1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 19 #include <linux/kvm_host.h> 20 #include "irq.h" 21 #include "ioapic.h" 22 #include "mmu.h" 23 #include "i8254.h" 24 #include "tss.h" 25 #include "kvm_cache_regs.h" 26 #include "kvm_emulate.h" 27 #include "x86.h" 28 #include "cpuid.h" 29 #include "pmu.h" 30 #include "hyperv.h" 31 #include "lapic.h" 32 #include "xen.h" 33 #include "smm.h" 34 35 #include <linux/clocksource.h> 36 #include <linux/interrupt.h> 37 #include <linux/kvm.h> 38 #include <linux/fs.h> 39 #include <linux/vmalloc.h> 40 #include <linux/export.h> 41 #include <linux/moduleparam.h> 42 #include <linux/mman.h> 43 #include <linux/highmem.h> 44 #include <linux/iommu.h> 45 #include <linux/cpufreq.h> 46 #include <linux/user-return-notifier.h> 47 #include <linux/srcu.h> 48 #include <linux/slab.h> 49 #include <linux/perf_event.h> 50 #include <linux/uaccess.h> 51 #include <linux/hash.h> 52 #include <linux/pci.h> 53 #include <linux/timekeeper_internal.h> 54 #include <linux/pvclock_gtod.h> 55 #include <linux/kvm_irqfd.h> 56 #include <linux/irqbypass.h> 57 #include <linux/sched/stat.h> 58 #include <linux/sched/isolation.h> 59 #include <linux/mem_encrypt.h> 60 #include <linux/entry-kvm.h> 61 #include <linux/suspend.h> 62 63 #include <trace/events/kvm.h> 64 65 #include <asm/debugreg.h> 66 #include <asm/msr.h> 67 #include <asm/desc.h> 68 #include <asm/mce.h> 69 #include <asm/pkru.h> 70 #include <linux/kernel_stat.h> 71 #include <asm/fpu/api.h> 72 #include <asm/fpu/xcr.h> 73 #include <asm/fpu/xstate.h> 74 #include <asm/pvclock.h> 75 #include <asm/div64.h> 76 #include <asm/irq_remapping.h> 77 #include <asm/mshyperv.h> 78 #include <asm/hypervisor.h> 79 #include <asm/tlbflush.h> 80 #include <asm/intel_pt.h> 81 #include <asm/emulate_prefix.h> 82 #include <asm/sgx.h> 83 #include <clocksource/hyperv_timer.h> 84 85 #define CREATE_TRACE_POINTS 86 #include "trace.h" 87 88 #define MAX_IO_MSRS 256 89 #define KVM_MAX_MCE_BANKS 32 90 91 struct kvm_caps kvm_caps __read_mostly = { 92 .supported_mce_cap = MCG_CTL_P | MCG_SER_P, 93 }; 94 EXPORT_SYMBOL_GPL(kvm_caps); 95 96 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 97 98 #define emul_to_vcpu(ctxt) \ 99 ((struct kvm_vcpu *)(ctxt)->vcpu) 100 101 /* EFER defaults: 102 * - enable syscall per default because its emulated by KVM 103 * - enable LME and LMA per default on 64 bit KVM 104 */ 105 #ifdef CONFIG_X86_64 106 static 107 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 108 #else 109 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 110 #endif 111 112 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 113 114 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 115 116 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 117 118 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 119 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 120 121 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 122 static void process_nmi(struct kvm_vcpu *vcpu); 123 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 124 static void store_regs(struct kvm_vcpu *vcpu); 125 static int sync_regs(struct kvm_vcpu *vcpu); 126 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 127 128 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 129 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 130 131 struct kvm_x86_ops kvm_x86_ops __read_mostly; 132 133 #define KVM_X86_OP(func) \ 134 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 135 *(((struct kvm_x86_ops *)0)->func)); 136 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 137 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 138 #include <asm/kvm-x86-ops.h> 139 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 140 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 141 142 static bool __read_mostly ignore_msrs = 0; 143 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 144 145 bool __read_mostly report_ignored_msrs = true; 146 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 147 EXPORT_SYMBOL_GPL(report_ignored_msrs); 148 149 unsigned int min_timer_period_us = 200; 150 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 151 152 static bool __read_mostly kvmclock_periodic_sync = true; 153 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 154 155 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 156 static u32 __read_mostly tsc_tolerance_ppm = 250; 157 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 158 159 /* 160 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 161 * adaptive tuning starting from default advancement of 1000ns. '0' disables 162 * advancement entirely. Any other value is used as-is and disables adaptive 163 * tuning, i.e. allows privileged userspace to set an exact advancement time. 164 */ 165 static int __read_mostly lapic_timer_advance_ns = -1; 166 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 167 168 static bool __read_mostly vector_hashing = true; 169 module_param(vector_hashing, bool, S_IRUGO); 170 171 bool __read_mostly enable_vmware_backdoor = false; 172 module_param(enable_vmware_backdoor, bool, S_IRUGO); 173 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 174 175 /* 176 * Flags to manipulate forced emulation behavior (any non-zero value will 177 * enable forced emulation). 178 */ 179 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) 180 static int __read_mostly force_emulation_prefix; 181 module_param(force_emulation_prefix, int, 0644); 182 183 int __read_mostly pi_inject_timer = -1; 184 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 185 186 /* Enable/disable PMU virtualization */ 187 bool __read_mostly enable_pmu = true; 188 EXPORT_SYMBOL_GPL(enable_pmu); 189 module_param(enable_pmu, bool, 0444); 190 191 bool __read_mostly eager_page_split = true; 192 module_param(eager_page_split, bool, 0644); 193 194 /* Enable/disable SMT_RSB bug mitigation */ 195 bool __read_mostly mitigate_smt_rsb; 196 module_param(mitigate_smt_rsb, bool, 0444); 197 198 /* 199 * Restoring the host value for MSRs that are only consumed when running in 200 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 201 * returns to userspace, i.e. the kernel can run with the guest's value. 202 */ 203 #define KVM_MAX_NR_USER_RETURN_MSRS 16 204 205 struct kvm_user_return_msrs { 206 struct user_return_notifier urn; 207 bool registered; 208 struct kvm_user_return_msr_values { 209 u64 host; 210 u64 curr; 211 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 212 }; 213 214 u32 __read_mostly kvm_nr_uret_msrs; 215 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 216 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 217 static struct kvm_user_return_msrs __percpu *user_return_msrs; 218 219 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 220 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 221 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 222 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 223 224 u64 __read_mostly host_efer; 225 EXPORT_SYMBOL_GPL(host_efer); 226 227 bool __read_mostly allow_smaller_maxphyaddr = 0; 228 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 229 230 bool __read_mostly enable_apicv = true; 231 EXPORT_SYMBOL_GPL(enable_apicv); 232 233 u64 __read_mostly host_xss; 234 EXPORT_SYMBOL_GPL(host_xss); 235 236 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 237 KVM_GENERIC_VM_STATS(), 238 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 239 STATS_DESC_COUNTER(VM, mmu_pte_write), 240 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 241 STATS_DESC_COUNTER(VM, mmu_flooded), 242 STATS_DESC_COUNTER(VM, mmu_recycled), 243 STATS_DESC_COUNTER(VM, mmu_cache_miss), 244 STATS_DESC_ICOUNTER(VM, mmu_unsync), 245 STATS_DESC_ICOUNTER(VM, pages_4k), 246 STATS_DESC_ICOUNTER(VM, pages_2m), 247 STATS_DESC_ICOUNTER(VM, pages_1g), 248 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 249 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 250 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 251 }; 252 253 const struct kvm_stats_header kvm_vm_stats_header = { 254 .name_size = KVM_STATS_NAME_SIZE, 255 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 256 .id_offset = sizeof(struct kvm_stats_header), 257 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 258 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 259 sizeof(kvm_vm_stats_desc), 260 }; 261 262 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 263 KVM_GENERIC_VCPU_STATS(), 264 STATS_DESC_COUNTER(VCPU, pf_taken), 265 STATS_DESC_COUNTER(VCPU, pf_fixed), 266 STATS_DESC_COUNTER(VCPU, pf_emulate), 267 STATS_DESC_COUNTER(VCPU, pf_spurious), 268 STATS_DESC_COUNTER(VCPU, pf_fast), 269 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 270 STATS_DESC_COUNTER(VCPU, pf_guest), 271 STATS_DESC_COUNTER(VCPU, tlb_flush), 272 STATS_DESC_COUNTER(VCPU, invlpg), 273 STATS_DESC_COUNTER(VCPU, exits), 274 STATS_DESC_COUNTER(VCPU, io_exits), 275 STATS_DESC_COUNTER(VCPU, mmio_exits), 276 STATS_DESC_COUNTER(VCPU, signal_exits), 277 STATS_DESC_COUNTER(VCPU, irq_window_exits), 278 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 279 STATS_DESC_COUNTER(VCPU, l1d_flush), 280 STATS_DESC_COUNTER(VCPU, halt_exits), 281 STATS_DESC_COUNTER(VCPU, request_irq_exits), 282 STATS_DESC_COUNTER(VCPU, irq_exits), 283 STATS_DESC_COUNTER(VCPU, host_state_reload), 284 STATS_DESC_COUNTER(VCPU, fpu_reload), 285 STATS_DESC_COUNTER(VCPU, insn_emulation), 286 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 287 STATS_DESC_COUNTER(VCPU, hypercalls), 288 STATS_DESC_COUNTER(VCPU, irq_injections), 289 STATS_DESC_COUNTER(VCPU, nmi_injections), 290 STATS_DESC_COUNTER(VCPU, req_event), 291 STATS_DESC_COUNTER(VCPU, nested_run), 292 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 293 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 294 STATS_DESC_COUNTER(VCPU, preemption_reported), 295 STATS_DESC_COUNTER(VCPU, preemption_other), 296 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 297 STATS_DESC_COUNTER(VCPU, notify_window_exits), 298 }; 299 300 const struct kvm_stats_header kvm_vcpu_stats_header = { 301 .name_size = KVM_STATS_NAME_SIZE, 302 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 303 .id_offset = sizeof(struct kvm_stats_header), 304 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 305 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 306 sizeof(kvm_vcpu_stats_desc), 307 }; 308 309 u64 __read_mostly host_xcr0; 310 311 static struct kmem_cache *x86_emulator_cache; 312 313 /* 314 * When called, it means the previous get/set msr reached an invalid msr. 315 * Return true if we want to ignore/silent this failed msr access. 316 */ 317 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 318 { 319 const char *op = write ? "wrmsr" : "rdmsr"; 320 321 if (ignore_msrs) { 322 if (report_ignored_msrs) 323 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 324 op, msr, data); 325 /* Mask the error */ 326 return true; 327 } else { 328 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 329 op, msr, data); 330 return false; 331 } 332 } 333 334 static struct kmem_cache *kvm_alloc_emulator_cache(void) 335 { 336 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 337 unsigned int size = sizeof(struct x86_emulate_ctxt); 338 339 return kmem_cache_create_usercopy("x86_emulator", size, 340 __alignof__(struct x86_emulate_ctxt), 341 SLAB_ACCOUNT, useroffset, 342 size - useroffset, NULL); 343 } 344 345 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 346 347 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 348 { 349 int i; 350 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 351 vcpu->arch.apf.gfns[i] = ~0; 352 } 353 354 static void kvm_on_user_return(struct user_return_notifier *urn) 355 { 356 unsigned slot; 357 struct kvm_user_return_msrs *msrs 358 = container_of(urn, struct kvm_user_return_msrs, urn); 359 struct kvm_user_return_msr_values *values; 360 unsigned long flags; 361 362 /* 363 * Disabling irqs at this point since the following code could be 364 * interrupted and executed through kvm_arch_hardware_disable() 365 */ 366 local_irq_save(flags); 367 if (msrs->registered) { 368 msrs->registered = false; 369 user_return_notifier_unregister(urn); 370 } 371 local_irq_restore(flags); 372 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 373 values = &msrs->values[slot]; 374 if (values->host != values->curr) { 375 wrmsrl(kvm_uret_msrs_list[slot], values->host); 376 values->curr = values->host; 377 } 378 } 379 } 380 381 static int kvm_probe_user_return_msr(u32 msr) 382 { 383 u64 val; 384 int ret; 385 386 preempt_disable(); 387 ret = rdmsrl_safe(msr, &val); 388 if (ret) 389 goto out; 390 ret = wrmsrl_safe(msr, val); 391 out: 392 preempt_enable(); 393 return ret; 394 } 395 396 int kvm_add_user_return_msr(u32 msr) 397 { 398 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 399 400 if (kvm_probe_user_return_msr(msr)) 401 return -1; 402 403 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 404 return kvm_nr_uret_msrs++; 405 } 406 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 407 408 int kvm_find_user_return_msr(u32 msr) 409 { 410 int i; 411 412 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 413 if (kvm_uret_msrs_list[i] == msr) 414 return i; 415 } 416 return -1; 417 } 418 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 419 420 static void kvm_user_return_msr_cpu_online(void) 421 { 422 unsigned int cpu = smp_processor_id(); 423 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 424 u64 value; 425 int i; 426 427 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 428 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 429 msrs->values[i].host = value; 430 msrs->values[i].curr = value; 431 } 432 } 433 434 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 435 { 436 unsigned int cpu = smp_processor_id(); 437 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 438 int err; 439 440 value = (value & mask) | (msrs->values[slot].host & ~mask); 441 if (value == msrs->values[slot].curr) 442 return 0; 443 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 444 if (err) 445 return 1; 446 447 msrs->values[slot].curr = value; 448 if (!msrs->registered) { 449 msrs->urn.on_user_return = kvm_on_user_return; 450 user_return_notifier_register(&msrs->urn); 451 msrs->registered = true; 452 } 453 return 0; 454 } 455 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 456 457 static void drop_user_return_notifiers(void) 458 { 459 unsigned int cpu = smp_processor_id(); 460 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 461 462 if (msrs->registered) 463 kvm_on_user_return(&msrs->urn); 464 } 465 466 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 467 { 468 return vcpu->arch.apic_base; 469 } 470 471 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 472 { 473 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 474 } 475 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 476 477 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 478 { 479 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 480 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 481 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 482 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 483 484 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 485 return 1; 486 if (!msr_info->host_initiated) { 487 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 488 return 1; 489 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 490 return 1; 491 } 492 493 kvm_lapic_set_base(vcpu, msr_info->data); 494 kvm_recalculate_apic_map(vcpu->kvm); 495 return 0; 496 } 497 498 /* 499 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 500 * 501 * Hardware virtualization extension instructions may fault if a reboot turns 502 * off virtualization while processes are running. Usually after catching the 503 * fault we just panic; during reboot instead the instruction is ignored. 504 */ 505 noinstr void kvm_spurious_fault(void) 506 { 507 /* Fault while not rebooting. We want the trace. */ 508 BUG_ON(!kvm_rebooting); 509 } 510 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 511 512 #define EXCPT_BENIGN 0 513 #define EXCPT_CONTRIBUTORY 1 514 #define EXCPT_PF 2 515 516 static int exception_class(int vector) 517 { 518 switch (vector) { 519 case PF_VECTOR: 520 return EXCPT_PF; 521 case DE_VECTOR: 522 case TS_VECTOR: 523 case NP_VECTOR: 524 case SS_VECTOR: 525 case GP_VECTOR: 526 return EXCPT_CONTRIBUTORY; 527 default: 528 break; 529 } 530 return EXCPT_BENIGN; 531 } 532 533 #define EXCPT_FAULT 0 534 #define EXCPT_TRAP 1 535 #define EXCPT_ABORT 2 536 #define EXCPT_INTERRUPT 3 537 #define EXCPT_DB 4 538 539 static int exception_type(int vector) 540 { 541 unsigned int mask; 542 543 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 544 return EXCPT_INTERRUPT; 545 546 mask = 1 << vector; 547 548 /* 549 * #DBs can be trap-like or fault-like, the caller must check other CPU 550 * state, e.g. DR6, to determine whether a #DB is a trap or fault. 551 */ 552 if (mask & (1 << DB_VECTOR)) 553 return EXCPT_DB; 554 555 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) 556 return EXCPT_TRAP; 557 558 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 559 return EXCPT_ABORT; 560 561 /* Reserved exceptions will result in fault */ 562 return EXCPT_FAULT; 563 } 564 565 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 566 struct kvm_queued_exception *ex) 567 { 568 if (!ex->has_payload) 569 return; 570 571 switch (ex->vector) { 572 case DB_VECTOR: 573 /* 574 * "Certain debug exceptions may clear bit 0-3. The 575 * remaining contents of the DR6 register are never 576 * cleared by the processor". 577 */ 578 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 579 /* 580 * In order to reflect the #DB exception payload in guest 581 * dr6, three components need to be considered: active low 582 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 583 * DR6_BS and DR6_BT) 584 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 585 * In the target guest dr6: 586 * FIXED_1 bits should always be set. 587 * Active low bits should be cleared if 1-setting in payload. 588 * Active high bits should be set if 1-setting in payload. 589 * 590 * Note, the payload is compatible with the pending debug 591 * exceptions/exit qualification under VMX, that active_low bits 592 * are active high in payload. 593 * So they need to be flipped for DR6. 594 */ 595 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 596 vcpu->arch.dr6 |= ex->payload; 597 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; 598 599 /* 600 * The #DB payload is defined as compatible with the 'pending 601 * debug exceptions' field under VMX, not DR6. While bit 12 is 602 * defined in the 'pending debug exceptions' field (enabled 603 * breakpoint), it is reserved and must be zero in DR6. 604 */ 605 vcpu->arch.dr6 &= ~BIT(12); 606 break; 607 case PF_VECTOR: 608 vcpu->arch.cr2 = ex->payload; 609 break; 610 } 611 612 ex->has_payload = false; 613 ex->payload = 0; 614 } 615 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 616 617 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, 618 bool has_error_code, u32 error_code, 619 bool has_payload, unsigned long payload) 620 { 621 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 622 623 ex->vector = vector; 624 ex->injected = false; 625 ex->pending = true; 626 ex->has_error_code = has_error_code; 627 ex->error_code = error_code; 628 ex->has_payload = has_payload; 629 ex->payload = payload; 630 } 631 632 /* Forcibly leave the nested mode in cases like a vCPU reset */ 633 static void kvm_leave_nested(struct kvm_vcpu *vcpu) 634 { 635 kvm_x86_ops.nested_ops->leave_nested(vcpu); 636 } 637 638 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 639 unsigned nr, bool has_error, u32 error_code, 640 bool has_payload, unsigned long payload, bool reinject) 641 { 642 u32 prev_nr; 643 int class1, class2; 644 645 kvm_make_request(KVM_REQ_EVENT, vcpu); 646 647 /* 648 * If the exception is destined for L2 and isn't being reinjected, 649 * morph it to a VM-Exit if L1 wants to intercept the exception. A 650 * previously injected exception is not checked because it was checked 651 * when it was original queued, and re-checking is incorrect if _L1_ 652 * injected the exception, in which case it's exempt from interception. 653 */ 654 if (!reinject && is_guest_mode(vcpu) && 655 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { 656 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, 657 has_payload, payload); 658 return; 659 } 660 661 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 662 queue: 663 if (reinject) { 664 /* 665 * On VM-Entry, an exception can be pending if and only 666 * if event injection was blocked by nested_run_pending. 667 * In that case, however, vcpu_enter_guest() requests an 668 * immediate exit, and the guest shouldn't proceed far 669 * enough to need reinjection. 670 */ 671 WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); 672 vcpu->arch.exception.injected = true; 673 if (WARN_ON_ONCE(has_payload)) { 674 /* 675 * A reinjected event has already 676 * delivered its payload. 677 */ 678 has_payload = false; 679 payload = 0; 680 } 681 } else { 682 vcpu->arch.exception.pending = true; 683 vcpu->arch.exception.injected = false; 684 } 685 vcpu->arch.exception.has_error_code = has_error; 686 vcpu->arch.exception.vector = nr; 687 vcpu->arch.exception.error_code = error_code; 688 vcpu->arch.exception.has_payload = has_payload; 689 vcpu->arch.exception.payload = payload; 690 if (!is_guest_mode(vcpu)) 691 kvm_deliver_exception_payload(vcpu, 692 &vcpu->arch.exception); 693 return; 694 } 695 696 /* to check exception */ 697 prev_nr = vcpu->arch.exception.vector; 698 if (prev_nr == DF_VECTOR) { 699 /* triple fault -> shutdown */ 700 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 701 return; 702 } 703 class1 = exception_class(prev_nr); 704 class2 = exception_class(nr); 705 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || 706 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 707 /* 708 * Synthesize #DF. Clear the previously injected or pending 709 * exception so as not to incorrectly trigger shutdown. 710 */ 711 vcpu->arch.exception.injected = false; 712 vcpu->arch.exception.pending = false; 713 714 kvm_queue_exception_e(vcpu, DF_VECTOR, 0); 715 } else { 716 /* replace previous exception with a new one in a hope 717 that instruction re-execution will regenerate lost 718 exception */ 719 goto queue; 720 } 721 } 722 723 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 724 { 725 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 726 } 727 EXPORT_SYMBOL_GPL(kvm_queue_exception); 728 729 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 730 { 731 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 732 } 733 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 734 735 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 736 unsigned long payload) 737 { 738 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 739 } 740 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 741 742 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 743 u32 error_code, unsigned long payload) 744 { 745 kvm_multiple_exception(vcpu, nr, true, error_code, 746 true, payload, false); 747 } 748 749 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 750 { 751 if (err) 752 kvm_inject_gp(vcpu, 0); 753 else 754 return kvm_skip_emulated_instruction(vcpu); 755 756 return 1; 757 } 758 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 759 760 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 761 { 762 if (err) { 763 kvm_inject_gp(vcpu, 0); 764 return 1; 765 } 766 767 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 768 EMULTYPE_COMPLETE_USER_EXIT); 769 } 770 771 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 772 { 773 ++vcpu->stat.pf_guest; 774 775 /* 776 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of 777 * whether or not L1 wants to intercept "regular" #PF. 778 */ 779 if (is_guest_mode(vcpu) && fault->async_page_fault) 780 kvm_queue_exception_vmexit(vcpu, PF_VECTOR, 781 true, fault->error_code, 782 true, fault->address); 783 else 784 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 785 fault->address); 786 } 787 788 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 789 struct x86_exception *fault) 790 { 791 struct kvm_mmu *fault_mmu; 792 WARN_ON_ONCE(fault->vector != PF_VECTOR); 793 794 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 795 vcpu->arch.walk_mmu; 796 797 /* 798 * Invalidate the TLB entry for the faulting address, if it exists, 799 * else the access will fault indefinitely (and to emulate hardware). 800 */ 801 if ((fault->error_code & PFERR_PRESENT_MASK) && 802 !(fault->error_code & PFERR_RSVD_MASK)) 803 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address, 804 fault_mmu->root.hpa); 805 806 fault_mmu->inject_page_fault(vcpu, fault); 807 } 808 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 809 810 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 811 { 812 atomic_inc(&vcpu->arch.nmi_queued); 813 kvm_make_request(KVM_REQ_NMI, vcpu); 814 } 815 816 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 817 { 818 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 819 } 820 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 821 822 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 823 { 824 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 825 } 826 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 827 828 /* 829 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 830 * a #GP and return false. 831 */ 832 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 833 { 834 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 835 return true; 836 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 837 return false; 838 } 839 840 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 841 { 842 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 843 return true; 844 845 kvm_queue_exception(vcpu, UD_VECTOR); 846 return false; 847 } 848 EXPORT_SYMBOL_GPL(kvm_require_dr); 849 850 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 851 { 852 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 853 } 854 855 /* 856 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 857 */ 858 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 859 { 860 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 861 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 862 gpa_t real_gpa; 863 int i; 864 int ret; 865 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 866 867 /* 868 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 869 * to an L1 GPA. 870 */ 871 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 872 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 873 if (real_gpa == INVALID_GPA) 874 return 0; 875 876 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 877 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 878 cr3 & GENMASK(11, 5), sizeof(pdpte)); 879 if (ret < 0) 880 return 0; 881 882 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 883 if ((pdpte[i] & PT_PRESENT_MASK) && 884 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 885 return 0; 886 } 887 } 888 889 /* 890 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 891 * Shadow page roots need to be reconstructed instead. 892 */ 893 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 894 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 895 896 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 897 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 898 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 899 vcpu->arch.pdptrs_from_userspace = false; 900 901 return 1; 902 } 903 EXPORT_SYMBOL_GPL(load_pdptrs); 904 905 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 906 { 907 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 908 kvm_clear_async_pf_completion_queue(vcpu); 909 kvm_async_pf_hash_reset(vcpu); 910 911 /* 912 * Clearing CR0.PG is defined to flush the TLB from the guest's 913 * perspective. 914 */ 915 if (!(cr0 & X86_CR0_PG)) 916 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 917 } 918 919 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 920 kvm_mmu_reset_context(vcpu); 921 922 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 923 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 924 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 925 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 926 } 927 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 928 929 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 930 { 931 unsigned long old_cr0 = kvm_read_cr0(vcpu); 932 933 cr0 |= X86_CR0_ET; 934 935 #ifdef CONFIG_X86_64 936 if (cr0 & 0xffffffff00000000UL) 937 return 1; 938 #endif 939 940 cr0 &= ~CR0_RESERVED_BITS; 941 942 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 943 return 1; 944 945 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 946 return 1; 947 948 #ifdef CONFIG_X86_64 949 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 950 (cr0 & X86_CR0_PG)) { 951 int cs_db, cs_l; 952 953 if (!is_pae(vcpu)) 954 return 1; 955 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 956 if (cs_l) 957 return 1; 958 } 959 #endif 960 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 961 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 962 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 963 return 1; 964 965 if (!(cr0 & X86_CR0_PG) && 966 (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))) 967 return 1; 968 969 static_call(kvm_x86_set_cr0)(vcpu, cr0); 970 971 kvm_post_set_cr0(vcpu, old_cr0, cr0); 972 973 return 0; 974 } 975 EXPORT_SYMBOL_GPL(kvm_set_cr0); 976 977 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 978 { 979 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 980 } 981 EXPORT_SYMBOL_GPL(kvm_lmsw); 982 983 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 984 { 985 if (vcpu->arch.guest_state_protected) 986 return; 987 988 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 989 990 if (vcpu->arch.xcr0 != host_xcr0) 991 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 992 993 if (vcpu->arch.xsaves_enabled && 994 vcpu->arch.ia32_xss != host_xss) 995 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 996 } 997 998 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 999 if (static_cpu_has(X86_FEATURE_PKU) && 1000 vcpu->arch.pkru != vcpu->arch.host_pkru && 1001 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1002 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) 1003 write_pkru(vcpu->arch.pkru); 1004 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 1005 } 1006 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 1007 1008 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1009 { 1010 if (vcpu->arch.guest_state_protected) 1011 return; 1012 1013 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 1014 if (static_cpu_has(X86_FEATURE_PKU) && 1015 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1016 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) { 1017 vcpu->arch.pkru = rdpkru(); 1018 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1019 write_pkru(vcpu->arch.host_pkru); 1020 } 1021 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 1022 1023 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 1024 1025 if (vcpu->arch.xcr0 != host_xcr0) 1026 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 1027 1028 if (vcpu->arch.xsaves_enabled && 1029 vcpu->arch.ia32_xss != host_xss) 1030 wrmsrl(MSR_IA32_XSS, host_xss); 1031 } 1032 1033 } 1034 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1035 1036 #ifdef CONFIG_X86_64 1037 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1038 { 1039 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; 1040 } 1041 #endif 1042 1043 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1044 { 1045 u64 xcr0 = xcr; 1046 u64 old_xcr0 = vcpu->arch.xcr0; 1047 u64 valid_bits; 1048 1049 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1050 if (index != XCR_XFEATURE_ENABLED_MASK) 1051 return 1; 1052 if (!(xcr0 & XFEATURE_MASK_FP)) 1053 return 1; 1054 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1055 return 1; 1056 1057 /* 1058 * Do not allow the guest to set bits that we do not support 1059 * saving. However, xcr0 bit 0 is always set, even if the 1060 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1061 */ 1062 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1063 if (xcr0 & ~valid_bits) 1064 return 1; 1065 1066 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1067 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1068 return 1; 1069 1070 if (xcr0 & XFEATURE_MASK_AVX512) { 1071 if (!(xcr0 & XFEATURE_MASK_YMM)) 1072 return 1; 1073 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1074 return 1; 1075 } 1076 1077 if ((xcr0 & XFEATURE_MASK_XTILE) && 1078 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1079 return 1; 1080 1081 vcpu->arch.xcr0 = xcr0; 1082 1083 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1084 kvm_update_cpuid_runtime(vcpu); 1085 return 0; 1086 } 1087 1088 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1089 { 1090 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ 1091 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || 1092 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1093 kvm_inject_gp(vcpu, 0); 1094 return 1; 1095 } 1096 1097 return kvm_skip_emulated_instruction(vcpu); 1098 } 1099 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1100 1101 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1102 { 1103 if (cr4 & cr4_reserved_bits) 1104 return false; 1105 1106 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1107 return false; 1108 1109 return true; 1110 } 1111 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4); 1112 1113 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1114 { 1115 return __kvm_is_valid_cr4(vcpu, cr4) && 1116 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1117 } 1118 1119 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1120 { 1121 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1122 kvm_mmu_reset_context(vcpu); 1123 1124 /* 1125 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1126 * according to the SDM; however, stale prev_roots could be reused 1127 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1128 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1129 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1130 * so fall through. 1131 */ 1132 if (!tdp_enabled && 1133 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1134 kvm_mmu_unload(vcpu); 1135 1136 /* 1137 * The TLB has to be flushed for all PCIDs if any of the following 1138 * (architecturally required) changes happen: 1139 * - CR4.PCIDE is changed from 1 to 0 1140 * - CR4.PGE is toggled 1141 * 1142 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1143 */ 1144 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1145 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1146 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1147 1148 /* 1149 * The TLB has to be flushed for the current PCID if any of the 1150 * following (architecturally required) changes happen: 1151 * - CR4.SMEP is changed from 0 to 1 1152 * - CR4.PAE is toggled 1153 */ 1154 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1155 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1156 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1157 1158 } 1159 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1160 1161 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1162 { 1163 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1164 1165 if (!kvm_is_valid_cr4(vcpu, cr4)) 1166 return 1; 1167 1168 if (is_long_mode(vcpu)) { 1169 if (!(cr4 & X86_CR4_PAE)) 1170 return 1; 1171 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1172 return 1; 1173 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1174 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1175 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1176 return 1; 1177 1178 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1179 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 1180 return 1; 1181 1182 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1183 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1184 return 1; 1185 } 1186 1187 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1188 1189 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1190 1191 return 0; 1192 } 1193 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1194 1195 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1196 { 1197 struct kvm_mmu *mmu = vcpu->arch.mmu; 1198 unsigned long roots_to_free = 0; 1199 int i; 1200 1201 /* 1202 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1203 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1204 * also via the emulator. KVM's TDP page tables are not in the scope of 1205 * the invalidation, but the guest's TLB entries need to be flushed as 1206 * the CPU may have cached entries in its TLB for the target PCID. 1207 */ 1208 if (unlikely(tdp_enabled)) { 1209 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1210 return; 1211 } 1212 1213 /* 1214 * If neither the current CR3 nor any of the prev_roots use the given 1215 * PCID, then nothing needs to be done here because a resync will 1216 * happen anyway before switching to any other CR3. 1217 */ 1218 if (kvm_get_active_pcid(vcpu) == pcid) { 1219 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1220 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1221 } 1222 1223 /* 1224 * If PCID is disabled, there is no need to free prev_roots even if the 1225 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1226 * with PCIDE=0. 1227 */ 1228 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 1229 return; 1230 1231 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1232 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1233 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1234 1235 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1236 } 1237 1238 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1239 { 1240 bool skip_tlb_flush = false; 1241 unsigned long pcid = 0; 1242 #ifdef CONFIG_X86_64 1243 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 1244 1245 if (pcid_enabled) { 1246 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1247 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1248 pcid = cr3 & X86_CR3_PCID_MASK; 1249 } 1250 #endif 1251 1252 /* PDPTRs are always reloaded for PAE paging. */ 1253 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1254 goto handle_tlb_flush; 1255 1256 /* 1257 * Do not condition the GPA check on long mode, this helper is used to 1258 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1259 * the current vCPU mode is accurate. 1260 */ 1261 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3)) 1262 return 1; 1263 1264 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1265 return 1; 1266 1267 if (cr3 != kvm_read_cr3(vcpu)) 1268 kvm_mmu_new_pgd(vcpu, cr3); 1269 1270 vcpu->arch.cr3 = cr3; 1271 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1272 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1273 1274 handle_tlb_flush: 1275 /* 1276 * A load of CR3 that flushes the TLB flushes only the current PCID, 1277 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1278 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1279 * and it's impossible to use a non-zero PCID when PCID is disabled, 1280 * i.e. only PCID=0 can be relevant. 1281 */ 1282 if (!skip_tlb_flush) 1283 kvm_invalidate_pcid(vcpu, pcid); 1284 1285 return 0; 1286 } 1287 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1288 1289 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1290 { 1291 if (cr8 & CR8_RESERVED_BITS) 1292 return 1; 1293 if (lapic_in_kernel(vcpu)) 1294 kvm_lapic_set_tpr(vcpu, cr8); 1295 else 1296 vcpu->arch.cr8 = cr8; 1297 return 0; 1298 } 1299 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1300 1301 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1302 { 1303 if (lapic_in_kernel(vcpu)) 1304 return kvm_lapic_get_cr8(vcpu); 1305 else 1306 return vcpu->arch.cr8; 1307 } 1308 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1309 1310 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1311 { 1312 int i; 1313 1314 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1315 for (i = 0; i < KVM_NR_DB_REGS; i++) 1316 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1317 } 1318 } 1319 1320 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1321 { 1322 unsigned long dr7; 1323 1324 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1325 dr7 = vcpu->arch.guest_debug_dr7; 1326 else 1327 dr7 = vcpu->arch.dr7; 1328 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1329 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1330 if (dr7 & DR7_BP_EN_MASK) 1331 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1332 } 1333 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1334 1335 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1336 { 1337 u64 fixed = DR6_FIXED_1; 1338 1339 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1340 fixed |= DR6_RTM; 1341 1342 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1343 fixed |= DR6_BUS_LOCK; 1344 return fixed; 1345 } 1346 1347 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1348 { 1349 size_t size = ARRAY_SIZE(vcpu->arch.db); 1350 1351 switch (dr) { 1352 case 0 ... 3: 1353 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1354 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1355 vcpu->arch.eff_db[dr] = val; 1356 break; 1357 case 4: 1358 case 6: 1359 if (!kvm_dr6_valid(val)) 1360 return 1; /* #GP */ 1361 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1362 break; 1363 case 5: 1364 default: /* 7 */ 1365 if (!kvm_dr7_valid(val)) 1366 return 1; /* #GP */ 1367 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1368 kvm_update_dr7(vcpu); 1369 break; 1370 } 1371 1372 return 0; 1373 } 1374 EXPORT_SYMBOL_GPL(kvm_set_dr); 1375 1376 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1377 { 1378 size_t size = ARRAY_SIZE(vcpu->arch.db); 1379 1380 switch (dr) { 1381 case 0 ... 3: 1382 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1383 break; 1384 case 4: 1385 case 6: 1386 *val = vcpu->arch.dr6; 1387 break; 1388 case 5: 1389 default: /* 7 */ 1390 *val = vcpu->arch.dr7; 1391 break; 1392 } 1393 } 1394 EXPORT_SYMBOL_GPL(kvm_get_dr); 1395 1396 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1397 { 1398 u32 ecx = kvm_rcx_read(vcpu); 1399 u64 data; 1400 1401 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1402 kvm_inject_gp(vcpu, 0); 1403 return 1; 1404 } 1405 1406 kvm_rax_write(vcpu, (u32)data); 1407 kvm_rdx_write(vcpu, data >> 32); 1408 return kvm_skip_emulated_instruction(vcpu); 1409 } 1410 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1411 1412 /* 1413 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1414 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1415 * 1416 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) 1417 * extract the supported MSRs from the related const lists. 1418 * msrs_to_save is selected from the msrs_to_save_all to reflect the 1419 * capabilities of the host cpu. This capabilities test skips MSRs that are 1420 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs 1421 * may depend on host virtualization features rather than host cpu features. 1422 */ 1423 1424 static const u32 msrs_to_save_all[] = { 1425 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1426 MSR_STAR, 1427 #ifdef CONFIG_X86_64 1428 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1429 #endif 1430 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1431 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1432 MSR_IA32_SPEC_CTRL, 1433 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1434 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1435 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1436 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1437 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1438 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1439 MSR_IA32_UMWAIT_CONTROL, 1440 1441 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1442 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1443 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1444 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1445 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 1446 1447 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */ 1448 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1449 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1450 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1451 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1452 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1453 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1454 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1455 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1456 1457 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1458 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1459 1460 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */ 1461 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1462 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1463 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1464 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1465 1466 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 1467 }; 1468 1469 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)]; 1470 static unsigned num_msrs_to_save; 1471 1472 static const u32 emulated_msrs_all[] = { 1473 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1474 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1475 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1476 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1477 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1478 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1479 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1480 HV_X64_MSR_RESET, 1481 HV_X64_MSR_VP_INDEX, 1482 HV_X64_MSR_VP_RUNTIME, 1483 HV_X64_MSR_SCONTROL, 1484 HV_X64_MSR_STIMER0_CONFIG, 1485 HV_X64_MSR_VP_ASSIST_PAGE, 1486 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1487 HV_X64_MSR_TSC_EMULATION_STATUS, 1488 HV_X64_MSR_SYNDBG_OPTIONS, 1489 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1490 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1491 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1492 1493 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1494 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1495 1496 MSR_IA32_TSC_ADJUST, 1497 MSR_IA32_TSC_DEADLINE, 1498 MSR_IA32_ARCH_CAPABILITIES, 1499 MSR_IA32_PERF_CAPABILITIES, 1500 MSR_IA32_MISC_ENABLE, 1501 MSR_IA32_MCG_STATUS, 1502 MSR_IA32_MCG_CTL, 1503 MSR_IA32_MCG_EXT_CTL, 1504 MSR_IA32_SMBASE, 1505 MSR_SMI_COUNT, 1506 MSR_PLATFORM_INFO, 1507 MSR_MISC_FEATURES_ENABLES, 1508 MSR_AMD64_VIRT_SPEC_CTRL, 1509 MSR_AMD64_TSC_RATIO, 1510 MSR_IA32_POWER_CTL, 1511 MSR_IA32_UCODE_REV, 1512 1513 /* 1514 * The following list leaves out MSRs whose values are determined 1515 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs. 1516 * We always support the "true" VMX control MSRs, even if the host 1517 * processor does not, so I am putting these registers here rather 1518 * than in msrs_to_save_all. 1519 */ 1520 MSR_IA32_VMX_BASIC, 1521 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1522 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1523 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1524 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1525 MSR_IA32_VMX_MISC, 1526 MSR_IA32_VMX_CR0_FIXED0, 1527 MSR_IA32_VMX_CR4_FIXED0, 1528 MSR_IA32_VMX_VMCS_ENUM, 1529 MSR_IA32_VMX_PROCBASED_CTLS2, 1530 MSR_IA32_VMX_EPT_VPID_CAP, 1531 MSR_IA32_VMX_VMFUNC, 1532 1533 MSR_K7_HWCR, 1534 MSR_KVM_POLL_CONTROL, 1535 }; 1536 1537 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1538 static unsigned num_emulated_msrs; 1539 1540 /* 1541 * List of msr numbers which are used to expose MSR-based features that 1542 * can be used by a hypervisor to validate requested CPU features. 1543 */ 1544 static const u32 msr_based_features_all[] = { 1545 MSR_IA32_VMX_BASIC, 1546 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1547 MSR_IA32_VMX_PINBASED_CTLS, 1548 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1549 MSR_IA32_VMX_PROCBASED_CTLS, 1550 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1551 MSR_IA32_VMX_EXIT_CTLS, 1552 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1553 MSR_IA32_VMX_ENTRY_CTLS, 1554 MSR_IA32_VMX_MISC, 1555 MSR_IA32_VMX_CR0_FIXED0, 1556 MSR_IA32_VMX_CR0_FIXED1, 1557 MSR_IA32_VMX_CR4_FIXED0, 1558 MSR_IA32_VMX_CR4_FIXED1, 1559 MSR_IA32_VMX_VMCS_ENUM, 1560 MSR_IA32_VMX_PROCBASED_CTLS2, 1561 MSR_IA32_VMX_EPT_VPID_CAP, 1562 MSR_IA32_VMX_VMFUNC, 1563 1564 MSR_AMD64_DE_CFG, 1565 MSR_IA32_UCODE_REV, 1566 MSR_IA32_ARCH_CAPABILITIES, 1567 MSR_IA32_PERF_CAPABILITIES, 1568 }; 1569 1570 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)]; 1571 static unsigned int num_msr_based_features; 1572 1573 /* 1574 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1575 * does not yet virtualize. These include: 1576 * 10 - MISC_PACKAGE_CTRLS 1577 * 11 - ENERGY_FILTERING_CTL 1578 * 12 - DOITM 1579 * 18 - FB_CLEAR_CTRL 1580 * 21 - XAPIC_DISABLE_STATUS 1581 * 23 - OVERCLOCKING_STATUS 1582 */ 1583 1584 #define KVM_SUPPORTED_ARCH_CAP \ 1585 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1586 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1587 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1588 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1589 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO) 1590 1591 static u64 kvm_get_arch_capabilities(void) 1592 { 1593 u64 data = 0; 1594 1595 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 1596 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1597 data &= KVM_SUPPORTED_ARCH_CAP; 1598 } 1599 1600 /* 1601 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1602 * the nested hypervisor runs with NX huge pages. If it is not, 1603 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1604 * L1 guests, so it need not worry about its own (L2) guests. 1605 */ 1606 data |= ARCH_CAP_PSCHANGE_MC_NO; 1607 1608 /* 1609 * If we're doing cache flushes (either "always" or "cond") 1610 * we will do one whenever the guest does a vmlaunch/vmresume. 1611 * If an outer hypervisor is doing the cache flush for us 1612 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1613 * capability to the guest too, and if EPT is disabled we're not 1614 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1615 * require a nested hypervisor to do a flush of its own. 1616 */ 1617 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1618 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1619 1620 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1621 data |= ARCH_CAP_RDCL_NO; 1622 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1623 data |= ARCH_CAP_SSB_NO; 1624 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1625 data |= ARCH_CAP_MDS_NO; 1626 1627 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1628 /* 1629 * If RTM=0 because the kernel has disabled TSX, the host might 1630 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1631 * and therefore knows that there cannot be TAA) but keep 1632 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1633 * and we want to allow migrating those guests to tsx=off hosts. 