xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 2792d42f)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
52 
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
55 
56 #include <asm/debugreg.h>
57 #include <asm/msr.h>
58 #include <asm/desc.h>
59 #include <asm/mtrr.h>
60 #include <asm/mce.h>
61 #include <asm/i387.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
63 #include <asm/xcr.h>
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66 
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70 
71 #define emul_to_vcpu(ctxt) \
72 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73 
74 /* EFER defaults:
75  * - enable syscall per default because its emulated by KVM
76  * - enable LME and LMA per default on 64 bit KVM
77  */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84 
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87 
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90 
91 struct kvm_x86_ops *kvm_x86_ops;
92 EXPORT_SYMBOL_GPL(kvm_x86_ops);
93 
94 static bool ignore_msrs = 0;
95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
96 
97 bool kvm_has_tsc_control;
98 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
99 u32  kvm_max_guest_tsc_khz;
100 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
101 
102 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
103 static u32 tsc_tolerance_ppm = 250;
104 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
105 
106 #define KVM_NR_SHARED_MSRS 16
107 
108 struct kvm_shared_msrs_global {
109 	int nr;
110 	u32 msrs[KVM_NR_SHARED_MSRS];
111 };
112 
113 struct kvm_shared_msrs {
114 	struct user_return_notifier urn;
115 	bool registered;
116 	struct kvm_shared_msr_values {
117 		u64 host;
118 		u64 curr;
119 	} values[KVM_NR_SHARED_MSRS];
120 };
121 
122 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
123 static struct kvm_shared_msrs __percpu *shared_msrs;
124 
125 struct kvm_stats_debugfs_item debugfs_entries[] = {
126 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
127 	{ "pf_guest", VCPU_STAT(pf_guest) },
128 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
129 	{ "invlpg", VCPU_STAT(invlpg) },
130 	{ "exits", VCPU_STAT(exits) },
131 	{ "io_exits", VCPU_STAT(io_exits) },
132 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
133 	{ "signal_exits", VCPU_STAT(signal_exits) },
134 	{ "irq_window", VCPU_STAT(irq_window_exits) },
135 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
136 	{ "halt_exits", VCPU_STAT(halt_exits) },
137 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
138 	{ "hypercalls", VCPU_STAT(hypercalls) },
139 	{ "request_irq", VCPU_STAT(request_irq_exits) },
140 	{ "irq_exits", VCPU_STAT(irq_exits) },
141 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
142 	{ "efer_reload", VCPU_STAT(efer_reload) },
143 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
144 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
145 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
146 	{ "irq_injections", VCPU_STAT(irq_injections) },
147 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
148 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
149 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
150 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
151 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
152 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
153 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
154 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
155 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
156 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
157 	{ "largepages", VM_STAT(lpages) },
158 	{ NULL }
159 };
160 
161 u64 __read_mostly host_xcr0;
162 
163 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
164 
165 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
166 {
167 	int i;
168 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
169 		vcpu->arch.apf.gfns[i] = ~0;
170 }
171 
172 static void kvm_on_user_return(struct user_return_notifier *urn)
173 {
174 	unsigned slot;
175 	struct kvm_shared_msrs *locals
176 		= container_of(urn, struct kvm_shared_msrs, urn);
177 	struct kvm_shared_msr_values *values;
178 
179 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
180 		values = &locals->values[slot];
181 		if (values->host != values->curr) {
182 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
183 			values->curr = values->host;
184 		}
185 	}
186 	locals->registered = false;
187 	user_return_notifier_unregister(urn);
188 }
189 
190 static void shared_msr_update(unsigned slot, u32 msr)
191 {
192 	u64 value;
193 	unsigned int cpu = smp_processor_id();
194 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
195 
196 	/* only read, and nobody should modify it at this time,
197 	 * so don't need lock */
198 	if (slot >= shared_msrs_global.nr) {
199 		printk(KERN_ERR "kvm: invalid MSR slot!");
200 		return;
201 	}
202 	rdmsrl_safe(msr, &value);
203 	smsr->values[slot].host = value;
204 	smsr->values[slot].curr = value;
205 }
206 
207 void kvm_define_shared_msr(unsigned slot, u32 msr)
208 {
209 	if (slot >= shared_msrs_global.nr)
210 		shared_msrs_global.nr = slot + 1;
211 	shared_msrs_global.msrs[slot] = msr;
212 	/* we need ensured the shared_msr_global have been updated */
213 	smp_wmb();
214 }
215 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
216 
217 static void kvm_shared_msr_cpu_online(void)
218 {
219 	unsigned i;
220 
221 	for (i = 0; i < shared_msrs_global.nr; ++i)
222 		shared_msr_update(i, shared_msrs_global.msrs[i]);
223 }
224 
225 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
226 {
227 	unsigned int cpu = smp_processor_id();
228 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
229 
230 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
231 		return;
232 	smsr->values[slot].curr = value;
233 	wrmsrl(shared_msrs_global.msrs[slot], value);
234 	if (!smsr->registered) {
235 		smsr->urn.on_user_return = kvm_on_user_return;
236 		user_return_notifier_register(&smsr->urn);
237 		smsr->registered = true;
238 	}
239 }
240 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
241 
242 static void drop_user_return_notifiers(void *ignore)
243 {
244 	unsigned int cpu = smp_processor_id();
245 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
246 
247 	if (smsr->registered)
248 		kvm_on_user_return(&smsr->urn);
249 }
250 
251 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
252 {
253 	return vcpu->arch.apic_base;
254 }
255 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
256 
257 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
258 {
259 	/* TODO: reserve bits check */
260 	kvm_lapic_set_base(vcpu, data);
261 }
262 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
263 
264 asmlinkage void kvm_spurious_fault(void)
265 {
266 	/* Fault while not rebooting.  We want the trace. */
267 	BUG();
268 }
269 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
270 
271 #define EXCPT_BENIGN		0
272 #define EXCPT_CONTRIBUTORY	1
273 #define EXCPT_PF		2
274 
275 static int exception_class(int vector)
276 {
277 	switch (vector) {
278 	case PF_VECTOR:
279 		return EXCPT_PF;
280 	case DE_VECTOR:
281 	case TS_VECTOR:
282 	case NP_VECTOR:
283 	case SS_VECTOR:
284 	case GP_VECTOR:
285 		return EXCPT_CONTRIBUTORY;
286 	default:
287 		break;
288 	}
289 	return EXCPT_BENIGN;
290 }
291 
292 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
293 		unsigned nr, bool has_error, u32 error_code,
294 		bool reinject)
295 {
296 	u32 prev_nr;
297 	int class1, class2;
298 
299 	kvm_make_request(KVM_REQ_EVENT, vcpu);
300 
301 	if (!vcpu->arch.exception.pending) {
302 	queue:
303 		vcpu->arch.exception.pending = true;
304 		vcpu->arch.exception.has_error_code = has_error;
305 		vcpu->arch.exception.nr = nr;
306 		vcpu->arch.exception.error_code = error_code;
307 		vcpu->arch.exception.reinject = reinject;
308 		return;
309 	}
310 
311 	/* to check exception */
312 	prev_nr = vcpu->arch.exception.nr;
313 	if (prev_nr == DF_VECTOR) {
314 		/* triple fault -> shutdown */
315 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
316 		return;
317 	}
318 	class1 = exception_class(prev_nr);
319 	class2 = exception_class(nr);
320 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
321 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
322 		/* generate double fault per SDM Table 5-5 */
323 		vcpu->arch.exception.pending = true;
324 		vcpu->arch.exception.has_error_code = true;
325 		vcpu->arch.exception.nr = DF_VECTOR;
326 		vcpu->arch.exception.error_code = 0;
327 	} else
328 		/* replace previous exception with a new one in a hope
329 		   that instruction re-execution will regenerate lost
330 		   exception */
331 		goto queue;
332 }
333 
334 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
335 {
336 	kvm_multiple_exception(vcpu, nr, false, 0, false);
337 }
338 EXPORT_SYMBOL_GPL(kvm_queue_exception);
339 
340 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
341 {
342 	kvm_multiple_exception(vcpu, nr, false, 0, true);
343 }
344 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
345 
346 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
347 {
348 	if (err)
349 		kvm_inject_gp(vcpu, 0);
350 	else
351 		kvm_x86_ops->skip_emulated_instruction(vcpu);
352 }
353 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
354 
355 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
356 {
357 	++vcpu->stat.pf_guest;
358 	vcpu->arch.cr2 = fault->address;
359 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
360 }
361 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
362 
363 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
364 {
365 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
366 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
367 	else
368 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
369 }
370 
371 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
372 {
373 	atomic_inc(&vcpu->arch.nmi_queued);
374 	kvm_make_request(KVM_REQ_NMI, vcpu);
375 }
376 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
377 
378 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
379 {
380 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
381 }
382 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
383 
384 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
385 {
386 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
387 }
388 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
389 
390 /*
391  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
392  * a #GP and return false.
393  */
394 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
395 {
396 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
397 		return true;
398 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
399 	return false;
400 }
401 EXPORT_SYMBOL_GPL(kvm_require_cpl);
402 
403 /*
404  * This function will be used to read from the physical memory of the currently
405  * running guest. The difference to kvm_read_guest_page is that this function
406  * can read from guest physical or from the guest's guest physical memory.
407  */
408 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
409 			    gfn_t ngfn, void *data, int offset, int len,
410 			    u32 access)
411 {
412 	gfn_t real_gfn;
413 	gpa_t ngpa;
414 
415 	ngpa     = gfn_to_gpa(ngfn);
416 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
417 	if (real_gfn == UNMAPPED_GVA)
418 		return -EFAULT;
419 
420 	real_gfn = gpa_to_gfn(real_gfn);
421 
422 	return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
423 }
424 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
425 
426 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
427 			       void *data, int offset, int len, u32 access)
428 {
429 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
430 				       data, offset, len, access);
431 }
432 
433 /*
434  * Load the pae pdptrs.  Return true is they are all valid.
435  */
436 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
437 {
438 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
439 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
440 	int i;
441 	int ret;
442 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
443 
444 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
445 				      offset * sizeof(u64), sizeof(pdpte),
446 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
447 	if (ret < 0) {
448 		ret = 0;
449 		goto out;
450 	}
451 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
452 		if (is_present_gpte(pdpte[i]) &&
453 		    (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
454 			ret = 0;
455 			goto out;
456 		}
457 	}
458 	ret = 1;
459 
460 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
461 	__set_bit(VCPU_EXREG_PDPTR,
462 		  (unsigned long *)&vcpu->arch.regs_avail);
463 	__set_bit(VCPU_EXREG_PDPTR,
464 		  (unsigned long *)&vcpu->arch.regs_dirty);
465 out:
466 
467 	return ret;
468 }
469 EXPORT_SYMBOL_GPL(load_pdptrs);
470 
471 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
472 {
473 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
474 	bool changed = true;
475 	int offset;
476 	gfn_t gfn;
477 	int r;
478 
479 	if (is_long_mode(vcpu) || !is_pae(vcpu))
480 		return false;
481 
482 	if (!test_bit(VCPU_EXREG_PDPTR,
483 		      (unsigned long *)&vcpu->arch.regs_avail))
484 		return true;
485 
486 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
487 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
488 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
489 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
490 	if (r < 0)
491 		goto out;
492 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
493 out:
494 
495 	return changed;
496 }
497 
498 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
499 {
500 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
501 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
502 				    X86_CR0_CD | X86_CR0_NW;
503 
504 	cr0 |= X86_CR0_ET;
505 
506 #ifdef CONFIG_X86_64
507 	if (cr0 & 0xffffffff00000000UL)
508 		return 1;
509 #endif
510 
511 	cr0 &= ~CR0_RESERVED_BITS;
512 
513 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
514 		return 1;
515 
516 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
517 		return 1;
518 
519 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
520 #ifdef CONFIG_X86_64
521 		if ((vcpu->arch.efer & EFER_LME)) {
522 			int cs_db, cs_l;
523 
524 			if (!is_pae(vcpu))
525 				return 1;
526 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
527 			if (cs_l)
528 				return 1;
529 		} else
530 #endif
531 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
532 						 kvm_read_cr3(vcpu)))
533 			return 1;
534 	}
535 
536 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
537 		return 1;
538 
539 	kvm_x86_ops->set_cr0(vcpu, cr0);
540 
541 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
542 		kvm_clear_async_pf_completion_queue(vcpu);
543 		kvm_async_pf_hash_reset(vcpu);
544 	}
545 
546 	if ((cr0 ^ old_cr0) & update_bits)
547 		kvm_mmu_reset_context(vcpu);
548 	return 0;
549 }
550 EXPORT_SYMBOL_GPL(kvm_set_cr0);
551 
552 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
553 {
554 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
555 }
556 EXPORT_SYMBOL_GPL(kvm_lmsw);
557 
558 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
559 {
560 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
561 			!vcpu->guest_xcr0_loaded) {
562 		/* kvm_set_xcr() also depends on this */
563 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
564 		vcpu->guest_xcr0_loaded = 1;
565 	}
566 }
567 
568 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
569 {
570 	if (vcpu->guest_xcr0_loaded) {
571 		if (vcpu->arch.xcr0 != host_xcr0)
572 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
573 		vcpu->guest_xcr0_loaded = 0;
574 	}
575 }
576 
577 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
578 {
579 	u64 xcr0;
580 
581 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
582 	if (index != XCR_XFEATURE_ENABLED_MASK)
583 		return 1;
584 	xcr0 = xcr;
585 	if (kvm_x86_ops->get_cpl(vcpu) != 0)
586 		return 1;
587 	if (!(xcr0 & XSTATE_FP))
588 		return 1;
589 	if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
590 		return 1;
591 	if (xcr0 & ~host_xcr0)
592 		return 1;
593 	kvm_put_guest_xcr0(vcpu);
594 	vcpu->arch.xcr0 = xcr0;
595 	return 0;
596 }
597 
598 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
599 {
600 	if (__kvm_set_xcr(vcpu, index, xcr)) {
601 		kvm_inject_gp(vcpu, 0);
602 		return 1;
603 	}
604 	return 0;
605 }
606 EXPORT_SYMBOL_GPL(kvm_set_xcr);
607 
608 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
609 {
610 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
611 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
612 				   X86_CR4_PAE | X86_CR4_SMEP;
613 	if (cr4 & CR4_RESERVED_BITS)
614 		return 1;
615 
616 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
617 		return 1;
618 
619 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
620 		return 1;
621 
622 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
623 		return 1;
624 
625 	if (is_long_mode(vcpu)) {
626 		if (!(cr4 & X86_CR4_PAE))
627 			return 1;
628 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
629 		   && ((cr4 ^ old_cr4) & pdptr_bits)
630 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
631 				   kvm_read_cr3(vcpu)))
632 		return 1;
633 
634 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
635 		if (!guest_cpuid_has_pcid(vcpu))
636 			return 1;
637 
638 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
639 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
640 			return 1;
641 	}
642 
643 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
644 		return 1;
645 
646 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
647 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
648 		kvm_mmu_reset_context(vcpu);
649 
650 	if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
651 		kvm_update_cpuid(vcpu);
652 
653 	return 0;
654 }
655 EXPORT_SYMBOL_GPL(kvm_set_cr4);
656 
657 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
658 {
659 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
660 		kvm_mmu_sync_roots(vcpu);
661 		kvm_mmu_flush_tlb(vcpu);
662 		return 0;
663 	}
664 
665 	if (is_long_mode(vcpu)) {
666 		if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) {
667 			if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
668 				return 1;
669 		} else
670 			if (cr3 & CR3_L_MODE_RESERVED_BITS)
671 				return 1;
672 	} else {
673 		if (is_pae(vcpu)) {
674 			if (cr3 & CR3_PAE_RESERVED_BITS)
675 				return 1;
676 			if (is_paging(vcpu) &&
677 			    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
678 				return 1;
679 		}
680 		/*
681 		 * We don't check reserved bits in nonpae mode, because
682 		 * this isn't enforced, and VMware depends on this.
683 		 */
684 	}
685 
686 	/*
687 	 * Does the new cr3 value map to physical memory? (Note, we
688 	 * catch an invalid cr3 even in real-mode, because it would
689 	 * cause trouble later on when we turn on paging anyway.)
690 	 *
691 	 * A real CPU would silently accept an invalid cr3 and would
692 	 * attempt to use it - with largely undefined (and often hard
693 	 * to debug) behavior on the guest side.
694 	 */
695 	if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
696 		return 1;
697 	vcpu->arch.cr3 = cr3;
698 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
699 	vcpu->arch.mmu.new_cr3(vcpu);
700 	return 0;
701 }
702 EXPORT_SYMBOL_GPL(kvm_set_cr3);
703 
704 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
705 {
706 	if (cr8 & CR8_RESERVED_BITS)
707 		return 1;
708 	if (irqchip_in_kernel(vcpu->kvm))
709 		kvm_lapic_set_tpr(vcpu, cr8);
710 	else
711 		vcpu->arch.cr8 = cr8;
712 	return 0;
713 }
714 EXPORT_SYMBOL_GPL(kvm_set_cr8);
715 
716 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
717 {
718 	if (irqchip_in_kernel(vcpu->kvm))
719 		return kvm_lapic_get_cr8(vcpu);
720 	else
721 		return vcpu->arch.cr8;
722 }
723 EXPORT_SYMBOL_GPL(kvm_get_cr8);
724 
725 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
726 {
727 	unsigned long dr7;
728 
729 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
730 		dr7 = vcpu->arch.guest_debug_dr7;
731 	else
732 		dr7 = vcpu->arch.dr7;
733 	kvm_x86_ops->set_dr7(vcpu, dr7);
734 	vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK);
735 }
736 
737 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
738 {
739 	switch (dr) {
740 	case 0 ... 3:
741 		vcpu->arch.db[dr] = val;
742 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
743 			vcpu->arch.eff_db[dr] = val;
744 		break;
745 	case 4:
746 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
747 			return 1; /* #UD */
748 		/* fall through */
749 	case 6:
750 		if (val & 0xffffffff00000000ULL)
751 			return -1; /* #GP */
752 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
753 		break;
754 	case 5:
755 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
756 			return 1; /* #UD */
757 		/* fall through */
758 	default: /* 7 */
759 		if (val & 0xffffffff00000000ULL)
760 			return -1; /* #GP */
761 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
762 		kvm_update_dr7(vcpu);
763 		break;
764 	}
765 
766 	return 0;
767 }
768 
769 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
770 {
771 	int res;
772 
773 	res = __kvm_set_dr(vcpu, dr, val);
774 	if (res > 0)
775 		kvm_queue_exception(vcpu, UD_VECTOR);
776 	else if (res < 0)
777 		kvm_inject_gp(vcpu, 0);
778 
779 	return res;
780 }
781 EXPORT_SYMBOL_GPL(kvm_set_dr);
782 
783 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
784 {
785 	switch (dr) {
786 	case 0 ... 3:
787 		*val = vcpu->arch.db[dr];
788 		break;
789 	case 4:
790 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
791 			return 1;
792 		/* fall through */
793 	case 6:
794 		*val = vcpu->arch.dr6;
795 		break;
796 	case 5:
797 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
798 			return 1;
799 		/* fall through */
800 	default: /* 7 */
801 		*val = vcpu->arch.dr7;
802 		break;
803 	}
804 
805 	return 0;
806 }
807 
808 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
809 {
810 	if (_kvm_get_dr(vcpu, dr, val)) {
811 		kvm_queue_exception(vcpu, UD_VECTOR);
812 		return 1;
813 	}
814 	return 0;
815 }
816 EXPORT_SYMBOL_GPL(kvm_get_dr);
817 
818 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
819 {
820 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
821 	u64 data;
822 	int err;
823 
824 	err = kvm_pmu_read_pmc(vcpu, ecx, &data);
825 	if (err)
826 		return err;
827 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
828 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
829 	return err;
830 }
831 EXPORT_SYMBOL_GPL(kvm_rdpmc);
832 
833 /*
834  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
835  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
836  *
837  * This list is modified at module load time to reflect the
838  * capabilities of the host cpu. This capabilities test skips MSRs that are
839  * kvm-specific. Those are put in the beginning of the list.
840  */
841 
842 #define KVM_SAVE_MSRS_BEGIN	10
843 static u32 msrs_to_save[] = {
844 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
845 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
846 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
847 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
848 	MSR_KVM_PV_EOI_EN,
849 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
850 	MSR_STAR,
851 #ifdef CONFIG_X86_64
852 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
853 #endif
854 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
855 };
856 
857 static unsigned num_msrs_to_save;
858 
859 static const u32 emulated_msrs[] = {
860 	MSR_IA32_TSC_ADJUST,
861 	MSR_IA32_TSCDEADLINE,
862 	MSR_IA32_MISC_ENABLE,
863 	MSR_IA32_MCG_STATUS,
864 	MSR_IA32_MCG_CTL,
865 };
866 
867 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
868 {
869 	if (efer & efer_reserved_bits)
870 		return false;
871 
872 	if (efer & EFER_FFXSR) {
873 		struct kvm_cpuid_entry2 *feat;
874 
875 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
876 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
877 			return false;
878 	}
879 
880 	if (efer & EFER_SVME) {
881 		struct kvm_cpuid_entry2 *feat;
882 
883 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
884 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
885 			return false;
886 	}
887 
888 	return true;
889 }
890 EXPORT_SYMBOL_GPL(kvm_valid_efer);
891 
892 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
893 {
894 	u64 old_efer = vcpu->arch.efer;
895 
896 	if (!kvm_valid_efer(vcpu, efer))
897 		return 1;
898 
899 	if (is_paging(vcpu)
900 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
901 		return 1;
902 
903 	efer &= ~EFER_LMA;
904 	efer |= vcpu->arch.efer & EFER_LMA;
905 
906 	kvm_x86_ops->set_efer(vcpu, efer);
907 
908 	/* Update reserved bits */
909 	if ((efer ^ old_efer) & EFER_NX)
910 		kvm_mmu_reset_context(vcpu);
911 
912 	return 0;
913 }
914 
915 void kvm_enable_efer_bits(u64 mask)
916 {
917        efer_reserved_bits &= ~mask;
918 }
919 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
920 
921 
922 /*
923  * Writes msr value into into the appropriate "register".
924  * Returns 0 on success, non-0 otherwise.
925  * Assumes vcpu_load() was already called.
926  */
927 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
928 {
929 	return kvm_x86_ops->set_msr(vcpu, msr);
930 }
931 
932 /*
933  * Adapt set_msr() to msr_io()'s calling convention
934  */
935 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
936 {
937 	struct msr_data msr;
938 
939 	msr.data = *data;
940 	msr.index = index;
941 	msr.host_initiated = true;
942 	return kvm_set_msr(vcpu, &msr);
943 }
944 
945 #ifdef CONFIG_X86_64
946 struct pvclock_gtod_data {
947 	seqcount_t	seq;
948 
949 	struct { /* extract of a clocksource struct */
950 		int vclock_mode;
951 		cycle_t	cycle_last;
952 		cycle_t	mask;
953 		u32	mult;
954 		u32	shift;
955 	} clock;
956 
957 	/* open coded 'struct timespec' */
958 	u64		monotonic_time_snsec;
959 	time_t		monotonic_time_sec;
960 };
961 
962 static struct pvclock_gtod_data pvclock_gtod_data;
963 
964 static void update_pvclock_gtod(struct timekeeper *tk)
965 {
966 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
967 
968 	write_seqcount_begin(&vdata->seq);
969 
970 	/* copy pvclock gtod data */
971 	vdata->clock.vclock_mode	= tk->clock->archdata.vclock_mode;
972 	vdata->clock.cycle_last		= tk->clock->cycle_last;
973 	vdata->clock.mask		= tk->clock->mask;
974 	vdata->clock.mult		= tk->mult;
975 	vdata->clock.shift		= tk->shift;
976 
977 	vdata->monotonic_time_sec	= tk->xtime_sec
978 					+ tk->wall_to_monotonic.tv_sec;
979 	vdata->monotonic_time_snsec	= tk->xtime_nsec
980 					+ (tk->wall_to_monotonic.tv_nsec
981 						<< tk->shift);
982 	while (vdata->monotonic_time_snsec >=
983 					(((u64)NSEC_PER_SEC) << tk->shift)) {
984 		vdata->monotonic_time_snsec -=
985 					((u64)NSEC_PER_SEC) << tk->shift;
986 		vdata->monotonic_time_sec++;
987 	}
988 
989 	write_seqcount_end(&vdata->seq);
990 }
991 #endif
992 
993 
994 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
995 {
996 	int version;
997 	int r;
998 	struct pvclock_wall_clock wc;
999 	struct timespec boot;
1000 
1001 	if (!wall_clock)
1002 		return;
1003 
1004 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1005 	if (r)
1006 		return;
1007 
1008 	if (version & 1)
1009 		++version;  /* first time write, random junk */
1010 
1011 	++version;
1012 
1013 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1014 
1015 	/*
1016 	 * The guest calculates current wall clock time by adding
1017 	 * system time (updated by kvm_guest_time_update below) to the
1018 	 * wall clock specified here.  guest system time equals host
1019 	 * system time for us, thus we must fill in host boot time here.
