xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 206e8c00752fbe9cc463184236ac64b2a532cda5)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/module.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <trace/events/kvm.h>
55 
56 #define CREATE_TRACE_POINTS
57 #include "trace.h"
58 
59 #include <asm/debugreg.h>
60 #include <asm/msr.h>
61 #include <asm/desc.h>
62 #include <asm/mce.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 
68 #define MAX_IO_MSRS 256
69 #define KVM_MAX_MCE_BANKS 32
70 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
71 
72 #define emul_to_vcpu(ctxt) \
73 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
74 
75 /* EFER defaults:
76  * - enable syscall per default because its emulated by KVM
77  * - enable LME and LMA per default on 64 bit KVM
78  */
79 #ifdef CONFIG_X86_64
80 static
81 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
82 #else
83 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
84 #endif
85 
86 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
87 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
88 
89 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
90 static void process_nmi(struct kvm_vcpu *vcpu);
91 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
92 
93 struct kvm_x86_ops *kvm_x86_ops;
94 EXPORT_SYMBOL_GPL(kvm_x86_ops);
95 
96 static bool ignore_msrs = 0;
97 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
98 
99 unsigned int min_timer_period_us = 500;
100 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
101 
102 static bool __read_mostly kvmclock_periodic_sync = true;
103 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
104 
105 bool kvm_has_tsc_control;
106 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
107 u32  kvm_max_guest_tsc_khz;
108 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
109 
110 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
111 static u32 tsc_tolerance_ppm = 250;
112 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
113 
114 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
115 unsigned int lapic_timer_advance_ns = 0;
116 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
117 
118 static bool backwards_tsc_observed = false;
119 
120 #define KVM_NR_SHARED_MSRS 16
121 
122 struct kvm_shared_msrs_global {
123 	int nr;
124 	u32 msrs[KVM_NR_SHARED_MSRS];
125 };
126 
127 struct kvm_shared_msrs {
128 	struct user_return_notifier urn;
129 	bool registered;
130 	struct kvm_shared_msr_values {
131 		u64 host;
132 		u64 curr;
133 	} values[KVM_NR_SHARED_MSRS];
134 };
135 
136 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
137 static struct kvm_shared_msrs __percpu *shared_msrs;
138 
139 struct kvm_stats_debugfs_item debugfs_entries[] = {
140 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
141 	{ "pf_guest", VCPU_STAT(pf_guest) },
142 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
143 	{ "invlpg", VCPU_STAT(invlpg) },
144 	{ "exits", VCPU_STAT(exits) },
145 	{ "io_exits", VCPU_STAT(io_exits) },
146 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
147 	{ "signal_exits", VCPU_STAT(signal_exits) },
148 	{ "irq_window", VCPU_STAT(irq_window_exits) },
149 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
150 	{ "halt_exits", VCPU_STAT(halt_exits) },
151 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
152 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
153 	{ "hypercalls", VCPU_STAT(hypercalls) },
154 	{ "request_irq", VCPU_STAT(request_irq_exits) },
155 	{ "irq_exits", VCPU_STAT(irq_exits) },
156 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
157 	{ "efer_reload", VCPU_STAT(efer_reload) },
158 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
159 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
160 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
161 	{ "irq_injections", VCPU_STAT(irq_injections) },
162 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
163 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
164 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
165 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
166 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
167 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
168 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
169 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
170 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
171 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
172 	{ "largepages", VM_STAT(lpages) },
173 	{ NULL }
174 };
175 
176 u64 __read_mostly host_xcr0;
177 
178 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
179 
180 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
181 {
182 	int i;
183 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
184 		vcpu->arch.apf.gfns[i] = ~0;
185 }
186 
187 static void kvm_on_user_return(struct user_return_notifier *urn)
188 {
189 	unsigned slot;
190 	struct kvm_shared_msrs *locals
191 		= container_of(urn, struct kvm_shared_msrs, urn);
192 	struct kvm_shared_msr_values *values;
193 
194 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
195 		values = &locals->values[slot];
196 		if (values->host != values->curr) {
197 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
198 			values->curr = values->host;
199 		}
200 	}
201 	locals->registered = false;
202 	user_return_notifier_unregister(urn);
203 }
204 
205 static void shared_msr_update(unsigned slot, u32 msr)
206 {
207 	u64 value;
208 	unsigned int cpu = smp_processor_id();
209 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
210 
211 	/* only read, and nobody should modify it at this time,
212 	 * so don't need lock */
213 	if (slot >= shared_msrs_global.nr) {
214 		printk(KERN_ERR "kvm: invalid MSR slot!");
215 		return;
216 	}
217 	rdmsrl_safe(msr, &value);
218 	smsr->values[slot].host = value;
219 	smsr->values[slot].curr = value;
220 }
221 
222 void kvm_define_shared_msr(unsigned slot, u32 msr)
223 {
224 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
225 	shared_msrs_global.msrs[slot] = msr;
226 	if (slot >= shared_msrs_global.nr)
227 		shared_msrs_global.nr = slot + 1;
228 }
229 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
230 
231 static void kvm_shared_msr_cpu_online(void)
232 {
233 	unsigned i;
234 
235 	for (i = 0; i < shared_msrs_global.nr; ++i)
236 		shared_msr_update(i, shared_msrs_global.msrs[i]);
237 }
238 
239 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
240 {
241 	unsigned int cpu = smp_processor_id();
242 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
243 	int err;
244 
245 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
246 		return 0;
247 	smsr->values[slot].curr = value;
248 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
249 	if (err)
250 		return 1;
251 
252 	if (!smsr->registered) {
253 		smsr->urn.on_user_return = kvm_on_user_return;
254 		user_return_notifier_register(&smsr->urn);
255 		smsr->registered = true;
256 	}
257 	return 0;
258 }
259 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
260 
261 static void drop_user_return_notifiers(void)
262 {
263 	unsigned int cpu = smp_processor_id();
264 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
265 
266 	if (smsr->registered)
267 		kvm_on_user_return(&smsr->urn);
268 }
269 
270 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
271 {
272 	return vcpu->arch.apic_base;
273 }
274 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
275 
276 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
277 {
278 	u64 old_state = vcpu->arch.apic_base &
279 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
280 	u64 new_state = msr_info->data &
281 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
282 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
283 		0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
284 
285 	if (!msr_info->host_initiated &&
286 	    ((msr_info->data & reserved_bits) != 0 ||
287 	     new_state == X2APIC_ENABLE ||
288 	     (new_state == MSR_IA32_APICBASE_ENABLE &&
289 	      old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
290 	     (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
291 	      old_state == 0)))
292 		return 1;
293 
294 	kvm_lapic_set_base(vcpu, msr_info->data);
295 	return 0;
296 }
297 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
298 
299 asmlinkage __visible void kvm_spurious_fault(void)
300 {
301 	/* Fault while not rebooting.  We want the trace. */
302 	BUG();
303 }
304 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
305 
306 #define EXCPT_BENIGN		0
307 #define EXCPT_CONTRIBUTORY	1
308 #define EXCPT_PF		2
309 
310 static int exception_class(int vector)
311 {
312 	switch (vector) {
313 	case PF_VECTOR:
314 		return EXCPT_PF;
315 	case DE_VECTOR:
316 	case TS_VECTOR:
317 	case NP_VECTOR:
318 	case SS_VECTOR:
319 	case GP_VECTOR:
320 		return EXCPT_CONTRIBUTORY;
321 	default:
322 		break;
323 	}
324 	return EXCPT_BENIGN;
325 }
326 
327 #define EXCPT_FAULT		0
328 #define EXCPT_TRAP		1
329 #define EXCPT_ABORT		2
330 #define EXCPT_INTERRUPT		3
331 
332 static int exception_type(int vector)
333 {
334 	unsigned int mask;
335 
336 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
337 		return EXCPT_INTERRUPT;
338 
339 	mask = 1 << vector;
340 
341 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
342 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
343 		return EXCPT_TRAP;
344 
345 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
346 		return EXCPT_ABORT;
347 
348 	/* Reserved exceptions will result in fault */
349 	return EXCPT_FAULT;
350 }
351 
352 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
353 		unsigned nr, bool has_error, u32 error_code,
354 		bool reinject)
355 {
356 	u32 prev_nr;
357 	int class1, class2;
358 
359 	kvm_make_request(KVM_REQ_EVENT, vcpu);
360 
361 	if (!vcpu->arch.exception.pending) {
362 	queue:
363 		if (has_error && !is_protmode(vcpu))
364 			has_error = false;
365 		vcpu->arch.exception.pending = true;
366 		vcpu->arch.exception.has_error_code = has_error;
367 		vcpu->arch.exception.nr = nr;
368 		vcpu->arch.exception.error_code = error_code;
369 		vcpu->arch.exception.reinject = reinject;
370 		return;
371 	}
372 
373 	/* to check exception */
374 	prev_nr = vcpu->arch.exception.nr;
375 	if (prev_nr == DF_VECTOR) {
376 		/* triple fault -> shutdown */
377 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
378 		return;
379 	}
380 	class1 = exception_class(prev_nr);
381 	class2 = exception_class(nr);
382 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
383 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
384 		/* generate double fault per SDM Table 5-5 */
385 		vcpu->arch.exception.pending = true;
386 		vcpu->arch.exception.has_error_code = true;
387 		vcpu->arch.exception.nr = DF_VECTOR;
388 		vcpu->arch.exception.error_code = 0;
389 	} else
390 		/* replace previous exception with a new one in a hope
391 		   that instruction re-execution will regenerate lost
392 		   exception */
393 		goto queue;
394 }
395 
396 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
397 {
398 	kvm_multiple_exception(vcpu, nr, false, 0, false);
399 }
400 EXPORT_SYMBOL_GPL(kvm_queue_exception);
401 
402 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
403 {
404 	kvm_multiple_exception(vcpu, nr, false, 0, true);
405 }
406 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
407 
408 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
409 {
410 	if (err)
411 		kvm_inject_gp(vcpu, 0);
412 	else
413 		kvm_x86_ops->skip_emulated_instruction(vcpu);
414 }
415 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
416 
417 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
418 {
419 	++vcpu->stat.pf_guest;
420 	vcpu->arch.cr2 = fault->address;
421 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
422 }
423 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
424 
425 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
426 {
427 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
428 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
429 	else
430 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
431 
432 	return fault->nested_page_fault;
433 }
434 
435 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
436 {
437 	atomic_inc(&vcpu->arch.nmi_queued);
438 	kvm_make_request(KVM_REQ_NMI, vcpu);
439 }
440 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
441 
442 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
443 {
444 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
445 }
446 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
447 
448 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
449 {
450 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
451 }
452 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
453 
454 /*
455  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
456  * a #GP and return false.
457  */
458 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
459 {
460 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
461 		return true;
462 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
463 	return false;
464 }
465 EXPORT_SYMBOL_GPL(kvm_require_cpl);
466 
467 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
468 {
469 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
470 		return true;
471 
472 	kvm_queue_exception(vcpu, UD_VECTOR);
473 	return false;
474 }
475 EXPORT_SYMBOL_GPL(kvm_require_dr);
476 
477 /*
478  * This function will be used to read from the physical memory of the currently
479  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
480  * can read from guest physical or from the guest's guest physical memory.
481  */
482 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
483 			    gfn_t ngfn, void *data, int offset, int len,
484 			    u32 access)
485 {
486 	struct x86_exception exception;
487 	gfn_t real_gfn;
488 	gpa_t ngpa;
489 
490 	ngpa     = gfn_to_gpa(ngfn);
491 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
492 	if (real_gfn == UNMAPPED_GVA)
493 		return -EFAULT;
494 
495 	real_gfn = gpa_to_gfn(real_gfn);
496 
497 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
498 }
499 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
500 
501 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
502 			       void *data, int offset, int len, u32 access)
503 {
504 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
505 				       data, offset, len, access);
506 }
507 
508 /*
509  * Load the pae pdptrs.  Return true is they are all valid.
