xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 2f164822)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32 #include "lapic.h"
33 #include "xen.h"
34 #include "smm.h"
35 
36 #include <linux/clocksource.h>
37 #include <linux/interrupt.h>
38 #include <linux/kvm.h>
39 #include <linux/fs.h>
40 #include <linux/vmalloc.h>
41 #include <linux/export.h>
42 #include <linux/moduleparam.h>
43 #include <linux/mman.h>
44 #include <linux/highmem.h>
45 #include <linux/iommu.h>
46 #include <linux/cpufreq.h>
47 #include <linux/user-return-notifier.h>
48 #include <linux/srcu.h>
49 #include <linux/slab.h>
50 #include <linux/perf_event.h>
51 #include <linux/uaccess.h>
52 #include <linux/hash.h>
53 #include <linux/pci.h>
54 #include <linux/timekeeper_internal.h>
55 #include <linux/pvclock_gtod.h>
56 #include <linux/kvm_irqfd.h>
57 #include <linux/irqbypass.h>
58 #include <linux/sched/stat.h>
59 #include <linux/sched/isolation.h>
60 #include <linux/mem_encrypt.h>
61 #include <linux/entry-kvm.h>
62 #include <linux/suspend.h>
63 
64 #include <trace/events/kvm.h>
65 
66 #include <asm/debugreg.h>
67 #include <asm/msr.h>
68 #include <asm/desc.h>
69 #include <asm/mce.h>
70 #include <asm/pkru.h>
71 #include <linux/kernel_stat.h>
72 #include <asm/fpu/api.h>
73 #include <asm/fpu/xcr.h>
74 #include <asm/fpu/xstate.h>
75 #include <asm/pvclock.h>
76 #include <asm/div64.h>
77 #include <asm/irq_remapping.h>
78 #include <asm/mshyperv.h>
79 #include <asm/hypervisor.h>
80 #include <asm/tlbflush.h>
81 #include <asm/intel_pt.h>
82 #include <asm/emulate_prefix.h>
83 #include <asm/sgx.h>
84 #include <clocksource/hyperv_timer.h>
85 
86 #define CREATE_TRACE_POINTS
87 #include "trace.h"
88 
89 #define MAX_IO_MSRS 256
90 #define KVM_MAX_MCE_BANKS 32
91 
92 struct kvm_caps kvm_caps __read_mostly = {
93 	.supported_mce_cap = MCG_CTL_P | MCG_SER_P,
94 };
95 EXPORT_SYMBOL_GPL(kvm_caps);
96 
97 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
98 
99 #define emul_to_vcpu(ctxt) \
100 	((struct kvm_vcpu *)(ctxt)->vcpu)
101 
102 /* EFER defaults:
103  * - enable syscall per default because its emulated by KVM
104  * - enable LME and LMA per default on 64 bit KVM
105  */
106 #ifdef CONFIG_X86_64
107 static
108 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
109 #else
110 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
111 #endif
112 
113 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
114 
115 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
116 
117 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
118 
119 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
120                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
121 
122 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
123 static void process_nmi(struct kvm_vcpu *vcpu);
124 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
125 static void store_regs(struct kvm_vcpu *vcpu);
126 static int sync_regs(struct kvm_vcpu *vcpu);
127 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
128 
129 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
130 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
131 
132 static DEFINE_MUTEX(vendor_module_lock);
133 struct kvm_x86_ops kvm_x86_ops __read_mostly;
134 
135 #define KVM_X86_OP(func)					     \
136 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
137 				*(((struct kvm_x86_ops *)0)->func));
138 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
139 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
140 #include <asm/kvm-x86-ops.h>
141 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
142 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
143 
144 static bool __read_mostly ignore_msrs = 0;
145 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
146 
147 bool __read_mostly report_ignored_msrs = true;
148 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
149 EXPORT_SYMBOL_GPL(report_ignored_msrs);
150 
151 unsigned int min_timer_period_us = 200;
152 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
153 
154 static bool __read_mostly kvmclock_periodic_sync = true;
155 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
156 
157 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
158 static u32 __read_mostly tsc_tolerance_ppm = 250;
159 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
160 
161 /*
162  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
163  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
164  * advancement entirely.  Any other value is used as-is and disables adaptive
165  * tuning, i.e. allows privileged userspace to set an exact advancement time.
166  */
167 static int __read_mostly lapic_timer_advance_ns = -1;
168 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
169 
170 static bool __read_mostly vector_hashing = true;
171 module_param(vector_hashing, bool, S_IRUGO);
172 
173 bool __read_mostly enable_vmware_backdoor = false;
174 module_param(enable_vmware_backdoor, bool, S_IRUGO);
175 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
176 
177 /*
178  * Flags to manipulate forced emulation behavior (any non-zero value will
179  * enable forced emulation).
180  */
181 #define KVM_FEP_CLEAR_RFLAGS_RF	BIT(1)
182 static int __read_mostly force_emulation_prefix;
183 module_param(force_emulation_prefix, int, 0644);
184 
185 int __read_mostly pi_inject_timer = -1;
186 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
187 
188 /* Enable/disable PMU virtualization */
189 bool __read_mostly enable_pmu = true;
190 EXPORT_SYMBOL_GPL(enable_pmu);
191 module_param(enable_pmu, bool, 0444);
192 
193 bool __read_mostly eager_page_split = true;
194 module_param(eager_page_split, bool, 0644);
195 
196 /* Enable/disable SMT_RSB bug mitigation */
197 bool __read_mostly mitigate_smt_rsb;
198 module_param(mitigate_smt_rsb, bool, 0444);
199 
200 /*
201  * Restoring the host value for MSRs that are only consumed when running in
202  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
203  * returns to userspace, i.e. the kernel can run with the guest's value.
204  */
205 #define KVM_MAX_NR_USER_RETURN_MSRS 16
206 
207 struct kvm_user_return_msrs {
208 	struct user_return_notifier urn;
209 	bool registered;
210 	struct kvm_user_return_msr_values {
211 		u64 host;
212 		u64 curr;
213 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
214 };
215 
216 u32 __read_mostly kvm_nr_uret_msrs;
217 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
218 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
219 static struct kvm_user_return_msrs __percpu *user_return_msrs;
220 
221 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
222 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
223 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
224 				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
225 
226 u64 __read_mostly host_efer;
227 EXPORT_SYMBOL_GPL(host_efer);
228 
229 bool __read_mostly allow_smaller_maxphyaddr = 0;
230 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
231 
232 bool __read_mostly enable_apicv = true;
233 EXPORT_SYMBOL_GPL(enable_apicv);
234 
235 u64 __read_mostly host_xss;
236 EXPORT_SYMBOL_GPL(host_xss);
237 
238 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
239 	KVM_GENERIC_VM_STATS(),
240 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
241 	STATS_DESC_COUNTER(VM, mmu_pte_write),
242 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
243 	STATS_DESC_COUNTER(VM, mmu_flooded),
244 	STATS_DESC_COUNTER(VM, mmu_recycled),
245 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
246 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
247 	STATS_DESC_ICOUNTER(VM, pages_4k),
248 	STATS_DESC_ICOUNTER(VM, pages_2m),
249 	STATS_DESC_ICOUNTER(VM, pages_1g),
250 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
251 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
252 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
253 };
254 
255 const struct kvm_stats_header kvm_vm_stats_header = {
256 	.name_size = KVM_STATS_NAME_SIZE,
257 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
258 	.id_offset = sizeof(struct kvm_stats_header),
259 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
260 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
261 		       sizeof(kvm_vm_stats_desc),
262 };
263 
264 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
265 	KVM_GENERIC_VCPU_STATS(),
266 	STATS_DESC_COUNTER(VCPU, pf_taken),
267 	STATS_DESC_COUNTER(VCPU, pf_fixed),
268 	STATS_DESC_COUNTER(VCPU, pf_emulate),
269 	STATS_DESC_COUNTER(VCPU, pf_spurious),
270 	STATS_DESC_COUNTER(VCPU, pf_fast),
271 	STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
272 	STATS_DESC_COUNTER(VCPU, pf_guest),
273 	STATS_DESC_COUNTER(VCPU, tlb_flush),
274 	STATS_DESC_COUNTER(VCPU, invlpg),
275 	STATS_DESC_COUNTER(VCPU, exits),
276 	STATS_DESC_COUNTER(VCPU, io_exits),
277 	STATS_DESC_COUNTER(VCPU, mmio_exits),
278 	STATS_DESC_COUNTER(VCPU, signal_exits),
279 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
280 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
281 	STATS_DESC_COUNTER(VCPU, l1d_flush),
282 	STATS_DESC_COUNTER(VCPU, halt_exits),
283 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
284 	STATS_DESC_COUNTER(VCPU, irq_exits),
285 	STATS_DESC_COUNTER(VCPU, host_state_reload),
286 	STATS_DESC_COUNTER(VCPU, fpu_reload),
287 	STATS_DESC_COUNTER(VCPU, insn_emulation),
288 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
289 	STATS_DESC_COUNTER(VCPU, hypercalls),
290 	STATS_DESC_COUNTER(VCPU, irq_injections),
291 	STATS_DESC_COUNTER(VCPU, nmi_injections),
292 	STATS_DESC_COUNTER(VCPU, req_event),
293 	STATS_DESC_COUNTER(VCPU, nested_run),
294 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
295 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
296 	STATS_DESC_COUNTER(VCPU, preemption_reported),
297 	STATS_DESC_COUNTER(VCPU, preemption_other),
298 	STATS_DESC_IBOOLEAN(VCPU, guest_mode),
299 	STATS_DESC_COUNTER(VCPU, notify_window_exits),
300 };
301 
302 const struct kvm_stats_header kvm_vcpu_stats_header = {
303 	.name_size = KVM_STATS_NAME_SIZE,
304 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
305 	.id_offset = sizeof(struct kvm_stats_header),
306 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
307 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
308 		       sizeof(kvm_vcpu_stats_desc),
309 };
310 
311 u64 __read_mostly host_xcr0;
312 
313 static struct kmem_cache *x86_emulator_cache;
314 
315 /*
316  * When called, it means the previous get/set msr reached an invalid msr.
317  * Return true if we want to ignore/silent this failed msr access.
318  */
319 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
320 {
321 	const char *op = write ? "wrmsr" : "rdmsr";
322 
323 	if (ignore_msrs) {
324 		if (report_ignored_msrs)
325 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
326 				      op, msr, data);
327 		/* Mask the error */
328 		return true;
329 	} else {
330 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
331 				      op, msr, data);
332 		return false;
333 	}
334 }
335 
336 static struct kmem_cache *kvm_alloc_emulator_cache(void)
337 {
338 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
339 	unsigned int size = sizeof(struct x86_emulate_ctxt);
340 
341 	return kmem_cache_create_usercopy("x86_emulator", size,
342 					  __alignof__(struct x86_emulate_ctxt),
343 					  SLAB_ACCOUNT, useroffset,
344 					  size - useroffset, NULL);
345 }
346 
347 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
348 
349 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
350 {
351 	int i;
352 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
353 		vcpu->arch.apf.gfns[i] = ~0;
354 }
355 
356 static void kvm_on_user_return(struct user_return_notifier *urn)
357 {
358 	unsigned slot;
359 	struct kvm_user_return_msrs *msrs
360 		= container_of(urn, struct kvm_user_return_msrs, urn);
361 	struct kvm_user_return_msr_values *values;
362 	unsigned long flags;
363 
364 	/*
365 	 * Disabling irqs at this point since the following code could be
366 	 * interrupted and executed through kvm_arch_hardware_disable()
367 	 */
368 	local_irq_save(flags);
369 	if (msrs->registered) {
370 		msrs->registered = false;
371 		user_return_notifier_unregister(urn);
372 	}
373 	local_irq_restore(flags);
374 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
375 		values = &msrs->values[slot];
376 		if (values->host != values->curr) {
377 			wrmsrl(kvm_uret_msrs_list[slot], values->host);
378 			values->curr = values->host;
379 		}
380 	}
381 }
382 
383 static int kvm_probe_user_return_msr(u32 msr)
384 {
385 	u64 val;
386 	int ret;
387 
388 	preempt_disable();
389 	ret = rdmsrl_safe(msr, &val);
390 	if (ret)
391 		goto out;
392 	ret = wrmsrl_safe(msr, val);
393 out:
394 	preempt_enable();
395 	return ret;
396 }
397 
398 int kvm_add_user_return_msr(u32 msr)
399 {
400 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
401 
402 	if (kvm_probe_user_return_msr(msr))
403 		return -1;
404 
405 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
406 	return kvm_nr_uret_msrs++;
407 }
408 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
409 
410 int kvm_find_user_return_msr(u32 msr)
411 {
412 	int i;
413 
414 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
415 		if (kvm_uret_msrs_list[i] == msr)
416 			return i;
417 	}
418 	return -1;
419 }
420 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
421 
422 static void kvm_user_return_msr_cpu_online(void)
423 {
424 	unsigned int cpu = smp_processor_id();
425 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
426 	u64 value;
427 	int i;
428 
429 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
430 		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
431 		msrs->values[i].host = value;
432 		msrs->values[i].curr = value;
433 	}
434 }
435 
436 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
437 {
438 	unsigned int cpu = smp_processor_id();
439 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
440 	int err;
441 
442 	value = (value & mask) | (msrs->values[slot].host & ~mask);
443 	if (value == msrs->values[slot].curr)
444 		return 0;
445 	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
446 	if (err)
447 		return 1;
448 
449 	msrs->values[slot].curr = value;
450 	if (!msrs->registered) {
451 		msrs->urn.on_user_return = kvm_on_user_return;
452 		user_return_notifier_register(&msrs->urn);
453 		msrs->registered = true;
454 	}
455 	return 0;
456 }
457 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
458 
459 static void drop_user_return_notifiers(void)
460 {
461 	unsigned int cpu = smp_processor_id();
462 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
463 
464 	if (msrs->registered)
465 		kvm_on_user_return(&msrs->urn);
466 }
467 
468 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
469 {
470 	return vcpu->arch.apic_base;
471 }
472 
473 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
474 {
475 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
476 }
477 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
478 
479 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
480 {
481 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
482 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
483 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
484 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
485 
486 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
487 		return 1;
488 	if (!msr_info->host_initiated) {
489 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
490 			return 1;
491 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
492 			return 1;
493 	}
494 
495 	kvm_lapic_set_base(vcpu, msr_info->data);
496 	kvm_recalculate_apic_map(vcpu->kvm);
497 	return 0;
498 }
499 
500 /*
501  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
502  *
503  * Hardware virtualization extension instructions may fault if a reboot turns
504  * off virtualization while processes are running.  Usually after catching the
505  * fault we just panic; during reboot instead the instruction is ignored.
506  */
507 noinstr void kvm_spurious_fault(void)
508 {
509 	/* Fault while not rebooting.  We want the trace. */
510 	BUG_ON(!kvm_rebooting);
511 }
512 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
513 
514 #define EXCPT_BENIGN		0
515 #define EXCPT_CONTRIBUTORY	1
516 #define EXCPT_PF		2
517 
518 static int exception_class(int vector)
519 {
520 	switch (vector) {
521 	case PF_VECTOR:
522 		return EXCPT_PF;
523 	case DE_VECTOR:
524 	case TS_VECTOR:
525 	case NP_VECTOR:
526 	case SS_VECTOR:
527 	case GP_VECTOR:
528 		return EXCPT_CONTRIBUTORY;
529 	default:
530 		break;
531 	}
532 	return EXCPT_BENIGN;
533 }
534 
535 #define EXCPT_FAULT		0
536 #define EXCPT_TRAP		1
537 #define EXCPT_ABORT		2
538 #define EXCPT_INTERRUPT		3
539 #define EXCPT_DB		4
540 
541 static int exception_type(int vector)
542 {
543 	unsigned int mask;
544 
545 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
546 		return EXCPT_INTERRUPT;
547 
548 	mask = 1 << vector;
549 
550 	/*
551 	 * #DBs can be trap-like or fault-like, the caller must check other CPU
552 	 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
553 	 */
554 	if (mask & (1 << DB_VECTOR))
555 		return EXCPT_DB;
556 
557 	if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
558 		return EXCPT_TRAP;
559 
560 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
561 		return EXCPT_ABORT;
562 
563 	/* Reserved exceptions will result in fault */
564 	return EXCPT_FAULT;
565 }
566 
567 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
568 				   struct kvm_queued_exception *ex)
569 {
570 	if (!ex->has_payload)
571 		return;
572 
573 	switch (ex->vector) {
574 	case DB_VECTOR:
575 		/*
576 		 * "Certain debug exceptions may clear bit 0-3.  The
577 		 * remaining contents of the DR6 register are never
578 		 * cleared by the processor".
579 		 */
580 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
581 		/*
582 		 * In order to reflect the #DB exception payload in guest
583 		 * dr6, three components need to be considered: active low
584 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
585 		 * DR6_BS and DR6_BT)
586 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
587 		 * In the target guest dr6:
588 		 * FIXED_1 bits should always be set.
589 		 * Active low bits should be cleared if 1-setting in payload.
590 		 * Active high bits should be set if 1-setting in payload.
591 		 *
592 		 * Note, the payload is compatible with the pending debug
593 		 * exceptions/exit qualification under VMX, that active_low bits
594 		 * are active high in payload.
595 		 * So they need to be flipped for DR6.
596 		 */
597 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
598 		vcpu->arch.dr6 |= ex->payload;
599 		vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
600 
601 		/*
602 		 * The #DB payload is defined as compatible with the 'pending
603 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
604 		 * defined in the 'pending debug exceptions' field (enabled
605 		 * breakpoint), it is reserved and must be zero in DR6.
606 		 */
607 		vcpu->arch.dr6 &= ~BIT(12);
608 		break;
609 	case PF_VECTOR:
610 		vcpu->arch.cr2 = ex->payload;
611 		break;
612 	}
613 
614 	ex->has_payload = false;
615 	ex->payload = 0;
616 }
617 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
618 
619 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
620 				       bool has_error_code, u32 error_code,
621 				       bool has_payload, unsigned long payload)
622 {
623 	struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
624 
625 	ex->vector = vector;
626 	ex->injected = false;
627 	ex->pending = true;
628 	ex->has_error_code = has_error_code;
629 	ex->error_code = error_code;
630 	ex->has_payload = has_payload;
631 	ex->payload = payload;
632 }
633 
634 /* Forcibly leave the nested mode in cases like a vCPU reset */
635 static void kvm_leave_nested(struct kvm_vcpu *vcpu)
636 {
637 	kvm_x86_ops.nested_ops->leave_nested(vcpu);
638 }
639 
640 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
641 		unsigned nr, bool has_error, u32 error_code,
642 	        bool has_payload, unsigned long payload, bool reinject)
643 {
644 	u32 prev_nr;
645 	int class1, class2;
646 
647 	kvm_make_request(KVM_REQ_EVENT, vcpu);
648 
649 	/*
650 	 * If the exception is destined for L2 and isn't being reinjected,
651 	 * morph it to a VM-Exit if L1 wants to intercept the exception.  A
652 	 * previously injected exception is not checked because it was checked
653 	 * when it was original queued, and re-checking is incorrect if _L1_
654 	 * injected the exception, in which case it's exempt from interception.
655 	 */
656 	if (!reinject && is_guest_mode(vcpu) &&
657 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
658 		kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
659 					   has_payload, payload);
660 		return;
661 	}
662 
663 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
664 	queue:
665 		if (reinject) {
666 			/*
667 			 * On VM-Entry, an exception can be pending if and only
668 			 * if event injection was blocked by nested_run_pending.
669 			 * In that case, however, vcpu_enter_guest() requests an
670 			 * immediate exit, and the guest shouldn't proceed far
671 			 * enough to need reinjection.
672 			 */
673 			WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
674 			vcpu->arch.exception.injected = true;
675 			if (WARN_ON_ONCE(has_payload)) {
676 				/*
677 				 * A reinjected event has already
678 				 * delivered its payload.
679 				 */
680 				has_payload = false;
681 				payload = 0;
682 			}
683 		} else {
684 			vcpu->arch.exception.pending = true;
685 			vcpu->arch.exception.injected = false;
686 		}
687 		vcpu->arch.exception.has_error_code = has_error;
688 		vcpu->arch.exception.vector = nr;
689 		vcpu->arch.exception.error_code = error_code;
690 		vcpu->arch.exception.has_payload = has_payload;
691 		vcpu->arch.exception.payload = payload;
692 		if (!is_guest_mode(vcpu))
693 			kvm_deliver_exception_payload(vcpu,
694 						      &vcpu->arch.exception);
695 		return;
696 	}
697 
698 	/* to check exception */
699 	prev_nr = vcpu->arch.exception.vector;
700 	if (prev_nr == DF_VECTOR) {
701 		/* triple fault -> shutdown */
702 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
703 		return;
704 	}
705 	class1 = exception_class(prev_nr);
706 	class2 = exception_class(nr);
707 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
708 	    (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
709 		/*
710 		 * Synthesize #DF.  Clear the previously injected or pending
711 		 * exception so as not to incorrectly trigger shutdown.
712 		 */
713 		vcpu->arch.exception.injected = false;
714 		vcpu->arch.exception.pending = false;
715 
716 		kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
717 	} else {
718 		/* replace previous exception with a new one in a hope
719 		   that instruction re-execution will regenerate lost
720 		   exception */
721 		goto queue;
722 	}
723 }
724 
725 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
726 {
727 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
728 }
729 EXPORT_SYMBOL_GPL(kvm_queue_exception);
730 
731 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
732 {
733 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
734 }
735 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
736 
737 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
738 			   unsigned long payload)
739 {
740 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
741 }
742 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
743 
744 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
745 				    u32 error_code, unsigned long payload)
746 {
747 	kvm_multiple_exception(vcpu, nr, true, error_code,
748 			       true, payload, false);
749 }
750 
751 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
752 {
753 	if (err)
754 		kvm_inject_gp(vcpu, 0);
755 	else
756 		return kvm_skip_emulated_instruction(vcpu);
757 
758 	return 1;
759 }
760 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
761 
762 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
763 {
764 	if (err) {
765 		kvm_inject_gp(vcpu, 0);
766 		return 1;
767 	}
768 
769 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
770 				       EMULTYPE_COMPLETE_USER_EXIT);
771 }
772 
773 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
774 {
775 	++vcpu->stat.pf_guest;
776 
777 	/*
778 	 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
779 	 * whether or not L1 wants to intercept "regular" #PF.
780 	 */
781 	if (is_guest_mode(vcpu) && fault->async_page_fault)
782 		kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
783 					   true, fault->error_code,
784 					   true, fault->address);
785 	else
786 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
787 					fault->address);
788 }
789 
790 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
791 				    struct x86_exception *fault)
792 {
793 	struct kvm_mmu *fault_mmu;
794 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
795 
796 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
797 					       vcpu->arch.walk_mmu;
798 
799 	/*
800 	 * Invalidate the TLB entry for the faulting address, if it exists,
801 	 * else the access will fault indefinitely (and to emulate hardware).
802 	 */
803 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
804 	    !(fault->error_code & PFERR_RSVD_MASK))
805 		kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
806 				       fault_mmu->root.hpa);
807 
808 	fault_mmu->inject_page_fault(vcpu, fault);
809 }
810 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
811 
812 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
813 {
814 	atomic_inc(&vcpu->arch.nmi_queued);
815 	kvm_make_request(KVM_REQ_NMI, vcpu);
816 }
817 
818 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
819 {
820 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
821 }
822 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
823 
824 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
825 {
826 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
827 }
828 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
829 
830 /*
831  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
832  * a #GP and return false.
833  */
834 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
835 {
836 	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
837 		return true;
838 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
839 	return false;
840 }
841 
842 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
843 {
844 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
845 		return true;
846 
847 	kvm_queue_exception(vcpu, UD_VECTOR);
848 	return false;
849 }
850 EXPORT_SYMBOL_GPL(kvm_require_dr);
851 
852 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
853 {
854 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
855 }
856 
857 /*
858  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
859  */
860 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
861 {
862 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
863 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
864 	gpa_t real_gpa;
865 	int i;
866 	int ret;
867 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
868 
869 	/*
870 	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
871 	 * to an L1 GPA.
872 	 */
873 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
874 				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
875 	if (real_gpa == INVALID_GPA)
876 		return 0;
877 
878 	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
879 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
880 				       cr3 & GENMASK(11, 5), sizeof(pdpte));
881 	if (ret < 0)
882 		return 0;
883 
884 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
885 		if ((pdpte[i] & PT_PRESENT_MASK) &&
886 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
887 			return 0;
888 		}
889 	}
890 
891 	/*
892 	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
893 	 * Shadow page roots need to be reconstructed instead.
894 	 */
895 	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
896 		kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
897 
898 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
899 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
900 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
901 	vcpu->arch.pdptrs_from_userspace = false;
902 
903 	return 1;
904 }
905 EXPORT_SYMBOL_GPL(load_pdptrs);
906 
907 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
908 {
909 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
910 		kvm_clear_async_pf_completion_queue(vcpu);
911 		kvm_async_pf_hash_reset(vcpu);
912 
913 		/*
914 		 * Clearing CR0.PG is defined to flush the TLB from the guest's
915 		 * perspective.
916 		 */
917 		if (!(cr0 & X86_CR0_PG))
918 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
919 	}
920 
921 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
922 		kvm_mmu_reset_context(vcpu);
923 
924 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
925 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
926 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
927 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
928 }
929 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
930 
931 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
932 {
933 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
934 
935 	cr0 |= X86_CR0_ET;
936 
937 #ifdef CONFIG_X86_64
938 	if (cr0 & 0xffffffff00000000UL)
939 		return 1;
940 #endif
941 
942 	cr0 &= ~CR0_RESERVED_BITS;
943 
944 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
945 		return 1;
946 
947 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
948 		return 1;
949 
950 #ifdef CONFIG_X86_64
951 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
952 	    (cr0 & X86_CR0_PG)) {
953 		int cs_db, cs_l;
954 
955 		if (!is_pae(vcpu))
956 			return 1;
957 		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
958 		if (cs_l)
959 			return 1;
960 	}
961 #endif
962 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
963 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
964 	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
965 		return 1;
966 
967 	if (!(cr0 & X86_CR0_PG) &&
968 	    (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)))
969 		return 1;
970 
971 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
972 
973 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
974 
975 	return 0;
976 }
977 EXPORT_SYMBOL_GPL(kvm_set_cr0);
978 
979 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
980 {
981 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
982 }
983 EXPORT_SYMBOL_GPL(kvm_lmsw);
984 
985 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
986 {
987 	if (vcpu->arch.guest_state_protected)
988 		return;
989 
990 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
991 
992 		if (vcpu->arch.xcr0 != host_xcr0)
993 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
994 
995 		if (vcpu->arch.xsaves_enabled &&
996 		    vcpu->arch.ia32_xss != host_xss)
997 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
998 	}
999 
1000 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1001 	if (static_cpu_has(X86_FEATURE_PKU) &&
1002 	    vcpu->arch.pkru != vcpu->arch.host_pkru &&
1003 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1004 	     kvm_read_cr4_bits(vcpu, X86_CR4_PKE)))
1005 		write_pkru(vcpu->arch.pkru);
1006 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1007 }
1008 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1009 
1010 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1011 {
1012 	if (vcpu->arch.guest_state_protected)
1013 		return;
1014 
1015 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1016 	if (static_cpu_has(X86_FEATURE_PKU) &&
1017 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1018 	     kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) {
1019 		vcpu->arch.pkru = rdpkru();
1020 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1021 			write_pkru(vcpu->arch.host_pkru);
1022 	}
1023 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1024 
1025 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
1026 
1027 		if (vcpu->arch.xcr0 != host_xcr0)
1028 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1029 
1030 		if (vcpu->arch.xsaves_enabled &&
1031 		    vcpu->arch.ia32_xss != host_xss)
1032 			wrmsrl(MSR_IA32_XSS, host_xss);
1033 	}
1034 
1035 }
1036 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1037 
1038 #ifdef CONFIG_X86_64
1039 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1040 {
1041 	return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1042 }
1043 #endif
1044 
1045 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1046 {
1047 	u64 xcr0 = xcr;
1048 	u64 old_xcr0 = vcpu->arch.xcr0;
1049 	u64 valid_bits;
1050 
1051 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1052 	if (index != XCR_XFEATURE_ENABLED_MASK)
1053 		return 1;
1054 	if (!(xcr0 & XFEATURE_MASK_FP))
1055 		return 1;
1056 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1057 		return 1;
1058 
1059 	/*
1060 	 * Do not allow the guest to set bits that we do not support
1061 	 * saving.  However, xcr0 bit 0 is always set, even if the
1062 	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1063 	 */
1064 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1065 	if (xcr0 & ~valid_bits)
1066 		return 1;
1067 
1068 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1069 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1070 		return 1;
1071 
1072 	if (xcr0 & XFEATURE_MASK_AVX512) {
1073 		if (!(xcr0 & XFEATURE_MASK_YMM))
1074 			return 1;
1075 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1076 			return 1;
1077 	}
1078 
1079 	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1080 	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1081 		return 1;
1082 
1083 	vcpu->arch.xcr0 = xcr0;
1084 
1085 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1086 		kvm_update_cpuid_runtime(vcpu);
1087 	return 0;
1088 }
1089 
1090 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1091 {
1092 	/* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1093 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1094 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1095 		kvm_inject_gp(vcpu, 0);
1096 		return 1;
1097 	}
1098 
1099 	return kvm_skip_emulated_instruction(vcpu);
1100 }
1101 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1102 
1103 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1104 {
1105 	if (cr4 & cr4_reserved_bits)
1106 		return false;
1107 
1108 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1109 		return false;
1110 
1111 	return true;
1112 }
1113 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1114 
1115 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1116 {
1117 	return __kvm_is_valid_cr4(vcpu, cr4) &&
1118 	       static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1119 }
1120 
1121 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1122 {
1123 	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1124 		kvm_mmu_reset_context(vcpu);
1125 
1126 	/*
1127 	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1128 	 * according to the SDM; however, stale prev_roots could be reused
1129 	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1130 	 * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1131 	 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1132 	 * so fall through.
1133 	 */
1134 	if (!tdp_enabled &&
1135 	    (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1136 		kvm_mmu_unload(vcpu);
1137 
1138 	/*
1139 	 * The TLB has to be flushed for all PCIDs if any of the following
1140 	 * (architecturally required) changes happen:
1141 	 * - CR4.PCIDE is changed from 1 to 0
1142 	 * - CR4.PGE is toggled
1143 	 *
1144 	 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1145 	 */
1146 	if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1147 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1148 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1149 
1150 	/*
1151 	 * The TLB has to be flushed for the current PCID if any of the
1152 	 * following (architecturally required) changes happen:
1153 	 * - CR4.SMEP is changed from 0 to 1
1154 	 * - CR4.PAE is toggled
1155 	 */
1156 	else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1157 		 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1158 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1159 
1160 }
1161 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1162 
1163 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1164 {
1165 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1166 
1167 	if (!kvm_is_valid_cr4(vcpu, cr4))
1168 		return 1;
1169 
1170 	if (is_long_mode(vcpu)) {
1171 		if (!(cr4 & X86_CR4_PAE))
1172 			return 1;
1173 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1174 			return 1;
1175 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1176 		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1177 		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1178 		return 1;
1179 
1180 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1181 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1182 			return 1;
1183 
1184 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1185 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1186 			return 1;
1187 	}
1188 
1189 	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1190 
1191 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1192 
1193 	return 0;
1194 }
1195 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1196 
1197 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1198 {
1199 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1200 	unsigned long roots_to_free = 0;
1201 	int i;
1202 
1203 	/*
1204 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1205 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1206 	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1207 	 * the invalidation, but the guest's TLB entries need to be flushed as
1208 	 * the CPU may have cached entries in its TLB for the target PCID.
1209 	 */
1210 	if (unlikely(tdp_enabled)) {
1211 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1212 		return;
1213 	}
1214 
1215 	/*
1216 	 * If neither the current CR3 nor any of the prev_roots use the given
1217 	 * PCID, then nothing needs to be done here because a resync will
1218 	 * happen anyway before switching to any other CR3.
1219 	 */
1220 	if (kvm_get_active_pcid(vcpu) == pcid) {
1221 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1222 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1223 	}
1224 
1225 	/*
1226 	 * If PCID is disabled, there is no need to free prev_roots even if the
1227 	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1228 	 * with PCIDE=0.
1229 	 */
1230 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1231 		return;
1232 
1233 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1234 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1235 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1236 
1237 	kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1238 }
1239 
1240 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1241 {
1242 	bool skip_tlb_flush = false;
1243 	unsigned long pcid = 0;
1244 #ifdef CONFIG_X86_64
1245 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1246 
1247 	if (pcid_enabled) {
1248 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1249 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1250 		pcid = cr3 & X86_CR3_PCID_MASK;
1251 	}
1252 #endif
1253 
1254 	/* PDPTRs are always reloaded for PAE paging. */
1255 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1256 		goto handle_tlb_flush;
1257 
1258 	/*
1259 	 * Do not condition the GPA check on long mode, this helper is used to
1260 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1261 	 * the current vCPU mode is accurate.
1262 	 */
1263 	if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1264 		return 1;
1265 
1266 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1267 		return 1;
1268 
1269 	if (cr3 != kvm_read_cr3(vcpu))
1270 		kvm_mmu_new_pgd(vcpu, cr3);
1271 
1272 	vcpu->arch.cr3 = cr3;
1273 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1274 	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1275 
1276 handle_tlb_flush:
1277 	/*
1278 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1279 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1280 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1281 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1282 	 * i.e. only PCID=0 can be relevant.
1283 	 */
1284 	if (!skip_tlb_flush)
1285 		kvm_invalidate_pcid(vcpu, pcid);
1286 
1287 	return 0;
1288 }
1289 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1290 
1291 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1292 {
1293 	if (cr8 & CR8_RESERVED_BITS)
1294 		return 1;
1295 	if (lapic_in_kernel(vcpu))
1296 		kvm_lapic_set_tpr(vcpu, cr8);
1297 	else
1298 		vcpu->arch.cr8 = cr8;
1299 	return 0;
1300 }
1301 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1302 
1303 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1304 {
1305 	if (lapic_in_kernel(vcpu))
1306 		return kvm_lapic_get_cr8(vcpu);
1307 	else
1308 		return vcpu->arch.cr8;
1309 }
1310 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1311 
1312 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1313 {
1314 	int i;
1315 
1316 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1317 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1318 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1319 	}
1320 }
1321 
1322 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1323 {
1324 	unsigned long dr7;
1325 
1326 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1327 		dr7 = vcpu->arch.guest_debug_dr7;
1328 	else
1329 		dr7 = vcpu->arch.dr7;
1330 	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1331 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1332 	if (dr7 & DR7_BP_EN_MASK)
1333 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1334 }
1335 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1336 
1337 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1338 {
1339 	u64 fixed = DR6_FIXED_1;
1340 
1341 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1342 		fixed |= DR6_RTM;
1343 
1344 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1345 		fixed |= DR6_BUS_LOCK;
1346 	return fixed;
1347 }
1348 
1349 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1350 {
1351 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1352 
1353 	switch (dr) {
1354 	case 0 ... 3:
1355 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1356 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1357 			vcpu->arch.eff_db[dr] = val;
1358 		break;
1359 	case 4:
1360 	case 6:
1361 		if (!kvm_dr6_valid(val))
1362 			return 1; /* #GP */
1363 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1364 		break;
1365 	case 5:
1366 	default: /* 7 */
1367 		if (!kvm_dr7_valid(val))
1368 			return 1; /* #GP */
1369 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1370 		kvm_update_dr7(vcpu);
1371 		break;
1372 	}
1373 
1374 	return 0;
1375 }
1376 EXPORT_SYMBOL_GPL(kvm_set_dr);
1377 
1378 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1379 {
1380 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1381 
1382 	switch (dr) {
1383 	case 0 ... 3:
1384 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1385 		break;
1386 	case 4:
1387 	case 6:
1388 		*val = vcpu->arch.dr6;
1389 		break;
1390 	case 5:
1391 	default: /* 7 */
1392 		*val = vcpu->arch.dr7;
1393 		break;
1394 	}
1395 }
1396 EXPORT_SYMBOL_GPL(kvm_get_dr);
1397 
1398 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1399 {
1400 	u32 ecx = kvm_rcx_read(vcpu);
1401 	u64 data;
1402 
1403 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1404 		kvm_inject_gp(vcpu, 0);
1405 		return 1;
1406 	}
1407 
1408 	kvm_rax_write(vcpu, (u32)data);
1409 	kvm_rdx_write(vcpu, data >> 32);
1410 	return kvm_skip_emulated_instruction(vcpu);
1411 }
1412 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1413 
1414 /*
1415  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1416  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1417  *
1418  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1419  * extract the supported MSRs from the related const lists.
1420  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1421  * capabilities of the host cpu. This capabilities test skips MSRs that are
1422  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1423  * may depend on host virtualization features rather than host cpu features.
1424  */
1425 
1426 static const u32 msrs_to_save_base[] = {
1427 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1428 	MSR_STAR,
1429 #ifdef CONFIG_X86_64
1430 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1431 #endif
1432 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1433 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1434 	MSR_IA32_SPEC_CTRL,
1435 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1436 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1437 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1438 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1439 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1440 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1441 	MSR_IA32_UMWAIT_CONTROL,
1442 
1443 	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1444 };
1445 
1446 static const u32 msrs_to_save_pmu[] = {
1447 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1448 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1449 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1450 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1451 	MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1452 
1453 	/* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
1454 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1455 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1456 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1457 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1458 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1459 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1460 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1461 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1462 
1463 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1464 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1465 
1466 	/* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
1467 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1468 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1469 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1470 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1471 };
1472 
1473 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
1474 			ARRAY_SIZE(msrs_to_save_pmu)];
1475 static unsigned num_msrs_to_save;
1476 
1477 static const u32 emulated_msrs_all[] = {
1478 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1479 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1480 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1481 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1482 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1483 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1484 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1485 	HV_X64_MSR_RESET,
1486 	HV_X64_MSR_VP_INDEX,
1487 	HV_X64_MSR_VP_RUNTIME,
1488 	HV_X64_MSR_SCONTROL,
1489 	HV_X64_MSR_STIMER0_CONFIG,
1490 	HV_X64_MSR_VP_ASSIST_PAGE,
1491 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1492 	HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
1493 	HV_X64_MSR_SYNDBG_OPTIONS,
1494 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1495 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1496 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1497 
1498 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1499 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1500 
1501 	MSR_IA32_TSC_ADJUST,
1502 	MSR_IA32_TSC_DEADLINE,
1503 	MSR_IA32_ARCH_CAPABILITIES,
1504 	MSR_IA32_PERF_CAPABILITIES,
1505 	MSR_IA32_MISC_ENABLE,
1506 	MSR_IA32_MCG_STATUS,
1507 	MSR_IA32_MCG_CTL,
1508 	MSR_IA32_MCG_EXT_CTL,
1509 	MSR_IA32_SMBASE,
1510 	MSR_SMI_COUNT,
1511 	MSR_PLATFORM_INFO,
1512 	MSR_MISC_FEATURES_ENABLES,
1513 	MSR_AMD64_VIRT_SPEC_CTRL,
1514 	MSR_AMD64_TSC_RATIO,
1515 	MSR_IA32_POWER_CTL,
1516 	MSR_IA32_UCODE_REV,
1517 
1518 	/*
1519 	 * The following list leaves out MSRs whose values are determined
1520 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1521 	 * We always support the "true" VMX control MSRs, even if the host
1522 	 * processor does not, so I am putting these registers here rather
1523 	 * than in msrs_to_save_all.
1524 	 */
1525 	MSR_IA32_VMX_BASIC,
1526 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1527 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1528 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1529 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1530 	MSR_IA32_VMX_MISC,
1531 	MSR_IA32_VMX_CR0_FIXED0,
1532 	MSR_IA32_VMX_CR4_FIXED0,
1533 	MSR_IA32_VMX_VMCS_ENUM,
1534 	MSR_IA32_VMX_PROCBASED_CTLS2,
1535 	MSR_IA32_VMX_EPT_VPID_CAP,
1536 	MSR_IA32_VMX_VMFUNC,
1537 
1538 	MSR_K7_HWCR,
1539 	MSR_KVM_POLL_CONTROL,
1540 };
1541 
1542 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1543 static unsigned num_emulated_msrs;
1544 
1545 /*
1546  * List of msr numbers which are used to expose MSR-based features that
1547  * can be used by a hypervisor to validate requested CPU features.
1548  */
1549 static const u32 msr_based_features_all[] = {
1550 	MSR_IA32_VMX_BASIC,
1551 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1552 	MSR_IA32_VMX_PINBASED_CTLS,
1553 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1554 	MSR_IA32_VMX_PROCBASED_CTLS,
1555 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1556 	MSR_IA32_VMX_EXIT_CTLS,
1557 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1558 	MSR_IA32_VMX_ENTRY_CTLS,
1559 	MSR_IA32_VMX_MISC,
1560 	MSR_IA32_VMX_CR0_FIXED0,
1561 	MSR_IA32_VMX_CR0_FIXED1,
1562 	MSR_IA32_VMX_CR4_FIXED0,
1563 	MSR_IA32_VMX_CR4_FIXED1,
1564 	MSR_IA32_VMX_VMCS_ENUM,
1565 	MSR_IA32_VMX_PROCBASED_CTLS2,
1566 	MSR_IA32_VMX_EPT_VPID_CAP,
1567 	MSR_IA32_VMX_VMFUNC,
1568 
1569 	MSR_AMD64_DE_CFG,
1570 	MSR_IA32_UCODE_REV,
1571 	MSR_IA32_ARCH_CAPABILITIES,
1572 	MSR_IA32_PERF_CAPABILITIES,
1573 };
1574 
1575 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1576 static unsigned int num_msr_based_features;
1577 
1578 /*
1579  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1580  * does not yet virtualize. These include:
1581  *   10 - MISC_PACKAGE_CTRLS
1582  *   11 - ENERGY_FILTERING_CTL
1583  *   12 - DOITM
1584  *   18 - FB_CLEAR_CTRL
1585  *   21 - XAPIC_DISABLE_STATUS
1586  *   23 - OVERCLOCKING_STATUS
1587  */
1588 
1589 #define KVM_SUPPORTED_ARCH_CAP \
1590 	(ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1591 	 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1592 	 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1593 	 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1594 	 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO)
1595 
1596 static u64 kvm_get_arch_capabilities(void)
1597 {
1598 	u64 data = 0;
1599 
1600 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
1601 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1602 		data &= KVM_SUPPORTED_ARCH_CAP;
1603 	}
1604 
1605 	/*
1606 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1607 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1608 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1609 	 * L1 guests, so it need not worry about its own (L2) guests.
1610 	 */
1611 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1612 
1613 	/*
1614 	 * If we're doing cache flushes (either "always" or "cond")
1615 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1616 	 * If an outer hypervisor is doing the cache flush for us
1617 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1618 	 * capability to the guest too, and if EPT is disabled we're not
1619 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1620 	 * require a nested hypervisor to do a flush of its own.
1621 	 */
1622 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1623 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1624 
1625 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1626 		data |= ARCH_CAP_RDCL_NO;
1627 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1628 		data |= ARCH_CAP_SSB_NO;
1629 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1630 		data |= ARCH_CAP_MDS_NO;
1631 
1632 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1633 		/*
1634 		 * If RTM=0 because the kernel has disabled TSX, the host might
1635 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1636 		 * and therefore knows that there cannot be TAA) but keep
1637 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1638 		 * and we want to allow migrating those guests to tsx=off hosts.
1639 		 */
1640 		data &= ~ARCH_CAP_TAA_NO;
1641 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1642 		data |= ARCH_CAP_TAA_NO;
1643 	} else {
1644 		/*
1645 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1646 		 * host so the guest can choose between disabling TSX or
1647 		 * using VERW to clear CPU buffers.
1648 		 */
1649 	}
1650 
1651 	return data;
1652 }
1653 
1654 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1655 {
1656 	switch (msr->index) {
1657 	case MSR_IA32_ARCH_CAPABILITIES:
1658 		msr->data = kvm_get_arch_capabilities();
1659 		break;
1660 	case MSR_IA32_PERF_CAPABILITIES:
1661 		msr->data = kvm_caps.supported_perf_cap;
1662 		break;
1663 	case MSR_IA32_UCODE_REV:
1664 		rdmsrl_safe(msr->index, &msr->data);
1665 		break;
1666 	default:
1667 		return static_call(kvm_x86_get_msr_feature)(msr);
1668 	}
1669 	return 0;
1670 }
1671 
1672 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1673 {
1674 	struct kvm_msr_entry msr;
1675 	int r;
1676 
1677 	msr.index = index;
1678 	r = kvm_get_msr_feature(&msr);
1679 
1680 	if (r == KVM_MSR_RET_INVALID) {
1681 		/* Unconditionally clear the output for simplicity */
1682 		*data = 0;
1683 		if (kvm_msr_ignored_check(index, 0, false))
1684 			r = 0;
1685 	}
1686 
1687 	if (r)
1688 		return r;
1689 
1690 	*data = msr.data;
1691 
1692 	return 0;
1693 }
1694 
1695 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1696 {
1697 	if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS))
1698 		return false;
1699 
1700 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1701 		return false;
1702 
1703 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1704 		return false;
1705 
1706 	if (efer & (EFER_LME | EFER_LMA) &&
1707 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1708 		return false;
1709 
1710 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1711 		return false;
1712 
1713 	return true;
1714 
1715 }
1716 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1717 {
1718 	if (efer & efer_reserved_bits)
1719 		return false;
1720 
1721 	return __kvm_valid_efer(vcpu, efer);
1722 }
1723 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1724 
1725 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1726 {
1727 	u64 old_efer = vcpu->arch.efer;
1728 	u64 efer = msr_info->data;
1729 	int r;
1730 
1731 	if (efer & efer_reserved_bits)
1732 		return 1;
1733 
1734 	if (!msr_info->host_initiated) {
1735 		if (!__kvm_valid_efer(vcpu, efer))
1736 			return 1;
1737 
1738 		if (is_paging(vcpu) &&
1739 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1740 			return 1;
1741 	}
1742 
1743 	efer &= ~EFER_LMA;
1744 	efer |= vcpu->arch.efer & EFER_LMA;
1745 
1746 	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1747 	if (r) {
1748 		WARN_ON(r > 0);
1749 		return r;
1750 	}
1751 
1752 	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1753 		kvm_mmu_reset_context(vcpu);
1754 
1755 	return 0;
1756 }
1757 
1758 void kvm_enable_efer_bits(u64 mask)
1759 {
1760        efer_reserved_bits &= ~mask;
1761 }
1762 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1763 
1764 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1765 {
1766 	struct kvm_x86_msr_filter *msr_filter;
1767 	struct msr_bitmap_range *ranges;
1768 	struct kvm *kvm = vcpu->kvm;
1769 	bool allowed;
1770 	int idx;
1771 	u32 i;
1772 
1773 	/* x2APIC MSRs do not support filtering. */
1774 	if (index >= 0x800 && index <= 0x8ff)
1775 		return true;
1776 
1777 	idx = srcu_read_lock(&kvm->srcu);
1778 
1779 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1780 	if (!msr_filter) {
1781 		allowed = true;
1782 		goto out;
1783 	}
1784 
1785 	allowed = msr_filter->default_allow;
1786 	ranges = msr_filter->ranges;
1787 
1788 	for (i = 0; i < msr_filter->count; i++) {
1789 		u32 start = ranges[i].base;
1790 		u32 end = start + ranges[i].nmsrs;
1791 		u32 flags = ranges[i].flags;
1792 		unsigned long *bitmap = ranges[i].bitmap;
1793 
1794 		if ((index >= start) && (index < end) && (flags & type)) {
1795 			allowed = !!test_bit(index - start, bitmap);
1796 			break;
1797 		}
1798 	}
1799 
1800 out:
1801 	srcu_read_unlock(&kvm->srcu, idx);
1802 
1803 	return allowed;
1804 }
1805 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1806 
1807 /*
1808  * Write @data into the MSR specified by @index.  Select MSR specific fault
1809  * checks are bypassed if @host_initiated is %true.
1810  * Returns 0 on success, non-0 otherwise.
1811  * Assumes vcpu_load() was already called.
1812  */
1813 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1814 			 bool host_initiated)
1815 {
1816 	struct msr_data msr;
1817 
1818 	switch (index) {
1819 	case MSR_FS_BASE:
1820 	case MSR_GS_BASE:
1821 	case MSR_KERNEL_GS_BASE:
1822 	case MSR_CSTAR:
1823 	case MSR_LSTAR:
1824 		if (is_noncanonical_address(data, vcpu))
1825 			return 1;
1826 		break;
1827 	case MSR_IA32_SYSENTER_EIP:
1828 	case MSR_IA32_SYSENTER_ESP:
1829 		/*
1830 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1831 		 * non-canonical address is written on Intel but not on
1832 		 * AMD (which ignores the top 32-bits, because it does
1833 		 * not implement 64-bit SYSENTER).
1834 		 *
1835 		 * 64-bit code should hence be able to write a non-canonical
1836 		 * value on AMD.  Making the address canonical ensures that
1837 		 * vmentry does not fail on Intel after writing a non-canonical
1838 		 * value, and that something deterministic happens if the guest
1839 		 * invokes 64-bit SYSENTER.
