xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 3098cb65)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33 #include "smm.h"
34 
35 #include <linux/clocksource.h>
36 #include <linux/interrupt.h>
37 #include <linux/kvm.h>
38 #include <linux/fs.h>
39 #include <linux/vmalloc.h>
40 #include <linux/export.h>
41 #include <linux/moduleparam.h>
42 #include <linux/mman.h>
43 #include <linux/highmem.h>
44 #include <linux/iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
62 
63 #include <trace/events/kvm.h>
64 
65 #include <asm/debugreg.h>
66 #include <asm/msr.h>
67 #include <asm/desc.h>
68 #include <asm/mce.h>
69 #include <asm/pkru.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/api.h>
72 #include <asm/fpu/xcr.h>
73 #include <asm/fpu/xstate.h>
74 #include <asm/pvclock.h>
75 #include <asm/div64.h>
76 #include <asm/irq_remapping.h>
77 #include <asm/mshyperv.h>
78 #include <asm/hypervisor.h>
79 #include <asm/tlbflush.h>
80 #include <asm/intel_pt.h>
81 #include <asm/emulate_prefix.h>
82 #include <asm/sgx.h>
83 #include <clocksource/hyperv_timer.h>
84 
85 #define CREATE_TRACE_POINTS
86 #include "trace.h"
87 
88 #define MAX_IO_MSRS 256
89 #define KVM_MAX_MCE_BANKS 32
90 
91 struct kvm_caps kvm_caps __read_mostly = {
92 	.supported_mce_cap = MCG_CTL_P | MCG_SER_P,
93 };
94 EXPORT_SYMBOL_GPL(kvm_caps);
95 
96 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
97 
98 #define emul_to_vcpu(ctxt) \
99 	((struct kvm_vcpu *)(ctxt)->vcpu)
100 
101 /* EFER defaults:
102  * - enable syscall per default because its emulated by KVM
103  * - enable LME and LMA per default on 64 bit KVM
104  */
105 #ifdef CONFIG_X86_64
106 static
107 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
108 #else
109 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
110 #endif
111 
112 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
113 
114 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
115 
116 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
117 
118 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
119                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
120 
121 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
122 static void process_nmi(struct kvm_vcpu *vcpu);
123 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
124 static void store_regs(struct kvm_vcpu *vcpu);
125 static int sync_regs(struct kvm_vcpu *vcpu);
126 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
127 
128 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
129 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
130 
131 struct kvm_x86_ops kvm_x86_ops __read_mostly;
132 
133 #define KVM_X86_OP(func)					     \
134 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
135 				*(((struct kvm_x86_ops *)0)->func));
136 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
137 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
138 #include <asm/kvm-x86-ops.h>
139 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
140 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
141 
142 static bool __read_mostly ignore_msrs = 0;
143 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
144 
145 bool __read_mostly report_ignored_msrs = true;
146 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
147 EXPORT_SYMBOL_GPL(report_ignored_msrs);
148 
149 unsigned int min_timer_period_us = 200;
150 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
151 
152 static bool __read_mostly kvmclock_periodic_sync = true;
153 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
154 
155 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
156 static u32 __read_mostly tsc_tolerance_ppm = 250;
157 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
158 
159 /*
160  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
161  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
162  * advancement entirely.  Any other value is used as-is and disables adaptive
163  * tuning, i.e. allows privileged userspace to set an exact advancement time.
164  */
165 static int __read_mostly lapic_timer_advance_ns = -1;
166 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
167 
168 static bool __read_mostly vector_hashing = true;
169 module_param(vector_hashing, bool, S_IRUGO);
170 
171 bool __read_mostly enable_vmware_backdoor = false;
172 module_param(enable_vmware_backdoor, bool, S_IRUGO);
173 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
174 
175 /*
176  * Flags to manipulate forced emulation behavior (any non-zero value will
177  * enable forced emulation).
178  */
179 #define KVM_FEP_CLEAR_RFLAGS_RF	BIT(1)
180 static int __read_mostly force_emulation_prefix;
181 module_param(force_emulation_prefix, int, 0644);
182 
183 int __read_mostly pi_inject_timer = -1;
184 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
185 
186 /* Enable/disable PMU virtualization */
187 bool __read_mostly enable_pmu = true;
188 EXPORT_SYMBOL_GPL(enable_pmu);
189 module_param(enable_pmu, bool, 0444);
190 
191 bool __read_mostly eager_page_split = true;
192 module_param(eager_page_split, bool, 0644);
193 
194 /* Enable/disable SMT_RSB bug mitigation */
195 bool __read_mostly mitigate_smt_rsb;
196 module_param(mitigate_smt_rsb, bool, 0444);
197 
198 /*
199  * Restoring the host value for MSRs that are only consumed when running in
200  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
201  * returns to userspace, i.e. the kernel can run with the guest's value.
202  */
203 #define KVM_MAX_NR_USER_RETURN_MSRS 16
204 
205 struct kvm_user_return_msrs {
206 	struct user_return_notifier urn;
207 	bool registered;
208 	struct kvm_user_return_msr_values {
209 		u64 host;
210 		u64 curr;
211 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
212 };
213 
214 u32 __read_mostly kvm_nr_uret_msrs;
215 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
216 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
217 static struct kvm_user_return_msrs __percpu *user_return_msrs;
218 
219 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
220 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
221 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
222 				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
223 
224 u64 __read_mostly host_efer;
225 EXPORT_SYMBOL_GPL(host_efer);
226 
227 bool __read_mostly allow_smaller_maxphyaddr = 0;
228 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
229 
230 bool __read_mostly enable_apicv = true;
231 EXPORT_SYMBOL_GPL(enable_apicv);
232 
233 u64 __read_mostly host_xss;
234 EXPORT_SYMBOL_GPL(host_xss);
235 
236 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
237 	KVM_GENERIC_VM_STATS(),
238 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
239 	STATS_DESC_COUNTER(VM, mmu_pte_write),
240 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
241 	STATS_DESC_COUNTER(VM, mmu_flooded),
242 	STATS_DESC_COUNTER(VM, mmu_recycled),
243 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
244 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
245 	STATS_DESC_ICOUNTER(VM, pages_4k),
246 	STATS_DESC_ICOUNTER(VM, pages_2m),
247 	STATS_DESC_ICOUNTER(VM, pages_1g),
248 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
249 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
250 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
251 };
252 
253 const struct kvm_stats_header kvm_vm_stats_header = {
254 	.name_size = KVM_STATS_NAME_SIZE,
255 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
256 	.id_offset = sizeof(struct kvm_stats_header),
257 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
258 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
259 		       sizeof(kvm_vm_stats_desc),
260 };
261 
262 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
263 	KVM_GENERIC_VCPU_STATS(),
264 	STATS_DESC_COUNTER(VCPU, pf_taken),
265 	STATS_DESC_COUNTER(VCPU, pf_fixed),
266 	STATS_DESC_COUNTER(VCPU, pf_emulate),
267 	STATS_DESC_COUNTER(VCPU, pf_spurious),
268 	STATS_DESC_COUNTER(VCPU, pf_fast),
269 	STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
270 	STATS_DESC_COUNTER(VCPU, pf_guest),
271 	STATS_DESC_COUNTER(VCPU, tlb_flush),
272 	STATS_DESC_COUNTER(VCPU, invlpg),
273 	STATS_DESC_COUNTER(VCPU, exits),
274 	STATS_DESC_COUNTER(VCPU, io_exits),
275 	STATS_DESC_COUNTER(VCPU, mmio_exits),
276 	STATS_DESC_COUNTER(VCPU, signal_exits),
277 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
278 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
279 	STATS_DESC_COUNTER(VCPU, l1d_flush),
280 	STATS_DESC_COUNTER(VCPU, halt_exits),
281 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
282 	STATS_DESC_COUNTER(VCPU, irq_exits),
283 	STATS_DESC_COUNTER(VCPU, host_state_reload),
284 	STATS_DESC_COUNTER(VCPU, fpu_reload),
285 	STATS_DESC_COUNTER(VCPU, insn_emulation),
286 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
287 	STATS_DESC_COUNTER(VCPU, hypercalls),
288 	STATS_DESC_COUNTER(VCPU, irq_injections),
289 	STATS_DESC_COUNTER(VCPU, nmi_injections),
290 	STATS_DESC_COUNTER(VCPU, req_event),
291 	STATS_DESC_COUNTER(VCPU, nested_run),
292 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
293 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
294 	STATS_DESC_COUNTER(VCPU, preemption_reported),
295 	STATS_DESC_COUNTER(VCPU, preemption_other),
296 	STATS_DESC_IBOOLEAN(VCPU, guest_mode),
297 	STATS_DESC_COUNTER(VCPU, notify_window_exits),
298 };
299 
300 const struct kvm_stats_header kvm_vcpu_stats_header = {
301 	.name_size = KVM_STATS_NAME_SIZE,
302 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
303 	.id_offset = sizeof(struct kvm_stats_header),
304 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
305 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
306 		       sizeof(kvm_vcpu_stats_desc),
307 };
308 
309 u64 __read_mostly host_xcr0;
310 
311 static struct kmem_cache *x86_emulator_cache;
312 
313 /*
314  * When called, it means the previous get/set msr reached an invalid msr.
315  * Return true if we want to ignore/silent this failed msr access.
316  */
317 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
318 {
319 	const char *op = write ? "wrmsr" : "rdmsr";
320 
321 	if (ignore_msrs) {
322 		if (report_ignored_msrs)
323 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
324 				      op, msr, data);
325 		/* Mask the error */
326 		return true;
327 	} else {
328 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
329 				      op, msr, data);
330 		return false;
331 	}
332 }
333 
334 static struct kmem_cache *kvm_alloc_emulator_cache(void)
335 {
336 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
337 	unsigned int size = sizeof(struct x86_emulate_ctxt);
338 
339 	return kmem_cache_create_usercopy("x86_emulator", size,
340 					  __alignof__(struct x86_emulate_ctxt),
341 					  SLAB_ACCOUNT, useroffset,
342 					  size - useroffset, NULL);
343 }
344 
345 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
346 
347 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
348 {
349 	int i;
350 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
351 		vcpu->arch.apf.gfns[i] = ~0;
352 }
353 
354 static void kvm_on_user_return(struct user_return_notifier *urn)
355 {
356 	unsigned slot;
357 	struct kvm_user_return_msrs *msrs
358 		= container_of(urn, struct kvm_user_return_msrs, urn);
359 	struct kvm_user_return_msr_values *values;
360 	unsigned long flags;
361 
362 	/*
363 	 * Disabling irqs at this point since the following code could be
364 	 * interrupted and executed through kvm_arch_hardware_disable()
365 	 */
366 	local_irq_save(flags);
367 	if (msrs->registered) {
368 		msrs->registered = false;
369 		user_return_notifier_unregister(urn);
370 	}
371 	local_irq_restore(flags);
372 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
373 		values = &msrs->values[slot];
374 		if (values->host != values->curr) {
375 			wrmsrl(kvm_uret_msrs_list[slot], values->host);
376 			values->curr = values->host;
377 		}
378 	}
379 }
380 
381 static int kvm_probe_user_return_msr(u32 msr)
382 {
383 	u64 val;
384 	int ret;
385 
386 	preempt_disable();
387 	ret = rdmsrl_safe(msr, &val);
388 	if (ret)
389 		goto out;
390 	ret = wrmsrl_safe(msr, val);
391 out:
392 	preempt_enable();
393 	return ret;
394 }
395 
396 int kvm_add_user_return_msr(u32 msr)
397 {
398 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
399 
400 	if (kvm_probe_user_return_msr(msr))
401 		return -1;
402 
403 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
404 	return kvm_nr_uret_msrs++;
405 }
406 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
407 
408 int kvm_find_user_return_msr(u32 msr)
409 {
410 	int i;
411 
412 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
413 		if (kvm_uret_msrs_list[i] == msr)
414 			return i;
415 	}
416 	return -1;
417 }
418 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
419 
420 static void kvm_user_return_msr_cpu_online(void)
421 {
422 	unsigned int cpu = smp_processor_id();
423 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
424 	u64 value;
425 	int i;
426 
427 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
428 		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
429 		msrs->values[i].host = value;
430 		msrs->values[i].curr = value;
431 	}
432 }
433 
434 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
435 {
436 	unsigned int cpu = smp_processor_id();
437 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
438 	int err;
439 
440 	value = (value & mask) | (msrs->values[slot].host & ~mask);
441 	if (value == msrs->values[slot].curr)
442 		return 0;
443 	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
444 	if (err)
445 		return 1;
446 
447 	msrs->values[slot].curr = value;
448 	if (!msrs->registered) {
449 		msrs->urn.on_user_return = kvm_on_user_return;
450 		user_return_notifier_register(&msrs->urn);
451 		msrs->registered = true;
452 	}
453 	return 0;
454 }
455 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
456 
457 static void drop_user_return_notifiers(void)
458 {
459 	unsigned int cpu = smp_processor_id();
460 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
461 
462 	if (msrs->registered)
463 		kvm_on_user_return(&msrs->urn);
464 }
465 
466 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
467 {
468 	return vcpu->arch.apic_base;
469 }
470 
471 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
472 {
473 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
474 }
475 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
476 
477 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
478 {
479 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
480 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
481 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
482 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
483 
484 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
485 		return 1;
486 	if (!msr_info->host_initiated) {
487 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
488 			return 1;
489 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
490 			return 1;
491 	}
492 
493 	kvm_lapic_set_base(vcpu, msr_info->data);
494 	kvm_recalculate_apic_map(vcpu->kvm);
495 	return 0;
496 }
497 
498 /*
499  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
500  *
501  * Hardware virtualization extension instructions may fault if a reboot turns
502  * off virtualization while processes are running.  Usually after catching the
503  * fault we just panic; during reboot instead the instruction is ignored.
504  */
505 noinstr void kvm_spurious_fault(void)
506 {
507 	/* Fault while not rebooting.  We want the trace. */
508 	BUG_ON(!kvm_rebooting);
509 }
510 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
511 
512 #define EXCPT_BENIGN		0
513 #define EXCPT_CONTRIBUTORY	1
514 #define EXCPT_PF		2
515 
516 static int exception_class(int vector)
517 {
518 	switch (vector) {
519 	case PF_VECTOR:
520 		return EXCPT_PF;
521 	case DE_VECTOR:
522 	case TS_VECTOR:
523 	case NP_VECTOR:
524 	case SS_VECTOR:
525 	case GP_VECTOR:
526 		return EXCPT_CONTRIBUTORY;
527 	default:
528 		break;
529 	}
530 	return EXCPT_BENIGN;
531 }
532 
533 #define EXCPT_FAULT		0
534 #define EXCPT_TRAP		1
535 #define EXCPT_ABORT		2
536 #define EXCPT_INTERRUPT		3
537 #define EXCPT_DB		4
538 
539 static int exception_type(int vector)
540 {
541 	unsigned int mask;
542 
543 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
544 		return EXCPT_INTERRUPT;
545 
546 	mask = 1 << vector;
547 
548 	/*
549 	 * #DBs can be trap-like or fault-like, the caller must check other CPU
550 	 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
551 	 */
552 	if (mask & (1 << DB_VECTOR))
553 		return EXCPT_DB;
554 
555 	if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
556 		return EXCPT_TRAP;
557 
558 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
559 		return EXCPT_ABORT;
560 
561 	/* Reserved exceptions will result in fault */
562 	return EXCPT_FAULT;
563 }
564 
565 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
566 				   struct kvm_queued_exception *ex)
567 {
568 	if (!ex->has_payload)
569 		return;
570 
571 	switch (ex->vector) {
572 	case DB_VECTOR:
573 		/*
574 		 * "Certain debug exceptions may clear bit 0-3.  The
575 		 * remaining contents of the DR6 register are never
576 		 * cleared by the processor".
577 		 */
578 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
579 		/*
580 		 * In order to reflect the #DB exception payload in guest
581 		 * dr6, three components need to be considered: active low
582 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
583 		 * DR6_BS and DR6_BT)
584 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
585 		 * In the target guest dr6:
586 		 * FIXED_1 bits should always be set.
587 		 * Active low bits should be cleared if 1-setting in payload.
588 		 * Active high bits should be set if 1-setting in payload.
589 		 *
590 		 * Note, the payload is compatible with the pending debug
591 		 * exceptions/exit qualification under VMX, that active_low bits
592 		 * are active high in payload.
593 		 * So they need to be flipped for DR6.
594 		 */
595 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
596 		vcpu->arch.dr6 |= ex->payload;
597 		vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
598 
599 		/*
600 		 * The #DB payload is defined as compatible with the 'pending
601 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
602 		 * defined in the 'pending debug exceptions' field (enabled
603 		 * breakpoint), it is reserved and must be zero in DR6.
604 		 */
605 		vcpu->arch.dr6 &= ~BIT(12);
606 		break;
607 	case PF_VECTOR:
608 		vcpu->arch.cr2 = ex->payload;
609 		break;
610 	}
611 
612 	ex->has_payload = false;
613 	ex->payload = 0;
614 }
615 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
616 
617 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
618 				       bool has_error_code, u32 error_code,
619 				       bool has_payload, unsigned long payload)
620 {
621 	struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
622 
623 	ex->vector = vector;
624 	ex->injected = false;
625 	ex->pending = true;
626 	ex->has_error_code = has_error_code;
627 	ex->error_code = error_code;
628 	ex->has_payload = has_payload;
629 	ex->payload = payload;
630 }
631 
632 /* Forcibly leave the nested mode in cases like a vCPU reset */
633 static void kvm_leave_nested(struct kvm_vcpu *vcpu)
634 {
635 	kvm_x86_ops.nested_ops->leave_nested(vcpu);
636 }
637 
638 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
639 		unsigned nr, bool has_error, u32 error_code,
640 	        bool has_payload, unsigned long payload, bool reinject)
641 {
642 	u32 prev_nr;
643 	int class1, class2;
644 
645 	kvm_make_request(KVM_REQ_EVENT, vcpu);
646 
647 	/*
648 	 * If the exception is destined for L2 and isn't being reinjected,
649 	 * morph it to a VM-Exit if L1 wants to intercept the exception.  A
650 	 * previously injected exception is not checked because it was checked
651 	 * when it was original queued, and re-checking is incorrect if _L1_
652 	 * injected the exception, in which case it's exempt from interception.
653 	 */
654 	if (!reinject && is_guest_mode(vcpu) &&
655 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
656 		kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
657 					   has_payload, payload);
658 		return;
659 	}
660 
661 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
662 	queue:
663 		if (reinject) {
664 			/*
665 			 * On VM-Entry, an exception can be pending if and only
666 			 * if event injection was blocked by nested_run_pending.
667 			 * In that case, however, vcpu_enter_guest() requests an
668 			 * immediate exit, and the guest shouldn't proceed far
669 			 * enough to need reinjection.
670 			 */
671 			WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
672 			vcpu->arch.exception.injected = true;
673 			if (WARN_ON_ONCE(has_payload)) {
674 				/*
675 				 * A reinjected event has already
676 				 * delivered its payload.
677 				 */
678 				has_payload = false;
679 				payload = 0;
680 			}
681 		} else {
682 			vcpu->arch.exception.pending = true;
683 			vcpu->arch.exception.injected = false;
684 		}
685 		vcpu->arch.exception.has_error_code = has_error;
686 		vcpu->arch.exception.vector = nr;
687 		vcpu->arch.exception.error_code = error_code;
688 		vcpu->arch.exception.has_payload = has_payload;
689 		vcpu->arch.exception.payload = payload;
690 		if (!is_guest_mode(vcpu))
691 			kvm_deliver_exception_payload(vcpu,
692 						      &vcpu->arch.exception);
693 		return;
694 	}
695 
696 	/* to check exception */
697 	prev_nr = vcpu->arch.exception.vector;
698 	if (prev_nr == DF_VECTOR) {
699 		/* triple fault -> shutdown */
700 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
701 		return;
702 	}
703 	class1 = exception_class(prev_nr);
704 	class2 = exception_class(nr);
705 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
706 	    (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
707 		/*
708 		 * Synthesize #DF.  Clear the previously injected or pending
709 		 * exception so as not to incorrectly trigger shutdown.
710 		 */
711 		vcpu->arch.exception.injected = false;
712 		vcpu->arch.exception.pending = false;
713 
714 		kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
715 	} else {
716 		/* replace previous exception with a new one in a hope
717 		   that instruction re-execution will regenerate lost
718 		   exception */
719 		goto queue;
720 	}
721 }
722 
723 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
724 {
725 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
726 }
727 EXPORT_SYMBOL_GPL(kvm_queue_exception);
728 
729 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
730 {
731 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
732 }
733 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
734 
735 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
736 			   unsigned long payload)
737 {
738 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
739 }
740 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
741 
742 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
743 				    u32 error_code, unsigned long payload)
744 {
745 	kvm_multiple_exception(vcpu, nr, true, error_code,
746 			       true, payload, false);
747 }
748 
749 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
750 {
751 	if (err)
752 		kvm_inject_gp(vcpu, 0);
753 	else
754 		return kvm_skip_emulated_instruction(vcpu);
755 
756 	return 1;
757 }
758 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
759 
760 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
761 {
762 	if (err) {
763 		kvm_inject_gp(vcpu, 0);
764 		return 1;
765 	}
766 
767 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
768 				       EMULTYPE_COMPLETE_USER_EXIT);
769 }
770 
771 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
772 {
773 	++vcpu->stat.pf_guest;
774 
775 	/*
776 	 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
777 	 * whether or not L1 wants to intercept "regular" #PF.
778 	 */
779 	if (is_guest_mode(vcpu) && fault->async_page_fault)
780 		kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
781 					   true, fault->error_code,
782 					   true, fault->address);
783 	else
784 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
785 					fault->address);
786 }
787 
788 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
789 				    struct x86_exception *fault)
790 {
791 	struct kvm_mmu *fault_mmu;
792 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
793 
794 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
795 					       vcpu->arch.walk_mmu;
796 
797 	/*
798 	 * Invalidate the TLB entry for the faulting address, if it exists,
799 	 * else the access will fault indefinitely (and to emulate hardware).
800 	 */
801 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
802 	    !(fault->error_code & PFERR_RSVD_MASK))
803 		kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
804 				       fault_mmu->root.hpa);
805 
806 	fault_mmu->inject_page_fault(vcpu, fault);
807 }
808 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
809 
810 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
811 {
812 	atomic_inc(&vcpu->arch.nmi_queued);
813 	kvm_make_request(KVM_REQ_NMI, vcpu);
814 }
815 
816 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
817 {
818 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
819 }
820 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
821 
822 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
823 {
824 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
825 }
826 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
827 
828 /*
829  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
830  * a #GP and return false.
831  */
832 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
833 {
834 	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
835 		return true;
836 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
837 	return false;
838 }
839 
840 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
841 {
842 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
843 		return true;
844 
845 	kvm_queue_exception(vcpu, UD_VECTOR);
846 	return false;
847 }
848 EXPORT_SYMBOL_GPL(kvm_require_dr);
849 
850 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
851 {
852 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
853 }
854 
855 /*
856  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
857  */
858 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
859 {
860 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
861 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
862 	gpa_t real_gpa;
863 	int i;
864 	int ret;
865 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
866 
867 	/*
868 	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
869 	 * to an L1 GPA.
870 	 */
871 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
872 				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
873 	if (real_gpa == INVALID_GPA)
874 		return 0;
875 
876 	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
877 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
878 				       cr3 & GENMASK(11, 5), sizeof(pdpte));
879 	if (ret < 0)
880 		return 0;
881 
882 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
883 		if ((pdpte[i] & PT_PRESENT_MASK) &&
884 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
885 			return 0;
886 		}
887 	}
888 
889 	/*
890 	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
891 	 * Shadow page roots need to be reconstructed instead.
892 	 */
893 	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
894 		kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
895 
896 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
897 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
898 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
899 	vcpu->arch.pdptrs_from_userspace = false;
900 
901 	return 1;
902 }
903 EXPORT_SYMBOL_GPL(load_pdptrs);
904 
905 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
906 {
907 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
908 		kvm_clear_async_pf_completion_queue(vcpu);
909 		kvm_async_pf_hash_reset(vcpu);
910 
911 		/*
912 		 * Clearing CR0.PG is defined to flush the TLB from the guest's
913 		 * perspective.
914 		 */
915 		if (!(cr0 & X86_CR0_PG))
916 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
917 	}
918 
919 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
920 		kvm_mmu_reset_context(vcpu);
921 
922 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
923 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
924 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
925 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
926 }
927 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
928 
929 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
930 {
931 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
932 
933 	cr0 |= X86_CR0_ET;
934 
935 #ifdef CONFIG_X86_64
936 	if (cr0 & 0xffffffff00000000UL)
937 		return 1;
938 #endif
939 
940 	cr0 &= ~CR0_RESERVED_BITS;
941 
942 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
943 		return 1;
944 
945 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
946 		return 1;
947 
948 #ifdef CONFIG_X86_64
949 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
950 	    (cr0 & X86_CR0_PG)) {
951 		int cs_db, cs_l;
952 
953 		if (!is_pae(vcpu))
954 			return 1;
955 		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
956 		if (cs_l)
957 			return 1;
958 	}
959 #endif
960 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
961 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
962 	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
963 		return 1;
964 
965 	if (!(cr0 & X86_CR0_PG) &&
966 	    (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)))
967 		return 1;
968 
969 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
970 
971 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
972 
973 	return 0;
974 }
975 EXPORT_SYMBOL_GPL(kvm_set_cr0);
976 
977 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
978 {
979 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
980 }
981 EXPORT_SYMBOL_GPL(kvm_lmsw);
982 
983 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
984 {
985 	if (vcpu->arch.guest_state_protected)
986 		return;
987 
988 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
989 
990 		if (vcpu->arch.xcr0 != host_xcr0)
991 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
992 
993 		if (vcpu->arch.xsaves_enabled &&
994 		    vcpu->arch.ia32_xss != host_xss)
995 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
996 	}
997 
998 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
999 	if (static_cpu_has(X86_FEATURE_PKU) &&
1000 	    vcpu->arch.pkru != vcpu->arch.host_pkru &&
1001 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1002 	     kvm_read_cr4_bits(vcpu, X86_CR4_PKE)))
1003 		write_pkru(vcpu->arch.pkru);
1004 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1005 }
1006 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1007 
1008 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1009 {
1010 	if (vcpu->arch.guest_state_protected)
1011 		return;
1012 
1013 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1014 	if (static_cpu_has(X86_FEATURE_PKU) &&
1015 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1016 	     kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) {
1017 		vcpu->arch.pkru = rdpkru();
1018 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1019 			write_pkru(vcpu->arch.host_pkru);
1020 	}
1021 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1022 
1023 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
1024 
1025 		if (vcpu->arch.xcr0 != host_xcr0)
1026 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1027 
1028 		if (vcpu->arch.xsaves_enabled &&
1029 		    vcpu->arch.ia32_xss != host_xss)
1030 			wrmsrl(MSR_IA32_XSS, host_xss);
1031 	}
1032 
1033 }
1034 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1035 
1036 #ifdef CONFIG_X86_64
1037 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1038 {
1039 	return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1040 }
1041 #endif
1042 
1043 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1044 {
1045 	u64 xcr0 = xcr;
1046 	u64 old_xcr0 = vcpu->arch.xcr0;
1047 	u64 valid_bits;
1048 
1049 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1050 	if (index != XCR_XFEATURE_ENABLED_MASK)
1051 		return 1;
1052 	if (!(xcr0 & XFEATURE_MASK_FP))
1053 		return 1;
1054 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1055 		return 1;
1056 
1057 	/*
1058 	 * Do not allow the guest to set bits that we do not support
1059 	 * saving.  However, xcr0 bit 0 is always set, even if the
1060 	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1061 	 */
1062 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1063 	if (xcr0 & ~valid_bits)
1064 		return 1;
1065 
1066 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1067 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1068 		return 1;
1069 
1070 	if (xcr0 & XFEATURE_MASK_AVX512) {
1071 		if (!(xcr0 & XFEATURE_MASK_YMM))
1072 			return 1;
1073 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1074 			return 1;
1075 	}
1076 
1077 	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1078 	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1079 		return 1;
1080 
1081 	vcpu->arch.xcr0 = xcr0;
1082 
1083 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1084 		kvm_update_cpuid_runtime(vcpu);
1085 	return 0;
1086 }
1087 
1088 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1089 {
1090 	/* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1091 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1092 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1093 		kvm_inject_gp(vcpu, 0);
1094 		return 1;
1095 	}
1096 
1097 	return kvm_skip_emulated_instruction(vcpu);
1098 }
1099 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1100 
1101 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1102 {
1103 	if (cr4 & cr4_reserved_bits)
1104 		return false;
1105 
1106 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1107 		return false;
1108 
1109 	return true;
1110 }
1111 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1112 
1113 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1114 {
1115 	return __kvm_is_valid_cr4(vcpu, cr4) &&
1116 	       static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1117 }
1118 
1119 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1120 {
1121 	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1122 		kvm_mmu_reset_context(vcpu);
1123 
1124 	/*
1125 	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1126 	 * according to the SDM; however, stale prev_roots could be reused
1127 	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1128 	 * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1129 	 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1130 	 * so fall through.
1131 	 */
1132 	if (!tdp_enabled &&
1133 	    (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1134 		kvm_mmu_unload(vcpu);
1135 
1136 	/*
1137 	 * The TLB has to be flushed for all PCIDs if any of the following
1138 	 * (architecturally required) changes happen:
1139 	 * - CR4.PCIDE is changed from 1 to 0
1140 	 * - CR4.PGE is toggled
1141 	 *
1142 	 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1143 	 */
1144 	if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1145 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1146 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1147 
1148 	/*
1149 	 * The TLB has to be flushed for the current PCID if any of the
1150 	 * following (architecturally required) changes happen:
1151 	 * - CR4.SMEP is changed from 0 to 1
1152 	 * - CR4.PAE is toggled
1153 	 */
1154 	else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1155 		 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1156 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1157 
1158 }
1159 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1160 
1161 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1162 {
1163 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1164 
1165 	if (!kvm_is_valid_cr4(vcpu, cr4))
1166 		return 1;
1167 
1168 	if (is_long_mode(vcpu)) {
1169 		if (!(cr4 & X86_CR4_PAE))
1170 			return 1;
1171 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1172 			return 1;
1173 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1174 		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1175 		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1176 		return 1;
1177 
1178 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1179 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1180 			return 1;
1181 
1182 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1183 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1184 			return 1;
1185 	}
1186 
1187 	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1188 
1189 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1190 
1191 	return 0;
1192 }
1193 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1194 
1195 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1196 {
1197 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1198 	unsigned long roots_to_free = 0;
1199 	int i;
1200 
1201 	/*
1202 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1203 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1204 	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1205 	 * the invalidation, but the guest's TLB entries need to be flushed as
1206 	 * the CPU may have cached entries in its TLB for the target PCID.
1207 	 */
1208 	if (unlikely(tdp_enabled)) {
1209 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1210 		return;
1211 	}
1212 
1213 	/*
1214 	 * If neither the current CR3 nor any of the prev_roots use the given
1215 	 * PCID, then nothing needs to be done here because a resync will
1216 	 * happen anyway before switching to any other CR3.
1217 	 */
1218 	if (kvm_get_active_pcid(vcpu) == pcid) {
1219 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1220 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1221 	}
1222 
1223 	/*
1224 	 * If PCID is disabled, there is no need to free prev_roots even if the
1225 	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1226 	 * with PCIDE=0.
1227 	 */
1228 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1229 		return;
1230 
1231 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1232 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1233 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1234 
1235 	kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1236 }
1237 
1238 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1239 {
1240 	bool skip_tlb_flush = false;
1241 	unsigned long pcid = 0;
1242 #ifdef CONFIG_X86_64
1243 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1244 
1245 	if (pcid_enabled) {
1246 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1247 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1248 		pcid = cr3 & X86_CR3_PCID_MASK;
1249 	}
1250 #endif
1251 
1252 	/* PDPTRs are always reloaded for PAE paging. */
1253 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1254 		goto handle_tlb_flush;
1255 
1256 	/*
1257 	 * Do not condition the GPA check on long mode, this helper is used to
1258 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1259 	 * the current vCPU mode is accurate.
1260 	 */
1261 	if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1262 		return 1;
1263 
1264 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1265 		return 1;
1266 
1267 	if (cr3 != kvm_read_cr3(vcpu))
1268 		kvm_mmu_new_pgd(vcpu, cr3);
1269 
1270 	vcpu->arch.cr3 = cr3;
1271 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1272 	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1273 
1274 handle_tlb_flush:
1275 	/*
1276 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1277 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1278 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1279 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1280 	 * i.e. only PCID=0 can be relevant.
1281 	 */
1282 	if (!skip_tlb_flush)
1283 		kvm_invalidate_pcid(vcpu, pcid);
1284 
1285 	return 0;
1286 }
1287 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1288 
1289 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1290 {
1291 	if (cr8 & CR8_RESERVED_BITS)
1292 		return 1;
1293 	if (lapic_in_kernel(vcpu))
1294 		kvm_lapic_set_tpr(vcpu, cr8);
1295 	else
1296 		vcpu->arch.cr8 = cr8;
1297 	return 0;
1298 }
1299 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1300 
1301 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1302 {
1303 	if (lapic_in_kernel(vcpu))
1304 		return kvm_lapic_get_cr8(vcpu);
1305 	else
1306 		return vcpu->arch.cr8;
1307 }
1308 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1309 
1310 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1311 {
1312 	int i;
1313 
1314 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1315 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1316 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1317 	}
1318 }
1319 
1320 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1321 {
1322 	unsigned long dr7;
1323 
1324 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1325 		dr7 = vcpu->arch.guest_debug_dr7;
1326 	else
1327 		dr7 = vcpu->arch.dr7;
1328 	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1329 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1330 	if (dr7 & DR7_BP_EN_MASK)
1331 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1332 }
1333 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1334 
1335 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1336 {
1337 	u64 fixed = DR6_FIXED_1;
1338 
1339 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1340 		fixed |= DR6_RTM;
1341 
1342 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1343 		fixed |= DR6_BUS_LOCK;
1344 	return fixed;
1345 }
1346 
1347 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1348 {
1349 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1350 
1351 	switch (dr) {
1352 	case 0 ... 3:
1353 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1354 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1355 			vcpu->arch.eff_db[dr] = val;
1356 		break;
1357 	case 4:
1358 	case 6:
1359 		if (!kvm_dr6_valid(val))
1360 			return 1; /* #GP */
1361 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1362 		break;
1363 	case 5:
1364 	default: /* 7 */
1365 		if (!kvm_dr7_valid(val))
1366 			return 1; /* #GP */
1367 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1368 		kvm_update_dr7(vcpu);
1369 		break;
1370 	}
1371 
1372 	return 0;
1373 }
1374 EXPORT_SYMBOL_GPL(kvm_set_dr);
1375 
1376 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1377 {
1378 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1379 
1380 	switch (dr) {
1381 	case 0 ... 3:
1382 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1383 		break;
1384 	case 4:
1385 	case 6:
1386 		*val = vcpu->arch.dr6;
1387 		break;
1388 	case 5:
1389 	default: /* 7 */
1390 		*val = vcpu->arch.dr7;
1391 		break;
1392 	}
1393 }
1394 EXPORT_SYMBOL_GPL(kvm_get_dr);
1395 
1396 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1397 {
1398 	u32 ecx = kvm_rcx_read(vcpu);
1399 	u64 data;
1400 
1401 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1402 		kvm_inject_gp(vcpu, 0);
1403 		return 1;
1404 	}
1405 
1406 	kvm_rax_write(vcpu, (u32)data);
1407 	kvm_rdx_write(vcpu, data >> 32);
1408 	return kvm_skip_emulated_instruction(vcpu);
1409 }
1410 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1411 
1412 /*
1413  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1414  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1415  *
1416  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1417  * extract the supported MSRs from the related const lists.
1418  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1419  * capabilities of the host cpu. This capabilities test skips MSRs that are
1420  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1421  * may depend on host virtualization features rather than host cpu features.
1422  */
1423 
1424 static const u32 msrs_to_save_all[] = {
1425 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1426 	MSR_STAR,
1427 #ifdef CONFIG_X86_64
1428 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1429 #endif
1430 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1431 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1432 	MSR_IA32_SPEC_CTRL,
1433 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1434 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1435 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1436 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1437 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1438 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1439 	MSR_IA32_UMWAIT_CONTROL,
1440 
1441 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1442 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1443 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1444 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1445 	MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1446 
1447 	/* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
1448 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1449 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1450 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1451 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1452 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1453 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1454 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1455 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1456 
1457 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1458 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1459 
1460 	/* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
1461 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1462 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1463 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1464 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1465 
1466 	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1467 };
1468 
1469 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1470 static unsigned num_msrs_to_save;
1471 
1472 static const u32 emulated_msrs_all[] = {
1473 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1474 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1475 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1476 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1477 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1478 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1479 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1480 	HV_X64_MSR_RESET,
1481 	HV_X64_MSR_VP_INDEX,
1482 	HV_X64_MSR_VP_RUNTIME,
1483 	HV_X64_MSR_SCONTROL,
1484 	HV_X64_MSR_STIMER0_CONFIG,
1485 	HV_X64_MSR_VP_ASSIST_PAGE,
1486 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1487 	HV_X64_MSR_TSC_EMULATION_STATUS,
1488 	HV_X64_MSR_SYNDBG_OPTIONS,
1489 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1490 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1491 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1492 
1493 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1494 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1495 
1496 	MSR_IA32_TSC_ADJUST,
1497 	MSR_IA32_TSC_DEADLINE,
1498 	MSR_IA32_ARCH_CAPABILITIES,
1499 	MSR_IA32_PERF_CAPABILITIES,
1500 	MSR_IA32_MISC_ENABLE,
1501 	MSR_IA32_MCG_STATUS,
1502 	MSR_IA32_MCG_CTL,
1503 	MSR_IA32_MCG_EXT_CTL,
1504 	MSR_IA32_SMBASE,
1505 	MSR_SMI_COUNT,
1506 	MSR_PLATFORM_INFO,
1507 	MSR_MISC_FEATURES_ENABLES,
1508 	MSR_AMD64_VIRT_SPEC_CTRL,
1509 	MSR_AMD64_TSC_RATIO,
1510 	MSR_IA32_POWER_CTL,
1511 	MSR_IA32_UCODE_REV,
1512 
1513 	/*
1514 	 * The following list leaves out MSRs whose values are determined
1515 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1516 	 * We always support the "true" VMX control MSRs, even if the host
1517 	 * processor does not, so I am putting these registers here rather
1518 	 * than in msrs_to_save_all.
1519 	 */
1520 	MSR_IA32_VMX_BASIC,
1521 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1522 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1523 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1524 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1525 	MSR_IA32_VMX_MISC,
1526 	MSR_IA32_VMX_CR0_FIXED0,
1527 	MSR_IA32_VMX_CR4_FIXED0,
1528 	MSR_IA32_VMX_VMCS_ENUM,
1529 	MSR_IA32_VMX_PROCBASED_CTLS2,
1530 	MSR_IA32_VMX_EPT_VPID_CAP,
1531 	MSR_IA32_VMX_VMFUNC,
1532 
1533 	MSR_K7_HWCR,
1534 	MSR_KVM_POLL_CONTROL,
1535 };
1536 
1537 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1538 static unsigned num_emulated_msrs;
1539 
1540 /*
1541  * List of msr numbers which are used to expose MSR-based features that
1542  * can be used by a hypervisor to validate requested CPU features.
1543  */
1544 static const u32 msr_based_features_all[] = {
1545 	MSR_IA32_VMX_BASIC,
1546 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1547 	MSR_IA32_VMX_PINBASED_CTLS,
1548 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1549 	MSR_IA32_VMX_PROCBASED_CTLS,
1550 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1551 	MSR_IA32_VMX_EXIT_CTLS,
1552 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1553 	MSR_IA32_VMX_ENTRY_CTLS,
1554 	MSR_IA32_VMX_MISC,
1555 	MSR_IA32_VMX_CR0_FIXED0,
1556 	MSR_IA32_VMX_CR0_FIXED1,
1557 	MSR_IA32_VMX_CR4_FIXED0,
1558 	MSR_IA32_VMX_CR4_FIXED1,
1559 	MSR_IA32_VMX_VMCS_ENUM,
1560 	MSR_IA32_VMX_PROCBASED_CTLS2,
1561 	MSR_IA32_VMX_EPT_VPID_CAP,
1562 	MSR_IA32_VMX_VMFUNC,
1563 
1564 	MSR_AMD64_DE_CFG,
1565 	MSR_IA32_UCODE_REV,
1566 	MSR_IA32_ARCH_CAPABILITIES,
1567 	MSR_IA32_PERF_CAPABILITIES,
1568 };
1569 
1570 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1571 static unsigned int num_msr_based_features;
1572 
1573 /*
1574  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1575  * does not yet virtualize. These include:
1576  *   10 - MISC_PACKAGE_CTRLS
1577  *   11 - ENERGY_FILTERING_CTL
1578  *   12 - DOITM
1579  *   18 - FB_CLEAR_CTRL
1580  *   21 - XAPIC_DISABLE_STATUS
1581  *   23 - OVERCLOCKING_STATUS
1582  */
1583 
1584 #define KVM_SUPPORTED_ARCH_CAP \
1585 	(ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1586 	 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1587 	 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1588 	 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1589 	 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO)
1590 
1591 static u64 kvm_get_arch_capabilities(void)
1592 {
1593 	u64 data = 0;
1594 
1595 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
1596 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1597 		data &= KVM_SUPPORTED_ARCH_CAP;
1598 	}
1599 
1600 	/*
1601 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1602 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1603 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1604 	 * L1 guests, so it need not worry about its own (L2) guests.
1605 	 */
1606 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1607 
1608 	/*
1609 	 * If we're doing cache flushes (either "always" or "cond")
1610 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1611 	 * If an outer hypervisor is doing the cache flush for us
1612 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1613 	 * capability to the guest too, and if EPT is disabled we're not
1614 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1615 	 * require a nested hypervisor to do a flush of its own.
1616 	 */
1617 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1618 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1619 
1620 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1621 		data |= ARCH_CAP_RDCL_NO;
1622 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1623 		data |= ARCH_CAP_SSB_NO;
1624 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1625 		data |= ARCH_CAP_MDS_NO;
1626 
1627 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1628 		/*
1629 		 * If RTM=0 because the kernel has disabled TSX, the host might
1630 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1631 		 * and therefore knows that there cannot be TAA) but keep
1632 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1633 		 * and we want to allow migrating those guests to tsx=off hosts.
1634 		 */
1635 		data &= ~ARCH_CAP_TAA_NO;
1636 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1637 		data |= ARCH_CAP_TAA_NO;
1638 	} else {
1639 		/*
1640 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1641 		 * host so the guest can choose between disabling TSX or
1642 		 * using VERW to clear CPU buffers.
1643 		 */
1644 	}
1645 
1646 	return data;
1647 }
1648 
1649 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1650 {
1651 	switch (msr->index) {
1652 	case MSR_IA32_ARCH_CAPABILITIES:
1653 		msr->data = kvm_get_arch_capabilities();
1654 		break;
1655 	case MSR_IA32_PERF_CAPABILITIES:
1656 		msr->data = kvm_caps.supported_perf_cap;
1657 		break;
1658 	case MSR_IA32_UCODE_REV:
1659 		rdmsrl_safe(msr->index, &msr->data);
1660 		break;
1661 	default:
1662 		return static_call(kvm_x86_get_msr_feature)(msr);
1663 	}
1664 	return 0;
1665 }
1666 
1667 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1668 {
1669 	struct kvm_msr_entry msr;
1670 	int r;
1671 
1672 	msr.index = index;
1673 	r = kvm_get_msr_feature(&msr);
1674 
1675 	if (r == KVM_MSR_RET_INVALID) {
1676 		/* Unconditionally clear the output for simplicity */
1677 		*data = 0;
1678 		if (kvm_msr_ignored_check(index, 0, false))
1679 			r = 0;
1680 	}
1681 
1682 	if (r)
1683 		return r;
1684 
1685 	*data = msr.data;
1686 
1687 	return 0;
1688 }
1689 
1690 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1691 {
1692 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1693 		return false;
1694 
1695 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1696 		return false;
1697 
1698 	if (efer & (EFER_LME | EFER_LMA) &&
1699 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1700 		return false;
1701 
1702 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1703 		return false;
1704 
1705 	return true;
1706 
1707 }
1708 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1709 {
1710 	if (efer & efer_reserved_bits)
1711 		return false;
1712 
1713 	return __kvm_valid_efer(vcpu, efer);
1714 }
1715 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1716 
1717 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1718 {
1719 	u64 old_efer = vcpu->arch.efer;
1720 	u64 efer = msr_info->data;
1721 	int r;
1722 
1723 	if (efer & efer_reserved_bits)
1724 		return 1;
1725 
1726 	if (!msr_info->host_initiated) {
1727 		if (!__kvm_valid_efer(vcpu, efer))
1728 			return 1;
1729 
1730 		if (is_paging(vcpu) &&
1731 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1732 			return 1;
1733 	}
1734 
1735 	efer &= ~EFER_LMA;
1736 	efer |= vcpu->arch.efer & EFER_LMA;
1737 
1738 	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1739 	if (r) {
1740 		WARN_ON(r > 0);
1741 		return r;
1742 	}
1743 
1744 	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1745 		kvm_mmu_reset_context(vcpu);
1746 
1747 	return 0;
1748 }
1749 
1750 void kvm_enable_efer_bits(u64 mask)
1751 {
1752        efer_reserved_bits &= ~mask;
1753 }
1754 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1755 
1756 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1757 {
1758 	struct kvm_x86_msr_filter *msr_filter;
1759 	struct msr_bitmap_range *ranges;
1760 	struct kvm *kvm = vcpu->kvm;
1761 	bool allowed;
1762 	int idx;
1763 	u32 i;
1764 
1765 	/* x2APIC MSRs do not support filtering. */
1766 	if (index >= 0x800 && index <= 0x8ff)
1767 		return true;
1768 
1769 	idx = srcu_read_lock(&kvm->srcu);
1770 
1771 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1772 	if (!msr_filter) {
1773 		allowed = true;
1774 		goto out;
1775 	}
1776 
1777 	allowed = msr_filter->default_allow;
1778 	ranges = msr_filter->ranges;
1779 
1780 	for (i = 0; i < msr_filter->count; i++) {
1781 		u32 start = ranges[i].base;
1782 		u32 end = start + ranges[i].nmsrs;
1783 		u32 flags = ranges[i].flags;
1784 		unsigned long *bitmap = ranges[i].bitmap;
1785 
1786 		if ((index >= start) && (index < end) && (flags & type)) {
1787 			allowed = !!test_bit(index - start, bitmap);
1788 			break;
1789 		}
1790 	}
1791 
1792 out:
1793 	srcu_read_unlock(&kvm->srcu, idx);
1794 
1795 	return allowed;
1796 }
1797 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1798 
1799 /*
1800  * Write @data into the MSR specified by @index.  Select MSR specific fault
1801  * checks are bypassed if @host_initiated is %true.
1802  * Returns 0 on success, non-0 otherwise.
1803  * Assumes vcpu_load() was already called.
1804  */
1805 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1806 			 bool host_initiated)
1807 {
1808 	struct msr_data msr;
1809 
1810 	switch (index) {
1811 	case MSR_FS_BASE:
1812 	case MSR_GS_BASE:
1813 	case MSR_KERNEL_GS_BASE:
1814 	case MSR_CSTAR:
1815 	case MSR_LSTAR:
1816 		if (is_noncanonical_address(data, vcpu))
1817 			return 1;
1818 		break;
1819 	case MSR_IA32_SYSENTER_EIP:
1820 	case MSR_IA32_SYSENTER_ESP:
1821 		/*
1822 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1823 		 * non-canonical address is written on Intel but not on
1824 		 * AMD (which ignores the top 32-bits, because it does
1825 		 * not implement 64-bit SYSENTER).
1826 		 *
1827 		 * 64-bit code should hence be able to write a non-canonical
1828 		 * value on AMD.  Making the address canonical ensures that
1829 		 * vmentry does not fail on Intel after writing a non-canonical
1830 		 * value, and that something deterministic happens if the guest
1831 		 * invokes 64-bit SYSENTER.
1832 		 */
1833 		data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1834 		break;
1835 	case MSR_TSC_AUX:
1836 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1837 			return 1;
1838 
1839 		if (!host_initiated &&
1840 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1841 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1842 			return 1;
1843 
1844 		/*
1845 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1846 		 * incomplete and conflicting architectural behavior.  Current
1847 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1848 		 * reserved and always read as zeros.  Enforce Intel's reserved
1849 		 * bits check if and only if the guest CPU is Intel, and clear
1850 		 * the bits in all other cases.  This ensures cross-vendor
1851 		 * migration will provide consistent behavior for the guest.