1634 */ 1635 data &= ~ARCH_CAP_TAA_NO; 1636 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1637 data |= ARCH_CAP_TAA_NO; 1638 } else { 1639 /* 1640 * Nothing to do here; we emulate TSX_CTRL if present on the 1641 * host so the guest can choose between disabling TSX or 1642 * using VERW to clear CPU buffers. 1643 */ 1644 } 1645 1646 return data; 1647 } 1648 1649 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1650 { 1651 switch (msr->index) { 1652 case MSR_IA32_ARCH_CAPABILITIES: 1653 msr->data = kvm_get_arch_capabilities(); 1654 break; 1655 case MSR_IA32_PERF_CAPABILITIES: 1656 msr->data = kvm_caps.supported_perf_cap; 1657 break; 1658 case MSR_IA32_UCODE_REV: 1659 rdmsrl_safe(msr->index, &msr->data); 1660 break; 1661 default: 1662 return static_call(kvm_x86_get_msr_feature)(msr); 1663 } 1664 return 0; 1665 } 1666 1667 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1668 { 1669 struct kvm_msr_entry msr; 1670 int r; 1671 1672 msr.index = index; 1673 r = kvm_get_msr_feature(&msr); 1674 1675 if (r == KVM_MSR_RET_INVALID) { 1676 /* Unconditionally clear the output for simplicity */ 1677 *data = 0; 1678 if (kvm_msr_ignored_check(index, 0, false)) 1679 r = 0; 1680 } 1681 1682 if (r) 1683 return r; 1684 1685 *data = msr.data; 1686 1687 return 0; 1688 } 1689 1690 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1691 { 1692 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1693 return false; 1694 1695 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1696 return false; 1697 1698 if (efer & (EFER_LME | EFER_LMA) && 1699 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1700 return false; 1701 1702 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1703 return false; 1704 1705 return true; 1706 1707 } 1708 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1709 { 1710 if (efer & efer_reserved_bits) 1711 return false; 1712 1713 return __kvm_valid_efer(vcpu, efer); 1714 } 1715 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1716 1717 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1718 { 1719 u64 old_efer = vcpu->arch.efer; 1720 u64 efer = msr_info->data; 1721 int r; 1722 1723 if (efer & efer_reserved_bits) 1724 return 1; 1725 1726 if (!msr_info->host_initiated) { 1727 if (!__kvm_valid_efer(vcpu, efer)) 1728 return 1; 1729 1730 if (is_paging(vcpu) && 1731 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1732 return 1; 1733 } 1734 1735 efer &= ~EFER_LMA; 1736 efer |= vcpu->arch.efer & EFER_LMA; 1737 1738 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1739 if (r) { 1740 WARN_ON(r > 0); 1741 return r; 1742 } 1743 1744 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1745 kvm_mmu_reset_context(vcpu); 1746 1747 return 0; 1748 } 1749 1750 void kvm_enable_efer_bits(u64 mask) 1751 { 1752 efer_reserved_bits &= ~mask; 1753 } 1754 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1755 1756 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1757 { 1758 struct kvm_x86_msr_filter *msr_filter; 1759 struct msr_bitmap_range *ranges; 1760 struct kvm *kvm = vcpu->kvm; 1761 bool allowed; 1762 int idx; 1763 u32 i; 1764 1765 /* x2APIC MSRs do not support filtering. */ 1766 if (index >= 0x800 && index <= 0x8ff) 1767 return true; 1768 1769 idx = srcu_read_lock(&kvm->srcu); 1770 1771 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1772 if (!msr_filter) { 1773 allowed = true; 1774 goto out; 1775 } 1776 1777 allowed = msr_filter->default_allow; 1778 ranges = msr_filter->ranges; 1779 1780 for (i = 0; i < msr_filter->count; i++) { 1781 u32 start = ranges[i].base; 1782 u32 end = start + ranges[i].nmsrs; 1783 u32 flags = ranges[i].flags; 1784 unsigned long *bitmap = ranges[i].bitmap; 1785 1786 if ((index >= start) && (index < end) && (flags & type)) { 1787 allowed = !!test_bit(index - start, bitmap); 1788 break; 1789 } 1790 } 1791 1792 out: 1793 srcu_read_unlock(&kvm->srcu, idx); 1794 1795 return allowed; 1796 } 1797 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1798 1799 /* 1800 * Write @data into the MSR specified by @index. Select MSR specific fault 1801 * checks are bypassed if @host_initiated is %true. 1802 * Returns 0 on success, non-0 otherwise. 1803 * Assumes vcpu_load() was already called. 1804 */ 1805 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1806 bool host_initiated) 1807 { 1808 struct msr_data msr; 1809 1810 switch (index) { 1811 case MSR_FS_BASE: 1812 case MSR_GS_BASE: 1813 case MSR_KERNEL_GS_BASE: 1814 case MSR_CSTAR: 1815 case MSR_LSTAR: 1816 if (is_noncanonical_address(data, vcpu)) 1817 return 1; 1818 break; 1819 case MSR_IA32_SYSENTER_EIP: 1820 case MSR_IA32_SYSENTER_ESP: 1821 /* 1822 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1823 * non-canonical address is written on Intel but not on 1824 * AMD (which ignores the top 32-bits, because it does 1825 * not implement 64-bit SYSENTER). 1826 * 1827 * 64-bit code should hence be able to write a non-canonical 1828 * value on AMD. Making the address canonical ensures that 1829 * vmentry does not fail on Intel after writing a non-canonical 1830 * value, and that something deterministic happens if the guest 1831 * invokes 64-bit SYSENTER. 1832 */ 1833 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1834 break; 1835 case MSR_TSC_AUX: 1836 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1837 return 1; 1838 1839 if (!host_initiated && 1840 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1841 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1842 return 1; 1843 1844 /* 1845 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1846 * incomplete and conflicting architectural behavior. Current 1847 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1848 * reserved and always read as zeros. Enforce Intel's reserved 1849 * bits check if and only if the guest CPU is Intel, and clear 1850 * the bits in all other cases. This ensures cross-vendor 1851 * migration will provide consistent behavior for the guest. 1852 */ 1853 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) 1854 return 1; 1855 1856 data = (u32)data; 1857 break; 1858 } 1859 1860 msr.data = data; 1861 msr.index = index; 1862 msr.host_initiated = host_initiated; 1863 1864 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1865 } 1866 1867 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1868 u32 index, u64 data, bool host_initiated) 1869 { 1870 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1871 1872 if (ret == KVM_MSR_RET_INVALID) 1873 if (kvm_msr_ignored_check(index, data, true)) 1874 ret = 0; 1875 1876 return ret; 1877 } 1878 1879 /* 1880 * Read the MSR specified by @index into @data. Select MSR specific fault 1881 * checks are bypassed if @host_initiated is %true. 1882 * Returns 0 on success, non-0 otherwise. 1883 * Assumes vcpu_load() was already called. 1884 */ 1885 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1886 bool host_initiated) 1887 { 1888 struct msr_data msr; 1889 int ret; 1890 1891 switch (index) { 1892 case MSR_TSC_AUX: 1893 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1894 return 1; 1895 1896 if (!host_initiated && 1897 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1898 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1899 return 1; 1900 break; 1901 } 1902 1903 msr.index = index; 1904 msr.host_initiated = host_initiated; 1905 1906 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1907 if (!ret) 1908 *data = msr.data; 1909 return ret; 1910 } 1911 1912 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1913 u32 index, u64 *data, bool host_initiated) 1914 { 1915 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1916 1917 if (ret == KVM_MSR_RET_INVALID) { 1918 /* Unconditionally clear *data for simplicity */ 1919 *data = 0; 1920 if (kvm_msr_ignored_check(index, 0, false)) 1921 ret = 0; 1922 } 1923 1924 return ret; 1925 } 1926 1927 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1928 { 1929 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1930 return KVM_MSR_RET_FILTERED; 1931 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1932 } 1933 1934 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1935 { 1936 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1937 return KVM_MSR_RET_FILTERED; 1938 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1939 } 1940 1941 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1942 { 1943 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1944 } 1945 EXPORT_SYMBOL_GPL(kvm_get_msr); 1946 1947 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1948 { 1949 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1950 } 1951 EXPORT_SYMBOL_GPL(kvm_set_msr); 1952 1953 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1954 { 1955 if (!vcpu->run->msr.error) { 1956 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1957 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1958 } 1959 } 1960 1961 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 1962 { 1963 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 1964 } 1965 1966 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 1967 { 1968 complete_userspace_rdmsr(vcpu); 1969 return complete_emulated_msr_access(vcpu); 1970 } 1971 1972 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 1973 { 1974 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 1975 } 1976 1977 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 1978 { 1979 complete_userspace_rdmsr(vcpu); 1980 return complete_fast_msr_access(vcpu); 1981 } 1982 1983 static u64 kvm_msr_reason(int r) 1984 { 1985 switch (r) { 1986 case KVM_MSR_RET_INVALID: 1987 return KVM_MSR_EXIT_REASON_UNKNOWN; 1988 case KVM_MSR_RET_FILTERED: 1989 return KVM_MSR_EXIT_REASON_FILTER; 1990 default: 1991 return KVM_MSR_EXIT_REASON_INVAL; 1992 } 1993 } 1994 1995 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 1996 u32 exit_reason, u64 data, 1997 int (*completion)(struct kvm_vcpu *vcpu), 1998 int r) 1999 { 2000 u64 msr_reason = kvm_msr_reason(r); 2001 2002 /* Check if the user wanted to know about this MSR fault */ 2003 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 2004 return 0; 2005 2006 vcpu->run->exit_reason = exit_reason; 2007 vcpu->run->msr.error = 0; 2008 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 2009 vcpu->run->msr.reason = msr_reason; 2010 vcpu->run->msr.index = index; 2011 vcpu->run->msr.data = data; 2012 vcpu->arch.complete_userspace_io = completion; 2013 2014 return 1; 2015 } 2016 2017 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 2018 { 2019 u32 ecx = kvm_rcx_read(vcpu); 2020 u64 data; 2021 int r; 2022 2023 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 2024 2025 if (!r) { 2026 trace_kvm_msr_read(ecx, data); 2027 2028 kvm_rax_write(vcpu, data & -1u); 2029 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2030 } else { 2031 /* MSR read failed? See if we should ask user space */ 2032 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2033 complete_fast_rdmsr, r)) 2034 return 0; 2035 trace_kvm_msr_read_ex(ecx); 2036 } 2037 2038 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2039 } 2040 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2041 2042 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2043 { 2044 u32 ecx = kvm_rcx_read(vcpu); 2045 u64 data = kvm_read_edx_eax(vcpu); 2046 int r; 2047 2048 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2049 2050 if (!r) { 2051 trace_kvm_msr_write(ecx, data); 2052 } else { 2053 /* MSR write failed? See if we should ask user space */ 2054 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2055 complete_fast_msr_access, r)) 2056 return 0; 2057 /* Signal all other negative errors to userspace */ 2058 if (r < 0) 2059 return r; 2060 trace_kvm_msr_write_ex(ecx, data); 2061 } 2062 2063 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2064 } 2065 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2066 2067 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2068 { 2069 return kvm_skip_emulated_instruction(vcpu); 2070 } 2071 2072 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2073 { 2074 /* Treat an INVD instruction as a NOP and just skip it. */ 2075 return kvm_emulate_as_nop(vcpu); 2076 } 2077 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2078 2079 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2080 { 2081 kvm_queue_exception(vcpu, UD_VECTOR); 2082 return 1; 2083 } 2084 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2085 2086 2087 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2088 { 2089 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) && 2090 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT)) 2091 return kvm_handle_invalid_op(vcpu); 2092 2093 pr_warn_once("kvm: %s instruction emulated as NOP!\n", insn); 2094 return kvm_emulate_as_nop(vcpu); 2095 } 2096 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2097 { 2098 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2099 } 2100 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2101 2102 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2103 { 2104 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2105 } 2106 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2107 2108 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2109 { 2110 xfer_to_guest_mode_prepare(); 2111 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2112 xfer_to_guest_mode_work_pending(); 2113 } 2114 2115 /* 2116 * The fast path for frequent and performance sensitive wrmsr emulation, 2117 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2118 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2119 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2120 * other cases which must be called after interrupts are enabled on the host. 2121 */ 2122 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2123 { 2124 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2125 return 1; 2126 2127 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2128 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2129 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2130 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2131 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2132 2133 return 1; 2134 } 2135 2136 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2137 { 2138 if (!kvm_can_use_hv_timer(vcpu)) 2139 return 1; 2140 2141 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2142 return 0; 2143 } 2144 2145 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2146 { 2147 u32 msr = kvm_rcx_read(vcpu); 2148 u64 data; 2149 fastpath_t ret = EXIT_FASTPATH_NONE; 2150 2151 switch (msr) { 2152 case APIC_BASE_MSR + (APIC_ICR >> 4): 2153 data = kvm_read_edx_eax(vcpu); 2154 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 2155 kvm_skip_emulated_instruction(vcpu); 2156 ret = EXIT_FASTPATH_EXIT_HANDLED; 2157 } 2158 break; 2159 case MSR_IA32_TSC_DEADLINE: 2160 data = kvm_read_edx_eax(vcpu); 2161 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 2162 kvm_skip_emulated_instruction(vcpu); 2163 ret = EXIT_FASTPATH_REENTER_GUEST; 2164 } 2165 break; 2166 default: 2167 break; 2168 } 2169 2170 if (ret != EXIT_FASTPATH_NONE) 2171 trace_kvm_msr_write(msr, data); 2172 2173 return ret; 2174 } 2175 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2176 2177 /* 2178 * Adapt set_msr() to msr_io()'s calling convention 2179 */ 2180 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2181 { 2182 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2183 } 2184 2185 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2186 { 2187 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2188 } 2189 2190 #ifdef CONFIG_X86_64 2191 struct pvclock_clock { 2192 int vclock_mode; 2193 u64 cycle_last; 2194 u64 mask; 2195 u32 mult; 2196 u32 shift; 2197 u64 base_cycles; 2198 u64 offset; 2199 }; 2200 2201 struct pvclock_gtod_data { 2202 seqcount_t seq; 2203 2204 struct pvclock_clock clock; /* extract of a clocksource struct */ 2205 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2206 2207 ktime_t offs_boot; 2208 u64 wall_time_sec; 2209 }; 2210 2211 static struct pvclock_gtod_data pvclock_gtod_data; 2212 2213 static void update_pvclock_gtod(struct timekeeper *tk) 2214 { 2215 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2216 2217 write_seqcount_begin(&vdata->seq); 2218 2219 /* copy pvclock gtod data */ 2220 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2221 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2222 vdata->clock.mask = tk->tkr_mono.mask; 2223 vdata->clock.mult = tk->tkr_mono.mult; 2224 vdata->clock.shift = tk->tkr_mono.shift; 2225 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2226 vdata->clock.offset = tk->tkr_mono.base; 2227 2228 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2229 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2230 vdata->raw_clock.mask = tk->tkr_raw.mask; 2231 vdata->raw_clock.mult = tk->tkr_raw.mult; 2232 vdata->raw_clock.shift = tk->tkr_raw.shift; 2233 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2234 vdata->raw_clock.offset = tk->tkr_raw.base; 2235 2236 vdata->wall_time_sec = tk->xtime_sec; 2237 2238 vdata->offs_boot = tk->offs_boot; 2239 2240 write_seqcount_end(&vdata->seq); 2241 } 2242 2243 static s64 get_kvmclock_base_ns(void) 2244 { 2245 /* Count up from boot time, but with the frequency of the raw clock. */ 2246 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2247 } 2248 #else 2249 static s64 get_kvmclock_base_ns(void) 2250 { 2251 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2252 return ktime_get_boottime_ns(); 2253 } 2254 #endif 2255 2256 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2257 { 2258 int version; 2259 int r; 2260 struct pvclock_wall_clock wc; 2261 u32 wc_sec_hi; 2262 u64 wall_nsec; 2263 2264 if (!wall_clock) 2265 return; 2266 2267 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2268 if (r) 2269 return; 2270 2271 if (version & 1) 2272 ++version; /* first time write, random junk */ 2273 2274 ++version; 2275 2276 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2277 return; 2278 2279 /* 2280 * The guest calculates current wall clock time by adding 2281 * system time (updated by kvm_guest_time_update below) to the 2282 * wall clock specified here. We do the reverse here. 2283 */ 2284 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 2285 2286 wc.nsec = do_div(wall_nsec, 1000000000); 2287 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2288 wc.version = version; 2289 2290 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2291 2292 if (sec_hi_ofs) { 2293 wc_sec_hi = wall_nsec >> 32; 2294 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2295 &wc_sec_hi, sizeof(wc_sec_hi)); 2296 } 2297 2298 version++; 2299 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2300 } 2301 2302 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2303 bool old_msr, bool host_initiated) 2304 { 2305 struct kvm_arch *ka = &vcpu->kvm->arch; 2306 2307 if (vcpu->vcpu_id == 0 && !host_initiated) { 2308 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2309 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2310 2311 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2312 } 2313 2314 vcpu->arch.time = system_time; 2315 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2316 2317 /* we verify if the enable bit is set... */ 2318 if (system_time & 1) 2319 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL, 2320 sizeof(struct pvclock_vcpu_time_info)); 2321 else 2322 kvm_gpc_deactivate(&vcpu->arch.pv_time); 2323 2324 return; 2325 } 2326 2327 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2328 { 2329 do_shl32_div32(dividend, divisor); 2330 return dividend; 2331 } 2332 2333 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2334 s8 *pshift, u32 *pmultiplier) 2335 { 2336 uint64_t scaled64; 2337 int32_t shift = 0; 2338 uint64_t tps64; 2339 uint32_t tps32; 2340 2341 tps64 = base_hz; 2342 scaled64 = scaled_hz; 2343 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2344 tps64 >>= 1; 2345 shift--; 2346 } 2347 2348 tps32 = (uint32_t)tps64; 2349 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2350 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2351 scaled64 >>= 1; 2352 else 2353 tps32 <<= 1; 2354 shift++; 2355 } 2356 2357 *pshift = shift; 2358 *pmultiplier = div_frac(scaled64, tps32); 2359 } 2360 2361 #ifdef CONFIG_X86_64 2362 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2363 #endif 2364 2365 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2366 static unsigned long max_tsc_khz; 2367 2368 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2369 { 2370 u64 v = (u64)khz * (1000000 + ppm); 2371 do_div(v, 1000000); 2372 return v; 2373 } 2374 2375 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2376 2377 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2378 { 2379 u64 ratio; 2380 2381 /* Guest TSC same frequency as host TSC? */ 2382 if (!scale) { 2383 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2384 return 0; 2385 } 2386 2387 /* TSC scaling supported? */ 2388 if (!kvm_caps.has_tsc_control) { 2389 if (user_tsc_khz > tsc_khz) { 2390 vcpu->arch.tsc_catchup = 1; 2391 vcpu->arch.tsc_always_catchup = 1; 2392 return 0; 2393 } else { 2394 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2395 return -1; 2396 } 2397 } 2398 2399 /* TSC scaling required - calculate ratio */ 2400 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2401 user_tsc_khz, tsc_khz); 2402 2403 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2404 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2405 user_tsc_khz); 2406 return -1; 2407 } 2408 2409 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2410 return 0; 2411 } 2412 2413 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2414 { 2415 u32 thresh_lo, thresh_hi; 2416 int use_scaling = 0; 2417 2418 /* tsc_khz can be zero if TSC calibration fails */ 2419 if (user_tsc_khz == 0) { 2420 /* set tsc_scaling_ratio to a safe value */ 2421 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2422 return -1; 2423 } 2424 2425 /* Compute a scale to convert nanoseconds in TSC cycles */ 2426 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2427 &vcpu->arch.virtual_tsc_shift, 2428 &vcpu->arch.virtual_tsc_mult); 2429 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2430 2431 /* 2432 * Compute the variation in TSC rate which is acceptable 2433 * within the range of tolerance and decide if the 2434 * rate being applied is within that bounds of the hardware 2435 * rate. If so, no scaling or compensation need be done. 2436 */ 2437 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2438 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2439 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2440 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); 2441 use_scaling = 1; 2442 } 2443 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2444 } 2445 2446 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2447 { 2448 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2449 vcpu->arch.virtual_tsc_mult, 2450 vcpu->arch.virtual_tsc_shift); 2451 tsc += vcpu->arch.this_tsc_write; 2452 return tsc; 2453 } 2454 2455 #ifdef CONFIG_X86_64 2456 static inline int gtod_is_based_on_tsc(int mode) 2457 { 2458 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2459 } 2460 #endif 2461 2462 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 2463 { 2464 #ifdef CONFIG_X86_64 2465 bool vcpus_matched; 2466 struct kvm_arch *ka = &vcpu->kvm->arch; 2467 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2468 2469 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2470 atomic_read(&vcpu->kvm->online_vcpus)); 2471 2472 /* 2473 * Once the masterclock is enabled, always perform request in 2474 * order to update it. 2475 * 2476 * In order to enable masterclock, the host clocksource must be TSC 2477 * and the vcpus need to have matched TSCs. When that happens, 2478 * perform request to enable masterclock. 2479 */ 2480 if (ka->use_master_clock || 2481 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 2482 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2483 2484 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2485 atomic_read(&vcpu->kvm->online_vcpus), 2486 ka->use_master_clock, gtod->clock.vclock_mode); 2487 #endif 2488 } 2489 2490 /* 2491 * Multiply tsc by a fixed point number represented by ratio. 2492 * 2493 * The most significant 64-N bits (mult) of ratio represent the 2494 * integral part of the fixed point number; the remaining N bits 2495 * (frac) represent the fractional part, ie. ratio represents a fixed 2496 * point number (mult + frac * 2^(-N)). 2497 * 2498 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2499 */ 2500 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2501 { 2502 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2503 } 2504 2505 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2506 { 2507 u64 _tsc = tsc; 2508 2509 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2510 _tsc = __scale_tsc(ratio, tsc); 2511 2512 return _tsc; 2513 } 2514 2515 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2516 { 2517 u64 tsc; 2518 2519 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2520 2521 return target_tsc - tsc; 2522 } 2523 2524 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2525 { 2526 return vcpu->arch.l1_tsc_offset + 2527 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2528 } 2529 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2530 2531 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2532 { 2533 u64 nested_offset; 2534 2535 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2536 nested_offset = l1_offset; 2537 else 2538 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2539 kvm_caps.tsc_scaling_ratio_frac_bits); 2540 2541 nested_offset += l2_offset; 2542 return nested_offset; 2543 } 2544 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2545 2546 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2547 { 2548 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2549 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2550 kvm_caps.tsc_scaling_ratio_frac_bits); 2551 2552 return l1_multiplier; 2553 } 2554 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2555 2556 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2557 { 2558 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2559 vcpu->arch.l1_tsc_offset, 2560 l1_offset); 2561 2562 vcpu->arch.l1_tsc_offset = l1_offset; 2563 2564 /* 2565 * If we are here because L1 chose not to trap WRMSR to TSC then 2566 * according to the spec this should set L1's TSC (as opposed to 2567 * setting L1's offset for L2). 2568 */ 2569 if (is_guest_mode(vcpu)) 2570 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2571 l1_offset, 2572 static_call(kvm_x86_get_l2_tsc_offset)(vcpu), 2573 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2574 else 2575 vcpu->arch.tsc_offset = l1_offset; 2576 2577 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset); 2578 } 2579 2580 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2581 { 2582 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2583 2584 /* Userspace is changing the multiplier while L2 is active */ 2585 if (is_guest_mode(vcpu)) 2586 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2587 l1_multiplier, 2588 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2589 else 2590 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2591 2592 if (kvm_caps.has_tsc_control) 2593 static_call(kvm_x86_write_tsc_multiplier)( 2594 vcpu, vcpu->arch.tsc_scaling_ratio); 2595 } 2596 2597 static inline bool kvm_check_tsc_unstable(void) 2598 { 2599 #ifdef CONFIG_X86_64 2600 /* 2601 * TSC is marked unstable when we're running on Hyper-V, 2602 * 'TSC page' clocksource is good. 2603 */ 2604 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2605 return false; 2606 #endif 2607 return check_tsc_unstable(); 2608 } 2609 2610 /* 2611 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2612 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2613 * participates in. 2614 */ 2615 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2616 u64 ns, bool matched) 2617 { 2618 struct kvm *kvm = vcpu->kvm; 2619 2620 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2621 2622 /* 2623 * We also track th most recent recorded KHZ, write and time to 2624 * allow the matching interval to be extended at each write. 2625 */ 2626 kvm->arch.last_tsc_nsec = ns; 2627 kvm->arch.last_tsc_write = tsc; 2628 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2629 kvm->arch.last_tsc_offset = offset; 2630 2631 vcpu->arch.last_guest_tsc = tsc; 2632 2633 kvm_vcpu_write_tsc_offset(vcpu, offset); 2634 2635 if (!matched) { 2636 /* 2637 * We split periods of matched TSC writes into generations. 2638 * For each generation, we track the original measured 2639 * nanosecond time, offset, and write, so if TSCs are in 2640 * sync, we can match exact offset, and if not, we can match 2641 * exact software computation in compute_guest_tsc() 2642 * 2643 * These values are tracked in kvm->arch.cur_xxx variables. 2644 */ 2645 kvm->arch.cur_tsc_generation++; 2646 kvm->arch.cur_tsc_nsec = ns; 2647 kvm->arch.cur_tsc_write = tsc; 2648 kvm->arch.cur_tsc_offset = offset; 2649 kvm->arch.nr_vcpus_matched_tsc = 0; 2650 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2651 kvm->arch.nr_vcpus_matched_tsc++; 2652 } 2653 2654 /* Keep track of which generation this VCPU has synchronized to */ 2655 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2656 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2657 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2658 2659 kvm_track_tsc_matching(vcpu); 2660 } 2661 2662 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) 2663 { 2664 struct kvm *kvm = vcpu->kvm; 2665 u64 offset, ns, elapsed; 2666 unsigned long flags; 2667 bool matched = false; 2668 bool synchronizing = false; 2669 2670 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2671 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2672 ns = get_kvmclock_base_ns(); 2673 elapsed = ns - kvm->arch.last_tsc_nsec; 2674 2675 if (vcpu->arch.virtual_tsc_khz) { 2676 if (data == 0) { 2677 /* 2678 * detection of vcpu initialization -- need to sync 2679 * with other vCPUs. This particularly helps to keep 2680 * kvm_clock stable after CPU hotplug 2681 */ 2682 synchronizing = true; 2683 } else { 2684 u64 tsc_exp = kvm->arch.last_tsc_write + 2685 nsec_to_cycles(vcpu, elapsed); 2686 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2687 /* 2688 * Special case: TSC write with a small delta (1 second) 2689 * of virtual cycle time against real time is 2690 * interpreted as an attempt to synchronize the CPU. 2691 */ 2692 synchronizing = data < tsc_exp + tsc_hz && 2693 data + tsc_hz > tsc_exp; 2694 } 2695 } 2696 2697 /* 2698 * For a reliable TSC, we can match TSC offsets, and for an unstable 2699 * TSC, we add elapsed time in this computation. We could let the 2700 * compensation code attempt to catch up if we fall behind, but 2701 * it's better to try to match offsets from the beginning. 2702 */ 2703 if (synchronizing && 2704 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2705 if (!kvm_check_tsc_unstable()) { 2706 offset = kvm->arch.cur_tsc_offset; 2707 } else { 2708 u64 delta = nsec_to_cycles(vcpu, elapsed); 2709 data += delta; 2710 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2711 } 2712 matched = true; 2713 } 2714 2715 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2716 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2717 } 2718 2719 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2720 s64 adjustment) 2721 { 2722 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2723 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2724 } 2725 2726 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2727 { 2728 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2729 WARN_ON(adjustment < 0); 2730 adjustment = kvm_scale_tsc((u64) adjustment, 2731 vcpu->arch.l1_tsc_scaling_ratio); 2732 adjust_tsc_offset_guest(vcpu, adjustment); 2733 } 2734 2735 #ifdef CONFIG_X86_64 2736 2737 static u64 read_tsc(void) 2738 { 2739 u64 ret = (u64)rdtsc_ordered(); 2740 u64 last = pvclock_gtod_data.clock.cycle_last; 2741 2742 if (likely(ret >= last)) 2743 return ret; 2744 2745 /* 2746 * GCC likes to generate cmov here, but this branch is extremely 2747 * predictable (it's just a function of time and the likely is 2748 * very likely) and there's a data dependence, so force GCC 2749 * to generate a branch instead. I don't barrier() because 2750 * we don't actually need a barrier, and if this function 2751 * ever gets inlined it will generate worse code. 2752 */ 2753 asm volatile (""); 2754 return last; 2755 } 2756 2757 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2758 int *mode) 2759 { 2760 long v; 2761 u64 tsc_pg_val; 2762 2763 switch (clock->vclock_mode) { 2764 case VDSO_CLOCKMODE_HVCLOCK: 2765 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 2766 tsc_timestamp); 2767 if (tsc_pg_val != U64_MAX) { 2768 /* TSC page valid */ 2769 *mode = VDSO_CLOCKMODE_HVCLOCK; 2770 v = (tsc_pg_val - clock->cycle_last) & 2771 clock->mask; 2772 } else { 2773 /* TSC page invalid */ 2774 *mode = VDSO_CLOCKMODE_NONE; 2775 } 2776 break; 2777 case VDSO_CLOCKMODE_TSC: 2778 *mode = VDSO_CLOCKMODE_TSC; 2779 *tsc_timestamp = read_tsc(); 2780 v = (*tsc_timestamp - clock->cycle_last) & 2781 clock->mask; 2782 break; 2783 default: 2784 *mode = VDSO_CLOCKMODE_NONE; 2785 } 2786 2787 if (*mode == VDSO_CLOCKMODE_NONE) 2788 *tsc_timestamp = v = 0; 2789 2790 return v * clock->mult; 2791 } 2792 2793 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2794 { 2795 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2796 unsigned long seq; 2797 int mode; 2798 u64 ns; 2799 2800 do { 2801 seq = read_seqcount_begin(>od->seq); 2802 ns = gtod->raw_clock.base_cycles; 2803 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2804 ns >>= gtod->raw_clock.shift; 2805 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2806 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2807 *t = ns; 2808 2809 return mode; 2810 } 2811 2812 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2813 { 2814 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2815 unsigned long seq; 2816 int mode; 2817 u64 ns; 2818 2819 do { 2820 seq = read_seqcount_begin(>od->seq); 2821 ts->tv_sec = gtod->wall_time_sec; 2822 ns = gtod->clock.base_cycles; 2823 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2824 ns >>= gtod->clock.shift; 2825 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2826 2827 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2828 ts->tv_nsec = ns; 2829 2830 return mode; 2831 } 2832 2833 /* returns true if host is using TSC based clocksource */ 2834 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2835 { 2836 /* checked again under seqlock below */ 2837 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2838 return false; 2839 2840 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2841 tsc_timestamp)); 2842 } 2843 2844 /* returns true if host is using TSC based clocksource */ 2845 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2846 u64 *tsc_timestamp) 2847 { 2848 /* checked again under seqlock below */ 2849 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2850 return false; 2851 2852 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2853 } 2854 #endif 2855 2856 /* 2857 * 2858 * Assuming a stable TSC across physical CPUS, and a stable TSC 2859 * across virtual CPUs, the following condition is possible. 2860 * Each numbered line represents an event visible to both 2861 * CPUs at the next numbered event. 2862 * 2863 * "timespecX" represents host monotonic time. "tscX" represents 2864 * RDTSC value. 2865 * 2866 * VCPU0 on CPU0 | VCPU1 on CPU1 2867 * 2868 * 1. read timespec0,tsc0 2869 * 2. | timespec1 = timespec0 + N 2870 * | tsc1 = tsc0 + M 2871 * 3. transition to guest | transition to guest 2872 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2873 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2874 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2875 * 2876 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2877 * 2878 * - ret0 < ret1 2879 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2880 * ... 2881 * - 0 < N - M => M < N 2882 * 2883 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2884 * always the case (the difference between two distinct xtime instances 2885 * might be smaller then the difference between corresponding TSC reads, 2886 * when updating guest vcpus pvclock areas). 2887 * 2888 * To avoid that problem, do not allow visibility of distinct 2889 * system_timestamp/tsc_timestamp values simultaneously: use a master 2890 * copy of host monotonic time values. Update that master copy 2891 * in lockstep. 2892 * 2893 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2894 * 2895 */ 2896 2897 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2898 { 2899 #ifdef CONFIG_X86_64 2900 struct kvm_arch *ka = &kvm->arch; 2901 int vclock_mode; 2902 bool host_tsc_clocksource, vcpus_matched; 2903 2904 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2905 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2906 atomic_read(&kvm->online_vcpus)); 2907 2908 /* 2909 * If the host uses TSC clock, then passthrough TSC as stable 2910 * to the guest. 2911 */ 2912 host_tsc_clocksource = kvm_get_time_and_clockread( 2913 &ka->master_kernel_ns, 2914 &ka->master_cycle_now); 2915 2916 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2917 && !ka->backwards_tsc_observed 2918 && !ka->boot_vcpu_runs_old_kvmclock; 2919 2920 if (ka->use_master_clock) 2921 atomic_set(&kvm_guest_has_master_clock, 1); 2922 2923 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2924 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2925 vcpus_matched); 2926 #endif 2927 } 2928 2929 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2930 { 2931 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2932 } 2933 2934 static void __kvm_start_pvclock_update(struct kvm *kvm) 2935 { 2936 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 2937 write_seqcount_begin(&kvm->arch.pvclock_sc); 2938 } 2939 2940 static void kvm_start_pvclock_update(struct kvm *kvm) 2941 { 2942 kvm_make_mclock_inprogress_request(kvm); 2943 2944 /* no guest entries from this point */ 2945 __kvm_start_pvclock_update(kvm); 2946 } 2947 2948 static void kvm_end_pvclock_update(struct kvm *kvm) 2949 { 2950 struct kvm_arch *ka = &kvm->arch; 2951 struct kvm_vcpu *vcpu; 2952 unsigned long i; 2953 2954 write_seqcount_end(&ka->pvclock_sc); 2955 raw_spin_unlock_irq(&ka->tsc_write_lock); 2956 kvm_for_each_vcpu(i, vcpu, kvm) 2957 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2958 2959 /* guest entries allowed */ 2960 kvm_for_each_vcpu(i, vcpu, kvm) 2961 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 2962 } 2963 2964 static void kvm_update_masterclock(struct kvm *kvm) 2965 { 2966 kvm_hv_request_tsc_page_update(kvm); 2967 kvm_start_pvclock_update(kvm); 2968 pvclock_update_vm_gtod_copy(kvm); 2969 kvm_end_pvclock_update(kvm); 2970 } 2971 2972 /* 2973 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's 2974 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz 2975 * can change during boot even if the TSC is constant, as it's possible for KVM 2976 * to be loaded before TSC calibration completes. Ideally, KVM would get a 2977 * notification when calibration completes, but practically speaking calibration 2978 * will complete before userspace is alive enough to create VMs. 2979 */ 2980 static unsigned long get_cpu_tsc_khz(void) 2981 { 2982 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC)) 2983 return tsc_khz; 2984 else 2985 return __this_cpu_read(cpu_tsc_khz); 2986 } 2987 2988 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 2989 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 2990 { 2991 struct kvm_arch *ka = &kvm->arch; 2992 struct pvclock_vcpu_time_info hv_clock; 2993 2994 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 2995 get_cpu(); 2996 2997 data->flags = 0; 2998 if (ka->use_master_clock && 2999 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) { 3000 #ifdef CONFIG_X86_64 3001 struct timespec64 ts; 3002 3003 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 3004 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 3005 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 3006 } else 3007 #endif 3008 data->host_tsc = rdtsc(); 3009 3010 data->flags |= KVM_CLOCK_TSC_STABLE; 3011 hv_clock.tsc_timestamp = ka->master_cycle_now; 3012 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3013 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL, 3014 &hv_clock.tsc_shift, 3015 &hv_clock.tsc_to_system_mul); 3016 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 3017 } else { 3018 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 3019 } 3020 3021 put_cpu(); 3022 } 3023 3024 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3025 { 3026 struct kvm_arch *ka = &kvm->arch; 3027 unsigned seq; 3028 3029 do { 3030 seq = read_seqcount_begin(&ka->pvclock_sc); 3031 __get_kvmclock(kvm, data); 3032 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3033 } 3034 3035 u64 get_kvmclock_ns(struct kvm *kvm) 3036 { 3037 struct kvm_clock_data data; 3038 3039 get_kvmclock(kvm, &data); 3040 return data.clock; 3041 } 3042 3043 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, 3044 struct gfn_to_pfn_cache *gpc, 3045 unsigned int offset) 3046 { 3047 struct kvm_vcpu_arch *vcpu = &v->arch; 3048 struct pvclock_vcpu_time_info *guest_hv_clock; 3049 unsigned long flags; 3050 3051 read_lock_irqsave(&gpc->lock, flags); 3052 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) { 3053 read_unlock_irqrestore(&gpc->lock, flags); 3054 3055 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock))) 3056 return; 3057 3058 read_lock_irqsave(&gpc->lock, flags); 3059 } 3060 3061 guest_hv_clock = (void *)(gpc->khva + offset); 3062 3063 /* 3064 * This VCPU is paused, but it's legal for a guest to read another 3065 * VCPU's kvmclock, so we really have to follow the specification where 3066 * it says that version is odd if data is being modified, and even after 3067 * it is consistent. 3068 */ 3069 3070 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; 3071 smp_wmb(); 3072 3073 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3074 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3075 3076 if (vcpu->pvclock_set_guest_stopped_request) { 3077 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3078 vcpu->pvclock_set_guest_stopped_request = false; 3079 } 3080 3081 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); 3082 smp_wmb(); 3083 3084 guest_hv_clock->version = ++vcpu->hv_clock.version; 3085 3086 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT); 3087 read_unlock_irqrestore(&gpc->lock, flags); 3088 3089 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3090 } 3091 3092 static int kvm_guest_time_update(struct kvm_vcpu *v) 3093 { 3094 unsigned long flags, tgt_tsc_khz; 3095 unsigned seq; 3096 struct kvm_vcpu_arch *vcpu = &v->arch; 3097 struct kvm_arch *ka = &v->kvm->arch; 3098 s64 kernel_ns; 3099 u64 tsc_timestamp, host_tsc; 3100 u8 pvclock_flags; 3101 bool use_master_clock; 3102 3103 kernel_ns = 0; 3104 host_tsc = 0; 3105 3106 /* 3107 * If the host uses TSC clock, then passthrough TSC as stable 3108 * to the guest. 3109 */ 3110 do { 3111 seq = read_seqcount_begin(&ka->pvclock_sc); 3112 use_master_clock = ka->use_master_clock; 3113 if (use_master_clock) { 3114 host_tsc = ka->master_cycle_now; 3115 kernel_ns = ka->master_kernel_ns; 3116 } 3117 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3118 3119 /* Keep irq disabled to prevent changes to the clock */ 3120 local_irq_save(flags); 3121 tgt_tsc_khz = get_cpu_tsc_khz(); 3122 if (unlikely(tgt_tsc_khz == 0)) { 3123 local_irq_restore(flags); 3124 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3125 return 1; 3126 } 3127 if (!use_master_clock) { 3128 host_tsc = rdtsc(); 3129 kernel_ns = get_kvmclock_base_ns(); 3130 } 3131 3132 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3133 3134 /* 3135 * We may have to catch up the TSC to match elapsed wall clock 3136 * time for two reasons, even if kvmclock is used. 3137 * 1) CPU could have been running below the maximum TSC rate 3138 * 2) Broken TSC compensation resets the base at each VCPU 3139 * entry to avoid unknown leaps of TSC even when running 3140 * again on the same CPU. This may cause apparent elapsed 3141 * time to disappear, and the guest to stand still or run 3142 * very slowly. 3143 */ 3144 if (vcpu->tsc_catchup) { 3145 u64 tsc = compute_guest_tsc(v, kernel_ns); 3146 if (tsc > tsc_timestamp) { 3147 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3148 tsc_timestamp = tsc; 3149 } 3150 } 3151 3152 local_irq_restore(flags); 3153 3154 /* With all the info we got, fill in the values */ 3155 3156 if (kvm_caps.has_tsc_control) 3157 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3158 v->arch.l1_tsc_scaling_ratio); 3159 3160 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3161 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3162 &vcpu->hv_clock.tsc_shift, 3163 &vcpu->hv_clock.tsc_to_system_mul); 3164 vcpu->hw_tsc_khz = tgt_tsc_khz; 3165 } 3166 3167 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3168 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3169 vcpu->last_guest_tsc = tsc_timestamp; 3170 3171 /* If the host uses TSC clocksource, then it is stable */ 3172 pvclock_flags = 0; 3173 if (use_master_clock) 3174 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3175 3176 vcpu->hv_clock.flags = pvclock_flags; 3177 3178 if (vcpu->pv_time.active) 3179 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0); 3180 if (vcpu->xen.vcpu_info_cache.active) 3181 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, 3182 offsetof(struct compat_vcpu_info, time)); 3183 if (vcpu->xen.vcpu_time_info_cache.active) 3184 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0); 3185 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3186 return 0; 3187 } 3188 3189 /* 3190 * kvmclock updates which are isolated to a given vcpu, such as 3191 * vcpu->cpu migration, should not allow system_timestamp from 3192 * the rest of the vcpus to remain static. Otherwise ntp frequency 3193 * correction applies to one vcpu's system_timestamp but not 3194 * the others. 3195 * 3196 * So in those cases, request a kvmclock update for all vcpus. 3197 * We need to rate-limit these requests though, as they can 3198 * considerably slow guests that have a large number of vcpus. 3199 * The time for a remote vcpu to update its kvmclock is bound 3200 * by the delay we use to rate-limit the updates. 3201 */ 3202 3203 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3204 3205 static void kvmclock_update_fn(struct work_struct *work) 3206 { 3207 unsigned long i; 3208 struct delayed_work *dwork = to_delayed_work(work); 3209 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3210 kvmclock_update_work); 3211 struct kvm *kvm = container_of(ka, struct kvm, arch); 3212 struct kvm_vcpu *vcpu; 3213 3214 kvm_for_each_vcpu(i, vcpu, kvm) { 3215 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3216 kvm_vcpu_kick(vcpu); 3217 } 3218 } 3219 3220 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3221 { 3222 struct kvm *kvm = v->kvm; 3223 3224 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3225 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3226 KVMCLOCK_UPDATE_DELAY); 3227 } 3228 3229 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3230 3231 static void kvmclock_sync_fn(struct work_struct *work) 3232 { 3233 struct delayed_work *dwork = to_delayed_work(work); 3234 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3235 kvmclock_sync_work); 3236 struct kvm *kvm = container_of(ka, struct kvm, arch); 3237 3238 if (!kvmclock_periodic_sync) 3239 return; 3240 3241 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3242 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3243 KVMCLOCK_SYNC_PERIOD); 3244 } 3245 3246 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ 3247 static bool is_mci_control_msr(u32 msr) 3248 { 3249 return (msr & 3) == 0; 3250 } 3251 static bool is_mci_status_msr(u32 msr) 3252 { 3253 return (msr & 3) == 1; 3254 } 3255 3256 /* 3257 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3258 */ 3259 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3260 { 3261 /* McStatusWrEn enabled? */ 3262 if (guest_cpuid_is_amd_or_hygon(vcpu)) 3263 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3264 3265 return false; 3266 } 3267 3268 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3269 { 3270 u64 mcg_cap = vcpu->arch.mcg_cap; 3271 unsigned bank_num = mcg_cap & 0xff; 3272 u32 msr = msr_info->index; 3273 u64 data = msr_info->data; 3274 u32 offset, last_msr; 3275 3276 switch (msr) { 3277 case MSR_IA32_MCG_STATUS: 3278 vcpu->arch.mcg_status = data; 3279 break; 3280 case MSR_IA32_MCG_CTL: 3281 if (!(mcg_cap & MCG_CTL_P) && 3282 (data || !msr_info->host_initiated)) 3283 return 1; 3284 if (data != 0 && data != ~(u64)0) 3285 return 1; 3286 vcpu->arch.mcg_ctl = data; 3287 break; 3288 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3289 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3290 if (msr > last_msr) 3291 return 1; 3292 3293 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3294 return 1; 3295 /* An attempt to write a 1 to a reserved bit raises #GP */ 3296 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3297 return 1; 3298 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3299 last_msr + 1 - MSR_IA32_MC0_CTL2); 3300 vcpu->arch.mci_ctl2_banks[offset] = data; 3301 break; 3302 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3303 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3304 if (msr > last_msr) 3305 return 1; 3306 3307 /* 3308 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3309 * values are architecturally undefined. But, some Linux 3310 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3311 * issue on AMD K8s, allow bit 10 to be clear when setting all 3312 * other bits in order to avoid an uncaught #GP in the guest. 3313 * 3314 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3315 * single-bit ECC data errors. 