xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 32bc7297d855608fcb13af62a95739a079b4f8e2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32 #include "lapic.h"
33 #include "xen.h"
34 #include "smm.h"
35 
36 #include <linux/clocksource.h>
37 #include <linux/interrupt.h>
38 #include <linux/kvm.h>
39 #include <linux/fs.h>
40 #include <linux/vmalloc.h>
41 #include <linux/export.h>
42 #include <linux/moduleparam.h>
43 #include <linux/mman.h>
44 #include <linux/highmem.h>
45 #include <linux/iommu.h>
46 #include <linux/cpufreq.h>
47 #include <linux/user-return-notifier.h>
48 #include <linux/srcu.h>
49 #include <linux/slab.h>
50 #include <linux/perf_event.h>
51 #include <linux/uaccess.h>
52 #include <linux/hash.h>
53 #include <linux/pci.h>
54 #include <linux/timekeeper_internal.h>
55 #include <linux/pvclock_gtod.h>
56 #include <linux/kvm_irqfd.h>
57 #include <linux/irqbypass.h>
58 #include <linux/sched/stat.h>
59 #include <linux/sched/isolation.h>
60 #include <linux/mem_encrypt.h>
61 #include <linux/entry-kvm.h>
62 #include <linux/suspend.h>
63 #include <linux/smp.h>
64 
65 #include <trace/events/ipi.h>
66 #include <trace/events/kvm.h>
67 
68 #include <asm/debugreg.h>
69 #include <asm/msr.h>
70 #include <asm/desc.h>
71 #include <asm/mce.h>
72 #include <asm/pkru.h>
73 #include <linux/kernel_stat.h>
74 #include <asm/fpu/api.h>
75 #include <asm/fpu/xcr.h>
76 #include <asm/fpu/xstate.h>
77 #include <asm/pvclock.h>
78 #include <asm/div64.h>
79 #include <asm/irq_remapping.h>
80 #include <asm/mshyperv.h>
81 #include <asm/hypervisor.h>
82 #include <asm/tlbflush.h>
83 #include <asm/intel_pt.h>
84 #include <asm/emulate_prefix.h>
85 #include <asm/sgx.h>
86 #include <clocksource/hyperv_timer.h>
87 
88 #define CREATE_TRACE_POINTS
89 #include "trace.h"
90 
91 #define MAX_IO_MSRS 256
92 #define KVM_MAX_MCE_BANKS 32
93 
94 struct kvm_caps kvm_caps __read_mostly = {
95 	.supported_mce_cap = MCG_CTL_P | MCG_SER_P,
96 };
97 EXPORT_SYMBOL_GPL(kvm_caps);
98 
99 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
100 
101 #define emul_to_vcpu(ctxt) \
102 	((struct kvm_vcpu *)(ctxt)->vcpu)
103 
104 /* EFER defaults:
105  * - enable syscall per default because its emulated by KVM
106  * - enable LME and LMA per default on 64 bit KVM
107  */
108 #ifdef CONFIG_X86_64
109 static
110 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
111 #else
112 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
113 #endif
114 
115 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
116 
117 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
118 
119 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
120 
121 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
122                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
123 
124 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
125 static void process_nmi(struct kvm_vcpu *vcpu);
126 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
127 static void store_regs(struct kvm_vcpu *vcpu);
128 static int sync_regs(struct kvm_vcpu *vcpu);
129 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
130 
131 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
132 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
133 
134 static DEFINE_MUTEX(vendor_module_lock);
135 struct kvm_x86_ops kvm_x86_ops __read_mostly;
136 
137 #define KVM_X86_OP(func)					     \
138 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
139 				*(((struct kvm_x86_ops *)0)->func));
140 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
141 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
142 #include <asm/kvm-x86-ops.h>
143 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
144 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
145 
146 static bool __read_mostly ignore_msrs = 0;
147 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
148 
149 bool __read_mostly report_ignored_msrs = true;
150 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
151 EXPORT_SYMBOL_GPL(report_ignored_msrs);
152 
153 unsigned int min_timer_period_us = 200;
154 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
155 
156 static bool __read_mostly kvmclock_periodic_sync = true;
157 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
158 
159 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
160 static u32 __read_mostly tsc_tolerance_ppm = 250;
161 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
162 
163 /*
164  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
165  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
166  * advancement entirely.  Any other value is used as-is and disables adaptive
167  * tuning, i.e. allows privileged userspace to set an exact advancement time.
168  */
169 static int __read_mostly lapic_timer_advance_ns = -1;
170 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
171 
172 static bool __read_mostly vector_hashing = true;
173 module_param(vector_hashing, bool, S_IRUGO);
174 
175 bool __read_mostly enable_vmware_backdoor = false;
176 module_param(enable_vmware_backdoor, bool, S_IRUGO);
177 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
178 
179 /*
180  * Flags to manipulate forced emulation behavior (any non-zero value will
181  * enable forced emulation).
182  */
183 #define KVM_FEP_CLEAR_RFLAGS_RF	BIT(1)
184 static int __read_mostly force_emulation_prefix;
185 module_param(force_emulation_prefix, int, 0644);
186 
187 int __read_mostly pi_inject_timer = -1;
188 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
189 
190 /* Enable/disable PMU virtualization */
191 bool __read_mostly enable_pmu = true;
192 EXPORT_SYMBOL_GPL(enable_pmu);
193 module_param(enable_pmu, bool, 0444);
194 
195 bool __read_mostly eager_page_split = true;
196 module_param(eager_page_split, bool, 0644);
197 
198 /* Enable/disable SMT_RSB bug mitigation */
199 static bool __read_mostly mitigate_smt_rsb;
200 module_param(mitigate_smt_rsb, bool, 0444);
201 
202 /*
203  * Restoring the host value for MSRs that are only consumed when running in
204  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
205  * returns to userspace, i.e. the kernel can run with the guest's value.
206  */
207 #define KVM_MAX_NR_USER_RETURN_MSRS 16
208 
209 struct kvm_user_return_msrs {
210 	struct user_return_notifier urn;
211 	bool registered;
212 	struct kvm_user_return_msr_values {
213 		u64 host;
214 		u64 curr;
215 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
216 };
217 
218 u32 __read_mostly kvm_nr_uret_msrs;
219 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
220 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
221 static struct kvm_user_return_msrs __percpu *user_return_msrs;
222 
223 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
224 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
225 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
226 				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
227 
228 u64 __read_mostly host_efer;
229 EXPORT_SYMBOL_GPL(host_efer);
230 
231 bool __read_mostly allow_smaller_maxphyaddr = 0;
232 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
233 
234 bool __read_mostly enable_apicv = true;
235 EXPORT_SYMBOL_GPL(enable_apicv);
236 
237 u64 __read_mostly host_xss;
238 EXPORT_SYMBOL_GPL(host_xss);
239 
240 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
241 	KVM_GENERIC_VM_STATS(),
242 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
243 	STATS_DESC_COUNTER(VM, mmu_pte_write),
244 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
245 	STATS_DESC_COUNTER(VM, mmu_flooded),
246 	STATS_DESC_COUNTER(VM, mmu_recycled),
247 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
248 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
249 	STATS_DESC_ICOUNTER(VM, pages_4k),
250 	STATS_DESC_ICOUNTER(VM, pages_2m),
251 	STATS_DESC_ICOUNTER(VM, pages_1g),
252 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
253 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
254 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
255 };
256 
257 const struct kvm_stats_header kvm_vm_stats_header = {
258 	.name_size = KVM_STATS_NAME_SIZE,
259 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
260 	.id_offset = sizeof(struct kvm_stats_header),
261 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
262 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
263 		       sizeof(kvm_vm_stats_desc),
264 };
265 
266 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
267 	KVM_GENERIC_VCPU_STATS(),
268 	STATS_DESC_COUNTER(VCPU, pf_taken),
269 	STATS_DESC_COUNTER(VCPU, pf_fixed),
270 	STATS_DESC_COUNTER(VCPU, pf_emulate),
271 	STATS_DESC_COUNTER(VCPU, pf_spurious),
272 	STATS_DESC_COUNTER(VCPU, pf_fast),
273 	STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
274 	STATS_DESC_COUNTER(VCPU, pf_guest),
275 	STATS_DESC_COUNTER(VCPU, tlb_flush),
276 	STATS_DESC_COUNTER(VCPU, invlpg),
277 	STATS_DESC_COUNTER(VCPU, exits),
278 	STATS_DESC_COUNTER(VCPU, io_exits),
279 	STATS_DESC_COUNTER(VCPU, mmio_exits),
280 	STATS_DESC_COUNTER(VCPU, signal_exits),
281 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
282 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
283 	STATS_DESC_COUNTER(VCPU, l1d_flush),
284 	STATS_DESC_COUNTER(VCPU, halt_exits),
285 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
286 	STATS_DESC_COUNTER(VCPU, irq_exits),
287 	STATS_DESC_COUNTER(VCPU, host_state_reload),
288 	STATS_DESC_COUNTER(VCPU, fpu_reload),
289 	STATS_DESC_COUNTER(VCPU, insn_emulation),
290 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
291 	STATS_DESC_COUNTER(VCPU, hypercalls),
292 	STATS_DESC_COUNTER(VCPU, irq_injections),
293 	STATS_DESC_COUNTER(VCPU, nmi_injections),
294 	STATS_DESC_COUNTER(VCPU, req_event),
295 	STATS_DESC_COUNTER(VCPU, nested_run),
296 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
297 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
298 	STATS_DESC_COUNTER(VCPU, preemption_reported),
299 	STATS_DESC_COUNTER(VCPU, preemption_other),
300 	STATS_DESC_IBOOLEAN(VCPU, guest_mode),
301 	STATS_DESC_COUNTER(VCPU, notify_window_exits),
302 };
303 
304 const struct kvm_stats_header kvm_vcpu_stats_header = {
305 	.name_size = KVM_STATS_NAME_SIZE,
306 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
307 	.id_offset = sizeof(struct kvm_stats_header),
308 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
309 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
310 		       sizeof(kvm_vcpu_stats_desc),
311 };
312 
313 u64 __read_mostly host_xcr0;
314 
315 static struct kmem_cache *x86_emulator_cache;
316 
317 /*
318  * When called, it means the previous get/set msr reached an invalid msr.
319  * Return true if we want to ignore/silent this failed msr access.
320  */
321 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
322 {
323 	const char *op = write ? "wrmsr" : "rdmsr";
324 
325 	if (ignore_msrs) {
326 		if (report_ignored_msrs)
327 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
328 				      op, msr, data);
329 		/* Mask the error */
330 		return true;
331 	} else {
332 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
333 				      op, msr, data);
334 		return false;
335 	}
336 }
337 
338 static struct kmem_cache *kvm_alloc_emulator_cache(void)
339 {
340 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
341 	unsigned int size = sizeof(struct x86_emulate_ctxt);
342 
343 	return kmem_cache_create_usercopy("x86_emulator", size,
344 					  __alignof__(struct x86_emulate_ctxt),
345 					  SLAB_ACCOUNT, useroffset,
346 					  size - useroffset, NULL);
347 }
348 
349 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
350 
351 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
352 {
353 	int i;
354 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
355 		vcpu->arch.apf.gfns[i] = ~0;
356 }
357 
358 static void kvm_on_user_return(struct user_return_notifier *urn)
359 {
360 	unsigned slot;
361 	struct kvm_user_return_msrs *msrs
362 		= container_of(urn, struct kvm_user_return_msrs, urn);
363 	struct kvm_user_return_msr_values *values;
364 	unsigned long flags;
365 
366 	/*
367 	 * Disabling irqs at this point since the following code could be
368 	 * interrupted and executed through kvm_arch_hardware_disable()
369 	 */
370 	local_irq_save(flags);
371 	if (msrs->registered) {
372 		msrs->registered = false;
373 		user_return_notifier_unregister(urn);
374 	}
375 	local_irq_restore(flags);
376 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
377 		values = &msrs->values[slot];
378 		if (values->host != values->curr) {
379 			wrmsrl(kvm_uret_msrs_list[slot], values->host);
380 			values->curr = values->host;
381 		}
382 	}
383 }
384 
385 static int kvm_probe_user_return_msr(u32 msr)
386 {
387 	u64 val;
388 	int ret;
389 
390 	preempt_disable();
391 	ret = rdmsrl_safe(msr, &val);
392 	if (ret)
393 		goto out;
394 	ret = wrmsrl_safe(msr, val);
395 out:
396 	preempt_enable();
397 	return ret;
398 }
399 
400 int kvm_add_user_return_msr(u32 msr)
401 {
402 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
403 
404 	if (kvm_probe_user_return_msr(msr))
405 		return -1;
406 
407 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
408 	return kvm_nr_uret_msrs++;
409 }
410 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
411 
412 int kvm_find_user_return_msr(u32 msr)
413 {
414 	int i;
415 
416 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
417 		if (kvm_uret_msrs_list[i] == msr)
418 			return i;
419 	}
420 	return -1;
421 }
422 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
423 
424 static void kvm_user_return_msr_cpu_online(void)
425 {
426 	unsigned int cpu = smp_processor_id();
427 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
428 	u64 value;
429 	int i;
430 
431 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
432 		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
433 		msrs->values[i].host = value;
434 		msrs->values[i].curr = value;
435 	}
436 }
437 
438 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
439 {
440 	unsigned int cpu = smp_processor_id();
441 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
442 	int err;
443 
444 	value = (value & mask) | (msrs->values[slot].host & ~mask);
445 	if (value == msrs->values[slot].curr)
446 		return 0;
447 	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
448 	if (err)
449 		return 1;
450 
451 	msrs->values[slot].curr = value;
452 	if (!msrs->registered) {
453 		msrs->urn.on_user_return = kvm_on_user_return;
454 		user_return_notifier_register(&msrs->urn);
455 		msrs->registered = true;
456 	}
457 	return 0;
458 }
459 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
460 
461 static void drop_user_return_notifiers(void)
462 {
463 	unsigned int cpu = smp_processor_id();
464 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
465 
466 	if (msrs->registered)
467 		kvm_on_user_return(&msrs->urn);
468 }
469 
470 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
471 {
472 	return vcpu->arch.apic_base;
473 }
474 
475 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
476 {
477 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
478 }
479 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
480 
481 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
482 {
483 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
484 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
485 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
486 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
487 
488 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
489 		return 1;
490 	if (!msr_info->host_initiated) {
491 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
492 			return 1;
493 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
494 			return 1;
495 	}
496 
497 	kvm_lapic_set_base(vcpu, msr_info->data);
498 	kvm_recalculate_apic_map(vcpu->kvm);
499 	return 0;
500 }
501 
502 /*
503  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
504  *
505  * Hardware virtualization extension instructions may fault if a reboot turns
506  * off virtualization while processes are running.  Usually after catching the
507  * fault we just panic; during reboot instead the instruction is ignored.
508  */
509 noinstr void kvm_spurious_fault(void)
510 {
511 	/* Fault while not rebooting.  We want the trace. */
512 	BUG_ON(!kvm_rebooting);
513 }
514 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
515 
516 #define EXCPT_BENIGN		0
517 #define EXCPT_CONTRIBUTORY	1
518 #define EXCPT_PF		2
519 
520 static int exception_class(int vector)
521 {
522 	switch (vector) {
523 	case PF_VECTOR:
524 		return EXCPT_PF;
525 	case DE_VECTOR:
526 	case TS_VECTOR:
527 	case NP_VECTOR:
528 	case SS_VECTOR:
529 	case GP_VECTOR:
530 		return EXCPT_CONTRIBUTORY;
531 	default:
532 		break;
533 	}
534 	return EXCPT_BENIGN;
535 }
536 
537 #define EXCPT_FAULT		0
538 #define EXCPT_TRAP		1
539 #define EXCPT_ABORT		2
540 #define EXCPT_INTERRUPT		3
541 #define EXCPT_DB		4
542 
543 static int exception_type(int vector)
544 {
545 	unsigned int mask;
546 
547 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
548 		return EXCPT_INTERRUPT;
549 
550 	mask = 1 << vector;
551 
552 	/*
553 	 * #DBs can be trap-like or fault-like, the caller must check other CPU
554 	 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
555 	 */
556 	if (mask & (1 << DB_VECTOR))
557 		return EXCPT_DB;
558 
559 	if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
560 		return EXCPT_TRAP;
561 
562 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
563 		return EXCPT_ABORT;
564 
565 	/* Reserved exceptions will result in fault */
566 	return EXCPT_FAULT;
567 }
568 
569 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
570 				   struct kvm_queued_exception *ex)
571 {
572 	if (!ex->has_payload)
573 		return;
574 
575 	switch (ex->vector) {
576 	case DB_VECTOR:
577 		/*
578 		 * "Certain debug exceptions may clear bit 0-3.  The
579 		 * remaining contents of the DR6 register are never
580 		 * cleared by the processor".
581 		 */
582 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
583 		/*
584 		 * In order to reflect the #DB exception payload in guest
585 		 * dr6, three components need to be considered: active low
586 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
587 		 * DR6_BS and DR6_BT)
588 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
589 		 * In the target guest dr6:
590 		 * FIXED_1 bits should always be set.
591 		 * Active low bits should be cleared if 1-setting in payload.
592 		 * Active high bits should be set if 1-setting in payload.
593 		 *
594 		 * Note, the payload is compatible with the pending debug
595 		 * exceptions/exit qualification under VMX, that active_low bits
596 		 * are active high in payload.
597 		 * So they need to be flipped for DR6.
598 		 */
599 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
600 		vcpu->arch.dr6 |= ex->payload;
601 		vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
602 
603 		/*
604 		 * The #DB payload is defined as compatible with the 'pending
605 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
606 		 * defined in the 'pending debug exceptions' field (enabled
607 		 * breakpoint), it is reserved and must be zero in DR6.
608 		 */
609 		vcpu->arch.dr6 &= ~BIT(12);
610 		break;
611 	case PF_VECTOR:
612 		vcpu->arch.cr2 = ex->payload;
613 		break;
614 	}
615 
616 	ex->has_payload = false;
617 	ex->payload = 0;
618 }
619 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
620 
621 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
622 				       bool has_error_code, u32 error_code,
623 				       bool has_payload, unsigned long payload)
624 {
625 	struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
626 
627 	ex->vector = vector;
628 	ex->injected = false;
629 	ex->pending = true;
630 	ex->has_error_code = has_error_code;
631 	ex->error_code = error_code;
632 	ex->has_payload = has_payload;
633 	ex->payload = payload;
634 }
635 
636 /* Forcibly leave the nested mode in cases like a vCPU reset */
637 static void kvm_leave_nested(struct kvm_vcpu *vcpu)
638 {
639 	kvm_x86_ops.nested_ops->leave_nested(vcpu);
640 }
641 
642 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
643 		unsigned nr, bool has_error, u32 error_code,
644 	        bool has_payload, unsigned long payload, bool reinject)
645 {
646 	u32 prev_nr;
647 	int class1, class2;
648 
649 	kvm_make_request(KVM_REQ_EVENT, vcpu);
650 
651 	/*
652 	 * If the exception is destined for L2 and isn't being reinjected,
653 	 * morph it to a VM-Exit if L1 wants to intercept the exception.  A
654 	 * previously injected exception is not checked because it was checked
655 	 * when it was original queued, and re-checking is incorrect if _L1_
656 	 * injected the exception, in which case it's exempt from interception.
657 	 */
658 	if (!reinject && is_guest_mode(vcpu) &&
659 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
660 		kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
661 					   has_payload, payload);
662 		return;
663 	}
664 
665 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
666 	queue:
667 		if (reinject) {
668 			/*
669 			 * On VM-Entry, an exception can be pending if and only
670 			 * if event injection was blocked by nested_run_pending.
671 			 * In that case, however, vcpu_enter_guest() requests an
672 			 * immediate exit, and the guest shouldn't proceed far
673 			 * enough to need reinjection.
674 			 */
675 			WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
676 			vcpu->arch.exception.injected = true;
677 			if (WARN_ON_ONCE(has_payload)) {
678 				/*
679 				 * A reinjected event has already
680 				 * delivered its payload.
681 				 */
682 				has_payload = false;
683 				payload = 0;
684 			}
685 		} else {
686 			vcpu->arch.exception.pending = true;
687 			vcpu->arch.exception.injected = false;
688 		}
689 		vcpu->arch.exception.has_error_code = has_error;
690 		vcpu->arch.exception.vector = nr;
691 		vcpu->arch.exception.error_code = error_code;
692 		vcpu->arch.exception.has_payload = has_payload;
693 		vcpu->arch.exception.payload = payload;
694 		if (!is_guest_mode(vcpu))
695 			kvm_deliver_exception_payload(vcpu,
696 						      &vcpu->arch.exception);
697 		return;
698 	}
699 
700 	/* to check exception */
701 	prev_nr = vcpu->arch.exception.vector;
702 	if (prev_nr == DF_VECTOR) {
703 		/* triple fault -> shutdown */
704 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
705 		return;
706 	}
707 	class1 = exception_class(prev_nr);
708 	class2 = exception_class(nr);
709 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
710 	    (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
711 		/*
712 		 * Synthesize #DF.  Clear the previously injected or pending
713 		 * exception so as not to incorrectly trigger shutdown.
714 		 */
715 		vcpu->arch.exception.injected = false;
716 		vcpu->arch.exception.pending = false;
717 
718 		kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
719 	} else {
720 		/* replace previous exception with a new one in a hope
721 		   that instruction re-execution will regenerate lost
722 		   exception */
723 		goto queue;
724 	}
725 }
726 
727 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
728 {
729 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
730 }
731 EXPORT_SYMBOL_GPL(kvm_queue_exception);
732 
733 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
734 {
735 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
736 }
737 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
738 
739 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
740 			   unsigned long payload)
741 {
742 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
743 }
744 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
745 
746 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
747 				    u32 error_code, unsigned long payload)
748 {
749 	kvm_multiple_exception(vcpu, nr, true, error_code,
750 			       true, payload, false);
751 }
752 
753 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
754 {
755 	if (err)
756 		kvm_inject_gp(vcpu, 0);
757 	else
758 		return kvm_skip_emulated_instruction(vcpu);
759 
760 	return 1;
761 }
762 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
763 
764 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
765 {
766 	if (err) {
767 		kvm_inject_gp(vcpu, 0);
768 		return 1;
769 	}
770 
771 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
772 				       EMULTYPE_COMPLETE_USER_EXIT);
773 }
774 
775 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
776 {
777 	++vcpu->stat.pf_guest;
778 
779 	/*
780 	 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
781 	 * whether or not L1 wants to intercept "regular" #PF.
782 	 */
783 	if (is_guest_mode(vcpu) && fault->async_page_fault)
784 		kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
785 					   true, fault->error_code,
786 					   true, fault->address);
787 	else
788 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
789 					fault->address);
790 }
791 
792 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
793 				    struct x86_exception *fault)
794 {
795 	struct kvm_mmu *fault_mmu;
796 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
797 
798 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
799 					       vcpu->arch.walk_mmu;
800 
801 	/*
802 	 * Invalidate the TLB entry for the faulting address, if it exists,
803 	 * else the access will fault indefinitely (and to emulate hardware).
804 	 */
805 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
806 	    !(fault->error_code & PFERR_RSVD_MASK))
807 		kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
808 					KVM_MMU_ROOT_CURRENT);
809 
810 	fault_mmu->inject_page_fault(vcpu, fault);
811 }
812 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
813 
814 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
815 {
816 	atomic_inc(&vcpu->arch.nmi_queued);
817 	kvm_make_request(KVM_REQ_NMI, vcpu);
818 }
819 
820 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
821 {
822 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
823 }
824 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
825 
826 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
827 {
828 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
829 }
830 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
831 
832 /*
833  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
834  * a #GP and return false.
835  */
836 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
837 {
838 	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
839 		return true;
840 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
841 	return false;
842 }
843 
844 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
845 {
846 	if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
847 		return true;
848 
849 	kvm_queue_exception(vcpu, UD_VECTOR);
850 	return false;
851 }
852 EXPORT_SYMBOL_GPL(kvm_require_dr);
853 
854 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
855 {
856 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
857 }
858 
859 /*
860  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
861  */
862 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
863 {
864 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
865 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
866 	gpa_t real_gpa;
867 	int i;
868 	int ret;
869 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
870 
871 	/*
872 	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
873 	 * to an L1 GPA.
874 	 */
875 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
876 				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
877 	if (real_gpa == INVALID_GPA)
878 		return 0;
879 
880 	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
881 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
882 				       cr3 & GENMASK(11, 5), sizeof(pdpte));
883 	if (ret < 0)
884 		return 0;
885 
886 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
887 		if ((pdpte[i] & PT_PRESENT_MASK) &&
888 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
889 			return 0;
890 		}
891 	}
892 
893 	/*
894 	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
895 	 * Shadow page roots need to be reconstructed instead.
896 	 */
897 	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
898 		kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
899 
900 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
901 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
902 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
903 	vcpu->arch.pdptrs_from_userspace = false;
904 
905 	return 1;
906 }
907 EXPORT_SYMBOL_GPL(load_pdptrs);
908 
909 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
910 {
911 	/*
912 	 * CR0.WP is incorporated into the MMU role, but only for non-nested,
913 	 * indirect shadow MMUs.  If paging is disabled, no updates are needed
914 	 * as there are no permission bits to emulate.  If TDP is enabled, the
915 	 * MMU's metadata needs to be updated, e.g. so that emulating guest
916 	 * translations does the right thing, but there's no need to unload the
917 	 * root as CR0.WP doesn't affect SPTEs.
918 	 */
919 	if ((cr0 ^ old_cr0) == X86_CR0_WP) {
920 		if (!(cr0 & X86_CR0_PG))
921 			return;
922 
923 		if (tdp_enabled) {
924 			kvm_init_mmu(vcpu);
925 			return;
926 		}
927 	}
928 
929 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
930 		kvm_clear_async_pf_completion_queue(vcpu);
931 		kvm_async_pf_hash_reset(vcpu);
932 
933 		/*
934 		 * Clearing CR0.PG is defined to flush the TLB from the guest's
935 		 * perspective.
936 		 */
937 		if (!(cr0 & X86_CR0_PG))
938 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
939 	}
940 
941 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
942 		kvm_mmu_reset_context(vcpu);
943 
944 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
945 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
946 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
947 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
948 }
949 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
950 
951 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
952 {
953 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
954 
955 	cr0 |= X86_CR0_ET;
956 
957 #ifdef CONFIG_X86_64
958 	if (cr0 & 0xffffffff00000000UL)
959 		return 1;
960 #endif
961 
962 	cr0 &= ~CR0_RESERVED_BITS;
963 
964 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
965 		return 1;
966 
967 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
968 		return 1;
969 
970 #ifdef CONFIG_X86_64
971 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
972 	    (cr0 & X86_CR0_PG)) {
973 		int cs_db, cs_l;
974 
975 		if (!is_pae(vcpu))
976 			return 1;
977 		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
978 		if (cs_l)
979 			return 1;
980 	}
981 #endif
982 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
983 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
984 	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
985 		return 1;
986 
987 	if (!(cr0 & X86_CR0_PG) &&
988 	    (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
989 		return 1;
990 
991 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
992 
993 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
994 
995 	return 0;
996 }
997 EXPORT_SYMBOL_GPL(kvm_set_cr0);
998 
999 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1000 {
1001 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1002 }
1003 EXPORT_SYMBOL_GPL(kvm_lmsw);
1004 
1005 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1006 {
1007 	if (vcpu->arch.guest_state_protected)
1008 		return;
1009 
1010 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1011 
1012 		if (vcpu->arch.xcr0 != host_xcr0)
1013 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1014 
1015 		if (vcpu->arch.xsaves_enabled &&
1016 		    vcpu->arch.ia32_xss != host_xss)
1017 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1018 	}
1019 
1020 	if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1021 	    vcpu->arch.pkru != vcpu->arch.host_pkru &&
1022 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1023 	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1024 		write_pkru(vcpu->arch.pkru);
1025 }
1026 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1027 
1028 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1029 {
1030 	if (vcpu->arch.guest_state_protected)
1031 		return;
1032 
1033 	if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1034 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1035 	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1036 		vcpu->arch.pkru = rdpkru();
1037 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1038 			write_pkru(vcpu->arch.host_pkru);
1039 	}
1040 
1041 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1042 
1043 		if (vcpu->arch.xcr0 != host_xcr0)
1044 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1045 
1046 		if (vcpu->arch.xsaves_enabled &&
1047 		    vcpu->arch.ia32_xss != host_xss)
1048 			wrmsrl(MSR_IA32_XSS, host_xss);
1049 	}
1050 
1051 }
1052 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1053 
1054 #ifdef CONFIG_X86_64
1055 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1056 {
1057 	return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1058 }
1059 #endif
1060 
1061 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1062 {
1063 	u64 xcr0 = xcr;
1064 	u64 old_xcr0 = vcpu->arch.xcr0;
1065 	u64 valid_bits;
1066 
1067 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1068 	if (index != XCR_XFEATURE_ENABLED_MASK)
1069 		return 1;
1070 	if (!(xcr0 & XFEATURE_MASK_FP))
1071 		return 1;
1072 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1073 		return 1;
1074 
1075 	/*
1076 	 * Do not allow the guest to set bits that we do not support
1077 	 * saving.  However, xcr0 bit 0 is always set, even if the
1078 	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1079 	 */
1080 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1081 	if (xcr0 & ~valid_bits)
1082 		return 1;
1083 
1084 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1085 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1086 		return 1;
1087 
1088 	if (xcr0 & XFEATURE_MASK_AVX512) {
1089 		if (!(xcr0 & XFEATURE_MASK_YMM))
1090 			return 1;
1091 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1092 			return 1;
1093 	}
1094 
1095 	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1096 	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1097 		return 1;
1098 
1099 	vcpu->arch.xcr0 = xcr0;
1100 
1101 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1102 		kvm_update_cpuid_runtime(vcpu);
1103 	return 0;
1104 }
1105 
1106 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1107 {
1108 	/* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1109 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1110 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1111 		kvm_inject_gp(vcpu, 0);
1112 		return 1;
1113 	}
1114 
1115 	return kvm_skip_emulated_instruction(vcpu);
1116 }
1117 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1118 
1119 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1120 {
1121 	if (cr4 & cr4_reserved_bits)
1122 		return false;
1123 
1124 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1125 		return false;
1126 
1127 	return true;
1128 }
1129 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1130 
1131 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1132 {
1133 	return __kvm_is_valid_cr4(vcpu, cr4) &&
1134 	       static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1135 }
1136 
1137 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1138 {
1139 	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1140 		kvm_mmu_reset_context(vcpu);
1141 
1142 	/*
1143 	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1144 	 * according to the SDM; however, stale prev_roots could be reused
1145 	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1146 	 * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1147 	 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1148 	 * so fall through.
1149 	 */
1150 	if (!tdp_enabled &&
1151 	    (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1152 		kvm_mmu_unload(vcpu);
1153 
1154 	/*
1155 	 * The TLB has to be flushed for all PCIDs if any of the following
1156 	 * (architecturally required) changes happen:
1157 	 * - CR4.PCIDE is changed from 1 to 0
1158 	 * - CR4.PGE is toggled
1159 	 *
1160 	 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1161 	 */
1162 	if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1163 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1164 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1165 
1166 	/*
1167 	 * The TLB has to be flushed for the current PCID if any of the
1168 	 * following (architecturally required) changes happen:
1169 	 * - CR4.SMEP is changed from 0 to 1
1170 	 * - CR4.PAE is toggled
1171 	 */
1172 	else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1173 		 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1174 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1175 
1176 }
1177 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1178 
1179 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1180 {
1181 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1182 
1183 	if (!kvm_is_valid_cr4(vcpu, cr4))
1184 		return 1;
1185 
1186 	if (is_long_mode(vcpu)) {
1187 		if (!(cr4 & X86_CR4_PAE))
1188 			return 1;
1189 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1190 			return 1;
1191 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1192 		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1193 		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1194 		return 1;
1195 
1196 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1197 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1198 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1199 			return 1;
1200 	}
1201 
1202 	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1203 
1204 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1205 
1206 	return 0;
1207 }
1208 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1209 
1210 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1211 {
1212 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1213 	unsigned long roots_to_free = 0;
1214 	int i;
1215 
1216 	/*
1217 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1218 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1219 	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1220 	 * the invalidation, but the guest's TLB entries need to be flushed as
1221 	 * the CPU may have cached entries in its TLB for the target PCID.
1222 	 */
1223 	if (unlikely(tdp_enabled)) {
1224 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1225 		return;
1226 	}
1227 
1228 	/*
1229 	 * If neither the current CR3 nor any of the prev_roots use the given
1230 	 * PCID, then nothing needs to be done here because a resync will
1231 	 * happen anyway before switching to any other CR3.
1232 	 */
1233 	if (kvm_get_active_pcid(vcpu) == pcid) {
1234 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1235 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1236 	}
1237 
1238 	/*
1239 	 * If PCID is disabled, there is no need to free prev_roots even if the
1240 	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1241 	 * with PCIDE=0.
1242 	 */
1243 	if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1244 		return;
1245 
1246 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1247 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1248 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1249 
1250 	kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1251 }
1252 
1253 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1254 {
1255 	bool skip_tlb_flush = false;
1256 	unsigned long pcid = 0;
1257 #ifdef CONFIG_X86_64
1258 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1259 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1260 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1261 		pcid = cr3 & X86_CR3_PCID_MASK;
1262 	}
1263 #endif
1264 
1265 	/* PDPTRs are always reloaded for PAE paging. */
1266 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1267 		goto handle_tlb_flush;
1268 
1269 	/*
1270 	 * Do not condition the GPA check on long mode, this helper is used to
1271 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1272 	 * the current vCPU mode is accurate.
1273 	 */
1274 	if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1275 		return 1;
1276 
1277 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1278 		return 1;
1279 
1280 	if (cr3 != kvm_read_cr3(vcpu))
1281 		kvm_mmu_new_pgd(vcpu, cr3);
1282 
1283 	vcpu->arch.cr3 = cr3;
1284 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1285 	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1286 
1287 handle_tlb_flush:
1288 	/*
1289 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1290 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1291 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1292 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1293 	 * i.e. only PCID=0 can be relevant.
1294 	 */
1295 	if (!skip_tlb_flush)
1296 		kvm_invalidate_pcid(vcpu, pcid);
1297 
1298 	return 0;
1299 }
1300 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1301 
1302 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1303 {
1304 	if (cr8 & CR8_RESERVED_BITS)
1305 		return 1;
1306 	if (lapic_in_kernel(vcpu))
1307 		kvm_lapic_set_tpr(vcpu, cr8);
1308 	else
1309 		vcpu->arch.cr8 = cr8;
1310 	return 0;
1311 }
1312 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1313 
1314 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1315 {
1316 	if (lapic_in_kernel(vcpu))
1317 		return kvm_lapic_get_cr8(vcpu);
1318 	else
1319 		return vcpu->arch.cr8;
1320 }
1321 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1322 
1323 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1324 {
1325 	int i;
1326 
1327 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1328 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1329 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1330 	}
1331 }
1332 
1333 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1334 {
1335 	unsigned long dr7;
1336 
1337 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1338 		dr7 = vcpu->arch.guest_debug_dr7;
1339 	else
1340 		dr7 = vcpu->arch.dr7;
1341 	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1342 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1343 	if (dr7 & DR7_BP_EN_MASK)
1344 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1345 }
1346 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1347 
1348 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1349 {
1350 	u64 fixed = DR6_FIXED_1;
1351 
1352 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1353 		fixed |= DR6_RTM;
1354 
1355 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1356 		fixed |= DR6_BUS_LOCK;
1357 	return fixed;
1358 }
1359 
1360 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1361 {
1362 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1363 
1364 	switch (dr) {
1365 	case 0 ... 3:
1366 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1367 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1368 			vcpu->arch.eff_db[dr] = val;
1369 		break;
1370 	case 4:
1371 	case 6:
1372 		if (!kvm_dr6_valid(val))
1373 			return 1; /* #GP */
1374 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1375 		break;
1376 	case 5:
1377 	default: /* 7 */
1378 		if (!kvm_dr7_valid(val))
1379 			return 1; /* #GP */
1380 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1381 		kvm_update_dr7(vcpu);
1382 		break;
1383 	}
1384 
1385 	return 0;
1386 }
1387 EXPORT_SYMBOL_GPL(kvm_set_dr);
1388 
1389 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1390 {
1391 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1392 
1393 	switch (dr) {
1394 	case 0 ... 3:
1395 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1396 		break;
1397 	case 4:
1398 	case 6:
1399 		*val = vcpu->arch.dr6;
1400 		break;
1401 	case 5:
1402 	default: /* 7 */
1403 		*val = vcpu->arch.dr7;
1404 		break;
1405 	}
1406 }
1407 EXPORT_SYMBOL_GPL(kvm_get_dr);
1408 
1409 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1410 {
1411 	u32 ecx = kvm_rcx_read(vcpu);
1412 	u64 data;
1413 
1414 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1415 		kvm_inject_gp(vcpu, 0);
1416 		return 1;
1417 	}
1418 
1419 	kvm_rax_write(vcpu, (u32)data);
1420 	kvm_rdx_write(vcpu, data >> 32);
1421 	return kvm_skip_emulated_instruction(vcpu);
1422 }
1423 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1424 
1425 /*
1426  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
1427  * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
1428  * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.  msrs_to_save holds MSRs that
1429  * require host support, i.e. should be probed via RDMSR.  emulated_msrs holds
1430  * MSRs that KVM emulates without strictly requiring host support.
1431  * msr_based_features holds MSRs that enumerate features, i.e. are effectively
1432  * CPUID leafs.  Note, msr_based_features isn't mutually exclusive with
1433  * msrs_to_save and emulated_msrs.
1434  */
1435 
1436 static const u32 msrs_to_save_base[] = {
1437 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1438 	MSR_STAR,
1439 #ifdef CONFIG_X86_64
1440 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1441 #endif
1442 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1443 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1444 	MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
1445 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1446 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1447 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1448 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1449 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1450 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1451 	MSR_IA32_UMWAIT_CONTROL,
1452 
1453 	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1454 };
1455 
1456 static const u32 msrs_to_save_pmu[] = {
1457 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1458 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1459 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1460 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1461 	MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1462 
1463 	/* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
1464 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1465 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1466 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1467 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1468 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1469 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1470 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1471 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1472 
1473 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1474 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1475 
1476 	/* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
1477 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1478 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1479 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1480 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1481 
1482 	MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
1483 	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
1484 	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
1485 };
1486 
1487 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
1488 			ARRAY_SIZE(msrs_to_save_pmu)];
1489 static unsigned num_msrs_to_save;
1490 
1491 static const u32 emulated_msrs_all[] = {
1492 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1493 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1494 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1495 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1496 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1497 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1498 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1499 	HV_X64_MSR_RESET,
1500 	HV_X64_MSR_VP_INDEX,
1501 	HV_X64_MSR_VP_RUNTIME,
1502 	HV_X64_MSR_SCONTROL,
1503 	HV_X64_MSR_STIMER0_CONFIG,
1504 	HV_X64_MSR_VP_ASSIST_PAGE,
1505 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1506 	HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
1507 	HV_X64_MSR_SYNDBG_OPTIONS,
1508 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1509 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1510 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1511 
1512 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1513 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1514 
1515 	MSR_IA32_TSC_ADJUST,
1516 	MSR_IA32_TSC_DEADLINE,
1517 	MSR_IA32_ARCH_CAPABILITIES,
1518 	MSR_IA32_PERF_CAPABILITIES,
1519 	MSR_IA32_MISC_ENABLE,
1520 	MSR_IA32_MCG_STATUS,
1521 	MSR_IA32_MCG_CTL,
1522 	MSR_IA32_MCG_EXT_CTL,
1523 	MSR_IA32_SMBASE,
1524 	MSR_SMI_COUNT,
1525 	MSR_PLATFORM_INFO,
1526 	MSR_MISC_FEATURES_ENABLES,
1527 	MSR_AMD64_VIRT_SPEC_CTRL,
1528 	MSR_AMD64_TSC_RATIO,
1529 	MSR_IA32_POWER_CTL,
1530 	MSR_IA32_UCODE_REV,
1531 
1532 	/*
1533 	 * KVM always supports the "true" VMX control MSRs, even if the host
1534 	 * does not.  The VMX MSRs as a whole are considered "emulated" as KVM
1535 	 * doesn't strictly require them to exist in the host (ignoring that
1536 	 * KVM would refuse to load in the first place if the core set of MSRs
1537 	 * aren't supported).
1538 	 */
1539 	MSR_IA32_VMX_BASIC,
1540 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1541 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1542 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1543 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1544 	MSR_IA32_VMX_MISC,
1545 	MSR_IA32_VMX_CR0_FIXED0,
1546 	MSR_IA32_VMX_CR4_FIXED0,
1547 	MSR_IA32_VMX_VMCS_ENUM,
1548 	MSR_IA32_VMX_PROCBASED_CTLS2,
1549 	MSR_IA32_VMX_EPT_VPID_CAP,
1550 	MSR_IA32_VMX_VMFUNC,
1551 
1552 	MSR_K7_HWCR,
1553 	MSR_KVM_POLL_CONTROL,
1554 };
1555 
1556 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1557 static unsigned num_emulated_msrs;
1558 
1559 /*
1560  * List of MSRs that control the existence of MSR-based features, i.e. MSRs
1561  * that are effectively CPUID leafs.  VMX MSRs are also included in the set of
1562  * feature MSRs, but are handled separately to allow expedited lookups.
1563  */
1564 static const u32 msr_based_features_all_except_vmx[] = {
1565 	MSR_AMD64_DE_CFG,
1566 	MSR_IA32_UCODE_REV,
1567 	MSR_IA32_ARCH_CAPABILITIES,
1568 	MSR_IA32_PERF_CAPABILITIES,
1569 };
1570 
1571 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
1572 			      (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
1573 static unsigned int num_msr_based_features;
1574 
1575 /*
1576  * All feature MSRs except uCode revID, which tracks the currently loaded uCode
1577  * patch, are immutable once the vCPU model is defined.
1578  */
1579 static bool kvm_is_immutable_feature_msr(u32 msr)
1580 {
1581 	int i;
1582 
1583 	if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
1584 		return true;
1585 
1586 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
1587 		if (msr == msr_based_features_all_except_vmx[i])
1588 			return msr != MSR_IA32_UCODE_REV;
1589 	}
1590 
1591 	return false;
1592 }
1593 
1594 /*
1595  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1596  * does not yet virtualize. These include:
1597  *   10 - MISC_PACKAGE_CTRLS
1598  *   11 - ENERGY_FILTERING_CTL
1599  *   12 - DOITM
1600  *   18 - FB_CLEAR_CTRL
1601  *   21 - XAPIC_DISABLE_STATUS
1602  *   23 - OVERCLOCKING_STATUS
1603  */
1604 
1605 #define KVM_SUPPORTED_ARCH_CAP \
1606 	(ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1607 	 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1608 	 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1609 	 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1610 	 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO)
1611 
1612 static u64 kvm_get_arch_capabilities(void)
1613 {
1614 	u64 data = 0;
1615 
1616 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
1617 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1618 		data &= KVM_SUPPORTED_ARCH_CAP;
1619 	}
1620 
1621 	/*
1622 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1623 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1624 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1625 	 * L1 guests, so it need not worry about its own (L2) guests.
1626 	 */
1627 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1628 
1629 	/*
1630 	 * If we're doing cache flushes (either "always" or "cond")
1631 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1632 	 * If an outer hypervisor is doing the cache flush for us
1633 	 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1634 	 * capability to the guest too, and if EPT is disabled we're not
1635 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1636 	 * require a nested hypervisor to do a flush of its own.
1637 	 */
1638 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1639 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1640 
1641 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1642 		data |= ARCH_CAP_RDCL_NO;
1643 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1644 		data |= ARCH_CAP_SSB_NO;
1645 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1646 		data |= ARCH_CAP_MDS_NO;
1647 
1648 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1649 		/*
1650 		 * If RTM=0 because the kernel has disabled TSX, the host might
1651 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1652 		 * and therefore knows that there cannot be TAA) but keep
1653 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1654 		 * and we want to allow migrating those guests to tsx=off hosts.
1655 		 */
1656 		data &= ~ARCH_CAP_TAA_NO;
1657 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1658 		data |= ARCH_CAP_TAA_NO;
1659 	} else {
1660 		/*
1661 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1662 		 * host so the guest can choose between disabling TSX or
1663 		 * using VERW to clear CPU buffers.
1664 		 */
1665 	}
1666 
1667 	return data;
1668 }
1669 
1670 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1671 {
1672 	switch (msr->index) {
1673 	case MSR_IA32_ARCH_CAPABILITIES:
1674 		msr->data = kvm_get_arch_capabilities();
1675 		break;
1676 	case MSR_IA32_PERF_CAPABILITIES:
1677 		msr->data = kvm_caps.supported_perf_cap;
1678 		break;
1679 	case MSR_IA32_UCODE_REV:
1680 		rdmsrl_safe(msr->index, &msr->data);
1681 		break;
1682 	default:
1683 		return static_call(kvm_x86_get_msr_feature)(msr);
1684 	}
1685 	return 0;
1686 }
1687 
1688 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1689 {
1690 	struct kvm_msr_entry msr;
1691 	int r;
1692 
1693 	msr.index = index;
1694 	r = kvm_get_msr_feature(&msr);
1695 
1696 	if (r == KVM_MSR_RET_INVALID) {
1697 		/* Unconditionally clear the output for simplicity */
1698 		*data = 0;
1699 		if (kvm_msr_ignored_check(index, 0, false))
1700 			r = 0;
1701 	}
1702 
1703 	if (r)
1704 		return r;
1705 
1706 	*data = msr.data;
1707 
1708 	return 0;
1709 }
1710 
1711 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1712 {
1713 	if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS))
1714 		return false;
1715 
1716 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1717 		return false;
1718 
1719 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1720 		return false;
1721 
1722 	if (efer & (EFER_LME | EFER_LMA) &&
1723 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1724 		return false;
1725 
1726 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1727 		return false;
1728 
1729 	return true;
1730 
1731 }
1732 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1733 {
1734 	if (efer & efer_reserved_bits)
1735 		return false;
1736 
1737 	return __kvm_valid_efer(vcpu, efer);
1738 }
1739 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1740 
1741 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1742 {
1743 	u64 old_efer = vcpu->arch.efer;
1744 	u64 efer = msr_info->data;
1745 	int r;
1746 
1747 	if (efer & efer_reserved_bits)
1748 		return 1;
1749 
1750 	if (!msr_info->host_initiated) {
1751 		if (!__kvm_valid_efer(vcpu, efer))
1752 			return 1;
1753 
1754 		if (is_paging(vcpu) &&
1755 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1756 			return 1;
1757 	}
1758 
1759 	efer &= ~EFER_LMA;
1760 	efer |= vcpu->arch.efer & EFER_LMA;
1761 
1762 	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1763 	if (r) {
1764 		WARN_ON(r > 0);
1765 		return r;
1766 	}
1767 
1768 	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1769 		kvm_mmu_reset_context(vcpu);
1770 
1771 	return 0;
1772 }
1773 
1774 void kvm_enable_efer_bits(u64 mask)
1775 {
1776        efer_reserved_bits &= ~mask;
1777 }
1778 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1779 
1780 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1781 {
1782 	struct kvm_x86_msr_filter *msr_filter;
1783 	struct msr_bitmap_range *ranges;
1784 	struct kvm *kvm = vcpu->kvm;
1785 	bool allowed;
1786 	int idx;
1787 	u32 i;
1788 
1789 	/* x2APIC MSRs do not support filtering. */
1790 	if (index >= 0x800 && index <= 0x8ff)
1791 		return true;
1792 
1793 	idx = srcu_read_lock(&kvm->srcu);
1794 
1795 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1796 	if (!msr_filter) {
1797 		allowed = true;
1798 		goto out;
1799 	}
1800 
1801 	allowed = msr_filter->default_allow;
1802 	ranges = msr_filter->ranges;
1803 
1804 	for (i = 0; i < msr_filter->count; i++) {
1805 		u32 start = ranges[i].base;
1806 		u32 end = start + ranges[i].nmsrs;
1807 		u32 flags = ranges[i].flags;
1808 		unsigned long *bitmap = ranges[i].bitmap;
1809 
1810 		if ((index >= start) && (index < end) && (flags & type)) {
1811 			allowed = test_bit(index - start, bitmap);
1812 			break;
1813 		}
1814 	}
1815 
1816 out:
1817 	srcu_read_unlock(&kvm->srcu, idx);
1818 
1819 	return allowed;
1820 }
1821 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1822 
1823 /*
1824  * Write @data into the MSR specified by @index.  Select MSR specific fault
1825  * checks are bypassed if @host_initiated is %true.
1826  * Returns 0 on success, non-0 otherwise.
1827  * Assumes vcpu_load() was already called.
1828  */
1829 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1830 			 bool host_initiated)
1831 {
1832 	struct msr_data msr;
1833 
1834 	switch (index) {
1835 	case MSR_FS_BASE:
1836 	case MSR_GS_BASE:
1837 	case MSR_KERNEL_GS_BASE:
1838 	case MSR_CSTAR:
1839 	case MSR_LSTAR:
1840 		if (is_noncanonical_address(data, vcpu))
1841 			return 1;
1842 		break;
1843 	case MSR_IA32_SYSENTER_EIP:
1844 	case MSR_IA32_SYSENTER_ESP:
1845 		/*
1846 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1847 		 * non-canonical address is written on Intel but not on
1848 		 * AMD (which ignores the top 32-bits, because it does
1849 		 * not implement 64-bit SYSENTER).