1852 		 */
1853 		if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1854 			return 1;
1855 
1856 		data = (u32)data;
1857 		break;
1858 	}
1859 
1860 	msr.data = data;
1861 	msr.index = index;
1862 	msr.host_initiated = host_initiated;
1863 
1864 	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1865 }
1866 
1867 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1868 				     u32 index, u64 data, bool host_initiated)
1869 {
1870 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1871 
1872 	if (ret == KVM_MSR_RET_INVALID)
1873 		if (kvm_msr_ignored_check(index, data, true))
1874 			ret = 0;
1875 
1876 	return ret;
1877 }
1878 
1879 /*
1880  * Read the MSR specified by @index into @data.  Select MSR specific fault
1881  * checks are bypassed if @host_initiated is %true.
1882  * Returns 0 on success, non-0 otherwise.
1883  * Assumes vcpu_load() was already called.
1884  */
1885 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1886 		  bool host_initiated)
1887 {
1888 	struct msr_data msr;
1889 	int ret;
1890 
1891 	switch (index) {
1892 	case MSR_TSC_AUX:
1893 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1894 			return 1;
1895 
1896 		if (!host_initiated &&
1897 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1898 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1899 			return 1;
1900 		break;
1901 	}
1902 
1903 	msr.index = index;
1904 	msr.host_initiated = host_initiated;
1905 
1906 	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1907 	if (!ret)
1908 		*data = msr.data;
1909 	return ret;
1910 }
1911 
1912 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1913 				     u32 index, u64 *data, bool host_initiated)
1914 {
1915 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1916 
1917 	if (ret == KVM_MSR_RET_INVALID) {
1918 		/* Unconditionally clear *data for simplicity */
1919 		*data = 0;
1920 		if (kvm_msr_ignored_check(index, 0, false))
1921 			ret = 0;
1922 	}
1923 
1924 	return ret;
1925 }
1926 
1927 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1928 {
1929 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1930 		return KVM_MSR_RET_FILTERED;
1931 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1932 }
1933 
1934 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1935 {
1936 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1937 		return KVM_MSR_RET_FILTERED;
1938 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1939 }
1940 
1941 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1942 {
1943 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1944 }
1945 EXPORT_SYMBOL_GPL(kvm_get_msr);
1946 
1947 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1948 {
1949 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1950 }
1951 EXPORT_SYMBOL_GPL(kvm_set_msr);
1952 
1953 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1954 {
1955 	if (!vcpu->run->msr.error) {
1956 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1957 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1958 	}
1959 }
1960 
1961 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1962 {
1963 	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1964 }
1965 
1966 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1967 {
1968 	complete_userspace_rdmsr(vcpu);
1969 	return complete_emulated_msr_access(vcpu);
1970 }
1971 
1972 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1973 {
1974 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1975 }
1976 
1977 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1978 {
1979 	complete_userspace_rdmsr(vcpu);
1980 	return complete_fast_msr_access(vcpu);
1981 }
1982 
1983 static u64 kvm_msr_reason(int r)
1984 {
1985 	switch (r) {
1986 	case KVM_MSR_RET_INVALID:
1987 		return KVM_MSR_EXIT_REASON_UNKNOWN;
1988 	case KVM_MSR_RET_FILTERED:
1989 		return KVM_MSR_EXIT_REASON_FILTER;
1990 	default:
1991 		return KVM_MSR_EXIT_REASON_INVAL;
1992 	}
1993 }
1994 
1995 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1996 			      u32 exit_reason, u64 data,
1997 			      int (*completion)(struct kvm_vcpu *vcpu),
1998 			      int r)
1999 {
2000 	u64 msr_reason = kvm_msr_reason(r);
2001 
2002 	/* Check if the user wanted to know about this MSR fault */
2003 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2004 		return 0;
2005 
2006 	vcpu->run->exit_reason = exit_reason;
2007 	vcpu->run->msr.error = 0;
2008 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2009 	vcpu->run->msr.reason = msr_reason;
2010 	vcpu->run->msr.index = index;
2011 	vcpu->run->msr.data = data;
2012 	vcpu->arch.complete_userspace_io = completion;
2013 
2014 	return 1;
2015 }
2016 
2017 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2018 {
2019 	u32 ecx = kvm_rcx_read(vcpu);
2020 	u64 data;
2021 	int r;
2022 
2023 	r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2024 
2025 	if (!r) {
2026 		trace_kvm_msr_read(ecx, data);
2027 
2028 		kvm_rax_write(vcpu, data & -1u);
2029 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
2030 	} else {
2031 		/* MSR read failed? See if we should ask user space */
2032 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2033 				       complete_fast_rdmsr, r))
2034 			return 0;
2035 		trace_kvm_msr_read_ex(ecx);
2036 	}
2037 
2038 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2039 }
2040 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2041 
2042 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2043 {
2044 	u32 ecx = kvm_rcx_read(vcpu);
2045 	u64 data = kvm_read_edx_eax(vcpu);
2046 	int r;
2047 
2048 	r = kvm_set_msr_with_filter(vcpu, ecx, data);
2049 
2050 	if (!r) {
2051 		trace_kvm_msr_write(ecx, data);
2052 	} else {
2053 		/* MSR write failed? See if we should ask user space */
2054 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2055 				       complete_fast_msr_access, r))
2056 			return 0;
2057 		/* Signal all other negative errors to userspace */
2058 		if (r < 0)
2059 			return r;
2060 		trace_kvm_msr_write_ex(ecx, data);
2061 	}
2062 
2063 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2064 }
2065 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2066 
2067 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2068 {
2069 	return kvm_skip_emulated_instruction(vcpu);
2070 }
2071 
2072 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2073 {
2074 	/* Treat an INVD instruction as a NOP and just skip it. */
2075 	return kvm_emulate_as_nop(vcpu);
2076 }
2077 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2078 
2079 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2080 {
2081 	kvm_queue_exception(vcpu, UD_VECTOR);
2082 	return 1;
2083 }
2084 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2085 
2086 
2087 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2088 {
2089 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2090 	    !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2091 		return kvm_handle_invalid_op(vcpu);
2092 
2093 	pr_warn_once("kvm: %s instruction emulated as NOP!\n", insn);
2094 	return kvm_emulate_as_nop(vcpu);
2095 }
2096 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2097 {
2098 	return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2099 }
2100 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2101 
2102 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2103 {
2104 	return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2105 }
2106 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2107 
2108 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2109 {
2110 	xfer_to_guest_mode_prepare();
2111 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2112 		xfer_to_guest_mode_work_pending();
2113 }
2114 
2115 /*
2116  * The fast path for frequent and performance sensitive wrmsr emulation,
2117  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2118  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2119  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2120  * other cases which must be called after interrupts are enabled on the host.
2121  */
2122 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2123 {
2124 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2125 		return 1;
2126 
2127 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2128 	    ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2129 	    ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2130 	    ((u32)(data >> 32) != X2APIC_BROADCAST))
2131 		return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2132 
2133 	return 1;
2134 }
2135 
2136 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2137 {
2138 	if (!kvm_can_use_hv_timer(vcpu))
2139 		return 1;
2140 
2141 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2142 	return 0;
2143 }
2144 
2145 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2146 {
2147 	u32 msr = kvm_rcx_read(vcpu);
2148 	u64 data;
2149 	fastpath_t ret = EXIT_FASTPATH_NONE;
2150 
2151 	switch (msr) {
2152 	case APIC_BASE_MSR + (APIC_ICR >> 4):
2153 		data = kvm_read_edx_eax(vcpu);
2154 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2155 			kvm_skip_emulated_instruction(vcpu);
2156 			ret = EXIT_FASTPATH_EXIT_HANDLED;
2157 		}
2158 		break;
2159 	case MSR_IA32_TSC_DEADLINE:
2160 		data = kvm_read_edx_eax(vcpu);
2161 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2162 			kvm_skip_emulated_instruction(vcpu);
2163 			ret = EXIT_FASTPATH_REENTER_GUEST;
2164 		}
2165 		break;
2166 	default:
2167 		break;
2168 	}
2169 
2170 	if (ret != EXIT_FASTPATH_NONE)
2171 		trace_kvm_msr_write(msr, data);
2172 
2173 	return ret;
2174 }
2175 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2176 
2177 /*
2178  * Adapt set_msr() to msr_io()'s calling convention
2179  */
2180 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2181 {
2182 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2183 }
2184 
2185 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2186 {
2187 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2188 }
2189 
2190 #ifdef CONFIG_X86_64
2191 struct pvclock_clock {
2192 	int vclock_mode;
2193 	u64 cycle_last;
2194 	u64 mask;
2195 	u32 mult;
2196 	u32 shift;
2197 	u64 base_cycles;
2198 	u64 offset;
2199 };
2200 
2201 struct pvclock_gtod_data {
2202 	seqcount_t	seq;
2203 
2204 	struct pvclock_clock clock; /* extract of a clocksource struct */
2205 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2206 
2207 	ktime_t		offs_boot;
2208 	u64		wall_time_sec;
2209 };
2210 
2211 static struct pvclock_gtod_data pvclock_gtod_data;
2212 
2213 static void update_pvclock_gtod(struct timekeeper *tk)
2214 {
2215 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2216 
2217 	write_seqcount_begin(&vdata->seq);
2218 
2219 	/* copy pvclock gtod data */
2220 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2221 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2222 	vdata->clock.mask		= tk->tkr_mono.mask;
2223 	vdata->clock.mult		= tk->tkr_mono.mult;
2224 	vdata->clock.shift		= tk->tkr_mono.shift;
2225 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2226 	vdata->clock.offset		= tk->tkr_mono.base;
2227 
2228 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2229 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2230 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2231 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2232 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2233 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2234 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2235 
2236 	vdata->wall_time_sec            = tk->xtime_sec;
2237 
2238 	vdata->offs_boot		= tk->offs_boot;
2239 
2240 	write_seqcount_end(&vdata->seq);
2241 }
2242 
2243 static s64 get_kvmclock_base_ns(void)
2244 {
2245 	/* Count up from boot time, but with the frequency of the raw clock.  */
2246 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2247 }
2248 #else
2249 static s64 get_kvmclock_base_ns(void)
2250 {
2251 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2252 	return ktime_get_boottime_ns();
2253 }
2254 #endif
2255 
2256 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2257 {
2258 	int version;
2259 	int r;
2260 	struct pvclock_wall_clock wc;
2261 	u32 wc_sec_hi;
2262 	u64 wall_nsec;
2263 
2264 	if (!wall_clock)
2265 		return;
2266 
2267 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2268 	if (r)
2269 		return;
2270 
2271 	if (version & 1)
2272 		++version;  /* first time write, random junk */
2273 
2274 	++version;
2275 
2276 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2277 		return;
2278 
2279 	/*
2280 	 * The guest calculates current wall clock time by adding
2281 	 * system time (updated by kvm_guest_time_update below) to the
2282 	 * wall clock specified here.  We do the reverse here.
2283 	 */
2284 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2285 
2286 	wc.nsec = do_div(wall_nsec, 1000000000);
2287 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2288 	wc.version = version;
2289 
2290 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2291 
2292 	if (sec_hi_ofs) {
2293 		wc_sec_hi = wall_nsec >> 32;
2294 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2295 				&wc_sec_hi, sizeof(wc_sec_hi));
2296 	}
2297 
2298 	version++;
2299 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2300 }
2301 
2302 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2303 				  bool old_msr, bool host_initiated)
2304 {
2305 	struct kvm_arch *ka = &vcpu->kvm->arch;
2306 
2307 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2308 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2309 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2310 
2311 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2312 	}
2313 
2314 	vcpu->arch.time = system_time;
2315 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2316 
2317 	/* we verify if the enable bit is set... */
2318 	if (system_time & 1)
2319 		kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2320 				 sizeof(struct pvclock_vcpu_time_info));
2321 	else
2322 		kvm_gpc_deactivate(&vcpu->arch.pv_time);
2323 
2324 	return;
2325 }
2326 
2327 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2328 {
2329 	do_shl32_div32(dividend, divisor);
2330 	return dividend;
2331 }
2332 
2333 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2334 			       s8 *pshift, u32 *pmultiplier)
2335 {
2336 	uint64_t scaled64;
2337 	int32_t  shift = 0;
2338 	uint64_t tps64;
2339 	uint32_t tps32;
2340 
2341 	tps64 = base_hz;
2342 	scaled64 = scaled_hz;
2343 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2344 		tps64 >>= 1;
2345 		shift--;
2346 	}
2347 
2348 	tps32 = (uint32_t)tps64;
2349 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2350 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2351 			scaled64 >>= 1;
2352 		else
2353 			tps32 <<= 1;
2354 		shift++;
2355 	}
2356 
2357 	*pshift = shift;
2358 	*pmultiplier = div_frac(scaled64, tps32);
2359 }
2360 
2361 #ifdef CONFIG_X86_64
2362 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2363 #endif
2364 
2365 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2366 static unsigned long max_tsc_khz;
2367 
2368 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2369 {
2370 	u64 v = (u64)khz * (1000000 + ppm);
2371 	do_div(v, 1000000);
2372 	return v;
2373 }
2374 
2375 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2376 
2377 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2378 {
2379 	u64 ratio;
2380 
2381 	/* Guest TSC same frequency as host TSC? */
2382 	if (!scale) {
2383 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2384 		return 0;
2385 	}
2386 
2387 	/* TSC scaling supported? */
2388 	if (!kvm_caps.has_tsc_control) {
2389 		if (user_tsc_khz > tsc_khz) {
2390 			vcpu->arch.tsc_catchup = 1;
2391 			vcpu->arch.tsc_always_catchup = 1;
2392 			return 0;
2393 		} else {
2394 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2395 			return -1;
2396 		}
2397 	}
2398 
2399 	/* TSC scaling required  - calculate ratio */
2400 	ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2401 				user_tsc_khz, tsc_khz);
2402 
2403 	if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2404 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2405 			            user_tsc_khz);
2406 		return -1;
2407 	}
2408 
2409 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2410 	return 0;
2411 }
2412 
2413 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2414 {
2415 	u32 thresh_lo, thresh_hi;
2416 	int use_scaling = 0;
2417 
2418 	/* tsc_khz can be zero if TSC calibration fails */
2419 	if (user_tsc_khz == 0) {
2420 		/* set tsc_scaling_ratio to a safe value */
2421 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2422 		return -1;
2423 	}
2424 
2425 	/* Compute a scale to convert nanoseconds in TSC cycles */
2426 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2427 			   &vcpu->arch.virtual_tsc_shift,
2428 			   &vcpu->arch.virtual_tsc_mult);
2429 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2430 
2431 	/*
2432 	 * Compute the variation in TSC rate which is acceptable
2433 	 * within the range of tolerance and decide if the
2434 	 * rate being applied is within that bounds of the hardware
2435 	 * rate.  If so, no scaling or compensation need be done.
2436 	 */
2437 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2438 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2439 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2440 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2441 		use_scaling = 1;
2442 	}
2443 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2444 }
2445 
2446 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2447 {
2448 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2449 				      vcpu->arch.virtual_tsc_mult,
2450 				      vcpu->arch.virtual_tsc_shift);
2451 	tsc += vcpu->arch.this_tsc_write;
2452 	return tsc;
2453 }
2454 
2455 #ifdef CONFIG_X86_64
2456 static inline int gtod_is_based_on_tsc(int mode)
2457 {
2458 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2459 }
2460 #endif
2461 
2462 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2463 {
2464 #ifdef CONFIG_X86_64
2465 	bool vcpus_matched;
2466 	struct kvm_arch *ka = &vcpu->kvm->arch;
2467 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2468 
2469 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2470 			 atomic_read(&vcpu->kvm->online_vcpus));
2471 
2472 	/*
2473 	 * Once the masterclock is enabled, always perform request in
2474 	 * order to update it.
2475 	 *
2476 	 * In order to enable masterclock, the host clocksource must be TSC
2477 	 * and the vcpus need to have matched TSCs.  When that happens,
2478 	 * perform request to enable masterclock.
2479 	 */
2480 	if (ka->use_master_clock ||
2481 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2482 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2483 
2484 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2485 			    atomic_read(&vcpu->kvm->online_vcpus),
2486 		            ka->use_master_clock, gtod->clock.vclock_mode);
2487 #endif
2488 }
2489 
2490 /*
2491  * Multiply tsc by a fixed point number represented by ratio.
2492  *
2493  * The most significant 64-N bits (mult) of ratio represent the
2494  * integral part of the fixed point number; the remaining N bits
2495  * (frac) represent the fractional part, ie. ratio represents a fixed
2496  * point number (mult + frac * 2^(-N)).
2497  *
2498  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2499  */
2500 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2501 {
2502 	return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2503 }
2504 
2505 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2506 {
2507 	u64 _tsc = tsc;
2508 
2509 	if (ratio != kvm_caps.default_tsc_scaling_ratio)
2510 		_tsc = __scale_tsc(ratio, tsc);
2511 
2512 	return _tsc;
2513 }
2514 
2515 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2516 {
2517 	u64 tsc;
2518 
2519 	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2520 
2521 	return target_tsc - tsc;
2522 }
2523 
2524 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2525 {
2526 	return vcpu->arch.l1_tsc_offset +
2527 		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2528 }
2529 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2530 
2531 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2532 {
2533 	u64 nested_offset;
2534 
2535 	if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2536 		nested_offset = l1_offset;
2537 	else
2538 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2539 						kvm_caps.tsc_scaling_ratio_frac_bits);
2540 
2541 	nested_offset += l2_offset;
2542 	return nested_offset;
2543 }
2544 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2545 
2546 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2547 {
2548 	if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2549 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2550 				       kvm_caps.tsc_scaling_ratio_frac_bits);
2551 
2552 	return l1_multiplier;
2553 }
2554 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2555 
2556 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2557 {
2558 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2559 				   vcpu->arch.l1_tsc_offset,
2560 				   l1_offset);
2561 
2562 	vcpu->arch.l1_tsc_offset = l1_offset;
2563 
2564 	/*
2565 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2566 	 * according to the spec this should set L1's TSC (as opposed to
2567 	 * setting L1's offset for L2).
2568 	 */
2569 	if (is_guest_mode(vcpu))
2570 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2571 			l1_offset,
2572 			static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2573 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2574 	else
2575 		vcpu->arch.tsc_offset = l1_offset;
2576 
2577 	static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2578 }
2579 
2580 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2581 {
2582 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2583 
2584 	/* Userspace is changing the multiplier while L2 is active */
2585 	if (is_guest_mode(vcpu))
2586 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2587 			l1_multiplier,
2588 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2589 	else
2590 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2591 
2592 	if (kvm_caps.has_tsc_control)
2593 		static_call(kvm_x86_write_tsc_multiplier)(
2594 			vcpu, vcpu->arch.tsc_scaling_ratio);
2595 }
2596 
2597 static inline bool kvm_check_tsc_unstable(void)
2598 {
2599 #ifdef CONFIG_X86_64
2600 	/*
2601 	 * TSC is marked unstable when we're running on Hyper-V,
2602 	 * 'TSC page' clocksource is good.
2603 	 */
2604 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2605 		return false;
2606 #endif
2607 	return check_tsc_unstable();
2608 }
2609 
2610 /*
2611  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2612  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2613  * participates in.
2614  */
2615 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2616 				  u64 ns, bool matched)
2617 {
2618 	struct kvm *kvm = vcpu->kvm;
2619 
2620 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2621 
2622 	/*
2623 	 * We also track th most recent recorded KHZ, write and time to
2624 	 * allow the matching interval to be extended at each write.
2625 	 */
2626 	kvm->arch.last_tsc_nsec = ns;
2627 	kvm->arch.last_tsc_write = tsc;
2628 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2629 	kvm->arch.last_tsc_offset = offset;
2630 
2631 	vcpu->arch.last_guest_tsc = tsc;
2632 
2633 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2634 
2635 	if (!matched) {
2636 		/*
2637 		 * We split periods of matched TSC writes into generations.
2638 		 * For each generation, we track the original measured
2639 		 * nanosecond time, offset, and write, so if TSCs are in
2640 		 * sync, we can match exact offset, and if not, we can match
2641 		 * exact software computation in compute_guest_tsc()
2642 		 *
2643 		 * These values are tracked in kvm->arch.cur_xxx variables.
2644 		 */
2645 		kvm->arch.cur_tsc_generation++;
2646 		kvm->arch.cur_tsc_nsec = ns;
2647 		kvm->arch.cur_tsc_write = tsc;
2648 		kvm->arch.cur_tsc_offset = offset;
2649 		kvm->arch.nr_vcpus_matched_tsc = 0;
2650 	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2651 		kvm->arch.nr_vcpus_matched_tsc++;
2652 	}
2653 
2654 	/* Keep track of which generation this VCPU has synchronized to */
2655 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2656 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2657 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2658 
2659 	kvm_track_tsc_matching(vcpu);
2660 }
2661 
2662 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2663 {
2664 	struct kvm *kvm = vcpu->kvm;
2665 	u64 offset, ns, elapsed;
2666 	unsigned long flags;
2667 	bool matched = false;
2668 	bool synchronizing = false;
2669 
2670 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2671 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2672 	ns = get_kvmclock_base_ns();
2673 	elapsed = ns - kvm->arch.last_tsc_nsec;
2674 
2675 	if (vcpu->arch.virtual_tsc_khz) {
2676 		if (data == 0) {
2677 			/*
2678 			 * detection of vcpu initialization -- need to sync
2679 			 * with other vCPUs. This particularly helps to keep
2680 			 * kvm_clock stable after CPU hotplug
2681 			 */
2682 			synchronizing = true;
2683 		} else {
2684 			u64 tsc_exp = kvm->arch.last_tsc_write +
2685 						nsec_to_cycles(vcpu, elapsed);
2686 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2687 			/*
2688 			 * Special case: TSC write with a small delta (1 second)
2689 			 * of virtual cycle time against real time is
2690 			 * interpreted as an attempt to synchronize the CPU.
2691 			 */
2692 			synchronizing = data < tsc_exp + tsc_hz &&
2693 					data + tsc_hz > tsc_exp;
2694 		}
2695 	}
2696 
2697 	/*
2698 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2699 	 * TSC, we add elapsed time in this computation.  We could let the
2700 	 * compensation code attempt to catch up if we fall behind, but
2701 	 * it's better to try to match offsets from the beginning.
2702          */
2703 	if (synchronizing &&
2704 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2705 		if (!kvm_check_tsc_unstable()) {
2706 			offset = kvm->arch.cur_tsc_offset;
2707 		} else {
2708 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2709 			data += delta;
2710 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2711 		}
2712 		matched = true;
2713 	}
2714 
2715 	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2716 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2717 }
2718 
2719 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2720 					   s64 adjustment)
2721 {
2722 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2723 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2724 }
2725 
2726 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2727 {
2728 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2729 		WARN_ON(adjustment < 0);
2730 	adjustment = kvm_scale_tsc((u64) adjustment,
2731 				   vcpu->arch.l1_tsc_scaling_ratio);
2732 	adjust_tsc_offset_guest(vcpu, adjustment);
2733 }
2734 
2735 #ifdef CONFIG_X86_64
2736 
2737 static u64 read_tsc(void)
2738 {
2739 	u64 ret = (u64)rdtsc_ordered();
2740 	u64 last = pvclock_gtod_data.clock.cycle_last;
2741 
2742 	if (likely(ret >= last))
2743 		return ret;
2744 
2745 	/*
2746 	 * GCC likes to generate cmov here, but this branch is extremely
2747 	 * predictable (it's just a function of time and the likely is
2748 	 * very likely) and there's a data dependence, so force GCC
2749 	 * to generate a branch instead.  I don't barrier() because
2750 	 * we don't actually need a barrier, and if this function
2751 	 * ever gets inlined it will generate worse code.
2752 	 */
2753 	asm volatile ("");
2754 	return last;
2755 }
2756 
2757 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2758 			  int *mode)
2759 {
2760 	long v;
2761 	u64 tsc_pg_val;
2762 
2763 	switch (clock->vclock_mode) {
2764 	case VDSO_CLOCKMODE_HVCLOCK:
2765 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2766 						  tsc_timestamp);
2767 		if (tsc_pg_val != U64_MAX) {
2768 			/* TSC page valid */
2769 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2770 			v = (tsc_pg_val - clock->cycle_last) &
2771 				clock->mask;
2772 		} else {
2773 			/* TSC page invalid */
2774 			*mode = VDSO_CLOCKMODE_NONE;
2775 		}
2776 		break;
2777 	case VDSO_CLOCKMODE_TSC:
2778 		*mode = VDSO_CLOCKMODE_TSC;
2779 		*tsc_timestamp = read_tsc();
2780 		v = (*tsc_timestamp - clock->cycle_last) &
2781 			clock->mask;
2782 		break;
2783 	default:
2784 		*mode = VDSO_CLOCKMODE_NONE;
2785 	}
2786 
2787 	if (*mode == VDSO_CLOCKMODE_NONE)
2788 		*tsc_timestamp = v = 0;
2789 
2790 	return v * clock->mult;
2791 }
2792 
2793 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2794 {
2795 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2796 	unsigned long seq;
2797 	int mode;
2798 	u64 ns;
2799 
2800 	do {
2801 		seq = read_seqcount_begin(&gtod->seq);
2802 		ns = gtod->raw_clock.base_cycles;
2803 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2804 		ns >>= gtod->raw_clock.shift;
2805 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2806 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2807 	*t = ns;
2808 
2809 	return mode;
2810 }
2811 
2812 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2813 {
2814 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2815 	unsigned long seq;
2816 	int mode;
2817 	u64 ns;
2818 
2819 	do {
2820 		seq = read_seqcount_begin(&gtod->seq);
2821 		ts->tv_sec = gtod->wall_time_sec;
2822 		ns = gtod->clock.base_cycles;
2823 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2824 		ns >>= gtod->clock.shift;
2825 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2826 
2827 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2828 	ts->tv_nsec = ns;
2829 
2830 	return mode;
2831 }
2832 
2833 /* returns true if host is using TSC based clocksource */
2834 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2835 {
2836 	/* checked again under seqlock below */
2837 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2838 		return false;
2839 
2840 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2841 						      tsc_timestamp));
2842 }
2843 
2844 /* returns true if host is using TSC based clocksource */
2845 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2846 					   u64 *tsc_timestamp)
2847 {
2848 	/* checked again under seqlock below */
2849 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2850 		return false;
2851 
2852 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2853 }
2854 #endif
2855 
2856 /*
2857  *
2858  * Assuming a stable TSC across physical CPUS, and a stable TSC
2859  * across virtual CPUs, the following condition is possible.
2860  * Each numbered line represents an event visible to both
2861  * CPUs at the next numbered event.
2862  *
2863  * "timespecX" represents host monotonic time. "tscX" represents
2864  * RDTSC value.
2865  *
2866  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2867  *
2868  * 1.  read timespec0,tsc0
2869  * 2.					| timespec1 = timespec0 + N
2870  * 					| tsc1 = tsc0 + M
2871  * 3. transition to guest		| transition to guest
2872  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2873  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2874  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2875  *
2876  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2877  *
2878  * 	- ret0 < ret1
2879  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2880  *		...
2881  *	- 0 < N - M => M < N
2882  *
2883  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2884  * always the case (the difference between two distinct xtime instances
2885  * might be smaller then the difference between corresponding TSC reads,
2886  * when updating guest vcpus pvclock areas).
2887  *
2888  * To avoid that problem, do not allow visibility of distinct
2889  * system_timestamp/tsc_timestamp values simultaneously: use a master
2890  * copy of host monotonic time values. Update that master copy
2891  * in lockstep.
2892  *
2893  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2894  *
2895  */
2896 
2897 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2898 {
2899 #ifdef CONFIG_X86_64
2900 	struct kvm_arch *ka = &kvm->arch;
2901 	int vclock_mode;
2902 	bool host_tsc_clocksource, vcpus_matched;
2903 
2904 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2905 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2906 			atomic_read(&kvm->online_vcpus));
2907 
2908 	/*
2909 	 * If the host uses TSC clock, then passthrough TSC as stable
2910 	 * to the guest.
2911 	 */
2912 	host_tsc_clocksource = kvm_get_time_and_clockread(
2913 					&ka->master_kernel_ns,
2914 					&ka->master_cycle_now);
2915 
2916 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2917 				&& !ka->backwards_tsc_observed
2918 				&& !ka->boot_vcpu_runs_old_kvmclock;
2919 
2920 	if (ka->use_master_clock)
2921 		atomic_set(&kvm_guest_has_master_clock, 1);
2922 
2923 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2924 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2925 					vcpus_matched);
2926 #endif
2927 }
2928 
2929 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2930 {
2931 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2932 }
2933 
2934 static void __kvm_start_pvclock_update(struct kvm *kvm)
2935 {
2936 	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2937 	write_seqcount_begin(&kvm->arch.pvclock_sc);
2938 }
2939 
2940 static void kvm_start_pvclock_update(struct kvm *kvm)
2941 {
2942 	kvm_make_mclock_inprogress_request(kvm);
2943 
2944 	/* no guest entries from this point */
2945 	__kvm_start_pvclock_update(kvm);
2946 }
2947 
2948 static void kvm_end_pvclock_update(struct kvm *kvm)
2949 {
2950 	struct kvm_arch *ka = &kvm->arch;
2951 	struct kvm_vcpu *vcpu;
2952 	unsigned long i;
2953 
2954 	write_seqcount_end(&ka->pvclock_sc);
2955 	raw_spin_unlock_irq(&ka->tsc_write_lock);
2956 	kvm_for_each_vcpu(i, vcpu, kvm)
2957 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2958 
2959 	/* guest entries allowed */
2960 	kvm_for_each_vcpu(i, vcpu, kvm)
2961 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2962 }
2963 
2964 static void kvm_update_masterclock(struct kvm *kvm)
2965 {
2966 	kvm_hv_request_tsc_page_update(kvm);
2967 	kvm_start_pvclock_update(kvm);
2968 	pvclock_update_vm_gtod_copy(kvm);
2969 	kvm_end_pvclock_update(kvm);
2970 }
2971 
2972 /*
2973  * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
2974  * per-CPU value (which may be zero if a CPU is going offline).  Note, tsc_khz
2975  * can change during boot even if the TSC is constant, as it's possible for KVM
2976  * to be loaded before TSC calibration completes.  Ideally, KVM would get a
2977  * notification when calibration completes, but practically speaking calibration
2978  * will complete before userspace is alive enough to create VMs.
2979  */
2980 static unsigned long get_cpu_tsc_khz(void)
2981 {
2982 	if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
2983 		return tsc_khz;
2984 	else
2985 		return __this_cpu_read(cpu_tsc_khz);
2986 }
2987 
2988 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
2989 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2990 {
2991 	struct kvm_arch *ka = &kvm->arch;
2992 	struct pvclock_vcpu_time_info hv_clock;
2993 
2994 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2995 	get_cpu();
2996 
2997 	data->flags = 0;
2998 	if (ka->use_master_clock &&
2999 	    (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3000 #ifdef CONFIG_X86_64
3001 		struct timespec64 ts;
3002 
3003 		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3004 			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3005 			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3006 		} else
3007 #endif
3008 		data->host_tsc = rdtsc();
3009 
3010 		data->flags |= KVM_CLOCK_TSC_STABLE;
3011 		hv_clock.tsc_timestamp = ka->master_cycle_now;
3012 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3013 		kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3014 				   &hv_clock.tsc_shift,
3015 				   &hv_clock.tsc_to_system_mul);
3016 		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3017 	} else {
3018 		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3019 	}
3020 
3021 	put_cpu();
3022 }
3023 
3024 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3025 {
3026 	struct kvm_arch *ka = &kvm->arch;
3027 	unsigned seq;
3028 
3029 	do {
3030 		seq = read_seqcount_begin(&ka->pvclock_sc);
3031 		__get_kvmclock(kvm, data);
3032 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3033 }
3034 
3035 u64 get_kvmclock_ns(struct kvm *kvm)
3036 {
3037 	struct kvm_clock_data data;
3038 
3039 	get_kvmclock(kvm, &data);
3040 	return data.clock;
3041 }
3042 
3043 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3044 				    struct gfn_to_pfn_cache *gpc,
3045 				    unsigned int offset)
3046 {
3047 	struct kvm_vcpu_arch *vcpu = &v->arch;
3048 	struct pvclock_vcpu_time_info *guest_hv_clock;
3049 	unsigned long flags;
3050 
3051 	read_lock_irqsave(&gpc->lock, flags);
3052 	while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3053 		read_unlock_irqrestore(&gpc->lock, flags);
3054 
3055 		if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3056 			return;
3057 
3058 		read_lock_irqsave(&gpc->lock, flags);
3059 	}
3060 
3061 	guest_hv_clock = (void *)(gpc->khva + offset);
3062 
3063 	/*
3064 	 * This VCPU is paused, but it's legal for a guest to read another
3065 	 * VCPU's kvmclock, so we really have to follow the specification where
3066 	 * it says that version is odd if data is being modified, and even after
3067 	 * it is consistent.
3068 	 */
3069 
3070 	guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3071 	smp_wmb();
3072 
3073 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3074 	vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3075 
3076 	if (vcpu->pvclock_set_guest_stopped_request) {
3077 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3078 		vcpu->pvclock_set_guest_stopped_request = false;
3079 	}
3080 
3081 	memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3082 	smp_wmb();
3083 
3084 	guest_hv_clock->version = ++vcpu->hv_clock.version;
3085 
3086 	mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3087 	read_unlock_irqrestore(&gpc->lock, flags);
3088 
3089 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3090 }
3091 
3092 static int kvm_guest_time_update(struct kvm_vcpu *v)
3093 {
3094 	unsigned long flags, tgt_tsc_khz;
3095 	unsigned seq;
3096 	struct kvm_vcpu_arch *vcpu = &v->arch;
3097 	struct kvm_arch *ka = &v->kvm->arch;
3098 	s64 kernel_ns;
3099 	u64 tsc_timestamp, host_tsc;
3100 	u8 pvclock_flags;
3101 	bool use_master_clock;
3102 
3103 	kernel_ns = 0;
3104 	host_tsc = 0;
3105 
3106 	/*
3107 	 * If the host uses TSC clock, then passthrough TSC as stable
3108 	 * to the guest.
3109 	 */
3110 	do {
3111 		seq = read_seqcount_begin(&ka->pvclock_sc);
3112 		use_master_clock = ka->use_master_clock;
3113 		if (use_master_clock) {
3114 			host_tsc = ka->master_cycle_now;
3115 			kernel_ns = ka->master_kernel_ns;
3116 		}
3117 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3118 
3119 	/* Keep irq disabled to prevent changes to the clock */
3120 	local_irq_save(flags);
3121 	tgt_tsc_khz = get_cpu_tsc_khz();
3122 	if (unlikely(tgt_tsc_khz == 0)) {
3123 		local_irq_restore(flags);
3124 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3125 		return 1;
3126 	}
3127 	if (!use_master_clock) {
3128 		host_tsc = rdtsc();
3129 		kernel_ns = get_kvmclock_base_ns();
3130 	}
3131 
3132 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3133 
3134 	/*
3135 	 * We may have to catch up the TSC to match elapsed wall clock
3136 	 * time for two reasons, even if kvmclock is used.
3137 	 *   1) CPU could have been running below the maximum TSC rate
3138 	 *   2) Broken TSC compensation resets the base at each VCPU
3139 	 *      entry to avoid unknown leaps of TSC even when running
3140 	 *      again on the same CPU.  This may cause apparent elapsed
3141 	 *      time to disappear, and the guest to stand still or run
3142 	 *	very slowly.
3143 	 */
3144 	if (vcpu->tsc_catchup) {
3145 		u64 tsc = compute_guest_tsc(v, kernel_ns);
3146 		if (tsc > tsc_timestamp) {
3147 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3148 			tsc_timestamp = tsc;
3149 		}
3150 	}
3151 
3152 	local_irq_restore(flags);
3153 
3154 	/* With all the info we got, fill in the values */
3155 
3156 	if (kvm_caps.has_tsc_control)
3157 		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3158 					    v->arch.l1_tsc_scaling_ratio);
3159 
3160 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3161 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3162 				   &vcpu->hv_clock.tsc_shift,
3163 				   &vcpu->hv_clock.tsc_to_system_mul);
3164 		vcpu->hw_tsc_khz = tgt_tsc_khz;
3165 	}
3166 
3167 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3168 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3169 	vcpu->last_guest_tsc = tsc_timestamp;
3170 
3171 	/* If the host uses TSC clocksource, then it is stable */
3172 	pvclock_flags = 0;
3173 	if (use_master_clock)
3174 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3175 
3176 	vcpu->hv_clock.flags = pvclock_flags;
3177 
3178 	if (vcpu->pv_time.active)
3179 		kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3180 	if (vcpu->xen.vcpu_info_cache.active)
3181 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3182 					offsetof(struct compat_vcpu_info, time));
3183 	if (vcpu->xen.vcpu_time_info_cache.active)
3184 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3185 	kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3186 	return 0;
3187 }
3188 
3189 /*
3190  * kvmclock updates which are isolated to a given vcpu, such as
3191  * vcpu->cpu migration, should not allow system_timestamp from
3192  * the rest of the vcpus to remain static. Otherwise ntp frequency
3193  * correction applies to one vcpu's system_timestamp but not
3194  * the others.
3195  *
3196  * So in those cases, request a kvmclock update for all vcpus.
3197  * We need to rate-limit these requests though, as they can
3198  * considerably slow guests that have a large number of vcpus.
3199  * The time for a remote vcpu to update its kvmclock is bound
3200  * by the delay we use to rate-limit the updates.
3201  */
3202 
3203 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3204 
3205 static void kvmclock_update_fn(struct work_struct *work)
3206 {
3207 	unsigned long i;
3208 	struct delayed_work *dwork = to_delayed_work(work);
3209 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3210 					   kvmclock_update_work);
3211 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3212 	struct kvm_vcpu *vcpu;
3213 
3214 	kvm_for_each_vcpu(i, vcpu, kvm) {
3215 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3216 		kvm_vcpu_kick(vcpu);
3217 	}
3218 }
3219 
3220 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3221 {
3222 	struct kvm *kvm = v->kvm;
3223 
3224 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3225 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3226 					KVMCLOCK_UPDATE_DELAY);
3227 }
3228 
3229 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3230 
3231 static void kvmclock_sync_fn(struct work_struct *work)
3232 {
3233 	struct delayed_work *dwork = to_delayed_work(work);
3234 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3235 					   kvmclock_sync_work);
3236 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3237 
3238 	if (!kvmclock_periodic_sync)
3239 		return;
3240 
3241 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3242 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3243 					KVMCLOCK_SYNC_PERIOD);
3244 }
3245 
3246 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3247 static bool is_mci_control_msr(u32 msr)
3248 {
3249 	return (msr & 3) == 0;
3250 }
3251 static bool is_mci_status_msr(u32 msr)
3252 {
3253 	return (msr & 3) == 1;
3254 }
3255 
3256 /*
3257  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3258  */
3259 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3260 {
3261 	/* McStatusWrEn enabled? */
3262 	if (guest_cpuid_is_amd_or_hygon(vcpu))
3263 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3264 
3265 	return false;
3266 }
3267 
3268 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3269 {
3270 	u64 mcg_cap = vcpu->arch.mcg_cap;
3271 	unsigned bank_num = mcg_cap & 0xff;
3272 	u32 msr = msr_info->index;
3273 	u64 data = msr_info->data;
3274 	u32 offset, last_msr;
3275 
3276 	switch (msr) {
3277 	case MSR_IA32_MCG_STATUS:
3278 		vcpu->arch.mcg_status = data;
3279 		break;
3280 	case MSR_IA32_MCG_CTL:
3281 		if (!(mcg_cap & MCG_CTL_P) &&
3282 		    (data || !msr_info->host_initiated))
3283 			return 1;
3284 		if (data != 0 && data != ~(u64)0)
3285 			return 1;
3286 		vcpu->arch.mcg_ctl = data;
3287 		break;
3288 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3289 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3290 		if (msr > last_msr)
3291 			return 1;
3292 
3293 		if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3294 			return 1;
3295 		/* An attempt to write a 1 to a reserved bit raises #GP */
3296 		if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3297 			return 1;
3298 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3299 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3300 		vcpu->arch.mci_ctl2_banks[offset] = data;
3301 		break;
3302 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3303 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3304 		if (msr > last_msr)
3305 			return 1;
3306 
3307 		/*
3308 		 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3309 		 * values are architecturally undefined.  But, some Linux
3310 		 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3311 		 * issue on AMD K8s, allow bit 10 to be clear when setting all
3312 		 * other bits in order to avoid an uncaught #GP in the guest.
3313 		 *
3314 		 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3315 		 * single-bit ECC data errors.
3316 		 */
3317 		if (is_mci_control_msr(msr) &&
3318 		    data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3319 			return 1;
3320 
3321 		/*
3322 		 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3323 		 * AMD-based CPUs allow non-zero values, but if and only if
3324 		 * HWCR[McStatusWrEn] is set.
3325 		 */
3326 		if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3327 		    data != 0 && !can_set_mci_status(vcpu))
3328 			return 1;
3329 
3330 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3331 					    last_msr + 1 - MSR_IA32_MC0_CTL);
3332 		vcpu->arch.mce_banks[offset] = data;
3333 		break;
3334 	default:
3335 		return 1;
3336 	}
3337 	return 0;
3338 }
3339 
3340 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3341 {
3342 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3343 
3344 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3345 }
3346 
3347 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3348 {
3349 	gpa_t gpa = data & ~0x3f;
3350 
3351 	/* Bits 4:5 are reserved, Should be zero */
3352 	if (data & 0x30)
3353 		return 1;
3354 
3355 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3356 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3357 		return 1;
3358 
3359 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3360 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3361 		return 1;
3362 
3363 	if (!lapic_in_kernel(vcpu))
3364 		return data ? 1 : 0;
3365 
3366 	vcpu->arch.apf.msr_en_val = data;
3367 
3368 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3369 		kvm_clear_async_pf_completion_queue(vcpu);
3370 		kvm_async_pf_hash_reset(vcpu);
3371 		return 0;
3372 	}
3373 
3374 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3375 					sizeof(u64)))
3376 		return 1;
3377 
3378 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3379 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3380 
3381 	kvm_async_pf_wakeup_all(vcpu);
3382 
3383 	return 0;
3384 }
3385 
3386 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3387 {
3388 	/* Bits 8-63 are reserved */
3389 	if (data >> 8)
3390 		return 1;
3391 
3392 	if (!lapic_in_kernel(vcpu))
3393 		return 1;
3394 
3395 	vcpu->arch.apf.msr_int_val = data;
3396 
3397 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3398 
3399 	return 0;
3400 }
3401 
3402 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3403 {
3404 	kvm_gpc_deactivate(&vcpu->arch.pv_time);
3405 	vcpu->arch.time = 0;
3406 }
3407 
3408 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3409 {
3410 	++vcpu->stat.tlb_flush;
3411 	static_call(kvm_x86_flush_tlb_all)(vcpu);
3412 
3413 	/* Flushing all ASIDs flushes the current ASID... */
3414 	kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3415 }
3416 
3417 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3418 {
3419 	++vcpu->stat.tlb_flush;
3420 
3421 	if (!tdp_enabled) {
3422 		/*
3423 		 * A TLB flush on behalf of the guest is equivalent to
3424 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3425 		 * a forced sync of the shadow page tables.  Ensure all the
3426 		 * roots are synced and the guest TLB in hardware is clean.
3427 		 */
3428 		kvm_mmu_sync_roots(vcpu);
3429 		kvm_mmu_sync_prev_roots(vcpu);
3430 	}
3431 
3432 	static_call(kvm_x86_flush_tlb_guest)(vcpu);
3433 
3434 	/*
3435 	 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3436 	 * grained flushing.
3437 	 */
3438 	kvm_hv_vcpu_purge_flush_tlb(vcpu);
3439 }
3440 
3441 
3442 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3443 {
3444 	++vcpu->stat.tlb_flush;
3445 	static_call(kvm_x86_flush_tlb_current)(vcpu);
3446 }
3447 
3448 /*
3449  * Service "local" TLB flush requests, which are specific to the current MMU
3450  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3451  * TLB flushes that are targeted at an MMU context also need to be serviced
3452  * prior before nested VM-Enter/VM-Exit.
3453  */
3454 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3455 {
3456 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3457 		kvm_vcpu_flush_tlb_current(vcpu);
3458 
3459 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3460 		kvm_vcpu_flush_tlb_guest(vcpu);
3461 }
3462 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3463 
3464 static void record_steal_time(struct kvm_vcpu *vcpu)
3465 {
3466 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3467 	struct kvm_steal_time __user *st;
3468 	struct kvm_memslots *slots;
3469 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3470 	u64 steal;
3471 	u32 version;
3472 
3473 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3474 		kvm_xen_runstate_set_running(vcpu);
3475 		return;
3476 	}
3477 
3478 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3479 		return;
3480 
3481 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3482 		return;
3483 
3484 	slots = kvm_memslots(vcpu->kvm);
3485 
3486 	if (unlikely(slots->generation != ghc->generation ||
3487 		     gpa != ghc->gpa ||
3488 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3489 		/* We rely on the fact that it fits in a single page. */
3490 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3491 
3492 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3493 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3494 			return;
3495 	}
3496 
3497 	st = (struct kvm_steal_time __user *)ghc->hva;
3498 	/*
3499 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3500 	 * expensive IPIs.
3501 	 */
3502 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3503 		u8 st_preempted = 0;
3504 		int err = -EFAULT;
3505 
3506 		if (!user_access_begin(st, sizeof(*st)))
3507 			return;
3508 
3509 		asm volatile("1: xchgb %0, %2\n"
3510 			     "xor %1, %1\n"
3511 			     "2:\n"
3512 			     _ASM_EXTABLE_UA(1b, 2b)
3513 			     : "+q" (st_preempted),
3514 			       "+&r" (err),
3515 			       "+m" (st->preempted));
3516 		if (err)
3517 			goto out;
3518 
3519 		user_access_end();
3520 
3521 		vcpu->arch.st.preempted = 0;
3522 
3523 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3524 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3525 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3526 			kvm_vcpu_flush_tlb_guest(vcpu);
3527 
3528 		if (!user_access_begin(st, sizeof(*st)))
3529 			goto dirty;
3530 	} else {
3531 		if (!user_access_begin(st, sizeof(*st)))
3532 			return;
3533 
3534 		unsafe_put_user(0, &st->preempted, out);
3535 		vcpu->arch.st.preempted = 0;
3536 	}
3537 
3538 	unsafe_get_user(version, &st->version, out);
3539 	if (version & 1)
3540 		version += 1;  /* first time write, random junk */
3541 
3542 	version += 1;
3543 	unsafe_put_user(version, &st->version, out);
3544 
3545 	smp_wmb();
3546 
3547 	unsafe_get_user(steal, &st->steal, out);
3548 	steal += current->sched_info.run_delay -
3549 		vcpu->arch.st.last_steal;
3550 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3551 	unsafe_put_user(steal, &st->steal, out);
3552 
3553 	version += 1;
3554 	unsafe_put_user(version, &st->version, out);
3555 
3556  out:
3557 	user_access_end();
3558  dirty:
3559 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3560 }
3561 
3562 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3563 {
3564 	bool pr = false;
3565 	u32 msr = msr_info->index;
3566 	u64 data = msr_info->data;
3567 
3568 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3569 		return kvm_xen_write_hypercall_page(vcpu, data);
3570 
3571 	switch (msr) {
3572 	case MSR_AMD64_NB_CFG:
3573 	case MSR_IA32_UCODE_WRITE:
3574 	case MSR_VM_HSAVE_PA:
3575 	case MSR_AMD64_PATCH_LOADER:
3576 	case MSR_AMD64_BU_CFG2:
3577 	case MSR_AMD64_DC_CFG:
3578 	case MSR_F15H_EX_CFG:
3579 		break;
3580 
3581 	case MSR_IA32_UCODE_REV:
3582 		if (msr_info->host_initiated)
3583 			vcpu->arch.microcode_version = data;
3584 		break;
3585 	case MSR_IA32_ARCH_CAPABILITIES:
3586 		if (!msr_info->host_initiated)
3587 			return 1;
3588 		vcpu->arch.arch_capabilities = data;
3589 		break;
3590 	case MSR_IA32_PERF_CAPABILITIES:
3591 		if (!msr_info->host_initiated)
3592 			return 1;
3593 		if (data & ~kvm_caps.supported_perf_cap)
3594 			return 1;
3595 
3596 		vcpu->arch.perf_capabilities = data;
3597 		kvm_pmu_refresh(vcpu);
3598 		return 0;
3599 	case MSR_EFER:
3600 		return set_efer(vcpu, msr_info);
3601 	case MSR_K7_HWCR:
3602 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3603 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3604 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3605 
3606 		/* Handle McStatusWrEn */
3607 		if (data == BIT_ULL(18)) {
3608 			vcpu->arch.msr_hwcr = data;
3609 		} else if (data != 0) {
3610 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3611 				    data);
3612 			return 1;
3613 		}
3614 		break;
3615 	case MSR_FAM10H_MMIO_CONF_BASE:
3616 		if (data != 0) {
3617 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3618 				    "0x%llx\n", data);
3619 			return 1;
3620 		}
3621 		break;
3622 	case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
3623 	case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff:
3624 		return kvm_mtrr_set_msr(vcpu, msr, data);
3625 	case MSR_IA32_APICBASE:
3626 		return kvm_set_apic_base(vcpu, msr_info);
3627 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3628 		return kvm_x2apic_msr_write(vcpu, msr, data);
3629 	case MSR_IA32_TSC_DEADLINE:
3630 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3631 		break;
3632 	case MSR_IA32_TSC_ADJUST:
3633 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3634 			if (!msr_info->host_initiated) {
3635 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3636 				adjust_tsc_offset_guest(vcpu, adj);
3637 				/* Before back to guest, tsc_timestamp must be adjusted
3638 				 * as well, otherwise guest's percpu pvclock time could jump.