1840 		 */
1841 		data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1842 		break;
1843 	case MSR_TSC_AUX:
1844 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1845 			return 1;
1846 
1847 		if (!host_initiated &&
1848 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1849 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1850 			return 1;
1851 
1852 		/*
1853 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1854 		 * incomplete and conflicting architectural behavior.  Current
1855 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1856 		 * reserved and always read as zeros.  Enforce Intel's reserved
1857 		 * bits check if and only if the guest CPU is Intel, and clear
1858 		 * the bits in all other cases.  This ensures cross-vendor
1859 		 * migration will provide consistent behavior for the guest.
1860 		 */
1861 		if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1862 			return 1;
1863 
1864 		data = (u32)data;
1865 		break;
1866 	}
1867 
1868 	msr.data = data;
1869 	msr.index = index;
1870 	msr.host_initiated = host_initiated;
1871 
1872 	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1873 }
1874 
1875 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1876 				     u32 index, u64 data, bool host_initiated)
1877 {
1878 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1879 
1880 	if (ret == KVM_MSR_RET_INVALID)
1881 		if (kvm_msr_ignored_check(index, data, true))
1882 			ret = 0;
1883 
1884 	return ret;
1885 }
1886 
1887 /*
1888  * Read the MSR specified by @index into @data.  Select MSR specific fault
1889  * checks are bypassed if @host_initiated is %true.
1890  * Returns 0 on success, non-0 otherwise.
1891  * Assumes vcpu_load() was already called.
1892  */
1893 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1894 		  bool host_initiated)
1895 {
1896 	struct msr_data msr;
1897 	int ret;
1898 
1899 	switch (index) {
1900 	case MSR_TSC_AUX:
1901 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1902 			return 1;
1903 
1904 		if (!host_initiated &&
1905 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1906 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1907 			return 1;
1908 		break;
1909 	}
1910 
1911 	msr.index = index;
1912 	msr.host_initiated = host_initiated;
1913 
1914 	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1915 	if (!ret)
1916 		*data = msr.data;
1917 	return ret;
1918 }
1919 
1920 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1921 				     u32 index, u64 *data, bool host_initiated)
1922 {
1923 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1924 
1925 	if (ret == KVM_MSR_RET_INVALID) {
1926 		/* Unconditionally clear *data for simplicity */
1927 		*data = 0;
1928 		if (kvm_msr_ignored_check(index, 0, false))
1929 			ret = 0;
1930 	}
1931 
1932 	return ret;
1933 }
1934 
1935 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1936 {
1937 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1938 		return KVM_MSR_RET_FILTERED;
1939 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1940 }
1941 
1942 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1943 {
1944 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1945 		return KVM_MSR_RET_FILTERED;
1946 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1947 }
1948 
1949 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1950 {
1951 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1952 }
1953 EXPORT_SYMBOL_GPL(kvm_get_msr);
1954 
1955 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1956 {
1957 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1958 }
1959 EXPORT_SYMBOL_GPL(kvm_set_msr);
1960 
1961 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1962 {
1963 	if (!vcpu->run->msr.error) {
1964 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1965 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1966 	}
1967 }
1968 
1969 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1970 {
1971 	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1972 }
1973 
1974 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1975 {
1976 	complete_userspace_rdmsr(vcpu);
1977 	return complete_emulated_msr_access(vcpu);
1978 }
1979 
1980 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1981 {
1982 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1983 }
1984 
1985 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1986 {
1987 	complete_userspace_rdmsr(vcpu);
1988 	return complete_fast_msr_access(vcpu);
1989 }
1990 
1991 static u64 kvm_msr_reason(int r)
1992 {
1993 	switch (r) {
1994 	case KVM_MSR_RET_INVALID:
1995 		return KVM_MSR_EXIT_REASON_UNKNOWN;
1996 	case KVM_MSR_RET_FILTERED:
1997 		return KVM_MSR_EXIT_REASON_FILTER;
1998 	default:
1999 		return KVM_MSR_EXIT_REASON_INVAL;
2000 	}
2001 }
2002 
2003 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2004 			      u32 exit_reason, u64 data,
2005 			      int (*completion)(struct kvm_vcpu *vcpu),
2006 			      int r)
2007 {
2008 	u64 msr_reason = kvm_msr_reason(r);
2009 
2010 	/* Check if the user wanted to know about this MSR fault */
2011 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2012 		return 0;
2013 
2014 	vcpu->run->exit_reason = exit_reason;
2015 	vcpu->run->msr.error = 0;
2016 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2017 	vcpu->run->msr.reason = msr_reason;
2018 	vcpu->run->msr.index = index;
2019 	vcpu->run->msr.data = data;
2020 	vcpu->arch.complete_userspace_io = completion;
2021 
2022 	return 1;
2023 }
2024 
2025 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2026 {
2027 	u32 ecx = kvm_rcx_read(vcpu);
2028 	u64 data;
2029 	int r;
2030 
2031 	r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2032 
2033 	if (!r) {
2034 		trace_kvm_msr_read(ecx, data);
2035 
2036 		kvm_rax_write(vcpu, data & -1u);
2037 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
2038 	} else {
2039 		/* MSR read failed? See if we should ask user space */
2040 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2041 				       complete_fast_rdmsr, r))
2042 			return 0;
2043 		trace_kvm_msr_read_ex(ecx);
2044 	}
2045 
2046 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2047 }
2048 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2049 
2050 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2051 {
2052 	u32 ecx = kvm_rcx_read(vcpu);
2053 	u64 data = kvm_read_edx_eax(vcpu);
2054 	int r;
2055 
2056 	r = kvm_set_msr_with_filter(vcpu, ecx, data);
2057 
2058 	if (!r) {
2059 		trace_kvm_msr_write(ecx, data);
2060 	} else {
2061 		/* MSR write failed? See if we should ask user space */
2062 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2063 				       complete_fast_msr_access, r))
2064 			return 0;
2065 		/* Signal all other negative errors to userspace */
2066 		if (r < 0)
2067 			return r;
2068 		trace_kvm_msr_write_ex(ecx, data);
2069 	}
2070 
2071 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2072 }
2073 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2074 
2075 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2076 {
2077 	return kvm_skip_emulated_instruction(vcpu);
2078 }
2079 
2080 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2081 {
2082 	/* Treat an INVD instruction as a NOP and just skip it. */
2083 	return kvm_emulate_as_nop(vcpu);
2084 }
2085 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2086 
2087 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2088 {
2089 	kvm_queue_exception(vcpu, UD_VECTOR);
2090 	return 1;
2091 }
2092 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2093 
2094 
2095 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2096 {
2097 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2098 	    !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2099 		return kvm_handle_invalid_op(vcpu);
2100 
2101 	pr_warn_once("%s instruction emulated as NOP!\n", insn);
2102 	return kvm_emulate_as_nop(vcpu);
2103 }
2104 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2105 {
2106 	return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2107 }
2108 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2109 
2110 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2111 {
2112 	return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2113 }
2114 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2115 
2116 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2117 {
2118 	xfer_to_guest_mode_prepare();
2119 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2120 		xfer_to_guest_mode_work_pending();
2121 }
2122 
2123 /*
2124  * The fast path for frequent and performance sensitive wrmsr emulation,
2125  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2126  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2127  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2128  * other cases which must be called after interrupts are enabled on the host.
2129  */
2130 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2131 {
2132 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2133 		return 1;
2134 
2135 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2136 	    ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2137 	    ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2138 	    ((u32)(data >> 32) != X2APIC_BROADCAST))
2139 		return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2140 
2141 	return 1;
2142 }
2143 
2144 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2145 {
2146 	if (!kvm_can_use_hv_timer(vcpu))
2147 		return 1;
2148 
2149 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2150 	return 0;
2151 }
2152 
2153 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2154 {
2155 	u32 msr = kvm_rcx_read(vcpu);
2156 	u64 data;
2157 	fastpath_t ret = EXIT_FASTPATH_NONE;
2158 
2159 	switch (msr) {
2160 	case APIC_BASE_MSR + (APIC_ICR >> 4):
2161 		data = kvm_read_edx_eax(vcpu);
2162 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2163 			kvm_skip_emulated_instruction(vcpu);
2164 			ret = EXIT_FASTPATH_EXIT_HANDLED;
2165 		}
2166 		break;
2167 	case MSR_IA32_TSC_DEADLINE:
2168 		data = kvm_read_edx_eax(vcpu);
2169 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2170 			kvm_skip_emulated_instruction(vcpu);
2171 			ret = EXIT_FASTPATH_REENTER_GUEST;
2172 		}
2173 		break;
2174 	default:
2175 		break;
2176 	}
2177 
2178 	if (ret != EXIT_FASTPATH_NONE)
2179 		trace_kvm_msr_write(msr, data);
2180 
2181 	return ret;
2182 }
2183 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2184 
2185 /*
2186  * Adapt set_msr() to msr_io()'s calling convention
2187  */
2188 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2189 {
2190 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2191 }
2192 
2193 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2194 {
2195 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2196 }
2197 
2198 #ifdef CONFIG_X86_64
2199 struct pvclock_clock {
2200 	int vclock_mode;
2201 	u64 cycle_last;
2202 	u64 mask;
2203 	u32 mult;
2204 	u32 shift;
2205 	u64 base_cycles;
2206 	u64 offset;
2207 };
2208 
2209 struct pvclock_gtod_data {
2210 	seqcount_t	seq;
2211 
2212 	struct pvclock_clock clock; /* extract of a clocksource struct */
2213 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2214 
2215 	ktime_t		offs_boot;
2216 	u64		wall_time_sec;
2217 };
2218 
2219 static struct pvclock_gtod_data pvclock_gtod_data;
2220 
2221 static void update_pvclock_gtod(struct timekeeper *tk)
2222 {
2223 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2224 
2225 	write_seqcount_begin(&vdata->seq);
2226 
2227 	/* copy pvclock gtod data */
2228 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2229 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2230 	vdata->clock.mask		= tk->tkr_mono.mask;
2231 	vdata->clock.mult		= tk->tkr_mono.mult;
2232 	vdata->clock.shift		= tk->tkr_mono.shift;
2233 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2234 	vdata->clock.offset		= tk->tkr_mono.base;
2235 
2236 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2237 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2238 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2239 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2240 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2241 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2242 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2243 
2244 	vdata->wall_time_sec            = tk->xtime_sec;
2245 
2246 	vdata->offs_boot		= tk->offs_boot;
2247 
2248 	write_seqcount_end(&vdata->seq);
2249 }
2250 
2251 static s64 get_kvmclock_base_ns(void)
2252 {
2253 	/* Count up from boot time, but with the frequency of the raw clock.  */
2254 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2255 }
2256 #else
2257 static s64 get_kvmclock_base_ns(void)
2258 {
2259 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2260 	return ktime_get_boottime_ns();
2261 }
2262 #endif
2263 
2264 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2265 {
2266 	int version;
2267 	int r;
2268 	struct pvclock_wall_clock wc;
2269 	u32 wc_sec_hi;
2270 	u64 wall_nsec;
2271 
2272 	if (!wall_clock)
2273 		return;
2274 
2275 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2276 	if (r)
2277 		return;
2278 
2279 	if (version & 1)
2280 		++version;  /* first time write, random junk */
2281 
2282 	++version;
2283 
2284 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2285 		return;
2286 
2287 	/*
2288 	 * The guest calculates current wall clock time by adding
2289 	 * system time (updated by kvm_guest_time_update below) to the
2290 	 * wall clock specified here.  We do the reverse here.
2291 	 */
2292 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2293 
2294 	wc.nsec = do_div(wall_nsec, 1000000000);
2295 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2296 	wc.version = version;
2297 
2298 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2299 
2300 	if (sec_hi_ofs) {
2301 		wc_sec_hi = wall_nsec >> 32;
2302 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2303 				&wc_sec_hi, sizeof(wc_sec_hi));
2304 	}
2305 
2306 	version++;
2307 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2308 }
2309 
2310 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2311 				  bool old_msr, bool host_initiated)
2312 {
2313 	struct kvm_arch *ka = &vcpu->kvm->arch;
2314 
2315 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2316 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2317 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2318 
2319 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2320 	}
2321 
2322 	vcpu->arch.time = system_time;
2323 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2324 
2325 	/* we verify if the enable bit is set... */
2326 	if (system_time & 1)
2327 		kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2328 				 sizeof(struct pvclock_vcpu_time_info));
2329 	else
2330 		kvm_gpc_deactivate(&vcpu->arch.pv_time);
2331 
2332 	return;
2333 }
2334 
2335 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2336 {
2337 	do_shl32_div32(dividend, divisor);
2338 	return dividend;
2339 }
2340 
2341 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2342 			       s8 *pshift, u32 *pmultiplier)
2343 {
2344 	uint64_t scaled64;
2345 	int32_t  shift = 0;
2346 	uint64_t tps64;
2347 	uint32_t tps32;
2348 
2349 	tps64 = base_hz;
2350 	scaled64 = scaled_hz;
2351 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2352 		tps64 >>= 1;
2353 		shift--;
2354 	}
2355 
2356 	tps32 = (uint32_t)tps64;
2357 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2358 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2359 			scaled64 >>= 1;
2360 		else
2361 			tps32 <<= 1;
2362 		shift++;
2363 	}
2364 
2365 	*pshift = shift;
2366 	*pmultiplier = div_frac(scaled64, tps32);
2367 }
2368 
2369 #ifdef CONFIG_X86_64
2370 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2371 #endif
2372 
2373 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2374 static unsigned long max_tsc_khz;
2375 
2376 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2377 {
2378 	u64 v = (u64)khz * (1000000 + ppm);
2379 	do_div(v, 1000000);
2380 	return v;
2381 }
2382 
2383 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2384 
2385 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2386 {
2387 	u64 ratio;
2388 
2389 	/* Guest TSC same frequency as host TSC? */
2390 	if (!scale) {
2391 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2392 		return 0;
2393 	}
2394 
2395 	/* TSC scaling supported? */
2396 	if (!kvm_caps.has_tsc_control) {
2397 		if (user_tsc_khz > tsc_khz) {
2398 			vcpu->arch.tsc_catchup = 1;
2399 			vcpu->arch.tsc_always_catchup = 1;
2400 			return 0;
2401 		} else {
2402 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2403 			return -1;
2404 		}
2405 	}
2406 
2407 	/* TSC scaling required  - calculate ratio */
2408 	ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2409 				user_tsc_khz, tsc_khz);
2410 
2411 	if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2412 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2413 			            user_tsc_khz);
2414 		return -1;
2415 	}
2416 
2417 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2418 	return 0;
2419 }
2420 
2421 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2422 {
2423 	u32 thresh_lo, thresh_hi;
2424 	int use_scaling = 0;
2425 
2426 	/* tsc_khz can be zero if TSC calibration fails */
2427 	if (user_tsc_khz == 0) {
2428 		/* set tsc_scaling_ratio to a safe value */
2429 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2430 		return -1;
2431 	}
2432 
2433 	/* Compute a scale to convert nanoseconds in TSC cycles */
2434 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2435 			   &vcpu->arch.virtual_tsc_shift,
2436 			   &vcpu->arch.virtual_tsc_mult);
2437 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2438 
2439 	/*
2440 	 * Compute the variation in TSC rate which is acceptable
2441 	 * within the range of tolerance and decide if the
2442 	 * rate being applied is within that bounds of the hardware
2443 	 * rate.  If so, no scaling or compensation need be done.
2444 	 */
2445 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2446 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2447 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2448 		pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2449 			 user_tsc_khz, thresh_lo, thresh_hi);
2450 		use_scaling = 1;
2451 	}
2452 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2453 }
2454 
2455 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2456 {
2457 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2458 				      vcpu->arch.virtual_tsc_mult,
2459 				      vcpu->arch.virtual_tsc_shift);
2460 	tsc += vcpu->arch.this_tsc_write;
2461 	return tsc;
2462 }
2463 
2464 #ifdef CONFIG_X86_64
2465 static inline int gtod_is_based_on_tsc(int mode)
2466 {
2467 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2468 }
2469 #endif
2470 
2471 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2472 {
2473 #ifdef CONFIG_X86_64
2474 	bool vcpus_matched;
2475 	struct kvm_arch *ka = &vcpu->kvm->arch;
2476 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2477 
2478 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2479 			 atomic_read(&vcpu->kvm->online_vcpus));
2480 
2481 	/*
2482 	 * Once the masterclock is enabled, always perform request in
2483 	 * order to update it.
2484 	 *
2485 	 * In order to enable masterclock, the host clocksource must be TSC
2486 	 * and the vcpus need to have matched TSCs.  When that happens,
2487 	 * perform request to enable masterclock.
2488 	 */
2489 	if (ka->use_master_clock ||
2490 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2491 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2492 
2493 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2494 			    atomic_read(&vcpu->kvm->online_vcpus),
2495 		            ka->use_master_clock, gtod->clock.vclock_mode);
2496 #endif
2497 }
2498 
2499 /*
2500  * Multiply tsc by a fixed point number represented by ratio.
2501  *
2502  * The most significant 64-N bits (mult) of ratio represent the
2503  * integral part of the fixed point number; the remaining N bits
2504  * (frac) represent the fractional part, ie. ratio represents a fixed
2505  * point number (mult + frac * 2^(-N)).
2506  *
2507  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2508  */
2509 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2510 {
2511 	return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2512 }
2513 
2514 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2515 {
2516 	u64 _tsc = tsc;
2517 
2518 	if (ratio != kvm_caps.default_tsc_scaling_ratio)
2519 		_tsc = __scale_tsc(ratio, tsc);
2520 
2521 	return _tsc;
2522 }
2523 
2524 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2525 {
2526 	u64 tsc;
2527 
2528 	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2529 
2530 	return target_tsc - tsc;
2531 }
2532 
2533 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2534 {
2535 	return vcpu->arch.l1_tsc_offset +
2536 		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2537 }
2538 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2539 
2540 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2541 {
2542 	u64 nested_offset;
2543 
2544 	if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2545 		nested_offset = l1_offset;
2546 	else
2547 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2548 						kvm_caps.tsc_scaling_ratio_frac_bits);
2549 
2550 	nested_offset += l2_offset;
2551 	return nested_offset;
2552 }
2553 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2554 
2555 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2556 {
2557 	if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2558 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2559 				       kvm_caps.tsc_scaling_ratio_frac_bits);
2560 
2561 	return l1_multiplier;
2562 }
2563 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2564 
2565 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2566 {
2567 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2568 				   vcpu->arch.l1_tsc_offset,
2569 				   l1_offset);
2570 
2571 	vcpu->arch.l1_tsc_offset = l1_offset;
2572 
2573 	/*
2574 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2575 	 * according to the spec this should set L1's TSC (as opposed to
2576 	 * setting L1's offset for L2).
2577 	 */
2578 	if (is_guest_mode(vcpu))
2579 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2580 			l1_offset,
2581 			static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2582 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2583 	else
2584 		vcpu->arch.tsc_offset = l1_offset;
2585 
2586 	static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2587 }
2588 
2589 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2590 {
2591 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2592 
2593 	/* Userspace is changing the multiplier while L2 is active */
2594 	if (is_guest_mode(vcpu))
2595 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2596 			l1_multiplier,
2597 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2598 	else
2599 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2600 
2601 	if (kvm_caps.has_tsc_control)
2602 		static_call(kvm_x86_write_tsc_multiplier)(
2603 			vcpu, vcpu->arch.tsc_scaling_ratio);
2604 }
2605 
2606 static inline bool kvm_check_tsc_unstable(void)
2607 {
2608 #ifdef CONFIG_X86_64
2609 	/*
2610 	 * TSC is marked unstable when we're running on Hyper-V,
2611 	 * 'TSC page' clocksource is good.
2612 	 */
2613 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2614 		return false;
2615 #endif
2616 	return check_tsc_unstable();
2617 }
2618 
2619 /*
2620  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2621  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2622  * participates in.
2623  */
2624 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2625 				  u64 ns, bool matched)
2626 {
2627 	struct kvm *kvm = vcpu->kvm;
2628 
2629 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2630 
2631 	/*
2632 	 * We also track th most recent recorded KHZ, write and time to
2633 	 * allow the matching interval to be extended at each write.
2634 	 */
2635 	kvm->arch.last_tsc_nsec = ns;
2636 	kvm->arch.last_tsc_write = tsc;
2637 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2638 	kvm->arch.last_tsc_offset = offset;
2639 
2640 	vcpu->arch.last_guest_tsc = tsc;
2641 
2642 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2643 
2644 	if (!matched) {
2645 		/*
2646 		 * We split periods of matched TSC writes into generations.
2647 		 * For each generation, we track the original measured
2648 		 * nanosecond time, offset, and write, so if TSCs are in
2649 		 * sync, we can match exact offset, and if not, we can match
2650 		 * exact software computation in compute_guest_tsc()
2651 		 *
2652 		 * These values are tracked in kvm->arch.cur_xxx variables.
2653 		 */
2654 		kvm->arch.cur_tsc_generation++;
2655 		kvm->arch.cur_tsc_nsec = ns;
2656 		kvm->arch.cur_tsc_write = tsc;
2657 		kvm->arch.cur_tsc_offset = offset;
2658 		kvm->arch.nr_vcpus_matched_tsc = 0;
2659 	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2660 		kvm->arch.nr_vcpus_matched_tsc++;
2661 	}
2662 
2663 	/* Keep track of which generation this VCPU has synchronized to */
2664 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2665 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2666 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2667 
2668 	kvm_track_tsc_matching(vcpu);
2669 }
2670 
2671 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2672 {
2673 	struct kvm *kvm = vcpu->kvm;
2674 	u64 offset, ns, elapsed;
2675 	unsigned long flags;
2676 	bool matched = false;
2677 	bool synchronizing = false;
2678 
2679 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2680 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2681 	ns = get_kvmclock_base_ns();
2682 	elapsed = ns - kvm->arch.last_tsc_nsec;
2683 
2684 	if (vcpu->arch.virtual_tsc_khz) {
2685 		if (data == 0) {
2686 			/*
2687 			 * detection of vcpu initialization -- need to sync
2688 			 * with other vCPUs. This particularly helps to keep
2689 			 * kvm_clock stable after CPU hotplug
2690 			 */
2691 			synchronizing = true;
2692 		} else {
2693 			u64 tsc_exp = kvm->arch.last_tsc_write +
2694 						nsec_to_cycles(vcpu, elapsed);
2695 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2696 			/*
2697 			 * Special case: TSC write with a small delta (1 second)
2698 			 * of virtual cycle time against real time is
2699 			 * interpreted as an attempt to synchronize the CPU.
2700 			 */
2701 			synchronizing = data < tsc_exp + tsc_hz &&
2702 					data + tsc_hz > tsc_exp;
2703 		}
2704 	}
2705 
2706 	/*
2707 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2708 	 * TSC, we add elapsed time in this computation.  We could let the
2709 	 * compensation code attempt to catch up if we fall behind, but
2710 	 * it's better to try to match offsets from the beginning.
2711          */
2712 	if (synchronizing &&
2713 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2714 		if (!kvm_check_tsc_unstable()) {
2715 			offset = kvm->arch.cur_tsc_offset;
2716 		} else {
2717 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2718 			data += delta;
2719 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2720 		}
2721 		matched = true;
2722 	}
2723 
2724 	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2725 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2726 }
2727 
2728 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2729 					   s64 adjustment)
2730 {
2731 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2732 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2733 }
2734 
2735 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2736 {
2737 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2738 		WARN_ON(adjustment < 0);
2739 	adjustment = kvm_scale_tsc((u64) adjustment,
2740 				   vcpu->arch.l1_tsc_scaling_ratio);
2741 	adjust_tsc_offset_guest(vcpu, adjustment);
2742 }
2743 
2744 #ifdef CONFIG_X86_64
2745 
2746 static u64 read_tsc(void)
2747 {
2748 	u64 ret = (u64)rdtsc_ordered();
2749 	u64 last = pvclock_gtod_data.clock.cycle_last;
2750 
2751 	if (likely(ret >= last))
2752 		return ret;
2753 
2754 	/*
2755 	 * GCC likes to generate cmov here, but this branch is extremely
2756 	 * predictable (it's just a function of time and the likely is
2757 	 * very likely) and there's a data dependence, so force GCC
2758 	 * to generate a branch instead.  I don't barrier() because
2759 	 * we don't actually need a barrier, and if this function
2760 	 * ever gets inlined it will generate worse code.
2761 	 */
2762 	asm volatile ("");
2763 	return last;
2764 }
2765 
2766 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2767 			  int *mode)
2768 {
2769 	long v;
2770 	u64 tsc_pg_val;
2771 
2772 	switch (clock->vclock_mode) {
2773 	case VDSO_CLOCKMODE_HVCLOCK:
2774 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2775 						  tsc_timestamp);
2776 		if (tsc_pg_val != U64_MAX) {
2777 			/* TSC page valid */
2778 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2779 			v = (tsc_pg_val - clock->cycle_last) &
2780 				clock->mask;
2781 		} else {
2782 			/* TSC page invalid */
2783 			*mode = VDSO_CLOCKMODE_NONE;
2784 		}
2785 		break;
2786 	case VDSO_CLOCKMODE_TSC:
2787 		*mode = VDSO_CLOCKMODE_TSC;
2788 		*tsc_timestamp = read_tsc();
2789 		v = (*tsc_timestamp - clock->cycle_last) &
2790 			clock->mask;
2791 		break;
2792 	default:
2793 		*mode = VDSO_CLOCKMODE_NONE;
2794 	}
2795 
2796 	if (*mode == VDSO_CLOCKMODE_NONE)
2797 		*tsc_timestamp = v = 0;
2798 
2799 	return v * clock->mult;
2800 }
2801 
2802 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2803 {
2804 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2805 	unsigned long seq;
2806 	int mode;
2807 	u64 ns;
2808 
2809 	do {
2810 		seq = read_seqcount_begin(&gtod->seq);
2811 		ns = gtod->raw_clock.base_cycles;
2812 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2813 		ns >>= gtod->raw_clock.shift;
2814 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2815 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2816 	*t = ns;
2817 
2818 	return mode;
2819 }
2820 
2821 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2822 {
2823 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2824 	unsigned long seq;
2825 	int mode;
2826 	u64 ns;
2827 
2828 	do {
2829 		seq = read_seqcount_begin(&gtod->seq);
2830 		ts->tv_sec = gtod->wall_time_sec;
2831 		ns = gtod->clock.base_cycles;
2832 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2833 		ns >>= gtod->clock.shift;
2834 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2835 
2836 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2837 	ts->tv_nsec = ns;
2838 
2839 	return mode;
2840 }
2841 
2842 /* returns true if host is using TSC based clocksource */
2843 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2844 {
2845 	/* checked again under seqlock below */
2846 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2847 		return false;
2848 
2849 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2850 						      tsc_timestamp));
2851 }
2852 
2853 /* returns true if host is using TSC based clocksource */
2854 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2855 					   u64 *tsc_timestamp)
2856 {
2857 	/* checked again under seqlock below */
2858 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2859 		return false;
2860 
2861 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2862 }
2863 #endif
2864 
2865 /*
2866  *
2867  * Assuming a stable TSC across physical CPUS, and a stable TSC
2868  * across virtual CPUs, the following condition is possible.
2869  * Each numbered line represents an event visible to both
2870  * CPUs at the next numbered event.
2871  *
2872  * "timespecX" represents host monotonic time. "tscX" represents
2873  * RDTSC value.
2874  *
2875  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2876  *
2877  * 1.  read timespec0,tsc0
2878  * 2.					| timespec1 = timespec0 + N
2879  * 					| tsc1 = tsc0 + M
2880  * 3. transition to guest		| transition to guest
2881  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2882  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2883  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2884  *
2885  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2886  *
2887  * 	- ret0 < ret1
2888  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2889  *		...
2890  *	- 0 < N - M => M < N
2891  *
2892  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2893  * always the case (the difference between two distinct xtime instances
2894  * might be smaller then the difference between corresponding TSC reads,
2895  * when updating guest vcpus pvclock areas).
2896  *
2897  * To avoid that problem, do not allow visibility of distinct
2898  * system_timestamp/tsc_timestamp values simultaneously: use a master
2899  * copy of host monotonic time values. Update that master copy
2900  * in lockstep.
2901  *
2902  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2903  *
2904  */
2905 
2906 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2907 {
2908 #ifdef CONFIG_X86_64
2909 	struct kvm_arch *ka = &kvm->arch;
2910 	int vclock_mode;
2911 	bool host_tsc_clocksource, vcpus_matched;
2912 
2913 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2914 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2915 			atomic_read(&kvm->online_vcpus));
2916 
2917 	/*
2918 	 * If the host uses TSC clock, then passthrough TSC as stable
2919 	 * to the guest.
2920 	 */
2921 	host_tsc_clocksource = kvm_get_time_and_clockread(
2922 					&ka->master_kernel_ns,
2923 					&ka->master_cycle_now);
2924 
2925 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2926 				&& !ka->backwards_tsc_observed
2927 				&& !ka->boot_vcpu_runs_old_kvmclock;
2928 
2929 	if (ka->use_master_clock)
2930 		atomic_set(&kvm_guest_has_master_clock, 1);
2931 
2932 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2933 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2934 					vcpus_matched);
2935 #endif
2936 }
2937 
2938 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2939 {
2940 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2941 }
2942 
2943 static void __kvm_start_pvclock_update(struct kvm *kvm)
2944 {
2945 	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2946 	write_seqcount_begin(&kvm->arch.pvclock_sc);
2947 }
2948 
2949 static void kvm_start_pvclock_update(struct kvm *kvm)
2950 {
2951 	kvm_make_mclock_inprogress_request(kvm);
2952 
2953 	/* no guest entries from this point */
2954 	__kvm_start_pvclock_update(kvm);
2955 }
2956 
2957 static void kvm_end_pvclock_update(struct kvm *kvm)
2958 {
2959 	struct kvm_arch *ka = &kvm->arch;
2960 	struct kvm_vcpu *vcpu;
2961 	unsigned long i;
2962 
2963 	write_seqcount_end(&ka->pvclock_sc);
2964 	raw_spin_unlock_irq(&ka->tsc_write_lock);
2965 	kvm_for_each_vcpu(i, vcpu, kvm)
2966 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2967 
2968 	/* guest entries allowed */
2969 	kvm_for_each_vcpu(i, vcpu, kvm)
2970 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2971 }
2972 
2973 static void kvm_update_masterclock(struct kvm *kvm)
2974 {
2975 	kvm_hv_request_tsc_page_update(kvm);
2976 	kvm_start_pvclock_update(kvm);
2977 	pvclock_update_vm_gtod_copy(kvm);
2978 	kvm_end_pvclock_update(kvm);
2979 }
2980 
2981 /*
2982  * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
2983  * per-CPU value (which may be zero if a CPU is going offline).  Note, tsc_khz
2984  * can change during boot even if the TSC is constant, as it's possible for KVM
2985  * to be loaded before TSC calibration completes.  Ideally, KVM would get a
2986  * notification when calibration completes, but practically speaking calibration
2987  * will complete before userspace is alive enough to create VMs.
2988  */
2989 static unsigned long get_cpu_tsc_khz(void)
2990 {
2991 	if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
2992 		return tsc_khz;
2993 	else
2994 		return __this_cpu_read(cpu_tsc_khz);
2995 }
2996 
2997 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
2998 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2999 {
3000 	struct kvm_arch *ka = &kvm->arch;
3001 	struct pvclock_vcpu_time_info hv_clock;
3002 
3003 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
3004 	get_cpu();
3005 
3006 	data->flags = 0;
3007 	if (ka->use_master_clock &&
3008 	    (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3009 #ifdef CONFIG_X86_64
3010 		struct timespec64 ts;
3011 
3012 		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3013 			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3014 			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3015 		} else
3016 #endif
3017 		data->host_tsc = rdtsc();
3018 
3019 		data->flags |= KVM_CLOCK_TSC_STABLE;
3020 		hv_clock.tsc_timestamp = ka->master_cycle_now;
3021 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3022 		kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3023 				   &hv_clock.tsc_shift,
3024 				   &hv_clock.tsc_to_system_mul);
3025 		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3026 	} else {
3027 		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3028 	}
3029 
3030 	put_cpu();
3031 }
3032 
3033 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3034 {
3035 	struct kvm_arch *ka = &kvm->arch;
3036 	unsigned seq;
3037 
3038 	do {
3039 		seq = read_seqcount_begin(&ka->pvclock_sc);
3040 		__get_kvmclock(kvm, data);
3041 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3042 }
3043 
3044 u64 get_kvmclock_ns(struct kvm *kvm)
3045 {
3046 	struct kvm_clock_data data;
3047 
3048 	get_kvmclock(kvm, &data);
3049 	return data.clock;
3050 }
3051 
3052 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3053 				    struct gfn_to_pfn_cache *gpc,
3054 				    unsigned int offset)
3055 {
3056 	struct kvm_vcpu_arch *vcpu = &v->arch;
3057 	struct pvclock_vcpu_time_info *guest_hv_clock;
3058 	unsigned long flags;
3059 
3060 	read_lock_irqsave(&gpc->lock, flags);
3061 	while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3062 		read_unlock_irqrestore(&gpc->lock, flags);
3063 
3064 		if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3065 			return;
3066 
3067 		read_lock_irqsave(&gpc->lock, flags);
3068 	}
3069 
3070 	guest_hv_clock = (void *)(gpc->khva + offset);
3071 
3072 	/*
3073 	 * This VCPU is paused, but it's legal for a guest to read another
3074 	 * VCPU's kvmclock, so we really have to follow the specification where
3075 	 * it says that version is odd if data is being modified, and even after
3076 	 * it is consistent.
3077 	 */
3078 
3079 	guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3080 	smp_wmb();
3081 
3082 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3083 	vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3084 
3085 	if (vcpu->pvclock_set_guest_stopped_request) {
3086 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3087 		vcpu->pvclock_set_guest_stopped_request = false;
3088 	}
3089 
3090 	memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3091 	smp_wmb();
3092 
3093 	guest_hv_clock->version = ++vcpu->hv_clock.version;
3094 
3095 	mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3096 	read_unlock_irqrestore(&gpc->lock, flags);
3097 
3098 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3099 }
3100 
3101 static int kvm_guest_time_update(struct kvm_vcpu *v)
3102 {
3103 	unsigned long flags, tgt_tsc_khz;
3104 	unsigned seq;
3105 	struct kvm_vcpu_arch *vcpu = &v->arch;
3106 	struct kvm_arch *ka = &v->kvm->arch;
3107 	s64 kernel_ns;
3108 	u64 tsc_timestamp, host_tsc;
3109 	u8 pvclock_flags;
3110 	bool use_master_clock;
3111 
3112 	kernel_ns = 0;
3113 	host_tsc = 0;
3114 
3115 	/*
3116 	 * If the host uses TSC clock, then passthrough TSC as stable
3117 	 * to the guest.
3118 	 */
3119 	do {
3120 		seq = read_seqcount_begin(&ka->pvclock_sc);
3121 		use_master_clock = ka->use_master_clock;
3122 		if (use_master_clock) {
3123 			host_tsc = ka->master_cycle_now;
3124 			kernel_ns = ka->master_kernel_ns;
3125 		}
3126 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3127 
3128 	/* Keep irq disabled to prevent changes to the clock */
3129 	local_irq_save(flags);
3130 	tgt_tsc_khz = get_cpu_tsc_khz();
3131 	if (unlikely(tgt_tsc_khz == 0)) {
3132 		local_irq_restore(flags);
3133 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3134 		return 1;
3135 	}
3136 	if (!use_master_clock) {
3137 		host_tsc = rdtsc();
3138 		kernel_ns = get_kvmclock_base_ns();
3139 	}
3140 
3141 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3142 
3143 	/*
3144 	 * We may have to catch up the TSC to match elapsed wall clock
3145 	 * time for two reasons, even if kvmclock is used.
3146 	 *   1) CPU could have been running below the maximum TSC rate
3147 	 *   2) Broken TSC compensation resets the base at each VCPU
3148 	 *      entry to avoid unknown leaps of TSC even when running
3149 	 *      again on the same CPU.  This may cause apparent elapsed
3150 	 *      time to disappear, and the guest to stand still or run
3151 	 *	very slowly.
3152 	 */
3153 	if (vcpu->tsc_catchup) {
3154 		u64 tsc = compute_guest_tsc(v, kernel_ns);
3155 		if (tsc > tsc_timestamp) {
3156 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3157 			tsc_timestamp = tsc;
3158 		}
3159 	}
3160 
3161 	local_irq_restore(flags);
3162 
3163 	/* With all the info we got, fill in the values */
3164 
3165 	if (kvm_caps.has_tsc_control)
3166 		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3167 					    v->arch.l1_tsc_scaling_ratio);
3168 
3169 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3170 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3171 				   &vcpu->hv_clock.tsc_shift,
3172 				   &vcpu->hv_clock.tsc_to_system_mul);
3173 		vcpu->hw_tsc_khz = tgt_tsc_khz;
3174 		kvm_xen_update_tsc_info(v);
3175 	}
3176 
3177 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3178 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3179 	vcpu->last_guest_tsc = tsc_timestamp;
3180 
3181 	/* If the host uses TSC clocksource, then it is stable */
3182 	pvclock_flags = 0;
3183 	if (use_master_clock)
3184 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3185 
3186 	vcpu->hv_clock.flags = pvclock_flags;
3187 
3188 	if (vcpu->pv_time.active)
3189 		kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3190 	if (vcpu->xen.vcpu_info_cache.active)
3191 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3192 					offsetof(struct compat_vcpu_info, time));
3193 	if (vcpu->xen.vcpu_time_info_cache.active)
3194 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3195 	kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3196 	return 0;
3197 }
3198 
3199 /*
3200  * kvmclock updates which are isolated to a given vcpu, such as
3201  * vcpu->cpu migration, should not allow system_timestamp from
3202  * the rest of the vcpus to remain static. Otherwise ntp frequency
3203  * correction applies to one vcpu's system_timestamp but not
3204  * the others.
3205  *
3206  * So in those cases, request a kvmclock update for all vcpus.
3207  * We need to rate-limit these requests though, as they can
3208  * considerably slow guests that have a large number of vcpus.
3209  * The time for a remote vcpu to update its kvmclock is bound
3210  * by the delay we use to rate-limit the updates.
3211  */
3212 
3213 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3214 
3215 static void kvmclock_update_fn(struct work_struct *work)
3216 {
3217 	unsigned long i;
3218 	struct delayed_work *dwork = to_delayed_work(work);
3219 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3220 					   kvmclock_update_work);
3221 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3222 	struct kvm_vcpu *vcpu;
3223 
3224 	kvm_for_each_vcpu(i, vcpu, kvm) {
3225 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3226 		kvm_vcpu_kick(vcpu);
3227 	}
3228 }
3229 
3230 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3231 {
3232 	struct kvm *kvm = v->kvm;
3233 
3234 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3235 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3236 					KVMCLOCK_UPDATE_DELAY);
3237 }
3238 
3239 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3240 
3241 static void kvmclock_sync_fn(struct work_struct *work)
3242 {
3243 	struct delayed_work *dwork = to_delayed_work(work);
3244 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3245 					   kvmclock_sync_work);
3246 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3247 
3248 	if (!kvmclock_periodic_sync)
3249 		return;
3250 
3251 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3252 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3253 					KVMCLOCK_SYNC_PERIOD);
3254 }
3255 
3256 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3257 static bool is_mci_control_msr(u32 msr)
3258 {
3259 	return (msr & 3) == 0;
3260 }
3261 static bool is_mci_status_msr(u32 msr)
3262 {
3263 	return (msr & 3) == 1;
3264 }
3265 
3266 /*
3267  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3268  */
3269 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3270 {
3271 	/* McStatusWrEn enabled? */
3272 	if (guest_cpuid_is_amd_or_hygon(vcpu))
3273 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3274 
3275 	return false;
3276 }
3277 
3278 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3279 {
3280 	u64 mcg_cap = vcpu->arch.mcg_cap;
3281 	unsigned bank_num = mcg_cap & 0xff;
3282 	u32 msr = msr_info->index;
3283 	u64 data = msr_info->data;
3284 	u32 offset, last_msr;
3285 
3286 	switch (msr) {
3287 	case MSR_IA32_MCG_STATUS:
3288 		vcpu->arch.mcg_status = data;
3289 		break;
3290 	case MSR_IA32_MCG_CTL:
3291 		if (!(mcg_cap & MCG_CTL_P) &&
3292 		    (data || !msr_info->host_initiated))
3293 			return 1;
3294 		if (data != 0 && data != ~(u64)0)
3295 			return 1;
3296 		vcpu->arch.mcg_ctl = data;
3297 		break;
3298 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3299 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3300 		if (msr > last_msr)
3301 			return 1;
3302 
3303 		if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3304 			return 1;
3305 		/* An attempt to write a 1 to a reserved bit raises #GP */
3306 		if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3307 			return 1;
3308 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3309 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3310 		vcpu->arch.mci_ctl2_banks[offset] = data;
3311 		break;
3312 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3313 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3314 		if (msr > last_msr)
3315 			return 1;
3316 
3317 		/*
3318 		 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3319 		 * values are architecturally undefined.  But, some Linux
3320 		 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3321 		 * issue on AMD K8s, allow bit 10 to be clear when setting all
3322 		 * other bits in order to avoid an uncaught #GP in the guest.
3323 		 *
3324 		 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3325 		 * single-bit ECC data errors.
3326 		 */
3327 		if (is_mci_control_msr(msr) &&
3328 		    data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3329 			return 1;
3330 
3331 		/*
3332 		 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3333 		 * AMD-based CPUs allow non-zero values, but if and only if
3334 		 * HWCR[McStatusWrEn] is set.
3335 		 */
3336 		if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3337 		    data != 0 && !can_set_mci_status(vcpu))
3338 			return 1;
3339 
3340 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3341 					    last_msr + 1 - MSR_IA32_MC0_CTL);
3342 		vcpu->arch.mce_banks[offset] = data;
3343 		break;
3344 	default:
3345 		return 1;
3346 	}
3347 	return 0;
3348 }
3349 
3350 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3351 {
3352 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3353 
3354 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3355 }
3356 
3357 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3358 {
3359 	gpa_t gpa = data & ~0x3f;
3360 
3361 	/* Bits 4:5 are reserved, Should be zero */
3362 	if (data & 0x30)
3363 		return 1;
3364 
3365 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3366 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3367 		return 1;
3368 
3369 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3370 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3371 		return 1;
3372 
3373 	if (!lapic_in_kernel(vcpu))
3374 		return data ? 1 : 0;
3375 
3376 	vcpu->arch.apf.msr_en_val = data;
3377 
3378 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3379 		kvm_clear_async_pf_completion_queue(vcpu);
3380 		kvm_async_pf_hash_reset(vcpu);
3381 		return 0;
3382 	}
3383 
3384 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3385 					sizeof(u64)))
3386 		return 1;
3387 
3388 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3389 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3390 
3391 	kvm_async_pf_wakeup_all(vcpu);
3392 
3393 	return 0;
3394 }
3395 
3396 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3397 {
3398 	/* Bits 8-63 are reserved */
3399 	if (data >> 8)
3400 		return 1;
3401 
3402 	if (!lapic_in_kernel(vcpu))
3403 		return 1;
3404 
3405 	vcpu->arch.apf.msr_int_val = data;
3406 
3407 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3408 
3409 	return 0;
3410 }
3411 
3412 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3413 {
3414 	kvm_gpc_deactivate(&vcpu->arch.pv_time);
3415 	vcpu->arch.time = 0;
3416 }
3417 
3418 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3419 {
3420 	++vcpu->stat.tlb_flush;
3421 	static_call(kvm_x86_flush_tlb_all)(vcpu);
3422 
3423 	/* Flushing all ASIDs flushes the current ASID... */
3424 	kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3425 }
3426 
3427 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3428 {
3429 	++vcpu->stat.tlb_flush;
3430 
3431 	if (!tdp_enabled) {
3432 		/*
3433 		 * A TLB flush on behalf of the guest is equivalent to
3434 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3435 		 * a forced sync of the shadow page tables.  Ensure all the
3436 		 * roots are synced and the guest TLB in hardware is clean.
3437 		 */
3438 		kvm_mmu_sync_roots(vcpu);
3439 		kvm_mmu_sync_prev_roots(vcpu);
3440 	}
3441 
3442 	static_call(kvm_x86_flush_tlb_guest)(vcpu);
3443 
3444 	/*
3445 	 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3446 	 * grained flushing.
3447 	 */
3448 	kvm_hv_vcpu_purge_flush_tlb(vcpu);
3449 }
3450 
3451 
3452 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3453 {
3454 	++vcpu->stat.tlb_flush;
3455 	static_call(kvm_x86_flush_tlb_current)(vcpu);
3456 }
3457 
3458 /*
3459  * Service "local" TLB flush requests, which are specific to the current MMU
3460  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3461  * TLB flushes that are targeted at an MMU context also need to be serviced
3462  * prior before nested VM-Enter/VM-Exit.
3463  */
3464 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3465 {
3466 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3467 		kvm_vcpu_flush_tlb_current(vcpu);
3468 
3469 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3470 		kvm_vcpu_flush_tlb_guest(vcpu);
3471 }
3472 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3473 
3474 static void record_steal_time(struct kvm_vcpu *vcpu)
3475 {
3476 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3477 	struct kvm_steal_time __user *st;
3478 	struct kvm_memslots *slots;
3479 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3480 	u64 steal;
3481 	u32 version;
3482 
3483 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3484 		kvm_xen_runstate_set_running(vcpu);
3485 		return;
3486 	}
3487 
3488 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3489 		return;
3490 
3491 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3492 		return;
3493 
3494 	slots = kvm_memslots(vcpu->kvm);
3495 
3496 	if (unlikely(slots->generation != ghc->generation ||
3497 		     gpa != ghc->gpa ||
3498 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3499 		/* We rely on the fact that it fits in a single page. */
3500 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3501 
3502 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3503 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3504 			return;
3505 	}
3506 
3507 	st = (struct kvm_steal_time __user *)ghc->hva;
3508 	/*
3509 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3510 	 * expensive IPIs.
3511 	 */
3512 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3513 		u8 st_preempted = 0;
3514 		int err = -EFAULT;
3515 
3516 		if (!user_access_begin(st, sizeof(*st)))
3517 			return;
3518 
3519 		asm volatile("1: xchgb %0, %2\n"
3520 			     "xor %1, %1\n"
3521 			     "2:\n"
3522 			     _ASM_EXTABLE_UA(1b, 2b)
3523 			     : "+q" (st_preempted),
3524 			       "+&r" (err),
3525 			       "+m" (st->preempted));
3526 		if (err)
3527 			goto out;
3528 
3529 		user_access_end();
3530 
3531 		vcpu->arch.st.preempted = 0;
3532 
3533 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3534 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3535 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3536 			kvm_vcpu_flush_tlb_guest(vcpu);
3537 
3538 		if (!user_access_begin(st, sizeof(*st)))
3539 			goto dirty;
3540 	} else {
3541 		if (!user_access_begin(st, sizeof(*st)))
3542 			return;
3543 
3544 		unsafe_put_user(0, &st->preempted, out);
3545 		vcpu->arch.st.preempted = 0;
3546 	}
3547 
3548 	unsafe_get_user(version, &st->version, out);
3549 	if (version & 1)
3550 		version += 1;  /* first time write, random junk */
3551 
3552 	version += 1;
3553 	unsafe_put_user(version, &st->version, out);
3554 
3555 	smp_wmb();
3556 
3557 	unsafe_get_user(steal, &st->steal, out);
3558 	steal += current->sched_info.run_delay -
3559 		vcpu->arch.st.last_steal;
3560 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3561 	unsafe_put_user(steal, &st->steal, out);
3562 
3563 	version += 1;
3564 	unsafe_put_user(version, &st->version, out);
3565 
3566  out:
3567 	user_access_end();
3568  dirty:
3569 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3570 }
3571 
3572 static bool kvm_is_msr_to_save(u32 msr_index)
3573 {
3574 	unsigned int i;
3575 
3576 	for (i = 0; i < num_msrs_to_save; i++) {
3577 		if (msrs_to_save[i] == msr_index)
3578 			return true;
3579 	}
3580 
3581 	return false;
3582 }
3583 
3584 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3585 {
3586 	u32 msr = msr_info->index;
3587 	u64 data = msr_info->data;
3588 
3589 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3590 		return kvm_xen_write_hypercall_page(vcpu, data);
3591 
3592 	switch (msr) {
3593 	case MSR_AMD64_NB_CFG:
3594 	case MSR_IA32_UCODE_WRITE:
3595 	case MSR_VM_HSAVE_PA:
3596 	case MSR_AMD64_PATCH_LOADER:
3597 	case MSR_AMD64_BU_CFG2:
3598 	case MSR_AMD64_DC_CFG:
3599 	case MSR_F15H_EX_CFG:
3600 		break;
3601 
3602 	case MSR_IA32_UCODE_REV:
3603 		if (msr_info->host_initiated)
3604 			vcpu->arch.microcode_version = data;
3605 		break;
3606 	case MSR_IA32_ARCH_CAPABILITIES:
3607 		if (!msr_info->host_initiated)
3608 			return 1;
3609 		vcpu->arch.arch_capabilities = data;
3610 		break;
3611 	case MSR_IA32_PERF_CAPABILITIES:
3612 		if (!msr_info->host_initiated)
3613 			return 1;
3614 		if (data & ~kvm_caps.supported_perf_cap)
3615 			return 1;
3616 
3617 		vcpu->arch.perf_capabilities = data;
3618 		kvm_pmu_refresh(vcpu);
3619 		return 0;
3620 	case MSR_EFER:
3621 		return set_efer(vcpu, msr_info);
3622 	case MSR_K7_HWCR:
3623 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3624 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3625 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3626 
3627 		/* Handle McStatusWrEn */
3628 		if (data == BIT_ULL(18)) {
3629 			vcpu->arch.msr_hwcr = data;
3630 		} else if (data != 0) {
3631 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3632 			return 1;
3633 		}
3634 		break;
3635 	case MSR_FAM10H_MMIO_CONF_BASE:
3636 		if (data != 0) {
3637 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3638 			return 1;
3639 		}
3640 		break;
3641 	case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
3642 	case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff:
3643 		return kvm_mtrr_set_msr(vcpu, msr, data);
3644 	case MSR_IA32_APICBASE:
3645 		return kvm_set_apic_base(vcpu, msr_info);
3646 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3647 		return kvm_x2apic_msr_write(vcpu, msr, data);
3648 	case MSR_IA32_TSC_DEADLINE:
3649 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3650 		break;
3651 	case MSR_IA32_TSC_ADJUST:
3652 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3653 			if (!msr_info->host_initiated) {
3654 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3655 				adjust_tsc_offset_guest(vcpu, adj);
3656 				/* Before back to guest, tsc_timestamp must be adjusted
3657 				 * as well, otherwise guest's percpu pvclock time could jump.
