1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 19 #include <linux/kvm_host.h> 20 #include "irq.h" 21 #include "ioapic.h" 22 #include "mmu.h" 23 #include "i8254.h" 24 #include "tss.h" 25 #include "kvm_cache_regs.h" 26 #include "kvm_emulate.h" 27 #include "x86.h" 28 #include "cpuid.h" 29 #include "pmu.h" 30 #include "hyperv.h" 31 #include "lapic.h" 32 #include "xen.h" 33 34 #include <linux/clocksource.h> 35 #include <linux/interrupt.h> 36 #include <linux/kvm.h> 37 #include <linux/fs.h> 38 #include <linux/vmalloc.h> 39 #include <linux/export.h> 40 #include <linux/moduleparam.h> 41 #include <linux/mman.h> 42 #include <linux/highmem.h> 43 #include <linux/iommu.h> 44 #include <linux/intel-iommu.h> 45 #include <linux/cpufreq.h> 46 #include <linux/user-return-notifier.h> 47 #include <linux/srcu.h> 48 #include <linux/slab.h> 49 #include <linux/perf_event.h> 50 #include <linux/uaccess.h> 51 #include <linux/hash.h> 52 #include <linux/pci.h> 53 #include <linux/timekeeper_internal.h> 54 #include <linux/pvclock_gtod.h> 55 #include <linux/kvm_irqfd.h> 56 #include <linux/irqbypass.h> 57 #include <linux/sched/stat.h> 58 #include <linux/sched/isolation.h> 59 #include <linux/mem_encrypt.h> 60 #include <linux/entry-kvm.h> 61 #include <linux/suspend.h> 62 63 #include <trace/events/kvm.h> 64 65 #include <asm/debugreg.h> 66 #include <asm/msr.h> 67 #include <asm/desc.h> 68 #include <asm/mce.h> 69 #include <asm/pkru.h> 70 #include <linux/kernel_stat.h> 71 #include <asm/fpu/api.h> 72 #include <asm/fpu/xcr.h> 73 #include <asm/fpu/xstate.h> 74 #include <asm/pvclock.h> 75 #include <asm/div64.h> 76 #include <asm/irq_remapping.h> 77 #include <asm/mshyperv.h> 78 #include <asm/hypervisor.h> 79 #include <asm/tlbflush.h> 80 #include <asm/intel_pt.h> 81 #include <asm/emulate_prefix.h> 82 #include <asm/sgx.h> 83 #include <clocksource/hyperv_timer.h> 84 85 #define CREATE_TRACE_POINTS 86 #include "trace.h" 87 88 #define MAX_IO_MSRS 256 89 #define KVM_MAX_MCE_BANKS 32 90 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P; 91 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported); 92 93 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 94 95 #define emul_to_vcpu(ctxt) \ 96 ((struct kvm_vcpu *)(ctxt)->vcpu) 97 98 /* EFER defaults: 99 * - enable syscall per default because its emulated by KVM 100 * - enable LME and LMA per default on 64 bit KVM 101 */ 102 #ifdef CONFIG_X86_64 103 static 104 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 105 #else 106 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 107 #endif 108 109 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 110 111 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 112 113 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 114 115 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 116 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 117 118 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 119 static void process_nmi(struct kvm_vcpu *vcpu); 120 static void process_smi(struct kvm_vcpu *vcpu); 121 static void enter_smm(struct kvm_vcpu *vcpu); 122 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 123 static void store_regs(struct kvm_vcpu *vcpu); 124 static int sync_regs(struct kvm_vcpu *vcpu); 125 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 126 127 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 128 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 129 130 struct kvm_x86_ops kvm_x86_ops __read_mostly; 131 132 #define KVM_X86_OP(func) \ 133 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 134 *(((struct kvm_x86_ops *)0)->func)); 135 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 136 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 137 #include <asm/kvm-x86-ops.h> 138 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 139 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 140 141 static bool __read_mostly ignore_msrs = 0; 142 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 143 144 bool __read_mostly report_ignored_msrs = true; 145 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 146 EXPORT_SYMBOL_GPL(report_ignored_msrs); 147 148 unsigned int min_timer_period_us = 200; 149 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 150 151 static bool __read_mostly kvmclock_periodic_sync = true; 152 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 153 154 bool __read_mostly kvm_has_tsc_control; 155 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 156 u32 __read_mostly kvm_max_guest_tsc_khz; 157 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 158 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits; 159 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits); 160 u64 __read_mostly kvm_max_tsc_scaling_ratio; 161 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio); 162 u64 __read_mostly kvm_default_tsc_scaling_ratio; 163 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio); 164 bool __read_mostly kvm_has_bus_lock_exit; 165 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit); 166 167 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 168 static u32 __read_mostly tsc_tolerance_ppm = 250; 169 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 170 171 /* 172 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 173 * adaptive tuning starting from default advancement of 1000ns. '0' disables 174 * advancement entirely. Any other value is used as-is and disables adaptive 175 * tuning, i.e. allows privileged userspace to set an exact advancement time. 176 */ 177 static int __read_mostly lapic_timer_advance_ns = -1; 178 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 179 180 static bool __read_mostly vector_hashing = true; 181 module_param(vector_hashing, bool, S_IRUGO); 182 183 bool __read_mostly enable_vmware_backdoor = false; 184 module_param(enable_vmware_backdoor, bool, S_IRUGO); 185 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 186 187 static bool __read_mostly force_emulation_prefix = false; 188 module_param(force_emulation_prefix, bool, S_IRUGO); 189 190 int __read_mostly pi_inject_timer = -1; 191 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 192 193 /* Enable/disable PMU virtualization */ 194 bool __read_mostly enable_pmu = true; 195 EXPORT_SYMBOL_GPL(enable_pmu); 196 module_param(enable_pmu, bool, 0444); 197 198 bool __read_mostly eager_page_split = true; 199 module_param(eager_page_split, bool, 0644); 200 201 /* 202 * Restoring the host value for MSRs that are only consumed when running in 203 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 204 * returns to userspace, i.e. the kernel can run with the guest's value. 205 */ 206 #define KVM_MAX_NR_USER_RETURN_MSRS 16 207 208 struct kvm_user_return_msrs { 209 struct user_return_notifier urn; 210 bool registered; 211 struct kvm_user_return_msr_values { 212 u64 host; 213 u64 curr; 214 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 215 }; 216 217 u32 __read_mostly kvm_nr_uret_msrs; 218 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 219 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 220 static struct kvm_user_return_msrs __percpu *user_return_msrs; 221 222 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 223 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 224 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 225 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 226 227 u64 __read_mostly host_efer; 228 EXPORT_SYMBOL_GPL(host_efer); 229 230 bool __read_mostly allow_smaller_maxphyaddr = 0; 231 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 232 233 bool __read_mostly enable_apicv = true; 234 EXPORT_SYMBOL_GPL(enable_apicv); 235 236 u64 __read_mostly host_xss; 237 EXPORT_SYMBOL_GPL(host_xss); 238 u64 __read_mostly supported_xss; 239 EXPORT_SYMBOL_GPL(supported_xss); 240 241 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 242 KVM_GENERIC_VM_STATS(), 243 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 244 STATS_DESC_COUNTER(VM, mmu_pte_write), 245 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 246 STATS_DESC_COUNTER(VM, mmu_flooded), 247 STATS_DESC_COUNTER(VM, mmu_recycled), 248 STATS_DESC_COUNTER(VM, mmu_cache_miss), 249 STATS_DESC_ICOUNTER(VM, mmu_unsync), 250 STATS_DESC_ICOUNTER(VM, pages_4k), 251 STATS_DESC_ICOUNTER(VM, pages_2m), 252 STATS_DESC_ICOUNTER(VM, pages_1g), 253 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 254 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 255 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 256 }; 257 258 const struct kvm_stats_header kvm_vm_stats_header = { 259 .name_size = KVM_STATS_NAME_SIZE, 260 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 261 .id_offset = sizeof(struct kvm_stats_header), 262 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 263 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 264 sizeof(kvm_vm_stats_desc), 265 }; 266 267 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 268 KVM_GENERIC_VCPU_STATS(), 269 STATS_DESC_COUNTER(VCPU, pf_taken), 270 STATS_DESC_COUNTER(VCPU, pf_fixed), 271 STATS_DESC_COUNTER(VCPU, pf_emulate), 272 STATS_DESC_COUNTER(VCPU, pf_spurious), 273 STATS_DESC_COUNTER(VCPU, pf_fast), 274 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 275 STATS_DESC_COUNTER(VCPU, pf_guest), 276 STATS_DESC_COUNTER(VCPU, tlb_flush), 277 STATS_DESC_COUNTER(VCPU, invlpg), 278 STATS_DESC_COUNTER(VCPU, exits), 279 STATS_DESC_COUNTER(VCPU, io_exits), 280 STATS_DESC_COUNTER(VCPU, mmio_exits), 281 STATS_DESC_COUNTER(VCPU, signal_exits), 282 STATS_DESC_COUNTER(VCPU, irq_window_exits), 283 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 284 STATS_DESC_COUNTER(VCPU, l1d_flush), 285 STATS_DESC_COUNTER(VCPU, halt_exits), 286 STATS_DESC_COUNTER(VCPU, request_irq_exits), 287 STATS_DESC_COUNTER(VCPU, irq_exits), 288 STATS_DESC_COUNTER(VCPU, host_state_reload), 289 STATS_DESC_COUNTER(VCPU, fpu_reload), 290 STATS_DESC_COUNTER(VCPU, insn_emulation), 291 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 292 STATS_DESC_COUNTER(VCPU, hypercalls), 293 STATS_DESC_COUNTER(VCPU, irq_injections), 294 STATS_DESC_COUNTER(VCPU, nmi_injections), 295 STATS_DESC_COUNTER(VCPU, req_event), 296 STATS_DESC_COUNTER(VCPU, nested_run), 297 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 298 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 299 STATS_DESC_ICOUNTER(VCPU, guest_mode) 300 }; 301 302 const struct kvm_stats_header kvm_vcpu_stats_header = { 303 .name_size = KVM_STATS_NAME_SIZE, 304 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 305 .id_offset = sizeof(struct kvm_stats_header), 306 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 307 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 308 sizeof(kvm_vcpu_stats_desc), 309 }; 310 311 u64 __read_mostly host_xcr0; 312 u64 __read_mostly supported_xcr0; 313 EXPORT_SYMBOL_GPL(supported_xcr0); 314 315 static struct kmem_cache *x86_emulator_cache; 316 317 /* 318 * When called, it means the previous get/set msr reached an invalid msr. 319 * Return true if we want to ignore/silent this failed msr access. 320 */ 321 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 322 { 323 const char *op = write ? "wrmsr" : "rdmsr"; 324 325 if (ignore_msrs) { 326 if (report_ignored_msrs) 327 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 328 op, msr, data); 329 /* Mask the error */ 330 return true; 331 } else { 332 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 333 op, msr, data); 334 return false; 335 } 336 } 337 338 static struct kmem_cache *kvm_alloc_emulator_cache(void) 339 { 340 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 341 unsigned int size = sizeof(struct x86_emulate_ctxt); 342 343 return kmem_cache_create_usercopy("x86_emulator", size, 344 __alignof__(struct x86_emulate_ctxt), 345 SLAB_ACCOUNT, useroffset, 346 size - useroffset, NULL); 347 } 348 349 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 350 351 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 352 { 353 int i; 354 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 355 vcpu->arch.apf.gfns[i] = ~0; 356 } 357 358 static void kvm_on_user_return(struct user_return_notifier *urn) 359 { 360 unsigned slot; 361 struct kvm_user_return_msrs *msrs 362 = container_of(urn, struct kvm_user_return_msrs, urn); 363 struct kvm_user_return_msr_values *values; 364 unsigned long flags; 365 366 /* 367 * Disabling irqs at this point since the following code could be 368 * interrupted and executed through kvm_arch_hardware_disable() 369 */ 370 local_irq_save(flags); 371 if (msrs->registered) { 372 msrs->registered = false; 373 user_return_notifier_unregister(urn); 374 } 375 local_irq_restore(flags); 376 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 377 values = &msrs->values[slot]; 378 if (values->host != values->curr) { 379 wrmsrl(kvm_uret_msrs_list[slot], values->host); 380 values->curr = values->host; 381 } 382 } 383 } 384 385 static int kvm_probe_user_return_msr(u32 msr) 386 { 387 u64 val; 388 int ret; 389 390 preempt_disable(); 391 ret = rdmsrl_safe(msr, &val); 392 if (ret) 393 goto out; 394 ret = wrmsrl_safe(msr, val); 395 out: 396 preempt_enable(); 397 return ret; 398 } 399 400 int kvm_add_user_return_msr(u32 msr) 401 { 402 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 403 404 if (kvm_probe_user_return_msr(msr)) 405 return -1; 406 407 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 408 return kvm_nr_uret_msrs++; 409 } 410 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 411 412 int kvm_find_user_return_msr(u32 msr) 413 { 414 int i; 415 416 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 417 if (kvm_uret_msrs_list[i] == msr) 418 return i; 419 } 420 return -1; 421 } 422 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 423 424 static void kvm_user_return_msr_cpu_online(void) 425 { 426 unsigned int cpu = smp_processor_id(); 427 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 428 u64 value; 429 int i; 430 431 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 432 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 433 msrs->values[i].host = value; 434 msrs->values[i].curr = value; 435 } 436 } 437 438 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 439 { 440 unsigned int cpu = smp_processor_id(); 441 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 442 int err; 443 444 value = (value & mask) | (msrs->values[slot].host & ~mask); 445 if (value == msrs->values[slot].curr) 446 return 0; 447 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 448 if (err) 449 return 1; 450 451 msrs->values[slot].curr = value; 452 if (!msrs->registered) { 453 msrs->urn.on_user_return = kvm_on_user_return; 454 user_return_notifier_register(&msrs->urn); 455 msrs->registered = true; 456 } 457 return 0; 458 } 459 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 460 461 static void drop_user_return_notifiers(void) 462 { 463 unsigned int cpu = smp_processor_id(); 464 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 465 466 if (msrs->registered) 467 kvm_on_user_return(&msrs->urn); 468 } 469 470 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 471 { 472 return vcpu->arch.apic_base; 473 } 474 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 475 476 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 477 { 478 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 479 } 480 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 481 482 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 483 { 484 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 485 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 486 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 487 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 488 489 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 490 return 1; 491 if (!msr_info->host_initiated) { 492 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 493 return 1; 494 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 495 return 1; 496 } 497 498 kvm_lapic_set_base(vcpu, msr_info->data); 499 kvm_recalculate_apic_map(vcpu->kvm); 500 return 0; 501 } 502 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 503 504 /* 505 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 506 * 507 * Hardware virtualization extension instructions may fault if a reboot turns 508 * off virtualization while processes are running. Usually after catching the 509 * fault we just panic; during reboot instead the instruction is ignored. 510 */ 511 noinstr void kvm_spurious_fault(void) 512 { 513 /* Fault while not rebooting. We want the trace. */ 514 BUG_ON(!kvm_rebooting); 515 } 516 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 517 518 #define EXCPT_BENIGN 0 519 #define EXCPT_CONTRIBUTORY 1 520 #define EXCPT_PF 2 521 522 static int exception_class(int vector) 523 { 524 switch (vector) { 525 case PF_VECTOR: 526 return EXCPT_PF; 527 case DE_VECTOR: 528 case TS_VECTOR: 529 case NP_VECTOR: 530 case SS_VECTOR: 531 case GP_VECTOR: 532 return EXCPT_CONTRIBUTORY; 533 default: 534 break; 535 } 536 return EXCPT_BENIGN; 537 } 538 539 #define EXCPT_FAULT 0 540 #define EXCPT_TRAP 1 541 #define EXCPT_ABORT 2 542 #define EXCPT_INTERRUPT 3 543 544 static int exception_type(int vector) 545 { 546 unsigned int mask; 547 548 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 549 return EXCPT_INTERRUPT; 550 551 mask = 1 << vector; 552 553 /* #DB is trap, as instruction watchpoints are handled elsewhere */ 554 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR))) 555 return EXCPT_TRAP; 556 557 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 558 return EXCPT_ABORT; 559 560 /* Reserved exceptions will result in fault */ 561 return EXCPT_FAULT; 562 } 563 564 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu) 565 { 566 unsigned nr = vcpu->arch.exception.nr; 567 bool has_payload = vcpu->arch.exception.has_payload; 568 unsigned long payload = vcpu->arch.exception.payload; 569 570 if (!has_payload) 571 return; 572 573 switch (nr) { 574 case DB_VECTOR: 575 /* 576 * "Certain debug exceptions may clear bit 0-3. The 577 * remaining contents of the DR6 register are never 578 * cleared by the processor". 579 */ 580 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 581 /* 582 * In order to reflect the #DB exception payload in guest 583 * dr6, three components need to be considered: active low 584 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 585 * DR6_BS and DR6_BT) 586 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 587 * In the target guest dr6: 588 * FIXED_1 bits should always be set. 589 * Active low bits should be cleared if 1-setting in payload. 590 * Active high bits should be set if 1-setting in payload. 591 * 592 * Note, the payload is compatible with the pending debug 593 * exceptions/exit qualification under VMX, that active_low bits 594 * are active high in payload. 595 * So they need to be flipped for DR6. 596 */ 597 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 598 vcpu->arch.dr6 |= payload; 599 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW; 600 601 /* 602 * The #DB payload is defined as compatible with the 'pending 603 * debug exceptions' field under VMX, not DR6. While bit 12 is 604 * defined in the 'pending debug exceptions' field (enabled 605 * breakpoint), it is reserved and must be zero in DR6. 606 */ 607 vcpu->arch.dr6 &= ~BIT(12); 608 break; 609 case PF_VECTOR: 610 vcpu->arch.cr2 = payload; 611 break; 612 } 613 614 vcpu->arch.exception.has_payload = false; 615 vcpu->arch.exception.payload = 0; 616 } 617 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 618 619 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 620 unsigned nr, bool has_error, u32 error_code, 621 bool has_payload, unsigned long payload, bool reinject) 622 { 623 u32 prev_nr; 624 int class1, class2; 625 626 kvm_make_request(KVM_REQ_EVENT, vcpu); 627 628 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 629 queue: 630 if (reinject) { 631 /* 632 * On vmentry, vcpu->arch.exception.pending is only 633 * true if an event injection was blocked by 634 * nested_run_pending. In that case, however, 635 * vcpu_enter_guest requests an immediate exit, 636 * and the guest shouldn't proceed far enough to 637 * need reinjection. 638 */ 639 WARN_ON_ONCE(vcpu->arch.exception.pending); 640 vcpu->arch.exception.injected = true; 641 if (WARN_ON_ONCE(has_payload)) { 642 /* 643 * A reinjected event has already 644 * delivered its payload. 645 */ 646 has_payload = false; 647 payload = 0; 648 } 649 } else { 650 vcpu->arch.exception.pending = true; 651 vcpu->arch.exception.injected = false; 652 } 653 vcpu->arch.exception.has_error_code = has_error; 654 vcpu->arch.exception.nr = nr; 655 vcpu->arch.exception.error_code = error_code; 656 vcpu->arch.exception.has_payload = has_payload; 657 vcpu->arch.exception.payload = payload; 658 if (!is_guest_mode(vcpu)) 659 kvm_deliver_exception_payload(vcpu); 660 return; 661 } 662 663 /* to check exception */ 664 prev_nr = vcpu->arch.exception.nr; 665 if (prev_nr == DF_VECTOR) { 666 /* triple fault -> shutdown */ 667 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 668 return; 669 } 670 class1 = exception_class(prev_nr); 671 class2 = exception_class(nr); 672 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 673 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 674 /* 675 * Generate double fault per SDM Table 5-5. Set 676 * exception.pending = true so that the double fault 677 * can trigger a nested vmexit. 678 */ 679 vcpu->arch.exception.pending = true; 680 vcpu->arch.exception.injected = false; 681 vcpu->arch.exception.has_error_code = true; 682 vcpu->arch.exception.nr = DF_VECTOR; 683 vcpu->arch.exception.error_code = 0; 684 vcpu->arch.exception.has_payload = false; 685 vcpu->arch.exception.payload = 0; 686 } else 687 /* replace previous exception with a new one in a hope 688 that instruction re-execution will regenerate lost 689 exception */ 690 goto queue; 691 } 692 693 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 694 { 695 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 696 } 697 EXPORT_SYMBOL_GPL(kvm_queue_exception); 698 699 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 700 { 701 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 702 } 703 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 704 705 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 706 unsigned long payload) 707 { 708 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 709 } 710 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 711 712 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 713 u32 error_code, unsigned long payload) 714 { 715 kvm_multiple_exception(vcpu, nr, true, error_code, 716 true, payload, false); 717 } 718 719 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 720 { 721 if (err) 722 kvm_inject_gp(vcpu, 0); 723 else 724 return kvm_skip_emulated_instruction(vcpu); 725 726 return 1; 727 } 728 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 729 730 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 731 { 732 if (err) { 733 kvm_inject_gp(vcpu, 0); 734 return 1; 735 } 736 737 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 738 EMULTYPE_COMPLETE_USER_EXIT); 739 } 740 741 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 742 { 743 ++vcpu->stat.pf_guest; 744 vcpu->arch.exception.nested_apf = 745 is_guest_mode(vcpu) && fault->async_page_fault; 746 if (vcpu->arch.exception.nested_apf) { 747 vcpu->arch.apf.nested_apf_token = fault->address; 748 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 749 } else { 750 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 751 fault->address); 752 } 753 } 754 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 755 756 /* Returns true if the page fault was immediately morphed into a VM-Exit. */ 757 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 758 struct x86_exception *fault) 759 { 760 struct kvm_mmu *fault_mmu; 761 WARN_ON_ONCE(fault->vector != PF_VECTOR); 762 763 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 764 vcpu->arch.walk_mmu; 765 766 /* 767 * Invalidate the TLB entry for the faulting address, if it exists, 768 * else the access will fault indefinitely (and to emulate hardware). 769 */ 770 if ((fault->error_code & PFERR_PRESENT_MASK) && 771 !(fault->error_code & PFERR_RSVD_MASK)) 772 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address, 773 fault_mmu->root.hpa); 774 775 /* 776 * A workaround for KVM's bad exception handling. If KVM injected an 777 * exception into L2, and L2 encountered a #PF while vectoring the 778 * injected exception, manually check to see if L1 wants to intercept 779 * #PF, otherwise queuing the #PF will lead to #DF or a lost exception. 780 * In all other cases, defer the check to nested_ops->check_events(), 781 * which will correctly handle priority (this does not). Note, other 782 * exceptions, e.g. #GP, are theoretically affected, #PF is simply the 783 * most problematic, e.g. when L0 and L1 are both intercepting #PF for 784 * shadow paging. 785 * 786 * TODO: Rewrite exception handling to track injected and pending 787 * (VM-Exit) exceptions separately. 788 */ 789 if (unlikely(vcpu->arch.exception.injected && is_guest_mode(vcpu)) && 790 kvm_x86_ops.nested_ops->handle_page_fault_workaround(vcpu, fault)) 791 return true; 792 793 fault_mmu->inject_page_fault(vcpu, fault); 794 return false; 795 } 796 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 797 798 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 799 { 800 atomic_inc(&vcpu->arch.nmi_queued); 801 kvm_make_request(KVM_REQ_NMI, vcpu); 802 } 803 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 804 805 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 806 { 807 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 808 } 809 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 810 811 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 812 { 813 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 814 } 815 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 816 817 /* 818 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 819 * a #GP and return false. 820 */ 821 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 822 { 823 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 824 return true; 825 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 826 return false; 827 } 828 EXPORT_SYMBOL_GPL(kvm_require_cpl); 829 830 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 831 { 832 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 833 return true; 834 835 kvm_queue_exception(vcpu, UD_VECTOR); 836 return false; 837 } 838 EXPORT_SYMBOL_GPL(kvm_require_dr); 839 840 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 841 { 842 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 843 } 844 845 /* 846 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 847 */ 848 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 849 { 850 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 851 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 852 gpa_t real_gpa; 853 int i; 854 int ret; 855 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 856 857 /* 858 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 859 * to an L1 GPA. 860 */ 861 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 862 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 863 if (real_gpa == UNMAPPED_GVA) 864 return 0; 865 866 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 867 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 868 cr3 & GENMASK(11, 5), sizeof(pdpte)); 869 if (ret < 0) 870 return 0; 871 872 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 873 if ((pdpte[i] & PT_PRESENT_MASK) && 874 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 875 return 0; 876 } 877 } 878 879 /* 880 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 881 * Shadow page roots need to be reconstructed instead. 882 */ 883 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 884 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 885 886 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 887 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 888 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 889 vcpu->arch.pdptrs_from_userspace = false; 890 891 return 1; 892 } 893 EXPORT_SYMBOL_GPL(load_pdptrs); 894 895 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 896 { 897 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 898 kvm_clear_async_pf_completion_queue(vcpu); 899 kvm_async_pf_hash_reset(vcpu); 900 901 /* 902 * Clearing CR0.PG is defined to flush the TLB from the guest's 903 * perspective. 904 */ 905 if (!(cr0 & X86_CR0_PG)) 906 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 907 } 908 909 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 910 kvm_mmu_reset_context(vcpu); 911 912 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 913 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 914 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 915 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 916 } 917 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 918 919 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 920 { 921 unsigned long old_cr0 = kvm_read_cr0(vcpu); 922 923 cr0 |= X86_CR0_ET; 924 925 #ifdef CONFIG_X86_64 926 if (cr0 & 0xffffffff00000000UL) 927 return 1; 928 #endif 929 930 cr0 &= ~CR0_RESERVED_BITS; 931 932 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 933 return 1; 934 935 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 936 return 1; 937 938 #ifdef CONFIG_X86_64 939 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 940 (cr0 & X86_CR0_PG)) { 941 int cs_db, cs_l; 942 943 if (!is_pae(vcpu)) 944 return 1; 945 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 946 if (cs_l) 947 return 1; 948 } 949 #endif 950 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 951 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 952 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 953 return 1; 954 955 if (!(cr0 & X86_CR0_PG) && 956 (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))) 957 return 1; 958 959 static_call(kvm_x86_set_cr0)(vcpu, cr0); 960 961 kvm_post_set_cr0(vcpu, old_cr0, cr0); 962 963 return 0; 964 } 965 EXPORT_SYMBOL_GPL(kvm_set_cr0); 966 967 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 968 { 969 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 970 } 971 EXPORT_SYMBOL_GPL(kvm_lmsw); 972 973 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 974 { 975 if (vcpu->arch.guest_state_protected) 976 return; 977 978 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 979 980 if (vcpu->arch.xcr0 != host_xcr0) 981 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 982 983 if (vcpu->arch.xsaves_enabled && 984 vcpu->arch.ia32_xss != host_xss) 985 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 986 } 987 988 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 989 if (static_cpu_has(X86_FEATURE_PKU) && 990 vcpu->arch.pkru != vcpu->arch.host_pkru && 991 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 992 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) 993 write_pkru(vcpu->arch.pkru); 994 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 995 } 996 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 997 998 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 999 { 1000 if (vcpu->arch.guest_state_protected) 1001 return; 1002 1003 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 1004 if (static_cpu_has(X86_FEATURE_PKU) && 1005 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1006 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) { 1007 vcpu->arch.pkru = rdpkru(); 1008 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1009 write_pkru(vcpu->arch.host_pkru); 1010 } 1011 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 1012 1013 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 1014 1015 if (vcpu->arch.xcr0 != host_xcr0) 1016 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 1017 1018 if (vcpu->arch.xsaves_enabled && 1019 vcpu->arch.ia32_xss != host_xss) 1020 wrmsrl(MSR_IA32_XSS, host_xss); 1021 } 1022 1023 } 1024 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1025 1026 static inline u64 kvm_guest_supported_xcr0(struct kvm_vcpu *vcpu) 1027 { 1028 return vcpu->arch.guest_fpu.fpstate->user_xfeatures; 1029 } 1030 1031 #ifdef CONFIG_X86_64 1032 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1033 { 1034 return kvm_guest_supported_xcr0(vcpu) & XFEATURE_MASK_USER_DYNAMIC; 1035 } 1036 #endif 1037 1038 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1039 { 1040 u64 xcr0 = xcr; 1041 u64 old_xcr0 = vcpu->arch.xcr0; 1042 u64 valid_bits; 1043 1044 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1045 if (index != XCR_XFEATURE_ENABLED_MASK) 1046 return 1; 1047 if (!(xcr0 & XFEATURE_MASK_FP)) 1048 return 1; 1049 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1050 return 1; 1051 1052 /* 1053 * Do not allow the guest to set bits that we do not support 1054 * saving. However, xcr0 bit 0 is always set, even if the 1055 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1056 */ 1057 valid_bits = kvm_guest_supported_xcr0(vcpu) | XFEATURE_MASK_FP; 1058 if (xcr0 & ~valid_bits) 1059 return 1; 1060 1061 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1062 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1063 return 1; 1064 1065 if (xcr0 & XFEATURE_MASK_AVX512) { 1066 if (!(xcr0 & XFEATURE_MASK_YMM)) 1067 return 1; 1068 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1069 return 1; 1070 } 1071 1072 if ((xcr0 & XFEATURE_MASK_XTILE) && 1073 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1074 return 1; 1075 1076 vcpu->arch.xcr0 = xcr0; 1077 1078 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1079 kvm_update_cpuid_runtime(vcpu); 1080 return 0; 1081 } 1082 1083 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1084 { 1085 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || 1086 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1087 kvm_inject_gp(vcpu, 0); 1088 return 1; 1089 } 1090 1091 return kvm_skip_emulated_instruction(vcpu); 1092 } 1093 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1094 1095 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1096 { 1097 if (cr4 & cr4_reserved_bits) 1098 return false; 1099 1100 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1101 return false; 1102 1103 return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1104 } 1105 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4); 1106 1107 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1108 { 1109 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1110 kvm_mmu_reset_context(vcpu); 1111 1112 /* 1113 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1114 * according to the SDM; however, stale prev_roots could be reused 1115 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1116 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1117 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1118 * so fall through. 1119 */ 1120 if (!tdp_enabled && 1121 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1122 kvm_mmu_unload(vcpu); 1123 1124 /* 1125 * The TLB has to be flushed for all PCIDs if any of the following 1126 * (architecturally required) changes happen: 1127 * - CR4.PCIDE is changed from 1 to 0 1128 * - CR4.PGE is toggled 1129 * 1130 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1131 */ 1132 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1133 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1134 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1135 1136 /* 1137 * The TLB has to be flushed for the current PCID if any of the 1138 * following (architecturally required) changes happen: 1139 * - CR4.SMEP is changed from 0 to 1 1140 * - CR4.PAE is toggled 1141 */ 1142 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1143 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1144 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1145 1146 } 1147 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1148 1149 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1150 { 1151 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1152 1153 if (!kvm_is_valid_cr4(vcpu, cr4)) 1154 return 1; 1155 1156 if (is_long_mode(vcpu)) { 1157 if (!(cr4 & X86_CR4_PAE)) 1158 return 1; 1159 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1160 return 1; 1161 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1162 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1163 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1164 return 1; 1165 1166 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1167 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 1168 return 1; 1169 1170 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1171 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1172 return 1; 1173 } 1174 1175 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1176 1177 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1178 1179 return 0; 1180 } 1181 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1182 1183 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1184 { 1185 struct kvm_mmu *mmu = vcpu->arch.mmu; 1186 unsigned long roots_to_free = 0; 1187 int i; 1188 1189 /* 1190 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1191 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1192 * also via the emulator. KVM's TDP page tables are not in the scope of 1193 * the invalidation, but the guest's TLB entries need to be flushed as 1194 * the CPU may have cached entries in its TLB for the target PCID. 1195 */ 1196 if (unlikely(tdp_enabled)) { 1197 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1198 return; 1199 } 1200 1201 /* 1202 * If neither the current CR3 nor any of the prev_roots use the given 1203 * PCID, then nothing needs to be done here because a resync will 1204 * happen anyway before switching to any other CR3. 1205 */ 1206 if (kvm_get_active_pcid(vcpu) == pcid) { 1207 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1208 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1209 } 1210 1211 /* 1212 * If PCID is disabled, there is no need to free prev_roots even if the 1213 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1214 * with PCIDE=0. 1215 */ 1216 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 1217 return; 1218 1219 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1220 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1221 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1222 1223 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1224 } 1225 1226 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1227 { 1228 bool skip_tlb_flush = false; 1229 unsigned long pcid = 0; 1230 #ifdef CONFIG_X86_64 1231 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 1232 1233 if (pcid_enabled) { 1234 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1235 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1236 pcid = cr3 & X86_CR3_PCID_MASK; 1237 } 1238 #endif 1239 1240 /* PDPTRs are always reloaded for PAE paging. */ 1241 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1242 goto handle_tlb_flush; 1243 1244 /* 1245 * Do not condition the GPA check on long mode, this helper is used to 1246 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1247 * the current vCPU mode is accurate. 1248 */ 1249 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3)) 1250 return 1; 1251 1252 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1253 return 1; 1254 1255 if (cr3 != kvm_read_cr3(vcpu)) 1256 kvm_mmu_new_pgd(vcpu, cr3); 1257 1258 vcpu->arch.cr3 = cr3; 1259 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1260 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1261 1262 handle_tlb_flush: 1263 /* 1264 * A load of CR3 that flushes the TLB flushes only the current PCID, 1265 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1266 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1267 * and it's impossible to use a non-zero PCID when PCID is disabled, 1268 * i.e. only PCID=0 can be relevant. 1269 */ 1270 if (!skip_tlb_flush) 1271 kvm_invalidate_pcid(vcpu, pcid); 1272 1273 return 0; 1274 } 1275 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1276 1277 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1278 { 1279 if (cr8 & CR8_RESERVED_BITS) 1280 return 1; 1281 if (lapic_in_kernel(vcpu)) 1282 kvm_lapic_set_tpr(vcpu, cr8); 1283 else 1284 vcpu->arch.cr8 = cr8; 1285 return 0; 1286 } 1287 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1288 1289 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1290 { 1291 if (lapic_in_kernel(vcpu)) 1292 return kvm_lapic_get_cr8(vcpu); 1293 else 1294 return vcpu->arch.cr8; 1295 } 1296 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1297 1298 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1299 { 1300 int i; 1301 1302 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1303 for (i = 0; i < KVM_NR_DB_REGS; i++) 1304 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1305 } 1306 } 1307 1308 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1309 { 1310 unsigned long dr7; 1311 1312 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1313 dr7 = vcpu->arch.guest_debug_dr7; 1314 else 1315 dr7 = vcpu->arch.dr7; 1316 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1317 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1318 if (dr7 & DR7_BP_EN_MASK) 1319 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1320 } 1321 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1322 1323 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1324 { 1325 u64 fixed = DR6_FIXED_1; 1326 1327 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1328 fixed |= DR6_RTM; 1329 1330 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1331 fixed |= DR6_BUS_LOCK; 1332 return fixed; 1333 } 1334 1335 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1336 { 1337 size_t size = ARRAY_SIZE(vcpu->arch.db); 1338 1339 switch (dr) { 1340 case 0 ... 3: 1341 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1342 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1343 vcpu->arch.eff_db[dr] = val; 1344 break; 1345 case 4: 1346 case 6: 1347 if (!kvm_dr6_valid(val)) 1348 return 1; /* #GP */ 1349 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1350 break; 1351 case 5: 1352 default: /* 7 */ 1353 if (!kvm_dr7_valid(val)) 1354 return 1; /* #GP */ 1355 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1356 kvm_update_dr7(vcpu); 1357 break; 1358 } 1359 1360 return 0; 1361 } 1362 EXPORT_SYMBOL_GPL(kvm_set_dr); 1363 1364 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1365 { 1366 size_t size = ARRAY_SIZE(vcpu->arch.db); 1367 1368 switch (dr) { 1369 case 0 ... 3: 1370 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1371 break; 1372 case 4: 1373 case 6: 1374 *val = vcpu->arch.dr6; 1375 break; 1376 case 5: 1377 default: /* 7 */ 1378 *val = vcpu->arch.dr7; 1379 break; 1380 } 1381 } 1382 EXPORT_SYMBOL_GPL(kvm_get_dr); 1383 1384 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1385 { 1386 u32 ecx = kvm_rcx_read(vcpu); 1387 u64 data; 1388 1389 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1390 kvm_inject_gp(vcpu, 0); 1391 return 1; 1392 } 1393 1394 kvm_rax_write(vcpu, (u32)data); 1395 kvm_rdx_write(vcpu, data >> 32); 1396 return kvm_skip_emulated_instruction(vcpu); 1397 } 1398 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1399 1400 /* 1401 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1402 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1403 * 1404 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) 1405 * extract the supported MSRs from the related const lists. 1406 * msrs_to_save is selected from the msrs_to_save_all to reflect the 1407 * capabilities of the host cpu. This capabilities test skips MSRs that are 1408 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs 1409 * may depend on host virtualization features rather than host cpu features. 1410 */ 1411 1412 static const u32 msrs_to_save_all[] = { 1413 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1414 MSR_STAR, 1415 #ifdef CONFIG_X86_64 1416 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1417 #endif 1418 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1419 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1420 MSR_IA32_SPEC_CTRL, 1421 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1422 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1423 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1424 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1425 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1426 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1427 MSR_IA32_UMWAIT_CONTROL, 1428 1429 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1430 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1431 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1432 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1433 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1434 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1435 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1436 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1437 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9, 1438 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11, 1439 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13, 1440 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15, 1441 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17, 1442 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1443 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1444 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1445 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1446 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9, 1447 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11, 1448 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13, 1449 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15, 1450 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17, 1451 1452 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1453 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1454 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1455 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1456 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1457 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1458 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 1459 }; 1460 1461 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)]; 1462 static unsigned num_msrs_to_save; 1463 1464 static const u32 emulated_msrs_all[] = { 1465 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1466 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1467 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1468 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1469 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1470 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1471 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1472 HV_X64_MSR_RESET, 1473 HV_X64_MSR_VP_INDEX, 1474 HV_X64_MSR_VP_RUNTIME, 1475 HV_X64_MSR_SCONTROL, 1476 HV_X64_MSR_STIMER0_CONFIG, 1477 HV_X64_MSR_VP_ASSIST_PAGE, 1478 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1479 HV_X64_MSR_TSC_EMULATION_STATUS, 1480 HV_X64_MSR_SYNDBG_OPTIONS, 1481 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1482 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1483 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1484 1485 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1486 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1487 1488 MSR_IA32_TSC_ADJUST, 1489 MSR_IA32_TSC_DEADLINE, 1490 MSR_IA32_ARCH_CAPABILITIES, 1491 MSR_IA32_PERF_CAPABILITIES, 1492 MSR_IA32_MISC_ENABLE, 1493 MSR_IA32_MCG_STATUS, 1494 MSR_IA32_MCG_CTL, 1495 MSR_IA32_MCG_EXT_CTL, 1496 MSR_IA32_SMBASE, 1497 MSR_SMI_COUNT, 1498 MSR_PLATFORM_INFO, 1499 MSR_MISC_FEATURES_ENABLES, 1500 MSR_AMD64_VIRT_SPEC_CTRL, 1501 MSR_AMD64_TSC_RATIO, 1502 MSR_IA32_POWER_CTL, 1503 MSR_IA32_UCODE_REV, 1504 1505 /* 1506 * The following list leaves out MSRs whose values are determined 1507 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs. 1508 * We always support the "true" VMX control MSRs, even if the host 1509 * processor does not, so I am putting these registers here rather 1510 * than in msrs_to_save_all. 1511 */ 1512 MSR_IA32_VMX_BASIC, 1513 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1514 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1515 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1516 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1517 MSR_IA32_VMX_MISC, 1518 MSR_IA32_VMX_CR0_FIXED0, 1519 MSR_IA32_VMX_CR4_FIXED0, 1520 MSR_IA32_VMX_VMCS_ENUM, 1521 MSR_IA32_VMX_PROCBASED_CTLS2, 1522 MSR_IA32_VMX_EPT_VPID_CAP, 1523 MSR_IA32_VMX_VMFUNC, 1524 1525 MSR_K7_HWCR, 1526 MSR_KVM_POLL_CONTROL, 1527 }; 1528 1529 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1530 static unsigned num_emulated_msrs; 1531 1532 /* 1533 * List of msr numbers which are used to expose MSR-based features that 1534 * can be used by a hypervisor to validate requested CPU features. 