3639 				 */
3640 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3641 			}
3642 			vcpu->arch.ia32_tsc_adjust_msr = data;
3643 		}
3644 		break;
3645 	case MSR_IA32_MISC_ENABLE: {
3646 		u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3647 
3648 		if (!msr_info->host_initiated) {
3649 			/* RO bits */
3650 			if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3651 				return 1;
3652 
3653 			/* R bits, i.e. writes are ignored, but don't fault. */
3654 			data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3655 			data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3656 		}
3657 
3658 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3659 		    ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3660 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3661 				return 1;
3662 			vcpu->arch.ia32_misc_enable_msr = data;
3663 			kvm_update_cpuid_runtime(vcpu);
3664 		} else {
3665 			vcpu->arch.ia32_misc_enable_msr = data;
3666 		}
3667 		break;
3668 	}
3669 	case MSR_IA32_SMBASE:
3670 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3671 			return 1;
3672 		vcpu->arch.smbase = data;
3673 		break;
3674 	case MSR_IA32_POWER_CTL:
3675 		vcpu->arch.msr_ia32_power_ctl = data;
3676 		break;
3677 	case MSR_IA32_TSC:
3678 		if (msr_info->host_initiated) {
3679 			kvm_synchronize_tsc(vcpu, data);
3680 		} else {
3681 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3682 			adjust_tsc_offset_guest(vcpu, adj);
3683 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3684 		}
3685 		break;
3686 	case MSR_IA32_XSS:
3687 		if (!msr_info->host_initiated &&
3688 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3689 			return 1;
3690 		/*
3691 		 * KVM supports exposing PT to the guest, but does not support
3692 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3693 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3694 		 */
3695 		if (data & ~kvm_caps.supported_xss)
3696 			return 1;
3697 		vcpu->arch.ia32_xss = data;
3698 		kvm_update_cpuid_runtime(vcpu);
3699 		break;
3700 	case MSR_SMI_COUNT:
3701 		if (!msr_info->host_initiated)
3702 			return 1;
3703 		vcpu->arch.smi_count = data;
3704 		break;
3705 	case MSR_KVM_WALL_CLOCK_NEW:
3706 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3707 			return 1;
3708 
3709 		vcpu->kvm->arch.wall_clock = data;
3710 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3711 		break;
3712 	case MSR_KVM_WALL_CLOCK:
3713 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3714 			return 1;
3715 
3716 		vcpu->kvm->arch.wall_clock = data;
3717 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3718 		break;
3719 	case MSR_KVM_SYSTEM_TIME_NEW:
3720 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3721 			return 1;
3722 
3723 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3724 		break;
3725 	case MSR_KVM_SYSTEM_TIME:
3726 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3727 			return 1;
3728 
3729 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3730 		break;
3731 	case MSR_KVM_ASYNC_PF_EN:
3732 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3733 			return 1;
3734 
3735 		if (kvm_pv_enable_async_pf(vcpu, data))
3736 			return 1;
3737 		break;
3738 	case MSR_KVM_ASYNC_PF_INT:
3739 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3740 			return 1;
3741 
3742 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3743 			return 1;
3744 		break;
3745 	case MSR_KVM_ASYNC_PF_ACK:
3746 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3747 			return 1;
3748 		if (data & 0x1) {
3749 			vcpu->arch.apf.pageready_pending = false;
3750 			kvm_check_async_pf_completion(vcpu);
3751 		}
3752 		break;
3753 	case MSR_KVM_STEAL_TIME:
3754 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3755 			return 1;
3756 
3757 		if (unlikely(!sched_info_on()))
3758 			return 1;
3759 
3760 		if (data & KVM_STEAL_RESERVED_MASK)
3761 			return 1;
3762 
3763 		vcpu->arch.st.msr_val = data;
3764 
3765 		if (!(data & KVM_MSR_ENABLED))
3766 			break;
3767 
3768 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3769 
3770 		break;
3771 	case MSR_KVM_PV_EOI_EN:
3772 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3773 			return 1;
3774 
3775 		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3776 			return 1;
3777 		break;
3778 
3779 	case MSR_KVM_POLL_CONTROL:
3780 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3781 			return 1;
3782 
3783 		/* only enable bit supported */
3784 		if (data & (-1ULL << 1))
3785 			return 1;
3786 
3787 		vcpu->arch.msr_kvm_poll_control = data;
3788 		break;
3789 
3790 	case MSR_IA32_MCG_CTL:
3791 	case MSR_IA32_MCG_STATUS:
3792 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3793 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3794 		return set_msr_mce(vcpu, msr_info);
3795 
3796 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3797 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3798 		pr = true;
3799 		fallthrough;
3800 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3801 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3802 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3803 			return kvm_pmu_set_msr(vcpu, msr_info);
3804 
3805 		if (pr || data != 0)
3806 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3807 				    "0x%x data 0x%llx\n", msr, data);
3808 		break;
3809 	case MSR_K7_CLK_CTL:
3810 		/*
3811 		 * Ignore all writes to this no longer documented MSR.
3812 		 * Writes are only relevant for old K7 processors,
3813 		 * all pre-dating SVM, but a recommended workaround from
3814 		 * AMD for these chips. It is possible to specify the
3815 		 * affected processor models on the command line, hence
3816 		 * the need to ignore the workaround.
3817 		 */
3818 		break;
3819 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3820 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3821 	case HV_X64_MSR_SYNDBG_OPTIONS:
3822 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3823 	case HV_X64_MSR_CRASH_CTL:
3824 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3825 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3826 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3827 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3828 		return kvm_hv_set_msr_common(vcpu, msr, data,
3829 					     msr_info->host_initiated);
3830 	case MSR_IA32_BBL_CR_CTL3:
3831 		/* Drop writes to this legacy MSR -- see rdmsr
3832 		 * counterpart for further detail.
3833 		 */
3834 		if (report_ignored_msrs)
3835 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3836 				msr, data);
3837 		break;
3838 	case MSR_AMD64_OSVW_ID_LENGTH:
3839 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3840 			return 1;
3841 		vcpu->arch.osvw.length = data;
3842 		break;
3843 	case MSR_AMD64_OSVW_STATUS:
3844 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3845 			return 1;
3846 		vcpu->arch.osvw.status = data;
3847 		break;
3848 	case MSR_PLATFORM_INFO:
3849 		if (!msr_info->host_initiated ||
3850 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3851 		     cpuid_fault_enabled(vcpu)))
3852 			return 1;
3853 		vcpu->arch.msr_platform_info = data;
3854 		break;
3855 	case MSR_MISC_FEATURES_ENABLES:
3856 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3857 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3858 		     !supports_cpuid_fault(vcpu)))
3859 			return 1;
3860 		vcpu->arch.msr_misc_features_enables = data;
3861 		break;
3862 #ifdef CONFIG_X86_64
3863 	case MSR_IA32_XFD:
3864 		if (!msr_info->host_initiated &&
3865 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3866 			return 1;
3867 
3868 		if (data & ~kvm_guest_supported_xfd(vcpu))
3869 			return 1;
3870 
3871 		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3872 		break;
3873 	case MSR_IA32_XFD_ERR:
3874 		if (!msr_info->host_initiated &&
3875 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3876 			return 1;
3877 
3878 		if (data & ~kvm_guest_supported_xfd(vcpu))
3879 			return 1;
3880 
3881 		vcpu->arch.guest_fpu.xfd_err = data;
3882 		break;
3883 #endif
3884 	case MSR_IA32_PEBS_ENABLE:
3885 	case MSR_IA32_DS_AREA:
3886 	case MSR_PEBS_DATA_CFG:
3887 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3888 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3889 			return kvm_pmu_set_msr(vcpu, msr_info);
3890 		/*
3891 		 * Userspace is allowed to write '0' to MSRs that KVM reports
3892 		 * as to-be-saved, even if an MSRs isn't fully supported.
3893 		 */
3894 		return !msr_info->host_initiated || data;
3895 	default:
3896 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3897 			return kvm_pmu_set_msr(vcpu, msr_info);
3898 		return KVM_MSR_RET_INVALID;
3899 	}
3900 	return 0;
3901 }
3902 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3903 
3904 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3905 {
3906 	u64 data;
3907 	u64 mcg_cap = vcpu->arch.mcg_cap;
3908 	unsigned bank_num = mcg_cap & 0xff;
3909 	u32 offset, last_msr;
3910 
3911 	switch (msr) {
3912 	case MSR_IA32_P5_MC_ADDR:
3913 	case MSR_IA32_P5_MC_TYPE:
3914 		data = 0;
3915 		break;
3916 	case MSR_IA32_MCG_CAP:
3917 		data = vcpu->arch.mcg_cap;
3918 		break;
3919 	case MSR_IA32_MCG_CTL:
3920 		if (!(mcg_cap & MCG_CTL_P) && !host)
3921 			return 1;
3922 		data = vcpu->arch.mcg_ctl;
3923 		break;
3924 	case MSR_IA32_MCG_STATUS:
3925 		data = vcpu->arch.mcg_status;
3926 		break;
3927 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3928 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3929 		if (msr > last_msr)
3930 			return 1;
3931 
3932 		if (!(mcg_cap & MCG_CMCI_P) && !host)
3933 			return 1;
3934 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3935 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3936 		data = vcpu->arch.mci_ctl2_banks[offset];
3937 		break;
3938 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3939 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3940 		if (msr > last_msr)
3941 			return 1;
3942 
3943 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3944 					    last_msr + 1 - MSR_IA32_MC0_CTL);
3945 		data = vcpu->arch.mce_banks[offset];
3946 		break;
3947 	default:
3948 		return 1;
3949 	}
3950 	*pdata = data;
3951 	return 0;
3952 }
3953 
3954 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3955 {
3956 	switch (msr_info->index) {
3957 	case MSR_IA32_PLATFORM_ID:
3958 	case MSR_IA32_EBL_CR_POWERON:
3959 	case MSR_IA32_LASTBRANCHFROMIP:
3960 	case MSR_IA32_LASTBRANCHTOIP:
3961 	case MSR_IA32_LASTINTFROMIP:
3962 	case MSR_IA32_LASTINTTOIP:
3963 	case MSR_AMD64_SYSCFG:
3964 	case MSR_K8_TSEG_ADDR:
3965 	case MSR_K8_TSEG_MASK:
3966 	case MSR_VM_HSAVE_PA:
3967 	case MSR_K8_INT_PENDING_MSG:
3968 	case MSR_AMD64_NB_CFG:
3969 	case MSR_FAM10H_MMIO_CONF_BASE:
3970 	case MSR_AMD64_BU_CFG2:
3971 	case MSR_IA32_PERF_CTL:
3972 	case MSR_AMD64_DC_CFG:
3973 	case MSR_F15H_EX_CFG:
3974 	/*
3975 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3976 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3977 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3978 	 * so for existing CPU-specific MSRs.
3979 	 */
3980 	case MSR_RAPL_POWER_UNIT:
3981 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3982 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3983 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3984 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3985 		msr_info->data = 0;
3986 		break;
3987 	case MSR_IA32_PEBS_ENABLE:
3988 	case MSR_IA32_DS_AREA:
3989 	case MSR_PEBS_DATA_CFG:
3990 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3991 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3992 			return kvm_pmu_get_msr(vcpu, msr_info);
3993 		/*
3994 		 * Userspace is allowed to read MSRs that KVM reports as
3995 		 * to-be-saved, even if an MSR isn't fully supported.
3996 		 */
3997 		if (!msr_info->host_initiated)
3998 			return 1;
3999 		msr_info->data = 0;
4000 		break;
4001 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4002 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4003 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4004 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4005 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4006 			return kvm_pmu_get_msr(vcpu, msr_info);
4007 		msr_info->data = 0;
4008 		break;
4009 	case MSR_IA32_UCODE_REV:
4010 		msr_info->data = vcpu->arch.microcode_version;
4011 		break;
4012 	case MSR_IA32_ARCH_CAPABILITIES:
4013 		if (!msr_info->host_initiated &&
4014 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4015 			return 1;
4016 		msr_info->data = vcpu->arch.arch_capabilities;
4017 		break;
4018 	case MSR_IA32_PERF_CAPABILITIES:
4019 		if (!msr_info->host_initiated &&
4020 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4021 			return 1;
4022 		msr_info->data = vcpu->arch.perf_capabilities;
4023 		break;
4024 	case MSR_IA32_POWER_CTL:
4025 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4026 		break;
4027 	case MSR_IA32_TSC: {
4028 		/*
4029 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4030 		 * even when not intercepted. AMD manual doesn't explicitly
4031 		 * state this but appears to behave the same.
4032 		 *
4033 		 * On userspace reads and writes, however, we unconditionally
4034 		 * return L1's TSC value to ensure backwards-compatible
4035 		 * behavior for migration.
4036 		 */
4037 		u64 offset, ratio;
4038 
4039 		if (msr_info->host_initiated) {
4040 			offset = vcpu->arch.l1_tsc_offset;
4041 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
4042 		} else {
4043 			offset = vcpu->arch.tsc_offset;
4044 			ratio = vcpu->arch.tsc_scaling_ratio;
4045 		}
4046 
4047 		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4048 		break;
4049 	}
4050 	case MSR_MTRRcap:
4051 	case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
4052 	case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff:
4053 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4054 	case 0xcd: /* fsb frequency */
4055 		msr_info->data = 3;
4056 		break;
4057 		/*
4058 		 * MSR_EBC_FREQUENCY_ID
4059 		 * Conservative value valid for even the basic CPU models.
4060 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4061 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4062 		 * and 266MHz for model 3, or 4. Set Core Clock
4063 		 * Frequency to System Bus Frequency Ratio to 1 (bits
4064 		 * 31:24) even though these are only valid for CPU
4065 		 * models > 2, however guests may end up dividing or
4066 		 * multiplying by zero otherwise.
4067 		 */
4068 	case MSR_EBC_FREQUENCY_ID:
4069 		msr_info->data = 1 << 24;
4070 		break;
4071 	case MSR_IA32_APICBASE:
4072 		msr_info->data = kvm_get_apic_base(vcpu);
4073 		break;
4074 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4075 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4076 	case MSR_IA32_TSC_DEADLINE:
4077 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4078 		break;
4079 	case MSR_IA32_TSC_ADJUST:
4080 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4081 		break;
4082 	case MSR_IA32_MISC_ENABLE:
4083 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4084 		break;
4085 	case MSR_IA32_SMBASE:
4086 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4087 			return 1;
4088 		msr_info->data = vcpu->arch.smbase;
4089 		break;
4090 	case MSR_SMI_COUNT:
4091 		msr_info->data = vcpu->arch.smi_count;
4092 		break;
4093 	case MSR_IA32_PERF_STATUS:
4094 		/* TSC increment by tick */
4095 		msr_info->data = 1000ULL;
4096 		/* CPU multiplier */
4097 		msr_info->data |= (((uint64_t)4ULL) << 40);
4098 		break;
4099 	case MSR_EFER:
4100 		msr_info->data = vcpu->arch.efer;
4101 		break;
4102 	case MSR_KVM_WALL_CLOCK:
4103 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4104 			return 1;
4105 
4106 		msr_info->data = vcpu->kvm->arch.wall_clock;
4107 		break;
4108 	case MSR_KVM_WALL_CLOCK_NEW:
4109 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4110 			return 1;
4111 
4112 		msr_info->data = vcpu->kvm->arch.wall_clock;
4113 		break;
4114 	case MSR_KVM_SYSTEM_TIME:
4115 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4116 			return 1;
4117 
4118 		msr_info->data = vcpu->arch.time;
4119 		break;
4120 	case MSR_KVM_SYSTEM_TIME_NEW:
4121 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4122 			return 1;
4123 
4124 		msr_info->data = vcpu->arch.time;
4125 		break;
4126 	case MSR_KVM_ASYNC_PF_EN:
4127 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4128 			return 1;
4129 
4130 		msr_info->data = vcpu->arch.apf.msr_en_val;
4131 		break;
4132 	case MSR_KVM_ASYNC_PF_INT:
4133 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4134 			return 1;
4135 
4136 		msr_info->data = vcpu->arch.apf.msr_int_val;
4137 		break;
4138 	case MSR_KVM_ASYNC_PF_ACK:
4139 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4140 			return 1;
4141 
4142 		msr_info->data = 0;
4143 		break;
4144 	case MSR_KVM_STEAL_TIME:
4145 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4146 			return 1;
4147 
4148 		msr_info->data = vcpu->arch.st.msr_val;
4149 		break;
4150 	case MSR_KVM_PV_EOI_EN:
4151 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4152 			return 1;
4153 
4154 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
4155 		break;
4156 	case MSR_KVM_POLL_CONTROL:
4157 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4158 			return 1;
4159 
4160 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
4161 		break;
4162 	case MSR_IA32_P5_MC_ADDR:
4163 	case MSR_IA32_P5_MC_TYPE:
4164 	case MSR_IA32_MCG_CAP:
4165 	case MSR_IA32_MCG_CTL:
4166 	case MSR_IA32_MCG_STATUS:
4167 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4168 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4169 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4170 				   msr_info->host_initiated);
4171 	case MSR_IA32_XSS:
4172 		if (!msr_info->host_initiated &&
4173 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4174 			return 1;
4175 		msr_info->data = vcpu->arch.ia32_xss;
4176 		break;
4177 	case MSR_K7_CLK_CTL:
4178 		/*
4179 		 * Provide expected ramp-up count for K7. All other
4180 		 * are set to zero, indicating minimum divisors for
4181 		 * every field.
4182 		 *
4183 		 * This prevents guest kernels on AMD host with CPU
4184 		 * type 6, model 8 and higher from exploding due to
4185 		 * the rdmsr failing.
4186 		 */
4187 		msr_info->data = 0x20000000;
4188 		break;
4189 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4190 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4191 	case HV_X64_MSR_SYNDBG_OPTIONS:
4192 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4193 	case HV_X64_MSR_CRASH_CTL:
4194 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4195 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4196 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4197 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4198 		return kvm_hv_get_msr_common(vcpu,
4199 					     msr_info->index, &msr_info->data,
4200 					     msr_info->host_initiated);
4201 	case MSR_IA32_BBL_CR_CTL3:
4202 		/* This legacy MSR exists but isn't fully documented in current
4203 		 * silicon.  It is however accessed by winxp in very narrow
4204 		 * scenarios where it sets bit #19, itself documented as
4205 		 * a "reserved" bit.  Best effort attempt to source coherent
4206 		 * read data here should the balance of the register be
4207 		 * interpreted by the guest:
4208 		 *
4209 		 * L2 cache control register 3: 64GB range, 256KB size,
4210 		 * enabled, latency 0x1, configured
4211 		 */
4212 		msr_info->data = 0xbe702111;
4213 		break;
4214 	case MSR_AMD64_OSVW_ID_LENGTH:
4215 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4216 			return 1;
4217 		msr_info->data = vcpu->arch.osvw.length;
4218 		break;
4219 	case MSR_AMD64_OSVW_STATUS:
4220 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4221 			return 1;
4222 		msr_info->data = vcpu->arch.osvw.status;
4223 		break;
4224 	case MSR_PLATFORM_INFO:
4225 		if (!msr_info->host_initiated &&
4226 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4227 			return 1;
4228 		msr_info->data = vcpu->arch.msr_platform_info;
4229 		break;
4230 	case MSR_MISC_FEATURES_ENABLES:
4231 		msr_info->data = vcpu->arch.msr_misc_features_enables;
4232 		break;
4233 	case MSR_K7_HWCR:
4234 		msr_info->data = vcpu->arch.msr_hwcr;
4235 		break;
4236 #ifdef CONFIG_X86_64
4237 	case MSR_IA32_XFD:
4238 		if (!msr_info->host_initiated &&
4239 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4240 			return 1;
4241 
4242 		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4243 		break;
4244 	case MSR_IA32_XFD_ERR:
4245 		if (!msr_info->host_initiated &&
4246 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4247 			return 1;
4248 
4249 		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4250 		break;
4251 #endif
4252 	default:
4253 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4254 			return kvm_pmu_get_msr(vcpu, msr_info);
4255 		return KVM_MSR_RET_INVALID;
4256 	}
4257 	return 0;
4258 }
4259 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4260 
4261 /*
4262  * Read or write a bunch of msrs. All parameters are kernel addresses.
4263  *
4264  * @return number of msrs set successfully.
4265  */
4266 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4267 		    struct kvm_msr_entry *entries,
4268 		    int (*do_msr)(struct kvm_vcpu *vcpu,
4269 				  unsigned index, u64 *data))
4270 {
4271 	int i;
4272 
4273 	for (i = 0; i < msrs->nmsrs; ++i)
4274 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4275 			break;
4276 
4277 	return i;
4278 }
4279 
4280 /*
4281  * Read or write a bunch of msrs. Parameters are user addresses.
4282  *
4283  * @return number of msrs set successfully.
4284  */
4285 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4286 		  int (*do_msr)(struct kvm_vcpu *vcpu,
4287 				unsigned index, u64 *data),
4288 		  int writeback)
4289 {
4290 	struct kvm_msrs msrs;
4291 	struct kvm_msr_entry *entries;
4292 	int r, n;
4293 	unsigned size;
4294 
4295 	r = -EFAULT;
4296 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4297 		goto out;
4298 
4299 	r = -E2BIG;
4300 	if (msrs.nmsrs >= MAX_IO_MSRS)
4301 		goto out;
4302 
4303 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4304 	entries = memdup_user(user_msrs->entries, size);
4305 	if (IS_ERR(entries)) {
4306 		r = PTR_ERR(entries);
4307 		goto out;
4308 	}
4309 
4310 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4311 	if (r < 0)
4312 		goto out_free;
4313 
4314 	r = -EFAULT;
4315 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4316 		goto out_free;
4317 
4318 	r = n;
4319 
4320 out_free:
4321 	kfree(entries);
4322 out:
4323 	return r;
4324 }
4325 
4326 static inline bool kvm_can_mwait_in_guest(void)
4327 {
4328 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4329 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4330 		boot_cpu_has(X86_FEATURE_ARAT);
4331 }
4332 
4333 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4334 					    struct kvm_cpuid2 __user *cpuid_arg)
4335 {
4336 	struct kvm_cpuid2 cpuid;
4337 	int r;
4338 
4339 	r = -EFAULT;
4340 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4341 		return r;
4342 
4343 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4344 	if (r)
4345 		return r;
4346 
4347 	r = -EFAULT;
4348 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4349 		return r;
4350 
4351 	return 0;
4352 }
4353 
4354 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4355 {
4356 	int r = 0;
4357 
4358 	switch (ext) {
4359 	case KVM_CAP_IRQCHIP:
4360 	case KVM_CAP_HLT:
4361 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4362 	case KVM_CAP_SET_TSS_ADDR:
4363 	case KVM_CAP_EXT_CPUID:
4364 	case KVM_CAP_EXT_EMUL_CPUID:
4365 	case KVM_CAP_CLOCKSOURCE:
4366 	case KVM_CAP_PIT:
4367 	case KVM_CAP_NOP_IO_DELAY:
4368 	case KVM_CAP_MP_STATE:
4369 	case KVM_CAP_SYNC_MMU:
4370 	case KVM_CAP_USER_NMI:
4371 	case KVM_CAP_REINJECT_CONTROL:
4372 	case KVM_CAP_IRQ_INJECT_STATUS:
4373 	case KVM_CAP_IOEVENTFD:
4374 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4375 	case KVM_CAP_PIT2:
4376 	case KVM_CAP_PIT_STATE2:
4377 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4378 	case KVM_CAP_VCPU_EVENTS:
4379 	case KVM_CAP_HYPERV:
4380 	case KVM_CAP_HYPERV_VAPIC:
4381 	case KVM_CAP_HYPERV_SPIN:
4382 	case KVM_CAP_HYPERV_SYNIC:
4383 	case KVM_CAP_HYPERV_SYNIC2:
4384 	case KVM_CAP_HYPERV_VP_INDEX:
4385 	case KVM_CAP_HYPERV_EVENTFD:
4386 	case KVM_CAP_HYPERV_TLBFLUSH:
4387 	case KVM_CAP_HYPERV_SEND_IPI:
4388 	case KVM_CAP_HYPERV_CPUID:
4389 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4390 	case KVM_CAP_SYS_HYPERV_CPUID:
4391 	case KVM_CAP_PCI_SEGMENT:
4392 	case KVM_CAP_DEBUGREGS:
4393 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4394 	case KVM_CAP_XSAVE:
4395 	case KVM_CAP_ASYNC_PF:
4396 	case KVM_CAP_ASYNC_PF_INT:
4397 	case KVM_CAP_GET_TSC_KHZ:
4398 	case KVM_CAP_KVMCLOCK_CTRL:
4399 	case KVM_CAP_READONLY_MEM:
4400 	case KVM_CAP_HYPERV_TIME:
4401 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4402 	case KVM_CAP_TSC_DEADLINE_TIMER:
4403 	case KVM_CAP_DISABLE_QUIRKS:
4404 	case KVM_CAP_SET_BOOT_CPU_ID:
4405  	case KVM_CAP_SPLIT_IRQCHIP:
4406 	case KVM_CAP_IMMEDIATE_EXIT:
4407 	case KVM_CAP_PMU_EVENT_FILTER:
4408 	case KVM_CAP_GET_MSR_FEATURES:
4409 	case KVM_CAP_MSR_PLATFORM_INFO:
4410 	case KVM_CAP_EXCEPTION_PAYLOAD:
4411 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4412 	case KVM_CAP_SET_GUEST_DEBUG:
4413 	case KVM_CAP_LAST_CPU:
4414 	case KVM_CAP_X86_USER_SPACE_MSR:
4415 	case KVM_CAP_X86_MSR_FILTER:
4416 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4417 #ifdef CONFIG_X86_SGX_KVM
4418 	case KVM_CAP_SGX_ATTRIBUTE:
4419 #endif
4420 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4421 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4422 	case KVM_CAP_SREGS2:
4423 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4424 	case KVM_CAP_VCPU_ATTRIBUTES:
4425 	case KVM_CAP_SYS_ATTRIBUTES:
4426 	case KVM_CAP_VAPIC:
4427 	case KVM_CAP_ENABLE_CAP:
4428 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4429 		r = 1;
4430 		break;
4431 	case KVM_CAP_EXIT_HYPERCALL:
4432 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4433 		break;
4434 	case KVM_CAP_SET_GUEST_DEBUG2:
4435 		return KVM_GUESTDBG_VALID_MASK;
4436 #ifdef CONFIG_KVM_XEN
4437 	case KVM_CAP_XEN_HVM:
4438 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4439 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4440 		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4441 		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4442 		    KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4443 		if (sched_info_on())
4444 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4445 			     KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4446 		break;
4447 #endif
4448 	case KVM_CAP_SYNC_REGS:
4449 		r = KVM_SYNC_X86_VALID_FIELDS;
4450 		break;
4451 	case KVM_CAP_ADJUST_CLOCK:
4452 		r = KVM_CLOCK_VALID_FLAGS;
4453 		break;
4454 	case KVM_CAP_X86_DISABLE_EXITS:
4455 		r = KVM_X86_DISABLE_EXITS_PAUSE;
4456 
4457 		if (!mitigate_smt_rsb) {
4458 			r |= KVM_X86_DISABLE_EXITS_HLT |
4459 			     KVM_X86_DISABLE_EXITS_CSTATE;
4460 
4461 			if (kvm_can_mwait_in_guest())
4462 				r |= KVM_X86_DISABLE_EXITS_MWAIT;
4463 		}
4464 		break;
4465 	case KVM_CAP_X86_SMM:
4466 		if (!IS_ENABLED(CONFIG_KVM_SMM))
4467 			break;
4468 
4469 		/* SMBASE is usually relocated above 1M on modern chipsets,
4470 		 * and SMM handlers might indeed rely on 4G segment limits,
4471 		 * so do not report SMM to be available if real mode is
4472 		 * emulated via vm86 mode.  Still, do not go to great lengths
4473 		 * to avoid userspace's usage of the feature, because it is a
4474 		 * fringe case that is not enabled except via specific settings
4475 		 * of the module parameters.
4476 		 */
4477 		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4478 		break;
4479 	case KVM_CAP_NR_VCPUS:
4480 		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4481 		break;
4482 	case KVM_CAP_MAX_VCPUS:
4483 		r = KVM_MAX_VCPUS;
4484 		break;
4485 	case KVM_CAP_MAX_VCPU_ID:
4486 		r = KVM_MAX_VCPU_IDS;
4487 		break;
4488 	case KVM_CAP_PV_MMU:	/* obsolete */
4489 		r = 0;
4490 		break;
4491 	case KVM_CAP_MCE:
4492 		r = KVM_MAX_MCE_BANKS;
4493 		break;
4494 	case KVM_CAP_XCRS:
4495 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4496 		break;
4497 	case KVM_CAP_TSC_CONTROL:
4498 	case KVM_CAP_VM_TSC_CONTROL:
4499 		r = kvm_caps.has_tsc_control;
4500 		break;
4501 	case KVM_CAP_X2APIC_API:
4502 		r = KVM_X2APIC_API_VALID_FLAGS;
4503 		break;
4504 	case KVM_CAP_NESTED_STATE:
4505 		r = kvm_x86_ops.nested_ops->get_state ?
4506 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4507 		break;
4508 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4509 		r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4510 		break;
4511 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4512 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4513 		break;
4514 	case KVM_CAP_SMALLER_MAXPHYADDR:
4515 		r = (int) allow_smaller_maxphyaddr;
4516 		break;
4517 	case KVM_CAP_STEAL_TIME:
4518 		r = sched_info_on();
4519 		break;
4520 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4521 		if (kvm_caps.has_bus_lock_exit)
4522 			r = KVM_BUS_LOCK_DETECTION_OFF |
4523 			    KVM_BUS_LOCK_DETECTION_EXIT;
4524 		else
4525 			r = 0;
4526 		break;
4527 	case KVM_CAP_XSAVE2: {
4528 		u64 guest_perm = xstate_get_guest_group_perm();
4529 
4530 		r = xstate_required_size(kvm_caps.supported_xcr0 & guest_perm, false);
4531 		if (r < sizeof(struct kvm_xsave))
4532 			r = sizeof(struct kvm_xsave);
4533 		break;
4534 	}
4535 	case KVM_CAP_PMU_CAPABILITY:
4536 		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4537 		break;
4538 	case KVM_CAP_DISABLE_QUIRKS2:
4539 		r = KVM_X86_VALID_QUIRKS;
4540 		break;
4541 	case KVM_CAP_X86_NOTIFY_VMEXIT:
4542 		r = kvm_caps.has_notify_vmexit;
4543 		break;
4544 	default:
4545 		break;
4546 	}
4547 	return r;
4548 }
4549 
4550 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4551 {
4552 	void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4553 
4554 	if ((u64)(unsigned long)uaddr != attr->addr)
4555 		return ERR_PTR_USR(-EFAULT);
4556 	return uaddr;
4557 }
4558 
4559 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4560 {
4561 	u64 __user *uaddr = kvm_get_attr_addr(attr);
4562 
4563 	if (attr->group)
4564 		return -ENXIO;
4565 
4566 	if (IS_ERR(uaddr))
4567 		return PTR_ERR(uaddr);
4568 
4569 	switch (attr->attr) {
4570 	case KVM_X86_XCOMP_GUEST_SUPP:
4571 		if (put_user(kvm_caps.supported_xcr0, uaddr))
4572 			return -EFAULT;
4573 		return 0;
4574 	default:
4575 		return -ENXIO;
4576 		break;
4577 	}
4578 }
4579 
4580 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4581 {
4582 	if (attr->group)
4583 		return -ENXIO;
4584 
4585 	switch (attr->attr) {
4586 	case KVM_X86_XCOMP_GUEST_SUPP:
4587 		return 0;
4588 	default:
4589 		return -ENXIO;
4590 	}
4591 }
4592 
4593 long kvm_arch_dev_ioctl(struct file *filp,
4594 			unsigned int ioctl, unsigned long arg)
4595 {
4596 	void __user *argp = (void __user *)arg;
4597 	long r;
4598 
4599 	switch (ioctl) {
4600 	case KVM_GET_MSR_INDEX_LIST: {
4601 		struct kvm_msr_list __user *user_msr_list = argp;
4602 		struct kvm_msr_list msr_list;
4603 		unsigned n;
4604 
4605 		r = -EFAULT;
4606 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4607 			goto out;
4608 		n = msr_list.nmsrs;
4609 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4610 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4611 			goto out;
4612 		r = -E2BIG;
4613 		if (n < msr_list.nmsrs)
4614 			goto out;
4615 		r = -EFAULT;
4616 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4617 				 num_msrs_to_save * sizeof(u32)))
4618 			goto out;
4619 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4620 				 &emulated_msrs,
4621 				 num_emulated_msrs * sizeof(u32)))
4622 			goto out;
4623 		r = 0;
4624 		break;
4625 	}
4626 	case KVM_GET_SUPPORTED_CPUID:
4627 	case KVM_GET_EMULATED_CPUID: {
4628 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4629 		struct kvm_cpuid2 cpuid;
4630 
4631 		r = -EFAULT;
4632 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4633 			goto out;
4634 
4635 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4636 					    ioctl);
4637 		if (r)
4638 			goto out;
4639 
4640 		r = -EFAULT;
4641 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4642 			goto out;
4643 		r = 0;
4644 		break;
4645 	}
4646 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4647 		r = -EFAULT;
4648 		if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4649 				 sizeof(kvm_caps.supported_mce_cap)))
4650 			goto out;
4651 		r = 0;
4652 		break;
4653 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4654 		struct kvm_msr_list __user *user_msr_list = argp;
4655 		struct kvm_msr_list msr_list;
4656 		unsigned int n;
4657 
4658 		r = -EFAULT;
4659 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4660 			goto out;
4661 		n = msr_list.nmsrs;
4662 		msr_list.nmsrs = num_msr_based_features;
4663 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4664 			goto out;
4665 		r = -E2BIG;
4666 		if (n < msr_list.nmsrs)
4667 			goto out;
4668 		r = -EFAULT;
4669 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4670 				 num_msr_based_features * sizeof(u32)))
4671 			goto out;
4672 		r = 0;
4673 		break;
4674 	}
4675 	case KVM_GET_MSRS:
4676 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4677 		break;
4678 	case KVM_GET_SUPPORTED_HV_CPUID:
4679 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4680 		break;
4681 	case KVM_GET_DEVICE_ATTR: {
4682 		struct kvm_device_attr attr;
4683 		r = -EFAULT;
4684 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4685 			break;
4686 		r = kvm_x86_dev_get_attr(&attr);
4687 		break;
4688 	}
4689 	case KVM_HAS_DEVICE_ATTR: {
4690 		struct kvm_device_attr attr;
4691 		r = -EFAULT;
4692 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4693 			break;
4694 		r = kvm_x86_dev_has_attr(&attr);
4695 		break;
4696 	}
4697 	default:
4698 		r = -EINVAL;
4699 		break;
4700 	}
4701 out:
4702 	return r;
4703 }
4704 
4705 static void wbinvd_ipi(void *garbage)
4706 {
4707 	wbinvd();
4708 }
4709 
4710 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4711 {
4712 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4713 }
4714 
4715 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4716 {
4717 	/* Address WBINVD may be executed by guest */
4718 	if (need_emulate_wbinvd(vcpu)) {
4719 		if (static_call(kvm_x86_has_wbinvd_exit)())
4720 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4721 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4722 			smp_call_function_single(vcpu->cpu,
4723 					wbinvd_ipi, NULL, 1);
4724 	}
4725 
4726 	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4727 
4728 	/* Save host pkru register if supported */
4729 	vcpu->arch.host_pkru = read_pkru();
4730 
4731 	/* Apply any externally detected TSC adjustments (due to suspend) */
4732 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4733 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4734 		vcpu->arch.tsc_offset_adjustment = 0;
4735 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4736 	}
4737 
4738 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4739 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4740 				rdtsc() - vcpu->arch.last_host_tsc;
4741 		if (tsc_delta < 0)
4742 			mark_tsc_unstable("KVM discovered backwards TSC");
4743 
4744 		if (kvm_check_tsc_unstable()) {
4745 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4746 						vcpu->arch.last_guest_tsc);
4747 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4748 			vcpu->arch.tsc_catchup = 1;
4749 		}
4750 
4751 		if (kvm_lapic_hv_timer_in_use(vcpu))
4752 			kvm_lapic_restart_hv_timer(vcpu);
4753 
4754 		/*
4755 		 * On a host with synchronized TSC, there is no need to update
4756 		 * kvmclock on vcpu->cpu migration
4757 		 */
4758 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4759 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4760 		if (vcpu->cpu != cpu)
4761 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4762 		vcpu->cpu = cpu;
4763 	}
4764 
4765 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4766 }
4767 
4768 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4769 {
4770 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4771 	struct kvm_steal_time __user *st;
4772 	struct kvm_memslots *slots;
4773 	static const u8 preempted = KVM_VCPU_PREEMPTED;
4774 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
4775 
4776 	/*
4777 	 * The vCPU can be marked preempted if and only if the VM-Exit was on
4778 	 * an instruction boundary and will not trigger guest emulation of any
4779 	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
4780 	 * when this is true, for example allowing the vCPU to be marked
4781 	 * preempted if and only if the VM-Exit was due to a host interrupt.
4782 	 */
4783 	if (!vcpu->arch.at_instruction_boundary) {
4784 		vcpu->stat.preemption_other++;
4785 		return;
4786 	}
4787 
4788 	vcpu->stat.preemption_reported++;
4789 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4790 		return;
4791 
4792 	if (vcpu->arch.st.preempted)
4793 		return;
4794 
4795 	/* This happens on process exit */
4796 	if (unlikely(current->mm != vcpu->kvm->mm))
4797 		return;
4798 
4799 	slots = kvm_memslots(vcpu->kvm);
4800 
4801 	if (unlikely(slots->generation != ghc->generation ||
4802 		     gpa != ghc->gpa ||
4803 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4804 		return;
4805 
4806 	st = (struct kvm_steal_time __user *)ghc->hva;
4807 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4808 
4809 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4810 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4811 
4812 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4813 }
4814 
4815 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4816 {
4817 	int idx;
4818 
4819 	if (vcpu->preempted) {
4820 		if (!vcpu->arch.guest_state_protected)
4821 			vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4822 
4823 		/*
4824 		 * Take the srcu lock as memslots will be accessed to check the gfn
4825 		 * cache generation against the memslots generation.
4826 		 */
4827 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4828 		if (kvm_xen_msr_enabled(vcpu->kvm))
4829 			kvm_xen_runstate_set_preempted(vcpu);
4830 		else
4831 			kvm_steal_time_set_preempted(vcpu);
4832 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4833 	}
4834 
4835 	static_call(kvm_x86_vcpu_put)(vcpu);
4836 	vcpu->arch.last_host_tsc = rdtsc();
4837 }
4838 
4839 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4840 				    struct kvm_lapic_state *s)
4841 {
4842 	static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4843 
4844 	return kvm_apic_get_state(vcpu, s);
4845 }
4846 
4847 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4848 				    struct kvm_lapic_state *s)
4849 {
4850 	int r;
4851 
4852 	r = kvm_apic_set_state(vcpu, s);
4853 	if (r)
4854 		return r;
4855 	update_cr8_intercept(vcpu);
4856 
4857 	return 0;
4858 }
4859 
4860 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4861 {
4862 	/*
4863 	 * We can accept userspace's request for interrupt injection
4864 	 * as long as we have a place to store the interrupt number.
4865 	 * The actual injection will happen when the CPU is able to
4866 	 * deliver the interrupt.
4867 	 */
4868 	if (kvm_cpu_has_extint(vcpu))
4869 		return false;
4870 
4871 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4872 	return (!lapic_in_kernel(vcpu) ||
4873 		kvm_apic_accept_pic_intr(vcpu));
4874 }
4875 
4876 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4877 {
4878 	/*
4879 	 * Do not cause an interrupt window exit if an exception
4880 	 * is pending or an event needs reinjection; userspace
4881 	 * might want to inject the interrupt manually using KVM_SET_REGS
4882 	 * or KVM_SET_SREGS.  For that to work, we must be at an
4883 	 * instruction boundary and with no events half-injected.
4884 	 */
4885 	return (kvm_arch_interrupt_allowed(vcpu) &&
4886 		kvm_cpu_accept_dm_intr(vcpu) &&
4887 		!kvm_event_needs_reinjection(vcpu) &&
4888 		!kvm_is_exception_pending(vcpu));
4889 }
4890 
4891 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4892 				    struct kvm_interrupt *irq)
4893 {
4894 	if (irq->irq >= KVM_NR_INTERRUPTS)
4895 		return -EINVAL;
4896 
4897 	if (!irqchip_in_kernel(vcpu->kvm)) {
4898 		kvm_queue_interrupt(vcpu, irq->irq, false);
4899 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4900 		return 0;
4901 	}
4902 
4903 	/*
4904 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4905 	 * fail for in-kernel 8259.
4906 	 */
4907 	if (pic_in_kernel(vcpu->kvm))
4908 		return -ENXIO;
4909 
4910 	if (vcpu->arch.pending_external_vector != -1)
4911 		return -EEXIST;
4912 
4913 	vcpu->arch.pending_external_vector = irq->irq;
4914 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4915 	return 0;
4916 }
4917 
4918 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4919 {
4920 	kvm_inject_nmi(vcpu);
4921 
4922 	return 0;
4923 }
4924 
4925 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4926 					   struct kvm_tpr_access_ctl *tac)
4927 {
4928 	if (tac->flags)
4929 		return -EINVAL;
4930 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
4931 	return 0;
4932 }
4933 
4934 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4935 					u64 mcg_cap)
4936 {
4937 	int r;
4938 	unsigned bank_num = mcg_cap & 0xff, bank;
4939 
4940 	r = -EINVAL;
4941 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4942 		goto out;
4943 	if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
4944 		goto out;
4945 	r = 0;
4946 	vcpu->arch.mcg_cap = mcg_cap;
4947 	/* Init IA32_MCG_CTL to all 1s */
4948 	if (mcg_cap & MCG_CTL_P)
4949 		vcpu->arch.mcg_ctl = ~(u64)0;
4950 	/* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
4951 	for (bank = 0; bank < bank_num; bank++) {
4952 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4953 		if (mcg_cap & MCG_CMCI_P)
4954 			vcpu->arch.mci_ctl2_banks[bank] = 0;
4955 	}
4956 
4957 	kvm_apic_after_set_mcg_cap(vcpu);
4958 
4959 	static_call(kvm_x86_setup_mce)(vcpu);
4960 out:
4961 	return r;
4962 }
4963 
4964 /*
4965  * Validate this is an UCNA (uncorrectable no action) error by checking the
4966  * MCG_STATUS and MCi_STATUS registers:
4967  * - none of the bits for Machine Check Exceptions are set
4968  * - both the VAL (valid) and UC (uncorrectable) bits are set
4969  * MCI_STATUS_PCC - Processor Context Corrupted
4970  * MCI_STATUS_S - Signaled as a Machine Check Exception
4971  * MCI_STATUS_AR - Software recoverable Action Required
4972  */
4973 static bool is_ucna(struct kvm_x86_mce *mce)
4974 {
4975 	return	!mce->mcg_status &&
4976 		!(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
4977 		(mce->status & MCI_STATUS_VAL) &&
4978 		(mce->status & MCI_STATUS_UC);
4979 }
4980 
4981 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
4982 {
4983 	u64 mcg_cap = vcpu->arch.mcg_cap;
4984 
4985 	banks[1] = mce->status;
4986 	banks[2] = mce->addr;
4987 	banks[3] = mce->misc;
4988 	vcpu->arch.mcg_status = mce->mcg_status;
4989 
4990 	if (!(mcg_cap & MCG_CMCI_P) ||
4991 	    !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
4992 		return 0;
4993 
4994 	if (lapic_in_kernel(vcpu))
4995 		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
4996 
4997 	return 0;
4998 }
4999 
5000 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5001 				      struct kvm_x86_mce *mce)
5002 {
5003 	u64 mcg_cap = vcpu->arch.mcg_cap;
5004 	unsigned bank_num = mcg_cap & 0xff;
5005 	u64 *banks = vcpu->arch.mce_banks;
5006 
5007 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5008 		return -EINVAL;
5009 
5010 	banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5011 
5012 	if (is_ucna(mce))
5013 		return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5014 
5015 	/*
5016 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5017 	 * reporting is disabled
5018 	 */
5019 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5020 	    vcpu->arch.mcg_ctl != ~(u64)0)
5021 		return 0;
5022 	/*
5023 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5024 	 * reporting is disabled for the bank
5025 	 */
5026 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5027 		return 0;
5028 	if (mce->status & MCI_STATUS_UC) {
5029 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5030 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
5031 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5032 			return 0;
5033 		}
5034 		if (banks[1] & MCI_STATUS_VAL)
5035 			mce->status |= MCI_STATUS_OVER;
5036 		banks[2] = mce->addr;
5037 		banks[3] = mce->misc;
5038 		vcpu->arch.mcg_status = mce->mcg_status;
5039 		banks[1] = mce->status;
5040 		kvm_queue_exception(vcpu, MC_VECTOR);
5041 	} else if (!(banks[1] & MCI_STATUS_VAL)
5042 		   || !(banks[1] & MCI_STATUS_UC)) {
5043 		if (banks[1] & MCI_STATUS_VAL)
5044 			mce->status |= MCI_STATUS_OVER;
5045 		banks[2] = mce->addr;
5046 		banks[3] = mce->misc;
5047 		banks[1] = mce->status;
5048 	} else
5049 		banks[1] |= MCI_STATUS_OVER;
5050 	return 0;
5051 }
5052 
5053 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5054 					       struct kvm_vcpu_events *events)
5055 {
5056 	struct kvm_queued_exception *ex;
5057 
5058 	process_nmi(vcpu);
5059 
5060 #ifdef CONFIG_KVM_SMM
5061 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
5062 		process_smi(vcpu);
5063 #endif
5064 
5065 	/*
5066 	 * KVM's ABI only allows for one exception to be migrated.  Luckily,
5067 	 * the only time there can be two queued exceptions is if there's a
5068 	 * non-exiting _injected_ exception, and a pending exiting exception.
5069 	 * In that case, ignore the VM-Exiting exception as it's an extension
5070 	 * of the injected exception.
5071 	 */
5072 	if (vcpu->arch.exception_vmexit.pending &&
5073 	    !vcpu->arch.exception.pending &&
5074 	    !vcpu->arch.exception.injected)
5075 		ex = &vcpu->arch.exception_vmexit;
5076 	else
5077 		ex = &vcpu->arch.exception;
5078 
5079 	/*
5080 	 * In guest mode, payload delivery should be deferred if the exception
5081 	 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5082 	 * intercepts #PF, ditto for DR6 and #DBs.  If the per-VM capability,
5083 	 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5084 	 * propagate the payload and so it cannot be safely deferred.  Deliver
5085 	 * the payload if the capability hasn't been requested.
5086 	 */
5087 	if (!vcpu->kvm->arch.exception_payload_enabled &&
5088 	    ex->pending && ex->has_payload)
5089 		kvm_deliver_exception_payload(vcpu, ex);
5090 
5091 	memset(events, 0, sizeof(*events));
5092 
5093 	/*
5094 	 * The API doesn't provide the instruction length for software
5095 	 * exceptions, so don't report them. As long as the guest RIP
5096 	 * isn't advanced, we should expect to encounter the exception
5097 	 * again.
