1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 19 #include <linux/kvm_host.h> 20 #include "irq.h" 21 #include "ioapic.h" 22 #include "mmu.h" 23 #include "i8254.h" 24 #include "tss.h" 25 #include "kvm_cache_regs.h" 26 #include "kvm_emulate.h" 27 #include "x86.h" 28 #include "cpuid.h" 29 #include "pmu.h" 30 #include "hyperv.h" 31 #include "lapic.h" 32 33 #include <linux/clocksource.h> 34 #include <linux/interrupt.h> 35 #include <linux/kvm.h> 36 #include <linux/fs.h> 37 #include <linux/vmalloc.h> 38 #include <linux/export.h> 39 #include <linux/moduleparam.h> 40 #include <linux/mman.h> 41 #include <linux/highmem.h> 42 #include <linux/iommu.h> 43 #include <linux/intel-iommu.h> 44 #include <linux/cpufreq.h> 45 #include <linux/user-return-notifier.h> 46 #include <linux/srcu.h> 47 #include <linux/slab.h> 48 #include <linux/perf_event.h> 49 #include <linux/uaccess.h> 50 #include <linux/hash.h> 51 #include <linux/pci.h> 52 #include <linux/timekeeper_internal.h> 53 #include <linux/pvclock_gtod.h> 54 #include <linux/kvm_irqfd.h> 55 #include <linux/irqbypass.h> 56 #include <linux/sched/stat.h> 57 #include <linux/sched/isolation.h> 58 #include <linux/mem_encrypt.h> 59 #include <linux/entry-kvm.h> 60 61 #include <trace/events/kvm.h> 62 63 #include <asm/debugreg.h> 64 #include <asm/msr.h> 65 #include <asm/desc.h> 66 #include <asm/mce.h> 67 #include <linux/kernel_stat.h> 68 #include <asm/fpu/internal.h> /* Ugh! */ 69 #include <asm/pvclock.h> 70 #include <asm/div64.h> 71 #include <asm/irq_remapping.h> 72 #include <asm/mshyperv.h> 73 #include <asm/hypervisor.h> 74 #include <asm/tlbflush.h> 75 #include <asm/intel_pt.h> 76 #include <asm/emulate_prefix.h> 77 #include <clocksource/hyperv_timer.h> 78 79 #define CREATE_TRACE_POINTS 80 #include "trace.h" 81 82 #define MAX_IO_MSRS 256 83 #define KVM_MAX_MCE_BANKS 32 84 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P; 85 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported); 86 87 #define emul_to_vcpu(ctxt) \ 88 ((struct kvm_vcpu *)(ctxt)->vcpu) 89 90 /* EFER defaults: 91 * - enable syscall per default because its emulated by KVM 92 * - enable LME and LMA per default on 64 bit KVM 93 */ 94 #ifdef CONFIG_X86_64 95 static 96 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 97 #else 98 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 99 #endif 100 101 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 102 103 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 104 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 105 106 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 107 static void process_nmi(struct kvm_vcpu *vcpu); 108 static void enter_smm(struct kvm_vcpu *vcpu); 109 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 110 static void store_regs(struct kvm_vcpu *vcpu); 111 static int sync_regs(struct kvm_vcpu *vcpu); 112 113 struct kvm_x86_ops kvm_x86_ops __read_mostly; 114 EXPORT_SYMBOL_GPL(kvm_x86_ops); 115 116 static bool __read_mostly ignore_msrs = 0; 117 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 118 119 static bool __read_mostly report_ignored_msrs = true; 120 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 121 122 unsigned int min_timer_period_us = 200; 123 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 124 125 static bool __read_mostly kvmclock_periodic_sync = true; 126 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 127 128 bool __read_mostly kvm_has_tsc_control; 129 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 130 u32 __read_mostly kvm_max_guest_tsc_khz; 131 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 132 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits; 133 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits); 134 u64 __read_mostly kvm_max_tsc_scaling_ratio; 135 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio); 136 u64 __read_mostly kvm_default_tsc_scaling_ratio; 137 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio); 138 139 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 140 static u32 __read_mostly tsc_tolerance_ppm = 250; 141 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 142 143 /* 144 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 145 * adaptive tuning starting from default advancment of 1000ns. '0' disables 146 * advancement entirely. Any other value is used as-is and disables adaptive 147 * tuning, i.e. allows priveleged userspace to set an exact advancement time. 148 */ 149 static int __read_mostly lapic_timer_advance_ns = -1; 150 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 151 152 static bool __read_mostly vector_hashing = true; 153 module_param(vector_hashing, bool, S_IRUGO); 154 155 bool __read_mostly enable_vmware_backdoor = false; 156 module_param(enable_vmware_backdoor, bool, S_IRUGO); 157 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 158 159 static bool __read_mostly force_emulation_prefix = false; 160 module_param(force_emulation_prefix, bool, S_IRUGO); 161 162 int __read_mostly pi_inject_timer = -1; 163 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 164 165 /* 166 * Restoring the host value for MSRs that are only consumed when running in 167 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 168 * returns to userspace, i.e. the kernel can run with the guest's value. 169 */ 170 #define KVM_MAX_NR_USER_RETURN_MSRS 16 171 172 struct kvm_user_return_msrs_global { 173 int nr; 174 u32 msrs[KVM_MAX_NR_USER_RETURN_MSRS]; 175 }; 176 177 struct kvm_user_return_msrs { 178 struct user_return_notifier urn; 179 bool registered; 180 struct kvm_user_return_msr_values { 181 u64 host; 182 u64 curr; 183 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 184 }; 185 186 static struct kvm_user_return_msrs_global __read_mostly user_return_msrs_global; 187 static struct kvm_user_return_msrs __percpu *user_return_msrs; 188 189 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 190 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 191 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 192 | XFEATURE_MASK_PKRU) 193 194 u64 __read_mostly host_efer; 195 EXPORT_SYMBOL_GPL(host_efer); 196 197 bool __read_mostly allow_smaller_maxphyaddr = 0; 198 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 199 200 static u64 __read_mostly host_xss; 201 u64 __read_mostly supported_xss; 202 EXPORT_SYMBOL_GPL(supported_xss); 203 204 struct kvm_stats_debugfs_item debugfs_entries[] = { 205 VCPU_STAT("pf_fixed", pf_fixed), 206 VCPU_STAT("pf_guest", pf_guest), 207 VCPU_STAT("tlb_flush", tlb_flush), 208 VCPU_STAT("invlpg", invlpg), 209 VCPU_STAT("exits", exits), 210 VCPU_STAT("io_exits", io_exits), 211 VCPU_STAT("mmio_exits", mmio_exits), 212 VCPU_STAT("signal_exits", signal_exits), 213 VCPU_STAT("irq_window", irq_window_exits), 214 VCPU_STAT("nmi_window", nmi_window_exits), 215 VCPU_STAT("halt_exits", halt_exits), 216 VCPU_STAT("halt_successful_poll", halt_successful_poll), 217 VCPU_STAT("halt_attempted_poll", halt_attempted_poll), 218 VCPU_STAT("halt_poll_invalid", halt_poll_invalid), 219 VCPU_STAT("halt_wakeup", halt_wakeup), 220 VCPU_STAT("hypercalls", hypercalls), 221 VCPU_STAT("request_irq", request_irq_exits), 222 VCPU_STAT("irq_exits", irq_exits), 223 VCPU_STAT("host_state_reload", host_state_reload), 224 VCPU_STAT("fpu_reload", fpu_reload), 225 VCPU_STAT("insn_emulation", insn_emulation), 226 VCPU_STAT("insn_emulation_fail", insn_emulation_fail), 227 VCPU_STAT("irq_injections", irq_injections), 228 VCPU_STAT("nmi_injections", nmi_injections), 229 VCPU_STAT("req_event", req_event), 230 VCPU_STAT("l1d_flush", l1d_flush), 231 VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns), 232 VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns), 233 VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped), 234 VM_STAT("mmu_pte_write", mmu_pte_write), 235 VM_STAT("mmu_pte_updated", mmu_pte_updated), 236 VM_STAT("mmu_pde_zapped", mmu_pde_zapped), 237 VM_STAT("mmu_flooded", mmu_flooded), 238 VM_STAT("mmu_recycled", mmu_recycled), 239 VM_STAT("mmu_cache_miss", mmu_cache_miss), 240 VM_STAT("mmu_unsync", mmu_unsync), 241 VM_STAT("remote_tlb_flush", remote_tlb_flush), 242 VM_STAT("largepages", lpages, .mode = 0444), 243 VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444), 244 VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions), 245 { NULL } 246 }; 247 248 u64 __read_mostly host_xcr0; 249 u64 __read_mostly supported_xcr0; 250 EXPORT_SYMBOL_GPL(supported_xcr0); 251 252 static struct kmem_cache *x86_fpu_cache; 253 254 static struct kmem_cache *x86_emulator_cache; 255 256 /* 257 * When called, it means the previous get/set msr reached an invalid msr. 258 * Return true if we want to ignore/silent this failed msr access. 259 */ 260 static bool kvm_msr_ignored_check(struct kvm_vcpu *vcpu, u32 msr, 261 u64 data, bool write) 262 { 263 const char *op = write ? "wrmsr" : "rdmsr"; 264 265 if (ignore_msrs) { 266 if (report_ignored_msrs) 267 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 268 op, msr, data); 269 /* Mask the error */ 270 return true; 271 } else { 272 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 273 op, msr, data); 274 return false; 275 } 276 } 277 278 static struct kmem_cache *kvm_alloc_emulator_cache(void) 279 { 280 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 281 unsigned int size = sizeof(struct x86_emulate_ctxt); 282 283 return kmem_cache_create_usercopy("x86_emulator", size, 284 __alignof__(struct x86_emulate_ctxt), 285 SLAB_ACCOUNT, useroffset, 286 size - useroffset, NULL); 287 } 288 289 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 290 291 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 292 { 293 int i; 294 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 295 vcpu->arch.apf.gfns[i] = ~0; 296 } 297 298 static void kvm_on_user_return(struct user_return_notifier *urn) 299 { 300 unsigned slot; 301 struct kvm_user_return_msrs *msrs 302 = container_of(urn, struct kvm_user_return_msrs, urn); 303 struct kvm_user_return_msr_values *values; 304 unsigned long flags; 305 306 /* 307 * Disabling irqs at this point since the following code could be 308 * interrupted and executed through kvm_arch_hardware_disable() 309 */ 310 local_irq_save(flags); 311 if (msrs->registered) { 312 msrs->registered = false; 313 user_return_notifier_unregister(urn); 314 } 315 local_irq_restore(flags); 316 for (slot = 0; slot < user_return_msrs_global.nr; ++slot) { 317 values = &msrs->values[slot]; 318 if (values->host != values->curr) { 319 wrmsrl(user_return_msrs_global.msrs[slot], values->host); 320 values->curr = values->host; 321 } 322 } 323 } 324 325 void kvm_define_user_return_msr(unsigned slot, u32 msr) 326 { 327 BUG_ON(slot >= KVM_MAX_NR_USER_RETURN_MSRS); 328 user_return_msrs_global.msrs[slot] = msr; 329 if (slot >= user_return_msrs_global.nr) 330 user_return_msrs_global.nr = slot + 1; 331 } 332 EXPORT_SYMBOL_GPL(kvm_define_user_return_msr); 333 334 static void kvm_user_return_msr_cpu_online(void) 335 { 336 unsigned int cpu = smp_processor_id(); 337 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 338 u64 value; 339 int i; 340 341 for (i = 0; i < user_return_msrs_global.nr; ++i) { 342 rdmsrl_safe(user_return_msrs_global.msrs[i], &value); 343 msrs->values[i].host = value; 344 msrs->values[i].curr = value; 345 } 346 } 347 348 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 349 { 350 unsigned int cpu = smp_processor_id(); 351 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 352 int err; 353 354 value = (value & mask) | (msrs->values[slot].host & ~mask); 355 if (value == msrs->values[slot].curr) 356 return 0; 357 err = wrmsrl_safe(user_return_msrs_global.msrs[slot], value); 358 if (err) 359 return 1; 360 361 msrs->values[slot].curr = value; 362 if (!msrs->registered) { 363 msrs->urn.on_user_return = kvm_on_user_return; 364 user_return_notifier_register(&msrs->urn); 365 msrs->registered = true; 366 } 367 return 0; 368 } 369 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 370 371 static void drop_user_return_notifiers(void) 372 { 373 unsigned int cpu = smp_processor_id(); 374 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 375 376 if (msrs->registered) 377 kvm_on_user_return(&msrs->urn); 378 } 379 380 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 381 { 382 return vcpu->arch.apic_base; 383 } 384 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 385 386 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 387 { 388 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 389 } 390 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 391 392 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 393 { 394 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 395 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 396 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff | 397 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 398 399 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 400 return 1; 401 if (!msr_info->host_initiated) { 402 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 403 return 1; 404 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 405 return 1; 406 } 407 408 kvm_lapic_set_base(vcpu, msr_info->data); 409 kvm_recalculate_apic_map(vcpu->kvm); 410 return 0; 411 } 412 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 413 414 asmlinkage __visible noinstr void kvm_spurious_fault(void) 415 { 416 /* Fault while not rebooting. We want the trace. */ 417 BUG_ON(!kvm_rebooting); 418 } 419 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 420 421 #define EXCPT_BENIGN 0 422 #define EXCPT_CONTRIBUTORY 1 423 #define EXCPT_PF 2 424 425 static int exception_class(int vector) 426 { 427 switch (vector) { 428 case PF_VECTOR: 429 return EXCPT_PF; 430 case DE_VECTOR: 431 case TS_VECTOR: 432 case NP_VECTOR: 433 case SS_VECTOR: 434 case GP_VECTOR: 435 return EXCPT_CONTRIBUTORY; 436 default: 437 break; 438 } 439 return EXCPT_BENIGN; 440 } 441 442 #define EXCPT_FAULT 0 443 #define EXCPT_TRAP 1 444 #define EXCPT_ABORT 2 445 #define EXCPT_INTERRUPT 3 446 447 static int exception_type(int vector) 448 { 449 unsigned int mask; 450 451 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 452 return EXCPT_INTERRUPT; 453 454 mask = 1 << vector; 455 456 /* #DB is trap, as instruction watchpoints are handled elsewhere */ 457 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR))) 458 return EXCPT_TRAP; 459 460 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 461 return EXCPT_ABORT; 462 463 /* Reserved exceptions will result in fault */ 464 return EXCPT_FAULT; 465 } 466 467 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu) 468 { 469 unsigned nr = vcpu->arch.exception.nr; 470 bool has_payload = vcpu->arch.exception.has_payload; 471 unsigned long payload = vcpu->arch.exception.payload; 472 473 if (!has_payload) 474 return; 475 476 switch (nr) { 477 case DB_VECTOR: 478 /* 479 * "Certain debug exceptions may clear bit 0-3. The 480 * remaining contents of the DR6 register are never 481 * cleared by the processor". 482 */ 483 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 484 /* 485 * DR6.RTM is set by all #DB exceptions that don't clear it. 486 */ 487 vcpu->arch.dr6 |= DR6_RTM; 488 vcpu->arch.dr6 |= payload; 489 /* 490 * Bit 16 should be set in the payload whenever the #DB 491 * exception should clear DR6.RTM. This makes the payload 492 * compatible with the pending debug exceptions under VMX. 493 * Though not currently documented in the SDM, this also 494 * makes the payload compatible with the exit qualification 495 * for #DB exceptions under VMX. 496 */ 497 vcpu->arch.dr6 ^= payload & DR6_RTM; 498 499 /* 500 * The #DB payload is defined as compatible with the 'pending 501 * debug exceptions' field under VMX, not DR6. While bit 12 is 502 * defined in the 'pending debug exceptions' field (enabled 503 * breakpoint), it is reserved and must be zero in DR6. 504 */ 505 vcpu->arch.dr6 &= ~BIT(12); 506 break; 507 case PF_VECTOR: 508 vcpu->arch.cr2 = payload; 509 break; 510 } 511 512 vcpu->arch.exception.has_payload = false; 513 vcpu->arch.exception.payload = 0; 514 } 515 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 516 517 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 518 unsigned nr, bool has_error, u32 error_code, 519 bool has_payload, unsigned long payload, bool reinject) 520 { 521 u32 prev_nr; 522 int class1, class2; 523 524 kvm_make_request(KVM_REQ_EVENT, vcpu); 525 526 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 527 queue: 528 if (has_error && !is_protmode(vcpu)) 529 has_error = false; 530 if (reinject) { 531 /* 532 * On vmentry, vcpu->arch.exception.pending is only 533 * true if an event injection was blocked by 534 * nested_run_pending. In that case, however, 535 * vcpu_enter_guest requests an immediate exit, 536 * and the guest shouldn't proceed far enough to 537 * need reinjection. 538 */ 539 WARN_ON_ONCE(vcpu->arch.exception.pending); 540 vcpu->arch.exception.injected = true; 541 if (WARN_ON_ONCE(has_payload)) { 542 /* 543 * A reinjected event has already 544 * delivered its payload. 545 */ 546 has_payload = false; 547 payload = 0; 548 } 549 } else { 550 vcpu->arch.exception.pending = true; 551 vcpu->arch.exception.injected = false; 552 } 553 vcpu->arch.exception.has_error_code = has_error; 554 vcpu->arch.exception.nr = nr; 555 vcpu->arch.exception.error_code = error_code; 556 vcpu->arch.exception.has_payload = has_payload; 557 vcpu->arch.exception.payload = payload; 558 if (!is_guest_mode(vcpu)) 559 kvm_deliver_exception_payload(vcpu); 560 return; 561 } 562 563 /* to check exception */ 564 prev_nr = vcpu->arch.exception.nr; 565 if (prev_nr == DF_VECTOR) { 566 /* triple fault -> shutdown */ 567 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 568 return; 569 } 570 class1 = exception_class(prev_nr); 571 class2 = exception_class(nr); 572 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 573 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 574 /* 575 * Generate double fault per SDM Table 5-5. Set 576 * exception.pending = true so that the double fault 577 * can trigger a nested vmexit. 578 */ 579 vcpu->arch.exception.pending = true; 580 vcpu->arch.exception.injected = false; 581 vcpu->arch.exception.has_error_code = true; 582 vcpu->arch.exception.nr = DF_VECTOR; 583 vcpu->arch.exception.error_code = 0; 584 vcpu->arch.exception.has_payload = false; 585 vcpu->arch.exception.payload = 0; 586 } else 587 /* replace previous exception with a new one in a hope 588 that instruction re-execution will regenerate lost 589 exception */ 590 goto queue; 591 } 592 593 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 594 { 595 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 596 } 597 EXPORT_SYMBOL_GPL(kvm_queue_exception); 598 599 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 600 { 601 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 602 } 603 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 604 605 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 606 unsigned long payload) 607 { 608 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 609 } 610 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 611 612 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 613 u32 error_code, unsigned long payload) 614 { 615 kvm_multiple_exception(vcpu, nr, true, error_code, 616 true, payload, false); 617 } 618 619 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 620 { 621 if (err) 622 kvm_inject_gp(vcpu, 0); 623 else 624 return kvm_skip_emulated_instruction(vcpu); 625 626 return 1; 627 } 628 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 629 630 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 631 { 632 ++vcpu->stat.pf_guest; 633 vcpu->arch.exception.nested_apf = 634 is_guest_mode(vcpu) && fault->async_page_fault; 635 if (vcpu->arch.exception.nested_apf) { 636 vcpu->arch.apf.nested_apf_token = fault->address; 637 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 638 } else { 639 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 640 fault->address); 641 } 642 } 643 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 644 645 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 646 struct x86_exception *fault) 647 { 648 struct kvm_mmu *fault_mmu; 649 WARN_ON_ONCE(fault->vector != PF_VECTOR); 650 651 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 652 vcpu->arch.walk_mmu; 653 654 /* 655 * Invalidate the TLB entry for the faulting address, if it exists, 656 * else the access will fault indefinitely (and to emulate hardware). 657 */ 658 if ((fault->error_code & PFERR_PRESENT_MASK) && 659 !(fault->error_code & PFERR_RSVD_MASK)) 660 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address, 661 fault_mmu->root_hpa); 662 663 fault_mmu->inject_page_fault(vcpu, fault); 664 return fault->nested_page_fault; 665 } 666 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 667 668 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 669 { 670 atomic_inc(&vcpu->arch.nmi_queued); 671 kvm_make_request(KVM_REQ_NMI, vcpu); 672 } 673 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 674 675 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 676 { 677 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 678 } 679 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 680 681 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 682 { 683 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 684 } 685 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 686 687 /* 688 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 689 * a #GP and return false. 690 */ 691 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 692 { 693 if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl) 694 return true; 695 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 696 return false; 697 } 698 EXPORT_SYMBOL_GPL(kvm_require_cpl); 699 700 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 701 { 702 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 703 return true; 704 705 kvm_queue_exception(vcpu, UD_VECTOR); 706 return false; 707 } 708 EXPORT_SYMBOL_GPL(kvm_require_dr); 709 710 /* 711 * This function will be used to read from the physical memory of the currently 712 * running guest. The difference to kvm_vcpu_read_guest_page is that this function 713 * can read from guest physical or from the guest's guest physical memory. 714 */ 715 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 716 gfn_t ngfn, void *data, int offset, int len, 717 u32 access) 718 { 719 struct x86_exception exception; 720 gfn_t real_gfn; 721 gpa_t ngpa; 722 723 ngpa = gfn_to_gpa(ngfn); 724 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception); 725 if (real_gfn == UNMAPPED_GVA) 726 return -EFAULT; 727 728 real_gfn = gpa_to_gfn(real_gfn); 729 730 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len); 731 } 732 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); 733 734 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 735 void *data, int offset, int len, u32 access) 736 { 737 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, 738 data, offset, len, access); 739 } 740 741 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 742 { 743 return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) | 744 rsvd_bits(1, 2); 745 } 746 747 /* 748 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 749 */ 750 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) 751 { 752 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 753 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; 754 int i; 755 int ret; 756 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 757 758 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, 759 offset * sizeof(u64), sizeof(pdpte), 760 PFERR_USER_MASK|PFERR_WRITE_MASK); 761 if (ret < 0) { 762 ret = 0; 763 goto out; 764 } 765 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 766 if ((pdpte[i] & PT_PRESENT_MASK) && 767 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 768 ret = 0; 769 goto out; 770 } 771 } 772 ret = 1; 773 774 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 775 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 776 777 out: 778 779 return ret; 780 } 781 EXPORT_SYMBOL_GPL(load_pdptrs); 782 783 bool pdptrs_changed(struct kvm_vcpu *vcpu) 784 { 785 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; 786 int offset; 787 gfn_t gfn; 788 int r; 789 790 if (!is_pae_paging(vcpu)) 791 return false; 792 793 if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR)) 794 return true; 795 796 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT; 797 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1); 798 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), 799 PFERR_USER_MASK | PFERR_WRITE_MASK); 800 if (r < 0) 801 return true; 802 803 return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; 804 } 805 EXPORT_SYMBOL_GPL(pdptrs_changed); 806 807 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 808 { 809 unsigned long old_cr0 = kvm_read_cr0(vcpu); 810 unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG; 811 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP; 812 813 cr0 |= X86_CR0_ET; 814 815 #ifdef CONFIG_X86_64 816 if (cr0 & 0xffffffff00000000UL) 817 return 1; 818 #endif 819 820 cr0 &= ~CR0_RESERVED_BITS; 821 822 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 823 return 1; 824 825 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 826 return 1; 827 828 #ifdef CONFIG_X86_64 829 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 830 (cr0 & X86_CR0_PG)) { 831 int cs_db, cs_l; 832 833 if (!is_pae(vcpu)) 834 return 1; 835 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 836 if (cs_l) 837 return 1; 838 } 839 #endif 840 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 841 is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) && 842 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu))) 843 return 1; 844 845 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 846 return 1; 847 848 kvm_x86_ops.set_cr0(vcpu, cr0); 849 850 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 851 kvm_clear_async_pf_completion_queue(vcpu); 852 kvm_async_pf_hash_reset(vcpu); 853 } 854 855 if ((cr0 ^ old_cr0) & update_bits) 856 kvm_mmu_reset_context(vcpu); 857 858 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 859 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 860 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 861 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 862 863 return 0; 864 } 865 EXPORT_SYMBOL_GPL(kvm_set_cr0); 866 867 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 868 { 869 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 870 } 871 EXPORT_SYMBOL_GPL(kvm_lmsw); 872 873 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 874 { 875 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 876 877 if (vcpu->arch.xcr0 != host_xcr0) 878 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 879 880 if (vcpu->arch.xsaves_enabled && 881 vcpu->arch.ia32_xss != host_xss) 882 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 883 } 884 885 if (static_cpu_has(X86_FEATURE_PKU) && 886 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || 887 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) && 888 vcpu->arch.pkru != vcpu->arch.host_pkru) 889 __write_pkru(vcpu->arch.pkru); 890 } 891 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 892 893 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 894 { 895 if (static_cpu_has(X86_FEATURE_PKU) && 896 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || 897 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) { 898 vcpu->arch.pkru = rdpkru(); 899 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 900 __write_pkru(vcpu->arch.host_pkru); 901 } 902 903 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 904 905 if (vcpu->arch.xcr0 != host_xcr0) 906 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 907 908 if (vcpu->arch.xsaves_enabled && 909 vcpu->arch.ia32_xss != host_xss) 910 wrmsrl(MSR_IA32_XSS, host_xss); 911 } 912 913 } 914 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 915 916 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 917 { 918 u64 xcr0 = xcr; 919 u64 old_xcr0 = vcpu->arch.xcr0; 920 u64 valid_bits; 921 922 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 923 if (index != XCR_XFEATURE_ENABLED_MASK) 924 return 1; 925 if (!(xcr0 & XFEATURE_MASK_FP)) 926 return 1; 927 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 928 return 1; 929 930 /* 931 * Do not allow the guest to set bits that we do not support 932 * saving. However, xcr0 bit 0 is always set, even if the 933 * emulated CPU does not support XSAVE (see fx_init). 934 */ 935 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 936 if (xcr0 & ~valid_bits) 937 return 1; 938 939 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 940 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 941 return 1; 942 943 if (xcr0 & XFEATURE_MASK_AVX512) { 944 if (!(xcr0 & XFEATURE_MASK_YMM)) 945 return 1; 946 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 947 return 1; 948 } 949 vcpu->arch.xcr0 = xcr0; 950 951 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 952 kvm_update_cpuid_runtime(vcpu); 953 return 0; 954 } 955 956 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 957 { 958 if (kvm_x86_ops.get_cpl(vcpu) != 0 || 959 __kvm_set_xcr(vcpu, index, xcr)) { 960 kvm_inject_gp(vcpu, 0); 961 return 1; 962 } 963 return 0; 964 } 965 EXPORT_SYMBOL_GPL(kvm_set_xcr); 966 967 int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 968 { 969 if (cr4 & cr4_reserved_bits) 970 return -EINVAL; 971 972 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 973 return -EINVAL; 974 975 return 0; 976 } 977 EXPORT_SYMBOL_GPL(kvm_valid_cr4); 978 979 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 980 { 981 unsigned long old_cr4 = kvm_read_cr4(vcpu); 982 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | 983 X86_CR4_SMEP; 984 unsigned long mmu_role_bits = pdptr_bits | X86_CR4_SMAP | X86_CR4_PKE; 985 986 if (kvm_valid_cr4(vcpu, cr4)) 987 return 1; 988 989 if (is_long_mode(vcpu)) { 990 if (!(cr4 & X86_CR4_PAE)) 991 return 1; 992 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 993 return 1; 994 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 995 && ((cr4 ^ old_cr4) & pdptr_bits) 996 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 997 kvm_read_cr3(vcpu))) 998 return 1; 999 1000 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1001 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 1002 return 1; 1003 1004 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1005 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1006 return 1; 1007 } 1008 1009 if (kvm_x86_ops.set_cr4(vcpu, cr4)) 1010 return 1; 1011 1012 if (((cr4 ^ old_cr4) & mmu_role_bits) || 1013 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1014 kvm_mmu_reset_context(vcpu); 1015 1016 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 1017 kvm_update_cpuid_runtime(vcpu); 1018 1019 return 0; 1020 } 1021 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1022 1023 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1024 { 1025 bool skip_tlb_flush = false; 1026 #ifdef CONFIG_X86_64 1027 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 1028 1029 if (pcid_enabled) { 1030 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1031 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1032 } 1033 #endif 1034 1035 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { 1036 if (!skip_tlb_flush) { 1037 kvm_mmu_sync_roots(vcpu); 1038 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1039 } 1040 return 0; 1041 } 1042 1043 if (is_long_mode(vcpu) && 1044 (cr3 & vcpu->arch.cr3_lm_rsvd_bits)) 1045 return 1; 1046 else if (is_pae_paging(vcpu) && 1047 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) 1048 return 1; 1049 1050 kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush); 1051 vcpu->arch.cr3 = cr3; 1052 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3); 1053 1054 return 0; 1055 } 1056 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1057 1058 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1059 { 1060 if (cr8 & CR8_RESERVED_BITS) 1061 return 1; 1062 if (lapic_in_kernel(vcpu)) 1063 kvm_lapic_set_tpr(vcpu, cr8); 1064 else 1065 vcpu->arch.cr8 = cr8; 1066 return 0; 1067 } 1068 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1069 1070 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1071 { 1072 if (lapic_in_kernel(vcpu)) 1073 return kvm_lapic_get_cr8(vcpu); 1074 else 1075 return vcpu->arch.cr8; 1076 } 1077 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1078 1079 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1080 { 1081 int i; 1082 1083 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1084 for (i = 0; i < KVM_NR_DB_REGS; i++) 1085 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1086 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD; 1087 } 1088 } 1089 1090 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1091 { 1092 unsigned long dr7; 1093 1094 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1095 dr7 = vcpu->arch.guest_debug_dr7; 1096 else 1097 dr7 = vcpu->arch.dr7; 1098 kvm_x86_ops.set_dr7(vcpu, dr7); 1099 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1100 if (dr7 & DR7_BP_EN_MASK) 1101 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1102 } 1103 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1104 1105 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1106 { 1107 u64 fixed = DR6_FIXED_1; 1108 1109 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1110 fixed |= DR6_RTM; 1111 return fixed; 1112 } 1113 1114 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1115 { 1116 size_t size = ARRAY_SIZE(vcpu->arch.db); 1117 1118 switch (dr) { 1119 case 0 ... 3: 1120 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1121 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1122 vcpu->arch.eff_db[dr] = val; 1123 break; 1124 case 4: 1125 case 6: 1126 if (!kvm_dr6_valid(val)) 1127 return -1; /* #GP */ 1128 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1129 break; 1130 case 5: 1131 default: /* 7 */ 1132 if (!kvm_dr7_valid(val)) 1133 return -1; /* #GP */ 1134 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1135 kvm_update_dr7(vcpu); 1136 break; 1137 } 1138 1139 return 0; 1140 } 1141 1142 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1143 { 1144 if (__kvm_set_dr(vcpu, dr, val)) { 1145 kvm_inject_gp(vcpu, 0); 1146 return 1; 1147 } 1148 return 0; 1149 } 1150 EXPORT_SYMBOL_GPL(kvm_set_dr); 1151 1152 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1153 { 1154 size_t size = ARRAY_SIZE(vcpu->arch.db); 1155 1156 switch (dr) { 1157 case 0 ... 3: 1158 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1159 break; 1160 case 4: 1161 case 6: 1162 *val = vcpu->arch.dr6; 1163 break; 1164 case 5: 1165 default: /* 7 */ 1166 *val = vcpu->arch.dr7; 1167 break; 1168 } 1169 return 0; 1170 } 1171 EXPORT_SYMBOL_GPL(kvm_get_dr); 1172 1173 bool kvm_rdpmc(struct kvm_vcpu *vcpu) 1174 { 1175 u32 ecx = kvm_rcx_read(vcpu); 1176 u64 data; 1177 int err; 1178 1179 err = kvm_pmu_rdpmc(vcpu, ecx, &data); 1180 if (err) 1181 return err; 1182 kvm_rax_write(vcpu, (u32)data); 1183 kvm_rdx_write(vcpu, data >> 32); 1184 return err; 1185 } 1186 EXPORT_SYMBOL_GPL(kvm_rdpmc); 1187 1188 /* 1189 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1190 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1191 * 1192 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) 1193 * extract the supported MSRs from the related const lists. 1194 * msrs_to_save is selected from the msrs_to_save_all to reflect the 1195 * capabilities of the host cpu. This capabilities test skips MSRs that are 1196 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs 1197 * may depend on host virtualization features rather than host cpu features. 1198 */ 1199 1200 static const u32 msrs_to_save_all[] = { 1201 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1202 MSR_STAR, 1203 #ifdef CONFIG_X86_64 1204 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1205 #endif 1206 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1207 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1208 MSR_IA32_SPEC_CTRL, 1209 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1210 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1211 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1212 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1213 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1214 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1215 MSR_IA32_UMWAIT_CONTROL, 1216 1217 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1218 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3, 1219 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1220 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1221 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1222 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1223 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1224 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1225 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9, 1226 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11, 1227 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13, 1228 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15, 1229 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17, 1230 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1231 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1232 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1233 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1234 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9, 1235 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11, 1236 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13, 1237 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15, 1238 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17, 1239 }; 1240 1241 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)]; 1242 static unsigned num_msrs_to_save; 1243 1244 static const u32 emulated_msrs_all[] = { 1245 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1246 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1247 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1248 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1249 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1250 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1251 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1252 HV_X64_MSR_RESET, 1253 HV_X64_MSR_VP_INDEX, 1254 HV_X64_MSR_VP_RUNTIME, 1255 HV_X64_MSR_SCONTROL, 1256 HV_X64_MSR_STIMER0_CONFIG, 1257 HV_X64_MSR_VP_ASSIST_PAGE, 1258 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1259 HV_X64_MSR_TSC_EMULATION_STATUS, 1260 HV_X64_MSR_SYNDBG_OPTIONS, 1261 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1262 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1263 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1264 1265 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1266 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1267 1268 MSR_IA32_TSC_ADJUST, 1269 MSR_IA32_TSCDEADLINE, 1270 MSR_IA32_ARCH_CAPABILITIES, 1271 MSR_IA32_PERF_CAPABILITIES, 1272 MSR_IA32_MISC_ENABLE, 1273 MSR_IA32_MCG_STATUS, 1274 MSR_IA32_MCG_CTL, 1275 MSR_IA32_MCG_EXT_CTL, 1276 MSR_IA32_SMBASE, 1277 MSR_SMI_COUNT, 1278 MSR_PLATFORM_INFO, 1279 MSR_MISC_FEATURES_ENABLES, 1280 MSR_AMD64_VIRT_SPEC_CTRL, 1281 MSR_IA32_POWER_CTL, 1282 MSR_IA32_UCODE_REV, 1283 1284 /* 1285 * The following list leaves out MSRs whose values are determined 1286 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs. 1287 * We always support the "true" VMX control MSRs, even if the host 1288 * processor does not, so I am putting these registers here rather 1289 * than in msrs_to_save_all. 1290 */ 1291 MSR_IA32_VMX_BASIC, 1292 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1293 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1294 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1295 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1296 MSR_IA32_VMX_MISC, 1297 MSR_IA32_VMX_CR0_FIXED0, 1298 MSR_IA32_VMX_CR4_FIXED0, 1299 MSR_IA32_VMX_VMCS_ENUM, 1300 MSR_IA32_VMX_PROCBASED_CTLS2, 1301 MSR_IA32_VMX_EPT_VPID_CAP, 1302 MSR_IA32_VMX_VMFUNC, 1303 1304 MSR_K7_HWCR, 1305 MSR_KVM_POLL_CONTROL, 1306 }; 1307 1308 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1309 static unsigned num_emulated_msrs; 1310 1311 /* 1312 * List of msr numbers which are used to expose MSR-based features that 1313 * can be used by a hypervisor to validate requested CPU features. 1314 */ 1315 static const u32 msr_based_features_all[] = { 1316 MSR_IA32_VMX_BASIC, 1317 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1318 MSR_IA32_VMX_PINBASED_CTLS, 1319 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1320 MSR_IA32_VMX_PROCBASED_CTLS, 1321 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1322 MSR_IA32_VMX_EXIT_CTLS, 1323 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1324 MSR_IA32_VMX_ENTRY_CTLS, 1325 MSR_IA32_VMX_MISC, 1326 MSR_IA32_VMX_CR0_FIXED0, 1327 MSR_IA32_VMX_CR0_FIXED1, 1328 MSR_IA32_VMX_CR4_FIXED0, 1329 MSR_IA32_VMX_CR4_FIXED1, 1330 MSR_IA32_VMX_VMCS_ENUM, 1331 MSR_IA32_VMX_PROCBASED_CTLS2, 1332 MSR_IA32_VMX_EPT_VPID_CAP, 1333 MSR_IA32_VMX_VMFUNC, 1334 1335 MSR_F10H_DECFG, 1336 MSR_IA32_UCODE_REV, 1337 MSR_IA32_ARCH_CAPABILITIES, 1338 MSR_IA32_PERF_CAPABILITIES, 1339 }; 1340 1341 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)]; 1342 static unsigned int num_msr_based_features; 1343 1344 static u64 kvm_get_arch_capabilities(void) 1345 { 1346 u64 data = 0; 1347 1348 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 1349 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1350 1351 /* 1352 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1353 * the nested hypervisor runs with NX huge pages. If it is not, 1354 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other 1355 * L1 guests, so it need not worry about its own (L2) guests. 