1020 	 */
1021 	getboottime(&boot);
1022 
1023 	if (kvm->arch.kvmclock_offset) {
1024 		struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1025 		boot = timespec_sub(boot, ts);
1026 	}
1027 	wc.sec = boot.tv_sec;
1028 	wc.nsec = boot.tv_nsec;
1029 	wc.version = version;
1030 
1031 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1032 
1033 	version++;
1034 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1035 }
1036 
1037 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1038 {
1039 	uint32_t quotient, remainder;
1040 
1041 	/* Don't try to replace with do_div(), this one calculates
1042 	 * "(dividend << 32) / divisor" */
1043 	__asm__ ( "divl %4"
1044 		  : "=a" (quotient), "=d" (remainder)
1045 		  : "0" (0), "1" (dividend), "r" (divisor) );
1046 	return quotient;
1047 }
1048 
1049 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1050 			       s8 *pshift, u32 *pmultiplier)
1051 {
1052 	uint64_t scaled64;
1053 	int32_t  shift = 0;
1054 	uint64_t tps64;
1055 	uint32_t tps32;
1056 
1057 	tps64 = base_khz * 1000LL;
1058 	scaled64 = scaled_khz * 1000LL;
1059 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1060 		tps64 >>= 1;
1061 		shift--;
1062 	}
1063 
1064 	tps32 = (uint32_t)tps64;
1065 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1066 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1067 			scaled64 >>= 1;
1068 		else
1069 			tps32 <<= 1;
1070 		shift++;
1071 	}
1072 
1073 	*pshift = shift;
1074 	*pmultiplier = div_frac(scaled64, tps32);
1075 
1076 	pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1077 		 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1078 }
1079 
1080 static inline u64 get_kernel_ns(void)
1081 {
1082 	struct timespec ts;
1083 
1084 	WARN_ON(preemptible());
1085 	ktime_get_ts(&ts);
1086 	monotonic_to_bootbased(&ts);
1087 	return timespec_to_ns(&ts);
1088 }
1089 
1090 #ifdef CONFIG_X86_64
1091 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1092 #endif
1093 
1094 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1095 unsigned long max_tsc_khz;
1096 
1097 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1098 {
1099 	return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1100 				   vcpu->arch.virtual_tsc_shift);
1101 }
1102 
1103 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1104 {
1105 	u64 v = (u64)khz * (1000000 + ppm);
1106 	do_div(v, 1000000);
1107 	return v;
1108 }
1109 
1110 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1111 {
1112 	u32 thresh_lo, thresh_hi;
1113 	int use_scaling = 0;
1114 
1115 	/* tsc_khz can be zero if TSC calibration fails */
1116 	if (this_tsc_khz == 0)
1117 		return;
1118 
1119 	/* Compute a scale to convert nanoseconds in TSC cycles */
1120 	kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1121 			   &vcpu->arch.virtual_tsc_shift,
1122 			   &vcpu->arch.virtual_tsc_mult);
1123 	vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1124 
1125 	/*
1126 	 * Compute the variation in TSC rate which is acceptable
1127 	 * within the range of tolerance and decide if the
1128 	 * rate being applied is within that bounds of the hardware
1129 	 * rate.  If so, no scaling or compensation need be done.
1130 	 */
1131 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1132 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1133 	if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1134 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1135 		use_scaling = 1;
1136 	}
1137 	kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1138 }
1139 
1140 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1141 {
1142 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1143 				      vcpu->arch.virtual_tsc_mult,
1144 				      vcpu->arch.virtual_tsc_shift);
1145 	tsc += vcpu->arch.this_tsc_write;
1146 	return tsc;
1147 }
1148 
1149 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1150 {
1151 #ifdef CONFIG_X86_64
1152 	bool vcpus_matched;
1153 	bool do_request = false;
1154 	struct kvm_arch *ka = &vcpu->kvm->arch;
1155 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1156 
1157 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1158 			 atomic_read(&vcpu->kvm->online_vcpus));
1159 
1160 	if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1161 		if (!ka->use_master_clock)
1162 			do_request = 1;
1163 
1164 	if (!vcpus_matched && ka->use_master_clock)
1165 			do_request = 1;
1166 
1167 	if (do_request)
1168 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1169 
1170 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1171 			    atomic_read(&vcpu->kvm->online_vcpus),
1172 		            ka->use_master_clock, gtod->clock.vclock_mode);
1173 #endif
1174 }
1175 
1176 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1177 {
1178 	u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1179 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1180 }
1181 
1182 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1183 {
1184 	struct kvm *kvm = vcpu->kvm;
1185 	u64 offset, ns, elapsed;
1186 	unsigned long flags;
1187 	s64 usdiff;
1188 	bool matched;
1189 	u64 data = msr->data;
1190 
1191 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1192 	offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1193 	ns = get_kernel_ns();
1194 	elapsed = ns - kvm->arch.last_tsc_nsec;
1195 
1196 	if (vcpu->arch.virtual_tsc_khz) {
1197 		/* n.b - signed multiplication and division required */
1198 		usdiff = data - kvm->arch.last_tsc_write;
1199 #ifdef CONFIG_X86_64
1200 		usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1201 #else
1202 		/* do_div() only does unsigned */
1203 		asm("idivl %2; xor %%edx, %%edx"
1204 		: "=A"(usdiff)
1205 		: "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz));
1206 #endif
1207 		do_div(elapsed, 1000);
1208 		usdiff -= elapsed;
1209 		if (usdiff < 0)
1210 			usdiff = -usdiff;
1211 	} else
1212 		usdiff = USEC_PER_SEC; /* disable TSC match window below */
1213 
1214 	/*
1215 	 * Special case: TSC write with a small delta (1 second) of virtual
1216 	 * cycle time against real time is interpreted as an attempt to
1217 	 * synchronize the CPU.
1218          *
1219 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1220 	 * TSC, we add elapsed time in this computation.  We could let the
1221 	 * compensation code attempt to catch up if we fall behind, but
1222 	 * it's better to try to match offsets from the beginning.
1223          */
1224 	if (usdiff < USEC_PER_SEC &&
1225 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1226 		if (!check_tsc_unstable()) {
1227 			offset = kvm->arch.cur_tsc_offset;
1228 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1229 		} else {
1230 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1231 			data += delta;
1232 			offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1233 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1234 		}
1235 		matched = true;
1236 	} else {
1237 		/*
1238 		 * We split periods of matched TSC writes into generations.
1239 		 * For each generation, we track the original measured
1240 		 * nanosecond time, offset, and write, so if TSCs are in
1241 		 * sync, we can match exact offset, and if not, we can match
1242 		 * exact software computation in compute_guest_tsc()
1243 		 *
1244 		 * These values are tracked in kvm->arch.cur_xxx variables.
1245 		 */
1246 		kvm->arch.cur_tsc_generation++;
1247 		kvm->arch.cur_tsc_nsec = ns;
1248 		kvm->arch.cur_tsc_write = data;
1249 		kvm->arch.cur_tsc_offset = offset;
1250 		matched = false;
1251 		pr_debug("kvm: new tsc generation %u, clock %llu\n",
1252 			 kvm->arch.cur_tsc_generation, data);
1253 	}
1254 
1255 	/*
1256 	 * We also track th most recent recorded KHZ, write and time to
1257 	 * allow the matching interval to be extended at each write.
1258 	 */
1259 	kvm->arch.last_tsc_nsec = ns;
1260 	kvm->arch.last_tsc_write = data;
1261 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1262 
1263 	/* Reset of TSC must disable overshoot protection below */
1264 	vcpu->arch.hv_clock.tsc_timestamp = 0;
1265 	vcpu->arch.last_guest_tsc = data;
1266 
1267 	/* Keep track of which generation this VCPU has synchronized to */
1268 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1269 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1270 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1271 
1272 	if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1273 		update_ia32_tsc_adjust_msr(vcpu, offset);
1274 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1275 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1276 
1277 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1278 	if (matched)
1279 		kvm->arch.nr_vcpus_matched_tsc++;
1280 	else
1281 		kvm->arch.nr_vcpus_matched_tsc = 0;
1282 
1283 	kvm_track_tsc_matching(vcpu);
1284 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1285 }
1286 
1287 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1288 
1289 #ifdef CONFIG_X86_64
1290 
1291 static cycle_t read_tsc(void)
1292 {
1293 	cycle_t ret;
1294 	u64 last;
1295 
1296 	/*
1297 	 * Empirically, a fence (of type that depends on the CPU)
1298 	 * before rdtsc is enough to ensure that rdtsc is ordered
1299 	 * with respect to loads.  The various CPU manuals are unclear
1300 	 * as to whether rdtsc can be reordered with later loads,
1301 	 * but no one has ever seen it happen.
1302 	 */
1303 	rdtsc_barrier();
1304 	ret = (cycle_t)vget_cycles();
1305 
1306 	last = pvclock_gtod_data.clock.cycle_last;
1307 
1308 	if (likely(ret >= last))
1309 		return ret;
1310 
1311 	/*
1312 	 * GCC likes to generate cmov here, but this branch is extremely
1313 	 * predictable (it's just a funciton of time and the likely is
1314 	 * very likely) and there's a data dependence, so force GCC
1315 	 * to generate a branch instead.  I don't barrier() because
1316 	 * we don't actually need a barrier, and if this function
1317 	 * ever gets inlined it will generate worse code.
1318 	 */
1319 	asm volatile ("");
1320 	return last;
1321 }
1322 
1323 static inline u64 vgettsc(cycle_t *cycle_now)
1324 {
1325 	long v;
1326 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1327 
1328 	*cycle_now = read_tsc();
1329 
1330 	v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1331 	return v * gtod->clock.mult;
1332 }
1333 
1334 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
1335 {
1336 	unsigned long seq;
1337 	u64 ns;
1338 	int mode;
1339 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1340 
1341 	ts->tv_nsec = 0;
1342 	do {
1343 		seq = read_seqcount_begin(&gtod->seq);
1344 		mode = gtod->clock.vclock_mode;
1345 		ts->tv_sec = gtod->monotonic_time_sec;
1346 		ns = gtod->monotonic_time_snsec;
1347 		ns += vgettsc(cycle_now);
1348 		ns >>= gtod->clock.shift;
1349 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1350 	timespec_add_ns(ts, ns);
1351 
1352 	return mode;
1353 }
1354 
1355 /* returns true if host is using tsc clocksource */
1356 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1357 {
1358 	struct timespec ts;
1359 
1360 	/* checked again under seqlock below */
1361 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1362 		return false;
1363 
1364 	if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
1365 		return false;
1366 
1367 	monotonic_to_bootbased(&ts);
1368 	*kernel_ns = timespec_to_ns(&ts);
1369 
1370 	return true;
1371 }
1372 #endif
1373 
1374 /*
1375  *
1376  * Assuming a stable TSC across physical CPUS, and a stable TSC
1377  * across virtual CPUs, the following condition is possible.
1378  * Each numbered line represents an event visible to both
1379  * CPUs at the next numbered event.
1380  *
1381  * "timespecX" represents host monotonic time. "tscX" represents
1382  * RDTSC value.
1383  *
1384  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1385  *
1386  * 1.  read timespec0,tsc0
1387  * 2.					| timespec1 = timespec0 + N
1388  * 					| tsc1 = tsc0 + M
1389  * 3. transition to guest		| transition to guest
1390  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1391  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1392  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1393  *
1394  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1395  *
1396  * 	- ret0 < ret1
1397  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1398  *		...
1399  *	- 0 < N - M => M < N
1400  *
1401  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1402  * always the case (the difference between two distinct xtime instances
1403  * might be smaller then the difference between corresponding TSC reads,
1404  * when updating guest vcpus pvclock areas).
1405  *
1406  * To avoid that problem, do not allow visibility of distinct
1407  * system_timestamp/tsc_timestamp values simultaneously: use a master
1408  * copy of host monotonic time values. Update that master copy
1409  * in lockstep.
1410  *
1411  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1412  *
1413  */
1414 
1415 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1416 {
1417 #ifdef CONFIG_X86_64
1418 	struct kvm_arch *ka = &kvm->arch;
1419 	int vclock_mode;
1420 	bool host_tsc_clocksource, vcpus_matched;
1421 
1422 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1423 			atomic_read(&kvm->online_vcpus));
1424 
1425 	/*
1426 	 * If the host uses TSC clock, then passthrough TSC as stable
1427 	 * to the guest.
1428 	 */
1429 	host_tsc_clocksource = kvm_get_time_and_clockread(
1430 					&ka->master_kernel_ns,
1431 					&ka->master_cycle_now);
1432 
1433 	ka->use_master_clock = host_tsc_clocksource & vcpus_matched;
1434 
1435 	if (ka->use_master_clock)
1436 		atomic_set(&kvm_guest_has_master_clock, 1);
1437 
1438 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1439 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1440 					vcpus_matched);
1441 #endif
1442 }
1443 
1444 static int kvm_guest_time_update(struct kvm_vcpu *v)
1445 {
1446 	unsigned long flags, this_tsc_khz;
1447 	struct kvm_vcpu_arch *vcpu = &v->arch;
1448 	struct kvm_arch *ka = &v->kvm->arch;
1449 	s64 kernel_ns, max_kernel_ns;
1450 	u64 tsc_timestamp, host_tsc;
1451 	struct pvclock_vcpu_time_info guest_hv_clock;
1452 	u8 pvclock_flags;
1453 	bool use_master_clock;
1454 
1455 	kernel_ns = 0;
1456 	host_tsc = 0;
1457 
1458 	/*
1459 	 * If the host uses TSC clock, then passthrough TSC as stable
1460 	 * to the guest.
1461 	 */
1462 	spin_lock(&ka->pvclock_gtod_sync_lock);
1463 	use_master_clock = ka->use_master_clock;
1464 	if (use_master_clock) {
1465 		host_tsc = ka->master_cycle_now;
1466 		kernel_ns = ka->master_kernel_ns;
1467 	}
1468 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1469 
1470 	/* Keep irq disabled to prevent changes to the clock */
1471 	local_irq_save(flags);
1472 	this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1473 	if (unlikely(this_tsc_khz == 0)) {
1474 		local_irq_restore(flags);
1475 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1476 		return 1;
1477 	}
1478 	if (!use_master_clock) {
1479 		host_tsc = native_read_tsc();
1480 		kernel_ns = get_kernel_ns();
1481 	}
1482 
1483 	tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1484 
1485 	/*
1486 	 * We may have to catch up the TSC to match elapsed wall clock
1487 	 * time for two reasons, even if kvmclock is used.
1488 	 *   1) CPU could have been running below the maximum TSC rate
1489 	 *   2) Broken TSC compensation resets the base at each VCPU
1490 	 *      entry to avoid unknown leaps of TSC even when running
1491 	 *      again on the same CPU.  This may cause apparent elapsed
1492 	 *      time to disappear, and the guest to stand still or run
1493 	 *	very slowly.
1494 	 */
1495 	if (vcpu->tsc_catchup) {
1496 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1497 		if (tsc > tsc_timestamp) {
1498 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1499 			tsc_timestamp = tsc;
1500 		}
1501 	}
1502 
1503 	local_irq_restore(flags);
1504 
1505 	if (!vcpu->pv_time_enabled)
1506 		return 0;
1507 
1508 	/*
1509 	 * Time as measured by the TSC may go backwards when resetting the base
1510 	 * tsc_timestamp.  The reason for this is that the TSC resolution is
1511 	 * higher than the resolution of the other clock scales.  Thus, many
1512 	 * possible measurments of the TSC correspond to one measurement of any
1513 	 * other clock, and so a spread of values is possible.  This is not a
1514 	 * problem for the computation of the nanosecond clock; with TSC rates
1515 	 * around 1GHZ, there can only be a few cycles which correspond to one
1516 	 * nanosecond value, and any path through this code will inevitably
1517 	 * take longer than that.  However, with the kernel_ns value itself,
1518 	 * the precision may be much lower, down to HZ granularity.  If the
1519 	 * first sampling of TSC against kernel_ns ends in the low part of the
1520 	 * range, and the second in the high end of the range, we can get:
1521 	 *
1522 	 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1523 	 *
1524 	 * As the sampling errors potentially range in the thousands of cycles,
1525 	 * it is possible such a time value has already been observed by the
1526 	 * guest.  To protect against this, we must compute the system time as
1527 	 * observed by the guest and ensure the new system time is greater.
1528 	 */
1529 	max_kernel_ns = 0;
1530 	if (vcpu->hv_clock.tsc_timestamp) {
1531 		max_kernel_ns = vcpu->last_guest_tsc -
1532 				vcpu->hv_clock.tsc_timestamp;
1533 		max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1534 				    vcpu->hv_clock.tsc_to_system_mul,
1535 				    vcpu->hv_clock.tsc_shift);
1536 		max_kernel_ns += vcpu->last_kernel_ns;
1537 	}
1538 
1539 	if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1540 		kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1541 				   &vcpu->hv_clock.tsc_shift,
1542 				   &vcpu->hv_clock.tsc_to_system_mul);
1543 		vcpu->hw_tsc_khz = this_tsc_khz;
1544 	}
1545 
1546 	/* with a master <monotonic time, tsc value> tuple,
1547 	 * pvclock clock reads always increase at the (scaled) rate
1548 	 * of guest TSC - no need to deal with sampling errors.
1549 	 */
1550 	if (!use_master_clock) {
1551 		if (max_kernel_ns > kernel_ns)
1552 			kernel_ns = max_kernel_ns;
1553 	}
1554 	/* With all the info we got, fill in the values */
1555 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1556 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1557 	vcpu->last_kernel_ns = kernel_ns;
1558 	vcpu->last_guest_tsc = tsc_timestamp;
1559 
1560 	/*
1561 	 * The interface expects us to write an even number signaling that the
1562 	 * update is finished. Since the guest won't see the intermediate
1563 	 * state, we just increase by 2 at the end.
1564 	 */
1565 	vcpu->hv_clock.version += 2;
1566 
1567 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1568 		&guest_hv_clock, sizeof(guest_hv_clock))))
1569 		return 0;
1570 
1571 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1572 	pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1573 
1574 	if (vcpu->pvclock_set_guest_stopped_request) {
1575 		pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1576 		vcpu->pvclock_set_guest_stopped_request = false;
1577 	}
1578 
1579 	/* If the host uses TSC clocksource, then it is stable */
1580 	if (use_master_clock)
1581 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1582 
1583 	vcpu->hv_clock.flags = pvclock_flags;
1584 
1585 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1586 				&vcpu->hv_clock,
1587 				sizeof(vcpu->hv_clock));
1588 	return 0;
1589 }
1590 
1591 static bool msr_mtrr_valid(unsigned msr)
1592 {
1593 	switch (msr) {
1594 	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1595 	case MSR_MTRRfix64K_00000:
1596 	case MSR_MTRRfix16K_80000:
1597 	case MSR_MTRRfix16K_A0000:
1598 	case MSR_MTRRfix4K_C0000:
1599 	case MSR_MTRRfix4K_C8000:
1600 	case MSR_MTRRfix4K_D0000:
1601 	case MSR_MTRRfix4K_D8000:
1602 	case MSR_MTRRfix4K_E0000:
1603 	case MSR_MTRRfix4K_E8000:
1604 	case MSR_MTRRfix4K_F0000:
1605 	case MSR_MTRRfix4K_F8000:
1606 	case MSR_MTRRdefType:
1607 	case MSR_IA32_CR_PAT:
1608 		return true;
1609 	case 0x2f8:
1610 		return true;
1611 	}
1612 	return false;
1613 }
1614 
1615 static bool valid_pat_type(unsigned t)
1616 {
1617 	return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1618 }
1619 
1620 static bool valid_mtrr_type(unsigned t)
1621 {
1622 	return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1623 }
1624 
1625 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1626 {
1627 	int i;
1628 
1629 	if (!msr_mtrr_valid(msr))
1630 		return false;
1631 
1632 	if (msr == MSR_IA32_CR_PAT) {
1633 		for (i = 0; i < 8; i++)
1634 			if (!valid_pat_type((data >> (i * 8)) & 0xff))
1635 				return false;
1636 		return true;
1637 	} else if (msr == MSR_MTRRdefType) {
1638 		if (data & ~0xcff)
1639 			return false;
1640 		return valid_mtrr_type(data & 0xff);
1641 	} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1642 		for (i = 0; i < 8 ; i++)
1643 			if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1644 				return false;
1645 		return true;
1646 	}
1647 
1648 	/* variable MTRRs */
1649 	return valid_mtrr_type(data & 0xff);
1650 }
1651 
1652 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1653 {
1654 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1655 
1656 	if (!mtrr_valid(vcpu, msr, data))
1657 		return 1;
1658 
1659 	if (msr == MSR_MTRRdefType) {
1660 		vcpu->arch.mtrr_state.def_type = data;
1661 		vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1662 	} else if (msr == MSR_MTRRfix64K_00000)
1663 		p[0] = data;
1664 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1665 		p[1 + msr - MSR_MTRRfix16K_80000] = data;
1666 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1667 		p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1668 	else if (msr == MSR_IA32_CR_PAT)
1669 		vcpu->arch.pat = data;
1670 	else {	/* Variable MTRRs */
1671 		int idx, is_mtrr_mask;
1672 		u64 *pt;
1673 
1674 		idx = (msr - 0x200) / 2;
1675 		is_mtrr_mask = msr - 0x200 - 2 * idx;
1676 		if (!is_mtrr_mask)
1677 			pt =
1678 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1679 		else
1680 			pt =
1681 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1682 		*pt = data;
1683 	}
1684 
1685 	kvm_mmu_reset_context(vcpu);
1686 	return 0;
1687 }
1688 
1689 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1690 {
1691 	u64 mcg_cap = vcpu->arch.mcg_cap;
1692 	unsigned bank_num = mcg_cap & 0xff;
1693 
1694 	switch (msr) {
1695 	case MSR_IA32_MCG_STATUS:
1696 		vcpu->arch.mcg_status = data;
1697 		break;
1698 	case MSR_IA32_MCG_CTL:
1699 		if (!(mcg_cap & MCG_CTL_P))
1700 			return 1;
1701 		if (data != 0 && data != ~(u64)0)
1702 			return -1;
1703 		vcpu->arch.mcg_ctl = data;
1704 		break;
1705 	default:
1706 		if (msr >= MSR_IA32_MC0_CTL &&
1707 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1708 			u32 offset = msr - MSR_IA32_MC0_CTL;
1709 			/* only 0 or all 1s can be written to IA32_MCi_CTL
1710 			 * some Linux kernels though clear bit 10 in bank 4 to
1711 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1712 			 * this to avoid an uncatched #GP in the guest
1713 			 */
1714 			if ((offset & 0x3) == 0 &&
1715 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
1716 				return -1;
1717 			vcpu->arch.mce_banks[offset] = data;
1718 			break;
1719 		}
1720 		return 1;
1721 	}
1722 	return 0;
1723 }
1724 
1725 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1726 {
1727 	struct kvm *kvm = vcpu->kvm;
1728 	int lm = is_long_mode(vcpu);
1729 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1730 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1731 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1732 		: kvm->arch.xen_hvm_config.blob_size_32;
1733 	u32 page_num = data & ~PAGE_MASK;
1734 	u64 page_addr = data & PAGE_MASK;
1735 	u8 *page;
1736 	int r;
1737 
1738 	r = -E2BIG;
1739 	if (page_num >= blob_size)
1740 		goto out;
1741 	r = -ENOMEM;
1742 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1743 	if (IS_ERR(page)) {
1744 		r = PTR_ERR(page);
1745 		goto out;
1746 	}
1747 	if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1748 		goto out_free;
1749 	r = 0;
1750 out_free:
1751 	kfree(page);
1752 out:
1753 	return r;
1754 }
1755 
1756 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1757 {
1758 	return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1759 }
1760 
1761 static bool kvm_hv_msr_partition_wide(u32 msr)
1762 {
1763 	bool r = false;
1764 	switch (msr) {
1765 	case HV_X64_MSR_GUEST_OS_ID:
1766 	case HV_X64_MSR_HYPERCALL:
1767 		r = true;
1768 		break;
1769 	}
1770 
1771 	return r;
1772 }
1773 
1774 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1775 {
1776 	struct kvm *kvm = vcpu->kvm;
1777 
1778 	switch (msr) {
1779 	case HV_X64_MSR_GUEST_OS_ID:
1780 		kvm->arch.hv_guest_os_id = data;
1781 		/* setting guest os id to zero disables hypercall page */
1782 		if (!kvm->arch.hv_guest_os_id)
1783 			kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1784 		break;
1785 	case HV_X64_MSR_HYPERCALL: {
1786 		u64 gfn;
1787 		unsigned long addr;
1788 		u8 instructions[4];
1789 
1790 		/* if guest os id is not set hypercall should remain disabled */
1791 		if (!kvm->arch.hv_guest_os_id)
1792 			break;
1793 		if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1794 			kvm->arch.hv_hypercall = data;
1795 			break;
1796 		}
1797 		gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1798 		addr = gfn_to_hva(kvm, gfn);
1799 		if (kvm_is_error_hva(addr))
1800 			return 1;
1801 		kvm_x86_ops->patch_hypercall(vcpu, instructions);
1802 		((unsigned char *)instructions)[3] = 0xc3; /* ret */
1803 		if (__copy_to_user((void __user *)addr, instructions, 4))
1804 			return 1;
1805 		kvm->arch.hv_hypercall = data;
1806 		break;
1807 	}
1808 	default:
1809 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1810 			    "data 0x%llx\n", msr, data);
1811 		return 1;
1812 	}
1813 	return 0;
1814 }
1815 
1816 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1817 {
1818 	switch (msr) {
1819 	case HV_X64_MSR_APIC_ASSIST_PAGE: {
1820 		unsigned long addr;
1821 
1822 		if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1823 			vcpu->arch.hv_vapic = data;
1824 			break;
1825 		}
1826 		addr = gfn_to_hva(vcpu->kvm, data >>
1827 				  HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1828 		if (kvm_is_error_hva(addr))
1829 			return 1;
1830 		if (__clear_user((void __user *)addr, PAGE_SIZE))
1831 			return 1;
1832 		vcpu->arch.hv_vapic = data;
1833 		break;
1834 	}
1835 	case HV_X64_MSR_EOI:
1836 		return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1837 	case HV_X64_MSR_ICR:
1838 		return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1839 	case HV_X64_MSR_TPR:
1840 		return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1841 	default:
1842 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1843 			    "data 0x%llx\n", msr, data);
1844 		return 1;
1845 	}
1846 
1847 	return 0;
1848 }
1849 
1850 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1851 {
1852 	gpa_t gpa = data & ~0x3f;
1853 
1854 	/* Bits 2:5 are reserved, Should be zero */
1855 	if (data & 0x3c)
1856 		return 1;
1857 
1858 	vcpu->arch.apf.msr_val = data;
1859 
1860 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
1861 		kvm_clear_async_pf_completion_queue(vcpu);
1862 		kvm_async_pf_hash_reset(vcpu);
1863 		return 0;
1864 	}
1865 
1866 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1867 					sizeof(u32)))
1868 		return 1;
1869 
1870 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1871 	kvm_async_pf_wakeup_all(vcpu);
1872 	return 0;
1873 }
1874 
1875 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1876 {
1877 	vcpu->arch.pv_time_enabled = false;
1878 }
1879 
1880 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1881 {
1882 	u64 delta;
1883 
1884 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1885 		return;
1886 
1887 	delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1888 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
1889 	vcpu->arch.st.accum_steal = delta;
1890 }
1891 
1892 static void record_steal_time(struct kvm_vcpu *vcpu)
1893 {
1894 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1895 		return;
1896 
1897 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1898 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1899 		return;
1900 
1901 	vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1902 	vcpu->arch.st.steal.version += 2;
1903 	vcpu->arch.st.accum_steal = 0;
1904 
1905 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1906 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1907 }
1908 
1909 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1910 {
1911 	bool pr = false;
1912 	u32 msr = msr_info->index;
1913 	u64 data = msr_info->data;
1914 
1915 	switch (msr) {
1916 	case MSR_AMD64_NB_CFG:
1917 	case MSR_IA32_UCODE_REV:
1918 	case MSR_IA32_UCODE_WRITE:
1919 	case MSR_VM_HSAVE_PA:
1920 	case MSR_AMD64_PATCH_LOADER:
1921 	case MSR_AMD64_BU_CFG2:
1922 		break;
1923 
1924 	case MSR_EFER:
1925 		return set_efer(vcpu, data);
1926 	case MSR_K7_HWCR:
1927 		data &= ~(u64)0x40;	/* ignore flush filter disable */
1928 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
1929 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
1930 		if (data != 0) {
1931 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1932 				    data);
1933 			return 1;
1934 		}
1935 		break;
1936 	case MSR_FAM10H_MMIO_CONF_BASE:
1937 		if (data != 0) {
1938 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1939 				    "0x%llx\n", data);
1940 			return 1;
1941 		}
1942 		break;
1943 	case MSR_IA32_DEBUGCTLMSR:
1944 		if (!data) {
1945 			/* We support the non-activated case already */
1946 			break;
1947 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1948 			/* Values other than LBR and BTF are vendor-specific,
1949 			   thus reserved and should throw a #GP */
1950 			return 1;
1951 		}
1952 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1953 			    __func__, data);
1954 		break;
1955 	case 0x200 ... 0x2ff:
1956 		return set_msr_mtrr(vcpu, msr, data);
1957 	case MSR_IA32_APICBASE:
1958 		kvm_set_apic_base(vcpu, data);
1959 		break;
1960 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1961 		return kvm_x2apic_msr_write(vcpu, msr, data);
1962 	case MSR_IA32_TSCDEADLINE:
1963 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
1964 		break;
1965 	case MSR_IA32_TSC_ADJUST:
1966 		if (guest_cpuid_has_tsc_adjust(vcpu)) {
1967 			if (!msr_info->host_initiated) {
1968 				u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
1969 				kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
1970 			}
1971 			vcpu->arch.ia32_tsc_adjust_msr = data;
1972 		}
1973 		break;
1974 	case MSR_IA32_MISC_ENABLE:
1975 		vcpu->arch.ia32_misc_enable_msr = data;
1976 		break;
1977 	case MSR_KVM_WALL_CLOCK_NEW:
1978 	case MSR_KVM_WALL_CLOCK:
1979 		vcpu->kvm->arch.wall_clock = data;
1980 		kvm_write_wall_clock(vcpu->kvm, data);
1981 		break;
1982 	case MSR_KVM_SYSTEM_TIME_NEW:
1983 	case MSR_KVM_SYSTEM_TIME: {
1984 		u64 gpa_offset;
1985 		kvmclock_reset(vcpu);
1986 
1987 		vcpu->arch.time = data;
1988 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1989 
1990 		/* we verify if the enable bit is set... */
1991 		if (!(data & 1))
1992 			break;
1993 
1994 		gpa_offset = data & ~(PAGE_MASK | 1);
1995 
1996 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
1997 		     &vcpu->arch.pv_time, data & ~1ULL,
1998 		     sizeof(struct pvclock_vcpu_time_info)))
1999 			vcpu->arch.pv_time_enabled = false;
2000 		else
2001 			vcpu->arch.pv_time_enabled = true;
2002 
2003 		break;
2004 	}
2005 	case MSR_KVM_ASYNC_PF_EN:
2006 		if (kvm_pv_enable_async_pf(vcpu, data))
2007 			return 1;
2008 		break;
2009 	case MSR_KVM_STEAL_TIME:
2010 
2011 		if (unlikely(!sched_info_on()))
2012 			return 1;
2013 
2014 		if (data & KVM_STEAL_RESERVED_MASK)
2015 			return 1;
2016 
2017 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2018 						data & KVM_STEAL_VALID_BITS,
2019 						sizeof(struct kvm_steal_time)))
2020 			return 1;
2021 
2022 		vcpu->arch.st.msr_val = data;
2023 
2024 		if (!(data & KVM_MSR_ENABLED))
2025 			break;
2026 
2027 		vcpu->arch.st.last_steal = current->sched_info.run_delay;
2028 
2029 		preempt_disable();
2030 		accumulate_steal_time(vcpu);
2031 		preempt_enable();
2032 
2033 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2034 
2035 		break;
2036 	case MSR_KVM_PV_EOI_EN:
2037 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2038 			return 1;
2039 		break;
2040 
2041 	case MSR_IA32_MCG_CTL:
2042 	case MSR_IA32_MCG_STATUS:
2043 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2044 		return set_msr_mce(vcpu, msr, data);
2045 
2046 	/* Performance counters are not protected by a CPUID bit,
2047 	 * so we should check all of them in the generic path for the sake of
2048 	 * cross vendor migration.
