1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * derived from drivers/kvm/kvm_main.c 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2008 Qumranet, Inc. 8 * Copyright IBM Corporation, 2008 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 * Amit Shah <amit.shah@qumranet.com> 15 * Ben-Ami Yassour <benami@il.ibm.com> 16 * 17 * This work is licensed under the terms of the GNU GPL, version 2. See 18 * the COPYING file in the top-level directory. 19 * 20 */ 21 22 #include <linux/kvm_host.h> 23 #include "irq.h" 24 #include "mmu.h" 25 #include "i8254.h" 26 #include "tss.h" 27 #include "kvm_cache_regs.h" 28 #include "x86.h" 29 #include "cpuid.h" 30 31 #include <linux/clocksource.h> 32 #include <linux/interrupt.h> 33 #include <linux/kvm.h> 34 #include <linux/fs.h> 35 #include <linux/vmalloc.h> 36 #include <linux/module.h> 37 #include <linux/mman.h> 38 #include <linux/highmem.h> 39 #include <linux/iommu.h> 40 #include <linux/intel-iommu.h> 41 #include <linux/cpufreq.h> 42 #include <linux/user-return-notifier.h> 43 #include <linux/srcu.h> 44 #include <linux/slab.h> 45 #include <linux/perf_event.h> 46 #include <linux/uaccess.h> 47 #include <linux/hash.h> 48 #include <linux/pci.h> 49 #include <linux/timekeeper_internal.h> 50 #include <linux/pvclock_gtod.h> 51 #include <trace/events/kvm.h> 52 53 #define CREATE_TRACE_POINTS 54 #include "trace.h" 55 56 #include <asm/debugreg.h> 57 #include <asm/msr.h> 58 #include <asm/desc.h> 59 #include <asm/mtrr.h> 60 #include <asm/mce.h> 61 #include <asm/i387.h> 62 #include <asm/fpu-internal.h> /* Ugh! */ 63 #include <asm/xcr.h> 64 #include <asm/pvclock.h> 65 #include <asm/div64.h> 66 67 #define MAX_IO_MSRS 256 68 #define KVM_MAX_MCE_BANKS 32 69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P) 70 71 #define emul_to_vcpu(ctxt) \ 72 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt) 73 74 /* EFER defaults: 75 * - enable syscall per default because its emulated by KVM 76 * - enable LME and LMA per default on 64 bit KVM 77 */ 78 #ifdef CONFIG_X86_64 79 static 80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 81 #else 82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 83 #endif 84 85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM 86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU 87 88 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 89 static void process_nmi(struct kvm_vcpu *vcpu); 90 91 struct kvm_x86_ops *kvm_x86_ops; 92 EXPORT_SYMBOL_GPL(kvm_x86_ops); 93 94 static bool ignore_msrs = 0; 95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 96 97 bool kvm_has_tsc_control; 98 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 99 u32 kvm_max_guest_tsc_khz; 100 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 101 102 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 103 static u32 tsc_tolerance_ppm = 250; 104 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 105 106 #define KVM_NR_SHARED_MSRS 16 107 108 struct kvm_shared_msrs_global { 109 int nr; 110 u32 msrs[KVM_NR_SHARED_MSRS]; 111 }; 112 113 struct kvm_shared_msrs { 114 struct user_return_notifier urn; 115 bool registered; 116 struct kvm_shared_msr_values { 117 u64 host; 118 u64 curr; 119 } values[KVM_NR_SHARED_MSRS]; 120 }; 121 122 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; 123 static struct kvm_shared_msrs __percpu *shared_msrs; 124 125 struct kvm_stats_debugfs_item debugfs_entries[] = { 126 { "pf_fixed", VCPU_STAT(pf_fixed) }, 127 { "pf_guest", VCPU_STAT(pf_guest) }, 128 { "tlb_flush", VCPU_STAT(tlb_flush) }, 129 { "invlpg", VCPU_STAT(invlpg) }, 130 { "exits", VCPU_STAT(exits) }, 131 { "io_exits", VCPU_STAT(io_exits) }, 132 { "mmio_exits", VCPU_STAT(mmio_exits) }, 133 { "signal_exits", VCPU_STAT(signal_exits) }, 134 { "irq_window", VCPU_STAT(irq_window_exits) }, 135 { "nmi_window", VCPU_STAT(nmi_window_exits) }, 136 { "halt_exits", VCPU_STAT(halt_exits) }, 137 { "halt_wakeup", VCPU_STAT(halt_wakeup) }, 138 { "hypercalls", VCPU_STAT(hypercalls) }, 139 { "request_irq", VCPU_STAT(request_irq_exits) }, 140 { "irq_exits", VCPU_STAT(irq_exits) }, 141 { "host_state_reload", VCPU_STAT(host_state_reload) }, 142 { "efer_reload", VCPU_STAT(efer_reload) }, 143 { "fpu_reload", VCPU_STAT(fpu_reload) }, 144 { "insn_emulation", VCPU_STAT(insn_emulation) }, 145 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, 146 { "irq_injections", VCPU_STAT(irq_injections) }, 147 { "nmi_injections", VCPU_STAT(nmi_injections) }, 148 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, 149 { "mmu_pte_write", VM_STAT(mmu_pte_write) }, 150 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, 151 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, 152 { "mmu_flooded", VM_STAT(mmu_flooded) }, 153 { "mmu_recycled", VM_STAT(mmu_recycled) }, 154 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, 155 { "mmu_unsync", VM_STAT(mmu_unsync) }, 156 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, 157 { "largepages", VM_STAT(lpages) }, 158 { NULL } 159 }; 160 161 u64 __read_mostly host_xcr0; 162 163 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 164 165 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 166 { 167 int i; 168 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) 169 vcpu->arch.apf.gfns[i] = ~0; 170 } 171 172 static void kvm_on_user_return(struct user_return_notifier *urn) 173 { 174 unsigned slot; 175 struct kvm_shared_msrs *locals 176 = container_of(urn, struct kvm_shared_msrs, urn); 177 struct kvm_shared_msr_values *values; 178 179 for (slot = 0; slot < shared_msrs_global.nr; ++slot) { 180 values = &locals->values[slot]; 181 if (values->host != values->curr) { 182 wrmsrl(shared_msrs_global.msrs[slot], values->host); 183 values->curr = values->host; 184 } 185 } 186 locals->registered = false; 187 user_return_notifier_unregister(urn); 188 } 189 190 static void shared_msr_update(unsigned slot, u32 msr) 191 { 192 u64 value; 193 unsigned int cpu = smp_processor_id(); 194 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 195 196 /* only read, and nobody should modify it at this time, 197 * so don't need lock */ 198 if (slot >= shared_msrs_global.nr) { 199 printk(KERN_ERR "kvm: invalid MSR slot!"); 200 return; 201 } 202 rdmsrl_safe(msr, &value); 203 smsr->values[slot].host = value; 204 smsr->values[slot].curr = value; 205 } 206 207 void kvm_define_shared_msr(unsigned slot, u32 msr) 208 { 209 if (slot >= shared_msrs_global.nr) 210 shared_msrs_global.nr = slot + 1; 211 shared_msrs_global.msrs[slot] = msr; 212 /* we need ensured the shared_msr_global have been updated */ 213 smp_wmb(); 214 } 215 EXPORT_SYMBOL_GPL(kvm_define_shared_msr); 216 217 static void kvm_shared_msr_cpu_online(void) 218 { 219 unsigned i; 220 221 for (i = 0; i < shared_msrs_global.nr; ++i) 222 shared_msr_update(i, shared_msrs_global.msrs[i]); 223 } 224 225 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) 226 { 227 unsigned int cpu = smp_processor_id(); 228 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 229 230 if (((value ^ smsr->values[slot].curr) & mask) == 0) 231 return; 232 smsr->values[slot].curr = value; 233 wrmsrl(shared_msrs_global.msrs[slot], value); 234 if (!smsr->registered) { 235 smsr->urn.on_user_return = kvm_on_user_return; 236 user_return_notifier_register(&smsr->urn); 237 smsr->registered = true; 238 } 239 } 240 EXPORT_SYMBOL_GPL(kvm_set_shared_msr); 241 242 static void drop_user_return_notifiers(void *ignore) 243 { 244 unsigned int cpu = smp_processor_id(); 245 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 246 247 if (smsr->registered) 248 kvm_on_user_return(&smsr->urn); 249 } 250 251 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 252 { 253 return vcpu->arch.apic_base; 254 } 255 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 256 257 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data) 258 { 259 /* TODO: reserve bits check */ 260 kvm_lapic_set_base(vcpu, data); 261 } 262 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 263 264 asmlinkage void kvm_spurious_fault(void) 265 { 266 /* Fault while not rebooting. We want the trace. */ 267 BUG(); 268 } 269 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 270 271 #define EXCPT_BENIGN 0 272 #define EXCPT_CONTRIBUTORY 1 273 #define EXCPT_PF 2 274 275 static int exception_class(int vector) 276 { 277 switch (vector) { 278 case PF_VECTOR: 279 return EXCPT_PF; 280 case DE_VECTOR: 281 case TS_VECTOR: 282 case NP_VECTOR: 283 case SS_VECTOR: 284 case GP_VECTOR: 285 return EXCPT_CONTRIBUTORY; 286 default: 287 break; 288 } 289 return EXCPT_BENIGN; 290 } 291 292 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 293 unsigned nr, bool has_error, u32 error_code, 294 bool reinject) 295 { 296 u32 prev_nr; 297 int class1, class2; 298 299 kvm_make_request(KVM_REQ_EVENT, vcpu); 300 301 if (!vcpu->arch.exception.pending) { 302 queue: 303 vcpu->arch.exception.pending = true; 304 vcpu->arch.exception.has_error_code = has_error; 305 vcpu->arch.exception.nr = nr; 306 vcpu->arch.exception.error_code = error_code; 307 vcpu->arch.exception.reinject = reinject; 308 return; 309 } 310 311 /* to check exception */ 312 prev_nr = vcpu->arch.exception.nr; 313 if (prev_nr == DF_VECTOR) { 314 /* triple fault -> shutdown */ 315 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 316 return; 317 } 318 class1 = exception_class(prev_nr); 319 class2 = exception_class(nr); 320 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 321 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 322 /* generate double fault per SDM Table 5-5 */ 323 vcpu->arch.exception.pending = true; 324 vcpu->arch.exception.has_error_code = true; 325 vcpu->arch.exception.nr = DF_VECTOR; 326 vcpu->arch.exception.error_code = 0; 327 } else 328 /* replace previous exception with a new one in a hope 329 that instruction re-execution will regenerate lost 330 exception */ 331 goto queue; 332 } 333 334 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 335 { 336 kvm_multiple_exception(vcpu, nr, false, 0, false); 337 } 338 EXPORT_SYMBOL_GPL(kvm_queue_exception); 339 340 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 341 { 342 kvm_multiple_exception(vcpu, nr, false, 0, true); 343 } 344 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 345 346 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 347 { 348 if (err) 349 kvm_inject_gp(vcpu, 0); 350 else 351 kvm_x86_ops->skip_emulated_instruction(vcpu); 352 } 353 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 354 355 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 356 { 357 ++vcpu->stat.pf_guest; 358 vcpu->arch.cr2 = fault->address; 359 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 360 } 361 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 362 363 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 364 { 365 if (mmu_is_nested(vcpu) && !fault->nested_page_fault) 366 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); 367 else 368 vcpu->arch.mmu.inject_page_fault(vcpu, fault); 369 } 370 371 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 372 { 373 atomic_inc(&vcpu->arch.nmi_queued); 374 kvm_make_request(KVM_REQ_NMI, vcpu); 375 } 376 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 377 378 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 379 { 380 kvm_multiple_exception(vcpu, nr, true, error_code, false); 381 } 382 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 383 384 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 385 { 386 kvm_multiple_exception(vcpu, nr, true, error_code, true); 387 } 388 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 389 390 /* 391 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 392 * a #GP and return false. 393 */ 394 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 395 { 396 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) 397 return true; 398 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 399 return false; 400 } 401 EXPORT_SYMBOL_GPL(kvm_require_cpl); 402 403 /* 404 * This function will be used to read from the physical memory of the currently 405 * running guest. The difference to kvm_read_guest_page is that this function 406 * can read from guest physical or from the guest's guest physical memory. 407 */ 408 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 409 gfn_t ngfn, void *data, int offset, int len, 410 u32 access) 411 { 412 gfn_t real_gfn; 413 gpa_t ngpa; 414 415 ngpa = gfn_to_gpa(ngfn); 416 real_gfn = mmu->translate_gpa(vcpu, ngpa, access); 417 if (real_gfn == UNMAPPED_GVA) 418 return -EFAULT; 419 420 real_gfn = gpa_to_gfn(real_gfn); 421 422 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len); 423 } 424 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); 425 426 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 427 void *data, int offset, int len, u32 access) 428 { 429 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, 430 data, offset, len, access); 431 } 432 433 /* 434 * Load the pae pdptrs. Return true is they are all valid. 435 */ 436 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) 437 { 438 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 439 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; 440 int i; 441 int ret; 442 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 443 444 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, 445 offset * sizeof(u64), sizeof(pdpte), 446 PFERR_USER_MASK|PFERR_WRITE_MASK); 447 if (ret < 0) { 448 ret = 0; 449 goto out; 450 } 451 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 452 if (is_present_gpte(pdpte[i]) && 453 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) { 454 ret = 0; 455 goto out; 456 } 457 } 458 ret = 1; 459 460 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 461 __set_bit(VCPU_EXREG_PDPTR, 462 (unsigned long *)&vcpu->arch.regs_avail); 463 __set_bit(VCPU_EXREG_PDPTR, 464 (unsigned long *)&vcpu->arch.regs_dirty); 465 out: 466 467 return ret; 468 } 469 EXPORT_SYMBOL_GPL(load_pdptrs); 470 471 static bool pdptrs_changed(struct kvm_vcpu *vcpu) 472 { 473 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; 474 bool changed = true; 475 int offset; 476 gfn_t gfn; 477 int r; 478 479 if (is_long_mode(vcpu) || !is_pae(vcpu)) 480 return false; 481 482 if (!test_bit(VCPU_EXREG_PDPTR, 483 (unsigned long *)&vcpu->arch.regs_avail)) 484 return true; 485 486 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT; 487 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1); 488 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), 489 PFERR_USER_MASK | PFERR_WRITE_MASK); 490 if (r < 0) 491 goto out; 492 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; 493 out: 494 495 return changed; 496 } 497 498 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 499 { 500 unsigned long old_cr0 = kvm_read_cr0(vcpu); 501 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP | 502 X86_CR0_CD | X86_CR0_NW; 503 504 cr0 |= X86_CR0_ET; 505 506 #ifdef CONFIG_X86_64 507 if (cr0 & 0xffffffff00000000UL) 508 return 1; 509 #endif 510 511 cr0 &= ~CR0_RESERVED_BITS; 512 513 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 514 return 1; 515 516 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 517 return 1; 518 519 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 520 #ifdef CONFIG_X86_64 521 if ((vcpu->arch.efer & EFER_LME)) { 522 int cs_db, cs_l; 523 524 if (!is_pae(vcpu)) 525 return 1; 526 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 527 if (cs_l) 528 return 1; 529 } else 530 #endif 531 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 532 kvm_read_cr3(vcpu))) 533 return 1; 534 } 535 536 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 537 return 1; 538 539 kvm_x86_ops->set_cr0(vcpu, cr0); 540 541 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 542 kvm_clear_async_pf_completion_queue(vcpu); 543 kvm_async_pf_hash_reset(vcpu); 544 } 545 546 if ((cr0 ^ old_cr0) & update_bits) 547 kvm_mmu_reset_context(vcpu); 548 return 0; 549 } 550 EXPORT_SYMBOL_GPL(kvm_set_cr0); 551 552 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 553 { 554 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 555 } 556 EXPORT_SYMBOL_GPL(kvm_lmsw); 557 558 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu) 559 { 560 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) && 561 !vcpu->guest_xcr0_loaded) { 562 /* kvm_set_xcr() also depends on this */ 563 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 564 vcpu->guest_xcr0_loaded = 1; 565 } 566 } 567 568 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu) 569 { 570 if (vcpu->guest_xcr0_loaded) { 571 if (vcpu->arch.xcr0 != host_xcr0) 572 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 573 vcpu->guest_xcr0_loaded = 0; 574 } 575 } 576 577 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 578 { 579 u64 xcr0; 580 581 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 582 if (index != XCR_XFEATURE_ENABLED_MASK) 583 return 1; 584 xcr0 = xcr; 585 if (kvm_x86_ops->get_cpl(vcpu) != 0) 586 return 1; 587 if (!(xcr0 & XSTATE_FP)) 588 return 1; 589 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE)) 590 return 1; 591 if (xcr0 & ~host_xcr0) 592 return 1; 593 kvm_put_guest_xcr0(vcpu); 594 vcpu->arch.xcr0 = xcr0; 595 return 0; 596 } 597 598 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 599 { 600 if (__kvm_set_xcr(vcpu, index, xcr)) { 601 kvm_inject_gp(vcpu, 0); 602 return 1; 603 } 604 return 0; 605 } 606 EXPORT_SYMBOL_GPL(kvm_set_xcr); 607 608 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 609 { 610 unsigned long old_cr4 = kvm_read_cr4(vcpu); 611 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | 612 X86_CR4_PAE | X86_CR4_SMEP; 613 if (cr4 & CR4_RESERVED_BITS) 614 return 1; 615 616 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE)) 617 return 1; 618 619 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP)) 620 return 1; 621 622 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS)) 623 return 1; 624 625 if (is_long_mode(vcpu)) { 626 if (!(cr4 & X86_CR4_PAE)) 627 return 1; 628 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 629 && ((cr4 ^ old_cr4) & pdptr_bits) 630 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 631 kvm_read_cr3(vcpu))) 632 return 1; 633 634 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 635 if (!guest_cpuid_has_pcid(vcpu)) 636 return 1; 637 638 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 639 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 640 return 1; 641 } 642 643 if (kvm_x86_ops->set_cr4(vcpu, cr4)) 644 return 1; 645 646 if (((cr4 ^ old_cr4) & pdptr_bits) || 647 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 648 kvm_mmu_reset_context(vcpu); 649 650 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE) 651 kvm_update_cpuid(vcpu); 652 653 return 0; 654 } 655 EXPORT_SYMBOL_GPL(kvm_set_cr4); 656 657 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 658 { 659 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { 660 kvm_mmu_sync_roots(vcpu); 661 kvm_mmu_flush_tlb(vcpu); 662 return 0; 663 } 664 665 if (is_long_mode(vcpu)) { 666 if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) { 667 if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS) 668 return 1; 669 } else 670 if (cr3 & CR3_L_MODE_RESERVED_BITS) 671 return 1; 672 } else { 673 if (is_pae(vcpu)) { 674 if (cr3 & CR3_PAE_RESERVED_BITS) 675 return 1; 676 if (is_paging(vcpu) && 677 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) 678 return 1; 679 } 680 /* 681 * We don't check reserved bits in nonpae mode, because 682 * this isn't enforced, and VMware depends on this. 683 */ 684 } 685 686 /* 687 * Does the new cr3 value map to physical memory? (Note, we 688 * catch an invalid cr3 even in real-mode, because it would 689 * cause trouble later on when we turn on paging anyway.) 690 * 691 * A real CPU would silently accept an invalid cr3 and would 692 * attempt to use it - with largely undefined (and often hard 693 * to debug) behavior on the guest side. 694 */ 695 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT))) 696 return 1; 697 vcpu->arch.cr3 = cr3; 698 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 699 vcpu->arch.mmu.new_cr3(vcpu); 700 return 0; 701 } 702 EXPORT_SYMBOL_GPL(kvm_set_cr3); 703 704 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 705 { 706 if (cr8 & CR8_RESERVED_BITS) 707 return 1; 708 if (irqchip_in_kernel(vcpu->kvm)) 709 kvm_lapic_set_tpr(vcpu, cr8); 710 else 711 vcpu->arch.cr8 = cr8; 712 return 0; 713 } 714 EXPORT_SYMBOL_GPL(kvm_set_cr8); 715 716 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 717 { 718 if (irqchip_in_kernel(vcpu->kvm)) 719 return kvm_lapic_get_cr8(vcpu); 720 else 721 return vcpu->arch.cr8; 722 } 723 EXPORT_SYMBOL_GPL(kvm_get_cr8); 724 725 static void kvm_update_dr7(struct kvm_vcpu *vcpu) 726 { 727 unsigned long dr7; 728 729 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 730 dr7 = vcpu->arch.guest_debug_dr7; 731 else 732 dr7 = vcpu->arch.dr7; 733 kvm_x86_ops->set_dr7(vcpu, dr7); 734 vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK); 735 } 736 737 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 738 { 739 switch (dr) { 740 case 0 ... 3: 741 vcpu->arch.db[dr] = val; 742 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 743 vcpu->arch.eff_db[dr] = val; 744 break; 745 case 4: 746 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 747 return 1; /* #UD */ 748 /* fall through */ 749 case 6: 750 if (val & 0xffffffff00000000ULL) 751 return -1; /* #GP */ 752 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1; 753 break; 754 case 5: 755 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 756 return 1; /* #UD */ 757 /* fall through */ 758 default: /* 7 */ 759 if (val & 0xffffffff00000000ULL) 760 return -1; /* #GP */ 761 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 762 kvm_update_dr7(vcpu); 763 break; 764 } 765 766 return 0; 767 } 768 769 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 770 { 771 int res; 772 773 res = __kvm_set_dr(vcpu, dr, val); 774 if (res > 0) 775 kvm_queue_exception(vcpu, UD_VECTOR); 776 else if (res < 0) 777 kvm_inject_gp(vcpu, 0); 778 779 return res; 780 } 781 EXPORT_SYMBOL_GPL(kvm_set_dr); 782 783 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 784 { 785 switch (dr) { 786 case 0 ... 3: 787 *val = vcpu->arch.db[dr]; 788 break; 789 case 4: 790 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 791 return 1; 792 /* fall through */ 793 case 6: 794 *val = vcpu->arch.dr6; 795 break; 796 case 5: 797 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 798 return 1; 799 /* fall through */ 800 default: /* 7 */ 801 *val = vcpu->arch.dr7; 802 break; 803 } 804 805 return 0; 806 } 807 808 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 809 { 810 if (_kvm_get_dr(vcpu, dr, val)) { 811 kvm_queue_exception(vcpu, UD_VECTOR); 812 return 1; 813 } 814 return 0; 815 } 816 EXPORT_SYMBOL_GPL(kvm_get_dr); 817 818 bool kvm_rdpmc(struct kvm_vcpu *vcpu) 819 { 820 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); 821 u64 data; 822 int err; 823 824 err = kvm_pmu_read_pmc(vcpu, ecx, &data); 825 if (err) 826 return err; 827 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data); 828 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32); 829 return err; 830 } 831 EXPORT_SYMBOL_GPL(kvm_rdpmc); 832 833 /* 834 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 835 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 836 * 837 * This list is modified at module load time to reflect the 838 * capabilities of the host cpu. This capabilities test skips MSRs that are 839 * kvm-specific. Those are put in the beginning of the list. 840 */ 841 842 #define KVM_SAVE_MSRS_BEGIN 10 843 static u32 msrs_to_save[] = { 844 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 845 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 846 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 847 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 848 MSR_KVM_PV_EOI_EN, 849 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 850 MSR_STAR, 851 #ifdef CONFIG_X86_64 852 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 853 #endif 854 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA 855 }; 856 857 static unsigned num_msrs_to_save; 858 859 static const u32 emulated_msrs[] = { 860 MSR_IA32_TSC_ADJUST, 861 MSR_IA32_TSCDEADLINE, 862 MSR_IA32_MISC_ENABLE, 863 MSR_IA32_MCG_STATUS, 864 MSR_IA32_MCG_CTL, 865 }; 866 867 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 868 { 869 if (efer & efer_reserved_bits) 870 return false; 871 872 if (efer & EFER_FFXSR) { 873 struct kvm_cpuid_entry2 *feat; 874 875 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 876 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) 877 return false; 878 } 879 880 if (efer & EFER_SVME) { 881 struct kvm_cpuid_entry2 *feat; 882 883 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 884 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) 885 return false; 886 } 887 888 return true; 889 } 890 EXPORT_SYMBOL_GPL(kvm_valid_efer); 891 892 static int set_efer(struct kvm_vcpu *vcpu, u64 efer) 893 { 894 u64 old_efer = vcpu->arch.efer; 895 896 if (!kvm_valid_efer(vcpu, efer)) 897 return 1; 898 899 if (is_paging(vcpu) 900 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 901 return 1; 902 903 efer &= ~EFER_LMA; 904 efer |= vcpu->arch.efer & EFER_LMA; 905 906 kvm_x86_ops->set_efer(vcpu, efer); 907 908 /* Update reserved bits */ 909 if ((efer ^ old_efer) & EFER_NX) 910 kvm_mmu_reset_context(vcpu); 911 912 return 0; 913 } 914 915 void kvm_enable_efer_bits(u64 mask) 916 { 917 efer_reserved_bits &= ~mask; 918 } 919 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 920 921 922 /* 923 * Writes msr value into into the appropriate "register". 924 * Returns 0 on success, non-0 otherwise. 925 * Assumes vcpu_load() was already called. 