kvm->lock); 5179 r = -ENXIO; 5180 if (!kvm->arch.vpit) 5181 goto set_pit2_out; 5182 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 5183 set_pit2_out: 5184 mutex_unlock(&kvm->lock); 5185 break; 5186 } 5187 case KVM_REINJECT_CONTROL: { 5188 struct kvm_reinject_control control; 5189 r = -EFAULT; 5190 if (copy_from_user(&control, argp, sizeof(control))) 5191 goto out; 5192 r = -ENXIO; 5193 if (!kvm->arch.vpit) 5194 goto out; 5195 r = kvm_vm_ioctl_reinject(kvm, &control); 5196 break; 5197 } 5198 case KVM_SET_BOOT_CPU_ID: 5199 r = 0; 5200 mutex_lock(&kvm->lock); 5201 if (kvm->created_vcpus) 5202 r = -EBUSY; 5203 else 5204 kvm->arch.bsp_vcpu_id = arg; 5205 mutex_unlock(&kvm->lock); 5206 break; 5207 case KVM_XEN_HVM_CONFIG: { 5208 struct kvm_xen_hvm_config xhc; 5209 r = -EFAULT; 5210 if (copy_from_user(&xhc, argp, sizeof(xhc))) 5211 goto out; 5212 r = -EINVAL; 5213 if (xhc.flags) 5214 goto out; 5215 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc)); 5216 r = 0; 5217 break; 5218 } 5219 case KVM_SET_CLOCK: { 5220 struct kvm_clock_data user_ns; 5221 u64 now_ns; 5222 5223 r = -EFAULT; 5224 if (copy_from_user(&user_ns, argp, sizeof(user_ns))) 5225 goto out; 5226 5227 r = -EINVAL; 5228 if (user_ns.flags) 5229 goto out; 5230 5231 r = 0; 5232 /* 5233 * TODO: userspace has to take care of races with VCPU_RUN, so 5234 * kvm_gen_update_masterclock() can be cut down to locked 5235 * pvclock_update_vm_gtod_copy(). 5236 */ 5237 kvm_gen_update_masterclock(kvm); 5238 now_ns = get_kvmclock_ns(kvm); 5239 kvm->arch.kvmclock_offset += user_ns.clock - now_ns; 5240 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE); 5241 break; 5242 } 5243 case KVM_GET_CLOCK: { 5244 struct kvm_clock_data user_ns; 5245 u64 now_ns; 5246 5247 now_ns = get_kvmclock_ns(kvm); 5248 user_ns.clock = now_ns; 5249 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0; 5250 memset(&user_ns.pad, 0, sizeof(user_ns.pad)); 5251 5252 r = -EFAULT; 5253 if (copy_to_user(argp, &user_ns, sizeof(user_ns))) 5254 goto out; 5255 r = 0; 5256 break; 5257 } 5258 case KVM_MEMORY_ENCRYPT_OP: { 5259 r = -ENOTTY; 5260 if (kvm_x86_ops.mem_enc_op) 5261 r = kvm_x86_ops.mem_enc_op(kvm, argp); 5262 break; 5263 } 5264 case KVM_MEMORY_ENCRYPT_REG_REGION: { 5265 struct kvm_enc_region region; 5266 5267 r = -EFAULT; 5268 if (copy_from_user(®ion, argp, sizeof(region))) 5269 goto out; 5270 5271 r = -ENOTTY; 5272 if (kvm_x86_ops.mem_enc_reg_region) 5273 r = kvm_x86_ops.mem_enc_reg_region(kvm, ®ion); 5274 break; 5275 } 5276 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 5277 struct kvm_enc_region region; 5278 5279 r = -EFAULT; 5280 if (copy_from_user(®ion, argp, sizeof(region))) 5281 goto out; 5282 5283 r = -ENOTTY; 5284 if (kvm_x86_ops.mem_enc_unreg_region) 5285 r = kvm_x86_ops.mem_enc_unreg_region(kvm, ®ion); 5286 break; 5287 } 5288 case KVM_HYPERV_EVENTFD: { 5289 struct kvm_hyperv_eventfd hvevfd; 5290 5291 r = -EFAULT; 5292 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 5293 goto out; 5294 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 5295 break; 5296 } 5297 case KVM_SET_PMU_EVENT_FILTER: 5298 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 5299 break; 5300 default: 5301 r = -ENOTTY; 5302 } 5303 out: 5304 return r; 5305 } 5306 5307 static void kvm_init_msr_list(void) 5308 { 5309 struct x86_pmu_capability x86_pmu; 5310 u32 dummy[2]; 5311 unsigned i; 5312 5313 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4, 5314 "Please update the fixed PMCs in msrs_to_saved_all[]"); 5315 5316 perf_get_x86_pmu_capability(&x86_pmu); 5317 5318 num_msrs_to_save = 0; 5319 num_emulated_msrs = 0; 5320 num_msr_based_features = 0; 5321 5322 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) { 5323 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0) 5324 continue; 5325 5326 /* 5327 * Even MSRs that are valid in the host may not be exposed 5328 * to the guests in some cases. 5329 */ 5330 switch (msrs_to_save_all[i]) { 5331 case MSR_IA32_BNDCFGS: 5332 if (!kvm_mpx_supported()) 5333 continue; 5334 break; 5335 case MSR_TSC_AUX: 5336 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) 5337 continue; 5338 break; 5339 case MSR_IA32_UMWAIT_CONTROL: 5340 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 5341 continue; 5342 break; 5343 case MSR_IA32_RTIT_CTL: 5344 case MSR_IA32_RTIT_STATUS: 5345 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 5346 continue; 5347 break; 5348 case MSR_IA32_RTIT_CR3_MATCH: 5349 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 5350 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 5351 continue; 5352 break; 5353 case MSR_IA32_RTIT_OUTPUT_BASE: 5354 case MSR_IA32_RTIT_OUTPUT_MASK: 5355 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 5356 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 5357 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 5358 continue; 5359 break; 5360 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 5361 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 5362 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >= 5363 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2) 5364 continue; 5365 break; 5366 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17: 5367 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >= 5368 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp)) 5369 continue; 5370 break; 5371 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17: 5372 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >= 5373 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp)) 5374 continue; 5375 break; 5376 default: 5377 break; 5378 } 5379 5380 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i]; 5381 } 5382 5383 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 5384 if (!kvm_x86_ops.has_emulated_msr(emulated_msrs_all[i])) 5385 continue; 5386 5387 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 5388 } 5389 5390 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) { 5391 struct kvm_msr_entry msr; 5392 5393 msr.index = msr_based_features_all[i]; 5394 if (kvm_get_msr_feature(&msr)) 5395 continue; 5396 5397 msr_based_features[num_msr_based_features++] = msr_based_features_all[i]; 5398 } 5399 } 5400 5401 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 5402 const void *v) 5403 { 5404 int handled = 0; 5405 int n; 5406 5407 do { 5408 n = min(len, 8); 5409 if (!(lapic_in_kernel(vcpu) && 5410 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 5411 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 5412 break; 5413 handled += n; 5414 addr += n; 5415 len -= n; 5416 v += n; 5417 } while (len); 5418 5419 return handled; 5420 } 5421 5422 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 5423 { 5424 int handled = 0; 5425 int n; 5426 5427 do { 5428 n = min(len, 8); 5429 if (!(lapic_in_kernel(vcpu) && 5430 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 5431 addr, n, v)) 5432 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 5433 break; 5434 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 5435 handled += n; 5436 addr += n; 5437 len -= n; 5438 v += n; 5439 } while (len); 5440 5441 return handled; 5442 } 5443 5444 static void kvm_set_segment(struct kvm_vcpu *vcpu, 5445 struct kvm_segment *var, int seg) 5446 { 5447 kvm_x86_ops.set_segment(vcpu, var, seg); 5448 } 5449 5450 void kvm_get_segment(struct kvm_vcpu *vcpu, 5451 struct kvm_segment *var, int seg) 5452 { 5453 kvm_x86_ops.get_segment(vcpu, var, seg); 5454 } 5455 5456 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 5457 struct x86_exception *exception) 5458 { 5459 gpa_t t_gpa; 5460 5461 BUG_ON(!mmu_is_nested(vcpu)); 5462 5463 /* NPT walks are always user-walks */ 5464 access |= PFERR_USER_MASK; 5465 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception); 5466 5467 return t_gpa; 5468 } 5469 5470 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 5471 struct x86_exception *exception) 5472 { 5473 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5474 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5475 } 5476 5477 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 5478 struct x86_exception *exception) 5479 { 5480 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5481 access |= PFERR_FETCH_MASK; 5482 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5483 } 5484 5485 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 5486 struct x86_exception *exception) 5487 { 5488 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5489 access |= PFERR_WRITE_MASK; 5490 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5491 } 5492 5493 /* uses this to access any guest's mapped memory without checking CPL */ 5494 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 5495 struct x86_exception *exception) 5496 { 5497 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); 5498 } 5499 5500 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 5501 struct kvm_vcpu *vcpu, u32 access, 5502 struct x86_exception *exception) 5503 { 5504 void *data = val; 5505 int r = X86EMUL_CONTINUE; 5506 5507 while (bytes) { 5508 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, 5509 exception); 5510 unsigned offset = addr & (PAGE_SIZE-1); 5511 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 5512 int ret; 5513 5514 if (gpa == UNMAPPED_GVA) 5515 return X86EMUL_PROPAGATE_FAULT; 5516 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 5517 offset, toread); 5518 if (ret < 0) { 5519 r = X86EMUL_IO_NEEDED; 5520 goto out; 5521 } 5522 5523 bytes -= toread; 5524 data += toread; 5525 addr += toread; 5526 } 5527 out: 5528 return r; 5529 } 5530 5531 /* used for instruction fetching */ 5532 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 5533 gva_t addr, void *val, unsigned int bytes, 5534 struct x86_exception *exception) 5535 { 5536 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5537 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5538 unsigned offset; 5539 int ret; 5540 5541 /* Inline kvm_read_guest_virt_helper for speed. */ 5542 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK, 5543 exception); 5544 if (unlikely(gpa == UNMAPPED_GVA)) 5545 return X86EMUL_PROPAGATE_FAULT; 5546 5547 offset = addr & (PAGE_SIZE-1); 5548 if (WARN_ON(offset + bytes > PAGE_SIZE)) 5549 bytes = (unsigned)PAGE_SIZE - offset; 5550 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 5551 offset, bytes); 5552 if (unlikely(ret < 0)) 5553 return X86EMUL_IO_NEEDED; 5554 5555 return X86EMUL_CONTINUE; 5556 } 5557 5558 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 5559 gva_t addr, void *val, unsigned int bytes, 5560 struct x86_exception *exception) 5561 { 5562 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5563 5564 /* 5565 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 5566 * is returned, but our callers are not ready for that and they blindly 5567 * call kvm_inject_page_fault. Ensure that they at least do not leak 5568 * uninitialized kernel stack memory into cr2 and error code. 5569 */ 5570 memset(exception, 0, sizeof(*exception)); 5571 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 5572 exception); 5573 } 5574 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 5575 5576 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 5577 gva_t addr, void *val, unsigned int bytes, 5578 struct x86_exception *exception, bool system) 5579 { 5580 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5581 u32 access = 0; 5582 5583 if (!system && kvm_x86_ops.get_cpl(vcpu) == 3) 5584 access |= PFERR_USER_MASK; 5585 5586 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 5587 } 5588 5589 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, 5590 unsigned long addr, void *val, unsigned int bytes) 5591 { 5592 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5593 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes); 5594 5595 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE; 5596 } 5597 5598 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 5599 struct kvm_vcpu *vcpu, u32 access, 5600 struct x86_exception *exception) 5601 { 5602 void *data = val; 5603 int r = X86EMUL_CONTINUE; 5604 5605 while (bytes) { 5606 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, 5607 access, 5608 exception); 5609 unsigned offset = addr & (PAGE_SIZE-1); 5610 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 5611 int ret; 5612 5613 if (gpa == UNMAPPED_GVA) 5614 return X86EMUL_PROPAGATE_FAULT; 5615 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 5616 if (ret < 0) { 5617 r = X86EMUL_IO_NEEDED; 5618 goto out; 5619 } 5620 5621 bytes -= towrite; 5622 data += towrite; 5623 addr += towrite; 5624 } 5625 out: 5626 return r; 5627 } 5628 5629 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 5630 unsigned int bytes, struct x86_exception *exception, 5631 bool system) 5632 { 5633 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5634 u32 access = PFERR_WRITE_MASK; 5635 5636 if (!system && kvm_x86_ops.get_cpl(vcpu) == 3) 5637 access |= PFERR_USER_MASK; 5638 5639 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 5640 access, exception); 5641 } 5642 5643 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 5644 unsigned int bytes, struct x86_exception *exception) 5645 { 5646 /* kvm_write_guest_virt_system can pull in tons of pages. */ 5647 vcpu->arch.l1tf_flush_l1d = true; 5648 5649 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 5650 PFERR_WRITE_MASK, exception); 5651 } 5652 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 5653 5654 int handle_ud(struct kvm_vcpu *vcpu) 5655 { 5656 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 5657 int emul_type = EMULTYPE_TRAP_UD; 5658 char sig[5]; /* ud2; .ascii "kvm" */ 5659 struct x86_exception e; 5660 5661 if (force_emulation_prefix && 5662 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 5663 sig, sizeof(sig), &e) == 0 && 5664 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 5665 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 5666 emul_type = EMULTYPE_TRAP_UD_FORCED; 5667 } 5668 5669 return kvm_emulate_instruction(vcpu, emul_type); 5670 } 5671 EXPORT_SYMBOL_GPL(handle_ud); 5672 5673 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 5674 gpa_t gpa, bool write) 5675 { 5676 /* For APIC access vmexit */ 5677 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 5678 return 1; 5679 5680 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 5681 trace_vcpu_match_mmio(gva, gpa, write, true); 5682 return 1; 5683 } 5684 5685 return 0; 5686 } 5687 5688 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 5689 gpa_t *gpa, struct x86_exception *exception, 5690 bool write) 5691 { 5692 u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) 5693 | (write ? PFERR_WRITE_MASK : 0); 5694 5695 /* 5696 * currently PKRU is only applied to ept enabled guest so 5697 * there is no pkey in EPT page table for L1 guest or EPT 5698 * shadow page table for L2 guest. 5699 */ 5700 if (vcpu_match_mmio_gva(vcpu, gva) 5701 && !permission_fault(vcpu, vcpu->arch.walk_mmu, 5702 vcpu->arch.mmio_access, 0, access)) { 5703 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 5704 (gva & (PAGE_SIZE - 1)); 5705 trace_vcpu_match_mmio(gva, *gpa, write, false); 5706 return 1; 5707 } 5708 5709 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5710 5711 if (*gpa == UNMAPPED_GVA) 5712 return -1; 5713 5714 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 5715 } 5716 5717 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 5718 const void *val, int bytes) 5719 { 5720 int ret; 5721 5722 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 5723 if (ret < 0) 5724 return 0; 5725 kvm_page_track_write(vcpu, gpa, val, bytes); 5726 return 1; 5727 } 5728 5729 struct read_write_emulator_ops { 5730 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 5731 int bytes); 5732 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 5733 void *val, int bytes); 5734 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 5735 int bytes, void *val); 5736 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 5737 void *val, int bytes); 5738 bool write; 5739 }; 5740 5741 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 5742 { 5743 if (vcpu->mmio_read_completed) { 5744 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 5745 vcpu->mmio_fragments[0].gpa, val); 5746 vcpu->mmio_read_completed = 0; 5747 return 1; 5748 } 5749 5750 return 0; 5751 } 5752 5753 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 5754 void *val, int bytes) 5755 { 5756 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 5757 } 5758 5759 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 5760 void *val, int bytes) 5761 { 5762 return emulator_write_phys(vcpu, gpa, val, bytes); 5763 } 5764 5765 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 5766 { 5767 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 5768 return vcpu_mmio_write(vcpu, gpa, bytes, val); 5769 } 5770 5771 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 5772 void *val, int bytes) 5773 { 5774 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 5775 return X86EMUL_IO_NEEDED; 5776 } 5777 5778 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 5779 void *val, int bytes) 5780 { 5781 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 5782 5783 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 5784 return X86EMUL_CONTINUE; 5785 } 5786 5787 static const struct read_write_emulator_ops read_emultor = { 5788 .read_write_prepare = read_prepare, 5789 .read_write_emulate = read_emulate, 5790 .read_write_mmio = vcpu_mmio_read, 5791 .read_write_exit_mmio = read_exit_mmio, 5792 }; 5793 5794 static const struct read_write_emulator_ops write_emultor = { 5795 .read_write_emulate = write_emulate, 5796 .read_write_mmio = write_mmio, 5797 .read_write_exit_mmio = write_exit_mmio, 5798 .write = true, 5799 }; 5800 5801 static int emulator_read_write_onepage(unsigned long addr, void *val, 5802 unsigned int bytes, 5803 struct x86_exception *exception, 5804 struct kvm_vcpu *vcpu, 5805 const struct read_write_emulator_ops *ops) 5806 { 5807 gpa_t gpa; 5808 int handled, ret; 5809 bool write = ops->write; 5810 struct kvm_mmio_fragment *frag; 5811 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 5812 5813 /* 5814 * If the exit was due to a NPF we may already have a GPA. 5815 * If the GPA is present, use it to avoid the GVA to GPA table walk. 5816 * Note, this cannot be used on string operations since string 5817 * operation using rep will only have the initial GPA from the NPF 5818 * occurred. 5819 */ 5820 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 5821 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 5822 gpa = ctxt->gpa_val; 5823 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 5824 } else { 5825 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 5826 if (ret < 0) 5827 return X86EMUL_PROPAGATE_FAULT; 5828 } 5829 5830 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 5831 return X86EMUL_CONTINUE; 5832 5833 /* 5834 * Is this MMIO handled locally? 