1535 */ 1536 static const u32 msr_based_features_all[] = { 1537 MSR_IA32_VMX_BASIC, 1538 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1539 MSR_IA32_VMX_PINBASED_CTLS, 1540 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1541 MSR_IA32_VMX_PROCBASED_CTLS, 1542 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1543 MSR_IA32_VMX_EXIT_CTLS, 1544 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1545 MSR_IA32_VMX_ENTRY_CTLS, 1546 MSR_IA32_VMX_MISC, 1547 MSR_IA32_VMX_CR0_FIXED0, 1548 MSR_IA32_VMX_CR0_FIXED1, 1549 MSR_IA32_VMX_CR4_FIXED0, 1550 MSR_IA32_VMX_CR4_FIXED1, 1551 MSR_IA32_VMX_VMCS_ENUM, 1552 MSR_IA32_VMX_PROCBASED_CTLS2, 1553 MSR_IA32_VMX_EPT_VPID_CAP, 1554 MSR_IA32_VMX_VMFUNC, 1555 1556 MSR_F10H_DECFG, 1557 MSR_IA32_UCODE_REV, 1558 MSR_IA32_ARCH_CAPABILITIES, 1559 MSR_IA32_PERF_CAPABILITIES, 1560 }; 1561 1562 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)]; 1563 static unsigned int num_msr_based_features; 1564 1565 static u64 kvm_get_arch_capabilities(void) 1566 { 1567 u64 data = 0; 1568 1569 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 1570 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1571 1572 /* 1573 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1574 * the nested hypervisor runs with NX huge pages. If it is not, 1575 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1576 * L1 guests, so it need not worry about its own (L2) guests. 1577 */ 1578 data |= ARCH_CAP_PSCHANGE_MC_NO; 1579 1580 /* 1581 * If we're doing cache flushes (either "always" or "cond") 1582 * we will do one whenever the guest does a vmlaunch/vmresume. 1583 * If an outer hypervisor is doing the cache flush for us 1584 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1585 * capability to the guest too, and if EPT is disabled we're not 1586 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1587 * require a nested hypervisor to do a flush of its own. 1588 */ 1589 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1590 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1591 1592 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1593 data |= ARCH_CAP_RDCL_NO; 1594 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1595 data |= ARCH_CAP_SSB_NO; 1596 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1597 data |= ARCH_CAP_MDS_NO; 1598 1599 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1600 /* 1601 * If RTM=0 because the kernel has disabled TSX, the host might 1602 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1603 * and therefore knows that there cannot be TAA) but keep 1604 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1605 * and we want to allow migrating those guests to tsx=off hosts. 1606 */ 1607 data &= ~ARCH_CAP_TAA_NO; 1608 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1609 data |= ARCH_CAP_TAA_NO; 1610 } else { 1611 /* 1612 * Nothing to do here; we emulate TSX_CTRL if present on the 1613 * host so the guest can choose between disabling TSX or 1614 * using VERW to clear CPU buffers. 1615 */ 1616 } 1617 1618 return data; 1619 } 1620 1621 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1622 { 1623 switch (msr->index) { 1624 case MSR_IA32_ARCH_CAPABILITIES: 1625 msr->data = kvm_get_arch_capabilities(); 1626 break; 1627 case MSR_IA32_UCODE_REV: 1628 rdmsrl_safe(msr->index, &msr->data); 1629 break; 1630 default: 1631 return static_call(kvm_x86_get_msr_feature)(msr); 1632 } 1633 return 0; 1634 } 1635 1636 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1637 { 1638 struct kvm_msr_entry msr; 1639 int r; 1640 1641 msr.index = index; 1642 r = kvm_get_msr_feature(&msr); 1643 1644 if (r == KVM_MSR_RET_INVALID) { 1645 /* Unconditionally clear the output for simplicity */ 1646 *data = 0; 1647 if (kvm_msr_ignored_check(index, 0, false)) 1648 r = 0; 1649 } 1650 1651 if (r) 1652 return r; 1653 1654 *data = msr.data; 1655 1656 return 0; 1657 } 1658 1659 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1660 { 1661 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1662 return false; 1663 1664 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1665 return false; 1666 1667 if (efer & (EFER_LME | EFER_LMA) && 1668 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1669 return false; 1670 1671 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1672 return false; 1673 1674 return true; 1675 1676 } 1677 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1678 { 1679 if (efer & efer_reserved_bits) 1680 return false; 1681 1682 return __kvm_valid_efer(vcpu, efer); 1683 } 1684 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1685 1686 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1687 { 1688 u64 old_efer = vcpu->arch.efer; 1689 u64 efer = msr_info->data; 1690 int r; 1691 1692 if (efer & efer_reserved_bits) 1693 return 1; 1694 1695 if (!msr_info->host_initiated) { 1696 if (!__kvm_valid_efer(vcpu, efer)) 1697 return 1; 1698 1699 if (is_paging(vcpu) && 1700 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1701 return 1; 1702 } 1703 1704 efer &= ~EFER_LMA; 1705 efer |= vcpu->arch.efer & EFER_LMA; 1706 1707 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1708 if (r) { 1709 WARN_ON(r > 0); 1710 return r; 1711 } 1712 1713 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1714 kvm_mmu_reset_context(vcpu); 1715 1716 return 0; 1717 } 1718 1719 void kvm_enable_efer_bits(u64 mask) 1720 { 1721 efer_reserved_bits &= ~mask; 1722 } 1723 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1724 1725 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1726 { 1727 struct kvm_x86_msr_filter *msr_filter; 1728 struct msr_bitmap_range *ranges; 1729 struct kvm *kvm = vcpu->kvm; 1730 bool allowed; 1731 int idx; 1732 u32 i; 1733 1734 /* x2APIC MSRs do not support filtering. */ 1735 if (index >= 0x800 && index <= 0x8ff) 1736 return true; 1737 1738 idx = srcu_read_lock(&kvm->srcu); 1739 1740 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1741 if (!msr_filter) { 1742 allowed = true; 1743 goto out; 1744 } 1745 1746 allowed = msr_filter->default_allow; 1747 ranges = msr_filter->ranges; 1748 1749 for (i = 0; i < msr_filter->count; i++) { 1750 u32 start = ranges[i].base; 1751 u32 end = start + ranges[i].nmsrs; 1752 u32 flags = ranges[i].flags; 1753 unsigned long *bitmap = ranges[i].bitmap; 1754 1755 if ((index >= start) && (index < end) && (flags & type)) { 1756 allowed = !!test_bit(index - start, bitmap); 1757 break; 1758 } 1759 } 1760 1761 out: 1762 srcu_read_unlock(&kvm->srcu, idx); 1763 1764 return allowed; 1765 } 1766 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1767 1768 /* 1769 * Write @data into the MSR specified by @index. Select MSR specific fault 1770 * checks are bypassed if @host_initiated is %true. 1771 * Returns 0 on success, non-0 otherwise. 1772 * Assumes vcpu_load() was already called. 1773 */ 1774 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1775 bool host_initiated) 1776 { 1777 struct msr_data msr; 1778 1779 switch (index) { 1780 case MSR_FS_BASE: 1781 case MSR_GS_BASE: 1782 case MSR_KERNEL_GS_BASE: 1783 case MSR_CSTAR: 1784 case MSR_LSTAR: 1785 if (is_noncanonical_address(data, vcpu)) 1786 return 1; 1787 break; 1788 case MSR_IA32_SYSENTER_EIP: 1789 case MSR_IA32_SYSENTER_ESP: 1790 /* 1791 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1792 * non-canonical address is written on Intel but not on 1793 * AMD (which ignores the top 32-bits, because it does 1794 * not implement 64-bit SYSENTER). 1795 * 1796 * 64-bit code should hence be able to write a non-canonical 1797 * value on AMD. Making the address canonical ensures that 1798 * vmentry does not fail on Intel after writing a non-canonical 1799 * value, and that something deterministic happens if the guest 1800 * invokes 64-bit SYSENTER. 1801 */ 1802 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1803 break; 1804 case MSR_TSC_AUX: 1805 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1806 return 1; 1807 1808 if (!host_initiated && 1809 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1810 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1811 return 1; 1812 1813 /* 1814 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1815 * incomplete and conflicting architectural behavior. Current 1816 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1817 * reserved and always read as zeros. Enforce Intel's reserved 1818 * bits check if and only if the guest CPU is Intel, and clear 1819 * the bits in all other cases. This ensures cross-vendor 1820 * migration will provide consistent behavior for the guest. 1821 */ 1822 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) 1823 return 1; 1824 1825 data = (u32)data; 1826 break; 1827 } 1828 1829 msr.data = data; 1830 msr.index = index; 1831 msr.host_initiated = host_initiated; 1832 1833 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1834 } 1835 1836 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1837 u32 index, u64 data, bool host_initiated) 1838 { 1839 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1840 1841 if (ret == KVM_MSR_RET_INVALID) 1842 if (kvm_msr_ignored_check(index, data, true)) 1843 ret = 0; 1844 1845 return ret; 1846 } 1847 1848 /* 1849 * Read the MSR specified by @index into @data. Select MSR specific fault 1850 * checks are bypassed if @host_initiated is %true. 1851 * Returns 0 on success, non-0 otherwise. 1852 * Assumes vcpu_load() was already called. 1853 */ 1854 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1855 bool host_initiated) 1856 { 1857 struct msr_data msr; 1858 int ret; 1859 1860 switch (index) { 1861 case MSR_TSC_AUX: 1862 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1863 return 1; 1864 1865 if (!host_initiated && 1866 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1867 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1868 return 1; 1869 break; 1870 } 1871 1872 msr.index = index; 1873 msr.host_initiated = host_initiated; 1874 1875 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1876 if (!ret) 1877 *data = msr.data; 1878 return ret; 1879 } 1880 1881 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1882 u32 index, u64 *data, bool host_initiated) 1883 { 1884 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1885 1886 if (ret == KVM_MSR_RET_INVALID) { 1887 /* Unconditionally clear *data for simplicity */ 1888 *data = 0; 1889 if (kvm_msr_ignored_check(index, 0, false)) 1890 ret = 0; 1891 } 1892 1893 return ret; 1894 } 1895 1896 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1897 { 1898 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1899 return KVM_MSR_RET_FILTERED; 1900 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1901 } 1902 1903 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1904 { 1905 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1906 return KVM_MSR_RET_FILTERED; 1907 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1908 } 1909 1910 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1911 { 1912 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1913 } 1914 EXPORT_SYMBOL_GPL(kvm_get_msr); 1915 1916 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1917 { 1918 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1919 } 1920 EXPORT_SYMBOL_GPL(kvm_set_msr); 1921 1922 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1923 { 1924 if (!vcpu->run->msr.error) { 1925 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1926 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1927 } 1928 } 1929 1930 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 1931 { 1932 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 1933 } 1934 1935 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 1936 { 1937 complete_userspace_rdmsr(vcpu); 1938 return complete_emulated_msr_access(vcpu); 1939 } 1940 1941 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 1942 { 1943 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 1944 } 1945 1946 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 1947 { 1948 complete_userspace_rdmsr(vcpu); 1949 return complete_fast_msr_access(vcpu); 1950 } 1951 1952 static u64 kvm_msr_reason(int r) 1953 { 1954 switch (r) { 1955 case KVM_MSR_RET_INVALID: 1956 return KVM_MSR_EXIT_REASON_UNKNOWN; 1957 case KVM_MSR_RET_FILTERED: 1958 return KVM_MSR_EXIT_REASON_FILTER; 1959 default: 1960 return KVM_MSR_EXIT_REASON_INVAL; 1961 } 1962 } 1963 1964 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 1965 u32 exit_reason, u64 data, 1966 int (*completion)(struct kvm_vcpu *vcpu), 1967 int r) 1968 { 1969 u64 msr_reason = kvm_msr_reason(r); 1970 1971 /* Check if the user wanted to know about this MSR fault */ 1972 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 1973 return 0; 1974 1975 vcpu->run->exit_reason = exit_reason; 1976 vcpu->run->msr.error = 0; 1977 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 1978 vcpu->run->msr.reason = msr_reason; 1979 vcpu->run->msr.index = index; 1980 vcpu->run->msr.data = data; 1981 vcpu->arch.complete_userspace_io = completion; 1982 1983 return 1; 1984 } 1985 1986 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 1987 { 1988 u32 ecx = kvm_rcx_read(vcpu); 1989 u64 data; 1990 int r; 1991 1992 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 1993 1994 if (!r) { 1995 trace_kvm_msr_read(ecx, data); 1996 1997 kvm_rax_write(vcpu, data & -1u); 1998 kvm_rdx_write(vcpu, (data >> 32) & -1u); 1999 } else { 2000 /* MSR read failed? See if we should ask user space */ 2001 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2002 complete_fast_rdmsr, r)) 2003 return 0; 2004 trace_kvm_msr_read_ex(ecx); 2005 } 2006 2007 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2008 } 2009 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2010 2011 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2012 { 2013 u32 ecx = kvm_rcx_read(vcpu); 2014 u64 data = kvm_read_edx_eax(vcpu); 2015 int r; 2016 2017 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2018 2019 if (!r) { 2020 trace_kvm_msr_write(ecx, data); 2021 } else { 2022 /* MSR write failed? See if we should ask user space */ 2023 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2024 complete_fast_msr_access, r)) 2025 return 0; 2026 /* Signal all other negative errors to userspace */ 2027 if (r < 0) 2028 return r; 2029 trace_kvm_msr_write_ex(ecx, data); 2030 } 2031 2032 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2033 } 2034 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2035 2036 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2037 { 2038 return kvm_skip_emulated_instruction(vcpu); 2039 } 2040 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop); 2041 2042 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2043 { 2044 /* Treat an INVD instruction as a NOP and just skip it. */ 2045 return kvm_emulate_as_nop(vcpu); 2046 } 2047 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2048 2049 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2050 { 2051 pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n"); 2052 return kvm_emulate_as_nop(vcpu); 2053 } 2054 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2055 2056 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2057 { 2058 kvm_queue_exception(vcpu, UD_VECTOR); 2059 return 1; 2060 } 2061 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2062 2063 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2064 { 2065 pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n"); 2066 return kvm_emulate_as_nop(vcpu); 2067 } 2068 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2069 2070 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2071 { 2072 xfer_to_guest_mode_prepare(); 2073 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2074 xfer_to_guest_mode_work_pending(); 2075 } 2076 2077 /* 2078 * The fast path for frequent and performance sensitive wrmsr emulation, 2079 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2080 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2081 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2082 * other cases which must be called after interrupts are enabled on the host. 2083 */ 2084 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2085 { 2086 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2087 return 1; 2088 2089 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2090 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2091 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2092 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2093 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2094 2095 return 1; 2096 } 2097 2098 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2099 { 2100 if (!kvm_can_use_hv_timer(vcpu)) 2101 return 1; 2102 2103 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2104 return 0; 2105 } 2106 2107 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2108 { 2109 u32 msr = kvm_rcx_read(vcpu); 2110 u64 data; 2111 fastpath_t ret = EXIT_FASTPATH_NONE; 2112 2113 switch (msr) { 2114 case APIC_BASE_MSR + (APIC_ICR >> 4): 2115 data = kvm_read_edx_eax(vcpu); 2116 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 2117 kvm_skip_emulated_instruction(vcpu); 2118 ret = EXIT_FASTPATH_EXIT_HANDLED; 2119 } 2120 break; 2121 case MSR_IA32_TSC_DEADLINE: 2122 data = kvm_read_edx_eax(vcpu); 2123 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 2124 kvm_skip_emulated_instruction(vcpu); 2125 ret = EXIT_FASTPATH_REENTER_GUEST; 2126 } 2127 break; 2128 default: 2129 break; 2130 } 2131 2132 if (ret != EXIT_FASTPATH_NONE) 2133 trace_kvm_msr_write(msr, data); 2134 2135 return ret; 2136 } 2137 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2138 2139 /* 2140 * Adapt set_msr() to msr_io()'s calling convention 2141 */ 2142 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2143 { 2144 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2145 } 2146 2147 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2148 { 2149 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2150 } 2151 2152 #ifdef CONFIG_X86_64 2153 struct pvclock_clock { 2154 int vclock_mode; 2155 u64 cycle_last; 2156 u64 mask; 2157 u32 mult; 2158 u32 shift; 2159 u64 base_cycles; 2160 u64 offset; 2161 }; 2162 2163 struct pvclock_gtod_data { 2164 seqcount_t seq; 2165 2166 struct pvclock_clock clock; /* extract of a clocksource struct */ 2167 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2168 2169 ktime_t offs_boot; 2170 u64 wall_time_sec; 2171 }; 2172 2173 static struct pvclock_gtod_data pvclock_gtod_data; 2174 2175 static void update_pvclock_gtod(struct timekeeper *tk) 2176 { 2177 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2178 2179 write_seqcount_begin(&vdata->seq); 2180 2181 /* copy pvclock gtod data */ 2182 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2183 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2184 vdata->clock.mask = tk->tkr_mono.mask; 2185 vdata->clock.mult = tk->tkr_mono.mult; 2186 vdata->clock.shift = tk->tkr_mono.shift; 2187 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2188 vdata->clock.offset = tk->tkr_mono.base; 2189 2190 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2191 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2192 vdata->raw_clock.mask = tk->tkr_raw.mask; 2193 vdata->raw_clock.mult = tk->tkr_raw.mult; 2194 vdata->raw_clock.shift = tk->tkr_raw.shift; 2195 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2196 vdata->raw_clock.offset = tk->tkr_raw.base; 2197 2198 vdata->wall_time_sec = tk->xtime_sec; 2199 2200 vdata->offs_boot = tk->offs_boot; 2201 2202 write_seqcount_end(&vdata->seq); 2203 } 2204 2205 static s64 get_kvmclock_base_ns(void) 2206 { 2207 /* Count up from boot time, but with the frequency of the raw clock. */ 2208 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2209 } 2210 #else 2211 static s64 get_kvmclock_base_ns(void) 2212 { 2213 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2214 return ktime_get_boottime_ns(); 2215 } 2216 #endif 2217 2218 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2219 { 2220 int version; 2221 int r; 2222 struct pvclock_wall_clock wc; 2223 u32 wc_sec_hi; 2224 u64 wall_nsec; 2225 2226 if (!wall_clock) 2227 return; 2228 2229 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2230 if (r) 2231 return; 2232 2233 if (version & 1) 2234 ++version; /* first time write, random junk */ 2235 2236 ++version; 2237 2238 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2239 return; 2240 2241 /* 2242 * The guest calculates current wall clock time by adding 2243 * system time (updated by kvm_guest_time_update below) to the 2244 * wall clock specified here. We do the reverse here. 2245 */ 2246 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 2247 2248 wc.nsec = do_div(wall_nsec, 1000000000); 2249 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2250 wc.version = version; 2251 2252 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2253 2254 if (sec_hi_ofs) { 2255 wc_sec_hi = wall_nsec >> 32; 2256 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2257 &wc_sec_hi, sizeof(wc_sec_hi)); 2258 } 2259 2260 version++; 2261 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2262 } 2263 2264 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2265 bool old_msr, bool host_initiated) 2266 { 2267 struct kvm_arch *ka = &vcpu->kvm->arch; 2268 2269 if (vcpu->vcpu_id == 0 && !host_initiated) { 2270 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2271 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2272 2273 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2274 } 2275 2276 vcpu->arch.time = system_time; 2277 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2278 2279 /* we verify if the enable bit is set... */ 2280 if (system_time & 1) { 2281 kvm_gfn_to_pfn_cache_init(vcpu->kvm, &vcpu->arch.pv_time, vcpu, 2282 KVM_HOST_USES_PFN, system_time & ~1ULL, 2283 sizeof(struct pvclock_vcpu_time_info)); 2284 } else { 2285 kvm_gfn_to_pfn_cache_destroy(vcpu->kvm, &vcpu->arch.pv_time); 2286 } 2287 2288 return; 2289 } 2290 2291 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2292 { 2293 do_shl32_div32(dividend, divisor); 2294 return dividend; 2295 } 2296 2297 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2298 s8 *pshift, u32 *pmultiplier) 2299 { 2300 uint64_t scaled64; 2301 int32_t shift = 0; 2302 uint64_t tps64; 2303 uint32_t tps32; 2304 2305 tps64 = base_hz; 2306 scaled64 = scaled_hz; 2307 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2308 tps64 >>= 1; 2309 shift--; 2310 } 2311 2312 tps32 = (uint32_t)tps64; 2313 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2314 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2315 scaled64 >>= 1; 2316 else 2317 tps32 <<= 1; 2318 shift++; 2319 } 2320 2321 *pshift = shift; 2322 *pmultiplier = div_frac(scaled64, tps32); 2323 } 2324 2325 #ifdef CONFIG_X86_64 2326 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2327 #endif 2328 2329 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2330 static unsigned long max_tsc_khz; 2331 2332 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2333 { 2334 u64 v = (u64)khz * (1000000 + ppm); 2335 do_div(v, 1000000); 2336 return v; 2337 } 2338 2339 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2340 2341 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2342 { 2343 u64 ratio; 2344 2345 /* Guest TSC same frequency as host TSC? */ 2346 if (!scale) { 2347 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio); 2348 return 0; 2349 } 2350 2351 /* TSC scaling supported? */ 2352 if (!kvm_has_tsc_control) { 2353 if (user_tsc_khz > tsc_khz) { 2354 vcpu->arch.tsc_catchup = 1; 2355 vcpu->arch.tsc_always_catchup = 1; 2356 return 0; 2357 } else { 2358 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2359 return -1; 2360 } 2361 } 2362 2363 /* TSC scaling required - calculate ratio */ 2364 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits, 2365 user_tsc_khz, tsc_khz); 2366 2367 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) { 2368 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2369 user_tsc_khz); 2370 return -1; 2371 } 2372 2373 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2374 return 0; 2375 } 2376 2377 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2378 { 2379 u32 thresh_lo, thresh_hi; 2380 int use_scaling = 0; 2381 2382 /* tsc_khz can be zero if TSC calibration fails */ 2383 if (user_tsc_khz == 0) { 2384 /* set tsc_scaling_ratio to a safe value */ 2385 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio); 2386 return -1; 2387 } 2388 2389 /* Compute a scale to convert nanoseconds in TSC cycles */ 2390 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2391 &vcpu->arch.virtual_tsc_shift, 2392 &vcpu->arch.virtual_tsc_mult); 2393 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2394 2395 /* 2396 * Compute the variation in TSC rate which is acceptable 2397 * within the range of tolerance and decide if the 2398 * rate being applied is within that bounds of the hardware 2399 * rate. If so, no scaling or compensation need be done. 2400 */ 2401 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2402 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2403 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2404 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); 2405 use_scaling = 1; 2406 } 2407 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2408 } 2409 2410 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2411 { 2412 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2413 vcpu->arch.virtual_tsc_mult, 2414 vcpu->arch.virtual_tsc_shift); 2415 tsc += vcpu->arch.this_tsc_write; 2416 return tsc; 2417 } 2418 2419 #ifdef CONFIG_X86_64 2420 static inline int gtod_is_based_on_tsc(int mode) 2421 { 2422 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2423 } 2424 #endif 2425 2426 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 2427 { 2428 #ifdef CONFIG_X86_64 2429 bool vcpus_matched; 2430 struct kvm_arch *ka = &vcpu->kvm->arch; 2431 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2432 2433 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2434 atomic_read(&vcpu->kvm->online_vcpus)); 2435 2436 /* 2437 * Once the masterclock is enabled, always perform request in 2438 * order to update it. 2439 * 2440 * In order to enable masterclock, the host clocksource must be TSC 2441 * and the vcpus need to have matched TSCs. When that happens, 2442 * perform request to enable masterclock. 2443 */ 2444 if (ka->use_master_clock || 2445 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 2446 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2447 2448 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2449 atomic_read(&vcpu->kvm->online_vcpus), 2450 ka->use_master_clock, gtod->clock.vclock_mode); 2451 #endif 2452 } 2453 2454 /* 2455 * Multiply tsc by a fixed point number represented by ratio. 2456 * 2457 * The most significant 64-N bits (mult) of ratio represent the 2458 * integral part of the fixed point number; the remaining N bits 2459 * (frac) represent the fractional part, ie. ratio represents a fixed 2460 * point number (mult + frac * 2^(-N)). 2461 * 2462 * N equals to kvm_tsc_scaling_ratio_frac_bits. 2463 */ 2464 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2465 { 2466 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits); 2467 } 2468 2469 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2470 { 2471 u64 _tsc = tsc; 2472 2473 if (ratio != kvm_default_tsc_scaling_ratio) 2474 _tsc = __scale_tsc(ratio, tsc); 2475 2476 return _tsc; 2477 } 2478 EXPORT_SYMBOL_GPL(kvm_scale_tsc); 2479 2480 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2481 { 2482 u64 tsc; 2483 2484 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2485 2486 return target_tsc - tsc; 2487 } 2488 2489 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2490 { 2491 return vcpu->arch.l1_tsc_offset + 2492 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2493 } 2494 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2495 2496 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2497 { 2498 u64 nested_offset; 2499 2500 if (l2_multiplier == kvm_default_tsc_scaling_ratio) 2501 nested_offset = l1_offset; 2502 else 2503 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2504 kvm_tsc_scaling_ratio_frac_bits); 2505 2506 nested_offset += l2_offset; 2507 return nested_offset; 2508 } 2509 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2510 2511 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2512 { 2513 if (l2_multiplier != kvm_default_tsc_scaling_ratio) 2514 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2515 kvm_tsc_scaling_ratio_frac_bits); 2516 2517 return l1_multiplier; 2518 } 2519 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2520 2521 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2522 { 2523 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2524 vcpu->arch.l1_tsc_offset, 2525 l1_offset); 2526 2527 vcpu->arch.l1_tsc_offset = l1_offset; 2528 2529 /* 2530 * If we are here because L1 chose not to trap WRMSR to TSC then 2531 * according to the spec this should set L1's TSC (as opposed to 2532 * setting L1's offset for L2). 2533 */ 2534 if (is_guest_mode(vcpu)) 2535 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2536 l1_offset, 2537 static_call(kvm_x86_get_l2_tsc_offset)(vcpu), 2538 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2539 else 2540 vcpu->arch.tsc_offset = l1_offset; 2541 2542 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset); 2543 } 2544 2545 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2546 { 2547 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2548 2549 /* Userspace is changing the multiplier while L2 is active */ 2550 if (is_guest_mode(vcpu)) 2551 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2552 l1_multiplier, 2553 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2554 else 2555 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2556 2557 if (kvm_has_tsc_control) 2558 static_call(kvm_x86_write_tsc_multiplier)( 2559 vcpu, vcpu->arch.tsc_scaling_ratio); 2560 } 2561 2562 static inline bool kvm_check_tsc_unstable(void) 2563 { 2564 #ifdef CONFIG_X86_64 2565 /* 2566 * TSC is marked unstable when we're running on Hyper-V, 2567 * 'TSC page' clocksource is good. 2568 */ 2569 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2570 return false; 2571 #endif 2572 return check_tsc_unstable(); 2573 } 2574 2575 /* 2576 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2577 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2578 * participates in. 2579 */ 2580 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2581 u64 ns, bool matched) 2582 { 2583 struct kvm *kvm = vcpu->kvm; 2584 2585 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2586 2587 /* 2588 * We also track th most recent recorded KHZ, write and time to 2589 * allow the matching interval to be extended at each write. 2590 */ 2591 kvm->arch.last_tsc_nsec = ns; 2592 kvm->arch.last_tsc_write = tsc; 2593 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2594 kvm->arch.last_tsc_offset = offset; 2595 2596 vcpu->arch.last_guest_tsc = tsc; 2597 2598 kvm_vcpu_write_tsc_offset(vcpu, offset); 2599 2600 if (!matched) { 2601 /* 2602 * We split periods of matched TSC writes into generations. 2603 * For each generation, we track the original measured 2604 * nanosecond time, offset, and write, so if TSCs are in 2605 * sync, we can match exact offset, and if not, we can match 2606 * exact software computation in compute_guest_tsc() 2607 * 2608 * These values are tracked in kvm->arch.cur_xxx variables. 2609 */ 2610 kvm->arch.cur_tsc_generation++; 2611 kvm->arch.cur_tsc_nsec = ns; 2612 kvm->arch.cur_tsc_write = tsc; 2613 kvm->arch.cur_tsc_offset = offset; 2614 kvm->arch.nr_vcpus_matched_tsc = 0; 2615 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2616 kvm->arch.nr_vcpus_matched_tsc++; 2617 } 2618 2619 /* Keep track of which generation this VCPU has synchronized to */ 2620 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2621 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2622 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2623 2624 kvm_track_tsc_matching(vcpu); 2625 } 2626 2627 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) 2628 { 2629 struct kvm *kvm = vcpu->kvm; 2630 u64 offset, ns, elapsed; 2631 unsigned long flags; 2632 bool matched = false; 2633 bool synchronizing = false; 2634 2635 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2636 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2637 ns = get_kvmclock_base_ns(); 2638 elapsed = ns - kvm->arch.last_tsc_nsec; 2639 2640 if (vcpu->arch.virtual_tsc_khz) { 2641 if (data == 0) { 2642 /* 2643 * detection of vcpu initialization -- need to sync 2644 * with other vCPUs. This particularly helps to keep 2645 * kvm_clock stable after CPU hotplug 2646 */ 2647 synchronizing = true; 2648 } else { 2649 u64 tsc_exp = kvm->arch.last_tsc_write + 2650 nsec_to_cycles(vcpu, elapsed); 2651 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2652 /* 2653 * Special case: TSC write with a small delta (1 second) 2654 * of virtual cycle time against real time is 2655 * interpreted as an attempt to synchronize the CPU. 2656 */ 2657 synchronizing = data < tsc_exp + tsc_hz && 2658 data + tsc_hz > tsc_exp; 2659 } 2660 } 2661 2662 /* 2663 * For a reliable TSC, we can match TSC offsets, and for an unstable 2664 * TSC, we add elapsed time in this computation. We could let the 2665 * compensation code attempt to catch up if we fall behind, but 2666 * it's better to try to match offsets from the beginning. 2667 */ 2668 if (synchronizing && 2669 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2670 if (!kvm_check_tsc_unstable()) { 2671 offset = kvm->arch.cur_tsc_offset; 2672 } else { 2673 u64 delta = nsec_to_cycles(vcpu, elapsed); 2674 data += delta; 2675 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2676 } 2677 matched = true; 2678 } 2679 2680 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2681 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2682 } 2683 2684 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2685 s64 adjustment) 2686 { 2687 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2688 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2689 } 2690 2691 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2692 { 2693 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio) 2694 WARN_ON(adjustment < 0); 2695 adjustment = kvm_scale_tsc((u64) adjustment, 2696 vcpu->arch.l1_tsc_scaling_ratio); 2697 adjust_tsc_offset_guest(vcpu, adjustment); 2698 } 2699 2700 #ifdef CONFIG_X86_64 2701 2702 static u64 read_tsc(void) 2703 { 2704 u64 ret = (u64)rdtsc_ordered(); 2705 u64 last = pvclock_gtod_data.clock.cycle_last; 2706 2707 if (likely(ret >= last)) 2708 return ret; 2709 2710 /* 2711 * GCC likes to generate cmov here, but this branch is extremely 2712 * predictable (it's just a function of time and the likely is 2713 * very likely) and there's a data dependence, so force GCC 2714 * to generate a branch instead. I don't barrier() because 2715 * we don't actually need a barrier, and if this function 2716 * ever gets inlined it will generate worse code. 2717 */ 2718 asm volatile (""); 2719 return last; 2720 } 2721 2722 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2723 int *mode) 2724 { 2725 long v; 2726 u64 tsc_pg_val; 2727 2728 switch (clock->vclock_mode) { 2729 case VDSO_CLOCKMODE_HVCLOCK: 2730 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 2731 tsc_timestamp); 2732 if (tsc_pg_val != U64_MAX) { 2733 /* TSC page valid */ 2734 *mode = VDSO_CLOCKMODE_HVCLOCK; 2735 v = (tsc_pg_val - clock->cycle_last) & 2736 clock->mask; 2737 } else { 2738 /* TSC page invalid */ 2739 *mode = VDSO_CLOCKMODE_NONE; 2740 } 2741 break; 2742 case VDSO_CLOCKMODE_TSC: 2743 *mode = VDSO_CLOCKMODE_TSC; 2744 *tsc_timestamp = read_tsc(); 2745 v = (*tsc_timestamp - clock->cycle_last) & 2746 clock->mask; 2747 break; 2748 default: 2749 *mode = VDSO_CLOCKMODE_NONE; 2750 } 2751 2752 if (*mode == VDSO_CLOCKMODE_NONE) 2753 *tsc_timestamp = v = 0; 2754 2755 return v * clock->mult; 2756 } 2757 2758 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2759 { 2760 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2761 unsigned long seq; 2762 int mode; 2763 u64 ns; 2764 2765 do { 2766 seq = read_seqcount_begin(>od->seq); 2767 ns = gtod->raw_clock.base_cycles; 2768 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2769 ns >>= gtod->raw_clock.shift; 2770 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2771 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2772 *t = ns; 2773 2774 return mode; 2775 } 2776 2777 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2778 { 2779 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2780 unsigned long seq; 2781 int mode; 2782 u64 ns; 2783 2784 do { 2785 seq = read_seqcount_begin(>od->seq); 2786 ts->tv_sec = gtod->wall_time_sec; 2787 ns = gtod->clock.base_cycles; 2788 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2789 ns >>= gtod->clock.shift; 2790 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2791 2792 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2793 ts->tv_nsec = ns; 2794 2795 return mode; 2796 } 2797 2798 /* returns true if host is using TSC based clocksource */ 2799 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2800 { 2801 /* checked again under seqlock below */ 2802 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2803 return false; 2804 2805 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2806 tsc_timestamp)); 2807 } 2808 2809 /* returns true if host is using TSC based clocksource */ 2810 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2811 u64 *tsc_timestamp) 2812 { 2813 /* checked again under seqlock below */ 2814 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2815 return false; 2816 2817 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2818 } 2819 #endif 2820 2821 /* 2822 * 2823 * Assuming a stable TSC across physical CPUS, and a stable TSC 2824 * across virtual CPUs, the following condition is possible. 2825 * Each numbered line represents an event visible to both 2826 * CPUs at the next numbered event. 2827 * 2828 * "timespecX" represents host monotonic time. "tscX" represents 2829 * RDTSC value. 2830 * 2831 * VCPU0 on CPU0 | VCPU1 on CPU1 2832 * 2833 * 1. read timespec0,tsc0 2834 * 2. | timespec1 = timespec0 + N 2835 * | tsc1 = tsc0 + M 2836 * 3. transition to guest | transition to guest 2837 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2838 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2839 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2840 * 2841 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2842 * 2843 * - ret0 < ret1 2844 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2845 * ... 2846 * - 0 < N - M => M < N 2847 * 2848 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2849 * always the case (the difference between two distinct xtime instances 2850 * might be smaller then the difference between corresponding TSC reads, 2851 * when updating guest vcpus pvclock areas). 2852 * 2853 * To avoid that problem, do not allow visibility of distinct 2854 * system_timestamp/tsc_timestamp values simultaneously: use a master 2855 * copy of host monotonic time values. Update that master copy 2856 * in lockstep. 2857 * 2858 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2859 * 2860 */ 2861 2862 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2863 { 2864 #ifdef CONFIG_X86_64 2865 struct kvm_arch *ka = &kvm->arch; 2866 int vclock_mode; 2867 bool host_tsc_clocksource, vcpus_matched; 2868 2869 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2870 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2871 atomic_read(&kvm->online_vcpus)); 2872 2873 /* 2874 * If the host uses TSC clock, then passthrough TSC as stable 2875 * to the guest. 2876 */ 2877 host_tsc_clocksource = kvm_get_time_and_clockread( 2878 &ka->master_kernel_ns, 2879 &ka->master_cycle_now); 2880 2881 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2882 && !ka->backwards_tsc_observed 2883 && !ka->boot_vcpu_runs_old_kvmclock; 2884 2885 if (ka->use_master_clock) 2886 atomic_set(&kvm_guest_has_master_clock, 1); 2887 2888 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2889 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2890 vcpus_matched); 2891 #endif 2892 } 2893 2894 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2895 { 2896 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2897 } 2898 2899 static void __kvm_start_pvclock_update(struct kvm *kvm) 2900 { 2901 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 2902 write_seqcount_begin(&kvm->arch.pvclock_sc); 2903 } 2904 2905 static void kvm_start_pvclock_update(struct kvm *kvm) 2906 { 2907 kvm_make_mclock_inprogress_request(kvm); 2908 2909 /* no guest entries from this point */ 2910 __kvm_start_pvclock_update(kvm); 2911 } 2912 2913 static void kvm_end_pvclock_update(struct kvm *kvm) 2914 { 2915 struct kvm_arch *ka = &kvm->arch; 2916 struct kvm_vcpu *vcpu; 2917 unsigned long i; 2918 2919 write_seqcount_end(&ka->pvclock_sc); 2920 raw_spin_unlock_irq(&ka->tsc_write_lock); 2921 kvm_for_each_vcpu(i, vcpu, kvm) 2922 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2923 2924 /* guest entries allowed */ 2925 kvm_for_each_vcpu(i, vcpu, kvm) 2926 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 2927 } 2928 2929 static void kvm_update_masterclock(struct kvm *kvm) 2930 { 2931 kvm_hv_request_tsc_page_update(kvm); 2932 kvm_start_pvclock_update(kvm); 2933 pvclock_update_vm_gtod_copy(kvm); 2934 kvm_end_pvclock_update(kvm); 2935 } 2936 2937 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 2938 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 2939 { 2940 struct kvm_arch *ka = &kvm->arch; 2941 struct pvclock_vcpu_time_info hv_clock; 2942 2943 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 2944 get_cpu(); 2945 2946 data->flags = 0; 2947 if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) { 2948 #ifdef CONFIG_X86_64 2949 struct timespec64 ts; 2950 2951 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 2952 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 2953 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 2954 } else 2955 #endif 2956 data->host_tsc = rdtsc(); 2957 2958 data->flags |= KVM_CLOCK_TSC_STABLE; 2959 hv_clock.tsc_timestamp = ka->master_cycle_now; 2960 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 2961 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL, 2962 &hv_clock.tsc_shift, 2963 &hv_clock.tsc_to_system_mul); 2964 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 2965 } else { 2966 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 2967 } 2968 2969 put_cpu(); 2970 } 2971 2972 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 2973 { 2974 struct kvm_arch *ka = &kvm->arch; 2975 unsigned seq; 2976 2977 do { 2978 seq = read_seqcount_begin(&ka->pvclock_sc); 2979 __get_kvmclock(kvm, data); 2980 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 2981 } 2982 2983 u64 get_kvmclock_ns(struct kvm *kvm) 2984 { 2985 struct kvm_clock_data data; 2986 2987 get_kvmclock(kvm, &data); 2988 return data.clock; 2989 } 2990 2991 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, 2992 struct gfn_to_pfn_cache *gpc, 2993 unsigned int offset) 2994 { 2995 struct kvm_vcpu_arch *vcpu = &v->arch; 2996 struct pvclock_vcpu_time_info *guest_hv_clock; 2997 unsigned long flags; 2998 2999 read_lock_irqsave(&gpc->lock, flags); 3000 while (!kvm_gfn_to_pfn_cache_check(v->kvm, gpc, gpc->gpa, 3001 offset + sizeof(*guest_hv_clock))) { 3002 read_unlock_irqrestore(&gpc->lock, flags); 3003 3004 if (kvm_gfn_to_pfn_cache_refresh(v->kvm, gpc, gpc->gpa, 3005 offset + sizeof(*guest_hv_clock))) 3006 return; 3007 3008 read_lock_irqsave(&gpc->lock, flags); 3009 } 3010 3011 guest_hv_clock = (void *)(gpc->khva + offset); 3012 3013 /* 3014 * This VCPU is paused, but it's legal for a guest to read another 3015 * VCPU's kvmclock, so we really have to follow the specification where 3016 * it says that version is odd if data is being modified, and even after 3017 * it is consistent. 3018 */ 3019 3020 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; 3021 smp_wmb(); 3022 3023 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3024 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3025 3026 if (vcpu->pvclock_set_guest_stopped_request) { 3027 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3028 vcpu->pvclock_set_guest_stopped_request = false; 3029 } 3030 3031 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); 3032 smp_wmb(); 3033 3034 guest_hv_clock->version = ++vcpu->hv_clock.version; 3035 3036 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT); 3037 read_unlock_irqrestore(&gpc->lock, flags); 3038 3039 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3040 } 3041 3042 static int kvm_guest_time_update(struct kvm_vcpu *v) 3043 { 3044 unsigned long flags, tgt_tsc_khz; 3045 unsigned seq; 3046 struct kvm_vcpu_arch *vcpu = &v->arch; 3047 struct kvm_arch *ka = &v->kvm->arch; 3048 s64 kernel_ns; 3049 u64 tsc_timestamp, host_tsc; 3050 u8 pvclock_flags; 3051 bool use_master_clock; 3052 3053 kernel_ns = 0; 3054 host_tsc = 0; 3055 3056 /* 3057 * If the host uses TSC clock, then passthrough TSC as stable 3058 * to the guest. 3059 */ 3060 do { 3061 seq = read_seqcount_begin(&ka->pvclock_sc); 3062 use_master_clock = ka->use_master_clock; 3063 if (use_master_clock) { 3064 host_tsc = ka->master_cycle_now; 3065 kernel_ns = ka->master_kernel_ns; 3066 } 3067 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3068 3069 /* Keep irq disabled to prevent changes to the clock */ 3070 local_irq_save(flags); 3071 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz); 3072 if (unlikely(tgt_tsc_khz == 0)) { 3073 local_irq_restore(flags); 3074 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3075 return 1; 3076 } 3077 if (!use_master_clock) { 3078 host_tsc = rdtsc(); 3079 kernel_ns = get_kvmclock_base_ns(); 3080 } 3081 3082 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3083 3084 /* 3085 * We may have to catch up the TSC to match elapsed wall clock 3086 * time for two reasons, even if kvmclock is used. 3087 * 1) CPU could have been running below the maximum TSC rate 3088 * 2) Broken TSC compensation resets the base at each VCPU 3089 * entry to avoid unknown leaps of TSC even when running 3090 * again on the same CPU. This may cause apparent elapsed 3091 * time to disappear, and the guest to stand still or run 3092 * very slowly. 3093 */ 3094 if (vcpu->tsc_catchup) { 3095 u64 tsc = compute_guest_tsc(v, kernel_ns); 3096 if (tsc > tsc_timestamp) { 3097 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3098 tsc_timestamp = tsc; 3099 } 3100 } 3101 3102 local_irq_restore(flags); 3103 3104 /* With all the info we got, fill in the values */ 3105 3106 if (kvm_has_tsc_control) 3107 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3108 v->arch.l1_tsc_scaling_ratio); 3109 3110 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3111 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3112 &vcpu->hv_clock.tsc_shift, 3113 &vcpu->hv_clock.tsc_to_system_mul); 3114 vcpu->hw_tsc_khz = tgt_tsc_khz; 3115 } 3116 3117 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3118 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3119 vcpu->last_guest_tsc = tsc_timestamp; 3120 3121 /* If the host uses TSC clocksource, then it is stable */ 3122 pvclock_flags = 0; 3123 if (use_master_clock) 3124 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3125 3126 vcpu->hv_clock.flags = pvclock_flags; 3127 3128 if (vcpu->pv_time.active) 3129 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0); 3130 if (vcpu->xen.vcpu_info_cache.active) 3131 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, 3132 offsetof(struct compat_vcpu_info, time)); 3133 if (vcpu->xen.vcpu_time_info_cache.active) 3134 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0); 3135 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3136 return 0; 3137 } 3138 3139 /* 3140 * kvmclock updates which are isolated to a given vcpu, such as 3141 * vcpu->cpu migration, should not allow system_timestamp from 3142 * the rest of the vcpus to remain static. Otherwise ntp frequency 3143 * correction applies to one vcpu's system_timestamp but not 3144 * the others. 3145 * 3146 * So in those cases, request a kvmclock update for all vcpus. 3147 * We need to rate-limit these requests though, as they can 3148 * considerably slow guests that have a large number of vcpus. 3149 * The time for a remote vcpu to update its kvmclock is bound 3150 * by the delay we use to rate-limit the updates. 