2049 	 * Writing a zero into the event select MSRs disables them,
2050 	 * which we perfectly emulate ;-). Any other value should be at least
2051 	 * reported, some guests depend on them.
2052 	 */
2053 	case MSR_K7_EVNTSEL0:
2054 	case MSR_K7_EVNTSEL1:
2055 	case MSR_K7_EVNTSEL2:
2056 	case MSR_K7_EVNTSEL3:
2057 		if (data != 0)
2058 			vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2059 				    "0x%x data 0x%llx\n", msr, data);
2060 		break;
2061 	/* at least RHEL 4 unconditionally writes to the perfctr registers,
2062 	 * so we ignore writes to make it happy.
2063 	 */
2064 	case MSR_K7_PERFCTR0:
2065 	case MSR_K7_PERFCTR1:
2066 	case MSR_K7_PERFCTR2:
2067 	case MSR_K7_PERFCTR3:
2068 		vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2069 			    "0x%x data 0x%llx\n", msr, data);
2070 		break;
2071 	case MSR_P6_PERFCTR0:
2072 	case MSR_P6_PERFCTR1:
2073 		pr = true;
2074 	case MSR_P6_EVNTSEL0:
2075 	case MSR_P6_EVNTSEL1:
2076 		if (kvm_pmu_msr(vcpu, msr))
2077 			return kvm_pmu_set_msr(vcpu, msr_info);
2078 
2079 		if (pr || data != 0)
2080 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2081 				    "0x%x data 0x%llx\n", msr, data);
2082 		break;
2083 	case MSR_K7_CLK_CTL:
2084 		/*
2085 		 * Ignore all writes to this no longer documented MSR.
2086 		 * Writes are only relevant for old K7 processors,
2087 		 * all pre-dating SVM, but a recommended workaround from
2088 		 * AMD for these chips. It is possible to specify the
2089 		 * affected processor models on the command line, hence
2090 		 * the need to ignore the workaround.
2091 		 */
2092 		break;
2093 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2094 		if (kvm_hv_msr_partition_wide(msr)) {
2095 			int r;
2096 			mutex_lock(&vcpu->kvm->lock);
2097 			r = set_msr_hyperv_pw(vcpu, msr, data);
2098 			mutex_unlock(&vcpu->kvm->lock);
2099 			return r;
2100 		} else
2101 			return set_msr_hyperv(vcpu, msr, data);
2102 		break;
2103 	case MSR_IA32_BBL_CR_CTL3:
2104 		/* Drop writes to this legacy MSR -- see rdmsr
2105 		 * counterpart for further detail.
2106 		 */
2107 		vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2108 		break;
2109 	case MSR_AMD64_OSVW_ID_LENGTH:
2110 		if (!guest_cpuid_has_osvw(vcpu))
2111 			return 1;
2112 		vcpu->arch.osvw.length = data;
2113 		break;
2114 	case MSR_AMD64_OSVW_STATUS:
2115 		if (!guest_cpuid_has_osvw(vcpu))
2116 			return 1;
2117 		vcpu->arch.osvw.status = data;
2118 		break;
2119 	default:
2120 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2121 			return xen_hvm_config(vcpu, data);
2122 		if (kvm_pmu_msr(vcpu, msr))
2123 			return kvm_pmu_set_msr(vcpu, msr_info);
2124 		if (!ignore_msrs) {
2125 			vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2126 				    msr, data);
2127 			return 1;
2128 		} else {
2129 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2130 				    msr, data);
2131 			break;
2132 		}
2133 	}
2134 	return 0;
2135 }
2136 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2137 
2138 
2139 /*
2140  * Reads an msr value (of 'msr_index') into 'pdata'.
2141  * Returns 0 on success, non-0 otherwise.
2142  * Assumes vcpu_load() was already called.
2143  */
2144 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2145 {
2146 	return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2147 }
2148 
2149 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2150 {
2151 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2152 
2153 	if (!msr_mtrr_valid(msr))
2154 		return 1;
2155 
2156 	if (msr == MSR_MTRRdefType)
2157 		*pdata = vcpu->arch.mtrr_state.def_type +
2158 			 (vcpu->arch.mtrr_state.enabled << 10);
2159 	else if (msr == MSR_MTRRfix64K_00000)
2160 		*pdata = p[0];
2161 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2162 		*pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2163 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2164 		*pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2165 	else if (msr == MSR_IA32_CR_PAT)
2166 		*pdata = vcpu->arch.pat;
2167 	else {	/* Variable MTRRs */
2168 		int idx, is_mtrr_mask;
2169 		u64 *pt;
2170 
2171 		idx = (msr - 0x200) / 2;
2172 		is_mtrr_mask = msr - 0x200 - 2 * idx;
2173 		if (!is_mtrr_mask)
2174 			pt =
2175 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2176 		else
2177 			pt =
2178 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2179 		*pdata = *pt;
2180 	}
2181 
2182 	return 0;
2183 }
2184 
2185 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2186 {
2187 	u64 data;
2188 	u64 mcg_cap = vcpu->arch.mcg_cap;
2189 	unsigned bank_num = mcg_cap & 0xff;
2190 
2191 	switch (msr) {
2192 	case MSR_IA32_P5_MC_ADDR:
2193 	case MSR_IA32_P5_MC_TYPE:
2194 		data = 0;
2195 		break;
2196 	case MSR_IA32_MCG_CAP:
2197 		data = vcpu->arch.mcg_cap;
2198 		break;
2199 	case MSR_IA32_MCG_CTL:
2200 		if (!(mcg_cap & MCG_CTL_P))
2201 			return 1;
2202 		data = vcpu->arch.mcg_ctl;
2203 		break;
2204 	case MSR_IA32_MCG_STATUS:
2205 		data = vcpu->arch.mcg_status;
2206 		break;
2207 	default:
2208 		if (msr >= MSR_IA32_MC0_CTL &&
2209 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
2210 			u32 offset = msr - MSR_IA32_MC0_CTL;
2211 			data = vcpu->arch.mce_banks[offset];
2212 			break;
2213 		}
2214 		return 1;
2215 	}
2216 	*pdata = data;
2217 	return 0;
2218 }
2219 
2220 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2221 {
2222 	u64 data = 0;
2223 	struct kvm *kvm = vcpu->kvm;
2224 
2225 	switch (msr) {
2226 	case HV_X64_MSR_GUEST_OS_ID:
2227 		data = kvm->arch.hv_guest_os_id;
2228 		break;
2229 	case HV_X64_MSR_HYPERCALL:
2230 		data = kvm->arch.hv_hypercall;
2231 		break;
2232 	default:
2233 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2234 		return 1;
2235 	}
2236 
2237 	*pdata = data;
2238 	return 0;
2239 }
2240 
2241 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2242 {
2243 	u64 data = 0;
2244 
2245 	switch (msr) {
2246 	case HV_X64_MSR_VP_INDEX: {
2247 		int r;
2248 		struct kvm_vcpu *v;
2249 		kvm_for_each_vcpu(r, v, vcpu->kvm)
2250 			if (v == vcpu)
2251 				data = r;
2252 		break;
2253 	}
2254 	case HV_X64_MSR_EOI:
2255 		return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2256 	case HV_X64_MSR_ICR:
2257 		return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2258 	case HV_X64_MSR_TPR:
2259 		return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2260 	case HV_X64_MSR_APIC_ASSIST_PAGE:
2261 		data = vcpu->arch.hv_vapic;
2262 		break;
2263 	default:
2264 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2265 		return 1;
2266 	}
2267 	*pdata = data;
2268 	return 0;
2269 }
2270 
2271 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2272 {
2273 	u64 data;
2274 
2275 	switch (msr) {
2276 	case MSR_IA32_PLATFORM_ID:
2277 	case MSR_IA32_EBL_CR_POWERON:
2278 	case MSR_IA32_DEBUGCTLMSR:
2279 	case MSR_IA32_LASTBRANCHFROMIP:
2280 	case MSR_IA32_LASTBRANCHTOIP:
2281 	case MSR_IA32_LASTINTFROMIP:
2282 	case MSR_IA32_LASTINTTOIP:
2283 	case MSR_K8_SYSCFG:
2284 	case MSR_K7_HWCR:
2285 	case MSR_VM_HSAVE_PA:
2286 	case MSR_K7_EVNTSEL0:
2287 	case MSR_K7_PERFCTR0:
2288 	case MSR_K8_INT_PENDING_MSG:
2289 	case MSR_AMD64_NB_CFG:
2290 	case MSR_FAM10H_MMIO_CONF_BASE:
2291 	case MSR_AMD64_BU_CFG2:
2292 		data = 0;
2293 		break;
2294 	case MSR_P6_PERFCTR0:
2295 	case MSR_P6_PERFCTR1:
2296 	case MSR_P6_EVNTSEL0:
2297 	case MSR_P6_EVNTSEL1:
2298 		if (kvm_pmu_msr(vcpu, msr))
2299 			return kvm_pmu_get_msr(vcpu, msr, pdata);
2300 		data = 0;
2301 		break;
2302 	case MSR_IA32_UCODE_REV:
2303 		data = 0x100000000ULL;
2304 		break;
2305 	case MSR_MTRRcap:
2306 		data = 0x500 | KVM_NR_VAR_MTRR;
2307 		break;
2308 	case 0x200 ... 0x2ff:
2309 		return get_msr_mtrr(vcpu, msr, pdata);
2310 	case 0xcd: /* fsb frequency */
2311 		data = 3;
2312 		break;
2313 		/*
2314 		 * MSR_EBC_FREQUENCY_ID
2315 		 * Conservative value valid for even the basic CPU models.
2316 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2317 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2318 		 * and 266MHz for model 3, or 4. Set Core Clock
2319 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2320 		 * 31:24) even though these are only valid for CPU
2321 		 * models > 2, however guests may end up dividing or
2322 		 * multiplying by zero otherwise.
2323 		 */
2324 	case MSR_EBC_FREQUENCY_ID:
2325 		data = 1 << 24;
2326 		break;
2327 	case MSR_IA32_APICBASE:
2328 		data = kvm_get_apic_base(vcpu);
2329 		break;
2330 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2331 		return kvm_x2apic_msr_read(vcpu, msr, pdata);
2332 		break;
2333 	case MSR_IA32_TSCDEADLINE:
2334 		data = kvm_get_lapic_tscdeadline_msr(vcpu);
2335 		break;
2336 	case MSR_IA32_TSC_ADJUST:
2337 		data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2338 		break;
2339 	case MSR_IA32_MISC_ENABLE:
2340 		data = vcpu->arch.ia32_misc_enable_msr;
2341 		break;
2342 	case MSR_IA32_PERF_STATUS:
2343 		/* TSC increment by tick */
2344 		data = 1000ULL;
2345 		/* CPU multiplier */
2346 		data |= (((uint64_t)4ULL) << 40);
2347 		break;
2348 	case MSR_EFER:
2349 		data = vcpu->arch.efer;
2350 		break;
2351 	case MSR_KVM_WALL_CLOCK:
2352 	case MSR_KVM_WALL_CLOCK_NEW:
2353 		data = vcpu->kvm->arch.wall_clock;
2354 		break;
2355 	case MSR_KVM_SYSTEM_TIME:
2356 	case MSR_KVM_SYSTEM_TIME_NEW:
2357 		data = vcpu->arch.time;
2358 		break;
2359 	case MSR_KVM_ASYNC_PF_EN:
2360 		data = vcpu->arch.apf.msr_val;
2361 		break;
2362 	case MSR_KVM_STEAL_TIME:
2363 		data = vcpu->arch.st.msr_val;
2364 		break;
2365 	case MSR_KVM_PV_EOI_EN:
2366 		data = vcpu->arch.pv_eoi.msr_val;
2367 		break;
2368 	case MSR_IA32_P5_MC_ADDR:
2369 	case MSR_IA32_P5_MC_TYPE:
2370 	case MSR_IA32_MCG_CAP:
2371 	case MSR_IA32_MCG_CTL:
2372 	case MSR_IA32_MCG_STATUS:
2373 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2374 		return get_msr_mce(vcpu, msr, pdata);
2375 	case MSR_K7_CLK_CTL:
2376 		/*
2377 		 * Provide expected ramp-up count for K7. All other
2378 		 * are set to zero, indicating minimum divisors for
2379 		 * every field.
2380 		 *
2381 		 * This prevents guest kernels on AMD host with CPU
2382 		 * type 6, model 8 and higher from exploding due to
2383 		 * the rdmsr failing.
2384 		 */
2385 		data = 0x20000000;
2386 		break;
2387 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2388 		if (kvm_hv_msr_partition_wide(msr)) {
2389 			int r;
2390 			mutex_lock(&vcpu->kvm->lock);
2391 			r = get_msr_hyperv_pw(vcpu, msr, pdata);
2392 			mutex_unlock(&vcpu->kvm->lock);
2393 			return r;
2394 		} else
2395 			return get_msr_hyperv(vcpu, msr, pdata);
2396 		break;
2397 	case MSR_IA32_BBL_CR_CTL3:
2398 		/* This legacy MSR exists but isn't fully documented in current
2399 		 * silicon.  It is however accessed by winxp in very narrow
2400 		 * scenarios where it sets bit #19, itself documented as
2401 		 * a "reserved" bit.  Best effort attempt to source coherent
2402 		 * read data here should the balance of the register be
2403 		 * interpreted by the guest:
2404 		 *
2405 		 * L2 cache control register 3: 64GB range, 256KB size,
2406 		 * enabled, latency 0x1, configured
2407 		 */
2408 		data = 0xbe702111;
2409 		break;
2410 	case MSR_AMD64_OSVW_ID_LENGTH:
2411 		if (!guest_cpuid_has_osvw(vcpu))
2412 			return 1;
2413 		data = vcpu->arch.osvw.length;
2414 		break;
2415 	case MSR_AMD64_OSVW_STATUS:
2416 		if (!guest_cpuid_has_osvw(vcpu))
2417 			return 1;
2418 		data = vcpu->arch.osvw.status;
2419 		break;
2420 	default:
2421 		if (kvm_pmu_msr(vcpu, msr))
2422 			return kvm_pmu_get_msr(vcpu, msr, pdata);
2423 		if (!ignore_msrs) {
2424 			vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2425 			return 1;
2426 		} else {
2427 			vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2428 			data = 0;
2429 		}
2430 		break;
2431 	}
2432 	*pdata = data;
2433 	return 0;
2434 }
2435 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2436 
2437 /*
2438  * Read or write a bunch of msrs. All parameters are kernel addresses.
2439  *
2440  * @return number of msrs set successfully.
2441  */
2442 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2443 		    struct kvm_msr_entry *entries,
2444 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2445 				  unsigned index, u64 *data))
2446 {
2447 	int i, idx;
2448 
2449 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2450 	for (i = 0; i < msrs->nmsrs; ++i)
2451 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2452 			break;
2453 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2454 
2455 	return i;
2456 }
2457 
2458 /*
2459  * Read or write a bunch of msrs. Parameters are user addresses.
2460  *
2461  * @return number of msrs set successfully.