5835 */ 5836 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 5837 if (handled == bytes) 5838 return X86EMUL_CONTINUE; 5839 5840 gpa += handled; 5841 bytes -= handled; 5842 val += handled; 5843 5844 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 5845 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 5846 frag->gpa = gpa; 5847 frag->data = val; 5848 frag->len = bytes; 5849 return X86EMUL_CONTINUE; 5850 } 5851 5852 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 5853 unsigned long addr, 5854 void *val, unsigned int bytes, 5855 struct x86_exception *exception, 5856 const struct read_write_emulator_ops *ops) 5857 { 5858 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5859 gpa_t gpa; 5860 int rc; 5861 5862 if (ops->read_write_prepare && 5863 ops->read_write_prepare(vcpu, val, bytes)) 5864 return X86EMUL_CONTINUE; 5865 5866 vcpu->mmio_nr_fragments = 0; 5867 5868 /* Crossing a page boundary? */ 5869 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 5870 int now; 5871 5872 now = -addr & ~PAGE_MASK; 5873 rc = emulator_read_write_onepage(addr, val, now, exception, 5874 vcpu, ops); 5875 5876 if (rc != X86EMUL_CONTINUE) 5877 return rc; 5878 addr += now; 5879 if (ctxt->mode != X86EMUL_MODE_PROT64) 5880 addr = (u32)addr; 5881 val += now; 5882 bytes -= now; 5883 } 5884 5885 rc = emulator_read_write_onepage(addr, val, bytes, exception, 5886 vcpu, ops); 5887 if (rc != X86EMUL_CONTINUE) 5888 return rc; 5889 5890 if (!vcpu->mmio_nr_fragments) 5891 return rc; 5892 5893 gpa = vcpu->mmio_fragments[0].gpa; 5894 5895 vcpu->mmio_needed = 1; 5896 vcpu->mmio_cur_fragment = 0; 5897 5898 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 5899 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 5900 vcpu->run->exit_reason = KVM_EXIT_MMIO; 5901 vcpu->run->mmio.phys_addr = gpa; 5902 5903 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 5904 } 5905 5906 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 5907 unsigned long addr, 5908 void *val, 5909 unsigned int bytes, 5910 struct x86_exception *exception) 5911 { 5912 return emulator_read_write(ctxt, addr, val, bytes, 5913 exception, &read_emultor); 5914 } 5915 5916 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 5917 unsigned long addr, 5918 const void *val, 5919 unsigned int bytes, 5920 struct x86_exception *exception) 5921 { 5922 return emulator_read_write(ctxt, addr, (void *)val, bytes, 5923 exception, &write_emultor); 5924 } 5925 5926 #define CMPXCHG_TYPE(t, ptr, old, new) \ 5927 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 5928 5929 #ifdef CONFIG_X86_64 5930 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 5931 #else 5932 # define CMPXCHG64(ptr, old, new) \ 5933 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 5934 #endif 5935 5936 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 5937 unsigned long addr, 5938 const void *old, 5939 const void *new, 5940 unsigned int bytes, 5941 struct x86_exception *exception) 5942 { 5943 struct kvm_host_map map; 5944 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5945 u64 page_line_mask; 5946 gpa_t gpa; 5947 char *kaddr; 5948 bool exchanged; 5949 5950 /* guests cmpxchg8b have to be emulated atomically */ 5951 if (bytes > 8 || (bytes & (bytes - 1))) 5952 goto emul_write; 5953 5954 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 5955 5956 if (gpa == UNMAPPED_GVA || 5957 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 5958 goto emul_write; 5959 5960 /* 5961 * Emulate the atomic as a straight write to avoid #AC if SLD is 5962 * enabled in the host and the access splits a cache line. 5963 */ 5964 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 5965 page_line_mask = ~(cache_line_size() - 1); 5966 else 5967 page_line_mask = PAGE_MASK; 5968 5969 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 5970 goto emul_write; 5971 5972 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map)) 5973 goto emul_write; 5974 5975 kaddr = map.hva + offset_in_page(gpa); 5976 5977 switch (bytes) { 5978 case 1: 5979 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 5980 break; 5981 case 2: 5982 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 5983 break; 5984 case 4: 5985 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 5986 break; 5987 case 8: 5988 exchanged = CMPXCHG64(kaddr, old, new); 5989 break; 5990 default: 5991 BUG(); 5992 } 5993 5994 kvm_vcpu_unmap(vcpu, &map, true); 5995 5996 if (!exchanged) 5997 return X86EMUL_CMPXCHG_FAILED; 5998 5999 kvm_page_track_write(vcpu, gpa, new, bytes); 6000 6001 return X86EMUL_CONTINUE; 6002 6003 emul_write: 6004 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 6005 6006 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 6007 } 6008 6009 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 6010 { 6011 int r = 0, i; 6012 6013 for (i = 0; i < vcpu->arch.pio.count; i++) { 6014 if (vcpu->arch.pio.in) 6015 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port, 6016 vcpu->arch.pio.size, pd); 6017 else 6018 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, 6019 vcpu->arch.pio.port, vcpu->arch.pio.size, 6020 pd); 6021 if (r) 6022 break; 6023 pd += vcpu->arch.pio.size; 6024 } 6025 return r; 6026 } 6027 6028 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 6029 unsigned short port, void *val, 6030 unsigned int count, bool in) 6031 { 6032 vcpu->arch.pio.port = port; 6033 vcpu->arch.pio.in = in; 6034 vcpu->arch.pio.count = count; 6035 vcpu->arch.pio.size = size; 6036 6037 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { 6038 vcpu->arch.pio.count = 0; 6039 return 1; 6040 } 6041 6042 vcpu->run->exit_reason = KVM_EXIT_IO; 6043 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 6044 vcpu->run->io.size = size; 6045 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 6046 vcpu->run->io.count = count; 6047 vcpu->run->io.port = port; 6048 6049 return 0; 6050 } 6051 6052 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 6053 unsigned short port, void *val, unsigned int count) 6054 { 6055 int ret; 6056 6057 if (vcpu->arch.pio.count) 6058 goto data_avail; 6059 6060 memset(vcpu->arch.pio_data, 0, size * count); 6061 6062 ret = emulator_pio_in_out(vcpu, size, port, val, count, true); 6063 if (ret) { 6064 data_avail: 6065 memcpy(val, vcpu->arch.pio_data, size * count); 6066 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data); 6067 vcpu->arch.pio.count = 0; 6068 return 1; 6069 } 6070 6071 return 0; 6072 } 6073 6074 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 6075 int size, unsigned short port, void *val, 6076 unsigned int count) 6077 { 6078 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count); 6079 6080 } 6081 6082 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 6083 unsigned short port, const void *val, 6084 unsigned int count) 6085 { 6086 memcpy(vcpu->arch.pio_data, val, size * count); 6087 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data); 6088 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 6089 } 6090 6091 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 6092 int size, unsigned short port, 6093 const void *val, unsigned int count) 6094 { 6095 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 6096 } 6097 6098 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 6099 { 6100 return kvm_x86_ops.get_segment_base(vcpu, seg); 6101 } 6102 6103 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 6104 { 6105 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 6106 } 6107 6108 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 6109 { 6110 if (!need_emulate_wbinvd(vcpu)) 6111 return X86EMUL_CONTINUE; 6112 6113 if (kvm_x86_ops.has_wbinvd_exit()) { 6114 int cpu = get_cpu(); 6115 6116 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 6117 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, 6118 wbinvd_ipi, NULL, 1); 6119 put_cpu(); 6120 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 6121 } else 6122 wbinvd(); 6123 return X86EMUL_CONTINUE; 6124 } 6125 6126 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 6127 { 6128 kvm_emulate_wbinvd_noskip(vcpu); 6129 return kvm_skip_emulated_instruction(vcpu); 6130 } 6131 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 6132 6133 6134 6135 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 6136 { 6137 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 6138 } 6139 6140 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 6141 unsigned long *dest) 6142 { 6143 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 6144 } 6145 6146 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 6147 unsigned long value) 6148 { 6149 6150 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 6151 } 6152 6153 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 6154 { 6155 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 6156 } 6157 6158 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 6159 { 6160 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6161 unsigned long value; 6162 6163 switch (cr) { 6164 case 0: 6165 value = kvm_read_cr0(vcpu); 6166 break; 6167 case 2: 6168 value = vcpu->arch.cr2; 6169 break; 6170 case 3: 6171 value = kvm_read_cr3(vcpu); 6172 break; 6173 case 4: 6174 value = kvm_read_cr4(vcpu); 6175 break; 6176 case 8: 6177 value = kvm_get_cr8(vcpu); 6178 break; 6179 default: 6180 kvm_err("%s: unexpected cr %u\n", __func__, cr); 6181 return 0; 6182 } 6183 6184 return value; 6185 } 6186 6187 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 6188 { 6189 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6190 int res = 0; 6191 6192 switch (cr) { 6193 case 0: 6194 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 6195 break; 6196 case 2: 6197 vcpu->arch.cr2 = val; 6198 break; 6199 case 3: 6200 res = kvm_set_cr3(vcpu, val); 6201 break; 6202 case 4: 6203 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 6204 break; 6205 case 8: 6206 res = kvm_set_cr8(vcpu, val); 6207 break; 6208 default: 6209 kvm_err("%s: unexpected cr %u\n", __func__, cr); 6210 res = -1; 6211 } 6212 6213 return res; 6214 } 6215 6216 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 6217 { 6218 return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt)); 6219 } 6220 6221 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6222 { 6223 kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt); 6224 } 6225 6226 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6227 { 6228 kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt); 6229 } 6230 6231 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6232 { 6233 kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt); 6234 } 6235 6236 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6237 { 6238 kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt); 6239 } 6240 6241 static unsigned long emulator_get_cached_segment_base( 6242 struct x86_emulate_ctxt *ctxt, int seg) 6243 { 6244 return get_segment_base(emul_to_vcpu(ctxt), seg); 6245 } 6246 6247 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 6248 struct desc_struct *desc, u32 *base3, 6249 int seg) 6250 { 6251 struct kvm_segment var; 6252 6253 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 6254 *selector = var.selector; 6255 6256 if (var.unusable) { 6257 memset(desc, 0, sizeof(*desc)); 6258 if (base3) 6259 *base3 = 0; 6260 return false; 6261 } 6262 6263 if (var.g) 6264 var.limit >>= 12; 6265 set_desc_limit(desc, var.limit); 6266 set_desc_base(desc, (unsigned long)var.base); 6267 #ifdef CONFIG_X86_64 6268 if (base3) 6269 *base3 = var.base >> 32; 6270 #endif 6271 desc->type = var.type; 6272 desc->s = var.s; 6273 desc->dpl = var.dpl; 6274 desc->p = var.present; 6275 desc->avl = var.avl; 6276 desc->l = var.l; 6277 desc->d = var.db; 6278 desc->g = var.g; 6279 6280 return true; 6281 } 6282 6283 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 6284 struct desc_struct *desc, u32 base3, 6285 int seg) 6286 { 6287 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6288 struct kvm_segment var; 6289 6290 var.selector = selector; 6291 var.base = get_desc_base(desc); 6292 #ifdef CONFIG_X86_64 6293 var.base |= ((u64)base3) << 32; 6294 #endif 6295 var.limit = get_desc_limit(desc); 6296 if (desc->g) 6297 var.limit = (var.limit << 12) | 0xfff; 6298 var.type = desc->type; 6299 var.dpl = desc->dpl; 6300 var.db = desc->d; 6301 var.s = desc->s; 6302 var.l = desc->l; 6303 var.g = desc->g; 6304 var.avl = desc->avl; 6305 var.present = desc->p; 6306 var.unusable = !var.present; 6307 var.padding = 0; 6308 6309 kvm_set_segment(vcpu, &var, seg); 6310 return; 6311 } 6312 6313 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 6314 u32 msr_index, u64 *pdata) 6315 { 6316 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 6317 } 6318 6319 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 6320 u32 msr_index, u64 data) 6321 { 6322 return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data); 6323 } 6324 6325 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt) 6326 { 6327 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6328 6329 return vcpu->arch.smbase; 6330 } 6331 6332 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase) 6333 { 6334 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6335 6336 vcpu->arch.smbase = smbase; 6337 } 6338 6339 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 6340 u32 pmc) 6341 { 6342 return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc); 6343 } 6344 6345 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 6346 u32 pmc, u64 *pdata) 6347 { 6348 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 6349 } 6350 6351 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 6352 { 6353 emul_to_vcpu(ctxt)->arch.halt_request = 1; 6354 } 6355 6356 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 6357 struct x86_instruction_info *info, 6358 enum x86_intercept_stage stage) 6359 { 6360 return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage, 6361 &ctxt->exception); 6362 } 6363 6364 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 6365 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 6366 bool exact_only) 6367 { 6368 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 6369 } 6370 6371 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt) 6372 { 6373 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM); 6374 } 6375 6376 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 6377 { 6378 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 6379 } 6380 6381 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 6382 { 6383 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 6384 } 6385 6386 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 6387 { 6388 return kvm_register_read(emul_to_vcpu(ctxt), reg); 6389 } 6390 6391 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 6392 { 6393 kvm_register_write(emul_to_vcpu(ctxt), reg, val); 6394 } 6395 6396 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 6397 { 6398 kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked); 6399 } 6400 6401 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 6402 { 6403 return emul_to_vcpu(ctxt)->arch.hflags; 6404 } 6405 6406 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags) 6407 { 6408 emul_to_vcpu(ctxt)->arch.hflags = emul_flags; 6409 } 6410 6411 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, 6412 const char *smstate) 6413 { 6414 return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate); 6415 } 6416 6417 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt) 6418 { 6419 kvm_smm_changed(emul_to_vcpu(ctxt)); 6420 } 6421 6422 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 6423 { 6424 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 6425 } 6426 6427 static const struct x86_emulate_ops emulate_ops = { 6428 .read_gpr = emulator_read_gpr, 6429 .write_gpr = emulator_write_gpr, 6430 .read_std = emulator_read_std, 6431 .write_std = emulator_write_std, 6432 .read_phys = kvm_read_guest_phys_system, 6433 .fetch = kvm_fetch_guest_virt, 6434 .read_emulated = emulator_read_emulated, 6435 .write_emulated = emulator_write_emulated, 6436 .cmpxchg_emulated = emulator_cmpxchg_emulated, 6437 .invlpg = emulator_invlpg, 6438 .pio_in_emulated = emulator_pio_in_emulated, 6439 .pio_out_emulated = emulator_pio_out_emulated, 6440 .get_segment = emulator_get_segment, 6441 .set_segment = emulator_set_segment, 6442 .get_cached_segment_base = emulator_get_cached_segment_base, 6443 .get_gdt = emulator_get_gdt, 6444 .get_idt = emulator_get_idt, 6445 .set_gdt = emulator_set_gdt, 6446 .set_idt = emulator_set_idt, 6447 .get_cr = emulator_get_cr, 6448 .set_cr = emulator_set_cr, 6449 .cpl = emulator_get_cpl, 6450 .get_dr = emulator_get_dr, 6451 .set_dr = emulator_set_dr, 6452 .get_smbase = emulator_get_smbase, 6453 .set_smbase = emulator_set_smbase, 6454 .set_msr = emulator_set_msr, 6455 .get_msr = emulator_get_msr, 6456 .check_pmc = emulator_check_pmc, 6457 .read_pmc = emulator_read_pmc, 6458 .halt = emulator_halt, 6459 .wbinvd = emulator_wbinvd, 6460 .fix_hypercall = emulator_fix_hypercall, 6461 .intercept = emulator_intercept, 6462 .get_cpuid = emulator_get_cpuid, 6463 .guest_has_long_mode = emulator_guest_has_long_mode, 6464 .guest_has_movbe = emulator_guest_has_movbe, 6465 .guest_has_fxsr = emulator_guest_has_fxsr, 6466 .set_nmi_mask = emulator_set_nmi_mask, 6467 .get_hflags = emulator_get_hflags, 6468 .set_hflags = emulator_set_hflags, 6469 .pre_leave_smm = emulator_pre_leave_smm, 6470 .post_leave_smm = emulator_post_leave_smm, 6471 .set_xcr = emulator_set_xcr, 6472 }; 6473 6474 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 6475 { 6476 u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu); 6477 /* 6478 * an sti; sti; sequence only disable interrupts for the first 6479 * instruction. So, if the last instruction, be it emulated or 6480 * not, left the system with the INT_STI flag enabled, it 6481 * means that the last instruction is an sti. We should not 6482 * leave the flag on in this case. The same goes for mov ss 6483 */ 6484 if (int_shadow & mask) 6485 mask = 0; 6486 if (unlikely(int_shadow || mask)) { 6487 kvm_x86_ops.set_interrupt_shadow(vcpu, mask); 6488 if (!mask) 6489 kvm_make_request(KVM_REQ_EVENT, vcpu); 6490 } 6491 } 6492 6493 static bool inject_emulated_exception(struct kvm_vcpu *vcpu) 6494 { 6495 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 6496 if (ctxt->exception.vector == PF_VECTOR) 6497 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 6498 6499 if (ctxt->exception.error_code_valid) 6500 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 6501 ctxt->exception.error_code); 6502 else 6503 kvm_queue_exception(vcpu, ctxt->exception.vector); 6504 return false; 6505 } 6506 6507 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 6508 { 6509 struct x86_emulate_ctxt *ctxt; 6510 6511 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 6512 if (!ctxt) { 6513 pr_err("kvm: failed to allocate vcpu's emulator\n"); 6514 return NULL; 6515 } 6516 6517 ctxt->vcpu = vcpu; 6518 ctxt->ops = &emulate_ops; 6519 vcpu->arch.emulate_ctxt = ctxt; 6520 6521 return ctxt; 6522 } 6523 6524 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 6525 { 6526 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 6527 int cs_db, cs_l; 6528 6529 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 6530 6531 ctxt->gpa_available = false; 6532 ctxt->eflags = kvm_get_rflags(vcpu); 6533 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 6534 6535 ctxt->eip = kvm_rip_read(vcpu); 6536 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 6537 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 6538 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 6539 cs_db ? X86EMUL_MODE_PROT32 : 6540 X86EMUL_MODE_PROT16; 6541 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 6542 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK); 6543 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK); 6544 6545 init_decode_cache(ctxt); 6546 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 6547 } 6548 6549 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 6550 { 6551 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 6552 int ret; 6553 6554 init_emulate_ctxt(vcpu); 6555 6556 ctxt->op_bytes = 2; 6557 ctxt->ad_bytes = 2; 6558 ctxt->_eip = ctxt->eip + inc_eip; 6559 ret = emulate_int_real(ctxt, irq); 6560 6561 if (ret != X86EMUL_CONTINUE) { 6562 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 6563 } else { 6564 ctxt->eip = ctxt->_eip; 6565 kvm_rip_write(vcpu, ctxt->eip); 6566 kvm_set_rflags(vcpu, ctxt->eflags); 6567 } 6568 } 6569 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 6570 6571 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 6572 { 6573 ++vcpu->stat.insn_emulation_fail; 6574 trace_kvm_emulate_insn_failed(vcpu); 6575 6576 if (emulation_type & EMULTYPE_VMWARE_GP) { 6577 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 6578 return 1; 6579 } 6580 6581 if (emulation_type & EMULTYPE_SKIP) { 6582 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6583 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 6584 vcpu->run->internal.ndata = 0; 6585 return 0; 6586 } 6587 6588 kvm_queue_exception(vcpu, UD_VECTOR); 6589 6590 if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) { 6591 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6592 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 6593 vcpu->run->internal.ndata = 0; 6594 return 0; 6595 } 6596 6597 return 1; 6598 } 6599 6600 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 6601 bool write_fault_to_shadow_pgtable, 6602 int emulation_type) 6603 { 6604 gpa_t gpa = cr2_or_gpa; 6605 kvm_pfn_t pfn; 6606 6607 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 6608 return false; 6609 6610 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 6611 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 6612 return false; 6613 6614 if (!vcpu->arch.mmu->direct_map) { 6615 /* 6616 * Write permission should be allowed since only 6617 * write access need to be emulated. 6618 */ 6619 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 6620 6621 /* 6622 * If the mapping is invalid in guest, let cpu retry 6623 * it to generate fault. 6624 */ 6625 if (gpa == UNMAPPED_GVA) 6626 return true; 6627 } 6628 6629 /* 6630 * Do not retry the unhandleable instruction if it faults on the 6631 * readonly host memory, otherwise it will goto a infinite loop: 6632 * retry instruction -> write #PF -> emulation fail -> retry 6633 * instruction -> ... 