5098 	 */
5099 	if (!kvm_exception_is_soft(ex->vector)) {
5100 		events->exception.injected = ex->injected;
5101 		events->exception.pending = ex->pending;
5102 		/*
5103 		 * For ABI compatibility, deliberately conflate
5104 		 * pending and injected exceptions when
5105 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5106 		 */
5107 		if (!vcpu->kvm->arch.exception_payload_enabled)
5108 			events->exception.injected |= ex->pending;
5109 	}
5110 	events->exception.nr = ex->vector;
5111 	events->exception.has_error_code = ex->has_error_code;
5112 	events->exception.error_code = ex->error_code;
5113 	events->exception_has_payload = ex->has_payload;
5114 	events->exception_payload = ex->payload;
5115 
5116 	events->interrupt.injected =
5117 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5118 	events->interrupt.nr = vcpu->arch.interrupt.nr;
5119 	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5120 
5121 	events->nmi.injected = vcpu->arch.nmi_injected;
5122 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
5123 	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5124 
5125 	/* events->sipi_vector is never valid when reporting to user space */
5126 
5127 #ifdef CONFIG_KVM_SMM
5128 	events->smi.smm = is_smm(vcpu);
5129 	events->smi.pending = vcpu->arch.smi_pending;
5130 	events->smi.smm_inside_nmi =
5131 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5132 #endif
5133 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5134 
5135 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5136 			 | KVM_VCPUEVENT_VALID_SHADOW
5137 			 | KVM_VCPUEVENT_VALID_SMM);
5138 	if (vcpu->kvm->arch.exception_payload_enabled)
5139 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5140 	if (vcpu->kvm->arch.triple_fault_event) {
5141 		events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5142 		events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5143 	}
5144 }
5145 
5146 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5147 					      struct kvm_vcpu_events *events)
5148 {
5149 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5150 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5151 			      | KVM_VCPUEVENT_VALID_SHADOW
5152 			      | KVM_VCPUEVENT_VALID_SMM
5153 			      | KVM_VCPUEVENT_VALID_PAYLOAD
5154 			      | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5155 		return -EINVAL;
5156 
5157 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5158 		if (!vcpu->kvm->arch.exception_payload_enabled)
5159 			return -EINVAL;
5160 		if (events->exception.pending)
5161 			events->exception.injected = 0;
5162 		else
5163 			events->exception_has_payload = 0;
5164 	} else {
5165 		events->exception.pending = 0;
5166 		events->exception_has_payload = 0;
5167 	}
5168 
5169 	if ((events->exception.injected || events->exception.pending) &&
5170 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5171 		return -EINVAL;
5172 
5173 	/* INITs are latched while in SMM */
5174 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5175 	    (events->smi.smm || events->smi.pending) &&
5176 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5177 		return -EINVAL;
5178 
5179 	process_nmi(vcpu);
5180 
5181 	/*
5182 	 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5183 	 * morph the exception to a VM-Exit if appropriate.  Do this only for
5184 	 * pending exceptions, already-injected exceptions are not subject to
5185 	 * intercpetion.  Note, userspace that conflates pending and injected
5186 	 * is hosed, and will incorrectly convert an injected exception into a
5187 	 * pending exception, which in turn may cause a spurious VM-Exit.
5188 	 */
5189 	vcpu->arch.exception_from_userspace = events->exception.pending;
5190 
5191 	vcpu->arch.exception_vmexit.pending = false;
5192 
5193 	vcpu->arch.exception.injected = events->exception.injected;
5194 	vcpu->arch.exception.pending = events->exception.pending;
5195 	vcpu->arch.exception.vector = events->exception.nr;
5196 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5197 	vcpu->arch.exception.error_code = events->exception.error_code;
5198 	vcpu->arch.exception.has_payload = events->exception_has_payload;
5199 	vcpu->arch.exception.payload = events->exception_payload;
5200 
5201 	vcpu->arch.interrupt.injected = events->interrupt.injected;
5202 	vcpu->arch.interrupt.nr = events->interrupt.nr;
5203 	vcpu->arch.interrupt.soft = events->interrupt.soft;
5204 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5205 		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5206 						events->interrupt.shadow);
5207 
5208 	vcpu->arch.nmi_injected = events->nmi.injected;
5209 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
5210 		vcpu->arch.nmi_pending = events->nmi.pending;
5211 	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5212 
5213 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5214 	    lapic_in_kernel(vcpu))
5215 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
5216 
5217 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5218 #ifdef CONFIG_KVM_SMM
5219 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5220 			kvm_leave_nested(vcpu);
5221 			kvm_smm_changed(vcpu, events->smi.smm);
5222 		}
5223 
5224 		vcpu->arch.smi_pending = events->smi.pending;
5225 
5226 		if (events->smi.smm) {
5227 			if (events->smi.smm_inside_nmi)
5228 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5229 			else
5230 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5231 		}
5232 
5233 #else
5234 		if (events->smi.smm || events->smi.pending ||
5235 		    events->smi.smm_inside_nmi)
5236 			return -EINVAL;
5237 #endif
5238 
5239 		if (lapic_in_kernel(vcpu)) {
5240 			if (events->smi.latched_init)
5241 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5242 			else
5243 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5244 		}
5245 	}
5246 
5247 	if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5248 		if (!vcpu->kvm->arch.triple_fault_event)
5249 			return -EINVAL;
5250 		if (events->triple_fault.pending)
5251 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5252 		else
5253 			kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5254 	}
5255 
5256 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5257 
5258 	return 0;
5259 }
5260 
5261 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5262 					     struct kvm_debugregs *dbgregs)
5263 {
5264 	unsigned long val;
5265 
5266 	memset(dbgregs, 0, sizeof(*dbgregs));
5267 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5268 	kvm_get_dr(vcpu, 6, &val);
5269 	dbgregs->dr6 = val;
5270 	dbgregs->dr7 = vcpu->arch.dr7;
5271 }
5272 
5273 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5274 					    struct kvm_debugregs *dbgregs)
5275 {
5276 	if (dbgregs->flags)
5277 		return -EINVAL;
5278 
5279 	if (!kvm_dr6_valid(dbgregs->dr6))
5280 		return -EINVAL;
5281 	if (!kvm_dr7_valid(dbgregs->dr7))
5282 		return -EINVAL;
5283 
5284 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5285 	kvm_update_dr0123(vcpu);
5286 	vcpu->arch.dr6 = dbgregs->dr6;
5287 	vcpu->arch.dr7 = dbgregs->dr7;
5288 	kvm_update_dr7(vcpu);
5289 
5290 	return 0;
5291 }
5292 
5293 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5294 					 struct kvm_xsave *guest_xsave)
5295 {
5296 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5297 		return;
5298 
5299 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5300 				       guest_xsave->region,
5301 				       sizeof(guest_xsave->region),
5302 				       vcpu->arch.pkru);
5303 }
5304 
5305 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5306 					  u8 *state, unsigned int size)
5307 {
5308 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5309 		return;
5310 
5311 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5312 				       state, size, vcpu->arch.pkru);
5313 }
5314 
5315 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5316 					struct kvm_xsave *guest_xsave)
5317 {
5318 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5319 		return 0;
5320 
5321 	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5322 					      guest_xsave->region,
5323 					      kvm_caps.supported_xcr0,
5324 					      &vcpu->arch.pkru);
5325 }
5326 
5327 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5328 					struct kvm_xcrs *guest_xcrs)
5329 {
5330 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5331 		guest_xcrs->nr_xcrs = 0;
5332 		return;
5333 	}
5334 
5335 	guest_xcrs->nr_xcrs = 1;
5336 	guest_xcrs->flags = 0;
5337 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5338 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5339 }
5340 
5341 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5342 				       struct kvm_xcrs *guest_xcrs)
5343 {
5344 	int i, r = 0;
5345 
5346 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5347 		return -EINVAL;
5348 
5349 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5350 		return -EINVAL;
5351 
5352 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5353 		/* Only support XCR0 currently */
5354 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5355 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5356 				guest_xcrs->xcrs[i].value);
5357 			break;
5358 		}
5359 	if (r)
5360 		r = -EINVAL;
5361 	return r;
5362 }
5363 
5364 /*
5365  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5366  * stopped by the hypervisor.  This function will be called from the host only.
5367  * EINVAL is returned when the host attempts to set the flag for a guest that
5368  * does not support pv clocks.
5369  */
5370 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5371 {
5372 	if (!vcpu->arch.pv_time.active)
5373 		return -EINVAL;
5374 	vcpu->arch.pvclock_set_guest_stopped_request = true;
5375 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5376 	return 0;
5377 }
5378 
5379 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5380 				 struct kvm_device_attr *attr)
5381 {
5382 	int r;
5383 
5384 	switch (attr->attr) {
5385 	case KVM_VCPU_TSC_OFFSET:
5386 		r = 0;
5387 		break;
5388 	default:
5389 		r = -ENXIO;
5390 	}
5391 
5392 	return r;
5393 }
5394 
5395 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5396 				 struct kvm_device_attr *attr)
5397 {
5398 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5399 	int r;
5400 
5401 	if (IS_ERR(uaddr))
5402 		return PTR_ERR(uaddr);
5403 
5404 	switch (attr->attr) {
5405 	case KVM_VCPU_TSC_OFFSET:
5406 		r = -EFAULT;
5407 		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5408 			break;
5409 		r = 0;
5410 		break;
5411 	default:
5412 		r = -ENXIO;
5413 	}
5414 
5415 	return r;
5416 }
5417 
5418 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5419 				 struct kvm_device_attr *attr)
5420 {
5421 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5422 	struct kvm *kvm = vcpu->kvm;
5423 	int r;
5424 
5425 	if (IS_ERR(uaddr))
5426 		return PTR_ERR(uaddr);
5427 
5428 	switch (attr->attr) {
5429 	case KVM_VCPU_TSC_OFFSET: {
5430 		u64 offset, tsc, ns;
5431 		unsigned long flags;
5432 		bool matched;
5433 
5434 		r = -EFAULT;
5435 		if (get_user(offset, uaddr))
5436 			break;
5437 
5438 		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5439 
5440 		matched = (vcpu->arch.virtual_tsc_khz &&
5441 			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5442 			   kvm->arch.last_tsc_offset == offset);
5443 
5444 		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5445 		ns = get_kvmclock_base_ns();
5446 
5447 		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5448 		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5449 
5450 		r = 0;
5451 		break;
5452 	}
5453 	default:
5454 		r = -ENXIO;
5455 	}
5456 
5457 	return r;
5458 }
5459 
5460 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5461 				      unsigned int ioctl,
5462 				      void __user *argp)
5463 {
5464 	struct kvm_device_attr attr;
5465 	int r;
5466 
5467 	if (copy_from_user(&attr, argp, sizeof(attr)))
5468 		return -EFAULT;
5469 
5470 	if (attr.group != KVM_VCPU_TSC_CTRL)
5471 		return -ENXIO;
5472 
5473 	switch (ioctl) {
5474 	case KVM_HAS_DEVICE_ATTR:
5475 		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5476 		break;
5477 	case KVM_GET_DEVICE_ATTR:
5478 		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5479 		break;
5480 	case KVM_SET_DEVICE_ATTR:
5481 		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5482 		break;
5483 	}
5484 
5485 	return r;
5486 }
5487 
5488 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5489 				     struct kvm_enable_cap *cap)
5490 {
5491 	int r;
5492 	uint16_t vmcs_version;
5493 	void __user *user_ptr;
5494 
5495 	if (cap->flags)
5496 		return -EINVAL;
5497 
5498 	switch (cap->cap) {
5499 	case KVM_CAP_HYPERV_SYNIC2:
5500 		if (cap->args[0])
5501 			return -EINVAL;
5502 		fallthrough;
5503 
5504 	case KVM_CAP_HYPERV_SYNIC:
5505 		if (!irqchip_in_kernel(vcpu->kvm))
5506 			return -EINVAL;
5507 		return kvm_hv_activate_synic(vcpu, cap->cap ==
5508 					     KVM_CAP_HYPERV_SYNIC2);
5509 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5510 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
5511 			return -ENOTTY;
5512 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5513 		if (!r) {
5514 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
5515 			if (copy_to_user(user_ptr, &vmcs_version,
5516 					 sizeof(vmcs_version)))
5517 				r = -EFAULT;
5518 		}
5519 		return r;
5520 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5521 		if (!kvm_x86_ops.enable_l2_tlb_flush)
5522 			return -ENOTTY;
5523 
5524 		return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu);
5525 
5526 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5527 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5528 
5529 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5530 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5531 		if (vcpu->arch.pv_cpuid.enforce)
5532 			kvm_update_pv_runtime(vcpu);
5533 
5534 		return 0;
5535 	default:
5536 		return -EINVAL;
5537 	}
5538 }
5539 
5540 long kvm_arch_vcpu_ioctl(struct file *filp,
5541 			 unsigned int ioctl, unsigned long arg)
5542 {
5543 	struct kvm_vcpu *vcpu = filp->private_data;
5544 	void __user *argp = (void __user *)arg;
5545 	int r;
5546 	union {
5547 		struct kvm_sregs2 *sregs2;
5548 		struct kvm_lapic_state *lapic;
5549 		struct kvm_xsave *xsave;
5550 		struct kvm_xcrs *xcrs;
5551 		void *buffer;
5552 	} u;
5553 
5554 	vcpu_load(vcpu);
5555 
5556 	u.buffer = NULL;
5557 	switch (ioctl) {
5558 	case KVM_GET_LAPIC: {
5559 		r = -EINVAL;
5560 		if (!lapic_in_kernel(vcpu))
5561 			goto out;
5562 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5563 				GFP_KERNEL_ACCOUNT);
5564 
5565 		r = -ENOMEM;
5566 		if (!u.lapic)
5567 			goto out;
5568 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5569 		if (r)
5570 			goto out;
5571 		r = -EFAULT;
5572 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5573 			goto out;
5574 		r = 0;
5575 		break;
5576 	}
5577 	case KVM_SET_LAPIC: {
5578 		r = -EINVAL;
5579 		if (!lapic_in_kernel(vcpu))
5580 			goto out;
5581 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5582 		if (IS_ERR(u.lapic)) {
5583 			r = PTR_ERR(u.lapic);
5584 			goto out_nofree;
5585 		}
5586 
5587 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5588 		break;
5589 	}
5590 	case KVM_INTERRUPT: {
5591 		struct kvm_interrupt irq;
5592 
5593 		r = -EFAULT;
5594 		if (copy_from_user(&irq, argp, sizeof(irq)))
5595 			goto out;
5596 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5597 		break;
5598 	}
5599 	case KVM_NMI: {
5600 		r = kvm_vcpu_ioctl_nmi(vcpu);
5601 		break;
5602 	}
5603 	case KVM_SMI: {
5604 		r = kvm_inject_smi(vcpu);
5605 		break;
5606 	}
5607 	case KVM_SET_CPUID: {
5608 		struct kvm_cpuid __user *cpuid_arg = argp;
5609 		struct kvm_cpuid cpuid;
5610 
5611 		r = -EFAULT;
5612 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5613 			goto out;
5614 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5615 		break;
5616 	}
5617 	case KVM_SET_CPUID2: {
5618 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5619 		struct kvm_cpuid2 cpuid;
5620 
5621 		r = -EFAULT;
5622 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5623 			goto out;
5624 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5625 					      cpuid_arg->entries);
5626 		break;
5627 	}
5628 	case KVM_GET_CPUID2: {
5629 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5630 		struct kvm_cpuid2 cpuid;
5631 
5632 		r = -EFAULT;
5633 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5634 			goto out;
5635 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5636 					      cpuid_arg->entries);
5637 		if (r)
5638 			goto out;
5639 		r = -EFAULT;
5640 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5641 			goto out;
5642 		r = 0;
5643 		break;
5644 	}
5645 	case KVM_GET_MSRS: {
5646 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5647 		r = msr_io(vcpu, argp, do_get_msr, 1);
5648 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5649 		break;
5650 	}
5651 	case KVM_SET_MSRS: {
5652 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5653 		r = msr_io(vcpu, argp, do_set_msr, 0);
5654 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5655 		break;
5656 	}
5657 	case KVM_TPR_ACCESS_REPORTING: {
5658 		struct kvm_tpr_access_ctl tac;
5659 
5660 		r = -EFAULT;
5661 		if (copy_from_user(&tac, argp, sizeof(tac)))
5662 			goto out;
5663 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5664 		if (r)
5665 			goto out;
5666 		r = -EFAULT;
5667 		if (copy_to_user(argp, &tac, sizeof(tac)))
5668 			goto out;
5669 		r = 0;
5670 		break;
5671 	};
5672 	case KVM_SET_VAPIC_ADDR: {
5673 		struct kvm_vapic_addr va;
5674 		int idx;
5675 
5676 		r = -EINVAL;
5677 		if (!lapic_in_kernel(vcpu))
5678 			goto out;
5679 		r = -EFAULT;
5680 		if (copy_from_user(&va, argp, sizeof(va)))
5681 			goto out;
5682 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5683 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5684 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5685 		break;
5686 	}
5687 	case KVM_X86_SETUP_MCE: {
5688 		u64 mcg_cap;
5689 
5690 		r = -EFAULT;
5691 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5692 			goto out;
5693 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5694 		break;
5695 	}
5696 	case KVM_X86_SET_MCE: {
5697 		struct kvm_x86_mce mce;
5698 
5699 		r = -EFAULT;
5700 		if (copy_from_user(&mce, argp, sizeof(mce)))
5701 			goto out;
5702 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5703 		break;
5704 	}
5705 	case KVM_GET_VCPU_EVENTS: {
5706 		struct kvm_vcpu_events events;
5707 
5708 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5709 
5710 		r = -EFAULT;
5711 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5712 			break;
5713 		r = 0;
5714 		break;
5715 	}
5716 	case KVM_SET_VCPU_EVENTS: {
5717 		struct kvm_vcpu_events events;
5718 
5719 		r = -EFAULT;
5720 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5721 			break;
5722 
5723 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5724 		break;
5725 	}
5726 	case KVM_GET_DEBUGREGS: {
5727 		struct kvm_debugregs dbgregs;
5728 
5729 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5730 
5731 		r = -EFAULT;
5732 		if (copy_to_user(argp, &dbgregs,
5733 				 sizeof(struct kvm_debugregs)))
5734 			break;
5735 		r = 0;
5736 		break;
5737 	}
5738 	case KVM_SET_DEBUGREGS: {
5739 		struct kvm_debugregs dbgregs;
5740 
5741 		r = -EFAULT;
5742 		if (copy_from_user(&dbgregs, argp,
5743 				   sizeof(struct kvm_debugregs)))
5744 			break;
5745 
5746 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5747 		break;
5748 	}
5749 	case KVM_GET_XSAVE: {
5750 		r = -EINVAL;
5751 		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5752 			break;
5753 
5754 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5755 		r = -ENOMEM;
5756 		if (!u.xsave)
5757 			break;
5758 
5759 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5760 
5761 		r = -EFAULT;
5762 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5763 			break;
5764 		r = 0;
5765 		break;
5766 	}
5767 	case KVM_SET_XSAVE: {
5768 		int size = vcpu->arch.guest_fpu.uabi_size;
5769 
5770 		u.xsave = memdup_user(argp, size);
5771 		if (IS_ERR(u.xsave)) {
5772 			r = PTR_ERR(u.xsave);
5773 			goto out_nofree;
5774 		}
5775 
5776 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5777 		break;
5778 	}
5779 
5780 	case KVM_GET_XSAVE2: {
5781 		int size = vcpu->arch.guest_fpu.uabi_size;
5782 
5783 		u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5784 		r = -ENOMEM;
5785 		if (!u.xsave)
5786 			break;
5787 
5788 		kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5789 
5790 		r = -EFAULT;
5791 		if (copy_to_user(argp, u.xsave, size))
5792 			break;
5793 
5794 		r = 0;
5795 		break;
5796 	}
5797 
5798 	case KVM_GET_XCRS: {
5799 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5800 		r = -ENOMEM;
5801 		if (!u.xcrs)
5802 			break;
5803 
5804 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5805 
5806 		r = -EFAULT;
5807 		if (copy_to_user(argp, u.xcrs,
5808 				 sizeof(struct kvm_xcrs)))
5809 			break;
5810 		r = 0;
5811 		break;
5812 	}
5813 	case KVM_SET_XCRS: {
5814 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5815 		if (IS_ERR(u.xcrs)) {
5816 			r = PTR_ERR(u.xcrs);
5817 			goto out_nofree;
5818 		}
5819 
5820 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5821 		break;
5822 	}
5823 	case KVM_SET_TSC_KHZ: {
5824 		u32 user_tsc_khz;
5825 
5826 		r = -EINVAL;
5827 		user_tsc_khz = (u32)arg;
5828 
5829 		if (kvm_caps.has_tsc_control &&
5830 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
5831 			goto out;
5832 
5833 		if (user_tsc_khz == 0)
5834 			user_tsc_khz = tsc_khz;
5835 
5836 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5837 			r = 0;
5838 
5839 		goto out;
5840 	}
5841 	case KVM_GET_TSC_KHZ: {
5842 		r = vcpu->arch.virtual_tsc_khz;
5843 		goto out;
5844 	}
5845 	case KVM_KVMCLOCK_CTRL: {
5846 		r = kvm_set_guest_paused(vcpu);
5847 		goto out;
5848 	}
5849 	case KVM_ENABLE_CAP: {
5850 		struct kvm_enable_cap cap;
5851 
5852 		r = -EFAULT;
5853 		if (copy_from_user(&cap, argp, sizeof(cap)))
5854 			goto out;
5855 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5856 		break;
5857 	}
5858 	case KVM_GET_NESTED_STATE: {
5859 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5860 		u32 user_data_size;
5861 
5862 		r = -EINVAL;
5863 		if (!kvm_x86_ops.nested_ops->get_state)
5864 			break;
5865 
5866 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5867 		r = -EFAULT;
5868 		if (get_user(user_data_size, &user_kvm_nested_state->size))
5869 			break;
5870 
5871 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5872 						     user_data_size);
5873 		if (r < 0)
5874 			break;
5875 
5876 		if (r > user_data_size) {
5877 			if (put_user(r, &user_kvm_nested_state->size))
5878 				r = -EFAULT;
5879 			else
5880 				r = -E2BIG;
5881 			break;
5882 		}
5883 
5884 		r = 0;
5885 		break;
5886 	}
5887 	case KVM_SET_NESTED_STATE: {
5888 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5889 		struct kvm_nested_state kvm_state;
5890 		int idx;
5891 
5892 		r = -EINVAL;
5893 		if (!kvm_x86_ops.nested_ops->set_state)
5894 			break;
5895 
5896 		r = -EFAULT;
5897 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5898 			break;
5899 
5900 		r = -EINVAL;
5901 		if (kvm_state.size < sizeof(kvm_state))
5902 			break;
5903 
5904 		if (kvm_state.flags &
5905 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5906 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5907 		      | KVM_STATE_NESTED_GIF_SET))
5908 			break;
5909 
5910 		/* nested_run_pending implies guest_mode.  */
5911 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5912 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5913 			break;
5914 
5915 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5916 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5917 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5918 		break;
5919 	}
5920 	case KVM_GET_SUPPORTED_HV_CPUID:
5921 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5922 		break;
5923 #ifdef CONFIG_KVM_XEN
5924 	case KVM_XEN_VCPU_GET_ATTR: {
5925 		struct kvm_xen_vcpu_attr xva;
5926 
5927 		r = -EFAULT;
5928 		if (copy_from_user(&xva, argp, sizeof(xva)))
5929 			goto out;
5930 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5931 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5932 			r = -EFAULT;
5933 		break;
5934 	}
5935 	case KVM_XEN_VCPU_SET_ATTR: {
5936 		struct kvm_xen_vcpu_attr xva;
5937 
5938 		r = -EFAULT;
5939 		if (copy_from_user(&xva, argp, sizeof(xva)))
5940 			goto out;
5941 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5942 		break;
5943 	}
5944 #endif
5945 	case KVM_GET_SREGS2: {
5946 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5947 		r = -ENOMEM;
5948 		if (!u.sregs2)
5949 			goto out;
5950 		__get_sregs2(vcpu, u.sregs2);
5951 		r = -EFAULT;
5952 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5953 			goto out;
5954 		r = 0;
5955 		break;
5956 	}
5957 	case KVM_SET_SREGS2: {
5958 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5959 		if (IS_ERR(u.sregs2)) {
5960 			r = PTR_ERR(u.sregs2);
5961 			u.sregs2 = NULL;
5962 			goto out;
5963 		}
5964 		r = __set_sregs2(vcpu, u.sregs2);
5965 		break;
5966 	}
5967 	case KVM_HAS_DEVICE_ATTR:
5968 	case KVM_GET_DEVICE_ATTR:
5969 	case KVM_SET_DEVICE_ATTR:
5970 		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5971 		break;
5972 	default:
5973 		r = -EINVAL;
5974 	}
5975 out:
5976 	kfree(u.buffer);
5977 out_nofree:
5978 	vcpu_put(vcpu);
5979 	return r;
5980 }
5981 
5982 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5983 {
5984 	return VM_FAULT_SIGBUS;
5985 }
5986 
5987 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5988 {
5989 	int ret;
5990 
5991 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
5992 		return -EINVAL;
5993 	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5994 	return ret;
5995 }
5996 
5997 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5998 					      u64 ident_addr)
5999 {
6000 	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
6001 }
6002 
6003 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6004 					 unsigned long kvm_nr_mmu_pages)
6005 {
6006 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6007 		return -EINVAL;
6008 
6009 	mutex_lock(&kvm->slots_lock);
6010 
6011 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6012 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6013 
6014 	mutex_unlock(&kvm->slots_lock);
6015 	return 0;
6016 }
6017 
6018 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
6019 {
6020 	return kvm->arch.n_max_mmu_pages;
6021 }
6022 
6023 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6024 {
6025 	struct kvm_pic *pic = kvm->arch.vpic;
6026 	int r;
6027 
6028 	r = 0;
6029 	switch (chip->chip_id) {
6030 	case KVM_IRQCHIP_PIC_MASTER:
6031 		memcpy(&chip->chip.pic, &pic->pics[0],
6032 			sizeof(struct kvm_pic_state));
6033 		break;
6034 	case KVM_IRQCHIP_PIC_SLAVE:
6035 		memcpy(&chip->chip.pic, &pic->pics[1],
6036 			sizeof(struct kvm_pic_state));
6037 		break;
6038 	case KVM_IRQCHIP_IOAPIC:
6039 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
6040 		break;
6041 	default:
6042 		r = -EINVAL;
6043 		break;
6044 	}
6045 	return r;
6046 }
6047 
6048 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6049 {
6050 	struct kvm_pic *pic = kvm->arch.vpic;
6051 	int r;
6052 
6053 	r = 0;
6054 	switch (chip->chip_id) {
6055 	case KVM_IRQCHIP_PIC_MASTER:
6056 		spin_lock(&pic->lock);
6057 		memcpy(&pic->pics[0], &chip->chip.pic,
6058 			sizeof(struct kvm_pic_state));
6059 		spin_unlock(&pic->lock);
6060 		break;
6061 	case KVM_IRQCHIP_PIC_SLAVE:
6062 		spin_lock(&pic->lock);
6063 		memcpy(&pic->pics[1], &chip->chip.pic,
6064 			sizeof(struct kvm_pic_state));
6065 		spin_unlock(&pic->lock);
6066 		break;
6067 	case KVM_IRQCHIP_IOAPIC:
6068 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
6069 		break;
6070 	default:
6071 		r = -EINVAL;
6072 		break;
6073 	}
6074 	kvm_pic_update_irq(pic);
6075 	return r;
6076 }
6077 
6078 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6079 {
6080 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6081 
6082 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6083 
6084 	mutex_lock(&kps->lock);
6085 	memcpy(ps, &kps->channels, sizeof(*ps));
6086 	mutex_unlock(&kps->lock);
6087 	return 0;
6088 }
6089 
6090 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6091 {
6092 	int i;
6093 	struct kvm_pit *pit = kvm->arch.vpit;
6094 
6095 	mutex_lock(&pit->pit_state.lock);
6096 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6097 	for (i = 0; i < 3; i++)
6098 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6099 	mutex_unlock(&pit->pit_state.lock);
6100 	return 0;
6101 }
6102 
6103 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6104 {
6105 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
6106 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6107 		sizeof(ps->channels));
6108 	ps->flags = kvm->arch.vpit->pit_state.flags;
6109 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6110 	memset(&ps->reserved, 0, sizeof(ps->reserved));
6111 	return 0;
6112 }
6113 
6114 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6115 {
6116 	int start = 0;
6117 	int i;
6118 	u32 prev_legacy, cur_legacy;
6119 	struct kvm_pit *pit = kvm->arch.vpit;
6120 
6121 	mutex_lock(&pit->pit_state.lock);
6122 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6123 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6124 	if (!prev_legacy && cur_legacy)
6125 		start = 1;
6126 	memcpy(&pit->pit_state.channels, &ps->channels,
6127 	       sizeof(pit->pit_state.channels));
6128 	pit->pit_state.flags = ps->flags;
6129 	for (i = 0; i < 3; i++)
6130 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6131 				   start && i == 0);
6132 	mutex_unlock(&pit->pit_state.lock);
6133 	return 0;
6134 }
6135 
6136 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6137 				 struct kvm_reinject_control *control)
6138 {
6139 	struct kvm_pit *pit = kvm->arch.vpit;
6140 
6141 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
6142 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6143 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6144 	 */
6145 	mutex_lock(&pit->pit_state.lock);
6146 	kvm_pit_set_reinject(pit, control->pit_reinject);
6147 	mutex_unlock(&pit->pit_state.lock);
6148 
6149 	return 0;
6150 }
6151 
6152 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6153 {
6154 
6155 	/*
6156 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6157 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6158 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6159 	 * VM-Exit.
6160 	 */
6161 	struct kvm_vcpu *vcpu;
6162 	unsigned long i;
6163 
6164 	kvm_for_each_vcpu(i, vcpu, kvm)
6165 		kvm_vcpu_kick(vcpu);
6166 }
6167 
6168 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6169 			bool line_status)
6170 {
6171 	if (!irqchip_in_kernel(kvm))
6172 		return -ENXIO;
6173 
6174 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6175 					irq_event->irq, irq_event->level,
6176 					line_status);
6177 	return 0;
6178 }
6179 
6180 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6181 			    struct kvm_enable_cap *cap)
6182 {
6183 	int r;
6184 
6185 	if (cap->flags)
6186 		return -EINVAL;
6187 
6188 	switch (cap->cap) {
6189 	case KVM_CAP_DISABLE_QUIRKS2:
6190 		r = -EINVAL;
6191 		if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6192 			break;
6193 		fallthrough;
6194 	case KVM_CAP_DISABLE_QUIRKS:
6195 		kvm->arch.disabled_quirks = cap->args[0];
6196 		r = 0;
6197 		break;
6198 	case KVM_CAP_SPLIT_IRQCHIP: {
6199 		mutex_lock(&kvm->lock);
6200 		r = -EINVAL;
6201 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6202 			goto split_irqchip_unlock;
6203 		r = -EEXIST;
6204 		if (irqchip_in_kernel(kvm))
6205 			goto split_irqchip_unlock;
6206 		if (kvm->created_vcpus)
6207 			goto split_irqchip_unlock;
6208 		r = kvm_setup_empty_irq_routing(kvm);
6209 		if (r)
6210 			goto split_irqchip_unlock;
6211 		/* Pairs with irqchip_in_kernel. */
6212 		smp_wmb();
6213 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6214 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6215 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6216 		r = 0;
6217 split_irqchip_unlock:
6218 		mutex_unlock(&kvm->lock);
6219 		break;
6220 	}
6221 	case KVM_CAP_X2APIC_API:
6222 		r = -EINVAL;
6223 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6224 			break;
6225 
6226 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6227 			kvm->arch.x2apic_format = true;
6228 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6229 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
6230 
6231 		r = 0;
6232 		break;
6233 	case KVM_CAP_X86_DISABLE_EXITS:
6234 		r = -EINVAL;
6235 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6236 			break;
6237 
6238 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6239 			kvm->arch.pause_in_guest = true;
6240 
6241 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6242 		    "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6243 
6244 		if (!mitigate_smt_rsb) {
6245 			if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
6246 			    (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6247 				pr_warn_once(SMT_RSB_MSG);
6248 
6249 			if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6250 			    kvm_can_mwait_in_guest())
6251 				kvm->arch.mwait_in_guest = true;
6252 			if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6253 				kvm->arch.hlt_in_guest = true;
6254 			if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6255 				kvm->arch.cstate_in_guest = true;
6256 		}
6257 
6258 		r = 0;
6259 		break;
6260 	case KVM_CAP_MSR_PLATFORM_INFO:
6261 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6262 		r = 0;
6263 		break;
6264 	case KVM_CAP_EXCEPTION_PAYLOAD:
6265 		kvm->arch.exception_payload_enabled = cap->args[0];
6266 		r = 0;
6267 		break;
6268 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6269 		kvm->arch.triple_fault_event = cap->args[0];
6270 		r = 0;
6271 		break;
6272 	case KVM_CAP_X86_USER_SPACE_MSR:
6273 		r = -EINVAL;
6274 		if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6275 			break;
6276 		kvm->arch.user_space_msr_mask = cap->args[0];
6277 		r = 0;
6278 		break;
6279 	case KVM_CAP_X86_BUS_LOCK_EXIT:
6280 		r = -EINVAL;
6281 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6282 			break;
6283 
6284 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6285 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6286 			break;
6287 
6288 		if (kvm_caps.has_bus_lock_exit &&
6289 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6290 			kvm->arch.bus_lock_detection_enabled = true;
6291 		r = 0;
6292 		break;
6293 #ifdef CONFIG_X86_SGX_KVM
6294 	case KVM_CAP_SGX_ATTRIBUTE: {
6295 		unsigned long allowed_attributes = 0;
6296 
6297 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6298 		if (r)
6299 			break;
6300 
6301 		/* KVM only supports the PROVISIONKEY privileged attribute. */
6302 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6303 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6304 			kvm->arch.sgx_provisioning_allowed = true;
6305 		else
6306 			r = -EINVAL;
6307 		break;
6308 	}
6309 #endif
6310 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6311 		r = -EINVAL;
6312 		if (!kvm_x86_ops.vm_copy_enc_context_from)
6313 			break;
6314 
6315 		r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6316 		break;
6317 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6318 		r = -EINVAL;
6319 		if (!kvm_x86_ops.vm_move_enc_context_from)
6320 			break;
6321 
6322 		r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6323 		break;
6324 	case KVM_CAP_EXIT_HYPERCALL:
6325 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6326 			r = -EINVAL;
6327 			break;
6328 		}
6329 		kvm->arch.hypercall_exit_enabled = cap->args[0];
6330 		r = 0;
6331 		break;
6332 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6333 		r = -EINVAL;
6334 		if (cap->args[0] & ~1)
6335 			break;
6336 		kvm->arch.exit_on_emulation_error = cap->args[0];
6337 		r = 0;
6338 		break;
6339 	case KVM_CAP_PMU_CAPABILITY:
6340 		r = -EINVAL;
6341 		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6342 			break;
6343 
6344 		mutex_lock(&kvm->lock);
6345 		if (!kvm->created_vcpus) {
6346 			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6347 			r = 0;
6348 		}
6349 		mutex_unlock(&kvm->lock);
6350 		break;
6351 	case KVM_CAP_MAX_VCPU_ID:
6352 		r = -EINVAL;
6353 		if (cap->args[0] > KVM_MAX_VCPU_IDS)
6354 			break;
6355 
6356 		mutex_lock(&kvm->lock);
6357 		if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6358 			r = 0;
6359 		} else if (!kvm->arch.max_vcpu_ids) {
6360 			kvm->arch.max_vcpu_ids = cap->args[0];
6361 			r = 0;
6362 		}
6363 		mutex_unlock(&kvm->lock);
6364 		break;
6365 	case KVM_CAP_X86_NOTIFY_VMEXIT:
6366 		r = -EINVAL;
6367 		if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6368 			break;
6369 		if (!kvm_caps.has_notify_vmexit)
6370 			break;
6371 		if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6372 			break;
6373 		mutex_lock(&kvm->lock);
6374 		if (!kvm->created_vcpus) {
6375 			kvm->arch.notify_window = cap->args[0] >> 32;
6376 			kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6377 			r = 0;
6378 		}
6379 		mutex_unlock(&kvm->lock);
6380 		break;
6381 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6382 		r = -EINVAL;
6383 
6384 		/*
6385 		 * Since the risk of disabling NX hugepages is a guest crashing
6386 		 * the system, ensure the userspace process has permission to
6387 		 * reboot the system.
6388 		 *
6389 		 * Note that unlike the reboot() syscall, the process must have
6390 		 * this capability in the root namespace because exposing
6391 		 * /dev/kvm into a container does not limit the scope of the
6392 		 * iTLB multihit bug to that container. In other words,
6393 		 * this must use capable(), not ns_capable().
6394 		 */
6395 		if (!capable(CAP_SYS_BOOT)) {
6396 			r = -EPERM;
6397 			break;
6398 		}
6399 
6400 		if (cap->args[0])
6401 			break;
6402 
6403 		mutex_lock(&kvm->lock);
6404 		if (!kvm->created_vcpus) {
6405 			kvm->arch.disable_nx_huge_pages = true;
6406 			r = 0;
6407 		}
6408 		mutex_unlock(&kvm->lock);
6409 		break;
6410 	default:
6411 		r = -EINVAL;
6412 		break;
6413 	}
6414 	return r;
6415 }
6416 
6417 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6418 {
6419 	struct kvm_x86_msr_filter *msr_filter;
6420 
6421 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6422 	if (!msr_filter)
6423 		return NULL;
6424 
6425 	msr_filter->default_allow = default_allow;
6426 	return msr_filter;
6427 }
6428 
6429 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6430 {
6431 	u32 i;
6432 
6433 	if (!msr_filter)
6434 		return;
6435 
6436 	for (i = 0; i < msr_filter->count; i++)
6437 		kfree(msr_filter->ranges[i].bitmap);
6438 
6439 	kfree(msr_filter);
6440 }
6441 
6442 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6443 			      struct kvm_msr_filter_range *user_range)
6444 {
6445 	unsigned long *bitmap = NULL;
6446 	size_t bitmap_size;
6447 
6448 	if (!user_range->nmsrs)
6449 		return 0;
6450 
6451 	if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6452 		return -EINVAL;
6453 
6454 	if (!user_range->flags)
6455 		return -EINVAL;
6456 
6457 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6458 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6459 		return -EINVAL;
6460 
6461 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6462 	if (IS_ERR(bitmap))
6463 		return PTR_ERR(bitmap);
6464 
6465 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6466 		.flags = user_range->flags,
6467 		.base = user_range->base,
6468 		.nmsrs = user_range->nmsrs,
6469 		.bitmap = bitmap,
6470 	};
6471 
6472 	msr_filter->count++;
6473 	return 0;
6474 }
6475 
6476 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6477 				       struct kvm_msr_filter *filter)
6478 {
6479 	struct kvm_x86_msr_filter *new_filter, *old_filter;
6480 	bool default_allow;
6481 	bool empty = true;
6482 	int r = 0;
6483 	u32 i;
6484 
6485 	if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6486 		return -EINVAL;
6487 
6488 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6489 		empty &= !filter->ranges[i].nmsrs;
6490 
6491 	default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6492 	if (empty && !default_allow)
6493 		return -EINVAL;
6494 
6495 	new_filter = kvm_alloc_msr_filter(default_allow);
6496 	if (!new_filter)
6497 		return -ENOMEM;
6498 
6499 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6500 		r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6501 		if (r) {
6502 			kvm_free_msr_filter(new_filter);
6503 			return r;
6504 		}
6505 	}
6506 
6507 	mutex_lock(&kvm->lock);
6508 
6509 	/* The per-VM filter is protected by kvm->lock... */
6510 	old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
6511 
6512 	rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
6513 	synchronize_srcu(&kvm->srcu);
6514 
6515 	kvm_free_msr_filter(old_filter);
6516 
6517 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6518 	mutex_unlock(&kvm->lock);
6519 
6520 	return 0;
6521 }
6522 
6523 #ifdef CONFIG_KVM_COMPAT
6524 /* for KVM_X86_SET_MSR_FILTER */
6525 struct kvm_msr_filter_range_compat {
6526 	__u32 flags;
6527 	__u32 nmsrs;
6528 	__u32 base;
6529 	__u32 bitmap;
6530 };
6531 
6532 struct kvm_msr_filter_compat {
6533 	__u32 flags;
6534 	struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6535 };
6536 
6537 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6538 
6539 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6540 			      unsigned long arg)
6541 {
6542 	void __user *argp = (void __user *)arg;
6543 	struct kvm *kvm = filp->private_data;
6544 	long r = -ENOTTY;
6545 
6546 	switch (ioctl) {
6547 	case KVM_X86_SET_MSR_FILTER_COMPAT: {
6548 		struct kvm_msr_filter __user *user_msr_filter = argp;
6549 		struct kvm_msr_filter_compat filter_compat;
6550 		struct kvm_msr_filter filter;
6551 		int i;
6552 
6553 		if (copy_from_user(&filter_compat, user_msr_filter,
6554 				   sizeof(filter_compat)))
6555 			return -EFAULT;
6556 
6557 		filter.flags = filter_compat.flags;
6558 		for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6559 			struct kvm_msr_filter_range_compat *cr;
6560 
6561 			cr = &filter_compat.ranges[i];
6562 			filter.ranges[i] = (struct kvm_msr_filter_range) {
6563 				.flags = cr->flags,
6564 				.nmsrs = cr->nmsrs,
6565 				.base = cr->base,
6566 				.bitmap = (__u8 *)(ulong)cr->bitmap,
6567 			};
6568 		}
6569 
6570 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6571 		break;
6572 	}
6573 	}
6574 
6575 	return r;
6576 }
6577 #endif
6578 
6579 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6580 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6581 {
6582 	struct kvm_vcpu *vcpu;
6583 	unsigned long i;
6584 	int ret = 0;
6585 
6586 	mutex_lock(&kvm->lock);
6587 	kvm_for_each_vcpu(i, vcpu, kvm) {
6588 		if (!vcpu->arch.pv_time.active)
6589 			continue;
6590 
6591 		ret = kvm_set_guest_paused(vcpu);
6592 		if (ret) {
6593 			kvm_err("Failed to pause guest VCPU%d: %d\n",
6594 				vcpu->vcpu_id, ret);
6595 			break;
6596 		}
6597 	}
6598 	mutex_unlock(&kvm->lock);
6599 
6600 	return ret ? NOTIFY_BAD : NOTIFY_DONE;
6601 }
6602 
6603 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6604 {
6605 	switch (state) {
6606 	case PM_HIBERNATION_PREPARE:
6607 	case PM_SUSPEND_PREPARE:
6608 		return kvm_arch_suspend_notifier(kvm);
6609 	}
6610 
6611 	return NOTIFY_DONE;
6612 }
6613 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6614 
6615 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6616 {
6617 	struct kvm_clock_data data = { 0 };
6618 
6619 	get_kvmclock(kvm, &data);
6620 	if (copy_to_user(argp, &data, sizeof(data)))
6621 		return -EFAULT;
6622 
6623 	return 0;
6624 }
6625 
6626 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6627 {
6628 	struct kvm_arch *ka = &kvm->arch;
6629 	struct kvm_clock_data data;
6630 	u64 now_raw_ns;
6631 
6632 	if (copy_from_user(&data, argp, sizeof(data)))
6633 		return -EFAULT;
6634 
6635 	/*
6636 	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6637 	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6638 	 */
6639 	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6640 		return -EINVAL;
6641 
6642 	kvm_hv_request_tsc_page_update(kvm);
6643 	kvm_start_pvclock_update(kvm);
6644 	pvclock_update_vm_gtod_copy(kvm);
6645 
6646 	/*
6647 	 * This pairs with kvm_guest_time_update(): when masterclock is
6648 	 * in use, we use master_kernel_ns + kvmclock_offset to set
6649 	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6650 	 * is slightly ahead) here we risk going negative on unsigned
6651 	 * 'system_time' when 'data.clock' is very small.
6652 	 */
6653 	if (data.flags & KVM_CLOCK_REALTIME) {
6654 		u64 now_real_ns = ktime_get_real_ns();
6655 
6656 		/*
6657 		 * Avoid stepping the kvmclock backwards.
6658 		 */
6659 		if (now_real_ns > data.realtime)
6660 			data.clock += now_real_ns - data.realtime;
6661 	}
6662 
6663 	if (ka->use_master_clock)
6664 		now_raw_ns = ka->master_kernel_ns;
6665 	else
6666 		now_raw_ns = get_kvmclock_base_ns();
6667 	ka->kvmclock_offset = data.clock - now_raw_ns;
6668 	kvm_end_pvclock_update(kvm);
6669 	return 0;
6670 }
6671 
6672 long kvm_arch_vm_ioctl(struct file *filp,
6673 		       unsigned int ioctl, unsigned long arg)
6674 {
6675 	struct kvm *kvm = filp->private_data;
6676 	void __user *argp = (void __user *)arg;
6677 	int r = -ENOTTY;
6678 	/*
6679 	 * This union makes it completely explicit to gcc-3.x
6680 	 * that these two variables' stack usage should be
6681 	 * combined, not added together.