3316 */ 3317 if (is_mci_control_msr(msr) && 3318 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3319 return 1; 3320 3321 /* 3322 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3323 * AMD-based CPUs allow non-zero values, but if and only if 3324 * HWCR[McStatusWrEn] is set. 3325 */ 3326 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3327 data != 0 && !can_set_mci_status(vcpu)) 3328 return 1; 3329 3330 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3331 last_msr + 1 - MSR_IA32_MC0_CTL); 3332 vcpu->arch.mce_banks[offset] = data; 3333 break; 3334 default: 3335 return 1; 3336 } 3337 return 0; 3338 } 3339 3340 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3341 { 3342 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3343 3344 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3345 } 3346 3347 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3348 { 3349 gpa_t gpa = data & ~0x3f; 3350 3351 /* Bits 4:5 are reserved, Should be zero */ 3352 if (data & 0x30) 3353 return 1; 3354 3355 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3356 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3357 return 1; 3358 3359 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3360 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3361 return 1; 3362 3363 if (!lapic_in_kernel(vcpu)) 3364 return data ? 1 : 0; 3365 3366 vcpu->arch.apf.msr_en_val = data; 3367 3368 if (!kvm_pv_async_pf_enabled(vcpu)) { 3369 kvm_clear_async_pf_completion_queue(vcpu); 3370 kvm_async_pf_hash_reset(vcpu); 3371 return 0; 3372 } 3373 3374 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3375 sizeof(u64))) 3376 return 1; 3377 3378 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3379 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3380 3381 kvm_async_pf_wakeup_all(vcpu); 3382 3383 return 0; 3384 } 3385 3386 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3387 { 3388 /* Bits 8-63 are reserved */ 3389 if (data >> 8) 3390 return 1; 3391 3392 if (!lapic_in_kernel(vcpu)) 3393 return 1; 3394 3395 vcpu->arch.apf.msr_int_val = data; 3396 3397 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3398 3399 return 0; 3400 } 3401 3402 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3403 { 3404 kvm_gpc_deactivate(&vcpu->arch.pv_time); 3405 vcpu->arch.time = 0; 3406 } 3407 3408 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3409 { 3410 ++vcpu->stat.tlb_flush; 3411 static_call(kvm_x86_flush_tlb_all)(vcpu); 3412 3413 /* Flushing all ASIDs flushes the current ASID... */ 3414 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3415 } 3416 3417 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3418 { 3419 ++vcpu->stat.tlb_flush; 3420 3421 if (!tdp_enabled) { 3422 /* 3423 * A TLB flush on behalf of the guest is equivalent to 3424 * INVPCID(all), toggling CR4.PGE, etc., which requires 3425 * a forced sync of the shadow page tables. Ensure all the 3426 * roots are synced and the guest TLB in hardware is clean. 3427 */ 3428 kvm_mmu_sync_roots(vcpu); 3429 kvm_mmu_sync_prev_roots(vcpu); 3430 } 3431 3432 static_call(kvm_x86_flush_tlb_guest)(vcpu); 3433 3434 /* 3435 * Flushing all "guest" TLB is always a superset of Hyper-V's fine 3436 * grained flushing. 3437 */ 3438 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3439 } 3440 3441 3442 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3443 { 3444 ++vcpu->stat.tlb_flush; 3445 static_call(kvm_x86_flush_tlb_current)(vcpu); 3446 } 3447 3448 /* 3449 * Service "local" TLB flush requests, which are specific to the current MMU 3450 * context. In addition to the generic event handling in vcpu_enter_guest(), 3451 * TLB flushes that are targeted at an MMU context also need to be serviced 3452 * prior before nested VM-Enter/VM-Exit. 3453 */ 3454 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3455 { 3456 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3457 kvm_vcpu_flush_tlb_current(vcpu); 3458 3459 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3460 kvm_vcpu_flush_tlb_guest(vcpu); 3461 } 3462 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3463 3464 static void record_steal_time(struct kvm_vcpu *vcpu) 3465 { 3466 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3467 struct kvm_steal_time __user *st; 3468 struct kvm_memslots *slots; 3469 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3470 u64 steal; 3471 u32 version; 3472 3473 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3474 kvm_xen_runstate_set_running(vcpu); 3475 return; 3476 } 3477 3478 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3479 return; 3480 3481 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3482 return; 3483 3484 slots = kvm_memslots(vcpu->kvm); 3485 3486 if (unlikely(slots->generation != ghc->generation || 3487 gpa != ghc->gpa || 3488 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3489 /* We rely on the fact that it fits in a single page. */ 3490 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3491 3492 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3493 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3494 return; 3495 } 3496 3497 st = (struct kvm_steal_time __user *)ghc->hva; 3498 /* 3499 * Doing a TLB flush here, on the guest's behalf, can avoid 3500 * expensive IPIs. 3501 */ 3502 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3503 u8 st_preempted = 0; 3504 int err = -EFAULT; 3505 3506 if (!user_access_begin(st, sizeof(*st))) 3507 return; 3508 3509 asm volatile("1: xchgb %0, %2\n" 3510 "xor %1, %1\n" 3511 "2:\n" 3512 _ASM_EXTABLE_UA(1b, 2b) 3513 : "+q" (st_preempted), 3514 "+&r" (err), 3515 "+m" (st->preempted)); 3516 if (err) 3517 goto out; 3518 3519 user_access_end(); 3520 3521 vcpu->arch.st.preempted = 0; 3522 3523 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3524 st_preempted & KVM_VCPU_FLUSH_TLB); 3525 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3526 kvm_vcpu_flush_tlb_guest(vcpu); 3527 3528 if (!user_access_begin(st, sizeof(*st))) 3529 goto dirty; 3530 } else { 3531 if (!user_access_begin(st, sizeof(*st))) 3532 return; 3533 3534 unsafe_put_user(0, &st->preempted, out); 3535 vcpu->arch.st.preempted = 0; 3536 } 3537 3538 unsafe_get_user(version, &st->version, out); 3539 if (version & 1) 3540 version += 1; /* first time write, random junk */ 3541 3542 version += 1; 3543 unsafe_put_user(version, &st->version, out); 3544 3545 smp_wmb(); 3546 3547 unsafe_get_user(steal, &st->steal, out); 3548 steal += current->sched_info.run_delay - 3549 vcpu->arch.st.last_steal; 3550 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3551 unsafe_put_user(steal, &st->steal, out); 3552 3553 version += 1; 3554 unsafe_put_user(version, &st->version, out); 3555 3556 out: 3557 user_access_end(); 3558 dirty: 3559 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3560 } 3561 3562 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3563 { 3564 bool pr = false; 3565 u32 msr = msr_info->index; 3566 u64 data = msr_info->data; 3567 3568 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3569 return kvm_xen_write_hypercall_page(vcpu, data); 3570 3571 switch (msr) { 3572 case MSR_AMD64_NB_CFG: 3573 case MSR_IA32_UCODE_WRITE: 3574 case MSR_VM_HSAVE_PA: 3575 case MSR_AMD64_PATCH_LOADER: 3576 case MSR_AMD64_BU_CFG2: 3577 case MSR_AMD64_DC_CFG: 3578 case MSR_F15H_EX_CFG: 3579 break; 3580 3581 case MSR_IA32_UCODE_REV: 3582 if (msr_info->host_initiated) 3583 vcpu->arch.microcode_version = data; 3584 break; 3585 case MSR_IA32_ARCH_CAPABILITIES: 3586 if (!msr_info->host_initiated) 3587 return 1; 3588 vcpu->arch.arch_capabilities = data; 3589 break; 3590 case MSR_IA32_PERF_CAPABILITIES: 3591 if (!msr_info->host_initiated) 3592 return 1; 3593 if (data & ~kvm_caps.supported_perf_cap) 3594 return 1; 3595 3596 vcpu->arch.perf_capabilities = data; 3597 kvm_pmu_refresh(vcpu); 3598 return 0; 3599 case MSR_EFER: 3600 return set_efer(vcpu, msr_info); 3601 case MSR_K7_HWCR: 3602 data &= ~(u64)0x40; /* ignore flush filter disable */ 3603 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3604 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3605 3606 /* Handle McStatusWrEn */ 3607 if (data == BIT_ULL(18)) { 3608 vcpu->arch.msr_hwcr = data; 3609 } else if (data != 0) { 3610 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 3611 data); 3612 return 1; 3613 } 3614 break; 3615 case MSR_FAM10H_MMIO_CONF_BASE: 3616 if (data != 0) { 3617 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 3618 "0x%llx\n", data); 3619 return 1; 3620 } 3621 break; 3622 case 0x200 ... MSR_IA32_MC0_CTL2 - 1: 3623 case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff: 3624 return kvm_mtrr_set_msr(vcpu, msr, data); 3625 case MSR_IA32_APICBASE: 3626 return kvm_set_apic_base(vcpu, msr_info); 3627 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3628 return kvm_x2apic_msr_write(vcpu, msr, data); 3629 case MSR_IA32_TSC_DEADLINE: 3630 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3631 break; 3632 case MSR_IA32_TSC_ADJUST: 3633 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3634 if (!msr_info->host_initiated) { 3635 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3636 adjust_tsc_offset_guest(vcpu, adj); 3637 /* Before back to guest, tsc_timestamp must be adjusted 3638 * as well, otherwise guest's percpu pvclock time could jump. 3639 */ 3640 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3641 } 3642 vcpu->arch.ia32_tsc_adjust_msr = data; 3643 } 3644 break; 3645 case MSR_IA32_MISC_ENABLE: { 3646 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 3647 3648 if (!msr_info->host_initiated) { 3649 /* RO bits */ 3650 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 3651 return 1; 3652 3653 /* R bits, i.e. writes are ignored, but don't fault. */ 3654 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 3655 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 3656 } 3657 3658 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3659 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3660 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3661 return 1; 3662 vcpu->arch.ia32_misc_enable_msr = data; 3663 kvm_update_cpuid_runtime(vcpu); 3664 } else { 3665 vcpu->arch.ia32_misc_enable_msr = data; 3666 } 3667 break; 3668 } 3669 case MSR_IA32_SMBASE: 3670 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 3671 return 1; 3672 vcpu->arch.smbase = data; 3673 break; 3674 case MSR_IA32_POWER_CTL: 3675 vcpu->arch.msr_ia32_power_ctl = data; 3676 break; 3677 case MSR_IA32_TSC: 3678 if (msr_info->host_initiated) { 3679 kvm_synchronize_tsc(vcpu, data); 3680 } else { 3681 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3682 adjust_tsc_offset_guest(vcpu, adj); 3683 vcpu->arch.ia32_tsc_adjust_msr += adj; 3684 } 3685 break; 3686 case MSR_IA32_XSS: 3687 if (!msr_info->host_initiated && 3688 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3689 return 1; 3690 /* 3691 * KVM supports exposing PT to the guest, but does not support 3692 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3693 * XSAVES/XRSTORS to save/restore PT MSRs. 3694 */ 3695 if (data & ~kvm_caps.supported_xss) 3696 return 1; 3697 vcpu->arch.ia32_xss = data; 3698 kvm_update_cpuid_runtime(vcpu); 3699 break; 3700 case MSR_SMI_COUNT: 3701 if (!msr_info->host_initiated) 3702 return 1; 3703 vcpu->arch.smi_count = data; 3704 break; 3705 case MSR_KVM_WALL_CLOCK_NEW: 3706 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3707 return 1; 3708 3709 vcpu->kvm->arch.wall_clock = data; 3710 kvm_write_wall_clock(vcpu->kvm, data, 0); 3711 break; 3712 case MSR_KVM_WALL_CLOCK: 3713 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3714 return 1; 3715 3716 vcpu->kvm->arch.wall_clock = data; 3717 kvm_write_wall_clock(vcpu->kvm, data, 0); 3718 break; 3719 case MSR_KVM_SYSTEM_TIME_NEW: 3720 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3721 return 1; 3722 3723 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3724 break; 3725 case MSR_KVM_SYSTEM_TIME: 3726 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3727 return 1; 3728 3729 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3730 break; 3731 case MSR_KVM_ASYNC_PF_EN: 3732 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3733 return 1; 3734 3735 if (kvm_pv_enable_async_pf(vcpu, data)) 3736 return 1; 3737 break; 3738 case MSR_KVM_ASYNC_PF_INT: 3739 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3740 return 1; 3741 3742 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3743 return 1; 3744 break; 3745 case MSR_KVM_ASYNC_PF_ACK: 3746 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3747 return 1; 3748 if (data & 0x1) { 3749 vcpu->arch.apf.pageready_pending = false; 3750 kvm_check_async_pf_completion(vcpu); 3751 } 3752 break; 3753 case MSR_KVM_STEAL_TIME: 3754 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3755 return 1; 3756 3757 if (unlikely(!sched_info_on())) 3758 return 1; 3759 3760 if (data & KVM_STEAL_RESERVED_MASK) 3761 return 1; 3762 3763 vcpu->arch.st.msr_val = data; 3764 3765 if (!(data & KVM_MSR_ENABLED)) 3766 break; 3767 3768 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3769 3770 break; 3771 case MSR_KVM_PV_EOI_EN: 3772 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3773 return 1; 3774 3775 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 3776 return 1; 3777 break; 3778 3779 case MSR_KVM_POLL_CONTROL: 3780 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3781 return 1; 3782 3783 /* only enable bit supported */ 3784 if (data & (-1ULL << 1)) 3785 return 1; 3786 3787 vcpu->arch.msr_kvm_poll_control = data; 3788 break; 3789 3790 case MSR_IA32_MCG_CTL: 3791 case MSR_IA32_MCG_STATUS: 3792 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3793 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3794 return set_msr_mce(vcpu, msr_info); 3795 3796 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3797 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3798 pr = true; 3799 fallthrough; 3800 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3801 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3802 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3803 return kvm_pmu_set_msr(vcpu, msr_info); 3804 3805 if (pr || data != 0) 3806 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 3807 "0x%x data 0x%llx\n", msr, data); 3808 break; 3809 case MSR_K7_CLK_CTL: 3810 /* 3811 * Ignore all writes to this no longer documented MSR. 3812 * Writes are only relevant for old K7 processors, 3813 * all pre-dating SVM, but a recommended workaround from 3814 * AMD for these chips. It is possible to specify the 3815 * affected processor models on the command line, hence 3816 * the need to ignore the workaround. 3817 */ 3818 break; 3819 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3820 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3821 case HV_X64_MSR_SYNDBG_OPTIONS: 3822 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3823 case HV_X64_MSR_CRASH_CTL: 3824 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3825 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3826 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3827 case HV_X64_MSR_TSC_EMULATION_STATUS: 3828 return kvm_hv_set_msr_common(vcpu, msr, data, 3829 msr_info->host_initiated); 3830 case MSR_IA32_BBL_CR_CTL3: 3831 /* Drop writes to this legacy MSR -- see rdmsr 3832 * counterpart for further detail. 3833 */ 3834 if (report_ignored_msrs) 3835 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", 3836 msr, data); 3837 break; 3838 case MSR_AMD64_OSVW_ID_LENGTH: 3839 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3840 return 1; 3841 vcpu->arch.osvw.length = data; 3842 break; 3843 case MSR_AMD64_OSVW_STATUS: 3844 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3845 return 1; 3846 vcpu->arch.osvw.status = data; 3847 break; 3848 case MSR_PLATFORM_INFO: 3849 if (!msr_info->host_initiated || 3850 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3851 cpuid_fault_enabled(vcpu))) 3852 return 1; 3853 vcpu->arch.msr_platform_info = data; 3854 break; 3855 case MSR_MISC_FEATURES_ENABLES: 3856 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3857 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3858 !supports_cpuid_fault(vcpu))) 3859 return 1; 3860 vcpu->arch.msr_misc_features_enables = data; 3861 break; 3862 #ifdef CONFIG_X86_64 3863 case MSR_IA32_XFD: 3864 if (!msr_info->host_initiated && 3865 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3866 return 1; 3867 3868 if (data & ~kvm_guest_supported_xfd(vcpu)) 3869 return 1; 3870 3871 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 3872 break; 3873 case MSR_IA32_XFD_ERR: 3874 if (!msr_info->host_initiated && 3875 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3876 return 1; 3877 3878 if (data & ~kvm_guest_supported_xfd(vcpu)) 3879 return 1; 3880 3881 vcpu->arch.guest_fpu.xfd_err = data; 3882 break; 3883 #endif 3884 case MSR_IA32_PEBS_ENABLE: 3885 case MSR_IA32_DS_AREA: 3886 case MSR_PEBS_DATA_CFG: 3887 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3888 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3889 return kvm_pmu_set_msr(vcpu, msr_info); 3890 /* 3891 * Userspace is allowed to write '0' to MSRs that KVM reports 3892 * as to-be-saved, even if an MSRs isn't fully supported. 3893 */ 3894 return !msr_info->host_initiated || data; 3895 default: 3896 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3897 return kvm_pmu_set_msr(vcpu, msr_info); 3898 return KVM_MSR_RET_INVALID; 3899 } 3900 return 0; 3901 } 3902 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 3903 3904 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 3905 { 3906 u64 data; 3907 u64 mcg_cap = vcpu->arch.mcg_cap; 3908 unsigned bank_num = mcg_cap & 0xff; 3909 u32 offset, last_msr; 3910 3911 switch (msr) { 3912 case MSR_IA32_P5_MC_ADDR: 3913 case MSR_IA32_P5_MC_TYPE: 3914 data = 0; 3915 break; 3916 case MSR_IA32_MCG_CAP: 3917 data = vcpu->arch.mcg_cap; 3918 break; 3919 case MSR_IA32_MCG_CTL: 3920 if (!(mcg_cap & MCG_CTL_P) && !host) 3921 return 1; 3922 data = vcpu->arch.mcg_ctl; 3923 break; 3924 case MSR_IA32_MCG_STATUS: 3925 data = vcpu->arch.mcg_status; 3926 break; 3927 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3928 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3929 if (msr > last_msr) 3930 return 1; 3931 3932 if (!(mcg_cap & MCG_CMCI_P) && !host) 3933 return 1; 3934 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3935 last_msr + 1 - MSR_IA32_MC0_CTL2); 3936 data = vcpu->arch.mci_ctl2_banks[offset]; 3937 break; 3938 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3939 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3940 if (msr > last_msr) 3941 return 1; 3942 3943 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3944 last_msr + 1 - MSR_IA32_MC0_CTL); 3945 data = vcpu->arch.mce_banks[offset]; 3946 break; 3947 default: 3948 return 1; 3949 } 3950 *pdata = data; 3951 return 0; 3952 } 3953 3954 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3955 { 3956 switch (msr_info->index) { 3957 case MSR_IA32_PLATFORM_ID: 3958 case MSR_IA32_EBL_CR_POWERON: 3959 case MSR_IA32_LASTBRANCHFROMIP: 3960 case MSR_IA32_LASTBRANCHTOIP: 3961 case MSR_IA32_LASTINTFROMIP: 3962 case MSR_IA32_LASTINTTOIP: 3963 case MSR_AMD64_SYSCFG: 3964 case MSR_K8_TSEG_ADDR: 3965 case MSR_K8_TSEG_MASK: 3966 case MSR_VM_HSAVE_PA: 3967 case MSR_K8_INT_PENDING_MSG: 3968 case MSR_AMD64_NB_CFG: 3969 case MSR_FAM10H_MMIO_CONF_BASE: 3970 case MSR_AMD64_BU_CFG2: 3971 case MSR_IA32_PERF_CTL: 3972 case MSR_AMD64_DC_CFG: 3973 case MSR_F15H_EX_CFG: 3974 /* 3975 * Intel Sandy Bridge CPUs must support the RAPL (running average power 3976 * limit) MSRs. Just return 0, as we do not want to expose the host 3977 * data here. Do not conditionalize this on CPUID, as KVM does not do 3978 * so for existing CPU-specific MSRs. 3979 */ 3980 case MSR_RAPL_POWER_UNIT: 3981 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 3982 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 3983 case MSR_PKG_ENERGY_STATUS: /* Total package */ 3984 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 3985 msr_info->data = 0; 3986 break; 3987 case MSR_IA32_PEBS_ENABLE: 3988 case MSR_IA32_DS_AREA: 3989 case MSR_PEBS_DATA_CFG: 3990 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3991 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3992 return kvm_pmu_get_msr(vcpu, msr_info); 3993 /* 3994 * Userspace is allowed to read MSRs that KVM reports as 3995 * to-be-saved, even if an MSR isn't fully supported. 3996 */ 3997 if (!msr_info->host_initiated) 3998 return 1; 3999 msr_info->data = 0; 4000 break; 4001 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4002 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4003 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4004 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4005 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4006 return kvm_pmu_get_msr(vcpu, msr_info); 4007 msr_info->data = 0; 4008 break; 4009 case MSR_IA32_UCODE_REV: 4010 msr_info->data = vcpu->arch.microcode_version; 4011 break; 4012 case MSR_IA32_ARCH_CAPABILITIES: 4013 if (!msr_info->host_initiated && 4014 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 4015 return 1; 4016 msr_info->data = vcpu->arch.arch_capabilities; 4017 break; 4018 case MSR_IA32_PERF_CAPABILITIES: 4019 if (!msr_info->host_initiated && 4020 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 4021 return 1; 4022 msr_info->data = vcpu->arch.perf_capabilities; 4023 break; 4024 case MSR_IA32_POWER_CTL: 4025 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 4026 break; 4027 case MSR_IA32_TSC: { 4028 /* 4029 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 4030 * even when not intercepted. AMD manual doesn't explicitly 4031 * state this but appears to behave the same. 4032 * 4033 * On userspace reads and writes, however, we unconditionally 4034 * return L1's TSC value to ensure backwards-compatible 4035 * behavior for migration. 4036 */ 4037 u64 offset, ratio; 4038 4039 if (msr_info->host_initiated) { 4040 offset = vcpu->arch.l1_tsc_offset; 4041 ratio = vcpu->arch.l1_tsc_scaling_ratio; 4042 } else { 4043 offset = vcpu->arch.tsc_offset; 4044 ratio = vcpu->arch.tsc_scaling_ratio; 4045 } 4046 4047 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4048 break; 4049 } 4050 case MSR_MTRRcap: 4051 case 0x200 ... MSR_IA32_MC0_CTL2 - 1: 4052 case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff: 4053 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4054 case 0xcd: /* fsb frequency */ 4055 msr_info->data = 3; 4056 break; 4057 /* 4058 * MSR_EBC_FREQUENCY_ID 4059 * Conservative value valid for even the basic CPU models. 4060 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4061 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4062 * and 266MHz for model 3, or 4. Set Core Clock 4063 * Frequency to System Bus Frequency Ratio to 1 (bits 4064 * 31:24) even though these are only valid for CPU 4065 * models > 2, however guests may end up dividing or 4066 * multiplying by zero otherwise. 4067 */ 4068 case MSR_EBC_FREQUENCY_ID: 4069 msr_info->data = 1 << 24; 4070 break; 4071 case MSR_IA32_APICBASE: 4072 msr_info->data = kvm_get_apic_base(vcpu); 4073 break; 4074 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4075 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4076 case MSR_IA32_TSC_DEADLINE: 4077 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4078 break; 4079 case MSR_IA32_TSC_ADJUST: 4080 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4081 break; 4082 case MSR_IA32_MISC_ENABLE: 4083 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4084 break; 4085 case MSR_IA32_SMBASE: 4086 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 4087 return 1; 4088 msr_info->data = vcpu->arch.smbase; 4089 break; 4090 case MSR_SMI_COUNT: 4091 msr_info->data = vcpu->arch.smi_count; 4092 break; 4093 case MSR_IA32_PERF_STATUS: 4094 /* TSC increment by tick */ 4095 msr_info->data = 1000ULL; 4096 /* CPU multiplier */ 4097 msr_info->data |= (((uint64_t)4ULL) << 40); 4098 break; 4099 case MSR_EFER: 4100 msr_info->data = vcpu->arch.efer; 4101 break; 4102 case MSR_KVM_WALL_CLOCK: 4103 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4104 return 1; 4105 4106 msr_info->data = vcpu->kvm->arch.wall_clock; 4107 break; 4108 case MSR_KVM_WALL_CLOCK_NEW: 4109 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4110 return 1; 4111 4112 msr_info->data = vcpu->kvm->arch.wall_clock; 4113 break; 4114 case MSR_KVM_SYSTEM_TIME: 4115 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4116 return 1; 4117 4118 msr_info->data = vcpu->arch.time; 4119 break; 4120 case MSR_KVM_SYSTEM_TIME_NEW: 4121 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4122 return 1; 4123 4124 msr_info->data = vcpu->arch.time; 4125 break; 4126 case MSR_KVM_ASYNC_PF_EN: 4127 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4128 return 1; 4129 4130 msr_info->data = vcpu->arch.apf.msr_en_val; 4131 break; 4132 case MSR_KVM_ASYNC_PF_INT: 4133 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4134 return 1; 4135 4136 msr_info->data = vcpu->arch.apf.msr_int_val; 4137 break; 4138 case MSR_KVM_ASYNC_PF_ACK: 4139 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4140 return 1; 4141 4142 msr_info->data = 0; 4143 break; 4144 case MSR_KVM_STEAL_TIME: 4145 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4146 return 1; 4147 4148 msr_info->data = vcpu->arch.st.msr_val; 4149 break; 4150 case MSR_KVM_PV_EOI_EN: 4151 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4152 return 1; 4153 4154 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4155 break; 4156 case MSR_KVM_POLL_CONTROL: 4157 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4158 return 1; 4159 4160 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4161 break; 4162 case MSR_IA32_P5_MC_ADDR: 4163 case MSR_IA32_P5_MC_TYPE: 4164 case MSR_IA32_MCG_CAP: 4165 case MSR_IA32_MCG_CTL: 4166 case MSR_IA32_MCG_STATUS: 4167 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4168 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4169 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4170 msr_info->host_initiated); 4171 case MSR_IA32_XSS: 4172 if (!msr_info->host_initiated && 4173 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4174 return 1; 4175 msr_info->data = vcpu->arch.ia32_xss; 4176 break; 4177 case MSR_K7_CLK_CTL: 4178 /* 4179 * Provide expected ramp-up count for K7. All other 4180 * are set to zero, indicating minimum divisors for 4181 * every field. 4182 * 4183 * This prevents guest kernels on AMD host with CPU 4184 * type 6, model 8 and higher from exploding due to 4185 * the rdmsr failing. 4186 */ 4187 msr_info->data = 0x20000000; 4188 break; 4189 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4190 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4191 case HV_X64_MSR_SYNDBG_OPTIONS: 4192 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4193 case HV_X64_MSR_CRASH_CTL: 4194 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4195 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4196 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4197 case HV_X64_MSR_TSC_EMULATION_STATUS: 4198 return kvm_hv_get_msr_common(vcpu, 4199 msr_info->index, &msr_info->data, 4200 msr_info->host_initiated); 4201 case MSR_IA32_BBL_CR_CTL3: 4202 /* This legacy MSR exists but isn't fully documented in current 4203 * silicon. It is however accessed by winxp in very narrow 4204 * scenarios where it sets bit #19, itself documented as 4205 * a "reserved" bit. Best effort attempt to source coherent 4206 * read data here should the balance of the register be 4207 * interpreted by the guest: 4208 * 4209 * L2 cache control register 3: 64GB range, 256KB size, 4210 * enabled, latency 0x1, configured 4211 */ 4212 msr_info->data = 0xbe702111; 4213 break; 4214 case MSR_AMD64_OSVW_ID_LENGTH: 4215 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4216 return 1; 4217 msr_info->data = vcpu->arch.osvw.length; 4218 break; 4219 case MSR_AMD64_OSVW_STATUS: 4220 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4221 return 1; 4222 msr_info->data = vcpu->arch.osvw.status; 4223 break; 4224 case MSR_PLATFORM_INFO: 4225 if (!msr_info->host_initiated && 4226 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4227 return 1; 4228 msr_info->data = vcpu->arch.msr_platform_info; 4229 break; 4230 case MSR_MISC_FEATURES_ENABLES: 4231 msr_info->data = vcpu->arch.msr_misc_features_enables; 4232 break; 4233 case MSR_K7_HWCR: 4234 msr_info->data = vcpu->arch.msr_hwcr; 4235 break; 4236 #ifdef CONFIG_X86_64 4237 case MSR_IA32_XFD: 4238 if (!msr_info->host_initiated && 4239 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4240 return 1; 4241 4242 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4243 break; 4244 case MSR_IA32_XFD_ERR: 4245 if (!msr_info->host_initiated && 4246 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4247 return 1; 4248 4249 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4250 break; 4251 #endif 4252 default: 4253 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4254 return kvm_pmu_get_msr(vcpu, msr_info); 4255 return KVM_MSR_RET_INVALID; 4256 } 4257 return 0; 4258 } 4259 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4260 4261 /* 4262 * Read or write a bunch of msrs. All parameters are kernel addresses. 4263 * 4264 * @return number of msrs set successfully. 4265 */ 4266 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4267 struct kvm_msr_entry *entries, 4268 int (*do_msr)(struct kvm_vcpu *vcpu, 4269 unsigned index, u64 *data)) 4270 { 4271 int i; 4272 4273 for (i = 0; i < msrs->nmsrs; ++i) 4274 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4275 break; 4276 4277 return i; 4278 } 4279 4280 /* 4281 * Read or write a bunch of msrs. Parameters are user addresses. 4282 * 4283 * @return number of msrs set successfully. 4284 */ 4285 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4286 int (*do_msr)(struct kvm_vcpu *vcpu, 4287 unsigned index, u64 *data), 4288 int writeback) 4289 { 4290 struct kvm_msrs msrs; 4291 struct kvm_msr_entry *entries; 4292 int r, n; 4293 unsigned size; 4294 4295 r = -EFAULT; 4296 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4297 goto out; 4298 4299 r = -E2BIG; 4300 if (msrs.nmsrs >= MAX_IO_MSRS) 4301 goto out; 4302 4303 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4304 entries = memdup_user(user_msrs->entries, size); 4305 if (IS_ERR(entries)) { 4306 r = PTR_ERR(entries); 4307 goto out; 4308 } 4309 4310 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 4311 if (r < 0) 4312 goto out_free; 4313 4314 r = -EFAULT; 4315 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4316 goto out_free; 4317 4318 r = n; 4319 4320 out_free: 4321 kfree(entries); 4322 out: 4323 return r; 4324 } 4325 4326 static inline bool kvm_can_mwait_in_guest(void) 4327 { 4328 return boot_cpu_has(X86_FEATURE_MWAIT) && 4329 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4330 boot_cpu_has(X86_FEATURE_ARAT); 4331 } 4332 4333 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4334 struct kvm_cpuid2 __user *cpuid_arg) 4335 { 4336 struct kvm_cpuid2 cpuid; 4337 int r; 4338 4339 r = -EFAULT; 4340 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4341 return r; 4342 4343 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4344 if (r) 4345 return r; 4346 4347 r = -EFAULT; 4348 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4349 return r; 4350 4351 return 0; 4352 } 4353 4354 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4355 { 4356 int r = 0; 4357 4358 switch (ext) { 4359 case KVM_CAP_IRQCHIP: 4360 case KVM_CAP_HLT: 4361 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4362 case KVM_CAP_SET_TSS_ADDR: 4363 case KVM_CAP_EXT_CPUID: 4364 case KVM_CAP_EXT_EMUL_CPUID: 4365 case KVM_CAP_CLOCKSOURCE: 4366 case KVM_CAP_PIT: 4367 case KVM_CAP_NOP_IO_DELAY: 4368 case KVM_CAP_MP_STATE: 4369 case KVM_CAP_SYNC_MMU: 4370 case KVM_CAP_USER_NMI: 4371 case KVM_CAP_REINJECT_CONTROL: 4372 case KVM_CAP_IRQ_INJECT_STATUS: 4373 case KVM_CAP_IOEVENTFD: 4374 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4375 case KVM_CAP_PIT2: 4376 case KVM_CAP_PIT_STATE2: 4377 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4378 case KVM_CAP_VCPU_EVENTS: 4379 case KVM_CAP_HYPERV: 4380 case KVM_CAP_HYPERV_VAPIC: 4381 case KVM_CAP_HYPERV_SPIN: 4382 case KVM_CAP_HYPERV_SYNIC: 4383 case KVM_CAP_HYPERV_SYNIC2: 4384 case KVM_CAP_HYPERV_VP_INDEX: 4385 case KVM_CAP_HYPERV_EVENTFD: 4386 case KVM_CAP_HYPERV_TLBFLUSH: 4387 case KVM_CAP_HYPERV_SEND_IPI: 4388 case KVM_CAP_HYPERV_CPUID: 4389 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4390 case KVM_CAP_SYS_HYPERV_CPUID: 4391 case KVM_CAP_PCI_SEGMENT: 4392 case KVM_CAP_DEBUGREGS: 4393 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4394 case KVM_CAP_XSAVE: 4395 case KVM_CAP_ASYNC_PF: 4396 case KVM_CAP_ASYNC_PF_INT: 4397 case KVM_CAP_GET_TSC_KHZ: 4398 case KVM_CAP_KVMCLOCK_CTRL: 4399 case KVM_CAP_READONLY_MEM: 4400 case KVM_CAP_HYPERV_TIME: 4401 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4402 case KVM_CAP_TSC_DEADLINE_TIMER: 4403 case KVM_CAP_DISABLE_QUIRKS: 4404 case KVM_CAP_SET_BOOT_CPU_ID: 4405 case KVM_CAP_SPLIT_IRQCHIP: 4406 case KVM_CAP_IMMEDIATE_EXIT: 4407 case KVM_CAP_PMU_EVENT_FILTER: 4408 case KVM_CAP_GET_MSR_FEATURES: 4409 case KVM_CAP_MSR_PLATFORM_INFO: 4410 case KVM_CAP_EXCEPTION_PAYLOAD: 4411 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4412 case KVM_CAP_SET_GUEST_DEBUG: 4413 case KVM_CAP_LAST_CPU: 4414 case KVM_CAP_X86_USER_SPACE_MSR: 4415 case KVM_CAP_X86_MSR_FILTER: 4416 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4417 #ifdef CONFIG_X86_SGX_KVM 4418 case KVM_CAP_SGX_ATTRIBUTE: 4419 #endif 4420 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4421 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4422 case KVM_CAP_SREGS2: 4423 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4424 case KVM_CAP_VCPU_ATTRIBUTES: 4425 case KVM_CAP_SYS_ATTRIBUTES: 4426 case KVM_CAP_VAPIC: 4427 case KVM_CAP_ENABLE_CAP: 4428 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4429 r = 1; 4430 break; 4431 case KVM_CAP_EXIT_HYPERCALL: 4432 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4433 break; 4434 case KVM_CAP_SET_GUEST_DEBUG2: 4435 return KVM_GUESTDBG_VALID_MASK; 4436 #ifdef CONFIG_KVM_XEN 4437 case KVM_CAP_XEN_HVM: 4438 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4439 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4440 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4441 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4442 KVM_XEN_HVM_CONFIG_EVTCHN_SEND; 4443 if (sched_info_on()) 4444 r |= KVM_XEN_HVM_CONFIG_RUNSTATE | 4445 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG; 4446 break; 4447 #endif 4448 case KVM_CAP_SYNC_REGS: 4449 r = KVM_SYNC_X86_VALID_FIELDS; 4450 break; 4451 case KVM_CAP_ADJUST_CLOCK: 4452 r = KVM_CLOCK_VALID_FLAGS; 4453 break; 4454 case KVM_CAP_X86_DISABLE_EXITS: 4455 r = KVM_X86_DISABLE_EXITS_PAUSE; 4456 4457 if (!mitigate_smt_rsb) { 4458 r |= KVM_X86_DISABLE_EXITS_HLT | 4459 KVM_X86_DISABLE_EXITS_CSTATE; 4460 4461 if (kvm_can_mwait_in_guest()) 4462 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4463 } 4464 break; 4465 case KVM_CAP_X86_SMM: 4466 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4467 break; 4468 4469 /* SMBASE is usually relocated above 1M on modern chipsets, 4470 * and SMM handlers might indeed rely on 4G segment limits, 4471 * so do not report SMM to be available if real mode is 4472 * emulated via vm86 mode. Still, do not go to great lengths 4473 * to avoid userspace's usage of the feature, because it is a 4474 * fringe case that is not enabled except via specific settings 4475 * of the module parameters. 4476 */ 4477 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4478 break; 4479 case KVM_CAP_NR_VCPUS: 4480 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4481 break; 4482 case KVM_CAP_MAX_VCPUS: 4483 r = KVM_MAX_VCPUS; 4484 break; 4485 case KVM_CAP_MAX_VCPU_ID: 4486 r = KVM_MAX_VCPU_IDS; 4487 break; 4488 case KVM_CAP_PV_MMU: /* obsolete */ 4489 r = 0; 4490 break; 4491 case KVM_CAP_MCE: 4492 r = KVM_MAX_MCE_BANKS; 4493 break; 4494 case KVM_CAP_XCRS: 4495 r = boot_cpu_has(X86_FEATURE_XSAVE); 4496 break; 4497 case KVM_CAP_TSC_CONTROL: 4498 case KVM_CAP_VM_TSC_CONTROL: 4499 r = kvm_caps.has_tsc_control; 4500 break; 4501 case KVM_CAP_X2APIC_API: 4502 r = KVM_X2APIC_API_VALID_FLAGS; 4503 break; 4504 case KVM_CAP_NESTED_STATE: 4505 r = kvm_x86_ops.nested_ops->get_state ? 4506 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4507 break; 4508 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4509 r = kvm_x86_ops.enable_l2_tlb_flush != NULL; 4510 break; 4511 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4512 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4513 break; 4514 case KVM_CAP_SMALLER_MAXPHYADDR: 4515 r = (int) allow_smaller_maxphyaddr; 4516 break; 4517 case KVM_CAP_STEAL_TIME: 4518 r = sched_info_on(); 4519 break; 4520 case KVM_CAP_X86_BUS_LOCK_EXIT: 4521 if (kvm_caps.has_bus_lock_exit) 4522 r = KVM_BUS_LOCK_DETECTION_OFF | 4523 KVM_BUS_LOCK_DETECTION_EXIT; 4524 else 4525 r = 0; 4526 break; 4527 case KVM_CAP_XSAVE2: { 4528 u64 guest_perm = xstate_get_guest_group_perm(); 4529 4530 r = xstate_required_size(kvm_caps.supported_xcr0 & guest_perm, false); 4531 if (r < sizeof(struct kvm_xsave)) 4532 r = sizeof(struct kvm_xsave); 4533 break; 4534 } 4535 case KVM_CAP_PMU_CAPABILITY: 4536 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4537 break; 4538 case KVM_CAP_DISABLE_QUIRKS2: 4539 r = KVM_X86_VALID_QUIRKS; 4540 break; 4541 case KVM_CAP_X86_NOTIFY_VMEXIT: 4542 r = kvm_caps.has_notify_vmexit; 4543 break; 4544 default: 4545 break; 4546 } 4547 return r; 4548 } 4549 4550 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr) 4551 { 4552 void __user *uaddr = (void __user*)(unsigned long)attr->addr; 4553 4554 if ((u64)(unsigned long)uaddr != attr->addr) 4555 return ERR_PTR_USR(-EFAULT); 4556 return uaddr; 4557 } 4558 4559 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4560 { 4561 u64 __user *uaddr = kvm_get_attr_addr(attr); 4562 4563 if (attr->group) 4564 return -ENXIO; 4565 4566 if (IS_ERR(uaddr)) 4567 return PTR_ERR(uaddr); 4568 4569 switch (attr->attr) { 4570 case KVM_X86_XCOMP_GUEST_SUPP: 4571 if (put_user(kvm_caps.supported_xcr0, uaddr)) 4572 return -EFAULT; 4573 return 0; 4574 default: 4575 return -ENXIO; 4576 break; 4577 } 4578 } 4579 4580 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4581 { 4582 if (attr->group) 4583 return -ENXIO; 4584 4585 switch (attr->attr) { 4586 case KVM_X86_XCOMP_GUEST_SUPP: 4587 return 0; 4588 default: 4589 return -ENXIO; 4590 } 4591 } 4592 4593 long kvm_arch_dev_ioctl(struct file *filp, 4594 unsigned int ioctl, unsigned long arg) 4595 { 4596 void __user *argp = (void __user *)arg; 4597 long r; 4598 4599 switch (ioctl) { 4600 case KVM_GET_MSR_INDEX_LIST: { 4601 struct kvm_msr_list __user *user_msr_list = argp; 4602 struct kvm_msr_list msr_list; 4603 unsigned n; 4604 4605 r = -EFAULT; 4606 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4607 goto out; 4608 n = msr_list.nmsrs; 4609 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4610 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4611 goto out; 4612 r = -E2BIG; 4613 if (n < msr_list.nmsrs) 4614 goto out; 4615 r = -EFAULT; 4616 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4617 num_msrs_to_save * sizeof(u32))) 4618 goto out; 4619 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4620 &emulated_msrs, 4621 num_emulated_msrs * sizeof(u32))) 4622 goto out; 4623 r = 0; 4624 break; 4625 } 4626 case KVM_GET_SUPPORTED_CPUID: 4627 case KVM_GET_EMULATED_CPUID: { 4628 struct kvm_cpuid2 __user *cpuid_arg = argp; 4629 struct kvm_cpuid2 cpuid; 4630 4631 r = -EFAULT; 4632 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4633 goto out; 4634 4635 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4636 ioctl); 4637 if (r) 4638 goto out; 4639 4640 r = -EFAULT; 4641 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4642 goto out; 4643 r = 0; 4644 break; 4645 } 4646 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4647 r = -EFAULT; 4648 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 4649 sizeof(kvm_caps.supported_mce_cap))) 4650 goto out; 4651 r = 0; 4652 break; 4653 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4654 struct kvm_msr_list __user *user_msr_list = argp; 4655 struct kvm_msr_list msr_list; 4656 unsigned int n; 4657 4658 r = -EFAULT; 4659 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4660 goto out; 4661 n = msr_list.nmsrs; 4662 msr_list.nmsrs = num_msr_based_features; 4663 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4664 goto out; 4665 r = -E2BIG; 4666 if (n < msr_list.nmsrs) 4667 goto out; 4668 r = -EFAULT; 4669 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4670 num_msr_based_features * sizeof(u32))) 4671 goto out; 4672 r = 0; 4673 break; 4674 } 4675 case KVM_GET_MSRS: 4676 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4677 break; 4678 case KVM_GET_SUPPORTED_HV_CPUID: 4679 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4680 break; 4681 case KVM_GET_DEVICE_ATTR: { 4682 struct kvm_device_attr attr; 4683 r = -EFAULT; 4684 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4685 break; 4686 r = kvm_x86_dev_get_attr(&attr); 4687 break; 4688 } 4689 case KVM_HAS_DEVICE_ATTR: { 4690 struct kvm_device_attr attr; 4691 r = -EFAULT; 4692 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4693 break; 4694 r = kvm_x86_dev_has_attr(&attr); 4695 break; 4696 } 4697 default: 4698 r = -EINVAL; 4699 break; 4700 } 4701 out: 4702 return r; 4703 } 4704 4705 static void wbinvd_ipi(void *garbage) 4706 { 4707 wbinvd(); 4708 } 4709 4710 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4711 { 4712 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4713 } 4714 4715 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4716 { 4717 /* Address WBINVD may be executed by guest */ 4718 if (need_emulate_wbinvd(vcpu)) { 4719 if (static_call(kvm_x86_has_wbinvd_exit)()) 4720 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4721 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4722 smp_call_function_single(vcpu->cpu, 4723 wbinvd_ipi, NULL, 1); 4724 } 4725 4726 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 4727 4728 /* Save host pkru register if supported */ 4729 vcpu->arch.host_pkru = read_pkru(); 4730 4731 /* Apply any externally detected TSC adjustments (due to suspend) */ 4732 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 4733 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 4734 vcpu->arch.tsc_offset_adjustment = 0; 4735 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4736 } 4737 4738 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 4739 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 4740 rdtsc() - vcpu->arch.last_host_tsc; 4741 if (tsc_delta < 0) 4742 mark_tsc_unstable("KVM discovered backwards TSC"); 4743 4744 if (kvm_check_tsc_unstable()) { 4745 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 4746 vcpu->arch.last_guest_tsc); 4747 kvm_vcpu_write_tsc_offset(vcpu, offset); 4748 vcpu->arch.tsc_catchup = 1; 4749 } 4750 4751 if (kvm_lapic_hv_timer_in_use(vcpu)) 4752 kvm_lapic_restart_hv_timer(vcpu); 4753 4754 /* 4755 * On a host with synchronized TSC, there is no need to update 4756 * kvmclock on vcpu->cpu migration 4757 */ 4758 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 4759 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 4760 if (vcpu->cpu != cpu) 4761 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 4762 vcpu->cpu = cpu; 4763 } 4764 4765 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4766 } 4767 4768 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 4769 { 4770 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 4771 struct kvm_steal_time __user *st; 4772 struct kvm_memslots *slots; 4773 static const u8 preempted = KVM_VCPU_PREEMPTED; 4774 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 4775 4776 /* 4777 * The vCPU can be marked preempted if and only if the VM-Exit was on 4778 * an instruction boundary and will not trigger guest emulation of any 4779 * kind (see vcpu_run). Vendor specific code controls (conservatively) 4780 * when this is true, for example allowing the vCPU to be marked 4781 * preempted if and only if the VM-Exit was due to a host interrupt. 4782 */ 4783 if (!vcpu->arch.at_instruction_boundary) { 4784 vcpu->stat.preemption_other++; 4785 return; 4786 } 4787 4788 vcpu->stat.preemption_reported++; 4789 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 4790 return; 4791 4792 if (vcpu->arch.st.preempted) 4793 return; 4794 4795 /* This happens on process exit */ 4796 if (unlikely(current->mm != vcpu->kvm->mm)) 4797 return; 4798 4799 slots = kvm_memslots(vcpu->kvm); 4800 4801 if (unlikely(slots->generation != ghc->generation || 4802 gpa != ghc->gpa || 4803 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 4804 return; 4805 4806 st = (struct kvm_steal_time __user *)ghc->hva; 4807 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 4808 4809 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 4810 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 4811 4812 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 4813 } 4814 4815 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 4816 { 4817 int idx; 4818 4819 if (vcpu->preempted) { 4820 if (!vcpu->arch.guest_state_protected) 4821 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); 4822 4823 /* 4824 * Take the srcu lock as memslots will be accessed to check the gfn 4825 * cache generation against the memslots generation. 4826 */ 4827 idx = srcu_read_lock(&vcpu->kvm->srcu); 4828 if (kvm_xen_msr_enabled(vcpu->kvm)) 4829 kvm_xen_runstate_set_preempted(vcpu); 4830 else 4831 kvm_steal_time_set_preempted(vcpu); 4832 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4833 } 4834 4835 static_call(kvm_x86_vcpu_put)(vcpu); 4836 vcpu->arch.last_host_tsc = rdtsc(); 4837 } 4838 4839 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 4840 struct kvm_lapic_state *s) 4841 { 4842 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 4843 4844 return kvm_apic_get_state(vcpu, s); 4845 } 4846 4847 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 4848 struct kvm_lapic_state *s) 4849 { 4850 int r; 4851 4852 r = kvm_apic_set_state(vcpu, s); 4853 if (r) 4854 return r; 4855 update_cr8_intercept(vcpu); 4856 4857 return 0; 4858 } 4859 4860 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 4861 { 4862 /* 4863 * We can accept userspace's request for interrupt injection 4864 * as long as we have a place to store the interrupt number. 4865 * The actual injection will happen when the CPU is able to 4866 * deliver the interrupt. 4867 */ 4868 if (kvm_cpu_has_extint(vcpu)) 4869 return false; 4870 4871 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 4872 return (!lapic_in_kernel(vcpu) || 4873 kvm_apic_accept_pic_intr(vcpu)); 4874 } 4875 4876 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 4877 { 4878 /* 4879 * Do not cause an interrupt window exit if an exception 4880 * is pending or an event needs reinjection; userspace 4881 * might want to inject the interrupt manually using KVM_SET_REGS 4882 * or KVM_SET_SREGS. For that to work, we must be at an 4883 * instruction boundary and with no events half-injected. 4884 */ 4885 return (kvm_arch_interrupt_allowed(vcpu) && 4886 kvm_cpu_accept_dm_intr(vcpu) && 4887 !kvm_event_needs_reinjection(vcpu) && 4888 !kvm_is_exception_pending(vcpu)); 4889 } 4890 4891 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 4892 struct kvm_interrupt *irq) 4893 { 4894 if (irq->irq >= KVM_NR_INTERRUPTS) 4895 return -EINVAL; 4896 4897 if (!irqchip_in_kernel(vcpu->kvm)) { 4898 kvm_queue_interrupt(vcpu, irq->irq, false); 4899 kvm_make_request(KVM_REQ_EVENT, vcpu); 4900 return 0; 4901 } 4902 4903 /* 4904 * With in-kernel LAPIC, we only use this to inject EXTINT, so 4905 * fail for in-kernel 8259. 4906 */ 4907 if (pic_in_kernel(vcpu->kvm)) 4908 return -ENXIO; 4909 4910 if (vcpu->arch.pending_external_vector != -1) 4911 return -EEXIST; 4912 4913 vcpu->arch.pending_external_vector = irq->irq; 4914 kvm_make_request(KVM_REQ_EVENT, vcpu); 4915 return 0; 4916 } 4917 4918 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 4919 { 4920 kvm_inject_nmi(vcpu); 4921 4922 return 0; 4923 } 4924 4925 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 4926 struct kvm_tpr_access_ctl *tac) 4927 { 4928 if (tac->flags) 4929 return -EINVAL; 4930 vcpu->arch.tpr_access_reporting = !!tac->enabled; 4931 return 0; 4932 } 4933 4934 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 4935 u64 mcg_cap) 4936 { 4937 int r; 4938 unsigned bank_num = mcg_cap & 0xff, bank; 4939 4940 r = -EINVAL; 4941 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 4942 goto out; 4943 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 4944 goto out; 4945 r = 0; 4946 vcpu->arch.mcg_cap = mcg_cap; 4947 /* Init IA32_MCG_CTL to all 1s */ 4948 if (mcg_cap & MCG_CTL_P) 4949 vcpu->arch.mcg_ctl = ~(u64)0; 4950 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 4951 for (bank = 0; bank < bank_num; bank++) { 4952 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 4953 if (mcg_cap & MCG_CMCI_P) 4954 vcpu->arch.mci_ctl2_banks[bank] = 0; 4955 } 4956 4957 kvm_apic_after_set_mcg_cap(vcpu); 4958 4959 static_call(kvm_x86_setup_mce)(vcpu); 4960 out: 4961 return r; 4962 } 4963 4964 /* 4965 * Validate this is an UCNA (uncorrectable no action) error by checking the 4966 * MCG_STATUS and MCi_STATUS registers: 4967 * - none of the bits for Machine Check Exceptions are set 4968 * - both the VAL (valid) and UC (uncorrectable) bits are set 4969 * MCI_STATUS_PCC - Processor Context Corrupted 4970 * MCI_STATUS_S - Signaled as a Machine Check Exception 4971 * MCI_STATUS_AR - Software recoverable Action Required 4972 */ 4973 static bool is_ucna(struct kvm_x86_mce *mce) 4974 { 4975 return !mce->mcg_status && 4976 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 4977 (mce->status & MCI_STATUS_VAL) && 4978 (mce->status & MCI_STATUS_UC); 4979 } 4980 4981 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 4982 { 4983 u64 mcg_cap = vcpu->arch.mcg_cap; 4984 4985 banks[1] = mce->status; 4986 banks[2] = mce->addr; 4987 banks[3] = mce->misc; 4988 vcpu->arch.mcg_status = mce->mcg_status; 4989 4990 if (!(mcg_cap & MCG_CMCI_P) || 4991 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 4992 return 0; 4993 4994 if (lapic_in_kernel(vcpu)) 4995 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 4996 4997 return 0; 4998 } 4999 5000 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 5001 struct kvm_x86_mce *mce) 5002 { 5003 u64 mcg_cap = vcpu->arch.mcg_cap; 5004 unsigned bank_num = mcg_cap & 0xff; 5005 u64 *banks = vcpu->arch.mce_banks; 5006 5007 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 5008 return -EINVAL; 5009 5010 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 5011 5012 if (is_ucna(mce)) 5013 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 5014 5015 /* 5016 * if IA32_MCG_CTL is not all 1s, the uncorrected error 5017 * reporting is disabled 5018 */ 5019 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 5020 vcpu->arch.mcg_ctl != ~(u64)0) 5021 return 0; 5022 /* 5023 * if IA32_MCi_CTL is not all 1s, the uncorrected error 5024 * reporting is disabled for the bank 5025 */ 5026 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 5027 return 0; 5028 if (mce->status & MCI_STATUS_UC) { 5029 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 5030 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 5031 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5032 return 0; 5033 } 5034 if (banks[1] & MCI_STATUS_VAL) 5035 mce->status |= MCI_STATUS_OVER; 5036 banks[2] = mce->addr; 5037 banks[3] = mce->misc; 5038 vcpu->arch.mcg_status = mce->mcg_status; 5039 banks[1] = mce->status; 5040 kvm_queue_exception(vcpu, MC_VECTOR); 5041 } else if (!