1356 */ 1357 data |= ARCH_CAP_PSCHANGE_MC_NO; 1358 1359 /* 1360 * If we're doing cache flushes (either "always" or "cond") 1361 * we will do one whenever the guest does a vmlaunch/vmresume. 1362 * If an outer hypervisor is doing the cache flush for us 1363 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1364 * capability to the guest too, and if EPT is disabled we're not 1365 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1366 * require a nested hypervisor to do a flush of its own. 1367 */ 1368 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1369 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1370 1371 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1372 data |= ARCH_CAP_RDCL_NO; 1373 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1374 data |= ARCH_CAP_SSB_NO; 1375 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1376 data |= ARCH_CAP_MDS_NO; 1377 1378 /* 1379 * On TAA affected systems: 1380 * - nothing to do if TSX is disabled on the host. 1381 * - we emulate TSX_CTRL if present on the host. 1382 * This lets the guest use VERW to clear CPU buffers. 1383 */ 1384 if (!boot_cpu_has(X86_FEATURE_RTM)) 1385 data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR); 1386 else if (!boot_cpu_has_bug(X86_BUG_TAA)) 1387 data |= ARCH_CAP_TAA_NO; 1388 1389 return data; 1390 } 1391 1392 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1393 { 1394 switch (msr->index) { 1395 case MSR_IA32_ARCH_CAPABILITIES: 1396 msr->data = kvm_get_arch_capabilities(); 1397 break; 1398 case MSR_IA32_UCODE_REV: 1399 rdmsrl_safe(msr->index, &msr->data); 1400 break; 1401 default: 1402 return kvm_x86_ops.get_msr_feature(msr); 1403 } 1404 return 0; 1405 } 1406 1407 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1408 { 1409 struct kvm_msr_entry msr; 1410 int r; 1411 1412 msr.index = index; 1413 r = kvm_get_msr_feature(&msr); 1414 1415 if (r == KVM_MSR_RET_INVALID) { 1416 /* Unconditionally clear the output for simplicity */ 1417 *data = 0; 1418 if (kvm_msr_ignored_check(vcpu, index, 0, false)) 1419 r = 0; 1420 } 1421 1422 if (r) 1423 return r; 1424 1425 *data = msr.data; 1426 1427 return 0; 1428 } 1429 1430 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1431 { 1432 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1433 return false; 1434 1435 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1436 return false; 1437 1438 if (efer & (EFER_LME | EFER_LMA) && 1439 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1440 return false; 1441 1442 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1443 return false; 1444 1445 return true; 1446 1447 } 1448 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1449 { 1450 if (efer & efer_reserved_bits) 1451 return false; 1452 1453 return __kvm_valid_efer(vcpu, efer); 1454 } 1455 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1456 1457 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1458 { 1459 u64 old_efer = vcpu->arch.efer; 1460 u64 efer = msr_info->data; 1461 int r; 1462 1463 if (efer & efer_reserved_bits) 1464 return 1; 1465 1466 if (!msr_info->host_initiated) { 1467 if (!__kvm_valid_efer(vcpu, efer)) 1468 return 1; 1469 1470 if (is_paging(vcpu) && 1471 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1472 return 1; 1473 } 1474 1475 efer &= ~EFER_LMA; 1476 efer |= vcpu->arch.efer & EFER_LMA; 1477 1478 r = kvm_x86_ops.set_efer(vcpu, efer); 1479 if (r) { 1480 WARN_ON(r > 0); 1481 return r; 1482 } 1483 1484 /* Update reserved bits */ 1485 if ((efer ^ old_efer) & EFER_NX) 1486 kvm_mmu_reset_context(vcpu); 1487 1488 return 0; 1489 } 1490 1491 void kvm_enable_efer_bits(u64 mask) 1492 { 1493 efer_reserved_bits &= ~mask; 1494 } 1495 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1496 1497 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1498 { 1499 struct kvm *kvm = vcpu->kvm; 1500 struct msr_bitmap_range *ranges = kvm->arch.msr_filter.ranges; 1501 u32 count = kvm->arch.msr_filter.count; 1502 u32 i; 1503 bool r = kvm->arch.msr_filter.default_allow; 1504 int idx; 1505 1506 /* MSR filtering not set up or x2APIC enabled, allow everything */ 1507 if (!count || (index >= 0x800 && index <= 0x8ff)) 1508 return true; 1509 1510 /* Prevent collision with set_msr_filter */ 1511 idx = srcu_read_lock(&kvm->srcu); 1512 1513 for (i = 0; i < count; i++) { 1514 u32 start = ranges[i].base; 1515 u32 end = start + ranges[i].nmsrs; 1516 u32 flags = ranges[i].flags; 1517 unsigned long *bitmap = ranges[i].bitmap; 1518 1519 if ((index >= start) && (index < end) && (flags & type)) { 1520 r = !!test_bit(index - start, bitmap); 1521 break; 1522 } 1523 } 1524 1525 srcu_read_unlock(&kvm->srcu, idx); 1526 1527 return r; 1528 } 1529 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1530 1531 /* 1532 * Write @data into the MSR specified by @index. Select MSR specific fault 1533 * checks are bypassed if @host_initiated is %true. 1534 * Returns 0 on success, non-0 otherwise. 1535 * Assumes vcpu_load() was already called. 1536 */ 1537 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1538 bool host_initiated) 1539 { 1540 struct msr_data msr; 1541 1542 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1543 return KVM_MSR_RET_FILTERED; 1544 1545 switch (index) { 1546 case MSR_FS_BASE: 1547 case MSR_GS_BASE: 1548 case MSR_KERNEL_GS_BASE: 1549 case MSR_CSTAR: 1550 case MSR_LSTAR: 1551 if (is_noncanonical_address(data, vcpu)) 1552 return 1; 1553 break; 1554 case MSR_IA32_SYSENTER_EIP: 1555 case MSR_IA32_SYSENTER_ESP: 1556 /* 1557 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1558 * non-canonical address is written on Intel but not on 1559 * AMD (which ignores the top 32-bits, because it does 1560 * not implement 64-bit SYSENTER). 1561 * 1562 * 64-bit code should hence be able to write a non-canonical 1563 * value on AMD. Making the address canonical ensures that 1564 * vmentry does not fail on Intel after writing a non-canonical 1565 * value, and that something deterministic happens if the guest 1566 * invokes 64-bit SYSENTER. 1567 */ 1568 data = get_canonical(data, vcpu_virt_addr_bits(vcpu)); 1569 } 1570 1571 msr.data = data; 1572 msr.index = index; 1573 msr.host_initiated = host_initiated; 1574 1575 return kvm_x86_ops.set_msr(vcpu, &msr); 1576 } 1577 1578 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1579 u32 index, u64 data, bool host_initiated) 1580 { 1581 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1582 1583 if (ret == KVM_MSR_RET_INVALID) 1584 if (kvm_msr_ignored_check(vcpu, index, data, true)) 1585 ret = 0; 1586 1587 return ret; 1588 } 1589 1590 /* 1591 * Read the MSR specified by @index into @data. Select MSR specific fault 1592 * checks are bypassed if @host_initiated is %true. 1593 * Returns 0 on success, non-0 otherwise. 1594 * Assumes vcpu_load() was already called. 1595 */ 1596 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1597 bool host_initiated) 1598 { 1599 struct msr_data msr; 1600 int ret; 1601 1602 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1603 return KVM_MSR_RET_FILTERED; 1604 1605 msr.index = index; 1606 msr.host_initiated = host_initiated; 1607 1608 ret = kvm_x86_ops.get_msr(vcpu, &msr); 1609 if (!ret) 1610 *data = msr.data; 1611 return ret; 1612 } 1613 1614 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1615 u32 index, u64 *data, bool host_initiated) 1616 { 1617 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1618 1619 if (ret == KVM_MSR_RET_INVALID) { 1620 /* Unconditionally clear *data for simplicity */ 1621 *data = 0; 1622 if (kvm_msr_ignored_check(vcpu, index, 0, false)) 1623 ret = 0; 1624 } 1625 1626 return ret; 1627 } 1628 1629 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1630 { 1631 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1632 } 1633 EXPORT_SYMBOL_GPL(kvm_get_msr); 1634 1635 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1636 { 1637 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1638 } 1639 EXPORT_SYMBOL_GPL(kvm_set_msr); 1640 1641 static int complete_emulated_msr(struct kvm_vcpu *vcpu, bool is_read) 1642 { 1643 if (vcpu->run->msr.error) { 1644 kvm_inject_gp(vcpu, 0); 1645 return 1; 1646 } else if (is_read) { 1647 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1648 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1649 } 1650 1651 return kvm_skip_emulated_instruction(vcpu); 1652 } 1653 1654 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 1655 { 1656 return complete_emulated_msr(vcpu, true); 1657 } 1658 1659 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu) 1660 { 1661 return complete_emulated_msr(vcpu, false); 1662 } 1663 1664 static u64 kvm_msr_reason(int r) 1665 { 1666 switch (r) { 1667 case KVM_MSR_RET_INVALID: 1668 return KVM_MSR_EXIT_REASON_UNKNOWN; 1669 case KVM_MSR_RET_FILTERED: 1670 return KVM_MSR_EXIT_REASON_FILTER; 1671 default: 1672 return KVM_MSR_EXIT_REASON_INVAL; 1673 } 1674 } 1675 1676 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 1677 u32 exit_reason, u64 data, 1678 int (*completion)(struct kvm_vcpu *vcpu), 1679 int r) 1680 { 1681 u64 msr_reason = kvm_msr_reason(r); 1682 1683 /* Check if the user wanted to know about this MSR fault */ 1684 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 1685 return 0; 1686 1687 vcpu->run->exit_reason = exit_reason; 1688 vcpu->run->msr.error = 0; 1689 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 1690 vcpu->run->msr.reason = msr_reason; 1691 vcpu->run->msr.index = index; 1692 vcpu->run->msr.data = data; 1693 vcpu->arch.complete_userspace_io = completion; 1694 1695 return 1; 1696 } 1697 1698 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r) 1699 { 1700 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0, 1701 complete_emulated_rdmsr, r); 1702 } 1703 1704 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r) 1705 { 1706 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data, 1707 complete_emulated_wrmsr, r); 1708 } 1709 1710 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 1711 { 1712 u32 ecx = kvm_rcx_read(vcpu); 1713 u64 data; 1714 int r; 1715 1716 r = kvm_get_msr(vcpu, ecx, &data); 1717 1718 /* MSR read failed? See if we should ask user space */ 1719 if (r && kvm_get_msr_user_space(vcpu, ecx, r)) { 1720 /* Bounce to user space */ 1721 return 0; 1722 } 1723 1724 /* MSR read failed? Inject a #GP */ 1725 if (r) { 1726 trace_kvm_msr_read_ex(ecx); 1727 kvm_inject_gp(vcpu, 0); 1728 return 1; 1729 } 1730 1731 trace_kvm_msr_read(ecx, data); 1732 1733 kvm_rax_write(vcpu, data & -1u); 1734 kvm_rdx_write(vcpu, (data >> 32) & -1u); 1735 return kvm_skip_emulated_instruction(vcpu); 1736 } 1737 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 1738 1739 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 1740 { 1741 u32 ecx = kvm_rcx_read(vcpu); 1742 u64 data = kvm_read_edx_eax(vcpu); 1743 int r; 1744 1745 r = kvm_set_msr(vcpu, ecx, data); 1746 1747 /* MSR write failed? See if we should ask user space */ 1748 if (r && kvm_set_msr_user_space(vcpu, ecx, data, r)) 1749 /* Bounce to user space */ 1750 return 0; 1751 1752 /* Signal all other negative errors to userspace */ 1753 if (r < 0) 1754 return r; 1755 1756 /* MSR write failed? Inject a #GP */ 1757 if (r > 0) { 1758 trace_kvm_msr_write_ex(ecx, data); 1759 kvm_inject_gp(vcpu, 0); 1760 return 1; 1761 } 1762 1763 trace_kvm_msr_write(ecx, data); 1764 return kvm_skip_emulated_instruction(vcpu); 1765 } 1766 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 1767 1768 bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 1769 { 1770 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 1771 xfer_to_guest_mode_work_pending(); 1772 } 1773 EXPORT_SYMBOL_GPL(kvm_vcpu_exit_request); 1774 1775 /* 1776 * The fast path for frequent and performance sensitive wrmsr emulation, 1777 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 1778 * the latency of virtual IPI by avoiding the expensive bits of transitioning 1779 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 1780 * other cases which must be called after interrupts are enabled on the host. 1781 */ 1782 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 1783 { 1784 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 1785 return 1; 1786 1787 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 1788 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 1789 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 1790 ((u32)(data >> 32) != X2APIC_BROADCAST)) { 1791 1792 data &= ~(1 << 12); 1793 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32)); 1794 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32)); 1795 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data); 1796 trace_kvm_apic_write(APIC_ICR, (u32)data); 1797 return 0; 1798 } 1799 1800 return 1; 1801 } 1802 1803 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 1804 { 1805 if (!kvm_can_use_hv_timer(vcpu)) 1806 return 1; 1807 1808 kvm_set_lapic_tscdeadline_msr(vcpu, data); 1809 return 0; 1810 } 1811 1812 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 1813 { 1814 u32 msr = kvm_rcx_read(vcpu); 1815 u64 data; 1816 fastpath_t ret = EXIT_FASTPATH_NONE; 1817 1818 switch (msr) { 1819 case APIC_BASE_MSR + (APIC_ICR >> 4): 1820 data = kvm_read_edx_eax(vcpu); 1821 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 1822 kvm_skip_emulated_instruction(vcpu); 1823 ret = EXIT_FASTPATH_EXIT_HANDLED; 1824 } 1825 break; 1826 case MSR_IA32_TSCDEADLINE: 1827 data = kvm_read_edx_eax(vcpu); 1828 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 1829 kvm_skip_emulated_instruction(vcpu); 1830 ret = EXIT_FASTPATH_REENTER_GUEST; 1831 } 1832 break; 1833 default: 1834 break; 1835 } 1836 1837 if (ret != EXIT_FASTPATH_NONE) 1838 trace_kvm_msr_write(msr, data); 1839 1840 return ret; 1841 } 1842 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 1843 1844 /* 1845 * Adapt set_msr() to msr_io()'s calling convention 1846 */ 1847 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1848 { 1849 return kvm_get_msr_ignored_check(vcpu, index, data, true); 1850 } 1851 1852 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1853 { 1854 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 1855 } 1856 1857 #ifdef CONFIG_X86_64 1858 struct pvclock_clock { 1859 int vclock_mode; 1860 u64 cycle_last; 1861 u64 mask; 1862 u32 mult; 1863 u32 shift; 1864 u64 base_cycles; 1865 u64 offset; 1866 }; 1867 1868 struct pvclock_gtod_data { 1869 seqcount_t seq; 1870 1871 struct pvclock_clock clock; /* extract of a clocksource struct */ 1872 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 1873 1874 ktime_t offs_boot; 1875 u64 wall_time_sec; 1876 }; 1877 1878 static struct pvclock_gtod_data pvclock_gtod_data; 1879 1880 static void update_pvclock_gtod(struct timekeeper *tk) 1881 { 1882 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 1883 1884 write_seqcount_begin(&vdata->seq); 1885 1886 /* copy pvclock gtod data */ 1887 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 1888 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 1889 vdata->clock.mask = tk->tkr_mono.mask; 1890 vdata->clock.mult = tk->tkr_mono.mult; 1891 vdata->clock.shift = tk->tkr_mono.shift; 1892 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 1893 vdata->clock.offset = tk->tkr_mono.base; 1894 1895 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 1896 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 1897 vdata->raw_clock.mask = tk->tkr_raw.mask; 1898 vdata->raw_clock.mult = tk->tkr_raw.mult; 1899 vdata->raw_clock.shift = tk->tkr_raw.shift; 1900 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 1901 vdata->raw_clock.offset = tk->tkr_raw.base; 1902 1903 vdata->wall_time_sec = tk->xtime_sec; 1904 1905 vdata->offs_boot = tk->offs_boot; 1906 1907 write_seqcount_end(&vdata->seq); 1908 } 1909 1910 static s64 get_kvmclock_base_ns(void) 1911 { 1912 /* Count up from boot time, but with the frequency of the raw clock. */ 1913 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 1914 } 1915 #else 1916 static s64 get_kvmclock_base_ns(void) 1917 { 1918 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 1919 return ktime_get_boottime_ns(); 1920 } 1921 #endif 1922 1923 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) 1924 { 1925 int version; 1926 int r; 1927 struct pvclock_wall_clock wc; 1928 u64 wall_nsec; 1929 1930 kvm->arch.wall_clock = wall_clock; 1931 1932 if (!wall_clock) 1933 return; 1934 1935 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 1936 if (r) 1937 return; 1938 1939 if (version & 1) 1940 ++version; /* first time write, random junk */ 1941 1942 ++version; 1943 1944 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 1945 return; 1946 1947 /* 1948 * The guest calculates current wall clock time by adding 1949 * system time (updated by kvm_guest_time_update below) to the 1950 * wall clock specified here. We do the reverse here. 1951 */ 1952 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 1953 1954 wc.nsec = do_div(wall_nsec, 1000000000); 1955 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 1956 wc.version = version; 1957 1958 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 1959 1960 version++; 1961 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 1962 } 1963 1964 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 1965 bool old_msr, bool host_initiated) 1966 { 1967 struct kvm_arch *ka = &vcpu->kvm->arch; 1968 1969 if (vcpu->vcpu_id == 0 && !host_initiated) { 1970 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 1971 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 1972 1973 ka->boot_vcpu_runs_old_kvmclock = old_msr; 1974 } 1975 1976 vcpu->arch.time = system_time; 1977 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 1978 1979 /* we verify if the enable bit is set... */ 1980 vcpu->arch.pv_time_enabled = false; 1981 if (!(system_time & 1)) 1982 return; 1983 1984 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm, 1985 &vcpu->arch.pv_time, system_time & ~1ULL, 1986 sizeof(struct pvclock_vcpu_time_info))) 1987 vcpu->arch.pv_time_enabled = true; 1988 1989 return; 1990 } 1991 1992 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 1993 { 1994 do_shl32_div32(dividend, divisor); 1995 return dividend; 1996 } 1997 1998 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 1999 s8 *pshift, u32 *pmultiplier) 2000 { 2001 uint64_t scaled64; 2002 int32_t shift = 0; 2003 uint64_t tps64; 2004 uint32_t tps32; 2005 2006 tps64 = base_hz; 2007 scaled64 = scaled_hz; 2008 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2009 tps64 >>= 1; 2010 shift--; 2011 } 2012 2013 tps32 = (uint32_t)tps64; 2014 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2015 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2016 scaled64 >>= 1; 2017 else 2018 tps32 <<= 1; 2019 shift++; 2020 } 2021 2022 *pshift = shift; 2023 *pmultiplier = div_frac(scaled64, tps32); 2024 } 2025 2026 #ifdef CONFIG_X86_64 2027 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2028 #endif 2029 2030 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2031 static unsigned long max_tsc_khz; 2032 2033 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2034 { 2035 u64 v = (u64)khz * (1000000 + ppm); 2036 do_div(v, 1000000); 2037 return v; 2038 } 2039 2040 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2041 { 2042 u64 ratio; 2043 2044 /* Guest TSC same frequency as host TSC? */ 2045 if (!scale) { 2046 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 2047 return 0; 2048 } 2049 2050 /* TSC scaling supported? */ 2051 if (!kvm_has_tsc_control) { 2052 if (user_tsc_khz > tsc_khz) { 2053 vcpu->arch.tsc_catchup = 1; 2054 vcpu->arch.tsc_always_catchup = 1; 2055 return 0; 2056 } else { 2057 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2058 return -1; 2059 } 2060 } 2061 2062 /* TSC scaling required - calculate ratio */ 2063 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits, 2064 user_tsc_khz, tsc_khz); 2065 2066 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) { 2067 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2068 user_tsc_khz); 2069 return -1; 2070 } 2071 2072 vcpu->arch.tsc_scaling_ratio = ratio; 2073 return 0; 2074 } 2075 2076 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2077 { 2078 u32 thresh_lo, thresh_hi; 2079 int use_scaling = 0; 2080 2081 /* tsc_khz can be zero if TSC calibration fails */ 2082 if (user_tsc_khz == 0) { 2083 /* set tsc_scaling_ratio to a safe value */ 2084 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 2085 return -1; 2086 } 2087 2088 /* Compute a scale to convert nanoseconds in TSC cycles */ 2089 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2090 &vcpu->arch.virtual_tsc_shift, 2091 &vcpu->arch.virtual_tsc_mult); 2092 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2093 2094 /* 2095 * Compute the variation in TSC rate which is acceptable 2096 * within the range of tolerance and decide if the 2097 * rate being applied is within that bounds of the hardware 2098 * rate. If so, no scaling or compensation need be done. 2099 */ 2100 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2101 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2102 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2103 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); 2104 use_scaling = 1; 2105 } 2106 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2107 } 2108 2109 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2110 { 2111 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2112 vcpu->arch.virtual_tsc_mult, 2113 vcpu->arch.virtual_tsc_shift); 2114 tsc += vcpu->arch.this_tsc_write; 2115 return tsc; 2116 } 2117 2118 static inline int gtod_is_based_on_tsc(int mode) 2119 { 2120 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2121 } 2122 2123 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 2124 { 2125 #ifdef CONFIG_X86_64 2126 bool vcpus_matched; 2127 struct kvm_arch *ka = &vcpu->kvm->arch; 2128 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2129 2130 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2131 atomic_read(&vcpu->kvm->online_vcpus)); 2132 2133 /* 2134 * Once the masterclock is enabled, always perform request in 2135 * order to update it. 2136 * 2137 * In order to enable masterclock, the host clocksource must be TSC 2138 * and the vcpus need to have matched TSCs. When that happens, 2139 * perform request to enable masterclock. 2140 */ 2141 if (ka->use_master_clock || 2142 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 2143 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2144 2145 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2146 atomic_read(&vcpu->kvm->online_vcpus), 2147 ka->use_master_clock, gtod->clock.vclock_mode); 2148 #endif 2149 } 2150 2151 /* 2152 * Multiply tsc by a fixed point number represented by ratio. 2153 * 2154 * The most significant 64-N bits (mult) of ratio represent the 2155 * integral part of the fixed point number; the remaining N bits 2156 * (frac) represent the fractional part, ie. ratio represents a fixed 2157 * point number (mult + frac * 2^(-N)). 2158 * 2159 * N equals to kvm_tsc_scaling_ratio_frac_bits. 2160 */ 2161 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2162 { 2163 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits); 2164 } 2165 2166 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc) 2167 { 2168 u64 _tsc = tsc; 2169 u64 ratio = vcpu->arch.tsc_scaling_ratio; 2170 2171 if (ratio != kvm_default_tsc_scaling_ratio) 2172 _tsc = __scale_tsc(ratio, tsc); 2173 2174 return _tsc; 2175 } 2176 EXPORT_SYMBOL_GPL(kvm_scale_tsc); 2177 2178 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2179 { 2180 u64 tsc; 2181 2182 tsc = kvm_scale_tsc(vcpu, rdtsc()); 2183 2184 return target_tsc - tsc; 2185 } 2186 2187 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2188 { 2189 return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc); 2190 } 2191 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2192 2193 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 2194 { 2195 vcpu->arch.l1_tsc_offset = offset; 2196 vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset); 2197 } 2198 2199 static inline bool kvm_check_tsc_unstable(void) 2200 { 2201 #ifdef CONFIG_X86_64 2202 /* 2203 * TSC is marked unstable when we're running on Hyper-V, 2204 * 'TSC page' clocksource is good. 2205 */ 2206 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2207 return false; 2208 #endif 2209 return check_tsc_unstable(); 2210 } 2211 2212 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) 2213 { 2214 struct kvm *kvm = vcpu->kvm; 2215 u64 offset, ns, elapsed; 2216 unsigned long flags; 2217 bool matched; 2218 bool already_matched; 2219 bool synchronizing = false; 2220 2221 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2222 offset = kvm_compute_tsc_offset(vcpu, data); 2223 ns = get_kvmclock_base_ns(); 2224 elapsed = ns - kvm->arch.last_tsc_nsec; 2225 2226 if (vcpu->arch.virtual_tsc_khz) { 2227 if (data == 0) { 2228 /* 2229 * detection of vcpu initialization -- need to sync 2230 * with other vCPUs. This particularly helps to keep 2231 * kvm_clock stable after CPU hotplug 2232 */ 2233 synchronizing = true; 2234 } else { 2235 u64 tsc_exp = kvm->arch.last_tsc_write + 2236 nsec_to_cycles(vcpu, elapsed); 2237 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2238 /* 2239 * Special case: TSC write with a small delta (1 second) 2240 * of virtual cycle time against real time is 2241 * interpreted as an attempt to synchronize the CPU. 2242 */ 2243 synchronizing = data < tsc_exp + tsc_hz && 2244 data + tsc_hz > tsc_exp; 2245 } 2246 } 2247 2248 /* 2249 * For a reliable TSC, we can match TSC offsets, and for an unstable 2250 * TSC, we add elapsed time in this computation. We could let the 2251 * compensation code attempt to catch up if we fall behind, but 2252 * it's better to try to match offsets from the beginning. 2253 */ 2254 if (synchronizing && 2255 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2256 if (!kvm_check_tsc_unstable()) { 2257 offset = kvm->arch.cur_tsc_offset; 2258 } else { 2259 u64 delta = nsec_to_cycles(vcpu, elapsed); 2260 data += delta; 2261 offset = kvm_compute_tsc_offset(vcpu, data); 2262 } 2263 matched = true; 2264 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation); 2265 } else { 2266 /* 2267 * We split periods of matched TSC writes into generations. 2268 * For each generation, we track the original measured 2269 * nanosecond time, offset, and write, so if TSCs are in 2270 * sync, we can match exact offset, and if not, we can match 2271 * exact software computation in compute_guest_tsc() 2272 * 2273 * These values are tracked in kvm->arch.cur_xxx variables. 2274 */ 2275 kvm->arch.cur_tsc_generation++; 2276 kvm->arch.cur_tsc_nsec = ns; 2277 kvm->arch.cur_tsc_write = data; 2278 kvm->arch.cur_tsc_offset = offset; 2279 matched = false; 2280 } 2281 2282 /* 2283 * We also track th most recent recorded KHZ, write and time to 2284 * allow the matching interval to be extended at each write. 2285 */ 2286 kvm->arch.last_tsc_nsec = ns; 2287 kvm->arch.last_tsc_write = data; 2288 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2289 2290 vcpu->arch.last_guest_tsc = data; 2291 2292 /* Keep track of which generation this VCPU has synchronized to */ 2293 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2294 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2295 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2296 2297 kvm_vcpu_write_tsc_offset(vcpu, offset); 2298 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2299 2300 spin_lock(&kvm->arch.pvclock_gtod_sync_lock); 2301 if (!matched) { 2302 kvm->arch.nr_vcpus_matched_tsc = 0; 2303 } else if (!already_matched) { 2304 kvm->arch.nr_vcpus_matched_tsc++; 2305 } 2306 2307 kvm_track_tsc_matching(vcpu); 2308 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); 2309 } 2310 2311 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2312 s64 adjustment) 2313 { 2314 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2315 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2316 } 2317 2318 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2319 { 2320 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio) 2321 WARN_ON(adjustment < 0); 2322 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment); 2323 adjust_tsc_offset_guest(vcpu, adjustment); 2324 } 2325 2326 #ifdef CONFIG_X86_64 2327 2328 static u64 read_tsc(void) 2329 { 2330 u64 ret = (u64)rdtsc_ordered(); 2331 u64 last = pvclock_gtod_data.clock.cycle_last; 2332 2333 if (likely(ret >= last)) 2334 return ret; 2335 2336 /* 2337 * GCC likes to generate cmov here, but this branch is extremely 2338 * predictable (it's just a function of time and the likely is 2339 * very likely) and there's a data dependence, so force GCC 2340 * to generate a branch instead. I don't barrier() because 2341 * we don't actually need a barrier, and if this function 2342 * ever gets inlined it will generate worse code. 2343 */ 2344 asm volatile (""); 2345 return last; 2346 } 2347 2348 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2349 int *mode) 2350 { 2351 long v; 2352 u64 tsc_pg_val; 2353 2354 switch (clock->vclock_mode) { 2355 case VDSO_CLOCKMODE_HVCLOCK: 2356 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 2357 tsc_timestamp); 2358 if (tsc_pg_val != U64_MAX) { 2359 /* TSC page valid */ 2360 *mode = VDSO_CLOCKMODE_HVCLOCK; 2361 v = (tsc_pg_val - clock->cycle_last) & 2362 clock->mask; 2363 } else { 2364 /* TSC page invalid */ 2365 *mode = VDSO_CLOCKMODE_NONE; 2366 } 2367 break; 2368 case VDSO_CLOCKMODE_TSC: 2369 *mode = VDSO_CLOCKMODE_TSC; 2370 *tsc_timestamp = read_tsc(); 2371 v = (*tsc_timestamp - clock->cycle_last) & 2372 clock->mask; 2373 break; 2374 default: 2375 *mode = VDSO_CLOCKMODE_NONE; 2376 } 2377 2378 if (*mode == VDSO_CLOCKMODE_NONE) 2379 *tsc_timestamp = v = 0; 2380 2381 return v * clock->mult; 2382 } 2383 2384 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2385 { 2386 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2387 unsigned long seq; 2388 int mode; 2389 u64 ns; 2390 2391 do { 2392 seq = read_seqcount_begin(>od->seq); 2393 ns = gtod->raw_clock.base_cycles; 2394 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2395 ns >>= gtod->raw_clock.shift; 2396 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2397 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2398 *t = ns; 2399 2400 return mode; 2401 } 2402 2403 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2404 { 2405 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2406 unsigned long seq; 2407 int mode; 2408 u64 ns; 2409 2410 do { 2411 seq = read_seqcount_begin(>od->seq); 2412 ts->tv_sec = gtod->wall_time_sec; 2413 ns = gtod->clock.base_cycles; 2414 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2415 ns >>= gtod->clock.shift; 2416 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2417 2418 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2419 ts->tv_nsec = ns; 2420 2421 return mode; 2422 } 2423 2424 /* returns true if host is using TSC based clocksource */ 2425 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2426 { 2427 /* checked again under seqlock below */ 2428 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2429 return false; 2430 2431 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2432 tsc_timestamp)); 2433 } 2434 2435 /* returns true if host is using TSC based clocksource */ 2436 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2437 u64 *tsc_timestamp) 2438 { 2439 /* checked again under seqlock below */ 2440 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2441 return false; 2442 2443 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2444 } 2445 #endif 2446 2447 /* 2448 * 2449 * Assuming a stable TSC across physical CPUS, and a stable TSC 2450 * across virtual CPUs, the following condition is possible. 2451 * Each numbered line represents an event visible to both 2452 * CPUs at the next numbered event. 2453 * 2454 * "timespecX" represents host monotonic time. "tscX" represents 2455 * RDTSC value. 2456 * 2457 * VCPU0 on CPU0 | VCPU1 on CPU1 2458 * 2459 * 1. read timespec0,tsc0 2460 * 2. | timespec1 = timespec0 + N 2461 * | tsc1 = tsc0 + M 2462 * 3. transition to guest | transition to guest 2463 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2464 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2465 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2466 * 2467 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2468 * 2469 * - ret0 < ret1 2470 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2471 * ... 2472 * - 0 < N - M => M < N 2473 * 2474 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2475 * always the case (the difference between two distinct xtime instances 2476 * might be smaller then the difference between corresponding TSC reads, 2477 * when updating guest vcpus pvclock areas). 2478 * 2479 * To avoid that problem, do not allow visibility of distinct 2480 * system_timestamp/tsc_timestamp values simultaneously: use a master 2481 * copy of host monotonic time values. Update that master copy 2482 * in lockstep. 2483 * 2484 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2485 * 2486 */ 2487 2488 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2489 { 2490 #ifdef CONFIG_X86_64 2491 struct kvm_arch *ka = &kvm->arch; 2492 int vclock_mode; 2493 bool host_tsc_clocksource, vcpus_matched; 2494 2495 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2496 atomic_read(&kvm->online_vcpus)); 2497 2498 /* 2499 * If the host uses TSC clock, then passthrough TSC as stable 2500 * to the guest. 2501 */ 2502 host_tsc_clocksource = kvm_get_time_and_clockread( 2503 &ka->master_kernel_ns, 2504 &ka->master_cycle_now); 2505 2506 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2507 && !ka->backwards_tsc_observed 2508 && !ka->boot_vcpu_runs_old_kvmclock; 2509 2510 if (ka->use_master_clock) 2511 atomic_set(&kvm_guest_has_master_clock, 1); 2512 2513 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2514 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2515 vcpus_matched); 2516 #endif 2517 } 2518 2519 void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2520 { 2521 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2522 } 2523 2524 static void kvm_gen_update_masterclock(struct kvm *kvm) 2525 { 2526 #ifdef CONFIG_X86_64 2527 int i; 2528 struct kvm_vcpu *vcpu; 2529 struct kvm_arch *ka = &kvm->arch; 2530 2531 spin_lock(&ka->pvclock_gtod_sync_lock); 2532 kvm_make_mclock_inprogress_request(kvm); 2533 /* no guest entries from this point */ 2534 pvclock_update_vm_gtod_copy(kvm); 2535 2536 kvm_for_each_vcpu(i, vcpu, kvm) 2537 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2538 2539 /* guest entries allowed */ 2540 kvm_for_each_vcpu(i, vcpu, kvm) 2541 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 2542 2543 spin_unlock(&ka->pvclock_gtod_sync_lock); 2544 #endif 2545 } 2546 2547 u64 get_kvmclock_ns(struct kvm *kvm) 2548 { 2549 struct kvm_arch *ka = &kvm->arch; 2550 struct pvclock_vcpu_time_info hv_clock; 2551 u64 ret; 2552 2553 spin_lock(&ka->pvclock_gtod_sync_lock); 2554 if (!ka->use_master_clock) { 2555 spin_unlock(&ka->pvclock_gtod_sync_lock); 2556 return get_kvmclock_base_ns() + ka->kvmclock_offset; 2557 } 2558 2559 hv_clock.tsc_timestamp = ka->master_cycle_now; 2560 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 2561 spin_unlock(&ka->pvclock_gtod_sync_lock); 2562 2563 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 2564 get_cpu(); 2565 2566 if (__this_cpu_read(cpu_tsc_khz)) { 2567 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL, 2568 &hv_clock.tsc_shift, 2569 &hv_clock.tsc_to_system_mul); 2570 ret = __pvclock_read_cycles(&hv_clock, rdtsc()); 2571 } else 2572 ret = get_kvmclock_base_ns() + ka->kvmclock_offset; 2573 2574 put_cpu(); 2575 2576 return ret; 2577 } 2578 2579 static void kvm_setup_pvclock_page(struct kvm_vcpu *v) 2580 { 2581 struct kvm_vcpu_arch *vcpu = &v->arch; 2582 struct pvclock_vcpu_time_info guest_hv_clock; 2583 2584 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time, 2585 &guest_hv_clock, sizeof(guest_hv_clock)))) 2586 return; 2587 2588 /* This VCPU is paused, but it's legal for a guest to read another 2589 * VCPU's kvmclock, so we really have to follow the specification where 2590 * it says that version is odd if data is being modified, and even after 2591 * it is consistent. 2592 * 2593 * Version field updates must be kept separate. This is because 2594 * kvm_write_guest_cached might use a "rep movs" instruction, and 2595 * writes within a string instruction are weakly ordered. So there 2596 * are three writes overall. 2597 * 2598 * As a small optimization, only write the version field in the first 2599 * and third write. The vcpu->pv_time cache is still valid, because the 2600 * version field is the first in the struct. 2601 */ 2602 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); 2603 2604 if (guest_hv_clock.version & 1) 2605 ++guest_hv_clock.version; /* first time write, random junk */ 2606 2607 vcpu->hv_clock.version = guest_hv_clock.version + 1; 2608 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2609 &vcpu->hv_clock, 2610 sizeof(vcpu->hv_clock.version)); 2611 2612 smp_wmb(); 2613 2614 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 2615 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); 2616 2617 if (vcpu->pvclock_set_guest_stopped_request) { 2618 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 2619 vcpu->pvclock_set_guest_stopped_request = false; 2620 } 2621 2622 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 2623 2624 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2625 &vcpu->hv_clock, 2626 sizeof(vcpu->hv_clock)); 2627 2628 smp_wmb(); 2629 2630 vcpu->hv_clock.version++; 2631 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2632 &vcpu->hv_clock, 2633 sizeof(vcpu->hv_clock.version)); 2634 } 2635 2636 static int kvm_guest_time_update(struct kvm_vcpu *v) 2637 { 2638 unsigned long flags, tgt_tsc_khz; 2639 struct kvm_vcpu_arch *vcpu = &v->arch; 2640 struct kvm_arch *ka = &v->kvm->arch; 2641 s64 kernel_ns; 2642 u64 tsc_timestamp, host_tsc; 2643 u8 pvclock_flags; 2644 bool use_master_clock; 2645 2646 kernel_ns = 0; 2647 host_tsc = 0; 2648 2649 /* 2650 * If the host uses TSC clock, then passthrough TSC as stable 2651 * to the guest. 2652 */ 2653 spin_lock(&ka->pvclock_gtod_sync_lock); 2654 use_master_clock = ka->use_master_clock; 2655 if (use_master_clock) { 2656 host_tsc = ka->master_cycle_now; 2657 kernel_ns = ka->master_kernel_ns; 2658 } 2659 spin_unlock(&ka->pvclock_gtod_sync_lock); 2660 2661 /* Keep irq disabled to prevent changes to the clock */ 2662 local_irq_save(flags); 2663 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz); 2664 if (unlikely(tgt_tsc_khz == 0)) { 2665 local_irq_restore(flags); 2666 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 2667 return 1; 2668 } 2669 if (!use_master_clock) { 2670 host_tsc = rdtsc(); 2671 kernel_ns = get_kvmclock_base_ns(); 2672 } 2673 2674 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 2675 2676 /* 2677 * We may have to catch up the TSC to match elapsed wall clock 2678 * time for two reasons, even if kvmclock is used. 2679 * 1) CPU could have been running below the maximum TSC rate 2680 * 2) Broken TSC compensation resets the base at each VCPU 2681 * entry to avoid unknown leaps of TSC even when running 2682 * again on the same CPU. This may cause apparent elapsed 2683 * time to disappear, and the guest to stand still or run 2684 * very slowly. 2685 */ 2686 if (vcpu->tsc_catchup) { 2687 u64 tsc = compute_guest_tsc(v, kernel_ns); 2688 if (tsc > tsc_timestamp) { 2689 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 2690 tsc_timestamp = tsc; 2691 } 2692 } 2693 2694 local_irq_restore(flags); 2695 2696 /* With all the info we got, fill in the values */ 2697 2698 if (kvm_has_tsc_control) 2699 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz); 2700 2701 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 2702 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 2703 &vcpu->hv_clock.tsc_shift, 2704 &vcpu->hv_clock.tsc_to_system_mul); 2705 vcpu->hw_tsc_khz = tgt_tsc_khz; 2706 } 2707 2708 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 2709 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 2710 vcpu->last_guest_tsc = tsc_timestamp; 2711 2712 /* If the host uses TSC clocksource, then it is stable */ 2713 pvclock_flags = 0; 2714 if (use_master_clock) 2715 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 2716 2717 vcpu->hv_clock.flags = pvclock_flags; 2718 2719 if (vcpu->pv_time_enabled) 2720 kvm_setup_pvclock_page(v); 2721 if (v == kvm_get_vcpu(v->kvm, 0)) 2722 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 2723 return 0; 2724 } 2725 2726 /* 2727 * kvmclock updates which are isolated to a given vcpu, such as 2728 * vcpu->cpu migration, should not allow system_timestamp from 2729 * the rest of the vcpus to remain static. Otherwise ntp frequency 2730 * correction applies to one vcpu's system_timestamp but not 2731 * the others. 2732 * 2733 * So in those cases, request a kvmclock update for all vcpus. 2734 * We need to rate-limit these requests though, as they can 2735 * considerably slow guests that have a large number of vcpus. 2736 * The time for a remote vcpu to update its kvmclock is bound 2737 * by the delay we use to rate-limit the updates. 