3658 				 */
3659 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3660 			}
3661 			vcpu->arch.ia32_tsc_adjust_msr = data;
3662 		}
3663 		break;
3664 	case MSR_IA32_MISC_ENABLE: {
3665 		u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3666 
3667 		if (!msr_info->host_initiated) {
3668 			/* RO bits */
3669 			if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3670 				return 1;
3671 
3672 			/* R bits, i.e. writes are ignored, but don't fault. */
3673 			data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3674 			data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3675 		}
3676 
3677 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3678 		    ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3679 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3680 				return 1;
3681 			vcpu->arch.ia32_misc_enable_msr = data;
3682 			kvm_update_cpuid_runtime(vcpu);
3683 		} else {
3684 			vcpu->arch.ia32_misc_enable_msr = data;
3685 		}
3686 		break;
3687 	}
3688 	case MSR_IA32_SMBASE:
3689 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3690 			return 1;
3691 		vcpu->arch.smbase = data;
3692 		break;
3693 	case MSR_IA32_POWER_CTL:
3694 		vcpu->arch.msr_ia32_power_ctl = data;
3695 		break;
3696 	case MSR_IA32_TSC:
3697 		if (msr_info->host_initiated) {
3698 			kvm_synchronize_tsc(vcpu, data);
3699 		} else {
3700 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3701 			adjust_tsc_offset_guest(vcpu, adj);
3702 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3703 		}
3704 		break;
3705 	case MSR_IA32_XSS:
3706 		if (!msr_info->host_initiated &&
3707 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3708 			return 1;
3709 		/*
3710 		 * KVM supports exposing PT to the guest, but does not support
3711 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3712 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3713 		 */
3714 		if (data & ~kvm_caps.supported_xss)
3715 			return 1;
3716 		vcpu->arch.ia32_xss = data;
3717 		kvm_update_cpuid_runtime(vcpu);
3718 		break;
3719 	case MSR_SMI_COUNT:
3720 		if (!msr_info->host_initiated)
3721 			return 1;
3722 		vcpu->arch.smi_count = data;
3723 		break;
3724 	case MSR_KVM_WALL_CLOCK_NEW:
3725 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3726 			return 1;
3727 
3728 		vcpu->kvm->arch.wall_clock = data;
3729 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3730 		break;
3731 	case MSR_KVM_WALL_CLOCK:
3732 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3733 			return 1;
3734 
3735 		vcpu->kvm->arch.wall_clock = data;
3736 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3737 		break;
3738 	case MSR_KVM_SYSTEM_TIME_NEW:
3739 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3740 			return 1;
3741 
3742 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3743 		break;
3744 	case MSR_KVM_SYSTEM_TIME:
3745 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3746 			return 1;
3747 
3748 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3749 		break;
3750 	case MSR_KVM_ASYNC_PF_EN:
3751 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3752 			return 1;
3753 
3754 		if (kvm_pv_enable_async_pf(vcpu, data))
3755 			return 1;
3756 		break;
3757 	case MSR_KVM_ASYNC_PF_INT:
3758 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3759 			return 1;
3760 
3761 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3762 			return 1;
3763 		break;
3764 	case MSR_KVM_ASYNC_PF_ACK:
3765 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3766 			return 1;
3767 		if (data & 0x1) {
3768 			vcpu->arch.apf.pageready_pending = false;
3769 			kvm_check_async_pf_completion(vcpu);
3770 		}
3771 		break;
3772 	case MSR_KVM_STEAL_TIME:
3773 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3774 			return 1;
3775 
3776 		if (unlikely(!sched_info_on()))
3777 			return 1;
3778 
3779 		if (data & KVM_STEAL_RESERVED_MASK)
3780 			return 1;
3781 
3782 		vcpu->arch.st.msr_val = data;
3783 
3784 		if (!(data & KVM_MSR_ENABLED))
3785 			break;
3786 
3787 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3788 
3789 		break;
3790 	case MSR_KVM_PV_EOI_EN:
3791 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3792 			return 1;
3793 
3794 		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3795 			return 1;
3796 		break;
3797 
3798 	case MSR_KVM_POLL_CONTROL:
3799 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3800 			return 1;
3801 
3802 		/* only enable bit supported */
3803 		if (data & (-1ULL << 1))
3804 			return 1;
3805 
3806 		vcpu->arch.msr_kvm_poll_control = data;
3807 		break;
3808 
3809 	case MSR_IA32_MCG_CTL:
3810 	case MSR_IA32_MCG_STATUS:
3811 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3812 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3813 		return set_msr_mce(vcpu, msr_info);
3814 
3815 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3816 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3817 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3818 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3819 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3820 			return kvm_pmu_set_msr(vcpu, msr_info);
3821 
3822 		if (data)
3823 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3824 		break;
3825 	case MSR_K7_CLK_CTL:
3826 		/*
3827 		 * Ignore all writes to this no longer documented MSR.
3828 		 * Writes are only relevant for old K7 processors,
3829 		 * all pre-dating SVM, but a recommended workaround from
3830 		 * AMD for these chips. It is possible to specify the
3831 		 * affected processor models on the command line, hence
3832 		 * the need to ignore the workaround.
3833 		 */
3834 		break;
3835 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3836 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3837 	case HV_X64_MSR_SYNDBG_OPTIONS:
3838 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3839 	case HV_X64_MSR_CRASH_CTL:
3840 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3841 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3842 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3843 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3844 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
3845 		return kvm_hv_set_msr_common(vcpu, msr, data,
3846 					     msr_info->host_initiated);
3847 	case MSR_IA32_BBL_CR_CTL3:
3848 		/* Drop writes to this legacy MSR -- see rdmsr
3849 		 * counterpart for further detail.
3850 		 */
3851 		kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3852 		break;
3853 	case MSR_AMD64_OSVW_ID_LENGTH:
3854 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3855 			return 1;
3856 		vcpu->arch.osvw.length = data;
3857 		break;
3858 	case MSR_AMD64_OSVW_STATUS:
3859 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3860 			return 1;
3861 		vcpu->arch.osvw.status = data;
3862 		break;
3863 	case MSR_PLATFORM_INFO:
3864 		if (!msr_info->host_initiated ||
3865 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3866 		     cpuid_fault_enabled(vcpu)))
3867 			return 1;
3868 		vcpu->arch.msr_platform_info = data;
3869 		break;
3870 	case MSR_MISC_FEATURES_ENABLES:
3871 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3872 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3873 		     !supports_cpuid_fault(vcpu)))
3874 			return 1;
3875 		vcpu->arch.msr_misc_features_enables = data;
3876 		break;
3877 #ifdef CONFIG_X86_64
3878 	case MSR_IA32_XFD:
3879 		if (!msr_info->host_initiated &&
3880 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3881 			return 1;
3882 
3883 		if (data & ~kvm_guest_supported_xfd(vcpu))
3884 			return 1;
3885 
3886 		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3887 		break;
3888 	case MSR_IA32_XFD_ERR:
3889 		if (!msr_info->host_initiated &&
3890 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3891 			return 1;
3892 
3893 		if (data & ~kvm_guest_supported_xfd(vcpu))
3894 			return 1;
3895 
3896 		vcpu->arch.guest_fpu.xfd_err = data;
3897 		break;
3898 #endif
3899 	default:
3900 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3901 			return kvm_pmu_set_msr(vcpu, msr_info);
3902 
3903 		/*
3904 		 * Userspace is allowed to write '0' to MSRs that KVM reports
3905 		 * as to-be-saved, even if an MSRs isn't fully supported.
3906 		 */
3907 		if (msr_info->host_initiated && !data &&
3908 		    kvm_is_msr_to_save(msr))
3909 			break;
3910 
3911 		return KVM_MSR_RET_INVALID;
3912 	}
3913 	return 0;
3914 }
3915 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3916 
3917 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3918 {
3919 	u64 data;
3920 	u64 mcg_cap = vcpu->arch.mcg_cap;
3921 	unsigned bank_num = mcg_cap & 0xff;
3922 	u32 offset, last_msr;
3923 
3924 	switch (msr) {
3925 	case MSR_IA32_P5_MC_ADDR:
3926 	case MSR_IA32_P5_MC_TYPE:
3927 		data = 0;
3928 		break;
3929 	case MSR_IA32_MCG_CAP:
3930 		data = vcpu->arch.mcg_cap;
3931 		break;
3932 	case MSR_IA32_MCG_CTL:
3933 		if (!(mcg_cap & MCG_CTL_P) && !host)
3934 			return 1;
3935 		data = vcpu->arch.mcg_ctl;
3936 		break;
3937 	case MSR_IA32_MCG_STATUS:
3938 		data = vcpu->arch.mcg_status;
3939 		break;
3940 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3941 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3942 		if (msr > last_msr)
3943 			return 1;
3944 
3945 		if (!(mcg_cap & MCG_CMCI_P) && !host)
3946 			return 1;
3947 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3948 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3949 		data = vcpu->arch.mci_ctl2_banks[offset];
3950 		break;
3951 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3952 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3953 		if (msr > last_msr)
3954 			return 1;
3955 
3956 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3957 					    last_msr + 1 - MSR_IA32_MC0_CTL);
3958 		data = vcpu->arch.mce_banks[offset];
3959 		break;
3960 	default:
3961 		return 1;
3962 	}
3963 	*pdata = data;
3964 	return 0;
3965 }
3966 
3967 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3968 {
3969 	switch (msr_info->index) {
3970 	case MSR_IA32_PLATFORM_ID:
3971 	case MSR_IA32_EBL_CR_POWERON:
3972 	case MSR_IA32_LASTBRANCHFROMIP:
3973 	case MSR_IA32_LASTBRANCHTOIP:
3974 	case MSR_IA32_LASTINTFROMIP:
3975 	case MSR_IA32_LASTINTTOIP:
3976 	case MSR_AMD64_SYSCFG:
3977 	case MSR_K8_TSEG_ADDR:
3978 	case MSR_K8_TSEG_MASK:
3979 	case MSR_VM_HSAVE_PA:
3980 	case MSR_K8_INT_PENDING_MSG:
3981 	case MSR_AMD64_NB_CFG:
3982 	case MSR_FAM10H_MMIO_CONF_BASE:
3983 	case MSR_AMD64_BU_CFG2:
3984 	case MSR_IA32_PERF_CTL:
3985 	case MSR_AMD64_DC_CFG:
3986 	case MSR_F15H_EX_CFG:
3987 	/*
3988 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3989 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3990 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3991 	 * so for existing CPU-specific MSRs.
3992 	 */
3993 	case MSR_RAPL_POWER_UNIT:
3994 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3995 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3996 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3997 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3998 		msr_info->data = 0;
3999 		break;
4000 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4001 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4002 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4003 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4004 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4005 			return kvm_pmu_get_msr(vcpu, msr_info);
4006 		msr_info->data = 0;
4007 		break;
4008 	case MSR_IA32_UCODE_REV:
4009 		msr_info->data = vcpu->arch.microcode_version;
4010 		break;
4011 	case MSR_IA32_ARCH_CAPABILITIES:
4012 		if (!msr_info->host_initiated &&
4013 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4014 			return 1;
4015 		msr_info->data = vcpu->arch.arch_capabilities;
4016 		break;
4017 	case MSR_IA32_PERF_CAPABILITIES:
4018 		if (!msr_info->host_initiated &&
4019 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4020 			return 1;
4021 		msr_info->data = vcpu->arch.perf_capabilities;
4022 		break;
4023 	case MSR_IA32_POWER_CTL:
4024 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4025 		break;
4026 	case MSR_IA32_TSC: {
4027 		/*
4028 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4029 		 * even when not intercepted. AMD manual doesn't explicitly
4030 		 * state this but appears to behave the same.
4031 		 *
4032 		 * On userspace reads and writes, however, we unconditionally
4033 		 * return L1's TSC value to ensure backwards-compatible
4034 		 * behavior for migration.
4035 		 */
4036 		u64 offset, ratio;
4037 
4038 		if (msr_info->host_initiated) {
4039 			offset = vcpu->arch.l1_tsc_offset;
4040 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
4041 		} else {
4042 			offset = vcpu->arch.tsc_offset;
4043 			ratio = vcpu->arch.tsc_scaling_ratio;
4044 		}
4045 
4046 		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4047 		break;
4048 	}
4049 	case MSR_MTRRcap:
4050 	case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
4051 	case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff:
4052 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4053 	case 0xcd: /* fsb frequency */
4054 		msr_info->data = 3;
4055 		break;
4056 		/*
4057 		 * MSR_EBC_FREQUENCY_ID
4058 		 * Conservative value valid for even the basic CPU models.
4059 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4060 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4061 		 * and 266MHz for model 3, or 4. Set Core Clock
4062 		 * Frequency to System Bus Frequency Ratio to 1 (bits
4063 		 * 31:24) even though these are only valid for CPU
4064 		 * models > 2, however guests may end up dividing or
4065 		 * multiplying by zero otherwise.
4066 		 */
4067 	case MSR_EBC_FREQUENCY_ID:
4068 		msr_info->data = 1 << 24;
4069 		break;
4070 	case MSR_IA32_APICBASE:
4071 		msr_info->data = kvm_get_apic_base(vcpu);
4072 		break;
4073 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4074 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4075 	case MSR_IA32_TSC_DEADLINE:
4076 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4077 		break;
4078 	case MSR_IA32_TSC_ADJUST:
4079 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4080 		break;
4081 	case MSR_IA32_MISC_ENABLE:
4082 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4083 		break;
4084 	case MSR_IA32_SMBASE:
4085 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4086 			return 1;
4087 		msr_info->data = vcpu->arch.smbase;
4088 		break;
4089 	case MSR_SMI_COUNT:
4090 		msr_info->data = vcpu->arch.smi_count;
4091 		break;
4092 	case MSR_IA32_PERF_STATUS:
4093 		/* TSC increment by tick */
4094 		msr_info->data = 1000ULL;
4095 		/* CPU multiplier */
4096 		msr_info->data |= (((uint64_t)4ULL) << 40);
4097 		break;
4098 	case MSR_EFER:
4099 		msr_info->data = vcpu->arch.efer;
4100 		break;
4101 	case MSR_KVM_WALL_CLOCK:
4102 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4103 			return 1;
4104 
4105 		msr_info->data = vcpu->kvm->arch.wall_clock;
4106 		break;
4107 	case MSR_KVM_WALL_CLOCK_NEW:
4108 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4109 			return 1;
4110 
4111 		msr_info->data = vcpu->kvm->arch.wall_clock;
4112 		break;
4113 	case MSR_KVM_SYSTEM_TIME:
4114 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4115 			return 1;
4116 
4117 		msr_info->data = vcpu->arch.time;
4118 		break;
4119 	case MSR_KVM_SYSTEM_TIME_NEW:
4120 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4121 			return 1;
4122 
4123 		msr_info->data = vcpu->arch.time;
4124 		break;
4125 	case MSR_KVM_ASYNC_PF_EN:
4126 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4127 			return 1;
4128 
4129 		msr_info->data = vcpu->arch.apf.msr_en_val;
4130 		break;
4131 	case MSR_KVM_ASYNC_PF_INT:
4132 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4133 			return 1;
4134 
4135 		msr_info->data = vcpu->arch.apf.msr_int_val;
4136 		break;
4137 	case MSR_KVM_ASYNC_PF_ACK:
4138 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4139 			return 1;
4140 
4141 		msr_info->data = 0;
4142 		break;
4143 	case MSR_KVM_STEAL_TIME:
4144 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4145 			return 1;
4146 
4147 		msr_info->data = vcpu->arch.st.msr_val;
4148 		break;
4149 	case MSR_KVM_PV_EOI_EN:
4150 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4151 			return 1;
4152 
4153 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
4154 		break;
4155 	case MSR_KVM_POLL_CONTROL:
4156 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4157 			return 1;
4158 
4159 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
4160 		break;
4161 	case MSR_IA32_P5_MC_ADDR:
4162 	case MSR_IA32_P5_MC_TYPE:
4163 	case MSR_IA32_MCG_CAP:
4164 	case MSR_IA32_MCG_CTL:
4165 	case MSR_IA32_MCG_STATUS:
4166 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4167 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4168 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4169 				   msr_info->host_initiated);
4170 	case MSR_IA32_XSS:
4171 		if (!msr_info->host_initiated &&
4172 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4173 			return 1;
4174 		msr_info->data = vcpu->arch.ia32_xss;
4175 		break;
4176 	case MSR_K7_CLK_CTL:
4177 		/*
4178 		 * Provide expected ramp-up count for K7. All other
4179 		 * are set to zero, indicating minimum divisors for
4180 		 * every field.
4181 		 *
4182 		 * This prevents guest kernels on AMD host with CPU
4183 		 * type 6, model 8 and higher from exploding due to
4184 		 * the rdmsr failing.
4185 		 */
4186 		msr_info->data = 0x20000000;
4187 		break;
4188 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4189 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4190 	case HV_X64_MSR_SYNDBG_OPTIONS:
4191 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4192 	case HV_X64_MSR_CRASH_CTL:
4193 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4194 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4195 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4196 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4197 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4198 		return kvm_hv_get_msr_common(vcpu,
4199 					     msr_info->index, &msr_info->data,
4200 					     msr_info->host_initiated);
4201 	case MSR_IA32_BBL_CR_CTL3:
4202 		/* This legacy MSR exists but isn't fully documented in current
4203 		 * silicon.  It is however accessed by winxp in very narrow
4204 		 * scenarios where it sets bit #19, itself documented as
4205 		 * a "reserved" bit.  Best effort attempt to source coherent
4206 		 * read data here should the balance of the register be
4207 		 * interpreted by the guest:
4208 		 *
4209 		 * L2 cache control register 3: 64GB range, 256KB size,
4210 		 * enabled, latency 0x1, configured
4211 		 */
4212 		msr_info->data = 0xbe702111;
4213 		break;
4214 	case MSR_AMD64_OSVW_ID_LENGTH:
4215 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4216 			return 1;
4217 		msr_info->data = vcpu->arch.osvw.length;
4218 		break;
4219 	case MSR_AMD64_OSVW_STATUS:
4220 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4221 			return 1;
4222 		msr_info->data = vcpu->arch.osvw.status;
4223 		break;
4224 	case MSR_PLATFORM_INFO:
4225 		if (!msr_info->host_initiated &&
4226 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4227 			return 1;
4228 		msr_info->data = vcpu->arch.msr_platform_info;
4229 		break;
4230 	case MSR_MISC_FEATURES_ENABLES:
4231 		msr_info->data = vcpu->arch.msr_misc_features_enables;
4232 		break;
4233 	case MSR_K7_HWCR:
4234 		msr_info->data = vcpu->arch.msr_hwcr;
4235 		break;
4236 #ifdef CONFIG_X86_64
4237 	case MSR_IA32_XFD:
4238 		if (!msr_info->host_initiated &&
4239 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4240 			return 1;
4241 
4242 		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4243 		break;
4244 	case MSR_IA32_XFD_ERR:
4245 		if (!msr_info->host_initiated &&
4246 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4247 			return 1;
4248 
4249 		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4250 		break;
4251 #endif
4252 	default:
4253 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4254 			return kvm_pmu_get_msr(vcpu, msr_info);
4255 
4256 		/*
4257 		 * Userspace is allowed to read MSRs that KVM reports as
4258 		 * to-be-saved, even if an MSR isn't fully supported.
4259 		 */
4260 		if (msr_info->host_initiated &&
4261 		    kvm_is_msr_to_save(msr_info->index)) {
4262 			msr_info->data = 0;
4263 			break;
4264 		}
4265 
4266 		return KVM_MSR_RET_INVALID;
4267 	}
4268 	return 0;
4269 }
4270 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4271 
4272 /*
4273  * Read or write a bunch of msrs. All parameters are kernel addresses.
4274  *
4275  * @return number of msrs set successfully.
4276  */
4277 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4278 		    struct kvm_msr_entry *entries,
4279 		    int (*do_msr)(struct kvm_vcpu *vcpu,
4280 				  unsigned index, u64 *data))
4281 {
4282 	int i;
4283 
4284 	for (i = 0; i < msrs->nmsrs; ++i)
4285 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4286 			break;
4287 
4288 	return i;
4289 }
4290 
4291 /*
4292  * Read or write a bunch of msrs. Parameters are user addresses.
4293  *
4294  * @return number of msrs set successfully.
4295  */
4296 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4297 		  int (*do_msr)(struct kvm_vcpu *vcpu,
4298 				unsigned index, u64 *data),
4299 		  int writeback)
4300 {
4301 	struct kvm_msrs msrs;
4302 	struct kvm_msr_entry *entries;
4303 	unsigned size;
4304 	int r;
4305 
4306 	r = -EFAULT;
4307 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4308 		goto out;
4309 
4310 	r = -E2BIG;
4311 	if (msrs.nmsrs >= MAX_IO_MSRS)
4312 		goto out;
4313 
4314 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4315 	entries = memdup_user(user_msrs->entries, size);
4316 	if (IS_ERR(entries)) {
4317 		r = PTR_ERR(entries);
4318 		goto out;
4319 	}
4320 
4321 	r = __msr_io(vcpu, &msrs, entries, do_msr);
4322 
4323 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4324 		r = -EFAULT;
4325 
4326 	kfree(entries);
4327 out:
4328 	return r;
4329 }
4330 
4331 static inline bool kvm_can_mwait_in_guest(void)
4332 {
4333 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4334 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4335 		boot_cpu_has(X86_FEATURE_ARAT);
4336 }
4337 
4338 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4339 					    struct kvm_cpuid2 __user *cpuid_arg)
4340 {
4341 	struct kvm_cpuid2 cpuid;
4342 	int r;
4343 
4344 	r = -EFAULT;
4345 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4346 		return r;
4347 
4348 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4349 	if (r)
4350 		return r;
4351 
4352 	r = -EFAULT;
4353 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4354 		return r;
4355 
4356 	return 0;
4357 }
4358 
4359 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4360 {
4361 	int r = 0;
4362 
4363 	switch (ext) {
4364 	case KVM_CAP_IRQCHIP:
4365 	case KVM_CAP_HLT:
4366 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4367 	case KVM_CAP_SET_TSS_ADDR:
4368 	case KVM_CAP_EXT_CPUID:
4369 	case KVM_CAP_EXT_EMUL_CPUID:
4370 	case KVM_CAP_CLOCKSOURCE:
4371 	case KVM_CAP_PIT:
4372 	case KVM_CAP_NOP_IO_DELAY:
4373 	case KVM_CAP_MP_STATE:
4374 	case KVM_CAP_SYNC_MMU:
4375 	case KVM_CAP_USER_NMI:
4376 	case KVM_CAP_REINJECT_CONTROL:
4377 	case KVM_CAP_IRQ_INJECT_STATUS:
4378 	case KVM_CAP_IOEVENTFD:
4379 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4380 	case KVM_CAP_PIT2:
4381 	case KVM_CAP_PIT_STATE2:
4382 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4383 	case KVM_CAP_VCPU_EVENTS:
4384 	case KVM_CAP_HYPERV:
4385 	case KVM_CAP_HYPERV_VAPIC:
4386 	case KVM_CAP_HYPERV_SPIN:
4387 	case KVM_CAP_HYPERV_SYNIC:
4388 	case KVM_CAP_HYPERV_SYNIC2:
4389 	case KVM_CAP_HYPERV_VP_INDEX:
4390 	case KVM_CAP_HYPERV_EVENTFD:
4391 	case KVM_CAP_HYPERV_TLBFLUSH:
4392 	case KVM_CAP_HYPERV_SEND_IPI:
4393 	case KVM_CAP_HYPERV_CPUID:
4394 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4395 	case KVM_CAP_SYS_HYPERV_CPUID:
4396 	case KVM_CAP_PCI_SEGMENT:
4397 	case KVM_CAP_DEBUGREGS:
4398 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4399 	case KVM_CAP_XSAVE:
4400 	case KVM_CAP_ASYNC_PF:
4401 	case KVM_CAP_ASYNC_PF_INT:
4402 	case KVM_CAP_GET_TSC_KHZ:
4403 	case KVM_CAP_KVMCLOCK_CTRL:
4404 	case KVM_CAP_READONLY_MEM:
4405 	case KVM_CAP_HYPERV_TIME:
4406 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4407 	case KVM_CAP_TSC_DEADLINE_TIMER:
4408 	case KVM_CAP_DISABLE_QUIRKS:
4409 	case KVM_CAP_SET_BOOT_CPU_ID:
4410  	case KVM_CAP_SPLIT_IRQCHIP:
4411 	case KVM_CAP_IMMEDIATE_EXIT:
4412 	case KVM_CAP_PMU_EVENT_FILTER:
4413 	case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4414 	case KVM_CAP_GET_MSR_FEATURES:
4415 	case KVM_CAP_MSR_PLATFORM_INFO:
4416 	case KVM_CAP_EXCEPTION_PAYLOAD:
4417 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4418 	case KVM_CAP_SET_GUEST_DEBUG:
4419 	case KVM_CAP_LAST_CPU:
4420 	case KVM_CAP_X86_USER_SPACE_MSR:
4421 	case KVM_CAP_X86_MSR_FILTER:
4422 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4423 #ifdef CONFIG_X86_SGX_KVM
4424 	case KVM_CAP_SGX_ATTRIBUTE:
4425 #endif
4426 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4427 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4428 	case KVM_CAP_SREGS2:
4429 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4430 	case KVM_CAP_VCPU_ATTRIBUTES:
4431 	case KVM_CAP_SYS_ATTRIBUTES:
4432 	case KVM_CAP_VAPIC:
4433 	case KVM_CAP_ENABLE_CAP:
4434 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4435 	case KVM_CAP_IRQFD_RESAMPLE:
4436 		r = 1;
4437 		break;
4438 	case KVM_CAP_EXIT_HYPERCALL:
4439 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4440 		break;
4441 	case KVM_CAP_SET_GUEST_DEBUG2:
4442 		return KVM_GUESTDBG_VALID_MASK;
4443 #ifdef CONFIG_KVM_XEN
4444 	case KVM_CAP_XEN_HVM:
4445 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4446 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4447 		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4448 		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4449 		    KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4450 		if (sched_info_on())
4451 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4452 			     KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4453 		break;
4454 #endif
4455 	case KVM_CAP_SYNC_REGS:
4456 		r = KVM_SYNC_X86_VALID_FIELDS;
4457 		break;
4458 	case KVM_CAP_ADJUST_CLOCK:
4459 		r = KVM_CLOCK_VALID_FLAGS;
4460 		break;
4461 	case KVM_CAP_X86_DISABLE_EXITS:
4462 		r = KVM_X86_DISABLE_EXITS_PAUSE;
4463 
4464 		if (!mitigate_smt_rsb) {
4465 			r |= KVM_X86_DISABLE_EXITS_HLT |
4466 			     KVM_X86_DISABLE_EXITS_CSTATE;
4467 
4468 			if (kvm_can_mwait_in_guest())
4469 				r |= KVM_X86_DISABLE_EXITS_MWAIT;
4470 		}
4471 		break;
4472 	case KVM_CAP_X86_SMM:
4473 		if (!IS_ENABLED(CONFIG_KVM_SMM))
4474 			break;
4475 
4476 		/* SMBASE is usually relocated above 1M on modern chipsets,
4477 		 * and SMM handlers might indeed rely on 4G segment limits,
4478 		 * so do not report SMM to be available if real mode is
4479 		 * emulated via vm86 mode.  Still, do not go to great lengths
4480 		 * to avoid userspace's usage of the feature, because it is a
4481 		 * fringe case that is not enabled except via specific settings
4482 		 * of the module parameters.
4483 		 */
4484 		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4485 		break;
4486 	case KVM_CAP_NR_VCPUS:
4487 		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4488 		break;
4489 	case KVM_CAP_MAX_VCPUS:
4490 		r = KVM_MAX_VCPUS;
4491 		break;
4492 	case KVM_CAP_MAX_VCPU_ID:
4493 		r = KVM_MAX_VCPU_IDS;
4494 		break;
4495 	case KVM_CAP_PV_MMU:	/* obsolete */
4496 		r = 0;
4497 		break;
4498 	case KVM_CAP_MCE:
4499 		r = KVM_MAX_MCE_BANKS;
4500 		break;
4501 	case KVM_CAP_XCRS:
4502 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4503 		break;
4504 	case KVM_CAP_TSC_CONTROL:
4505 	case KVM_CAP_VM_TSC_CONTROL:
4506 		r = kvm_caps.has_tsc_control;
4507 		break;
4508 	case KVM_CAP_X2APIC_API:
4509 		r = KVM_X2APIC_API_VALID_FLAGS;
4510 		break;
4511 	case KVM_CAP_NESTED_STATE:
4512 		r = kvm_x86_ops.nested_ops->get_state ?
4513 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4514 		break;
4515 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4516 		r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4517 		break;
4518 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4519 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4520 		break;
4521 	case KVM_CAP_SMALLER_MAXPHYADDR:
4522 		r = (int) allow_smaller_maxphyaddr;
4523 		break;
4524 	case KVM_CAP_STEAL_TIME:
4525 		r = sched_info_on();
4526 		break;
4527 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4528 		if (kvm_caps.has_bus_lock_exit)
4529 			r = KVM_BUS_LOCK_DETECTION_OFF |
4530 			    KVM_BUS_LOCK_DETECTION_EXIT;
4531 		else
4532 			r = 0;
4533 		break;
4534 	case KVM_CAP_XSAVE2: {
4535 		u64 guest_perm = xstate_get_guest_group_perm();
4536 
4537 		r = xstate_required_size(kvm_caps.supported_xcr0 & guest_perm, false);
4538 		if (r < sizeof(struct kvm_xsave))
4539 			r = sizeof(struct kvm_xsave);
4540 		break;
4541 	}
4542 	case KVM_CAP_PMU_CAPABILITY:
4543 		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4544 		break;
4545 	case KVM_CAP_DISABLE_QUIRKS2:
4546 		r = KVM_X86_VALID_QUIRKS;
4547 		break;
4548 	case KVM_CAP_X86_NOTIFY_VMEXIT:
4549 		r = kvm_caps.has_notify_vmexit;
4550 		break;
4551 	default:
4552 		break;
4553 	}
4554 	return r;
4555 }
4556 
4557 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4558 {
4559 	void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4560 
4561 	if ((u64)(unsigned long)uaddr != attr->addr)
4562 		return ERR_PTR_USR(-EFAULT);
4563 	return uaddr;
4564 }
4565 
4566 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4567 {
4568 	u64 __user *uaddr = kvm_get_attr_addr(attr);
4569 
4570 	if (attr->group)
4571 		return -ENXIO;
4572 
4573 	if (IS_ERR(uaddr))
4574 		return PTR_ERR(uaddr);
4575 
4576 	switch (attr->attr) {
4577 	case KVM_X86_XCOMP_GUEST_SUPP:
4578 		if (put_user(kvm_caps.supported_xcr0, uaddr))
4579 			return -EFAULT;
4580 		return 0;
4581 	default:
4582 		return -ENXIO;
4583 		break;
4584 	}
4585 }
4586 
4587 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4588 {
4589 	if (attr->group)
4590 		return -ENXIO;
4591 
4592 	switch (attr->attr) {
4593 	case KVM_X86_XCOMP_GUEST_SUPP:
4594 		return 0;
4595 	default:
4596 		return -ENXIO;
4597 	}
4598 }
4599 
4600 long kvm_arch_dev_ioctl(struct file *filp,
4601 			unsigned int ioctl, unsigned long arg)
4602 {
4603 	void __user *argp = (void __user *)arg;
4604 	long r;
4605 
4606 	switch (ioctl) {
4607 	case KVM_GET_MSR_INDEX_LIST: {
4608 		struct kvm_msr_list __user *user_msr_list = argp;
4609 		struct kvm_msr_list msr_list;
4610 		unsigned n;
4611 
4612 		r = -EFAULT;
4613 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4614 			goto out;
4615 		n = msr_list.nmsrs;
4616 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4617 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4618 			goto out;
4619 		r = -E2BIG;
4620 		if (n < msr_list.nmsrs)
4621 			goto out;
4622 		r = -EFAULT;
4623 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4624 				 num_msrs_to_save * sizeof(u32)))
4625 			goto out;
4626 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4627 				 &emulated_msrs,
4628 				 num_emulated_msrs * sizeof(u32)))
4629 			goto out;
4630 		r = 0;
4631 		break;
4632 	}
4633 	case KVM_GET_SUPPORTED_CPUID:
4634 	case KVM_GET_EMULATED_CPUID: {
4635 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4636 		struct kvm_cpuid2 cpuid;
4637 
4638 		r = -EFAULT;
4639 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4640 			goto out;
4641 
4642 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4643 					    ioctl);
4644 		if (r)
4645 			goto out;
4646 
4647 		r = -EFAULT;
4648 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4649 			goto out;
4650 		r = 0;
4651 		break;
4652 	}
4653 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4654 		r = -EFAULT;
4655 		if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4656 				 sizeof(kvm_caps.supported_mce_cap)))
4657 			goto out;
4658 		r = 0;
4659 		break;
4660 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4661 		struct kvm_msr_list __user *user_msr_list = argp;
4662 		struct kvm_msr_list msr_list;
4663 		unsigned int n;
4664 
4665 		r = -EFAULT;
4666 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4667 			goto out;
4668 		n = msr_list.nmsrs;
4669 		msr_list.nmsrs = num_msr_based_features;
4670 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4671 			goto out;
4672 		r = -E2BIG;
4673 		if (n < msr_list.nmsrs)
4674 			goto out;
4675 		r = -EFAULT;
4676 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4677 				 num_msr_based_features * sizeof(u32)))
4678 			goto out;
4679 		r = 0;
4680 		break;
4681 	}
4682 	case KVM_GET_MSRS:
4683 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4684 		break;
4685 	case KVM_GET_SUPPORTED_HV_CPUID:
4686 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4687 		break;
4688 	case KVM_GET_DEVICE_ATTR: {
4689 		struct kvm_device_attr attr;
4690 		r = -EFAULT;
4691 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4692 			break;
4693 		r = kvm_x86_dev_get_attr(&attr);
4694 		break;
4695 	}
4696 	case KVM_HAS_DEVICE_ATTR: {
4697 		struct kvm_device_attr attr;
4698 		r = -EFAULT;
4699 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4700 			break;
4701 		r = kvm_x86_dev_has_attr(&attr);
4702 		break;
4703 	}
4704 	default:
4705 		r = -EINVAL;
4706 		break;
4707 	}
4708 out:
4709 	return r;
4710 }
4711 
4712 static void wbinvd_ipi(void *garbage)
4713 {
4714 	wbinvd();
4715 }
4716 
4717 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4718 {
4719 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4720 }
4721 
4722 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4723 {
4724 	/* Address WBINVD may be executed by guest */
4725 	if (need_emulate_wbinvd(vcpu)) {
4726 		if (static_call(kvm_x86_has_wbinvd_exit)())
4727 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4728 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4729 			smp_call_function_single(vcpu->cpu,
4730 					wbinvd_ipi, NULL, 1);
4731 	}
4732 
4733 	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4734 
4735 	/* Save host pkru register if supported */
4736 	vcpu->arch.host_pkru = read_pkru();
4737 
4738 	/* Apply any externally detected TSC adjustments (due to suspend) */
4739 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4740 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4741 		vcpu->arch.tsc_offset_adjustment = 0;
4742 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4743 	}
4744 
4745 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4746 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4747 				rdtsc() - vcpu->arch.last_host_tsc;
4748 		if (tsc_delta < 0)
4749 			mark_tsc_unstable("KVM discovered backwards TSC");
4750 
4751 		if (kvm_check_tsc_unstable()) {
4752 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4753 						vcpu->arch.last_guest_tsc);
4754 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4755 			vcpu->arch.tsc_catchup = 1;
4756 		}
4757 
4758 		if (kvm_lapic_hv_timer_in_use(vcpu))
4759 			kvm_lapic_restart_hv_timer(vcpu);
4760 
4761 		/*
4762 		 * On a host with synchronized TSC, there is no need to update
4763 		 * kvmclock on vcpu->cpu migration
4764 		 */
4765 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4766 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4767 		if (vcpu->cpu != cpu)
4768 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4769 		vcpu->cpu = cpu;
4770 	}
4771 
4772 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4773 }
4774 
4775 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4776 {
4777 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4778 	struct kvm_steal_time __user *st;
4779 	struct kvm_memslots *slots;
4780 	static const u8 preempted = KVM_VCPU_PREEMPTED;
4781 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
4782 
4783 	/*
4784 	 * The vCPU can be marked preempted if and only if the VM-Exit was on
4785 	 * an instruction boundary and will not trigger guest emulation of any
4786 	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
4787 	 * when this is true, for example allowing the vCPU to be marked
4788 	 * preempted if and only if the VM-Exit was due to a host interrupt.
4789 	 */
4790 	if (!vcpu->arch.at_instruction_boundary) {
4791 		vcpu->stat.preemption_other++;
4792 		return;
4793 	}
4794 
4795 	vcpu->stat.preemption_reported++;
4796 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4797 		return;
4798 
4799 	if (vcpu->arch.st.preempted)
4800 		return;
4801 
4802 	/* This happens on process exit */
4803 	if (unlikely(current->mm != vcpu->kvm->mm))
4804 		return;
4805 
4806 	slots = kvm_memslots(vcpu->kvm);
4807 
4808 	if (unlikely(slots->generation != ghc->generation ||
4809 		     gpa != ghc->gpa ||
4810 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4811 		return;
4812 
4813 	st = (struct kvm_steal_time __user *)ghc->hva;
4814 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4815 
4816 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4817 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4818 
4819 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4820 }
4821 
4822 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4823 {
4824 	int idx;
4825 
4826 	if (vcpu->preempted) {
4827 		if (!vcpu->arch.guest_state_protected)
4828 			vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4829 
4830 		/*
4831 		 * Take the srcu lock as memslots will be accessed to check the gfn
4832 		 * cache generation against the memslots generation.
4833 		 */
4834 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4835 		if (kvm_xen_msr_enabled(vcpu->kvm))
4836 			kvm_xen_runstate_set_preempted(vcpu);
4837 		else
4838 			kvm_steal_time_set_preempted(vcpu);
4839 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4840 	}
4841 
4842 	static_call(kvm_x86_vcpu_put)(vcpu);
4843 	vcpu->arch.last_host_tsc = rdtsc();
4844 }
4845 
4846 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4847 				    struct kvm_lapic_state *s)
4848 {
4849 	static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4850 
4851 	return kvm_apic_get_state(vcpu, s);
4852 }
4853 
4854 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4855 				    struct kvm_lapic_state *s)
4856 {
4857 	int r;
4858 
4859 	r = kvm_apic_set_state(vcpu, s);
4860 	if (r)
4861 		return r;
4862 	update_cr8_intercept(vcpu);
4863 
4864 	return 0;
4865 }
4866 
4867 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4868 {
4869 	/*
4870 	 * We can accept userspace's request for interrupt injection
4871 	 * as long as we have a place to store the interrupt number.
4872 	 * The actual injection will happen when the CPU is able to
4873 	 * deliver the interrupt.
4874 	 */
4875 	if (kvm_cpu_has_extint(vcpu))
4876 		return false;
4877 
4878 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4879 	return (!lapic_in_kernel(vcpu) ||
4880 		kvm_apic_accept_pic_intr(vcpu));
4881 }
4882 
4883 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4884 {
4885 	/*
4886 	 * Do not cause an interrupt window exit if an exception
4887 	 * is pending or an event needs reinjection; userspace
4888 	 * might want to inject the interrupt manually using KVM_SET_REGS
4889 	 * or KVM_SET_SREGS.  For that to work, we must be at an
4890 	 * instruction boundary and with no events half-injected.
4891 	 */
4892 	return (kvm_arch_interrupt_allowed(vcpu) &&
4893 		kvm_cpu_accept_dm_intr(vcpu) &&
4894 		!kvm_event_needs_reinjection(vcpu) &&
4895 		!kvm_is_exception_pending(vcpu));
4896 }
4897 
4898 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4899 				    struct kvm_interrupt *irq)
4900 {
4901 	if (irq->irq >= KVM_NR_INTERRUPTS)
4902 		return -EINVAL;
4903 
4904 	if (!irqchip_in_kernel(vcpu->kvm)) {
4905 		kvm_queue_interrupt(vcpu, irq->irq, false);
4906 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4907 		return 0;
4908 	}
4909 
4910 	/*
4911 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4912 	 * fail for in-kernel 8259.
4913 	 */
4914 	if (pic_in_kernel(vcpu->kvm))
4915 		return -ENXIO;
4916 
4917 	if (vcpu->arch.pending_external_vector != -1)
4918 		return -EEXIST;
4919 
4920 	vcpu->arch.pending_external_vector = irq->irq;
4921 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4922 	return 0;
4923 }
4924 
4925 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4926 {
4927 	kvm_inject_nmi(vcpu);
4928 
4929 	return 0;
4930 }
4931 
4932 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4933 					   struct kvm_tpr_access_ctl *tac)
4934 {
4935 	if (tac->flags)
4936 		return -EINVAL;
4937 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
4938 	return 0;
4939 }
4940 
4941 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4942 					u64 mcg_cap)
4943 {
4944 	int r;
4945 	unsigned bank_num = mcg_cap & 0xff, bank;
4946 
4947 	r = -EINVAL;
4948 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4949 		goto out;
4950 	if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
4951 		goto out;
4952 	r = 0;
4953 	vcpu->arch.mcg_cap = mcg_cap;
4954 	/* Init IA32_MCG_CTL to all 1s */
4955 	if (mcg_cap & MCG_CTL_P)
4956 		vcpu->arch.mcg_ctl = ~(u64)0;
4957 	/* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
4958 	for (bank = 0; bank < bank_num; bank++) {
4959 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4960 		if (mcg_cap & MCG_CMCI_P)
4961 			vcpu->arch.mci_ctl2_banks[bank] = 0;
4962 	}
4963 
4964 	kvm_apic_after_set_mcg_cap(vcpu);
4965 
4966 	static_call(kvm_x86_setup_mce)(vcpu);
4967 out:
4968 	return r;
4969 }
4970 
4971 /*
4972  * Validate this is an UCNA (uncorrectable no action) error by checking the
4973  * MCG_STATUS and MCi_STATUS registers:
4974  * - none of the bits for Machine Check Exceptions are set
4975  * - both the VAL (valid) and UC (uncorrectable) bits are set
4976  * MCI_STATUS_PCC - Processor Context Corrupted
4977  * MCI_STATUS_S - Signaled as a Machine Check Exception
4978  * MCI_STATUS_AR - Software recoverable Action Required
4979  */
4980 static bool is_ucna(struct kvm_x86_mce *mce)
4981 {
4982 	return	!mce->mcg_status &&
4983 		!(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
4984 		(mce->status & MCI_STATUS_VAL) &&
4985 		(mce->status & MCI_STATUS_UC);
4986 }
4987 
4988 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
4989 {
4990 	u64 mcg_cap = vcpu->arch.mcg_cap;
4991 
4992 	banks[1] = mce->status;
4993 	banks[2] = mce->addr;
4994 	banks[3] = mce->misc;
4995 	vcpu->arch.mcg_status = mce->mcg_status;
4996 
4997 	if (!(mcg_cap & MCG_CMCI_P) ||
4998 	    !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
4999 		return 0;
5000 
5001 	if (lapic_in_kernel(vcpu))
5002 		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5003 
5004 	return 0;
5005 }
5006 
5007 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5008 				      struct kvm_x86_mce *mce)
5009 {
5010 	u64 mcg_cap = vcpu->arch.mcg_cap;
5011 	unsigned bank_num = mcg_cap & 0xff;
5012 	u64 *banks = vcpu->arch.mce_banks;
5013 
5014 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5015 		return -EINVAL;
5016 
5017 	banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5018 
5019 	if (is_ucna(mce))
5020 		return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5021 
5022 	/*
5023 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5024 	 * reporting is disabled
5025 	 */
5026 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5027 	    vcpu->arch.mcg_ctl != ~(u64)0)
5028 		return 0;
5029 	/*
5030 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5031 	 * reporting is disabled for the bank
5032 	 */
5033 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5034 		return 0;
5035 	if (mce->status & MCI_STATUS_UC) {
5036 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5037 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
5038 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5039 			return 0;
5040 		}
5041 		if (banks[1] & MCI_STATUS_VAL)
5042 			mce->status |= MCI_STATUS_OVER;
5043 		banks[2] = mce->addr;
5044 		banks[3] = mce->misc;
5045 		vcpu->arch.mcg_status = mce->mcg_status;
5046 		banks[1] = mce->status;
5047 		kvm_queue_exception(vcpu, MC_VECTOR);
5048 	} else if (!(banks[1] & MCI_STATUS_VAL)
5049 		   || !(banks[1] & MCI_STATUS_UC)) {
5050 		if (banks[1] & MCI_STATUS_VAL)
5051 			mce->status |= MCI_STATUS_OVER;
5052 		banks[2] = mce->addr;
5053 		banks[3] = mce->misc;
5054 		banks[1] = mce->status;
5055 	} else
5056 		banks[1] |= MCI_STATUS_OVER;
5057 	return 0;
5058 }
5059 
5060 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5061 					       struct kvm_vcpu_events *events)
5062 {
5063 	struct kvm_queued_exception *ex;
5064 
5065 	process_nmi(vcpu);
5066 
5067 #ifdef CONFIG_KVM_SMM
5068 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
5069 		process_smi(vcpu);
5070 #endif
5071 
5072 	/*
5073 	 * KVM's ABI only allows for one exception to be migrated.  Luckily,
5074 	 * the only time there can be two queued exceptions is if there's a
5075 	 * non-exiting _injected_ exception, and a pending exiting exception.
5076 	 * In that case, ignore the VM-Exiting exception as it's an extension
5077 	 * of the injected exception.
5078 	 */
5079 	if (vcpu->arch.exception_vmexit.pending &&
5080 	    !vcpu->arch.exception.pending &&
5081 	    !vcpu->arch.exception.injected)
5082 		ex = &vcpu->arch.exception_vmexit;
5083 	else
5084 		ex = &vcpu->arch.exception;
5085 
5086 	/*
5087 	 * In guest mode, payload delivery should be deferred if the exception
5088 	 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5089 	 * intercepts #PF, ditto for DR6 and #DBs.  If the per-VM capability,
5090 	 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5091 	 * propagate the payload and so it cannot be safely deferred.  Deliver
5092 	 * the payload if the capability hasn't been requested.
5093 	 */
5094 	if (!vcpu->kvm->arch.exception_payload_enabled &&
5095 	    ex->pending && ex->has_payload)
5096 		kvm_deliver_exception_payload(vcpu, ex);
5097 
5098 	memset(events, 0, sizeof(*events));
5099 
5100 	/*
5101 	 * The API doesn't provide the instruction length for software
5102 	 * exceptions, so don't report them. As long as the guest RIP
5103 	 * isn't advanced, we should expect to encounter the exception
5104 	 * again.