2462  */
2463 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2464 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2465 				unsigned index, u64 *data),
2466 		  int writeback)
2467 {
2468 	struct kvm_msrs msrs;
2469 	struct kvm_msr_entry *entries;
2470 	int r, n;
2471 	unsigned size;
2472 
2473 	r = -EFAULT;
2474 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2475 		goto out;
2476 
2477 	r = -E2BIG;
2478 	if (msrs.nmsrs >= MAX_IO_MSRS)
2479 		goto out;
2480 
2481 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2482 	entries = memdup_user(user_msrs->entries, size);
2483 	if (IS_ERR(entries)) {
2484 		r = PTR_ERR(entries);
2485 		goto out;
2486 	}
2487 
2488 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2489 	if (r < 0)
2490 		goto out_free;
2491 
2492 	r = -EFAULT;
2493 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2494 		goto out_free;
2495 
2496 	r = n;
2497 
2498 out_free:
2499 	kfree(entries);
2500 out:
2501 	return r;
2502 }
2503 
2504 int kvm_dev_ioctl_check_extension(long ext)
2505 {
2506 	int r;
2507 
2508 	switch (ext) {
2509 	case KVM_CAP_IRQCHIP:
2510 	case KVM_CAP_HLT:
2511 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2512 	case KVM_CAP_SET_TSS_ADDR:
2513 	case KVM_CAP_EXT_CPUID:
2514 	case KVM_CAP_CLOCKSOURCE:
2515 	case KVM_CAP_PIT:
2516 	case KVM_CAP_NOP_IO_DELAY:
2517 	case KVM_CAP_MP_STATE:
2518 	case KVM_CAP_SYNC_MMU:
2519 	case KVM_CAP_USER_NMI:
2520 	case KVM_CAP_REINJECT_CONTROL:
2521 	case KVM_CAP_IRQ_INJECT_STATUS:
2522 	case KVM_CAP_IRQFD:
2523 	case KVM_CAP_IOEVENTFD:
2524 	case KVM_CAP_PIT2:
2525 	case KVM_CAP_PIT_STATE2:
2526 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2527 	case KVM_CAP_XEN_HVM:
2528 	case KVM_CAP_ADJUST_CLOCK:
2529 	case KVM_CAP_VCPU_EVENTS:
2530 	case KVM_CAP_HYPERV:
2531 	case KVM_CAP_HYPERV_VAPIC:
2532 	case KVM_CAP_HYPERV_SPIN:
2533 	case KVM_CAP_PCI_SEGMENT:
2534 	case KVM_CAP_DEBUGREGS:
2535 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2536 	case KVM_CAP_XSAVE:
2537 	case KVM_CAP_ASYNC_PF:
2538 	case KVM_CAP_GET_TSC_KHZ:
2539 	case KVM_CAP_KVMCLOCK_CTRL:
2540 	case KVM_CAP_READONLY_MEM:
2541 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2542 	case KVM_CAP_ASSIGN_DEV_IRQ:
2543 	case KVM_CAP_PCI_2_3:
2544 #endif
2545 		r = 1;
2546 		break;
2547 	case KVM_CAP_COALESCED_MMIO:
2548 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2549 		break;
2550 	case KVM_CAP_VAPIC:
2551 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2552 		break;
2553 	case KVM_CAP_NR_VCPUS:
2554 		r = KVM_SOFT_MAX_VCPUS;
2555 		break;
2556 	case KVM_CAP_MAX_VCPUS:
2557 		r = KVM_MAX_VCPUS;
2558 		break;
2559 	case KVM_CAP_NR_MEMSLOTS:
2560 		r = KVM_USER_MEM_SLOTS;
2561 		break;
2562 	case KVM_CAP_PV_MMU:	/* obsolete */
2563 		r = 0;
2564 		break;
2565 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2566 	case KVM_CAP_IOMMU:
2567 		r = iommu_present(&pci_bus_type);
2568 		break;
2569 #endif
2570 	case KVM_CAP_MCE:
2571 		r = KVM_MAX_MCE_BANKS;
2572 		break;
2573 	case KVM_CAP_XCRS:
2574 		r = cpu_has_xsave;
2575 		break;
2576 	case KVM_CAP_TSC_CONTROL:
2577 		r = kvm_has_tsc_control;
2578 		break;
2579 	case KVM_CAP_TSC_DEADLINE_TIMER:
2580 		r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2581 		break;
2582 	default:
2583 		r = 0;
2584 		break;
2585 	}
2586 	return r;
2587 
2588 }
2589 
2590 long kvm_arch_dev_ioctl(struct file *filp,
2591 			unsigned int ioctl, unsigned long arg)
2592 {
2593 	void __user *argp = (void __user *)arg;
2594 	long r;
2595 
2596 	switch (ioctl) {
2597 	case KVM_GET_MSR_INDEX_LIST: {
2598 		struct kvm_msr_list __user *user_msr_list = argp;
2599 		struct kvm_msr_list msr_list;
2600 		unsigned n;
2601 
2602 		r = -EFAULT;
2603 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2604 			goto out;
2605 		n = msr_list.nmsrs;
2606 		msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2607 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2608 			goto out;
2609 		r = -E2BIG;
2610 		if (n < msr_list.nmsrs)
2611 			goto out;
2612 		r = -EFAULT;
2613 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2614 				 num_msrs_to_save * sizeof(u32)))
2615 			goto out;
2616 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2617 				 &emulated_msrs,
2618 				 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2619 			goto out;
2620 		r = 0;
2621 		break;
2622 	}
2623 	case KVM_GET_SUPPORTED_CPUID: {
2624 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2625 		struct kvm_cpuid2 cpuid;
2626 
2627 		r = -EFAULT;
2628 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2629 			goto out;
2630 		r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2631 						      cpuid_arg->entries);
2632 		if (r)
2633 			goto out;
2634 
2635 		r = -EFAULT;
2636 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2637 			goto out;
2638 		r = 0;
2639 		break;
2640 	}
2641 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2642 		u64 mce_cap;
2643 
2644 		mce_cap = KVM_MCE_CAP_SUPPORTED;
2645 		r = -EFAULT;
2646 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2647 			goto out;
2648 		r = 0;
2649 		break;
2650 	}
2651 	default:
2652 		r = -EINVAL;
2653 	}
2654 out:
2655 	return r;
2656 }
2657 
2658 static void wbinvd_ipi(void *garbage)
2659 {
2660 	wbinvd();
2661 }
2662 
2663 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2664 {
2665 	return vcpu->kvm->arch.iommu_domain &&
2666 		!(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2667 }
2668 
2669 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2670 {
2671 	/* Address WBINVD may be executed by guest */
2672 	if (need_emulate_wbinvd(vcpu)) {
2673 		if (kvm_x86_ops->has_wbinvd_exit())
2674 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2675 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2676 			smp_call_function_single(vcpu->cpu,
2677 					wbinvd_ipi, NULL, 1);
2678 	}
2679 
2680 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2681 
2682 	/* Apply any externally detected TSC adjustments (due to suspend) */
2683 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2684 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2685 		vcpu->arch.tsc_offset_adjustment = 0;
2686 		set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2687 	}
2688 
2689 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2690 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2691 				native_read_tsc() - vcpu->arch.last_host_tsc;
2692 		if (tsc_delta < 0)
2693 			mark_tsc_unstable("KVM discovered backwards TSC");
2694 		if (check_tsc_unstable()) {
2695 			u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2696 						vcpu->arch.last_guest_tsc);
2697 			kvm_x86_ops->write_tsc_offset(vcpu, offset);
2698 			vcpu->arch.tsc_catchup = 1;
2699 		}
2700 		/*
2701 		 * On a host with synchronized TSC, there is no need to update
2702 		 * kvmclock on vcpu->cpu migration
2703 		 */
2704 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2705 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2706 		if (vcpu->cpu != cpu)
2707 			kvm_migrate_timers(vcpu);
2708 		vcpu->cpu = cpu;
2709 	}
2710 
2711 	accumulate_steal_time(vcpu);
2712 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2713 }
2714 
2715 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2716 {
2717 	kvm_x86_ops->vcpu_put(vcpu);
2718 	kvm_put_guest_fpu(vcpu);
2719 	vcpu->arch.last_host_tsc = native_read_tsc();
2720 }
2721 
2722 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2723 				    struct kvm_lapic_state *s)
2724 {
2725 	kvm_x86_ops->sync_pir_to_irr(vcpu);
2726 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2727 
2728 	return 0;
2729 }
2730 
2731 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2732 				    struct kvm_lapic_state *s)
2733 {
2734 	kvm_apic_post_state_restore(vcpu, s);
2735 	update_cr8_intercept(vcpu);
2736 
2737 	return 0;
2738 }
2739 
2740 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2741 				    struct kvm_interrupt *irq)
2742 {
2743 	if (irq->irq >= KVM_NR_INTERRUPTS)
2744 		return -EINVAL;
2745 	if (irqchip_in_kernel(vcpu->kvm))
2746 		return -ENXIO;
2747 
2748 	kvm_queue_interrupt(vcpu, irq->irq, false);
2749 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2750 
2751 	return 0;
2752 }
2753 
2754 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2755 {
2756 	kvm_inject_nmi(vcpu);
2757 
2758 	return 0;
2759 }
2760 
2761 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2762 					   struct kvm_tpr_access_ctl *tac)
2763 {
2764 	if (tac->flags)
2765 		return -EINVAL;
2766 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
2767 	return 0;
2768 }
2769 
2770 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2771 					u64 mcg_cap)
2772 {
2773 	int r;
2774 	unsigned bank_num = mcg_cap & 0xff, bank;
2775 
2776 	r = -EINVAL;
2777 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2778 		goto out;
2779 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2780 		goto out;
2781 	r = 0;
2782 	vcpu->arch.mcg_cap = mcg_cap;
2783 	/* Init IA32_MCG_CTL to all 1s */
2784 	if (mcg_cap & MCG_CTL_P)
2785 		vcpu->arch.mcg_ctl = ~(u64)0;
2786 	/* Init IA32_MCi_CTL to all 1s */
2787 	for (bank = 0; bank < bank_num; bank++)
2788 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2789 out:
2790 	return r;
2791 }
2792 
2793 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2794 				      struct kvm_x86_mce *mce)
2795 {
2796 	u64 mcg_cap = vcpu->arch.mcg_cap;
2797 	unsigned bank_num = mcg_cap & 0xff;
2798 	u64 *banks = vcpu->arch.mce_banks;
2799 
2800 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2801 		return -EINVAL;
2802 	/*
2803 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2804 	 * reporting is disabled
2805 	 */
2806 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2807 	    vcpu->arch.mcg_ctl != ~(u64)0)
2808 		return 0;
2809 	banks += 4 * mce->bank;
2810 	/*
2811 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2812 	 * reporting is disabled for the bank
2813 	 */
2814 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2815 		return 0;
2816 	if (mce->status & MCI_STATUS_UC) {
2817 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2818 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2819 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2820 			return 0;
2821 		}
2822 		if (banks[1] & MCI_STATUS_VAL)
2823 			mce->status |= MCI_STATUS_OVER;
2824 		banks[2] = mce->addr;
2825 		banks[3] = mce->misc;
2826 		vcpu->arch.mcg_status = mce->mcg_status;
2827 		banks[1] = mce->status;
2828 		kvm_queue_exception(vcpu, MC_VECTOR);
2829 	} else if (!(banks[1] & MCI_STATUS_VAL)
2830 		   || !(banks[1] & MCI_STATUS_UC)) {
2831 		if (banks[1] & MCI_STATUS_VAL)
2832 			mce->status |= MCI_STATUS_OVER;
2833 		banks[2] = mce->addr;
2834 		banks[3] = mce->misc;
2835 		banks[1] = mce->status;
2836 	} else
2837 		banks[1] |= MCI_STATUS_OVER;
2838 	return 0;
2839 }
2840 
2841 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2842 					       struct kvm_vcpu_events *events)
2843 {
2844 	process_nmi(vcpu);
2845 	events->exception.injected =
2846 		vcpu->arch.exception.pending &&
2847 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
2848 	events->exception.nr = vcpu->arch.exception.nr;
2849 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2850 	events->exception.pad = 0;
2851 	events->exception.error_code = vcpu->arch.exception.error_code;
2852 
2853 	events->interrupt.injected =
2854 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2855 	events->interrupt.nr = vcpu->arch.interrupt.nr;
2856 	events->interrupt.soft = 0;
2857 	events->interrupt.shadow =
2858 		kvm_x86_ops->get_interrupt_shadow(vcpu,
2859 			KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2860 
2861 	events->nmi.injected = vcpu->arch.nmi_injected;
2862 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
2863 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2864 	events->nmi.pad = 0;
2865 
2866 	events->sipi_vector = 0; /* never valid when reporting to user space */
2867 
2868 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2869 			 | KVM_VCPUEVENT_VALID_SHADOW);
2870 	memset(&events->reserved, 0, sizeof(events->reserved));
2871 }
2872 
2873 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2874 					      struct kvm_vcpu_events *events)
2875 {
2876 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2877 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2878 			      | KVM_VCPUEVENT_VALID_SHADOW))
2879 		return -EINVAL;
2880 
2881 	process_nmi(vcpu);
2882 	vcpu->arch.exception.pending = events->exception.injected;
2883 	vcpu->arch.exception.nr = events->exception.nr;
2884 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2885 	vcpu->arch.exception.error_code = events->exception.error_code;
2886 
2887 	vcpu->arch.interrupt.pending = events->interrupt.injected;
2888 	vcpu->arch.interrupt.nr = events->interrupt.nr;
2889 	vcpu->arch.interrupt.soft = events->interrupt.soft;
2890 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2891 		kvm_x86_ops->set_interrupt_shadow(vcpu,
2892 						  events->interrupt.shadow);
2893 
2894 	vcpu->arch.nmi_injected = events->nmi.injected;
2895 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2896 		vcpu->arch.nmi_pending = events->nmi.pending;
2897 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2898 
2899 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2900 	    kvm_vcpu_has_lapic(vcpu))
2901 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
2902 
2903 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2904 
2905 	return 0;
2906 }
2907 
2908 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2909 					     struct kvm_debugregs *dbgregs)
2910 {
2911 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2912 	dbgregs->dr6 = vcpu->arch.dr6;
2913 	dbgregs->dr7 = vcpu->arch.dr7;
2914 	dbgregs->flags = 0;
2915 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2916 }
2917 
2918 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2919 					    struct kvm_debugregs *dbgregs)
2920 {
2921 	if (dbgregs->flags)
2922 		return -EINVAL;
2923 
2924 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2925 	vcpu->arch.dr6 = dbgregs->dr6;
2926 	vcpu->arch.dr7 = dbgregs->dr7;
2927 
2928 	return 0;
2929 }
2930 
2931 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2932 					 struct kvm_xsave *guest_xsave)
2933 {
2934 	if (cpu_has_xsave)
2935 		memcpy(guest_xsave->region,
2936 			&vcpu->arch.guest_fpu.state->xsave,
2937 			xstate_size);
2938 	else {
2939 		memcpy(guest_xsave->region,
2940 			&vcpu->arch.guest_fpu.state->fxsave,
2941 			sizeof(struct i387_fxsave_struct));
2942 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2943 			XSTATE_FPSSE;
2944 	}
2945 }
2946 
2947 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2948 					struct kvm_xsave *guest_xsave)
2949 {
2950 	u64 xstate_bv =
2951 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2952 
2953 	if (cpu_has_xsave)
2954 		memcpy(&vcpu->arch.guest_fpu.state->xsave,
2955 			guest_xsave->region, xstate_size);
2956 	else {
2957 		if (xstate_bv & ~XSTATE_FPSSE)
2958 			return -EINVAL;
2959 		memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2960 			guest_xsave->region, sizeof(struct i387_fxsave_struct));
2961 	}
2962 	return 0;
2963 }
2964 
2965 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2966 					struct kvm_xcrs *guest_xcrs)
2967 {
2968 	if (!cpu_has_xsave) {
2969 		guest_xcrs->nr_xcrs = 0;
2970 		return;
2971 	}
2972 
2973 	guest_xcrs->nr_xcrs = 1;
2974 	guest_xcrs->flags = 0;
2975 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2976 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2977 }
2978 
2979 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2980 				       struct kvm_xcrs *guest_xcrs)
2981 {
2982 	int i, r = 0;
2983 
2984 	if (!cpu_has_xsave)
2985 		return -EINVAL;
2986 
2987 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2988 		return -EINVAL;
2989 
2990 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2991 		/* Only support XCR0 currently */
2992 		if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2993 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2994 				guest_xcrs->xcrs[0].value);
2995 			break;
2996 		}
2997 	if (r)
2998 		r = -EINVAL;
2999 	return r;
3000 }
3001 
3002 /*
3003  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3004  * stopped by the hypervisor.  This function will be called from the host only.
3005  * EINVAL is returned when the host attempts to set the flag for a guest that
3006  * does not support pv clocks.
3007  */
3008 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3009 {
3010 	if (!vcpu->arch.pv_time_enabled)
3011 		return -EINVAL;
3012 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3013 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3014 	return 0;
3015 }
3016 
3017 long kvm_arch_vcpu_ioctl(struct file *filp,
3018 			 unsigned int ioctl, unsigned long arg)
3019 {
3020 	struct kvm_vcpu *vcpu = filp->private_data;
3021 	void __user *argp = (void __user *)arg;
3022 	int r;
3023 	union {
3024 		struct kvm_lapic_state *lapic;
3025 		struct kvm_xsave *xsave;
3026 		struct kvm_xcrs *xcrs;
3027 		void *buffer;
3028 	} u;
3029 
3030 	u.buffer = NULL;
3031 	switch (ioctl) {
3032 	case KVM_GET_LAPIC: {
3033 		r = -EINVAL;
3034 		if (!vcpu->arch.apic)
3035 			goto out;
3036 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3037 
3038 		r = -ENOMEM;
3039 		if (!u.lapic)
3040 			goto out;
3041 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3042 		if (r)
3043 			goto out;
3044 		r = -EFAULT;
3045 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3046 			goto out;
3047 		r = 0;
3048 		break;
3049 	}
3050 	case KVM_SET_LAPIC: {
3051 		r = -EINVAL;
3052 		if (!vcpu->arch.apic)
3053 			goto out;
3054 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3055 		if (IS_ERR(u.lapic))
3056 			return PTR_ERR(u.lapic);
3057 
3058 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3059 		break;
3060 	}
3061 	case KVM_INTERRUPT: {
3062 		struct kvm_interrupt irq;
3063 
3064 		r = -EFAULT;
3065 		if (copy_from_user(&irq, argp, sizeof irq))
3066 			goto out;
3067 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3068 		break;
3069 	}
3070 	case KVM_NMI: {
3071 		r = kvm_vcpu_ioctl_nmi(vcpu);
3072 		break;
3073 	}
3074 	case KVM_SET_CPUID: {
3075 		struct kvm_cpuid __user *cpuid_arg = argp;
3076 		struct kvm_cpuid cpuid;
3077 
3078 		r = -EFAULT;
3079 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3080 			goto out;
3081 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3082 		break;
3083 	}
3084 	case KVM_SET_CPUID2: {
3085 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3086 		struct kvm_cpuid2 cpuid;
3087 
3088 		r = -EFAULT;
3089 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3090 			goto out;
3091 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3092 					      cpuid_arg->entries);
3093 		break;
3094 	}
3095 	case KVM_GET_CPUID2: {
3096 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3097 		struct kvm_cpuid2 cpuid;
3098 
3099 		r = -EFAULT;
3100 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3101 			goto out;
3102 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3103 					      cpuid_arg->entries);
3104 		if (r)
3105 			goto out;
3106 		r = -EFAULT;
3107 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3108 			goto out;
3109 		r = 0;
3110 		break;
3111 	}
3112 	case KVM_GET_MSRS:
3113 		r = msr_io(vcpu, argp, kvm_get_msr, 1);
3114 		break;
3115 	case KVM_SET_MSRS:
3116 		r = msr_io(vcpu, argp, do_set_msr, 0);
3117 		break;
3118 	case KVM_TPR_ACCESS_REPORTING: {
3119 		struct kvm_tpr_access_ctl tac;
3120 
3121 		r = -EFAULT;
3122 		if (copy_from_user(&tac, argp, sizeof tac))
3123 			goto out;
3124 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3125 		if (r)
3126 			goto out;
3127 		r = -EFAULT;
3128 		if (copy_to_user(argp, &tac, sizeof tac))
3129 			goto out;
3130 		r = 0;
3131 		break;
3132 	};
3133 	case KVM_SET_VAPIC_ADDR: {
3134 		struct kvm_vapic_addr va;
3135 
3136 		r = -EINVAL;
3137 		if (!irqchip_in_kernel(vcpu->kvm))
3138 			goto out;
3139 		r = -EFAULT;
3140 		if (copy_from_user(&va, argp, sizeof va))
3141 			goto out;
3142 		r = 0;
3143 		kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3144 		break;
3145 	}
3146 	case KVM_X86_SETUP_MCE: {
3147 		u64 mcg_cap;
3148 
3149 		r = -EFAULT;
3150 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3151 			goto out;
3152 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3153 		break;
3154 	}
3155 	case KVM_X86_SET_MCE: {
3156 		struct kvm_x86_mce mce;
3157 
3158 		r = -EFAULT;
3159 		if (copy_from_user(&mce, argp, sizeof mce))
3160 			goto out;
3161 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3162 		break;
3163 	}
3164 	case KVM_GET_VCPU_EVENTS: {
3165 		struct kvm_vcpu_events events;
3166 
3167 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3168 
3169 		r = -EFAULT;
3170 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3171 			break;
3172 		r = 0;
3173 		break;
3174 	}
3175 	case KVM_SET_VCPU_EVENTS: {
3176 		struct kvm_vcpu_events events;
3177 
3178 		r = -EFAULT;
3179 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3180 			break;
3181 
3182 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3183 		break;
3184 	}
3185 	case KVM_GET_DEBUGREGS: {
3186 		struct kvm_debugregs dbgregs;
3187 
3188 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3189 
3190 		r = -EFAULT;
3191 		if (copy_to_user(argp, &dbgregs,
3192 				 sizeof(struct kvm_debugregs)))
3193 			break;
3194 		r = 0;
3195 		break;
3196 	}
3197 	case KVM_SET_DEBUGREGS: {
3198 		struct kvm_debugregs dbgregs;
3199 
3200 		r = -EFAULT;
3201 		if (copy_from_user(&dbgregs, argp,
3202 				   sizeof(struct kvm_debugregs)))
3203 			break;
3204 
3205 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3206 		break;
3207 	}
3208 	case KVM_GET_XSAVE: {
3209 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3210 		r = -ENOMEM;
3211 		if (!u.xsave)
3212 			break;
3213 
3214 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3215 
3216 		r = -EFAULT;
3217 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3218 			break;
3219 		r = 0;
3220 		break;
3221 	}
3222 	case KVM_SET_XSAVE: {
3223 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3224 		if (IS_ERR(u.xsave))
3225 			return PTR_ERR(u.xsave);
3226 
3227 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3228 		break;
3229 	}
3230 	case KVM_GET_XCRS: {
3231 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3232 		r = -ENOMEM;
3233 		if (!u.xcrs)
3234 			break;
3235 
3236 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3237 
3238 		r = -EFAULT;
3239 		if (copy_to_user(argp, u.xcrs,
3240 				 sizeof(struct kvm_xcrs)))
3241 			break;
3242 		r = 0;
3243 		break;
3244 	}
3245 	case KVM_SET_XCRS: {
3246 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3247 		if (IS_ERR(u.xcrs))
3248 			return PTR_ERR(u.xcrs);
3249 
3250 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3251 		break;
3252 	}
3253 	case KVM_SET_TSC_KHZ: {
3254 		u32 user_tsc_khz;
3255 
3256 		r = -EINVAL;
3257 		user_tsc_khz = (u32)arg;
3258 
3259 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3260 			goto out;
3261 
3262 		if (user_tsc_khz == 0)
3263 			user_tsc_khz = tsc_khz;
3264 
3265 		kvm_set_tsc_khz(vcpu, user_tsc_khz);
3266 
3267 		r = 0;
3268 		goto out;
3269 	}
3270 	case KVM_GET_TSC_KHZ: {
3271 		r = vcpu->arch.virtual_tsc_khz;
3272 		goto out;
3273 	}
3274 	case KVM_KVMCLOCK_CTRL: {
3275 		r = kvm_set_guest_paused(vcpu);
3276 		goto out;
3277 	}
3278 	default:
3279 		r = -EINVAL;
3280 	}
3281 out:
3282 	kfree(u.buffer);
3283 	return r;
3284 }
3285 
3286 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3287 {
3288 	return VM_FAULT_SIGBUS;
3289 }
3290 
3291 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3292 {
3293 	int ret;
3294 
3295 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3296 		return -EINVAL;
3297 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3298 	return ret;
3299 }
3300 
3301 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3302 					      u64 ident_addr)
3303 {
3304 	kvm->arch.ept_identity_map_addr = ident_addr;
3305 	return 0;
3306 }
3307 
3308 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3309 					  u32 kvm_nr_mmu_pages)
3310 {
3311 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3312 		return -EINVAL;
3313 
3314 	mutex_lock(&kvm->slots_lock);
3315 
3316 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3317 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3318 
3319 	mutex_unlock(&kvm->slots_lock);
3320 	return 0;
3321 }
3322 
3323 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3324 {
3325 	return kvm->arch.n_max_mmu_pages;
3326 }
3327 
3328 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3329 {
3330 	int r;
3331 
3332 	r = 0;
3333 	switch (chip->chip_id) {
3334 	case KVM_IRQCHIP_PIC_MASTER:
3335 		memcpy(&chip->chip.pic,
3336 			&pic_irqchip(kvm)->pics[0],
3337 			sizeof(struct kvm_pic_state));
3338 		break;
3339 	case KVM_IRQCHIP_PIC_SLAVE:
3340 		memcpy(&chip->chip.pic,
3341 			&pic_irqchip(kvm)->pics[1],
3342 			sizeof(struct kvm_pic_state));
3343 		break;
3344 	case KVM_IRQCHIP_IOAPIC:
3345 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3346 		break;
3347 	default:
3348 		r = -EINVAL;
3349 		break;
3350 	}
3351 	return r;
3352 }
3353 
3354 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3355 {
3356 	int r;
3357 
3358 	r = 0;
3359 	switch (chip->chip_id) {
3360 	case KVM_IRQCHIP_PIC_MASTER:
3361 		spin_lock(&pic_irqchip(kvm)->lock);
3362 		memcpy(&pic_irqchip(kvm)->pics[0],
3363 			&chip->chip.pic,
3364 			sizeof(struct kvm_pic_state));
3365 		spin_unlock(&pic_irqchip(kvm)->lock);
3366 		break;
3367 	case KVM_IRQCHIP_PIC_SLAVE:
3368 		spin_lock(&pic_irqchip(kvm)->lock);
3369 		memcpy(&pic_irqchip(kvm)->pics[1],
3370 			&chip->chip.pic,
3371 			sizeof(struct kvm_pic_state));
3372 		spin_unlock(&pic_irqchip(kvm)->lock);
3373 		break;
3374 	case KVM_IRQCHIP_IOAPIC:
3375 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3376 		break;
3377 	default:
3378 		r = -EINVAL;
3379 		break;
3380 	}
3381 	kvm_pic_update_irq(pic_irqchip(kvm));
3382 	return r;
3383 }
3384 
3385 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3386 {
3387 	int r = 0;
3388 
3389 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3390 	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3391 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3392 	return r;
3393 }
3394 
3395 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3396 {
3397 	int r = 0;
3398 
3399 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3400 	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3401 	kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3402 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3403 	return r;
3404 }
3405 
3406 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3407 {
3408 	int r = 0;
3409 
3410 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3411 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3412 		sizeof(ps->channels));
3413 	ps->flags = kvm->arch.vpit->pit_state.flags;
3414 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3415 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3416 	return r;
3417 }
3418 
3419 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3420 {
3421 	int r = 0, start = 0;
3422 	u32 prev_legacy, cur_legacy;
3423 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3424 	prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3425 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3426 	if (!prev_legacy && cur_legacy)
3427 		start = 1;
3428 	memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3429 	       sizeof(kvm->arch.vpit->pit_state.channels));
3430 	kvm->arch.vpit->pit_state.flags = ps->flags;
3431 	kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3432 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3433 	return r;
3434 }
3435 
3436 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3437 				 struct kvm_reinject_control *control)
3438 {
3439 	if (!kvm->arch.vpit)
3440 		return -ENXIO;
3441 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3442 	kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3443 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3444 	return 0;
3445 }
3446 
3447 /**
3448  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3449  * @kvm: kvm instance
3450  * @log: slot id and address to which we copy the log
3451  *
3452  * We need to keep it in mind that VCPU threads can write to the bitmap
3453  * concurrently.  So, to avoid losing data, we keep the following order for
3454  * each bit:
3455  *
3456  *   1. Take a snapshot of the bit and clear it if needed.
3457  *   2. Write protect the corresponding page.
3458  *   3. Flush TLB's if needed.
3459  *   4. Copy the snapshot to the userspace.
3460  *
3461  * Between 2 and 3, the guest may write to the page using the remaining TLB
3462  * entry.  This is not a problem because the page will be reported dirty at
3463  * step 4 using the snapshot taken before and step 3 ensures that successive
3464  * writes will be logged for the next call.
3465  */
3466 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3467 {
3468 	int r;
3469 	struct kvm_memory_slot *memslot;
3470 	unsigned long n, i;
3471 	unsigned long *dirty_bitmap;
3472 	unsigned long *dirty_bitmap_buffer;
3473 	bool is_dirty = false;
3474 
3475 	mutex_lock(&kvm->slots_lock);
3476 
3477 	r = -EINVAL;
3478 	if (log->slot >= KVM_USER_MEM_SLOTS)
3479 		goto out;
3480 
3481 	memslot = id_to_memslot(kvm->memslots, log->slot);
3482 
3483 	dirty_bitmap = memslot->dirty_bitmap;
3484 	r = -ENOENT;
3485 	if (!dirty_bitmap)
3486 		goto out;
3487 
3488 	n = kvm_dirty_bitmap_bytes(memslot);
3489 
3490 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3491 	memset(dirty_bitmap_buffer, 0, n);
3492 
3493 	spin_lock(&kvm->mmu_lock);
3494 
3495 	for (i = 0; i < n / sizeof(long); i++) {
3496 		unsigned long mask;
3497 		gfn_t offset;
3498 
3499 		if (!dirty_bitmap[i])
3500 			continue;
3501 
3502 		is_dirty = true;
3503 
3504 		mask = xchg(&dirty_bitmap[i], 0);
3505 		dirty_bitmap_buffer[i] = mask;
3506 
3507 		offset = i * BITS_PER_LONG;
3508 		kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3509 	}
3510 	if (is_dirty)
3511 		kvm_flush_remote_tlbs(kvm);
3512 
3513 	spin_unlock(&kvm->mmu_lock);
3514 
3515 	r = -EFAULT;
3516 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3517 		goto out;
3518 
3519 	r = 0;
3520 out:
3521 	mutex_unlock(&kvm->slots_lock);
3522 	return r;
3523 }
3524 
3525 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3526 			bool line_status)
3527 {
3528 	if (!irqchip_in_kernel(kvm))
3529 		return -ENXIO;
3530 
3531 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3532 					irq_event->irq, irq_event->level,
3533 					line_status);
3534 	return 0;
3535 }
3536 
3537 long kvm_arch_vm_ioctl(struct file *filp,
3538 		       unsigned int ioctl, unsigned long arg)
3539 {
3540 	struct kvm *kvm = filp->private_data;
3541 	void __user *argp = (void __user *)arg;
3542 	int r = -ENOTTY;
3543 	/*
3544 	 * This union makes it completely explicit to gcc-3.x
3545 	 * that these two variables' stack usage should be
3546 	 * combined, not added together.