2738 */ 2739 2740 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 2741 2742 static void kvmclock_update_fn(struct work_struct *work) 2743 { 2744 int i; 2745 struct delayed_work *dwork = to_delayed_work(work); 2746 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 2747 kvmclock_update_work); 2748 struct kvm *kvm = container_of(ka, struct kvm, arch); 2749 struct kvm_vcpu *vcpu; 2750 2751 kvm_for_each_vcpu(i, vcpu, kvm) { 2752 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2753 kvm_vcpu_kick(vcpu); 2754 } 2755 } 2756 2757 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 2758 { 2759 struct kvm *kvm = v->kvm; 2760 2761 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 2762 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 2763 KVMCLOCK_UPDATE_DELAY); 2764 } 2765 2766 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 2767 2768 static void kvmclock_sync_fn(struct work_struct *work) 2769 { 2770 struct delayed_work *dwork = to_delayed_work(work); 2771 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 2772 kvmclock_sync_work); 2773 struct kvm *kvm = container_of(ka, struct kvm, arch); 2774 2775 if (!kvmclock_periodic_sync) 2776 return; 2777 2778 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 2779 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 2780 KVMCLOCK_SYNC_PERIOD); 2781 } 2782 2783 /* 2784 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 2785 */ 2786 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 2787 { 2788 /* McStatusWrEn enabled? */ 2789 if (guest_cpuid_is_amd_or_hygon(vcpu)) 2790 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 2791 2792 return false; 2793 } 2794 2795 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2796 { 2797 u64 mcg_cap = vcpu->arch.mcg_cap; 2798 unsigned bank_num = mcg_cap & 0xff; 2799 u32 msr = msr_info->index; 2800 u64 data = msr_info->data; 2801 2802 switch (msr) { 2803 case MSR_IA32_MCG_STATUS: 2804 vcpu->arch.mcg_status = data; 2805 break; 2806 case MSR_IA32_MCG_CTL: 2807 if (!(mcg_cap & MCG_CTL_P) && 2808 (data || !msr_info->host_initiated)) 2809 return 1; 2810 if (data != 0 && data != ~(u64)0) 2811 return 1; 2812 vcpu->arch.mcg_ctl = data; 2813 break; 2814 default: 2815 if (msr >= MSR_IA32_MC0_CTL && 2816 msr < MSR_IA32_MCx_CTL(bank_num)) { 2817 u32 offset = array_index_nospec( 2818 msr - MSR_IA32_MC0_CTL, 2819 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL); 2820 2821 /* only 0 or all 1s can be written to IA32_MCi_CTL 2822 * some Linux kernels though clear bit 10 in bank 4 to 2823 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 2824 * this to avoid an uncatched #GP in the guest 2825 */ 2826 if ((offset & 0x3) == 0 && 2827 data != 0 && (data | (1 << 10)) != ~(u64)0) 2828 return -1; 2829 2830 /* MCi_STATUS */ 2831 if (!msr_info->host_initiated && 2832 (offset & 0x3) == 1 && data != 0) { 2833 if (!can_set_mci_status(vcpu)) 2834 return -1; 2835 } 2836 2837 vcpu->arch.mce_banks[offset] = data; 2838 break; 2839 } 2840 return 1; 2841 } 2842 return 0; 2843 } 2844 2845 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) 2846 { 2847 struct kvm *kvm = vcpu->kvm; 2848 int lm = is_long_mode(vcpu); 2849 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 2850 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; 2851 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 2852 : kvm->arch.xen_hvm_config.blob_size_32; 2853 u32 page_num = data & ~PAGE_MASK; 2854 u64 page_addr = data & PAGE_MASK; 2855 u8 *page; 2856 2857 if (page_num >= blob_size) 2858 return 1; 2859 2860 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); 2861 if (IS_ERR(page)) 2862 return PTR_ERR(page); 2863 2864 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) { 2865 kfree(page); 2866 return 1; 2867 } 2868 return 0; 2869 } 2870 2871 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 2872 { 2873 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 2874 2875 return (vcpu->arch.apf.msr_en_val & mask) == mask; 2876 } 2877 2878 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 2879 { 2880 gpa_t gpa = data & ~0x3f; 2881 2882 /* Bits 4:5 are reserved, Should be zero */ 2883 if (data & 0x30) 2884 return 1; 2885 2886 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 2887 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 2888 return 1; 2889 2890 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 2891 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 2892 return 1; 2893 2894 if (!lapic_in_kernel(vcpu)) 2895 return data ? 1 : 0; 2896 2897 vcpu->arch.apf.msr_en_val = data; 2898 2899 if (!kvm_pv_async_pf_enabled(vcpu)) { 2900 kvm_clear_async_pf_completion_queue(vcpu); 2901 kvm_async_pf_hash_reset(vcpu); 2902 return 0; 2903 } 2904 2905 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 2906 sizeof(u64))) 2907 return 1; 2908 2909 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 2910 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 2911 2912 kvm_async_pf_wakeup_all(vcpu); 2913 2914 return 0; 2915 } 2916 2917 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 2918 { 2919 /* Bits 8-63 are reserved */ 2920 if (data >> 8) 2921 return 1; 2922 2923 if (!lapic_in_kernel(vcpu)) 2924 return 1; 2925 2926 vcpu->arch.apf.msr_int_val = data; 2927 2928 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 2929 2930 return 0; 2931 } 2932 2933 static void kvmclock_reset(struct kvm_vcpu *vcpu) 2934 { 2935 vcpu->arch.pv_time_enabled = false; 2936 vcpu->arch.time = 0; 2937 } 2938 2939 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 2940 { 2941 ++vcpu->stat.tlb_flush; 2942 kvm_x86_ops.tlb_flush_all(vcpu); 2943 } 2944 2945 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 2946 { 2947 ++vcpu->stat.tlb_flush; 2948 kvm_x86_ops.tlb_flush_guest(vcpu); 2949 } 2950 2951 static void record_steal_time(struct kvm_vcpu *vcpu) 2952 { 2953 struct kvm_host_map map; 2954 struct kvm_steal_time *st; 2955 2956 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 2957 return; 2958 2959 /* -EAGAIN is returned in atomic context so we can just return. */ 2960 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, 2961 &map, &vcpu->arch.st.cache, false)) 2962 return; 2963 2964 st = map.hva + 2965 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS); 2966 2967 /* 2968 * Doing a TLB flush here, on the guest's behalf, can avoid 2969 * expensive IPIs. 2970 */ 2971 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 2972 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 2973 st->preempted & KVM_VCPU_FLUSH_TLB); 2974 if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB) 2975 kvm_vcpu_flush_tlb_guest(vcpu); 2976 } 2977 2978 vcpu->arch.st.preempted = 0; 2979 2980 if (st->version & 1) 2981 st->version += 1; /* first time write, random junk */ 2982 2983 st->version += 1; 2984 2985 smp_wmb(); 2986 2987 st->steal += current->sched_info.run_delay - 2988 vcpu->arch.st.last_steal; 2989 vcpu->arch.st.last_steal = current->sched_info.run_delay; 2990 2991 smp_wmb(); 2992 2993 st->version += 1; 2994 2995 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false); 2996 } 2997 2998 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2999 { 3000 bool pr = false; 3001 u32 msr = msr_info->index; 3002 u64 data = msr_info->data; 3003 3004 switch (msr) { 3005 case MSR_AMD64_NB_CFG: 3006 case MSR_IA32_UCODE_WRITE: 3007 case MSR_VM_HSAVE_PA: 3008 case MSR_AMD64_PATCH_LOADER: 3009 case MSR_AMD64_BU_CFG2: 3010 case MSR_AMD64_DC_CFG: 3011 case MSR_F15H_EX_CFG: 3012 break; 3013 3014 case MSR_IA32_UCODE_REV: 3015 if (msr_info->host_initiated) 3016 vcpu->arch.microcode_version = data; 3017 break; 3018 case MSR_IA32_ARCH_CAPABILITIES: 3019 if (!msr_info->host_initiated) 3020 return 1; 3021 vcpu->arch.arch_capabilities = data; 3022 break; 3023 case MSR_IA32_PERF_CAPABILITIES: { 3024 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0}; 3025 3026 if (!msr_info->host_initiated) 3027 return 1; 3028 if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent)) 3029 return 1; 3030 if (data & ~msr_ent.data) 3031 return 1; 3032 3033 vcpu->arch.perf_capabilities = data; 3034 3035 return 0; 3036 } 3037 case MSR_EFER: 3038 return set_efer(vcpu, msr_info); 3039 case MSR_K7_HWCR: 3040 data &= ~(u64)0x40; /* ignore flush filter disable */ 3041 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3042 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3043 3044 /* Handle McStatusWrEn */ 3045 if (data == BIT_ULL(18)) { 3046 vcpu->arch.msr_hwcr = data; 3047 } else if (data != 0) { 3048 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 3049 data); 3050 return 1; 3051 } 3052 break; 3053 case MSR_FAM10H_MMIO_CONF_BASE: 3054 if (data != 0) { 3055 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 3056 "0x%llx\n", data); 3057 return 1; 3058 } 3059 break; 3060 case MSR_IA32_DEBUGCTLMSR: 3061 if (!data) { 3062 /* We support the non-activated case already */ 3063 break; 3064 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { 3065 /* Values other than LBR and BTF are vendor-specific, 3066 thus reserved and should throw a #GP */ 3067 return 1; 3068 } else if (report_ignored_msrs) 3069 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", 3070 __func__, data); 3071 break; 3072 case 0x200 ... 0x2ff: 3073 return kvm_mtrr_set_msr(vcpu, msr, data); 3074 case MSR_IA32_APICBASE: 3075 return kvm_set_apic_base(vcpu, msr_info); 3076 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3077 return kvm_x2apic_msr_write(vcpu, msr, data); 3078 case MSR_IA32_TSCDEADLINE: 3079 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3080 break; 3081 case MSR_IA32_TSC_ADJUST: 3082 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3083 if (!msr_info->host_initiated) { 3084 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3085 adjust_tsc_offset_guest(vcpu, adj); 3086 } 3087 vcpu->arch.ia32_tsc_adjust_msr = data; 3088 } 3089 break; 3090 case MSR_IA32_MISC_ENABLE: 3091 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3092 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3093 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3094 return 1; 3095 vcpu->arch.ia32_misc_enable_msr = data; 3096 kvm_update_cpuid_runtime(vcpu); 3097 } else { 3098 vcpu->arch.ia32_misc_enable_msr = data; 3099 } 3100 break; 3101 case MSR_IA32_SMBASE: 3102 if (!msr_info->host_initiated) 3103 return 1; 3104 vcpu->arch.smbase = data; 3105 break; 3106 case MSR_IA32_POWER_CTL: 3107 vcpu->arch.msr_ia32_power_ctl = data; 3108 break; 3109 case MSR_IA32_TSC: 3110 if (msr_info->host_initiated) { 3111 kvm_synchronize_tsc(vcpu, data); 3112 } else { 3113 u64 adj = kvm_compute_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3114 adjust_tsc_offset_guest(vcpu, adj); 3115 vcpu->arch.ia32_tsc_adjust_msr += adj; 3116 } 3117 break; 3118 case MSR_IA32_XSS: 3119 if (!msr_info->host_initiated && 3120 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3121 return 1; 3122 /* 3123 * KVM supports exposing PT to the guest, but does not support 3124 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3125 * XSAVES/XRSTORS to save/restore PT MSRs. 3126 */ 3127 if (data & ~supported_xss) 3128 return 1; 3129 vcpu->arch.ia32_xss = data; 3130 break; 3131 case MSR_SMI_COUNT: 3132 if (!msr_info->host_initiated) 3133 return 1; 3134 vcpu->arch.smi_count = data; 3135 break; 3136 case MSR_KVM_WALL_CLOCK_NEW: 3137 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3138 return 1; 3139 3140 kvm_write_wall_clock(vcpu->kvm, data); 3141 break; 3142 case MSR_KVM_WALL_CLOCK: 3143 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3144 return 1; 3145 3146 kvm_write_wall_clock(vcpu->kvm, data); 3147 break; 3148 case MSR_KVM_SYSTEM_TIME_NEW: 3149 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3150 return 1; 3151 3152 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3153 break; 3154 case MSR_KVM_SYSTEM_TIME: 3155 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3156 return 1; 3157 3158 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3159 break; 3160 case MSR_KVM_ASYNC_PF_EN: 3161 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3162 return 1; 3163 3164 if (kvm_pv_enable_async_pf(vcpu, data)) 3165 return 1; 3166 break; 3167 case MSR_KVM_ASYNC_PF_INT: 3168 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3169 return 1; 3170 3171 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3172 return 1; 3173 break; 3174 case MSR_KVM_ASYNC_PF_ACK: 3175 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3176 return 1; 3177 if (data & 0x1) { 3178 vcpu->arch.apf.pageready_pending = false; 3179 kvm_check_async_pf_completion(vcpu); 3180 } 3181 break; 3182 case MSR_KVM_STEAL_TIME: 3183 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3184 return 1; 3185 3186 if (unlikely(!sched_info_on())) 3187 return 1; 3188 3189 if (data & KVM_STEAL_RESERVED_MASK) 3190 return 1; 3191 3192 vcpu->arch.st.msr_val = data; 3193 3194 if (!(data & KVM_MSR_ENABLED)) 3195 break; 3196 3197 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3198 3199 break; 3200 case MSR_KVM_PV_EOI_EN: 3201 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3202 return 1; 3203 3204 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8))) 3205 return 1; 3206 break; 3207 3208 case MSR_KVM_POLL_CONTROL: 3209 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3210 return 1; 3211 3212 /* only enable bit supported */ 3213 if (data & (-1ULL << 1)) 3214 return 1; 3215 3216 vcpu->arch.msr_kvm_poll_control = data; 3217 break; 3218 3219 case MSR_IA32_MCG_CTL: 3220 case MSR_IA32_MCG_STATUS: 3221 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3222 return set_msr_mce(vcpu, msr_info); 3223 3224 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3225 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3226 pr = true; 3227 fallthrough; 3228 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3229 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3230 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3231 return kvm_pmu_set_msr(vcpu, msr_info); 3232 3233 if (pr || data != 0) 3234 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 3235 "0x%x data 0x%llx\n", msr, data); 3236 break; 3237 case MSR_K7_CLK_CTL: 3238 /* 3239 * Ignore all writes to this no longer documented MSR. 3240 * Writes are only relevant for old K7 processors, 3241 * all pre-dating SVM, but a recommended workaround from 3242 * AMD for these chips. It is possible to specify the 3243 * affected processor models on the command line, hence 3244 * the need to ignore the workaround. 3245 */ 3246 break; 3247 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3248 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3249 case HV_X64_MSR_SYNDBG_OPTIONS: 3250 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3251 case HV_X64_MSR_CRASH_CTL: 3252 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3253 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3254 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3255 case HV_X64_MSR_TSC_EMULATION_STATUS: 3256 return kvm_hv_set_msr_common(vcpu, msr, data, 3257 msr_info->host_initiated); 3258 case MSR_IA32_BBL_CR_CTL3: 3259 /* Drop writes to this legacy MSR -- see rdmsr 3260 * counterpart for further detail. 3261 */ 3262 if (report_ignored_msrs) 3263 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", 3264 msr, data); 3265 break; 3266 case MSR_AMD64_OSVW_ID_LENGTH: 3267 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3268 return 1; 3269 vcpu->arch.osvw.length = data; 3270 break; 3271 case MSR_AMD64_OSVW_STATUS: 3272 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3273 return 1; 3274 vcpu->arch.osvw.status = data; 3275 break; 3276 case MSR_PLATFORM_INFO: 3277 if (!msr_info->host_initiated || 3278 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3279 cpuid_fault_enabled(vcpu))) 3280 return 1; 3281 vcpu->arch.msr_platform_info = data; 3282 break; 3283 case MSR_MISC_FEATURES_ENABLES: 3284 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3285 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3286 !supports_cpuid_fault(vcpu))) 3287 return 1; 3288 vcpu->arch.msr_misc_features_enables = data; 3289 break; 3290 default: 3291 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) 3292 return xen_hvm_config(vcpu, data); 3293 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3294 return kvm_pmu_set_msr(vcpu, msr_info); 3295 return KVM_MSR_RET_INVALID; 3296 } 3297 return 0; 3298 } 3299 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 3300 3301 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 3302 { 3303 u64 data; 3304 u64 mcg_cap = vcpu->arch.mcg_cap; 3305 unsigned bank_num = mcg_cap & 0xff; 3306 3307 switch (msr) { 3308 case MSR_IA32_P5_MC_ADDR: 3309 case MSR_IA32_P5_MC_TYPE: 3310 data = 0; 3311 break; 3312 case MSR_IA32_MCG_CAP: 3313 data = vcpu->arch.mcg_cap; 3314 break; 3315 case MSR_IA32_MCG_CTL: 3316 if (!(mcg_cap & MCG_CTL_P) && !host) 3317 return 1; 3318 data = vcpu->arch.mcg_ctl; 3319 break; 3320 case MSR_IA32_MCG_STATUS: 3321 data = vcpu->arch.mcg_status; 3322 break; 3323 default: 3324 if (msr >= MSR_IA32_MC0_CTL && 3325 msr < MSR_IA32_MCx_CTL(bank_num)) { 3326 u32 offset = array_index_nospec( 3327 msr - MSR_IA32_MC0_CTL, 3328 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL); 3329 3330 data = vcpu->arch.mce_banks[offset]; 3331 break; 3332 } 3333 return 1; 3334 } 3335 *pdata = data; 3336 return 0; 3337 } 3338 3339 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3340 { 3341 switch (msr_info->index) { 3342 case MSR_IA32_PLATFORM_ID: 3343 case MSR_IA32_EBL_CR_POWERON: 3344 case MSR_IA32_DEBUGCTLMSR: 3345 case MSR_IA32_LASTBRANCHFROMIP: 3346 case MSR_IA32_LASTBRANCHTOIP: 3347 case MSR_IA32_LASTINTFROMIP: 3348 case MSR_IA32_LASTINTTOIP: 3349 case MSR_K8_SYSCFG: 3350 case MSR_K8_TSEG_ADDR: 3351 case MSR_K8_TSEG_MASK: 3352 case MSR_VM_HSAVE_PA: 3353 case MSR_K8_INT_PENDING_MSG: 3354 case MSR_AMD64_NB_CFG: 3355 case MSR_FAM10H_MMIO_CONF_BASE: 3356 case MSR_AMD64_BU_CFG2: 3357 case MSR_IA32_PERF_CTL: 3358 case MSR_AMD64_DC_CFG: 3359 case MSR_F15H_EX_CFG: 3360 /* 3361 * Intel Sandy Bridge CPUs must support the RAPL (running average power 3362 * limit) MSRs. Just return 0, as we do not want to expose the host 3363 * data here. Do not conditionalize this on CPUID, as KVM does not do 3364 * so for existing CPU-specific MSRs. 3365 */ 3366 case MSR_RAPL_POWER_UNIT: 3367 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 3368 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 3369 case MSR_PKG_ENERGY_STATUS: /* Total package */ 3370 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 3371 msr_info->data = 0; 3372 break; 3373 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3374 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3375 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3376 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3377 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3378 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3379 return kvm_pmu_get_msr(vcpu, msr_info); 3380 msr_info->data = 0; 3381 break; 3382 case MSR_IA32_UCODE_REV: 3383 msr_info->data = vcpu->arch.microcode_version; 3384 break; 3385 case MSR_IA32_ARCH_CAPABILITIES: 3386 if (!msr_info->host_initiated && 3387 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 3388 return 1; 3389 msr_info->data = vcpu->arch.arch_capabilities; 3390 break; 3391 case MSR_IA32_PERF_CAPABILITIES: 3392 if (!msr_info->host_initiated && 3393 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 3394 return 1; 3395 msr_info->data = vcpu->arch.perf_capabilities; 3396 break; 3397 case MSR_IA32_POWER_CTL: 3398 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 3399 break; 3400 case MSR_IA32_TSC: { 3401 /* 3402 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 3403 * even when not intercepted. AMD manual doesn't explicitly 3404 * state this but appears to behave the same. 3405 * 3406 * On userspace reads and writes, however, we unconditionally 3407 * return L1's TSC value to ensure backwards-compatible 3408 * behavior for migration. 3409 */ 3410 u64 tsc_offset = msr_info->host_initiated ? vcpu->arch.l1_tsc_offset : 3411 vcpu->arch.tsc_offset; 3412 3413 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + tsc_offset; 3414 break; 3415 } 3416 case MSR_MTRRcap: 3417 case 0x200 ... 0x2ff: 3418 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 3419 case 0xcd: /* fsb frequency */ 3420 msr_info->data = 3; 3421 break; 3422 /* 3423 * MSR_EBC_FREQUENCY_ID 3424 * Conservative value valid for even the basic CPU models. 3425 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 3426 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 3427 * and 266MHz for model 3, or 4. Set Core Clock 3428 * Frequency to System Bus Frequency Ratio to 1 (bits 3429 * 31:24) even though these are only valid for CPU 3430 * models > 2, however guests may end up dividing or 3431 * multiplying by zero otherwise. 3432 */ 3433 case MSR_EBC_FREQUENCY_ID: 3434 msr_info->data = 1 << 24; 3435 break; 3436 case MSR_IA32_APICBASE: 3437 msr_info->data = kvm_get_apic_base(vcpu); 3438 break; 3439 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3440 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 3441 case MSR_IA32_TSCDEADLINE: 3442 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 3443 break; 3444 case MSR_IA32_TSC_ADJUST: 3445 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 3446 break; 3447 case MSR_IA32_MISC_ENABLE: 3448 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 3449 break; 3450 case MSR_IA32_SMBASE: 3451 if (!msr_info->host_initiated) 3452 return 1; 3453 msr_info->data = vcpu->arch.smbase; 3454 break; 3455 case MSR_SMI_COUNT: 3456 msr_info->data = vcpu->arch.smi_count; 3457 break; 3458 case MSR_IA32_PERF_STATUS: 3459 /* TSC increment by tick */ 3460 msr_info->data = 1000ULL; 3461 /* CPU multiplier */ 3462 msr_info->data |= (((uint64_t)4ULL) << 40); 3463 break; 3464 case MSR_EFER: 3465 msr_info->data = vcpu->arch.efer; 3466 break; 3467 case MSR_KVM_WALL_CLOCK: 3468 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3469 return 1; 3470 3471 msr_info->data = vcpu->kvm->arch.wall_clock; 3472 break; 3473 case MSR_KVM_WALL_CLOCK_NEW: 3474 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3475 return 1; 3476 3477 msr_info->data = vcpu->kvm->arch.wall_clock; 3478 break; 3479 case MSR_KVM_SYSTEM_TIME: 3480 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3481 return 1; 3482 3483 msr_info->data = vcpu->arch.time; 3484 break; 3485 case MSR_KVM_SYSTEM_TIME_NEW: 3486 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3487 return 1; 3488 3489 msr_info->data = vcpu->arch.time; 3490 break; 3491 case MSR_KVM_ASYNC_PF_EN: 3492 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3493 return 1; 3494 3495 msr_info->data = vcpu->arch.apf.msr_en_val; 3496 break; 3497 case MSR_KVM_ASYNC_PF_INT: 3498 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3499 return 1; 3500 3501 msr_info->data = vcpu->arch.apf.msr_int_val; 3502 break; 3503 case MSR_KVM_ASYNC_PF_ACK: 3504 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3505 return 1; 3506 3507 msr_info->data = 0; 3508 break; 3509 case MSR_KVM_STEAL_TIME: 3510 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3511 return 1; 3512 3513 msr_info->data = vcpu->arch.st.msr_val; 3514 break; 3515 case MSR_KVM_PV_EOI_EN: 3516 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3517 return 1; 3518 3519 msr_info->data = vcpu->arch.pv_eoi.msr_val; 3520 break; 3521 case MSR_KVM_POLL_CONTROL: 3522 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3523 return 1; 3524 3525 msr_info->data = vcpu->arch.msr_kvm_poll_control; 3526 break; 3527 case MSR_IA32_P5_MC_ADDR: 3528 case MSR_IA32_P5_MC_TYPE: 3529 case MSR_IA32_MCG_CAP: 3530 case MSR_IA32_MCG_CTL: 3531 case MSR_IA32_MCG_STATUS: 3532 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3533 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 3534 msr_info->host_initiated); 3535 case MSR_IA32_XSS: 3536 if (!msr_info->host_initiated && 3537 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3538 return 1; 3539 msr_info->data = vcpu->arch.ia32_xss; 3540 break; 3541 case MSR_K7_CLK_CTL: 3542 /* 3543 * Provide expected ramp-up count for K7. All other 3544 * are set to zero, indicating minimum divisors for 3545 * every field. 3546 * 3547 * This prevents guest kernels on AMD host with CPU 3548 * type 6, model 8 and higher from exploding due to 3549 * the rdmsr failing. 3550 */ 3551 msr_info->data = 0x20000000; 3552 break; 3553 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3554 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3555 case HV_X64_MSR_SYNDBG_OPTIONS: 3556 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3557 case HV_X64_MSR_CRASH_CTL: 3558 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3559 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3560 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3561 case HV_X64_MSR_TSC_EMULATION_STATUS: 3562 return kvm_hv_get_msr_common(vcpu, 3563 msr_info->index, &msr_info->data, 3564 msr_info->host_initiated); 3565 case MSR_IA32_BBL_CR_CTL3: 3566 /* This legacy MSR exists but isn't fully documented in current 3567 * silicon. It is however accessed by winxp in very narrow 3568 * scenarios where it sets bit #19, itself documented as 3569 * a "reserved" bit. Best effort attempt to source coherent 3570 * read data here should the balance of the register be 3571 * interpreted by the guest: 3572 * 3573 * L2 cache control register 3: 64GB range, 256KB size, 3574 * enabled, latency 0x1, configured 3575 */ 3576 msr_info->data = 0xbe702111; 3577 break; 3578 case MSR_AMD64_OSVW_ID_LENGTH: 3579 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3580 return 1; 3581 msr_info->data = vcpu->arch.osvw.length; 3582 break; 3583 case MSR_AMD64_OSVW_STATUS: 3584 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3585 return 1; 3586 msr_info->data = vcpu->arch.osvw.status; 3587 break; 3588 case MSR_PLATFORM_INFO: 3589 if (!msr_info->host_initiated && 3590 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 3591 return 1; 3592 msr_info->data = vcpu->arch.msr_platform_info; 3593 break; 3594 case MSR_MISC_FEATURES_ENABLES: 3595 msr_info->data = vcpu->arch.msr_misc_features_enables; 3596 break; 3597 case MSR_K7_HWCR: 3598 msr_info->data = vcpu->arch.msr_hwcr; 3599 break; 3600 default: 3601 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3602 return kvm_pmu_get_msr(vcpu, msr_info); 3603 return KVM_MSR_RET_INVALID; 3604 } 3605 return 0; 3606 } 3607 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 3608 3609 /* 3610 * Read or write a bunch of msrs. All parameters are kernel addresses. 3611 * 3612 * @return number of msrs set successfully. 3613 */ 3614 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 3615 struct kvm_msr_entry *entries, 3616 int (*do_msr)(struct kvm_vcpu *vcpu, 3617 unsigned index, u64 *data)) 3618 { 3619 int i; 3620 3621 for (i = 0; i < msrs->nmsrs; ++i) 3622 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 3623 break; 3624 3625 return i; 3626 } 3627 3628 /* 3629 * Read or write a bunch of msrs. Parameters are user addresses. 3630 * 3631 * @return number of msrs set successfully. 3632 */ 3633 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 3634 int (*do_msr)(struct kvm_vcpu *vcpu, 3635 unsigned index, u64 *data), 3636 int writeback) 3637 { 3638 struct kvm_msrs msrs; 3639 struct kvm_msr_entry *entries; 3640 int r, n; 3641 unsigned size; 3642 3643 r = -EFAULT; 3644 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 3645 goto out; 3646 3647 r = -E2BIG; 3648 if (msrs.nmsrs >= MAX_IO_MSRS) 3649 goto out; 3650 3651 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 3652 entries = memdup_user(user_msrs->entries, size); 3653 if (IS_ERR(entries)) { 3654 r = PTR_ERR(entries); 3655 goto out; 3656 } 3657 3658 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 3659 if (r < 0) 3660 goto out_free; 3661 3662 r = -EFAULT; 3663 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 3664 goto out_free; 3665 3666 r = n; 3667 3668 out_free: 3669 kfree(entries); 3670 out: 3671 return r; 3672 } 3673 3674 static inline bool kvm_can_mwait_in_guest(void) 3675 { 3676 return boot_cpu_has(X86_FEATURE_MWAIT) && 3677 !boot_cpu_has_bug(X86_BUG_MONITOR) && 3678 boot_cpu_has(X86_FEATURE_ARAT); 3679 } 3680 3681 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 3682 { 3683 int r = 0; 3684 3685 switch (ext) { 3686 case KVM_CAP_IRQCHIP: 3687 case KVM_CAP_HLT: 3688 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 3689 case KVM_CAP_SET_TSS_ADDR: 3690 case KVM_CAP_EXT_CPUID: 3691 case KVM_CAP_EXT_EMUL_CPUID: 3692 case KVM_CAP_CLOCKSOURCE: 3693 case KVM_CAP_PIT: 3694 case KVM_CAP_NOP_IO_DELAY: 3695 case KVM_CAP_MP_STATE: 3696 case KVM_CAP_SYNC_MMU: 3697 case KVM_CAP_USER_NMI: 3698 case KVM_CAP_REINJECT_CONTROL: 3699 case KVM_CAP_IRQ_INJECT_STATUS: 3700 case KVM_CAP_IOEVENTFD: 3701 case KVM_CAP_IOEVENTFD_NO_LENGTH: 3702 case KVM_CAP_PIT2: 3703 case KVM_CAP_PIT_STATE2: 3704 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 3705 case KVM_CAP_XEN_HVM: 3706 case KVM_CAP_VCPU_EVENTS: 3707 case KVM_CAP_HYPERV: 3708 case KVM_CAP_HYPERV_VAPIC: 3709 case KVM_CAP_HYPERV_SPIN: 3710 case KVM_CAP_HYPERV_SYNIC: 3711 case KVM_CAP_HYPERV_SYNIC2: 3712 case KVM_CAP_HYPERV_VP_INDEX: 3713 case KVM_CAP_HYPERV_EVENTFD: 3714 case KVM_CAP_HYPERV_TLBFLUSH: 3715 case KVM_CAP_HYPERV_SEND_IPI: 3716 case KVM_CAP_HYPERV_CPUID: 3717 case KVM_CAP_PCI_SEGMENT: 3718 case KVM_CAP_DEBUGREGS: 3719 case KVM_CAP_X86_ROBUST_SINGLESTEP: 3720 case KVM_CAP_XSAVE: 3721 case KVM_CAP_ASYNC_PF: 3722 case KVM_CAP_ASYNC_PF_INT: 3723 case KVM_CAP_GET_TSC_KHZ: 3724 case KVM_CAP_KVMCLOCK_CTRL: 3725 case KVM_CAP_READONLY_MEM: 3726 case KVM_CAP_HYPERV_TIME: 3727 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 3728 case KVM_CAP_TSC_DEADLINE_TIMER: 3729 case KVM_CAP_DISABLE_QUIRKS: 3730 case KVM_CAP_SET_BOOT_CPU_ID: 3731 case KVM_CAP_SPLIT_IRQCHIP: 3732 case KVM_CAP_IMMEDIATE_EXIT: 3733 case KVM_CAP_PMU_EVENT_FILTER: 3734 case KVM_CAP_GET_MSR_FEATURES: 3735 case KVM_CAP_MSR_PLATFORM_INFO: 3736 case KVM_CAP_EXCEPTION_PAYLOAD: 3737 case KVM_CAP_SET_GUEST_DEBUG: 3738 case KVM_CAP_LAST_CPU: 3739 case KVM_CAP_X86_USER_SPACE_MSR: 3740 case KVM_CAP_X86_MSR_FILTER: 3741 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 3742 r = 1; 3743 break; 3744 case KVM_CAP_SYNC_REGS: 3745 r = KVM_SYNC_X86_VALID_FIELDS; 3746 break; 3747 case KVM_CAP_ADJUST_CLOCK: 3748 r = KVM_CLOCK_TSC_STABLE; 3749 break; 3750 case KVM_CAP_X86_DISABLE_EXITS: 3751 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE | 3752 KVM_X86_DISABLE_EXITS_CSTATE; 3753 if(kvm_can_mwait_in_guest()) 3754 r |= KVM_X86_DISABLE_EXITS_MWAIT; 3755 break; 3756 case KVM_CAP_X86_SMM: 3757 /* SMBASE is usually relocated above 1M on modern chipsets, 3758 * and SMM handlers might indeed rely on 4G segment limits, 3759 * so do not report SMM to be available if real mode is 3760 * emulated via vm86 mode. Still, do not go to great lengths 3761 * to avoid userspace's usage of the feature, because it is a 3762 * fringe case that is not enabled except via specific settings 3763 * of the module parameters. 3764 */ 3765 r = kvm_x86_ops.has_emulated_msr(MSR_IA32_SMBASE); 3766 break; 3767 case KVM_CAP_VAPIC: 3768 r = !kvm_x86_ops.cpu_has_accelerated_tpr(); 3769 break; 3770 case KVM_CAP_NR_VCPUS: 3771 r = KVM_SOFT_MAX_VCPUS; 3772 break; 3773 case KVM_CAP_MAX_VCPUS: 3774 r = KVM_MAX_VCPUS; 3775 break; 3776 case KVM_CAP_MAX_VCPU_ID: 3777 r = KVM_MAX_VCPU_ID; 3778 break; 3779 case KVM_CAP_PV_MMU: /* obsolete */ 3780 r = 0; 3781 break; 3782 case KVM_CAP_MCE: 3783 r = KVM_MAX_MCE_BANKS; 3784 break; 3785 case KVM_CAP_XCRS: 3786 r = boot_cpu_has(X86_FEATURE_XSAVE); 3787 break; 3788 case KVM_CAP_TSC_CONTROL: 3789 r = kvm_has_tsc_control; 3790 break; 3791 case KVM_CAP_X2APIC_API: 3792 r = KVM_X2APIC_API_VALID_FLAGS; 3793 break; 3794 case KVM_CAP_NESTED_STATE: 3795 r = kvm_x86_ops.nested_ops->get_state ? 3796 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 3797 break; 3798 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 3799 r = kvm_x86_ops.enable_direct_tlbflush != NULL; 3800 break; 3801 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 3802 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 3803 break; 3804 case KVM_CAP_SMALLER_MAXPHYADDR: 3805 r = (int) allow_smaller_maxphyaddr; 3806 break; 3807 case KVM_CAP_STEAL_TIME: 3808 r = sched_info_on(); 3809 break; 3810 default: 3811 break; 3812 } 3813 return r; 3814 3815 } 3816 3817 long kvm_arch_dev_ioctl(struct file *filp, 3818 unsigned int ioctl, unsigned long arg) 3819 { 3820 void __user *argp = (void __user *)arg; 3821 long r; 3822 3823 switch (ioctl) { 3824 case KVM_GET_MSR_INDEX_LIST: { 3825 struct kvm_msr_list __user *user_msr_list = argp; 3826 struct kvm_msr_list msr_list; 3827 unsigned n; 3828 3829 r = -EFAULT; 3830 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 3831 goto out; 3832 n = msr_list.nmsrs; 3833 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 3834 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 3835 goto out; 3836 r = -E2BIG; 3837 if (n < msr_list.nmsrs) 3838 goto out; 3839 r = -EFAULT; 3840 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 3841 num_msrs_to_save * sizeof(u32))) 3842 goto out; 3843 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 3844 &emulated_msrs, 3845 num_emulated_msrs * sizeof(u32))) 3846 goto out; 3847 r = 0; 3848 break; 3849 } 3850 case KVM_GET_SUPPORTED_CPUID: 3851 case KVM_GET_EMULATED_CPUID: { 3852 struct kvm_cpuid2 __user *cpuid_arg = argp; 3853 struct kvm_cpuid2 cpuid; 3854 3855 r = -EFAULT; 3856 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 3857 goto out; 3858 3859 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 3860 ioctl); 3861 if (r) 3862 goto out; 3863 3864 r = -EFAULT; 3865 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 3866 goto out; 3867 r = 0; 3868 break; 3869 } 3870 case KVM_X86_GET_MCE_CAP_SUPPORTED: 3871 r = -EFAULT; 3872 if (copy_to_user(argp, &kvm_mce_cap_supported, 3873 sizeof(kvm_mce_cap_supported))) 3874 goto out; 3875 r = 0; 3876 break; 3877 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 3878 struct kvm_msr_list __user *user_msr_list = argp; 3879 struct kvm_msr_list msr_list; 3880 unsigned int n; 3881 3882 r = -EFAULT; 3883 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 3884 goto out; 3885 n = msr_list.nmsrs; 3886 msr_list.nmsrs = num_msr_based_features; 3887 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 3888 goto out; 3889 r = -E2BIG; 3890 if (n < msr_list.nmsrs) 3891 goto out; 3892 r = -EFAULT; 3893 if (copy_to_user(user_msr_list->indices, &msr_based_features, 3894 num_msr_based_features * sizeof(u32))) 3895 goto out; 3896 r = 0; 3897 break; 3898 } 3899 case KVM_GET_MSRS: 3900 r = msr_io(NULL, argp, do_get_msr_feature, 1); 3901 break; 3902 default: 3903 r = -EINVAL; 3904 break; 3905 } 3906 out: 3907 return r; 3908 } 3909 3910 static void wbinvd_ipi(void *garbage) 3911 { 3912 wbinvd(); 3913 } 3914 3915 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 3916 { 3917 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 3918 } 3919 3920 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 3921 { 3922 /* Address WBINVD may be executed by guest */ 3923 if (need_emulate_wbinvd(vcpu)) { 3924 if (kvm_x86_ops.has_wbinvd_exit()) 3925 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 3926 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 3927 smp_call_function_single(vcpu->cpu, 3928 wbinvd_ipi, NULL, 1); 3929 } 3930 3931 kvm_x86_ops.vcpu_load(vcpu, cpu); 3932 3933 /* Save host pkru register if supported */ 3934 vcpu->arch.host_pkru = read_pkru(); 3935 3936 /* Apply any externally detected TSC adjustments (due to suspend) */ 3937 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 3938 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 3939 vcpu->arch.tsc_offset_adjustment = 0; 3940 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3941 } 3942 3943 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 3944 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 3945 rdtsc() - vcpu->arch.last_host_tsc; 3946 if (tsc_delta < 0) 3947 mark_tsc_unstable("KVM discovered backwards TSC"); 3948 3949 if (kvm_check_tsc_unstable()) { 3950 u64 offset = kvm_compute_tsc_offset(vcpu, 3951 vcpu->arch.last_guest_tsc); 3952 kvm_vcpu_write_tsc_offset(vcpu, offset); 3953 vcpu->arch.tsc_catchup = 1; 3954 } 3955 3956 if (kvm_lapic_hv_timer_in_use(vcpu)) 3957 kvm_lapic_restart_hv_timer(vcpu); 3958 3959 /* 3960 * On a host with synchronized TSC, there is no need to update 3961 * kvmclock on vcpu->cpu migration 3962 */ 3963 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 3964 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 3965 if (vcpu->cpu != cpu) 3966 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 3967 vcpu->cpu = cpu; 3968 } 3969 3970 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3971 } 3972 3973 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 3974 { 3975 struct kvm_host_map map; 3976 struct kvm_steal_time *st; 3977 3978 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3979 return; 3980 3981 if (vcpu->arch.st.preempted) 3982 return; 3983 3984 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map, 3985 &vcpu->arch.st.cache, true)) 3986 return; 3987 3988 st = map.hva + 3989 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS); 3990 3991 st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 3992 3993 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true); 3994 } 3995 3996 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 3997 { 3998 int idx; 3999 4000 if (vcpu->preempted) 4001 vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu); 4002 4003 /* 4004 * Disable page faults because we're in atomic context here. 4005 * kvm_write_guest_offset_cached() would call might_fault() 4006 * that relies on pagefault_disable() to tell if there's a 4007 * bug. NOTE: the write to guest memory may not go through if 4008 * during postcopy live migration or if there's heavy guest 4009 * paging. 4010 */ 4011 pagefault_disable(); 4012 /* 4013 * kvm_memslots() will be called by 4014 * kvm_write_guest_offset_cached() so take the srcu lock. 4015 */ 4016 idx = srcu_read_lock(&vcpu->kvm->srcu); 4017 kvm_steal_time_set_preempted(vcpu); 4018 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4019 pagefault_enable(); 4020 kvm_x86_ops.vcpu_put(vcpu); 4021 vcpu->arch.last_host_tsc = rdtsc(); 4022 /* 4023 * If userspace has set any breakpoints or watchpoints, dr6 is restored 4024 * on every vmexit, but if not, we might have a stale dr6 from the 4025 * guest. do_debug expects dr6 to be cleared after it runs, do the same. 4026 */ 4027 set_debugreg(0, 6); 4028 } 4029 4030 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 4031 struct kvm_lapic_state *s) 4032 { 4033 if (vcpu->arch.apicv_active) 4034 kvm_x86_ops.sync_pir_to_irr(vcpu); 4035 4036 return kvm_apic_get_state(vcpu, s); 4037 } 4038 4039 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 4040 struct kvm_lapic_state *s) 4041 { 4042 int r; 4043 4044 r = kvm_apic_set_state(vcpu, s); 4045 if (r) 4046 return r; 4047 update_cr8_intercept(vcpu); 4048 4049 return 0; 4050 } 4051 4052 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 4053 { 4054 /* 4055 * We can accept userspace's request for interrupt injection 4056 * as long as we have a place to store the interrupt number. 4057 * The actual injection will happen when the CPU is able to 4058 * deliver the interrupt. 4059 */ 4060 if (kvm_cpu_has_extint(vcpu)) 4061 return false; 4062 4063 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 4064 return (!lapic_in_kernel(vcpu) || 4065 kvm_apic_accept_pic_intr(vcpu)); 4066 } 4067 4068 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 4069 { 4070 return kvm_arch_interrupt_allowed(vcpu) && 4071 kvm_cpu_accept_dm_intr(vcpu); 4072 } 4073 4074 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 4075 struct kvm_interrupt *irq) 4076 { 4077 if (irq->irq >= KVM_NR_INTERRUPTS) 4078 return -EINVAL; 4079 4080 if (!irqchip_in_kernel(vcpu->kvm)) { 4081 kvm_queue_interrupt(vcpu, irq->irq, false); 4082 kvm_make_request(KVM_REQ_EVENT, vcpu); 4083 return 0; 4084 } 4085 4086 /* 4087 * With in-kernel LAPIC, we only use this to inject EXTINT, so 4088 * fail for in-kernel 8259. 4089 */ 4090 if (pic_in_kernel(vcpu->kvm)) 4091 return -ENXIO; 4092 4093 if (vcpu->arch.pending_external_vector != -1) 4094 return -EEXIST; 4095 4096 vcpu->arch.pending_external_vector = irq->irq; 4097 kvm_make_request(KVM_REQ_EVENT, vcpu); 4098 return 0; 4099 } 4100 4101 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 4102 { 4103 kvm_inject_nmi(vcpu); 4104 4105 return 0; 4106 } 4107 4108 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu) 4109 { 4110 kvm_make_request(KVM_REQ_SMI, vcpu); 4111 4112 return 0; 4113 } 4114 4115 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 4116 struct kvm_tpr_access_ctl *tac) 4117 { 4118 if (tac->flags) 4119 return -EINVAL; 4120 vcpu->arch.tpr_access_reporting = !!tac->enabled; 4121 return 0; 4122 } 4123 4124 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 4125 u64 mcg_cap) 4126 { 4127 int r; 4128 unsigned bank_num = mcg_cap & 0xff, bank; 4129 4130 r = -EINVAL; 4131 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 4132 goto out; 4133 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000)) 4134 goto out; 4135 r = 0; 4136 vcpu->arch.mcg_cap = mcg_cap; 4137 /* Init IA32_MCG_CTL to all 1s */ 4138 if (mcg_cap & MCG_CTL_P) 4139 vcpu->arch.mcg_ctl = ~(u64)0; 4140 /* Init IA32_MCi_CTL to all 1s */ 4141 for (bank = 0; bank < bank_num; bank++) 4142 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 4143 4144 kvm_x86_ops.setup_mce(vcpu); 4145 out: 4146 return r; 4147 } 4148 4149 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 4150 struct kvm_x86_mce *mce) 4151 { 4152 u64 mcg_cap = vcpu->arch.mcg_cap; 4153 unsigned bank_num = mcg_cap & 0xff; 4154 u64 *banks = vcpu->arch.mce_banks; 4155 4156 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 4157 return -EINVAL; 4158 /* 4159 * if IA32_MCG_CTL is not all 1s, the uncorrected error 4160 * reporting is disabled 4161 */ 4162 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 4163 vcpu->arch.mcg_ctl != ~(u64)0) 4164 return 0; 4165 banks += 4 * mce->bank; 4166 /* 4167 * if IA32_MCi_CTL is not all 1s, the uncorrected error 4168 * reporting is disabled for the bank 4169 */ 4170 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 4171 return 0; 4172 if (mce->status & MCI_STATUS_UC) { 4173 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 4174 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 4175 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4176 return 0; 4177 } 4178 if (banks[1] & MCI_STATUS_VAL) 4179 mce->status |= MCI_STATUS_OVER; 4180 banks[2] = mce->addr; 4181 banks[3] = mce->misc; 4182 vcpu->arch.mcg_status = mce->mcg_status; 4183 banks[1] = mce->status; 4184 kvm_queue_exception(vcpu, MC_VECTOR); 4185 } else if (!