6682 	 */
6683 	union {
6684 		struct kvm_pit_state ps;
6685 		struct kvm_pit_state2 ps2;
6686 		struct kvm_pit_config pit_config;
6687 	} u;
6688 
6689 	switch (ioctl) {
6690 	case KVM_SET_TSS_ADDR:
6691 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6692 		break;
6693 	case KVM_SET_IDENTITY_MAP_ADDR: {
6694 		u64 ident_addr;
6695 
6696 		mutex_lock(&kvm->lock);
6697 		r = -EINVAL;
6698 		if (kvm->created_vcpus)
6699 			goto set_identity_unlock;
6700 		r = -EFAULT;
6701 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6702 			goto set_identity_unlock;
6703 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6704 set_identity_unlock:
6705 		mutex_unlock(&kvm->lock);
6706 		break;
6707 	}
6708 	case KVM_SET_NR_MMU_PAGES:
6709 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6710 		break;
6711 	case KVM_GET_NR_MMU_PAGES:
6712 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6713 		break;
6714 	case KVM_CREATE_IRQCHIP: {
6715 		mutex_lock(&kvm->lock);
6716 
6717 		r = -EEXIST;
6718 		if (irqchip_in_kernel(kvm))
6719 			goto create_irqchip_unlock;
6720 
6721 		r = -EINVAL;
6722 		if (kvm->created_vcpus)
6723 			goto create_irqchip_unlock;
6724 
6725 		r = kvm_pic_init(kvm);
6726 		if (r)
6727 			goto create_irqchip_unlock;
6728 
6729 		r = kvm_ioapic_init(kvm);
6730 		if (r) {
6731 			kvm_pic_destroy(kvm);
6732 			goto create_irqchip_unlock;
6733 		}
6734 
6735 		r = kvm_setup_default_irq_routing(kvm);
6736 		if (r) {
6737 			kvm_ioapic_destroy(kvm);
6738 			kvm_pic_destroy(kvm);
6739 			goto create_irqchip_unlock;
6740 		}
6741 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6742 		smp_wmb();
6743 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6744 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6745 	create_irqchip_unlock:
6746 		mutex_unlock(&kvm->lock);
6747 		break;
6748 	}
6749 	case KVM_CREATE_PIT:
6750 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6751 		goto create_pit;
6752 	case KVM_CREATE_PIT2:
6753 		r = -EFAULT;
6754 		if (copy_from_user(&u.pit_config, argp,
6755 				   sizeof(struct kvm_pit_config)))
6756 			goto out;
6757 	create_pit:
6758 		mutex_lock(&kvm->lock);
6759 		r = -EEXIST;
6760 		if (kvm->arch.vpit)
6761 			goto create_pit_unlock;
6762 		r = -ENOMEM;
6763 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6764 		if (kvm->arch.vpit)
6765 			r = 0;
6766 	create_pit_unlock:
6767 		mutex_unlock(&kvm->lock);
6768 		break;
6769 	case KVM_GET_IRQCHIP: {
6770 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6771 		struct kvm_irqchip *chip;
6772 
6773 		chip = memdup_user(argp, sizeof(*chip));
6774 		if (IS_ERR(chip)) {
6775 			r = PTR_ERR(chip);
6776 			goto out;
6777 		}
6778 
6779 		r = -ENXIO;
6780 		if (!irqchip_kernel(kvm))
6781 			goto get_irqchip_out;
6782 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6783 		if (r)
6784 			goto get_irqchip_out;
6785 		r = -EFAULT;
6786 		if (copy_to_user(argp, chip, sizeof(*chip)))
6787 			goto get_irqchip_out;
6788 		r = 0;
6789 	get_irqchip_out:
6790 		kfree(chip);
6791 		break;
6792 	}
6793 	case KVM_SET_IRQCHIP: {
6794 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6795 		struct kvm_irqchip *chip;
6796 
6797 		chip = memdup_user(argp, sizeof(*chip));
6798 		if (IS_ERR(chip)) {
6799 			r = PTR_ERR(chip);
6800 			goto out;
6801 		}
6802 
6803 		r = -ENXIO;
6804 		if (!irqchip_kernel(kvm))
6805 			goto set_irqchip_out;
6806 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6807 	set_irqchip_out:
6808 		kfree(chip);
6809 		break;
6810 	}
6811 	case KVM_GET_PIT: {
6812 		r = -EFAULT;
6813 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6814 			goto out;
6815 		r = -ENXIO;
6816 		if (!kvm->arch.vpit)
6817 			goto out;
6818 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6819 		if (r)
6820 			goto out;
6821 		r = -EFAULT;
6822 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6823 			goto out;
6824 		r = 0;
6825 		break;
6826 	}
6827 	case KVM_SET_PIT: {
6828 		r = -EFAULT;
6829 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6830 			goto out;
6831 		mutex_lock(&kvm->lock);
6832 		r = -ENXIO;
6833 		if (!kvm->arch.vpit)
6834 			goto set_pit_out;
6835 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6836 set_pit_out:
6837 		mutex_unlock(&kvm->lock);
6838 		break;
6839 	}
6840 	case KVM_GET_PIT2: {
6841 		r = -ENXIO;
6842 		if (!kvm->arch.vpit)
6843 			goto out;
6844 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6845 		if (r)
6846 			goto out;
6847 		r = -EFAULT;
6848 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6849 			goto out;
6850 		r = 0;
6851 		break;
6852 	}
6853 	case KVM_SET_PIT2: {
6854 		r = -EFAULT;
6855 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6856 			goto out;
6857 		mutex_lock(&kvm->lock);
6858 		r = -ENXIO;
6859 		if (!kvm->arch.vpit)
6860 			goto set_pit2_out;
6861 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6862 set_pit2_out:
6863 		mutex_unlock(&kvm->lock);
6864 		break;
6865 	}
6866 	case KVM_REINJECT_CONTROL: {
6867 		struct kvm_reinject_control control;
6868 		r =  -EFAULT;
6869 		if (copy_from_user(&control, argp, sizeof(control)))
6870 			goto out;
6871 		r = -ENXIO;
6872 		if (!kvm->arch.vpit)
6873 			goto out;
6874 		r = kvm_vm_ioctl_reinject(kvm, &control);
6875 		break;
6876 	}
6877 	case KVM_SET_BOOT_CPU_ID:
6878 		r = 0;
6879 		mutex_lock(&kvm->lock);
6880 		if (kvm->created_vcpus)
6881 			r = -EBUSY;
6882 		else
6883 			kvm->arch.bsp_vcpu_id = arg;
6884 		mutex_unlock(&kvm->lock);
6885 		break;
6886 #ifdef CONFIG_KVM_XEN
6887 	case KVM_XEN_HVM_CONFIG: {
6888 		struct kvm_xen_hvm_config xhc;
6889 		r = -EFAULT;
6890 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
6891 			goto out;
6892 		r = kvm_xen_hvm_config(kvm, &xhc);
6893 		break;
6894 	}
6895 	case KVM_XEN_HVM_GET_ATTR: {
6896 		struct kvm_xen_hvm_attr xha;
6897 
6898 		r = -EFAULT;
6899 		if (copy_from_user(&xha, argp, sizeof(xha)))
6900 			goto out;
6901 		r = kvm_xen_hvm_get_attr(kvm, &xha);
6902 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6903 			r = -EFAULT;
6904 		break;
6905 	}
6906 	case KVM_XEN_HVM_SET_ATTR: {
6907 		struct kvm_xen_hvm_attr xha;
6908 
6909 		r = -EFAULT;
6910 		if (copy_from_user(&xha, argp, sizeof(xha)))
6911 			goto out;
6912 		r = kvm_xen_hvm_set_attr(kvm, &xha);
6913 		break;
6914 	}
6915 	case KVM_XEN_HVM_EVTCHN_SEND: {
6916 		struct kvm_irq_routing_xen_evtchn uxe;
6917 
6918 		r = -EFAULT;
6919 		if (copy_from_user(&uxe, argp, sizeof(uxe)))
6920 			goto out;
6921 		r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
6922 		break;
6923 	}
6924 #endif
6925 	case KVM_SET_CLOCK:
6926 		r = kvm_vm_ioctl_set_clock(kvm, argp);
6927 		break;
6928 	case KVM_GET_CLOCK:
6929 		r = kvm_vm_ioctl_get_clock(kvm, argp);
6930 		break;
6931 	case KVM_SET_TSC_KHZ: {
6932 		u32 user_tsc_khz;
6933 
6934 		r = -EINVAL;
6935 		user_tsc_khz = (u32)arg;
6936 
6937 		if (kvm_caps.has_tsc_control &&
6938 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6939 			goto out;
6940 
6941 		if (user_tsc_khz == 0)
6942 			user_tsc_khz = tsc_khz;
6943 
6944 		WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
6945 		r = 0;
6946 
6947 		goto out;
6948 	}
6949 	case KVM_GET_TSC_KHZ: {
6950 		r = READ_ONCE(kvm->arch.default_tsc_khz);
6951 		goto out;
6952 	}
6953 	case KVM_MEMORY_ENCRYPT_OP: {
6954 		r = -ENOTTY;
6955 		if (!kvm_x86_ops.mem_enc_ioctl)
6956 			goto out;
6957 
6958 		r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
6959 		break;
6960 	}
6961 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
6962 		struct kvm_enc_region region;
6963 
6964 		r = -EFAULT;
6965 		if (copy_from_user(&region, argp, sizeof(region)))
6966 			goto out;
6967 
6968 		r = -ENOTTY;
6969 		if (!kvm_x86_ops.mem_enc_register_region)
6970 			goto out;
6971 
6972 		r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
6973 		break;
6974 	}
6975 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6976 		struct kvm_enc_region region;
6977 
6978 		r = -EFAULT;
6979 		if (copy_from_user(&region, argp, sizeof(region)))
6980 			goto out;
6981 
6982 		r = -ENOTTY;
6983 		if (!kvm_x86_ops.mem_enc_unregister_region)
6984 			goto out;
6985 
6986 		r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
6987 		break;
6988 	}
6989 	case KVM_HYPERV_EVENTFD: {
6990 		struct kvm_hyperv_eventfd hvevfd;
6991 
6992 		r = -EFAULT;
6993 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6994 			goto out;
6995 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6996 		break;
6997 	}
6998 	case KVM_SET_PMU_EVENT_FILTER:
6999 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7000 		break;
7001 	case KVM_X86_SET_MSR_FILTER: {
7002 		struct kvm_msr_filter __user *user_msr_filter = argp;
7003 		struct kvm_msr_filter filter;
7004 
7005 		if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7006 			return -EFAULT;
7007 
7008 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7009 		break;
7010 	}
7011 	default:
7012 		r = -ENOTTY;
7013 	}
7014 out:
7015 	return r;
7016 }
7017 
7018 static void kvm_init_msr_list(void)
7019 {
7020 	u32 dummy[2];
7021 	unsigned i;
7022 
7023 	BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
7024 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
7025 
7026 	num_msrs_to_save = 0;
7027 	num_emulated_msrs = 0;
7028 	num_msr_based_features = 0;
7029 
7030 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
7031 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
7032 			continue;
7033 
7034 		/*
7035 		 * Even MSRs that are valid in the host may not be exposed
7036 		 * to the guests in some cases.
7037 		 */
7038 		switch (msrs_to_save_all[i]) {
7039 		case MSR_IA32_BNDCFGS:
7040 			if (!kvm_mpx_supported())
7041 				continue;
7042 			break;
7043 		case MSR_TSC_AUX:
7044 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7045 			    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7046 				continue;
7047 			break;
7048 		case MSR_IA32_UMWAIT_CONTROL:
7049 			if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7050 				continue;
7051 			break;
7052 		case MSR_IA32_RTIT_CTL:
7053 		case MSR_IA32_RTIT_STATUS:
7054 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7055 				continue;
7056 			break;
7057 		case MSR_IA32_RTIT_CR3_MATCH:
7058 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7059 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7060 				continue;
7061 			break;
7062 		case MSR_IA32_RTIT_OUTPUT_BASE:
7063 		case MSR_IA32_RTIT_OUTPUT_MASK:
7064 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7065 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7066 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7067 				continue;
7068 			break;
7069 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7070 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7071 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
7072 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
7073 				continue;
7074 			break;
7075 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7076 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
7077 			    min(KVM_INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp))
7078 				continue;
7079 			break;
7080 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7081 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
7082 			    min(KVM_INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp))
7083 				continue;
7084 			break;
7085 		case MSR_IA32_XFD:
7086 		case MSR_IA32_XFD_ERR:
7087 			if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7088 				continue;
7089 			break;
7090 		default:
7091 			break;
7092 		}
7093 
7094 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
7095 	}
7096 
7097 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7098 		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7099 			continue;
7100 
7101 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7102 	}
7103 
7104 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
7105 		struct kvm_msr_entry msr;
7106 
7107 		msr.index = msr_based_features_all[i];
7108 		if (kvm_get_msr_feature(&msr))
7109 			continue;
7110 
7111 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
7112 	}
7113 }
7114 
7115 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7116 			   const void *v)
7117 {
7118 	int handled = 0;
7119 	int n;
7120 
7121 	do {
7122 		n = min(len, 8);
7123 		if (!(lapic_in_kernel(vcpu) &&
7124 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7125 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7126 			break;
7127 		handled += n;
7128 		addr += n;
7129 		len -= n;
7130 		v += n;
7131 	} while (len);
7132 
7133 	return handled;
7134 }
7135 
7136 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7137 {
7138 	int handled = 0;
7139 	int n;
7140 
7141 	do {
7142 		n = min(len, 8);
7143 		if (!(lapic_in_kernel(vcpu) &&
7144 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7145 					 addr, n, v))
7146 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7147 			break;
7148 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7149 		handled += n;
7150 		addr += n;
7151 		len -= n;
7152 		v += n;
7153 	} while (len);
7154 
7155 	return handled;
7156 }
7157 
7158 void kvm_set_segment(struct kvm_vcpu *vcpu,
7159 		     struct kvm_segment *var, int seg)
7160 {
7161 	static_call(kvm_x86_set_segment)(vcpu, var, seg);
7162 }
7163 
7164 void kvm_get_segment(struct kvm_vcpu *vcpu,
7165 		     struct kvm_segment *var, int seg)
7166 {
7167 	static_call(kvm_x86_get_segment)(vcpu, var, seg);
7168 }
7169 
7170 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7171 			   struct x86_exception *exception)
7172 {
7173 	struct kvm_mmu *mmu = vcpu->arch.mmu;
7174 	gpa_t t_gpa;
7175 
7176 	BUG_ON(!mmu_is_nested(vcpu));
7177 
7178 	/* NPT walks are always user-walks */
7179 	access |= PFERR_USER_MASK;
7180 	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7181 
7182 	return t_gpa;
7183 }
7184 
7185 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7186 			      struct x86_exception *exception)
7187 {
7188 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7189 
7190 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7191 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7192 }
7193 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7194 
7195 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7196 			       struct x86_exception *exception)
7197 {
7198 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7199 
7200 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7201 	access |= PFERR_WRITE_MASK;
7202 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7203 }
7204 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7205 
7206 /* uses this to access any guest's mapped memory without checking CPL */
7207 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7208 				struct x86_exception *exception)
7209 {
7210 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7211 
7212 	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7213 }
7214 
7215 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7216 				      struct kvm_vcpu *vcpu, u64 access,
7217 				      struct x86_exception *exception)
7218 {
7219 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7220 	void *data = val;
7221 	int r = X86EMUL_CONTINUE;
7222 
7223 	while (bytes) {
7224 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7225 		unsigned offset = addr & (PAGE_SIZE-1);
7226 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7227 		int ret;
7228 
7229 		if (gpa == INVALID_GPA)
7230 			return X86EMUL_PROPAGATE_FAULT;
7231 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7232 					       offset, toread);
7233 		if (ret < 0) {
7234 			r = X86EMUL_IO_NEEDED;
7235 			goto out;
7236 		}
7237 
7238 		bytes -= toread;
7239 		data += toread;
7240 		addr += toread;
7241 	}
7242 out:
7243 	return r;
7244 }
7245 
7246 /* used for instruction fetching */
7247 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7248 				gva_t addr, void *val, unsigned int bytes,
7249 				struct x86_exception *exception)
7250 {
7251 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7252 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7253 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7254 	unsigned offset;
7255 	int ret;
7256 
7257 	/* Inline kvm_read_guest_virt_helper for speed.  */
7258 	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7259 				    exception);
7260 	if (unlikely(gpa == INVALID_GPA))
7261 		return X86EMUL_PROPAGATE_FAULT;
7262 
7263 	offset = addr & (PAGE_SIZE-1);
7264 	if (WARN_ON(offset + bytes > PAGE_SIZE))
7265 		bytes = (unsigned)PAGE_SIZE - offset;
7266 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7267 				       offset, bytes);
7268 	if (unlikely(ret < 0))
7269 		return X86EMUL_IO_NEEDED;
7270 
7271 	return X86EMUL_CONTINUE;
7272 }
7273 
7274 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7275 			       gva_t addr, void *val, unsigned int bytes,
7276 			       struct x86_exception *exception)
7277 {
7278 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7279 
7280 	/*
7281 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7282 	 * is returned, but our callers are not ready for that and they blindly
7283 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
7284 	 * uninitialized kernel stack memory into cr2 and error code.
7285 	 */
7286 	memset(exception, 0, sizeof(*exception));
7287 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7288 					  exception);
7289 }
7290 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7291 
7292 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7293 			     gva_t addr, void *val, unsigned int bytes,
7294 			     struct x86_exception *exception, bool system)
7295 {
7296 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7297 	u64 access = 0;
7298 
7299 	if (system)
7300 		access |= PFERR_IMPLICIT_ACCESS;
7301 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7302 		access |= PFERR_USER_MASK;
7303 
7304 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7305 }
7306 
7307 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7308 				      struct kvm_vcpu *vcpu, u64 access,
7309 				      struct x86_exception *exception)
7310 {
7311 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7312 	void *data = val;
7313 	int r = X86EMUL_CONTINUE;
7314 
7315 	while (bytes) {
7316 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7317 		unsigned offset = addr & (PAGE_SIZE-1);
7318 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7319 		int ret;
7320 
7321 		if (gpa == INVALID_GPA)
7322 			return X86EMUL_PROPAGATE_FAULT;
7323 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7324 		if (ret < 0) {
7325 			r = X86EMUL_IO_NEEDED;
7326 			goto out;
7327 		}
7328 
7329 		bytes -= towrite;
7330 		data += towrite;
7331 		addr += towrite;
7332 	}
7333 out:
7334 	return r;
7335 }
7336 
7337 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7338 			      unsigned int bytes, struct x86_exception *exception,
7339 			      bool system)
7340 {
7341 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7342 	u64 access = PFERR_WRITE_MASK;
7343 
7344 	if (system)
7345 		access |= PFERR_IMPLICIT_ACCESS;
7346 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7347 		access |= PFERR_USER_MASK;
7348 
7349 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7350 					   access, exception);
7351 }
7352 
7353 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7354 				unsigned int bytes, struct x86_exception *exception)
7355 {
7356 	/* kvm_write_guest_virt_system can pull in tons of pages. */
7357 	vcpu->arch.l1tf_flush_l1d = true;
7358 
7359 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7360 					   PFERR_WRITE_MASK, exception);
7361 }
7362 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7363 
7364 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7365 				void *insn, int insn_len)
7366 {
7367 	return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
7368 							    insn, insn_len);
7369 }
7370 
7371 int handle_ud(struct kvm_vcpu *vcpu)
7372 {
7373 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7374 	int fep_flags = READ_ONCE(force_emulation_prefix);
7375 	int emul_type = EMULTYPE_TRAP_UD;
7376 	char sig[5]; /* ud2; .ascii "kvm" */
7377 	struct x86_exception e;
7378 
7379 	if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
7380 		return 1;
7381 
7382 	if (fep_flags &&
7383 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7384 				sig, sizeof(sig), &e) == 0 &&
7385 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7386 		if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7387 			kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7388 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7389 		emul_type = EMULTYPE_TRAP_UD_FORCED;
7390 	}
7391 
7392 	return kvm_emulate_instruction(vcpu, emul_type);
7393 }
7394 EXPORT_SYMBOL_GPL(handle_ud);
7395 
7396 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7397 			    gpa_t gpa, bool write)
7398 {
7399 	/* For APIC access vmexit */
7400 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7401 		return 1;
7402 
7403 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7404 		trace_vcpu_match_mmio(gva, gpa, write, true);
7405 		return 1;
7406 	}
7407 
7408 	return 0;
7409 }
7410 
7411 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7412 				gpa_t *gpa, struct x86_exception *exception,
7413 				bool write)
7414 {
7415 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7416 	u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7417 		| (write ? PFERR_WRITE_MASK : 0);
7418 
7419 	/*
7420 	 * currently PKRU is only applied to ept enabled guest so
7421 	 * there is no pkey in EPT page table for L1 guest or EPT
7422 	 * shadow page table for L2 guest.
7423 	 */
7424 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7425 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
7426 			      vcpu->arch.mmio_access, 0, access))) {
7427 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7428 					(gva & (PAGE_SIZE - 1));
7429 		trace_vcpu_match_mmio(gva, *gpa, write, false);
7430 		return 1;
7431 	}
7432 
7433 	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7434 
7435 	if (*gpa == INVALID_GPA)
7436 		return -1;
7437 
7438 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7439 }
7440 
7441 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7442 			const void *val, int bytes)
7443 {
7444 	int ret;
7445 
7446 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7447 	if (ret < 0)
7448 		return 0;
7449 	kvm_page_track_write(vcpu, gpa, val, bytes);
7450 	return 1;
7451 }
7452 
7453 struct read_write_emulator_ops {
7454 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7455 				  int bytes);
7456 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7457 				  void *val, int bytes);
7458 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7459 			       int bytes, void *val);
7460 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7461 				    void *val, int bytes);
7462 	bool write;
7463 };
7464 
7465 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7466 {
7467 	if (vcpu->mmio_read_completed) {
7468 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7469 			       vcpu->mmio_fragments[0].gpa, val);
7470 		vcpu->mmio_read_completed = 0;
7471 		return 1;
7472 	}
7473 
7474 	return 0;
7475 }
7476 
7477 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7478 			void *val, int bytes)
7479 {
7480 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7481 }
7482 
7483 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7484 			 void *val, int bytes)
7485 {
7486 	return emulator_write_phys(vcpu, gpa, val, bytes);
7487 }
7488 
7489 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7490 {
7491 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7492 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
7493 }
7494 
7495 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7496 			  void *val, int bytes)
7497 {
7498 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7499 	return X86EMUL_IO_NEEDED;
7500 }
7501 
7502 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7503 			   void *val, int bytes)
7504 {
7505 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7506 
7507 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7508 	return X86EMUL_CONTINUE;
7509 }
7510 
7511 static const struct read_write_emulator_ops read_emultor = {
7512 	.read_write_prepare = read_prepare,
7513 	.read_write_emulate = read_emulate,
7514 	.read_write_mmio = vcpu_mmio_read,
7515 	.read_write_exit_mmio = read_exit_mmio,
7516 };
7517 
7518 static const struct read_write_emulator_ops write_emultor = {
7519 	.read_write_emulate = write_emulate,
7520 	.read_write_mmio = write_mmio,
7521 	.read_write_exit_mmio = write_exit_mmio,
7522 	.write = true,
7523 };
7524 
7525 static int emulator_read_write_onepage(unsigned long addr, void *val,
7526 				       unsigned int bytes,
7527 				       struct x86_exception *exception,
7528 				       struct kvm_vcpu *vcpu,
7529 				       const struct read_write_emulator_ops *ops)
7530 {
7531 	gpa_t gpa;
7532 	int handled, ret;
7533 	bool write = ops->write;
7534 	struct kvm_mmio_fragment *frag;
7535 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7536 
7537 	/*
7538 	 * If the exit was due to a NPF we may already have a GPA.
7539 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7540 	 * Note, this cannot be used on string operations since string
7541 	 * operation using rep will only have the initial GPA from the NPF
7542 	 * occurred.
7543 	 */
7544 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7545 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7546 		gpa = ctxt->gpa_val;
7547 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7548 	} else {
7549 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7550 		if (ret < 0)
7551 			return X86EMUL_PROPAGATE_FAULT;
7552 	}
7553 
7554 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7555 		return X86EMUL_CONTINUE;
7556 
7557 	/*
7558 	 * Is this MMIO handled locally?
7559 	 */
7560 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7561 	if (handled == bytes)
7562 		return X86EMUL_CONTINUE;
7563 
7564 	gpa += handled;
7565 	bytes -= handled;
7566 	val += handled;
7567 
7568 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7569 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7570 	frag->gpa = gpa;
7571 	frag->data = val;
7572 	frag->len = bytes;
7573 	return X86EMUL_CONTINUE;
7574 }
7575 
7576 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7577 			unsigned long addr,
7578 			void *val, unsigned int bytes,
7579 			struct x86_exception *exception,
7580 			const struct read_write_emulator_ops *ops)
7581 {
7582 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7583 	gpa_t gpa;
7584 	int rc;
7585 
7586 	if (ops->read_write_prepare &&
7587 		  ops->read_write_prepare(vcpu, val, bytes))
7588 		return X86EMUL_CONTINUE;
7589 
7590 	vcpu->mmio_nr_fragments = 0;
7591 
7592 	/* Crossing a page boundary? */
7593 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7594 		int now;
7595 
7596 		now = -addr & ~PAGE_MASK;
7597 		rc = emulator_read_write_onepage(addr, val, now, exception,
7598 						 vcpu, ops);
7599 
7600 		if (rc != X86EMUL_CONTINUE)
7601 			return rc;
7602 		addr += now;
7603 		if (ctxt->mode != X86EMUL_MODE_PROT64)
7604 			addr = (u32)addr;
7605 		val += now;
7606 		bytes -= now;
7607 	}
7608 
7609 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
7610 					 vcpu, ops);
7611 	if (rc != X86EMUL_CONTINUE)
7612 		return rc;
7613 
7614 	if (!vcpu->mmio_nr_fragments)
7615 		return rc;
7616 
7617 	gpa = vcpu->mmio_fragments[0].gpa;
7618 
7619 	vcpu->mmio_needed = 1;
7620 	vcpu->mmio_cur_fragment = 0;
7621 
7622 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7623 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7624 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
7625 	vcpu->run->mmio.phys_addr = gpa;
7626 
7627 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7628 }
7629 
7630 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7631 				  unsigned long addr,
7632 				  void *val,
7633 				  unsigned int bytes,
7634 				  struct x86_exception *exception)
7635 {
7636 	return emulator_read_write(ctxt, addr, val, bytes,
7637 				   exception, &read_emultor);
7638 }
7639 
7640 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7641 			    unsigned long addr,
7642 			    const void *val,
7643 			    unsigned int bytes,
7644 			    struct x86_exception *exception)
7645 {
7646 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
7647 				   exception, &write_emultor);
7648 }
7649 
7650 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7651 	(__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7652 
7653 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7654 				     unsigned long addr,
7655 				     const void *old,
7656 				     const void *new,
7657 				     unsigned int bytes,
7658 				     struct x86_exception *exception)
7659 {
7660 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7661 	u64 page_line_mask;
7662 	unsigned long hva;
7663 	gpa_t gpa;
7664 	int r;
7665 
7666 	/* guests cmpxchg8b have to be emulated atomically */
7667 	if (bytes > 8 || (bytes & (bytes - 1)))
7668 		goto emul_write;
7669 
7670 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7671 
7672 	if (gpa == INVALID_GPA ||
7673 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7674 		goto emul_write;
7675 
7676 	/*
7677 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
7678 	 * enabled in the host and the access splits a cache line.
7679 	 */
7680 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7681 		page_line_mask = ~(cache_line_size() - 1);
7682 	else
7683 		page_line_mask = PAGE_MASK;
7684 
7685 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7686 		goto emul_write;
7687 
7688 	hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7689 	if (kvm_is_error_hva(hva))
7690 		goto emul_write;
7691 
7692 	hva += offset_in_page(gpa);
7693 
7694 	switch (bytes) {
7695 	case 1:
7696 		r = emulator_try_cmpxchg_user(u8, hva, old, new);
7697 		break;
7698 	case 2:
7699 		r = emulator_try_cmpxchg_user(u16, hva, old, new);
7700 		break;
7701 	case 4:
7702 		r = emulator_try_cmpxchg_user(u32, hva, old, new);
7703 		break;
7704 	case 8:
7705 		r = emulator_try_cmpxchg_user(u64, hva, old, new);
7706 		break;
7707 	default:
7708 		BUG();
7709 	}
7710 
7711 	if (r < 0)
7712 		return X86EMUL_UNHANDLEABLE;
7713 	if (r)
7714 		return X86EMUL_CMPXCHG_FAILED;
7715 
7716 	kvm_page_track_write(vcpu, gpa, new, bytes);
7717 
7718 	return X86EMUL_CONTINUE;
7719 
7720 emul_write:
7721 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
7722 
7723 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7724 }
7725 
7726 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7727 			       unsigned short port, void *data,
7728 			       unsigned int count, bool in)
7729 {
7730 	unsigned i;
7731 	int r;
7732 
7733 	WARN_ON_ONCE(vcpu->arch.pio.count);
7734 	for (i = 0; i < count; i++) {
7735 		if (in)
7736 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
7737 		else
7738 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
7739 
7740 		if (r) {
7741 			if (i == 0)
7742 				goto userspace_io;
7743 
7744 			/*
7745 			 * Userspace must have unregistered the device while PIO
7746 			 * was running.  Drop writes / read as 0.
7747 			 */
7748 			if (in)
7749 				memset(data, 0, size * (count - i));
7750 			break;
7751 		}
7752 
7753 		data += size;
7754 	}
7755 	return 1;
7756 
7757 userspace_io:
7758 	vcpu->arch.pio.port = port;
7759 	vcpu->arch.pio.in = in;
7760 	vcpu->arch.pio.count = count;
7761 	vcpu->arch.pio.size = size;
7762 
7763 	if (in)
7764 		memset(vcpu->arch.pio_data, 0, size * count);
7765 	else
7766 		memcpy(vcpu->arch.pio_data, data, size * count);
7767 
7768 	vcpu->run->exit_reason = KVM_EXIT_IO;
7769 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7770 	vcpu->run->io.size = size;
7771 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7772 	vcpu->run->io.count = count;
7773 	vcpu->run->io.port = port;
7774 	return 0;
7775 }
7776 
7777 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7778       			   unsigned short port, void *val, unsigned int count)
7779 {
7780 	int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
7781 	if (r)
7782 		trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
7783 
7784 	return r;
7785 }
7786 
7787 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7788 {
7789 	int size = vcpu->arch.pio.size;
7790 	unsigned int count = vcpu->arch.pio.count;
7791 	memcpy(val, vcpu->arch.pio_data, size * count);
7792 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7793 	vcpu->arch.pio.count = 0;
7794 }
7795 
7796 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7797 				    int size, unsigned short port, void *val,
7798 				    unsigned int count)
7799 {
7800 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7801 	if (vcpu->arch.pio.count) {
7802 		/*
7803 		 * Complete a previous iteration that required userspace I/O.
7804 		 * Note, @count isn't guaranteed to match pio.count as userspace
7805 		 * can modify ECX before rerunning the vCPU.  Ignore any such
7806 		 * shenanigans as KVM doesn't support modifying the rep count,
7807 		 * and the emulator ensures @count doesn't overflow the buffer.
7808 		 */
7809 		complete_emulator_pio_in(vcpu, val);
7810 		return 1;
7811 	}
7812 
7813 	return emulator_pio_in(vcpu, size, port, val, count);
7814 }
7815 
7816 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7817 			    unsigned short port, const void *val,
7818 			    unsigned int count)
7819 {
7820 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
7821 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
7822 }
7823 
7824 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7825 				     int size, unsigned short port,
7826 				     const void *val, unsigned int count)
7827 {
7828 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7829 }
7830 
7831 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7832 {
7833 	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7834 }
7835 
7836 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7837 {
7838 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7839 }
7840 
7841 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7842 {
7843 	if (!need_emulate_wbinvd(vcpu))
7844 		return X86EMUL_CONTINUE;
7845 
7846 	if (static_call(kvm_x86_has_wbinvd_exit)()) {
7847 		int cpu = get_cpu();
7848 
7849 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7850 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7851 				wbinvd_ipi, NULL, 1);
7852 		put_cpu();
7853 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7854 	} else
7855 		wbinvd();
7856 	return X86EMUL_CONTINUE;
7857 }
7858 
7859 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7860 {
7861 	kvm_emulate_wbinvd_noskip(vcpu);
7862 	return kvm_skip_emulated_instruction(vcpu);
7863 }
7864 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7865 
7866 
7867 
7868 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7869 {
7870 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7871 }
7872 
7873 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7874 			    unsigned long *dest)
7875 {
7876 	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7877 }
7878 
7879 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7880 			   unsigned long value)
7881 {
7882 
7883 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7884 }
7885 
7886 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7887 {
7888 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7889 }
7890 
7891 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7892 {
7893 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7894 	unsigned long value;
7895 
7896 	switch (cr) {
7897 	case 0:
7898 		value = kvm_read_cr0(vcpu);
7899 		break;
7900 	case 2:
7901 		value = vcpu->arch.cr2;
7902 		break;
7903 	case 3:
7904 		value = kvm_read_cr3(vcpu);
7905 		break;
7906 	case 4:
7907 		value = kvm_read_cr4(vcpu);
7908 		break;
7909 	case 8:
7910 		value = kvm_get_cr8(vcpu);
7911 		break;
7912 	default:
7913 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7914 		return 0;
7915 	}
7916 
7917 	return value;
7918 }
7919 
7920 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7921 {
7922 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7923 	int res = 0;
7924 
7925 	switch (cr) {
7926 	case 0:
7927 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7928 		break;
7929 	case 2:
7930 		vcpu->arch.cr2 = val;
7931 		break;
7932 	case 3:
7933 		res = kvm_set_cr3(vcpu, val);
7934 		break;
7935 	case 4:
7936 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7937 		break;
7938 	case 8:
7939 		res = kvm_set_cr8(vcpu, val);
7940 		break;
7941 	default:
7942 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7943 		res = -1;
7944 	}
7945 
7946 	return res;
7947 }
7948 
7949 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7950 {
7951 	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7952 }
7953 
7954 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7955 {
7956 	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7957 }
7958 
7959 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7960 {
7961 	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7962 }
7963 
7964 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7965 {
7966 	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7967 }
7968 
7969 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7970 {
7971 	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7972 }
7973 
7974 static unsigned long emulator_get_cached_segment_base(
7975 	struct x86_emulate_ctxt *ctxt, int seg)
7976 {
7977 	return get_segment_base(emul_to_vcpu(ctxt), seg);
7978 }
7979 
7980 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7981 				 struct desc_struct *desc, u32 *base3,
7982 				 int seg)
7983 {
7984 	struct kvm_segment var;
7985 
7986 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7987 	*selector = var.selector;
7988 
7989 	if (var.unusable) {
7990 		memset(desc, 0, sizeof(*desc));
7991 		if (base3)
7992 			*base3 = 0;
7993 		return false;
7994 	}
7995 
7996 	if (var.g)
7997 		var.limit >>= 12;
7998 	set_desc_limit(desc, var.limit);
7999 	set_desc_base(desc, (unsigned long)var.base);
8000 #ifdef CONFIG_X86_64
8001 	if (base3)
8002 		*base3 = var.base >> 32;
8003 #endif
8004 	desc->type = var.type;
8005 	desc->s = var.s;
8006 	desc->dpl = var.dpl;
8007 	desc->p = var.present;
8008 	desc->avl = var.avl;
8009 	desc->l = var.l;
8010 	desc->d = var.db;
8011 	desc->g = var.g;
8012 
8013 	return true;
8014 }
8015 
8016 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8017 				 struct desc_struct *desc, u32 base3,
8018 				 int seg)
8019 {
8020 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8021 	struct kvm_segment var;
8022 
8023 	var.selector = selector;
8024 	var.base = get_desc_base(desc);
8025 #ifdef CONFIG_X86_64
8026 	var.base |= ((u64)base3) << 32;
8027 #endif
8028 	var.limit = get_desc_limit(desc);
8029 	if (desc->g)
8030 		var.limit = (var.limit << 12) | 0xfff;
8031 	var.type = desc->type;
8032 	var.dpl = desc->dpl;
8033 	var.db = desc->d;
8034 	var.s = desc->s;
8035 	var.l = desc->l;
8036 	var.g = desc->g;
8037 	var.avl = desc->avl;
8038 	var.present = desc->p;
8039 	var.unusable = !var.present;
8040 	var.padding = 0;
8041 
8042 	kvm_set_segment(vcpu, &var, seg);
8043 	return;
8044 }
8045 
8046 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8047 					u32 msr_index, u64 *pdata)
8048 {
8049 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8050 	int r;
8051 
8052 	r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8053 	if (r < 0)
8054 		return X86EMUL_UNHANDLEABLE;
8055 
8056 	if (r) {
8057 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8058 				       complete_emulated_rdmsr, r))
8059 			return X86EMUL_IO_NEEDED;
8060 
8061 		trace_kvm_msr_read_ex(msr_index);
8062 		return X86EMUL_PROPAGATE_FAULT;
8063 	}
8064 
8065 	trace_kvm_msr_read(msr_index, *pdata);
8066 	return X86EMUL_CONTINUE;
8067 }
8068 
8069 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8070 					u32 msr_index, u64 data)
8071 {
8072 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8073 	int r;
8074 
8075 	r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8076 	if (r < 0)
8077 		return X86EMUL_UNHANDLEABLE;
8078 
8079 	if (r) {
8080 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8081 				       complete_emulated_msr_access, r))
8082 			return X86EMUL_IO_NEEDED;
8083 
8084 		trace_kvm_msr_write_ex(msr_index, data);
8085 		return X86EMUL_PROPAGATE_FAULT;
8086 	}
8087 
8088 	trace_kvm_msr_write(msr_index, data);
8089 	return X86EMUL_CONTINUE;
8090 }
8091 
8092 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8093 			    u32 msr_index, u64 *pdata)
8094 {
8095 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8096 }
8097 
8098 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
8099 			      u32 pmc)
8100 {
8101 	if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
8102 		return 0;
8103 	return -EINVAL;
8104 }
8105 
8106 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8107 			     u32 pmc, u64 *pdata)
8108 {
8109 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8110 }
8111 
8112 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8113 {
8114 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
8115 }
8116 
8117 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8118 			      struct x86_instruction_info *info,
8119 			      enum x86_intercept_stage stage)
8120 {
8121 	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8122 					    &ctxt->exception);
8123 }
8124 
8125 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8126 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8127 			      bool exact_only)
8128 {
8129 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8130 }
8131 
8132 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
8133 {
8134 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
8135 }
8136 
8137 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8138 {
8139 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8140 }
8141 
8142 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8143 {
8144 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8145 }
8146 
8147 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8148 {
8149 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8150 }
8151 
8152 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8153 {
8154 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8155 }
8156 
8157 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8158 {
8159 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8160 }
8161 
8162 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8163 {
8164 	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8165 }
8166 
8167 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
8168 {
8169 	return emul_to_vcpu(ctxt)->arch.hflags;
8170 }
8171 
8172 #ifndef CONFIG_KVM_SMM
8173 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8174 {
8175 	WARN_ON_ONCE(1);
8176 	return X86EMUL_UNHANDLEABLE;
8177 }
8178 #endif
8179 
8180 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8181 {
8182 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8183 }
8184 
8185 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8186 {
8187 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8188 }
8189 
8190 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8191 {
8192 	struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8193 
8194 	if (!kvm->vm_bugged)
8195 		kvm_vm_bugged(kvm);
8196 }
8197 
8198 static const struct x86_emulate_ops emulate_ops = {
8199 	.vm_bugged           = emulator_vm_bugged,
8200 	.read_gpr            = emulator_read_gpr,
8201 	.write_gpr           = emulator_write_gpr,
8202 	.read_std            = emulator_read_std,
8203 	.write_std           = emulator_write_std,
8204 	.fetch               = kvm_fetch_guest_virt,
8205 	.read_emulated       = emulator_read_emulated,
8206 	.write_emulated      = emulator_write_emulated,
8207 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
8208 	.invlpg              = emulator_invlpg,
8209 	.pio_in_emulated     = emulator_pio_in_emulated,
8210 	.pio_out_emulated    = emulator_pio_out_emulated,
8211 	.get_segment         = emulator_get_segment,
8212 	.set_segment         = emulator_set_segment,
8213 	.get_cached_segment_base = emulator_get_cached_segment_base,
8214 	.get_gdt             = emulator_get_gdt,
8215 	.get_idt	     = emulator_get_idt,
8216 	.set_gdt             = emulator_set_gdt,
8217 	.set_idt	     = emulator_set_idt,
8218 	.get_cr              = emulator_get_cr,
8219 	.set_cr              = emulator_set_cr,
8220 	.cpl                 = emulator_get_cpl,
8221 	.get_dr              = emulator_get_dr,
8222 	.set_dr              = emulator_set_dr,
8223 	.set_msr_with_filter = emulator_set_msr_with_filter,
8224 	.get_msr_with_filter = emulator_get_msr_with_filter,
8225 	.get_msr             = emulator_get_msr,
8226 	.check_pmc	     = emulator_check_pmc,
8227 	.read_pmc            = emulator_read_pmc,
8228 	.halt                = emulator_halt,
8229 	.wbinvd              = emulator_wbinvd,
8230 	.fix_hypercall       = emulator_fix_hypercall,
8231 	.intercept           = emulator_intercept,
8232 	.get_cpuid           = emulator_get_cpuid,
8233 	.guest_has_long_mode = emulator_guest_has_long_mode,
8234 	.guest_has_movbe     = emulator_guest_has_movbe,
8235 	.guest_has_fxsr      = emulator_guest_has_fxsr,
8236 	.guest_has_rdpid     = emulator_guest_has_rdpid,
8237 	.set_nmi_mask        = emulator_set_nmi_mask,
8238 	.get_hflags          = emulator_get_hflags,
8239 	.leave_smm           = emulator_leave_smm,
8240 	.triple_fault        = emulator_triple_fault,
8241 	.set_xcr             = emulator_set_xcr,
8242 };
8243 
8244 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8245 {
8246 	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8247 	/*
8248 	 * an sti; sti; sequence only disable interrupts for the first
8249 	 * instruction. So, if the last instruction, be it emulated or
8250 	 * not, left the system with the INT_STI flag enabled, it
8251 	 * means that the last instruction is an sti. We should not
8252 	 * leave the flag on in this case. The same goes for mov ss
8253 	 */
8254 	if (int_shadow & mask)
8255 		mask = 0;
8256 	if (unlikely(int_shadow || mask)) {
8257 		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8258 		if (!mask)
8259 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8260 	}
8261 }
8262 
8263 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8264 {
8265 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8266 
8267 	if (ctxt->exception.vector == PF_VECTOR)
8268 		kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8269 	else if (ctxt->exception.error_code_valid)
8270 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8271 				      ctxt->exception.error_code);
8272 	else
8273 		kvm_queue_exception(vcpu, ctxt->exception.vector);
8274 }
8275 
8276 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8277 {
8278 	struct x86_emulate_ctxt *ctxt;
8279 
8280 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8281 	if (!ctxt) {
8282 		pr_err("kvm: failed to allocate vcpu's emulator\n");
8283 		return NULL;
8284 	}
8285 
8286 	ctxt->vcpu = vcpu;
8287 	ctxt->ops = &emulate_ops;
8288 	vcpu->arch.emulate_ctxt = ctxt;
8289 
8290 	return ctxt;
8291 }
8292 
8293 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8294 {
8295 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8296 	int cs_db, cs_l;
8297 
8298 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8299 
8300 	ctxt->gpa_available = false;
8301 	ctxt->eflags = kvm_get_rflags(vcpu);
8302 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8303 
8304 	ctxt->eip = kvm_rip_read(vcpu);
8305 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
8306 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
8307 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
8308 		     cs_db				? X86EMUL_MODE_PROT32 :
8309 							  X86EMUL_MODE_PROT16;
8310 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
8311 
8312 	ctxt->interruptibility = 0;
8313 	ctxt->have_exception = false;
8314 	ctxt->exception.vector = -1;
8315 	ctxt->perm_ok = false;
8316 
8317 	init_decode_cache(ctxt);
8318 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8319 }
8320 
8321 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8322 {
8323 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8324 	int ret;
8325 
8326 	init_emulate_ctxt(vcpu);
8327 
8328 	ctxt->op_bytes = 2;
8329 	ctxt->ad_bytes = 2;
8330 	ctxt->_eip = ctxt->eip + inc_eip;
8331 	ret = emulate_int_real(ctxt, irq);
8332 
8333 	if (ret != X86EMUL_CONTINUE) {
8334 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8335 	} else {
8336 		ctxt->eip = ctxt->_eip;
8337 		kvm_rip_write(vcpu, ctxt->eip);
8338 		kvm_set_rflags(vcpu, ctxt->eflags);
8339 	}
8340 }
8341 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8342 
8343 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8344 					   u8 ndata, u8 *insn_bytes, u8 insn_size)
8345 {
8346 	struct kvm_run *run = vcpu->run;
8347 	u64 info[5];
8348 	u8 info_start;
8349 
8350 	/*
8351 	 * Zero the whole array used to retrieve the exit info, as casting to
8352 	 * u32 for select entries will leave some chunks uninitialized.
8353 	 */
8354 	memset(&info, 0, sizeof(info));
8355 
8356 	static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8357 					   &info[2], (u32 *)&info[3],
8358 					   (u32 *)&info[4]);
8359 
8360 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8361 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8362 
8363 	/*
8364 	 * There's currently space for 13 entries, but 5 are used for the exit
8365 	 * reason and info.  Restrict to 4 to reduce the maintenance burden
8366 	 * when expanding kvm_run.emulation_failure in the future.
8367 	 */
8368 	if (WARN_ON_ONCE(ndata > 4))
8369 		ndata = 4;
8370 
8371 	/* Always include the flags as a 'data' entry. */
8372 	info_start = 1;
8373 	run->emulation_failure.flags = 0;
8374 
8375 	if (insn_size) {
8376 		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8377 			      sizeof(run->emulation_failure.insn_bytes) != 16));
8378 		info_start += 2;
8379 		run->emulation_failure.flags |=
8380 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8381 		run->emulation_failure.insn_size = insn_size;
8382 		memset(run->emulation_failure.insn_bytes, 0x90,
8383 		       sizeof(run->emulation_failure.insn_bytes));
8384 		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8385 	}
8386 
8387 	memcpy(&run->internal.data[info_start], info, sizeof(info));
8388 	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8389 	       ndata * sizeof(data[0]));
8390 
8391 	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8392 }
8393 
8394 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8395 {
8396 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8397 
8398 	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8399 				       ctxt->fetch.end - ctxt->fetch.data);
8400 }
8401 
8402 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8403 					  u8 ndata)
8404 {
8405 	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8406 }
8407 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8408 
8409 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8410 {
8411 	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8412 }
8413 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8414 
8415 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8416 {
8417 	struct kvm *kvm = vcpu->kvm;
8418 
8419 	++vcpu->stat.insn_emulation_fail;
8420 	trace_kvm_emulate_insn_failed(vcpu);
8421 
8422 	if (emulation_type & EMULTYPE_VMWARE_GP) {
8423 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8424 		return 1;
8425 	}
8426 
8427 	if (kvm->arch.exit_on_emulation_error ||
8428 	    (emulation_type & EMULTYPE_SKIP)) {
8429 		prepare_emulation_ctxt_failure_exit(vcpu);
8430 		return 0;
8431 	}
8432 
8433 	kvm_queue_exception(vcpu, UD_VECTOR);
8434 
8435 	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8436 		prepare_emulation_ctxt_failure_exit(vcpu);
8437 		return 0;
8438 	}
8439 
8440 	return 1;
8441 }
8442 
8443 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8444 				  bool write_fault_to_shadow_pgtable,
8445 				  int emulation_type)
8446 {
8447 	gpa_t gpa = cr2_or_gpa;
8448 	kvm_pfn_t pfn;
8449 
8450 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8451 		return false;
8452 
8453 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8454 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8455 		return false;
8456 
8457 	if (!vcpu->arch.mmu->root_role.direct) {
8458 		/*
8459 		 * Write permission should be allowed since only
8460 		 * write access need to be emulated.
8461 		 */
8462 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8463 
8464 		/*
8465 		 * If the mapping is invalid in guest, let cpu retry
8466 		 * it to generate fault.
8467 		 */
8468 		if (gpa == INVALID_GPA)
8469 			return true;
8470 	}
8471 
8472 	/*
8473 	 * Do not retry the unhandleable instruction if it faults on the
8474 	 * readonly host memory, otherwise it will goto a infinite loop:
8475 	 * retry instruction -> write #PF -> emulation fail -> retry
8476 	 * instruction -> ...
8477 	 */
8478 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8479 
8480 	/*
8481 	 * If the instruction failed on the error pfn, it can not be fixed,
8482 	 * report the error to userspace.
8483 	 */
8484 	if (is_error_noslot_pfn(pfn))
8485 		return false;
8486 
8487 	kvm_release_pfn_clean(pfn);
8488 
8489 	/* The instructions are well-emulated on direct mmu. */
8490 	if (vcpu->arch.mmu->root_role.direct) {
8491 		unsigned int indirect_shadow_pages;
8492 
8493 		write_lock(&vcpu->kvm->mmu_lock);
8494 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8495 		write_unlock(&vcpu->kvm->mmu_lock);
8496 
8497 		if (indirect_shadow_pages)
8498 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8499 
8500 		return true;
8501 	}
8502 
8503 	/*
8504 	 * if emulation was due to access to shadowed page table
8505 	 * and it failed try to unshadow page and re-enter the
8506 	 * guest to let CPU execute the instruction.
8507 	 */
8508 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8509 
8510 	/*
8511 	 * If the access faults on its page table, it can not
8512 	 * be fixed by unprotecting shadow page and it should
8513 	 * be reported to userspace.
8514 	 */
8515 	return !write_fault_to_shadow_pgtable;
8516 }
8517 
8518 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8519 			      gpa_t cr2_or_gpa,  int emulation_type)
8520 {
8521 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8522 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8523 
8524 	last_retry_eip = vcpu->arch.last_retry_eip;
8525 	last_retry_addr = vcpu->arch.last_retry_addr;
8526 
8527 	/*
8528 	 * If the emulation is caused by #PF and it is non-page_table
8529 	 * writing instruction, it means the VM-EXIT is caused by shadow
8530 	 * page protected, we can zap the shadow page and retry this
8531 	 * instruction directly.
8532 	 *
8533 	 * Note: if the guest uses a non-page-table modifying instruction
8534 	 * on the PDE that points to the instruction, then we will unmap
8535 	 * the instruction and go to an infinite loop. So, we cache the
8536 	 * last retried eip and the last fault address, if we meet the eip
8537 	 * and the address again, we can break out of the potential infinite
8538 	 * loop.
8539 	 */
8540 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8541 
8542 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8543 		return false;
8544 
8545 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8546 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8547 		return false;
8548 
8549 	if (x86_page_table_writing_insn(ctxt))
8550 		return false;
8551 
8552 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8553 		return false;
8554 
8555 	vcpu->arch.last_retry_eip = ctxt->eip;
8556 	vcpu->arch.last_retry_addr = cr2_or_gpa;
8557 
8558 	if (!vcpu->arch.mmu->root_role.direct)
8559 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8560 
8561 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8562 
8563 	return true;
8564 }
8565 
8566 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8567 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8568 
8569 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8570 				unsigned long *db)
8571 {
8572 	u32 dr6 = 0;
8573 	int i;
8574 	u32 enable, rwlen;
8575 
8576 	enable = dr7;
8577 	rwlen = dr7 >> 16;
8578 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8579 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8580 			dr6 |= (1 << i);
8581 	return dr6;
8582 }
8583 
8584 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8585 {
8586 	struct kvm_run *kvm_run = vcpu->run;
8587 
8588 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8589 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8590 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8591 		kvm_run->debug.arch.exception = DB_VECTOR;
8592 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
8593 		return 0;
8594 	}
8595 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8596 	return 1;
8597 }
8598 
8599 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8600 {
8601 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8602 	int r;
8603 
8604 	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8605 	if (unlikely(!r))
8606 		return 0;
8607 
8608 	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8609 
8610 	/*
8611 	 * rflags is the old, "raw" value of the flags.  The new value has
8612 	 * not been saved yet.
8613 	 *
8614 	 * This is correct even for TF set by the guest, because "the
8615 	 * processor will not generate this exception after the instruction
8616 	 * that sets the TF flag".
8617 	 */
8618 	if (unlikely(rflags & X86_EFLAGS_TF))
8619 		r = kvm_vcpu_do_singlestep(vcpu);
8620 	return r;
8621 }
8622 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8623 
8624 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8625 {
8626 	u32 shadow;
8627 
8628 	if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8629 		return true;
8630 
8631 	/*
8632 	 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
8633 	 * but AMD CPUs do not.  MOV/POP SS blocking is rare, check that first
8634 	 * to avoid the relatively expensive CPUID lookup.