3547 	 */
3548 	union {
3549 		struct kvm_pit_state ps;
3550 		struct kvm_pit_state2 ps2;
3551 		struct kvm_pit_config pit_config;
3552 	} u;
3553 
3554 	switch (ioctl) {
3555 	case KVM_SET_TSS_ADDR:
3556 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3557 		break;
3558 	case KVM_SET_IDENTITY_MAP_ADDR: {
3559 		u64 ident_addr;
3560 
3561 		r = -EFAULT;
3562 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3563 			goto out;
3564 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3565 		break;
3566 	}
3567 	case KVM_SET_NR_MMU_PAGES:
3568 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3569 		break;
3570 	case KVM_GET_NR_MMU_PAGES:
3571 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3572 		break;
3573 	case KVM_CREATE_IRQCHIP: {
3574 		struct kvm_pic *vpic;
3575 
3576 		mutex_lock(&kvm->lock);
3577 		r = -EEXIST;
3578 		if (kvm->arch.vpic)
3579 			goto create_irqchip_unlock;
3580 		r = -EINVAL;
3581 		if (atomic_read(&kvm->online_vcpus))
3582 			goto create_irqchip_unlock;
3583 		r = -ENOMEM;
3584 		vpic = kvm_create_pic(kvm);
3585 		if (vpic) {
3586 			r = kvm_ioapic_init(kvm);
3587 			if (r) {
3588 				mutex_lock(&kvm->slots_lock);
3589 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3590 							  &vpic->dev_master);
3591 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3592 							  &vpic->dev_slave);
3593 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3594 							  &vpic->dev_eclr);
3595 				mutex_unlock(&kvm->slots_lock);
3596 				kfree(vpic);
3597 				goto create_irqchip_unlock;
3598 			}
3599 		} else
3600 			goto create_irqchip_unlock;
3601 		smp_wmb();
3602 		kvm->arch.vpic = vpic;
3603 		smp_wmb();
3604 		r = kvm_setup_default_irq_routing(kvm);
3605 		if (r) {
3606 			mutex_lock(&kvm->slots_lock);
3607 			mutex_lock(&kvm->irq_lock);
3608 			kvm_ioapic_destroy(kvm);
3609 			kvm_destroy_pic(kvm);
3610 			mutex_unlock(&kvm->irq_lock);
3611 			mutex_unlock(&kvm->slots_lock);
3612 		}
3613 	create_irqchip_unlock:
3614 		mutex_unlock(&kvm->lock);
3615 		break;
3616 	}
3617 	case KVM_CREATE_PIT:
3618 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3619 		goto create_pit;
3620 	case KVM_CREATE_PIT2:
3621 		r = -EFAULT;
3622 		if (copy_from_user(&u.pit_config, argp,
3623 				   sizeof(struct kvm_pit_config)))
3624 			goto out;
3625 	create_pit:
3626 		mutex_lock(&kvm->slots_lock);
3627 		r = -EEXIST;
3628 		if (kvm->arch.vpit)
3629 			goto create_pit_unlock;
3630 		r = -ENOMEM;
3631 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3632 		if (kvm->arch.vpit)
3633 			r = 0;
3634 	create_pit_unlock:
3635 		mutex_unlock(&kvm->slots_lock);
3636 		break;
3637 	case KVM_GET_IRQCHIP: {
3638 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3639 		struct kvm_irqchip *chip;
3640 
3641 		chip = memdup_user(argp, sizeof(*chip));
3642 		if (IS_ERR(chip)) {
3643 			r = PTR_ERR(chip);
3644 			goto out;
3645 		}
3646 
3647 		r = -ENXIO;
3648 		if (!irqchip_in_kernel(kvm))
3649 			goto get_irqchip_out;
3650 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3651 		if (r)
3652 			goto get_irqchip_out;
3653 		r = -EFAULT;
3654 		if (copy_to_user(argp, chip, sizeof *chip))
3655 			goto get_irqchip_out;
3656 		r = 0;
3657 	get_irqchip_out:
3658 		kfree(chip);
3659 		break;
3660 	}
3661 	case KVM_SET_IRQCHIP: {
3662 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3663 		struct kvm_irqchip *chip;
3664 
3665 		chip = memdup_user(argp, sizeof(*chip));
3666 		if (IS_ERR(chip)) {
3667 			r = PTR_ERR(chip);
3668 			goto out;
3669 		}
3670 
3671 		r = -ENXIO;
3672 		if (!irqchip_in_kernel(kvm))
3673 			goto set_irqchip_out;
3674 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3675 		if (r)
3676 			goto set_irqchip_out;
3677 		r = 0;
3678 	set_irqchip_out:
3679 		kfree(chip);
3680 		break;
3681 	}
3682 	case KVM_GET_PIT: {
3683 		r = -EFAULT;
3684 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3685 			goto out;
3686 		r = -ENXIO;
3687 		if (!kvm->arch.vpit)
3688 			goto out;
3689 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3690 		if (r)
3691 			goto out;
3692 		r = -EFAULT;
3693 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3694 			goto out;
3695 		r = 0;
3696 		break;
3697 	}
3698 	case KVM_SET_PIT: {
3699 		r = -EFAULT;
3700 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
3701 			goto out;
3702 		r = -ENXIO;
3703 		if (!kvm->arch.vpit)
3704 			goto out;
3705 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3706 		break;
3707 	}
3708 	case KVM_GET_PIT2: {
3709 		r = -ENXIO;
3710 		if (!kvm->arch.vpit)
3711 			goto out;
3712 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3713 		if (r)
3714 			goto out;
3715 		r = -EFAULT;
3716 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3717 			goto out;
3718 		r = 0;
3719 		break;
3720 	}
3721 	case KVM_SET_PIT2: {
3722 		r = -EFAULT;
3723 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3724 			goto out;
3725 		r = -ENXIO;
3726 		if (!kvm->arch.vpit)
3727 			goto out;
3728 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3729 		break;
3730 	}
3731 	case KVM_REINJECT_CONTROL: {
3732 		struct kvm_reinject_control control;
3733 		r =  -EFAULT;
3734 		if (copy_from_user(&control, argp, sizeof(control)))
3735 			goto out;
3736 		r = kvm_vm_ioctl_reinject(kvm, &control);
3737 		break;
3738 	}
3739 	case KVM_XEN_HVM_CONFIG: {
3740 		r = -EFAULT;
3741 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3742 				   sizeof(struct kvm_xen_hvm_config)))
3743 			goto out;
3744 		r = -EINVAL;
3745 		if (kvm->arch.xen_hvm_config.flags)
3746 			goto out;
3747 		r = 0;
3748 		break;
3749 	}
3750 	case KVM_SET_CLOCK: {
3751 		struct kvm_clock_data user_ns;
3752 		u64 now_ns;
3753 		s64 delta;
3754 
3755 		r = -EFAULT;
3756 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3757 			goto out;
3758 
3759 		r = -EINVAL;
3760 		if (user_ns.flags)
3761 			goto out;
3762 
3763 		r = 0;
3764 		local_irq_disable();
3765 		now_ns = get_kernel_ns();
3766 		delta = user_ns.clock - now_ns;
3767 		local_irq_enable();
3768 		kvm->arch.kvmclock_offset = delta;
3769 		break;
3770 	}
3771 	case KVM_GET_CLOCK: {
3772 		struct kvm_clock_data user_ns;
3773 		u64 now_ns;
3774 
3775 		local_irq_disable();
3776 		now_ns = get_kernel_ns();
3777 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3778 		local_irq_enable();
3779 		user_ns.flags = 0;
3780 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3781 
3782 		r = -EFAULT;
3783 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3784 			goto out;
3785 		r = 0;
3786 		break;
3787 	}
3788 
3789 	default:
3790 		;
3791 	}
3792 out:
3793 	return r;
3794 }
3795 
3796 static void kvm_init_msr_list(void)
3797 {
3798 	u32 dummy[2];
3799 	unsigned i, j;
3800 
3801 	/* skip the first msrs in the list. KVM-specific */
3802 	for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3803 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3804 			continue;
3805 		if (j < i)
3806 			msrs_to_save[j] = msrs_to_save[i];
3807 		j++;
3808 	}
3809 	num_msrs_to_save = j;
3810 }
3811 
3812 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3813 			   const void *v)
3814 {
3815 	int handled = 0;
3816 	int n;
3817 
3818 	do {
3819 		n = min(len, 8);
3820 		if (!(vcpu->arch.apic &&
3821 		      !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3822 		    && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3823 			break;
3824 		handled += n;
3825 		addr += n;
3826 		len -= n;
3827 		v += n;
3828 	} while (len);
3829 
3830 	return handled;
3831 }
3832 
3833 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3834 {
3835 	int handled = 0;
3836 	int n;
3837 
3838 	do {
3839 		n = min(len, 8);
3840 		if (!(vcpu->arch.apic &&
3841 		      !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3842 		    && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3843 			break;
3844 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3845 		handled += n;
3846 		addr += n;
3847 		len -= n;
3848 		v += n;
3849 	} while (len);
3850 
3851 	return handled;
3852 }
3853 
3854 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3855 			struct kvm_segment *var, int seg)
3856 {
3857 	kvm_x86_ops->set_segment(vcpu, var, seg);
3858 }
3859 
3860 void kvm_get_segment(struct kvm_vcpu *vcpu,
3861 		     struct kvm_segment *var, int seg)
3862 {
3863 	kvm_x86_ops->get_segment(vcpu, var, seg);
3864 }
3865 
3866 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3867 {
3868 	gpa_t t_gpa;
3869 	struct x86_exception exception;
3870 
3871 	BUG_ON(!mmu_is_nested(vcpu));
3872 
3873 	/* NPT walks are always user-walks */
3874 	access |= PFERR_USER_MASK;
3875 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3876 
3877 	return t_gpa;
3878 }
3879 
3880 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3881 			      struct x86_exception *exception)
3882 {
3883 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3884 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3885 }
3886 
3887  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3888 				struct x86_exception *exception)
3889 {
3890 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3891 	access |= PFERR_FETCH_MASK;
3892 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3893 }
3894 
3895 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3896 			       struct x86_exception *exception)
3897 {
3898 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3899 	access |= PFERR_WRITE_MASK;
3900 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3901 }
3902 
3903 /* uses this to access any guest's mapped memory without checking CPL */
3904 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3905 				struct x86_exception *exception)
3906 {
3907 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3908 }
3909 
3910 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3911 				      struct kvm_vcpu *vcpu, u32 access,
3912 				      struct x86_exception *exception)
3913 {
3914 	void *data = val;
3915 	int r = X86EMUL_CONTINUE;
3916 
3917 	while (bytes) {
3918 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3919 							    exception);
3920 		unsigned offset = addr & (PAGE_SIZE-1);
3921 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3922 		int ret;
3923 
3924 		if (gpa == UNMAPPED_GVA)
3925 			return X86EMUL_PROPAGATE_FAULT;
3926 		ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3927 		if (ret < 0) {
3928 			r = X86EMUL_IO_NEEDED;
3929 			goto out;
3930 		}
3931 
3932 		bytes -= toread;
3933 		data += toread;
3934 		addr += toread;
3935 	}
3936 out:
3937 	return r;
3938 }
3939 
3940 /* used for instruction fetching */
3941 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3942 				gva_t addr, void *val, unsigned int bytes,
3943 				struct x86_exception *exception)
3944 {
3945 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3946 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3947 
3948 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3949 					  access | PFERR_FETCH_MASK,
3950 					  exception);
3951 }
3952 
3953 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3954 			       gva_t addr, void *val, unsigned int bytes,
3955 			       struct x86_exception *exception)
3956 {
3957 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3958 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3959 
3960 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3961 					  exception);
3962 }
3963 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3964 
3965 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3966 				      gva_t addr, void *val, unsigned int bytes,
3967 				      struct x86_exception *exception)
3968 {
3969 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3970 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3971 }
3972 
3973 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3974 				       gva_t addr, void *val,
3975 				       unsigned int bytes,
3976 				       struct x86_exception *exception)
3977 {
3978 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3979 	void *data = val;
3980 	int r = X86EMUL_CONTINUE;
3981 
3982 	while (bytes) {
3983 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3984 							     PFERR_WRITE_MASK,
3985 							     exception);
3986 		unsigned offset = addr & (PAGE_SIZE-1);
3987 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3988 		int ret;
3989 
3990 		if (gpa == UNMAPPED_GVA)
3991 			return X86EMUL_PROPAGATE_FAULT;
3992 		ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3993 		if (ret < 0) {
3994 			r = X86EMUL_IO_NEEDED;
3995 			goto out;
3996 		}
3997 
3998 		bytes -= towrite;
3999 		data += towrite;
4000 		addr += towrite;
4001 	}
4002 out:
4003 	return r;
4004 }
4005 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4006 
4007 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4008 				gpa_t *gpa, struct x86_exception *exception,
4009 				bool write)
4010 {
4011 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4012 		| (write ? PFERR_WRITE_MASK : 0);
4013 
4014 	if (vcpu_match_mmio_gva(vcpu, gva)
4015 	    && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
4016 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4017 					(gva & (PAGE_SIZE - 1));
4018 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4019 		return 1;
4020 	}
4021 
4022 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4023 
4024 	if (*gpa == UNMAPPED_GVA)
4025 		return -1;
4026 
4027 	/* For APIC access vmexit */
4028 	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4029 		return 1;
4030 
4031 	if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4032 		trace_vcpu_match_mmio(gva, *gpa, write, true);
4033 		return 1;
4034 	}
4035 
4036 	return 0;
4037 }
4038 
4039 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4040 			const void *val, int bytes)
4041 {
4042 	int ret;
4043 
4044 	ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4045 	if (ret < 0)
4046 		return 0;
4047 	kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4048 	return 1;
4049 }
4050 
4051 struct read_write_emulator_ops {
4052 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4053 				  int bytes);
4054 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4055 				  void *val, int bytes);
4056 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4057 			       int bytes, void *val);
4058 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4059 				    void *val, int bytes);
4060 	bool write;
4061 };
4062 
4063 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4064 {
4065 	if (vcpu->mmio_read_completed) {
4066 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4067 			       vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4068 		vcpu->mmio_read_completed = 0;
4069 		return 1;
4070 	}
4071 
4072 	return 0;
4073 }
4074 
4075 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4076 			void *val, int bytes)
4077 {
4078 	return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4079 }
4080 
4081 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4082 			 void *val, int bytes)
4083 {
4084 	return emulator_write_phys(vcpu, gpa, val, bytes);
4085 }
4086 
4087 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4088 {
4089 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4090 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4091 }
4092 
4093 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4094 			  void *val, int bytes)
4095 {
4096 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4097 	return X86EMUL_IO_NEEDED;
4098 }
4099 
4100 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4101 			   void *val, int bytes)
4102 {
4103 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4104 
4105 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4106 	return X86EMUL_CONTINUE;
4107 }
4108 
4109 static const struct read_write_emulator_ops read_emultor = {
4110 	.read_write_prepare = read_prepare,
4111 	.read_write_emulate = read_emulate,
4112 	.read_write_mmio = vcpu_mmio_read,
4113 	.read_write_exit_mmio = read_exit_mmio,
4114 };
4115 
4116 static const struct read_write_emulator_ops write_emultor = {
4117 	.read_write_emulate = write_emulate,
4118 	.read_write_mmio = write_mmio,
4119 	.read_write_exit_mmio = write_exit_mmio,
4120 	.write = true,
4121 };
4122 
4123 static int emulator_read_write_onepage(unsigned long addr, void *val,
4124 				       unsigned int bytes,
4125 				       struct x86_exception *exception,
4126 				       struct kvm_vcpu *vcpu,
4127 				       const struct read_write_emulator_ops *ops)
4128 {
4129 	gpa_t gpa;
4130 	int handled, ret;
4131 	bool write = ops->write;
4132 	struct kvm_mmio_fragment *frag;
4133 
4134 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4135 
4136 	if (ret < 0)
4137 		return X86EMUL_PROPAGATE_FAULT;
4138 
4139 	/* For APIC access vmexit */
4140 	if (ret)
4141 		goto mmio;
4142 
4143 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4144 		return X86EMUL_CONTINUE;
4145 
4146 mmio:
4147 	/*
4148 	 * Is this MMIO handled locally?
4149 	 */
4150 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4151 	if (handled == bytes)
4152 		return X86EMUL_CONTINUE;
4153 
4154 	gpa += handled;
4155 	bytes -= handled;
4156 	val += handled;
4157 
4158 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4159 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4160 	frag->gpa = gpa;
4161 	frag->data = val;
4162 	frag->len = bytes;
4163 	return X86EMUL_CONTINUE;
4164 }
4165 
4166 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4167 			void *val, unsigned int bytes,
4168 			struct x86_exception *exception,
4169 			const struct read_write_emulator_ops *ops)
4170 {
4171 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4172 	gpa_t gpa;
4173 	int rc;
4174 
4175 	if (ops->read_write_prepare &&
4176 		  ops->read_write_prepare(vcpu, val, bytes))
4177 		return X86EMUL_CONTINUE;
4178 
4179 	vcpu->mmio_nr_fragments = 0;
4180 
4181 	/* Crossing a page boundary? */
4182 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4183 		int now;
4184 
4185 		now = -addr & ~PAGE_MASK;
4186 		rc = emulator_read_write_onepage(addr, val, now, exception,
4187 						 vcpu, ops);
4188 
4189 		if (rc != X86EMUL_CONTINUE)
4190 			return rc;
4191 		addr += now;
4192 		val += now;
4193 		bytes -= now;
4194 	}
4195 
4196 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
4197 					 vcpu, ops);
4198 	if (rc != X86EMUL_CONTINUE)
4199 		return rc;
4200 
4201 	if (!vcpu->mmio_nr_fragments)
4202 		return rc;
4203 
4204 	gpa = vcpu->mmio_fragments[0].gpa;
4205 
4206 	vcpu->mmio_needed = 1;
4207 	vcpu->mmio_cur_fragment = 0;
4208 
4209 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4210 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4211 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
4212 	vcpu->run->mmio.phys_addr = gpa;
4213 
4214 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4215 }
4216 
4217 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4218 				  unsigned long addr,
4219 				  void *val,
4220 				  unsigned int bytes,
4221 				  struct x86_exception *exception)
4222 {
4223 	return emulator_read_write(ctxt, addr, val, bytes,
4224 				   exception, &read_emultor);
4225 }
4226 
4227 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4228 			    unsigned long addr,
4229 			    const void *val,
4230 			    unsigned int bytes,
4231 			    struct x86_exception *exception)
4232 {
4233 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
4234 				   exception, &write_emultor);
4235 }
4236 
4237 #define CMPXCHG_TYPE(t, ptr, old, new) \
4238 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4239 
4240 #ifdef CONFIG_X86_64
4241 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4242 #else
4243 #  define CMPXCHG64(ptr, old, new) \
4244 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4245 #endif
4246 
4247 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4248 				     unsigned long addr,
4249 				     const void *old,
4250 				     const void *new,
4251 				     unsigned int bytes,
4252 				     struct x86_exception *exception)
4253 {
4254 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4255 	gpa_t gpa;
4256 	struct page *page;
4257 	char *kaddr;
4258 	bool exchanged;
4259 
4260 	/* guests cmpxchg8b have to be emulated atomically */
4261 	if (bytes > 8 || (bytes & (bytes - 1)))
4262 		goto emul_write;
4263 
4264 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4265 
4266 	if (gpa == UNMAPPED_GVA ||
4267 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4268 		goto emul_write;
4269 
4270 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4271 		goto emul_write;
4272 
4273 	page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4274 	if (is_error_page(page))
4275 		goto emul_write;
4276 
4277 	kaddr = kmap_atomic(page);
4278 	kaddr += offset_in_page(gpa);
4279 	switch (bytes) {
4280 	case 1:
4281 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4282 		break;
4283 	case 2:
4284 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4285 		break;
4286 	case 4:
4287 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4288 		break;
4289 	case 8:
4290 		exchanged = CMPXCHG64(kaddr, old, new);
4291 		break;
4292 	default:
4293 		BUG();
4294 	}
4295 	kunmap_atomic(kaddr);
4296 	kvm_release_page_dirty(page);
4297 
4298 	if (!exchanged)
4299 		return X86EMUL_CMPXCHG_FAILED;
4300 
4301 	kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4302 
4303 	return X86EMUL_CONTINUE;
4304 
4305 emul_write:
4306 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4307 
4308 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4309 }
4310 
4311 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4312 {
4313 	/* TODO: String I/O for in kernel device */
4314 	int r;
4315 
4316 	if (vcpu->arch.pio.in)
4317 		r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4318 				    vcpu->arch.pio.size, pd);
4319 	else
4320 		r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4321 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
4322 				     pd);
4323 	return r;
4324 }
4325 
4326 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4327 			       unsigned short port, void *val,
4328 			       unsigned int count, bool in)
4329 {
4330 	trace_kvm_pio(!in, port, size, count);
4331 
4332 	vcpu->arch.pio.port = port;
4333 	vcpu->arch.pio.in = in;
4334 	vcpu->arch.pio.count  = count;
4335 	vcpu->arch.pio.size = size;
4336 
4337 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4338 		vcpu->arch.pio.count = 0;
4339 		return 1;
4340 	}
4341 
4342 	vcpu->run->exit_reason = KVM_EXIT_IO;
4343 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4344 	vcpu->run->io.size = size;
4345 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4346 	vcpu->run->io.count = count;
4347 	vcpu->run->io.port = port;
4348 
4349 	return 0;
4350 }
4351 
4352 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4353 				    int size, unsigned short port, void *val,
4354 				    unsigned int count)
4355 {
4356 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4357 	int ret;
4358 
4359 	if (vcpu->arch.pio.count)
4360 		goto data_avail;
4361 
4362 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4363 	if (ret) {
4364 data_avail:
4365 		memcpy(val, vcpu->arch.pio_data, size * count);
4366 		vcpu->arch.pio.count = 0;
4367 		return 1;
4368 	}
4369 
4370 	return 0;
4371 }
4372 
4373 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4374 				     int size, unsigned short port,
4375 				     const void *val, unsigned int count)
4376 {
4377 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4378 
4379 	memcpy(vcpu->arch.pio_data, val, size * count);
4380 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4381 }
4382 
4383 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4384 {
4385 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4386 }
4387 
4388 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4389 {
4390 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4391 }
4392 
4393 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4394 {
4395 	if (!need_emulate_wbinvd(vcpu))
4396 		return X86EMUL_CONTINUE;
4397 
4398 	if (kvm_x86_ops->has_wbinvd_exit()) {
4399 		int cpu = get_cpu();
4400 
4401 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4402 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4403 				wbinvd_ipi, NULL, 1);
4404 		put_cpu();
4405 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4406 	} else
4407 		wbinvd();
4408 	return X86EMUL_CONTINUE;
4409 }
4410 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4411 
4412 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4413 {
4414 	kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4415 }
4416 
4417 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4418 {
4419 	return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4420 }
4421 
4422 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4423 {
4424 
4425 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4426 }
4427 
4428 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4429 {
4430 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4431 }
4432 
4433 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4434 {
4435 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4436 	unsigned long value;
4437 
4438 	switch (cr) {
4439 	case 0:
4440 		value = kvm_read_cr0(vcpu);
4441 		break;
4442 	case 2:
4443 		value = vcpu->arch.cr2;
4444 		break;
4445 	case 3:
4446 		value = kvm_read_cr3(vcpu);
4447 		break;
4448 	case 4:
4449 		value = kvm_read_cr4(vcpu);
4450 		break;
4451 	case 8:
4452 		value = kvm_get_cr8(vcpu);
4453 		break;
4454 	default:
4455 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4456 		return 0;
4457 	}
4458 
4459 	return value;
4460 }
4461 
4462 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4463 {
4464 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4465 	int res = 0;
4466 
4467 	switch (cr) {
4468 	case 0:
4469 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4470 		break;
4471 	case 2:
4472 		vcpu->arch.cr2 = val;
4473 		break;
4474 	case 3:
4475 		res = kvm_set_cr3(vcpu, val);
4476 		break;
4477 	case 4:
4478 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4479 		break;
4480 	case 8:
4481 		res = kvm_set_cr8(vcpu, val);
4482 		break;
4483 	default:
4484 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4485 		res = -1;
4486 	}
4487 
4488 	return res;
4489 }
4490 
4491 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4492 {
4493 	kvm_set_rflags(emul_to_vcpu(ctxt), val);
4494 }
4495 
4496 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4497 {
4498 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4499 }
4500 
4501 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4502 {
4503 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4504 }
4505 
4506 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4507 {
4508 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4509 }
4510 
4511 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4512 {
4513 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4514 }
4515 
4516 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4517 {
4518 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4519 }
4520 
4521 static unsigned long emulator_get_cached_segment_base(
4522 	struct x86_emulate_ctxt *ctxt, int seg)
4523 {
4524 	return get_segment_base(emul_to_vcpu(ctxt), seg);
4525 }
4526 
4527 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4528 				 struct desc_struct *desc, u32 *base3,
4529 				 int seg)
4530 {
4531 	struct kvm_segment var;
4532 
4533 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4534 	*selector = var.selector;
4535 
4536 	if (var.unusable) {
4537 		memset(desc, 0, sizeof(*desc));
4538 		return false;
4539 	}
4540 
4541 	if (var.g)
4542 		var.limit >>= 12;
4543 	set_desc_limit(desc, var.limit);
4544 	set_desc_base(desc, (unsigned long)var.base);
4545 #ifdef CONFIG_X86_64
4546 	if (base3)
4547 		*base3 = var.base >> 32;
4548 #endif
4549 	desc->type = var.type;
4550 	desc->s = var.s;
4551 	desc->dpl = var.dpl;
4552 	desc->p = var.present;
4553 	desc->avl = var.avl;
4554 	desc->l = var.l;
4555 	desc->d = var.db;
4556 	desc->g = var.g;
4557 
4558 	return true;
4559 }
4560 
4561 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4562 				 struct desc_struct *desc, u32 base3,
4563 				 int seg)
4564 {
4565 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4566 	struct kvm_segment var;
4567 
4568 	var.selector = selector;
4569 	var.base = get_desc_base(desc);
4570 #ifdef CONFIG_X86_64
4571 	var.base |= ((u64)base3) << 32;
4572 #endif
4573 	var.limit = get_desc_limit(desc);
4574 	if (desc->g)
4575 		var.limit = (var.limit << 12) | 0xfff;
4576 	var.type = desc->type;
4577 	var.present = desc->p;
4578 	var.dpl = desc->dpl;
4579 	var.db = desc->d;
4580 	var.s = desc->s;
4581 	var.l = desc->l;
4582 	var.g = desc->g;
4583 	var.avl = desc->avl;
4584 	var.present = desc->p;
4585 	var.unusable = !var.present;
4586 	var.padding = 0;
4587 
4588 	kvm_set_segment(vcpu, &var, seg);
4589 	return;
4590 }
4591 
4592 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4593 			    u32 msr_index, u64 *pdata)
4594 {
4595 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4596 }
4597 
4598 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4599 			    u32 msr_index, u64 data)
4600 {
4601 	struct msr_data msr;
4602 
4603 	msr.data = data;
4604 	msr.index = msr_index;
4605 	msr.host_initiated = false;
4606 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4607 }
4608 
4609 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4610 			     u32 pmc, u64 *pdata)
4611 {
4612 	return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4613 }
4614 
4615 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4616 {
4617 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
4618 }
4619 
4620 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4621 {
4622 	preempt_disable();
4623 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4624 	/*
4625 	 * CR0.TS may reference the host fpu state, not the guest fpu state,
4626 	 * so it may be clear at this point.