5105 	 */
5106 	if (!kvm_exception_is_soft(ex->vector)) {
5107 		events->exception.injected = ex->injected;
5108 		events->exception.pending = ex->pending;
5109 		/*
5110 		 * For ABI compatibility, deliberately conflate
5111 		 * pending and injected exceptions when
5112 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5113 		 */
5114 		if (!vcpu->kvm->arch.exception_payload_enabled)
5115 			events->exception.injected |= ex->pending;
5116 	}
5117 	events->exception.nr = ex->vector;
5118 	events->exception.has_error_code = ex->has_error_code;
5119 	events->exception.error_code = ex->error_code;
5120 	events->exception_has_payload = ex->has_payload;
5121 	events->exception_payload = ex->payload;
5122 
5123 	events->interrupt.injected =
5124 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5125 	events->interrupt.nr = vcpu->arch.interrupt.nr;
5126 	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5127 
5128 	events->nmi.injected = vcpu->arch.nmi_injected;
5129 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
5130 	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5131 
5132 	/* events->sipi_vector is never valid when reporting to user space */
5133 
5134 #ifdef CONFIG_KVM_SMM
5135 	events->smi.smm = is_smm(vcpu);
5136 	events->smi.pending = vcpu->arch.smi_pending;
5137 	events->smi.smm_inside_nmi =
5138 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5139 #endif
5140 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5141 
5142 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5143 			 | KVM_VCPUEVENT_VALID_SHADOW
5144 			 | KVM_VCPUEVENT_VALID_SMM);
5145 	if (vcpu->kvm->arch.exception_payload_enabled)
5146 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5147 	if (vcpu->kvm->arch.triple_fault_event) {
5148 		events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5149 		events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5150 	}
5151 }
5152 
5153 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5154 					      struct kvm_vcpu_events *events)
5155 {
5156 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5157 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5158 			      | KVM_VCPUEVENT_VALID_SHADOW
5159 			      | KVM_VCPUEVENT_VALID_SMM
5160 			      | KVM_VCPUEVENT_VALID_PAYLOAD
5161 			      | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5162 		return -EINVAL;
5163 
5164 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5165 		if (!vcpu->kvm->arch.exception_payload_enabled)
5166 			return -EINVAL;
5167 		if (events->exception.pending)
5168 			events->exception.injected = 0;
5169 		else
5170 			events->exception_has_payload = 0;
5171 	} else {
5172 		events->exception.pending = 0;
5173 		events->exception_has_payload = 0;
5174 	}
5175 
5176 	if ((events->exception.injected || events->exception.pending) &&
5177 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5178 		return -EINVAL;
5179 
5180 	/* INITs are latched while in SMM */
5181 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5182 	    (events->smi.smm || events->smi.pending) &&
5183 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5184 		return -EINVAL;
5185 
5186 	process_nmi(vcpu);
5187 
5188 	/*
5189 	 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5190 	 * morph the exception to a VM-Exit if appropriate.  Do this only for
5191 	 * pending exceptions, already-injected exceptions are not subject to
5192 	 * intercpetion.  Note, userspace that conflates pending and injected
5193 	 * is hosed, and will incorrectly convert an injected exception into a
5194 	 * pending exception, which in turn may cause a spurious VM-Exit.
5195 	 */
5196 	vcpu->arch.exception_from_userspace = events->exception.pending;
5197 
5198 	vcpu->arch.exception_vmexit.pending = false;
5199 
5200 	vcpu->arch.exception.injected = events->exception.injected;
5201 	vcpu->arch.exception.pending = events->exception.pending;
5202 	vcpu->arch.exception.vector = events->exception.nr;
5203 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5204 	vcpu->arch.exception.error_code = events->exception.error_code;
5205 	vcpu->arch.exception.has_payload = events->exception_has_payload;
5206 	vcpu->arch.exception.payload = events->exception_payload;
5207 
5208 	vcpu->arch.interrupt.injected = events->interrupt.injected;
5209 	vcpu->arch.interrupt.nr = events->interrupt.nr;
5210 	vcpu->arch.interrupt.soft = events->interrupt.soft;
5211 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5212 		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5213 						events->interrupt.shadow);
5214 
5215 	vcpu->arch.nmi_injected = events->nmi.injected;
5216 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
5217 		vcpu->arch.nmi_pending = events->nmi.pending;
5218 	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5219 
5220 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5221 	    lapic_in_kernel(vcpu))
5222 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
5223 
5224 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5225 #ifdef CONFIG_KVM_SMM
5226 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5227 			kvm_leave_nested(vcpu);
5228 			kvm_smm_changed(vcpu, events->smi.smm);
5229 		}
5230 
5231 		vcpu->arch.smi_pending = events->smi.pending;
5232 
5233 		if (events->smi.smm) {
5234 			if (events->smi.smm_inside_nmi)
5235 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5236 			else
5237 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5238 		}
5239 
5240 #else
5241 		if (events->smi.smm || events->smi.pending ||
5242 		    events->smi.smm_inside_nmi)
5243 			return -EINVAL;
5244 #endif
5245 
5246 		if (lapic_in_kernel(vcpu)) {
5247 			if (events->smi.latched_init)
5248 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5249 			else
5250 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5251 		}
5252 	}
5253 
5254 	if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5255 		if (!vcpu->kvm->arch.triple_fault_event)
5256 			return -EINVAL;
5257 		if (events->triple_fault.pending)
5258 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5259 		else
5260 			kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5261 	}
5262 
5263 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5264 
5265 	return 0;
5266 }
5267 
5268 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5269 					     struct kvm_debugregs *dbgregs)
5270 {
5271 	unsigned long val;
5272 
5273 	memset(dbgregs, 0, sizeof(*dbgregs));
5274 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5275 	kvm_get_dr(vcpu, 6, &val);
5276 	dbgregs->dr6 = val;
5277 	dbgregs->dr7 = vcpu->arch.dr7;
5278 }
5279 
5280 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5281 					    struct kvm_debugregs *dbgregs)
5282 {
5283 	if (dbgregs->flags)
5284 		return -EINVAL;
5285 
5286 	if (!kvm_dr6_valid(dbgregs->dr6))
5287 		return -EINVAL;
5288 	if (!kvm_dr7_valid(dbgregs->dr7))
5289 		return -EINVAL;
5290 
5291 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5292 	kvm_update_dr0123(vcpu);
5293 	vcpu->arch.dr6 = dbgregs->dr6;
5294 	vcpu->arch.dr7 = dbgregs->dr7;
5295 	kvm_update_dr7(vcpu);
5296 
5297 	return 0;
5298 }
5299 
5300 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5301 					 struct kvm_xsave *guest_xsave)
5302 {
5303 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5304 		return;
5305 
5306 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5307 				       guest_xsave->region,
5308 				       sizeof(guest_xsave->region),
5309 				       vcpu->arch.pkru);
5310 }
5311 
5312 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5313 					  u8 *state, unsigned int size)
5314 {
5315 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5316 		return;
5317 
5318 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5319 				       state, size, vcpu->arch.pkru);
5320 }
5321 
5322 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5323 					struct kvm_xsave *guest_xsave)
5324 {
5325 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5326 		return 0;
5327 
5328 	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5329 					      guest_xsave->region,
5330 					      kvm_caps.supported_xcr0,
5331 					      &vcpu->arch.pkru);
5332 }
5333 
5334 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5335 					struct kvm_xcrs *guest_xcrs)
5336 {
5337 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5338 		guest_xcrs->nr_xcrs = 0;
5339 		return;
5340 	}
5341 
5342 	guest_xcrs->nr_xcrs = 1;
5343 	guest_xcrs->flags = 0;
5344 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5345 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5346 }
5347 
5348 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5349 				       struct kvm_xcrs *guest_xcrs)
5350 {
5351 	int i, r = 0;
5352 
5353 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5354 		return -EINVAL;
5355 
5356 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5357 		return -EINVAL;
5358 
5359 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5360 		/* Only support XCR0 currently */
5361 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5362 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5363 				guest_xcrs->xcrs[i].value);
5364 			break;
5365 		}
5366 	if (r)
5367 		r = -EINVAL;
5368 	return r;
5369 }
5370 
5371 /*
5372  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5373  * stopped by the hypervisor.  This function will be called from the host only.
5374  * EINVAL is returned when the host attempts to set the flag for a guest that
5375  * does not support pv clocks.
5376  */
5377 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5378 {
5379 	if (!vcpu->arch.pv_time.active)
5380 		return -EINVAL;
5381 	vcpu->arch.pvclock_set_guest_stopped_request = true;
5382 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5383 	return 0;
5384 }
5385 
5386 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5387 				 struct kvm_device_attr *attr)
5388 {
5389 	int r;
5390 
5391 	switch (attr->attr) {
5392 	case KVM_VCPU_TSC_OFFSET:
5393 		r = 0;
5394 		break;
5395 	default:
5396 		r = -ENXIO;
5397 	}
5398 
5399 	return r;
5400 }
5401 
5402 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5403 				 struct kvm_device_attr *attr)
5404 {
5405 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5406 	int r;
5407 
5408 	if (IS_ERR(uaddr))
5409 		return PTR_ERR(uaddr);
5410 
5411 	switch (attr->attr) {
5412 	case KVM_VCPU_TSC_OFFSET:
5413 		r = -EFAULT;
5414 		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5415 			break;
5416 		r = 0;
5417 		break;
5418 	default:
5419 		r = -ENXIO;
5420 	}
5421 
5422 	return r;
5423 }
5424 
5425 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5426 				 struct kvm_device_attr *attr)
5427 {
5428 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5429 	struct kvm *kvm = vcpu->kvm;
5430 	int r;
5431 
5432 	if (IS_ERR(uaddr))
5433 		return PTR_ERR(uaddr);
5434 
5435 	switch (attr->attr) {
5436 	case KVM_VCPU_TSC_OFFSET: {
5437 		u64 offset, tsc, ns;
5438 		unsigned long flags;
5439 		bool matched;
5440 
5441 		r = -EFAULT;
5442 		if (get_user(offset, uaddr))
5443 			break;
5444 
5445 		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5446 
5447 		matched = (vcpu->arch.virtual_tsc_khz &&
5448 			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5449 			   kvm->arch.last_tsc_offset == offset);
5450 
5451 		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5452 		ns = get_kvmclock_base_ns();
5453 
5454 		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5455 		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5456 
5457 		r = 0;
5458 		break;
5459 	}
5460 	default:
5461 		r = -ENXIO;
5462 	}
5463 
5464 	return r;
5465 }
5466 
5467 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5468 				      unsigned int ioctl,
5469 				      void __user *argp)
5470 {
5471 	struct kvm_device_attr attr;
5472 	int r;
5473 
5474 	if (copy_from_user(&attr, argp, sizeof(attr)))
5475 		return -EFAULT;
5476 
5477 	if (attr.group != KVM_VCPU_TSC_CTRL)
5478 		return -ENXIO;
5479 
5480 	switch (ioctl) {
5481 	case KVM_HAS_DEVICE_ATTR:
5482 		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5483 		break;
5484 	case KVM_GET_DEVICE_ATTR:
5485 		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5486 		break;
5487 	case KVM_SET_DEVICE_ATTR:
5488 		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5489 		break;
5490 	}
5491 
5492 	return r;
5493 }
5494 
5495 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5496 				     struct kvm_enable_cap *cap)
5497 {
5498 	int r;
5499 	uint16_t vmcs_version;
5500 	void __user *user_ptr;
5501 
5502 	if (cap->flags)
5503 		return -EINVAL;
5504 
5505 	switch (cap->cap) {
5506 	case KVM_CAP_HYPERV_SYNIC2:
5507 		if (cap->args[0])
5508 			return -EINVAL;
5509 		fallthrough;
5510 
5511 	case KVM_CAP_HYPERV_SYNIC:
5512 		if (!irqchip_in_kernel(vcpu->kvm))
5513 			return -EINVAL;
5514 		return kvm_hv_activate_synic(vcpu, cap->cap ==
5515 					     KVM_CAP_HYPERV_SYNIC2);
5516 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5517 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
5518 			return -ENOTTY;
5519 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5520 		if (!r) {
5521 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
5522 			if (copy_to_user(user_ptr, &vmcs_version,
5523 					 sizeof(vmcs_version)))
5524 				r = -EFAULT;
5525 		}
5526 		return r;
5527 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5528 		if (!kvm_x86_ops.enable_l2_tlb_flush)
5529 			return -ENOTTY;
5530 
5531 		return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu);
5532 
5533 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5534 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5535 
5536 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5537 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5538 		if (vcpu->arch.pv_cpuid.enforce)
5539 			kvm_update_pv_runtime(vcpu);
5540 
5541 		return 0;
5542 	default:
5543 		return -EINVAL;
5544 	}
5545 }
5546 
5547 long kvm_arch_vcpu_ioctl(struct file *filp,
5548 			 unsigned int ioctl, unsigned long arg)
5549 {
5550 	struct kvm_vcpu *vcpu = filp->private_data;
5551 	void __user *argp = (void __user *)arg;
5552 	int r;
5553 	union {
5554 		struct kvm_sregs2 *sregs2;
5555 		struct kvm_lapic_state *lapic;
5556 		struct kvm_xsave *xsave;
5557 		struct kvm_xcrs *xcrs;
5558 		void *buffer;
5559 	} u;
5560 
5561 	vcpu_load(vcpu);
5562 
5563 	u.buffer = NULL;
5564 	switch (ioctl) {
5565 	case KVM_GET_LAPIC: {
5566 		r = -EINVAL;
5567 		if (!lapic_in_kernel(vcpu))
5568 			goto out;
5569 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5570 				GFP_KERNEL_ACCOUNT);
5571 
5572 		r = -ENOMEM;
5573 		if (!u.lapic)
5574 			goto out;
5575 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5576 		if (r)
5577 			goto out;
5578 		r = -EFAULT;
5579 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5580 			goto out;
5581 		r = 0;
5582 		break;
5583 	}
5584 	case KVM_SET_LAPIC: {
5585 		r = -EINVAL;
5586 		if (!lapic_in_kernel(vcpu))
5587 			goto out;
5588 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5589 		if (IS_ERR(u.lapic)) {
5590 			r = PTR_ERR(u.lapic);
5591 			goto out_nofree;
5592 		}
5593 
5594 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5595 		break;
5596 	}
5597 	case KVM_INTERRUPT: {
5598 		struct kvm_interrupt irq;
5599 
5600 		r = -EFAULT;
5601 		if (copy_from_user(&irq, argp, sizeof(irq)))
5602 			goto out;
5603 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5604 		break;
5605 	}
5606 	case KVM_NMI: {
5607 		r = kvm_vcpu_ioctl_nmi(vcpu);
5608 		break;
5609 	}
5610 	case KVM_SMI: {
5611 		r = kvm_inject_smi(vcpu);
5612 		break;
5613 	}
5614 	case KVM_SET_CPUID: {
5615 		struct kvm_cpuid __user *cpuid_arg = argp;
5616 		struct kvm_cpuid cpuid;
5617 
5618 		r = -EFAULT;
5619 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5620 			goto out;
5621 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5622 		break;
5623 	}
5624 	case KVM_SET_CPUID2: {
5625 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5626 		struct kvm_cpuid2 cpuid;
5627 
5628 		r = -EFAULT;
5629 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5630 			goto out;
5631 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5632 					      cpuid_arg->entries);
5633 		break;
5634 	}
5635 	case KVM_GET_CPUID2: {
5636 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5637 		struct kvm_cpuid2 cpuid;
5638 
5639 		r = -EFAULT;
5640 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5641 			goto out;
5642 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5643 					      cpuid_arg->entries);
5644 		if (r)
5645 			goto out;
5646 		r = -EFAULT;
5647 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5648 			goto out;
5649 		r = 0;
5650 		break;
5651 	}
5652 	case KVM_GET_MSRS: {
5653 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5654 		r = msr_io(vcpu, argp, do_get_msr, 1);
5655 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5656 		break;
5657 	}
5658 	case KVM_SET_MSRS: {
5659 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5660 		r = msr_io(vcpu, argp, do_set_msr, 0);
5661 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5662 		break;
5663 	}
5664 	case KVM_TPR_ACCESS_REPORTING: {
5665 		struct kvm_tpr_access_ctl tac;
5666 
5667 		r = -EFAULT;
5668 		if (copy_from_user(&tac, argp, sizeof(tac)))
5669 			goto out;
5670 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5671 		if (r)
5672 			goto out;
5673 		r = -EFAULT;
5674 		if (copy_to_user(argp, &tac, sizeof(tac)))
5675 			goto out;
5676 		r = 0;
5677 		break;
5678 	};
5679 	case KVM_SET_VAPIC_ADDR: {
5680 		struct kvm_vapic_addr va;
5681 		int idx;
5682 
5683 		r = -EINVAL;
5684 		if (!lapic_in_kernel(vcpu))
5685 			goto out;
5686 		r = -EFAULT;
5687 		if (copy_from_user(&va, argp, sizeof(va)))
5688 			goto out;
5689 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5690 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5691 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5692 		break;
5693 	}
5694 	case KVM_X86_SETUP_MCE: {
5695 		u64 mcg_cap;
5696 
5697 		r = -EFAULT;
5698 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5699 			goto out;
5700 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5701 		break;
5702 	}
5703 	case KVM_X86_SET_MCE: {
5704 		struct kvm_x86_mce mce;
5705 
5706 		r = -EFAULT;
5707 		if (copy_from_user(&mce, argp, sizeof(mce)))
5708 			goto out;
5709 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5710 		break;
5711 	}
5712 	case KVM_GET_VCPU_EVENTS: {
5713 		struct kvm_vcpu_events events;
5714 
5715 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5716 
5717 		r = -EFAULT;
5718 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5719 			break;
5720 		r = 0;
5721 		break;
5722 	}
5723 	case KVM_SET_VCPU_EVENTS: {
5724 		struct kvm_vcpu_events events;
5725 
5726 		r = -EFAULT;
5727 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5728 			break;
5729 
5730 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5731 		break;
5732 	}
5733 	case KVM_GET_DEBUGREGS: {
5734 		struct kvm_debugregs dbgregs;
5735 
5736 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5737 
5738 		r = -EFAULT;
5739 		if (copy_to_user(argp, &dbgregs,
5740 				 sizeof(struct kvm_debugregs)))
5741 			break;
5742 		r = 0;
5743 		break;
5744 	}
5745 	case KVM_SET_DEBUGREGS: {
5746 		struct kvm_debugregs dbgregs;
5747 
5748 		r = -EFAULT;
5749 		if (copy_from_user(&dbgregs, argp,
5750 				   sizeof(struct kvm_debugregs)))
5751 			break;
5752 
5753 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5754 		break;
5755 	}
5756 	case KVM_GET_XSAVE: {
5757 		r = -EINVAL;
5758 		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5759 			break;
5760 
5761 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5762 		r = -ENOMEM;
5763 		if (!u.xsave)
5764 			break;
5765 
5766 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5767 
5768 		r = -EFAULT;
5769 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5770 			break;
5771 		r = 0;
5772 		break;
5773 	}
5774 	case KVM_SET_XSAVE: {
5775 		int size = vcpu->arch.guest_fpu.uabi_size;
5776 
5777 		u.xsave = memdup_user(argp, size);
5778 		if (IS_ERR(u.xsave)) {
5779 			r = PTR_ERR(u.xsave);
5780 			goto out_nofree;
5781 		}
5782 
5783 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5784 		break;
5785 	}
5786 
5787 	case KVM_GET_XSAVE2: {
5788 		int size = vcpu->arch.guest_fpu.uabi_size;
5789 
5790 		u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5791 		r = -ENOMEM;
5792 		if (!u.xsave)
5793 			break;
5794 
5795 		kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5796 
5797 		r = -EFAULT;
5798 		if (copy_to_user(argp, u.xsave, size))
5799 			break;
5800 
5801 		r = 0;
5802 		break;
5803 	}
5804 
5805 	case KVM_GET_XCRS: {
5806 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5807 		r = -ENOMEM;
5808 		if (!u.xcrs)
5809 			break;
5810 
5811 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5812 
5813 		r = -EFAULT;
5814 		if (copy_to_user(argp, u.xcrs,
5815 				 sizeof(struct kvm_xcrs)))
5816 			break;
5817 		r = 0;
5818 		break;
5819 	}
5820 	case KVM_SET_XCRS: {
5821 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5822 		if (IS_ERR(u.xcrs)) {
5823 			r = PTR_ERR(u.xcrs);
5824 			goto out_nofree;
5825 		}
5826 
5827 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5828 		break;
5829 	}
5830 	case KVM_SET_TSC_KHZ: {
5831 		u32 user_tsc_khz;
5832 
5833 		r = -EINVAL;
5834 		user_tsc_khz = (u32)arg;
5835 
5836 		if (kvm_caps.has_tsc_control &&
5837 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
5838 			goto out;
5839 
5840 		if (user_tsc_khz == 0)
5841 			user_tsc_khz = tsc_khz;
5842 
5843 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5844 			r = 0;
5845 
5846 		goto out;
5847 	}
5848 	case KVM_GET_TSC_KHZ: {
5849 		r = vcpu->arch.virtual_tsc_khz;
5850 		goto out;
5851 	}
5852 	case KVM_KVMCLOCK_CTRL: {
5853 		r = kvm_set_guest_paused(vcpu);
5854 		goto out;
5855 	}
5856 	case KVM_ENABLE_CAP: {
5857 		struct kvm_enable_cap cap;
5858 
5859 		r = -EFAULT;
5860 		if (copy_from_user(&cap, argp, sizeof(cap)))
5861 			goto out;
5862 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5863 		break;
5864 	}
5865 	case KVM_GET_NESTED_STATE: {
5866 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5867 		u32 user_data_size;
5868 
5869 		r = -EINVAL;
5870 		if (!kvm_x86_ops.nested_ops->get_state)
5871 			break;
5872 
5873 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5874 		r = -EFAULT;
5875 		if (get_user(user_data_size, &user_kvm_nested_state->size))
5876 			break;
5877 
5878 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5879 						     user_data_size);
5880 		if (r < 0)
5881 			break;
5882 
5883 		if (r > user_data_size) {
5884 			if (put_user(r, &user_kvm_nested_state->size))
5885 				r = -EFAULT;
5886 			else
5887 				r = -E2BIG;
5888 			break;
5889 		}
5890 
5891 		r = 0;
5892 		break;
5893 	}
5894 	case KVM_SET_NESTED_STATE: {
5895 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5896 		struct kvm_nested_state kvm_state;
5897 		int idx;
5898 
5899 		r = -EINVAL;
5900 		if (!kvm_x86_ops.nested_ops->set_state)
5901 			break;
5902 
5903 		r = -EFAULT;
5904 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5905 			break;
5906 
5907 		r = -EINVAL;
5908 		if (kvm_state.size < sizeof(kvm_state))
5909 			break;
5910 
5911 		if (kvm_state.flags &
5912 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5913 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5914 		      | KVM_STATE_NESTED_GIF_SET))
5915 			break;
5916 
5917 		/* nested_run_pending implies guest_mode.  */
5918 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5919 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5920 			break;
5921 
5922 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5923 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5924 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5925 		break;
5926 	}
5927 	case KVM_GET_SUPPORTED_HV_CPUID:
5928 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5929 		break;
5930 #ifdef CONFIG_KVM_XEN
5931 	case KVM_XEN_VCPU_GET_ATTR: {
5932 		struct kvm_xen_vcpu_attr xva;
5933 
5934 		r = -EFAULT;
5935 		if (copy_from_user(&xva, argp, sizeof(xva)))
5936 			goto out;
5937 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5938 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5939 			r = -EFAULT;
5940 		break;
5941 	}
5942 	case KVM_XEN_VCPU_SET_ATTR: {
5943 		struct kvm_xen_vcpu_attr xva;
5944 
5945 		r = -EFAULT;
5946 		if (copy_from_user(&xva, argp, sizeof(xva)))
5947 			goto out;
5948 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5949 		break;
5950 	}
5951 #endif
5952 	case KVM_GET_SREGS2: {
5953 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5954 		r = -ENOMEM;
5955 		if (!u.sregs2)
5956 			goto out;
5957 		__get_sregs2(vcpu, u.sregs2);
5958 		r = -EFAULT;
5959 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5960 			goto out;
5961 		r = 0;
5962 		break;
5963 	}
5964 	case KVM_SET_SREGS2: {
5965 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5966 		if (IS_ERR(u.sregs2)) {
5967 			r = PTR_ERR(u.sregs2);
5968 			u.sregs2 = NULL;
5969 			goto out;
5970 		}
5971 		r = __set_sregs2(vcpu, u.sregs2);
5972 		break;
5973 	}
5974 	case KVM_HAS_DEVICE_ATTR:
5975 	case KVM_GET_DEVICE_ATTR:
5976 	case KVM_SET_DEVICE_ATTR:
5977 		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5978 		break;
5979 	default:
5980 		r = -EINVAL;
5981 	}
5982 out:
5983 	kfree(u.buffer);
5984 out_nofree:
5985 	vcpu_put(vcpu);
5986 	return r;
5987 }
5988 
5989 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5990 {
5991 	return VM_FAULT_SIGBUS;
5992 }
5993 
5994 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5995 {
5996 	int ret;
5997 
5998 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
5999 		return -EINVAL;
6000 	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
6001 	return ret;
6002 }
6003 
6004 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6005 					      u64 ident_addr)
6006 {
6007 	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
6008 }
6009 
6010 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6011 					 unsigned long kvm_nr_mmu_pages)
6012 {
6013 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6014 		return -EINVAL;
6015 
6016 	mutex_lock(&kvm->slots_lock);
6017 
6018 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6019 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6020 
6021 	mutex_unlock(&kvm->slots_lock);
6022 	return 0;
6023 }
6024 
6025 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
6026 {
6027 	return kvm->arch.n_max_mmu_pages;
6028 }
6029 
6030 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6031 {
6032 	struct kvm_pic *pic = kvm->arch.vpic;
6033 	int r;
6034 
6035 	r = 0;
6036 	switch (chip->chip_id) {
6037 	case KVM_IRQCHIP_PIC_MASTER:
6038 		memcpy(&chip->chip.pic, &pic->pics[0],
6039 			sizeof(struct kvm_pic_state));
6040 		break;
6041 	case KVM_IRQCHIP_PIC_SLAVE:
6042 		memcpy(&chip->chip.pic, &pic->pics[1],
6043 			sizeof(struct kvm_pic_state));
6044 		break;
6045 	case KVM_IRQCHIP_IOAPIC:
6046 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
6047 		break;
6048 	default:
6049 		r = -EINVAL;
6050 		break;
6051 	}
6052 	return r;
6053 }
6054 
6055 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6056 {
6057 	struct kvm_pic *pic = kvm->arch.vpic;
6058 	int r;
6059 
6060 	r = 0;
6061 	switch (chip->chip_id) {
6062 	case KVM_IRQCHIP_PIC_MASTER:
6063 		spin_lock(&pic->lock);
6064 		memcpy(&pic->pics[0], &chip->chip.pic,
6065 			sizeof(struct kvm_pic_state));
6066 		spin_unlock(&pic->lock);
6067 		break;
6068 	case KVM_IRQCHIP_PIC_SLAVE:
6069 		spin_lock(&pic->lock);
6070 		memcpy(&pic->pics[1], &chip->chip.pic,
6071 			sizeof(struct kvm_pic_state));
6072 		spin_unlock(&pic->lock);
6073 		break;
6074 	case KVM_IRQCHIP_IOAPIC:
6075 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
6076 		break;
6077 	default:
6078 		r = -EINVAL;
6079 		break;
6080 	}
6081 	kvm_pic_update_irq(pic);
6082 	return r;
6083 }
6084 
6085 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6086 {
6087 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6088 
6089 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6090 
6091 	mutex_lock(&kps->lock);
6092 	memcpy(ps, &kps->channels, sizeof(*ps));
6093 	mutex_unlock(&kps->lock);
6094 	return 0;
6095 }
6096 
6097 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6098 {
6099 	int i;
6100 	struct kvm_pit *pit = kvm->arch.vpit;
6101 
6102 	mutex_lock(&pit->pit_state.lock);
6103 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6104 	for (i = 0; i < 3; i++)
6105 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6106 	mutex_unlock(&pit->pit_state.lock);
6107 	return 0;
6108 }
6109 
6110 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6111 {
6112 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
6113 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6114 		sizeof(ps->channels));
6115 	ps->flags = kvm->arch.vpit->pit_state.flags;
6116 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6117 	memset(&ps->reserved, 0, sizeof(ps->reserved));
6118 	return 0;
6119 }
6120 
6121 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6122 {
6123 	int start = 0;
6124 	int i;
6125 	u32 prev_legacy, cur_legacy;
6126 	struct kvm_pit *pit = kvm->arch.vpit;
6127 
6128 	mutex_lock(&pit->pit_state.lock);
6129 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6130 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6131 	if (!prev_legacy && cur_legacy)
6132 		start = 1;
6133 	memcpy(&pit->pit_state.channels, &ps->channels,
6134 	       sizeof(pit->pit_state.channels));
6135 	pit->pit_state.flags = ps->flags;
6136 	for (i = 0; i < 3; i++)
6137 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6138 				   start && i == 0);
6139 	mutex_unlock(&pit->pit_state.lock);
6140 	return 0;
6141 }
6142 
6143 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6144 				 struct kvm_reinject_control *control)
6145 {
6146 	struct kvm_pit *pit = kvm->arch.vpit;
6147 
6148 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
6149 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6150 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6151 	 */
6152 	mutex_lock(&pit->pit_state.lock);
6153 	kvm_pit_set_reinject(pit, control->pit_reinject);
6154 	mutex_unlock(&pit->pit_state.lock);
6155 
6156 	return 0;
6157 }
6158 
6159 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6160 {
6161 
6162 	/*
6163 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6164 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6165 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6166 	 * VM-Exit.
6167 	 */
6168 	struct kvm_vcpu *vcpu;
6169 	unsigned long i;
6170 
6171 	kvm_for_each_vcpu(i, vcpu, kvm)
6172 		kvm_vcpu_kick(vcpu);
6173 }
6174 
6175 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6176 			bool line_status)
6177 {
6178 	if (!irqchip_in_kernel(kvm))
6179 		return -ENXIO;
6180 
6181 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6182 					irq_event->irq, irq_event->level,
6183 					line_status);
6184 	return 0;
6185 }
6186 
6187 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6188 			    struct kvm_enable_cap *cap)
6189 {
6190 	int r;
6191 
6192 	if (cap->flags)
6193 		return -EINVAL;
6194 
6195 	switch (cap->cap) {
6196 	case KVM_CAP_DISABLE_QUIRKS2:
6197 		r = -EINVAL;
6198 		if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6199 			break;
6200 		fallthrough;
6201 	case KVM_CAP_DISABLE_QUIRKS:
6202 		kvm->arch.disabled_quirks = cap->args[0];
6203 		r = 0;
6204 		break;
6205 	case KVM_CAP_SPLIT_IRQCHIP: {
6206 		mutex_lock(&kvm->lock);
6207 		r = -EINVAL;
6208 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6209 			goto split_irqchip_unlock;
6210 		r = -EEXIST;
6211 		if (irqchip_in_kernel(kvm))
6212 			goto split_irqchip_unlock;
6213 		if (kvm->created_vcpus)
6214 			goto split_irqchip_unlock;
6215 		r = kvm_setup_empty_irq_routing(kvm);
6216 		if (r)
6217 			goto split_irqchip_unlock;
6218 		/* Pairs with irqchip_in_kernel. */
6219 		smp_wmb();
6220 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6221 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6222 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6223 		r = 0;
6224 split_irqchip_unlock:
6225 		mutex_unlock(&kvm->lock);
6226 		break;
6227 	}
6228 	case KVM_CAP_X2APIC_API:
6229 		r = -EINVAL;
6230 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6231 			break;
6232 
6233 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6234 			kvm->arch.x2apic_format = true;
6235 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6236 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
6237 
6238 		r = 0;
6239 		break;
6240 	case KVM_CAP_X86_DISABLE_EXITS:
6241 		r = -EINVAL;
6242 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6243 			break;
6244 
6245 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6246 			kvm->arch.pause_in_guest = true;
6247 
6248 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6249 		    "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6250 
6251 		if (!mitigate_smt_rsb) {
6252 			if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
6253 			    (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6254 				pr_warn_once(SMT_RSB_MSG);
6255 
6256 			if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6257 			    kvm_can_mwait_in_guest())
6258 				kvm->arch.mwait_in_guest = true;
6259 			if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6260 				kvm->arch.hlt_in_guest = true;
6261 			if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6262 				kvm->arch.cstate_in_guest = true;
6263 		}
6264 
6265 		r = 0;
6266 		break;
6267 	case KVM_CAP_MSR_PLATFORM_INFO:
6268 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6269 		r = 0;
6270 		break;
6271 	case KVM_CAP_EXCEPTION_PAYLOAD:
6272 		kvm->arch.exception_payload_enabled = cap->args[0];
6273 		r = 0;
6274 		break;
6275 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6276 		kvm->arch.triple_fault_event = cap->args[0];
6277 		r = 0;
6278 		break;
6279 	case KVM_CAP_X86_USER_SPACE_MSR:
6280 		r = -EINVAL;
6281 		if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6282 			break;
6283 		kvm->arch.user_space_msr_mask = cap->args[0];
6284 		r = 0;
6285 		break;
6286 	case KVM_CAP_X86_BUS_LOCK_EXIT:
6287 		r = -EINVAL;
6288 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6289 			break;
6290 
6291 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6292 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6293 			break;
6294 
6295 		if (kvm_caps.has_bus_lock_exit &&
6296 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6297 			kvm->arch.bus_lock_detection_enabled = true;
6298 		r = 0;
6299 		break;
6300 #ifdef CONFIG_X86_SGX_KVM
6301 	case KVM_CAP_SGX_ATTRIBUTE: {
6302 		unsigned long allowed_attributes = 0;
6303 
6304 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6305 		if (r)
6306 			break;
6307 
6308 		/* KVM only supports the PROVISIONKEY privileged attribute. */
6309 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6310 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6311 			kvm->arch.sgx_provisioning_allowed = true;
6312 		else
6313 			r = -EINVAL;
6314 		break;
6315 	}
6316 #endif
6317 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6318 		r = -EINVAL;
6319 		if (!kvm_x86_ops.vm_copy_enc_context_from)
6320 			break;
6321 
6322 		r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6323 		break;
6324 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6325 		r = -EINVAL;
6326 		if (!kvm_x86_ops.vm_move_enc_context_from)
6327 			break;
6328 
6329 		r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6330 		break;
6331 	case KVM_CAP_EXIT_HYPERCALL:
6332 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6333 			r = -EINVAL;
6334 			break;
6335 		}
6336 		kvm->arch.hypercall_exit_enabled = cap->args[0];
6337 		r = 0;
6338 		break;
6339 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6340 		r = -EINVAL;
6341 		if (cap->args[0] & ~1)
6342 			break;
6343 		kvm->arch.exit_on_emulation_error = cap->args[0];
6344 		r = 0;
6345 		break;
6346 	case KVM_CAP_PMU_CAPABILITY:
6347 		r = -EINVAL;
6348 		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6349 			break;
6350 
6351 		mutex_lock(&kvm->lock);
6352 		if (!kvm->created_vcpus) {
6353 			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6354 			r = 0;
6355 		}
6356 		mutex_unlock(&kvm->lock);
6357 		break;
6358 	case KVM_CAP_MAX_VCPU_ID:
6359 		r = -EINVAL;
6360 		if (cap->args[0] > KVM_MAX_VCPU_IDS)
6361 			break;
6362 
6363 		mutex_lock(&kvm->lock);
6364 		if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6365 			r = 0;
6366 		} else if (!kvm->arch.max_vcpu_ids) {
6367 			kvm->arch.max_vcpu_ids = cap->args[0];
6368 			r = 0;
6369 		}
6370 		mutex_unlock(&kvm->lock);
6371 		break;
6372 	case KVM_CAP_X86_NOTIFY_VMEXIT:
6373 		r = -EINVAL;
6374 		if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6375 			break;
6376 		if (!kvm_caps.has_notify_vmexit)
6377 			break;
6378 		if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6379 			break;
6380 		mutex_lock(&kvm->lock);
6381 		if (!kvm->created_vcpus) {
6382 			kvm->arch.notify_window = cap->args[0] >> 32;
6383 			kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6384 			r = 0;
6385 		}
6386 		mutex_unlock(&kvm->lock);
6387 		break;
6388 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6389 		r = -EINVAL;
6390 
6391 		/*
6392 		 * Since the risk of disabling NX hugepages is a guest crashing
6393 		 * the system, ensure the userspace process has permission to
6394 		 * reboot the system.
6395 		 *
6396 		 * Note that unlike the reboot() syscall, the process must have
6397 		 * this capability in the root namespace because exposing
6398 		 * /dev/kvm into a container does not limit the scope of the
6399 		 * iTLB multihit bug to that container. In other words,
6400 		 * this must use capable(), not ns_capable().
6401 		 */
6402 		if (!capable(CAP_SYS_BOOT)) {
6403 			r = -EPERM;
6404 			break;
6405 		}
6406 
6407 		if (cap->args[0])
6408 			break;
6409 
6410 		mutex_lock(&kvm->lock);
6411 		if (!kvm->created_vcpus) {
6412 			kvm->arch.disable_nx_huge_pages = true;
6413 			r = 0;
6414 		}
6415 		mutex_unlock(&kvm->lock);
6416 		break;
6417 	default:
6418 		r = -EINVAL;
6419 		break;
6420 	}
6421 	return r;
6422 }
6423 
6424 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6425 {
6426 	struct kvm_x86_msr_filter *msr_filter;
6427 
6428 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6429 	if (!msr_filter)
6430 		return NULL;
6431 
6432 	msr_filter->default_allow = default_allow;
6433 	return msr_filter;
6434 }
6435 
6436 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6437 {
6438 	u32 i;
6439 
6440 	if (!msr_filter)
6441 		return;
6442 
6443 	for (i = 0; i < msr_filter->count; i++)
6444 		kfree(msr_filter->ranges[i].bitmap);
6445 
6446 	kfree(msr_filter);
6447 }
6448 
6449 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6450 			      struct kvm_msr_filter_range *user_range)
6451 {
6452 	unsigned long *bitmap = NULL;
6453 	size_t bitmap_size;
6454 
6455 	if (!user_range->nmsrs)
6456 		return 0;
6457 
6458 	if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6459 		return -EINVAL;
6460 
6461 	if (!user_range->flags)
6462 		return -EINVAL;
6463 
6464 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6465 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6466 		return -EINVAL;
6467 
6468 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6469 	if (IS_ERR(bitmap))
6470 		return PTR_ERR(bitmap);
6471 
6472 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6473 		.flags = user_range->flags,
6474 		.base = user_range->base,
6475 		.nmsrs = user_range->nmsrs,
6476 		.bitmap = bitmap,
6477 	};
6478 
6479 	msr_filter->count++;
6480 	return 0;
6481 }
6482 
6483 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6484 				       struct kvm_msr_filter *filter)
6485 {
6486 	struct kvm_x86_msr_filter *new_filter, *old_filter;
6487 	bool default_allow;
6488 	bool empty = true;
6489 	int r;
6490 	u32 i;
6491 
6492 	if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6493 		return -EINVAL;
6494 
6495 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6496 		empty &= !filter->ranges[i].nmsrs;
6497 
6498 	default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6499 	if (empty && !default_allow)
6500 		return -EINVAL;
6501 
6502 	new_filter = kvm_alloc_msr_filter(default_allow);
6503 	if (!new_filter)
6504 		return -ENOMEM;
6505 
6506 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6507 		r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6508 		if (r) {
6509 			kvm_free_msr_filter(new_filter);
6510 			return r;
6511 		}
6512 	}
6513 
6514 	mutex_lock(&kvm->lock);
6515 	old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6516 					 mutex_is_locked(&kvm->lock));
6517 	mutex_unlock(&kvm->lock);
6518 	synchronize_srcu(&kvm->srcu);
6519 
6520 	kvm_free_msr_filter(old_filter);
6521 
6522 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6523 
6524 	return 0;
6525 }
6526 
6527 #ifdef CONFIG_KVM_COMPAT
6528 /* for KVM_X86_SET_MSR_FILTER */
6529 struct kvm_msr_filter_range_compat {
6530 	__u32 flags;
6531 	__u32 nmsrs;
6532 	__u32 base;
6533 	__u32 bitmap;
6534 };
6535 
6536 struct kvm_msr_filter_compat {
6537 	__u32 flags;
6538 	struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6539 };
6540 
6541 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6542 
6543 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6544 			      unsigned long arg)
6545 {
6546 	void __user *argp = (void __user *)arg;
6547 	struct kvm *kvm = filp->private_data;
6548 	long r = -ENOTTY;
6549 
6550 	switch (ioctl) {
6551 	case KVM_X86_SET_MSR_FILTER_COMPAT: {
6552 		struct kvm_msr_filter __user *user_msr_filter = argp;
6553 		struct kvm_msr_filter_compat filter_compat;
6554 		struct kvm_msr_filter filter;
6555 		int i;
6556 
6557 		if (copy_from_user(&filter_compat, user_msr_filter,
6558 				   sizeof(filter_compat)))
6559 			return -EFAULT;
6560 
6561 		filter.flags = filter_compat.flags;
6562 		for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6563 			struct kvm_msr_filter_range_compat *cr;
6564 
6565 			cr = &filter_compat.ranges[i];
6566 			filter.ranges[i] = (struct kvm_msr_filter_range) {
6567 				.flags = cr->flags,
6568 				.nmsrs = cr->nmsrs,
6569 				.base = cr->base,
6570 				.bitmap = (__u8 *)(ulong)cr->bitmap,
6571 			};
6572 		}
6573 
6574 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6575 		break;
6576 	}
6577 	}
6578 
6579 	return r;
6580 }
6581 #endif
6582 
6583 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6584 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6585 {
6586 	struct kvm_vcpu *vcpu;
6587 	unsigned long i;
6588 	int ret = 0;
6589 
6590 	mutex_lock(&kvm->lock);
6591 	kvm_for_each_vcpu(i, vcpu, kvm) {
6592 		if (!vcpu->arch.pv_time.active)
6593 			continue;
6594 
6595 		ret = kvm_set_guest_paused(vcpu);
6596 		if (ret) {
6597 			kvm_err("Failed to pause guest VCPU%d: %d\n",
6598 				vcpu->vcpu_id, ret);
6599 			break;
6600 		}
6601 	}
6602 	mutex_unlock(&kvm->lock);
6603 
6604 	return ret ? NOTIFY_BAD : NOTIFY_DONE;
6605 }
6606 
6607 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6608 {
6609 	switch (state) {
6610 	case PM_HIBERNATION_PREPARE:
6611 	case PM_SUSPEND_PREPARE:
6612 		return kvm_arch_suspend_notifier(kvm);
6613 	}
6614 
6615 	return NOTIFY_DONE;
6616 }
6617 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6618 
6619 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6620 {
6621 	struct kvm_clock_data data = { 0 };
6622 
6623 	get_kvmclock(kvm, &data);
6624 	if (copy_to_user(argp, &data, sizeof(data)))
6625 		return -EFAULT;
6626 
6627 	return 0;
6628 }
6629 
6630 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6631 {
6632 	struct kvm_arch *ka = &kvm->arch;
6633 	struct kvm_clock_data data;
6634 	u64 now_raw_ns;
6635 
6636 	if (copy_from_user(&data, argp, sizeof(data)))
6637 		return -EFAULT;
6638 
6639 	/*
6640 	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6641 	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6642 	 */
6643 	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6644 		return -EINVAL;
6645 
6646 	kvm_hv_request_tsc_page_update(kvm);
6647 	kvm_start_pvclock_update(kvm);
6648 	pvclock_update_vm_gtod_copy(kvm);
6649 
6650 	/*
6651 	 * This pairs with kvm_guest_time_update(): when masterclock is
6652 	 * in use, we use master_kernel_ns + kvmclock_offset to set
6653 	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6654 	 * is slightly ahead) here we risk going negative on unsigned
6655 	 * 'system_time' when 'data.clock' is very small.
6656 	 */
6657 	if (data.flags & KVM_CLOCK_REALTIME) {
6658 		u64 now_real_ns = ktime_get_real_ns();
6659 
6660 		/*
6661 		 * Avoid stepping the kvmclock backwards.
6662 		 */
6663 		if (now_real_ns > data.realtime)
6664 			data.clock += now_real_ns - data.realtime;
6665 	}
6666 
6667 	if (ka->use_master_clock)
6668 		now_raw_ns = ka->master_kernel_ns;
6669 	else
6670 		now_raw_ns = get_kvmclock_base_ns();
6671 	ka->kvmclock_offset = data.clock - now_raw_ns;
6672 	kvm_end_pvclock_update(kvm);
6673 	return 0;
6674 }
6675 
6676 long kvm_arch_vm_ioctl(struct file *filp,
6677 		       unsigned int ioctl, unsigned long arg)
6678 {
6679 	struct kvm *kvm = filp->private_data;
6680 	void __user *argp = (void __user *)arg;
6681 	int r = -ENOTTY;
6682 	/*
6683 	 * This union makes it completely explicit to gcc-3.x
6684 	 * that these two variables' stack usage should be
6685 	 * combined, not added together.