6634 */ 6635 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 6636 6637 /* 6638 * If the instruction failed on the error pfn, it can not be fixed, 6639 * report the error to userspace. 6640 */ 6641 if (is_error_noslot_pfn(pfn)) 6642 return false; 6643 6644 kvm_release_pfn_clean(pfn); 6645 6646 /* The instructions are well-emulated on direct mmu. */ 6647 if (vcpu->arch.mmu->direct_map) { 6648 unsigned int indirect_shadow_pages; 6649 6650 spin_lock(&vcpu->kvm->mmu_lock); 6651 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 6652 spin_unlock(&vcpu->kvm->mmu_lock); 6653 6654 if (indirect_shadow_pages) 6655 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 6656 6657 return true; 6658 } 6659 6660 /* 6661 * if emulation was due to access to shadowed page table 6662 * and it failed try to unshadow page and re-enter the 6663 * guest to let CPU execute the instruction. 6664 */ 6665 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 6666 6667 /* 6668 * If the access faults on its page table, it can not 6669 * be fixed by unprotecting shadow page and it should 6670 * be reported to userspace. 6671 */ 6672 return !write_fault_to_shadow_pgtable; 6673 } 6674 6675 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 6676 gpa_t cr2_or_gpa, int emulation_type) 6677 { 6678 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6679 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 6680 6681 last_retry_eip = vcpu->arch.last_retry_eip; 6682 last_retry_addr = vcpu->arch.last_retry_addr; 6683 6684 /* 6685 * If the emulation is caused by #PF and it is non-page_table 6686 * writing instruction, it means the VM-EXIT is caused by shadow 6687 * page protected, we can zap the shadow page and retry this 6688 * instruction directly. 6689 * 6690 * Note: if the guest uses a non-page-table modifying instruction 6691 * on the PDE that points to the instruction, then we will unmap 6692 * the instruction and go to an infinite loop. So, we cache the 6693 * last retried eip and the last fault address, if we meet the eip 6694 * and the address again, we can break out of the potential infinite 6695 * loop. 6696 */ 6697 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 6698 6699 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 6700 return false; 6701 6702 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 6703 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 6704 return false; 6705 6706 if (x86_page_table_writing_insn(ctxt)) 6707 return false; 6708 6709 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 6710 return false; 6711 6712 vcpu->arch.last_retry_eip = ctxt->eip; 6713 vcpu->arch.last_retry_addr = cr2_or_gpa; 6714 6715 if (!vcpu->arch.mmu->direct_map) 6716 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 6717 6718 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 6719 6720 return true; 6721 } 6722 6723 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 6724 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 6725 6726 static void kvm_smm_changed(struct kvm_vcpu *vcpu) 6727 { 6728 if (!(vcpu->arch.hflags & HF_SMM_MASK)) { 6729 /* This is a good place to trace that we are exiting SMM. */ 6730 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false); 6731 6732 /* Process a latched INIT or SMI, if any. */ 6733 kvm_make_request(KVM_REQ_EVENT, vcpu); 6734 } 6735 6736 kvm_mmu_reset_context(vcpu); 6737 } 6738 6739 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 6740 unsigned long *db) 6741 { 6742 u32 dr6 = 0; 6743 int i; 6744 u32 enable, rwlen; 6745 6746 enable = dr7; 6747 rwlen = dr7 >> 16; 6748 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 6749 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 6750 dr6 |= (1 << i); 6751 return dr6; 6752 } 6753 6754 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 6755 { 6756 struct kvm_run *kvm_run = vcpu->run; 6757 6758 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 6759 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM; 6760 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 6761 kvm_run->debug.arch.exception = DB_VECTOR; 6762 kvm_run->exit_reason = KVM_EXIT_DEBUG; 6763 return 0; 6764 } 6765 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 6766 return 1; 6767 } 6768 6769 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 6770 { 6771 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu); 6772 int r; 6773 6774 r = kvm_x86_ops.skip_emulated_instruction(vcpu); 6775 if (unlikely(!r)) 6776 return 0; 6777 6778 /* 6779 * rflags is the old, "raw" value of the flags. The new value has 6780 * not been saved yet. 6781 * 6782 * This is correct even for TF set by the guest, because "the 6783 * processor will not generate this exception after the instruction 6784 * that sets the TF flag". 6785 */ 6786 if (unlikely(rflags & X86_EFLAGS_TF)) 6787 r = kvm_vcpu_do_singlestep(vcpu); 6788 return r; 6789 } 6790 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 6791 6792 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r) 6793 { 6794 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 6795 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 6796 struct kvm_run *kvm_run = vcpu->run; 6797 unsigned long eip = kvm_get_linear_rip(vcpu); 6798 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 6799 vcpu->arch.guest_debug_dr7, 6800 vcpu->arch.eff_db); 6801 6802 if (dr6 != 0) { 6803 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM; 6804 kvm_run->debug.arch.pc = eip; 6805 kvm_run->debug.arch.exception = DB_VECTOR; 6806 kvm_run->exit_reason = KVM_EXIT_DEBUG; 6807 *r = 0; 6808 return true; 6809 } 6810 } 6811 6812 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 6813 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) { 6814 unsigned long eip = kvm_get_linear_rip(vcpu); 6815 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 6816 vcpu->arch.dr7, 6817 vcpu->arch.db); 6818 6819 if (dr6 != 0) { 6820 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 6821 *r = 1; 6822 return true; 6823 } 6824 } 6825 6826 return false; 6827 } 6828 6829 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 6830 { 6831 switch (ctxt->opcode_len) { 6832 case 1: 6833 switch (ctxt->b) { 6834 case 0xe4: /* IN */ 6835 case 0xe5: 6836 case 0xec: 6837 case 0xed: 6838 case 0xe6: /* OUT */ 6839 case 0xe7: 6840 case 0xee: 6841 case 0xef: 6842 case 0x6c: /* INS */ 6843 case 0x6d: 6844 case 0x6e: /* OUTS */ 6845 case 0x6f: 6846 return true; 6847 } 6848 break; 6849 case 2: 6850 switch (ctxt->b) { 6851 case 0x33: /* RDPMC */ 6852 return true; 6853 } 6854 break; 6855 } 6856 6857 return false; 6858 } 6859 6860 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 6861 int emulation_type, void *insn, int insn_len) 6862 { 6863 int r; 6864 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 6865 bool writeback = true; 6866 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 6867 6868 vcpu->arch.l1tf_flush_l1d = true; 6869 6870 /* 6871 * Clear write_fault_to_shadow_pgtable here to ensure it is 6872 * never reused. 6873 */ 6874 vcpu->arch.write_fault_to_shadow_pgtable = false; 6875 kvm_clear_exception_queue(vcpu); 6876 6877 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 6878 init_emulate_ctxt(vcpu); 6879 6880 /* 6881 * We will reenter on the same instruction since 6882 * we do not set complete_userspace_io. This does not 6883 * handle watchpoints yet, those would be handled in 6884 * the emulate_ops. 6885 */ 6886 if (!(emulation_type & EMULTYPE_SKIP) && 6887 kvm_vcpu_check_breakpoint(vcpu, &r)) 6888 return r; 6889 6890 ctxt->interruptibility = 0; 6891 ctxt->have_exception = false; 6892 ctxt->exception.vector = -1; 6893 ctxt->perm_ok = false; 6894 6895 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD; 6896 6897 r = x86_decode_insn(ctxt, insn, insn_len); 6898 6899 trace_kvm_emulate_insn_start(vcpu); 6900 ++vcpu->stat.insn_emulation; 6901 if (r != EMULATION_OK) { 6902 if ((emulation_type & EMULTYPE_TRAP_UD) || 6903 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 6904 kvm_queue_exception(vcpu, UD_VECTOR); 6905 return 1; 6906 } 6907 if (reexecute_instruction(vcpu, cr2_or_gpa, 6908 write_fault_to_spt, 6909 emulation_type)) 6910 return 1; 6911 if (ctxt->have_exception) { 6912 /* 6913 * #UD should result in just EMULATION_FAILED, and trap-like 6914 * exception should not be encountered during decode. 6915 */ 6916 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 6917 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 6918 inject_emulated_exception(vcpu); 6919 return 1; 6920 } 6921 return handle_emulation_failure(vcpu, emulation_type); 6922 } 6923 } 6924 6925 if ((emulation_type & EMULTYPE_VMWARE_GP) && 6926 !is_vmware_backdoor_opcode(ctxt)) { 6927 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 6928 return 1; 6929 } 6930 6931 /* 6932 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks 6933 * for kvm_skip_emulated_instruction(). The caller is responsible for 6934 * updating interruptibility state and injecting single-step #DBs. 6935 */ 6936 if (emulation_type & EMULTYPE_SKIP) { 6937 kvm_rip_write(vcpu, ctxt->_eip); 6938 if (ctxt->eflags & X86_EFLAGS_RF) 6939 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 6940 return 1; 6941 } 6942 6943 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 6944 return 1; 6945 6946 /* this is needed for vmware backdoor interface to work since it 6947 changes registers values during IO operation */ 6948 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 6949 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 6950 emulator_invalidate_register_cache(ctxt); 6951 } 6952 6953 restart: 6954 if (emulation_type & EMULTYPE_PF) { 6955 /* Save the faulting GPA (cr2) in the address field */ 6956 ctxt->exception.address = cr2_or_gpa; 6957 6958 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 6959 if (vcpu->arch.mmu->direct_map) { 6960 ctxt->gpa_available = true; 6961 ctxt->gpa_val = cr2_or_gpa; 6962 } 6963 } else { 6964 /* Sanitize the address out of an abundance of paranoia. */ 6965 ctxt->exception.address = 0; 6966 } 6967 6968 r = x86_emulate_insn(ctxt); 6969 6970 if (r == EMULATION_INTERCEPTED) 6971 return 1; 6972 6973 if (r == EMULATION_FAILED) { 6974 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt, 6975 emulation_type)) 6976 return 1; 6977 6978 return handle_emulation_failure(vcpu, emulation_type); 6979 } 6980 6981 if (ctxt->have_exception) { 6982 r = 1; 6983 if (inject_emulated_exception(vcpu)) 6984 return r; 6985 } else if (vcpu->arch.pio.count) { 6986 if (!vcpu->arch.pio.in) { 6987 /* FIXME: return into emulator if single-stepping. */ 6988 vcpu->arch.pio.count = 0; 6989 } else { 6990 writeback = false; 6991 vcpu->arch.complete_userspace_io = complete_emulated_pio; 6992 } 6993 r = 0; 6994 } else if (vcpu->mmio_needed) { 6995 ++vcpu->stat.mmio_exits; 6996 6997 if (!vcpu->mmio_is_write) 6998 writeback = false; 6999 r = 0; 7000 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 7001 } else if (r == EMULATION_RESTART) 7002 goto restart; 7003 else 7004 r = 1; 7005 7006 if (writeback) { 7007 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu); 7008 toggle_interruptibility(vcpu, ctxt->interruptibility); 7009 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 7010 if (!ctxt->have_exception || 7011 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 7012 kvm_rip_write(vcpu, ctxt->eip); 7013 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 7014 r = kvm_vcpu_do_singlestep(vcpu); 7015 if (kvm_x86_ops.update_emulated_instruction) 7016 kvm_x86_ops.update_emulated_instruction(vcpu); 7017 __kvm_set_rflags(vcpu, ctxt->eflags); 7018 } 7019 7020 /* 7021 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 7022 * do nothing, and it will be requested again as soon as 7023 * the shadow expires. But we still need to check here, 7024 * because POPF has no interrupt shadow. 7025 */ 7026 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 7027 kvm_make_request(KVM_REQ_EVENT, vcpu); 7028 } else 7029 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 7030 7031 return r; 7032 } 7033 7034 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 7035 { 7036 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 7037 } 7038 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 7039 7040 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 7041 void *insn, int insn_len) 7042 { 7043 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 7044 } 7045 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 7046 7047 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 7048 { 7049 vcpu->arch.pio.count = 0; 7050 return 1; 7051 } 7052 7053 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 7054 { 7055 vcpu->arch.pio.count = 0; 7056 7057 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 7058 return 1; 7059 7060 return kvm_skip_emulated_instruction(vcpu); 7061 } 7062 7063 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 7064 unsigned short port) 7065 { 7066 unsigned long val = kvm_rax_read(vcpu); 7067 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 7068 7069 if (ret) 7070 return ret; 7071 7072 /* 7073 * Workaround userspace that relies on old KVM behavior of %rip being 7074 * incremented prior to exiting to userspace to handle "OUT 0x7e". 7075 */ 7076 if (port == 0x7e && 7077 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 7078 vcpu->arch.complete_userspace_io = 7079 complete_fast_pio_out_port_0x7e; 7080 kvm_skip_emulated_instruction(vcpu); 7081 } else { 7082 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 7083 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 7084 } 7085 return 0; 7086 } 7087 7088 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 7089 { 7090 unsigned long val; 7091 7092 /* We should only ever be called with arch.pio.count equal to 1 */ 7093 BUG_ON(vcpu->arch.pio.count != 1); 7094 7095 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 7096 vcpu->arch.pio.count = 0; 7097 return 1; 7098 } 7099 7100 /* For size less than 4 we merge, else we zero extend */ 7101 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 7102 7103 /* 7104 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform 7105 * the copy and tracing 7106 */ 7107 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1); 7108 kvm_rax_write(vcpu, val); 7109 7110 return kvm_skip_emulated_instruction(vcpu); 7111 } 7112 7113 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 7114 unsigned short port) 7115 { 7116 unsigned long val; 7117 int ret; 7118 7119 /* For size less than 4 we merge, else we zero extend */ 7120 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 7121 7122 ret = emulator_pio_in(vcpu, size, port, &val, 1); 7123 if (ret) { 7124 kvm_rax_write(vcpu, val); 7125 return ret; 7126 } 7127 7128 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 7129 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 7130 7131 return 0; 7132 } 7133 7134 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 7135 { 7136 int ret; 7137 7138 if (in) 7139 ret = kvm_fast_pio_in(vcpu, size, port); 7140 else 7141 ret = kvm_fast_pio_out(vcpu, size, port); 7142 return ret && kvm_skip_emulated_instruction(vcpu); 7143 } 7144 EXPORT_SYMBOL_GPL(kvm_fast_pio); 7145 7146 static int kvmclock_cpu_down_prep(unsigned int cpu) 7147 { 7148 __this_cpu_write(cpu_tsc_khz, 0); 7149 return 0; 7150 } 7151 7152 static void tsc_khz_changed(void *data) 7153 { 7154 struct cpufreq_freqs *freq = data; 7155 unsigned long khz = 0; 7156 7157 if (data) 7158 khz = freq->new; 7159 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 7160 khz = cpufreq_quick_get(raw_smp_processor_id()); 7161 if (!khz) 7162 khz = tsc_khz; 7163 __this_cpu_write(cpu_tsc_khz, khz); 7164 } 7165 7166 #ifdef CONFIG_X86_64 7167 static void kvm_hyperv_tsc_notifier(void) 7168 { 7169 struct kvm *kvm; 7170 struct kvm_vcpu *vcpu; 7171 int cpu; 7172 7173 mutex_lock(&kvm_lock); 7174 list_for_each_entry(kvm, &vm_list, vm_list) 7175 kvm_make_mclock_inprogress_request(kvm); 7176 7177 hyperv_stop_tsc_emulation(); 7178 7179 /* TSC frequency always matches when on Hyper-V */ 7180 for_each_present_cpu(cpu) 7181 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 7182 kvm_max_guest_tsc_khz = tsc_khz; 7183 7184 list_for_each_entry(kvm, &vm_list, vm_list) { 7185 struct kvm_arch *ka = &kvm->arch; 7186 7187 spin_lock(&ka->pvclock_gtod_sync_lock); 7188 7189 pvclock_update_vm_gtod_copy(kvm); 7190 7191 kvm_for_each_vcpu(cpu, vcpu, kvm) 7192 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 7193 7194 kvm_for_each_vcpu(cpu, vcpu, kvm) 7195 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 7196 7197 spin_unlock(&ka->pvclock_gtod_sync_lock); 7198 } 7199 mutex_unlock(&kvm_lock); 7200 } 7201 #endif 7202 7203 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 7204 { 7205 struct kvm *kvm; 7206 struct kvm_vcpu *vcpu; 7207 int i, send_ipi = 0; 7208 7209 /* 7210 * We allow guests to temporarily run on slowing clocks, 7211 * provided we notify them after, or to run on accelerating 7212 * clocks, provided we notify them before. Thus time never 7213 * goes backwards. 7214 * 7215 * However, we have a problem. We can't atomically update 7216 * the frequency of a given CPU from this function; it is 7217 * merely a notifier, which can be called from any CPU. 7218 * Changing the TSC frequency at arbitrary points in time 7219 * requires a recomputation of local variables related to 7220 * the TSC for each VCPU. We must flag these local variables 7221 * to be updated and be sure the update takes place with the 7222 * new frequency before any guests proceed. 7223 * 7224 * Unfortunately, the combination of hotplug CPU and frequency 7225 * change creates an intractable locking scenario; the order 7226 * of when these callouts happen is undefined with respect to 7227 * CPU hotplug, and they can race with each other. As such, 7228 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 7229 * undefined; you can actually have a CPU frequency change take 7230 * place in between the computation of X and the setting of the 7231 * variable. To protect against this problem, all updates of 7232 * the per_cpu tsc_khz variable are done in an interrupt 7233 * protected IPI, and all callers wishing to update the value 7234 * must wait for a synchronous IPI to complete (which is trivial 7235 * if the caller is on the CPU already). This establishes the 7236 * necessary total order on variable updates. 7237 * 7238 * Note that because a guest time update may take place 7239 * anytime after the setting of the VCPU's request bit, the 7240 * correct TSC value must be set before the request. However, 7241 * to ensure the update actually makes it to any guest which 7242 * starts running in hardware virtualization between the set 7243 * and the acquisition of the spinlock, we must also ping the 7244 * CPU after setting the request bit. 7245 * 7246 */ 7247 7248 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 7249 7250 mutex_lock(&kvm_lock); 7251 list_for_each_entry(kvm, &vm_list, vm_list) { 7252 kvm_for_each_vcpu(i, vcpu, kvm) { 7253 if (vcpu->cpu != cpu) 7254 continue; 7255 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 7256 if (vcpu->cpu != raw_smp_processor_id()) 7257 send_ipi = 1; 7258 } 7259 } 7260 mutex_unlock(&kvm_lock); 7261 7262 if (freq->old < freq->new && send_ipi) { 7263 /* 7264 * We upscale the frequency. Must make the guest 7265 * doesn't see old kvmclock values while running with 7266 * the new frequency, otherwise we risk the guest sees 7267 * time go backwards. 7268 * 7269 * In case we update the frequency for another cpu 7270 * (which might be in guest context) send an interrupt 7271 * to kick the cpu out of guest context. Next time 7272 * guest context is entered kvmclock will be updated, 7273 * so the guest will not see stale values. 