8635 	 */
8636 	shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8637 	return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
8638 	       guest_cpuid_is_intel(vcpu);
8639 }
8640 
8641 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8642 					   int emulation_type, int *r)
8643 {
8644 	WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8645 
8646 	/*
8647 	 * Do not check for code breakpoints if hardware has already done the
8648 	 * checks, as inferred from the emulation type.  On NO_DECODE and SKIP,
8649 	 * the instruction has passed all exception checks, and all intercepted
8650 	 * exceptions that trigger emulation have lower priority than code
8651 	 * breakpoints, i.e. the fact that the intercepted exception occurred
8652 	 * means any code breakpoints have already been serviced.
8653 	 *
8654 	 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8655 	 * hardware has checked the RIP of the magic prefix, but not the RIP of
8656 	 * the instruction being emulated.  The intent of forced emulation is
8657 	 * to behave as if KVM intercepted the instruction without an exception
8658 	 * and without a prefix.
8659 	 */
8660 	if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8661 			      EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8662 		return false;
8663 
8664 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8665 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8666 		struct kvm_run *kvm_run = vcpu->run;
8667 		unsigned long eip = kvm_get_linear_rip(vcpu);
8668 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8669 					   vcpu->arch.guest_debug_dr7,
8670 					   vcpu->arch.eff_db);
8671 
8672 		if (dr6 != 0) {
8673 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8674 			kvm_run->debug.arch.pc = eip;
8675 			kvm_run->debug.arch.exception = DB_VECTOR;
8676 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
8677 			*r = 0;
8678 			return true;
8679 		}
8680 	}
8681 
8682 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8683 	    !kvm_is_code_breakpoint_inhibited(vcpu)) {
8684 		unsigned long eip = kvm_get_linear_rip(vcpu);
8685 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8686 					   vcpu->arch.dr7,
8687 					   vcpu->arch.db);
8688 
8689 		if (dr6 != 0) {
8690 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8691 			*r = 1;
8692 			return true;
8693 		}
8694 	}
8695 
8696 	return false;
8697 }
8698 
8699 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8700 {
8701 	switch (ctxt->opcode_len) {
8702 	case 1:
8703 		switch (ctxt->b) {
8704 		case 0xe4:	/* IN */
8705 		case 0xe5:
8706 		case 0xec:
8707 		case 0xed:
8708 		case 0xe6:	/* OUT */
8709 		case 0xe7:
8710 		case 0xee:
8711 		case 0xef:
8712 		case 0x6c:	/* INS */
8713 		case 0x6d:
8714 		case 0x6e:	/* OUTS */
8715 		case 0x6f:
8716 			return true;
8717 		}
8718 		break;
8719 	case 2:
8720 		switch (ctxt->b) {
8721 		case 0x33:	/* RDPMC */
8722 			return true;
8723 		}
8724 		break;
8725 	}
8726 
8727 	return false;
8728 }
8729 
8730 /*
8731  * Decode an instruction for emulation.  The caller is responsible for handling
8732  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
8733  * (and wrong) when emulating on an intercepted fault-like exception[*], as
8734  * code breakpoints have higher priority and thus have already been done by
8735  * hardware.
8736  *
8737  * [*] Except #MC, which is higher priority, but KVM should never emulate in
8738  *     response to a machine check.
8739  */
8740 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8741 				    void *insn, int insn_len)
8742 {
8743 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8744 	int r;
8745 
8746 	init_emulate_ctxt(vcpu);
8747 
8748 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8749 
8750 	trace_kvm_emulate_insn_start(vcpu);
8751 	++vcpu->stat.insn_emulation;
8752 
8753 	return r;
8754 }
8755 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8756 
8757 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8758 			    int emulation_type, void *insn, int insn_len)
8759 {
8760 	int r;
8761 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8762 	bool writeback = true;
8763 	bool write_fault_to_spt;
8764 
8765 	if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8766 		return 1;
8767 
8768 	vcpu->arch.l1tf_flush_l1d = true;
8769 
8770 	/*
8771 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
8772 	 * never reused.
8773 	 */
8774 	write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8775 	vcpu->arch.write_fault_to_shadow_pgtable = false;
8776 
8777 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8778 		kvm_clear_exception_queue(vcpu);
8779 
8780 		/*
8781 		 * Return immediately if RIP hits a code breakpoint, such #DBs
8782 		 * are fault-like and are higher priority than any faults on
8783 		 * the code fetch itself.
8784 		 */
8785 		if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
8786 			return r;
8787 
8788 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
8789 						    insn, insn_len);
8790 		if (r != EMULATION_OK)  {
8791 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
8792 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8793 				kvm_queue_exception(vcpu, UD_VECTOR);
8794 				return 1;
8795 			}
8796 			if (reexecute_instruction(vcpu, cr2_or_gpa,
8797 						  write_fault_to_spt,
8798 						  emulation_type))
8799 				return 1;
8800 
8801 			if (ctxt->have_exception &&
8802 			    !(emulation_type & EMULTYPE_SKIP)) {
8803 				/*
8804 				 * #UD should result in just EMULATION_FAILED, and trap-like
8805 				 * exception should not be encountered during decode.
8806 				 */
8807 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8808 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8809 				inject_emulated_exception(vcpu);
8810 				return 1;
8811 			}
8812 			return handle_emulation_failure(vcpu, emulation_type);
8813 		}
8814 	}
8815 
8816 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8817 	    !is_vmware_backdoor_opcode(ctxt)) {
8818 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8819 		return 1;
8820 	}
8821 
8822 	/*
8823 	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8824 	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8825 	 * The caller is responsible for updating interruptibility state and
8826 	 * injecting single-step #DBs.
8827 	 */
8828 	if (emulation_type & EMULTYPE_SKIP) {
8829 		if (ctxt->mode != X86EMUL_MODE_PROT64)
8830 			ctxt->eip = (u32)ctxt->_eip;
8831 		else
8832 			ctxt->eip = ctxt->_eip;
8833 
8834 		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8835 			r = 1;
8836 			goto writeback;
8837 		}
8838 
8839 		kvm_rip_write(vcpu, ctxt->eip);
8840 		if (ctxt->eflags & X86_EFLAGS_RF)
8841 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8842 		return 1;
8843 	}
8844 
8845 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8846 		return 1;
8847 
8848 	/* this is needed for vmware backdoor interface to work since it
8849 	   changes registers values  during IO operation */
8850 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8851 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8852 		emulator_invalidate_register_cache(ctxt);
8853 	}
8854 
8855 restart:
8856 	if (emulation_type & EMULTYPE_PF) {
8857 		/* Save the faulting GPA (cr2) in the address field */
8858 		ctxt->exception.address = cr2_or_gpa;
8859 
8860 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
8861 		if (vcpu->arch.mmu->root_role.direct) {
8862 			ctxt->gpa_available = true;
8863 			ctxt->gpa_val = cr2_or_gpa;
8864 		}
8865 	} else {
8866 		/* Sanitize the address out of an abundance of paranoia. */
8867 		ctxt->exception.address = 0;
8868 	}
8869 
8870 	r = x86_emulate_insn(ctxt);
8871 
8872 	if (r == EMULATION_INTERCEPTED)
8873 		return 1;
8874 
8875 	if (r == EMULATION_FAILED) {
8876 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8877 					emulation_type))
8878 			return 1;
8879 
8880 		return handle_emulation_failure(vcpu, emulation_type);
8881 	}
8882 
8883 	if (ctxt->have_exception) {
8884 		r = 1;
8885 		inject_emulated_exception(vcpu);
8886 	} else if (vcpu->arch.pio.count) {
8887 		if (!vcpu->arch.pio.in) {
8888 			/* FIXME: return into emulator if single-stepping.  */
8889 			vcpu->arch.pio.count = 0;
8890 		} else {
8891 			writeback = false;
8892 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
8893 		}
8894 		r = 0;
8895 	} else if (vcpu->mmio_needed) {
8896 		++vcpu->stat.mmio_exits;
8897 
8898 		if (!vcpu->mmio_is_write)
8899 			writeback = false;
8900 		r = 0;
8901 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8902 	} else if (vcpu->arch.complete_userspace_io) {
8903 		writeback = false;
8904 		r = 0;
8905 	} else if (r == EMULATION_RESTART)
8906 		goto restart;
8907 	else
8908 		r = 1;
8909 
8910 writeback:
8911 	if (writeback) {
8912 		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8913 		toggle_interruptibility(vcpu, ctxt->interruptibility);
8914 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8915 
8916 		/*
8917 		 * Note, EXCPT_DB is assumed to be fault-like as the emulator
8918 		 * only supports code breakpoints and general detect #DB, both
8919 		 * of which are fault-like.
8920 		 */
8921 		if (!ctxt->have_exception ||
8922 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8923 			kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8924 			if (ctxt->is_branch)
8925 				kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
8926 			kvm_rip_write(vcpu, ctxt->eip);
8927 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8928 				r = kvm_vcpu_do_singlestep(vcpu);
8929 			static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
8930 			__kvm_set_rflags(vcpu, ctxt->eflags);
8931 		}
8932 
8933 		/*
8934 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8935 		 * do nothing, and it will be requested again as soon as
8936 		 * the shadow expires.  But we still need to check here,
8937 		 * because POPF has no interrupt shadow.
8938 		 */
8939 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8940 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8941 	} else
8942 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8943 
8944 	return r;
8945 }
8946 
8947 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8948 {
8949 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8950 }
8951 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8952 
8953 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8954 					void *insn, int insn_len)
8955 {
8956 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8957 }
8958 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8959 
8960 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8961 {
8962 	vcpu->arch.pio.count = 0;
8963 	return 1;
8964 }
8965 
8966 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8967 {
8968 	vcpu->arch.pio.count = 0;
8969 
8970 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8971 		return 1;
8972 
8973 	return kvm_skip_emulated_instruction(vcpu);
8974 }
8975 
8976 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8977 			    unsigned short port)
8978 {
8979 	unsigned long val = kvm_rax_read(vcpu);
8980 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8981 
8982 	if (ret)
8983 		return ret;
8984 
8985 	/*
8986 	 * Workaround userspace that relies on old KVM behavior of %rip being
8987 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
8988 	 */
8989 	if (port == 0x7e &&
8990 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8991 		vcpu->arch.complete_userspace_io =
8992 			complete_fast_pio_out_port_0x7e;
8993 		kvm_skip_emulated_instruction(vcpu);
8994 	} else {
8995 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8996 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8997 	}
8998 	return 0;
8999 }
9000 
9001 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9002 {
9003 	unsigned long val;
9004 
9005 	/* We should only ever be called with arch.pio.count equal to 1 */
9006 	BUG_ON(vcpu->arch.pio.count != 1);
9007 
9008 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9009 		vcpu->arch.pio.count = 0;
9010 		return 1;
9011 	}
9012 
9013 	/* For size less than 4 we merge, else we zero extend */
9014 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9015 
9016 	complete_emulator_pio_in(vcpu, &val);
9017 	kvm_rax_write(vcpu, val);
9018 
9019 	return kvm_skip_emulated_instruction(vcpu);
9020 }
9021 
9022 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9023 			   unsigned short port)
9024 {
9025 	unsigned long val;
9026 	int ret;
9027 
9028 	/* For size less than 4 we merge, else we zero extend */
9029 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9030 
9031 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
9032 	if (ret) {
9033 		kvm_rax_write(vcpu, val);
9034 		return ret;
9035 	}
9036 
9037 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9038 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9039 
9040 	return 0;
9041 }
9042 
9043 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9044 {
9045 	int ret;
9046 
9047 	if (in)
9048 		ret = kvm_fast_pio_in(vcpu, size, port);
9049 	else
9050 		ret = kvm_fast_pio_out(vcpu, size, port);
9051 	return ret && kvm_skip_emulated_instruction(vcpu);
9052 }
9053 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9054 
9055 static int kvmclock_cpu_down_prep(unsigned int cpu)
9056 {
9057 	__this_cpu_write(cpu_tsc_khz, 0);
9058 	return 0;
9059 }
9060 
9061 static void tsc_khz_changed(void *data)
9062 {
9063 	struct cpufreq_freqs *freq = data;
9064 	unsigned long khz = 0;
9065 
9066 	WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9067 
9068 	if (data)
9069 		khz = freq->new;
9070 	else
9071 		khz = cpufreq_quick_get(raw_smp_processor_id());
9072 	if (!khz)
9073 		khz = tsc_khz;
9074 	__this_cpu_write(cpu_tsc_khz, khz);
9075 }
9076 
9077 #ifdef CONFIG_X86_64
9078 static void kvm_hyperv_tsc_notifier(void)
9079 {
9080 	struct kvm *kvm;
9081 	int cpu;
9082 
9083 	mutex_lock(&kvm_lock);
9084 	list_for_each_entry(kvm, &vm_list, vm_list)
9085 		kvm_make_mclock_inprogress_request(kvm);
9086 
9087 	/* no guest entries from this point */
9088 	hyperv_stop_tsc_emulation();
9089 
9090 	/* TSC frequency always matches when on Hyper-V */
9091 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9092 		for_each_present_cpu(cpu)
9093 			per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9094 	}
9095 	kvm_caps.max_guest_tsc_khz = tsc_khz;
9096 
9097 	list_for_each_entry(kvm, &vm_list, vm_list) {
9098 		__kvm_start_pvclock_update(kvm);
9099 		pvclock_update_vm_gtod_copy(kvm);
9100 		kvm_end_pvclock_update(kvm);
9101 	}
9102 
9103 	mutex_unlock(&kvm_lock);
9104 }
9105 #endif
9106 
9107 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9108 {
9109 	struct kvm *kvm;
9110 	struct kvm_vcpu *vcpu;
9111 	int send_ipi = 0;
9112 	unsigned long i;
9113 
9114 	/*
9115 	 * We allow guests to temporarily run on slowing clocks,
9116 	 * provided we notify them after, or to run on accelerating
9117 	 * clocks, provided we notify them before.  Thus time never
9118 	 * goes backwards.
9119 	 *
9120 	 * However, we have a problem.  We can't atomically update
9121 	 * the frequency of a given CPU from this function; it is
9122 	 * merely a notifier, which can be called from any CPU.
9123 	 * Changing the TSC frequency at arbitrary points in time
9124 	 * requires a recomputation of local variables related to
9125 	 * the TSC for each VCPU.  We must flag these local variables
9126 	 * to be updated and be sure the update takes place with the
9127 	 * new frequency before any guests proceed.
9128 	 *
9129 	 * Unfortunately, the combination of hotplug CPU and frequency
9130 	 * change creates an intractable locking scenario; the order
9131 	 * of when these callouts happen is undefined with respect to
9132 	 * CPU hotplug, and they can race with each other.  As such,
9133 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9134 	 * undefined; you can actually have a CPU frequency change take
9135 	 * place in between the computation of X and the setting of the
9136 	 * variable.  To protect against this problem, all updates of
9137 	 * the per_cpu tsc_khz variable are done in an interrupt
9138 	 * protected IPI, and all callers wishing to update the value
9139 	 * must wait for a synchronous IPI to complete (which is trivial
9140 	 * if the caller is on the CPU already).  This establishes the
9141 	 * necessary total order on variable updates.
9142 	 *
9143 	 * Note that because a guest time update may take place
9144 	 * anytime after the setting of the VCPU's request bit, the
9145 	 * correct TSC value must be set before the request.  However,
9146 	 * to ensure the update actually makes it to any guest which
9147 	 * starts running in hardware virtualization between the set
9148 	 * and the acquisition of the spinlock, we must also ping the
9149 	 * CPU after setting the request bit.
9150 	 *
9151 	 */
9152 
9153 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9154 
9155 	mutex_lock(&kvm_lock);
9156 	list_for_each_entry(kvm, &vm_list, vm_list) {
9157 		kvm_for_each_vcpu(i, vcpu, kvm) {
9158 			if (vcpu->cpu != cpu)
9159 				continue;
9160 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9161 			if (vcpu->cpu != raw_smp_processor_id())
9162 				send_ipi = 1;
9163 		}
9164 	}
9165 	mutex_unlock(&kvm_lock);
9166 
9167 	if (freq->old < freq->new && send_ipi) {
9168 		/*
9169 		 * We upscale the frequency.  Must make the guest
9170 		 * doesn't see old kvmclock values while running with
9171 		 * the new frequency, otherwise we risk the guest sees
9172 		 * time go backwards.
9173 		 *
9174 		 * In case we update the frequency for another cpu
9175 		 * (which might be in guest context) send an interrupt
9176 		 * to kick the cpu out of guest context.  Next time
9177 		 * guest context is entered kvmclock will be updated,
9178 		 * so the guest will not see stale values.
9179 		 */
9180 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9181 	}
9182 }
9183 
9184 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9185 				     void *data)
9186 {
9187 	struct cpufreq_freqs *freq = data;
9188 	int cpu;
9189 
9190 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9191 		return 0;
9192 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9193 		return 0;
9194 
9195 	for_each_cpu(cpu, freq->policy->cpus)
9196 		__kvmclock_cpufreq_notifier(freq, cpu);
9197 
9198 	return 0;
9199 }
9200 
9201 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9202 	.notifier_call  = kvmclock_cpufreq_notifier
9203 };
9204 
9205 static int kvmclock_cpu_online(unsigned int cpu)
9206 {
9207 	tsc_khz_changed(NULL);
9208 	return 0;
9209 }
9210 
9211 static void kvm_timer_init(void)
9212 {
9213 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9214 		max_tsc_khz = tsc_khz;
9215 
9216 		if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9217 			struct cpufreq_policy *policy;
9218 			int cpu;
9219 
9220 			cpu = get_cpu();
9221 			policy = cpufreq_cpu_get(cpu);
9222 			if (policy) {
9223 				if (policy->cpuinfo.max_freq)
9224 					max_tsc_khz = policy->cpuinfo.max_freq;
9225 				cpufreq_cpu_put(policy);
9226 			}
9227 			put_cpu();
9228 		}
9229 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9230 					  CPUFREQ_TRANSITION_NOTIFIER);
9231 
9232 		cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9233 				  kvmclock_cpu_online, kvmclock_cpu_down_prep);
9234 	}
9235 }
9236 
9237 #ifdef CONFIG_X86_64
9238 static void pvclock_gtod_update_fn(struct work_struct *work)
9239 {
9240 	struct kvm *kvm;
9241 	struct kvm_vcpu *vcpu;
9242 	unsigned long i;
9243 
9244 	mutex_lock(&kvm_lock);
9245 	list_for_each_entry(kvm, &vm_list, vm_list)
9246 		kvm_for_each_vcpu(i, vcpu, kvm)
9247 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9248 	atomic_set(&kvm_guest_has_master_clock, 0);
9249 	mutex_unlock(&kvm_lock);
9250 }
9251 
9252 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9253 
9254 /*
9255  * Indirection to move queue_work() out of the tk_core.seq write held
9256  * region to prevent possible deadlocks against time accessors which
9257  * are invoked with work related locks held.
9258  */
9259 static void pvclock_irq_work_fn(struct irq_work *w)
9260 {
9261 	queue_work(system_long_wq, &pvclock_gtod_work);
9262 }
9263 
9264 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9265 
9266 /*
9267  * Notification about pvclock gtod data update.
9268  */
9269 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9270 			       void *priv)
9271 {
9272 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9273 	struct timekeeper *tk = priv;
9274 
9275 	update_pvclock_gtod(tk);
9276 
9277 	/*
9278 	 * Disable master clock if host does not trust, or does not use,
9279 	 * TSC based clocksource. Delegate queue_work() to irq_work as
9280 	 * this is invoked with tk_core.seq write held.
9281 	 */
9282 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9283 	    atomic_read(&kvm_guest_has_master_clock) != 0)
9284 		irq_work_queue(&pvclock_irq_work);
9285 	return 0;
9286 }
9287 
9288 static struct notifier_block pvclock_gtod_notifier = {
9289 	.notifier_call = pvclock_gtod_notify,
9290 };
9291 #endif
9292 
9293 int kvm_arch_init(void *opaque)
9294 {
9295 	struct kvm_x86_init_ops *ops = opaque;
9296 	u64 host_pat;
9297 	int r;
9298 
9299 	if (kvm_x86_ops.hardware_enable) {
9300 		pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name);
9301 		return -EEXIST;
9302 	}
9303 
9304 	if (!ops->cpu_has_kvm_support()) {
9305 		pr_err_ratelimited("kvm: no hardware support for '%s'\n",
9306 				   ops->runtime_ops->name);
9307 		return -EOPNOTSUPP;
9308 	}
9309 	if (ops->disabled_by_bios()) {
9310 		pr_err_ratelimited("kvm: support for '%s' disabled by bios\n",
9311 				   ops->runtime_ops->name);
9312 		return -EOPNOTSUPP;
9313 	}
9314 
9315 	/*
9316 	 * KVM explicitly assumes that the guest has an FPU and
9317 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9318 	 * vCPU's FPU state as a fxregs_state struct.
9319 	 */
9320 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9321 		printk(KERN_ERR "kvm: inadequate fpu\n");
9322 		return -EOPNOTSUPP;
9323 	}
9324 
9325 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9326 		pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9327 		return -EOPNOTSUPP;
9328 	}
9329 
9330 	/*
9331 	 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9332 	 * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9333 	 * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9334 	 * with an exception.  PAT[0] is set to WB on RESET and also by the
9335 	 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9336 	 */
9337 	if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9338 	    (host_pat & GENMASK(2, 0)) != 6) {
9339 		pr_err("kvm: host PAT[0] is not WB\n");
9340 		return -EIO;
9341 	}
9342 
9343 	x86_emulator_cache = kvm_alloc_emulator_cache();
9344 	if (!x86_emulator_cache) {
9345 		pr_err("kvm: failed to allocate cache for x86 emulator\n");
9346 		return -ENOMEM;
9347 	}
9348 
9349 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9350 	if (!user_return_msrs) {
9351 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
9352 		r = -ENOMEM;
9353 		goto out_free_x86_emulator_cache;
9354 	}
9355 	kvm_nr_uret_msrs = 0;
9356 
9357 	r = kvm_mmu_vendor_module_init();
9358 	if (r)
9359 		goto out_free_percpu;
9360 
9361 	kvm_timer_init();
9362 
9363 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9364 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9365 		kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9366 	}
9367 
9368 	if (pi_inject_timer == -1)
9369 		pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9370 #ifdef CONFIG_X86_64
9371 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9372 
9373 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9374 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9375 #endif
9376 
9377 	return 0;
9378 
9379 out_free_percpu:
9380 	free_percpu(user_return_msrs);
9381 out_free_x86_emulator_cache:
9382 	kmem_cache_destroy(x86_emulator_cache);
9383 	return r;
9384 }
9385 
9386 void kvm_arch_exit(void)
9387 {
9388 #ifdef CONFIG_X86_64
9389 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9390 		clear_hv_tscchange_cb();
9391 #endif
9392 	kvm_lapic_exit();
9393 
9394 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9395 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9396 					    CPUFREQ_TRANSITION_NOTIFIER);
9397 		cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9398 	}
9399 #ifdef CONFIG_X86_64
9400 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9401 	irq_work_sync(&pvclock_irq_work);
9402 	cancel_work_sync(&pvclock_gtod_work);
9403 #endif
9404 	kvm_x86_ops.hardware_enable = NULL;
9405 	kvm_mmu_vendor_module_exit();
9406 	free_percpu(user_return_msrs);
9407 	kmem_cache_destroy(x86_emulator_cache);
9408 #ifdef CONFIG_KVM_XEN
9409 	static_key_deferred_flush(&kvm_xen_enabled);
9410 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9411 #endif
9412 }
9413 
9414 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9415 {
9416 	/*
9417 	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9418 	 * local APIC is in-kernel, the run loop will detect the non-runnable
9419 	 * state and halt the vCPU.  Exit to userspace if the local APIC is
9420 	 * managed by userspace, in which case userspace is responsible for
9421 	 * handling wake events.
9422 	 */
9423 	++vcpu->stat.halt_exits;
9424 	if (lapic_in_kernel(vcpu)) {
9425 		vcpu->arch.mp_state = state;
9426 		return 1;
9427 	} else {
9428 		vcpu->run->exit_reason = reason;
9429 		return 0;
9430 	}
9431 }
9432 
9433 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9434 {
9435 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9436 }
9437 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9438 
9439 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9440 {
9441 	int ret = kvm_skip_emulated_instruction(vcpu);
9442 	/*
9443 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9444 	 * KVM_EXIT_DEBUG here.
9445 	 */
9446 	return kvm_emulate_halt_noskip(vcpu) && ret;
9447 }
9448 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9449 
9450 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9451 {
9452 	int ret = kvm_skip_emulated_instruction(vcpu);
9453 
9454 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9455 					KVM_EXIT_AP_RESET_HOLD) && ret;
9456 }
9457 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9458 
9459 #ifdef CONFIG_X86_64
9460 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9461 			        unsigned long clock_type)
9462 {
9463 	struct kvm_clock_pairing clock_pairing;
9464 	struct timespec64 ts;
9465 	u64 cycle;
9466 	int ret;
9467 
9468 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9469 		return -KVM_EOPNOTSUPP;
9470 
9471 	/*
9472 	 * When tsc is in permanent catchup mode guests won't be able to use
9473 	 * pvclock_read_retry loop to get consistent view of pvclock
9474 	 */
9475 	if (vcpu->arch.tsc_always_catchup)
9476 		return -KVM_EOPNOTSUPP;
9477 
9478 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9479 		return -KVM_EOPNOTSUPP;
9480 
9481 	clock_pairing.sec = ts.tv_sec;
9482 	clock_pairing.nsec = ts.tv_nsec;
9483 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9484 	clock_pairing.flags = 0;
9485 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9486 
9487 	ret = 0;
9488 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9489 			    sizeof(struct kvm_clock_pairing)))
9490 		ret = -KVM_EFAULT;
9491 
9492 	return ret;
9493 }
9494 #endif
9495 
9496 /*
9497  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9498  *
9499  * @apicid - apicid of vcpu to be kicked.
9500  */
9501 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9502 {
9503 	/*
9504 	 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9505 	 * common code, e.g. for tracing. Defer initialization to the compiler.
9506 	 */
9507 	struct kvm_lapic_irq lapic_irq = {
9508 		.delivery_mode = APIC_DM_REMRD,
9509 		.dest_mode = APIC_DEST_PHYSICAL,
9510 		.shorthand = APIC_DEST_NOSHORT,
9511 		.dest_id = apicid,
9512 	};
9513 
9514 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9515 }
9516 
9517 bool kvm_apicv_activated(struct kvm *kvm)
9518 {
9519 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9520 }
9521 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9522 
9523 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9524 {
9525 	ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9526 	ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9527 
9528 	return (vm_reasons | vcpu_reasons) == 0;
9529 }
9530 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9531 
9532 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9533 				       enum kvm_apicv_inhibit reason, bool set)
9534 {
9535 	if (set)
9536 		__set_bit(reason, inhibits);
9537 	else
9538 		__clear_bit(reason, inhibits);
9539 
9540 	trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9541 }
9542 
9543 static void kvm_apicv_init(struct kvm *kvm)
9544 {
9545 	unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9546 
9547 	init_rwsem(&kvm->arch.apicv_update_lock);
9548 
9549 	set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9550 
9551 	if (!enable_apicv)
9552 		set_or_clear_apicv_inhibit(inhibits,
9553 					   APICV_INHIBIT_REASON_DISABLE, true);
9554 }
9555 
9556 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9557 {
9558 	struct kvm_vcpu *target = NULL;
9559 	struct kvm_apic_map *map;
9560 
9561 	vcpu->stat.directed_yield_attempted++;
9562 
9563 	if (single_task_running())
9564 		goto no_yield;
9565 
9566 	rcu_read_lock();
9567 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
9568 
9569 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9570 		target = map->phys_map[dest_id]->vcpu;
9571 
9572 	rcu_read_unlock();
9573 
9574 	if (!target || !READ_ONCE(target->ready))
9575 		goto no_yield;
9576 
9577 	/* Ignore requests to yield to self */
9578 	if (vcpu == target)
9579 		goto no_yield;
9580 
9581 	if (kvm_vcpu_yield_to(target) <= 0)
9582 		goto no_yield;
9583 
9584 	vcpu->stat.directed_yield_successful++;
9585 
9586 no_yield:
9587 	return;
9588 }
9589 
9590 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9591 {
9592 	u64 ret = vcpu->run->hypercall.ret;
9593 
9594 	if (!is_64_bit_mode(vcpu))
9595 		ret = (u32)ret;
9596 	kvm_rax_write(vcpu, ret);
9597 	++vcpu->stat.hypercalls;
9598 	return kvm_skip_emulated_instruction(vcpu);
9599 }
9600 
9601 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9602 {
9603 	unsigned long nr, a0, a1, a2, a3, ret;
9604 	int op_64_bit;
9605 
9606 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
9607 		return kvm_xen_hypercall(vcpu);
9608 
9609 	if (kvm_hv_hypercall_enabled(vcpu))
9610 		return kvm_hv_hypercall(vcpu);
9611 
9612 	nr = kvm_rax_read(vcpu);
9613 	a0 = kvm_rbx_read(vcpu);
9614 	a1 = kvm_rcx_read(vcpu);
9615 	a2 = kvm_rdx_read(vcpu);
9616 	a3 = kvm_rsi_read(vcpu);
9617 
9618 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
9619 
9620 	op_64_bit = is_64_bit_hypercall(vcpu);
9621 	if (!op_64_bit) {
9622 		nr &= 0xFFFFFFFF;
9623 		a0 &= 0xFFFFFFFF;
9624 		a1 &= 0xFFFFFFFF;
9625 		a2 &= 0xFFFFFFFF;
9626 		a3 &= 0xFFFFFFFF;
9627 	}
9628 
9629 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9630 		ret = -KVM_EPERM;
9631 		goto out;
9632 	}
9633 
9634 	ret = -KVM_ENOSYS;
9635 
9636 	switch (nr) {
9637 	case KVM_HC_VAPIC_POLL_IRQ:
9638 		ret = 0;
9639 		break;
9640 	case KVM_HC_KICK_CPU:
9641 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9642 			break;
9643 
9644 		kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9645 		kvm_sched_yield(vcpu, a1);
9646 		ret = 0;
9647 		break;
9648 #ifdef CONFIG_X86_64
9649 	case KVM_HC_CLOCK_PAIRING:
9650 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9651 		break;
9652 #endif
9653 	case KVM_HC_SEND_IPI:
9654 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9655 			break;
9656 
9657 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9658 		break;
9659 	case KVM_HC_SCHED_YIELD:
9660 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9661 			break;
9662 
9663 		kvm_sched_yield(vcpu, a0);
9664 		ret = 0;
9665 		break;
9666 	case KVM_HC_MAP_GPA_RANGE: {
9667 		u64 gpa = a0, npages = a1, attrs = a2;
9668 
9669 		ret = -KVM_ENOSYS;
9670 		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9671 			break;
9672 
9673 		if (!PAGE_ALIGNED(gpa) || !npages ||
9674 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9675 			ret = -KVM_EINVAL;
9676 			break;
9677 		}
9678 
9679 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9680 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9681 		vcpu->run->hypercall.args[0]  = gpa;
9682 		vcpu->run->hypercall.args[1]  = npages;
9683 		vcpu->run->hypercall.args[2]  = attrs;
9684 		vcpu->run->hypercall.longmode = op_64_bit;
9685 		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9686 		return 0;
9687 	}
9688 	default:
9689 		ret = -KVM_ENOSYS;
9690 		break;
9691 	}
9692 out:
9693 	if (!op_64_bit)
9694 		ret = (u32)ret;
9695 	kvm_rax_write(vcpu, ret);
9696 
9697 	++vcpu->stat.hypercalls;
9698 	return kvm_skip_emulated_instruction(vcpu);
9699 }
9700 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9701 
9702 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9703 {
9704 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9705 	char instruction[3];
9706 	unsigned long rip = kvm_rip_read(vcpu);
9707 
9708 	/*
9709 	 * If the quirk is disabled, synthesize a #UD and let the guest pick up
9710 	 * the pieces.
9711 	 */
9712 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
9713 		ctxt->exception.error_code_valid = false;
9714 		ctxt->exception.vector = UD_VECTOR;
9715 		ctxt->have_exception = true;
9716 		return X86EMUL_PROPAGATE_FAULT;
9717 	}
9718 
9719 	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9720 
9721 	return emulator_write_emulated(ctxt, rip, instruction, 3,
9722 		&ctxt->exception);
9723 }
9724 
9725 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9726 {
9727 	return vcpu->run->request_interrupt_window &&
9728 		likely(!pic_in_kernel(vcpu->kvm));
9729 }
9730 
9731 /* Called within kvm->srcu read side.  */
9732 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9733 {
9734 	struct kvm_run *kvm_run = vcpu->run;
9735 
9736 	kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9737 	kvm_run->cr8 = kvm_get_cr8(vcpu);
9738 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
9739 
9740 	kvm_run->ready_for_interrupt_injection =
9741 		pic_in_kernel(vcpu->kvm) ||
9742 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
9743 
9744 	if (is_smm(vcpu))
9745 		kvm_run->flags |= KVM_RUN_X86_SMM;
9746 }
9747 
9748 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9749 {
9750 	int max_irr, tpr;
9751 
9752 	if (!kvm_x86_ops.update_cr8_intercept)
9753 		return;
9754 
9755 	if (!lapic_in_kernel(vcpu))
9756 		return;
9757 
9758 	if (vcpu->arch.apic->apicv_active)
9759 		return;
9760 
9761 	if (!vcpu->arch.apic->vapic_addr)
9762 		max_irr = kvm_lapic_find_highest_irr(vcpu);
9763 	else
9764 		max_irr = -1;
9765 
9766 	if (max_irr != -1)
9767 		max_irr >>= 4;
9768 
9769 	tpr = kvm_lapic_get_cr8(vcpu);
9770 
9771 	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9772 }
9773 
9774 
9775 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9776 {
9777 	if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9778 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
9779 		return 1;
9780 	}
9781 
9782 	return kvm_x86_ops.nested_ops->check_events(vcpu);
9783 }
9784 
9785 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9786 {
9787 	trace_kvm_inj_exception(vcpu->arch.exception.vector,
9788 				vcpu->arch.exception.has_error_code,
9789 				vcpu->arch.exception.error_code,
9790 				vcpu->arch.exception.injected);
9791 
9792 	if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9793 		vcpu->arch.exception.error_code = false;
9794 	static_call(kvm_x86_inject_exception)(vcpu);
9795 }
9796 
9797 /*
9798  * Check for any event (interrupt or exception) that is ready to be injected,
9799  * and if there is at least one event, inject the event with the highest
9800  * priority.  This handles both "pending" events, i.e. events that have never
9801  * been injected into the guest, and "injected" events, i.e. events that were
9802  * injected as part of a previous VM-Enter, but weren't successfully delivered
9803  * and need to be re-injected.
9804  *
9805  * Note, this is not guaranteed to be invoked on a guest instruction boundary,
9806  * i.e. doesn't guarantee that there's an event window in the guest.  KVM must
9807  * be able to inject exceptions in the "middle" of an instruction, and so must
9808  * also be able to re-inject NMIs and IRQs in the middle of an instruction.
9809  * I.e. for exceptions and re-injected events, NOT invoking this on instruction
9810  * boundaries is necessary and correct.
9811  *
9812  * For simplicity, KVM uses a single path to inject all events (except events
9813  * that are injected directly from L1 to L2) and doesn't explicitly track
9814  * instruction boundaries for asynchronous events.  However, because VM-Exits
9815  * that can occur during instruction execution typically result in KVM skipping
9816  * the instruction or injecting an exception, e.g. instruction and exception
9817  * intercepts, and because pending exceptions have higher priority than pending
9818  * interrupts, KVM still honors instruction boundaries in most scenarios.
9819  *
9820  * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
9821  * the instruction or inject an exception, then KVM can incorrecty inject a new
9822  * asynchrounous event if the event became pending after the CPU fetched the
9823  * instruction (in the guest).  E.g. if a page fault (#PF, #NPF, EPT violation)
9824  * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
9825  * injected on the restarted instruction instead of being deferred until the
9826  * instruction completes.
9827  *
9828  * In practice, this virtualization hole is unlikely to be observed by the
9829  * guest, and even less likely to cause functional problems.  To detect the
9830  * hole, the guest would have to trigger an event on a side effect of an early
9831  * phase of instruction execution, e.g. on the instruction fetch from memory.
9832  * And for it to be a functional problem, the guest would need to depend on the
9833  * ordering between that side effect, the instruction completing, _and_ the
9834  * delivery of the asynchronous event.
9835  */
9836 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
9837 				       bool *req_immediate_exit)
9838 {
9839 	bool can_inject;
9840 	int r;
9841 
9842 	/*
9843 	 * Process nested events first, as nested VM-Exit supercedes event
9844 	 * re-injection.  If there's an event queued for re-injection, it will
9845 	 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
9846 	 */
9847 	if (is_guest_mode(vcpu))
9848 		r = kvm_check_nested_events(vcpu);
9849 	else
9850 		r = 0;
9851 
9852 	/*
9853 	 * Re-inject exceptions and events *especially* if immediate entry+exit
9854 	 * to/from L2 is needed, as any event that has already been injected
9855 	 * into L2 needs to complete its lifecycle before injecting a new event.
9856 	 *
9857 	 * Don't re-inject an NMI or interrupt if there is a pending exception.
9858 	 * This collision arises if an exception occurred while vectoring the
9859 	 * injected event, KVM intercepted said exception, and KVM ultimately
9860 	 * determined the fault belongs to the guest and queues the exception
9861 	 * for injection back into the guest.
9862 	 *
9863 	 * "Injected" interrupts can also collide with pending exceptions if
9864 	 * userspace ignores the "ready for injection" flag and blindly queues
9865 	 * an interrupt.  In that case, prioritizing the exception is correct,
9866 	 * as the exception "occurred" before the exit to userspace.  Trap-like
9867 	 * exceptions, e.g. most #DBs, have higher priority than interrupts.
9868 	 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
9869 	 * priority, they're only generated (pended) during instruction
9870 	 * execution, and interrupts are recognized at instruction boundaries.
9871 	 * Thus a pending fault-like exception means the fault occurred on the
9872 	 * *previous* instruction and must be serviced prior to recognizing any
9873 	 * new events in order to fully complete the previous instruction.
9874 	 */
9875 	if (vcpu->arch.exception.injected)
9876 		kvm_inject_exception(vcpu);
9877 	else if (kvm_is_exception_pending(vcpu))
9878 		; /* see above */
9879 	else if (vcpu->arch.nmi_injected)
9880 		static_call(kvm_x86_inject_nmi)(vcpu);
9881 	else if (vcpu->arch.interrupt.injected)
9882 		static_call(kvm_x86_inject_irq)(vcpu, true);
9883 
9884 	/*
9885 	 * Exceptions that morph to VM-Exits are handled above, and pending
9886 	 * exceptions on top of injected exceptions that do not VM-Exit should
9887 	 * either morph to #DF or, sadly, override the injected exception.
9888 	 */
9889 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
9890 		     vcpu->arch.exception.pending);
9891 
9892 	/*
9893 	 * Bail if immediate entry+exit to/from the guest is needed to complete
9894 	 * nested VM-Enter or event re-injection so that a different pending
9895 	 * event can be serviced (or if KVM needs to exit to userspace).
9896 	 *
9897 	 * Otherwise, continue processing events even if VM-Exit occurred.  The
9898 	 * VM-Exit will have cleared exceptions that were meant for L2, but
9899 	 * there may now be events that can be injected into L1.
9900 	 */
9901 	if (r < 0)
9902 		goto out;
9903 
9904 	/*
9905 	 * A pending exception VM-Exit should either result in nested VM-Exit
9906 	 * or force an immediate re-entry and exit to/from L2, and exception
9907 	 * VM-Exits cannot be injected (flag should _never_ be set).
9908 	 */
9909 	WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
9910 		     vcpu->arch.exception_vmexit.pending);
9911 
9912 	/*
9913 	 * New events, other than exceptions, cannot be injected if KVM needs
9914 	 * to re-inject a previous event.  See above comments on re-injecting
9915 	 * for why pending exceptions get priority.
9916 	 */
9917 	can_inject = !kvm_event_needs_reinjection(vcpu);
9918 
9919 	if (vcpu->arch.exception.pending) {
9920 		/*
9921 		 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
9922 		 * value pushed on the stack.  Trap-like exception and all #DBs
9923 		 * leave RF as-is (KVM follows Intel's behavior in this regard;
9924 		 * AMD states that code breakpoint #DBs excplitly clear RF=0).
9925 		 *
9926 		 * Note, most versions of Intel's SDM and AMD's APM incorrectly
9927 		 * describe the behavior of General Detect #DBs, which are
9928 		 * fault-like.  They do _not_ set RF, a la code breakpoints.
9929 		 */
9930 		if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
9931 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
9932 					     X86_EFLAGS_RF);
9933 
9934 		if (vcpu->arch.exception.vector == DB_VECTOR) {
9935 			kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
9936 			if (vcpu->arch.dr7 & DR7_GD) {
9937 				vcpu->arch.dr7 &= ~DR7_GD;
9938 				kvm_update_dr7(vcpu);
9939 			}
9940 		}
9941 
9942 		kvm_inject_exception(vcpu);
9943 
9944 		vcpu->arch.exception.pending = false;
9945 		vcpu->arch.exception.injected = true;
9946 
9947 		can_inject = false;
9948 	}
9949 
9950 	/* Don't inject interrupts if the user asked to avoid doing so */
9951 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
9952 		return 0;
9953 
9954 	/*
9955 	 * Finally, inject interrupt events.  If an event cannot be injected
9956 	 * due to architectural conditions (e.g. IF=0) a window-open exit
9957 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
9958 	 * and can architecturally be injected, but we cannot do it right now:
9959 	 * an interrupt could have arrived just now and we have to inject it
9960 	 * as a vmexit, or there could already an event in the queue, which is
9961 	 * indicated by can_inject.  In that case we request an immediate exit
9962 	 * in order to make progress and get back here for another iteration.
9963 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
9964 	 */
9965 #ifdef CONFIG_KVM_SMM
9966 	if (vcpu->arch.smi_pending) {
9967 		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
9968 		if (r < 0)
9969 			goto out;
9970 		if (r) {
9971 			vcpu->arch.smi_pending = false;
9972 			++vcpu->arch.smi_count;
9973 			enter_smm(vcpu);
9974 			can_inject = false;
9975 		} else
9976 			static_call(kvm_x86_enable_smi_window)(vcpu);
9977 	}
9978 #endif
9979 
9980 	if (vcpu->arch.nmi_pending) {
9981 		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
9982 		if (r < 0)
9983 			goto out;
9984 		if (r) {
9985 			--vcpu->arch.nmi_pending;
9986 			vcpu->arch.nmi_injected = true;
9987 			static_call(kvm_x86_inject_nmi)(vcpu);
9988 			can_inject = false;
9989 			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
9990 		}
9991 		if (vcpu->arch.nmi_pending)
9992 			static_call(kvm_x86_enable_nmi_window)(vcpu);
9993 	}
9994 
9995 	if (kvm_cpu_has_injectable_intr(vcpu)) {
9996 		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
9997 		if (r < 0)
9998 			goto out;
9999 		if (r) {
10000 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
10001 			static_call(kvm_x86_inject_irq)(vcpu, false);
10002 			WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
10003 		}
10004 		if (kvm_cpu_has_injectable_intr(vcpu))
10005 			static_call(kvm_x86_enable_irq_window)(vcpu);
10006 	}
10007 
10008 	if (is_guest_mode(vcpu) &&
10009 	    kvm_x86_ops.nested_ops->has_events &&
10010 	    kvm_x86_ops.nested_ops->has_events(vcpu))
10011 		*req_immediate_exit = true;
10012 
10013 	/*
10014 	 * KVM must never queue a new exception while injecting an event; KVM
10015 	 * is done emulating and should only propagate the to-be-injected event
10016 	 * to the VMCS/VMCB.  Queueing a new exception can put the vCPU into an
10017 	 * infinite loop as KVM will bail from VM-Enter to inject the pending
10018 	 * exception and start the cycle all over.
10019 	 *
10020 	 * Exempt triple faults as they have special handling and won't put the
10021 	 * vCPU into an infinite loop.  Triple fault can be queued when running
10022 	 * VMX without unrestricted guest, as that requires KVM to emulate Real
10023 	 * Mode events (see kvm_inject_realmode_interrupt()).
10024 	 */
10025 	WARN_ON_ONCE(vcpu->arch.exception.pending ||
10026 		     vcpu->arch.exception_vmexit.pending);
10027 	return 0;
10028 
10029 out:
10030 	if (r == -EBUSY) {
10031 		*req_immediate_exit = true;
10032 		r = 0;
10033 	}
10034 	return r;
10035 }
10036 
10037 static void process_nmi(struct kvm_vcpu *vcpu)
10038 {
10039 	unsigned limit = 2;
10040 
10041 	/*
10042 	 * x86 is limited to one NMI running, and one NMI pending after it.
10043 	 * If an NMI is already in progress, limit further NMIs to just one.
10044 	 * Otherwise, allow two (and we'll inject the first one immediately).
10045 	 */
10046 	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10047 		limit = 1;
10048 
10049 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10050 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10051 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10052 }
10053 
10054 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10055 				       unsigned long *vcpu_bitmap)
10056 {
10057 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10058 }
10059 
10060 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10061 {
10062 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10063 }
10064 
10065 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10066 {
10067 	struct kvm_lapic *apic = vcpu->arch.apic;
10068 	bool activate;
10069 
10070 	if (!lapic_in_kernel(vcpu))
10071 		return;
10072 
10073 	down_read(&vcpu->kvm->arch.apicv_update_lock);
10074 	preempt_disable();
10075 
10076 	/* Do not activate APICV when APIC is disabled */
10077 	activate = kvm_vcpu_apicv_activated(vcpu) &&
10078 		   (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10079 
10080 	if (apic->apicv_active == activate)
10081 		goto out;
10082 
10083 	apic->apicv_active = activate;
10084 	kvm_apic_update_apicv(vcpu);
10085 	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10086 
10087 	/*
10088 	 * When APICv gets disabled, we may still have injected interrupts
10089 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10090 	 * still active when the interrupt got accepted. Make sure
10091 	 * kvm_check_and_inject_events() is called to check for that.
10092 	 */
10093 	if (!apic->apicv_active)
10094 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10095 
10096 out:
10097 	preempt_enable();
10098 	up_read(&vcpu->kvm->arch.apicv_update_lock);
10099 }
10100 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
10101 
10102 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10103 				      enum kvm_apicv_inhibit reason, bool set)
10104 {
10105 	unsigned long old, new;
10106 
10107 	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10108 
10109 	if (!static_call(kvm_x86_check_apicv_inhibit_reasons)(reason))
10110 		return;
10111 
10112 	old = new = kvm->arch.apicv_inhibit_reasons;
10113 
10114 	set_or_clear_apicv_inhibit(&new, reason, set);
10115 
10116 	if (!!old != !!new) {
10117 		/*
10118 		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10119 		 * false positives in the sanity check WARN in svm_vcpu_run().
10120 		 * This task will wait for all vCPUs to ack the kick IRQ before
10121 		 * updating apicv_inhibit_reasons, and all other vCPUs will
10122 		 * block on acquiring apicv_update_lock so that vCPUs can't
10123 		 * redo svm_vcpu_run() without seeing the new inhibit state.
10124 		 *
10125 		 * Note, holding apicv_update_lock and taking it in the read
10126 		 * side (handling the request) also prevents other vCPUs from
10127 		 * servicing the request with a stale apicv_inhibit_reasons.
10128 		 */
10129 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10130 		kvm->arch.apicv_inhibit_reasons = new;
10131 		if (new) {
10132 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10133 			int idx = srcu_read_lock(&kvm->srcu);
10134 
10135 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
10136 			srcu_read_unlock(&kvm->srcu, idx);
10137 		}
10138 	} else {
10139 		kvm->arch.apicv_inhibit_reasons = new;
10140 	}
10141 }
10142 
10143 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10144 				    enum kvm_apicv_inhibit reason, bool set)
10145 {
10146 	if (!enable_apicv)
10147 		return;
10148 
10149 	down_write(&kvm->arch.apicv_update_lock);
10150 	__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10151 	up_write(&kvm->arch.apicv_update_lock);
10152 }
10153 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10154 
10155 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10156 {
10157 	if (!kvm_apic_present(vcpu))
10158 		return;
10159 
10160 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10161 
10162 	if (irqchip_split(vcpu->kvm))
10163 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10164 	else {
10165 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10166 		if (ioapic_in_kernel(vcpu->kvm))
10167 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10168 	}
10169 
10170 	if (is_guest_mode(vcpu))
10171 		vcpu->arch.load_eoi_exitmap_pending = true;
10172 	else
10173 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10174 }
10175 
10176 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10177 {
10178 	u64 eoi_exit_bitmap[4];
10179 
10180 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10181 		return;
10182 
10183 	if (to_hv_vcpu(vcpu)) {
10184 		bitmap_or((ulong *)eoi_exit_bitmap,
10185 			  vcpu->arch.ioapic_handled_vectors,
10186 			  to_hv_synic(vcpu)->vec_bitmap, 256);
10187 		static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10188 		return;
10189 	}
10190 
10191 	static_call_cond(kvm_x86_load_eoi_exitmap)(
10192 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10193 }
10194 
10195 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
10196 					    unsigned long start, unsigned long end)
10197 {
10198 	unsigned long apic_address;
10199 
10200 	/*
10201 	 * The physical address of apic access page is stored in the VMCS.