(banks[1] & MCI_STATUS_VAL) 5042 || !(banks[1] & MCI_STATUS_UC)) { 5043 if (banks[1] & MCI_STATUS_VAL) 5044 mce->status |= MCI_STATUS_OVER; 5045 banks[2] = mce->addr; 5046 banks[3] = mce->misc; 5047 banks[1] = mce->status; 5048 } else 5049 banks[1] |= MCI_STATUS_OVER; 5050 return 0; 5051 } 5052 5053 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5054 struct kvm_vcpu_events *events) 5055 { 5056 struct kvm_queued_exception *ex; 5057 5058 process_nmi(vcpu); 5059 5060 #ifdef CONFIG_KVM_SMM 5061 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5062 process_smi(vcpu); 5063 #endif 5064 5065 /* 5066 * KVM's ABI only allows for one exception to be migrated. Luckily, 5067 * the only time there can be two queued exceptions is if there's a 5068 * non-exiting _injected_ exception, and a pending exiting exception. 5069 * In that case, ignore the VM-Exiting exception as it's an extension 5070 * of the injected exception. 5071 */ 5072 if (vcpu->arch.exception_vmexit.pending && 5073 !vcpu->arch.exception.pending && 5074 !vcpu->arch.exception.injected) 5075 ex = &vcpu->arch.exception_vmexit; 5076 else 5077 ex = &vcpu->arch.exception; 5078 5079 /* 5080 * In guest mode, payload delivery should be deferred if the exception 5081 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 5082 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, 5083 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not 5084 * propagate the payload and so it cannot be safely deferred. Deliver 5085 * the payload if the capability hasn't been requested. 5086 */ 5087 if (!vcpu->kvm->arch.exception_payload_enabled && 5088 ex->pending && ex->has_payload) 5089 kvm_deliver_exception_payload(vcpu, ex); 5090 5091 memset(events, 0, sizeof(*events)); 5092 5093 /* 5094 * The API doesn't provide the instruction length for software 5095 * exceptions, so don't report them. As long as the guest RIP 5096 * isn't advanced, we should expect to encounter the exception 5097 * again. 5098 */ 5099 if (!kvm_exception_is_soft(ex->vector)) { 5100 events->exception.injected = ex->injected; 5101 events->exception.pending = ex->pending; 5102 /* 5103 * For ABI compatibility, deliberately conflate 5104 * pending and injected exceptions when 5105 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5106 */ 5107 if (!vcpu->kvm->arch.exception_payload_enabled) 5108 events->exception.injected |= ex->pending; 5109 } 5110 events->exception.nr = ex->vector; 5111 events->exception.has_error_code = ex->has_error_code; 5112 events->exception.error_code = ex->error_code; 5113 events->exception_has_payload = ex->has_payload; 5114 events->exception_payload = ex->payload; 5115 5116 events->interrupt.injected = 5117 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5118 events->interrupt.nr = vcpu->arch.interrupt.nr; 5119 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 5120 5121 events->nmi.injected = vcpu->arch.nmi_injected; 5122 events->nmi.pending = vcpu->arch.nmi_pending != 0; 5123 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 5124 5125 /* events->sipi_vector is never valid when reporting to user space */ 5126 5127 #ifdef CONFIG_KVM_SMM 5128 events->smi.smm = is_smm(vcpu); 5129 events->smi.pending = vcpu->arch.smi_pending; 5130 events->smi.smm_inside_nmi = 5131 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5132 #endif 5133 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5134 5135 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5136 | KVM_VCPUEVENT_VALID_SHADOW 5137 | KVM_VCPUEVENT_VALID_SMM); 5138 if (vcpu->kvm->arch.exception_payload_enabled) 5139 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5140 if (vcpu->kvm->arch.triple_fault_event) { 5141 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5142 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5143 } 5144 } 5145 5146 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5147 struct kvm_vcpu_events *events) 5148 { 5149 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5150 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5151 | KVM_VCPUEVENT_VALID_SHADOW 5152 | KVM_VCPUEVENT_VALID_SMM 5153 | KVM_VCPUEVENT_VALID_PAYLOAD 5154 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5155 return -EINVAL; 5156 5157 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5158 if (!vcpu->kvm->arch.exception_payload_enabled) 5159 return -EINVAL; 5160 if (events->exception.pending) 5161 events->exception.injected = 0; 5162 else 5163 events->exception_has_payload = 0; 5164 } else { 5165 events->exception.pending = 0; 5166 events->exception_has_payload = 0; 5167 } 5168 5169 if ((events->exception.injected || events->exception.pending) && 5170 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5171 return -EINVAL; 5172 5173 /* INITs are latched while in SMM */ 5174 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 5175 (events->smi.smm || events->smi.pending) && 5176 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 5177 return -EINVAL; 5178 5179 process_nmi(vcpu); 5180 5181 /* 5182 * Flag that userspace is stuffing an exception, the next KVM_RUN will 5183 * morph the exception to a VM-Exit if appropriate. Do this only for 5184 * pending exceptions, already-injected exceptions are not subject to 5185 * intercpetion. Note, userspace that conflates pending and injected 5186 * is hosed, and will incorrectly convert an injected exception into a 5187 * pending exception, which in turn may cause a spurious VM-Exit. 5188 */ 5189 vcpu->arch.exception_from_userspace = events->exception.pending; 5190 5191 vcpu->arch.exception_vmexit.pending = false; 5192 5193 vcpu->arch.exception.injected = events->exception.injected; 5194 vcpu->arch.exception.pending = events->exception.pending; 5195 vcpu->arch.exception.vector = events->exception.nr; 5196 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5197 vcpu->arch.exception.error_code = events->exception.error_code; 5198 vcpu->arch.exception.has_payload = events->exception_has_payload; 5199 vcpu->arch.exception.payload = events->exception_payload; 5200 5201 vcpu->arch.interrupt.injected = events->interrupt.injected; 5202 vcpu->arch.interrupt.nr = events->interrupt.nr; 5203 vcpu->arch.interrupt.soft = events->interrupt.soft; 5204 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5205 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 5206 events->interrupt.shadow); 5207 5208 vcpu->arch.nmi_injected = events->nmi.injected; 5209 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 5210 vcpu->arch.nmi_pending = events->nmi.pending; 5211 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 5212 5213 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5214 lapic_in_kernel(vcpu)) 5215 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5216 5217 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5218 #ifdef CONFIG_KVM_SMM 5219 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5220 kvm_leave_nested(vcpu); 5221 kvm_smm_changed(vcpu, events->smi.smm); 5222 } 5223 5224 vcpu->arch.smi_pending = events->smi.pending; 5225 5226 if (events->smi.smm) { 5227 if (events->smi.smm_inside_nmi) 5228 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5229 else 5230 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5231 } 5232 5233 #else 5234 if (events->smi.smm || events->smi.pending || 5235 events->smi.smm_inside_nmi) 5236 return -EINVAL; 5237 #endif 5238 5239 if (lapic_in_kernel(vcpu)) { 5240 if (events->smi.latched_init) 5241 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5242 else 5243 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5244 } 5245 } 5246 5247 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5248 if (!vcpu->kvm->arch.triple_fault_event) 5249 return -EINVAL; 5250 if (events->triple_fault.pending) 5251 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5252 else 5253 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5254 } 5255 5256 kvm_make_request(KVM_REQ_EVENT, vcpu); 5257 5258 return 0; 5259 } 5260 5261 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5262 struct kvm_debugregs *dbgregs) 5263 { 5264 unsigned long val; 5265 5266 memset(dbgregs, 0, sizeof(*dbgregs)); 5267 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 5268 kvm_get_dr(vcpu, 6, &val); 5269 dbgregs->dr6 = val; 5270 dbgregs->dr7 = vcpu->arch.dr7; 5271 } 5272 5273 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5274 struct kvm_debugregs *dbgregs) 5275 { 5276 if (dbgregs->flags) 5277 return -EINVAL; 5278 5279 if (!kvm_dr6_valid(dbgregs->dr6)) 5280 return -EINVAL; 5281 if (!kvm_dr7_valid(dbgregs->dr7)) 5282 return -EINVAL; 5283 5284 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 5285 kvm_update_dr0123(vcpu); 5286 vcpu->arch.dr6 = dbgregs->dr6; 5287 vcpu->arch.dr7 = dbgregs->dr7; 5288 kvm_update_dr7(vcpu); 5289 5290 return 0; 5291 } 5292 5293 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5294 struct kvm_xsave *guest_xsave) 5295 { 5296 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5297 return; 5298 5299 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5300 guest_xsave->region, 5301 sizeof(guest_xsave->region), 5302 vcpu->arch.pkru); 5303 } 5304 5305 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5306 u8 *state, unsigned int size) 5307 { 5308 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5309 return; 5310 5311 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5312 state, size, vcpu->arch.pkru); 5313 } 5314 5315 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5316 struct kvm_xsave *guest_xsave) 5317 { 5318 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5319 return 0; 5320 5321 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5322 guest_xsave->region, 5323 kvm_caps.supported_xcr0, 5324 &vcpu->arch.pkru); 5325 } 5326 5327 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5328 struct kvm_xcrs *guest_xcrs) 5329 { 5330 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5331 guest_xcrs->nr_xcrs = 0; 5332 return; 5333 } 5334 5335 guest_xcrs->nr_xcrs = 1; 5336 guest_xcrs->flags = 0; 5337 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5338 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5339 } 5340 5341 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5342 struct kvm_xcrs *guest_xcrs) 5343 { 5344 int i, r = 0; 5345 5346 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5347 return -EINVAL; 5348 5349 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5350 return -EINVAL; 5351 5352 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5353 /* Only support XCR0 currently */ 5354 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5355 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5356 guest_xcrs->xcrs[i].value); 5357 break; 5358 } 5359 if (r) 5360 r = -EINVAL; 5361 return r; 5362 } 5363 5364 /* 5365 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5366 * stopped by the hypervisor. This function will be called from the host only. 5367 * EINVAL is returned when the host attempts to set the flag for a guest that 5368 * does not support pv clocks. 5369 */ 5370 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5371 { 5372 if (!vcpu->arch.pv_time.active) 5373 return -EINVAL; 5374 vcpu->arch.pvclock_set_guest_stopped_request = true; 5375 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5376 return 0; 5377 } 5378 5379 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5380 struct kvm_device_attr *attr) 5381 { 5382 int r; 5383 5384 switch (attr->attr) { 5385 case KVM_VCPU_TSC_OFFSET: 5386 r = 0; 5387 break; 5388 default: 5389 r = -ENXIO; 5390 } 5391 5392 return r; 5393 } 5394 5395 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5396 struct kvm_device_attr *attr) 5397 { 5398 u64 __user *uaddr = kvm_get_attr_addr(attr); 5399 int r; 5400 5401 if (IS_ERR(uaddr)) 5402 return PTR_ERR(uaddr); 5403 5404 switch (attr->attr) { 5405 case KVM_VCPU_TSC_OFFSET: 5406 r = -EFAULT; 5407 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5408 break; 5409 r = 0; 5410 break; 5411 default: 5412 r = -ENXIO; 5413 } 5414 5415 return r; 5416 } 5417 5418 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5419 struct kvm_device_attr *attr) 5420 { 5421 u64 __user *uaddr = kvm_get_attr_addr(attr); 5422 struct kvm *kvm = vcpu->kvm; 5423 int r; 5424 5425 if (IS_ERR(uaddr)) 5426 return PTR_ERR(uaddr); 5427 5428 switch (attr->attr) { 5429 case KVM_VCPU_TSC_OFFSET: { 5430 u64 offset, tsc, ns; 5431 unsigned long flags; 5432 bool matched; 5433 5434 r = -EFAULT; 5435 if (get_user(offset, uaddr)) 5436 break; 5437 5438 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5439 5440 matched = (vcpu->arch.virtual_tsc_khz && 5441 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5442 kvm->arch.last_tsc_offset == offset); 5443 5444 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5445 ns = get_kvmclock_base_ns(); 5446 5447 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5448 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5449 5450 r = 0; 5451 break; 5452 } 5453 default: 5454 r = -ENXIO; 5455 } 5456 5457 return r; 5458 } 5459 5460 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5461 unsigned int ioctl, 5462 void __user *argp) 5463 { 5464 struct kvm_device_attr attr; 5465 int r; 5466 5467 if (copy_from_user(&attr, argp, sizeof(attr))) 5468 return -EFAULT; 5469 5470 if (attr.group != KVM_VCPU_TSC_CTRL) 5471 return -ENXIO; 5472 5473 switch (ioctl) { 5474 case KVM_HAS_DEVICE_ATTR: 5475 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5476 break; 5477 case KVM_GET_DEVICE_ATTR: 5478 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5479 break; 5480 case KVM_SET_DEVICE_ATTR: 5481 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5482 break; 5483 } 5484 5485 return r; 5486 } 5487 5488 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5489 struct kvm_enable_cap *cap) 5490 { 5491 int r; 5492 uint16_t vmcs_version; 5493 void __user *user_ptr; 5494 5495 if (cap->flags) 5496 return -EINVAL; 5497 5498 switch (cap->cap) { 5499 case KVM_CAP_HYPERV_SYNIC2: 5500 if (cap->args[0]) 5501 return -EINVAL; 5502 fallthrough; 5503 5504 case KVM_CAP_HYPERV_SYNIC: 5505 if (!irqchip_in_kernel(vcpu->kvm)) 5506 return -EINVAL; 5507 return kvm_hv_activate_synic(vcpu, cap->cap == 5508 KVM_CAP_HYPERV_SYNIC2); 5509 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5510 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5511 return -ENOTTY; 5512 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5513 if (!r) { 5514 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5515 if (copy_to_user(user_ptr, &vmcs_version, 5516 sizeof(vmcs_version))) 5517 r = -EFAULT; 5518 } 5519 return r; 5520 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5521 if (!kvm_x86_ops.enable_l2_tlb_flush) 5522 return -ENOTTY; 5523 5524 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu); 5525 5526 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5527 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5528 5529 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5530 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5531 if (vcpu->arch.pv_cpuid.enforce) 5532 kvm_update_pv_runtime(vcpu); 5533 5534 return 0; 5535 default: 5536 return -EINVAL; 5537 } 5538 } 5539 5540 long kvm_arch_vcpu_ioctl(struct file *filp, 5541 unsigned int ioctl, unsigned long arg) 5542 { 5543 struct kvm_vcpu *vcpu = filp->private_data; 5544 void __user *argp = (void __user *)arg; 5545 int r; 5546 union { 5547 struct kvm_sregs2 *sregs2; 5548 struct kvm_lapic_state *lapic; 5549 struct kvm_xsave *xsave; 5550 struct kvm_xcrs *xcrs; 5551 void *buffer; 5552 } u; 5553 5554 vcpu_load(vcpu); 5555 5556 u.buffer = NULL; 5557 switch (ioctl) { 5558 case KVM_GET_LAPIC: { 5559 r = -EINVAL; 5560 if (!lapic_in_kernel(vcpu)) 5561 goto out; 5562 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 5563 GFP_KERNEL_ACCOUNT); 5564 5565 r = -ENOMEM; 5566 if (!u.lapic) 5567 goto out; 5568 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5569 if (r) 5570 goto out; 5571 r = -EFAULT; 5572 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5573 goto out; 5574 r = 0; 5575 break; 5576 } 5577 case KVM_SET_LAPIC: { 5578 r = -EINVAL; 5579 if (!lapic_in_kernel(vcpu)) 5580 goto out; 5581 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5582 if (IS_ERR(u.lapic)) { 5583 r = PTR_ERR(u.lapic); 5584 goto out_nofree; 5585 } 5586 5587 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5588 break; 5589 } 5590 case KVM_INTERRUPT: { 5591 struct kvm_interrupt irq; 5592 5593 r = -EFAULT; 5594 if (copy_from_user(&irq, argp, sizeof(irq))) 5595 goto out; 5596 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5597 break; 5598 } 5599 case KVM_NMI: { 5600 r = kvm_vcpu_ioctl_nmi(vcpu); 5601 break; 5602 } 5603 case KVM_SMI: { 5604 r = kvm_inject_smi(vcpu); 5605 break; 5606 } 5607 case KVM_SET_CPUID: { 5608 struct kvm_cpuid __user *cpuid_arg = argp; 5609 struct kvm_cpuid cpuid; 5610 5611 r = -EFAULT; 5612 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5613 goto out; 5614 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5615 break; 5616 } 5617 case KVM_SET_CPUID2: { 5618 struct kvm_cpuid2 __user *cpuid_arg = argp; 5619 struct kvm_cpuid2 cpuid; 5620 5621 r = -EFAULT; 5622 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5623 goto out; 5624 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5625 cpuid_arg->entries); 5626 break; 5627 } 5628 case KVM_GET_CPUID2: { 5629 struct kvm_cpuid2 __user *cpuid_arg = argp; 5630 struct kvm_cpuid2 cpuid; 5631 5632 r = -EFAULT; 5633 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5634 goto out; 5635 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5636 cpuid_arg->entries); 5637 if (r) 5638 goto out; 5639 r = -EFAULT; 5640 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5641 goto out; 5642 r = 0; 5643 break; 5644 } 5645 case KVM_GET_MSRS: { 5646 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5647 r = msr_io(vcpu, argp, do_get_msr, 1); 5648 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5649 break; 5650 } 5651 case KVM_SET_MSRS: { 5652 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5653 r = msr_io(vcpu, argp, do_set_msr, 0); 5654 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5655 break; 5656 } 5657 case KVM_TPR_ACCESS_REPORTING: { 5658 struct kvm_tpr_access_ctl tac; 5659 5660 r = -EFAULT; 5661 if (copy_from_user(&tac, argp, sizeof(tac))) 5662 goto out; 5663 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5664 if (r) 5665 goto out; 5666 r = -EFAULT; 5667 if (copy_to_user(argp, &tac, sizeof(tac))) 5668 goto out; 5669 r = 0; 5670 break; 5671 }; 5672 case KVM_SET_VAPIC_ADDR: { 5673 struct kvm_vapic_addr va; 5674 int idx; 5675 5676 r = -EINVAL; 5677 if (!lapic_in_kernel(vcpu)) 5678 goto out; 5679 r = -EFAULT; 5680 if (copy_from_user(&va, argp, sizeof(va))) 5681 goto out; 5682 idx = srcu_read_lock(&vcpu->kvm->srcu); 5683 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5684 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5685 break; 5686 } 5687 case KVM_X86_SETUP_MCE: { 5688 u64 mcg_cap; 5689 5690 r = -EFAULT; 5691 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 5692 goto out; 5693 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 5694 break; 5695 } 5696 case KVM_X86_SET_MCE: { 5697 struct kvm_x86_mce mce; 5698 5699 r = -EFAULT; 5700 if (copy_from_user(&mce, argp, sizeof(mce))) 5701 goto out; 5702 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 5703 break; 5704 } 5705 case KVM_GET_VCPU_EVENTS: { 5706 struct kvm_vcpu_events events; 5707 5708 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 5709 5710 r = -EFAULT; 5711 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 5712 break; 5713 r = 0; 5714 break; 5715 } 5716 case KVM_SET_VCPU_EVENTS: { 5717 struct kvm_vcpu_events events; 5718 5719 r = -EFAULT; 5720 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 5721 break; 5722 5723 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 5724 break; 5725 } 5726 case KVM_GET_DEBUGREGS: { 5727 struct kvm_debugregs dbgregs; 5728 5729 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 5730 5731 r = -EFAULT; 5732 if (copy_to_user(argp, &dbgregs, 5733 sizeof(struct kvm_debugregs))) 5734 break; 5735 r = 0; 5736 break; 5737 } 5738 case KVM_SET_DEBUGREGS: { 5739 struct kvm_debugregs dbgregs; 5740 5741 r = -EFAULT; 5742 if (copy_from_user(&dbgregs, argp, 5743 sizeof(struct kvm_debugregs))) 5744 break; 5745 5746 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 5747 break; 5748 } 5749 case KVM_GET_XSAVE: { 5750 r = -EINVAL; 5751 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 5752 break; 5753 5754 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 5755 r = -ENOMEM; 5756 if (!u.xsave) 5757 break; 5758 5759 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 5760 5761 r = -EFAULT; 5762 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 5763 break; 5764 r = 0; 5765 break; 5766 } 5767 case KVM_SET_XSAVE: { 5768 int size = vcpu->arch.guest_fpu.uabi_size; 5769 5770 u.xsave = memdup_user(argp, size); 5771 if (IS_ERR(u.xsave)) { 5772 r = PTR_ERR(u.xsave); 5773 goto out_nofree; 5774 } 5775 5776 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 5777 break; 5778 } 5779 5780 case KVM_GET_XSAVE2: { 5781 int size = vcpu->arch.guest_fpu.uabi_size; 5782 5783 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); 5784 r = -ENOMEM; 5785 if (!u.xsave) 5786 break; 5787 5788 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 5789 5790 r = -EFAULT; 5791 if (copy_to_user(argp, u.xsave, size)) 5792 break; 5793 5794 r = 0; 5795 break; 5796 } 5797 5798 case KVM_GET_XCRS: { 5799 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 5800 r = -ENOMEM; 5801 if (!u.xcrs) 5802 break; 5803 5804 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 5805 5806 r = -EFAULT; 5807 if (copy_to_user(argp, u.xcrs, 5808 sizeof(struct kvm_xcrs))) 5809 break; 5810 r = 0; 5811 break; 5812 } 5813 case KVM_SET_XCRS: { 5814 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 5815 if (IS_ERR(u.xcrs)) { 5816 r = PTR_ERR(u.xcrs); 5817 goto out_nofree; 5818 } 5819 5820 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 5821 break; 5822 } 5823 case KVM_SET_TSC_KHZ: { 5824 u32 user_tsc_khz; 5825 5826 r = -EINVAL; 5827 user_tsc_khz = (u32)arg; 5828 5829 if (kvm_caps.has_tsc_control && 5830 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 5831 goto out; 5832 5833 if (user_tsc_khz == 0) 5834 user_tsc_khz = tsc_khz; 5835 5836 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 5837 r = 0; 5838 5839 goto out; 5840 } 5841 case KVM_GET_TSC_KHZ: { 5842 r = vcpu->arch.virtual_tsc_khz; 5843 goto out; 5844 } 5845 case KVM_KVMCLOCK_CTRL: { 5846 r = kvm_set_guest_paused(vcpu); 5847 goto out; 5848 } 5849 case KVM_ENABLE_CAP: { 5850 struct kvm_enable_cap cap; 5851 5852 r = -EFAULT; 5853 if (copy_from_user(&cap, argp, sizeof(cap))) 5854 goto out; 5855 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5856 break; 5857 } 5858 case KVM_GET_NESTED_STATE: { 5859 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5860 u32 user_data_size; 5861 5862 r = -EINVAL; 5863 if (!kvm_x86_ops.nested_ops->get_state) 5864 break; 5865 5866 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 5867 r = -EFAULT; 5868 if (get_user(user_data_size, &user_kvm_nested_state->size)) 5869 break; 5870 5871 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 5872 user_data_size); 5873 if (r < 0) 5874 break; 5875 5876 if (r > user_data_size) { 5877 if (put_user(r, &user_kvm_nested_state->size)) 5878 r = -EFAULT; 5879 else 5880 r = -E2BIG; 5881 break; 5882 } 5883 5884 r = 0; 5885 break; 5886 } 5887 case KVM_SET_NESTED_STATE: { 5888 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5889 struct kvm_nested_state kvm_state; 5890 int idx; 5891 5892 r = -EINVAL; 5893 if (!kvm_x86_ops.nested_ops->set_state) 5894 break; 5895 5896 r = -EFAULT; 5897 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 5898 break; 5899 5900 r = -EINVAL; 5901 if (kvm_state.size < sizeof(kvm_state)) 5902 break; 5903 5904 if (kvm_state.flags & 5905 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 5906 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 5907 | KVM_STATE_NESTED_GIF_SET)) 5908 break; 5909 5910 /* nested_run_pending implies guest_mode. */ 5911 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 5912 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 5913 break; 5914 5915 idx = srcu_read_lock(&vcpu->kvm->srcu); 5916 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 5917 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5918 break; 5919 } 5920 case KVM_GET_SUPPORTED_HV_CPUID: 5921 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 5922 break; 5923 #ifdef CONFIG_KVM_XEN 5924 case KVM_XEN_VCPU_GET_ATTR: { 5925 struct kvm_xen_vcpu_attr xva; 5926 5927 r = -EFAULT; 5928 if (copy_from_user(&xva, argp, sizeof(xva))) 5929 goto out; 5930 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 5931 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 5932 r = -EFAULT; 5933 break; 5934 } 5935 case KVM_XEN_VCPU_SET_ATTR: { 5936 struct kvm_xen_vcpu_attr xva; 5937 5938 r = -EFAULT; 5939 if (copy_from_user(&xva, argp, sizeof(xva))) 5940 goto out; 5941 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 5942 break; 5943 } 5944 #endif 5945 case KVM_GET_SREGS2: { 5946 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 5947 r = -ENOMEM; 5948 if (!u.sregs2) 5949 goto out; 5950 __get_sregs2(vcpu, u.sregs2); 5951 r = -EFAULT; 5952 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 5953 goto out; 5954 r = 0; 5955 break; 5956 } 5957 case KVM_SET_SREGS2: { 5958 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 5959 if (IS_ERR(u.sregs2)) { 5960 r = PTR_ERR(u.sregs2); 5961 u.sregs2 = NULL; 5962 goto out; 5963 } 5964 r = __set_sregs2(vcpu, u.sregs2); 5965 break; 5966 } 5967 case KVM_HAS_DEVICE_ATTR: 5968 case KVM_GET_DEVICE_ATTR: 5969 case KVM_SET_DEVICE_ATTR: 5970 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 5971 break; 5972 default: 5973 r = -EINVAL; 5974 } 5975 out: 5976 kfree(u.buffer); 5977 out_nofree: 5978 vcpu_put(vcpu); 5979 return r; 5980 } 5981 5982 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 5983 { 5984 return VM_FAULT_SIGBUS; 5985 } 5986 5987 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 5988 { 5989 int ret; 5990 5991 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 5992 return -EINVAL; 5993 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 5994 return ret; 5995 } 5996 5997 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 5998 u64 ident_addr) 5999 { 6000 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 6001 } 6002 6003 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 6004 unsigned long kvm_nr_mmu_pages) 6005 { 6006 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 6007 return -EINVAL; 6008 6009 mutex_lock(&kvm->slots_lock); 6010 6011 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 6012 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 6013 6014 mutex_unlock(&kvm->slots_lock); 6015 return 0; 6016 } 6017 6018 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 6019 { 6020 return kvm->arch.n_max_mmu_pages; 6021 } 6022 6023 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6024 { 6025 struct kvm_pic *pic = kvm->arch.vpic; 6026 int r; 6027 6028 r = 0; 6029 switch (chip->chip_id) { 6030 case KVM_IRQCHIP_PIC_MASTER: 6031 memcpy(&chip->chip.pic, &pic->pics[0], 6032 sizeof(struct kvm_pic_state)); 6033 break; 6034 case KVM_IRQCHIP_PIC_SLAVE: 6035 memcpy(&chip->chip.pic, &pic->pics[1], 6036 sizeof(struct kvm_pic_state)); 6037 break; 6038 case KVM_IRQCHIP_IOAPIC: 6039 kvm_get_ioapic(kvm, &chip->chip.ioapic); 6040 break; 6041 default: 6042 r = -EINVAL; 6043 break; 6044 } 6045 return r; 6046 } 6047 6048 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6049 { 6050 struct kvm_pic *pic = kvm->arch.vpic; 6051 int r; 6052 6053 r = 0; 6054 switch (chip->chip_id) { 6055 case KVM_IRQCHIP_PIC_MASTER: 6056 spin_lock(&pic->lock); 6057 memcpy(&pic->pics[0], &chip->chip.pic, 6058 sizeof(struct kvm_pic_state)); 6059 spin_unlock(&pic->lock); 6060 break; 6061 case KVM_IRQCHIP_PIC_SLAVE: 6062 spin_lock(&pic->lock); 6063 memcpy(&pic->pics[1], &chip->chip.pic, 6064 sizeof(struct kvm_pic_state)); 6065 spin_unlock(&pic->lock); 6066 break; 6067 case KVM_IRQCHIP_IOAPIC: 6068 kvm_set_ioapic(kvm, &chip->chip.ioapic); 6069 break; 6070 default: 6071 r = -EINVAL; 6072 break; 6073 } 6074 kvm_pic_update_irq(pic); 6075 return r; 6076 } 6077 6078 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6079 { 6080 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 6081 6082 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 6083 6084 mutex_lock(&kps->lock); 6085 memcpy(ps, &kps->channels, sizeof(*ps)); 6086 mutex_unlock(&kps->lock); 6087 return 0; 6088 } 6089 6090 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6091 { 6092 int i; 6093 struct kvm_pit *pit = kvm->arch.vpit; 6094 6095 mutex_lock(&pit->pit_state.lock); 6096 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 6097 for (i = 0; i < 3; i++) 6098 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 6099 mutex_unlock(&pit->pit_state.lock); 6100 return 0; 6101 } 6102 6103 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6104 { 6105 mutex_lock(&kvm->arch.vpit->pit_state.lock); 6106 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 6107 sizeof(ps->channels)); 6108 ps->flags = kvm->arch.vpit->pit_state.flags; 6109 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 6110 memset(&ps->reserved, 0, sizeof(ps->reserved)); 6111 return 0; 6112 } 6113 6114 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6115 { 6116 int start = 0; 6117 int i; 6118 u32 prev_legacy, cur_legacy; 6119 struct kvm_pit *pit = kvm->arch.vpit; 6120 6121 mutex_lock(&pit->pit_state.lock); 6122 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 6123 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 6124 if (!prev_legacy && cur_legacy) 6125 start = 1; 6126 memcpy(&pit->pit_state.channels, &ps->channels, 6127 sizeof(pit->pit_state.channels)); 6128 pit->pit_state.flags = ps->flags; 6129 for (i = 0; i < 3; i++) 6130 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 6131 start && i == 0); 6132 mutex_unlock(&pit->pit_state.lock); 6133 return 0; 6134 } 6135 6136 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 6137 struct kvm_reinject_control *control) 6138 { 6139 struct kvm_pit *pit = kvm->arch.vpit; 6140 6141 /* pit->pit_state.lock was overloaded to prevent userspace from getting 6142 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 6143 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 6144 */ 6145 mutex_lock(&pit->pit_state.lock); 6146 kvm_pit_set_reinject(pit, control->pit_reinject); 6147 mutex_unlock(&pit->pit_state.lock); 6148 6149 return 0; 6150 } 6151 6152 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6153 { 6154 6155 /* 6156 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6157 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6158 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6159 * VM-Exit. 6160 */ 6161 struct kvm_vcpu *vcpu; 6162 unsigned long i; 6163 6164 kvm_for_each_vcpu(i, vcpu, kvm) 6165 kvm_vcpu_kick(vcpu); 6166 } 6167 6168 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 6169 bool line_status) 6170 { 6171 if (!irqchip_in_kernel(kvm)) 6172 return -ENXIO; 6173 6174 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 6175 irq_event->irq, irq_event->level, 6176 line_status); 6177 return 0; 6178 } 6179 6180 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6181 struct kvm_enable_cap *cap) 6182 { 6183 int r; 6184 6185 if (cap->flags) 6186 return -EINVAL; 6187 6188 switch (cap->cap) { 6189 case KVM_CAP_DISABLE_QUIRKS2: 6190 r = -EINVAL; 6191 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 6192 break; 6193 fallthrough; 6194 case KVM_CAP_DISABLE_QUIRKS: 6195 kvm->arch.disabled_quirks = cap->args[0]; 6196 r = 0; 6197 break; 6198 case KVM_CAP_SPLIT_IRQCHIP: { 6199 mutex_lock(&kvm->lock); 6200 r = -EINVAL; 6201 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6202 goto split_irqchip_unlock; 6203 r = -EEXIST; 6204 if (irqchip_in_kernel(kvm)) 6205 goto split_irqchip_unlock; 6206 if (kvm->created_vcpus) 6207 goto split_irqchip_unlock; 6208 r = kvm_setup_empty_irq_routing(kvm); 6209 if (r) 6210 goto split_irqchip_unlock; 6211 /* Pairs with irqchip_in_kernel. */ 6212 smp_wmb(); 6213 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6214 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6215 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6216 r = 0; 6217 split_irqchip_unlock: 6218 mutex_unlock(&kvm->lock); 6219 break; 6220 } 6221 case KVM_CAP_X2APIC_API: 6222 r = -EINVAL; 6223 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6224 break; 6225 6226 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6227 kvm->arch.x2apic_format = true; 6228 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6229 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6230 6231 r = 0; 6232 break; 6233 case KVM_CAP_X86_DISABLE_EXITS: 6234 r = -EINVAL; 6235 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 6236 break; 6237 6238 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 6239 kvm->arch.pause_in_guest = true; 6240 6241 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \ 6242 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests." 6243 6244 if (!mitigate_smt_rsb) { 6245 if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() && 6246 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE)) 6247 pr_warn_once(SMT_RSB_MSG); 6248 6249 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 6250 kvm_can_mwait_in_guest()) 6251 kvm->arch.mwait_in_guest = true; 6252 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 6253 kvm->arch.hlt_in_guest = true; 6254 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6255 kvm->arch.cstate_in_guest = true; 6256 } 6257 6258 r = 0; 6259 break; 6260 case KVM_CAP_MSR_PLATFORM_INFO: 6261 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6262 r = 0; 6263 break; 6264 case KVM_CAP_EXCEPTION_PAYLOAD: 6265 kvm->arch.exception_payload_enabled = cap->args[0]; 6266 r = 0; 6267 break; 6268 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6269 kvm->arch.triple_fault_event = cap->args[0]; 6270 r = 0; 6271 break; 6272 case KVM_CAP_X86_USER_SPACE_MSR: 6273 r = -EINVAL; 6274 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK) 6275 break; 6276 kvm->arch.user_space_msr_mask = cap->args[0]; 6277 r = 0; 6278 break; 6279 case KVM_CAP_X86_BUS_LOCK_EXIT: 6280 r = -EINVAL; 6281 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6282 break; 6283 6284 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6285 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6286 break; 6287 6288 if (kvm_caps.has_bus_lock_exit && 6289 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6290 kvm->arch.bus_lock_detection_enabled = true; 6291 r = 0; 6292 break; 6293 #ifdef CONFIG_X86_SGX_KVM 6294 case KVM_CAP_SGX_ATTRIBUTE: { 6295 unsigned long allowed_attributes = 0; 6296 6297 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6298 if (r) 6299 break; 6300 6301 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6302 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6303 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6304 kvm->arch.sgx_provisioning_allowed = true; 6305 else 6306 r = -EINVAL; 6307 break; 6308 } 6309 #endif 6310 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6311 r = -EINVAL; 6312 if (!kvm_x86_ops.vm_copy_enc_context_from) 6313 break; 6314 6315 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]); 6316 break; 6317 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6318 r = -EINVAL; 6319 if (!kvm_x86_ops.vm_move_enc_context_from) 6320 break; 6321 6322 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]); 6323 break; 6324 case KVM_CAP_EXIT_HYPERCALL: 6325 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6326 r = -EINVAL; 6327 break; 6328 } 6329 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6330 r = 0; 6331 break; 6332 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6333 r = -EINVAL; 6334 if (cap->args[0] & ~1) 6335 break; 6336 kvm->arch.exit_on_emulation_error = cap->args[0]; 6337 r = 0; 6338 break; 6339 case KVM_CAP_PMU_CAPABILITY: 6340 r = -EINVAL; 6341 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6342 break; 6343 6344 mutex_lock(&kvm->lock); 6345 if (!kvm->created_vcpus) { 6346 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6347 r = 0; 6348 } 6349 mutex_unlock(&kvm->lock); 6350 break; 6351 case KVM_CAP_MAX_VCPU_ID: 6352 r = -EINVAL; 6353 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6354 break; 6355 6356 mutex_lock(&kvm->lock); 6357 if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6358 r = 0; 6359 } else if (!kvm->arch.max_vcpu_ids) { 6360 kvm->arch.max_vcpu_ids = cap->args[0]; 6361 r = 0; 6362 } 6363 mutex_unlock(&kvm->lock); 6364 break; 6365 case KVM_CAP_X86_NOTIFY_VMEXIT: 6366 r = -EINVAL; 6367 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6368 break; 6369 if (!kvm_caps.has_notify_vmexit) 6370 break; 6371 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6372 break; 6373 mutex_lock(&kvm->lock); 6374 if (!kvm->created_vcpus) { 6375 kvm->arch.notify_window = cap->args[0] >> 32; 6376 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6377 r = 0; 6378 } 6379 mutex_unlock(&kvm->lock); 6380 break; 6381 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6382 r = -EINVAL; 6383 6384 /* 6385 * Since the risk of disabling NX hugepages is a guest crashing 6386 * the system, ensure the userspace process has permission to 6387 * reboot the system. 6388 * 6389 * Note that unlike the reboot() syscall, the process must have 6390 * this capability in the root namespace because exposing 6391 * /dev/kvm into a container does not limit the scope of the 6392 * iTLB multihit bug to that container. In other words, 6393 * this must use capable(), not ns_capable(). 6394 */ 6395 if (!capable(CAP_SYS_BOOT)) { 6396 r = -EPERM; 6397 break; 6398 } 6399 6400 if (cap->args[0]) 6401 break; 6402 6403 mutex_lock(&kvm->lock); 6404 if (!kvm->created_vcpus) { 6405 kvm->arch.disable_nx_huge_pages = true; 6406 r = 0; 6407 } 6408 mutex_unlock(&kvm->lock); 6409 break; 6410 default: 6411 r = -EINVAL; 6412 break; 6413 } 6414 return r; 6415 } 6416 6417 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6418 { 6419 struct kvm_x86_msr_filter *msr_filter; 6420 6421 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6422 if (!msr_filter) 6423 return NULL; 6424 6425 msr_filter->default_allow = default_allow; 6426 return msr_filter; 6427 } 6428 6429 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6430 { 6431 u32 i; 6432 6433 if (!msr_filter) 6434 return; 6435 6436 for (i = 0; i < msr_filter->count; i++) 6437 kfree(msr_filter->ranges[i].bitmap); 6438 6439 kfree(msr_filter); 6440 } 6441 6442 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6443 struct kvm_msr_filter_range *user_range) 6444 { 6445 unsigned long *bitmap = NULL; 6446 size_t bitmap_size; 6447 6448 if (!user_range->nmsrs) 6449 return 0; 6450 6451 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK) 6452 return -EINVAL; 6453 6454 if (!user_range->flags) 6455 return -EINVAL; 6456 6457 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6458 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6459 return -EINVAL; 6460 6461 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6462 if (IS_ERR(bitmap)) 6463 return PTR_ERR(bitmap); 6464 6465 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6466 .flags = user_range->flags, 6467 .base = user_range->base, 6468 .nmsrs = user_range->nmsrs, 6469 .bitmap = bitmap, 6470 }; 6471 6472 msr_filter->count++; 6473 return 0; 6474 } 6475 6476 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, 6477 struct kvm_msr_filter *filter) 6478 { 6479 struct kvm_x86_msr_filter *new_filter, *old_filter; 6480 bool default_allow; 6481 bool empty = true; 6482 int r = 0; 6483 u32 i; 6484 6485 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK) 6486 return -EINVAL; 6487 6488 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) 6489 empty &= !filter->ranges[i].nmsrs; 6490 6491 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); 6492 if (empty && !default_allow) 6493 return -EINVAL; 6494 6495 new_filter = kvm_alloc_msr_filter(default_allow); 6496 if (!new_filter) 6497 return -ENOMEM; 6498 6499 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { 6500 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); 6501 if (r) { 6502 kvm_free_msr_filter(new_filter); 6503 return r; 6504 } 6505 } 6506 6507 mutex_lock(&kvm->lock); 6508 6509 /* The per-VM filter is protected by kvm->lock... */ 6510 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1); 6511 6512 rcu_assign_pointer(kvm->arch.msr_filter, new_filter); 6513 synchronize_srcu(&kvm->srcu); 6514 6515 kvm_free_msr_filter(old_filter); 6516 6517 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6518 mutex_unlock(&kvm->lock); 6519 6520 return 0; 6521 } 6522 6523 #ifdef CONFIG_KVM_COMPAT 6524 /* for KVM_X86_SET_MSR_FILTER */ 6525 struct kvm_msr_filter_range_compat { 6526 __u32 flags; 6527 __u32 nmsrs; 6528 __u32 base; 6529 __u32 bitmap; 6530 }; 6531 6532 struct kvm_msr_filter_compat { 6533 __u32 flags; 6534 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; 6535 }; 6536 6537 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) 6538 6539 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 6540 unsigned long arg) 6541 { 6542 void __user *argp = (void __user *)arg; 6543 struct kvm *kvm = filp->private_data; 6544 long r = -ENOTTY; 6545 6546 switch (ioctl) { 6547 case KVM_X86_SET_MSR_FILTER_COMPAT: { 6548 struct kvm_msr_filter __user *user_msr_filter = argp; 6549 struct kvm_msr_filter_compat filter_compat; 6550 struct kvm_msr_filter filter; 6551 int i; 6552 6553 if (copy_from_user(&filter_compat, user_msr_filter, 6554 sizeof(filter_compat))) 6555 return -EFAULT; 6556 6557 filter.flags = filter_compat.flags; 6558 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6559 struct kvm_msr_filter_range_compat *cr; 6560 6561 cr = &filter_compat.ranges[i]; 6562 filter.ranges[i] = (struct kvm_msr_filter_range) { 6563 .flags = cr->flags, 6564 .nmsrs = cr->nmsrs, 6565 .base = cr->base, 6566 .bitmap = (__u8 *)(ulong)cr->bitmap, 6567 }; 6568 } 6569 6570 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6571 break; 6572 } 6573 } 6574 6575 return r; 6576 } 6577 #endif 6578 6579 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6580 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6581 { 6582 struct kvm_vcpu *vcpu; 6583 unsigned long i; 6584 int ret = 0; 6585 6586 mutex_lock(&kvm->lock); 6587 kvm_for_each_vcpu(i, vcpu, kvm) { 6588 if (!vcpu->arch.pv_time.active) 6589 continue; 6590 6591 ret = kvm_set_guest_paused(vcpu); 6592 if (ret) { 6593 kvm_err("Failed to pause guest VCPU%d: %d\n", 6594 vcpu->vcpu_id, ret); 6595 break; 6596 } 6597 } 6598 mutex_unlock(&kvm->lock); 6599 6600 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6601 } 6602 6603 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6604 { 6605 switch (state) { 6606 case PM_HIBERNATION_PREPARE: 6607 case PM_SUSPEND_PREPARE: 6608 return kvm_arch_suspend_notifier(kvm); 6609 } 6610 6611 return NOTIFY_DONE; 6612 } 6613 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6614 6615 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6616 { 6617 struct kvm_clock_data data = { 0 }; 6618 6619 get_kvmclock(kvm, &data); 6620 if (copy_to_user(argp, &data, sizeof(data))) 6621 return -EFAULT; 6622 6623 return 0; 6624 } 6625 6626 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6627 { 6628 struct kvm_arch *ka = &kvm->arch; 6629 struct kvm_clock_data data; 6630 u64 now_raw_ns; 6631 6632 if (copy_from_user(&data, argp, sizeof(data))) 6633 return -EFAULT; 6634 6635 /* 6636 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6637 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6638 */ 6639 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6640 return -EINVAL; 6641 6642 kvm_hv_request_tsc_page_update(kvm); 6643 kvm_start_pvclock_update(kvm); 6644 pvclock_update_vm_gtod_copy(kvm); 6645 6646 /* 6647 * This pairs with kvm_guest_time_update(): when masterclock is 6648 * in use, we use master_kernel_ns + kvmclock_offset to set 6649 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6650 * is slightly ahead) here we risk going negative on unsigned 6651 * 'system_time' when 'data.clock' is very small. 6652 */ 6653 if (data.flags & KVM_CLOCK_REALTIME) { 6654 u64 now_real_ns = ktime_get_real_ns(); 6655 6656 /* 6657 * Avoid stepping the kvmclock backwards. 6658 */ 6659 if (now_real_ns > data.realtime) 6660 data.clock += now_real_ns - data.realtime; 6661 } 6662 6663 if (ka->use_master_clock) 6664 now_raw_ns = ka->master_kernel_ns; 6665 else 6666 now_raw_ns = get_kvmclock_base_ns(); 6667 ka->kvmclock_offset = data.clock - now_raw_ns; 6668 kvm_end_pvclock_update(kvm); 6669 return 0; 6670 } 6671 6672 long kvm_arch_vm_ioctl(struct file *filp, 6673 unsigned int ioctl, unsigned long arg) 6674 { 6675 struct kvm *kvm = filp->private_data; 6676 void __user *argp = (void __user *)arg; 6677 int r = -ENOTTY; 6678 /* 6679 * This union makes it completely explicit to gcc-3.x 6680 * that these two variables' stack usage should be 6681 * combined, not added together. 6682 */ 6683 union { 6684 struct kvm_pit_state ps; 6685 struct kvm_pit_state2 ps2; 6686 struct kvm_pit_config pit_config; 6687 } u; 6688 6689 switch (ioctl) { 6690 case KVM_SET_TSS_ADDR: 6691 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 6692 break; 6693 case KVM_SET_IDENTITY_MAP_ADDR: { 6694 u64 ident_addr; 6695 6696 mutex_lock(&kvm->lock); 6697 r = -EINVAL; 6698 if (kvm->created_vcpus) 6699 goto set_identity_unlock; 6700 r = -EFAULT; 6701 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 6702 goto set_identity_unlock; 6703 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 6704 set_identity_unlock: 6705 mutex_unlock(&kvm->lock); 6706 break; 6707 } 6708 case KVM_SET_NR_MMU_PAGES: 6709 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 6710 break; 6711 case KVM_GET_NR_MMU_PAGES: 6712 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 6713 break; 6714 case KVM_CREATE_IRQCHIP: { 6715 mutex_lock(&kvm->lock); 6716 6717 r = -EEXIST; 6718 if (irqchip_in_kernel(kvm)) 6719 goto create_irqchip_unlock; 6720 6721 r = -EINVAL; 6722 if (kvm->created_vcpus) 6723 goto create_irqchip_unlock; 6724 6725 r = kvm_pic_init(kvm); 6726 if (r) 6727 goto create_irqchip_unlock; 6728 6729 r = kvm_ioapic_init(kvm); 6730 if (r) { 6731 kvm_pic_destroy(kvm); 6732 goto create_irqchip_unlock; 6733 } 6734 6735 r = kvm_setup_default_irq_routing(kvm); 6736 if (r) { 6737 kvm_ioapic_destroy(kvm); 6738 kvm_pic_destroy(kvm); 6739 goto create_irqchip_unlock; 6740 } 6741 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 6742 smp_wmb(); 6743 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 6744 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6745 create_irqchip_unlock: 6746 mutex_unlock(&kvm->lock); 6747 break; 6748 } 6749 case KVM_CREATE_PIT: 6750 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 6751 goto create_pit; 6752 case KVM_CREATE_PIT2: 6753 r = -EFAULT; 6754 if (copy_from_user(&u.pit_config, argp, 6755 sizeof(struct kvm_pit_config))) 6756 goto out; 6757 create_pit: 6758 mutex_lock(&kvm->lock); 6759 r = -EEXIST; 6760 if (kvm->arch.vpit) 6761 goto create_pit_unlock; 6762 r = -ENOMEM; 6763 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 6764 if (kvm->arch.vpit) 6765 r = 0; 6766 create_pit_unlock: 6767 mutex_unlock(&kvm->lock); 6768 break; 6769 case KVM_GET_IRQCHIP: { 6770 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6771 struct kvm_irqchip *chip; 6772 6773 chip = memdup_user(argp, sizeof(*chip)); 6774 if (IS_ERR(chip)) { 6775 r = PTR_ERR(chip); 6776 goto out; 6777 } 6778 6779 r = -ENXIO; 6780 if (!irqchip_kernel(kvm)) 6781 goto get_irqchip_out; 6782 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 6783 if (r) 6784 goto get_irqchip_out; 6785 r = -EFAULT; 6786 if (copy_to_user(argp, chip, sizeof(*chip))) 6787 goto get_irqchip_out; 6788 r = 0; 6789 get_irqchip_out: 6790 kfree(chip); 6791 break; 6792 } 6793 case KVM_SET_IRQCHIP: { 6794 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6795 struct kvm_irqchip *chip; 6796 6797 chip = memdup_user(argp, sizeof(*chip)); 6798 if (IS_ERR(chip)) { 6799 r = PTR_ERR(chip); 6800 goto out; 6801 } 6802 6803 r = -ENXIO; 6804 if (!irqchip_kernel(kvm)) 6805 goto set_irqchip_out; 6806 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 6807 set_irqchip_out: 6808 kfree(chip); 6809 break; 6810 } 6811 case KVM_GET_PIT: { 6812 r = -EFAULT; 6813 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 6814 goto out; 6815 r = -ENXIO; 6816 if (!kvm->arch.vpit) 6817 goto out; 6818 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 6819 if (r) 6820 goto out; 6821 r = -EFAULT; 6822 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 6823 goto out; 6824 r = 0; 6825 break; 6826 } 6827 case KVM_SET_PIT: { 6828 r = -EFAULT; 6829 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 6830 goto out; 6831 mutex_lock(&kvm->lock); 6832 r = -ENXIO; 6833 if (!kvm->arch.vpit) 6834 goto set_pit_out; 6835 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 6836 set_pit_out: 6837 mutex_unlock(&kvm->lock); 6838 break; 6839 } 6840 case KVM_GET_PIT2: { 6841 r = -ENXIO; 6842 if (!kvm->arch.vpit) 6843 goto out; 6844 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 6845 if (r) 6846 goto out; 6847 r = -EFAULT; 6848 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 6849 goto out; 6850 r = 0; 6851 break; 6852 } 6853 case KVM_SET_PIT2: { 6854 r = -EFAULT; 6855 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 6856 goto out; 6857 mutex_lock(&kvm->lock); 6858 r = -ENXIO; 6859 if (!kvm->arch.vpit) 6860 goto set_pit2_out; 6861 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 6862 set_pit2_out: 6863 mutex_unlock(&kvm->lock); 6864 break; 6865 } 6866 case KVM_REINJECT_CONTROL: { 6867 struct kvm_reinject_control control; 6868 r = -EFAULT; 6869 if (copy_from_user(&control, argp, sizeof(control))) 6870 goto out; 6871 r = -ENXIO; 6872 if (!kvm->arch.vpit) 6873 goto out; 6874 r = kvm_vm_ioctl_reinject(kvm, &control); 6875 break; 6876 } 6877 case KVM_SET_BOOT_CPU_ID: 6878 r = 0; 6879 mutex_lock(&kvm->lock); 6880 if (kvm->created_vcpus) 6881 r = -EBUSY; 6882 else 6883 kvm->arch.bsp_vcpu_id = arg; 6884 mutex_unlock(&kvm->lock); 6885 break; 6886 #ifdef CONFIG_KVM_XEN 6887 case KVM_XEN_HVM_CONFIG: { 6888 struct kvm_xen_hvm_config xhc; 6889 r = -EFAULT; 6890 if (copy_from_user(&xhc, argp, sizeof(xhc))) 6891 goto out; 6892 r = kvm_xen_hvm_config(kvm, &xhc); 6893 break; 6894 } 6895 case KVM_XEN_HVM_GET_ATTR: { 6896 struct kvm_xen_hvm_attr xha; 6897 6898 r = -EFAULT; 6899 if (copy_from_user(&xha, argp, sizeof(xha))) 6900 goto out; 6901 r = kvm_xen_hvm_get_attr(kvm, &xha); 6902 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 6903 r = -EFAULT; 6904 break; 6905 } 6906 case KVM_XEN_HVM_SET_ATTR: { 6907 struct kvm_xen_hvm_attr xha; 6908 6909 r = -EFAULT; 6910 if (copy_from_user(&xha, argp, sizeof(xha))) 6911 goto out; 6912 r = kvm_xen_hvm_set_attr(kvm, &xha); 6913 break; 6914 } 6915 case KVM_XEN_HVM_EVTCHN_SEND: { 6916 struct kvm_irq_routing_xen_evtchn uxe; 6917 6918 r = -EFAULT; 6919 if (copy_from_user(&uxe, argp, sizeof(uxe))) 6920 goto out; 6921 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 6922 break; 6923 } 6924 #endif 6925 case KVM_SET_CLOCK: 6926 r = kvm_vm_ioctl_set_clock(kvm, argp); 6927 break; 6928 case KVM_GET_CLOCK: 6929 r = kvm_vm_ioctl_get_clock(kvm, argp); 6930 break; 6931 case KVM_SET_TSC_KHZ: { 6932 u32 user_tsc_khz; 6933 6934 r = -EINVAL; 6935 user_tsc_khz = (u32)arg; 6936 6937 if (kvm_caps.has_tsc_control && 6938 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 6939 goto out; 6940 6941 if (user_tsc_khz == 0) 6942 user_tsc_khz = tsc_khz; 6943 6944 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 6945 r = 0; 6946 6947 goto out; 6948 } 6949 case KVM_GET_TSC_KHZ: { 6950 r = READ_ONCE(kvm->arch.default_tsc_khz); 6951 goto out; 6952 } 6953 case KVM_MEMORY_ENCRYPT_OP: { 6954 r = -ENOTTY; 6955 if (!kvm_x86_ops.mem_enc_ioctl) 6956 goto out; 6957 6958 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp); 6959 break; 6960 } 6961 case KVM_MEMORY_ENCRYPT_REG_REGION: { 6962 struct kvm_enc_region region; 6963 6964 r = -EFAULT; 6965 if (copy_from_user(®ion, argp, sizeof(region))) 6966 goto out; 6967 6968 r = -ENOTTY; 6969 if (!kvm_x86_ops.mem_enc_register_region) 6970 goto out; 6971 6972 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion); 6973 break; 6974 } 6975 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 6976 struct kvm_enc_region region; 6977 6978 r = -EFAULT; 6979 if (copy_from_user(®ion, argp, sizeof(region))) 6980 goto out; 6981 6982 r = -ENOTTY; 6983 if (!kvm_x86_ops.mem_enc_unregister_region) 6984 goto out; 6985 6986 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion); 6987 break; 6988 } 6989 case KVM_HYPERV_EVENTFD: { 6990 struct kvm_hyperv_eventfd hvevfd; 6991 6992 r = -EFAULT; 6993 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 6994 goto out; 6995 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 6996 break; 6997 } 6998 case KVM_SET_PMU_EVENT_FILTER: 6999 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 7000 break; 7001 case KVM_X86_SET_MSR_FILTER: { 7002 struct kvm_msr_filter __user *user_msr_filter = argp; 7003 struct kvm_msr_filter filter; 7004 7005 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 7006 return -EFAULT; 7007 7008 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 7009 break; 7010 } 7011 default: 7012 r = -ENOTTY; 7013 } 7014 out: 7015 return r; 7016 } 7017 7018 static void kvm_init_msr_list(void) 7019 { 7020 u32 dummy[2]; 7021 unsigned i; 7022 7023 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3, 7024 "Please update the fixed PMCs in msrs_to_saved_all[]"); 7025 7026 num_msrs_to_save = 0; 7027 num_emulated_msrs = 0; 7028 num_msr_based_features = 0; 7029 7030 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) { 7031 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0) 7032 continue; 7033 7034 /* 7035 * Even MSRs that are valid in the host may not be exposed 7036 * to the guests in some cases. 