(banks[1] & MCI_STATUS_VAL) 4186 || !(banks[1] & MCI_STATUS_UC)) { 4187 if (banks[1] & MCI_STATUS_VAL) 4188 mce->status |= MCI_STATUS_OVER; 4189 banks[2] = mce->addr; 4190 banks[3] = mce->misc; 4191 banks[1] = mce->status; 4192 } else 4193 banks[1] |= MCI_STATUS_OVER; 4194 return 0; 4195 } 4196 4197 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 4198 struct kvm_vcpu_events *events) 4199 { 4200 process_nmi(vcpu); 4201 4202 /* 4203 * In guest mode, payload delivery should be deferred, 4204 * so that the L1 hypervisor can intercept #PF before 4205 * CR2 is modified (or intercept #DB before DR6 is 4206 * modified under nVMX). Unless the per-VM capability, 4207 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of 4208 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we 4209 * opportunistically defer the exception payload, deliver it if the 4210 * capability hasn't been requested before processing a 4211 * KVM_GET_VCPU_EVENTS. 4212 */ 4213 if (!vcpu->kvm->arch.exception_payload_enabled && 4214 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload) 4215 kvm_deliver_exception_payload(vcpu); 4216 4217 /* 4218 * The API doesn't provide the instruction length for software 4219 * exceptions, so don't report them. As long as the guest RIP 4220 * isn't advanced, we should expect to encounter the exception 4221 * again. 4222 */ 4223 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) { 4224 events->exception.injected = 0; 4225 events->exception.pending = 0; 4226 } else { 4227 events->exception.injected = vcpu->arch.exception.injected; 4228 events->exception.pending = vcpu->arch.exception.pending; 4229 /* 4230 * For ABI compatibility, deliberately conflate 4231 * pending and injected exceptions when 4232 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 4233 */ 4234 if (!vcpu->kvm->arch.exception_payload_enabled) 4235 events->exception.injected |= 4236 vcpu->arch.exception.pending; 4237 } 4238 events->exception.nr = vcpu->arch.exception.nr; 4239 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 4240 events->exception.error_code = vcpu->arch.exception.error_code; 4241 events->exception_has_payload = vcpu->arch.exception.has_payload; 4242 events->exception_payload = vcpu->arch.exception.payload; 4243 4244 events->interrupt.injected = 4245 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 4246 events->interrupt.nr = vcpu->arch.interrupt.nr; 4247 events->interrupt.soft = 0; 4248 events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu); 4249 4250 events->nmi.injected = vcpu->arch.nmi_injected; 4251 events->nmi.pending = vcpu->arch.nmi_pending != 0; 4252 events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu); 4253 events->nmi.pad = 0; 4254 4255 events->sipi_vector = 0; /* never valid when reporting to user space */ 4256 4257 events->smi.smm = is_smm(vcpu); 4258 events->smi.pending = vcpu->arch.smi_pending; 4259 events->smi.smm_inside_nmi = 4260 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 4261 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 4262 4263 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 4264 | KVM_VCPUEVENT_VALID_SHADOW 4265 | KVM_VCPUEVENT_VALID_SMM); 4266 if (vcpu->kvm->arch.exception_payload_enabled) 4267 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 4268 4269 memset(&events->reserved, 0, sizeof(events->reserved)); 4270 } 4271 4272 static void kvm_smm_changed(struct kvm_vcpu *vcpu); 4273 4274 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 4275 struct kvm_vcpu_events *events) 4276 { 4277 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 4278 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 4279 | KVM_VCPUEVENT_VALID_SHADOW 4280 | KVM_VCPUEVENT_VALID_SMM 4281 | KVM_VCPUEVENT_VALID_PAYLOAD)) 4282 return -EINVAL; 4283 4284 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 4285 if (!vcpu->kvm->arch.exception_payload_enabled) 4286 return -EINVAL; 4287 if (events->exception.pending) 4288 events->exception.injected = 0; 4289 else 4290 events->exception_has_payload = 0; 4291 } else { 4292 events->exception.pending = 0; 4293 events->exception_has_payload = 0; 4294 } 4295 4296 if ((events->exception.injected || events->exception.pending) && 4297 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 4298 return -EINVAL; 4299 4300 /* INITs are latched while in SMM */ 4301 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 4302 (events->smi.smm || events->smi.pending) && 4303 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 4304 return -EINVAL; 4305 4306 process_nmi(vcpu); 4307 vcpu->arch.exception.injected = events->exception.injected; 4308 vcpu->arch.exception.pending = events->exception.pending; 4309 vcpu->arch.exception.nr = events->exception.nr; 4310 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 4311 vcpu->arch.exception.error_code = events->exception.error_code; 4312 vcpu->arch.exception.has_payload = events->exception_has_payload; 4313 vcpu->arch.exception.payload = events->exception_payload; 4314 4315 vcpu->arch.interrupt.injected = events->interrupt.injected; 4316 vcpu->arch.interrupt.nr = events->interrupt.nr; 4317 vcpu->arch.interrupt.soft = events->interrupt.soft; 4318 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 4319 kvm_x86_ops.set_interrupt_shadow(vcpu, 4320 events->interrupt.shadow); 4321 4322 vcpu->arch.nmi_injected = events->nmi.injected; 4323 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 4324 vcpu->arch.nmi_pending = events->nmi.pending; 4325 kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked); 4326 4327 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 4328 lapic_in_kernel(vcpu)) 4329 vcpu->arch.apic->sipi_vector = events->sipi_vector; 4330 4331 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 4332 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 4333 if (events->smi.smm) 4334 vcpu->arch.hflags |= HF_SMM_MASK; 4335 else 4336 vcpu->arch.hflags &= ~HF_SMM_MASK; 4337 kvm_smm_changed(vcpu); 4338 } 4339 4340 vcpu->arch.smi_pending = events->smi.pending; 4341 4342 if (events->smi.smm) { 4343 if (events->smi.smm_inside_nmi) 4344 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 4345 else 4346 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 4347 } 4348 4349 if (lapic_in_kernel(vcpu)) { 4350 if (events->smi.latched_init) 4351 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 4352 else 4353 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 4354 } 4355 } 4356 4357 kvm_make_request(KVM_REQ_EVENT, vcpu); 4358 4359 return 0; 4360 } 4361 4362 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 4363 struct kvm_debugregs *dbgregs) 4364 { 4365 unsigned long val; 4366 4367 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 4368 kvm_get_dr(vcpu, 6, &val); 4369 dbgregs->dr6 = val; 4370 dbgregs->dr7 = vcpu->arch.dr7; 4371 dbgregs->flags = 0; 4372 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 4373 } 4374 4375 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 4376 struct kvm_debugregs *dbgregs) 4377 { 4378 if (dbgregs->flags) 4379 return -EINVAL; 4380 4381 if (dbgregs->dr6 & ~0xffffffffull) 4382 return -EINVAL; 4383 if (dbgregs->dr7 & ~0xffffffffull) 4384 return -EINVAL; 4385 4386 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 4387 kvm_update_dr0123(vcpu); 4388 vcpu->arch.dr6 = dbgregs->dr6; 4389 vcpu->arch.dr7 = dbgregs->dr7; 4390 kvm_update_dr7(vcpu); 4391 4392 return 0; 4393 } 4394 4395 #define XSTATE_COMPACTION_ENABLED (1ULL << 63) 4396 4397 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu) 4398 { 4399 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave; 4400 u64 xstate_bv = xsave->header.xfeatures; 4401 u64 valid; 4402 4403 /* 4404 * Copy legacy XSAVE area, to avoid complications with CPUID 4405 * leaves 0 and 1 in the loop below. 4406 */ 4407 memcpy(dest, xsave, XSAVE_HDR_OFFSET); 4408 4409 /* Set XSTATE_BV */ 4410 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE; 4411 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv; 4412 4413 /* 4414 * Copy each region from the possibly compacted offset to the 4415 * non-compacted offset. 4416 */ 4417 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 4418 while (valid) { 4419 u64 xfeature_mask = valid & -valid; 4420 int xfeature_nr = fls64(xfeature_mask) - 1; 4421 void *src = get_xsave_addr(xsave, xfeature_nr); 4422 4423 if (src) { 4424 u32 size, offset, ecx, edx; 4425 cpuid_count(XSTATE_CPUID, xfeature_nr, 4426 &size, &offset, &ecx, &edx); 4427 if (xfeature_nr == XFEATURE_PKRU) 4428 memcpy(dest + offset, &vcpu->arch.pkru, 4429 sizeof(vcpu->arch.pkru)); 4430 else 4431 memcpy(dest + offset, src, size); 4432 4433 } 4434 4435 valid -= xfeature_mask; 4436 } 4437 } 4438 4439 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src) 4440 { 4441 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave; 4442 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET); 4443 u64 valid; 4444 4445 /* 4446 * Copy legacy XSAVE area, to avoid complications with CPUID 4447 * leaves 0 and 1 in the loop below. 4448 */ 4449 memcpy(xsave, src, XSAVE_HDR_OFFSET); 4450 4451 /* Set XSTATE_BV and possibly XCOMP_BV. */ 4452 xsave->header.xfeatures = xstate_bv; 4453 if (boot_cpu_has(X86_FEATURE_XSAVES)) 4454 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED; 4455 4456 /* 4457 * Copy each region from the non-compacted offset to the 4458 * possibly compacted offset. 4459 */ 4460 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 4461 while (valid) { 4462 u64 xfeature_mask = valid & -valid; 4463 int xfeature_nr = fls64(xfeature_mask) - 1; 4464 void *dest = get_xsave_addr(xsave, xfeature_nr); 4465 4466 if (dest) { 4467 u32 size, offset, ecx, edx; 4468 cpuid_count(XSTATE_CPUID, xfeature_nr, 4469 &size, &offset, &ecx, &edx); 4470 if (xfeature_nr == XFEATURE_PKRU) 4471 memcpy(&vcpu->arch.pkru, src + offset, 4472 sizeof(vcpu->arch.pkru)); 4473 else 4474 memcpy(dest, src + offset, size); 4475 } 4476 4477 valid -= xfeature_mask; 4478 } 4479 } 4480 4481 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 4482 struct kvm_xsave *guest_xsave) 4483 { 4484 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 4485 memset(guest_xsave, 0, sizeof(struct kvm_xsave)); 4486 fill_xsave((u8 *) guest_xsave->region, vcpu); 4487 } else { 4488 memcpy(guest_xsave->region, 4489 &vcpu->arch.guest_fpu->state.fxsave, 4490 sizeof(struct fxregs_state)); 4491 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = 4492 XFEATURE_MASK_FPSSE; 4493 } 4494 } 4495 4496 #define XSAVE_MXCSR_OFFSET 24 4497 4498 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 4499 struct kvm_xsave *guest_xsave) 4500 { 4501 u64 xstate_bv = 4502 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; 4503 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)]; 4504 4505 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 4506 /* 4507 * Here we allow setting states that are not present in 4508 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility 4509 * with old userspace. 4510 */ 4511 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask) 4512 return -EINVAL; 4513 load_xsave(vcpu, (u8 *)guest_xsave->region); 4514 } else { 4515 if (xstate_bv & ~XFEATURE_MASK_FPSSE || 4516 mxcsr & ~mxcsr_feature_mask) 4517 return -EINVAL; 4518 memcpy(&vcpu->arch.guest_fpu->state.fxsave, 4519 guest_xsave->region, sizeof(struct fxregs_state)); 4520 } 4521 return 0; 4522 } 4523 4524 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 4525 struct kvm_xcrs *guest_xcrs) 4526 { 4527 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 4528 guest_xcrs->nr_xcrs = 0; 4529 return; 4530 } 4531 4532 guest_xcrs->nr_xcrs = 1; 4533 guest_xcrs->flags = 0; 4534 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 4535 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 4536 } 4537 4538 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 4539 struct kvm_xcrs *guest_xcrs) 4540 { 4541 int i, r = 0; 4542 4543 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 4544 return -EINVAL; 4545 4546 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 4547 return -EINVAL; 4548 4549 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 4550 /* Only support XCR0 currently */ 4551 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 4552 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 4553 guest_xcrs->xcrs[i].value); 4554 break; 4555 } 4556 if (r) 4557 r = -EINVAL; 4558 return r; 4559 } 4560 4561 /* 4562 * kvm_set_guest_paused() indicates to the guest kernel that it has been 4563 * stopped by the hypervisor. This function will be called from the host only. 4564 * EINVAL is returned when the host attempts to set the flag for a guest that 4565 * does not support pv clocks. 4566 */ 4567 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 4568 { 4569 if (!vcpu->arch.pv_time_enabled) 4570 return -EINVAL; 4571 vcpu->arch.pvclock_set_guest_stopped_request = true; 4572 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4573 return 0; 4574 } 4575 4576 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 4577 struct kvm_enable_cap *cap) 4578 { 4579 int r; 4580 uint16_t vmcs_version; 4581 void __user *user_ptr; 4582 4583 if (cap->flags) 4584 return -EINVAL; 4585 4586 switch (cap->cap) { 4587 case KVM_CAP_HYPERV_SYNIC2: 4588 if (cap->args[0]) 4589 return -EINVAL; 4590 fallthrough; 4591 4592 case KVM_CAP_HYPERV_SYNIC: 4593 if (!irqchip_in_kernel(vcpu->kvm)) 4594 return -EINVAL; 4595 return kvm_hv_activate_synic(vcpu, cap->cap == 4596 KVM_CAP_HYPERV_SYNIC2); 4597 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4598 if (!kvm_x86_ops.nested_ops->enable_evmcs) 4599 return -ENOTTY; 4600 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 4601 if (!r) { 4602 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 4603 if (copy_to_user(user_ptr, &vmcs_version, 4604 sizeof(vmcs_version))) 4605 r = -EFAULT; 4606 } 4607 return r; 4608 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4609 if (!kvm_x86_ops.enable_direct_tlbflush) 4610 return -ENOTTY; 4611 4612 return kvm_x86_ops.enable_direct_tlbflush(vcpu); 4613 4614 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4615 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 4616 if (vcpu->arch.pv_cpuid.enforce) 4617 kvm_update_pv_runtime(vcpu); 4618 4619 return 0; 4620 4621 default: 4622 return -EINVAL; 4623 } 4624 } 4625 4626 long kvm_arch_vcpu_ioctl(struct file *filp, 4627 unsigned int ioctl, unsigned long arg) 4628 { 4629 struct kvm_vcpu *vcpu = filp->private_data; 4630 void __user *argp = (void __user *)arg; 4631 int r; 4632 union { 4633 struct kvm_lapic_state *lapic; 4634 struct kvm_xsave *xsave; 4635 struct kvm_xcrs *xcrs; 4636 void *buffer; 4637 } u; 4638 4639 vcpu_load(vcpu); 4640 4641 u.buffer = NULL; 4642 switch (ioctl) { 4643 case KVM_GET_LAPIC: { 4644 r = -EINVAL; 4645 if (!lapic_in_kernel(vcpu)) 4646 goto out; 4647 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 4648 GFP_KERNEL_ACCOUNT); 4649 4650 r = -ENOMEM; 4651 if (!u.lapic) 4652 goto out; 4653 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 4654 if (r) 4655 goto out; 4656 r = -EFAULT; 4657 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 4658 goto out; 4659 r = 0; 4660 break; 4661 } 4662 case KVM_SET_LAPIC: { 4663 r = -EINVAL; 4664 if (!lapic_in_kernel(vcpu)) 4665 goto out; 4666 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 4667 if (IS_ERR(u.lapic)) { 4668 r = PTR_ERR(u.lapic); 4669 goto out_nofree; 4670 } 4671 4672 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 4673 break; 4674 } 4675 case KVM_INTERRUPT: { 4676 struct kvm_interrupt irq; 4677 4678 r = -EFAULT; 4679 if (copy_from_user(&irq, argp, sizeof(irq))) 4680 goto out; 4681 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 4682 break; 4683 } 4684 case KVM_NMI: { 4685 r = kvm_vcpu_ioctl_nmi(vcpu); 4686 break; 4687 } 4688 case KVM_SMI: { 4689 r = kvm_vcpu_ioctl_smi(vcpu); 4690 break; 4691 } 4692 case KVM_SET_CPUID: { 4693 struct kvm_cpuid __user *cpuid_arg = argp; 4694 struct kvm_cpuid cpuid; 4695 4696 r = -EFAULT; 4697 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4698 goto out; 4699 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4700 break; 4701 } 4702 case KVM_SET_CPUID2: { 4703 struct kvm_cpuid2 __user *cpuid_arg = argp; 4704 struct kvm_cpuid2 cpuid; 4705 4706 r = -EFAULT; 4707 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4708 goto out; 4709 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 4710 cpuid_arg->entries); 4711 break; 4712 } 4713 case KVM_GET_CPUID2: { 4714 struct kvm_cpuid2 __user *cpuid_arg = argp; 4715 struct kvm_cpuid2 cpuid; 4716 4717 r = -EFAULT; 4718 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4719 goto out; 4720 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 4721 cpuid_arg->entries); 4722 if (r) 4723 goto out; 4724 r = -EFAULT; 4725 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4726 goto out; 4727 r = 0; 4728 break; 4729 } 4730 case KVM_GET_MSRS: { 4731 int idx = srcu_read_lock(&vcpu->kvm->srcu); 4732 r = msr_io(vcpu, argp, do_get_msr, 1); 4733 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4734 break; 4735 } 4736 case KVM_SET_MSRS: { 4737 int idx = srcu_read_lock(&vcpu->kvm->srcu); 4738 r = msr_io(vcpu, argp, do_set_msr, 0); 4739 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4740 break; 4741 } 4742 case KVM_TPR_ACCESS_REPORTING: { 4743 struct kvm_tpr_access_ctl tac; 4744 4745 r = -EFAULT; 4746 if (copy_from_user(&tac, argp, sizeof(tac))) 4747 goto out; 4748 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 4749 if (r) 4750 goto out; 4751 r = -EFAULT; 4752 if (copy_to_user(argp, &tac, sizeof(tac))) 4753 goto out; 4754 r = 0; 4755 break; 4756 }; 4757 case KVM_SET_VAPIC_ADDR: { 4758 struct kvm_vapic_addr va; 4759 int idx; 4760 4761 r = -EINVAL; 4762 if (!lapic_in_kernel(vcpu)) 4763 goto out; 4764 r = -EFAULT; 4765 if (copy_from_user(&va, argp, sizeof(va))) 4766 goto out; 4767 idx = srcu_read_lock(&vcpu->kvm->srcu); 4768 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 4769 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4770 break; 4771 } 4772 case KVM_X86_SETUP_MCE: { 4773 u64 mcg_cap; 4774 4775 r = -EFAULT; 4776 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 4777 goto out; 4778 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 4779 break; 4780 } 4781 case KVM_X86_SET_MCE: { 4782 struct kvm_x86_mce mce; 4783 4784 r = -EFAULT; 4785 if (copy_from_user(&mce, argp, sizeof(mce))) 4786 goto out; 4787 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 4788 break; 4789 } 4790 case KVM_GET_VCPU_EVENTS: { 4791 struct kvm_vcpu_events events; 4792 4793 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 4794 4795 r = -EFAULT; 4796 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 4797 break; 4798 r = 0; 4799 break; 4800 } 4801 case KVM_SET_VCPU_EVENTS: { 4802 struct kvm_vcpu_events events; 4803 4804 r = -EFAULT; 4805 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 4806 break; 4807 4808 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 4809 break; 4810 } 4811 case KVM_GET_DEBUGREGS: { 4812 struct kvm_debugregs dbgregs; 4813 4814 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 4815 4816 r = -EFAULT; 4817 if (copy_to_user(argp, &dbgregs, 4818 sizeof(struct kvm_debugregs))) 4819 break; 4820 r = 0; 4821 break; 4822 } 4823 case KVM_SET_DEBUGREGS: { 4824 struct kvm_debugregs dbgregs; 4825 4826 r = -EFAULT; 4827 if (copy_from_user(&dbgregs, argp, 4828 sizeof(struct kvm_debugregs))) 4829 break; 4830 4831 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 4832 break; 4833 } 4834 case KVM_GET_XSAVE: { 4835 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 4836 r = -ENOMEM; 4837 if (!u.xsave) 4838 break; 4839 4840 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 4841 4842 r = -EFAULT; 4843 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 4844 break; 4845 r = 0; 4846 break; 4847 } 4848 case KVM_SET_XSAVE: { 4849 u.xsave = memdup_user(argp, sizeof(*u.xsave)); 4850 if (IS_ERR(u.xsave)) { 4851 r = PTR_ERR(u.xsave); 4852 goto out_nofree; 4853 } 4854 4855 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 4856 break; 4857 } 4858 case KVM_GET_XCRS: { 4859 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 4860 r = -ENOMEM; 4861 if (!u.xcrs) 4862 break; 4863 4864 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 4865 4866 r = -EFAULT; 4867 if (copy_to_user(argp, u.xcrs, 4868 sizeof(struct kvm_xcrs))) 4869 break; 4870 r = 0; 4871 break; 4872 } 4873 case KVM_SET_XCRS: { 4874 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 4875 if (IS_ERR(u.xcrs)) { 4876 r = PTR_ERR(u.xcrs); 4877 goto out_nofree; 4878 } 4879 4880 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 4881 break; 4882 } 4883 case KVM_SET_TSC_KHZ: { 4884 u32 user_tsc_khz; 4885 4886 r = -EINVAL; 4887 user_tsc_khz = (u32)arg; 4888 4889 if (kvm_has_tsc_control && 4890 user_tsc_khz >= kvm_max_guest_tsc_khz) 4891 goto out; 4892 4893 if (user_tsc_khz == 0) 4894 user_tsc_khz = tsc_khz; 4895 4896 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 4897 r = 0; 4898 4899 goto out; 4900 } 4901 case KVM_GET_TSC_KHZ: { 4902 r = vcpu->arch.virtual_tsc_khz; 4903 goto out; 4904 } 4905 case KVM_KVMCLOCK_CTRL: { 4906 r = kvm_set_guest_paused(vcpu); 4907 goto out; 4908 } 4909 case KVM_ENABLE_CAP: { 4910 struct kvm_enable_cap cap; 4911 4912 r = -EFAULT; 4913 if (copy_from_user(&cap, argp, sizeof(cap))) 4914 goto out; 4915 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 4916 break; 4917 } 4918 case KVM_GET_NESTED_STATE: { 4919 struct kvm_nested_state __user *user_kvm_nested_state = argp; 4920 u32 user_data_size; 4921 4922 r = -EINVAL; 4923 if (!kvm_x86_ops.nested_ops->get_state) 4924 break; 4925 4926 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 4927 r = -EFAULT; 4928 if (get_user(user_data_size, &user_kvm_nested_state->size)) 4929 break; 4930 4931 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 4932 user_data_size); 4933 if (r < 0) 4934 break; 4935 4936 if (r > user_data_size) { 4937 if (put_user(r, &user_kvm_nested_state->size)) 4938 r = -EFAULT; 4939 else 4940 r = -E2BIG; 4941 break; 4942 } 4943 4944 r = 0; 4945 break; 4946 } 4947 case KVM_SET_NESTED_STATE: { 4948 struct kvm_nested_state __user *user_kvm_nested_state = argp; 4949 struct kvm_nested_state kvm_state; 4950 int idx; 4951 4952 r = -EINVAL; 4953 if (!kvm_x86_ops.nested_ops->set_state) 4954 break; 4955 4956 r = -EFAULT; 4957 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 4958 break; 4959 4960 r = -EINVAL; 4961 if (kvm_state.size < sizeof(kvm_state)) 4962 break; 4963 4964 if (kvm_state.flags & 4965 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 4966 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 4967 | KVM_STATE_NESTED_GIF_SET)) 4968 break; 4969 4970 /* nested_run_pending implies guest_mode. */ 4971 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 4972 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 4973 break; 4974 4975 idx = srcu_read_lock(&vcpu->kvm->srcu); 4976 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 4977 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4978 break; 4979 } 4980 case KVM_GET_SUPPORTED_HV_CPUID: { 4981 struct kvm_cpuid2 __user *cpuid_arg = argp; 4982 struct kvm_cpuid2 cpuid; 4983 4984 r = -EFAULT; 4985 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4986 goto out; 4987 4988 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid, 4989 cpuid_arg->entries); 4990 if (r) 4991 goto out; 4992 4993 r = -EFAULT; 4994 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4995 goto out; 4996 r = 0; 4997 break; 4998 } 4999 default: 5000 r = -EINVAL; 5001 } 5002 out: 5003 kfree(u.buffer); 5004 out_nofree: 5005 vcpu_put(vcpu); 5006 return r; 5007 } 5008 5009 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 5010 { 5011 return VM_FAULT_SIGBUS; 5012 } 5013 5014 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 5015 { 5016 int ret; 5017 5018 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 5019 return -EINVAL; 5020 ret = kvm_x86_ops.set_tss_addr(kvm, addr); 5021 return ret; 5022 } 5023 5024 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 5025 u64 ident_addr) 5026 { 5027 return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr); 5028 } 5029 5030 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 5031 unsigned long kvm_nr_mmu_pages) 5032 { 5033 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 5034 return -EINVAL; 5035 5036 mutex_lock(&kvm->slots_lock); 5037 5038 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 5039 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 5040 5041 mutex_unlock(&kvm->slots_lock); 5042 return 0; 5043 } 5044 5045 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 5046 { 5047 return kvm->arch.n_max_mmu_pages; 5048 } 5049 5050 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 5051 { 5052 struct kvm_pic *pic = kvm->arch.vpic; 5053 int r; 5054 5055 r = 0; 5056 switch (chip->chip_id) { 5057 case KVM_IRQCHIP_PIC_MASTER: 5058 memcpy(&chip->chip.pic, &pic->pics[0], 5059 sizeof(struct kvm_pic_state)); 5060 break; 5061 case KVM_IRQCHIP_PIC_SLAVE: 5062 memcpy(&chip->chip.pic, &pic->pics[1], 5063 sizeof(struct kvm_pic_state)); 5064 break; 5065 case KVM_IRQCHIP_IOAPIC: 5066 kvm_get_ioapic(kvm, &chip->chip.ioapic); 5067 break; 5068 default: 5069 r = -EINVAL; 5070 break; 5071 } 5072 return r; 5073 } 5074 5075 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 5076 { 5077 struct kvm_pic *pic = kvm->arch.vpic; 5078 int r; 5079 5080 r = 0; 5081 switch (chip->chip_id) { 5082 case KVM_IRQCHIP_PIC_MASTER: 5083 spin_lock(&pic->lock); 5084 memcpy(&pic->pics[0], &chip->chip.pic, 5085 sizeof(struct kvm_pic_state)); 5086 spin_unlock(&pic->lock); 5087 break; 5088 case KVM_IRQCHIP_PIC_SLAVE: 5089 spin_lock(&pic->lock); 5090 memcpy(&pic->pics[1], &chip->chip.pic, 5091 sizeof(struct kvm_pic_state)); 5092 spin_unlock(&pic->lock); 5093 break; 5094 case KVM_IRQCHIP_IOAPIC: 5095 kvm_set_ioapic(kvm, &chip->chip.ioapic); 5096 break; 5097 default: 5098 r = -EINVAL; 5099 break; 5100 } 5101 kvm_pic_update_irq(pic); 5102 return r; 5103 } 5104 5105 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 5106 { 5107 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 5108 5109 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 5110 5111 mutex_lock(&kps->lock); 5112 memcpy(ps, &kps->channels, sizeof(*ps)); 5113 mutex_unlock(&kps->lock); 5114 return 0; 5115 } 5116 5117 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 5118 { 5119 int i; 5120 struct kvm_pit *pit = kvm->arch.vpit; 5121 5122 mutex_lock(&pit->pit_state.lock); 5123 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 5124 for (i = 0; i < 3; i++) 5125 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 5126 mutex_unlock(&pit->pit_state.lock); 5127 return 0; 5128 } 5129 5130 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 5131 { 5132 mutex_lock(&kvm->arch.vpit->pit_state.lock); 5133 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 5134 sizeof(ps->channels)); 5135 ps->flags = kvm->arch.vpit->pit_state.flags; 5136 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 5137 memset(&ps->reserved, 0, sizeof(ps->reserved)); 5138 return 0; 5139 } 5140 5141 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 5142 { 5143 int start = 0; 5144 int i; 5145 u32 prev_legacy, cur_legacy; 5146 struct kvm_pit *pit = kvm->arch.vpit; 5147 5148 mutex_lock(&pit->pit_state.lock); 5149 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 5150 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 5151 if (!prev_legacy && cur_legacy) 5152 start = 1; 5153 memcpy(&pit->pit_state.channels, &ps->channels, 5154 sizeof(pit->pit_state.channels)); 5155 pit->pit_state.flags = ps->flags; 5156 for (i = 0; i < 3; i++) 5157 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 5158 start && i == 0); 5159 mutex_unlock(&pit->pit_state.lock); 5160 return 0; 5161 } 5162 5163 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 5164 struct kvm_reinject_control *control) 5165 { 5166 struct kvm_pit *pit = kvm->arch.vpit; 5167 5168 /* pit->pit_state.lock was overloaded to prevent userspace from getting 5169 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 5170 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 5171 */ 5172 mutex_lock(&pit->pit_state.lock); 5173 kvm_pit_set_reinject(pit, control->pit_reinject); 5174 mutex_unlock(&pit->pit_state.lock); 5175 5176 return 0; 5177 } 5178 5179 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 5180 { 5181 /* 5182 * Flush potentially hardware-cached dirty pages to dirty_bitmap. 5183 */ 5184 if (kvm_x86_ops.flush_log_dirty) 5185 kvm_x86_ops.flush_log_dirty(kvm); 5186 } 5187 5188 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 5189 bool line_status) 5190 { 5191 if (!irqchip_in_kernel(kvm)) 5192 return -ENXIO; 5193 5194 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 5195 irq_event->irq, irq_event->level, 5196 line_status); 5197 return 0; 5198 } 5199 5200 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 5201 struct kvm_enable_cap *cap) 5202 { 5203 int r; 5204 5205 if (cap->flags) 5206 return -EINVAL; 5207 5208 switch (cap->cap) { 5209 case KVM_CAP_DISABLE_QUIRKS: 5210 kvm->arch.disabled_quirks = cap->args[0]; 5211 r = 0; 5212 break; 5213 case KVM_CAP_SPLIT_IRQCHIP: { 5214 mutex_lock(&kvm->lock); 5215 r = -EINVAL; 5216 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 5217 goto split_irqchip_unlock; 5218 r = -EEXIST; 5219 if (irqchip_in_kernel(kvm)) 5220 goto split_irqchip_unlock; 5221 if (kvm->created_vcpus) 5222 goto split_irqchip_unlock; 5223 r = kvm_setup_empty_irq_routing(kvm); 5224 if (r) 5225 goto split_irqchip_unlock; 5226 /* Pairs with irqchip_in_kernel. */ 5227 smp_wmb(); 5228 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 5229 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 5230 r = 0; 5231 split_irqchip_unlock: 5232 mutex_unlock(&kvm->lock); 5233 break; 5234 } 5235 case KVM_CAP_X2APIC_API: 5236 r = -EINVAL; 5237 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 5238 break; 5239 5240 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 5241 kvm->arch.x2apic_format = true; 5242 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 5243 kvm->arch.x2apic_broadcast_quirk_disabled = true; 5244 5245 r = 0; 5246 break; 5247 case KVM_CAP_X86_DISABLE_EXITS: 5248 r = -EINVAL; 5249 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 5250 break; 5251 5252 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 5253 kvm_can_mwait_in_guest()) 5254 kvm->arch.mwait_in_guest = true; 5255 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 5256 kvm->arch.hlt_in_guest = true; 5257 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 5258 kvm->arch.pause_in_guest = true; 5259 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 5260 kvm->arch.cstate_in_guest = true; 5261 r = 0; 5262 break; 5263 case KVM_CAP_MSR_PLATFORM_INFO: 5264 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 5265 r = 0; 5266 break; 5267 case KVM_CAP_EXCEPTION_PAYLOAD: 5268 kvm->arch.exception_payload_enabled = cap->args[0]; 5269 r = 0; 5270 break; 5271 case KVM_CAP_X86_USER_SPACE_MSR: 5272 kvm->arch.user_space_msr_mask = cap->args[0]; 5273 r = 0; 5274 break; 5275 default: 5276 r = -EINVAL; 5277 break; 5278 } 5279 return r; 5280 } 5281 5282 static void kvm_clear_msr_filter(struct kvm *kvm) 5283 { 5284 u32 i; 5285 u32 count = kvm->arch.msr_filter.count; 5286 struct msr_bitmap_range ranges[16]; 5287 5288 mutex_lock(&kvm->lock); 5289 kvm->arch.msr_filter.count = 0; 5290 memcpy(ranges, kvm->arch.msr_filter.ranges, count * sizeof(ranges[0])); 5291 mutex_unlock(&kvm->lock); 5292 synchronize_srcu(&kvm->srcu); 5293 5294 for (i = 0; i < count; i++) 5295 kfree(ranges[i].bitmap); 5296 } 5297 5298 static int kvm_add_msr_filter(struct kvm *kvm, struct kvm_msr_filter_range *user_range) 5299 { 5300 struct msr_bitmap_range *ranges = kvm->arch.msr_filter.ranges; 5301 struct msr_bitmap_range range; 5302 unsigned long *bitmap = NULL; 5303 size_t bitmap_size; 5304 int r; 5305 5306 if (!user_range->nmsrs) 5307 return 0; 5308 5309 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 5310 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 5311 return -EINVAL; 5312 5313 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 5314 if (IS_ERR(bitmap)) 5315 return PTR_ERR(bitmap); 5316 5317 range = (struct msr_bitmap_range) { 5318 .flags = user_range->flags, 5319 .base = user_range->base, 5320 .nmsrs = user_range->nmsrs, 5321 .bitmap = bitmap, 5322 }; 5323 5324 if (range.flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) { 5325 r = -EINVAL; 5326 goto err; 5327 } 5328 5329 if (!range.flags) { 5330 r = -EINVAL; 5331 goto err; 5332 } 5333 5334 /* Everything ok, add this range identifier to our global pool */ 5335 ranges[kvm->arch.msr_filter.count] = range; 5336 /* Make sure we filled the array before we tell anyone to walk it */ 5337 smp_wmb(); 5338 kvm->arch.msr_filter.count++; 5339 5340 return 0; 5341 err: 5342 kfree(bitmap); 5343 return r; 5344 } 5345 5346 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp) 5347 { 5348 struct kvm_msr_filter __user *user_msr_filter = argp; 5349 struct kvm_msr_filter filter; 5350 bool default_allow; 5351 int r = 0; 5352 bool empty = true; 5353 u32 i; 5354 5355 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 5356 return -EFAULT; 5357 5358 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) 5359 empty &= !filter.ranges[i].nmsrs; 5360 5361 default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY); 5362 if (empty && !default_allow) 5363 return -EINVAL; 5364 5365 kvm_clear_msr_filter(kvm); 5366 5367 kvm->arch.msr_filter.default_allow = default_allow; 5368 5369 /* 5370 * Protect from concurrent calls to this function that could trigger 5371 * a TOCTOU violation on kvm->arch.msr_filter.count. 5372 */ 5373 mutex_lock(&kvm->lock); 5374 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 5375 r = kvm_add_msr_filter(kvm, &filter.ranges[i]); 5376 if (r) 5377 break; 5378 } 5379 5380 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 5381 mutex_unlock(&kvm->lock); 5382 5383 return r; 5384 } 5385 5386 long kvm_arch_vm_ioctl(struct file *filp, 5387 unsigned int ioctl, unsigned long arg) 5388 { 5389 struct kvm *kvm = filp->private_data; 5390 void __user *argp = (void __user *)arg; 5391 int r = -ENOTTY; 5392 /* 5393 * This union makes it completely explicit to gcc-3.x 5394 * that these two variables' stack usage should be 5395 * combined, not added together. 5396 */ 5397 union { 5398 struct kvm_pit_state ps; 5399 struct kvm_pit_state2 ps2; 5400 struct kvm_pit_config pit_config; 5401 } u; 5402 5403 switch (ioctl) { 5404 case KVM_SET_TSS_ADDR: 5405 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 5406 break; 5407 case KVM_SET_IDENTITY_MAP_ADDR: { 5408 u64 ident_addr; 5409 5410 mutex_lock(&kvm->lock); 5411 r = -EINVAL; 5412 if (kvm->created_vcpus) 5413 goto set_identity_unlock; 5414 r = -EFAULT; 5415 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 5416 goto set_identity_unlock; 5417 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 5418 set_identity_unlock: 5419 mutex_unlock(&kvm->lock); 5420 break; 5421 } 5422 case KVM_SET_NR_MMU_PAGES: 5423 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 5424 break; 5425 case KVM_GET_NR_MMU_PAGES: 5426 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 5427 break; 5428 case KVM_CREATE_IRQCHIP: { 5429 mutex_lock(&kvm->lock); 5430 5431 r = -EEXIST; 5432 if (irqchip_in_kernel(kvm)) 5433 goto create_irqchip_unlock; 5434 5435 r = -EINVAL; 5436 if (kvm->created_vcpus) 5437 goto create_irqchip_unlock; 5438 5439 r = kvm_pic_init(kvm); 5440 if (r) 5441 goto create_irqchip_unlock; 5442 5443 r = kvm_ioapic_init(kvm); 5444 if (r) { 5445 kvm_pic_destroy(kvm); 5446 goto create_irqchip_unlock; 5447 } 5448 5449 r = kvm_setup_default_irq_routing(kvm); 5450 if (r) { 5451 kvm_ioapic_destroy(kvm); 5452 kvm_pic_destroy(kvm); 5453 goto create_irqchip_unlock; 5454 } 5455 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 5456 smp_wmb(); 5457 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 5458 create_irqchip_unlock: 5459 mutex_unlock(&kvm->lock); 5460 break; 5461 } 5462 case KVM_CREATE_PIT: 5463 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 5464 goto create_pit; 5465 case KVM_CREATE_PIT2: 5466 r = -EFAULT; 5467 if (copy_from_user(&u.pit_config, argp, 5468 sizeof(struct kvm_pit_config))) 5469 goto out; 5470 create_pit: 5471 mutex_lock(&kvm->lock); 5472 r = -EEXIST; 5473 if (kvm->arch.vpit) 5474 goto create_pit_unlock; 5475 r = -ENOMEM; 5476 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 5477 if (kvm->arch.vpit) 5478 r = 0; 5479 create_pit_unlock: 5480 mutex_unlock(&kvm->lock); 5481 break; 5482 case KVM_GET_IRQCHIP: { 5483 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 5484 struct kvm_irqchip *chip; 5485 5486 chip = memdup_user(argp, sizeof(*chip)); 5487 if (IS_ERR(chip)) { 5488 r = PTR_ERR(chip); 5489 goto out; 5490 } 5491 5492 r = -ENXIO; 5493 if (!irqchip_kernel(kvm)) 5494 goto get_irqchip_out; 5495 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 5496 if (r) 5497 goto get_irqchip_out; 5498 r = -EFAULT; 5499 if (copy_to_user(argp, chip, sizeof(*chip))) 5500 goto get_irqchip_out; 5501 r = 0; 5502 get_irqchip_out: 5503 kfree(chip); 5504 break; 5505 } 5506 case KVM_SET_IRQCHIP: { 5507 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 5508 struct kvm_irqchip *chip; 5509 5510 chip = memdup_user(argp, sizeof(*chip)); 5511 if (IS_ERR(chip)) { 5512 r = PTR_ERR(chip); 5513 goto out; 5514 } 5515 5516 r = -ENXIO; 5517 if (!irqchip_kernel(kvm)) 5518 goto set_irqchip_out; 5519 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 5520 set_irqchip_out: 5521 kfree(chip); 5522 break; 5523 } 5524 case KVM_GET_PIT: { 5525 r = -EFAULT; 5526 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 5527 goto out; 5528 r = -ENXIO; 5529 if (!kvm->arch.vpit) 5530 goto out; 5531 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 5532 if (r) 5533 goto out; 5534 r = -EFAULT; 5535 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 5536 goto out; 5537 r = 0; 5538 break; 5539 } 5540 case KVM_SET_PIT: { 5541 r = -EFAULT; 5542 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 5543 goto out; 5544 mutex_lock(&kvm->lock); 5545 r = -ENXIO; 5546 if (!kvm->arch.vpit) 5547 goto set_pit_out; 5548 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 5549 set_pit_out: 5550 mutex_unlock(&kvm->lock); 5551 break; 5552 } 5553 case KVM_GET_PIT2: { 5554 r = -ENXIO; 5555 if (!kvm->arch.vpit) 5556 goto out; 5557 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 5558 if (r) 5559 goto out; 5560 r = -EFAULT; 5561 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 5562 goto out; 5563 r = 0; 5564 break; 5565 } 5566 case KVM_SET_PIT2: { 5567 r = -EFAULT; 5568 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 5569 goto out; 5570 mutex_lock(&kvm->lock); 5571 r = -ENXIO; 5572 if (!kvm->arch.vpit) 5573 goto set_pit2_out; 5574 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 5575 set_pit2_out: 5576 mutex_unlock(&kvm->lock); 5577 break; 5578 } 5579 case KVM_REINJECT_CONTROL: { 5580 struct kvm_reinject_control control; 5581 r = -EFAULT; 5582 if (copy_from_user(&control, argp, sizeof(control))) 5583 goto out; 5584 r = -ENXIO; 5585 if (!kvm->arch.vpit) 5586 goto out; 5587 r = kvm_vm_ioctl_reinject(kvm, &control); 5588 break; 5589 } 5590 case KVM_SET_BOOT_CPU_ID: 5591 r = 0; 5592 mutex_lock(&kvm->lock); 5593 if (kvm->created_vcpus) 5594 r = -EBUSY; 5595 else 5596 kvm->arch.bsp_vcpu_id = arg; 5597 mutex_unlock(&kvm->lock); 5598 break; 5599 case KVM_XEN_HVM_CONFIG: { 5600 struct kvm_xen_hvm_config xhc; 5601 r = -EFAULT; 5602 if (copy_from_user(&xhc, argp, sizeof(xhc))) 5603 goto out; 5604 r = -EINVAL; 5605 if (xhc.flags) 5606 goto out; 5607 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc)); 5608 r = 0; 5609 break; 5610 } 5611 case KVM_SET_CLOCK: { 5612 struct kvm_clock_data user_ns; 5613 u64 now_ns; 5614 5615 r = -EFAULT; 5616 if (copy_from_user(&user_ns, argp, sizeof(user_ns))) 5617 goto out; 5618 5619 r = -EINVAL; 5620 if (user_ns.flags) 5621 goto out; 5622 5623 r = 0; 5624 /* 5625 * TODO: userspace has to take care of races with VCPU_RUN, so 5626 * kvm_gen_update_masterclock() can be cut down to locked 5627 * pvclock_update_vm_gtod_copy(). 5628 */ 5629 kvm_gen_update_masterclock(kvm); 5630 now_ns = get_kvmclock_ns(kvm); 5631 kvm->arch.kvmclock_offset += user_ns.clock - now_ns; 5632 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE); 5633 break; 5634 } 5635 case KVM_GET_CLOCK: { 5636 struct kvm_clock_data user_ns; 5637 u64 now_ns; 5638 5639 now_ns = get_kvmclock_ns(kvm); 5640 user_ns.clock = now_ns; 5641 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0; 5642 memset(&user_ns.pad, 0, sizeof(user_ns.pad)); 5643 5644 r = -EFAULT; 5645 if (copy_to_user(argp, &user_ns, sizeof(user_ns))) 5646 goto out; 5647 r = 0; 5648 break; 5649 } 5650 case KVM_MEMORY_ENCRYPT_OP: { 5651 r = -ENOTTY; 5652 if (kvm_x86_ops.mem_enc_op) 5653 r = kvm_x86_ops.mem_enc_op(kvm, argp); 5654 break; 5655 } 5656 case KVM_MEMORY_ENCRYPT_REG_REGION: { 5657 struct kvm_enc_region region; 5658 5659 r = -EFAULT; 5660 if (copy_from_user(®ion, argp, sizeof(region))) 5661 goto out; 5662 5663 r = -ENOTTY; 5664 if (kvm_x86_ops.mem_enc_reg_region) 5665 r = kvm_x86_ops.mem_enc_reg_region(kvm, ®ion); 5666 break; 5667 } 5668 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 5669 struct kvm_enc_region region; 5670 5671 r = -EFAULT; 5672 if (copy_from_user(®ion, argp, sizeof(region))) 5673 goto out; 5674 5675 r = -ENOTTY; 5676 if (kvm_x86_ops.mem_enc_unreg_region) 5677 r = kvm_x86_ops.mem_enc_unreg_region(kvm, ®ion); 5678 break; 5679 } 5680 case KVM_HYPERV_EVENTFD: { 5681 struct kvm_hyperv_eventfd hvevfd; 5682 5683 r = -EFAULT; 5684 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 5685 goto out; 5686 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 5687 break; 5688 } 5689 case KVM_SET_PMU_EVENT_FILTER: 5690 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 5691 break; 5692 case KVM_X86_SET_MSR_FILTER: 5693 r = kvm_vm_ioctl_set_msr_filter(kvm, argp); 5694 break; 5695 default: 5696 r = -ENOTTY; 5697 } 5698 out: 5699 return r; 5700 } 5701 5702 static void kvm_init_msr_list(void) 5703 { 5704 struct x86_pmu_capability x86_pmu; 5705 u32 dummy[2]; 5706 unsigned i; 5707 5708 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4, 5709 "Please update the fixed PMCs in msrs_to_saved_all[]"); 5710 5711 perf_get_x86_pmu_capability(&x86_pmu); 5712 5713 num_msrs_to_save = 0; 5714 num_emulated_msrs = 0; 5715 num_msr_based_features = 0; 5716 5717 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) { 5718 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0) 5719 continue; 5720 5721 /* 5722 * Even MSRs that are valid in the host may not be exposed 5723 * to the guests in some cases. 