4627 	 */
4628 	clts();
4629 }
4630 
4631 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4632 {
4633 	preempt_enable();
4634 }
4635 
4636 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4637 			      struct x86_instruction_info *info,
4638 			      enum x86_intercept_stage stage)
4639 {
4640 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4641 }
4642 
4643 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4644 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4645 {
4646 	kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4647 }
4648 
4649 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4650 {
4651 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
4652 }
4653 
4654 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4655 {
4656 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4657 }
4658 
4659 static const struct x86_emulate_ops emulate_ops = {
4660 	.read_gpr            = emulator_read_gpr,
4661 	.write_gpr           = emulator_write_gpr,
4662 	.read_std            = kvm_read_guest_virt_system,
4663 	.write_std           = kvm_write_guest_virt_system,
4664 	.fetch               = kvm_fetch_guest_virt,
4665 	.read_emulated       = emulator_read_emulated,
4666 	.write_emulated      = emulator_write_emulated,
4667 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
4668 	.invlpg              = emulator_invlpg,
4669 	.pio_in_emulated     = emulator_pio_in_emulated,
4670 	.pio_out_emulated    = emulator_pio_out_emulated,
4671 	.get_segment         = emulator_get_segment,
4672 	.set_segment         = emulator_set_segment,
4673 	.get_cached_segment_base = emulator_get_cached_segment_base,
4674 	.get_gdt             = emulator_get_gdt,
4675 	.get_idt	     = emulator_get_idt,
4676 	.set_gdt             = emulator_set_gdt,
4677 	.set_idt	     = emulator_set_idt,
4678 	.get_cr              = emulator_get_cr,
4679 	.set_cr              = emulator_set_cr,
4680 	.set_rflags          = emulator_set_rflags,
4681 	.cpl                 = emulator_get_cpl,
4682 	.get_dr              = emulator_get_dr,
4683 	.set_dr              = emulator_set_dr,
4684 	.set_msr             = emulator_set_msr,
4685 	.get_msr             = emulator_get_msr,
4686 	.read_pmc            = emulator_read_pmc,
4687 	.halt                = emulator_halt,
4688 	.wbinvd              = emulator_wbinvd,
4689 	.fix_hypercall       = emulator_fix_hypercall,
4690 	.get_fpu             = emulator_get_fpu,
4691 	.put_fpu             = emulator_put_fpu,
4692 	.intercept           = emulator_intercept,
4693 	.get_cpuid           = emulator_get_cpuid,
4694 };
4695 
4696 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4697 {
4698 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4699 	/*
4700 	 * an sti; sti; sequence only disable interrupts for the first
4701 	 * instruction. So, if the last instruction, be it emulated or
4702 	 * not, left the system with the INT_STI flag enabled, it
4703 	 * means that the last instruction is an sti. We should not
4704 	 * leave the flag on in this case. The same goes for mov ss
4705 	 */
4706 	if (!(int_shadow & mask))
4707 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4708 }
4709 
4710 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4711 {
4712 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4713 	if (ctxt->exception.vector == PF_VECTOR)
4714 		kvm_propagate_fault(vcpu, &ctxt->exception);
4715 	else if (ctxt->exception.error_code_valid)
4716 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4717 				      ctxt->exception.error_code);
4718 	else
4719 		kvm_queue_exception(vcpu, ctxt->exception.vector);
4720 }
4721 
4722 static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4723 {
4724 	memset(&ctxt->twobyte, 0,
4725 	       (void *)&ctxt->_regs - (void *)&ctxt->twobyte);
4726 
4727 	ctxt->fetch.start = 0;
4728 	ctxt->fetch.end = 0;
4729 	ctxt->io_read.pos = 0;
4730 	ctxt->io_read.end = 0;
4731 	ctxt->mem_read.pos = 0;
4732 	ctxt->mem_read.end = 0;
4733 }
4734 
4735 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4736 {
4737 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4738 	int cs_db, cs_l;
4739 
4740 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4741 
4742 	ctxt->eflags = kvm_get_rflags(vcpu);
4743 	ctxt->eip = kvm_rip_read(vcpu);
4744 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
4745 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
4746 		     cs_l				? X86EMUL_MODE_PROT64 :
4747 		     cs_db				? X86EMUL_MODE_PROT32 :
4748 							  X86EMUL_MODE_PROT16;
4749 	ctxt->guest_mode = is_guest_mode(vcpu);
4750 
4751 	init_decode_cache(ctxt);
4752 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4753 }
4754 
4755 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4756 {
4757 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4758 	int ret;
4759 
4760 	init_emulate_ctxt(vcpu);
4761 
4762 	ctxt->op_bytes = 2;
4763 	ctxt->ad_bytes = 2;
4764 	ctxt->_eip = ctxt->eip + inc_eip;
4765 	ret = emulate_int_real(ctxt, irq);
4766 
4767 	if (ret != X86EMUL_CONTINUE)
4768 		return EMULATE_FAIL;
4769 
4770 	ctxt->eip = ctxt->_eip;
4771 	kvm_rip_write(vcpu, ctxt->eip);
4772 	kvm_set_rflags(vcpu, ctxt->eflags);
4773 
4774 	if (irq == NMI_VECTOR)
4775 		vcpu->arch.nmi_pending = 0;
4776 	else
4777 		vcpu->arch.interrupt.pending = false;
4778 
4779 	return EMULATE_DONE;
4780 }
4781 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4782 
4783 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4784 {
4785 	int r = EMULATE_DONE;
4786 
4787 	++vcpu->stat.insn_emulation_fail;
4788 	trace_kvm_emulate_insn_failed(vcpu);
4789 	if (!is_guest_mode(vcpu)) {
4790 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4791 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4792 		vcpu->run->internal.ndata = 0;
4793 		r = EMULATE_FAIL;
4794 	}
4795 	kvm_queue_exception(vcpu, UD_VECTOR);
4796 
4797 	return r;
4798 }
4799 
4800 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
4801 				  bool write_fault_to_shadow_pgtable,
4802 				  int emulation_type)
4803 {
4804 	gpa_t gpa = cr2;
4805 	pfn_t pfn;
4806 
4807 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
4808 		return false;
4809 
4810 	if (!vcpu->arch.mmu.direct_map) {
4811 		/*
4812 		 * Write permission should be allowed since only
4813 		 * write access need to be emulated.
4814 		 */
4815 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4816 
4817 		/*
4818 		 * If the mapping is invalid in guest, let cpu retry
4819 		 * it to generate fault.
4820 		 */
4821 		if (gpa == UNMAPPED_GVA)
4822 			return true;
4823 	}
4824 
4825 	/*
4826 	 * Do not retry the unhandleable instruction if it faults on the
4827 	 * readonly host memory, otherwise it will goto a infinite loop:
4828 	 * retry instruction -> write #PF -> emulation fail -> retry
4829 	 * instruction -> ...
4830 	 */
4831 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4832 
4833 	/*
4834 	 * If the instruction failed on the error pfn, it can not be fixed,
4835 	 * report the error to userspace.
4836 	 */
4837 	if (is_error_noslot_pfn(pfn))
4838 		return false;
4839 
4840 	kvm_release_pfn_clean(pfn);
4841 
4842 	/* The instructions are well-emulated on direct mmu. */
4843 	if (vcpu->arch.mmu.direct_map) {
4844 		unsigned int indirect_shadow_pages;
4845 
4846 		spin_lock(&vcpu->kvm->mmu_lock);
4847 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
4848 		spin_unlock(&vcpu->kvm->mmu_lock);
4849 
4850 		if (indirect_shadow_pages)
4851 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4852 
4853 		return true;
4854 	}
4855 
4856 	/*
4857 	 * if emulation was due to access to shadowed page table
4858 	 * and it failed try to unshadow page and re-enter the
4859 	 * guest to let CPU execute the instruction.
4860 	 */
4861 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4862 
4863 	/*
4864 	 * If the access faults on its page table, it can not
4865 	 * be fixed by unprotecting shadow page and it should
4866 	 * be reported to userspace.
4867 	 */
4868 	return !write_fault_to_shadow_pgtable;
4869 }
4870 
4871 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4872 			      unsigned long cr2,  int emulation_type)
4873 {
4874 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4875 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4876 
4877 	last_retry_eip = vcpu->arch.last_retry_eip;
4878 	last_retry_addr = vcpu->arch.last_retry_addr;
4879 
4880 	/*
4881 	 * If the emulation is caused by #PF and it is non-page_table
4882 	 * writing instruction, it means the VM-EXIT is caused by shadow
4883 	 * page protected, we can zap the shadow page and retry this
4884 	 * instruction directly.
4885 	 *
4886 	 * Note: if the guest uses a non-page-table modifying instruction
4887 	 * on the PDE that points to the instruction, then we will unmap
4888 	 * the instruction and go to an infinite loop. So, we cache the
4889 	 * last retried eip and the last fault address, if we meet the eip
4890 	 * and the address again, we can break out of the potential infinite
4891 	 * loop.
4892 	 */
4893 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4894 
4895 	if (!(emulation_type & EMULTYPE_RETRY))
4896 		return false;
4897 
4898 	if (x86_page_table_writing_insn(ctxt))
4899 		return false;
4900 
4901 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4902 		return false;
4903 
4904 	vcpu->arch.last_retry_eip = ctxt->eip;
4905 	vcpu->arch.last_retry_addr = cr2;
4906 
4907 	if (!vcpu->arch.mmu.direct_map)
4908 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4909 
4910 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4911 
4912 	return true;
4913 }
4914 
4915 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
4916 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
4917 
4918 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4919 			    unsigned long cr2,
4920 			    int emulation_type,
4921 			    void *insn,
4922 			    int insn_len)
4923 {
4924 	int r;
4925 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4926 	bool writeback = true;
4927 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
4928 
4929 	/*
4930 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
4931 	 * never reused.
4932 	 */
4933 	vcpu->arch.write_fault_to_shadow_pgtable = false;
4934 	kvm_clear_exception_queue(vcpu);
4935 
4936 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4937 		init_emulate_ctxt(vcpu);
4938 		ctxt->interruptibility = 0;
4939 		ctxt->have_exception = false;
4940 		ctxt->perm_ok = false;
4941 
4942 		ctxt->only_vendor_specific_insn
4943 			= emulation_type & EMULTYPE_TRAP_UD;
4944 
4945 		r = x86_decode_insn(ctxt, insn, insn_len);
4946 
4947 		trace_kvm_emulate_insn_start(vcpu);
4948 		++vcpu->stat.insn_emulation;
4949 		if (r != EMULATION_OK)  {
4950 			if (emulation_type & EMULTYPE_TRAP_UD)
4951 				return EMULATE_FAIL;
4952 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
4953 						emulation_type))
4954 				return EMULATE_DONE;
4955 			if (emulation_type & EMULTYPE_SKIP)
4956 				return EMULATE_FAIL;
4957 			return handle_emulation_failure(vcpu);
4958 		}
4959 	}
4960 
4961 	if (emulation_type & EMULTYPE_SKIP) {
4962 		kvm_rip_write(vcpu, ctxt->_eip);
4963 		return EMULATE_DONE;
4964 	}
4965 
4966 	if (retry_instruction(ctxt, cr2, emulation_type))
4967 		return EMULATE_DONE;
4968 
4969 	/* this is needed for vmware backdoor interface to work since it
4970 	   changes registers values  during IO operation */
4971 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4972 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4973 		emulator_invalidate_register_cache(ctxt);
4974 	}
4975 
4976 restart:
4977 	r = x86_emulate_insn(ctxt);
4978 
4979 	if (r == EMULATION_INTERCEPTED)
4980 		return EMULATE_DONE;
4981 
4982 	if (r == EMULATION_FAILED) {
4983 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
4984 					emulation_type))
4985 			return EMULATE_DONE;
4986 
4987 		return handle_emulation_failure(vcpu);
4988 	}
4989 
4990 	if (ctxt->have_exception) {
4991 		inject_emulated_exception(vcpu);
4992 		r = EMULATE_DONE;
4993 	} else if (vcpu->arch.pio.count) {
4994 		if (!vcpu->arch.pio.in)
4995 			vcpu->arch.pio.count = 0;
4996 		else {
4997 			writeback = false;
4998 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
4999 		}
5000 		r = EMULATE_DO_MMIO;
5001 	} else if (vcpu->mmio_needed) {
5002 		if (!vcpu->mmio_is_write)
5003 			writeback = false;
5004 		r = EMULATE_DO_MMIO;
5005 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5006 	} else if (r == EMULATION_RESTART)
5007 		goto restart;
5008 	else
5009 		r = EMULATE_DONE;
5010 
5011 	if (writeback) {
5012 		toggle_interruptibility(vcpu, ctxt->interruptibility);
5013 		kvm_set_rflags(vcpu, ctxt->eflags);
5014 		kvm_make_request(KVM_REQ_EVENT, vcpu);
5015 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5016 		kvm_rip_write(vcpu, ctxt->eip);
5017 	} else
5018 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5019 
5020 	return r;
5021 }
5022 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5023 
5024 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5025 {
5026 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5027 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5028 					    size, port, &val, 1);
5029 	/* do not return to emulator after return from userspace */
5030 	vcpu->arch.pio.count = 0;
5031 	return ret;
5032 }
5033 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5034 
5035 static void tsc_bad(void *info)
5036 {
5037 	__this_cpu_write(cpu_tsc_khz, 0);
5038 }
5039 
5040 static void tsc_khz_changed(void *data)
5041 {
5042 	struct cpufreq_freqs *freq = data;
5043 	unsigned long khz = 0;
5044 
5045 	if (data)
5046 		khz = freq->new;
5047 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5048 		khz = cpufreq_quick_get(raw_smp_processor_id());
5049 	if (!khz)
5050 		khz = tsc_khz;
5051 	__this_cpu_write(cpu_tsc_khz, khz);
5052 }
5053 
5054 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5055 				     void *data)
5056 {
5057 	struct cpufreq_freqs *freq = data;
5058 	struct kvm *kvm;
5059 	struct kvm_vcpu *vcpu;
5060 	int i, send_ipi = 0;
5061 
5062 	/*
5063 	 * We allow guests to temporarily run on slowing clocks,
5064 	 * provided we notify them after, or to run on accelerating
5065 	 * clocks, provided we notify them before.  Thus time never
5066 	 * goes backwards.
5067 	 *
5068 	 * However, we have a problem.  We can't atomically update
5069 	 * the frequency of a given CPU from this function; it is
5070 	 * merely a notifier, which can be called from any CPU.
5071 	 * Changing the TSC frequency at arbitrary points in time
5072 	 * requires a recomputation of local variables related to
5073 	 * the TSC for each VCPU.  We must flag these local variables
5074 	 * to be updated and be sure the update takes place with the
5075 	 * new frequency before any guests proceed.
5076 	 *
5077 	 * Unfortunately, the combination of hotplug CPU and frequency
5078 	 * change creates an intractable locking scenario; the order
5079 	 * of when these callouts happen is undefined with respect to
5080 	 * CPU hotplug, and they can race with each other.  As such,
5081 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5082 	 * undefined; you can actually have a CPU frequency change take
5083 	 * place in between the computation of X and the setting of the
5084 	 * variable.  To protect against this problem, all updates of
5085 	 * the per_cpu tsc_khz variable are done in an interrupt
5086 	 * protected IPI, and all callers wishing to update the value
5087 	 * must wait for a synchronous IPI to complete (which is trivial
5088 	 * if the caller is on the CPU already).  This establishes the
5089 	 * necessary total order on variable updates.
5090 	 *
5091 	 * Note that because a guest time update may take place
5092 	 * anytime after the setting of the VCPU's request bit, the
5093 	 * correct TSC value must be set before the request.  However,
5094 	 * to ensure the update actually makes it to any guest which
5095 	 * starts running in hardware virtualization between the set
5096 	 * and the acquisition of the spinlock, we must also ping the
5097 	 * CPU after setting the request bit.
5098 	 *
5099 	 */
5100 
5101 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5102 		return 0;
5103 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5104 		return 0;
5105 
5106 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5107 
5108 	raw_spin_lock(&kvm_lock);
5109 	list_for_each_entry(kvm, &vm_list, vm_list) {
5110 		kvm_for_each_vcpu(i, vcpu, kvm) {
5111 			if (vcpu->cpu != freq->cpu)
5112 				continue;
5113 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5114 			if (vcpu->cpu != smp_processor_id())
5115 				send_ipi = 1;
5116 		}
5117 	}
5118 	raw_spin_unlock(&kvm_lock);
5119 
5120 	if (freq->old < freq->new && send_ipi) {
5121 		/*
5122 		 * We upscale the frequency.  Must make the guest
5123 		 * doesn't see old kvmclock values while running with
5124 		 * the new frequency, otherwise we risk the guest sees
5125 		 * time go backwards.
5126 		 *
5127 		 * In case we update the frequency for another cpu
5128 		 * (which might be in guest context) send an interrupt
5129 		 * to kick the cpu out of guest context.  Next time
5130 		 * guest context is entered kvmclock will be updated,
5131 		 * so the guest will not see stale values.
5132 		 */
5133 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5134 	}
5135 	return 0;
5136 }
5137 
5138 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5139 	.notifier_call  = kvmclock_cpufreq_notifier
5140 };
5141 
5142 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5143 					unsigned long action, void *hcpu)
5144 {
5145 	unsigned int cpu = (unsigned long)hcpu;
5146 
5147 	switch (action) {
5148 		case CPU_ONLINE:
5149 		case CPU_DOWN_FAILED:
5150 			smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5151 			break;
5152 		case CPU_DOWN_PREPARE:
5153 			smp_call_function_single(cpu, tsc_bad, NULL, 1);
5154 			break;
5155 	}
5156 	return NOTIFY_OK;
5157 }
5158 
5159 static struct notifier_block kvmclock_cpu_notifier_block = {
5160 	.notifier_call  = kvmclock_cpu_notifier,
5161 	.priority = -INT_MAX
5162 };
5163 
5164 static void kvm_timer_init(void)
5165 {
5166 	int cpu;
5167 
5168 	max_tsc_khz = tsc_khz;
5169 	register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5170 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5171 #ifdef CONFIG_CPU_FREQ
5172 		struct cpufreq_policy policy;
5173 		memset(&policy, 0, sizeof(policy));
5174 		cpu = get_cpu();
5175 		cpufreq_get_policy(&policy, cpu);
5176 		if (policy.cpuinfo.max_freq)
5177 			max_tsc_khz = policy.cpuinfo.max_freq;
5178 		put_cpu();
5179 #endif
5180 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5181 					  CPUFREQ_TRANSITION_NOTIFIER);
5182 	}
5183 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5184 	for_each_online_cpu(cpu)
5185 		smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5186 }
5187 
5188 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5189 
5190 int kvm_is_in_guest(void)
5191 {
5192 	return __this_cpu_read(current_vcpu) != NULL;
5193 }
5194 
5195 static int kvm_is_user_mode(void)
5196 {
5197 	int user_mode = 3;
5198 
5199 	if (__this_cpu_read(current_vcpu))
5200 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5201 
5202 	return user_mode != 0;
5203 }
5204 
5205 static unsigned long kvm_get_guest_ip(void)
5206 {
5207 	unsigned long ip = 0;
5208 
5209 	if (__this_cpu_read(current_vcpu))
5210 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5211 
5212 	return ip;
5213 }
5214 
5215 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5216 	.is_in_guest		= kvm_is_in_guest,
5217 	.is_user_mode		= kvm_is_user_mode,
5218 	.get_guest_ip		= kvm_get_guest_ip,
5219 };
5220 
5221 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5222 {
5223 	__this_cpu_write(current_vcpu, vcpu);
5224 }
5225 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5226 
5227 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5228 {
5229 	__this_cpu_write(current_vcpu, NULL);
5230 }
5231 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5232 
5233 static void kvm_set_mmio_spte_mask(void)
5234 {
5235 	u64 mask;
5236 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
5237 
5238 	/*
5239 	 * Set the reserved bits and the present bit of an paging-structure
5240 	 * entry to generate page fault with PFER.RSV = 1.
5241 	 */
5242 	mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
5243 	mask |= 1ull;
5244 
5245 #ifdef CONFIG_X86_64
5246 	/*
5247 	 * If reserved bit is not supported, clear the present bit to disable
5248 	 * mmio page fault.
5249 	 */
5250 	if (maxphyaddr == 52)
5251 		mask &= ~1ull;
5252 #endif
5253 
5254 	kvm_mmu_set_mmio_spte_mask(mask);
5255 }
5256 
5257 #ifdef CONFIG_X86_64
5258 static void pvclock_gtod_update_fn(struct work_struct *work)
5259 {
5260 	struct kvm *kvm;
5261 
5262 	struct kvm_vcpu *vcpu;
5263 	int i;
5264 
5265 	raw_spin_lock(&kvm_lock);
5266 	list_for_each_entry(kvm, &vm_list, vm_list)
5267 		kvm_for_each_vcpu(i, vcpu, kvm)
5268 			set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
5269 	atomic_set(&kvm_guest_has_master_clock, 0);
5270 	raw_spin_unlock(&kvm_lock);
5271 }
5272 
5273 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5274 
5275 /*
5276  * Notification about pvclock gtod data update.
5277  */
5278 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5279 			       void *priv)
5280 {
5281 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5282 	struct timekeeper *tk = priv;
5283 
5284 	update_pvclock_gtod(tk);
5285 
5286 	/* disable master clock if host does not trust, or does not
5287 	 * use, TSC clocksource
5288 	 */
5289 	if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5290 	    atomic_read(&kvm_guest_has_master_clock) != 0)
5291 		queue_work(system_long_wq, &pvclock_gtod_work);
5292 
5293 	return 0;
5294 }
5295 
5296 static struct notifier_block pvclock_gtod_notifier = {
5297 	.notifier_call = pvclock_gtod_notify,
5298 };
5299 #endif
5300 
5301 int kvm_arch_init(void *opaque)
5302 {
5303 	int r;
5304 	struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
5305 
5306 	if (kvm_x86_ops) {
5307 		printk(KERN_ERR "kvm: already loaded the other module\n");
5308 		r = -EEXIST;
5309 		goto out;
5310 	}
5311 
5312 	if (!ops->cpu_has_kvm_support()) {
5313 		printk(KERN_ERR "kvm: no hardware support\n");
5314 		r = -EOPNOTSUPP;
5315 		goto out;
5316 	}
5317 	if (ops->disabled_by_bios()) {
5318 		printk(KERN_ERR "kvm: disabled by bios\n");
5319 		r = -EOPNOTSUPP;
5320 		goto out;
5321 	}
5322 
5323 	r = -ENOMEM;
5324 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5325 	if (!shared_msrs) {
5326 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5327 		goto out;
5328 	}
5329 
5330 	r = kvm_mmu_module_init();
5331 	if (r)
5332 		goto out_free_percpu;
5333 
5334 	kvm_set_mmio_spte_mask();
5335 	kvm_init_msr_list();
5336 
5337 	kvm_x86_ops = ops;
5338 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5339 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
5340 
5341 	kvm_timer_init();
5342 
5343 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5344 
5345 	if (cpu_has_xsave)
5346 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5347 
5348 	kvm_lapic_init();
5349 #ifdef CONFIG_X86_64
5350 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5351 #endif
5352 
5353 	return 0;
5354 
5355 out_free_percpu:
5356 	free_percpu(shared_msrs);
5357 out:
5358 	return r;
5359 }
5360 
5361 void kvm_arch_exit(void)
5362 {
5363 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5364 
5365 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5366 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5367 					    CPUFREQ_TRANSITION_NOTIFIER);
5368 	unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5369 #ifdef CONFIG_X86_64
5370 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5371 #endif
5372 	kvm_x86_ops = NULL;
5373 	kvm_mmu_module_exit();
5374 	free_percpu(shared_msrs);
5375 }
5376 
5377 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5378 {
5379 	++vcpu->stat.halt_exits;
5380 	if (irqchip_in_kernel(vcpu->kvm)) {
5381 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5382 		return 1;
5383 	} else {
5384 		vcpu->run->exit_reason = KVM_EXIT_HLT;
5385 		return 0;
5386 	}
5387 }
5388 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5389 
5390 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5391 {
5392 	u64 param, ingpa, outgpa, ret;
5393 	uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5394 	bool fast, longmode;
5395 	int cs_db, cs_l;
5396 
5397 	/*
5398 	 * hypercall generates UD from non zero cpl and real mode
5399 	 * per HYPER-V spec
5400 	 */
5401 	if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5402 		kvm_queue_exception(vcpu, UD_VECTOR);
5403 		return 0;
5404 	}
5405 
5406 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5407 	longmode = is_long_mode(vcpu) && cs_l == 1;
5408 
5409 	if (!longmode) {
5410 		param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5411 			(kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5412 		ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5413 			(kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5414 		outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5415 			(kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5416 	}
5417 #ifdef CONFIG_X86_64
5418 	else {
5419 		param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5420 		ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5421 		outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5422 	}
5423 #endif
5424 
5425 	code = param & 0xffff;
5426 	fast = (param >> 16) & 0x1;
5427 	rep_cnt = (param >> 32) & 0xfff;
5428 	rep_idx = (param >> 48) & 0xfff;
5429 
5430 	trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5431 
5432 	switch (code) {
5433 	case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5434 		kvm_vcpu_on_spin(vcpu);
5435 		break;
5436 	default:
5437 		res = HV_STATUS_INVALID_HYPERCALL_CODE;
5438 		break;
5439 	}
5440 
5441 	ret = res | (((u64)rep_done & 0xfff) << 32);
5442 	if (longmode) {
5443 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5444 	} else {
5445 		kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5446 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5447 	}
5448 
5449 	return 1;
5450 }
5451 
5452 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5453 {
5454 	unsigned long nr, a0, a1, a2, a3, ret;
5455 	int r = 1;
5456 
5457 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
5458 		return kvm_hv_hypercall(vcpu);
5459 
5460 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5461 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5462 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5463 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5464 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5465 
5466 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
5467 
5468 	if (!is_long_mode(vcpu)) {
5469 		nr &= 0xFFFFFFFF;
5470 		a0 &= 0xFFFFFFFF;
5471 		a1 &= 0xFFFFFFFF;
5472 		a2 &= 0xFFFFFFFF;
5473 		a3 &= 0xFFFFFFFF;
5474 	}
5475 
5476 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5477 		ret = -KVM_EPERM;
5478 		goto out;
5479 	}
5480 
5481 	switch (nr) {
5482 	case KVM_HC_VAPIC_POLL_IRQ:
5483 		ret = 0;
5484 		break;
5485 	default:
5486 		ret = -KVM_ENOSYS;
5487 		break;
5488 	}
5489 out:
5490 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5491 	++vcpu->stat.hypercalls;
5492 	return r;
5493 }
5494 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5495 
5496 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5497 {
5498 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5499 	char instruction[3];
5500 	unsigned long rip = kvm_rip_read(vcpu);
5501 
5502 	/*
5503 	 * Blow out the MMU to ensure that no other VCPU has an active mapping
5504 	 * to ensure that the updated hypercall appears atomically across all
5505 	 * VCPUs.