510  */
511 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
512 {
513 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
514 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
515 	int i;
516 	int ret;
517 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
518 
519 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
520 				      offset * sizeof(u64), sizeof(pdpte),
521 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
522 	if (ret < 0) {
523 		ret = 0;
524 		goto out;
525 	}
526 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
527 		if (is_present_gpte(pdpte[i]) &&
528 		    (pdpte[i] &
529 		     vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
530 			ret = 0;
531 			goto out;
532 		}
533 	}
534 	ret = 1;
535 
536 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
537 	__set_bit(VCPU_EXREG_PDPTR,
538 		  (unsigned long *)&vcpu->arch.regs_avail);
539 	__set_bit(VCPU_EXREG_PDPTR,
540 		  (unsigned long *)&vcpu->arch.regs_dirty);
541 out:
542 
543 	return ret;
544 }
545 EXPORT_SYMBOL_GPL(load_pdptrs);
546 
547 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
548 {
549 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
550 	bool changed = true;
551 	int offset;
552 	gfn_t gfn;
553 	int r;
554 
555 	if (is_long_mode(vcpu) || !is_pae(vcpu))
556 		return false;
557 
558 	if (!test_bit(VCPU_EXREG_PDPTR,
559 		      (unsigned long *)&vcpu->arch.regs_avail))
560 		return true;
561 
562 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
563 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
564 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
565 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
566 	if (r < 0)
567 		goto out;
568 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
569 out:
570 
571 	return changed;
572 }
573 
574 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
575 {
576 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
577 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
578 
579 	cr0 |= X86_CR0_ET;
580 
581 #ifdef CONFIG_X86_64
582 	if (cr0 & 0xffffffff00000000UL)
583 		return 1;
584 #endif
585 
586 	cr0 &= ~CR0_RESERVED_BITS;
587 
588 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
589 		return 1;
590 
591 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
592 		return 1;
593 
594 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
595 #ifdef CONFIG_X86_64
596 		if ((vcpu->arch.efer & EFER_LME)) {
597 			int cs_db, cs_l;
598 
599 			if (!is_pae(vcpu))
600 				return 1;
601 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
602 			if (cs_l)
603 				return 1;
604 		} else
605 #endif
606 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
607 						 kvm_read_cr3(vcpu)))
608 			return 1;
609 	}
610 
611 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
612 		return 1;
613 
614 	kvm_x86_ops->set_cr0(vcpu, cr0);
615 
616 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
617 		kvm_clear_async_pf_completion_queue(vcpu);
618 		kvm_async_pf_hash_reset(vcpu);
619 	}
620 
621 	if ((cr0 ^ old_cr0) & update_bits)
622 		kvm_mmu_reset_context(vcpu);
623 
624 	if ((cr0 ^ old_cr0) & X86_CR0_CD)
625 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
626 
627 	return 0;
628 }
629 EXPORT_SYMBOL_GPL(kvm_set_cr0);
630 
631 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
632 {
633 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
634 }
635 EXPORT_SYMBOL_GPL(kvm_lmsw);
636 
637 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
638 {
639 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
640 			!vcpu->guest_xcr0_loaded) {
641 		/* kvm_set_xcr() also depends on this */
642 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
643 		vcpu->guest_xcr0_loaded = 1;
644 	}
645 }
646 
647 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
648 {
649 	if (vcpu->guest_xcr0_loaded) {
650 		if (vcpu->arch.xcr0 != host_xcr0)
651 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
652 		vcpu->guest_xcr0_loaded = 0;
653 	}
654 }
655 
656 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
657 {
658 	u64 xcr0 = xcr;
659 	u64 old_xcr0 = vcpu->arch.xcr0;
660 	u64 valid_bits;
661 
662 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
663 	if (index != XCR_XFEATURE_ENABLED_MASK)
664 		return 1;
665 	if (!(xcr0 & XSTATE_FP))
666 		return 1;
667 	if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
668 		return 1;
669 
670 	/*
671 	 * Do not allow the guest to set bits that we do not support
672 	 * saving.  However, xcr0 bit 0 is always set, even if the
673 	 * emulated CPU does not support XSAVE (see fx_init).
674 	 */
675 	valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
676 	if (xcr0 & ~valid_bits)
677 		return 1;
678 
679 	if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
680 		return 1;
681 
682 	if (xcr0 & XSTATE_AVX512) {
683 		if (!(xcr0 & XSTATE_YMM))
684 			return 1;
685 		if ((xcr0 & XSTATE_AVX512) != XSTATE_AVX512)
686 			return 1;
687 	}
688 	kvm_put_guest_xcr0(vcpu);
689 	vcpu->arch.xcr0 = xcr0;
690 
691 	if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
692 		kvm_update_cpuid(vcpu);
693 	return 0;
694 }
695 
696 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
697 {
698 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
699 	    __kvm_set_xcr(vcpu, index, xcr)) {
700 		kvm_inject_gp(vcpu, 0);
701 		return 1;
702 	}
703 	return 0;
704 }
705 EXPORT_SYMBOL_GPL(kvm_set_xcr);
706 
707 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
708 {
709 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
710 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
711 				   X86_CR4_SMEP | X86_CR4_SMAP;
712 
713 	if (cr4 & CR4_RESERVED_BITS)
714 		return 1;
715 
716 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
717 		return 1;
718 
719 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
720 		return 1;
721 
722 	if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
723 		return 1;
724 
725 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
726 		return 1;
727 
728 	if (is_long_mode(vcpu)) {
729 		if (!(cr4 & X86_CR4_PAE))
730 			return 1;
731 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
732 		   && ((cr4 ^ old_cr4) & pdptr_bits)
733 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
734 				   kvm_read_cr3(vcpu)))
735 		return 1;
736 
737 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
738 		if (!guest_cpuid_has_pcid(vcpu))
739 			return 1;
740 
741 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
742 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
743 			return 1;
744 	}
745 
746 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
747 		return 1;
748 
749 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
750 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
751 		kvm_mmu_reset_context(vcpu);
752 
753 	if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
754 		kvm_update_cpuid(vcpu);
755 
756 	return 0;
757 }
758 EXPORT_SYMBOL_GPL(kvm_set_cr4);
759 
760 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
761 {
762 #ifdef CONFIG_X86_64
763 	cr3 &= ~CR3_PCID_INVD;
764 #endif
765 
766 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
767 		kvm_mmu_sync_roots(vcpu);
768 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
769 		return 0;
770 	}
771 
772 	if (is_long_mode(vcpu)) {
773 		if (cr3 & CR3_L_MODE_RESERVED_BITS)
774 			return 1;
775 	} else if (is_pae(vcpu) && is_paging(vcpu) &&
776 		   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
777 		return 1;
778 
779 	vcpu->arch.cr3 = cr3;
780 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
781 	kvm_mmu_new_cr3(vcpu);
782 	return 0;
783 }
784 EXPORT_SYMBOL_GPL(kvm_set_cr3);
785 
786 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
787 {
788 	if (cr8 & CR8_RESERVED_BITS)
789 		return 1;
790 	if (irqchip_in_kernel(vcpu->kvm))
791 		kvm_lapic_set_tpr(vcpu, cr8);
792 	else
793 		vcpu->arch.cr8 = cr8;
794 	return 0;
795 }
796 EXPORT_SYMBOL_GPL(kvm_set_cr8);
797 
798 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
799 {
800 	if (irqchip_in_kernel(vcpu->kvm))
801 		return kvm_lapic_get_cr8(vcpu);
802 	else
803 		return vcpu->arch.cr8;
804 }
805 EXPORT_SYMBOL_GPL(kvm_get_cr8);
806 
807 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
808 {
809 	int i;
810 
811 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
812 		for (i = 0; i < KVM_NR_DB_REGS; i++)
813 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
814 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
815 	}
816 }
817 
818 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
819 {
820 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
821 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
822 }
823 
824 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
825 {
826 	unsigned long dr7;
827 
828 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
829 		dr7 = vcpu->arch.guest_debug_dr7;
830 	else
831 		dr7 = vcpu->arch.dr7;
832 	kvm_x86_ops->set_dr7(vcpu, dr7);
833 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
834 	if (dr7 & DR7_BP_EN_MASK)
835 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
836 }
837 
838 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
839 {
840 	u64 fixed = DR6_FIXED_1;
841 
842 	if (!guest_cpuid_has_rtm(vcpu))
843 		fixed |= DR6_RTM;
844 	return fixed;
845 }
846 
847 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
848 {
849 	switch (dr) {
850 	case 0 ... 3:
851 		vcpu->arch.db[dr] = val;
852 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
853 			vcpu->arch.eff_db[dr] = val;
854 		break;
855 	case 4:
856 		/* fall through */
857 	case 6:
858 		if (val & 0xffffffff00000000ULL)
859 			return -1; /* #GP */
860 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
861 		kvm_update_dr6(vcpu);
862 		break;
863 	case 5:
864 		/* fall through */
865 	default: /* 7 */
866 		if (val & 0xffffffff00000000ULL)
867 			return -1; /* #GP */
868 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
869 		kvm_update_dr7(vcpu);
870 		break;
871 	}
872 
873 	return 0;
874 }
875 
876 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
877 {
878 	if (__kvm_set_dr(vcpu, dr, val)) {
879 		kvm_inject_gp(vcpu, 0);
880 		return 1;
881 	}
882 	return 0;
883 }
884 EXPORT_SYMBOL_GPL(kvm_set_dr);
885 
886 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
887 {
888 	switch (dr) {
889 	case 0 ... 3:
890 		*val = vcpu->arch.db[dr];
891 		break;
892 	case 4:
893 		/* fall through */
894 	case 6:
895 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
896 			*val = vcpu->arch.dr6;
897 		else
898 			*val = kvm_x86_ops->get_dr6(vcpu);
899 		break;
900 	case 5:
901 		/* fall through */
902 	default: /* 7 */
903 		*val = vcpu->arch.dr7;
904 		break;
905 	}
906 	return 0;
907 }
908 EXPORT_SYMBOL_GPL(kvm_get_dr);
909 
910 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
911 {
912 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
913 	u64 data;
914 	int err;
915 
916 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
917 	if (err)
918 		return err;
919 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
920 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
921 	return err;
922 }
923 EXPORT_SYMBOL_GPL(kvm_rdpmc);
924 
925 /*
926  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
927  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
928  *
929  * This list is modified at module load time to reflect the
930  * capabilities of the host cpu. This capabilities test skips MSRs that are
931  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
932  * may depend on host virtualization features rather than host cpu features.
933  */
934 
935 static u32 msrs_to_save[] = {
936 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
937 	MSR_STAR,
938 #ifdef CONFIG_X86_64
939 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
940 #endif
941 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
942 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
943 };
944 
945 static unsigned num_msrs_to_save;
946 
947 static u32 emulated_msrs[] = {
948 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
949 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
950 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
951 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
952 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
953 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
954 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
955 	MSR_KVM_PV_EOI_EN,
956 
957 	MSR_IA32_TSC_ADJUST,
958 	MSR_IA32_TSCDEADLINE,
959 	MSR_IA32_MISC_ENABLE,
960 	MSR_IA32_MCG_STATUS,
961 	MSR_IA32_MCG_CTL,
962 	MSR_IA32_SMBASE,
963 };
964 
965 static unsigned num_emulated_msrs;
966 
967 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
968 {
969 	if (efer & efer_reserved_bits)
970 		return false;
971 
972 	if (efer & EFER_FFXSR) {
973 		struct kvm_cpuid_entry2 *feat;
974 
975 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
976 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
977 			return false;
978 	}
979 
980 	if (efer & EFER_SVME) {
981 		struct kvm_cpuid_entry2 *feat;
982 
983 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
984 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
985 			return false;
986 	}
987 
988 	return true;
989 }
990 EXPORT_SYMBOL_GPL(kvm_valid_efer);
991 
992 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
993 {
994 	u64 old_efer = vcpu->arch.efer;
995 
996 	if (!kvm_valid_efer(vcpu, efer))
997 		return 1;
998 
999 	if (is_paging(vcpu)
1000 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1001 		return 1;
1002 
1003 	efer &= ~EFER_LMA;
1004 	efer |= vcpu->arch.efer & EFER_LMA;
1005 
1006 	kvm_x86_ops->set_efer(vcpu, efer);
1007 
1008 	/* Update reserved bits */
1009 	if ((efer ^ old_efer) & EFER_NX)
1010 		kvm_mmu_reset_context(vcpu);
1011 
1012 	return 0;
1013 }
1014 
1015 void kvm_enable_efer_bits(u64 mask)
1016 {
1017        efer_reserved_bits &= ~mask;
1018 }
1019 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1020 
1021 /*
1022  * Writes msr value into into the appropriate "register".
1023  * Returns 0 on success, non-0 otherwise.
1024  * Assumes vcpu_load() was already called.
1025  */
1026 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1027 {
1028 	switch (msr->index) {
1029 	case MSR_FS_BASE:
1030 	case MSR_GS_BASE:
1031 	case MSR_KERNEL_GS_BASE:
1032 	case MSR_CSTAR:
1033 	case MSR_LSTAR:
1034 		if (is_noncanonical_address(msr->data))
1035 			return 1;
1036 		break;
1037 	case MSR_IA32_SYSENTER_EIP:
1038 	case MSR_IA32_SYSENTER_ESP:
1039 		/*
1040 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1041 		 * non-canonical address is written on Intel but not on
1042 		 * AMD (which ignores the top 32-bits, because it does
1043 		 * not implement 64-bit SYSENTER).
1044 		 *
1045 		 * 64-bit code should hence be able to write a non-canonical
1046 		 * value on AMD.  Making the address canonical ensures that
1047 		 * vmentry does not fail on Intel after writing a non-canonical
1048 		 * value, and that something deterministic happens if the guest
1049 		 * invokes 64-bit SYSENTER.