10202 	 * Update it when it becomes invalid.
10203 	 */
10204 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
10205 	if (start <= apic_address && apic_address < end)
10206 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
10207 }
10208 
10209 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10210 {
10211 	static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10212 }
10213 
10214 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10215 {
10216 	if (!lapic_in_kernel(vcpu))
10217 		return;
10218 
10219 	static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10220 }
10221 
10222 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10223 {
10224 	smp_send_reschedule(vcpu->cpu);
10225 }
10226 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10227 
10228 /*
10229  * Called within kvm->srcu read side.
10230  * Returns 1 to let vcpu_run() continue the guest execution loop without
10231  * exiting to the userspace.  Otherwise, the value will be returned to the
10232  * userspace.
10233  */
10234 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10235 {
10236 	int r;
10237 	bool req_int_win =
10238 		dm_request_for_irq_injection(vcpu) &&
10239 		kvm_cpu_accept_dm_intr(vcpu);
10240 	fastpath_t exit_fastpath;
10241 
10242 	bool req_immediate_exit = false;
10243 
10244 	if (kvm_request_pending(vcpu)) {
10245 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10246 			r = -EIO;
10247 			goto out;
10248 		}
10249 
10250 		if (kvm_dirty_ring_check_request(vcpu)) {
10251 			r = 0;
10252 			goto out;
10253 		}
10254 
10255 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10256 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10257 				r = 0;
10258 				goto out;
10259 			}
10260 		}
10261 		if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10262 			kvm_mmu_free_obsolete_roots(vcpu);
10263 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10264 			__kvm_migrate_timers(vcpu);
10265 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10266 			kvm_update_masterclock(vcpu->kvm);
10267 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10268 			kvm_gen_kvmclock_update(vcpu);
10269 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10270 			r = kvm_guest_time_update(vcpu);
10271 			if (unlikely(r))
10272 				goto out;
10273 		}
10274 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10275 			kvm_mmu_sync_roots(vcpu);
10276 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10277 			kvm_mmu_load_pgd(vcpu);
10278 
10279 		/*
10280 		 * Note, the order matters here, as flushing "all" TLB entries
10281 		 * also flushes the "current" TLB entries, i.e. servicing the
10282 		 * flush "all" will clear any request to flush "current".
10283 		 */
10284 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10285 			kvm_vcpu_flush_tlb_all(vcpu);
10286 
10287 		kvm_service_local_tlb_flush_requests(vcpu);
10288 
10289 		/*
10290 		 * Fall back to a "full" guest flush if Hyper-V's precise
10291 		 * flushing fails.  Note, Hyper-V's flushing is per-vCPU, but
10292 		 * the flushes are considered "remote" and not "local" because
10293 		 * the requests can be initiated from other vCPUs.
10294 		 */
10295 		if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10296 		    kvm_hv_vcpu_flush_tlb(vcpu))
10297 			kvm_vcpu_flush_tlb_guest(vcpu);
10298 
10299 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10300 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10301 			r = 0;
10302 			goto out;
10303 		}
10304 		if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10305 			if (is_guest_mode(vcpu))
10306 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
10307 
10308 			if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10309 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10310 				vcpu->mmio_needed = 0;
10311 				r = 0;
10312 				goto out;
10313 			}
10314 		}
10315 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10316 			/* Page is swapped out. Do synthetic halt */
10317 			vcpu->arch.apf.halted = true;
10318 			r = 1;
10319 			goto out;
10320 		}
10321 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10322 			record_steal_time(vcpu);
10323 #ifdef CONFIG_KVM_SMM
10324 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
10325 			process_smi(vcpu);
10326 #endif
10327 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
10328 			process_nmi(vcpu);
10329 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
10330 			kvm_pmu_handle_event(vcpu);
10331 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
10332 			kvm_pmu_deliver_pmi(vcpu);
10333 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10334 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10335 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
10336 				     vcpu->arch.ioapic_handled_vectors)) {
10337 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10338 				vcpu->run->eoi.vector =
10339 						vcpu->arch.pending_ioapic_eoi;
10340 				r = 0;
10341 				goto out;
10342 			}
10343 		}
10344 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10345 			vcpu_scan_ioapic(vcpu);
10346 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10347 			vcpu_load_eoi_exitmap(vcpu);
10348 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10349 			kvm_vcpu_reload_apic_access_page(vcpu);
10350 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10351 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10352 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10353 			vcpu->run->system_event.ndata = 0;
10354 			r = 0;
10355 			goto out;
10356 		}
10357 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10358 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10359 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10360 			vcpu->run->system_event.ndata = 0;
10361 			r = 0;
10362 			goto out;
10363 		}
10364 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10365 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10366 
10367 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10368 			vcpu->run->hyperv = hv_vcpu->exit;
10369 			r = 0;
10370 			goto out;
10371 		}
10372 
10373 		/*
10374 		 * KVM_REQ_HV_STIMER has to be processed after
10375 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10376 		 * depend on the guest clock being up-to-date
10377 		 */
10378 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10379 			kvm_hv_process_stimers(vcpu);
10380 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10381 			kvm_vcpu_update_apicv(vcpu);
10382 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10383 			kvm_check_async_pf_completion(vcpu);
10384 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10385 			static_call(kvm_x86_msr_filter_changed)(vcpu);
10386 
10387 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10388 			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10389 	}
10390 
10391 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10392 	    kvm_xen_has_interrupt(vcpu)) {
10393 		++vcpu->stat.req_event;
10394 		r = kvm_apic_accept_events(vcpu);
10395 		if (r < 0) {
10396 			r = 0;
10397 			goto out;
10398 		}
10399 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10400 			r = 1;
10401 			goto out;
10402 		}
10403 
10404 		r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10405 		if (r < 0) {
10406 			r = 0;
10407 			goto out;
10408 		}
10409 		if (req_int_win)
10410 			static_call(kvm_x86_enable_irq_window)(vcpu);
10411 
10412 		if (kvm_lapic_enabled(vcpu)) {
10413 			update_cr8_intercept(vcpu);
10414 			kvm_lapic_sync_to_vapic(vcpu);
10415 		}
10416 	}
10417 
10418 	r = kvm_mmu_reload(vcpu);
10419 	if (unlikely(r)) {
10420 		goto cancel_injection;
10421 	}
10422 
10423 	preempt_disable();
10424 
10425 	static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10426 
10427 	/*
10428 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10429 	 * IPI are then delayed after guest entry, which ensures that they
10430 	 * result in virtual interrupt delivery.
10431 	 */
10432 	local_irq_disable();
10433 
10434 	/* Store vcpu->apicv_active before vcpu->mode.  */
10435 	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10436 
10437 	kvm_vcpu_srcu_read_unlock(vcpu);
10438 
10439 	/*
10440 	 * 1) We should set ->mode before checking ->requests.  Please see
10441 	 * the comment in kvm_vcpu_exiting_guest_mode().
10442 	 *
10443 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
10444 	 * pairs with the memory barrier implicit in pi_test_and_set_on
10445 	 * (see vmx_deliver_posted_interrupt).
10446 	 *
10447 	 * 3) This also orders the write to mode from any reads to the page
10448 	 * tables done while the VCPU is running.  Please see the comment
10449 	 * in kvm_flush_remote_tlbs.
10450 	 */
10451 	smp_mb__after_srcu_read_unlock();
10452 
10453 	/*
10454 	 * Process pending posted interrupts to handle the case where the
10455 	 * notification IRQ arrived in the host, or was never sent (because the
10456 	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10457 	 * status, KVM doesn't update assigned devices when APICv is inhibited,
10458 	 * i.e. they can post interrupts even if APICv is temporarily disabled.
10459 	 */
10460 	if (kvm_lapic_enabled(vcpu))
10461 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10462 
10463 	if (kvm_vcpu_exit_request(vcpu)) {
10464 		vcpu->mode = OUTSIDE_GUEST_MODE;
10465 		smp_wmb();
10466 		local_irq_enable();
10467 		preempt_enable();
10468 		kvm_vcpu_srcu_read_lock(vcpu);
10469 		r = 1;
10470 		goto cancel_injection;
10471 	}
10472 
10473 	if (req_immediate_exit) {
10474 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10475 		static_call(kvm_x86_request_immediate_exit)(vcpu);
10476 	}
10477 
10478 	fpregs_assert_state_consistent();
10479 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
10480 		switch_fpu_return();
10481 
10482 	if (vcpu->arch.guest_fpu.xfd_err)
10483 		wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10484 
10485 	if (unlikely(vcpu->arch.switch_db_regs)) {
10486 		set_debugreg(0, 7);
10487 		set_debugreg(vcpu->arch.eff_db[0], 0);
10488 		set_debugreg(vcpu->arch.eff_db[1], 1);
10489 		set_debugreg(vcpu->arch.eff_db[2], 2);
10490 		set_debugreg(vcpu->arch.eff_db[3], 3);
10491 	} else if (unlikely(hw_breakpoint_active())) {
10492 		set_debugreg(0, 7);
10493 	}
10494 
10495 	guest_timing_enter_irqoff();
10496 
10497 	for (;;) {
10498 		/*
10499 		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10500 		 * update must kick and wait for all vCPUs before toggling the
10501 		 * per-VM state, and responsing vCPUs must wait for the update
10502 		 * to complete before servicing KVM_REQ_APICV_UPDATE.
10503 		 */
10504 		WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10505 			     (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10506 
10507 		exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10508 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10509 			break;
10510 
10511 		if (kvm_lapic_enabled(vcpu))
10512 			static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10513 
10514 		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10515 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10516 			break;
10517 		}
10518 	}
10519 
10520 	/*
10521 	 * Do this here before restoring debug registers on the host.  And
10522 	 * since we do this before handling the vmexit, a DR access vmexit
10523 	 * can (a) read the correct value of the debug registers, (b) set
10524 	 * KVM_DEBUGREG_WONT_EXIT again.
10525 	 */
10526 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10527 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10528 		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10529 		kvm_update_dr0123(vcpu);
10530 		kvm_update_dr7(vcpu);
10531 	}
10532 
10533 	/*
10534 	 * If the guest has used debug registers, at least dr7
10535 	 * will be disabled while returning to the host.
10536 	 * If we don't have active breakpoints in the host, we don't
10537 	 * care about the messed up debug address registers. But if
10538 	 * we have some of them active, restore the old state.
10539 	 */
10540 	if (hw_breakpoint_active())
10541 		hw_breakpoint_restore();
10542 
10543 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10544 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10545 
10546 	vcpu->mode = OUTSIDE_GUEST_MODE;
10547 	smp_wmb();
10548 
10549 	/*
10550 	 * Sync xfd before calling handle_exit_irqoff() which may
10551 	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10552 	 * in #NM irqoff handler).
10553 	 */
10554 	if (vcpu->arch.xfd_no_write_intercept)
10555 		fpu_sync_guest_vmexit_xfd_state();
10556 
10557 	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10558 
10559 	if (vcpu->arch.guest_fpu.xfd_err)
10560 		wrmsrl(MSR_IA32_XFD_ERR, 0);
10561 
10562 	/*
10563 	 * Consume any pending interrupts, including the possible source of
10564 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10565 	 * An instruction is required after local_irq_enable() to fully unblock
10566 	 * interrupts on processors that implement an interrupt shadow, the
10567 	 * stat.exits increment will do nicely.
10568 	 */
10569 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10570 	local_irq_enable();
10571 	++vcpu->stat.exits;
10572 	local_irq_disable();
10573 	kvm_after_interrupt(vcpu);
10574 
10575 	/*
10576 	 * Wait until after servicing IRQs to account guest time so that any
10577 	 * ticks that occurred while running the guest are properly accounted
10578 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10579 	 * of accounting via context tracking, but the loss of accuracy is
10580 	 * acceptable for all known use cases.
10581 	 */
10582 	guest_timing_exit_irqoff();
10583 
10584 	local_irq_enable();
10585 	preempt_enable();
10586 
10587 	kvm_vcpu_srcu_read_lock(vcpu);
10588 
10589 	/*
10590 	 * Profile KVM exit RIPs:
10591 	 */
10592 	if (unlikely(prof_on == KVM_PROFILING)) {
10593 		unsigned long rip = kvm_rip_read(vcpu);
10594 		profile_hit(KVM_PROFILING, (void *)rip);
10595 	}
10596 
10597 	if (unlikely(vcpu->arch.tsc_always_catchup))
10598 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10599 
10600 	if (vcpu->arch.apic_attention)
10601 		kvm_lapic_sync_from_vapic(vcpu);
10602 
10603 	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10604 	return r;
10605 
10606 cancel_injection:
10607 	if (req_immediate_exit)
10608 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10609 	static_call(kvm_x86_cancel_injection)(vcpu);
10610 	if (unlikely(vcpu->arch.apic_attention))
10611 		kvm_lapic_sync_from_vapic(vcpu);
10612 out:
10613 	return r;
10614 }
10615 
10616 /* Called within kvm->srcu read side.  */
10617 static inline int vcpu_block(struct kvm_vcpu *vcpu)
10618 {
10619 	bool hv_timer;
10620 
10621 	if (!kvm_arch_vcpu_runnable(vcpu)) {
10622 		/*
10623 		 * Switch to the software timer before halt-polling/blocking as
10624 		 * the guest's timer may be a break event for the vCPU, and the
10625 		 * hypervisor timer runs only when the CPU is in guest mode.
10626 		 * Switch before halt-polling so that KVM recognizes an expired
10627 		 * timer before blocking.
10628 		 */
10629 		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10630 		if (hv_timer)
10631 			kvm_lapic_switch_to_sw_timer(vcpu);
10632 
10633 		kvm_vcpu_srcu_read_unlock(vcpu);
10634 		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10635 			kvm_vcpu_halt(vcpu);
10636 		else
10637 			kvm_vcpu_block(vcpu);
10638 		kvm_vcpu_srcu_read_lock(vcpu);
10639 
10640 		if (hv_timer)
10641 			kvm_lapic_switch_to_hv_timer(vcpu);
10642 
10643 		/*
10644 		 * If the vCPU is not runnable, a signal or another host event
10645 		 * of some kind is pending; service it without changing the
10646 		 * vCPU's activity state.
10647 		 */
10648 		if (!kvm_arch_vcpu_runnable(vcpu))
10649 			return 1;
10650 	}
10651 
10652 	/*
10653 	 * Evaluate nested events before exiting the halted state.  This allows
10654 	 * the halt state to be recorded properly in the VMCS12's activity
10655 	 * state field (AMD does not have a similar field and a VM-Exit always
10656 	 * causes a spurious wakeup from HLT).
10657 	 */
10658 	if (is_guest_mode(vcpu)) {
10659 		if (kvm_check_nested_events(vcpu) < 0)
10660 			return 0;
10661 	}
10662 
10663 	if (kvm_apic_accept_events(vcpu) < 0)
10664 		return 0;
10665 	switch(vcpu->arch.mp_state) {
10666 	case KVM_MP_STATE_HALTED:
10667 	case KVM_MP_STATE_AP_RESET_HOLD:
10668 		vcpu->arch.pv.pv_unhalted = false;
10669 		vcpu->arch.mp_state =
10670 			KVM_MP_STATE_RUNNABLE;
10671 		fallthrough;
10672 	case KVM_MP_STATE_RUNNABLE:
10673 		vcpu->arch.apf.halted = false;
10674 		break;
10675 	case KVM_MP_STATE_INIT_RECEIVED:
10676 		break;
10677 	default:
10678 		WARN_ON_ONCE(1);
10679 		break;
10680 	}
10681 	return 1;
10682 }
10683 
10684 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10685 {
10686 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10687 		!vcpu->arch.apf.halted);
10688 }
10689 
10690 /* Called within kvm->srcu read side.  */
10691 static int vcpu_run(struct kvm_vcpu *vcpu)
10692 {
10693 	int r;
10694 
10695 	vcpu->arch.l1tf_flush_l1d = true;
10696 
10697 	for (;;) {
10698 		/*
10699 		 * If another guest vCPU requests a PV TLB flush in the middle
10700 		 * of instruction emulation, the rest of the emulation could
10701 		 * use a stale page translation. Assume that any code after
10702 		 * this point can start executing an instruction.
10703 		 */
10704 		vcpu->arch.at_instruction_boundary = false;
10705 		if (kvm_vcpu_running(vcpu)) {
10706 			r = vcpu_enter_guest(vcpu);
10707 		} else {
10708 			r = vcpu_block(vcpu);
10709 		}
10710 
10711 		if (r <= 0)
10712 			break;
10713 
10714 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10715 		if (kvm_xen_has_pending_events(vcpu))
10716 			kvm_xen_inject_pending_events(vcpu);
10717 
10718 		if (kvm_cpu_has_pending_timer(vcpu))
10719 			kvm_inject_pending_timer_irqs(vcpu);
10720 
10721 		if (dm_request_for_irq_injection(vcpu) &&
10722 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10723 			r = 0;
10724 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10725 			++vcpu->stat.request_irq_exits;
10726 			break;
10727 		}
10728 
10729 		if (__xfer_to_guest_mode_work_pending()) {
10730 			kvm_vcpu_srcu_read_unlock(vcpu);
10731 			r = xfer_to_guest_mode_handle_work(vcpu);
10732 			kvm_vcpu_srcu_read_lock(vcpu);
10733 			if (r)
10734 				return r;
10735 		}
10736 	}
10737 
10738 	return r;
10739 }
10740 
10741 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10742 {
10743 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10744 }
10745 
10746 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10747 {
10748 	BUG_ON(!vcpu->arch.pio.count);
10749 
10750 	return complete_emulated_io(vcpu);
10751 }
10752 
10753 /*
10754  * Implements the following, as a state machine:
10755  *
10756  * read:
10757  *   for each fragment
10758  *     for each mmio piece in the fragment
10759  *       write gpa, len
10760  *       exit
10761  *       copy data
10762  *   execute insn
10763  *
10764  * write:
10765  *   for each fragment
10766  *     for each mmio piece in the fragment
10767  *       write gpa, len
10768  *       copy data
10769  *       exit
10770  */
10771 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10772 {
10773 	struct kvm_run *run = vcpu->run;
10774 	struct kvm_mmio_fragment *frag;
10775 	unsigned len;
10776 
10777 	BUG_ON(!vcpu->mmio_needed);
10778 
10779 	/* Complete previous fragment */
10780 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10781 	len = min(8u, frag->len);
10782 	if (!vcpu->mmio_is_write)
10783 		memcpy(frag->data, run->mmio.data, len);
10784 
10785 	if (frag->len <= 8) {
10786 		/* Switch to the next fragment. */
10787 		frag++;
10788 		vcpu->mmio_cur_fragment++;
10789 	} else {
10790 		/* Go forward to the next mmio piece. */
10791 		frag->data += len;
10792 		frag->gpa += len;
10793 		frag->len -= len;
10794 	}
10795 
10796 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10797 		vcpu->mmio_needed = 0;
10798 
10799 		/* FIXME: return into emulator if single-stepping.  */
10800 		if (vcpu->mmio_is_write)
10801 			return 1;
10802 		vcpu->mmio_read_completed = 1;
10803 		return complete_emulated_io(vcpu);
10804 	}
10805 
10806 	run->exit_reason = KVM_EXIT_MMIO;
10807 	run->mmio.phys_addr = frag->gpa;
10808 	if (vcpu->mmio_is_write)
10809 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10810 	run->mmio.len = min(8u, frag->len);
10811 	run->mmio.is_write = vcpu->mmio_is_write;
10812 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10813 	return 0;
10814 }
10815 
10816 /* Swap (qemu) user FPU context for the guest FPU context. */
10817 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10818 {
10819 	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
10820 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
10821 	trace_kvm_fpu(1);
10822 }
10823 
10824 /* When vcpu_run ends, restore user space FPU context. */
10825 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10826 {
10827 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
10828 	++vcpu->stat.fpu_reload;
10829 	trace_kvm_fpu(0);
10830 }
10831 
10832 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10833 {
10834 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
10835 	struct kvm_run *kvm_run = vcpu->run;
10836 	int r;
10837 
10838 	vcpu_load(vcpu);
10839 	kvm_sigset_activate(vcpu);
10840 	kvm_run->flags = 0;
10841 	kvm_load_guest_fpu(vcpu);
10842 
10843 	kvm_vcpu_srcu_read_lock(vcpu);
10844 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10845 		if (kvm_run->immediate_exit) {
10846 			r = -EINTR;
10847 			goto out;
10848 		}
10849 		/*
10850 		 * It should be impossible for the hypervisor timer to be in
10851 		 * use before KVM has ever run the vCPU.
10852 		 */
10853 		WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
10854 
10855 		kvm_vcpu_srcu_read_unlock(vcpu);
10856 		kvm_vcpu_block(vcpu);
10857 		kvm_vcpu_srcu_read_lock(vcpu);
10858 
10859 		if (kvm_apic_accept_events(vcpu) < 0) {
10860 			r = 0;
10861 			goto out;
10862 		}
10863 		r = -EAGAIN;
10864 		if (signal_pending(current)) {
10865 			r = -EINTR;
10866 			kvm_run->exit_reason = KVM_EXIT_INTR;
10867 			++vcpu->stat.signal_exits;
10868 		}
10869 		goto out;
10870 	}
10871 
10872 	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10873 	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10874 		r = -EINVAL;
10875 		goto out;
10876 	}
10877 
10878 	if (kvm_run->kvm_dirty_regs) {
10879 		r = sync_regs(vcpu);
10880 		if (r != 0)
10881 			goto out;
10882 	}
10883 
10884 	/* re-sync apic's tpr */
10885 	if (!lapic_in_kernel(vcpu)) {
10886 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10887 			r = -EINVAL;
10888 			goto out;
10889 		}
10890 	}
10891 
10892 	/*
10893 	 * If userspace set a pending exception and L2 is active, convert it to
10894 	 * a pending VM-Exit if L1 wants to intercept the exception.
10895 	 */
10896 	if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
10897 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
10898 							ex->error_code)) {
10899 		kvm_queue_exception_vmexit(vcpu, ex->vector,
10900 					   ex->has_error_code, ex->error_code,
10901 					   ex->has_payload, ex->payload);
10902 		ex->injected = false;
10903 		ex->pending = false;
10904 	}
10905 	vcpu->arch.exception_from_userspace = false;
10906 
10907 	if (unlikely(vcpu->arch.complete_userspace_io)) {
10908 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10909 		vcpu->arch.complete_userspace_io = NULL;
10910 		r = cui(vcpu);
10911 		if (r <= 0)
10912 			goto out;
10913 	} else {
10914 		WARN_ON_ONCE(vcpu->arch.pio.count);
10915 		WARN_ON_ONCE(vcpu->mmio_needed);
10916 	}
10917 
10918 	if (kvm_run->immediate_exit) {
10919 		r = -EINTR;
10920 		goto out;
10921 	}
10922 
10923 	r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
10924 	if (r <= 0)
10925 		goto out;
10926 
10927 	r = vcpu_run(vcpu);
10928 
10929 out:
10930 	kvm_put_guest_fpu(vcpu);
10931 	if (kvm_run->kvm_valid_regs)
10932 		store_regs(vcpu);
10933 	post_kvm_run_save(vcpu);
10934 	kvm_vcpu_srcu_read_unlock(vcpu);
10935 
10936 	kvm_sigset_deactivate(vcpu);
10937 	vcpu_put(vcpu);
10938 	return r;
10939 }
10940 
10941 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10942 {
10943 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10944 		/*
10945 		 * We are here if userspace calls get_regs() in the middle of
10946 		 * instruction emulation. Registers state needs to be copied
10947 		 * back from emulation context to vcpu. Userspace shouldn't do
10948 		 * that usually, but some bad designed PV devices (vmware
10949 		 * backdoor interface) need this to work
10950 		 */
10951 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10952 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10953 	}
10954 	regs->rax = kvm_rax_read(vcpu);
10955 	regs->rbx = kvm_rbx_read(vcpu);
10956 	regs->rcx = kvm_rcx_read(vcpu);
10957 	regs->rdx = kvm_rdx_read(vcpu);
10958 	regs->rsi = kvm_rsi_read(vcpu);
10959 	regs->rdi = kvm_rdi_read(vcpu);
10960 	regs->rsp = kvm_rsp_read(vcpu);
10961 	regs->rbp = kvm_rbp_read(vcpu);
10962 #ifdef CONFIG_X86_64
10963 	regs->r8 = kvm_r8_read(vcpu);
10964 	regs->r9 = kvm_r9_read(vcpu);
10965 	regs->r10 = kvm_r10_read(vcpu);
10966 	regs->r11 = kvm_r11_read(vcpu);
10967 	regs->r12 = kvm_r12_read(vcpu);
10968 	regs->r13 = kvm_r13_read(vcpu);
10969 	regs->r14 = kvm_r14_read(vcpu);
10970 	regs->r15 = kvm_r15_read(vcpu);
10971 #endif
10972 
10973 	regs->rip = kvm_rip_read(vcpu);
10974 	regs->rflags = kvm_get_rflags(vcpu);
10975 }
10976 
10977 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10978 {
10979 	vcpu_load(vcpu);
10980 	__get_regs(vcpu, regs);
10981 	vcpu_put(vcpu);
10982 	return 0;
10983 }
10984 
10985 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10986 {
10987 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10988 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10989 
10990 	kvm_rax_write(vcpu, regs->rax);
10991 	kvm_rbx_write(vcpu, regs->rbx);
10992 	kvm_rcx_write(vcpu, regs->rcx);
10993 	kvm_rdx_write(vcpu, regs->rdx);
10994 	kvm_rsi_write(vcpu, regs->rsi);
10995 	kvm_rdi_write(vcpu, regs->rdi);
10996 	kvm_rsp_write(vcpu, regs->rsp);
10997 	kvm_rbp_write(vcpu, regs->rbp);
10998 #ifdef CONFIG_X86_64
10999 	kvm_r8_write(vcpu, regs->r8);
11000 	kvm_r9_write(vcpu, regs->r9);
11001 	kvm_r10_write(vcpu, regs->r10);
11002 	kvm_r11_write(vcpu, regs->r11);
11003 	kvm_r12_write(vcpu, regs->r12);
11004 	kvm_r13_write(vcpu, regs->r13);
11005 	kvm_r14_write(vcpu, regs->r14);
11006 	kvm_r15_write(vcpu, regs->r15);
11007 #endif
11008 
11009 	kvm_rip_write(vcpu, regs->rip);
11010 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11011 
11012 	vcpu->arch.exception.pending = false;
11013 	vcpu->arch.exception_vmexit.pending = false;
11014 
11015 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11016 }
11017 
11018 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11019 {
11020 	vcpu_load(vcpu);
11021 	__set_regs(vcpu, regs);
11022 	vcpu_put(vcpu);
11023 	return 0;
11024 }
11025 
11026 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11027 {
11028 	struct desc_ptr dt;
11029 
11030 	if (vcpu->arch.guest_state_protected)
11031 		goto skip_protected_regs;
11032 
11033 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11034 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11035 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11036 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11037 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11038 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11039 
11040 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11041 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11042 
11043 	static_call(kvm_x86_get_idt)(vcpu, &dt);
11044 	sregs->idt.limit = dt.size;
11045 	sregs->idt.base = dt.address;
11046 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
11047 	sregs->gdt.limit = dt.size;
11048 	sregs->gdt.base = dt.address;
11049 
11050 	sregs->cr2 = vcpu->arch.cr2;
11051 	sregs->cr3 = kvm_read_cr3(vcpu);
11052 
11053 skip_protected_regs:
11054 	sregs->cr0 = kvm_read_cr0(vcpu);
11055 	sregs->cr4 = kvm_read_cr4(vcpu);
11056 	sregs->cr8 = kvm_get_cr8(vcpu);
11057 	sregs->efer = vcpu->arch.efer;
11058 	sregs->apic_base = kvm_get_apic_base(vcpu);
11059 }
11060 
11061 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11062 {
11063 	__get_sregs_common(vcpu, sregs);
11064 
11065 	if (vcpu->arch.guest_state_protected)
11066 		return;
11067 
11068 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11069 		set_bit(vcpu->arch.interrupt.nr,
11070 			(unsigned long *)sregs->interrupt_bitmap);
11071 }
11072 
11073 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11074 {
11075 	int i;
11076 
11077 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11078 
11079 	if (vcpu->arch.guest_state_protected)
11080 		return;
11081 
11082 	if (is_pae_paging(vcpu)) {
11083 		for (i = 0 ; i < 4 ; i++)
11084 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11085 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11086 	}
11087 }
11088 
11089 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11090 				  struct kvm_sregs *sregs)
11091 {
11092 	vcpu_load(vcpu);
11093 	__get_sregs(vcpu, sregs);
11094 	vcpu_put(vcpu);
11095 	return 0;
11096 }
11097 
11098 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11099 				    struct kvm_mp_state *mp_state)
11100 {
11101 	int r;
11102 
11103 	vcpu_load(vcpu);
11104 	if (kvm_mpx_supported())
11105 		kvm_load_guest_fpu(vcpu);
11106 
11107 	r = kvm_apic_accept_events(vcpu);
11108 	if (r < 0)
11109 		goto out;
11110 	r = 0;
11111 
11112 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11113 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11114 	    vcpu->arch.pv.pv_unhalted)
11115 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11116 	else
11117 		mp_state->mp_state = vcpu->arch.mp_state;
11118 
11119 out:
11120 	if (kvm_mpx_supported())
11121 		kvm_put_guest_fpu(vcpu);
11122 	vcpu_put(vcpu);
11123 	return r;
11124 }
11125 
11126 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11127 				    struct kvm_mp_state *mp_state)
11128 {
11129 	int ret = -EINVAL;
11130 
11131 	vcpu_load(vcpu);
11132 
11133 	switch (mp_state->mp_state) {
11134 	case KVM_MP_STATE_UNINITIALIZED:
11135 	case KVM_MP_STATE_HALTED:
11136 	case KVM_MP_STATE_AP_RESET_HOLD:
11137 	case KVM_MP_STATE_INIT_RECEIVED:
11138 	case KVM_MP_STATE_SIPI_RECEIVED:
11139 		if (!lapic_in_kernel(vcpu))
11140 			goto out;
11141 		break;
11142 
11143 	case KVM_MP_STATE_RUNNABLE:
11144 		break;
11145 
11146 	default:
11147 		goto out;
11148 	}
11149 
11150 	/*
11151 	 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11152 	 * forcing the guest into INIT/SIPI if those events are supposed to be
11153 	 * blocked.  KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11154 	 * if an SMI is pending as well.
11155 	 */
11156 	if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11157 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11158 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11159 		goto out;
11160 
11161 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11162 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11163 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11164 	} else
11165 		vcpu->arch.mp_state = mp_state->mp_state;
11166 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11167 
11168 	ret = 0;
11169 out:
11170 	vcpu_put(vcpu);
11171 	return ret;
11172 }
11173 
11174 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11175 		    int reason, bool has_error_code, u32 error_code)
11176 {
11177 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11178 	int ret;
11179 
11180 	init_emulate_ctxt(vcpu);
11181 
11182 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11183 				   has_error_code, error_code);
11184 	if (ret) {
11185 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11186 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11187 		vcpu->run->internal.ndata = 0;
11188 		return 0;
11189 	}
11190 
11191 	kvm_rip_write(vcpu, ctxt->eip);
11192 	kvm_set_rflags(vcpu, ctxt->eflags);
11193 	return 1;
11194 }
11195 EXPORT_SYMBOL_GPL(kvm_task_switch);
11196 
11197 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11198 {
11199 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11200 		/*
11201 		 * When EFER.LME and CR0.PG are set, the processor is in
11202 		 * 64-bit mode (though maybe in a 32-bit code segment).
11203 		 * CR4.PAE and EFER.LMA must be set.
11204 		 */
11205 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11206 			return false;
11207 		if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
11208 			return false;
11209 	} else {
11210 		/*
11211 		 * Not in 64-bit mode: EFER.LMA is clear and the code
11212 		 * segment cannot be 64-bit.
11213 		 */
11214 		if (sregs->efer & EFER_LMA || sregs->cs.l)
11215 			return false;
11216 	}
11217 
11218 	return kvm_is_valid_cr4(vcpu, sregs->cr4);
11219 }
11220 
11221 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11222 		int *mmu_reset_needed, bool update_pdptrs)
11223 {
11224 	struct msr_data apic_base_msr;
11225 	int idx;
11226 	struct desc_ptr dt;
11227 
11228 	if (!kvm_is_valid_sregs(vcpu, sregs))
11229 		return -EINVAL;
11230 
11231 	apic_base_msr.data = sregs->apic_base;
11232 	apic_base_msr.host_initiated = true;
11233 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
11234 		return -EINVAL;
11235 
11236 	if (vcpu->arch.guest_state_protected)
11237 		return 0;
11238 
11239 	dt.size = sregs->idt.limit;
11240 	dt.address = sregs->idt.base;
11241 	static_call(kvm_x86_set_idt)(vcpu, &dt);
11242 	dt.size = sregs->gdt.limit;
11243 	dt.address = sregs->gdt.base;
11244 	static_call(kvm_x86_set_gdt)(vcpu, &dt);
11245 
11246 	vcpu->arch.cr2 = sregs->cr2;
11247 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11248 	vcpu->arch.cr3 = sregs->cr3;
11249 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11250 	static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11251 
11252 	kvm_set_cr8(vcpu, sregs->cr8);
11253 
11254 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11255 	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11256 
11257 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11258 	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11259 	vcpu->arch.cr0 = sregs->cr0;
11260 
11261 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11262 	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11263 
11264 	if (update_pdptrs) {
11265 		idx = srcu_read_lock(&vcpu->kvm->srcu);
11266 		if (is_pae_paging(vcpu)) {
11267 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11268 			*mmu_reset_needed = 1;
11269 		}
11270 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
11271 	}
11272 
11273 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11274 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11275 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11276 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11277 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11278 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11279 
11280 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11281 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11282 
11283 	update_cr8_intercept(vcpu);
11284 
11285 	/* Older userspace won't unhalt the vcpu on reset. */
11286 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11287 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11288 	    !is_protmode(vcpu))
11289 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11290 
11291 	return 0;
11292 }
11293 
11294 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11295 {
11296 	int pending_vec, max_bits;
11297 	int mmu_reset_needed = 0;
11298 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11299 
11300 	if (ret)
11301 		return ret;
11302 
11303 	if (mmu_reset_needed)
11304 		kvm_mmu_reset_context(vcpu);
11305 
11306 	max_bits = KVM_NR_INTERRUPTS;
11307 	pending_vec = find_first_bit(
11308 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
11309 
11310 	if (pending_vec < max_bits) {
11311 		kvm_queue_interrupt(vcpu, pending_vec, false);
11312 		pr_debug("Set back pending irq %d\n", pending_vec);
11313 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11314 	}
11315 	return 0;
11316 }
11317 
11318 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11319 {
11320 	int mmu_reset_needed = 0;
11321 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11322 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11323 		!(sregs2->efer & EFER_LMA);
11324 	int i, ret;
11325 
11326 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11327 		return -EINVAL;
11328 
11329 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11330 		return -EINVAL;
11331 
11332 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11333 				 &mmu_reset_needed, !valid_pdptrs);
11334 	if (ret)
11335 		return ret;
11336 
11337 	if (valid_pdptrs) {
11338 		for (i = 0; i < 4 ; i++)
11339 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11340 
11341 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11342 		mmu_reset_needed = 1;
11343 		vcpu->arch.pdptrs_from_userspace = true;
11344 	}
11345 	if (mmu_reset_needed)
11346 		kvm_mmu_reset_context(vcpu);
11347 	return 0;
11348 }
11349 
11350 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11351 				  struct kvm_sregs *sregs)
11352 {
11353 	int ret;
11354 
11355 	vcpu_load(vcpu);
11356 	ret = __set_sregs(vcpu, sregs);
11357 	vcpu_put(vcpu);
11358 	return ret;
11359 }
11360 
11361 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11362 {
11363 	bool set = false;
11364 	struct kvm_vcpu *vcpu;
11365 	unsigned long i;
11366 
11367 	if (!enable_apicv)
11368 		return;
11369 
11370 	down_write(&kvm->arch.apicv_update_lock);
11371 
11372 	kvm_for_each_vcpu(i, vcpu, kvm) {
11373 		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11374 			set = true;
11375 			break;
11376 		}
11377 	}
11378 	__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11379 	up_write(&kvm->arch.apicv_update_lock);
11380 }
11381 
11382 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11383 					struct kvm_guest_debug *dbg)
11384 {
11385 	unsigned long rflags;
11386 	int i, r;
11387 
11388 	if (vcpu->arch.guest_state_protected)
11389 		return -EINVAL;
11390 
11391 	vcpu_load(vcpu);
11392 
11393 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11394 		r = -EBUSY;
11395 		if (kvm_is_exception_pending(vcpu))
11396 			goto out;
11397 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11398 			kvm_queue_exception(vcpu, DB_VECTOR);
11399 		else
11400 			kvm_queue_exception(vcpu, BP_VECTOR);
11401 	}
11402 
11403 	/*
11404 	 * Read rflags as long as potentially injected trace flags are still
11405 	 * filtered out.
11406 	 */
11407 	rflags = kvm_get_rflags(vcpu);
11408 
11409 	vcpu->guest_debug = dbg->control;
11410 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11411 		vcpu->guest_debug = 0;
11412 
11413 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11414 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
11415 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11416 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11417 	} else {
11418 		for (i = 0; i < KVM_NR_DB_REGS; i++)
11419 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11420 	}
11421 	kvm_update_dr7(vcpu);
11422 
11423 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11424 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11425 
11426 	/*
11427 	 * Trigger an rflags update that will inject or remove the trace
11428 	 * flags.
11429 	 */
11430 	kvm_set_rflags(vcpu, rflags);
11431 
11432 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11433 
11434 	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11435 
11436 	r = 0;
11437 
11438 out:
11439 	vcpu_put(vcpu);
11440 	return r;
11441 }
11442 
11443 /*
11444  * Translate a guest virtual address to a guest physical address.
11445  */
11446 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11447 				    struct kvm_translation *tr)
11448 {
11449 	unsigned long vaddr = tr->linear_address;
11450 	gpa_t gpa;
11451 	int idx;
11452 
11453 	vcpu_load(vcpu);
11454 
11455 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11456 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11457 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11458 	tr->physical_address = gpa;
11459 	tr->valid = gpa != INVALID_GPA;
11460 	tr->writeable = 1;
11461 	tr->usermode = 0;
11462 
11463 	vcpu_put(vcpu);
11464 	return 0;
11465 }
11466 
11467 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11468 {
11469 	struct fxregs_state *fxsave;
11470 
11471 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11472 		return 0;
11473 
11474 	vcpu_load(vcpu);
11475 
11476 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11477 	memcpy(fpu->fpr, fxsave->st_space, 128);
11478 	fpu->fcw = fxsave->cwd;
11479 	fpu->fsw = fxsave->swd;
11480 	fpu->ftwx = fxsave->twd;
11481 	fpu->last_opcode = fxsave->fop;
11482 	fpu->last_ip = fxsave->rip;
11483 	fpu->last_dp = fxsave->rdp;
11484 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11485 
11486 	vcpu_put(vcpu);
11487 	return 0;
11488 }
11489 
11490 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11491 {
11492 	struct fxregs_state *fxsave;
11493 
11494 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11495 		return 0;
11496 
11497 	vcpu_load(vcpu);
11498 
11499 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11500 
11501 	memcpy(fxsave->st_space, fpu->fpr, 128);
11502 	fxsave->cwd = fpu->fcw;
11503 	fxsave->swd = fpu->fsw;
11504 	fxsave->twd = fpu->ftwx;
11505 	fxsave->fop = fpu->last_opcode;
11506 	fxsave->rip = fpu->last_ip;
11507 	fxsave->rdp = fpu->last_dp;
11508 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11509 
11510 	vcpu_put(vcpu);
11511 	return 0;
11512 }
11513 
11514 static void store_regs(struct kvm_vcpu *vcpu)
11515 {
11516 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11517 
11518 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11519 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
11520 
11521 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11522 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11523 
11524 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11525 		kvm_vcpu_ioctl_x86_get_vcpu_events(
11526 				vcpu, &vcpu->run->s.regs.events);
11527 }
11528 
11529 static int sync_regs(struct kvm_vcpu *vcpu)
11530 {
11531 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11532 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
11533 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11534 	}
11535 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11536 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11537 			return -EINVAL;
11538 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11539 	}
11540 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11541 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11542 				vcpu, &vcpu->run->s.regs.events))
11543 			return -EINVAL;
11544 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11545 	}
11546 
11547 	return 0;
11548 }
11549 
11550 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11551 {
11552 	if (kvm_check_tsc_unstable() && kvm->created_vcpus)
11553 		pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
11554 			     "guest TSC will not be reliable\n");
11555 
11556 	if (!kvm->arch.max_vcpu_ids)
11557 		kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
11558 
11559 	if (id >= kvm->arch.max_vcpu_ids)
11560 		return -EINVAL;
11561 
11562 	return static_call(kvm_x86_vcpu_precreate)(kvm);
11563 }
11564 
11565 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11566 {
11567 	struct page *page;
11568 	int r;
11569 
11570 	vcpu->arch.last_vmentry_cpu = -1;
11571 	vcpu->arch.regs_avail = ~0;
11572 	vcpu->arch.regs_dirty = ~0;
11573 
11574 	kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN);
11575 
11576 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11577 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11578 	else
11579 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11580 
11581 	r = kvm_mmu_create(vcpu);
11582 	if (r < 0)
11583 		return r;
11584 
11585 	if (irqchip_in_kernel(vcpu->kvm)) {
11586 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11587 		if (r < 0)
11588 			goto fail_mmu_destroy;
11589 
11590 		/*
11591 		 * Defer evaluating inhibits until the vCPU is first run, as
11592 		 * this vCPU will not get notified of any changes until this
11593 		 * vCPU is visible to other vCPUs (marked online and added to
11594 		 * the set of vCPUs).  Opportunistically mark APICv active as
11595 		 * VMX in particularly is highly unlikely to have inhibits.
11596 		 * Ignore the current per-VM APICv state so that vCPU creation
11597 		 * is guaranteed to run with a deterministic value, the request
11598 		 * will ensure the vCPU gets the correct state before VM-Entry.
11599 		 */
11600 		if (enable_apicv) {
11601 			vcpu->arch.apic->apicv_active = true;
11602 			kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11603 		}
11604 	} else
11605 		static_branch_inc(&kvm_has_noapic_vcpu);
11606 
11607 	r = -ENOMEM;
11608 
11609 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11610 	if (!page)
11611 		goto fail_free_lapic;
11612 	vcpu->arch.pio_data = page_address(page);
11613 
11614 	vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
11615 				       GFP_KERNEL_ACCOUNT);
11616 	vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
11617 					    GFP_KERNEL_ACCOUNT);
11618 	if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
11619 		goto fail_free_mce_banks;
11620 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11621 
11622 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11623 				GFP_KERNEL_ACCOUNT))
11624 		goto fail_free_mce_banks;
11625 
11626 	if (!alloc_emulate_ctxt(vcpu))
11627 		goto free_wbinvd_dirty_mask;
11628 
11629 	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11630 		pr_err("kvm: failed to allocate vcpu's fpu\n");
11631 		goto free_emulate_ctxt;
11632 	}
11633 
11634 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11635 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11636 
11637 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11638 
11639 	kvm_async_pf_hash_reset(vcpu);
11640 
11641 	vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
11642 	kvm_pmu_init(vcpu);
11643 
11644 	vcpu->arch.pending_external_vector = -1;
11645 	vcpu->arch.preempted_in_kernel = false;
11646 
11647 #if IS_ENABLED(CONFIG_HYPERV)
11648 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
11649 #endif
11650 
11651 	r = static_call(kvm_x86_vcpu_create)(vcpu);
11652 	if (r)
11653 		goto free_guest_fpu;
11654 
11655 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11656 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11657 	kvm_xen_init_vcpu(vcpu);
11658 	kvm_vcpu_mtrr_init(vcpu);
11659 	vcpu_load(vcpu);
11660 	kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
11661 	kvm_vcpu_reset(vcpu, false);
11662 	kvm_init_mmu(vcpu);
11663 	vcpu_put(vcpu);
11664 	return 0;
11665 
11666 free_guest_fpu:
11667 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11668 free_emulate_ctxt:
11669 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11670 free_wbinvd_dirty_mask:
11671 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11672 fail_free_mce_banks:
11673 	kfree(vcpu->arch.mce_banks);
11674 	kfree(vcpu->arch.mci_ctl2_banks);
11675 	free_page((unsigned long)vcpu->arch.pio_data);
11676 fail_free_lapic:
11677 	kvm_free_lapic(vcpu);
11678 fail_mmu_destroy:
11679 	kvm_mmu_destroy(vcpu);
11680 	return r;
11681 }
11682 
11683 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11684 {
11685 	struct kvm *kvm = vcpu->kvm;
11686 
11687 	if (mutex_lock_killable(&vcpu->mutex))
11688 		return;
11689 	vcpu_load(vcpu);
11690 	kvm_synchronize_tsc(vcpu, 0);
11691 	vcpu_put(vcpu);
11692 
11693 	/* poll control enabled by default */
11694 	vcpu->arch.msr_kvm_poll_control = 1;
11695 
11696 	mutex_unlock(&vcpu->mutex);
11697 
11698 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11699 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11700 						KVMCLOCK_SYNC_PERIOD);
11701 }
11702 
11703 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11704 {
11705 	int idx;
11706 
11707 	kvmclock_reset(vcpu);
11708 
11709 	static_call(kvm_x86_vcpu_free)(vcpu);
11710 
11711 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11712 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11713 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11714 
11715 	kvm_xen_destroy_vcpu(vcpu);
11716 	kvm_hv_vcpu_uninit(vcpu);
11717 	kvm_pmu_destroy(vcpu);
11718 	kfree(vcpu->arch.mce_banks);
11719 	kfree(vcpu->arch.mci_ctl2_banks);
11720 	kvm_free_lapic(vcpu);
11721 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11722 	kvm_mmu_destroy(vcpu);
11723 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11724 	free_page((unsigned long)vcpu->arch.pio_data);
11725 	kvfree(vcpu->arch.cpuid_entries);
11726 	if (!lapic_in_kernel(vcpu))
11727 		static_branch_dec(&kvm_has_noapic_vcpu);
11728 }
11729 
11730 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11731 {
11732 	struct kvm_cpuid_entry2 *cpuid_0x1;
11733 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
11734 	unsigned long new_cr0;
11735 
11736 	/*
11737 	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11738 	 * to handle side effects.  RESET emulation hits those flows and relies
11739 	 * on emulated/virtualized registers, including those that are loaded
11740 	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
11741 	 * to detect improper or missing initialization.
11742 	 */
11743 	WARN_ON_ONCE(!init_event &&
11744 		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11745 
11746 	/*
11747 	 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
11748 	 * possible to INIT the vCPU while L2 is active.  Force the vCPU back
11749 	 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
11750 	 * bits), i.e. virtualization is disabled.
11751 	 */
11752 	if (is_guest_mode(vcpu))
11753 		kvm_leave_nested(vcpu);
11754 
11755 	kvm_lapic_reset(vcpu, init_event);
11756 
11757 	WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
11758 	vcpu->arch.hflags = 0;
11759 
11760 	vcpu->arch.smi_pending = 0;
11761 	vcpu->arch.smi_count = 0;
11762 	atomic_set(&vcpu->arch.nmi_queued, 0);
11763 	vcpu->arch.nmi_pending = 0;
11764 	vcpu->arch.nmi_injected = false;
11765 	kvm_clear_interrupt_queue(vcpu);
11766 	kvm_clear_exception_queue(vcpu);
11767 
11768 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
11769 	kvm_update_dr0123(vcpu);
11770 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
11771 	vcpu->arch.dr7 = DR7_FIXED_1;
11772 	kvm_update_dr7(vcpu);
11773 
11774 	vcpu->arch.cr2 = 0;
11775 
11776 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11777 	vcpu->arch.apf.msr_en_val = 0;
11778 	vcpu->arch.apf.msr_int_val = 0;
11779 	vcpu->arch.st.msr_val = 0;
11780 
11781 	kvmclock_reset(vcpu);
11782 
11783 	kvm_clear_async_pf_completion_queue(vcpu);
11784 	kvm_async_pf_hash_reset(vcpu);
11785 	vcpu->arch.apf.halted = false;
11786 
11787 	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
11788 		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
11789 
11790 		/*
11791 		 * All paths that lead to INIT are required to load the guest's
11792 		 * FPU state (because most paths are buried in KVM_RUN).