926 */ 927 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 928 { 929 return kvm_x86_ops->set_msr(vcpu, msr); 930 } 931 932 /* 933 * Adapt set_msr() to msr_io()'s calling convention 934 */ 935 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 936 { 937 struct msr_data msr; 938 939 msr.data = *data; 940 msr.index = index; 941 msr.host_initiated = true; 942 return kvm_set_msr(vcpu, &msr); 943 } 944 945 #ifdef CONFIG_X86_64 946 struct pvclock_gtod_data { 947 seqcount_t seq; 948 949 struct { /* extract of a clocksource struct */ 950 int vclock_mode; 951 cycle_t cycle_last; 952 cycle_t mask; 953 u32 mult; 954 u32 shift; 955 } clock; 956 957 /* open coded 'struct timespec' */ 958 u64 monotonic_time_snsec; 959 time_t monotonic_time_sec; 960 }; 961 962 static struct pvclock_gtod_data pvclock_gtod_data; 963 964 static void update_pvclock_gtod(struct timekeeper *tk) 965 { 966 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 967 968 write_seqcount_begin(&vdata->seq); 969 970 /* copy pvclock gtod data */ 971 vdata->clock.vclock_mode = tk->clock->archdata.vclock_mode; 972 vdata->clock.cycle_last = tk->clock->cycle_last; 973 vdata->clock.mask = tk->clock->mask; 974 vdata->clock.mult = tk->mult; 975 vdata->clock.shift = tk->shift; 976 977 vdata->monotonic_time_sec = tk->xtime_sec 978 + tk->wall_to_monotonic.tv_sec; 979 vdata->monotonic_time_snsec = tk->xtime_nsec 980 + (tk->wall_to_monotonic.tv_nsec 981 << tk->shift); 982 while (vdata->monotonic_time_snsec >= 983 (((u64)NSEC_PER_SEC) << tk->shift)) { 984 vdata->monotonic_time_snsec -= 985 ((u64)NSEC_PER_SEC) << tk->shift; 986 vdata->monotonic_time_sec++; 987 } 988 989 write_seqcount_end(&vdata->seq); 990 } 991 #endif 992 993 994 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) 995 { 996 int version; 997 int r; 998 struct pvclock_wall_clock wc; 999 struct timespec boot; 1000 1001 if (!wall_clock) 1002 return; 1003 1004 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 1005 if (r) 1006 return; 1007 1008 if (version & 1) 1009 ++version; /* first time write, random junk */ 1010 1011 ++version; 1012 1013 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 1014 1015 /* 1016 * The guest calculates current wall clock time by adding 1017 * system time (updated by kvm_guest_time_update below) to the 1018 * wall clock specified here. guest system time equals host 1019 * system time for us, thus we must fill in host boot time here. 1020 */ 1021 getboottime(&boot); 1022 1023 if (kvm->arch.kvmclock_offset) { 1024 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset); 1025 boot = timespec_sub(boot, ts); 1026 } 1027 wc.sec = boot.tv_sec; 1028 wc.nsec = boot.tv_nsec; 1029 wc.version = version; 1030 1031 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 1032 1033 version++; 1034 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 1035 } 1036 1037 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 1038 { 1039 uint32_t quotient, remainder; 1040 1041 /* Don't try to replace with do_div(), this one calculates 1042 * "(dividend << 32) / divisor" */ 1043 __asm__ ( "divl %4" 1044 : "=a" (quotient), "=d" (remainder) 1045 : "0" (0), "1" (dividend), "r" (divisor) ); 1046 return quotient; 1047 } 1048 1049 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz, 1050 s8 *pshift, u32 *pmultiplier) 1051 { 1052 uint64_t scaled64; 1053 int32_t shift = 0; 1054 uint64_t tps64; 1055 uint32_t tps32; 1056 1057 tps64 = base_khz * 1000LL; 1058 scaled64 = scaled_khz * 1000LL; 1059 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 1060 tps64 >>= 1; 1061 shift--; 1062 } 1063 1064 tps32 = (uint32_t)tps64; 1065 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 1066 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 1067 scaled64 >>= 1; 1068 else 1069 tps32 <<= 1; 1070 shift++; 1071 } 1072 1073 *pshift = shift; 1074 *pmultiplier = div_frac(scaled64, tps32); 1075 1076 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n", 1077 __func__, base_khz, scaled_khz, shift, *pmultiplier); 1078 } 1079 1080 static inline u64 get_kernel_ns(void) 1081 { 1082 struct timespec ts; 1083 1084 WARN_ON(preemptible()); 1085 ktime_get_ts(&ts); 1086 monotonic_to_bootbased(&ts); 1087 return timespec_to_ns(&ts); 1088 } 1089 1090 #ifdef CONFIG_X86_64 1091 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 1092 #endif 1093 1094 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 1095 unsigned long max_tsc_khz; 1096 1097 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec) 1098 { 1099 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult, 1100 vcpu->arch.virtual_tsc_shift); 1101 } 1102 1103 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 1104 { 1105 u64 v = (u64)khz * (1000000 + ppm); 1106 do_div(v, 1000000); 1107 return v; 1108 } 1109 1110 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz) 1111 { 1112 u32 thresh_lo, thresh_hi; 1113 int use_scaling = 0; 1114 1115 /* tsc_khz can be zero if TSC calibration fails */ 1116 if (this_tsc_khz == 0) 1117 return; 1118 1119 /* Compute a scale to convert nanoseconds in TSC cycles */ 1120 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000, 1121 &vcpu->arch.virtual_tsc_shift, 1122 &vcpu->arch.virtual_tsc_mult); 1123 vcpu->arch.virtual_tsc_khz = this_tsc_khz; 1124 1125 /* 1126 * Compute the variation in TSC rate which is acceptable 1127 * within the range of tolerance and decide if the 1128 * rate being applied is within that bounds of the hardware 1129 * rate. If so, no scaling or compensation need be done. 1130 */ 1131 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 1132 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 1133 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) { 1134 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi); 1135 use_scaling = 1; 1136 } 1137 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling); 1138 } 1139 1140 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 1141 { 1142 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 1143 vcpu->arch.virtual_tsc_mult, 1144 vcpu->arch.virtual_tsc_shift); 1145 tsc += vcpu->arch.this_tsc_write; 1146 return tsc; 1147 } 1148 1149 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 1150 { 1151 #ifdef CONFIG_X86_64 1152 bool vcpus_matched; 1153 bool do_request = false; 1154 struct kvm_arch *ka = &vcpu->kvm->arch; 1155 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1156 1157 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1158 atomic_read(&vcpu->kvm->online_vcpus)); 1159 1160 if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC) 1161 if (!ka->use_master_clock) 1162 do_request = 1; 1163 1164 if (!vcpus_matched && ka->use_master_clock) 1165 do_request = 1; 1166 1167 if (do_request) 1168 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 1169 1170 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 1171 atomic_read(&vcpu->kvm->online_vcpus), 1172 ka->use_master_clock, gtod->clock.vclock_mode); 1173 #endif 1174 } 1175 1176 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset) 1177 { 1178 u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu); 1179 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset; 1180 } 1181 1182 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr) 1183 { 1184 struct kvm *kvm = vcpu->kvm; 1185 u64 offset, ns, elapsed; 1186 unsigned long flags; 1187 s64 usdiff; 1188 bool matched; 1189 u64 data = msr->data; 1190 1191 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 1192 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); 1193 ns = get_kernel_ns(); 1194 elapsed = ns - kvm->arch.last_tsc_nsec; 1195 1196 if (vcpu->arch.virtual_tsc_khz) { 1197 /* n.b - signed multiplication and division required */ 1198 usdiff = data - kvm->arch.last_tsc_write; 1199 #ifdef CONFIG_X86_64 1200 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz; 1201 #else 1202 /* do_div() only does unsigned */ 1203 asm("idivl %2; xor %%edx, %%edx" 1204 : "=A"(usdiff) 1205 : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz)); 1206 #endif 1207 do_div(elapsed, 1000); 1208 usdiff -= elapsed; 1209 if (usdiff < 0) 1210 usdiff = -usdiff; 1211 } else 1212 usdiff = USEC_PER_SEC; /* disable TSC match window below */ 1213 1214 /* 1215 * Special case: TSC write with a small delta (1 second) of virtual 1216 * cycle time against real time is interpreted as an attempt to 1217 * synchronize the CPU. 1218 * 1219 * For a reliable TSC, we can match TSC offsets, and for an unstable 1220 * TSC, we add elapsed time in this computation. We could let the 1221 * compensation code attempt to catch up if we fall behind, but 1222 * it's better to try to match offsets from the beginning. 1223 */ 1224 if (usdiff < USEC_PER_SEC && 1225 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 1226 if (!check_tsc_unstable()) { 1227 offset = kvm->arch.cur_tsc_offset; 1228 pr_debug("kvm: matched tsc offset for %llu\n", data); 1229 } else { 1230 u64 delta = nsec_to_cycles(vcpu, elapsed); 1231 data += delta; 1232 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); 1233 pr_debug("kvm: adjusted tsc offset by %llu\n", delta); 1234 } 1235 matched = true; 1236 } else { 1237 /* 1238 * We split periods of matched TSC writes into generations. 1239 * For each generation, we track the original measured 1240 * nanosecond time, offset, and write, so if TSCs are in 1241 * sync, we can match exact offset, and if not, we can match 1242 * exact software computation in compute_guest_tsc() 1243 * 1244 * These values are tracked in kvm->arch.cur_xxx variables. 1245 */ 1246 kvm->arch.cur_tsc_generation++; 1247 kvm->arch.cur_tsc_nsec = ns; 1248 kvm->arch.cur_tsc_write = data; 1249 kvm->arch.cur_tsc_offset = offset; 1250 matched = false; 1251 pr_debug("kvm: new tsc generation %u, clock %llu\n", 1252 kvm->arch.cur_tsc_generation, data); 1253 } 1254 1255 /* 1256 * We also track th most recent recorded KHZ, write and time to 1257 * allow the matching interval to be extended at each write. 1258 */ 1259 kvm->arch.last_tsc_nsec = ns; 1260 kvm->arch.last_tsc_write = data; 1261 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 1262 1263 /* Reset of TSC must disable overshoot protection below */ 1264 vcpu->arch.hv_clock.tsc_timestamp = 0; 1265 vcpu->arch.last_guest_tsc = data; 1266 1267 /* Keep track of which generation this VCPU has synchronized to */ 1268 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 1269 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 1270 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 1271 1272 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated) 1273 update_ia32_tsc_adjust_msr(vcpu, offset); 1274 kvm_x86_ops->write_tsc_offset(vcpu, offset); 1275 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 1276 1277 spin_lock(&kvm->arch.pvclock_gtod_sync_lock); 1278 if (matched) 1279 kvm->arch.nr_vcpus_matched_tsc++; 1280 else 1281 kvm->arch.nr_vcpus_matched_tsc = 0; 1282 1283 kvm_track_tsc_matching(vcpu); 1284 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); 1285 } 1286 1287 EXPORT_SYMBOL_GPL(kvm_write_tsc); 1288 1289 #ifdef CONFIG_X86_64 1290 1291 static cycle_t read_tsc(void) 1292 { 1293 cycle_t ret; 1294 u64 last; 1295 1296 /* 1297 * Empirically, a fence (of type that depends on the CPU) 1298 * before rdtsc is enough to ensure that rdtsc is ordered 1299 * with respect to loads. The various CPU manuals are unclear 1300 * as to whether rdtsc can be reordered with later loads, 1301 * but no one has ever seen it happen. 1302 */ 1303 rdtsc_barrier(); 1304 ret = (cycle_t)vget_cycles(); 1305 1306 last = pvclock_gtod_data.clock.cycle_last; 1307 1308 if (likely(ret >= last)) 1309 return ret; 1310 1311 /* 1312 * GCC likes to generate cmov here, but this branch is extremely 1313 * predictable (it's just a funciton of time and the likely is 1314 * very likely) and there's a data dependence, so force GCC 1315 * to generate a branch instead. I don't barrier() because 1316 * we don't actually need a barrier, and if this function 1317 * ever gets inlined it will generate worse code. 1318 */ 1319 asm volatile (""); 1320 return last; 1321 } 1322 1323 static inline u64 vgettsc(cycle_t *cycle_now) 1324 { 1325 long v; 1326 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1327 1328 *cycle_now = read_tsc(); 1329 1330 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask; 1331 return v * gtod->clock.mult; 1332 } 1333 1334 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now) 1335 { 1336 unsigned long seq; 1337 u64 ns; 1338 int mode; 1339 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1340 1341 ts->tv_nsec = 0; 1342 do { 1343 seq = read_seqcount_begin(>od->seq); 1344 mode = gtod->clock.vclock_mode; 1345 ts->tv_sec = gtod->monotonic_time_sec; 1346 ns = gtod->monotonic_time_snsec; 1347 ns += vgettsc(cycle_now); 1348 ns >>= gtod->clock.shift; 1349 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 1350 timespec_add_ns(ts, ns); 1351 1352 return mode; 1353 } 1354 1355 /* returns true if host is using tsc clocksource */ 1356 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now) 1357 { 1358 struct timespec ts; 1359 1360 /* checked again under seqlock below */ 1361 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC) 1362 return false; 1363 1364 if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC) 1365 return false; 1366 1367 monotonic_to_bootbased(&ts); 1368 *kernel_ns = timespec_to_ns(&ts); 1369 1370 return true; 1371 } 1372 #endif 1373 1374 /* 1375 * 1376 * Assuming a stable TSC across physical CPUS, and a stable TSC 1377 * across virtual CPUs, the following condition is possible. 1378 * Each numbered line represents an event visible to both 1379 * CPUs at the next numbered event. 1380 * 1381 * "timespecX" represents host monotonic time. "tscX" represents 1382 * RDTSC value. 1383 * 1384 * VCPU0 on CPU0 | VCPU1 on CPU1 1385 * 1386 * 1. read timespec0,tsc0 1387 * 2. | timespec1 = timespec0 + N 1388 * | tsc1 = tsc0 + M 1389 * 3. transition to guest | transition to guest 1390 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 1391 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 1392 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 1393 * 1394 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 1395 * 1396 * - ret0 < ret1 1397 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 1398 * ... 1399 * - 0 < N - M => M < N 1400 * 1401 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 1402 * always the case (the difference between two distinct xtime instances 1403 * might be smaller then the difference between corresponding TSC reads, 1404 * when updating guest vcpus pvclock areas). 1405 * 1406 * To avoid that problem, do not allow visibility of distinct 1407 * system_timestamp/tsc_timestamp values simultaneously: use a master 1408 * copy of host monotonic time values. Update that master copy 1409 * in lockstep. 1410 * 1411 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 1412 * 1413 */ 1414 1415 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 1416 { 1417 #ifdef CONFIG_X86_64 1418 struct kvm_arch *ka = &kvm->arch; 1419 int vclock_mode; 1420 bool host_tsc_clocksource, vcpus_matched; 1421 1422 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1423 atomic_read(&kvm->online_vcpus)); 1424 1425 /* 1426 * If the host uses TSC clock, then passthrough TSC as stable 1427 * to the guest. 1428 */ 1429 host_tsc_clocksource = kvm_get_time_and_clockread( 1430 &ka->master_kernel_ns, 1431 &ka->master_cycle_now); 1432 1433 ka->use_master_clock = host_tsc_clocksource & vcpus_matched; 1434 1435 if (ka->use_master_clock) 1436 atomic_set(&kvm_guest_has_master_clock, 1); 1437 1438 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 1439 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 1440 vcpus_matched); 1441 #endif 1442 } 1443 1444 static int kvm_guest_time_update(struct kvm_vcpu *v) 1445 { 1446 unsigned long flags, this_tsc_khz; 1447 struct kvm_vcpu_arch *vcpu = &v->arch; 1448 struct kvm_arch *ka = &v->kvm->arch; 1449 s64 kernel_ns, max_kernel_ns; 1450 u64 tsc_timestamp, host_tsc; 1451 struct pvclock_vcpu_time_info guest_hv_clock; 1452 u8 pvclock_flags; 1453 bool use_master_clock; 1454 1455 kernel_ns = 0; 1456 host_tsc = 0; 1457 1458 /* 1459 * If the host uses TSC clock, then passthrough TSC as stable 1460 * to the guest. 1461 */ 1462 spin_lock(&ka->pvclock_gtod_sync_lock); 1463 use_master_clock = ka->use_master_clock; 1464 if (use_master_clock) { 1465 host_tsc = ka->master_cycle_now; 1466 kernel_ns = ka->master_kernel_ns; 1467 } 1468 spin_unlock(&ka->pvclock_gtod_sync_lock); 1469 1470 /* Keep irq disabled to prevent changes to the clock */ 1471 local_irq_save(flags); 1472 this_tsc_khz = __get_cpu_var(cpu_tsc_khz); 1473 if (unlikely(this_tsc_khz == 0)) { 1474 local_irq_restore(flags); 1475 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 1476 return 1; 1477 } 1478 if (!use_master_clock) { 1479 host_tsc = native_read_tsc(); 1480 kernel_ns = get_kernel_ns(); 1481 } 1482 1483 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc); 1484 1485 /* 1486 * We may have to catch up the TSC to match elapsed wall clock 1487 * time for two reasons, even if kvmclock is used. 1488 * 1) CPU could have been running below the maximum TSC rate 1489 * 2) Broken TSC compensation resets the base at each VCPU 1490 * entry to avoid unknown leaps of TSC even when running 1491 * again on the same CPU. This may cause apparent elapsed 1492 * time to disappear, and the guest to stand still or run 1493 * very slowly. 1494 */ 1495 if (vcpu->tsc_catchup) { 1496 u64 tsc = compute_guest_tsc(v, kernel_ns); 1497 if (tsc > tsc_timestamp) { 1498 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 1499 tsc_timestamp = tsc; 1500 } 1501 } 1502 1503 local_irq_restore(flags); 1504 1505 if (!vcpu->pv_time_enabled) 1506 return 0; 1507 1508 /* 1509 * Time as measured by the TSC may go backwards when resetting the base 1510 * tsc_timestamp. The reason for this is that the TSC resolution is 1511 * higher than the resolution of the other clock scales. Thus, many 1512 * possible measurments of the TSC correspond to one measurement of any 1513 * other clock, and so a spread of values is possible. This is not a 1514 * problem for the computation of the nanosecond clock; with TSC rates 1515 * around 1GHZ, there can only be a few cycles which correspond to one 1516 * nanosecond value, and any path through this code will inevitably 1517 * take longer than that. However, with the kernel_ns value itself, 1518 * the precision may be much lower, down to HZ granularity. If the 1519 * first sampling of TSC against kernel_ns ends in the low part of the 1520 * range, and the second in the high end of the range, we can get: 1521 * 1522 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new 1523 * 1524 * As the sampling errors potentially range in the thousands of cycles, 1525 * it is possible such a time value has already been observed by the 1526 * guest. To protect against this, we must compute the system time as 1527 * observed by the guest and ensure the new system time is greater. 1528 */ 1529 max_kernel_ns = 0; 1530 if (vcpu->hv_clock.tsc_timestamp) { 1531 max_kernel_ns = vcpu->last_guest_tsc - 1532 vcpu->hv_clock.tsc_timestamp; 1533 max_kernel_ns = pvclock_scale_delta(max_kernel_ns, 1534 vcpu->hv_clock.tsc_to_system_mul, 1535 vcpu->hv_clock.tsc_shift); 1536 max_kernel_ns += vcpu->last_kernel_ns; 1537 } 1538 1539 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) { 1540 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz, 1541 &vcpu->hv_clock.tsc_shift, 1542 &vcpu->hv_clock.tsc_to_system_mul); 1543 vcpu->hw_tsc_khz = this_tsc_khz; 1544 } 1545 1546 /* with a master <monotonic time, tsc value> tuple, 1547 * pvclock clock reads always increase at the (scaled) rate 1548 * of guest TSC - no need to deal with sampling errors. 1549 */ 1550 if (!use_master_clock) { 1551 if (max_kernel_ns > kernel_ns) 1552 kernel_ns = max_kernel_ns; 1553 } 1554 /* With all the info we got, fill in the values */ 1555 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 1556 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 1557 vcpu->last_kernel_ns = kernel_ns; 1558 vcpu->last_guest_tsc = tsc_timestamp; 1559 1560 /* 1561 * The interface expects us to write an even number signaling that the 1562 * update is finished. Since the guest won't see the intermediate 1563 * state, we just increase by 2 at the end. 1564 */ 1565 vcpu->hv_clock.version += 2; 1566 1567 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time, 1568 &guest_hv_clock, sizeof(guest_hv_clock)))) 1569 return 0; 1570 1571 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 1572 pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); 1573 1574 if (vcpu->pvclock_set_guest_stopped_request) { 1575 pvclock_flags |= PVCLOCK_GUEST_STOPPED; 1576 vcpu->pvclock_set_guest_stopped_request = false; 1577 } 1578 1579 /* If the host uses TSC clocksource, then it is stable */ 1580 if (use_master_clock) 1581 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 1582 1583 vcpu->hv_clock.flags = pvclock_flags; 1584 1585 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 1586 &vcpu->hv_clock, 1587 sizeof(vcpu->hv_clock)); 1588 return 0; 1589 } 1590 1591 static bool msr_mtrr_valid(unsigned msr) 1592 { 1593 switch (msr) { 1594 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1: 1595 case MSR_MTRRfix64K_00000: 1596 case MSR_MTRRfix16K_80000: 1597 case MSR_MTRRfix16K_A0000: 1598 case MSR_MTRRfix4K_C0000: 1599 case MSR_MTRRfix4K_C8000: 1600 case MSR_MTRRfix4K_D0000: 1601 case MSR_MTRRfix4K_D8000: 1602 case MSR_MTRRfix4K_E0000: 1603 case MSR_MTRRfix4K_E8000: 1604 case MSR_MTRRfix4K_F0000: 1605 case MSR_MTRRfix4K_F8000: 1606 case MSR_MTRRdefType: 1607 case MSR_IA32_CR_PAT: 1608 return true; 1609 case 0x2f8: 1610 return true; 1611 } 1612 return false; 1613 } 1614 1615 static bool valid_pat_type(unsigned t) 1616 { 1617 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */ 1618 } 1619 1620 static bool valid_mtrr_type(unsigned t) 1621 { 1622 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */ 1623 } 1624 1625 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1626 { 1627 int i; 1628 1629 if (!msr_mtrr_valid(msr)) 1630 return false; 1631 1632 if (msr == MSR_IA32_CR_PAT) { 1633 for (i = 0; i < 8; i++) 1634 if (!valid_pat_type((data >> (i * 8)) & 0xff)) 1635 return false; 1636 return true; 1637 } else if (msr == MSR_MTRRdefType) { 1638 if (data & ~0xcff) 1639 return false; 1640 return valid_mtrr_type(data & 0xff); 1641 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) { 1642 for (i = 0; i < 8 ; i++) 1643 if (!valid_mtrr_type((data >> (i * 8)) & 0xff)) 1644 return false; 1645 return true; 1646 } 1647 1648 /* variable MTRRs */ 1649 return valid_mtrr_type(data & 0xff); 1650 } 1651 1652 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1653 { 1654 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; 1655 1656 if (!mtrr_valid(vcpu, msr, data)) 1657 return 1; 1658 1659 if (msr == MSR_MTRRdefType) { 1660 vcpu->arch.mtrr_state.def_type = data; 1661 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10; 1662 } else if (msr == MSR_MTRRfix64K_00000) 1663 p[0] = data; 1664 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) 1665 p[1 + msr - MSR_MTRRfix16K_80000] = data; 1666 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) 1667 p[3 + msr - MSR_MTRRfix4K_C0000] = data; 1668 else if (msr == MSR_IA32_CR_PAT) 1669 vcpu->arch.pat = data; 1670 else { /* Variable MTRRs */ 1671 int idx, is_mtrr_mask; 1672 u64 *pt; 1673 1674 idx = (msr - 0x200) / 2; 1675 is_mtrr_mask = msr - 0x200 - 2 * idx; 1676 if (!is_mtrr_mask) 1677 pt = 1678 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; 1679 else 1680 pt = 1681 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; 1682 *pt = data; 1683 } 1684 1685 kvm_mmu_reset_context(vcpu); 1686 return 0; 1687 } 1688 1689 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1690 { 1691 u64 mcg_cap = vcpu->arch.mcg_cap; 1692 unsigned bank_num = mcg_cap & 0xff; 1693 1694 switch (msr) { 1695 case MSR_IA32_MCG_STATUS: 1696 vcpu->arch.mcg_status = data; 1697 break; 1698 case MSR_IA32_MCG_CTL: 1699 if (!(mcg_cap & MCG_CTL_P)) 1700 return 1; 1701 if (data != 0 && data != ~(u64)0) 1702 return -1; 1703 vcpu->arch.mcg_ctl = data; 1704 break; 1705 default: 1706 if (msr >= MSR_IA32_MC0_CTL && 1707 msr < MSR_IA32_MC0_CTL + 4 * bank_num) { 1708 u32 offset = msr - MSR_IA32_MC0_CTL; 1709 /* only 0 or all 1s can be written to IA32_MCi_CTL 1710 * some Linux kernels though clear bit 10 in bank 4 to 1711 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 1712 * this to avoid an uncatched #GP in the guest 1713 */ 1714 if ((offset & 0x3) == 0 && 1715 data != 0 && (data | (1 << 10)) != ~(u64)0) 1716 return -1; 1717 vcpu->arch.mce_banks[offset] = data; 1718 break; 1719 } 1720 return 1; 1721 } 1722 return 0; 1723 } 1724 1725 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) 1726 { 1727 struct kvm *kvm = vcpu->kvm; 1728 int lm = is_long_mode(vcpu); 1729 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 1730 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; 1731 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 1732 : kvm->arch.xen_hvm_config.blob_size_32; 1733 u32 page_num = data & ~PAGE_MASK; 1734 u64 page_addr = data & PAGE_MASK; 1735 u8 *page; 1736 int r; 1737 1738 r = -E2BIG; 1739 if (page_num >= blob_size) 1740 goto out; 1741 r = -ENOMEM; 1742 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); 1743 if (IS_ERR(page)) { 1744 r = PTR_ERR(page); 1745 goto out; 1746 } 1747 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE)) 1748 goto out_free; 1749 r = 0; 1750 out_free: 1751 kfree(page); 1752 out: 1753 return r; 1754 } 1755 1756 static bool kvm_hv_hypercall_enabled(struct kvm *kvm) 1757 { 1758 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE; 1759 } 1760 1761 static bool kvm_hv_msr_partition_wide(u32 msr) 1762 { 1763 bool r = false; 1764 switch (msr) { 1765 case HV_X64_MSR_GUEST_OS_ID: 1766 case HV_X64_MSR_HYPERCALL: 1767 r = true; 1768 break; 1769 } 1770 1771 return r; 1772 } 1773 1774 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1775 { 1776 struct kvm *kvm = vcpu->kvm; 1777 1778 switch (msr) { 1779 case HV_X64_MSR_GUEST_OS_ID: 1780 kvm->arch.hv_guest_os_id = data; 1781 /* setting guest os id to zero disables hypercall page */ 1782 if (!kvm->arch.hv_guest_os_id) 1783 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE; 1784 break; 1785 case HV_X64_MSR_HYPERCALL: { 1786 u64 gfn; 1787 unsigned long addr; 1788 u8 instructions[4]; 1789 1790 /* if guest os id is not set hypercall should remain disabled */ 1791 if (!kvm->arch.hv_guest_os_id) 1792 break; 1793 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) { 1794 kvm->arch.hv_hypercall = data; 1795 break; 1796 } 1797 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT; 1798 addr = gfn_to_hva(kvm, gfn); 1799 if (kvm_is_error_hva(addr)) 1800 return 1; 1801 kvm_x86_ops->patch_hypercall(vcpu, instructions); 1802 ((unsigned char *)instructions)[3] = 0xc3; /* ret */ 1803 if (__copy_to_user((void __user *)addr, instructions, 4)) 1804 return 1; 1805 kvm->arch.hv_hypercall = data; 1806 break; 1807 } 1808 default: 1809 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " 1810 "data 0x%llx\n", msr, data); 1811 return 1; 1812 } 1813 return 0; 1814 } 1815 1816 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1817 { 1818 switch (msr) { 1819 case HV_X64_MSR_APIC_ASSIST_PAGE: { 1820 unsigned long addr; 1821 1822 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) { 1823 vcpu->arch.hv_vapic = data; 1824 break; 1825 } 1826 addr = gfn_to_hva(vcpu->kvm, data >> 1827 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT); 1828 if (kvm_is_error_hva(addr)) 1829 return 1; 1830 if (__clear_user((void __user *)addr, PAGE_SIZE)) 1831 return 1; 1832 vcpu->arch.hv_vapic = data; 1833 break; 1834 } 1835 case HV_X64_MSR_EOI: 1836 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data); 1837 case HV_X64_MSR_ICR: 1838 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data); 1839 case HV_X64_MSR_TPR: 1840 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data); 1841 default: 1842 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " 1843 "data 0x%llx\n", msr, data); 1844 return 1; 1845 } 1846 1847 return 0; 1848 } 1849 1850 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 1851 { 1852 gpa_t gpa = data & ~0x3f; 1853 1854 /* Bits 2:5 are reserved, Should be zero */ 1855 if (data & 0x3c) 1856 return 1; 1857 1858 vcpu->arch.apf.msr_val = data; 1859 1860 if (!