5724 */ 5725 switch (msrs_to_save_all[i]) { 5726 case MSR_IA32_BNDCFGS: 5727 if (!kvm_mpx_supported()) 5728 continue; 5729 break; 5730 case MSR_TSC_AUX: 5731 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) 5732 continue; 5733 break; 5734 case MSR_IA32_UMWAIT_CONTROL: 5735 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 5736 continue; 5737 break; 5738 case MSR_IA32_RTIT_CTL: 5739 case MSR_IA32_RTIT_STATUS: 5740 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 5741 continue; 5742 break; 5743 case MSR_IA32_RTIT_CR3_MATCH: 5744 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 5745 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 5746 continue; 5747 break; 5748 case MSR_IA32_RTIT_OUTPUT_BASE: 5749 case MSR_IA32_RTIT_OUTPUT_MASK: 5750 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 5751 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 5752 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 5753 continue; 5754 break; 5755 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 5756 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 5757 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >= 5758 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2) 5759 continue; 5760 break; 5761 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17: 5762 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >= 5763 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp)) 5764 continue; 5765 break; 5766 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17: 5767 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >= 5768 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp)) 5769 continue; 5770 break; 5771 default: 5772 break; 5773 } 5774 5775 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i]; 5776 } 5777 5778 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 5779 if (!kvm_x86_ops.has_emulated_msr(emulated_msrs_all[i])) 5780 continue; 5781 5782 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 5783 } 5784 5785 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) { 5786 struct kvm_msr_entry msr; 5787 5788 msr.index = msr_based_features_all[i]; 5789 if (kvm_get_msr_feature(&msr)) 5790 continue; 5791 5792 msr_based_features[num_msr_based_features++] = msr_based_features_all[i]; 5793 } 5794 } 5795 5796 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 5797 const void *v) 5798 { 5799 int handled = 0; 5800 int n; 5801 5802 do { 5803 n = min(len, 8); 5804 if (!(lapic_in_kernel(vcpu) && 5805 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 5806 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 5807 break; 5808 handled += n; 5809 addr += n; 5810 len -= n; 5811 v += n; 5812 } while (len); 5813 5814 return handled; 5815 } 5816 5817 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 5818 { 5819 int handled = 0; 5820 int n; 5821 5822 do { 5823 n = min(len, 8); 5824 if (!(lapic_in_kernel(vcpu) && 5825 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 5826 addr, n, v)) 5827 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 5828 break; 5829 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 5830 handled += n; 5831 addr += n; 5832 len -= n; 5833 v += n; 5834 } while (len); 5835 5836 return handled; 5837 } 5838 5839 static void kvm_set_segment(struct kvm_vcpu *vcpu, 5840 struct kvm_segment *var, int seg) 5841 { 5842 kvm_x86_ops.set_segment(vcpu, var, seg); 5843 } 5844 5845 void kvm_get_segment(struct kvm_vcpu *vcpu, 5846 struct kvm_segment *var, int seg) 5847 { 5848 kvm_x86_ops.get_segment(vcpu, var, seg); 5849 } 5850 5851 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 5852 struct x86_exception *exception) 5853 { 5854 gpa_t t_gpa; 5855 5856 BUG_ON(!mmu_is_nested(vcpu)); 5857 5858 /* NPT walks are always user-walks */ 5859 access |= PFERR_USER_MASK; 5860 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception); 5861 5862 return t_gpa; 5863 } 5864 5865 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 5866 struct x86_exception *exception) 5867 { 5868 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5869 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5870 } 5871 5872 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 5873 struct x86_exception *exception) 5874 { 5875 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5876 access |= PFERR_FETCH_MASK; 5877 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5878 } 5879 5880 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 5881 struct x86_exception *exception) 5882 { 5883 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5884 access |= PFERR_WRITE_MASK; 5885 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5886 } 5887 5888 /* uses this to access any guest's mapped memory without checking CPL */ 5889 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 5890 struct x86_exception *exception) 5891 { 5892 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); 5893 } 5894 5895 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 5896 struct kvm_vcpu *vcpu, u32 access, 5897 struct x86_exception *exception) 5898 { 5899 void *data = val; 5900 int r = X86EMUL_CONTINUE; 5901 5902 while (bytes) { 5903 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, 5904 exception); 5905 unsigned offset = addr & (PAGE_SIZE-1); 5906 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 5907 int ret; 5908 5909 if (gpa == UNMAPPED_GVA) 5910 return X86EMUL_PROPAGATE_FAULT; 5911 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 5912 offset, toread); 5913 if (ret < 0) { 5914 r = X86EMUL_IO_NEEDED; 5915 goto out; 5916 } 5917 5918 bytes -= toread; 5919 data += toread; 5920 addr += toread; 5921 } 5922 out: 5923 return r; 5924 } 5925 5926 /* used for instruction fetching */ 5927 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 5928 gva_t addr, void *val, unsigned int bytes, 5929 struct x86_exception *exception) 5930 { 5931 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5932 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5933 unsigned offset; 5934 int ret; 5935 5936 /* Inline kvm_read_guest_virt_helper for speed. */ 5937 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK, 5938 exception); 5939 if (unlikely(gpa == UNMAPPED_GVA)) 5940 return X86EMUL_PROPAGATE_FAULT; 5941 5942 offset = addr & (PAGE_SIZE-1); 5943 if (WARN_ON(offset + bytes > PAGE_SIZE)) 5944 bytes = (unsigned)PAGE_SIZE - offset; 5945 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 5946 offset, bytes); 5947 if (unlikely(ret < 0)) 5948 return X86EMUL_IO_NEEDED; 5949 5950 return X86EMUL_CONTINUE; 5951 } 5952 5953 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 5954 gva_t addr, void *val, unsigned int bytes, 5955 struct x86_exception *exception) 5956 { 5957 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5958 5959 /* 5960 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 5961 * is returned, but our callers are not ready for that and they blindly 5962 * call kvm_inject_page_fault. Ensure that they at least do not leak 5963 * uninitialized kernel stack memory into cr2 and error code. 5964 */ 5965 memset(exception, 0, sizeof(*exception)); 5966 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 5967 exception); 5968 } 5969 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 5970 5971 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 5972 gva_t addr, void *val, unsigned int bytes, 5973 struct x86_exception *exception, bool system) 5974 { 5975 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5976 u32 access = 0; 5977 5978 if (!system && kvm_x86_ops.get_cpl(vcpu) == 3) 5979 access |= PFERR_USER_MASK; 5980 5981 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 5982 } 5983 5984 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, 5985 unsigned long addr, void *val, unsigned int bytes) 5986 { 5987 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5988 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes); 5989 5990 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE; 5991 } 5992 5993 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 5994 struct kvm_vcpu *vcpu, u32 access, 5995 struct x86_exception *exception) 5996 { 5997 void *data = val; 5998 int r = X86EMUL_CONTINUE; 5999 6000 while (bytes) { 6001 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, 6002 access, 6003 exception); 6004 unsigned offset = addr & (PAGE_SIZE-1); 6005 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 6006 int ret; 6007 6008 if (gpa == UNMAPPED_GVA) 6009 return X86EMUL_PROPAGATE_FAULT; 6010 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 6011 if (ret < 0) { 6012 r = X86EMUL_IO_NEEDED; 6013 goto out; 6014 } 6015 6016 bytes -= towrite; 6017 data += towrite; 6018 addr += towrite; 6019 } 6020 out: 6021 return r; 6022 } 6023 6024 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 6025 unsigned int bytes, struct x86_exception *exception, 6026 bool system) 6027 { 6028 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6029 u32 access = PFERR_WRITE_MASK; 6030 6031 if (!system && kvm_x86_ops.get_cpl(vcpu) == 3) 6032 access |= PFERR_USER_MASK; 6033 6034 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 6035 access, exception); 6036 } 6037 6038 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 6039 unsigned int bytes, struct x86_exception *exception) 6040 { 6041 /* kvm_write_guest_virt_system can pull in tons of pages. */ 6042 vcpu->arch.l1tf_flush_l1d = true; 6043 6044 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 6045 PFERR_WRITE_MASK, exception); 6046 } 6047 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 6048 6049 int handle_ud(struct kvm_vcpu *vcpu) 6050 { 6051 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 6052 int emul_type = EMULTYPE_TRAP_UD; 6053 char sig[5]; /* ud2; .ascii "kvm" */ 6054 struct x86_exception e; 6055 6056 if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, NULL, 0))) 6057 return 1; 6058 6059 if (force_emulation_prefix && 6060 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 6061 sig, sizeof(sig), &e) == 0 && 6062 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 6063 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 6064 emul_type = EMULTYPE_TRAP_UD_FORCED; 6065 } 6066 6067 return kvm_emulate_instruction(vcpu, emul_type); 6068 } 6069 EXPORT_SYMBOL_GPL(handle_ud); 6070 6071 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 6072 gpa_t gpa, bool write) 6073 { 6074 /* For APIC access vmexit */ 6075 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 6076 return 1; 6077 6078 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 6079 trace_vcpu_match_mmio(gva, gpa, write, true); 6080 return 1; 6081 } 6082 6083 return 0; 6084 } 6085 6086 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 6087 gpa_t *gpa, struct x86_exception *exception, 6088 bool write) 6089 { 6090 u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) 6091 | (write ? PFERR_WRITE_MASK : 0); 6092 6093 /* 6094 * currently PKRU is only applied to ept enabled guest so 6095 * there is no pkey in EPT page table for L1 guest or EPT 6096 * shadow page table for L2 guest. 6097 */ 6098 if (vcpu_match_mmio_gva(vcpu, gva) 6099 && !permission_fault(vcpu, vcpu->arch.walk_mmu, 6100 vcpu->arch.mmio_access, 0, access)) { 6101 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 6102 (gva & (PAGE_SIZE - 1)); 6103 trace_vcpu_match_mmio(gva, *gpa, write, false); 6104 return 1; 6105 } 6106 6107 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 6108 6109 if (*gpa == UNMAPPED_GVA) 6110 return -1; 6111 6112 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 6113 } 6114 6115 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 6116 const void *val, int bytes) 6117 { 6118 int ret; 6119 6120 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 6121 if (ret < 0) 6122 return 0; 6123 kvm_page_track_write(vcpu, gpa, val, bytes); 6124 return 1; 6125 } 6126 6127 struct read_write_emulator_ops { 6128 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 6129 int bytes); 6130 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 6131 void *val, int bytes); 6132 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 6133 int bytes, void *val); 6134 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 6135 void *val, int bytes); 6136 bool write; 6137 }; 6138 6139 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 6140 { 6141 if (vcpu->mmio_read_completed) { 6142 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 6143 vcpu->mmio_fragments[0].gpa, val); 6144 vcpu->mmio_read_completed = 0; 6145 return 1; 6146 } 6147 6148 return 0; 6149 } 6150 6151 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 6152 void *val, int bytes) 6153 { 6154 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 6155 } 6156 6157 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 6158 void *val, int bytes) 6159 { 6160 return emulator_write_phys(vcpu, gpa, val, bytes); 6161 } 6162 6163 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 6164 { 6165 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 6166 return vcpu_mmio_write(vcpu, gpa, bytes, val); 6167 } 6168 6169 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 6170 void *val, int bytes) 6171 { 6172 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 6173 return X86EMUL_IO_NEEDED; 6174 } 6175 6176 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 6177 void *val, int bytes) 6178 { 6179 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 6180 6181 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 6182 return X86EMUL_CONTINUE; 6183 } 6184 6185 static const struct read_write_emulator_ops read_emultor = { 6186 .read_write_prepare = read_prepare, 6187 .read_write_emulate = read_emulate, 6188 .read_write_mmio = vcpu_mmio_read, 6189 .read_write_exit_mmio = read_exit_mmio, 6190 }; 6191 6192 static const struct read_write_emulator_ops write_emultor = { 6193 .read_write_emulate = write_emulate, 6194 .read_write_mmio = write_mmio, 6195 .read_write_exit_mmio = write_exit_mmio, 6196 .write = true, 6197 }; 6198 6199 static int emulator_read_write_onepage(unsigned long addr, void *val, 6200 unsigned int bytes, 6201 struct x86_exception *exception, 6202 struct kvm_vcpu *vcpu, 6203 const struct read_write_emulator_ops *ops) 6204 { 6205 gpa_t gpa; 6206 int handled, ret; 6207 bool write = ops->write; 6208 struct kvm_mmio_fragment *frag; 6209 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 6210 6211 /* 6212 * If the exit was due to a NPF we may already have a GPA. 6213 * If the GPA is present, use it to avoid the GVA to GPA table walk. 6214 * Note, this cannot be used on string operations since string 6215 * operation using rep will only have the initial GPA from the NPF 6216 * occurred. 6217 */ 6218 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 6219 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 6220 gpa = ctxt->gpa_val; 6221 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 6222 } else { 6223 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 6224 if (ret < 0) 6225 return X86EMUL_PROPAGATE_FAULT; 6226 } 6227 6228 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 6229 return X86EMUL_CONTINUE; 6230 6231 /* 6232 * Is this MMIO handled locally? 6233 */ 6234 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 6235 if (handled == bytes) 6236 return X86EMUL_CONTINUE; 6237 6238 gpa += handled; 6239 bytes -= handled; 6240 val += handled; 6241 6242 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 6243 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 6244 frag->gpa = gpa; 6245 frag->data = val; 6246 frag->len = bytes; 6247 return X86EMUL_CONTINUE; 6248 } 6249 6250 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 6251 unsigned long addr, 6252 void *val, unsigned int bytes, 6253 struct x86_exception *exception, 6254 const struct read_write_emulator_ops *ops) 6255 { 6256 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6257 gpa_t gpa; 6258 int rc; 6259 6260 if (ops->read_write_prepare && 6261 ops->read_write_prepare(vcpu, val, bytes)) 6262 return X86EMUL_CONTINUE; 6263 6264 vcpu->mmio_nr_fragments = 0; 6265 6266 /* Crossing a page boundary? */ 6267 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 6268 int now; 6269 6270 now = -addr & ~PAGE_MASK; 6271 rc = emulator_read_write_onepage(addr, val, now, exception, 6272 vcpu, ops); 6273 6274 if (rc != X86EMUL_CONTINUE) 6275 return rc; 6276 addr += now; 6277 if (ctxt->mode != X86EMUL_MODE_PROT64) 6278 addr = (u32)addr; 6279 val += now; 6280 bytes -= now; 6281 } 6282 6283 rc = emulator_read_write_onepage(addr, val, bytes, exception, 6284 vcpu, ops); 6285 if (rc != X86EMUL_CONTINUE) 6286 return rc; 6287 6288 if (!vcpu->mmio_nr_fragments) 6289 return rc; 6290 6291 gpa = vcpu->mmio_fragments[0].gpa; 6292 6293 vcpu->mmio_needed = 1; 6294 vcpu->mmio_cur_fragment = 0; 6295 6296 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 6297 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 6298 vcpu->run->exit_reason = KVM_EXIT_MMIO; 6299 vcpu->run->mmio.phys_addr = gpa; 6300 6301 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 6302 } 6303 6304 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 6305 unsigned long addr, 6306 void *val, 6307 unsigned int bytes, 6308 struct x86_exception *exception) 6309 { 6310 return emulator_read_write(ctxt, addr, val, bytes, 6311 exception, &read_emultor); 6312 } 6313 6314 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 6315 unsigned long addr, 6316 const void *val, 6317 unsigned int bytes, 6318 struct x86_exception *exception) 6319 { 6320 return emulator_read_write(ctxt, addr, (void *)val, bytes, 6321 exception, &write_emultor); 6322 } 6323 6324 #define CMPXCHG_TYPE(t, ptr, old, new) \ 6325 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 6326 6327 #ifdef CONFIG_X86_64 6328 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 6329 #else 6330 # define CMPXCHG64(ptr, old, new) \ 6331 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 6332 #endif 6333 6334 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 6335 unsigned long addr, 6336 const void *old, 6337 const void *new, 6338 unsigned int bytes, 6339 struct x86_exception *exception) 6340 { 6341 struct kvm_host_map map; 6342 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6343 u64 page_line_mask; 6344 gpa_t gpa; 6345 char *kaddr; 6346 bool exchanged; 6347 6348 /* guests cmpxchg8b have to be emulated atomically */ 6349 if (bytes > 8 || (bytes & (bytes - 1))) 6350 goto emul_write; 6351 6352 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 6353 6354 if (gpa == UNMAPPED_GVA || 6355 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 6356 goto emul_write; 6357 6358 /* 6359 * Emulate the atomic as a straight write to avoid #AC if SLD is 6360 * enabled in the host and the access splits a cache line. 6361 */ 6362 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 6363 page_line_mask = ~(cache_line_size() - 1); 6364 else 6365 page_line_mask = PAGE_MASK; 6366 6367 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 6368 goto emul_write; 6369 6370 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map)) 6371 goto emul_write; 6372 6373 kaddr = map.hva + offset_in_page(gpa); 6374 6375 switch (bytes) { 6376 case 1: 6377 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 6378 break; 6379 case 2: 6380 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 6381 break; 6382 case 4: 6383 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 6384 break; 6385 case 8: 6386 exchanged = CMPXCHG64(kaddr, old, new); 6387 break; 6388 default: 6389 BUG(); 6390 } 6391 6392 kvm_vcpu_unmap(vcpu, &map, true); 6393 6394 if (!exchanged) 6395 return X86EMUL_CMPXCHG_FAILED; 6396 6397 kvm_page_track_write(vcpu, gpa, new, bytes); 6398 6399 return X86EMUL_CONTINUE; 6400 6401 emul_write: 6402 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 6403 6404 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 6405 } 6406 6407 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 6408 { 6409 int r = 0, i; 6410 6411 for (i = 0; i < vcpu->arch.pio.count; i++) { 6412 if (vcpu->arch.pio.in) 6413 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port, 6414 vcpu->arch.pio.size, pd); 6415 else 6416 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, 6417 vcpu->arch.pio.port, vcpu->arch.pio.size, 6418 pd); 6419 if (r) 6420 break; 6421 pd += vcpu->arch.pio.size; 6422 } 6423 return r; 6424 } 6425 6426 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 6427 unsigned short port, void *val, 6428 unsigned int count, bool in) 6429 { 6430 vcpu->arch.pio.port = port; 6431 vcpu->arch.pio.in = in; 6432 vcpu->arch.pio.count = count; 6433 vcpu->arch.pio.size = size; 6434 6435 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { 6436 vcpu->arch.pio.count = 0; 6437 return 1; 6438 } 6439 6440 vcpu->run->exit_reason = KVM_EXIT_IO; 6441 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 6442 vcpu->run->io.size = size; 6443 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 6444 vcpu->run->io.count = count; 6445 vcpu->run->io.port = port; 6446 6447 return 0; 6448 } 6449 6450 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 6451 unsigned short port, void *val, unsigned int count) 6452 { 6453 int ret; 6454 6455 if (vcpu->arch.pio.count) 6456 goto data_avail; 6457 6458 memset(vcpu->arch.pio_data, 0, size * count); 6459 6460 ret = emulator_pio_in_out(vcpu, size, port, val, count, true); 6461 if (ret) { 6462 data_avail: 6463 memcpy(val, vcpu->arch.pio_data, size * count); 6464 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data); 6465 vcpu->arch.pio.count = 0; 6466 return 1; 6467 } 6468 6469 return 0; 6470 } 6471 6472 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 6473 int size, unsigned short port, void *val, 6474 unsigned int count) 6475 { 6476 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count); 6477 6478 } 6479 6480 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 6481 unsigned short port, const void *val, 6482 unsigned int count) 6483 { 6484 memcpy(vcpu->arch.pio_data, val, size * count); 6485 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data); 6486 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 6487 } 6488 6489 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 6490 int size, unsigned short port, 6491 const void *val, unsigned int count) 6492 { 6493 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 6494 } 6495 6496 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 6497 { 6498 return kvm_x86_ops.get_segment_base(vcpu, seg); 6499 } 6500 6501 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 6502 { 6503 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 6504 } 6505 6506 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 6507 { 6508 if (!need_emulate_wbinvd(vcpu)) 6509 return X86EMUL_CONTINUE; 6510 6511 if (kvm_x86_ops.has_wbinvd_exit()) { 6512 int cpu = get_cpu(); 6513 6514 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 6515 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, 6516 wbinvd_ipi, NULL, 1); 6517 put_cpu(); 6518 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 6519 } else 6520 wbinvd(); 6521 return X86EMUL_CONTINUE; 6522 } 6523 6524 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 6525 { 6526 kvm_emulate_wbinvd_noskip(vcpu); 6527 return kvm_skip_emulated_instruction(vcpu); 6528 } 6529 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 6530 6531 6532 6533 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 6534 { 6535 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 6536 } 6537 6538 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 6539 unsigned long *dest) 6540 { 6541 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 6542 } 6543 6544 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 6545 unsigned long value) 6546 { 6547 6548 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 6549 } 6550 6551 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 6552 { 6553 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 6554 } 6555 6556 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 6557 { 6558 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6559 unsigned long value; 6560 6561 switch (cr) { 6562 case 0: 6563 value = kvm_read_cr0(vcpu); 6564 break; 6565 case 2: 6566 value = vcpu->arch.cr2; 6567 break; 6568 case 3: 6569 value = kvm_read_cr3(vcpu); 6570 break; 6571 case 4: 6572 value = kvm_read_cr4(vcpu); 6573 break; 6574 case 8: 6575 value = kvm_get_cr8(vcpu); 6576 break; 6577 default: 6578 kvm_err("%s: unexpected cr %u\n", __func__, cr); 6579 return 0; 6580 } 6581 6582 return value; 6583 } 6584 6585 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 6586 { 6587 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6588 int res = 0; 6589 6590 switch (cr) { 6591 case 0: 6592 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 6593 break; 6594 case 2: 6595 vcpu->arch.cr2 = val; 6596 break; 6597 case 3: 6598 res = kvm_set_cr3(vcpu, val); 6599 break; 6600 case 4: 6601 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 6602 break; 6603 case 8: 6604 res = kvm_set_cr8(vcpu, val); 6605 break; 6606 default: 6607 kvm_err("%s: unexpected cr %u\n", __func__, cr); 6608 res = -1; 6609 } 6610 6611 return res; 6612 } 6613 6614 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 6615 { 6616 return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt)); 6617 } 6618 6619 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6620 { 6621 kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt); 6622 } 6623 6624 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6625 { 6626 kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt); 6627 } 6628 6629 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6630 { 6631 kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt); 6632 } 6633 6634 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6635 { 6636 kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt); 6637 } 6638 6639 static unsigned long emulator_get_cached_segment_base( 6640 struct x86_emulate_ctxt *ctxt, int seg) 6641 { 6642 return get_segment_base(emul_to_vcpu(ctxt), seg); 6643 } 6644 6645 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 6646 struct desc_struct *desc, u32 *base3, 6647 int seg) 6648 { 6649 struct kvm_segment var; 6650 6651 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 6652 *selector = var.selector; 6653 6654 if (var.unusable) { 6655 memset(desc, 0, sizeof(*desc)); 6656 if (base3) 6657 *base3 = 0; 6658 return false; 6659 } 6660 6661 if (var.g) 6662 var.limit >>= 12; 6663 set_desc_limit(desc, var.limit); 6664 set_desc_base(desc, (unsigned long)var.base); 6665 #ifdef CONFIG_X86_64 6666 if (base3) 6667 *base3 = var.base >> 32; 6668 #endif 6669 desc->type = var.type; 6670 desc->s = var.s; 6671 desc->dpl = var.dpl; 6672 desc->p = var.present; 6673 desc->avl = var.avl; 6674 desc->l = var.l; 6675 desc->d = var.db; 6676 desc->g = var.g; 6677 6678 return true; 6679 } 6680 6681 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 6682 struct desc_struct *desc, u32 base3, 6683 int seg) 6684 { 6685 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6686 struct kvm_segment var; 6687 6688 var.selector = selector; 6689 var.base = get_desc_base(desc); 6690 #ifdef CONFIG_X86_64 6691 var.base |= ((u64)base3) << 32; 6692 #endif 6693 var.limit = get_desc_limit(desc); 6694 if (desc->g) 6695 var.limit = (var.limit << 12) | 0xfff; 6696 var.type = desc->type; 6697 var.dpl = desc->dpl; 6698 var.db = desc->d; 6699 var.s = desc->s; 6700 var.l = desc->l; 6701 var.g = desc->g; 6702 var.avl = desc->avl; 6703 var.present = desc->p; 6704 var.unusable = !var.present; 6705 var.padding = 0; 6706 6707 kvm_set_segment(vcpu, &var, seg); 6708 return; 6709 } 6710 6711 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 6712 u32 msr_index, u64 *pdata) 6713 { 6714 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6715 int r; 6716 6717 r = kvm_get_msr(vcpu, msr_index, pdata); 6718 6719 if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) { 6720 /* Bounce to user space */ 6721 return X86EMUL_IO_NEEDED; 6722 } 6723 6724 return r; 6725 } 6726 6727 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 6728 u32 msr_index, u64 data) 6729 { 6730 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6731 int r; 6732 6733 r = kvm_set_msr(vcpu, msr_index, data); 6734 6735 if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) { 6736 /* Bounce to user space */ 6737 return X86EMUL_IO_NEEDED; 6738 } 6739 6740 return r; 6741 } 6742 6743 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt) 6744 { 6745 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6746 6747 return vcpu->arch.smbase; 6748 } 6749 6750 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase) 6751 { 6752 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6753 6754 vcpu->arch.smbase = smbase; 6755 } 6756 6757 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 6758 u32 pmc) 6759 { 6760 return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc); 6761 } 6762 6763 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 6764 u32 pmc, u64 *pdata) 6765 { 6766 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 6767 } 6768 6769 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 6770 { 6771 emul_to_vcpu(ctxt)->arch.halt_request = 1; 6772 } 6773 6774 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 6775 struct x86_instruction_info *info, 6776 enum x86_intercept_stage stage) 6777 { 6778 return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage, 6779 &ctxt->exception); 6780 } 6781 6782 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 6783 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 6784 bool exact_only) 6785 { 6786 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 6787 } 6788 6789 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt) 6790 { 6791 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM); 6792 } 6793 6794 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 6795 { 6796 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 6797 } 6798 6799 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 6800 { 6801 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 6802 } 6803 6804 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 6805 { 6806 return kvm_register_read(emul_to_vcpu(ctxt), reg); 6807 } 6808 6809 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 6810 { 6811 kvm_register_write(emul_to_vcpu(ctxt), reg, val); 6812 } 6813 6814 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 6815 { 6816 kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked); 6817 } 6818 6819 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 6820 { 6821 return emul_to_vcpu(ctxt)->arch.hflags; 6822 } 6823 6824 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags) 6825 { 6826 emul_to_vcpu(ctxt)->arch.hflags = emul_flags; 6827 } 6828 6829 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, 6830 const char *smstate) 6831 { 6832 return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate); 6833 } 6834 6835 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt) 6836 { 6837 kvm_smm_changed(emul_to_vcpu(ctxt)); 6838 } 6839 6840 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 6841 { 6842 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 6843 } 6844 6845 static const struct x86_emulate_ops emulate_ops = { 6846 .read_gpr = emulator_read_gpr, 6847 .write_gpr = emulator_write_gpr, 6848 .read_std = emulator_read_std, 6849 .write_std = emulator_write_std, 6850 .read_phys = kvm_read_guest_phys_system, 6851 .fetch = kvm_fetch_guest_virt, 6852 .read_emulated = emulator_read_emulated, 6853 .write_emulated = emulator_write_emulated, 6854 .cmpxchg_emulated = emulator_cmpxchg_emulated, 6855 .invlpg = emulator_invlpg, 6856 .pio_in_emulated = emulator_pio_in_emulated, 6857 .pio_out_emulated = emulator_pio_out_emulated, 6858 .get_segment = emulator_get_segment, 6859 .set_segment = emulator_set_segment, 6860 .get_cached_segment_base = emulator_get_cached_segment_base, 6861 .get_gdt = emulator_get_gdt, 6862 .get_idt = emulator_get_idt, 6863 .set_gdt = emulator_set_gdt, 6864 .set_idt = emulator_set_idt, 6865 .get_cr = emulator_get_cr, 6866 .set_cr = emulator_set_cr, 6867 .cpl = emulator_get_cpl, 6868 .get_dr = emulator_get_dr, 6869 .set_dr = emulator_set_dr, 6870 .get_smbase = emulator_get_smbase, 6871 .set_smbase = emulator_set_smbase, 6872 .set_msr = emulator_set_msr, 6873 .get_msr = emulator_get_msr, 6874 .check_pmc = emulator_check_pmc, 6875 .read_pmc = emulator_read_pmc, 6876 .halt = emulator_halt, 6877 .wbinvd = emulator_wbinvd, 6878 .fix_hypercall = emulator_fix_hypercall, 6879 .intercept = emulator_intercept, 6880 .get_cpuid = emulator_get_cpuid, 6881 .guest_has_long_mode = emulator_guest_has_long_mode, 6882 .guest_has_movbe = emulator_guest_has_movbe, 6883 .guest_has_fxsr = emulator_guest_has_fxsr, 6884 .set_nmi_mask = emulator_set_nmi_mask, 6885 .get_hflags = emulator_get_hflags, 6886 .set_hflags = emulator_set_hflags, 6887 .pre_leave_smm = emulator_pre_leave_smm, 6888 .post_leave_smm = emulator_post_leave_smm, 6889 .set_xcr = emulator_set_xcr, 6890 }; 6891 6892 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 6893 { 6894 u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu); 6895 /* 6896 * an sti; sti; sequence only disable interrupts for the first 6897 * instruction. So, if the last instruction, be it emulated or 6898 * not, left the system with the INT_STI flag enabled, it 6899 * means that the last instruction is an sti. We should not 6900 * leave the flag on in this case. The same goes for mov ss 6901 */ 6902 if (int_shadow & mask) 6903 mask = 0; 6904 if (unlikely(int_shadow || mask)) { 6905 kvm_x86_ops.set_interrupt_shadow(vcpu, mask); 6906 if (!mask) 6907 kvm_make_request(KVM_REQ_EVENT, vcpu); 6908 } 6909 } 6910 6911 static bool inject_emulated_exception(struct kvm_vcpu *vcpu) 6912 { 6913 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 6914 if (ctxt->exception.vector == PF_VECTOR) 6915 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 6916 6917 if (ctxt->exception.error_code_valid) 6918 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 6919 ctxt->exception.error_code); 6920 else 6921 kvm_queue_exception(vcpu, ctxt->exception.vector); 6922 return false; 6923 } 6924 6925 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 6926 { 6927 struct x86_emulate_ctxt *ctxt; 6928 6929 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 6930 if (!ctxt) { 6931 pr_err("kvm: failed to allocate vcpu's emulator\n"); 6932 return NULL; 6933 } 6934 6935 ctxt->vcpu = vcpu; 6936 ctxt->ops = &emulate_ops; 6937 vcpu->arch.emulate_ctxt = ctxt; 6938 6939 return ctxt; 6940 } 6941 6942 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 6943 { 6944 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 6945 int cs_db, cs_l; 6946 6947 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 6948 6949 ctxt->gpa_available = false; 6950 ctxt->eflags = kvm_get_rflags(vcpu); 6951 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 6952 6953 ctxt->eip = kvm_rip_read(vcpu); 6954 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 6955 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 6956 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 6957 cs_db ? X86EMUL_MODE_PROT32 : 6958 X86EMUL_MODE_PROT16; 6959 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 6960 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK); 6961 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK); 6962 6963 init_decode_cache(ctxt); 6964 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 6965 } 6966 6967 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 6968 { 6969 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 6970 int ret; 6971 6972 init_emulate_ctxt(vcpu); 6973 6974 ctxt->op_bytes = 2; 6975 ctxt->ad_bytes = 2; 6976 ctxt->_eip = ctxt->eip + inc_eip; 6977 ret = emulate_int_real(ctxt, irq); 6978 6979 if (ret != X86EMUL_CONTINUE) { 6980 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 6981 } else { 6982 ctxt->eip = ctxt->_eip; 6983 kvm_rip_write(vcpu, ctxt->eip); 6984 kvm_set_rflags(vcpu, ctxt->eflags); 6985 } 6986 } 6987 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 6988 6989 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 6990 { 6991 ++vcpu->stat.insn_emulation_fail; 6992 trace_kvm_emulate_insn_failed(vcpu); 6993 6994 if (emulation_type & EMULTYPE_VMWARE_GP) { 6995 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 6996 return 1; 6997 } 6998 6999 if (emulation_type & EMULTYPE_SKIP) { 7000 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 7001 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 7002 vcpu->run->internal.ndata = 0; 7003 return 0; 7004 } 7005 7006 kvm_queue_exception(vcpu, UD_VECTOR); 7007 7008 if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) { 7009 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 7010 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 7011 vcpu->run->internal.ndata = 0; 7012 return 0; 7013 } 7014 7015 return 1; 7016 } 7017 7018 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 7019 bool write_fault_to_shadow_pgtable, 7020 int emulation_type) 7021 { 7022 gpa_t gpa = cr2_or_gpa; 7023 kvm_pfn_t pfn; 7024 7025 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 7026 return false; 7027 7028 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 7029 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 7030 return false; 7031 7032 if (!vcpu->arch.mmu->direct_map) { 7033 /* 7034 * Write permission should be allowed since only 7035 * write access need to be emulated. 7036 */ 7037 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 7038 7039 /* 7040 * If the mapping is invalid in guest, let cpu retry 7041 * it to generate fault. 7042 */ 7043 if (gpa == UNMAPPED_GVA) 7044 return true; 7045 } 7046 7047 /* 7048 * Do not retry the unhandleable instruction if it faults on the 7049 * readonly host memory, otherwise it will goto a infinite loop: 7050 * retry instruction -> write #PF -> emulation fail -> retry 7051 * instruction -> ... 7052 */ 7053 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 7054 7055 /* 7056 * If the instruction failed on the error pfn, it can not be fixed, 7057 * report the error to userspace. 7058 */ 7059 if (is_error_noslot_pfn(pfn)) 7060 return false; 7061 7062 kvm_release_pfn_clean(pfn); 7063 7064 /* The instructions are well-emulated on direct mmu. */ 7065 if (vcpu->arch.mmu->direct_map) { 7066 unsigned int indirect_shadow_pages; 7067 7068 spin_lock(&vcpu->kvm->mmu_lock); 7069 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 7070 spin_unlock(&vcpu->kvm->mmu_lock); 7071 7072 if (indirect_shadow_pages) 7073 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 7074 7075 return true; 7076 } 7077 7078 /* 7079 * if emulation was due to access to shadowed page table 7080 * and it failed try to unshadow page and re-enter the 7081 * guest to let CPU execute the instruction. 7082 */ 7083 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 7084 7085 /* 7086 * If the access faults on its page table, it can not 7087 * be fixed by unprotecting shadow page and it should 7088 * be reported to userspace. 7089 */ 7090 return !write_fault_to_shadow_pgtable; 7091 } 7092 7093 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 7094 gpa_t cr2_or_gpa, int emulation_type) 7095 { 7096 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7097 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 7098 7099 last_retry_eip = vcpu->arch.last_retry_eip; 7100 last_retry_addr = vcpu->arch.last_retry_addr; 7101 7102 /* 7103 * If the emulation is caused by #PF and it is non-page_table 7104 * writing instruction, it means the VM-EXIT is caused by shadow 7105 * page protected, we can zap the shadow page and retry this 7106 * instruction directly. 7107 * 7108 * Note: if the guest uses a non-page-table modifying instruction 7109 * on the PDE that points to the instruction, then we will unmap 7110 * the instruction and go to an infinite loop. So, we cache the 7111 * last retried eip and the last fault address, if we meet the eip 7112 * and the address again, we can break out of the potential infinite 7113 * loop. 7114 */ 7115 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 7116 7117 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 7118 return false; 7119 7120 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 7121 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 7122 return false; 7123 7124 if (x86_page_table_writing_insn(ctxt)) 7125 return false; 7126 7127 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 7128 return false; 7129 7130 vcpu->arch.last_retry_eip = ctxt->eip; 7131 vcpu->arch.last_retry_addr = cr2_or_gpa; 7132 7133 if (!vcpu->arch.mmu->direct_map) 7134 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 7135 7136 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 7137 7138 return true; 7139 } 7140 7141 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 7142 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 7143 7144 static void kvm_smm_changed(struct kvm_vcpu *vcpu) 7145 { 7146 if (!