3151 */ 3152 3153 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3154 3155 static void kvmclock_update_fn(struct work_struct *work) 3156 { 3157 unsigned long i; 3158 struct delayed_work *dwork = to_delayed_work(work); 3159 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3160 kvmclock_update_work); 3161 struct kvm *kvm = container_of(ka, struct kvm, arch); 3162 struct kvm_vcpu *vcpu; 3163 3164 kvm_for_each_vcpu(i, vcpu, kvm) { 3165 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3166 kvm_vcpu_kick(vcpu); 3167 } 3168 } 3169 3170 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3171 { 3172 struct kvm *kvm = v->kvm; 3173 3174 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3175 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3176 KVMCLOCK_UPDATE_DELAY); 3177 } 3178 3179 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3180 3181 static void kvmclock_sync_fn(struct work_struct *work) 3182 { 3183 struct delayed_work *dwork = to_delayed_work(work); 3184 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3185 kvmclock_sync_work); 3186 struct kvm *kvm = container_of(ka, struct kvm, arch); 3187 3188 if (!kvmclock_periodic_sync) 3189 return; 3190 3191 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3192 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3193 KVMCLOCK_SYNC_PERIOD); 3194 } 3195 3196 /* 3197 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3198 */ 3199 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3200 { 3201 /* McStatusWrEn enabled? */ 3202 if (guest_cpuid_is_amd_or_hygon(vcpu)) 3203 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3204 3205 return false; 3206 } 3207 3208 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3209 { 3210 u64 mcg_cap = vcpu->arch.mcg_cap; 3211 unsigned bank_num = mcg_cap & 0xff; 3212 u32 msr = msr_info->index; 3213 u64 data = msr_info->data; 3214 3215 switch (msr) { 3216 case MSR_IA32_MCG_STATUS: 3217 vcpu->arch.mcg_status = data; 3218 break; 3219 case MSR_IA32_MCG_CTL: 3220 if (!(mcg_cap & MCG_CTL_P) && 3221 (data || !msr_info->host_initiated)) 3222 return 1; 3223 if (data != 0 && data != ~(u64)0) 3224 return 1; 3225 vcpu->arch.mcg_ctl = data; 3226 break; 3227 default: 3228 if (msr >= MSR_IA32_MC0_CTL && 3229 msr < MSR_IA32_MCx_CTL(bank_num)) { 3230 u32 offset = array_index_nospec( 3231 msr - MSR_IA32_MC0_CTL, 3232 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL); 3233 3234 /* only 0 or all 1s can be written to IA32_MCi_CTL 3235 * some Linux kernels though clear bit 10 in bank 4 to 3236 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 3237 * this to avoid an uncatched #GP in the guest 3238 */ 3239 if ((offset & 0x3) == 0 && 3240 data != 0 && (data | (1 << 10)) != ~(u64)0) 3241 return -1; 3242 3243 /* MCi_STATUS */ 3244 if (!msr_info->host_initiated && 3245 (offset & 0x3) == 1 && data != 0) { 3246 if (!can_set_mci_status(vcpu)) 3247 return -1; 3248 } 3249 3250 vcpu->arch.mce_banks[offset] = data; 3251 break; 3252 } 3253 return 1; 3254 } 3255 return 0; 3256 } 3257 3258 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3259 { 3260 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3261 3262 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3263 } 3264 3265 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3266 { 3267 gpa_t gpa = data & ~0x3f; 3268 3269 /* Bits 4:5 are reserved, Should be zero */ 3270 if (data & 0x30) 3271 return 1; 3272 3273 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3274 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3275 return 1; 3276 3277 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3278 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3279 return 1; 3280 3281 if (!lapic_in_kernel(vcpu)) 3282 return data ? 1 : 0; 3283 3284 vcpu->arch.apf.msr_en_val = data; 3285 3286 if (!kvm_pv_async_pf_enabled(vcpu)) { 3287 kvm_clear_async_pf_completion_queue(vcpu); 3288 kvm_async_pf_hash_reset(vcpu); 3289 return 0; 3290 } 3291 3292 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3293 sizeof(u64))) 3294 return 1; 3295 3296 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3297 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3298 3299 kvm_async_pf_wakeup_all(vcpu); 3300 3301 return 0; 3302 } 3303 3304 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3305 { 3306 /* Bits 8-63 are reserved */ 3307 if (data >> 8) 3308 return 1; 3309 3310 if (!lapic_in_kernel(vcpu)) 3311 return 1; 3312 3313 vcpu->arch.apf.msr_int_val = data; 3314 3315 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3316 3317 return 0; 3318 } 3319 3320 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3321 { 3322 kvm_gfn_to_pfn_cache_destroy(vcpu->kvm, &vcpu->arch.pv_time); 3323 vcpu->arch.time = 0; 3324 } 3325 3326 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3327 { 3328 ++vcpu->stat.tlb_flush; 3329 static_call(kvm_x86_flush_tlb_all)(vcpu); 3330 } 3331 3332 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3333 { 3334 ++vcpu->stat.tlb_flush; 3335 3336 if (!tdp_enabled) { 3337 /* 3338 * A TLB flush on behalf of the guest is equivalent to 3339 * INVPCID(all), toggling CR4.PGE, etc., which requires 3340 * a forced sync of the shadow page tables. Ensure all the 3341 * roots are synced and the guest TLB in hardware is clean. 3342 */ 3343 kvm_mmu_sync_roots(vcpu); 3344 kvm_mmu_sync_prev_roots(vcpu); 3345 } 3346 3347 static_call(kvm_x86_flush_tlb_guest)(vcpu); 3348 } 3349 3350 3351 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3352 { 3353 ++vcpu->stat.tlb_flush; 3354 static_call(kvm_x86_flush_tlb_current)(vcpu); 3355 } 3356 3357 /* 3358 * Service "local" TLB flush requests, which are specific to the current MMU 3359 * context. In addition to the generic event handling in vcpu_enter_guest(), 3360 * TLB flushes that are targeted at an MMU context also need to be serviced 3361 * prior before nested VM-Enter/VM-Exit. 3362 */ 3363 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3364 { 3365 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3366 kvm_vcpu_flush_tlb_current(vcpu); 3367 3368 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3369 kvm_vcpu_flush_tlb_guest(vcpu); 3370 } 3371 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3372 3373 static void record_steal_time(struct kvm_vcpu *vcpu) 3374 { 3375 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3376 struct kvm_steal_time __user *st; 3377 struct kvm_memslots *slots; 3378 u64 steal; 3379 u32 version; 3380 3381 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3382 kvm_xen_runstate_set_running(vcpu); 3383 return; 3384 } 3385 3386 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3387 return; 3388 3389 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3390 return; 3391 3392 slots = kvm_memslots(vcpu->kvm); 3393 3394 if (unlikely(slots->generation != ghc->generation || 3395 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3396 gfn_t gfn = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3397 3398 /* We rely on the fact that it fits in a single page. */ 3399 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3400 3401 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gfn, sizeof(*st)) || 3402 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3403 return; 3404 } 3405 3406 st = (struct kvm_steal_time __user *)ghc->hva; 3407 /* 3408 * Doing a TLB flush here, on the guest's behalf, can avoid 3409 * expensive IPIs. 3410 */ 3411 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3412 u8 st_preempted = 0; 3413 int err = -EFAULT; 3414 3415 if (!user_access_begin(st, sizeof(*st))) 3416 return; 3417 3418 asm volatile("1: xchgb %0, %2\n" 3419 "xor %1, %1\n" 3420 "2:\n" 3421 _ASM_EXTABLE_UA(1b, 2b) 3422 : "+q" (st_preempted), 3423 "+&r" (err), 3424 "+m" (st->preempted)); 3425 if (err) 3426 goto out; 3427 3428 user_access_end(); 3429 3430 vcpu->arch.st.preempted = 0; 3431 3432 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3433 st_preempted & KVM_VCPU_FLUSH_TLB); 3434 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3435 kvm_vcpu_flush_tlb_guest(vcpu); 3436 3437 if (!user_access_begin(st, sizeof(*st))) 3438 goto dirty; 3439 } else { 3440 if (!user_access_begin(st, sizeof(*st))) 3441 return; 3442 3443 unsafe_put_user(0, &st->preempted, out); 3444 vcpu->arch.st.preempted = 0; 3445 } 3446 3447 unsafe_get_user(version, &st->version, out); 3448 if (version & 1) 3449 version += 1; /* first time write, random junk */ 3450 3451 version += 1; 3452 unsafe_put_user(version, &st->version, out); 3453 3454 smp_wmb(); 3455 3456 unsafe_get_user(steal, &st->steal, out); 3457 steal += current->sched_info.run_delay - 3458 vcpu->arch.st.last_steal; 3459 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3460 unsafe_put_user(steal, &st->steal, out); 3461 3462 version += 1; 3463 unsafe_put_user(version, &st->version, out); 3464 3465 out: 3466 user_access_end(); 3467 dirty: 3468 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3469 } 3470 3471 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3472 { 3473 bool pr = false; 3474 u32 msr = msr_info->index; 3475 u64 data = msr_info->data; 3476 3477 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3478 return kvm_xen_write_hypercall_page(vcpu, data); 3479 3480 switch (msr) { 3481 case MSR_AMD64_NB_CFG: 3482 case MSR_IA32_UCODE_WRITE: 3483 case MSR_VM_HSAVE_PA: 3484 case MSR_AMD64_PATCH_LOADER: 3485 case MSR_AMD64_BU_CFG2: 3486 case MSR_AMD64_DC_CFG: 3487 case MSR_F15H_EX_CFG: 3488 break; 3489 3490 case MSR_IA32_UCODE_REV: 3491 if (msr_info->host_initiated) 3492 vcpu->arch.microcode_version = data; 3493 break; 3494 case MSR_IA32_ARCH_CAPABILITIES: 3495 if (!msr_info->host_initiated) 3496 return 1; 3497 vcpu->arch.arch_capabilities = data; 3498 break; 3499 case MSR_IA32_PERF_CAPABILITIES: { 3500 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0}; 3501 3502 if (!msr_info->host_initiated) 3503 return 1; 3504 if (kvm_get_msr_feature(&msr_ent)) 3505 return 1; 3506 if (data & ~msr_ent.data) 3507 return 1; 3508 3509 vcpu->arch.perf_capabilities = data; 3510 3511 return 0; 3512 } 3513 case MSR_EFER: 3514 return set_efer(vcpu, msr_info); 3515 case MSR_K7_HWCR: 3516 data &= ~(u64)0x40; /* ignore flush filter disable */ 3517 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3518 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3519 3520 /* Handle McStatusWrEn */ 3521 if (data == BIT_ULL(18)) { 3522 vcpu->arch.msr_hwcr = data; 3523 } else if (data != 0) { 3524 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 3525 data); 3526 return 1; 3527 } 3528 break; 3529 case MSR_FAM10H_MMIO_CONF_BASE: 3530 if (data != 0) { 3531 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 3532 "0x%llx\n", data); 3533 return 1; 3534 } 3535 break; 3536 case 0x200 ... 0x2ff: 3537 return kvm_mtrr_set_msr(vcpu, msr, data); 3538 case MSR_IA32_APICBASE: 3539 return kvm_set_apic_base(vcpu, msr_info); 3540 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3541 return kvm_x2apic_msr_write(vcpu, msr, data); 3542 case MSR_IA32_TSC_DEADLINE: 3543 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3544 break; 3545 case MSR_IA32_TSC_ADJUST: 3546 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3547 if (!msr_info->host_initiated) { 3548 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3549 adjust_tsc_offset_guest(vcpu, adj); 3550 /* Before back to guest, tsc_timestamp must be adjusted 3551 * as well, otherwise guest's percpu pvclock time could jump. 3552 */ 3553 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3554 } 3555 vcpu->arch.ia32_tsc_adjust_msr = data; 3556 } 3557 break; 3558 case MSR_IA32_MISC_ENABLE: 3559 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3560 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3561 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3562 return 1; 3563 vcpu->arch.ia32_misc_enable_msr = data; 3564 kvm_update_cpuid_runtime(vcpu); 3565 } else { 3566 vcpu->arch.ia32_misc_enable_msr = data; 3567 } 3568 break; 3569 case MSR_IA32_SMBASE: 3570 if (!msr_info->host_initiated) 3571 return 1; 3572 vcpu->arch.smbase = data; 3573 break; 3574 case MSR_IA32_POWER_CTL: 3575 vcpu->arch.msr_ia32_power_ctl = data; 3576 break; 3577 case MSR_IA32_TSC: 3578 if (msr_info->host_initiated) { 3579 kvm_synchronize_tsc(vcpu, data); 3580 } else { 3581 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3582 adjust_tsc_offset_guest(vcpu, adj); 3583 vcpu->arch.ia32_tsc_adjust_msr += adj; 3584 } 3585 break; 3586 case MSR_IA32_XSS: 3587 if (!msr_info->host_initiated && 3588 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3589 return 1; 3590 /* 3591 * KVM supports exposing PT to the guest, but does not support 3592 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3593 * XSAVES/XRSTORS to save/restore PT MSRs. 3594 */ 3595 if (data & ~supported_xss) 3596 return 1; 3597 vcpu->arch.ia32_xss = data; 3598 kvm_update_cpuid_runtime(vcpu); 3599 break; 3600 case MSR_SMI_COUNT: 3601 if (!msr_info->host_initiated) 3602 return 1; 3603 vcpu->arch.smi_count = data; 3604 break; 3605 case MSR_KVM_WALL_CLOCK_NEW: 3606 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3607 return 1; 3608 3609 vcpu->kvm->arch.wall_clock = data; 3610 kvm_write_wall_clock(vcpu->kvm, data, 0); 3611 break; 3612 case MSR_KVM_WALL_CLOCK: 3613 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3614 return 1; 3615 3616 vcpu->kvm->arch.wall_clock = data; 3617 kvm_write_wall_clock(vcpu->kvm, data, 0); 3618 break; 3619 case MSR_KVM_SYSTEM_TIME_NEW: 3620 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3621 return 1; 3622 3623 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3624 break; 3625 case MSR_KVM_SYSTEM_TIME: 3626 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3627 return 1; 3628 3629 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3630 break; 3631 case MSR_KVM_ASYNC_PF_EN: 3632 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3633 return 1; 3634 3635 if (kvm_pv_enable_async_pf(vcpu, data)) 3636 return 1; 3637 break; 3638 case MSR_KVM_ASYNC_PF_INT: 3639 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3640 return 1; 3641 3642 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3643 return 1; 3644 break; 3645 case MSR_KVM_ASYNC_PF_ACK: 3646 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3647 return 1; 3648 if (data & 0x1) { 3649 vcpu->arch.apf.pageready_pending = false; 3650 kvm_check_async_pf_completion(vcpu); 3651 } 3652 break; 3653 case MSR_KVM_STEAL_TIME: 3654 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3655 return 1; 3656 3657 if (unlikely(!sched_info_on())) 3658 return 1; 3659 3660 if (data & KVM_STEAL_RESERVED_MASK) 3661 return 1; 3662 3663 vcpu->arch.st.msr_val = data; 3664 3665 if (!(data & KVM_MSR_ENABLED)) 3666 break; 3667 3668 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3669 3670 break; 3671 case MSR_KVM_PV_EOI_EN: 3672 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3673 return 1; 3674 3675 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 3676 return 1; 3677 break; 3678 3679 case MSR_KVM_POLL_CONTROL: 3680 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3681 return 1; 3682 3683 /* only enable bit supported */ 3684 if (data & (-1ULL << 1)) 3685 return 1; 3686 3687 vcpu->arch.msr_kvm_poll_control = data; 3688 break; 3689 3690 case MSR_IA32_MCG_CTL: 3691 case MSR_IA32_MCG_STATUS: 3692 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3693 return set_msr_mce(vcpu, msr_info); 3694 3695 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3696 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3697 pr = true; 3698 fallthrough; 3699 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3700 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3701 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3702 return kvm_pmu_set_msr(vcpu, msr_info); 3703 3704 if (pr || data != 0) 3705 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 3706 "0x%x data 0x%llx\n", msr, data); 3707 break; 3708 case MSR_K7_CLK_CTL: 3709 /* 3710 * Ignore all writes to this no longer documented MSR. 3711 * Writes are only relevant for old K7 processors, 3712 * all pre-dating SVM, but a recommended workaround from 3713 * AMD for these chips. It is possible to specify the 3714 * affected processor models on the command line, hence 3715 * the need to ignore the workaround. 3716 */ 3717 break; 3718 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3719 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3720 case HV_X64_MSR_SYNDBG_OPTIONS: 3721 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3722 case HV_X64_MSR_CRASH_CTL: 3723 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3724 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3725 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3726 case HV_X64_MSR_TSC_EMULATION_STATUS: 3727 return kvm_hv_set_msr_common(vcpu, msr, data, 3728 msr_info->host_initiated); 3729 case MSR_IA32_BBL_CR_CTL3: 3730 /* Drop writes to this legacy MSR -- see rdmsr 3731 * counterpart for further detail. 3732 */ 3733 if (report_ignored_msrs) 3734 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", 3735 msr, data); 3736 break; 3737 case MSR_AMD64_OSVW_ID_LENGTH: 3738 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3739 return 1; 3740 vcpu->arch.osvw.length = data; 3741 break; 3742 case MSR_AMD64_OSVW_STATUS: 3743 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3744 return 1; 3745 vcpu->arch.osvw.status = data; 3746 break; 3747 case MSR_PLATFORM_INFO: 3748 if (!msr_info->host_initiated || 3749 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3750 cpuid_fault_enabled(vcpu))) 3751 return 1; 3752 vcpu->arch.msr_platform_info = data; 3753 break; 3754 case MSR_MISC_FEATURES_ENABLES: 3755 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3756 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3757 !supports_cpuid_fault(vcpu))) 3758 return 1; 3759 vcpu->arch.msr_misc_features_enables = data; 3760 break; 3761 #ifdef CONFIG_X86_64 3762 case MSR_IA32_XFD: 3763 if (!msr_info->host_initiated && 3764 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3765 return 1; 3766 3767 if (data & ~kvm_guest_supported_xfd(vcpu)) 3768 return 1; 3769 3770 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 3771 break; 3772 case MSR_IA32_XFD_ERR: 3773 if (!msr_info->host_initiated && 3774 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3775 return 1; 3776 3777 if (data & ~kvm_guest_supported_xfd(vcpu)) 3778 return 1; 3779 3780 vcpu->arch.guest_fpu.xfd_err = data; 3781 break; 3782 #endif 3783 default: 3784 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3785 return kvm_pmu_set_msr(vcpu, msr_info); 3786 return KVM_MSR_RET_INVALID; 3787 } 3788 return 0; 3789 } 3790 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 3791 3792 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 3793 { 3794 u64 data; 3795 u64 mcg_cap = vcpu->arch.mcg_cap; 3796 unsigned bank_num = mcg_cap & 0xff; 3797 3798 switch (msr) { 3799 case MSR_IA32_P5_MC_ADDR: 3800 case MSR_IA32_P5_MC_TYPE: 3801 data = 0; 3802 break; 3803 case MSR_IA32_MCG_CAP: 3804 data = vcpu->arch.mcg_cap; 3805 break; 3806 case MSR_IA32_MCG_CTL: 3807 if (!(mcg_cap & MCG_CTL_P) && !host) 3808 return 1; 3809 data = vcpu->arch.mcg_ctl; 3810 break; 3811 case MSR_IA32_MCG_STATUS: 3812 data = vcpu->arch.mcg_status; 3813 break; 3814 default: 3815 if (msr >= MSR_IA32_MC0_CTL && 3816 msr < MSR_IA32_MCx_CTL(bank_num)) { 3817 u32 offset = array_index_nospec( 3818 msr - MSR_IA32_MC0_CTL, 3819 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL); 3820 3821 data = vcpu->arch.mce_banks[offset]; 3822 break; 3823 } 3824 return 1; 3825 } 3826 *pdata = data; 3827 return 0; 3828 } 3829 3830 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3831 { 3832 switch (msr_info->index) { 3833 case MSR_IA32_PLATFORM_ID: 3834 case MSR_IA32_EBL_CR_POWERON: 3835 case MSR_IA32_LASTBRANCHFROMIP: 3836 case MSR_IA32_LASTBRANCHTOIP: 3837 case MSR_IA32_LASTINTFROMIP: 3838 case MSR_IA32_LASTINTTOIP: 3839 case MSR_AMD64_SYSCFG: 3840 case MSR_K8_TSEG_ADDR: 3841 case MSR_K8_TSEG_MASK: 3842 case MSR_VM_HSAVE_PA: 3843 case MSR_K8_INT_PENDING_MSG: 3844 case MSR_AMD64_NB_CFG: 3845 case MSR_FAM10H_MMIO_CONF_BASE: 3846 case MSR_AMD64_BU_CFG2: 3847 case MSR_IA32_PERF_CTL: 3848 case MSR_AMD64_DC_CFG: 3849 case MSR_F15H_EX_CFG: 3850 /* 3851 * Intel Sandy Bridge CPUs must support the RAPL (running average power 3852 * limit) MSRs. Just return 0, as we do not want to expose the host 3853 * data here. Do not conditionalize this on CPUID, as KVM does not do 3854 * so for existing CPU-specific MSRs. 3855 */ 3856 case MSR_RAPL_POWER_UNIT: 3857 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 3858 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 3859 case MSR_PKG_ENERGY_STATUS: /* Total package */ 3860 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 3861 msr_info->data = 0; 3862 break; 3863 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3864 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3865 return kvm_pmu_get_msr(vcpu, msr_info); 3866 if (!msr_info->host_initiated) 3867 return 1; 3868 msr_info->data = 0; 3869 break; 3870 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3871 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3872 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3873 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3874 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3875 return kvm_pmu_get_msr(vcpu, msr_info); 3876 msr_info->data = 0; 3877 break; 3878 case MSR_IA32_UCODE_REV: 3879 msr_info->data = vcpu->arch.microcode_version; 3880 break; 3881 case MSR_IA32_ARCH_CAPABILITIES: 3882 if (!msr_info->host_initiated && 3883 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 3884 return 1; 3885 msr_info->data = vcpu->arch.arch_capabilities; 3886 break; 3887 case MSR_IA32_PERF_CAPABILITIES: 3888 if (!msr_info->host_initiated && 3889 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 3890 return 1; 3891 msr_info->data = vcpu->arch.perf_capabilities; 3892 break; 3893 case MSR_IA32_POWER_CTL: 3894 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 3895 break; 3896 case MSR_IA32_TSC: { 3897 /* 3898 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 3899 * even when not intercepted. AMD manual doesn't explicitly 3900 * state this but appears to behave the same. 3901 * 3902 * On userspace reads and writes, however, we unconditionally 3903 * return L1's TSC value to ensure backwards-compatible 3904 * behavior for migration. 3905 */ 3906 u64 offset, ratio; 3907 3908 if (msr_info->host_initiated) { 3909 offset = vcpu->arch.l1_tsc_offset; 3910 ratio = vcpu->arch.l1_tsc_scaling_ratio; 3911 } else { 3912 offset = vcpu->arch.tsc_offset; 3913 ratio = vcpu->arch.tsc_scaling_ratio; 3914 } 3915 3916 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 3917 break; 3918 } 3919 case MSR_MTRRcap: 3920 case 0x200 ... 0x2ff: 3921 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 3922 case 0xcd: /* fsb frequency */ 3923 msr_info->data = 3; 3924 break; 3925 /* 3926 * MSR_EBC_FREQUENCY_ID 3927 * Conservative value valid for even the basic CPU models. 3928 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 3929 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 3930 * and 266MHz for model 3, or 4. Set Core Clock 3931 * Frequency to System Bus Frequency Ratio to 1 (bits 3932 * 31:24) even though these are only valid for CPU 3933 * models > 2, however guests may end up dividing or 3934 * multiplying by zero otherwise. 3935 */ 3936 case MSR_EBC_FREQUENCY_ID: 3937 msr_info->data = 1 << 24; 3938 break; 3939 case MSR_IA32_APICBASE: 3940 msr_info->data = kvm_get_apic_base(vcpu); 3941 break; 3942 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3943 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 3944 case MSR_IA32_TSC_DEADLINE: 3945 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 3946 break; 3947 case MSR_IA32_TSC_ADJUST: 3948 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 3949 break; 3950 case MSR_IA32_MISC_ENABLE: 3951 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 3952 break; 3953 case MSR_IA32_SMBASE: 3954 if (!msr_info->host_initiated) 3955 return 1; 3956 msr_info->data = vcpu->arch.smbase; 3957 break; 3958 case MSR_SMI_COUNT: 3959 msr_info->data = vcpu->arch.smi_count; 3960 break; 3961 case MSR_IA32_PERF_STATUS: 3962 /* TSC increment by tick */ 3963 msr_info->data = 1000ULL; 3964 /* CPU multiplier */ 3965 msr_info->data |= (((uint64_t)4ULL) << 40); 3966 break; 3967 case MSR_EFER: 3968 msr_info->data = vcpu->arch.efer; 3969 break; 3970 case MSR_KVM_WALL_CLOCK: 3971 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3972 return 1; 3973 3974 msr_info->data = vcpu->kvm->arch.wall_clock; 3975 break; 3976 case MSR_KVM_WALL_CLOCK_NEW: 3977 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3978 return 1; 3979 3980 msr_info->data = vcpu->kvm->arch.wall_clock; 3981 break; 3982 case MSR_KVM_SYSTEM_TIME: 3983 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3984 return 1; 3985 3986 msr_info->data = vcpu->arch.time; 3987 break; 3988 case MSR_KVM_SYSTEM_TIME_NEW: 3989 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3990 return 1; 3991 3992 msr_info->data = vcpu->arch.time; 3993 break; 3994 case MSR_KVM_ASYNC_PF_EN: 3995 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3996 return 1; 3997 3998 msr_info->data = vcpu->arch.apf.msr_en_val; 3999 break; 4000 case MSR_KVM_ASYNC_PF_INT: 4001 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4002 return 1; 4003 4004 msr_info->data = vcpu->arch.apf.msr_int_val; 4005 break; 4006 case MSR_KVM_ASYNC_PF_ACK: 4007 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4008 return 1; 4009 4010 msr_info->data = 0; 4011 break; 4012 case MSR_KVM_STEAL_TIME: 4013 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4014 return 1; 4015 4016 msr_info->data = vcpu->arch.st.msr_val; 4017 break; 4018 case MSR_KVM_PV_EOI_EN: 4019 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4020 return 1; 4021 4022 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4023 break; 4024 case MSR_KVM_POLL_CONTROL: 4025 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4026 return 1; 4027 4028 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4029 break; 4030 case MSR_IA32_P5_MC_ADDR: 4031 case MSR_IA32_P5_MC_TYPE: 4032 case MSR_IA32_MCG_CAP: 4033 case MSR_IA32_MCG_CTL: 4034 case MSR_IA32_MCG_STATUS: 4035 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4036 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4037 msr_info->host_initiated); 4038 case MSR_IA32_XSS: 4039 if (!msr_info->host_initiated && 4040 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4041 return 1; 4042 msr_info->data = vcpu->arch.ia32_xss; 4043 break; 4044 case MSR_K7_CLK_CTL: 4045 /* 4046 * Provide expected ramp-up count for K7. All other 4047 * are set to zero, indicating minimum divisors for 4048 * every field. 4049 * 4050 * This prevents guest kernels on AMD host with CPU 4051 * type 6, model 8 and higher from exploding due to 4052 * the rdmsr failing. 4053 */ 4054 msr_info->data = 0x20000000; 4055 break; 4056 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4057 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4058 case HV_X64_MSR_SYNDBG_OPTIONS: 4059 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4060 case HV_X64_MSR_CRASH_CTL: 4061 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4062 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4063 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4064 case HV_X64_MSR_TSC_EMULATION_STATUS: 4065 return kvm_hv_get_msr_common(vcpu, 4066 msr_info->index, &msr_info->data, 4067 msr_info->host_initiated); 4068 case MSR_IA32_BBL_CR_CTL3: 4069 /* This legacy MSR exists but isn't fully documented in current 4070 * silicon. It is however accessed by winxp in very narrow 4071 * scenarios where it sets bit #19, itself documented as 4072 * a "reserved" bit. Best effort attempt to source coherent 4073 * read data here should the balance of the register be 4074 * interpreted by the guest: 4075 * 4076 * L2 cache control register 3: 64GB range, 256KB size, 4077 * enabled, latency 0x1, configured 4078 */ 4079 msr_info->data = 0xbe702111; 4080 break; 4081 case MSR_AMD64_OSVW_ID_LENGTH: 4082 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4083 return 1; 4084 msr_info->data = vcpu->arch.osvw.length; 4085 break; 4086 case MSR_AMD64_OSVW_STATUS: 4087 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4088 return 1; 4089 msr_info->data = vcpu->arch.osvw.status; 4090 break; 4091 case MSR_PLATFORM_INFO: 4092 if (!msr_info->host_initiated && 4093 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4094 return 1; 4095 msr_info->data = vcpu->arch.msr_platform_info; 4096 break; 4097 case MSR_MISC_FEATURES_ENABLES: 4098 msr_info->data = vcpu->arch.msr_misc_features_enables; 4099 break; 4100 case MSR_K7_HWCR: 4101 msr_info->data = vcpu->arch.msr_hwcr; 4102 break; 4103 #ifdef CONFIG_X86_64 4104 case MSR_IA32_XFD: 4105 if (!msr_info->host_initiated && 4106 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4107 return 1; 4108 4109 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4110 break; 4111 case MSR_IA32_XFD_ERR: 4112 if (!msr_info->host_initiated && 4113 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4114 return 1; 4115 4116 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4117 break; 4118 #endif 4119 default: 4120 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4121 return kvm_pmu_get_msr(vcpu, msr_info); 4122 return KVM_MSR_RET_INVALID; 4123 } 4124 return 0; 4125 } 4126 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4127 4128 /* 4129 * Read or write a bunch of msrs. All parameters are kernel addresses. 4130 * 4131 * @return number of msrs set successfully. 4132 */ 4133 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4134 struct kvm_msr_entry *entries, 4135 int (*do_msr)(struct kvm_vcpu *vcpu, 4136 unsigned index, u64 *data)) 4137 { 4138 int i; 4139 4140 for (i = 0; i < msrs->nmsrs; ++i) 4141 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4142 break; 4143 4144 return i; 4145 } 4146 4147 /* 4148 * Read or write a bunch of msrs. Parameters are user addresses. 4149 * 4150 * @return number of msrs set successfully. 4151 */ 4152 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4153 int (*do_msr)(struct kvm_vcpu *vcpu, 4154 unsigned index, u64 *data), 4155 int writeback) 4156 { 4157 struct kvm_msrs msrs; 4158 struct kvm_msr_entry *entries; 4159 int r, n; 4160 unsigned size; 4161 4162 r = -EFAULT; 4163 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4164 goto out; 4165 4166 r = -E2BIG; 4167 if (msrs.nmsrs >= MAX_IO_MSRS) 4168 goto out; 4169 4170 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4171 entries = memdup_user(user_msrs->entries, size); 4172 if (IS_ERR(entries)) { 4173 r = PTR_ERR(entries); 4174 goto out; 4175 } 4176 4177 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 4178 if (r < 0) 4179 goto out_free; 4180 4181 r = -EFAULT; 4182 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4183 goto out_free; 4184 4185 r = n; 4186 4187 out_free: 4188 kfree(entries); 4189 out: 4190 return r; 4191 } 4192 4193 static inline bool kvm_can_mwait_in_guest(void) 4194 { 4195 return boot_cpu_has(X86_FEATURE_MWAIT) && 4196 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4197 boot_cpu_has(X86_FEATURE_ARAT); 4198 } 4199 4200 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4201 struct kvm_cpuid2 __user *cpuid_arg) 4202 { 4203 struct kvm_cpuid2 cpuid; 4204 int r; 4205 4206 r = -EFAULT; 4207 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4208 return r; 4209 4210 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4211 if (r) 4212 return r; 4213 4214 r = -EFAULT; 4215 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4216 return r; 4217 4218 return 0; 4219 } 4220 4221 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4222 { 4223 int r = 0; 4224 4225 switch (ext) { 4226 case KVM_CAP_IRQCHIP: 4227 case KVM_CAP_HLT: 4228 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4229 case KVM_CAP_SET_TSS_ADDR: 4230 case KVM_CAP_EXT_CPUID: 4231 case KVM_CAP_EXT_EMUL_CPUID: 4232 case KVM_CAP_CLOCKSOURCE: 4233 case KVM_CAP_PIT: 4234 case KVM_CAP_NOP_IO_DELAY: 4235 case KVM_CAP_MP_STATE: 4236 case KVM_CAP_SYNC_MMU: 4237 case KVM_CAP_USER_NMI: 4238 case KVM_CAP_REINJECT_CONTROL: 4239 case KVM_CAP_IRQ_INJECT_STATUS: 4240 case KVM_CAP_IOEVENTFD: 4241 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4242 case KVM_CAP_PIT2: 4243 case KVM_CAP_PIT_STATE2: 4244 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4245 case KVM_CAP_VCPU_EVENTS: 4246 case KVM_CAP_HYPERV: 4247 case KVM_CAP_HYPERV_VAPIC: 4248 case KVM_CAP_HYPERV_SPIN: 4249 case KVM_CAP_HYPERV_SYNIC: 4250 case KVM_CAP_HYPERV_SYNIC2: 4251 case KVM_CAP_HYPERV_VP_INDEX: 4252 case KVM_CAP_HYPERV_EVENTFD: 4253 case KVM_CAP_HYPERV_TLBFLUSH: 4254 case KVM_CAP_HYPERV_SEND_IPI: 4255 case KVM_CAP_HYPERV_CPUID: 4256 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4257 case KVM_CAP_SYS_HYPERV_CPUID: 4258 case KVM_CAP_PCI_SEGMENT: 4259 case KVM_CAP_DEBUGREGS: 4260 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4261 case KVM_CAP_XSAVE: 4262 case KVM_CAP_ASYNC_PF: 4263 case KVM_CAP_ASYNC_PF_INT: 4264 case KVM_CAP_GET_TSC_KHZ: 4265 case KVM_CAP_KVMCLOCK_CTRL: 4266 case KVM_CAP_READONLY_MEM: 4267 case KVM_CAP_HYPERV_TIME: 4268 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4269 case KVM_CAP_TSC_DEADLINE_TIMER: 4270 case KVM_CAP_DISABLE_QUIRKS: 4271 case KVM_CAP_SET_BOOT_CPU_ID: 4272 case KVM_CAP_SPLIT_IRQCHIP: 4273 case KVM_CAP_IMMEDIATE_EXIT: 4274 case KVM_CAP_PMU_EVENT_FILTER: 4275 case KVM_CAP_GET_MSR_FEATURES: 4276 case KVM_CAP_MSR_PLATFORM_INFO: 4277 case KVM_CAP_EXCEPTION_PAYLOAD: 4278 case KVM_CAP_SET_GUEST_DEBUG: 4279 case KVM_CAP_LAST_CPU: 4280 case KVM_CAP_X86_USER_SPACE_MSR: 4281 case KVM_CAP_X86_MSR_FILTER: 4282 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4283 #ifdef CONFIG_X86_SGX_KVM 4284 case KVM_CAP_SGX_ATTRIBUTE: 4285 #endif 4286 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4287 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4288 case KVM_CAP_SREGS2: 4289 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4290 case KVM_CAP_VCPU_ATTRIBUTES: 4291 case KVM_CAP_SYS_ATTRIBUTES: 4292 case KVM_CAP_VAPIC: 4293 case KVM_CAP_ENABLE_CAP: 4294 r = 1; 4295 break; 4296 case KVM_CAP_EXIT_HYPERCALL: 4297 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4298 break; 4299 case KVM_CAP_SET_GUEST_DEBUG2: 4300 return KVM_GUESTDBG_VALID_MASK; 4301 #ifdef CONFIG_KVM_XEN 4302 case KVM_CAP_XEN_HVM: 4303 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4304 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4305 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4306 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4307 KVM_XEN_HVM_CONFIG_EVTCHN_SEND; 4308 if (sched_info_on()) 4309 r |= KVM_XEN_HVM_CONFIG_RUNSTATE; 4310 break; 4311 #endif 4312 case KVM_CAP_SYNC_REGS: 4313 r = KVM_SYNC_X86_VALID_FIELDS; 4314 break; 4315 case KVM_CAP_ADJUST_CLOCK: 4316 r = KVM_CLOCK_VALID_FLAGS; 4317 break; 4318 case KVM_CAP_X86_DISABLE_EXITS: 4319 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE | 4320 KVM_X86_DISABLE_EXITS_CSTATE; 4321 if(kvm_can_mwait_in_guest()) 4322 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4323 break; 4324 case KVM_CAP_X86_SMM: 4325 /* SMBASE is usually relocated above 1M on modern chipsets, 4326 * and SMM handlers might indeed rely on 4G segment limits, 4327 * so do not report SMM to be available if real mode is 4328 * emulated via vm86 mode. Still, do not go to great lengths 4329 * to avoid userspace's usage of the feature, because it is a 4330 * fringe case that is not enabled except via specific settings 4331 * of the module parameters. 4332 */ 4333 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4334 break; 4335 case KVM_CAP_NR_VCPUS: 4336 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4337 break; 4338 case KVM_CAP_MAX_VCPUS: 4339 r = KVM_MAX_VCPUS; 4340 break; 4341 case KVM_CAP_MAX_VCPU_ID: 4342 r = KVM_MAX_VCPU_IDS; 4343 break; 4344 case KVM_CAP_PV_MMU: /* obsolete */ 4345 r = 0; 4346 break; 4347 case KVM_CAP_MCE: 4348 r = KVM_MAX_MCE_BANKS; 4349 break; 4350 case KVM_CAP_XCRS: 4351 r = boot_cpu_has(X86_FEATURE_XSAVE); 4352 break; 4353 case KVM_CAP_TSC_CONTROL: 4354 case KVM_CAP_VM_TSC_CONTROL: 4355 r = kvm_has_tsc_control; 4356 break; 4357 case KVM_CAP_X2APIC_API: 4358 r = KVM_X2APIC_API_VALID_FLAGS; 4359 break; 4360 case KVM_CAP_NESTED_STATE: 4361 r = kvm_x86_ops.nested_ops->get_state ? 4362 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4363 break; 4364 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4365 r = kvm_x86_ops.enable_direct_tlbflush != NULL; 4366 break; 4367 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4368 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4369 break; 4370 case KVM_CAP_SMALLER_MAXPHYADDR: 4371 r = (int) allow_smaller_maxphyaddr; 4372 break; 4373 case KVM_CAP_STEAL_TIME: 4374 r = sched_info_on(); 4375 break; 4376 case KVM_CAP_X86_BUS_LOCK_EXIT: 4377 if (kvm_has_bus_lock_exit) 4378 r = KVM_BUS_LOCK_DETECTION_OFF | 4379 KVM_BUS_LOCK_DETECTION_EXIT; 4380 else 4381 r = 0; 4382 break; 4383 case KVM_CAP_XSAVE2: { 4384 u64 guest_perm = xstate_get_guest_group_perm(); 4385 4386 r = xstate_required_size(supported_xcr0 & guest_perm, false); 4387 if (r < sizeof(struct kvm_xsave)) 4388 r = sizeof(struct kvm_xsave); 4389 break; 4390 case KVM_CAP_PMU_CAPABILITY: 4391 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4392 break; 4393 } 4394 case KVM_CAP_DISABLE_QUIRKS2: 4395 r = KVM_X86_VALID_QUIRKS; 4396 break; 4397 default: 4398 break; 4399 } 4400 return r; 4401 } 4402 4403 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr) 4404 { 4405 void __user *uaddr = (void __user*)(unsigned long)attr->addr; 4406 4407 if ((u64)(unsigned long)uaddr != attr->addr) 4408 return ERR_PTR_USR(-EFAULT); 4409 return uaddr; 4410 } 4411 4412 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4413 { 4414 u64 __user *uaddr = kvm_get_attr_addr(attr); 4415 4416 if (attr->group) 4417 return -ENXIO; 4418 4419 if (IS_ERR(uaddr)) 4420 return PTR_ERR(uaddr); 4421 4422 switch (attr->attr) { 4423 case KVM_X86_XCOMP_GUEST_SUPP: 4424 if (put_user(supported_xcr0, uaddr)) 4425 return -EFAULT; 4426 return 0; 4427 default: 4428 return -ENXIO; 4429 break; 4430 } 4431 } 4432 4433 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4434 { 4435 if (attr->group) 4436 return -ENXIO; 4437 4438 switch (attr->attr) { 4439 case KVM_X86_XCOMP_GUEST_SUPP: 4440 return 0; 4441 default: 4442 return -ENXIO; 4443 } 4444 } 4445 4446 long kvm_arch_dev_ioctl(struct file *filp, 4447 unsigned int ioctl, unsigned long arg) 4448 { 4449 void __user *argp = (void __user *)arg; 4450 long r; 4451 4452 switch (ioctl) { 4453 case KVM_GET_MSR_INDEX_LIST: { 4454 struct kvm_msr_list __user *user_msr_list = argp; 4455 struct kvm_msr_list msr_list; 4456 unsigned n; 4457 4458 r = -EFAULT; 4459 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4460 goto out; 4461 n = msr_list.nmsrs; 4462 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4463 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4464 goto out; 4465 r = -E2BIG; 4466 if (n < msr_list.nmsrs) 4467 goto out; 4468 r = -EFAULT; 4469 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4470 num_msrs_to_save * sizeof(u32))) 4471 goto out; 4472 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4473 &emulated_msrs, 4474 num_emulated_msrs * sizeof(u32))) 4475 goto out; 4476 r = 0; 4477 break; 4478 } 4479 case KVM_GET_SUPPORTED_CPUID: 4480 case KVM_GET_EMULATED_CPUID: { 4481 struct kvm_cpuid2 __user *cpuid_arg = argp; 4482 struct kvm_cpuid2 cpuid; 4483 4484 r = -EFAULT; 4485 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4486 goto out; 4487 4488 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4489 ioctl); 4490 if (r) 4491 goto out; 4492 4493 r = -EFAULT; 4494 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4495 goto out; 4496 r = 0; 4497 break; 4498 } 4499 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4500 r = -EFAULT; 4501 if (copy_to_user(argp, &kvm_mce_cap_supported, 4502 sizeof(kvm_mce_cap_supported))) 4503 goto out; 4504 r = 0; 4505 break; 4506 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4507 struct kvm_msr_list __user *user_msr_list = argp; 4508 struct kvm_msr_list msr_list; 4509 unsigned int n; 4510 4511 r = -EFAULT; 4512 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4513 goto out; 4514 n = msr_list.nmsrs; 4515 msr_list.nmsrs = num_msr_based_features; 4516 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4517 goto out; 4518 r = -E2BIG; 4519 if (n < msr_list.nmsrs) 4520 goto out; 4521 r = -EFAULT; 4522 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4523 num_msr_based_features * sizeof(u32))) 4524 goto out; 4525 r = 0; 4526 break; 4527 } 4528 case KVM_GET_MSRS: 4529 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4530 break; 4531 case KVM_GET_SUPPORTED_HV_CPUID: 4532 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4533 break; 4534 case KVM_GET_DEVICE_ATTR: { 4535 struct kvm_device_attr attr; 4536 r = -EFAULT; 4537 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4538 break; 4539 r = kvm_x86_dev_get_attr(&attr); 4540 break; 4541 } 4542 case KVM_HAS_DEVICE_ATTR: { 4543 struct kvm_device_attr attr; 4544 r = -EFAULT; 4545 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4546 break; 4547 r = kvm_x86_dev_has_attr(&attr); 4548 break; 4549 } 4550 default: 4551 r = -EINVAL; 4552 break; 4553 } 4554 out: 4555 return r; 4556 } 4557 4558 static void wbinvd_ipi(void *garbage) 4559 { 4560 wbinvd(); 4561 } 4562 4563 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4564 { 4565 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4566 } 4567 4568 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4569 { 4570 /* Address WBINVD may be executed by guest */ 4571 if (need_emulate_wbinvd(vcpu)) { 4572 if (static_call(kvm_x86_has_wbinvd_exit)()) 4573 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4574 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4575 smp_call_function_single(vcpu->cpu, 4576 wbinvd_ipi, NULL, 1); 4577 } 4578 4579 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 4580 4581 /* Save host pkru register if supported */ 4582 vcpu->arch.host_pkru = read_pkru(); 4583 4584 /* Apply any externally detected TSC adjustments (due to suspend) */ 4585 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 4586 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 4587 vcpu->arch.tsc_offset_adjustment = 0; 4588 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4589 } 4590 4591 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 4592 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 4593 rdtsc() - vcpu->arch.last_host_tsc; 4594 if (tsc_delta < 0) 4595 mark_tsc_unstable("KVM discovered backwards TSC"); 4596 4597 if (kvm_check_tsc_unstable()) { 4598 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 4599 vcpu->arch.last_guest_tsc); 4600 kvm_vcpu_write_tsc_offset(vcpu, offset); 4601 vcpu->arch.tsc_catchup = 1; 4602 } 4603 4604 if (kvm_lapic_hv_timer_in_use(vcpu)) 4605 kvm_lapic_restart_hv_timer(vcpu); 4606 4607 /* 4608 * On a host with synchronized TSC, there is no need to update 4609 * kvmclock on vcpu->cpu migration 4610 */ 4611 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 4612 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 4613 if (vcpu->cpu != cpu) 4614 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 4615 vcpu->cpu = cpu; 4616 } 4617 4618 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4619 } 4620 4621 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 4622 { 4623 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 4624 struct kvm_steal_time __user *st; 4625 struct kvm_memslots *slots; 4626 static const u8 preempted = KVM_VCPU_PREEMPTED; 4627 4628 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 4629 return; 4630 4631 if (vcpu->arch.st.preempted) 4632 return; 4633 4634 /* This happens on process exit */ 4635 if (unlikely(current->mm != vcpu->kvm->mm)) 4636 return; 4637 4638 slots = kvm_memslots(vcpu->kvm); 4639 4640 if (unlikely(slots->generation != ghc->generation || 4641 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 4642 return; 4643 4644 st = (struct kvm_steal_time __user *)ghc->hva; 4645 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 4646 4647 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 4648 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 4649 4650 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 4651 } 4652 4653 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 4654 { 4655 int idx; 4656 4657 if (vcpu->preempted && !vcpu->arch.guest_state_protected) 4658 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); 4659 4660 /* 4661 * Take the srcu lock as memslots will be accessed to check the gfn 4662 * cache generation against the memslots generation. 4663 */ 4664 idx = srcu_read_lock(&vcpu->kvm->srcu); 4665 if (kvm_xen_msr_enabled(vcpu->kvm)) 4666 kvm_xen_runstate_set_preempted(vcpu); 4667 else 4668 kvm_steal_time_set_preempted(vcpu); 4669 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4670 4671 static_call(kvm_x86_vcpu_put)(vcpu); 4672 vcpu->arch.last_host_tsc = rdtsc(); 4673 } 4674 4675 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 4676 struct kvm_lapic_state *s) 4677 { 4678 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 4679 4680 return kvm_apic_get_state(vcpu, s); 4681 } 4682 4683 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 4684 struct kvm_lapic_state *s) 4685 { 4686 int r; 4687 4688 r = kvm_apic_set_state(vcpu, s); 4689 if (r) 4690 return r; 4691 update_cr8_intercept(vcpu); 4692 4693 return 0; 4694 } 4695 4696 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 4697 { 4698 /* 4699 * We can accept userspace's request for interrupt injection 4700 * as long as we have a place to store the interrupt number. 4701 * The actual injection will happen when the CPU is able to 4702 * deliver the interrupt. 4703 */ 4704 if (kvm_cpu_has_extint(vcpu)) 4705 return false; 4706 4707 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 4708 return (!lapic_in_kernel(vcpu) || 4709 kvm_apic_accept_pic_intr(vcpu)); 4710 } 4711 4712 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 4713 { 4714 /* 4715 * Do not cause an interrupt window exit if an exception 4716 * is pending or an event needs reinjection; userspace 4717 * might want to inject the interrupt manually using KVM_SET_REGS 4718 * or KVM_SET_SREGS. For that to work, we must be at an 4719 * instruction boundary and with no events half-injected. 4720 */ 4721 return (kvm_arch_interrupt_allowed(vcpu) && 4722 kvm_cpu_accept_dm_intr(vcpu) && 4723 !kvm_event_needs_reinjection(vcpu) && 4724 !vcpu->arch.exception.pending); 4725 } 4726 4727 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 4728 struct kvm_interrupt *irq) 4729 { 4730 if (irq->irq >= KVM_NR_INTERRUPTS) 4731 return -EINVAL; 4732 4733 if (!irqchip_in_kernel(vcpu->kvm)) { 4734 kvm_queue_interrupt(vcpu, irq->irq, false); 4735 kvm_make_request(KVM_REQ_EVENT, vcpu); 4736 return 0; 4737 } 4738 4739 /* 4740 * With in-kernel LAPIC, we only use this to inject EXTINT, so 4741 * fail for in-kernel 8259. 4742 */ 4743 if (pic_in_kernel(vcpu->kvm)) 4744 return -ENXIO; 4745 4746 if (vcpu->arch.pending_external_vector != -1) 4747 return -EEXIST; 4748 4749 vcpu->arch.pending_external_vector = irq->irq; 4750 kvm_make_request(KVM_REQ_EVENT, vcpu); 4751 return 0; 4752 } 4753 4754 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 4755 { 4756 kvm_inject_nmi(vcpu); 4757 4758 return 0; 4759 } 4760 4761 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu) 4762 { 4763 kvm_make_request(KVM_REQ_SMI, vcpu); 4764 4765 return 0; 4766 } 4767 4768 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 4769 struct kvm_tpr_access_ctl *tac) 4770 { 4771 if (tac->flags) 4772 return -EINVAL; 4773 vcpu->arch.tpr_access_reporting = !!tac->enabled; 4774 return 0; 4775 } 4776 4777 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 4778 u64 mcg_cap) 4779 { 4780 int r; 4781 unsigned bank_num = mcg_cap & 0xff, bank; 4782 4783 r = -EINVAL; 4784 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 4785 goto out; 4786 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000)) 4787 goto out; 4788 r = 0; 4789 vcpu->arch.mcg_cap = mcg_cap; 4790 /* Init IA32_MCG_CTL to all 1s */ 4791 if (mcg_cap & MCG_CTL_P) 4792 vcpu->arch.mcg_ctl = ~(u64)0; 4793 /* Init IA32_MCi_CTL to all 1s */ 4794 for (bank = 0; bank < bank_num; bank++) 4795 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 4796 4797 static_call(kvm_x86_setup_mce)(vcpu); 4798 out: 4799 return r; 4800 } 4801 4802 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 4803 struct kvm_x86_mce *mce) 4804 { 4805 u64 mcg_cap = vcpu->arch.mcg_cap; 4806 unsigned bank_num = mcg_cap & 0xff; 4807 u64 *banks = vcpu->arch.mce_banks; 4808 4809 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 4810 return -EINVAL; 4811 /* 4812 * if IA32_MCG_CTL is not all 1s, the uncorrected error 4813 * reporting is disabled 4814 */ 4815 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 4816 vcpu->arch.mcg_ctl != ~(u64)0) 4817 return 0; 4818 banks += 4 * mce->bank; 4819 /* 4820 * if IA32_MCi_CTL is not all 1s, the uncorrected error 4821 * reporting is disabled for the bank 4822 */ 4823 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 4824 return 0; 4825 if (mce->status & MCI_STATUS_UC) { 4826 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 4827 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 4828 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4829 return 0; 4830 } 4831 if (banks[1] & MCI_STATUS_VAL) 4832 mce->status |= MCI_STATUS_OVER; 4833 banks[2] = mce->addr; 4834 banks[3] = mce->misc; 4835 vcpu->arch.mcg_status = mce->mcg_status; 4836 banks[1] = mce->status; 4837 kvm_queue_exception(vcpu, MC_VECTOR); 4838 } else if (!