5506 	 */
5507 	kvm_mmu_zap_all(vcpu->kvm);
5508 
5509 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
5510 
5511 	return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5512 }
5513 
5514 /*
5515  * Check if userspace requested an interrupt window, and that the
5516  * interrupt window is open.
5517  *
5518  * No need to exit to userspace if we already have an interrupt queued.
5519  */
5520 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5521 {
5522 	return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5523 		vcpu->run->request_interrupt_window &&
5524 		kvm_arch_interrupt_allowed(vcpu));
5525 }
5526 
5527 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5528 {
5529 	struct kvm_run *kvm_run = vcpu->run;
5530 
5531 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5532 	kvm_run->cr8 = kvm_get_cr8(vcpu);
5533 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
5534 	if (irqchip_in_kernel(vcpu->kvm))
5535 		kvm_run->ready_for_interrupt_injection = 1;
5536 	else
5537 		kvm_run->ready_for_interrupt_injection =
5538 			kvm_arch_interrupt_allowed(vcpu) &&
5539 			!kvm_cpu_has_interrupt(vcpu) &&
5540 			!kvm_event_needs_reinjection(vcpu);
5541 }
5542 
5543 static int vapic_enter(struct kvm_vcpu *vcpu)
5544 {
5545 	struct kvm_lapic *apic = vcpu->arch.apic;
5546 	struct page *page;
5547 
5548 	if (!apic || !apic->vapic_addr)
5549 		return 0;
5550 
5551 	page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5552 	if (is_error_page(page))
5553 		return -EFAULT;
5554 
5555 	vcpu->arch.apic->vapic_page = page;
5556 	return 0;
5557 }
5558 
5559 static void vapic_exit(struct kvm_vcpu *vcpu)
5560 {
5561 	struct kvm_lapic *apic = vcpu->arch.apic;
5562 	int idx;
5563 
5564 	if (!apic || !apic->vapic_addr)
5565 		return;
5566 
5567 	idx = srcu_read_lock(&vcpu->kvm->srcu);
5568 	kvm_release_page_dirty(apic->vapic_page);
5569 	mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5570 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
5571 }
5572 
5573 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5574 {
5575 	int max_irr, tpr;
5576 
5577 	if (!kvm_x86_ops->update_cr8_intercept)
5578 		return;
5579 
5580 	if (!vcpu->arch.apic)
5581 		return;
5582 
5583 	if (!vcpu->arch.apic->vapic_addr)
5584 		max_irr = kvm_lapic_find_highest_irr(vcpu);
5585 	else
5586 		max_irr = -1;
5587 
5588 	if (max_irr != -1)
5589 		max_irr >>= 4;
5590 
5591 	tpr = kvm_lapic_get_cr8(vcpu);
5592 
5593 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5594 }
5595 
5596 static void inject_pending_event(struct kvm_vcpu *vcpu)
5597 {
5598 	/* try to reinject previous events if any */
5599 	if (vcpu->arch.exception.pending) {
5600 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
5601 					vcpu->arch.exception.has_error_code,
5602 					vcpu->arch.exception.error_code);
5603 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5604 					  vcpu->arch.exception.has_error_code,
5605 					  vcpu->arch.exception.error_code,
5606 					  vcpu->arch.exception.reinject);
5607 		return;
5608 	}
5609 
5610 	if (vcpu->arch.nmi_injected) {
5611 		kvm_x86_ops->set_nmi(vcpu);
5612 		return;
5613 	}
5614 
5615 	if (vcpu->arch.interrupt.pending) {
5616 		kvm_x86_ops->set_irq(vcpu);
5617 		return;
5618 	}
5619 
5620 	/* try to inject new event if pending */
5621 	if (vcpu->arch.nmi_pending) {
5622 		if (kvm_x86_ops->nmi_allowed(vcpu)) {
5623 			--vcpu->arch.nmi_pending;
5624 			vcpu->arch.nmi_injected = true;
5625 			kvm_x86_ops->set_nmi(vcpu);
5626 		}
5627 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
5628 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5629 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5630 					    false);
5631 			kvm_x86_ops->set_irq(vcpu);
5632 		}
5633 	}
5634 }
5635 
5636 static void process_nmi(struct kvm_vcpu *vcpu)
5637 {
5638 	unsigned limit = 2;
5639 
5640 	/*
5641 	 * x86 is limited to one NMI running, and one NMI pending after it.
5642 	 * If an NMI is already in progress, limit further NMIs to just one.
5643 	 * Otherwise, allow two (and we'll inject the first one immediately).
5644 	 */
5645 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5646 		limit = 1;
5647 
5648 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5649 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5650 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5651 }
5652 
5653 static void kvm_gen_update_masterclock(struct kvm *kvm)
5654 {
5655 #ifdef CONFIG_X86_64
5656 	int i;
5657 	struct kvm_vcpu *vcpu;
5658 	struct kvm_arch *ka = &kvm->arch;
5659 
5660 	spin_lock(&ka->pvclock_gtod_sync_lock);
5661 	kvm_make_mclock_inprogress_request(kvm);
5662 	/* no guest entries from this point */
5663 	pvclock_update_vm_gtod_copy(kvm);
5664 
5665 	kvm_for_each_vcpu(i, vcpu, kvm)
5666 		set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
5667 
5668 	/* guest entries allowed */
5669 	kvm_for_each_vcpu(i, vcpu, kvm)
5670 		clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
5671 
5672 	spin_unlock(&ka->pvclock_gtod_sync_lock);
5673 #endif
5674 }
5675 
5676 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
5677 {
5678 	u64 eoi_exit_bitmap[4];
5679 	u32 tmr[8];
5680 
5681 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
5682 		return;
5683 
5684 	memset(eoi_exit_bitmap, 0, 32);
5685 	memset(tmr, 0, 32);
5686 
5687 	kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
5688 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
5689 	kvm_apic_update_tmr(vcpu, tmr);
5690 }
5691 
5692 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5693 {
5694 	int r;
5695 	bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5696 		vcpu->run->request_interrupt_window;
5697 	bool req_immediate_exit = false;
5698 
5699 	if (vcpu->requests) {
5700 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5701 			kvm_mmu_unload(vcpu);
5702 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5703 			__kvm_migrate_timers(vcpu);
5704 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
5705 			kvm_gen_update_masterclock(vcpu->kvm);
5706 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5707 			r = kvm_guest_time_update(vcpu);
5708 			if (unlikely(r))
5709 				goto out;
5710 		}
5711 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5712 			kvm_mmu_sync_roots(vcpu);
5713 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5714 			kvm_x86_ops->tlb_flush(vcpu);
5715 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5716 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5717 			r = 0;
5718 			goto out;
5719 		}
5720 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5721 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5722 			r = 0;
5723 			goto out;
5724 		}
5725 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5726 			vcpu->fpu_active = 0;
5727 			kvm_x86_ops->fpu_deactivate(vcpu);
5728 		}
5729 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5730 			/* Page is swapped out. Do synthetic halt */
5731 			vcpu->arch.apf.halted = true;
5732 			r = 1;
5733 			goto out;
5734 		}
5735 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5736 			record_steal_time(vcpu);
5737 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
5738 			process_nmi(vcpu);
5739 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
5740 			kvm_handle_pmu_event(vcpu);
5741 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
5742 			kvm_deliver_pmi(vcpu);
5743 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
5744 			vcpu_scan_ioapic(vcpu);
5745 	}
5746 
5747 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5748 		kvm_apic_accept_events(vcpu);
5749 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
5750 			r = 1;
5751 			goto out;
5752 		}
5753 
5754 		inject_pending_event(vcpu);
5755 
5756 		/* enable NMI/IRQ window open exits if needed */
5757 		if (vcpu->arch.nmi_pending)
5758 			req_immediate_exit =
5759 				kvm_x86_ops->enable_nmi_window(vcpu) != 0;
5760 		else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
5761 			req_immediate_exit =
5762 				kvm_x86_ops->enable_irq_window(vcpu) != 0;
5763 
5764 		if (kvm_lapic_enabled(vcpu)) {
5765 			/*
5766 			 * Update architecture specific hints for APIC
5767 			 * virtual interrupt delivery.
5768 			 */
5769 			if (kvm_x86_ops->hwapic_irr_update)
5770 				kvm_x86_ops->hwapic_irr_update(vcpu,
5771 					kvm_lapic_find_highest_irr(vcpu));
5772 			update_cr8_intercept(vcpu);
5773 			kvm_lapic_sync_to_vapic(vcpu);
5774 		}
5775 	}
5776 
5777 	r = kvm_mmu_reload(vcpu);
5778 	if (unlikely(r)) {
5779 		goto cancel_injection;
5780 	}
5781 
5782 	preempt_disable();
5783 
5784 	kvm_x86_ops->prepare_guest_switch(vcpu);
5785 	if (vcpu->fpu_active)
5786 		kvm_load_guest_fpu(vcpu);
5787 	kvm_load_guest_xcr0(vcpu);
5788 
5789 	vcpu->mode = IN_GUEST_MODE;
5790 
5791 	/* We should set ->mode before check ->requests,
5792 	 * see the comment in make_all_cpus_request.
5793 	 */
5794 	smp_mb();
5795 
5796 	local_irq_disable();
5797 
5798 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5799 	    || need_resched() || signal_pending(current)) {
5800 		vcpu->mode = OUTSIDE_GUEST_MODE;
5801 		smp_wmb();
5802 		local_irq_enable();
5803 		preempt_enable();
5804 		r = 1;
5805 		goto cancel_injection;
5806 	}
5807 
5808 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5809 
5810 	if (req_immediate_exit)
5811 		smp_send_reschedule(vcpu->cpu);
5812 
5813 	kvm_guest_enter();
5814 
5815 	if (unlikely(vcpu->arch.switch_db_regs)) {
5816 		set_debugreg(0, 7);
5817 		set_debugreg(vcpu->arch.eff_db[0], 0);
5818 		set_debugreg(vcpu->arch.eff_db[1], 1);
5819 		set_debugreg(vcpu->arch.eff_db[2], 2);
5820 		set_debugreg(vcpu->arch.eff_db[3], 3);
5821 	}
5822 
5823 	trace_kvm_entry(vcpu->vcpu_id);
5824 	kvm_x86_ops->run(vcpu);
5825 
5826 	/*
5827 	 * If the guest has used debug registers, at least dr7
5828 	 * will be disabled while returning to the host.
5829 	 * If we don't have active breakpoints in the host, we don't
5830 	 * care about the messed up debug address registers. But if
5831 	 * we have some of them active, restore the old state.
5832 	 */
5833 	if (hw_breakpoint_active())
5834 		hw_breakpoint_restore();
5835 
5836 	vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
5837 							   native_read_tsc());
5838 
5839 	vcpu->mode = OUTSIDE_GUEST_MODE;
5840 	smp_wmb();
5841 
5842 	/* Interrupt is enabled by handle_external_intr() */
5843 	kvm_x86_ops->handle_external_intr(vcpu);
5844 
5845 	++vcpu->stat.exits;
5846 
5847 	/*
5848 	 * We must have an instruction between local_irq_enable() and
5849 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5850 	 * the interrupt shadow.  The stat.exits increment will do nicely.
5851 	 * But we need to prevent reordering, hence this barrier():
5852 	 */
5853 	barrier();
5854 
5855 	kvm_guest_exit();
5856 
5857 	preempt_enable();
5858 
5859 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5860 
5861 	/*
5862 	 * Profile KVM exit RIPs:
5863 	 */
5864 	if (unlikely(prof_on == KVM_PROFILING)) {
5865 		unsigned long rip = kvm_rip_read(vcpu);
5866 		profile_hit(KVM_PROFILING, (void *)rip);
5867 	}
5868 
5869 	if (unlikely(vcpu->arch.tsc_always_catchup))
5870 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5871 
5872 	if (vcpu->arch.apic_attention)
5873 		kvm_lapic_sync_from_vapic(vcpu);
5874 
5875 	r = kvm_x86_ops->handle_exit(vcpu);
5876 	return r;
5877 
5878 cancel_injection:
5879 	kvm_x86_ops->cancel_injection(vcpu);
5880 	if (unlikely(vcpu->arch.apic_attention))
5881 		kvm_lapic_sync_from_vapic(vcpu);
5882 out:
5883 	return r;
5884 }
5885 
5886 
5887 static int __vcpu_run(struct kvm_vcpu *vcpu)
5888 {
5889 	int r;
5890 	struct kvm *kvm = vcpu->kvm;
5891 
5892 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5893 	r = vapic_enter(vcpu);
5894 	if (r) {
5895 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5896 		return r;
5897 	}
5898 
5899 	r = 1;
5900 	while (r > 0) {
5901 		if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5902 		    !vcpu->arch.apf.halted)
5903 			r = vcpu_enter_guest(vcpu);
5904 		else {
5905 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5906 			kvm_vcpu_block(vcpu);
5907 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5908 			if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
5909 				kvm_apic_accept_events(vcpu);
5910 				switch(vcpu->arch.mp_state) {
5911 				case KVM_MP_STATE_HALTED:
5912 					vcpu->arch.mp_state =
5913 						KVM_MP_STATE_RUNNABLE;
5914 				case KVM_MP_STATE_RUNNABLE:
5915 					vcpu->arch.apf.halted = false;
5916 					break;
5917 				case KVM_MP_STATE_INIT_RECEIVED:
5918 					break;
5919 				default:
5920 					r = -EINTR;
5921 					break;
5922 				}
5923 			}
5924 		}
5925 
5926 		if (r <= 0)
5927 			break;
5928 
5929 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5930 		if (kvm_cpu_has_pending_timer(vcpu))
5931 			kvm_inject_pending_timer_irqs(vcpu);
5932 
5933 		if (dm_request_for_irq_injection(vcpu)) {
5934 			r = -EINTR;
5935 			vcpu->run->exit_reason = KVM_EXIT_INTR;
5936 			++vcpu->stat.request_irq_exits;
5937 		}
5938 
5939 		kvm_check_async_pf_completion(vcpu);
5940 
5941 		if (signal_pending(current)) {
5942 			r = -EINTR;
5943 			vcpu->run->exit_reason = KVM_EXIT_INTR;
5944 			++vcpu->stat.signal_exits;
5945 		}
5946 		if (need_resched()) {
5947 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5948 			kvm_resched(vcpu);
5949 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5950 		}
5951 	}
5952 
5953 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5954 
5955 	vapic_exit(vcpu);
5956 
5957 	return r;
5958 }
5959 
5960 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
5961 {
5962 	int r;
5963 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5964 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5965 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5966 	if (r != EMULATE_DONE)
5967 		return 0;
5968 	return 1;
5969 }
5970 
5971 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
5972 {
5973 	BUG_ON(!vcpu->arch.pio.count);
5974 
5975 	return complete_emulated_io(vcpu);
5976 }
5977 
5978 /*
5979  * Implements the following, as a state machine:
5980  *
5981  * read:
5982  *   for each fragment
5983  *     for each mmio piece in the fragment
5984  *       write gpa, len
5985  *       exit
5986  *       copy data
5987  *   execute insn
5988  *
5989  * write:
5990  *   for each fragment
5991  *     for each mmio piece in the fragment
5992  *       write gpa, len
5993  *       copy data
5994  *       exit
5995  */
5996 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
5997 {
5998 	struct kvm_run *run = vcpu->run;
5999 	struct kvm_mmio_fragment *frag;
6000 	unsigned len;
6001 
6002 	BUG_ON(!vcpu->mmio_needed);
6003 
6004 	/* Complete previous fragment */
6005 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6006 	len = min(8u, frag->len);
6007 	if (!vcpu->mmio_is_write)
6008 		memcpy(frag->data, run->mmio.data, len);
6009 
6010 	if (frag->len <= 8) {
6011 		/* Switch to the next fragment. */
6012 		frag++;
6013 		vcpu->mmio_cur_fragment++;
6014 	} else {
6015 		/* Go forward to the next mmio piece. */
6016 		frag->data += len;
6017 		frag->gpa += len;
6018 		frag->len -= len;
6019 	}
6020 
6021 	if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
6022 		vcpu->mmio_needed = 0;
6023 		if (vcpu->mmio_is_write)
6024 			return 1;
6025 		vcpu->mmio_read_completed = 1;
6026 		return complete_emulated_io(vcpu);
6027 	}
6028 
6029 	run->exit_reason = KVM_EXIT_MMIO;
6030 	run->mmio.phys_addr = frag->gpa;
6031 	if (vcpu->mmio_is_write)
6032 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6033 	run->mmio.len = min(8u, frag->len);
6034 	run->mmio.is_write = vcpu->mmio_is_write;
6035 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6036 	return 0;
6037 }
6038 
6039 
6040 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6041 {
6042 	int r;
6043 	sigset_t sigsaved;
6044 
6045 	if (!tsk_used_math(current) && init_fpu(current))
6046 		return -ENOMEM;
6047 
6048 	if (vcpu->sigset_active)
6049 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6050 
6051 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6052 		kvm_vcpu_block(vcpu);
6053 		kvm_apic_accept_events(vcpu);
6054 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6055 		r = -EAGAIN;
6056 		goto out;
6057 	}
6058 
6059 	/* re-sync apic's tpr */
6060 	if (!irqchip_in_kernel(vcpu->kvm)) {
6061 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6062 			r = -EINVAL;
6063 			goto out;
6064 		}
6065 	}
6066 
6067 	if (unlikely(vcpu->arch.complete_userspace_io)) {
6068 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6069 		vcpu->arch.complete_userspace_io = NULL;
6070 		r = cui(vcpu);
6071 		if (r <= 0)
6072 			goto out;
6073 	} else
6074 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6075 
6076 	r = __vcpu_run(vcpu);
6077 
6078 out:
6079 	post_kvm_run_save(vcpu);
6080 	if (vcpu->sigset_active)
6081 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6082 
6083 	return r;
6084 }
6085 
6086 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6087 {
6088 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6089 		/*
6090 		 * We are here if userspace calls get_regs() in the middle of
6091 		 * instruction emulation. Registers state needs to be copied
6092 		 * back from emulation context to vcpu. Userspace shouldn't do
6093 		 * that usually, but some bad designed PV devices (vmware
6094 		 * backdoor interface) need this to work
6095 		 */
6096 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6097 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6098 	}
6099 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6100 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6101 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6102 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6103 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6104 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6105 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6106 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6107 #ifdef CONFIG_X86_64
6108 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6109 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6110 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6111 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6112 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6113 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6114 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6115 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6116 #endif
6117 
6118 	regs->rip = kvm_rip_read(vcpu);
6119 	regs->rflags = kvm_get_rflags(vcpu);
6120 
6121 	return 0;
6122 }
6123 
6124 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6125 {
6126 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6127 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6128 
6129 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6130 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6131 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6132 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6133 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6134 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6135 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6136 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6137 #ifdef CONFIG_X86_64
6138 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6139 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6140 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6141 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6142 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6143 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6144 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6145 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6146 #endif
6147 
6148 	kvm_rip_write(vcpu, regs->rip);
6149 	kvm_set_rflags(vcpu, regs->rflags);
6150 
6151 	vcpu->arch.exception.pending = false;
6152 
6153 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6154 
6155 	return 0;
6156 }
6157 
6158 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6159 {
6160 	struct kvm_segment cs;
6161 
6162 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6163 	*db = cs.db;
6164 	*l = cs.l;
6165 }
6166 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6167 
6168 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6169 				  struct kvm_sregs *sregs)
6170 {
6171 	struct desc_ptr dt;
6172 
6173 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6174 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6175 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6176 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6177 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6178 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6179 
6180 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6181 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6182 
6183 	kvm_x86_ops->get_idt(vcpu, &dt);
6184 	sregs->idt.limit = dt.size;
6185 	sregs->idt.base = dt.address;
6186 	kvm_x86_ops->get_gdt(vcpu, &dt);
6187 	sregs->gdt.limit = dt.size;
6188 	sregs->gdt.base = dt.address;
6189 
6190 	sregs->cr0 = kvm_read_cr0(vcpu);
6191 	sregs->cr2 = vcpu->arch.cr2;
6192 	sregs->cr3 = kvm_read_cr3(vcpu);
6193 	sregs->cr4 = kvm_read_cr4(vcpu);
6194 	sregs->cr8 = kvm_get_cr8(vcpu);
6195 	sregs->efer = vcpu->arch.efer;
6196 	sregs->apic_base = kvm_get_apic_base(vcpu);
6197 
6198 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6199 
6200 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6201 		set_bit(vcpu->arch.interrupt.nr,
6202 			(unsigned long *)sregs->interrupt_bitmap);
6203 
6204 	return 0;
6205 }
6206 
6207 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6208 				    struct kvm_mp_state *mp_state)
6209 {
6210 	kvm_apic_accept_events(vcpu);
6211 	mp_state->mp_state = vcpu->arch.mp_state;
6212 	return 0;
6213 }
6214 
6215 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6216 				    struct kvm_mp_state *mp_state)
6217 {
6218 	if (!kvm_vcpu_has_lapic(vcpu) &&
6219 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6220 		return -EINVAL;
6221 
6222 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6223 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6224 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6225 	} else
6226 		vcpu->arch.mp_state = mp_state->mp_state;
6227 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6228 	return 0;
6229 }
6230 
6231 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6232 		    int reason, bool has_error_code, u32 error_code)
6233 {
6234 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6235 	int ret;
6236 
6237 	init_emulate_ctxt(vcpu);
6238 
6239 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6240 				   has_error_code, error_code);
6241 
6242 	if (ret)
6243 		return EMULATE_FAIL;
6244 
6245 	kvm_rip_write(vcpu, ctxt->eip);
6246 	kvm_set_rflags(vcpu, ctxt->eflags);
6247 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6248 	return EMULATE_DONE;
6249 }
6250 EXPORT_SYMBOL_GPL(kvm_task_switch);
6251 
6252 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6253 				  struct kvm_sregs *sregs)
6254 {
6255 	int mmu_reset_needed = 0;
6256 	int pending_vec, max_bits, idx;
6257 	struct desc_ptr dt;
6258 
6259 	if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6260 		return -EINVAL;
6261 
6262 	dt.size = sregs->idt.limit;
6263 	dt.address = sregs->idt.base;
6264 	kvm_x86_ops->set_idt(vcpu, &dt);
6265 	dt.size = sregs->gdt.limit;
6266 	dt.address = sregs->gdt.base;
6267 	kvm_x86_ops->set_gdt(vcpu, &dt);
6268 
6269 	vcpu->arch.cr2 = sregs->cr2;
6270 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6271 	vcpu->arch.cr3 = sregs->cr3;
6272 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6273 
6274 	kvm_set_cr8(vcpu, sregs->cr8);
6275 
6276 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6277 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
6278 	kvm_set_apic_base(vcpu, sregs->apic_base);
6279 
6280 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6281 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6282 	vcpu->arch.cr0 = sregs->cr0;
6283 
6284 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6285 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6286 	if (sregs->cr4 & X86_CR4_OSXSAVE)
6287 		kvm_update_cpuid(vcpu);
6288 
6289 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6290 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6291 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6292 		mmu_reset_needed = 1;
6293 	}
6294 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6295 
6296 	if (mmu_reset_needed)
6297 		kvm_mmu_reset_context(vcpu);
6298 
6299 	max_bits = KVM_NR_INTERRUPTS;
6300 	pending_vec = find_first_bit(
6301 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
6302 	if (pending_vec < max_bits) {
6303 		kvm_queue_interrupt(vcpu, pending_vec, false);
6304 		pr_debug("Set back pending irq %d\n", pending_vec);
6305 	}
6306 
6307 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6308 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6309 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6310 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6311 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6312 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6313 
6314 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6315 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6316 
6317 	update_cr8_intercept(vcpu);
6318 
6319 	/* Older userspace won't unhalt the vcpu on reset. */
6320 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6321 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6322 	    !is_protmode(vcpu))
6323 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6324 
6325 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6326 
6327 	return 0;
6328 }
6329 
6330 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6331 					struct kvm_guest_debug *dbg)
6332 {
6333 	unsigned long rflags;
6334 	int i, r;
6335 
6336 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6337 		r = -EBUSY;
6338 		if (vcpu->arch.exception.pending)
6339 			goto out;
6340 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6341 			kvm_queue_exception(vcpu, DB_VECTOR);
6342 		else
6343 			kvm_queue_exception(vcpu, BP_VECTOR);
6344 	}
6345 
6346 	/*
6347 	 * Read rflags as long as potentially injected trace flags are still
6348 	 * filtered out.
6349 	 */
6350 	rflags = kvm_get_rflags(vcpu);
6351 
6352 	vcpu->guest_debug = dbg->control;
6353 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6354 		vcpu->guest_debug = 0;
6355 
6356 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6357 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
6358 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6359 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6360 	} else {
6361 		for (i = 0; i < KVM_NR_DB_REGS; i++)
6362 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6363 	}
6364 	kvm_update_dr7(vcpu);
6365 
6366 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6367 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6368 			get_segment_base(vcpu, VCPU_SREG_CS);
6369 
6370 	/*
6371 	 * Trigger an rflags update that will inject or remove the trace
6372 	 * flags.
6373 	 */
6374 	kvm_set_rflags(vcpu, rflags);
6375 
6376 	kvm_x86_ops->update_db_bp_intercept(vcpu);
6377 
6378 	r = 0;
6379 
6380 out:
6381 
6382 	return r;
6383 }
6384 
6385 /*
6386  * Translate a guest virtual address to a guest physical address.