1050 		 */
1051 		msr->data = get_canonical(msr->data);
1052 	}
1053 	return kvm_x86_ops->set_msr(vcpu, msr);
1054 }
1055 EXPORT_SYMBOL_GPL(kvm_set_msr);
1056 
1057 /*
1058  * Adapt set_msr() to msr_io()'s calling convention
1059  */
1060 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1061 {
1062 	struct msr_data msr;
1063 	int r;
1064 
1065 	msr.index = index;
1066 	msr.host_initiated = true;
1067 	r = kvm_get_msr(vcpu, &msr);
1068 	if (r)
1069 		return r;
1070 
1071 	*data = msr.data;
1072 	return 0;
1073 }
1074 
1075 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1076 {
1077 	struct msr_data msr;
1078 
1079 	msr.data = *data;
1080 	msr.index = index;
1081 	msr.host_initiated = true;
1082 	return kvm_set_msr(vcpu, &msr);
1083 }
1084 
1085 #ifdef CONFIG_X86_64
1086 struct pvclock_gtod_data {
1087 	seqcount_t	seq;
1088 
1089 	struct { /* extract of a clocksource struct */
1090 		int vclock_mode;
1091 		cycle_t	cycle_last;
1092 		cycle_t	mask;
1093 		u32	mult;
1094 		u32	shift;
1095 	} clock;
1096 
1097 	u64		boot_ns;
1098 	u64		nsec_base;
1099 };
1100 
1101 static struct pvclock_gtod_data pvclock_gtod_data;
1102 
1103 static void update_pvclock_gtod(struct timekeeper *tk)
1104 {
1105 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1106 	u64 boot_ns;
1107 
1108 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1109 
1110 	write_seqcount_begin(&vdata->seq);
1111 
1112 	/* copy pvclock gtod data */
1113 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1114 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1115 	vdata->clock.mask		= tk->tkr_mono.mask;
1116 	vdata->clock.mult		= tk->tkr_mono.mult;
1117 	vdata->clock.shift		= tk->tkr_mono.shift;
1118 
1119 	vdata->boot_ns			= boot_ns;
1120 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1121 
1122 	write_seqcount_end(&vdata->seq);
1123 }
1124 #endif
1125 
1126 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1127 {
1128 	/*
1129 	 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1130 	 * vcpu_enter_guest.  This function is only called from
1131 	 * the physical CPU that is running vcpu.
1132 	 */
1133 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1134 }
1135 
1136 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1137 {
1138 	int version;
1139 	int r;
1140 	struct pvclock_wall_clock wc;
1141 	struct timespec boot;
1142 
1143 	if (!wall_clock)
1144 		return;
1145 
1146 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1147 	if (r)
1148 		return;
1149 
1150 	if (version & 1)
1151 		++version;  /* first time write, random junk */
1152 
1153 	++version;
1154 
1155 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1156 
1157 	/*
1158 	 * The guest calculates current wall clock time by adding
1159 	 * system time (updated by kvm_guest_time_update below) to the
1160 	 * wall clock specified here.  guest system time equals host
1161 	 * system time for us, thus we must fill in host boot time here.
1162 	 */
1163 	getboottime(&boot);
1164 
1165 	if (kvm->arch.kvmclock_offset) {
1166 		struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1167 		boot = timespec_sub(boot, ts);
1168 	}
1169 	wc.sec = boot.tv_sec;
1170 	wc.nsec = boot.tv_nsec;
1171 	wc.version = version;
1172 
1173 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1174 
1175 	version++;
1176 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1177 }
1178 
1179 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1180 {
1181 	uint32_t quotient, remainder;
1182 
1183 	/* Don't try to replace with do_div(), this one calculates
1184 	 * "(dividend << 32) / divisor" */
1185 	__asm__ ( "divl %4"
1186 		  : "=a" (quotient), "=d" (remainder)
1187 		  : "0" (0), "1" (dividend), "r" (divisor) );
1188 	return quotient;
1189 }
1190 
1191 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1192 			       s8 *pshift, u32 *pmultiplier)
1193 {
1194 	uint64_t scaled64;
1195 	int32_t  shift = 0;
1196 	uint64_t tps64;
1197 	uint32_t tps32;
1198 
1199 	tps64 = base_khz * 1000LL;
1200 	scaled64 = scaled_khz * 1000LL;
1201 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1202 		tps64 >>= 1;
1203 		shift--;
1204 	}
1205 
1206 	tps32 = (uint32_t)tps64;
1207 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1208 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1209 			scaled64 >>= 1;
1210 		else
1211 			tps32 <<= 1;
1212 		shift++;
1213 	}
1214 
1215 	*pshift = shift;
1216 	*pmultiplier = div_frac(scaled64, tps32);
1217 
1218 	pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1219 		 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1220 }
1221 
1222 #ifdef CONFIG_X86_64
1223 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1224 #endif
1225 
1226 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1227 static unsigned long max_tsc_khz;
1228 
1229 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1230 {
1231 	return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1232 				   vcpu->arch.virtual_tsc_shift);
1233 }
1234 
1235 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1236 {
1237 	u64 v = (u64)khz * (1000000 + ppm);
1238 	do_div(v, 1000000);
1239 	return v;
1240 }
1241 
1242 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1243 {
1244 	u32 thresh_lo, thresh_hi;
1245 	int use_scaling = 0;
1246 
1247 	/* tsc_khz can be zero if TSC calibration fails */
1248 	if (this_tsc_khz == 0)
1249 		return;
1250 
1251 	/* Compute a scale to convert nanoseconds in TSC cycles */
1252 	kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1253 			   &vcpu->arch.virtual_tsc_shift,
1254 			   &vcpu->arch.virtual_tsc_mult);
1255 	vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1256 
1257 	/*
1258 	 * Compute the variation in TSC rate which is acceptable
1259 	 * within the range of tolerance and decide if the
1260 	 * rate being applied is within that bounds of the hardware
1261 	 * rate.  If so, no scaling or compensation need be done.
1262 	 */
1263 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1264 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1265 	if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1266 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1267 		use_scaling = 1;
1268 	}
1269 	kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1270 }
1271 
1272 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1273 {
1274 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1275 				      vcpu->arch.virtual_tsc_mult,
1276 				      vcpu->arch.virtual_tsc_shift);
1277 	tsc += vcpu->arch.this_tsc_write;
1278 	return tsc;
1279 }
1280 
1281 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1282 {
1283 #ifdef CONFIG_X86_64
1284 	bool vcpus_matched;
1285 	struct kvm_arch *ka = &vcpu->kvm->arch;
1286 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1287 
1288 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1289 			 atomic_read(&vcpu->kvm->online_vcpus));
1290 
1291 	/*
1292 	 * Once the masterclock is enabled, always perform request in
1293 	 * order to update it.
1294 	 *
1295 	 * In order to enable masterclock, the host clocksource must be TSC
1296 	 * and the vcpus need to have matched TSCs.  When that happens,
1297 	 * perform request to enable masterclock.
1298 	 */
1299 	if (ka->use_master_clock ||
1300 	    (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1301 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1302 
1303 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1304 			    atomic_read(&vcpu->kvm->online_vcpus),
1305 		            ka->use_master_clock, gtod->clock.vclock_mode);
1306 #endif
1307 }
1308 
1309 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1310 {
1311 	u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1312 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1313 }
1314 
1315 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1316 {
1317 	struct kvm *kvm = vcpu->kvm;
1318 	u64 offset, ns, elapsed;
1319 	unsigned long flags;
1320 	s64 usdiff;
1321 	bool matched;
1322 	bool already_matched;
1323 	u64 data = msr->data;
1324 
1325 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1326 	offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1327 	ns = get_kernel_ns();
1328 	elapsed = ns - kvm->arch.last_tsc_nsec;
1329 
1330 	if (vcpu->arch.virtual_tsc_khz) {
1331 		int faulted = 0;
1332 
1333 		/* n.b - signed multiplication and division required */
1334 		usdiff = data - kvm->arch.last_tsc_write;
1335 #ifdef CONFIG_X86_64
1336 		usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1337 #else
1338 		/* do_div() only does unsigned */
1339 		asm("1: idivl %[divisor]\n"
1340 		    "2: xor %%edx, %%edx\n"
1341 		    "   movl $0, %[faulted]\n"
1342 		    "3:\n"
1343 		    ".section .fixup,\"ax\"\n"
1344 		    "4: movl $1, %[faulted]\n"
1345 		    "   jmp  3b\n"
1346 		    ".previous\n"
1347 
1348 		_ASM_EXTABLE(1b, 4b)
1349 
1350 		: "=A"(usdiff), [faulted] "=r" (faulted)
1351 		: "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1352 
1353 #endif
1354 		do_div(elapsed, 1000);
1355 		usdiff -= elapsed;
1356 		if (usdiff < 0)
1357 			usdiff = -usdiff;
1358 
1359 		/* idivl overflow => difference is larger than USEC_PER_SEC */
1360 		if (faulted)
1361 			usdiff = USEC_PER_SEC;
1362 	} else
1363 		usdiff = USEC_PER_SEC; /* disable TSC match window below */
1364 
1365 	/*
1366 	 * Special case: TSC write with a small delta (1 second) of virtual
1367 	 * cycle time against real time is interpreted as an attempt to
1368 	 * synchronize the CPU.
1369          *
1370 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1371 	 * TSC, we add elapsed time in this computation.  We could let the
1372 	 * compensation code attempt to catch up if we fall behind, but
1373 	 * it's better to try to match offsets from the beginning.
1374          */
1375 	if (usdiff < USEC_PER_SEC &&
1376 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1377 		if (!check_tsc_unstable()) {
1378 			offset = kvm->arch.cur_tsc_offset;
1379 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1380 		} else {
1381 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1382 			data += delta;
1383 			offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1384 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1385 		}
1386 		matched = true;
1387 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1388 	} else {
1389 		/*
1390 		 * We split periods of matched TSC writes into generations.
1391 		 * For each generation, we track the original measured
1392 		 * nanosecond time, offset, and write, so if TSCs are in
1393 		 * sync, we can match exact offset, and if not, we can match
1394 		 * exact software computation in compute_guest_tsc()
1395 		 *
1396 		 * These values are tracked in kvm->arch.cur_xxx variables.
1397 		 */
1398 		kvm->arch.cur_tsc_generation++;
1399 		kvm->arch.cur_tsc_nsec = ns;
1400 		kvm->arch.cur_tsc_write = data;
1401 		kvm->arch.cur_tsc_offset = offset;
1402 		matched = false;
1403 		pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1404 			 kvm->arch.cur_tsc_generation, data);
1405 	}
1406 
1407 	/*
1408 	 * We also track th most recent recorded KHZ, write and time to
1409 	 * allow the matching interval to be extended at each write.
1410 	 */
1411 	kvm->arch.last_tsc_nsec = ns;
1412 	kvm->arch.last_tsc_write = data;
1413 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1414 
1415 	vcpu->arch.last_guest_tsc = data;
1416 
1417 	/* Keep track of which generation this VCPU has synchronized to */
1418 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1419 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1420 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1421 
1422 	if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1423 		update_ia32_tsc_adjust_msr(vcpu, offset);
1424 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1425 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1426 
1427 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1428 	if (!matched) {
1429 		kvm->arch.nr_vcpus_matched_tsc = 0;
1430 	} else if (!already_matched) {
1431 		kvm->arch.nr_vcpus_matched_tsc++;
1432 	}
1433 
1434 	kvm_track_tsc_matching(vcpu);
1435 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1436 }
1437 
1438 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1439 
1440 #ifdef CONFIG_X86_64
1441 
1442 static cycle_t read_tsc(void)
1443 {
1444 	cycle_t ret = (cycle_t)rdtsc_ordered();
1445 	u64 last = pvclock_gtod_data.clock.cycle_last;
1446 
1447 	if (likely(ret >= last))
1448 		return ret;
1449 
1450 	/*
1451 	 * GCC likes to generate cmov here, but this branch is extremely
1452 	 * predictable (it's just a funciton of time and the likely is
1453 	 * very likely) and there's a data dependence, so force GCC
1454 	 * to generate a branch instead.  I don't barrier() because
1455 	 * we don't actually need a barrier, and if this function
1456 	 * ever gets inlined it will generate worse code.
1457 	 */
1458 	asm volatile ("");
1459 	return last;
1460 }
1461 
1462 static inline u64 vgettsc(cycle_t *cycle_now)
1463 {
1464 	long v;
1465 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1466 
1467 	*cycle_now = read_tsc();
1468 
1469 	v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1470 	return v * gtod->clock.mult;
1471 }
1472 
1473 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1474 {
1475 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1476 	unsigned long seq;
1477 	int mode;
1478 	u64 ns;
1479 
1480 	do {
1481 		seq = read_seqcount_begin(&gtod->seq);
1482 		mode = gtod->clock.vclock_mode;
1483 		ns = gtod->nsec_base;
1484 		ns += vgettsc(cycle_now);
1485 		ns >>= gtod->clock.shift;
1486 		ns += gtod->boot_ns;
1487 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1488 	*t = ns;
1489 
1490 	return mode;
1491 }
1492 
1493 /* returns true if host is using tsc clocksource */
1494 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1495 {
1496 	/* checked again under seqlock below */
1497 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1498 		return false;
1499 
1500 	return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1501 }
1502 #endif
1503 
1504 /*
1505  *
1506  * Assuming a stable TSC across physical CPUS, and a stable TSC
1507  * across virtual CPUs, the following condition is possible.
1508  * Each numbered line represents an event visible to both
1509  * CPUs at the next numbered event.
1510  *
1511  * "timespecX" represents host monotonic time. "tscX" represents
1512  * RDTSC value.
1513  *
1514  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1515  *
1516  * 1.  read timespec0,tsc0
1517  * 2.					| timespec1 = timespec0 + N
1518  * 					| tsc1 = tsc0 + M
1519  * 3. transition to guest		| transition to guest
1520  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1521  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1522  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1523  *
1524  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1525  *
1526  * 	- ret0 < ret1
1527  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1528  *		...