7274 */ 7275 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 7276 } 7277 } 7278 7279 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 7280 void *data) 7281 { 7282 struct cpufreq_freqs *freq = data; 7283 int cpu; 7284 7285 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 7286 return 0; 7287 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 7288 return 0; 7289 7290 for_each_cpu(cpu, freq->policy->cpus) 7291 __kvmclock_cpufreq_notifier(freq, cpu); 7292 7293 return 0; 7294 } 7295 7296 static struct notifier_block kvmclock_cpufreq_notifier_block = { 7297 .notifier_call = kvmclock_cpufreq_notifier 7298 }; 7299 7300 static int kvmclock_cpu_online(unsigned int cpu) 7301 { 7302 tsc_khz_changed(NULL); 7303 return 0; 7304 } 7305 7306 static void kvm_timer_init(void) 7307 { 7308 max_tsc_khz = tsc_khz; 7309 7310 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 7311 #ifdef CONFIG_CPU_FREQ 7312 struct cpufreq_policy *policy; 7313 int cpu; 7314 7315 cpu = get_cpu(); 7316 policy = cpufreq_cpu_get(cpu); 7317 if (policy) { 7318 if (policy->cpuinfo.max_freq) 7319 max_tsc_khz = policy->cpuinfo.max_freq; 7320 cpufreq_cpu_put(policy); 7321 } 7322 put_cpu(); 7323 #endif 7324 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 7325 CPUFREQ_TRANSITION_NOTIFIER); 7326 } 7327 7328 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 7329 kvmclock_cpu_online, kvmclock_cpu_down_prep); 7330 } 7331 7332 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); 7333 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu); 7334 7335 int kvm_is_in_guest(void) 7336 { 7337 return __this_cpu_read(current_vcpu) != NULL; 7338 } 7339 7340 static int kvm_is_user_mode(void) 7341 { 7342 int user_mode = 3; 7343 7344 if (__this_cpu_read(current_vcpu)) 7345 user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu)); 7346 7347 return user_mode != 0; 7348 } 7349 7350 static unsigned long kvm_get_guest_ip(void) 7351 { 7352 unsigned long ip = 0; 7353 7354 if (__this_cpu_read(current_vcpu)) 7355 ip = kvm_rip_read(__this_cpu_read(current_vcpu)); 7356 7357 return ip; 7358 } 7359 7360 static void kvm_handle_intel_pt_intr(void) 7361 { 7362 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu); 7363 7364 kvm_make_request(KVM_REQ_PMI, vcpu); 7365 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT, 7366 (unsigned long *)&vcpu->arch.pmu.global_status); 7367 } 7368 7369 static struct perf_guest_info_callbacks kvm_guest_cbs = { 7370 .is_in_guest = kvm_is_in_guest, 7371 .is_user_mode = kvm_is_user_mode, 7372 .get_guest_ip = kvm_get_guest_ip, 7373 .handle_intel_pt_intr = kvm_handle_intel_pt_intr, 7374 }; 7375 7376 #ifdef CONFIG_X86_64 7377 static void pvclock_gtod_update_fn(struct work_struct *work) 7378 { 7379 struct kvm *kvm; 7380 7381 struct kvm_vcpu *vcpu; 7382 int i; 7383 7384 mutex_lock(&kvm_lock); 7385 list_for_each_entry(kvm, &vm_list, vm_list) 7386 kvm_for_each_vcpu(i, vcpu, kvm) 7387 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 7388 atomic_set(&kvm_guest_has_master_clock, 0); 7389 mutex_unlock(&kvm_lock); 7390 } 7391 7392 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 7393 7394 /* 7395 * Notification about pvclock gtod data update. 7396 */ 7397 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 7398 void *priv) 7399 { 7400 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 7401 struct timekeeper *tk = priv; 7402 7403 update_pvclock_gtod(tk); 7404 7405 /* disable master clock if host does not trust, or does not 7406 * use, TSC based clocksource. 7407 */ 7408 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 7409 atomic_read(&kvm_guest_has_master_clock) != 0) 7410 queue_work(system_long_wq, &pvclock_gtod_work); 7411 7412 return 0; 7413 } 7414 7415 static struct notifier_block pvclock_gtod_notifier = { 7416 .notifier_call = pvclock_gtod_notify, 7417 }; 7418 #endif 7419 7420 int kvm_arch_init(void *opaque) 7421 { 7422 struct kvm_x86_init_ops *ops = opaque; 7423 int r; 7424 7425 if (kvm_x86_ops.hardware_enable) { 7426 printk(KERN_ERR "kvm: already loaded the other module\n"); 7427 r = -EEXIST; 7428 goto out; 7429 } 7430 7431 if (!ops->cpu_has_kvm_support()) { 7432 pr_err_ratelimited("kvm: no hardware support\n"); 7433 r = -EOPNOTSUPP; 7434 goto out; 7435 } 7436 if (ops->disabled_by_bios()) { 7437 pr_err_ratelimited("kvm: disabled by bios\n"); 7438 r = -EOPNOTSUPP; 7439 goto out; 7440 } 7441 7442 /* 7443 * KVM explicitly assumes that the guest has an FPU and 7444 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 7445 * vCPU's FPU state as a fxregs_state struct. 7446 */ 7447 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 7448 printk(KERN_ERR "kvm: inadequate fpu\n"); 7449 r = -EOPNOTSUPP; 7450 goto out; 7451 } 7452 7453 r = -ENOMEM; 7454 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu), 7455 __alignof__(struct fpu), SLAB_ACCOUNT, 7456 NULL); 7457 if (!x86_fpu_cache) { 7458 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n"); 7459 goto out; 7460 } 7461 7462 x86_emulator_cache = kvm_alloc_emulator_cache(); 7463 if (!x86_emulator_cache) { 7464 pr_err("kvm: failed to allocate cache for x86 emulator\n"); 7465 goto out_free_x86_fpu_cache; 7466 } 7467 7468 shared_msrs = alloc_percpu(struct kvm_shared_msrs); 7469 if (!shared_msrs) { 7470 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n"); 7471 goto out_free_x86_emulator_cache; 7472 } 7473 7474 r = kvm_mmu_module_init(); 7475 if (r) 7476 goto out_free_percpu; 7477 7478 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, 7479 PT_DIRTY_MASK, PT64_NX_MASK, 0, 7480 PT_PRESENT_MASK, 0, sme_me_mask); 7481 kvm_timer_init(); 7482 7483 perf_register_guest_info_callbacks(&kvm_guest_cbs); 7484 7485 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 7486 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 7487 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 7488 } 7489 7490 kvm_lapic_init(); 7491 if (pi_inject_timer == -1) 7492 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER); 7493 #ifdef CONFIG_X86_64 7494 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 7495 7496 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 7497 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 7498 #endif 7499 7500 return 0; 7501 7502 out_free_percpu: 7503 free_percpu(shared_msrs); 7504 out_free_x86_emulator_cache: 7505 kmem_cache_destroy(x86_emulator_cache); 7506 out_free_x86_fpu_cache: 7507 kmem_cache_destroy(x86_fpu_cache); 7508 out: 7509 return r; 7510 } 7511 7512 void kvm_arch_exit(void) 7513 { 7514 #ifdef CONFIG_X86_64 7515 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 7516 clear_hv_tscchange_cb(); 7517 #endif 7518 kvm_lapic_exit(); 7519 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 7520 7521 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 7522 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 7523 CPUFREQ_TRANSITION_NOTIFIER); 7524 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 7525 #ifdef CONFIG_X86_64 7526 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 7527 #endif 7528 kvm_x86_ops.hardware_enable = NULL; 7529 kvm_mmu_module_exit(); 7530 free_percpu(shared_msrs); 7531 kmem_cache_destroy(x86_fpu_cache); 7532 } 7533 7534 int kvm_vcpu_halt(struct kvm_vcpu *vcpu) 7535 { 7536 ++vcpu->stat.halt_exits; 7537 if (lapic_in_kernel(vcpu)) { 7538 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 7539 return 1; 7540 } else { 7541 vcpu->run->exit_reason = KVM_EXIT_HLT; 7542 return 0; 7543 } 7544 } 7545 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 7546 7547 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 7548 { 7549 int ret = kvm_skip_emulated_instruction(vcpu); 7550 /* 7551 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 7552 * KVM_EXIT_DEBUG here. 7553 */ 7554 return kvm_vcpu_halt(vcpu) && ret; 7555 } 7556 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 7557 7558 #ifdef CONFIG_X86_64 7559 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 7560 unsigned long clock_type) 7561 { 7562 struct kvm_clock_pairing clock_pairing; 7563 struct timespec64 ts; 7564 u64 cycle; 7565 int ret; 7566 7567 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 7568 return -KVM_EOPNOTSUPP; 7569 7570 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false) 7571 return -KVM_EOPNOTSUPP; 7572 7573 clock_pairing.sec = ts.tv_sec; 7574 clock_pairing.nsec = ts.tv_nsec; 7575 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 7576 clock_pairing.flags = 0; 7577 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 7578 7579 ret = 0; 7580 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 7581 sizeof(struct kvm_clock_pairing))) 7582 ret = -KVM_EFAULT; 7583 7584 return ret; 7585 } 7586 #endif 7587 7588 /* 7589 * kvm_pv_kick_cpu_op: Kick a vcpu. 7590 * 7591 * @apicid - apicid of vcpu to be kicked. 7592 */ 7593 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid) 7594 { 7595 struct kvm_lapic_irq lapic_irq; 7596 7597 lapic_irq.shorthand = APIC_DEST_NOSHORT; 7598 lapic_irq.dest_mode = APIC_DEST_PHYSICAL; 7599 lapic_irq.level = 0; 7600 lapic_irq.dest_id = apicid; 7601 lapic_irq.msi_redir_hint = false; 7602 7603 lapic_irq.delivery_mode = APIC_DM_REMRD; 7604 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 7605 } 7606 7607 bool kvm_apicv_activated(struct kvm *kvm) 7608 { 7609 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 7610 } 7611 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 7612 7613 void kvm_apicv_init(struct kvm *kvm, bool enable) 7614 { 7615 if (enable) 7616 clear_bit(APICV_INHIBIT_REASON_DISABLE, 7617 &kvm->arch.apicv_inhibit_reasons); 7618 else 7619 set_bit(APICV_INHIBIT_REASON_DISABLE, 7620 &kvm->arch.apicv_inhibit_reasons); 7621 } 7622 EXPORT_SYMBOL_GPL(kvm_apicv_init); 7623 7624 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id) 7625 { 7626 struct kvm_vcpu *target = NULL; 7627 struct kvm_apic_map *map; 7628 7629 rcu_read_lock(); 7630 map = rcu_dereference(kvm->arch.apic_map); 7631 7632 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 7633 target = map->phys_map[dest_id]->vcpu; 7634 7635 rcu_read_unlock(); 7636 7637 if (target && READ_ONCE(target->ready)) 7638 kvm_vcpu_yield_to(target); 7639 } 7640 7641 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 7642 { 7643 unsigned long nr, a0, a1, a2, a3, ret; 7644 int op_64_bit; 7645 7646 if (kvm_hv_hypercall_enabled(vcpu->kvm)) 7647 return kvm_hv_hypercall(vcpu); 7648 7649 nr = kvm_rax_read(vcpu); 7650 a0 = kvm_rbx_read(vcpu); 7651 a1 = kvm_rcx_read(vcpu); 7652 a2 = kvm_rdx_read(vcpu); 7653 a3 = kvm_rsi_read(vcpu); 7654 7655 trace_kvm_hypercall(nr, a0, a1, a2, a3); 7656 7657 op_64_bit = is_64_bit_mode(vcpu); 7658 if (!op_64_bit) { 7659 nr &= 0xFFFFFFFF; 7660 a0 &= 0xFFFFFFFF; 7661 a1 &= 0xFFFFFFFF; 7662 a2 &= 0xFFFFFFFF; 7663 a3 &= 0xFFFFFFFF; 7664 } 7665 7666 if (kvm_x86_ops.get_cpl(vcpu) != 0) { 7667 ret = -KVM_EPERM; 7668 goto out; 7669 } 7670 7671 switch (nr) { 7672 case KVM_HC_VAPIC_POLL_IRQ: 7673 ret = 0; 7674 break; 7675 case KVM_HC_KICK_CPU: 7676 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1); 7677 kvm_sched_yield(vcpu->kvm, a1); 7678 ret = 0; 7679 break; 7680 #ifdef CONFIG_X86_64 7681 case KVM_HC_CLOCK_PAIRING: 7682 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 7683 break; 7684 #endif 7685 case KVM_HC_SEND_IPI: 7686 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 7687 break; 7688 case KVM_HC_SCHED_YIELD: 7689 kvm_sched_yield(vcpu->kvm, a0); 7690 ret = 0; 7691 break; 7692 default: 7693 ret = -KVM_ENOSYS; 7694 break; 7695 } 7696 out: 7697 if (!op_64_bit) 7698 ret = (u32)ret; 7699 kvm_rax_write(vcpu, ret); 7700 7701 ++vcpu->stat.hypercalls; 7702 return kvm_skip_emulated_instruction(vcpu); 7703 } 7704 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 7705 7706 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 7707 { 7708 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7709 char instruction[3]; 7710 unsigned long rip = kvm_rip_read(vcpu); 7711 7712 kvm_x86_ops.patch_hypercall(vcpu, instruction); 7713 7714 return emulator_write_emulated(ctxt, rip, instruction, 3, 7715 &ctxt->exception); 7716 } 7717 7718 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 7719 { 7720 return vcpu->run->request_interrupt_window && 7721 likely(!pic_in_kernel(vcpu->kvm)); 7722 } 7723 7724 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 7725 { 7726 struct kvm_run *kvm_run = vcpu->run; 7727 7728 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; 7729 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0; 7730 kvm_run->cr8 = kvm_get_cr8(vcpu); 7731 kvm_run->apic_base = kvm_get_apic_base(vcpu); 7732 kvm_run->ready_for_interrupt_injection = 7733 pic_in_kernel(vcpu->kvm) || 7734 kvm_vcpu_ready_for_interrupt_injection(vcpu); 7735 } 7736 7737 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 7738 { 7739 int max_irr, tpr; 7740 7741 if (!kvm_x86_ops.update_cr8_intercept) 7742 return; 7743 7744 if (!lapic_in_kernel(vcpu)) 7745 return; 7746 7747 if (vcpu->arch.apicv_active) 7748 return; 7749 7750 if (!vcpu->arch.apic->vapic_addr) 7751 max_irr = kvm_lapic_find_highest_irr(vcpu); 7752 else 7753 max_irr = -1; 7754 7755 if (max_irr != -1) 7756 max_irr >>= 4; 7757 7758 tpr = kvm_lapic_get_cr8(vcpu); 7759 7760 kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr); 7761 } 7762 7763 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit) 7764 { 7765 int r; 7766 bool can_inject = true; 7767 7768 /* try to reinject previous events if any */ 7769 7770 if (vcpu->arch.exception.injected) { 7771 kvm_x86_ops.queue_exception(vcpu); 7772 can_inject = false; 7773 } 7774 /* 7775 * Do not inject an NMI or interrupt if there is a pending 7776 * exception. Exceptions and interrupts are recognized at 7777 * instruction boundaries, i.e. the start of an instruction. 7778 * Trap-like exceptions, e.g. #DB, have higher priority than 7779 * NMIs and interrupts, i.e. traps are recognized before an 7780 * NMI/interrupt that's pending on the same instruction. 7781 * Fault-like exceptions, e.g. #GP and #PF, are the lowest 7782 * priority, but are only generated (pended) during instruction 7783 * execution, i.e. a pending fault-like exception means the 7784 * fault occurred on the *previous* instruction and must be 7785 * serviced prior to recognizing any new events in order to 7786 * fully complete the previous instruction. 7787 */ 7788 else if (!vcpu->arch.exception.pending) { 7789 if (vcpu->arch.nmi_injected) { 7790 kvm_x86_ops.set_nmi(vcpu); 7791 can_inject = false; 7792 } else if (vcpu->arch.interrupt.injected) { 7793 kvm_x86_ops.set_irq(vcpu); 7794 can_inject = false; 7795 } 7796 } 7797 7798 WARN_ON_ONCE(vcpu->arch.exception.injected && 7799 vcpu->arch.exception.pending); 7800 7801 /* 7802 * Call check_nested_events() even if we reinjected a previous event 7803 * in order for caller to determine if it should require immediate-exit 7804 * from L2 to L1 due to pending L1 events which require exit 7805 * from L2 to L1. 7806 */ 7807 if (is_guest_mode(vcpu)) { 7808 r = kvm_x86_ops.nested_ops->check_events(vcpu); 7809 if (r < 0) 7810 goto busy; 7811 } 7812 7813 /* try to inject new event if pending */ 7814 if (vcpu->arch.exception.pending) { 7815 trace_kvm_inj_exception(vcpu->arch.exception.nr, 7816 vcpu->arch.exception.has_error_code, 7817 vcpu->arch.exception.error_code); 7818 7819 vcpu->arch.exception.pending = false; 7820 vcpu->arch.exception.injected = true; 7821 7822 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT) 7823 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 7824 X86_EFLAGS_RF); 7825 7826 if (vcpu->arch.exception.nr == DB_VECTOR) { 7827 kvm_deliver_exception_payload(vcpu); 7828 if (vcpu->arch.dr7 & DR7_GD) { 7829 vcpu->arch.dr7 &= ~DR7_GD; 7830 kvm_update_dr7(vcpu); 7831 } 7832 } 7833 7834 kvm_x86_ops.queue_exception(vcpu); 7835 can_inject = false; 7836 } 7837 7838 /* 7839 * Finally, inject interrupt events. If an event cannot be injected 7840 * due to architectural conditions (e.g. IF=0) a window-open exit 7841 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 7842 * and can architecturally be injected, but we cannot do it right now: 7843 * an interrupt could have arrived just now and we have to inject it 7844 * as a vmexit, or there could already an event in the queue, which is 7845 * indicated by can_inject. In that case we request an immediate exit 7846 * in order to make progress and get back here for another iteration. 7847 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 7848 */ 7849 if (vcpu->arch.smi_pending) { 7850 r = can_inject ? kvm_x86_ops.smi_allowed(vcpu, true) : -EBUSY; 7851 if (r < 0) 7852 goto busy; 7853 if (r) { 7854 vcpu->arch.smi_pending = false; 7855 ++vcpu->arch.smi_count; 7856 enter_smm(vcpu); 7857 can_inject = false; 7858 } else 7859 kvm_x86_ops.enable_smi_window(vcpu); 7860 } 7861 7862 if (vcpu->arch.nmi_pending) { 7863 r = can_inject ? kvm_x86_ops.nmi_allowed(vcpu, true) : -EBUSY; 7864 if (r < 0) 7865 goto busy; 7866 if (r) { 7867 --vcpu->arch.nmi_pending; 7868 vcpu->arch.nmi_injected = true; 7869 kvm_x86_ops.set_nmi(vcpu); 7870 can_inject = false; 7871 WARN_ON(kvm_x86_ops.nmi_allowed(vcpu, true) < 0); 7872 } 7873 if (vcpu->arch.nmi_pending) 7874 kvm_x86_ops.enable_nmi_window(vcpu); 7875 } 7876 7877 if (kvm_cpu_has_injectable_intr(vcpu)) { 7878 r = can_inject ? kvm_x86_ops.interrupt_allowed(vcpu, true) : -EBUSY; 7879 if (r < 0) 7880 goto busy; 7881 if (r) { 7882 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false); 7883 kvm_x86_ops.set_irq(vcpu); 7884 WARN_ON(kvm_x86_ops.interrupt_allowed(vcpu, true) < 0); 7885 } 7886 if (kvm_cpu_has_injectable_intr(vcpu)) 7887 kvm_x86_ops.enable_irq_window(vcpu); 7888 } 7889 7890 if (is_guest_mode(vcpu) && 7891 kvm_x86_ops.nested_ops->hv_timer_pending && 7892 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu)) 7893 *req_immediate_exit = true; 7894 7895 WARN_ON(vcpu->arch.exception.pending); 7896 return; 7897 7898 busy: 7899 *req_immediate_exit = true; 7900 return; 7901 } 7902 7903 static void process_nmi(struct kvm_vcpu *vcpu) 7904 { 7905 unsigned limit = 2; 7906 7907 /* 7908 * x86 is limited to one NMI running, and one NMI pending after it. 7909 * If an NMI is already in progress, limit further NMIs to just one. 7910 * Otherwise, allow two (and we'll inject the first one immediately). 7911 */ 7912 if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) 7913 limit = 1; 7914 7915 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 7916 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 7917 kvm_make_request(KVM_REQ_EVENT, vcpu); 7918 } 7919 7920 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg) 7921 { 7922 u32 flags = 0; 7923 flags |= seg->g << 23; 7924 flags |= seg->db << 22; 7925 flags |= seg->l << 21; 7926 flags |= seg->avl << 20; 7927 flags |= seg->present << 15; 7928 flags |= seg->dpl << 13; 7929 flags |= seg->s << 12; 7930 flags |= seg->type << 8; 7931 return flags; 7932 } 7933 7934 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n) 7935 { 7936 struct kvm_segment seg; 7937 int offset; 7938 7939 kvm_get_segment(vcpu, &seg, n); 7940 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector); 7941 7942 if (n < 3) 7943 offset = 0x7f84 + n * 12; 7944 else 7945 offset = 0x7f2c + (n - 3) * 12; 7946 7947 put_smstate(u32, buf, offset + 8, seg.base); 7948 put_smstate(u32, buf, offset + 4, seg.limit); 7949 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg)); 7950 } 7951 7952 #ifdef CONFIG_X86_64 7953 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n) 7954 { 7955 struct kvm_segment seg; 7956 int offset; 7957 u16 flags; 7958 7959 kvm_get_segment(vcpu, &seg, n); 7960 offset = 0x7e00 + n * 16; 7961 7962 flags = enter_smm_get_segment_flags(&seg) >> 8; 7963 put_smstate(u16, buf, offset, seg.selector); 7964 put_smstate(u16, buf, offset + 2, flags); 7965 put_smstate(u32, buf, offset + 4, seg.limit); 7966 put_smstate(u64, buf, offset + 8, seg.base); 7967 } 7968 #endif 7969 7970 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf) 7971 { 7972 struct desc_ptr dt; 7973 struct kvm_segment seg; 7974 unsigned long val; 7975 int i; 7976 7977 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu)); 7978 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu)); 7979 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu)); 7980 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu)); 7981 7982 for (i = 0; i < 8; i++) 7983 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i)); 7984 7985 kvm_get_dr(vcpu, 6, &val); 7986 put_smstate(u32, buf, 0x7fcc, (u32)val); 7987 kvm_get_dr(vcpu, 7, &val); 7988 put_smstate(u32, buf, 0x7fc8, (u32)val); 7989 7990 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 7991 put_smstate(u32, buf, 0x7fc4, seg.selector); 7992 put_smstate(u32, buf, 0x7f64, seg.base); 7993 put_smstate(u32, buf, 0x7f60, seg.limit); 7994 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg)); 7995 7996 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 7997 put_smstate(u32, buf, 0x7fc0, seg.selector); 7998 put_smstate(u32, buf, 0x7f80, seg.base); 7999 put_smstate(u32, buf, 0x7f7c, seg.limit); 8000 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg)); 8001 8002 kvm_x86_ops.get_gdt(vcpu, &dt); 8003 put_smstate(u32, buf, 0x7f74, dt.address); 8004 put_smstate(u32, buf, 0x7f70, dt.size); 8005 8006 kvm_x86_ops.get_idt(vcpu, &dt); 8007 put_smstate(u32, buf, 0x7f58, dt.address); 8008 put_smstate(u32, buf, 0x7f54, dt.size); 8009 8010 for (i = 0; i < 6; i++) 8011 enter_smm_save_seg_32(vcpu, buf, i); 8012 8013 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu)); 8014 8015 /* revision id */ 8016 put_smstate(u32, buf, 0x7efc, 0x00020000); 8017 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase); 8018 } 8019 8020 #ifdef CONFIG_X86_64 8021 