6686 	 */
6687 	union {
6688 		struct kvm_pit_state ps;
6689 		struct kvm_pit_state2 ps2;
6690 		struct kvm_pit_config pit_config;
6691 	} u;
6692 
6693 	switch (ioctl) {
6694 	case KVM_SET_TSS_ADDR:
6695 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6696 		break;
6697 	case KVM_SET_IDENTITY_MAP_ADDR: {
6698 		u64 ident_addr;
6699 
6700 		mutex_lock(&kvm->lock);
6701 		r = -EINVAL;
6702 		if (kvm->created_vcpus)
6703 			goto set_identity_unlock;
6704 		r = -EFAULT;
6705 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6706 			goto set_identity_unlock;
6707 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6708 set_identity_unlock:
6709 		mutex_unlock(&kvm->lock);
6710 		break;
6711 	}
6712 	case KVM_SET_NR_MMU_PAGES:
6713 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6714 		break;
6715 	case KVM_GET_NR_MMU_PAGES:
6716 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6717 		break;
6718 	case KVM_CREATE_IRQCHIP: {
6719 		mutex_lock(&kvm->lock);
6720 
6721 		r = -EEXIST;
6722 		if (irqchip_in_kernel(kvm))
6723 			goto create_irqchip_unlock;
6724 
6725 		r = -EINVAL;
6726 		if (kvm->created_vcpus)
6727 			goto create_irqchip_unlock;
6728 
6729 		r = kvm_pic_init(kvm);
6730 		if (r)
6731 			goto create_irqchip_unlock;
6732 
6733 		r = kvm_ioapic_init(kvm);
6734 		if (r) {
6735 			kvm_pic_destroy(kvm);
6736 			goto create_irqchip_unlock;
6737 		}
6738 
6739 		r = kvm_setup_default_irq_routing(kvm);
6740 		if (r) {
6741 			kvm_ioapic_destroy(kvm);
6742 			kvm_pic_destroy(kvm);
6743 			goto create_irqchip_unlock;
6744 		}
6745 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6746 		smp_wmb();
6747 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6748 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6749 	create_irqchip_unlock:
6750 		mutex_unlock(&kvm->lock);
6751 		break;
6752 	}
6753 	case KVM_CREATE_PIT:
6754 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6755 		goto create_pit;
6756 	case KVM_CREATE_PIT2:
6757 		r = -EFAULT;
6758 		if (copy_from_user(&u.pit_config, argp,
6759 				   sizeof(struct kvm_pit_config)))
6760 			goto out;
6761 	create_pit:
6762 		mutex_lock(&kvm->lock);
6763 		r = -EEXIST;
6764 		if (kvm->arch.vpit)
6765 			goto create_pit_unlock;
6766 		r = -ENOMEM;
6767 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6768 		if (kvm->arch.vpit)
6769 			r = 0;
6770 	create_pit_unlock:
6771 		mutex_unlock(&kvm->lock);
6772 		break;
6773 	case KVM_GET_IRQCHIP: {
6774 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6775 		struct kvm_irqchip *chip;
6776 
6777 		chip = memdup_user(argp, sizeof(*chip));
6778 		if (IS_ERR(chip)) {
6779 			r = PTR_ERR(chip);
6780 			goto out;
6781 		}
6782 
6783 		r = -ENXIO;
6784 		if (!irqchip_kernel(kvm))
6785 			goto get_irqchip_out;
6786 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6787 		if (r)
6788 			goto get_irqchip_out;
6789 		r = -EFAULT;
6790 		if (copy_to_user(argp, chip, sizeof(*chip)))
6791 			goto get_irqchip_out;
6792 		r = 0;
6793 	get_irqchip_out:
6794 		kfree(chip);
6795 		break;
6796 	}
6797 	case KVM_SET_IRQCHIP: {
6798 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6799 		struct kvm_irqchip *chip;
6800 
6801 		chip = memdup_user(argp, sizeof(*chip));
6802 		if (IS_ERR(chip)) {
6803 			r = PTR_ERR(chip);
6804 			goto out;
6805 		}
6806 
6807 		r = -ENXIO;
6808 		if (!irqchip_kernel(kvm))
6809 			goto set_irqchip_out;
6810 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6811 	set_irqchip_out:
6812 		kfree(chip);
6813 		break;
6814 	}
6815 	case KVM_GET_PIT: {
6816 		r = -EFAULT;
6817 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6818 			goto out;
6819 		r = -ENXIO;
6820 		if (!kvm->arch.vpit)
6821 			goto out;
6822 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6823 		if (r)
6824 			goto out;
6825 		r = -EFAULT;
6826 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6827 			goto out;
6828 		r = 0;
6829 		break;
6830 	}
6831 	case KVM_SET_PIT: {
6832 		r = -EFAULT;
6833 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6834 			goto out;
6835 		mutex_lock(&kvm->lock);
6836 		r = -ENXIO;
6837 		if (!kvm->arch.vpit)
6838 			goto set_pit_out;
6839 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6840 set_pit_out:
6841 		mutex_unlock(&kvm->lock);
6842 		break;
6843 	}
6844 	case KVM_GET_PIT2: {
6845 		r = -ENXIO;
6846 		if (!kvm->arch.vpit)
6847 			goto out;
6848 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6849 		if (r)
6850 			goto out;
6851 		r = -EFAULT;
6852 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6853 			goto out;
6854 		r = 0;
6855 		break;
6856 	}
6857 	case KVM_SET_PIT2: {
6858 		r = -EFAULT;
6859 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6860 			goto out;
6861 		mutex_lock(&kvm->lock);
6862 		r = -ENXIO;
6863 		if (!kvm->arch.vpit)
6864 			goto set_pit2_out;
6865 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6866 set_pit2_out:
6867 		mutex_unlock(&kvm->lock);
6868 		break;
6869 	}
6870 	case KVM_REINJECT_CONTROL: {
6871 		struct kvm_reinject_control control;
6872 		r =  -EFAULT;
6873 		if (copy_from_user(&control, argp, sizeof(control)))
6874 			goto out;
6875 		r = -ENXIO;
6876 		if (!kvm->arch.vpit)
6877 			goto out;
6878 		r = kvm_vm_ioctl_reinject(kvm, &control);
6879 		break;
6880 	}
6881 	case KVM_SET_BOOT_CPU_ID:
6882 		r = 0;
6883 		mutex_lock(&kvm->lock);
6884 		if (kvm->created_vcpus)
6885 			r = -EBUSY;
6886 		else
6887 			kvm->arch.bsp_vcpu_id = arg;
6888 		mutex_unlock(&kvm->lock);
6889 		break;
6890 #ifdef CONFIG_KVM_XEN
6891 	case KVM_XEN_HVM_CONFIG: {
6892 		struct kvm_xen_hvm_config xhc;
6893 		r = -EFAULT;
6894 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
6895 			goto out;
6896 		r = kvm_xen_hvm_config(kvm, &xhc);
6897 		break;
6898 	}
6899 	case KVM_XEN_HVM_GET_ATTR: {
6900 		struct kvm_xen_hvm_attr xha;
6901 
6902 		r = -EFAULT;
6903 		if (copy_from_user(&xha, argp, sizeof(xha)))
6904 			goto out;
6905 		r = kvm_xen_hvm_get_attr(kvm, &xha);
6906 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6907 			r = -EFAULT;
6908 		break;
6909 	}
6910 	case KVM_XEN_HVM_SET_ATTR: {
6911 		struct kvm_xen_hvm_attr xha;
6912 
6913 		r = -EFAULT;
6914 		if (copy_from_user(&xha, argp, sizeof(xha)))
6915 			goto out;
6916 		r = kvm_xen_hvm_set_attr(kvm, &xha);
6917 		break;
6918 	}
6919 	case KVM_XEN_HVM_EVTCHN_SEND: {
6920 		struct kvm_irq_routing_xen_evtchn uxe;
6921 
6922 		r = -EFAULT;
6923 		if (copy_from_user(&uxe, argp, sizeof(uxe)))
6924 			goto out;
6925 		r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
6926 		break;
6927 	}
6928 #endif
6929 	case KVM_SET_CLOCK:
6930 		r = kvm_vm_ioctl_set_clock(kvm, argp);
6931 		break;
6932 	case KVM_GET_CLOCK:
6933 		r = kvm_vm_ioctl_get_clock(kvm, argp);
6934 		break;
6935 	case KVM_SET_TSC_KHZ: {
6936 		u32 user_tsc_khz;
6937 
6938 		r = -EINVAL;
6939 		user_tsc_khz = (u32)arg;
6940 
6941 		if (kvm_caps.has_tsc_control &&
6942 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6943 			goto out;
6944 
6945 		if (user_tsc_khz == 0)
6946 			user_tsc_khz = tsc_khz;
6947 
6948 		WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
6949 		r = 0;
6950 
6951 		goto out;
6952 	}
6953 	case KVM_GET_TSC_KHZ: {
6954 		r = READ_ONCE(kvm->arch.default_tsc_khz);
6955 		goto out;
6956 	}
6957 	case KVM_MEMORY_ENCRYPT_OP: {
6958 		r = -ENOTTY;
6959 		if (!kvm_x86_ops.mem_enc_ioctl)
6960 			goto out;
6961 
6962 		r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
6963 		break;
6964 	}
6965 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
6966 		struct kvm_enc_region region;
6967 
6968 		r = -EFAULT;
6969 		if (copy_from_user(&region, argp, sizeof(region)))
6970 			goto out;
6971 
6972 		r = -ENOTTY;
6973 		if (!kvm_x86_ops.mem_enc_register_region)
6974 			goto out;
6975 
6976 		r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
6977 		break;
6978 	}
6979 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6980 		struct kvm_enc_region region;
6981 
6982 		r = -EFAULT;
6983 		if (copy_from_user(&region, argp, sizeof(region)))
6984 			goto out;
6985 
6986 		r = -ENOTTY;
6987 		if (!kvm_x86_ops.mem_enc_unregister_region)
6988 			goto out;
6989 
6990 		r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
6991 		break;
6992 	}
6993 	case KVM_HYPERV_EVENTFD: {
6994 		struct kvm_hyperv_eventfd hvevfd;
6995 
6996 		r = -EFAULT;
6997 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6998 			goto out;
6999 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7000 		break;
7001 	}
7002 	case KVM_SET_PMU_EVENT_FILTER:
7003 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7004 		break;
7005 	case KVM_X86_SET_MSR_FILTER: {
7006 		struct kvm_msr_filter __user *user_msr_filter = argp;
7007 		struct kvm_msr_filter filter;
7008 
7009 		if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7010 			return -EFAULT;
7011 
7012 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7013 		break;
7014 	}
7015 	default:
7016 		r = -ENOTTY;
7017 	}
7018 out:
7019 	return r;
7020 }
7021 
7022 static void kvm_probe_msr_to_save(u32 msr_index)
7023 {
7024 	u32 dummy[2];
7025 
7026 	if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7027 		return;
7028 
7029 	/*
7030 	 * Even MSRs that are valid in the host may not be exposed to guests in
7031 	 * some cases.
7032 	 */
7033 	switch (msr_index) {
7034 	case MSR_IA32_BNDCFGS:
7035 		if (!kvm_mpx_supported())
7036 			return;
7037 		break;
7038 	case MSR_TSC_AUX:
7039 		if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7040 		    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7041 			return;
7042 		break;
7043 	case MSR_IA32_UMWAIT_CONTROL:
7044 		if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7045 			return;
7046 		break;
7047 	case MSR_IA32_RTIT_CTL:
7048 	case MSR_IA32_RTIT_STATUS:
7049 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7050 			return;
7051 		break;
7052 	case MSR_IA32_RTIT_CR3_MATCH:
7053 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7054 		    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7055 			return;
7056 		break;
7057 	case MSR_IA32_RTIT_OUTPUT_BASE:
7058 	case MSR_IA32_RTIT_OUTPUT_MASK:
7059 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7060 		    (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7061 		     !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7062 			return;
7063 		break;
7064 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7065 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7066 		    (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7067 		     intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7068 			return;
7069 		break;
7070 	case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7071 		if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7072 		    kvm_pmu_cap.num_counters_gp)
7073 			return;
7074 		break;
7075 	case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7076 		if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7077 		    kvm_pmu_cap.num_counters_gp)
7078 			return;
7079 		break;
7080 	case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX:
7081 		if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7082 		    kvm_pmu_cap.num_counters_fixed)
7083 			return;
7084 		break;
7085 	case MSR_IA32_XFD:
7086 	case MSR_IA32_XFD_ERR:
7087 		if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7088 			return;
7089 		break;
7090 	default:
7091 		break;
7092 	}
7093 
7094 	msrs_to_save[num_msrs_to_save++] = msr_index;
7095 }
7096 
7097 static void kvm_init_msr_list(void)
7098 {
7099 	unsigned i;
7100 
7101 	BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
7102 			 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7103 
7104 	num_msrs_to_save = 0;
7105 	num_emulated_msrs = 0;
7106 	num_msr_based_features = 0;
7107 
7108 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7109 		kvm_probe_msr_to_save(msrs_to_save_base[i]);
7110 
7111 	if (enable_pmu) {
7112 		for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7113 			kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7114 	}
7115 
7116 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7117 		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7118 			continue;
7119 
7120 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7121 	}
7122 
7123 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
7124 		struct kvm_msr_entry msr;
7125 
7126 		msr.index = msr_based_features_all[i];
7127 		if (kvm_get_msr_feature(&msr))
7128 			continue;
7129 
7130 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
7131 	}
7132 }
7133 
7134 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7135 			   const void *v)
7136 {
7137 	int handled = 0;
7138 	int n;
7139 
7140 	do {
7141 		n = min(len, 8);
7142 		if (!(lapic_in_kernel(vcpu) &&
7143 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7144 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7145 			break;
7146 		handled += n;
7147 		addr += n;
7148 		len -= n;
7149 		v += n;
7150 	} while (len);
7151 
7152 	return handled;
7153 }
7154 
7155 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7156 {
7157 	int handled = 0;
7158 	int n;
7159 
7160 	do {
7161 		n = min(len, 8);
7162 		if (!(lapic_in_kernel(vcpu) &&
7163 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7164 					 addr, n, v))
7165 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7166 			break;
7167 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7168 		handled += n;
7169 		addr += n;
7170 		len -= n;
7171 		v += n;
7172 	} while (len);
7173 
7174 	return handled;
7175 }
7176 
7177 void kvm_set_segment(struct kvm_vcpu *vcpu,
7178 		     struct kvm_segment *var, int seg)
7179 {
7180 	static_call(kvm_x86_set_segment)(vcpu, var, seg);
7181 }
7182 
7183 void kvm_get_segment(struct kvm_vcpu *vcpu,
7184 		     struct kvm_segment *var, int seg)
7185 {
7186 	static_call(kvm_x86_get_segment)(vcpu, var, seg);
7187 }
7188 
7189 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7190 			   struct x86_exception *exception)
7191 {
7192 	struct kvm_mmu *mmu = vcpu->arch.mmu;
7193 	gpa_t t_gpa;
7194 
7195 	BUG_ON(!mmu_is_nested(vcpu));
7196 
7197 	/* NPT walks are always user-walks */
7198 	access |= PFERR_USER_MASK;
7199 	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7200 
7201 	return t_gpa;
7202 }
7203 
7204 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7205 			      struct x86_exception *exception)
7206 {
7207 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7208 
7209 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7210 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7211 }
7212 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7213 
7214 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7215 			       struct x86_exception *exception)
7216 {
7217 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7218 
7219 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7220 	access |= PFERR_WRITE_MASK;
7221 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7222 }
7223 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7224 
7225 /* uses this to access any guest's mapped memory without checking CPL */
7226 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7227 				struct x86_exception *exception)
7228 {
7229 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7230 
7231 	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7232 }
7233 
7234 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7235 				      struct kvm_vcpu *vcpu, u64 access,
7236 				      struct x86_exception *exception)
7237 {
7238 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7239 	void *data = val;
7240 	int r = X86EMUL_CONTINUE;
7241 
7242 	while (bytes) {
7243 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7244 		unsigned offset = addr & (PAGE_SIZE-1);
7245 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7246 		int ret;
7247 
7248 		if (gpa == INVALID_GPA)
7249 			return X86EMUL_PROPAGATE_FAULT;
7250 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7251 					       offset, toread);
7252 		if (ret < 0) {
7253 			r = X86EMUL_IO_NEEDED;
7254 			goto out;
7255 		}
7256 
7257 		bytes -= toread;
7258 		data += toread;
7259 		addr += toread;
7260 	}
7261 out:
7262 	return r;
7263 }
7264 
7265 /* used for instruction fetching */
7266 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7267 				gva_t addr, void *val, unsigned int bytes,
7268 				struct x86_exception *exception)
7269 {
7270 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7271 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7272 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7273 	unsigned offset;
7274 	int ret;
7275 
7276 	/* Inline kvm_read_guest_virt_helper for speed.  */
7277 	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7278 				    exception);
7279 	if (unlikely(gpa == INVALID_GPA))
7280 		return X86EMUL_PROPAGATE_FAULT;
7281 
7282 	offset = addr & (PAGE_SIZE-1);
7283 	if (WARN_ON(offset + bytes > PAGE_SIZE))
7284 		bytes = (unsigned)PAGE_SIZE - offset;
7285 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7286 				       offset, bytes);
7287 	if (unlikely(ret < 0))
7288 		return X86EMUL_IO_NEEDED;
7289 
7290 	return X86EMUL_CONTINUE;
7291 }
7292 
7293 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7294 			       gva_t addr, void *val, unsigned int bytes,
7295 			       struct x86_exception *exception)
7296 {
7297 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7298 
7299 	/*
7300 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7301 	 * is returned, but our callers are not ready for that and they blindly
7302 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
7303 	 * uninitialized kernel stack memory into cr2 and error code.
7304 	 */
7305 	memset(exception, 0, sizeof(*exception));
7306 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7307 					  exception);
7308 }
7309 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7310 
7311 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7312 			     gva_t addr, void *val, unsigned int bytes,
7313 			     struct x86_exception *exception, bool system)
7314 {
7315 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7316 	u64 access = 0;
7317 
7318 	if (system)
7319 		access |= PFERR_IMPLICIT_ACCESS;
7320 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7321 		access |= PFERR_USER_MASK;
7322 
7323 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7324 }
7325 
7326 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7327 				      struct kvm_vcpu *vcpu, u64 access,
7328 				      struct x86_exception *exception)
7329 {
7330 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7331 	void *data = val;
7332 	int r = X86EMUL_CONTINUE;
7333 
7334 	while (bytes) {
7335 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7336 		unsigned offset = addr & (PAGE_SIZE-1);
7337 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7338 		int ret;
7339 
7340 		if (gpa == INVALID_GPA)
7341 			return X86EMUL_PROPAGATE_FAULT;
7342 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7343 		if (ret < 0) {
7344 			r = X86EMUL_IO_NEEDED;
7345 			goto out;
7346 		}
7347 
7348 		bytes -= towrite;
7349 		data += towrite;
7350 		addr += towrite;
7351 	}
7352 out:
7353 	return r;
7354 }
7355 
7356 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7357 			      unsigned int bytes, struct x86_exception *exception,
7358 			      bool system)
7359 {
7360 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7361 	u64 access = PFERR_WRITE_MASK;
7362 
7363 	if (system)
7364 		access |= PFERR_IMPLICIT_ACCESS;
7365 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7366 		access |= PFERR_USER_MASK;
7367 
7368 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7369 					   access, exception);
7370 }
7371 
7372 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7373 				unsigned int bytes, struct x86_exception *exception)
7374 {
7375 	/* kvm_write_guest_virt_system can pull in tons of pages. */
7376 	vcpu->arch.l1tf_flush_l1d = true;
7377 
7378 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7379 					   PFERR_WRITE_MASK, exception);
7380 }
7381 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7382 
7383 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7384 				void *insn, int insn_len)
7385 {
7386 	return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
7387 							    insn, insn_len);
7388 }
7389 
7390 int handle_ud(struct kvm_vcpu *vcpu)
7391 {
7392 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7393 	int fep_flags = READ_ONCE(force_emulation_prefix);
7394 	int emul_type = EMULTYPE_TRAP_UD;
7395 	char sig[5]; /* ud2; .ascii "kvm" */
7396 	struct x86_exception e;
7397 
7398 	if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
7399 		return 1;
7400 
7401 	if (fep_flags &&
7402 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7403 				sig, sizeof(sig), &e) == 0 &&
7404 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7405 		if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7406 			kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7407 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7408 		emul_type = EMULTYPE_TRAP_UD_FORCED;
7409 	}
7410 
7411 	return kvm_emulate_instruction(vcpu, emul_type);
7412 }
7413 EXPORT_SYMBOL_GPL(handle_ud);
7414 
7415 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7416 			    gpa_t gpa, bool write)
7417 {
7418 	/* For APIC access vmexit */
7419 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7420 		return 1;
7421 
7422 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7423 		trace_vcpu_match_mmio(gva, gpa, write, true);
7424 		return 1;
7425 	}
7426 
7427 	return 0;
7428 }
7429 
7430 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7431 				gpa_t *gpa, struct x86_exception *exception,
7432 				bool write)
7433 {
7434 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7435 	u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7436 		| (write ? PFERR_WRITE_MASK : 0);
7437 
7438 	/*
7439 	 * currently PKRU is only applied to ept enabled guest so
7440 	 * there is no pkey in EPT page table for L1 guest or EPT
7441 	 * shadow page table for L2 guest.
7442 	 */
7443 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7444 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
7445 			      vcpu->arch.mmio_access, 0, access))) {
7446 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7447 					(gva & (PAGE_SIZE - 1));
7448 		trace_vcpu_match_mmio(gva, *gpa, write, false);
7449 		return 1;
7450 	}
7451 
7452 	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7453 
7454 	if (*gpa == INVALID_GPA)
7455 		return -1;
7456 
7457 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7458 }
7459 
7460 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7461 			const void *val, int bytes)
7462 {
7463 	int ret;
7464 
7465 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7466 	if (ret < 0)
7467 		return 0;
7468 	kvm_page_track_write(vcpu, gpa, val, bytes);
7469 	return 1;
7470 }
7471 
7472 struct read_write_emulator_ops {
7473 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7474 				  int bytes);
7475 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7476 				  void *val, int bytes);
7477 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7478 			       int bytes, void *val);
7479 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7480 				    void *val, int bytes);
7481 	bool write;
7482 };
7483 
7484 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7485 {
7486 	if (vcpu->mmio_read_completed) {
7487 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7488 			       vcpu->mmio_fragments[0].gpa, val);
7489 		vcpu->mmio_read_completed = 0;
7490 		return 1;
7491 	}
7492 
7493 	return 0;
7494 }
7495 
7496 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7497 			void *val, int bytes)
7498 {
7499 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7500 }
7501 
7502 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7503 			 void *val, int bytes)
7504 {
7505 	return emulator_write_phys(vcpu, gpa, val, bytes);
7506 }
7507 
7508 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7509 {
7510 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7511 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
7512 }
7513 
7514 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7515 			  void *val, int bytes)
7516 {
7517 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7518 	return X86EMUL_IO_NEEDED;
7519 }
7520 
7521 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7522 			   void *val, int bytes)
7523 {
7524 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7525 
7526 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7527 	return X86EMUL_CONTINUE;
7528 }
7529 
7530 static const struct read_write_emulator_ops read_emultor = {
7531 	.read_write_prepare = read_prepare,
7532 	.read_write_emulate = read_emulate,
7533 	.read_write_mmio = vcpu_mmio_read,
7534 	.read_write_exit_mmio = read_exit_mmio,
7535 };
7536 
7537 static const struct read_write_emulator_ops write_emultor = {
7538 	.read_write_emulate = write_emulate,
7539 	.read_write_mmio = write_mmio,
7540 	.read_write_exit_mmio = write_exit_mmio,
7541 	.write = true,
7542 };
7543 
7544 static int emulator_read_write_onepage(unsigned long addr, void *val,
7545 				       unsigned int bytes,
7546 				       struct x86_exception *exception,
7547 				       struct kvm_vcpu *vcpu,
7548 				       const struct read_write_emulator_ops *ops)
7549 {
7550 	gpa_t gpa;
7551 	int handled, ret;
7552 	bool write = ops->write;
7553 	struct kvm_mmio_fragment *frag;
7554 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7555 
7556 	/*
7557 	 * If the exit was due to a NPF we may already have a GPA.
7558 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7559 	 * Note, this cannot be used on string operations since string
7560 	 * operation using rep will only have the initial GPA from the NPF
7561 	 * occurred.
7562 	 */
7563 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7564 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7565 		gpa = ctxt->gpa_val;
7566 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7567 	} else {
7568 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7569 		if (ret < 0)
7570 			return X86EMUL_PROPAGATE_FAULT;
7571 	}
7572 
7573 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7574 		return X86EMUL_CONTINUE;
7575 
7576 	/*
7577 	 * Is this MMIO handled locally?
7578 	 */
7579 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7580 	if (handled == bytes)
7581 		return X86EMUL_CONTINUE;
7582 
7583 	gpa += handled;
7584 	bytes -= handled;
7585 	val += handled;
7586 
7587 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7588 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7589 	frag->gpa = gpa;
7590 	frag->data = val;
7591 	frag->len = bytes;
7592 	return X86EMUL_CONTINUE;
7593 }
7594 
7595 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7596 			unsigned long addr,
7597 			void *val, unsigned int bytes,
7598 			struct x86_exception *exception,
7599 			const struct read_write_emulator_ops *ops)
7600 {
7601 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7602 	gpa_t gpa;
7603 	int rc;
7604 
7605 	if (ops->read_write_prepare &&
7606 		  ops->read_write_prepare(vcpu, val, bytes))
7607 		return X86EMUL_CONTINUE;
7608 
7609 	vcpu->mmio_nr_fragments = 0;
7610 
7611 	/* Crossing a page boundary? */
7612 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7613 		int now;
7614 
7615 		now = -addr & ~PAGE_MASK;
7616 		rc = emulator_read_write_onepage(addr, val, now, exception,
7617 						 vcpu, ops);
7618 
7619 		if (rc != X86EMUL_CONTINUE)
7620 			return rc;
7621 		addr += now;
7622 		if (ctxt->mode != X86EMUL_MODE_PROT64)
7623 			addr = (u32)addr;
7624 		val += now;
7625 		bytes -= now;
7626 	}
7627 
7628 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
7629 					 vcpu, ops);
7630 	if (rc != X86EMUL_CONTINUE)
7631 		return rc;
7632 
7633 	if (!vcpu->mmio_nr_fragments)
7634 		return rc;
7635 
7636 	gpa = vcpu->mmio_fragments[0].gpa;
7637 
7638 	vcpu->mmio_needed = 1;
7639 	vcpu->mmio_cur_fragment = 0;
7640 
7641 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7642 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7643 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
7644 	vcpu->run->mmio.phys_addr = gpa;
7645 
7646 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7647 }
7648 
7649 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7650 				  unsigned long addr,
7651 				  void *val,
7652 				  unsigned int bytes,
7653 				  struct x86_exception *exception)
7654 {
7655 	return emulator_read_write(ctxt, addr, val, bytes,
7656 				   exception, &read_emultor);
7657 }
7658 
7659 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7660 			    unsigned long addr,
7661 			    const void *val,
7662 			    unsigned int bytes,
7663 			    struct x86_exception *exception)
7664 {
7665 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
7666 				   exception, &write_emultor);
7667 }
7668 
7669 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7670 	(__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7671 
7672 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7673 				     unsigned long addr,
7674 				     const void *old,
7675 				     const void *new,
7676 				     unsigned int bytes,
7677 				     struct x86_exception *exception)
7678 {
7679 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7680 	u64 page_line_mask;
7681 	unsigned long hva;
7682 	gpa_t gpa;
7683 	int r;
7684 
7685 	/* guests cmpxchg8b have to be emulated atomically */
7686 	if (bytes > 8 || (bytes & (bytes - 1)))
7687 		goto emul_write;
7688 
7689 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7690 
7691 	if (gpa == INVALID_GPA ||
7692 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7693 		goto emul_write;
7694 
7695 	/*
7696 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
7697 	 * enabled in the host and the access splits a cache line.
7698 	 */
7699 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7700 		page_line_mask = ~(cache_line_size() - 1);
7701 	else
7702 		page_line_mask = PAGE_MASK;
7703 
7704 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7705 		goto emul_write;
7706 
7707 	hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7708 	if (kvm_is_error_hva(hva))
7709 		goto emul_write;
7710 
7711 	hva += offset_in_page(gpa);
7712 
7713 	switch (bytes) {
7714 	case 1:
7715 		r = emulator_try_cmpxchg_user(u8, hva, old, new);
7716 		break;
7717 	case 2:
7718 		r = emulator_try_cmpxchg_user(u16, hva, old, new);
7719 		break;
7720 	case 4:
7721 		r = emulator_try_cmpxchg_user(u32, hva, old, new);
7722 		break;
7723 	case 8:
7724 		r = emulator_try_cmpxchg_user(u64, hva, old, new);
7725 		break;
7726 	default:
7727 		BUG();
7728 	}
7729 
7730 	if (r < 0)
7731 		return X86EMUL_UNHANDLEABLE;
7732 	if (r)
7733 		return X86EMUL_CMPXCHG_FAILED;
7734 
7735 	kvm_page_track_write(vcpu, gpa, new, bytes);
7736 
7737 	return X86EMUL_CONTINUE;
7738 
7739 emul_write:
7740 	pr_warn_once("emulating exchange as write\n");
7741 
7742 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7743 }
7744 
7745 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7746 			       unsigned short port, void *data,
7747 			       unsigned int count, bool in)
7748 {
7749 	unsigned i;
7750 	int r;
7751 
7752 	WARN_ON_ONCE(vcpu->arch.pio.count);
7753 	for (i = 0; i < count; i++) {
7754 		if (in)
7755 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
7756 		else
7757 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
7758 
7759 		if (r) {
7760 			if (i == 0)
7761 				goto userspace_io;
7762 
7763 			/*
7764 			 * Userspace must have unregistered the device while PIO
7765 			 * was running.  Drop writes / read as 0.
7766 			 */
7767 			if (in)
7768 				memset(data, 0, size * (count - i));
7769 			break;
7770 		}
7771 
7772 		data += size;
7773 	}
7774 	return 1;
7775 
7776 userspace_io:
7777 	vcpu->arch.pio.port = port;
7778 	vcpu->arch.pio.in = in;
7779 	vcpu->arch.pio.count = count;
7780 	vcpu->arch.pio.size = size;
7781 
7782 	if (in)
7783 		memset(vcpu->arch.pio_data, 0, size * count);
7784 	else
7785 		memcpy(vcpu->arch.pio_data, data, size * count);
7786 
7787 	vcpu->run->exit_reason = KVM_EXIT_IO;
7788 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7789 	vcpu->run->io.size = size;
7790 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7791 	vcpu->run->io.count = count;
7792 	vcpu->run->io.port = port;
7793 	return 0;
7794 }
7795 
7796 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7797       			   unsigned short port, void *val, unsigned int count)
7798 {
7799 	int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
7800 	if (r)
7801 		trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
7802 
7803 	return r;
7804 }
7805 
7806 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7807 {
7808 	int size = vcpu->arch.pio.size;
7809 	unsigned int count = vcpu->arch.pio.count;
7810 	memcpy(val, vcpu->arch.pio_data, size * count);
7811 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7812 	vcpu->arch.pio.count = 0;
7813 }
7814 
7815 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7816 				    int size, unsigned short port, void *val,
7817 				    unsigned int count)
7818 {
7819 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7820 	if (vcpu->arch.pio.count) {
7821 		/*
7822 		 * Complete a previous iteration that required userspace I/O.
7823 		 * Note, @count isn't guaranteed to match pio.count as userspace
7824 		 * can modify ECX before rerunning the vCPU.  Ignore any such
7825 		 * shenanigans as KVM doesn't support modifying the rep count,
7826 		 * and the emulator ensures @count doesn't overflow the buffer.
7827 		 */
7828 		complete_emulator_pio_in(vcpu, val);
7829 		return 1;
7830 	}
7831 
7832 	return emulator_pio_in(vcpu, size, port, val, count);
7833 }
7834 
7835 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7836 			    unsigned short port, const void *val,
7837 			    unsigned int count)
7838 {
7839 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
7840 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
7841 }
7842 
7843 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7844 				     int size, unsigned short port,
7845 				     const void *val, unsigned int count)
7846 {
7847 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7848 }
7849 
7850 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7851 {
7852 	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7853 }
7854 
7855 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7856 {
7857 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7858 }
7859 
7860 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7861 {
7862 	if (!need_emulate_wbinvd(vcpu))
7863 		return X86EMUL_CONTINUE;
7864 
7865 	if (static_call(kvm_x86_has_wbinvd_exit)()) {
7866 		int cpu = get_cpu();
7867 
7868 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7869 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7870 				wbinvd_ipi, NULL, 1);
7871 		put_cpu();
7872 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7873 	} else
7874 		wbinvd();
7875 	return X86EMUL_CONTINUE;
7876 }
7877 
7878 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7879 {
7880 	kvm_emulate_wbinvd_noskip(vcpu);
7881 	return kvm_skip_emulated_instruction(vcpu);
7882 }
7883 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7884 
7885 
7886 
7887 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7888 {
7889 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7890 }
7891 
7892 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7893 			    unsigned long *dest)
7894 {
7895 	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7896 }
7897 
7898 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7899 			   unsigned long value)
7900 {
7901 
7902 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7903 }
7904 
7905 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7906 {
7907 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7908 }
7909 
7910 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7911 {
7912 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7913 	unsigned long value;
7914 
7915 	switch (cr) {
7916 	case 0:
7917 		value = kvm_read_cr0(vcpu);
7918 		break;
7919 	case 2:
7920 		value = vcpu->arch.cr2;
7921 		break;
7922 	case 3:
7923 		value = kvm_read_cr3(vcpu);
7924 		break;
7925 	case 4:
7926 		value = kvm_read_cr4(vcpu);
7927 		break;
7928 	case 8:
7929 		value = kvm_get_cr8(vcpu);
7930 		break;
7931 	default:
7932 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7933 		return 0;
7934 	}
7935 
7936 	return value;
7937 }
7938 
7939 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7940 {
7941 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7942 	int res = 0;
7943 
7944 	switch (cr) {
7945 	case 0:
7946 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7947 		break;
7948 	case 2:
7949 		vcpu->arch.cr2 = val;
7950 		break;
7951 	case 3:
7952 		res = kvm_set_cr3(vcpu, val);
7953 		break;
7954 	case 4:
7955 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7956 		break;
7957 	case 8:
7958 		res = kvm_set_cr8(vcpu, val);
7959 		break;
7960 	default:
7961 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7962 		res = -1;
7963 	}
7964 
7965 	return res;
7966 }
7967 
7968 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7969 {
7970 	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7971 }
7972 
7973 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7974 {
7975 	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7976 }
7977 
7978 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7979 {
7980 	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7981 }
7982 
7983 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7984 {
7985 	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7986 }
7987 
7988 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7989 {
7990 	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7991 }
7992 
7993 static unsigned long emulator_get_cached_segment_base(
7994 	struct x86_emulate_ctxt *ctxt, int seg)
7995 {
7996 	return get_segment_base(emul_to_vcpu(ctxt), seg);
7997 }
7998 
7999 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8000 				 struct desc_struct *desc, u32 *base3,
8001 				 int seg)
8002 {
8003 	struct kvm_segment var;
8004 
8005 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8006 	*selector = var.selector;
8007 
8008 	if (var.unusable) {
8009 		memset(desc, 0, sizeof(*desc));
8010 		if (base3)
8011 			*base3 = 0;
8012 		return false;
8013 	}
8014 
8015 	if (var.g)
8016 		var.limit >>= 12;
8017 	set_desc_limit(desc, var.limit);
8018 	set_desc_base(desc, (unsigned long)var.base);
8019 #ifdef CONFIG_X86_64
8020 	if (base3)
8021 		*base3 = var.base >> 32;
8022 #endif
8023 	desc->type = var.type;
8024 	desc->s = var.s;
8025 	desc->dpl = var.dpl;
8026 	desc->p = var.present;
8027 	desc->avl = var.avl;
8028 	desc->l = var.l;
8029 	desc->d = var.db;
8030 	desc->g = var.g;
8031 
8032 	return true;
8033 }
8034 
8035 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8036 				 struct desc_struct *desc, u32 base3,
8037 				 int seg)
8038 {
8039 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8040 	struct kvm_segment var;
8041 
8042 	var.selector = selector;
8043 	var.base = get_desc_base(desc);
8044 #ifdef CONFIG_X86_64
8045 	var.base |= ((u64)base3) << 32;
8046 #endif
8047 	var.limit = get_desc_limit(desc);
8048 	if (desc->g)
8049 		var.limit = (var.limit << 12) | 0xfff;
8050 	var.type = desc->type;
8051 	var.dpl = desc->dpl;
8052 	var.db = desc->d;
8053 	var.s = desc->s;
8054 	var.l = desc->l;
8055 	var.g = desc->g;
8056 	var.avl = desc->avl;
8057 	var.present = desc->p;
8058 	var.unusable = !var.present;
8059 	var.padding = 0;
8060 
8061 	kvm_set_segment(vcpu, &var, seg);
8062 	return;
8063 }
8064 
8065 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8066 					u32 msr_index, u64 *pdata)
8067 {
8068 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8069 	int r;
8070 
8071 	r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8072 	if (r < 0)
8073 		return X86EMUL_UNHANDLEABLE;
8074 
8075 	if (r) {
8076 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8077 				       complete_emulated_rdmsr, r))
8078 			return X86EMUL_IO_NEEDED;
8079 
8080 		trace_kvm_msr_read_ex(msr_index);
8081 		return X86EMUL_PROPAGATE_FAULT;
8082 	}
8083 
8084 	trace_kvm_msr_read(msr_index, *pdata);
8085 	return X86EMUL_CONTINUE;
8086 }
8087 
8088 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8089 					u32 msr_index, u64 data)
8090 {
8091 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8092 	int r;
8093 
8094 	r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8095 	if (r < 0)
8096 		return X86EMUL_UNHANDLEABLE;
8097 
8098 	if (r) {
8099 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8100 				       complete_emulated_msr_access, r))
8101 			return X86EMUL_IO_NEEDED;
8102 
8103 		trace_kvm_msr_write_ex(msr_index, data);
8104 		return X86EMUL_PROPAGATE_FAULT;
8105 	}
8106 
8107 	trace_kvm_msr_write(msr_index, data);
8108 	return X86EMUL_CONTINUE;
8109 }
8110 
8111 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8112 			    u32 msr_index, u64 *pdata)
8113 {
8114 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8115 }
8116 
8117 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
8118 			      u32 pmc)
8119 {
8120 	if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
8121 		return 0;
8122 	return -EINVAL;
8123 }
8124 
8125 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8126 			     u32 pmc, u64 *pdata)
8127 {
8128 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8129 }
8130 
8131 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8132 {
8133 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
8134 }
8135 
8136 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8137 			      struct x86_instruction_info *info,
8138 			      enum x86_intercept_stage stage)
8139 {
8140 	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8141 					    &ctxt->exception);
8142 }
8143 
8144 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8145 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8146 			      bool exact_only)
8147 {
8148 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8149 }
8150 
8151 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
8152 {
8153 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
8154 }
8155 
8156 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8157 {
8158 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8159 }
8160 
8161 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8162 {
8163 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8164 }
8165 
8166 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8167 {
8168 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8169 }
8170 
8171 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8172 {
8173 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8174 }
8175 
8176 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8177 {
8178 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8179 }
8180 
8181 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8182 {
8183 	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8184 }
8185 
8186 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8187 {
8188 	return is_smm(emul_to_vcpu(ctxt));
8189 }
8190 
8191 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8192 {
8193 	return is_guest_mode(emul_to_vcpu(ctxt));
8194 }
8195 
8196 #ifndef CONFIG_KVM_SMM
8197 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8198 {
8199 	WARN_ON_ONCE(1);
8200 	return X86EMUL_UNHANDLEABLE;
8201 }
8202 #endif
8203 
8204 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8205 {
8206 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8207 }
8208 
8209 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8210 {
8211 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8212 }
8213 
8214 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8215 {
8216 	struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8217 
8218 	if (!kvm->vm_bugged)
8219 		kvm_vm_bugged(kvm);
8220 }
8221 
8222 static const struct x86_emulate_ops emulate_ops = {
8223 	.vm_bugged           = emulator_vm_bugged,
8224 	.read_gpr            = emulator_read_gpr,
8225 	.write_gpr           = emulator_write_gpr,
8226 	.read_std            = emulator_read_std,
8227 	.write_std           = emulator_write_std,
8228 	.fetch               = kvm_fetch_guest_virt,
8229 	.read_emulated       = emulator_read_emulated,
8230 	.write_emulated      = emulator_write_emulated,
8231 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
8232 	.invlpg              = emulator_invlpg,
8233 	.pio_in_emulated     = emulator_pio_in_emulated,
8234 	.pio_out_emulated    = emulator_pio_out_emulated,
8235 	.get_segment         = emulator_get_segment,
8236 	.set_segment         = emulator_set_segment,
8237 	.get_cached_segment_base = emulator_get_cached_segment_base,
8238 	.get_gdt             = emulator_get_gdt,
8239 	.get_idt	     = emulator_get_idt,
8240 	.set_gdt             = emulator_set_gdt,
8241 	.set_idt	     = emulator_set_idt,
8242 	.get_cr              = emulator_get_cr,
8243 	.set_cr              = emulator_set_cr,
8244 	.cpl                 = emulator_get_cpl,
8245 	.get_dr              = emulator_get_dr,
8246 	.set_dr              = emulator_set_dr,
8247 	.set_msr_with_filter = emulator_set_msr_with_filter,
8248 	.get_msr_with_filter = emulator_get_msr_with_filter,
8249 	.get_msr             = emulator_get_msr,
8250 	.check_pmc	     = emulator_check_pmc,
8251 	.read_pmc            = emulator_read_pmc,
8252 	.halt                = emulator_halt,
8253 	.wbinvd              = emulator_wbinvd,
8254 	.fix_hypercall       = emulator_fix_hypercall,
8255 	.intercept           = emulator_intercept,
8256 	.get_cpuid           = emulator_get_cpuid,
8257 	.guest_has_long_mode = emulator_guest_has_long_mode,
8258 	.guest_has_movbe     = emulator_guest_has_movbe,
8259 	.guest_has_fxsr      = emulator_guest_has_fxsr,
8260 	.guest_has_rdpid     = emulator_guest_has_rdpid,
8261 	.set_nmi_mask        = emulator_set_nmi_mask,
8262 	.is_smm              = emulator_is_smm,
8263 	.is_guest_mode       = emulator_is_guest_mode,
8264 	.leave_smm           = emulator_leave_smm,
8265 	.triple_fault        = emulator_triple_fault,
8266 	.set_xcr             = emulator_set_xcr,
8267 };
8268 
8269 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8270 {
8271 	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8272 	/*
8273 	 * an sti; sti; sequence only disable interrupts for the first
8274 	 * instruction. So, if the last instruction, be it emulated or
8275 	 * not, left the system with the INT_STI flag enabled, it
8276 	 * means that the last instruction is an sti. We should not
8277 	 * leave the flag on in this case. The same goes for mov ss
8278 	 */
8279 	if (int_shadow & mask)
8280 		mask = 0;
8281 	if (unlikely(int_shadow || mask)) {
8282 		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8283 		if (!mask)
8284 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8285 	}
8286 }
8287 
8288 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8289 {
8290 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8291 
8292 	if (ctxt->exception.vector == PF_VECTOR)
8293 		kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8294 	else if (ctxt->exception.error_code_valid)
8295 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8296 				      ctxt->exception.error_code);
8297 	else
8298 		kvm_queue_exception(vcpu, ctxt->exception.vector);
8299 }
8300 
8301 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8302 {
8303 	struct x86_emulate_ctxt *ctxt;
8304 
8305 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8306 	if (!ctxt) {
8307 		pr_err("failed to allocate vcpu's emulator\n");
8308 		return NULL;
8309 	}
8310 
8311 	ctxt->vcpu = vcpu;
8312 	ctxt->ops = &emulate_ops;
8313 	vcpu->arch.emulate_ctxt = ctxt;
8314 
8315 	return ctxt;
8316 }
8317 
8318 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8319 {
8320 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8321 	int cs_db, cs_l;
8322 
8323 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8324 
8325 	ctxt->gpa_available = false;
8326 	ctxt->eflags = kvm_get_rflags(vcpu);
8327 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8328 
8329 	ctxt->eip = kvm_rip_read(vcpu);
8330 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
8331 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
8332 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
8333 		     cs_db				? X86EMUL_MODE_PROT32 :
8334 							  X86EMUL_MODE_PROT16;
8335 	ctxt->interruptibility = 0;
8336 	ctxt->have_exception = false;
8337 	ctxt->exception.vector = -1;
8338 	ctxt->perm_ok = false;
8339 
8340 	init_decode_cache(ctxt);
8341 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8342 }
8343 
8344 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8345 {
8346 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8347 	int ret;
8348 
8349 	init_emulate_ctxt(vcpu);
8350 
8351 	ctxt->op_bytes = 2;
8352 	ctxt->ad_bytes = 2;
8353 	ctxt->_eip = ctxt->eip + inc_eip;
8354 	ret = emulate_int_real(ctxt, irq);
8355 
8356 	if (ret != X86EMUL_CONTINUE) {
8357 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8358 	} else {
8359 		ctxt->eip = ctxt->_eip;
8360 		kvm_rip_write(vcpu, ctxt->eip);
8361 		kvm_set_rflags(vcpu, ctxt->eflags);
8362 	}
8363 }
8364 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8365 
8366 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8367 					   u8 ndata, u8 *insn_bytes, u8 insn_size)
8368 {
8369 	struct kvm_run *run = vcpu->run;
8370 	u64 info[5];
8371 	u8 info_start;
8372 
8373 	/*
8374 	 * Zero the whole array used to retrieve the exit info, as casting to
8375 	 * u32 for select entries will leave some chunks uninitialized.
8376 	 */
8377 	memset(&info, 0, sizeof(info));
8378 
8379 	static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8380 					   &info[2], (u32 *)&info[3],
8381 					   (u32 *)&info[4]);
8382 
8383 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8384 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8385 
8386 	/*
8387 	 * There's currently space for 13 entries, but 5 are used for the exit
8388 	 * reason and info.  Restrict to 4 to reduce the maintenance burden
8389 	 * when expanding kvm_run.emulation_failure in the future.
8390 	 */
8391 	if (WARN_ON_ONCE(ndata > 4))
8392 		ndata = 4;
8393 
8394 	/* Always include the flags as a 'data' entry. */
8395 	info_start = 1;
8396 	run->emulation_failure.flags = 0;
8397 
8398 	if (insn_size) {
8399 		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8400 			      sizeof(run->emulation_failure.insn_bytes) != 16));
8401 		info_start += 2;
8402 		run->emulation_failure.flags |=
8403 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8404 		run->emulation_failure.insn_size = insn_size;
8405 		memset(run->emulation_failure.insn_bytes, 0x90,
8406 		       sizeof(run->emulation_failure.insn_bytes));
8407 		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8408 	}
8409 
8410 	memcpy(&run->internal.data[info_start], info, sizeof(info));
8411 	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8412 	       ndata * sizeof(data[0]));
8413 
8414 	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8415 }
8416 
8417 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8418 {
8419 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8420 
8421 	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8422 				       ctxt->fetch.end - ctxt->fetch.data);
8423 }
8424 
8425 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8426 					  u8 ndata)
8427 {
8428 	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8429 }
8430 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8431 
8432 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8433 {
8434 	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8435 }
8436 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8437 
8438 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8439 {
8440 	struct kvm *kvm = vcpu->kvm;
8441 
8442 	++vcpu->stat.insn_emulation_fail;
8443 	trace_kvm_emulate_insn_failed(vcpu);
8444 
8445 	if (emulation_type & EMULTYPE_VMWARE_GP) {
8446 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8447 		return 1;
8448 	}
8449 
8450 	if (kvm->arch.exit_on_emulation_error ||
8451 	    (emulation_type & EMULTYPE_SKIP)) {
8452 		prepare_emulation_ctxt_failure_exit(vcpu);
8453 		return 0;
8454 	}
8455 
8456 	kvm_queue_exception(vcpu, UD_VECTOR);
8457 
8458 	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8459 		prepare_emulation_ctxt_failure_exit(vcpu);
8460 		return 0;
8461 	}
8462 
8463 	return 1;
8464 }
8465 
8466 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8467 				  bool write_fault_to_shadow_pgtable,
8468 				  int emulation_type)
8469 {
8470 	gpa_t gpa = cr2_or_gpa;
8471 	kvm_pfn_t pfn;
8472 
8473 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8474 		return false;
8475 
8476 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8477 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8478 		return false;
8479 
8480 	if (!vcpu->arch.mmu->root_role.direct) {
8481 		/*
8482 		 * Write permission should be allowed since only
8483 		 * write access need to be emulated.
8484 		 */
8485 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8486 
8487 		/*
8488 		 * If the mapping is invalid in guest, let cpu retry
8489 		 * it to generate fault.
8490 		 */
8491 		if (gpa == INVALID_GPA)
8492 			return true;
8493 	}
8494 
8495 	/*
8496 	 * Do not retry the unhandleable instruction if it faults on the
8497 	 * readonly host memory, otherwise it will goto a infinite loop:
8498 	 * retry instruction -> write #PF -> emulation fail -> retry
8499 	 * instruction -> ...
8500 	 */
8501 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8502 
8503 	/*
8504 	 * If the instruction failed on the error pfn, it can not be fixed,
8505 	 * report the error to userspace.
8506 	 */
8507 	if (is_error_noslot_pfn(pfn))
8508 		return false;
8509 
8510 	kvm_release_pfn_clean(pfn);
8511 
8512 	/* The instructions are well-emulated on direct mmu. */
8513 	if (vcpu->arch.mmu->root_role.direct) {
8514 		unsigned int indirect_shadow_pages;
8515 
8516 		write_lock(&vcpu->kvm->mmu_lock);
8517 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8518 		write_unlock(&vcpu->kvm->mmu_lock);
8519 
8520 		if (indirect_shadow_pages)
8521 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8522 
8523 		return true;
8524 	}
8525 
8526 	/*
8527 	 * if emulation was due to access to shadowed page table
8528 	 * and it failed try to unshadow page and re-enter the
8529 	 * guest to let CPU execute the instruction.
8530 	 */
8531 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8532 
8533 	/*
8534 	 * If the access faults on its page table, it can not
8535 	 * be fixed by unprotecting shadow page and it should
8536 	 * be reported to userspace.
8537 	 */
8538 	return !write_fault_to_shadow_pgtable;
8539 }
8540 
8541 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8542 			      gpa_t cr2_or_gpa,  int emulation_type)
8543 {
8544 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8545 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8546 
8547 	last_retry_eip = vcpu->arch.last_retry_eip;
8548 	last_retry_addr = vcpu->arch.last_retry_addr;
8549 
8550 	/*
8551 	 * If the emulation is caused by #PF and it is non-page_table
8552 	 * writing instruction, it means the VM-EXIT is caused by shadow
8553 	 * page protected, we can zap the shadow page and retry this
8554 	 * instruction directly.
8555 	 *
8556 	 * Note: if the guest uses a non-page-table modifying instruction
8557 	 * on the PDE that points to the instruction, then we will unmap
8558 	 * the instruction and go to an infinite loop. So, we cache the
8559 	 * last retried eip and the last fault address, if we meet the eip
8560 	 * and the address again, we can break out of the potential infinite
8561 	 * loop.
8562 	 */
8563 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8564 
8565 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8566 		return false;
8567 
8568 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8569 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8570 		return false;
8571 
8572 	if (x86_page_table_writing_insn(ctxt))
8573 		return false;
8574 
8575 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8576 		return false;
8577 
8578 	vcpu->arch.last_retry_eip = ctxt->eip;
8579 	vcpu->arch.last_retry_addr = cr2_or_gpa;
8580 
8581 	if (!vcpu->arch.mmu->root_role.direct)
8582 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8583 
8584 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8585 
8586 	return true;
8587 }
8588 
8589 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8590 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8591 
8592 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8593 				unsigned long *db)
8594 {
8595 	u32 dr6 = 0;
8596 	int i;
8597 	u32 enable, rwlen;
8598 
8599 	enable = dr7;
8600 	rwlen = dr7 >> 16;
8601 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8602 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8603 			dr6 |= (1 << i);
8604 	return dr6;
8605 }
8606 
8607 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8608 {
8609 	struct kvm_run *kvm_run = vcpu->run;
8610 
8611 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8612 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8613 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8614 		kvm_run->debug.arch.exception = DB_VECTOR;
8615 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
8616 		return 0;
8617 	}
8618 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8619 	return 1;
8620 }
8621 
8622 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8623 {
8624 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8625 	int r;
8626 
8627 	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8628 	if (unlikely(!r))
8629 		return 0;
8630 
8631 	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8632 
8633 	/*
8634 	 * rflags is the old, "raw" value of the flags.  The new value has
8635 	 * not been saved yet.
8636 	 *
8637 	 * This is correct even for TF set by the guest, because "the
8638 	 * processor will not generate this exception after the instruction
8639 	 * that sets the TF flag".
8640 	 */
8641 	if (unlikely(rflags & X86_EFLAGS_TF))
8642 		r = kvm_vcpu_do_singlestep(vcpu);
8643 	return r;
8644 }
8645 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8646 
8647 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8648 {
8649 	u32 shadow;
8650 
8651 	if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8652 		return true;
8653 
8654 	/*
8655 	 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
8656 	 * but AMD CPUs do not.  MOV/POP SS blocking is rare, check that first
8657 	 * to avoid the relatively expensive CPUID lookup.
8658 	 */
8659 	shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8660 	return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
8661 	       guest_cpuid_is_intel(vcpu);
8662 }
8663 
8664 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8665 					   int emulation_type, int *r)
8666 {
8667 	WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8668 
8669 	/*
8670 	 * Do not check for code breakpoints if hardware has already done the
8671 	 * checks, as inferred from the emulation type.  On NO_DECODE and SKIP,
8672 	 * the instruction has passed all exception checks, and all intercepted
8673 	 * exceptions that trigger emulation have lower priority than code
8674 	 * breakpoints, i.e. the fact that the intercepted exception occurred
8675 	 * means any code breakpoints have already been serviced.