1529  *	- 0 < N - M => M < N
1530  *
1531  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1532  * always the case (the difference between two distinct xtime instances
1533  * might be smaller then the difference between corresponding TSC reads,
1534  * when updating guest vcpus pvclock areas).
1535  *
1536  * To avoid that problem, do not allow visibility of distinct
1537  * system_timestamp/tsc_timestamp values simultaneously: use a master
1538  * copy of host monotonic time values. Update that master copy
1539  * in lockstep.
1540  *
1541  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1542  *
1543  */
1544 
1545 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1546 {
1547 #ifdef CONFIG_X86_64
1548 	struct kvm_arch *ka = &kvm->arch;
1549 	int vclock_mode;
1550 	bool host_tsc_clocksource, vcpus_matched;
1551 
1552 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1553 			atomic_read(&kvm->online_vcpus));
1554 
1555 	/*
1556 	 * If the host uses TSC clock, then passthrough TSC as stable
1557 	 * to the guest.
1558 	 */
1559 	host_tsc_clocksource = kvm_get_time_and_clockread(
1560 					&ka->master_kernel_ns,
1561 					&ka->master_cycle_now);
1562 
1563 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1564 				&& !backwards_tsc_observed
1565 				&& !ka->boot_vcpu_runs_old_kvmclock;
1566 
1567 	if (ka->use_master_clock)
1568 		atomic_set(&kvm_guest_has_master_clock, 1);
1569 
1570 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1571 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1572 					vcpus_matched);
1573 #endif
1574 }
1575 
1576 static void kvm_gen_update_masterclock(struct kvm *kvm)
1577 {
1578 #ifdef CONFIG_X86_64
1579 	int i;
1580 	struct kvm_vcpu *vcpu;
1581 	struct kvm_arch *ka = &kvm->arch;
1582 
1583 	spin_lock(&ka->pvclock_gtod_sync_lock);
1584 	kvm_make_mclock_inprogress_request(kvm);
1585 	/* no guest entries from this point */
1586 	pvclock_update_vm_gtod_copy(kvm);
1587 
1588 	kvm_for_each_vcpu(i, vcpu, kvm)
1589 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1590 
1591 	/* guest entries allowed */
1592 	kvm_for_each_vcpu(i, vcpu, kvm)
1593 		clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1594 
1595 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1596 #endif
1597 }
1598 
1599 static int kvm_guest_time_update(struct kvm_vcpu *v)
1600 {
1601 	unsigned long flags, this_tsc_khz;
1602 	struct kvm_vcpu_arch *vcpu = &v->arch;
1603 	struct kvm_arch *ka = &v->kvm->arch;
1604 	s64 kernel_ns;
1605 	u64 tsc_timestamp, host_tsc;
1606 	struct pvclock_vcpu_time_info guest_hv_clock;
1607 	u8 pvclock_flags;
1608 	bool use_master_clock;
1609 
1610 	kernel_ns = 0;
1611 	host_tsc = 0;
1612 
1613 	/*
1614 	 * If the host uses TSC clock, then passthrough TSC as stable
1615 	 * to the guest.
1616 	 */
1617 	spin_lock(&ka->pvclock_gtod_sync_lock);
1618 	use_master_clock = ka->use_master_clock;
1619 	if (use_master_clock) {
1620 		host_tsc = ka->master_cycle_now;
1621 		kernel_ns = ka->master_kernel_ns;
1622 	}
1623 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1624 
1625 	/* Keep irq disabled to prevent changes to the clock */
1626 	local_irq_save(flags);
1627 	this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1628 	if (unlikely(this_tsc_khz == 0)) {
1629 		local_irq_restore(flags);
1630 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1631 		return 1;
1632 	}
1633 	if (!use_master_clock) {
1634 		host_tsc = rdtsc();
1635 		kernel_ns = get_kernel_ns();
1636 	}
1637 
1638 	tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1639 
1640 	/*
1641 	 * We may have to catch up the TSC to match elapsed wall clock
1642 	 * time for two reasons, even if kvmclock is used.
1643 	 *   1) CPU could have been running below the maximum TSC rate
1644 	 *   2) Broken TSC compensation resets the base at each VCPU
1645 	 *      entry to avoid unknown leaps of TSC even when running
1646 	 *      again on the same CPU.  This may cause apparent elapsed
1647 	 *      time to disappear, and the guest to stand still or run
1648 	 *	very slowly.
1649 	 */
1650 	if (vcpu->tsc_catchup) {
1651 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1652 		if (tsc > tsc_timestamp) {
1653 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1654 			tsc_timestamp = tsc;
1655 		}
1656 	}
1657 
1658 	local_irq_restore(flags);
1659 
1660 	if (!vcpu->pv_time_enabled)
1661 		return 0;
1662 
1663 	if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1664 		kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1665 				   &vcpu->hv_clock.tsc_shift,
1666 				   &vcpu->hv_clock.tsc_to_system_mul);
1667 		vcpu->hw_tsc_khz = this_tsc_khz;
1668 	}
1669 
1670 	/* With all the info we got, fill in the values */
1671 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1672 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1673 	vcpu->last_guest_tsc = tsc_timestamp;
1674 
1675 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1676 		&guest_hv_clock, sizeof(guest_hv_clock))))
1677 		return 0;
1678 
1679 	/* This VCPU is paused, but it's legal for a guest to read another
1680 	 * VCPU's kvmclock, so we really have to follow the specification where
1681 	 * it says that version is odd if data is being modified, and even after
1682 	 * it is consistent.
1683 	 *
1684 	 * Version field updates must be kept separate.  This is because
1685 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
1686 	 * writes within a string instruction are weakly ordered.  So there
1687 	 * are three writes overall.
1688 	 *
1689 	 * As a small optimization, only write the version field in the first
1690 	 * and third write.  The vcpu->pv_time cache is still valid, because the
1691 	 * version field is the first in the struct.
1692 	 */
1693 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1694 
1695 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
1696 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1697 				&vcpu->hv_clock,
1698 				sizeof(vcpu->hv_clock.version));
1699 
1700 	smp_wmb();
1701 
1702 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1703 	pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1704 
1705 	if (vcpu->pvclock_set_guest_stopped_request) {
1706 		pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1707 		vcpu->pvclock_set_guest_stopped_request = false;
1708 	}
1709 
1710 	pvclock_flags |= PVCLOCK_COUNTS_FROM_ZERO;
1711 
1712 	/* If the host uses TSC clocksource, then it is stable */
1713 	if (use_master_clock)
1714 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1715 
1716 	vcpu->hv_clock.flags = pvclock_flags;
1717 
1718 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1719 
1720 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1721 				&vcpu->hv_clock,
1722 				sizeof(vcpu->hv_clock));
1723 
1724 	smp_wmb();
1725 
1726 	vcpu->hv_clock.version++;
1727 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1728 				&vcpu->hv_clock,
1729 				sizeof(vcpu->hv_clock.version));
1730 	return 0;
1731 }
1732 
1733 /*
1734  * kvmclock updates which are isolated to a given vcpu, such as
1735  * vcpu->cpu migration, should not allow system_timestamp from
1736  * the rest of the vcpus to remain static. Otherwise ntp frequency
1737  * correction applies to one vcpu's system_timestamp but not
1738  * the others.
1739  *
1740  * So in those cases, request a kvmclock update for all vcpus.
1741  * We need to rate-limit these requests though, as they can
1742  * considerably slow guests that have a large number of vcpus.
1743  * The time for a remote vcpu to update its kvmclock is bound
1744  * by the delay we use to rate-limit the updates.
1745  */
1746 
1747 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1748 
1749 static void kvmclock_update_fn(struct work_struct *work)
1750 {
1751 	int i;
1752 	struct delayed_work *dwork = to_delayed_work(work);
1753 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1754 					   kvmclock_update_work);
1755 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1756 	struct kvm_vcpu *vcpu;
1757 
1758 	kvm_for_each_vcpu(i, vcpu, kvm) {
1759 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1760 		kvm_vcpu_kick(vcpu);
1761 	}
1762 }
1763 
1764 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1765 {
1766 	struct kvm *kvm = v->kvm;
1767 
1768 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1769 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1770 					KVMCLOCK_UPDATE_DELAY);
1771 }
1772 
1773 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1774 
1775 static void kvmclock_sync_fn(struct work_struct *work)
1776 {
1777 	struct delayed_work *dwork = to_delayed_work(work);
1778 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1779 					   kvmclock_sync_work);
1780 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1781 
1782 	if (!kvmclock_periodic_sync)
1783 		return;
1784 
1785 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1786 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1787 					KVMCLOCK_SYNC_PERIOD);
1788 }
1789 
1790 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1791 {
1792 	u64 mcg_cap = vcpu->arch.mcg_cap;
1793 	unsigned bank_num = mcg_cap & 0xff;
1794 
1795 	switch (msr) {
1796 	case MSR_IA32_MCG_STATUS:
1797 		vcpu->arch.mcg_status = data;
1798 		break;
1799 	case MSR_IA32_MCG_CTL:
1800 		if (!(mcg_cap & MCG_CTL_P))
1801 			return 1;
1802 		if (data != 0 && data != ~(u64)0)
1803 			return -1;
1804 		vcpu->arch.mcg_ctl = data;
1805 		break;
1806 	default:
1807 		if (msr >= MSR_IA32_MC0_CTL &&
1808 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
1809 			u32 offset = msr - MSR_IA32_MC0_CTL;
1810 			/* only 0 or all 1s can be written to IA32_MCi_CTL
1811 			 * some Linux kernels though clear bit 10 in bank 4 to
1812 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1813 			 * this to avoid an uncatched #GP in the guest
1814 			 */
1815 			if ((offset & 0x3) == 0 &&
1816 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
1817 				return -1;
1818 			vcpu->arch.mce_banks[offset] = data;
1819 			break;
1820 		}
1821 		return 1;
1822 	}
1823 	return 0;
1824 }
1825 
1826 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1827 {
1828 	struct kvm *kvm = vcpu->kvm;
1829 	int lm = is_long_mode(vcpu);
1830 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1831 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1832 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1833 		: kvm->arch.xen_hvm_config.blob_size_32;
1834 	u32 page_num = data & ~PAGE_MASK;
1835 	u64 page_addr = data & PAGE_MASK;
1836 	u8 *page;
1837 	int r;
1838 
1839 	r = -E2BIG;
1840 	if (page_num >= blob_size)
1841 		goto out;
1842 	r = -ENOMEM;
1843 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1844 	if (IS_ERR(page)) {
1845 		r = PTR_ERR(page);
1846 		goto out;
1847 	}
1848 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
1849 		goto out_free;
1850 	r = 0;
1851 out_free:
1852 	kfree(page);
1853 out:
1854 	return r;
1855 }
1856 
1857 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1858 {
1859 	gpa_t gpa = data & ~0x3f;
1860 
1861 	/* Bits 2:5 are reserved, Should be zero */
1862 	if (data & 0x3c)
1863 		return 1;
1864 
1865 	vcpu->arch.apf.msr_val = data;
1866 
1867 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
1868 		kvm_clear_async_pf_completion_queue(vcpu);
1869 		kvm_async_pf_hash_reset(vcpu);
1870 		return 0;
1871 	}
1872 
1873 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1874 					sizeof(u32)))
1875 		return 1;
1876 
1877 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1878 	kvm_async_pf_wakeup_all(vcpu);
1879 	return 0;
1880 }
1881 
1882 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1883 {
1884 	vcpu->arch.pv_time_enabled = false;
1885 }
1886 
1887 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1888 {
1889 	u64 delta;
1890 
1891 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1892 		return;
1893 
1894 	delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1895 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
1896 	vcpu->arch.st.accum_steal = delta;
1897 }
1898 
1899 static void record_steal_time(struct kvm_vcpu *vcpu)
1900 {
1901 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1902 		return;
1903 
1904 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1905 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1906 		return;
1907 
1908 	vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1909 	vcpu->arch.st.steal.version += 2;
1910 	vcpu->arch.st.accum_steal = 0;
1911 
1912 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1913 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1914 }
1915 
1916 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1917 {
1918 	bool pr = false;
1919 	u32 msr = msr_info->index;
1920 	u64 data = msr_info->data;
1921 
1922 	switch (msr) {
1923 	case MSR_AMD64_NB_CFG:
1924 	case MSR_IA32_UCODE_REV:
1925 	case MSR_IA32_UCODE_WRITE:
1926 	case MSR_VM_HSAVE_PA:
1927 	case MSR_AMD64_PATCH_LOADER:
1928 	case MSR_AMD64_BU_CFG2:
1929 		break;
1930 
1931 	case MSR_EFER:
1932 		return set_efer(vcpu, data);
1933 	case MSR_K7_HWCR:
1934 		data &= ~(u64)0x40;	/* ignore flush filter disable */
1935 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
1936 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