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf) 8022 { 8023 struct desc_ptr dt; 8024 struct kvm_segment seg; 8025 unsigned long val; 8026 int i; 8027 8028 for (i = 0; i < 16; i++) 8029 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i)); 8030 8031 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu)); 8032 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu)); 8033 8034 kvm_get_dr(vcpu, 6, &val); 8035 put_smstate(u64, buf, 0x7f68, val); 8036 kvm_get_dr(vcpu, 7, &val); 8037 put_smstate(u64, buf, 0x7f60, val); 8038 8039 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu)); 8040 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu)); 8041 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu)); 8042 8043 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase); 8044 8045 /* revision id */ 8046 put_smstate(u32, buf, 0x7efc, 0x00020064); 8047 8048 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer); 8049 8050 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 8051 put_smstate(u16, buf, 0x7e90, seg.selector); 8052 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8); 8053 put_smstate(u32, buf, 0x7e94, seg.limit); 8054 put_smstate(u64, buf, 0x7e98, seg.base); 8055 8056 kvm_x86_ops.get_idt(vcpu, &dt); 8057 put_smstate(u32, buf, 0x7e84, dt.size); 8058 put_smstate(u64, buf, 0x7e88, dt.address); 8059 8060 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 8061 put_smstate(u16, buf, 0x7e70, seg.selector); 8062 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8); 8063 put_smstate(u32, buf, 0x7e74, seg.limit); 8064 put_smstate(u64, buf, 0x7e78, seg.base); 8065 8066 kvm_x86_ops.get_gdt(vcpu, &dt); 8067 put_smstate(u32, buf, 0x7e64, dt.size); 8068 put_smstate(u64, buf, 0x7e68, dt.address); 8069 8070 for (i = 0; i < 6; i++) 8071 enter_smm_save_seg_64(vcpu, buf, i); 8072 } 8073 #endif 8074 8075 static void enter_smm(struct kvm_vcpu *vcpu) 8076 { 8077 struct kvm_segment cs, ds; 8078 struct desc_ptr dt; 8079 char buf[512]; 8080 u32 cr0; 8081 8082 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true); 8083 memset(buf, 0, 512); 8084 #ifdef CONFIG_X86_64 8085 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 8086 enter_smm_save_state_64(vcpu, buf); 8087 else 8088 #endif 8089 enter_smm_save_state_32(vcpu, buf); 8090 8091 /* 8092 * Give pre_enter_smm() a chance to make ISA-specific changes to the 8093 * vCPU state (e.g. leave guest mode) after we've saved the state into 8094 * the SMM state-save area. 8095 */ 8096 kvm_x86_ops.pre_enter_smm(vcpu, buf); 8097 8098 vcpu->arch.hflags |= HF_SMM_MASK; 8099 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf)); 8100 8101 if (kvm_x86_ops.get_nmi_mask(vcpu)) 8102 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 8103 else 8104 kvm_x86_ops.set_nmi_mask(vcpu, true); 8105 8106 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 8107 kvm_rip_write(vcpu, 0x8000); 8108 8109 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG); 8110 kvm_x86_ops.set_cr0(vcpu, cr0); 8111 vcpu->arch.cr0 = cr0; 8112 8113 kvm_x86_ops.set_cr4(vcpu, 0); 8114 8115 /* Undocumented: IDT limit is set to zero on entry to SMM. */ 8116 dt.address = dt.size = 0; 8117 kvm_x86_ops.set_idt(vcpu, &dt); 8118 8119 __kvm_set_dr(vcpu, 7, DR7_FIXED_1); 8120 8121 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff; 8122 cs.base = vcpu->arch.smbase; 8123 8124 ds.selector = 0; 8125 ds.base = 0; 8126 8127 cs.limit = ds.limit = 0xffffffff; 8128 cs.type = ds.type = 0x3; 8129 cs.dpl = ds.dpl = 0; 8130 cs.db = ds.db = 0; 8131 cs.s = ds.s = 1; 8132 cs.l = ds.l = 0; 8133 cs.g = ds.g = 1; 8134 cs.avl = ds.avl = 0; 8135 cs.present = ds.present = 1; 8136 cs.unusable = ds.unusable = 0; 8137 cs.padding = ds.padding = 0; 8138 8139 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 8140 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS); 8141 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES); 8142 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS); 8143 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS); 8144 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS); 8145 8146 #ifdef CONFIG_X86_64 8147 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 8148 kvm_x86_ops.set_efer(vcpu, 0); 8149 #endif 8150 8151 kvm_update_cpuid(vcpu); 8152 kvm_mmu_reset_context(vcpu); 8153 } 8154 8155 static void process_smi(struct kvm_vcpu *vcpu) 8156 { 8157 vcpu->arch.smi_pending = true; 8158 kvm_make_request(KVM_REQ_EVENT, vcpu); 8159 } 8160 8161 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 8162 unsigned long *vcpu_bitmap) 8163 { 8164 cpumask_var_t cpus; 8165 8166 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 8167 8168 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, 8169 NULL, vcpu_bitmap, cpus); 8170 8171 free_cpumask_var(cpus); 8172 } 8173 8174 void kvm_make_scan_ioapic_request(struct kvm *kvm) 8175 { 8176 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 8177 } 8178 8179 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 8180 { 8181 if (!lapic_in_kernel(vcpu)) 8182 return; 8183 8184 vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm); 8185 kvm_apic_update_apicv(vcpu); 8186 kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu); 8187 } 8188 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv); 8189 8190 /* 8191 * NOTE: Do not hold any lock prior to calling this. 8192 * 8193 * In particular, kvm_request_apicv_update() expects kvm->srcu not to be 8194 * locked, because it calls __x86_set_memory_region() which does 8195 * synchronize_srcu(&kvm->srcu). 8196 */ 8197 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit) 8198 { 8199 struct kvm_vcpu *except; 8200 unsigned long old, new, expected; 8201 8202 if (!kvm_x86_ops.check_apicv_inhibit_reasons || 8203 !kvm_x86_ops.check_apicv_inhibit_reasons(bit)) 8204 return; 8205 8206 old = READ_ONCE(kvm->arch.apicv_inhibit_reasons); 8207 do { 8208 expected = new = old; 8209 if (activate) 8210 __clear_bit(bit, &new); 8211 else 8212 __set_bit(bit, &new); 8213 if (new == old) 8214 break; 8215 old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new); 8216 } while (old != expected); 8217 8218 if (!!old == !!new) 8219 return; 8220 8221 trace_kvm_apicv_update_request(activate, bit); 8222 if (kvm_x86_ops.pre_update_apicv_exec_ctrl) 8223 kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate); 8224 8225 /* 8226 * Sending request to update APICV for all other vcpus, 8227 * while update the calling vcpu immediately instead of 8228 * waiting for another #VMEXIT to handle the request. 8229 */ 8230 except = kvm_get_running_vcpu(); 8231 kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE, 8232 except); 8233 if (except) 8234 kvm_vcpu_update_apicv(except); 8235 } 8236 EXPORT_SYMBOL_GPL(kvm_request_apicv_update); 8237 8238 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 8239 { 8240 if (!kvm_apic_present(vcpu)) 8241 return; 8242 8243 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 8244 8245 if (irqchip_split(vcpu->kvm)) 8246 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 8247 else { 8248 if (vcpu->arch.apicv_active) 8249 kvm_x86_ops.sync_pir_to_irr(vcpu); 8250 if (ioapic_in_kernel(vcpu->kvm)) 8251 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 8252 } 8253 8254 if (is_guest_mode(vcpu)) 8255 vcpu->arch.load_eoi_exitmap_pending = true; 8256 else 8257 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 8258 } 8259 8260 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 8261 { 8262 u64 eoi_exit_bitmap[4]; 8263 8264 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 8265 return; 8266 8267 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors, 8268 vcpu_to_synic(vcpu)->vec_bitmap, 256); 8269 kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap); 8270 } 8271 8272 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 8273 unsigned long start, unsigned long end) 8274 { 8275 unsigned long apic_address; 8276 8277 /* 8278 * The physical address of apic access page is stored in the VMCS. 8279 * Update it when it becomes invalid. 8280 */ 8281 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 8282 if (start <= apic_address && apic_address < end) 8283 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 8284 } 8285 8286 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 8287 { 8288 if (!lapic_in_kernel(vcpu)) 8289 return; 8290 8291 if (!kvm_x86_ops.set_apic_access_page_addr) 8292 return; 8293 8294 kvm_x86_ops.set_apic_access_page_addr(vcpu); 8295 } 8296 8297 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 8298 { 8299 smp_send_reschedule(vcpu->cpu); 8300 } 8301 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 8302 8303 /* 8304 * Returns 1 to let vcpu_run() continue the guest execution loop without 8305 * exiting to the userspace. Otherwise, the value will be returned to the 8306 * userspace. 8307 */ 8308 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 8309 { 8310 int r; 8311 bool req_int_win = 8312 dm_request_for_irq_injection(vcpu) && 8313 kvm_cpu_accept_dm_intr(vcpu); 8314 fastpath_t exit_fastpath; 8315 8316 bool req_immediate_exit = false; 8317 8318 if (kvm_request_pending(vcpu)) { 8319 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu)) { 8320 if (unlikely(!kvm_x86_ops.nested_ops->get_vmcs12_pages(vcpu))) { 8321 r = 0; 8322 goto out; 8323 } 8324 } 8325 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) 8326 kvm_mmu_unload(vcpu); 8327 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 8328 __kvm_migrate_timers(vcpu); 8329 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 8330 kvm_gen_update_masterclock(vcpu->kvm); 8331 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 8332 kvm_gen_kvmclock_update(vcpu); 8333 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 8334 r = kvm_guest_time_update(vcpu); 8335 if (unlikely(r)) 8336 goto out; 8337 } 8338 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 8339 kvm_mmu_sync_roots(vcpu); 8340 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 8341 kvm_mmu_load_pgd(vcpu); 8342 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { 8343 kvm_vcpu_flush_tlb_all(vcpu); 8344 8345 /* Flushing all ASIDs flushes the current ASID... */ 8346 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 8347 } 8348 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 8349 kvm_vcpu_flush_tlb_current(vcpu); 8350 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu)) 8351 kvm_vcpu_flush_tlb_guest(vcpu); 8352 8353 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 8354 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 8355 r = 0; 8356 goto out; 8357 } 8358 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 8359 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 8360 vcpu->mmio_needed = 0; 8361 r = 0; 8362 goto out; 8363 } 8364 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 8365 /* Page is swapped out. Do synthetic halt */ 8366 vcpu->arch.apf.halted = true; 8367 r = 1; 8368 goto out; 8369 } 8370 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 8371 record_steal_time(vcpu); 8372 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 8373 process_smi(vcpu); 8374 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 8375 process_nmi(vcpu); 8376 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 8377 kvm_pmu_handle_event(vcpu); 8378 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 8379 kvm_pmu_deliver_pmi(vcpu); 8380 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 8381 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 8382 if (test_bit(vcpu->arch.pending_ioapic_eoi, 8383 vcpu->arch.ioapic_handled_vectors)) { 8384 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 8385 vcpu->run->eoi.vector = 8386 vcpu->arch.pending_ioapic_eoi; 8387 r = 0; 8388 goto out; 8389 } 8390 } 8391 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 8392 vcpu_scan_ioapic(vcpu); 8393 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 8394 vcpu_load_eoi_exitmap(vcpu); 8395 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 8396 kvm_vcpu_reload_apic_access_page(vcpu); 8397 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 8398 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 8399 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 8400 r = 0; 8401 goto out; 8402 } 8403 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 8404 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 8405 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 8406 r = 0; 8407 goto out; 8408 } 8409 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 8410 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 8411 vcpu->run->hyperv = vcpu->arch.hyperv.exit; 8412 r = 0; 8413 goto out; 8414 } 8415 8416 /* 8417 * KVM_REQ_HV_STIMER has to be processed after 8418 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 8419 * depend on the guest clock being up-to-date 8420 */ 8421 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 8422 kvm_hv_process_stimers(vcpu); 8423 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 8424 kvm_vcpu_update_apicv(vcpu); 8425 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 8426 kvm_check_async_pf_completion(vcpu); 8427 } 8428 8429 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { 8430 ++vcpu->stat.req_event; 8431 kvm_apic_accept_events(vcpu); 8432 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 8433 r = 1; 8434 goto out; 8435 } 8436 8437 inject_pending_event(vcpu, &req_immediate_exit); 8438 if (req_int_win) 8439 kvm_x86_ops.enable_irq_window(vcpu); 8440 8441 if (kvm_lapic_enabled(vcpu)) { 8442 update_cr8_intercept(vcpu); 8443 kvm_lapic_sync_to_vapic(vcpu); 8444 } 8445 } 8446 8447 r = kvm_mmu_reload(vcpu); 8448 if (unlikely(r)) { 8449 goto cancel_injection; 8450 } 8451 8452 preempt_disable(); 8453 8454 kvm_x86_ops.prepare_guest_switch(vcpu); 8455 8456 /* 8457 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 8458 * IPI are then delayed after guest entry, which ensures that they 8459 * result in virtual interrupt delivery. 8460 */ 8461 local_irq_disable(); 8462 vcpu->mode = IN_GUEST_MODE; 8463 8464 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 8465 8466 /* 8467 * 1) We should set ->mode before checking ->requests. Please see 8468 * the comment in kvm_vcpu_exiting_guest_mode(). 8469 * 8470 * 2) For APICv, we should set ->mode before checking PID.ON. This 8471 * pairs with the memory barrier implicit in pi_test_and_set_on 8472 * (see vmx_deliver_posted_interrupt). 8473 * 8474 * 3) This also orders the write to mode from any reads to the page 8475 * tables done while the VCPU is running. Please see the comment 8476 * in kvm_flush_remote_tlbs. 8477 */ 8478 smp_mb__after_srcu_read_unlock(); 8479 8480 /* 8481 * This handles the case where a posted interrupt was 8482 * notified with kvm_vcpu_kick. 8483 */ 8484 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active) 8485 kvm_x86_ops.sync_pir_to_irr(vcpu); 8486 8487 if (kvm_vcpu_exit_request(vcpu)) { 8488 vcpu->mode = OUTSIDE_GUEST_MODE; 8489 smp_wmb(); 8490 local_irq_enable(); 8491 preempt_enable(); 8492 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 8493 r = 1; 8494 goto cancel_injection; 8495 } 8496 8497 if (req_immediate_exit) { 8498 kvm_make_request(KVM_REQ_EVENT, vcpu); 8499 kvm_x86_ops.request_immediate_exit(vcpu); 8500 } 8501 8502 trace_kvm_entry(vcpu->vcpu_id); 8503 guest_enter_irqoff(); 8504 8505 fpregs_assert_state_consistent(); 8506 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 8507 switch_fpu_return(); 8508 8509 if (unlikely(vcpu->arch.switch_db_regs)) { 8510 set_debugreg(0, 7); 8511 set_debugreg(vcpu->arch.eff_db[0], 0); 8512 set_debugreg(vcpu->arch.eff_db[1], 1); 8513 set_debugreg(vcpu->arch.eff_db[2], 2); 8514 set_debugreg(vcpu->arch.eff_db[3], 3); 8515 set_debugreg(vcpu->arch.dr6, 6); 8516 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 8517 } 8518 8519 exit_fastpath = kvm_x86_ops.run(vcpu); 8520 8521 /* 8522 * Do this here before restoring debug registers on the host. And 8523 * since we do this before handling the vmexit, a DR access vmexit 8524 * can (a) read the correct value of the debug registers, (b) set 8525 * KVM_DEBUGREG_WONT_EXIT again. 8526 */ 8527 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 8528 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 8529 kvm_x86_ops.sync_dirty_debug_regs(vcpu); 8530 kvm_update_dr0123(vcpu); 8531 kvm_update_dr7(vcpu); 8532 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 8533 } 8534 8535 /* 8536 * If the guest has used debug registers, at least dr7 8537 * will be disabled while returning to the host. 8538 * If we don't have active breakpoints in the host, we don't 8539 * care about the messed up debug address registers. But if 8540 * we have some of them active, restore the old state. 8541 */ 8542 if (hw_breakpoint_active()) 8543 hw_breakpoint_restore(); 8544 8545 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 8546 8547 vcpu->mode = OUTSIDE_GUEST_MODE; 8548 smp_wmb(); 8549 8550 kvm_x86_ops.handle_exit_irqoff(vcpu); 8551 8552 /* 8553 * Consume any pending interrupts, including the possible source of 8554 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 8555 * An instruction is required after local_irq_enable() to fully unblock 8556 * interrupts on processors that implement an interrupt shadow, the 8557 * stat.exits increment will do nicely. 8558 */ 8559 kvm_before_interrupt(vcpu); 8560 local_irq_enable(); 8561 ++vcpu->stat.exits; 8562 local_irq_disable(); 8563 kvm_after_interrupt(vcpu); 8564 8565 guest_exit_irqoff(); 8566 if (lapic_in_kernel(vcpu)) { 8567 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta; 8568 if (delta != S64_MIN) { 8569 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta); 8570 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN; 8571 } 8572 } 8573 8574 local_irq_enable(); 8575 preempt_enable(); 8576 8577 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 8578 8579 /* 8580 * Profile KVM exit RIPs: 8581 */ 8582 if (unlikely(prof_on == KVM_PROFILING)) { 8583 unsigned long rip = kvm_rip_read(vcpu); 8584 profile_hit(KVM_PROFILING, (void *)rip); 8585 } 8586 8587 if (unlikely(vcpu->arch.tsc_always_catchup)) 8588 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 8589 8590 if (vcpu->arch.apic_attention) 8591 kvm_lapic_sync_from_vapic(vcpu); 8592 8593 r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath); 8594 return r; 8595 8596 cancel_injection: 8597 if (req_immediate_exit) 8598 kvm_make_request(KVM_REQ_EVENT, vcpu); 8599 kvm_x86_ops.cancel_injection(vcpu); 8600 if (unlikely(vcpu->arch.apic_attention)) 8601 kvm_lapic_sync_from_vapic(vcpu); 8602 out: 8603 return r; 8604 } 8605 8606 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu) 8607 { 8608 if (!kvm_arch_vcpu_runnable(vcpu) && 8609 (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) { 8610 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 8611 kvm_vcpu_block(vcpu); 8612 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 8613 8614 if (kvm_x86_ops.post_block) 8615 kvm_x86_ops.post_block(vcpu); 8616 8617 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu)) 8618 return 1; 8619 } 8620 8621 kvm_apic_accept_events(vcpu); 8622 switch(vcpu->arch.mp_state) { 8623 case KVM_MP_STATE_HALTED: 8624 vcpu->arch.pv.pv_unhalted = false; 8625 vcpu->arch.mp_state = 8626 KVM_MP_STATE_RUNNABLE; 8627 /* fall through */ 8628 case KVM_MP_STATE_RUNNABLE: 8629 vcpu->arch.apf.halted = false; 8630 break; 8631 case KVM_MP_STATE_INIT_RECEIVED: 8632 break; 8633 default: 8634 return -EINTR; 8635 } 8636 return 1; 8637 } 8638 8639 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 8640 { 8641 if (is_guest_mode(vcpu)) 8642 kvm_x86_ops.nested_ops->check_events(vcpu); 8643 8644 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 8645 !vcpu->arch.apf.halted); 8646 } 8647 8648 static int vcpu_run(struct kvm_vcpu *vcpu) 8649 { 8650 int r; 8651 struct kvm *kvm = vcpu->kvm; 8652 8653 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 8654 vcpu->arch.l1tf_flush_l1d = true; 8655 8656 for (;;) { 8657 if (kvm_vcpu_running(vcpu)) { 8658 r = vcpu_enter_guest(vcpu); 8659 } else { 8660 r = vcpu_block(kvm, vcpu); 8661 } 8662 8663 if (r <= 0) 8664 break; 8665 8666 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu); 8667 if (kvm_cpu_has_pending_timer(vcpu)) 8668 kvm_inject_pending_timer_irqs(vcpu); 8669 8670 if (dm_request_for_irq_injection(vcpu) && 8671 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 8672 r = 0; 8673 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 8674 ++vcpu->stat.request_irq_exits; 8675 break; 8676 } 8677 8678 if (signal_pending(current)) { 8679 r = -EINTR; 8680 vcpu->run->exit_reason = KVM_EXIT_INTR; 8681 ++vcpu->stat.signal_exits; 8682 break; 8683 } 8684 if (need_resched()) { 8685 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 8686 cond_resched(); 8687 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 8688 } 8689 } 8690 8691 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 8692 8693 return r; 8694 } 8695 8696 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 8697 { 8698 int r; 8699 8700 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 8701 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 8702 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 8703 return r; 8704 } 8705 8706 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 8707 { 8708 BUG_ON(!vcpu->arch.pio.count); 8709 8710 return complete_emulated_io(vcpu); 8711 } 8712 8713 /* 8714 * Implements the following, as a state machine: 8715 * 8716 * read: 8717 * for each fragment 8718 * for each mmio piece in the fragment 8719 * write gpa, len 8720 * exit 8721 * copy data 8722 * execute insn 8723 * 8724 * write: 8725 * for each fragment 8726 * for each mmio piece in the fragment 8727 * write gpa, len 8728 * copy data 8729 * exit 8730 */ 8731 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 8732 { 8733 struct kvm_run *run = vcpu->run; 8734 struct kvm_mmio_fragment *frag; 8735 unsigned len; 8736 8737 BUG_ON(!vcpu->mmio_needed); 8738 8739 /* Complete previous fragment */ 8740 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 8741 len = min(8u, frag->len); 8742 if (!vcpu->mmio_is_write) 8743 memcpy(frag->data, run->mmio.data, len); 8744 8745 if (frag->len <= 8) { 8746 /* Switch to the next fragment. */ 8747 frag++; 8748 vcpu->mmio_cur_fragment++; 8749 } else { 8750 /* Go forward to the next mmio piece. */ 8751 frag->data += len; 8752 frag->gpa += len; 8753 frag->len -= len; 8754 } 8755 8756 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 8757 vcpu->mmio_needed = 0; 8758 8759 /* FIXME: return into emulator if single-stepping. */ 8760 if (vcpu->mmio_is_write) 8761 return 1; 8762 vcpu->mmio_read_completed = 1; 8763 return complete_emulated_io(vcpu); 8764 } 8765 8766 run->exit_reason = KVM_EXIT_MMIO; 8767 run->mmio.phys_addr = frag->gpa; 8768 if (vcpu->mmio_is_write) 8769 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 8770 run->mmio.len = min(8u, frag->len); 8771 run->mmio.is_write = vcpu->mmio_is_write; 8772 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 8773 return 0; 8774 } 8775 8776 static void kvm_save_current_fpu(struct fpu *fpu) 8777 { 8778 /* 8779 * If the target FPU state is not resident in the CPU registers, just 8780 * memcpy() from current, else save CPU state directly to the target. 