(data & KVM_ASYNC_PF_ENABLED)) { 1861 kvm_clear_async_pf_completion_queue(vcpu); 1862 kvm_async_pf_hash_reset(vcpu); 1863 return 0; 1864 } 1865 1866 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 1867 sizeof(u32))) 1868 return 1; 1869 1870 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 1871 kvm_async_pf_wakeup_all(vcpu); 1872 return 0; 1873 } 1874 1875 static void kvmclock_reset(struct kvm_vcpu *vcpu) 1876 { 1877 vcpu->arch.pv_time_enabled = false; 1878 } 1879 1880 static void accumulate_steal_time(struct kvm_vcpu *vcpu) 1881 { 1882 u64 delta; 1883 1884 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 1885 return; 1886 1887 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal; 1888 vcpu->arch.st.last_steal = current->sched_info.run_delay; 1889 vcpu->arch.st.accum_steal = delta; 1890 } 1891 1892 static void record_steal_time(struct kvm_vcpu *vcpu) 1893 { 1894 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 1895 return; 1896 1897 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 1898 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)))) 1899 return; 1900 1901 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal; 1902 vcpu->arch.st.steal.version += 2; 1903 vcpu->arch.st.accum_steal = 0; 1904 1905 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 1906 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 1907 } 1908 1909 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1910 { 1911 bool pr = false; 1912 u32 msr = msr_info->index; 1913 u64 data = msr_info->data; 1914 1915 switch (msr) { 1916 case MSR_AMD64_NB_CFG: 1917 case MSR_IA32_UCODE_REV: 1918 case MSR_IA32_UCODE_WRITE: 1919 case MSR_VM_HSAVE_PA: 1920 case MSR_AMD64_PATCH_LOADER: 1921 case MSR_AMD64_BU_CFG2: 1922 break; 1923 1924 case MSR_EFER: 1925 return set_efer(vcpu, data); 1926 case MSR_K7_HWCR: 1927 data &= ~(u64)0x40; /* ignore flush filter disable */ 1928 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 1929 data &= ~(u64)0x8; /* ignore TLB cache disable */ 1930 if (data != 0) { 1931 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 1932 data); 1933 return 1; 1934 } 1935 break; 1936 case MSR_FAM10H_MMIO_CONF_BASE: 1937 if (data != 0) { 1938 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 1939 "0x%llx\n", data); 1940 return 1; 1941 } 1942 break; 1943 case MSR_IA32_DEBUGCTLMSR: 1944 if (!data) { 1945 /* We support the non-activated case already */ 1946 break; 1947 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { 1948 /* Values other than LBR and BTF are vendor-specific, 1949 thus reserved and should throw a #GP */ 1950 return 1; 1951 } 1952 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", 1953 __func__, data); 1954 break; 1955 case 0x200 ... 0x2ff: 1956 return set_msr_mtrr(vcpu, msr, data); 1957 case MSR_IA32_APICBASE: 1958 kvm_set_apic_base(vcpu, data); 1959 break; 1960 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 1961 return kvm_x2apic_msr_write(vcpu, msr, data); 1962 case MSR_IA32_TSCDEADLINE: 1963 kvm_set_lapic_tscdeadline_msr(vcpu, data); 1964 break; 1965 case MSR_IA32_TSC_ADJUST: 1966 if (guest_cpuid_has_tsc_adjust(vcpu)) { 1967 if (!msr_info->host_initiated) { 1968 u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 1969 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true); 1970 } 1971 vcpu->arch.ia32_tsc_adjust_msr = data; 1972 } 1973 break; 1974 case MSR_IA32_MISC_ENABLE: 1975 vcpu->arch.ia32_misc_enable_msr = data; 1976 break; 1977 case MSR_KVM_WALL_CLOCK_NEW: 1978 case MSR_KVM_WALL_CLOCK: 1979 vcpu->kvm->arch.wall_clock = data; 1980 kvm_write_wall_clock(vcpu->kvm, data); 1981 break; 1982 case MSR_KVM_SYSTEM_TIME_NEW: 1983 case MSR_KVM_SYSTEM_TIME: { 1984 u64 gpa_offset; 1985 kvmclock_reset(vcpu); 1986 1987 vcpu->arch.time = data; 1988 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 1989 1990 /* we verify if the enable bit is set... */ 1991 if (!(data & 1)) 1992 break; 1993 1994 gpa_offset = data & ~(PAGE_MASK | 1); 1995 1996 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 1997 &vcpu->arch.pv_time, data & ~1ULL, 1998 sizeof(struct pvclock_vcpu_time_info))) 1999 vcpu->arch.pv_time_enabled = false; 2000 else 2001 vcpu->arch.pv_time_enabled = true; 2002 2003 break; 2004 } 2005 case MSR_KVM_ASYNC_PF_EN: 2006 if (kvm_pv_enable_async_pf(vcpu, data)) 2007 return 1; 2008 break; 2009 case MSR_KVM_STEAL_TIME: 2010 2011 if (unlikely(!sched_info_on())) 2012 return 1; 2013 2014 if (data & KVM_STEAL_RESERVED_MASK) 2015 return 1; 2016 2017 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime, 2018 data & KVM_STEAL_VALID_BITS, 2019 sizeof(struct kvm_steal_time))) 2020 return 1; 2021 2022 vcpu->arch.st.msr_val = data; 2023 2024 if (!(data & KVM_MSR_ENABLED)) 2025 break; 2026 2027 vcpu->arch.st.last_steal = current->sched_info.run_delay; 2028 2029 preempt_disable(); 2030 accumulate_steal_time(vcpu); 2031 preempt_enable(); 2032 2033 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2034 2035 break; 2036 case MSR_KVM_PV_EOI_EN: 2037 if (kvm_lapic_enable_pv_eoi(vcpu, data)) 2038 return 1; 2039 break; 2040 2041 case MSR_IA32_MCG_CTL: 2042 case MSR_IA32_MCG_STATUS: 2043 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: 2044 return set_msr_mce(vcpu, msr, data); 2045 2046 /* Performance counters are not protected by a CPUID bit, 2047 * so we should check all of them in the generic path for the sake of 2048 * cross vendor migration. 2049 * Writing a zero into the event select MSRs disables them, 2050 * which we perfectly emulate ;-). Any other value should be at least 2051 * reported, some guests depend on them. 2052 */ 2053 case MSR_K7_EVNTSEL0: 2054 case MSR_K7_EVNTSEL1: 2055 case MSR_K7_EVNTSEL2: 2056 case MSR_K7_EVNTSEL3: 2057 if (data != 0) 2058 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " 2059 "0x%x data 0x%llx\n", msr, data); 2060 break; 2061 /* at least RHEL 4 unconditionally writes to the perfctr registers, 2062 * so we ignore writes to make it happy. 2063 */ 2064 case MSR_K7_PERFCTR0: 2065 case MSR_K7_PERFCTR1: 2066 case MSR_K7_PERFCTR2: 2067 case MSR_K7_PERFCTR3: 2068 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " 2069 "0x%x data 0x%llx\n", msr, data); 2070 break; 2071 case MSR_P6_PERFCTR0: 2072 case MSR_P6_PERFCTR1: 2073 pr = true; 2074 case MSR_P6_EVNTSEL0: 2075 case MSR_P6_EVNTSEL1: 2076 if (kvm_pmu_msr(vcpu, msr)) 2077 return kvm_pmu_set_msr(vcpu, msr_info); 2078 2079 if (pr || data != 0) 2080 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 2081 "0x%x data 0x%llx\n", msr, data); 2082 break; 2083 case MSR_K7_CLK_CTL: 2084 /* 2085 * Ignore all writes to this no longer documented MSR. 2086 * Writes are only relevant for old K7 processors, 2087 * all pre-dating SVM, but a recommended workaround from 2088 * AMD for these chips. It is possible to specify the 2089 * affected processor models on the command line, hence 2090 * the need to ignore the workaround. 2091 */ 2092 break; 2093 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2094 if (kvm_hv_msr_partition_wide(msr)) { 2095 int r; 2096 mutex_lock(&vcpu->kvm->lock); 2097 r = set_msr_hyperv_pw(vcpu, msr, data); 2098 mutex_unlock(&vcpu->kvm->lock); 2099 return r; 2100 } else 2101 return set_msr_hyperv(vcpu, msr, data); 2102 break; 2103 case MSR_IA32_BBL_CR_CTL3: 2104 /* Drop writes to this legacy MSR -- see rdmsr 2105 * counterpart for further detail. 2106 */ 2107 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data); 2108 break; 2109 case MSR_AMD64_OSVW_ID_LENGTH: 2110 if (!guest_cpuid_has_osvw(vcpu)) 2111 return 1; 2112 vcpu->arch.osvw.length = data; 2113 break; 2114 case MSR_AMD64_OSVW_STATUS: 2115 if (!guest_cpuid_has_osvw(vcpu)) 2116 return 1; 2117 vcpu->arch.osvw.status = data; 2118 break; 2119 default: 2120 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) 2121 return xen_hvm_config(vcpu, data); 2122 if (kvm_pmu_msr(vcpu, msr)) 2123 return kvm_pmu_set_msr(vcpu, msr_info); 2124 if (!ignore_msrs) { 2125 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", 2126 msr, data); 2127 return 1; 2128 } else { 2129 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", 2130 msr, data); 2131 break; 2132 } 2133 } 2134 return 0; 2135 } 2136 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 2137 2138 2139 /* 2140 * Reads an msr value (of 'msr_index') into 'pdata'. 2141 * Returns 0 on success, non-0 otherwise. 2142 * Assumes vcpu_load() was already called. 2143 */ 2144 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) 2145 { 2146 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata); 2147 } 2148 2149 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2150 { 2151 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; 2152 2153 if (!msr_mtrr_valid(msr)) 2154 return 1; 2155 2156 if (msr == MSR_MTRRdefType) 2157 *pdata = vcpu->arch.mtrr_state.def_type + 2158 (vcpu->arch.mtrr_state.enabled << 10); 2159 else if (msr == MSR_MTRRfix64K_00000) 2160 *pdata = p[0]; 2161 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) 2162 *pdata = p[1 + msr - MSR_MTRRfix16K_80000]; 2163 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) 2164 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000]; 2165 else if (msr == MSR_IA32_CR_PAT) 2166 *pdata = vcpu->arch.pat; 2167 else { /* Variable MTRRs */ 2168 int idx, is_mtrr_mask; 2169 u64 *pt; 2170 2171 idx = (msr - 0x200) / 2; 2172 is_mtrr_mask = msr - 0x200 - 2 * idx; 2173 if (!is_mtrr_mask) 2174 pt = 2175 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; 2176 else 2177 pt = 2178 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; 2179 *pdata = *pt; 2180 } 2181 2182 return 0; 2183 } 2184 2185 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2186 { 2187 u64 data; 2188 u64 mcg_cap = vcpu->arch.mcg_cap; 2189 unsigned bank_num = mcg_cap & 0xff; 2190 2191 switch (msr) { 2192 case MSR_IA32_P5_MC_ADDR: 2193 case MSR_IA32_P5_MC_TYPE: 2194 data = 0; 2195 break; 2196 case MSR_IA32_MCG_CAP: 2197 data = vcpu->arch.mcg_cap; 2198 break; 2199 case MSR_IA32_MCG_CTL: 2200 if (!(mcg_cap & MCG_CTL_P)) 2201 return 1; 2202 data = vcpu->arch.mcg_ctl; 2203 break; 2204 case MSR_IA32_MCG_STATUS: 2205 data = vcpu->arch.mcg_status; 2206 break; 2207 default: 2208 if (msr >= MSR_IA32_MC0_CTL && 2209 msr < MSR_IA32_MC0_CTL + 4 * bank_num) { 2210 u32 offset = msr - MSR_IA32_MC0_CTL; 2211 data = vcpu->arch.mce_banks[offset]; 2212 break; 2213 } 2214 return 1; 2215 } 2216 *pdata = data; 2217 return 0; 2218 } 2219 2220 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2221 { 2222 u64 data = 0; 2223 struct kvm *kvm = vcpu->kvm; 2224 2225 switch (msr) { 2226 case HV_X64_MSR_GUEST_OS_ID: 2227 data = kvm->arch.hv_guest_os_id; 2228 break; 2229 case HV_X64_MSR_HYPERCALL: 2230 data = kvm->arch.hv_hypercall; 2231 break; 2232 default: 2233 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); 2234 return 1; 2235 } 2236 2237 *pdata = data; 2238 return 0; 2239 } 2240 2241 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2242 { 2243 u64 data = 0; 2244 2245 switch (msr) { 2246 case HV_X64_MSR_VP_INDEX: { 2247 int r; 2248 struct kvm_vcpu *v; 2249 kvm_for_each_vcpu(r, v, vcpu->kvm) 2250 if (v == vcpu) 2251 data = r; 2252 break; 2253 } 2254 case HV_X64_MSR_EOI: 2255 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata); 2256 case HV_X64_MSR_ICR: 2257 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata); 2258 case HV_X64_MSR_TPR: 2259 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata); 2260 case HV_X64_MSR_APIC_ASSIST_PAGE: 2261 data = vcpu->arch.hv_vapic; 2262 break; 2263 default: 2264 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); 2265 return 1; 2266 } 2267 *pdata = data; 2268 return 0; 2269 } 2270 2271 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2272 { 2273 u64 data; 2274 2275 switch (msr) { 2276 case MSR_IA32_PLATFORM_ID: 2277 case MSR_IA32_EBL_CR_POWERON: 2278 case MSR_IA32_DEBUGCTLMSR: 2279 case MSR_IA32_LASTBRANCHFROMIP: 2280 case MSR_IA32_LASTBRANCHTOIP: 2281 case MSR_IA32_LASTINTFROMIP: 2282 case MSR_IA32_LASTINTTOIP: 2283 case MSR_K8_SYSCFG: 2284 case MSR_K7_HWCR: 2285 case MSR_VM_HSAVE_PA: 2286 case MSR_K7_EVNTSEL0: 2287 case MSR_K7_PERFCTR0: 2288 case MSR_K8_INT_PENDING_MSG: 2289 case MSR_AMD64_NB_CFG: 2290 case MSR_FAM10H_MMIO_CONF_BASE: 2291 case MSR_AMD64_BU_CFG2: 2292 data = 0; 2293 break; 2294 case MSR_P6_PERFCTR0: 2295 case MSR_P6_PERFCTR1: 2296 case MSR_P6_EVNTSEL0: 2297 case MSR_P6_EVNTSEL1: 2298 if (kvm_pmu_msr(vcpu, msr)) 2299 return kvm_pmu_get_msr(vcpu, msr, pdata); 2300 data = 0; 2301 break; 2302 case MSR_IA32_UCODE_REV: 2303 data = 0x100000000ULL; 2304 break; 2305 case MSR_MTRRcap: 2306 data = 0x500 | KVM_NR_VAR_MTRR; 2307 break; 2308 case 0x200 ... 0x2ff: 2309 return get_msr_mtrr(vcpu, msr, pdata); 2310 case 0xcd: /* fsb frequency */ 2311 data = 3; 2312 break; 2313 /* 2314 * MSR_EBC_FREQUENCY_ID 2315 * Conservative value valid for even the basic CPU models. 2316 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 2317 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 2318 * and 266MHz for model 3, or 4. Set Core Clock 2319 * Frequency to System Bus Frequency Ratio to 1 (bits 2320 * 31:24) even though these are only valid for CPU 2321 * models > 2, however guests may end up dividing or 2322 * multiplying by zero otherwise. 2323 */ 2324 case MSR_EBC_FREQUENCY_ID: 2325 data = 1 << 24; 2326 break; 2327 case MSR_IA32_APICBASE: 2328 data = kvm_get_apic_base(vcpu); 2329 break; 2330 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2331 return kvm_x2apic_msr_read(vcpu, msr, pdata); 2332 break; 2333 case MSR_IA32_TSCDEADLINE: 2334 data = kvm_get_lapic_tscdeadline_msr(vcpu); 2335 break; 2336 case MSR_IA32_TSC_ADJUST: 2337 data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 2338 break; 2339 case MSR_IA32_MISC_ENABLE: 2340 data = vcpu->arch.ia32_misc_enable_msr; 2341 break; 2342 case MSR_IA32_PERF_STATUS: 2343 /* TSC increment by tick */ 2344 data = 1000ULL; 2345 /* CPU multiplier */ 2346 data |= (((uint64_t)4ULL) << 40); 2347 break; 2348 case MSR_EFER: 2349 data = vcpu->arch.efer; 2350 break; 2351 case MSR_KVM_WALL_CLOCK: 2352 case MSR_KVM_WALL_CLOCK_NEW: 2353 data = vcpu->kvm->arch.wall_clock; 2354 break; 2355 case MSR_KVM_SYSTEM_TIME: 2356 case MSR_KVM_SYSTEM_TIME_NEW: 2357 data = vcpu->arch.time; 2358 break; 2359 case MSR_KVM_ASYNC_PF_EN: 2360 data = vcpu->arch.apf.msr_val; 2361 break; 2362 case MSR_KVM_STEAL_TIME: 2363 data = vcpu->arch.st.msr_val; 2364 break; 2365 case MSR_KVM_PV_EOI_EN: 2366 data = vcpu->arch.pv_eoi.msr_val; 2367 break; 2368 case MSR_IA32_P5_MC_ADDR: 2369 case MSR_IA32_P5_MC_TYPE: 2370 case MSR_IA32_MCG_CAP: 2371 case MSR_IA32_MCG_CTL: 2372 case MSR_IA32_MCG_STATUS: 2373 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: 2374 return get_msr_mce(vcpu, msr, pdata); 2375 case MSR_K7_CLK_CTL: 2376 /* 2377 * Provide expected ramp-up count for K7. All other 2378 * are set to zero, indicating minimum divisors for 2379 * every field. 2380 * 2381 * This prevents guest kernels on AMD host with CPU 2382 * type 6, model 8 and higher from exploding due to 2383 * the rdmsr failing. 2384 */ 2385 data = 0x20000000; 2386 break; 2387 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2388 if (kvm_hv_msr_partition_wide(msr)) { 2389 int r; 2390 mutex_lock(&vcpu->kvm->lock); 2391 r = get_msr_hyperv_pw(vcpu, msr, pdata); 2392 mutex_unlock(&vcpu->kvm->lock); 2393 return r; 2394 } else 2395 return get_msr_hyperv(vcpu, msr, pdata); 2396 break; 2397 case MSR_IA32_BBL_CR_CTL3: 2398 /* This legacy MSR exists but isn't fully documented in current 2399 * silicon. It is however accessed by winxp in very narrow 2400 * scenarios where it sets bit #19, itself documented as 2401 * a "reserved" bit. Best effort attempt to source coherent 2402 * read data here should the balance of the register be 2403 * interpreted by the guest: 2404 * 2405 * L2 cache control register 3: 64GB range, 256KB size, 2406 * enabled, latency 0x1, configured 2407 */ 2408 data = 0xbe702111; 2409 break; 2410 case MSR_AMD64_OSVW_ID_LENGTH: 2411 if (!guest_cpuid_has_osvw(vcpu)) 2412 return 1; 2413 data = vcpu->arch.osvw.length; 2414 break; 2415 case MSR_AMD64_OSVW_STATUS: 2416 if (!guest_cpuid_has_osvw(vcpu)) 2417 return 1; 2418 data = vcpu->arch.osvw.status; 2419 break; 2420 default: 2421 if (kvm_pmu_msr(vcpu, msr)) 2422 return kvm_pmu_get_msr(vcpu, msr, pdata); 2423 if (!ignore_msrs) { 2424 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr); 2425 return 1; 2426 } else { 2427 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr); 2428 data = 0; 2429 } 2430 break; 2431 } 2432 *pdata = data; 2433 return 0; 2434 } 2435 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 2436 2437 /* 2438 * Read or write a bunch of msrs. All parameters are kernel addresses. 2439 * 2440 * @return number of msrs set successfully. 2441 */ 2442 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 2443 struct kvm_msr_entry *entries, 2444 int (*do_msr)(struct kvm_vcpu *vcpu, 2445 unsigned index, u64 *data)) 2446 { 2447 int i, idx; 2448 2449 idx = srcu_read_lock(&vcpu->kvm->srcu); 2450 for (i = 0; i < msrs->nmsrs; ++i) 2451 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 2452 break; 2453 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2454 2455 return i; 2456 } 2457 2458 /* 2459 * Read or write a bunch of msrs. Parameters are user addresses. 2460 * 2461 * @return number of msrs set successfully. 2462 */ 2463 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 2464 int (*do_msr)(struct kvm_vcpu *vcpu, 2465 unsigned index, u64 *data), 2466 int writeback) 2467 { 2468 struct kvm_msrs msrs; 2469 struct kvm_msr_entry *entries; 2470 int r, n; 2471 unsigned size; 2472 2473 r = -EFAULT; 2474 if (copy_from_user(&msrs, user_msrs, sizeof msrs)) 2475 goto out; 2476 2477 r = -E2BIG; 2478 if (msrs.nmsrs >= MAX_IO_MSRS) 2479 goto out; 2480 2481 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 2482 entries = memdup_user(user_msrs->entries, size); 2483 if (IS_ERR(entries)) { 2484 r = PTR_ERR(entries); 2485 goto out; 2486 } 2487 2488 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 2489 if (r < 0) 2490 goto out_free; 2491 2492 r = -EFAULT; 2493 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 2494 goto out_free; 2495 2496 r = n; 2497 2498 out_free: 2499 kfree(entries); 2500 out: 2501 return r; 2502 } 2503 2504 int kvm_dev_ioctl_check_extension(long ext) 2505 { 2506 int r; 2507 2508 switch (ext) { 2509 case KVM_CAP_IRQCHIP: 2510 case KVM_CAP_HLT: 2511 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 2512 case KVM_CAP_SET_TSS_ADDR: 2513 case KVM_CAP_EXT_CPUID: 2514 case KVM_CAP_CLOCKSOURCE: 2515 case KVM_CAP_PIT: 2516 case KVM_CAP_NOP_IO_DELAY: 2517 case KVM_CAP_MP_STATE: 2518 case KVM_CAP_SYNC_MMU: 2519 case KVM_CAP_USER_NMI: 2520 case KVM_CAP_REINJECT_CONTROL: 2521 case KVM_CAP_IRQ_INJECT_STATUS: 2522 case KVM_CAP_IRQFD: 2523 case KVM_CAP_IOEVENTFD: 2524 case KVM_CAP_PIT2: 2525 case KVM_CAP_PIT_STATE2: 2526 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 2527 case KVM_CAP_XEN_HVM: 2528 case KVM_CAP_ADJUST_CLOCK: 2529 case KVM_CAP_VCPU_EVENTS: 2530 case KVM_CAP_HYPERV: 2531 case KVM_CAP_HYPERV_VAPIC: 2532 case KVM_CAP_HYPERV_SPIN: 2533 case KVM_CAP_PCI_SEGMENT: 2534 case KVM_CAP_DEBUGREGS: 2535 case KVM_CAP_X86_ROBUST_SINGLESTEP: 2536 case KVM_CAP_XSAVE: 2537 case KVM_CAP_ASYNC_PF: 2538 case KVM_CAP_GET_TSC_KHZ: 2539 case KVM_CAP_KVMCLOCK_CTRL: 2540 case KVM_CAP_READONLY_MEM: 2541 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT 2542 case KVM_CAP_ASSIGN_DEV_IRQ: 2543 case KVM_CAP_PCI_2_3: 2544 #endif 2545 r = 1; 2546 break; 2547 case KVM_CAP_COALESCED_MMIO: 2548 r = KVM_COALESCED_MMIO_PAGE_OFFSET; 2549 break; 2550 case KVM_CAP_VAPIC: 2551 r = !kvm_x86_ops->cpu_has_accelerated_tpr(); 2552 break; 2553 case KVM_CAP_NR_VCPUS: 2554 r = KVM_SOFT_MAX_VCPUS; 2555 break; 2556 case KVM_CAP_MAX_VCPUS: 2557 r = KVM_MAX_VCPUS; 2558 break; 2559 case KVM_CAP_NR_MEMSLOTS: 2560 r = KVM_USER_MEM_SLOTS; 2561 break; 2562 case KVM_CAP_PV_MMU: /* obsolete */ 2563 r = 0; 2564 break; 2565 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT 2566 case KVM_CAP_IOMMU: 2567 r = iommu_present(&pci_bus_type); 2568 break; 2569 #endif 2570 case KVM_CAP_MCE: 2571 r = KVM_MAX_MCE_BANKS; 2572 break; 2573 case KVM_CAP_XCRS: 2574 r = cpu_has_xsave; 2575 break; 2576 case KVM_CAP_TSC_CONTROL: 2577 r = kvm_has_tsc_control; 2578 break; 2579 case KVM_CAP_TSC_DEADLINE_TIMER: 2580 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER); 2581 break; 2582 default: 2583 r = 0; 2584 break; 2585 } 2586 return r; 2587 2588 } 2589 2590 long kvm_arch_dev_ioctl(struct file *filp, 2591 unsigned int ioctl, unsigned long arg) 2592 { 2593 void __user *argp = (void __user *)arg; 2594 long r; 2595 2596 switch (ioctl) { 2597 case KVM_GET_MSR_INDEX_LIST: { 2598 struct kvm_msr_list __user *user_msr_list = argp; 2599 struct kvm_msr_list msr_list; 2600 unsigned n; 2601 2602 r = -EFAULT; 2603 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) 2604 goto out; 2605 n = msr_list.nmsrs; 2606 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs); 2607 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) 2608 goto out; 2609 r = -E2BIG; 2610 if (n < msr_list.nmsrs) 2611 goto out; 2612 r = -EFAULT; 2613 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 2614 num_msrs_to_save * sizeof(u32))) 2615 goto out; 2616 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 2617 &emulated_msrs, 2618 ARRAY_SIZE(emulated_msrs) * sizeof(u32))) 2619 goto out; 2620 r = 0; 2621 break; 2622 } 2623 case KVM_GET_SUPPORTED_CPUID: { 2624 struct kvm_cpuid2 __user *cpuid_arg = argp; 2625 struct kvm_cpuid2 cpuid; 2626 2627 r = -EFAULT; 2628 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2629 goto out; 2630 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid, 2631 cpuid_arg->entries); 2632 if (r) 2633 goto out; 2634 2635 r = -EFAULT; 2636 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 2637 goto out; 2638 r = 0; 2639 break; 2640 } 2641 case KVM_X86_GET_MCE_CAP_SUPPORTED: { 2642 u64 mce_cap; 2643 2644 mce_cap = KVM_MCE_CAP_SUPPORTED; 2645 r = -EFAULT; 2646 if (copy_to_user(argp, &mce_cap, sizeof mce_cap)) 2647 goto out; 2648 r = 0; 2649 break; 2650 } 2651 default: 2652 r = -EINVAL; 2653 } 2654 out: 2655 return r; 2656 } 2657 2658 static void wbinvd_ipi(void *garbage) 2659 { 2660 wbinvd(); 2661 } 2662 2663 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 2664 { 2665 return vcpu->kvm->arch.iommu_domain && 2666 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY); 2667 } 2668 2669 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 2670 { 2671 /* Address WBINVD may be executed by guest */ 2672 if (need_emulate_wbinvd(vcpu)) { 2673 if (kvm_x86_ops->has_wbinvd_exit()) 2674 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 2675 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 2676 smp_call_function_single(vcpu->cpu, 2677 wbinvd_ipi, NULL, 1); 2678 } 2679 2680 kvm_x86_ops->vcpu_load(vcpu, cpu); 2681 2682 /* Apply any externally detected TSC adjustments (due to suspend) */ 2683 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 2684 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 2685 vcpu->arch.tsc_offset_adjustment = 0; 2686 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 2687 } 2688 2689 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) { 2690 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 2691 native_read_tsc() - vcpu->arch.last_host_tsc; 2692 if (tsc_delta < 0) 2693 mark_tsc_unstable("KVM discovered backwards TSC"); 2694 if (check_tsc_unstable()) { 2695 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu, 2696 vcpu->arch.last_guest_tsc); 2697 kvm_x86_ops->write_tsc_offset(vcpu, offset); 2698 vcpu->arch.tsc_catchup = 1; 2699 } 2700 /* 2701 * On a host with synchronized TSC, there is no need to update 2702 * kvmclock on vcpu->cpu migration 2703 */ 2704 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 2705 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2706 if (vcpu->cpu != cpu) 2707 kvm_migrate_timers(vcpu); 2708 vcpu->cpu = cpu; 2709 } 2710 2711 accumulate_steal_time(vcpu); 2712 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2713 } 2714 2715 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 2716 { 2717 kvm_x86_ops->vcpu_put(vcpu); 2718 kvm_put_guest_fpu(vcpu); 2719 vcpu->arch.last_host_tsc = native_read_tsc(); 2720 } 2721 2722 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 2723 struct kvm_lapic_state *s) 2724 { 2725 kvm_x86_ops->sync_pir_to_irr(vcpu); 2726 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s); 2727 2728 return 0; 2729 } 2730 2731 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 2732 struct kvm_lapic_state *s) 2733 { 2734 kvm_apic_post_state_restore(vcpu, s); 2735 update_cr8_intercept(vcpu); 2736 2737 return 0; 2738 } 2739 2740 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 2741 struct kvm_interrupt *irq) 2742 { 2743 if (irq->irq >= KVM_NR_INTERRUPTS) 2744 return -EINVAL; 2745 if (irqchip_in_kernel(vcpu->kvm)) 2746 return -ENXIO; 2747 2748 kvm_queue_interrupt(vcpu, irq->irq, false); 2749 kvm_make_request(KVM_REQ_EVENT, vcpu); 2750 2751 return 0; 2752 } 2753 2754 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 2755 { 2756 kvm_inject_nmi(vcpu); 2757 2758 return 0; 2759 } 2760 2761 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 2762 struct kvm_tpr_access_ctl *tac) 2763 { 2764 if (tac->flags) 2765 return -EINVAL; 2766 vcpu->arch.tpr_access_reporting = !!tac->enabled; 2767 return 0; 2768 } 2769 2770 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 2771 u64 mcg_cap) 2772 { 2773 int r; 2774 unsigned bank_num = mcg_cap & 0xff, bank; 2775 2776 r = -EINVAL; 2777 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) 2778 goto out; 2779 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000)) 2780 goto out; 2781 r = 0; 2782 vcpu->arch.mcg_cap = mcg_cap; 2783 /* Init IA32_MCG_CTL to all 1s */ 2784 if (mcg_cap & MCG_CTL_P) 2785 vcpu->arch.mcg_ctl = ~(u64)0; 2786 /* Init IA32_MCi_CTL to all 1s */ 2787 for (bank = 0; bank < bank_num; bank++) 2788 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 2789 out: 2790 return r; 2791 } 2792 2793 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 2794 struct kvm_x86_mce *mce) 2795 { 2796 u64 mcg_cap = vcpu->arch.mcg_cap; 2797 unsigned bank_num = mcg_cap & 0xff; 2798 u64 *banks = vcpu->arch.mce_banks; 2799 2800 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 2801 return -EINVAL; 2802 /* 2803 * if IA32_MCG_CTL is not all 1s, the uncorrected error 2804 * reporting is disabled 2805 */ 2806 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 2807 vcpu->arch.mcg_ctl != ~(u64)0) 2808 return 0; 2809 banks += 4 * mce->bank; 2810 /* 2811 * if IA32_MCi_CTL is not all 1s, the uncorrected error 2812 * reporting is disabled for the bank 2813 */ 2814 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 2815 return 0; 2816 if (mce->status & MCI_STATUS_UC) { 2817 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 2818 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 2819 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 2820 return 0; 2821 } 2822 if (banks[1] & MCI_STATUS_VAL) 2823 mce->status |= MCI_STATUS_OVER; 2824 banks[2] = mce->addr; 2825 banks[3] = mce->misc; 2826 vcpu->arch.mcg_status = mce->mcg_status; 2827 banks[1] = mce->status; 2828 kvm_queue_exception(vcpu, MC_VECTOR); 2829 } else if (!