(vcpu->arch.hflags & HF_SMM_MASK)) { 7147 /* This is a good place to trace that we are exiting SMM. */ 7148 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false); 7149 7150 /* Process a latched INIT or SMI, if any. */ 7151 kvm_make_request(KVM_REQ_EVENT, vcpu); 7152 } 7153 7154 kvm_mmu_reset_context(vcpu); 7155 } 7156 7157 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 7158 unsigned long *db) 7159 { 7160 u32 dr6 = 0; 7161 int i; 7162 u32 enable, rwlen; 7163 7164 enable = dr7; 7165 rwlen = dr7 >> 16; 7166 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 7167 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 7168 dr6 |= (1 << i); 7169 return dr6; 7170 } 7171 7172 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 7173 { 7174 struct kvm_run *kvm_run = vcpu->run; 7175 7176 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 7177 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM; 7178 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 7179 kvm_run->debug.arch.exception = DB_VECTOR; 7180 kvm_run->exit_reason = KVM_EXIT_DEBUG; 7181 return 0; 7182 } 7183 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 7184 return 1; 7185 } 7186 7187 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 7188 { 7189 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu); 7190 int r; 7191 7192 r = kvm_x86_ops.skip_emulated_instruction(vcpu); 7193 if (unlikely(!r)) 7194 return 0; 7195 7196 /* 7197 * rflags is the old, "raw" value of the flags. The new value has 7198 * not been saved yet. 7199 * 7200 * This is correct even for TF set by the guest, because "the 7201 * processor will not generate this exception after the instruction 7202 * that sets the TF flag". 7203 */ 7204 if (unlikely(rflags & X86_EFLAGS_TF)) 7205 r = kvm_vcpu_do_singlestep(vcpu); 7206 return r; 7207 } 7208 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 7209 7210 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r) 7211 { 7212 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 7213 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 7214 struct kvm_run *kvm_run = vcpu->run; 7215 unsigned long eip = kvm_get_linear_rip(vcpu); 7216 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 7217 vcpu->arch.guest_debug_dr7, 7218 vcpu->arch.eff_db); 7219 7220 if (dr6 != 0) { 7221 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM; 7222 kvm_run->debug.arch.pc = eip; 7223 kvm_run->debug.arch.exception = DB_VECTOR; 7224 kvm_run->exit_reason = KVM_EXIT_DEBUG; 7225 *r = 0; 7226 return true; 7227 } 7228 } 7229 7230 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 7231 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) { 7232 unsigned long eip = kvm_get_linear_rip(vcpu); 7233 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 7234 vcpu->arch.dr7, 7235 vcpu->arch.db); 7236 7237 if (dr6 != 0) { 7238 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 7239 *r = 1; 7240 return true; 7241 } 7242 } 7243 7244 return false; 7245 } 7246 7247 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 7248 { 7249 switch (ctxt->opcode_len) { 7250 case 1: 7251 switch (ctxt->b) { 7252 case 0xe4: /* IN */ 7253 case 0xe5: 7254 case 0xec: 7255 case 0xed: 7256 case 0xe6: /* OUT */ 7257 case 0xe7: 7258 case 0xee: 7259 case 0xef: 7260 case 0x6c: /* INS */ 7261 case 0x6d: 7262 case 0x6e: /* OUTS */ 7263 case 0x6f: 7264 return true; 7265 } 7266 break; 7267 case 2: 7268 switch (ctxt->b) { 7269 case 0x33: /* RDPMC */ 7270 return true; 7271 } 7272 break; 7273 } 7274 7275 return false; 7276 } 7277 7278 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 7279 int emulation_type, void *insn, int insn_len) 7280 { 7281 int r; 7282 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7283 bool writeback = true; 7284 bool write_fault_to_spt; 7285 7286 if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, insn, insn_len))) 7287 return 1; 7288 7289 vcpu->arch.l1tf_flush_l1d = true; 7290 7291 /* 7292 * Clear write_fault_to_shadow_pgtable here to ensure it is 7293 * never reused. 7294 */ 7295 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 7296 vcpu->arch.write_fault_to_shadow_pgtable = false; 7297 kvm_clear_exception_queue(vcpu); 7298 7299 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 7300 init_emulate_ctxt(vcpu); 7301 7302 /* 7303 * We will reenter on the same instruction since 7304 * we do not set complete_userspace_io. This does not 7305 * handle watchpoints yet, those would be handled in 7306 * the emulate_ops. 7307 */ 7308 if (!(emulation_type & EMULTYPE_SKIP) && 7309 kvm_vcpu_check_breakpoint(vcpu, &r)) 7310 return r; 7311 7312 ctxt->interruptibility = 0; 7313 ctxt->have_exception = false; 7314 ctxt->exception.vector = -1; 7315 ctxt->perm_ok = false; 7316 7317 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD; 7318 7319 r = x86_decode_insn(ctxt, insn, insn_len); 7320 7321 trace_kvm_emulate_insn_start(vcpu); 7322 ++vcpu->stat.insn_emulation; 7323 if (r != EMULATION_OK) { 7324 if ((emulation_type & EMULTYPE_TRAP_UD) || 7325 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 7326 kvm_queue_exception(vcpu, UD_VECTOR); 7327 return 1; 7328 } 7329 if (reexecute_instruction(vcpu, cr2_or_gpa, 7330 write_fault_to_spt, 7331 emulation_type)) 7332 return 1; 7333 if (ctxt->have_exception) { 7334 /* 7335 * #UD should result in just EMULATION_FAILED, and trap-like 7336 * exception should not be encountered during decode. 7337 */ 7338 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 7339 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 7340 inject_emulated_exception(vcpu); 7341 return 1; 7342 } 7343 return handle_emulation_failure(vcpu, emulation_type); 7344 } 7345 } 7346 7347 if ((emulation_type & EMULTYPE_VMWARE_GP) && 7348 !is_vmware_backdoor_opcode(ctxt)) { 7349 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 7350 return 1; 7351 } 7352 7353 /* 7354 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks 7355 * for kvm_skip_emulated_instruction(). The caller is responsible for 7356 * updating interruptibility state and injecting single-step #DBs. 7357 */ 7358 if (emulation_type & EMULTYPE_SKIP) { 7359 kvm_rip_write(vcpu, ctxt->_eip); 7360 if (ctxt->eflags & X86_EFLAGS_RF) 7361 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 7362 return 1; 7363 } 7364 7365 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 7366 return 1; 7367 7368 /* this is needed for vmware backdoor interface to work since it 7369 changes registers values during IO operation */ 7370 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 7371 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 7372 emulator_invalidate_register_cache(ctxt); 7373 } 7374 7375 restart: 7376 if (emulation_type & EMULTYPE_PF) { 7377 /* Save the faulting GPA (cr2) in the address field */ 7378 ctxt->exception.address = cr2_or_gpa; 7379 7380 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 7381 if (vcpu->arch.mmu->direct_map) { 7382 ctxt->gpa_available = true; 7383 ctxt->gpa_val = cr2_or_gpa; 7384 } 7385 } else { 7386 /* Sanitize the address out of an abundance of paranoia. */ 7387 ctxt->exception.address = 0; 7388 } 7389 7390 r = x86_emulate_insn(ctxt); 7391 7392 if (r == EMULATION_INTERCEPTED) 7393 return 1; 7394 7395 if (r == EMULATION_FAILED) { 7396 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt, 7397 emulation_type)) 7398 return 1; 7399 7400 return handle_emulation_failure(vcpu, emulation_type); 7401 } 7402 7403 if (ctxt->have_exception) { 7404 r = 1; 7405 if (inject_emulated_exception(vcpu)) 7406 return r; 7407 } else if (vcpu->arch.pio.count) { 7408 if (!vcpu->arch.pio.in) { 7409 /* FIXME: return into emulator if single-stepping. */ 7410 vcpu->arch.pio.count = 0; 7411 } else { 7412 writeback = false; 7413 vcpu->arch.complete_userspace_io = complete_emulated_pio; 7414 } 7415 r = 0; 7416 } else if (vcpu->mmio_needed) { 7417 ++vcpu->stat.mmio_exits; 7418 7419 if (!vcpu->mmio_is_write) 7420 writeback = false; 7421 r = 0; 7422 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 7423 } else if (r == EMULATION_RESTART) 7424 goto restart; 7425 else 7426 r = 1; 7427 7428 if (writeback) { 7429 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu); 7430 toggle_interruptibility(vcpu, ctxt->interruptibility); 7431 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 7432 if (!ctxt->have_exception || 7433 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 7434 kvm_rip_write(vcpu, ctxt->eip); 7435 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 7436 r = kvm_vcpu_do_singlestep(vcpu); 7437 if (kvm_x86_ops.update_emulated_instruction) 7438 kvm_x86_ops.update_emulated_instruction(vcpu); 7439 __kvm_set_rflags(vcpu, ctxt->eflags); 7440 } 7441 7442 /* 7443 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 7444 * do nothing, and it will be requested again as soon as 7445 * the shadow expires. But we still need to check here, 7446 * because POPF has no interrupt shadow. 7447 */ 7448 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 7449 kvm_make_request(KVM_REQ_EVENT, vcpu); 7450 } else 7451 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 7452 7453 return r; 7454 } 7455 7456 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 7457 { 7458 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 7459 } 7460 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 7461 7462 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 7463 void *insn, int insn_len) 7464 { 7465 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 7466 } 7467 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 7468 7469 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 7470 { 7471 vcpu->arch.pio.count = 0; 7472 return 1; 7473 } 7474 7475 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 7476 { 7477 vcpu->arch.pio.count = 0; 7478 7479 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 7480 return 1; 7481 7482 return kvm_skip_emulated_instruction(vcpu); 7483 } 7484 7485 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 7486 unsigned short port) 7487 { 7488 unsigned long val = kvm_rax_read(vcpu); 7489 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 7490 7491 if (ret) 7492 return ret; 7493 7494 /* 7495 * Workaround userspace that relies on old KVM behavior of %rip being 7496 * incremented prior to exiting to userspace to handle "OUT 0x7e". 7497 */ 7498 if (port == 0x7e && 7499 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 7500 vcpu->arch.complete_userspace_io = 7501 complete_fast_pio_out_port_0x7e; 7502 kvm_skip_emulated_instruction(vcpu); 7503 } else { 7504 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 7505 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 7506 } 7507 return 0; 7508 } 7509 7510 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 7511 { 7512 unsigned long val; 7513 7514 /* We should only ever be called with arch.pio.count equal to 1 */ 7515 BUG_ON(vcpu->arch.pio.count != 1); 7516 7517 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 7518 vcpu->arch.pio.count = 0; 7519 return 1; 7520 } 7521 7522 /* For size less than 4 we merge, else we zero extend */ 7523 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 7524 7525 /* 7526 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform 7527 * the copy and tracing 7528 */ 7529 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1); 7530 kvm_rax_write(vcpu, val); 7531 7532 return kvm_skip_emulated_instruction(vcpu); 7533 } 7534 7535 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 7536 unsigned short port) 7537 { 7538 unsigned long val; 7539 int ret; 7540 7541 /* For size less than 4 we merge, else we zero extend */ 7542 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 7543 7544 ret = emulator_pio_in(vcpu, size, port, &val, 1); 7545 if (ret) { 7546 kvm_rax_write(vcpu, val); 7547 return ret; 7548 } 7549 7550 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 7551 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 7552 7553 return 0; 7554 } 7555 7556 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 7557 { 7558 int ret; 7559 7560 if (in) 7561 ret = kvm_fast_pio_in(vcpu, size, port); 7562 else 7563 ret = kvm_fast_pio_out(vcpu, size, port); 7564 return ret && kvm_skip_emulated_instruction(vcpu); 7565 } 7566 EXPORT_SYMBOL_GPL(kvm_fast_pio); 7567 7568 static int kvmclock_cpu_down_prep(unsigned int cpu) 7569 { 7570 __this_cpu_write(cpu_tsc_khz, 0); 7571 return 0; 7572 } 7573 7574 static void tsc_khz_changed(void *data) 7575 { 7576 struct cpufreq_freqs *freq = data; 7577 unsigned long khz = 0; 7578 7579 if (data) 7580 khz = freq->new; 7581 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 7582 khz = cpufreq_quick_get(raw_smp_processor_id()); 7583 if (!khz) 7584 khz = tsc_khz; 7585 __this_cpu_write(cpu_tsc_khz, khz); 7586 } 7587 7588 #ifdef CONFIG_X86_64 7589 static void kvm_hyperv_tsc_notifier(void) 7590 { 7591 struct kvm *kvm; 7592 struct kvm_vcpu *vcpu; 7593 int cpu; 7594 7595 mutex_lock(&kvm_lock); 7596 list_for_each_entry(kvm, &vm_list, vm_list) 7597 kvm_make_mclock_inprogress_request(kvm); 7598 7599 hyperv_stop_tsc_emulation(); 7600 7601 /* TSC frequency always matches when on Hyper-V */ 7602 for_each_present_cpu(cpu) 7603 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 7604 kvm_max_guest_tsc_khz = tsc_khz; 7605 7606 list_for_each_entry(kvm, &vm_list, vm_list) { 7607 struct kvm_arch *ka = &kvm->arch; 7608 7609 spin_lock(&ka->pvclock_gtod_sync_lock); 7610 7611 pvclock_update_vm_gtod_copy(kvm); 7612 7613 kvm_for_each_vcpu(cpu, vcpu, kvm) 7614 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 7615 7616 kvm_for_each_vcpu(cpu, vcpu, kvm) 7617 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 7618 7619 spin_unlock(&ka->pvclock_gtod_sync_lock); 7620 } 7621 mutex_unlock(&kvm_lock); 7622 } 7623 #endif 7624 7625 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 7626 { 7627 struct kvm *kvm; 7628 struct kvm_vcpu *vcpu; 7629 int i, send_ipi = 0; 7630 7631 /* 7632 * We allow guests to temporarily run on slowing clocks, 7633 * provided we notify them after, or to run on accelerating 7634 * clocks, provided we notify them before. Thus time never 7635 * goes backwards. 7636 * 7637 * However, we have a problem. We can't atomically update 7638 * the frequency of a given CPU from this function; it is 7639 * merely a notifier, which can be called from any CPU. 7640 * Changing the TSC frequency at arbitrary points in time 7641 * requires a recomputation of local variables related to 7642 * the TSC for each VCPU. We must flag these local variables 7643 * to be updated and be sure the update takes place with the 7644 * new frequency before any guests proceed. 7645 * 7646 * Unfortunately, the combination of hotplug CPU and frequency 7647 * change creates an intractable locking scenario; the order 7648 * of when these callouts happen is undefined with respect to 7649 * CPU hotplug, and they can race with each other. As such, 7650 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 7651 * undefined; you can actually have a CPU frequency change take 7652 * place in between the computation of X and the setting of the 7653 * variable. To protect against this problem, all updates of 7654 * the per_cpu tsc_khz variable are done in an interrupt 7655 * protected IPI, and all callers wishing to update the value 7656 * must wait for a synchronous IPI to complete (which is trivial 7657 * if the caller is on the CPU already). This establishes the 7658 * necessary total order on variable updates. 7659 * 7660 * Note that because a guest time update may take place 7661 * anytime after the setting of the VCPU's request bit, the 7662 * correct TSC value must be set before the request. However, 7663 * to ensure the update actually makes it to any guest which 7664 * starts running in hardware virtualization between the set 7665 * and the acquisition of the spinlock, we must also ping the 7666 * CPU after setting the request bit. 7667 * 7668 */ 7669 7670 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 7671 7672 mutex_lock(&kvm_lock); 7673 list_for_each_entry(kvm, &vm_list, vm_list) { 7674 kvm_for_each_vcpu(i, vcpu, kvm) { 7675 if (vcpu->cpu != cpu) 7676 continue; 7677 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 7678 if (vcpu->cpu != raw_smp_processor_id()) 7679 send_ipi = 1; 7680 } 7681 } 7682 mutex_unlock(&kvm_lock); 7683 7684 if (freq->old < freq->new && send_ipi) { 7685 /* 7686 * We upscale the frequency. Must make the guest 7687 * doesn't see old kvmclock values while running with 7688 * the new frequency, otherwise we risk the guest sees 7689 * time go backwards. 7690 * 7691 * In case we update the frequency for another cpu 7692 * (which might be in guest context) send an interrupt 7693 * to kick the cpu out of guest context. Next time 7694 * guest context is entered kvmclock will be updated, 7695 * so the guest will not see stale values. 7696 */ 7697 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 7698 } 7699 } 7700 7701 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 7702 void *data) 7703 { 7704 struct cpufreq_freqs *freq = data; 7705 int cpu; 7706 7707 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 7708 return 0; 7709 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 7710 return 0; 7711 7712 for_each_cpu(cpu, freq->policy->cpus) 7713 __kvmclock_cpufreq_notifier(freq, cpu); 7714 7715 return 0; 7716 } 7717 7718 static struct notifier_block kvmclock_cpufreq_notifier_block = { 7719 .notifier_call = kvmclock_cpufreq_notifier 7720 }; 7721 7722 static int kvmclock_cpu_online(unsigned int cpu) 7723 { 7724 tsc_khz_changed(NULL); 7725 return 0; 7726 } 7727 7728 static void kvm_timer_init(void) 7729 { 7730 max_tsc_khz = tsc_khz; 7731 7732 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 7733 #ifdef CONFIG_CPU_FREQ 7734 struct cpufreq_policy *policy; 7735 int cpu; 7736 7737 cpu = get_cpu(); 7738 policy = cpufreq_cpu_get(cpu); 7739 if (policy) { 7740 if (policy->cpuinfo.max_freq) 7741 max_tsc_khz = policy->cpuinfo.max_freq; 7742 cpufreq_cpu_put(policy); 7743 } 7744 put_cpu(); 7745 #endif 7746 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 7747 CPUFREQ_TRANSITION_NOTIFIER); 7748 } 7749 7750 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 7751 kvmclock_cpu_online, kvmclock_cpu_down_prep); 7752 } 7753 7754 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); 7755 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu); 7756 7757 int kvm_is_in_guest(void) 7758 { 7759 return __this_cpu_read(current_vcpu) != NULL; 7760 } 7761 7762 static int kvm_is_user_mode(void) 7763 { 7764 int user_mode = 3; 7765 7766 if (__this_cpu_read(current_vcpu)) 7767 user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu)); 7768 7769 return user_mode != 0; 7770 } 7771 7772 static unsigned long kvm_get_guest_ip(void) 7773 { 7774 unsigned long ip = 0; 7775 7776 if (__this_cpu_read(current_vcpu)) 7777 ip = kvm_rip_read(__this_cpu_read(current_vcpu)); 7778 7779 return ip; 7780 } 7781 7782 static void kvm_handle_intel_pt_intr(void) 7783 { 7784 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu); 7785 7786 kvm_make_request(KVM_REQ_PMI, vcpu); 7787 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT, 7788 (unsigned long *)&vcpu->arch.pmu.global_status); 7789 } 7790 7791 static struct perf_guest_info_callbacks kvm_guest_cbs = { 7792 .is_in_guest = kvm_is_in_guest, 7793 .is_user_mode = kvm_is_user_mode, 7794 .get_guest_ip = kvm_get_guest_ip, 7795 .handle_intel_pt_intr = kvm_handle_intel_pt_intr, 7796 }; 7797 7798 #ifdef CONFIG_X86_64 7799 static void pvclock_gtod_update_fn(struct work_struct *work) 7800 { 7801 struct kvm *kvm; 7802 7803 struct kvm_vcpu *vcpu; 7804 int i; 7805 7806 mutex_lock(&kvm_lock); 7807 list_for_each_entry(kvm, &vm_list, vm_list) 7808 kvm_for_each_vcpu(i, vcpu, kvm) 7809 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 7810 atomic_set(&kvm_guest_has_master_clock, 0); 7811 mutex_unlock(&kvm_lock); 7812 } 7813 7814 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 7815 7816 /* 7817 * Notification about pvclock gtod data update. 7818 */ 7819 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 7820 void *priv) 7821 { 7822 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 7823 struct timekeeper *tk = priv; 7824 7825 update_pvclock_gtod(tk); 7826 7827 /* disable master clock if host does not trust, or does not 7828 * use, TSC based clocksource. 7829 */ 7830 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 7831 atomic_read(&kvm_guest_has_master_clock) != 0) 7832 queue_work(system_long_wq, &pvclock_gtod_work); 7833 7834 return 0; 7835 } 7836 7837 static struct notifier_block pvclock_gtod_notifier = { 7838 .notifier_call = pvclock_gtod_notify, 7839 }; 7840 #endif 7841 7842 int kvm_arch_init(void *opaque) 7843 { 7844 struct kvm_x86_init_ops *ops = opaque; 7845 int r; 7846 7847 if (kvm_x86_ops.hardware_enable) { 7848 printk(KERN_ERR "kvm: already loaded the other module\n"); 7849 r = -EEXIST; 7850 goto out; 7851 } 7852 7853 if (!ops->cpu_has_kvm_support()) { 7854 pr_err_ratelimited("kvm: no hardware support\n"); 7855 r = -EOPNOTSUPP; 7856 goto out; 7857 } 7858 if (ops->disabled_by_bios()) { 7859 pr_err_ratelimited("kvm: disabled by bios\n"); 7860 r = -EOPNOTSUPP; 7861 goto out; 7862 } 7863 7864 /* 7865 * KVM explicitly assumes that the guest has an FPU and 7866 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 7867 * vCPU's FPU state as a fxregs_state struct. 7868 */ 7869 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 7870 printk(KERN_ERR "kvm: inadequate fpu\n"); 7871 r = -EOPNOTSUPP; 7872 goto out; 7873 } 7874 7875 r = -ENOMEM; 7876 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu), 7877 __alignof__(struct fpu), SLAB_ACCOUNT, 7878 NULL); 7879 if (!x86_fpu_cache) { 7880 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n"); 7881 goto out; 7882 } 7883 7884 x86_emulator_cache = kvm_alloc_emulator_cache(); 7885 if (!x86_emulator_cache) { 7886 pr_err("kvm: failed to allocate cache for x86 emulator\n"); 7887 goto out_free_x86_fpu_cache; 7888 } 7889 7890 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 7891 if (!user_return_msrs) { 7892 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n"); 7893 goto out_free_x86_emulator_cache; 7894 } 7895 7896 r = kvm_mmu_module_init(); 7897 if (r) 7898 goto out_free_percpu; 7899 7900 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, 7901 PT_DIRTY_MASK, PT64_NX_MASK, 0, 7902 PT_PRESENT_MASK, 0, sme_me_mask); 7903 kvm_timer_init(); 7904 7905 perf_register_guest_info_callbacks(&kvm_guest_cbs); 7906 7907 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 7908 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 7909 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 7910 } 7911 7912 kvm_lapic_init(); 7913 if (pi_inject_timer == -1) 7914 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER); 7915 #ifdef CONFIG_X86_64 7916 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 7917 7918 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 7919 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 7920 #endif 7921 7922 return 0; 7923 7924 out_free_percpu: 7925 free_percpu(user_return_msrs); 7926 out_free_x86_emulator_cache: 7927 kmem_cache_destroy(x86_emulator_cache); 7928 out_free_x86_fpu_cache: 7929 kmem_cache_destroy(x86_fpu_cache); 7930 out: 7931 return r; 7932 } 7933 7934 void kvm_arch_exit(void) 7935 { 7936 #ifdef CONFIG_X86_64 7937 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 7938 clear_hv_tscchange_cb(); 7939 #endif 7940 kvm_lapic_exit(); 7941 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 7942 7943 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 7944 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 7945 CPUFREQ_TRANSITION_NOTIFIER); 7946 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 7947 #ifdef CONFIG_X86_64 7948 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 7949 #endif 7950 kvm_x86_ops.hardware_enable = NULL; 7951 kvm_mmu_module_exit(); 7952 free_percpu(user_return_msrs); 7953 kmem_cache_destroy(x86_fpu_cache); 7954 } 7955 7956 int kvm_vcpu_halt(struct kvm_vcpu *vcpu) 7957 { 7958 ++vcpu->stat.halt_exits; 7959 if (lapic_in_kernel(vcpu)) { 7960 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 7961 return 1; 7962 } else { 7963 vcpu->run->exit_reason = KVM_EXIT_HLT; 7964 return 0; 7965 } 7966 } 7967 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 7968 7969 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 7970 { 7971 int ret = kvm_skip_emulated_instruction(vcpu); 7972 /* 7973 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 7974 * KVM_EXIT_DEBUG here. 7975 */ 7976 return kvm_vcpu_halt(vcpu) && ret; 7977 } 7978 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 7979 7980 #ifdef CONFIG_X86_64 7981 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 7982 unsigned long clock_type) 7983 { 7984 struct kvm_clock_pairing clock_pairing; 7985 struct timespec64 ts; 7986 u64 cycle; 7987 int ret; 7988 7989 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 7990 return -KVM_EOPNOTSUPP; 7991 7992 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false) 7993 return -KVM_EOPNOTSUPP; 7994 7995 clock_pairing.sec = ts.tv_sec; 7996 clock_pairing.nsec = ts.tv_nsec; 7997 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 7998 clock_pairing.flags = 0; 7999 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 8000 8001 ret = 0; 8002 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 8003 sizeof(struct kvm_clock_pairing))) 8004 ret = -KVM_EFAULT; 8005 8006 return ret; 8007 } 8008 #endif 8009 8010 /* 8011 * kvm_pv_kick_cpu_op: Kick a vcpu. 8012 * 8013 * @apicid - apicid of vcpu to be kicked. 8014 */ 8015 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid) 8016 { 8017 struct kvm_lapic_irq lapic_irq; 8018 8019 lapic_irq.shorthand = APIC_DEST_NOSHORT; 8020 lapic_irq.dest_mode = APIC_DEST_PHYSICAL; 8021 lapic_irq.level = 0; 8022 lapic_irq.dest_id = apicid; 8023 lapic_irq.msi_redir_hint = false; 8024 8025 lapic_irq.delivery_mode = APIC_DM_REMRD; 8026 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 8027 } 8028 8029 bool kvm_apicv_activated(struct kvm *kvm) 8030 { 8031 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 8032 } 8033 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 8034 8035 void kvm_apicv_init(struct kvm *kvm, bool enable) 8036 { 8037 if (enable) 8038 clear_bit(APICV_INHIBIT_REASON_DISABLE, 8039 &kvm->arch.apicv_inhibit_reasons); 8040 else 8041 set_bit(APICV_INHIBIT_REASON_DISABLE, 8042 &kvm->arch.apicv_inhibit_reasons); 8043 } 8044 EXPORT_SYMBOL_GPL(kvm_apicv_init); 8045 8046 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id) 8047 { 8048 struct kvm_vcpu *target = NULL; 8049 struct kvm_apic_map *map; 8050 8051 rcu_read_lock(); 8052 map = rcu_dereference(kvm->arch.apic_map); 8053 8054 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 8055 target = map->phys_map[dest_id]->vcpu; 8056 8057 rcu_read_unlock(); 8058 8059 if (target && READ_ONCE(target->ready)) 8060 kvm_vcpu_yield_to(target); 8061 } 8062 8063 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 8064 { 8065 unsigned long nr, a0, a1, a2, a3, ret; 8066 int op_64_bit; 8067 8068 if (kvm_hv_hypercall_enabled(vcpu->kvm)) 8069 return kvm_hv_hypercall(vcpu); 8070 8071 nr = kvm_rax_read(vcpu); 8072 a0 = kvm_rbx_read(vcpu); 8073 a1 = kvm_rcx_read(vcpu); 8074 a2 = kvm_rdx_read(vcpu); 8075 a3 = kvm_rsi_read(vcpu); 8076 8077 trace_kvm_hypercall(nr, a0, a1, a2, a3); 8078 8079 op_64_bit = is_64_bit_mode(vcpu); 8080 if (!op_64_bit) { 8081 nr &= 0xFFFFFFFF; 8082 a0 &= 0xFFFFFFFF; 8083 a1 &= 0xFFFFFFFF; 8084 a2 &= 0xFFFFFFFF; 8085 a3 &= 0xFFFFFFFF; 8086 } 8087 8088 if (kvm_x86_ops.get_cpl(vcpu) != 0) { 8089 ret = -KVM_EPERM; 8090 goto out; 8091 } 8092 8093 ret = -KVM_ENOSYS; 8094 8095 switch (nr) { 8096 case KVM_HC_VAPIC_POLL_IRQ: 8097 ret = 0; 8098 break; 8099 case KVM_HC_KICK_CPU: 8100 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 8101 break; 8102 8103 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1); 8104 kvm_sched_yield(vcpu->kvm, a1); 8105 ret = 0; 8106 break; 8107 #ifdef CONFIG_X86_64 8108 case KVM_HC_CLOCK_PAIRING: 8109 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 8110 break; 8111 #endif 8112 case KVM_HC_SEND_IPI: 8113 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 8114 break; 8115 8116 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 8117 break; 8118 case KVM_HC_SCHED_YIELD: 8119 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 8120 break; 8121 8122 kvm_sched_yield(vcpu->kvm, a0); 8123 ret = 0; 8124 break; 8125 default: 8126 ret = -KVM_ENOSYS; 8127 break; 8128 } 8129 out: 8130 if (!op_64_bit) 8131 ret = (u32)ret; 8132 kvm_rax_write(vcpu, ret); 8133 8134 ++vcpu->stat.hypercalls; 8135 return kvm_skip_emulated_instruction(vcpu); 8136 } 8137 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 8138 8139 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 8140 { 8141 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8142 char instruction[3]; 8143 unsigned long rip = kvm_rip_read(vcpu); 8144 8145 kvm_x86_ops.patch_hypercall(vcpu, instruction); 8146 8147 return emulator_write_emulated(ctxt, rip, instruction, 3, 8148 &ctxt->exception); 8149 } 8150 8151 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 8152 { 8153 return vcpu->run->request_interrupt_window && 8154 likely(!pic_in_kernel(vcpu->kvm)); 8155 } 8156 8157 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 8158 { 8159 struct kvm_run *kvm_run = vcpu->run; 8160 8161 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; 8162 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0; 8163 kvm_run->cr8 = kvm_get_cr8(vcpu); 8164 kvm_run->apic_base = kvm_get_apic_base(vcpu); 8165 kvm_run->ready_for_interrupt_injection = 8166 pic_in_kernel(vcpu->kvm) || 8167 kvm_vcpu_ready_for_interrupt_injection(vcpu); 8168 } 8169 8170 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 8171 { 8172 int max_irr, tpr; 8173 8174 if (!kvm_x86_ops.update_cr8_intercept) 8175 return; 8176 8177 if (!lapic_in_kernel(vcpu)) 8178 return; 8179 8180 if (vcpu->arch.apicv_active) 8181 return; 8182 8183 if (!vcpu->arch.apic->vapic_addr) 8184 max_irr = kvm_lapic_find_highest_irr(vcpu); 8185 else 8186 max_irr = -1; 8187 8188 if (max_irr != -1) 8189 max_irr >>= 4; 8190 8191 tpr = kvm_lapic_get_cr8(vcpu); 8192 8193 kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr); 8194 } 8195 8196 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit) 8197 { 8198 int r; 8199 bool can_inject = true; 8200 8201 /* try to reinject previous events if any */ 8202 8203 if (vcpu->arch.exception.injected) { 8204 kvm_x86_ops.queue_exception(vcpu); 8205 can_inject = false; 8206 } 8207 /* 8208 * Do not inject an NMI or interrupt if there is a pending 8209 * exception. Exceptions and interrupts are recognized at 8210 * instruction boundaries, i.e. the start of an instruction. 8211 * Trap-like exceptions, e.g. #DB, have higher priority than 8212 * NMIs and interrupts, i.e. traps are recognized before an 8213 * NMI/interrupt that's pending on the same instruction. 8214 * Fault-like exceptions, e.g. #GP and #PF, are the lowest 8215 * priority, but are only generated (pended) during instruction 8216 * execution, i.e. a pending fault-like exception means the 8217 * fault occurred on the *previous* instruction and must be 8218 * serviced prior to recognizing any new events in order to 8219 * fully complete the previous instruction. 8220 */ 8221 else if (!vcpu->arch.exception.pending) { 8222 if (vcpu->arch.nmi_injected) { 8223 kvm_x86_ops.set_nmi(vcpu); 8224 can_inject = false; 8225 } else if (vcpu->arch.interrupt.injected) { 8226 kvm_x86_ops.set_irq(vcpu); 8227 can_inject = false; 8228 } 8229 } 8230 8231 WARN_ON_ONCE(vcpu->arch.exception.injected && 8232 vcpu->arch.exception.pending); 8233 8234 /* 8235 * Call check_nested_events() even if we reinjected a previous event 8236 * in order for caller to determine if it should require immediate-exit 8237 * from L2 to L1 due to pending L1 events which require exit 8238 * from L2 to L1. 8239 */ 8240 if (is_guest_mode(vcpu)) { 8241 r = kvm_x86_ops.nested_ops->check_events(vcpu); 8242 if (r < 0) 8243 goto busy; 8244 } 8245 8246 /* try to inject new event if pending */ 8247 if (vcpu->arch.exception.pending) { 8248 trace_kvm_inj_exception(vcpu->arch.exception.nr, 8249 vcpu->arch.exception.has_error_code, 8250 vcpu->arch.exception.error_code); 8251 8252 vcpu->arch.exception.pending = false; 8253 vcpu->arch.exception.injected = true; 8254 8255 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT) 8256 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 8257 X86_EFLAGS_RF); 8258 8259 if (vcpu->arch.exception.nr == DB_VECTOR) { 8260 kvm_deliver_exception_payload(vcpu); 8261 if (vcpu->arch.dr7 & DR7_GD) { 8262 vcpu->arch.dr7 &= ~DR7_GD; 8263 kvm_update_dr7(vcpu); 8264 } 8265 } 8266 8267 kvm_x86_ops.queue_exception(vcpu); 8268 can_inject = false; 8269 } 8270 8271 /* 8272 * Finally, inject interrupt events. If an event cannot be injected 8273 * due to architectural conditions (e.g. IF=0) a window-open exit 8274 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 8275 * and can architecturally be injected, but we cannot do it right now: 8276 * an interrupt could have arrived just now and we have to inject it 8277 * as a vmexit, or there could already an event in the queue, which is 8278 * indicated by can_inject. In that case we request an immediate exit 8279 * in order to make progress and get back here for another iteration. 8280 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 8281 */ 8282 if (vcpu->arch.smi_pending) { 8283 r = can_inject ? kvm_x86_ops.smi_allowed(vcpu, true) : -EBUSY; 8284 if (r < 0) 8285 goto busy; 8286 if (r) { 8287 vcpu->arch.smi_pending = false; 8288 ++vcpu->arch.smi_count; 8289 enter_smm(vcpu); 8290 can_inject = false; 8291 } else 8292 kvm_x86_ops.enable_smi_window(vcpu); 8293 } 8294 8295 if (vcpu->arch.nmi_pending) { 8296 r = can_inject ? kvm_x86_ops.nmi_allowed(vcpu, true) : -EBUSY; 8297 if (r < 0) 8298 goto busy; 8299 if (r) { 8300 --vcpu->arch.nmi_pending; 8301 vcpu->arch.nmi_injected = true; 8302 kvm_x86_ops.set_nmi(vcpu); 8303 can_inject = false; 8304 WARN_ON(kvm_x86_ops.nmi_allowed(vcpu, true) < 0); 8305 } 8306 if (vcpu->arch.nmi_pending) 8307 kvm_x86_ops.enable_nmi_window(vcpu); 8308 } 8309 8310 if (kvm_cpu_has_injectable_intr(vcpu)) { 8311 r = can_inject ? kvm_x86_ops.interrupt_allowed(vcpu, true) : -EBUSY; 8312 if (r < 0) 8313 goto busy; 8314 if (r) { 8315 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false); 8316 kvm_x86_ops.set_irq(vcpu); 8317 WARN_ON(kvm_x86_ops.interrupt_allowed(vcpu, true) < 0); 8318 } 8319 if (kvm_cpu_has_injectable_intr(vcpu)) 8320 kvm_x86_ops.enable_irq_window(vcpu); 8321 } 8322 8323 if (is_guest_mode(vcpu) && 8324 kvm_x86_ops.nested_ops->hv_timer_pending && 8325 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu)) 8326 *req_immediate_exit = true; 8327 8328 WARN_ON(vcpu->arch.exception.pending); 8329 return; 8330 8331 busy: 8332 *req_immediate_exit = true; 8333 return; 8334 } 8335 8336 static void process_nmi(struct kvm_vcpu *vcpu) 8337 { 8338 unsigned limit = 2; 8339 8340 /* 8341 * x86 is limited to one NMI running, and one NMI pending after it. 8342 * If an NMI is already in progress, limit further NMIs to just one. 8343 * Otherwise, allow two (and we'll inject the first one immediately). 8344 */ 8345 if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) 8346 limit = 1; 8347 8348 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 8349 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 8350 kvm_make_request(KVM_REQ_EVENT, vcpu); 8351 } 8352 8353 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg) 8354 { 8355 u32 flags = 0; 8356 flags |= seg->g << 23; 8357 flags |= seg->db << 22; 8358 flags |= seg->l << 21; 8359 flags |= seg->avl << 20; 8360 flags |= seg->present << 15; 8361 flags |= seg->dpl << 13; 8362 flags |= seg->s << 12; 8363 flags |= seg->type << 8; 8364 return flags; 8365 } 8366 8367 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n) 8368 { 8369 struct kvm_segment seg; 8370 int offset; 8371 8372 kvm_get_segment(vcpu, &seg, n); 8373 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector); 8374 8375 if (n < 3) 8376 offset = 0x7f84 + n * 12; 8377 else 8378 offset = 0x7f2c + (n - 3) * 12; 8379 8380 put_smstate(u32, buf, offset + 8, seg.base); 8381 put_smstate(u32, buf, offset + 4, seg.limit); 8382 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg)); 8383 } 8384 8385 #ifdef CONFIG_X86_64 8386 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n) 8387 { 8388 struct kvm_segment seg; 8389 int offset; 8390 u16 flags; 8391 8392 kvm_get_segment(vcpu, &seg, n); 8393 offset = 0x7e00 + n * 16; 8394 8395 flags = enter_smm_get_segment_flags(&seg) >> 8; 8396 put_smstate(u16, buf, offset, seg.selector); 8397 put_smstate(u16, buf, offset + 2, flags); 8398 put_smstate(u32, buf, offset + 4, seg.limit); 8399 put_smstate(u64, buf, offset + 8, seg.base); 8400 } 8401 #endif 8402 8403 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf) 8404 { 8405 struct desc_ptr dt; 8406 struct kvm_segment seg; 8407 unsigned long val; 8408 int i; 8409 8410 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu)); 8411 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu)); 8412 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu)); 8413 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu)); 8414 8415 for (i = 0; i < 8; i++) 8416 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i)); 8417 8418 kvm_get_dr(vcpu, 6, &val); 8419 put_smstate(u32, buf, 0x7fcc, (u32)val); 8420 kvm_get_dr(vcpu, 7, &val); 8421 put_smstate(u32, buf, 0x7fc8, (u32)val); 8422 8423 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 8424 put_smstate(u32, buf, 0x7fc4, seg.selector); 8425 put_smstate(u32, buf, 0x7f64, seg.base); 8426 put_smstate(u32, buf, 0x7f60, seg.limit); 8427 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg)); 8428 8429 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 8430 put_smstate(u32, buf, 0x7fc0, seg.selector); 8431 put_smstate(u32, buf, 0x7f80, seg.base); 8432 put_smstate(u32, buf, 0x7f7c, seg.limit); 8433 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg)); 8434 8435 kvm_x86_ops.get_gdt(vcpu, &dt); 8436 put_smstate(u32, buf, 0x7f74, dt.address); 8437 put_smstate(u32, buf, 0x7f70, dt.size); 8438 8439 kvm_x86_ops.get_idt(vcpu, &dt); 8440 put_smstate(u32, buf, 0x7f58, dt.address); 8441 put_smstate(u32, buf, 0x7f54, dt.size); 8442 8443 for (i = 0; i < 6; i++) 8444 enter_smm_save_seg_32(vcpu, buf, i); 8445 8446 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu)); 8447 8448 /* revision id */ 8449 put_smstate(u32, buf, 0x7efc, 0x00020000); 8450 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase); 8451 } 8452 8453 #ifdef CONFIG_X86_64 8454 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf) 8455 { 8456 struct desc_ptr dt; 8457 struct kvm_segment seg; 8458 unsigned long val; 8459 int i; 8460 8461 for (i = 0; i < 16; i++) 8462 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i)); 8463 8464 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu)); 8465 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu)); 8466 8467 kvm_get_dr(vcpu, 6, &val); 8468 put_smstate(u64, buf, 0x7f68, val); 8469 kvm_get_dr(vcpu, 7, &val); 8470 put_smstate(u64, buf, 0x7f60, val); 8471 8472 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu)); 8473 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu)); 8474 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu)); 8475 8476 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase); 8477 8478 /* revision id */ 8479 put_smstate(u32, buf, 0x7efc, 0x00020064); 8480 8481 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer); 8482 8483 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 8484 put_smstate(u16, buf, 0x7e90, seg.selector); 8485 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8); 8486 put_smstate(u32, buf, 0x7e94, seg.limit); 8487 put_smstate(u64, buf, 0x7e98, seg.base); 8488 8489 kvm_x86_ops.get_idt(vcpu, &dt); 8490 put_smstate(u32, buf, 0x7e84, dt.size); 8491 put_smstate(u64, buf, 0x7e88, dt.address); 8492 8493 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 8494 put_smstate(u16, buf, 0x7e70, seg.selector); 8495 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8); 8496 put_smstate(u32, buf, 0x7e74, seg.limit); 8497 put_smstate(u64, buf, 0x7e78, seg.base); 8498 8499 kvm_x86_ops.get_gdt(vcpu, &dt); 8500 put_smstate(u32, buf, 0x7e64, dt.size); 8501 put_smstate(u64, buf, 0x7e68, dt.address); 8502 8503 for (i = 0; i < 6; i++) 8504 enter_smm_save_seg_64(vcpu, buf, i); 8505 } 8506 #endif 8507 8508 static void enter_smm(struct kvm_vcpu *vcpu) 8509 { 8510 struct kvm_segment cs, ds; 8511 struct desc_ptr dt; 8512 char buf[512]; 8513 u32 cr0; 8514 8515 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true); 8516 memset(buf, 0, 512); 8517 #ifdef CONFIG_X86_64 8518 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 8519 enter_smm_save_state_64(vcpu, buf); 8520 else 8521 #endif 8522 enter_smm_save_state_32(vcpu, buf); 8523 8524 /* 8525 * Give pre_enter_smm() a chance to make ISA-specific changes to the 8526 * vCPU state (e.g. leave guest mode) after we've saved the state into 8527 * the SMM state-save area. 8528 */ 8529 kvm_x86_ops.pre_enter_smm(vcpu, buf); 8530 8531 vcpu->arch.hflags |= HF_SMM_MASK; 8532 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf)); 8533 8534 if (kvm_x86_ops.get_nmi_mask(vcpu)) 8535 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 8536 else 8537 kvm_x86_ops.set_nmi_mask(vcpu, true); 8538 8539 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 8540 kvm_rip_write(vcpu, 0x8000); 8541 8542 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG); 8543 kvm_x86_ops.set_cr0(vcpu, cr0); 8544 vcpu->arch.cr0 = cr0; 8545 8546 kvm_x86_ops.set_cr4(vcpu, 0); 8547 8548 /* Undocumented: IDT limit is set to zero on entry to SMM. */ 8549 dt.address = dt.size = 0; 8550 kvm_x86_ops.set_idt(vcpu, &dt); 8551 8552 __kvm_set_dr(vcpu, 7, DR7_FIXED_1); 8553 8554 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff; 8555 cs.base = vcpu->arch.smbase; 8556 8557 ds.selector = 0; 8558 ds.base = 0; 8559 8560 cs.limit = ds.limit = 0xffffffff; 8561 cs.type = ds.type = 0x3; 8562 cs.dpl = ds.dpl = 0; 8563 cs.db = ds.db = 0; 8564 cs.s = ds.s = 1; 8565 cs.l = ds.l = 0; 8566 cs.g = ds.g = 1; 8567 cs.avl = ds.avl = 0; 8568 cs.present = ds.present = 1; 8569 cs.unusable = ds.unusable = 0; 8570 cs.padding = ds.padding = 0; 8571 8572 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 8573 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS); 8574 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES); 8575 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS); 8576 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS); 8577 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS); 8578 8579 #ifdef CONFIG_X86_64 8580 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 8581 kvm_x86_ops.set_efer(vcpu, 0); 8582 #endif 8583 8584 kvm_update_cpuid_runtime(vcpu); 8585 kvm_mmu_reset_context(vcpu); 8586 } 8587 8588 static void process_smi(struct kvm_vcpu *vcpu) 8589 { 8590 vcpu->arch.smi_pending = true; 8591 kvm_make_request(KVM_REQ_EVENT, vcpu); 8592 } 8593 8594 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 8595 unsigned long *vcpu_bitmap) 8596 { 8597 cpumask_var_t cpus; 8598 8599 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 8600 8601 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, 8602 NULL, vcpu_bitmap, cpus); 8603 8604 free_cpumask_var(cpus); 8605 } 8606 8607 void kvm_make_scan_ioapic_request(struct kvm *kvm) 8608 { 8609 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 8610 } 8611 8612 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 8613 { 8614 if (!lapic_in_kernel(vcpu)) 8615 return; 8616 8617 vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm); 8618 kvm_apic_update_apicv(vcpu); 8619 kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu); 8620 } 8621 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv); 8622 8623 /* 8624 * NOTE: Do not hold any lock prior to calling this. 8625 * 8626 * In particular, kvm_request_apicv_update() expects kvm->srcu not to be 8627 * locked, because it calls __x86_set_memory_region() which does 8628 * synchronize_srcu(&kvm->srcu). 