(banks[1] & MCI_STATUS_VAL) 4839 || !(banks[1] & MCI_STATUS_UC)) { 4840 if (banks[1] & MCI_STATUS_VAL) 4841 mce->status |= MCI_STATUS_OVER; 4842 banks[2] = mce->addr; 4843 banks[3] = mce->misc; 4844 banks[1] = mce->status; 4845 } else 4846 banks[1] |= MCI_STATUS_OVER; 4847 return 0; 4848 } 4849 4850 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 4851 struct kvm_vcpu_events *events) 4852 { 4853 process_nmi(vcpu); 4854 4855 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 4856 process_smi(vcpu); 4857 4858 /* 4859 * In guest mode, payload delivery should be deferred, 4860 * so that the L1 hypervisor can intercept #PF before 4861 * CR2 is modified (or intercept #DB before DR6 is 4862 * modified under nVMX). Unless the per-VM capability, 4863 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of 4864 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we 4865 * opportunistically defer the exception payload, deliver it if the 4866 * capability hasn't been requested before processing a 4867 * KVM_GET_VCPU_EVENTS. 4868 */ 4869 if (!vcpu->kvm->arch.exception_payload_enabled && 4870 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload) 4871 kvm_deliver_exception_payload(vcpu); 4872 4873 /* 4874 * The API doesn't provide the instruction length for software 4875 * exceptions, so don't report them. As long as the guest RIP 4876 * isn't advanced, we should expect to encounter the exception 4877 * again. 4878 */ 4879 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) { 4880 events->exception.injected = 0; 4881 events->exception.pending = 0; 4882 } else { 4883 events->exception.injected = vcpu->arch.exception.injected; 4884 events->exception.pending = vcpu->arch.exception.pending; 4885 /* 4886 * For ABI compatibility, deliberately conflate 4887 * pending and injected exceptions when 4888 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 4889 */ 4890 if (!vcpu->kvm->arch.exception_payload_enabled) 4891 events->exception.injected |= 4892 vcpu->arch.exception.pending; 4893 } 4894 events->exception.nr = vcpu->arch.exception.nr; 4895 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 4896 events->exception.error_code = vcpu->arch.exception.error_code; 4897 events->exception_has_payload = vcpu->arch.exception.has_payload; 4898 events->exception_payload = vcpu->arch.exception.payload; 4899 4900 events->interrupt.injected = 4901 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 4902 events->interrupt.nr = vcpu->arch.interrupt.nr; 4903 events->interrupt.soft = 0; 4904 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 4905 4906 events->nmi.injected = vcpu->arch.nmi_injected; 4907 events->nmi.pending = vcpu->arch.nmi_pending != 0; 4908 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 4909 events->nmi.pad = 0; 4910 4911 events->sipi_vector = 0; /* never valid when reporting to user space */ 4912 4913 events->smi.smm = is_smm(vcpu); 4914 events->smi.pending = vcpu->arch.smi_pending; 4915 events->smi.smm_inside_nmi = 4916 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 4917 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 4918 4919 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 4920 | KVM_VCPUEVENT_VALID_SHADOW 4921 | KVM_VCPUEVENT_VALID_SMM); 4922 if (vcpu->kvm->arch.exception_payload_enabled) 4923 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 4924 4925 memset(&events->reserved, 0, sizeof(events->reserved)); 4926 } 4927 4928 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm); 4929 4930 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 4931 struct kvm_vcpu_events *events) 4932 { 4933 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 4934 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 4935 | KVM_VCPUEVENT_VALID_SHADOW 4936 | KVM_VCPUEVENT_VALID_SMM 4937 | KVM_VCPUEVENT_VALID_PAYLOAD)) 4938 return -EINVAL; 4939 4940 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 4941 if (!vcpu->kvm->arch.exception_payload_enabled) 4942 return -EINVAL; 4943 if (events->exception.pending) 4944 events->exception.injected = 0; 4945 else 4946 events->exception_has_payload = 0; 4947 } else { 4948 events->exception.pending = 0; 4949 events->exception_has_payload = 0; 4950 } 4951 4952 if ((events->exception.injected || events->exception.pending) && 4953 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 4954 return -EINVAL; 4955 4956 /* INITs are latched while in SMM */ 4957 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 4958 (events->smi.smm || events->smi.pending) && 4959 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 4960 return -EINVAL; 4961 4962 process_nmi(vcpu); 4963 vcpu->arch.exception.injected = events->exception.injected; 4964 vcpu->arch.exception.pending = events->exception.pending; 4965 vcpu->arch.exception.nr = events->exception.nr; 4966 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 4967 vcpu->arch.exception.error_code = events->exception.error_code; 4968 vcpu->arch.exception.has_payload = events->exception_has_payload; 4969 vcpu->arch.exception.payload = events->exception_payload; 4970 4971 vcpu->arch.interrupt.injected = events->interrupt.injected; 4972 vcpu->arch.interrupt.nr = events->interrupt.nr; 4973 vcpu->arch.interrupt.soft = events->interrupt.soft; 4974 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 4975 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 4976 events->interrupt.shadow); 4977 4978 vcpu->arch.nmi_injected = events->nmi.injected; 4979 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 4980 vcpu->arch.nmi_pending = events->nmi.pending; 4981 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 4982 4983 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 4984 lapic_in_kernel(vcpu)) 4985 vcpu->arch.apic->sipi_vector = events->sipi_vector; 4986 4987 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 4988 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 4989 kvm_x86_ops.nested_ops->leave_nested(vcpu); 4990 kvm_smm_changed(vcpu, events->smi.smm); 4991 } 4992 4993 vcpu->arch.smi_pending = events->smi.pending; 4994 4995 if (events->smi.smm) { 4996 if (events->smi.smm_inside_nmi) 4997 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 4998 else 4999 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5000 } 5001 5002 if (lapic_in_kernel(vcpu)) { 5003 if (events->smi.latched_init) 5004 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5005 else 5006 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5007 } 5008 } 5009 5010 kvm_make_request(KVM_REQ_EVENT, vcpu); 5011 5012 return 0; 5013 } 5014 5015 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5016 struct kvm_debugregs *dbgregs) 5017 { 5018 unsigned long val; 5019 5020 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 5021 kvm_get_dr(vcpu, 6, &val); 5022 dbgregs->dr6 = val; 5023 dbgregs->dr7 = vcpu->arch.dr7; 5024 dbgregs->flags = 0; 5025 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 5026 } 5027 5028 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5029 struct kvm_debugregs *dbgregs) 5030 { 5031 if (dbgregs->flags) 5032 return -EINVAL; 5033 5034 if (!kvm_dr6_valid(dbgregs->dr6)) 5035 return -EINVAL; 5036 if (!kvm_dr7_valid(dbgregs->dr7)) 5037 return -EINVAL; 5038 5039 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 5040 kvm_update_dr0123(vcpu); 5041 vcpu->arch.dr6 = dbgregs->dr6; 5042 vcpu->arch.dr7 = dbgregs->dr7; 5043 kvm_update_dr7(vcpu); 5044 5045 return 0; 5046 } 5047 5048 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5049 struct kvm_xsave *guest_xsave) 5050 { 5051 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5052 return; 5053 5054 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5055 guest_xsave->region, 5056 sizeof(guest_xsave->region), 5057 vcpu->arch.pkru); 5058 } 5059 5060 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5061 u8 *state, unsigned int size) 5062 { 5063 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5064 return; 5065 5066 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5067 state, size, vcpu->arch.pkru); 5068 } 5069 5070 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5071 struct kvm_xsave *guest_xsave) 5072 { 5073 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5074 return 0; 5075 5076 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5077 guest_xsave->region, 5078 supported_xcr0, &vcpu->arch.pkru); 5079 } 5080 5081 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5082 struct kvm_xcrs *guest_xcrs) 5083 { 5084 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5085 guest_xcrs->nr_xcrs = 0; 5086 return; 5087 } 5088 5089 guest_xcrs->nr_xcrs = 1; 5090 guest_xcrs->flags = 0; 5091 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5092 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5093 } 5094 5095 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5096 struct kvm_xcrs *guest_xcrs) 5097 { 5098 int i, r = 0; 5099 5100 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5101 return -EINVAL; 5102 5103 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5104 return -EINVAL; 5105 5106 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5107 /* Only support XCR0 currently */ 5108 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5109 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5110 guest_xcrs->xcrs[i].value); 5111 break; 5112 } 5113 if (r) 5114 r = -EINVAL; 5115 return r; 5116 } 5117 5118 /* 5119 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5120 * stopped by the hypervisor. This function will be called from the host only. 5121 * EINVAL is returned when the host attempts to set the flag for a guest that 5122 * does not support pv clocks. 5123 */ 5124 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5125 { 5126 if (!vcpu->arch.pv_time.active) 5127 return -EINVAL; 5128 vcpu->arch.pvclock_set_guest_stopped_request = true; 5129 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5130 return 0; 5131 } 5132 5133 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5134 struct kvm_device_attr *attr) 5135 { 5136 int r; 5137 5138 switch (attr->attr) { 5139 case KVM_VCPU_TSC_OFFSET: 5140 r = 0; 5141 break; 5142 default: 5143 r = -ENXIO; 5144 } 5145 5146 return r; 5147 } 5148 5149 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5150 struct kvm_device_attr *attr) 5151 { 5152 u64 __user *uaddr = kvm_get_attr_addr(attr); 5153 int r; 5154 5155 if (IS_ERR(uaddr)) 5156 return PTR_ERR(uaddr); 5157 5158 switch (attr->attr) { 5159 case KVM_VCPU_TSC_OFFSET: 5160 r = -EFAULT; 5161 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5162 break; 5163 r = 0; 5164 break; 5165 default: 5166 r = -ENXIO; 5167 } 5168 5169 return r; 5170 } 5171 5172 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5173 struct kvm_device_attr *attr) 5174 { 5175 u64 __user *uaddr = kvm_get_attr_addr(attr); 5176 struct kvm *kvm = vcpu->kvm; 5177 int r; 5178 5179 if (IS_ERR(uaddr)) 5180 return PTR_ERR(uaddr); 5181 5182 switch (attr->attr) { 5183 case KVM_VCPU_TSC_OFFSET: { 5184 u64 offset, tsc, ns; 5185 unsigned long flags; 5186 bool matched; 5187 5188 r = -EFAULT; 5189 if (get_user(offset, uaddr)) 5190 break; 5191 5192 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5193 5194 matched = (vcpu->arch.virtual_tsc_khz && 5195 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5196 kvm->arch.last_tsc_offset == offset); 5197 5198 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5199 ns = get_kvmclock_base_ns(); 5200 5201 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5202 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5203 5204 r = 0; 5205 break; 5206 } 5207 default: 5208 r = -ENXIO; 5209 } 5210 5211 return r; 5212 } 5213 5214 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5215 unsigned int ioctl, 5216 void __user *argp) 5217 { 5218 struct kvm_device_attr attr; 5219 int r; 5220 5221 if (copy_from_user(&attr, argp, sizeof(attr))) 5222 return -EFAULT; 5223 5224 if (attr.group != KVM_VCPU_TSC_CTRL) 5225 return -ENXIO; 5226 5227 switch (ioctl) { 5228 case KVM_HAS_DEVICE_ATTR: 5229 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5230 break; 5231 case KVM_GET_DEVICE_ATTR: 5232 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5233 break; 5234 case KVM_SET_DEVICE_ATTR: 5235 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5236 break; 5237 } 5238 5239 return r; 5240 } 5241 5242 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5243 struct kvm_enable_cap *cap) 5244 { 5245 int r; 5246 uint16_t vmcs_version; 5247 void __user *user_ptr; 5248 5249 if (cap->flags) 5250 return -EINVAL; 5251 5252 switch (cap->cap) { 5253 case KVM_CAP_HYPERV_SYNIC2: 5254 if (cap->args[0]) 5255 return -EINVAL; 5256 fallthrough; 5257 5258 case KVM_CAP_HYPERV_SYNIC: 5259 if (!irqchip_in_kernel(vcpu->kvm)) 5260 return -EINVAL; 5261 return kvm_hv_activate_synic(vcpu, cap->cap == 5262 KVM_CAP_HYPERV_SYNIC2); 5263 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5264 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5265 return -ENOTTY; 5266 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5267 if (!r) { 5268 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5269 if (copy_to_user(user_ptr, &vmcs_version, 5270 sizeof(vmcs_version))) 5271 r = -EFAULT; 5272 } 5273 return r; 5274 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5275 if (!kvm_x86_ops.enable_direct_tlbflush) 5276 return -ENOTTY; 5277 5278 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu); 5279 5280 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5281 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5282 5283 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5284 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5285 if (vcpu->arch.pv_cpuid.enforce) 5286 kvm_update_pv_runtime(vcpu); 5287 5288 return 0; 5289 default: 5290 return -EINVAL; 5291 } 5292 } 5293 5294 long kvm_arch_vcpu_ioctl(struct file *filp, 5295 unsigned int ioctl, unsigned long arg) 5296 { 5297 struct kvm_vcpu *vcpu = filp->private_data; 5298 void __user *argp = (void __user *)arg; 5299 int r; 5300 union { 5301 struct kvm_sregs2 *sregs2; 5302 struct kvm_lapic_state *lapic; 5303 struct kvm_xsave *xsave; 5304 struct kvm_xcrs *xcrs; 5305 void *buffer; 5306 } u; 5307 5308 vcpu_load(vcpu); 5309 5310 u.buffer = NULL; 5311 switch (ioctl) { 5312 case KVM_GET_LAPIC: { 5313 r = -EINVAL; 5314 if (!lapic_in_kernel(vcpu)) 5315 goto out; 5316 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 5317 GFP_KERNEL_ACCOUNT); 5318 5319 r = -ENOMEM; 5320 if (!u.lapic) 5321 goto out; 5322 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5323 if (r) 5324 goto out; 5325 r = -EFAULT; 5326 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5327 goto out; 5328 r = 0; 5329 break; 5330 } 5331 case KVM_SET_LAPIC: { 5332 r = -EINVAL; 5333 if (!lapic_in_kernel(vcpu)) 5334 goto out; 5335 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5336 if (IS_ERR(u.lapic)) { 5337 r = PTR_ERR(u.lapic); 5338 goto out_nofree; 5339 } 5340 5341 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5342 break; 5343 } 5344 case KVM_INTERRUPT: { 5345 struct kvm_interrupt irq; 5346 5347 r = -EFAULT; 5348 if (copy_from_user(&irq, argp, sizeof(irq))) 5349 goto out; 5350 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5351 break; 5352 } 5353 case KVM_NMI: { 5354 r = kvm_vcpu_ioctl_nmi(vcpu); 5355 break; 5356 } 5357 case KVM_SMI: { 5358 r = kvm_vcpu_ioctl_smi(vcpu); 5359 break; 5360 } 5361 case KVM_SET_CPUID: { 5362 struct kvm_cpuid __user *cpuid_arg = argp; 5363 struct kvm_cpuid cpuid; 5364 5365 r = -EFAULT; 5366 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5367 goto out; 5368 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5369 break; 5370 } 5371 case KVM_SET_CPUID2: { 5372 struct kvm_cpuid2 __user *cpuid_arg = argp; 5373 struct kvm_cpuid2 cpuid; 5374 5375 r = -EFAULT; 5376 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5377 goto out; 5378 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5379 cpuid_arg->entries); 5380 break; 5381 } 5382 case KVM_GET_CPUID2: { 5383 struct kvm_cpuid2 __user *cpuid_arg = argp; 5384 struct kvm_cpuid2 cpuid; 5385 5386 r = -EFAULT; 5387 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5388 goto out; 5389 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5390 cpuid_arg->entries); 5391 if (r) 5392 goto out; 5393 r = -EFAULT; 5394 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5395 goto out; 5396 r = 0; 5397 break; 5398 } 5399 case KVM_GET_MSRS: { 5400 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5401 r = msr_io(vcpu, argp, do_get_msr, 1); 5402 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5403 break; 5404 } 5405 case KVM_SET_MSRS: { 5406 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5407 r = msr_io(vcpu, argp, do_set_msr, 0); 5408 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5409 break; 5410 } 5411 case KVM_TPR_ACCESS_REPORTING: { 5412 struct kvm_tpr_access_ctl tac; 5413 5414 r = -EFAULT; 5415 if (copy_from_user(&tac, argp, sizeof(tac))) 5416 goto out; 5417 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5418 if (r) 5419 goto out; 5420 r = -EFAULT; 5421 if (copy_to_user(argp, &tac, sizeof(tac))) 5422 goto out; 5423 r = 0; 5424 break; 5425 }; 5426 case KVM_SET_VAPIC_ADDR: { 5427 struct kvm_vapic_addr va; 5428 int idx; 5429 5430 r = -EINVAL; 5431 if (!lapic_in_kernel(vcpu)) 5432 goto out; 5433 r = -EFAULT; 5434 if (copy_from_user(&va, argp, sizeof(va))) 5435 goto out; 5436 idx = srcu_read_lock(&vcpu->kvm->srcu); 5437 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5438 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5439 break; 5440 } 5441 case KVM_X86_SETUP_MCE: { 5442 u64 mcg_cap; 5443 5444 r = -EFAULT; 5445 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 5446 goto out; 5447 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 5448 break; 5449 } 5450 case KVM_X86_SET_MCE: { 5451 struct kvm_x86_mce mce; 5452 5453 r = -EFAULT; 5454 if (copy_from_user(&mce, argp, sizeof(mce))) 5455 goto out; 5456 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 5457 break; 5458 } 5459 case KVM_GET_VCPU_EVENTS: { 5460 struct kvm_vcpu_events events; 5461 5462 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 5463 5464 r = -EFAULT; 5465 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 5466 break; 5467 r = 0; 5468 break; 5469 } 5470 case KVM_SET_VCPU_EVENTS: { 5471 struct kvm_vcpu_events events; 5472 5473 r = -EFAULT; 5474 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 5475 break; 5476 5477 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 5478 break; 5479 } 5480 case KVM_GET_DEBUGREGS: { 5481 struct kvm_debugregs dbgregs; 5482 5483 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 5484 5485 r = -EFAULT; 5486 if (copy_to_user(argp, &dbgregs, 5487 sizeof(struct kvm_debugregs))) 5488 break; 5489 r = 0; 5490 break; 5491 } 5492 case KVM_SET_DEBUGREGS: { 5493 struct kvm_debugregs dbgregs; 5494 5495 r = -EFAULT; 5496 if (copy_from_user(&dbgregs, argp, 5497 sizeof(struct kvm_debugregs))) 5498 break; 5499 5500 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 5501 break; 5502 } 5503 case KVM_GET_XSAVE: { 5504 r = -EINVAL; 5505 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 5506 break; 5507 5508 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 5509 r = -ENOMEM; 5510 if (!u.xsave) 5511 break; 5512 5513 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 5514 5515 r = -EFAULT; 5516 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 5517 break; 5518 r = 0; 5519 break; 5520 } 5521 case KVM_SET_XSAVE: { 5522 int size = vcpu->arch.guest_fpu.uabi_size; 5523 5524 u.xsave = memdup_user(argp, size); 5525 if (IS_ERR(u.xsave)) { 5526 r = PTR_ERR(u.xsave); 5527 goto out_nofree; 5528 } 5529 5530 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 5531 break; 5532 } 5533 5534 case KVM_GET_XSAVE2: { 5535 int size = vcpu->arch.guest_fpu.uabi_size; 5536 5537 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); 5538 r = -ENOMEM; 5539 if (!u.xsave) 5540 break; 5541 5542 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 5543 5544 r = -EFAULT; 5545 if (copy_to_user(argp, u.xsave, size)) 5546 break; 5547 5548 r = 0; 5549 break; 5550 } 5551 5552 case KVM_GET_XCRS: { 5553 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 5554 r = -ENOMEM; 5555 if (!u.xcrs) 5556 break; 5557 5558 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 5559 5560 r = -EFAULT; 5561 if (copy_to_user(argp, u.xcrs, 5562 sizeof(struct kvm_xcrs))) 5563 break; 5564 r = 0; 5565 break; 5566 } 5567 case KVM_SET_XCRS: { 5568 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 5569 if (IS_ERR(u.xcrs)) { 5570 r = PTR_ERR(u.xcrs); 5571 goto out_nofree; 5572 } 5573 5574 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 5575 break; 5576 } 5577 case KVM_SET_TSC_KHZ: { 5578 u32 user_tsc_khz; 5579 5580 r = -EINVAL; 5581 user_tsc_khz = (u32)arg; 5582 5583 if (kvm_has_tsc_control && 5584 user_tsc_khz >= kvm_max_guest_tsc_khz) 5585 goto out; 5586 5587 if (user_tsc_khz == 0) 5588 user_tsc_khz = tsc_khz; 5589 5590 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 5591 r = 0; 5592 5593 goto out; 5594 } 5595 case KVM_GET_TSC_KHZ: { 5596 r = vcpu->arch.virtual_tsc_khz; 5597 goto out; 5598 } 5599 case KVM_KVMCLOCK_CTRL: { 5600 r = kvm_set_guest_paused(vcpu); 5601 goto out; 5602 } 5603 case KVM_ENABLE_CAP: { 5604 struct kvm_enable_cap cap; 5605 5606 r = -EFAULT; 5607 if (copy_from_user(&cap, argp, sizeof(cap))) 5608 goto out; 5609 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5610 break; 5611 } 5612 case KVM_GET_NESTED_STATE: { 5613 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5614 u32 user_data_size; 5615 5616 r = -EINVAL; 5617 if (!kvm_x86_ops.nested_ops->get_state) 5618 break; 5619 5620 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 5621 r = -EFAULT; 5622 if (get_user(user_data_size, &user_kvm_nested_state->size)) 5623 break; 5624 5625 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 5626 user_data_size); 5627 if (r < 0) 5628 break; 5629 5630 if (r > user_data_size) { 5631 if (put_user(r, &user_kvm_nested_state->size)) 5632 r = -EFAULT; 5633 else 5634 r = -E2BIG; 5635 break; 5636 } 5637 5638 r = 0; 5639 break; 5640 } 5641 case KVM_SET_NESTED_STATE: { 5642 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5643 struct kvm_nested_state kvm_state; 5644 int idx; 5645 5646 r = -EINVAL; 5647 if (!kvm_x86_ops.nested_ops->set_state) 5648 break; 5649 5650 r = -EFAULT; 5651 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 5652 break; 5653 5654 r = -EINVAL; 5655 if (kvm_state.size < sizeof(kvm_state)) 5656 break; 5657 5658 if (kvm_state.flags & 5659 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 5660 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 5661 | KVM_STATE_NESTED_GIF_SET)) 5662 break; 5663 5664 /* nested_run_pending implies guest_mode. */ 5665 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 5666 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 5667 break; 5668 5669 idx = srcu_read_lock(&vcpu->kvm->srcu); 5670 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 5671 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5672 break; 5673 } 5674 case KVM_GET_SUPPORTED_HV_CPUID: 5675 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 5676 break; 5677 #ifdef CONFIG_KVM_XEN 5678 case KVM_XEN_VCPU_GET_ATTR: { 5679 struct kvm_xen_vcpu_attr xva; 5680 5681 r = -EFAULT; 5682 if (copy_from_user(&xva, argp, sizeof(xva))) 5683 goto out; 5684 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 5685 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 5686 r = -EFAULT; 5687 break; 5688 } 5689 case KVM_XEN_VCPU_SET_ATTR: { 5690 struct kvm_xen_vcpu_attr xva; 5691 5692 r = -EFAULT; 5693 if (copy_from_user(&xva, argp, sizeof(xva))) 5694 goto out; 5695 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 5696 break; 5697 } 5698 #endif 5699 case KVM_GET_SREGS2: { 5700 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 5701 r = -ENOMEM; 5702 if (!u.sregs2) 5703 goto out; 5704 __get_sregs2(vcpu, u.sregs2); 5705 r = -EFAULT; 5706 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 5707 goto out; 5708 r = 0; 5709 break; 5710 } 5711 case KVM_SET_SREGS2: { 5712 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 5713 if (IS_ERR(u.sregs2)) { 5714 r = PTR_ERR(u.sregs2); 5715 u.sregs2 = NULL; 5716 goto out; 5717 } 5718 r = __set_sregs2(vcpu, u.sregs2); 5719 break; 5720 } 5721 case KVM_HAS_DEVICE_ATTR: 5722 case KVM_GET_DEVICE_ATTR: 5723 case KVM_SET_DEVICE_ATTR: 5724 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 5725 break; 5726 default: 5727 r = -EINVAL; 5728 } 5729 out: 5730 kfree(u.buffer); 5731 out_nofree: 5732 vcpu_put(vcpu); 5733 return r; 5734 } 5735 5736 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 5737 { 5738 return VM_FAULT_SIGBUS; 5739 } 5740 5741 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 5742 { 5743 int ret; 5744 5745 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 5746 return -EINVAL; 5747 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 5748 return ret; 5749 } 5750 5751 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 5752 u64 ident_addr) 5753 { 5754 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 5755 } 5756 5757 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 5758 unsigned long kvm_nr_mmu_pages) 5759 { 5760 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 5761 return -EINVAL; 5762 5763 mutex_lock(&kvm->slots_lock); 5764 5765 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 5766 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 5767 5768 mutex_unlock(&kvm->slots_lock); 5769 return 0; 5770 } 5771 5772 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 5773 { 5774 return kvm->arch.n_max_mmu_pages; 5775 } 5776 5777 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 5778 { 5779 struct kvm_pic *pic = kvm->arch.vpic; 5780 int r; 5781 5782 r = 0; 5783 switch (chip->chip_id) { 5784 case KVM_IRQCHIP_PIC_MASTER: 5785 memcpy(&chip->chip.pic, &pic->pics[0], 5786 sizeof(struct kvm_pic_state)); 5787 break; 5788 case KVM_IRQCHIP_PIC_SLAVE: 5789 memcpy(&chip->chip.pic, &pic->pics[1], 5790 sizeof(struct kvm_pic_state)); 5791 break; 5792 case KVM_IRQCHIP_IOAPIC: 5793 kvm_get_ioapic(kvm, &chip->chip.ioapic); 5794 break; 5795 default: 5796 r = -EINVAL; 5797 break; 5798 } 5799 return r; 5800 } 5801 5802 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 5803 { 5804 struct kvm_pic *pic = kvm->arch.vpic; 5805 int r; 5806 5807 r = 0; 5808 switch (chip->chip_id) { 5809 case KVM_IRQCHIP_PIC_MASTER: 5810 spin_lock(&pic->lock); 5811 memcpy(&pic->pics[0], &chip->chip.pic, 5812 sizeof(struct kvm_pic_state)); 5813 spin_unlock(&pic->lock); 5814 break; 5815 case KVM_IRQCHIP_PIC_SLAVE: 5816 spin_lock(&pic->lock); 5817 memcpy(&pic->pics[1], &chip->chip.pic, 5818 sizeof(struct kvm_pic_state)); 5819 spin_unlock(&pic->lock); 5820 break; 5821 case KVM_IRQCHIP_IOAPIC: 5822 kvm_set_ioapic(kvm, &chip->chip.ioapic); 5823 break; 5824 default: 5825 r = -EINVAL; 5826 break; 5827 } 5828 kvm_pic_update_irq(pic); 5829 return r; 5830 } 5831 5832 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 5833 { 5834 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 5835 5836 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 5837 5838 mutex_lock(&kps->lock); 5839 memcpy(ps, &kps->channels, sizeof(*ps)); 5840 mutex_unlock(&kps->lock); 5841 return 0; 5842 } 5843 5844 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 5845 { 5846 int i; 5847 struct kvm_pit *pit = kvm->arch.vpit; 5848 5849 mutex_lock(&pit->pit_state.lock); 5850 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 5851 for (i = 0; i < 3; i++) 5852 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 5853 mutex_unlock(&pit->pit_state.lock); 5854 return 0; 5855 } 5856 5857 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 5858 { 5859 mutex_lock(&kvm->arch.vpit->pit_state.lock); 5860 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 5861 sizeof(ps->channels)); 5862 ps->flags = kvm->arch.vpit->pit_state.flags; 5863 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 5864 memset(&ps->reserved, 0, sizeof(ps->reserved)); 5865 return 0; 5866 } 5867 5868 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 5869 { 5870 int start = 0; 5871 int i; 5872 u32 prev_legacy, cur_legacy; 5873 struct kvm_pit *pit = kvm->arch.vpit; 5874 5875 mutex_lock(&pit->pit_state.lock); 5876 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 5877 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 5878 if (!prev_legacy && cur_legacy) 5879 start = 1; 5880 memcpy(&pit->pit_state.channels, &ps->channels, 5881 sizeof(pit->pit_state.channels)); 5882 pit->pit_state.flags = ps->flags; 5883 for (i = 0; i < 3; i++) 5884 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 5885 start && i == 0); 5886 mutex_unlock(&pit->pit_state.lock); 5887 return 0; 5888 } 5889 5890 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 5891 struct kvm_reinject_control *control) 5892 { 5893 struct kvm_pit *pit = kvm->arch.vpit; 5894 5895 /* pit->pit_state.lock was overloaded to prevent userspace from getting 5896 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 5897 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 5898 */ 5899 mutex_lock(&pit->pit_state.lock); 5900 kvm_pit_set_reinject(pit, control->pit_reinject); 5901 mutex_unlock(&pit->pit_state.lock); 5902 5903 return 0; 5904 } 5905 5906 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 5907 { 5908 5909 /* 5910 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 5911 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 5912 * on all VM-Exits, thus we only need to kick running vCPUs to force a 5913 * VM-Exit. 5914 */ 5915 struct kvm_vcpu *vcpu; 5916 unsigned long i; 5917 5918 kvm_for_each_vcpu(i, vcpu, kvm) 5919 kvm_vcpu_kick(vcpu); 5920 } 5921 5922 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 5923 bool line_status) 5924 { 5925 if (!irqchip_in_kernel(kvm)) 5926 return -ENXIO; 5927 5928 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 5929 irq_event->irq, irq_event->level, 5930 line_status); 5931 return 0; 5932 } 5933 5934 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 5935 struct kvm_enable_cap *cap) 5936 { 5937 int r; 5938 5939 if (cap->flags) 5940 return -EINVAL; 5941 5942 switch (cap->cap) { 5943 case KVM_CAP_DISABLE_QUIRKS2: 5944 r = -EINVAL; 5945 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 5946 break; 5947 fallthrough; 5948 case KVM_CAP_DISABLE_QUIRKS: 5949 kvm->arch.disabled_quirks = cap->args[0]; 5950 r = 0; 5951 break; 5952 case KVM_CAP_SPLIT_IRQCHIP: { 5953 mutex_lock(&kvm->lock); 5954 r = -EINVAL; 5955 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 5956 goto split_irqchip_unlock; 5957 r = -EEXIST; 5958 if (irqchip_in_kernel(kvm)) 5959 goto split_irqchip_unlock; 5960 if (kvm->created_vcpus) 5961 goto split_irqchip_unlock; 5962 r = kvm_setup_empty_irq_routing(kvm); 5963 if (r) 5964 goto split_irqchip_unlock; 5965 /* Pairs with irqchip_in_kernel. */ 5966 smp_wmb(); 5967 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 5968 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 5969 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 5970 r = 0; 5971 split_irqchip_unlock: 5972 mutex_unlock(&kvm->lock); 5973 break; 5974 } 5975 case KVM_CAP_X2APIC_API: 5976 r = -EINVAL; 5977 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 5978 break; 5979 5980 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 5981 kvm->arch.x2apic_format = true; 5982 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 5983 kvm->arch.x2apic_broadcast_quirk_disabled = true; 5984 5985 r = 0; 5986 break; 5987 case KVM_CAP_X86_DISABLE_EXITS: 5988 r = -EINVAL; 5989 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 5990 break; 5991 5992 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 5993 kvm_can_mwait_in_guest()) 5994 kvm->arch.mwait_in_guest = true; 5995 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 5996 kvm->arch.hlt_in_guest = true; 5997 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 5998 kvm->arch.pause_in_guest = true; 5999 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6000 kvm->arch.cstate_in_guest = true; 6001 r = 0; 6002 break; 6003 case KVM_CAP_MSR_PLATFORM_INFO: 6004 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6005 r = 0; 6006 break; 6007 case KVM_CAP_EXCEPTION_PAYLOAD: 6008 kvm->arch.exception_payload_enabled = cap->args[0]; 6009 r = 0; 6010 break; 6011 case KVM_CAP_X86_USER_SPACE_MSR: 6012 kvm->arch.user_space_msr_mask = cap->args[0]; 6013 r = 0; 6014 break; 6015 case KVM_CAP_X86_BUS_LOCK_EXIT: 6016 r = -EINVAL; 6017 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6018 break; 6019 6020 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6021 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6022 break; 6023 6024 if (kvm_has_bus_lock_exit && 6025 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6026 kvm->arch.bus_lock_detection_enabled = true; 6027 r = 0; 6028 break; 6029 #ifdef CONFIG_X86_SGX_KVM 6030 case KVM_CAP_SGX_ATTRIBUTE: { 6031 unsigned long allowed_attributes = 0; 6032 6033 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6034 if (r) 6035 break; 6036 6037 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6038 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6039 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6040 kvm->arch.sgx_provisioning_allowed = true; 6041 else 6042 r = -EINVAL; 6043 break; 6044 } 6045 #endif 6046 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6047 r = -EINVAL; 6048 if (!kvm_x86_ops.vm_copy_enc_context_from) 6049 break; 6050 6051 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]); 6052 break; 6053 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6054 r = -EINVAL; 6055 if (!kvm_x86_ops.vm_move_enc_context_from) 6056 break; 6057 6058 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]); 6059 break; 6060 case KVM_CAP_EXIT_HYPERCALL: 6061 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6062 r = -EINVAL; 6063 break; 6064 } 6065 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6066 r = 0; 6067 break; 6068 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6069 r = -EINVAL; 6070 if (cap->args[0] & ~1) 6071 break; 6072 kvm->arch.exit_on_emulation_error = cap->args[0]; 6073 r = 0; 6074 break; 6075 case KVM_CAP_PMU_CAPABILITY: 6076 r = -EINVAL; 6077 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6078 break; 6079 6080 mutex_lock(&kvm->lock); 6081 if (!kvm->created_vcpus) { 6082 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6083 r = 0; 6084 } 6085 mutex_unlock(&kvm->lock); 6086 break; 6087 default: 6088 r = -EINVAL; 6089 break; 6090 } 6091 return r; 6092 } 6093 6094 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6095 { 6096 struct kvm_x86_msr_filter *msr_filter; 6097 6098 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6099 if (!msr_filter) 6100 return NULL; 6101 6102 msr_filter->default_allow = default_allow; 6103 return msr_filter; 6104 } 6105 6106 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6107 { 6108 u32 i; 6109 6110 if (!msr_filter) 6111 return; 6112 6113 for (i = 0; i < msr_filter->count; i++) 6114 kfree(msr_filter->ranges[i].bitmap); 6115 6116 kfree(msr_filter); 6117 } 6118 6119 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6120 struct kvm_msr_filter_range *user_range) 6121 { 6122 unsigned long *bitmap = NULL; 6123 size_t bitmap_size; 6124 6125 if (!user_range->nmsrs) 6126 return 0; 6127 6128 if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) 6129 return -EINVAL; 6130 6131 if (!user_range->flags) 6132 return -EINVAL; 6133 6134 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6135 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6136 return -EINVAL; 6137 6138 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6139 if (IS_ERR(bitmap)) 6140 return PTR_ERR(bitmap); 6141 6142 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6143 .flags = user_range->flags, 6144 .base = user_range->base, 6145 .nmsrs = user_range->nmsrs, 6146 .bitmap = bitmap, 6147 }; 6148 6149 msr_filter->count++; 6150 return 0; 6151 } 6152 6153 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp) 6154 { 6155 struct kvm_msr_filter __user *user_msr_filter = argp; 6156 struct kvm_x86_msr_filter *new_filter, *old_filter; 6157 struct kvm_msr_filter filter; 6158 bool default_allow; 6159 bool empty = true; 6160 int r = 0; 6161 u32 i; 6162 6163 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 6164 return -EFAULT; 6165 6166 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) 6167 empty &= !filter.ranges[i].nmsrs; 6168 6169 default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY); 6170 if (empty && !default_allow) 6171 return -EINVAL; 6172 6173 new_filter = kvm_alloc_msr_filter(default_allow); 6174 if (!new_filter) 6175 return -ENOMEM; 6176 6177 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6178 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]); 6179 if (r) { 6180 kvm_free_msr_filter(new_filter); 6181 return r; 6182 } 6183 } 6184 6185 mutex_lock(&kvm->lock); 6186 6187 /* The per-VM filter is protected by kvm->lock... */ 6188 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1); 6189 6190 rcu_assign_pointer(kvm->arch.msr_filter, new_filter); 6191 synchronize_srcu(&kvm->srcu); 6192 6193 kvm_free_msr_filter(old_filter); 6194 6195 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6196 mutex_unlock(&kvm->lock); 6197 6198 return 0; 6199 } 6200 6201 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6202 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6203 { 6204 struct kvm_vcpu *vcpu; 6205 unsigned long i; 6206 int ret = 0; 6207 6208 mutex_lock(&kvm->lock); 6209 kvm_for_each_vcpu(i, vcpu, kvm) { 6210 if (!vcpu->arch.pv_time.active) 6211 continue; 6212 6213 ret = kvm_set_guest_paused(vcpu); 6214 if (ret) { 6215 kvm_err("Failed to pause guest VCPU%d: %d\n", 6216 vcpu->vcpu_id, ret); 6217 break; 6218 } 6219 } 6220 mutex_unlock(&kvm->lock); 6221 6222 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6223 } 6224 6225 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6226 { 6227 switch (state) { 6228 case PM_HIBERNATION_PREPARE: 6229 case PM_SUSPEND_PREPARE: 6230 return kvm_arch_suspend_notifier(kvm); 6231 } 6232 6233 return NOTIFY_DONE; 6234 } 6235 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6236 6237 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6238 { 6239 struct kvm_clock_data data = { 0 }; 6240 6241 get_kvmclock(kvm, &data); 6242 if (copy_to_user(argp, &data, sizeof(data))) 6243 return -EFAULT; 6244 6245 return 0; 6246 } 6247 6248 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6249 { 6250 struct kvm_arch *ka = &kvm->arch; 6251 struct kvm_clock_data data; 6252 u64 now_raw_ns; 6253 6254 if (copy_from_user(&data, argp, sizeof(data))) 6255 return -EFAULT; 6256 6257 /* 6258 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6259 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6260 */ 6261 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6262 return -EINVAL; 6263 6264 kvm_hv_request_tsc_page_update(kvm); 6265 kvm_start_pvclock_update(kvm); 6266 pvclock_update_vm_gtod_copy(kvm); 6267 6268 /* 6269 * This pairs with kvm_guest_time_update(): when masterclock is 6270 * in use, we use master_kernel_ns + kvmclock_offset to set 6271 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6272 * is slightly ahead) here we risk going negative on unsigned 6273 * 'system_time' when 'data.clock' is very small. 6274 */ 6275 if (data.flags & KVM_CLOCK_REALTIME) { 6276 u64 now_real_ns = ktime_get_real_ns(); 6277 6278 /* 6279 * Avoid stepping the kvmclock backwards. 6280 */ 6281 if (now_real_ns > data.realtime) 6282 data.clock += now_real_ns - data.realtime; 6283 } 6284 6285 if (ka->use_master_clock) 6286 now_raw_ns = ka->master_kernel_ns; 6287 else 6288 now_raw_ns = get_kvmclock_base_ns(); 6289 ka->kvmclock_offset = data.clock - now_raw_ns; 6290 kvm_end_pvclock_update(kvm); 6291 return 0; 6292 } 6293 6294 long kvm_arch_vm_ioctl(struct file *filp, 6295 unsigned int ioctl, unsigned long arg) 6296 { 6297 struct kvm *kvm = filp->private_data; 6298 void __user *argp = (void __user *)arg; 6299 int r = -ENOTTY; 6300 /* 6301 * This union makes it completely explicit to gcc-3.x 6302 * that these two variables' stack usage should be 6303 * combined, not added together. 6304 */ 6305 union { 6306 struct kvm_pit_state ps; 6307 struct kvm_pit_state2 ps2; 6308 struct kvm_pit_config pit_config; 6309 } u; 6310 6311 switch (ioctl) { 6312 case KVM_SET_TSS_ADDR: 6313 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 6314 break; 6315 case KVM_SET_IDENTITY_MAP_ADDR: { 6316 u64 ident_addr; 6317 6318 mutex_lock(&kvm->lock); 6319 r = -EINVAL; 6320 if (kvm->created_vcpus) 6321 goto set_identity_unlock; 6322 r = -EFAULT; 6323 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 6324 goto set_identity_unlock; 6325 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 6326 set_identity_unlock: 6327 mutex_unlock(&kvm->lock); 6328 break; 6329 } 6330 case KVM_SET_NR_MMU_PAGES: 6331 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 6332 break; 6333 case KVM_GET_NR_MMU_PAGES: 6334 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 6335 break; 6336 case KVM_CREATE_IRQCHIP: { 6337 mutex_lock(&kvm->lock); 6338 6339 r = -EEXIST; 6340 if (irqchip_in_kernel(kvm)) 6341 goto create_irqchip_unlock; 6342 6343 r = -EINVAL; 6344 if (kvm->created_vcpus) 6345 goto create_irqchip_unlock; 6346 6347 r = kvm_pic_init(kvm); 6348 if (r) 6349 goto create_irqchip_unlock; 6350 6351 r = kvm_ioapic_init(kvm); 6352 if (r) { 6353 kvm_pic_destroy(kvm); 6354 goto create_irqchip_unlock; 6355 } 6356 6357 r = kvm_setup_default_irq_routing(kvm); 6358 if (r) { 6359 kvm_ioapic_destroy(kvm); 6360 kvm_pic_destroy(kvm); 6361 goto create_irqchip_unlock; 6362 } 6363 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 6364 smp_wmb(); 6365 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 6366 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6367 create_irqchip_unlock: 6368 mutex_unlock(&kvm->lock); 6369 break; 6370 } 6371 case KVM_CREATE_PIT: 6372 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 6373 goto create_pit; 6374 case KVM_CREATE_PIT2: 6375 r = -EFAULT; 6376 if (copy_from_user(&u.pit_config, argp, 6377 sizeof(struct kvm_pit_config))) 6378 goto out; 6379 create_pit: 6380 mutex_lock(&kvm->lock); 6381 r = -EEXIST; 6382 if (kvm->arch.vpit) 6383 goto create_pit_unlock; 6384 r = -ENOMEM; 6385 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 6386 if (kvm->arch.vpit) 6387 r = 0; 6388 create_pit_unlock: 6389 mutex_unlock(&kvm->lock); 6390 break; 6391 case KVM_GET_IRQCHIP: { 6392 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6393 struct kvm_irqchip *chip; 6394 6395 chip = memdup_user(argp, sizeof(*chip)); 6396 if (IS_ERR(chip)) { 6397 r = PTR_ERR(chip); 6398 goto out; 6399 } 6400 6401 r = -ENXIO; 6402 if (!irqchip_kernel(kvm)) 6403 goto get_irqchip_out; 6404 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 6405 if (r) 6406 goto get_irqchip_out; 6407 r = -EFAULT; 6408 if (copy_to_user(argp, chip, sizeof(*chip))) 6409 goto get_irqchip_out; 6410 r = 0; 6411 get_irqchip_out: 6412 kfree(chip); 6413 break; 6414 } 6415 case KVM_SET_IRQCHIP: { 6416 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6417 struct kvm_irqchip *chip; 6418 6419 chip = memdup_user(argp, sizeof(*chip)); 6420 if (IS_ERR(chip)) { 6421 r = PTR_ERR(chip); 6422 goto out; 6423 } 6424 6425 r = -ENXIO; 6426 if (!irqchip_kernel(kvm)) 6427 goto set_irqchip_out; 6428 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 6429 set_irqchip_out: 6430 kfree(chip); 6431 break; 6432 } 6433 case KVM_GET_PIT: { 6434 r = -EFAULT; 6435 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 6436 goto out; 6437 r = -ENXIO; 6438 if (!kvm->arch.vpit) 6439 goto out; 6440 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 6441 if (r) 6442 goto out; 6443 r = -EFAULT; 6444 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 6445 goto out; 6446 r = 0; 6447 break; 6448 } 6449 case KVM_SET_PIT: { 6450 r = -EFAULT; 6451 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 6452 goto out; 6453 mutex_lock(&kvm->lock); 6454 r = -ENXIO; 6455 if (!kvm->arch.vpit) 6456 goto set_pit_out; 6457 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 6458 set_pit_out: 6459 mutex_unlock(&kvm->lock); 6460 break; 6461 } 6462 case KVM_GET_PIT2: { 6463 r = -ENXIO; 6464 if (!kvm->arch.vpit) 6465 goto out; 6466 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 6467 if (r) 6468 goto out; 6469 r = -EFAULT; 6470 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 6471 goto out; 6472 r = 0; 6473 break; 6474 } 6475 case KVM_SET_PIT2: { 6476 r = -EFAULT; 6477 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 6478 goto out; 6479 mutex_lock(&kvm->lock); 6480 r = -ENXIO; 6481 if (!kvm->arch.vpit) 6482 goto set_pit2_out; 6483 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 6484 set_pit2_out: 6485 mutex_unlock(&kvm->lock); 6486 break; 6487 } 6488 case KVM_REINJECT_CONTROL: { 6489 struct kvm_reinject_control control; 6490 r = -EFAULT; 6491 if (copy_from_user(&control, argp, sizeof(control))) 6492 goto out; 6493 r = -ENXIO; 6494 if (!kvm->arch.vpit) 6495 goto out; 6496 r = kvm_vm_ioctl_reinject(kvm, &control); 6497 break; 6498 } 6499 case KVM_SET_BOOT_CPU_ID: 6500 r = 0; 6501 mutex_lock(&kvm->lock); 6502 if (kvm->created_vcpus) 6503 r = -EBUSY; 6504 else 6505 kvm->arch.bsp_vcpu_id = arg; 6506 mutex_unlock(&kvm->lock); 6507 break; 6508 #ifdef CONFIG_KVM_XEN 6509 case KVM_XEN_HVM_CONFIG: { 6510 struct kvm_xen_hvm_config xhc; 6511 r = -EFAULT; 6512 if (copy_from_user(&xhc, argp, sizeof(xhc))) 6513 goto out; 6514 r = kvm_xen_hvm_config(kvm, &xhc); 6515 break; 6516 } 6517 case KVM_XEN_HVM_GET_ATTR: { 6518 struct kvm_xen_hvm_attr xha; 6519 6520 r = -EFAULT; 6521 if (copy_from_user(&xha, argp, sizeof(xha))) 6522 goto out; 6523 r = kvm_xen_hvm_get_attr(kvm, &xha); 6524 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 6525 r = -EFAULT; 6526 break; 6527 } 6528 case KVM_XEN_HVM_SET_ATTR: { 6529 struct kvm_xen_hvm_attr xha; 6530 6531 r = -EFAULT; 6532 if (copy_from_user(&xha, argp, sizeof(xha))) 6533 goto out; 6534 r = kvm_xen_hvm_set_attr(kvm, &xha); 6535 break; 6536 } 6537 case KVM_XEN_HVM_EVTCHN_SEND: { 6538 struct kvm_irq_routing_xen_evtchn uxe; 6539 6540 r = -EFAULT; 6541 if (copy_from_user(&uxe, argp, sizeof(uxe))) 6542 goto out; 6543 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 6544 break; 6545 } 6546 #endif 6547 case KVM_SET_CLOCK: 6548 r = kvm_vm_ioctl_set_clock(kvm, argp); 6549 break; 6550 case KVM_GET_CLOCK: 6551 r = kvm_vm_ioctl_get_clock(kvm, argp); 6552 break; 6553 case KVM_SET_TSC_KHZ: { 6554 u32 user_tsc_khz; 6555 6556 r = -EINVAL; 6557 user_tsc_khz = (u32)arg; 6558 6559 if (kvm_has_tsc_control && 6560 user_tsc_khz >= kvm_max_guest_tsc_khz) 6561 goto out; 6562 6563 if (user_tsc_khz == 0) 6564 user_tsc_khz = tsc_khz; 6565 6566 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 6567 r = 0; 6568 6569 goto out; 6570 } 6571 case KVM_GET_TSC_KHZ: { 6572 r = READ_ONCE(kvm->arch.default_tsc_khz); 6573 goto out; 6574 } 6575 case KVM_MEMORY_ENCRYPT_OP: { 6576 r = -ENOTTY; 6577 if (!kvm_x86_ops.mem_enc_ioctl) 6578 goto out; 6579 6580 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp); 6581 break; 6582 } 6583 case KVM_MEMORY_ENCRYPT_REG_REGION: { 6584 struct kvm_enc_region region; 6585 6586 r = -EFAULT; 6587 if (copy_from_user(®ion, argp, sizeof(region))) 6588 goto out; 6589 6590 r = -ENOTTY; 6591 if (!kvm_x86_ops.mem_enc_register_region) 6592 goto out; 6593 6594 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion); 6595 break; 6596 } 6597 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 6598 struct kvm_enc_region region; 6599 6600 r = -EFAULT; 6601 if (copy_from_user(®ion, argp, sizeof(region))) 6602 goto out; 6603 6604 r = -ENOTTY; 6605 if (!kvm_x86_ops.mem_enc_unregister_region) 6606 goto out; 6607 6608 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion); 6609 break; 6610 } 6611 case KVM_HYPERV_EVENTFD: { 6612 struct kvm_hyperv_eventfd hvevfd; 6613 6614 r = -EFAULT; 6615 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 6616 goto out; 6617 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 6618 break; 6619 } 6620 case KVM_SET_PMU_EVENT_FILTER: 6621 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 6622 break; 6623 case KVM_X86_SET_MSR_FILTER: 6624 r = kvm_vm_ioctl_set_msr_filter(kvm, argp); 6625 break; 6626 default: 6627 r = -ENOTTY; 6628 } 6629 out: 6630 return r; 6631 } 6632 6633 static void kvm_init_msr_list(void) 6634 { 6635 struct x86_pmu_capability x86_pmu; 6636 u32 dummy[2]; 6637 unsigned i; 6638 6639 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3, 6640 "Please update the fixed PMCs in msrs_to_saved_all[]"); 6641 6642 perf_get_x86_pmu_capability(&x86_pmu); 6643 6644 num_msrs_to_save = 0; 6645 num_emulated_msrs = 0; 6646 num_msr_based_features = 0; 6647 6648 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) { 6649 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0) 6650 continue; 6651 6652 /* 6653 * Even MSRs that are valid in the host may not be exposed 6654 * to the guests in some cases. 