1850 		 *
1851 		 * 64-bit code should hence be able to write a non-canonical
1852 		 * value on AMD.  Making the address canonical ensures that
1853 		 * vmentry does not fail on Intel after writing a non-canonical
1854 		 * value, and that something deterministic happens if the guest
1855 		 * invokes 64-bit SYSENTER.
1856 		 */
1857 		data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1858 		break;
1859 	case MSR_TSC_AUX:
1860 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1861 			return 1;
1862 
1863 		if (!host_initiated &&
1864 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1865 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1866 			return 1;
1867 
1868 		/*
1869 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1870 		 * incomplete and conflicting architectural behavior.  Current
1871 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1872 		 * reserved and always read as zeros.  Enforce Intel's reserved
1873 		 * bits check if and only if the guest CPU is Intel, and clear
1874 		 * the bits in all other cases.  This ensures cross-vendor
1875 		 * migration will provide consistent behavior for the guest.
1876 		 */
1877 		if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1878 			return 1;
1879 
1880 		data = (u32)data;
1881 		break;
1882 	}
1883 
1884 	msr.data = data;
1885 	msr.index = index;
1886 	msr.host_initiated = host_initiated;
1887 
1888 	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1889 }
1890 
1891 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1892 				     u32 index, u64 data, bool host_initiated)
1893 {
1894 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1895 
1896 	if (ret == KVM_MSR_RET_INVALID)
1897 		if (kvm_msr_ignored_check(index, data, true))
1898 			ret = 0;
1899 
1900 	return ret;
1901 }
1902 
1903 /*
1904  * Read the MSR specified by @index into @data.  Select MSR specific fault
1905  * checks are bypassed if @host_initiated is %true.
1906  * Returns 0 on success, non-0 otherwise.
1907  * Assumes vcpu_load() was already called.
1908  */
1909 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1910 		  bool host_initiated)
1911 {
1912 	struct msr_data msr;
1913 	int ret;
1914 
1915 	switch (index) {
1916 	case MSR_TSC_AUX:
1917 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1918 			return 1;
1919 
1920 		if (!host_initiated &&
1921 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1922 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1923 			return 1;
1924 		break;
1925 	}
1926 
1927 	msr.index = index;
1928 	msr.host_initiated = host_initiated;
1929 
1930 	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1931 	if (!ret)
1932 		*data = msr.data;
1933 	return ret;
1934 }
1935 
1936 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1937 				     u32 index, u64 *data, bool host_initiated)
1938 {
1939 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1940 
1941 	if (ret == KVM_MSR_RET_INVALID) {
1942 		/* Unconditionally clear *data for simplicity */
1943 		*data = 0;
1944 		if (kvm_msr_ignored_check(index, 0, false))
1945 			ret = 0;
1946 	}
1947 
1948 	return ret;
1949 }
1950 
1951 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1952 {
1953 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1954 		return KVM_MSR_RET_FILTERED;
1955 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1956 }
1957 
1958 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1959 {
1960 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1961 		return KVM_MSR_RET_FILTERED;
1962 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1963 }
1964 
1965 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1966 {
1967 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1968 }
1969 EXPORT_SYMBOL_GPL(kvm_get_msr);
1970 
1971 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1972 {
1973 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1974 }
1975 EXPORT_SYMBOL_GPL(kvm_set_msr);
1976 
1977 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1978 {
1979 	if (!vcpu->run->msr.error) {
1980 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1981 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1982 	}
1983 }
1984 
1985 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1986 {
1987 	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1988 }
1989 
1990 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1991 {
1992 	complete_userspace_rdmsr(vcpu);
1993 	return complete_emulated_msr_access(vcpu);
1994 }
1995 
1996 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1997 {
1998 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1999 }
2000 
2001 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
2002 {
2003 	complete_userspace_rdmsr(vcpu);
2004 	return complete_fast_msr_access(vcpu);
2005 }
2006 
2007 static u64 kvm_msr_reason(int r)
2008 {
2009 	switch (r) {
2010 	case KVM_MSR_RET_INVALID:
2011 		return KVM_MSR_EXIT_REASON_UNKNOWN;
2012 	case KVM_MSR_RET_FILTERED:
2013 		return KVM_MSR_EXIT_REASON_FILTER;
2014 	default:
2015 		return KVM_MSR_EXIT_REASON_INVAL;
2016 	}
2017 }
2018 
2019 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2020 			      u32 exit_reason, u64 data,
2021 			      int (*completion)(struct kvm_vcpu *vcpu),
2022 			      int r)
2023 {
2024 	u64 msr_reason = kvm_msr_reason(r);
2025 
2026 	/* Check if the user wanted to know about this MSR fault */
2027 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2028 		return 0;
2029 
2030 	vcpu->run->exit_reason = exit_reason;
2031 	vcpu->run->msr.error = 0;
2032 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2033 	vcpu->run->msr.reason = msr_reason;
2034 	vcpu->run->msr.index = index;
2035 	vcpu->run->msr.data = data;
2036 	vcpu->arch.complete_userspace_io = completion;
2037 
2038 	return 1;
2039 }
2040 
2041 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2042 {
2043 	u32 ecx = kvm_rcx_read(vcpu);
2044 	u64 data;
2045 	int r;
2046 
2047 	r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2048 
2049 	if (!r) {
2050 		trace_kvm_msr_read(ecx, data);
2051 
2052 		kvm_rax_write(vcpu, data & -1u);
2053 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
2054 	} else {
2055 		/* MSR read failed? See if we should ask user space */
2056 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2057 				       complete_fast_rdmsr, r))
2058 			return 0;
2059 		trace_kvm_msr_read_ex(ecx);
2060 	}
2061 
2062 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2063 }
2064 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2065 
2066 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2067 {
2068 	u32 ecx = kvm_rcx_read(vcpu);
2069 	u64 data = kvm_read_edx_eax(vcpu);
2070 	int r;
2071 
2072 	r = kvm_set_msr_with_filter(vcpu, ecx, data);
2073 
2074 	if (!r) {
2075 		trace_kvm_msr_write(ecx, data);
2076 	} else {
2077 		/* MSR write failed? See if we should ask user space */
2078 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2079 				       complete_fast_msr_access, r))
2080 			return 0;
2081 		/* Signal all other negative errors to userspace */
2082 		if (r < 0)
2083 			return r;
2084 		trace_kvm_msr_write_ex(ecx, data);
2085 	}
2086 
2087 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2088 }
2089 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2090 
2091 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2092 {
2093 	return kvm_skip_emulated_instruction(vcpu);
2094 }
2095 
2096 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2097 {
2098 	/* Treat an INVD instruction as a NOP and just skip it. */
2099 	return kvm_emulate_as_nop(vcpu);
2100 }
2101 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2102 
2103 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2104 {
2105 	kvm_queue_exception(vcpu, UD_VECTOR);
2106 	return 1;
2107 }
2108 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2109 
2110 
2111 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2112 {
2113 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2114 	    !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2115 		return kvm_handle_invalid_op(vcpu);
2116 
2117 	pr_warn_once("%s instruction emulated as NOP!\n", insn);
2118 	return kvm_emulate_as_nop(vcpu);
2119 }
2120 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2121 {
2122 	return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2123 }
2124 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2125 
2126 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2127 {
2128 	return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2129 }
2130 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2131 
2132 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2133 {
2134 	xfer_to_guest_mode_prepare();
2135 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2136 		xfer_to_guest_mode_work_pending();
2137 }
2138 
2139 /*
2140  * The fast path for frequent and performance sensitive wrmsr emulation,
2141  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2142  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2143  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2144  * other cases which must be called after interrupts are enabled on the host.
2145  */
2146 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2147 {
2148 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2149 		return 1;
2150 
2151 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2152 	    ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2153 	    ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2154 	    ((u32)(data >> 32) != X2APIC_BROADCAST))
2155 		return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2156 
2157 	return 1;
2158 }
2159 
2160 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2161 {
2162 	if (!kvm_can_use_hv_timer(vcpu))
2163 		return 1;
2164 
2165 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2166 	return 0;
2167 }
2168 
2169 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2170 {
2171 	u32 msr = kvm_rcx_read(vcpu);
2172 	u64 data;
2173 	fastpath_t ret = EXIT_FASTPATH_NONE;
2174 
2175 	switch (msr) {
2176 	case APIC_BASE_MSR + (APIC_ICR >> 4):
2177 		data = kvm_read_edx_eax(vcpu);
2178 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2179 			kvm_skip_emulated_instruction(vcpu);
2180 			ret = EXIT_FASTPATH_EXIT_HANDLED;
2181 		}
2182 		break;
2183 	case MSR_IA32_TSC_DEADLINE:
2184 		data = kvm_read_edx_eax(vcpu);
2185 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2186 			kvm_skip_emulated_instruction(vcpu);
2187 			ret = EXIT_FASTPATH_REENTER_GUEST;
2188 		}
2189 		break;
2190 	default:
2191 		break;
2192 	}
2193 
2194 	if (ret != EXIT_FASTPATH_NONE)
2195 		trace_kvm_msr_write(msr, data);
2196 
2197 	return ret;
2198 }
2199 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2200 
2201 /*
2202  * Adapt set_msr() to msr_io()'s calling convention
2203  */
2204 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2205 {
2206 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2207 }
2208 
2209 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2210 {
2211 	u64 val;
2212 
2213 	/*
2214 	 * Disallow writes to immutable feature MSRs after KVM_RUN.  KVM does
2215 	 * not support modifying the guest vCPU model on the fly, e.g. changing
2216 	 * the nVMX capabilities while L2 is running is nonsensical.  Ignore
2217 	 * writes of the same value, e.g. to allow userspace to blindly stuff
2218 	 * all MSRs when emulating RESET.
2219 	 */
2220 	if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) {
2221 		if (do_get_msr(vcpu, index, &val) || *data != val)
2222 			return -EINVAL;
2223 
2224 		return 0;
2225 	}
2226 
2227 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2228 }
2229 
2230 #ifdef CONFIG_X86_64
2231 struct pvclock_clock {
2232 	int vclock_mode;
2233 	u64 cycle_last;
2234 	u64 mask;
2235 	u32 mult;
2236 	u32 shift;
2237 	u64 base_cycles;
2238 	u64 offset;
2239 };
2240 
2241 struct pvclock_gtod_data {
2242 	seqcount_t	seq;
2243 
2244 	struct pvclock_clock clock; /* extract of a clocksource struct */
2245 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2246 
2247 	ktime_t		offs_boot;
2248 	u64		wall_time_sec;
2249 };
2250 
2251 static struct pvclock_gtod_data pvclock_gtod_data;
2252 
2253 static void update_pvclock_gtod(struct timekeeper *tk)
2254 {
2255 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2256 
2257 	write_seqcount_begin(&vdata->seq);
2258 
2259 	/* copy pvclock gtod data */
2260 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2261 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2262 	vdata->clock.mask		= tk->tkr_mono.mask;
2263 	vdata->clock.mult		= tk->tkr_mono.mult;
2264 	vdata->clock.shift		= tk->tkr_mono.shift;
2265 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2266 	vdata->clock.offset		= tk->tkr_mono.base;
2267 
2268 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2269 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2270 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2271 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2272 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2273 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2274 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2275 
2276 	vdata->wall_time_sec            = tk->xtime_sec;
2277 
2278 	vdata->offs_boot		= tk->offs_boot;
2279 
2280 	write_seqcount_end(&vdata->seq);
2281 }
2282 
2283 static s64 get_kvmclock_base_ns(void)
2284 {
2285 	/* Count up from boot time, but with the frequency of the raw clock.  */
2286 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2287 }
2288 #else
2289 static s64 get_kvmclock_base_ns(void)
2290 {
2291 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2292 	return ktime_get_boottime_ns();
2293 }
2294 #endif
2295 
2296 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2297 {
2298 	int version;
2299 	int r;
2300 	struct pvclock_wall_clock wc;
2301 	u32 wc_sec_hi;
2302 	u64 wall_nsec;
2303 
2304 	if (!wall_clock)
2305 		return;
2306 
2307 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2308 	if (r)
2309 		return;
2310 
2311 	if (version & 1)
2312 		++version;  /* first time write, random junk */
2313 
2314 	++version;
2315 
2316 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2317 		return;
2318 
2319 	/*
2320 	 * The guest calculates current wall clock time by adding
2321 	 * system time (updated by kvm_guest_time_update below) to the
2322 	 * wall clock specified here.  We do the reverse here.
2323 	 */
2324 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2325 
2326 	wc.nsec = do_div(wall_nsec, 1000000000);
2327 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2328 	wc.version = version;
2329 
2330 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2331 
2332 	if (sec_hi_ofs) {
2333 		wc_sec_hi = wall_nsec >> 32;
2334 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2335 				&wc_sec_hi, sizeof(wc_sec_hi));
2336 	}
2337 
2338 	version++;
2339 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2340 }
2341 
2342 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2343 				  bool old_msr, bool host_initiated)
2344 {
2345 	struct kvm_arch *ka = &vcpu->kvm->arch;
2346 
2347 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2348 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2349 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2350 
2351 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2352 	}
2353 
2354 	vcpu->arch.time = system_time;
2355 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2356 
2357 	/* we verify if the enable bit is set... */
2358 	if (system_time & 1)
2359 		kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2360 				 sizeof(struct pvclock_vcpu_time_info));
2361 	else
2362 		kvm_gpc_deactivate(&vcpu->arch.pv_time);
2363 
2364 	return;
2365 }
2366 
2367 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2368 {
2369 	do_shl32_div32(dividend, divisor);
2370 	return dividend;
2371 }
2372 
2373 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2374 			       s8 *pshift, u32 *pmultiplier)
2375 {
2376 	uint64_t scaled64;
2377 	int32_t  shift = 0;
2378 	uint64_t tps64;
2379 	uint32_t tps32;
2380 
2381 	tps64 = base_hz;
2382 	scaled64 = scaled_hz;
2383 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2384 		tps64 >>= 1;
2385 		shift--;
2386 	}
2387 
2388 	tps32 = (uint32_t)tps64;
2389 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2390 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2391 			scaled64 >>= 1;
2392 		else
2393 			tps32 <<= 1;
2394 		shift++;
2395 	}
2396 
2397 	*pshift = shift;
2398 	*pmultiplier = div_frac(scaled64, tps32);
2399 }
2400 
2401 #ifdef CONFIG_X86_64
2402 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2403 #endif
2404 
2405 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2406 static unsigned long max_tsc_khz;
2407 
2408 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2409 {
2410 	u64 v = (u64)khz * (1000000 + ppm);
2411 	do_div(v, 1000000);
2412 	return v;
2413 }
2414 
2415 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2416 
2417 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2418 {
2419 	u64 ratio;
2420 
2421 	/* Guest TSC same frequency as host TSC? */
2422 	if (!scale) {
2423 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2424 		return 0;
2425 	}
2426 
2427 	/* TSC scaling supported? */
2428 	if (!kvm_caps.has_tsc_control) {
2429 		if (user_tsc_khz > tsc_khz) {
2430 			vcpu->arch.tsc_catchup = 1;
2431 			vcpu->arch.tsc_always_catchup = 1;
2432 			return 0;
2433 		} else {
2434 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2435 			return -1;
2436 		}
2437 	}
2438 
2439 	/* TSC scaling required  - calculate ratio */
2440 	ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2441 				user_tsc_khz, tsc_khz);
2442 
2443 	if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2444 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2445 			            user_tsc_khz);
2446 		return -1;
2447 	}
2448 
2449 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2450 	return 0;
2451 }
2452 
2453 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2454 {
2455 	u32 thresh_lo, thresh_hi;
2456 	int use_scaling = 0;
2457 
2458 	/* tsc_khz can be zero if TSC calibration fails */
2459 	if (user_tsc_khz == 0) {
2460 		/* set tsc_scaling_ratio to a safe value */
2461 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2462 		return -1;
2463 	}
2464 
2465 	/* Compute a scale to convert nanoseconds in TSC cycles */
2466 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2467 			   &vcpu->arch.virtual_tsc_shift,
2468 			   &vcpu->arch.virtual_tsc_mult);
2469 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2470 
2471 	/*
2472 	 * Compute the variation in TSC rate which is acceptable
2473 	 * within the range of tolerance and decide if the
2474 	 * rate being applied is within that bounds of the hardware
2475 	 * rate.  If so, no scaling or compensation need be done.
2476 	 */
2477 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2478 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2479 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2480 		pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2481 			 user_tsc_khz, thresh_lo, thresh_hi);
2482 		use_scaling = 1;
2483 	}
2484 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2485 }
2486 
2487 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2488 {
2489 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2490 				      vcpu->arch.virtual_tsc_mult,
2491 				      vcpu->arch.virtual_tsc_shift);
2492 	tsc += vcpu->arch.this_tsc_write;
2493 	return tsc;
2494 }
2495 
2496 #ifdef CONFIG_X86_64
2497 static inline int gtod_is_based_on_tsc(int mode)
2498 {
2499 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2500 }
2501 #endif
2502 
2503 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2504 {
2505 #ifdef CONFIG_X86_64
2506 	bool vcpus_matched;
2507 	struct kvm_arch *ka = &vcpu->kvm->arch;
2508 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2509 
2510 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2511 			 atomic_read(&vcpu->kvm->online_vcpus));
2512 
2513 	/*
2514 	 * Once the masterclock is enabled, always perform request in
2515 	 * order to update it.
2516 	 *
2517 	 * In order to enable masterclock, the host clocksource must be TSC
2518 	 * and the vcpus need to have matched TSCs.  When that happens,
2519 	 * perform request to enable masterclock.
2520 	 */
2521 	if (ka->use_master_clock ||
2522 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2523 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2524 
2525 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2526 			    atomic_read(&vcpu->kvm->online_vcpus),
2527 		            ka->use_master_clock, gtod->clock.vclock_mode);
2528 #endif
2529 }
2530 
2531 /*
2532  * Multiply tsc by a fixed point number represented by ratio.
2533  *
2534  * The most significant 64-N bits (mult) of ratio represent the
2535  * integral part of the fixed point number; the remaining N bits
2536  * (frac) represent the fractional part, ie. ratio represents a fixed
2537  * point number (mult + frac * 2^(-N)).
2538  *
2539  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2540  */
2541 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2542 {
2543 	return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2544 }
2545 
2546 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2547 {
2548 	u64 _tsc = tsc;
2549 
2550 	if (ratio != kvm_caps.default_tsc_scaling_ratio)
2551 		_tsc = __scale_tsc(ratio, tsc);
2552 
2553 	return _tsc;
2554 }
2555 
2556 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2557 {
2558 	u64 tsc;
2559 
2560 	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2561 
2562 	return target_tsc - tsc;
2563 }
2564 
2565 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2566 {
2567 	return vcpu->arch.l1_tsc_offset +
2568 		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2569 }
2570 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2571 
2572 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2573 {
2574 	u64 nested_offset;
2575 
2576 	if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2577 		nested_offset = l1_offset;
2578 	else
2579 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2580 						kvm_caps.tsc_scaling_ratio_frac_bits);
2581 
2582 	nested_offset += l2_offset;
2583 	return nested_offset;
2584 }
2585 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2586 
2587 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2588 {
2589 	if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2590 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2591 				       kvm_caps.tsc_scaling_ratio_frac_bits);
2592 
2593 	return l1_multiplier;
2594 }
2595 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2596 
2597 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2598 {
2599 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2600 				   vcpu->arch.l1_tsc_offset,
2601 				   l1_offset);
2602 
2603 	vcpu->arch.l1_tsc_offset = l1_offset;
2604 
2605 	/*
2606 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2607 	 * according to the spec this should set L1's TSC (as opposed to
2608 	 * setting L1's offset for L2).
2609 	 */
2610 	if (is_guest_mode(vcpu))
2611 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2612 			l1_offset,
2613 			static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2614 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2615 	else
2616 		vcpu->arch.tsc_offset = l1_offset;
2617 
2618 	static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2619 }
2620 
2621 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2622 {
2623 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2624 
2625 	/* Userspace is changing the multiplier while L2 is active */
2626 	if (is_guest_mode(vcpu))
2627 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2628 			l1_multiplier,
2629 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2630 	else
2631 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2632 
2633 	if (kvm_caps.has_tsc_control)
2634 		static_call(kvm_x86_write_tsc_multiplier)(
2635 			vcpu, vcpu->arch.tsc_scaling_ratio);
2636 }
2637 
2638 static inline bool kvm_check_tsc_unstable(void)
2639 {
2640 #ifdef CONFIG_X86_64
2641 	/*
2642 	 * TSC is marked unstable when we're running on Hyper-V,
2643 	 * 'TSC page' clocksource is good.
2644 	 */
2645 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2646 		return false;
2647 #endif
2648 	return check_tsc_unstable();
2649 }
2650 
2651 /*
2652  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2653  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2654  * participates in.
2655  */
2656 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2657 				  u64 ns, bool matched)
2658 {
2659 	struct kvm *kvm = vcpu->kvm;
2660 
2661 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2662 
2663 	/*
2664 	 * We also track th most recent recorded KHZ, write and time to
2665 	 * allow the matching interval to be extended at each write.
2666 	 */
2667 	kvm->arch.last_tsc_nsec = ns;
2668 	kvm->arch.last_tsc_write = tsc;
2669 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2670 	kvm->arch.last_tsc_offset = offset;
2671 
2672 	vcpu->arch.last_guest_tsc = tsc;
2673 
2674 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2675 
2676 	if (!matched) {
2677 		/*
2678 		 * We split periods of matched TSC writes into generations.
2679 		 * For each generation, we track the original measured
2680 		 * nanosecond time, offset, and write, so if TSCs are in
2681 		 * sync, we can match exact offset, and if not, we can match
2682 		 * exact software computation in compute_guest_tsc()
2683 		 *
2684 		 * These values are tracked in kvm->arch.cur_xxx variables.
2685 		 */
2686 		kvm->arch.cur_tsc_generation++;
2687 		kvm->arch.cur_tsc_nsec = ns;
2688 		kvm->arch.cur_tsc_write = tsc;
2689 		kvm->arch.cur_tsc_offset = offset;
2690 		kvm->arch.nr_vcpus_matched_tsc = 0;
2691 	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2692 		kvm->arch.nr_vcpus_matched_tsc++;
2693 	}
2694 
2695 	/* Keep track of which generation this VCPU has synchronized to */
2696 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2697 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2698 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2699 
2700 	kvm_track_tsc_matching(vcpu);
2701 }
2702 
2703 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2704 {
2705 	struct kvm *kvm = vcpu->kvm;
2706 	u64 offset, ns, elapsed;
2707 	unsigned long flags;
2708 	bool matched = false;
2709 	bool synchronizing = false;
2710 
2711 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2712 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2713 	ns = get_kvmclock_base_ns();
2714 	elapsed = ns - kvm->arch.last_tsc_nsec;
2715 
2716 	if (vcpu->arch.virtual_tsc_khz) {
2717 		if (data == 0) {
2718 			/*
2719 			 * detection of vcpu initialization -- need to sync
2720 			 * with other vCPUs. This particularly helps to keep
2721 			 * kvm_clock stable after CPU hotplug
2722 			 */
2723 			synchronizing = true;
2724 		} else {
2725 			u64 tsc_exp = kvm->arch.last_tsc_write +
2726 						nsec_to_cycles(vcpu, elapsed);
2727 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2728 			/*
2729 			 * Special case: TSC write with a small delta (1 second)
2730 			 * of virtual cycle time against real time is
2731 			 * interpreted as an attempt to synchronize the CPU.
2732 			 */
2733 			synchronizing = data < tsc_exp + tsc_hz &&
2734 					data + tsc_hz > tsc_exp;
2735 		}
2736 	}
2737 
2738 	/*
2739 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2740 	 * TSC, we add elapsed time in this computation.  We could let the
2741 	 * compensation code attempt to catch up if we fall behind, but
2742 	 * it's better to try to match offsets from the beginning.
2743          */
2744 	if (synchronizing &&
2745 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2746 		if (!kvm_check_tsc_unstable()) {
2747 			offset = kvm->arch.cur_tsc_offset;
2748 		} else {
2749 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2750 			data += delta;
2751 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2752 		}
2753 		matched = true;
2754 	}
2755 
2756 	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2757 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2758 }
2759 
2760 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2761 					   s64 adjustment)
2762 {
2763 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2764 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2765 }
2766 
2767 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2768 {
2769 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2770 		WARN_ON(adjustment < 0);
2771 	adjustment = kvm_scale_tsc((u64) adjustment,
2772 				   vcpu->arch.l1_tsc_scaling_ratio);
2773 	adjust_tsc_offset_guest(vcpu, adjustment);
2774 }
2775 
2776 #ifdef CONFIG_X86_64
2777 
2778 static u64 read_tsc(void)
2779 {
2780 	u64 ret = (u64)rdtsc_ordered();
2781 	u64 last = pvclock_gtod_data.clock.cycle_last;
2782 
2783 	if (likely(ret >= last))
2784 		return ret;
2785 
2786 	/*
2787 	 * GCC likes to generate cmov here, but this branch is extremely
2788 	 * predictable (it's just a function of time and the likely is
2789 	 * very likely) and there's a data dependence, so force GCC
2790 	 * to generate a branch instead.  I don't barrier() because
2791 	 * we don't actually need a barrier, and if this function
2792 	 * ever gets inlined it will generate worse code.
2793 	 */
2794 	asm volatile ("");
2795 	return last;
2796 }
2797 
2798 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2799 			  int *mode)
2800 {
2801 	u64 tsc_pg_val;
2802 	long v;
2803 
2804 	switch (clock->vclock_mode) {
2805 	case VDSO_CLOCKMODE_HVCLOCK:
2806 		if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2807 					 tsc_timestamp, &tsc_pg_val)) {
2808 			/* TSC page valid */
2809 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2810 			v = (tsc_pg_val - clock->cycle_last) &
2811 				clock->mask;
2812 		} else {
2813 			/* TSC page invalid */
2814 			*mode = VDSO_CLOCKMODE_NONE;
2815 		}
2816 		break;
2817 	case VDSO_CLOCKMODE_TSC:
2818 		*mode = VDSO_CLOCKMODE_TSC;
2819 		*tsc_timestamp = read_tsc();
2820 		v = (*tsc_timestamp - clock->cycle_last) &
2821 			clock->mask;
2822 		break;
2823 	default:
2824 		*mode = VDSO_CLOCKMODE_NONE;
2825 	}
2826 
2827 	if (*mode == VDSO_CLOCKMODE_NONE)
2828 		*tsc_timestamp = v = 0;
2829 
2830 	return v * clock->mult;
2831 }
2832 
2833 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2834 {
2835 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2836 	unsigned long seq;
2837 	int mode;
2838 	u64 ns;
2839 
2840 	do {
2841 		seq = read_seqcount_begin(&gtod->seq);
2842 		ns = gtod->raw_clock.base_cycles;
2843 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2844 		ns >>= gtod->raw_clock.shift;
2845 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2846 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2847 	*t = ns;
2848 
2849 	return mode;
2850 }
2851 
2852 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2853 {
2854 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2855 	unsigned long seq;
2856 	int mode;
2857 	u64 ns;
2858 
2859 	do {
2860 		seq = read_seqcount_begin(&gtod->seq);
2861 		ts->tv_sec = gtod->wall_time_sec;
2862 		ns = gtod->clock.base_cycles;
2863 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2864 		ns >>= gtod->clock.shift;
2865 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2866 
2867 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2868 	ts->tv_nsec = ns;
2869 
2870 	return mode;
2871 }
2872 
2873 /* returns true if host is using TSC based clocksource */
2874 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2875 {
2876 	/* checked again under seqlock below */
2877 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2878 		return false;
2879 
2880 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2881 						      tsc_timestamp));
2882 }
2883 
2884 /* returns true if host is using TSC based clocksource */
2885 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2886 					   u64 *tsc_timestamp)
2887 {
2888 	/* checked again under seqlock below */
2889 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2890 		return false;
2891 
2892 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2893 }
2894 #endif
2895 
2896 /*
2897  *
2898  * Assuming a stable TSC across physical CPUS, and a stable TSC
2899  * across virtual CPUs, the following condition is possible.
2900  * Each numbered line represents an event visible to both
2901  * CPUs at the next numbered event.
2902  *
2903  * "timespecX" represents host monotonic time. "tscX" represents
2904  * RDTSC value.
2905  *
2906  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2907  *
2908  * 1.  read timespec0,tsc0
2909  * 2.					| timespec1 = timespec0 + N
2910  * 					| tsc1 = tsc0 + M
2911  * 3. transition to guest		| transition to guest
2912  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2913  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2914  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2915  *
2916  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2917  *
2918  * 	- ret0 < ret1
2919  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2920  *		...
2921  *	- 0 < N - M => M < N
2922  *
2923  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2924  * always the case (the difference between two distinct xtime instances
2925  * might be smaller then the difference between corresponding TSC reads,
2926  * when updating guest vcpus pvclock areas).
2927  *
2928  * To avoid that problem, do not allow visibility of distinct
2929  * system_timestamp/tsc_timestamp values simultaneously: use a master
2930  * copy of host monotonic time values. Update that master copy
2931  * in lockstep.
2932  *
2933  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2934  *
2935  */
2936 
2937 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2938 {
2939 #ifdef CONFIG_X86_64
2940 	struct kvm_arch *ka = &kvm->arch;
2941 	int vclock_mode;
2942 	bool host_tsc_clocksource, vcpus_matched;
2943 
2944 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2945 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2946 			atomic_read(&kvm->online_vcpus));
2947 
2948 	/*
2949 	 * If the host uses TSC clock, then passthrough TSC as stable
2950 	 * to the guest.
2951 	 */
2952 	host_tsc_clocksource = kvm_get_time_and_clockread(
2953 					&ka->master_kernel_ns,
2954 					&ka->master_cycle_now);
2955 
2956 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2957 				&& !ka->backwards_tsc_observed
2958 				&& !ka->boot_vcpu_runs_old_kvmclock;
2959 
2960 	if (ka->use_master_clock)
2961 		atomic_set(&kvm_guest_has_master_clock, 1);
2962 
2963 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2964 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2965 					vcpus_matched);
2966 #endif
2967 }
2968 
2969 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2970 {
2971 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2972 }
2973 
2974 static void __kvm_start_pvclock_update(struct kvm *kvm)
2975 {
2976 	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2977 	write_seqcount_begin(&kvm->arch.pvclock_sc);
2978 }
2979 
2980 static void kvm_start_pvclock_update(struct kvm *kvm)
2981 {
2982 	kvm_make_mclock_inprogress_request(kvm);
2983 
2984 	/* no guest entries from this point */
2985 	__kvm_start_pvclock_update(kvm);
2986 }
2987 
2988 static void kvm_end_pvclock_update(struct kvm *kvm)
2989 {
2990 	struct kvm_arch *ka = &kvm->arch;
2991 	struct kvm_vcpu *vcpu;
2992 	unsigned long i;
2993 
2994 	write_seqcount_end(&ka->pvclock_sc);
2995 	raw_spin_unlock_irq(&ka->tsc_write_lock);
2996 	kvm_for_each_vcpu(i, vcpu, kvm)
2997 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2998 
2999 	/* guest entries allowed */
3000 	kvm_for_each_vcpu(i, vcpu, kvm)
3001 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3002 }
3003 
3004 static void kvm_update_masterclock(struct kvm *kvm)
3005 {
3006 	kvm_hv_request_tsc_page_update(kvm);
3007 	kvm_start_pvclock_update(kvm);
3008 	pvclock_update_vm_gtod_copy(kvm);
3009 	kvm_end_pvclock_update(kvm);
3010 }
3011 
3012 /*
3013  * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3014  * per-CPU value (which may be zero if a CPU is going offline).  Note, tsc_khz
3015  * can change during boot even if the TSC is constant, as it's possible for KVM
3016  * to be loaded before TSC calibration completes.  Ideally, KVM would get a
3017  * notification when calibration completes, but practically speaking calibration
3018  * will complete before userspace is alive enough to create VMs.
3019  */
3020 static unsigned long get_cpu_tsc_khz(void)
3021 {
3022 	if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3023 		return tsc_khz;
3024 	else
3025 		return __this_cpu_read(cpu_tsc_khz);
3026 }
3027 
3028 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
3029 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3030 {
3031 	struct kvm_arch *ka = &kvm->arch;
3032 	struct pvclock_vcpu_time_info hv_clock;
3033 
3034 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
3035 	get_cpu();
3036 
3037 	data->flags = 0;
3038 	if (ka->use_master_clock &&
3039 	    (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3040 #ifdef CONFIG_X86_64
3041 		struct timespec64 ts;
3042 
3043 		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3044 			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3045 			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3046 		} else
3047 #endif
3048 		data->host_tsc = rdtsc();
3049 
3050 		data->flags |= KVM_CLOCK_TSC_STABLE;
3051 		hv_clock.tsc_timestamp = ka->master_cycle_now;
3052 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3053 		kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3054 				   &hv_clock.tsc_shift,
3055 				   &hv_clock.tsc_to_system_mul);
3056 		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3057 	} else {
3058 		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3059 	}
3060 
3061 	put_cpu();
3062 }
3063 
3064 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3065 {
3066 	struct kvm_arch *ka = &kvm->arch;
3067 	unsigned seq;
3068 
3069 	do {
3070 		seq = read_seqcount_begin(&ka->pvclock_sc);
3071 		__get_kvmclock(kvm, data);
3072 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3073 }
3074 
3075 u64 get_kvmclock_ns(struct kvm *kvm)
3076 {
3077 	struct kvm_clock_data data;
3078 
3079 	get_kvmclock(kvm, &data);
3080 	return data.clock;
3081 }
3082 
3083 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3084 				    struct gfn_to_pfn_cache *gpc,
3085 				    unsigned int offset)
3086 {
3087 	struct kvm_vcpu_arch *vcpu = &v->arch;
3088 	struct pvclock_vcpu_time_info *guest_hv_clock;
3089 	unsigned long flags;
3090 
3091 	read_lock_irqsave(&gpc->lock, flags);
3092 	while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3093 		read_unlock_irqrestore(&gpc->lock, flags);
3094 
3095 		if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3096 			return;
3097 
3098 		read_lock_irqsave(&gpc->lock, flags);
3099 	}
3100 
3101 	guest_hv_clock = (void *)(gpc->khva + offset);
3102 
3103 	/*
3104 	 * This VCPU is paused, but it's legal for a guest to read another
3105 	 * VCPU's kvmclock, so we really have to follow the specification where
3106 	 * it says that version is odd if data is being modified, and even after
3107 	 * it is consistent.
3108 	 */
3109 
3110 	guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3111 	smp_wmb();
3112 
3113 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3114 	vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3115 
3116 	if (vcpu->pvclock_set_guest_stopped_request) {
3117 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3118 		vcpu->pvclock_set_guest_stopped_request = false;
3119 	}
3120 
3121 	memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3122 	smp_wmb();
3123 
3124 	guest_hv_clock->version = ++vcpu->hv_clock.version;
3125 
3126 	mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3127 	read_unlock_irqrestore(&gpc->lock, flags);
3128 
3129 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3130 }
3131 
3132 static int kvm_guest_time_update(struct kvm_vcpu *v)
3133 {
3134 	unsigned long flags, tgt_tsc_khz;
3135 	unsigned seq;
3136 	struct kvm_vcpu_arch *vcpu = &v->arch;
3137 	struct kvm_arch *ka = &v->kvm->arch;
3138 	s64 kernel_ns;
3139 	u64 tsc_timestamp, host_tsc;
3140 	u8 pvclock_flags;
3141 	bool use_master_clock;
3142 
3143 	kernel_ns = 0;
3144 	host_tsc = 0;
3145 
3146 	/*
3147 	 * If the host uses TSC clock, then passthrough TSC as stable
3148 	 * to the guest.
3149 	 */
3150 	do {
3151 		seq = read_seqcount_begin(&ka->pvclock_sc);
3152 		use_master_clock = ka->use_master_clock;
3153 		if (use_master_clock) {
3154 			host_tsc = ka->master_cycle_now;
3155 			kernel_ns = ka->master_kernel_ns;
3156 		}
3157 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3158 
3159 	/* Keep irq disabled to prevent changes to the clock */
3160 	local_irq_save(flags);
3161 	tgt_tsc_khz = get_cpu_tsc_khz();
3162 	if (unlikely(tgt_tsc_khz == 0)) {
3163 		local_irq_restore(flags);
3164 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3165 		return 1;
3166 	}
3167 	if (!use_master_clock) {
3168 		host_tsc = rdtsc();
3169 		kernel_ns = get_kvmclock_base_ns();
3170 	}
3171 
3172 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3173 
3174 	/*
3175 	 * We may have to catch up the TSC to match elapsed wall clock
3176 	 * time for two reasons, even if kvmclock is used.
3177 	 *   1) CPU could have been running below the maximum TSC rate
3178 	 *   2) Broken TSC compensation resets the base at each VCPU
3179 	 *      entry to avoid unknown leaps of TSC even when running
3180 	 *      again on the same CPU.  This may cause apparent elapsed
3181 	 *      time to disappear, and the guest to stand still or run
3182 	 *	very slowly.
3183 	 */
3184 	if (vcpu->tsc_catchup) {
3185 		u64 tsc = compute_guest_tsc(v, kernel_ns);
3186 		if (tsc > tsc_timestamp) {
3187 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3188 			tsc_timestamp = tsc;
3189 		}
3190 	}
3191 
3192 	local_irq_restore(flags);
3193 
3194 	/* With all the info we got, fill in the values */
3195 
3196 	if (kvm_caps.has_tsc_control)
3197 		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3198 					    v->arch.l1_tsc_scaling_ratio);
3199 
3200 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3201 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3202 				   &vcpu->hv_clock.tsc_shift,
3203 				   &vcpu->hv_clock.tsc_to_system_mul);
3204 		vcpu->hw_tsc_khz = tgt_tsc_khz;
3205 		kvm_xen_update_tsc_info(v);
3206 	}
3207 
3208 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3209 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3210 	vcpu->last_guest_tsc = tsc_timestamp;
3211 
3212 	/* If the host uses TSC clocksource, then it is stable */
3213 	pvclock_flags = 0;
3214 	if (use_master_clock)
3215 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3216 
3217 	vcpu->hv_clock.flags = pvclock_flags;
3218 
3219 	if (vcpu->pv_time.active)
3220 		kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3221 	if (vcpu->xen.vcpu_info_cache.active)
3222 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3223 					offsetof(struct compat_vcpu_info, time));
3224 	if (vcpu->xen.vcpu_time_info_cache.active)
3225 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3226 	kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3227 	return 0;
3228 }
3229 
3230 /*
3231  * kvmclock updates which are isolated to a given vcpu, such as
3232  * vcpu->cpu migration, should not allow system_timestamp from
3233  * the rest of the vcpus to remain static. Otherwise ntp frequency
3234  * correction applies to one vcpu's system_timestamp but not
3235  * the others.
3236  *
3237  * So in those cases, request a kvmclock update for all vcpus.
3238  * We need to rate-limit these requests though, as they can
3239  * considerably slow guests that have a large number of vcpus.
3240  * The time for a remote vcpu to update its kvmclock is bound
3241  * by the delay we use to rate-limit the updates.
3242  */
3243 
3244 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3245 
3246 static void kvmclock_update_fn(struct work_struct *work)
3247 {
3248 	unsigned long i;
3249 	struct delayed_work *dwork = to_delayed_work(work);
3250 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3251 					   kvmclock_update_work);
3252 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3253 	struct kvm_vcpu *vcpu;
3254 
3255 	kvm_for_each_vcpu(i, vcpu, kvm) {
3256 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3257 		kvm_vcpu_kick(vcpu);
3258 	}
3259 }
3260 
3261 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3262 {
3263 	struct kvm *kvm = v->kvm;
3264 
3265 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3266 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3267 					KVMCLOCK_UPDATE_DELAY);
3268 }
3269 
3270 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3271 
3272 static void kvmclock_sync_fn(struct work_struct *work)
3273 {
3274 	struct delayed_work *dwork = to_delayed_work(work);
3275 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3276 					   kvmclock_sync_work);
3277 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3278 
3279 	if (!kvmclock_periodic_sync)
3280 		return;
3281 
3282 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3283 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3284 					KVMCLOCK_SYNC_PERIOD);
3285 }
3286 
3287 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3288 static bool is_mci_control_msr(u32 msr)
3289 {
3290 	return (msr & 3) == 0;
3291 }
3292 static bool is_mci_status_msr(u32 msr)
3293 {
3294 	return (msr & 3) == 1;
3295 }
3296 
3297 /*
3298  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3299  */
3300 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3301 {
3302 	/* McStatusWrEn enabled? */
3303 	if (guest_cpuid_is_amd_or_hygon(vcpu))
3304 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3305 
3306 	return false;
3307 }
3308 
3309 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3310 {
3311 	u64 mcg_cap = vcpu->arch.mcg_cap;
3312 	unsigned bank_num = mcg_cap & 0xff;
3313 	u32 msr = msr_info->index;
3314 	u64 data = msr_info->data;
3315 	u32 offset, last_msr;
3316 
3317 	switch (msr) {
3318 	case MSR_IA32_MCG_STATUS:
3319 		vcpu->arch.mcg_status = data;
3320 		break;
3321 	case MSR_IA32_MCG_CTL:
3322 		if (!(mcg_cap & MCG_CTL_P) &&
3323 		    (data || !msr_info->host_initiated))
3324 			return 1;
3325 		if (data != 0 && data != ~(u64)0)
3326 			return 1;
3327 		vcpu->arch.mcg_ctl = data;
3328 		break;
3329 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3330 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3331 		if (msr > last_msr)
3332 			return 1;
3333 
3334 		if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3335 			return 1;
3336 		/* An attempt to write a 1 to a reserved bit raises #GP */
3337 		if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3338 			return 1;
3339 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3340 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3341 		vcpu->arch.mci_ctl2_banks[offset] = data;
3342 		break;
3343 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3344 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3345 		if (msr > last_msr)
3346 			return 1;
3347 
3348 		/*
3349 		 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3350 		 * values are architecturally undefined.  But, some Linux
3351 		 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3352 		 * issue on AMD K8s, allow bit 10 to be clear when setting all
3353 		 * other bits in order to avoid an uncaught #GP in the guest.
3354 		 *
3355 		 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3356 		 * single-bit ECC data errors.
3357 		 */
3358 		if (is_mci_control_msr(msr) &&
3359 		    data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3360 			return 1;
3361 
3362 		/*
3363 		 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3364 		 * AMD-based CPUs allow non-zero values, but if and only if
3365 		 * HWCR[McStatusWrEn] is set.
3366 		 */
3367 		if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3368 		    data != 0 && !can_set_mci_status(vcpu))
3369 			return 1;
3370 
3371 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3372 					    last_msr + 1 - MSR_IA32_MC0_CTL);
3373 		vcpu->arch.mce_banks[offset] = data;
3374 		break;
3375 	default:
3376 		return 1;
3377 	}
3378 	return 0;
3379 }
3380 
3381 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3382 {
3383 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3384 
3385 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3386 }
3387 
3388 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3389 {
3390 	gpa_t gpa = data & ~0x3f;
3391 
3392 	/* Bits 4:5 are reserved, Should be zero */
3393 	if (data & 0x30)
3394 		return 1;
3395 
3396 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3397 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3398 		return 1;
3399 
3400 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3401 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3402 		return 1;
3403 
3404 	if (!lapic_in_kernel(vcpu))
3405 		return data ? 1 : 0;
3406 
3407 	vcpu->arch.apf.msr_en_val = data;
3408 
3409 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3410 		kvm_clear_async_pf_completion_queue(vcpu);
3411 		kvm_async_pf_hash_reset(vcpu);
3412 		return 0;
3413 	}
3414 
3415 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3416 					sizeof(u64)))
3417 		return 1;
3418 
3419 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3420 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3421 
3422 	kvm_async_pf_wakeup_all(vcpu);
3423 
3424 	return 0;
3425 }
3426 
3427 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3428 {
3429 	/* Bits 8-63 are reserved */
3430 	if (data >> 8)
3431 		return 1;
3432 
3433 	if (!lapic_in_kernel(vcpu))
3434 		return 1;
3435 
3436 	vcpu->arch.apf.msr_int_val = data;
3437 
3438 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3439 
3440 	return 0;
3441 }
3442 
3443 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3444 {
3445 	kvm_gpc_deactivate(&vcpu->arch.pv_time);
3446 	vcpu->arch.time = 0;
3447 }
3448 
3449 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3450 {
3451 	++vcpu->stat.tlb_flush;
3452 	static_call(kvm_x86_flush_tlb_all)(vcpu);
3453 
3454 	/* Flushing all ASIDs flushes the current ASID... */
3455 	kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3456 }
3457 
3458 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3459 {
3460 	++vcpu->stat.tlb_flush;
3461 
3462 	if (!tdp_enabled) {
3463 		/*
3464 		 * A TLB flush on behalf of the guest is equivalent to
3465 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3466 		 * a forced sync of the shadow page tables.  Ensure all the
3467 		 * roots are synced and the guest TLB in hardware is clean.
3468 		 */
3469 		kvm_mmu_sync_roots(vcpu);
3470 		kvm_mmu_sync_prev_roots(vcpu);
3471 	}
3472 
3473 	static_call(kvm_x86_flush_tlb_guest)(vcpu);
3474 
3475 	/*
3476 	 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3477 	 * grained flushing.
3478 	 */
3479 	kvm_hv_vcpu_purge_flush_tlb(vcpu);
3480 }
3481 
3482 
3483 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3484 {
3485 	++vcpu->stat.tlb_flush;
3486 	static_call(kvm_x86_flush_tlb_current)(vcpu);
3487 }
3488 
3489 /*
3490  * Service "local" TLB flush requests, which are specific to the current MMU
3491  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3492  * TLB flushes that are targeted at an MMU context also need to be serviced
3493  * prior before nested VM-Enter/VM-Exit.
3494  */
3495 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3496 {
3497 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3498 		kvm_vcpu_flush_tlb_current(vcpu);
3499 
3500 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3501 		kvm_vcpu_flush_tlb_guest(vcpu);
3502 }
3503 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3504 
3505 static void record_steal_time(struct kvm_vcpu *vcpu)
3506 {
3507 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3508 	struct kvm_steal_time __user *st;
3509 	struct kvm_memslots *slots;
3510 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3511 	u64 steal;
3512 	u32 version;
3513 
3514 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3515 		kvm_xen_runstate_set_running(vcpu);
3516 		return;
3517 	}
3518 
3519 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3520 		return;
3521 
3522 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3523 		return;
3524 
3525 	slots = kvm_memslots(vcpu->kvm);
3526 
3527 	if (unlikely(slots->generation != ghc->generation ||
3528 		     gpa != ghc->gpa ||
3529 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3530 		/* We rely on the fact that it fits in a single page. */
3531 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3532 
3533 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3534 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3535 			return;
3536 	}
3537 
3538 	st = (struct kvm_steal_time __user *)ghc->hva;
3539 	/*
3540 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3541 	 * expensive IPIs.
3542 	 */
3543 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3544 		u8 st_preempted = 0;
3545 		int err = -EFAULT;
3546 
3547 		if (!user_access_begin(st, sizeof(*st)))
3548 			return;
3549 
3550 		asm volatile("1: xchgb %0, %2\n"
3551 			     "xor %1, %1\n"
3552 			     "2:\n"
3553 			     _ASM_EXTABLE_UA(1b, 2b)
3554 			     : "+q" (st_preempted),
3555 			       "+&r" (err),
3556 			       "+m" (st->preempted));
3557 		if (err)
3558 			goto out;
3559 
3560 		user_access_end();
3561 
3562 		vcpu->arch.st.preempted = 0;
3563 
3564 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3565 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3566 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3567 			kvm_vcpu_flush_tlb_guest(vcpu);
3568 
3569 		if (!user_access_begin(st, sizeof(*st)))
3570 			goto dirty;
3571 	} else {
3572 		if (!user_access_begin(st, sizeof(*st)))
3573 			return;
3574 
3575 		unsafe_put_user(0, &st->preempted, out);
3576 		vcpu->arch.st.preempted = 0;
3577 	}
3578 
3579 	unsafe_get_user(version, &st->version, out);
3580 	if (version & 1)
3581 		version += 1;  /* first time write, random junk */
3582 
3583 	version += 1;
3584 	unsafe_put_user(version, &st->version, out);
3585 
3586 	smp_wmb();
3587 
3588 	unsafe_get_user(steal, &st->steal, out);
3589 	steal += current->sched_info.run_delay -
3590 		vcpu->arch.st.last_steal;
3591 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3592 	unsafe_put_user(steal, &st->steal, out);
3593 
3594 	version += 1;
3595 	unsafe_put_user(version, &st->version, out);
3596 
3597  out:
3598 	user_access_end();
3599  dirty:
3600 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3601 }
3602 
3603 static bool kvm_is_msr_to_save(u32 msr_index)
3604 {
3605 	unsigned int i;
3606 
3607 	for (i = 0; i < num_msrs_to_save; i++) {
3608 		if (msrs_to_save[i] == msr_index)
3609 			return true;
3610 	}
3611 
3612 	return false;
3613 }
3614 
3615 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3616 {
3617 	u32 msr = msr_info->index;
3618 	u64 data = msr_info->data;
3619 
3620 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3621 		return kvm_xen_write_hypercall_page(vcpu, data);
3622 
3623 	switch (msr) {
3624 	case MSR_AMD64_NB_CFG:
3625 	case MSR_IA32_UCODE_WRITE:
3626 	case MSR_VM_HSAVE_PA:
3627 	case MSR_AMD64_PATCH_LOADER:
3628 	case MSR_AMD64_BU_CFG2:
3629 	case MSR_AMD64_DC_CFG:
3630 	case MSR_F15H_EX_CFG:
3631 		break;
3632 
3633 	case MSR_IA32_UCODE_REV:
3634 		if (msr_info->host_initiated)
3635 			vcpu->arch.microcode_version = data;
3636 		break;
3637 	case MSR_IA32_ARCH_CAPABILITIES:
3638 		if (!msr_info->host_initiated)
3639 			return 1;
3640 		vcpu->arch.arch_capabilities = data;
3641 		break;
3642 	case MSR_IA32_PERF_CAPABILITIES:
3643 		if (!msr_info->host_initiated)
3644 			return 1;
3645 		if (data & ~kvm_caps.supported_perf_cap)
3646 			return 1;
3647 
3648 		/*
3649 		 * Note, this is not just a performance optimization!  KVM
3650 		 * disallows changing feature MSRs after the vCPU has run; PMU
3651 		 * refresh will bug the VM if called after the vCPU has run.