8676 	 *
8677 	 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8678 	 * hardware has checked the RIP of the magic prefix, but not the RIP of
8679 	 * the instruction being emulated.  The intent of forced emulation is
8680 	 * to behave as if KVM intercepted the instruction without an exception
8681 	 * and without a prefix.
8682 	 */
8683 	if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8684 			      EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8685 		return false;
8686 
8687 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8688 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8689 		struct kvm_run *kvm_run = vcpu->run;
8690 		unsigned long eip = kvm_get_linear_rip(vcpu);
8691 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8692 					   vcpu->arch.guest_debug_dr7,
8693 					   vcpu->arch.eff_db);
8694 
8695 		if (dr6 != 0) {
8696 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8697 			kvm_run->debug.arch.pc = eip;
8698 			kvm_run->debug.arch.exception = DB_VECTOR;
8699 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
8700 			*r = 0;
8701 			return true;
8702 		}
8703 	}
8704 
8705 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8706 	    !kvm_is_code_breakpoint_inhibited(vcpu)) {
8707 		unsigned long eip = kvm_get_linear_rip(vcpu);
8708 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8709 					   vcpu->arch.dr7,
8710 					   vcpu->arch.db);
8711 
8712 		if (dr6 != 0) {
8713 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8714 			*r = 1;
8715 			return true;
8716 		}
8717 	}
8718 
8719 	return false;
8720 }
8721 
8722 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8723 {
8724 	switch (ctxt->opcode_len) {
8725 	case 1:
8726 		switch (ctxt->b) {
8727 		case 0xe4:	/* IN */
8728 		case 0xe5:
8729 		case 0xec:
8730 		case 0xed:
8731 		case 0xe6:	/* OUT */
8732 		case 0xe7:
8733 		case 0xee:
8734 		case 0xef:
8735 		case 0x6c:	/* INS */
8736 		case 0x6d:
8737 		case 0x6e:	/* OUTS */
8738 		case 0x6f:
8739 			return true;
8740 		}
8741 		break;
8742 	case 2:
8743 		switch (ctxt->b) {
8744 		case 0x33:	/* RDPMC */
8745 			return true;
8746 		}
8747 		break;
8748 	}
8749 
8750 	return false;
8751 }
8752 
8753 /*
8754  * Decode an instruction for emulation.  The caller is responsible for handling
8755  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
8756  * (and wrong) when emulating on an intercepted fault-like exception[*], as
8757  * code breakpoints have higher priority and thus have already been done by
8758  * hardware.
8759  *
8760  * [*] Except #MC, which is higher priority, but KVM should never emulate in
8761  *     response to a machine check.
8762  */
8763 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8764 				    void *insn, int insn_len)
8765 {
8766 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8767 	int r;
8768 
8769 	init_emulate_ctxt(vcpu);
8770 
8771 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8772 
8773 	trace_kvm_emulate_insn_start(vcpu);
8774 	++vcpu->stat.insn_emulation;
8775 
8776 	return r;
8777 }
8778 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8779 
8780 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8781 			    int emulation_type, void *insn, int insn_len)
8782 {
8783 	int r;
8784 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8785 	bool writeback = true;
8786 	bool write_fault_to_spt;
8787 
8788 	if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8789 		return 1;
8790 
8791 	vcpu->arch.l1tf_flush_l1d = true;
8792 
8793 	/*
8794 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
8795 	 * never reused.
8796 	 */
8797 	write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8798 	vcpu->arch.write_fault_to_shadow_pgtable = false;
8799 
8800 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8801 		kvm_clear_exception_queue(vcpu);
8802 
8803 		/*
8804 		 * Return immediately if RIP hits a code breakpoint, such #DBs
8805 		 * are fault-like and are higher priority than any faults on
8806 		 * the code fetch itself.
8807 		 */
8808 		if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
8809 			return r;
8810 
8811 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
8812 						    insn, insn_len);
8813 		if (r != EMULATION_OK)  {
8814 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
8815 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8816 				kvm_queue_exception(vcpu, UD_VECTOR);
8817 				return 1;
8818 			}
8819 			if (reexecute_instruction(vcpu, cr2_or_gpa,
8820 						  write_fault_to_spt,
8821 						  emulation_type))
8822 				return 1;
8823 
8824 			if (ctxt->have_exception &&
8825 			    !(emulation_type & EMULTYPE_SKIP)) {
8826 				/*
8827 				 * #UD should result in just EMULATION_FAILED, and trap-like
8828 				 * exception should not be encountered during decode.
8829 				 */
8830 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8831 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8832 				inject_emulated_exception(vcpu);
8833 				return 1;
8834 			}
8835 			return handle_emulation_failure(vcpu, emulation_type);
8836 		}
8837 	}
8838 
8839 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8840 	    !is_vmware_backdoor_opcode(ctxt)) {
8841 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8842 		return 1;
8843 	}
8844 
8845 	/*
8846 	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8847 	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8848 	 * The caller is responsible for updating interruptibility state and
8849 	 * injecting single-step #DBs.
8850 	 */
8851 	if (emulation_type & EMULTYPE_SKIP) {
8852 		if (ctxt->mode != X86EMUL_MODE_PROT64)
8853 			ctxt->eip = (u32)ctxt->_eip;
8854 		else
8855 			ctxt->eip = ctxt->_eip;
8856 
8857 		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8858 			r = 1;
8859 			goto writeback;
8860 		}
8861 
8862 		kvm_rip_write(vcpu, ctxt->eip);
8863 		if (ctxt->eflags & X86_EFLAGS_RF)
8864 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8865 		return 1;
8866 	}
8867 
8868 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8869 		return 1;
8870 
8871 	/* this is needed for vmware backdoor interface to work since it
8872 	   changes registers values  during IO operation */
8873 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8874 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8875 		emulator_invalidate_register_cache(ctxt);
8876 	}
8877 
8878 restart:
8879 	if (emulation_type & EMULTYPE_PF) {
8880 		/* Save the faulting GPA (cr2) in the address field */
8881 		ctxt->exception.address = cr2_or_gpa;
8882 
8883 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
8884 		if (vcpu->arch.mmu->root_role.direct) {
8885 			ctxt->gpa_available = true;
8886 			ctxt->gpa_val = cr2_or_gpa;
8887 		}
8888 	} else {
8889 		/* Sanitize the address out of an abundance of paranoia. */
8890 		ctxt->exception.address = 0;
8891 	}
8892 
8893 	r = x86_emulate_insn(ctxt);
8894 
8895 	if (r == EMULATION_INTERCEPTED)
8896 		return 1;
8897 
8898 	if (r == EMULATION_FAILED) {
8899 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8900 					emulation_type))
8901 			return 1;
8902 
8903 		return handle_emulation_failure(vcpu, emulation_type);
8904 	}
8905 
8906 	if (ctxt->have_exception) {
8907 		WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
8908 		vcpu->mmio_needed = false;
8909 		r = 1;
8910 		inject_emulated_exception(vcpu);
8911 	} else if (vcpu->arch.pio.count) {
8912 		if (!vcpu->arch.pio.in) {
8913 			/* FIXME: return into emulator if single-stepping.  */
8914 			vcpu->arch.pio.count = 0;
8915 		} else {
8916 			writeback = false;
8917 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
8918 		}
8919 		r = 0;
8920 	} else if (vcpu->mmio_needed) {
8921 		++vcpu->stat.mmio_exits;
8922 
8923 		if (!vcpu->mmio_is_write)
8924 			writeback = false;
8925 		r = 0;
8926 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8927 	} else if (vcpu->arch.complete_userspace_io) {
8928 		writeback = false;
8929 		r = 0;
8930 	} else if (r == EMULATION_RESTART)
8931 		goto restart;
8932 	else
8933 		r = 1;
8934 
8935 writeback:
8936 	if (writeback) {
8937 		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8938 		toggle_interruptibility(vcpu, ctxt->interruptibility);
8939 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8940 
8941 		/*
8942 		 * Note, EXCPT_DB is assumed to be fault-like as the emulator
8943 		 * only supports code breakpoints and general detect #DB, both
8944 		 * of which are fault-like.
8945 		 */
8946 		if (!ctxt->have_exception ||
8947 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8948 			kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8949 			if (ctxt->is_branch)
8950 				kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
8951 			kvm_rip_write(vcpu, ctxt->eip);
8952 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8953 				r = kvm_vcpu_do_singlestep(vcpu);
8954 			static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
8955 			__kvm_set_rflags(vcpu, ctxt->eflags);
8956 		}
8957 
8958 		/*
8959 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8960 		 * do nothing, and it will be requested again as soon as
8961 		 * the shadow expires.  But we still need to check here,
8962 		 * because POPF has no interrupt shadow.
8963 		 */
8964 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8965 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8966 	} else
8967 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8968 
8969 	return r;
8970 }
8971 
8972 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8973 {
8974 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8975 }
8976 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8977 
8978 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8979 					void *insn, int insn_len)
8980 {
8981 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8982 }
8983 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8984 
8985 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8986 {
8987 	vcpu->arch.pio.count = 0;
8988 	return 1;
8989 }
8990 
8991 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8992 {
8993 	vcpu->arch.pio.count = 0;
8994 
8995 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8996 		return 1;
8997 
8998 	return kvm_skip_emulated_instruction(vcpu);
8999 }
9000 
9001 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9002 			    unsigned short port)
9003 {
9004 	unsigned long val = kvm_rax_read(vcpu);
9005 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9006 
9007 	if (ret)
9008 		return ret;
9009 
9010 	/*
9011 	 * Workaround userspace that relies on old KVM behavior of %rip being
9012 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9013 	 */
9014 	if (port == 0x7e &&
9015 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9016 		vcpu->arch.complete_userspace_io =
9017 			complete_fast_pio_out_port_0x7e;
9018 		kvm_skip_emulated_instruction(vcpu);
9019 	} else {
9020 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9021 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9022 	}
9023 	return 0;
9024 }
9025 
9026 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9027 {
9028 	unsigned long val;
9029 
9030 	/* We should only ever be called with arch.pio.count equal to 1 */
9031 	BUG_ON(vcpu->arch.pio.count != 1);
9032 
9033 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9034 		vcpu->arch.pio.count = 0;
9035 		return 1;
9036 	}
9037 
9038 	/* For size less than 4 we merge, else we zero extend */
9039 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9040 
9041 	complete_emulator_pio_in(vcpu, &val);
9042 	kvm_rax_write(vcpu, val);
9043 
9044 	return kvm_skip_emulated_instruction(vcpu);
9045 }
9046 
9047 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9048 			   unsigned short port)
9049 {
9050 	unsigned long val;
9051 	int ret;
9052 
9053 	/* For size less than 4 we merge, else we zero extend */
9054 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9055 
9056 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
9057 	if (ret) {
9058 		kvm_rax_write(vcpu, val);
9059 		return ret;
9060 	}
9061 
9062 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9063 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9064 
9065 	return 0;
9066 }
9067 
9068 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9069 {
9070 	int ret;
9071 
9072 	if (in)
9073 		ret = kvm_fast_pio_in(vcpu, size, port);
9074 	else
9075 		ret = kvm_fast_pio_out(vcpu, size, port);
9076 	return ret && kvm_skip_emulated_instruction(vcpu);
9077 }
9078 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9079 
9080 static int kvmclock_cpu_down_prep(unsigned int cpu)
9081 {
9082 	__this_cpu_write(cpu_tsc_khz, 0);
9083 	return 0;
9084 }
9085 
9086 static void tsc_khz_changed(void *data)
9087 {
9088 	struct cpufreq_freqs *freq = data;
9089 	unsigned long khz = 0;
9090 
9091 	WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9092 
9093 	if (data)
9094 		khz = freq->new;
9095 	else
9096 		khz = cpufreq_quick_get(raw_smp_processor_id());
9097 	if (!khz)
9098 		khz = tsc_khz;
9099 	__this_cpu_write(cpu_tsc_khz, khz);
9100 }
9101 
9102 #ifdef CONFIG_X86_64
9103 static void kvm_hyperv_tsc_notifier(void)
9104 {
9105 	struct kvm *kvm;
9106 	int cpu;
9107 
9108 	mutex_lock(&kvm_lock);
9109 	list_for_each_entry(kvm, &vm_list, vm_list)
9110 		kvm_make_mclock_inprogress_request(kvm);
9111 
9112 	/* no guest entries from this point */
9113 	hyperv_stop_tsc_emulation();
9114 
9115 	/* TSC frequency always matches when on Hyper-V */
9116 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9117 		for_each_present_cpu(cpu)
9118 			per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9119 	}
9120 	kvm_caps.max_guest_tsc_khz = tsc_khz;
9121 
9122 	list_for_each_entry(kvm, &vm_list, vm_list) {
9123 		__kvm_start_pvclock_update(kvm);
9124 		pvclock_update_vm_gtod_copy(kvm);
9125 		kvm_end_pvclock_update(kvm);
9126 	}
9127 
9128 	mutex_unlock(&kvm_lock);
9129 }
9130 #endif
9131 
9132 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9133 {
9134 	struct kvm *kvm;
9135 	struct kvm_vcpu *vcpu;
9136 	int send_ipi = 0;
9137 	unsigned long i;
9138 
9139 	/*
9140 	 * We allow guests to temporarily run on slowing clocks,
9141 	 * provided we notify them after, or to run on accelerating
9142 	 * clocks, provided we notify them before.  Thus time never
9143 	 * goes backwards.
9144 	 *
9145 	 * However, we have a problem.  We can't atomically update
9146 	 * the frequency of a given CPU from this function; it is
9147 	 * merely a notifier, which can be called from any CPU.
9148 	 * Changing the TSC frequency at arbitrary points in time
9149 	 * requires a recomputation of local variables related to
9150 	 * the TSC for each VCPU.  We must flag these local variables
9151 	 * to be updated and be sure the update takes place with the
9152 	 * new frequency before any guests proceed.
9153 	 *
9154 	 * Unfortunately, the combination of hotplug CPU and frequency
9155 	 * change creates an intractable locking scenario; the order
9156 	 * of when these callouts happen is undefined with respect to
9157 	 * CPU hotplug, and they can race with each other.  As such,
9158 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9159 	 * undefined; you can actually have a CPU frequency change take
9160 	 * place in between the computation of X and the setting of the
9161 	 * variable.  To protect against this problem, all updates of
9162 	 * the per_cpu tsc_khz variable are done in an interrupt
9163 	 * protected IPI, and all callers wishing to update the value
9164 	 * must wait for a synchronous IPI to complete (which is trivial
9165 	 * if the caller is on the CPU already).  This establishes the
9166 	 * necessary total order on variable updates.
9167 	 *
9168 	 * Note that because a guest time update may take place
9169 	 * anytime after the setting of the VCPU's request bit, the
9170 	 * correct TSC value must be set before the request.  However,
9171 	 * to ensure the update actually makes it to any guest which
9172 	 * starts running in hardware virtualization between the set
9173 	 * and the acquisition of the spinlock, we must also ping the
9174 	 * CPU after setting the request bit.
9175 	 *
9176 	 */
9177 
9178 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9179 
9180 	mutex_lock(&kvm_lock);
9181 	list_for_each_entry(kvm, &vm_list, vm_list) {
9182 		kvm_for_each_vcpu(i, vcpu, kvm) {
9183 			if (vcpu->cpu != cpu)
9184 				continue;
9185 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9186 			if (vcpu->cpu != raw_smp_processor_id())
9187 				send_ipi = 1;
9188 		}
9189 	}
9190 	mutex_unlock(&kvm_lock);
9191 
9192 	if (freq->old < freq->new && send_ipi) {
9193 		/*
9194 		 * We upscale the frequency.  Must make the guest
9195 		 * doesn't see old kvmclock values while running with
9196 		 * the new frequency, otherwise we risk the guest sees
9197 		 * time go backwards.
9198 		 *
9199 		 * In case we update the frequency for another cpu
9200 		 * (which might be in guest context) send an interrupt
9201 		 * to kick the cpu out of guest context.  Next time
9202 		 * guest context is entered kvmclock will be updated,
9203 		 * so the guest will not see stale values.
9204 		 */
9205 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9206 	}
9207 }
9208 
9209 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9210 				     void *data)
9211 {
9212 	struct cpufreq_freqs *freq = data;
9213 	int cpu;
9214 
9215 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9216 		return 0;
9217 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9218 		return 0;
9219 
9220 	for_each_cpu(cpu, freq->policy->cpus)
9221 		__kvmclock_cpufreq_notifier(freq, cpu);
9222 
9223 	return 0;
9224 }
9225 
9226 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9227 	.notifier_call  = kvmclock_cpufreq_notifier
9228 };
9229 
9230 static int kvmclock_cpu_online(unsigned int cpu)
9231 {
9232 	tsc_khz_changed(NULL);
9233 	return 0;
9234 }
9235 
9236 static void kvm_timer_init(void)
9237 {
9238 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9239 		max_tsc_khz = tsc_khz;
9240 
9241 		if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9242 			struct cpufreq_policy *policy;
9243 			int cpu;
9244 
9245 			cpu = get_cpu();
9246 			policy = cpufreq_cpu_get(cpu);
9247 			if (policy) {
9248 				if (policy->cpuinfo.max_freq)
9249 					max_tsc_khz = policy->cpuinfo.max_freq;
9250 				cpufreq_cpu_put(policy);
9251 			}
9252 			put_cpu();
9253 		}
9254 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9255 					  CPUFREQ_TRANSITION_NOTIFIER);
9256 
9257 		cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9258 				  kvmclock_cpu_online, kvmclock_cpu_down_prep);
9259 	}
9260 }
9261 
9262 #ifdef CONFIG_X86_64
9263 static void pvclock_gtod_update_fn(struct work_struct *work)
9264 {
9265 	struct kvm *kvm;
9266 	struct kvm_vcpu *vcpu;
9267 	unsigned long i;
9268 
9269 	mutex_lock(&kvm_lock);
9270 	list_for_each_entry(kvm, &vm_list, vm_list)
9271 		kvm_for_each_vcpu(i, vcpu, kvm)
9272 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9273 	atomic_set(&kvm_guest_has_master_clock, 0);
9274 	mutex_unlock(&kvm_lock);
9275 }
9276 
9277 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9278 
9279 /*
9280  * Indirection to move queue_work() out of the tk_core.seq write held
9281  * region to prevent possible deadlocks against time accessors which
9282  * are invoked with work related locks held.
9283  */
9284 static void pvclock_irq_work_fn(struct irq_work *w)
9285 {
9286 	queue_work(system_long_wq, &pvclock_gtod_work);
9287 }
9288 
9289 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9290 
9291 /*
9292  * Notification about pvclock gtod data update.
9293  */
9294 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9295 			       void *priv)
9296 {
9297 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9298 	struct timekeeper *tk = priv;
9299 
9300 	update_pvclock_gtod(tk);
9301 
9302 	/*
9303 	 * Disable master clock if host does not trust, or does not use,
9304 	 * TSC based clocksource. Delegate queue_work() to irq_work as
9305 	 * this is invoked with tk_core.seq write held.
9306 	 */
9307 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9308 	    atomic_read(&kvm_guest_has_master_clock) != 0)
9309 		irq_work_queue(&pvclock_irq_work);
9310 	return 0;
9311 }
9312 
9313 static struct notifier_block pvclock_gtod_notifier = {
9314 	.notifier_call = pvclock_gtod_notify,
9315 };
9316 #endif
9317 
9318 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9319 {
9320 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9321 
9322 #define __KVM_X86_OP(func) \
9323 	static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9324 #define KVM_X86_OP(func) \
9325 	WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9326 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9327 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9328 	static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9329 					   (void *)__static_call_return0);
9330 #include <asm/kvm-x86-ops.h>
9331 #undef __KVM_X86_OP
9332 
9333 	kvm_pmu_ops_update(ops->pmu_ops);
9334 }
9335 
9336 static int kvm_x86_check_processor_compatibility(void)
9337 {
9338 	int cpu = smp_processor_id();
9339 	struct cpuinfo_x86 *c = &cpu_data(cpu);
9340 
9341 	/*
9342 	 * Compatibility checks are done when loading KVM and when enabling
9343 	 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9344 	 * compatible, i.e. KVM should never perform a compatibility check on
9345 	 * an offline CPU.
9346 	 */
9347 	WARN_ON(!cpu_online(cpu));
9348 
9349 	if (__cr4_reserved_bits(cpu_has, c) !=
9350 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9351 		return -EIO;
9352 
9353 	return static_call(kvm_x86_check_processor_compatibility)();
9354 }
9355 
9356 static void kvm_x86_check_cpu_compat(void *ret)
9357 {
9358 	*(int *)ret = kvm_x86_check_processor_compatibility();
9359 }
9360 
9361 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9362 {
9363 	u64 host_pat;
9364 	int r, cpu;
9365 
9366 	if (kvm_x86_ops.hardware_enable) {
9367 		pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9368 		return -EEXIST;
9369 	}
9370 
9371 	/*
9372 	 * KVM explicitly assumes that the guest has an FPU and
9373 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9374 	 * vCPU's FPU state as a fxregs_state struct.
9375 	 */
9376 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9377 		pr_err("inadequate fpu\n");
9378 		return -EOPNOTSUPP;
9379 	}
9380 
9381 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9382 		pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9383 		return -EOPNOTSUPP;
9384 	}
9385 
9386 	/*
9387 	 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9388 	 * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9389 	 * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9390 	 * with an exception.  PAT[0] is set to WB on RESET and also by the
9391 	 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9392 	 */
9393 	if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9394 	    (host_pat & GENMASK(2, 0)) != 6) {
9395 		pr_err("host PAT[0] is not WB\n");
9396 		return -EIO;
9397 	}
9398 
9399 	x86_emulator_cache = kvm_alloc_emulator_cache();
9400 	if (!x86_emulator_cache) {
9401 		pr_err("failed to allocate cache for x86 emulator\n");
9402 		return -ENOMEM;
9403 	}
9404 
9405 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9406 	if (!user_return_msrs) {
9407 		pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9408 		r = -ENOMEM;
9409 		goto out_free_x86_emulator_cache;
9410 	}
9411 	kvm_nr_uret_msrs = 0;
9412 
9413 	r = kvm_mmu_vendor_module_init();
9414 	if (r)
9415 		goto out_free_percpu;
9416 
9417 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9418 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9419 		kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9420 	}
9421 
9422 	rdmsrl_safe(MSR_EFER, &host_efer);
9423 
9424 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9425 		rdmsrl(MSR_IA32_XSS, host_xss);
9426 
9427 	kvm_init_pmu_capability(ops->pmu_ops);
9428 
9429 	r = ops->hardware_setup();
9430 	if (r != 0)
9431 		goto out_mmu_exit;
9432 
9433 	kvm_ops_update(ops);
9434 
9435 	for_each_online_cpu(cpu) {
9436 		smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9437 		if (r < 0)
9438 			goto out_unwind_ops;
9439 	}
9440 
9441 	/*
9442 	 * Point of no return!  DO NOT add error paths below this point unless
9443 	 * absolutely necessary, as most operations from this point forward
9444 	 * require unwinding.
9445 	 */
9446 	kvm_timer_init();
9447 
9448 	if (pi_inject_timer == -1)
9449 		pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9450 #ifdef CONFIG_X86_64
9451 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9452 
9453 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9454 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9455 #endif
9456 
9457 	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9458 
9459 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9460 		kvm_caps.supported_xss = 0;
9461 
9462 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9463 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9464 #undef __kvm_cpu_cap_has
9465 
9466 	if (kvm_caps.has_tsc_control) {
9467 		/*
9468 		 * Make sure the user can only configure tsc_khz values that
9469 		 * fit into a signed integer.
9470 		 * A min value is not calculated because it will always
9471 		 * be 1 on all machines.
9472 		 */
9473 		u64 max = min(0x7fffffffULL,
9474 			      __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9475 		kvm_caps.max_guest_tsc_khz = max;
9476 	}
9477 	kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9478 	kvm_init_msr_list();
9479 	return 0;
9480 
9481 out_unwind_ops:
9482 	kvm_x86_ops.hardware_enable = NULL;
9483 	static_call(kvm_x86_hardware_unsetup)();
9484 out_mmu_exit:
9485 	kvm_mmu_vendor_module_exit();
9486 out_free_percpu:
9487 	free_percpu(user_return_msrs);
9488 out_free_x86_emulator_cache:
9489 	kmem_cache_destroy(x86_emulator_cache);
9490 	return r;
9491 }
9492 
9493 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9494 {
9495 	int r;
9496 
9497 	mutex_lock(&vendor_module_lock);
9498 	r = __kvm_x86_vendor_init(ops);
9499 	mutex_unlock(&vendor_module_lock);
9500 
9501 	return r;
9502 }
9503 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9504 
9505 void kvm_x86_vendor_exit(void)
9506 {
9507 	kvm_unregister_perf_callbacks();
9508 
9509 #ifdef CONFIG_X86_64
9510 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9511 		clear_hv_tscchange_cb();
9512 #endif
9513 	kvm_lapic_exit();
9514 
9515 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9516 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9517 					    CPUFREQ_TRANSITION_NOTIFIER);
9518 		cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9519 	}
9520 #ifdef CONFIG_X86_64
9521 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9522 	irq_work_sync(&pvclock_irq_work);
9523 	cancel_work_sync(&pvclock_gtod_work);
9524 #endif
9525 	static_call(kvm_x86_hardware_unsetup)();
9526 	kvm_mmu_vendor_module_exit();
9527 	free_percpu(user_return_msrs);
9528 	kmem_cache_destroy(x86_emulator_cache);
9529 #ifdef CONFIG_KVM_XEN
9530 	static_key_deferred_flush(&kvm_xen_enabled);
9531 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9532 #endif
9533 	mutex_lock(&vendor_module_lock);
9534 	kvm_x86_ops.hardware_enable = NULL;
9535 	mutex_unlock(&vendor_module_lock);
9536 }
9537 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9538 
9539 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9540 {
9541 	/*
9542 	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9543 	 * local APIC is in-kernel, the run loop will detect the non-runnable
9544 	 * state and halt the vCPU.  Exit to userspace if the local APIC is
9545 	 * managed by userspace, in which case userspace is responsible for
9546 	 * handling wake events.
9547 	 */
9548 	++vcpu->stat.halt_exits;
9549 	if (lapic_in_kernel(vcpu)) {
9550 		vcpu->arch.mp_state = state;
9551 		return 1;
9552 	} else {
9553 		vcpu->run->exit_reason = reason;
9554 		return 0;
9555 	}
9556 }
9557 
9558 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9559 {
9560 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9561 }
9562 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9563 
9564 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9565 {
9566 	int ret = kvm_skip_emulated_instruction(vcpu);
9567 	/*
9568 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9569 	 * KVM_EXIT_DEBUG here.
9570 	 */
9571 	return kvm_emulate_halt_noskip(vcpu) && ret;
9572 }
9573 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9574 
9575 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9576 {
9577 	int ret = kvm_skip_emulated_instruction(vcpu);
9578 
9579 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9580 					KVM_EXIT_AP_RESET_HOLD) && ret;
9581 }
9582 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9583 
9584 #ifdef CONFIG_X86_64
9585 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9586 			        unsigned long clock_type)
9587 {
9588 	struct kvm_clock_pairing clock_pairing;
9589 	struct timespec64 ts;
9590 	u64 cycle;
9591 	int ret;
9592 
9593 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9594 		return -KVM_EOPNOTSUPP;
9595 
9596 	/*
9597 	 * When tsc is in permanent catchup mode guests won't be able to use
9598 	 * pvclock_read_retry loop to get consistent view of pvclock
9599 	 */
9600 	if (vcpu->arch.tsc_always_catchup)
9601 		return -KVM_EOPNOTSUPP;
9602 
9603 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9604 		return -KVM_EOPNOTSUPP;
9605 
9606 	clock_pairing.sec = ts.tv_sec;
9607 	clock_pairing.nsec = ts.tv_nsec;
9608 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9609 	clock_pairing.flags = 0;
9610 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9611 
9612 	ret = 0;
9613 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9614 			    sizeof(struct kvm_clock_pairing)))
9615 		ret = -KVM_EFAULT;
9616 
9617 	return ret;
9618 }
9619 #endif
9620 
9621 /*
9622  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9623  *
9624  * @apicid - apicid of vcpu to be kicked.
9625  */
9626 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9627 {
9628 	/*
9629 	 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9630 	 * common code, e.g. for tracing. Defer initialization to the compiler.
9631 	 */
9632 	struct kvm_lapic_irq lapic_irq = {
9633 		.delivery_mode = APIC_DM_REMRD,
9634 		.dest_mode = APIC_DEST_PHYSICAL,
9635 		.shorthand = APIC_DEST_NOSHORT,
9636 		.dest_id = apicid,
9637 	};
9638 
9639 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9640 }
9641 
9642 bool kvm_apicv_activated(struct kvm *kvm)
9643 {
9644 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9645 }
9646 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9647 
9648 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9649 {
9650 	ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9651 	ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9652 
9653 	return (vm_reasons | vcpu_reasons) == 0;
9654 }
9655 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9656 
9657 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9658 				       enum kvm_apicv_inhibit reason, bool set)
9659 {
9660 	if (set)
9661 		__set_bit(reason, inhibits);
9662 	else
9663 		__clear_bit(reason, inhibits);
9664 
9665 	trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9666 }
9667 
9668 static void kvm_apicv_init(struct kvm *kvm)
9669 {
9670 	unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9671 
9672 	init_rwsem(&kvm->arch.apicv_update_lock);
9673 
9674 	set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9675 
9676 	if (!enable_apicv)
9677 		set_or_clear_apicv_inhibit(inhibits,
9678 					   APICV_INHIBIT_REASON_DISABLE, true);
9679 }
9680 
9681 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9682 {
9683 	struct kvm_vcpu *target = NULL;
9684 	struct kvm_apic_map *map;
9685 
9686 	vcpu->stat.directed_yield_attempted++;
9687 
9688 	if (single_task_running())
9689 		goto no_yield;
9690 
9691 	rcu_read_lock();
9692 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
9693 
9694 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9695 		target = map->phys_map[dest_id]->vcpu;
9696 
9697 	rcu_read_unlock();
9698 
9699 	if (!target || !READ_ONCE(target->ready))
9700 		goto no_yield;
9701 
9702 	/* Ignore requests to yield to self */
9703 	if (vcpu == target)
9704 		goto no_yield;
9705 
9706 	if (kvm_vcpu_yield_to(target) <= 0)
9707 		goto no_yield;
9708 
9709 	vcpu->stat.directed_yield_successful++;
9710 
9711 no_yield:
9712 	return;
9713 }
9714 
9715 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9716 {
9717 	u64 ret = vcpu->run->hypercall.ret;
9718 
9719 	if (!is_64_bit_mode(vcpu))
9720 		ret = (u32)ret;
9721 	kvm_rax_write(vcpu, ret);
9722 	++vcpu->stat.hypercalls;
9723 	return kvm_skip_emulated_instruction(vcpu);
9724 }
9725 
9726 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9727 {
9728 	unsigned long nr, a0, a1, a2, a3, ret;
9729 	int op_64_bit;
9730 
9731 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
9732 		return kvm_xen_hypercall(vcpu);
9733 
9734 	if (kvm_hv_hypercall_enabled(vcpu))
9735 		return kvm_hv_hypercall(vcpu);
9736 
9737 	nr = kvm_rax_read(vcpu);
9738 	a0 = kvm_rbx_read(vcpu);
9739 	a1 = kvm_rcx_read(vcpu);
9740 	a2 = kvm_rdx_read(vcpu);
9741 	a3 = kvm_rsi_read(vcpu);
9742 
9743 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
9744 
9745 	op_64_bit = is_64_bit_hypercall(vcpu);
9746 	if (!op_64_bit) {
9747 		nr &= 0xFFFFFFFF;
9748 		a0 &= 0xFFFFFFFF;
9749 		a1 &= 0xFFFFFFFF;
9750 		a2 &= 0xFFFFFFFF;
9751 		a3 &= 0xFFFFFFFF;
9752 	}
9753 
9754 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9755 		ret = -KVM_EPERM;
9756 		goto out;
9757 	}
9758 
9759 	ret = -KVM_ENOSYS;
9760 
9761 	switch (nr) {
9762 	case KVM_HC_VAPIC_POLL_IRQ:
9763 		ret = 0;
9764 		break;
9765 	case KVM_HC_KICK_CPU:
9766 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9767 			break;
9768 
9769 		kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9770 		kvm_sched_yield(vcpu, a1);
9771 		ret = 0;
9772 		break;
9773 #ifdef CONFIG_X86_64
9774 	case KVM_HC_CLOCK_PAIRING:
9775 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9776 		break;
9777 #endif
9778 	case KVM_HC_SEND_IPI:
9779 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9780 			break;
9781 
9782 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9783 		break;
9784 	case KVM_HC_SCHED_YIELD:
9785 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9786 			break;
9787 
9788 		kvm_sched_yield(vcpu, a0);
9789 		ret = 0;
9790 		break;
9791 	case KVM_HC_MAP_GPA_RANGE: {
9792 		u64 gpa = a0, npages = a1, attrs = a2;
9793 
9794 		ret = -KVM_ENOSYS;
9795 		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9796 			break;
9797 
9798 		if (!PAGE_ALIGNED(gpa) || !npages ||
9799 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9800 			ret = -KVM_EINVAL;
9801 			break;
9802 		}
9803 
9804 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9805 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9806 		vcpu->run->hypercall.args[0]  = gpa;
9807 		vcpu->run->hypercall.args[1]  = npages;
9808 		vcpu->run->hypercall.args[2]  = attrs;
9809 		vcpu->run->hypercall.longmode = op_64_bit;
9810 		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9811 		return 0;
9812 	}
9813 	default:
9814 		ret = -KVM_ENOSYS;
9815 		break;
9816 	}
9817 out:
9818 	if (!op_64_bit)
9819 		ret = (u32)ret;
9820 	kvm_rax_write(vcpu, ret);
9821 
9822 	++vcpu->stat.hypercalls;
9823 	return kvm_skip_emulated_instruction(vcpu);
9824 }
9825 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9826 
9827 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9828 {
9829 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9830 	char instruction[3];
9831 	unsigned long rip = kvm_rip_read(vcpu);
9832 
9833 	/*
9834 	 * If the quirk is disabled, synthesize a #UD and let the guest pick up
9835 	 * the pieces.
9836 	 */
9837 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
9838 		ctxt->exception.error_code_valid = false;
9839 		ctxt->exception.vector = UD_VECTOR;
9840 		ctxt->have_exception = true;
9841 		return X86EMUL_PROPAGATE_FAULT;
9842 	}
9843 
9844 	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9845 
9846 	return emulator_write_emulated(ctxt, rip, instruction, 3,
9847 		&ctxt->exception);
9848 }
9849 
9850 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9851 {
9852 	return vcpu->run->request_interrupt_window &&
9853 		likely(!pic_in_kernel(vcpu->kvm));
9854 }
9855 
9856 /* Called within kvm->srcu read side.  */
9857 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9858 {
9859 	struct kvm_run *kvm_run = vcpu->run;
9860 
9861 	kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9862 	kvm_run->cr8 = kvm_get_cr8(vcpu);
9863 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
9864 
9865 	kvm_run->ready_for_interrupt_injection =
9866 		pic_in_kernel(vcpu->kvm) ||
9867 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
9868 
9869 	if (is_smm(vcpu))
9870 		kvm_run->flags |= KVM_RUN_X86_SMM;
9871 }
9872 
9873 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9874 {
9875 	int max_irr, tpr;
9876 
9877 	if (!kvm_x86_ops.update_cr8_intercept)
9878 		return;
9879 
9880 	if (!lapic_in_kernel(vcpu))
9881 		return;
9882 
9883 	if (vcpu->arch.apic->apicv_active)
9884 		return;
9885 
9886 	if (!vcpu->arch.apic->vapic_addr)
9887 		max_irr = kvm_lapic_find_highest_irr(vcpu);
9888 	else
9889 		max_irr = -1;
9890 
9891 	if (max_irr != -1)
9892 		max_irr >>= 4;
9893 
9894 	tpr = kvm_lapic_get_cr8(vcpu);
9895 
9896 	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9897 }
9898 
9899 
9900 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9901 {
9902 	if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9903 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
9904 		return 1;
9905 	}
9906 
9907 	return kvm_x86_ops.nested_ops->check_events(vcpu);
9908 }
9909 
9910 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9911 {
9912 	/*
9913 	 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
9914 	 * exceptions don't report error codes.  The presence of an error code
9915 	 * is carried with the exception and only stripped when the exception
9916 	 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
9917 	 * report an error code despite the CPU being in Real Mode.
9918 	 */
9919 	vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
9920 
9921 	trace_kvm_inj_exception(vcpu->arch.exception.vector,
9922 				vcpu->arch.exception.has_error_code,
9923 				vcpu->arch.exception.error_code,
9924 				vcpu->arch.exception.injected);
9925 
9926 	static_call(kvm_x86_inject_exception)(vcpu);
9927 }
9928 
9929 /*
9930  * Check for any event (interrupt or exception) that is ready to be injected,
9931  * and if there is at least one event, inject the event with the highest
9932  * priority.  This handles both "pending" events, i.e. events that have never
9933  * been injected into the guest, and "injected" events, i.e. events that were
9934  * injected as part of a previous VM-Enter, but weren't successfully delivered
9935  * and need to be re-injected.
9936  *
9937  * Note, this is not guaranteed to be invoked on a guest instruction boundary,
9938  * i.e. doesn't guarantee that there's an event window in the guest.  KVM must
9939  * be able to inject exceptions in the "middle" of an instruction, and so must
9940  * also be able to re-inject NMIs and IRQs in the middle of an instruction.
9941  * I.e. for exceptions and re-injected events, NOT invoking this on instruction
9942  * boundaries is necessary and correct.
9943  *
9944  * For simplicity, KVM uses a single path to inject all events (except events
9945  * that are injected directly from L1 to L2) and doesn't explicitly track
9946  * instruction boundaries for asynchronous events.  However, because VM-Exits
9947  * that can occur during instruction execution typically result in KVM skipping
9948  * the instruction or injecting an exception, e.g. instruction and exception
9949  * intercepts, and because pending exceptions have higher priority than pending
9950  * interrupts, KVM still honors instruction boundaries in most scenarios.
9951  *
9952  * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
9953  * the instruction or inject an exception, then KVM can incorrecty inject a new
9954  * asynchrounous event if the event became pending after the CPU fetched the
9955  * instruction (in the guest).  E.g. if a page fault (#PF, #NPF, EPT violation)
9956  * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
9957  * injected on the restarted instruction instead of being deferred until the
9958  * instruction completes.
9959  *
9960  * In practice, this virtualization hole is unlikely to be observed by the
9961  * guest, and even less likely to cause functional problems.  To detect the
9962  * hole, the guest would have to trigger an event on a side effect of an early
9963  * phase of instruction execution, e.g. on the instruction fetch from memory.
9964  * And for it to be a functional problem, the guest would need to depend on the
9965  * ordering between that side effect, the instruction completing, _and_ the
9966  * delivery of the asynchronous event.
9967  */
9968 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
9969 				       bool *req_immediate_exit)
9970 {
9971 	bool can_inject;
9972 	int r;
9973 
9974 	/*
9975 	 * Process nested events first, as nested VM-Exit supercedes event
9976 	 * re-injection.  If there's an event queued for re-injection, it will
9977 	 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
9978 	 */
9979 	if (is_guest_mode(vcpu))
9980 		r = kvm_check_nested_events(vcpu);
9981 	else
9982 		r = 0;
9983 
9984 	/*
9985 	 * Re-inject exceptions and events *especially* if immediate entry+exit
9986 	 * to/from L2 is needed, as any event that has already been injected
9987 	 * into L2 needs to complete its lifecycle before injecting a new event.
9988 	 *
9989 	 * Don't re-inject an NMI or interrupt if there is a pending exception.
9990 	 * This collision arises if an exception occurred while vectoring the
9991 	 * injected event, KVM intercepted said exception, and KVM ultimately
9992 	 * determined the fault belongs to the guest and queues the exception
9993 	 * for injection back into the guest.
9994 	 *
9995 	 * "Injected" interrupts can also collide with pending exceptions if
9996 	 * userspace ignores the "ready for injection" flag and blindly queues
9997 	 * an interrupt.  In that case, prioritizing the exception is correct,
9998 	 * as the exception "occurred" before the exit to userspace.  Trap-like
9999 	 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10000 	 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10001 	 * priority, they're only generated (pended) during instruction
10002 	 * execution, and interrupts are recognized at instruction boundaries.
10003 	 * Thus a pending fault-like exception means the fault occurred on the
10004 	 * *previous* instruction and must be serviced prior to recognizing any
10005 	 * new events in order to fully complete the previous instruction.
10006 	 */
10007 	if (vcpu->arch.exception.injected)
10008 		kvm_inject_exception(vcpu);
10009 	else if (kvm_is_exception_pending(vcpu))
10010 		; /* see above */
10011 	else if (vcpu->arch.nmi_injected)
10012 		static_call(kvm_x86_inject_nmi)(vcpu);
10013 	else if (vcpu->arch.interrupt.injected)
10014 		static_call(kvm_x86_inject_irq)(vcpu, true);
10015 
10016 	/*
10017 	 * Exceptions that morph to VM-Exits are handled above, and pending
10018 	 * exceptions on top of injected exceptions that do not VM-Exit should
10019 	 * either morph to #DF or, sadly, override the injected exception.
10020 	 */
10021 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
10022 		     vcpu->arch.exception.pending);
10023 
10024 	/*
10025 	 * Bail if immediate entry+exit to/from the guest is needed to complete
10026 	 * nested VM-Enter or event re-injection so that a different pending
10027 	 * event can be serviced (or if KVM needs to exit to userspace).
10028 	 *
10029 	 * Otherwise, continue processing events even if VM-Exit occurred.  The
10030 	 * VM-Exit will have cleared exceptions that were meant for L2, but
10031 	 * there may now be events that can be injected into L1.
10032 	 */
10033 	if (r < 0)
10034 		goto out;
10035 
10036 	/*
10037 	 * A pending exception VM-Exit should either result in nested VM-Exit
10038 	 * or force an immediate re-entry and exit to/from L2, and exception
10039 	 * VM-Exits cannot be injected (flag should _never_ be set).
10040 	 */
10041 	WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10042 		     vcpu->arch.exception_vmexit.pending);
10043 
10044 	/*
10045 	 * New events, other than exceptions, cannot be injected if KVM needs
10046 	 * to re-inject a previous event.  See above comments on re-injecting
10047 	 * for why pending exceptions get priority.
10048 	 */
10049 	can_inject = !kvm_event_needs_reinjection(vcpu);
10050 
10051 	if (vcpu->arch.exception.pending) {
10052 		/*
10053 		 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10054 		 * value pushed on the stack.  Trap-like exception and all #DBs
10055 		 * leave RF as-is (KVM follows Intel's behavior in this regard;
10056 		 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10057 		 *
10058 		 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10059 		 * describe the behavior of General Detect #DBs, which are
10060 		 * fault-like.  They do _not_ set RF, a la code breakpoints.
10061 		 */
10062 		if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10063 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10064 					     X86_EFLAGS_RF);
10065 
10066 		if (vcpu->arch.exception.vector == DB_VECTOR) {
10067 			kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10068 			if (vcpu->arch.dr7 & DR7_GD) {
10069 				vcpu->arch.dr7 &= ~DR7_GD;
10070 				kvm_update_dr7(vcpu);
10071 			}
10072 		}
10073 
10074 		kvm_inject_exception(vcpu);
10075 
10076 		vcpu->arch.exception.pending = false;
10077 		vcpu->arch.exception.injected = true;
10078 
10079 		can_inject = false;
10080 	}
10081 
10082 	/* Don't inject interrupts if the user asked to avoid doing so */
10083 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10084 		return 0;
10085 
10086 	/*
10087 	 * Finally, inject interrupt events.  If an event cannot be injected
10088 	 * due to architectural conditions (e.g. IF=0) a window-open exit
10089 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
10090 	 * and can architecturally be injected, but we cannot do it right now:
10091 	 * an interrupt could have arrived just now and we have to inject it
10092 	 * as a vmexit, or there could already an event in the queue, which is
10093 	 * indicated by can_inject.  In that case we request an immediate exit
10094 	 * in order to make progress and get back here for another iteration.
10095 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10096 	 */
10097 #ifdef CONFIG_KVM_SMM
10098 	if (vcpu->arch.smi_pending) {
10099 		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
10100 		if (r < 0)
10101 			goto out;
10102 		if (r) {
10103 			vcpu->arch.smi_pending = false;
10104 			++vcpu->arch.smi_count;
10105 			enter_smm(vcpu);
10106 			can_inject = false;
10107 		} else
10108 			static_call(kvm_x86_enable_smi_window)(vcpu);
10109 	}
10110 #endif
10111 
10112 	if (vcpu->arch.nmi_pending) {
10113 		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
10114 		if (r < 0)
10115 			goto out;
10116 		if (r) {
10117 			--vcpu->arch.nmi_pending;
10118 			vcpu->arch.nmi_injected = true;
10119 			static_call(kvm_x86_inject_nmi)(vcpu);
10120 			can_inject = false;
10121 			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
10122 		}
10123 		if (vcpu->arch.nmi_pending)
10124 			static_call(kvm_x86_enable_nmi_window)(vcpu);
10125 	}
10126 
10127 	if (kvm_cpu_has_injectable_intr(vcpu)) {
10128 		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
10129 		if (r < 0)
10130 			goto out;
10131 		if (r) {
10132 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
10133 			static_call(kvm_x86_inject_irq)(vcpu, false);
10134 			WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
10135 		}
10136 		if (kvm_cpu_has_injectable_intr(vcpu))
10137 			static_call(kvm_x86_enable_irq_window)(vcpu);
10138 	}
10139 
10140 	if (is_guest_mode(vcpu) &&
10141 	    kvm_x86_ops.nested_ops->has_events &&
10142 	    kvm_x86_ops.nested_ops->has_events(vcpu))
10143 		*req_immediate_exit = true;
10144 
10145 	/*
10146 	 * KVM must never queue a new exception while injecting an event; KVM
10147 	 * is done emulating and should only propagate the to-be-injected event
10148 	 * to the VMCS/VMCB.  Queueing a new exception can put the vCPU into an
10149 	 * infinite loop as KVM will bail from VM-Enter to inject the pending
10150 	 * exception and start the cycle all over.
10151 	 *
10152 	 * Exempt triple faults as they have special handling and won't put the
10153 	 * vCPU into an infinite loop.  Triple fault can be queued when running
10154 	 * VMX without unrestricted guest, as that requires KVM to emulate Real
10155 	 * Mode events (see kvm_inject_realmode_interrupt()).
10156 	 */
10157 	WARN_ON_ONCE(vcpu->arch.exception.pending ||
10158 		     vcpu->arch.exception_vmexit.pending);
10159 	return 0;
10160 
10161 out:
10162 	if (r == -EBUSY) {
10163 		*req_immediate_exit = true;
10164 		r = 0;
10165 	}
10166 	return r;
10167 }
10168 
10169 static void process_nmi(struct kvm_vcpu *vcpu)
10170 {
10171 	unsigned limit = 2;
10172 
10173 	/*
10174 	 * x86 is limited to one NMI running, and one NMI pending after it.
10175 	 * If an NMI is already in progress, limit further NMIs to just one.
10176 	 * Otherwise, allow two (and we'll inject the first one immediately).
10177 	 */
10178 	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10179 		limit = 1;
10180 
10181 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10182 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10183 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10184 }
10185 
10186 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10187 				       unsigned long *vcpu_bitmap)
10188 {
10189 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10190 }
10191 
10192 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10193 {
10194 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10195 }
10196 
10197 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10198 {
10199 	struct kvm_lapic *apic = vcpu->arch.apic;
10200 	bool activate;
10201 
10202 	if (!lapic_in_kernel(vcpu))
10203 		return;
10204 
10205 	down_read(&vcpu->kvm->arch.apicv_update_lock);
10206 	preempt_disable();
10207 
10208 	/* Do not activate APICV when APIC is disabled */
10209 	activate = kvm_vcpu_apicv_activated(vcpu) &&
10210 		   (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10211 
10212 	if (apic->apicv_active == activate)
10213 		goto out;
10214 
10215 	apic->apicv_active = activate;
10216 	kvm_apic_update_apicv(vcpu);
10217 	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10218 
10219 	/*
10220 	 * When APICv gets disabled, we may still have injected interrupts
10221 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10222 	 * still active when the interrupt got accepted. Make sure
10223 	 * kvm_check_and_inject_events() is called to check for that.
10224 	 */
10225 	if (!apic->apicv_active)
10226 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10227 
10228 out:
10229 	preempt_enable();
10230 	up_read(&vcpu->kvm->arch.apicv_update_lock);
10231 }
10232 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10233 
10234 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10235 {
10236 	if (!lapic_in_kernel(vcpu))
10237 		return;
10238 
10239 	/*
10240 	 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10241 	 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10242 	 * and hardware doesn't support x2APIC virtualization.  E.g. some AMD
10243 	 * CPUs support AVIC but not x2APIC.  KVM still allows enabling AVIC in
10244 	 * this case so that KVM can the AVIC doorbell to inject interrupts to
10245 	 * running vCPUs, but KVM must not create SPTEs for the APIC base as
10246 	 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10247 	 * despite being in x2APIC mode.  For simplicity, inhibiting the APIC
10248 	 * access page is sticky.