8781 */ 8782 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 8783 memcpy(&fpu->state, ¤t->thread.fpu.state, 8784 fpu_kernel_xstate_size); 8785 else 8786 copy_fpregs_to_fpstate(fpu); 8787 } 8788 8789 /* Swap (qemu) user FPU context for the guest FPU context. */ 8790 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 8791 { 8792 fpregs_lock(); 8793 8794 kvm_save_current_fpu(vcpu->arch.user_fpu); 8795 8796 /* PKRU is separately restored in kvm_x86_ops.run. */ 8797 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state, 8798 ~XFEATURE_MASK_PKRU); 8799 8800 fpregs_mark_activate(); 8801 fpregs_unlock(); 8802 8803 trace_kvm_fpu(1); 8804 } 8805 8806 /* When vcpu_run ends, restore user space FPU context. */ 8807 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 8808 { 8809 fpregs_lock(); 8810 8811 kvm_save_current_fpu(vcpu->arch.guest_fpu); 8812 8813 copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state); 8814 8815 fpregs_mark_activate(); 8816 fpregs_unlock(); 8817 8818 ++vcpu->stat.fpu_reload; 8819 trace_kvm_fpu(0); 8820 } 8821 8822 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 8823 { 8824 struct kvm_run *kvm_run = vcpu->run; 8825 int r; 8826 8827 vcpu_load(vcpu); 8828 kvm_sigset_activate(vcpu); 8829 kvm_load_guest_fpu(vcpu); 8830 8831 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 8832 if (kvm_run->immediate_exit) { 8833 r = -EINTR; 8834 goto out; 8835 } 8836 kvm_vcpu_block(vcpu); 8837 kvm_apic_accept_events(vcpu); 8838 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 8839 r = -EAGAIN; 8840 if (signal_pending(current)) { 8841 r = -EINTR; 8842 kvm_run->exit_reason = KVM_EXIT_INTR; 8843 ++vcpu->stat.signal_exits; 8844 } 8845 goto out; 8846 } 8847 8848 if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) { 8849 r = -EINVAL; 8850 goto out; 8851 } 8852 8853 if (kvm_run->kvm_dirty_regs) { 8854 r = sync_regs(vcpu); 8855 if (r != 0) 8856 goto out; 8857 } 8858 8859 /* re-sync apic's tpr */ 8860 if (!lapic_in_kernel(vcpu)) { 8861 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 8862 r = -EINVAL; 8863 goto out; 8864 } 8865 } 8866 8867 if (unlikely(vcpu->arch.complete_userspace_io)) { 8868 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 8869 vcpu->arch.complete_userspace_io = NULL; 8870 r = cui(vcpu); 8871 if (r <= 0) 8872 goto out; 8873 } else 8874 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); 8875 8876 if (kvm_run->immediate_exit) 8877 r = -EINTR; 8878 else 8879 r = vcpu_run(vcpu); 8880 8881 out: 8882 kvm_put_guest_fpu(vcpu); 8883 if (kvm_run->kvm_valid_regs) 8884 store_regs(vcpu); 8885 post_kvm_run_save(vcpu); 8886 kvm_sigset_deactivate(vcpu); 8887 8888 vcpu_put(vcpu); 8889 return r; 8890 } 8891 8892 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 8893 { 8894 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 8895 /* 8896 * We are here if userspace calls get_regs() in the middle of 8897 * instruction emulation. Registers state needs to be copied 8898 * back from emulation context to vcpu. Userspace shouldn't do 8899 * that usually, but some bad designed PV devices (vmware 8900 * backdoor interface) need this to work 8901 */ 8902 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 8903 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8904 } 8905 regs->rax = kvm_rax_read(vcpu); 8906 regs->rbx = kvm_rbx_read(vcpu); 8907 regs->rcx = kvm_rcx_read(vcpu); 8908 regs->rdx = kvm_rdx_read(vcpu); 8909 regs->rsi = kvm_rsi_read(vcpu); 8910 regs->rdi = kvm_rdi_read(vcpu); 8911 regs->rsp = kvm_rsp_read(vcpu); 8912 regs->rbp = kvm_rbp_read(vcpu); 8913 #ifdef CONFIG_X86_64 8914 regs->r8 = kvm_r8_read(vcpu); 8915 regs->r9 = kvm_r9_read(vcpu); 8916 regs->r10 = kvm_r10_read(vcpu); 8917 regs->r11 = kvm_r11_read(vcpu); 8918 regs->r12 = kvm_r12_read(vcpu); 8919 regs->r13 = kvm_r13_read(vcpu); 8920 regs->r14 = kvm_r14_read(vcpu); 8921 regs->r15 = kvm_r15_read(vcpu); 8922 #endif 8923 8924 regs->rip = kvm_rip_read(vcpu); 8925 regs->rflags = kvm_get_rflags(vcpu); 8926 } 8927 8928 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 8929 { 8930 vcpu_load(vcpu); 8931 __get_regs(vcpu, regs); 8932 vcpu_put(vcpu); 8933 return 0; 8934 } 8935 8936 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 8937 { 8938 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 8939 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8940 8941 kvm_rax_write(vcpu, regs->rax); 8942 kvm_rbx_write(vcpu, regs->rbx); 8943 kvm_rcx_write(vcpu, regs->rcx); 8944 kvm_rdx_write(vcpu, regs->rdx); 8945 kvm_rsi_write(vcpu, regs->rsi); 8946 kvm_rdi_write(vcpu, regs->rdi); 8947 kvm_rsp_write(vcpu, regs->rsp); 8948 kvm_rbp_write(vcpu, regs->rbp); 8949 #ifdef CONFIG_X86_64 8950 kvm_r8_write(vcpu, regs->r8); 8951 kvm_r9_write(vcpu, regs->r9); 8952 kvm_r10_write(vcpu, regs->r10); 8953 kvm_r11_write(vcpu, regs->r11); 8954 kvm_r12_write(vcpu, regs->r12); 8955 kvm_r13_write(vcpu, regs->r13); 8956 kvm_r14_write(vcpu, regs->r14); 8957 kvm_r15_write(vcpu, regs->r15); 8958 #endif 8959 8960 kvm_rip_write(vcpu, regs->rip); 8961 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 8962 8963 vcpu->arch.exception.pending = false; 8964 8965 kvm_make_request(KVM_REQ_EVENT, vcpu); 8966 } 8967 8968 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 8969 { 8970 vcpu_load(vcpu); 8971 __set_regs(vcpu, regs); 8972 vcpu_put(vcpu); 8973 return 0; 8974 } 8975 8976 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 8977 { 8978 struct kvm_segment cs; 8979 8980 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 8981 *db = cs.db; 8982 *l = cs.l; 8983 } 8984 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); 8985 8986 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 8987 { 8988 struct desc_ptr dt; 8989 8990 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 8991 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 8992 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 8993 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 8994 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 8995 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 8996 8997 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 8998 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 8999 9000 kvm_x86_ops.get_idt(vcpu, &dt); 9001 sregs->idt.limit = dt.size; 9002 sregs->idt.base = dt.address; 9003 kvm_x86_ops.get_gdt(vcpu, &dt); 9004 sregs->gdt.limit = dt.size; 9005 sregs->gdt.base = dt.address; 9006 9007 sregs->cr0 = kvm_read_cr0(vcpu); 9008 sregs->cr2 = vcpu->arch.cr2; 9009 sregs->cr3 = kvm_read_cr3(vcpu); 9010 sregs->cr4 = kvm_read_cr4(vcpu); 9011 sregs->cr8 = kvm_get_cr8(vcpu); 9012 sregs->efer = vcpu->arch.efer; 9013 sregs->apic_base = kvm_get_apic_base(vcpu); 9014 9015 memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap)); 9016 9017 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 9018 set_bit(vcpu->arch.interrupt.nr, 9019 (unsigned long *)sregs->interrupt_bitmap); 9020 } 9021 9022 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 9023 struct kvm_sregs *sregs) 9024 { 9025 vcpu_load(vcpu); 9026 __get_sregs(vcpu, sregs); 9027 vcpu_put(vcpu); 9028 return 0; 9029 } 9030 9031 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 9032 struct kvm_mp_state *mp_state) 9033 { 9034 vcpu_load(vcpu); 9035 if (kvm_mpx_supported()) 9036 kvm_load_guest_fpu(vcpu); 9037 9038 kvm_apic_accept_events(vcpu); 9039 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED && 9040 vcpu->arch.pv.pv_unhalted) 9041 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 9042 else 9043 mp_state->mp_state = vcpu->arch.mp_state; 9044 9045 if (kvm_mpx_supported()) 9046 kvm_put_guest_fpu(vcpu); 9047 vcpu_put(vcpu); 9048 return 0; 9049 } 9050 9051 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 9052 struct kvm_mp_state *mp_state) 9053 { 9054 int ret = -EINVAL; 9055 9056 vcpu_load(vcpu); 9057 9058 if (!lapic_in_kernel(vcpu) && 9059 mp_state->mp_state != KVM_MP_STATE_RUNNABLE) 9060 goto out; 9061 9062 /* 9063 * KVM_MP_STATE_INIT_RECEIVED means the processor is in 9064 * INIT state; latched init should be reported using 9065 * KVM_SET_VCPU_EVENTS, so reject it here. 9066 */ 9067 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) && 9068 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 9069 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 9070 goto out; 9071 9072 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 9073 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 9074 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 9075 } else 9076 vcpu->arch.mp_state = mp_state->mp_state; 9077 kvm_make_request(KVM_REQ_EVENT, vcpu); 9078 9079 ret = 0; 9080 out: 9081 vcpu_put(vcpu); 9082 return ret; 9083 } 9084 9085 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 9086 int reason, bool has_error_code, u32 error_code) 9087 { 9088 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9089 int ret; 9090 9091 init_emulate_ctxt(vcpu); 9092 9093 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 9094 has_error_code, error_code); 9095 if (ret) { 9096 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 9097 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 9098 vcpu->run->internal.ndata = 0; 9099 return 0; 9100 } 9101 9102 kvm_rip_write(vcpu, ctxt->eip); 9103 kvm_set_rflags(vcpu, ctxt->eflags); 9104 return 1; 9105 } 9106 EXPORT_SYMBOL_GPL(kvm_task_switch); 9107 9108 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 9109 { 9110 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 9111 /* 9112 * When EFER.LME and CR0.PG are set, the processor is in 9113 * 64-bit mode (though maybe in a 32-bit code segment). 9114 * CR4.PAE and EFER.LMA must be set. 9115 */ 9116 if (!(sregs->cr4 & X86_CR4_PAE) 9117 || !(sregs->efer & EFER_LMA)) 9118 return -EINVAL; 9119 } else { 9120 /* 9121 * Not in 64-bit mode: EFER.LMA is clear and the code 9122 * segment cannot be 64-bit. 9123 */ 9124 if (sregs->efer & EFER_LMA || sregs->cs.l) 9125 return -EINVAL; 9126 } 9127 9128 return kvm_valid_cr4(vcpu, sregs->cr4); 9129 } 9130 9131 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 9132 { 9133 struct msr_data apic_base_msr; 9134 int mmu_reset_needed = 0; 9135 int cpuid_update_needed = 0; 9136 int pending_vec, max_bits, idx; 9137 struct desc_ptr dt; 9138 int ret = -EINVAL; 9139 9140 if (kvm_valid_sregs(vcpu, sregs)) 9141 goto out; 9142 9143 apic_base_msr.data = sregs->apic_base; 9144 apic_base_msr.host_initiated = true; 9145 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 9146 goto out; 9147 9148 dt.size = sregs->idt.limit; 9149 dt.address = sregs->idt.base; 9150 kvm_x86_ops.set_idt(vcpu, &dt); 9151 dt.size = sregs->gdt.limit; 9152 dt.address = sregs->gdt.base; 9153 kvm_x86_ops.set_gdt(vcpu, &dt); 9154 9155 vcpu->arch.cr2 = sregs->cr2; 9156 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 9157 vcpu->arch.cr3 = sregs->cr3; 9158 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3); 9159 9160 kvm_set_cr8(vcpu, sregs->cr8); 9161 9162 mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 9163 kvm_x86_ops.set_efer(vcpu, sregs->efer); 9164 9165 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 9166 kvm_x86_ops.set_cr0(vcpu, sregs->cr0); 9167 vcpu->arch.cr0 = sregs->cr0; 9168 9169 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 9170 cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) & 9171 (X86_CR4_OSXSAVE | X86_CR4_PKE)); 9172 kvm_x86_ops.set_cr4(vcpu, sregs->cr4); 9173 if (cpuid_update_needed) 9174 kvm_update_cpuid(vcpu); 9175 9176 idx = srcu_read_lock(&vcpu->kvm->srcu); 9177 if (is_pae_paging(vcpu)) { 9178 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 9179 mmu_reset_needed = 1; 9180 } 9181 srcu_read_unlock(&vcpu->kvm->srcu, idx); 9182 9183 if (mmu_reset_needed) 9184 kvm_mmu_reset_context(vcpu); 9185 9186 max_bits = KVM_NR_INTERRUPTS; 9187 pending_vec = find_first_bit( 9188 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 9189 if (pending_vec < max_bits) { 9190 kvm_queue_interrupt(vcpu, pending_vec, false); 9191 pr_debug("Set back pending irq %d\n", pending_vec); 9192 } 9193 9194 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 9195 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 9196 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 9197 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 9198 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 9199 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 9200 9201 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 9202 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 9203 9204 update_cr8_intercept(vcpu); 9205 9206 /* Older userspace won't unhalt the vcpu on reset. */ 9207 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 9208 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 9209 !is_protmode(vcpu)) 9210 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 9211 9212 kvm_make_request(KVM_REQ_EVENT, vcpu); 9213 9214 ret = 0; 9215 out: 9216 return ret; 9217 } 9218 9219 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 9220 struct kvm_sregs *sregs) 9221 { 9222 int ret; 9223 9224 vcpu_load(vcpu); 9225 ret = __set_sregs(vcpu, sregs); 9226 vcpu_put(vcpu); 9227 return ret; 9228 } 9229 9230 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 9231 struct kvm_guest_debug *dbg) 9232 { 9233 unsigned long rflags; 9234 int i, r; 9235 9236 vcpu_load(vcpu); 9237 9238 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 9239 r = -EBUSY; 9240 if (vcpu->arch.exception.pending) 9241 goto out; 9242 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 9243 kvm_queue_exception(vcpu, DB_VECTOR); 9244 else 9245 kvm_queue_exception(vcpu, BP_VECTOR); 9246 } 9247 9248 /* 9249 * Read rflags as long as potentially injected trace flags are still 9250 * filtered out. 9251 */ 9252 rflags = kvm_get_rflags(vcpu); 9253 9254 vcpu->guest_debug = dbg->control; 9255 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 9256 vcpu->guest_debug = 0; 9257 9258 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 9259 for (i = 0; i < KVM_NR_DB_REGS; ++i) 9260 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 9261 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 9262 } else { 9263 for (i = 0; i < KVM_NR_DB_REGS; i++) 9264 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 9265 } 9266 kvm_update_dr7(vcpu); 9267 9268 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 9269 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + 9270 get_segment_base(vcpu, VCPU_SREG_CS); 9271 9272 /* 9273 * Trigger an rflags update that will inject or remove the trace 9274 * flags. 9275 */ 9276 kvm_set_rflags(vcpu, rflags); 9277 9278 kvm_x86_ops.update_bp_intercept(vcpu); 9279 9280 r = 0; 9281 9282 out: 9283 vcpu_put(vcpu); 9284 return r; 9285 } 9286 9287 /* 9288 * Translate a guest virtual address to a guest physical address. 9289 */ 9290 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 9291 struct kvm_translation *tr) 9292 { 9293 unsigned long vaddr = tr->linear_address; 9294 gpa_t gpa; 9295 int idx; 9296 9297 vcpu_load(vcpu); 9298 9299 idx = srcu_read_lock(&vcpu->kvm->srcu); 9300 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 9301 srcu_read_unlock(&vcpu->kvm->srcu, idx); 9302 tr->physical_address = gpa; 9303 tr->valid = gpa != UNMAPPED_GVA; 9304 tr->writeable = 1; 9305 tr->usermode = 0; 9306 9307 vcpu_put(vcpu); 9308 return 0; 9309 } 9310 9311 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 9312 { 9313 struct fxregs_state *fxsave; 9314 9315 vcpu_load(vcpu); 9316 9317 fxsave = &vcpu->arch.guest_fpu->state.fxsave; 9318 memcpy(fpu->fpr, fxsave->st_space, 128); 9319 fpu->fcw = fxsave->cwd; 9320 fpu->fsw = fxsave->swd; 9321 fpu->ftwx = fxsave->twd; 9322 fpu->last_opcode = fxsave->fop; 9323 fpu->last_ip = fxsave->rip; 9324 fpu->last_dp = fxsave->rdp; 9325 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 9326 9327 vcpu_put(vcpu); 9328 return 0; 9329 } 9330 9331 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 9332 { 9333 struct fxregs_state *fxsave; 9334 9335 vcpu_load(vcpu); 9336 9337 fxsave = &vcpu->arch.guest_fpu->state.fxsave; 9338 9339 memcpy(fxsave->st_space, fpu->fpr, 128); 9340 fxsave->cwd = fpu->fcw; 9341 fxsave->swd = fpu->fsw; 9342 fxsave->twd = fpu->ftwx; 9343 fxsave->fop = fpu->last_opcode; 9344 fxsave->rip = fpu->last_ip; 9345 fxsave->rdp = fpu->last_dp; 9346 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 9347 9348 vcpu_put(vcpu); 9349 return 0; 9350 } 9351 9352 static void store_regs(struct kvm_vcpu *vcpu) 9353 { 9354 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 9355 9356 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 9357 __get_regs(vcpu, &vcpu->run->s.regs.regs); 9358 9359 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 9360 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 9361 9362 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 9363 kvm_vcpu_ioctl_x86_get_vcpu_events( 9364 vcpu, &vcpu->run->s.regs.events); 9365 } 9366 9367 static int sync_regs(struct kvm_vcpu *vcpu) 9368 { 9369 if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS) 9370 return -EINVAL; 9371 9372 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 9373 __set_regs(vcpu, &vcpu->run->s.regs.regs); 9374 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 9375 } 9376 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 9377 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 9378 return -EINVAL; 9379 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 9380 } 9381 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 9382 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 9383 vcpu, &vcpu->run->s.regs.events)) 9384 return -EINVAL; 9385 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 9386 } 9387 9388 return 0; 9389 } 9390 9391 static void fx_init(struct kvm_vcpu *vcpu) 9392 { 9393 fpstate_init(&vcpu->arch.guest_fpu->state); 9394 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9395 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv = 9396 host_xcr0 | XSTATE_COMPACTION_ENABLED; 9397 9398 /* 9399 * Ensure guest xcr0 is valid for loading 9400 */ 9401 vcpu->arch.xcr0 = XFEATURE_MASK_FP; 9402 9403 vcpu->arch.cr0 |= X86_CR0_ET; 9404 } 9405 9406 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 