3652 		 */
3653 		if (vcpu->arch.perf_capabilities == data)
3654 			break;
3655 
3656 		vcpu->arch.perf_capabilities = data;
3657 		kvm_pmu_refresh(vcpu);
3658 		break;
3659 	case MSR_IA32_PRED_CMD:
3660 		if (!msr_info->host_initiated && !guest_has_pred_cmd_msr(vcpu))
3661 			return 1;
3662 
3663 		if (!boot_cpu_has(X86_FEATURE_IBPB) || (data & ~PRED_CMD_IBPB))
3664 			return 1;
3665 		if (!data)
3666 			break;
3667 
3668 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
3669 		break;
3670 	case MSR_IA32_FLUSH_CMD:
3671 		if (!msr_info->host_initiated &&
3672 		    !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D))
3673 			return 1;
3674 
3675 		if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3676 			return 1;
3677 		if (!data)
3678 			break;
3679 
3680 		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3681 		break;
3682 	case MSR_EFER:
3683 		return set_efer(vcpu, msr_info);
3684 	case MSR_K7_HWCR:
3685 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3686 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3687 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3688 
3689 		/* Handle McStatusWrEn */
3690 		if (data == BIT_ULL(18)) {
3691 			vcpu->arch.msr_hwcr = data;
3692 		} else if (data != 0) {
3693 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3694 			return 1;
3695 		}
3696 		break;
3697 	case MSR_FAM10H_MMIO_CONF_BASE:
3698 		if (data != 0) {
3699 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3700 			return 1;
3701 		}
3702 		break;
3703 	case MSR_IA32_CR_PAT:
3704 		if (!kvm_pat_valid(data))
3705 			return 1;
3706 
3707 		vcpu->arch.pat = data;
3708 		break;
3709 	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3710 	case MSR_MTRRdefType:
3711 		return kvm_mtrr_set_msr(vcpu, msr, data);
3712 	case MSR_IA32_APICBASE:
3713 		return kvm_set_apic_base(vcpu, msr_info);
3714 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3715 		return kvm_x2apic_msr_write(vcpu, msr, data);
3716 	case MSR_IA32_TSC_DEADLINE:
3717 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3718 		break;
3719 	case MSR_IA32_TSC_ADJUST:
3720 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3721 			if (!msr_info->host_initiated) {
3722 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3723 				adjust_tsc_offset_guest(vcpu, adj);
3724 				/* Before back to guest, tsc_timestamp must be adjusted
3725 				 * as well, otherwise guest's percpu pvclock time could jump.
3726 				 */
3727 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3728 			}
3729 			vcpu->arch.ia32_tsc_adjust_msr = data;
3730 		}
3731 		break;
3732 	case MSR_IA32_MISC_ENABLE: {
3733 		u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3734 
3735 		if (!msr_info->host_initiated) {
3736 			/* RO bits */
3737 			if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3738 				return 1;
3739 
3740 			/* R bits, i.e. writes are ignored, but don't fault. */
3741 			data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3742 			data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3743 		}
3744 
3745 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3746 		    ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3747 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3748 				return 1;
3749 			vcpu->arch.ia32_misc_enable_msr = data;
3750 			kvm_update_cpuid_runtime(vcpu);
3751 		} else {
3752 			vcpu->arch.ia32_misc_enable_msr = data;
3753 		}
3754 		break;
3755 	}
3756 	case MSR_IA32_SMBASE:
3757 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3758 			return 1;
3759 		vcpu->arch.smbase = data;
3760 		break;
3761 	case MSR_IA32_POWER_CTL:
3762 		vcpu->arch.msr_ia32_power_ctl = data;
3763 		break;
3764 	case MSR_IA32_TSC:
3765 		if (msr_info->host_initiated) {
3766 			kvm_synchronize_tsc(vcpu, data);
3767 		} else {
3768 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3769 			adjust_tsc_offset_guest(vcpu, adj);
3770 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3771 		}
3772 		break;
3773 	case MSR_IA32_XSS:
3774 		if (!msr_info->host_initiated &&
3775 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3776 			return 1;
3777 		/*
3778 		 * KVM supports exposing PT to the guest, but does not support
3779 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3780 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3781 		 */
3782 		if (data & ~kvm_caps.supported_xss)
3783 			return 1;
3784 		vcpu->arch.ia32_xss = data;
3785 		kvm_update_cpuid_runtime(vcpu);
3786 		break;
3787 	case MSR_SMI_COUNT:
3788 		if (!msr_info->host_initiated)
3789 			return 1;
3790 		vcpu->arch.smi_count = data;
3791 		break;
3792 	case MSR_KVM_WALL_CLOCK_NEW:
3793 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3794 			return 1;
3795 
3796 		vcpu->kvm->arch.wall_clock = data;
3797 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3798 		break;
3799 	case MSR_KVM_WALL_CLOCK:
3800 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3801 			return 1;
3802 
3803 		vcpu->kvm->arch.wall_clock = data;
3804 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3805 		break;
3806 	case MSR_KVM_SYSTEM_TIME_NEW:
3807 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3808 			return 1;
3809 
3810 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3811 		break;
3812 	case MSR_KVM_SYSTEM_TIME:
3813 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3814 			return 1;
3815 
3816 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3817 		break;
3818 	case MSR_KVM_ASYNC_PF_EN:
3819 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3820 			return 1;
3821 
3822 		if (kvm_pv_enable_async_pf(vcpu, data))
3823 			return 1;
3824 		break;
3825 	case MSR_KVM_ASYNC_PF_INT:
3826 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3827 			return 1;
3828 
3829 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3830 			return 1;
3831 		break;
3832 	case MSR_KVM_ASYNC_PF_ACK:
3833 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3834 			return 1;
3835 		if (data & 0x1) {
3836 			vcpu->arch.apf.pageready_pending = false;
3837 			kvm_check_async_pf_completion(vcpu);
3838 		}
3839 		break;
3840 	case MSR_KVM_STEAL_TIME:
3841 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3842 			return 1;
3843 
3844 		if (unlikely(!sched_info_on()))
3845 			return 1;
3846 
3847 		if (data & KVM_STEAL_RESERVED_MASK)
3848 			return 1;
3849 
3850 		vcpu->arch.st.msr_val = data;
3851 
3852 		if (!(data & KVM_MSR_ENABLED))
3853 			break;
3854 
3855 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3856 
3857 		break;
3858 	case MSR_KVM_PV_EOI_EN:
3859 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3860 			return 1;
3861 
3862 		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3863 			return 1;
3864 		break;
3865 
3866 	case MSR_KVM_POLL_CONTROL:
3867 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3868 			return 1;
3869 
3870 		/* only enable bit supported */
3871 		if (data & (-1ULL << 1))
3872 			return 1;
3873 
3874 		vcpu->arch.msr_kvm_poll_control = data;
3875 		break;
3876 
3877 	case MSR_IA32_MCG_CTL:
3878 	case MSR_IA32_MCG_STATUS:
3879 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3880 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3881 		return set_msr_mce(vcpu, msr_info);
3882 
3883 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3884 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3885 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3886 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3887 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3888 			return kvm_pmu_set_msr(vcpu, msr_info);
3889 
3890 		if (data)
3891 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3892 		break;
3893 	case MSR_K7_CLK_CTL:
3894 		/*
3895 		 * Ignore all writes to this no longer documented MSR.
3896 		 * Writes are only relevant for old K7 processors,
3897 		 * all pre-dating SVM, but a recommended workaround from
3898 		 * AMD for these chips. It is possible to specify the
3899 		 * affected processor models on the command line, hence
3900 		 * the need to ignore the workaround.
3901 		 */
3902 		break;
3903 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3904 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3905 	case HV_X64_MSR_SYNDBG_OPTIONS:
3906 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3907 	case HV_X64_MSR_CRASH_CTL:
3908 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3909 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3910 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3911 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3912 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
3913 		return kvm_hv_set_msr_common(vcpu, msr, data,
3914 					     msr_info->host_initiated);
3915 	case MSR_IA32_BBL_CR_CTL3:
3916 		/* Drop writes to this legacy MSR -- see rdmsr
3917 		 * counterpart for further detail.
3918 		 */
3919 		kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3920 		break;
3921 	case MSR_AMD64_OSVW_ID_LENGTH:
3922 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3923 			return 1;
3924 		vcpu->arch.osvw.length = data;
3925 		break;
3926 	case MSR_AMD64_OSVW_STATUS:
3927 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3928 			return 1;
3929 		vcpu->arch.osvw.status = data;
3930 		break;
3931 	case MSR_PLATFORM_INFO:
3932 		if (!msr_info->host_initiated ||
3933 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3934 		     cpuid_fault_enabled(vcpu)))
3935 			return 1;
3936 		vcpu->arch.msr_platform_info = data;
3937 		break;
3938 	case MSR_MISC_FEATURES_ENABLES:
3939 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3940 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3941 		     !supports_cpuid_fault(vcpu)))
3942 			return 1;
3943 		vcpu->arch.msr_misc_features_enables = data;
3944 		break;
3945 #ifdef CONFIG_X86_64
3946 	case MSR_IA32_XFD:
3947 		if (!msr_info->host_initiated &&
3948 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3949 			return 1;
3950 
3951 		if (data & ~kvm_guest_supported_xfd(vcpu))
3952 			return 1;
3953 
3954 		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3955 		break;
3956 	case MSR_IA32_XFD_ERR:
3957 		if (!msr_info->host_initiated &&
3958 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3959 			return 1;
3960 
3961 		if (data & ~kvm_guest_supported_xfd(vcpu))
3962 			return 1;
3963 
3964 		vcpu->arch.guest_fpu.xfd_err = data;
3965 		break;
3966 #endif
3967 	default:
3968 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3969 			return kvm_pmu_set_msr(vcpu, msr_info);
3970 
3971 		/*
3972 		 * Userspace is allowed to write '0' to MSRs that KVM reports
3973 		 * as to-be-saved, even if an MSRs isn't fully supported.
3974 		 */
3975 		if (msr_info->host_initiated && !data &&
3976 		    kvm_is_msr_to_save(msr))
3977 			break;
3978 
3979 		return KVM_MSR_RET_INVALID;
3980 	}
3981 	return 0;
3982 }
3983 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3984 
3985 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3986 {
3987 	u64 data;
3988 	u64 mcg_cap = vcpu->arch.mcg_cap;
3989 	unsigned bank_num = mcg_cap & 0xff;
3990 	u32 offset, last_msr;
3991 
3992 	switch (msr) {
3993 	case MSR_IA32_P5_MC_ADDR:
3994 	case MSR_IA32_P5_MC_TYPE:
3995 		data = 0;
3996 		break;
3997 	case MSR_IA32_MCG_CAP:
3998 		data = vcpu->arch.mcg_cap;
3999 		break;
4000 	case MSR_IA32_MCG_CTL:
4001 		if (!(mcg_cap & MCG_CTL_P) && !host)
4002 			return 1;
4003 		data = vcpu->arch.mcg_ctl;
4004 		break;
4005 	case MSR_IA32_MCG_STATUS:
4006 		data = vcpu->arch.mcg_status;
4007 		break;
4008 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4009 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4010 		if (msr > last_msr)
4011 			return 1;
4012 
4013 		if (!(mcg_cap & MCG_CMCI_P) && !host)
4014 			return 1;
4015 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4016 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
4017 		data = vcpu->arch.mci_ctl2_banks[offset];
4018 		break;
4019 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4020 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4021 		if (msr > last_msr)
4022 			return 1;
4023 
4024 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4025 					    last_msr + 1 - MSR_IA32_MC0_CTL);
4026 		data = vcpu->arch.mce_banks[offset];
4027 		break;
4028 	default:
4029 		return 1;
4030 	}
4031 	*pdata = data;
4032 	return 0;
4033 }
4034 
4035 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4036 {
4037 	switch (msr_info->index) {
4038 	case MSR_IA32_PLATFORM_ID:
4039 	case MSR_IA32_EBL_CR_POWERON:
4040 	case MSR_IA32_LASTBRANCHFROMIP:
4041 	case MSR_IA32_LASTBRANCHTOIP:
4042 	case MSR_IA32_LASTINTFROMIP:
4043 	case MSR_IA32_LASTINTTOIP:
4044 	case MSR_AMD64_SYSCFG:
4045 	case MSR_K8_TSEG_ADDR:
4046 	case MSR_K8_TSEG_MASK:
4047 	case MSR_VM_HSAVE_PA:
4048 	case MSR_K8_INT_PENDING_MSG:
4049 	case MSR_AMD64_NB_CFG:
4050 	case MSR_FAM10H_MMIO_CONF_BASE:
4051 	case MSR_AMD64_BU_CFG2:
4052 	case MSR_IA32_PERF_CTL:
4053 	case MSR_AMD64_DC_CFG:
4054 	case MSR_F15H_EX_CFG:
4055 	/*
4056 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4057 	 * limit) MSRs. Just return 0, as we do not want to expose the host
4058 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
4059 	 * so for existing CPU-specific MSRs.
4060 	 */
4061 	case MSR_RAPL_POWER_UNIT:
4062 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
4063 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
4064 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
4065 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
4066 		msr_info->data = 0;
4067 		break;
4068 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4069 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4070 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4071 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4072 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4073 			return kvm_pmu_get_msr(vcpu, msr_info);
4074 		msr_info->data = 0;
4075 		break;
4076 	case MSR_IA32_UCODE_REV:
4077 		msr_info->data = vcpu->arch.microcode_version;
4078 		break;
4079 	case MSR_IA32_ARCH_CAPABILITIES:
4080 		if (!msr_info->host_initiated &&
4081 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4082 			return 1;
4083 		msr_info->data = vcpu->arch.arch_capabilities;
4084 		break;
4085 	case MSR_IA32_PERF_CAPABILITIES:
4086 		if (!msr_info->host_initiated &&
4087 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4088 			return 1;
4089 		msr_info->data = vcpu->arch.perf_capabilities;
4090 		break;
4091 	case MSR_IA32_POWER_CTL:
4092 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4093 		break;
4094 	case MSR_IA32_TSC: {
4095 		/*
4096 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4097 		 * even when not intercepted. AMD manual doesn't explicitly
4098 		 * state this but appears to behave the same.
4099 		 *
4100 		 * On userspace reads and writes, however, we unconditionally
4101 		 * return L1's TSC value to ensure backwards-compatible
4102 		 * behavior for migration.
4103 		 */
4104 		u64 offset, ratio;
4105 
4106 		if (msr_info->host_initiated) {
4107 			offset = vcpu->arch.l1_tsc_offset;
4108 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
4109 		} else {
4110 			offset = vcpu->arch.tsc_offset;
4111 			ratio = vcpu->arch.tsc_scaling_ratio;
4112 		}
4113 
4114 		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4115 		break;
4116 	}
4117 	case MSR_IA32_CR_PAT:
4118 		msr_info->data = vcpu->arch.pat;
4119 		break;
4120 	case MSR_MTRRcap:
4121 	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4122 	case MSR_MTRRdefType:
4123 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4124 	case 0xcd: /* fsb frequency */
4125 		msr_info->data = 3;
4126 		break;
4127 		/*
4128 		 * MSR_EBC_FREQUENCY_ID
4129 		 * Conservative value valid for even the basic CPU models.
4130 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4131 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4132 		 * and 266MHz for model 3, or 4. Set Core Clock
4133 		 * Frequency to System Bus Frequency Ratio to 1 (bits
4134 		 * 31:24) even though these are only valid for CPU
4135 		 * models > 2, however guests may end up dividing or
4136 		 * multiplying by zero otherwise.
4137 		 */
4138 	case MSR_EBC_FREQUENCY_ID:
4139 		msr_info->data = 1 << 24;
4140 		break;
4141 	case MSR_IA32_APICBASE:
4142 		msr_info->data = kvm_get_apic_base(vcpu);
4143 		break;
4144 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4145 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4146 	case MSR_IA32_TSC_DEADLINE:
4147 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4148 		break;
4149 	case MSR_IA32_TSC_ADJUST:
4150 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4151 		break;
4152 	case MSR_IA32_MISC_ENABLE:
4153 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4154 		break;
4155 	case MSR_IA32_SMBASE:
4156 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4157 			return 1;
4158 		msr_info->data = vcpu->arch.smbase;
4159 		break;
4160 	case MSR_SMI_COUNT:
4161 		msr_info->data = vcpu->arch.smi_count;
4162 		break;
4163 	case MSR_IA32_PERF_STATUS:
4164 		/* TSC increment by tick */
4165 		msr_info->data = 1000ULL;
4166 		/* CPU multiplier */
4167 		msr_info->data |= (((uint64_t)4ULL) << 40);
4168 		break;
4169 	case MSR_EFER:
4170 		msr_info->data = vcpu->arch.efer;
4171 		break;
4172 	case MSR_KVM_WALL_CLOCK:
4173 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4174 			return 1;
4175 
4176 		msr_info->data = vcpu->kvm->arch.wall_clock;
4177 		break;
4178 	case MSR_KVM_WALL_CLOCK_NEW:
4179 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4180 			return 1;
4181 
4182 		msr_info->data = vcpu->kvm->arch.wall_clock;
4183 		break;
4184 	case MSR_KVM_SYSTEM_TIME:
4185 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4186 			return 1;
4187 
4188 		msr_info->data = vcpu->arch.time;
4189 		break;
4190 	case MSR_KVM_SYSTEM_TIME_NEW:
4191 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4192 			return 1;
4193 
4194 		msr_info->data = vcpu->arch.time;
4195 		break;
4196 	case MSR_KVM_ASYNC_PF_EN:
4197 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4198 			return 1;
4199 
4200 		msr_info->data = vcpu->arch.apf.msr_en_val;
4201 		break;
4202 	case MSR_KVM_ASYNC_PF_INT:
4203 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4204 			return 1;
4205 
4206 		msr_info->data = vcpu->arch.apf.msr_int_val;
4207 		break;
4208 	case MSR_KVM_ASYNC_PF_ACK:
4209 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4210 			return 1;
4211 
4212 		msr_info->data = 0;
4213 		break;
4214 	case MSR_KVM_STEAL_TIME:
4215 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4216 			return 1;
4217 
4218 		msr_info->data = vcpu->arch.st.msr_val;
4219 		break;
4220 	case MSR_KVM_PV_EOI_EN:
4221 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4222 			return 1;
4223 
4224 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
4225 		break;
4226 	case MSR_KVM_POLL_CONTROL:
4227 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4228 			return 1;
4229 
4230 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
4231 		break;
4232 	case MSR_IA32_P5_MC_ADDR:
4233 	case MSR_IA32_P5_MC_TYPE:
4234 	case MSR_IA32_MCG_CAP:
4235 	case MSR_IA32_MCG_CTL:
4236 	case MSR_IA32_MCG_STATUS:
4237 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4238 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4239 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4240 				   msr_info->host_initiated);
4241 	case MSR_IA32_XSS:
4242 		if (!msr_info->host_initiated &&
4243 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4244 			return 1;
4245 		msr_info->data = vcpu->arch.ia32_xss;
4246 		break;
4247 	case MSR_K7_CLK_CTL:
4248 		/*
4249 		 * Provide expected ramp-up count for K7. All other
4250 		 * are set to zero, indicating minimum divisors for
4251 		 * every field.
4252 		 *
4253 		 * This prevents guest kernels on AMD host with CPU
4254 		 * type 6, model 8 and higher from exploding due to
4255 		 * the rdmsr failing.
4256 		 */
4257 		msr_info->data = 0x20000000;
4258 		break;
4259 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4260 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4261 	case HV_X64_MSR_SYNDBG_OPTIONS:
4262 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4263 	case HV_X64_MSR_CRASH_CTL:
4264 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4265 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4266 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4267 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4268 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4269 		return kvm_hv_get_msr_common(vcpu,
4270 					     msr_info->index, &msr_info->data,
4271 					     msr_info->host_initiated);
4272 	case MSR_IA32_BBL_CR_CTL3:
4273 		/* This legacy MSR exists but isn't fully documented in current
4274 		 * silicon.  It is however accessed by winxp in very narrow
4275 		 * scenarios where it sets bit #19, itself documented as
4276 		 * a "reserved" bit.  Best effort attempt to source coherent
4277 		 * read data here should the balance of the register be
4278 		 * interpreted by the guest:
4279 		 *
4280 		 * L2 cache control register 3: 64GB range, 256KB size,
4281 		 * enabled, latency 0x1, configured
4282 		 */
4283 		msr_info->data = 0xbe702111;
4284 		break;
4285 	case MSR_AMD64_OSVW_ID_LENGTH:
4286 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4287 			return 1;
4288 		msr_info->data = vcpu->arch.osvw.length;
4289 		break;
4290 	case MSR_AMD64_OSVW_STATUS:
4291 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4292 			return 1;
4293 		msr_info->data = vcpu->arch.osvw.status;
4294 		break;
4295 	case MSR_PLATFORM_INFO:
4296 		if (!msr_info->host_initiated &&
4297 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4298 			return 1;
4299 		msr_info->data = vcpu->arch.msr_platform_info;
4300 		break;
4301 	case MSR_MISC_FEATURES_ENABLES:
4302 		msr_info->data = vcpu->arch.msr_misc_features_enables;
4303 		break;
4304 	case MSR_K7_HWCR:
4305 		msr_info->data = vcpu->arch.msr_hwcr;
4306 		break;
4307 #ifdef CONFIG_X86_64
4308 	case MSR_IA32_XFD:
4309 		if (!msr_info->host_initiated &&
4310 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4311 			return 1;
4312 
4313 		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4314 		break;
4315 	case MSR_IA32_XFD_ERR:
4316 		if (!msr_info->host_initiated &&
4317 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4318 			return 1;
4319 
4320 		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4321 		break;
4322 #endif
4323 	default:
4324 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4325 			return kvm_pmu_get_msr(vcpu, msr_info);
4326 
4327 		/*
4328 		 * Userspace is allowed to read MSRs that KVM reports as
4329 		 * to-be-saved, even if an MSR isn't fully supported.
4330 		 */
4331 		if (msr_info->host_initiated &&
4332 		    kvm_is_msr_to_save(msr_info->index)) {
4333 			msr_info->data = 0;
4334 			break;
4335 		}
4336 
4337 		return KVM_MSR_RET_INVALID;
4338 	}
4339 	return 0;
4340 }
4341 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4342 
4343 /*
4344  * Read or write a bunch of msrs. All parameters are kernel addresses.
4345  *
4346  * @return number of msrs set successfully.
4347  */
4348 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4349 		    struct kvm_msr_entry *entries,
4350 		    int (*do_msr)(struct kvm_vcpu *vcpu,
4351 				  unsigned index, u64 *data))
4352 {
4353 	int i;
4354 
4355 	for (i = 0; i < msrs->nmsrs; ++i)
4356 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4357 			break;
4358 
4359 	return i;
4360 }
4361 
4362 /*
4363  * Read or write a bunch of msrs. Parameters are user addresses.
4364  *
4365  * @return number of msrs set successfully.
4366  */
4367 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4368 		  int (*do_msr)(struct kvm_vcpu *vcpu,
4369 				unsigned index, u64 *data),
4370 		  int writeback)
4371 {
4372 	struct kvm_msrs msrs;
4373 	struct kvm_msr_entry *entries;
4374 	unsigned size;
4375 	int r;
4376 
4377 	r = -EFAULT;
4378 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4379 		goto out;
4380 
4381 	r = -E2BIG;
4382 	if (msrs.nmsrs >= MAX_IO_MSRS)
4383 		goto out;
4384 
4385 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4386 	entries = memdup_user(user_msrs->entries, size);
4387 	if (IS_ERR(entries)) {
4388 		r = PTR_ERR(entries);
4389 		goto out;
4390 	}
4391 
4392 	r = __msr_io(vcpu, &msrs, entries, do_msr);
4393 
4394 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4395 		r = -EFAULT;
4396 
4397 	kfree(entries);
4398 out:
4399 	return r;
4400 }
4401 
4402 static inline bool kvm_can_mwait_in_guest(void)
4403 {
4404 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4405 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4406 		boot_cpu_has(X86_FEATURE_ARAT);
4407 }
4408 
4409 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4410 					    struct kvm_cpuid2 __user *cpuid_arg)
4411 {
4412 	struct kvm_cpuid2 cpuid;
4413 	int r;
4414 
4415 	r = -EFAULT;
4416 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4417 		return r;
4418 
4419 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4420 	if (r)
4421 		return r;
4422 
4423 	r = -EFAULT;
4424 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4425 		return r;
4426 
4427 	return 0;
4428 }
4429 
4430 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4431 {
4432 	int r = 0;
4433 
4434 	switch (ext) {
4435 	case KVM_CAP_IRQCHIP:
4436 	case KVM_CAP_HLT:
4437 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4438 	case KVM_CAP_SET_TSS_ADDR:
4439 	case KVM_CAP_EXT_CPUID:
4440 	case KVM_CAP_EXT_EMUL_CPUID:
4441 	case KVM_CAP_CLOCKSOURCE:
4442 	case KVM_CAP_PIT:
4443 	case KVM_CAP_NOP_IO_DELAY:
4444 	case KVM_CAP_MP_STATE:
4445 	case KVM_CAP_SYNC_MMU:
4446 	case KVM_CAP_USER_NMI:
4447 	case KVM_CAP_REINJECT_CONTROL:
4448 	case KVM_CAP_IRQ_INJECT_STATUS:
4449 	case KVM_CAP_IOEVENTFD:
4450 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4451 	case KVM_CAP_PIT2:
4452 	case KVM_CAP_PIT_STATE2:
4453 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4454 	case KVM_CAP_VCPU_EVENTS:
4455 	case KVM_CAP_HYPERV:
4456 	case KVM_CAP_HYPERV_VAPIC:
4457 	case KVM_CAP_HYPERV_SPIN:
4458 	case KVM_CAP_HYPERV_SYNIC:
4459 	case KVM_CAP_HYPERV_SYNIC2:
4460 	case KVM_CAP_HYPERV_VP_INDEX:
4461 	case KVM_CAP_HYPERV_EVENTFD:
4462 	case KVM_CAP_HYPERV_TLBFLUSH:
4463 	case KVM_CAP_HYPERV_SEND_IPI:
4464 	case KVM_CAP_HYPERV_CPUID:
4465 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4466 	case KVM_CAP_SYS_HYPERV_CPUID:
4467 	case KVM_CAP_PCI_SEGMENT:
4468 	case KVM_CAP_DEBUGREGS:
4469 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4470 	case KVM_CAP_XSAVE:
4471 	case KVM_CAP_ASYNC_PF:
4472 	case KVM_CAP_ASYNC_PF_INT:
4473 	case KVM_CAP_GET_TSC_KHZ:
4474 	case KVM_CAP_KVMCLOCK_CTRL:
4475 	case KVM_CAP_READONLY_MEM:
4476 	case KVM_CAP_HYPERV_TIME:
4477 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4478 	case KVM_CAP_TSC_DEADLINE_TIMER:
4479 	case KVM_CAP_DISABLE_QUIRKS:
4480 	case KVM_CAP_SET_BOOT_CPU_ID:
4481  	case KVM_CAP_SPLIT_IRQCHIP:
4482 	case KVM_CAP_IMMEDIATE_EXIT:
4483 	case KVM_CAP_PMU_EVENT_FILTER:
4484 	case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4485 	case KVM_CAP_GET_MSR_FEATURES:
4486 	case KVM_CAP_MSR_PLATFORM_INFO:
4487 	case KVM_CAP_EXCEPTION_PAYLOAD:
4488 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4489 	case KVM_CAP_SET_GUEST_DEBUG:
4490 	case KVM_CAP_LAST_CPU:
4491 	case KVM_CAP_X86_USER_SPACE_MSR:
4492 	case KVM_CAP_X86_MSR_FILTER:
4493 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4494 #ifdef CONFIG_X86_SGX_KVM
4495 	case KVM_CAP_SGX_ATTRIBUTE:
4496 #endif
4497 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4498 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4499 	case KVM_CAP_SREGS2:
4500 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4501 	case KVM_CAP_VCPU_ATTRIBUTES:
4502 	case KVM_CAP_SYS_ATTRIBUTES:
4503 	case KVM_CAP_VAPIC:
4504 	case KVM_CAP_ENABLE_CAP:
4505 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4506 	case KVM_CAP_IRQFD_RESAMPLE:
4507 		r = 1;
4508 		break;
4509 	case KVM_CAP_EXIT_HYPERCALL:
4510 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4511 		break;
4512 	case KVM_CAP_SET_GUEST_DEBUG2:
4513 		return KVM_GUESTDBG_VALID_MASK;
4514 #ifdef CONFIG_KVM_XEN
4515 	case KVM_CAP_XEN_HVM:
4516 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4517 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4518 		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4519 		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4520 		    KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4521 		if (sched_info_on())
4522 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4523 			     KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4524 		break;
4525 #endif
4526 	case KVM_CAP_SYNC_REGS:
4527 		r = KVM_SYNC_X86_VALID_FIELDS;
4528 		break;
4529 	case KVM_CAP_ADJUST_CLOCK:
4530 		r = KVM_CLOCK_VALID_FLAGS;
4531 		break;
4532 	case KVM_CAP_X86_DISABLE_EXITS:
4533 		r = KVM_X86_DISABLE_EXITS_PAUSE;
4534 
4535 		if (!mitigate_smt_rsb) {
4536 			r |= KVM_X86_DISABLE_EXITS_HLT |
4537 			     KVM_X86_DISABLE_EXITS_CSTATE;
4538 
4539 			if (kvm_can_mwait_in_guest())
4540 				r |= KVM_X86_DISABLE_EXITS_MWAIT;
4541 		}
4542 		break;
4543 	case KVM_CAP_X86_SMM:
4544 		if (!IS_ENABLED(CONFIG_KVM_SMM))
4545 			break;
4546 
4547 		/* SMBASE is usually relocated above 1M on modern chipsets,
4548 		 * and SMM handlers might indeed rely on 4G segment limits,
4549 		 * so do not report SMM to be available if real mode is
4550 		 * emulated via vm86 mode.  Still, do not go to great lengths
4551 		 * to avoid userspace's usage of the feature, because it is a
4552 		 * fringe case that is not enabled except via specific settings
4553 		 * of the module parameters.
4554 		 */
4555 		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4556 		break;
4557 	case KVM_CAP_NR_VCPUS:
4558 		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4559 		break;
4560 	case KVM_CAP_MAX_VCPUS:
4561 		r = KVM_MAX_VCPUS;
4562 		break;
4563 	case KVM_CAP_MAX_VCPU_ID:
4564 		r = KVM_MAX_VCPU_IDS;
4565 		break;
4566 	case KVM_CAP_PV_MMU:	/* obsolete */
4567 		r = 0;
4568 		break;
4569 	case KVM_CAP_MCE:
4570 		r = KVM_MAX_MCE_BANKS;
4571 		break;
4572 	case KVM_CAP_XCRS:
4573 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4574 		break;
4575 	case KVM_CAP_TSC_CONTROL:
4576 	case KVM_CAP_VM_TSC_CONTROL:
4577 		r = kvm_caps.has_tsc_control;
4578 		break;
4579 	case KVM_CAP_X2APIC_API:
4580 		r = KVM_X2APIC_API_VALID_FLAGS;
4581 		break;
4582 	case KVM_CAP_NESTED_STATE:
4583 		r = kvm_x86_ops.nested_ops->get_state ?
4584 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4585 		break;
4586 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4587 		r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4588 		break;
4589 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4590 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4591 		break;
4592 	case KVM_CAP_SMALLER_MAXPHYADDR:
4593 		r = (int) allow_smaller_maxphyaddr;
4594 		break;
4595 	case KVM_CAP_STEAL_TIME:
4596 		r = sched_info_on();
4597 		break;
4598 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4599 		if (kvm_caps.has_bus_lock_exit)
4600 			r = KVM_BUS_LOCK_DETECTION_OFF |
4601 			    KVM_BUS_LOCK_DETECTION_EXIT;
4602 		else
4603 			r = 0;
4604 		break;
4605 	case KVM_CAP_XSAVE2: {
4606 		r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4607 		if (r < sizeof(struct kvm_xsave))
4608 			r = sizeof(struct kvm_xsave);
4609 		break;
4610 	}
4611 	case KVM_CAP_PMU_CAPABILITY:
4612 		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4613 		break;
4614 	case KVM_CAP_DISABLE_QUIRKS2:
4615 		r = KVM_X86_VALID_QUIRKS;
4616 		break;
4617 	case KVM_CAP_X86_NOTIFY_VMEXIT:
4618 		r = kvm_caps.has_notify_vmexit;
4619 		break;
4620 	default:
4621 		break;
4622 	}
4623 	return r;
4624 }
4625 
4626 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4627 {
4628 	void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4629 
4630 	if ((u64)(unsigned long)uaddr != attr->addr)
4631 		return ERR_PTR_USR(-EFAULT);
4632 	return uaddr;
4633 }
4634 
4635 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4636 {
4637 	u64 __user *uaddr = kvm_get_attr_addr(attr);
4638 
4639 	if (attr->group)
4640 		return -ENXIO;
4641 
4642 	if (IS_ERR(uaddr))
4643 		return PTR_ERR(uaddr);
4644 
4645 	switch (attr->attr) {
4646 	case KVM_X86_XCOMP_GUEST_SUPP:
4647 		if (put_user(kvm_caps.supported_xcr0, uaddr))
4648 			return -EFAULT;
4649 		return 0;
4650 	default:
4651 		return -ENXIO;
4652 		break;
4653 	}
4654 }
4655 
4656 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4657 {
4658 	if (attr->group)
4659 		return -ENXIO;
4660 
4661 	switch (attr->attr) {
4662 	case KVM_X86_XCOMP_GUEST_SUPP:
4663 		return 0;
4664 	default:
4665 		return -ENXIO;
4666 	}
4667 }
4668 
4669 long kvm_arch_dev_ioctl(struct file *filp,
4670 			unsigned int ioctl, unsigned long arg)
4671 {
4672 	void __user *argp = (void __user *)arg;
4673 	long r;
4674 
4675 	switch (ioctl) {
4676 	case KVM_GET_MSR_INDEX_LIST: {
4677 		struct kvm_msr_list __user *user_msr_list = argp;
4678 		struct kvm_msr_list msr_list;
4679 		unsigned n;
4680 
4681 		r = -EFAULT;
4682 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4683 			goto out;
4684 		n = msr_list.nmsrs;
4685 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4686 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4687 			goto out;
4688 		r = -E2BIG;
4689 		if (n < msr_list.nmsrs)
4690 			goto out;
4691 		r = -EFAULT;
4692 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4693 				 num_msrs_to_save * sizeof(u32)))
4694 			goto out;
4695 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4696 				 &emulated_msrs,
4697 				 num_emulated_msrs * sizeof(u32)))
4698 			goto out;
4699 		r = 0;
4700 		break;
4701 	}
4702 	case KVM_GET_SUPPORTED_CPUID:
4703 	case KVM_GET_EMULATED_CPUID: {
4704 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4705 		struct kvm_cpuid2 cpuid;
4706 
4707 		r = -EFAULT;
4708 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4709 			goto out;
4710 
4711 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4712 					    ioctl);
4713 		if (r)
4714 			goto out;
4715 
4716 		r = -EFAULT;
4717 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4718 			goto out;
4719 		r = 0;
4720 		break;
4721 	}
4722 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4723 		r = -EFAULT;
4724 		if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4725 				 sizeof(kvm_caps.supported_mce_cap)))
4726 			goto out;
4727 		r = 0;
4728 		break;
4729 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4730 		struct kvm_msr_list __user *user_msr_list = argp;
4731 		struct kvm_msr_list msr_list;
4732 		unsigned int n;
4733 
4734 		r = -EFAULT;
4735 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4736 			goto out;
4737 		n = msr_list.nmsrs;
4738 		msr_list.nmsrs = num_msr_based_features;
4739 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4740 			goto out;
4741 		r = -E2BIG;
4742 		if (n < msr_list.nmsrs)
4743 			goto out;
4744 		r = -EFAULT;
4745 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4746 				 num_msr_based_features * sizeof(u32)))
4747 			goto out;
4748 		r = 0;
4749 		break;
4750 	}
4751 	case KVM_GET_MSRS:
4752 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4753 		break;
4754 	case KVM_GET_SUPPORTED_HV_CPUID:
4755 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4756 		break;
4757 	case KVM_GET_DEVICE_ATTR: {
4758 		struct kvm_device_attr attr;
4759 		r = -EFAULT;
4760 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4761 			break;
4762 		r = kvm_x86_dev_get_attr(&attr);
4763 		break;
4764 	}
4765 	case KVM_HAS_DEVICE_ATTR: {
4766 		struct kvm_device_attr attr;
4767 		r = -EFAULT;
4768 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4769 			break;
4770 		r = kvm_x86_dev_has_attr(&attr);
4771 		break;
4772 	}
4773 	default:
4774 		r = -EINVAL;
4775 		break;
4776 	}
4777 out:
4778 	return r;
4779 }
4780 
4781 static void wbinvd_ipi(void *garbage)
4782 {
4783 	wbinvd();
4784 }
4785 
4786 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4787 {
4788 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4789 }
4790 
4791 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4792 {
4793 	/* Address WBINVD may be executed by guest */
4794 	if (need_emulate_wbinvd(vcpu)) {
4795 		if (static_call(kvm_x86_has_wbinvd_exit)())
4796 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4797 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4798 			smp_call_function_single(vcpu->cpu,
4799 					wbinvd_ipi, NULL, 1);
4800 	}
4801 
4802 	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4803 
4804 	/* Save host pkru register if supported */
4805 	vcpu->arch.host_pkru = read_pkru();
4806 
4807 	/* Apply any externally detected TSC adjustments (due to suspend) */
4808 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4809 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4810 		vcpu->arch.tsc_offset_adjustment = 0;
4811 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4812 	}
4813 
4814 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4815 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4816 				rdtsc() - vcpu->arch.last_host_tsc;
4817 		if (tsc_delta < 0)
4818 			mark_tsc_unstable("KVM discovered backwards TSC");
4819 
4820 		if (kvm_check_tsc_unstable()) {
4821 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4822 						vcpu->arch.last_guest_tsc);
4823 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4824 			vcpu->arch.tsc_catchup = 1;
4825 		}
4826 
4827 		if (kvm_lapic_hv_timer_in_use(vcpu))
4828 			kvm_lapic_restart_hv_timer(vcpu);
4829 
4830 		/*
4831 		 * On a host with synchronized TSC, there is no need to update
4832 		 * kvmclock on vcpu->cpu migration
4833 		 */
4834 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4835 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4836 		if (vcpu->cpu != cpu)
4837 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4838 		vcpu->cpu = cpu;
4839 	}
4840 
4841 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4842 }
4843 
4844 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4845 {
4846 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4847 	struct kvm_steal_time __user *st;
4848 	struct kvm_memslots *slots;
4849 	static const u8 preempted = KVM_VCPU_PREEMPTED;
4850 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
4851 
4852 	/*
4853 	 * The vCPU can be marked preempted if and only if the VM-Exit was on
4854 	 * an instruction boundary and will not trigger guest emulation of any
4855 	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
4856 	 * when this is true, for example allowing the vCPU to be marked
4857 	 * preempted if and only if the VM-Exit was due to a host interrupt.
4858 	 */
4859 	if (!vcpu->arch.at_instruction_boundary) {
4860 		vcpu->stat.preemption_other++;
4861 		return;
4862 	}
4863 
4864 	vcpu->stat.preemption_reported++;
4865 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4866 		return;
4867 
4868 	if (vcpu->arch.st.preempted)
4869 		return;
4870 
4871 	/* This happens on process exit */
4872 	if (unlikely(current->mm != vcpu->kvm->mm))
4873 		return;
4874 
4875 	slots = kvm_memslots(vcpu->kvm);
4876 
4877 	if (unlikely(slots->generation != ghc->generation ||
4878 		     gpa != ghc->gpa ||
4879 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4880 		return;
4881 
4882 	st = (struct kvm_steal_time __user *)ghc->hva;
4883 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4884 
4885 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4886 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4887 
4888 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4889 }
4890 
4891 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4892 {
4893 	int idx;
4894 
4895 	if (vcpu->preempted) {
4896 		if (!vcpu->arch.guest_state_protected)
4897 			vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4898 
4899 		/*
4900 		 * Take the srcu lock as memslots will be accessed to check the gfn
4901 		 * cache generation against the memslots generation.
4902 		 */
4903 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4904 		if (kvm_xen_msr_enabled(vcpu->kvm))
4905 			kvm_xen_runstate_set_preempted(vcpu);
4906 		else
4907 			kvm_steal_time_set_preempted(vcpu);
4908 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4909 	}
4910 
4911 	static_call(kvm_x86_vcpu_put)(vcpu);
4912 	vcpu->arch.last_host_tsc = rdtsc();
4913 }
4914 
4915 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4916 				    struct kvm_lapic_state *s)
4917 {
4918 	static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4919 
4920 	return kvm_apic_get_state(vcpu, s);
4921 }
4922 
4923 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4924 				    struct kvm_lapic_state *s)
4925 {
4926 	int r;
4927 
4928 	r = kvm_apic_set_state(vcpu, s);
4929 	if (r)
4930 		return r;
4931 	update_cr8_intercept(vcpu);
4932 
4933 	return 0;
4934 }
4935 
4936 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4937 {
4938 	/*
4939 	 * We can accept userspace's request for interrupt injection
4940 	 * as long as we have a place to store the interrupt number.
4941 	 * The actual injection will happen when the CPU is able to
4942 	 * deliver the interrupt.
4943 	 */
4944 	if (kvm_cpu_has_extint(vcpu))
4945 		return false;
4946 
4947 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4948 	return (!lapic_in_kernel(vcpu) ||
4949 		kvm_apic_accept_pic_intr(vcpu));
4950 }
4951 
4952 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4953 {
4954 	/*
4955 	 * Do not cause an interrupt window exit if an exception
4956 	 * is pending or an event needs reinjection; userspace
4957 	 * might want to inject the interrupt manually using KVM_SET_REGS
4958 	 * or KVM_SET_SREGS.  For that to work, we must be at an
4959 	 * instruction boundary and with no events half-injected.
4960 	 */
4961 	return (kvm_arch_interrupt_allowed(vcpu) &&
4962 		kvm_cpu_accept_dm_intr(vcpu) &&
4963 		!kvm_event_needs_reinjection(vcpu) &&
4964 		!kvm_is_exception_pending(vcpu));
4965 }
4966 
4967 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4968 				    struct kvm_interrupt *irq)
4969 {
4970 	if (irq->irq >= KVM_NR_INTERRUPTS)
4971 		return -EINVAL;
4972 
4973 	if (!irqchip_in_kernel(vcpu->kvm)) {
4974 		kvm_queue_interrupt(vcpu, irq->irq, false);
4975 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4976 		return 0;
4977 	}
4978 
4979 	/*
4980 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4981 	 * fail for in-kernel 8259.
4982 	 */
4983 	if (pic_in_kernel(vcpu->kvm))
4984 		return -ENXIO;
4985 
4986 	if (vcpu->arch.pending_external_vector != -1)
4987 		return -EEXIST;
4988 
4989 	vcpu->arch.pending_external_vector = irq->irq;
4990 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4991 	return 0;
4992 }
4993 
4994 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4995 {
4996 	kvm_inject_nmi(vcpu);
4997 
4998 	return 0;
4999 }
5000 
5001 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5002 					   struct kvm_tpr_access_ctl *tac)
5003 {
5004 	if (tac->flags)
5005 		return -EINVAL;
5006 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
5007 	return 0;
5008 }
5009 
5010 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5011 					u64 mcg_cap)
5012 {
5013 	int r;
5014 	unsigned bank_num = mcg_cap & 0xff, bank;
5015 
5016 	r = -EINVAL;
5017 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5018 		goto out;
5019 	if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5020 		goto out;
5021 	r = 0;
5022 	vcpu->arch.mcg_cap = mcg_cap;
5023 	/* Init IA32_MCG_CTL to all 1s */
5024 	if (mcg_cap & MCG_CTL_P)
5025 		vcpu->arch.mcg_ctl = ~(u64)0;
5026 	/* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5027 	for (bank = 0; bank < bank_num; bank++) {
5028 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5029 		if (mcg_cap & MCG_CMCI_P)
5030 			vcpu->arch.mci_ctl2_banks[bank] = 0;
5031 	}
5032 
5033 	kvm_apic_after_set_mcg_cap(vcpu);
5034 
5035 	static_call(kvm_x86_setup_mce)(vcpu);
5036 out:
5037 	return r;
5038 }
5039 
5040 /*
5041  * Validate this is an UCNA (uncorrectable no action) error by checking the
5042  * MCG_STATUS and MCi_STATUS registers:
5043  * - none of the bits for Machine Check Exceptions are set
5044  * - both the VAL (valid) and UC (uncorrectable) bits are set
5045  * MCI_STATUS_PCC - Processor Context Corrupted
5046  * MCI_STATUS_S - Signaled as a Machine Check Exception
5047  * MCI_STATUS_AR - Software recoverable Action Required
5048  */
5049 static bool is_ucna(struct kvm_x86_mce *mce)
5050 {
5051 	return	!mce->mcg_status &&
5052 		!(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5053 		(mce->status & MCI_STATUS_VAL) &&
5054 		(mce->status & MCI_STATUS_UC);
5055 }
5056 
5057 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5058 {
5059 	u64 mcg_cap = vcpu->arch.mcg_cap;
5060 
5061 	banks[1] = mce->status;
5062 	banks[2] = mce->addr;
5063 	banks[3] = mce->misc;
5064 	vcpu->arch.mcg_status = mce->mcg_status;
5065 
5066 	if (!(mcg_cap & MCG_CMCI_P) ||
5067 	    !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5068 		return 0;
5069 
5070 	if (lapic_in_kernel(vcpu))
5071 		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5072 
5073 	return 0;
5074 }
5075 
5076 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5077 				      struct kvm_x86_mce *mce)
5078 {
5079 	u64 mcg_cap = vcpu->arch.mcg_cap;
5080 	unsigned bank_num = mcg_cap & 0xff;
5081 	u64 *banks = vcpu->arch.mce_banks;
5082 
5083 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5084 		return -EINVAL;
5085 
5086 	banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5087 
5088 	if (is_ucna(mce))
5089 		return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5090 
5091 	/*
5092 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5093 	 * reporting is disabled
5094 	 */
5095 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5096 	    vcpu->arch.mcg_ctl != ~(u64)0)
5097 		return 0;
5098 	/*
5099 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5100 	 * reporting is disabled for the bank
5101 	 */
5102 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5103 		return 0;
5104 	if (mce->status & MCI_STATUS_UC) {
5105 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5106 		    !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5107 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5108 			return 0;
5109 		}
5110 		if (banks[1] & MCI_STATUS_VAL)
5111 			mce->status |= MCI_STATUS_OVER;
5112 		banks[2] = mce->addr;
5113 		banks[3] = mce->misc;
5114 		vcpu->arch.mcg_status = mce->mcg_status;
5115 		banks[1] = mce->status;
5116 		kvm_queue_exception(vcpu, MC_VECTOR);
5117 	} else if (!(banks[1] & MCI_STATUS_VAL)
5118 		   || !(banks[1] & MCI_STATUS_UC)) {
5119 		if (banks[1] & MCI_STATUS_VAL)
5120 			mce->status |= MCI_STATUS_OVER;
5121 		banks[2] = mce->addr;
5122 		banks[3] = mce->misc;
5123 		banks[1] = mce->status;
5124 	} else
5125 		banks[1] |= MCI_STATUS_OVER;
5126 	return 0;
5127 }
5128 
5129 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5130 					       struct kvm_vcpu_events *events)
5131 {
5132 	struct kvm_queued_exception *ex;
5133 
5134 	process_nmi(vcpu);
5135 
5136 #ifdef CONFIG_KVM_SMM
5137 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
5138 		process_smi(vcpu);
5139 #endif
5140 
5141 	/*
5142 	 * KVM's ABI only allows for one exception to be migrated.  Luckily,
5143 	 * the only time there can be two queued exceptions is if there's a
5144 	 * non-exiting _injected_ exception, and a pending exiting exception.
5145 	 * In that case, ignore the VM-Exiting exception as it's an extension
5146 	 * of the injected exception.
5147 	 */
5148 	if (vcpu->arch.exception_vmexit.pending &&
5149 	    !vcpu->arch.exception.pending &&
5150 	    !vcpu->arch.exception.injected)
5151 		ex = &vcpu->arch.exception_vmexit;
5152 	else
5153 		ex = &vcpu->arch.exception;
5154 
5155 	/*
5156 	 * In guest mode, payload delivery should be deferred if the exception
5157 	 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5158 	 * intercepts #PF, ditto for DR6 and #DBs.  If the per-VM capability,
5159 	 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5160 	 * propagate the payload and so it cannot be safely deferred.  Deliver
5161 	 * the payload if the capability hasn't been requested.