7037 */ 7038 switch (msrs_to_save_all[i]) { 7039 case MSR_IA32_BNDCFGS: 7040 if (!kvm_mpx_supported()) 7041 continue; 7042 break; 7043 case MSR_TSC_AUX: 7044 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 7045 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 7046 continue; 7047 break; 7048 case MSR_IA32_UMWAIT_CONTROL: 7049 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 7050 continue; 7051 break; 7052 case MSR_IA32_RTIT_CTL: 7053 case MSR_IA32_RTIT_STATUS: 7054 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 7055 continue; 7056 break; 7057 case MSR_IA32_RTIT_CR3_MATCH: 7058 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7059 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 7060 continue; 7061 break; 7062 case MSR_IA32_RTIT_OUTPUT_BASE: 7063 case MSR_IA32_RTIT_OUTPUT_MASK: 7064 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7065 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 7066 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 7067 continue; 7068 break; 7069 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 7070 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7071 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >= 7072 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2) 7073 continue; 7074 break; 7075 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX: 7076 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >= 7077 min(KVM_INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp)) 7078 continue; 7079 break; 7080 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX: 7081 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >= 7082 min(KVM_INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp)) 7083 continue; 7084 break; 7085 case MSR_IA32_XFD: 7086 case MSR_IA32_XFD_ERR: 7087 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 7088 continue; 7089 break; 7090 default: 7091 break; 7092 } 7093 7094 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i]; 7095 } 7096 7097 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 7098 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 7099 continue; 7100 7101 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 7102 } 7103 7104 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) { 7105 struct kvm_msr_entry msr; 7106 7107 msr.index = msr_based_features_all[i]; 7108 if (kvm_get_msr_feature(&msr)) 7109 continue; 7110 7111 msr_based_features[num_msr_based_features++] = msr_based_features_all[i]; 7112 } 7113 } 7114 7115 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 7116 const void *v) 7117 { 7118 int handled = 0; 7119 int n; 7120 7121 do { 7122 n = min(len, 8); 7123 if (!(lapic_in_kernel(vcpu) && 7124 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 7125 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 7126 break; 7127 handled += n; 7128 addr += n; 7129 len -= n; 7130 v += n; 7131 } while (len); 7132 7133 return handled; 7134 } 7135 7136 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 7137 { 7138 int handled = 0; 7139 int n; 7140 7141 do { 7142 n = min(len, 8); 7143 if (!(lapic_in_kernel(vcpu) && 7144 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 7145 addr, n, v)) 7146 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 7147 break; 7148 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7149 handled += n; 7150 addr += n; 7151 len -= n; 7152 v += n; 7153 } while (len); 7154 7155 return handled; 7156 } 7157 7158 void kvm_set_segment(struct kvm_vcpu *vcpu, 7159 struct kvm_segment *var, int seg) 7160 { 7161 static_call(kvm_x86_set_segment)(vcpu, var, seg); 7162 } 7163 7164 void kvm_get_segment(struct kvm_vcpu *vcpu, 7165 struct kvm_segment *var, int seg) 7166 { 7167 static_call(kvm_x86_get_segment)(vcpu, var, seg); 7168 } 7169 7170 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7171 struct x86_exception *exception) 7172 { 7173 struct kvm_mmu *mmu = vcpu->arch.mmu; 7174 gpa_t t_gpa; 7175 7176 BUG_ON(!mmu_is_nested(vcpu)); 7177 7178 /* NPT walks are always user-walks */ 7179 access |= PFERR_USER_MASK; 7180 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7181 7182 return t_gpa; 7183 } 7184 7185 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7186 struct x86_exception *exception) 7187 { 7188 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7189 7190 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7191 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7192 } 7193 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 7194 7195 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7196 struct x86_exception *exception) 7197 { 7198 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7199 7200 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7201 access |= PFERR_WRITE_MASK; 7202 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7203 } 7204 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 7205 7206 /* uses this to access any guest's mapped memory without checking CPL */ 7207 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7208 struct x86_exception *exception) 7209 { 7210 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7211 7212 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7213 } 7214 7215 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7216 struct kvm_vcpu *vcpu, u64 access, 7217 struct x86_exception *exception) 7218 { 7219 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7220 void *data = val; 7221 int r = X86EMUL_CONTINUE; 7222 7223 while (bytes) { 7224 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7225 unsigned offset = addr & (PAGE_SIZE-1); 7226 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7227 int ret; 7228 7229 if (gpa == INVALID_GPA) 7230 return X86EMUL_PROPAGATE_FAULT; 7231 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7232 offset, toread); 7233 if (ret < 0) { 7234 r = X86EMUL_IO_NEEDED; 7235 goto out; 7236 } 7237 7238 bytes -= toread; 7239 data += toread; 7240 addr += toread; 7241 } 7242 out: 7243 return r; 7244 } 7245 7246 /* used for instruction fetching */ 7247 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7248 gva_t addr, void *val, unsigned int bytes, 7249 struct x86_exception *exception) 7250 { 7251 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7252 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7253 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7254 unsigned offset; 7255 int ret; 7256 7257 /* Inline kvm_read_guest_virt_helper for speed. */ 7258 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7259 exception); 7260 if (unlikely(gpa == INVALID_GPA)) 7261 return X86EMUL_PROPAGATE_FAULT; 7262 7263 offset = addr & (PAGE_SIZE-1); 7264 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7265 bytes = (unsigned)PAGE_SIZE - offset; 7266 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7267 offset, bytes); 7268 if (unlikely(ret < 0)) 7269 return X86EMUL_IO_NEEDED; 7270 7271 return X86EMUL_CONTINUE; 7272 } 7273 7274 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7275 gva_t addr, void *val, unsigned int bytes, 7276 struct x86_exception *exception) 7277 { 7278 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7279 7280 /* 7281 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7282 * is returned, but our callers are not ready for that and they blindly 7283 * call kvm_inject_page_fault. Ensure that they at least do not leak 7284 * uninitialized kernel stack memory into cr2 and error code. 7285 */ 7286 memset(exception, 0, sizeof(*exception)); 7287 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7288 exception); 7289 } 7290 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 7291 7292 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7293 gva_t addr, void *val, unsigned int bytes, 7294 struct x86_exception *exception, bool system) 7295 { 7296 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7297 u64 access = 0; 7298 7299 if (system) 7300 access |= PFERR_IMPLICIT_ACCESS; 7301 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7302 access |= PFERR_USER_MASK; 7303 7304 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7305 } 7306 7307 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7308 struct kvm_vcpu *vcpu, u64 access, 7309 struct x86_exception *exception) 7310 { 7311 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7312 void *data = val; 7313 int r = X86EMUL_CONTINUE; 7314 7315 while (bytes) { 7316 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7317 unsigned offset = addr & (PAGE_SIZE-1); 7318 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7319 int ret; 7320 7321 if (gpa == INVALID_GPA) 7322 return X86EMUL_PROPAGATE_FAULT; 7323 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7324 if (ret < 0) { 7325 r = X86EMUL_IO_NEEDED; 7326 goto out; 7327 } 7328 7329 bytes -= towrite; 7330 data += towrite; 7331 addr += towrite; 7332 } 7333 out: 7334 return r; 7335 } 7336 7337 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7338 unsigned int bytes, struct x86_exception *exception, 7339 bool system) 7340 { 7341 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7342 u64 access = PFERR_WRITE_MASK; 7343 7344 if (system) 7345 access |= PFERR_IMPLICIT_ACCESS; 7346 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7347 access |= PFERR_USER_MASK; 7348 7349 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7350 access, exception); 7351 } 7352 7353 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7354 unsigned int bytes, struct x86_exception *exception) 7355 { 7356 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7357 vcpu->arch.l1tf_flush_l1d = true; 7358 7359 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7360 PFERR_WRITE_MASK, exception); 7361 } 7362 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7363 7364 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7365 void *insn, int insn_len) 7366 { 7367 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type, 7368 insn, insn_len); 7369 } 7370 7371 int handle_ud(struct kvm_vcpu *vcpu) 7372 { 7373 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7374 int fep_flags = READ_ONCE(force_emulation_prefix); 7375 int emul_type = EMULTYPE_TRAP_UD; 7376 char sig[5]; /* ud2; .ascii "kvm" */ 7377 struct x86_exception e; 7378 7379 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0))) 7380 return 1; 7381 7382 if (fep_flags && 7383 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7384 sig, sizeof(sig), &e) == 0 && 7385 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7386 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) 7387 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); 7388 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7389 emul_type = EMULTYPE_TRAP_UD_FORCED; 7390 } 7391 7392 return kvm_emulate_instruction(vcpu, emul_type); 7393 } 7394 EXPORT_SYMBOL_GPL(handle_ud); 7395 7396 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7397 gpa_t gpa, bool write) 7398 { 7399 /* For APIC access vmexit */ 7400 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7401 return 1; 7402 7403 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7404 trace_vcpu_match_mmio(gva, gpa, write, true); 7405 return 1; 7406 } 7407 7408 return 0; 7409 } 7410 7411 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7412 gpa_t *gpa, struct x86_exception *exception, 7413 bool write) 7414 { 7415 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7416 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7417 | (write ? PFERR_WRITE_MASK : 0); 7418 7419 /* 7420 * currently PKRU is only applied to ept enabled guest so 7421 * there is no pkey in EPT page table for L1 guest or EPT 7422 * shadow page table for L2 guest. 7423 */ 7424 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7425 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7426 vcpu->arch.mmio_access, 0, access))) { 7427 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7428 (gva & (PAGE_SIZE - 1)); 7429 trace_vcpu_match_mmio(gva, *gpa, write, false); 7430 return 1; 7431 } 7432 7433 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7434 7435 if (*gpa == INVALID_GPA) 7436 return -1; 7437 7438 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7439 } 7440 7441 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7442 const void *val, int bytes) 7443 { 7444 int ret; 7445 7446 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7447 if (ret < 0) 7448 return 0; 7449 kvm_page_track_write(vcpu, gpa, val, bytes); 7450 return 1; 7451 } 7452 7453 struct read_write_emulator_ops { 7454 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7455 int bytes); 7456 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7457 void *val, int bytes); 7458 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7459 int bytes, void *val); 7460 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7461 void *val, int bytes); 7462 bool write; 7463 }; 7464 7465 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7466 { 7467 if (vcpu->mmio_read_completed) { 7468 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7469 vcpu->mmio_fragments[0].gpa, val); 7470 vcpu->mmio_read_completed = 0; 7471 return 1; 7472 } 7473 7474 return 0; 7475 } 7476 7477 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7478 void *val, int bytes) 7479 { 7480 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7481 } 7482 7483 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7484 void *val, int bytes) 7485 { 7486 return emulator_write_phys(vcpu, gpa, val, bytes); 7487 } 7488 7489 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7490 { 7491 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7492 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7493 } 7494 7495 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7496 void *val, int bytes) 7497 { 7498 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7499 return X86EMUL_IO_NEEDED; 7500 } 7501 7502 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7503 void *val, int bytes) 7504 { 7505 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7506 7507 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7508 return X86EMUL_CONTINUE; 7509 } 7510 7511 static const struct read_write_emulator_ops read_emultor = { 7512 .read_write_prepare = read_prepare, 7513 .read_write_emulate = read_emulate, 7514 .read_write_mmio = vcpu_mmio_read, 7515 .read_write_exit_mmio = read_exit_mmio, 7516 }; 7517 7518 static const struct read_write_emulator_ops write_emultor = { 7519 .read_write_emulate = write_emulate, 7520 .read_write_mmio = write_mmio, 7521 .read_write_exit_mmio = write_exit_mmio, 7522 .write = true, 7523 }; 7524 7525 static int emulator_read_write_onepage(unsigned long addr, void *val, 7526 unsigned int bytes, 7527 struct x86_exception *exception, 7528 struct kvm_vcpu *vcpu, 7529 const struct read_write_emulator_ops *ops) 7530 { 7531 gpa_t gpa; 7532 int handled, ret; 7533 bool write = ops->write; 7534 struct kvm_mmio_fragment *frag; 7535 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7536 7537 /* 7538 * If the exit was due to a NPF we may already have a GPA. 7539 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7540 * Note, this cannot be used on string operations since string 7541 * operation using rep will only have the initial GPA from the NPF 7542 * occurred. 7543 */ 7544 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7545 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7546 gpa = ctxt->gpa_val; 7547 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7548 } else { 7549 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7550 if (ret < 0) 7551 return X86EMUL_PROPAGATE_FAULT; 7552 } 7553 7554 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7555 return X86EMUL_CONTINUE; 7556 7557 /* 7558 * Is this MMIO handled locally? 7559 */ 7560 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7561 if (handled == bytes) 7562 return X86EMUL_CONTINUE; 7563 7564 gpa += handled; 7565 bytes -= handled; 7566 val += handled; 7567 7568 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7569 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7570 frag->gpa = gpa; 7571 frag->data = val; 7572 frag->len = bytes; 7573 return X86EMUL_CONTINUE; 7574 } 7575 7576 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7577 unsigned long addr, 7578 void *val, unsigned int bytes, 7579 struct x86_exception *exception, 7580 const struct read_write_emulator_ops *ops) 7581 { 7582 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7583 gpa_t gpa; 7584 int rc; 7585 7586 if (ops->read_write_prepare && 7587 ops->read_write_prepare(vcpu, val, bytes)) 7588 return X86EMUL_CONTINUE; 7589 7590 vcpu->mmio_nr_fragments = 0; 7591 7592 /* Crossing a page boundary? */ 7593 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7594 int now; 7595 7596 now = -addr & ~PAGE_MASK; 7597 rc = emulator_read_write_onepage(addr, val, now, exception, 7598 vcpu, ops); 7599 7600 if (rc != X86EMUL_CONTINUE) 7601 return rc; 7602 addr += now; 7603 if (ctxt->mode != X86EMUL_MODE_PROT64) 7604 addr = (u32)addr; 7605 val += now; 7606 bytes -= now; 7607 } 7608 7609 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7610 vcpu, ops); 7611 if (rc != X86EMUL_CONTINUE) 7612 return rc; 7613 7614 if (!vcpu->mmio_nr_fragments) 7615 return rc; 7616 7617 gpa = vcpu->mmio_fragments[0].gpa; 7618 7619 vcpu->mmio_needed = 1; 7620 vcpu->mmio_cur_fragment = 0; 7621 7622 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7623 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7624 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7625 vcpu->run->mmio.phys_addr = gpa; 7626 7627 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 7628 } 7629 7630 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 7631 unsigned long addr, 7632 void *val, 7633 unsigned int bytes, 7634 struct x86_exception *exception) 7635 { 7636 return emulator_read_write(ctxt, addr, val, bytes, 7637 exception, &read_emultor); 7638 } 7639 7640 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 7641 unsigned long addr, 7642 const void *val, 7643 unsigned int bytes, 7644 struct x86_exception *exception) 7645 { 7646 return emulator_read_write(ctxt, addr, (void *)val, bytes, 7647 exception, &write_emultor); 7648 } 7649 7650 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 7651 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 7652 7653 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 7654 unsigned long addr, 7655 const void *old, 7656 const void *new, 7657 unsigned int bytes, 7658 struct x86_exception *exception) 7659 { 7660 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7661 u64 page_line_mask; 7662 unsigned long hva; 7663 gpa_t gpa; 7664 int r; 7665 7666 /* guests cmpxchg8b have to be emulated atomically */ 7667 if (bytes > 8 || (bytes & (bytes - 1))) 7668 goto emul_write; 7669 7670 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 7671 7672 if (gpa == INVALID_GPA || 7673 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7674 goto emul_write; 7675 7676 /* 7677 * Emulate the atomic as a straight write to avoid #AC if SLD is 7678 * enabled in the host and the access splits a cache line. 7679 */ 7680 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 7681 page_line_mask = ~(cache_line_size() - 1); 7682 else 7683 page_line_mask = PAGE_MASK; 7684 7685 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 7686 goto emul_write; 7687 7688 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 7689 if (kvm_is_error_hva(hva)) 7690 goto emul_write; 7691 7692 hva += offset_in_page(gpa); 7693 7694 switch (bytes) { 7695 case 1: 7696 r = emulator_try_cmpxchg_user(u8, hva, old, new); 7697 break; 7698 case 2: 7699 r = emulator_try_cmpxchg_user(u16, hva, old, new); 7700 break; 7701 case 4: 7702 r = emulator_try_cmpxchg_user(u32, hva, old, new); 7703 break; 7704 case 8: 7705 r = emulator_try_cmpxchg_user(u64, hva, old, new); 7706 break; 7707 default: 7708 BUG(); 7709 } 7710 7711 if (r < 0) 7712 return X86EMUL_UNHANDLEABLE; 7713 if (r) 7714 return X86EMUL_CMPXCHG_FAILED; 7715 7716 kvm_page_track_write(vcpu, gpa, new, bytes); 7717 7718 return X86EMUL_CONTINUE; 7719 7720 emul_write: 7721 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 7722 7723 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 7724 } 7725 7726 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 7727 unsigned short port, void *data, 7728 unsigned int count, bool in) 7729 { 7730 unsigned i; 7731 int r; 7732 7733 WARN_ON_ONCE(vcpu->arch.pio.count); 7734 for (i = 0; i < count; i++) { 7735 if (in) 7736 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 7737 else 7738 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 7739 7740 if (r) { 7741 if (i == 0) 7742 goto userspace_io; 7743 7744 /* 7745 * Userspace must have unregistered the device while PIO 7746 * was running. Drop writes / read as 0. 7747 */ 7748 if (in) 7749 memset(data, 0, size * (count - i)); 7750 break; 7751 } 7752 7753 data += size; 7754 } 7755 return 1; 7756 7757 userspace_io: 7758 vcpu->arch.pio.port = port; 7759 vcpu->arch.pio.in = in; 7760 vcpu->arch.pio.count = count; 7761 vcpu->arch.pio.size = size; 7762 7763 if (in) 7764 memset(vcpu->arch.pio_data, 0, size * count); 7765 else 7766 memcpy(vcpu->arch.pio_data, data, size * count); 7767 7768 vcpu->run->exit_reason = KVM_EXIT_IO; 7769 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 7770 vcpu->run->io.size = size; 7771 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 7772 vcpu->run->io.count = count; 7773 vcpu->run->io.port = port; 7774 return 0; 7775 } 7776 7777 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 7778 unsigned short port, void *val, unsigned int count) 7779 { 7780 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 7781 if (r) 7782 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 7783 7784 return r; 7785 } 7786 7787 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 7788 { 7789 int size = vcpu->arch.pio.size; 7790 unsigned int count = vcpu->arch.pio.count; 7791 memcpy(val, vcpu->arch.pio_data, size * count); 7792 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 7793 vcpu->arch.pio.count = 0; 7794 } 7795 7796 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 7797 int size, unsigned short port, void *val, 7798 unsigned int count) 7799 { 7800 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7801 if (vcpu->arch.pio.count) { 7802 /* 7803 * Complete a previous iteration that required userspace I/O. 7804 * Note, @count isn't guaranteed to match pio.count as userspace 7805 * can modify ECX before rerunning the vCPU. Ignore any such 7806 * shenanigans as KVM doesn't support modifying the rep count, 7807 * and the emulator ensures @count doesn't overflow the buffer. 7808 */ 7809 complete_emulator_pio_in(vcpu, val); 7810 return 1; 7811 } 7812 7813 return emulator_pio_in(vcpu, size, port, val, count); 7814 } 7815 7816 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 7817 unsigned short port, const void *val, 7818 unsigned int count) 7819 { 7820 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 7821 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 7822 } 7823 7824 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 7825 int size, unsigned short port, 7826 const void *val, unsigned int count) 7827 { 7828 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 7829 } 7830 7831 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 7832 { 7833 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 7834 } 7835 7836 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 7837 { 7838 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 7839 } 7840 7841 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 7842 { 7843 if (!need_emulate_wbinvd(vcpu)) 7844 return X86EMUL_CONTINUE; 7845 7846 if (static_call(kvm_x86_has_wbinvd_exit)()) { 7847 int cpu = get_cpu(); 7848 7849 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 7850 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 7851 wbinvd_ipi, NULL, 1); 7852 put_cpu(); 7853 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 7854 } else 7855 wbinvd(); 7856 return X86EMUL_CONTINUE; 7857 } 7858 7859 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 7860 { 7861 kvm_emulate_wbinvd_noskip(vcpu); 7862 return kvm_skip_emulated_instruction(vcpu); 7863 } 7864 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 7865 7866 7867 7868 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 7869 { 7870 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 7871 } 7872 7873 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 7874 unsigned long *dest) 7875 { 7876 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 7877 } 7878 7879 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 7880 unsigned long value) 7881 { 7882 7883 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 7884 } 7885 7886 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 7887 { 7888 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 7889 } 7890 7891 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 7892 { 7893 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7894 unsigned long value; 7895 7896 switch (cr) { 7897 case 0: 7898 value = kvm_read_cr0(vcpu); 7899 break; 7900 case 2: 7901 value = vcpu->arch.cr2; 7902 break; 7903 case 3: 7904 value = kvm_read_cr3(vcpu); 7905 break; 7906 case 4: 7907 value = kvm_read_cr4(vcpu); 7908 break; 7909 case 8: 7910 value = kvm_get_cr8(vcpu); 7911 break; 7912 default: 7913 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7914 return 0; 7915 } 7916 7917 return value; 7918 } 7919 7920 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 7921 { 7922 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7923 int res = 0; 7924 7925 switch (cr) { 7926 case 0: 7927 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 7928 break; 7929 case 2: 7930 vcpu->arch.cr2 = val; 7931 break; 7932 case 3: 7933 res = kvm_set_cr3(vcpu, val); 7934 break; 7935 case 4: 7936 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 7937 break; 7938 case 8: 7939 res = kvm_set_cr8(vcpu, val); 7940 break; 7941 default: 7942 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7943 res = -1; 7944 } 7945 7946 return res; 7947 } 7948 7949 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 7950 { 7951 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 7952 } 7953 7954 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7955 { 7956 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 7957 } 7958 7959 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7960 { 7961 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 7962 } 7963 7964 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7965 { 7966 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 7967 } 7968 7969 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7970 { 7971 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 7972 } 7973 7974 static unsigned long emulator_get_cached_segment_base( 7975 struct x86_emulate_ctxt *ctxt, int seg) 7976 { 7977 return get_segment_base(emul_to_vcpu(ctxt), seg); 7978 } 7979 7980 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 7981 struct desc_struct *desc, u32 *base3, 7982 int seg) 7983 { 7984 struct kvm_segment var; 7985 7986 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 7987 *selector = var.selector; 7988 7989 if (var.unusable) { 7990 memset(desc, 0, sizeof(*desc)); 7991 if (base3) 7992 *base3 = 0; 7993 return false; 7994 } 7995 7996 if (var.g) 7997 var.limit >>= 12; 7998 set_desc_limit(desc, var.limit); 7999 set_desc_base(desc, (unsigned long)var.base); 8000 #ifdef CONFIG_X86_64 8001 if (base3) 8002 *base3 = var.base >> 32; 8003 #endif 8004 desc->type = var.type; 8005 desc->s = var.s; 8006 desc->dpl = var.dpl; 8007 desc->p = var.present; 8008 desc->avl = var.avl; 8009 desc->l = var.l; 8010 desc->d = var.db; 8011 desc->g = var.g; 8012 8013 return true; 8014 } 8015 8016 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 8017 struct desc_struct *desc, u32 base3, 8018 int seg) 8019 { 8020 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8021 struct kvm_segment var; 8022 8023 var.selector = selector; 8024 var.base = get_desc_base(desc); 8025 #ifdef CONFIG_X86_64 8026 var.base |= ((u64)base3) << 32; 8027 #endif 8028 var.limit = get_desc_limit(desc); 8029 if (desc->g) 8030 var.limit = (var.limit << 12) | 0xfff; 8031 var.type = desc->type; 8032 var.dpl = desc->dpl; 8033 var.db = desc->d; 8034 var.s = desc->s; 8035 var.l = desc->l; 8036 var.g = desc->g; 8037 var.avl = desc->avl; 8038 var.present = desc->p; 8039 var.unusable = !var.present; 8040 var.padding = 0; 8041 8042 kvm_set_segment(vcpu, &var, seg); 8043 return; 8044 } 8045 8046 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8047 u32 msr_index, u64 *pdata) 8048 { 8049 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8050 int r; 8051 8052 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 8053 if (r < 0) 8054 return X86EMUL_UNHANDLEABLE; 8055 8056 if (r) { 8057 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 8058 complete_emulated_rdmsr, r)) 8059 return X86EMUL_IO_NEEDED; 8060 8061 trace_kvm_msr_read_ex(msr_index); 8062 return X86EMUL_PROPAGATE_FAULT; 8063 } 8064 8065 trace_kvm_msr_read(msr_index, *pdata); 8066 return X86EMUL_CONTINUE; 8067 } 8068 8069 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8070 u32 msr_index, u64 data) 8071 { 8072 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8073 int r; 8074 8075 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 8076 if (r < 0) 8077 return X86EMUL_UNHANDLEABLE; 8078 8079 if (r) { 8080 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 8081 complete_emulated_msr_access, r)) 8082 return X86EMUL_IO_NEEDED; 8083 8084 trace_kvm_msr_write_ex(msr_index, data); 8085 return X86EMUL_PROPAGATE_FAULT; 8086 } 8087 8088 trace_kvm_msr_write(msr_index, data); 8089 return X86EMUL_CONTINUE; 8090 } 8091 8092 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 8093 u32 msr_index, u64 *pdata) 8094 { 8095 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 8096 } 8097 8098 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 8099 u32 pmc) 8100 { 8101 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc)) 8102 return 0; 8103 return -EINVAL; 8104 } 8105 8106 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 8107 u32 pmc, u64 *pdata) 8108 { 8109 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 8110 } 8111 8112 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 8113 { 8114 emul_to_vcpu(ctxt)->arch.halt_request = 1; 8115 } 8116 8117 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 8118 struct x86_instruction_info *info, 8119 enum x86_intercept_stage stage) 8120 { 8121 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 8122 &ctxt->exception); 8123 } 8124 8125 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8126 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8127 bool exact_only) 8128 { 8129 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8130 } 8131 8132 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt) 8133 { 8134 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM); 8135 } 8136 8137 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8138 { 8139 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8140 } 8141 8142 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8143 { 8144 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8145 } 8146 8147 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8148 { 8149 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8150 } 8151 8152 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8153 { 8154 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8155 } 8156 8157 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8158 { 8159 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8160 } 8161 8162 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8163 { 8164 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8165 } 8166 8167 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 8168 { 8169 return emul_to_vcpu(ctxt)->arch.hflags; 8170 } 8171 8172 #ifndef CONFIG_KVM_SMM 8173 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt) 8174 { 8175 WARN_ON_ONCE(1); 8176 return X86EMUL_UNHANDLEABLE; 8177 } 8178 #endif 8179 8180 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8181 { 8182 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8183 } 8184 8185 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8186 { 8187 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8188 } 8189 8190 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8191 { 8192 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8193 8194 if (!kvm->vm_bugged) 8195 kvm_vm_bugged(kvm); 8196 } 8197 8198 static const struct x86_emulate_ops emulate_ops = { 8199 .vm_bugged = emulator_vm_bugged, 8200 .read_gpr = emulator_read_gpr, 8201 .write_gpr = emulator_write_gpr, 8202 .read_std = emulator_read_std, 8203 .write_std = emulator_write_std, 8204 .fetch = kvm_fetch_guest_virt, 8205 .read_emulated = emulator_read_emulated, 8206 .write_emulated = emulator_write_emulated, 8207 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8208 .invlpg = emulator_invlpg, 8209 .pio_in_emulated = emulator_pio_in_emulated, 8210 .pio_out_emulated = emulator_pio_out_emulated, 8211 .get_segment = emulator_get_segment, 8212 .set_segment = emulator_set_segment, 8213 .get_cached_segment_base = emulator_get_cached_segment_base, 8214 .get_gdt = emulator_get_gdt, 8215 .get_idt = emulator_get_idt, 8216 .set_gdt = emulator_set_gdt, 8217 .set_idt = emulator_set_idt, 8218 .get_cr = emulator_get_cr, 8219 .set_cr = emulator_set_cr, 8220 .cpl = emulator_get_cpl, 8221 .get_dr = emulator_get_dr, 8222 .set_dr = emulator_set_dr, 8223 .set_msr_with_filter = emulator_set_msr_with_filter, 8224 .get_msr_with_filter = emulator_get_msr_with_filter, 8225 .get_msr = emulator_get_msr, 8226 .check_pmc = emulator_check_pmc, 8227 .read_pmc = emulator_read_pmc, 8228 .halt = emulator_halt, 8229 .wbinvd = emulator_wbinvd, 8230 .fix_hypercall = emulator_fix_hypercall, 8231 .intercept = emulator_intercept, 8232 .get_cpuid = emulator_get_cpuid, 8233 .guest_has_long_mode = emulator_guest_has_long_mode, 8234 .guest_has_movbe = emulator_guest_has_movbe, 8235 .guest_has_fxsr = emulator_guest_has_fxsr, 8236 .guest_has_rdpid = emulator_guest_has_rdpid, 8237 .set_nmi_mask = emulator_set_nmi_mask, 8238 .get_hflags = emulator_get_hflags, 8239 .leave_smm = emulator_leave_smm, 8240 .triple_fault = emulator_triple_fault, 8241 .set_xcr = emulator_set_xcr, 8242 }; 8243 8244 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8245 { 8246 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8247 /* 8248 * an sti; sti; sequence only disable interrupts for the first 8249 * instruction. So, if the last instruction, be it emulated or 8250 * not, left the system with the INT_STI flag enabled, it 8251 * means that the last instruction is an sti. We should not 8252 * leave the flag on in this case. The same goes for mov ss 8253 */ 8254 if (int_shadow & mask) 8255 mask = 0; 8256 if (unlikely(int_shadow || mask)) { 8257 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 8258 if (!mask) 8259 kvm_make_request(KVM_REQ_EVENT, vcpu); 8260 } 8261 } 8262 8263 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 8264 { 8265 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8266 8267 if (ctxt->exception.vector == PF_VECTOR) 8268 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8269 else if (ctxt->exception.error_code_valid) 8270 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8271 ctxt->exception.error_code); 8272 else 8273 kvm_queue_exception(vcpu, ctxt->exception.vector); 8274 } 8275 8276 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8277 { 8278 struct x86_emulate_ctxt *ctxt; 8279 8280 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8281 if (!ctxt) { 8282 pr_err("kvm: failed to allocate vcpu's emulator\n"); 8283 return NULL; 8284 } 8285 8286 ctxt->vcpu = vcpu; 8287 ctxt->ops = &emulate_ops; 8288 vcpu->arch.emulate_ctxt = ctxt; 8289 8290 return ctxt; 8291 } 8292 8293 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8294 { 8295 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8296 int cs_db, cs_l; 8297 8298 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8299 8300 ctxt->gpa_available = false; 8301 ctxt->eflags = kvm_get_rflags(vcpu); 8302 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8303 8304 ctxt->eip = kvm_rip_read(vcpu); 8305 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8306 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8307 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8308 cs_db ? X86EMUL_MODE_PROT32 : 8309 X86EMUL_MODE_PROT16; 8310 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 8311 8312 ctxt->interruptibility = 0; 8313 ctxt->have_exception = false; 8314 ctxt->exception.vector = -1; 8315 ctxt->perm_ok = false; 8316 8317 init_decode_cache(ctxt); 8318 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8319 } 8320 8321 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 8322 { 8323 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8324 int ret; 8325 8326 init_emulate_ctxt(vcpu); 8327 8328 ctxt->op_bytes = 2; 8329 ctxt->ad_bytes = 2; 8330 ctxt->_eip = ctxt->eip + inc_eip; 8331 ret = emulate_int_real(ctxt, irq); 8332 8333 if (ret != X86EMUL_CONTINUE) { 8334 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8335 } else { 8336 ctxt->eip = ctxt->_eip; 8337 kvm_rip_write(vcpu, ctxt->eip); 8338 kvm_set_rflags(vcpu, ctxt->eflags); 8339 } 8340 } 8341 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8342 8343 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8344 u8 ndata, u8 *insn_bytes, u8 insn_size) 8345 { 8346 struct kvm_run *run = vcpu->run; 8347 u64 info[5]; 8348 u8 info_start; 8349 8350 /* 8351 * Zero the whole array used to retrieve the exit info, as casting to 8352 * u32 for select entries will leave some chunks uninitialized. 8353 */ 8354 memset(&info, 0, sizeof(info)); 8355 8356 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], 8357 &info[2], (u32 *)&info[3], 8358 (u32 *)&info[4]); 8359 8360 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8361 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8362 8363 /* 8364 * There's currently space for 13 entries, but 5 are used for the exit 8365 * reason and info. Restrict to 4 to reduce the maintenance burden 8366 * when expanding kvm_run.emulation_failure in the future. 8367 */ 8368 if (WARN_ON_ONCE(ndata > 4)) 8369 ndata = 4; 8370 8371 /* Always include the flags as a 'data' entry. */ 8372 info_start = 1; 8373 run->emulation_failure.flags = 0; 8374 8375 if (insn_size) { 8376 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8377 sizeof(run->emulation_failure.insn_bytes) != 16)); 8378 info_start += 2; 8379 run->emulation_failure.flags |= 8380 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8381 run->emulation_failure.insn_size = insn_size; 8382 memset(run->emulation_failure.insn_bytes, 0x90, 8383 sizeof(run->emulation_failure.insn_bytes)); 8384 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8385 } 8386 8387 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8388 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8389 ndata * sizeof(data[0])); 8390 8391 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8392 } 8393 8394 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8395 { 8396 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8397 8398 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8399 ctxt->fetch.end - ctxt->fetch.data); 8400 } 8401 8402 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8403 u8 ndata) 8404 { 8405 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8406 } 8407 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8408 8409 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8410 { 8411 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8412 } 8413 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8414 8415 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8416 { 8417 struct kvm *kvm = vcpu->kvm; 8418 8419 ++vcpu->stat.insn_emulation_fail; 8420 trace_kvm_emulate_insn_failed(vcpu); 8421 8422 if (emulation_type & EMULTYPE_VMWARE_GP) { 8423 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8424 return 1; 8425 } 8426 8427 if (kvm->arch.exit_on_emulation_error || 8428 (emulation_type & EMULTYPE_SKIP)) { 8429 prepare_emulation_ctxt_failure_exit(vcpu); 8430 return 0; 8431 } 8432 8433 kvm_queue_exception(vcpu, UD_VECTOR); 8434 8435 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 8436 prepare_emulation_ctxt_failure_exit(vcpu); 8437 return 0; 8438 } 8439 8440 return 1; 8441 } 8442 8443 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8444 bool write_fault_to_shadow_pgtable, 8445 int emulation_type) 8446 { 8447 gpa_t gpa = cr2_or_gpa; 8448 kvm_pfn_t pfn; 8449 8450 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8451 return false; 8452 8453 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8454 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8455 return false; 8456 8457 if (!vcpu->arch.mmu->root_role.direct) { 8458 /* 8459 * Write permission should be allowed since only 8460 * write access need to be emulated. 8461 */ 8462 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8463 8464 /* 8465 * If the mapping is invalid in guest, let cpu retry 8466 * it to generate fault. 8467 */ 8468 if (gpa == INVALID_GPA) 8469 return true; 8470 } 8471 8472 /* 8473 * Do not retry the unhandleable instruction if it faults on the 8474 * readonly host memory, otherwise it will goto a infinite loop: 8475 * retry instruction -> write #PF -> emulation fail -> retry 8476 * instruction -> ... 8477 */ 8478 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 8479 8480 /* 8481 * If the instruction failed on the error pfn, it can not be fixed, 8482 * report the error to userspace. 8483 */ 8484 if (is_error_noslot_pfn(pfn)) 8485 return false; 8486 8487 kvm_release_pfn_clean(pfn); 8488 8489 /* The instructions are well-emulated on direct mmu. */ 8490 if (vcpu->arch.mmu->root_role.direct) { 8491 unsigned int indirect_shadow_pages; 8492 8493 write_lock(&vcpu->kvm->mmu_lock); 8494 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 8495 write_unlock(&vcpu->kvm->mmu_lock); 8496 8497 if (indirect_shadow_pages) 8498 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8499 8500 return true; 8501 } 8502 8503 /* 8504 * if emulation was due to access to shadowed page table 8505 * and it failed try to unshadow page and re-enter the 8506 * guest to let CPU execute the instruction. 8507 */ 8508 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8509 8510 /* 8511 * If the access faults on its page table, it can not 8512 * be fixed by unprotecting shadow page and it should 8513 * be reported to userspace. 8514 */ 8515 return !write_fault_to_shadow_pgtable; 8516 } 8517 8518 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8519 gpa_t cr2_or_gpa, int emulation_type) 8520 { 8521 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8522 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8523 8524 last_retry_eip = vcpu->arch.last_retry_eip; 8525 last_retry_addr = vcpu->arch.last_retry_addr; 8526 8527 /* 8528 * If the emulation is caused by #PF and it is non-page_table 8529 * writing instruction, it means the VM-EXIT is caused by shadow 8530 * page protected, we can zap the shadow page and retry this 8531 * instruction directly. 8532 * 8533 * Note: if the guest uses a non-page-table modifying instruction 8534 * on the PDE that points to the instruction, then we will unmap 8535 * the instruction and go to an infinite loop. So, we cache the 8536 * last retried eip and the last fault address, if we meet the eip 8537 * and the address again, we can break out of the potential infinite 8538 * loop. 8539 */ 8540 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8541 8542 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8543 return false; 8544 8545 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8546 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8547 return false; 8548 8549 if (x86_page_table_writing_insn(ctxt)) 8550 return false; 8551 8552 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8553 return false; 8554 8555 vcpu->arch.last_retry_eip = ctxt->eip; 8556 vcpu->arch.last_retry_addr = cr2_or_gpa; 8557 8558 if (!vcpu->arch.mmu->root_role.direct) 8559 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8560 8561 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8562 8563 return true; 8564 } 8565 8566 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8567 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8568 8569 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8570 unsigned long *db) 8571 { 8572 u32 dr6 = 0; 8573 int i; 8574 u32 enable, rwlen; 8575 8576 enable = dr7; 8577 rwlen = dr7 >> 16; 8578 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8579 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8580 dr6 |= (1 << i); 8581 return dr6; 8582 } 8583 8584 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8585 { 8586 struct kvm_run *kvm_run = vcpu->run; 8587 8588 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8589 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8590 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8591 kvm_run->debug.arch.exception = DB_VECTOR; 8592 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8593 return 0; 8594 } 8595 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8596 return 1; 8597 } 8598 8599 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8600 { 8601 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8602 int r; 8603 8604 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 8605 if (unlikely(!r)) 8606 return 0; 8607 8608 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8609 8610 /* 8611 * rflags is the old, "raw" value of the flags. The new value has 8612 * not been saved yet. 8613 * 8614 * This is correct even for TF set by the guest, because "the 8615 * processor will not generate this exception after the instruction 8616 * that sets the TF flag". 8617 */ 8618 if (unlikely(rflags & X86_EFLAGS_TF)) 8619 r = kvm_vcpu_do_singlestep(vcpu); 8620 return r; 8621 } 8622 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8623 8624 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) 8625 { 8626 u32 shadow; 8627 8628 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) 8629 return true; 8630 8631 /* 8632 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active, 8633 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first 8634 * to avoid the relatively expensive CPUID lookup. 8635 */ 8636 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8637 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) && 8638 guest_cpuid_is_intel(vcpu); 8639 } 8640 8641 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, 8642 int emulation_type, int *r) 8643 { 8644 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); 8645 8646 /* 8647 * Do not check for code breakpoints if hardware has already done the 8648 * checks, as inferred from the emulation type. On NO_DECODE and SKIP, 8649 * the instruction has passed all exception checks, and all intercepted 8650 * exceptions that trigger emulation have lower priority than code 8651 * breakpoints, i.e. the fact that the intercepted exception occurred 8652 * means any code breakpoints have already been serviced. 