9407 { 9408 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 9409 pr_warn_once("kvm: SMP vm created on host with unstable TSC; " 9410 "guest TSC will not be reliable\n"); 9411 9412 return 0; 9413 } 9414 9415 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 9416 { 9417 struct page *page; 9418 int r; 9419 9420 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 9421 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 9422 else 9423 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 9424 9425 kvm_set_tsc_khz(vcpu, max_tsc_khz); 9426 9427 r = kvm_mmu_create(vcpu); 9428 if (r < 0) 9429 return r; 9430 9431 if (irqchip_in_kernel(vcpu->kvm)) { 9432 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 9433 if (r < 0) 9434 goto fail_mmu_destroy; 9435 if (kvm_apicv_activated(vcpu->kvm)) 9436 vcpu->arch.apicv_active = true; 9437 } else 9438 static_key_slow_inc(&kvm_no_apic_vcpu); 9439 9440 r = -ENOMEM; 9441 9442 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 9443 if (!page) 9444 goto fail_free_lapic; 9445 vcpu->arch.pio_data = page_address(page); 9446 9447 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 9448 GFP_KERNEL_ACCOUNT); 9449 if (!vcpu->arch.mce_banks) 9450 goto fail_free_pio_data; 9451 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 9452 9453 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 9454 GFP_KERNEL_ACCOUNT)) 9455 goto fail_free_mce_banks; 9456 9457 if (!alloc_emulate_ctxt(vcpu)) 9458 goto free_wbinvd_dirty_mask; 9459 9460 vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache, 9461 GFP_KERNEL_ACCOUNT); 9462 if (!vcpu->arch.user_fpu) { 9463 pr_err("kvm: failed to allocate userspace's fpu\n"); 9464 goto free_emulate_ctxt; 9465 } 9466 9467 vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache, 9468 GFP_KERNEL_ACCOUNT); 9469 if (!vcpu->arch.guest_fpu) { 9470 pr_err("kvm: failed to allocate vcpu's fpu\n"); 9471 goto free_user_fpu; 9472 } 9473 fx_init(vcpu); 9474 9475 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 9476 vcpu->arch.tdp_level = kvm_x86_ops.get_tdp_level(vcpu); 9477 9478 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 9479 9480 kvm_async_pf_hash_reset(vcpu); 9481 kvm_pmu_init(vcpu); 9482 9483 vcpu->arch.pending_external_vector = -1; 9484 vcpu->arch.preempted_in_kernel = false; 9485 9486 kvm_hv_vcpu_init(vcpu); 9487 9488 r = kvm_x86_ops.vcpu_create(vcpu); 9489 if (r) 9490 goto free_guest_fpu; 9491 9492 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 9493 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 9494 kvm_vcpu_mtrr_init(vcpu); 9495 vcpu_load(vcpu); 9496 kvm_vcpu_reset(vcpu, false); 9497 kvm_init_mmu(vcpu, false); 9498 vcpu_put(vcpu); 9499 return 0; 9500 9501 free_guest_fpu: 9502 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu); 9503 free_user_fpu: 9504 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu); 9505 free_emulate_ctxt: 9506 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 9507 free_wbinvd_dirty_mask: 9508 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 9509 fail_free_mce_banks: 9510 kfree(vcpu->arch.mce_banks); 9511 fail_free_pio_data: 9512 free_page((unsigned long)vcpu->arch.pio_data); 9513 fail_free_lapic: 9514 kvm_free_lapic(vcpu); 9515 fail_mmu_destroy: 9516 kvm_mmu_destroy(vcpu); 9517 return r; 9518 } 9519 9520 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 9521 { 9522 struct msr_data msr; 9523 struct kvm *kvm = vcpu->kvm; 9524 9525 kvm_hv_vcpu_postcreate(vcpu); 9526 9527 if (mutex_lock_killable(&vcpu->mutex)) 9528 return; 9529 vcpu_load(vcpu); 9530 msr.data = 0x0; 9531 msr.index = MSR_IA32_TSC; 9532 msr.host_initiated = true; 9533 kvm_write_tsc(vcpu, &msr); 9534 vcpu_put(vcpu); 9535 9536 /* poll control enabled by default */ 9537 vcpu->arch.msr_kvm_poll_control = 1; 9538 9539 mutex_unlock(&vcpu->mutex); 9540 9541 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 9542 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 9543 KVMCLOCK_SYNC_PERIOD); 9544 } 9545 9546 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 9547 { 9548 struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache; 9549 int idx; 9550 9551 kvm_release_pfn(cache->pfn, cache->dirty, cache); 9552 9553 kvmclock_reset(vcpu); 9554 9555 kvm_x86_ops.vcpu_free(vcpu); 9556 9557 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 9558 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 9559 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu); 9560 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu); 9561 9562 kvm_hv_vcpu_uninit(vcpu); 9563 kvm_pmu_destroy(vcpu); 9564 kfree(vcpu->arch.mce_banks); 9565 kvm_free_lapic(vcpu); 9566 idx = srcu_read_lock(&vcpu->kvm->srcu); 9567 kvm_mmu_destroy(vcpu); 9568 srcu_read_unlock(&vcpu->kvm->srcu, idx); 9569 free_page((unsigned long)vcpu->arch.pio_data); 9570 if (!lapic_in_kernel(vcpu)) 9571 static_key_slow_dec(&kvm_no_apic_vcpu); 9572 } 9573 9574 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 9575 { 9576 kvm_lapic_reset(vcpu, init_event); 9577 9578 vcpu->arch.hflags = 0; 9579 9580 vcpu->arch.smi_pending = 0; 9581 vcpu->arch.smi_count = 0; 9582 atomic_set(&vcpu->arch.nmi_queued, 0); 9583 vcpu->arch.nmi_pending = 0; 9584 vcpu->arch.nmi_injected = false; 9585 kvm_clear_interrupt_queue(vcpu); 9586 kvm_clear_exception_queue(vcpu); 9587 9588 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 9589 kvm_update_dr0123(vcpu); 9590 vcpu->arch.dr6 = DR6_INIT; 9591 vcpu->arch.dr7 = DR7_FIXED_1; 9592 kvm_update_dr7(vcpu); 9593 9594 vcpu->arch.cr2 = 0; 9595 9596 kvm_make_request(KVM_REQ_EVENT, vcpu); 9597 vcpu->arch.apf.msr_en_val = 0; 9598 vcpu->arch.apf.msr_int_val = 0; 9599 vcpu->arch.st.msr_val = 0; 9600 9601 kvmclock_reset(vcpu); 9602 9603 kvm_clear_async_pf_completion_queue(vcpu); 9604 kvm_async_pf_hash_reset(vcpu); 9605 vcpu->arch.apf.halted = false; 9606 9607 if (kvm_mpx_supported()) { 9608 void *mpx_state_buffer; 9609 9610 /* 9611 * To avoid have the INIT path from kvm_apic_has_events() that be 9612 * called with loaded FPU and does not let userspace fix the state. 9613 */ 9614 if (init_event) 9615 kvm_put_guest_fpu(vcpu); 9616 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave, 9617 XFEATURE_BNDREGS); 9618 if (mpx_state_buffer) 9619 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state)); 9620 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave, 9621 XFEATURE_BNDCSR); 9622 if (mpx_state_buffer) 9623 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr)); 9624 if (init_event) 9625 kvm_load_guest_fpu(vcpu); 9626 } 9627 9628 if (!init_event) { 9629 kvm_pmu_reset(vcpu); 9630 vcpu->arch.smbase = 0x30000; 9631 9632 vcpu->arch.msr_misc_features_enables = 0; 9633 9634 vcpu->arch.xcr0 = XFEATURE_MASK_FP; 9635 } 9636 9637 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 9638 vcpu->arch.regs_avail = ~0; 9639 vcpu->arch.regs_dirty = ~0; 9640 9641 vcpu->arch.ia32_xss = 0; 9642 9643 kvm_x86_ops.vcpu_reset(vcpu, init_event); 9644 } 9645 9646 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 9647 { 9648 struct kvm_segment cs; 9649 9650 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 9651 cs.selector = vector << 8; 9652 cs.base = vector << 12; 9653 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 9654 kvm_rip_write(vcpu, 0); 9655 } 9656 9657 int kvm_arch_hardware_enable(void) 9658 { 9659 struct kvm *kvm; 9660 struct kvm_vcpu *vcpu; 9661 int i; 9662 int ret; 9663 u64 local_tsc; 9664 u64 max_tsc = 0; 9665 bool stable, backwards_tsc = false; 9666 9667 kvm_shared_msr_cpu_online(); 9668 ret = kvm_x86_ops.hardware_enable(); 9669 if (ret != 0) 9670 return ret; 9671 9672 local_tsc = rdtsc(); 9673 stable = !kvm_check_tsc_unstable(); 9674 list_for_each_entry(kvm, &vm_list, vm_list) { 9675 kvm_for_each_vcpu(i, vcpu, kvm) { 9676 if (!stable && vcpu->cpu == smp_processor_id()) 9677 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9678 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 9679 backwards_tsc = true; 9680 if (vcpu->arch.last_host_tsc > max_tsc) 9681 max_tsc = vcpu->arch.last_host_tsc; 9682 } 9683 } 9684 } 9685 9686 /* 9687 * Sometimes, even reliable TSCs go backwards. This happens on 9688 * platforms that reset TSC during suspend or hibernate actions, but 9689 * maintain synchronization. We must compensate. Fortunately, we can 9690 * detect that condition here, which happens early in CPU bringup, 9691 * before any KVM threads can be running. Unfortunately, we can't 9692 * bring the TSCs fully up to date with real time, as we aren't yet far 9693 * enough into CPU bringup that we know how much real time has actually 9694 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 9695 * variables that haven't been updated yet. 9696 * 9697 * So we simply find the maximum observed TSC above, then record the 9698 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 9699 * the adjustment will be applied. Note that we accumulate 9700 * adjustments, in case multiple suspend cycles happen before some VCPU 9701 * gets a chance to run again. In the event that no KVM threads get a 9702 * chance to run, we will miss the entire elapsed period, as we'll have 9703 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 9704 * loose cycle time. This isn't too big a deal, since the loss will be 9705 * uniform across all VCPUs (not to mention the scenario is extremely 9706 * unlikely). It is possible that a second hibernate recovery happens 9707 * much faster than a first, causing the observed TSC here to be 9708 * smaller; this would require additional padding adjustment, which is 9709 * why we set last_host_tsc to the local tsc observed here. 9710 * 9711 * N.B. - this code below runs only on platforms with reliable TSC, 9712 * as that is the only way backwards_tsc is set above. Also note 9713 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 9714 * have the same delta_cyc adjustment applied if backwards_tsc 9715 * is detected. Note further, this adjustment is only done once, 9716 * as we reset last_host_tsc on all VCPUs to stop this from being 9717 * called multiple times (one for each physical CPU bringup). 9718 * 9719 * Platforms with unreliable TSCs don't have to deal with this, they 9720 * will be compensated by the logic in vcpu_load, which sets the TSC to 9721 * catchup mode. This will catchup all VCPUs to real time, but cannot 9722 * guarantee that they stay in perfect synchronization. 9723 */ 9724 if (backwards_tsc) { 9725 u64 delta_cyc = max_tsc - local_tsc; 9726 list_for_each_entry(kvm, &vm_list, vm_list) { 9727 kvm->arch.backwards_tsc_observed = true; 9728 kvm_for_each_vcpu(i, vcpu, kvm) { 9729 vcpu->arch.tsc_offset_adjustment += delta_cyc; 9730 vcpu->arch.last_host_tsc = local_tsc; 9731 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9732 } 9733 9734 /* 9735 * We have to disable TSC offset matching.. if you were 9736 * booting a VM while issuing an S4 host suspend.... 9737 * you may have some problem. Solving this issue is 9738 * left as an exercise to the reader. 9739 */ 9740 kvm->arch.last_tsc_nsec = 0; 9741 kvm->arch.last_tsc_write = 0; 9742 } 9743 9744 } 9745 return 0; 9746 } 9747 9748 void kvm_arch_hardware_disable(void) 9749 { 9750 kvm_x86_ops.hardware_disable(); 9751 drop_user_return_notifiers(); 9752 } 9753 9754 int kvm_arch_hardware_setup(void *opaque) 9755 { 9756 struct kvm_x86_init_ops *ops = opaque; 9757 int r; 9758 9759 rdmsrl_safe(MSR_EFER, &host_efer); 9760 9761 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9762 rdmsrl(MSR_IA32_XSS, host_xss); 9763 9764 r = ops->hardware_setup(); 9765 if (r != 0) 9766 return r; 9767 9768 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 9769 9770 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 9771 supported_xss = 0; 9772 9773 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 9774 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 9775 #undef __kvm_cpu_cap_has 9776 9777 if (kvm_has_tsc_control) { 9778 /* 9779 * Make sure the user can only configure tsc_khz values that 9780 * fit into a signed integer. 9781 * A min value is not calculated because it will always 9782 * be 1 on all machines. 9783 */ 9784 u64 max = min(0x7fffffffULL, 9785 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz)); 9786 kvm_max_guest_tsc_khz = max; 9787 9788 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits; 9789 } 9790 9791 kvm_init_msr_list(); 9792 return 0; 9793 } 9794 9795 void kvm_arch_hardware_unsetup(void) 9796 { 9797 kvm_x86_ops.hardware_unsetup(); 9798 } 9799 9800 int kvm_arch_check_processor_compat(void *opaque) 9801 { 9802 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id()); 9803 struct kvm_x86_init_ops *ops = opaque; 9804 9805 WARN_ON(!irqs_disabled()); 9806 9807 if (__cr4_reserved_bits(cpu_has, c) != 9808 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 9809 return -EIO; 9810 9811 return ops->check_processor_compatibility(); 9812 } 9813 9814 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 9815 { 9816 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 9817 } 9818 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); 9819 9820 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 9821 { 9822 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 9823 } 9824 9825 struct static_key kvm_no_apic_vcpu __read_mostly; 9826 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu); 9827 9828 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 9829 { 9830 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 9831 9832 vcpu->arch.l1tf_flush_l1d = true; 9833 if (pmu->version && unlikely(pmu->event_count)) { 9834 pmu->need_cleanup = true; 9835 kvm_make_request(KVM_REQ_PMU, vcpu); 9836 } 9837 kvm_x86_ops.sched_in(vcpu, cpu); 9838 } 9839 9840 void kvm_arch_free_vm(struct kvm *kvm) 9841 { 9842 kfree(kvm->arch.hyperv.hv_pa_pg); 9843 vfree(kvm); 9844 } 9845 9846 9847 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 9848 { 9849 if (type) 9850 return -EINVAL; 9851 9852 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 9853 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 9854 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 9855 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages); 9856 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 9857 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 9858 9859 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 9860 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 9861 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 9862 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 9863 &kvm->arch.irq_sources_bitmap); 9864 9865 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 9866 mutex_init(&kvm->arch.apic_map_lock); 9867 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); 9868 9869 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 9870 pvclock_update_vm_gtod_copy(kvm); 9871 9872 kvm->arch.guest_can_read_msr_platform_info = true; 9873 9874 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 9875 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 9876 9877 kvm_hv_init_vm(kvm); 9878 kvm_page_track_init(kvm); 9879 kvm_mmu_init_vm(kvm); 9880 9881 return kvm_x86_ops.vm_init(kvm); 9882 } 9883 9884 int kvm_arch_post_init_vm(struct kvm *kvm) 9885 { 9886 return kvm_mmu_post_init_vm(kvm); 9887 } 9888 9889 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 9890 { 9891 vcpu_load(vcpu); 9892 kvm_mmu_unload(vcpu); 9893 vcpu_put(vcpu); 9894 } 9895 9896 static void kvm_free_vcpus(struct kvm *kvm) 9897 { 9898 unsigned int i; 9899 struct kvm_vcpu *vcpu; 9900 9901 /* 9902 * Unpin any mmu pages first. 9903 */ 9904 kvm_for_each_vcpu(i, vcpu, kvm) { 9905 kvm_clear_async_pf_completion_queue(vcpu); 9906 kvm_unload_vcpu_mmu(vcpu); 9907 } 9908 kvm_for_each_vcpu(i, vcpu, kvm) 9909 kvm_vcpu_destroy(vcpu); 9910 9911 mutex_lock(&kvm->lock); 9912 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 9913 kvm->vcpus[i] = NULL; 9914 9915 atomic_set(&kvm->online_vcpus, 0); 9916 mutex_unlock(&kvm->lock); 9917 } 9918 9919 void kvm_arch_sync_events(struct kvm *kvm) 9920 { 9921 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 9922 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 9923 kvm_free_pit(kvm); 9924 } 9925 9926 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size) 9927 { 9928 int i, r; 9929 unsigned long hva, uninitialized_var(old_npages); 9930 struct kvm_memslots *slots = kvm_memslots(kvm); 9931 struct kvm_memory_slot *slot; 9932 9933 /* Called with kvm->slots_lock held. */ 9934 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 9935 return -EINVAL; 9936 9937 slot = id_to_memslot(slots, id); 9938 if (size) { 9939 if (slot && slot->npages) 9940 return -EEXIST; 9941 9942 /* 9943 * MAP_SHARED to prevent internal slot pages from being moved 9944 * by fork()/COW. 9945 */ 9946 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 9947 MAP_SHARED | MAP_ANONYMOUS, 0); 9948 if (IS_ERR((void *)hva)) 9949 return PTR_ERR((void *)hva); 9950 } else { 9951 if (!slot || !slot->npages) 9952 return 0; 9953 9954 old_npages = slot->npages; 9955 hva = 0; 9956 } 9957 9958 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 9959 struct kvm_userspace_memory_region m; 9960 9961 m.slot = id | (i << 16); 9962 m.flags = 0; 9963 m.guest_phys_addr = gpa; 9964 m.userspace_addr = hva; 9965 m.memory_size = size; 9966 r = __kvm_set_memory_region(kvm, &m); 9967 if (r < 0) 9968 return r; 9969 } 9970 9971 if (!size) 9972 vm_munmap(hva, old_npages * PAGE_SIZE); 9973 9974 return 0; 9975 } 9976 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 9977 9978 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 9979 { 9980 kvm_mmu_pre_destroy_vm(kvm); 9981 } 9982 9983 void kvm_arch_destroy_vm(struct kvm *kvm) 9984 { 9985 if (current->mm == kvm->mm) { 9986 /* 9987 * Free memory regions allocated on behalf of userspace, 9988 * unless the the memory map has changed due to process exit 9989 * or fd copying. 9990 */ 9991 mutex_lock(&kvm->slots_lock); 9992 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 9993 0, 0); 9994 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 9995 0, 0); 9996 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 9997 mutex_unlock(&kvm->slots_lock); 9998 } 9999 if (kvm_x86_ops.vm_destroy) 10000 kvm_x86_ops.vm_destroy(kvm); 10001 kvm_pic_destroy(kvm); 10002 kvm_ioapic_destroy(kvm); 10003 kvm_free_vcpus(kvm); 10004 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 10005 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 10006 kvm_mmu_uninit_vm(kvm); 10007 kvm_page_track_cleanup(kvm); 10008 kvm_hv_destroy_vm(kvm); 10009 } 10010 10011 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 10012 { 10013 int i; 10014 10015 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 10016 kvfree(slot->arch.rmap[i]); 10017 slot->arch.rmap[i] = NULL; 10018 10019 if (i == 0) 10020 continue; 10021 10022 kvfree(slot->arch.lpage_info[i - 1]); 10023 slot->arch.lpage_info[i - 1] = NULL; 10024 } 10025 10026 kvm_page_track_free_memslot(slot); 10027 } 10028 10029 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot, 10030 unsigned long npages) 10031 { 10032 int i; 10033 10034 /* 10035 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 10036 * old arrays will be freed by __kvm_set_memory_region() if installing 10037 * the new memslot is successful. 10038 */ 10039 memset(&slot->arch, 0, sizeof(slot->arch)); 10040 10041 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 10042 struct kvm_lpage_info *linfo; 10043 unsigned long ugfn; 10044 int lpages; 10045 int level = i + 1; 10046 10047 lpages = gfn_to_index(slot->base_gfn + npages - 1, 10048 slot->base_gfn, level) + 1; 10049 10050 slot->arch.rmap[i] = 10051 kvcalloc(lpages, sizeof(*slot->arch.rmap[i]), 10052 GFP_KERNEL_ACCOUNT); 10053 if (!slot->arch.rmap[i]) 10054 goto out_free; 10055 if (i == 0) 10056 continue; 10057 10058 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 10059 if (!linfo) 10060 goto out_free; 10061 10062 slot->arch.lpage_info[i - 1] = linfo; 10063 10064 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 10065 linfo[0].disallow_lpage = 1; 10066 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 10067 linfo[lpages - 1].disallow_lpage = 1; 10068 ugfn = slot->userspace_addr >> PAGE_SHIFT; 10069 /* 10070 * If the gfn and userspace address are not aligned wrt each 10071 * other, disable large page support for this slot. 10072 */ 10073 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 10074 unsigned long j; 10075 10076 for (j = 0; j < lpages; ++j) 10077 linfo[j].disallow_lpage = 1; 10078 } 10079 } 10080 10081 if (kvm_page_track_create_memslot(slot, npages)) 10082 goto out_free; 10083 10084 return 0; 10085 10086 out_free: 10087 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 10088 kvfree(slot->arch.rmap[i]); 10089 slot->arch.rmap[i] = NULL; 10090 if (i == 0) 10091 continue; 10092 10093 kvfree(slot->arch.lpage_info[i - 1]); 10094 slot->arch.lpage_info[i - 1] = NULL; 10095 } 10096 return -ENOMEM; 10097 } 10098 10099 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 10100 { 10101 struct kvm_vcpu *vcpu; 10102 int i; 10103 10104 /* 10105 * memslots->generation has been incremented. 