5162 	 */
5163 	if (!vcpu->kvm->arch.exception_payload_enabled &&
5164 	    ex->pending && ex->has_payload)
5165 		kvm_deliver_exception_payload(vcpu, ex);
5166 
5167 	memset(events, 0, sizeof(*events));
5168 
5169 	/*
5170 	 * The API doesn't provide the instruction length for software
5171 	 * exceptions, so don't report them. As long as the guest RIP
5172 	 * isn't advanced, we should expect to encounter the exception
5173 	 * again.
5174 	 */
5175 	if (!kvm_exception_is_soft(ex->vector)) {
5176 		events->exception.injected = ex->injected;
5177 		events->exception.pending = ex->pending;
5178 		/*
5179 		 * For ABI compatibility, deliberately conflate
5180 		 * pending and injected exceptions when
5181 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5182 		 */
5183 		if (!vcpu->kvm->arch.exception_payload_enabled)
5184 			events->exception.injected |= ex->pending;
5185 	}
5186 	events->exception.nr = ex->vector;
5187 	events->exception.has_error_code = ex->has_error_code;
5188 	events->exception.error_code = ex->error_code;
5189 	events->exception_has_payload = ex->has_payload;
5190 	events->exception_payload = ex->payload;
5191 
5192 	events->interrupt.injected =
5193 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5194 	events->interrupt.nr = vcpu->arch.interrupt.nr;
5195 	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5196 
5197 	events->nmi.injected = vcpu->arch.nmi_injected;
5198 	events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5199 	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5200 
5201 	/* events->sipi_vector is never valid when reporting to user space */
5202 
5203 #ifdef CONFIG_KVM_SMM
5204 	events->smi.smm = is_smm(vcpu);
5205 	events->smi.pending = vcpu->arch.smi_pending;
5206 	events->smi.smm_inside_nmi =
5207 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5208 #endif
5209 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5210 
5211 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5212 			 | KVM_VCPUEVENT_VALID_SHADOW
5213 			 | KVM_VCPUEVENT_VALID_SMM);
5214 	if (vcpu->kvm->arch.exception_payload_enabled)
5215 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5216 	if (vcpu->kvm->arch.triple_fault_event) {
5217 		events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5218 		events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5219 	}
5220 }
5221 
5222 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5223 					      struct kvm_vcpu_events *events)
5224 {
5225 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5226 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5227 			      | KVM_VCPUEVENT_VALID_SHADOW
5228 			      | KVM_VCPUEVENT_VALID_SMM
5229 			      | KVM_VCPUEVENT_VALID_PAYLOAD
5230 			      | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5231 		return -EINVAL;
5232 
5233 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5234 		if (!vcpu->kvm->arch.exception_payload_enabled)
5235 			return -EINVAL;
5236 		if (events->exception.pending)
5237 			events->exception.injected = 0;
5238 		else
5239 			events->exception_has_payload = 0;
5240 	} else {
5241 		events->exception.pending = 0;
5242 		events->exception_has_payload = 0;
5243 	}
5244 
5245 	if ((events->exception.injected || events->exception.pending) &&
5246 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5247 		return -EINVAL;
5248 
5249 	/* INITs are latched while in SMM */
5250 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5251 	    (events->smi.smm || events->smi.pending) &&
5252 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5253 		return -EINVAL;
5254 
5255 	process_nmi(vcpu);
5256 
5257 	/*
5258 	 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5259 	 * morph the exception to a VM-Exit if appropriate.  Do this only for
5260 	 * pending exceptions, already-injected exceptions are not subject to
5261 	 * intercpetion.  Note, userspace that conflates pending and injected
5262 	 * is hosed, and will incorrectly convert an injected exception into a
5263 	 * pending exception, which in turn may cause a spurious VM-Exit.
5264 	 */
5265 	vcpu->arch.exception_from_userspace = events->exception.pending;
5266 
5267 	vcpu->arch.exception_vmexit.pending = false;
5268 
5269 	vcpu->arch.exception.injected = events->exception.injected;
5270 	vcpu->arch.exception.pending = events->exception.pending;
5271 	vcpu->arch.exception.vector = events->exception.nr;
5272 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5273 	vcpu->arch.exception.error_code = events->exception.error_code;
5274 	vcpu->arch.exception.has_payload = events->exception_has_payload;
5275 	vcpu->arch.exception.payload = events->exception_payload;
5276 
5277 	vcpu->arch.interrupt.injected = events->interrupt.injected;
5278 	vcpu->arch.interrupt.nr = events->interrupt.nr;
5279 	vcpu->arch.interrupt.soft = events->interrupt.soft;
5280 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5281 		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5282 						events->interrupt.shadow);
5283 
5284 	vcpu->arch.nmi_injected = events->nmi.injected;
5285 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5286 		vcpu->arch.nmi_pending = 0;
5287 		atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5288 		kvm_make_request(KVM_REQ_NMI, vcpu);
5289 	}
5290 	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5291 
5292 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5293 	    lapic_in_kernel(vcpu))
5294 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
5295 
5296 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5297 #ifdef CONFIG_KVM_SMM
5298 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5299 			kvm_leave_nested(vcpu);
5300 			kvm_smm_changed(vcpu, events->smi.smm);
5301 		}
5302 
5303 		vcpu->arch.smi_pending = events->smi.pending;
5304 
5305 		if (events->smi.smm) {
5306 			if (events->smi.smm_inside_nmi)
5307 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5308 			else
5309 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5310 		}
5311 
5312 #else
5313 		if (events->smi.smm || events->smi.pending ||
5314 		    events->smi.smm_inside_nmi)
5315 			return -EINVAL;
5316 #endif
5317 
5318 		if (lapic_in_kernel(vcpu)) {
5319 			if (events->smi.latched_init)
5320 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5321 			else
5322 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5323 		}
5324 	}
5325 
5326 	if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5327 		if (!vcpu->kvm->arch.triple_fault_event)
5328 			return -EINVAL;
5329 		if (events->triple_fault.pending)
5330 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5331 		else
5332 			kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5333 	}
5334 
5335 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5336 
5337 	return 0;
5338 }
5339 
5340 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5341 					     struct kvm_debugregs *dbgregs)
5342 {
5343 	unsigned long val;
5344 
5345 	memset(dbgregs, 0, sizeof(*dbgregs));
5346 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5347 	kvm_get_dr(vcpu, 6, &val);
5348 	dbgregs->dr6 = val;
5349 	dbgregs->dr7 = vcpu->arch.dr7;
5350 }
5351 
5352 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5353 					    struct kvm_debugregs *dbgregs)
5354 {
5355 	if (dbgregs->flags)
5356 		return -EINVAL;
5357 
5358 	if (!kvm_dr6_valid(dbgregs->dr6))
5359 		return -EINVAL;
5360 	if (!kvm_dr7_valid(dbgregs->dr7))
5361 		return -EINVAL;
5362 
5363 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5364 	kvm_update_dr0123(vcpu);
5365 	vcpu->arch.dr6 = dbgregs->dr6;
5366 	vcpu->arch.dr7 = dbgregs->dr7;
5367 	kvm_update_dr7(vcpu);
5368 
5369 	return 0;
5370 }
5371 
5372 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5373 					 struct kvm_xsave *guest_xsave)
5374 {
5375 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5376 		return;
5377 
5378 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5379 				       guest_xsave->region,
5380 				       sizeof(guest_xsave->region),
5381 				       vcpu->arch.pkru);
5382 }
5383 
5384 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5385 					  u8 *state, unsigned int size)
5386 {
5387 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5388 		return;
5389 
5390 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5391 				       state, size, vcpu->arch.pkru);
5392 }
5393 
5394 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5395 					struct kvm_xsave *guest_xsave)
5396 {
5397 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5398 		return 0;
5399 
5400 	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5401 					      guest_xsave->region,
5402 					      kvm_caps.supported_xcr0,
5403 					      &vcpu->arch.pkru);
5404 }
5405 
5406 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5407 					struct kvm_xcrs *guest_xcrs)
5408 {
5409 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5410 		guest_xcrs->nr_xcrs = 0;
5411 		return;
5412 	}
5413 
5414 	guest_xcrs->nr_xcrs = 1;
5415 	guest_xcrs->flags = 0;
5416 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5417 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5418 }
5419 
5420 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5421 				       struct kvm_xcrs *guest_xcrs)
5422 {
5423 	int i, r = 0;
5424 
5425 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5426 		return -EINVAL;
5427 
5428 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5429 		return -EINVAL;
5430 
5431 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5432 		/* Only support XCR0 currently */
5433 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5434 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5435 				guest_xcrs->xcrs[i].value);
5436 			break;
5437 		}
5438 	if (r)
5439 		r = -EINVAL;
5440 	return r;
5441 }
5442 
5443 /*
5444  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5445  * stopped by the hypervisor.  This function will be called from the host only.
5446  * EINVAL is returned when the host attempts to set the flag for a guest that
5447  * does not support pv clocks.
5448  */
5449 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5450 {
5451 	if (!vcpu->arch.pv_time.active)
5452 		return -EINVAL;
5453 	vcpu->arch.pvclock_set_guest_stopped_request = true;
5454 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5455 	return 0;
5456 }
5457 
5458 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5459 				 struct kvm_device_attr *attr)
5460 {
5461 	int r;
5462 
5463 	switch (attr->attr) {
5464 	case KVM_VCPU_TSC_OFFSET:
5465 		r = 0;
5466 		break;
5467 	default:
5468 		r = -ENXIO;
5469 	}
5470 
5471 	return r;
5472 }
5473 
5474 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5475 				 struct kvm_device_attr *attr)
5476 {
5477 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5478 	int r;
5479 
5480 	if (IS_ERR(uaddr))
5481 		return PTR_ERR(uaddr);
5482 
5483 	switch (attr->attr) {
5484 	case KVM_VCPU_TSC_OFFSET:
5485 		r = -EFAULT;
5486 		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5487 			break;
5488 		r = 0;
5489 		break;
5490 	default:
5491 		r = -ENXIO;
5492 	}
5493 
5494 	return r;
5495 }
5496 
5497 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5498 				 struct kvm_device_attr *attr)
5499 {
5500 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5501 	struct kvm *kvm = vcpu->kvm;
5502 	int r;
5503 
5504 	if (IS_ERR(uaddr))
5505 		return PTR_ERR(uaddr);
5506 
5507 	switch (attr->attr) {
5508 	case KVM_VCPU_TSC_OFFSET: {
5509 		u64 offset, tsc, ns;
5510 		unsigned long flags;
5511 		bool matched;
5512 
5513 		r = -EFAULT;
5514 		if (get_user(offset, uaddr))
5515 			break;
5516 
5517 		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5518 
5519 		matched = (vcpu->arch.virtual_tsc_khz &&
5520 			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5521 			   kvm->arch.last_tsc_offset == offset);
5522 
5523 		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5524 		ns = get_kvmclock_base_ns();
5525 
5526 		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5527 		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5528 
5529 		r = 0;
5530 		break;
5531 	}
5532 	default:
5533 		r = -ENXIO;
5534 	}
5535 
5536 	return r;
5537 }
5538 
5539 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5540 				      unsigned int ioctl,
5541 				      void __user *argp)
5542 {
5543 	struct kvm_device_attr attr;
5544 	int r;
5545 
5546 	if (copy_from_user(&attr, argp, sizeof(attr)))
5547 		return -EFAULT;
5548 
5549 	if (attr.group != KVM_VCPU_TSC_CTRL)
5550 		return -ENXIO;
5551 
5552 	switch (ioctl) {
5553 	case KVM_HAS_DEVICE_ATTR:
5554 		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5555 		break;
5556 	case KVM_GET_DEVICE_ATTR:
5557 		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5558 		break;
5559 	case KVM_SET_DEVICE_ATTR:
5560 		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5561 		break;
5562 	}
5563 
5564 	return r;
5565 }
5566 
5567 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5568 				     struct kvm_enable_cap *cap)
5569 {
5570 	int r;
5571 	uint16_t vmcs_version;
5572 	void __user *user_ptr;
5573 
5574 	if (cap->flags)
5575 		return -EINVAL;
5576 
5577 	switch (cap->cap) {
5578 	case KVM_CAP_HYPERV_SYNIC2:
5579 		if (cap->args[0])
5580 			return -EINVAL;
5581 		fallthrough;
5582 
5583 	case KVM_CAP_HYPERV_SYNIC:
5584 		if (!irqchip_in_kernel(vcpu->kvm))
5585 			return -EINVAL;
5586 		return kvm_hv_activate_synic(vcpu, cap->cap ==
5587 					     KVM_CAP_HYPERV_SYNIC2);
5588 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5589 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
5590 			return -ENOTTY;
5591 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5592 		if (!r) {
5593 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
5594 			if (copy_to_user(user_ptr, &vmcs_version,
5595 					 sizeof(vmcs_version)))
5596 				r = -EFAULT;
5597 		}
5598 		return r;
5599 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5600 		if (!kvm_x86_ops.enable_l2_tlb_flush)
5601 			return -ENOTTY;
5602 
5603 		return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu);
5604 
5605 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5606 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5607 
5608 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5609 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5610 		if (vcpu->arch.pv_cpuid.enforce)
5611 			kvm_update_pv_runtime(vcpu);
5612 
5613 		return 0;
5614 	default:
5615 		return -EINVAL;
5616 	}
5617 }
5618 
5619 long kvm_arch_vcpu_ioctl(struct file *filp,
5620 			 unsigned int ioctl, unsigned long arg)
5621 {
5622 	struct kvm_vcpu *vcpu = filp->private_data;
5623 	void __user *argp = (void __user *)arg;
5624 	int r;
5625 	union {
5626 		struct kvm_sregs2 *sregs2;
5627 		struct kvm_lapic_state *lapic;
5628 		struct kvm_xsave *xsave;
5629 		struct kvm_xcrs *xcrs;
5630 		void *buffer;
5631 	} u;
5632 
5633 	vcpu_load(vcpu);
5634 
5635 	u.buffer = NULL;
5636 	switch (ioctl) {
5637 	case KVM_GET_LAPIC: {
5638 		r = -EINVAL;
5639 		if (!lapic_in_kernel(vcpu))
5640 			goto out;
5641 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5642 				GFP_KERNEL_ACCOUNT);
5643 
5644 		r = -ENOMEM;
5645 		if (!u.lapic)
5646 			goto out;
5647 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5648 		if (r)
5649 			goto out;
5650 		r = -EFAULT;
5651 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5652 			goto out;
5653 		r = 0;
5654 		break;
5655 	}
5656 	case KVM_SET_LAPIC: {
5657 		r = -EINVAL;
5658 		if (!lapic_in_kernel(vcpu))
5659 			goto out;
5660 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5661 		if (IS_ERR(u.lapic)) {
5662 			r = PTR_ERR(u.lapic);
5663 			goto out_nofree;
5664 		}
5665 
5666 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5667 		break;
5668 	}
5669 	case KVM_INTERRUPT: {
5670 		struct kvm_interrupt irq;
5671 
5672 		r = -EFAULT;
5673 		if (copy_from_user(&irq, argp, sizeof(irq)))
5674 			goto out;
5675 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5676 		break;
5677 	}
5678 	case KVM_NMI: {
5679 		r = kvm_vcpu_ioctl_nmi(vcpu);
5680 		break;
5681 	}
5682 	case KVM_SMI: {
5683 		r = kvm_inject_smi(vcpu);
5684 		break;
5685 	}
5686 	case KVM_SET_CPUID: {
5687 		struct kvm_cpuid __user *cpuid_arg = argp;
5688 		struct kvm_cpuid cpuid;
5689 
5690 		r = -EFAULT;
5691 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5692 			goto out;
5693 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5694 		break;
5695 	}
5696 	case KVM_SET_CPUID2: {
5697 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5698 		struct kvm_cpuid2 cpuid;
5699 
5700 		r = -EFAULT;
5701 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5702 			goto out;
5703 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5704 					      cpuid_arg->entries);
5705 		break;
5706 	}
5707 	case KVM_GET_CPUID2: {
5708 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5709 		struct kvm_cpuid2 cpuid;
5710 
5711 		r = -EFAULT;
5712 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5713 			goto out;
5714 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5715 					      cpuid_arg->entries);
5716 		if (r)
5717 			goto out;
5718 		r = -EFAULT;
5719 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5720 			goto out;
5721 		r = 0;
5722 		break;
5723 	}
5724 	case KVM_GET_MSRS: {
5725 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5726 		r = msr_io(vcpu, argp, do_get_msr, 1);
5727 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5728 		break;
5729 	}
5730 	case KVM_SET_MSRS: {
5731 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5732 		r = msr_io(vcpu, argp, do_set_msr, 0);
5733 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5734 		break;
5735 	}
5736 	case KVM_TPR_ACCESS_REPORTING: {
5737 		struct kvm_tpr_access_ctl tac;
5738 
5739 		r = -EFAULT;
5740 		if (copy_from_user(&tac, argp, sizeof(tac)))
5741 			goto out;
5742 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5743 		if (r)
5744 			goto out;
5745 		r = -EFAULT;
5746 		if (copy_to_user(argp, &tac, sizeof(tac)))
5747 			goto out;
5748 		r = 0;
5749 		break;
5750 	};
5751 	case KVM_SET_VAPIC_ADDR: {
5752 		struct kvm_vapic_addr va;
5753 		int idx;
5754 
5755 		r = -EINVAL;
5756 		if (!lapic_in_kernel(vcpu))
5757 			goto out;
5758 		r = -EFAULT;
5759 		if (copy_from_user(&va, argp, sizeof(va)))
5760 			goto out;
5761 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5762 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5763 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5764 		break;
5765 	}
5766 	case KVM_X86_SETUP_MCE: {
5767 		u64 mcg_cap;
5768 
5769 		r = -EFAULT;
5770 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5771 			goto out;
5772 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5773 		break;
5774 	}
5775 	case KVM_X86_SET_MCE: {
5776 		struct kvm_x86_mce mce;
5777 
5778 		r = -EFAULT;
5779 		if (copy_from_user(&mce, argp, sizeof(mce)))
5780 			goto out;
5781 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5782 		break;
5783 	}
5784 	case KVM_GET_VCPU_EVENTS: {
5785 		struct kvm_vcpu_events events;
5786 
5787 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5788 
5789 		r = -EFAULT;
5790 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5791 			break;
5792 		r = 0;
5793 		break;
5794 	}
5795 	case KVM_SET_VCPU_EVENTS: {
5796 		struct kvm_vcpu_events events;
5797 
5798 		r = -EFAULT;
5799 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5800 			break;
5801 
5802 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5803 		break;
5804 	}
5805 	case KVM_GET_DEBUGREGS: {
5806 		struct kvm_debugregs dbgregs;
5807 
5808 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5809 
5810 		r = -EFAULT;
5811 		if (copy_to_user(argp, &dbgregs,
5812 				 sizeof(struct kvm_debugregs)))
5813 			break;
5814 		r = 0;
5815 		break;
5816 	}
5817 	case KVM_SET_DEBUGREGS: {
5818 		struct kvm_debugregs dbgregs;
5819 
5820 		r = -EFAULT;
5821 		if (copy_from_user(&dbgregs, argp,
5822 				   sizeof(struct kvm_debugregs)))
5823 			break;
5824 
5825 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5826 		break;
5827 	}
5828 	case KVM_GET_XSAVE: {
5829 		r = -EINVAL;
5830 		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5831 			break;
5832 
5833 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5834 		r = -ENOMEM;
5835 		if (!u.xsave)
5836 			break;
5837 
5838 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5839 
5840 		r = -EFAULT;
5841 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5842 			break;
5843 		r = 0;
5844 		break;
5845 	}
5846 	case KVM_SET_XSAVE: {
5847 		int size = vcpu->arch.guest_fpu.uabi_size;
5848 
5849 		u.xsave = memdup_user(argp, size);
5850 		if (IS_ERR(u.xsave)) {
5851 			r = PTR_ERR(u.xsave);
5852 			goto out_nofree;
5853 		}
5854 
5855 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5856 		break;
5857 	}
5858 
5859 	case KVM_GET_XSAVE2: {
5860 		int size = vcpu->arch.guest_fpu.uabi_size;
5861 
5862 		u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5863 		r = -ENOMEM;
5864 		if (!u.xsave)
5865 			break;
5866 
5867 		kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5868 
5869 		r = -EFAULT;
5870 		if (copy_to_user(argp, u.xsave, size))
5871 			break;
5872 
5873 		r = 0;
5874 		break;
5875 	}
5876 
5877 	case KVM_GET_XCRS: {
5878 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5879 		r = -ENOMEM;
5880 		if (!u.xcrs)
5881 			break;
5882 
5883 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5884 
5885 		r = -EFAULT;
5886 		if (copy_to_user(argp, u.xcrs,
5887 				 sizeof(struct kvm_xcrs)))
5888 			break;
5889 		r = 0;
5890 		break;
5891 	}
5892 	case KVM_SET_XCRS: {
5893 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5894 		if (IS_ERR(u.xcrs)) {
5895 			r = PTR_ERR(u.xcrs);
5896 			goto out_nofree;
5897 		}
5898 
5899 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5900 		break;
5901 	}
5902 	case KVM_SET_TSC_KHZ: {
5903 		u32 user_tsc_khz;
5904 
5905 		r = -EINVAL;
5906 		user_tsc_khz = (u32)arg;
5907 
5908 		if (kvm_caps.has_tsc_control &&
5909 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
5910 			goto out;
5911 
5912 		if (user_tsc_khz == 0)
5913 			user_tsc_khz = tsc_khz;
5914 
5915 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5916 			r = 0;
5917 
5918 		goto out;
5919 	}
5920 	case KVM_GET_TSC_KHZ: {
5921 		r = vcpu->arch.virtual_tsc_khz;
5922 		goto out;
5923 	}
5924 	case KVM_KVMCLOCK_CTRL: {
5925 		r = kvm_set_guest_paused(vcpu);
5926 		goto out;
5927 	}
5928 	case KVM_ENABLE_CAP: {
5929 		struct kvm_enable_cap cap;
5930 
5931 		r = -EFAULT;
5932 		if (copy_from_user(&cap, argp, sizeof(cap)))
5933 			goto out;
5934 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5935 		break;
5936 	}
5937 	case KVM_GET_NESTED_STATE: {
5938 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5939 		u32 user_data_size;
5940 
5941 		r = -EINVAL;
5942 		if (!kvm_x86_ops.nested_ops->get_state)
5943 			break;
5944 
5945 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5946 		r = -EFAULT;
5947 		if (get_user(user_data_size, &user_kvm_nested_state->size))
5948 			break;
5949 
5950 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5951 						     user_data_size);
5952 		if (r < 0)
5953 			break;
5954 
5955 		if (r > user_data_size) {
5956 			if (put_user(r, &user_kvm_nested_state->size))
5957 				r = -EFAULT;
5958 			else
5959 				r = -E2BIG;
5960 			break;
5961 		}
5962 
5963 		r = 0;
5964 		break;
5965 	}
5966 	case KVM_SET_NESTED_STATE: {
5967 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5968 		struct kvm_nested_state kvm_state;
5969 		int idx;
5970 
5971 		r = -EINVAL;
5972 		if (!kvm_x86_ops.nested_ops->set_state)
5973 			break;
5974 
5975 		r = -EFAULT;
5976 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5977 			break;
5978 
5979 		r = -EINVAL;
5980 		if (kvm_state.size < sizeof(kvm_state))
5981 			break;
5982 
5983 		if (kvm_state.flags &
5984 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5985 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5986 		      | KVM_STATE_NESTED_GIF_SET))
5987 			break;
5988 
5989 		/* nested_run_pending implies guest_mode.  */
5990 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5991 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5992 			break;
5993 
5994 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5995 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5996 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5997 		break;
5998 	}
5999 	case KVM_GET_SUPPORTED_HV_CPUID:
6000 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6001 		break;
6002 #ifdef CONFIG_KVM_XEN
6003 	case KVM_XEN_VCPU_GET_ATTR: {
6004 		struct kvm_xen_vcpu_attr xva;
6005 
6006 		r = -EFAULT;
6007 		if (copy_from_user(&xva, argp, sizeof(xva)))
6008 			goto out;
6009 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6010 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6011 			r = -EFAULT;
6012 		break;
6013 	}
6014 	case KVM_XEN_VCPU_SET_ATTR: {
6015 		struct kvm_xen_vcpu_attr xva;
6016 
6017 		r = -EFAULT;
6018 		if (copy_from_user(&xva, argp, sizeof(xva)))
6019 			goto out;
6020 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6021 		break;
6022 	}
6023 #endif
6024 	case KVM_GET_SREGS2: {
6025 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6026 		r = -ENOMEM;
6027 		if (!u.sregs2)
6028 			goto out;
6029 		__get_sregs2(vcpu, u.sregs2);
6030 		r = -EFAULT;
6031 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6032 			goto out;
6033 		r = 0;
6034 		break;
6035 	}
6036 	case KVM_SET_SREGS2: {
6037 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6038 		if (IS_ERR(u.sregs2)) {
6039 			r = PTR_ERR(u.sregs2);
6040 			u.sregs2 = NULL;
6041 			goto out;
6042 		}
6043 		r = __set_sregs2(vcpu, u.sregs2);
6044 		break;
6045 	}
6046 	case KVM_HAS_DEVICE_ATTR:
6047 	case KVM_GET_DEVICE_ATTR:
6048 	case KVM_SET_DEVICE_ATTR:
6049 		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6050 		break;
6051 	default:
6052 		r = -EINVAL;
6053 	}
6054 out:
6055 	kfree(u.buffer);
6056 out_nofree:
6057 	vcpu_put(vcpu);
6058 	return r;
6059 }
6060 
6061 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6062 {
6063 	return VM_FAULT_SIGBUS;
6064 }
6065 
6066 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6067 {
6068 	int ret;
6069 
6070 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
6071 		return -EINVAL;
6072 	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
6073 	return ret;
6074 }
6075 
6076 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6077 					      u64 ident_addr)
6078 {
6079 	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
6080 }
6081 
6082 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6083 					 unsigned long kvm_nr_mmu_pages)
6084 {
6085 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6086 		return -EINVAL;
6087 
6088 	mutex_lock(&kvm->slots_lock);
6089 
6090 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6091 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6092 
6093 	mutex_unlock(&kvm->slots_lock);
6094 	return 0;
6095 }
6096 
6097 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6098 {
6099 	struct kvm_pic *pic = kvm->arch.vpic;
6100 	int r;
6101 
6102 	r = 0;
6103 	switch (chip->chip_id) {
6104 	case KVM_IRQCHIP_PIC_MASTER:
6105 		memcpy(&chip->chip.pic, &pic->pics[0],
6106 			sizeof(struct kvm_pic_state));
6107 		break;
6108 	case KVM_IRQCHIP_PIC_SLAVE:
6109 		memcpy(&chip->chip.pic, &pic->pics[1],
6110 			sizeof(struct kvm_pic_state));
6111 		break;
6112 	case KVM_IRQCHIP_IOAPIC:
6113 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
6114 		break;
6115 	default:
6116 		r = -EINVAL;
6117 		break;
6118 	}
6119 	return r;
6120 }
6121 
6122 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6123 {
6124 	struct kvm_pic *pic = kvm->arch.vpic;
6125 	int r;
6126 
6127 	r = 0;
6128 	switch (chip->chip_id) {
6129 	case KVM_IRQCHIP_PIC_MASTER:
6130 		spin_lock(&pic->lock);
6131 		memcpy(&pic->pics[0], &chip->chip.pic,
6132 			sizeof(struct kvm_pic_state));
6133 		spin_unlock(&pic->lock);
6134 		break;
6135 	case KVM_IRQCHIP_PIC_SLAVE:
6136 		spin_lock(&pic->lock);
6137 		memcpy(&pic->pics[1], &chip->chip.pic,
6138 			sizeof(struct kvm_pic_state));
6139 		spin_unlock(&pic->lock);
6140 		break;
6141 	case KVM_IRQCHIP_IOAPIC:
6142 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
6143 		break;
6144 	default:
6145 		r = -EINVAL;
6146 		break;
6147 	}
6148 	kvm_pic_update_irq(pic);
6149 	return r;
6150 }
6151 
6152 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6153 {
6154 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6155 
6156 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6157 
6158 	mutex_lock(&kps->lock);
6159 	memcpy(ps, &kps->channels, sizeof(*ps));
6160 	mutex_unlock(&kps->lock);
6161 	return 0;
6162 }
6163 
6164 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6165 {
6166 	int i;
6167 	struct kvm_pit *pit = kvm->arch.vpit;
6168 
6169 	mutex_lock(&pit->pit_state.lock);
6170 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6171 	for (i = 0; i < 3; i++)
6172 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6173 	mutex_unlock(&pit->pit_state.lock);
6174 	return 0;
6175 }
6176 
6177 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6178 {
6179 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
6180 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6181 		sizeof(ps->channels));
6182 	ps->flags = kvm->arch.vpit->pit_state.flags;
6183 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6184 	memset(&ps->reserved, 0, sizeof(ps->reserved));
6185 	return 0;
6186 }
6187 
6188 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6189 {
6190 	int start = 0;
6191 	int i;
6192 	u32 prev_legacy, cur_legacy;
6193 	struct kvm_pit *pit = kvm->arch.vpit;
6194 
6195 	mutex_lock(&pit->pit_state.lock);
6196 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6197 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6198 	if (!prev_legacy && cur_legacy)
6199 		start = 1;
6200 	memcpy(&pit->pit_state.channels, &ps->channels,
6201 	       sizeof(pit->pit_state.channels));
6202 	pit->pit_state.flags = ps->flags;
6203 	for (i = 0; i < 3; i++)
6204 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6205 				   start && i == 0);
6206 	mutex_unlock(&pit->pit_state.lock);
6207 	return 0;
6208 }
6209 
6210 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6211 				 struct kvm_reinject_control *control)
6212 {
6213 	struct kvm_pit *pit = kvm->arch.vpit;
6214 
6215 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
6216 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6217 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6218 	 */
6219 	mutex_lock(&pit->pit_state.lock);
6220 	kvm_pit_set_reinject(pit, control->pit_reinject);
6221 	mutex_unlock(&pit->pit_state.lock);
6222 
6223 	return 0;
6224 }
6225 
6226 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6227 {
6228 
6229 	/*
6230 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6231 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6232 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6233 	 * VM-Exit.
6234 	 */
6235 	struct kvm_vcpu *vcpu;
6236 	unsigned long i;
6237 
6238 	kvm_for_each_vcpu(i, vcpu, kvm)
6239 		kvm_vcpu_kick(vcpu);
6240 }
6241 
6242 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6243 			bool line_status)
6244 {
6245 	if (!irqchip_in_kernel(kvm))
6246 		return -ENXIO;
6247 
6248 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6249 					irq_event->irq, irq_event->level,
6250 					line_status);
6251 	return 0;
6252 }
6253 
6254 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6255 			    struct kvm_enable_cap *cap)
6256 {
6257 	int r;
6258 
6259 	if (cap->flags)
6260 		return -EINVAL;
6261 
6262 	switch (cap->cap) {
6263 	case KVM_CAP_DISABLE_QUIRKS2:
6264 		r = -EINVAL;
6265 		if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6266 			break;
6267 		fallthrough;
6268 	case KVM_CAP_DISABLE_QUIRKS:
6269 		kvm->arch.disabled_quirks = cap->args[0];
6270 		r = 0;
6271 		break;
6272 	case KVM_CAP_SPLIT_IRQCHIP: {
6273 		mutex_lock(&kvm->lock);
6274 		r = -EINVAL;
6275 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6276 			goto split_irqchip_unlock;
6277 		r = -EEXIST;
6278 		if (irqchip_in_kernel(kvm))
6279 			goto split_irqchip_unlock;
6280 		if (kvm->created_vcpus)
6281 			goto split_irqchip_unlock;
6282 		r = kvm_setup_empty_irq_routing(kvm);
6283 		if (r)
6284 			goto split_irqchip_unlock;
6285 		/* Pairs with irqchip_in_kernel. */
6286 		smp_wmb();
6287 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6288 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6289 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6290 		r = 0;
6291 split_irqchip_unlock:
6292 		mutex_unlock(&kvm->lock);
6293 		break;
6294 	}
6295 	case KVM_CAP_X2APIC_API:
6296 		r = -EINVAL;
6297 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6298 			break;
6299 
6300 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6301 			kvm->arch.x2apic_format = true;
6302 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6303 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
6304 
6305 		r = 0;
6306 		break;
6307 	case KVM_CAP_X86_DISABLE_EXITS:
6308 		r = -EINVAL;
6309 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6310 			break;
6311 
6312 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6313 			kvm->arch.pause_in_guest = true;
6314 
6315 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6316 		    "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6317 
6318 		if (!mitigate_smt_rsb) {
6319 			if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
6320 			    (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6321 				pr_warn_once(SMT_RSB_MSG);
6322 
6323 			if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6324 			    kvm_can_mwait_in_guest())
6325 				kvm->arch.mwait_in_guest = true;
6326 			if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6327 				kvm->arch.hlt_in_guest = true;
6328 			if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6329 				kvm->arch.cstate_in_guest = true;
6330 		}
6331 
6332 		r = 0;
6333 		break;
6334 	case KVM_CAP_MSR_PLATFORM_INFO:
6335 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6336 		r = 0;
6337 		break;
6338 	case KVM_CAP_EXCEPTION_PAYLOAD:
6339 		kvm->arch.exception_payload_enabled = cap->args[0];
6340 		r = 0;
6341 		break;
6342 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6343 		kvm->arch.triple_fault_event = cap->args[0];
6344 		r = 0;
6345 		break;
6346 	case KVM_CAP_X86_USER_SPACE_MSR:
6347 		r = -EINVAL;
6348 		if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6349 			break;
6350 		kvm->arch.user_space_msr_mask = cap->args[0];
6351 		r = 0;
6352 		break;
6353 	case KVM_CAP_X86_BUS_LOCK_EXIT:
6354 		r = -EINVAL;
6355 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6356 			break;
6357 
6358 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6359 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6360 			break;
6361 
6362 		if (kvm_caps.has_bus_lock_exit &&
6363 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6364 			kvm->arch.bus_lock_detection_enabled = true;
6365 		r = 0;
6366 		break;
6367 #ifdef CONFIG_X86_SGX_KVM
6368 	case KVM_CAP_SGX_ATTRIBUTE: {
6369 		unsigned long allowed_attributes = 0;
6370 
6371 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6372 		if (r)
6373 			break;
6374 
6375 		/* KVM only supports the PROVISIONKEY privileged attribute. */
6376 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6377 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6378 			kvm->arch.sgx_provisioning_allowed = true;
6379 		else
6380 			r = -EINVAL;
6381 		break;
6382 	}
6383 #endif
6384 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6385 		r = -EINVAL;
6386 		if (!kvm_x86_ops.vm_copy_enc_context_from)
6387 			break;
6388 
6389 		r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6390 		break;
6391 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6392 		r = -EINVAL;
6393 		if (!kvm_x86_ops.vm_move_enc_context_from)
6394 			break;
6395 
6396 		r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6397 		break;
6398 	case KVM_CAP_EXIT_HYPERCALL:
6399 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6400 			r = -EINVAL;
6401 			break;
6402 		}
6403 		kvm->arch.hypercall_exit_enabled = cap->args[0];
6404 		r = 0;
6405 		break;
6406 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6407 		r = -EINVAL;
6408 		if (cap->args[0] & ~1)
6409 			break;
6410 		kvm->arch.exit_on_emulation_error = cap->args[0];
6411 		r = 0;
6412 		break;
6413 	case KVM_CAP_PMU_CAPABILITY:
6414 		r = -EINVAL;
6415 		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6416 			break;
6417 
6418 		mutex_lock(&kvm->lock);
6419 		if (!kvm->created_vcpus) {
6420 			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6421 			r = 0;
6422 		}
6423 		mutex_unlock(&kvm->lock);
6424 		break;
6425 	case KVM_CAP_MAX_VCPU_ID:
6426 		r = -EINVAL;
6427 		if (cap->args[0] > KVM_MAX_VCPU_IDS)
6428 			break;
6429 
6430 		mutex_lock(&kvm->lock);
6431 		if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6432 			r = 0;
6433 		} else if (!kvm->arch.max_vcpu_ids) {
6434 			kvm->arch.max_vcpu_ids = cap->args[0];
6435 			r = 0;
6436 		}
6437 		mutex_unlock(&kvm->lock);
6438 		break;
6439 	case KVM_CAP_X86_NOTIFY_VMEXIT:
6440 		r = -EINVAL;
6441 		if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6442 			break;
6443 		if (!kvm_caps.has_notify_vmexit)
6444 			break;
6445 		if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6446 			break;
6447 		mutex_lock(&kvm->lock);
6448 		if (!kvm->created_vcpus) {
6449 			kvm->arch.notify_window = cap->args[0] >> 32;
6450 			kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6451 			r = 0;
6452 		}
6453 		mutex_unlock(&kvm->lock);
6454 		break;
6455 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6456 		r = -EINVAL;
6457 
6458 		/*
6459 		 * Since the risk of disabling NX hugepages is a guest crashing
6460 		 * the system, ensure the userspace process has permission to
6461 		 * reboot the system.
6462 		 *
6463 		 * Note that unlike the reboot() syscall, the process must have
6464 		 * this capability in the root namespace because exposing
6465 		 * /dev/kvm into a container does not limit the scope of the
6466 		 * iTLB multihit bug to that container. In other words,
6467 		 * this must use capable(), not ns_capable().
6468 		 */
6469 		if (!capable(CAP_SYS_BOOT)) {
6470 			r = -EPERM;
6471 			break;
6472 		}
6473 
6474 		if (cap->args[0])
6475 			break;
6476 
6477 		mutex_lock(&kvm->lock);
6478 		if (!kvm->created_vcpus) {
6479 			kvm->arch.disable_nx_huge_pages = true;
6480 			r = 0;
6481 		}
6482 		mutex_unlock(&kvm->lock);
6483 		break;
6484 	default:
6485 		r = -EINVAL;
6486 		break;
6487 	}
6488 	return r;
6489 }
6490 
6491 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6492 {
6493 	struct kvm_x86_msr_filter *msr_filter;
6494 
6495 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6496 	if (!msr_filter)
6497 		return NULL;
6498 
6499 	msr_filter->default_allow = default_allow;
6500 	return msr_filter;
6501 }
6502 
6503 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6504 {
6505 	u32 i;
6506 
6507 	if (!msr_filter)
6508 		return;
6509 
6510 	for (i = 0; i < msr_filter->count; i++)
6511 		kfree(msr_filter->ranges[i].bitmap);
6512 
6513 	kfree(msr_filter);
6514 }
6515 
6516 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6517 			      struct kvm_msr_filter_range *user_range)
6518 {
6519 	unsigned long *bitmap = NULL;
6520 	size_t bitmap_size;
6521 
6522 	if (!user_range->nmsrs)
6523 		return 0;
6524 
6525 	if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6526 		return -EINVAL;
6527 
6528 	if (!user_range->flags)
6529 		return -EINVAL;
6530 
6531 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6532 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6533 		return -EINVAL;
6534 
6535 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6536 	if (IS_ERR(bitmap))
6537 		return PTR_ERR(bitmap);
6538 
6539 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6540 		.flags = user_range->flags,
6541 		.base = user_range->base,
6542 		.nmsrs = user_range->nmsrs,
6543 		.bitmap = bitmap,
6544 	};
6545 
6546 	msr_filter->count++;
6547 	return 0;
6548 }
6549 
6550 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6551 				       struct kvm_msr_filter *filter)
6552 {
6553 	struct kvm_x86_msr_filter *new_filter, *old_filter;
6554 	bool default_allow;
6555 	bool empty = true;
6556 	int r;
6557 	u32 i;
6558 
6559 	if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6560 		return -EINVAL;
6561 
6562 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6563 		empty &= !filter->ranges[i].nmsrs;
6564 
6565 	default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6566 	if (empty && !default_allow)
6567 		return -EINVAL;
6568 
6569 	new_filter = kvm_alloc_msr_filter(default_allow);
6570 	if (!new_filter)
6571 		return -ENOMEM;
6572 
6573 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6574 		r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6575 		if (r) {
6576 			kvm_free_msr_filter(new_filter);
6577 			return r;
6578 		}
6579 	}
6580 
6581 	mutex_lock(&kvm->lock);
6582 	old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6583 					 mutex_is_locked(&kvm->lock));
6584 	mutex_unlock(&kvm->lock);
6585 	synchronize_srcu(&kvm->srcu);
6586 
6587 	kvm_free_msr_filter(old_filter);
6588 
6589 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6590 
6591 	return 0;
6592 }
6593 
6594 #ifdef CONFIG_KVM_COMPAT
6595 /* for KVM_X86_SET_MSR_FILTER */
6596 struct kvm_msr_filter_range_compat {
6597 	__u32 flags;
6598 	__u32 nmsrs;
6599 	__u32 base;
6600 	__u32 bitmap;
6601 };
6602 
6603 struct kvm_msr_filter_compat {
6604 	__u32 flags;
6605 	struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6606 };
6607 
6608 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6609 
6610 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6611 			      unsigned long arg)
6612 {
6613 	void __user *argp = (void __user *)arg;
6614 	struct kvm *kvm = filp->private_data;
6615 	long r = -ENOTTY;
6616 
6617 	switch (ioctl) {
6618 	case KVM_X86_SET_MSR_FILTER_COMPAT: {
6619 		struct kvm_msr_filter __user *user_msr_filter = argp;
6620 		struct kvm_msr_filter_compat filter_compat;
6621 		struct kvm_msr_filter filter;
6622 		int i;
6623 
6624 		if (copy_from_user(&filter_compat, user_msr_filter,
6625 				   sizeof(filter_compat)))
6626 			return -EFAULT;
6627 
6628 		filter.flags = filter_compat.flags;
6629 		for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6630 			struct kvm_msr_filter_range_compat *cr;
6631 
6632 			cr = &filter_compat.ranges[i];
6633 			filter.ranges[i] = (struct kvm_msr_filter_range) {
6634 				.flags = cr->flags,
6635 				.nmsrs = cr->nmsrs,
6636 				.base = cr->base,
6637 				.bitmap = (__u8 *)(ulong)cr->bitmap,
6638 			};
6639 		}
6640 
6641 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6642 		break;
6643 	}
6644 	}
6645 
6646 	return r;
6647 }
6648 #endif
6649 
6650 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6651 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6652 {
6653 	struct kvm_vcpu *vcpu;
6654 	unsigned long i;
6655 	int ret = 0;
6656 
6657 	mutex_lock(&kvm->lock);
6658 	kvm_for_each_vcpu(i, vcpu, kvm) {
6659 		if (!vcpu->arch.pv_time.active)
6660 			continue;
6661 
6662 		ret = kvm_set_guest_paused(vcpu);
6663 		if (ret) {
6664 			kvm_err("Failed to pause guest VCPU%d: %d\n",
6665 				vcpu->vcpu_id, ret);
6666 			break;
6667 		}
6668 	}
6669 	mutex_unlock(&kvm->lock);
6670 
6671 	return ret ? NOTIFY_BAD : NOTIFY_DONE;
6672 }
6673 
6674 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6675 {
6676 	switch (state) {
6677 	case PM_HIBERNATION_PREPARE:
6678 	case PM_SUSPEND_PREPARE:
6679 		return kvm_arch_suspend_notifier(kvm);
6680 	}
6681 
6682 	return NOTIFY_DONE;
6683 }
6684 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6685 
6686 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6687 {
6688 	struct kvm_clock_data data = { 0 };
6689 
6690 	get_kvmclock(kvm, &data);
6691 	if (copy_to_user(argp, &data, sizeof(data)))
6692 		return -EFAULT;
6693 
6694 	return 0;
6695 }
6696 
6697 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6698 {
6699 	struct kvm_arch *ka = &kvm->arch;
6700 	struct kvm_clock_data data;
6701 	u64 now_raw_ns;
6702 
6703 	if (copy_from_user(&data, argp, sizeof(data)))
6704 		return -EFAULT;
6705 
6706 	/*
6707 	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6708 	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6709 	 */
6710 	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6711 		return -EINVAL;
6712 
6713 	kvm_hv_request_tsc_page_update(kvm);
6714 	kvm_start_pvclock_update(kvm);
6715 	pvclock_update_vm_gtod_copy(kvm);
6716 
6717 	/*
6718 	 * This pairs with kvm_guest_time_update(): when masterclock is
6719 	 * in use, we use master_kernel_ns + kvmclock_offset to set
6720 	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6721 	 * is slightly ahead) here we risk going negative on unsigned
6722 	 * 'system_time' when 'data.clock' is very small.
6723 	 */
6724 	if (data.flags & KVM_CLOCK_REALTIME) {
6725 		u64 now_real_ns = ktime_get_real_ns();
6726 
6727 		/*
6728 		 * Avoid stepping the kvmclock backwards.
6729 		 */
6730 		if (now_real_ns > data.realtime)
6731 			data.clock += now_real_ns - data.realtime;
6732 	}
6733 
6734 	if (ka->use_master_clock)
6735 		now_raw_ns = ka->master_kernel_ns;
6736 	else
6737 		now_raw_ns = get_kvmclock_base_ns();
6738 	ka->kvmclock_offset = data.clock - now_raw_ns;
6739 	kvm_end_pvclock_update(kvm);
6740 	return 0;
6741 }
6742 
6743 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
6744 {
6745 	struct kvm *kvm = filp->private_data;
6746 	void __user *argp = (void __user *)arg;
6747 	int r = -ENOTTY;
6748 	/*
6749 	 * This union makes it completely explicit to gcc-3.x
6750 	 * that these two variables' stack usage should be
6751 	 * combined, not added together.