(banks[1] & MCI_STATUS_VAL) 2830 || !(banks[1] & MCI_STATUS_UC)) { 2831 if (banks[1] & MCI_STATUS_VAL) 2832 mce->status |= MCI_STATUS_OVER; 2833 banks[2] = mce->addr; 2834 banks[3] = mce->misc; 2835 banks[1] = mce->status; 2836 } else 2837 banks[1] |= MCI_STATUS_OVER; 2838 return 0; 2839 } 2840 2841 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 2842 struct kvm_vcpu_events *events) 2843 { 2844 process_nmi(vcpu); 2845 events->exception.injected = 2846 vcpu->arch.exception.pending && 2847 !kvm_exception_is_soft(vcpu->arch.exception.nr); 2848 events->exception.nr = vcpu->arch.exception.nr; 2849 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 2850 events->exception.pad = 0; 2851 events->exception.error_code = vcpu->arch.exception.error_code; 2852 2853 events->interrupt.injected = 2854 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft; 2855 events->interrupt.nr = vcpu->arch.interrupt.nr; 2856 events->interrupt.soft = 0; 2857 events->interrupt.shadow = 2858 kvm_x86_ops->get_interrupt_shadow(vcpu, 2859 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI); 2860 2861 events->nmi.injected = vcpu->arch.nmi_injected; 2862 events->nmi.pending = vcpu->arch.nmi_pending != 0; 2863 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); 2864 events->nmi.pad = 0; 2865 2866 events->sipi_vector = 0; /* never valid when reporting to user space */ 2867 2868 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 2869 | KVM_VCPUEVENT_VALID_SHADOW); 2870 memset(&events->reserved, 0, sizeof(events->reserved)); 2871 } 2872 2873 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 2874 struct kvm_vcpu_events *events) 2875 { 2876 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 2877 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 2878 | KVM_VCPUEVENT_VALID_SHADOW)) 2879 return -EINVAL; 2880 2881 process_nmi(vcpu); 2882 vcpu->arch.exception.pending = events->exception.injected; 2883 vcpu->arch.exception.nr = events->exception.nr; 2884 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 2885 vcpu->arch.exception.error_code = events->exception.error_code; 2886 2887 vcpu->arch.interrupt.pending = events->interrupt.injected; 2888 vcpu->arch.interrupt.nr = events->interrupt.nr; 2889 vcpu->arch.interrupt.soft = events->interrupt.soft; 2890 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 2891 kvm_x86_ops->set_interrupt_shadow(vcpu, 2892 events->interrupt.shadow); 2893 2894 vcpu->arch.nmi_injected = events->nmi.injected; 2895 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 2896 vcpu->arch.nmi_pending = events->nmi.pending; 2897 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); 2898 2899 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 2900 kvm_vcpu_has_lapic(vcpu)) 2901 vcpu->arch.apic->sipi_vector = events->sipi_vector; 2902 2903 kvm_make_request(KVM_REQ_EVENT, vcpu); 2904 2905 return 0; 2906 } 2907 2908 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 2909 struct kvm_debugregs *dbgregs) 2910 { 2911 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 2912 dbgregs->dr6 = vcpu->arch.dr6; 2913 dbgregs->dr7 = vcpu->arch.dr7; 2914 dbgregs->flags = 0; 2915 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 2916 } 2917 2918 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 2919 struct kvm_debugregs *dbgregs) 2920 { 2921 if (dbgregs->flags) 2922 return -EINVAL; 2923 2924 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 2925 vcpu->arch.dr6 = dbgregs->dr6; 2926 vcpu->arch.dr7 = dbgregs->dr7; 2927 2928 return 0; 2929 } 2930 2931 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 2932 struct kvm_xsave *guest_xsave) 2933 { 2934 if (cpu_has_xsave) 2935 memcpy(guest_xsave->region, 2936 &vcpu->arch.guest_fpu.state->xsave, 2937 xstate_size); 2938 else { 2939 memcpy(guest_xsave->region, 2940 &vcpu->arch.guest_fpu.state->fxsave, 2941 sizeof(struct i387_fxsave_struct)); 2942 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = 2943 XSTATE_FPSSE; 2944 } 2945 } 2946 2947 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 2948 struct kvm_xsave *guest_xsave) 2949 { 2950 u64 xstate_bv = 2951 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; 2952 2953 if (cpu_has_xsave) 2954 memcpy(&vcpu->arch.guest_fpu.state->xsave, 2955 guest_xsave->region, xstate_size); 2956 else { 2957 if (xstate_bv & ~XSTATE_FPSSE) 2958 return -EINVAL; 2959 memcpy(&vcpu->arch.guest_fpu.state->fxsave, 2960 guest_xsave->region, sizeof(struct i387_fxsave_struct)); 2961 } 2962 return 0; 2963 } 2964 2965 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 2966 struct kvm_xcrs *guest_xcrs) 2967 { 2968 if (!cpu_has_xsave) { 2969 guest_xcrs->nr_xcrs = 0; 2970 return; 2971 } 2972 2973 guest_xcrs->nr_xcrs = 1; 2974 guest_xcrs->flags = 0; 2975 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 2976 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 2977 } 2978 2979 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 2980 struct kvm_xcrs *guest_xcrs) 2981 { 2982 int i, r = 0; 2983 2984 if (!cpu_has_xsave) 2985 return -EINVAL; 2986 2987 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 2988 return -EINVAL; 2989 2990 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 2991 /* Only support XCR0 currently */ 2992 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) { 2993 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 2994 guest_xcrs->xcrs[0].value); 2995 break; 2996 } 2997 if (r) 2998 r = -EINVAL; 2999 return r; 3000 } 3001 3002 /* 3003 * kvm_set_guest_paused() indicates to the guest kernel that it has been 3004 * stopped by the hypervisor. This function will be called from the host only. 3005 * EINVAL is returned when the host attempts to set the flag for a guest that 3006 * does not support pv clocks. 3007 */ 3008 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 3009 { 3010 if (!vcpu->arch.pv_time_enabled) 3011 return -EINVAL; 3012 vcpu->arch.pvclock_set_guest_stopped_request = true; 3013 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3014 return 0; 3015 } 3016 3017 long kvm_arch_vcpu_ioctl(struct file *filp, 3018 unsigned int ioctl, unsigned long arg) 3019 { 3020 struct kvm_vcpu *vcpu = filp->private_data; 3021 void __user *argp = (void __user *)arg; 3022 int r; 3023 union { 3024 struct kvm_lapic_state *lapic; 3025 struct kvm_xsave *xsave; 3026 struct kvm_xcrs *xcrs; 3027 void *buffer; 3028 } u; 3029 3030 u.buffer = NULL; 3031 switch (ioctl) { 3032 case KVM_GET_LAPIC: { 3033 r = -EINVAL; 3034 if (!vcpu->arch.apic) 3035 goto out; 3036 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); 3037 3038 r = -ENOMEM; 3039 if (!u.lapic) 3040 goto out; 3041 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 3042 if (r) 3043 goto out; 3044 r = -EFAULT; 3045 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 3046 goto out; 3047 r = 0; 3048 break; 3049 } 3050 case KVM_SET_LAPIC: { 3051 r = -EINVAL; 3052 if (!vcpu->arch.apic) 3053 goto out; 3054 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 3055 if (IS_ERR(u.lapic)) 3056 return PTR_ERR(u.lapic); 3057 3058 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 3059 break; 3060 } 3061 case KVM_INTERRUPT: { 3062 struct kvm_interrupt irq; 3063 3064 r = -EFAULT; 3065 if (copy_from_user(&irq, argp, sizeof irq)) 3066 goto out; 3067 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 3068 break; 3069 } 3070 case KVM_NMI: { 3071 r = kvm_vcpu_ioctl_nmi(vcpu); 3072 break; 3073 } 3074 case KVM_SET_CPUID: { 3075 struct kvm_cpuid __user *cpuid_arg = argp; 3076 struct kvm_cpuid cpuid; 3077 3078 r = -EFAULT; 3079 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3080 goto out; 3081 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 3082 break; 3083 } 3084 case KVM_SET_CPUID2: { 3085 struct kvm_cpuid2 __user *cpuid_arg = argp; 3086 struct kvm_cpuid2 cpuid; 3087 3088 r = -EFAULT; 3089 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3090 goto out; 3091 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 3092 cpuid_arg->entries); 3093 break; 3094 } 3095 case KVM_GET_CPUID2: { 3096 struct kvm_cpuid2 __user *cpuid_arg = argp; 3097 struct kvm_cpuid2 cpuid; 3098 3099 r = -EFAULT; 3100 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3101 goto out; 3102 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 3103 cpuid_arg->entries); 3104 if (r) 3105 goto out; 3106 r = -EFAULT; 3107 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 3108 goto out; 3109 r = 0; 3110 break; 3111 } 3112 case KVM_GET_MSRS: 3113 r = msr_io(vcpu, argp, kvm_get_msr, 1); 3114 break; 3115 case KVM_SET_MSRS: 3116 r = msr_io(vcpu, argp, do_set_msr, 0); 3117 break; 3118 case KVM_TPR_ACCESS_REPORTING: { 3119 struct kvm_tpr_access_ctl tac; 3120 3121 r = -EFAULT; 3122 if (copy_from_user(&tac, argp, sizeof tac)) 3123 goto out; 3124 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 3125 if (r) 3126 goto out; 3127 r = -EFAULT; 3128 if (copy_to_user(argp, &tac, sizeof tac)) 3129 goto out; 3130 r = 0; 3131 break; 3132 }; 3133 case KVM_SET_VAPIC_ADDR: { 3134 struct kvm_vapic_addr va; 3135 3136 r = -EINVAL; 3137 if (!irqchip_in_kernel(vcpu->kvm)) 3138 goto out; 3139 r = -EFAULT; 3140 if (copy_from_user(&va, argp, sizeof va)) 3141 goto out; 3142 r = 0; 3143 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 3144 break; 3145 } 3146 case KVM_X86_SETUP_MCE: { 3147 u64 mcg_cap; 3148 3149 r = -EFAULT; 3150 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap)) 3151 goto out; 3152 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 3153 break; 3154 } 3155 case KVM_X86_SET_MCE: { 3156 struct kvm_x86_mce mce; 3157 3158 r = -EFAULT; 3159 if (copy_from_user(&mce, argp, sizeof mce)) 3160 goto out; 3161 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 3162 break; 3163 } 3164 case KVM_GET_VCPU_EVENTS: { 3165 struct kvm_vcpu_events events; 3166 3167 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 3168 3169 r = -EFAULT; 3170 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 3171 break; 3172 r = 0; 3173 break; 3174 } 3175 case KVM_SET_VCPU_EVENTS: { 3176 struct kvm_vcpu_events events; 3177 3178 r = -EFAULT; 3179 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 3180 break; 3181 3182 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 3183 break; 3184 } 3185 case KVM_GET_DEBUGREGS: { 3186 struct kvm_debugregs dbgregs; 3187 3188 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 3189 3190 r = -EFAULT; 3191 if (copy_to_user(argp, &dbgregs, 3192 sizeof(struct kvm_debugregs))) 3193 break; 3194 r = 0; 3195 break; 3196 } 3197 case KVM_SET_DEBUGREGS: { 3198 struct kvm_debugregs dbgregs; 3199 3200 r = -EFAULT; 3201 if (copy_from_user(&dbgregs, argp, 3202 sizeof(struct kvm_debugregs))) 3203 break; 3204 3205 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 3206 break; 3207 } 3208 case KVM_GET_XSAVE: { 3209 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); 3210 r = -ENOMEM; 3211 if (!u.xsave) 3212 break; 3213 3214 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 3215 3216 r = -EFAULT; 3217 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 3218 break; 3219 r = 0; 3220 break; 3221 } 3222 case KVM_SET_XSAVE: { 3223 u.xsave = memdup_user(argp, sizeof(*u.xsave)); 3224 if (IS_ERR(u.xsave)) 3225 return PTR_ERR(u.xsave); 3226 3227 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 3228 break; 3229 } 3230 case KVM_GET_XCRS: { 3231 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); 3232 r = -ENOMEM; 3233 if (!u.xcrs) 3234 break; 3235 3236 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 3237 3238 r = -EFAULT; 3239 if (copy_to_user(argp, u.xcrs, 3240 sizeof(struct kvm_xcrs))) 3241 break; 3242 r = 0; 3243 break; 3244 } 3245 case KVM_SET_XCRS: { 3246 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 3247 if (IS_ERR(u.xcrs)) 3248 return PTR_ERR(u.xcrs); 3249 3250 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 3251 break; 3252 } 3253 case KVM_SET_TSC_KHZ: { 3254 u32 user_tsc_khz; 3255 3256 r = -EINVAL; 3257 user_tsc_khz = (u32)arg; 3258 3259 if (user_tsc_khz >= kvm_max_guest_tsc_khz) 3260 goto out; 3261 3262 if (user_tsc_khz == 0) 3263 user_tsc_khz = tsc_khz; 3264 3265 kvm_set_tsc_khz(vcpu, user_tsc_khz); 3266 3267 r = 0; 3268 goto out; 3269 } 3270 case KVM_GET_TSC_KHZ: { 3271 r = vcpu->arch.virtual_tsc_khz; 3272 goto out; 3273 } 3274 case KVM_KVMCLOCK_CTRL: { 3275 r = kvm_set_guest_paused(vcpu); 3276 goto out; 3277 } 3278 default: 3279 r = -EINVAL; 3280 } 3281 out: 3282 kfree(u.buffer); 3283 return r; 3284 } 3285 3286 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 3287 { 3288 return VM_FAULT_SIGBUS; 3289 } 3290 3291 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 3292 { 3293 int ret; 3294 3295 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 3296 return -EINVAL; 3297 ret = kvm_x86_ops->set_tss_addr(kvm, addr); 3298 return ret; 3299 } 3300 3301 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 3302 u64 ident_addr) 3303 { 3304 kvm->arch.ept_identity_map_addr = ident_addr; 3305 return 0; 3306 } 3307 3308 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 3309 u32 kvm_nr_mmu_pages) 3310 { 3311 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 3312 return -EINVAL; 3313 3314 mutex_lock(&kvm->slots_lock); 3315 3316 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 3317 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 3318 3319 mutex_unlock(&kvm->slots_lock); 3320 return 0; 3321 } 3322 3323 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 3324 { 3325 return kvm->arch.n_max_mmu_pages; 3326 } 3327 3328 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 3329 { 3330 int r; 3331 3332 r = 0; 3333 switch (chip->chip_id) { 3334 case KVM_IRQCHIP_PIC_MASTER: 3335 memcpy(&chip->chip.pic, 3336 &pic_irqchip(kvm)->pics[0], 3337 sizeof(struct kvm_pic_state)); 3338 break; 3339 case KVM_IRQCHIP_PIC_SLAVE: 3340 memcpy(&chip->chip.pic, 3341 &pic_irqchip(kvm)->pics[1], 3342 sizeof(struct kvm_pic_state)); 3343 break; 3344 case KVM_IRQCHIP_IOAPIC: 3345 r = kvm_get_ioapic(kvm, &chip->chip.ioapic); 3346 break; 3347 default: 3348 r = -EINVAL; 3349 break; 3350 } 3351 return r; 3352 } 3353 3354 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 3355 { 3356 int r; 3357 3358 r = 0; 3359 switch (chip->chip_id) { 3360 case KVM_IRQCHIP_PIC_MASTER: 3361 spin_lock(&pic_irqchip(kvm)->lock); 3362 memcpy(&pic_irqchip(kvm)->pics[0], 3363 &chip->chip.pic, 3364 sizeof(struct kvm_pic_state)); 3365 spin_unlock(&pic_irqchip(kvm)->lock); 3366 break; 3367 case KVM_IRQCHIP_PIC_SLAVE: 3368 spin_lock(&pic_irqchip(kvm)->lock); 3369 memcpy(&pic_irqchip(kvm)->pics[1], 3370 &chip->chip.pic, 3371 sizeof(struct kvm_pic_state)); 3372 spin_unlock(&pic_irqchip(kvm)->lock); 3373 break; 3374 case KVM_IRQCHIP_IOAPIC: 3375 r = kvm_set_ioapic(kvm, &chip->chip.ioapic); 3376 break; 3377 default: 3378 r = -EINVAL; 3379 break; 3380 } 3381 kvm_pic_update_irq(pic_irqchip(kvm)); 3382 return r; 3383 } 3384 3385 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 3386 { 3387 int r = 0; 3388 3389 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3390 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state)); 3391 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3392 return r; 3393 } 3394 3395 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 3396 { 3397 int r = 0; 3398 3399 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3400 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state)); 3401 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0); 3402 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3403 return r; 3404 } 3405 3406 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3407 { 3408 int r = 0; 3409 3410 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3411 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 3412 sizeof(ps->channels)); 3413 ps->flags = kvm->arch.vpit->pit_state.flags; 3414 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3415 memset(&ps->reserved, 0, sizeof(ps->reserved)); 3416 return r; 3417 } 3418 3419 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3420 { 3421 int r = 0, start = 0; 3422 u32 prev_legacy, cur_legacy; 3423 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3424 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 3425 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 3426 if (!prev_legacy && cur_legacy) 3427 start = 1; 3428 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels, 3429 sizeof(kvm->arch.vpit->pit_state.channels)); 3430 kvm->arch.vpit->pit_state.flags = ps->flags; 3431 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start); 3432 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3433 return r; 3434 } 3435 3436 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 3437 struct kvm_reinject_control *control) 3438 { 3439 if (!kvm->arch.vpit) 3440 return -ENXIO; 3441 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3442 kvm->arch.vpit->pit_state.reinject = control->pit_reinject; 3443 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3444 return 0; 3445 } 3446 3447 /** 3448 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 3449 * @kvm: kvm instance 3450 * @log: slot id and address to which we copy the log 3451 * 3452 * We need to keep it in mind that VCPU threads can write to the bitmap 3453 * concurrently. So, to avoid losing data, we keep the following order for 3454 * each bit: 3455 * 3456 * 1. Take a snapshot of the bit and clear it if needed. 3457 * 2. Write protect the corresponding page. 3458 * 3. Flush TLB's if needed. 3459 * 4. Copy the snapshot to the userspace. 3460 * 3461 * Between 2 and 3, the guest may write to the page using the remaining TLB 3462 * entry. This is not a problem because the page will be reported dirty at 3463 * step 4 using the snapshot taken before and step 3 ensures that successive 3464 * writes will be logged for the next call. 3465 */ 3466 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) 3467 { 3468 int r; 3469 struct kvm_memory_slot *memslot; 3470 unsigned long n, i; 3471 unsigned long *dirty_bitmap; 3472 unsigned long *dirty_bitmap_buffer; 3473 bool is_dirty = false; 3474 3475 mutex_lock(&kvm->slots_lock); 3476 3477 r = -EINVAL; 3478 if (log->slot >= KVM_USER_MEM_SLOTS) 3479 goto out; 3480 3481 memslot = id_to_memslot(kvm->memslots, log->slot); 3482 3483 dirty_bitmap = memslot->dirty_bitmap; 3484 r = -ENOENT; 3485 if (!dirty_bitmap) 3486 goto out; 3487 3488 n = kvm_dirty_bitmap_bytes(memslot); 3489 3490 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); 3491 memset(dirty_bitmap_buffer, 0, n); 3492 3493 spin_lock(&kvm->mmu_lock); 3494 3495 for (i = 0; i < n / sizeof(long); i++) { 3496 unsigned long mask; 3497 gfn_t offset; 3498 3499 if (!dirty_bitmap[i]) 3500 continue; 3501 3502 is_dirty = true; 3503 3504 mask = xchg(&dirty_bitmap[i], 0); 3505 dirty_bitmap_buffer[i] = mask; 3506 3507 offset = i * BITS_PER_LONG; 3508 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask); 3509 } 3510 if (is_dirty) 3511 kvm_flush_remote_tlbs(kvm); 3512 3513 spin_unlock(&kvm->mmu_lock); 3514 3515 r = -EFAULT; 3516 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 3517 goto out; 3518 3519 r = 0; 3520 out: 3521 mutex_unlock(&kvm->slots_lock); 3522 return r; 3523 } 3524 3525 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 3526 bool line_status) 3527 { 3528 if (!irqchip_in_kernel(kvm)) 3529 return -ENXIO; 3530 3531 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 3532 irq_event->irq, irq_event->level, 3533 line_status); 3534 return 0; 3535 } 3536 3537 long kvm_arch_vm_ioctl(struct file *filp, 3538 unsigned int ioctl, unsigned long arg) 3539 { 3540 struct kvm *kvm = filp->private_data; 3541 void __user *argp = (void __user *)arg; 3542 int r = -ENOTTY; 3543 /* 3544 * This union makes it completely explicit to gcc-3.x 3545 * that these two variables' stack usage should be 3546 * combined, not added together. 