10106 * mmio generation may have reached its maximum value. 10107 */ 10108 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 10109 10110 /* Force re-initialization of steal_time cache */ 10111 kvm_for_each_vcpu(i, vcpu, kvm) 10112 kvm_vcpu_kick(vcpu); 10113 } 10114 10115 int kvm_arch_prepare_memory_region(struct kvm *kvm, 10116 struct kvm_memory_slot *memslot, 10117 const struct kvm_userspace_memory_region *mem, 10118 enum kvm_mr_change change) 10119 { 10120 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) 10121 return kvm_alloc_memslot_metadata(memslot, 10122 mem->memory_size >> PAGE_SHIFT); 10123 return 0; 10124 } 10125 10126 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 10127 struct kvm_memory_slot *old, 10128 struct kvm_memory_slot *new, 10129 enum kvm_mr_change change) 10130 { 10131 /* 10132 * Nothing to do for RO slots or CREATE/MOVE/DELETE of a slot. 10133 * See comments below. 10134 */ 10135 if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY)) 10136 return; 10137 10138 /* 10139 * Dirty logging tracks sptes in 4k granularity, meaning that large 10140 * sptes have to be split. If live migration is successful, the guest 10141 * in the source machine will be destroyed and large sptes will be 10142 * created in the destination. However, if the guest continues to run 10143 * in the source machine (for example if live migration fails), small 10144 * sptes will remain around and cause bad performance. 10145 * 10146 * Scan sptes if dirty logging has been stopped, dropping those 10147 * which can be collapsed into a single large-page spte. Later 10148 * page faults will create the large-page sptes. 10149 * 10150 * There is no need to do this in any of the following cases: 10151 * CREATE: No dirty mappings will already exist. 10152 * MOVE/DELETE: The old mappings will already have been cleaned up by 10153 * kvm_arch_flush_shadow_memslot() 10154 */ 10155 if ((old->flags & KVM_MEM_LOG_DIRTY_PAGES) && 10156 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 10157 kvm_mmu_zap_collapsible_sptes(kvm, new); 10158 10159 /* 10160 * Enable or disable dirty logging for the slot. 10161 * 10162 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of the old 10163 * slot have been zapped so no dirty logging updates are needed for 10164 * the old slot. 10165 * For KVM_MR_CREATE and KVM_MR_MOVE, once the new slot is visible 10166 * any mappings that might be created in it will consume the 10167 * properties of the new slot and do not need to be updated here. 10168 * 10169 * When PML is enabled, the kvm_x86_ops dirty logging hooks are 10170 * called to enable/disable dirty logging. 10171 * 10172 * When disabling dirty logging with PML enabled, the D-bit is set 10173 * for sptes in the slot in order to prevent unnecessary GPA 10174 * logging in the PML buffer (and potential PML buffer full VMEXIT). 10175 * This guarantees leaving PML enabled for the guest's lifetime 10176 * won't have any additional overhead from PML when the guest is 10177 * running with dirty logging disabled. 10178 * 10179 * When enabling dirty logging, large sptes are write-protected 10180 * so they can be split on first write. New large sptes cannot 10181 * be created for this slot until the end of the logging. 10182 * See the comments in fast_page_fault(). 10183 * For small sptes, nothing is done if the dirty log is in the 10184 * initial-all-set state. Otherwise, depending on whether pml 10185 * is enabled the D-bit or the W-bit will be cleared. 10186 */ 10187 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) { 10188 if (kvm_x86_ops.slot_enable_log_dirty) { 10189 kvm_x86_ops.slot_enable_log_dirty(kvm, new); 10190 } else { 10191 int level = 10192 kvm_dirty_log_manual_protect_and_init_set(kvm) ? 10193 PG_LEVEL_2M : PG_LEVEL_4K; 10194 10195 /* 10196 * If we're with initial-all-set, we don't need 10197 * to write protect any small page because 10198 * they're reported as dirty already. However 10199 * we still need to write-protect huge pages 10200 * so that the page split can happen lazily on 10201 * the first write to the huge page. 10202 */ 10203 kvm_mmu_slot_remove_write_access(kvm, new, level); 10204 } 10205 } else { 10206 if (kvm_x86_ops.slot_disable_log_dirty) 10207 kvm_x86_ops.slot_disable_log_dirty(kvm, new); 10208 } 10209 } 10210 10211 void kvm_arch_commit_memory_region(struct kvm *kvm, 10212 const struct kvm_userspace_memory_region *mem, 10213 struct kvm_memory_slot *old, 10214 const struct kvm_memory_slot *new, 10215 enum kvm_mr_change change) 10216 { 10217 if (!kvm->arch.n_requested_mmu_pages) 10218 kvm_mmu_change_mmu_pages(kvm, 10219 kvm_mmu_calculate_default_mmu_pages(kvm)); 10220 10221 /* 10222 * FIXME: const-ify all uses of struct kvm_memory_slot. 10223 */ 10224 kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change); 10225 10226 /* Free the arrays associated with the old memslot. */ 10227 if (change == KVM_MR_MOVE) 10228 kvm_arch_free_memslot(kvm, old); 10229 } 10230 10231 void kvm_arch_flush_shadow_all(struct kvm *kvm) 10232 { 10233 kvm_mmu_zap_all(kvm); 10234 } 10235 10236 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 10237 struct kvm_memory_slot *slot) 10238 { 10239 kvm_page_track_flush_slot(kvm, slot); 10240 } 10241 10242 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 10243 { 10244 return (is_guest_mode(vcpu) && 10245 kvm_x86_ops.guest_apic_has_interrupt && 10246 kvm_x86_ops.guest_apic_has_interrupt(vcpu)); 10247 } 10248 10249 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 10250 { 10251 if (!list_empty_careful(&vcpu->async_pf.done)) 10252 return true; 10253 10254 if (kvm_apic_has_events(vcpu)) 10255 return true; 10256 10257 if (vcpu->arch.pv.pv_unhalted) 10258 return true; 10259 10260 if (vcpu->arch.exception.pending) 10261 return true; 10262 10263 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 10264 (vcpu->arch.nmi_pending && 10265 kvm_x86_ops.nmi_allowed(vcpu, false))) 10266 return true; 10267 10268 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 10269 (vcpu->arch.smi_pending && 10270 kvm_x86_ops.smi_allowed(vcpu, false))) 10271 return true; 10272 10273 if (kvm_arch_interrupt_allowed(vcpu) && 10274 (kvm_cpu_has_interrupt(vcpu) || 10275 kvm_guest_apic_has_interrupt(vcpu))) 10276 return true; 10277 10278 if (kvm_hv_has_stimer_pending(vcpu)) 10279 return true; 10280 10281 if (is_guest_mode(vcpu) && 10282 kvm_x86_ops.nested_ops->hv_timer_pending && 10283 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu)) 10284 return true; 10285 10286 return false; 10287 } 10288 10289 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 10290 { 10291 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 10292 } 10293 10294 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 10295 { 10296 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 10297 return true; 10298 10299 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 10300 kvm_test_request(KVM_REQ_SMI, vcpu) || 10301 kvm_test_request(KVM_REQ_EVENT, vcpu)) 10302 return true; 10303 10304 if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu)) 10305 return true; 10306 10307 return false; 10308 } 10309 10310 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 10311 { 10312 return vcpu->arch.preempted_in_kernel; 10313 } 10314 10315 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 10316 { 10317 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 10318 } 10319 10320 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 10321 { 10322 return kvm_x86_ops.interrupt_allowed(vcpu, false); 10323 } 10324 10325 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 10326 { 10327 if (is_64_bit_mode(vcpu)) 10328 return kvm_rip_read(vcpu); 10329 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 10330 kvm_rip_read(vcpu)); 10331 } 10332 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 10333 10334 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 10335 { 10336 return kvm_get_linear_rip(vcpu) == linear_rip; 10337 } 10338 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 10339 10340 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 10341 { 10342 unsigned long rflags; 10343 10344 rflags = kvm_x86_ops.get_rflags(vcpu); 10345 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 10346 rflags &= ~X86_EFLAGS_TF; 10347 return rflags; 10348 } 10349 EXPORT_SYMBOL_GPL(kvm_get_rflags); 10350 10351 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 10352 { 10353 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 10354 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 10355 rflags |= X86_EFLAGS_TF; 10356 kvm_x86_ops.set_rflags(vcpu, rflags); 10357 } 10358 10359 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 10360 { 10361 __kvm_set_rflags(vcpu, rflags); 10362 kvm_make_request(KVM_REQ_EVENT, vcpu); 10363 } 10364 EXPORT_SYMBOL_GPL(kvm_set_rflags); 10365 10366 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 10367 { 10368 int r; 10369 10370 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) || 10371 work->wakeup_all) 10372 return; 10373 10374 r = kvm_mmu_reload(vcpu); 10375 if (unlikely(r)) 10376 return; 10377 10378 if (!vcpu->arch.mmu->direct_map && 10379 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu)) 10380 return; 10381 10382 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true); 10383 } 10384 10385 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 10386 { 10387 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 10388 10389 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 10390 } 10391 10392 static inline u32 kvm_async_pf_next_probe(u32 key) 10393 { 10394 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 10395 } 10396 10397 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 10398 { 10399 u32 key = kvm_async_pf_hash_fn(gfn); 10400 10401 while (vcpu->arch.apf.gfns[key] != ~0) 10402 key = kvm_async_pf_next_probe(key); 10403 10404 vcpu->arch.apf.gfns[key] = gfn; 10405 } 10406 10407 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 10408 { 10409 int i; 10410 u32 key = kvm_async_pf_hash_fn(gfn); 10411 10412 for (i = 0; i < ASYNC_PF_PER_VCPU && 10413 (vcpu->arch.apf.gfns[key] != gfn && 10414 vcpu->arch.apf.gfns[key] != ~0); i++) 10415 key = kvm_async_pf_next_probe(key); 10416 10417 return key; 10418 } 10419 10420 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 10421 { 10422 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 10423 } 10424 10425 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 10426 { 10427 u32 i, j, k; 10428 10429 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 10430 10431 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 10432 return; 10433 10434 while (true) { 10435 vcpu->arch.apf.gfns[i] = ~0; 10436 do { 10437 j = kvm_async_pf_next_probe(j); 10438 if (vcpu->arch.apf.gfns[j] == ~0) 10439 return; 10440 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 10441 /* 10442 * k lies cyclically in ]i,j] 10443 * | i.k.j | 10444 * |....j i.k.| or |.k..j i...| 10445 */ 10446 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 10447 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 10448 i = j; 10449 } 10450 } 10451 10452 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 10453 { 10454 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 10455 10456 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 10457 sizeof(reason)); 10458 } 10459 10460 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 10461 { 10462 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 10463 10464 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 10465 &token, offset, sizeof(token)); 10466 } 10467 10468 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 10469 { 10470 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 10471 u32 val; 10472 10473 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 10474 &val, offset, sizeof(val))) 10475 return false; 10476 10477 return !val; 10478 } 10479 10480 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 10481 { 10482 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu)) 10483 return false; 10484 10485 if (!kvm_pv_async_pf_enabled(vcpu) || 10486 (vcpu->arch.apf.send_user_only && kvm_x86_ops.get_cpl(vcpu) == 0)) 10487 return false; 10488 10489 return true; 10490 } 10491 10492 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 10493 { 10494 if (unlikely(!lapic_in_kernel(vcpu) || 10495 kvm_event_needs_reinjection(vcpu) || 10496 vcpu->arch.exception.pending)) 10497 return false; 10498 10499 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 10500 return false; 10501 10502 /* 10503 * If interrupts are off we cannot even use an artificial 10504 * halt state. 10505 */ 10506 return kvm_arch_interrupt_allowed(vcpu); 10507 } 10508 10509 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 10510 struct kvm_async_pf *work) 10511 { 10512 struct x86_exception fault; 10513 10514 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 10515 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 10516 10517 if (kvm_can_deliver_async_pf(vcpu) && 10518 !apf_put_user_notpresent(vcpu)) { 10519 fault.vector = PF_VECTOR; 10520 fault.error_code_valid = true; 10521 fault.error_code = 0; 10522 fault.nested_page_fault = false; 10523 fault.address = work->arch.token; 10524 fault.async_page_fault = true; 10525 kvm_inject_page_fault(vcpu, &fault); 10526 return true; 10527 } else { 10528 /* 10529 * It is not possible to deliver a paravirtualized asynchronous 10530 * page fault, but putting the guest in an artificial halt state 10531 * can be beneficial nevertheless: if an interrupt arrives, we 10532 * can deliver it timely and perhaps the guest will schedule 10533 * another process. When the instruction that triggered a page 10534 * fault is retried, hopefully the page will be ready in the host. 10535 */ 10536 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 10537 return false; 10538 } 10539 } 10540 10541 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 10542 struct kvm_async_pf *work) 10543 { 10544 struct kvm_lapic_irq irq = { 10545 .delivery_mode = APIC_DM_FIXED, 10546 .vector = vcpu->arch.apf.vec 10547 }; 10548 10549 if (work->wakeup_all) 10550 work->arch.token = ~0; /* broadcast wakeup */ 10551 else 10552 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 10553 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 10554 10555 if ((work->wakeup_all || work->notpresent_injected) && 10556 kvm_pv_async_pf_enabled(vcpu) && 10557 !apf_put_user_ready(vcpu, work->arch.token)) { 10558 vcpu->arch.apf.pageready_pending = true; 10559 kvm_apic_set_irq(vcpu, &irq, NULL); 10560 } 10561 10562 vcpu->arch.apf.halted = false; 10563 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 10564 } 10565 10566 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 10567 { 10568 kvm_make_request(KVM_REQ_APF_READY, vcpu); 10569 if (!vcpu->arch.apf.pageready_pending) 10570 kvm_vcpu_kick(vcpu); 10571 } 10572 10573 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 10574 { 10575 if (!kvm_pv_async_pf_enabled(vcpu)) 10576 return true; 10577 else 10578 return apf_pageready_slot_free(vcpu); 10579 } 10580 10581 void kvm_arch_start_assignment(struct kvm *kvm) 10582 { 10583 atomic_inc(&kvm->arch.assigned_device_count); 10584 } 10585 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 10586 10587 void kvm_arch_end_assignment(struct kvm *kvm) 10588 { 10589 atomic_dec(&kvm->arch.assigned_device_count); 10590 } 10591 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 10592 10593 bool kvm_arch_has_assigned_device(struct kvm *kvm) 10594 { 10595 return atomic_read(&kvm->arch.assigned_device_count); 10596 } 10597 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 10598 10599 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 10600 { 10601 atomic_inc(&kvm->arch.noncoherent_dma_count); 10602 } 10603 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 10604 10605 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 10606 { 10607 atomic_dec(&kvm->arch.noncoherent_dma_count); 10608 } 10609 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 10610 10611 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 10612 { 10613 return atomic_read(&kvm->arch.noncoherent_dma_count); 10614 } 10615 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 10616 10617 bool kvm_arch_has_irq_bypass(void) 10618 { 10619 return true; 10620 } 10621 10622 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 10623 struct irq_bypass_producer *prod) 10624 { 10625 struct kvm_kernel_irqfd *irqfd = 10626 container_of(cons, struct kvm_kernel_irqfd, consumer); 10627 10628 irqfd->producer = prod; 10629 10630 return kvm_x86_ops.update_pi_irte(irqfd->kvm, 10631 prod->irq, irqfd->gsi, 1); 10632 } 10633 10634 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 10635 struct irq_bypass_producer *prod) 10636 { 10637 int ret; 10638 struct kvm_kernel_irqfd *irqfd = 10639 container_of(cons, struct kvm_kernel_irqfd, consumer); 10640 10641 WARN_ON(irqfd->producer != prod); 10642 irqfd->producer = NULL; 10643 10644 /* 10645 * When producer of consumer is unregistered, we change back to 10646 * remapped mode, so we can re-use the current implementation 10647 * when the irq is masked/disabled or the consumer side (KVM 10648 * int this case doesn't want to receive the interrupts. 10649 */ 10650 ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0); 10651 if (ret) 10652 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 10653 " fails: %d\n", irqfd->consumer.token, ret); 10654 } 10655 10656 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 10657 uint32_t guest_irq, bool set) 10658 { 10659 return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set); 10660 } 10661 10662 bool kvm_vector_hashing_enabled(void) 10663 { 10664 return vector_hashing; 10665 } 10666 10667 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 10668 { 10669 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 10670 } 10671 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 10672 10673 u64 kvm_spec_ctrl_valid_bits(struct kvm_vcpu *vcpu) 10674 { 10675 uint64_t bits = SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD; 10676 10677 /* The STIBP bit doesn't fault even if it's not advertised */ 10678 if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) && 10679 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS)) 10680 bits &= ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP); 10681 if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL) && 10682 !boot_cpu_has(X86_FEATURE_AMD_IBRS)) 10683 bits &= ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP); 10684 10685 if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL_SSBD) && 10686 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD)) 10687 bits &= ~SPEC_CTRL_SSBD; 10688 if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) && 10689 !boot_cpu_has(X86_FEATURE_AMD_SSBD)) 10690 bits &= ~SPEC_CTRL_SSBD; 10691 10692 return bits; 10693 } 10694 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_valid_bits); 10695 10696 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 10697 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 10698 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 10699 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 10700 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 10701 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 10702 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 10703 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 10704 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 10705 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 10706 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 10707 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 10708 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 10709 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 10710 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 10711 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 10712 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 10713 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 10714 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 10715 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 10716 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 10717 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request); 10718