6752 	 */
6753 	union {
6754 		struct kvm_pit_state ps;
6755 		struct kvm_pit_state2 ps2;
6756 		struct kvm_pit_config pit_config;
6757 	} u;
6758 
6759 	switch (ioctl) {
6760 	case KVM_SET_TSS_ADDR:
6761 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6762 		break;
6763 	case KVM_SET_IDENTITY_MAP_ADDR: {
6764 		u64 ident_addr;
6765 
6766 		mutex_lock(&kvm->lock);
6767 		r = -EINVAL;
6768 		if (kvm->created_vcpus)
6769 			goto set_identity_unlock;
6770 		r = -EFAULT;
6771 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6772 			goto set_identity_unlock;
6773 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6774 set_identity_unlock:
6775 		mutex_unlock(&kvm->lock);
6776 		break;
6777 	}
6778 	case KVM_SET_NR_MMU_PAGES:
6779 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6780 		break;
6781 	case KVM_CREATE_IRQCHIP: {
6782 		mutex_lock(&kvm->lock);
6783 
6784 		r = -EEXIST;
6785 		if (irqchip_in_kernel(kvm))
6786 			goto create_irqchip_unlock;
6787 
6788 		r = -EINVAL;
6789 		if (kvm->created_vcpus)
6790 			goto create_irqchip_unlock;
6791 
6792 		r = kvm_pic_init(kvm);
6793 		if (r)
6794 			goto create_irqchip_unlock;
6795 
6796 		r = kvm_ioapic_init(kvm);
6797 		if (r) {
6798 			kvm_pic_destroy(kvm);
6799 			goto create_irqchip_unlock;
6800 		}
6801 
6802 		r = kvm_setup_default_irq_routing(kvm);
6803 		if (r) {
6804 			kvm_ioapic_destroy(kvm);
6805 			kvm_pic_destroy(kvm);
6806 			goto create_irqchip_unlock;
6807 		}
6808 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6809 		smp_wmb();
6810 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6811 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6812 	create_irqchip_unlock:
6813 		mutex_unlock(&kvm->lock);
6814 		break;
6815 	}
6816 	case KVM_CREATE_PIT:
6817 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6818 		goto create_pit;
6819 	case KVM_CREATE_PIT2:
6820 		r = -EFAULT;
6821 		if (copy_from_user(&u.pit_config, argp,
6822 				   sizeof(struct kvm_pit_config)))
6823 			goto out;
6824 	create_pit:
6825 		mutex_lock(&kvm->lock);
6826 		r = -EEXIST;
6827 		if (kvm->arch.vpit)
6828 			goto create_pit_unlock;
6829 		r = -ENOMEM;
6830 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6831 		if (kvm->arch.vpit)
6832 			r = 0;
6833 	create_pit_unlock:
6834 		mutex_unlock(&kvm->lock);
6835 		break;
6836 	case KVM_GET_IRQCHIP: {
6837 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6838 		struct kvm_irqchip *chip;
6839 
6840 		chip = memdup_user(argp, sizeof(*chip));
6841 		if (IS_ERR(chip)) {
6842 			r = PTR_ERR(chip);
6843 			goto out;
6844 		}
6845 
6846 		r = -ENXIO;
6847 		if (!irqchip_kernel(kvm))
6848 			goto get_irqchip_out;
6849 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6850 		if (r)
6851 			goto get_irqchip_out;
6852 		r = -EFAULT;
6853 		if (copy_to_user(argp, chip, sizeof(*chip)))
6854 			goto get_irqchip_out;
6855 		r = 0;
6856 	get_irqchip_out:
6857 		kfree(chip);
6858 		break;
6859 	}
6860 	case KVM_SET_IRQCHIP: {
6861 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6862 		struct kvm_irqchip *chip;
6863 
6864 		chip = memdup_user(argp, sizeof(*chip));
6865 		if (IS_ERR(chip)) {
6866 			r = PTR_ERR(chip);
6867 			goto out;
6868 		}
6869 
6870 		r = -ENXIO;
6871 		if (!irqchip_kernel(kvm))
6872 			goto set_irqchip_out;
6873 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6874 	set_irqchip_out:
6875 		kfree(chip);
6876 		break;
6877 	}
6878 	case KVM_GET_PIT: {
6879 		r = -EFAULT;
6880 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6881 			goto out;
6882 		r = -ENXIO;
6883 		if (!kvm->arch.vpit)
6884 			goto out;
6885 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6886 		if (r)
6887 			goto out;
6888 		r = -EFAULT;
6889 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6890 			goto out;
6891 		r = 0;
6892 		break;
6893 	}
6894 	case KVM_SET_PIT: {
6895 		r = -EFAULT;
6896 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6897 			goto out;
6898 		mutex_lock(&kvm->lock);
6899 		r = -ENXIO;
6900 		if (!kvm->arch.vpit)
6901 			goto set_pit_out;
6902 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6903 set_pit_out:
6904 		mutex_unlock(&kvm->lock);
6905 		break;
6906 	}
6907 	case KVM_GET_PIT2: {
6908 		r = -ENXIO;
6909 		if (!kvm->arch.vpit)
6910 			goto out;
6911 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6912 		if (r)
6913 			goto out;
6914 		r = -EFAULT;
6915 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6916 			goto out;
6917 		r = 0;
6918 		break;
6919 	}
6920 	case KVM_SET_PIT2: {
6921 		r = -EFAULT;
6922 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6923 			goto out;
6924 		mutex_lock(&kvm->lock);
6925 		r = -ENXIO;
6926 		if (!kvm->arch.vpit)
6927 			goto set_pit2_out;
6928 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6929 set_pit2_out:
6930 		mutex_unlock(&kvm->lock);
6931 		break;
6932 	}
6933 	case KVM_REINJECT_CONTROL: {
6934 		struct kvm_reinject_control control;
6935 		r =  -EFAULT;
6936 		if (copy_from_user(&control, argp, sizeof(control)))
6937 			goto out;
6938 		r = -ENXIO;
6939 		if (!kvm->arch.vpit)
6940 			goto out;
6941 		r = kvm_vm_ioctl_reinject(kvm, &control);
6942 		break;
6943 	}
6944 	case KVM_SET_BOOT_CPU_ID:
6945 		r = 0;
6946 		mutex_lock(&kvm->lock);
6947 		if (kvm->created_vcpus)
6948 			r = -EBUSY;
6949 		else
6950 			kvm->arch.bsp_vcpu_id = arg;
6951 		mutex_unlock(&kvm->lock);
6952 		break;
6953 #ifdef CONFIG_KVM_XEN
6954 	case KVM_XEN_HVM_CONFIG: {
6955 		struct kvm_xen_hvm_config xhc;
6956 		r = -EFAULT;
6957 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
6958 			goto out;
6959 		r = kvm_xen_hvm_config(kvm, &xhc);
6960 		break;
6961 	}
6962 	case KVM_XEN_HVM_GET_ATTR: {
6963 		struct kvm_xen_hvm_attr xha;
6964 
6965 		r = -EFAULT;
6966 		if (copy_from_user(&xha, argp, sizeof(xha)))
6967 			goto out;
6968 		r = kvm_xen_hvm_get_attr(kvm, &xha);
6969 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6970 			r = -EFAULT;
6971 		break;
6972 	}
6973 	case KVM_XEN_HVM_SET_ATTR: {
6974 		struct kvm_xen_hvm_attr xha;
6975 
6976 		r = -EFAULT;
6977 		if (copy_from_user(&xha, argp, sizeof(xha)))
6978 			goto out;
6979 		r = kvm_xen_hvm_set_attr(kvm, &xha);
6980 		break;
6981 	}
6982 	case KVM_XEN_HVM_EVTCHN_SEND: {
6983 		struct kvm_irq_routing_xen_evtchn uxe;
6984 
6985 		r = -EFAULT;
6986 		if (copy_from_user(&uxe, argp, sizeof(uxe)))
6987 			goto out;
6988 		r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
6989 		break;
6990 	}
6991 #endif
6992 	case KVM_SET_CLOCK:
6993 		r = kvm_vm_ioctl_set_clock(kvm, argp);
6994 		break;
6995 	case KVM_GET_CLOCK:
6996 		r = kvm_vm_ioctl_get_clock(kvm, argp);
6997 		break;
6998 	case KVM_SET_TSC_KHZ: {
6999 		u32 user_tsc_khz;
7000 
7001 		r = -EINVAL;
7002 		user_tsc_khz = (u32)arg;
7003 
7004 		if (kvm_caps.has_tsc_control &&
7005 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7006 			goto out;
7007 
7008 		if (user_tsc_khz == 0)
7009 			user_tsc_khz = tsc_khz;
7010 
7011 		WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7012 		r = 0;
7013 
7014 		goto out;
7015 	}
7016 	case KVM_GET_TSC_KHZ: {
7017 		r = READ_ONCE(kvm->arch.default_tsc_khz);
7018 		goto out;
7019 	}
7020 	case KVM_MEMORY_ENCRYPT_OP: {
7021 		r = -ENOTTY;
7022 		if (!kvm_x86_ops.mem_enc_ioctl)
7023 			goto out;
7024 
7025 		r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
7026 		break;
7027 	}
7028 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
7029 		struct kvm_enc_region region;
7030 
7031 		r = -EFAULT;
7032 		if (copy_from_user(&region, argp, sizeof(region)))
7033 			goto out;
7034 
7035 		r = -ENOTTY;
7036 		if (!kvm_x86_ops.mem_enc_register_region)
7037 			goto out;
7038 
7039 		r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
7040 		break;
7041 	}
7042 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7043 		struct kvm_enc_region region;
7044 
7045 		r = -EFAULT;
7046 		if (copy_from_user(&region, argp, sizeof(region)))
7047 			goto out;
7048 
7049 		r = -ENOTTY;
7050 		if (!kvm_x86_ops.mem_enc_unregister_region)
7051 			goto out;
7052 
7053 		r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
7054 		break;
7055 	}
7056 	case KVM_HYPERV_EVENTFD: {
7057 		struct kvm_hyperv_eventfd hvevfd;
7058 
7059 		r = -EFAULT;
7060 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7061 			goto out;
7062 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7063 		break;
7064 	}
7065 	case KVM_SET_PMU_EVENT_FILTER:
7066 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7067 		break;
7068 	case KVM_X86_SET_MSR_FILTER: {
7069 		struct kvm_msr_filter __user *user_msr_filter = argp;
7070 		struct kvm_msr_filter filter;
7071 
7072 		if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7073 			return -EFAULT;
7074 
7075 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7076 		break;
7077 	}
7078 	default:
7079 		r = -ENOTTY;
7080 	}
7081 out:
7082 	return r;
7083 }
7084 
7085 static void kvm_probe_feature_msr(u32 msr_index)
7086 {
7087 	struct kvm_msr_entry msr = {
7088 		.index = msr_index,
7089 	};
7090 
7091 	if (kvm_get_msr_feature(&msr))
7092 		return;
7093 
7094 	msr_based_features[num_msr_based_features++] = msr_index;
7095 }
7096 
7097 static void kvm_probe_msr_to_save(u32 msr_index)
7098 {
7099 	u32 dummy[2];
7100 
7101 	if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7102 		return;
7103 
7104 	/*
7105 	 * Even MSRs that are valid in the host may not be exposed to guests in
7106 	 * some cases.
7107 	 */
7108 	switch (msr_index) {
7109 	case MSR_IA32_BNDCFGS:
7110 		if (!kvm_mpx_supported())
7111 			return;
7112 		break;
7113 	case MSR_TSC_AUX:
7114 		if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7115 		    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7116 			return;
7117 		break;
7118 	case MSR_IA32_UMWAIT_CONTROL:
7119 		if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7120 			return;
7121 		break;
7122 	case MSR_IA32_RTIT_CTL:
7123 	case MSR_IA32_RTIT_STATUS:
7124 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7125 			return;
7126 		break;
7127 	case MSR_IA32_RTIT_CR3_MATCH:
7128 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7129 		    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7130 			return;
7131 		break;
7132 	case MSR_IA32_RTIT_OUTPUT_BASE:
7133 	case MSR_IA32_RTIT_OUTPUT_MASK:
7134 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7135 		    (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7136 		     !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7137 			return;
7138 		break;
7139 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7140 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7141 		    (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7142 		     intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7143 			return;
7144 		break;
7145 	case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7146 		if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7147 		    kvm_pmu_cap.num_counters_gp)
7148 			return;
7149 		break;
7150 	case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7151 		if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7152 		    kvm_pmu_cap.num_counters_gp)
7153 			return;
7154 		break;
7155 	case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX:
7156 		if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7157 		    kvm_pmu_cap.num_counters_fixed)
7158 			return;
7159 		break;
7160 	case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7161 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7162 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7163 		if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7164 			return;
7165 		break;
7166 	case MSR_IA32_XFD:
7167 	case MSR_IA32_XFD_ERR:
7168 		if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7169 			return;
7170 		break;
7171 	case MSR_IA32_TSX_CTRL:
7172 		if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7173 			return;
7174 		break;
7175 	default:
7176 		break;
7177 	}
7178 
7179 	msrs_to_save[num_msrs_to_save++] = msr_index;
7180 }
7181 
7182 static void kvm_init_msr_lists(void)
7183 {
7184 	unsigned i;
7185 
7186 	BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
7187 			 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7188 
7189 	num_msrs_to_save = 0;
7190 	num_emulated_msrs = 0;
7191 	num_msr_based_features = 0;
7192 
7193 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7194 		kvm_probe_msr_to_save(msrs_to_save_base[i]);
7195 
7196 	if (enable_pmu) {
7197 		for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7198 			kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7199 	}
7200 
7201 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7202 		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7203 			continue;
7204 
7205 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7206 	}
7207 
7208 	for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7209 		kvm_probe_feature_msr(i);
7210 
7211 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7212 		kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7213 }
7214 
7215 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7216 			   const void *v)
7217 {
7218 	int handled = 0;
7219 	int n;
7220 
7221 	do {
7222 		n = min(len, 8);
7223 		if (!(lapic_in_kernel(vcpu) &&
7224 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7225 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7226 			break;
7227 		handled += n;
7228 		addr += n;
7229 		len -= n;
7230 		v += n;
7231 	} while (len);
7232 
7233 	return handled;
7234 }
7235 
7236 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7237 {
7238 	int handled = 0;
7239 	int n;
7240 
7241 	do {
7242 		n = min(len, 8);
7243 		if (!(lapic_in_kernel(vcpu) &&
7244 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7245 					 addr, n, v))
7246 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7247 			break;
7248 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7249 		handled += n;
7250 		addr += n;
7251 		len -= n;
7252 		v += n;
7253 	} while (len);
7254 
7255 	return handled;
7256 }
7257 
7258 void kvm_set_segment(struct kvm_vcpu *vcpu,
7259 		     struct kvm_segment *var, int seg)
7260 {
7261 	static_call(kvm_x86_set_segment)(vcpu, var, seg);
7262 }
7263 
7264 void kvm_get_segment(struct kvm_vcpu *vcpu,
7265 		     struct kvm_segment *var, int seg)
7266 {
7267 	static_call(kvm_x86_get_segment)(vcpu, var, seg);
7268 }
7269 
7270 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7271 			   struct x86_exception *exception)
7272 {
7273 	struct kvm_mmu *mmu = vcpu->arch.mmu;
7274 	gpa_t t_gpa;
7275 
7276 	BUG_ON(!mmu_is_nested(vcpu));
7277 
7278 	/* NPT walks are always user-walks */
7279 	access |= PFERR_USER_MASK;
7280 	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7281 
7282 	return t_gpa;
7283 }
7284 
7285 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7286 			      struct x86_exception *exception)
7287 {
7288 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7289 
7290 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7291 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7292 }
7293 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7294 
7295 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7296 			       struct x86_exception *exception)
7297 {
7298 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7299 
7300 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7301 	access |= PFERR_WRITE_MASK;
7302 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7303 }
7304 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7305 
7306 /* uses this to access any guest's mapped memory without checking CPL */
7307 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7308 				struct x86_exception *exception)
7309 {
7310 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7311 
7312 	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7313 }
7314 
7315 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7316 				      struct kvm_vcpu *vcpu, u64 access,
7317 				      struct x86_exception *exception)
7318 {
7319 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7320 	void *data = val;
7321 	int r = X86EMUL_CONTINUE;
7322 
7323 	while (bytes) {
7324 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7325 		unsigned offset = addr & (PAGE_SIZE-1);
7326 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7327 		int ret;
7328 
7329 		if (gpa == INVALID_GPA)
7330 			return X86EMUL_PROPAGATE_FAULT;
7331 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7332 					       offset, toread);
7333 		if (ret < 0) {
7334 			r = X86EMUL_IO_NEEDED;
7335 			goto out;
7336 		}
7337 
7338 		bytes -= toread;
7339 		data += toread;
7340 		addr += toread;
7341 	}
7342 out:
7343 	return r;
7344 }
7345 
7346 /* used for instruction fetching */
7347 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7348 				gva_t addr, void *val, unsigned int bytes,
7349 				struct x86_exception *exception)
7350 {
7351 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7352 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7353 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7354 	unsigned offset;
7355 	int ret;
7356 
7357 	/* Inline kvm_read_guest_virt_helper for speed.  */
7358 	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7359 				    exception);
7360 	if (unlikely(gpa == INVALID_GPA))
7361 		return X86EMUL_PROPAGATE_FAULT;
7362 
7363 	offset = addr & (PAGE_SIZE-1);
7364 	if (WARN_ON(offset + bytes > PAGE_SIZE))
7365 		bytes = (unsigned)PAGE_SIZE - offset;
7366 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7367 				       offset, bytes);
7368 	if (unlikely(ret < 0))
7369 		return X86EMUL_IO_NEEDED;
7370 
7371 	return X86EMUL_CONTINUE;
7372 }
7373 
7374 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7375 			       gva_t addr, void *val, unsigned int bytes,
7376 			       struct x86_exception *exception)
7377 {
7378 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7379 
7380 	/*
7381 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7382 	 * is returned, but our callers are not ready for that and they blindly
7383 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
7384 	 * uninitialized kernel stack memory into cr2 and error code.
7385 	 */
7386 	memset(exception, 0, sizeof(*exception));
7387 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7388 					  exception);
7389 }
7390 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7391 
7392 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7393 			     gva_t addr, void *val, unsigned int bytes,
7394 			     struct x86_exception *exception, bool system)
7395 {
7396 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7397 	u64 access = 0;
7398 
7399 	if (system)
7400 		access |= PFERR_IMPLICIT_ACCESS;
7401 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7402 		access |= PFERR_USER_MASK;
7403 
7404 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7405 }
7406 
7407 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7408 				      struct kvm_vcpu *vcpu, u64 access,
7409 				      struct x86_exception *exception)
7410 {
7411 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7412 	void *data = val;
7413 	int r = X86EMUL_CONTINUE;
7414 
7415 	while (bytes) {
7416 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7417 		unsigned offset = addr & (PAGE_SIZE-1);
7418 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7419 		int ret;
7420 
7421 		if (gpa == INVALID_GPA)
7422 			return X86EMUL_PROPAGATE_FAULT;
7423 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7424 		if (ret < 0) {
7425 			r = X86EMUL_IO_NEEDED;
7426 			goto out;
7427 		}
7428 
7429 		bytes -= towrite;
7430 		data += towrite;
7431 		addr += towrite;
7432 	}
7433 out:
7434 	return r;
7435 }
7436 
7437 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7438 			      unsigned int bytes, struct x86_exception *exception,
7439 			      bool system)
7440 {
7441 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7442 	u64 access = PFERR_WRITE_MASK;
7443 
7444 	if (system)
7445 		access |= PFERR_IMPLICIT_ACCESS;
7446 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7447 		access |= PFERR_USER_MASK;
7448 
7449 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7450 					   access, exception);
7451 }
7452 
7453 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7454 				unsigned int bytes, struct x86_exception *exception)
7455 {
7456 	/* kvm_write_guest_virt_system can pull in tons of pages. */
7457 	vcpu->arch.l1tf_flush_l1d = true;
7458 
7459 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7460 					   PFERR_WRITE_MASK, exception);
7461 }
7462 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7463 
7464 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7465 				void *insn, int insn_len)
7466 {
7467 	return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
7468 							    insn, insn_len);
7469 }
7470 
7471 int handle_ud(struct kvm_vcpu *vcpu)
7472 {
7473 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7474 	int fep_flags = READ_ONCE(force_emulation_prefix);
7475 	int emul_type = EMULTYPE_TRAP_UD;
7476 	char sig[5]; /* ud2; .ascii "kvm" */
7477 	struct x86_exception e;
7478 
7479 	if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
7480 		return 1;
7481 
7482 	if (fep_flags &&
7483 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7484 				sig, sizeof(sig), &e) == 0 &&
7485 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7486 		if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7487 			kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7488 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7489 		emul_type = EMULTYPE_TRAP_UD_FORCED;
7490 	}
7491 
7492 	return kvm_emulate_instruction(vcpu, emul_type);
7493 }
7494 EXPORT_SYMBOL_GPL(handle_ud);
7495 
7496 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7497 			    gpa_t gpa, bool write)
7498 {
7499 	/* For APIC access vmexit */
7500 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7501 		return 1;
7502 
7503 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7504 		trace_vcpu_match_mmio(gva, gpa, write, true);
7505 		return 1;
7506 	}
7507 
7508 	return 0;
7509 }
7510 
7511 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7512 				gpa_t *gpa, struct x86_exception *exception,
7513 				bool write)
7514 {
7515 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7516 	u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7517 		| (write ? PFERR_WRITE_MASK : 0);
7518 
7519 	/*
7520 	 * currently PKRU is only applied to ept enabled guest so
7521 	 * there is no pkey in EPT page table for L1 guest or EPT
7522 	 * shadow page table for L2 guest.
7523 	 */
7524 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7525 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
7526 			      vcpu->arch.mmio_access, 0, access))) {
7527 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7528 					(gva & (PAGE_SIZE - 1));
7529 		trace_vcpu_match_mmio(gva, *gpa, write, false);
7530 		return 1;
7531 	}
7532 
7533 	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7534 
7535 	if (*gpa == INVALID_GPA)
7536 		return -1;
7537 
7538 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7539 }
7540 
7541 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7542 			const void *val, int bytes)
7543 {
7544 	int ret;
7545 
7546 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7547 	if (ret < 0)
7548 		return 0;
7549 	kvm_page_track_write(vcpu, gpa, val, bytes);
7550 	return 1;
7551 }
7552 
7553 struct read_write_emulator_ops {
7554 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7555 				  int bytes);
7556 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7557 				  void *val, int bytes);
7558 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7559 			       int bytes, void *val);
7560 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7561 				    void *val, int bytes);
7562 	bool write;
7563 };
7564 
7565 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7566 {
7567 	if (vcpu->mmio_read_completed) {
7568 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7569 			       vcpu->mmio_fragments[0].gpa, val);
7570 		vcpu->mmio_read_completed = 0;
7571 		return 1;
7572 	}
7573 
7574 	return 0;
7575 }
7576 
7577 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7578 			void *val, int bytes)
7579 {
7580 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7581 }
7582 
7583 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7584 			 void *val, int bytes)
7585 {
7586 	return emulator_write_phys(vcpu, gpa, val, bytes);
7587 }
7588 
7589 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7590 {
7591 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7592 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
7593 }
7594 
7595 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7596 			  void *val, int bytes)
7597 {
7598 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7599 	return X86EMUL_IO_NEEDED;
7600 }
7601 
7602 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7603 			   void *val, int bytes)
7604 {
7605 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7606 
7607 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7608 	return X86EMUL_CONTINUE;
7609 }
7610 
7611 static const struct read_write_emulator_ops read_emultor = {
7612 	.read_write_prepare = read_prepare,
7613 	.read_write_emulate = read_emulate,
7614 	.read_write_mmio = vcpu_mmio_read,
7615 	.read_write_exit_mmio = read_exit_mmio,
7616 };
7617 
7618 static const struct read_write_emulator_ops write_emultor = {
7619 	.read_write_emulate = write_emulate,
7620 	.read_write_mmio = write_mmio,
7621 	.read_write_exit_mmio = write_exit_mmio,
7622 	.write = true,
7623 };
7624 
7625 static int emulator_read_write_onepage(unsigned long addr, void *val,
7626 				       unsigned int bytes,
7627 				       struct x86_exception *exception,
7628 				       struct kvm_vcpu *vcpu,
7629 				       const struct read_write_emulator_ops *ops)
7630 {
7631 	gpa_t gpa;
7632 	int handled, ret;
7633 	bool write = ops->write;
7634 	struct kvm_mmio_fragment *frag;
7635 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7636 
7637 	/*
7638 	 * If the exit was due to a NPF we may already have a GPA.
7639 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7640 	 * Note, this cannot be used on string operations since string
7641 	 * operation using rep will only have the initial GPA from the NPF
7642 	 * occurred.
7643 	 */
7644 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7645 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7646 		gpa = ctxt->gpa_val;
7647 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7648 	} else {
7649 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7650 		if (ret < 0)
7651 			return X86EMUL_PROPAGATE_FAULT;
7652 	}
7653 
7654 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7655 		return X86EMUL_CONTINUE;
7656 
7657 	/*
7658 	 * Is this MMIO handled locally?
7659 	 */
7660 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7661 	if (handled == bytes)
7662 		return X86EMUL_CONTINUE;
7663 
7664 	gpa += handled;
7665 	bytes -= handled;
7666 	val += handled;
7667 
7668 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7669 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7670 	frag->gpa = gpa;
7671 	frag->data = val;
7672 	frag->len = bytes;
7673 	return X86EMUL_CONTINUE;
7674 }
7675 
7676 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7677 			unsigned long addr,
7678 			void *val, unsigned int bytes,
7679 			struct x86_exception *exception,
7680 			const struct read_write_emulator_ops *ops)
7681 {
7682 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7683 	gpa_t gpa;
7684 	int rc;
7685 
7686 	if (ops->read_write_prepare &&
7687 		  ops->read_write_prepare(vcpu, val, bytes))
7688 		return X86EMUL_CONTINUE;
7689 
7690 	vcpu->mmio_nr_fragments = 0;
7691 
7692 	/* Crossing a page boundary? */
7693 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7694 		int now;
7695 
7696 		now = -addr & ~PAGE_MASK;
7697 		rc = emulator_read_write_onepage(addr, val, now, exception,
7698 						 vcpu, ops);
7699 
7700 		if (rc != X86EMUL_CONTINUE)
7701 			return rc;
7702 		addr += now;
7703 		if (ctxt->mode != X86EMUL_MODE_PROT64)
7704 			addr = (u32)addr;
7705 		val += now;
7706 		bytes -= now;
7707 	}
7708 
7709 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
7710 					 vcpu, ops);
7711 	if (rc != X86EMUL_CONTINUE)
7712 		return rc;
7713 
7714 	if (!vcpu->mmio_nr_fragments)
7715 		return rc;
7716 
7717 	gpa = vcpu->mmio_fragments[0].gpa;
7718 
7719 	vcpu->mmio_needed = 1;
7720 	vcpu->mmio_cur_fragment = 0;
7721 
7722 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7723 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7724 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
7725 	vcpu->run->mmio.phys_addr = gpa;
7726 
7727 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7728 }
7729 
7730 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7731 				  unsigned long addr,
7732 				  void *val,
7733 				  unsigned int bytes,
7734 				  struct x86_exception *exception)
7735 {
7736 	return emulator_read_write(ctxt, addr, val, bytes,
7737 				   exception, &read_emultor);
7738 }
7739 
7740 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7741 			    unsigned long addr,
7742 			    const void *val,
7743 			    unsigned int bytes,
7744 			    struct x86_exception *exception)
7745 {
7746 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
7747 				   exception, &write_emultor);
7748 }
7749 
7750 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7751 	(__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7752 
7753 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7754 				     unsigned long addr,
7755 				     const void *old,
7756 				     const void *new,
7757 				     unsigned int bytes,
7758 				     struct x86_exception *exception)
7759 {
7760 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7761 	u64 page_line_mask;
7762 	unsigned long hva;
7763 	gpa_t gpa;
7764 	int r;
7765 
7766 	/* guests cmpxchg8b have to be emulated atomically */
7767 	if (bytes > 8 || (bytes & (bytes - 1)))
7768 		goto emul_write;
7769 
7770 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7771 
7772 	if (gpa == INVALID_GPA ||
7773 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7774 		goto emul_write;
7775 
7776 	/*
7777 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
7778 	 * enabled in the host and the access splits a cache line.
7779 	 */
7780 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7781 		page_line_mask = ~(cache_line_size() - 1);
7782 	else
7783 		page_line_mask = PAGE_MASK;
7784 
7785 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7786 		goto emul_write;
7787 
7788 	hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7789 	if (kvm_is_error_hva(hva))
7790 		goto emul_write;
7791 
7792 	hva += offset_in_page(gpa);
7793 
7794 	switch (bytes) {
7795 	case 1:
7796 		r = emulator_try_cmpxchg_user(u8, hva, old, new);
7797 		break;
7798 	case 2:
7799 		r = emulator_try_cmpxchg_user(u16, hva, old, new);
7800 		break;
7801 	case 4:
7802 		r = emulator_try_cmpxchg_user(u32, hva, old, new);
7803 		break;
7804 	case 8:
7805 		r = emulator_try_cmpxchg_user(u64, hva, old, new);
7806 		break;
7807 	default:
7808 		BUG();
7809 	}
7810 
7811 	if (r < 0)
7812 		return X86EMUL_UNHANDLEABLE;
7813 	if (r)
7814 		return X86EMUL_CMPXCHG_FAILED;
7815 
7816 	kvm_page_track_write(vcpu, gpa, new, bytes);
7817 
7818 	return X86EMUL_CONTINUE;
7819 
7820 emul_write:
7821 	pr_warn_once("emulating exchange as write\n");
7822 
7823 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7824 }
7825 
7826 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7827 			       unsigned short port, void *data,
7828 			       unsigned int count, bool in)
7829 {
7830 	unsigned i;
7831 	int r;
7832 
7833 	WARN_ON_ONCE(vcpu->arch.pio.count);
7834 	for (i = 0; i < count; i++) {
7835 		if (in)
7836 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
7837 		else
7838 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
7839 
7840 		if (r) {
7841 			if (i == 0)
7842 				goto userspace_io;
7843 
7844 			/*
7845 			 * Userspace must have unregistered the device while PIO
7846 			 * was running.  Drop writes / read as 0.
7847 			 */
7848 			if (in)
7849 				memset(data, 0, size * (count - i));
7850 			break;
7851 		}
7852 
7853 		data += size;
7854 	}
7855 	return 1;
7856 
7857 userspace_io:
7858 	vcpu->arch.pio.port = port;
7859 	vcpu->arch.pio.in = in;
7860 	vcpu->arch.pio.count = count;
7861 	vcpu->arch.pio.size = size;
7862 
7863 	if (in)
7864 		memset(vcpu->arch.pio_data, 0, size * count);
7865 	else
7866 		memcpy(vcpu->arch.pio_data, data, size * count);
7867 
7868 	vcpu->run->exit_reason = KVM_EXIT_IO;
7869 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7870 	vcpu->run->io.size = size;
7871 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7872 	vcpu->run->io.count = count;
7873 	vcpu->run->io.port = port;
7874 	return 0;
7875 }
7876 
7877 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7878       			   unsigned short port, void *val, unsigned int count)
7879 {
7880 	int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
7881 	if (r)
7882 		trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
7883 
7884 	return r;
7885 }
7886 
7887 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7888 {
7889 	int size = vcpu->arch.pio.size;
7890 	unsigned int count = vcpu->arch.pio.count;
7891 	memcpy(val, vcpu->arch.pio_data, size * count);
7892 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7893 	vcpu->arch.pio.count = 0;
7894 }
7895 
7896 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7897 				    int size, unsigned short port, void *val,
7898 				    unsigned int count)
7899 {
7900 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7901 	if (vcpu->arch.pio.count) {
7902 		/*
7903 		 * Complete a previous iteration that required userspace I/O.
7904 		 * Note, @count isn't guaranteed to match pio.count as userspace
7905 		 * can modify ECX before rerunning the vCPU.  Ignore any such
7906 		 * shenanigans as KVM doesn't support modifying the rep count,
7907 		 * and the emulator ensures @count doesn't overflow the buffer.
7908 		 */
7909 		complete_emulator_pio_in(vcpu, val);
7910 		return 1;
7911 	}
7912 
7913 	return emulator_pio_in(vcpu, size, port, val, count);
7914 }
7915 
7916 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7917 			    unsigned short port, const void *val,
7918 			    unsigned int count)
7919 {
7920 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
7921 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
7922 }
7923 
7924 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7925 				     int size, unsigned short port,
7926 				     const void *val, unsigned int count)
7927 {
7928 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7929 }
7930 
7931 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7932 {
7933 	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7934 }
7935 
7936 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7937 {
7938 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7939 }
7940 
7941 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7942 {
7943 	if (!need_emulate_wbinvd(vcpu))
7944 		return X86EMUL_CONTINUE;
7945 
7946 	if (static_call(kvm_x86_has_wbinvd_exit)()) {
7947 		int cpu = get_cpu();
7948 
7949 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7950 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7951 				wbinvd_ipi, NULL, 1);
7952 		put_cpu();
7953 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7954 	} else
7955 		wbinvd();
7956 	return X86EMUL_CONTINUE;
7957 }
7958 
7959 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7960 {
7961 	kvm_emulate_wbinvd_noskip(vcpu);
7962 	return kvm_skip_emulated_instruction(vcpu);
7963 }
7964 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7965 
7966 
7967 
7968 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7969 {
7970 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7971 }
7972 
7973 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7974 			    unsigned long *dest)
7975 {
7976 	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7977 }
7978 
7979 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7980 			   unsigned long value)
7981 {
7982 
7983 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7984 }
7985 
7986 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7987 {
7988 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7989 }
7990 
7991 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7992 {
7993 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7994 	unsigned long value;
7995 
7996 	switch (cr) {
7997 	case 0:
7998 		value = kvm_read_cr0(vcpu);
7999 		break;
8000 	case 2:
8001 		value = vcpu->arch.cr2;
8002 		break;
8003 	case 3:
8004 		value = kvm_read_cr3(vcpu);
8005 		break;
8006 	case 4:
8007 		value = kvm_read_cr4(vcpu);
8008 		break;
8009 	case 8:
8010 		value = kvm_get_cr8(vcpu);
8011 		break;
8012 	default:
8013 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8014 		return 0;
8015 	}
8016 
8017 	return value;
8018 }
8019 
8020 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8021 {
8022 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8023 	int res = 0;
8024 
8025 	switch (cr) {
8026 	case 0:
8027 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8028 		break;
8029 	case 2:
8030 		vcpu->arch.cr2 = val;
8031 		break;
8032 	case 3:
8033 		res = kvm_set_cr3(vcpu, val);
8034 		break;
8035 	case 4:
8036 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8037 		break;
8038 	case 8:
8039 		res = kvm_set_cr8(vcpu, val);
8040 		break;
8041 	default:
8042 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8043 		res = -1;
8044 	}
8045 
8046 	return res;
8047 }
8048 
8049 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8050 {
8051 	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
8052 }
8053 
8054 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8055 {
8056 	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
8057 }
8058 
8059 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8060 {
8061 	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
8062 }
8063 
8064 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8065 {
8066 	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
8067 }
8068 
8069 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8070 {
8071 	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
8072 }
8073 
8074 static unsigned long emulator_get_cached_segment_base(
8075 	struct x86_emulate_ctxt *ctxt, int seg)
8076 {
8077 	return get_segment_base(emul_to_vcpu(ctxt), seg);
8078 }
8079 
8080 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8081 				 struct desc_struct *desc, u32 *base3,
8082 				 int seg)
8083 {
8084 	struct kvm_segment var;
8085 
8086 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8087 	*selector = var.selector;
8088 
8089 	if (var.unusable) {
8090 		memset(desc, 0, sizeof(*desc));
8091 		if (base3)
8092 			*base3 = 0;
8093 		return false;
8094 	}
8095 
8096 	if (var.g)
8097 		var.limit >>= 12;
8098 	set_desc_limit(desc, var.limit);
8099 	set_desc_base(desc, (unsigned long)var.base);
8100 #ifdef CONFIG_X86_64
8101 	if (base3)
8102 		*base3 = var.base >> 32;
8103 #endif
8104 	desc->type = var.type;
8105 	desc->s = var.s;
8106 	desc->dpl = var.dpl;
8107 	desc->p = var.present;
8108 	desc->avl = var.avl;
8109 	desc->l = var.l;
8110 	desc->d = var.db;
8111 	desc->g = var.g;
8112 
8113 	return true;
8114 }
8115 
8116 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8117 				 struct desc_struct *desc, u32 base3,
8118 				 int seg)
8119 {
8120 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8121 	struct kvm_segment var;
8122 
8123 	var.selector = selector;
8124 	var.base = get_desc_base(desc);
8125 #ifdef CONFIG_X86_64
8126 	var.base |= ((u64)base3) << 32;
8127 #endif
8128 	var.limit = get_desc_limit(desc);
8129 	if (desc->g)
8130 		var.limit = (var.limit << 12) | 0xfff;
8131 	var.type = desc->type;
8132 	var.dpl = desc->dpl;
8133 	var.db = desc->d;
8134 	var.s = desc->s;
8135 	var.l = desc->l;
8136 	var.g = desc->g;
8137 	var.avl = desc->avl;
8138 	var.present = desc->p;
8139 	var.unusable = !var.present;
8140 	var.padding = 0;
8141 
8142 	kvm_set_segment(vcpu, &var, seg);
8143 	return;
8144 }
8145 
8146 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8147 					u32 msr_index, u64 *pdata)
8148 {
8149 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8150 	int r;
8151 
8152 	r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8153 	if (r < 0)
8154 		return X86EMUL_UNHANDLEABLE;
8155 
8156 	if (r) {
8157 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8158 				       complete_emulated_rdmsr, r))
8159 			return X86EMUL_IO_NEEDED;
8160 
8161 		trace_kvm_msr_read_ex(msr_index);
8162 		return X86EMUL_PROPAGATE_FAULT;
8163 	}
8164 
8165 	trace_kvm_msr_read(msr_index, *pdata);
8166 	return X86EMUL_CONTINUE;
8167 }
8168 
8169 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8170 					u32 msr_index, u64 data)
8171 {
8172 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8173 	int r;
8174 
8175 	r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8176 	if (r < 0)
8177 		return X86EMUL_UNHANDLEABLE;
8178 
8179 	if (r) {
8180 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8181 				       complete_emulated_msr_access, r))
8182 			return X86EMUL_IO_NEEDED;
8183 
8184 		trace_kvm_msr_write_ex(msr_index, data);
8185 		return X86EMUL_PROPAGATE_FAULT;
8186 	}
8187 
8188 	trace_kvm_msr_write(msr_index, data);
8189 	return X86EMUL_CONTINUE;
8190 }
8191 
8192 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8193 			    u32 msr_index, u64 *pdata)
8194 {
8195 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8196 }
8197 
8198 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
8199 			      u32 pmc)
8200 {
8201 	if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
8202 		return 0;
8203 	return -EINVAL;
8204 }
8205 
8206 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8207 			     u32 pmc, u64 *pdata)
8208 {
8209 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8210 }
8211 
8212 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8213 {
8214 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
8215 }
8216 
8217 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8218 			      struct x86_instruction_info *info,
8219 			      enum x86_intercept_stage stage)
8220 {
8221 	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8222 					    &ctxt->exception);
8223 }
8224 
8225 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8226 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8227 			      bool exact_only)
8228 {
8229 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8230 }
8231 
8232 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
8233 {
8234 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
8235 }
8236 
8237 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8238 {
8239 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8240 }
8241 
8242 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8243 {
8244 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8245 }
8246 
8247 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8248 {
8249 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8250 }
8251 
8252 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8253 {
8254 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8255 }
8256 
8257 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8258 {
8259 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8260 }
8261 
8262 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8263 {
8264 	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8265 }
8266 
8267 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8268 {
8269 	return is_smm(emul_to_vcpu(ctxt));
8270 }
8271 
8272 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8273 {
8274 	return is_guest_mode(emul_to_vcpu(ctxt));
8275 }
8276 
8277 #ifndef CONFIG_KVM_SMM
8278 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8279 {
8280 	WARN_ON_ONCE(1);
8281 	return X86EMUL_UNHANDLEABLE;
8282 }
8283 #endif
8284 
8285 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8286 {
8287 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8288 }
8289 
8290 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8291 {
8292 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8293 }
8294 
8295 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8296 {
8297 	struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8298 
8299 	if (!kvm->vm_bugged)
8300 		kvm_vm_bugged(kvm);
8301 }
8302 
8303 static const struct x86_emulate_ops emulate_ops = {
8304 	.vm_bugged           = emulator_vm_bugged,
8305 	.read_gpr            = emulator_read_gpr,
8306 	.write_gpr           = emulator_write_gpr,
8307 	.read_std            = emulator_read_std,
8308 	.write_std           = emulator_write_std,
8309 	.fetch               = kvm_fetch_guest_virt,
8310 	.read_emulated       = emulator_read_emulated,
8311 	.write_emulated      = emulator_write_emulated,
8312 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
8313 	.invlpg              = emulator_invlpg,
8314 	.pio_in_emulated     = emulator_pio_in_emulated,
8315 	.pio_out_emulated    = emulator_pio_out_emulated,
8316 	.get_segment         = emulator_get_segment,
8317 	.set_segment         = emulator_set_segment,
8318 	.get_cached_segment_base = emulator_get_cached_segment_base,
8319 	.get_gdt             = emulator_get_gdt,
8320 	.get_idt	     = emulator_get_idt,
8321 	.set_gdt             = emulator_set_gdt,
8322 	.set_idt	     = emulator_set_idt,
8323 	.get_cr              = emulator_get_cr,
8324 	.set_cr              = emulator_set_cr,
8325 	.cpl                 = emulator_get_cpl,
8326 	.get_dr              = emulator_get_dr,
8327 	.set_dr              = emulator_set_dr,
8328 	.set_msr_with_filter = emulator_set_msr_with_filter,
8329 	.get_msr_with_filter = emulator_get_msr_with_filter,
8330 	.get_msr             = emulator_get_msr,
8331 	.check_pmc	     = emulator_check_pmc,
8332 	.read_pmc            = emulator_read_pmc,
8333 	.halt                = emulator_halt,
8334 	.wbinvd              = emulator_wbinvd,
8335 	.fix_hypercall       = emulator_fix_hypercall,
8336 	.intercept           = emulator_intercept,
8337 	.get_cpuid           = emulator_get_cpuid,
8338 	.guest_has_long_mode = emulator_guest_has_long_mode,
8339 	.guest_has_movbe     = emulator_guest_has_movbe,
8340 	.guest_has_fxsr      = emulator_guest_has_fxsr,
8341 	.guest_has_rdpid     = emulator_guest_has_rdpid,
8342 	.set_nmi_mask        = emulator_set_nmi_mask,
8343 	.is_smm              = emulator_is_smm,
8344 	.is_guest_mode       = emulator_is_guest_mode,
8345 	.leave_smm           = emulator_leave_smm,
8346 	.triple_fault        = emulator_triple_fault,
8347 	.set_xcr             = emulator_set_xcr,
8348 };
8349 
8350 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8351 {
8352 	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8353 	/*
8354 	 * an sti; sti; sequence only disable interrupts for the first
8355 	 * instruction. So, if the last instruction, be it emulated or
8356 	 * not, left the system with the INT_STI flag enabled, it
8357 	 * means that the last instruction is an sti. We should not
8358 	 * leave the flag on in this case. The same goes for mov ss
8359 	 */
8360 	if (int_shadow & mask)
8361 		mask = 0;
8362 	if (unlikely(int_shadow || mask)) {
8363 		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8364 		if (!mask)
8365 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8366 	}
8367 }
8368 
8369 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8370 {
8371 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8372 
8373 	if (ctxt->exception.vector == PF_VECTOR)
8374 		kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8375 	else if (ctxt->exception.error_code_valid)
8376 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8377 				      ctxt->exception.error_code);
8378 	else
8379 		kvm_queue_exception(vcpu, ctxt->exception.vector);
8380 }
8381 
8382 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8383 {
8384 	struct x86_emulate_ctxt *ctxt;
8385 
8386 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8387 	if (!ctxt) {
8388 		pr_err("failed to allocate vcpu's emulator\n");
8389 		return NULL;
8390 	}
8391 
8392 	ctxt->vcpu = vcpu;
8393 	ctxt->ops = &emulate_ops;
8394 	vcpu->arch.emulate_ctxt = ctxt;
8395 
8396 	return ctxt;
8397 }
8398 
8399 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8400 {
8401 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8402 	int cs_db, cs_l;
8403 
8404 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8405 
8406 	ctxt->gpa_available = false;
8407 	ctxt->eflags = kvm_get_rflags(vcpu);
8408 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8409 
8410 	ctxt->eip = kvm_rip_read(vcpu);
8411 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
8412 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
8413 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
8414 		     cs_db				? X86EMUL_MODE_PROT32 :
8415 							  X86EMUL_MODE_PROT16;
8416 	ctxt->interruptibility = 0;
8417 	ctxt->have_exception = false;
8418 	ctxt->exception.vector = -1;
8419 	ctxt->perm_ok = false;
8420 
8421 	init_decode_cache(ctxt);
8422 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8423 }
8424 
8425 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8426 {
8427 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8428 	int ret;
8429 
8430 	init_emulate_ctxt(vcpu);
8431 
8432 	ctxt->op_bytes = 2;
8433 	ctxt->ad_bytes = 2;
8434 	ctxt->_eip = ctxt->eip + inc_eip;
8435 	ret = emulate_int_real(ctxt, irq);
8436 
8437 	if (ret != X86EMUL_CONTINUE) {
8438 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8439 	} else {
8440 		ctxt->eip = ctxt->_eip;
8441 		kvm_rip_write(vcpu, ctxt->eip);
8442 		kvm_set_rflags(vcpu, ctxt->eflags);
8443 	}
8444 }
8445 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8446 
8447 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8448 					   u8 ndata, u8 *insn_bytes, u8 insn_size)
8449 {
8450 	struct kvm_run *run = vcpu->run;
8451 	u64 info[5];
8452 	u8 info_start;
8453 
8454 	/*
8455 	 * Zero the whole array used to retrieve the exit info, as casting to
8456 	 * u32 for select entries will leave some chunks uninitialized.
8457 	 */
8458 	memset(&info, 0, sizeof(info));
8459 
8460 	static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8461 					   &info[2], (u32 *)&info[3],
8462 					   (u32 *)&info[4]);
8463 
8464 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8465 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8466 
8467 	/*
8468 	 * There's currently space for 13 entries, but 5 are used for the exit
8469 	 * reason and info.  Restrict to 4 to reduce the maintenance burden
8470 	 * when expanding kvm_run.emulation_failure in the future.
8471 	 */
8472 	if (WARN_ON_ONCE(ndata > 4))
8473 		ndata = 4;
8474 
8475 	/* Always include the flags as a 'data' entry. */
8476 	info_start = 1;
8477 	run->emulation_failure.flags = 0;
8478 
8479 	if (insn_size) {
8480 		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8481 			      sizeof(run->emulation_failure.insn_bytes) != 16));
8482 		info_start += 2;
8483 		run->emulation_failure.flags |=
8484 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8485 		run->emulation_failure.insn_size = insn_size;
8486 		memset(run->emulation_failure.insn_bytes, 0x90,
8487 		       sizeof(run->emulation_failure.insn_bytes));
8488 		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8489 	}
8490 
8491 	memcpy(&run->internal.data[info_start], info, sizeof(info));
8492 	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8493 	       ndata * sizeof(data[0]));
8494 
8495 	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8496 }
8497 
8498 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8499 {
8500 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8501 
8502 	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8503 				       ctxt->fetch.end - ctxt->fetch.data);
8504 }
8505 
8506 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8507 					  u8 ndata)
8508 {
8509 	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8510 }
8511 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8512 
8513 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8514 {
8515 	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8516 }
8517 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8518 
8519 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8520 {
8521 	struct kvm *kvm = vcpu->kvm;
8522 
8523 	++vcpu->stat.insn_emulation_fail;
8524 	trace_kvm_emulate_insn_failed(vcpu);
8525 
8526 	if (emulation_type & EMULTYPE_VMWARE_GP) {
8527 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8528 		return 1;
8529 	}
8530 
8531 	if (kvm->arch.exit_on_emulation_error ||
8532 	    (emulation_type & EMULTYPE_SKIP)) {
8533 		prepare_emulation_ctxt_failure_exit(vcpu);
8534 		return 0;
8535 	}
8536 
8537 	kvm_queue_exception(vcpu, UD_VECTOR);
8538 
8539 	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8540 		prepare_emulation_ctxt_failure_exit(vcpu);
8541 		return 0;
8542 	}
8543 
8544 	return 1;
8545 }
8546 
8547 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8548 				  int emulation_type)
8549 {
8550 	gpa_t gpa = cr2_or_gpa;
8551 	kvm_pfn_t pfn;
8552 
8553 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8554 		return false;
8555 
8556 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8557 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8558 		return false;
8559 
8560 	if (!vcpu->arch.mmu->root_role.direct) {
8561 		/*
8562 		 * Write permission should be allowed since only
8563 		 * write access need to be emulated.
8564 		 */
8565 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8566 
8567 		/*
8568 		 * If the mapping is invalid in guest, let cpu retry
8569 		 * it to generate fault.
8570 		 */
8571 		if (gpa == INVALID_GPA)
8572 			return true;
8573 	}
8574 
8575 	/*
8576 	 * Do not retry the unhandleable instruction if it faults on the
8577 	 * readonly host memory, otherwise it will goto a infinite loop:
8578 	 * retry instruction -> write #PF -> emulation fail -> retry
8579 	 * instruction -> ...
8580 	 */
8581 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8582 
8583 	/*
8584 	 * If the instruction failed on the error pfn, it can not be fixed,
8585 	 * report the error to userspace.
8586 	 */
8587 	if (is_error_noslot_pfn(pfn))
8588 		return false;
8589 
8590 	kvm_release_pfn_clean(pfn);
8591 
8592 	/* The instructions are well-emulated on direct mmu. */
8593 	if (vcpu->arch.mmu->root_role.direct) {
8594 		unsigned int indirect_shadow_pages;
8595 
8596 		write_lock(&vcpu->kvm->mmu_lock);
8597 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8598 		write_unlock(&vcpu->kvm->mmu_lock);
8599 
8600 		if (indirect_shadow_pages)
8601 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8602 
8603 		return true;
8604 	}
8605 
8606 	/*
8607 	 * if emulation was due to access to shadowed page table
8608 	 * and it failed try to unshadow page and re-enter the
8609 	 * guest to let CPU execute the instruction.
8610 	 */
8611 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8612 
8613 	/*
8614 	 * If the access faults on its page table, it can not
8615 	 * be fixed by unprotecting shadow page and it should
8616 	 * be reported to userspace.
8617 	 */
8618 	return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP);
8619 }
8620 
8621 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8622 			      gpa_t cr2_or_gpa,  int emulation_type)
8623 {
8624 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8625 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8626 
8627 	last_retry_eip = vcpu->arch.last_retry_eip;
8628 	last_retry_addr = vcpu->arch.last_retry_addr;
8629 
8630 	/*
8631 	 * If the emulation is caused by #PF and it is non-page_table
8632 	 * writing instruction, it means the VM-EXIT is caused by shadow
8633 	 * page protected, we can zap the shadow page and retry this
8634 	 * instruction directly.
8635 	 *
8636 	 * Note: if the guest uses a non-page-table modifying instruction
8637 	 * on the PDE that points to the instruction, then we will unmap
8638 	 * the instruction and go to an infinite loop. So, we cache the
8639 	 * last retried eip and the last fault address, if we meet the eip
8640 	 * and the address again, we can break out of the potential infinite
8641 	 * loop.
8642 	 */
8643 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8644 
8645 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8646 		return false;
8647 
8648 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8649 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8650 		return false;
8651 
8652 	if (x86_page_table_writing_insn(ctxt))
8653 		return false;
8654 
8655 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8656 		return false;
8657 
8658 	vcpu->arch.last_retry_eip = ctxt->eip;
8659 	vcpu->arch.last_retry_addr = cr2_or_gpa;
8660 
8661 	if (!vcpu->arch.mmu->root_role.direct)
8662 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8663 
8664 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8665 
8666 	return true;
8667 }
8668 
8669 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8670 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8671 
8672 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8673 				unsigned long *db)
8674 {
8675 	u32 dr6 = 0;
8676 	int i;
8677 	u32 enable, rwlen;
8678 
8679 	enable = dr7;
8680 	rwlen = dr7 >> 16;
8681 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8682 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8683 			dr6 |= (1 << i);
8684 	return dr6;
8685 }
8686 
8687 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8688 {
8689 	struct kvm_run *kvm_run = vcpu->run;
8690 
8691 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8692 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8693 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8694 		kvm_run->debug.arch.exception = DB_VECTOR;
8695 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
8696 		return 0;
8697 	}
8698 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8699 	return 1;
8700 }
8701 
8702 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8703 {
8704 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8705 	int r;
8706 
8707 	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8708 	if (unlikely(!r))
8709 		return 0;
8710 
8711 	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8712 
8713 	/*
8714 	 * rflags is the old, "raw" value of the flags.  The new value has
8715 	 * not been saved yet.
8716 	 *
8717 	 * This is correct even for TF set by the guest, because "the
8718 	 * processor will not generate this exception after the instruction
8719 	 * that sets the TF flag".