8629 */ 8630 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit) 8631 { 8632 struct kvm_vcpu *except; 8633 unsigned long old, new, expected; 8634 8635 if (!kvm_x86_ops.check_apicv_inhibit_reasons || 8636 !kvm_x86_ops.check_apicv_inhibit_reasons(bit)) 8637 return; 8638 8639 old = READ_ONCE(kvm->arch.apicv_inhibit_reasons); 8640 do { 8641 expected = new = old; 8642 if (activate) 8643 __clear_bit(bit, &new); 8644 else 8645 __set_bit(bit, &new); 8646 if (new == old) 8647 break; 8648 old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new); 8649 } while (old != expected); 8650 8651 if (!!old == !!new) 8652 return; 8653 8654 trace_kvm_apicv_update_request(activate, bit); 8655 if (kvm_x86_ops.pre_update_apicv_exec_ctrl) 8656 kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate); 8657 8658 /* 8659 * Sending request to update APICV for all other vcpus, 8660 * while update the calling vcpu immediately instead of 8661 * waiting for another #VMEXIT to handle the request. 8662 */ 8663 except = kvm_get_running_vcpu(); 8664 kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE, 8665 except); 8666 if (except) 8667 kvm_vcpu_update_apicv(except); 8668 } 8669 EXPORT_SYMBOL_GPL(kvm_request_apicv_update); 8670 8671 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 8672 { 8673 if (!kvm_apic_present(vcpu)) 8674 return; 8675 8676 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 8677 8678 if (irqchip_split(vcpu->kvm)) 8679 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 8680 else { 8681 if (vcpu->arch.apicv_active) 8682 kvm_x86_ops.sync_pir_to_irr(vcpu); 8683 if (ioapic_in_kernel(vcpu->kvm)) 8684 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 8685 } 8686 8687 if (is_guest_mode(vcpu)) 8688 vcpu->arch.load_eoi_exitmap_pending = true; 8689 else 8690 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 8691 } 8692 8693 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 8694 { 8695 u64 eoi_exit_bitmap[4]; 8696 8697 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 8698 return; 8699 8700 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors, 8701 vcpu_to_synic(vcpu)->vec_bitmap, 256); 8702 kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap); 8703 } 8704 8705 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 8706 unsigned long start, unsigned long end) 8707 { 8708 unsigned long apic_address; 8709 8710 /* 8711 * The physical address of apic access page is stored in the VMCS. 8712 * Update it when it becomes invalid. 8713 */ 8714 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 8715 if (start <= apic_address && apic_address < end) 8716 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 8717 } 8718 8719 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 8720 { 8721 if (!lapic_in_kernel(vcpu)) 8722 return; 8723 8724 if (!kvm_x86_ops.set_apic_access_page_addr) 8725 return; 8726 8727 kvm_x86_ops.set_apic_access_page_addr(vcpu); 8728 } 8729 8730 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 8731 { 8732 smp_send_reschedule(vcpu->cpu); 8733 } 8734 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 8735 8736 /* 8737 * Returns 1 to let vcpu_run() continue the guest execution loop without 8738 * exiting to the userspace. Otherwise, the value will be returned to the 8739 * userspace. 8740 */ 8741 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 8742 { 8743 int r; 8744 bool req_int_win = 8745 dm_request_for_irq_injection(vcpu) && 8746 kvm_cpu_accept_dm_intr(vcpu); 8747 fastpath_t exit_fastpath; 8748 8749 bool req_immediate_exit = false; 8750 8751 if (kvm_request_pending(vcpu)) { 8752 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 8753 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 8754 r = 0; 8755 goto out; 8756 } 8757 } 8758 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) 8759 kvm_mmu_unload(vcpu); 8760 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 8761 __kvm_migrate_timers(vcpu); 8762 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 8763 kvm_gen_update_masterclock(vcpu->kvm); 8764 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 8765 kvm_gen_kvmclock_update(vcpu); 8766 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 8767 r = kvm_guest_time_update(vcpu); 8768 if (unlikely(r)) 8769 goto out; 8770 } 8771 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 8772 kvm_mmu_sync_roots(vcpu); 8773 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 8774 kvm_mmu_load_pgd(vcpu); 8775 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { 8776 kvm_vcpu_flush_tlb_all(vcpu); 8777 8778 /* Flushing all ASIDs flushes the current ASID... */ 8779 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 8780 } 8781 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 8782 kvm_vcpu_flush_tlb_current(vcpu); 8783 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu)) 8784 kvm_vcpu_flush_tlb_guest(vcpu); 8785 8786 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 8787 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 8788 r = 0; 8789 goto out; 8790 } 8791 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 8792 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 8793 vcpu->mmio_needed = 0; 8794 r = 0; 8795 goto out; 8796 } 8797 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 8798 /* Page is swapped out. Do synthetic halt */ 8799 vcpu->arch.apf.halted = true; 8800 r = 1; 8801 goto out; 8802 } 8803 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 8804 record_steal_time(vcpu); 8805 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 8806 process_smi(vcpu); 8807 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 8808 process_nmi(vcpu); 8809 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 8810 kvm_pmu_handle_event(vcpu); 8811 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 8812 kvm_pmu_deliver_pmi(vcpu); 8813 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 8814 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 8815 if (test_bit(vcpu->arch.pending_ioapic_eoi, 8816 vcpu->arch.ioapic_handled_vectors)) { 8817 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 8818 vcpu->run->eoi.vector = 8819 vcpu->arch.pending_ioapic_eoi; 8820 r = 0; 8821 goto out; 8822 } 8823 } 8824 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 8825 vcpu_scan_ioapic(vcpu); 8826 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 8827 vcpu_load_eoi_exitmap(vcpu); 8828 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 8829 kvm_vcpu_reload_apic_access_page(vcpu); 8830 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 8831 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 8832 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 8833 r = 0; 8834 goto out; 8835 } 8836 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 8837 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 8838 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 8839 r = 0; 8840 goto out; 8841 } 8842 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 8843 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 8844 vcpu->run->hyperv = vcpu->arch.hyperv.exit; 8845 r = 0; 8846 goto out; 8847 } 8848 8849 /* 8850 * KVM_REQ_HV_STIMER has to be processed after 8851 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 8852 * depend on the guest clock being up-to-date 8853 */ 8854 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 8855 kvm_hv_process_stimers(vcpu); 8856 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 8857 kvm_vcpu_update_apicv(vcpu); 8858 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 8859 kvm_check_async_pf_completion(vcpu); 8860 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 8861 kvm_x86_ops.msr_filter_changed(vcpu); 8862 } 8863 8864 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { 8865 ++vcpu->stat.req_event; 8866 kvm_apic_accept_events(vcpu); 8867 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 8868 r = 1; 8869 goto out; 8870 } 8871 8872 inject_pending_event(vcpu, &req_immediate_exit); 8873 if (req_int_win) 8874 kvm_x86_ops.enable_irq_window(vcpu); 8875 8876 if (kvm_lapic_enabled(vcpu)) { 8877 update_cr8_intercept(vcpu); 8878 kvm_lapic_sync_to_vapic(vcpu); 8879 } 8880 } 8881 8882 r = kvm_mmu_reload(vcpu); 8883 if (unlikely(r)) { 8884 goto cancel_injection; 8885 } 8886 8887 preempt_disable(); 8888 8889 kvm_x86_ops.prepare_guest_switch(vcpu); 8890 8891 /* 8892 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 8893 * IPI are then delayed after guest entry, which ensures that they 8894 * result in virtual interrupt delivery. 8895 */ 8896 local_irq_disable(); 8897 vcpu->mode = IN_GUEST_MODE; 8898 8899 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 8900 8901 /* 8902 * 1) We should set ->mode before checking ->requests. Please see 8903 * the comment in kvm_vcpu_exiting_guest_mode(). 8904 * 8905 * 2) For APICv, we should set ->mode before checking PID.ON. This 8906 * pairs with the memory barrier implicit in pi_test_and_set_on 8907 * (see vmx_deliver_posted_interrupt). 8908 * 8909 * 3) This also orders the write to mode from any reads to the page 8910 * tables done while the VCPU is running. Please see the comment 8911 * in kvm_flush_remote_tlbs. 8912 */ 8913 smp_mb__after_srcu_read_unlock(); 8914 8915 /* 8916 * This handles the case where a posted interrupt was 8917 * notified with kvm_vcpu_kick. 8918 */ 8919 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active) 8920 kvm_x86_ops.sync_pir_to_irr(vcpu); 8921 8922 if (kvm_vcpu_exit_request(vcpu)) { 8923 vcpu->mode = OUTSIDE_GUEST_MODE; 8924 smp_wmb(); 8925 local_irq_enable(); 8926 preempt_enable(); 8927 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 8928 r = 1; 8929 goto cancel_injection; 8930 } 8931 8932 if (req_immediate_exit) { 8933 kvm_make_request(KVM_REQ_EVENT, vcpu); 8934 kvm_x86_ops.request_immediate_exit(vcpu); 8935 } 8936 8937 trace_kvm_entry(vcpu); 8938 8939 fpregs_assert_state_consistent(); 8940 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 8941 switch_fpu_return(); 8942 8943 if (unlikely(vcpu->arch.switch_db_regs)) { 8944 set_debugreg(0, 7); 8945 set_debugreg(vcpu->arch.eff_db[0], 0); 8946 set_debugreg(vcpu->arch.eff_db[1], 1); 8947 set_debugreg(vcpu->arch.eff_db[2], 2); 8948 set_debugreg(vcpu->arch.eff_db[3], 3); 8949 set_debugreg(vcpu->arch.dr6, 6); 8950 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 8951 } 8952 8953 exit_fastpath = kvm_x86_ops.run(vcpu); 8954 8955 /* 8956 * Do this here before restoring debug registers on the host. And 8957 * since we do this before handling the vmexit, a DR access vmexit 8958 * can (a) read the correct value of the debug registers, (b) set 8959 * KVM_DEBUGREG_WONT_EXIT again. 8960 */ 8961 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 8962 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 8963 kvm_x86_ops.sync_dirty_debug_regs(vcpu); 8964 kvm_update_dr0123(vcpu); 8965 kvm_update_dr7(vcpu); 8966 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 8967 } 8968 8969 /* 8970 * If the guest has used debug registers, at least dr7 8971 * will be disabled while returning to the host. 8972 * If we don't have active breakpoints in the host, we don't 8973 * care about the messed up debug address registers. But if 8974 * we have some of them active, restore the old state. 8975 */ 8976 if (hw_breakpoint_active()) 8977 hw_breakpoint_restore(); 8978 8979 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 8980 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 8981 8982 vcpu->mode = OUTSIDE_GUEST_MODE; 8983 smp_wmb(); 8984 8985 kvm_x86_ops.handle_exit_irqoff(vcpu); 8986 8987 /* 8988 * Consume any pending interrupts, including the possible source of 8989 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 8990 * An instruction is required after local_irq_enable() to fully unblock 8991 * interrupts on processors that implement an interrupt shadow, the 8992 * stat.exits increment will do nicely. 8993 */ 8994 kvm_before_interrupt(vcpu); 8995 local_irq_enable(); 8996 ++vcpu->stat.exits; 8997 local_irq_disable(); 8998 kvm_after_interrupt(vcpu); 8999 9000 if (lapic_in_kernel(vcpu)) { 9001 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta; 9002 if (delta != S64_MIN) { 9003 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta); 9004 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN; 9005 } 9006 } 9007 9008 local_irq_enable(); 9009 preempt_enable(); 9010 9011 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 9012 9013 /* 9014 * Profile KVM exit RIPs: 9015 */ 9016 if (unlikely(prof_on == KVM_PROFILING)) { 9017 unsigned long rip = kvm_rip_read(vcpu); 9018 profile_hit(KVM_PROFILING, (void *)rip); 9019 } 9020 9021 if (unlikely(vcpu->arch.tsc_always_catchup)) 9022 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9023 9024 if (vcpu->arch.apic_attention) 9025 kvm_lapic_sync_from_vapic(vcpu); 9026 9027 r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath); 9028 return r; 9029 9030 cancel_injection: 9031 if (req_immediate_exit) 9032 kvm_make_request(KVM_REQ_EVENT, vcpu); 9033 kvm_x86_ops.cancel_injection(vcpu); 9034 if (unlikely(vcpu->arch.apic_attention)) 9035 kvm_lapic_sync_from_vapic(vcpu); 9036 out: 9037 return r; 9038 } 9039 9040 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu) 9041 { 9042 if (!kvm_arch_vcpu_runnable(vcpu) && 9043 (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) { 9044 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 9045 kvm_vcpu_block(vcpu); 9046 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 9047 9048 if (kvm_x86_ops.post_block) 9049 kvm_x86_ops.post_block(vcpu); 9050 9051 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu)) 9052 return 1; 9053 } 9054 9055 kvm_apic_accept_events(vcpu); 9056 switch(vcpu->arch.mp_state) { 9057 case KVM_MP_STATE_HALTED: 9058 vcpu->arch.pv.pv_unhalted = false; 9059 vcpu->arch.mp_state = 9060 KVM_MP_STATE_RUNNABLE; 9061 fallthrough; 9062 case KVM_MP_STATE_RUNNABLE: 9063 vcpu->arch.apf.halted = false; 9064 break; 9065 case KVM_MP_STATE_INIT_RECEIVED: 9066 break; 9067 default: 9068 return -EINTR; 9069 } 9070 return 1; 9071 } 9072 9073 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 9074 { 9075 if (is_guest_mode(vcpu)) 9076 kvm_x86_ops.nested_ops->check_events(vcpu); 9077 9078 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 9079 !vcpu->arch.apf.halted); 9080 } 9081 9082 static int vcpu_run(struct kvm_vcpu *vcpu) 9083 { 9084 int r; 9085 struct kvm *kvm = vcpu->kvm; 9086 9087 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 9088 vcpu->arch.l1tf_flush_l1d = true; 9089 9090 for (;;) { 9091 if (kvm_vcpu_running(vcpu)) { 9092 r = vcpu_enter_guest(vcpu); 9093 } else { 9094 r = vcpu_block(kvm, vcpu); 9095 } 9096 9097 if (r <= 0) 9098 break; 9099 9100 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu); 9101 if (kvm_cpu_has_pending_timer(vcpu)) 9102 kvm_inject_pending_timer_irqs(vcpu); 9103 9104 if (dm_request_for_irq_injection(vcpu) && 9105 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 9106 r = 0; 9107 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 9108 ++vcpu->stat.request_irq_exits; 9109 break; 9110 } 9111 9112 if (__xfer_to_guest_mode_work_pending()) { 9113 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 9114 r = xfer_to_guest_mode_handle_work(vcpu); 9115 if (r) 9116 return r; 9117 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 9118 } 9119 } 9120 9121 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 9122 9123 return r; 9124 } 9125 9126 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 9127 { 9128 int r; 9129 9130 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 9131 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 9132 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 9133 return r; 9134 } 9135 9136 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 9137 { 9138 BUG_ON(!vcpu->arch.pio.count); 9139 9140 return complete_emulated_io(vcpu); 9141 } 9142 9143 /* 9144 * Implements the following, as a state machine: 9145 * 9146 * read: 9147 * for each fragment 9148 * for each mmio piece in the fragment 9149 * write gpa, len 9150 * exit 9151 * copy data 9152 * execute insn 9153 * 9154 * write: 9155 * for each fragment 9156 * for each mmio piece in the fragment 9157 * write gpa, len 9158 * copy data 9159 * exit 9160 */ 9161 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 9162 { 9163 struct kvm_run *run = vcpu->run; 9164 struct kvm_mmio_fragment *frag; 9165 unsigned len; 9166 9167 BUG_ON(!vcpu->mmio_needed); 9168 9169 /* Complete previous fragment */ 9170 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 9171 len = min(8u, frag->len); 9172 if (!vcpu->mmio_is_write) 9173 memcpy(frag->data, run->mmio.data, len); 9174 9175 if (frag->len <= 8) { 9176 /* Switch to the next fragment. */ 9177 frag++; 9178 vcpu->mmio_cur_fragment++; 9179 } else { 9180 /* Go forward to the next mmio piece. */ 9181 frag->data += len; 9182 frag->gpa += len; 9183 frag->len -= len; 9184 } 9185 9186 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 9187 vcpu->mmio_needed = 0; 9188 9189 /* FIXME: return into emulator if single-stepping. */ 9190 if (vcpu->mmio_is_write) 9191 return 1; 9192 vcpu->mmio_read_completed = 1; 9193 return complete_emulated_io(vcpu); 9194 } 9195 9196 run->exit_reason = KVM_EXIT_MMIO; 9197 run->mmio.phys_addr = frag->gpa; 9198 if (vcpu->mmio_is_write) 9199 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 9200 run->mmio.len = min(8u, frag->len); 9201 run->mmio.is_write = vcpu->mmio_is_write; 9202 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 9203 return 0; 9204 } 9205 9206 static void kvm_save_current_fpu(struct fpu *fpu) 9207 { 9208 /* 9209 * If the target FPU state is not resident in the CPU registers, just 9210 * memcpy() from current, else save CPU state directly to the target. 9211 */ 9212 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 9213 memcpy(&fpu->state, ¤t->thread.fpu.state, 9214 fpu_kernel_xstate_size); 9215 else 9216 copy_fpregs_to_fpstate(fpu); 9217 } 9218 9219 /* Swap (qemu) user FPU context for the guest FPU context. */ 9220 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 9221 { 9222 fpregs_lock(); 9223 9224 kvm_save_current_fpu(vcpu->arch.user_fpu); 9225 9226 /* PKRU is separately restored in kvm_x86_ops.run. */ 9227 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state, 9228 ~XFEATURE_MASK_PKRU); 9229 9230 fpregs_mark_activate(); 9231 fpregs_unlock(); 9232 9233 trace_kvm_fpu(1); 9234 } 9235 9236 /* When vcpu_run ends, restore user space FPU context. */ 9237 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 9238 { 9239 fpregs_lock(); 9240 9241 kvm_save_current_fpu(vcpu->arch.guest_fpu); 9242 9243 copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state); 9244 9245 fpregs_mark_activate(); 9246 fpregs_unlock(); 9247 9248 ++vcpu->stat.fpu_reload; 9249 trace_kvm_fpu(0); 9250 } 9251 9252 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 9253 { 9254 struct kvm_run *kvm_run = vcpu->run; 9255 int r; 9256 9257 vcpu_load(vcpu); 9258 kvm_sigset_activate(vcpu); 9259 kvm_load_guest_fpu(vcpu); 9260 9261 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 9262 if (kvm_run->immediate_exit) { 9263 r = -EINTR; 9264 goto out; 9265 } 9266 kvm_vcpu_block(vcpu); 9267 kvm_apic_accept_events(vcpu); 9268 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 9269 r = -EAGAIN; 9270 if (signal_pending(current)) { 9271 r = -EINTR; 9272 kvm_run->exit_reason = KVM_EXIT_INTR; 9273 ++vcpu->stat.signal_exits; 9274 } 9275 goto out; 9276 } 9277 9278 if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) { 9279 r = -EINVAL; 9280 goto out; 9281 } 9282 9283 if (kvm_run->kvm_dirty_regs) { 9284 r = sync_regs(vcpu); 9285 if (r != 0) 9286 goto out; 9287 } 9288 9289 /* re-sync apic's tpr */ 9290 if (!lapic_in_kernel(vcpu)) { 9291 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 9292 r = -EINVAL; 9293 goto out; 9294 } 9295 } 9296 9297 if (unlikely(vcpu->arch.complete_userspace_io)) { 9298 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 9299 vcpu->arch.complete_userspace_io = NULL; 9300 r = cui(vcpu); 9301 if (r <= 0) 9302 goto out; 9303 } else 9304 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); 9305 9306 if (kvm_run->immediate_exit) 9307 r = -EINTR; 9308 else 9309 r = vcpu_run(vcpu); 9310 9311 out: 9312 kvm_put_guest_fpu(vcpu); 9313 if (kvm_run->kvm_valid_regs) 9314 store_regs(vcpu); 9315 post_kvm_run_save(vcpu); 9316 kvm_sigset_deactivate(vcpu); 9317 9318 vcpu_put(vcpu); 9319 return r; 9320 } 9321 9322 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 9323 { 9324 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 9325 /* 9326 * We are here if userspace calls get_regs() in the middle of 9327 * instruction emulation. Registers state needs to be copied 9328 * back from emulation context to vcpu. Userspace shouldn't do 9329 * that usually, but some bad designed PV devices (vmware 9330 * backdoor interface) need this to work 9331 */ 9332 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 9333 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 9334 } 9335 regs->rax = kvm_rax_read(vcpu); 9336 regs->rbx = kvm_rbx_read(vcpu); 9337 regs->rcx = kvm_rcx_read(vcpu); 9338 regs->rdx = kvm_rdx_read(vcpu); 9339 regs->rsi = kvm_rsi_read(vcpu); 9340 regs->rdi = kvm_rdi_read(vcpu); 9341 regs->rsp = kvm_rsp_read(vcpu); 9342 regs->rbp = kvm_rbp_read(vcpu); 9343 #ifdef CONFIG_X86_64 9344 regs->r8 = kvm_r8_read(vcpu); 9345 regs->r9 = kvm_r9_read(vcpu); 9346 regs->r10 = kvm_r10_read(vcpu); 9347 regs->r11 = kvm_r11_read(vcpu); 9348 regs->r12 = kvm_r12_read(vcpu); 9349 regs->r13 = kvm_r13_read(vcpu); 9350 regs->r14 = kvm_r14_read(vcpu); 9351 regs->r15 = kvm_r15_read(vcpu); 9352 #endif 9353 9354 regs->rip = kvm_rip_read(vcpu); 9355 regs->rflags = kvm_get_rflags(vcpu); 9356 } 9357 9358 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 9359 { 9360 vcpu_load(vcpu); 9361 __get_regs(vcpu, regs); 9362 vcpu_put(vcpu); 9363 return 0; 9364 } 9365 9366 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 9367 { 9368 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 9369 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 9370 9371 kvm_rax_write(vcpu, regs->rax); 9372 kvm_rbx_write(vcpu, regs->rbx); 9373 kvm_rcx_write(vcpu, regs->rcx); 9374 kvm_rdx_write(vcpu, regs->rdx); 9375 kvm_rsi_write(vcpu, regs->rsi); 9376 kvm_rdi_write(vcpu, regs->rdi); 9377 kvm_rsp_write(vcpu, regs->rsp); 9378 kvm_rbp_write(vcpu, regs->rbp); 9379 #ifdef CONFIG_X86_64 9380 kvm_r8_write(vcpu, regs->r8); 9381 kvm_r9_write(vcpu, regs->r9); 9382 kvm_r10_write(vcpu, regs->r10); 9383 kvm_r11_write(vcpu, regs->r11); 9384 kvm_r12_write(vcpu, regs->r12); 9385 kvm_r13_write(vcpu, regs->r13); 9386 kvm_r14_write(vcpu, regs->r14); 9387 kvm_r15_write(vcpu, regs->r15); 9388 #endif 9389 9390 kvm_rip_write(vcpu, regs->rip); 9391 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 9392 9393 vcpu->arch.exception.pending = false; 9394 9395 kvm_make_request(KVM_REQ_EVENT, vcpu); 9396 } 9397 9398 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 9399 { 9400 vcpu_load(vcpu); 9401 __set_regs(vcpu, regs); 9402 vcpu_put(vcpu); 9403 return 0; 9404 } 9405 9406 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 9407 { 9408 struct kvm_segment cs; 9409 9410 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 9411 *db = cs.db; 9412 *l = cs.l; 9413 } 9414 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); 9415 9416 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 9417 { 9418 struct desc_ptr dt; 9419 9420 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 9421 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 9422 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 9423 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 9424 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 9425 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 9426 9427 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 9428 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 9429 9430 kvm_x86_ops.get_idt(vcpu, &dt); 9431 sregs->idt.limit = dt.size; 9432 sregs->idt.base = dt.address; 9433 kvm_x86_ops.get_gdt(vcpu, &dt); 9434 sregs->gdt.limit = dt.size; 9435 sregs->gdt.base = dt.address; 9436 9437 sregs->cr0 = kvm_read_cr0(vcpu); 9438 sregs->cr2 = vcpu->arch.cr2; 9439 sregs->cr3 = kvm_read_cr3(vcpu); 9440 sregs->cr4 = kvm_read_cr4(vcpu); 9441 sregs->cr8 = kvm_get_cr8(vcpu); 9442 sregs->efer = vcpu->arch.efer; 9443 sregs->apic_base = kvm_get_apic_base(vcpu); 9444 9445 memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap)); 9446 9447 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 9448 set_bit(vcpu->arch.interrupt.nr, 9449 (unsigned long *)sregs->interrupt_bitmap); 9450 } 9451 9452 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 9453 struct kvm_sregs *sregs) 9454 { 9455 vcpu_load(vcpu); 9456 __get_sregs(vcpu, sregs); 9457 vcpu_put(vcpu); 9458 return 0; 9459 } 9460 9461 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 9462 struct kvm_mp_state *mp_state) 9463 { 9464 vcpu_load(vcpu); 9465 if (kvm_mpx_supported()) 9466 kvm_load_guest_fpu(vcpu); 9467 9468 kvm_apic_accept_events(vcpu); 9469 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED && 9470 vcpu->arch.pv.pv_unhalted) 9471 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 9472 else 9473 mp_state->mp_state = vcpu->arch.mp_state; 9474 9475 if (kvm_mpx_supported()) 9476 kvm_put_guest_fpu(vcpu); 9477 vcpu_put(vcpu); 9478 return 0; 9479 } 9480 9481 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 9482 struct kvm_mp_state *mp_state) 9483 { 9484 int ret = -EINVAL; 9485 9486 vcpu_load(vcpu); 9487 9488 if (!lapic_in_kernel(vcpu) && 9489 mp_state->mp_state != KVM_MP_STATE_RUNNABLE) 9490 goto out; 9491 9492 /* 9493 * KVM_MP_STATE_INIT_RECEIVED means the processor is in 9494 * INIT state; latched init should be reported using 9495 * KVM_SET_VCPU_EVENTS, so reject it here. 9496 */ 9497 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) && 9498 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 9499 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 9500 goto out; 9501 9502 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 9503 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 9504 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 9505 } else 9506 vcpu->arch.mp_state = mp_state->mp_state; 9507 kvm_make_request(KVM_REQ_EVENT, vcpu); 9508 9509 ret = 0; 9510 out: 9511 vcpu_put(vcpu); 9512 return ret; 9513 } 9514 9515 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 9516 int reason, bool has_error_code, u32 error_code) 9517 { 9518 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9519 int ret; 9520 9521 init_emulate_ctxt(vcpu); 9522 9523 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 9524 has_error_code, error_code); 9525 if (ret) { 9526 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 9527 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 9528 vcpu->run->internal.ndata = 0; 9529 return 0; 9530 } 9531 9532 kvm_rip_write(vcpu, ctxt->eip); 9533 kvm_set_rflags(vcpu, ctxt->eflags); 9534 return 1; 9535 } 9536 EXPORT_SYMBOL_GPL(kvm_task_switch); 9537 9538 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 9539 { 9540 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 9541 /* 9542 * When EFER.LME and CR0.PG are set, the processor is in 9543 * 64-bit mode (though maybe in a 32-bit code segment). 9544 * CR4.PAE and EFER.LMA must be set. 9545 */ 9546 if (!(sregs->cr4 & X86_CR4_PAE) 9547 || !(sregs->efer & EFER_LMA)) 9548 return -EINVAL; 9549 } else { 9550 /* 9551 * Not in 64-bit mode: EFER.LMA is clear and the code 9552 * segment cannot be 64-bit. 9553 */ 9554 if (sregs->efer & EFER_LMA || sregs->cs.l) 9555 return -EINVAL; 9556 } 9557 9558 return kvm_valid_cr4(vcpu, sregs->cr4); 9559 } 9560 9561 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 9562 { 9563 struct msr_data apic_base_msr; 9564 int mmu_reset_needed = 0; 9565 int cpuid_update_needed = 0; 9566 int pending_vec, max_bits, idx; 9567 struct desc_ptr dt; 9568 int ret = -EINVAL; 9569 9570 if (kvm_valid_sregs(vcpu, sregs)) 9571 goto out; 9572 9573 apic_base_msr.data = sregs->apic_base; 9574 apic_base_msr.host_initiated = true; 9575 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 9576 goto out; 9577 9578 dt.size = sregs->idt.limit; 9579 dt.address = sregs->idt.base; 9580 kvm_x86_ops.set_idt(vcpu, &dt); 9581 dt.size = sregs->gdt.limit; 9582 dt.address = sregs->gdt.base; 9583 kvm_x86_ops.set_gdt(vcpu, &dt); 9584 9585 vcpu->arch.cr2 = sregs->cr2; 9586 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 9587 vcpu->arch.cr3 = sregs->cr3; 9588 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3); 9589 9590 kvm_set_cr8(vcpu, sregs->cr8); 9591 9592 mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 9593 kvm_x86_ops.set_efer(vcpu, sregs->efer); 9594 9595 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 9596 kvm_x86_ops.set_cr0(vcpu, sregs->cr0); 9597 vcpu->arch.cr0 = sregs->cr0; 9598 9599 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 9600 cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) & 9601 (X86_CR4_OSXSAVE | X86_CR4_PKE)); 9602 kvm_x86_ops.set_cr4(vcpu, sregs->cr4); 9603 if (cpuid_update_needed) 9604 kvm_update_cpuid_runtime(vcpu); 9605 9606 idx = srcu_read_lock(&vcpu->kvm->srcu); 9607 if (is_pae_paging(vcpu)) { 9608 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 9609 mmu_reset_needed = 1; 9610 } 9611 srcu_read_unlock(&vcpu->kvm->srcu, idx); 9612 9613 if (mmu_reset_needed) 9614 kvm_mmu_reset_context(vcpu); 9615 9616 max_bits = KVM_NR_INTERRUPTS; 9617 pending_vec = find_first_bit( 9618 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 9619 if (pending_vec < max_bits) { 9620 kvm_queue_interrupt(vcpu, pending_vec, false); 9621 pr_debug("Set back pending irq %d\n", pending_vec); 9622 } 9623 9624 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 9625 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 9626 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 9627 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 9628 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 9629 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 9630 9631 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 9632 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 9633 9634 update_cr8_intercept(vcpu); 9635 9636 /* Older userspace won't unhalt the vcpu on reset. */ 9637 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 9638 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 9639 !is_protmode(vcpu)) 9640 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 9641 9642 kvm_make_request(KVM_REQ_EVENT, vcpu); 9643 9644 ret = 0; 9645 out: 9646 return ret; 9647 } 9648 9649 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 9650 struct kvm_sregs *sregs) 9651 { 9652 int ret; 9653 9654 vcpu_load(vcpu); 9655 ret = __set_sregs(vcpu, sregs); 9656 vcpu_put(vcpu); 9657 return ret; 9658 } 9659 9660 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 9661 struct kvm_guest_debug *dbg) 9662 { 9663 unsigned long rflags; 9664 int i, r; 9665 9666 vcpu_load(vcpu); 9667 9668 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 9669 r = -EBUSY; 9670 if (vcpu->arch.exception.pending) 9671 goto out; 9672 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 9673 kvm_queue_exception(vcpu, DB_VECTOR); 9674 else 9675 kvm_queue_exception(vcpu, BP_VECTOR); 9676 } 9677 9678 /* 9679 * Read rflags as long as potentially injected trace flags are still 9680 * filtered out. 9681 */ 9682 rflags = kvm_get_rflags(vcpu); 9683 9684 vcpu->guest_debug = dbg->control; 9685 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 9686 vcpu->guest_debug = 0; 9687 9688 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 9689 for (i = 0; i < KVM_NR_DB_REGS; ++i) 9690 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 9691 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 9692 } else { 9693 for (i = 0; i < KVM_NR_DB_REGS; i++) 9694 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 9695 } 9696 kvm_update_dr7(vcpu); 9697 9698 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 9699 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + 9700 get_segment_base(vcpu, VCPU_SREG_CS); 9701 9702 /* 9703 * Trigger an rflags update that will inject or remove the trace 9704 * flags. 9705 */ 9706 kvm_set_rflags(vcpu, rflags); 9707 9708 kvm_x86_ops.update_exception_bitmap(vcpu); 9709 9710 r = 0; 9711 9712 out: 9713 vcpu_put(vcpu); 9714 return r; 9715 } 9716 9717 /* 9718 * Translate a guest virtual address to a guest physical address. 9719 */ 9720 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 9721 struct kvm_translation *tr) 9722 { 9723 unsigned long vaddr = tr->linear_address; 9724 gpa_t gpa; 9725 int idx; 9726 9727 vcpu_load(vcpu); 9728 9729 idx = srcu_read_lock(&vcpu->kvm->srcu); 9730 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 9731 srcu_read_unlock(&vcpu->kvm->srcu, idx); 9732 tr->physical_address = gpa; 9733 tr->valid = gpa != UNMAPPED_GVA; 9734 tr->writeable = 1; 9735 tr->usermode = 0; 9736 9737 vcpu_put(vcpu); 9738 return 0; 9739 } 9740 9741 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 9742 { 9743 struct fxregs_state *fxsave; 9744 9745 vcpu_load(vcpu); 9746 9747 fxsave = &vcpu->arch.guest_fpu->state.fxsave; 9748 memcpy(fpu->fpr, fxsave->st_space, 128); 9749 fpu->fcw = fxsave->cwd; 9750 fpu->fsw = fxsave->swd; 9751 fpu->ftwx = fxsave->twd; 9752 fpu->last_opcode = fxsave->fop; 9753 fpu->last_ip = fxsave->rip; 9754 fpu->last_dp = fxsave->rdp; 9755 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 9756 9757 vcpu_put(vcpu); 9758 return 0; 9759 } 9760 9761 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 9762 { 9763 struct fxregs_state *fxsave; 9764 9765 vcpu_load(vcpu); 9766 9767 fxsave = &vcpu->arch.guest_fpu->state.fxsave; 9768 9769 memcpy(fxsave->st_space, fpu->fpr, 128); 9770 fxsave->cwd = fpu->fcw; 9771 fxsave->swd = fpu->fsw; 9772 fxsave->twd = fpu->ftwx; 9773 fxsave->fop = fpu->last_opcode; 9774 fxsave->rip = fpu->last_ip; 9775 fxsave->rdp = fpu->last_dp; 9776 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 9777 9778 vcpu_put(vcpu); 9779 return 0; 9780 } 9781 9782 static void store_regs(struct kvm_vcpu *vcpu) 9783 { 9784 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 9785 9786 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 9787 __get_regs(vcpu, &vcpu->run->s.regs.regs); 9788 9789 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 9790 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 9791 9792 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 9793 kvm_vcpu_ioctl_x86_get_vcpu_events( 9794 vcpu, &vcpu->run->s.regs.events); 9795 } 9796 9797 static int sync_regs(struct kvm_vcpu *vcpu) 9798 { 9799 if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS) 9800 return -EINVAL; 9801 9802 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 9803 __set_regs(vcpu, &vcpu->run->s.regs.regs); 9804 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 9805 } 9806 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 9807 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 9808 return -EINVAL; 9809 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 9810 } 9811 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 9812 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 9813 vcpu, &vcpu->run->s.regs.events)) 9814 return -EINVAL; 9815 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 9816 } 9817 9818 return 0; 9819 } 9820 9821 static void fx_init(struct kvm_vcpu *vcpu) 9822 { 9823 fpstate_init(&vcpu->arch.guest_fpu->state); 9824 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9825 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv = 9826 host_xcr0 | XSTATE_COMPACTION_ENABLED; 9827 9828 /* 9829 * Ensure guest xcr0 is valid for loading 9830 */ 9831 vcpu->arch.xcr0 = XFEATURE_MASK_FP; 9832 9833 vcpu->arch.cr0 |= X86_CR0_ET; 9834 } 9835 9836 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 9837 { 9838 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 9839 pr_warn_once("kvm: SMP vm created on host with unstable TSC; " 9840 "guest TSC will not be reliable\n"); 9841 9842 return 0; 9843 } 9844 9845 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 9846 { 9847 struct page *page; 9848 int r; 9849 9850 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 9851 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 9852 else 9853 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 9854 9855 kvm_set_tsc_khz(vcpu, max_tsc_khz); 9856 9857 r = kvm_mmu_create(vcpu); 9858 if (r < 0) 9859 return r; 9860 9861 if (irqchip_in_kernel(vcpu->kvm)) { 9862 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 9863 if (r < 0) 9864 goto fail_mmu_destroy; 9865 if (kvm_apicv_activated(vcpu->kvm)) 9866 vcpu->arch.apicv_active = true; 9867 } else 9868 static_key_slow_inc(&kvm_no_apic_vcpu); 9869 9870 r = -ENOMEM; 9871 9872 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 9873 if (!page) 9874 goto fail_free_lapic; 9875 vcpu->arch.pio_data = page_address(page); 9876 9877 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 9878 GFP_KERNEL_ACCOUNT); 9879 if (!vcpu->arch.mce_banks) 9880 goto fail_free_pio_data; 9881 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 9882 9883 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 9884 GFP_KERNEL_ACCOUNT)) 9885 goto fail_free_mce_banks; 9886 9887 if (!alloc_emulate_ctxt(vcpu)) 9888 goto free_wbinvd_dirty_mask; 9889 9890 vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache, 9891 GFP_KERNEL_ACCOUNT); 9892 if (!vcpu->arch.user_fpu) { 9893 pr_err("kvm: failed to allocate userspace's fpu\n"); 9894 goto free_emulate_ctxt; 9895 } 9896 9897 vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache, 9898 GFP_KERNEL_ACCOUNT); 9899 if (!vcpu->arch.guest_fpu) { 9900 pr_err("kvm: failed to allocate vcpu's fpu\n"); 9901 goto free_user_fpu; 9902 } 9903 fx_init(vcpu); 9904 9905 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 9906 9907 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 9908 9909 kvm_async_pf_hash_reset(vcpu); 9910 kvm_pmu_init(vcpu); 9911 9912 vcpu->arch.pending_external_vector = -1; 9913 vcpu->arch.preempted_in_kernel = false; 9914 9915 kvm_hv_vcpu_init(vcpu); 9916 9917 r = kvm_x86_ops.vcpu_create(vcpu); 9918 if (r) 9919 goto free_guest_fpu; 9920 9921 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 9922 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 9923 kvm_vcpu_mtrr_init(vcpu); 9924 vcpu_load(vcpu); 9925 kvm_vcpu_reset(vcpu, false); 9926 kvm_init_mmu(vcpu, false); 9927 vcpu_put(vcpu); 9928 return 0; 9929 9930 free_guest_fpu: 9931 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu); 9932 free_user_fpu: 9933 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu); 9934 free_emulate_ctxt: 9935 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 9936 free_wbinvd_dirty_mask: 9937 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 9938 fail_free_mce_banks: 9939 kfree(vcpu->arch.mce_banks); 9940 fail_free_pio_data: 9941 free_page((unsigned long)vcpu->arch.pio_data); 9942 fail_free_lapic: 9943 kvm_free_lapic(vcpu); 9944 fail_mmu_destroy: 9945 kvm_mmu_destroy(vcpu); 9946 return r; 9947 } 9948 9949 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 9950 { 9951 struct kvm *kvm = vcpu->kvm; 9952 9953 kvm_hv_vcpu_postcreate(vcpu); 9954 9955 if (mutex_lock_killable(&vcpu->mutex)) 9956 return; 9957 vcpu_load(vcpu); 9958 kvm_synchronize_tsc(vcpu, 0); 9959 vcpu_put(vcpu); 9960 9961 /* poll control enabled by default */ 9962 vcpu->arch.msr_kvm_poll_control = 1; 9963 9964 mutex_unlock(&vcpu->mutex); 9965 9966 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 9967 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 9968 KVMCLOCK_SYNC_PERIOD); 9969 } 9970 9971 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 9972 { 9973 struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache; 9974 int idx; 9975 9976 kvm_release_pfn(cache->pfn, cache->dirty, cache); 9977 9978 kvmclock_reset(vcpu); 9979 9980 kvm_x86_ops.vcpu_free(vcpu); 9981 9982 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 9983 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 9984 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu); 9985 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu); 9986 9987 kvm_hv_vcpu_uninit(vcpu); 9988 kvm_pmu_destroy(vcpu); 9989 kfree(vcpu->arch.mce_banks); 9990 kvm_free_lapic(vcpu); 9991 idx = srcu_read_lock(&vcpu->kvm->srcu); 9992 kvm_mmu_destroy(vcpu); 9993 srcu_read_unlock(&vcpu->kvm->srcu, idx); 9994 free_page((unsigned long)vcpu->arch.pio_data); 9995 kvfree(vcpu->arch.cpuid_entries); 9996 if (!lapic_in_kernel(vcpu)) 9997 static_key_slow_dec(&kvm_no_apic_vcpu); 9998 } 9999 10000 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 10001 { 10002 kvm_lapic_reset(vcpu, init_event); 10003 10004 vcpu->arch.hflags = 0; 10005 10006 vcpu->arch.smi_pending = 0; 10007 vcpu->arch.smi_count = 0; 10008 atomic_set(&vcpu->arch.nmi_queued, 0); 10009 vcpu->arch.nmi_pending = 0; 10010 vcpu->arch.nmi_injected = false; 10011 kvm_clear_interrupt_queue(vcpu); 10012 kvm_clear_exception_queue(vcpu); 10013 10014 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 10015 kvm_update_dr0123(vcpu); 10016 vcpu->arch.dr6 = DR6_INIT; 10017 vcpu->arch.dr7 = DR7_FIXED_1; 10018 kvm_update_dr7(vcpu); 10019 10020 vcpu->arch.cr2 = 0; 10021 10022 kvm_make_request(KVM_REQ_EVENT, vcpu); 10023 vcpu->arch.apf.msr_en_val = 0; 10024 vcpu->arch.apf.msr_int_val = 0; 10025 vcpu->arch.st.msr_val = 0; 10026 10027 kvmclock_reset(vcpu); 10028 10029 kvm_clear_async_pf_completion_queue(vcpu); 10030 kvm_async_pf_hash_reset(vcpu); 10031 vcpu->arch.apf.halted = false; 10032 10033 if (kvm_mpx_supported()) { 10034 void *mpx_state_buffer; 10035 10036 /* 10037 * To avoid have the INIT path from kvm_apic_has_events() that be 10038 * called with loaded FPU and does not let userspace fix the state. 