8653 * 8654 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as 8655 * hardware has checked the RIP of the magic prefix, but not the RIP of 8656 * the instruction being emulated. The intent of forced emulation is 8657 * to behave as if KVM intercepted the instruction without an exception 8658 * and without a prefix. 8659 */ 8660 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 8661 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) 8662 return false; 8663 8664 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 8665 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 8666 struct kvm_run *kvm_run = vcpu->run; 8667 unsigned long eip = kvm_get_linear_rip(vcpu); 8668 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8669 vcpu->arch.guest_debug_dr7, 8670 vcpu->arch.eff_db); 8671 8672 if (dr6 != 0) { 8673 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 8674 kvm_run->debug.arch.pc = eip; 8675 kvm_run->debug.arch.exception = DB_VECTOR; 8676 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8677 *r = 0; 8678 return true; 8679 } 8680 } 8681 8682 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 8683 !kvm_is_code_breakpoint_inhibited(vcpu)) { 8684 unsigned long eip = kvm_get_linear_rip(vcpu); 8685 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8686 vcpu->arch.dr7, 8687 vcpu->arch.db); 8688 8689 if (dr6 != 0) { 8690 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 8691 *r = 1; 8692 return true; 8693 } 8694 } 8695 8696 return false; 8697 } 8698 8699 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 8700 { 8701 switch (ctxt->opcode_len) { 8702 case 1: 8703 switch (ctxt->b) { 8704 case 0xe4: /* IN */ 8705 case 0xe5: 8706 case 0xec: 8707 case 0xed: 8708 case 0xe6: /* OUT */ 8709 case 0xe7: 8710 case 0xee: 8711 case 0xef: 8712 case 0x6c: /* INS */ 8713 case 0x6d: 8714 case 0x6e: /* OUTS */ 8715 case 0x6f: 8716 return true; 8717 } 8718 break; 8719 case 2: 8720 switch (ctxt->b) { 8721 case 0x33: /* RDPMC */ 8722 return true; 8723 } 8724 break; 8725 } 8726 8727 return false; 8728 } 8729 8730 /* 8731 * Decode an instruction for emulation. The caller is responsible for handling 8732 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 8733 * (and wrong) when emulating on an intercepted fault-like exception[*], as 8734 * code breakpoints have higher priority and thus have already been done by 8735 * hardware. 8736 * 8737 * [*] Except #MC, which is higher priority, but KVM should never emulate in 8738 * response to a machine check. 8739 */ 8740 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 8741 void *insn, int insn_len) 8742 { 8743 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8744 int r; 8745 8746 init_emulate_ctxt(vcpu); 8747 8748 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 8749 8750 trace_kvm_emulate_insn_start(vcpu); 8751 ++vcpu->stat.insn_emulation; 8752 8753 return r; 8754 } 8755 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 8756 8757 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8758 int emulation_type, void *insn, int insn_len) 8759 { 8760 int r; 8761 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8762 bool writeback = true; 8763 bool write_fault_to_spt; 8764 8765 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len))) 8766 return 1; 8767 8768 vcpu->arch.l1tf_flush_l1d = true; 8769 8770 /* 8771 * Clear write_fault_to_shadow_pgtable here to ensure it is 8772 * never reused. 8773 */ 8774 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 8775 vcpu->arch.write_fault_to_shadow_pgtable = false; 8776 8777 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 8778 kvm_clear_exception_queue(vcpu); 8779 8780 /* 8781 * Return immediately if RIP hits a code breakpoint, such #DBs 8782 * are fault-like and are higher priority than any faults on 8783 * the code fetch itself. 8784 */ 8785 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) 8786 return r; 8787 8788 r = x86_decode_emulated_instruction(vcpu, emulation_type, 8789 insn, insn_len); 8790 if (r != EMULATION_OK) { 8791 if ((emulation_type & EMULTYPE_TRAP_UD) || 8792 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 8793 kvm_queue_exception(vcpu, UD_VECTOR); 8794 return 1; 8795 } 8796 if (reexecute_instruction(vcpu, cr2_or_gpa, 8797 write_fault_to_spt, 8798 emulation_type)) 8799 return 1; 8800 8801 if (ctxt->have_exception && 8802 !(emulation_type & EMULTYPE_SKIP)) { 8803 /* 8804 * #UD should result in just EMULATION_FAILED, and trap-like 8805 * exception should not be encountered during decode. 8806 */ 8807 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 8808 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 8809 inject_emulated_exception(vcpu); 8810 return 1; 8811 } 8812 return handle_emulation_failure(vcpu, emulation_type); 8813 } 8814 } 8815 8816 if ((emulation_type & EMULTYPE_VMWARE_GP) && 8817 !is_vmware_backdoor_opcode(ctxt)) { 8818 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8819 return 1; 8820 } 8821 8822 /* 8823 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 8824 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 8825 * The caller is responsible for updating interruptibility state and 8826 * injecting single-step #DBs. 8827 */ 8828 if (emulation_type & EMULTYPE_SKIP) { 8829 if (ctxt->mode != X86EMUL_MODE_PROT64) 8830 ctxt->eip = (u32)ctxt->_eip; 8831 else 8832 ctxt->eip = ctxt->_eip; 8833 8834 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 8835 r = 1; 8836 goto writeback; 8837 } 8838 8839 kvm_rip_write(vcpu, ctxt->eip); 8840 if (ctxt->eflags & X86_EFLAGS_RF) 8841 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 8842 return 1; 8843 } 8844 8845 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 8846 return 1; 8847 8848 /* this is needed for vmware backdoor interface to work since it 8849 changes registers values during IO operation */ 8850 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 8851 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8852 emulator_invalidate_register_cache(ctxt); 8853 } 8854 8855 restart: 8856 if (emulation_type & EMULTYPE_PF) { 8857 /* Save the faulting GPA (cr2) in the address field */ 8858 ctxt->exception.address = cr2_or_gpa; 8859 8860 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 8861 if (vcpu->arch.mmu->root_role.direct) { 8862 ctxt->gpa_available = true; 8863 ctxt->gpa_val = cr2_or_gpa; 8864 } 8865 } else { 8866 /* Sanitize the address out of an abundance of paranoia. */ 8867 ctxt->exception.address = 0; 8868 } 8869 8870 r = x86_emulate_insn(ctxt); 8871 8872 if (r == EMULATION_INTERCEPTED) 8873 return 1; 8874 8875 if (r == EMULATION_FAILED) { 8876 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt, 8877 emulation_type)) 8878 return 1; 8879 8880 return handle_emulation_failure(vcpu, emulation_type); 8881 } 8882 8883 if (ctxt->have_exception) { 8884 r = 1; 8885 inject_emulated_exception(vcpu); 8886 } else if (vcpu->arch.pio.count) { 8887 if (!vcpu->arch.pio.in) { 8888 /* FIXME: return into emulator if single-stepping. */ 8889 vcpu->arch.pio.count = 0; 8890 } else { 8891 writeback = false; 8892 vcpu->arch.complete_userspace_io = complete_emulated_pio; 8893 } 8894 r = 0; 8895 } else if (vcpu->mmio_needed) { 8896 ++vcpu->stat.mmio_exits; 8897 8898 if (!vcpu->mmio_is_write) 8899 writeback = false; 8900 r = 0; 8901 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 8902 } else if (vcpu->arch.complete_userspace_io) { 8903 writeback = false; 8904 r = 0; 8905 } else if (r == EMULATION_RESTART) 8906 goto restart; 8907 else 8908 r = 1; 8909 8910 writeback: 8911 if (writeback) { 8912 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8913 toggle_interruptibility(vcpu, ctxt->interruptibility); 8914 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8915 8916 /* 8917 * Note, EXCPT_DB is assumed to be fault-like as the emulator 8918 * only supports code breakpoints and general detect #DB, both 8919 * of which are fault-like. 8920 */ 8921 if (!ctxt->have_exception || 8922 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 8923 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8924 if (ctxt->is_branch) 8925 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 8926 kvm_rip_write(vcpu, ctxt->eip); 8927 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 8928 r = kvm_vcpu_do_singlestep(vcpu); 8929 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu); 8930 __kvm_set_rflags(vcpu, ctxt->eflags); 8931 } 8932 8933 /* 8934 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 8935 * do nothing, and it will be requested again as soon as 8936 * the shadow expires. But we still need to check here, 8937 * because POPF has no interrupt shadow. 8938 */ 8939 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 8940 kvm_make_request(KVM_REQ_EVENT, vcpu); 8941 } else 8942 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 8943 8944 return r; 8945 } 8946 8947 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 8948 { 8949 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 8950 } 8951 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 8952 8953 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 8954 void *insn, int insn_len) 8955 { 8956 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 8957 } 8958 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 8959 8960 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 8961 { 8962 vcpu->arch.pio.count = 0; 8963 return 1; 8964 } 8965 8966 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 8967 { 8968 vcpu->arch.pio.count = 0; 8969 8970 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 8971 return 1; 8972 8973 return kvm_skip_emulated_instruction(vcpu); 8974 } 8975 8976 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 8977 unsigned short port) 8978 { 8979 unsigned long val = kvm_rax_read(vcpu); 8980 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 8981 8982 if (ret) 8983 return ret; 8984 8985 /* 8986 * Workaround userspace that relies on old KVM behavior of %rip being 8987 * incremented prior to exiting to userspace to handle "OUT 0x7e". 8988 */ 8989 if (port == 0x7e && 8990 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 8991 vcpu->arch.complete_userspace_io = 8992 complete_fast_pio_out_port_0x7e; 8993 kvm_skip_emulated_instruction(vcpu); 8994 } else { 8995 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 8996 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 8997 } 8998 return 0; 8999 } 9000 9001 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 9002 { 9003 unsigned long val; 9004 9005 /* We should only ever be called with arch.pio.count equal to 1 */ 9006 BUG_ON(vcpu->arch.pio.count != 1); 9007 9008 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 9009 vcpu->arch.pio.count = 0; 9010 return 1; 9011 } 9012 9013 /* For size less than 4 we merge, else we zero extend */ 9014 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 9015 9016 complete_emulator_pio_in(vcpu, &val); 9017 kvm_rax_write(vcpu, val); 9018 9019 return kvm_skip_emulated_instruction(vcpu); 9020 } 9021 9022 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 9023 unsigned short port) 9024 { 9025 unsigned long val; 9026 int ret; 9027 9028 /* For size less than 4 we merge, else we zero extend */ 9029 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 9030 9031 ret = emulator_pio_in(vcpu, size, port, &val, 1); 9032 if (ret) { 9033 kvm_rax_write(vcpu, val); 9034 return ret; 9035 } 9036 9037 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9038 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 9039 9040 return 0; 9041 } 9042 9043 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 9044 { 9045 int ret; 9046 9047 if (in) 9048 ret = kvm_fast_pio_in(vcpu, size, port); 9049 else 9050 ret = kvm_fast_pio_out(vcpu, size, port); 9051 return ret && kvm_skip_emulated_instruction(vcpu); 9052 } 9053 EXPORT_SYMBOL_GPL(kvm_fast_pio); 9054 9055 static int kvmclock_cpu_down_prep(unsigned int cpu) 9056 { 9057 __this_cpu_write(cpu_tsc_khz, 0); 9058 return 0; 9059 } 9060 9061 static void tsc_khz_changed(void *data) 9062 { 9063 struct cpufreq_freqs *freq = data; 9064 unsigned long khz = 0; 9065 9066 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)); 9067 9068 if (data) 9069 khz = freq->new; 9070 else 9071 khz = cpufreq_quick_get(raw_smp_processor_id()); 9072 if (!khz) 9073 khz = tsc_khz; 9074 __this_cpu_write(cpu_tsc_khz, khz); 9075 } 9076 9077 #ifdef CONFIG_X86_64 9078 static void kvm_hyperv_tsc_notifier(void) 9079 { 9080 struct kvm *kvm; 9081 int cpu; 9082 9083 mutex_lock(&kvm_lock); 9084 list_for_each_entry(kvm, &vm_list, vm_list) 9085 kvm_make_mclock_inprogress_request(kvm); 9086 9087 /* no guest entries from this point */ 9088 hyperv_stop_tsc_emulation(); 9089 9090 /* TSC frequency always matches when on Hyper-V */ 9091 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9092 for_each_present_cpu(cpu) 9093 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 9094 } 9095 kvm_caps.max_guest_tsc_khz = tsc_khz; 9096 9097 list_for_each_entry(kvm, &vm_list, vm_list) { 9098 __kvm_start_pvclock_update(kvm); 9099 pvclock_update_vm_gtod_copy(kvm); 9100 kvm_end_pvclock_update(kvm); 9101 } 9102 9103 mutex_unlock(&kvm_lock); 9104 } 9105 #endif 9106 9107 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 9108 { 9109 struct kvm *kvm; 9110 struct kvm_vcpu *vcpu; 9111 int send_ipi = 0; 9112 unsigned long i; 9113 9114 /* 9115 * We allow guests to temporarily run on slowing clocks, 9116 * provided we notify them after, or to run on accelerating 9117 * clocks, provided we notify them before. Thus time never 9118 * goes backwards. 9119 * 9120 * However, we have a problem. We can't atomically update 9121 * the frequency of a given CPU from this function; it is 9122 * merely a notifier, which can be called from any CPU. 9123 * Changing the TSC frequency at arbitrary points in time 9124 * requires a recomputation of local variables related to 9125 * the TSC for each VCPU. We must flag these local variables 9126 * to be updated and be sure the update takes place with the 9127 * new frequency before any guests proceed. 9128 * 9129 * Unfortunately, the combination of hotplug CPU and frequency 9130 * change creates an intractable locking scenario; the order 9131 * of when these callouts happen is undefined with respect to 9132 * CPU hotplug, and they can race with each other. As such, 9133 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 9134 * undefined; you can actually have a CPU frequency change take 9135 * place in between the computation of X and the setting of the 9136 * variable. To protect against this problem, all updates of 9137 * the per_cpu tsc_khz variable are done in an interrupt 9138 * protected IPI, and all callers wishing to update the value 9139 * must wait for a synchronous IPI to complete (which is trivial 9140 * if the caller is on the CPU already). This establishes the 9141 * necessary total order on variable updates. 9142 * 9143 * Note that because a guest time update may take place 9144 * anytime after the setting of the VCPU's request bit, the 9145 * correct TSC value must be set before the request. However, 9146 * to ensure the update actually makes it to any guest which 9147 * starts running in hardware virtualization between the set 9148 * and the acquisition of the spinlock, we must also ping the 9149 * CPU after setting the request bit. 9150 * 9151 */ 9152 9153 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9154 9155 mutex_lock(&kvm_lock); 9156 list_for_each_entry(kvm, &vm_list, vm_list) { 9157 kvm_for_each_vcpu(i, vcpu, kvm) { 9158 if (vcpu->cpu != cpu) 9159 continue; 9160 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9161 if (vcpu->cpu != raw_smp_processor_id()) 9162 send_ipi = 1; 9163 } 9164 } 9165 mutex_unlock(&kvm_lock); 9166 9167 if (freq->old < freq->new && send_ipi) { 9168 /* 9169 * We upscale the frequency. Must make the guest 9170 * doesn't see old kvmclock values while running with 9171 * the new frequency, otherwise we risk the guest sees 9172 * time go backwards. 9173 * 9174 * In case we update the frequency for another cpu 9175 * (which might be in guest context) send an interrupt 9176 * to kick the cpu out of guest context. Next time 9177 * guest context is entered kvmclock will be updated, 9178 * so the guest will not see stale values. 9179 */ 9180 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9181 } 9182 } 9183 9184 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9185 void *data) 9186 { 9187 struct cpufreq_freqs *freq = data; 9188 int cpu; 9189 9190 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9191 return 0; 9192 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9193 return 0; 9194 9195 for_each_cpu(cpu, freq->policy->cpus) 9196 __kvmclock_cpufreq_notifier(freq, cpu); 9197 9198 return 0; 9199 } 9200 9201 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9202 .notifier_call = kvmclock_cpufreq_notifier 9203 }; 9204 9205 static int kvmclock_cpu_online(unsigned int cpu) 9206 { 9207 tsc_khz_changed(NULL); 9208 return 0; 9209 } 9210 9211 static void kvm_timer_init(void) 9212 { 9213 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9214 max_tsc_khz = tsc_khz; 9215 9216 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9217 struct cpufreq_policy *policy; 9218 int cpu; 9219 9220 cpu = get_cpu(); 9221 policy = cpufreq_cpu_get(cpu); 9222 if (policy) { 9223 if (policy->cpuinfo.max_freq) 9224 max_tsc_khz = policy->cpuinfo.max_freq; 9225 cpufreq_cpu_put(policy); 9226 } 9227 put_cpu(); 9228 } 9229 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9230 CPUFREQ_TRANSITION_NOTIFIER); 9231 9232 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9233 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9234 } 9235 } 9236 9237 #ifdef CONFIG_X86_64 9238 static void pvclock_gtod_update_fn(struct work_struct *work) 9239 { 9240 struct kvm *kvm; 9241 struct kvm_vcpu *vcpu; 9242 unsigned long i; 9243 9244 mutex_lock(&kvm_lock); 9245 list_for_each_entry(kvm, &vm_list, vm_list) 9246 kvm_for_each_vcpu(i, vcpu, kvm) 9247 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9248 atomic_set(&kvm_guest_has_master_clock, 0); 9249 mutex_unlock(&kvm_lock); 9250 } 9251 9252 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9253 9254 /* 9255 * Indirection to move queue_work() out of the tk_core.seq write held 9256 * region to prevent possible deadlocks against time accessors which 9257 * are invoked with work related locks held. 9258 */ 9259 static void pvclock_irq_work_fn(struct irq_work *w) 9260 { 9261 queue_work(system_long_wq, &pvclock_gtod_work); 9262 } 9263 9264 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9265 9266 /* 9267 * Notification about pvclock gtod data update. 9268 */ 9269 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9270 void *priv) 9271 { 9272 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9273 struct timekeeper *tk = priv; 9274 9275 update_pvclock_gtod(tk); 9276 9277 /* 9278 * Disable master clock if host does not trust, or does not use, 9279 * TSC based clocksource. Delegate queue_work() to irq_work as 9280 * this is invoked with tk_core.seq write held. 9281 */ 9282 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9283 atomic_read(&kvm_guest_has_master_clock) != 0) 9284 irq_work_queue(&pvclock_irq_work); 9285 return 0; 9286 } 9287 9288 static struct notifier_block pvclock_gtod_notifier = { 9289 .notifier_call = pvclock_gtod_notify, 9290 }; 9291 #endif 9292 9293 int kvm_arch_init(void *opaque) 9294 { 9295 struct kvm_x86_init_ops *ops = opaque; 9296 u64 host_pat; 9297 int r; 9298 9299 if (kvm_x86_ops.hardware_enable) { 9300 pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name); 9301 return -EEXIST; 9302 } 9303 9304 if (!ops->cpu_has_kvm_support()) { 9305 pr_err_ratelimited("kvm: no hardware support for '%s'\n", 9306 ops->runtime_ops->name); 9307 return -EOPNOTSUPP; 9308 } 9309 if (ops->disabled_by_bios()) { 9310 pr_err_ratelimited("kvm: support for '%s' disabled by bios\n", 9311 ops->runtime_ops->name); 9312 return -EOPNOTSUPP; 9313 } 9314 9315 /* 9316 * KVM explicitly assumes that the guest has an FPU and 9317 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9318 * vCPU's FPU state as a fxregs_state struct. 9319 */ 9320 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9321 printk(KERN_ERR "kvm: inadequate fpu\n"); 9322 return -EOPNOTSUPP; 9323 } 9324 9325 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9326 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 9327 return -EOPNOTSUPP; 9328 } 9329 9330 /* 9331 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes 9332 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 9333 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 9334 * with an exception. PAT[0] is set to WB on RESET and also by the 9335 * kernel, i.e. failure indicates a kernel bug or broken firmware. 9336 */ 9337 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) || 9338 (host_pat & GENMASK(2, 0)) != 6) { 9339 pr_err("kvm: host PAT[0] is not WB\n"); 9340 return -EIO; 9341 } 9342 9343 x86_emulator_cache = kvm_alloc_emulator_cache(); 9344 if (!x86_emulator_cache) { 9345 pr_err("kvm: failed to allocate cache for x86 emulator\n"); 9346 return -ENOMEM; 9347 } 9348 9349 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 9350 if (!user_return_msrs) { 9351 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n"); 9352 r = -ENOMEM; 9353 goto out_free_x86_emulator_cache; 9354 } 9355 kvm_nr_uret_msrs = 0; 9356 9357 r = kvm_mmu_vendor_module_init(); 9358 if (r) 9359 goto out_free_percpu; 9360 9361 kvm_timer_init(); 9362 9363 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9364 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9365 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 9366 } 9367 9368 if (pi_inject_timer == -1) 9369 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9370 #ifdef CONFIG_X86_64 9371 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9372 9373 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9374 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9375 #endif 9376 9377 return 0; 9378 9379 out_free_percpu: 9380 free_percpu(user_return_msrs); 9381 out_free_x86_emulator_cache: 9382 kmem_cache_destroy(x86_emulator_cache); 9383 return r; 9384 } 9385 9386 void kvm_arch_exit(void) 9387 { 9388 #ifdef CONFIG_X86_64 9389 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9390 clear_hv_tscchange_cb(); 9391 #endif 9392 kvm_lapic_exit(); 9393 9394 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9395 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9396 CPUFREQ_TRANSITION_NOTIFIER); 9397 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9398 } 9399 #ifdef CONFIG_X86_64 9400 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9401 irq_work_sync(&pvclock_irq_work); 9402 cancel_work_sync(&pvclock_gtod_work); 9403 #endif 9404 kvm_x86_ops.hardware_enable = NULL; 9405 kvm_mmu_vendor_module_exit(); 9406 free_percpu(user_return_msrs); 9407 kmem_cache_destroy(x86_emulator_cache); 9408 #ifdef CONFIG_KVM_XEN 9409 static_key_deferred_flush(&kvm_xen_enabled); 9410 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9411 #endif 9412 } 9413 9414 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 9415 { 9416 /* 9417 * The vCPU has halted, e.g. executed HLT. Update the run state if the 9418 * local APIC is in-kernel, the run loop will detect the non-runnable 9419 * state and halt the vCPU. Exit to userspace if the local APIC is 9420 * managed by userspace, in which case userspace is responsible for 9421 * handling wake events. 9422 */ 9423 ++vcpu->stat.halt_exits; 9424 if (lapic_in_kernel(vcpu)) { 9425 vcpu->arch.mp_state = state; 9426 return 1; 9427 } else { 9428 vcpu->run->exit_reason = reason; 9429 return 0; 9430 } 9431 } 9432 9433 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 9434 { 9435 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 9436 } 9437 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 9438 9439 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 9440 { 9441 int ret = kvm_skip_emulated_instruction(vcpu); 9442 /* 9443 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 9444 * KVM_EXIT_DEBUG here. 9445 */ 9446 return kvm_emulate_halt_noskip(vcpu) && ret; 9447 } 9448 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 9449 9450 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 9451 { 9452 int ret = kvm_skip_emulated_instruction(vcpu); 9453 9454 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 9455 KVM_EXIT_AP_RESET_HOLD) && ret; 9456 } 9457 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 9458 9459 #ifdef CONFIG_X86_64 9460 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9461 unsigned long clock_type) 9462 { 9463 struct kvm_clock_pairing clock_pairing; 9464 struct timespec64 ts; 9465 u64 cycle; 9466 int ret; 9467 9468 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9469 return -KVM_EOPNOTSUPP; 9470 9471 /* 9472 * When tsc is in permanent catchup mode guests won't be able to use 9473 * pvclock_read_retry loop to get consistent view of pvclock 9474 */ 9475 if (vcpu->arch.tsc_always_catchup) 9476 return -KVM_EOPNOTSUPP; 9477 9478 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9479 return -KVM_EOPNOTSUPP; 9480 9481 clock_pairing.sec = ts.tv_sec; 9482 clock_pairing.nsec = ts.tv_nsec; 9483 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9484 clock_pairing.flags = 0; 9485 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9486 9487 ret = 0; 9488 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9489 sizeof(struct kvm_clock_pairing))) 9490 ret = -KVM_EFAULT; 9491 9492 return ret; 9493 } 9494 #endif 9495 9496 /* 9497 * kvm_pv_kick_cpu_op: Kick a vcpu. 9498 * 9499 * @apicid - apicid of vcpu to be kicked. 9500 */ 9501 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9502 { 9503 /* 9504 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 9505 * common code, e.g. for tracing. Defer initialization to the compiler. 9506 */ 9507 struct kvm_lapic_irq lapic_irq = { 9508 .delivery_mode = APIC_DM_REMRD, 9509 .dest_mode = APIC_DEST_PHYSICAL, 9510 .shorthand = APIC_DEST_NOSHORT, 9511 .dest_id = apicid, 9512 }; 9513 9514 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9515 } 9516 9517 bool kvm_apicv_activated(struct kvm *kvm) 9518 { 9519 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9520 } 9521 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9522 9523 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 9524 { 9525 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 9526 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu); 9527 9528 return (vm_reasons | vcpu_reasons) == 0; 9529 } 9530 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 9531 9532 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9533 enum kvm_apicv_inhibit reason, bool set) 9534 { 9535 if (set) 9536 __set_bit(reason, inhibits); 9537 else 9538 __clear_bit(reason, inhibits); 9539 9540 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9541 } 9542 9543 static void kvm_apicv_init(struct kvm *kvm) 9544 { 9545 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons; 9546 9547 init_rwsem(&kvm->arch.apicv_update_lock); 9548 9549 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true); 9550 9551 if (!enable_apicv) 9552 set_or_clear_apicv_inhibit(inhibits, 9553 APICV_INHIBIT_REASON_DISABLE, true); 9554 } 9555 9556 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9557 { 9558 struct kvm_vcpu *target = NULL; 9559 struct kvm_apic_map *map; 9560 9561 vcpu->stat.directed_yield_attempted++; 9562 9563 if (single_task_running()) 9564 goto no_yield; 9565 9566 rcu_read_lock(); 9567 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9568 9569 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9570 target = map->phys_map[dest_id]->vcpu; 9571 9572 rcu_read_unlock(); 9573 9574 if (!target || !READ_ONCE(target->ready)) 9575 goto no_yield; 9576 9577 /* Ignore requests to yield to self */ 9578 if (vcpu == target) 9579 goto no_yield; 9580 9581 if (kvm_vcpu_yield_to(target) <= 0) 9582 goto no_yield; 9583 9584 vcpu->stat.directed_yield_successful++; 9585 9586 no_yield: 9587 return; 9588 } 9589 9590 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 9591 { 9592 u64 ret = vcpu->run->hypercall.ret; 9593 9594 if (!is_64_bit_mode(vcpu)) 9595 ret = (u32)ret; 9596 kvm_rax_write(vcpu, ret); 9597 ++vcpu->stat.hypercalls; 9598 return kvm_skip_emulated_instruction(vcpu); 9599 } 9600 9601 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 9602 { 9603 unsigned long nr, a0, a1, a2, a3, ret; 9604 int op_64_bit; 9605 9606 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 9607 return kvm_xen_hypercall(vcpu); 9608 9609 if (kvm_hv_hypercall_enabled(vcpu)) 9610 return kvm_hv_hypercall(vcpu); 9611 9612 nr = kvm_rax_read(vcpu); 9613 a0 = kvm_rbx_read(vcpu); 9614 a1 = kvm_rcx_read(vcpu); 9615 a2 = kvm_rdx_read(vcpu); 9616 a3 = kvm_rsi_read(vcpu); 9617 9618 trace_kvm_hypercall(nr, a0, a1, a2, a3); 9619 9620 op_64_bit = is_64_bit_hypercall(vcpu); 9621 if (!op_64_bit) { 9622 nr &= 0xFFFFFFFF; 9623 a0 &= 0xFFFFFFFF; 9624 a1 &= 0xFFFFFFFF; 9625 a2 &= 0xFFFFFFFF; 9626 a3 &= 0xFFFFFFFF; 9627 } 9628 9629 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { 9630 ret = -KVM_EPERM; 9631 goto out; 9632 } 9633 9634 ret = -KVM_ENOSYS; 9635 9636 switch (nr) { 9637 case KVM_HC_VAPIC_POLL_IRQ: 9638 ret = 0; 9639 break; 9640 case KVM_HC_KICK_CPU: 9641 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 9642 break; 9643 9644 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 9645 kvm_sched_yield(vcpu, a1); 9646 ret = 0; 9647 break; 9648 #ifdef CONFIG_X86_64 9649 case KVM_HC_CLOCK_PAIRING: 9650 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 9651 break; 9652 #endif 9653 case KVM_HC_SEND_IPI: 9654 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 9655 break; 9656 9657 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 9658 break; 9659 case KVM_HC_SCHED_YIELD: 9660 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 9661 break; 9662 9663 kvm_sched_yield(vcpu, a0); 9664 ret = 0; 9665 break; 9666 case KVM_HC_MAP_GPA_RANGE: { 9667 u64 gpa = a0, npages = a1, attrs = a2; 9668 9669 ret = -KVM_ENOSYS; 9670 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 9671 break; 9672 9673 if (!PAGE_ALIGNED(gpa) || !npages || 9674 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 9675 ret = -KVM_EINVAL; 9676 break; 9677 } 9678 9679 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 9680 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 9681 vcpu->run->hypercall.args[0] = gpa; 9682 vcpu->run->hypercall.args[1] = npages; 9683 vcpu->run->hypercall.args[2] = attrs; 9684 vcpu->run->hypercall.longmode = op_64_bit; 9685 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 9686 return 0; 9687 } 9688 default: 9689 ret = -KVM_ENOSYS; 9690 break; 9691 } 9692 out: 9693 if (!op_64_bit) 9694 ret = (u32)ret; 9695 kvm_rax_write(vcpu, ret); 9696 9697 ++vcpu->stat.hypercalls; 9698 return kvm_skip_emulated_instruction(vcpu); 9699 } 9700 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 9701 9702 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 9703 { 9704 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 9705 char instruction[3]; 9706 unsigned long rip = kvm_rip_read(vcpu); 9707 9708 /* 9709 * If the quirk is disabled, synthesize a #UD and let the guest pick up 9710 * the pieces. 9711 */ 9712 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 9713 ctxt->exception.error_code_valid = false; 9714 ctxt->exception.vector = UD_VECTOR; 9715 ctxt->have_exception = true; 9716 return X86EMUL_PROPAGATE_FAULT; 9717 } 9718 9719 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 9720 9721 return emulator_write_emulated(ctxt, rip, instruction, 3, 9722 &ctxt->exception); 9723 } 9724 9725 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 9726 { 9727 return vcpu->run->request_interrupt_window && 9728 likely(!pic_in_kernel(vcpu->kvm)); 9729 } 9730 9731 /* Called within kvm->srcu read side. */ 9732 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 9733 { 9734 struct kvm_run *kvm_run = vcpu->run; 9735 9736 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); 9737 kvm_run->cr8 = kvm_get_cr8(vcpu); 9738 kvm_run->apic_base = kvm_get_apic_base(vcpu); 9739 9740 kvm_run->ready_for_interrupt_injection = 9741 pic_in_kernel(vcpu->kvm) || 9742 kvm_vcpu_ready_for_interrupt_injection(vcpu); 9743 9744 if (is_smm(vcpu)) 9745 kvm_run->flags |= KVM_RUN_X86_SMM; 9746 } 9747 9748 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 9749 { 9750 int max_irr, tpr; 9751 9752 if (!kvm_x86_ops.update_cr8_intercept) 9753 return; 9754 9755 if (!lapic_in_kernel(vcpu)) 9756 return; 9757 9758 if (vcpu->arch.apic->apicv_active) 9759 return; 9760 9761 if (!vcpu->arch.apic->vapic_addr) 9762 max_irr = kvm_lapic_find_highest_irr(vcpu); 9763 else 9764 max_irr = -1; 9765 9766 if (max_irr != -1) 9767 max_irr >>= 4; 9768 9769 tpr = kvm_lapic_get_cr8(vcpu); 9770 9771 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 9772 } 9773 9774 9775 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 9776 { 9777 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 9778 kvm_x86_ops.nested_ops->triple_fault(vcpu); 9779 return 1; 9780 } 9781 9782 return kvm_x86_ops.nested_ops->check_events(vcpu); 9783 } 9784 9785 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 9786 { 9787 trace_kvm_inj_exception(vcpu->arch.exception.vector, 9788 vcpu->arch.exception.has_error_code, 9789 vcpu->arch.exception.error_code, 9790 vcpu->arch.exception.injected); 9791 9792 if (vcpu->arch.exception.error_code && !is_protmode(vcpu)) 9793 vcpu->arch.exception.error_code = false; 9794 static_call(kvm_x86_inject_exception)(vcpu); 9795 } 9796 9797 /* 9798 * Check for any event (interrupt or exception) that is ready to be injected, 9799 * and if there is at least one event, inject the event with the highest 9800 * priority. This handles both "pending" events, i.e. events that have never 9801 * been injected into the guest, and "injected" events, i.e. events that were 9802 * injected as part of a previous VM-Enter, but weren't successfully delivered 9803 * and need to be re-injected. 9804 * 9805 * Note, this is not guaranteed to be invoked on a guest instruction boundary, 9806 * i.e. doesn't guarantee that there's an event window in the guest. KVM must 9807 * be able to inject exceptions in the "middle" of an instruction, and so must 9808 * also be able to re-inject NMIs and IRQs in the middle of an instruction. 9809 * I.e. for exceptions and re-injected events, NOT invoking this on instruction 9810 * boundaries is necessary and correct. 9811 * 9812 * For simplicity, KVM uses a single path to inject all events (except events 9813 * that are injected directly from L1 to L2) and doesn't explicitly track 9814 * instruction boundaries for asynchronous events. However, because VM-Exits 9815 * that can occur during instruction execution typically result in KVM skipping 9816 * the instruction or injecting an exception, e.g. instruction and exception 9817 * intercepts, and because pending exceptions have higher priority than pending 9818 * interrupts, KVM still honors instruction boundaries in most scenarios. 9819 * 9820 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip 9821 * the instruction or inject an exception, then KVM can incorrecty inject a new 9822 * asynchrounous event if the event became pending after the CPU fetched the 9823 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) 9824 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be 9825 * injected on the restarted instruction instead of being deferred until the 9826 * instruction completes. 9827 * 9828 * In practice, this virtualization hole is unlikely to be observed by the 9829 * guest, and even less likely to cause functional problems. To detect the 9830 * hole, the guest would have to trigger an event on a side effect of an early 9831 * phase of instruction execution, e.g. on the instruction fetch from memory. 9832 * And for it to be a functional problem, the guest would need to depend on the 9833 * ordering between that side effect, the instruction completing, _and_ the 9834 * delivery of the asynchronous event. 9835 */ 9836 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, 9837 bool *req_immediate_exit) 9838 { 9839 bool can_inject; 9840 int r; 9841 9842 /* 9843 * Process nested events first, as nested VM-Exit supercedes event 9844 * re-injection. If there's an event queued for re-injection, it will 9845 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. 9846 */ 9847 if (is_guest_mode(vcpu)) 9848 r = kvm_check_nested_events(vcpu); 9849 else 9850 r = 0; 9851 9852 /* 9853 * Re-inject exceptions and events *especially* if immediate entry+exit 9854 * to/from L2 is needed, as any event that has already been injected 9855 * into L2 needs to complete its lifecycle before injecting a new event. 9856 * 9857 * Don't re-inject an NMI or interrupt if there is a pending exception. 9858 * This collision arises if an exception occurred while vectoring the 9859 * injected event, KVM intercepted said exception, and KVM ultimately 9860 * determined the fault belongs to the guest and queues the exception 9861 * for injection back into the guest. 9862 * 9863 * "Injected" interrupts can also collide with pending exceptions if 9864 * userspace ignores the "ready for injection" flag and blindly queues 9865 * an interrupt. In that case, prioritizing the exception is correct, 9866 * as the exception "occurred" before the exit to userspace. Trap-like 9867 * exceptions, e.g. most #DBs, have higher priority than interrupts. 9868 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest 9869 * priority, they're only generated (pended) during instruction 9870 * execution, and interrupts are recognized at instruction boundaries. 9871 * Thus a pending fault-like exception means the fault occurred on the 9872 * *previous* instruction and must be serviced prior to recognizing any 9873 * new events in order to fully complete the previous instruction. 9874 */ 9875 if (vcpu->arch.exception.injected) 9876 kvm_inject_exception(vcpu); 9877 else if (kvm_is_exception_pending(vcpu)) 9878 ; /* see above */ 9879 else if (vcpu->arch.nmi_injected) 9880 static_call(kvm_x86_inject_nmi)(vcpu); 9881 else if (vcpu->arch.interrupt.injected) 9882 static_call(kvm_x86_inject_irq)(vcpu, true); 9883 9884 /* 9885 * Exceptions that morph to VM-Exits are handled above, and pending 9886 * exceptions on top of injected exceptions that do not VM-Exit should 9887 * either morph to #DF or, sadly, override the injected exception. 9888 */ 9889 WARN_ON_ONCE(vcpu->arch.exception.injected && 9890 vcpu->arch.exception.pending); 9891 9892 /* 9893 * Bail if immediate entry+exit to/from the guest is needed to complete 9894 * nested VM-Enter or event re-injection so that a different pending 9895 * event can be serviced (or if KVM needs to exit to userspace). 9896 * 9897 * Otherwise, continue processing events even if VM-Exit occurred. The 9898 * VM-Exit will have cleared exceptions that were meant for L2, but 9899 * there may now be events that can be injected into L1. 9900 */ 9901 if (r < 0) 9902 goto out; 9903 9904 /* 9905 * A pending exception VM-Exit should either result in nested VM-Exit 9906 * or force an immediate re-entry and exit to/from L2, and exception 9907 * VM-Exits cannot be injected (flag should _never_ be set). 9908 */ 9909 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || 9910 vcpu->arch.exception_vmexit.pending); 9911 9912 /* 9913 * New events, other than exceptions, cannot be injected if KVM needs 9914 * to re-inject a previous event. See above comments on re-injecting 9915 * for why pending exceptions get priority. 9916 */ 9917 can_inject = !kvm_event_needs_reinjection(vcpu); 9918 9919 if (vcpu->arch.exception.pending) { 9920 /* 9921 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS 9922 * value pushed on the stack. Trap-like exception and all #DBs 9923 * leave RF as-is (KVM follows Intel's behavior in this regard; 9924 * AMD states that code breakpoint #DBs excplitly clear RF=0). 9925 * 9926 * Note, most versions of Intel's SDM and AMD's APM incorrectly 9927 * describe the behavior of General Detect #DBs, which are 9928 * fault-like. They do _not_ set RF, a la code breakpoints. 9929 */ 9930 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) 9931 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 9932 X86_EFLAGS_RF); 9933 9934 if (vcpu->arch.exception.vector == DB_VECTOR) { 9935 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); 9936 if (vcpu->arch.dr7 & DR7_GD) { 9937 vcpu->arch.dr7 &= ~DR7_GD; 9938 kvm_update_dr7(vcpu); 9939 } 9940 } 9941 9942 kvm_inject_exception(vcpu); 9943 9944 vcpu->arch.exception.pending = false; 9945 vcpu->arch.exception.injected = true; 9946 9947 can_inject = false; 9948 } 9949 9950 /* Don't inject interrupts if the user asked to avoid doing so */ 9951 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 9952 return 0; 9953 9954 /* 9955 * Finally, inject interrupt events. If an event cannot be injected 9956 * due to architectural conditions (e.g. IF=0) a window-open exit 9957 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 9958 * and can architecturally be injected, but we cannot do it right now: 9959 * an interrupt could have arrived just now and we have to inject it 9960 * as a vmexit, or there could already an event in the queue, which is 9961 * indicated by can_inject. In that case we request an immediate exit 9962 * in order to make progress and get back here for another iteration. 9963 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 9964 */ 9965 #ifdef CONFIG_KVM_SMM 9966 if (vcpu->arch.smi_pending) { 9967 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 9968 if (r < 0) 9969 goto out; 9970 if (r) { 9971 vcpu->arch.smi_pending = false; 9972 ++vcpu->arch.smi_count; 9973 enter_smm(vcpu); 9974 can_inject = false; 9975 } else 9976 static_call(kvm_x86_enable_smi_window)(vcpu); 9977 } 9978 #endif 9979 9980 if (vcpu->arch.nmi_pending) { 9981 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 9982 if (r < 0) 9983 goto out; 9984 if (r) { 9985 --vcpu->arch.nmi_pending; 9986 vcpu->arch.nmi_injected = true; 9987 static_call(kvm_x86_inject_nmi)(vcpu); 9988 can_inject = false; 9989 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 9990 } 9991 if (vcpu->arch.nmi_pending) 9992 static_call(kvm_x86_enable_nmi_window)(vcpu); 9993 } 9994 9995 if (kvm_cpu_has_injectable_intr(vcpu)) { 9996 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 9997 if (r < 0) 9998 goto out; 9999 if (r) { 10000 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false); 10001 static_call(kvm_x86_inject_irq)(vcpu, false); 10002 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 10003 } 10004 if (kvm_cpu_has_injectable_intr(vcpu)) 10005 static_call(kvm_x86_enable_irq_window)(vcpu); 10006 } 10007 10008 if (is_guest_mode(vcpu) && 10009 kvm_x86_ops.nested_ops->has_events && 10010 kvm_x86_ops.nested_ops->has_events(vcpu)) 10011 *req_immediate_exit = true; 10012 10013 /* 10014 * KVM must never queue a new exception while injecting an event; KVM 10015 * is done emulating and should only propagate the to-be-injected event 10016 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an 10017 * infinite loop as KVM will bail from VM-Enter to inject the pending 10018 * exception and start the cycle all over. 10019 * 10020 * Exempt triple faults as they have special handling and won't put the 10021 * vCPU into an infinite loop. Triple fault can be queued when running 10022 * VMX without unrestricted guest, as that requires KVM to emulate Real 10023 * Mode events (see kvm_inject_realmode_interrupt()). 10024 */ 10025 WARN_ON_ONCE(vcpu->arch.exception.pending || 10026 vcpu->arch.exception_vmexit.pending); 10027 return 0; 10028 10029 out: 10030 if (r == -EBUSY) { 10031 *req_immediate_exit = true; 10032 r = 0; 10033 } 10034 return r; 10035 } 10036 10037 static void process_nmi(struct kvm_vcpu *vcpu) 10038 { 10039 unsigned limit = 2; 10040 10041 /* 10042 * x86 is limited to one NMI running, and one NMI pending after it. 10043 * If an NMI is already in progress, limit further NMIs to just one. 10044 * Otherwise, allow two (and we'll inject the first one immediately). 10045 */ 10046 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 10047 limit = 1; 10048 10049 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 10050 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 10051 kvm_make_request(KVM_REQ_EVENT, vcpu); 10052 } 10053 10054 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10055 unsigned long *vcpu_bitmap) 10056 { 10057 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10058 } 10059 10060 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10061 { 10062 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10063 } 10064 10065 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10066 { 10067 struct kvm_lapic *apic = vcpu->arch.apic; 10068 bool activate; 10069 10070 if (!lapic_in_kernel(vcpu)) 10071 return; 10072 10073 down_read(&vcpu->kvm->arch.apicv_update_lock); 10074 preempt_disable(); 10075 10076 /* Do not activate APICV when APIC is disabled */ 10077 activate = kvm_vcpu_apicv_activated(vcpu) && 10078 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10079 10080 if (apic->apicv_active == activate) 10081 goto out; 10082 10083 apic->apicv_active = activate; 10084 kvm_apic_update_apicv(vcpu); 10085 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 10086 10087 /* 10088 * When APICv gets disabled, we may still have injected interrupts 10089 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10090 * still active when the interrupt got accepted. Make sure 10091 * kvm_check_and_inject_events() is called to check for that. 10092 */ 10093 if (!apic->apicv_active) 10094 kvm_make_request(KVM_REQ_EVENT, vcpu); 10095 10096 out: 10097 preempt_enable(); 10098 up_read(&vcpu->kvm->arch.apicv_update_lock); 10099 } 10100 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv); 10101 10102 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10103 enum kvm_apicv_inhibit reason, bool set) 10104 { 10105 unsigned long old, new; 10106 10107 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10108 10109 if (!static_call(kvm_x86_check_apicv_inhibit_reasons)(reason)) 10110 return; 10111 10112 old = new = kvm->arch.apicv_inhibit_reasons; 10113 10114 set_or_clear_apicv_inhibit(&new, reason, set); 10115 10116 if (!!old != !!new) { 10117 /* 10118 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10119 * false positives in the sanity check WARN in svm_vcpu_run(). 10120 * This task will wait for all vCPUs to ack the kick IRQ before 10121 * updating apicv_inhibit_reasons, and all other vCPUs will 10122 * block on acquiring apicv_update_lock so that vCPUs can't 10123 * redo svm_vcpu_run() without seeing the new inhibit state. 10124 * 10125 * Note, holding apicv_update_lock and taking it in the read 10126 * side (handling the request) also prevents other vCPUs from 10127 * servicing the request with a stale apicv_inhibit_reasons. 10128 */ 10129 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10130 kvm->arch.apicv_inhibit_reasons = new; 10131 if (new) { 10132 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10133 int idx = srcu_read_lock(&kvm->srcu); 10134 10135 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10136 srcu_read_unlock(&kvm->srcu, idx); 10137 } 10138 } else { 10139 kvm->arch.apicv_inhibit_reasons = new; 10140 } 10141 } 10142 10143 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10144 enum kvm_apicv_inhibit reason, bool set) 10145 { 10146 if (!enable_apicv) 10147 return; 10148 10149 down_write(&kvm->arch.apicv_update_lock); 10150 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10151 up_write(&kvm->arch.apicv_update_lock); 10152 } 10153 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 10154 10155 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10156 { 10157 if (!kvm_apic_present(vcpu)) 10158 return; 10159 10160 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10161 10162 if (irqchip_split(vcpu->kvm)) 10163 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10164 else { 10165 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10166 if (ioapic_in_kernel(vcpu->kvm)) 10167 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10168 } 10169 10170 if (is_guest_mode(vcpu)) 10171 vcpu->arch.load_eoi_exitmap_pending = true; 10172 else 10173 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10174 } 10175 10176 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10177 { 10178 u64 eoi_exit_bitmap[4]; 10179 10180 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10181 return; 10182 10183 if (to_hv_vcpu(vcpu)) { 10184 bitmap_or((ulong *)eoi_exit_bitmap, 10185 vcpu->arch.ioapic_handled_vectors, 10186 to_hv_synic(vcpu)->vec_bitmap, 256); 10187 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 10188 return; 10189 } 10190 10191 static_call_cond(kvm_x86_load_eoi_exitmap)( 10192 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 10193 } 10194 10195 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 10196 unsigned long start, unsigned long end) 10197 { 10198 unsigned long apic_address; 10199 10200 /* 10201 * The physical address of apic access page is stored in the VMCS. 10202 * Update it when it becomes invalid. 10203 */ 10204 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 10205 if (start <= apic_address && apic_address < end) 10206 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 10207 } 10208 10209 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 10210 { 10211 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm); 10212 } 10213 10214 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10215 { 10216 if (!lapic_in_kernel(vcpu)) 10217 return; 10218 10219 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu); 10220 } 10221 10222 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 10223 { 10224 smp_send_reschedule(vcpu->cpu); 10225 } 10226 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 10227 10228 /* 10229 * Called within kvm->srcu read side. 10230 * Returns 1 to let vcpu_run() continue the guest execution loop without 10231 * exiting to the userspace. Otherwise, the value will be returned to the 10232 * userspace. 10233 */ 10234 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10235 { 10236 int r; 10237 bool req_int_win = 10238 dm_request_for_irq_injection(vcpu) && 10239 kvm_cpu_accept_dm_intr(vcpu); 10240 fastpath_t exit_fastpath; 10241 10242 bool req_immediate_exit = false; 10243 10244 if (kvm_request_pending(vcpu)) { 10245 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10246 r = -EIO; 10247 goto out; 10248 } 10249 10250 if (kvm_dirty_ring_check_request(vcpu)) { 10251 r = 0; 10252 goto out; 10253 } 10254 10255 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10256 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10257 r = 0; 10258 goto out; 10259 } 10260 } 10261 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10262 kvm_mmu_free_obsolete_roots(vcpu); 10263 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10264 __kvm_migrate_timers(vcpu); 10265 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10266 kvm_update_masterclock(vcpu->kvm); 10267 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10268 kvm_gen_kvmclock_update(vcpu); 10269 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10270 r = kvm_guest_time_update(vcpu); 10271 if (unlikely(r)) 10272 goto out; 10273 } 10274 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10275 kvm_mmu_sync_roots(vcpu); 10276 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10277 kvm_mmu_load_pgd(vcpu); 10278 10279 /* 10280 * Note, the order matters here, as flushing "all" TLB entries 10281 * also flushes the "current" TLB entries, i.e. servicing the 10282 * flush "all" will clear any request to flush "current". 