8720 	 */
8721 	if (unlikely(rflags & X86_EFLAGS_TF))
8722 		r = kvm_vcpu_do_singlestep(vcpu);
8723 	return r;
8724 }
8725 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8726 
8727 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8728 {
8729 	u32 shadow;
8730 
8731 	if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8732 		return true;
8733 
8734 	/*
8735 	 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
8736 	 * but AMD CPUs do not.  MOV/POP SS blocking is rare, check that first
8737 	 * to avoid the relatively expensive CPUID lookup.
8738 	 */
8739 	shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8740 	return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
8741 	       guest_cpuid_is_intel(vcpu);
8742 }
8743 
8744 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8745 					   int emulation_type, int *r)
8746 {
8747 	WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8748 
8749 	/*
8750 	 * Do not check for code breakpoints if hardware has already done the
8751 	 * checks, as inferred from the emulation type.  On NO_DECODE and SKIP,
8752 	 * the instruction has passed all exception checks, and all intercepted
8753 	 * exceptions that trigger emulation have lower priority than code
8754 	 * breakpoints, i.e. the fact that the intercepted exception occurred
8755 	 * means any code breakpoints have already been serviced.
8756 	 *
8757 	 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8758 	 * hardware has checked the RIP of the magic prefix, but not the RIP of
8759 	 * the instruction being emulated.  The intent of forced emulation is
8760 	 * to behave as if KVM intercepted the instruction without an exception
8761 	 * and without a prefix.
8762 	 */
8763 	if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8764 			      EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8765 		return false;
8766 
8767 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8768 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8769 		struct kvm_run *kvm_run = vcpu->run;
8770 		unsigned long eip = kvm_get_linear_rip(vcpu);
8771 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8772 					   vcpu->arch.guest_debug_dr7,
8773 					   vcpu->arch.eff_db);
8774 
8775 		if (dr6 != 0) {
8776 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8777 			kvm_run->debug.arch.pc = eip;
8778 			kvm_run->debug.arch.exception = DB_VECTOR;
8779 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
8780 			*r = 0;
8781 			return true;
8782 		}
8783 	}
8784 
8785 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8786 	    !kvm_is_code_breakpoint_inhibited(vcpu)) {
8787 		unsigned long eip = kvm_get_linear_rip(vcpu);
8788 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8789 					   vcpu->arch.dr7,
8790 					   vcpu->arch.db);
8791 
8792 		if (dr6 != 0) {
8793 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8794 			*r = 1;
8795 			return true;
8796 		}
8797 	}
8798 
8799 	return false;
8800 }
8801 
8802 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8803 {
8804 	switch (ctxt->opcode_len) {
8805 	case 1:
8806 		switch (ctxt->b) {
8807 		case 0xe4:	/* IN */
8808 		case 0xe5:
8809 		case 0xec:
8810 		case 0xed:
8811 		case 0xe6:	/* OUT */
8812 		case 0xe7:
8813 		case 0xee:
8814 		case 0xef:
8815 		case 0x6c:	/* INS */
8816 		case 0x6d:
8817 		case 0x6e:	/* OUTS */
8818 		case 0x6f:
8819 			return true;
8820 		}
8821 		break;
8822 	case 2:
8823 		switch (ctxt->b) {
8824 		case 0x33:	/* RDPMC */
8825 			return true;
8826 		}
8827 		break;
8828 	}
8829 
8830 	return false;
8831 }
8832 
8833 /*
8834  * Decode an instruction for emulation.  The caller is responsible for handling
8835  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
8836  * (and wrong) when emulating on an intercepted fault-like exception[*], as
8837  * code breakpoints have higher priority and thus have already been done by
8838  * hardware.
8839  *
8840  * [*] Except #MC, which is higher priority, but KVM should never emulate in
8841  *     response to a machine check.
8842  */
8843 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8844 				    void *insn, int insn_len)
8845 {
8846 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8847 	int r;
8848 
8849 	init_emulate_ctxt(vcpu);
8850 
8851 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8852 
8853 	trace_kvm_emulate_insn_start(vcpu);
8854 	++vcpu->stat.insn_emulation;
8855 
8856 	return r;
8857 }
8858 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8859 
8860 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8861 			    int emulation_type, void *insn, int insn_len)
8862 {
8863 	int r;
8864 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8865 	bool writeback = true;
8866 
8867 	if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8868 		return 1;
8869 
8870 	vcpu->arch.l1tf_flush_l1d = true;
8871 
8872 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8873 		kvm_clear_exception_queue(vcpu);
8874 
8875 		/*
8876 		 * Return immediately if RIP hits a code breakpoint, such #DBs
8877 		 * are fault-like and are higher priority than any faults on
8878 		 * the code fetch itself.
8879 		 */
8880 		if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
8881 			return r;
8882 
8883 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
8884 						    insn, insn_len);
8885 		if (r != EMULATION_OK)  {
8886 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
8887 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8888 				kvm_queue_exception(vcpu, UD_VECTOR);
8889 				return 1;
8890 			}
8891 			if (reexecute_instruction(vcpu, cr2_or_gpa,
8892 						  emulation_type))
8893 				return 1;
8894 
8895 			if (ctxt->have_exception &&
8896 			    !(emulation_type & EMULTYPE_SKIP)) {
8897 				/*
8898 				 * #UD should result in just EMULATION_FAILED, and trap-like
8899 				 * exception should not be encountered during decode.
8900 				 */
8901 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8902 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8903 				inject_emulated_exception(vcpu);
8904 				return 1;
8905 			}
8906 			return handle_emulation_failure(vcpu, emulation_type);
8907 		}
8908 	}
8909 
8910 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8911 	    !is_vmware_backdoor_opcode(ctxt)) {
8912 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8913 		return 1;
8914 	}
8915 
8916 	/*
8917 	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8918 	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8919 	 * The caller is responsible for updating interruptibility state and
8920 	 * injecting single-step #DBs.
8921 	 */
8922 	if (emulation_type & EMULTYPE_SKIP) {
8923 		if (ctxt->mode != X86EMUL_MODE_PROT64)
8924 			ctxt->eip = (u32)ctxt->_eip;
8925 		else
8926 			ctxt->eip = ctxt->_eip;
8927 
8928 		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8929 			r = 1;
8930 			goto writeback;
8931 		}
8932 
8933 		kvm_rip_write(vcpu, ctxt->eip);
8934 		if (ctxt->eflags & X86_EFLAGS_RF)
8935 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8936 		return 1;
8937 	}
8938 
8939 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8940 		return 1;
8941 
8942 	/* this is needed for vmware backdoor interface to work since it
8943 	   changes registers values  during IO operation */
8944 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8945 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8946 		emulator_invalidate_register_cache(ctxt);
8947 	}
8948 
8949 restart:
8950 	if (emulation_type & EMULTYPE_PF) {
8951 		/* Save the faulting GPA (cr2) in the address field */
8952 		ctxt->exception.address = cr2_or_gpa;
8953 
8954 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
8955 		if (vcpu->arch.mmu->root_role.direct) {
8956 			ctxt->gpa_available = true;
8957 			ctxt->gpa_val = cr2_or_gpa;
8958 		}
8959 	} else {
8960 		/* Sanitize the address out of an abundance of paranoia. */
8961 		ctxt->exception.address = 0;
8962 	}
8963 
8964 	r = x86_emulate_insn(ctxt);
8965 
8966 	if (r == EMULATION_INTERCEPTED)
8967 		return 1;
8968 
8969 	if (r == EMULATION_FAILED) {
8970 		if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type))
8971 			return 1;
8972 
8973 		return handle_emulation_failure(vcpu, emulation_type);
8974 	}
8975 
8976 	if (ctxt->have_exception) {
8977 		WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
8978 		vcpu->mmio_needed = false;
8979 		r = 1;
8980 		inject_emulated_exception(vcpu);
8981 	} else if (vcpu->arch.pio.count) {
8982 		if (!vcpu->arch.pio.in) {
8983 			/* FIXME: return into emulator if single-stepping.  */
8984 			vcpu->arch.pio.count = 0;
8985 		} else {
8986 			writeback = false;
8987 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
8988 		}
8989 		r = 0;
8990 	} else if (vcpu->mmio_needed) {
8991 		++vcpu->stat.mmio_exits;
8992 
8993 		if (!vcpu->mmio_is_write)
8994 			writeback = false;
8995 		r = 0;
8996 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8997 	} else if (vcpu->arch.complete_userspace_io) {
8998 		writeback = false;
8999 		r = 0;
9000 	} else if (r == EMULATION_RESTART)
9001 		goto restart;
9002 	else
9003 		r = 1;
9004 
9005 writeback:
9006 	if (writeback) {
9007 		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
9008 		toggle_interruptibility(vcpu, ctxt->interruptibility);
9009 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9010 
9011 		/*
9012 		 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9013 		 * only supports code breakpoints and general detect #DB, both
9014 		 * of which are fault-like.
9015 		 */
9016 		if (!ctxt->have_exception ||
9017 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9018 			kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
9019 			if (ctxt->is_branch)
9020 				kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
9021 			kvm_rip_write(vcpu, ctxt->eip);
9022 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9023 				r = kvm_vcpu_do_singlestep(vcpu);
9024 			static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
9025 			__kvm_set_rflags(vcpu, ctxt->eflags);
9026 		}
9027 
9028 		/*
9029 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9030 		 * do nothing, and it will be requested again as soon as
9031 		 * the shadow expires.  But we still need to check here,
9032 		 * because POPF has no interrupt shadow.
9033 		 */
9034 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9035 			kvm_make_request(KVM_REQ_EVENT, vcpu);
9036 	} else
9037 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9038 
9039 	return r;
9040 }
9041 
9042 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9043 {
9044 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9045 }
9046 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9047 
9048 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9049 					void *insn, int insn_len)
9050 {
9051 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9052 }
9053 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9054 
9055 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9056 {
9057 	vcpu->arch.pio.count = 0;
9058 	return 1;
9059 }
9060 
9061 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9062 {
9063 	vcpu->arch.pio.count = 0;
9064 
9065 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9066 		return 1;
9067 
9068 	return kvm_skip_emulated_instruction(vcpu);
9069 }
9070 
9071 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9072 			    unsigned short port)
9073 {
9074 	unsigned long val = kvm_rax_read(vcpu);
9075 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9076 
9077 	if (ret)
9078 		return ret;
9079 
9080 	/*
9081 	 * Workaround userspace that relies on old KVM behavior of %rip being
9082 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9083 	 */
9084 	if (port == 0x7e &&
9085 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9086 		vcpu->arch.complete_userspace_io =
9087 			complete_fast_pio_out_port_0x7e;
9088 		kvm_skip_emulated_instruction(vcpu);
9089 	} else {
9090 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9091 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9092 	}
9093 	return 0;
9094 }
9095 
9096 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9097 {
9098 	unsigned long val;
9099 
9100 	/* We should only ever be called with arch.pio.count equal to 1 */
9101 	BUG_ON(vcpu->arch.pio.count != 1);
9102 
9103 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9104 		vcpu->arch.pio.count = 0;
9105 		return 1;
9106 	}
9107 
9108 	/* For size less than 4 we merge, else we zero extend */
9109 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9110 
9111 	complete_emulator_pio_in(vcpu, &val);
9112 	kvm_rax_write(vcpu, val);
9113 
9114 	return kvm_skip_emulated_instruction(vcpu);
9115 }
9116 
9117 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9118 			   unsigned short port)
9119 {
9120 	unsigned long val;
9121 	int ret;
9122 
9123 	/* For size less than 4 we merge, else we zero extend */
9124 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9125 
9126 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
9127 	if (ret) {
9128 		kvm_rax_write(vcpu, val);
9129 		return ret;
9130 	}
9131 
9132 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9133 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9134 
9135 	return 0;
9136 }
9137 
9138 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9139 {
9140 	int ret;
9141 
9142 	if (in)
9143 		ret = kvm_fast_pio_in(vcpu, size, port);
9144 	else
9145 		ret = kvm_fast_pio_out(vcpu, size, port);
9146 	return ret && kvm_skip_emulated_instruction(vcpu);
9147 }
9148 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9149 
9150 static int kvmclock_cpu_down_prep(unsigned int cpu)
9151 {
9152 	__this_cpu_write(cpu_tsc_khz, 0);
9153 	return 0;
9154 }
9155 
9156 static void tsc_khz_changed(void *data)
9157 {
9158 	struct cpufreq_freqs *freq = data;
9159 	unsigned long khz = 0;
9160 
9161 	WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9162 
9163 	if (data)
9164 		khz = freq->new;
9165 	else
9166 		khz = cpufreq_quick_get(raw_smp_processor_id());
9167 	if (!khz)
9168 		khz = tsc_khz;
9169 	__this_cpu_write(cpu_tsc_khz, khz);
9170 }
9171 
9172 #ifdef CONFIG_X86_64
9173 static void kvm_hyperv_tsc_notifier(void)
9174 {
9175 	struct kvm *kvm;
9176 	int cpu;
9177 
9178 	mutex_lock(&kvm_lock);
9179 	list_for_each_entry(kvm, &vm_list, vm_list)
9180 		kvm_make_mclock_inprogress_request(kvm);
9181 
9182 	/* no guest entries from this point */
9183 	hyperv_stop_tsc_emulation();
9184 
9185 	/* TSC frequency always matches when on Hyper-V */
9186 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9187 		for_each_present_cpu(cpu)
9188 			per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9189 	}
9190 	kvm_caps.max_guest_tsc_khz = tsc_khz;
9191 
9192 	list_for_each_entry(kvm, &vm_list, vm_list) {
9193 		__kvm_start_pvclock_update(kvm);
9194 		pvclock_update_vm_gtod_copy(kvm);
9195 		kvm_end_pvclock_update(kvm);
9196 	}
9197 
9198 	mutex_unlock(&kvm_lock);
9199 }
9200 #endif
9201 
9202 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9203 {
9204 	struct kvm *kvm;
9205 	struct kvm_vcpu *vcpu;
9206 	int send_ipi = 0;
9207 	unsigned long i;
9208 
9209 	/*
9210 	 * We allow guests to temporarily run on slowing clocks,
9211 	 * provided we notify them after, or to run on accelerating
9212 	 * clocks, provided we notify them before.  Thus time never
9213 	 * goes backwards.
9214 	 *
9215 	 * However, we have a problem.  We can't atomically update
9216 	 * the frequency of a given CPU from this function; it is
9217 	 * merely a notifier, which can be called from any CPU.
9218 	 * Changing the TSC frequency at arbitrary points in time
9219 	 * requires a recomputation of local variables related to
9220 	 * the TSC for each VCPU.  We must flag these local variables
9221 	 * to be updated and be sure the update takes place with the
9222 	 * new frequency before any guests proceed.
9223 	 *
9224 	 * Unfortunately, the combination of hotplug CPU and frequency
9225 	 * change creates an intractable locking scenario; the order
9226 	 * of when these callouts happen is undefined with respect to
9227 	 * CPU hotplug, and they can race with each other.  As such,
9228 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9229 	 * undefined; you can actually have a CPU frequency change take
9230 	 * place in between the computation of X and the setting of the
9231 	 * variable.  To protect against this problem, all updates of
9232 	 * the per_cpu tsc_khz variable are done in an interrupt
9233 	 * protected IPI, and all callers wishing to update the value
9234 	 * must wait for a synchronous IPI to complete (which is trivial
9235 	 * if the caller is on the CPU already).  This establishes the
9236 	 * necessary total order on variable updates.
9237 	 *
9238 	 * Note that because a guest time update may take place
9239 	 * anytime after the setting of the VCPU's request bit, the
9240 	 * correct TSC value must be set before the request.  However,
9241 	 * to ensure the update actually makes it to any guest which
9242 	 * starts running in hardware virtualization between the set
9243 	 * and the acquisition of the spinlock, we must also ping the
9244 	 * CPU after setting the request bit.
9245 	 *
9246 	 */
9247 
9248 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9249 
9250 	mutex_lock(&kvm_lock);
9251 	list_for_each_entry(kvm, &vm_list, vm_list) {
9252 		kvm_for_each_vcpu(i, vcpu, kvm) {
9253 			if (vcpu->cpu != cpu)
9254 				continue;
9255 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9256 			if (vcpu->cpu != raw_smp_processor_id())
9257 				send_ipi = 1;
9258 		}
9259 	}
9260 	mutex_unlock(&kvm_lock);
9261 
9262 	if (freq->old < freq->new && send_ipi) {
9263 		/*
9264 		 * We upscale the frequency.  Must make the guest
9265 		 * doesn't see old kvmclock values while running with
9266 		 * the new frequency, otherwise we risk the guest sees
9267 		 * time go backwards.
9268 		 *
9269 		 * In case we update the frequency for another cpu
9270 		 * (which might be in guest context) send an interrupt
9271 		 * to kick the cpu out of guest context.  Next time
9272 		 * guest context is entered kvmclock will be updated,
9273 		 * so the guest will not see stale values.
9274 		 */
9275 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9276 	}
9277 }
9278 
9279 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9280 				     void *data)
9281 {
9282 	struct cpufreq_freqs *freq = data;
9283 	int cpu;
9284 
9285 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9286 		return 0;
9287 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9288 		return 0;
9289 
9290 	for_each_cpu(cpu, freq->policy->cpus)
9291 		__kvmclock_cpufreq_notifier(freq, cpu);
9292 
9293 	return 0;
9294 }
9295 
9296 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9297 	.notifier_call  = kvmclock_cpufreq_notifier
9298 };
9299 
9300 static int kvmclock_cpu_online(unsigned int cpu)
9301 {
9302 	tsc_khz_changed(NULL);
9303 	return 0;
9304 }
9305 
9306 static void kvm_timer_init(void)
9307 {
9308 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9309 		max_tsc_khz = tsc_khz;
9310 
9311 		if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9312 			struct cpufreq_policy *policy;
9313 			int cpu;
9314 
9315 			cpu = get_cpu();
9316 			policy = cpufreq_cpu_get(cpu);
9317 			if (policy) {
9318 				if (policy->cpuinfo.max_freq)
9319 					max_tsc_khz = policy->cpuinfo.max_freq;
9320 				cpufreq_cpu_put(policy);
9321 			}
9322 			put_cpu();
9323 		}
9324 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9325 					  CPUFREQ_TRANSITION_NOTIFIER);
9326 
9327 		cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9328 				  kvmclock_cpu_online, kvmclock_cpu_down_prep);
9329 	}
9330 }
9331 
9332 #ifdef CONFIG_X86_64
9333 static void pvclock_gtod_update_fn(struct work_struct *work)
9334 {
9335 	struct kvm *kvm;
9336 	struct kvm_vcpu *vcpu;
9337 	unsigned long i;
9338 
9339 	mutex_lock(&kvm_lock);
9340 	list_for_each_entry(kvm, &vm_list, vm_list)
9341 		kvm_for_each_vcpu(i, vcpu, kvm)
9342 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9343 	atomic_set(&kvm_guest_has_master_clock, 0);
9344 	mutex_unlock(&kvm_lock);
9345 }
9346 
9347 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9348 
9349 /*
9350  * Indirection to move queue_work() out of the tk_core.seq write held
9351  * region to prevent possible deadlocks against time accessors which
9352  * are invoked with work related locks held.
9353  */
9354 static void pvclock_irq_work_fn(struct irq_work *w)
9355 {
9356 	queue_work(system_long_wq, &pvclock_gtod_work);
9357 }
9358 
9359 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9360 
9361 /*
9362  * Notification about pvclock gtod data update.
9363  */
9364 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9365 			       void *priv)
9366 {
9367 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9368 	struct timekeeper *tk = priv;
9369 
9370 	update_pvclock_gtod(tk);
9371 
9372 	/*
9373 	 * Disable master clock if host does not trust, or does not use,
9374 	 * TSC based clocksource. Delegate queue_work() to irq_work as
9375 	 * this is invoked with tk_core.seq write held.
9376 	 */
9377 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9378 	    atomic_read(&kvm_guest_has_master_clock) != 0)
9379 		irq_work_queue(&pvclock_irq_work);
9380 	return 0;
9381 }
9382 
9383 static struct notifier_block pvclock_gtod_notifier = {
9384 	.notifier_call = pvclock_gtod_notify,
9385 };
9386 #endif
9387 
9388 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9389 {
9390 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9391 
9392 #define __KVM_X86_OP(func) \
9393 	static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9394 #define KVM_X86_OP(func) \
9395 	WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9396 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9397 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9398 	static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9399 					   (void *)__static_call_return0);
9400 #include <asm/kvm-x86-ops.h>
9401 #undef __KVM_X86_OP
9402 
9403 	kvm_pmu_ops_update(ops->pmu_ops);
9404 }
9405 
9406 static int kvm_x86_check_processor_compatibility(void)
9407 {
9408 	int cpu = smp_processor_id();
9409 	struct cpuinfo_x86 *c = &cpu_data(cpu);
9410 
9411 	/*
9412 	 * Compatibility checks are done when loading KVM and when enabling
9413 	 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9414 	 * compatible, i.e. KVM should never perform a compatibility check on
9415 	 * an offline CPU.
9416 	 */
9417 	WARN_ON(!cpu_online(cpu));
9418 
9419 	if (__cr4_reserved_bits(cpu_has, c) !=
9420 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9421 		return -EIO;
9422 
9423 	return static_call(kvm_x86_check_processor_compatibility)();
9424 }
9425 
9426 static void kvm_x86_check_cpu_compat(void *ret)
9427 {
9428 	*(int *)ret = kvm_x86_check_processor_compatibility();
9429 }
9430 
9431 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9432 {
9433 	u64 host_pat;
9434 	int r, cpu;
9435 
9436 	if (kvm_x86_ops.hardware_enable) {
9437 		pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9438 		return -EEXIST;
9439 	}
9440 
9441 	/*
9442 	 * KVM explicitly assumes that the guest has an FPU and
9443 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9444 	 * vCPU's FPU state as a fxregs_state struct.
9445 	 */
9446 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9447 		pr_err("inadequate fpu\n");
9448 		return -EOPNOTSUPP;
9449 	}
9450 
9451 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9452 		pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9453 		return -EOPNOTSUPP;
9454 	}
9455 
9456 	/*
9457 	 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9458 	 * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9459 	 * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9460 	 * with an exception.  PAT[0] is set to WB on RESET and also by the
9461 	 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9462 	 */
9463 	if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9464 	    (host_pat & GENMASK(2, 0)) != 6) {
9465 		pr_err("host PAT[0] is not WB\n");
9466 		return -EIO;
9467 	}
9468 
9469 	x86_emulator_cache = kvm_alloc_emulator_cache();
9470 	if (!x86_emulator_cache) {
9471 		pr_err("failed to allocate cache for x86 emulator\n");
9472 		return -ENOMEM;
9473 	}
9474 
9475 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9476 	if (!user_return_msrs) {
9477 		pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9478 		r = -ENOMEM;
9479 		goto out_free_x86_emulator_cache;
9480 	}
9481 	kvm_nr_uret_msrs = 0;
9482 
9483 	r = kvm_mmu_vendor_module_init();
9484 	if (r)
9485 		goto out_free_percpu;
9486 
9487 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9488 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9489 		kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9490 	}
9491 
9492 	rdmsrl_safe(MSR_EFER, &host_efer);
9493 
9494 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9495 		rdmsrl(MSR_IA32_XSS, host_xss);
9496 
9497 	kvm_init_pmu_capability(ops->pmu_ops);
9498 
9499 	r = ops->hardware_setup();
9500 	if (r != 0)
9501 		goto out_mmu_exit;
9502 
9503 	kvm_ops_update(ops);
9504 
9505 	for_each_online_cpu(cpu) {
9506 		smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9507 		if (r < 0)
9508 			goto out_unwind_ops;
9509 	}
9510 
9511 	/*
9512 	 * Point of no return!  DO NOT add error paths below this point unless
9513 	 * absolutely necessary, as most operations from this point forward
9514 	 * require unwinding.
9515 	 */
9516 	kvm_timer_init();
9517 
9518 	if (pi_inject_timer == -1)
9519 		pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9520 #ifdef CONFIG_X86_64
9521 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9522 
9523 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9524 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9525 #endif
9526 
9527 	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9528 
9529 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9530 		kvm_caps.supported_xss = 0;
9531 
9532 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9533 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9534 #undef __kvm_cpu_cap_has
9535 
9536 	if (kvm_caps.has_tsc_control) {
9537 		/*
9538 		 * Make sure the user can only configure tsc_khz values that
9539 		 * fit into a signed integer.
9540 		 * A min value is not calculated because it will always
9541 		 * be 1 on all machines.
9542 		 */
9543 		u64 max = min(0x7fffffffULL,
9544 			      __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9545 		kvm_caps.max_guest_tsc_khz = max;
9546 	}
9547 	kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9548 	kvm_init_msr_lists();
9549 	return 0;
9550 
9551 out_unwind_ops:
9552 	kvm_x86_ops.hardware_enable = NULL;
9553 	static_call(kvm_x86_hardware_unsetup)();
9554 out_mmu_exit:
9555 	kvm_mmu_vendor_module_exit();
9556 out_free_percpu:
9557 	free_percpu(user_return_msrs);
9558 out_free_x86_emulator_cache:
9559 	kmem_cache_destroy(x86_emulator_cache);
9560 	return r;
9561 }
9562 
9563 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9564 {
9565 	int r;
9566 
9567 	mutex_lock(&vendor_module_lock);
9568 	r = __kvm_x86_vendor_init(ops);
9569 	mutex_unlock(&vendor_module_lock);
9570 
9571 	return r;
9572 }
9573 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9574 
9575 void kvm_x86_vendor_exit(void)
9576 {
9577 	kvm_unregister_perf_callbacks();
9578 
9579 #ifdef CONFIG_X86_64
9580 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9581 		clear_hv_tscchange_cb();
9582 #endif
9583 	kvm_lapic_exit();
9584 
9585 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9586 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9587 					    CPUFREQ_TRANSITION_NOTIFIER);
9588 		cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9589 	}
9590 #ifdef CONFIG_X86_64
9591 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9592 	irq_work_sync(&pvclock_irq_work);
9593 	cancel_work_sync(&pvclock_gtod_work);
9594 #endif
9595 	static_call(kvm_x86_hardware_unsetup)();
9596 	kvm_mmu_vendor_module_exit();
9597 	free_percpu(user_return_msrs);
9598 	kmem_cache_destroy(x86_emulator_cache);
9599 #ifdef CONFIG_KVM_XEN
9600 	static_key_deferred_flush(&kvm_xen_enabled);
9601 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9602 #endif
9603 	mutex_lock(&vendor_module_lock);
9604 	kvm_x86_ops.hardware_enable = NULL;
9605 	mutex_unlock(&vendor_module_lock);
9606 }
9607 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9608 
9609 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9610 {
9611 	/*
9612 	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9613 	 * local APIC is in-kernel, the run loop will detect the non-runnable
9614 	 * state and halt the vCPU.  Exit to userspace if the local APIC is
9615 	 * managed by userspace, in which case userspace is responsible for
9616 	 * handling wake events.
9617 	 */
9618 	++vcpu->stat.halt_exits;
9619 	if (lapic_in_kernel(vcpu)) {
9620 		vcpu->arch.mp_state = state;
9621 		return 1;
9622 	} else {
9623 		vcpu->run->exit_reason = reason;
9624 		return 0;
9625 	}
9626 }
9627 
9628 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9629 {
9630 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9631 }
9632 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9633 
9634 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9635 {
9636 	int ret = kvm_skip_emulated_instruction(vcpu);
9637 	/*
9638 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9639 	 * KVM_EXIT_DEBUG here.
9640 	 */
9641 	return kvm_emulate_halt_noskip(vcpu) && ret;
9642 }
9643 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9644 
9645 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9646 {
9647 	int ret = kvm_skip_emulated_instruction(vcpu);
9648 
9649 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9650 					KVM_EXIT_AP_RESET_HOLD) && ret;
9651 }
9652 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9653 
9654 #ifdef CONFIG_X86_64
9655 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9656 			        unsigned long clock_type)
9657 {
9658 	struct kvm_clock_pairing clock_pairing;
9659 	struct timespec64 ts;
9660 	u64 cycle;
9661 	int ret;
9662 
9663 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9664 		return -KVM_EOPNOTSUPP;
9665 
9666 	/*
9667 	 * When tsc is in permanent catchup mode guests won't be able to use
9668 	 * pvclock_read_retry loop to get consistent view of pvclock
9669 	 */
9670 	if (vcpu->arch.tsc_always_catchup)
9671 		return -KVM_EOPNOTSUPP;
9672 
9673 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9674 		return -KVM_EOPNOTSUPP;
9675 
9676 	clock_pairing.sec = ts.tv_sec;
9677 	clock_pairing.nsec = ts.tv_nsec;
9678 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9679 	clock_pairing.flags = 0;
9680 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9681 
9682 	ret = 0;
9683 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9684 			    sizeof(struct kvm_clock_pairing)))
9685 		ret = -KVM_EFAULT;
9686 
9687 	return ret;
9688 }
9689 #endif
9690 
9691 /*
9692  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9693  *
9694  * @apicid - apicid of vcpu to be kicked.
9695  */
9696 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9697 {
9698 	/*
9699 	 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9700 	 * common code, e.g. for tracing. Defer initialization to the compiler.
9701 	 */
9702 	struct kvm_lapic_irq lapic_irq = {
9703 		.delivery_mode = APIC_DM_REMRD,
9704 		.dest_mode = APIC_DEST_PHYSICAL,
9705 		.shorthand = APIC_DEST_NOSHORT,
9706 		.dest_id = apicid,
9707 	};
9708 
9709 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9710 }
9711 
9712 bool kvm_apicv_activated(struct kvm *kvm)
9713 {
9714 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9715 }
9716 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9717 
9718 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9719 {
9720 	ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9721 	ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9722 
9723 	return (vm_reasons | vcpu_reasons) == 0;
9724 }
9725 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9726 
9727 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9728 				       enum kvm_apicv_inhibit reason, bool set)
9729 {
9730 	if (set)
9731 		__set_bit(reason, inhibits);
9732 	else
9733 		__clear_bit(reason, inhibits);
9734 
9735 	trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9736 }
9737 
9738 static void kvm_apicv_init(struct kvm *kvm)
9739 {
9740 	unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9741 
9742 	init_rwsem(&kvm->arch.apicv_update_lock);
9743 
9744 	set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9745 
9746 	if (!enable_apicv)
9747 		set_or_clear_apicv_inhibit(inhibits,
9748 					   APICV_INHIBIT_REASON_DISABLE, true);
9749 }
9750 
9751 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9752 {
9753 	struct kvm_vcpu *target = NULL;
9754 	struct kvm_apic_map *map;
9755 
9756 	vcpu->stat.directed_yield_attempted++;
9757 
9758 	if (single_task_running())
9759 		goto no_yield;
9760 
9761 	rcu_read_lock();
9762 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
9763 
9764 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9765 		target = map->phys_map[dest_id]->vcpu;
9766 
9767 	rcu_read_unlock();
9768 
9769 	if (!target || !READ_ONCE(target->ready))
9770 		goto no_yield;
9771 
9772 	/* Ignore requests to yield to self */
9773 	if (vcpu == target)
9774 		goto no_yield;
9775 
9776 	if (kvm_vcpu_yield_to(target) <= 0)
9777 		goto no_yield;
9778 
9779 	vcpu->stat.directed_yield_successful++;
9780 
9781 no_yield:
9782 	return;
9783 }
9784 
9785 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9786 {
9787 	u64 ret = vcpu->run->hypercall.ret;
9788 
9789 	if (!is_64_bit_mode(vcpu))
9790 		ret = (u32)ret;
9791 	kvm_rax_write(vcpu, ret);
9792 	++vcpu->stat.hypercalls;
9793 	return kvm_skip_emulated_instruction(vcpu);
9794 }
9795 
9796 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9797 {
9798 	unsigned long nr, a0, a1, a2, a3, ret;
9799 	int op_64_bit;
9800 
9801 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
9802 		return kvm_xen_hypercall(vcpu);
9803 
9804 	if (kvm_hv_hypercall_enabled(vcpu))
9805 		return kvm_hv_hypercall(vcpu);
9806 
9807 	nr = kvm_rax_read(vcpu);
9808 	a0 = kvm_rbx_read(vcpu);
9809 	a1 = kvm_rcx_read(vcpu);
9810 	a2 = kvm_rdx_read(vcpu);
9811 	a3 = kvm_rsi_read(vcpu);
9812 
9813 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
9814 
9815 	op_64_bit = is_64_bit_hypercall(vcpu);
9816 	if (!op_64_bit) {
9817 		nr &= 0xFFFFFFFF;
9818 		a0 &= 0xFFFFFFFF;
9819 		a1 &= 0xFFFFFFFF;
9820 		a2 &= 0xFFFFFFFF;
9821 		a3 &= 0xFFFFFFFF;
9822 	}
9823 
9824 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9825 		ret = -KVM_EPERM;
9826 		goto out;
9827 	}
9828 
9829 	ret = -KVM_ENOSYS;
9830 
9831 	switch (nr) {
9832 	case KVM_HC_VAPIC_POLL_IRQ:
9833 		ret = 0;
9834 		break;
9835 	case KVM_HC_KICK_CPU:
9836 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9837 			break;
9838 
9839 		kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9840 		kvm_sched_yield(vcpu, a1);
9841 		ret = 0;
9842 		break;
9843 #ifdef CONFIG_X86_64
9844 	case KVM_HC_CLOCK_PAIRING:
9845 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9846 		break;
9847 #endif
9848 	case KVM_HC_SEND_IPI:
9849 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9850 			break;
9851 
9852 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9853 		break;
9854 	case KVM_HC_SCHED_YIELD:
9855 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9856 			break;
9857 
9858 		kvm_sched_yield(vcpu, a0);
9859 		ret = 0;
9860 		break;
9861 	case KVM_HC_MAP_GPA_RANGE: {
9862 		u64 gpa = a0, npages = a1, attrs = a2;
9863 
9864 		ret = -KVM_ENOSYS;
9865 		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9866 			break;
9867 
9868 		if (!PAGE_ALIGNED(gpa) || !npages ||
9869 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9870 			ret = -KVM_EINVAL;
9871 			break;
9872 		}
9873 
9874 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9875 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9876 		vcpu->run->hypercall.args[0]  = gpa;
9877 		vcpu->run->hypercall.args[1]  = npages;
9878 		vcpu->run->hypercall.args[2]  = attrs;
9879 		vcpu->run->hypercall.flags    = 0;
9880 		if (op_64_bit)
9881 			vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
9882 
9883 		WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
9884 		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9885 		return 0;
9886 	}
9887 	default:
9888 		ret = -KVM_ENOSYS;
9889 		break;
9890 	}
9891 out:
9892 	if (!op_64_bit)
9893 		ret = (u32)ret;
9894 	kvm_rax_write(vcpu, ret);
9895 
9896 	++vcpu->stat.hypercalls;
9897 	return kvm_skip_emulated_instruction(vcpu);
9898 }
9899 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9900 
9901 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9902 {
9903 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9904 	char instruction[3];
9905 	unsigned long rip = kvm_rip_read(vcpu);
9906 
9907 	/*
9908 	 * If the quirk is disabled, synthesize a #UD and let the guest pick up
9909 	 * the pieces.
9910 	 */
9911 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
9912 		ctxt->exception.error_code_valid = false;
9913 		ctxt->exception.vector = UD_VECTOR;
9914 		ctxt->have_exception = true;
9915 		return X86EMUL_PROPAGATE_FAULT;
9916 	}
9917 
9918 	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9919 
9920 	return emulator_write_emulated(ctxt, rip, instruction, 3,
9921 		&ctxt->exception);
9922 }
9923 
9924 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9925 {
9926 	return vcpu->run->request_interrupt_window &&
9927 		likely(!pic_in_kernel(vcpu->kvm));
9928 }
9929 
9930 /* Called within kvm->srcu read side.  */
9931 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9932 {
9933 	struct kvm_run *kvm_run = vcpu->run;
9934 
9935 	kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9936 	kvm_run->cr8 = kvm_get_cr8(vcpu);
9937 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
9938 
9939 	kvm_run->ready_for_interrupt_injection =
9940 		pic_in_kernel(vcpu->kvm) ||
9941 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
9942 
9943 	if (is_smm(vcpu))
9944 		kvm_run->flags |= KVM_RUN_X86_SMM;
9945 }
9946 
9947 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9948 {
9949 	int max_irr, tpr;
9950 
9951 	if (!kvm_x86_ops.update_cr8_intercept)
9952 		return;
9953 
9954 	if (!lapic_in_kernel(vcpu))
9955 		return;
9956 
9957 	if (vcpu->arch.apic->apicv_active)
9958 		return;
9959 
9960 	if (!vcpu->arch.apic->vapic_addr)
9961 		max_irr = kvm_lapic_find_highest_irr(vcpu);
9962 	else
9963 		max_irr = -1;
9964 
9965 	if (max_irr != -1)
9966 		max_irr >>= 4;
9967 
9968 	tpr = kvm_lapic_get_cr8(vcpu);
9969 
9970 	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9971 }
9972 
9973 
9974 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9975 {
9976 	if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9977 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
9978 		return 1;
9979 	}
9980 
9981 	return kvm_x86_ops.nested_ops->check_events(vcpu);
9982 }
9983 
9984 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9985 {
9986 	/*
9987 	 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
9988 	 * exceptions don't report error codes.  The presence of an error code
9989 	 * is carried with the exception and only stripped when the exception
9990 	 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
9991 	 * report an error code despite the CPU being in Real Mode.
9992 	 */
9993 	vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
9994 
9995 	trace_kvm_inj_exception(vcpu->arch.exception.vector,
9996 				vcpu->arch.exception.has_error_code,
9997 				vcpu->arch.exception.error_code,
9998 				vcpu->arch.exception.injected);
9999 
10000 	static_call(kvm_x86_inject_exception)(vcpu);
10001 }
10002 
10003 /*
10004  * Check for any event (interrupt or exception) that is ready to be injected,
10005  * and if there is at least one event, inject the event with the highest
10006  * priority.  This handles both "pending" events, i.e. events that have never
10007  * been injected into the guest, and "injected" events, i.e. events that were
10008  * injected as part of a previous VM-Enter, but weren't successfully delivered
10009  * and need to be re-injected.
10010  *
10011  * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10012  * i.e. doesn't guarantee that there's an event window in the guest.  KVM must
10013  * be able to inject exceptions in the "middle" of an instruction, and so must
10014  * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10015  * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10016  * boundaries is necessary and correct.
10017  *
10018  * For simplicity, KVM uses a single path to inject all events (except events
10019  * that are injected directly from L1 to L2) and doesn't explicitly track
10020  * instruction boundaries for asynchronous events.  However, because VM-Exits
10021  * that can occur during instruction execution typically result in KVM skipping
10022  * the instruction or injecting an exception, e.g. instruction and exception
10023  * intercepts, and because pending exceptions have higher priority than pending
10024  * interrupts, KVM still honors instruction boundaries in most scenarios.
10025  *
10026  * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10027  * the instruction or inject an exception, then KVM can incorrecty inject a new
10028  * asynchrounous event if the event became pending after the CPU fetched the
10029  * instruction (in the guest).  E.g. if a page fault (#PF, #NPF, EPT violation)
10030  * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10031  * injected on the restarted instruction instead of being deferred until the
10032  * instruction completes.
10033  *
10034  * In practice, this virtualization hole is unlikely to be observed by the
10035  * guest, and even less likely to cause functional problems.  To detect the
10036  * hole, the guest would have to trigger an event on a side effect of an early
10037  * phase of instruction execution, e.g. on the instruction fetch from memory.
10038  * And for it to be a functional problem, the guest would need to depend on the
10039  * ordering between that side effect, the instruction completing, _and_ the
10040  * delivery of the asynchronous event.
10041  */
10042 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10043 				       bool *req_immediate_exit)
10044 {
10045 	bool can_inject;
10046 	int r;
10047 
10048 	/*
10049 	 * Process nested events first, as nested VM-Exit supercedes event
10050 	 * re-injection.  If there's an event queued for re-injection, it will
10051 	 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10052 	 */
10053 	if (is_guest_mode(vcpu))
10054 		r = kvm_check_nested_events(vcpu);
10055 	else
10056 		r = 0;
10057 
10058 	/*
10059 	 * Re-inject exceptions and events *especially* if immediate entry+exit
10060 	 * to/from L2 is needed, as any event that has already been injected
10061 	 * into L2 needs to complete its lifecycle before injecting a new event.
10062 	 *
10063 	 * Don't re-inject an NMI or interrupt if there is a pending exception.
10064 	 * This collision arises if an exception occurred while vectoring the
10065 	 * injected event, KVM intercepted said exception, and KVM ultimately
10066 	 * determined the fault belongs to the guest and queues the exception
10067 	 * for injection back into the guest.
10068 	 *
10069 	 * "Injected" interrupts can also collide with pending exceptions if
10070 	 * userspace ignores the "ready for injection" flag and blindly queues
10071 	 * an interrupt.  In that case, prioritizing the exception is correct,
10072 	 * as the exception "occurred" before the exit to userspace.  Trap-like
10073 	 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10074 	 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10075 	 * priority, they're only generated (pended) during instruction
10076 	 * execution, and interrupts are recognized at instruction boundaries.
10077 	 * Thus a pending fault-like exception means the fault occurred on the
10078 	 * *previous* instruction and must be serviced prior to recognizing any
10079 	 * new events in order to fully complete the previous instruction.
10080 	 */
10081 	if (vcpu->arch.exception.injected)
10082 		kvm_inject_exception(vcpu);
10083 	else if (kvm_is_exception_pending(vcpu))
10084 		; /* see above */
10085 	else if (vcpu->arch.nmi_injected)
10086 		static_call(kvm_x86_inject_nmi)(vcpu);
10087 	else if (vcpu->arch.interrupt.injected)
10088 		static_call(kvm_x86_inject_irq)(vcpu, true);
10089 
10090 	/*
10091 	 * Exceptions that morph to VM-Exits are handled above, and pending
10092 	 * exceptions on top of injected exceptions that do not VM-Exit should
10093 	 * either morph to #DF or, sadly, override the injected exception.
10094 	 */
10095 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
10096 		     vcpu->arch.exception.pending);
10097 
10098 	/*
10099 	 * Bail if immediate entry+exit to/from the guest is needed to complete
10100 	 * nested VM-Enter or event re-injection so that a different pending
10101 	 * event can be serviced (or if KVM needs to exit to userspace).
10102 	 *
10103 	 * Otherwise, continue processing events even if VM-Exit occurred.  The
10104 	 * VM-Exit will have cleared exceptions that were meant for L2, but
10105 	 * there may now be events that can be injected into L1.
10106 	 */
10107 	if (r < 0)
10108 		goto out;
10109 
10110 	/*
10111 	 * A pending exception VM-Exit should either result in nested VM-Exit
10112 	 * or force an immediate re-entry and exit to/from L2, and exception
10113 	 * VM-Exits cannot be injected (flag should _never_ be set).
10114 	 */
10115 	WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10116 		     vcpu->arch.exception_vmexit.pending);
10117 
10118 	/*
10119 	 * New events, other than exceptions, cannot be injected if KVM needs
10120 	 * to re-inject a previous event.  See above comments on re-injecting
10121 	 * for why pending exceptions get priority.
10122 	 */
10123 	can_inject = !kvm_event_needs_reinjection(vcpu);
10124 
10125 	if (vcpu->arch.exception.pending) {
10126 		/*
10127 		 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10128 		 * value pushed on the stack.  Trap-like exception and all #DBs
10129 		 * leave RF as-is (KVM follows Intel's behavior in this regard;
10130 		 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10131 		 *
10132 		 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10133 		 * describe the behavior of General Detect #DBs, which are
10134 		 * fault-like.  They do _not_ set RF, a la code breakpoints.
10135 		 */
10136 		if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10137 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10138 					     X86_EFLAGS_RF);
10139 
10140 		if (vcpu->arch.exception.vector == DB_VECTOR) {
10141 			kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10142 			if (vcpu->arch.dr7 & DR7_GD) {
10143 				vcpu->arch.dr7 &= ~DR7_GD;
10144 				kvm_update_dr7(vcpu);
10145 			}
10146 		}
10147 
10148 		kvm_inject_exception(vcpu);
10149 
10150 		vcpu->arch.exception.pending = false;
10151 		vcpu->arch.exception.injected = true;
10152 
10153 		can_inject = false;
10154 	}
10155 
10156 	/* Don't inject interrupts if the user asked to avoid doing so */
10157 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10158 		return 0;
10159 
10160 	/*
10161 	 * Finally, inject interrupt events.  If an event cannot be injected
10162 	 * due to architectural conditions (e.g. IF=0) a window-open exit
10163 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
10164 	 * and can architecturally be injected, but we cannot do it right now:
10165 	 * an interrupt could have arrived just now and we have to inject it
10166 	 * as a vmexit, or there could already an event in the queue, which is
10167 	 * indicated by can_inject.  In that case we request an immediate exit
10168 	 * in order to make progress and get back here for another iteration.
10169 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10170 	 */
10171 #ifdef CONFIG_KVM_SMM
10172 	if (vcpu->arch.smi_pending) {
10173 		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
10174 		if (r < 0)
10175 			goto out;
10176 		if (r) {
10177 			vcpu->arch.smi_pending = false;
10178 			++vcpu->arch.smi_count;
10179 			enter_smm(vcpu);
10180 			can_inject = false;
10181 		} else
10182 			static_call(kvm_x86_enable_smi_window)(vcpu);
10183 	}
10184 #endif
10185 
10186 	if (vcpu->arch.nmi_pending) {
10187 		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
10188 		if (r < 0)
10189 			goto out;
10190 		if (r) {
10191 			--vcpu->arch.nmi_pending;
10192 			vcpu->arch.nmi_injected = true;
10193 			static_call(kvm_x86_inject_nmi)(vcpu);
10194 			can_inject = false;
10195 			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
10196 		}
10197 		if (vcpu->arch.nmi_pending)
10198 			static_call(kvm_x86_enable_nmi_window)(vcpu);
10199 	}
10200 
10201 	if (kvm_cpu_has_injectable_intr(vcpu)) {
10202 		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
10203 		if (r < 0)
10204 			goto out;
10205 		if (r) {
10206 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
10207 			static_call(kvm_x86_inject_irq)(vcpu, false);
10208 			WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
10209 		}
10210 		if (kvm_cpu_has_injectable_intr(vcpu))
10211 			static_call(kvm_x86_enable_irq_window)(vcpu);
10212 	}
10213 
10214 	if (is_guest_mode(vcpu) &&
10215 	    kvm_x86_ops.nested_ops->has_events &&
10216 	    kvm_x86_ops.nested_ops->has_events(vcpu))
10217 		*req_immediate_exit = true;
10218 
10219 	/*
10220 	 * KVM must never queue a new exception while injecting an event; KVM
10221 	 * is done emulating and should only propagate the to-be-injected event
10222 	 * to the VMCS/VMCB.  Queueing a new exception can put the vCPU into an
10223 	 * infinite loop as KVM will bail from VM-Enter to inject the pending
10224 	 * exception and start the cycle all over.
10225 	 *
10226 	 * Exempt triple faults as they have special handling and won't put the
10227 	 * vCPU into an infinite loop.  Triple fault can be queued when running
10228 	 * VMX without unrestricted guest, as that requires KVM to emulate Real
10229 	 * Mode events (see kvm_inject_realmode_interrupt()).
10230 	 */
10231 	WARN_ON_ONCE(vcpu->arch.exception.pending ||
10232 		     vcpu->arch.exception_vmexit.pending);
10233 	return 0;
10234 
10235 out:
10236 	if (r == -EBUSY) {
10237 		*req_immediate_exit = true;
10238 		r = 0;
10239 	}
10240 	return r;
10241 }
10242 
10243 static void process_nmi(struct kvm_vcpu *vcpu)
10244 {
10245 	unsigned int limit;
10246 
10247 	/*
10248 	 * x86 is limited to one NMI pending, but because KVM can't react to
10249 	 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10250 	 * scheduled out, KVM needs to play nice with two queued NMIs showing
10251 	 * up at the same time.  To handle this scenario, allow two NMIs to be
10252 	 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10253 	 * waiting for a previous NMI injection to complete (which effectively
10254 	 * blocks NMIs).  KVM will immediately inject one of the two NMIs, and
10255 	 * will request an NMI window to handle the second NMI.
10256 	 */
10257 	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10258 		limit = 1;
10259 	else
10260 		limit = 2;
10261 
10262 	/*
10263 	 * Adjust the limit to account for pending virtual NMIs, which aren't
10264 	 * tracked in vcpu->arch.nmi_pending.
10265 	 */
10266 	if (static_call(kvm_x86_is_vnmi_pending)(vcpu))
10267 		limit--;
10268 
10269 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10270 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10271 
10272 	if (vcpu->arch.nmi_pending &&
10273 	    (static_call(kvm_x86_set_vnmi_pending)(vcpu)))
10274 		vcpu->arch.nmi_pending--;
10275 
10276 	if (vcpu->arch.nmi_pending)
10277 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10278 }
10279 
10280 /* Return total number of NMIs pending injection to the VM */
10281 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10282 {
10283 	return vcpu->arch.nmi_pending +
10284 	       static_call(kvm_x86_is_vnmi_pending)(vcpu);
10285 }
10286 
10287 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10288 				       unsigned long *vcpu_bitmap)
10289 {
10290 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10291 }
10292 
10293 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10294 {
10295 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10296 }
10297 
10298 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10299 {
10300 	struct kvm_lapic *apic = vcpu->arch.apic;
10301 	bool activate;
10302 
10303 	if (!lapic_in_kernel(vcpu))
10304 		return;
10305 
10306 	down_read(&vcpu->kvm->arch.apicv_update_lock);
10307 	preempt_disable();
10308 
10309 	/* Do not activate APICV when APIC is disabled */
10310 	activate = kvm_vcpu_apicv_activated(vcpu) &&
10311 		   (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10312 
10313 	if (apic->apicv_active == activate)
10314 		goto out;
10315 
10316 	apic->apicv_active = activate;
10317 	kvm_apic_update_apicv(vcpu);
10318 	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10319 
10320 	/*
10321 	 * When APICv gets disabled, we may still have injected interrupts
10322 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10323 	 * still active when the interrupt got accepted. Make sure
10324 	 * kvm_check_and_inject_events() is called to check for that.