6655 */ 6656 switch (msrs_to_save_all[i]) { 6657 case MSR_IA32_BNDCFGS: 6658 if (!kvm_mpx_supported()) 6659 continue; 6660 break; 6661 case MSR_TSC_AUX: 6662 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 6663 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 6664 continue; 6665 break; 6666 case MSR_IA32_UMWAIT_CONTROL: 6667 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 6668 continue; 6669 break; 6670 case MSR_IA32_RTIT_CTL: 6671 case MSR_IA32_RTIT_STATUS: 6672 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 6673 continue; 6674 break; 6675 case MSR_IA32_RTIT_CR3_MATCH: 6676 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 6677 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 6678 continue; 6679 break; 6680 case MSR_IA32_RTIT_OUTPUT_BASE: 6681 case MSR_IA32_RTIT_OUTPUT_MASK: 6682 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 6683 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 6684 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 6685 continue; 6686 break; 6687 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 6688 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 6689 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >= 6690 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2) 6691 continue; 6692 break; 6693 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17: 6694 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >= 6695 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp)) 6696 continue; 6697 break; 6698 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17: 6699 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >= 6700 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp)) 6701 continue; 6702 break; 6703 case MSR_IA32_XFD: 6704 case MSR_IA32_XFD_ERR: 6705 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 6706 continue; 6707 break; 6708 default: 6709 break; 6710 } 6711 6712 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i]; 6713 } 6714 6715 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 6716 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 6717 continue; 6718 6719 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 6720 } 6721 6722 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) { 6723 struct kvm_msr_entry msr; 6724 6725 msr.index = msr_based_features_all[i]; 6726 if (kvm_get_msr_feature(&msr)) 6727 continue; 6728 6729 msr_based_features[num_msr_based_features++] = msr_based_features_all[i]; 6730 } 6731 } 6732 6733 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 6734 const void *v) 6735 { 6736 int handled = 0; 6737 int n; 6738 6739 do { 6740 n = min(len, 8); 6741 if (!(lapic_in_kernel(vcpu) && 6742 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 6743 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 6744 break; 6745 handled += n; 6746 addr += n; 6747 len -= n; 6748 v += n; 6749 } while (len); 6750 6751 return handled; 6752 } 6753 6754 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 6755 { 6756 int handled = 0; 6757 int n; 6758 6759 do { 6760 n = min(len, 8); 6761 if (!(lapic_in_kernel(vcpu) && 6762 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 6763 addr, n, v)) 6764 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 6765 break; 6766 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 6767 handled += n; 6768 addr += n; 6769 len -= n; 6770 v += n; 6771 } while (len); 6772 6773 return handled; 6774 } 6775 6776 static void kvm_set_segment(struct kvm_vcpu *vcpu, 6777 struct kvm_segment *var, int seg) 6778 { 6779 static_call(kvm_x86_set_segment)(vcpu, var, seg); 6780 } 6781 6782 void kvm_get_segment(struct kvm_vcpu *vcpu, 6783 struct kvm_segment *var, int seg) 6784 { 6785 static_call(kvm_x86_get_segment)(vcpu, var, seg); 6786 } 6787 6788 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 6789 struct x86_exception *exception) 6790 { 6791 struct kvm_mmu *mmu = vcpu->arch.mmu; 6792 gpa_t t_gpa; 6793 6794 BUG_ON(!mmu_is_nested(vcpu)); 6795 6796 /* NPT walks are always user-walks */ 6797 access |= PFERR_USER_MASK; 6798 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 6799 6800 return t_gpa; 6801 } 6802 6803 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 6804 struct x86_exception *exception) 6805 { 6806 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6807 6808 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 6809 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 6810 } 6811 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 6812 6813 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 6814 struct x86_exception *exception) 6815 { 6816 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6817 6818 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 6819 access |= PFERR_FETCH_MASK; 6820 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 6821 } 6822 6823 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 6824 struct x86_exception *exception) 6825 { 6826 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6827 6828 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 6829 access |= PFERR_WRITE_MASK; 6830 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 6831 } 6832 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 6833 6834 /* uses this to access any guest's mapped memory without checking CPL */ 6835 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 6836 struct x86_exception *exception) 6837 { 6838 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6839 6840 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 6841 } 6842 6843 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 6844 struct kvm_vcpu *vcpu, u64 access, 6845 struct x86_exception *exception) 6846 { 6847 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6848 void *data = val; 6849 int r = X86EMUL_CONTINUE; 6850 6851 while (bytes) { 6852 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 6853 unsigned offset = addr & (PAGE_SIZE-1); 6854 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 6855 int ret; 6856 6857 if (gpa == UNMAPPED_GVA) 6858 return X86EMUL_PROPAGATE_FAULT; 6859 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 6860 offset, toread); 6861 if (ret < 0) { 6862 r = X86EMUL_IO_NEEDED; 6863 goto out; 6864 } 6865 6866 bytes -= toread; 6867 data += toread; 6868 addr += toread; 6869 } 6870 out: 6871 return r; 6872 } 6873 6874 /* used for instruction fetching */ 6875 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 6876 gva_t addr, void *val, unsigned int bytes, 6877 struct x86_exception *exception) 6878 { 6879 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6880 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6881 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 6882 unsigned offset; 6883 int ret; 6884 6885 /* Inline kvm_read_guest_virt_helper for speed. */ 6886 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 6887 exception); 6888 if (unlikely(gpa == UNMAPPED_GVA)) 6889 return X86EMUL_PROPAGATE_FAULT; 6890 6891 offset = addr & (PAGE_SIZE-1); 6892 if (WARN_ON(offset + bytes > PAGE_SIZE)) 6893 bytes = (unsigned)PAGE_SIZE - offset; 6894 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 6895 offset, bytes); 6896 if (unlikely(ret < 0)) 6897 return X86EMUL_IO_NEEDED; 6898 6899 return X86EMUL_CONTINUE; 6900 } 6901 6902 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 6903 gva_t addr, void *val, unsigned int bytes, 6904 struct x86_exception *exception) 6905 { 6906 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 6907 6908 /* 6909 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 6910 * is returned, but our callers are not ready for that and they blindly 6911 * call kvm_inject_page_fault. Ensure that they at least do not leak 6912 * uninitialized kernel stack memory into cr2 and error code. 6913 */ 6914 memset(exception, 0, sizeof(*exception)); 6915 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 6916 exception); 6917 } 6918 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 6919 6920 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 6921 gva_t addr, void *val, unsigned int bytes, 6922 struct x86_exception *exception, bool system) 6923 { 6924 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6925 u64 access = 0; 6926 6927 if (system) 6928 access |= PFERR_IMPLICIT_ACCESS; 6929 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 6930 access |= PFERR_USER_MASK; 6931 6932 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 6933 } 6934 6935 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, 6936 unsigned long addr, void *val, unsigned int bytes) 6937 { 6938 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6939 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes); 6940 6941 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE; 6942 } 6943 6944 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 6945 struct kvm_vcpu *vcpu, u64 access, 6946 struct x86_exception *exception) 6947 { 6948 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6949 void *data = val; 6950 int r = X86EMUL_CONTINUE; 6951 6952 while (bytes) { 6953 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 6954 unsigned offset = addr & (PAGE_SIZE-1); 6955 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 6956 int ret; 6957 6958 if (gpa == UNMAPPED_GVA) 6959 return X86EMUL_PROPAGATE_FAULT; 6960 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 6961 if (ret < 0) { 6962 r = X86EMUL_IO_NEEDED; 6963 goto out; 6964 } 6965 6966 bytes -= towrite; 6967 data += towrite; 6968 addr += towrite; 6969 } 6970 out: 6971 return r; 6972 } 6973 6974 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 6975 unsigned int bytes, struct x86_exception *exception, 6976 bool system) 6977 { 6978 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6979 u64 access = PFERR_WRITE_MASK; 6980 6981 if (system) 6982 access |= PFERR_IMPLICIT_ACCESS; 6983 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 6984 access |= PFERR_USER_MASK; 6985 6986 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 6987 access, exception); 6988 } 6989 6990 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 6991 unsigned int bytes, struct x86_exception *exception) 6992 { 6993 /* kvm_write_guest_virt_system can pull in tons of pages. */ 6994 vcpu->arch.l1tf_flush_l1d = true; 6995 6996 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 6997 PFERR_WRITE_MASK, exception); 6998 } 6999 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7000 7001 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7002 void *insn, int insn_len) 7003 { 7004 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type, 7005 insn, insn_len); 7006 } 7007 7008 int handle_ud(struct kvm_vcpu *vcpu) 7009 { 7010 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7011 int emul_type = EMULTYPE_TRAP_UD; 7012 char sig[5]; /* ud2; .ascii "kvm" */ 7013 struct x86_exception e; 7014 7015 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0))) 7016 return 1; 7017 7018 if (force_emulation_prefix && 7019 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7020 sig, sizeof(sig), &e) == 0 && 7021 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7022 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7023 emul_type = EMULTYPE_TRAP_UD_FORCED; 7024 } 7025 7026 return kvm_emulate_instruction(vcpu, emul_type); 7027 } 7028 EXPORT_SYMBOL_GPL(handle_ud); 7029 7030 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7031 gpa_t gpa, bool write) 7032 { 7033 /* For APIC access vmexit */ 7034 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7035 return 1; 7036 7037 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7038 trace_vcpu_match_mmio(gva, gpa, write, true); 7039 return 1; 7040 } 7041 7042 return 0; 7043 } 7044 7045 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7046 gpa_t *gpa, struct x86_exception *exception, 7047 bool write) 7048 { 7049 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7050 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7051 | (write ? PFERR_WRITE_MASK : 0); 7052 7053 /* 7054 * currently PKRU is only applied to ept enabled guest so 7055 * there is no pkey in EPT page table for L1 guest or EPT 7056 * shadow page table for L2 guest. 7057 */ 7058 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7059 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7060 vcpu->arch.mmio_access, 0, access))) { 7061 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7062 (gva & (PAGE_SIZE - 1)); 7063 trace_vcpu_match_mmio(gva, *gpa, write, false); 7064 return 1; 7065 } 7066 7067 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7068 7069 if (*gpa == UNMAPPED_GVA) 7070 return -1; 7071 7072 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7073 } 7074 7075 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7076 const void *val, int bytes) 7077 { 7078 int ret; 7079 7080 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7081 if (ret < 0) 7082 return 0; 7083 kvm_page_track_write(vcpu, gpa, val, bytes); 7084 return 1; 7085 } 7086 7087 struct read_write_emulator_ops { 7088 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7089 int bytes); 7090 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7091 void *val, int bytes); 7092 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7093 int bytes, void *val); 7094 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7095 void *val, int bytes); 7096 bool write; 7097 }; 7098 7099 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7100 { 7101 if (vcpu->mmio_read_completed) { 7102 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7103 vcpu->mmio_fragments[0].gpa, val); 7104 vcpu->mmio_read_completed = 0; 7105 return 1; 7106 } 7107 7108 return 0; 7109 } 7110 7111 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7112 void *val, int bytes) 7113 { 7114 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7115 } 7116 7117 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7118 void *val, int bytes) 7119 { 7120 return emulator_write_phys(vcpu, gpa, val, bytes); 7121 } 7122 7123 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7124 { 7125 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7126 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7127 } 7128 7129 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7130 void *val, int bytes) 7131 { 7132 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7133 return X86EMUL_IO_NEEDED; 7134 } 7135 7136 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7137 void *val, int bytes) 7138 { 7139 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7140 7141 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7142 return X86EMUL_CONTINUE; 7143 } 7144 7145 static const struct read_write_emulator_ops read_emultor = { 7146 .read_write_prepare = read_prepare, 7147 .read_write_emulate = read_emulate, 7148 .read_write_mmio = vcpu_mmio_read, 7149 .read_write_exit_mmio = read_exit_mmio, 7150 }; 7151 7152 static const struct read_write_emulator_ops write_emultor = { 7153 .read_write_emulate = write_emulate, 7154 .read_write_mmio = write_mmio, 7155 .read_write_exit_mmio = write_exit_mmio, 7156 .write = true, 7157 }; 7158 7159 static int emulator_read_write_onepage(unsigned long addr, void *val, 7160 unsigned int bytes, 7161 struct x86_exception *exception, 7162 struct kvm_vcpu *vcpu, 7163 const struct read_write_emulator_ops *ops) 7164 { 7165 gpa_t gpa; 7166 int handled, ret; 7167 bool write = ops->write; 7168 struct kvm_mmio_fragment *frag; 7169 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7170 7171 /* 7172 * If the exit was due to a NPF we may already have a GPA. 7173 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7174 * Note, this cannot be used on string operations since string 7175 * operation using rep will only have the initial GPA from the NPF 7176 * occurred. 7177 */ 7178 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7179 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7180 gpa = ctxt->gpa_val; 7181 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7182 } else { 7183 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7184 if (ret < 0) 7185 return X86EMUL_PROPAGATE_FAULT; 7186 } 7187 7188 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7189 return X86EMUL_CONTINUE; 7190 7191 /* 7192 * Is this MMIO handled locally? 7193 */ 7194 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7195 if (handled == bytes) 7196 return X86EMUL_CONTINUE; 7197 7198 gpa += handled; 7199 bytes -= handled; 7200 val += handled; 7201 7202 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7203 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7204 frag->gpa = gpa; 7205 frag->data = val; 7206 frag->len = bytes; 7207 return X86EMUL_CONTINUE; 7208 } 7209 7210 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7211 unsigned long addr, 7212 void *val, unsigned int bytes, 7213 struct x86_exception *exception, 7214 const struct read_write_emulator_ops *ops) 7215 { 7216 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7217 gpa_t gpa; 7218 int rc; 7219 7220 if (ops->read_write_prepare && 7221 ops->read_write_prepare(vcpu, val, bytes)) 7222 return X86EMUL_CONTINUE; 7223 7224 vcpu->mmio_nr_fragments = 0; 7225 7226 /* Crossing a page boundary? */ 7227 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7228 int now; 7229 7230 now = -addr & ~PAGE_MASK; 7231 rc = emulator_read_write_onepage(addr, val, now, exception, 7232 vcpu, ops); 7233 7234 if (rc != X86EMUL_CONTINUE) 7235 return rc; 7236 addr += now; 7237 if (ctxt->mode != X86EMUL_MODE_PROT64) 7238 addr = (u32)addr; 7239 val += now; 7240 bytes -= now; 7241 } 7242 7243 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7244 vcpu, ops); 7245 if (rc != X86EMUL_CONTINUE) 7246 return rc; 7247 7248 if (!vcpu->mmio_nr_fragments) 7249 return rc; 7250 7251 gpa = vcpu->mmio_fragments[0].gpa; 7252 7253 vcpu->mmio_needed = 1; 7254 vcpu->mmio_cur_fragment = 0; 7255 7256 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7257 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7258 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7259 vcpu->run->mmio.phys_addr = gpa; 7260 7261 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 7262 } 7263 7264 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 7265 unsigned long addr, 7266 void *val, 7267 unsigned int bytes, 7268 struct x86_exception *exception) 7269 { 7270 return emulator_read_write(ctxt, addr, val, bytes, 7271 exception, &read_emultor); 7272 } 7273 7274 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 7275 unsigned long addr, 7276 const void *val, 7277 unsigned int bytes, 7278 struct x86_exception *exception) 7279 { 7280 return emulator_read_write(ctxt, addr, (void *)val, bytes, 7281 exception, &write_emultor); 7282 } 7283 7284 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 7285 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 7286 7287 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 7288 unsigned long addr, 7289 const void *old, 7290 const void *new, 7291 unsigned int bytes, 7292 struct x86_exception *exception) 7293 { 7294 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7295 u64 page_line_mask; 7296 unsigned long hva; 7297 gpa_t gpa; 7298 int r; 7299 7300 /* guests cmpxchg8b have to be emulated atomically */ 7301 if (bytes > 8 || (bytes & (bytes - 1))) 7302 goto emul_write; 7303 7304 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 7305 7306 if (gpa == UNMAPPED_GVA || 7307 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7308 goto emul_write; 7309 7310 /* 7311 * Emulate the atomic as a straight write to avoid #AC if SLD is 7312 * enabled in the host and the access splits a cache line. 7313 */ 7314 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 7315 page_line_mask = ~(cache_line_size() - 1); 7316 else 7317 page_line_mask = PAGE_MASK; 7318 7319 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 7320 goto emul_write; 7321 7322 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 7323 if (kvm_is_error_hva(hva)) 7324 goto emul_write; 7325 7326 hva += offset_in_page(gpa); 7327 7328 switch (bytes) { 7329 case 1: 7330 r = emulator_try_cmpxchg_user(u8, hva, old, new); 7331 break; 7332 case 2: 7333 r = emulator_try_cmpxchg_user(u16, hva, old, new); 7334 break; 7335 case 4: 7336 r = emulator_try_cmpxchg_user(u32, hva, old, new); 7337 break; 7338 case 8: 7339 r = emulator_try_cmpxchg_user(u64, hva, old, new); 7340 break; 7341 default: 7342 BUG(); 7343 } 7344 7345 if (r < 0) 7346 return X86EMUL_UNHANDLEABLE; 7347 if (r) 7348 return X86EMUL_CMPXCHG_FAILED; 7349 7350 kvm_page_track_write(vcpu, gpa, new, bytes); 7351 7352 return X86EMUL_CONTINUE; 7353 7354 emul_write: 7355 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 7356 7357 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 7358 } 7359 7360 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 7361 { 7362 int r = 0, i; 7363 7364 for (i = 0; i < vcpu->arch.pio.count; i++) { 7365 if (vcpu->arch.pio.in) 7366 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port, 7367 vcpu->arch.pio.size, pd); 7368 else 7369 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, 7370 vcpu->arch.pio.port, vcpu->arch.pio.size, 7371 pd); 7372 if (r) 7373 break; 7374 pd += vcpu->arch.pio.size; 7375 } 7376 return r; 7377 } 7378 7379 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 7380 unsigned short port, 7381 unsigned int count, bool in) 7382 { 7383 vcpu->arch.pio.port = port; 7384 vcpu->arch.pio.in = in; 7385 vcpu->arch.pio.count = count; 7386 vcpu->arch.pio.size = size; 7387 7388 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) 7389 return 1; 7390 7391 vcpu->run->exit_reason = KVM_EXIT_IO; 7392 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 7393 vcpu->run->io.size = size; 7394 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 7395 vcpu->run->io.count = count; 7396 vcpu->run->io.port = port; 7397 7398 return 0; 7399 } 7400 7401 static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size, 7402 unsigned short port, unsigned int count) 7403 { 7404 WARN_ON(vcpu->arch.pio.count); 7405 memset(vcpu->arch.pio_data, 0, size * count); 7406 return emulator_pio_in_out(vcpu, size, port, count, true); 7407 } 7408 7409 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 7410 { 7411 int size = vcpu->arch.pio.size; 7412 unsigned count = vcpu->arch.pio.count; 7413 memcpy(val, vcpu->arch.pio_data, size * count); 7414 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 7415 vcpu->arch.pio.count = 0; 7416 } 7417 7418 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 7419 unsigned short port, void *val, unsigned int count) 7420 { 7421 if (vcpu->arch.pio.count) { 7422 /* 7423 * Complete a previous iteration that required userspace I/O. 7424 * Note, @count isn't guaranteed to match pio.count as userspace 7425 * can modify ECX before rerunning the vCPU. Ignore any such 7426 * shenanigans as KVM doesn't support modifying the rep count, 7427 * and the emulator ensures @count doesn't overflow the buffer. 7428 */ 7429 } else { 7430 int r = __emulator_pio_in(vcpu, size, port, count); 7431 if (!r) 7432 return r; 7433 7434 /* Results already available, fall through. */ 7435 } 7436 7437 complete_emulator_pio_in(vcpu, val); 7438 return 1; 7439 } 7440 7441 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 7442 int size, unsigned short port, void *val, 7443 unsigned int count) 7444 { 7445 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count); 7446 7447 } 7448 7449 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 7450 unsigned short port, const void *val, 7451 unsigned int count) 7452 { 7453 int ret; 7454 7455 memcpy(vcpu->arch.pio_data, val, size * count); 7456 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data); 7457 ret = emulator_pio_in_out(vcpu, size, port, count, false); 7458 if (ret) 7459 vcpu->arch.pio.count = 0; 7460 7461 return ret; 7462 } 7463 7464 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 7465 int size, unsigned short port, 7466 const void *val, unsigned int count) 7467 { 7468 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 7469 } 7470 7471 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 7472 { 7473 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 7474 } 7475 7476 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 7477 { 7478 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 7479 } 7480 7481 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 7482 { 7483 if (!need_emulate_wbinvd(vcpu)) 7484 return X86EMUL_CONTINUE; 7485 7486 if (static_call(kvm_x86_has_wbinvd_exit)()) { 7487 int cpu = get_cpu(); 7488 7489 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 7490 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 7491 wbinvd_ipi, NULL, 1); 7492 put_cpu(); 7493 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 7494 } else 7495 wbinvd(); 7496 return X86EMUL_CONTINUE; 7497 } 7498 7499 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 7500 { 7501 kvm_emulate_wbinvd_noskip(vcpu); 7502 return kvm_skip_emulated_instruction(vcpu); 7503 } 7504 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 7505 7506 7507 7508 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 7509 { 7510 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 7511 } 7512 7513 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 7514 unsigned long *dest) 7515 { 7516 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 7517 } 7518 7519 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 7520 unsigned long value) 7521 { 7522 7523 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 7524 } 7525 7526 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 7527 { 7528 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 7529 } 7530 7531 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 7532 { 7533 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7534 unsigned long value; 7535 7536 switch (cr) { 7537 case 0: 7538 value = kvm_read_cr0(vcpu); 7539 break; 7540 case 2: 7541 value = vcpu->arch.cr2; 7542 break; 7543 case 3: 7544 value = kvm_read_cr3(vcpu); 7545 break; 7546 case 4: 7547 value = kvm_read_cr4(vcpu); 7548 break; 7549 case 8: 7550 value = kvm_get_cr8(vcpu); 7551 break; 7552 default: 7553 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7554 return 0; 7555 } 7556 7557 return value; 7558 } 7559 7560 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 7561 { 7562 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7563 int res = 0; 7564 7565 switch (cr) { 7566 case 0: 7567 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 7568 break; 7569 case 2: 7570 vcpu->arch.cr2 = val; 7571 break; 7572 case 3: 7573 res = kvm_set_cr3(vcpu, val); 7574 break; 7575 case 4: 7576 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 7577 break; 7578 case 8: 7579 res = kvm_set_cr8(vcpu, val); 7580 break; 7581 default: 7582 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7583 res = -1; 7584 } 7585 7586 return res; 7587 } 7588 7589 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 7590 { 7591 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 7592 } 7593 7594 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7595 { 7596 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 7597 } 7598 7599 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7600 { 7601 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 7602 } 7603 7604 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7605 { 7606 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 7607 } 7608 7609 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7610 { 7611 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 7612 } 7613 7614 static unsigned long emulator_get_cached_segment_base( 7615 struct x86_emulate_ctxt *ctxt, int seg) 7616 { 7617 return get_segment_base(emul_to_vcpu(ctxt), seg); 7618 } 7619 7620 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 7621 struct desc_struct *desc, u32 *base3, 7622 int seg) 7623 { 7624 struct kvm_segment var; 7625 7626 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 7627 *selector = var.selector; 7628 7629 if (var.unusable) { 7630 memset(desc, 0, sizeof(*desc)); 7631 if (base3) 7632 *base3 = 0; 7633 return false; 7634 } 7635 7636 if (var.g) 7637 var.limit >>= 12; 7638 set_desc_limit(desc, var.limit); 7639 set_desc_base(desc, (unsigned long)var.base); 7640 #ifdef CONFIG_X86_64 7641 if (base3) 7642 *base3 = var.base >> 32; 7643 #endif 7644 desc->type = var.type; 7645 desc->s = var.s; 7646 desc->dpl = var.dpl; 7647 desc->p = var.present; 7648 desc->avl = var.avl; 7649 desc->l = var.l; 7650 desc->d = var.db; 7651 desc->g = var.g; 7652 7653 return true; 7654 } 7655 7656 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 7657 struct desc_struct *desc, u32 base3, 7658 int seg) 7659 { 7660 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7661 struct kvm_segment var; 7662 7663 var.selector = selector; 7664 var.base = get_desc_base(desc); 7665 #ifdef CONFIG_X86_64 7666 var.base |= ((u64)base3) << 32; 7667 #endif 7668 var.limit = get_desc_limit(desc); 7669 if (desc->g) 7670 var.limit = (var.limit << 12) | 0xfff; 7671 var.type = desc->type; 7672 var.dpl = desc->dpl; 7673 var.db = desc->d; 7674 var.s = desc->s; 7675 var.l = desc->l; 7676 var.g = desc->g; 7677 var.avl = desc->avl; 7678 var.present = desc->p; 7679 var.unusable = !var.present; 7680 var.padding = 0; 7681 7682 kvm_set_segment(vcpu, &var, seg); 7683 return; 7684 } 7685 7686 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 7687 u32 msr_index, u64 *pdata) 7688 { 7689 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7690 int r; 7691 7692 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 7693 7694 if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 7695 complete_emulated_rdmsr, r)) { 7696 /* Bounce to user space */ 7697 return X86EMUL_IO_NEEDED; 7698 } 7699 7700 return r; 7701 } 7702 7703 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 7704 u32 msr_index, u64 data) 7705 { 7706 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7707 int r; 7708 7709 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 7710 7711 if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 7712 complete_emulated_msr_access, r)) { 7713 /* Bounce to user space */ 7714 return X86EMUL_IO_NEEDED; 7715 } 7716 7717 return r; 7718 } 7719 7720 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 7721 u32 msr_index, u64 *pdata) 7722 { 7723 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 7724 } 7725 7726 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 7727 u32 msr_index, u64 data) 7728 { 7729 return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data); 7730 } 7731 7732 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt) 7733 { 7734 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7735 7736 return vcpu->arch.smbase; 7737 } 7738 7739 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase) 7740 { 7741 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7742 7743 vcpu->arch.smbase = smbase; 7744 } 7745 7746 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 7747 u32 pmc) 7748 { 7749 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc)) 7750 return 0; 7751 return -EINVAL; 7752 } 7753 7754 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 7755 u32 pmc, u64 *pdata) 7756 { 7757 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 7758 } 7759 7760 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 7761 { 7762 emul_to_vcpu(ctxt)->arch.halt_request = 1; 7763 } 7764 7765 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 7766 struct x86_instruction_info *info, 7767 enum x86_intercept_stage stage) 7768 { 7769 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 7770 &ctxt->exception); 7771 } 7772 7773 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 7774 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 7775 bool exact_only) 7776 { 7777 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 7778 } 7779 7780 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt) 7781 { 7782 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM); 7783 } 7784 7785 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 7786 { 7787 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 7788 } 7789 7790 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 7791 { 7792 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 7793 } 7794 7795 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 7796 { 7797 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 7798 } 7799 7800 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 7801 { 7802 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 7803 } 7804 7805 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 7806 { 7807 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 7808 } 7809 7810 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 7811 { 7812 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 7813 } 7814 7815 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 7816 { 7817 return emul_to_vcpu(ctxt)->arch.hflags; 7818 } 7819 7820 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt) 7821 { 7822 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7823 7824 kvm_smm_changed(vcpu, false); 7825 } 7826 7827 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt, 7828 const char *smstate) 7829 { 7830 return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate); 7831 } 7832 7833 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 7834 { 7835 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 7836 } 7837 7838 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 7839 { 7840 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 7841 } 7842 7843 static const struct x86_emulate_ops emulate_ops = { 7844 .read_gpr = emulator_read_gpr, 7845 .write_gpr = emulator_write_gpr, 7846 .read_std = emulator_read_std, 7847 .write_std = emulator_write_std, 7848 .read_phys = kvm_read_guest_phys_system, 7849 .fetch = kvm_fetch_guest_virt, 7850 .read_emulated = emulator_read_emulated, 7851 .write_emulated = emulator_write_emulated, 7852 .cmpxchg_emulated = emulator_cmpxchg_emulated, 7853 .invlpg = emulator_invlpg, 7854 .pio_in_emulated = emulator_pio_in_emulated, 7855 .pio_out_emulated = emulator_pio_out_emulated, 7856 .get_segment = emulator_get_segment, 7857 .set_segment = emulator_set_segment, 7858 .get_cached_segment_base = emulator_get_cached_segment_base, 7859 .get_gdt = emulator_get_gdt, 7860 .get_idt = emulator_get_idt, 7861 .set_gdt = emulator_set_gdt, 7862 .set_idt = emulator_set_idt, 7863 .get_cr = emulator_get_cr, 7864 .set_cr = emulator_set_cr, 7865 .cpl = emulator_get_cpl, 7866 .get_dr = emulator_get_dr, 7867 .set_dr = emulator_set_dr, 7868 .get_smbase = emulator_get_smbase, 7869 .set_smbase = emulator_set_smbase, 7870 .set_msr_with_filter = emulator_set_msr_with_filter, 7871 .get_msr_with_filter = emulator_get_msr_with_filter, 7872 .set_msr = emulator_set_msr, 7873 .get_msr = emulator_get_msr, 7874 .check_pmc = emulator_check_pmc, 7875 .read_pmc = emulator_read_pmc, 7876 .halt = emulator_halt, 7877 .wbinvd = emulator_wbinvd, 7878 .fix_hypercall = emulator_fix_hypercall, 7879 .intercept = emulator_intercept, 7880 .get_cpuid = emulator_get_cpuid, 7881 .guest_has_long_mode = emulator_guest_has_long_mode, 7882 .guest_has_movbe = emulator_guest_has_movbe, 7883 .guest_has_fxsr = emulator_guest_has_fxsr, 7884 .guest_has_rdpid = emulator_guest_has_rdpid, 7885 .set_nmi_mask = emulator_set_nmi_mask, 7886 .get_hflags = emulator_get_hflags, 7887 .exiting_smm = emulator_exiting_smm, 7888 .leave_smm = emulator_leave_smm, 7889 .triple_fault = emulator_triple_fault, 7890 .set_xcr = emulator_set_xcr, 7891 }; 7892 7893 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 7894 { 7895 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 7896 /* 7897 * an sti; sti; sequence only disable interrupts for the first 7898 * instruction. So, if the last instruction, be it emulated or 7899 * not, left the system with the INT_STI flag enabled, it 7900 * means that the last instruction is an sti. We should not 7901 * leave the flag on in this case. The same goes for mov ss 7902 */ 7903 if (int_shadow & mask) 7904 mask = 0; 7905 if (unlikely(int_shadow || mask)) { 7906 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 7907 if (!mask) 7908 kvm_make_request(KVM_REQ_EVENT, vcpu); 7909 } 7910 } 7911 7912 static bool inject_emulated_exception(struct kvm_vcpu *vcpu) 7913 { 7914 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7915 if (ctxt->exception.vector == PF_VECTOR) 7916 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 7917 7918 if (ctxt->exception.error_code_valid) 7919 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 7920 ctxt->exception.error_code); 7921 else 7922 kvm_queue_exception(vcpu, ctxt->exception.vector); 7923 return false; 7924 } 7925 7926 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 7927 { 7928 struct x86_emulate_ctxt *ctxt; 7929 7930 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 7931 if (!ctxt) { 7932 pr_err("kvm: failed to allocate vcpu's emulator\n"); 7933 return NULL; 7934 } 7935 7936 ctxt->vcpu = vcpu; 7937 ctxt->ops = &emulate_ops; 7938 vcpu->arch.emulate_ctxt = ctxt; 7939 7940 return ctxt; 7941 } 7942 7943 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 7944 { 7945 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7946 int cs_db, cs_l; 7947 7948 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 7949 7950 ctxt->gpa_available = false; 7951 ctxt->eflags = kvm_get_rflags(vcpu); 7952 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 7953 7954 ctxt->eip = kvm_rip_read(vcpu); 7955 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 7956 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 7957 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 7958 cs_db ? X86EMUL_MODE_PROT32 : 7959 X86EMUL_MODE_PROT16; 7960 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 7961 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK); 7962 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK); 7963 7964 ctxt->interruptibility = 0; 7965 ctxt->have_exception = false; 7966 ctxt->exception.vector = -1; 7967 ctxt->perm_ok = false; 7968 7969 init_decode_cache(ctxt); 7970 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 7971 } 7972 7973 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 7974 { 7975 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7976 int ret; 7977 7978 init_emulate_ctxt(vcpu); 7979 7980 ctxt->op_bytes = 2; 7981 ctxt->ad_bytes = 2; 7982 ctxt->_eip = ctxt->eip + inc_eip; 7983 ret = emulate_int_real(ctxt, irq); 7984 7985 if (ret != X86EMUL_CONTINUE) { 7986 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 7987 } else { 7988 ctxt->eip = ctxt->_eip; 7989 kvm_rip_write(vcpu, ctxt->eip); 7990 kvm_set_rflags(vcpu, ctxt->eflags); 7991 } 7992 } 7993 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 7994 7995 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 7996 u8 ndata, u8 *insn_bytes, u8 insn_size) 7997 { 7998 struct kvm_run *run = vcpu->run; 7999 u64 info[5]; 8000 u8 info_start; 8001 8002 /* 8003 * Zero the whole array used to retrieve the exit info, as casting to 8004 * u32 for select entries will leave some chunks uninitialized. 8005 */ 8006 memset(&info, 0, sizeof(info)); 8007 8008 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], 8009 &info[2], (u32 *)&info[3], 8010 (u32 *)&info[4]); 8011 8012 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8013 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8014 8015 /* 8016 * There's currently space for 13 entries, but 5 are used for the exit 8017 * reason and info. Restrict to 4 to reduce the maintenance burden 8018 * when expanding kvm_run.emulation_failure in the future. 8019 */ 8020 if (WARN_ON_ONCE(ndata > 4)) 8021 ndata = 4; 8022 8023 /* Always include the flags as a 'data' entry. */ 8024 info_start = 1; 8025 run->emulation_failure.flags = 0; 8026 8027 if (insn_size) { 8028 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8029 sizeof(run->emulation_failure.insn_bytes) != 16)); 8030 info_start += 2; 8031 run->emulation_failure.flags |= 8032 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8033 run->emulation_failure.insn_size = insn_size; 8034 memset(run->emulation_failure.insn_bytes, 0x90, 8035 sizeof(run->emulation_failure.insn_bytes)); 8036 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8037 } 8038 8039 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8040 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8041 ndata * sizeof(data[0])); 8042 8043 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8044 } 8045 8046 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8047 { 8048 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8049 8050 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8051 ctxt->fetch.end - ctxt->fetch.data); 8052 } 8053 8054 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8055 u8 ndata) 8056 { 8057 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8058 } 8059 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8060 8061 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8062 { 8063 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8064 } 8065 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8066 8067 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8068 { 8069 struct kvm *kvm = vcpu->kvm; 8070 8071 ++vcpu->stat.insn_emulation_fail; 8072 trace_kvm_emulate_insn_failed(vcpu); 8073 8074 if (emulation_type & EMULTYPE_VMWARE_GP) { 8075 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8076 return 1; 8077 } 8078 8079 if (kvm->arch.exit_on_emulation_error || 8080 (emulation_type & EMULTYPE_SKIP)) { 8081 prepare_emulation_ctxt_failure_exit(vcpu); 8082 return 0; 8083 } 8084 8085 kvm_queue_exception(vcpu, UD_VECTOR); 8086 8087 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 8088 prepare_emulation_ctxt_failure_exit(vcpu); 8089 return 0; 8090 } 8091 8092 return 1; 8093 } 8094 8095 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8096 bool write_fault_to_shadow_pgtable, 8097 int emulation_type) 8098 { 8099 gpa_t gpa = cr2_or_gpa; 8100 kvm_pfn_t pfn; 8101 8102 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8103 return false; 8104 8105 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8106 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8107 return false; 8108 8109 if (!vcpu->arch.mmu->root_role.direct) { 8110 /* 8111 * Write permission should be allowed since only 8112 * write access need to be emulated. 8113 */ 8114 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8115 8116 /* 8117 * If the mapping is invalid in guest, let cpu retry 8118 * it to generate fault. 8119 */ 8120 if (gpa == UNMAPPED_GVA) 8121 return true; 8122 } 8123 8124 /* 8125 * Do not retry the unhandleable instruction if it faults on the 8126 * readonly host memory, otherwise it will goto a infinite loop: 8127 * retry instruction -> write #PF -> emulation fail -> retry 8128 * instruction -> ... 8129 */ 8130 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 8131 8132 /* 8133 * If the instruction failed on the error pfn, it can not be fixed, 8134 * report the error to userspace. 8135 */ 8136 if (is_error_noslot_pfn(pfn)) 8137 return false; 8138 8139 kvm_release_pfn_clean(pfn); 8140 8141 /* The instructions are well-emulated on direct mmu. */ 8142 if (vcpu->arch.mmu->root_role.direct) { 8143 unsigned int indirect_shadow_pages; 8144 8145 write_lock(&vcpu->kvm->mmu_lock); 8146 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 8147 write_unlock(&vcpu->kvm->mmu_lock); 8148 8149 if (indirect_shadow_pages) 8150 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8151 8152 return true; 8153 } 8154 8155 /* 8156 * if emulation was due to access to shadowed page table 8157 * and it failed try to unshadow page and re-enter the 8158 * guest to let CPU execute the instruction. 8159 */ 8160 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8161 8162 /* 8163 * If the access faults on its page table, it can not 8164 * be fixed by unprotecting shadow page and it should 8165 * be reported to userspace. 8166 */ 8167 return !write_fault_to_shadow_pgtable; 8168 } 8169 8170 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8171 gpa_t cr2_or_gpa, int emulation_type) 8172 { 8173 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8174 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8175 8176 last_retry_eip = vcpu->arch.last_retry_eip; 8177 last_retry_addr = vcpu->arch.last_retry_addr; 8178 8179 /* 8180 * If the emulation is caused by #PF and it is non-page_table 8181 * writing instruction, it means the VM-EXIT is caused by shadow 8182 * page protected, we can zap the shadow page and retry this 8183 * instruction directly. 8184 * 8185 * Note: if the guest uses a non-page-table modifying instruction 8186 * on the PDE that points to the instruction, then we will unmap 8187 * the instruction and go to an infinite loop. So, we cache the 8188 * last retried eip and the last fault address, if we meet the eip 8189 * and the address again, we can break out of the potential infinite 8190 * loop. 8191 */ 8192 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8193 8194 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8195 return false; 8196 8197 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8198 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8199 return false; 8200 8201 if (x86_page_table_writing_insn(ctxt)) 8202 return false; 8203 8204 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8205 return false; 8206 8207 vcpu->arch.last_retry_eip = ctxt->eip; 8208 vcpu->arch.last_retry_addr = cr2_or_gpa; 8209 8210 if (!vcpu->arch.mmu->root_role.direct) 8211 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8212 8213 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8214 8215 return true; 8216 } 8217 8218 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8219 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8220 8221 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm) 8222 { 8223 trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm); 8224 8225 if (entering_smm) { 8226 vcpu->arch.hflags |= HF_SMM_MASK; 8227 } else { 8228 vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK); 8229 8230 /* Process a latched INIT or SMI, if any. */ 8231 kvm_make_request(KVM_REQ_EVENT, vcpu); 8232 8233 /* 8234 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band, 8235 * on SMM exit we still need to reload them from 8236 * guest memory 8237 */ 8238 vcpu->arch.pdptrs_from_userspace = false; 8239 } 8240 8241 kvm_mmu_reset_context(vcpu); 8242 } 8243 8244 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8245 unsigned long *db) 8246 { 8247 u32 dr6 = 0; 8248 int i; 8249 u32 enable, rwlen; 8250 8251 enable = dr7; 8252 rwlen = dr7 >> 16; 8253 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8254 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8255 dr6 |= (1 << i); 8256 return dr6; 8257 } 8258 8259 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8260 { 8261 struct kvm_run *kvm_run = vcpu->run; 8262 8263 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8264 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8265 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8266 kvm_run->debug.arch.exception = DB_VECTOR; 8267 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8268 return 0; 8269 } 8270 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8271 return 1; 8272 } 8273 8274 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8275 { 8276 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8277 int r; 8278 8279 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 8280 if (unlikely(!r)) 8281 return 0; 8282 8283 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8284 8285 /* 8286 * rflags is the old, "raw" value of the flags. The new value has 8287 * not been saved yet. 8288 * 8289 * This is correct even for TF set by the guest, because "the 8290 * processor will not generate this exception after the instruction 8291 * that sets the TF flag". 