10039 */ 10040 if (init_event) 10041 kvm_put_guest_fpu(vcpu); 10042 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave, 10043 XFEATURE_BNDREGS); 10044 if (mpx_state_buffer) 10045 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state)); 10046 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave, 10047 XFEATURE_BNDCSR); 10048 if (mpx_state_buffer) 10049 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr)); 10050 if (init_event) 10051 kvm_load_guest_fpu(vcpu); 10052 } 10053 10054 if (!init_event) { 10055 kvm_pmu_reset(vcpu); 10056 vcpu->arch.smbase = 0x30000; 10057 10058 vcpu->arch.msr_misc_features_enables = 0; 10059 10060 vcpu->arch.xcr0 = XFEATURE_MASK_FP; 10061 } 10062 10063 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 10064 vcpu->arch.regs_avail = ~0; 10065 vcpu->arch.regs_dirty = ~0; 10066 10067 vcpu->arch.ia32_xss = 0; 10068 10069 kvm_x86_ops.vcpu_reset(vcpu, init_event); 10070 } 10071 10072 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 10073 { 10074 struct kvm_segment cs; 10075 10076 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 10077 cs.selector = vector << 8; 10078 cs.base = vector << 12; 10079 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 10080 kvm_rip_write(vcpu, 0); 10081 } 10082 10083 int kvm_arch_hardware_enable(void) 10084 { 10085 struct kvm *kvm; 10086 struct kvm_vcpu *vcpu; 10087 int i; 10088 int ret; 10089 u64 local_tsc; 10090 u64 max_tsc = 0; 10091 bool stable, backwards_tsc = false; 10092 10093 kvm_user_return_msr_cpu_online(); 10094 ret = kvm_x86_ops.hardware_enable(); 10095 if (ret != 0) 10096 return ret; 10097 10098 local_tsc = rdtsc(); 10099 stable = !kvm_check_tsc_unstable(); 10100 list_for_each_entry(kvm, &vm_list, vm_list) { 10101 kvm_for_each_vcpu(i, vcpu, kvm) { 10102 if (!stable && vcpu->cpu == smp_processor_id()) 10103 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 10104 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 10105 backwards_tsc = true; 10106 if (vcpu->arch.last_host_tsc > max_tsc) 10107 max_tsc = vcpu->arch.last_host_tsc; 10108 } 10109 } 10110 } 10111 10112 /* 10113 * Sometimes, even reliable TSCs go backwards. This happens on 10114 * platforms that reset TSC during suspend or hibernate actions, but 10115 * maintain synchronization. We must compensate. Fortunately, we can 10116 * detect that condition here, which happens early in CPU bringup, 10117 * before any KVM threads can be running. Unfortunately, we can't 10118 * bring the TSCs fully up to date with real time, as we aren't yet far 10119 * enough into CPU bringup that we know how much real time has actually 10120 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 10121 * variables that haven't been updated yet. 10122 * 10123 * So we simply find the maximum observed TSC above, then record the 10124 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 10125 * the adjustment will be applied. Note that we accumulate 10126 * adjustments, in case multiple suspend cycles happen before some VCPU 10127 * gets a chance to run again. In the event that no KVM threads get a 10128 * chance to run, we will miss the entire elapsed period, as we'll have 10129 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 10130 * loose cycle time. This isn't too big a deal, since the loss will be 10131 * uniform across all VCPUs (not to mention the scenario is extremely 10132 * unlikely). It is possible that a second hibernate recovery happens 10133 * much faster than a first, causing the observed TSC here to be 10134 * smaller; this would require additional padding adjustment, which is 10135 * why we set last_host_tsc to the local tsc observed here. 10136 * 10137 * N.B. - this code below runs only on platforms with reliable TSC, 10138 * as that is the only way backwards_tsc is set above. Also note 10139 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 10140 * have the same delta_cyc adjustment applied if backwards_tsc 10141 * is detected. Note further, this adjustment is only done once, 10142 * as we reset last_host_tsc on all VCPUs to stop this from being 10143 * called multiple times (one for each physical CPU bringup). 10144 * 10145 * Platforms with unreliable TSCs don't have to deal with this, they 10146 * will be compensated by the logic in vcpu_load, which sets the TSC to 10147 * catchup mode. This will catchup all VCPUs to real time, but cannot 10148 * guarantee that they stay in perfect synchronization. 10149 */ 10150 if (backwards_tsc) { 10151 u64 delta_cyc = max_tsc - local_tsc; 10152 list_for_each_entry(kvm, &vm_list, vm_list) { 10153 kvm->arch.backwards_tsc_observed = true; 10154 kvm_for_each_vcpu(i, vcpu, kvm) { 10155 vcpu->arch.tsc_offset_adjustment += delta_cyc; 10156 vcpu->arch.last_host_tsc = local_tsc; 10157 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 10158 } 10159 10160 /* 10161 * We have to disable TSC offset matching.. if you were 10162 * booting a VM while issuing an S4 host suspend.... 10163 * you may have some problem. Solving this issue is 10164 * left as an exercise to the reader. 10165 */ 10166 kvm->arch.last_tsc_nsec = 0; 10167 kvm->arch.last_tsc_write = 0; 10168 } 10169 10170 } 10171 return 0; 10172 } 10173 10174 void kvm_arch_hardware_disable(void) 10175 { 10176 kvm_x86_ops.hardware_disable(); 10177 drop_user_return_notifiers(); 10178 } 10179 10180 int kvm_arch_hardware_setup(void *opaque) 10181 { 10182 struct kvm_x86_init_ops *ops = opaque; 10183 int r; 10184 10185 rdmsrl_safe(MSR_EFER, &host_efer); 10186 10187 if (boot_cpu_has(X86_FEATURE_XSAVES)) 10188 rdmsrl(MSR_IA32_XSS, host_xss); 10189 10190 r = ops->hardware_setup(); 10191 if (r != 0) 10192 return r; 10193 10194 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 10195 10196 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 10197 supported_xss = 0; 10198 10199 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 10200 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 10201 #undef __kvm_cpu_cap_has 10202 10203 if (kvm_has_tsc_control) { 10204 /* 10205 * Make sure the user can only configure tsc_khz values that 10206 * fit into a signed integer. 10207 * A min value is not calculated because it will always 10208 * be 1 on all machines. 10209 */ 10210 u64 max = min(0x7fffffffULL, 10211 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz)); 10212 kvm_max_guest_tsc_khz = max; 10213 10214 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits; 10215 } 10216 10217 kvm_init_msr_list(); 10218 return 0; 10219 } 10220 10221 void kvm_arch_hardware_unsetup(void) 10222 { 10223 kvm_x86_ops.hardware_unsetup(); 10224 } 10225 10226 int kvm_arch_check_processor_compat(void *opaque) 10227 { 10228 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id()); 10229 struct kvm_x86_init_ops *ops = opaque; 10230 10231 WARN_ON(!irqs_disabled()); 10232 10233 if (__cr4_reserved_bits(cpu_has, c) != 10234 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 10235 return -EIO; 10236 10237 return ops->check_processor_compatibility(); 10238 } 10239 10240 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 10241 { 10242 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 10243 } 10244 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); 10245 10246 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 10247 { 10248 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 10249 } 10250 10251 struct static_key kvm_no_apic_vcpu __read_mostly; 10252 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu); 10253 10254 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 10255 { 10256 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 10257 10258 vcpu->arch.l1tf_flush_l1d = true; 10259 if (pmu->version && unlikely(pmu->event_count)) { 10260 pmu->need_cleanup = true; 10261 kvm_make_request(KVM_REQ_PMU, vcpu); 10262 } 10263 kvm_x86_ops.sched_in(vcpu, cpu); 10264 } 10265 10266 void kvm_arch_free_vm(struct kvm *kvm) 10267 { 10268 kfree(kvm->arch.hyperv.hv_pa_pg); 10269 vfree(kvm); 10270 } 10271 10272 10273 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 10274 { 10275 if (type) 10276 return -EINVAL; 10277 10278 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 10279 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 10280 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 10281 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages); 10282 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 10283 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 10284 10285 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 10286 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 10287 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 10288 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 10289 &kvm->arch.irq_sources_bitmap); 10290 10291 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 10292 mutex_init(&kvm->arch.apic_map_lock); 10293 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); 10294 10295 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 10296 pvclock_update_vm_gtod_copy(kvm); 10297 10298 kvm->arch.guest_can_read_msr_platform_info = true; 10299 10300 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 10301 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 10302 10303 kvm_hv_init_vm(kvm); 10304 kvm_page_track_init(kvm); 10305 kvm_mmu_init_vm(kvm); 10306 10307 return kvm_x86_ops.vm_init(kvm); 10308 } 10309 10310 int kvm_arch_post_init_vm(struct kvm *kvm) 10311 { 10312 return kvm_mmu_post_init_vm(kvm); 10313 } 10314 10315 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 10316 { 10317 vcpu_load(vcpu); 10318 kvm_mmu_unload(vcpu); 10319 vcpu_put(vcpu); 10320 } 10321 10322 static void kvm_free_vcpus(struct kvm *kvm) 10323 { 10324 unsigned int i; 10325 struct kvm_vcpu *vcpu; 10326 10327 /* 10328 * Unpin any mmu pages first. 10329 */ 10330 kvm_for_each_vcpu(i, vcpu, kvm) { 10331 kvm_clear_async_pf_completion_queue(vcpu); 10332 kvm_unload_vcpu_mmu(vcpu); 10333 } 10334 kvm_for_each_vcpu(i, vcpu, kvm) 10335 kvm_vcpu_destroy(vcpu); 10336 10337 mutex_lock(&kvm->lock); 10338 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 10339 kvm->vcpus[i] = NULL; 10340 10341 atomic_set(&kvm->online_vcpus, 0); 10342 mutex_unlock(&kvm->lock); 10343 } 10344 10345 void kvm_arch_sync_events(struct kvm *kvm) 10346 { 10347 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 10348 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 10349 kvm_free_pit(kvm); 10350 } 10351 10352 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size) 10353 { 10354 int i, r; 10355 unsigned long hva, old_npages; 10356 struct kvm_memslots *slots = kvm_memslots(kvm); 10357 struct kvm_memory_slot *slot; 10358 10359 /* Called with kvm->slots_lock held. */ 10360 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 10361 return -EINVAL; 10362 10363 slot = id_to_memslot(slots, id); 10364 if (size) { 10365 if (slot && slot->npages) 10366 return -EEXIST; 10367 10368 /* 10369 * MAP_SHARED to prevent internal slot pages from being moved 10370 * by fork()/COW. 10371 */ 10372 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 10373 MAP_SHARED | MAP_ANONYMOUS, 0); 10374 if (IS_ERR((void *)hva)) 10375 return PTR_ERR((void *)hva); 10376 } else { 10377 if (!slot || !slot->npages) 10378 return 0; 10379 10380 old_npages = slot->npages; 10381 hva = 0; 10382 } 10383 10384 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 10385 struct kvm_userspace_memory_region m; 10386 10387 m.slot = id | (i << 16); 10388 m.flags = 0; 10389 m.guest_phys_addr = gpa; 10390 m.userspace_addr = hva; 10391 m.memory_size = size; 10392 r = __kvm_set_memory_region(kvm, &m); 10393 if (r < 0) 10394 return r; 10395 } 10396 10397 if (!size) 10398 vm_munmap(hva, old_npages * PAGE_SIZE); 10399 10400 return 0; 10401 } 10402 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 10403 10404 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 10405 { 10406 kvm_mmu_pre_destroy_vm(kvm); 10407 } 10408 10409 void kvm_arch_destroy_vm(struct kvm *kvm) 10410 { 10411 u32 i; 10412 10413 if (current->mm == kvm->mm) { 10414 /* 10415 * Free memory regions allocated on behalf of userspace, 10416 * unless the the memory map has changed due to process exit 10417 * or fd copying. 10418 */ 10419 mutex_lock(&kvm->slots_lock); 10420 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 10421 0, 0); 10422 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 10423 0, 0); 10424 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 10425 mutex_unlock(&kvm->slots_lock); 10426 } 10427 if (kvm_x86_ops.vm_destroy) 10428 kvm_x86_ops.vm_destroy(kvm); 10429 for (i = 0; i < kvm->arch.msr_filter.count; i++) 10430 kfree(kvm->arch.msr_filter.ranges[i].bitmap); 10431 kvm_pic_destroy(kvm); 10432 kvm_ioapic_destroy(kvm); 10433 kvm_free_vcpus(kvm); 10434 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 10435 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 10436 kvm_mmu_uninit_vm(kvm); 10437 kvm_page_track_cleanup(kvm); 10438 kvm_hv_destroy_vm(kvm); 10439 } 10440 10441 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 10442 { 10443 int i; 10444 10445 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 10446 kvfree(slot->arch.rmap[i]); 10447 slot->arch.rmap[i] = NULL; 10448 10449 if (i == 0) 10450 continue; 10451 10452 kvfree(slot->arch.lpage_info[i - 1]); 10453 slot->arch.lpage_info[i - 1] = NULL; 10454 } 10455 10456 kvm_page_track_free_memslot(slot); 10457 } 10458 10459 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot, 10460 unsigned long npages) 10461 { 10462 int i; 10463 10464 /* 10465 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 10466 * old arrays will be freed by __kvm_set_memory_region() if installing 10467 * the new memslot is successful. 10468 */ 10469 memset(&slot->arch, 0, sizeof(slot->arch)); 10470 10471 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 10472 struct kvm_lpage_info *linfo; 10473 unsigned long ugfn; 10474 int lpages; 10475 int level = i + 1; 10476 10477 lpages = gfn_to_index(slot->base_gfn + npages - 1, 10478 slot->base_gfn, level) + 1; 10479 10480 slot->arch.rmap[i] = 10481 kvcalloc(lpages, sizeof(*slot->arch.rmap[i]), 10482 GFP_KERNEL_ACCOUNT); 10483 if (!slot->arch.rmap[i]) 10484 goto out_free; 10485 if (i == 0) 10486 continue; 10487 10488 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 10489 if (!linfo) 10490 goto out_free; 10491 10492 slot->arch.lpage_info[i - 1] = linfo; 10493 10494 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 10495 linfo[0].disallow_lpage = 1; 10496 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 10497 linfo[lpages - 1].disallow_lpage = 1; 10498 ugfn = slot->userspace_addr >> PAGE_SHIFT; 10499 /* 10500 * If the gfn and userspace address are not aligned wrt each 10501 * other, disable large page support for this slot. 10502 */ 10503 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 10504 unsigned long j; 10505 10506 for (j = 0; j < lpages; ++j) 10507 linfo[j].disallow_lpage = 1; 10508 } 10509 } 10510 10511 if (kvm_page_track_create_memslot(slot, npages)) 10512 goto out_free; 10513 10514 return 0; 10515 10516 out_free: 10517 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 10518 kvfree(slot->arch.rmap[i]); 10519 slot->arch.rmap[i] = NULL; 10520 if (i == 0) 10521 continue; 10522 10523 kvfree(slot->arch.lpage_info[i - 1]); 10524 slot->arch.lpage_info[i - 1] = NULL; 10525 } 10526 return -ENOMEM; 10527 } 10528 10529 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 10530 { 10531 struct kvm_vcpu *vcpu; 10532 int i; 10533 10534 /* 10535 * memslots->generation has been incremented. 10536 * mmio generation may have reached its maximum value. 10537 */ 10538 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 10539 10540 /* Force re-initialization of steal_time cache */ 10541 kvm_for_each_vcpu(i, vcpu, kvm) 10542 kvm_vcpu_kick(vcpu); 10543 } 10544 10545 int kvm_arch_prepare_memory_region(struct kvm *kvm, 10546 struct kvm_memory_slot *memslot, 10547 const struct kvm_userspace_memory_region *mem, 10548 enum kvm_mr_change change) 10549 { 10550 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) 10551 return kvm_alloc_memslot_metadata(memslot, 10552 mem->memory_size >> PAGE_SHIFT); 10553 return 0; 10554 } 10555 10556 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 10557 struct kvm_memory_slot *old, 10558 struct kvm_memory_slot *new, 10559 enum kvm_mr_change change) 10560 { 10561 /* 10562 * Nothing to do for RO slots or CREATE/MOVE/DELETE of a slot. 10563 * See comments below. 10564 */ 10565 if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY)) 10566 return; 10567 10568 /* 10569 * Dirty logging tracks sptes in 4k granularity, meaning that large 10570 * sptes have to be split. If live migration is successful, the guest 10571 * in the source machine will be destroyed and large sptes will be 10572 * created in the destination. However, if the guest continues to run 10573 * in the source machine (for example if live migration fails), small 10574 * sptes will remain around and cause bad performance. 10575 * 10576 * Scan sptes if dirty logging has been stopped, dropping those 10577 * which can be collapsed into a single large-page spte. Later 10578 * page faults will create the large-page sptes. 10579 * 10580 * There is no need to do this in any of the following cases: 10581 * CREATE: No dirty mappings will already exist. 10582 * MOVE/DELETE: The old mappings will already have been cleaned up by 10583 * kvm_arch_flush_shadow_memslot() 10584 */ 10585 if ((old->flags & KVM_MEM_LOG_DIRTY_PAGES) && 10586 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 10587 kvm_mmu_zap_collapsible_sptes(kvm, new); 10588 10589 /* 10590 * Enable or disable dirty logging for the slot. 10591 * 10592 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of the old 10593 * slot have been zapped so no dirty logging updates are needed for 10594 * the old slot. 10595 * For KVM_MR_CREATE and KVM_MR_MOVE, once the new slot is visible 10596 * any mappings that might be created in it will consume the 10597 * properties of the new slot and do not need to be updated here. 10598 * 10599 * When PML is enabled, the kvm_x86_ops dirty logging hooks are 10600 * called to enable/disable dirty logging. 10601 * 10602 * When disabling dirty logging with PML enabled, the D-bit is set 10603 * for sptes in the slot in order to prevent unnecessary GPA 10604 * logging in the PML buffer (and potential PML buffer full VMEXIT). 10605 * This guarantees leaving PML enabled for the guest's lifetime 10606 * won't have any additional overhead from PML when the guest is 10607 * running with dirty logging disabled. 10608 * 10609 * When enabling dirty logging, large sptes are write-protected 10610 * so they can be split on first write. New large sptes cannot 10611 * be created for this slot until the end of the logging. 10612 * See the comments in fast_page_fault(). 10613 * For small sptes, nothing is done if the dirty log is in the 10614 * initial-all-set state. Otherwise, depending on whether pml 10615 * is enabled the D-bit or the W-bit will be cleared. 10616 */ 10617 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) { 10618 if (kvm_x86_ops.slot_enable_log_dirty) { 10619 kvm_x86_ops.slot_enable_log_dirty(kvm, new); 10620 } else { 10621 int level = 10622 kvm_dirty_log_manual_protect_and_init_set(kvm) ? 10623 PG_LEVEL_2M : PG_LEVEL_4K; 10624 10625 /* 10626 * If we're with initial-all-set, we don't need 10627 * to write protect any small page because 10628 * they're reported as dirty already. However 10629 * we still need to write-protect huge pages 10630 * so that the page split can happen lazily on 10631 * the first write to the huge page. 10632 */ 10633 kvm_mmu_slot_remove_write_access(kvm, new, level); 10634 } 10635 } else { 10636 if (kvm_x86_ops.slot_disable_log_dirty) 10637 kvm_x86_ops.slot_disable_log_dirty(kvm, new); 10638 } 10639 } 10640 10641 void kvm_arch_commit_memory_region(struct kvm *kvm, 10642 const struct kvm_userspace_memory_region *mem, 10643 struct kvm_memory_slot *old, 10644 const struct kvm_memory_slot *new, 10645 enum kvm_mr_change change) 10646 { 10647 if (!kvm->arch.n_requested_mmu_pages) 10648 kvm_mmu_change_mmu_pages(kvm, 10649 kvm_mmu_calculate_default_mmu_pages(kvm)); 10650 10651 /* 10652 * FIXME: const-ify all uses of struct kvm_memory_slot. 10653 */ 10654 kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change); 10655 10656 /* Free the arrays associated with the old memslot. */ 10657 if (change == KVM_MR_MOVE) 10658 kvm_arch_free_memslot(kvm, old); 10659 } 10660 10661 void kvm_arch_flush_shadow_all(struct kvm *kvm) 10662 { 10663 kvm_mmu_zap_all(kvm); 10664 } 10665 10666 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 10667 struct kvm_memory_slot *slot) 10668 { 10669 kvm_page_track_flush_slot(kvm, slot); 10670 } 10671 10672 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 10673 { 10674 return (is_guest_mode(vcpu) && 10675 kvm_x86_ops.guest_apic_has_interrupt && 10676 kvm_x86_ops.guest_apic_has_interrupt(vcpu)); 10677 } 10678 10679 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 10680 { 10681 if (!list_empty_careful(&vcpu->async_pf.done)) 10682 return true; 10683 10684 if (kvm_apic_has_events(vcpu)) 10685 return true; 10686 10687 if (vcpu->arch.pv.pv_unhalted) 10688 return true; 10689 10690 if (vcpu->arch.exception.pending) 10691 return true; 10692 10693 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 10694 (vcpu->arch.nmi_pending && 10695 kvm_x86_ops.nmi_allowed(vcpu, false))) 10696 return true; 10697 10698 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 10699 (vcpu->arch.smi_pending && 10700 kvm_x86_ops.smi_allowed(vcpu, false))) 10701 return true; 10702 10703 if (kvm_arch_interrupt_allowed(vcpu) && 10704 (kvm_cpu_has_interrupt(vcpu) || 10705 kvm_guest_apic_has_interrupt(vcpu))) 10706 return true; 10707 10708 if (kvm_hv_has_stimer_pending(vcpu)) 10709 return true; 10710 10711 if (is_guest_mode(vcpu) && 10712 kvm_x86_ops.nested_ops->hv_timer_pending && 10713 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu)) 10714 return true; 10715 10716 return false; 10717 } 10718 10719 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 10720 { 10721 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 10722 } 10723 10724 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 10725 { 10726 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 10727 return true; 10728 10729 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 10730 kvm_test_request(KVM_REQ_SMI, vcpu) || 10731 kvm_test_request(KVM_REQ_EVENT, vcpu)) 10732 return true; 10733 10734 if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu)) 10735 return true; 10736 10737 return false; 10738 } 10739 10740 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 10741 { 10742 return vcpu->arch.preempted_in_kernel; 10743 } 10744 10745 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 10746 { 10747 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 10748 } 10749 10750 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 10751 { 10752 return kvm_x86_ops.interrupt_allowed(vcpu, false); 10753 } 10754 10755 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 10756 { 10757 if (is_64_bit_mode(vcpu)) 10758 return kvm_rip_read(vcpu); 10759 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 10760 kvm_rip_read(vcpu)); 10761 } 10762 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 10763 10764 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 10765 { 10766 return kvm_get_linear_rip(vcpu) == linear_rip; 10767 } 10768 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 10769 10770 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 10771 { 10772 unsigned long rflags; 10773 10774 rflags = kvm_x86_ops.get_rflags(vcpu); 10775 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 10776 rflags &= ~X86_EFLAGS_TF; 10777 return rflags; 10778 } 10779 EXPORT_SYMBOL_GPL(kvm_get_rflags); 10780 10781 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 10782 { 10783 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 10784 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 10785 rflags |= X86_EFLAGS_TF; 10786 kvm_x86_ops.set_rflags(vcpu, rflags); 10787 } 10788 10789 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 10790 { 10791 __kvm_set_rflags(vcpu, rflags); 10792 kvm_make_request(KVM_REQ_EVENT, vcpu); 10793 } 10794 EXPORT_SYMBOL_GPL(kvm_set_rflags); 10795 10796 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 10797 { 10798 int r; 10799 10800 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) || 10801 work->wakeup_all) 10802 return; 10803 10804 r = kvm_mmu_reload(vcpu); 10805 if (unlikely(r)) 10806 return; 10807 10808 if (!vcpu->arch.mmu->direct_map && 10809 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu)) 10810 return; 10811 10812 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true); 10813 } 10814 10815 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 10816 { 10817 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 10818 10819 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 10820 } 10821 10822 static inline u32 kvm_async_pf_next_probe(u32 key) 10823 { 10824 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 10825 } 10826 10827 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 10828 { 10829 u32 key = kvm_async_pf_hash_fn(gfn); 10830 10831 while (vcpu->arch.apf.gfns[key] != ~0) 10832 key = kvm_async_pf_next_probe(key); 10833 10834 vcpu->arch.apf.gfns[key] = gfn; 10835 } 10836 10837 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 10838 { 10839 int i; 10840 u32 key = kvm_async_pf_hash_fn(gfn); 10841 10842 for (i = 0; i < ASYNC_PF_PER_VCPU && 10843 (vcpu->arch.apf.gfns[key] != gfn && 10844 vcpu->arch.apf.gfns[key] != ~0); i++) 10845 key = kvm_async_pf_next_probe(key); 10846 10847 return key; 10848 } 10849 10850 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 10851 { 10852 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 10853 } 10854 10855 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 10856 { 10857 u32 i, j, k; 10858 10859 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 10860 10861 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 10862 return; 10863 10864 while (true) { 10865 vcpu->arch.apf.gfns[i] = ~0; 10866 do { 10867 j = kvm_async_pf_next_probe(j); 10868 if (vcpu->arch.apf.gfns[j] == ~0) 10869 return; 10870 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 10871 /* 10872 * k lies cyclically in ]i,j] 10873 * | i.k.j | 10874 * |....j i.k.| or |.k..j i...| 10875 */ 10876 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 10877 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 10878 i = j; 10879 } 10880 } 10881 10882 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 10883 { 10884 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 10885 10886 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 10887 sizeof(reason)); 10888 } 10889 10890 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 10891 { 10892 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 10893 10894 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 10895 &token, offset, sizeof(token)); 10896 } 10897 10898 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 10899 { 10900 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 10901 u32 val; 10902 10903 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 10904 &val, offset, sizeof(val))) 10905 return false; 10906 10907 return !val; 10908 } 10909 10910 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 10911 { 10912 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu)) 10913 return false; 10914 10915 if (!kvm_pv_async_pf_enabled(vcpu) || 10916 (vcpu->arch.apf.send_user_only && kvm_x86_ops.get_cpl(vcpu) == 0)) 10917 return false; 10918 10919 return true; 10920 } 10921 10922 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 10923 { 10924 if (unlikely(!lapic_in_kernel(vcpu) || 10925 kvm_event_needs_reinjection(vcpu) || 10926 vcpu->arch.exception.pending)) 10927 return false; 10928 10929 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 10930 return false; 10931 10932 /* 10933 * If interrupts are off we cannot even use an artificial 10934 * halt state. 10935 */ 10936 return kvm_arch_interrupt_allowed(vcpu); 10937 } 10938 10939 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 10940 struct kvm_async_pf *work) 10941 { 10942 struct x86_exception fault; 10943 10944 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 10945 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 10946 10947 if (kvm_can_deliver_async_pf(vcpu) && 10948 !apf_put_user_notpresent(vcpu)) { 10949 fault.vector = PF_VECTOR; 10950 fault.error_code_valid = true; 10951 fault.error_code = 0; 10952 fault.nested_page_fault = false; 10953 fault.address = work->arch.token; 10954 fault.async_page_fault = true; 10955 kvm_inject_page_fault(vcpu, &fault); 10956 return true; 10957 } else { 10958 /* 10959 * It is not possible to deliver a paravirtualized asynchronous 10960 * page fault, but putting the guest in an artificial halt state 10961 * can be beneficial nevertheless: if an interrupt arrives, we 10962 * can deliver it timely and perhaps the guest will schedule 10963 * another process. When the instruction that triggered a page 10964 * fault is retried, hopefully the page will be ready in the host. 10965 */ 10966 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 10967 return false; 10968 } 10969 } 10970 10971 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 10972 struct kvm_async_pf *work) 10973 { 10974 struct kvm_lapic_irq irq = { 10975 .delivery_mode = APIC_DM_FIXED, 10976 .vector = vcpu->arch.apf.vec 10977 }; 10978 10979 if (work->wakeup_all) 10980 work->arch.token = ~0; /* broadcast wakeup */ 10981 else 10982 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 10983 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 10984 10985 if ((work->wakeup_all || work->notpresent_injected) && 10986 kvm_pv_async_pf_enabled(vcpu) && 10987 !apf_put_user_ready(vcpu, work->arch.token)) { 10988 vcpu->arch.apf.pageready_pending = true; 10989 kvm_apic_set_irq(vcpu, &irq, NULL); 10990 } 10991 10992 vcpu->arch.apf.halted = false; 10993 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 10994 } 10995 10996 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 10997 { 10998 kvm_make_request(KVM_REQ_APF_READY, vcpu); 10999 if (!vcpu->arch.apf.pageready_pending) 11000 kvm_vcpu_kick(vcpu); 11001 } 11002 11003 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 11004 { 11005 if (!kvm_pv_async_pf_enabled(vcpu)) 11006 return true; 11007 else 11008 return apf_pageready_slot_free(vcpu); 11009 } 11010 11011 void kvm_arch_start_assignment(struct kvm *kvm) 11012 { 11013 atomic_inc(&kvm->arch.assigned_device_count); 11014 } 11015 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 11016 11017 void kvm_arch_end_assignment(struct kvm *kvm) 11018 { 11019 atomic_dec(&kvm->arch.assigned_device_count); 11020 } 11021 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 11022 11023 bool kvm_arch_has_assigned_device(struct kvm *kvm) 11024 { 11025 return atomic_read(&kvm->arch.assigned_device_count); 11026 } 11027 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 11028 11029 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 11030 { 11031 atomic_inc(&kvm->arch.noncoherent_dma_count); 11032 } 11033 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 11034 11035 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 11036 { 11037 atomic_dec(&kvm->arch.noncoherent_dma_count); 11038 } 11039 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 11040 11041 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 11042 { 11043 return atomic_read(&kvm->arch.noncoherent_dma_count); 11044 } 11045 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 11046 11047 bool kvm_arch_has_irq_bypass(void) 11048 { 11049 return true; 11050 } 11051 11052 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 11053 struct irq_bypass_producer *prod) 11054 { 11055 struct kvm_kernel_irqfd *irqfd = 11056 container_of(cons, struct kvm_kernel_irqfd, consumer); 11057 int ret; 11058 11059 irqfd->producer = prod; 11060 kvm_arch_start_assignment(irqfd->kvm); 11061 ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, 11062 prod->irq, irqfd->gsi, 1); 11063 11064 if (ret) 11065 kvm_arch_end_assignment(irqfd->kvm); 11066 11067 return ret; 11068 } 11069 11070 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 11071 struct irq_bypass_producer *prod) 11072 { 11073 int ret; 11074 struct kvm_kernel_irqfd *irqfd = 11075 container_of(cons, struct kvm_kernel_irqfd, consumer); 11076 11077 WARN_ON(irqfd->producer != prod); 11078 irqfd->producer = NULL; 11079 11080 /* 11081 * When producer of consumer is unregistered, we change back to 11082 * remapped mode, so we can re-use the current implementation 11083 * when the irq is masked/disabled or the consumer side (KVM 11084 * int this case doesn't want to receive the interrupts. 11085 */ 11086 ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0); 11087 if (ret) 11088 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 11089 " fails: %d\n", irqfd->consumer.token, ret); 11090 11091 kvm_arch_end_assignment(irqfd->kvm); 11092 } 11093 11094 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 11095 uint32_t guest_irq, bool set) 11096 { 11097 return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set); 11098 } 11099 11100 bool kvm_vector_hashing_enabled(void) 11101 { 11102 return vector_hashing; 11103 } 11104 11105 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 11106 { 11107 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 11108 } 11109 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 11110 11111 11112 int kvm_spec_ctrl_test_value(u64 value) 11113 { 11114 /* 11115 * test that setting IA32_SPEC_CTRL to given value 11116 * is allowed by the host processor 11117 */ 11118 11119 u64 saved_value; 11120 unsigned long flags; 11121 int ret = 0; 11122 11123 local_irq_save(flags); 11124 11125 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 11126 ret = 1; 11127 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 11128 ret = 1; 11129 else 11130 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 11131 11132 local_irq_restore(flags); 11133 11134 return ret; 11135 } 11136 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 11137 11138 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 11139 { 11140 struct x86_exception fault; 11141 u32 access = error_code & 11142 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 11143 11144 if (!(error_code & PFERR_PRESENT_MASK) || 11145 vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) { 11146 /* 11147 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 11148 * tables probably do not match the TLB. Just proceed 11149 * with the error code that the processor gave. 11150 */ 11151 fault.vector = PF_VECTOR; 11152 fault.error_code_valid = true; 11153 fault.error_code = error_code; 11154 fault.nested_page_fault = false; 11155 fault.address = gva; 11156 } 11157 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 11158 } 11159 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 11160 11161 /* 11162 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 11163 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 11164 * indicates whether exit to userspace is needed. 11165 */ 11166 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 11167 struct x86_exception *e) 11168 { 11169 if (r == X86EMUL_PROPAGATE_FAULT) { 11170 kvm_inject_emulated_page_fault(vcpu, e); 11171 return 1; 11172 } 11173 11174 /* 11175 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 11176 * while handling a VMX instruction KVM could've handled the request 11177 * correctly by exiting to userspace and performing I/O but there 11178 * doesn't seem to be a real use-case behind such requests, just return 11179 * KVM_EXIT_INTERNAL_ERROR for now. 11180 */ 11181 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11182 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11183 vcpu->run->internal.ndata = 0; 11184 11185 return 0; 11186 } 11187 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 11188 11189 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 11190 { 11191 bool pcid_enabled; 11192 struct x86_exception e; 11193 unsigned i; 11194 unsigned long roots_to_free = 0; 11195 struct { 11196 u64 pcid; 11197 u64 gla; 11198 } operand; 11199 int r; 11200 11201 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 11202 if (r != X86EMUL_CONTINUE) 11203 return kvm_handle_memory_failure(vcpu, r, &e); 11204 11205 if (operand.pcid >> 12 != 0) { 11206 kvm_inject_gp(vcpu, 0); 11207 return 1; 11208 } 11209 11210 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 11211 11212 switch (type) { 11213 case INVPCID_TYPE_INDIV_ADDR: 11214 if ((!pcid_enabled && (operand.pcid != 0)) || 11215 is_noncanonical_address(operand.gla, vcpu)) { 11216 kvm_inject_gp(vcpu, 0); 11217 return 1; 11218 } 11219 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 11220 return kvm_skip_emulated_instruction(vcpu); 11221 11222 case INVPCID_TYPE_SINGLE_CTXT: 11223 if (!pcid_enabled && (operand.pcid != 0)) { 11224 kvm_inject_gp(vcpu, 0); 11225 return 1; 11226 } 11227 11228 if (kvm_get_active_pcid(vcpu) == operand.pcid) { 11229 kvm_mmu_sync_roots(vcpu); 11230 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 11231 } 11232 11233 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 11234 if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd) 11235 == operand.pcid) 11236 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 11237 11238 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free); 11239 /* 11240 * If neither the current cr3 nor any of the prev_roots use the 11241 * given PCID, then nothing needs to be done here because a 11242 * resync will happen anyway before switching to any other CR3. 11243 */ 11244 11245 return kvm_skip_emulated_instruction(vcpu); 11246 11247 case INVPCID_TYPE_ALL_NON_GLOBAL: 11248 /* 11249 * Currently, KVM doesn't mark global entries in the shadow 11250 * page tables, so a non-global flush just degenerates to a 11251 * global flush. If needed, we could optimize this later by 11252 * keeping track of global entries in shadow page tables. 11253 */ 11254 11255 fallthrough; 11256 case INVPCID_TYPE_ALL_INCL_GLOBAL: 11257 kvm_mmu_unload(vcpu); 11258 return kvm_skip_emulated_instruction(vcpu); 11259 11260 default: 11261 BUG(); /* We have already checked above that type <= 3 */ 11262 } 11263 } 11264 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 11265 11266 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 11267 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 11268 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 11269 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 11270 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 11271 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 11272 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 11273 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 11274 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 11275 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 11276 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 11277 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 11278 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 11279 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 11280 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 11281 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 11282 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 11283 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 11284 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 11285 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 11286 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 11287 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request); 11288