3547 */ 3548 union { 3549 struct kvm_pit_state ps; 3550 struct kvm_pit_state2 ps2; 3551 struct kvm_pit_config pit_config; 3552 } u; 3553 3554 switch (ioctl) { 3555 case KVM_SET_TSS_ADDR: 3556 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 3557 break; 3558 case KVM_SET_IDENTITY_MAP_ADDR: { 3559 u64 ident_addr; 3560 3561 r = -EFAULT; 3562 if (copy_from_user(&ident_addr, argp, sizeof ident_addr)) 3563 goto out; 3564 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 3565 break; 3566 } 3567 case KVM_SET_NR_MMU_PAGES: 3568 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 3569 break; 3570 case KVM_GET_NR_MMU_PAGES: 3571 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 3572 break; 3573 case KVM_CREATE_IRQCHIP: { 3574 struct kvm_pic *vpic; 3575 3576 mutex_lock(&kvm->lock); 3577 r = -EEXIST; 3578 if (kvm->arch.vpic) 3579 goto create_irqchip_unlock; 3580 r = -EINVAL; 3581 if (atomic_read(&kvm->online_vcpus)) 3582 goto create_irqchip_unlock; 3583 r = -ENOMEM; 3584 vpic = kvm_create_pic(kvm); 3585 if (vpic) { 3586 r = kvm_ioapic_init(kvm); 3587 if (r) { 3588 mutex_lock(&kvm->slots_lock); 3589 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3590 &vpic->dev_master); 3591 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3592 &vpic->dev_slave); 3593 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3594 &vpic->dev_eclr); 3595 mutex_unlock(&kvm->slots_lock); 3596 kfree(vpic); 3597 goto create_irqchip_unlock; 3598 } 3599 } else 3600 goto create_irqchip_unlock; 3601 smp_wmb(); 3602 kvm->arch.vpic = vpic; 3603 smp_wmb(); 3604 r = kvm_setup_default_irq_routing(kvm); 3605 if (r) { 3606 mutex_lock(&kvm->slots_lock); 3607 mutex_lock(&kvm->irq_lock); 3608 kvm_ioapic_destroy(kvm); 3609 kvm_destroy_pic(kvm); 3610 mutex_unlock(&kvm->irq_lock); 3611 mutex_unlock(&kvm->slots_lock); 3612 } 3613 create_irqchip_unlock: 3614 mutex_unlock(&kvm->lock); 3615 break; 3616 } 3617 case KVM_CREATE_PIT: 3618 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 3619 goto create_pit; 3620 case KVM_CREATE_PIT2: 3621 r = -EFAULT; 3622 if (copy_from_user(&u.pit_config, argp, 3623 sizeof(struct kvm_pit_config))) 3624 goto out; 3625 create_pit: 3626 mutex_lock(&kvm->slots_lock); 3627 r = -EEXIST; 3628 if (kvm->arch.vpit) 3629 goto create_pit_unlock; 3630 r = -ENOMEM; 3631 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 3632 if (kvm->arch.vpit) 3633 r = 0; 3634 create_pit_unlock: 3635 mutex_unlock(&kvm->slots_lock); 3636 break; 3637 case KVM_GET_IRQCHIP: { 3638 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 3639 struct kvm_irqchip *chip; 3640 3641 chip = memdup_user(argp, sizeof(*chip)); 3642 if (IS_ERR(chip)) { 3643 r = PTR_ERR(chip); 3644 goto out; 3645 } 3646 3647 r = -ENXIO; 3648 if (!irqchip_in_kernel(kvm)) 3649 goto get_irqchip_out; 3650 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 3651 if (r) 3652 goto get_irqchip_out; 3653 r = -EFAULT; 3654 if (copy_to_user(argp, chip, sizeof *chip)) 3655 goto get_irqchip_out; 3656 r = 0; 3657 get_irqchip_out: 3658 kfree(chip); 3659 break; 3660 } 3661 case KVM_SET_IRQCHIP: { 3662 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 3663 struct kvm_irqchip *chip; 3664 3665 chip = memdup_user(argp, sizeof(*chip)); 3666 if (IS_ERR(chip)) { 3667 r = PTR_ERR(chip); 3668 goto out; 3669 } 3670 3671 r = -ENXIO; 3672 if (!irqchip_in_kernel(kvm)) 3673 goto set_irqchip_out; 3674 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 3675 if (r) 3676 goto set_irqchip_out; 3677 r = 0; 3678 set_irqchip_out: 3679 kfree(chip); 3680 break; 3681 } 3682 case KVM_GET_PIT: { 3683 r = -EFAULT; 3684 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 3685 goto out; 3686 r = -ENXIO; 3687 if (!kvm->arch.vpit) 3688 goto out; 3689 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 3690 if (r) 3691 goto out; 3692 r = -EFAULT; 3693 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 3694 goto out; 3695 r = 0; 3696 break; 3697 } 3698 case KVM_SET_PIT: { 3699 r = -EFAULT; 3700 if (copy_from_user(&u.ps, argp, sizeof u.ps)) 3701 goto out; 3702 r = -ENXIO; 3703 if (!kvm->arch.vpit) 3704 goto out; 3705 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 3706 break; 3707 } 3708 case KVM_GET_PIT2: { 3709 r = -ENXIO; 3710 if (!kvm->arch.vpit) 3711 goto out; 3712 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 3713 if (r) 3714 goto out; 3715 r = -EFAULT; 3716 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 3717 goto out; 3718 r = 0; 3719 break; 3720 } 3721 case KVM_SET_PIT2: { 3722 r = -EFAULT; 3723 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 3724 goto out; 3725 r = -ENXIO; 3726 if (!kvm->arch.vpit) 3727 goto out; 3728 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 3729 break; 3730 } 3731 case KVM_REINJECT_CONTROL: { 3732 struct kvm_reinject_control control; 3733 r = -EFAULT; 3734 if (copy_from_user(&control, argp, sizeof(control))) 3735 goto out; 3736 r = kvm_vm_ioctl_reinject(kvm, &control); 3737 break; 3738 } 3739 case KVM_XEN_HVM_CONFIG: { 3740 r = -EFAULT; 3741 if (copy_from_user(&kvm->arch.xen_hvm_config, argp, 3742 sizeof(struct kvm_xen_hvm_config))) 3743 goto out; 3744 r = -EINVAL; 3745 if (kvm->arch.xen_hvm_config.flags) 3746 goto out; 3747 r = 0; 3748 break; 3749 } 3750 case KVM_SET_CLOCK: { 3751 struct kvm_clock_data user_ns; 3752 u64 now_ns; 3753 s64 delta; 3754 3755 r = -EFAULT; 3756 if (copy_from_user(&user_ns, argp, sizeof(user_ns))) 3757 goto out; 3758 3759 r = -EINVAL; 3760 if (user_ns.flags) 3761 goto out; 3762 3763 r = 0; 3764 local_irq_disable(); 3765 now_ns = get_kernel_ns(); 3766 delta = user_ns.clock - now_ns; 3767 local_irq_enable(); 3768 kvm->arch.kvmclock_offset = delta; 3769 break; 3770 } 3771 case KVM_GET_CLOCK: { 3772 struct kvm_clock_data user_ns; 3773 u64 now_ns; 3774 3775 local_irq_disable(); 3776 now_ns = get_kernel_ns(); 3777 user_ns.clock = kvm->arch.kvmclock_offset + now_ns; 3778 local_irq_enable(); 3779 user_ns.flags = 0; 3780 memset(&user_ns.pad, 0, sizeof(user_ns.pad)); 3781 3782 r = -EFAULT; 3783 if (copy_to_user(argp, &user_ns, sizeof(user_ns))) 3784 goto out; 3785 r = 0; 3786 break; 3787 } 3788 3789 default: 3790 ; 3791 } 3792 out: 3793 return r; 3794 } 3795 3796 static void kvm_init_msr_list(void) 3797 { 3798 u32 dummy[2]; 3799 unsigned i, j; 3800 3801 /* skip the first msrs in the list. KVM-specific */ 3802 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) { 3803 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) 3804 continue; 3805 if (j < i) 3806 msrs_to_save[j] = msrs_to_save[i]; 3807 j++; 3808 } 3809 num_msrs_to_save = j; 3810 } 3811 3812 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 3813 const void *v) 3814 { 3815 int handled = 0; 3816 int n; 3817 3818 do { 3819 n = min(len, 8); 3820 if (!(vcpu->arch.apic && 3821 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v)) 3822 && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) 3823 break; 3824 handled += n; 3825 addr += n; 3826 len -= n; 3827 v += n; 3828 } while (len); 3829 3830 return handled; 3831 } 3832 3833 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 3834 { 3835 int handled = 0; 3836 int n; 3837 3838 do { 3839 n = min(len, 8); 3840 if (!(vcpu->arch.apic && 3841 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v)) 3842 && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) 3843 break; 3844 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v); 3845 handled += n; 3846 addr += n; 3847 len -= n; 3848 v += n; 3849 } while (len); 3850 3851 return handled; 3852 } 3853 3854 static void kvm_set_segment(struct kvm_vcpu *vcpu, 3855 struct kvm_segment *var, int seg) 3856 { 3857 kvm_x86_ops->set_segment(vcpu, var, seg); 3858 } 3859 3860 void kvm_get_segment(struct kvm_vcpu *vcpu, 3861 struct kvm_segment *var, int seg) 3862 { 3863 kvm_x86_ops->get_segment(vcpu, var, seg); 3864 } 3865 3866 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access) 3867 { 3868 gpa_t t_gpa; 3869 struct x86_exception exception; 3870 3871 BUG_ON(!mmu_is_nested(vcpu)); 3872 3873 /* NPT walks are always user-walks */ 3874 access |= PFERR_USER_MASK; 3875 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception); 3876 3877 return t_gpa; 3878 } 3879 3880 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 3881 struct x86_exception *exception) 3882 { 3883 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3884 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3885 } 3886 3887 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 3888 struct x86_exception *exception) 3889 { 3890 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3891 access |= PFERR_FETCH_MASK; 3892 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3893 } 3894 3895 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 3896 struct x86_exception *exception) 3897 { 3898 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3899 access |= PFERR_WRITE_MASK; 3900 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3901 } 3902 3903 /* uses this to access any guest's mapped memory without checking CPL */ 3904 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 3905 struct x86_exception *exception) 3906 { 3907 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); 3908 } 3909 3910 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 3911 struct kvm_vcpu *vcpu, u32 access, 3912 struct x86_exception *exception) 3913 { 3914 void *data = val; 3915 int r = X86EMUL_CONTINUE; 3916 3917 while (bytes) { 3918 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, 3919 exception); 3920 unsigned offset = addr & (PAGE_SIZE-1); 3921 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 3922 int ret; 3923 3924 if (gpa == UNMAPPED_GVA) 3925 return X86EMUL_PROPAGATE_FAULT; 3926 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread); 3927 if (ret < 0) { 3928 r = X86EMUL_IO_NEEDED; 3929 goto out; 3930 } 3931 3932 bytes -= toread; 3933 data += toread; 3934 addr += toread; 3935 } 3936 out: 3937 return r; 3938 } 3939 3940 /* used for instruction fetching */ 3941 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 3942 gva_t addr, void *val, unsigned int bytes, 3943 struct x86_exception *exception) 3944 { 3945 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3946 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3947 3948 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 3949 access | PFERR_FETCH_MASK, 3950 exception); 3951 } 3952 3953 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt, 3954 gva_t addr, void *val, unsigned int bytes, 3955 struct x86_exception *exception) 3956 { 3957 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3958 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3959 3960 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 3961 exception); 3962 } 3963 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 3964 3965 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt, 3966 gva_t addr, void *val, unsigned int bytes, 3967 struct x86_exception *exception) 3968 { 3969 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3970 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception); 3971 } 3972 3973 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt, 3974 gva_t addr, void *val, 3975 unsigned int bytes, 3976 struct x86_exception *exception) 3977 { 3978 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3979 void *data = val; 3980 int r = X86EMUL_CONTINUE; 3981 3982 while (bytes) { 3983 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, 3984 PFERR_WRITE_MASK, 3985 exception); 3986 unsigned offset = addr & (PAGE_SIZE-1); 3987 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 3988 int ret; 3989 3990 if (gpa == UNMAPPED_GVA) 3991 return X86EMUL_PROPAGATE_FAULT; 3992 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite); 3993 if (ret < 0) { 3994 r = X86EMUL_IO_NEEDED; 3995 goto out; 3996 } 3997 3998 bytes -= towrite; 3999 data += towrite; 4000 addr += towrite; 4001 } 4002 out: 4003 return r; 4004 } 4005 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 4006 4007 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 4008 gpa_t *gpa, struct x86_exception *exception, 4009 bool write) 4010 { 4011 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) 4012 | (write ? PFERR_WRITE_MASK : 0); 4013 4014 if (vcpu_match_mmio_gva(vcpu, gva) 4015 && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) { 4016 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 4017 (gva & (PAGE_SIZE - 1)); 4018 trace_vcpu_match_mmio(gva, *gpa, write, false); 4019 return 1; 4020 } 4021 4022 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4023 4024 if (*gpa == UNMAPPED_GVA) 4025 return -1; 4026 4027 /* For APIC access vmexit */ 4028 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 4029 return 1; 4030 4031 if (vcpu_match_mmio_gpa(vcpu, *gpa)) { 4032 trace_vcpu_match_mmio(gva, *gpa, write, true); 4033 return 1; 4034 } 4035 4036 return 0; 4037 } 4038 4039 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 4040 const void *val, int bytes) 4041 { 4042 int ret; 4043 4044 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes); 4045 if (ret < 0) 4046 return 0; 4047 kvm_mmu_pte_write(vcpu, gpa, val, bytes); 4048 return 1; 4049 } 4050 4051 struct read_write_emulator_ops { 4052 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 4053 int bytes); 4054 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 4055 void *val, int bytes); 4056 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 4057 int bytes, void *val); 4058 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 4059 void *val, int bytes); 4060 bool write; 4061 }; 4062 4063 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 4064 { 4065 if (vcpu->mmio_read_completed) { 4066 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 4067 vcpu->mmio_fragments[0].gpa, *(u64 *)val); 4068 vcpu->mmio_read_completed = 0; 4069 return 1; 4070 } 4071 4072 return 0; 4073 } 4074 4075 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 4076 void *val, int bytes) 4077 { 4078 return !kvm_read_guest(vcpu->kvm, gpa, val, bytes); 4079 } 4080 4081 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 4082 void *val, int bytes) 4083 { 4084 return emulator_write_phys(vcpu, gpa, val, bytes); 4085 } 4086 4087 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 4088 { 4089 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val); 4090 return vcpu_mmio_write(vcpu, gpa, bytes, val); 4091 } 4092 4093 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 4094 void *val, int bytes) 4095 { 4096 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0); 4097 return X86EMUL_IO_NEEDED; 4098 } 4099 4100 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 4101 void *val, int bytes) 4102 { 4103 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 4104 4105 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 4106 return X86EMUL_CONTINUE; 4107 } 4108 4109 static const struct read_write_emulator_ops read_emultor = { 4110 .read_write_prepare = read_prepare, 4111 .read_write_emulate = read_emulate, 4112 .read_write_mmio = vcpu_mmio_read, 4113 .read_write_exit_mmio = read_exit_mmio, 4114 }; 4115 4116 static const struct read_write_emulator_ops write_emultor = { 4117 .read_write_emulate = write_emulate, 4118 .read_write_mmio = write_mmio, 4119 .read_write_exit_mmio = write_exit_mmio, 4120 .write = true, 4121 }; 4122 4123 static int emulator_read_write_onepage(unsigned long addr, void *val, 4124 unsigned int bytes, 4125 struct x86_exception *exception, 4126 struct kvm_vcpu *vcpu, 4127 const struct read_write_emulator_ops *ops) 4128 { 4129 gpa_t gpa; 4130 int handled, ret; 4131 bool write = ops->write; 4132 struct kvm_mmio_fragment *frag; 4133 4134 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 4135 4136 if (ret < 0) 4137 return X86EMUL_PROPAGATE_FAULT; 4138 4139 /* For APIC access vmexit */ 4140 if (ret) 4141 goto mmio; 4142 4143 if (ops->read_write_emulate(vcpu, gpa, val, bytes)) 4144 return X86EMUL_CONTINUE; 4145 4146 mmio: 4147 /* 4148 * Is this MMIO handled locally? 4149 */ 4150 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 4151 if (handled == bytes) 4152 return X86EMUL_CONTINUE; 4153 4154 gpa += handled; 4155 bytes -= handled; 4156 val += handled; 4157 4158 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 4159 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 4160 frag->gpa = gpa; 4161 frag->data = val; 4162 frag->len = bytes; 4163 return X86EMUL_CONTINUE; 4164 } 4165 4166 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr, 4167 void *val, unsigned int bytes, 4168 struct x86_exception *exception, 4169 const struct read_write_emulator_ops *ops) 4170 { 4171 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4172 gpa_t gpa; 4173 int rc; 4174 4175 if (ops->read_write_prepare && 4176 ops->read_write_prepare(vcpu, val, bytes)) 4177 return X86EMUL_CONTINUE; 4178 4179 vcpu->mmio_nr_fragments = 0; 4180 4181 /* Crossing a page boundary? */ 4182 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 4183 int now; 4184 4185 now = -addr & ~PAGE_MASK; 4186 rc = emulator_read_write_onepage(addr, val, now, exception, 4187 vcpu, ops); 4188 4189 if (rc != X86EMUL_CONTINUE) 4190 return rc; 4191 addr += now; 4192 val += now; 4193 bytes -= now; 4194 } 4195 4196 rc = emulator_read_write_onepage(addr, val, bytes, exception, 4197 vcpu, ops); 4198 if (rc != X86EMUL_CONTINUE) 4199 return rc; 4200 4201 if (!vcpu->mmio_nr_fragments) 4202 return rc; 4203 4204 gpa = vcpu->mmio_fragments[0].gpa; 4205 4206 vcpu->mmio_needed = 1; 4207 vcpu->mmio_cur_fragment = 0; 4208 4209 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 4210 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 4211 vcpu->run->exit_reason = KVM_EXIT_MMIO; 4212 vcpu->run->mmio.phys_addr = gpa; 4213 4214 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 4215 } 4216 4217 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 4218 unsigned long addr, 4219 void *val, 4220 unsigned int bytes, 4221 struct x86_exception *exception) 4222 { 4223 return emulator_read_write(ctxt, addr, val, bytes, 4224 exception, &read_emultor); 4225 } 4226 4227 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 4228 unsigned long addr, 4229 const void *val, 4230 unsigned int bytes, 4231 struct x86_exception *exception) 4232 { 4233 return emulator_read_write(ctxt, addr, (void *)val, bytes, 4234 exception, &write_emultor); 4235 } 4236 4237 #define CMPXCHG_TYPE(t, ptr, old, new) \ 4238 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 4239 4240 #ifdef CONFIG_X86_64 4241 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 4242 #else 4243 # define CMPXCHG64(ptr, old, new) \ 4244 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 4245 #endif 4246 4247 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 4248 unsigned long addr, 4249 const void *old, 4250 const void *new, 4251 unsigned int bytes, 4252 struct x86_exception *exception) 4253 { 4254 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4255 gpa_t gpa; 4256 struct page *page; 4257 char *kaddr; 4258 bool exchanged; 4259 4260 /* guests cmpxchg8b have to be emulated atomically */ 4261 if (bytes > 8 || (bytes & (bytes - 1))) 4262 goto emul_write; 4263 4264 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 4265 4266 if (gpa == UNMAPPED_GVA || 4267 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 4268 goto emul_write; 4269 4270 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) 4271 goto emul_write; 4272 4273 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT); 4274 if (is_error_page(page)) 4275 goto emul_write; 4276 4277 kaddr = kmap_atomic(page); 4278 kaddr += offset_in_page(gpa); 4279 switch (bytes) { 4280 case 1: 4281 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 4282 break; 4283 case 2: 4284 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 4285 break; 4286 case 4: 4287 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 4288 break; 4289 case 8: 4290 exchanged = CMPXCHG64(kaddr, old, new); 4291 break; 4292 default: 4293 BUG(); 4294 } 4295 kunmap_atomic(kaddr); 4296 kvm_release_page_dirty(page); 4297 4298 if (!exchanged) 4299 return X86EMUL_CMPXCHG_FAILED; 4300 4301 kvm_mmu_pte_write(vcpu, gpa, new, bytes); 4302 4303 return X86EMUL_CONTINUE; 4304 4305 emul_write: 4306 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 4307 4308 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 4309 } 4310 4311 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 4312 { 4313 /* TODO: String I/O for in kernel device */ 4314 int r; 4315 4316 if (vcpu->arch.pio.in) 4317 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port, 4318 vcpu->arch.pio.size, pd); 4319 else 4320 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS, 4321 vcpu->arch.pio.port, vcpu->arch.pio.size, 4322 pd); 4323 return r; 4324 } 4325 4326 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 4327 unsigned short port, void *val, 4328 unsigned int count, bool in) 4329 { 4330 trace_kvm_pio(!in, port, size, count); 4331 4332 vcpu->arch.pio.port = port; 4333 vcpu->arch.pio.in = in; 4334 vcpu->arch.pio.count = count; 4335 vcpu->arch.pio.size = size; 4336 4337 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { 4338 vcpu->arch.pio.count = 0; 4339 return 1; 4340 } 4341 4342 vcpu->run->exit_reason = KVM_EXIT_IO; 4343 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 4344 vcpu->run->io.size = size; 4345 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 4346 vcpu->run->io.count = count; 4347 vcpu->run->io.port = port; 4348 4349 return 0; 4350 } 4351 4352 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 4353 int size, unsigned short port, void *val, 4354 unsigned int count) 4355 { 4356 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4357 int ret; 4358 4359 if (vcpu->arch.pio.count) 4360 goto data_avail; 4361 4362 ret = emulator_pio_in_out(vcpu, size, port, val, count, true); 4363 if (ret) { 4364 data_avail: 4365 memcpy(val, vcpu->arch.pio_data, size * count); 4366 vcpu->arch.pio.count = 0; 4367 return 1; 4368 } 4369 4370 return 0; 4371 } 4372 4373 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 4374 int size, unsigned short port, 4375 const void *val, unsigned int count) 4376 { 4377 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4378 4379 memcpy(vcpu->arch.pio_data, val, size * count); 4380 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 4381 } 4382 4383 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 4384 { 4385 return kvm_x86_ops->get_segment_base(vcpu, seg); 4386 } 4387 4388 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 4389 { 4390 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 4391 } 4392 4393 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 4394 { 4395 if (!need_emulate_wbinvd(vcpu)) 4396 return X86EMUL_CONTINUE; 4397 4398 if (kvm_x86_ops->has_wbinvd_exit()) { 4399 int cpu = get_cpu(); 4400 4401 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4402 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, 4403 wbinvd_ipi, NULL, 1); 4404 put_cpu(); 4405 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 4406 } else 4407 wbinvd(); 4408 return X86EMUL_CONTINUE; 4409 } 4410 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 4411 4412 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 4413 { 4414 kvm_emulate_wbinvd(emul_to_vcpu(ctxt)); 4415 } 4416 4417 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest) 4418 { 4419 return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 4420 } 4421 4422 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value) 4423 { 4424 4425 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 4426 } 4427 4428 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 4429 { 4430 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 4431 } 4432 4433 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 4434 { 4435 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4436 unsigned long value; 4437 4438 switch (cr) { 4439 case 0: 4440 value = kvm_read_cr0(vcpu); 4441 break; 4442 case 2: 4443 value = vcpu->arch.cr2; 4444 break; 4445 case 3: 4446 value = kvm_read_cr3(vcpu); 4447 break; 4448 case 4: 4449 value = kvm_read_cr4(vcpu); 4450 break; 4451 case 8: 4452 value = kvm_get_cr8(vcpu); 4453 break; 4454 default: 4455 kvm_err("%s: unexpected cr %u\n", __func__, cr); 4456 return 0; 4457 } 4458 4459 return value; 4460 } 4461 4462 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 4463 { 4464 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4465 int res = 0; 4466 4467 switch (cr) { 4468 case 0: 4469 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 4470 break; 4471 case 2: 4472 vcpu->arch.cr2 = val; 4473 break; 4474 case 3: 4475 res = kvm_set_cr3(vcpu, val); 4476 break; 4477 case 4: 4478 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 4479 break; 4480 case 8: 4481 res = kvm_set_cr8(vcpu, val); 4482 break; 4483 default: 4484 kvm_err("%s: unexpected cr %u\n", __func__, cr); 4485 res = -1; 4486 } 4487 4488 return res; 4489 } 4490 4491 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val) 4492 { 4493 kvm_set_rflags(emul_to_vcpu(ctxt), val); 4494 } 4495 4496 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 4497 { 4498 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt)); 4499 } 4500 4501 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4502 { 4503 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt); 4504 } 4505 4506 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4507 { 4508 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt); 4509 } 4510 4511 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4512 { 4513 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt); 4514 } 4515 4516 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4517 { 4518 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt); 4519 } 4520 4521 static unsigned long emulator_get_cached_segment_base( 4522 struct x86_emulate_ctxt *ctxt, int seg) 4523 { 4524 return get_segment_base(emul_to_vcpu(ctxt), seg); 4525 } 4526 4527 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 4528 struct desc_struct *desc, u32 *base3, 4529 int seg) 4530 { 4531 struct kvm_segment var; 4532 4533 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 4534 *selector = var.selector; 4535 4536 if (var.unusable) { 4537 memset(desc, 0, sizeof(*desc)); 4538 return false; 4539 } 4540 4541 if (var.g) 4542 var.limit >>= 12; 4543 set_desc_limit(desc, var.limit); 4544 set_desc_base(desc, (unsigned long)var.base); 4545 #ifdef CONFIG_X86_64 4546 if (base3) 4547 *base3 = var.base >> 32; 4548 #endif 4549 desc->type = var.type; 4550 desc->s = var.s; 4551 desc->dpl = var.dpl; 4552 desc->p = var.present; 4553 desc->avl = var.avl; 4554 desc->l = var.l; 4555 desc->d = var.db; 4556 desc->g = var.g; 4557 4558 return true; 4559 } 4560 4561 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 4562 struct desc_struct *desc, u32 base3, 4563 int seg) 4564 { 4565 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4566 struct kvm_segment var; 4567 4568 var.selector = selector; 4569 var.base = get_desc_base(desc); 4570 #ifdef CONFIG_X86_64 4571 var.base |= ((u64)base3) << 32; 4572 #endif 4573 var.limit = get_desc_limit(desc); 4574 if (desc->g) 4575 var.limit = (var.limit << 12) | 0xfff; 4576 var.type = desc->type; 4577 var.present = desc->p; 4578 var.dpl = desc->dpl; 4579 var.db = desc->d; 4580 var.s = desc->s; 4581 var.l = desc->l; 4582 var.g = desc->g; 4583 var.avl = desc->avl; 4584 var.present = desc->p; 4585 var.unusable = !var.present; 4586 var.padding = 0; 4587 4588 kvm_set_segment(vcpu, &var, seg); 4589 return; 4590 } 4591 4592 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 4593 u32 msr_index, u64 *pdata) 4594 { 4595 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 4596 } 4597 4598 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 4599 u32 msr_index, u64 data) 4600 { 4601 struct msr_data msr; 4602 4603 msr.data = data; 4604 msr.index = msr_index; 4605 msr.host_initiated = false; 4606 return kvm_set_msr(emul_to_vcpu(ctxt), &msr); 4607 } 4608 4609 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 4610 u32 pmc, u64 *pdata) 4611 { 4612 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata); 4613 } 4614 4615 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 4616 { 4617 emul_to_vcpu(ctxt)->arch.halt_request = 1; 4618 } 4619 4620 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt) 4621 { 4622 preempt_disable(); 4623 kvm_load_guest_fpu(emul_to_vcpu(ctxt)); 4624 /* 4625 * CR0.TS may reference the host fpu state, not the guest fpu state, 4626 * so it may be clear at this point. 