1937 		data &= ~(u64)0x40000;  /* ignore Mc status write enable */
1938 		if (data != 0) {
1939 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1940 				    data);
1941 			return 1;
1942 		}
1943 		break;
1944 	case MSR_FAM10H_MMIO_CONF_BASE:
1945 		if (data != 0) {
1946 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1947 				    "0x%llx\n", data);
1948 			return 1;
1949 		}
1950 		break;
1951 	case MSR_IA32_DEBUGCTLMSR:
1952 		if (!data) {
1953 			/* We support the non-activated case already */
1954 			break;
1955 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1956 			/* Values other than LBR and BTF are vendor-specific,
1957 			   thus reserved and should throw a #GP */
1958 			return 1;
1959 		}
1960 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1961 			    __func__, data);
1962 		break;
1963 	case 0x200 ... 0x2ff:
1964 		return kvm_mtrr_set_msr(vcpu, msr, data);
1965 	case MSR_IA32_APICBASE:
1966 		return kvm_set_apic_base(vcpu, msr_info);
1967 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1968 		return kvm_x2apic_msr_write(vcpu, msr, data);
1969 	case MSR_IA32_TSCDEADLINE:
1970 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
1971 		break;
1972 	case MSR_IA32_TSC_ADJUST:
1973 		if (guest_cpuid_has_tsc_adjust(vcpu)) {
1974 			if (!msr_info->host_initiated) {
1975 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
1976 				adjust_tsc_offset_guest(vcpu, adj);
1977 			}
1978 			vcpu->arch.ia32_tsc_adjust_msr = data;
1979 		}
1980 		break;
1981 	case MSR_IA32_MISC_ENABLE:
1982 		vcpu->arch.ia32_misc_enable_msr = data;
1983 		break;
1984 	case MSR_IA32_SMBASE:
1985 		if (!msr_info->host_initiated)
1986 			return 1;
1987 		vcpu->arch.smbase = data;
1988 		break;
1989 	case MSR_KVM_WALL_CLOCK_NEW:
1990 	case MSR_KVM_WALL_CLOCK:
1991 		vcpu->kvm->arch.wall_clock = data;
1992 		kvm_write_wall_clock(vcpu->kvm, data);
1993 		break;
1994 	case MSR_KVM_SYSTEM_TIME_NEW:
1995 	case MSR_KVM_SYSTEM_TIME: {
1996 		u64 gpa_offset;
1997 		struct kvm_arch *ka = &vcpu->kvm->arch;
1998 
1999 		kvmclock_reset(vcpu);
2000 
2001 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2002 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2003 
2004 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2005 				set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2006 					&vcpu->requests);
2007 
2008 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2009 
2010 			ka->kvmclock_offset = -get_kernel_ns();
2011 		}
2012 
2013 		vcpu->arch.time = data;
2014 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2015 
2016 		/* we verify if the enable bit is set... */
2017 		if (!(data & 1))
2018 			break;
2019 
2020 		gpa_offset = data & ~(PAGE_MASK | 1);
2021 
2022 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2023 		     &vcpu->arch.pv_time, data & ~1ULL,
2024 		     sizeof(struct pvclock_vcpu_time_info)))
2025 			vcpu->arch.pv_time_enabled = false;
2026 		else
2027 			vcpu->arch.pv_time_enabled = true;
2028 
2029 		break;
2030 	}
2031 	case MSR_KVM_ASYNC_PF_EN:
2032 		if (kvm_pv_enable_async_pf(vcpu, data))
2033 			return 1;
2034 		break;
2035 	case MSR_KVM_STEAL_TIME:
2036 
2037 		if (unlikely(!sched_info_on()))
2038 			return 1;
2039 
2040 		if (data & KVM_STEAL_RESERVED_MASK)
2041 			return 1;
2042 
2043 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2044 						data & KVM_STEAL_VALID_BITS,
2045 						sizeof(struct kvm_steal_time)))
2046 			return 1;
2047 
2048 		vcpu->arch.st.msr_val = data;
2049 
2050 		if (!(data & KVM_MSR_ENABLED))
2051 			break;
2052 
2053 		vcpu->arch.st.last_steal = current->sched_info.run_delay;
2054 
2055 		preempt_disable();
2056 		accumulate_steal_time(vcpu);
2057 		preempt_enable();
2058 
2059 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2060 
2061 		break;
2062 	case MSR_KVM_PV_EOI_EN:
2063 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2064 			return 1;
2065 		break;
2066 
2067 	case MSR_IA32_MCG_CTL:
2068 	case MSR_IA32_MCG_STATUS:
2069 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2070 		return set_msr_mce(vcpu, msr, data);
2071 
2072 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2073 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2074 		pr = true; /* fall through */
2075 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2076 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2077 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2078 			return kvm_pmu_set_msr(vcpu, msr_info);
2079 
2080 		if (pr || data != 0)
2081 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2082 				    "0x%x data 0x%llx\n", msr, data);
2083 		break;
2084 	case MSR_K7_CLK_CTL:
2085 		/*
2086 		 * Ignore all writes to this no longer documented MSR.
2087 		 * Writes are only relevant for old K7 processors,
2088 		 * all pre-dating SVM, but a recommended workaround from
2089 		 * AMD for these chips. It is possible to specify the
2090 		 * affected processor models on the command line, hence
2091 		 * the need to ignore the workaround.
2092 		 */
2093 		break;
2094 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2095 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2096 	case HV_X64_MSR_CRASH_CTL:
2097 		return kvm_hv_set_msr_common(vcpu, msr, data,
2098 					     msr_info->host_initiated);
2099 	case MSR_IA32_BBL_CR_CTL3:
2100 		/* Drop writes to this legacy MSR -- see rdmsr
2101 		 * counterpart for further detail.
2102 		 */
2103 		vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2104 		break;
2105 	case MSR_AMD64_OSVW_ID_LENGTH:
2106 		if (!guest_cpuid_has_osvw(vcpu))
2107 			return 1;
2108 		vcpu->arch.osvw.length = data;
2109 		break;
2110 	case MSR_AMD64_OSVW_STATUS:
2111 		if (!guest_cpuid_has_osvw(vcpu))
2112 			return 1;
2113 		vcpu->arch.osvw.status = data;
2114 		break;
2115 	default:
2116 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2117 			return xen_hvm_config(vcpu, data);
2118 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2119 			return kvm_pmu_set_msr(vcpu, msr_info);
2120 		if (!ignore_msrs) {
2121 			vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2122 				    msr, data);
2123 			return 1;
2124 		} else {
2125 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2126 				    msr, data);
2127 			break;
2128 		}
2129 	}
2130 	return 0;
2131 }
2132 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2133 
2134 
2135 /*
2136  * Reads an msr value (of 'msr_index') into 'pdata'.
2137  * Returns 0 on success, non-0 otherwise.
2138  * Assumes vcpu_load() was already called.
2139  */
2140 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2141 {
2142 	return kvm_x86_ops->get_msr(vcpu, msr);
2143 }
2144 EXPORT_SYMBOL_GPL(kvm_get_msr);
2145 
2146 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2147 {
2148 	u64 data;
2149 	u64 mcg_cap = vcpu->arch.mcg_cap;
2150 	unsigned bank_num = mcg_cap & 0xff;
2151 
2152 	switch (msr) {
2153 	case MSR_IA32_P5_MC_ADDR:
2154 	case MSR_IA32_P5_MC_TYPE:
2155 		data = 0;
2156 		break;
2157 	case MSR_IA32_MCG_CAP:
2158 		data = vcpu->arch.mcg_cap;
2159 		break;
2160 	case MSR_IA32_MCG_CTL:
2161 		if (!(mcg_cap & MCG_CTL_P))
2162 			return 1;
2163 		data = vcpu->arch.mcg_ctl;
2164 		break;
2165 	case MSR_IA32_MCG_STATUS:
2166 		data = vcpu->arch.mcg_status;
2167 		break;
2168 	default:
2169 		if (msr >= MSR_IA32_MC0_CTL &&
2170 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2171 			u32 offset = msr - MSR_IA32_MC0_CTL;
2172 			data = vcpu->arch.mce_banks[offset];
2173 			break;
2174 		}
2175 		return 1;
2176 	}
2177 	*pdata = data;
2178 	return 0;
2179 }
2180 
2181 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2182 {
2183 	switch (msr_info->index) {
2184 	case MSR_IA32_PLATFORM_ID:
2185 	case MSR_IA32_EBL_CR_POWERON:
2186 	case MSR_IA32_DEBUGCTLMSR:
2187 	case MSR_IA32_LASTBRANCHFROMIP:
2188 	case MSR_IA32_LASTBRANCHTOIP:
2189 	case MSR_IA32_LASTINTFROMIP:
2190 	case MSR_IA32_LASTINTTOIP:
2191 	case MSR_K8_SYSCFG:
2192 	case MSR_K7_HWCR:
2193 	case MSR_VM_HSAVE_PA:
2194 	case MSR_K8_INT_PENDING_MSG:
2195 	case MSR_AMD64_NB_CFG:
2196 	case MSR_FAM10H_MMIO_CONF_BASE:
2197 	case MSR_AMD64_BU_CFG2:
2198 		msr_info->data = 0;
2199 		break;
2200 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2201 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2202 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2203 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2204 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2205 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2206 		msr_info->data = 0;
2207 		break;
2208 	case MSR_IA32_UCODE_REV:
2209 		msr_info->data = 0x100000000ULL;
2210 		break;
2211 	case MSR_MTRRcap:
2212 	case 0x200 ... 0x2ff:
2213 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2214 	case 0xcd: /* fsb frequency */
2215 		msr_info->data = 3;
2216 		break;
2217 		/*
2218 		 * MSR_EBC_FREQUENCY_ID
2219 		 * Conservative value valid for even the basic CPU models.
2220 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2221 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2222 		 * and 266MHz for model 3, or 4. Set Core Clock
2223 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2224 		 * 31:24) even though these are only valid for CPU
2225 		 * models > 2, however guests may end up dividing or
2226 		 * multiplying by zero otherwise.
2227 		 */
2228 	case MSR_EBC_FREQUENCY_ID:
2229 		msr_info->data = 1 << 24;
2230 		break;
2231 	case MSR_IA32_APICBASE:
2232 		msr_info->data = kvm_get_apic_base(vcpu);
2233 		break;
2234 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2235 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2236 		break;
2237 	case MSR_IA32_TSCDEADLINE:
2238 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2239 		break;
2240 	case MSR_IA32_TSC_ADJUST:
2241 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2242 		break;
2243 	case MSR_IA32_MISC_ENABLE:
2244 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2245 		break;
2246 	case MSR_IA32_SMBASE:
2247 		if (!msr_info->host_initiated)
2248 			return 1;
2249 		msr_info->data = vcpu->arch.smbase;
2250 		break;
2251 	case MSR_IA32_PERF_STATUS:
2252 		/* TSC increment by tick */
2253 		msr_info->data = 1000ULL;
2254 		/* CPU multiplier */
2255 		msr_info->data |= (((uint64_t)4ULL) << 40);
2256 		break;
2257 	case MSR_EFER:
2258 		msr_info->data = vcpu->arch.efer;
2259 		break;
2260 	case MSR_KVM_WALL_CLOCK:
2261 	case MSR_KVM_WALL_CLOCK_NEW:
2262 		msr_info->data = vcpu->kvm->arch.wall_clock;
2263 		break;
2264 	case MSR_KVM_SYSTEM_TIME:
2265 	case MSR_KVM_SYSTEM_TIME_NEW:
2266 		msr_info->data = vcpu->arch.time;
2267 		break;
2268 	case MSR_KVM_ASYNC_PF_EN:
2269 		msr_info->data = vcpu->arch.apf.msr_val;
2270 		break;
2271 	case MSR_KVM_STEAL_TIME:
2272 		msr_info->data = vcpu->arch.st.msr_val;
2273 		break;
2274 	case MSR_KVM_PV_EOI_EN:
2275 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
2276 		break;
2277 	case MSR_IA32_P5_MC_ADDR:
2278 	case MSR_IA32_P5_MC_TYPE:
2279 	case MSR_IA32_MCG_CAP:
2280 	case MSR_IA32_MCG_CTL:
2281 	case MSR_IA32_MCG_STATUS:
2282 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2283 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2284 	case MSR_K7_CLK_CTL:
2285 		/*
2286 		 * Provide expected ramp-up count for K7. All other
2287 		 * are set to zero, indicating minimum divisors for
2288 		 * every field.
2289 		 *
2290 		 * This prevents guest kernels on AMD host with CPU
2291 		 * type 6, model 8 and higher from exploding due to
2292 		 * the rdmsr failing.
2293 		 */
2294 		msr_info->data = 0x20000000;
2295 		break;
2296 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2297 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2298 	case HV_X64_MSR_CRASH_CTL:
2299 		return kvm_hv_get_msr_common(vcpu,
2300 					     msr_info->index, &msr_info->data);
2301 		break;
2302 	case MSR_IA32_BBL_CR_CTL3:
2303 		/* This legacy MSR exists but isn't fully documented in current
2304 		 * silicon.  It is however accessed by winxp in very narrow
2305 		 * scenarios where it sets bit #19, itself documented as
2306 		 * a "reserved" bit.  Best effort attempt to source coherent
2307 		 * read data here should the balance of the register be
2308 		 * interpreted by the guest:
2309 		 *
2310 		 * L2 cache control register 3: 64GB range, 256KB size,
2311 		 * enabled, latency 0x1, configured
2312 		 */
2313 		msr_info->data = 0xbe702111;
2314 		break;
2315 	case MSR_AMD64_OSVW_ID_LENGTH:
2316 		if (!guest_cpuid_has_osvw(vcpu))
2317 			return 1;
2318 		msr_info->data = vcpu->arch.osvw.length;
2319 		break;
2320 	case MSR_AMD64_OSVW_STATUS:
2321 		if (!guest_cpuid_has_osvw(vcpu))
2322 			return 1;
2323 		msr_info->data = vcpu->arch.osvw.status;
2324 		break;
2325 	default:
2326 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2327 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2328 		if (!ignore_msrs) {
2329 			vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2330 			return 1;
2331 		} else {
2332 			vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2333 			msr_info->data = 0;
2334 		}
2335 		break;
2336 	}
2337 	return 0;
2338 }
2339 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2340 
2341 /*
2342  * Read or write a bunch of msrs. All parameters are kernel addresses.