10283 */ 10284 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 10285 kvm_vcpu_flush_tlb_all(vcpu); 10286 10287 kvm_service_local_tlb_flush_requests(vcpu); 10288 10289 /* 10290 * Fall back to a "full" guest flush if Hyper-V's precise 10291 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but 10292 * the flushes are considered "remote" and not "local" because 10293 * the requests can be initiated from other vCPUs. 10294 */ 10295 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) && 10296 kvm_hv_vcpu_flush_tlb(vcpu)) 10297 kvm_vcpu_flush_tlb_guest(vcpu); 10298 10299 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10300 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10301 r = 0; 10302 goto out; 10303 } 10304 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10305 if (is_guest_mode(vcpu)) 10306 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10307 10308 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10309 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10310 vcpu->mmio_needed = 0; 10311 r = 0; 10312 goto out; 10313 } 10314 } 10315 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10316 /* Page is swapped out. Do synthetic halt */ 10317 vcpu->arch.apf.halted = true; 10318 r = 1; 10319 goto out; 10320 } 10321 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10322 record_steal_time(vcpu); 10323 #ifdef CONFIG_KVM_SMM 10324 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10325 process_smi(vcpu); 10326 #endif 10327 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10328 process_nmi(vcpu); 10329 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10330 kvm_pmu_handle_event(vcpu); 10331 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10332 kvm_pmu_deliver_pmi(vcpu); 10333 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10334 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10335 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10336 vcpu->arch.ioapic_handled_vectors)) { 10337 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10338 vcpu->run->eoi.vector = 10339 vcpu->arch.pending_ioapic_eoi; 10340 r = 0; 10341 goto out; 10342 } 10343 } 10344 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10345 vcpu_scan_ioapic(vcpu); 10346 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10347 vcpu_load_eoi_exitmap(vcpu); 10348 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10349 kvm_vcpu_reload_apic_access_page(vcpu); 10350 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10351 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10352 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10353 vcpu->run->system_event.ndata = 0; 10354 r = 0; 10355 goto out; 10356 } 10357 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10358 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10359 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10360 vcpu->run->system_event.ndata = 0; 10361 r = 0; 10362 goto out; 10363 } 10364 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10365 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10366 10367 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10368 vcpu->run->hyperv = hv_vcpu->exit; 10369 r = 0; 10370 goto out; 10371 } 10372 10373 /* 10374 * KVM_REQ_HV_STIMER has to be processed after 10375 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10376 * depend on the guest clock being up-to-date 10377 */ 10378 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10379 kvm_hv_process_stimers(vcpu); 10380 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10381 kvm_vcpu_update_apicv(vcpu); 10382 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10383 kvm_check_async_pf_completion(vcpu); 10384 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10385 static_call(kvm_x86_msr_filter_changed)(vcpu); 10386 10387 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10388 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 10389 } 10390 10391 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10392 kvm_xen_has_interrupt(vcpu)) { 10393 ++vcpu->stat.req_event; 10394 r = kvm_apic_accept_events(vcpu); 10395 if (r < 0) { 10396 r = 0; 10397 goto out; 10398 } 10399 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10400 r = 1; 10401 goto out; 10402 } 10403 10404 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); 10405 if (r < 0) { 10406 r = 0; 10407 goto out; 10408 } 10409 if (req_int_win) 10410 static_call(kvm_x86_enable_irq_window)(vcpu); 10411 10412 if (kvm_lapic_enabled(vcpu)) { 10413 update_cr8_intercept(vcpu); 10414 kvm_lapic_sync_to_vapic(vcpu); 10415 } 10416 } 10417 10418 r = kvm_mmu_reload(vcpu); 10419 if (unlikely(r)) { 10420 goto cancel_injection; 10421 } 10422 10423 preempt_disable(); 10424 10425 static_call(kvm_x86_prepare_switch_to_guest)(vcpu); 10426 10427 /* 10428 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10429 * IPI are then delayed after guest entry, which ensures that they 10430 * result in virtual interrupt delivery. 10431 */ 10432 local_irq_disable(); 10433 10434 /* Store vcpu->apicv_active before vcpu->mode. */ 10435 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10436 10437 kvm_vcpu_srcu_read_unlock(vcpu); 10438 10439 /* 10440 * 1) We should set ->mode before checking ->requests. Please see 10441 * the comment in kvm_vcpu_exiting_guest_mode(). 10442 * 10443 * 2) For APICv, we should set ->mode before checking PID.ON. This 10444 * pairs with the memory barrier implicit in pi_test_and_set_on 10445 * (see vmx_deliver_posted_interrupt). 10446 * 10447 * 3) This also orders the write to mode from any reads to the page 10448 * tables done while the VCPU is running. Please see the comment 10449 * in kvm_flush_remote_tlbs. 10450 */ 10451 smp_mb__after_srcu_read_unlock(); 10452 10453 /* 10454 * Process pending posted interrupts to handle the case where the 10455 * notification IRQ arrived in the host, or was never sent (because the 10456 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10457 * status, KVM doesn't update assigned devices when APICv is inhibited, 10458 * i.e. they can post interrupts even if APICv is temporarily disabled. 10459 */ 10460 if (kvm_lapic_enabled(vcpu)) 10461 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10462 10463 if (kvm_vcpu_exit_request(vcpu)) { 10464 vcpu->mode = OUTSIDE_GUEST_MODE; 10465 smp_wmb(); 10466 local_irq_enable(); 10467 preempt_enable(); 10468 kvm_vcpu_srcu_read_lock(vcpu); 10469 r = 1; 10470 goto cancel_injection; 10471 } 10472 10473 if (req_immediate_exit) { 10474 kvm_make_request(KVM_REQ_EVENT, vcpu); 10475 static_call(kvm_x86_request_immediate_exit)(vcpu); 10476 } 10477 10478 fpregs_assert_state_consistent(); 10479 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10480 switch_fpu_return(); 10481 10482 if (vcpu->arch.guest_fpu.xfd_err) 10483 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10484 10485 if (unlikely(vcpu->arch.switch_db_regs)) { 10486 set_debugreg(0, 7); 10487 set_debugreg(vcpu->arch.eff_db[0], 0); 10488 set_debugreg(vcpu->arch.eff_db[1], 1); 10489 set_debugreg(vcpu->arch.eff_db[2], 2); 10490 set_debugreg(vcpu->arch.eff_db[3], 3); 10491 } else if (unlikely(hw_breakpoint_active())) { 10492 set_debugreg(0, 7); 10493 } 10494 10495 guest_timing_enter_irqoff(); 10496 10497 for (;;) { 10498 /* 10499 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10500 * update must kick and wait for all vCPUs before toggling the 10501 * per-VM state, and responsing vCPUs must wait for the update 10502 * to complete before servicing KVM_REQ_APICV_UPDATE. 10503 */ 10504 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 10505 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 10506 10507 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu); 10508 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 10509 break; 10510 10511 if (kvm_lapic_enabled(vcpu)) 10512 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10513 10514 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 10515 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 10516 break; 10517 } 10518 } 10519 10520 /* 10521 * Do this here before restoring debug registers on the host. And 10522 * since we do this before handling the vmexit, a DR access vmexit 10523 * can (a) read the correct value of the debug registers, (b) set 10524 * KVM_DEBUGREG_WONT_EXIT again. 10525 */ 10526 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 10527 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 10528 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 10529 kvm_update_dr0123(vcpu); 10530 kvm_update_dr7(vcpu); 10531 } 10532 10533 /* 10534 * If the guest has used debug registers, at least dr7 10535 * will be disabled while returning to the host. 10536 * If we don't have active breakpoints in the host, we don't 10537 * care about the messed up debug address registers. But if 10538 * we have some of them active, restore the old state. 10539 */ 10540 if (hw_breakpoint_active()) 10541 hw_breakpoint_restore(); 10542 10543 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 10544 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 10545 10546 vcpu->mode = OUTSIDE_GUEST_MODE; 10547 smp_wmb(); 10548 10549 /* 10550 * Sync xfd before calling handle_exit_irqoff() which may 10551 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 10552 * in #NM irqoff handler). 10553 */ 10554 if (vcpu->arch.xfd_no_write_intercept) 10555 fpu_sync_guest_vmexit_xfd_state(); 10556 10557 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 10558 10559 if (vcpu->arch.guest_fpu.xfd_err) 10560 wrmsrl(MSR_IA32_XFD_ERR, 0); 10561 10562 /* 10563 * Consume any pending interrupts, including the possible source of 10564 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 10565 * An instruction is required after local_irq_enable() to fully unblock 10566 * interrupts on processors that implement an interrupt shadow, the 10567 * stat.exits increment will do nicely. 10568 */ 10569 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 10570 local_irq_enable(); 10571 ++vcpu->stat.exits; 10572 local_irq_disable(); 10573 kvm_after_interrupt(vcpu); 10574 10575 /* 10576 * Wait until after servicing IRQs to account guest time so that any 10577 * ticks that occurred while running the guest are properly accounted 10578 * to the guest. Waiting until IRQs are enabled degrades the accuracy 10579 * of accounting via context tracking, but the loss of accuracy is 10580 * acceptable for all known use cases. 10581 */ 10582 guest_timing_exit_irqoff(); 10583 10584 local_irq_enable(); 10585 preempt_enable(); 10586 10587 kvm_vcpu_srcu_read_lock(vcpu); 10588 10589 /* 10590 * Profile KVM exit RIPs: 10591 */ 10592 if (unlikely(prof_on == KVM_PROFILING)) { 10593 unsigned long rip = kvm_rip_read(vcpu); 10594 profile_hit(KVM_PROFILING, (void *)rip); 10595 } 10596 10597 if (unlikely(vcpu->arch.tsc_always_catchup)) 10598 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 10599 10600 if (vcpu->arch.apic_attention) 10601 kvm_lapic_sync_from_vapic(vcpu); 10602 10603 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 10604 return r; 10605 10606 cancel_injection: 10607 if (req_immediate_exit) 10608 kvm_make_request(KVM_REQ_EVENT, vcpu); 10609 static_call(kvm_x86_cancel_injection)(vcpu); 10610 if (unlikely(vcpu->arch.apic_attention)) 10611 kvm_lapic_sync_from_vapic(vcpu); 10612 out: 10613 return r; 10614 } 10615 10616 /* Called within kvm->srcu read side. */ 10617 static inline int vcpu_block(struct kvm_vcpu *vcpu) 10618 { 10619 bool hv_timer; 10620 10621 if (!kvm_arch_vcpu_runnable(vcpu)) { 10622 /* 10623 * Switch to the software timer before halt-polling/blocking as 10624 * the guest's timer may be a break event for the vCPU, and the 10625 * hypervisor timer runs only when the CPU is in guest mode. 10626 * Switch before halt-polling so that KVM recognizes an expired 10627 * timer before blocking. 10628 */ 10629 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 10630 if (hv_timer) 10631 kvm_lapic_switch_to_sw_timer(vcpu); 10632 10633 kvm_vcpu_srcu_read_unlock(vcpu); 10634 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 10635 kvm_vcpu_halt(vcpu); 10636 else 10637 kvm_vcpu_block(vcpu); 10638 kvm_vcpu_srcu_read_lock(vcpu); 10639 10640 if (hv_timer) 10641 kvm_lapic_switch_to_hv_timer(vcpu); 10642 10643 /* 10644 * If the vCPU is not runnable, a signal or another host event 10645 * of some kind is pending; service it without changing the 10646 * vCPU's activity state. 10647 */ 10648 if (!kvm_arch_vcpu_runnable(vcpu)) 10649 return 1; 10650 } 10651 10652 /* 10653 * Evaluate nested events before exiting the halted state. This allows 10654 * the halt state to be recorded properly in the VMCS12's activity 10655 * state field (AMD does not have a similar field and a VM-Exit always 10656 * causes a spurious wakeup from HLT). 10657 */ 10658 if (is_guest_mode(vcpu)) { 10659 if (kvm_check_nested_events(vcpu) < 0) 10660 return 0; 10661 } 10662 10663 if (kvm_apic_accept_events(vcpu) < 0) 10664 return 0; 10665 switch(vcpu->arch.mp_state) { 10666 case KVM_MP_STATE_HALTED: 10667 case KVM_MP_STATE_AP_RESET_HOLD: 10668 vcpu->arch.pv.pv_unhalted = false; 10669 vcpu->arch.mp_state = 10670 KVM_MP_STATE_RUNNABLE; 10671 fallthrough; 10672 case KVM_MP_STATE_RUNNABLE: 10673 vcpu->arch.apf.halted = false; 10674 break; 10675 case KVM_MP_STATE_INIT_RECEIVED: 10676 break; 10677 default: 10678 WARN_ON_ONCE(1); 10679 break; 10680 } 10681 return 1; 10682 } 10683 10684 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 10685 { 10686 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 10687 !vcpu->arch.apf.halted); 10688 } 10689 10690 /* Called within kvm->srcu read side. */ 10691 static int vcpu_run(struct kvm_vcpu *vcpu) 10692 { 10693 int r; 10694 10695 vcpu->arch.l1tf_flush_l1d = true; 10696 10697 for (;;) { 10698 /* 10699 * If another guest vCPU requests a PV TLB flush in the middle 10700 * of instruction emulation, the rest of the emulation could 10701 * use a stale page translation. Assume that any code after 10702 * this point can start executing an instruction. 10703 */ 10704 vcpu->arch.at_instruction_boundary = false; 10705 if (kvm_vcpu_running(vcpu)) { 10706 r = vcpu_enter_guest(vcpu); 10707 } else { 10708 r = vcpu_block(vcpu); 10709 } 10710 10711 if (r <= 0) 10712 break; 10713 10714 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 10715 if (kvm_xen_has_pending_events(vcpu)) 10716 kvm_xen_inject_pending_events(vcpu); 10717 10718 if (kvm_cpu_has_pending_timer(vcpu)) 10719 kvm_inject_pending_timer_irqs(vcpu); 10720 10721 if (dm_request_for_irq_injection(vcpu) && 10722 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 10723 r = 0; 10724 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 10725 ++vcpu->stat.request_irq_exits; 10726 break; 10727 } 10728 10729 if (__xfer_to_guest_mode_work_pending()) { 10730 kvm_vcpu_srcu_read_unlock(vcpu); 10731 r = xfer_to_guest_mode_handle_work(vcpu); 10732 kvm_vcpu_srcu_read_lock(vcpu); 10733 if (r) 10734 return r; 10735 } 10736 } 10737 10738 return r; 10739 } 10740 10741 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 10742 { 10743 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 10744 } 10745 10746 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 10747 { 10748 BUG_ON(!vcpu->arch.pio.count); 10749 10750 return complete_emulated_io(vcpu); 10751 } 10752 10753 /* 10754 * Implements the following, as a state machine: 10755 * 10756 * read: 10757 * for each fragment 10758 * for each mmio piece in the fragment 10759 * write gpa, len 10760 * exit 10761 * copy data 10762 * execute insn 10763 * 10764 * write: 10765 * for each fragment 10766 * for each mmio piece in the fragment 10767 * write gpa, len 10768 * copy data 10769 * exit 10770 */ 10771 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 10772 { 10773 struct kvm_run *run = vcpu->run; 10774 struct kvm_mmio_fragment *frag; 10775 unsigned len; 10776 10777 BUG_ON(!vcpu->mmio_needed); 10778 10779 /* Complete previous fragment */ 10780 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 10781 len = min(8u, frag->len); 10782 if (!vcpu->mmio_is_write) 10783 memcpy(frag->data, run->mmio.data, len); 10784 10785 if (frag->len <= 8) { 10786 /* Switch to the next fragment. */ 10787 frag++; 10788 vcpu->mmio_cur_fragment++; 10789 } else { 10790 /* Go forward to the next mmio piece. */ 10791 frag->data += len; 10792 frag->gpa += len; 10793 frag->len -= len; 10794 } 10795 10796 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 10797 vcpu->mmio_needed = 0; 10798 10799 /* FIXME: return into emulator if single-stepping. */ 10800 if (vcpu->mmio_is_write) 10801 return 1; 10802 vcpu->mmio_read_completed = 1; 10803 return complete_emulated_io(vcpu); 10804 } 10805 10806 run->exit_reason = KVM_EXIT_MMIO; 10807 run->mmio.phys_addr = frag->gpa; 10808 if (vcpu->mmio_is_write) 10809 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 10810 run->mmio.len = min(8u, frag->len); 10811 run->mmio.is_write = vcpu->mmio_is_write; 10812 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 10813 return 0; 10814 } 10815 10816 /* Swap (qemu) user FPU context for the guest FPU context. */ 10817 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 10818 { 10819 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 10820 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 10821 trace_kvm_fpu(1); 10822 } 10823 10824 /* When vcpu_run ends, restore user space FPU context. */ 10825 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 10826 { 10827 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 10828 ++vcpu->stat.fpu_reload; 10829 trace_kvm_fpu(0); 10830 } 10831 10832 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 10833 { 10834 struct kvm_queued_exception *ex = &vcpu->arch.exception; 10835 struct kvm_run *kvm_run = vcpu->run; 10836 int r; 10837 10838 vcpu_load(vcpu); 10839 kvm_sigset_activate(vcpu); 10840 kvm_run->flags = 0; 10841 kvm_load_guest_fpu(vcpu); 10842 10843 kvm_vcpu_srcu_read_lock(vcpu); 10844 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 10845 if (kvm_run->immediate_exit) { 10846 r = -EINTR; 10847 goto out; 10848 } 10849 /* 10850 * It should be impossible for the hypervisor timer to be in 10851 * use before KVM has ever run the vCPU. 10852 */ 10853 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu)); 10854 10855 kvm_vcpu_srcu_read_unlock(vcpu); 10856 kvm_vcpu_block(vcpu); 10857 kvm_vcpu_srcu_read_lock(vcpu); 10858 10859 if (kvm_apic_accept_events(vcpu) < 0) { 10860 r = 0; 10861 goto out; 10862 } 10863 r = -EAGAIN; 10864 if (signal_pending(current)) { 10865 r = -EINTR; 10866 kvm_run->exit_reason = KVM_EXIT_INTR; 10867 ++vcpu->stat.signal_exits; 10868 } 10869 goto out; 10870 } 10871 10872 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 10873 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 10874 r = -EINVAL; 10875 goto out; 10876 } 10877 10878 if (kvm_run->kvm_dirty_regs) { 10879 r = sync_regs(vcpu); 10880 if (r != 0) 10881 goto out; 10882 } 10883 10884 /* re-sync apic's tpr */ 10885 if (!lapic_in_kernel(vcpu)) { 10886 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 10887 r = -EINVAL; 10888 goto out; 10889 } 10890 } 10891 10892 /* 10893 * If userspace set a pending exception and L2 is active, convert it to 10894 * a pending VM-Exit if L1 wants to intercept the exception. 10895 */ 10896 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && 10897 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, 10898 ex->error_code)) { 10899 kvm_queue_exception_vmexit(vcpu, ex->vector, 10900 ex->has_error_code, ex->error_code, 10901 ex->has_payload, ex->payload); 10902 ex->injected = false; 10903 ex->pending = false; 10904 } 10905 vcpu->arch.exception_from_userspace = false; 10906 10907 if (unlikely(vcpu->arch.complete_userspace_io)) { 10908 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 10909 vcpu->arch.complete_userspace_io = NULL; 10910 r = cui(vcpu); 10911 if (r <= 0) 10912 goto out; 10913 } else { 10914 WARN_ON_ONCE(vcpu->arch.pio.count); 10915 WARN_ON_ONCE(vcpu->mmio_needed); 10916 } 10917 10918 if (kvm_run->immediate_exit) { 10919 r = -EINTR; 10920 goto out; 10921 } 10922 10923 r = static_call(kvm_x86_vcpu_pre_run)(vcpu); 10924 if (r <= 0) 10925 goto out; 10926 10927 r = vcpu_run(vcpu); 10928 10929 out: 10930 kvm_put_guest_fpu(vcpu); 10931 if (kvm_run->kvm_valid_regs) 10932 store_regs(vcpu); 10933 post_kvm_run_save(vcpu); 10934 kvm_vcpu_srcu_read_unlock(vcpu); 10935 10936 kvm_sigset_deactivate(vcpu); 10937 vcpu_put(vcpu); 10938 return r; 10939 } 10940 10941 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10942 { 10943 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 10944 /* 10945 * We are here if userspace calls get_regs() in the middle of 10946 * instruction emulation. Registers state needs to be copied 10947 * back from emulation context to vcpu. Userspace shouldn't do 10948 * that usually, but some bad designed PV devices (vmware 10949 * backdoor interface) need this to work 10950 */ 10951 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 10952 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 10953 } 10954 regs->rax = kvm_rax_read(vcpu); 10955 regs->rbx = kvm_rbx_read(vcpu); 10956 regs->rcx = kvm_rcx_read(vcpu); 10957 regs->rdx = kvm_rdx_read(vcpu); 10958 regs->rsi = kvm_rsi_read(vcpu); 10959 regs->rdi = kvm_rdi_read(vcpu); 10960 regs->rsp = kvm_rsp_read(vcpu); 10961 regs->rbp = kvm_rbp_read(vcpu); 10962 #ifdef CONFIG_X86_64 10963 regs->r8 = kvm_r8_read(vcpu); 10964 regs->r9 = kvm_r9_read(vcpu); 10965 regs->r10 = kvm_r10_read(vcpu); 10966 regs->r11 = kvm_r11_read(vcpu); 10967 regs->r12 = kvm_r12_read(vcpu); 10968 regs->r13 = kvm_r13_read(vcpu); 10969 regs->r14 = kvm_r14_read(vcpu); 10970 regs->r15 = kvm_r15_read(vcpu); 10971 #endif 10972 10973 regs->rip = kvm_rip_read(vcpu); 10974 regs->rflags = kvm_get_rflags(vcpu); 10975 } 10976 10977 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10978 { 10979 vcpu_load(vcpu); 10980 __get_regs(vcpu, regs); 10981 vcpu_put(vcpu); 10982 return 0; 10983 } 10984 10985 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10986 { 10987 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 10988 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 10989 10990 kvm_rax_write(vcpu, regs->rax); 10991 kvm_rbx_write(vcpu, regs->rbx); 10992 kvm_rcx_write(vcpu, regs->rcx); 10993 kvm_rdx_write(vcpu, regs->rdx); 10994 kvm_rsi_write(vcpu, regs->rsi); 10995 kvm_rdi_write(vcpu, regs->rdi); 10996 kvm_rsp_write(vcpu, regs->rsp); 10997 kvm_rbp_write(vcpu, regs->rbp); 10998 #ifdef CONFIG_X86_64 10999 kvm_r8_write(vcpu, regs->r8); 11000 kvm_r9_write(vcpu, regs->r9); 11001 kvm_r10_write(vcpu, regs->r10); 11002 kvm_r11_write(vcpu, regs->r11); 11003 kvm_r12_write(vcpu, regs->r12); 11004 kvm_r13_write(vcpu, regs->r13); 11005 kvm_r14_write(vcpu, regs->r14); 11006 kvm_r15_write(vcpu, regs->r15); 11007 #endif 11008 11009 kvm_rip_write(vcpu, regs->rip); 11010 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 11011 11012 vcpu->arch.exception.pending = false; 11013 vcpu->arch.exception_vmexit.pending = false; 11014 11015 kvm_make_request(KVM_REQ_EVENT, vcpu); 11016 } 11017 11018 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11019 { 11020 vcpu_load(vcpu); 11021 __set_regs(vcpu, regs); 11022 vcpu_put(vcpu); 11023 return 0; 11024 } 11025 11026 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11027 { 11028 struct desc_ptr dt; 11029 11030 if (vcpu->arch.guest_state_protected) 11031 goto skip_protected_regs; 11032 11033 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11034 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11035 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11036 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11037 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11038 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11039 11040 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11041 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11042 11043 static_call(kvm_x86_get_idt)(vcpu, &dt); 11044 sregs->idt.limit = dt.size; 11045 sregs->idt.base = dt.address; 11046 static_call(kvm_x86_get_gdt)(vcpu, &dt); 11047 sregs->gdt.limit = dt.size; 11048 sregs->gdt.base = dt.address; 11049 11050 sregs->cr2 = vcpu->arch.cr2; 11051 sregs->cr3 = kvm_read_cr3(vcpu); 11052 11053 skip_protected_regs: 11054 sregs->cr0 = kvm_read_cr0(vcpu); 11055 sregs->cr4 = kvm_read_cr4(vcpu); 11056 sregs->cr8 = kvm_get_cr8(vcpu); 11057 sregs->efer = vcpu->arch.efer; 11058 sregs->apic_base = kvm_get_apic_base(vcpu); 11059 } 11060 11061 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11062 { 11063 __get_sregs_common(vcpu, sregs); 11064 11065 if (vcpu->arch.guest_state_protected) 11066 return; 11067 11068 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 11069 set_bit(vcpu->arch.interrupt.nr, 11070 (unsigned long *)sregs->interrupt_bitmap); 11071 } 11072 11073 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11074 { 11075 int i; 11076 11077 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 11078 11079 if (vcpu->arch.guest_state_protected) 11080 return; 11081 11082 if (is_pae_paging(vcpu)) { 11083 for (i = 0 ; i < 4 ; i++) 11084 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 11085 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 11086 } 11087 } 11088 11089 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 11090 struct kvm_sregs *sregs) 11091 { 11092 vcpu_load(vcpu); 11093 __get_sregs(vcpu, sregs); 11094 vcpu_put(vcpu); 11095 return 0; 11096 } 11097 11098 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 11099 struct kvm_mp_state *mp_state) 11100 { 11101 int r; 11102 11103 vcpu_load(vcpu); 11104 if (kvm_mpx_supported()) 11105 kvm_load_guest_fpu(vcpu); 11106 11107 r = kvm_apic_accept_events(vcpu); 11108 if (r < 0) 11109 goto out; 11110 r = 0; 11111 11112 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 11113 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 11114 vcpu->arch.pv.pv_unhalted) 11115 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 11116 else 11117 mp_state->mp_state = vcpu->arch.mp_state; 11118 11119 out: 11120 if (kvm_mpx_supported()) 11121 kvm_put_guest_fpu(vcpu); 11122 vcpu_put(vcpu); 11123 return r; 11124 } 11125 11126 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 11127 struct kvm_mp_state *mp_state) 11128 { 11129 int ret = -EINVAL; 11130 11131 vcpu_load(vcpu); 11132 11133 switch (mp_state->mp_state) { 11134 case KVM_MP_STATE_UNINITIALIZED: 11135 case KVM_MP_STATE_HALTED: 11136 case KVM_MP_STATE_AP_RESET_HOLD: 11137 case KVM_MP_STATE_INIT_RECEIVED: 11138 case KVM_MP_STATE_SIPI_RECEIVED: 11139 if (!lapic_in_kernel(vcpu)) 11140 goto out; 11141 break; 11142 11143 case KVM_MP_STATE_RUNNABLE: 11144 break; 11145 11146 default: 11147 goto out; 11148 } 11149 11150 /* 11151 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow 11152 * forcing the guest into INIT/SIPI if those events are supposed to be 11153 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state 11154 * if an SMI is pending as well. 11155 */ 11156 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) && 11157 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 11158 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 11159 goto out; 11160 11161 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 11162 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 11163 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 11164 } else 11165 vcpu->arch.mp_state = mp_state->mp_state; 11166 kvm_make_request(KVM_REQ_EVENT, vcpu); 11167 11168 ret = 0; 11169 out: 11170 vcpu_put(vcpu); 11171 return ret; 11172 } 11173 11174 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 11175 int reason, bool has_error_code, u32 error_code) 11176 { 11177 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 11178 int ret; 11179 11180 init_emulate_ctxt(vcpu); 11181 11182 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 11183 has_error_code, error_code); 11184 if (ret) { 11185 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11186 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11187 vcpu->run->internal.ndata = 0; 11188 return 0; 11189 } 11190 11191 kvm_rip_write(vcpu, ctxt->eip); 11192 kvm_set_rflags(vcpu, ctxt->eflags); 11193 return 1; 11194 } 11195 EXPORT_SYMBOL_GPL(kvm_task_switch); 11196 11197 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11198 { 11199 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 11200 /* 11201 * When EFER.LME and CR0.PG are set, the processor is in 11202 * 64-bit mode (though maybe in a 32-bit code segment). 11203 * CR4.PAE and EFER.LMA must be set. 11204 */ 11205 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 11206 return false; 11207 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3)) 11208 return false; 11209 } else { 11210 /* 11211 * Not in 64-bit mode: EFER.LMA is clear and the code 11212 * segment cannot be 64-bit. 11213 */ 11214 if (sregs->efer & EFER_LMA || sregs->cs.l) 11215 return false; 11216 } 11217 11218 return kvm_is_valid_cr4(vcpu, sregs->cr4); 11219 } 11220 11221 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 11222 int *mmu_reset_needed, bool update_pdptrs) 11223 { 11224 struct msr_data apic_base_msr; 11225 int idx; 11226 struct desc_ptr dt; 11227 11228 if (!kvm_is_valid_sregs(vcpu, sregs)) 11229 return -EINVAL; 11230 11231 apic_base_msr.data = sregs->apic_base; 11232 apic_base_msr.host_initiated = true; 11233 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 11234 return -EINVAL; 11235 11236 if (vcpu->arch.guest_state_protected) 11237 return 0; 11238 11239 dt.size = sregs->idt.limit; 11240 dt.address = sregs->idt.base; 11241 static_call(kvm_x86_set_idt)(vcpu, &dt); 11242 dt.size = sregs->gdt.limit; 11243 dt.address = sregs->gdt.base; 11244 static_call(kvm_x86_set_gdt)(vcpu, &dt); 11245 11246 vcpu->arch.cr2 = sregs->cr2; 11247 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 11248 vcpu->arch.cr3 = sregs->cr3; 11249 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11250 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); 11251 11252 kvm_set_cr8(vcpu, sregs->cr8); 11253 11254 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 11255 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 11256 11257 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 11258 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 11259 vcpu->arch.cr0 = sregs->cr0; 11260 11261 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 11262 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 11263 11264 if (update_pdptrs) { 11265 idx = srcu_read_lock(&vcpu->kvm->srcu); 11266 if (is_pae_paging(vcpu)) { 11267 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11268 *mmu_reset_needed = 1; 11269 } 11270 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11271 } 11272 11273 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11274 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11275 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11276 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11277 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11278 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11279 11280 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11281 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11282 11283 update_cr8_intercept(vcpu); 11284 11285 /* Older userspace won't unhalt the vcpu on reset. */ 11286 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11287 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11288 !is_protmode(vcpu)) 11289 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11290 11291 return 0; 11292 } 11293 11294 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11295 { 11296 int pending_vec, max_bits; 11297 int mmu_reset_needed = 0; 11298 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11299 11300 if (ret) 11301 return ret; 11302 11303 if (mmu_reset_needed) 11304 kvm_mmu_reset_context(vcpu); 11305 11306 max_bits = KVM_NR_INTERRUPTS; 11307 pending_vec = find_first_bit( 11308 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 11309 11310 if (pending_vec < max_bits) { 11311 kvm_queue_interrupt(vcpu, pending_vec, false); 11312 pr_debug("Set back pending irq %d\n", pending_vec); 11313 kvm_make_request(KVM_REQ_EVENT, vcpu); 11314 } 11315 return 0; 11316 } 11317 11318 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11319 { 11320 int mmu_reset_needed = 0; 11321 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 11322 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 11323 !(sregs2->efer & EFER_LMA); 11324 int i, ret; 11325 11326 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 11327 return -EINVAL; 11328 11329 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 11330 return -EINVAL; 11331 11332 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 11333 &mmu_reset_needed, !valid_pdptrs); 11334 if (ret) 11335 return ret; 11336 11337 if (valid_pdptrs) { 11338 for (i = 0; i < 4 ; i++) 11339 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 11340 11341 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 11342 mmu_reset_needed = 1; 11343 vcpu->arch.pdptrs_from_userspace = true; 11344 } 11345 if (mmu_reset_needed) 11346 kvm_mmu_reset_context(vcpu); 11347 return 0; 11348 } 11349 11350 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 11351 struct kvm_sregs *sregs) 11352 { 11353 int ret; 11354 11355 vcpu_load(vcpu); 11356 ret = __set_sregs(vcpu, sregs); 11357 vcpu_put(vcpu); 11358 return ret; 11359 } 11360 11361 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 11362 { 11363 bool set = false; 11364 struct kvm_vcpu *vcpu; 11365 unsigned long i; 11366 11367 if (!enable_apicv) 11368 return; 11369 11370 down_write(&kvm->arch.apicv_update_lock); 11371 11372 kvm_for_each_vcpu(i, vcpu, kvm) { 11373 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 11374 set = true; 11375 break; 11376 } 11377 } 11378 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 11379 up_write(&kvm->arch.apicv_update_lock); 11380 } 11381 11382 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 11383 struct kvm_guest_debug *dbg) 11384 { 11385 unsigned long rflags; 11386 int i, r; 11387 11388 if (vcpu->arch.guest_state_protected) 11389 return -EINVAL; 11390 11391 vcpu_load(vcpu); 11392 11393 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 11394 r = -EBUSY; 11395 if (kvm_is_exception_pending(vcpu)) 11396 goto out; 11397 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 11398 kvm_queue_exception(vcpu, DB_VECTOR); 11399 else 11400 kvm_queue_exception(vcpu, BP_VECTOR); 11401 } 11402 11403 /* 11404 * Read rflags as long as potentially injected trace flags are still 11405 * filtered out. 11406 */ 11407 rflags = kvm_get_rflags(vcpu); 11408 11409 vcpu->guest_debug = dbg->control; 11410 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 11411 vcpu->guest_debug = 0; 11412 11413 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 11414 for (i = 0; i < KVM_NR_DB_REGS; ++i) 11415 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 11416 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 11417 } else { 11418 for (i = 0; i < KVM_NR_DB_REGS; i++) 11419 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 11420 } 11421 kvm_update_dr7(vcpu); 11422 11423 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 11424 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 11425 11426 /* 11427 * Trigger an rflags update that will inject or remove the trace 11428 * flags. 11429 */ 11430 kvm_set_rflags(vcpu, rflags); 11431 11432 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11433 11434 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 11435 11436 r = 0; 11437 11438 out: 11439 vcpu_put(vcpu); 11440 return r; 11441 } 11442 11443 /* 11444 * Translate a guest virtual address to a guest physical address. 11445 */ 11446 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 11447 struct kvm_translation *tr) 11448 { 11449 unsigned long vaddr = tr->linear_address; 11450 gpa_t gpa; 11451 int idx; 11452 11453 vcpu_load(vcpu); 11454 11455 idx = srcu_read_lock(&vcpu->kvm->srcu); 11456 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 11457 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11458 tr->physical_address = gpa; 11459 tr->valid = gpa != INVALID_GPA; 11460 tr->writeable = 1; 11461 tr->usermode = 0; 11462 11463 vcpu_put(vcpu); 11464 return 0; 11465 } 11466 11467 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11468 { 11469 struct fxregs_state *fxsave; 11470 11471 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11472 return 0; 11473 11474 vcpu_load(vcpu); 11475 11476 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11477 memcpy(fpu->fpr, fxsave->st_space, 128); 11478 fpu->fcw = fxsave->cwd; 11479 fpu->fsw = fxsave->swd; 11480 fpu->ftwx = fxsave->twd; 11481 fpu->last_opcode = fxsave->fop; 11482 fpu->last_ip = fxsave->rip; 11483 fpu->last_dp = fxsave->rdp; 11484 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 11485 11486 vcpu_put(vcpu); 11487 return 0; 11488 } 11489 11490 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11491 { 11492 struct fxregs_state *fxsave; 11493 11494 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11495 return 0; 11496 11497 vcpu_load(vcpu); 11498 11499 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11500 11501 memcpy(fxsave->st_space, fpu->fpr, 128); 11502 fxsave->cwd = fpu->fcw; 11503 fxsave->swd = fpu->fsw; 11504 fxsave->twd = fpu->ftwx; 11505 fxsave->fop = fpu->last_opcode; 11506 fxsave->rip = fpu->last_ip; 11507 fxsave->rdp = fpu->last_dp; 11508 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 11509 11510 vcpu_put(vcpu); 11511 return 0; 11512 } 11513 11514 static void store_regs(struct kvm_vcpu *vcpu) 11515 { 11516 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 11517 11518 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 11519 __get_regs(vcpu, &vcpu->run->s.regs.regs); 11520 11521 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 11522 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 11523 11524 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 11525 kvm_vcpu_ioctl_x86_get_vcpu_events( 11526 vcpu, &vcpu->run->s.regs.events); 11527 } 11528 11529 static int sync_regs(struct kvm_vcpu *vcpu) 11530 { 11531 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 11532 __set_regs(vcpu, &vcpu->run->s.regs.regs); 11533 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 11534 } 11535 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 11536 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 11537 return -EINVAL; 11538 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 11539 } 11540 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 11541 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 11542 vcpu, &vcpu->run->s.regs.events)) 11543 return -EINVAL; 11544 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 11545 } 11546 11547 return 0; 11548 } 11549 11550 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 11551 { 11552 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 11553 pr_warn_once("kvm: SMP vm created on host with unstable TSC; " 11554 "guest TSC will not be reliable\n"); 11555 11556 if (!kvm->arch.max_vcpu_ids) 11557 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 11558 11559 if (id >= kvm->arch.max_vcpu_ids) 11560 return -EINVAL; 11561 11562 return static_call(kvm_x86_vcpu_precreate)(kvm); 11563 } 11564 11565 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 11566 { 11567 struct page *page; 11568 int r; 11569 11570 vcpu->arch.last_vmentry_cpu = -1; 11571 vcpu->arch.regs_avail = ~0; 11572 vcpu->arch.regs_dirty = ~0; 11573 11574 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN); 11575 11576 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 11577 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11578 else 11579 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 11580 11581 r = kvm_mmu_create(vcpu); 11582 if (r < 0) 11583 return r; 11584 11585 if (irqchip_in_kernel(vcpu->kvm)) { 11586 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 11587 if (r < 0) 11588 goto fail_mmu_destroy; 11589 11590 /* 11591 * Defer evaluating inhibits until the vCPU is first run, as 11592 * this vCPU will not get notified of any changes until this 11593 * vCPU is visible to other vCPUs (marked online and added to 11594 * the set of vCPUs). Opportunistically mark APICv active as 11595 * VMX in particularly is highly unlikely to have inhibits. 11596 * Ignore the current per-VM APICv state so that vCPU creation 11597 * is guaranteed to run with a deterministic value, the request 11598 * will ensure the vCPU gets the correct state before VM-Entry. 11599 */ 11600 if (enable_apicv) { 11601 vcpu->arch.apic->apicv_active = true; 11602 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 11603 } 11604 } else 11605 static_branch_inc(&kvm_has_noapic_vcpu); 11606 11607 r = -ENOMEM; 11608 11609 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 11610 if (!page) 11611 goto fail_free_lapic; 11612 vcpu->arch.pio_data = page_address(page); 11613 11614 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 11615 GFP_KERNEL_ACCOUNT); 11616 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 11617 GFP_KERNEL_ACCOUNT); 11618 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 11619 goto fail_free_mce_banks; 11620 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 11621 11622 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 11623 GFP_KERNEL_ACCOUNT)) 11624 goto fail_free_mce_banks; 11625 11626 if (!alloc_emulate_ctxt(vcpu)) 11627 goto free_wbinvd_dirty_mask; 11628 11629 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 11630 pr_err("kvm: failed to allocate vcpu's fpu\n"); 11631 goto free_emulate_ctxt; 11632 } 11633 11634 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 11635 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 11636 11637 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 11638 11639 kvm_async_pf_hash_reset(vcpu); 11640 11641 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; 11642 kvm_pmu_init(vcpu); 11643 11644 vcpu->arch.pending_external_vector = -1; 11645 vcpu->arch.preempted_in_kernel = false; 11646 11647 #if IS_ENABLED(CONFIG_HYPERV) 11648 vcpu->arch.hv_root_tdp = INVALID_PAGE; 11649 #endif 11650 11651 r = static_call(kvm_x86_vcpu_create)(vcpu); 11652 if (r) 11653 goto free_guest_fpu; 11654 11655 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 11656 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 11657 kvm_xen_init_vcpu(vcpu); 11658 kvm_vcpu_mtrr_init(vcpu); 11659 vcpu_load(vcpu); 11660 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 11661 kvm_vcpu_reset(vcpu, false); 11662 kvm_init_mmu(vcpu); 11663 vcpu_put(vcpu); 11664 return 0; 11665 11666 free_guest_fpu: 11667 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11668 free_emulate_ctxt: 11669 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11670 free_wbinvd_dirty_mask: 11671 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11672 fail_free_mce_banks: 11673 kfree(vcpu->arch.mce_banks); 11674 kfree(vcpu->arch.mci_ctl2_banks); 11675 free_page((unsigned long)vcpu->arch.pio_data); 11676 fail_free_lapic: 11677 kvm_free_lapic(vcpu); 11678 fail_mmu_destroy: 11679 kvm_mmu_destroy(vcpu); 11680 return r; 11681 } 11682 11683 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 11684 { 11685 struct kvm *kvm = vcpu->kvm; 11686 11687 if (mutex_lock_killable(&vcpu->mutex)) 11688 return; 11689 vcpu_load(vcpu); 11690 kvm_synchronize_tsc(vcpu, 0); 11691 vcpu_put(vcpu); 11692 11693 /* poll control enabled by default */ 11694 vcpu->arch.msr_kvm_poll_control = 1; 11695 11696 mutex_unlock(&vcpu->mutex); 11697 11698 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 11699 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 11700 KVMCLOCK_SYNC_PERIOD); 11701 } 11702 11703 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 11704 { 11705 int idx; 11706 11707 kvmclock_reset(vcpu); 11708 11709 static_call(kvm_x86_vcpu_free)(vcpu); 11710 11711 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11712 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11713 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11714 11715 kvm_xen_destroy_vcpu(vcpu); 11716 kvm_hv_vcpu_uninit(vcpu); 11717 kvm_pmu_destroy(vcpu); 11718 kfree(vcpu->arch.mce_banks); 11719 kfree(vcpu->arch.mci_ctl2_banks); 11720 kvm_free_lapic(vcpu); 11721 idx = srcu_read_lock(&vcpu->kvm->srcu); 11722 kvm_mmu_destroy(vcpu); 11723 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11724 free_page((unsigned long)vcpu->arch.pio_data); 11725 kvfree(vcpu->arch.cpuid_entries); 11726 if (!lapic_in_kernel(vcpu)) 11727 static_branch_dec(&kvm_has_noapic_vcpu); 11728 } 11729 11730 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 11731 { 11732 struct kvm_cpuid_entry2 *cpuid_0x1; 11733 unsigned long old_cr0 = kvm_read_cr0(vcpu); 11734 unsigned long new_cr0; 11735 11736 /* 11737 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 11738 * to handle side effects. RESET emulation hits those flows and relies 11739 * on emulated/virtualized registers, including those that are loaded 11740 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 11741 * to detect improper or missing initialization. 11742 */ 11743 WARN_ON_ONCE(!init_event && 11744 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 11745 11746 /* 11747 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's 11748 * possible to INIT the vCPU while L2 is active. Force the vCPU back 11749 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER 11750 * bits), i.e. virtualization is disabled. 11751 */ 11752 if (is_guest_mode(vcpu)) 11753 kvm_leave_nested(vcpu); 11754 11755 kvm_lapic_reset(vcpu, init_event); 11756 11757 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu)); 11758 vcpu->arch.hflags = 0; 11759 11760 vcpu->arch.smi_pending = 0; 11761 vcpu->arch.smi_count = 0; 11762 atomic_set(&vcpu->arch.nmi_queued, 0); 11763 vcpu->arch.nmi_pending = 0; 11764 vcpu->arch.nmi_injected = false; 11765 kvm_clear_interrupt_queue(vcpu); 11766 kvm_clear_exception_queue(vcpu); 11767 11768 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 11769 kvm_update_dr0123(vcpu); 11770 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 11771 vcpu->arch.dr7 = DR7_FIXED_1; 11772 kvm_update_dr7(vcpu); 11773 11774 vcpu->arch.cr2 = 0; 11775 11776 kvm_make_request(KVM_REQ_EVENT, vcpu); 11777 vcpu->arch.apf.msr_en_val = 0; 11778 vcpu->arch.apf.msr_int_val = 0; 11779 vcpu->arch.st.msr_val = 0; 11780 11781 kvmclock_reset(vcpu); 11782 11783 kvm_clear_async_pf_completion_queue(vcpu); 11784 kvm_async_pf_hash_reset(vcpu); 11785 vcpu->arch.apf.halted = false; 11786 11787 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 11788 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 11789 11790 /* 11791 * All paths that lead to INIT are required to load the guest's 11792 * FPU state (because most paths are buried in KVM_RUN). 11793 */ 11794 if (init_event) 11795 kvm_put_guest_fpu(vcpu); 11796 11797 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 11798 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 11799 11800 if (init_event) 11801 kvm_load_guest_fpu(vcpu); 11802 } 11803 11804 if (!init_event) { 11805 kvm_pmu_reset(vcpu); 11806 vcpu->arch.smbase = 0x30000; 11807 11808 vcpu->arch.msr_misc_features_enables = 0; 11809 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 11810 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 11811 11812 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 11813 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 11814 } 11815 11816 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 11817 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 11818 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 11819 11820 /* 11821 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 11822 * if no CPUID match is found. Note, it's impossible to get a match at 11823 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 11824 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 11825 * on RESET. But, go through the motions in case that's ever remedied. 11826 */ 11827 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 11828 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 11829 11830 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 11831 11832 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 11833 kvm_rip_write(vcpu, 0xfff0); 11834 11835 vcpu->arch.cr3 = 0; 11836 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11837 11838 /* 11839 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 11840 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 11841 * (or qualify) that with a footnote stating that CD/NW are preserved. 11842 */ 11843 new_cr0 = X86_CR0_ET; 11844 if (init_event) 11845 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 11846 else 11847 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 11848 11849 static_call(kvm_x86_set_cr0)(vcpu, new_cr0); 11850 static_call(kvm_x86_set_cr4)(vcpu, 0); 11851 static_call(kvm_x86_set_efer)(vcpu, 0); 11852 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11853 11854 /* 11855 * On the standard CR0/CR4/EFER modification paths, there are several 11856 * complex conditions determining whether the MMU has to be reset and/or 11857 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 11858 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 11859 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 11860 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 11861 */ 11862 if (old_cr0 & X86_CR0_PG) { 11863 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11864 kvm_mmu_reset_context(vcpu); 11865 } 11866 11867 /* 11868 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 11869 * APM states the TLBs are untouched by INIT, but it also states that 11870 * the TLBs are flushed on "External initialization of the processor." 11871 * Flush the guest TLB regardless of vendor, there is no meaningful 11872 * benefit in relying on the guest to flush the TLB immediately after 11873 * INIT. A spurious TLB flush is benign and likely negligible from a 11874 * performance perspective. 