4627 */ 4628 clts(); 4629 } 4630 4631 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt) 4632 { 4633 preempt_enable(); 4634 } 4635 4636 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 4637 struct x86_instruction_info *info, 4638 enum x86_intercept_stage stage) 4639 { 4640 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage); 4641 } 4642 4643 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 4644 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx) 4645 { 4646 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx); 4647 } 4648 4649 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 4650 { 4651 return kvm_register_read(emul_to_vcpu(ctxt), reg); 4652 } 4653 4654 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 4655 { 4656 kvm_register_write(emul_to_vcpu(ctxt), reg, val); 4657 } 4658 4659 static const struct x86_emulate_ops emulate_ops = { 4660 .read_gpr = emulator_read_gpr, 4661 .write_gpr = emulator_write_gpr, 4662 .read_std = kvm_read_guest_virt_system, 4663 .write_std = kvm_write_guest_virt_system, 4664 .fetch = kvm_fetch_guest_virt, 4665 .read_emulated = emulator_read_emulated, 4666 .write_emulated = emulator_write_emulated, 4667 .cmpxchg_emulated = emulator_cmpxchg_emulated, 4668 .invlpg = emulator_invlpg, 4669 .pio_in_emulated = emulator_pio_in_emulated, 4670 .pio_out_emulated = emulator_pio_out_emulated, 4671 .get_segment = emulator_get_segment, 4672 .set_segment = emulator_set_segment, 4673 .get_cached_segment_base = emulator_get_cached_segment_base, 4674 .get_gdt = emulator_get_gdt, 4675 .get_idt = emulator_get_idt, 4676 .set_gdt = emulator_set_gdt, 4677 .set_idt = emulator_set_idt, 4678 .get_cr = emulator_get_cr, 4679 .set_cr = emulator_set_cr, 4680 .set_rflags = emulator_set_rflags, 4681 .cpl = emulator_get_cpl, 4682 .get_dr = emulator_get_dr, 4683 .set_dr = emulator_set_dr, 4684 .set_msr = emulator_set_msr, 4685 .get_msr = emulator_get_msr, 4686 .read_pmc = emulator_read_pmc, 4687 .halt = emulator_halt, 4688 .wbinvd = emulator_wbinvd, 4689 .fix_hypercall = emulator_fix_hypercall, 4690 .get_fpu = emulator_get_fpu, 4691 .put_fpu = emulator_put_fpu, 4692 .intercept = emulator_intercept, 4693 .get_cpuid = emulator_get_cpuid, 4694 }; 4695 4696 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 4697 { 4698 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask); 4699 /* 4700 * an sti; sti; sequence only disable interrupts for the first 4701 * instruction. So, if the last instruction, be it emulated or 4702 * not, left the system with the INT_STI flag enabled, it 4703 * means that the last instruction is an sti. We should not 4704 * leave the flag on in this case. The same goes for mov ss 4705 */ 4706 if (!(int_shadow & mask)) 4707 kvm_x86_ops->set_interrupt_shadow(vcpu, mask); 4708 } 4709 4710 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 4711 { 4712 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4713 if (ctxt->exception.vector == PF_VECTOR) 4714 kvm_propagate_fault(vcpu, &ctxt->exception); 4715 else if (ctxt->exception.error_code_valid) 4716 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 4717 ctxt->exception.error_code); 4718 else 4719 kvm_queue_exception(vcpu, ctxt->exception.vector); 4720 } 4721 4722 static void init_decode_cache(struct x86_emulate_ctxt *ctxt) 4723 { 4724 memset(&ctxt->twobyte, 0, 4725 (void *)&ctxt->_regs - (void *)&ctxt->twobyte); 4726 4727 ctxt->fetch.start = 0; 4728 ctxt->fetch.end = 0; 4729 ctxt->io_read.pos = 0; 4730 ctxt->io_read.end = 0; 4731 ctxt->mem_read.pos = 0; 4732 ctxt->mem_read.end = 0; 4733 } 4734 4735 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 4736 { 4737 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4738 int cs_db, cs_l; 4739 4740 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 4741 4742 ctxt->eflags = kvm_get_rflags(vcpu); 4743 ctxt->eip = kvm_rip_read(vcpu); 4744 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 4745 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 4746 cs_l ? X86EMUL_MODE_PROT64 : 4747 cs_db ? X86EMUL_MODE_PROT32 : 4748 X86EMUL_MODE_PROT16; 4749 ctxt->guest_mode = is_guest_mode(vcpu); 4750 4751 init_decode_cache(ctxt); 4752 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 4753 } 4754 4755 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 4756 { 4757 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4758 int ret; 4759 4760 init_emulate_ctxt(vcpu); 4761 4762 ctxt->op_bytes = 2; 4763 ctxt->ad_bytes = 2; 4764 ctxt->_eip = ctxt->eip + inc_eip; 4765 ret = emulate_int_real(ctxt, irq); 4766 4767 if (ret != X86EMUL_CONTINUE) 4768 return EMULATE_FAIL; 4769 4770 ctxt->eip = ctxt->_eip; 4771 kvm_rip_write(vcpu, ctxt->eip); 4772 kvm_set_rflags(vcpu, ctxt->eflags); 4773 4774 if (irq == NMI_VECTOR) 4775 vcpu->arch.nmi_pending = 0; 4776 else 4777 vcpu->arch.interrupt.pending = false; 4778 4779 return EMULATE_DONE; 4780 } 4781 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 4782 4783 static int handle_emulation_failure(struct kvm_vcpu *vcpu) 4784 { 4785 int r = EMULATE_DONE; 4786 4787 ++vcpu->stat.insn_emulation_fail; 4788 trace_kvm_emulate_insn_failed(vcpu); 4789 if (!is_guest_mode(vcpu)) { 4790 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4791 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 4792 vcpu->run->internal.ndata = 0; 4793 r = EMULATE_FAIL; 4794 } 4795 kvm_queue_exception(vcpu, UD_VECTOR); 4796 4797 return r; 4798 } 4799 4800 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2, 4801 bool write_fault_to_shadow_pgtable, 4802 int emulation_type) 4803 { 4804 gpa_t gpa = cr2; 4805 pfn_t pfn; 4806 4807 if (emulation_type & EMULTYPE_NO_REEXECUTE) 4808 return false; 4809 4810 if (!vcpu->arch.mmu.direct_map) { 4811 /* 4812 * Write permission should be allowed since only 4813 * write access need to be emulated. 4814 */ 4815 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 4816 4817 /* 4818 * If the mapping is invalid in guest, let cpu retry 4819 * it to generate fault. 4820 */ 4821 if (gpa == UNMAPPED_GVA) 4822 return true; 4823 } 4824 4825 /* 4826 * Do not retry the unhandleable instruction if it faults on the 4827 * readonly host memory, otherwise it will goto a infinite loop: 4828 * retry instruction -> write #PF -> emulation fail -> retry 4829 * instruction -> ... 4830 */ 4831 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 4832 4833 /* 4834 * If the instruction failed on the error pfn, it can not be fixed, 4835 * report the error to userspace. 4836 */ 4837 if (is_error_noslot_pfn(pfn)) 4838 return false; 4839 4840 kvm_release_pfn_clean(pfn); 4841 4842 /* The instructions are well-emulated on direct mmu. */ 4843 if (vcpu->arch.mmu.direct_map) { 4844 unsigned int indirect_shadow_pages; 4845 4846 spin_lock(&vcpu->kvm->mmu_lock); 4847 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 4848 spin_unlock(&vcpu->kvm->mmu_lock); 4849 4850 if (indirect_shadow_pages) 4851 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 4852 4853 return true; 4854 } 4855 4856 /* 4857 * if emulation was due to access to shadowed page table 4858 * and it failed try to unshadow page and re-enter the 4859 * guest to let CPU execute the instruction. 4860 */ 4861 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 4862 4863 /* 4864 * If the access faults on its page table, it can not 4865 * be fixed by unprotecting shadow page and it should 4866 * be reported to userspace. 4867 */ 4868 return !write_fault_to_shadow_pgtable; 4869 } 4870 4871 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 4872 unsigned long cr2, int emulation_type) 4873 { 4874 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4875 unsigned long last_retry_eip, last_retry_addr, gpa = cr2; 4876 4877 last_retry_eip = vcpu->arch.last_retry_eip; 4878 last_retry_addr = vcpu->arch.last_retry_addr; 4879 4880 /* 4881 * If the emulation is caused by #PF and it is non-page_table 4882 * writing instruction, it means the VM-EXIT is caused by shadow 4883 * page protected, we can zap the shadow page and retry this 4884 * instruction directly. 4885 * 4886 * Note: if the guest uses a non-page-table modifying instruction 4887 * on the PDE that points to the instruction, then we will unmap 4888 * the instruction and go to an infinite loop. So, we cache the 4889 * last retried eip and the last fault address, if we meet the eip 4890 * and the address again, we can break out of the potential infinite 4891 * loop. 4892 */ 4893 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 4894 4895 if (!(emulation_type & EMULTYPE_RETRY)) 4896 return false; 4897 4898 if (x86_page_table_writing_insn(ctxt)) 4899 return false; 4900 4901 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2) 4902 return false; 4903 4904 vcpu->arch.last_retry_eip = ctxt->eip; 4905 vcpu->arch.last_retry_addr = cr2; 4906 4907 if (!vcpu->arch.mmu.direct_map) 4908 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 4909 4910 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 4911 4912 return true; 4913 } 4914 4915 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 4916 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 4917 4918 int x86_emulate_instruction(struct kvm_vcpu *vcpu, 4919 unsigned long cr2, 4920 int emulation_type, 4921 void *insn, 4922 int insn_len) 4923 { 4924 int r; 4925 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4926 bool writeback = true; 4927 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 4928 4929 /* 4930 * Clear write_fault_to_shadow_pgtable here to ensure it is 4931 * never reused. 4932 */ 4933 vcpu->arch.write_fault_to_shadow_pgtable = false; 4934 kvm_clear_exception_queue(vcpu); 4935 4936 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 4937 init_emulate_ctxt(vcpu); 4938 ctxt->interruptibility = 0; 4939 ctxt->have_exception = false; 4940 ctxt->perm_ok = false; 4941 4942 ctxt->only_vendor_specific_insn 4943 = emulation_type & EMULTYPE_TRAP_UD; 4944 4945 r = x86_decode_insn(ctxt, insn, insn_len); 4946 4947 trace_kvm_emulate_insn_start(vcpu); 4948 ++vcpu->stat.insn_emulation; 4949 if (r != EMULATION_OK) { 4950 if (emulation_type & EMULTYPE_TRAP_UD) 4951 return EMULATE_FAIL; 4952 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, 4953 emulation_type)) 4954 return EMULATE_DONE; 4955 if (emulation_type & EMULTYPE_SKIP) 4956 return EMULATE_FAIL; 4957 return handle_emulation_failure(vcpu); 4958 } 4959 } 4960 4961 if (emulation_type & EMULTYPE_SKIP) { 4962 kvm_rip_write(vcpu, ctxt->_eip); 4963 return EMULATE_DONE; 4964 } 4965 4966 if (retry_instruction(ctxt, cr2, emulation_type)) 4967 return EMULATE_DONE; 4968 4969 /* this is needed for vmware backdoor interface to work since it 4970 changes registers values during IO operation */ 4971 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 4972 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 4973 emulator_invalidate_register_cache(ctxt); 4974 } 4975 4976 restart: 4977 r = x86_emulate_insn(ctxt); 4978 4979 if (r == EMULATION_INTERCEPTED) 4980 return EMULATE_DONE; 4981 4982 if (r == EMULATION_FAILED) { 4983 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, 4984 emulation_type)) 4985 return EMULATE_DONE; 4986 4987 return handle_emulation_failure(vcpu); 4988 } 4989 4990 if (ctxt->have_exception) { 4991 inject_emulated_exception(vcpu); 4992 r = EMULATE_DONE; 4993 } else if (vcpu->arch.pio.count) { 4994 if (!vcpu->arch.pio.in) 4995 vcpu->arch.pio.count = 0; 4996 else { 4997 writeback = false; 4998 vcpu->arch.complete_userspace_io = complete_emulated_pio; 4999 } 5000 r = EMULATE_DO_MMIO; 5001 } else if (vcpu->mmio_needed) { 5002 if (!vcpu->mmio_is_write) 5003 writeback = false; 5004 r = EMULATE_DO_MMIO; 5005 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 5006 } else if (r == EMULATION_RESTART) 5007 goto restart; 5008 else 5009 r = EMULATE_DONE; 5010 5011 if (writeback) { 5012 toggle_interruptibility(vcpu, ctxt->interruptibility); 5013 kvm_set_rflags(vcpu, ctxt->eflags); 5014 kvm_make_request(KVM_REQ_EVENT, vcpu); 5015 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 5016 kvm_rip_write(vcpu, ctxt->eip); 5017 } else 5018 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 5019 5020 return r; 5021 } 5022 EXPORT_SYMBOL_GPL(x86_emulate_instruction); 5023 5024 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port) 5025 { 5026 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX); 5027 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt, 5028 size, port, &val, 1); 5029 /* do not return to emulator after return from userspace */ 5030 vcpu->arch.pio.count = 0; 5031 return ret; 5032 } 5033 EXPORT_SYMBOL_GPL(kvm_fast_pio_out); 5034 5035 static void tsc_bad(void *info) 5036 { 5037 __this_cpu_write(cpu_tsc_khz, 0); 5038 } 5039 5040 static void tsc_khz_changed(void *data) 5041 { 5042 struct cpufreq_freqs *freq = data; 5043 unsigned long khz = 0; 5044 5045 if (data) 5046 khz = freq->new; 5047 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 5048 khz = cpufreq_quick_get(raw_smp_processor_id()); 5049 if (!khz) 5050 khz = tsc_khz; 5051 __this_cpu_write(cpu_tsc_khz, khz); 5052 } 5053 5054 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 5055 void *data) 5056 { 5057 struct cpufreq_freqs *freq = data; 5058 struct kvm *kvm; 5059 struct kvm_vcpu *vcpu; 5060 int i, send_ipi = 0; 5061 5062 /* 5063 * We allow guests to temporarily run on slowing clocks, 5064 * provided we notify them after, or to run on accelerating 5065 * clocks, provided we notify them before. Thus time never 5066 * goes backwards. 5067 * 5068 * However, we have a problem. We can't atomically update 5069 * the frequency of a given CPU from this function; it is 5070 * merely a notifier, which can be called from any CPU. 5071 * Changing the TSC frequency at arbitrary points in time 5072 * requires a recomputation of local variables related to 5073 * the TSC for each VCPU. We must flag these local variables 5074 * to be updated and be sure the update takes place with the 5075 * new frequency before any guests proceed. 5076 * 5077 * Unfortunately, the combination of hotplug CPU and frequency 5078 * change creates an intractable locking scenario; the order 5079 * of when these callouts happen is undefined with respect to 5080 * CPU hotplug, and they can race with each other. As such, 5081 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 5082 * undefined; you can actually have a CPU frequency change take 5083 * place in between the computation of X and the setting of the 5084 * variable. To protect against this problem, all updates of 5085 * the per_cpu tsc_khz variable are done in an interrupt 5086 * protected IPI, and all callers wishing to update the value 5087 * must wait for a synchronous IPI to complete (which is trivial 5088 * if the caller is on the CPU already). This establishes the 5089 * necessary total order on variable updates. 5090 * 5091 * Note that because a guest time update may take place 5092 * anytime after the setting of the VCPU's request bit, the 5093 * correct TSC value must be set before the request. However, 5094 * to ensure the update actually makes it to any guest which 5095 * starts running in hardware virtualization between the set 5096 * and the acquisition of the spinlock, we must also ping the 5097 * CPU after setting the request bit. 5098 * 5099 */ 5100 5101 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 5102 return 0; 5103 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 5104 return 0; 5105 5106 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 5107 5108 raw_spin_lock(&kvm_lock); 5109 list_for_each_entry(kvm, &vm_list, vm_list) { 5110 kvm_for_each_vcpu(i, vcpu, kvm) { 5111 if (vcpu->cpu != freq->cpu) 5112 continue; 5113 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5114 if (vcpu->cpu != smp_processor_id()) 5115 send_ipi = 1; 5116 } 5117 } 5118 raw_spin_unlock(&kvm_lock); 5119 5120 if (freq->old < freq->new && send_ipi) { 5121 /* 5122 * We upscale the frequency. Must make the guest 5123 * doesn't see old kvmclock values while running with 5124 * the new frequency, otherwise we risk the guest sees 5125 * time go backwards. 5126 * 5127 * In case we update the frequency for another cpu 5128 * (which might be in guest context) send an interrupt 5129 * to kick the cpu out of guest context. Next time 5130 * guest context is entered kvmclock will be updated, 5131 * so the guest will not see stale values. 5132 */ 5133 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 5134 } 5135 return 0; 5136 } 5137 5138 static struct notifier_block kvmclock_cpufreq_notifier_block = { 5139 .notifier_call = kvmclock_cpufreq_notifier 5140 }; 5141 5142 static int kvmclock_cpu_notifier(struct notifier_block *nfb, 5143 unsigned long action, void *hcpu) 5144 { 5145 unsigned int cpu = (unsigned long)hcpu; 5146 5147 switch (action) { 5148 case CPU_ONLINE: 5149 case CPU_DOWN_FAILED: 5150 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); 5151 break; 5152 case CPU_DOWN_PREPARE: 5153 smp_call_function_single(cpu, tsc_bad, NULL, 1); 5154 break; 5155 } 5156 return NOTIFY_OK; 5157 } 5158 5159 static struct notifier_block kvmclock_cpu_notifier_block = { 5160 .notifier_call = kvmclock_cpu_notifier, 5161 .priority = -INT_MAX 5162 }; 5163 5164 static void kvm_timer_init(void) 5165 { 5166 int cpu; 5167 5168 max_tsc_khz = tsc_khz; 5169 register_hotcpu_notifier(&kvmclock_cpu_notifier_block); 5170 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 5171 #ifdef CONFIG_CPU_FREQ 5172 struct cpufreq_policy policy; 5173 memset(&policy, 0, sizeof(policy)); 5174 cpu = get_cpu(); 5175 cpufreq_get_policy(&policy, cpu); 5176 if (policy.cpuinfo.max_freq) 5177 max_tsc_khz = policy.cpuinfo.max_freq; 5178 put_cpu(); 5179 #endif 5180 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 5181 CPUFREQ_TRANSITION_NOTIFIER); 5182 } 5183 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz); 5184 for_each_online_cpu(cpu) 5185 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); 5186 } 5187 5188 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); 5189 5190 int kvm_is_in_guest(void) 5191 { 5192 return __this_cpu_read(current_vcpu) != NULL; 5193 } 5194 5195 static int kvm_is_user_mode(void) 5196 { 5197 int user_mode = 3; 5198 5199 if (__this_cpu_read(current_vcpu)) 5200 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu)); 5201 5202 return user_mode != 0; 5203 } 5204 5205 static unsigned long kvm_get_guest_ip(void) 5206 { 5207 unsigned long ip = 0; 5208 5209 if (__this_cpu_read(current_vcpu)) 5210 ip = kvm_rip_read(__this_cpu_read(current_vcpu)); 5211 5212 return ip; 5213 } 5214 5215 static struct perf_guest_info_callbacks kvm_guest_cbs = { 5216 .is_in_guest = kvm_is_in_guest, 5217 .is_user_mode = kvm_is_user_mode, 5218 .get_guest_ip = kvm_get_guest_ip, 5219 }; 5220 5221 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu) 5222 { 5223 __this_cpu_write(current_vcpu, vcpu); 5224 } 5225 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi); 5226 5227 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu) 5228 { 5229 __this_cpu_write(current_vcpu, NULL); 5230 } 5231 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi); 5232 5233 static void kvm_set_mmio_spte_mask(void) 5234 { 5235 u64 mask; 5236 int maxphyaddr = boot_cpu_data.x86_phys_bits; 5237 5238 /* 5239 * Set the reserved bits and the present bit of an paging-structure 5240 * entry to generate page fault with PFER.RSV = 1. 5241 */ 5242 mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr; 5243 mask |= 1ull; 5244 5245 #ifdef CONFIG_X86_64 5246 /* 5247 * If reserved bit is not supported, clear the present bit to disable 5248 * mmio page fault. 5249 */ 5250 if (maxphyaddr == 52) 5251 mask &= ~1ull; 5252 #endif 5253 5254 kvm_mmu_set_mmio_spte_mask(mask); 5255 } 5256 5257 #ifdef CONFIG_X86_64 5258 static void pvclock_gtod_update_fn(struct work_struct *work) 5259 { 5260 struct kvm *kvm; 5261 5262 struct kvm_vcpu *vcpu; 5263 int i; 5264 5265 raw_spin_lock(&kvm_lock); 5266 list_for_each_entry(kvm, &vm_list, vm_list) 5267 kvm_for_each_vcpu(i, vcpu, kvm) 5268 set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests); 5269 atomic_set(&kvm_guest_has_master_clock, 0); 5270 raw_spin_unlock(&kvm_lock); 5271 } 5272 5273 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 5274 5275 /* 5276 * Notification about pvclock gtod data update. 5277 */ 5278 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 5279 void *priv) 5280 { 5281 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 5282 struct timekeeper *tk = priv; 5283 5284 update_pvclock_gtod(tk); 5285 5286 /* disable master clock if host does not trust, or does not 5287 * use, TSC clocksource 5288 */ 5289 if (gtod->clock.vclock_mode != VCLOCK_TSC && 5290 atomic_read(&kvm_guest_has_master_clock) != 0) 5291 queue_work(system_long_wq, &pvclock_gtod_work); 5292 5293 return 0; 5294 } 5295 5296 static struct notifier_block pvclock_gtod_notifier = { 5297 .notifier_call = pvclock_gtod_notify, 5298 }; 5299 #endif 5300 5301 int kvm_arch_init(void *opaque) 5302 { 5303 int r; 5304 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque; 5305 5306 if (kvm_x86_ops) { 5307 printk(KERN_ERR "kvm: already loaded the other module\n"); 5308 r = -EEXIST; 5309 goto out; 5310 } 5311 5312 if (!ops->cpu_has_kvm_support()) { 5313 printk(KERN_ERR "kvm: no hardware support\n"); 5314 r = -EOPNOTSUPP; 5315 goto out; 5316 } 5317 if (ops->disabled_by_bios()) { 5318 printk(KERN_ERR "kvm: disabled by bios\n"); 5319 r = -EOPNOTSUPP; 5320 goto out; 5321 } 5322 5323 r = -ENOMEM; 5324 shared_msrs = alloc_percpu(struct kvm_shared_msrs); 5325 if (!shared_msrs) { 5326 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n"); 5327 goto out; 5328 } 5329 5330 r = kvm_mmu_module_init(); 5331 if (r) 5332 goto out_free_percpu; 5333 5334 kvm_set_mmio_spte_mask(); 5335 kvm_init_msr_list(); 5336 5337 kvm_x86_ops = ops; 5338 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, 5339 PT_DIRTY_MASK, PT64_NX_MASK, 0); 5340 5341 kvm_timer_init(); 5342 5343 perf_register_guest_info_callbacks(&kvm_guest_cbs); 5344 5345 if (cpu_has_xsave) 5346 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 5347 5348 kvm_lapic_init(); 5349 #ifdef CONFIG_X86_64 5350 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 5351 #endif 5352 5353 return 0; 5354 5355 out_free_percpu: 5356 free_percpu(shared_msrs); 5357 out: 5358 return r; 5359 } 5360 5361 void kvm_arch_exit(void) 5362 { 5363 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 5364 5365 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 5366 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 5367 CPUFREQ_TRANSITION_NOTIFIER); 5368 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block); 5369 #ifdef CONFIG_X86_64 5370 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 5371 #endif 5372 kvm_x86_ops = NULL; 5373 kvm_mmu_module_exit(); 5374 free_percpu(shared_msrs); 5375 } 5376 5377 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 5378 { 5379 ++vcpu->stat.halt_exits; 5380 if (irqchip_in_kernel(vcpu->kvm)) { 5381 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 5382 return 1; 5383 } else { 5384 vcpu->run->exit_reason = KVM_EXIT_HLT; 5385 return 0; 5386 } 5387 } 5388 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 5389 5390 int kvm_hv_hypercall(struct kvm_vcpu *vcpu) 5391 { 5392 u64 param, ingpa, outgpa, ret; 5393 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0; 5394 bool fast, longmode; 5395 int cs_db, cs_l; 5396 5397 /* 5398 * hypercall generates UD from non zero cpl and real mode 5399 * per HYPER-V spec 5400 */ 5401 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) { 5402 kvm_queue_exception(vcpu, UD_VECTOR); 5403 return 0; 5404 } 5405 5406 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 5407 longmode = is_long_mode(vcpu) && cs_l == 1; 5408 5409 if (!longmode) { 5410 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) | 5411 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff); 5412 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) | 5413 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff); 5414 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) | 5415 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff); 5416 } 5417 #ifdef CONFIG_X86_64 5418 else { 5419 param = kvm_register_read(vcpu, VCPU_REGS_RCX); 5420 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX); 5421 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8); 5422 } 5423 #endif 5424 5425 code = param & 0xffff; 5426 fast = (param >> 16) & 0x1; 5427 rep_cnt = (param >> 32) & 0xfff; 5428 rep_idx = (param >> 48) & 0xfff; 5429 5430 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa); 5431 5432 switch (code) { 5433 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT: 5434 kvm_vcpu_on_spin(vcpu); 5435 break; 5436 default: 5437 res = HV_STATUS_INVALID_HYPERCALL_CODE; 5438 break; 5439 } 5440 5441 ret = res | (((u64)rep_done & 0xfff) << 32); 5442 if (longmode) { 5443 kvm_register_write(vcpu, VCPU_REGS_RAX, ret); 5444 } else { 5445 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32); 5446 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff); 5447 } 5448 5449 return 1; 5450 } 5451 5452 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 5453 { 5454 unsigned long nr, a0, a1, a2, a3, ret; 5455 int r = 1; 5456 5457 if (kvm_hv_hypercall_enabled(vcpu->kvm)) 5458 return kvm_hv_hypercall(vcpu); 5459 5460 nr = kvm_register_read(vcpu, VCPU_REGS_RAX); 5461 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX); 5462 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX); 5463 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX); 5464 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI); 5465 5466 trace_kvm_hypercall(nr, a0, a1, a2, a3); 5467 5468 if (!is_long_mode(vcpu)) { 5469 nr &= 0xFFFFFFFF; 5470 a0 &= 0xFFFFFFFF; 5471 a1 &= 0xFFFFFFFF; 5472 a2 &= 0xFFFFFFFF; 5473 a3 &= 0xFFFFFFFF; 5474 } 5475 5476 if (kvm_x86_ops->get_cpl(vcpu) != 0) { 5477 ret = -KVM_EPERM; 5478 goto out; 5479 } 5480 5481 switch (nr) { 5482 case KVM_HC_VAPIC_POLL_IRQ: 5483 ret = 0; 5484 break; 5485 default: 5486 ret = -KVM_ENOSYS; 5487 break; 5488 } 5489 out: 5490 kvm_register_write(vcpu, VCPU_REGS_RAX, ret); 5491 ++vcpu->stat.hypercalls; 5492 return r; 5493 } 5494 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 5495 5496 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 5497 { 5498 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5499 char instruction[3]; 5500 unsigned long rip = kvm_rip_read(vcpu); 5501 5502 /* 5503 * Blow out the MMU to ensure that no other VCPU has an active mapping 5504 * to ensure that the updated hypercall appears atomically across all 5505 * VCPUs. 