6387  */
6388 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6389 				    struct kvm_translation *tr)
6390 {
6391 	unsigned long vaddr = tr->linear_address;
6392 	gpa_t gpa;
6393 	int idx;
6394 
6395 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6396 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6397 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6398 	tr->physical_address = gpa;
6399 	tr->valid = gpa != UNMAPPED_GVA;
6400 	tr->writeable = 1;
6401 	tr->usermode = 0;
6402 
6403 	return 0;
6404 }
6405 
6406 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6407 {
6408 	struct i387_fxsave_struct *fxsave =
6409 			&vcpu->arch.guest_fpu.state->fxsave;
6410 
6411 	memcpy(fpu->fpr, fxsave->st_space, 128);
6412 	fpu->fcw = fxsave->cwd;
6413 	fpu->fsw = fxsave->swd;
6414 	fpu->ftwx = fxsave->twd;
6415 	fpu->last_opcode = fxsave->fop;
6416 	fpu->last_ip = fxsave->rip;
6417 	fpu->last_dp = fxsave->rdp;
6418 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6419 
6420 	return 0;
6421 }
6422 
6423 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6424 {
6425 	struct i387_fxsave_struct *fxsave =
6426 			&vcpu->arch.guest_fpu.state->fxsave;
6427 
6428 	memcpy(fxsave->st_space, fpu->fpr, 128);
6429 	fxsave->cwd = fpu->fcw;
6430 	fxsave->swd = fpu->fsw;
6431 	fxsave->twd = fpu->ftwx;
6432 	fxsave->fop = fpu->last_opcode;
6433 	fxsave->rip = fpu->last_ip;
6434 	fxsave->rdp = fpu->last_dp;
6435 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6436 
6437 	return 0;
6438 }
6439 
6440 int fx_init(struct kvm_vcpu *vcpu)
6441 {
6442 	int err;
6443 
6444 	err = fpu_alloc(&vcpu->arch.guest_fpu);
6445 	if (err)
6446 		return err;
6447 
6448 	fpu_finit(&vcpu->arch.guest_fpu);
6449 
6450 	/*
6451 	 * Ensure guest xcr0 is valid for loading
6452 	 */
6453 	vcpu->arch.xcr0 = XSTATE_FP;
6454 
6455 	vcpu->arch.cr0 |= X86_CR0_ET;
6456 
6457 	return 0;
6458 }
6459 EXPORT_SYMBOL_GPL(fx_init);
6460 
6461 static void fx_free(struct kvm_vcpu *vcpu)
6462 {
6463 	fpu_free(&vcpu->arch.guest_fpu);
6464 }
6465 
6466 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6467 {
6468 	if (vcpu->guest_fpu_loaded)
6469 		return;
6470 
6471 	/*
6472 	 * Restore all possible states in the guest,
6473 	 * and assume host would use all available bits.
6474 	 * Guest xcr0 would be loaded later.
6475 	 */
6476 	kvm_put_guest_xcr0(vcpu);
6477 	vcpu->guest_fpu_loaded = 1;
6478 	__kernel_fpu_begin();
6479 	fpu_restore_checking(&vcpu->arch.guest_fpu);
6480 	trace_kvm_fpu(1);
6481 }
6482 
6483 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6484 {
6485 	kvm_put_guest_xcr0(vcpu);
6486 
6487 	if (!vcpu->guest_fpu_loaded)
6488 		return;
6489 
6490 	vcpu->guest_fpu_loaded = 0;
6491 	fpu_save_init(&vcpu->arch.guest_fpu);
6492 	__kernel_fpu_end();
6493 	++vcpu->stat.fpu_reload;
6494 	kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6495 	trace_kvm_fpu(0);
6496 }
6497 
6498 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6499 {
6500 	kvmclock_reset(vcpu);
6501 
6502 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6503 	fx_free(vcpu);
6504 	kvm_x86_ops->vcpu_free(vcpu);
6505 }
6506 
6507 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6508 						unsigned int id)
6509 {
6510 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6511 		printk_once(KERN_WARNING
6512 		"kvm: SMP vm created on host with unstable TSC; "
6513 		"guest TSC will not be reliable\n");
6514 	return kvm_x86_ops->vcpu_create(kvm, id);
6515 }
6516 
6517 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6518 {
6519 	int r;
6520 
6521 	vcpu->arch.mtrr_state.have_fixed = 1;
6522 	r = vcpu_load(vcpu);
6523 	if (r)
6524 		return r;
6525 	kvm_vcpu_reset(vcpu);
6526 	r = kvm_mmu_setup(vcpu);
6527 	vcpu_put(vcpu);
6528 
6529 	return r;
6530 }
6531 
6532 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6533 {
6534 	int r;
6535 	struct msr_data msr;
6536 
6537 	r = vcpu_load(vcpu);
6538 	if (r)
6539 		return r;
6540 	msr.data = 0x0;
6541 	msr.index = MSR_IA32_TSC;
6542 	msr.host_initiated = true;
6543 	kvm_write_tsc(vcpu, &msr);
6544 	vcpu_put(vcpu);
6545 
6546 	return r;
6547 }
6548 
6549 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6550 {
6551 	int r;
6552 	vcpu->arch.apf.msr_val = 0;
6553 
6554 	r = vcpu_load(vcpu);
6555 	BUG_ON(r);
6556 	kvm_mmu_unload(vcpu);
6557 	vcpu_put(vcpu);
6558 
6559 	fx_free(vcpu);
6560 	kvm_x86_ops->vcpu_free(vcpu);
6561 }
6562 
6563 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6564 {
6565 	atomic_set(&vcpu->arch.nmi_queued, 0);
6566 	vcpu->arch.nmi_pending = 0;
6567 	vcpu->arch.nmi_injected = false;
6568 
6569 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6570 	vcpu->arch.dr6 = DR6_FIXED_1;
6571 	vcpu->arch.dr7 = DR7_FIXED_1;
6572 	kvm_update_dr7(vcpu);
6573 
6574 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6575 	vcpu->arch.apf.msr_val = 0;
6576 	vcpu->arch.st.msr_val = 0;
6577 
6578 	kvmclock_reset(vcpu);
6579 
6580 	kvm_clear_async_pf_completion_queue(vcpu);
6581 	kvm_async_pf_hash_reset(vcpu);
6582 	vcpu->arch.apf.halted = false;
6583 
6584 	kvm_pmu_reset(vcpu);
6585 
6586 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
6587 	vcpu->arch.regs_avail = ~0;
6588 	vcpu->arch.regs_dirty = ~0;
6589 
6590 	kvm_x86_ops->vcpu_reset(vcpu);
6591 }
6592 
6593 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector)
6594 {
6595 	struct kvm_segment cs;
6596 
6597 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6598 	cs.selector = vector << 8;
6599 	cs.base = vector << 12;
6600 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6601 	kvm_rip_write(vcpu, 0);
6602 }
6603 
6604 int kvm_arch_hardware_enable(void *garbage)
6605 {
6606 	struct kvm *kvm;
6607 	struct kvm_vcpu *vcpu;
6608 	int i;
6609 	int ret;
6610 	u64 local_tsc;
6611 	u64 max_tsc = 0;
6612 	bool stable, backwards_tsc = false;
6613 
6614 	kvm_shared_msr_cpu_online();
6615 	ret = kvm_x86_ops->hardware_enable(garbage);
6616 	if (ret != 0)
6617 		return ret;
6618 
6619 	local_tsc = native_read_tsc();
6620 	stable = !check_tsc_unstable();
6621 	list_for_each_entry(kvm, &vm_list, vm_list) {
6622 		kvm_for_each_vcpu(i, vcpu, kvm) {
6623 			if (!stable && vcpu->cpu == smp_processor_id())
6624 				set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6625 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6626 				backwards_tsc = true;
6627 				if (vcpu->arch.last_host_tsc > max_tsc)
6628 					max_tsc = vcpu->arch.last_host_tsc;
6629 			}
6630 		}
6631 	}
6632 
6633 	/*
6634 	 * Sometimes, even reliable TSCs go backwards.  This happens on
6635 	 * platforms that reset TSC during suspend or hibernate actions, but
6636 	 * maintain synchronization.  We must compensate.  Fortunately, we can
6637 	 * detect that condition here, which happens early in CPU bringup,
6638 	 * before any KVM threads can be running.  Unfortunately, we can't
6639 	 * bring the TSCs fully up to date with real time, as we aren't yet far
6640 	 * enough into CPU bringup that we know how much real time has actually
6641 	 * elapsed; our helper function, get_kernel_ns() will be using boot
6642 	 * variables that haven't been updated yet.
6643 	 *
6644 	 * So we simply find the maximum observed TSC above, then record the
6645 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
6646 	 * the adjustment will be applied.  Note that we accumulate
6647 	 * adjustments, in case multiple suspend cycles happen before some VCPU
6648 	 * gets a chance to run again.  In the event that no KVM threads get a
6649 	 * chance to run, we will miss the entire elapsed period, as we'll have
6650 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6651 	 * loose cycle time.  This isn't too big a deal, since the loss will be
6652 	 * uniform across all VCPUs (not to mention the scenario is extremely
6653 	 * unlikely). It is possible that a second hibernate recovery happens
6654 	 * much faster than a first, causing the observed TSC here to be
6655 	 * smaller; this would require additional padding adjustment, which is
6656 	 * why we set last_host_tsc to the local tsc observed here.
6657 	 *
6658 	 * N.B. - this code below runs only on platforms with reliable TSC,
6659 	 * as that is the only way backwards_tsc is set above.  Also note
6660 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6661 	 * have the same delta_cyc adjustment applied if backwards_tsc
6662 	 * is detected.  Note further, this adjustment is only done once,
6663 	 * as we reset last_host_tsc on all VCPUs to stop this from being
6664 	 * called multiple times (one for each physical CPU bringup).
6665 	 *
6666 	 * Platforms with unreliable TSCs don't have to deal with this, they
6667 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
6668 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
6669 	 * guarantee that they stay in perfect synchronization.
6670 	 */
6671 	if (backwards_tsc) {
6672 		u64 delta_cyc = max_tsc - local_tsc;
6673 		list_for_each_entry(kvm, &vm_list, vm_list) {
6674 			kvm_for_each_vcpu(i, vcpu, kvm) {
6675 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
6676 				vcpu->arch.last_host_tsc = local_tsc;
6677 				set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
6678 					&vcpu->requests);
6679 			}
6680 
6681 			/*
6682 			 * We have to disable TSC offset matching.. if you were
6683 			 * booting a VM while issuing an S4 host suspend....
6684 			 * you may have some problem.  Solving this issue is
6685 			 * left as an exercise to the reader.
6686 			 */
6687 			kvm->arch.last_tsc_nsec = 0;
6688 			kvm->arch.last_tsc_write = 0;
6689 		}
6690 
6691 	}
6692 	return 0;
6693 }
6694 
6695 void kvm_arch_hardware_disable(void *garbage)
6696 {
6697 	kvm_x86_ops->hardware_disable(garbage);
6698 	drop_user_return_notifiers(garbage);
6699 }
6700 
6701 int kvm_arch_hardware_setup(void)
6702 {
6703 	return kvm_x86_ops->hardware_setup();
6704 }
6705 
6706 void kvm_arch_hardware_unsetup(void)
6707 {
6708 	kvm_x86_ops->hardware_unsetup();
6709 }
6710 
6711 void kvm_arch_check_processor_compat(void *rtn)
6712 {
6713 	kvm_x86_ops->check_processor_compatibility(rtn);
6714 }
6715 
6716 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6717 {
6718 	return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6719 }
6720 
6721 struct static_key kvm_no_apic_vcpu __read_mostly;
6722 
6723 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6724 {
6725 	struct page *page;
6726 	struct kvm *kvm;
6727 	int r;
6728 
6729 	BUG_ON(vcpu->kvm == NULL);
6730 	kvm = vcpu->kvm;
6731 
6732 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6733 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6734 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6735 	else
6736 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6737 
6738 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6739 	if (!page) {
6740 		r = -ENOMEM;
6741 		goto fail;
6742 	}
6743 	vcpu->arch.pio_data = page_address(page);
6744 
6745 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
6746 
6747 	r = kvm_mmu_create(vcpu);
6748 	if (r < 0)
6749 		goto fail_free_pio_data;
6750 
6751 	if (irqchip_in_kernel(kvm)) {
6752 		r = kvm_create_lapic(vcpu);
6753 		if (r < 0)
6754 			goto fail_mmu_destroy;
6755 	} else
6756 		static_key_slow_inc(&kvm_no_apic_vcpu);
6757 
6758 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6759 				       GFP_KERNEL);
6760 	if (!vcpu->arch.mce_banks) {
6761 		r = -ENOMEM;
6762 		goto fail_free_lapic;
6763 	}
6764 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6765 
6766 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
6767 		r = -ENOMEM;
6768 		goto fail_free_mce_banks;
6769 	}
6770 
6771 	r = fx_init(vcpu);
6772 	if (r)
6773 		goto fail_free_wbinvd_dirty_mask;
6774 
6775 	vcpu->arch.ia32_tsc_adjust_msr = 0x0;
6776 	vcpu->arch.pv_time_enabled = false;
6777 	kvm_async_pf_hash_reset(vcpu);
6778 	kvm_pmu_init(vcpu);
6779 
6780 	return 0;
6781 fail_free_wbinvd_dirty_mask:
6782 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6783 fail_free_mce_banks:
6784 	kfree(vcpu->arch.mce_banks);
6785 fail_free_lapic:
6786 	kvm_free_lapic(vcpu);
6787 fail_mmu_destroy:
6788 	kvm_mmu_destroy(vcpu);
6789 fail_free_pio_data:
6790 	free_page((unsigned long)vcpu->arch.pio_data);
6791 fail:
6792 	return r;
6793 }
6794 
6795 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6796 {
6797 	int idx;
6798 
6799 	kvm_pmu_destroy(vcpu);
6800 	kfree(vcpu->arch.mce_banks);
6801 	kvm_free_lapic(vcpu);
6802 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6803 	kvm_mmu_destroy(vcpu);
6804 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6805 	free_page((unsigned long)vcpu->arch.pio_data);
6806 	if (!irqchip_in_kernel(vcpu->kvm))
6807 		static_key_slow_dec(&kvm_no_apic_vcpu);
6808 }
6809 
6810 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6811 {
6812 	if (type)
6813 		return -EINVAL;
6814 
6815 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6816 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6817 
6818 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6819 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6820 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
6821 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
6822 		&kvm->arch.irq_sources_bitmap);
6823 
6824 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6825 	mutex_init(&kvm->arch.apic_map_lock);
6826 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
6827 
6828 	pvclock_update_vm_gtod_copy(kvm);
6829 
6830 	return 0;
6831 }
6832 
6833 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6834 {
6835 	int r;
6836 	r = vcpu_load(vcpu);
6837 	BUG_ON(r);
6838 	kvm_mmu_unload(vcpu);
6839 	vcpu_put(vcpu);
6840 }
6841 
6842 static void kvm_free_vcpus(struct kvm *kvm)
6843 {
6844 	unsigned int i;
6845 	struct kvm_vcpu *vcpu;
6846 
6847 	/*
6848 	 * Unpin any mmu pages first.
6849 	 */
6850 	kvm_for_each_vcpu(i, vcpu, kvm) {
6851 		kvm_clear_async_pf_completion_queue(vcpu);
6852 		kvm_unload_vcpu_mmu(vcpu);
6853 	}
6854 	kvm_for_each_vcpu(i, vcpu, kvm)
6855 		kvm_arch_vcpu_free(vcpu);
6856 
6857 	mutex_lock(&kvm->lock);
6858 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6859 		kvm->vcpus[i] = NULL;
6860 
6861 	atomic_set(&kvm->online_vcpus, 0);
6862 	mutex_unlock(&kvm->lock);
6863 }
6864 
6865 void kvm_arch_sync_events(struct kvm *kvm)
6866 {
6867 	kvm_free_all_assigned_devices(kvm);
6868 	kvm_free_pit(kvm);
6869 }
6870 
6871 void kvm_arch_destroy_vm(struct kvm *kvm)
6872 {
6873 	if (current->mm == kvm->mm) {
6874 		/*
6875 		 * Free memory regions allocated on behalf of userspace,
6876 		 * unless the the memory map has changed due to process exit
6877 		 * or fd copying.
6878 		 */
6879 		struct kvm_userspace_memory_region mem;
6880 		memset(&mem, 0, sizeof(mem));
6881 		mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
6882 		kvm_set_memory_region(kvm, &mem);
6883 
6884 		mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
6885 		kvm_set_memory_region(kvm, &mem);
6886 
6887 		mem.slot = TSS_PRIVATE_MEMSLOT;
6888 		kvm_set_memory_region(kvm, &mem);
6889 	}
6890 	kvm_iommu_unmap_guest(kvm);
6891 	kfree(kvm->arch.vpic);
6892 	kfree(kvm->arch.vioapic);
6893 	kvm_free_vcpus(kvm);
6894 	if (kvm->arch.apic_access_page)
6895 		put_page(kvm->arch.apic_access_page);
6896 	if (kvm->arch.ept_identity_pagetable)
6897 		put_page(kvm->arch.ept_identity_pagetable);
6898 	kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
6899 }
6900 
6901 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
6902 			   struct kvm_memory_slot *dont)
6903 {
6904 	int i;
6905 
6906 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6907 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
6908 			kvm_kvfree(free->arch.rmap[i]);
6909 			free->arch.rmap[i] = NULL;
6910 		}
6911 		if (i == 0)
6912 			continue;
6913 
6914 		if (!dont || free->arch.lpage_info[i - 1] !=
6915 			     dont->arch.lpage_info[i - 1]) {
6916 			kvm_kvfree(free->arch.lpage_info[i - 1]);
6917 			free->arch.lpage_info[i - 1] = NULL;
6918 		}
6919 	}
6920 }
6921 
6922 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
6923 {
6924 	int i;
6925 
6926 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6927 		unsigned long ugfn;
6928 		int lpages;
6929 		int level = i + 1;
6930 
6931 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
6932 				      slot->base_gfn, level) + 1;
6933 
6934 		slot->arch.rmap[i] =
6935 			kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
6936 		if (!slot->arch.rmap[i])
6937 			goto out_free;
6938 		if (i == 0)
6939 			continue;
6940 
6941 		slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
6942 					sizeof(*slot->arch.lpage_info[i - 1]));
6943 		if (!slot->arch.lpage_info[i - 1])
6944 			goto out_free;
6945 
6946 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
6947 			slot->arch.lpage_info[i - 1][0].write_count = 1;
6948 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
6949 			slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
6950 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
6951 		/*
6952 		 * If the gfn and userspace address are not aligned wrt each
6953 		 * other, or if explicitly asked to, disable large page
6954 		 * support for this slot
6955 		 */
6956 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
6957 		    !kvm_largepages_enabled()) {
6958 			unsigned long j;
6959 
6960 			for (j = 0; j < lpages; ++j)
6961 				slot->arch.lpage_info[i - 1][j].write_count = 1;
6962 		}
6963 	}
6964 
6965 	return 0;
6966 
6967 out_free:
6968 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6969 		kvm_kvfree(slot->arch.rmap[i]);
6970 		slot->arch.rmap[i] = NULL;
6971 		if (i == 0)
6972 			continue;
6973 
6974 		kvm_kvfree(slot->arch.lpage_info[i - 1]);
6975 		slot->arch.lpage_info[i - 1] = NULL;
6976 	}
6977 	return -ENOMEM;
6978 }
6979 
6980 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6981 				struct kvm_memory_slot *memslot,
6982 				struct kvm_userspace_memory_region *mem,
6983 				enum kvm_mr_change change)
6984 {
6985 	/*
6986 	 * Only private memory slots need to be mapped here since
6987 	 * KVM_SET_MEMORY_REGION ioctl is no longer supported.
6988 	 */
6989 	if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
6990 		unsigned long userspace_addr;
6991 
6992 		/*
6993 		 * MAP_SHARED to prevent internal slot pages from being moved
6994 		 * by fork()/COW.
6995 		 */
6996 		userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
6997 					 PROT_READ | PROT_WRITE,
6998 					 MAP_SHARED | MAP_ANONYMOUS, 0);
6999 
7000 		if (IS_ERR((void *)userspace_addr))
7001 			return PTR_ERR((void *)userspace_addr);
7002 
7003 		memslot->userspace_addr = userspace_addr;
7004 	}
7005 
7006 	return 0;
7007 }
7008 
7009 void kvm_arch_commit_memory_region(struct kvm *kvm,
7010 				struct kvm_userspace_memory_region *mem,
7011 				const struct kvm_memory_slot *old,
7012 				enum kvm_mr_change change)
7013 {
7014 
7015 	int nr_mmu_pages = 0;
7016 
7017 	if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7018 		int ret;
7019 
7020 		ret = vm_munmap(old->userspace_addr,
7021 				old->npages * PAGE_SIZE);
7022 		if (ret < 0)
7023 			printk(KERN_WARNING
7024 			       "kvm_vm_ioctl_set_memory_region: "
7025 			       "failed to munmap memory\n");
7026 	}
7027 
7028 	if (!kvm->arch.n_requested_mmu_pages)
7029 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7030 
7031 	if (nr_mmu_pages)
7032 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7033 	/*
7034 	 * Write protect all pages for dirty logging.
7035 	 * Existing largepage mappings are destroyed here and new ones will
7036 	 * not be created until the end of the logging.
7037 	 */
7038 	if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
7039 		kvm_mmu_slot_remove_write_access(kvm, mem->slot);
7040 	/*
7041 	 * If memory slot is created, or moved, we need to clear all
7042 	 * mmio sptes.
7043 	 */
7044 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
7045 		kvm_mmu_zap_mmio_sptes(kvm);
7046 		kvm_reload_remote_mmus(kvm);
7047 	}
7048 }
7049 
7050 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7051 {
7052 	kvm_mmu_zap_all(kvm);
7053 	kvm_reload_remote_mmus(kvm);
7054 }
7055 
7056 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7057 				   struct kvm_memory_slot *slot)
7058 {
7059 	kvm_arch_flush_shadow_all(kvm);
7060 }
7061 
7062 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7063 {
7064 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7065 		!vcpu->arch.apf.halted)
7066 		|| !list_empty_careful(&vcpu->async_pf.done)
7067 		|| kvm_apic_has_events(vcpu)
7068 		|| atomic_read(&vcpu->arch.nmi_queued) ||
7069 		(kvm_arch_interrupt_allowed(vcpu) &&
7070 		 kvm_cpu_has_interrupt(vcpu));
7071 }
7072 
7073 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7074 {
7075 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7076 }
7077 
7078 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7079 {
7080 	return kvm_x86_ops->interrupt_allowed(vcpu);
7081 }
7082 
7083 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7084 {
7085 	unsigned long current_rip = kvm_rip_read(vcpu) +
7086 		get_segment_base(vcpu, VCPU_SREG_CS);
7087 
7088 	return current_rip == linear_rip;
7089 }
7090 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7091 
7092 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7093 {
7094 	unsigned long rflags;
7095 
7096 	rflags = kvm_x86_ops->get_rflags(vcpu);
7097 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7098 		rflags &= ~X86_EFLAGS_TF;
7099 	return rflags;
7100 }
7101 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7102 
7103 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7104 {
7105 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7106 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7107 		rflags |= X86_EFLAGS_TF;
7108 	kvm_x86_ops->set_rflags(vcpu, rflags);
7109 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7110 }
7111 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7112 
7113 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7114 {
7115 	int r;
7116 
7117 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7118 	      is_error_page(work->page))
7119 		return;
7120 
7121 	r = kvm_mmu_reload(vcpu);
7122 	if (unlikely(r))
7123 		return;
7124 
7125 	if (!vcpu->arch.mmu.direct_map &&
7126 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7127 		return;
7128 
7129 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7130 }
7131 
7132 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7133 {
7134 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7135 }
7136 
7137 static inline u32 kvm_async_pf_next_probe(u32 key)
7138 {
7139 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7140 }
7141 
7142 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7143 {
7144 	u32 key = kvm_async_pf_hash_fn(gfn);
7145 
7146 	while (vcpu->arch.apf.gfns[key] != ~0)
7147 		key = kvm_async_pf_next_probe(key);
7148 
7149 	vcpu->arch.apf.gfns[key] = gfn;
7150 }
7151 
7152 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7153 {
7154 	int i;
7155 	u32 key = kvm_async_pf_hash_fn(gfn);
7156 
7157 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7158 		     (vcpu->arch.apf.gfns[key] != gfn &&
7159 		      vcpu->arch.apf.gfns[key] != ~0); i++)
7160 		key = kvm_async_pf_next_probe(key);
7161 
7162 	return key;
7163 }
7164 
7165 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7166 {
7167 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7168 }
7169 
7170 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7171 {
7172 	u32 i, j, k;
7173 
7174 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7175 	while (true) {
7176 		vcpu->arch.apf.gfns[i] = ~0;
7177 		do {
7178 			j = kvm_async_pf_next_probe(j);
7179 			if (vcpu->arch.apf.gfns[j] == ~0)
7180 				return;
7181 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7182 			/*
7183 			 * k lies cyclically in ]i,j]
7184 			 * |    i.k.j |
7185 			 * |....j i.k.| or  |.k..j i...|
7186 			 */
7187 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7188 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7189 		i = j;
7190 	}
7191 }
7192 
7193 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7194 {
7195 
7196 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7197 				      sizeof(val));
7198 }
7199 
7200 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7201 				     struct kvm_async_pf *work)
7202 {
7203 	struct x86_exception fault;
7204 
7205 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7206 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7207 
7208 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7209 	    (vcpu->arch.apf.send_user_only &&
7210 	     kvm_x86_ops->get_cpl(vcpu) == 0))
7211 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7212 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7213 		fault.vector = PF_VECTOR;
7214 		fault.error_code_valid = true;
7215 		fault.error_code = 0;
7216 		fault.nested_page_fault = false;
7217 		fault.address = work->arch.token;
7218 		kvm_inject_page_fault(vcpu, &fault);
7219 	}
7220 }
7221 
7222 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7223 				 struct kvm_async_pf *work)
7224 {
7225 	struct x86_exception fault;
7226 
7227 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
7228 	if (is_error_page(work->page))
7229 		work->arch.token = ~0; /* broadcast wakeup */
7230 	else
7231 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7232 
7233 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7234 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7235 		fault.vector = PF_VECTOR;
7236 		fault.error_code_valid = true;
7237 		fault.error_code = 0;
7238 		fault.nested_page_fault = false;
7239 		fault.address = work->arch.token;
7240 		kvm_inject_page_fault(vcpu, &fault);
7241 	}
7242 	vcpu->arch.apf.halted = false;
7243 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7244 }
7245 
7246 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7247 {
7248 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7249 		return true;
7250 	else
7251 		return !kvm_event_needs_reinjection(vcpu) &&
7252 			kvm_x86_ops->interrupt_allowed(vcpu);
7253 }
7254 
7255 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7256 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7257 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7258 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7259 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7260 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7261 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7262 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7263 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7264 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7265 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7266 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7267