10325 	 */
10326 	if (!apic->apicv_active)
10327 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10328 
10329 out:
10330 	preempt_enable();
10331 	up_read(&vcpu->kvm->arch.apicv_update_lock);
10332 }
10333 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10334 
10335 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10336 {
10337 	if (!lapic_in_kernel(vcpu))
10338 		return;
10339 
10340 	/*
10341 	 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10342 	 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10343 	 * and hardware doesn't support x2APIC virtualization.  E.g. some AMD
10344 	 * CPUs support AVIC but not x2APIC.  KVM still allows enabling AVIC in
10345 	 * this case so that KVM can the AVIC doorbell to inject interrupts to
10346 	 * running vCPUs, but KVM must not create SPTEs for the APIC base as
10347 	 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10348 	 * despite being in x2APIC mode.  For simplicity, inhibiting the APIC
10349 	 * access page is sticky.
10350 	 */
10351 	if (apic_x2apic_mode(vcpu->arch.apic) &&
10352 	    kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10353 		kvm_inhibit_apic_access_page(vcpu);
10354 
10355 	__kvm_vcpu_update_apicv(vcpu);
10356 }
10357 
10358 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10359 				      enum kvm_apicv_inhibit reason, bool set)
10360 {
10361 	unsigned long old, new;
10362 
10363 	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10364 
10365 	if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10366 		return;
10367 
10368 	old = new = kvm->arch.apicv_inhibit_reasons;
10369 
10370 	set_or_clear_apicv_inhibit(&new, reason, set);
10371 
10372 	if (!!old != !!new) {
10373 		/*
10374 		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10375 		 * false positives in the sanity check WARN in svm_vcpu_run().
10376 		 * This task will wait for all vCPUs to ack the kick IRQ before
10377 		 * updating apicv_inhibit_reasons, and all other vCPUs will
10378 		 * block on acquiring apicv_update_lock so that vCPUs can't
10379 		 * redo svm_vcpu_run() without seeing the new inhibit state.
10380 		 *
10381 		 * Note, holding apicv_update_lock and taking it in the read
10382 		 * side (handling the request) also prevents other vCPUs from
10383 		 * servicing the request with a stale apicv_inhibit_reasons.
10384 		 */
10385 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10386 		kvm->arch.apicv_inhibit_reasons = new;
10387 		if (new) {
10388 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10389 			int idx = srcu_read_lock(&kvm->srcu);
10390 
10391 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
10392 			srcu_read_unlock(&kvm->srcu, idx);
10393 		}
10394 	} else {
10395 		kvm->arch.apicv_inhibit_reasons = new;
10396 	}
10397 }
10398 
10399 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10400 				    enum kvm_apicv_inhibit reason, bool set)
10401 {
10402 	if (!enable_apicv)
10403 		return;
10404 
10405 	down_write(&kvm->arch.apicv_update_lock);
10406 	__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10407 	up_write(&kvm->arch.apicv_update_lock);
10408 }
10409 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10410 
10411 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10412 {
10413 	if (!kvm_apic_present(vcpu))
10414 		return;
10415 
10416 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10417 
10418 	if (irqchip_split(vcpu->kvm))
10419 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10420 	else {
10421 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10422 		if (ioapic_in_kernel(vcpu->kvm))
10423 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10424 	}
10425 
10426 	if (is_guest_mode(vcpu))
10427 		vcpu->arch.load_eoi_exitmap_pending = true;
10428 	else
10429 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10430 }
10431 
10432 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10433 {
10434 	u64 eoi_exit_bitmap[4];
10435 
10436 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10437 		return;
10438 
10439 	if (to_hv_vcpu(vcpu)) {
10440 		bitmap_or((ulong *)eoi_exit_bitmap,
10441 			  vcpu->arch.ioapic_handled_vectors,
10442 			  to_hv_synic(vcpu)->vec_bitmap, 256);
10443 		static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10444 		return;
10445 	}
10446 
10447 	static_call_cond(kvm_x86_load_eoi_exitmap)(
10448 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10449 }
10450 
10451 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10452 {
10453 	static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10454 }
10455 
10456 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10457 {
10458 	if (!lapic_in_kernel(vcpu))
10459 		return;
10460 
10461 	static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10462 }
10463 
10464 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10465 {
10466 	smp_send_reschedule(vcpu->cpu);
10467 }
10468 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10469 
10470 /*
10471  * Called within kvm->srcu read side.
10472  * Returns 1 to let vcpu_run() continue the guest execution loop without
10473  * exiting to the userspace.  Otherwise, the value will be returned to the
10474  * userspace.
10475  */
10476 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10477 {
10478 	int r;
10479 	bool req_int_win =
10480 		dm_request_for_irq_injection(vcpu) &&
10481 		kvm_cpu_accept_dm_intr(vcpu);
10482 	fastpath_t exit_fastpath;
10483 
10484 	bool req_immediate_exit = false;
10485 
10486 	if (kvm_request_pending(vcpu)) {
10487 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10488 			r = -EIO;
10489 			goto out;
10490 		}
10491 
10492 		if (kvm_dirty_ring_check_request(vcpu)) {
10493 			r = 0;
10494 			goto out;
10495 		}
10496 
10497 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10498 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10499 				r = 0;
10500 				goto out;
10501 			}
10502 		}
10503 		if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10504 			kvm_mmu_free_obsolete_roots(vcpu);
10505 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10506 			__kvm_migrate_timers(vcpu);
10507 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10508 			kvm_update_masterclock(vcpu->kvm);
10509 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10510 			kvm_gen_kvmclock_update(vcpu);
10511 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10512 			r = kvm_guest_time_update(vcpu);
10513 			if (unlikely(r))
10514 				goto out;
10515 		}
10516 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10517 			kvm_mmu_sync_roots(vcpu);
10518 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10519 			kvm_mmu_load_pgd(vcpu);
10520 
10521 		/*
10522 		 * Note, the order matters here, as flushing "all" TLB entries
10523 		 * also flushes the "current" TLB entries, i.e. servicing the
10524 		 * flush "all" will clear any request to flush "current".
10525 		 */
10526 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10527 			kvm_vcpu_flush_tlb_all(vcpu);
10528 
10529 		kvm_service_local_tlb_flush_requests(vcpu);
10530 
10531 		/*
10532 		 * Fall back to a "full" guest flush if Hyper-V's precise
10533 		 * flushing fails.  Note, Hyper-V's flushing is per-vCPU, but
10534 		 * the flushes are considered "remote" and not "local" because
10535 		 * the requests can be initiated from other vCPUs.
10536 		 */
10537 		if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10538 		    kvm_hv_vcpu_flush_tlb(vcpu))
10539 			kvm_vcpu_flush_tlb_guest(vcpu);
10540 
10541 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10542 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10543 			r = 0;
10544 			goto out;
10545 		}
10546 		if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10547 			if (is_guest_mode(vcpu))
10548 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
10549 
10550 			if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10551 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10552 				vcpu->mmio_needed = 0;
10553 				r = 0;
10554 				goto out;
10555 			}
10556 		}
10557 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10558 			/* Page is swapped out. Do synthetic halt */
10559 			vcpu->arch.apf.halted = true;
10560 			r = 1;
10561 			goto out;
10562 		}
10563 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10564 			record_steal_time(vcpu);
10565 #ifdef CONFIG_KVM_SMM
10566 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
10567 			process_smi(vcpu);
10568 #endif
10569 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
10570 			process_nmi(vcpu);
10571 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
10572 			kvm_pmu_handle_event(vcpu);
10573 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
10574 			kvm_pmu_deliver_pmi(vcpu);
10575 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10576 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10577 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
10578 				     vcpu->arch.ioapic_handled_vectors)) {
10579 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10580 				vcpu->run->eoi.vector =
10581 						vcpu->arch.pending_ioapic_eoi;
10582 				r = 0;
10583 				goto out;
10584 			}
10585 		}
10586 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10587 			vcpu_scan_ioapic(vcpu);
10588 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10589 			vcpu_load_eoi_exitmap(vcpu);
10590 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10591 			kvm_vcpu_reload_apic_access_page(vcpu);
10592 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10593 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10594 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10595 			vcpu->run->system_event.ndata = 0;
10596 			r = 0;
10597 			goto out;
10598 		}
10599 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10600 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10601 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10602 			vcpu->run->system_event.ndata = 0;
10603 			r = 0;
10604 			goto out;
10605 		}
10606 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10607 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10608 
10609 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10610 			vcpu->run->hyperv = hv_vcpu->exit;
10611 			r = 0;
10612 			goto out;
10613 		}
10614 
10615 		/*
10616 		 * KVM_REQ_HV_STIMER has to be processed after
10617 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10618 		 * depend on the guest clock being up-to-date
10619 		 */
10620 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10621 			kvm_hv_process_stimers(vcpu);
10622 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10623 			kvm_vcpu_update_apicv(vcpu);
10624 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10625 			kvm_check_async_pf_completion(vcpu);
10626 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10627 			static_call(kvm_x86_msr_filter_changed)(vcpu);
10628 
10629 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10630 			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10631 	}
10632 
10633 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10634 	    kvm_xen_has_interrupt(vcpu)) {
10635 		++vcpu->stat.req_event;
10636 		r = kvm_apic_accept_events(vcpu);
10637 		if (r < 0) {
10638 			r = 0;
10639 			goto out;
10640 		}
10641 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10642 			r = 1;
10643 			goto out;
10644 		}
10645 
10646 		r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10647 		if (r < 0) {
10648 			r = 0;
10649 			goto out;
10650 		}
10651 		if (req_int_win)
10652 			static_call(kvm_x86_enable_irq_window)(vcpu);
10653 
10654 		if (kvm_lapic_enabled(vcpu)) {
10655 			update_cr8_intercept(vcpu);
10656 			kvm_lapic_sync_to_vapic(vcpu);
10657 		}
10658 	}
10659 
10660 	r = kvm_mmu_reload(vcpu);
10661 	if (unlikely(r)) {
10662 		goto cancel_injection;
10663 	}
10664 
10665 	preempt_disable();
10666 
10667 	static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10668 
10669 	/*
10670 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10671 	 * IPI are then delayed after guest entry, which ensures that they
10672 	 * result in virtual interrupt delivery.
10673 	 */
10674 	local_irq_disable();
10675 
10676 	/* Store vcpu->apicv_active before vcpu->mode.  */
10677 	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10678 
10679 	kvm_vcpu_srcu_read_unlock(vcpu);
10680 
10681 	/*
10682 	 * 1) We should set ->mode before checking ->requests.  Please see
10683 	 * the comment in kvm_vcpu_exiting_guest_mode().
10684 	 *
10685 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
10686 	 * pairs with the memory barrier implicit in pi_test_and_set_on
10687 	 * (see vmx_deliver_posted_interrupt).
10688 	 *
10689 	 * 3) This also orders the write to mode from any reads to the page
10690 	 * tables done while the VCPU is running.  Please see the comment
10691 	 * in kvm_flush_remote_tlbs.
10692 	 */
10693 	smp_mb__after_srcu_read_unlock();
10694 
10695 	/*
10696 	 * Process pending posted interrupts to handle the case where the
10697 	 * notification IRQ arrived in the host, or was never sent (because the
10698 	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10699 	 * status, KVM doesn't update assigned devices when APICv is inhibited,
10700 	 * i.e. they can post interrupts even if APICv is temporarily disabled.
10701 	 */
10702 	if (kvm_lapic_enabled(vcpu))
10703 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10704 
10705 	if (kvm_vcpu_exit_request(vcpu)) {
10706 		vcpu->mode = OUTSIDE_GUEST_MODE;
10707 		smp_wmb();
10708 		local_irq_enable();
10709 		preempt_enable();
10710 		kvm_vcpu_srcu_read_lock(vcpu);
10711 		r = 1;
10712 		goto cancel_injection;
10713 	}
10714 
10715 	if (req_immediate_exit) {
10716 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10717 		static_call(kvm_x86_request_immediate_exit)(vcpu);
10718 	}
10719 
10720 	fpregs_assert_state_consistent();
10721 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
10722 		switch_fpu_return();
10723 
10724 	if (vcpu->arch.guest_fpu.xfd_err)
10725 		wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10726 
10727 	if (unlikely(vcpu->arch.switch_db_regs)) {
10728 		set_debugreg(0, 7);
10729 		set_debugreg(vcpu->arch.eff_db[0], 0);
10730 		set_debugreg(vcpu->arch.eff_db[1], 1);
10731 		set_debugreg(vcpu->arch.eff_db[2], 2);
10732 		set_debugreg(vcpu->arch.eff_db[3], 3);
10733 	} else if (unlikely(hw_breakpoint_active())) {
10734 		set_debugreg(0, 7);
10735 	}
10736 
10737 	guest_timing_enter_irqoff();
10738 
10739 	for (;;) {
10740 		/*
10741 		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10742 		 * update must kick and wait for all vCPUs before toggling the
10743 		 * per-VM state, and responsing vCPUs must wait for the update
10744 		 * to complete before servicing KVM_REQ_APICV_UPDATE.
10745 		 */
10746 		WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10747 			     (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10748 
10749 		exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10750 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10751 			break;
10752 
10753 		if (kvm_lapic_enabled(vcpu))
10754 			static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10755 
10756 		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10757 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10758 			break;
10759 		}
10760 
10761 		/* Note, VM-Exits that go down the "slow" path are accounted below. */
10762 		++vcpu->stat.exits;
10763 	}
10764 
10765 	/*
10766 	 * Do this here before restoring debug registers on the host.  And
10767 	 * since we do this before handling the vmexit, a DR access vmexit
10768 	 * can (a) read the correct value of the debug registers, (b) set
10769 	 * KVM_DEBUGREG_WONT_EXIT again.
10770 	 */
10771 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10772 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10773 		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10774 		kvm_update_dr0123(vcpu);
10775 		kvm_update_dr7(vcpu);
10776 	}
10777 
10778 	/*
10779 	 * If the guest has used debug registers, at least dr7
10780 	 * will be disabled while returning to the host.
10781 	 * If we don't have active breakpoints in the host, we don't
10782 	 * care about the messed up debug address registers. But if
10783 	 * we have some of them active, restore the old state.
10784 	 */
10785 	if (hw_breakpoint_active())
10786 		hw_breakpoint_restore();
10787 
10788 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10789 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10790 
10791 	vcpu->mode = OUTSIDE_GUEST_MODE;
10792 	smp_wmb();
10793 
10794 	/*
10795 	 * Sync xfd before calling handle_exit_irqoff() which may
10796 	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10797 	 * in #NM irqoff handler).
10798 	 */
10799 	if (vcpu->arch.xfd_no_write_intercept)
10800 		fpu_sync_guest_vmexit_xfd_state();
10801 
10802 	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10803 
10804 	if (vcpu->arch.guest_fpu.xfd_err)
10805 		wrmsrl(MSR_IA32_XFD_ERR, 0);
10806 
10807 	/*
10808 	 * Consume any pending interrupts, including the possible source of
10809 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10810 	 * An instruction is required after local_irq_enable() to fully unblock
10811 	 * interrupts on processors that implement an interrupt shadow, the
10812 	 * stat.exits increment will do nicely.
10813 	 */
10814 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10815 	local_irq_enable();
10816 	++vcpu->stat.exits;
10817 	local_irq_disable();
10818 	kvm_after_interrupt(vcpu);
10819 
10820 	/*
10821 	 * Wait until after servicing IRQs to account guest time so that any
10822 	 * ticks that occurred while running the guest are properly accounted
10823 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10824 	 * of accounting via context tracking, but the loss of accuracy is
10825 	 * acceptable for all known use cases.
10826 	 */
10827 	guest_timing_exit_irqoff();
10828 
10829 	local_irq_enable();
10830 	preempt_enable();
10831 
10832 	kvm_vcpu_srcu_read_lock(vcpu);
10833 
10834 	/*
10835 	 * Profile KVM exit RIPs:
10836 	 */
10837 	if (unlikely(prof_on == KVM_PROFILING)) {
10838 		unsigned long rip = kvm_rip_read(vcpu);
10839 		profile_hit(KVM_PROFILING, (void *)rip);
10840 	}
10841 
10842 	if (unlikely(vcpu->arch.tsc_always_catchup))
10843 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10844 
10845 	if (vcpu->arch.apic_attention)
10846 		kvm_lapic_sync_from_vapic(vcpu);
10847 
10848 	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10849 	return r;
10850 
10851 cancel_injection:
10852 	if (req_immediate_exit)
10853 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10854 	static_call(kvm_x86_cancel_injection)(vcpu);
10855 	if (unlikely(vcpu->arch.apic_attention))
10856 		kvm_lapic_sync_from_vapic(vcpu);
10857 out:
10858 	return r;
10859 }
10860 
10861 /* Called within kvm->srcu read side.  */
10862 static inline int vcpu_block(struct kvm_vcpu *vcpu)
10863 {
10864 	bool hv_timer;
10865 
10866 	if (!kvm_arch_vcpu_runnable(vcpu)) {
10867 		/*
10868 		 * Switch to the software timer before halt-polling/blocking as
10869 		 * the guest's timer may be a break event for the vCPU, and the
10870 		 * hypervisor timer runs only when the CPU is in guest mode.
10871 		 * Switch before halt-polling so that KVM recognizes an expired
10872 		 * timer before blocking.
10873 		 */
10874 		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10875 		if (hv_timer)
10876 			kvm_lapic_switch_to_sw_timer(vcpu);
10877 
10878 		kvm_vcpu_srcu_read_unlock(vcpu);
10879 		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10880 			kvm_vcpu_halt(vcpu);
10881 		else
10882 			kvm_vcpu_block(vcpu);
10883 		kvm_vcpu_srcu_read_lock(vcpu);
10884 
10885 		if (hv_timer)
10886 			kvm_lapic_switch_to_hv_timer(vcpu);
10887 
10888 		/*
10889 		 * If the vCPU is not runnable, a signal or another host event
10890 		 * of some kind is pending; service it without changing the
10891 		 * vCPU's activity state.
10892 		 */
10893 		if (!kvm_arch_vcpu_runnable(vcpu))
10894 			return 1;
10895 	}
10896 
10897 	/*
10898 	 * Evaluate nested events before exiting the halted state.  This allows
10899 	 * the halt state to be recorded properly in the VMCS12's activity
10900 	 * state field (AMD does not have a similar field and a VM-Exit always
10901 	 * causes a spurious wakeup from HLT).
10902 	 */
10903 	if (is_guest_mode(vcpu)) {
10904 		if (kvm_check_nested_events(vcpu) < 0)
10905 			return 0;
10906 	}
10907 
10908 	if (kvm_apic_accept_events(vcpu) < 0)
10909 		return 0;
10910 	switch(vcpu->arch.mp_state) {
10911 	case KVM_MP_STATE_HALTED:
10912 	case KVM_MP_STATE_AP_RESET_HOLD:
10913 		vcpu->arch.pv.pv_unhalted = false;
10914 		vcpu->arch.mp_state =
10915 			KVM_MP_STATE_RUNNABLE;
10916 		fallthrough;
10917 	case KVM_MP_STATE_RUNNABLE:
10918 		vcpu->arch.apf.halted = false;
10919 		break;
10920 	case KVM_MP_STATE_INIT_RECEIVED:
10921 		break;
10922 	default:
10923 		WARN_ON_ONCE(1);
10924 		break;
10925 	}
10926 	return 1;
10927 }
10928 
10929 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10930 {
10931 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10932 		!vcpu->arch.apf.halted);
10933 }
10934 
10935 /* Called within kvm->srcu read side.  */
10936 static int vcpu_run(struct kvm_vcpu *vcpu)
10937 {
10938 	int r;
10939 
10940 	vcpu->arch.l1tf_flush_l1d = true;
10941 
10942 	for (;;) {
10943 		/*
10944 		 * If another guest vCPU requests a PV TLB flush in the middle
10945 		 * of instruction emulation, the rest of the emulation could
10946 		 * use a stale page translation. Assume that any code after
10947 		 * this point can start executing an instruction.
10948 		 */
10949 		vcpu->arch.at_instruction_boundary = false;
10950 		if (kvm_vcpu_running(vcpu)) {
10951 			r = vcpu_enter_guest(vcpu);
10952 		} else {
10953 			r = vcpu_block(vcpu);
10954 		}
10955 
10956 		if (r <= 0)
10957 			break;
10958 
10959 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10960 		if (kvm_xen_has_pending_events(vcpu))
10961 			kvm_xen_inject_pending_events(vcpu);
10962 
10963 		if (kvm_cpu_has_pending_timer(vcpu))
10964 			kvm_inject_pending_timer_irqs(vcpu);
10965 
10966 		if (dm_request_for_irq_injection(vcpu) &&
10967 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10968 			r = 0;
10969 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10970 			++vcpu->stat.request_irq_exits;
10971 			break;
10972 		}
10973 
10974 		if (__xfer_to_guest_mode_work_pending()) {
10975 			kvm_vcpu_srcu_read_unlock(vcpu);
10976 			r = xfer_to_guest_mode_handle_work(vcpu);
10977 			kvm_vcpu_srcu_read_lock(vcpu);
10978 			if (r)
10979 				return r;
10980 		}
10981 	}
10982 
10983 	return r;
10984 }
10985 
10986 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10987 {
10988 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10989 }
10990 
10991 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10992 {
10993 	BUG_ON(!vcpu->arch.pio.count);
10994 
10995 	return complete_emulated_io(vcpu);
10996 }
10997 
10998 /*
10999  * Implements the following, as a state machine:
11000  *
11001  * read:
11002  *   for each fragment
11003  *     for each mmio piece in the fragment
11004  *       write gpa, len
11005  *       exit
11006  *       copy data
11007  *   execute insn
11008  *
11009  * write:
11010  *   for each fragment
11011  *     for each mmio piece in the fragment
11012  *       write gpa, len
11013  *       copy data
11014  *       exit
11015  */
11016 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11017 {
11018 	struct kvm_run *run = vcpu->run;
11019 	struct kvm_mmio_fragment *frag;
11020 	unsigned len;
11021 
11022 	BUG_ON(!vcpu->mmio_needed);
11023 
11024 	/* Complete previous fragment */
11025 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11026 	len = min(8u, frag->len);
11027 	if (!vcpu->mmio_is_write)
11028 		memcpy(frag->data, run->mmio.data, len);
11029 
11030 	if (frag->len <= 8) {
11031 		/* Switch to the next fragment. */
11032 		frag++;
11033 		vcpu->mmio_cur_fragment++;
11034 	} else {
11035 		/* Go forward to the next mmio piece. */
11036 		frag->data += len;
11037 		frag->gpa += len;
11038 		frag->len -= len;
11039 	}
11040 
11041 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11042 		vcpu->mmio_needed = 0;
11043 
11044 		/* FIXME: return into emulator if single-stepping.  */
11045 		if (vcpu->mmio_is_write)
11046 			return 1;
11047 		vcpu->mmio_read_completed = 1;
11048 		return complete_emulated_io(vcpu);
11049 	}
11050 
11051 	run->exit_reason = KVM_EXIT_MMIO;
11052 	run->mmio.phys_addr = frag->gpa;
11053 	if (vcpu->mmio_is_write)
11054 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11055 	run->mmio.len = min(8u, frag->len);
11056 	run->mmio.is_write = vcpu->mmio_is_write;
11057 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11058 	return 0;
11059 }
11060 
11061 /* Swap (qemu) user FPU context for the guest FPU context. */
11062 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11063 {
11064 	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11065 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11066 	trace_kvm_fpu(1);
11067 }
11068 
11069 /* When vcpu_run ends, restore user space FPU context. */
11070 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11071 {
11072 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11073 	++vcpu->stat.fpu_reload;
11074 	trace_kvm_fpu(0);
11075 }
11076 
11077 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11078 {
11079 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
11080 	struct kvm_run *kvm_run = vcpu->run;
11081 	int r;
11082 
11083 	vcpu_load(vcpu);
11084 	kvm_sigset_activate(vcpu);
11085 	kvm_run->flags = 0;
11086 	kvm_load_guest_fpu(vcpu);
11087 
11088 	kvm_vcpu_srcu_read_lock(vcpu);
11089 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11090 		if (kvm_run->immediate_exit) {
11091 			r = -EINTR;
11092 			goto out;
11093 		}
11094 		/*
11095 		 * It should be impossible for the hypervisor timer to be in
11096 		 * use before KVM has ever run the vCPU.
11097 		 */
11098 		WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
11099 
11100 		kvm_vcpu_srcu_read_unlock(vcpu);
11101 		kvm_vcpu_block(vcpu);
11102 		kvm_vcpu_srcu_read_lock(vcpu);
11103 
11104 		if (kvm_apic_accept_events(vcpu) < 0) {
11105 			r = 0;
11106 			goto out;
11107 		}
11108 		r = -EAGAIN;
11109 		if (signal_pending(current)) {
11110 			r = -EINTR;
11111 			kvm_run->exit_reason = KVM_EXIT_INTR;
11112 			++vcpu->stat.signal_exits;
11113 		}
11114 		goto out;
11115 	}
11116 
11117 	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11118 	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11119 		r = -EINVAL;
11120 		goto out;
11121 	}
11122 
11123 	if (kvm_run->kvm_dirty_regs) {
11124 		r = sync_regs(vcpu);
11125 		if (r != 0)
11126 			goto out;
11127 	}
11128 
11129 	/* re-sync apic's tpr */
11130 	if (!lapic_in_kernel(vcpu)) {
11131 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11132 			r = -EINVAL;
11133 			goto out;
11134 		}
11135 	}
11136 
11137 	/*
11138 	 * If userspace set a pending exception and L2 is active, convert it to
11139 	 * a pending VM-Exit if L1 wants to intercept the exception.
11140 	 */
11141 	if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11142 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11143 							ex->error_code)) {
11144 		kvm_queue_exception_vmexit(vcpu, ex->vector,
11145 					   ex->has_error_code, ex->error_code,
11146 					   ex->has_payload, ex->payload);
11147 		ex->injected = false;
11148 		ex->pending = false;
11149 	}
11150 	vcpu->arch.exception_from_userspace = false;
11151 
11152 	if (unlikely(vcpu->arch.complete_userspace_io)) {
11153 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11154 		vcpu->arch.complete_userspace_io = NULL;
11155 		r = cui(vcpu);
11156 		if (r <= 0)
11157 			goto out;
11158 	} else {
11159 		WARN_ON_ONCE(vcpu->arch.pio.count);
11160 		WARN_ON_ONCE(vcpu->mmio_needed);
11161 	}
11162 
11163 	if (kvm_run->immediate_exit) {
11164 		r = -EINTR;
11165 		goto out;
11166 	}
11167 
11168 	r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
11169 	if (r <= 0)
11170 		goto out;
11171 
11172 	r = vcpu_run(vcpu);
11173 
11174 out:
11175 	kvm_put_guest_fpu(vcpu);
11176 	if (kvm_run->kvm_valid_regs)
11177 		store_regs(vcpu);
11178 	post_kvm_run_save(vcpu);
11179 	kvm_vcpu_srcu_read_unlock(vcpu);
11180 
11181 	kvm_sigset_deactivate(vcpu);
11182 	vcpu_put(vcpu);
11183 	return r;
11184 }
11185 
11186 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11187 {
11188 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11189 		/*
11190 		 * We are here if userspace calls get_regs() in the middle of
11191 		 * instruction emulation. Registers state needs to be copied
11192 		 * back from emulation context to vcpu. Userspace shouldn't do
11193 		 * that usually, but some bad designed PV devices (vmware
11194 		 * backdoor interface) need this to work
11195 		 */
11196 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11197 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11198 	}
11199 	regs->rax = kvm_rax_read(vcpu);
11200 	regs->rbx = kvm_rbx_read(vcpu);
11201 	regs->rcx = kvm_rcx_read(vcpu);
11202 	regs->rdx = kvm_rdx_read(vcpu);
11203 	regs->rsi = kvm_rsi_read(vcpu);
11204 	regs->rdi = kvm_rdi_read(vcpu);
11205 	regs->rsp = kvm_rsp_read(vcpu);
11206 	regs->rbp = kvm_rbp_read(vcpu);
11207 #ifdef CONFIG_X86_64
11208 	regs->r8 = kvm_r8_read(vcpu);
11209 	regs->r9 = kvm_r9_read(vcpu);
11210 	regs->r10 = kvm_r10_read(vcpu);
11211 	regs->r11 = kvm_r11_read(vcpu);
11212 	regs->r12 = kvm_r12_read(vcpu);
11213 	regs->r13 = kvm_r13_read(vcpu);
11214 	regs->r14 = kvm_r14_read(vcpu);
11215 	regs->r15 = kvm_r15_read(vcpu);
11216 #endif
11217 
11218 	regs->rip = kvm_rip_read(vcpu);
11219 	regs->rflags = kvm_get_rflags(vcpu);
11220 }
11221 
11222 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11223 {
11224 	vcpu_load(vcpu);
11225 	__get_regs(vcpu, regs);
11226 	vcpu_put(vcpu);
11227 	return 0;
11228 }
11229 
11230 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11231 {
11232 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11233 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11234 
11235 	kvm_rax_write(vcpu, regs->rax);
11236 	kvm_rbx_write(vcpu, regs->rbx);
11237 	kvm_rcx_write(vcpu, regs->rcx);
11238 	kvm_rdx_write(vcpu, regs->rdx);
11239 	kvm_rsi_write(vcpu, regs->rsi);
11240 	kvm_rdi_write(vcpu, regs->rdi);
11241 	kvm_rsp_write(vcpu, regs->rsp);
11242 	kvm_rbp_write(vcpu, regs->rbp);
11243 #ifdef CONFIG_X86_64
11244 	kvm_r8_write(vcpu, regs->r8);
11245 	kvm_r9_write(vcpu, regs->r9);
11246 	kvm_r10_write(vcpu, regs->r10);
11247 	kvm_r11_write(vcpu, regs->r11);
11248 	kvm_r12_write(vcpu, regs->r12);
11249 	kvm_r13_write(vcpu, regs->r13);
11250 	kvm_r14_write(vcpu, regs->r14);
11251 	kvm_r15_write(vcpu, regs->r15);
11252 #endif
11253 
11254 	kvm_rip_write(vcpu, regs->rip);
11255 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11256 
11257 	vcpu->arch.exception.pending = false;
11258 	vcpu->arch.exception_vmexit.pending = false;
11259 
11260 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11261 }
11262 
11263 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11264 {
11265 	vcpu_load(vcpu);
11266 	__set_regs(vcpu, regs);
11267 	vcpu_put(vcpu);
11268 	return 0;
11269 }
11270 
11271 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11272 {
11273 	struct desc_ptr dt;
11274 
11275 	if (vcpu->arch.guest_state_protected)
11276 		goto skip_protected_regs;
11277 
11278 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11279 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11280 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11281 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11282 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11283 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11284 
11285 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11286 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11287 
11288 	static_call(kvm_x86_get_idt)(vcpu, &dt);
11289 	sregs->idt.limit = dt.size;
11290 	sregs->idt.base = dt.address;
11291 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
11292 	sregs->gdt.limit = dt.size;
11293 	sregs->gdt.base = dt.address;
11294 
11295 	sregs->cr2 = vcpu->arch.cr2;
11296 	sregs->cr3 = kvm_read_cr3(vcpu);
11297 
11298 skip_protected_regs:
11299 	sregs->cr0 = kvm_read_cr0(vcpu);
11300 	sregs->cr4 = kvm_read_cr4(vcpu);
11301 	sregs->cr8 = kvm_get_cr8(vcpu);
11302 	sregs->efer = vcpu->arch.efer;
11303 	sregs->apic_base = kvm_get_apic_base(vcpu);
11304 }
11305 
11306 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11307 {
11308 	__get_sregs_common(vcpu, sregs);
11309 
11310 	if (vcpu->arch.guest_state_protected)
11311 		return;
11312 
11313 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11314 		set_bit(vcpu->arch.interrupt.nr,
11315 			(unsigned long *)sregs->interrupt_bitmap);
11316 }
11317 
11318 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11319 {
11320 	int i;
11321 
11322 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11323 
11324 	if (vcpu->arch.guest_state_protected)
11325 		return;
11326 
11327 	if (is_pae_paging(vcpu)) {
11328 		for (i = 0 ; i < 4 ; i++)
11329 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11330 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11331 	}
11332 }
11333 
11334 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11335 				  struct kvm_sregs *sregs)
11336 {
11337 	vcpu_load(vcpu);
11338 	__get_sregs(vcpu, sregs);
11339 	vcpu_put(vcpu);
11340 	return 0;
11341 }
11342 
11343 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11344 				    struct kvm_mp_state *mp_state)
11345 {
11346 	int r;
11347 
11348 	vcpu_load(vcpu);
11349 	if (kvm_mpx_supported())
11350 		kvm_load_guest_fpu(vcpu);
11351 
11352 	r = kvm_apic_accept_events(vcpu);
11353 	if (r < 0)
11354 		goto out;
11355 	r = 0;
11356 
11357 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11358 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11359 	    vcpu->arch.pv.pv_unhalted)
11360 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11361 	else
11362 		mp_state->mp_state = vcpu->arch.mp_state;
11363 
11364 out:
11365 	if (kvm_mpx_supported())
11366 		kvm_put_guest_fpu(vcpu);
11367 	vcpu_put(vcpu);
11368 	return r;
11369 }
11370 
11371 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11372 				    struct kvm_mp_state *mp_state)
11373 {
11374 	int ret = -EINVAL;
11375 
11376 	vcpu_load(vcpu);
11377 
11378 	switch (mp_state->mp_state) {
11379 	case KVM_MP_STATE_UNINITIALIZED:
11380 	case KVM_MP_STATE_HALTED:
11381 	case KVM_MP_STATE_AP_RESET_HOLD:
11382 	case KVM_MP_STATE_INIT_RECEIVED:
11383 	case KVM_MP_STATE_SIPI_RECEIVED:
11384 		if (!lapic_in_kernel(vcpu))
11385 			goto out;
11386 		break;
11387 
11388 	case KVM_MP_STATE_RUNNABLE:
11389 		break;
11390 
11391 	default:
11392 		goto out;
11393 	}
11394 
11395 	/*
11396 	 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11397 	 * forcing the guest into INIT/SIPI if those events are supposed to be
11398 	 * blocked.  KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11399 	 * if an SMI is pending as well.
11400 	 */
11401 	if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11402 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11403 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11404 		goto out;
11405 
11406 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11407 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11408 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11409 	} else
11410 		vcpu->arch.mp_state = mp_state->mp_state;
11411 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11412 
11413 	ret = 0;
11414 out:
11415 	vcpu_put(vcpu);
11416 	return ret;
11417 }
11418 
11419 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11420 		    int reason, bool has_error_code, u32 error_code)
11421 {
11422 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11423 	int ret;
11424 
11425 	init_emulate_ctxt(vcpu);
11426 
11427 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11428 				   has_error_code, error_code);
11429 	if (ret) {
11430 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11431 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11432 		vcpu->run->internal.ndata = 0;
11433 		return 0;
11434 	}
11435 
11436 	kvm_rip_write(vcpu, ctxt->eip);
11437 	kvm_set_rflags(vcpu, ctxt->eflags);
11438 	return 1;
11439 }
11440 EXPORT_SYMBOL_GPL(kvm_task_switch);
11441 
11442 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11443 {
11444 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11445 		/*
11446 		 * When EFER.LME and CR0.PG are set, the processor is in
11447 		 * 64-bit mode (though maybe in a 32-bit code segment).
11448 		 * CR4.PAE and EFER.LMA must be set.
11449 		 */
11450 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11451 			return false;
11452 		if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
11453 			return false;
11454 	} else {
11455 		/*
11456 		 * Not in 64-bit mode: EFER.LMA is clear and the code
11457 		 * segment cannot be 64-bit.
11458 		 */
11459 		if (sregs->efer & EFER_LMA || sregs->cs.l)
11460 			return false;
11461 	}
11462 
11463 	return kvm_is_valid_cr4(vcpu, sregs->cr4);
11464 }
11465 
11466 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11467 		int *mmu_reset_needed, bool update_pdptrs)
11468 {
11469 	struct msr_data apic_base_msr;
11470 	int idx;
11471 	struct desc_ptr dt;
11472 
11473 	if (!kvm_is_valid_sregs(vcpu, sregs))
11474 		return -EINVAL;
11475 
11476 	apic_base_msr.data = sregs->apic_base;
11477 	apic_base_msr.host_initiated = true;
11478 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
11479 		return -EINVAL;
11480 
11481 	if (vcpu->arch.guest_state_protected)
11482 		return 0;
11483 
11484 	dt.size = sregs->idt.limit;
11485 	dt.address = sregs->idt.base;
11486 	static_call(kvm_x86_set_idt)(vcpu, &dt);
11487 	dt.size = sregs->gdt.limit;
11488 	dt.address = sregs->gdt.base;
11489 	static_call(kvm_x86_set_gdt)(vcpu, &dt);
11490 
11491 	vcpu->arch.cr2 = sregs->cr2;
11492 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11493 	vcpu->arch.cr3 = sregs->cr3;
11494 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11495 	static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11496 
11497 	kvm_set_cr8(vcpu, sregs->cr8);
11498 
11499 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11500 	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11501 
11502 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11503 	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11504 	vcpu->arch.cr0 = sregs->cr0;
11505 
11506 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11507 	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11508 
11509 	if (update_pdptrs) {
11510 		idx = srcu_read_lock(&vcpu->kvm->srcu);
11511 		if (is_pae_paging(vcpu)) {
11512 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11513 			*mmu_reset_needed = 1;
11514 		}
11515 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
11516 	}
11517 
11518 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11519 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11520 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11521 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11522 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11523 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11524 
11525 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11526 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11527 
11528 	update_cr8_intercept(vcpu);
11529 
11530 	/* Older userspace won't unhalt the vcpu on reset. */
11531 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11532 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11533 	    !is_protmode(vcpu))
11534 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11535 
11536 	return 0;
11537 }
11538 
11539 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11540 {
11541 	int pending_vec, max_bits;
11542 	int mmu_reset_needed = 0;
11543 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11544 
11545 	if (ret)
11546 		return ret;
11547 
11548 	if (mmu_reset_needed)
11549 		kvm_mmu_reset_context(vcpu);
11550 
11551 	max_bits = KVM_NR_INTERRUPTS;
11552 	pending_vec = find_first_bit(
11553 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
11554 
11555 	if (pending_vec < max_bits) {
11556 		kvm_queue_interrupt(vcpu, pending_vec, false);
11557 		pr_debug("Set back pending irq %d\n", pending_vec);
11558 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11559 	}
11560 	return 0;
11561 }
11562 
11563 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11564 {
11565 	int mmu_reset_needed = 0;
11566 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11567 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11568 		!(sregs2->efer & EFER_LMA);
11569 	int i, ret;
11570 
11571 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11572 		return -EINVAL;
11573 
11574 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11575 		return -EINVAL;
11576 
11577 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11578 				 &mmu_reset_needed, !valid_pdptrs);
11579 	if (ret)
11580 		return ret;
11581 
11582 	if (valid_pdptrs) {
11583 		for (i = 0; i < 4 ; i++)
11584 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11585 
11586 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11587 		mmu_reset_needed = 1;
11588 		vcpu->arch.pdptrs_from_userspace = true;
11589 	}
11590 	if (mmu_reset_needed)
11591 		kvm_mmu_reset_context(vcpu);
11592 	return 0;
11593 }
11594 
11595 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11596 				  struct kvm_sregs *sregs)
11597 {
11598 	int ret;
11599 
11600 	vcpu_load(vcpu);
11601 	ret = __set_sregs(vcpu, sregs);
11602 	vcpu_put(vcpu);
11603 	return ret;
11604 }
11605 
11606 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11607 {
11608 	bool set = false;
11609 	struct kvm_vcpu *vcpu;
11610 	unsigned long i;
11611 
11612 	if (!enable_apicv)
11613 		return;
11614 
11615 	down_write(&kvm->arch.apicv_update_lock);
11616 
11617 	kvm_for_each_vcpu(i, vcpu, kvm) {
11618 		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11619 			set = true;
11620 			break;
11621 		}
11622 	}
11623 	__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11624 	up_write(&kvm->arch.apicv_update_lock);
11625 }
11626 
11627 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11628 					struct kvm_guest_debug *dbg)
11629 {
11630 	unsigned long rflags;
11631 	int i, r;
11632 
11633 	if (vcpu->arch.guest_state_protected)
11634 		return -EINVAL;
11635 
11636 	vcpu_load(vcpu);
11637 
11638 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11639 		r = -EBUSY;
11640 		if (kvm_is_exception_pending(vcpu))
11641 			goto out;
11642 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11643 			kvm_queue_exception(vcpu, DB_VECTOR);
11644 		else
11645 			kvm_queue_exception(vcpu, BP_VECTOR);
11646 	}
11647 
11648 	/*
11649 	 * Read rflags as long as potentially injected trace flags are still
11650 	 * filtered out.
11651 	 */
11652 	rflags = kvm_get_rflags(vcpu);
11653 
11654 	vcpu->guest_debug = dbg->control;
11655 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11656 		vcpu->guest_debug = 0;
11657 
11658 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11659 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
11660 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11661 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11662 	} else {
11663 		for (i = 0; i < KVM_NR_DB_REGS; i++)
11664 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11665 	}
11666 	kvm_update_dr7(vcpu);
11667 
11668 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11669 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11670 
11671 	/*
11672 	 * Trigger an rflags update that will inject or remove the trace
11673 	 * flags.
11674 	 */
11675 	kvm_set_rflags(vcpu, rflags);
11676 
11677 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11678 
11679 	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11680 
11681 	r = 0;
11682 
11683 out:
11684 	vcpu_put(vcpu);
11685 	return r;
11686 }
11687 
11688 /*
11689  * Translate a guest virtual address to a guest physical address.
11690  */
11691 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11692 				    struct kvm_translation *tr)
11693 {
11694 	unsigned long vaddr = tr->linear_address;
11695 	gpa_t gpa;
11696 	int idx;
11697 
11698 	vcpu_load(vcpu);
11699 
11700 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11701 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11702 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11703 	tr->physical_address = gpa;
11704 	tr->valid = gpa != INVALID_GPA;
11705 	tr->writeable = 1;
11706 	tr->usermode = 0;
11707 
11708 	vcpu_put(vcpu);
11709 	return 0;
11710 }
11711 
11712 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11713 {
11714 	struct fxregs_state *fxsave;
11715 
11716 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11717 		return 0;
11718 
11719 	vcpu_load(vcpu);
11720 
11721 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11722 	memcpy(fpu->fpr, fxsave->st_space, 128);
11723 	fpu->fcw = fxsave->cwd;
11724 	fpu->fsw = fxsave->swd;
11725 	fpu->ftwx = fxsave->twd;
11726 	fpu->last_opcode = fxsave->fop;
11727 	fpu->last_ip = fxsave->rip;
11728 	fpu->last_dp = fxsave->rdp;
11729 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11730 
11731 	vcpu_put(vcpu);
11732 	return 0;
11733 }
11734 
11735 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11736 {
11737 	struct fxregs_state *fxsave;
11738 
11739 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11740 		return 0;
11741 
11742 	vcpu_load(vcpu);
11743 
11744 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11745 
11746 	memcpy(fxsave->st_space, fpu->fpr, 128);
11747 	fxsave->cwd = fpu->fcw;
11748 	fxsave->swd = fpu->fsw;
11749 	fxsave->twd = fpu->ftwx;
11750 	fxsave->fop = fpu->last_opcode;
11751 	fxsave->rip = fpu->last_ip;
11752 	fxsave->rdp = fpu->last_dp;
11753 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11754 
11755 	vcpu_put(vcpu);
11756 	return 0;
11757 }
11758 
11759 static void store_regs(struct kvm_vcpu *vcpu)
11760 {
11761 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11762 
11763 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11764 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
11765 
11766 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11767 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11768 
11769 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11770 		kvm_vcpu_ioctl_x86_get_vcpu_events(
11771 				vcpu, &vcpu->run->s.regs.events);
11772 }
11773 
11774 static int sync_regs(struct kvm_vcpu *vcpu)
11775 {
11776 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11777 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
11778 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11779 	}
11780 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11781 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11782 			return -EINVAL;
11783 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11784 	}
11785 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11786 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11787 				vcpu, &vcpu->run->s.regs.events))
11788 			return -EINVAL;
11789 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11790 	}
11791 
11792 	return 0;
11793 }
11794 
11795 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11796 {
11797 	if (kvm_check_tsc_unstable() && kvm->created_vcpus)
11798 		pr_warn_once("SMP vm created on host with unstable TSC; "
11799 			     "guest TSC will not be reliable\n");
11800 
11801 	if (!kvm->arch.max_vcpu_ids)
11802 		kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
11803 
11804 	if (id >= kvm->arch.max_vcpu_ids)
11805 		return -EINVAL;
11806 
11807 	return static_call(kvm_x86_vcpu_precreate)(kvm);
11808 }
11809 
11810 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11811 {
11812 	struct page *page;
11813 	int r;
11814 
11815 	vcpu->arch.last_vmentry_cpu = -1;
11816 	vcpu->arch.regs_avail = ~0;
11817 	vcpu->arch.regs_dirty = ~0;
11818 
11819 	kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN);
11820 
11821 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11822 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11823 	else
11824 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11825 
11826 	r = kvm_mmu_create(vcpu);
11827 	if (r < 0)
11828 		return r;
11829 
11830 	if (irqchip_in_kernel(vcpu->kvm)) {
11831 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11832 		if (r < 0)
11833 			goto fail_mmu_destroy;
11834 
11835 		/*
11836 		 * Defer evaluating inhibits until the vCPU is first run, as
11837 		 * this vCPU will not get notified of any changes until this
11838 		 * vCPU is visible to other vCPUs (marked online and added to
11839 		 * the set of vCPUs).  Opportunistically mark APICv active as
11840 		 * VMX in particularly is highly unlikely to have inhibits.
11841 		 * Ignore the current per-VM APICv state so that vCPU creation
11842 		 * is guaranteed to run with a deterministic value, the request
11843 		 * will ensure the vCPU gets the correct state before VM-Entry.
11844 		 */
11845 		if (enable_apicv) {
11846 			vcpu->arch.apic->apicv_active = true;
11847 			kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11848 		}
11849 	} else
11850 		static_branch_inc(&kvm_has_noapic_vcpu);
11851 
11852 	r = -ENOMEM;
11853 
11854 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11855 	if (!page)
11856 		goto fail_free_lapic;
11857 	vcpu->arch.pio_data = page_address(page);
11858 
11859 	vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
11860 				       GFP_KERNEL_ACCOUNT);
11861 	vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
11862 					    GFP_KERNEL_ACCOUNT);
11863 	if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
11864 		goto fail_free_mce_banks;
11865 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11866 
11867 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11868 				GFP_KERNEL_ACCOUNT))
11869 		goto fail_free_mce_banks;
11870 
11871 	if (!alloc_emulate_ctxt(vcpu))
11872 		goto free_wbinvd_dirty_mask;
11873 
11874 	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11875 		pr_err("failed to allocate vcpu's fpu\n");
11876 		goto free_emulate_ctxt;
11877 	}
11878 
11879 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11880 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11881 
11882 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11883 
11884 	kvm_async_pf_hash_reset(vcpu);
11885 
11886 	vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
11887 	kvm_pmu_init(vcpu);
11888 
11889 	vcpu->arch.pending_external_vector = -1;
11890 	vcpu->arch.preempted_in_kernel = false;
11891 
11892 #if IS_ENABLED(CONFIG_HYPERV)
11893 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
11894 #endif
11895 
11896 	r = static_call(kvm_x86_vcpu_create)(vcpu);
11897 	if (r)
11898 		goto free_guest_fpu;
11899 
11900 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11901 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11902 	kvm_xen_init_vcpu(vcpu);
11903 	kvm_vcpu_mtrr_init(vcpu);
11904 	vcpu_load(vcpu);
11905 	kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
11906 	kvm_vcpu_reset(vcpu, false);
11907 	kvm_init_mmu(vcpu);
11908 	vcpu_put(vcpu);
11909 	return 0;
11910 
11911 free_guest_fpu:
11912 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11913 free_emulate_ctxt:
11914 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11915 free_wbinvd_dirty_mask:
11916 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11917 fail_free_mce_banks:
11918 	kfree(vcpu->arch.mce_banks);
11919 	kfree(vcpu->arch.mci_ctl2_banks);
11920 	free_page((unsigned long)vcpu->arch.pio_data);
11921 fail_free_lapic:
11922 	kvm_free_lapic(vcpu);
11923 fail_mmu_destroy:
11924 	kvm_mmu_destroy(vcpu);
11925 	return r;
11926 }
11927 
11928 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11929 {
11930 	struct kvm *kvm = vcpu->kvm;
11931 
11932 	if (mutex_lock_killable(&vcpu->mutex))
11933 		return;
11934 	vcpu_load(vcpu);
11935 	kvm_synchronize_tsc(vcpu, 0);
11936 	vcpu_put(vcpu);
11937 
11938 	/* poll control enabled by default */
11939 	vcpu->arch.msr_kvm_poll_control = 1;
11940 
11941 	mutex_unlock(&vcpu->mutex);
11942 
11943 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11944 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11945 						KVMCLOCK_SYNC_PERIOD);
11946 }
11947 
11948 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11949 {
11950 	int idx;
11951 
11952 	kvmclock_reset(vcpu);
11953 
11954 	static_call(kvm_x86_vcpu_free)(vcpu);
11955 
11956 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11957 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11958 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11959 
11960 	kvm_xen_destroy_vcpu(vcpu);
11961 	kvm_hv_vcpu_uninit(vcpu);
11962 	kvm_pmu_destroy(vcpu);
11963 	kfree(vcpu->arch.mce_banks);
11964 	kfree(vcpu->arch.mci_ctl2_banks);
11965 	kvm_free_lapic(vcpu);
11966 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11967 	kvm_mmu_destroy(vcpu);
11968 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11969 	free_page((unsigned long)vcpu->arch.pio_data);
11970 	kvfree(vcpu->arch.cpuid_entries);
11971 	if (!lapic_in_kernel(vcpu))
11972 		static_branch_dec(&kvm_has_noapic_vcpu);
11973 }
11974 
11975 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11976 {
11977 	struct kvm_cpuid_entry2 *cpuid_0x1;
11978 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
11979 	unsigned long new_cr0;
11980 
11981 	/*
11982 	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11983 	 * to handle side effects.  RESET emulation hits those flows and relies
11984 	 * on emulated/virtualized registers, including those that are loaded
11985 	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
11986 	 * to detect improper or missing initialization.