5506 */ 5507 kvm_mmu_zap_all(vcpu->kvm); 5508 5509 kvm_x86_ops->patch_hypercall(vcpu, instruction); 5510 5511 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL); 5512 } 5513 5514 /* 5515 * Check if userspace requested an interrupt window, and that the 5516 * interrupt window is open. 5517 * 5518 * No need to exit to userspace if we already have an interrupt queued. 5519 */ 5520 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 5521 { 5522 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) && 5523 vcpu->run->request_interrupt_window && 5524 kvm_arch_interrupt_allowed(vcpu)); 5525 } 5526 5527 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 5528 { 5529 struct kvm_run *kvm_run = vcpu->run; 5530 5531 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; 5532 kvm_run->cr8 = kvm_get_cr8(vcpu); 5533 kvm_run->apic_base = kvm_get_apic_base(vcpu); 5534 if (irqchip_in_kernel(vcpu->kvm)) 5535 kvm_run->ready_for_interrupt_injection = 1; 5536 else 5537 kvm_run->ready_for_interrupt_injection = 5538 kvm_arch_interrupt_allowed(vcpu) && 5539 !kvm_cpu_has_interrupt(vcpu) && 5540 !kvm_event_needs_reinjection(vcpu); 5541 } 5542 5543 static int vapic_enter(struct kvm_vcpu *vcpu) 5544 { 5545 struct kvm_lapic *apic = vcpu->arch.apic; 5546 struct page *page; 5547 5548 if (!apic || !apic->vapic_addr) 5549 return 0; 5550 5551 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); 5552 if (is_error_page(page)) 5553 return -EFAULT; 5554 5555 vcpu->arch.apic->vapic_page = page; 5556 return 0; 5557 } 5558 5559 static void vapic_exit(struct kvm_vcpu *vcpu) 5560 { 5561 struct kvm_lapic *apic = vcpu->arch.apic; 5562 int idx; 5563 5564 if (!apic || !apic->vapic_addr) 5565 return; 5566 5567 idx = srcu_read_lock(&vcpu->kvm->srcu); 5568 kvm_release_page_dirty(apic->vapic_page); 5569 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); 5570 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5571 } 5572 5573 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 5574 { 5575 int max_irr, tpr; 5576 5577 if (!kvm_x86_ops->update_cr8_intercept) 5578 return; 5579 5580 if (!vcpu->arch.apic) 5581 return; 5582 5583 if (!vcpu->arch.apic->vapic_addr) 5584 max_irr = kvm_lapic_find_highest_irr(vcpu); 5585 else 5586 max_irr = -1; 5587 5588 if (max_irr != -1) 5589 max_irr >>= 4; 5590 5591 tpr = kvm_lapic_get_cr8(vcpu); 5592 5593 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); 5594 } 5595 5596 static void inject_pending_event(struct kvm_vcpu *vcpu) 5597 { 5598 /* try to reinject previous events if any */ 5599 if (vcpu->arch.exception.pending) { 5600 trace_kvm_inj_exception(vcpu->arch.exception.nr, 5601 vcpu->arch.exception.has_error_code, 5602 vcpu->arch.exception.error_code); 5603 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr, 5604 vcpu->arch.exception.has_error_code, 5605 vcpu->arch.exception.error_code, 5606 vcpu->arch.exception.reinject); 5607 return; 5608 } 5609 5610 if (vcpu->arch.nmi_injected) { 5611 kvm_x86_ops->set_nmi(vcpu); 5612 return; 5613 } 5614 5615 if (vcpu->arch.interrupt.pending) { 5616 kvm_x86_ops->set_irq(vcpu); 5617 return; 5618 } 5619 5620 /* try to inject new event if pending */ 5621 if (vcpu->arch.nmi_pending) { 5622 if (kvm_x86_ops->nmi_allowed(vcpu)) { 5623 --vcpu->arch.nmi_pending; 5624 vcpu->arch.nmi_injected = true; 5625 kvm_x86_ops->set_nmi(vcpu); 5626 } 5627 } else if (kvm_cpu_has_injectable_intr(vcpu)) { 5628 if (kvm_x86_ops->interrupt_allowed(vcpu)) { 5629 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), 5630 false); 5631 kvm_x86_ops->set_irq(vcpu); 5632 } 5633 } 5634 } 5635 5636 static void process_nmi(struct kvm_vcpu *vcpu) 5637 { 5638 unsigned limit = 2; 5639 5640 /* 5641 * x86 is limited to one NMI running, and one NMI pending after it. 5642 * If an NMI is already in progress, limit further NMIs to just one. 5643 * Otherwise, allow two (and we'll inject the first one immediately). 5644 */ 5645 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) 5646 limit = 1; 5647 5648 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 5649 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 5650 kvm_make_request(KVM_REQ_EVENT, vcpu); 5651 } 5652 5653 static void kvm_gen_update_masterclock(struct kvm *kvm) 5654 { 5655 #ifdef CONFIG_X86_64 5656 int i; 5657 struct kvm_vcpu *vcpu; 5658 struct kvm_arch *ka = &kvm->arch; 5659 5660 spin_lock(&ka->pvclock_gtod_sync_lock); 5661 kvm_make_mclock_inprogress_request(kvm); 5662 /* no guest entries from this point */ 5663 pvclock_update_vm_gtod_copy(kvm); 5664 5665 kvm_for_each_vcpu(i, vcpu, kvm) 5666 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 5667 5668 /* guest entries allowed */ 5669 kvm_for_each_vcpu(i, vcpu, kvm) 5670 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests); 5671 5672 spin_unlock(&ka->pvclock_gtod_sync_lock); 5673 #endif 5674 } 5675 5676 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 5677 { 5678 u64 eoi_exit_bitmap[4]; 5679 u32 tmr[8]; 5680 5681 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 5682 return; 5683 5684 memset(eoi_exit_bitmap, 0, 32); 5685 memset(tmr, 0, 32); 5686 5687 kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr); 5688 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap); 5689 kvm_apic_update_tmr(vcpu, tmr); 5690 } 5691 5692 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 5693 { 5694 int r; 5695 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) && 5696 vcpu->run->request_interrupt_window; 5697 bool req_immediate_exit = false; 5698 5699 if (vcpu->requests) { 5700 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) 5701 kvm_mmu_unload(vcpu); 5702 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 5703 __kvm_migrate_timers(vcpu); 5704 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 5705 kvm_gen_update_masterclock(vcpu->kvm); 5706 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 5707 r = kvm_guest_time_update(vcpu); 5708 if (unlikely(r)) 5709 goto out; 5710 } 5711 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 5712 kvm_mmu_sync_roots(vcpu); 5713 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 5714 kvm_x86_ops->tlb_flush(vcpu); 5715 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 5716 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 5717 r = 0; 5718 goto out; 5719 } 5720 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 5721 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 5722 r = 0; 5723 goto out; 5724 } 5725 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) { 5726 vcpu->fpu_active = 0; 5727 kvm_x86_ops->fpu_deactivate(vcpu); 5728 } 5729 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 5730 /* Page is swapped out. Do synthetic halt */ 5731 vcpu->arch.apf.halted = true; 5732 r = 1; 5733 goto out; 5734 } 5735 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 5736 record_steal_time(vcpu); 5737 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 5738 process_nmi(vcpu); 5739 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 5740 kvm_handle_pmu_event(vcpu); 5741 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 5742 kvm_deliver_pmi(vcpu); 5743 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 5744 vcpu_scan_ioapic(vcpu); 5745 } 5746 5747 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { 5748 kvm_apic_accept_events(vcpu); 5749 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 5750 r = 1; 5751 goto out; 5752 } 5753 5754 inject_pending_event(vcpu); 5755 5756 /* enable NMI/IRQ window open exits if needed */ 5757 if (vcpu->arch.nmi_pending) 5758 req_immediate_exit = 5759 kvm_x86_ops->enable_nmi_window(vcpu) != 0; 5760 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win) 5761 req_immediate_exit = 5762 kvm_x86_ops->enable_irq_window(vcpu) != 0; 5763 5764 if (kvm_lapic_enabled(vcpu)) { 5765 /* 5766 * Update architecture specific hints for APIC 5767 * virtual interrupt delivery. 5768 */ 5769 if (kvm_x86_ops->hwapic_irr_update) 5770 kvm_x86_ops->hwapic_irr_update(vcpu, 5771 kvm_lapic_find_highest_irr(vcpu)); 5772 update_cr8_intercept(vcpu); 5773 kvm_lapic_sync_to_vapic(vcpu); 5774 } 5775 } 5776 5777 r = kvm_mmu_reload(vcpu); 5778 if (unlikely(r)) { 5779 goto cancel_injection; 5780 } 5781 5782 preempt_disable(); 5783 5784 kvm_x86_ops->prepare_guest_switch(vcpu); 5785 if (vcpu->fpu_active) 5786 kvm_load_guest_fpu(vcpu); 5787 kvm_load_guest_xcr0(vcpu); 5788 5789 vcpu->mode = IN_GUEST_MODE; 5790 5791 /* We should set ->mode before check ->requests, 5792 * see the comment in make_all_cpus_request. 5793 */ 5794 smp_mb(); 5795 5796 local_irq_disable(); 5797 5798 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests 5799 || need_resched() || signal_pending(current)) { 5800 vcpu->mode = OUTSIDE_GUEST_MODE; 5801 smp_wmb(); 5802 local_irq_enable(); 5803 preempt_enable(); 5804 r = 1; 5805 goto cancel_injection; 5806 } 5807 5808 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 5809 5810 if (req_immediate_exit) 5811 smp_send_reschedule(vcpu->cpu); 5812 5813 kvm_guest_enter(); 5814 5815 if (unlikely(vcpu->arch.switch_db_regs)) { 5816 set_debugreg(0, 7); 5817 set_debugreg(vcpu->arch.eff_db[0], 0); 5818 set_debugreg(vcpu->arch.eff_db[1], 1); 5819 set_debugreg(vcpu->arch.eff_db[2], 2); 5820 set_debugreg(vcpu->arch.eff_db[3], 3); 5821 } 5822 5823 trace_kvm_entry(vcpu->vcpu_id); 5824 kvm_x86_ops->run(vcpu); 5825 5826 /* 5827 * If the guest has used debug registers, at least dr7 5828 * will be disabled while returning to the host. 5829 * If we don't have active breakpoints in the host, we don't 5830 * care about the messed up debug address registers. But if 5831 * we have some of them active, restore the old state. 5832 */ 5833 if (hw_breakpoint_active()) 5834 hw_breakpoint_restore(); 5835 5836 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu, 5837 native_read_tsc()); 5838 5839 vcpu->mode = OUTSIDE_GUEST_MODE; 5840 smp_wmb(); 5841 5842 /* Interrupt is enabled by handle_external_intr() */ 5843 kvm_x86_ops->handle_external_intr(vcpu); 5844 5845 ++vcpu->stat.exits; 5846 5847 /* 5848 * We must have an instruction between local_irq_enable() and 5849 * kvm_guest_exit(), so the timer interrupt isn't delayed by 5850 * the interrupt shadow. The stat.exits increment will do nicely. 5851 * But we need to prevent reordering, hence this barrier(): 5852 */ 5853 barrier(); 5854 5855 kvm_guest_exit(); 5856 5857 preempt_enable(); 5858 5859 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 5860 5861 /* 5862 * Profile KVM exit RIPs: 5863 */ 5864 if (unlikely(prof_on == KVM_PROFILING)) { 5865 unsigned long rip = kvm_rip_read(vcpu); 5866 profile_hit(KVM_PROFILING, (void *)rip); 5867 } 5868 5869 if (unlikely(vcpu->arch.tsc_always_catchup)) 5870 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5871 5872 if (vcpu->arch.apic_attention) 5873 kvm_lapic_sync_from_vapic(vcpu); 5874 5875 r = kvm_x86_ops->handle_exit(vcpu); 5876 return r; 5877 5878 cancel_injection: 5879 kvm_x86_ops->cancel_injection(vcpu); 5880 if (unlikely(vcpu->arch.apic_attention)) 5881 kvm_lapic_sync_from_vapic(vcpu); 5882 out: 5883 return r; 5884 } 5885 5886 5887 static int __vcpu_run(struct kvm_vcpu *vcpu) 5888 { 5889 int r; 5890 struct kvm *kvm = vcpu->kvm; 5891 5892 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 5893 r = vapic_enter(vcpu); 5894 if (r) { 5895 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 5896 return r; 5897 } 5898 5899 r = 1; 5900 while (r > 0) { 5901 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 5902 !vcpu->arch.apf.halted) 5903 r = vcpu_enter_guest(vcpu); 5904 else { 5905 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 5906 kvm_vcpu_block(vcpu); 5907 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 5908 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) { 5909 kvm_apic_accept_events(vcpu); 5910 switch(vcpu->arch.mp_state) { 5911 case KVM_MP_STATE_HALTED: 5912 vcpu->arch.mp_state = 5913 KVM_MP_STATE_RUNNABLE; 5914 case KVM_MP_STATE_RUNNABLE: 5915 vcpu->arch.apf.halted = false; 5916 break; 5917 case KVM_MP_STATE_INIT_RECEIVED: 5918 break; 5919 default: 5920 r = -EINTR; 5921 break; 5922 } 5923 } 5924 } 5925 5926 if (r <= 0) 5927 break; 5928 5929 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests); 5930 if (kvm_cpu_has_pending_timer(vcpu)) 5931 kvm_inject_pending_timer_irqs(vcpu); 5932 5933 if (dm_request_for_irq_injection(vcpu)) { 5934 r = -EINTR; 5935 vcpu->run->exit_reason = KVM_EXIT_INTR; 5936 ++vcpu->stat.request_irq_exits; 5937 } 5938 5939 kvm_check_async_pf_completion(vcpu); 5940 5941 if (signal_pending(current)) { 5942 r = -EINTR; 5943 vcpu->run->exit_reason = KVM_EXIT_INTR; 5944 ++vcpu->stat.signal_exits; 5945 } 5946 if (need_resched()) { 5947 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 5948 kvm_resched(vcpu); 5949 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 5950 } 5951 } 5952 5953 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 5954 5955 vapic_exit(vcpu); 5956 5957 return r; 5958 } 5959 5960 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 5961 { 5962 int r; 5963 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 5964 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 5965 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 5966 if (r != EMULATE_DONE) 5967 return 0; 5968 return 1; 5969 } 5970 5971 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 5972 { 5973 BUG_ON(!vcpu->arch.pio.count); 5974 5975 return complete_emulated_io(vcpu); 5976 } 5977 5978 /* 5979 * Implements the following, as a state machine: 5980 * 5981 * read: 5982 * for each fragment 5983 * for each mmio piece in the fragment 5984 * write gpa, len 5985 * exit 5986 * copy data 5987 * execute insn 5988 * 5989 * write: 5990 * for each fragment 5991 * for each mmio piece in the fragment 5992 * write gpa, len 5993 * copy data 5994 * exit 5995 */ 5996 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 5997 { 5998 struct kvm_run *run = vcpu->run; 5999 struct kvm_mmio_fragment *frag; 6000 unsigned len; 6001 6002 BUG_ON(!vcpu->mmio_needed); 6003 6004 /* Complete previous fragment */ 6005 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 6006 len = min(8u, frag->len); 6007 if (!vcpu->mmio_is_write) 6008 memcpy(frag->data, run->mmio.data, len); 6009 6010 if (frag->len <= 8) { 6011 /* Switch to the next fragment. */ 6012 frag++; 6013 vcpu->mmio_cur_fragment++; 6014 } else { 6015 /* Go forward to the next mmio piece. */ 6016 frag->data += len; 6017 frag->gpa += len; 6018 frag->len -= len; 6019 } 6020 6021 if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) { 6022 vcpu->mmio_needed = 0; 6023 if (vcpu->mmio_is_write) 6024 return 1; 6025 vcpu->mmio_read_completed = 1; 6026 return complete_emulated_io(vcpu); 6027 } 6028 6029 run->exit_reason = KVM_EXIT_MMIO; 6030 run->mmio.phys_addr = frag->gpa; 6031 if (vcpu->mmio_is_write) 6032 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 6033 run->mmio.len = min(8u, frag->len); 6034 run->mmio.is_write = vcpu->mmio_is_write; 6035 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 6036 return 0; 6037 } 6038 6039 6040 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 6041 { 6042 int r; 6043 sigset_t sigsaved; 6044 6045 if (!tsk_used_math(current) && init_fpu(current)) 6046 return -ENOMEM; 6047 6048 if (vcpu->sigset_active) 6049 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); 6050 6051 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 6052 kvm_vcpu_block(vcpu); 6053 kvm_apic_accept_events(vcpu); 6054 clear_bit(KVM_REQ_UNHALT, &vcpu->requests); 6055 r = -EAGAIN; 6056 goto out; 6057 } 6058 6059 /* re-sync apic's tpr */ 6060 if (!irqchip_in_kernel(vcpu->kvm)) { 6061 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 6062 r = -EINVAL; 6063 goto out; 6064 } 6065 } 6066 6067 if (unlikely(vcpu->arch.complete_userspace_io)) { 6068 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 6069 vcpu->arch.complete_userspace_io = NULL; 6070 r = cui(vcpu); 6071 if (r <= 0) 6072 goto out; 6073 } else 6074 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); 6075 6076 r = __vcpu_run(vcpu); 6077 6078 out: 6079 post_kvm_run_save(vcpu); 6080 if (vcpu->sigset_active) 6081 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 6082 6083 return r; 6084 } 6085 6086 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 6087 { 6088 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 6089 /* 6090 * We are here if userspace calls get_regs() in the middle of 6091 * instruction emulation. Registers state needs to be copied 6092 * back from emulation context to vcpu. Userspace shouldn't do 6093 * that usually, but some bad designed PV devices (vmware 6094 * backdoor interface) need this to work 6095 */ 6096 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt); 6097 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 6098 } 6099 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX); 6100 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX); 6101 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX); 6102 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX); 6103 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI); 6104 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI); 6105 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); 6106 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP); 6107 #ifdef CONFIG_X86_64 6108 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8); 6109 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9); 6110 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10); 6111 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11); 6112 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12); 6113 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13); 6114 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14); 6115 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15); 6116 #endif 6117 6118 regs->rip = kvm_rip_read(vcpu); 6119 regs->rflags = kvm_get_rflags(vcpu); 6120 6121 return 0; 6122 } 6123 6124 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 6125 { 6126 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 6127 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 6128 6129 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax); 6130 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx); 6131 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx); 6132 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx); 6133 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi); 6134 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi); 6135 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp); 6136 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp); 6137 #ifdef CONFIG_X86_64 6138 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8); 6139 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9); 6140 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10); 6141 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11); 6142 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12); 6143 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13); 6144 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14); 6145 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15); 6146 #endif 6147 6148 kvm_rip_write(vcpu, regs->rip); 6149 kvm_set_rflags(vcpu, regs->rflags); 6150 6151 vcpu->arch.exception.pending = false; 6152 6153 kvm_make_request(KVM_REQ_EVENT, vcpu); 6154 6155 return 0; 6156 } 6157 6158 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 6159 { 6160 struct kvm_segment cs; 6161 6162 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 6163 *db = cs.db; 6164 *l = cs.l; 6165 } 6166 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); 6167 6168 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 6169 struct kvm_sregs *sregs) 6170 { 6171 struct desc_ptr dt; 6172 6173 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 6174 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 6175 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 6176 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 6177 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 6178 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 6179 6180 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 6181 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 6182 6183 kvm_x86_ops->get_idt(vcpu, &dt); 6184 sregs->idt.limit = dt.size; 6185 sregs->idt.base = dt.address; 6186 kvm_x86_ops->get_gdt(vcpu, &dt); 6187 sregs->gdt.limit = dt.size; 6188 sregs->gdt.base = dt.address; 6189 6190 sregs->cr0 = kvm_read_cr0(vcpu); 6191 sregs->cr2 = vcpu->arch.cr2; 6192 sregs->cr3 = kvm_read_cr3(vcpu); 6193 sregs->cr4 = kvm_read_cr4(vcpu); 6194 sregs->cr8 = kvm_get_cr8(vcpu); 6195 sregs->efer = vcpu->arch.efer; 6196 sregs->apic_base = kvm_get_apic_base(vcpu); 6197 6198 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap); 6199 6200 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft) 6201 set_bit(vcpu->arch.interrupt.nr, 6202 (unsigned long *)sregs->interrupt_bitmap); 6203 6204 return 0; 6205 } 6206 6207 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 6208 struct kvm_mp_state *mp_state) 6209 { 6210 kvm_apic_accept_events(vcpu); 6211 mp_state->mp_state = vcpu->arch.mp_state; 6212 return 0; 6213 } 6214 6215 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 6216 struct kvm_mp_state *mp_state) 6217 { 6218 if (!kvm_vcpu_has_lapic(vcpu) && 6219 mp_state->mp_state != KVM_MP_STATE_RUNNABLE) 6220 return -EINVAL; 6221 6222 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 6223 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 6224 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 6225 } else 6226 vcpu->arch.mp_state = mp_state->mp_state; 6227 kvm_make_request(KVM_REQ_EVENT, vcpu); 6228 return 0; 6229 } 6230 6231 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 6232 int reason, bool has_error_code, u32 error_code) 6233 { 6234 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 6235 int ret; 6236 6237 init_emulate_ctxt(vcpu); 6238 6239 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 6240 has_error_code, error_code); 6241 6242 if (ret) 6243 return EMULATE_FAIL; 6244 6245 kvm_rip_write(vcpu, ctxt->eip); 6246 kvm_set_rflags(vcpu, ctxt->eflags); 6247 kvm_make_request(KVM_REQ_EVENT, vcpu); 6248 return EMULATE_DONE; 6249 } 6250 EXPORT_SYMBOL_GPL(kvm_task_switch); 6251 6252 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 6253 struct kvm_sregs *sregs) 6254 { 6255 int mmu_reset_needed = 0; 6256 int pending_vec, max_bits, idx; 6257 struct desc_ptr dt; 6258 6259 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE)) 6260 return -EINVAL; 6261 6262 dt.size = sregs->idt.limit; 6263 dt.address = sregs->idt.base; 6264 kvm_x86_ops->set_idt(vcpu, &dt); 6265 dt.size = sregs->gdt.limit; 6266 dt.address = sregs->gdt.base; 6267 kvm_x86_ops->set_gdt(vcpu, &dt); 6268 6269 vcpu->arch.cr2 = sregs->cr2; 6270 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 6271 vcpu->arch.cr3 = sregs->cr3; 6272 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 6273 6274 kvm_set_cr8(vcpu, sregs->cr8); 6275 6276 mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 6277 kvm_x86_ops->set_efer(vcpu, sregs->efer); 6278 kvm_set_apic_base(vcpu, sregs->apic_base); 6279 6280 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 6281 kvm_x86_ops->set_cr0(vcpu, sregs->cr0); 6282 vcpu->arch.cr0 = sregs->cr0; 6283 6284 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 6285 kvm_x86_ops->set_cr4(vcpu, sregs->cr4); 6286 if (sregs->cr4 & X86_CR4_OSXSAVE) 6287 kvm_update_cpuid(vcpu); 6288 6289 idx = srcu_read_lock(&vcpu->kvm->srcu); 6290 if (!is_long_mode(vcpu) && is_pae(vcpu)) { 6291 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 6292 mmu_reset_needed = 1; 6293 } 6294 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6295 6296 if (mmu_reset_needed) 6297 kvm_mmu_reset_context(vcpu); 6298 6299 max_bits = KVM_NR_INTERRUPTS; 6300 pending_vec = find_first_bit( 6301 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 6302 if (pending_vec < max_bits) { 6303 kvm_queue_interrupt(vcpu, pending_vec, false); 6304 pr_debug("Set back pending irq %d\n", pending_vec); 6305 } 6306 6307 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 6308 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 6309 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 6310 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 6311 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 6312 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 6313 6314 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 6315 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 6316 6317 update_cr8_intercept(vcpu); 6318 6319 /* Older userspace won't unhalt the vcpu on reset. */ 6320 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 6321 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 6322 !is_protmode(vcpu)) 6323 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 6324 6325 kvm_make_request(KVM_REQ_EVENT, vcpu); 6326 6327 return 0; 6328 } 6329 6330 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 6331 struct kvm_guest_debug *dbg) 6332 { 6333 unsigned long rflags; 6334 int i, r; 6335 6336 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 6337 r = -EBUSY; 6338 if (vcpu->arch.exception.pending) 6339 goto out; 6340 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 6341 kvm_queue_exception(vcpu, DB_VECTOR); 6342 else 6343 kvm_queue_exception(vcpu, BP_VECTOR); 6344 } 6345 6346 /* 6347 * Read rflags as long as potentially injected trace flags are still 6348 * filtered out. 6349 */ 6350 rflags = kvm_get_rflags(vcpu); 6351 6352 vcpu->guest_debug = dbg->control; 6353 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 6354 vcpu->guest_debug = 0; 6355 6356 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 6357 for (i = 0; i < KVM_NR_DB_REGS; ++i) 6358 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 6359 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 6360 } else { 6361 for (i = 0; i < KVM_NR_DB_REGS; i++) 6362 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 6363 } 6364 kvm_update_dr7(vcpu); 6365 6366 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 6367 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + 6368 get_segment_base(vcpu, VCPU_SREG_CS); 6369 6370 /* 6371 * Trigger an rflags update that will inject or remove the trace 6372 * flags. 