11875 */ 11876 if (init_event) 11877 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11878 } 11879 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 11880 11881 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 11882 { 11883 struct kvm_segment cs; 11884 11885 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 11886 cs.selector = vector << 8; 11887 cs.base = vector << 12; 11888 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 11889 kvm_rip_write(vcpu, 0); 11890 } 11891 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 11892 11893 int kvm_arch_hardware_enable(void) 11894 { 11895 struct kvm *kvm; 11896 struct kvm_vcpu *vcpu; 11897 unsigned long i; 11898 int ret; 11899 u64 local_tsc; 11900 u64 max_tsc = 0; 11901 bool stable, backwards_tsc = false; 11902 11903 kvm_user_return_msr_cpu_online(); 11904 ret = static_call(kvm_x86_hardware_enable)(); 11905 if (ret != 0) 11906 return ret; 11907 11908 local_tsc = rdtsc(); 11909 stable = !kvm_check_tsc_unstable(); 11910 list_for_each_entry(kvm, &vm_list, vm_list) { 11911 kvm_for_each_vcpu(i, vcpu, kvm) { 11912 if (!stable && vcpu->cpu == smp_processor_id()) 11913 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 11914 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 11915 backwards_tsc = true; 11916 if (vcpu->arch.last_host_tsc > max_tsc) 11917 max_tsc = vcpu->arch.last_host_tsc; 11918 } 11919 } 11920 } 11921 11922 /* 11923 * Sometimes, even reliable TSCs go backwards. This happens on 11924 * platforms that reset TSC during suspend or hibernate actions, but 11925 * maintain synchronization. We must compensate. Fortunately, we can 11926 * detect that condition here, which happens early in CPU bringup, 11927 * before any KVM threads can be running. Unfortunately, we can't 11928 * bring the TSCs fully up to date with real time, as we aren't yet far 11929 * enough into CPU bringup that we know how much real time has actually 11930 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 11931 * variables that haven't been updated yet. 11932 * 11933 * So we simply find the maximum observed TSC above, then record the 11934 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 11935 * the adjustment will be applied. Note that we accumulate 11936 * adjustments, in case multiple suspend cycles happen before some VCPU 11937 * gets a chance to run again. In the event that no KVM threads get a 11938 * chance to run, we will miss the entire elapsed period, as we'll have 11939 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 11940 * loose cycle time. This isn't too big a deal, since the loss will be 11941 * uniform across all VCPUs (not to mention the scenario is extremely 11942 * unlikely). It is possible that a second hibernate recovery happens 11943 * much faster than a first, causing the observed TSC here to be 11944 * smaller; this would require additional padding adjustment, which is 11945 * why we set last_host_tsc to the local tsc observed here. 11946 * 11947 * N.B. - this code below runs only on platforms with reliable TSC, 11948 * as that is the only way backwards_tsc is set above. Also note 11949 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 11950 * have the same delta_cyc adjustment applied if backwards_tsc 11951 * is detected. Note further, this adjustment is only done once, 11952 * as we reset last_host_tsc on all VCPUs to stop this from being 11953 * called multiple times (one for each physical CPU bringup). 11954 * 11955 * Platforms with unreliable TSCs don't have to deal with this, they 11956 * will be compensated by the logic in vcpu_load, which sets the TSC to 11957 * catchup mode. This will catchup all VCPUs to real time, but cannot 11958 * guarantee that they stay in perfect synchronization. 11959 */ 11960 if (backwards_tsc) { 11961 u64 delta_cyc = max_tsc - local_tsc; 11962 list_for_each_entry(kvm, &vm_list, vm_list) { 11963 kvm->arch.backwards_tsc_observed = true; 11964 kvm_for_each_vcpu(i, vcpu, kvm) { 11965 vcpu->arch.tsc_offset_adjustment += delta_cyc; 11966 vcpu->arch.last_host_tsc = local_tsc; 11967 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 11968 } 11969 11970 /* 11971 * We have to disable TSC offset matching.. if you were 11972 * booting a VM while issuing an S4 host suspend.... 11973 * you may have some problem. Solving this issue is 11974 * left as an exercise to the reader. 11975 */ 11976 kvm->arch.last_tsc_nsec = 0; 11977 kvm->arch.last_tsc_write = 0; 11978 } 11979 11980 } 11981 return 0; 11982 } 11983 11984 void kvm_arch_hardware_disable(void) 11985 { 11986 static_call(kvm_x86_hardware_disable)(); 11987 drop_user_return_notifiers(); 11988 } 11989 11990 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 11991 { 11992 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 11993 11994 #define __KVM_X86_OP(func) \ 11995 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 11996 #define KVM_X86_OP(func) \ 11997 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 11998 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 11999 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 12000 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 12001 (void *)__static_call_return0); 12002 #include <asm/kvm-x86-ops.h> 12003 #undef __KVM_X86_OP 12004 12005 kvm_pmu_ops_update(ops->pmu_ops); 12006 } 12007 12008 int kvm_arch_hardware_setup(void *opaque) 12009 { 12010 struct kvm_x86_init_ops *ops = opaque; 12011 int r; 12012 12013 rdmsrl_safe(MSR_EFER, &host_efer); 12014 12015 if (boot_cpu_has(X86_FEATURE_XSAVES)) 12016 rdmsrl(MSR_IA32_XSS, host_xss); 12017 12018 kvm_init_pmu_capability(); 12019 12020 r = ops->hardware_setup(); 12021 if (r != 0) 12022 return r; 12023 12024 kvm_ops_update(ops); 12025 12026 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 12027 12028 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 12029 kvm_caps.supported_xss = 0; 12030 12031 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 12032 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 12033 #undef __kvm_cpu_cap_has 12034 12035 if (kvm_caps.has_tsc_control) { 12036 /* 12037 * Make sure the user can only configure tsc_khz values that 12038 * fit into a signed integer. 12039 * A min value is not calculated because it will always 12040 * be 1 on all machines. 12041 */ 12042 u64 max = min(0x7fffffffULL, 12043 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 12044 kvm_caps.max_guest_tsc_khz = max; 12045 } 12046 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 12047 kvm_init_msr_list(); 12048 return 0; 12049 } 12050 12051 void kvm_arch_hardware_unsetup(void) 12052 { 12053 kvm_unregister_perf_callbacks(); 12054 12055 static_call(kvm_x86_hardware_unsetup)(); 12056 } 12057 12058 int kvm_arch_check_processor_compat(void *opaque) 12059 { 12060 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id()); 12061 struct kvm_x86_init_ops *ops = opaque; 12062 12063 WARN_ON(!irqs_disabled()); 12064 12065 if (__cr4_reserved_bits(cpu_has, c) != 12066 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 12067 return -EIO; 12068 12069 return ops->check_processor_compatibility(); 12070 } 12071 12072 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 12073 { 12074 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 12075 } 12076 12077 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 12078 { 12079 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 12080 } 12081 12082 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 12083 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 12084 12085 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 12086 { 12087 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 12088 12089 vcpu->arch.l1tf_flush_l1d = true; 12090 if (pmu->version && unlikely(pmu->event_count)) { 12091 pmu->need_cleanup = true; 12092 kvm_make_request(KVM_REQ_PMU, vcpu); 12093 } 12094 static_call(kvm_x86_sched_in)(vcpu, cpu); 12095 } 12096 12097 void kvm_arch_free_vm(struct kvm *kvm) 12098 { 12099 kfree(to_kvm_hv(kvm)->hv_pa_pg); 12100 __kvm_arch_free_vm(kvm); 12101 } 12102 12103 12104 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 12105 { 12106 int ret; 12107 unsigned long flags; 12108 12109 if (type) 12110 return -EINVAL; 12111 12112 ret = kvm_page_track_init(kvm); 12113 if (ret) 12114 goto out; 12115 12116 ret = kvm_mmu_init_vm(kvm); 12117 if (ret) 12118 goto out_page_track; 12119 12120 ret = static_call(kvm_x86_vm_init)(kvm); 12121 if (ret) 12122 goto out_uninit_mmu; 12123 12124 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 12125 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 12126 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 12127 12128 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 12129 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 12130 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 12131 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 12132 &kvm->arch.irq_sources_bitmap); 12133 12134 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 12135 mutex_init(&kvm->arch.apic_map_lock); 12136 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 12137 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 12138 12139 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 12140 pvclock_update_vm_gtod_copy(kvm); 12141 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 12142 12143 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 12144 kvm->arch.guest_can_read_msr_platform_info = true; 12145 kvm->arch.enable_pmu = enable_pmu; 12146 12147 #if IS_ENABLED(CONFIG_HYPERV) 12148 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 12149 kvm->arch.hv_root_tdp = INVALID_PAGE; 12150 #endif 12151 12152 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 12153 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 12154 12155 kvm_apicv_init(kvm); 12156 kvm_hv_init_vm(kvm); 12157 kvm_xen_init_vm(kvm); 12158 12159 return 0; 12160 12161 out_uninit_mmu: 12162 kvm_mmu_uninit_vm(kvm); 12163 out_page_track: 12164 kvm_page_track_cleanup(kvm); 12165 out: 12166 return ret; 12167 } 12168 12169 int kvm_arch_post_init_vm(struct kvm *kvm) 12170 { 12171 return kvm_mmu_post_init_vm(kvm); 12172 } 12173 12174 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 12175 { 12176 vcpu_load(vcpu); 12177 kvm_mmu_unload(vcpu); 12178 vcpu_put(vcpu); 12179 } 12180 12181 static void kvm_unload_vcpu_mmus(struct kvm *kvm) 12182 { 12183 unsigned long i; 12184 struct kvm_vcpu *vcpu; 12185 12186 kvm_for_each_vcpu(i, vcpu, kvm) { 12187 kvm_clear_async_pf_completion_queue(vcpu); 12188 kvm_unload_vcpu_mmu(vcpu); 12189 } 12190 } 12191 12192 void kvm_arch_sync_events(struct kvm *kvm) 12193 { 12194 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 12195 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 12196 kvm_free_pit(kvm); 12197 } 12198 12199 /** 12200 * __x86_set_memory_region: Setup KVM internal memory slot 12201 * 12202 * @kvm: the kvm pointer to the VM. 12203 * @id: the slot ID to setup. 12204 * @gpa: the GPA to install the slot (unused when @size == 0). 12205 * @size: the size of the slot. Set to zero to uninstall a slot. 12206 * 12207 * This function helps to setup a KVM internal memory slot. Specify 12208 * @size > 0 to install a new slot, while @size == 0 to uninstall a 12209 * slot. The return code can be one of the following: 12210 * 12211 * HVA: on success (uninstall will return a bogus HVA) 12212 * -errno: on error 12213 * 12214 * The caller should always use IS_ERR() to check the return value 12215 * before use. Note, the KVM internal memory slots are guaranteed to 12216 * remain valid and unchanged until the VM is destroyed, i.e., the 12217 * GPA->HVA translation will not change. However, the HVA is a user 12218 * address, i.e. its accessibility is not guaranteed, and must be 12219 * accessed via __copy_{to,from}_user(). 12220 */ 12221 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 12222 u32 size) 12223 { 12224 int i, r; 12225 unsigned long hva, old_npages; 12226 struct kvm_memslots *slots = kvm_memslots(kvm); 12227 struct kvm_memory_slot *slot; 12228 12229 /* Called with kvm->slots_lock held. */ 12230 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 12231 return ERR_PTR_USR(-EINVAL); 12232 12233 slot = id_to_memslot(slots, id); 12234 if (size) { 12235 if (slot && slot->npages) 12236 return ERR_PTR_USR(-EEXIST); 12237 12238 /* 12239 * MAP_SHARED to prevent internal slot pages from being moved 12240 * by fork()/COW. 12241 */ 12242 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 12243 MAP_SHARED | MAP_ANONYMOUS, 0); 12244 if (IS_ERR((void *)hva)) 12245 return (void __user *)hva; 12246 } else { 12247 if (!slot || !slot->npages) 12248 return NULL; 12249 12250 old_npages = slot->npages; 12251 hva = slot->userspace_addr; 12252 } 12253 12254 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 12255 struct kvm_userspace_memory_region m; 12256 12257 m.slot = id | (i << 16); 12258 m.flags = 0; 12259 m.guest_phys_addr = gpa; 12260 m.userspace_addr = hva; 12261 m.memory_size = size; 12262 r = __kvm_set_memory_region(kvm, &m); 12263 if (r < 0) 12264 return ERR_PTR_USR(r); 12265 } 12266 12267 if (!size) 12268 vm_munmap(hva, old_npages * PAGE_SIZE); 12269 12270 return (void __user *)hva; 12271 } 12272 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 12273 12274 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 12275 { 12276 kvm_mmu_pre_destroy_vm(kvm); 12277 } 12278 12279 void kvm_arch_destroy_vm(struct kvm *kvm) 12280 { 12281 if (current->mm == kvm->mm) { 12282 /* 12283 * Free memory regions allocated on behalf of userspace, 12284 * unless the memory map has changed due to process exit 12285 * or fd copying. 12286 */ 12287 mutex_lock(&kvm->slots_lock); 12288 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 12289 0, 0); 12290 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 12291 0, 0); 12292 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 12293 mutex_unlock(&kvm->slots_lock); 12294 } 12295 kvm_unload_vcpu_mmus(kvm); 12296 static_call_cond(kvm_x86_vm_destroy)(kvm); 12297 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12298 kvm_pic_destroy(kvm); 12299 kvm_ioapic_destroy(kvm); 12300 kvm_destroy_vcpus(kvm); 12301 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12302 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12303 kvm_mmu_uninit_vm(kvm); 12304 kvm_page_track_cleanup(kvm); 12305 kvm_xen_destroy_vm(kvm); 12306 kvm_hv_destroy_vm(kvm); 12307 } 12308 12309 static void memslot_rmap_free(struct kvm_memory_slot *slot) 12310 { 12311 int i; 12312 12313 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12314 kvfree(slot->arch.rmap[i]); 12315 slot->arch.rmap[i] = NULL; 12316 } 12317 } 12318 12319 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12320 { 12321 int i; 12322 12323 memslot_rmap_free(slot); 12324 12325 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12326 kvfree(slot->arch.lpage_info[i - 1]); 12327 slot->arch.lpage_info[i - 1] = NULL; 12328 } 12329 12330 kvm_page_track_free_memslot(slot); 12331 } 12332 12333 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12334 { 12335 const int sz = sizeof(*slot->arch.rmap[0]); 12336 int i; 12337 12338 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12339 int level = i + 1; 12340 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12341 12342 if (slot->arch.rmap[i]) 12343 continue; 12344 12345 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12346 if (!slot->arch.rmap[i]) { 12347 memslot_rmap_free(slot); 12348 return -ENOMEM; 12349 } 12350 } 12351 12352 return 0; 12353 } 12354 12355 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12356 struct kvm_memory_slot *slot) 12357 { 12358 unsigned long npages = slot->npages; 12359 int i, r; 12360 12361 /* 12362 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12363 * old arrays will be freed by __kvm_set_memory_region() if installing 12364 * the new memslot is successful. 12365 */ 12366 memset(&slot->arch, 0, sizeof(slot->arch)); 12367 12368 if (kvm_memslots_have_rmaps(kvm)) { 12369 r = memslot_rmap_alloc(slot, npages); 12370 if (r) 12371 return r; 12372 } 12373 12374 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12375 struct kvm_lpage_info *linfo; 12376 unsigned long ugfn; 12377 int lpages; 12378 int level = i + 1; 12379 12380 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12381 12382 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12383 if (!linfo) 12384 goto out_free; 12385 12386 slot->arch.lpage_info[i - 1] = linfo; 12387 12388 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12389 linfo[0].disallow_lpage = 1; 12390 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12391 linfo[lpages - 1].disallow_lpage = 1; 12392 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12393 /* 12394 * If the gfn and userspace address are not aligned wrt each 12395 * other, disable large page support for this slot. 12396 */ 12397 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12398 unsigned long j; 12399 12400 for (j = 0; j < lpages; ++j) 12401 linfo[j].disallow_lpage = 1; 12402 } 12403 } 12404 12405 if (kvm_page_track_create_memslot(kvm, slot, npages)) 12406 goto out_free; 12407 12408 return 0; 12409 12410 out_free: 12411 memslot_rmap_free(slot); 12412 12413 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12414 kvfree(slot->arch.lpage_info[i - 1]); 12415 slot->arch.lpage_info[i - 1] = NULL; 12416 } 12417 return -ENOMEM; 12418 } 12419 12420 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 12421 { 12422 struct kvm_vcpu *vcpu; 12423 unsigned long i; 12424 12425 /* 12426 * memslots->generation has been incremented. 12427 * mmio generation may have reached its maximum value. 12428 */ 12429 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 12430 12431 /* Force re-initialization of steal_time cache */ 12432 kvm_for_each_vcpu(i, vcpu, kvm) 12433 kvm_vcpu_kick(vcpu); 12434 } 12435 12436 int kvm_arch_prepare_memory_region(struct kvm *kvm, 12437 const struct kvm_memory_slot *old, 12438 struct kvm_memory_slot *new, 12439 enum kvm_mr_change change) 12440 { 12441 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 12442 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 12443 return -EINVAL; 12444 12445 return kvm_alloc_memslot_metadata(kvm, new); 12446 } 12447 12448 if (change == KVM_MR_FLAGS_ONLY) 12449 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 12450 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 12451 return -EIO; 12452 12453 return 0; 12454 } 12455 12456 12457 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 12458 { 12459 struct kvm_arch *ka = &kvm->arch; 12460 12461 if (!kvm_x86_ops.cpu_dirty_log_size) 12462 return; 12463 12464 if ((enable && ++ka->cpu_dirty_logging_count == 1) || 12465 (!enable && --ka->cpu_dirty_logging_count == 0)) 12466 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 12467 12468 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0); 12469 } 12470 12471 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 12472 struct kvm_memory_slot *old, 12473 const struct kvm_memory_slot *new, 12474 enum kvm_mr_change change) 12475 { 12476 u32 old_flags = old ? old->flags : 0; 12477 u32 new_flags = new ? new->flags : 0; 12478 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 12479 12480 /* 12481 * Update CPU dirty logging if dirty logging is being toggled. This 12482 * applies to all operations. 12483 */ 12484 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 12485 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 12486 12487 /* 12488 * Nothing more to do for RO slots (which can't be dirtied and can't be 12489 * made writable) or CREATE/MOVE/DELETE of a slot. 12490 * 12491 * For a memslot with dirty logging disabled: 12492 * CREATE: No dirty mappings will already exist. 12493 * MOVE/DELETE: The old mappings will already have been cleaned up by 12494 * kvm_arch_flush_shadow_memslot() 12495 * 12496 * For a memslot with dirty logging enabled: 12497 * CREATE: No shadow pages exist, thus nothing to write-protect 12498 * and no dirty bits to clear. 12499 * MOVE/DELETE: The old mappings will already have been cleaned up by 12500 * kvm_arch_flush_shadow_memslot(). 12501 */ 12502 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 12503 return; 12504 12505 /* 12506 * READONLY and non-flags changes were filtered out above, and the only 12507 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 12508 * logging isn't being toggled on or off. 12509 */ 12510 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 12511 return; 12512 12513 if (!log_dirty_pages) { 12514 /* 12515 * Dirty logging tracks sptes in 4k granularity, meaning that 12516 * large sptes have to be split. If live migration succeeds, 12517 * the guest in the source machine will be destroyed and large 12518 * sptes will be created in the destination. However, if the 12519 * guest continues to run in the source machine (for example if 12520 * live migration fails), small sptes will remain around and 12521 * cause bad performance. 12522 * 12523 * Scan sptes if dirty logging has been stopped, dropping those 12524 * which can be collapsed into a single large-page spte. Later 12525 * page faults will create the large-page sptes. 12526 */ 12527 kvm_mmu_zap_collapsible_sptes(kvm, new); 12528 } else { 12529 /* 12530 * Initially-all-set does not require write protecting any page, 12531 * because they're all assumed to be dirty. 12532 */ 12533 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 12534 return; 12535 12536 if (READ_ONCE(eager_page_split)) 12537 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 12538 12539 if (kvm_x86_ops.cpu_dirty_log_size) { 12540 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 12541 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 12542 } else { 12543 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 12544 } 12545 12546 /* 12547 * Unconditionally flush the TLBs after enabling dirty logging. 12548 * A flush is almost always going to be necessary (see below), 12549 * and unconditionally flushing allows the helpers to omit 12550 * the subtly complex checks when removing write access. 12551 * 12552 * Do the flush outside of mmu_lock to reduce the amount of 12553 * time mmu_lock is held. Flushing after dropping mmu_lock is 12554 * safe as KVM only needs to guarantee the slot is fully 12555 * write-protected before returning to userspace, i.e. before 12556 * userspace can consume the dirty status. 12557 * 12558 * Flushing outside of mmu_lock requires KVM to be careful when 12559 * making decisions based on writable status of an SPTE, e.g. a 12560 * !writable SPTE doesn't guarantee a CPU can't perform writes. 12561 * 12562 * Specifically, KVM also write-protects guest page tables to 12563 * monitor changes when using shadow paging, and must guarantee 12564 * no CPUs can write to those page before mmu_lock is dropped. 12565 * Because CPUs may have stale TLB entries at this point, a 12566 * !writable SPTE doesn't guarantee CPUs can't perform writes. 12567 * 12568 * KVM also allows making SPTES writable outside of mmu_lock, 12569 * e.g. to allow dirty logging without taking mmu_lock. 12570 * 12571 * To handle these scenarios, KVM uses a separate software-only 12572 * bit (MMU-writable) to track if a SPTE is !writable due to 12573 * a guest page table being write-protected (KVM clears the 12574 * MMU-writable flag when write-protecting for shadow paging). 12575 * 12576 * The use of MMU-writable is also the primary motivation for 12577 * the unconditional flush. Because KVM must guarantee that a 12578 * CPU doesn't contain stale, writable TLB entries for a 12579 * !MMU-writable SPTE, KVM must flush if it encounters any 12580 * MMU-writable SPTE regardless of whether the actual hardware 12581 * writable bit was set. I.e. KVM is almost guaranteed to need 12582 * to flush, while unconditionally flushing allows the "remove 12583 * write access" helpers to ignore MMU-writable entirely. 12584 * 12585 * See is_writable_pte() for more details (the case involving 12586 * access-tracked SPTEs is particularly relevant). 12587 */ 12588 kvm_arch_flush_remote_tlbs_memslot(kvm, new); 12589 } 12590 } 12591 12592 void kvm_arch_commit_memory_region(struct kvm *kvm, 12593 struct kvm_memory_slot *old, 12594 const struct kvm_memory_slot *new, 12595 enum kvm_mr_change change) 12596 { 12597 if (!kvm->arch.n_requested_mmu_pages && 12598 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 12599 unsigned long nr_mmu_pages; 12600 12601 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 12602 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 12603 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 12604 } 12605 12606 kvm_mmu_slot_apply_flags(kvm, old, new, change); 12607 12608 /* Free the arrays associated with the old memslot. */ 12609 if (change == KVM_MR_MOVE) 12610 kvm_arch_free_memslot(kvm, old); 12611 } 12612 12613 void kvm_arch_flush_shadow_all(struct kvm *kvm) 12614 { 12615 kvm_mmu_zap_all(kvm); 12616 } 12617 12618 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 12619 struct kvm_memory_slot *slot) 12620 { 12621 kvm_page_track_flush_slot(kvm, slot); 12622 } 12623 12624 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 12625 { 12626 return (is_guest_mode(vcpu) && 12627 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 12628 } 12629 12630 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 12631 { 12632 if (!list_empty_careful(&vcpu->async_pf.done)) 12633 return true; 12634 12635 if (kvm_apic_has_pending_init_or_sipi(vcpu) && 12636 kvm_apic_init_sipi_allowed(vcpu)) 12637 return true; 12638 12639 if (vcpu->arch.pv.pv_unhalted) 12640 return true; 12641 12642 if (kvm_is_exception_pending(vcpu)) 12643 return true; 12644 12645 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12646 (vcpu->arch.nmi_pending && 12647 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 12648 return true; 12649 12650 #ifdef CONFIG_KVM_SMM 12651 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 12652 (vcpu->arch.smi_pending && 12653 static_call(kvm_x86_smi_allowed)(vcpu, false))) 12654 return true; 12655 #endif 12656 12657 if (kvm_arch_interrupt_allowed(vcpu) && 12658 (kvm_cpu_has_interrupt(vcpu) || 12659 kvm_guest_apic_has_interrupt(vcpu))) 12660 return true; 12661 12662 if (kvm_hv_has_stimer_pending(vcpu)) 12663 return true; 12664 12665 if (is_guest_mode(vcpu) && 12666 kvm_x86_ops.nested_ops->has_events && 12667 kvm_x86_ops.nested_ops->has_events(vcpu)) 12668 return true; 12669 12670 if (kvm_xen_has_pending_events(vcpu)) 12671 return true; 12672 12673 return false; 12674 } 12675 12676 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 12677 { 12678 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 12679 } 12680 12681 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 12682 { 12683 if (kvm_vcpu_apicv_active(vcpu) && 12684 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu)) 12685 return true; 12686 12687 return false; 12688 } 12689 12690 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 12691 { 12692 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 12693 return true; 12694 12695 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12696 #ifdef CONFIG_KVM_SMM 12697 kvm_test_request(KVM_REQ_SMI, vcpu) || 12698 #endif 12699 kvm_test_request(KVM_REQ_EVENT, vcpu)) 12700 return true; 12701 12702 return kvm_arch_dy_has_pending_interrupt(vcpu); 12703 } 12704 12705 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 12706 { 12707 if (vcpu->arch.guest_state_protected) 12708 return true; 12709 12710 return vcpu->arch.preempted_in_kernel; 12711 } 12712 12713 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 12714 { 12715 return kvm_rip_read(vcpu); 12716 } 12717 12718 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 12719 { 12720 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 12721 } 12722 12723 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 12724 { 12725 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 12726 } 12727 12728 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 12729 { 12730 /* Can't read the RIP when guest state is protected, just return 0 */ 12731 if (vcpu->arch.guest_state_protected) 12732 return 0; 12733 12734 if (is_64_bit_mode(vcpu)) 12735 return kvm_rip_read(vcpu); 12736 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 12737 kvm_rip_read(vcpu)); 12738 } 12739 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 12740 12741 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 12742 { 12743 return kvm_get_linear_rip(vcpu) == linear_rip; 12744 } 12745 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 12746 12747 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 12748 { 12749 unsigned long rflags; 12750 12751 rflags = static_call(kvm_x86_get_rflags)(vcpu); 12752 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 12753 rflags &= ~X86_EFLAGS_TF; 12754 return rflags; 12755 } 12756 EXPORT_SYMBOL_GPL(kvm_get_rflags); 12757 12758 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12759 { 12760 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 12761 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 12762 rflags |= X86_EFLAGS_TF; 12763 static_call(kvm_x86_set_rflags)(vcpu, rflags); 12764 } 12765 12766 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12767 { 12768 __kvm_set_rflags(vcpu, rflags); 12769 kvm_make_request(KVM_REQ_EVENT, vcpu); 12770 } 12771 EXPORT_SYMBOL_GPL(kvm_set_rflags); 12772 12773 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 12774 { 12775 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 12776 12777 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 12778 } 12779 12780 static inline u32 kvm_async_pf_next_probe(u32 key) 12781 { 12782 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 12783 } 12784 12785 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12786 { 12787 u32 key = kvm_async_pf_hash_fn(gfn); 12788 12789 while (vcpu->arch.apf.gfns[key] != ~0) 12790 key = kvm_async_pf_next_probe(key); 12791 12792 vcpu->arch.apf.gfns[key] = gfn; 12793 } 12794 12795 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 12796 { 12797 int i; 12798 u32 key = kvm_async_pf_hash_fn(gfn); 12799 12800 for (i = 0; i < ASYNC_PF_PER_VCPU && 12801 (vcpu->arch.apf.gfns[key] != gfn && 12802 vcpu->arch.apf.gfns[key] != ~0); i++) 12803 key = kvm_async_pf_next_probe(key); 12804 12805 return key; 12806 } 12807 12808 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12809 { 12810 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 12811 } 12812 12813 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12814 { 12815 u32 i, j, k; 12816 12817 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 12818 12819 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 12820 return; 12821 12822 while (true) { 12823 vcpu->arch.apf.gfns[i] = ~0; 12824 do { 12825 j = kvm_async_pf_next_probe(j); 12826 if (vcpu->arch.apf.gfns[j] == ~0) 12827 return; 12828 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 12829 /* 12830 * k lies cyclically in ]i,j] 12831 * | i.k.j | 12832 * |....j i.k.| or |.k..j i...| 12833 */ 12834 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 12835 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 12836 i = j; 12837 } 12838 } 12839 12840 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 12841 { 12842 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 12843 12844 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 12845 sizeof(reason)); 12846 } 12847 12848 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 12849 { 12850 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 12851 12852 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 12853 &token, offset, sizeof(token)); 12854 } 12855 12856 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 12857 { 12858 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 12859 u32 val; 12860 12861 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 12862 &val, offset, sizeof(val))) 12863 return false; 12864 12865 return !val; 12866 } 12867 12868 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 12869 { 12870 12871 if (!kvm_pv_async_pf_enabled(vcpu)) 12872 return false; 12873 12874 if (vcpu->arch.apf.send_user_only && 12875 static_call(kvm_x86_get_cpl)(vcpu) == 0) 12876 return false; 12877 12878 if (is_guest_mode(vcpu)) { 12879 /* 12880 * L1 needs to opt into the special #PF vmexits that are 12881 * used to deliver async page faults. 12882 */ 12883 return vcpu->arch.apf.delivery_as_pf_vmexit; 12884 } else { 12885 /* 12886 * Play it safe in case the guest temporarily disables paging. 12887 * The real mode IDT in particular is unlikely to have a #PF 12888 * exception setup. 12889 */ 12890 return is_paging(vcpu); 12891 } 12892 } 12893 12894 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 12895 { 12896 if (unlikely(!lapic_in_kernel(vcpu) || 12897 kvm_event_needs_reinjection(vcpu) || 12898 kvm_is_exception_pending(vcpu))) 12899 return false; 12900 12901 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 12902 return false; 12903 12904 /* 12905 * If interrupts are off we cannot even use an artificial 12906 * halt state. 12907 */ 12908 return kvm_arch_interrupt_allowed(vcpu); 12909 } 12910 12911 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 12912 struct kvm_async_pf *work) 12913 { 12914 struct x86_exception fault; 12915 12916 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 12917 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 12918 12919 if (kvm_can_deliver_async_pf(vcpu) && 12920 !apf_put_user_notpresent(vcpu)) { 12921 fault.vector = PF_VECTOR; 12922 fault.error_code_valid = true; 12923 fault.error_code = 0; 12924 fault.nested_page_fault = false; 12925 fault.address = work->arch.token; 12926 fault.async_page_fault = true; 12927 kvm_inject_page_fault(vcpu, &fault); 12928 return true; 12929 } else { 12930 /* 12931 * It is not possible to deliver a paravirtualized asynchronous 12932 * page fault, but putting the guest in an artificial halt state 12933 * can be beneficial nevertheless: if an interrupt arrives, we 12934 * can deliver it timely and perhaps the guest will schedule 12935 * another process. When the instruction that triggered a page 12936 * fault is retried, hopefully the page will be ready in the host. 12937 */ 12938 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 12939 return false; 12940 } 12941 } 12942 12943 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 12944 struct kvm_async_pf *work) 12945 { 12946 struct kvm_lapic_irq irq = { 12947 .delivery_mode = APIC_DM_FIXED, 12948 .vector = vcpu->arch.apf.vec 12949 }; 12950 12951 if (work->wakeup_all) 12952 work->arch.token = ~0; /* broadcast wakeup */ 12953 else 12954 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 12955 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 12956 12957 if ((work->wakeup_all || work->notpresent_injected) && 12958 kvm_pv_async_pf_enabled(vcpu) && 12959 !apf_put_user_ready(vcpu, work->arch.token)) { 12960 vcpu->arch.apf.pageready_pending = true; 12961 kvm_apic_set_irq(vcpu, &irq, NULL); 12962 } 12963 12964 vcpu->arch.apf.halted = false; 12965 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 12966 } 12967 12968 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 12969 { 12970 kvm_make_request(KVM_REQ_APF_READY, vcpu); 12971 if (!vcpu->arch.apf.pageready_pending) 12972 kvm_vcpu_kick(vcpu); 12973 } 12974 12975 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 12976 { 12977 if (!kvm_pv_async_pf_enabled(vcpu)) 12978 return true; 12979 else 12980 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 12981 } 12982 12983 void kvm_arch_start_assignment(struct kvm *kvm) 12984 { 12985 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 12986 static_call_cond(kvm_x86_pi_start_assignment)(kvm); 12987 } 12988 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 12989 12990 void kvm_arch_end_assignment(struct kvm *kvm) 12991 { 12992 atomic_dec(&kvm->arch.assigned_device_count); 12993 } 12994 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 12995 12996 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) 12997 { 12998 return arch_atomic_read(&kvm->arch.assigned_device_count); 12999 } 13000 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 13001 13002 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 13003 { 13004 atomic_inc(&kvm->arch.noncoherent_dma_count); 13005 } 13006 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 13007 13008 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 13009 { 13010 atomic_dec(&kvm->arch.noncoherent_dma_count); 13011 } 13012 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 13013 13014 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 13015 { 13016 return atomic_read(&kvm->arch.noncoherent_dma_count); 13017 } 13018 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 13019 13020 bool kvm_arch_has_irq_bypass(void) 13021 { 13022 return true; 13023 } 13024 13025 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 13026 struct irq_bypass_producer *prod) 13027 { 13028 struct kvm_kernel_irqfd *irqfd = 13029 container_of(cons, struct kvm_kernel_irqfd, consumer); 13030 int ret; 13031 13032 irqfd->producer = prod; 13033 kvm_arch_start_assignment(irqfd->kvm); 13034 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, 13035 prod->irq, irqfd->gsi, 1); 13036 13037 if (ret) 13038 kvm_arch_end_assignment(irqfd->kvm); 13039 13040 return ret; 13041 } 13042 13043 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 13044 struct irq_bypass_producer *prod) 13045 { 13046 int ret; 13047 struct kvm_kernel_irqfd *irqfd = 13048 container_of(cons, struct kvm_kernel_irqfd, consumer); 13049 13050 WARN_ON(irqfd->producer != prod); 13051 irqfd->producer = NULL; 13052 13053 /* 13054 * When producer of consumer is unregistered, we change back to 13055 * remapped mode, so we can re-use the current implementation 13056 * when the irq is masked/disabled or the consumer side (KVM 13057 * int this case doesn't want to receive the interrupts. 13058 */ 13059 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 13060 if (ret) 13061 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 13062 " fails: %d\n", irqfd->consumer.token, ret); 13063 13064 kvm_arch_end_assignment(irqfd->kvm); 13065 } 13066 13067 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 13068 uint32_t guest_irq, bool set) 13069 { 13070 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set); 13071 } 13072 13073 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 13074 struct kvm_kernel_irq_routing_entry *new) 13075 { 13076 if (new->type != KVM_IRQ_ROUTING_MSI) 13077 return true; 13078 13079 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 13080 } 13081 13082 bool kvm_vector_hashing_enabled(void) 13083 { 13084 return vector_hashing; 13085 } 13086 13087 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 13088 { 13089 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 13090 } 13091 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 13092 13093 13094 int kvm_spec_ctrl_test_value(u64 value) 13095 { 13096 /* 13097 * test that setting IA32_SPEC_CTRL to given value 13098 * is allowed by the host processor 13099 */ 13100 13101 u64 saved_value; 13102 unsigned long flags; 13103 int ret = 0; 13104 13105 local_irq_save(flags); 13106 13107 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 13108 ret = 1; 13109 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 13110 ret = 1; 13111 else 13112 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 13113 13114 local_irq_restore(flags); 13115 13116 return ret; 13117 } 13118 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 13119 13120 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13121 { 13122 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13123 struct x86_exception fault; 13124 u64 access = error_code & 13125 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 13126 13127 if (!(error_code & PFERR_PRESENT_MASK) || 13128 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 13129 /* 13130 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 13131 * tables probably do not match the TLB. Just proceed 13132 * with the error code that the processor gave. 13133 */ 13134 fault.vector = PF_VECTOR; 13135 fault.error_code_valid = true; 13136 fault.error_code = error_code; 13137 fault.nested_page_fault = false; 13138 fault.address = gva; 13139 fault.async_page_fault = false; 13140 } 13141 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 13142 } 13143 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 13144 13145 /* 13146 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 13147 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 13148 * indicates whether exit to userspace is needed. 13149 */ 13150 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 13151 struct x86_exception *e) 13152 { 13153 if (r == X86EMUL_PROPAGATE_FAULT) { 13154 if (KVM_BUG_ON(!e, vcpu->kvm)) 13155 return -EIO; 13156 13157 kvm_inject_emulated_page_fault(vcpu, e); 13158 return 1; 13159 } 13160 13161 /* 13162 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 13163 * while handling a VMX instruction KVM could've handled the request 13164 * correctly by exiting to userspace and performing I/O but there 13165 * doesn't seem to be a real use-case behind such requests, just return 13166 * KVM_EXIT_INTERNAL_ERROR for now. 13167 */ 13168 kvm_prepare_emulation_failure_exit(vcpu); 13169 13170 return 0; 13171 } 13172 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 13173 13174 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 13175 { 13176 bool pcid_enabled; 13177 struct x86_exception e; 13178 struct { 13179 u64 pcid; 13180 u64 gla; 13181 } operand; 13182 int r; 13183 13184 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 13185 if (r != X86EMUL_CONTINUE) 13186 return kvm_handle_memory_failure(vcpu, r, &e); 13187 13188 if (operand.pcid >> 12 != 0) { 13189 kvm_inject_gp(vcpu, 0); 13190 return 1; 13191 } 13192 13193 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 13194 13195 switch (type) { 13196 case INVPCID_TYPE_INDIV_ADDR: 13197 if ((!pcid_enabled && (operand.pcid != 0)) || 13198 is_noncanonical_address(operand.gla, vcpu)) { 13199 kvm_inject_gp(vcpu, 0); 13200 return 1; 13201 } 13202 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 13203 return kvm_skip_emulated_instruction(vcpu); 13204 13205 case INVPCID_TYPE_SINGLE_CTXT: 13206 if (!pcid_enabled && (operand.pcid != 0)) { 13207 kvm_inject_gp(vcpu, 0); 13208 return 1; 13209 } 13210 13211 kvm_invalidate_pcid(vcpu, operand.pcid); 13212 return kvm_skip_emulated_instruction(vcpu); 13213 13214 case INVPCID_TYPE_ALL_NON_GLOBAL: 13215 /* 13216 * Currently, KVM doesn't mark global entries in the shadow 13217 * page tables, so a non-global flush just degenerates to a 13218 * global flush. If needed, we could optimize this later by 13219 * keeping track of global entries in shadow page tables. 13220 */ 13221 13222 fallthrough; 13223 case INVPCID_TYPE_ALL_INCL_GLOBAL: 13224 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 13225 return kvm_skip_emulated_instruction(vcpu); 13226 13227 default: 13228 kvm_inject_gp(vcpu, 0); 13229 return 1; 13230 } 13231 } 13232 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 13233 13234 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 13235 { 13236 struct kvm_run *run = vcpu->run; 13237 struct kvm_mmio_fragment *frag; 13238 unsigned int len; 13239 13240 BUG_ON(!vcpu->mmio_needed); 13241 13242 /* Complete previous fragment */ 13243 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 13244 len = min(8u, frag->len); 13245 if (!vcpu->mmio_is_write) 13246 memcpy(frag->data, run->mmio.data, len); 13247 13248 if (frag->len <= 8) { 13249 /* Switch to the next fragment. */ 13250 frag++; 13251 vcpu->mmio_cur_fragment++; 13252 } else { 13253 /* Go forward to the next mmio piece. */ 13254 frag->data += len; 13255 frag->gpa += len; 13256 frag->len -= len; 13257 } 13258 13259 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 13260 vcpu->mmio_needed = 0; 13261 13262 // VMG change, at this point, we're always done 13263 // RIP has already been advanced 13264 return 1; 13265 } 13266 13267 // More MMIO is needed 13268 run->mmio.phys_addr = frag->gpa; 13269 run->mmio.len = min(8u, frag->len); 13270 run->mmio.is_write = vcpu->mmio_is_write; 13271 if (run->mmio.is_write) 13272 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 13273 run->exit_reason = KVM_EXIT_MMIO; 13274 13275 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13276 13277 return 0; 13278 } 13279 13280 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13281 void *data) 13282 { 13283 int handled; 13284 struct kvm_mmio_fragment *frag; 13285 13286 if (!data) 13287 return -EINVAL; 13288 13289 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13290 if (handled == bytes) 13291 return 1; 13292 13293 bytes -= handled; 13294 gpa += handled; 13295 data += handled; 13296 13297 /*TODO: Check if need to increment number of frags */ 13298 frag = vcpu->mmio_fragments; 13299 vcpu->mmio_nr_fragments = 1; 13300 frag->len = bytes; 13301 frag->gpa = gpa; 13302 frag->data = data; 13303 13304 vcpu->mmio_needed = 1; 13305 vcpu->mmio_cur_fragment = 0; 13306 13307 vcpu->run->mmio.phys_addr = gpa; 13308 vcpu->run->mmio.len = min(8u, frag->len); 13309 vcpu->run->mmio.is_write = 1; 13310 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 13311 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13312 13313 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13314 13315 return 0; 13316 } 13317 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 13318 13319 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13320 void *data) 13321 { 13322 int handled; 13323 struct kvm_mmio_fragment *frag; 13324 13325 if (!data) 13326 return -EINVAL; 13327 13328 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13329 if (handled == bytes) 13330 return 1; 13331 13332 bytes -= handled; 13333 gpa += handled; 13334 data += handled; 13335 13336 /*TODO: Check if need to increment number of frags */ 13337 frag = vcpu->mmio_fragments; 13338 vcpu->mmio_nr_fragments = 1; 13339 frag->len = bytes; 13340 frag->gpa = gpa; 13341 frag->data = data; 13342 13343 vcpu->mmio_needed = 1; 13344 vcpu->mmio_cur_fragment = 0; 13345 13346 vcpu->run->mmio.phys_addr = gpa; 13347 vcpu->run->mmio.len = min(8u, frag->len); 13348 vcpu->run->mmio.is_write = 0; 13349 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13350 13351 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13352 13353 return 0; 13354 } 13355 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13356 13357 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 13358 { 13359 vcpu->arch.sev_pio_count -= count; 13360 vcpu->arch.sev_pio_data += count * size; 13361 } 13362 13363 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13364 unsigned int port); 13365 13366 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13367 { 13368 int size = vcpu->arch.pio.size; 13369 int port = vcpu->arch.pio.port; 13370 13371 vcpu->arch.pio.count = 0; 13372 if (vcpu->arch.sev_pio_count) 13373 return kvm_sev_es_outs(vcpu, size, port); 13374 return 1; 13375 } 13376 13377 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13378 unsigned int port) 13379 { 13380 for (;;) { 13381 unsigned int count = 13382 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13383 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13384 13385 /* memcpy done already by emulator_pio_out. */ 13386 advance_sev_es_emulated_pio(vcpu, count, size); 13387 if (!ret) 13388 break; 13389 13390 /* Emulation done by the kernel. */ 13391 if (!vcpu->arch.sev_pio_count) 13392 return 1; 13393 } 13394 13395 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13396 return 0; 13397 } 13398 13399 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13400 unsigned int port); 13401 13402 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13403 { 13404 unsigned count = vcpu->arch.pio.count; 13405 int size = vcpu->arch.pio.size; 13406 int port = vcpu->arch.pio.port; 13407 13408 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13409 advance_sev_es_emulated_pio(vcpu, count, size); 13410 if (vcpu->arch.sev_pio_count) 13411 return kvm_sev_es_ins(vcpu, size, port); 13412 return 1; 13413 } 13414 13415 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13416 unsigned int port) 13417 { 13418 for (;;) { 13419 unsigned int count = 13420 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13421 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 13422 break; 13423 13424 /* Emulation done by the kernel. */ 13425 advance_sev_es_emulated_pio(vcpu, count, size); 13426 if (!vcpu->arch.sev_pio_count) 13427 return 1; 13428 } 13429 13430 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13431 return 0; 13432 } 13433 13434 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 13435 unsigned int port, void *data, unsigned int count, 13436 int in) 13437 { 13438 vcpu->arch.sev_pio_data = data; 13439 vcpu->arch.sev_pio_count = count; 13440 return in ? kvm_sev_es_ins(vcpu, size, port) 13441 : kvm_sev_es_outs(vcpu, size, port); 13442 } 13443 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 13444 13445 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 13446 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 13447 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 13448 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 13449 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 13450 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 13451 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 13452 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); 13453 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 13454 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 13455 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 13456 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 13457 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 13458 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 13459 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 13460 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 13461 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 13462 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 13463 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 13464 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 13465 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 13466 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 13467 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 13468 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 13469 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 13470 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 13471 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 13472 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 13473 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 13474 13475 static int __init kvm_x86_init(void) 13476 { 13477 kvm_mmu_x86_module_init(); 13478 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible(); 13479 return 0; 13480 } 13481 module_init(kvm_x86_init); 13482 13483 static void __exit kvm_x86_exit(void) 13484 { 13485 /* 13486 * If module_init() is implemented, module_exit() must also be 13487 * implemented to allow module unload. 13488 */ 13489 } 13490 module_exit(kvm_x86_exit); 13491