11987 	 */
11988 	WARN_ON_ONCE(!init_event &&
11989 		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11990 
11991 	/*
11992 	 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
11993 	 * possible to INIT the vCPU while L2 is active.  Force the vCPU back
11994 	 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
11995 	 * bits), i.e. virtualization is disabled.
11996 	 */
11997 	if (is_guest_mode(vcpu))
11998 		kvm_leave_nested(vcpu);
11999 
12000 	kvm_lapic_reset(vcpu, init_event);
12001 
12002 	WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12003 	vcpu->arch.hflags = 0;
12004 
12005 	vcpu->arch.smi_pending = 0;
12006 	vcpu->arch.smi_count = 0;
12007 	atomic_set(&vcpu->arch.nmi_queued, 0);
12008 	vcpu->arch.nmi_pending = 0;
12009 	vcpu->arch.nmi_injected = false;
12010 	kvm_clear_interrupt_queue(vcpu);
12011 	kvm_clear_exception_queue(vcpu);
12012 
12013 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12014 	kvm_update_dr0123(vcpu);
12015 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12016 	vcpu->arch.dr7 = DR7_FIXED_1;
12017 	kvm_update_dr7(vcpu);
12018 
12019 	vcpu->arch.cr2 = 0;
12020 
12021 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12022 	vcpu->arch.apf.msr_en_val = 0;
12023 	vcpu->arch.apf.msr_int_val = 0;
12024 	vcpu->arch.st.msr_val = 0;
12025 
12026 	kvmclock_reset(vcpu);
12027 
12028 	kvm_clear_async_pf_completion_queue(vcpu);
12029 	kvm_async_pf_hash_reset(vcpu);
12030 	vcpu->arch.apf.halted = false;
12031 
12032 	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12033 		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12034 
12035 		/*
12036 		 * All paths that lead to INIT are required to load the guest's
12037 		 * FPU state (because most paths are buried in KVM_RUN).
12038 		 */
12039 		if (init_event)
12040 			kvm_put_guest_fpu(vcpu);
12041 
12042 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12043 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12044 
12045 		if (init_event)
12046 			kvm_load_guest_fpu(vcpu);
12047 	}
12048 
12049 	if (!init_event) {
12050 		kvm_pmu_reset(vcpu);
12051 		vcpu->arch.smbase = 0x30000;
12052 
12053 		vcpu->arch.msr_misc_features_enables = 0;
12054 		vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12055 						  MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12056 
12057 		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12058 		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12059 	}
12060 
12061 	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12062 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12063 	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12064 
12065 	/*
12066 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12067 	 * if no CPUID match is found.  Note, it's impossible to get a match at
12068 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12069 	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12070 	 * on RESET.  But, go through the motions in case that's ever remedied.
12071 	 */
12072 	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12073 	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12074 
12075 	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
12076 
12077 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12078 	kvm_rip_write(vcpu, 0xfff0);
12079 
12080 	vcpu->arch.cr3 = 0;
12081 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12082 
12083 	/*
12084 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
12085 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12086 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
12087 	 */
12088 	new_cr0 = X86_CR0_ET;
12089 	if (init_event)
12090 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12091 	else
12092 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12093 
12094 	static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
12095 	static_call(kvm_x86_set_cr4)(vcpu, 0);
12096 	static_call(kvm_x86_set_efer)(vcpu, 0);
12097 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
12098 
12099 	/*
12100 	 * On the standard CR0/CR4/EFER modification paths, there are several
12101 	 * complex conditions determining whether the MMU has to be reset and/or
12102 	 * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
12103 	 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12104 	 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12105 	 * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
12106 	 */
12107 	if (old_cr0 & X86_CR0_PG) {
12108 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12109 		kvm_mmu_reset_context(vcpu);
12110 	}
12111 
12112 	/*
12113 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
12114 	 * APM states the TLBs are untouched by INIT, but it also states that
12115 	 * the TLBs are flushed on "External initialization of the processor."
12116 	 * Flush the guest TLB regardless of vendor, there is no meaningful
12117 	 * benefit in relying on the guest to flush the TLB immediately after
12118 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
12119 	 * performance perspective.
12120 	 */
12121 	if (init_event)
12122 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12123 }
12124 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12125 
12126 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12127 {
12128 	struct kvm_segment cs;
12129 
12130 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12131 	cs.selector = vector << 8;
12132 	cs.base = vector << 12;
12133 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12134 	kvm_rip_write(vcpu, 0);
12135 }
12136 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12137 
12138 int kvm_arch_hardware_enable(void)
12139 {
12140 	struct kvm *kvm;
12141 	struct kvm_vcpu *vcpu;
12142 	unsigned long i;
12143 	int ret;
12144 	u64 local_tsc;
12145 	u64 max_tsc = 0;
12146 	bool stable, backwards_tsc = false;
12147 
12148 	kvm_user_return_msr_cpu_online();
12149 
12150 	ret = kvm_x86_check_processor_compatibility();
12151 	if (ret)
12152 		return ret;
12153 
12154 	ret = static_call(kvm_x86_hardware_enable)();
12155 	if (ret != 0)
12156 		return ret;
12157 
12158 	local_tsc = rdtsc();
12159 	stable = !kvm_check_tsc_unstable();
12160 	list_for_each_entry(kvm, &vm_list, vm_list) {
12161 		kvm_for_each_vcpu(i, vcpu, kvm) {
12162 			if (!stable && vcpu->cpu == smp_processor_id())
12163 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12164 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12165 				backwards_tsc = true;
12166 				if (vcpu->arch.last_host_tsc > max_tsc)
12167 					max_tsc = vcpu->arch.last_host_tsc;
12168 			}
12169 		}
12170 	}
12171 
12172 	/*
12173 	 * Sometimes, even reliable TSCs go backwards.  This happens on
12174 	 * platforms that reset TSC during suspend or hibernate actions, but
12175 	 * maintain synchronization.  We must compensate.  Fortunately, we can
12176 	 * detect that condition here, which happens early in CPU bringup,
12177 	 * before any KVM threads can be running.  Unfortunately, we can't
12178 	 * bring the TSCs fully up to date with real time, as we aren't yet far
12179 	 * enough into CPU bringup that we know how much real time has actually
12180 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12181 	 * variables that haven't been updated yet.
12182 	 *
12183 	 * So we simply find the maximum observed TSC above, then record the
12184 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
12185 	 * the adjustment will be applied.  Note that we accumulate
12186 	 * adjustments, in case multiple suspend cycles happen before some VCPU
12187 	 * gets a chance to run again.  In the event that no KVM threads get a
12188 	 * chance to run, we will miss the entire elapsed period, as we'll have
12189 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12190 	 * loose cycle time.  This isn't too big a deal, since the loss will be
12191 	 * uniform across all VCPUs (not to mention the scenario is extremely
12192 	 * unlikely). It is possible that a second hibernate recovery happens
12193 	 * much faster than a first, causing the observed TSC here to be
12194 	 * smaller; this would require additional padding adjustment, which is
12195 	 * why we set last_host_tsc to the local tsc observed here.
12196 	 *
12197 	 * N.B. - this code below runs only on platforms with reliable TSC,
12198 	 * as that is the only way backwards_tsc is set above.  Also note
12199 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12200 	 * have the same delta_cyc adjustment applied if backwards_tsc
12201 	 * is detected.  Note further, this adjustment is only done once,
12202 	 * as we reset last_host_tsc on all VCPUs to stop this from being
12203 	 * called multiple times (one for each physical CPU bringup).
12204 	 *
12205 	 * Platforms with unreliable TSCs don't have to deal with this, they
12206 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
12207 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
12208 	 * guarantee that they stay in perfect synchronization.
12209 	 */
12210 	if (backwards_tsc) {
12211 		u64 delta_cyc = max_tsc - local_tsc;
12212 		list_for_each_entry(kvm, &vm_list, vm_list) {
12213 			kvm->arch.backwards_tsc_observed = true;
12214 			kvm_for_each_vcpu(i, vcpu, kvm) {
12215 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
12216 				vcpu->arch.last_host_tsc = local_tsc;
12217 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12218 			}
12219 
12220 			/*
12221 			 * We have to disable TSC offset matching.. if you were
12222 			 * booting a VM while issuing an S4 host suspend....
12223 			 * you may have some problem.  Solving this issue is
12224 			 * left as an exercise to the reader.
12225 			 */
12226 			kvm->arch.last_tsc_nsec = 0;
12227 			kvm->arch.last_tsc_write = 0;
12228 		}
12229 
12230 	}
12231 	return 0;
12232 }
12233 
12234 void kvm_arch_hardware_disable(void)
12235 {
12236 	static_call(kvm_x86_hardware_disable)();
12237 	drop_user_return_notifiers();
12238 }
12239 
12240 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12241 {
12242 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12243 }
12244 
12245 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12246 {
12247 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12248 }
12249 
12250 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12251 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12252 
12253 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12254 {
12255 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12256 
12257 	vcpu->arch.l1tf_flush_l1d = true;
12258 	if (pmu->version && unlikely(pmu->event_count)) {
12259 		pmu->need_cleanup = true;
12260 		kvm_make_request(KVM_REQ_PMU, vcpu);
12261 	}
12262 	static_call(kvm_x86_sched_in)(vcpu, cpu);
12263 }
12264 
12265 void kvm_arch_free_vm(struct kvm *kvm)
12266 {
12267 	kfree(to_kvm_hv(kvm)->hv_pa_pg);
12268 	__kvm_arch_free_vm(kvm);
12269 }
12270 
12271 
12272 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12273 {
12274 	int ret;
12275 	unsigned long flags;
12276 
12277 	if (type)
12278 		return -EINVAL;
12279 
12280 	ret = kvm_page_track_init(kvm);
12281 	if (ret)
12282 		goto out;
12283 
12284 	ret = kvm_mmu_init_vm(kvm);
12285 	if (ret)
12286 		goto out_page_track;
12287 
12288 	ret = static_call(kvm_x86_vm_init)(kvm);
12289 	if (ret)
12290 		goto out_uninit_mmu;
12291 
12292 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12293 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
12294 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12295 
12296 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12297 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12298 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12299 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12300 		&kvm->arch.irq_sources_bitmap);
12301 
12302 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12303 	mutex_init(&kvm->arch.apic_map_lock);
12304 	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12305 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12306 
12307 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12308 	pvclock_update_vm_gtod_copy(kvm);
12309 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12310 
12311 	kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12312 	kvm->arch.guest_can_read_msr_platform_info = true;
12313 	kvm->arch.enable_pmu = enable_pmu;
12314 
12315 #if IS_ENABLED(CONFIG_HYPERV)
12316 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12317 	kvm->arch.hv_root_tdp = INVALID_PAGE;
12318 #endif
12319 
12320 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12321 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12322 
12323 	kvm_apicv_init(kvm);
12324 	kvm_hv_init_vm(kvm);
12325 	kvm_xen_init_vm(kvm);
12326 
12327 	return 0;
12328 
12329 out_uninit_mmu:
12330 	kvm_mmu_uninit_vm(kvm);
12331 out_page_track:
12332 	kvm_page_track_cleanup(kvm);
12333 out:
12334 	return ret;
12335 }
12336 
12337 int kvm_arch_post_init_vm(struct kvm *kvm)
12338 {
12339 	return kvm_mmu_post_init_vm(kvm);
12340 }
12341 
12342 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12343 {
12344 	vcpu_load(vcpu);
12345 	kvm_mmu_unload(vcpu);
12346 	vcpu_put(vcpu);
12347 }
12348 
12349 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12350 {
12351 	unsigned long i;
12352 	struct kvm_vcpu *vcpu;
12353 
12354 	kvm_for_each_vcpu(i, vcpu, kvm) {
12355 		kvm_clear_async_pf_completion_queue(vcpu);
12356 		kvm_unload_vcpu_mmu(vcpu);
12357 	}
12358 }
12359 
12360 void kvm_arch_sync_events(struct kvm *kvm)
12361 {
12362 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12363 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12364 	kvm_free_pit(kvm);
12365 }
12366 
12367 /**
12368  * __x86_set_memory_region: Setup KVM internal memory slot
12369  *
12370  * @kvm: the kvm pointer to the VM.
12371  * @id: the slot ID to setup.
12372  * @gpa: the GPA to install the slot (unused when @size == 0).
12373  * @size: the size of the slot. Set to zero to uninstall a slot.
12374  *
12375  * This function helps to setup a KVM internal memory slot.  Specify
12376  * @size > 0 to install a new slot, while @size == 0 to uninstall a
12377  * slot.  The return code can be one of the following:
12378  *
12379  *   HVA:           on success (uninstall will return a bogus HVA)
12380  *   -errno:        on error
12381  *
12382  * The caller should always use IS_ERR() to check the return value
12383  * before use.  Note, the KVM internal memory slots are guaranteed to
12384  * remain valid and unchanged until the VM is destroyed, i.e., the
12385  * GPA->HVA translation will not change.  However, the HVA is a user
12386  * address, i.e. its accessibility is not guaranteed, and must be
12387  * accessed via __copy_{to,from}_user().
12388  */
12389 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12390 				      u32 size)
12391 {
12392 	int i, r;
12393 	unsigned long hva, old_npages;
12394 	struct kvm_memslots *slots = kvm_memslots(kvm);
12395 	struct kvm_memory_slot *slot;
12396 
12397 	/* Called with kvm->slots_lock held.  */
12398 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12399 		return ERR_PTR_USR(-EINVAL);
12400 
12401 	slot = id_to_memslot(slots, id);
12402 	if (size) {
12403 		if (slot && slot->npages)
12404 			return ERR_PTR_USR(-EEXIST);
12405 
12406 		/*
12407 		 * MAP_SHARED to prevent internal slot pages from being moved
12408 		 * by fork()/COW.
12409 		 */
12410 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12411 			      MAP_SHARED | MAP_ANONYMOUS, 0);
12412 		if (IS_ERR_VALUE(hva))
12413 			return (void __user *)hva;
12414 	} else {
12415 		if (!slot || !slot->npages)
12416 			return NULL;
12417 
12418 		old_npages = slot->npages;
12419 		hva = slot->userspace_addr;
12420 	}
12421 
12422 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
12423 		struct kvm_userspace_memory_region m;
12424 
12425 		m.slot = id | (i << 16);
12426 		m.flags = 0;
12427 		m.guest_phys_addr = gpa;
12428 		m.userspace_addr = hva;
12429 		m.memory_size = size;
12430 		r = __kvm_set_memory_region(kvm, &m);
12431 		if (r < 0)
12432 			return ERR_PTR_USR(r);
12433 	}
12434 
12435 	if (!size)
12436 		vm_munmap(hva, old_npages * PAGE_SIZE);
12437 
12438 	return (void __user *)hva;
12439 }
12440 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12441 
12442 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12443 {
12444 	kvm_mmu_pre_destroy_vm(kvm);
12445 }
12446 
12447 void kvm_arch_destroy_vm(struct kvm *kvm)
12448 {
12449 	if (current->mm == kvm->mm) {
12450 		/*
12451 		 * Free memory regions allocated on behalf of userspace,
12452 		 * unless the memory map has changed due to process exit
12453 		 * or fd copying.
12454 		 */
12455 		mutex_lock(&kvm->slots_lock);
12456 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12457 					0, 0);
12458 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12459 					0, 0);
12460 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12461 		mutex_unlock(&kvm->slots_lock);
12462 	}
12463 	kvm_unload_vcpu_mmus(kvm);
12464 	static_call_cond(kvm_x86_vm_destroy)(kvm);
12465 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12466 	kvm_pic_destroy(kvm);
12467 	kvm_ioapic_destroy(kvm);
12468 	kvm_destroy_vcpus(kvm);
12469 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12470 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12471 	kvm_mmu_uninit_vm(kvm);
12472 	kvm_page_track_cleanup(kvm);
12473 	kvm_xen_destroy_vm(kvm);
12474 	kvm_hv_destroy_vm(kvm);
12475 }
12476 
12477 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12478 {
12479 	int i;
12480 
12481 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12482 		kvfree(slot->arch.rmap[i]);
12483 		slot->arch.rmap[i] = NULL;
12484 	}
12485 }
12486 
12487 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12488 {
12489 	int i;
12490 
12491 	memslot_rmap_free(slot);
12492 
12493 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12494 		kvfree(slot->arch.lpage_info[i - 1]);
12495 		slot->arch.lpage_info[i - 1] = NULL;
12496 	}
12497 
12498 	kvm_page_track_free_memslot(slot);
12499 }
12500 
12501 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12502 {
12503 	const int sz = sizeof(*slot->arch.rmap[0]);
12504 	int i;
12505 
12506 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12507 		int level = i + 1;
12508 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12509 
12510 		if (slot->arch.rmap[i])
12511 			continue;
12512 
12513 		slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12514 		if (!slot->arch.rmap[i]) {
12515 			memslot_rmap_free(slot);
12516 			return -ENOMEM;
12517 		}
12518 	}
12519 
12520 	return 0;
12521 }
12522 
12523 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12524 				      struct kvm_memory_slot *slot)
12525 {
12526 	unsigned long npages = slot->npages;
12527 	int i, r;
12528 
12529 	/*
12530 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12531 	 * old arrays will be freed by __kvm_set_memory_region() if installing
12532 	 * the new memslot is successful.
12533 	 */
12534 	memset(&slot->arch, 0, sizeof(slot->arch));
12535 
12536 	if (kvm_memslots_have_rmaps(kvm)) {
12537 		r = memslot_rmap_alloc(slot, npages);
12538 		if (r)
12539 			return r;
12540 	}
12541 
12542 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12543 		struct kvm_lpage_info *linfo;
12544 		unsigned long ugfn;
12545 		int lpages;
12546 		int level = i + 1;
12547 
12548 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12549 
12550 		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12551 		if (!linfo)
12552 			goto out_free;
12553 
12554 		slot->arch.lpage_info[i - 1] = linfo;
12555 
12556 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12557 			linfo[0].disallow_lpage = 1;
12558 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12559 			linfo[lpages - 1].disallow_lpage = 1;
12560 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
12561 		/*
12562 		 * If the gfn and userspace address are not aligned wrt each
12563 		 * other, disable large page support for this slot.
12564 		 */
12565 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12566 			unsigned long j;
12567 
12568 			for (j = 0; j < lpages; ++j)
12569 				linfo[j].disallow_lpage = 1;
12570 		}
12571 	}
12572 
12573 	if (kvm_page_track_create_memslot(kvm, slot, npages))
12574 		goto out_free;
12575 
12576 	return 0;
12577 
12578 out_free:
12579 	memslot_rmap_free(slot);
12580 
12581 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12582 		kvfree(slot->arch.lpage_info[i - 1]);
12583 		slot->arch.lpage_info[i - 1] = NULL;
12584 	}
12585 	return -ENOMEM;
12586 }
12587 
12588 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12589 {
12590 	struct kvm_vcpu *vcpu;
12591 	unsigned long i;
12592 
12593 	/*
12594 	 * memslots->generation has been incremented.
12595 	 * mmio generation may have reached its maximum value.
12596 	 */
12597 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12598 
12599 	/* Force re-initialization of steal_time cache */
12600 	kvm_for_each_vcpu(i, vcpu, kvm)
12601 		kvm_vcpu_kick(vcpu);
12602 }
12603 
12604 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12605 				   const struct kvm_memory_slot *old,
12606 				   struct kvm_memory_slot *new,
12607 				   enum kvm_mr_change change)
12608 {
12609 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12610 		if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12611 			return -EINVAL;
12612 
12613 		return kvm_alloc_memslot_metadata(kvm, new);
12614 	}
12615 
12616 	if (change == KVM_MR_FLAGS_ONLY)
12617 		memcpy(&new->arch, &old->arch, sizeof(old->arch));
12618 	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12619 		return -EIO;
12620 
12621 	return 0;
12622 }
12623 
12624 
12625 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12626 {
12627 	int nr_slots;
12628 
12629 	if (!kvm_x86_ops.cpu_dirty_log_size)
12630 		return;
12631 
12632 	nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
12633 	if ((enable && nr_slots == 1) || !nr_slots)
12634 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12635 }
12636 
12637 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12638 				     struct kvm_memory_slot *old,
12639 				     const struct kvm_memory_slot *new,
12640 				     enum kvm_mr_change change)
12641 {
12642 	u32 old_flags = old ? old->flags : 0;
12643 	u32 new_flags = new ? new->flags : 0;
12644 	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12645 
12646 	/*
12647 	 * Update CPU dirty logging if dirty logging is being toggled.  This
12648 	 * applies to all operations.
12649 	 */
12650 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12651 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12652 
12653 	/*
12654 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
12655 	 * made writable) or CREATE/MOVE/DELETE of a slot.
12656 	 *
12657 	 * For a memslot with dirty logging disabled:
12658 	 * CREATE:      No dirty mappings will already exist.
12659 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12660 	 *		kvm_arch_flush_shadow_memslot()
12661 	 *
12662 	 * For a memslot with dirty logging enabled:
12663 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
12664 	 *		and no dirty bits to clear.
12665 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12666 	 *		kvm_arch_flush_shadow_memslot().
12667 	 */
12668 	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12669 		return;
12670 
12671 	/*
12672 	 * READONLY and non-flags changes were filtered out above, and the only
12673 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12674 	 * logging isn't being toggled on or off.
12675 	 */
12676 	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12677 		return;
12678 
12679 	if (!log_dirty_pages) {
12680 		/*
12681 		 * Dirty logging tracks sptes in 4k granularity, meaning that
12682 		 * large sptes have to be split.  If live migration succeeds,
12683 		 * the guest in the source machine will be destroyed and large
12684 		 * sptes will be created in the destination.  However, if the
12685 		 * guest continues to run in the source machine (for example if
12686 		 * live migration fails), small sptes will remain around and
12687 		 * cause bad performance.
12688 		 *
12689 		 * Scan sptes if dirty logging has been stopped, dropping those
12690 		 * which can be collapsed into a single large-page spte.  Later
12691 		 * page faults will create the large-page sptes.
12692 		 */
12693 		kvm_mmu_zap_collapsible_sptes(kvm, new);
12694 	} else {
12695 		/*
12696 		 * Initially-all-set does not require write protecting any page,
12697 		 * because they're all assumed to be dirty.
12698 		 */
12699 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12700 			return;
12701 
12702 		if (READ_ONCE(eager_page_split))
12703 			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12704 
12705 		if (kvm_x86_ops.cpu_dirty_log_size) {
12706 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12707 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12708 		} else {
12709 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12710 		}
12711 
12712 		/*
12713 		 * Unconditionally flush the TLBs after enabling dirty logging.
12714 		 * A flush is almost always going to be necessary (see below),
12715 		 * and unconditionally flushing allows the helpers to omit
12716 		 * the subtly complex checks when removing write access.
12717 		 *
12718 		 * Do the flush outside of mmu_lock to reduce the amount of
12719 		 * time mmu_lock is held.  Flushing after dropping mmu_lock is
12720 		 * safe as KVM only needs to guarantee the slot is fully
12721 		 * write-protected before returning to userspace, i.e. before
12722 		 * userspace can consume the dirty status.
12723 		 *
12724 		 * Flushing outside of mmu_lock requires KVM to be careful when
12725 		 * making decisions based on writable status of an SPTE, e.g. a
12726 		 * !writable SPTE doesn't guarantee a CPU can't perform writes.
12727 		 *
12728 		 * Specifically, KVM also write-protects guest page tables to
12729 		 * monitor changes when using shadow paging, and must guarantee
12730 		 * no CPUs can write to those page before mmu_lock is dropped.
12731 		 * Because CPUs may have stale TLB entries at this point, a
12732 		 * !writable SPTE doesn't guarantee CPUs can't perform writes.
12733 		 *
12734 		 * KVM also allows making SPTES writable outside of mmu_lock,
12735 		 * e.g. to allow dirty logging without taking mmu_lock.
12736 		 *
12737 		 * To handle these scenarios, KVM uses a separate software-only
12738 		 * bit (MMU-writable) to track if a SPTE is !writable due to
12739 		 * a guest page table being write-protected (KVM clears the
12740 		 * MMU-writable flag when write-protecting for shadow paging).
12741 		 *
12742 		 * The use of MMU-writable is also the primary motivation for
12743 		 * the unconditional flush.  Because KVM must guarantee that a
12744 		 * CPU doesn't contain stale, writable TLB entries for a
12745 		 * !MMU-writable SPTE, KVM must flush if it encounters any
12746 		 * MMU-writable SPTE regardless of whether the actual hardware
12747 		 * writable bit was set.  I.e. KVM is almost guaranteed to need
12748 		 * to flush, while unconditionally flushing allows the "remove
12749 		 * write access" helpers to ignore MMU-writable entirely.
12750 		 *
12751 		 * See is_writable_pte() for more details (the case involving
12752 		 * access-tracked SPTEs is particularly relevant).
12753 		 */
12754 		kvm_arch_flush_remote_tlbs_memslot(kvm, new);
12755 	}
12756 }
12757 
12758 void kvm_arch_commit_memory_region(struct kvm *kvm,
12759 				struct kvm_memory_slot *old,
12760 				const struct kvm_memory_slot *new,
12761 				enum kvm_mr_change change)
12762 {
12763 	if (!kvm->arch.n_requested_mmu_pages &&
12764 	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12765 		unsigned long nr_mmu_pages;
12766 
12767 		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12768 		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12769 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12770 	}
12771 
12772 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
12773 
12774 	/* Free the arrays associated with the old memslot. */
12775 	if (change == KVM_MR_MOVE)
12776 		kvm_arch_free_memslot(kvm, old);
12777 }
12778 
12779 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12780 {
12781 	kvm_mmu_zap_all(kvm);
12782 }
12783 
12784 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12785 				   struct kvm_memory_slot *slot)
12786 {
12787 	kvm_page_track_flush_slot(kvm, slot);
12788 }
12789 
12790 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12791 {
12792 	return (is_guest_mode(vcpu) &&
12793 		static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12794 }
12795 
12796 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12797 {
12798 	if (!list_empty_careful(&vcpu->async_pf.done))
12799 		return true;
12800 
12801 	if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
12802 	    kvm_apic_init_sipi_allowed(vcpu))
12803 		return true;
12804 
12805 	if (vcpu->arch.pv.pv_unhalted)
12806 		return true;
12807 
12808 	if (kvm_is_exception_pending(vcpu))
12809 		return true;
12810 
12811 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12812 	    (vcpu->arch.nmi_pending &&
12813 	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12814 		return true;
12815 
12816 #ifdef CONFIG_KVM_SMM
12817 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12818 	    (vcpu->arch.smi_pending &&
12819 	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
12820 		return true;
12821 #endif
12822 
12823 	if (kvm_arch_interrupt_allowed(vcpu) &&
12824 	    (kvm_cpu_has_interrupt(vcpu) ||
12825 	    kvm_guest_apic_has_interrupt(vcpu)))
12826 		return true;
12827 
12828 	if (kvm_hv_has_stimer_pending(vcpu))
12829 		return true;
12830 
12831 	if (is_guest_mode(vcpu) &&
12832 	    kvm_x86_ops.nested_ops->has_events &&
12833 	    kvm_x86_ops.nested_ops->has_events(vcpu))
12834 		return true;
12835 
12836 	if (kvm_xen_has_pending_events(vcpu))
12837 		return true;
12838 
12839 	return false;
12840 }
12841 
12842 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12843 {
12844 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12845 }
12846 
12847 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12848 {
12849 	if (kvm_vcpu_apicv_active(vcpu) &&
12850 	    static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12851 		return true;
12852 
12853 	return false;
12854 }
12855 
12856 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12857 {
12858 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12859 		return true;
12860 
12861 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12862 #ifdef CONFIG_KVM_SMM
12863 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
12864 #endif
12865 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
12866 		return true;
12867 
12868 	return kvm_arch_dy_has_pending_interrupt(vcpu);
12869 }
12870 
12871 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12872 {
12873 	if (vcpu->arch.guest_state_protected)
12874 		return true;
12875 
12876 	return vcpu->arch.preempted_in_kernel;
12877 }
12878 
12879 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12880 {
12881 	return kvm_rip_read(vcpu);
12882 }
12883 
12884 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12885 {
12886 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12887 }
12888 
12889 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12890 {
12891 	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12892 }
12893 
12894 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12895 {
12896 	/* Can't read the RIP when guest state is protected, just return 0 */
12897 	if (vcpu->arch.guest_state_protected)
12898 		return 0;
12899 
12900 	if (is_64_bit_mode(vcpu))
12901 		return kvm_rip_read(vcpu);
12902 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12903 		     kvm_rip_read(vcpu));
12904 }
12905 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12906 
12907 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12908 {
12909 	return kvm_get_linear_rip(vcpu) == linear_rip;
12910 }
12911 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12912 
12913 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12914 {
12915 	unsigned long rflags;
12916 
12917 	rflags = static_call(kvm_x86_get_rflags)(vcpu);
12918 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12919 		rflags &= ~X86_EFLAGS_TF;
12920 	return rflags;
12921 }
12922 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12923 
12924 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12925 {
12926 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12927 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12928 		rflags |= X86_EFLAGS_TF;
12929 	static_call(kvm_x86_set_rflags)(vcpu, rflags);
12930 }
12931 
12932 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12933 {
12934 	__kvm_set_rflags(vcpu, rflags);
12935 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12936 }
12937 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12938 
12939 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12940 {
12941 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12942 
12943 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12944 }
12945 
12946 static inline u32 kvm_async_pf_next_probe(u32 key)
12947 {
12948 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12949 }
12950 
12951 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12952 {
12953 	u32 key = kvm_async_pf_hash_fn(gfn);
12954 
12955 	while (vcpu->arch.apf.gfns[key] != ~0)
12956 		key = kvm_async_pf_next_probe(key);
12957 
12958 	vcpu->arch.apf.gfns[key] = gfn;
12959 }
12960 
12961 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12962 {
12963 	int i;
12964 	u32 key = kvm_async_pf_hash_fn(gfn);
12965 
12966 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
12967 		     (vcpu->arch.apf.gfns[key] != gfn &&
12968 		      vcpu->arch.apf.gfns[key] != ~0); i++)
12969 		key = kvm_async_pf_next_probe(key);
12970 
12971 	return key;
12972 }
12973 
12974 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12975 {
12976 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12977 }
12978 
12979 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12980 {
12981 	u32 i, j, k;
12982 
12983 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12984 
12985 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12986 		return;
12987 
12988 	while (true) {
12989 		vcpu->arch.apf.gfns[i] = ~0;
12990 		do {
12991 			j = kvm_async_pf_next_probe(j);
12992 			if (vcpu->arch.apf.gfns[j] == ~0)
12993 				return;
12994 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12995 			/*
12996 			 * k lies cyclically in ]i,j]
12997 			 * |    i.k.j |
12998 			 * |....j i.k.| or  |.k..j i...|
12999 			 */
13000 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13001 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13002 		i = j;
13003 	}
13004 }
13005 
13006 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13007 {
13008 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13009 
13010 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13011 				      sizeof(reason));
13012 }
13013 
13014 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13015 {
13016 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13017 
13018 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13019 					     &token, offset, sizeof(token));
13020 }
13021 
13022 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13023 {
13024 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13025 	u32 val;
13026 
13027 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13028 					 &val, offset, sizeof(val)))
13029 		return false;
13030 
13031 	return !val;
13032 }
13033 
13034 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13035 {
13036 
13037 	if (!kvm_pv_async_pf_enabled(vcpu))
13038 		return false;
13039 
13040 	if (vcpu->arch.apf.send_user_only &&
13041 	    static_call(kvm_x86_get_cpl)(vcpu) == 0)
13042 		return false;
13043 
13044 	if (is_guest_mode(vcpu)) {
13045 		/*
13046 		 * L1 needs to opt into the special #PF vmexits that are
13047 		 * used to deliver async page faults.
13048 		 */
13049 		return vcpu->arch.apf.delivery_as_pf_vmexit;
13050 	} else {
13051 		/*
13052 		 * Play it safe in case the guest temporarily disables paging.
13053 		 * The real mode IDT in particular is unlikely to have a #PF
13054 		 * exception setup.
13055 		 */
13056 		return is_paging(vcpu);
13057 	}
13058 }
13059 
13060 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13061 {
13062 	if (unlikely(!lapic_in_kernel(vcpu) ||
13063 		     kvm_event_needs_reinjection(vcpu) ||
13064 		     kvm_is_exception_pending(vcpu)))
13065 		return false;
13066 
13067 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13068 		return false;
13069 
13070 	/*
13071 	 * If interrupts are off we cannot even use an artificial
13072 	 * halt state.
13073 	 */
13074 	return kvm_arch_interrupt_allowed(vcpu);
13075 }
13076 
13077 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13078 				     struct kvm_async_pf *work)
13079 {
13080 	struct x86_exception fault;
13081 
13082 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13083 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13084 
13085 	if (kvm_can_deliver_async_pf(vcpu) &&
13086 	    !apf_put_user_notpresent(vcpu)) {
13087 		fault.vector = PF_VECTOR;
13088 		fault.error_code_valid = true;
13089 		fault.error_code = 0;
13090 		fault.nested_page_fault = false;
13091 		fault.address = work->arch.token;
13092 		fault.async_page_fault = true;
13093 		kvm_inject_page_fault(vcpu, &fault);
13094 		return true;
13095 	} else {
13096 		/*
13097 		 * It is not possible to deliver a paravirtualized asynchronous
13098 		 * page fault, but putting the guest in an artificial halt state
13099 		 * can be beneficial nevertheless: if an interrupt arrives, we
13100 		 * can deliver it timely and perhaps the guest will schedule
13101 		 * another process.  When the instruction that triggered a page
13102 		 * fault is retried, hopefully the page will be ready in the host.
13103 		 */
13104 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13105 		return false;
13106 	}
13107 }
13108 
13109 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13110 				 struct kvm_async_pf *work)
13111 {
13112 	struct kvm_lapic_irq irq = {
13113 		.delivery_mode = APIC_DM_FIXED,
13114 		.vector = vcpu->arch.apf.vec
13115 	};
13116 
13117 	if (work->wakeup_all)
13118 		work->arch.token = ~0; /* broadcast wakeup */
13119 	else
13120 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13121 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13122 
13123 	if ((work->wakeup_all || work->notpresent_injected) &&
13124 	    kvm_pv_async_pf_enabled(vcpu) &&
13125 	    !apf_put_user_ready(vcpu, work->arch.token)) {
13126 		vcpu->arch.apf.pageready_pending = true;
13127 		kvm_apic_set_irq(vcpu, &irq, NULL);
13128 	}
13129 
13130 	vcpu->arch.apf.halted = false;
13131 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13132 }
13133 
13134 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13135 {
13136 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
13137 	if (!vcpu->arch.apf.pageready_pending)
13138 		kvm_vcpu_kick(vcpu);
13139 }
13140 
13141 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13142 {
13143 	if (!kvm_pv_async_pf_enabled(vcpu))
13144 		return true;
13145 	else
13146 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13147 }
13148 
13149 void kvm_arch_start_assignment(struct kvm *kvm)
13150 {
13151 	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13152 		static_call_cond(kvm_x86_pi_start_assignment)(kvm);
13153 }
13154 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13155 
13156 void kvm_arch_end_assignment(struct kvm *kvm)
13157 {
13158 	atomic_dec(&kvm->arch.assigned_device_count);
13159 }
13160 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13161 
13162 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13163 {
13164 	return raw_atomic_read(&kvm->arch.assigned_device_count);
13165 }
13166 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13167 
13168 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13169 {
13170 	atomic_inc(&kvm->arch.noncoherent_dma_count);
13171 }
13172 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13173 
13174 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13175 {
13176 	atomic_dec(&kvm->arch.noncoherent_dma_count);
13177 }
13178 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13179 
13180 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13181 {
13182 	return atomic_read(&kvm->arch.noncoherent_dma_count);
13183 }
13184 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13185 
13186 bool kvm_arch_has_irq_bypass(void)
13187 {
13188 	return true;
13189 }
13190 
13191 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13192 				      struct irq_bypass_producer *prod)
13193 {
13194 	struct kvm_kernel_irqfd *irqfd =
13195 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13196 	int ret;
13197 
13198 	irqfd->producer = prod;
13199 	kvm_arch_start_assignment(irqfd->kvm);
13200 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13201 					 prod->irq, irqfd->gsi, 1);
13202 
13203 	if (ret)
13204 		kvm_arch_end_assignment(irqfd->kvm);
13205 
13206 	return ret;
13207 }
13208 
13209 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13210 				      struct irq_bypass_producer *prod)
13211 {
13212 	int ret;
13213 	struct kvm_kernel_irqfd *irqfd =
13214 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13215 
13216 	WARN_ON(irqfd->producer != prod);
13217 	irqfd->producer = NULL;
13218 
13219 	/*
13220 	 * When producer of consumer is unregistered, we change back to
13221 	 * remapped mode, so we can re-use the current implementation
13222 	 * when the irq is masked/disabled or the consumer side (KVM
13223 	 * int this case doesn't want to receive the interrupts.
13224 	*/
13225 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13226 	if (ret)
13227 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13228 		       " fails: %d\n", irqfd->consumer.token, ret);
13229 
13230 	kvm_arch_end_assignment(irqfd->kvm);
13231 }
13232 
13233 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13234 				   uint32_t guest_irq, bool set)
13235 {
13236 	return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13237 }
13238 
13239 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13240 				  struct kvm_kernel_irq_routing_entry *new)
13241 {
13242 	if (new->type != KVM_IRQ_ROUTING_MSI)
13243 		return true;
13244 
13245 	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13246 }
13247 
13248 bool kvm_vector_hashing_enabled(void)
13249 {
13250 	return vector_hashing;
13251 }
13252 
13253 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13254 {
13255 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13256 }
13257 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13258 
13259 
13260 int kvm_spec_ctrl_test_value(u64 value)
13261 {
13262 	/*
13263 	 * test that setting IA32_SPEC_CTRL to given value
13264 	 * is allowed by the host processor
13265 	 */
13266 
13267 	u64 saved_value;
13268 	unsigned long flags;
13269 	int ret = 0;
13270 
13271 	local_irq_save(flags);
13272 
13273 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13274 		ret = 1;
13275 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13276 		ret = 1;
13277 	else
13278 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13279 
13280 	local_irq_restore(flags);
13281 
13282 	return ret;
13283 }
13284 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13285 
13286 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13287 {
13288 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13289 	struct x86_exception fault;
13290 	u64 access = error_code &
13291 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13292 
13293 	if (!(error_code & PFERR_PRESENT_MASK) ||
13294 	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13295 		/*
13296 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13297 		 * tables probably do not match the TLB.  Just proceed
13298 		 * with the error code that the processor gave.
13299 		 */
13300 		fault.vector = PF_VECTOR;
13301 		fault.error_code_valid = true;
13302 		fault.error_code = error_code;
13303 		fault.nested_page_fault = false;
13304 		fault.address = gva;
13305 		fault.async_page_fault = false;
13306 	}
13307 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13308 }
13309 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13310 
13311 /*
13312  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13313  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13314  * indicates whether exit to userspace is needed.
13315  */
13316 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13317 			      struct x86_exception *e)
13318 {
13319 	if (r == X86EMUL_PROPAGATE_FAULT) {
13320 		if (KVM_BUG_ON(!e, vcpu->kvm))
13321 			return -EIO;
13322 
13323 		kvm_inject_emulated_page_fault(vcpu, e);
13324 		return 1;
13325 	}
13326 
13327 	/*
13328 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13329 	 * while handling a VMX instruction KVM could've handled the request
13330 	 * correctly by exiting to userspace and performing I/O but there
13331 	 * doesn't seem to be a real use-case behind such requests, just return
13332 	 * KVM_EXIT_INTERNAL_ERROR for now.
13333 	 */
13334 	kvm_prepare_emulation_failure_exit(vcpu);
13335 
13336 	return 0;
13337 }
13338 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13339 
13340 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13341 {
13342 	bool pcid_enabled;
13343 	struct x86_exception e;
13344 	struct {
13345 		u64 pcid;
13346 		u64 gla;
13347 	} operand;
13348 	int r;
13349 
13350 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13351 	if (r != X86EMUL_CONTINUE)
13352 		return kvm_handle_memory_failure(vcpu, r, &e);
13353 
13354 	if (operand.pcid >> 12 != 0) {
13355 		kvm_inject_gp(vcpu, 0);
13356 		return 1;
13357 	}
13358 
13359 	pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13360 
13361 	switch (type) {
13362 	case INVPCID_TYPE_INDIV_ADDR:
13363 		if ((!pcid_enabled && (operand.pcid != 0)) ||
13364 		    is_noncanonical_address(operand.gla, vcpu)) {
13365 			kvm_inject_gp(vcpu, 0);
13366 			return 1;
13367 		}
13368 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13369 		return kvm_skip_emulated_instruction(vcpu);
13370 
13371 	case INVPCID_TYPE_SINGLE_CTXT:
13372 		if (!pcid_enabled && (operand.pcid != 0)) {
13373 			kvm_inject_gp(vcpu, 0);
13374 			return 1;
13375 		}
13376 
13377 		kvm_invalidate_pcid(vcpu, operand.pcid);
13378 		return kvm_skip_emulated_instruction(vcpu);
13379 
13380 	case INVPCID_TYPE_ALL_NON_GLOBAL:
13381 		/*
13382 		 * Currently, KVM doesn't mark global entries in the shadow
13383 		 * page tables, so a non-global flush just degenerates to a
13384 		 * global flush. If needed, we could optimize this later by
13385 		 * keeping track of global entries in shadow page tables.
13386 		 */
13387 
13388 		fallthrough;
13389 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
13390 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13391 		return kvm_skip_emulated_instruction(vcpu);
13392 
13393 	default:
13394 		kvm_inject_gp(vcpu, 0);
13395 		return 1;
13396 	}
13397 }
13398 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13399 
13400 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13401 {
13402 	struct kvm_run *run = vcpu->run;
13403 	struct kvm_mmio_fragment *frag;
13404 	unsigned int len;
13405 
13406 	BUG_ON(!vcpu->mmio_needed);
13407 
13408 	/* Complete previous fragment */
13409 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13410 	len = min(8u, frag->len);
13411 	if (!vcpu->mmio_is_write)
13412 		memcpy(frag->data, run->mmio.data, len);
13413 
13414 	if (frag->len <= 8) {
13415 		/* Switch to the next fragment. */
13416 		frag++;
13417 		vcpu->mmio_cur_fragment++;
13418 	} else {
13419 		/* Go forward to the next mmio piece. */
13420 		frag->data += len;
13421 		frag->gpa += len;
13422 		frag->len -= len;
13423 	}
13424 
13425 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13426 		vcpu->mmio_needed = 0;
13427 
13428 		// VMG change, at this point, we're always done
13429 		// RIP has already been advanced
13430 		return 1;
13431 	}
13432 
13433 	// More MMIO is needed
13434 	run->mmio.phys_addr = frag->gpa;
13435 	run->mmio.len = min(8u, frag->len);
13436 	run->mmio.is_write = vcpu->mmio_is_write;
13437 	if (run->mmio.is_write)
13438 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13439 	run->exit_reason = KVM_EXIT_MMIO;
13440 
13441 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13442 
13443 	return 0;
13444 }
13445 
13446 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13447 			  void *data)
13448 {
13449 	int handled;
13450 	struct kvm_mmio_fragment *frag;
13451 
13452 	if (!data)
13453 		return -EINVAL;
13454 
13455 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13456 	if (handled == bytes)
13457 		return 1;
13458 
13459 	bytes -= handled;
13460 	gpa += handled;
13461 	data += handled;
13462 
13463 	/*TODO: Check if need to increment number of frags */
13464 	frag = vcpu->mmio_fragments;
13465 	vcpu->mmio_nr_fragments = 1;
13466 	frag->len = bytes;
13467 	frag->gpa = gpa;
13468 	frag->data = data;
13469 
13470 	vcpu->mmio_needed = 1;
13471 	vcpu->mmio_cur_fragment = 0;
13472 
13473 	vcpu->run->mmio.phys_addr = gpa;
13474 	vcpu->run->mmio.len = min(8u, frag->len);
13475 	vcpu->run->mmio.is_write = 1;
13476 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13477 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13478 
13479 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13480 
13481 	return 0;
13482 }
13483 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13484 
13485 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13486 			 void *data)
13487 {
13488 	int handled;
13489 	struct kvm_mmio_fragment *frag;
13490 
13491 	if (!data)
13492 		return -EINVAL;
13493 
13494 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13495 	if (handled == bytes)
13496 		return 1;
13497 
13498 	bytes -= handled;
13499 	gpa += handled;
13500 	data += handled;
13501 
13502 	/*TODO: Check if need to increment number of frags */
13503 	frag = vcpu->mmio_fragments;
13504 	vcpu->mmio_nr_fragments = 1;
13505 	frag->len = bytes;
13506 	frag->gpa = gpa;
13507 	frag->data = data;
13508 
13509 	vcpu->mmio_needed = 1;
13510 	vcpu->mmio_cur_fragment = 0;
13511 
13512 	vcpu->run->mmio.phys_addr = gpa;
13513 	vcpu->run->mmio.len = min(8u, frag->len);
13514 	vcpu->run->mmio.is_write = 0;
13515 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13516 
13517 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13518 
13519 	return 0;
13520 }
13521 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13522 
13523 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13524 {
13525 	vcpu->arch.sev_pio_count -= count;
13526 	vcpu->arch.sev_pio_data += count * size;
13527 }
13528 
13529 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13530 			   unsigned int port);
13531 
13532 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13533 {
13534 	int size = vcpu->arch.pio.size;
13535 	int port = vcpu->arch.pio.port;
13536 
13537 	vcpu->arch.pio.count = 0;
13538 	if (vcpu->arch.sev_pio_count)
13539 		return kvm_sev_es_outs(vcpu, size, port);
13540 	return 1;
13541 }
13542 
13543 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13544 			   unsigned int port)
13545 {
13546 	for (;;) {
13547 		unsigned int count =
13548 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13549 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13550 
13551 		/* memcpy done already by emulator_pio_out.  */
13552 		advance_sev_es_emulated_pio(vcpu, count, size);
13553 		if (!ret)
13554 			break;
13555 
13556 		/* Emulation done by the kernel.  */
13557 		if (!vcpu->arch.sev_pio_count)
13558 			return 1;
13559 	}
13560 
13561 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13562 	return 0;
13563 }
13564 
13565 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13566 			  unsigned int port);
13567 
13568 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13569 {
13570 	unsigned count = vcpu->arch.pio.count;
13571 	int size = vcpu->arch.pio.size;
13572 	int port = vcpu->arch.pio.port;
13573 
13574 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13575 	advance_sev_es_emulated_pio(vcpu, count, size);
13576 	if (vcpu->arch.sev_pio_count)
13577 		return kvm_sev_es_ins(vcpu, size, port);
13578 	return 1;
13579 }
13580 
13581 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13582 			  unsigned int port)
13583 {
13584 	for (;;) {
13585 		unsigned int count =
13586 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13587 		if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13588 			break;
13589 
13590 		/* Emulation done by the kernel.  */
13591 		advance_sev_es_emulated_pio(vcpu, count, size);
13592 		if (!vcpu->arch.sev_pio_count)
13593 			return 1;
13594 	}
13595 
13596 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13597 	return 0;
13598 }
13599 
13600 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13601 			 unsigned int port, void *data,  unsigned int count,
13602 			 int in)
13603 {
13604 	vcpu->arch.sev_pio_data = data;
13605 	vcpu->arch.sev_pio_count = count;
13606 	return in ? kvm_sev_es_ins(vcpu, size, port)
13607 		  : kvm_sev_es_outs(vcpu, size, port);
13608 }
13609 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13610 
13611 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13612 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13613 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13614 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13615 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13616 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13617 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13618 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13619 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13620 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13621 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13622 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13623 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13624 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13625 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13626 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13627 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13628 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13629 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13630 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13631 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13632 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13633 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13634 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13635 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13636 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13637 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13638 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13639 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13640 
13641 static int __init kvm_x86_init(void)
13642 {
13643 	kvm_mmu_x86_module_init();
13644 	mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
13645 	return 0;
13646 }
13647 module_init(kvm_x86_init);
13648 
13649 static void __exit kvm_x86_exit(void)
13650 {
13651 	/*
13652 	 * If module_init() is implemented, module_exit() must also be
13653 	 * implemented to allow module unload.
13654 	 */
13655 }
13656 module_exit(kvm_x86_exit);
13657