8292 */ 8293 if (unlikely(rflags & X86_EFLAGS_TF)) 8294 r = kvm_vcpu_do_singlestep(vcpu); 8295 return r; 8296 } 8297 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8298 8299 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, int *r) 8300 { 8301 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 8302 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 8303 struct kvm_run *kvm_run = vcpu->run; 8304 unsigned long eip = kvm_get_linear_rip(vcpu); 8305 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8306 vcpu->arch.guest_debug_dr7, 8307 vcpu->arch.eff_db); 8308 8309 if (dr6 != 0) { 8310 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 8311 kvm_run->debug.arch.pc = eip; 8312 kvm_run->debug.arch.exception = DB_VECTOR; 8313 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8314 *r = 0; 8315 return true; 8316 } 8317 } 8318 8319 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 8320 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) { 8321 unsigned long eip = kvm_get_linear_rip(vcpu); 8322 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8323 vcpu->arch.dr7, 8324 vcpu->arch.db); 8325 8326 if (dr6 != 0) { 8327 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 8328 *r = 1; 8329 return true; 8330 } 8331 } 8332 8333 return false; 8334 } 8335 8336 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 8337 { 8338 switch (ctxt->opcode_len) { 8339 case 1: 8340 switch (ctxt->b) { 8341 case 0xe4: /* IN */ 8342 case 0xe5: 8343 case 0xec: 8344 case 0xed: 8345 case 0xe6: /* OUT */ 8346 case 0xe7: 8347 case 0xee: 8348 case 0xef: 8349 case 0x6c: /* INS */ 8350 case 0x6d: 8351 case 0x6e: /* OUTS */ 8352 case 0x6f: 8353 return true; 8354 } 8355 break; 8356 case 2: 8357 switch (ctxt->b) { 8358 case 0x33: /* RDPMC */ 8359 return true; 8360 } 8361 break; 8362 } 8363 8364 return false; 8365 } 8366 8367 /* 8368 * Decode an instruction for emulation. The caller is responsible for handling 8369 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 8370 * (and wrong) when emulating on an intercepted fault-like exception[*], as 8371 * code breakpoints have higher priority and thus have already been done by 8372 * hardware. 8373 * 8374 * [*] Except #MC, which is higher priority, but KVM should never emulate in 8375 * response to a machine check. 8376 */ 8377 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 8378 void *insn, int insn_len) 8379 { 8380 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8381 int r; 8382 8383 init_emulate_ctxt(vcpu); 8384 8385 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 8386 8387 trace_kvm_emulate_insn_start(vcpu); 8388 ++vcpu->stat.insn_emulation; 8389 8390 return r; 8391 } 8392 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 8393 8394 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8395 int emulation_type, void *insn, int insn_len) 8396 { 8397 int r; 8398 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8399 bool writeback = true; 8400 bool write_fault_to_spt; 8401 8402 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len))) 8403 return 1; 8404 8405 vcpu->arch.l1tf_flush_l1d = true; 8406 8407 /* 8408 * Clear write_fault_to_shadow_pgtable here to ensure it is 8409 * never reused. 8410 */ 8411 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 8412 vcpu->arch.write_fault_to_shadow_pgtable = false; 8413 8414 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 8415 kvm_clear_exception_queue(vcpu); 8416 8417 /* 8418 * Return immediately if RIP hits a code breakpoint, such #DBs 8419 * are fault-like and are higher priority than any faults on 8420 * the code fetch itself. 8421 */ 8422 if (!(emulation_type & EMULTYPE_SKIP) && 8423 kvm_vcpu_check_code_breakpoint(vcpu, &r)) 8424 return r; 8425 8426 r = x86_decode_emulated_instruction(vcpu, emulation_type, 8427 insn, insn_len); 8428 if (r != EMULATION_OK) { 8429 if ((emulation_type & EMULTYPE_TRAP_UD) || 8430 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 8431 kvm_queue_exception(vcpu, UD_VECTOR); 8432 return 1; 8433 } 8434 if (reexecute_instruction(vcpu, cr2_or_gpa, 8435 write_fault_to_spt, 8436 emulation_type)) 8437 return 1; 8438 if (ctxt->have_exception) { 8439 /* 8440 * #UD should result in just EMULATION_FAILED, and trap-like 8441 * exception should not be encountered during decode. 8442 */ 8443 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 8444 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 8445 inject_emulated_exception(vcpu); 8446 return 1; 8447 } 8448 return handle_emulation_failure(vcpu, emulation_type); 8449 } 8450 } 8451 8452 if ((emulation_type & EMULTYPE_VMWARE_GP) && 8453 !is_vmware_backdoor_opcode(ctxt)) { 8454 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8455 return 1; 8456 } 8457 8458 /* 8459 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 8460 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 8461 * The caller is responsible for updating interruptibility state and 8462 * injecting single-step #DBs. 8463 */ 8464 if (emulation_type & EMULTYPE_SKIP) { 8465 if (ctxt->mode != X86EMUL_MODE_PROT64) 8466 ctxt->eip = (u32)ctxt->_eip; 8467 else 8468 ctxt->eip = ctxt->_eip; 8469 8470 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 8471 r = 1; 8472 goto writeback; 8473 } 8474 8475 kvm_rip_write(vcpu, ctxt->eip); 8476 if (ctxt->eflags & X86_EFLAGS_RF) 8477 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 8478 return 1; 8479 } 8480 8481 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 8482 return 1; 8483 8484 /* this is needed for vmware backdoor interface to work since it 8485 changes registers values during IO operation */ 8486 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 8487 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8488 emulator_invalidate_register_cache(ctxt); 8489 } 8490 8491 restart: 8492 if (emulation_type & EMULTYPE_PF) { 8493 /* Save the faulting GPA (cr2) in the address field */ 8494 ctxt->exception.address = cr2_or_gpa; 8495 8496 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 8497 if (vcpu->arch.mmu->root_role.direct) { 8498 ctxt->gpa_available = true; 8499 ctxt->gpa_val = cr2_or_gpa; 8500 } 8501 } else { 8502 /* Sanitize the address out of an abundance of paranoia. */ 8503 ctxt->exception.address = 0; 8504 } 8505 8506 r = x86_emulate_insn(ctxt); 8507 8508 if (r == EMULATION_INTERCEPTED) 8509 return 1; 8510 8511 if (r == EMULATION_FAILED) { 8512 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt, 8513 emulation_type)) 8514 return 1; 8515 8516 return handle_emulation_failure(vcpu, emulation_type); 8517 } 8518 8519 if (ctxt->have_exception) { 8520 r = 1; 8521 if (inject_emulated_exception(vcpu)) 8522 return r; 8523 } else if (vcpu->arch.pio.count) { 8524 if (!vcpu->arch.pio.in) { 8525 /* FIXME: return into emulator if single-stepping. */ 8526 vcpu->arch.pio.count = 0; 8527 } else { 8528 writeback = false; 8529 vcpu->arch.complete_userspace_io = complete_emulated_pio; 8530 } 8531 r = 0; 8532 } else if (vcpu->mmio_needed) { 8533 ++vcpu->stat.mmio_exits; 8534 8535 if (!vcpu->mmio_is_write) 8536 writeback = false; 8537 r = 0; 8538 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 8539 } else if (vcpu->arch.complete_userspace_io) { 8540 writeback = false; 8541 r = 0; 8542 } else if (r == EMULATION_RESTART) 8543 goto restart; 8544 else 8545 r = 1; 8546 8547 writeback: 8548 if (writeback) { 8549 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8550 toggle_interruptibility(vcpu, ctxt->interruptibility); 8551 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8552 if (!ctxt->have_exception || 8553 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 8554 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8555 if (ctxt->is_branch) 8556 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 8557 kvm_rip_write(vcpu, ctxt->eip); 8558 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 8559 r = kvm_vcpu_do_singlestep(vcpu); 8560 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu); 8561 __kvm_set_rflags(vcpu, ctxt->eflags); 8562 } 8563 8564 /* 8565 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 8566 * do nothing, and it will be requested again as soon as 8567 * the shadow expires. But we still need to check here, 8568 * because POPF has no interrupt shadow. 8569 */ 8570 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 8571 kvm_make_request(KVM_REQ_EVENT, vcpu); 8572 } else 8573 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 8574 8575 return r; 8576 } 8577 8578 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 8579 { 8580 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 8581 } 8582 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 8583 8584 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 8585 void *insn, int insn_len) 8586 { 8587 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 8588 } 8589 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 8590 8591 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 8592 { 8593 vcpu->arch.pio.count = 0; 8594 return 1; 8595 } 8596 8597 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 8598 { 8599 vcpu->arch.pio.count = 0; 8600 8601 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 8602 return 1; 8603 8604 return kvm_skip_emulated_instruction(vcpu); 8605 } 8606 8607 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 8608 unsigned short port) 8609 { 8610 unsigned long val = kvm_rax_read(vcpu); 8611 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 8612 8613 if (ret) 8614 return ret; 8615 8616 /* 8617 * Workaround userspace that relies on old KVM behavior of %rip being 8618 * incremented prior to exiting to userspace to handle "OUT 0x7e". 8619 */ 8620 if (port == 0x7e && 8621 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 8622 vcpu->arch.complete_userspace_io = 8623 complete_fast_pio_out_port_0x7e; 8624 kvm_skip_emulated_instruction(vcpu); 8625 } else { 8626 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 8627 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 8628 } 8629 return 0; 8630 } 8631 8632 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 8633 { 8634 unsigned long val; 8635 8636 /* We should only ever be called with arch.pio.count equal to 1 */ 8637 BUG_ON(vcpu->arch.pio.count != 1); 8638 8639 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 8640 vcpu->arch.pio.count = 0; 8641 return 1; 8642 } 8643 8644 /* For size less than 4 we merge, else we zero extend */ 8645 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 8646 8647 /* 8648 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform 8649 * the copy and tracing 8650 */ 8651 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1); 8652 kvm_rax_write(vcpu, val); 8653 8654 return kvm_skip_emulated_instruction(vcpu); 8655 } 8656 8657 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 8658 unsigned short port) 8659 { 8660 unsigned long val; 8661 int ret; 8662 8663 /* For size less than 4 we merge, else we zero extend */ 8664 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 8665 8666 ret = emulator_pio_in(vcpu, size, port, &val, 1); 8667 if (ret) { 8668 kvm_rax_write(vcpu, val); 8669 return ret; 8670 } 8671 8672 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 8673 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 8674 8675 return 0; 8676 } 8677 8678 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 8679 { 8680 int ret; 8681 8682 if (in) 8683 ret = kvm_fast_pio_in(vcpu, size, port); 8684 else 8685 ret = kvm_fast_pio_out(vcpu, size, port); 8686 return ret && kvm_skip_emulated_instruction(vcpu); 8687 } 8688 EXPORT_SYMBOL_GPL(kvm_fast_pio); 8689 8690 static int kvmclock_cpu_down_prep(unsigned int cpu) 8691 { 8692 __this_cpu_write(cpu_tsc_khz, 0); 8693 return 0; 8694 } 8695 8696 static void tsc_khz_changed(void *data) 8697 { 8698 struct cpufreq_freqs *freq = data; 8699 unsigned long khz = 0; 8700 8701 if (data) 8702 khz = freq->new; 8703 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 8704 khz = cpufreq_quick_get(raw_smp_processor_id()); 8705 if (!khz) 8706 khz = tsc_khz; 8707 __this_cpu_write(cpu_tsc_khz, khz); 8708 } 8709 8710 #ifdef CONFIG_X86_64 8711 static void kvm_hyperv_tsc_notifier(void) 8712 { 8713 struct kvm *kvm; 8714 int cpu; 8715 8716 mutex_lock(&kvm_lock); 8717 list_for_each_entry(kvm, &vm_list, vm_list) 8718 kvm_make_mclock_inprogress_request(kvm); 8719 8720 /* no guest entries from this point */ 8721 hyperv_stop_tsc_emulation(); 8722 8723 /* TSC frequency always matches when on Hyper-V */ 8724 for_each_present_cpu(cpu) 8725 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 8726 kvm_max_guest_tsc_khz = tsc_khz; 8727 8728 list_for_each_entry(kvm, &vm_list, vm_list) { 8729 __kvm_start_pvclock_update(kvm); 8730 pvclock_update_vm_gtod_copy(kvm); 8731 kvm_end_pvclock_update(kvm); 8732 } 8733 8734 mutex_unlock(&kvm_lock); 8735 } 8736 #endif 8737 8738 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 8739 { 8740 struct kvm *kvm; 8741 struct kvm_vcpu *vcpu; 8742 int send_ipi = 0; 8743 unsigned long i; 8744 8745 /* 8746 * We allow guests to temporarily run on slowing clocks, 8747 * provided we notify them after, or to run on accelerating 8748 * clocks, provided we notify them before. Thus time never 8749 * goes backwards. 8750 * 8751 * However, we have a problem. We can't atomically update 8752 * the frequency of a given CPU from this function; it is 8753 * merely a notifier, which can be called from any CPU. 8754 * Changing the TSC frequency at arbitrary points in time 8755 * requires a recomputation of local variables related to 8756 * the TSC for each VCPU. We must flag these local variables 8757 * to be updated and be sure the update takes place with the 8758 * new frequency before any guests proceed. 8759 * 8760 * Unfortunately, the combination of hotplug CPU and frequency 8761 * change creates an intractable locking scenario; the order 8762 * of when these callouts happen is undefined with respect to 8763 * CPU hotplug, and they can race with each other. As such, 8764 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 8765 * undefined; you can actually have a CPU frequency change take 8766 * place in between the computation of X and the setting of the 8767 * variable. To protect against this problem, all updates of 8768 * the per_cpu tsc_khz variable are done in an interrupt 8769 * protected IPI, and all callers wishing to update the value 8770 * must wait for a synchronous IPI to complete (which is trivial 8771 * if the caller is on the CPU already). This establishes the 8772 * necessary total order on variable updates. 8773 * 8774 * Note that because a guest time update may take place 8775 * anytime after the setting of the VCPU's request bit, the 8776 * correct TSC value must be set before the request. However, 8777 * to ensure the update actually makes it to any guest which 8778 * starts running in hardware virtualization between the set 8779 * and the acquisition of the spinlock, we must also ping the 8780 * CPU after setting the request bit. 8781 * 8782 */ 8783 8784 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 8785 8786 mutex_lock(&kvm_lock); 8787 list_for_each_entry(kvm, &vm_list, vm_list) { 8788 kvm_for_each_vcpu(i, vcpu, kvm) { 8789 if (vcpu->cpu != cpu) 8790 continue; 8791 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 8792 if (vcpu->cpu != raw_smp_processor_id()) 8793 send_ipi = 1; 8794 } 8795 } 8796 mutex_unlock(&kvm_lock); 8797 8798 if (freq->old < freq->new && send_ipi) { 8799 /* 8800 * We upscale the frequency. Must make the guest 8801 * doesn't see old kvmclock values while running with 8802 * the new frequency, otherwise we risk the guest sees 8803 * time go backwards. 8804 * 8805 * In case we update the frequency for another cpu 8806 * (which might be in guest context) send an interrupt 8807 * to kick the cpu out of guest context. Next time 8808 * guest context is entered kvmclock will be updated, 8809 * so the guest will not see stale values. 8810 */ 8811 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 8812 } 8813 } 8814 8815 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 8816 void *data) 8817 { 8818 struct cpufreq_freqs *freq = data; 8819 int cpu; 8820 8821 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 8822 return 0; 8823 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 8824 return 0; 8825 8826 for_each_cpu(cpu, freq->policy->cpus) 8827 __kvmclock_cpufreq_notifier(freq, cpu); 8828 8829 return 0; 8830 } 8831 8832 static struct notifier_block kvmclock_cpufreq_notifier_block = { 8833 .notifier_call = kvmclock_cpufreq_notifier 8834 }; 8835 8836 static int kvmclock_cpu_online(unsigned int cpu) 8837 { 8838 tsc_khz_changed(NULL); 8839 return 0; 8840 } 8841 8842 static void kvm_timer_init(void) 8843 { 8844 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 8845 max_tsc_khz = tsc_khz; 8846 8847 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 8848 struct cpufreq_policy *policy; 8849 int cpu; 8850 8851 cpu = get_cpu(); 8852 policy = cpufreq_cpu_get(cpu); 8853 if (policy) { 8854 if (policy->cpuinfo.max_freq) 8855 max_tsc_khz = policy->cpuinfo.max_freq; 8856 cpufreq_cpu_put(policy); 8857 } 8858 put_cpu(); 8859 } 8860 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 8861 CPUFREQ_TRANSITION_NOTIFIER); 8862 } 8863 8864 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 8865 kvmclock_cpu_online, kvmclock_cpu_down_prep); 8866 } 8867 8868 #ifdef CONFIG_X86_64 8869 static void pvclock_gtod_update_fn(struct work_struct *work) 8870 { 8871 struct kvm *kvm; 8872 struct kvm_vcpu *vcpu; 8873 unsigned long i; 8874 8875 mutex_lock(&kvm_lock); 8876 list_for_each_entry(kvm, &vm_list, vm_list) 8877 kvm_for_each_vcpu(i, vcpu, kvm) 8878 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 8879 atomic_set(&kvm_guest_has_master_clock, 0); 8880 mutex_unlock(&kvm_lock); 8881 } 8882 8883 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 8884 8885 /* 8886 * Indirection to move queue_work() out of the tk_core.seq write held 8887 * region to prevent possible deadlocks against time accessors which 8888 * are invoked with work related locks held. 8889 */ 8890 static void pvclock_irq_work_fn(struct irq_work *w) 8891 { 8892 queue_work(system_long_wq, &pvclock_gtod_work); 8893 } 8894 8895 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 8896 8897 /* 8898 * Notification about pvclock gtod data update. 8899 */ 8900 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 8901 void *priv) 8902 { 8903 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 8904 struct timekeeper *tk = priv; 8905 8906 update_pvclock_gtod(tk); 8907 8908 /* 8909 * Disable master clock if host does not trust, or does not use, 8910 * TSC based clocksource. Delegate queue_work() to irq_work as 8911 * this is invoked with tk_core.seq write held. 8912 */ 8913 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 8914 atomic_read(&kvm_guest_has_master_clock) != 0) 8915 irq_work_queue(&pvclock_irq_work); 8916 return 0; 8917 } 8918 8919 static struct notifier_block pvclock_gtod_notifier = { 8920 .notifier_call = pvclock_gtod_notify, 8921 }; 8922 #endif 8923 8924 int kvm_arch_init(void *opaque) 8925 { 8926 struct kvm_x86_init_ops *ops = opaque; 8927 int r; 8928 8929 if (kvm_x86_ops.hardware_enable) { 8930 pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name); 8931 r = -EEXIST; 8932 goto out; 8933 } 8934 8935 if (!ops->cpu_has_kvm_support()) { 8936 pr_err_ratelimited("kvm: no hardware support for '%s'\n", 8937 ops->runtime_ops->name); 8938 r = -EOPNOTSUPP; 8939 goto out; 8940 } 8941 if (ops->disabled_by_bios()) { 8942 pr_err_ratelimited("kvm: support for '%s' disabled by bios\n", 8943 ops->runtime_ops->name); 8944 r = -EOPNOTSUPP; 8945 goto out; 8946 } 8947 8948 /* 8949 * KVM explicitly assumes that the guest has an FPU and 8950 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 8951 * vCPU's FPU state as a fxregs_state struct. 8952 */ 8953 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 8954 printk(KERN_ERR "kvm: inadequate fpu\n"); 8955 r = -EOPNOTSUPP; 8956 goto out; 8957 } 8958 8959 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 8960 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 8961 r = -EOPNOTSUPP; 8962 goto out; 8963 } 8964 8965 r = -ENOMEM; 8966 8967 x86_emulator_cache = kvm_alloc_emulator_cache(); 8968 if (!x86_emulator_cache) { 8969 pr_err("kvm: failed to allocate cache for x86 emulator\n"); 8970 goto out; 8971 } 8972 8973 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 8974 if (!user_return_msrs) { 8975 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n"); 8976 goto out_free_x86_emulator_cache; 8977 } 8978 kvm_nr_uret_msrs = 0; 8979 8980 r = kvm_mmu_vendor_module_init(); 8981 if (r) 8982 goto out_free_percpu; 8983 8984 kvm_timer_init(); 8985 8986 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 8987 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 8988 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 8989 } 8990 8991 if (pi_inject_timer == -1) 8992 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 8993 #ifdef CONFIG_X86_64 8994 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 8995 8996 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 8997 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 8998 #endif 8999 9000 return 0; 9001 9002 out_free_percpu: 9003 free_percpu(user_return_msrs); 9004 out_free_x86_emulator_cache: 9005 kmem_cache_destroy(x86_emulator_cache); 9006 out: 9007 return r; 9008 } 9009 9010 void kvm_arch_exit(void) 9011 { 9012 #ifdef CONFIG_X86_64 9013 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9014 clear_hv_tscchange_cb(); 9015 #endif 9016 kvm_lapic_exit(); 9017 9018 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 9019 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9020 CPUFREQ_TRANSITION_NOTIFIER); 9021 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9022 #ifdef CONFIG_X86_64 9023 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9024 irq_work_sync(&pvclock_irq_work); 9025 cancel_work_sync(&pvclock_gtod_work); 9026 #endif 9027 kvm_x86_ops.hardware_enable = NULL; 9028 kvm_mmu_vendor_module_exit(); 9029 free_percpu(user_return_msrs); 9030 kmem_cache_destroy(x86_emulator_cache); 9031 #ifdef CONFIG_KVM_XEN 9032 static_key_deferred_flush(&kvm_xen_enabled); 9033 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9034 #endif 9035 } 9036 9037 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 9038 { 9039 /* 9040 * The vCPU has halted, e.g. executed HLT. Update the run state if the 9041 * local APIC is in-kernel, the run loop will detect the non-runnable 9042 * state and halt the vCPU. Exit to userspace if the local APIC is 9043 * managed by userspace, in which case userspace is responsible for 9044 * handling wake events. 9045 */ 9046 ++vcpu->stat.halt_exits; 9047 if (lapic_in_kernel(vcpu)) { 9048 vcpu->arch.mp_state = state; 9049 return 1; 9050 } else { 9051 vcpu->run->exit_reason = reason; 9052 return 0; 9053 } 9054 } 9055 9056 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 9057 { 9058 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 9059 } 9060 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 9061 9062 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 9063 { 9064 int ret = kvm_skip_emulated_instruction(vcpu); 9065 /* 9066 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 9067 * KVM_EXIT_DEBUG here. 9068 */ 9069 return kvm_emulate_halt_noskip(vcpu) && ret; 9070 } 9071 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 9072 9073 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 9074 { 9075 int ret = kvm_skip_emulated_instruction(vcpu); 9076 9077 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 9078 KVM_EXIT_AP_RESET_HOLD) && ret; 9079 } 9080 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 9081 9082 #ifdef CONFIG_X86_64 9083 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9084 unsigned long clock_type) 9085 { 9086 struct kvm_clock_pairing clock_pairing; 9087 struct timespec64 ts; 9088 u64 cycle; 9089 int ret; 9090 9091 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9092 return -KVM_EOPNOTSUPP; 9093 9094 /* 9095 * When tsc is in permanent catchup mode guests won't be able to use 9096 * pvclock_read_retry loop to get consistent view of pvclock 9097 */ 9098 if (vcpu->arch.tsc_always_catchup) 9099 return -KVM_EOPNOTSUPP; 9100 9101 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9102 return -KVM_EOPNOTSUPP; 9103 9104 clock_pairing.sec = ts.tv_sec; 9105 clock_pairing.nsec = ts.tv_nsec; 9106 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9107 clock_pairing.flags = 0; 9108 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9109 9110 ret = 0; 9111 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9112 sizeof(struct kvm_clock_pairing))) 9113 ret = -KVM_EFAULT; 9114 9115 return ret; 9116 } 9117 #endif 9118 9119 /* 9120 * kvm_pv_kick_cpu_op: Kick a vcpu. 9121 * 9122 * @apicid - apicid of vcpu to be kicked. 9123 */ 9124 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9125 { 9126 struct kvm_lapic_irq lapic_irq; 9127 9128 lapic_irq.shorthand = APIC_DEST_NOSHORT; 9129 lapic_irq.dest_mode = APIC_DEST_PHYSICAL; 9130 lapic_irq.level = 0; 9131 lapic_irq.dest_id = apicid; 9132 lapic_irq.msi_redir_hint = false; 9133 9134 lapic_irq.delivery_mode = APIC_DM_REMRD; 9135 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9136 } 9137 9138 bool kvm_apicv_activated(struct kvm *kvm) 9139 { 9140 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9141 } 9142 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9143 9144 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 9145 { 9146 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 9147 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu); 9148 9149 return (vm_reasons | vcpu_reasons) == 0; 9150 } 9151 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 9152 9153 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9154 enum kvm_apicv_inhibit reason, bool set) 9155 { 9156 if (set) 9157 __set_bit(reason, inhibits); 9158 else 9159 __clear_bit(reason, inhibits); 9160 9161 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9162 } 9163 9164 static void kvm_apicv_init(struct kvm *kvm) 9165 { 9166 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons; 9167 9168 init_rwsem(&kvm->arch.apicv_update_lock); 9169 9170 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true); 9171 9172 if (!enable_apicv) 9173 set_or_clear_apicv_inhibit(inhibits, 9174 APICV_INHIBIT_REASON_DISABLE, true); 9175 } 9176 9177 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9178 { 9179 struct kvm_vcpu *target = NULL; 9180 struct kvm_apic_map *map; 9181 9182 vcpu->stat.directed_yield_attempted++; 9183 9184 if (single_task_running()) 9185 goto no_yield; 9186 9187 rcu_read_lock(); 9188 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9189 9190 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9191 target = map->phys_map[dest_id]->vcpu; 9192 9193 rcu_read_unlock(); 9194 9195 if (!target || !READ_ONCE(target->ready)) 9196 goto no_yield; 9197 9198 /* Ignore requests to yield to self */ 9199 if (vcpu == target) 9200 goto no_yield; 9201 9202 if (kvm_vcpu_yield_to(target) <= 0) 9203 goto no_yield; 9204 9205 vcpu->stat.directed_yield_successful++; 9206 9207 no_yield: 9208 return; 9209 } 9210 9211 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 9212 { 9213 u64 ret = vcpu->run->hypercall.ret; 9214 9215 if (!is_64_bit_mode(vcpu)) 9216 ret = (u32)ret; 9217 kvm_rax_write(vcpu, ret); 9218 ++vcpu->stat.hypercalls; 9219 return kvm_skip_emulated_instruction(vcpu); 9220 } 9221 9222 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 9223 { 9224 unsigned long nr, a0, a1, a2, a3, ret; 9225 int op_64_bit; 9226 9227 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 9228 return kvm_xen_hypercall(vcpu); 9229 9230 if (kvm_hv_hypercall_enabled(vcpu)) 9231 return kvm_hv_hypercall(vcpu); 9232 9233 nr = kvm_rax_read(vcpu); 9234 a0 = kvm_rbx_read(vcpu); 9235 a1 = kvm_rcx_read(vcpu); 9236 a2 = kvm_rdx_read(vcpu); 9237 a3 = kvm_rsi_read(vcpu); 9238 9239 trace_kvm_hypercall(nr, a0, a1, a2, a3); 9240 9241 op_64_bit = is_64_bit_hypercall(vcpu); 9242 if (!op_64_bit) { 9243 nr &= 0xFFFFFFFF; 9244 a0 &= 0xFFFFFFFF; 9245 a1 &= 0xFFFFFFFF; 9246 a2 &= 0xFFFFFFFF; 9247 a3 &= 0xFFFFFFFF; 9248 } 9249 9250 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { 9251 ret = -KVM_EPERM; 9252 goto out; 9253 } 9254 9255 ret = -KVM_ENOSYS; 9256 9257 switch (nr) { 9258 case KVM_HC_VAPIC_POLL_IRQ: 9259 ret = 0; 9260 break; 9261 case KVM_HC_KICK_CPU: 9262 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 9263 break; 9264 9265 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 9266 kvm_sched_yield(vcpu, a1); 9267 ret = 0; 9268 break; 9269 #ifdef CONFIG_X86_64 9270 case KVM_HC_CLOCK_PAIRING: 9271 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 9272 break; 9273 #endif 9274 case KVM_HC_SEND_IPI: 9275 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 9276 break; 9277 9278 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 9279 break; 9280 case KVM_HC_SCHED_YIELD: 9281 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 9282 break; 9283 9284 kvm_sched_yield(vcpu, a0); 9285 ret = 0; 9286 break; 9287 case KVM_HC_MAP_GPA_RANGE: { 9288 u64 gpa = a0, npages = a1, attrs = a2; 9289 9290 ret = -KVM_ENOSYS; 9291 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 9292 break; 9293 9294 if (!PAGE_ALIGNED(gpa) || !npages || 9295 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 9296 ret = -KVM_EINVAL; 9297 break; 9298 } 9299 9300 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 9301 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 9302 vcpu->run->hypercall.args[0] = gpa; 9303 vcpu->run->hypercall.args[1] = npages; 9304 vcpu->run->hypercall.args[2] = attrs; 9305 vcpu->run->hypercall.longmode = op_64_bit; 9306 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 9307 return 0; 9308 } 9309 default: 9310 ret = -KVM_ENOSYS; 9311 break; 9312 } 9313 out: 9314 if (!op_64_bit) 9315 ret = (u32)ret; 9316 kvm_rax_write(vcpu, ret); 9317 9318 ++vcpu->stat.hypercalls; 9319 return kvm_skip_emulated_instruction(vcpu); 9320 } 9321 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 9322 9323 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 9324 { 9325 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 9326 char instruction[3]; 9327 unsigned long rip = kvm_rip_read(vcpu); 9328 9329 /* 9330 * If the quirk is disabled, synthesize a #UD and let the guest pick up 9331 * the pieces. 9332 */ 9333 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 9334 ctxt->exception.error_code_valid = false; 9335 ctxt->exception.vector = UD_VECTOR; 9336 ctxt->have_exception = true; 9337 return X86EMUL_PROPAGATE_FAULT; 9338 } 9339 9340 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 9341 9342 return emulator_write_emulated(ctxt, rip, instruction, 3, 9343 &ctxt->exception); 9344 } 9345 9346 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 9347 { 9348 return vcpu->run->request_interrupt_window && 9349 likely(!pic_in_kernel(vcpu->kvm)); 9350 } 9351 9352 /* Called within kvm->srcu read side. */ 9353 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 9354 { 9355 struct kvm_run *kvm_run = vcpu->run; 9356 9357 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); 9358 kvm_run->cr8 = kvm_get_cr8(vcpu); 9359 kvm_run->apic_base = kvm_get_apic_base(vcpu); 9360 9361 kvm_run->ready_for_interrupt_injection = 9362 pic_in_kernel(vcpu->kvm) || 9363 kvm_vcpu_ready_for_interrupt_injection(vcpu); 9364 9365 if (is_smm(vcpu)) 9366 kvm_run->flags |= KVM_RUN_X86_SMM; 9367 } 9368 9369 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 9370 { 9371 int max_irr, tpr; 9372 9373 if (!kvm_x86_ops.update_cr8_intercept) 9374 return; 9375 9376 if (!lapic_in_kernel(vcpu)) 9377 return; 9378 9379 if (vcpu->arch.apicv_active) 9380 return; 9381 9382 if (!vcpu->arch.apic->vapic_addr) 9383 max_irr = kvm_lapic_find_highest_irr(vcpu); 9384 else 9385 max_irr = -1; 9386 9387 if (max_irr != -1) 9388 max_irr >>= 4; 9389 9390 tpr = kvm_lapic_get_cr8(vcpu); 9391 9392 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 9393 } 9394 9395 9396 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 9397 { 9398 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 9399 kvm_x86_ops.nested_ops->triple_fault(vcpu); 9400 return 1; 9401 } 9402 9403 return kvm_x86_ops.nested_ops->check_events(vcpu); 9404 } 9405 9406 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 9407 { 9408 if (vcpu->arch.exception.error_code && !is_protmode(vcpu)) 9409 vcpu->arch.exception.error_code = false; 9410 static_call(kvm_x86_queue_exception)(vcpu); 9411 } 9412 9413 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit) 9414 { 9415 int r; 9416 bool can_inject = true; 9417 9418 /* try to reinject previous events if any */ 9419 9420 if (vcpu->arch.exception.injected) { 9421 kvm_inject_exception(vcpu); 9422 can_inject = false; 9423 } 9424 /* 9425 * Do not inject an NMI or interrupt if there is a pending 9426 * exception. Exceptions and interrupts are recognized at 9427 * instruction boundaries, i.e. the start of an instruction. 9428 * Trap-like exceptions, e.g. #DB, have higher priority than 9429 * NMIs and interrupts, i.e. traps are recognized before an 9430 * NMI/interrupt that's pending on the same instruction. 9431 * Fault-like exceptions, e.g. #GP and #PF, are the lowest 9432 * priority, but are only generated (pended) during instruction 9433 * execution, i.e. a pending fault-like exception means the 9434 * fault occurred on the *previous* instruction and must be 9435 * serviced prior to recognizing any new events in order to 9436 * fully complete the previous instruction. 9437 */ 9438 else if (!vcpu->arch.exception.pending) { 9439 if (vcpu->arch.nmi_injected) { 9440 static_call(kvm_x86_inject_nmi)(vcpu); 9441 can_inject = false; 9442 } else if (vcpu->arch.interrupt.injected) { 9443 static_call(kvm_x86_inject_irq)(vcpu); 9444 can_inject = false; 9445 } 9446 } 9447 9448 WARN_ON_ONCE(vcpu->arch.exception.injected && 9449 vcpu->arch.exception.pending); 9450 9451 /* 9452 * Call check_nested_events() even if we reinjected a previous event 9453 * in order for caller to determine if it should require immediate-exit 9454 * from L2 to L1 due to pending L1 events which require exit 9455 * from L2 to L1. 9456 */ 9457 if (is_guest_mode(vcpu)) { 9458 r = kvm_check_nested_events(vcpu); 9459 if (r < 0) 9460 goto out; 9461 } 9462 9463 /* try to inject new event if pending */ 9464 if (vcpu->arch.exception.pending) { 9465 trace_kvm_inj_exception(vcpu->arch.exception.nr, 9466 vcpu->arch.exception.has_error_code, 9467 vcpu->arch.exception.error_code); 9468 9469 vcpu->arch.exception.pending = false; 9470 vcpu->arch.exception.injected = true; 9471 9472 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT) 9473 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 9474 X86_EFLAGS_RF); 9475 9476 if (vcpu->arch.exception.nr == DB_VECTOR) { 9477 kvm_deliver_exception_payload(vcpu); 9478 if (vcpu->arch.dr7 & DR7_GD) { 9479 vcpu->arch.dr7 &= ~DR7_GD; 9480 kvm_update_dr7(vcpu); 9481 } 9482 } 9483 9484 kvm_inject_exception(vcpu); 9485 can_inject = false; 9486 } 9487 9488 /* Don't inject interrupts if the user asked to avoid doing so */ 9489 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 9490 return 0; 9491 9492 /* 9493 * Finally, inject interrupt events. If an event cannot be injected 9494 * due to architectural conditions (e.g. IF=0) a window-open exit 9495 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 9496 * and can architecturally be injected, but we cannot do it right now: 9497 * an interrupt could have arrived just now and we have to inject it 9498 * as a vmexit, or there could already an event in the queue, which is 9499 * indicated by can_inject. In that case we request an immediate exit 9500 * in order to make progress and get back here for another iteration. 9501 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 9502 */ 9503 if (vcpu->arch.smi_pending) { 9504 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 9505 if (r < 0) 9506 goto out; 9507 if (r) { 9508 vcpu->arch.smi_pending = false; 9509 ++vcpu->arch.smi_count; 9510 enter_smm(vcpu); 9511 can_inject = false; 9512 } else 9513 static_call(kvm_x86_enable_smi_window)(vcpu); 9514 } 9515 9516 if (vcpu->arch.nmi_pending) { 9517 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 9518 if (r < 0) 9519 goto out; 9520 if (r) { 9521 --vcpu->arch.nmi_pending; 9522 vcpu->arch.nmi_injected = true; 9523 static_call(kvm_x86_inject_nmi)(vcpu); 9524 can_inject = false; 9525 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 9526 } 9527 if (vcpu->arch.nmi_pending) 9528 static_call(kvm_x86_enable_nmi_window)(vcpu); 9529 } 9530 9531 if (kvm_cpu_has_injectable_intr(vcpu)) { 9532 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 9533 if (r < 0) 9534 goto out; 9535 if (r) { 9536 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false); 9537 static_call(kvm_x86_inject_irq)(vcpu); 9538 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 9539 } 9540 if (kvm_cpu_has_injectable_intr(vcpu)) 9541 static_call(kvm_x86_enable_irq_window)(vcpu); 9542 } 9543 9544 if (is_guest_mode(vcpu) && 9545 kvm_x86_ops.nested_ops->hv_timer_pending && 9546 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu)) 9547 *req_immediate_exit = true; 9548 9549 WARN_ON(vcpu->arch.exception.pending); 9550 return 0; 9551 9552 out: 9553 if (r == -EBUSY) { 9554 *req_immediate_exit = true; 9555 r = 0; 9556 } 9557 return r; 9558 } 9559 9560 static void process_nmi(struct kvm_vcpu *vcpu) 9561 { 9562 unsigned limit = 2; 9563 9564 /* 9565 * x86 is limited to one NMI running, and one NMI pending after it. 9566 * If an NMI is already in progress, limit further NMIs to just one. 9567 * Otherwise, allow two (and we'll inject the first one immediately). 9568 */ 9569 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 9570 limit = 1; 9571 9572 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 9573 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 9574 kvm_make_request(KVM_REQ_EVENT, vcpu); 9575 } 9576 9577 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg) 9578 { 9579 u32 flags = 0; 9580 flags |= seg->g << 23; 9581 flags |= seg->db << 22; 9582 flags |= seg->l << 21; 9583 flags |= seg->avl << 20; 9584 flags |= seg->present << 15; 9585 flags |= seg->dpl << 13; 9586 flags |= seg->s << 12; 9587 flags |= seg->type << 8; 9588 return flags; 9589 } 9590 9591 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n) 9592 { 9593 struct kvm_segment seg; 9594 int offset; 9595 9596 kvm_get_segment(vcpu, &seg, n); 9597 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector); 9598 9599 if (n < 3) 9600 offset = 0x7f84 + n * 12; 9601 else 9602 offset = 0x7f2c + (n - 3) * 12; 9603 9604 put_smstate(u32, buf, offset + 8, seg.base); 9605 put_smstate(u32, buf, offset + 4, seg.limit); 9606 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg)); 9607 } 9608 9609 #ifdef CONFIG_X86_64 9610 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n) 9611 { 9612 struct kvm_segment seg; 9613 int offset; 9614 u16 flags; 9615 9616 kvm_get_segment(vcpu, &seg, n); 9617 offset = 0x7e00 + n * 16; 9618 9619 flags = enter_smm_get_segment_flags(&seg) >> 8; 9620 put_smstate(u16, buf, offset, seg.selector); 9621 put_smstate(u16, buf, offset + 2, flags); 9622 put_smstate(u32, buf, offset + 4, seg.limit); 9623 put_smstate(u64, buf, offset + 8, seg.base); 9624 } 9625 #endif 9626 9627 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf) 9628 { 9629 struct desc_ptr dt; 9630 struct kvm_segment seg; 9631 unsigned long val; 9632 int i; 9633 9634 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu)); 9635 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu)); 9636 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu)); 9637 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu)); 9638 9639 for (i = 0; i < 8; i++) 9640 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i)); 9641 9642 kvm_get_dr(vcpu, 6, &val); 9643 put_smstate(u32, buf, 0x7fcc, (u32)val); 9644 kvm_get_dr(vcpu, 7, &val); 9645 put_smstate(u32, buf, 0x7fc8, (u32)val); 9646 9647 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 9648 put_smstate(u32, buf, 0x7fc4, seg.selector); 9649 put_smstate(u32, buf, 0x7f64, seg.base); 9650 put_smstate(u32, buf, 0x7f60, seg.limit); 9651 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg)); 9652 9653 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 9654 put_smstate(u32, buf, 0x7fc0, seg.selector); 9655 put_smstate(u32, buf, 0x7f80, seg.base); 9656 put_smstate(u32, buf, 0x7f7c, seg.limit); 9657 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg)); 9658 9659 static_call(kvm_x86_get_gdt)(vcpu, &dt); 9660 put_smstate(u32, buf, 0x7f74, dt.address); 9661 put_smstate(u32, buf, 0x7f70, dt.size); 9662 9663 static_call(kvm_x86_get_idt)(vcpu, &dt); 9664 put_smstate(u32, buf, 0x7f58, dt.address); 9665 put_smstate(u32, buf, 0x7f54, dt.size); 9666 9667 for (i = 0; i < 6; i++) 9668 enter_smm_save_seg_32(vcpu, buf, i); 9669 9670 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu)); 9671 9672 /* revision id */ 9673 put_smstate(u32, buf, 0x7efc, 0x00020000); 9674 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase); 9675 } 9676 9677 #ifdef CONFIG_X86_64 9678 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf) 9679 { 9680 struct desc_ptr dt; 9681 struct kvm_segment seg; 9682 unsigned long val; 9683 int i; 9684 9685 for (i = 0; i < 16; i++) 9686 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i)); 9687 9688 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu)); 9689 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu)); 9690 9691 kvm_get_dr(vcpu, 6, &val); 9692 put_smstate(u64, buf, 0x7f68, val); 9693 kvm_get_dr(vcpu, 7, &val); 9694 put_smstate(u64, buf, 0x7f60, val); 9695 9696 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu)); 9697 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu)); 9698 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu)); 9699 9700 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase); 9701 9702 /* revision id */ 9703 put_smstate(u32, buf, 0x7efc, 0x00020064); 9704 9705 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer); 9706 9707 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 9708 put_smstate(u16, buf, 0x7e90, seg.selector); 9709 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8); 9710 put_smstate(u32, buf, 0x7e94, seg.limit); 9711 put_smstate(u64, buf, 0x7e98, seg.base); 9712 9713 static_call(kvm_x86_get_idt)(vcpu, &dt); 9714 put_smstate(u32, buf, 0x7e84, dt.size); 9715 put_smstate(u64, buf, 0x7e88, dt.address); 9716 9717 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 9718 put_smstate(u16, buf, 0x7e70, seg.selector); 9719 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8); 9720 put_smstate(u32, buf, 0x7e74, seg.limit); 9721 put_smstate(u64, buf, 0x7e78, seg.base); 9722 9723 static_call(kvm_x86_get_gdt)(vcpu, &dt); 9724 put_smstate(u32, buf, 0x7e64, dt.size); 9725 put_smstate(u64, buf, 0x7e68, dt.address); 9726 9727 for (i = 0; i < 6; i++) 9728 enter_smm_save_seg_64(vcpu, buf, i); 9729 } 9730 #endif 9731 9732 static void enter_smm(struct kvm_vcpu *vcpu) 9733 { 9734 struct kvm_segment cs, ds; 9735 struct desc_ptr dt; 9736 unsigned long cr0; 9737 char buf[512]; 9738 9739 memset(buf, 0, 512); 9740 #ifdef CONFIG_X86_64 9741 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 9742 enter_smm_save_state_64(vcpu, buf); 9743 else 9744 #endif 9745 enter_smm_save_state_32(vcpu, buf); 9746 9747 /* 9748 * Give enter_smm() a chance to make ISA-specific changes to the vCPU 9749 * state (e.g. leave guest mode) after we've saved the state into the 9750 * SMM state-save area. 9751 */ 9752 static_call(kvm_x86_enter_smm)(vcpu, buf); 9753 9754 kvm_smm_changed(vcpu, true); 9755 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf)); 9756 9757 if (static_call(kvm_x86_get_nmi_mask)(vcpu)) 9758 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 9759 else 9760 static_call(kvm_x86_set_nmi_mask)(vcpu, true); 9761 9762 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 9763 kvm_rip_write(vcpu, 0x8000); 9764 9765 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG); 9766 static_call(kvm_x86_set_cr0)(vcpu, cr0); 9767 vcpu->arch.cr0 = cr0; 9768 9769 static_call(kvm_x86_set_cr4)(vcpu, 0); 9770 9771 /* Undocumented: IDT limit is set to zero on entry to SMM. */ 9772 dt.address = dt.size = 0; 9773 static_call(kvm_x86_set_idt)(vcpu, &dt); 9774 9775 kvm_set_dr(vcpu, 7, DR7_FIXED_1); 9776 9777 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff; 9778 cs.base = vcpu->arch.smbase; 9779 9780 ds.selector = 0; 9781 ds.base = 0; 9782 9783 cs.limit = ds.limit = 0xffffffff; 9784 cs.type = ds.type = 0x3; 9785 cs.dpl = ds.dpl = 0; 9786 cs.db = ds.db = 0; 9787 cs.s = ds.s = 1; 9788 cs.l = ds.l = 0; 9789 cs.g = ds.g = 1; 9790 cs.avl = ds.avl = 0; 9791 cs.present = ds.present = 1; 9792 cs.unusable = ds.unusable = 0; 9793 cs.padding = ds.padding = 0; 9794 9795 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 9796 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS); 9797 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES); 9798 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS); 9799 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS); 9800 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS); 9801 9802 #ifdef CONFIG_X86_64 9803 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 9804 static_call(kvm_x86_set_efer)(vcpu, 0); 9805 #endif 9806 9807 kvm_update_cpuid_runtime(vcpu); 9808 kvm_mmu_reset_context(vcpu); 9809 } 9810 9811 static void process_smi(struct kvm_vcpu *vcpu) 9812 { 9813 vcpu->arch.smi_pending = true; 9814 kvm_make_request(KVM_REQ_EVENT, vcpu); 9815 } 9816 9817 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 9818 unsigned long *vcpu_bitmap) 9819 { 9820 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 9821 } 9822 9823 void kvm_make_scan_ioapic_request(struct kvm *kvm) 9824 { 9825 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 9826 } 9827 9828 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 9829 { 9830 bool activate; 9831 9832 if (!lapic_in_kernel(vcpu)) 9833 return; 9834 9835 down_read(&vcpu->kvm->arch.apicv_update_lock); 9836 9837 activate = kvm_vcpu_apicv_activated(vcpu); 9838 9839 if (vcpu->arch.apicv_active == activate) 9840 goto out; 9841 9842 vcpu->arch.apicv_active = activate; 9843 kvm_apic_update_apicv(vcpu); 9844 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 9845 9846 /* 9847 * When APICv gets disabled, we may still have injected interrupts 9848 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 9849 * still active when the interrupt got accepted. Make sure 9850 * inject_pending_event() is called to check for that. 9851 */ 9852 if (!vcpu->arch.apicv_active) 9853 kvm_make_request(KVM_REQ_EVENT, vcpu); 9854 9855 out: 9856 up_read(&vcpu->kvm->arch.apicv_update_lock); 9857 } 9858 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv); 9859 9860 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 9861 enum kvm_apicv_inhibit reason, bool set) 9862 { 9863 unsigned long old, new; 9864 9865 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 9866 9867 if (!static_call(kvm_x86_check_apicv_inhibit_reasons)(reason)) 9868 return; 9869 9870 old = new = kvm->arch.apicv_inhibit_reasons; 9871 9872 set_or_clear_apicv_inhibit(&new, reason, set); 9873 9874 if (!!old != !!new) { 9875 /* 9876 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 9877 * false positives in the sanity check WARN in svm_vcpu_run(). 9878 * This task will wait for all vCPUs to ack the kick IRQ before 9879 * updating apicv_inhibit_reasons, and all other vCPUs will 9880 * block on acquiring apicv_update_lock so that vCPUs can't 9881 * redo svm_vcpu_run() without seeing the new inhibit state. 9882 * 9883 * Note, holding apicv_update_lock and taking it in the read 9884 * side (handling the request) also prevents other vCPUs from 9885 * servicing the request with a stale apicv_inhibit_reasons. 9886 */ 9887 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 9888 kvm->arch.apicv_inhibit_reasons = new; 9889 if (new) { 9890 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 9891 kvm_zap_gfn_range(kvm, gfn, gfn+1); 9892 } 9893 } else { 9894 kvm->arch.apicv_inhibit_reasons = new; 9895 } 9896 } 9897 9898 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 9899 enum kvm_apicv_inhibit reason, bool set) 9900 { 9901 if (!enable_apicv) 9902 return; 9903 9904 down_write(&kvm->arch.apicv_update_lock); 9905 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 9906 up_write(&kvm->arch.apicv_update_lock); 9907 } 9908 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 9909 9910 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 9911 { 9912 if (!kvm_apic_present(vcpu)) 9913 return; 9914 9915 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 9916 9917 if (irqchip_split(vcpu->kvm)) 9918 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 9919 else { 9920 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 9921 if (ioapic_in_kernel(vcpu->kvm)) 9922 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 9923 } 9924 9925 if (is_guest_mode(vcpu)) 9926 vcpu->arch.load_eoi_exitmap_pending = true; 9927 else 9928 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 9929 } 9930 9931 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 9932 { 9933 u64 eoi_exit_bitmap[4]; 9934 9935 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 9936 return; 9937 9938 if (to_hv_vcpu(vcpu)) { 9939 bitmap_or((ulong *)eoi_exit_bitmap, 9940 vcpu->arch.ioapic_handled_vectors, 9941 to_hv_synic(vcpu)->vec_bitmap, 256); 9942 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 9943 return; 9944 } 9945 9946 static_call_cond(kvm_x86_load_eoi_exitmap)( 9947 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 9948 } 9949 9950 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 9951 unsigned long start, unsigned long end) 9952 { 9953 unsigned long apic_address; 9954 9955 /* 9956 * The physical address of apic access page is stored in the VMCS. 9957 * Update it when it becomes invalid. 