10249 	 */
10250 	if (apic_x2apic_mode(vcpu->arch.apic) &&
10251 	    kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10252 		kvm_inhibit_apic_access_page(vcpu);
10253 
10254 	__kvm_vcpu_update_apicv(vcpu);
10255 }
10256 
10257 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10258 				      enum kvm_apicv_inhibit reason, bool set)
10259 {
10260 	unsigned long old, new;
10261 
10262 	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10263 
10264 	if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10265 		return;
10266 
10267 	old = new = kvm->arch.apicv_inhibit_reasons;
10268 
10269 	set_or_clear_apicv_inhibit(&new, reason, set);
10270 
10271 	if (!!old != !!new) {
10272 		/*
10273 		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10274 		 * false positives in the sanity check WARN in svm_vcpu_run().
10275 		 * This task will wait for all vCPUs to ack the kick IRQ before
10276 		 * updating apicv_inhibit_reasons, and all other vCPUs will
10277 		 * block on acquiring apicv_update_lock so that vCPUs can't
10278 		 * redo svm_vcpu_run() without seeing the new inhibit state.
10279 		 *
10280 		 * Note, holding apicv_update_lock and taking it in the read
10281 		 * side (handling the request) also prevents other vCPUs from
10282 		 * servicing the request with a stale apicv_inhibit_reasons.
10283 		 */
10284 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10285 		kvm->arch.apicv_inhibit_reasons = new;
10286 		if (new) {
10287 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10288 			int idx = srcu_read_lock(&kvm->srcu);
10289 
10290 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
10291 			srcu_read_unlock(&kvm->srcu, idx);
10292 		}
10293 	} else {
10294 		kvm->arch.apicv_inhibit_reasons = new;
10295 	}
10296 }
10297 
10298 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10299 				    enum kvm_apicv_inhibit reason, bool set)
10300 {
10301 	if (!enable_apicv)
10302 		return;
10303 
10304 	down_write(&kvm->arch.apicv_update_lock);
10305 	__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10306 	up_write(&kvm->arch.apicv_update_lock);
10307 }
10308 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10309 
10310 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10311 {
10312 	if (!kvm_apic_present(vcpu))
10313 		return;
10314 
10315 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10316 
10317 	if (irqchip_split(vcpu->kvm))
10318 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10319 	else {
10320 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10321 		if (ioapic_in_kernel(vcpu->kvm))
10322 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10323 	}
10324 
10325 	if (is_guest_mode(vcpu))
10326 		vcpu->arch.load_eoi_exitmap_pending = true;
10327 	else
10328 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10329 }
10330 
10331 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10332 {
10333 	u64 eoi_exit_bitmap[4];
10334 
10335 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10336 		return;
10337 
10338 	if (to_hv_vcpu(vcpu)) {
10339 		bitmap_or((ulong *)eoi_exit_bitmap,
10340 			  vcpu->arch.ioapic_handled_vectors,
10341 			  to_hv_synic(vcpu)->vec_bitmap, 256);
10342 		static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10343 		return;
10344 	}
10345 
10346 	static_call_cond(kvm_x86_load_eoi_exitmap)(
10347 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10348 }
10349 
10350 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
10351 					    unsigned long start, unsigned long end)
10352 {
10353 	unsigned long apic_address;
10354 
10355 	/*
10356 	 * The physical address of apic access page is stored in the VMCS.
10357 	 * Update it when it becomes invalid.
10358 	 */
10359 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
10360 	if (start <= apic_address && apic_address < end)
10361 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
10362 }
10363 
10364 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10365 {
10366 	static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10367 }
10368 
10369 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10370 {
10371 	if (!lapic_in_kernel(vcpu))
10372 		return;
10373 
10374 	static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10375 }
10376 
10377 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10378 {
10379 	smp_send_reschedule(vcpu->cpu);
10380 }
10381 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10382 
10383 /*
10384  * Called within kvm->srcu read side.
10385  * Returns 1 to let vcpu_run() continue the guest execution loop without
10386  * exiting to the userspace.  Otherwise, the value will be returned to the
10387  * userspace.
10388  */
10389 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10390 {
10391 	int r;
10392 	bool req_int_win =
10393 		dm_request_for_irq_injection(vcpu) &&
10394 		kvm_cpu_accept_dm_intr(vcpu);
10395 	fastpath_t exit_fastpath;
10396 
10397 	bool req_immediate_exit = false;
10398 
10399 	if (kvm_request_pending(vcpu)) {
10400 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10401 			r = -EIO;
10402 			goto out;
10403 		}
10404 
10405 		if (kvm_dirty_ring_check_request(vcpu)) {
10406 			r = 0;
10407 			goto out;
10408 		}
10409 
10410 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10411 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10412 				r = 0;
10413 				goto out;
10414 			}
10415 		}
10416 		if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10417 			kvm_mmu_free_obsolete_roots(vcpu);
10418 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10419 			__kvm_migrate_timers(vcpu);
10420 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10421 			kvm_update_masterclock(vcpu->kvm);
10422 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10423 			kvm_gen_kvmclock_update(vcpu);
10424 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10425 			r = kvm_guest_time_update(vcpu);
10426 			if (unlikely(r))
10427 				goto out;
10428 		}
10429 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10430 			kvm_mmu_sync_roots(vcpu);
10431 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10432 			kvm_mmu_load_pgd(vcpu);
10433 
10434 		/*
10435 		 * Note, the order matters here, as flushing "all" TLB entries
10436 		 * also flushes the "current" TLB entries, i.e. servicing the
10437 		 * flush "all" will clear any request to flush "current".
10438 		 */
10439 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10440 			kvm_vcpu_flush_tlb_all(vcpu);
10441 
10442 		kvm_service_local_tlb_flush_requests(vcpu);
10443 
10444 		/*
10445 		 * Fall back to a "full" guest flush if Hyper-V's precise
10446 		 * flushing fails.  Note, Hyper-V's flushing is per-vCPU, but
10447 		 * the flushes are considered "remote" and not "local" because
10448 		 * the requests can be initiated from other vCPUs.
10449 		 */
10450 		if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10451 		    kvm_hv_vcpu_flush_tlb(vcpu))
10452 			kvm_vcpu_flush_tlb_guest(vcpu);
10453 
10454 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10455 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10456 			r = 0;
10457 			goto out;
10458 		}
10459 		if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10460 			if (is_guest_mode(vcpu))
10461 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
10462 
10463 			if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10464 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10465 				vcpu->mmio_needed = 0;
10466 				r = 0;
10467 				goto out;
10468 			}
10469 		}
10470 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10471 			/* Page is swapped out. Do synthetic halt */
10472 			vcpu->arch.apf.halted = true;
10473 			r = 1;
10474 			goto out;
10475 		}
10476 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10477 			record_steal_time(vcpu);
10478 #ifdef CONFIG_KVM_SMM
10479 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
10480 			process_smi(vcpu);
10481 #endif
10482 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
10483 			process_nmi(vcpu);
10484 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
10485 			kvm_pmu_handle_event(vcpu);
10486 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
10487 			kvm_pmu_deliver_pmi(vcpu);
10488 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10489 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10490 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
10491 				     vcpu->arch.ioapic_handled_vectors)) {
10492 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10493 				vcpu->run->eoi.vector =
10494 						vcpu->arch.pending_ioapic_eoi;
10495 				r = 0;
10496 				goto out;
10497 			}
10498 		}
10499 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10500 			vcpu_scan_ioapic(vcpu);
10501 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10502 			vcpu_load_eoi_exitmap(vcpu);
10503 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10504 			kvm_vcpu_reload_apic_access_page(vcpu);
10505 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10506 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10507 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10508 			vcpu->run->system_event.ndata = 0;
10509 			r = 0;
10510 			goto out;
10511 		}
10512 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10513 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10514 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10515 			vcpu->run->system_event.ndata = 0;
10516 			r = 0;
10517 			goto out;
10518 		}
10519 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10520 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10521 
10522 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10523 			vcpu->run->hyperv = hv_vcpu->exit;
10524 			r = 0;
10525 			goto out;
10526 		}
10527 
10528 		/*
10529 		 * KVM_REQ_HV_STIMER has to be processed after
10530 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10531 		 * depend on the guest clock being up-to-date
10532 		 */
10533 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10534 			kvm_hv_process_stimers(vcpu);
10535 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10536 			kvm_vcpu_update_apicv(vcpu);
10537 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10538 			kvm_check_async_pf_completion(vcpu);
10539 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10540 			static_call(kvm_x86_msr_filter_changed)(vcpu);
10541 
10542 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10543 			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10544 	}
10545 
10546 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10547 	    kvm_xen_has_interrupt(vcpu)) {
10548 		++vcpu->stat.req_event;
10549 		r = kvm_apic_accept_events(vcpu);
10550 		if (r < 0) {
10551 			r = 0;
10552 			goto out;
10553 		}
10554 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10555 			r = 1;
10556 			goto out;
10557 		}
10558 
10559 		r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10560 		if (r < 0) {
10561 			r = 0;
10562 			goto out;
10563 		}
10564 		if (req_int_win)
10565 			static_call(kvm_x86_enable_irq_window)(vcpu);
10566 
10567 		if (kvm_lapic_enabled(vcpu)) {
10568 			update_cr8_intercept(vcpu);
10569 			kvm_lapic_sync_to_vapic(vcpu);
10570 		}
10571 	}
10572 
10573 	r = kvm_mmu_reload(vcpu);
10574 	if (unlikely(r)) {
10575 		goto cancel_injection;
10576 	}
10577 
10578 	preempt_disable();
10579 
10580 	static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10581 
10582 	/*
10583 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10584 	 * IPI are then delayed after guest entry, which ensures that they
10585 	 * result in virtual interrupt delivery.
10586 	 */
10587 	local_irq_disable();
10588 
10589 	/* Store vcpu->apicv_active before vcpu->mode.  */
10590 	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10591 
10592 	kvm_vcpu_srcu_read_unlock(vcpu);
10593 
10594 	/*
10595 	 * 1) We should set ->mode before checking ->requests.  Please see
10596 	 * the comment in kvm_vcpu_exiting_guest_mode().
10597 	 *
10598 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
10599 	 * pairs with the memory barrier implicit in pi_test_and_set_on
10600 	 * (see vmx_deliver_posted_interrupt).
10601 	 *
10602 	 * 3) This also orders the write to mode from any reads to the page
10603 	 * tables done while the VCPU is running.  Please see the comment
10604 	 * in kvm_flush_remote_tlbs.
10605 	 */
10606 	smp_mb__after_srcu_read_unlock();
10607 
10608 	/*
10609 	 * Process pending posted interrupts to handle the case where the
10610 	 * notification IRQ arrived in the host, or was never sent (because the
10611 	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10612 	 * status, KVM doesn't update assigned devices when APICv is inhibited,
10613 	 * i.e. they can post interrupts even if APICv is temporarily disabled.
10614 	 */
10615 	if (kvm_lapic_enabled(vcpu))
10616 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10617 
10618 	if (kvm_vcpu_exit_request(vcpu)) {
10619 		vcpu->mode = OUTSIDE_GUEST_MODE;
10620 		smp_wmb();
10621 		local_irq_enable();
10622 		preempt_enable();
10623 		kvm_vcpu_srcu_read_lock(vcpu);
10624 		r = 1;
10625 		goto cancel_injection;
10626 	}
10627 
10628 	if (req_immediate_exit) {
10629 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10630 		static_call(kvm_x86_request_immediate_exit)(vcpu);
10631 	}
10632 
10633 	fpregs_assert_state_consistent();
10634 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
10635 		switch_fpu_return();
10636 
10637 	if (vcpu->arch.guest_fpu.xfd_err)
10638 		wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10639 
10640 	if (unlikely(vcpu->arch.switch_db_regs)) {
10641 		set_debugreg(0, 7);
10642 		set_debugreg(vcpu->arch.eff_db[0], 0);
10643 		set_debugreg(vcpu->arch.eff_db[1], 1);
10644 		set_debugreg(vcpu->arch.eff_db[2], 2);
10645 		set_debugreg(vcpu->arch.eff_db[3], 3);
10646 	} else if (unlikely(hw_breakpoint_active())) {
10647 		set_debugreg(0, 7);
10648 	}
10649 
10650 	guest_timing_enter_irqoff();
10651 
10652 	for (;;) {
10653 		/*
10654 		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10655 		 * update must kick and wait for all vCPUs before toggling the
10656 		 * per-VM state, and responsing vCPUs must wait for the update
10657 		 * to complete before servicing KVM_REQ_APICV_UPDATE.
10658 		 */
10659 		WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10660 			     (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10661 
10662 		exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10663 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10664 			break;
10665 
10666 		if (kvm_lapic_enabled(vcpu))
10667 			static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10668 
10669 		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10670 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10671 			break;
10672 		}
10673 	}
10674 
10675 	/*
10676 	 * Do this here before restoring debug registers on the host.  And
10677 	 * since we do this before handling the vmexit, a DR access vmexit
10678 	 * can (a) read the correct value of the debug registers, (b) set
10679 	 * KVM_DEBUGREG_WONT_EXIT again.
10680 	 */
10681 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10682 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10683 		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10684 		kvm_update_dr0123(vcpu);
10685 		kvm_update_dr7(vcpu);
10686 	}
10687 
10688 	/*
10689 	 * If the guest has used debug registers, at least dr7
10690 	 * will be disabled while returning to the host.
10691 	 * If we don't have active breakpoints in the host, we don't
10692 	 * care about the messed up debug address registers. But if
10693 	 * we have some of them active, restore the old state.
10694 	 */
10695 	if (hw_breakpoint_active())
10696 		hw_breakpoint_restore();
10697 
10698 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10699 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10700 
10701 	vcpu->mode = OUTSIDE_GUEST_MODE;
10702 	smp_wmb();
10703 
10704 	/*
10705 	 * Sync xfd before calling handle_exit_irqoff() which may
10706 	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10707 	 * in #NM irqoff handler).
10708 	 */
10709 	if (vcpu->arch.xfd_no_write_intercept)
10710 		fpu_sync_guest_vmexit_xfd_state();
10711 
10712 	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10713 
10714 	if (vcpu->arch.guest_fpu.xfd_err)
10715 		wrmsrl(MSR_IA32_XFD_ERR, 0);
10716 
10717 	/*
10718 	 * Consume any pending interrupts, including the possible source of
10719 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10720 	 * An instruction is required after local_irq_enable() to fully unblock
10721 	 * interrupts on processors that implement an interrupt shadow, the
10722 	 * stat.exits increment will do nicely.
10723 	 */
10724 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10725 	local_irq_enable();
10726 	++vcpu->stat.exits;
10727 	local_irq_disable();
10728 	kvm_after_interrupt(vcpu);
10729 
10730 	/*
10731 	 * Wait until after servicing IRQs to account guest time so that any
10732 	 * ticks that occurred while running the guest are properly accounted
10733 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10734 	 * of accounting via context tracking, but the loss of accuracy is
10735 	 * acceptable for all known use cases.
10736 	 */
10737 	guest_timing_exit_irqoff();
10738 
10739 	local_irq_enable();
10740 	preempt_enable();
10741 
10742 	kvm_vcpu_srcu_read_lock(vcpu);
10743 
10744 	/*
10745 	 * Profile KVM exit RIPs:
10746 	 */
10747 	if (unlikely(prof_on == KVM_PROFILING)) {
10748 		unsigned long rip = kvm_rip_read(vcpu);
10749 		profile_hit(KVM_PROFILING, (void *)rip);
10750 	}
10751 
10752 	if (unlikely(vcpu->arch.tsc_always_catchup))
10753 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10754 
10755 	if (vcpu->arch.apic_attention)
10756 		kvm_lapic_sync_from_vapic(vcpu);
10757 
10758 	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10759 	return r;
10760 
10761 cancel_injection:
10762 	if (req_immediate_exit)
10763 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10764 	static_call(kvm_x86_cancel_injection)(vcpu);
10765 	if (unlikely(vcpu->arch.apic_attention))
10766 		kvm_lapic_sync_from_vapic(vcpu);
10767 out:
10768 	return r;
10769 }
10770 
10771 /* Called within kvm->srcu read side.  */
10772 static inline int vcpu_block(struct kvm_vcpu *vcpu)
10773 {
10774 	bool hv_timer;
10775 
10776 	if (!kvm_arch_vcpu_runnable(vcpu)) {
10777 		/*
10778 		 * Switch to the software timer before halt-polling/blocking as
10779 		 * the guest's timer may be a break event for the vCPU, and the
10780 		 * hypervisor timer runs only when the CPU is in guest mode.
10781 		 * Switch before halt-polling so that KVM recognizes an expired
10782 		 * timer before blocking.
10783 		 */
10784 		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10785 		if (hv_timer)
10786 			kvm_lapic_switch_to_sw_timer(vcpu);
10787 
10788 		kvm_vcpu_srcu_read_unlock(vcpu);
10789 		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10790 			kvm_vcpu_halt(vcpu);
10791 		else
10792 			kvm_vcpu_block(vcpu);
10793 		kvm_vcpu_srcu_read_lock(vcpu);
10794 
10795 		if (hv_timer)
10796 			kvm_lapic_switch_to_hv_timer(vcpu);
10797 
10798 		/*
10799 		 * If the vCPU is not runnable, a signal or another host event
10800 		 * of some kind is pending; service it without changing the
10801 		 * vCPU's activity state.
10802 		 */
10803 		if (!kvm_arch_vcpu_runnable(vcpu))
10804 			return 1;
10805 	}
10806 
10807 	/*
10808 	 * Evaluate nested events before exiting the halted state.  This allows
10809 	 * the halt state to be recorded properly in the VMCS12's activity
10810 	 * state field (AMD does not have a similar field and a VM-Exit always
10811 	 * causes a spurious wakeup from HLT).
10812 	 */
10813 	if (is_guest_mode(vcpu)) {
10814 		if (kvm_check_nested_events(vcpu) < 0)
10815 			return 0;
10816 	}
10817 
10818 	if (kvm_apic_accept_events(vcpu) < 0)
10819 		return 0;
10820 	switch(vcpu->arch.mp_state) {
10821 	case KVM_MP_STATE_HALTED:
10822 	case KVM_MP_STATE_AP_RESET_HOLD:
10823 		vcpu->arch.pv.pv_unhalted = false;
10824 		vcpu->arch.mp_state =
10825 			KVM_MP_STATE_RUNNABLE;
10826 		fallthrough;
10827 	case KVM_MP_STATE_RUNNABLE:
10828 		vcpu->arch.apf.halted = false;
10829 		break;
10830 	case KVM_MP_STATE_INIT_RECEIVED:
10831 		break;
10832 	default:
10833 		WARN_ON_ONCE(1);
10834 		break;
10835 	}
10836 	return 1;
10837 }
10838 
10839 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10840 {
10841 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10842 		!vcpu->arch.apf.halted);
10843 }
10844 
10845 /* Called within kvm->srcu read side.  */
10846 static int vcpu_run(struct kvm_vcpu *vcpu)
10847 {
10848 	int r;
10849 
10850 	vcpu->arch.l1tf_flush_l1d = true;
10851 
10852 	for (;;) {
10853 		/*
10854 		 * If another guest vCPU requests a PV TLB flush in the middle
10855 		 * of instruction emulation, the rest of the emulation could
10856 		 * use a stale page translation. Assume that any code after
10857 		 * this point can start executing an instruction.
10858 		 */
10859 		vcpu->arch.at_instruction_boundary = false;
10860 		if (kvm_vcpu_running(vcpu)) {
10861 			r = vcpu_enter_guest(vcpu);
10862 		} else {
10863 			r = vcpu_block(vcpu);
10864 		}
10865 
10866 		if (r <= 0)
10867 			break;
10868 
10869 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10870 		if (kvm_xen_has_pending_events(vcpu))
10871 			kvm_xen_inject_pending_events(vcpu);
10872 
10873 		if (kvm_cpu_has_pending_timer(vcpu))
10874 			kvm_inject_pending_timer_irqs(vcpu);
10875 
10876 		if (dm_request_for_irq_injection(vcpu) &&
10877 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10878 			r = 0;
10879 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10880 			++vcpu->stat.request_irq_exits;
10881 			break;
10882 		}
10883 
10884 		if (__xfer_to_guest_mode_work_pending()) {
10885 			kvm_vcpu_srcu_read_unlock(vcpu);
10886 			r = xfer_to_guest_mode_handle_work(vcpu);
10887 			kvm_vcpu_srcu_read_lock(vcpu);
10888 			if (r)
10889 				return r;
10890 		}
10891 	}
10892 
10893 	return r;
10894 }
10895 
10896 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10897 {
10898 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10899 }
10900 
10901 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10902 {
10903 	BUG_ON(!vcpu->arch.pio.count);
10904 
10905 	return complete_emulated_io(vcpu);
10906 }
10907 
10908 /*
10909  * Implements the following, as a state machine:
10910  *
10911  * read:
10912  *   for each fragment
10913  *     for each mmio piece in the fragment
10914  *       write gpa, len
10915  *       exit
10916  *       copy data
10917  *   execute insn
10918  *
10919  * write:
10920  *   for each fragment
10921  *     for each mmio piece in the fragment
10922  *       write gpa, len
10923  *       copy data
10924  *       exit
10925  */
10926 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10927 {
10928 	struct kvm_run *run = vcpu->run;
10929 	struct kvm_mmio_fragment *frag;
10930 	unsigned len;
10931 
10932 	BUG_ON(!vcpu->mmio_needed);
10933 
10934 	/* Complete previous fragment */
10935 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10936 	len = min(8u, frag->len);
10937 	if (!vcpu->mmio_is_write)
10938 		memcpy(frag->data, run->mmio.data, len);
10939 
10940 	if (frag->len <= 8) {
10941 		/* Switch to the next fragment. */
10942 		frag++;
10943 		vcpu->mmio_cur_fragment++;
10944 	} else {
10945 		/* Go forward to the next mmio piece. */
10946 		frag->data += len;
10947 		frag->gpa += len;
10948 		frag->len -= len;
10949 	}
10950 
10951 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10952 		vcpu->mmio_needed = 0;
10953 
10954 		/* FIXME: return into emulator if single-stepping.  */
10955 		if (vcpu->mmio_is_write)
10956 			return 1;
10957 		vcpu->mmio_read_completed = 1;
10958 		return complete_emulated_io(vcpu);
10959 	}
10960 
10961 	run->exit_reason = KVM_EXIT_MMIO;
10962 	run->mmio.phys_addr = frag->gpa;
10963 	if (vcpu->mmio_is_write)
10964 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10965 	run->mmio.len = min(8u, frag->len);
10966 	run->mmio.is_write = vcpu->mmio_is_write;
10967 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10968 	return 0;
10969 }
10970 
10971 /* Swap (qemu) user FPU context for the guest FPU context. */
10972 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10973 {
10974 	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
10975 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
10976 	trace_kvm_fpu(1);
10977 }
10978 
10979 /* When vcpu_run ends, restore user space FPU context. */
10980 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10981 {
10982 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
10983 	++vcpu->stat.fpu_reload;
10984 	trace_kvm_fpu(0);
10985 }
10986 
10987 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10988 {
10989 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
10990 	struct kvm_run *kvm_run = vcpu->run;
10991 	int r;
10992 
10993 	vcpu_load(vcpu);
10994 	kvm_sigset_activate(vcpu);
10995 	kvm_run->flags = 0;
10996 	kvm_load_guest_fpu(vcpu);
10997 
10998 	kvm_vcpu_srcu_read_lock(vcpu);
10999 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11000 		if (kvm_run->immediate_exit) {
11001 			r = -EINTR;
11002 			goto out;
11003 		}
11004 		/*
11005 		 * It should be impossible for the hypervisor timer to be in
11006 		 * use before KVM has ever run the vCPU.
11007 		 */
11008 		WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
11009 
11010 		kvm_vcpu_srcu_read_unlock(vcpu);
11011 		kvm_vcpu_block(vcpu);
11012 		kvm_vcpu_srcu_read_lock(vcpu);
11013 
11014 		if (kvm_apic_accept_events(vcpu) < 0) {
11015 			r = 0;
11016 			goto out;
11017 		}
11018 		r = -EAGAIN;
11019 		if (signal_pending(current)) {
11020 			r = -EINTR;
11021 			kvm_run->exit_reason = KVM_EXIT_INTR;
11022 			++vcpu->stat.signal_exits;
11023 		}
11024 		goto out;
11025 	}
11026 
11027 	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11028 	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11029 		r = -EINVAL;
11030 		goto out;
11031 	}
11032 
11033 	if (kvm_run->kvm_dirty_regs) {
11034 		r = sync_regs(vcpu);
11035 		if (r != 0)
11036 			goto out;
11037 	}
11038 
11039 	/* re-sync apic's tpr */
11040 	if (!lapic_in_kernel(vcpu)) {
11041 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11042 			r = -EINVAL;
11043 			goto out;
11044 		}
11045 	}
11046 
11047 	/*
11048 	 * If userspace set a pending exception and L2 is active, convert it to
11049 	 * a pending VM-Exit if L1 wants to intercept the exception.
11050 	 */
11051 	if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11052 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11053 							ex->error_code)) {
11054 		kvm_queue_exception_vmexit(vcpu, ex->vector,
11055 					   ex->has_error_code, ex->error_code,
11056 					   ex->has_payload, ex->payload);
11057 		ex->injected = false;
11058 		ex->pending = false;
11059 	}
11060 	vcpu->arch.exception_from_userspace = false;
11061 
11062 	if (unlikely(vcpu->arch.complete_userspace_io)) {
11063 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11064 		vcpu->arch.complete_userspace_io = NULL;
11065 		r = cui(vcpu);
11066 		if (r <= 0)
11067 			goto out;
11068 	} else {
11069 		WARN_ON_ONCE(vcpu->arch.pio.count);
11070 		WARN_ON_ONCE(vcpu->mmio_needed);
11071 	}
11072 
11073 	if (kvm_run->immediate_exit) {
11074 		r = -EINTR;
11075 		goto out;
11076 	}
11077 
11078 	r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
11079 	if (r <= 0)
11080 		goto out;
11081 
11082 	r = vcpu_run(vcpu);
11083 
11084 out:
11085 	kvm_put_guest_fpu(vcpu);
11086 	if (kvm_run->kvm_valid_regs)
11087 		store_regs(vcpu);
11088 	post_kvm_run_save(vcpu);
11089 	kvm_vcpu_srcu_read_unlock(vcpu);
11090 
11091 	kvm_sigset_deactivate(vcpu);
11092 	vcpu_put(vcpu);
11093 	return r;
11094 }
11095 
11096 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11097 {
11098 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11099 		/*
11100 		 * We are here if userspace calls get_regs() in the middle of
11101 		 * instruction emulation. Registers state needs to be copied
11102 		 * back from emulation context to vcpu. Userspace shouldn't do
11103 		 * that usually, but some bad designed PV devices (vmware
11104 		 * backdoor interface) need this to work
11105 		 */
11106 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11107 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11108 	}
11109 	regs->rax = kvm_rax_read(vcpu);
11110 	regs->rbx = kvm_rbx_read(vcpu);
11111 	regs->rcx = kvm_rcx_read(vcpu);
11112 	regs->rdx = kvm_rdx_read(vcpu);
11113 	regs->rsi = kvm_rsi_read(vcpu);
11114 	regs->rdi = kvm_rdi_read(vcpu);
11115 	regs->rsp = kvm_rsp_read(vcpu);
11116 	regs->rbp = kvm_rbp_read(vcpu);
11117 #ifdef CONFIG_X86_64
11118 	regs->r8 = kvm_r8_read(vcpu);
11119 	regs->r9 = kvm_r9_read(vcpu);
11120 	regs->r10 = kvm_r10_read(vcpu);
11121 	regs->r11 = kvm_r11_read(vcpu);
11122 	regs->r12 = kvm_r12_read(vcpu);
11123 	regs->r13 = kvm_r13_read(vcpu);
11124 	regs->r14 = kvm_r14_read(vcpu);
11125 	regs->r15 = kvm_r15_read(vcpu);
11126 #endif
11127 
11128 	regs->rip = kvm_rip_read(vcpu);
11129 	regs->rflags = kvm_get_rflags(vcpu);
11130 }
11131 
11132 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11133 {
11134 	vcpu_load(vcpu);
11135 	__get_regs(vcpu, regs);
11136 	vcpu_put(vcpu);
11137 	return 0;
11138 }
11139 
11140 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11141 {
11142 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11143 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11144 
11145 	kvm_rax_write(vcpu, regs->rax);
11146 	kvm_rbx_write(vcpu, regs->rbx);
11147 	kvm_rcx_write(vcpu, regs->rcx);
11148 	kvm_rdx_write(vcpu, regs->rdx);
11149 	kvm_rsi_write(vcpu, regs->rsi);
11150 	kvm_rdi_write(vcpu, regs->rdi);
11151 	kvm_rsp_write(vcpu, regs->rsp);
11152 	kvm_rbp_write(vcpu, regs->rbp);
11153 #ifdef CONFIG_X86_64
11154 	kvm_r8_write(vcpu, regs->r8);
11155 	kvm_r9_write(vcpu, regs->r9);
11156 	kvm_r10_write(vcpu, regs->r10);
11157 	kvm_r11_write(vcpu, regs->r11);
11158 	kvm_r12_write(vcpu, regs->r12);
11159 	kvm_r13_write(vcpu, regs->r13);
11160 	kvm_r14_write(vcpu, regs->r14);
11161 	kvm_r15_write(vcpu, regs->r15);
11162 #endif
11163 
11164 	kvm_rip_write(vcpu, regs->rip);
11165 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11166 
11167 	vcpu->arch.exception.pending = false;
11168 	vcpu->arch.exception_vmexit.pending = false;
11169 
11170 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11171 }
11172 
11173 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11174 {
11175 	vcpu_load(vcpu);
11176 	__set_regs(vcpu, regs);
11177 	vcpu_put(vcpu);
11178 	return 0;
11179 }
11180 
11181 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11182 {
11183 	struct desc_ptr dt;
11184 
11185 	if (vcpu->arch.guest_state_protected)
11186 		goto skip_protected_regs;
11187 
11188 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11189 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11190 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11191 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11192 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11193 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11194 
11195 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11196 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11197 
11198 	static_call(kvm_x86_get_idt)(vcpu, &dt);
11199 	sregs->idt.limit = dt.size;
11200 	sregs->idt.base = dt.address;
11201 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
11202 	sregs->gdt.limit = dt.size;
11203 	sregs->gdt.base = dt.address;
11204 
11205 	sregs->cr2 = vcpu->arch.cr2;
11206 	sregs->cr3 = kvm_read_cr3(vcpu);
11207 
11208 skip_protected_regs:
11209 	sregs->cr0 = kvm_read_cr0(vcpu);
11210 	sregs->cr4 = kvm_read_cr4(vcpu);
11211 	sregs->cr8 = kvm_get_cr8(vcpu);
11212 	sregs->efer = vcpu->arch.efer;
11213 	sregs->apic_base = kvm_get_apic_base(vcpu);
11214 }
11215 
11216 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11217 {
11218 	__get_sregs_common(vcpu, sregs);
11219 
11220 	if (vcpu->arch.guest_state_protected)
11221 		return;
11222 
11223 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11224 		set_bit(vcpu->arch.interrupt.nr,
11225 			(unsigned long *)sregs->interrupt_bitmap);
11226 }
11227 
11228 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11229 {
11230 	int i;
11231 
11232 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11233 
11234 	if (vcpu->arch.guest_state_protected)
11235 		return;
11236 
11237 	if (is_pae_paging(vcpu)) {
11238 		for (i = 0 ; i < 4 ; i++)
11239 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11240 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11241 	}
11242 }
11243 
11244 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11245 				  struct kvm_sregs *sregs)
11246 {
11247 	vcpu_load(vcpu);
11248 	__get_sregs(vcpu, sregs);
11249 	vcpu_put(vcpu);
11250 	return 0;
11251 }
11252 
11253 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11254 				    struct kvm_mp_state *mp_state)
11255 {
11256 	int r;
11257 
11258 	vcpu_load(vcpu);
11259 	if (kvm_mpx_supported())
11260 		kvm_load_guest_fpu(vcpu);
11261 
11262 	r = kvm_apic_accept_events(vcpu);
11263 	if (r < 0)
11264 		goto out;
11265 	r = 0;
11266 
11267 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11268 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11269 	    vcpu->arch.pv.pv_unhalted)
11270 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11271 	else
11272 		mp_state->mp_state = vcpu->arch.mp_state;
11273 
11274 out:
11275 	if (kvm_mpx_supported())
11276 		kvm_put_guest_fpu(vcpu);
11277 	vcpu_put(vcpu);
11278 	return r;
11279 }
11280 
11281 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11282 				    struct kvm_mp_state *mp_state)
11283 {
11284 	int ret = -EINVAL;
11285 
11286 	vcpu_load(vcpu);
11287 
11288 	switch (mp_state->mp_state) {
11289 	case KVM_MP_STATE_UNINITIALIZED:
11290 	case KVM_MP_STATE_HALTED:
11291 	case KVM_MP_STATE_AP_RESET_HOLD:
11292 	case KVM_MP_STATE_INIT_RECEIVED:
11293 	case KVM_MP_STATE_SIPI_RECEIVED:
11294 		if (!lapic_in_kernel(vcpu))
11295 			goto out;
11296 		break;
11297 
11298 	case KVM_MP_STATE_RUNNABLE:
11299 		break;
11300 
11301 	default:
11302 		goto out;
11303 	}
11304 
11305 	/*
11306 	 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11307 	 * forcing the guest into INIT/SIPI if those events are supposed to be
11308 	 * blocked.  KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11309 	 * if an SMI is pending as well.
11310 	 */
11311 	if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11312 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11313 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11314 		goto out;
11315 
11316 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11317 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11318 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11319 	} else
11320 		vcpu->arch.mp_state = mp_state->mp_state;
11321 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11322 
11323 	ret = 0;
11324 out:
11325 	vcpu_put(vcpu);
11326 	return ret;
11327 }
11328 
11329 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11330 		    int reason, bool has_error_code, u32 error_code)
11331 {
11332 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11333 	int ret;
11334 
11335 	init_emulate_ctxt(vcpu);
11336 
11337 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11338 				   has_error_code, error_code);
11339 	if (ret) {
11340 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11341 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11342 		vcpu->run->internal.ndata = 0;
11343 		return 0;
11344 	}
11345 
11346 	kvm_rip_write(vcpu, ctxt->eip);
11347 	kvm_set_rflags(vcpu, ctxt->eflags);
11348 	return 1;
11349 }
11350 EXPORT_SYMBOL_GPL(kvm_task_switch);
11351 
11352 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11353 {
11354 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11355 		/*
11356 		 * When EFER.LME and CR0.PG are set, the processor is in
11357 		 * 64-bit mode (though maybe in a 32-bit code segment).
11358 		 * CR4.PAE and EFER.LMA must be set.
11359 		 */
11360 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11361 			return false;
11362 		if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
11363 			return false;
11364 	} else {
11365 		/*
11366 		 * Not in 64-bit mode: EFER.LMA is clear and the code
11367 		 * segment cannot be 64-bit.
11368 		 */
11369 		if (sregs->efer & EFER_LMA || sregs->cs.l)
11370 			return false;
11371 	}
11372 
11373 	return kvm_is_valid_cr4(vcpu, sregs->cr4);
11374 }
11375 
11376 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11377 		int *mmu_reset_needed, bool update_pdptrs)
11378 {
11379 	struct msr_data apic_base_msr;
11380 	int idx;
11381 	struct desc_ptr dt;
11382 
11383 	if (!kvm_is_valid_sregs(vcpu, sregs))
11384 		return -EINVAL;
11385 
11386 	apic_base_msr.data = sregs->apic_base;
11387 	apic_base_msr.host_initiated = true;
11388 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
11389 		return -EINVAL;
11390 
11391 	if (vcpu->arch.guest_state_protected)
11392 		return 0;
11393 
11394 	dt.size = sregs->idt.limit;
11395 	dt.address = sregs->idt.base;
11396 	static_call(kvm_x86_set_idt)(vcpu, &dt);
11397 	dt.size = sregs->gdt.limit;
11398 	dt.address = sregs->gdt.base;
11399 	static_call(kvm_x86_set_gdt)(vcpu, &dt);
11400 
11401 	vcpu->arch.cr2 = sregs->cr2;
11402 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11403 	vcpu->arch.cr3 = sregs->cr3;
11404 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11405 	static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11406 
11407 	kvm_set_cr8(vcpu, sregs->cr8);
11408 
11409 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11410 	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11411 
11412 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11413 	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11414 	vcpu->arch.cr0 = sregs->cr0;
11415 
11416 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11417 	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11418 
11419 	if (update_pdptrs) {
11420 		idx = srcu_read_lock(&vcpu->kvm->srcu);
11421 		if (is_pae_paging(vcpu)) {
11422 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11423 			*mmu_reset_needed = 1;
11424 		}
11425 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
11426 	}
11427 
11428 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11429 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11430 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11431 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11432 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11433 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11434 
11435 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11436 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11437 
11438 	update_cr8_intercept(vcpu);
11439 
11440 	/* Older userspace won't unhalt the vcpu on reset. */
11441 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11442 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11443 	    !is_protmode(vcpu))
11444 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11445 
11446 	return 0;
11447 }
11448 
11449 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11450 {
11451 	int pending_vec, max_bits;
11452 	int mmu_reset_needed = 0;
11453 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11454 
11455 	if (ret)
11456 		return ret;
11457 
11458 	if (mmu_reset_needed)
11459 		kvm_mmu_reset_context(vcpu);
11460 
11461 	max_bits = KVM_NR_INTERRUPTS;
11462 	pending_vec = find_first_bit(
11463 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
11464 
11465 	if (pending_vec < max_bits) {
11466 		kvm_queue_interrupt(vcpu, pending_vec, false);
11467 		pr_debug("Set back pending irq %d\n", pending_vec);
11468 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11469 	}
11470 	return 0;
11471 }
11472 
11473 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11474 {
11475 	int mmu_reset_needed = 0;
11476 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11477 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11478 		!(sregs2->efer & EFER_LMA);
11479 	int i, ret;
11480 
11481 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11482 		return -EINVAL;
11483 
11484 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11485 		return -EINVAL;
11486 
11487 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11488 				 &mmu_reset_needed, !valid_pdptrs);
11489 	if (ret)
11490 		return ret;
11491 
11492 	if (valid_pdptrs) {
11493 		for (i = 0; i < 4 ; i++)
11494 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11495 
11496 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11497 		mmu_reset_needed = 1;
11498 		vcpu->arch.pdptrs_from_userspace = true;
11499 	}
11500 	if (mmu_reset_needed)
11501 		kvm_mmu_reset_context(vcpu);
11502 	return 0;
11503 }
11504 
11505 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11506 				  struct kvm_sregs *sregs)
11507 {
11508 	int ret;
11509 
11510 	vcpu_load(vcpu);
11511 	ret = __set_sregs(vcpu, sregs);
11512 	vcpu_put(vcpu);
11513 	return ret;
11514 }
11515 
11516 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11517 {
11518 	bool set = false;
11519 	struct kvm_vcpu *vcpu;
11520 	unsigned long i;
11521 
11522 	if (!enable_apicv)
11523 		return;
11524 
11525 	down_write(&kvm->arch.apicv_update_lock);
11526 
11527 	kvm_for_each_vcpu(i, vcpu, kvm) {
11528 		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11529 			set = true;
11530 			break;
11531 		}
11532 	}
11533 	__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11534 	up_write(&kvm->arch.apicv_update_lock);
11535 }
11536 
11537 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11538 					struct kvm_guest_debug *dbg)
11539 {
11540 	unsigned long rflags;
11541 	int i, r;
11542 
11543 	if (vcpu->arch.guest_state_protected)
11544 		return -EINVAL;
11545 
11546 	vcpu_load(vcpu);
11547 
11548 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11549 		r = -EBUSY;
11550 		if (kvm_is_exception_pending(vcpu))
11551 			goto out;
11552 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11553 			kvm_queue_exception(vcpu, DB_VECTOR);
11554 		else
11555 			kvm_queue_exception(vcpu, BP_VECTOR);
11556 	}
11557 
11558 	/*
11559 	 * Read rflags as long as potentially injected trace flags are still
11560 	 * filtered out.
11561 	 */
11562 	rflags = kvm_get_rflags(vcpu);
11563 
11564 	vcpu->guest_debug = dbg->control;
11565 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11566 		vcpu->guest_debug = 0;
11567 
11568 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11569 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
11570 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11571 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11572 	} else {
11573 		for (i = 0; i < KVM_NR_DB_REGS; i++)
11574 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11575 	}
11576 	kvm_update_dr7(vcpu);
11577 
11578 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11579 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11580 
11581 	/*
11582 	 * Trigger an rflags update that will inject or remove the trace
11583 	 * flags.
11584 	 */
11585 	kvm_set_rflags(vcpu, rflags);
11586 
11587 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11588 
11589 	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11590 
11591 	r = 0;
11592 
11593 out:
11594 	vcpu_put(vcpu);
11595 	return r;
11596 }
11597 
11598 /*
11599  * Translate a guest virtual address to a guest physical address.
11600  */
11601 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11602 				    struct kvm_translation *tr)
11603 {
11604 	unsigned long vaddr = tr->linear_address;
11605 	gpa_t gpa;
11606 	int idx;
11607 
11608 	vcpu_load(vcpu);
11609 
11610 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11611 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11612 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11613 	tr->physical_address = gpa;
11614 	tr->valid = gpa != INVALID_GPA;
11615 	tr->writeable = 1;
11616 	tr->usermode = 0;
11617 
11618 	vcpu_put(vcpu);
11619 	return 0;
11620 }
11621 
11622 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11623 {
11624 	struct fxregs_state *fxsave;
11625 
11626 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11627 		return 0;
11628 
11629 	vcpu_load(vcpu);
11630 
11631 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11632 	memcpy(fpu->fpr, fxsave->st_space, 128);
11633 	fpu->fcw = fxsave->cwd;
11634 	fpu->fsw = fxsave->swd;
11635 	fpu->ftwx = fxsave->twd;
11636 	fpu->last_opcode = fxsave->fop;
11637 	fpu->last_ip = fxsave->rip;
11638 	fpu->last_dp = fxsave->rdp;
11639 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11640 
11641 	vcpu_put(vcpu);
11642 	return 0;
11643 }
11644 
11645 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11646 {
11647 	struct fxregs_state *fxsave;
11648 
11649 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11650 		return 0;
11651 
11652 	vcpu_load(vcpu);
11653 
11654 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11655 
11656 	memcpy(fxsave->st_space, fpu->fpr, 128);
11657 	fxsave->cwd = fpu->fcw;
11658 	fxsave->swd = fpu->fsw;
11659 	fxsave->twd = fpu->ftwx;
11660 	fxsave->fop = fpu->last_opcode;
11661 	fxsave->rip = fpu->last_ip;
11662 	fxsave->rdp = fpu->last_dp;
11663 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11664 
11665 	vcpu_put(vcpu);
11666 	return 0;
11667 }
11668 
11669 static void store_regs(struct kvm_vcpu *vcpu)
11670 {
11671 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11672 
11673 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11674 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
11675 
11676 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11677 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11678 
11679 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11680 		kvm_vcpu_ioctl_x86_get_vcpu_events(
11681 				vcpu, &vcpu->run->s.regs.events);
11682 }
11683 
11684 static int sync_regs(struct kvm_vcpu *vcpu)
11685 {
11686 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11687 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
11688 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11689 	}
11690 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11691 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11692 			return -EINVAL;
11693 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11694 	}
11695 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11696 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11697 				vcpu, &vcpu->run->s.regs.events))
11698 			return -EINVAL;
11699 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11700 	}
11701 
11702 	return 0;
11703 }
11704 
11705 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11706 {
11707 	if (kvm_check_tsc_unstable() && kvm->created_vcpus)
11708 		pr_warn_once("SMP vm created on host with unstable TSC; "
11709 			     "guest TSC will not be reliable\n");
11710 
11711 	if (!kvm->arch.max_vcpu_ids)
11712 		kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
11713 
11714 	if (id >= kvm->arch.max_vcpu_ids)
11715 		return -EINVAL;
11716 
11717 	return static_call(kvm_x86_vcpu_precreate)(kvm);
11718 }
11719 
11720 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11721 {
11722 	struct page *page;
11723 	int r;
11724 
11725 	vcpu->arch.last_vmentry_cpu = -1;
11726 	vcpu->arch.regs_avail = ~0;
11727 	vcpu->arch.regs_dirty = ~0;
11728 
11729 	kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN);
11730 
11731 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11732 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11733 	else
11734 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11735 
11736 	r = kvm_mmu_create(vcpu);
11737 	if (r < 0)
11738 		return r;
11739 
11740 	if (irqchip_in_kernel(vcpu->kvm)) {
11741 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11742 		if (r < 0)
11743 			goto fail_mmu_destroy;
11744 
11745 		/*
11746 		 * Defer evaluating inhibits until the vCPU is first run, as
11747 		 * this vCPU will not get notified of any changes until this
11748 		 * vCPU is visible to other vCPUs (marked online and added to
11749 		 * the set of vCPUs).  Opportunistically mark APICv active as
11750 		 * VMX in particularly is highly unlikely to have inhibits.
11751 		 * Ignore the current per-VM APICv state so that vCPU creation
11752 		 * is guaranteed to run with a deterministic value, the request
11753 		 * will ensure the vCPU gets the correct state before VM-Entry.
11754 		 */
11755 		if (enable_apicv) {
11756 			vcpu->arch.apic->apicv_active = true;
11757 			kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11758 		}
11759 	} else
11760 		static_branch_inc(&kvm_has_noapic_vcpu);
11761 
11762 	r = -ENOMEM;
11763 
11764 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11765 	if (!page)
11766 		goto fail_free_lapic;
11767 	vcpu->arch.pio_data = page_address(page);
11768 
11769 	vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
11770 				       GFP_KERNEL_ACCOUNT);
11771 	vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
11772 					    GFP_KERNEL_ACCOUNT);
11773 	if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
11774 		goto fail_free_mce_banks;
11775 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11776 
11777 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11778 				GFP_KERNEL_ACCOUNT))
11779 		goto fail_free_mce_banks;
11780 
11781 	if (!alloc_emulate_ctxt(vcpu))
11782 		goto free_wbinvd_dirty_mask;
11783 
11784 	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11785 		pr_err("failed to allocate vcpu's fpu\n");
11786 		goto free_emulate_ctxt;
11787 	}
11788 
11789 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11790 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11791 
11792 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11793 
11794 	kvm_async_pf_hash_reset(vcpu);
11795 
11796 	vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
11797 	kvm_pmu_init(vcpu);
11798 
11799 	vcpu->arch.pending_external_vector = -1;
11800 	vcpu->arch.preempted_in_kernel = false;
11801 
11802 #if IS_ENABLED(CONFIG_HYPERV)
11803 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
11804 #endif
11805 
11806 	r = static_call(kvm_x86_vcpu_create)(vcpu);
11807 	if (r)
11808 		goto free_guest_fpu;
11809 
11810 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11811 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11812 	kvm_xen_init_vcpu(vcpu);
11813 	kvm_vcpu_mtrr_init(vcpu);
11814 	vcpu_load(vcpu);
11815 	kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
11816 	kvm_vcpu_reset(vcpu, false);
11817 	kvm_init_mmu(vcpu);
11818 	vcpu_put(vcpu);
11819 	return 0;
11820 
11821 free_guest_fpu:
11822 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11823 free_emulate_ctxt:
11824 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11825 free_wbinvd_dirty_mask:
11826 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11827 fail_free_mce_banks:
11828 	kfree(vcpu->arch.mce_banks);
11829 	kfree(vcpu->arch.mci_ctl2_banks);
11830 	free_page((unsigned long)vcpu->arch.pio_data);
11831 fail_free_lapic:
11832 	kvm_free_lapic(vcpu);
11833 fail_mmu_destroy:
11834 	kvm_mmu_destroy(vcpu);
11835 	return r;
11836 }
11837 
11838 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11839 {
11840 	struct kvm *kvm = vcpu->kvm;
11841 
11842 	if (mutex_lock_killable(&vcpu->mutex))
11843 		return;
11844 	vcpu_load(vcpu);
11845 	kvm_synchronize_tsc(vcpu, 0);
11846 	vcpu_put(vcpu);
11847 
11848 	/* poll control enabled by default */
11849 	vcpu->arch.msr_kvm_poll_control = 1;
11850 
11851 	mutex_unlock(&vcpu->mutex);
11852 
11853 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11854 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11855 						KVMCLOCK_SYNC_PERIOD);
11856 }
11857 
11858 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11859 {
11860 	int idx;
11861 
11862 	kvmclock_reset(vcpu);
11863 
11864 	static_call(kvm_x86_vcpu_free)(vcpu);
11865 
11866 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11867 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11868 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11869 
11870 	kvm_xen_destroy_vcpu(vcpu);
11871 	kvm_hv_vcpu_uninit(vcpu);
11872 	kvm_pmu_destroy(vcpu);
11873 	kfree(vcpu->arch.mce_banks);
11874 	kfree(vcpu->arch.mci_ctl2_banks);
11875 	kvm_free_lapic(vcpu);
11876 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11877 	kvm_mmu_destroy(vcpu);
11878 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11879 	free_page((unsigned long)vcpu->arch.pio_data);
11880 	kvfree(vcpu->arch.cpuid_entries);
11881 	if (!lapic_in_kernel(vcpu))
11882 		static_branch_dec(&kvm_has_noapic_vcpu);
11883 }
11884 
11885 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11886 {
11887 	struct kvm_cpuid_entry2 *cpuid_0x1;
11888 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
11889 	unsigned long new_cr0;
11890 
11891 	/*
11892 	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11893 	 * to handle side effects.  RESET emulation hits those flows and relies
11894 	 * on emulated/virtualized registers, including those that are loaded
11895 	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
11896 	 * to detect improper or missing initialization.