2343  *
2344  * @return number of msrs set successfully.
2345  */
2346 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2347 		    struct kvm_msr_entry *entries,
2348 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2349 				  unsigned index, u64 *data))
2350 {
2351 	int i, idx;
2352 
2353 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2354 	for (i = 0; i < msrs->nmsrs; ++i)
2355 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2356 			break;
2357 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2358 
2359 	return i;
2360 }
2361 
2362 /*
2363  * Read or write a bunch of msrs. Parameters are user addresses.
2364  *
2365  * @return number of msrs set successfully.
2366  */
2367 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2368 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2369 				unsigned index, u64 *data),
2370 		  int writeback)
2371 {
2372 	struct kvm_msrs msrs;
2373 	struct kvm_msr_entry *entries;
2374 	int r, n;
2375 	unsigned size;
2376 
2377 	r = -EFAULT;
2378 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2379 		goto out;
2380 
2381 	r = -E2BIG;
2382 	if (msrs.nmsrs >= MAX_IO_MSRS)
2383 		goto out;
2384 
2385 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2386 	entries = memdup_user(user_msrs->entries, size);
2387 	if (IS_ERR(entries)) {
2388 		r = PTR_ERR(entries);
2389 		goto out;
2390 	}
2391 
2392 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2393 	if (r < 0)
2394 		goto out_free;
2395 
2396 	r = -EFAULT;
2397 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2398 		goto out_free;
2399 
2400 	r = n;
2401 
2402 out_free:
2403 	kfree(entries);
2404 out:
2405 	return r;
2406 }
2407 
2408 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2409 {
2410 	int r;
2411 
2412 	switch (ext) {
2413 	case KVM_CAP_IRQCHIP:
2414 	case KVM_CAP_HLT:
2415 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2416 	case KVM_CAP_SET_TSS_ADDR:
2417 	case KVM_CAP_EXT_CPUID:
2418 	case KVM_CAP_EXT_EMUL_CPUID:
2419 	case KVM_CAP_CLOCKSOURCE:
2420 	case KVM_CAP_PIT:
2421 	case KVM_CAP_NOP_IO_DELAY:
2422 	case KVM_CAP_MP_STATE:
2423 	case KVM_CAP_SYNC_MMU:
2424 	case KVM_CAP_USER_NMI:
2425 	case KVM_CAP_REINJECT_CONTROL:
2426 	case KVM_CAP_IRQ_INJECT_STATUS:
2427 	case KVM_CAP_IOEVENTFD:
2428 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
2429 	case KVM_CAP_PIT2:
2430 	case KVM_CAP_PIT_STATE2:
2431 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2432 	case KVM_CAP_XEN_HVM:
2433 	case KVM_CAP_ADJUST_CLOCK:
2434 	case KVM_CAP_VCPU_EVENTS:
2435 	case KVM_CAP_HYPERV:
2436 	case KVM_CAP_HYPERV_VAPIC:
2437 	case KVM_CAP_HYPERV_SPIN:
2438 	case KVM_CAP_PCI_SEGMENT:
2439 	case KVM_CAP_DEBUGREGS:
2440 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2441 	case KVM_CAP_XSAVE:
2442 	case KVM_CAP_ASYNC_PF:
2443 	case KVM_CAP_GET_TSC_KHZ:
2444 	case KVM_CAP_KVMCLOCK_CTRL:
2445 	case KVM_CAP_READONLY_MEM:
2446 	case KVM_CAP_HYPERV_TIME:
2447 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2448 	case KVM_CAP_TSC_DEADLINE_TIMER:
2449 	case KVM_CAP_ENABLE_CAP_VM:
2450 	case KVM_CAP_DISABLE_QUIRKS:
2451 	case KVM_CAP_SET_BOOT_CPU_ID:
2452 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2453 	case KVM_CAP_ASSIGN_DEV_IRQ:
2454 	case KVM_CAP_PCI_2_3:
2455 #endif
2456 		r = 1;
2457 		break;
2458 	case KVM_CAP_X86_SMM:
2459 		/* SMBASE is usually relocated above 1M on modern chipsets,
2460 		 * and SMM handlers might indeed rely on 4G segment limits,
2461 		 * so do not report SMM to be available if real mode is
2462 		 * emulated via vm86 mode.  Still, do not go to great lengths
2463 		 * to avoid userspace's usage of the feature, because it is a
2464 		 * fringe case that is not enabled except via specific settings
2465 		 * of the module parameters.
2466 		 */
2467 		r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2468 		break;
2469 	case KVM_CAP_COALESCED_MMIO:
2470 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2471 		break;
2472 	case KVM_CAP_VAPIC:
2473 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2474 		break;
2475 	case KVM_CAP_NR_VCPUS:
2476 		r = KVM_SOFT_MAX_VCPUS;
2477 		break;
2478 	case KVM_CAP_MAX_VCPUS:
2479 		r = KVM_MAX_VCPUS;
2480 		break;
2481 	case KVM_CAP_NR_MEMSLOTS:
2482 		r = KVM_USER_MEM_SLOTS;
2483 		break;
2484 	case KVM_CAP_PV_MMU:	/* obsolete */
2485 		r = 0;
2486 		break;
2487 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2488 	case KVM_CAP_IOMMU:
2489 		r = iommu_present(&pci_bus_type);
2490 		break;
2491 #endif
2492 	case KVM_CAP_MCE:
2493 		r = KVM_MAX_MCE_BANKS;
2494 		break;
2495 	case KVM_CAP_XCRS:
2496 		r = cpu_has_xsave;
2497 		break;
2498 	case KVM_CAP_TSC_CONTROL:
2499 		r = kvm_has_tsc_control;
2500 		break;
2501 	default:
2502 		r = 0;
2503 		break;
2504 	}
2505 	return r;
2506 
2507 }
2508 
2509 long kvm_arch_dev_ioctl(struct file *filp,
2510 			unsigned int ioctl, unsigned long arg)
2511 {
2512 	void __user *argp = (void __user *)arg;
2513 	long r;
2514 
2515 	switch (ioctl) {
2516 	case KVM_GET_MSR_INDEX_LIST: {
2517 		struct kvm_msr_list __user *user_msr_list = argp;
2518 		struct kvm_msr_list msr_list;
2519 		unsigned n;
2520 
2521 		r = -EFAULT;
2522 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2523 			goto out;
2524 		n = msr_list.nmsrs;
2525 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2526 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2527 			goto out;
2528 		r = -E2BIG;
2529 		if (n < msr_list.nmsrs)
2530 			goto out;
2531 		r = -EFAULT;
2532 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2533 				 num_msrs_to_save * sizeof(u32)))
2534 			goto out;
2535 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2536 				 &emulated_msrs,
2537 				 num_emulated_msrs * sizeof(u32)))
2538 			goto out;
2539 		r = 0;
2540 		break;
2541 	}
2542 	case KVM_GET_SUPPORTED_CPUID:
2543 	case KVM_GET_EMULATED_CPUID: {
2544 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2545 		struct kvm_cpuid2 cpuid;
2546 
2547 		r = -EFAULT;
2548 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2549 			goto out;
2550 
2551 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2552 					    ioctl);
2553 		if (r)
2554 			goto out;
2555 
2556 		r = -EFAULT;
2557 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2558 			goto out;
2559 		r = 0;
2560 		break;
2561 	}
2562 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2563 		u64 mce_cap;
2564 
2565 		mce_cap = KVM_MCE_CAP_SUPPORTED;
2566 		r = -EFAULT;
2567 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2568 			goto out;
2569 		r = 0;
2570 		break;
2571 	}
2572 	default:
2573 		r = -EINVAL;
2574 	}
2575 out:
2576 	return r;
2577 }
2578 
2579 static void wbinvd_ipi(void *garbage)
2580 {
2581 	wbinvd();
2582 }
2583 
2584 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2585 {
2586 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2587 }
2588 
2589 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2590 {
2591 	/* Address WBINVD may be executed by guest */
2592 	if (need_emulate_wbinvd(vcpu)) {
2593 		if (kvm_x86_ops->has_wbinvd_exit())
2594 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2595 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2596 			smp_call_function_single(vcpu->cpu,
2597 					wbinvd_ipi, NULL, 1);
2598 	}
2599 
2600 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2601 
2602 	/* Apply any externally detected TSC adjustments (due to suspend) */
2603 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2604 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2605 		vcpu->arch.tsc_offset_adjustment = 0;
2606 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2607 	}
2608 
2609 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2610 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2611 				rdtsc() - vcpu->arch.last_host_tsc;
2612 		if (tsc_delta < 0)
2613 			mark_tsc_unstable("KVM discovered backwards TSC");
2614 		if (check_tsc_unstable()) {
2615 			u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2616 						vcpu->arch.last_guest_tsc);
2617 			kvm_x86_ops->write_tsc_offset(vcpu, offset);
2618 			vcpu->arch.tsc_catchup = 1;
2619 		}
2620 		/*
2621 		 * On a host with synchronized TSC, there is no need to update
2622 		 * kvmclock on vcpu->cpu migration
2623 		 */
2624 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2625 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2626 		if (vcpu->cpu != cpu)
2627 			kvm_migrate_timers(vcpu);
2628 		vcpu->cpu = cpu;
2629 	}
2630 
2631 	accumulate_steal_time(vcpu);
2632 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2633 }
2634 
2635 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2636 {
2637 	kvm_x86_ops->vcpu_put(vcpu);
2638 	kvm_put_guest_fpu(vcpu);
2639 	vcpu->arch.last_host_tsc = rdtsc();
2640 }
2641 
2642 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2643 				    struct kvm_lapic_state *s)
2644 {
2645 	kvm_x86_ops->sync_pir_to_irr(vcpu);
2646 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2647 
2648 	return 0;
2649 }
2650 
2651 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2652 				    struct kvm_lapic_state *s)
2653 {
2654 	kvm_apic_post_state_restore(vcpu, s);
2655 	update_cr8_intercept(vcpu);
2656 
2657 	return 0;
2658 }
2659 
2660 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2661 				    struct kvm_interrupt *irq)
2662 {
2663 	if (irq->irq >= KVM_NR_INTERRUPTS)
2664 		return -EINVAL;
2665 	if (irqchip_in_kernel(vcpu->kvm))
2666 		return -ENXIO;
2667 
2668 	kvm_queue_interrupt(vcpu, irq->irq, false);
2669 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2670 
2671 	return 0;
2672 }
2673 
2674 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2675 {
2676 	kvm_inject_nmi(vcpu);
2677 
2678 	return 0;
2679 }
2680 
2681 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2682 {
2683 	kvm_make_request(KVM_REQ_SMI, vcpu);
2684 
2685 	return 0;
2686 }
2687 
2688 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2689 					   struct kvm_tpr_access_ctl *tac)
2690 {
2691 	if (tac->flags)
2692 		return -EINVAL;
2693 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
2694 	return 0;
2695 }
2696 
2697 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2698 					u64 mcg_cap)
2699 {
2700 	int r;
2701 	unsigned bank_num = mcg_cap & 0xff, bank;
2702 
2703 	r = -EINVAL;
2704 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2705 		goto out;
2706 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2707 		goto out;
2708 	r = 0;
2709 	vcpu->arch.mcg_cap = mcg_cap;
2710 	/* Init IA32_MCG_CTL to all 1s */
2711 	if (mcg_cap & MCG_CTL_P)
2712 		vcpu->arch.mcg_ctl = ~(u64)0;
2713 	/* Init IA32_MCi_CTL to all 1s */
2714 	for (bank = 0; bank < bank_num; bank++)
2715 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2716 out:
2717 	return r;
2718 }
2719 
2720 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2721 				      struct kvm_x86_mce *mce)
2722 {
2723 	u64 mcg_cap = vcpu->arch.mcg_cap;
2724 	unsigned bank_num = mcg_cap & 0xff;
2725 	u64 *banks = vcpu->arch.mce_banks;
2726 
2727 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2728 		return -EINVAL;
2729 	/*
2730 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2731 	 * reporting is disabled
2732 	 */
2733 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2734 	    vcpu->arch.mcg_ctl != ~(u64)0)
2735 		return 0;
2736 	banks += 4 * mce->bank;
2737 	/*
2738 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2739 	 * reporting is disabled for the bank
2740 	 */
2741 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2742 		return 0;
2743 	if (mce->status & MCI_STATUS_UC) {
2744 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2745 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2746 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2747 			return 0;
2748 		}
2749 		if (banks[1] & MCI_STATUS_VAL)
2750 			mce->status |= MCI_STATUS_OVER;
2751 		banks[2] = mce->addr;
2752 		banks[3] = mce->misc;
2753 		vcpu->arch.mcg_status = mce->mcg_status;
2754 		banks[1] = mce->status;
2755 		kvm_queue_exception(vcpu, MC_VECTOR);
2756 	} else if (!(banks[1] & MCI_STATUS_VAL)
2757 		   || !(banks[1] & MCI_STATUS_UC)) {
2758 		if (banks[1] & MCI_STATUS_VAL)
2759 			mce->status |= MCI_STATUS_OVER;
2760 		banks[2] = mce->addr;
2761 		banks[3] = mce->misc;
2762 		banks[1] = mce->status;
2763 	} else
2764 		banks[1] |= MCI_STATUS_OVER;
2765 	return 0;
2766 }
2767 
2768 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2769 					       struct kvm_vcpu_events *events)
2770 {
2771 	process_nmi(vcpu);
2772 	events->exception.injected =
2773 		vcpu->arch.exception.pending &&
2774 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
2775 	events->exception.nr = vcpu->arch.exception.nr;
2776 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2777 	events->exception.pad = 0;
2778 	events->exception.error_code = vcpu->arch.exception.error_code;
2779 
2780 	events->interrupt.injected =
2781 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2782 	events->interrupt.nr = vcpu->arch.interrupt.nr;
2783 	events->interrupt.soft = 0;
2784 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
2785 
2786 	events->nmi.injected = vcpu->arch.nmi_injected;
2787 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
2788 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2789 	events->nmi.pad = 0;
2790 
2791 	events->sipi_vector = 0; /* never valid when reporting to user space */
2792 
2793 	events->smi.smm = is_smm(vcpu);
2794 	events->smi.pending = vcpu->arch.smi_pending;
2795 	events->smi.smm_inside_nmi =
2796 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
2797 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
2798 
2799 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2800 			 | KVM_VCPUEVENT_VALID_SHADOW
2801 			 | KVM_VCPUEVENT_VALID_SMM);
2802 	memset(&events->reserved, 0, sizeof(events->reserved));
2803 }
2804 
2805 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2806 					      struct kvm_vcpu_events *events)
2807 {
2808 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2809 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2810 			      | KVM_VCPUEVENT_VALID_SHADOW
2811 			      | KVM_VCPUEVENT_VALID_SMM))
2812 		return -EINVAL;
2813 
2814 	process_nmi(vcpu);
2815 	vcpu->arch.exception.pending = events->exception.injected;
2816 	vcpu->arch.exception.nr = events->exception.nr;
2817 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2818 	vcpu->arch.exception.error_code = events->exception.error_code;
2819 
2820 	vcpu->arch.interrupt.pending = events->interrupt.injected;
2821 	vcpu->arch.interrupt.nr = events->interrupt.nr;
2822 	vcpu->arch.interrupt.soft = events->interrupt.soft;
2823 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2824 		kvm_x86_ops->set_interrupt_shadow(vcpu,
2825 						  events->interrupt.shadow);
2826 
2827 	vcpu->arch.nmi_injected = events->nmi.injected;
2828 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2829 		vcpu->arch.nmi_pending = events->nmi.pending;
2830 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2831 
2832 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2833 	    kvm_vcpu_has_lapic(vcpu))
2834 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
2835 
2836 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
2837 		if (events->smi.smm)
2838 			vcpu->arch.hflags |= HF_SMM_MASK;
2839 		else
2840 			vcpu->arch.hflags &= ~HF_SMM_MASK;
2841 		vcpu->arch.smi_pending = events->smi.pending;
2842 		if (events->smi.smm_inside_nmi)
2843 			vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
2844 		else
2845 			vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
2846 		if (kvm_vcpu_has_lapic(vcpu)) {
2847 			if (events->smi.latched_init)
2848 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
2849 			else
2850 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
2851 		}
2852 	}
2853 
2854 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2855 
2856 	return 0;
2857 }
2858 
2859 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2860 					     struct kvm_debugregs *dbgregs)
2861 {
2862 	unsigned long val;
2863 
2864 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2865 	kvm_get_dr(vcpu, 6, &val);
2866 	dbgregs->dr6 = val;
2867 	dbgregs->dr7 = vcpu->arch.dr7;
2868 	dbgregs->flags = 0;
2869 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2870 }
2871 
2872 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2873 					    struct kvm_debugregs *dbgregs)
2874 {
2875 	if (dbgregs->flags)
2876 		return -EINVAL;
2877 
2878 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2879 	kvm_update_dr0123(vcpu);
2880 	vcpu->arch.dr6 = dbgregs->dr6;
2881 	kvm_update_dr6(vcpu);
2882 	vcpu->arch.dr7 = dbgregs->dr7;
2883 	kvm_update_dr7(vcpu);
2884 
2885 	return 0;
2886 }
2887 
2888 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
2889 
2890 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
2891 {
2892 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
2893 	u64 xstate_bv = xsave->header.xfeatures;
2894 	u64 valid;
2895 
2896 	/*
2897 	 * Copy legacy XSAVE area, to avoid complications with CPUID
2898 	 * leaves 0 and 1 in the loop below.
2899 	 */
2900 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
2901 
2902 	/* Set XSTATE_BV */
2903 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
2904 
2905 	/*
2906 	 * Copy each region from the possibly compacted offset to the
2907 	 * non-compacted offset.
2908 	 */
2909 	valid = xstate_bv & ~XSTATE_FPSSE;
2910 	while (valid) {
2911 		u64 feature = valid & -valid;
2912 		int index = fls64(feature) - 1;
2913 		void *src = get_xsave_addr(xsave, feature);
2914 
2915 		if (src) {
2916 			u32 size, offset, ecx, edx;
2917 			cpuid_count(XSTATE_CPUID, index,
2918 				    &size, &offset, &ecx, &edx);
2919 			memcpy(dest + offset, src, size);
2920 		}
2921 
2922 		valid -= feature;
2923 	}
2924 }
2925 
2926 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
2927 {
2928 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
2929 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
2930 	u64 valid;
2931 
2932 	/*
2933 	 * Copy legacy XSAVE area, to avoid complications with CPUID
2934 	 * leaves 0 and 1 in the loop below.
2935 	 */
2936 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
2937 
2938 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
2939 	xsave->header.xfeatures = xstate_bv;
2940 	if (cpu_has_xsaves)
2941 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
2942 
2943 	/*
2944 	 * Copy each region from the non-compacted offset to the
2945 	 * possibly compacted offset.
2946 	 */
2947 	valid = xstate_bv & ~XSTATE_FPSSE;
2948 	while (valid) {
2949 		u64 feature = valid & -valid;
2950 		int index = fls64(feature) - 1;
2951 		void *dest = get_xsave_addr(xsave, feature);
2952 
2953 		if (dest) {
2954 			u32 size, offset, ecx, edx;
2955 			cpuid_count(XSTATE_CPUID, index,
2956 				    &size, &offset, &ecx, &edx);
2957 			memcpy(dest, src + offset, size);
2958 		}
2959 
2960 		valid -= feature;
2961 	}
2962 }
2963 
2964 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2965 					 struct kvm_xsave *guest_xsave)
2966 {
2967 	if (cpu_has_xsave) {
2968 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
2969 		fill_xsave((u8 *) guest_xsave->region, vcpu);
2970 	} else {
2971 		memcpy(guest_xsave->region,
2972 			&vcpu->arch.guest_fpu.state.fxsave,
2973 			sizeof(struct fxregs_state));
2974 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2975 			XSTATE_FPSSE;
2976 	}
2977 }
2978 
2979 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2980 					struct kvm_xsave *guest_xsave)
2981 {
2982 	u64 xstate_bv =
2983 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2984 
2985 	if (cpu_has_xsave) {
2986 		/*
2987 		 * Here we allow setting states that are not present in
2988 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
2989 		 * with old userspace.
2990 		 */
2991 		if (xstate_bv & ~kvm_supported_xcr0())
2992 			return -EINVAL;
2993 		load_xsave(vcpu, (u8 *)guest_xsave->region);
2994 	} else {
2995 		if (xstate_bv & ~XSTATE_FPSSE)
2996 			return -EINVAL;
2997 		memcpy(&vcpu->arch.guest_fpu.state.fxsave,
2998 			guest_xsave->region, sizeof(struct fxregs_state));
2999 	}
3000 	return 0;
3001 }
3002 
3003 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3004 					struct kvm_xcrs *guest_xcrs)
3005 {
3006 	if (!cpu_has_xsave) {
3007 		guest_xcrs->nr_xcrs = 0;
3008 		return;
3009 	}
3010 
3011 	guest_xcrs->nr_xcrs = 1;
3012 	guest_xcrs->flags = 0;
3013 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3014 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3015 }
3016 
3017 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3018 				       struct kvm_xcrs *guest_xcrs)
3019 {
3020 	int i, r = 0;
3021 
3022 	if (!cpu_has_xsave)
3023 		return -EINVAL;
3024 
3025 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3026 		return -EINVAL;
3027 
3028 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3029 		/* Only support XCR0 currently */
3030 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3031 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3032 				guest_xcrs->xcrs[i].value);
3033 			break;
3034 		}
3035 	if (r)
3036 		r = -EINVAL;
3037 	return r;
3038 }
3039 
3040 /*
3041  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3042  * stopped by the hypervisor.  This function will be called from the host only.
3043  * EINVAL is returned when the host attempts to set the flag for a guest that
3044  * does not support pv clocks.