9958 */ 9959 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 9960 if (start <= apic_address && apic_address < end) 9961 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 9962 } 9963 9964 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 9965 { 9966 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm); 9967 } 9968 9969 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 9970 { 9971 if (!lapic_in_kernel(vcpu)) 9972 return; 9973 9974 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu); 9975 } 9976 9977 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 9978 { 9979 smp_send_reschedule(vcpu->cpu); 9980 } 9981 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 9982 9983 /* 9984 * Called within kvm->srcu read side. 9985 * Returns 1 to let vcpu_run() continue the guest execution loop without 9986 * exiting to the userspace. Otherwise, the value will be returned to the 9987 * userspace. 9988 */ 9989 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 9990 { 9991 int r; 9992 bool req_int_win = 9993 dm_request_for_irq_injection(vcpu) && 9994 kvm_cpu_accept_dm_intr(vcpu); 9995 fastpath_t exit_fastpath; 9996 9997 bool req_immediate_exit = false; 9998 9999 /* Forbid vmenter if vcpu dirty ring is soft-full */ 10000 if (unlikely(vcpu->kvm->dirty_ring_size && 10001 kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) { 10002 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL; 10003 trace_kvm_dirty_ring_exit(vcpu); 10004 r = 0; 10005 goto out; 10006 } 10007 10008 if (kvm_request_pending(vcpu)) { 10009 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10010 r = -EIO; 10011 goto out; 10012 } 10013 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10014 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10015 r = 0; 10016 goto out; 10017 } 10018 } 10019 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10020 kvm_mmu_free_obsolete_roots(vcpu); 10021 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10022 __kvm_migrate_timers(vcpu); 10023 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10024 kvm_update_masterclock(vcpu->kvm); 10025 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10026 kvm_gen_kvmclock_update(vcpu); 10027 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10028 r = kvm_guest_time_update(vcpu); 10029 if (unlikely(r)) 10030 goto out; 10031 } 10032 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10033 kvm_mmu_sync_roots(vcpu); 10034 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10035 kvm_mmu_load_pgd(vcpu); 10036 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { 10037 kvm_vcpu_flush_tlb_all(vcpu); 10038 10039 /* Flushing all ASIDs flushes the current ASID... */ 10040 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 10041 } 10042 kvm_service_local_tlb_flush_requests(vcpu); 10043 10044 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10045 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10046 r = 0; 10047 goto out; 10048 } 10049 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10050 if (is_guest_mode(vcpu)) { 10051 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10052 } else { 10053 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10054 vcpu->mmio_needed = 0; 10055 r = 0; 10056 goto out; 10057 } 10058 } 10059 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10060 /* Page is swapped out. Do synthetic halt */ 10061 vcpu->arch.apf.halted = true; 10062 r = 1; 10063 goto out; 10064 } 10065 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10066 record_steal_time(vcpu); 10067 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10068 process_smi(vcpu); 10069 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10070 process_nmi(vcpu); 10071 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10072 kvm_pmu_handle_event(vcpu); 10073 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10074 kvm_pmu_deliver_pmi(vcpu); 10075 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10076 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10077 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10078 vcpu->arch.ioapic_handled_vectors)) { 10079 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10080 vcpu->run->eoi.vector = 10081 vcpu->arch.pending_ioapic_eoi; 10082 r = 0; 10083 goto out; 10084 } 10085 } 10086 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10087 vcpu_scan_ioapic(vcpu); 10088 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10089 vcpu_load_eoi_exitmap(vcpu); 10090 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10091 kvm_vcpu_reload_apic_access_page(vcpu); 10092 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10093 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10094 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10095 vcpu->run->system_event.ndata = 0; 10096 r = 0; 10097 goto out; 10098 } 10099 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10100 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10101 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10102 vcpu->run->system_event.ndata = 0; 10103 r = 0; 10104 goto out; 10105 } 10106 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10107 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10108 10109 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10110 vcpu->run->hyperv = hv_vcpu->exit; 10111 r = 0; 10112 goto out; 10113 } 10114 10115 /* 10116 * KVM_REQ_HV_STIMER has to be processed after 10117 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10118 * depend on the guest clock being up-to-date 10119 */ 10120 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10121 kvm_hv_process_stimers(vcpu); 10122 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10123 kvm_vcpu_update_apicv(vcpu); 10124 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10125 kvm_check_async_pf_completion(vcpu); 10126 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10127 static_call(kvm_x86_msr_filter_changed)(vcpu); 10128 10129 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10130 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 10131 } 10132 10133 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10134 kvm_xen_has_interrupt(vcpu)) { 10135 ++vcpu->stat.req_event; 10136 r = kvm_apic_accept_events(vcpu); 10137 if (r < 0) { 10138 r = 0; 10139 goto out; 10140 } 10141 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10142 r = 1; 10143 goto out; 10144 } 10145 10146 r = inject_pending_event(vcpu, &req_immediate_exit); 10147 if (r < 0) { 10148 r = 0; 10149 goto out; 10150 } 10151 if (req_int_win) 10152 static_call(kvm_x86_enable_irq_window)(vcpu); 10153 10154 if (kvm_lapic_enabled(vcpu)) { 10155 update_cr8_intercept(vcpu); 10156 kvm_lapic_sync_to_vapic(vcpu); 10157 } 10158 } 10159 10160 r = kvm_mmu_reload(vcpu); 10161 if (unlikely(r)) { 10162 goto cancel_injection; 10163 } 10164 10165 preempt_disable(); 10166 10167 static_call(kvm_x86_prepare_switch_to_guest)(vcpu); 10168 10169 /* 10170 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10171 * IPI are then delayed after guest entry, which ensures that they 10172 * result in virtual interrupt delivery. 10173 */ 10174 local_irq_disable(); 10175 10176 /* Store vcpu->apicv_active before vcpu->mode. */ 10177 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10178 10179 kvm_vcpu_srcu_read_unlock(vcpu); 10180 10181 /* 10182 * 1) We should set ->mode before checking ->requests. Please see 10183 * the comment in kvm_vcpu_exiting_guest_mode(). 10184 * 10185 * 2) For APICv, we should set ->mode before checking PID.ON. This 10186 * pairs with the memory barrier implicit in pi_test_and_set_on 10187 * (see vmx_deliver_posted_interrupt). 10188 * 10189 * 3) This also orders the write to mode from any reads to the page 10190 * tables done while the VCPU is running. Please see the comment 10191 * in kvm_flush_remote_tlbs. 10192 */ 10193 smp_mb__after_srcu_read_unlock(); 10194 10195 /* 10196 * Process pending posted interrupts to handle the case where the 10197 * notification IRQ arrived in the host, or was never sent (because the 10198 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10199 * status, KVM doesn't update assigned devices when APICv is inhibited, 10200 * i.e. they can post interrupts even if APICv is temporarily disabled. 10201 */ 10202 if (kvm_lapic_enabled(vcpu)) 10203 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10204 10205 if (kvm_vcpu_exit_request(vcpu)) { 10206 vcpu->mode = OUTSIDE_GUEST_MODE; 10207 smp_wmb(); 10208 local_irq_enable(); 10209 preempt_enable(); 10210 kvm_vcpu_srcu_read_lock(vcpu); 10211 r = 1; 10212 goto cancel_injection; 10213 } 10214 10215 if (req_immediate_exit) { 10216 kvm_make_request(KVM_REQ_EVENT, vcpu); 10217 static_call(kvm_x86_request_immediate_exit)(vcpu); 10218 } 10219 10220 fpregs_assert_state_consistent(); 10221 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10222 switch_fpu_return(); 10223 10224 if (vcpu->arch.guest_fpu.xfd_err) 10225 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10226 10227 if (unlikely(vcpu->arch.switch_db_regs)) { 10228 set_debugreg(0, 7); 10229 set_debugreg(vcpu->arch.eff_db[0], 0); 10230 set_debugreg(vcpu->arch.eff_db[1], 1); 10231 set_debugreg(vcpu->arch.eff_db[2], 2); 10232 set_debugreg(vcpu->arch.eff_db[3], 3); 10233 } else if (unlikely(hw_breakpoint_active())) { 10234 set_debugreg(0, 7); 10235 } 10236 10237 guest_timing_enter_irqoff(); 10238 10239 for (;;) { 10240 /* 10241 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10242 * update must kick and wait for all vCPUs before toggling the 10243 * per-VM state, and responsing vCPUs must wait for the update 10244 * to complete before servicing KVM_REQ_APICV_UPDATE. 10245 */ 10246 WARN_ON_ONCE(kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)); 10247 10248 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu); 10249 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 10250 break; 10251 10252 if (kvm_lapic_enabled(vcpu)) 10253 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10254 10255 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 10256 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 10257 break; 10258 } 10259 } 10260 10261 /* 10262 * Do this here before restoring debug registers on the host. And 10263 * since we do this before handling the vmexit, a DR access vmexit 10264 * can (a) read the correct value of the debug registers, (b) set 10265 * KVM_DEBUGREG_WONT_EXIT again. 10266 */ 10267 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 10268 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 10269 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 10270 kvm_update_dr0123(vcpu); 10271 kvm_update_dr7(vcpu); 10272 } 10273 10274 /* 10275 * If the guest has used debug registers, at least dr7 10276 * will be disabled while returning to the host. 10277 * If we don't have active breakpoints in the host, we don't 10278 * care about the messed up debug address registers. But if 10279 * we have some of them active, restore the old state. 10280 */ 10281 if (hw_breakpoint_active()) 10282 hw_breakpoint_restore(); 10283 10284 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 10285 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 10286 10287 vcpu->mode = OUTSIDE_GUEST_MODE; 10288 smp_wmb(); 10289 10290 /* 10291 * Sync xfd before calling handle_exit_irqoff() which may 10292 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 10293 * in #NM irqoff handler). 10294 */ 10295 if (vcpu->arch.xfd_no_write_intercept) 10296 fpu_sync_guest_vmexit_xfd_state(); 10297 10298 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 10299 10300 if (vcpu->arch.guest_fpu.xfd_err) 10301 wrmsrl(MSR_IA32_XFD_ERR, 0); 10302 10303 /* 10304 * Consume any pending interrupts, including the possible source of 10305 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 10306 * An instruction is required after local_irq_enable() to fully unblock 10307 * interrupts on processors that implement an interrupt shadow, the 10308 * stat.exits increment will do nicely. 10309 */ 10310 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 10311 local_irq_enable(); 10312 ++vcpu->stat.exits; 10313 local_irq_disable(); 10314 kvm_after_interrupt(vcpu); 10315 10316 /* 10317 * Wait until after servicing IRQs to account guest time so that any 10318 * ticks that occurred while running the guest are properly accounted 10319 * to the guest. Waiting until IRQs are enabled degrades the accuracy 10320 * of accounting via context tracking, but the loss of accuracy is 10321 * acceptable for all known use cases. 10322 */ 10323 guest_timing_exit_irqoff(); 10324 10325 local_irq_enable(); 10326 preempt_enable(); 10327 10328 kvm_vcpu_srcu_read_lock(vcpu); 10329 10330 /* 10331 * Profile KVM exit RIPs: 10332 */ 10333 if (unlikely(prof_on == KVM_PROFILING)) { 10334 unsigned long rip = kvm_rip_read(vcpu); 10335 profile_hit(KVM_PROFILING, (void *)rip); 10336 } 10337 10338 if (unlikely(vcpu->arch.tsc_always_catchup)) 10339 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 10340 10341 if (vcpu->arch.apic_attention) 10342 kvm_lapic_sync_from_vapic(vcpu); 10343 10344 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 10345 return r; 10346 10347 cancel_injection: 10348 if (req_immediate_exit) 10349 kvm_make_request(KVM_REQ_EVENT, vcpu); 10350 static_call(kvm_x86_cancel_injection)(vcpu); 10351 if (unlikely(vcpu->arch.apic_attention)) 10352 kvm_lapic_sync_from_vapic(vcpu); 10353 out: 10354 return r; 10355 } 10356 10357 /* Called within kvm->srcu read side. */ 10358 static inline int vcpu_block(struct kvm_vcpu *vcpu) 10359 { 10360 bool hv_timer; 10361 10362 if (!kvm_arch_vcpu_runnable(vcpu)) { 10363 /* 10364 * Switch to the software timer before halt-polling/blocking as 10365 * the guest's timer may be a break event for the vCPU, and the 10366 * hypervisor timer runs only when the CPU is in guest mode. 10367 * Switch before halt-polling so that KVM recognizes an expired 10368 * timer before blocking. 10369 */ 10370 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 10371 if (hv_timer) 10372 kvm_lapic_switch_to_sw_timer(vcpu); 10373 10374 kvm_vcpu_srcu_read_unlock(vcpu); 10375 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 10376 kvm_vcpu_halt(vcpu); 10377 else 10378 kvm_vcpu_block(vcpu); 10379 kvm_vcpu_srcu_read_lock(vcpu); 10380 10381 if (hv_timer) 10382 kvm_lapic_switch_to_hv_timer(vcpu); 10383 10384 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu)) 10385 return 1; 10386 } 10387 10388 if (kvm_apic_accept_events(vcpu) < 0) 10389 return 0; 10390 switch(vcpu->arch.mp_state) { 10391 case KVM_MP_STATE_HALTED: 10392 case KVM_MP_STATE_AP_RESET_HOLD: 10393 vcpu->arch.pv.pv_unhalted = false; 10394 vcpu->arch.mp_state = 10395 KVM_MP_STATE_RUNNABLE; 10396 fallthrough; 10397 case KVM_MP_STATE_RUNNABLE: 10398 vcpu->arch.apf.halted = false; 10399 break; 10400 case KVM_MP_STATE_INIT_RECEIVED: 10401 break; 10402 default: 10403 return -EINTR; 10404 } 10405 return 1; 10406 } 10407 10408 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 10409 { 10410 if (is_guest_mode(vcpu)) 10411 kvm_check_nested_events(vcpu); 10412 10413 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 10414 !vcpu->arch.apf.halted); 10415 } 10416 10417 /* Called within kvm->srcu read side. */ 10418 static int vcpu_run(struct kvm_vcpu *vcpu) 10419 { 10420 int r; 10421 10422 vcpu->arch.l1tf_flush_l1d = true; 10423 10424 for (;;) { 10425 if (kvm_vcpu_running(vcpu)) { 10426 r = vcpu_enter_guest(vcpu); 10427 } else { 10428 r = vcpu_block(vcpu); 10429 } 10430 10431 if (r <= 0) 10432 break; 10433 10434 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 10435 if (kvm_xen_has_pending_events(vcpu)) 10436 kvm_xen_inject_pending_events(vcpu); 10437 10438 if (kvm_cpu_has_pending_timer(vcpu)) 10439 kvm_inject_pending_timer_irqs(vcpu); 10440 10441 if (dm_request_for_irq_injection(vcpu) && 10442 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 10443 r = 0; 10444 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 10445 ++vcpu->stat.request_irq_exits; 10446 break; 10447 } 10448 10449 if (__xfer_to_guest_mode_work_pending()) { 10450 kvm_vcpu_srcu_read_unlock(vcpu); 10451 r = xfer_to_guest_mode_handle_work(vcpu); 10452 kvm_vcpu_srcu_read_lock(vcpu); 10453 if (r) 10454 return r; 10455 } 10456 } 10457 10458 return r; 10459 } 10460 10461 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 10462 { 10463 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 10464 } 10465 10466 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 10467 { 10468 BUG_ON(!vcpu->arch.pio.count); 10469 10470 return complete_emulated_io(vcpu); 10471 } 10472 10473 /* 10474 * Implements the following, as a state machine: 10475 * 10476 * read: 10477 * for each fragment 10478 * for each mmio piece in the fragment 10479 * write gpa, len 10480 * exit 10481 * copy data 10482 * execute insn 10483 * 10484 * write: 10485 * for each fragment 10486 * for each mmio piece in the fragment 10487 * write gpa, len 10488 * copy data 10489 * exit 10490 */ 10491 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 10492 { 10493 struct kvm_run *run = vcpu->run; 10494 struct kvm_mmio_fragment *frag; 10495 unsigned len; 10496 10497 BUG_ON(!vcpu->mmio_needed); 10498 10499 /* Complete previous fragment */ 10500 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 10501 len = min(8u, frag->len); 10502 if (!vcpu->mmio_is_write) 10503 memcpy(frag->data, run->mmio.data, len); 10504 10505 if (frag->len <= 8) { 10506 /* Switch to the next fragment. */ 10507 frag++; 10508 vcpu->mmio_cur_fragment++; 10509 } else { 10510 /* Go forward to the next mmio piece. */ 10511 frag->data += len; 10512 frag->gpa += len; 10513 frag->len -= len; 10514 } 10515 10516 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 10517 vcpu->mmio_needed = 0; 10518 10519 /* FIXME: return into emulator if single-stepping. */ 10520 if (vcpu->mmio_is_write) 10521 return 1; 10522 vcpu->mmio_read_completed = 1; 10523 return complete_emulated_io(vcpu); 10524 } 10525 10526 run->exit_reason = KVM_EXIT_MMIO; 10527 run->mmio.phys_addr = frag->gpa; 10528 if (vcpu->mmio_is_write) 10529 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 10530 run->mmio.len = min(8u, frag->len); 10531 run->mmio.is_write = vcpu->mmio_is_write; 10532 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 10533 return 0; 10534 } 10535 10536 /* Swap (qemu) user FPU context for the guest FPU context. */ 10537 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 10538 { 10539 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 10540 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 10541 trace_kvm_fpu(1); 10542 } 10543 10544 /* When vcpu_run ends, restore user space FPU context. */ 10545 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 10546 { 10547 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 10548 ++vcpu->stat.fpu_reload; 10549 trace_kvm_fpu(0); 10550 } 10551 10552 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 10553 { 10554 struct kvm_run *kvm_run = vcpu->run; 10555 int r; 10556 10557 vcpu_load(vcpu); 10558 kvm_sigset_activate(vcpu); 10559 kvm_run->flags = 0; 10560 kvm_load_guest_fpu(vcpu); 10561 10562 kvm_vcpu_srcu_read_lock(vcpu); 10563 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 10564 if (kvm_run->immediate_exit) { 10565 r = -EINTR; 10566 goto out; 10567 } 10568 /* 10569 * It should be impossible for the hypervisor timer to be in 10570 * use before KVM has ever run the vCPU. 10571 */ 10572 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu)); 10573 10574 kvm_vcpu_srcu_read_unlock(vcpu); 10575 kvm_vcpu_block(vcpu); 10576 kvm_vcpu_srcu_read_lock(vcpu); 10577 10578 if (kvm_apic_accept_events(vcpu) < 0) { 10579 r = 0; 10580 goto out; 10581 } 10582 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 10583 r = -EAGAIN; 10584 if (signal_pending(current)) { 10585 r = -EINTR; 10586 kvm_run->exit_reason = KVM_EXIT_INTR; 10587 ++vcpu->stat.signal_exits; 10588 } 10589 goto out; 10590 } 10591 10592 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 10593 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 10594 r = -EINVAL; 10595 goto out; 10596 } 10597 10598 if (kvm_run->kvm_dirty_regs) { 10599 r = sync_regs(vcpu); 10600 if (r != 0) 10601 goto out; 10602 } 10603 10604 /* re-sync apic's tpr */ 10605 if (!lapic_in_kernel(vcpu)) { 10606 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 10607 r = -EINVAL; 10608 goto out; 10609 } 10610 } 10611 10612 if (unlikely(vcpu->arch.complete_userspace_io)) { 10613 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 10614 vcpu->arch.complete_userspace_io = NULL; 10615 r = cui(vcpu); 10616 if (r <= 0) 10617 goto out; 10618 } else 10619 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); 10620 10621 if (kvm_run->immediate_exit) { 10622 r = -EINTR; 10623 goto out; 10624 } 10625 10626 r = static_call(kvm_x86_vcpu_pre_run)(vcpu); 10627 if (r <= 0) 10628 goto out; 10629 10630 r = vcpu_run(vcpu); 10631 10632 out: 10633 kvm_put_guest_fpu(vcpu); 10634 if (kvm_run->kvm_valid_regs) 10635 store_regs(vcpu); 10636 post_kvm_run_save(vcpu); 10637 kvm_vcpu_srcu_read_unlock(vcpu); 10638 10639 kvm_sigset_deactivate(vcpu); 10640 vcpu_put(vcpu); 10641 return r; 10642 } 10643 10644 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10645 { 10646 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 10647 /* 10648 * We are here if userspace calls get_regs() in the middle of 10649 * instruction emulation. Registers state needs to be copied 10650 * back from emulation context to vcpu. Userspace shouldn't do 10651 * that usually, but some bad designed PV devices (vmware 10652 * backdoor interface) need this to work 10653 */ 10654 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 10655 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 10656 } 10657 regs->rax = kvm_rax_read(vcpu); 10658 regs->rbx = kvm_rbx_read(vcpu); 10659 regs->rcx = kvm_rcx_read(vcpu); 10660 regs->rdx = kvm_rdx_read(vcpu); 10661 regs->rsi = kvm_rsi_read(vcpu); 10662 regs->rdi = kvm_rdi_read(vcpu); 10663 regs->rsp = kvm_rsp_read(vcpu); 10664 regs->rbp = kvm_rbp_read(vcpu); 10665 #ifdef CONFIG_X86_64 10666 regs->r8 = kvm_r8_read(vcpu); 10667 regs->r9 = kvm_r9_read(vcpu); 10668 regs->r10 = kvm_r10_read(vcpu); 10669 regs->r11 = kvm_r11_read(vcpu); 10670 regs->r12 = kvm_r12_read(vcpu); 10671 regs->r13 = kvm_r13_read(vcpu); 10672 regs->r14 = kvm_r14_read(vcpu); 10673 regs->r15 = kvm_r15_read(vcpu); 10674 #endif 10675 10676 regs->rip = kvm_rip_read(vcpu); 10677 regs->rflags = kvm_get_rflags(vcpu); 10678 } 10679 10680 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10681 { 10682 vcpu_load(vcpu); 10683 __get_regs(vcpu, regs); 10684 vcpu_put(vcpu); 10685 return 0; 10686 } 10687 10688 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10689 { 10690 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 10691 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 10692 10693 kvm_rax_write(vcpu, regs->rax); 10694 kvm_rbx_write(vcpu, regs->rbx); 10695 kvm_rcx_write(vcpu, regs->rcx); 10696 kvm_rdx_write(vcpu, regs->rdx); 10697 kvm_rsi_write(vcpu, regs->rsi); 10698 kvm_rdi_write(vcpu, regs->rdi); 10699 kvm_rsp_write(vcpu, regs->rsp); 10700 kvm_rbp_write(vcpu, regs->rbp); 10701 #ifdef CONFIG_X86_64 10702 kvm_r8_write(vcpu, regs->r8); 10703 kvm_r9_write(vcpu, regs->r9); 10704 kvm_r10_write(vcpu, regs->r10); 10705 kvm_r11_write(vcpu, regs->r11); 10706 kvm_r12_write(vcpu, regs->r12); 10707 kvm_r13_write(vcpu, regs->r13); 10708 kvm_r14_write(vcpu, regs->r14); 10709 kvm_r15_write(vcpu, regs->r15); 10710 #endif 10711 10712 kvm_rip_write(vcpu, regs->rip); 10713 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 10714 10715 vcpu->arch.exception.pending = false; 10716 10717 kvm_make_request(KVM_REQ_EVENT, vcpu); 10718 } 10719 10720 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10721 { 10722 vcpu_load(vcpu); 10723 __set_regs(vcpu, regs); 10724 vcpu_put(vcpu); 10725 return 0; 10726 } 10727 10728 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 10729 { 10730 struct desc_ptr dt; 10731 10732 if (vcpu->arch.guest_state_protected) 10733 goto skip_protected_regs; 10734 10735 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 10736 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 10737 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 10738 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 10739 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 10740 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 10741 10742 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 10743 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 10744 10745 static_call(kvm_x86_get_idt)(vcpu, &dt); 10746 sregs->idt.limit = dt.size; 10747 sregs->idt.base = dt.address; 10748 static_call(kvm_x86_get_gdt)(vcpu, &dt); 10749 sregs->gdt.limit = dt.size; 10750 sregs->gdt.base = dt.address; 10751 10752 sregs->cr2 = vcpu->arch.cr2; 10753 sregs->cr3 = kvm_read_cr3(vcpu); 10754 10755 skip_protected_regs: 10756 sregs->cr0 = kvm_read_cr0(vcpu); 10757 sregs->cr4 = kvm_read_cr4(vcpu); 10758 sregs->cr8 = kvm_get_cr8(vcpu); 10759 sregs->efer = vcpu->arch.efer; 10760 sregs->apic_base = kvm_get_apic_base(vcpu); 10761 } 10762 10763 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 10764 { 10765 __get_sregs_common(vcpu, sregs); 10766 10767 if (vcpu->arch.guest_state_protected) 10768 return; 10769 10770 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 10771 set_bit(vcpu->arch.interrupt.nr, 10772 (unsigned long *)sregs->interrupt_bitmap); 10773 } 10774 10775 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 10776 { 10777 int i; 10778 10779 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 10780 10781 if (vcpu->arch.guest_state_protected) 10782 return; 10783 10784 if (is_pae_paging(vcpu)) { 10785 for (i = 0 ; i < 4 ; i++) 10786 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 10787 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 10788 } 10789 } 10790 10791 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 10792 struct kvm_sregs *sregs) 10793 { 10794 vcpu_load(vcpu); 10795 __get_sregs(vcpu, sregs); 10796 vcpu_put(vcpu); 10797 return 0; 10798 } 10799 10800 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 10801 struct kvm_mp_state *mp_state) 10802 { 10803 int r; 10804 10805 vcpu_load(vcpu); 10806 if (kvm_mpx_supported()) 10807 kvm_load_guest_fpu(vcpu); 10808 10809 r = kvm_apic_accept_events(vcpu); 10810 if (r < 0) 10811 goto out; 10812 r = 0; 10813 10814 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 10815 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 10816 vcpu->arch.pv.pv_unhalted) 10817 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 10818 else 10819 mp_state->mp_state = vcpu->arch.mp_state; 10820 10821 out: 10822 if (kvm_mpx_supported()) 10823 kvm_put_guest_fpu(vcpu); 10824 vcpu_put(vcpu); 10825 return r; 10826 } 10827 10828 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 10829 struct kvm_mp_state *mp_state) 10830 { 10831 int ret = -EINVAL; 10832 10833 vcpu_load(vcpu); 10834 10835 if (!lapic_in_kernel(vcpu) && 10836 mp_state->mp_state != KVM_MP_STATE_RUNNABLE) 10837 goto out; 10838 10839 /* 10840 * KVM_MP_STATE_INIT_RECEIVED means the processor is in 10841 * INIT state; latched init should be reported using 10842 * KVM_SET_VCPU_EVENTS, so reject it here. 10843 */ 10844 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) && 10845 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 10846 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 10847 goto out; 10848 10849 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 10850 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 10851 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 10852 } else 10853 vcpu->arch.mp_state = mp_state->mp_state; 10854 kvm_make_request(KVM_REQ_EVENT, vcpu); 10855 10856 ret = 0; 10857 out: 10858 vcpu_put(vcpu); 10859 return ret; 10860 } 10861 10862 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 10863 int reason, bool has_error_code, u32 error_code) 10864 { 10865 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 10866 int ret; 10867 10868 init_emulate_ctxt(vcpu); 10869 10870 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 10871 has_error_code, error_code); 10872 if (ret) { 10873 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 10874 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 10875 vcpu->run->internal.ndata = 0; 10876 return 0; 10877 } 10878 10879 kvm_rip_write(vcpu, ctxt->eip); 10880 kvm_set_rflags(vcpu, ctxt->eflags); 10881 return 1; 10882 } 10883 EXPORT_SYMBOL_GPL(kvm_task_switch); 10884 10885 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 10886 { 10887 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 10888 /* 10889 * When EFER.LME and CR0.PG are set, the processor is in 10890 * 64-bit mode (though maybe in a 32-bit code segment). 10891 * CR4.PAE and EFER.LMA must be set. 10892 */ 10893 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 10894 return false; 10895 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3)) 10896 return false; 10897 } else { 10898 /* 10899 * Not in 64-bit mode: EFER.LMA is clear and the code 10900 * segment cannot be 64-bit. 10901 */ 10902 if (sregs->efer & EFER_LMA || sregs->cs.l) 10903 return false; 10904 } 10905 10906 return kvm_is_valid_cr4(vcpu, sregs->cr4); 10907 } 10908 10909 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 10910 int *mmu_reset_needed, bool update_pdptrs) 10911 { 10912 struct msr_data apic_base_msr; 10913 int idx; 10914 struct desc_ptr dt; 10915 10916 if (!kvm_is_valid_sregs(vcpu, sregs)) 10917 return -EINVAL; 10918 10919 apic_base_msr.data = sregs->apic_base; 10920 apic_base_msr.host_initiated = true; 10921 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 10922 return -EINVAL; 10923 10924 if (vcpu->arch.guest_state_protected) 10925 return 0; 10926 10927 dt.size = sregs->idt.limit; 10928 dt.address = sregs->idt.base; 10929 static_call(kvm_x86_set_idt)(vcpu, &dt); 10930 dt.size = sregs->gdt.limit; 10931 dt.address = sregs->gdt.base; 10932 static_call(kvm_x86_set_gdt)(vcpu, &dt); 10933 10934 vcpu->arch.cr2 = sregs->cr2; 10935 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 10936 vcpu->arch.cr3 = sregs->cr3; 10937 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 10938 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); 10939 10940 kvm_set_cr8(vcpu, sregs->cr8); 10941 10942 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 10943 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 10944 10945 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 10946 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 10947 vcpu->arch.cr0 = sregs->cr0; 10948 10949 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 10950 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 10951 10952 if (update_pdptrs) { 10953 idx = srcu_read_lock(&vcpu->kvm->srcu); 10954 if (is_pae_paging(vcpu)) { 10955 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 10956 *mmu_reset_needed = 1; 10957 } 10958 srcu_read_unlock(&vcpu->kvm->srcu, idx); 10959 } 10960 10961 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 10962 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 10963 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 10964 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 10965 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 10966 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 10967 10968 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 10969 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 10970 10971 update_cr8_intercept(vcpu); 10972 10973 /* Older userspace won't unhalt the vcpu on reset. */ 10974 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 10975 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 10976 !is_protmode(vcpu)) 10977 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 10978 10979 return 0; 10980 } 10981 10982 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 10983 { 10984 int pending_vec, max_bits; 10985 int mmu_reset_needed = 0; 10986 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 10987 10988 if (ret) 10989 return ret; 10990 10991 if (mmu_reset_needed) 10992 kvm_mmu_reset_context(vcpu); 10993 10994 max_bits = KVM_NR_INTERRUPTS; 10995 pending_vec = find_first_bit( 10996 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 10997 10998 if (pending_vec < max_bits) { 10999 kvm_queue_interrupt(vcpu, pending_vec, false); 11000 pr_debug("Set back pending irq %d\n", pending_vec); 11001 kvm_make_request(KVM_REQ_EVENT, vcpu); 11002 } 11003 return 0; 11004 } 11005 11006 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11007 { 11008 int mmu_reset_needed = 0; 11009 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 11010 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 11011 !(sregs2->efer & EFER_LMA); 11012 int i, ret; 11013 11014 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 11015 return -EINVAL; 11016 11017 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 11018 return -EINVAL; 11019 11020 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 11021 &mmu_reset_needed, !valid_pdptrs); 11022 if (ret) 11023 return ret; 11024 11025 if (valid_pdptrs) { 11026 for (i = 0; i < 4 ; i++) 11027 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 11028 11029 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 11030 mmu_reset_needed = 1; 11031 vcpu->arch.pdptrs_from_userspace = true; 11032 } 11033 if (mmu_reset_needed) 11034 kvm_mmu_reset_context(vcpu); 11035 return 0; 11036 } 11037 11038 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 11039 struct kvm_sregs *sregs) 11040 { 11041 int ret; 11042 11043 vcpu_load(vcpu); 11044 ret = __set_sregs(vcpu, sregs); 11045 vcpu_put(vcpu); 11046 return ret; 11047 } 11048 11049 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 11050 { 11051 bool set = false; 11052 struct kvm_vcpu *vcpu; 11053 unsigned long i; 11054 11055 if (!enable_apicv) 11056 return; 11057 11058 down_write(&kvm->arch.apicv_update_lock); 11059 11060 kvm_for_each_vcpu(i, vcpu, kvm) { 11061 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 11062 set = true; 11063 break; 11064 } 11065 } 11066 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 11067 up_write(&kvm->arch.apicv_update_lock); 11068 } 11069 11070 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 11071 struct kvm_guest_debug *dbg) 11072 { 11073 unsigned long rflags; 11074 int i, r; 11075 11076 if (vcpu->arch.guest_state_protected) 11077 return -EINVAL; 11078 11079 vcpu_load(vcpu); 11080 11081 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 11082 r = -EBUSY; 11083 if (vcpu->arch.exception.pending) 11084 goto out; 11085 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 11086 kvm_queue_exception(vcpu, DB_VECTOR); 11087 else 11088 kvm_queue_exception(vcpu, BP_VECTOR); 11089 } 11090 11091 /* 11092 * Read rflags as long as potentially injected trace flags are still 11093 * filtered out. 11094 */ 11095 rflags = kvm_get_rflags(vcpu); 11096 11097 vcpu->guest_debug = dbg->control; 11098 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 11099 vcpu->guest_debug = 0; 11100 11101 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 11102 for (i = 0; i < KVM_NR_DB_REGS; ++i) 11103 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 11104 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 11105 } else { 11106 for (i = 0; i < KVM_NR_DB_REGS; i++) 11107 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 11108 } 11109 kvm_update_dr7(vcpu); 11110 11111 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 11112 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 11113 11114 /* 11115 * Trigger an rflags update that will inject or remove the trace 11116 * flags. 11117 */ 11118 kvm_set_rflags(vcpu, rflags); 11119 11120 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11121 11122 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 11123 11124 r = 0; 11125 11126 out: 11127 vcpu_put(vcpu); 11128 return r; 11129 } 11130 11131 /* 11132 * Translate a guest virtual address to a guest physical address. 11133 */ 11134 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 11135 struct kvm_translation *tr) 11136 { 11137 unsigned long vaddr = tr->linear_address; 11138 gpa_t gpa; 11139 int idx; 11140 11141 vcpu_load(vcpu); 11142 11143 idx = srcu_read_lock(&vcpu->kvm->srcu); 11144 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 11145 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11146 tr->physical_address = gpa; 11147 tr->valid = gpa != UNMAPPED_GVA; 11148 tr->writeable = 1; 11149 tr->usermode = 0; 11150 11151 vcpu_put(vcpu); 11152 return 0; 11153 } 11154 11155 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11156 { 11157 struct fxregs_state *fxsave; 11158 11159 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11160 return 0; 11161 11162 vcpu_load(vcpu); 11163 11164 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11165 memcpy(fpu->fpr, fxsave->st_space, 128); 11166 fpu->fcw = fxsave->cwd; 11167 fpu->fsw = fxsave->swd; 11168 fpu->ftwx = fxsave->twd; 11169 fpu->last_opcode = fxsave->fop; 11170 fpu->last_ip = fxsave->rip; 11171 fpu->last_dp = fxsave->rdp; 11172 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 11173 11174 vcpu_put(vcpu); 11175 return 0; 11176 } 11177 11178 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11179 { 11180 struct fxregs_state *fxsave; 11181 11182 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11183 return 0; 11184 11185 vcpu_load(vcpu); 11186 11187 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11188 11189 memcpy(fxsave->st_space, fpu->fpr, 128); 11190 fxsave->cwd = fpu->fcw; 11191 fxsave->swd = fpu->fsw; 11192 fxsave->twd = fpu->ftwx; 11193 fxsave->fop = fpu->last_opcode; 11194 fxsave->rip = fpu->last_ip; 11195 fxsave->rdp = fpu->last_dp; 11196 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 11197 11198 vcpu_put(vcpu); 11199 return 0; 11200 } 11201 11202 static void store_regs(struct kvm_vcpu *vcpu) 11203 { 11204 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 11205 11206 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 11207 __get_regs(vcpu, &vcpu->run->s.regs.regs); 11208 11209 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 11210 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 11211 11212 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 11213 kvm_vcpu_ioctl_x86_get_vcpu_events( 11214 vcpu, &vcpu->run->s.regs.events); 11215 } 11216 11217 static int sync_regs(struct kvm_vcpu *vcpu) 11218 { 11219 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 11220 __set_regs(vcpu, &vcpu->run->s.regs.regs); 11221 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 11222 } 11223 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 11224 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 11225 return -EINVAL; 11226 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 11227 } 11228 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 11229 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 11230 vcpu, &vcpu->run->s.regs.events)) 11231 return -EINVAL; 11232 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 11233 } 11234 11235 return 0; 11236 } 11237 11238 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 11239 { 11240 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 11241 pr_warn_once("kvm: SMP vm created on host with unstable TSC; " 11242 "guest TSC will not be reliable\n"); 11243 11244 return 0; 11245 } 11246 11247 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 11248 { 11249 struct page *page; 11250 int r; 11251 11252 vcpu->arch.last_vmentry_cpu = -1; 11253 vcpu->arch.regs_avail = ~0; 11254 vcpu->arch.regs_dirty = ~0; 11255 11256 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 11257 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11258 else 11259 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 11260 11261 r = kvm_mmu_create(vcpu); 11262 if (r < 0) 11263 return r; 11264 11265 if (irqchip_in_kernel(vcpu->kvm)) { 11266 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 11267 if (r < 0) 11268 goto fail_mmu_destroy; 11269 11270 /* 11271 * Defer evaluating inhibits until the vCPU is first run, as 11272 * this vCPU will not get notified of any changes until this 11273 * vCPU is visible to other vCPUs (marked online and added to 11274 * the set of vCPUs). Opportunistically mark APICv active as 11275 * VMX in particularly is highly unlikely to have inhibits. 11276 * Ignore the current per-VM APICv state so that vCPU creation 11277 * is guaranteed to run with a deterministic value, the request 11278 * will ensure the vCPU gets the correct state before VM-Entry. 11279 */ 11280 if (enable_apicv) { 11281 vcpu->arch.apicv_active = true; 11282 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 11283 } 11284 } else 11285 static_branch_inc(&kvm_has_noapic_vcpu); 11286 11287 r = -ENOMEM; 11288 11289 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 11290 if (!page) 11291 goto fail_free_lapic; 11292 vcpu->arch.pio_data = page_address(page); 11293 11294 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 11295 GFP_KERNEL_ACCOUNT); 11296 if (!vcpu->arch.mce_banks) 11297 goto fail_free_pio_data; 11298 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 11299 11300 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 11301 GFP_KERNEL_ACCOUNT)) 11302 goto fail_free_mce_banks; 11303 11304 if (!alloc_emulate_ctxt(vcpu)) 11305 goto free_wbinvd_dirty_mask; 11306 11307 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 11308 pr_err("kvm: failed to allocate vcpu's fpu\n"); 11309 goto free_emulate_ctxt; 11310 } 11311 11312 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 11313 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 11314 11315 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 11316 11317 kvm_async_pf_hash_reset(vcpu); 11318 kvm_pmu_init(vcpu); 11319 11320 vcpu->arch.pending_external_vector = -1; 11321 vcpu->arch.preempted_in_kernel = false; 11322 11323 #if IS_ENABLED(CONFIG_HYPERV) 11324 vcpu->arch.hv_root_tdp = INVALID_PAGE; 11325 #endif 11326 11327 r = static_call(kvm_x86_vcpu_create)(vcpu); 11328 if (r) 11329 goto free_guest_fpu; 11330 11331 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 11332 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 11333 kvm_xen_init_vcpu(vcpu); 11334 kvm_vcpu_mtrr_init(vcpu); 11335 vcpu_load(vcpu); 11336 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 11337 kvm_vcpu_reset(vcpu, false); 11338 kvm_init_mmu(vcpu); 11339 vcpu_put(vcpu); 11340 return 0; 11341 11342 free_guest_fpu: 11343 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11344 free_emulate_ctxt: 11345 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11346 free_wbinvd_dirty_mask: 11347 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11348 fail_free_mce_banks: 11349 kfree(vcpu->arch.mce_banks); 11350 fail_free_pio_data: 11351 free_page((unsigned long)vcpu->arch.pio_data); 11352 fail_free_lapic: 11353 kvm_free_lapic(vcpu); 11354 fail_mmu_destroy: 11355 kvm_mmu_destroy(vcpu); 11356 return r; 11357 } 11358 11359 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 11360 { 11361 struct kvm *kvm = vcpu->kvm; 11362 11363 if (mutex_lock_killable(&vcpu->mutex)) 11364 return; 11365 vcpu_load(vcpu); 11366 kvm_synchronize_tsc(vcpu, 0); 11367 vcpu_put(vcpu); 11368 11369 /* poll control enabled by default */ 11370 vcpu->arch.msr_kvm_poll_control = 1; 11371 11372 mutex_unlock(&vcpu->mutex); 11373 11374 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 11375 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 11376 KVMCLOCK_SYNC_PERIOD); 11377 } 11378 11379 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 11380 { 11381 int idx; 11382 11383 kvmclock_reset(vcpu); 11384 11385 static_call(kvm_x86_vcpu_free)(vcpu); 11386 11387 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11388 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11389 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11390 11391 kvm_xen_destroy_vcpu(vcpu); 11392 kvm_hv_vcpu_uninit(vcpu); 11393 kvm_pmu_destroy(vcpu); 11394 kfree(vcpu->arch.mce_banks); 11395 kvm_free_lapic(vcpu); 11396 idx = srcu_read_lock(&vcpu->kvm->srcu); 11397 kvm_mmu_destroy(vcpu); 11398 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11399 free_page((unsigned long)vcpu->arch.pio_data); 11400 kvfree(vcpu->arch.cpuid_entries); 11401 if (!lapic_in_kernel(vcpu)) 11402 static_branch_dec(&kvm_has_noapic_vcpu); 11403 } 11404 11405 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 11406 { 11407 struct kvm_cpuid_entry2 *cpuid_0x1; 11408 unsigned long old_cr0 = kvm_read_cr0(vcpu); 11409 unsigned long new_cr0; 11410 11411 /* 11412 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 11413 * to handle side effects. RESET emulation hits those flows and relies 11414 * on emulated/virtualized registers, including those that are loaded 11415 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 11416 * to detect improper or missing initialization. 11417 */ 11418 WARN_ON_ONCE(!init_event && 11419 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 11420 11421 kvm_lapic_reset(vcpu, init_event); 11422 11423 vcpu->arch.hflags = 0; 11424 11425 vcpu->arch.smi_pending = 0; 11426 vcpu->arch.smi_count = 0; 11427 atomic_set(&vcpu->arch.nmi_queued, 0); 11428 vcpu->arch.nmi_pending = 0; 11429 vcpu->arch.nmi_injected = false; 11430 kvm_clear_interrupt_queue(vcpu); 11431 kvm_clear_exception_queue(vcpu); 11432 11433 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 11434 kvm_update_dr0123(vcpu); 11435 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 11436 vcpu->arch.dr7 = DR7_FIXED_1; 11437 kvm_update_dr7(vcpu); 11438 11439 vcpu->arch.cr2 = 0; 11440 11441 kvm_make_request(KVM_REQ_EVENT, vcpu); 11442 vcpu->arch.apf.msr_en_val = 0; 11443 vcpu->arch.apf.msr_int_val = 0; 11444 vcpu->arch.st.msr_val = 0; 11445 11446 kvmclock_reset(vcpu); 11447 11448 kvm_clear_async_pf_completion_queue(vcpu); 11449 kvm_async_pf_hash_reset(vcpu); 11450 vcpu->arch.apf.halted = false; 11451 11452 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 11453 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 11454 11455 /* 11456 * To avoid have the INIT path from kvm_apic_has_events() that be 11457 * called with loaded FPU and does not let userspace fix the state. 11458 */ 11459 if (init_event) 11460 kvm_put_guest_fpu(vcpu); 11461 11462 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 11463 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 11464 11465 if (init_event) 11466 kvm_load_guest_fpu(vcpu); 11467 } 11468 11469 if (!init_event) { 11470 kvm_pmu_reset(vcpu); 11471 vcpu->arch.smbase = 0x30000; 11472 11473 vcpu->arch.msr_misc_features_enables = 0; 11474 11475 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 11476 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 11477 } 11478 11479 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 11480 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 11481 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 11482 11483 /* 11484 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 11485 * if no CPUID match is found. Note, it's impossible to get a match at 11486 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 11487 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 11488 * on RESET. But, go through the motions in case that's ever remedied. 11489 */ 11490 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1, 0); 11491 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 11492 11493 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 11494 11495 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 11496 kvm_rip_write(vcpu, 0xfff0); 11497 11498 vcpu->arch.cr3 = 0; 11499 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11500 11501 /* 11502 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 11503 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 11504 * (or qualify) that with a footnote stating that CD/NW are preserved. 11505 */ 11506 new_cr0 = X86_CR0_ET; 11507 if (init_event) 11508 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 11509 else 11510 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 11511 11512 static_call(kvm_x86_set_cr0)(vcpu, new_cr0); 11513 static_call(kvm_x86_set_cr4)(vcpu, 0); 11514 static_call(kvm_x86_set_efer)(vcpu, 0); 11515 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11516 11517 /* 11518 * On the standard CR0/CR4/EFER modification paths, there are several 11519 * complex conditions determining whether the MMU has to be reset and/or 11520 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 11521 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 11522 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 11523 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 11524 */ 11525 if (old_cr0 & X86_CR0_PG) { 11526 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11527 kvm_mmu_reset_context(vcpu); 11528 } 11529 11530 /* 11531 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 11532 * APM states the TLBs are untouched by INIT, but it also states that 11533 * the TLBs are flushed on "External initialization of the processor." 