11897 	 */
11898 	WARN_ON_ONCE(!init_event &&
11899 		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11900 
11901 	/*
11902 	 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
11903 	 * possible to INIT the vCPU while L2 is active.  Force the vCPU back
11904 	 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
11905 	 * bits), i.e. virtualization is disabled.
11906 	 */
11907 	if (is_guest_mode(vcpu))
11908 		kvm_leave_nested(vcpu);
11909 
11910 	kvm_lapic_reset(vcpu, init_event);
11911 
11912 	WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
11913 	vcpu->arch.hflags = 0;
11914 
11915 	vcpu->arch.smi_pending = 0;
11916 	vcpu->arch.smi_count = 0;
11917 	atomic_set(&vcpu->arch.nmi_queued, 0);
11918 	vcpu->arch.nmi_pending = 0;
11919 	vcpu->arch.nmi_injected = false;
11920 	kvm_clear_interrupt_queue(vcpu);
11921 	kvm_clear_exception_queue(vcpu);
11922 
11923 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
11924 	kvm_update_dr0123(vcpu);
11925 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
11926 	vcpu->arch.dr7 = DR7_FIXED_1;
11927 	kvm_update_dr7(vcpu);
11928 
11929 	vcpu->arch.cr2 = 0;
11930 
11931 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11932 	vcpu->arch.apf.msr_en_val = 0;
11933 	vcpu->arch.apf.msr_int_val = 0;
11934 	vcpu->arch.st.msr_val = 0;
11935 
11936 	kvmclock_reset(vcpu);
11937 
11938 	kvm_clear_async_pf_completion_queue(vcpu);
11939 	kvm_async_pf_hash_reset(vcpu);
11940 	vcpu->arch.apf.halted = false;
11941 
11942 	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
11943 		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
11944 
11945 		/*
11946 		 * All paths that lead to INIT are required to load the guest's
11947 		 * FPU state (because most paths are buried in KVM_RUN).
11948 		 */
11949 		if (init_event)
11950 			kvm_put_guest_fpu(vcpu);
11951 
11952 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
11953 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
11954 
11955 		if (init_event)
11956 			kvm_load_guest_fpu(vcpu);
11957 	}
11958 
11959 	if (!init_event) {
11960 		kvm_pmu_reset(vcpu);
11961 		vcpu->arch.smbase = 0x30000;
11962 
11963 		vcpu->arch.msr_misc_features_enables = 0;
11964 		vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
11965 						  MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
11966 
11967 		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
11968 		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
11969 	}
11970 
11971 	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
11972 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11973 	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
11974 
11975 	/*
11976 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11977 	 * if no CPUID match is found.  Note, it's impossible to get a match at
11978 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11979 	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
11980 	 * on RESET.  But, go through the motions in case that's ever remedied.
11981 	 */
11982 	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
11983 	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
11984 
11985 	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11986 
11987 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11988 	kvm_rip_write(vcpu, 0xfff0);
11989 
11990 	vcpu->arch.cr3 = 0;
11991 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11992 
11993 	/*
11994 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
11995 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11996 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
11997 	 */
11998 	new_cr0 = X86_CR0_ET;
11999 	if (init_event)
12000 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12001 	else
12002 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12003 
12004 	static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
12005 	static_call(kvm_x86_set_cr4)(vcpu, 0);
12006 	static_call(kvm_x86_set_efer)(vcpu, 0);
12007 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
12008 
12009 	/*
12010 	 * On the standard CR0/CR4/EFER modification paths, there are several
12011 	 * complex conditions determining whether the MMU has to be reset and/or
12012 	 * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
12013 	 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12014 	 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12015 	 * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
12016 	 */
12017 	if (old_cr0 & X86_CR0_PG) {
12018 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12019 		kvm_mmu_reset_context(vcpu);
12020 	}
12021 
12022 	/*
12023 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
12024 	 * APM states the TLBs are untouched by INIT, but it also states that
12025 	 * the TLBs are flushed on "External initialization of the processor."
12026 	 * Flush the guest TLB regardless of vendor, there is no meaningful
12027 	 * benefit in relying on the guest to flush the TLB immediately after
12028 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
12029 	 * performance perspective.
12030 	 */
12031 	if (init_event)
12032 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12033 }
12034 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12035 
12036 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12037 {
12038 	struct kvm_segment cs;
12039 
12040 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12041 	cs.selector = vector << 8;
12042 	cs.base = vector << 12;
12043 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12044 	kvm_rip_write(vcpu, 0);
12045 }
12046 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12047 
12048 int kvm_arch_hardware_enable(void)
12049 {
12050 	struct kvm *kvm;
12051 	struct kvm_vcpu *vcpu;
12052 	unsigned long i;
12053 	int ret;
12054 	u64 local_tsc;
12055 	u64 max_tsc = 0;
12056 	bool stable, backwards_tsc = false;
12057 
12058 	kvm_user_return_msr_cpu_online();
12059 
12060 	ret = kvm_x86_check_processor_compatibility();
12061 	if (ret)
12062 		return ret;
12063 
12064 	ret = static_call(kvm_x86_hardware_enable)();
12065 	if (ret != 0)
12066 		return ret;
12067 
12068 	local_tsc = rdtsc();
12069 	stable = !kvm_check_tsc_unstable();
12070 	list_for_each_entry(kvm, &vm_list, vm_list) {
12071 		kvm_for_each_vcpu(i, vcpu, kvm) {
12072 			if (!stable && vcpu->cpu == smp_processor_id())
12073 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12074 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12075 				backwards_tsc = true;
12076 				if (vcpu->arch.last_host_tsc > max_tsc)
12077 					max_tsc = vcpu->arch.last_host_tsc;
12078 			}
12079 		}
12080 	}
12081 
12082 	/*
12083 	 * Sometimes, even reliable TSCs go backwards.  This happens on
12084 	 * platforms that reset TSC during suspend or hibernate actions, but
12085 	 * maintain synchronization.  We must compensate.  Fortunately, we can
12086 	 * detect that condition here, which happens early in CPU bringup,
12087 	 * before any KVM threads can be running.  Unfortunately, we can't
12088 	 * bring the TSCs fully up to date with real time, as we aren't yet far
12089 	 * enough into CPU bringup that we know how much real time has actually
12090 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12091 	 * variables that haven't been updated yet.
12092 	 *
12093 	 * So we simply find the maximum observed TSC above, then record the
12094 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
12095 	 * the adjustment will be applied.  Note that we accumulate
12096 	 * adjustments, in case multiple suspend cycles happen before some VCPU
12097 	 * gets a chance to run again.  In the event that no KVM threads get a
12098 	 * chance to run, we will miss the entire elapsed period, as we'll have
12099 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12100 	 * loose cycle time.  This isn't too big a deal, since the loss will be
12101 	 * uniform across all VCPUs (not to mention the scenario is extremely
12102 	 * unlikely). It is possible that a second hibernate recovery happens
12103 	 * much faster than a first, causing the observed TSC here to be
12104 	 * smaller; this would require additional padding adjustment, which is
12105 	 * why we set last_host_tsc to the local tsc observed here.
12106 	 *
12107 	 * N.B. - this code below runs only on platforms with reliable TSC,
12108 	 * as that is the only way backwards_tsc is set above.  Also note
12109 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12110 	 * have the same delta_cyc adjustment applied if backwards_tsc
12111 	 * is detected.  Note further, this adjustment is only done once,
12112 	 * as we reset last_host_tsc on all VCPUs to stop this from being
12113 	 * called multiple times (one for each physical CPU bringup).
12114 	 *
12115 	 * Platforms with unreliable TSCs don't have to deal with this, they
12116 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
12117 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
12118 	 * guarantee that they stay in perfect synchronization.
12119 	 */
12120 	if (backwards_tsc) {
12121 		u64 delta_cyc = max_tsc - local_tsc;
12122 		list_for_each_entry(kvm, &vm_list, vm_list) {
12123 			kvm->arch.backwards_tsc_observed = true;
12124 			kvm_for_each_vcpu(i, vcpu, kvm) {
12125 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
12126 				vcpu->arch.last_host_tsc = local_tsc;
12127 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12128 			}
12129 
12130 			/*
12131 			 * We have to disable TSC offset matching.. if you were
12132 			 * booting a VM while issuing an S4 host suspend....
12133 			 * you may have some problem.  Solving this issue is
12134 			 * left as an exercise to the reader.
12135 			 */
12136 			kvm->arch.last_tsc_nsec = 0;
12137 			kvm->arch.last_tsc_write = 0;
12138 		}
12139 
12140 	}
12141 	return 0;
12142 }
12143 
12144 void kvm_arch_hardware_disable(void)
12145 {
12146 	static_call(kvm_x86_hardware_disable)();
12147 	drop_user_return_notifiers();
12148 }
12149 
12150 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12151 {
12152 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12153 }
12154 
12155 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12156 {
12157 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12158 }
12159 
12160 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12161 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12162 
12163 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12164 {
12165 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12166 
12167 	vcpu->arch.l1tf_flush_l1d = true;
12168 	if (pmu->version && unlikely(pmu->event_count)) {
12169 		pmu->need_cleanup = true;
12170 		kvm_make_request(KVM_REQ_PMU, vcpu);
12171 	}
12172 	static_call(kvm_x86_sched_in)(vcpu, cpu);
12173 }
12174 
12175 void kvm_arch_free_vm(struct kvm *kvm)
12176 {
12177 	kfree(to_kvm_hv(kvm)->hv_pa_pg);
12178 	__kvm_arch_free_vm(kvm);
12179 }
12180 
12181 
12182 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12183 {
12184 	int ret;
12185 	unsigned long flags;
12186 
12187 	if (type)
12188 		return -EINVAL;
12189 
12190 	ret = kvm_page_track_init(kvm);
12191 	if (ret)
12192 		goto out;
12193 
12194 	ret = kvm_mmu_init_vm(kvm);
12195 	if (ret)
12196 		goto out_page_track;
12197 
12198 	ret = static_call(kvm_x86_vm_init)(kvm);
12199 	if (ret)
12200 		goto out_uninit_mmu;
12201 
12202 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12203 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
12204 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12205 
12206 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12207 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12208 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12209 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12210 		&kvm->arch.irq_sources_bitmap);
12211 
12212 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12213 	mutex_init(&kvm->arch.apic_map_lock);
12214 	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12215 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12216 
12217 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12218 	pvclock_update_vm_gtod_copy(kvm);
12219 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12220 
12221 	kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12222 	kvm->arch.guest_can_read_msr_platform_info = true;
12223 	kvm->arch.enable_pmu = enable_pmu;
12224 
12225 #if IS_ENABLED(CONFIG_HYPERV)
12226 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12227 	kvm->arch.hv_root_tdp = INVALID_PAGE;
12228 #endif
12229 
12230 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12231 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12232 
12233 	kvm_apicv_init(kvm);
12234 	kvm_hv_init_vm(kvm);
12235 	kvm_xen_init_vm(kvm);
12236 
12237 	return 0;
12238 
12239 out_uninit_mmu:
12240 	kvm_mmu_uninit_vm(kvm);
12241 out_page_track:
12242 	kvm_page_track_cleanup(kvm);
12243 out:
12244 	return ret;
12245 }
12246 
12247 int kvm_arch_post_init_vm(struct kvm *kvm)
12248 {
12249 	return kvm_mmu_post_init_vm(kvm);
12250 }
12251 
12252 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12253 {
12254 	vcpu_load(vcpu);
12255 	kvm_mmu_unload(vcpu);
12256 	vcpu_put(vcpu);
12257 }
12258 
12259 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12260 {
12261 	unsigned long i;
12262 	struct kvm_vcpu *vcpu;
12263 
12264 	kvm_for_each_vcpu(i, vcpu, kvm) {
12265 		kvm_clear_async_pf_completion_queue(vcpu);
12266 		kvm_unload_vcpu_mmu(vcpu);
12267 	}
12268 }
12269 
12270 void kvm_arch_sync_events(struct kvm *kvm)
12271 {
12272 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12273 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12274 	kvm_free_pit(kvm);
12275 }
12276 
12277 /**
12278  * __x86_set_memory_region: Setup KVM internal memory slot
12279  *
12280  * @kvm: the kvm pointer to the VM.
12281  * @id: the slot ID to setup.
12282  * @gpa: the GPA to install the slot (unused when @size == 0).
12283  * @size: the size of the slot. Set to zero to uninstall a slot.
12284  *
12285  * This function helps to setup a KVM internal memory slot.  Specify
12286  * @size > 0 to install a new slot, while @size == 0 to uninstall a
12287  * slot.  The return code can be one of the following:
12288  *
12289  *   HVA:           on success (uninstall will return a bogus HVA)
12290  *   -errno:        on error
12291  *
12292  * The caller should always use IS_ERR() to check the return value
12293  * before use.  Note, the KVM internal memory slots are guaranteed to
12294  * remain valid and unchanged until the VM is destroyed, i.e., the
12295  * GPA->HVA translation will not change.  However, the HVA is a user
12296  * address, i.e. its accessibility is not guaranteed, and must be
12297  * accessed via __copy_{to,from}_user().
12298  */
12299 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12300 				      u32 size)
12301 {
12302 	int i, r;
12303 	unsigned long hva, old_npages;
12304 	struct kvm_memslots *slots = kvm_memslots(kvm);
12305 	struct kvm_memory_slot *slot;
12306 
12307 	/* Called with kvm->slots_lock held.  */
12308 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12309 		return ERR_PTR_USR(-EINVAL);
12310 
12311 	slot = id_to_memslot(slots, id);
12312 	if (size) {
12313 		if (slot && slot->npages)
12314 			return ERR_PTR_USR(-EEXIST);
12315 
12316 		/*
12317 		 * MAP_SHARED to prevent internal slot pages from being moved
12318 		 * by fork()/COW.
12319 		 */
12320 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12321 			      MAP_SHARED | MAP_ANONYMOUS, 0);
12322 		if (IS_ERR_VALUE(hva))
12323 			return (void __user *)hva;
12324 	} else {
12325 		if (!slot || !slot->npages)
12326 			return NULL;
12327 
12328 		old_npages = slot->npages;
12329 		hva = slot->userspace_addr;
12330 	}
12331 
12332 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
12333 		struct kvm_userspace_memory_region m;
12334 
12335 		m.slot = id | (i << 16);
12336 		m.flags = 0;
12337 		m.guest_phys_addr = gpa;
12338 		m.userspace_addr = hva;
12339 		m.memory_size = size;
12340 		r = __kvm_set_memory_region(kvm, &m);
12341 		if (r < 0)
12342 			return ERR_PTR_USR(r);
12343 	}
12344 
12345 	if (!size)
12346 		vm_munmap(hva, old_npages * PAGE_SIZE);
12347 
12348 	return (void __user *)hva;
12349 }
12350 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12351 
12352 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12353 {
12354 	kvm_mmu_pre_destroy_vm(kvm);
12355 }
12356 
12357 void kvm_arch_destroy_vm(struct kvm *kvm)
12358 {
12359 	if (current->mm == kvm->mm) {
12360 		/*
12361 		 * Free memory regions allocated on behalf of userspace,
12362 		 * unless the memory map has changed due to process exit
12363 		 * or fd copying.
12364 		 */
12365 		mutex_lock(&kvm->slots_lock);
12366 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12367 					0, 0);
12368 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12369 					0, 0);
12370 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12371 		mutex_unlock(&kvm->slots_lock);
12372 	}
12373 	kvm_unload_vcpu_mmus(kvm);
12374 	static_call_cond(kvm_x86_vm_destroy)(kvm);
12375 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12376 	kvm_pic_destroy(kvm);
12377 	kvm_ioapic_destroy(kvm);
12378 	kvm_destroy_vcpus(kvm);
12379 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12380 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12381 	kvm_mmu_uninit_vm(kvm);
12382 	kvm_page_track_cleanup(kvm);
12383 	kvm_xen_destroy_vm(kvm);
12384 	kvm_hv_destroy_vm(kvm);
12385 }
12386 
12387 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12388 {
12389 	int i;
12390 
12391 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12392 		kvfree(slot->arch.rmap[i]);
12393 		slot->arch.rmap[i] = NULL;
12394 	}
12395 }
12396 
12397 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12398 {
12399 	int i;
12400 
12401 	memslot_rmap_free(slot);
12402 
12403 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12404 		kvfree(slot->arch.lpage_info[i - 1]);
12405 		slot->arch.lpage_info[i - 1] = NULL;
12406 	}
12407 
12408 	kvm_page_track_free_memslot(slot);
12409 }
12410 
12411 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12412 {
12413 	const int sz = sizeof(*slot->arch.rmap[0]);
12414 	int i;
12415 
12416 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12417 		int level = i + 1;
12418 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12419 
12420 		if (slot->arch.rmap[i])
12421 			continue;
12422 
12423 		slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12424 		if (!slot->arch.rmap[i]) {
12425 			memslot_rmap_free(slot);
12426 			return -ENOMEM;
12427 		}
12428 	}
12429 
12430 	return 0;
12431 }
12432 
12433 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12434 				      struct kvm_memory_slot *slot)
12435 {
12436 	unsigned long npages = slot->npages;
12437 	int i, r;
12438 
12439 	/*
12440 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12441 	 * old arrays will be freed by __kvm_set_memory_region() if installing
12442 	 * the new memslot is successful.
12443 	 */
12444 	memset(&slot->arch, 0, sizeof(slot->arch));
12445 
12446 	if (kvm_memslots_have_rmaps(kvm)) {
12447 		r = memslot_rmap_alloc(slot, npages);
12448 		if (r)
12449 			return r;
12450 	}
12451 
12452 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12453 		struct kvm_lpage_info *linfo;
12454 		unsigned long ugfn;
12455 		int lpages;
12456 		int level = i + 1;
12457 
12458 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12459 
12460 		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12461 		if (!linfo)
12462 			goto out_free;
12463 
12464 		slot->arch.lpage_info[i - 1] = linfo;
12465 
12466 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12467 			linfo[0].disallow_lpage = 1;
12468 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12469 			linfo[lpages - 1].disallow_lpage = 1;
12470 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
12471 		/*
12472 		 * If the gfn and userspace address are not aligned wrt each
12473 		 * other, disable large page support for this slot.
12474 		 */
12475 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12476 			unsigned long j;
12477 
12478 			for (j = 0; j < lpages; ++j)
12479 				linfo[j].disallow_lpage = 1;
12480 		}
12481 	}
12482 
12483 	if (kvm_page_track_create_memslot(kvm, slot, npages))
12484 		goto out_free;
12485 
12486 	return 0;
12487 
12488 out_free:
12489 	memslot_rmap_free(slot);
12490 
12491 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12492 		kvfree(slot->arch.lpage_info[i - 1]);
12493 		slot->arch.lpage_info[i - 1] = NULL;
12494 	}
12495 	return -ENOMEM;
12496 }
12497 
12498 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12499 {
12500 	struct kvm_vcpu *vcpu;
12501 	unsigned long i;
12502 
12503 	/*
12504 	 * memslots->generation has been incremented.
12505 	 * mmio generation may have reached its maximum value.
12506 	 */
12507 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12508 
12509 	/* Force re-initialization of steal_time cache */
12510 	kvm_for_each_vcpu(i, vcpu, kvm)
12511 		kvm_vcpu_kick(vcpu);
12512 }
12513 
12514 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12515 				   const struct kvm_memory_slot *old,
12516 				   struct kvm_memory_slot *new,
12517 				   enum kvm_mr_change change)
12518 {
12519 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12520 		if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12521 			return -EINVAL;
12522 
12523 		return kvm_alloc_memslot_metadata(kvm, new);
12524 	}
12525 
12526 	if (change == KVM_MR_FLAGS_ONLY)
12527 		memcpy(&new->arch, &old->arch, sizeof(old->arch));
12528 	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12529 		return -EIO;
12530 
12531 	return 0;
12532 }
12533 
12534 
12535 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12536 {
12537 	int nr_slots;
12538 
12539 	if (!kvm_x86_ops.cpu_dirty_log_size)
12540 		return;
12541 
12542 	nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
12543 	if ((enable && nr_slots == 1) || !nr_slots)
12544 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12545 }
12546 
12547 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12548 				     struct kvm_memory_slot *old,
12549 				     const struct kvm_memory_slot *new,
12550 				     enum kvm_mr_change change)
12551 {
12552 	u32 old_flags = old ? old->flags : 0;
12553 	u32 new_flags = new ? new->flags : 0;
12554 	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12555 
12556 	/*
12557 	 * Update CPU dirty logging if dirty logging is being toggled.  This
12558 	 * applies to all operations.
12559 	 */
12560 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12561 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12562 
12563 	/*
12564 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
12565 	 * made writable) or CREATE/MOVE/DELETE of a slot.
12566 	 *
12567 	 * For a memslot with dirty logging disabled:
12568 	 * CREATE:      No dirty mappings will already exist.
12569 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12570 	 *		kvm_arch_flush_shadow_memslot()
12571 	 *
12572 	 * For a memslot with dirty logging enabled:
12573 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
12574 	 *		and no dirty bits to clear.
12575 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12576 	 *		kvm_arch_flush_shadow_memslot().
12577 	 */
12578 	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12579 		return;
12580 
12581 	/*
12582 	 * READONLY and non-flags changes were filtered out above, and the only
12583 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12584 	 * logging isn't being toggled on or off.
12585 	 */
12586 	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12587 		return;
12588 
12589 	if (!log_dirty_pages) {
12590 		/*
12591 		 * Dirty logging tracks sptes in 4k granularity, meaning that
12592 		 * large sptes have to be split.  If live migration succeeds,
12593 		 * the guest in the source machine will be destroyed and large
12594 		 * sptes will be created in the destination.  However, if the
12595 		 * guest continues to run in the source machine (for example if
12596 		 * live migration fails), small sptes will remain around and
12597 		 * cause bad performance.
12598 		 *
12599 		 * Scan sptes if dirty logging has been stopped, dropping those
12600 		 * which can be collapsed into a single large-page spte.  Later
12601 		 * page faults will create the large-page sptes.
12602 		 */
12603 		kvm_mmu_zap_collapsible_sptes(kvm, new);
12604 	} else {
12605 		/*
12606 		 * Initially-all-set does not require write protecting any page,
12607 		 * because they're all assumed to be dirty.
12608 		 */
12609 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12610 			return;
12611 
12612 		if (READ_ONCE(eager_page_split))
12613 			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12614 
12615 		if (kvm_x86_ops.cpu_dirty_log_size) {
12616 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12617 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12618 		} else {
12619 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12620 		}
12621 
12622 		/*
12623 		 * Unconditionally flush the TLBs after enabling dirty logging.
12624 		 * A flush is almost always going to be necessary (see below),
12625 		 * and unconditionally flushing allows the helpers to omit
12626 		 * the subtly complex checks when removing write access.
12627 		 *
12628 		 * Do the flush outside of mmu_lock to reduce the amount of
12629 		 * time mmu_lock is held.  Flushing after dropping mmu_lock is
12630 		 * safe as KVM only needs to guarantee the slot is fully
12631 		 * write-protected before returning to userspace, i.e. before
12632 		 * userspace can consume the dirty status.
12633 		 *
12634 		 * Flushing outside of mmu_lock requires KVM to be careful when
12635 		 * making decisions based on writable status of an SPTE, e.g. a
12636 		 * !writable SPTE doesn't guarantee a CPU can't perform writes.
12637 		 *
12638 		 * Specifically, KVM also write-protects guest page tables to
12639 		 * monitor changes when using shadow paging, and must guarantee
12640 		 * no CPUs can write to those page before mmu_lock is dropped.
12641 		 * Because CPUs may have stale TLB entries at this point, a
12642 		 * !writable SPTE doesn't guarantee CPUs can't perform writes.
12643 		 *
12644 		 * KVM also allows making SPTES writable outside of mmu_lock,
12645 		 * e.g. to allow dirty logging without taking mmu_lock.
12646 		 *
12647 		 * To handle these scenarios, KVM uses a separate software-only
12648 		 * bit (MMU-writable) to track if a SPTE is !writable due to
12649 		 * a guest page table being write-protected (KVM clears the
12650 		 * MMU-writable flag when write-protecting for shadow paging).
12651 		 *
12652 		 * The use of MMU-writable is also the primary motivation for
12653 		 * the unconditional flush.  Because KVM must guarantee that a
12654 		 * CPU doesn't contain stale, writable TLB entries for a
12655 		 * !MMU-writable SPTE, KVM must flush if it encounters any
12656 		 * MMU-writable SPTE regardless of whether the actual hardware
12657 		 * writable bit was set.  I.e. KVM is almost guaranteed to need
12658 		 * to flush, while unconditionally flushing allows the "remove
12659 		 * write access" helpers to ignore MMU-writable entirely.
12660 		 *
12661 		 * See is_writable_pte() for more details (the case involving
12662 		 * access-tracked SPTEs is particularly relevant).
12663 		 */
12664 		kvm_arch_flush_remote_tlbs_memslot(kvm, new);
12665 	}
12666 }
12667 
12668 void kvm_arch_commit_memory_region(struct kvm *kvm,
12669 				struct kvm_memory_slot *old,
12670 				const struct kvm_memory_slot *new,
12671 				enum kvm_mr_change change)
12672 {
12673 	if (!kvm->arch.n_requested_mmu_pages &&
12674 	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12675 		unsigned long nr_mmu_pages;
12676 
12677 		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12678 		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12679 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12680 	}
12681 
12682 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
12683 
12684 	/* Free the arrays associated with the old memslot. */
12685 	if (change == KVM_MR_MOVE)
12686 		kvm_arch_free_memslot(kvm, old);
12687 }
12688 
12689 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12690 {
12691 	kvm_mmu_zap_all(kvm);
12692 }
12693 
12694 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12695 				   struct kvm_memory_slot *slot)
12696 {
12697 	kvm_page_track_flush_slot(kvm, slot);
12698 }
12699 
12700 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12701 {
12702 	return (is_guest_mode(vcpu) &&
12703 		static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12704 }
12705 
12706 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12707 {
12708 	if (!list_empty_careful(&vcpu->async_pf.done))
12709 		return true;
12710 
12711 	if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
12712 	    kvm_apic_init_sipi_allowed(vcpu))
12713 		return true;
12714 
12715 	if (vcpu->arch.pv.pv_unhalted)
12716 		return true;
12717 
12718 	if (kvm_is_exception_pending(vcpu))
12719 		return true;
12720 
12721 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12722 	    (vcpu->arch.nmi_pending &&
12723 	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12724 		return true;
12725 
12726 #ifdef CONFIG_KVM_SMM
12727 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12728 	    (vcpu->arch.smi_pending &&
12729 	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
12730 		return true;
12731 #endif
12732 
12733 	if (kvm_arch_interrupt_allowed(vcpu) &&
12734 	    (kvm_cpu_has_interrupt(vcpu) ||
12735 	    kvm_guest_apic_has_interrupt(vcpu)))
12736 		return true;
12737 
12738 	if (kvm_hv_has_stimer_pending(vcpu))
12739 		return true;
12740 
12741 	if (is_guest_mode(vcpu) &&
12742 	    kvm_x86_ops.nested_ops->has_events &&
12743 	    kvm_x86_ops.nested_ops->has_events(vcpu))
12744 		return true;
12745 
12746 	if (kvm_xen_has_pending_events(vcpu))
12747 		return true;
12748 
12749 	return false;
12750 }
12751 
12752 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12753 {
12754 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12755 }
12756 
12757 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12758 {
12759 	if (kvm_vcpu_apicv_active(vcpu) &&
12760 	    static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12761 		return true;
12762 
12763 	return false;
12764 }
12765 
12766 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12767 {
12768 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12769 		return true;
12770 
12771 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12772 #ifdef CONFIG_KVM_SMM
12773 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
12774 #endif
12775 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
12776 		return true;
12777 
12778 	return kvm_arch_dy_has_pending_interrupt(vcpu);
12779 }
12780 
12781 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12782 {
12783 	if (vcpu->arch.guest_state_protected)
12784 		return true;
12785 
12786 	return vcpu->arch.preempted_in_kernel;
12787 }
12788 
12789 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12790 {
12791 	return kvm_rip_read(vcpu);
12792 }
12793 
12794 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12795 {
12796 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12797 }
12798 
12799 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12800 {
12801 	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12802 }
12803 
12804 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12805 {
12806 	/* Can't read the RIP when guest state is protected, just return 0 */
12807 	if (vcpu->arch.guest_state_protected)
12808 		return 0;
12809 
12810 	if (is_64_bit_mode(vcpu))
12811 		return kvm_rip_read(vcpu);
12812 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12813 		     kvm_rip_read(vcpu));
12814 }
12815 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12816 
12817 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12818 {
12819 	return kvm_get_linear_rip(vcpu) == linear_rip;
12820 }
12821 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12822 
12823 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12824 {
12825 	unsigned long rflags;
12826 
12827 	rflags = static_call(kvm_x86_get_rflags)(vcpu);
12828 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12829 		rflags &= ~X86_EFLAGS_TF;
12830 	return rflags;
12831 }
12832 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12833 
12834 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12835 {
12836 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12837 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12838 		rflags |= X86_EFLAGS_TF;
12839 	static_call(kvm_x86_set_rflags)(vcpu, rflags);
12840 }
12841 
12842 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12843 {
12844 	__kvm_set_rflags(vcpu, rflags);
12845 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12846 }
12847 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12848 
12849 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12850 {
12851 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12852 
12853 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12854 }
12855 
12856 static inline u32 kvm_async_pf_next_probe(u32 key)
12857 {
12858 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12859 }
12860 
12861 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12862 {
12863 	u32 key = kvm_async_pf_hash_fn(gfn);
12864 
12865 	while (vcpu->arch.apf.gfns[key] != ~0)
12866 		key = kvm_async_pf_next_probe(key);
12867 
12868 	vcpu->arch.apf.gfns[key] = gfn;
12869 }
12870 
12871 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12872 {
12873 	int i;
12874 	u32 key = kvm_async_pf_hash_fn(gfn);
12875 
12876 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
12877 		     (vcpu->arch.apf.gfns[key] != gfn &&
12878 		      vcpu->arch.apf.gfns[key] != ~0); i++)
12879 		key = kvm_async_pf_next_probe(key);
12880 
12881 	return key;
12882 }
12883 
12884 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12885 {
12886 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12887 }
12888 
12889 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12890 {
12891 	u32 i, j, k;
12892 
12893 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12894 
12895 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12896 		return;
12897 
12898 	while (true) {
12899 		vcpu->arch.apf.gfns[i] = ~0;
12900 		do {
12901 			j = kvm_async_pf_next_probe(j);
12902 			if (vcpu->arch.apf.gfns[j] == ~0)
12903 				return;
12904 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12905 			/*
12906 			 * k lies cyclically in ]i,j]
12907 			 * |    i.k.j |
12908 			 * |....j i.k.| or  |.k..j i...|
12909 			 */
12910 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12911 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
12912 		i = j;
12913 	}
12914 }
12915 
12916 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
12917 {
12918 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
12919 
12920 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
12921 				      sizeof(reason));
12922 }
12923 
12924 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12925 {
12926 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12927 
12928 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12929 					     &token, offset, sizeof(token));
12930 }
12931 
12932 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12933 {
12934 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12935 	u32 val;
12936 
12937 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12938 					 &val, offset, sizeof(val)))
12939 		return false;
12940 
12941 	return !val;
12942 }
12943 
12944 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12945 {
12946 
12947 	if (!kvm_pv_async_pf_enabled(vcpu))
12948 		return false;
12949 
12950 	if (vcpu->arch.apf.send_user_only &&
12951 	    static_call(kvm_x86_get_cpl)(vcpu) == 0)
12952 		return false;
12953 
12954 	if (is_guest_mode(vcpu)) {
12955 		/*
12956 		 * L1 needs to opt into the special #PF vmexits that are
12957 		 * used to deliver async page faults.
12958 		 */
12959 		return vcpu->arch.apf.delivery_as_pf_vmexit;
12960 	} else {
12961 		/*
12962 		 * Play it safe in case the guest temporarily disables paging.
12963 		 * The real mode IDT in particular is unlikely to have a #PF
12964 		 * exception setup.
12965 		 */
12966 		return is_paging(vcpu);
12967 	}
12968 }
12969 
12970 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12971 {
12972 	if (unlikely(!lapic_in_kernel(vcpu) ||
12973 		     kvm_event_needs_reinjection(vcpu) ||
12974 		     kvm_is_exception_pending(vcpu)))
12975 		return false;
12976 
12977 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12978 		return false;
12979 
12980 	/*
12981 	 * If interrupts are off we cannot even use an artificial
12982 	 * halt state.
12983 	 */
12984 	return kvm_arch_interrupt_allowed(vcpu);
12985 }
12986 
12987 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12988 				     struct kvm_async_pf *work)
12989 {
12990 	struct x86_exception fault;
12991 
12992 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12993 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12994 
12995 	if (kvm_can_deliver_async_pf(vcpu) &&
12996 	    !apf_put_user_notpresent(vcpu)) {
12997 		fault.vector = PF_VECTOR;
12998 		fault.error_code_valid = true;
12999 		fault.error_code = 0;
13000 		fault.nested_page_fault = false;
13001 		fault.address = work->arch.token;
13002 		fault.async_page_fault = true;
13003 		kvm_inject_page_fault(vcpu, &fault);
13004 		return true;
13005 	} else {
13006 		/*
13007 		 * It is not possible to deliver a paravirtualized asynchronous
13008 		 * page fault, but putting the guest in an artificial halt state
13009 		 * can be beneficial nevertheless: if an interrupt arrives, we
13010 		 * can deliver it timely and perhaps the guest will schedule
13011 		 * another process.  When the instruction that triggered a page
13012 		 * fault is retried, hopefully the page will be ready in the host.
13013 		 */
13014 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13015 		return false;
13016 	}
13017 }
13018 
13019 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13020 				 struct kvm_async_pf *work)
13021 {
13022 	struct kvm_lapic_irq irq = {
13023 		.delivery_mode = APIC_DM_FIXED,
13024 		.vector = vcpu->arch.apf.vec
13025 	};
13026 
13027 	if (work->wakeup_all)
13028 		work->arch.token = ~0; /* broadcast wakeup */
13029 	else
13030 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13031 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13032 
13033 	if ((work->wakeup_all || work->notpresent_injected) &&
13034 	    kvm_pv_async_pf_enabled(vcpu) &&
13035 	    !apf_put_user_ready(vcpu, work->arch.token)) {
13036 		vcpu->arch.apf.pageready_pending = true;
13037 		kvm_apic_set_irq(vcpu, &irq, NULL);
13038 	}
13039 
13040 	vcpu->arch.apf.halted = false;
13041 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13042 }
13043 
13044 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13045 {
13046 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
13047 	if (!vcpu->arch.apf.pageready_pending)
13048 		kvm_vcpu_kick(vcpu);
13049 }
13050 
13051 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13052 {
13053 	if (!kvm_pv_async_pf_enabled(vcpu))
13054 		return true;
13055 	else
13056 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13057 }
13058 
13059 void kvm_arch_start_assignment(struct kvm *kvm)
13060 {
13061 	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13062 		static_call_cond(kvm_x86_pi_start_assignment)(kvm);
13063 }
13064 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13065 
13066 void kvm_arch_end_assignment(struct kvm *kvm)
13067 {
13068 	atomic_dec(&kvm->arch.assigned_device_count);
13069 }
13070 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13071 
13072 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13073 {
13074 	return arch_atomic_read(&kvm->arch.assigned_device_count);
13075 }
13076 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13077 
13078 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13079 {
13080 	atomic_inc(&kvm->arch.noncoherent_dma_count);
13081 }
13082 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13083 
13084 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13085 {
13086 	atomic_dec(&kvm->arch.noncoherent_dma_count);
13087 }
13088 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13089 
13090 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13091 {
13092 	return atomic_read(&kvm->arch.noncoherent_dma_count);
13093 }
13094 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13095 
13096 bool kvm_arch_has_irq_bypass(void)
13097 {
13098 	return true;
13099 }
13100 
13101 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13102 				      struct irq_bypass_producer *prod)
13103 {
13104 	struct kvm_kernel_irqfd *irqfd =
13105 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13106 	int ret;
13107 
13108 	irqfd->producer = prod;
13109 	kvm_arch_start_assignment(irqfd->kvm);
13110 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13111 					 prod->irq, irqfd->gsi, 1);
13112 
13113 	if (ret)
13114 		kvm_arch_end_assignment(irqfd->kvm);
13115 
13116 	return ret;
13117 }
13118 
13119 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13120 				      struct irq_bypass_producer *prod)
13121 {
13122 	int ret;
13123 	struct kvm_kernel_irqfd *irqfd =
13124 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13125 
13126 	WARN_ON(irqfd->producer != prod);
13127 	irqfd->producer = NULL;
13128 
13129 	/*
13130 	 * When producer of consumer is unregistered, we change back to
13131 	 * remapped mode, so we can re-use the current implementation
13132 	 * when the irq is masked/disabled or the consumer side (KVM
13133 	 * int this case doesn't want to receive the interrupts.
13134 	*/
13135 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13136 	if (ret)
13137 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13138 		       " fails: %d\n", irqfd->consumer.token, ret);
13139 
13140 	kvm_arch_end_assignment(irqfd->kvm);
13141 }
13142 
13143 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13144 				   uint32_t guest_irq, bool set)
13145 {
13146 	return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13147 }
13148 
13149 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13150 				  struct kvm_kernel_irq_routing_entry *new)
13151 {
13152 	if (new->type != KVM_IRQ_ROUTING_MSI)
13153 		return true;
13154 
13155 	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13156 }
13157 
13158 bool kvm_vector_hashing_enabled(void)
13159 {
13160 	return vector_hashing;
13161 }
13162 
13163 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13164 {
13165 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13166 }
13167 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13168 
13169 
13170 int kvm_spec_ctrl_test_value(u64 value)
13171 {
13172 	/*
13173 	 * test that setting IA32_SPEC_CTRL to given value
13174 	 * is allowed by the host processor
13175 	 */
13176 
13177 	u64 saved_value;
13178 	unsigned long flags;
13179 	int ret = 0;
13180 
13181 	local_irq_save(flags);
13182 
13183 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13184 		ret = 1;
13185 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13186 		ret = 1;
13187 	else
13188 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13189 
13190 	local_irq_restore(flags);
13191 
13192 	return ret;
13193 }
13194 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13195 
13196 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13197 {
13198 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13199 	struct x86_exception fault;
13200 	u64 access = error_code &
13201 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13202 
13203 	if (!(error_code & PFERR_PRESENT_MASK) ||
13204 	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13205 		/*
13206 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13207 		 * tables probably do not match the TLB.  Just proceed
13208 		 * with the error code that the processor gave.
13209 		 */
13210 		fault.vector = PF_VECTOR;
13211 		fault.error_code_valid = true;
13212 		fault.error_code = error_code;
13213 		fault.nested_page_fault = false;
13214 		fault.address = gva;
13215 		fault.async_page_fault = false;
13216 	}
13217 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13218 }
13219 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13220 
13221 /*
13222  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13223  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13224  * indicates whether exit to userspace is needed.
13225  */
13226 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13227 			      struct x86_exception *e)
13228 {
13229 	if (r == X86EMUL_PROPAGATE_FAULT) {
13230 		if (KVM_BUG_ON(!e, vcpu->kvm))
13231 			return -EIO;
13232 
13233 		kvm_inject_emulated_page_fault(vcpu, e);
13234 		return 1;
13235 	}
13236 
13237 	/*
13238 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13239 	 * while handling a VMX instruction KVM could've handled the request
13240 	 * correctly by exiting to userspace and performing I/O but there
13241 	 * doesn't seem to be a real use-case behind such requests, just return
13242 	 * KVM_EXIT_INTERNAL_ERROR for now.
13243 	 */
13244 	kvm_prepare_emulation_failure_exit(vcpu);
13245 
13246 	return 0;
13247 }
13248 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13249 
13250 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13251 {
13252 	bool pcid_enabled;
13253 	struct x86_exception e;
13254 	struct {
13255 		u64 pcid;
13256 		u64 gla;
13257 	} operand;
13258 	int r;
13259 
13260 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13261 	if (r != X86EMUL_CONTINUE)
13262 		return kvm_handle_memory_failure(vcpu, r, &e);
13263 
13264 	if (operand.pcid >> 12 != 0) {
13265 		kvm_inject_gp(vcpu, 0);
13266 		return 1;
13267 	}
13268 
13269 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
13270 
13271 	switch (type) {
13272 	case INVPCID_TYPE_INDIV_ADDR:
13273 		if ((!pcid_enabled && (operand.pcid != 0)) ||
13274 		    is_noncanonical_address(operand.gla, vcpu)) {
13275 			kvm_inject_gp(vcpu, 0);
13276 			return 1;
13277 		}
13278 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13279 		return kvm_skip_emulated_instruction(vcpu);
13280 
13281 	case INVPCID_TYPE_SINGLE_CTXT:
13282 		if (!pcid_enabled && (operand.pcid != 0)) {
13283 			kvm_inject_gp(vcpu, 0);
13284 			return 1;
13285 		}
13286 
13287 		kvm_invalidate_pcid(vcpu, operand.pcid);
13288 		return kvm_skip_emulated_instruction(vcpu);
13289 
13290 	case INVPCID_TYPE_ALL_NON_GLOBAL:
13291 		/*
13292 		 * Currently, KVM doesn't mark global entries in the shadow
13293 		 * page tables, so a non-global flush just degenerates to a
13294 		 * global flush. If needed, we could optimize this later by
13295 		 * keeping track of global entries in shadow page tables.
13296 		 */
13297 
13298 		fallthrough;
13299 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
13300 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13301 		return kvm_skip_emulated_instruction(vcpu);
13302 
13303 	default:
13304 		kvm_inject_gp(vcpu, 0);
13305 		return 1;
13306 	}
13307 }
13308 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13309 
13310 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13311 {
13312 	struct kvm_run *run = vcpu->run;
13313 	struct kvm_mmio_fragment *frag;
13314 	unsigned int len;
13315 
13316 	BUG_ON(!vcpu->mmio_needed);
13317 
13318 	/* Complete previous fragment */
13319 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13320 	len = min(8u, frag->len);
13321 	if (!vcpu->mmio_is_write)
13322 		memcpy(frag->data, run->mmio.data, len);
13323 
13324 	if (frag->len <= 8) {
13325 		/* Switch to the next fragment. */
13326 		frag++;
13327 		vcpu->mmio_cur_fragment++;
13328 	} else {
13329 		/* Go forward to the next mmio piece. */
13330 		frag->data += len;
13331 		frag->gpa += len;
13332 		frag->len -= len;
13333 	}
13334 
13335 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13336 		vcpu->mmio_needed = 0;
13337 
13338 		// VMG change, at this point, we're always done
13339 		// RIP has already been advanced
13340 		return 1;
13341 	}
13342 
13343 	// More MMIO is needed
13344 	run->mmio.phys_addr = frag->gpa;
13345 	run->mmio.len = min(8u, frag->len);
13346 	run->mmio.is_write = vcpu->mmio_is_write;
13347 	if (run->mmio.is_write)
13348 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13349 	run->exit_reason = KVM_EXIT_MMIO;
13350 
13351 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13352 
13353 	return 0;
13354 }
13355 
13356 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13357 			  void *data)
13358 {
13359 	int handled;
13360 	struct kvm_mmio_fragment *frag;
13361 
13362 	if (!data)
13363 		return -EINVAL;
13364 
13365 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13366 	if (handled == bytes)
13367 		return 1;
13368 
13369 	bytes -= handled;
13370 	gpa += handled;
13371 	data += handled;
13372 
13373 	/*TODO: Check if need to increment number of frags */
13374 	frag = vcpu->mmio_fragments;
13375 	vcpu->mmio_nr_fragments = 1;
13376 	frag->len = bytes;
13377 	frag->gpa = gpa;
13378 	frag->data = data;
13379 
13380 	vcpu->mmio_needed = 1;
13381 	vcpu->mmio_cur_fragment = 0;
13382 
13383 	vcpu->run->mmio.phys_addr = gpa;
13384 	vcpu->run->mmio.len = min(8u, frag->len);
13385 	vcpu->run->mmio.is_write = 1;
13386 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13387 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13388 
13389 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13390 
13391 	return 0;
13392 }
13393 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13394 
13395 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13396 			 void *data)
13397 {
13398 	int handled;
13399 	struct kvm_mmio_fragment *frag;
13400 
13401 	if (!data)
13402 		return -EINVAL;
13403 
13404 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13405 	if (handled == bytes)
13406 		return 1;
13407 
13408 	bytes -= handled;
13409 	gpa += handled;
13410 	data += handled;
13411 
13412 	/*TODO: Check if need to increment number of frags */
13413 	frag = vcpu->mmio_fragments;
13414 	vcpu->mmio_nr_fragments = 1;
13415 	frag->len = bytes;
13416 	frag->gpa = gpa;
13417 	frag->data = data;
13418 
13419 	vcpu->mmio_needed = 1;
13420 	vcpu->mmio_cur_fragment = 0;
13421 
13422 	vcpu->run->mmio.phys_addr = gpa;
13423 	vcpu->run->mmio.len = min(8u, frag->len);
13424 	vcpu->run->mmio.is_write = 0;
13425 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13426 
13427 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13428 
13429 	return 0;
13430 }
13431 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13432 
13433 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13434 {
13435 	vcpu->arch.sev_pio_count -= count;
13436 	vcpu->arch.sev_pio_data += count * size;
13437 }
13438 
13439 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13440 			   unsigned int port);
13441 
13442 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13443 {
13444 	int size = vcpu->arch.pio.size;
13445 	int port = vcpu->arch.pio.port;
13446 
13447 	vcpu->arch.pio.count = 0;
13448 	if (vcpu->arch.sev_pio_count)
13449 		return kvm_sev_es_outs(vcpu, size, port);
13450 	return 1;
13451 }
13452 
13453 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13454 			   unsigned int port)
13455 {
13456 	for (;;) {
13457 		unsigned int count =
13458 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13459 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13460 
13461 		/* memcpy done already by emulator_pio_out.  */
13462 		advance_sev_es_emulated_pio(vcpu, count, size);
13463 		if (!ret)
13464 			break;
13465 
13466 		/* Emulation done by the kernel.  */
13467 		if (!vcpu->arch.sev_pio_count)
13468 			return 1;
13469 	}
13470 
13471 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13472 	return 0;
13473 }
13474 
13475 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13476 			  unsigned int port);
13477 
13478 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13479 {
13480 	unsigned count = vcpu->arch.pio.count;
13481 	int size = vcpu->arch.pio.size;
13482 	int port = vcpu->arch.pio.port;
13483 
13484 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13485 	advance_sev_es_emulated_pio(vcpu, count, size);
13486 	if (vcpu->arch.sev_pio_count)
13487 		return kvm_sev_es_ins(vcpu, size, port);
13488 	return 1;
13489 }
13490 
13491 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13492 			  unsigned int port)
13493 {
13494 	for (;;) {
13495 		unsigned int count =
13496 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13497 		if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13498 			break;
13499 
13500 		/* Emulation done by the kernel.  */
13501 		advance_sev_es_emulated_pio(vcpu, count, size);
13502 		if (!vcpu->arch.sev_pio_count)
13503 			return 1;
13504 	}
13505 
13506 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13507 	return 0;
13508 }
13509 
13510 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13511 			 unsigned int port, void *data,  unsigned int count,
13512 			 int in)
13513 {
13514 	vcpu->arch.sev_pio_data = data;
13515 	vcpu->arch.sev_pio_count = count;
13516 	return in ? kvm_sev_es_ins(vcpu, size, port)
13517 		  : kvm_sev_es_outs(vcpu, size, port);
13518 }
13519 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13520 
13521 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13522 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13523 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13524 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13525 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13526 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13527 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13528 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13529 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13530 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13531 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13532 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13533 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13534 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13535 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13536 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13537 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13538 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13539 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13540 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13541 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13542 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13543 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13544 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13545 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13546 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13547 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13548 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13549 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13550 
13551 static int __init kvm_x86_init(void)
13552 {
13553 	kvm_mmu_x86_module_init();
13554 	mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
13555 	return 0;
13556 }
13557 module_init(kvm_x86_init);
13558 
13559 static void __exit kvm_x86_exit(void)
13560 {
13561 	/*
13562 	 * If module_init() is implemented, module_exit() must also be
13563 	 * implemented to allow module unload.
13564 	 */
13565 }
13566 module_exit(kvm_x86_exit);
13567