11793 		 */
11794 		if (init_event)
11795 			kvm_put_guest_fpu(vcpu);
11796 
11797 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
11798 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
11799 
11800 		if (init_event)
11801 			kvm_load_guest_fpu(vcpu);
11802 	}
11803 
11804 	if (!init_event) {
11805 		kvm_pmu_reset(vcpu);
11806 		vcpu->arch.smbase = 0x30000;
11807 
11808 		vcpu->arch.msr_misc_features_enables = 0;
11809 		vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
11810 						  MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
11811 
11812 		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
11813 		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
11814 	}
11815 
11816 	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
11817 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11818 	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
11819 
11820 	/*
11821 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11822 	 * if no CPUID match is found.  Note, it's impossible to get a match at
11823 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11824 	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
11825 	 * on RESET.  But, go through the motions in case that's ever remedied.
11826 	 */
11827 	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
11828 	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
11829 
11830 	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11831 
11832 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11833 	kvm_rip_write(vcpu, 0xfff0);
11834 
11835 	vcpu->arch.cr3 = 0;
11836 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11837 
11838 	/*
11839 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
11840 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11841 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
11842 	 */
11843 	new_cr0 = X86_CR0_ET;
11844 	if (init_event)
11845 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11846 	else
11847 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11848 
11849 	static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11850 	static_call(kvm_x86_set_cr4)(vcpu, 0);
11851 	static_call(kvm_x86_set_efer)(vcpu, 0);
11852 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11853 
11854 	/*
11855 	 * On the standard CR0/CR4/EFER modification paths, there are several
11856 	 * complex conditions determining whether the MMU has to be reset and/or
11857 	 * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
11858 	 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
11859 	 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
11860 	 * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
11861 	 */
11862 	if (old_cr0 & X86_CR0_PG) {
11863 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11864 		kvm_mmu_reset_context(vcpu);
11865 	}
11866 
11867 	/*
11868 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
11869 	 * APM states the TLBs are untouched by INIT, but it also states that
11870 	 * the TLBs are flushed on "External initialization of the processor."
11871 	 * Flush the guest TLB regardless of vendor, there is no meaningful
11872 	 * benefit in relying on the guest to flush the TLB immediately after
11873 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
11874 	 * performance perspective.
11875 	 */
11876 	if (init_event)
11877 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11878 }
11879 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11880 
11881 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11882 {
11883 	struct kvm_segment cs;
11884 
11885 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11886 	cs.selector = vector << 8;
11887 	cs.base = vector << 12;
11888 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11889 	kvm_rip_write(vcpu, 0);
11890 }
11891 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
11892 
11893 int kvm_arch_hardware_enable(void)
11894 {
11895 	struct kvm *kvm;
11896 	struct kvm_vcpu *vcpu;
11897 	unsigned long i;
11898 	int ret;
11899 	u64 local_tsc;
11900 	u64 max_tsc = 0;
11901 	bool stable, backwards_tsc = false;
11902 
11903 	kvm_user_return_msr_cpu_online();
11904 	ret = static_call(kvm_x86_hardware_enable)();
11905 	if (ret != 0)
11906 		return ret;
11907 
11908 	local_tsc = rdtsc();
11909 	stable = !kvm_check_tsc_unstable();
11910 	list_for_each_entry(kvm, &vm_list, vm_list) {
11911 		kvm_for_each_vcpu(i, vcpu, kvm) {
11912 			if (!stable && vcpu->cpu == smp_processor_id())
11913 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11914 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11915 				backwards_tsc = true;
11916 				if (vcpu->arch.last_host_tsc > max_tsc)
11917 					max_tsc = vcpu->arch.last_host_tsc;
11918 			}
11919 		}
11920 	}
11921 
11922 	/*
11923 	 * Sometimes, even reliable TSCs go backwards.  This happens on
11924 	 * platforms that reset TSC during suspend or hibernate actions, but
11925 	 * maintain synchronization.  We must compensate.  Fortunately, we can
11926 	 * detect that condition here, which happens early in CPU bringup,
11927 	 * before any KVM threads can be running.  Unfortunately, we can't
11928 	 * bring the TSCs fully up to date with real time, as we aren't yet far
11929 	 * enough into CPU bringup that we know how much real time has actually
11930 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11931 	 * variables that haven't been updated yet.
11932 	 *
11933 	 * So we simply find the maximum observed TSC above, then record the
11934 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
11935 	 * the adjustment will be applied.  Note that we accumulate
11936 	 * adjustments, in case multiple suspend cycles happen before some VCPU
11937 	 * gets a chance to run again.  In the event that no KVM threads get a
11938 	 * chance to run, we will miss the entire elapsed period, as we'll have
11939 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11940 	 * loose cycle time.  This isn't too big a deal, since the loss will be
11941 	 * uniform across all VCPUs (not to mention the scenario is extremely
11942 	 * unlikely). It is possible that a second hibernate recovery happens
11943 	 * much faster than a first, causing the observed TSC here to be
11944 	 * smaller; this would require additional padding adjustment, which is
11945 	 * why we set last_host_tsc to the local tsc observed here.
11946 	 *
11947 	 * N.B. - this code below runs only on platforms with reliable TSC,
11948 	 * as that is the only way backwards_tsc is set above.  Also note
11949 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11950 	 * have the same delta_cyc adjustment applied if backwards_tsc
11951 	 * is detected.  Note further, this adjustment is only done once,
11952 	 * as we reset last_host_tsc on all VCPUs to stop this from being
11953 	 * called multiple times (one for each physical CPU bringup).
11954 	 *
11955 	 * Platforms with unreliable TSCs don't have to deal with this, they
11956 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
11957 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
11958 	 * guarantee that they stay in perfect synchronization.
11959 	 */
11960 	if (backwards_tsc) {
11961 		u64 delta_cyc = max_tsc - local_tsc;
11962 		list_for_each_entry(kvm, &vm_list, vm_list) {
11963 			kvm->arch.backwards_tsc_observed = true;
11964 			kvm_for_each_vcpu(i, vcpu, kvm) {
11965 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
11966 				vcpu->arch.last_host_tsc = local_tsc;
11967 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11968 			}
11969 
11970 			/*
11971 			 * We have to disable TSC offset matching.. if you were
11972 			 * booting a VM while issuing an S4 host suspend....
11973 			 * you may have some problem.  Solving this issue is
11974 			 * left as an exercise to the reader.
11975 			 */
11976 			kvm->arch.last_tsc_nsec = 0;
11977 			kvm->arch.last_tsc_write = 0;
11978 		}
11979 
11980 	}
11981 	return 0;
11982 }
11983 
11984 void kvm_arch_hardware_disable(void)
11985 {
11986 	static_call(kvm_x86_hardware_disable)();
11987 	drop_user_return_notifiers();
11988 }
11989 
11990 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
11991 {
11992 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11993 
11994 #define __KVM_X86_OP(func) \
11995 	static_call_update(kvm_x86_##func, kvm_x86_ops.func);
11996 #define KVM_X86_OP(func) \
11997 	WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
11998 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
11999 #define KVM_X86_OP_OPTIONAL_RET0(func) \
12000 	static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
12001 					   (void *)__static_call_return0);
12002 #include <asm/kvm-x86-ops.h>
12003 #undef __KVM_X86_OP
12004 
12005 	kvm_pmu_ops_update(ops->pmu_ops);
12006 }
12007 
12008 int kvm_arch_hardware_setup(void *opaque)
12009 {
12010 	struct kvm_x86_init_ops *ops = opaque;
12011 	int r;
12012 
12013 	rdmsrl_safe(MSR_EFER, &host_efer);
12014 
12015 	if (boot_cpu_has(X86_FEATURE_XSAVES))
12016 		rdmsrl(MSR_IA32_XSS, host_xss);
12017 
12018 	kvm_init_pmu_capability();
12019 
12020 	r = ops->hardware_setup();
12021 	if (r != 0)
12022 		return r;
12023 
12024 	kvm_ops_update(ops);
12025 
12026 	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
12027 
12028 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
12029 		kvm_caps.supported_xss = 0;
12030 
12031 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
12032 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
12033 #undef __kvm_cpu_cap_has
12034 
12035 	if (kvm_caps.has_tsc_control) {
12036 		/*
12037 		 * Make sure the user can only configure tsc_khz values that
12038 		 * fit into a signed integer.
12039 		 * A min value is not calculated because it will always
12040 		 * be 1 on all machines.
12041 		 */
12042 		u64 max = min(0x7fffffffULL,
12043 			      __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
12044 		kvm_caps.max_guest_tsc_khz = max;
12045 	}
12046 	kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
12047 	kvm_init_msr_list();
12048 	return 0;
12049 }
12050 
12051 void kvm_arch_hardware_unsetup(void)
12052 {
12053 	kvm_unregister_perf_callbacks();
12054 
12055 	static_call(kvm_x86_hardware_unsetup)();
12056 }
12057 
12058 int kvm_arch_check_processor_compat(void *opaque)
12059 {
12060 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
12061 	struct kvm_x86_init_ops *ops = opaque;
12062 
12063 	WARN_ON(!irqs_disabled());
12064 
12065 	if (__cr4_reserved_bits(cpu_has, c) !=
12066 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
12067 		return -EIO;
12068 
12069 	return ops->check_processor_compatibility();
12070 }
12071 
12072 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12073 {
12074 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12075 }
12076 
12077 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12078 {
12079 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12080 }
12081 
12082 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12083 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12084 
12085 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12086 {
12087 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12088 
12089 	vcpu->arch.l1tf_flush_l1d = true;
12090 	if (pmu->version && unlikely(pmu->event_count)) {
12091 		pmu->need_cleanup = true;
12092 		kvm_make_request(KVM_REQ_PMU, vcpu);
12093 	}
12094 	static_call(kvm_x86_sched_in)(vcpu, cpu);
12095 }
12096 
12097 void kvm_arch_free_vm(struct kvm *kvm)
12098 {
12099 	kfree(to_kvm_hv(kvm)->hv_pa_pg);
12100 	__kvm_arch_free_vm(kvm);
12101 }
12102 
12103 
12104 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12105 {
12106 	int ret;
12107 	unsigned long flags;
12108 
12109 	if (type)
12110 		return -EINVAL;
12111 
12112 	ret = kvm_page_track_init(kvm);
12113 	if (ret)
12114 		goto out;
12115 
12116 	ret = kvm_mmu_init_vm(kvm);
12117 	if (ret)
12118 		goto out_page_track;
12119 
12120 	ret = static_call(kvm_x86_vm_init)(kvm);
12121 	if (ret)
12122 		goto out_uninit_mmu;
12123 
12124 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12125 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
12126 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12127 
12128 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12129 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12130 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12131 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12132 		&kvm->arch.irq_sources_bitmap);
12133 
12134 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12135 	mutex_init(&kvm->arch.apic_map_lock);
12136 	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12137 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12138 
12139 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12140 	pvclock_update_vm_gtod_copy(kvm);
12141 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12142 
12143 	kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12144 	kvm->arch.guest_can_read_msr_platform_info = true;
12145 	kvm->arch.enable_pmu = enable_pmu;
12146 
12147 #if IS_ENABLED(CONFIG_HYPERV)
12148 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12149 	kvm->arch.hv_root_tdp = INVALID_PAGE;
12150 #endif
12151 
12152 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12153 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12154 
12155 	kvm_apicv_init(kvm);
12156 	kvm_hv_init_vm(kvm);
12157 	kvm_xen_init_vm(kvm);
12158 
12159 	return 0;
12160 
12161 out_uninit_mmu:
12162 	kvm_mmu_uninit_vm(kvm);
12163 out_page_track:
12164 	kvm_page_track_cleanup(kvm);
12165 out:
12166 	return ret;
12167 }
12168 
12169 int kvm_arch_post_init_vm(struct kvm *kvm)
12170 {
12171 	return kvm_mmu_post_init_vm(kvm);
12172 }
12173 
12174 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12175 {
12176 	vcpu_load(vcpu);
12177 	kvm_mmu_unload(vcpu);
12178 	vcpu_put(vcpu);
12179 }
12180 
12181 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12182 {
12183 	unsigned long i;
12184 	struct kvm_vcpu *vcpu;
12185 
12186 	kvm_for_each_vcpu(i, vcpu, kvm) {
12187 		kvm_clear_async_pf_completion_queue(vcpu);
12188 		kvm_unload_vcpu_mmu(vcpu);
12189 	}
12190 }
12191 
12192 void kvm_arch_sync_events(struct kvm *kvm)
12193 {
12194 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12195 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12196 	kvm_free_pit(kvm);
12197 }
12198 
12199 /**
12200  * __x86_set_memory_region: Setup KVM internal memory slot
12201  *
12202  * @kvm: the kvm pointer to the VM.
12203  * @id: the slot ID to setup.
12204  * @gpa: the GPA to install the slot (unused when @size == 0).
12205  * @size: the size of the slot. Set to zero to uninstall a slot.
12206  *
12207  * This function helps to setup a KVM internal memory slot.  Specify
12208  * @size > 0 to install a new slot, while @size == 0 to uninstall a
12209  * slot.  The return code can be one of the following:
12210  *
12211  *   HVA:           on success (uninstall will return a bogus HVA)
12212  *   -errno:        on error
12213  *
12214  * The caller should always use IS_ERR() to check the return value
12215  * before use.  Note, the KVM internal memory slots are guaranteed to
12216  * remain valid and unchanged until the VM is destroyed, i.e., the
12217  * GPA->HVA translation will not change.  However, the HVA is a user
12218  * address, i.e. its accessibility is not guaranteed, and must be
12219  * accessed via __copy_{to,from}_user().
12220  */
12221 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12222 				      u32 size)
12223 {
12224 	int i, r;
12225 	unsigned long hva, old_npages;
12226 	struct kvm_memslots *slots = kvm_memslots(kvm);
12227 	struct kvm_memory_slot *slot;
12228 
12229 	/* Called with kvm->slots_lock held.  */
12230 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12231 		return ERR_PTR_USR(-EINVAL);
12232 
12233 	slot = id_to_memslot(slots, id);
12234 	if (size) {
12235 		if (slot && slot->npages)
12236 			return ERR_PTR_USR(-EEXIST);
12237 
12238 		/*
12239 		 * MAP_SHARED to prevent internal slot pages from being moved
12240 		 * by fork()/COW.
12241 		 */
12242 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12243 			      MAP_SHARED | MAP_ANONYMOUS, 0);
12244 		if (IS_ERR((void *)hva))
12245 			return (void __user *)hva;
12246 	} else {
12247 		if (!slot || !slot->npages)
12248 			return NULL;
12249 
12250 		old_npages = slot->npages;
12251 		hva = slot->userspace_addr;
12252 	}
12253 
12254 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
12255 		struct kvm_userspace_memory_region m;
12256 
12257 		m.slot = id | (i << 16);
12258 		m.flags = 0;
12259 		m.guest_phys_addr = gpa;
12260 		m.userspace_addr = hva;
12261 		m.memory_size = size;
12262 		r = __kvm_set_memory_region(kvm, &m);
12263 		if (r < 0)
12264 			return ERR_PTR_USR(r);
12265 	}
12266 
12267 	if (!size)
12268 		vm_munmap(hva, old_npages * PAGE_SIZE);
12269 
12270 	return (void __user *)hva;
12271 }
12272 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12273 
12274 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12275 {
12276 	kvm_mmu_pre_destroy_vm(kvm);
12277 }
12278 
12279 void kvm_arch_destroy_vm(struct kvm *kvm)
12280 {
12281 	if (current->mm == kvm->mm) {
12282 		/*
12283 		 * Free memory regions allocated on behalf of userspace,
12284 		 * unless the memory map has changed due to process exit
12285 		 * or fd copying.
12286 		 */
12287 		mutex_lock(&kvm->slots_lock);
12288 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12289 					0, 0);
12290 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12291 					0, 0);
12292 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12293 		mutex_unlock(&kvm->slots_lock);
12294 	}
12295 	kvm_unload_vcpu_mmus(kvm);
12296 	static_call_cond(kvm_x86_vm_destroy)(kvm);
12297 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12298 	kvm_pic_destroy(kvm);
12299 	kvm_ioapic_destroy(kvm);
12300 	kvm_destroy_vcpus(kvm);
12301 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12302 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12303 	kvm_mmu_uninit_vm(kvm);
12304 	kvm_page_track_cleanup(kvm);
12305 	kvm_xen_destroy_vm(kvm);
12306 	kvm_hv_destroy_vm(kvm);
12307 }
12308 
12309 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12310 {
12311 	int i;
12312 
12313 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12314 		kvfree(slot->arch.rmap[i]);
12315 		slot->arch.rmap[i] = NULL;
12316 	}
12317 }
12318 
12319 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12320 {
12321 	int i;
12322 
12323 	memslot_rmap_free(slot);
12324 
12325 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12326 		kvfree(slot->arch.lpage_info[i - 1]);
12327 		slot->arch.lpage_info[i - 1] = NULL;
12328 	}
12329 
12330 	kvm_page_track_free_memslot(slot);
12331 }
12332 
12333 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12334 {
12335 	const int sz = sizeof(*slot->arch.rmap[0]);
12336 	int i;
12337 
12338 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12339 		int level = i + 1;
12340 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12341 
12342 		if (slot->arch.rmap[i])
12343 			continue;
12344 
12345 		slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12346 		if (!slot->arch.rmap[i]) {
12347 			memslot_rmap_free(slot);
12348 			return -ENOMEM;
12349 		}
12350 	}
12351 
12352 	return 0;
12353 }
12354 
12355 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12356 				      struct kvm_memory_slot *slot)
12357 {
12358 	unsigned long npages = slot->npages;
12359 	int i, r;
12360 
12361 	/*
12362 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12363 	 * old arrays will be freed by __kvm_set_memory_region() if installing
12364 	 * the new memslot is successful.
12365 	 */
12366 	memset(&slot->arch, 0, sizeof(slot->arch));
12367 
12368 	if (kvm_memslots_have_rmaps(kvm)) {
12369 		r = memslot_rmap_alloc(slot, npages);
12370 		if (r)
12371 			return r;
12372 	}
12373 
12374 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12375 		struct kvm_lpage_info *linfo;
12376 		unsigned long ugfn;
12377 		int lpages;
12378 		int level = i + 1;
12379 
12380 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12381 
12382 		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12383 		if (!linfo)
12384 			goto out_free;
12385 
12386 		slot->arch.lpage_info[i - 1] = linfo;
12387 
12388 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12389 			linfo[0].disallow_lpage = 1;
12390 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12391 			linfo[lpages - 1].disallow_lpage = 1;
12392 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
12393 		/*
12394 		 * If the gfn and userspace address are not aligned wrt each
12395 		 * other, disable large page support for this slot.
12396 		 */
12397 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12398 			unsigned long j;
12399 
12400 			for (j = 0; j < lpages; ++j)
12401 				linfo[j].disallow_lpage = 1;
12402 		}
12403 	}
12404 
12405 	if (kvm_page_track_create_memslot(kvm, slot, npages))
12406 		goto out_free;
12407 
12408 	return 0;
12409 
12410 out_free:
12411 	memslot_rmap_free(slot);
12412 
12413 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12414 		kvfree(slot->arch.lpage_info[i - 1]);
12415 		slot->arch.lpage_info[i - 1] = NULL;
12416 	}
12417 	return -ENOMEM;
12418 }
12419 
12420 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12421 {
12422 	struct kvm_vcpu *vcpu;
12423 	unsigned long i;
12424 
12425 	/*
12426 	 * memslots->generation has been incremented.
12427 	 * mmio generation may have reached its maximum value.
12428 	 */
12429 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12430 
12431 	/* Force re-initialization of steal_time cache */
12432 	kvm_for_each_vcpu(i, vcpu, kvm)
12433 		kvm_vcpu_kick(vcpu);
12434 }
12435 
12436 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12437 				   const struct kvm_memory_slot *old,
12438 				   struct kvm_memory_slot *new,
12439 				   enum kvm_mr_change change)
12440 {
12441 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12442 		if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12443 			return -EINVAL;
12444 
12445 		return kvm_alloc_memslot_metadata(kvm, new);
12446 	}
12447 
12448 	if (change == KVM_MR_FLAGS_ONLY)
12449 		memcpy(&new->arch, &old->arch, sizeof(old->arch));
12450 	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12451 		return -EIO;
12452 
12453 	return 0;
12454 }
12455 
12456 
12457 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12458 {
12459 	struct kvm_arch *ka = &kvm->arch;
12460 
12461 	if (!kvm_x86_ops.cpu_dirty_log_size)
12462 		return;
12463 
12464 	if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
12465 	    (!enable && --ka->cpu_dirty_logging_count == 0))
12466 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12467 
12468 	WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
12469 }
12470 
12471 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12472 				     struct kvm_memory_slot *old,
12473 				     const struct kvm_memory_slot *new,
12474 				     enum kvm_mr_change change)
12475 {
12476 	u32 old_flags = old ? old->flags : 0;
12477 	u32 new_flags = new ? new->flags : 0;
12478 	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12479 
12480 	/*
12481 	 * Update CPU dirty logging if dirty logging is being toggled.  This
12482 	 * applies to all operations.
12483 	 */
12484 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12485 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12486 
12487 	/*
12488 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
12489 	 * made writable) or CREATE/MOVE/DELETE of a slot.
12490 	 *
12491 	 * For a memslot with dirty logging disabled:
12492 	 * CREATE:      No dirty mappings will already exist.
12493 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12494 	 *		kvm_arch_flush_shadow_memslot()
12495 	 *
12496 	 * For a memslot with dirty logging enabled:
12497 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
12498 	 *		and no dirty bits to clear.
12499 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12500 	 *		kvm_arch_flush_shadow_memslot().
12501 	 */
12502 	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12503 		return;
12504 
12505 	/*
12506 	 * READONLY and non-flags changes were filtered out above, and the only
12507 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12508 	 * logging isn't being toggled on or off.
12509 	 */
12510 	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12511 		return;
12512 
12513 	if (!log_dirty_pages) {
12514 		/*
12515 		 * Dirty logging tracks sptes in 4k granularity, meaning that
12516 		 * large sptes have to be split.  If live migration succeeds,
12517 		 * the guest in the source machine will be destroyed and large
12518 		 * sptes will be created in the destination.  However, if the
12519 		 * guest continues to run in the source machine (for example if
12520 		 * live migration fails), small sptes will remain around and
12521 		 * cause bad performance.
12522 		 *
12523 		 * Scan sptes if dirty logging has been stopped, dropping those
12524 		 * which can be collapsed into a single large-page spte.  Later
12525 		 * page faults will create the large-page sptes.
12526 		 */
12527 		kvm_mmu_zap_collapsible_sptes(kvm, new);
12528 	} else {
12529 		/*
12530 		 * Initially-all-set does not require write protecting any page,
12531 		 * because they're all assumed to be dirty.
12532 		 */
12533 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12534 			return;
12535 
12536 		if (READ_ONCE(eager_page_split))
12537 			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12538 
12539 		if (kvm_x86_ops.cpu_dirty_log_size) {
12540 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12541 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12542 		} else {
12543 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12544 		}
12545 
12546 		/*
12547 		 * Unconditionally flush the TLBs after enabling dirty logging.
12548 		 * A flush is almost always going to be necessary (see below),
12549 		 * and unconditionally flushing allows the helpers to omit
12550 		 * the subtly complex checks when removing write access.
12551 		 *
12552 		 * Do the flush outside of mmu_lock to reduce the amount of
12553 		 * time mmu_lock is held.  Flushing after dropping mmu_lock is
12554 		 * safe as KVM only needs to guarantee the slot is fully
12555 		 * write-protected before returning to userspace, i.e. before
12556 		 * userspace can consume the dirty status.
12557 		 *
12558 		 * Flushing outside of mmu_lock requires KVM to be careful when
12559 		 * making decisions based on writable status of an SPTE, e.g. a
12560 		 * !writable SPTE doesn't guarantee a CPU can't perform writes.
12561 		 *
12562 		 * Specifically, KVM also write-protects guest page tables to
12563 		 * monitor changes when using shadow paging, and must guarantee
12564 		 * no CPUs can write to those page before mmu_lock is dropped.
12565 		 * Because CPUs may have stale TLB entries at this point, a
12566 		 * !writable SPTE doesn't guarantee CPUs can't perform writes.
12567 		 *
12568 		 * KVM also allows making SPTES writable outside of mmu_lock,
12569 		 * e.g. to allow dirty logging without taking mmu_lock.
12570 		 *
12571 		 * To handle these scenarios, KVM uses a separate software-only
12572 		 * bit (MMU-writable) to track if a SPTE is !writable due to
12573 		 * a guest page table being write-protected (KVM clears the
12574 		 * MMU-writable flag when write-protecting for shadow paging).
12575 		 *
12576 		 * The use of MMU-writable is also the primary motivation for
12577 		 * the unconditional flush.  Because KVM must guarantee that a
12578 		 * CPU doesn't contain stale, writable TLB entries for a
12579 		 * !MMU-writable SPTE, KVM must flush if it encounters any
12580 		 * MMU-writable SPTE regardless of whether the actual hardware
12581 		 * writable bit was set.  I.e. KVM is almost guaranteed to need
12582 		 * to flush, while unconditionally flushing allows the "remove
12583 		 * write access" helpers to ignore MMU-writable entirely.
12584 		 *
12585 		 * See is_writable_pte() for more details (the case involving
12586 		 * access-tracked SPTEs is particularly relevant).
12587 		 */
12588 		kvm_arch_flush_remote_tlbs_memslot(kvm, new);
12589 	}
12590 }
12591 
12592 void kvm_arch_commit_memory_region(struct kvm *kvm,
12593 				struct kvm_memory_slot *old,
12594 				const struct kvm_memory_slot *new,
12595 				enum kvm_mr_change change)
12596 {
12597 	if (!kvm->arch.n_requested_mmu_pages &&
12598 	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12599 		unsigned long nr_mmu_pages;
12600 
12601 		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12602 		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12603 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12604 	}
12605 
12606 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
12607 
12608 	/* Free the arrays associated with the old memslot. */
12609 	if (change == KVM_MR_MOVE)
12610 		kvm_arch_free_memslot(kvm, old);
12611 }
12612 
12613 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12614 {
12615 	kvm_mmu_zap_all(kvm);
12616 }
12617 
12618 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12619 				   struct kvm_memory_slot *slot)
12620 {
12621 	kvm_page_track_flush_slot(kvm, slot);
12622 }
12623 
12624 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12625 {
12626 	return (is_guest_mode(vcpu) &&
12627 		static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12628 }
12629 
12630 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12631 {
12632 	if (!list_empty_careful(&vcpu->async_pf.done))
12633 		return true;
12634 
12635 	if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
12636 	    kvm_apic_init_sipi_allowed(vcpu))
12637 		return true;
12638 
12639 	if (vcpu->arch.pv.pv_unhalted)
12640 		return true;
12641 
12642 	if (kvm_is_exception_pending(vcpu))
12643 		return true;
12644 
12645 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12646 	    (vcpu->arch.nmi_pending &&
12647 	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12648 		return true;
12649 
12650 #ifdef CONFIG_KVM_SMM
12651 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12652 	    (vcpu->arch.smi_pending &&
12653 	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
12654 		return true;
12655 #endif
12656 
12657 	if (kvm_arch_interrupt_allowed(vcpu) &&
12658 	    (kvm_cpu_has_interrupt(vcpu) ||
12659 	    kvm_guest_apic_has_interrupt(vcpu)))
12660 		return true;
12661 
12662 	if (kvm_hv_has_stimer_pending(vcpu))
12663 		return true;
12664 
12665 	if (is_guest_mode(vcpu) &&
12666 	    kvm_x86_ops.nested_ops->has_events &&
12667 	    kvm_x86_ops.nested_ops->has_events(vcpu))
12668 		return true;
12669 
12670 	if (kvm_xen_has_pending_events(vcpu))
12671 		return true;
12672 
12673 	return false;
12674 }
12675 
12676 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12677 {
12678 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12679 }
12680 
12681 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12682 {
12683 	if (kvm_vcpu_apicv_active(vcpu) &&
12684 	    static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12685 		return true;
12686 
12687 	return false;
12688 }
12689 
12690 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12691 {
12692 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12693 		return true;
12694 
12695 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12696 #ifdef CONFIG_KVM_SMM
12697 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
12698 #endif
12699 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
12700 		return true;
12701 
12702 	return kvm_arch_dy_has_pending_interrupt(vcpu);
12703 }
12704 
12705 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12706 {
12707 	if (vcpu->arch.guest_state_protected)
12708 		return true;
12709 
12710 	return vcpu->arch.preempted_in_kernel;
12711 }
12712 
12713 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12714 {
12715 	return kvm_rip_read(vcpu);
12716 }
12717 
12718 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12719 {
12720 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12721 }
12722 
12723 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12724 {
12725 	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12726 }
12727 
12728 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12729 {
12730 	/* Can't read the RIP when guest state is protected, just return 0 */
12731 	if (vcpu->arch.guest_state_protected)
12732 		return 0;
12733 
12734 	if (is_64_bit_mode(vcpu))
12735 		return kvm_rip_read(vcpu);
12736 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12737 		     kvm_rip_read(vcpu));
12738 }
12739 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12740 
12741 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12742 {
12743 	return kvm_get_linear_rip(vcpu) == linear_rip;
12744 }
12745 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12746 
12747 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12748 {
12749 	unsigned long rflags;
12750 
12751 	rflags = static_call(kvm_x86_get_rflags)(vcpu);
12752 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12753 		rflags &= ~X86_EFLAGS_TF;
12754 	return rflags;
12755 }
12756 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12757 
12758 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12759 {
12760 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12761 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12762 		rflags |= X86_EFLAGS_TF;
12763 	static_call(kvm_x86_set_rflags)(vcpu, rflags);
12764 }
12765 
12766 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12767 {
12768 	__kvm_set_rflags(vcpu, rflags);
12769 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12770 }
12771 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12772 
12773 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12774 {
12775 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12776 
12777 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12778 }
12779 
12780 static inline u32 kvm_async_pf_next_probe(u32 key)
12781 {
12782 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12783 }
12784 
12785 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12786 {
12787 	u32 key = kvm_async_pf_hash_fn(gfn);
12788 
12789 	while (vcpu->arch.apf.gfns[key] != ~0)
12790 		key = kvm_async_pf_next_probe(key);
12791 
12792 	vcpu->arch.apf.gfns[key] = gfn;
12793 }
12794 
12795 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12796 {
12797 	int i;
12798 	u32 key = kvm_async_pf_hash_fn(gfn);
12799 
12800 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
12801 		     (vcpu->arch.apf.gfns[key] != gfn &&
12802 		      vcpu->arch.apf.gfns[key] != ~0); i++)
12803 		key = kvm_async_pf_next_probe(key);
12804 
12805 	return key;
12806 }
12807 
12808 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12809 {
12810 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12811 }
12812 
12813 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12814 {
12815 	u32 i, j, k;
12816 
12817 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12818 
12819 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12820 		return;
12821 
12822 	while (true) {
12823 		vcpu->arch.apf.gfns[i] = ~0;
12824 		do {
12825 			j = kvm_async_pf_next_probe(j);
12826 			if (vcpu->arch.apf.gfns[j] == ~0)
12827 				return;
12828 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12829 			/*
12830 			 * k lies cyclically in ]i,j]
12831 			 * |    i.k.j |
12832 			 * |....j i.k.| or  |.k..j i...|
12833 			 */
12834 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12835 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
12836 		i = j;
12837 	}
12838 }
12839 
12840 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
12841 {
12842 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
12843 
12844 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
12845 				      sizeof(reason));
12846 }
12847 
12848 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12849 {
12850 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12851 
12852 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12853 					     &token, offset, sizeof(token));
12854 }
12855 
12856 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12857 {
12858 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12859 	u32 val;
12860 
12861 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12862 					 &val, offset, sizeof(val)))
12863 		return false;
12864 
12865 	return !val;
12866 }
12867 
12868 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12869 {
12870 
12871 	if (!kvm_pv_async_pf_enabled(vcpu))
12872 		return false;
12873 
12874 	if (vcpu->arch.apf.send_user_only &&
12875 	    static_call(kvm_x86_get_cpl)(vcpu) == 0)
12876 		return false;
12877 
12878 	if (is_guest_mode(vcpu)) {
12879 		/*
12880 		 * L1 needs to opt into the special #PF vmexits that are
12881 		 * used to deliver async page faults.
12882 		 */
12883 		return vcpu->arch.apf.delivery_as_pf_vmexit;
12884 	} else {
12885 		/*
12886 		 * Play it safe in case the guest temporarily disables paging.
12887 		 * The real mode IDT in particular is unlikely to have a #PF
12888 		 * exception setup.
12889 		 */
12890 		return is_paging(vcpu);
12891 	}
12892 }
12893 
12894 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12895 {
12896 	if (unlikely(!lapic_in_kernel(vcpu) ||
12897 		     kvm_event_needs_reinjection(vcpu) ||
12898 		     kvm_is_exception_pending(vcpu)))
12899 		return false;
12900 
12901 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12902 		return false;
12903 
12904 	/*
12905 	 * If interrupts are off we cannot even use an artificial
12906 	 * halt state.
12907 	 */
12908 	return kvm_arch_interrupt_allowed(vcpu);
12909 }
12910 
12911 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12912 				     struct kvm_async_pf *work)
12913 {
12914 	struct x86_exception fault;
12915 
12916 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12917 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12918 
12919 	if (kvm_can_deliver_async_pf(vcpu) &&
12920 	    !apf_put_user_notpresent(vcpu)) {
12921 		fault.vector = PF_VECTOR;
12922 		fault.error_code_valid = true;
12923 		fault.error_code = 0;
12924 		fault.nested_page_fault = false;
12925 		fault.address = work->arch.token;
12926 		fault.async_page_fault = true;
12927 		kvm_inject_page_fault(vcpu, &fault);
12928 		return true;
12929 	} else {
12930 		/*
12931 		 * It is not possible to deliver a paravirtualized asynchronous
12932 		 * page fault, but putting the guest in an artificial halt state
12933 		 * can be beneficial nevertheless: if an interrupt arrives, we
12934 		 * can deliver it timely and perhaps the guest will schedule
12935 		 * another process.  When the instruction that triggered a page
12936 		 * fault is retried, hopefully the page will be ready in the host.
12937 		 */
12938 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12939 		return false;
12940 	}
12941 }
12942 
12943 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12944 				 struct kvm_async_pf *work)
12945 {
12946 	struct kvm_lapic_irq irq = {
12947 		.delivery_mode = APIC_DM_FIXED,
12948 		.vector = vcpu->arch.apf.vec
12949 	};
12950 
12951 	if (work->wakeup_all)
12952 		work->arch.token = ~0; /* broadcast wakeup */
12953 	else
12954 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12955 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12956 
12957 	if ((work->wakeup_all || work->notpresent_injected) &&
12958 	    kvm_pv_async_pf_enabled(vcpu) &&
12959 	    !apf_put_user_ready(vcpu, work->arch.token)) {
12960 		vcpu->arch.apf.pageready_pending = true;
12961 		kvm_apic_set_irq(vcpu, &irq, NULL);
12962 	}
12963 
12964 	vcpu->arch.apf.halted = false;
12965 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12966 }
12967 
12968 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12969 {
12970 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
12971 	if (!vcpu->arch.apf.pageready_pending)
12972 		kvm_vcpu_kick(vcpu);
12973 }
12974 
12975 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12976 {
12977 	if (!kvm_pv_async_pf_enabled(vcpu))
12978 		return true;
12979 	else
12980 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12981 }
12982 
12983 void kvm_arch_start_assignment(struct kvm *kvm)
12984 {
12985 	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12986 		static_call_cond(kvm_x86_pi_start_assignment)(kvm);
12987 }
12988 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12989 
12990 void kvm_arch_end_assignment(struct kvm *kvm)
12991 {
12992 	atomic_dec(&kvm->arch.assigned_device_count);
12993 }
12994 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12995 
12996 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
12997 {
12998 	return arch_atomic_read(&kvm->arch.assigned_device_count);
12999 }
13000 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13001 
13002 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13003 {
13004 	atomic_inc(&kvm->arch.noncoherent_dma_count);
13005 }
13006 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13007 
13008 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13009 {
13010 	atomic_dec(&kvm->arch.noncoherent_dma_count);
13011 }
13012 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13013 
13014 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13015 {
13016 	return atomic_read(&kvm->arch.noncoherent_dma_count);
13017 }
13018 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13019 
13020 bool kvm_arch_has_irq_bypass(void)
13021 {
13022 	return true;
13023 }
13024 
13025 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13026 				      struct irq_bypass_producer *prod)
13027 {
13028 	struct kvm_kernel_irqfd *irqfd =
13029 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13030 	int ret;
13031 
13032 	irqfd->producer = prod;
13033 	kvm_arch_start_assignment(irqfd->kvm);
13034 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13035 					 prod->irq, irqfd->gsi, 1);
13036 
13037 	if (ret)
13038 		kvm_arch_end_assignment(irqfd->kvm);
13039 
13040 	return ret;
13041 }
13042 
13043 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13044 				      struct irq_bypass_producer *prod)
13045 {
13046 	int ret;
13047 	struct kvm_kernel_irqfd *irqfd =
13048 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13049 
13050 	WARN_ON(irqfd->producer != prod);
13051 	irqfd->producer = NULL;
13052 
13053 	/*
13054 	 * When producer of consumer is unregistered, we change back to
13055 	 * remapped mode, so we can re-use the current implementation
13056 	 * when the irq is masked/disabled or the consumer side (KVM
13057 	 * int this case doesn't want to receive the interrupts.
13058 	*/
13059 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13060 	if (ret)
13061 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13062 		       " fails: %d\n", irqfd->consumer.token, ret);
13063 
13064 	kvm_arch_end_assignment(irqfd->kvm);
13065 }
13066 
13067 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13068 				   uint32_t guest_irq, bool set)
13069 {
13070 	return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13071 }
13072 
13073 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13074 				  struct kvm_kernel_irq_routing_entry *new)
13075 {
13076 	if (new->type != KVM_IRQ_ROUTING_MSI)
13077 		return true;
13078 
13079 	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13080 }
13081 
13082 bool kvm_vector_hashing_enabled(void)
13083 {
13084 	return vector_hashing;
13085 }
13086 
13087 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13088 {
13089 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13090 }
13091 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13092 
13093 
13094 int kvm_spec_ctrl_test_value(u64 value)
13095 {
13096 	/*
13097 	 * test that setting IA32_SPEC_CTRL to given value
13098 	 * is allowed by the host processor
13099 	 */
13100 
13101 	u64 saved_value;
13102 	unsigned long flags;
13103 	int ret = 0;
13104 
13105 	local_irq_save(flags);
13106 
13107 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13108 		ret = 1;
13109 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13110 		ret = 1;
13111 	else
13112 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13113 
13114 	local_irq_restore(flags);
13115 
13116 	return ret;
13117 }
13118 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13119 
13120 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13121 {
13122 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13123 	struct x86_exception fault;
13124 	u64 access = error_code &
13125 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13126 
13127 	if (!(error_code & PFERR_PRESENT_MASK) ||
13128 	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13129 		/*
13130 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13131 		 * tables probably do not match the TLB.  Just proceed
13132 		 * with the error code that the processor gave.
13133 		 */
13134 		fault.vector = PF_VECTOR;
13135 		fault.error_code_valid = true;
13136 		fault.error_code = error_code;
13137 		fault.nested_page_fault = false;
13138 		fault.address = gva;
13139 		fault.async_page_fault = false;
13140 	}
13141 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13142 }
13143 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13144 
13145 /*
13146  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13147  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13148  * indicates whether exit to userspace is needed.
13149  */
13150 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13151 			      struct x86_exception *e)
13152 {
13153 	if (r == X86EMUL_PROPAGATE_FAULT) {
13154 		if (KVM_BUG_ON(!e, vcpu->kvm))
13155 			return -EIO;
13156 
13157 		kvm_inject_emulated_page_fault(vcpu, e);
13158 		return 1;
13159 	}
13160 
13161 	/*
13162 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13163 	 * while handling a VMX instruction KVM could've handled the request
13164 	 * correctly by exiting to userspace and performing I/O but there
13165 	 * doesn't seem to be a real use-case behind such requests, just return
13166 	 * KVM_EXIT_INTERNAL_ERROR for now.
13167 	 */
13168 	kvm_prepare_emulation_failure_exit(vcpu);
13169 
13170 	return 0;
13171 }
13172 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13173 
13174 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13175 {
13176 	bool pcid_enabled;
13177 	struct x86_exception e;
13178 	struct {
13179 		u64 pcid;
13180 		u64 gla;
13181 	} operand;
13182 	int r;
13183 
13184 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13185 	if (r != X86EMUL_CONTINUE)
13186 		return kvm_handle_memory_failure(vcpu, r, &e);
13187 
13188 	if (operand.pcid >> 12 != 0) {
13189 		kvm_inject_gp(vcpu, 0);
13190 		return 1;
13191 	}
13192 
13193 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
13194 
13195 	switch (type) {
13196 	case INVPCID_TYPE_INDIV_ADDR:
13197 		if ((!pcid_enabled && (operand.pcid != 0)) ||
13198 		    is_noncanonical_address(operand.gla, vcpu)) {
13199 			kvm_inject_gp(vcpu, 0);
13200 			return 1;
13201 		}
13202 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13203 		return kvm_skip_emulated_instruction(vcpu);
13204 
13205 	case INVPCID_TYPE_SINGLE_CTXT:
13206 		if (!pcid_enabled && (operand.pcid != 0)) {
13207 			kvm_inject_gp(vcpu, 0);
13208 			return 1;
13209 		}
13210 
13211 		kvm_invalidate_pcid(vcpu, operand.pcid);
13212 		return kvm_skip_emulated_instruction(vcpu);
13213 
13214 	case INVPCID_TYPE_ALL_NON_GLOBAL:
13215 		/*
13216 		 * Currently, KVM doesn't mark global entries in the shadow
13217 		 * page tables, so a non-global flush just degenerates to a
13218 		 * global flush. If needed, we could optimize this later by
13219 		 * keeping track of global entries in shadow page tables.
13220 		 */
13221 
13222 		fallthrough;
13223 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
13224 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13225 		return kvm_skip_emulated_instruction(vcpu);
13226 
13227 	default:
13228 		kvm_inject_gp(vcpu, 0);
13229 		return 1;
13230 	}
13231 }
13232 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13233 
13234 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13235 {
13236 	struct kvm_run *run = vcpu->run;
13237 	struct kvm_mmio_fragment *frag;
13238 	unsigned int len;
13239 
13240 	BUG_ON(!vcpu->mmio_needed);
13241 
13242 	/* Complete previous fragment */
13243 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13244 	len = min(8u, frag->len);
13245 	if (!vcpu->mmio_is_write)
13246 		memcpy(frag->data, run->mmio.data, len);
13247 
13248 	if (frag->len <= 8) {
13249 		/* Switch to the next fragment. */
13250 		frag++;
13251 		vcpu->mmio_cur_fragment++;
13252 	} else {
13253 		/* Go forward to the next mmio piece. */
13254 		frag->data += len;
13255 		frag->gpa += len;
13256 		frag->len -= len;
13257 	}
13258 
13259 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13260 		vcpu->mmio_needed = 0;
13261 
13262 		// VMG change, at this point, we're always done
13263 		// RIP has already been advanced
13264 		return 1;
13265 	}
13266 
13267 	// More MMIO is needed
13268 	run->mmio.phys_addr = frag->gpa;
13269 	run->mmio.len = min(8u, frag->len);
13270 	run->mmio.is_write = vcpu->mmio_is_write;
13271 	if (run->mmio.is_write)
13272 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13273 	run->exit_reason = KVM_EXIT_MMIO;
13274 
13275 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13276 
13277 	return 0;
13278 }
13279 
13280 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13281 			  void *data)
13282 {
13283 	int handled;
13284 	struct kvm_mmio_fragment *frag;
13285 
13286 	if (!data)
13287 		return -EINVAL;
13288 
13289 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13290 	if (handled == bytes)
13291 		return 1;
13292 
13293 	bytes -= handled;
13294 	gpa += handled;
13295 	data += handled;
13296 
13297 	/*TODO: Check if need to increment number of frags */
13298 	frag = vcpu->mmio_fragments;
13299 	vcpu->mmio_nr_fragments = 1;
13300 	frag->len = bytes;
13301 	frag->gpa = gpa;
13302 	frag->data = data;
13303 
13304 	vcpu->mmio_needed = 1;
13305 	vcpu->mmio_cur_fragment = 0;
13306 
13307 	vcpu->run->mmio.phys_addr = gpa;
13308 	vcpu->run->mmio.len = min(8u, frag->len);
13309 	vcpu->run->mmio.is_write = 1;
13310 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13311 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13312 
13313 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13314 
13315 	return 0;
13316 }
13317 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13318 
13319 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13320 			 void *data)
13321 {
13322 	int handled;
13323 	struct kvm_mmio_fragment *frag;
13324 
13325 	if (!data)
13326 		return -EINVAL;
13327 
13328 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13329 	if (handled == bytes)
13330 		return 1;
13331 
13332 	bytes -= handled;
13333 	gpa += handled;
13334 	data += handled;
13335 
13336 	/*TODO: Check if need to increment number of frags */
13337 	frag = vcpu->mmio_fragments;
13338 	vcpu->mmio_nr_fragments = 1;
13339 	frag->len = bytes;
13340 	frag->gpa = gpa;
13341 	frag->data = data;
13342 
13343 	vcpu->mmio_needed = 1;
13344 	vcpu->mmio_cur_fragment = 0;
13345 
13346 	vcpu->run->mmio.phys_addr = gpa;
13347 	vcpu->run->mmio.len = min(8u, frag->len);
13348 	vcpu->run->mmio.is_write = 0;
13349 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13350 
13351 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13352 
13353 	return 0;
13354 }
13355 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13356 
13357 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13358 {
13359 	vcpu->arch.sev_pio_count -= count;
13360 	vcpu->arch.sev_pio_data += count * size;
13361 }
13362 
13363 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13364 			   unsigned int port);
13365 
13366 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13367 {
13368 	int size = vcpu->arch.pio.size;
13369 	int port = vcpu->arch.pio.port;
13370 
13371 	vcpu->arch.pio.count = 0;
13372 	if (vcpu->arch.sev_pio_count)
13373 		return kvm_sev_es_outs(vcpu, size, port);
13374 	return 1;
13375 }
13376 
13377 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13378 			   unsigned int port)
13379 {
13380 	for (;;) {
13381 		unsigned int count =
13382 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13383 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13384 
13385 		/* memcpy done already by emulator_pio_out.  */
13386 		advance_sev_es_emulated_pio(vcpu, count, size);
13387 		if (!ret)
13388 			break;
13389 
13390 		/* Emulation done by the kernel.  */
13391 		if (!vcpu->arch.sev_pio_count)
13392 			return 1;
13393 	}
13394 
13395 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13396 	return 0;
13397 }
13398 
13399 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13400 			  unsigned int port);
13401 
13402 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13403 {
13404 	unsigned count = vcpu->arch.pio.count;
13405 	int size = vcpu->arch.pio.size;
13406 	int port = vcpu->arch.pio.port;
13407 
13408 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13409 	advance_sev_es_emulated_pio(vcpu, count, size);
13410 	if (vcpu->arch.sev_pio_count)
13411 		return kvm_sev_es_ins(vcpu, size, port);
13412 	return 1;
13413 }
13414 
13415 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13416 			  unsigned int port)
13417 {
13418 	for (;;) {
13419 		unsigned int count =
13420 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13421 		if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13422 			break;
13423 
13424 		/* Emulation done by the kernel.  */
13425 		advance_sev_es_emulated_pio(vcpu, count, size);
13426 		if (!vcpu->arch.sev_pio_count)
13427 			return 1;
13428 	}
13429 
13430 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13431 	return 0;
13432 }
13433 
13434 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13435 			 unsigned int port, void *data,  unsigned int count,
13436 			 int in)
13437 {
13438 	vcpu->arch.sev_pio_data = data;
13439 	vcpu->arch.sev_pio_count = count;
13440 	return in ? kvm_sev_es_ins(vcpu, size, port)
13441 		  : kvm_sev_es_outs(vcpu, size, port);
13442 }
13443 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13444 
13445 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13446 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13447 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13448 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13449 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13450 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13451 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13452 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13453 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13454 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13455 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13456 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13457 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13458 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13459 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13460 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13461 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13462 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13463 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13464 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13465 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13466 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13467 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13468 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13469 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13470 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13471 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13472 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13473 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13474 
13475 static int __init kvm_x86_init(void)
13476 {
13477 	kvm_mmu_x86_module_init();
13478 	mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
13479 	return 0;
13480 }
13481 module_init(kvm_x86_init);
13482 
13483 static void __exit kvm_x86_exit(void)
13484 {
13485 	/*
13486 	 * If module_init() is implemented, module_exit() must also be
13487 	 * implemented to allow module unload.
13488 	 */
13489 }
13490 module_exit(kvm_x86_exit);
13491