11534 * Flush the guest TLB regardless of vendor, there is no meaningful 11535 * benefit in relying on the guest to flush the TLB immediately after 11536 * INIT. A spurious TLB flush is benign and likely negligible from a 11537 * performance perspective. 11538 */ 11539 if (init_event) 11540 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11541 } 11542 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 11543 11544 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 11545 { 11546 struct kvm_segment cs; 11547 11548 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 11549 cs.selector = vector << 8; 11550 cs.base = vector << 12; 11551 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 11552 kvm_rip_write(vcpu, 0); 11553 } 11554 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 11555 11556 int kvm_arch_hardware_enable(void) 11557 { 11558 struct kvm *kvm; 11559 struct kvm_vcpu *vcpu; 11560 unsigned long i; 11561 int ret; 11562 u64 local_tsc; 11563 u64 max_tsc = 0; 11564 bool stable, backwards_tsc = false; 11565 11566 kvm_user_return_msr_cpu_online(); 11567 ret = static_call(kvm_x86_hardware_enable)(); 11568 if (ret != 0) 11569 return ret; 11570 11571 local_tsc = rdtsc(); 11572 stable = !kvm_check_tsc_unstable(); 11573 list_for_each_entry(kvm, &vm_list, vm_list) { 11574 kvm_for_each_vcpu(i, vcpu, kvm) { 11575 if (!stable && vcpu->cpu == smp_processor_id()) 11576 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 11577 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 11578 backwards_tsc = true; 11579 if (vcpu->arch.last_host_tsc > max_tsc) 11580 max_tsc = vcpu->arch.last_host_tsc; 11581 } 11582 } 11583 } 11584 11585 /* 11586 * Sometimes, even reliable TSCs go backwards. This happens on 11587 * platforms that reset TSC during suspend or hibernate actions, but 11588 * maintain synchronization. We must compensate. Fortunately, we can 11589 * detect that condition here, which happens early in CPU bringup, 11590 * before any KVM threads can be running. Unfortunately, we can't 11591 * bring the TSCs fully up to date with real time, as we aren't yet far 11592 * enough into CPU bringup that we know how much real time has actually 11593 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 11594 * variables that haven't been updated yet. 11595 * 11596 * So we simply find the maximum observed TSC above, then record the 11597 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 11598 * the adjustment will be applied. Note that we accumulate 11599 * adjustments, in case multiple suspend cycles happen before some VCPU 11600 * gets a chance to run again. In the event that no KVM threads get a 11601 * chance to run, we will miss the entire elapsed period, as we'll have 11602 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 11603 * loose cycle time. This isn't too big a deal, since the loss will be 11604 * uniform across all VCPUs (not to mention the scenario is extremely 11605 * unlikely). It is possible that a second hibernate recovery happens 11606 * much faster than a first, causing the observed TSC here to be 11607 * smaller; this would require additional padding adjustment, which is 11608 * why we set last_host_tsc to the local tsc observed here. 11609 * 11610 * N.B. - this code below runs only on platforms with reliable TSC, 11611 * as that is the only way backwards_tsc is set above. Also note 11612 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 11613 * have the same delta_cyc adjustment applied if backwards_tsc 11614 * is detected. Note further, this adjustment is only done once, 11615 * as we reset last_host_tsc on all VCPUs to stop this from being 11616 * called multiple times (one for each physical CPU bringup). 11617 * 11618 * Platforms with unreliable TSCs don't have to deal with this, they 11619 * will be compensated by the logic in vcpu_load, which sets the TSC to 11620 * catchup mode. This will catchup all VCPUs to real time, but cannot 11621 * guarantee that they stay in perfect synchronization. 11622 */ 11623 if (backwards_tsc) { 11624 u64 delta_cyc = max_tsc - local_tsc; 11625 list_for_each_entry(kvm, &vm_list, vm_list) { 11626 kvm->arch.backwards_tsc_observed = true; 11627 kvm_for_each_vcpu(i, vcpu, kvm) { 11628 vcpu->arch.tsc_offset_adjustment += delta_cyc; 11629 vcpu->arch.last_host_tsc = local_tsc; 11630 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 11631 } 11632 11633 /* 11634 * We have to disable TSC offset matching.. if you were 11635 * booting a VM while issuing an S4 host suspend.... 11636 * you may have some problem. Solving this issue is 11637 * left as an exercise to the reader. 11638 */ 11639 kvm->arch.last_tsc_nsec = 0; 11640 kvm->arch.last_tsc_write = 0; 11641 } 11642 11643 } 11644 return 0; 11645 } 11646 11647 void kvm_arch_hardware_disable(void) 11648 { 11649 static_call(kvm_x86_hardware_disable)(); 11650 drop_user_return_notifiers(); 11651 } 11652 11653 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 11654 { 11655 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 11656 11657 #define __KVM_X86_OP(func) \ 11658 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 11659 #define KVM_X86_OP(func) \ 11660 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 11661 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 11662 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 11663 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 11664 (void *)__static_call_return0); 11665 #include <asm/kvm-x86-ops.h> 11666 #undef __KVM_X86_OP 11667 11668 kvm_pmu_ops_update(ops->pmu_ops); 11669 } 11670 11671 int kvm_arch_hardware_setup(void *opaque) 11672 { 11673 struct kvm_x86_init_ops *ops = opaque; 11674 int r; 11675 11676 rdmsrl_safe(MSR_EFER, &host_efer); 11677 11678 if (boot_cpu_has(X86_FEATURE_XSAVES)) 11679 rdmsrl(MSR_IA32_XSS, host_xss); 11680 11681 r = ops->hardware_setup(); 11682 if (r != 0) 11683 return r; 11684 11685 kvm_ops_update(ops); 11686 11687 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 11688 11689 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 11690 supported_xss = 0; 11691 11692 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 11693 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 11694 #undef __kvm_cpu_cap_has 11695 11696 if (kvm_has_tsc_control) { 11697 /* 11698 * Make sure the user can only configure tsc_khz values that 11699 * fit into a signed integer. 11700 * A min value is not calculated because it will always 11701 * be 1 on all machines. 11702 */ 11703 u64 max = min(0x7fffffffULL, 11704 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz)); 11705 kvm_max_guest_tsc_khz = max; 11706 } 11707 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits; 11708 kvm_init_msr_list(); 11709 return 0; 11710 } 11711 11712 void kvm_arch_hardware_unsetup(void) 11713 { 11714 kvm_unregister_perf_callbacks(); 11715 11716 static_call(kvm_x86_hardware_unsetup)(); 11717 } 11718 11719 int kvm_arch_check_processor_compat(void *opaque) 11720 { 11721 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id()); 11722 struct kvm_x86_init_ops *ops = opaque; 11723 11724 WARN_ON(!irqs_disabled()); 11725 11726 if (__cr4_reserved_bits(cpu_has, c) != 11727 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 11728 return -EIO; 11729 11730 return ops->check_processor_compatibility(); 11731 } 11732 11733 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 11734 { 11735 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 11736 } 11737 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); 11738 11739 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 11740 { 11741 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 11742 } 11743 11744 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 11745 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 11746 11747 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 11748 { 11749 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 11750 11751 vcpu->arch.l1tf_flush_l1d = true; 11752 if (pmu->version && unlikely(pmu->event_count)) { 11753 pmu->need_cleanup = true; 11754 kvm_make_request(KVM_REQ_PMU, vcpu); 11755 } 11756 static_call(kvm_x86_sched_in)(vcpu, cpu); 11757 } 11758 11759 void kvm_arch_free_vm(struct kvm *kvm) 11760 { 11761 kfree(to_kvm_hv(kvm)->hv_pa_pg); 11762 __kvm_arch_free_vm(kvm); 11763 } 11764 11765 11766 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 11767 { 11768 int ret; 11769 unsigned long flags; 11770 11771 if (type) 11772 return -EINVAL; 11773 11774 ret = kvm_page_track_init(kvm); 11775 if (ret) 11776 goto out; 11777 11778 ret = kvm_mmu_init_vm(kvm); 11779 if (ret) 11780 goto out_page_track; 11781 11782 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 11783 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 11784 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 11785 11786 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 11787 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 11788 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 11789 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 11790 &kvm->arch.irq_sources_bitmap); 11791 11792 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 11793 mutex_init(&kvm->arch.apic_map_lock); 11794 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 11795 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 11796 11797 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 11798 pvclock_update_vm_gtod_copy(kvm); 11799 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 11800 11801 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 11802 kvm->arch.guest_can_read_msr_platform_info = true; 11803 kvm->arch.enable_pmu = enable_pmu; 11804 11805 #if IS_ENABLED(CONFIG_HYPERV) 11806 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 11807 kvm->arch.hv_root_tdp = INVALID_PAGE; 11808 #endif 11809 11810 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 11811 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 11812 11813 kvm_apicv_init(kvm); 11814 kvm_hv_init_vm(kvm); 11815 kvm_xen_init_vm(kvm); 11816 11817 return static_call(kvm_x86_vm_init)(kvm); 11818 11819 out_page_track: 11820 kvm_page_track_cleanup(kvm); 11821 out: 11822 return ret; 11823 } 11824 11825 int kvm_arch_post_init_vm(struct kvm *kvm) 11826 { 11827 return kvm_mmu_post_init_vm(kvm); 11828 } 11829 11830 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 11831 { 11832 vcpu_load(vcpu); 11833 kvm_mmu_unload(vcpu); 11834 vcpu_put(vcpu); 11835 } 11836 11837 static void kvm_unload_vcpu_mmus(struct kvm *kvm) 11838 { 11839 unsigned long i; 11840 struct kvm_vcpu *vcpu; 11841 11842 kvm_for_each_vcpu(i, vcpu, kvm) { 11843 kvm_clear_async_pf_completion_queue(vcpu); 11844 kvm_unload_vcpu_mmu(vcpu); 11845 } 11846 } 11847 11848 void kvm_arch_sync_events(struct kvm *kvm) 11849 { 11850 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 11851 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 11852 kvm_free_pit(kvm); 11853 } 11854 11855 /** 11856 * __x86_set_memory_region: Setup KVM internal memory slot 11857 * 11858 * @kvm: the kvm pointer to the VM. 11859 * @id: the slot ID to setup. 11860 * @gpa: the GPA to install the slot (unused when @size == 0). 11861 * @size: the size of the slot. Set to zero to uninstall a slot. 11862 * 11863 * This function helps to setup a KVM internal memory slot. Specify 11864 * @size > 0 to install a new slot, while @size == 0 to uninstall a 11865 * slot. The return code can be one of the following: 11866 * 11867 * HVA: on success (uninstall will return a bogus HVA) 11868 * -errno: on error 11869 * 11870 * The caller should always use IS_ERR() to check the return value 11871 * before use. Note, the KVM internal memory slots are guaranteed to 11872 * remain valid and unchanged until the VM is destroyed, i.e., the 11873 * GPA->HVA translation will not change. However, the HVA is a user 11874 * address, i.e. its accessibility is not guaranteed, and must be 11875 * accessed via __copy_{to,from}_user(). 11876 */ 11877 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 11878 u32 size) 11879 { 11880 int i, r; 11881 unsigned long hva, old_npages; 11882 struct kvm_memslots *slots = kvm_memslots(kvm); 11883 struct kvm_memory_slot *slot; 11884 11885 /* Called with kvm->slots_lock held. */ 11886 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 11887 return ERR_PTR_USR(-EINVAL); 11888 11889 slot = id_to_memslot(slots, id); 11890 if (size) { 11891 if (slot && slot->npages) 11892 return ERR_PTR_USR(-EEXIST); 11893 11894 /* 11895 * MAP_SHARED to prevent internal slot pages from being moved 11896 * by fork()/COW. 11897 */ 11898 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 11899 MAP_SHARED | MAP_ANONYMOUS, 0); 11900 if (IS_ERR((void *)hva)) 11901 return (void __user *)hva; 11902 } else { 11903 if (!slot || !slot->npages) 11904 return NULL; 11905 11906 old_npages = slot->npages; 11907 hva = slot->userspace_addr; 11908 } 11909 11910 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 11911 struct kvm_userspace_memory_region m; 11912 11913 m.slot = id | (i << 16); 11914 m.flags = 0; 11915 m.guest_phys_addr = gpa; 11916 m.userspace_addr = hva; 11917 m.memory_size = size; 11918 r = __kvm_set_memory_region(kvm, &m); 11919 if (r < 0) 11920 return ERR_PTR_USR(r); 11921 } 11922 11923 if (!size) 11924 vm_munmap(hva, old_npages * PAGE_SIZE); 11925 11926 return (void __user *)hva; 11927 } 11928 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 11929 11930 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 11931 { 11932 kvm_mmu_pre_destroy_vm(kvm); 11933 } 11934 11935 void kvm_arch_destroy_vm(struct kvm *kvm) 11936 { 11937 if (current->mm == kvm->mm) { 11938 /* 11939 * Free memory regions allocated on behalf of userspace, 11940 * unless the memory map has changed due to process exit 11941 * or fd copying. 11942 */ 11943 mutex_lock(&kvm->slots_lock); 11944 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 11945 0, 0); 11946 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 11947 0, 0); 11948 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 11949 mutex_unlock(&kvm->slots_lock); 11950 } 11951 kvm_unload_vcpu_mmus(kvm); 11952 static_call_cond(kvm_x86_vm_destroy)(kvm); 11953 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 11954 kvm_pic_destroy(kvm); 11955 kvm_ioapic_destroy(kvm); 11956 kvm_destroy_vcpus(kvm); 11957 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 11958 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 11959 kvm_mmu_uninit_vm(kvm); 11960 kvm_page_track_cleanup(kvm); 11961 kvm_xen_destroy_vm(kvm); 11962 kvm_hv_destroy_vm(kvm); 11963 } 11964 11965 static void memslot_rmap_free(struct kvm_memory_slot *slot) 11966 { 11967 int i; 11968 11969 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 11970 kvfree(slot->arch.rmap[i]); 11971 slot->arch.rmap[i] = NULL; 11972 } 11973 } 11974 11975 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 11976 { 11977 int i; 11978 11979 memslot_rmap_free(slot); 11980 11981 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 11982 kvfree(slot->arch.lpage_info[i - 1]); 11983 slot->arch.lpage_info[i - 1] = NULL; 11984 } 11985 11986 kvm_page_track_free_memslot(slot); 11987 } 11988 11989 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 11990 { 11991 const int sz = sizeof(*slot->arch.rmap[0]); 11992 int i; 11993 11994 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 11995 int level = i + 1; 11996 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 11997 11998 if (slot->arch.rmap[i]) 11999 continue; 12000 12001 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12002 if (!slot->arch.rmap[i]) { 12003 memslot_rmap_free(slot); 12004 return -ENOMEM; 12005 } 12006 } 12007 12008 return 0; 12009 } 12010 12011 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12012 struct kvm_memory_slot *slot) 12013 { 12014 unsigned long npages = slot->npages; 12015 int i, r; 12016 12017 /* 12018 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12019 * old arrays will be freed by __kvm_set_memory_region() if installing 12020 * the new memslot is successful. 12021 */ 12022 memset(&slot->arch, 0, sizeof(slot->arch)); 12023 12024 if (kvm_memslots_have_rmaps(kvm)) { 12025 r = memslot_rmap_alloc(slot, npages); 12026 if (r) 12027 return r; 12028 } 12029 12030 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12031 struct kvm_lpage_info *linfo; 12032 unsigned long ugfn; 12033 int lpages; 12034 int level = i + 1; 12035 12036 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12037 12038 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12039 if (!linfo) 12040 goto out_free; 12041 12042 slot->arch.lpage_info[i - 1] = linfo; 12043 12044 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12045 linfo[0].disallow_lpage = 1; 12046 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12047 linfo[lpages - 1].disallow_lpage = 1; 12048 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12049 /* 12050 * If the gfn and userspace address are not aligned wrt each 12051 * other, disable large page support for this slot. 12052 */ 12053 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12054 unsigned long j; 12055 12056 for (j = 0; j < lpages; ++j) 12057 linfo[j].disallow_lpage = 1; 12058 } 12059 } 12060 12061 if (kvm_page_track_create_memslot(kvm, slot, npages)) 12062 goto out_free; 12063 12064 return 0; 12065 12066 out_free: 12067 memslot_rmap_free(slot); 12068 12069 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12070 kvfree(slot->arch.lpage_info[i - 1]); 12071 slot->arch.lpage_info[i - 1] = NULL; 12072 } 12073 return -ENOMEM; 12074 } 12075 12076 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 12077 { 12078 struct kvm_vcpu *vcpu; 12079 unsigned long i; 12080 12081 /* 12082 * memslots->generation has been incremented. 12083 * mmio generation may have reached its maximum value. 12084 */ 12085 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 12086 12087 /* Force re-initialization of steal_time cache */ 12088 kvm_for_each_vcpu(i, vcpu, kvm) 12089 kvm_vcpu_kick(vcpu); 12090 } 12091 12092 int kvm_arch_prepare_memory_region(struct kvm *kvm, 12093 const struct kvm_memory_slot *old, 12094 struct kvm_memory_slot *new, 12095 enum kvm_mr_change change) 12096 { 12097 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 12098 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 12099 return -EINVAL; 12100 12101 return kvm_alloc_memslot_metadata(kvm, new); 12102 } 12103 12104 if (change == KVM_MR_FLAGS_ONLY) 12105 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 12106 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 12107 return -EIO; 12108 12109 return 0; 12110 } 12111 12112 12113 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 12114 { 12115 struct kvm_arch *ka = &kvm->arch; 12116 12117 if (!kvm_x86_ops.cpu_dirty_log_size) 12118 return; 12119 12120 if ((enable && ++ka->cpu_dirty_logging_count == 1) || 12121 (!enable && --ka->cpu_dirty_logging_count == 0)) 12122 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 12123 12124 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0); 12125 } 12126 12127 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 12128 struct kvm_memory_slot *old, 12129 const struct kvm_memory_slot *new, 12130 enum kvm_mr_change change) 12131 { 12132 u32 old_flags = old ? old->flags : 0; 12133 u32 new_flags = new ? new->flags : 0; 12134 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 12135 12136 /* 12137 * Update CPU dirty logging if dirty logging is being toggled. This 12138 * applies to all operations. 12139 */ 12140 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 12141 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 12142 12143 /* 12144 * Nothing more to do for RO slots (which can't be dirtied and can't be 12145 * made writable) or CREATE/MOVE/DELETE of a slot. 12146 * 12147 * For a memslot with dirty logging disabled: 12148 * CREATE: No dirty mappings will already exist. 12149 * MOVE/DELETE: The old mappings will already have been cleaned up by 12150 * kvm_arch_flush_shadow_memslot() 12151 * 12152 * For a memslot with dirty logging enabled: 12153 * CREATE: No shadow pages exist, thus nothing to write-protect 12154 * and no dirty bits to clear. 12155 * MOVE/DELETE: The old mappings will already have been cleaned up by 12156 * kvm_arch_flush_shadow_memslot(). 12157 */ 12158 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 12159 return; 12160 12161 /* 12162 * READONLY and non-flags changes were filtered out above, and the only 12163 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 12164 * logging isn't being toggled on or off. 12165 */ 12166 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 12167 return; 12168 12169 if (!log_dirty_pages) { 12170 /* 12171 * Dirty logging tracks sptes in 4k granularity, meaning that 12172 * large sptes have to be split. If live migration succeeds, 12173 * the guest in the source machine will be destroyed and large 12174 * sptes will be created in the destination. However, if the 12175 * guest continues to run in the source machine (for example if 12176 * live migration fails), small sptes will remain around and 12177 * cause bad performance. 12178 * 12179 * Scan sptes if dirty logging has been stopped, dropping those 12180 * which can be collapsed into a single large-page spte. Later 12181 * page faults will create the large-page sptes. 12182 */ 12183 kvm_mmu_zap_collapsible_sptes(kvm, new); 12184 } else { 12185 /* 12186 * Initially-all-set does not require write protecting any page, 12187 * because they're all assumed to be dirty. 12188 */ 12189 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 12190 return; 12191 12192 if (READ_ONCE(eager_page_split)) 12193 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 12194 12195 if (kvm_x86_ops.cpu_dirty_log_size) { 12196 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 12197 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 12198 } else { 12199 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 12200 } 12201 } 12202 } 12203 12204 void kvm_arch_commit_memory_region(struct kvm *kvm, 12205 struct kvm_memory_slot *old, 12206 const struct kvm_memory_slot *new, 12207 enum kvm_mr_change change) 12208 { 12209 if (!kvm->arch.n_requested_mmu_pages && 12210 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 12211 unsigned long nr_mmu_pages; 12212 12213 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 12214 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 12215 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 12216 } 12217 12218 kvm_mmu_slot_apply_flags(kvm, old, new, change); 12219 12220 /* Free the arrays associated with the old memslot. */ 12221 if (change == KVM_MR_MOVE) 12222 kvm_arch_free_memslot(kvm, old); 12223 } 12224 12225 void kvm_arch_flush_shadow_all(struct kvm *kvm) 12226 { 12227 kvm_mmu_zap_all(kvm); 12228 } 12229 12230 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 12231 struct kvm_memory_slot *slot) 12232 { 12233 kvm_page_track_flush_slot(kvm, slot); 12234 } 12235 12236 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 12237 { 12238 return (is_guest_mode(vcpu) && 12239 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 12240 } 12241 12242 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 12243 { 12244 if (!list_empty_careful(&vcpu->async_pf.done)) 12245 return true; 12246 12247 if (kvm_apic_has_events(vcpu)) 12248 return true; 12249 12250 if (vcpu->arch.pv.pv_unhalted) 12251 return true; 12252 12253 if (vcpu->arch.exception.pending) 12254 return true; 12255 12256 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12257 (vcpu->arch.nmi_pending && 12258 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 12259 return true; 12260 12261 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 12262 (vcpu->arch.smi_pending && 12263 static_call(kvm_x86_smi_allowed)(vcpu, false))) 12264 return true; 12265 12266 if (kvm_arch_interrupt_allowed(vcpu) && 12267 (kvm_cpu_has_interrupt(vcpu) || 12268 kvm_guest_apic_has_interrupt(vcpu))) 12269 return true; 12270 12271 if (kvm_hv_has_stimer_pending(vcpu)) 12272 return true; 12273 12274 if (is_guest_mode(vcpu) && 12275 kvm_x86_ops.nested_ops->hv_timer_pending && 12276 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu)) 12277 return true; 12278 12279 if (kvm_xen_has_pending_events(vcpu)) 12280 return true; 12281 12282 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) 12283 return true; 12284 12285 return false; 12286 } 12287 12288 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 12289 { 12290 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 12291 } 12292 12293 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 12294 { 12295 if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu)) 12296 return true; 12297 12298 return false; 12299 } 12300 12301 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 12302 { 12303 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 12304 return true; 12305 12306 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12307 kvm_test_request(KVM_REQ_SMI, vcpu) || 12308 kvm_test_request(KVM_REQ_EVENT, vcpu)) 12309 return true; 12310 12311 return kvm_arch_dy_has_pending_interrupt(vcpu); 12312 } 12313 12314 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 12315 { 12316 if (vcpu->arch.guest_state_protected) 12317 return true; 12318 12319 return vcpu->arch.preempted_in_kernel; 12320 } 12321 12322 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 12323 { 12324 return kvm_rip_read(vcpu); 12325 } 12326 12327 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 12328 { 12329 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 12330 } 12331 12332 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 12333 { 12334 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 12335 } 12336 12337 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 12338 { 12339 /* Can't read the RIP when guest state is protected, just return 0 */ 12340 if (vcpu->arch.guest_state_protected) 12341 return 0; 12342 12343 if (is_64_bit_mode(vcpu)) 12344 return kvm_rip_read(vcpu); 12345 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 12346 kvm_rip_read(vcpu)); 12347 } 12348 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 12349 12350 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 12351 { 12352 return kvm_get_linear_rip(vcpu) == linear_rip; 12353 } 12354 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 12355 12356 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 12357 { 12358 unsigned long rflags; 12359 12360 rflags = static_call(kvm_x86_get_rflags)(vcpu); 12361 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 12362 rflags &= ~X86_EFLAGS_TF; 12363 return rflags; 12364 } 12365 EXPORT_SYMBOL_GPL(kvm_get_rflags); 12366 12367 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12368 { 12369 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 12370 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 12371 rflags |= X86_EFLAGS_TF; 12372 static_call(kvm_x86_set_rflags)(vcpu, rflags); 12373 } 12374 12375 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12376 { 12377 __kvm_set_rflags(vcpu, rflags); 12378 kvm_make_request(KVM_REQ_EVENT, vcpu); 12379 } 12380 EXPORT_SYMBOL_GPL(kvm_set_rflags); 12381 12382 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 12383 { 12384 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 12385 12386 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 12387 } 12388 12389 static inline u32 kvm_async_pf_next_probe(u32 key) 12390 { 12391 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 12392 } 12393 12394 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12395 { 12396 u32 key = kvm_async_pf_hash_fn(gfn); 12397 12398 while (vcpu->arch.apf.gfns[key] != ~0) 12399 key = kvm_async_pf_next_probe(key); 12400 12401 vcpu->arch.apf.gfns[key] = gfn; 12402 } 12403 12404 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 12405 { 12406 int i; 12407 u32 key = kvm_async_pf_hash_fn(gfn); 12408 12409 for (i = 0; i < ASYNC_PF_PER_VCPU && 12410 (vcpu->arch.apf.gfns[key] != gfn && 12411 vcpu->arch.apf.gfns[key] != ~0); i++) 12412 key = kvm_async_pf_next_probe(key); 12413 12414 return key; 12415 } 12416 12417 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12418 { 12419 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 12420 } 12421 12422 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12423 { 12424 u32 i, j, k; 12425 12426 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 12427 12428 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 12429 return; 12430 12431 while (true) { 12432 vcpu->arch.apf.gfns[i] = ~0; 12433 do { 12434 j = kvm_async_pf_next_probe(j); 12435 if (vcpu->arch.apf.gfns[j] == ~0) 12436 return; 12437 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 12438 /* 12439 * k lies cyclically in ]i,j] 12440 * | i.k.j | 12441 * |....j i.k.| or |.k..j i...| 12442 */ 12443 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 12444 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 12445 i = j; 12446 } 12447 } 12448 12449 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 12450 { 12451 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 12452 12453 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 12454 sizeof(reason)); 12455 } 12456 12457 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 12458 { 12459 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 12460 12461 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 12462 &token, offset, sizeof(token)); 12463 } 12464 12465 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 12466 { 12467 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 12468 u32 val; 12469 12470 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 12471 &val, offset, sizeof(val))) 12472 return false; 12473 12474 return !val; 12475 } 12476 12477 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 12478 { 12479 12480 if (!kvm_pv_async_pf_enabled(vcpu)) 12481 return false; 12482 12483 if (vcpu->arch.apf.send_user_only && 12484 static_call(kvm_x86_get_cpl)(vcpu) == 0) 12485 return false; 12486 12487 if (is_guest_mode(vcpu)) { 12488 /* 12489 * L1 needs to opt into the special #PF vmexits that are 12490 * used to deliver async page faults. 12491 */ 12492 return vcpu->arch.apf.delivery_as_pf_vmexit; 12493 } else { 12494 /* 12495 * Play it safe in case the guest temporarily disables paging. 12496 * The real mode IDT in particular is unlikely to have a #PF 12497 * exception setup. 12498 */ 12499 return is_paging(vcpu); 12500 } 12501 } 12502 12503 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 12504 { 12505 if (unlikely(!lapic_in_kernel(vcpu) || 12506 kvm_event_needs_reinjection(vcpu) || 12507 vcpu->arch.exception.pending)) 12508 return false; 12509 12510 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 12511 return false; 12512 12513 /* 12514 * If interrupts are off we cannot even use an artificial 12515 * halt state. 12516 */ 12517 return kvm_arch_interrupt_allowed(vcpu); 12518 } 12519 12520 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 12521 struct kvm_async_pf *work) 12522 { 12523 struct x86_exception fault; 12524 12525 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 12526 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 12527 12528 if (kvm_can_deliver_async_pf(vcpu) && 12529 !apf_put_user_notpresent(vcpu)) { 12530 fault.vector = PF_VECTOR; 12531 fault.error_code_valid = true; 12532 fault.error_code = 0; 12533 fault.nested_page_fault = false; 12534 fault.address = work->arch.token; 12535 fault.async_page_fault = true; 12536 kvm_inject_page_fault(vcpu, &fault); 12537 return true; 12538 } else { 12539 /* 12540 * It is not possible to deliver a paravirtualized asynchronous 12541 * page fault, but putting the guest in an artificial halt state 12542 * can be beneficial nevertheless: if an interrupt arrives, we 12543 * can deliver it timely and perhaps the guest will schedule 12544 * another process. When the instruction that triggered a page 12545 * fault is retried, hopefully the page will be ready in the host. 12546 */ 12547 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 12548 return false; 12549 } 12550 } 12551 12552 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 12553 struct kvm_async_pf *work) 12554 { 12555 struct kvm_lapic_irq irq = { 12556 .delivery_mode = APIC_DM_FIXED, 12557 .vector = vcpu->arch.apf.vec 12558 }; 12559 12560 if (work->wakeup_all) 12561 work->arch.token = ~0; /* broadcast wakeup */ 12562 else 12563 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 12564 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 12565 12566 if ((work->wakeup_all || work->notpresent_injected) && 12567 kvm_pv_async_pf_enabled(vcpu) && 12568 !apf_put_user_ready(vcpu, work->arch.token)) { 12569 vcpu->arch.apf.pageready_pending = true; 12570 kvm_apic_set_irq(vcpu, &irq, NULL); 12571 } 12572 12573 vcpu->arch.apf.halted = false; 12574 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 12575 } 12576 12577 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 12578 { 12579 kvm_make_request(KVM_REQ_APF_READY, vcpu); 12580 if (!vcpu->arch.apf.pageready_pending) 12581 kvm_vcpu_kick(vcpu); 12582 } 12583 12584 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 12585 { 12586 if (!kvm_pv_async_pf_enabled(vcpu)) 12587 return true; 12588 else 12589 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 12590 } 12591 12592 void kvm_arch_start_assignment(struct kvm *kvm) 12593 { 12594 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 12595 static_call_cond(kvm_x86_pi_start_assignment)(kvm); 12596 } 12597 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 12598 12599 void kvm_arch_end_assignment(struct kvm *kvm) 12600 { 12601 atomic_dec(&kvm->arch.assigned_device_count); 12602 } 12603 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 12604 12605 bool kvm_arch_has_assigned_device(struct kvm *kvm) 12606 { 12607 return atomic_read(&kvm->arch.assigned_device_count); 12608 } 12609 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 12610 12611 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 12612 { 12613 atomic_inc(&kvm->arch.noncoherent_dma_count); 12614 } 12615 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 12616 12617 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 12618 { 12619 atomic_dec(&kvm->arch.noncoherent_dma_count); 12620 } 12621 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 12622 12623 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 12624 { 12625 return atomic_read(&kvm->arch.noncoherent_dma_count); 12626 } 12627 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 12628 12629 bool kvm_arch_has_irq_bypass(void) 12630 { 12631 return true; 12632 } 12633 12634 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 12635 struct irq_bypass_producer *prod) 12636 { 12637 struct kvm_kernel_irqfd *irqfd = 12638 container_of(cons, struct kvm_kernel_irqfd, consumer); 12639 int ret; 12640 12641 irqfd->producer = prod; 12642 kvm_arch_start_assignment(irqfd->kvm); 12643 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, 12644 prod->irq, irqfd->gsi, 1); 12645 12646 if (ret) 12647 kvm_arch_end_assignment(irqfd->kvm); 12648 12649 return ret; 12650 } 12651 12652 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 12653 struct irq_bypass_producer *prod) 12654 { 12655 int ret; 12656 struct kvm_kernel_irqfd *irqfd = 12657 container_of(cons, struct kvm_kernel_irqfd, consumer); 12658 12659 WARN_ON(irqfd->producer != prod); 12660 irqfd->producer = NULL; 12661 12662 /* 12663 * When producer of consumer is unregistered, we change back to 12664 * remapped mode, so we can re-use the current implementation 12665 * when the irq is masked/disabled or the consumer side (KVM 12666 * int this case doesn't want to receive the interrupts. 12667 */ 12668 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 12669 if (ret) 12670 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 12671 " fails: %d\n", irqfd->consumer.token, ret); 12672 12673 kvm_arch_end_assignment(irqfd->kvm); 12674 } 12675 12676 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 12677 uint32_t guest_irq, bool set) 12678 { 12679 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set); 12680 } 12681 12682 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 12683 struct kvm_kernel_irq_routing_entry *new) 12684 { 12685 if (new->type != KVM_IRQ_ROUTING_MSI) 12686 return true; 12687 12688 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 12689 } 12690 12691 bool kvm_vector_hashing_enabled(void) 12692 { 12693 return vector_hashing; 12694 } 12695 12696 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 12697 { 12698 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 12699 } 12700 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 12701 12702 12703 int kvm_spec_ctrl_test_value(u64 value) 12704 { 12705 /* 12706 * test that setting IA32_SPEC_CTRL to given value 12707 * is allowed by the host processor 12708 */ 12709 12710 u64 saved_value; 12711 unsigned long flags; 12712 int ret = 0; 12713 12714 local_irq_save(flags); 12715 12716 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 12717 ret = 1; 12718 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 12719 ret = 1; 12720 else 12721 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 12722 12723 local_irq_restore(flags); 12724 12725 return ret; 12726 } 12727 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 12728 12729 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 12730 { 12731 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 12732 struct x86_exception fault; 12733 u64 access = error_code & 12734 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 12735 12736 if (!(error_code & PFERR_PRESENT_MASK) || 12737 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != UNMAPPED_GVA) { 12738 /* 12739 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 12740 * tables probably do not match the TLB. Just proceed 12741 * with the error code that the processor gave. 12742 */ 12743 fault.vector = PF_VECTOR; 12744 fault.error_code_valid = true; 12745 fault.error_code = error_code; 12746 fault.nested_page_fault = false; 12747 fault.address = gva; 12748 } 12749 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 12750 } 12751 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 12752 12753 /* 12754 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 12755 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 12756 * indicates whether exit to userspace is needed. 12757 */ 12758 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 12759 struct x86_exception *e) 12760 { 12761 if (r == X86EMUL_PROPAGATE_FAULT) { 12762 kvm_inject_emulated_page_fault(vcpu, e); 12763 return 1; 12764 } 12765 12766 /* 12767 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 12768 * while handling a VMX instruction KVM could've handled the request 12769 * correctly by exiting to userspace and performing I/O but there 12770 * doesn't seem to be a real use-case behind such requests, just return 12771 * KVM_EXIT_INTERNAL_ERROR for now. 12772 */ 12773 kvm_prepare_emulation_failure_exit(vcpu); 12774 12775 return 0; 12776 } 12777 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 12778 12779 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 12780 { 12781 bool pcid_enabled; 12782 struct x86_exception e; 12783 struct { 12784 u64 pcid; 12785 u64 gla; 12786 } operand; 12787 int r; 12788 12789 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 12790 if (r != X86EMUL_CONTINUE) 12791 return kvm_handle_memory_failure(vcpu, r, &e); 12792 12793 if (operand.pcid >> 12 != 0) { 12794 kvm_inject_gp(vcpu, 0); 12795 return 1; 12796 } 12797 12798 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 12799 12800 switch (type) { 12801 case INVPCID_TYPE_INDIV_ADDR: 12802 if ((!pcid_enabled && (operand.pcid != 0)) || 12803 is_noncanonical_address(operand.gla, vcpu)) { 12804 kvm_inject_gp(vcpu, 0); 12805 return 1; 12806 } 12807 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 12808 return kvm_skip_emulated_instruction(vcpu); 12809 12810 case INVPCID_TYPE_SINGLE_CTXT: 12811 if (!pcid_enabled && (operand.pcid != 0)) { 12812 kvm_inject_gp(vcpu, 0); 12813 return 1; 12814 } 12815 12816 kvm_invalidate_pcid(vcpu, operand.pcid); 12817 return kvm_skip_emulated_instruction(vcpu); 12818 12819 case INVPCID_TYPE_ALL_NON_GLOBAL: 12820 /* 12821 * Currently, KVM doesn't mark global entries in the shadow 12822 * page tables, so a non-global flush just degenerates to a 12823 * global flush. If needed, we could optimize this later by 12824 * keeping track of global entries in shadow page tables. 12825 */ 12826 12827 fallthrough; 12828 case INVPCID_TYPE_ALL_INCL_GLOBAL: 12829 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12830 return kvm_skip_emulated_instruction(vcpu); 12831 12832 default: 12833 kvm_inject_gp(vcpu, 0); 12834 return 1; 12835 } 12836 } 12837 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 12838 12839 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 12840 { 12841 struct kvm_run *run = vcpu->run; 12842 struct kvm_mmio_fragment *frag; 12843 unsigned int len; 12844 12845 BUG_ON(!vcpu->mmio_needed); 12846 12847 /* Complete previous fragment */ 12848 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 12849 len = min(8u, frag->len); 12850 if (!vcpu->mmio_is_write) 12851 memcpy(frag->data, run->mmio.data, len); 12852 12853 if (frag->len <= 8) { 12854 /* Switch to the next fragment. */ 12855 frag++; 12856 vcpu->mmio_cur_fragment++; 12857 } else { 12858 /* Go forward to the next mmio piece. */ 12859 frag->data += len; 12860 frag->gpa += len; 12861 frag->len -= len; 12862 } 12863 12864 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 12865 vcpu->mmio_needed = 0; 12866 12867 // VMG change, at this point, we're always done 12868 // RIP has already been advanced 12869 return 1; 12870 } 12871 12872 // More MMIO is needed 12873 run->mmio.phys_addr = frag->gpa; 12874 run->mmio.len = min(8u, frag->len); 12875 run->mmio.is_write = vcpu->mmio_is_write; 12876 if (run->mmio.is_write) 12877 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 12878 run->exit_reason = KVM_EXIT_MMIO; 12879 12880 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 12881 12882 return 0; 12883 } 12884 12885 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 12886 void *data) 12887 { 12888 int handled; 12889 struct kvm_mmio_fragment *frag; 12890 12891 if (!data) 12892 return -EINVAL; 12893 12894 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 12895 if (handled == bytes) 12896 return 1; 12897 12898 bytes -= handled; 12899 gpa += handled; 12900 data += handled; 12901 12902 /*TODO: Check if need to increment number of frags */ 12903 frag = vcpu->mmio_fragments; 12904 vcpu->mmio_nr_fragments = 1; 12905 frag->len = bytes; 12906 frag->gpa = gpa; 12907 frag->data = data; 12908 12909 vcpu->mmio_needed = 1; 12910 vcpu->mmio_cur_fragment = 0; 12911 12912 vcpu->run->mmio.phys_addr = gpa; 12913 vcpu->run->mmio.len = min(8u, frag->len); 12914 vcpu->run->mmio.is_write = 1; 12915 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 12916 vcpu->run->exit_reason = KVM_EXIT_MMIO; 12917 12918 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 12919 12920 return 0; 12921 } 12922 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 12923 12924 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 12925 void *data) 12926 { 12927 int handled; 12928 struct kvm_mmio_fragment *frag; 12929 12930 if (!data) 12931 return -EINVAL; 12932 12933 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 12934 if (handled == bytes) 12935 return 1; 12936 12937 bytes -= handled; 12938 gpa += handled; 12939 data += handled; 12940 12941 /*TODO: Check if need to increment number of frags */ 12942 frag = vcpu->mmio_fragments; 12943 vcpu->mmio_nr_fragments = 1; 12944 frag->len = bytes; 12945 frag->gpa = gpa; 12946 frag->data = data; 12947 12948 vcpu->mmio_needed = 1; 12949 vcpu->mmio_cur_fragment = 0; 12950 12951 vcpu->run->mmio.phys_addr = gpa; 12952 vcpu->run->mmio.len = min(8u, frag->len); 12953 vcpu->run->mmio.is_write = 0; 12954 vcpu->run->exit_reason = KVM_EXIT_MMIO; 12955 12956 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 12957 12958 return 0; 12959 } 12960 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 12961 12962 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 12963 unsigned int port); 12964 12965 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 12966 { 12967 int size = vcpu->arch.pio.size; 12968 int port = vcpu->arch.pio.port; 12969 12970 vcpu->arch.pio.count = 0; 12971 if (vcpu->arch.sev_pio_count) 12972 return kvm_sev_es_outs(vcpu, size, port); 12973 return 1; 12974 } 12975 12976 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 12977 unsigned int port) 12978 { 12979 for (;;) { 12980 unsigned int count = 12981 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 12982 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 12983 12984 /* memcpy done already by emulator_pio_out. */ 12985 vcpu->arch.sev_pio_count -= count; 12986 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size; 12987 if (!ret) 12988 break; 12989 12990 /* Emulation done by the kernel. */ 12991 if (!vcpu->arch.sev_pio_count) 12992 return 1; 12993 } 12994 12995 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 12996 return 0; 12997 } 12998 12999 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13000 unsigned int port); 13001 13002 static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13003 { 13004 unsigned count = vcpu->arch.pio.count; 13005 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13006 vcpu->arch.sev_pio_count -= count; 13007 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size; 13008 } 13009 13010 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13011 { 13012 int size = vcpu->arch.pio.size; 13013 int port = vcpu->arch.pio.port; 13014 13015 advance_sev_es_emulated_ins(vcpu); 13016 if (vcpu->arch.sev_pio_count) 13017 return kvm_sev_es_ins(vcpu, size, port); 13018 return 1; 13019 } 13020 13021 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13022 unsigned int port) 13023 { 13024 for (;;) { 13025 unsigned int count = 13026 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13027 if (!__emulator_pio_in(vcpu, size, port, count)) 13028 break; 13029 13030 /* Emulation done by the kernel. */ 13031 advance_sev_es_emulated_ins(vcpu); 13032 if (!vcpu->arch.sev_pio_count) 13033 return 1; 13034 } 13035 13036 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13037 return 0; 13038 } 13039 13040 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 13041 unsigned int port, void *data, unsigned int count, 13042 int in) 13043 { 13044 vcpu->arch.sev_pio_data = data; 13045 vcpu->arch.sev_pio_count = count; 13046 return in ? kvm_sev_es_ins(vcpu, size, port) 13047 : kvm_sev_es_outs(vcpu, size, port); 13048 } 13049 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 13050 13051 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 13052 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 13053 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 13054 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 13055 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 13056 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 13057 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 13058 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 13059 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 13060 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 13061 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 13062 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 13063 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 13064 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 13065 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 13066 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 13067 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 13068 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 13069 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 13070 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 13071 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 13072 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 13073 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 13074 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 13075 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 13076 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 13077 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 13078 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 13079 13080 static int __init kvm_x86_init(void) 13081 { 13082 kvm_mmu_x86_module_init(); 13083 return 0; 13084 } 13085 module_init(kvm_x86_init); 13086 13087 static void __exit kvm_x86_exit(void) 13088 { 13089 /* 13090 * If module_init() is implemented, module_exit() must also be 13091 * implemented to allow module unload. 13092 */ 13093 } 13094 module_exit(kvm_x86_exit); 13095