6373 */ 6374 kvm_set_rflags(vcpu, rflags); 6375 6376 kvm_x86_ops->update_db_bp_intercept(vcpu); 6377 6378 r = 0; 6379 6380 out: 6381 6382 return r; 6383 } 6384 6385 /* 6386 * Translate a guest virtual address to a guest physical address. 6387 */ 6388 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 6389 struct kvm_translation *tr) 6390 { 6391 unsigned long vaddr = tr->linear_address; 6392 gpa_t gpa; 6393 int idx; 6394 6395 idx = srcu_read_lock(&vcpu->kvm->srcu); 6396 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 6397 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6398 tr->physical_address = gpa; 6399 tr->valid = gpa != UNMAPPED_GVA; 6400 tr->writeable = 1; 6401 tr->usermode = 0; 6402 6403 return 0; 6404 } 6405 6406 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 6407 { 6408 struct i387_fxsave_struct *fxsave = 6409 &vcpu->arch.guest_fpu.state->fxsave; 6410 6411 memcpy(fpu->fpr, fxsave->st_space, 128); 6412 fpu->fcw = fxsave->cwd; 6413 fpu->fsw = fxsave->swd; 6414 fpu->ftwx = fxsave->twd; 6415 fpu->last_opcode = fxsave->fop; 6416 fpu->last_ip = fxsave->rip; 6417 fpu->last_dp = fxsave->rdp; 6418 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); 6419 6420 return 0; 6421 } 6422 6423 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 6424 { 6425 struct i387_fxsave_struct *fxsave = 6426 &vcpu->arch.guest_fpu.state->fxsave; 6427 6428 memcpy(fxsave->st_space, fpu->fpr, 128); 6429 fxsave->cwd = fpu->fcw; 6430 fxsave->swd = fpu->fsw; 6431 fxsave->twd = fpu->ftwx; 6432 fxsave->fop = fpu->last_opcode; 6433 fxsave->rip = fpu->last_ip; 6434 fxsave->rdp = fpu->last_dp; 6435 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); 6436 6437 return 0; 6438 } 6439 6440 int fx_init(struct kvm_vcpu *vcpu) 6441 { 6442 int err; 6443 6444 err = fpu_alloc(&vcpu->arch.guest_fpu); 6445 if (err) 6446 return err; 6447 6448 fpu_finit(&vcpu->arch.guest_fpu); 6449 6450 /* 6451 * Ensure guest xcr0 is valid for loading 6452 */ 6453 vcpu->arch.xcr0 = XSTATE_FP; 6454 6455 vcpu->arch.cr0 |= X86_CR0_ET; 6456 6457 return 0; 6458 } 6459 EXPORT_SYMBOL_GPL(fx_init); 6460 6461 static void fx_free(struct kvm_vcpu *vcpu) 6462 { 6463 fpu_free(&vcpu->arch.guest_fpu); 6464 } 6465 6466 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 6467 { 6468 if (vcpu->guest_fpu_loaded) 6469 return; 6470 6471 /* 6472 * Restore all possible states in the guest, 6473 * and assume host would use all available bits. 6474 * Guest xcr0 would be loaded later. 6475 */ 6476 kvm_put_guest_xcr0(vcpu); 6477 vcpu->guest_fpu_loaded = 1; 6478 __kernel_fpu_begin(); 6479 fpu_restore_checking(&vcpu->arch.guest_fpu); 6480 trace_kvm_fpu(1); 6481 } 6482 6483 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 6484 { 6485 kvm_put_guest_xcr0(vcpu); 6486 6487 if (!vcpu->guest_fpu_loaded) 6488 return; 6489 6490 vcpu->guest_fpu_loaded = 0; 6491 fpu_save_init(&vcpu->arch.guest_fpu); 6492 __kernel_fpu_end(); 6493 ++vcpu->stat.fpu_reload; 6494 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu); 6495 trace_kvm_fpu(0); 6496 } 6497 6498 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 6499 { 6500 kvmclock_reset(vcpu); 6501 6502 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 6503 fx_free(vcpu); 6504 kvm_x86_ops->vcpu_free(vcpu); 6505 } 6506 6507 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, 6508 unsigned int id) 6509 { 6510 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 6511 printk_once(KERN_WARNING 6512 "kvm: SMP vm created on host with unstable TSC; " 6513 "guest TSC will not be reliable\n"); 6514 return kvm_x86_ops->vcpu_create(kvm, id); 6515 } 6516 6517 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) 6518 { 6519 int r; 6520 6521 vcpu->arch.mtrr_state.have_fixed = 1; 6522 r = vcpu_load(vcpu); 6523 if (r) 6524 return r; 6525 kvm_vcpu_reset(vcpu); 6526 r = kvm_mmu_setup(vcpu); 6527 vcpu_put(vcpu); 6528 6529 return r; 6530 } 6531 6532 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 6533 { 6534 int r; 6535 struct msr_data msr; 6536 6537 r = vcpu_load(vcpu); 6538 if (r) 6539 return r; 6540 msr.data = 0x0; 6541 msr.index = MSR_IA32_TSC; 6542 msr.host_initiated = true; 6543 kvm_write_tsc(vcpu, &msr); 6544 vcpu_put(vcpu); 6545 6546 return r; 6547 } 6548 6549 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 6550 { 6551 int r; 6552 vcpu->arch.apf.msr_val = 0; 6553 6554 r = vcpu_load(vcpu); 6555 BUG_ON(r); 6556 kvm_mmu_unload(vcpu); 6557 vcpu_put(vcpu); 6558 6559 fx_free(vcpu); 6560 kvm_x86_ops->vcpu_free(vcpu); 6561 } 6562 6563 void kvm_vcpu_reset(struct kvm_vcpu *vcpu) 6564 { 6565 atomic_set(&vcpu->arch.nmi_queued, 0); 6566 vcpu->arch.nmi_pending = 0; 6567 vcpu->arch.nmi_injected = false; 6568 6569 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 6570 vcpu->arch.dr6 = DR6_FIXED_1; 6571 vcpu->arch.dr7 = DR7_FIXED_1; 6572 kvm_update_dr7(vcpu); 6573 6574 kvm_make_request(KVM_REQ_EVENT, vcpu); 6575 vcpu->arch.apf.msr_val = 0; 6576 vcpu->arch.st.msr_val = 0; 6577 6578 kvmclock_reset(vcpu); 6579 6580 kvm_clear_async_pf_completion_queue(vcpu); 6581 kvm_async_pf_hash_reset(vcpu); 6582 vcpu->arch.apf.halted = false; 6583 6584 kvm_pmu_reset(vcpu); 6585 6586 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 6587 vcpu->arch.regs_avail = ~0; 6588 vcpu->arch.regs_dirty = ~0; 6589 6590 kvm_x86_ops->vcpu_reset(vcpu); 6591 } 6592 6593 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector) 6594 { 6595 struct kvm_segment cs; 6596 6597 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 6598 cs.selector = vector << 8; 6599 cs.base = vector << 12; 6600 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 6601 kvm_rip_write(vcpu, 0); 6602 } 6603 6604 int kvm_arch_hardware_enable(void *garbage) 6605 { 6606 struct kvm *kvm; 6607 struct kvm_vcpu *vcpu; 6608 int i; 6609 int ret; 6610 u64 local_tsc; 6611 u64 max_tsc = 0; 6612 bool stable, backwards_tsc = false; 6613 6614 kvm_shared_msr_cpu_online(); 6615 ret = kvm_x86_ops->hardware_enable(garbage); 6616 if (ret != 0) 6617 return ret; 6618 6619 local_tsc = native_read_tsc(); 6620 stable = !check_tsc_unstable(); 6621 list_for_each_entry(kvm, &vm_list, vm_list) { 6622 kvm_for_each_vcpu(i, vcpu, kvm) { 6623 if (!stable && vcpu->cpu == smp_processor_id()) 6624 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 6625 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 6626 backwards_tsc = true; 6627 if (vcpu->arch.last_host_tsc > max_tsc) 6628 max_tsc = vcpu->arch.last_host_tsc; 6629 } 6630 } 6631 } 6632 6633 /* 6634 * Sometimes, even reliable TSCs go backwards. This happens on 6635 * platforms that reset TSC during suspend or hibernate actions, but 6636 * maintain synchronization. We must compensate. Fortunately, we can 6637 * detect that condition here, which happens early in CPU bringup, 6638 * before any KVM threads can be running. Unfortunately, we can't 6639 * bring the TSCs fully up to date with real time, as we aren't yet far 6640 * enough into CPU bringup that we know how much real time has actually 6641 * elapsed; our helper function, get_kernel_ns() will be using boot 6642 * variables that haven't been updated yet. 6643 * 6644 * So we simply find the maximum observed TSC above, then record the 6645 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 6646 * the adjustment will be applied. Note that we accumulate 6647 * adjustments, in case multiple suspend cycles happen before some VCPU 6648 * gets a chance to run again. In the event that no KVM threads get a 6649 * chance to run, we will miss the entire elapsed period, as we'll have 6650 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 6651 * loose cycle time. This isn't too big a deal, since the loss will be 6652 * uniform across all VCPUs (not to mention the scenario is extremely 6653 * unlikely). It is possible that a second hibernate recovery happens 6654 * much faster than a first, causing the observed TSC here to be 6655 * smaller; this would require additional padding adjustment, which is 6656 * why we set last_host_tsc to the local tsc observed here. 6657 * 6658 * N.B. - this code below runs only on platforms with reliable TSC, 6659 * as that is the only way backwards_tsc is set above. Also note 6660 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 6661 * have the same delta_cyc adjustment applied if backwards_tsc 6662 * is detected. Note further, this adjustment is only done once, 6663 * as we reset last_host_tsc on all VCPUs to stop this from being 6664 * called multiple times (one for each physical CPU bringup). 6665 * 6666 * Platforms with unreliable TSCs don't have to deal with this, they 6667 * will be compensated by the logic in vcpu_load, which sets the TSC to 6668 * catchup mode. This will catchup all VCPUs to real time, but cannot 6669 * guarantee that they stay in perfect synchronization. 6670 */ 6671 if (backwards_tsc) { 6672 u64 delta_cyc = max_tsc - local_tsc; 6673 list_for_each_entry(kvm, &vm_list, vm_list) { 6674 kvm_for_each_vcpu(i, vcpu, kvm) { 6675 vcpu->arch.tsc_offset_adjustment += delta_cyc; 6676 vcpu->arch.last_host_tsc = local_tsc; 6677 set_bit(KVM_REQ_MASTERCLOCK_UPDATE, 6678 &vcpu->requests); 6679 } 6680 6681 /* 6682 * We have to disable TSC offset matching.. if you were 6683 * booting a VM while issuing an S4 host suspend.... 6684 * you may have some problem. Solving this issue is 6685 * left as an exercise to the reader. 6686 */ 6687 kvm->arch.last_tsc_nsec = 0; 6688 kvm->arch.last_tsc_write = 0; 6689 } 6690 6691 } 6692 return 0; 6693 } 6694 6695 void kvm_arch_hardware_disable(void *garbage) 6696 { 6697 kvm_x86_ops->hardware_disable(garbage); 6698 drop_user_return_notifiers(garbage); 6699 } 6700 6701 int kvm_arch_hardware_setup(void) 6702 { 6703 return kvm_x86_ops->hardware_setup(); 6704 } 6705 6706 void kvm_arch_hardware_unsetup(void) 6707 { 6708 kvm_x86_ops->hardware_unsetup(); 6709 } 6710 6711 void kvm_arch_check_processor_compat(void *rtn) 6712 { 6713 kvm_x86_ops->check_processor_compatibility(rtn); 6714 } 6715 6716 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu) 6717 { 6718 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL); 6719 } 6720 6721 struct static_key kvm_no_apic_vcpu __read_mostly; 6722 6723 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 6724 { 6725 struct page *page; 6726 struct kvm *kvm; 6727 int r; 6728 6729 BUG_ON(vcpu->kvm == NULL); 6730 kvm = vcpu->kvm; 6731 6732 vcpu->arch.emulate_ctxt.ops = &emulate_ops; 6733 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu)) 6734 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 6735 else 6736 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 6737 6738 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 6739 if (!page) { 6740 r = -ENOMEM; 6741 goto fail; 6742 } 6743 vcpu->arch.pio_data = page_address(page); 6744 6745 kvm_set_tsc_khz(vcpu, max_tsc_khz); 6746 6747 r = kvm_mmu_create(vcpu); 6748 if (r < 0) 6749 goto fail_free_pio_data; 6750 6751 if (irqchip_in_kernel(kvm)) { 6752 r = kvm_create_lapic(vcpu); 6753 if (r < 0) 6754 goto fail_mmu_destroy; 6755 } else 6756 static_key_slow_inc(&kvm_no_apic_vcpu); 6757 6758 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 6759 GFP_KERNEL); 6760 if (!vcpu->arch.mce_banks) { 6761 r = -ENOMEM; 6762 goto fail_free_lapic; 6763 } 6764 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 6765 6766 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) { 6767 r = -ENOMEM; 6768 goto fail_free_mce_banks; 6769 } 6770 6771 r = fx_init(vcpu); 6772 if (r) 6773 goto fail_free_wbinvd_dirty_mask; 6774 6775 vcpu->arch.ia32_tsc_adjust_msr = 0x0; 6776 vcpu->arch.pv_time_enabled = false; 6777 kvm_async_pf_hash_reset(vcpu); 6778 kvm_pmu_init(vcpu); 6779 6780 return 0; 6781 fail_free_wbinvd_dirty_mask: 6782 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 6783 fail_free_mce_banks: 6784 kfree(vcpu->arch.mce_banks); 6785 fail_free_lapic: 6786 kvm_free_lapic(vcpu); 6787 fail_mmu_destroy: 6788 kvm_mmu_destroy(vcpu); 6789 fail_free_pio_data: 6790 free_page((unsigned long)vcpu->arch.pio_data); 6791 fail: 6792 return r; 6793 } 6794 6795 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) 6796 { 6797 int idx; 6798 6799 kvm_pmu_destroy(vcpu); 6800 kfree(vcpu->arch.mce_banks); 6801 kvm_free_lapic(vcpu); 6802 idx = srcu_read_lock(&vcpu->kvm->srcu); 6803 kvm_mmu_destroy(vcpu); 6804 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6805 free_page((unsigned long)vcpu->arch.pio_data); 6806 if (!irqchip_in_kernel(vcpu->kvm)) 6807 static_key_slow_dec(&kvm_no_apic_vcpu); 6808 } 6809 6810 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 6811 { 6812 if (type) 6813 return -EINVAL; 6814 6815 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 6816 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 6817 6818 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 6819 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 6820 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 6821 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 6822 &kvm->arch.irq_sources_bitmap); 6823 6824 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 6825 mutex_init(&kvm->arch.apic_map_lock); 6826 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); 6827 6828 pvclock_update_vm_gtod_copy(kvm); 6829 6830 return 0; 6831 } 6832 6833 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 6834 { 6835 int r; 6836 r = vcpu_load(vcpu); 6837 BUG_ON(r); 6838 kvm_mmu_unload(vcpu); 6839 vcpu_put(vcpu); 6840 } 6841 6842 static void kvm_free_vcpus(struct kvm *kvm) 6843 { 6844 unsigned int i; 6845 struct kvm_vcpu *vcpu; 6846 6847 /* 6848 * Unpin any mmu pages first. 6849 */ 6850 kvm_for_each_vcpu(i, vcpu, kvm) { 6851 kvm_clear_async_pf_completion_queue(vcpu); 6852 kvm_unload_vcpu_mmu(vcpu); 6853 } 6854 kvm_for_each_vcpu(i, vcpu, kvm) 6855 kvm_arch_vcpu_free(vcpu); 6856 6857 mutex_lock(&kvm->lock); 6858 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 6859 kvm->vcpus[i] = NULL; 6860 6861 atomic_set(&kvm->online_vcpus, 0); 6862 mutex_unlock(&kvm->lock); 6863 } 6864 6865 void kvm_arch_sync_events(struct kvm *kvm) 6866 { 6867 kvm_free_all_assigned_devices(kvm); 6868 kvm_free_pit(kvm); 6869 } 6870 6871 void kvm_arch_destroy_vm(struct kvm *kvm) 6872 { 6873 if (current->mm == kvm->mm) { 6874 /* 6875 * Free memory regions allocated on behalf of userspace, 6876 * unless the the memory map has changed due to process exit 6877 * or fd copying. 6878 */ 6879 struct kvm_userspace_memory_region mem; 6880 memset(&mem, 0, sizeof(mem)); 6881 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT; 6882 kvm_set_memory_region(kvm, &mem); 6883 6884 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT; 6885 kvm_set_memory_region(kvm, &mem); 6886 6887 mem.slot = TSS_PRIVATE_MEMSLOT; 6888 kvm_set_memory_region(kvm, &mem); 6889 } 6890 kvm_iommu_unmap_guest(kvm); 6891 kfree(kvm->arch.vpic); 6892 kfree(kvm->arch.vioapic); 6893 kvm_free_vcpus(kvm); 6894 if (kvm->arch.apic_access_page) 6895 put_page(kvm->arch.apic_access_page); 6896 if (kvm->arch.ept_identity_pagetable) 6897 put_page(kvm->arch.ept_identity_pagetable); 6898 kfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 6899 } 6900 6901 void kvm_arch_free_memslot(struct kvm_memory_slot *free, 6902 struct kvm_memory_slot *dont) 6903 { 6904 int i; 6905 6906 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 6907 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) { 6908 kvm_kvfree(free->arch.rmap[i]); 6909 free->arch.rmap[i] = NULL; 6910 } 6911 if (i == 0) 6912 continue; 6913 6914 if (!dont || free->arch.lpage_info[i - 1] != 6915 dont->arch.lpage_info[i - 1]) { 6916 kvm_kvfree(free->arch.lpage_info[i - 1]); 6917 free->arch.lpage_info[i - 1] = NULL; 6918 } 6919 } 6920 } 6921 6922 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages) 6923 { 6924 int i; 6925 6926 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 6927 unsigned long ugfn; 6928 int lpages; 6929 int level = i + 1; 6930 6931 lpages = gfn_to_index(slot->base_gfn + npages - 1, 6932 slot->base_gfn, level) + 1; 6933 6934 slot->arch.rmap[i] = 6935 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i])); 6936 if (!slot->arch.rmap[i]) 6937 goto out_free; 6938 if (i == 0) 6939 continue; 6940 6941 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages * 6942 sizeof(*slot->arch.lpage_info[i - 1])); 6943 if (!slot->arch.lpage_info[i - 1]) 6944 goto out_free; 6945 6946 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 6947 slot->arch.lpage_info[i - 1][0].write_count = 1; 6948 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 6949 slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1; 6950 ugfn = slot->userspace_addr >> PAGE_SHIFT; 6951 /* 6952 * If the gfn and userspace address are not aligned wrt each 6953 * other, or if explicitly asked to, disable large page 6954 * support for this slot 6955 */ 6956 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) || 6957 !kvm_largepages_enabled()) { 6958 unsigned long j; 6959 6960 for (j = 0; j < lpages; ++j) 6961 slot->arch.lpage_info[i - 1][j].write_count = 1; 6962 } 6963 } 6964 6965 return 0; 6966 6967 out_free: 6968 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 6969 kvm_kvfree(slot->arch.rmap[i]); 6970 slot->arch.rmap[i] = NULL; 6971 if (i == 0) 6972 continue; 6973 6974 kvm_kvfree(slot->arch.lpage_info[i - 1]); 6975 slot->arch.lpage_info[i - 1] = NULL; 6976 } 6977 return -ENOMEM; 6978 } 6979 6980 int kvm_arch_prepare_memory_region(struct kvm *kvm, 6981 struct kvm_memory_slot *memslot, 6982 struct kvm_userspace_memory_region *mem, 6983 enum kvm_mr_change change) 6984 { 6985 /* 6986 * Only private memory slots need to be mapped here since 6987 * KVM_SET_MEMORY_REGION ioctl is no longer supported. 6988 */ 6989 if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) { 6990 unsigned long userspace_addr; 6991 6992 /* 6993 * MAP_SHARED to prevent internal slot pages from being moved 6994 * by fork()/COW. 6995 */ 6996 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE, 6997 PROT_READ | PROT_WRITE, 6998 MAP_SHARED | MAP_ANONYMOUS, 0); 6999 7000 if (IS_ERR((void *)userspace_addr)) 7001 return PTR_ERR((void *)userspace_addr); 7002 7003 memslot->userspace_addr = userspace_addr; 7004 } 7005 7006 return 0; 7007 } 7008 7009 void kvm_arch_commit_memory_region(struct kvm *kvm, 7010 struct kvm_userspace_memory_region *mem, 7011 const struct kvm_memory_slot *old, 7012 enum kvm_mr_change change) 7013 { 7014 7015 int nr_mmu_pages = 0; 7016 7017 if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) { 7018 int ret; 7019 7020 ret = vm_munmap(old->userspace_addr, 7021 old->npages * PAGE_SIZE); 7022 if (ret < 0) 7023 printk(KERN_WARNING 7024 "kvm_vm_ioctl_set_memory_region: " 7025 "failed to munmap memory\n"); 7026 } 7027 7028 if (!kvm->arch.n_requested_mmu_pages) 7029 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); 7030 7031 if (nr_mmu_pages) 7032 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 7033 /* 7034 * Write protect all pages for dirty logging. 7035 * Existing largepage mappings are destroyed here and new ones will 7036 * not be created until the end of the logging. 7037 */ 7038 if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES)) 7039 kvm_mmu_slot_remove_write_access(kvm, mem->slot); 7040 /* 7041 * If memory slot is created, or moved, we need to clear all 7042 * mmio sptes. 7043 */ 7044 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 7045 kvm_mmu_zap_mmio_sptes(kvm); 7046 kvm_reload_remote_mmus(kvm); 7047 } 7048 } 7049 7050 void kvm_arch_flush_shadow_all(struct kvm *kvm) 7051 { 7052 kvm_mmu_zap_all(kvm); 7053 kvm_reload_remote_mmus(kvm); 7054 } 7055 7056 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 7057 struct kvm_memory_slot *slot) 7058 { 7059 kvm_arch_flush_shadow_all(kvm); 7060 } 7061 7062 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 7063 { 7064 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 7065 !vcpu->arch.apf.halted) 7066 || !list_empty_careful(&vcpu->async_pf.done) 7067 || kvm_apic_has_events(vcpu) 7068 || atomic_read(&vcpu->arch.nmi_queued) || 7069 (kvm_arch_interrupt_allowed(vcpu) && 7070 kvm_cpu_has_interrupt(vcpu)); 7071 } 7072 7073 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 7074 { 7075 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 7076 } 7077 7078 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 7079 { 7080 return kvm_x86_ops->interrupt_allowed(vcpu); 7081 } 7082 7083 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 7084 { 7085 unsigned long current_rip = kvm_rip_read(vcpu) + 7086 get_segment_base(vcpu, VCPU_SREG_CS); 7087 7088 return current_rip == linear_rip; 7089 } 7090 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 7091 7092 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 7093 { 7094 unsigned long rflags; 7095 7096 rflags = kvm_x86_ops->get_rflags(vcpu); 7097 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 7098 rflags &= ~X86_EFLAGS_TF; 7099 return rflags; 7100 } 7101 EXPORT_SYMBOL_GPL(kvm_get_rflags); 7102 7103 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 7104 { 7105 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 7106 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 7107 rflags |= X86_EFLAGS_TF; 7108 kvm_x86_ops->set_rflags(vcpu, rflags); 7109 kvm_make_request(KVM_REQ_EVENT, vcpu); 7110 } 7111 EXPORT_SYMBOL_GPL(kvm_set_rflags); 7112 7113 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 7114 { 7115 int r; 7116 7117 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) || 7118 is_error_page(work->page)) 7119 return; 7120 7121 r = kvm_mmu_reload(vcpu); 7122 if (unlikely(r)) 7123 return; 7124 7125 if (!vcpu->arch.mmu.direct_map && 7126 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu)) 7127 return; 7128 7129 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true); 7130 } 7131 7132 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 7133 { 7134 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 7135 } 7136 7137 static inline u32 kvm_async_pf_next_probe(u32 key) 7138 { 7139 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); 7140 } 7141 7142 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 7143 { 7144 u32 key = kvm_async_pf_hash_fn(gfn); 7145 7146 while (vcpu->arch.apf.gfns[key] != ~0) 7147 key = kvm_async_pf_next_probe(key); 7148 7149 vcpu->arch.apf.gfns[key] = gfn; 7150 } 7151 7152 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 7153 { 7154 int i; 7155 u32 key = kvm_async_pf_hash_fn(gfn); 7156 7157 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && 7158 (vcpu->arch.apf.gfns[key] != gfn && 7159 vcpu->arch.apf.gfns[key] != ~0); i++) 7160 key = kvm_async_pf_next_probe(key); 7161 7162 return key; 7163 } 7164 7165 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 7166 { 7167 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 7168 } 7169 7170 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 7171 { 7172 u32 i, j, k; 7173 7174 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 7175 while (true) { 7176 vcpu->arch.apf.gfns[i] = ~0; 7177 do { 7178 j = kvm_async_pf_next_probe(j); 7179 if (vcpu->arch.apf.gfns[j] == ~0) 7180 return; 7181 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 7182 /* 7183 * k lies cyclically in ]i,j] 7184 * | i.k.j | 7185 * |....j i.k.| or |.k..j i...| 7186 */ 7187 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 7188 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 7189 i = j; 7190 } 7191 } 7192 7193 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) 7194 { 7195 7196 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, 7197 sizeof(val)); 7198 } 7199 7200 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 7201 struct kvm_async_pf *work) 7202 { 7203 struct x86_exception fault; 7204 7205 trace_kvm_async_pf_not_present(work->arch.token, work->gva); 7206 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 7207 7208 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || 7209 (vcpu->arch.apf.send_user_only && 7210 kvm_x86_ops->get_cpl(vcpu) == 0)) 7211 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 7212 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { 7213 fault.vector = PF_VECTOR; 7214 fault.error_code_valid = true; 7215 fault.error_code = 0; 7216 fault.nested_page_fault = false; 7217 fault.address = work->arch.token; 7218 kvm_inject_page_fault(vcpu, &fault); 7219 } 7220 } 7221 7222 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 7223 struct kvm_async_pf *work) 7224 { 7225 struct x86_exception fault; 7226 7227 trace_kvm_async_pf_ready(work->arch.token, work->gva); 7228 if (is_error_page(work->page)) 7229 work->arch.token = ~0; /* broadcast wakeup */ 7230 else 7231 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 7232 7233 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) && 7234 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { 7235 fault.vector = PF_VECTOR; 7236 fault.error_code_valid = true; 7237 fault.error_code = 0; 7238 fault.nested_page_fault = false; 7239 fault.address = work->arch.token; 7240 kvm_inject_page_fault(vcpu, &fault); 7241 } 7242 vcpu->arch.apf.halted = false; 7243 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 7244 } 7245 7246 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) 7247 { 7248 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) 7249 return true; 7250 else 7251 return !kvm_event_needs_reinjection(vcpu) && 7252 kvm_x86_ops->interrupt_allowed(vcpu); 7253 } 7254 7255 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 7256 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 7257 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 7258 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 7259 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 7260 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 7261 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 7262 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 7263 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 7264 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 7265 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 7266 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 7267