3045  */
3046 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3047 {
3048 	if (!vcpu->arch.pv_time_enabled)
3049 		return -EINVAL;
3050 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3051 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3052 	return 0;
3053 }
3054 
3055 long kvm_arch_vcpu_ioctl(struct file *filp,
3056 			 unsigned int ioctl, unsigned long arg)
3057 {
3058 	struct kvm_vcpu *vcpu = filp->private_data;
3059 	void __user *argp = (void __user *)arg;
3060 	int r;
3061 	union {
3062 		struct kvm_lapic_state *lapic;
3063 		struct kvm_xsave *xsave;
3064 		struct kvm_xcrs *xcrs;
3065 		void *buffer;
3066 	} u;
3067 
3068 	u.buffer = NULL;
3069 	switch (ioctl) {
3070 	case KVM_GET_LAPIC: {
3071 		r = -EINVAL;
3072 		if (!vcpu->arch.apic)
3073 			goto out;
3074 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3075 
3076 		r = -ENOMEM;
3077 		if (!u.lapic)
3078 			goto out;
3079 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3080 		if (r)
3081 			goto out;
3082 		r = -EFAULT;
3083 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3084 			goto out;
3085 		r = 0;
3086 		break;
3087 	}
3088 	case KVM_SET_LAPIC: {
3089 		r = -EINVAL;
3090 		if (!vcpu->arch.apic)
3091 			goto out;
3092 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3093 		if (IS_ERR(u.lapic))
3094 			return PTR_ERR(u.lapic);
3095 
3096 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3097 		break;
3098 	}
3099 	case KVM_INTERRUPT: {
3100 		struct kvm_interrupt irq;
3101 
3102 		r = -EFAULT;
3103 		if (copy_from_user(&irq, argp, sizeof irq))
3104 			goto out;
3105 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3106 		break;
3107 	}
3108 	case KVM_NMI: {
3109 		r = kvm_vcpu_ioctl_nmi(vcpu);
3110 		break;
3111 	}
3112 	case KVM_SMI: {
3113 		r = kvm_vcpu_ioctl_smi(vcpu);
3114 		break;
3115 	}
3116 	case KVM_SET_CPUID: {
3117 		struct kvm_cpuid __user *cpuid_arg = argp;
3118 		struct kvm_cpuid cpuid;
3119 
3120 		r = -EFAULT;
3121 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3122 			goto out;
3123 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3124 		break;
3125 	}
3126 	case KVM_SET_CPUID2: {
3127 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3128 		struct kvm_cpuid2 cpuid;
3129 
3130 		r = -EFAULT;
3131 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3132 			goto out;
3133 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3134 					      cpuid_arg->entries);
3135 		break;
3136 	}
3137 	case KVM_GET_CPUID2: {
3138 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3139 		struct kvm_cpuid2 cpuid;
3140 
3141 		r = -EFAULT;
3142 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3143 			goto out;
3144 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3145 					      cpuid_arg->entries);
3146 		if (r)
3147 			goto out;
3148 		r = -EFAULT;
3149 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3150 			goto out;
3151 		r = 0;
3152 		break;
3153 	}
3154 	case KVM_GET_MSRS:
3155 		r = msr_io(vcpu, argp, do_get_msr, 1);
3156 		break;
3157 	case KVM_SET_MSRS:
3158 		r = msr_io(vcpu, argp, do_set_msr, 0);
3159 		break;
3160 	case KVM_TPR_ACCESS_REPORTING: {
3161 		struct kvm_tpr_access_ctl tac;
3162 
3163 		r = -EFAULT;
3164 		if (copy_from_user(&tac, argp, sizeof tac))
3165 			goto out;
3166 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3167 		if (r)
3168 			goto out;
3169 		r = -EFAULT;
3170 		if (copy_to_user(argp, &tac, sizeof tac))
3171 			goto out;
3172 		r = 0;
3173 		break;
3174 	};
3175 	case KVM_SET_VAPIC_ADDR: {
3176 		struct kvm_vapic_addr va;
3177 
3178 		r = -EINVAL;
3179 		if (!irqchip_in_kernel(vcpu->kvm))
3180 			goto out;
3181 		r = -EFAULT;
3182 		if (copy_from_user(&va, argp, sizeof va))
3183 			goto out;
3184 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3185 		break;
3186 	}
3187 	case KVM_X86_SETUP_MCE: {
3188 		u64 mcg_cap;
3189 
3190 		r = -EFAULT;
3191 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3192 			goto out;
3193 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3194 		break;
3195 	}
3196 	case KVM_X86_SET_MCE: {
3197 		struct kvm_x86_mce mce;
3198 
3199 		r = -EFAULT;
3200 		if (copy_from_user(&mce, argp, sizeof mce))
3201 			goto out;
3202 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3203 		break;
3204 	}
3205 	case KVM_GET_VCPU_EVENTS: {
3206 		struct kvm_vcpu_events events;
3207 
3208 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3209 
3210 		r = -EFAULT;
3211 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3212 			break;
3213 		r = 0;
3214 		break;
3215 	}
3216 	case KVM_SET_VCPU_EVENTS: {
3217 		struct kvm_vcpu_events events;
3218 
3219 		r = -EFAULT;
3220 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3221 			break;
3222 
3223 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3224 		break;
3225 	}
3226 	case KVM_GET_DEBUGREGS: {
3227 		struct kvm_debugregs dbgregs;
3228 
3229 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3230 
3231 		r = -EFAULT;
3232 		if (copy_to_user(argp, &dbgregs,
3233 				 sizeof(struct kvm_debugregs)))
3234 			break;
3235 		r = 0;
3236 		break;
3237 	}
3238 	case KVM_SET_DEBUGREGS: {
3239 		struct kvm_debugregs dbgregs;
3240 
3241 		r = -EFAULT;
3242 		if (copy_from_user(&dbgregs, argp,
3243 				   sizeof(struct kvm_debugregs)))
3244 			break;
3245 
3246 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3247 		break;
3248 	}
3249 	case KVM_GET_XSAVE: {
3250 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3251 		r = -ENOMEM;
3252 		if (!u.xsave)
3253 			break;
3254 
3255 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3256 
3257 		r = -EFAULT;
3258 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3259 			break;
3260 		r = 0;
3261 		break;
3262 	}
3263 	case KVM_SET_XSAVE: {
3264 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3265 		if (IS_ERR(u.xsave))
3266 			return PTR_ERR(u.xsave);
3267 
3268 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3269 		break;
3270 	}
3271 	case KVM_GET_XCRS: {
3272 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3273 		r = -ENOMEM;
3274 		if (!u.xcrs)
3275 			break;
3276 
3277 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3278 
3279 		r = -EFAULT;
3280 		if (copy_to_user(argp, u.xcrs,
3281 				 sizeof(struct kvm_xcrs)))
3282 			break;
3283 		r = 0;
3284 		break;
3285 	}
3286 	case KVM_SET_XCRS: {
3287 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3288 		if (IS_ERR(u.xcrs))
3289 			return PTR_ERR(u.xcrs);
3290 
3291 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3292 		break;
3293 	}
3294 	case KVM_SET_TSC_KHZ: {
3295 		u32 user_tsc_khz;
3296 
3297 		r = -EINVAL;
3298 		user_tsc_khz = (u32)arg;
3299 
3300 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3301 			goto out;
3302 
3303 		if (user_tsc_khz == 0)
3304 			user_tsc_khz = tsc_khz;
3305 
3306 		kvm_set_tsc_khz(vcpu, user_tsc_khz);
3307 
3308 		r = 0;
3309 		goto out;
3310 	}
3311 	case KVM_GET_TSC_KHZ: {
3312 		r = vcpu->arch.virtual_tsc_khz;
3313 		goto out;
3314 	}
3315 	case KVM_KVMCLOCK_CTRL: {
3316 		r = kvm_set_guest_paused(vcpu);
3317 		goto out;
3318 	}
3319 	default:
3320 		r = -EINVAL;
3321 	}
3322 out:
3323 	kfree(u.buffer);
3324 	return r;
3325 }
3326 
3327 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3328 {
3329 	return VM_FAULT_SIGBUS;
3330 }
3331 
3332 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3333 {
3334 	int ret;
3335 
3336 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3337 		return -EINVAL;
3338 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3339 	return ret;
3340 }
3341 
3342 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3343 					      u64 ident_addr)
3344 {
3345 	kvm->arch.ept_identity_map_addr = ident_addr;
3346 	return 0;
3347 }
3348 
3349 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3350 					  u32 kvm_nr_mmu_pages)
3351 {
3352 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3353 		return -EINVAL;
3354 
3355 	mutex_lock(&kvm->slots_lock);
3356 
3357 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3358 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3359 
3360 	mutex_unlock(&kvm->slots_lock);
3361 	return 0;
3362 }
3363 
3364 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3365 {
3366 	return kvm->arch.n_max_mmu_pages;
3367 }
3368 
3369 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3370 {
3371 	int r;
3372 
3373 	r = 0;
3374 	switch (chip->chip_id) {
3375 	case KVM_IRQCHIP_PIC_MASTER:
3376 		memcpy(&chip->chip.pic,
3377 			&pic_irqchip(kvm)->pics[0],
3378 			sizeof(struct kvm_pic_state));
3379 		break;
3380 	case KVM_IRQCHIP_PIC_SLAVE:
3381 		memcpy(&chip->chip.pic,
3382 			&pic_irqchip(kvm)->pics[1],
3383 			sizeof(struct kvm_pic_state));
3384 		break;
3385 	case KVM_IRQCHIP_IOAPIC:
3386 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3387 		break;
3388 	default:
3389 		r = -EINVAL;
3390 		break;
3391 	}
3392 	return r;
3393 }
3394 
3395 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3396 {
3397 	int r;
3398 
3399 	r = 0;
3400 	switch (chip->chip_id) {
3401 	case KVM_IRQCHIP_PIC_MASTER:
3402 		spin_lock(&pic_irqchip(kvm)->lock);
3403 		memcpy(&pic_irqchip(kvm)->pics[0],
3404 			&chip->chip.pic,
3405 			sizeof(struct kvm_pic_state));
3406 		spin_unlock(&pic_irqchip(kvm)->lock);
3407 		break;
3408 	case KVM_IRQCHIP_PIC_SLAVE:
3409 		spin_lock(&pic_irqchip(kvm)->lock);
3410 		memcpy(&pic_irqchip(kvm)->pics[1],
3411 			&chip->chip.pic,
3412 			sizeof(struct kvm_pic_state));
3413 		spin_unlock(&pic_irqchip(kvm)->lock);
3414 		break;
3415 	case KVM_IRQCHIP_IOAPIC:
3416 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3417 		break;
3418 	default:
3419 		r = -EINVAL;
3420 		break;
3421 	}
3422 	kvm_pic_update_irq(pic_irqchip(kvm));
3423 	return r;
3424 }
3425 
3426 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3427 {
3428 	int r = 0;
3429 
3430 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3431 	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3432 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3433 	return r;
3434 }
3435 
3436 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3437 {
3438 	int r = 0;
3439 
3440 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3441 	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3442 	kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3443 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3444 	return r;
3445 }
3446 
3447 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3448 {
3449 	int r = 0;
3450 
3451 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3452 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3453 		sizeof(ps->channels));
3454 	ps->flags = kvm->arch.vpit->pit_state.flags;
3455 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3456 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3457 	return r;
3458 }
3459 
3460 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3461 {
3462 	int r = 0, start = 0;
3463 	u32 prev_legacy, cur_legacy;
3464 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3465 	prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3466 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3467 	if (!prev_legacy && cur_legacy)
3468 		start = 1;
3469 	memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3470 	       sizeof(kvm->arch.vpit->pit_state.channels));
3471 	kvm->arch.vpit->pit_state.flags = ps->flags;
3472 	kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3473 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3474 	return r;
3475 }
3476 
3477 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3478 				 struct kvm_reinject_control *control)
3479 {
3480 	if (!kvm->arch.vpit)
3481 		return -ENXIO;
3482 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3483 	kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3484 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3485 	return 0;
3486 }
3487 
3488 /**
3489  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3490  * @kvm: kvm instance
3491  * @log: slot id and address to which we copy the log
3492  *
3493  * Steps 1-4 below provide general overview of dirty page logging. See
3494  * kvm_get_dirty_log_protect() function description for additional details.
3495  *
3496  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3497  * always flush the TLB (step 4) even if previous step failed  and the dirty
3498  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3499  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3500  * writes will be marked dirty for next log read.
3501  *
3502  *   1. Take a snapshot of the bit and clear it if needed.
3503  *   2. Write protect the corresponding page.
3504  *   3. Copy the snapshot to the userspace.
3505  *   4. Flush TLB's if needed.
3506  */
3507 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3508 {
3509 	bool is_dirty = false;
3510 	int r;
3511 
3512 	mutex_lock(&kvm->slots_lock);
3513 
3514 	/*
3515 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3516 	 */
3517 	if (kvm_x86_ops->flush_log_dirty)
3518 		kvm_x86_ops->flush_log_dirty(kvm);
3519 
3520 	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3521 
3522 	/*
3523 	 * All the TLBs can be flushed out of mmu lock, see the comments in
3524 	 * kvm_mmu_slot_remove_write_access().
3525 	 */
3526 	lockdep_assert_held(&kvm->slots_lock);
3527 	if (is_dirty)
3528 		kvm_flush_remote_tlbs(kvm);
3529 
3530 	mutex_unlock(&kvm->slots_lock);
3531 	return r;
3532 }
3533 
3534 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3535 			bool line_status)
3536 {
3537 	if (!irqchip_in_kernel(kvm))
3538 		return -ENXIO;
3539 
3540 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3541 					irq_event->irq, irq_event->level,
3542 					line_status);
3543 	return 0;
3544 }
3545 
3546 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3547 				   struct kvm_enable_cap *cap)
3548 {
3549 	int r;
3550 
3551 	if (cap->flags)
3552 		return -EINVAL;
3553 
3554 	switch (cap->cap) {
3555 	case KVM_CAP_DISABLE_QUIRKS:
3556 		kvm->arch.disabled_quirks = cap->args[0];
3557 		r = 0;
3558 		break;
3559 	default:
3560 		r = -EINVAL;
3561 		break;
3562 	}
3563 	return r;
3564 }
3565 
3566 long kvm_arch_vm_ioctl(struct file *filp,
3567 		       unsigned int ioctl, unsigned long arg)
3568 {
3569 	struct kvm *kvm = filp->private_data;
3570 	void __user *argp = (void __user *)arg;
3571 	int r = -ENOTTY;
3572 	/*
3573 	 * This union makes it completely explicit to gcc-3.x
3574 	 * that these two variables' stack usage should be
3575 	 * combined, not added together.
3576 	 */
3577 	union {
3578 		struct kvm_pit_state ps;
3579 		struct kvm_pit_state2 ps2;
3580 		struct kvm_pit_config pit_config;
3581 	} u;
3582 
3583 	switch (ioctl) {
3584 	case KVM_SET_TSS_ADDR:
3585 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3586 		break;
3587 	case KVM_SET_IDENTITY_MAP_ADDR: {
3588 		u64 ident_addr;
3589 
3590 		r = -EFAULT;
3591 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3592 			goto out;
3593 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3594 		break;
3595 	}
3596 	case KVM_SET_NR_MMU_PAGES:
3597 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3598 		break;
3599 	case KVM_GET_NR_MMU_PAGES:
3600 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3601 		break;
3602 	case KVM_CREATE_IRQCHIP: {
3603 		struct kvm_pic *vpic;
3604 
3605 		mutex_lock(&kvm->lock);
3606 		r = -EEXIST;
3607 		if (kvm->arch.vpic)
3608 			goto create_irqchip_unlock;
3609 		r = -EINVAL;
3610 		if (atomic_read(&kvm->online_vcpus))
3611 			goto create_irqchip_unlock;
3612 		r = -ENOMEM;
3613 		vpic = kvm_create_pic(kvm);
3614 		if (vpic) {
3615 			r = kvm_ioapic_init(kvm);
3616 			if (r) {
3617 				mutex_lock(&kvm->slots_lock);
3618 				kvm_destroy_pic(vpic);
3619 				mutex_unlock(&kvm->slots_lock);
3620 				goto create_irqchip_unlock;
3621 			}
3622 		} else
3623 			goto create_irqchip_unlock;
3624 		r = kvm_setup_default_irq_routing(kvm);
3625 		if (r) {
3626 			mutex_lock(&kvm->slots_lock);
3627 			mutex_lock(&kvm->irq_lock);
3628 			kvm_ioapic_destroy(kvm);
3629 			kvm_destroy_pic(vpic);
3630 			mutex_unlock(&kvm->irq_lock);
3631 			mutex_unlock(&kvm->slots_lock);
3632 			goto create_irqchip_unlock;
3633 		}
3634 		/* Write kvm->irq_routing before kvm->arch.vpic.  */
3635 		smp_wmb();
3636 		kvm->arch.vpic = vpic;
3637 	create_irqchip_unlock:
3638 		mutex_unlock(&kvm->lock);
3639 		break;
3640 	}
3641 	case KVM_CREATE_PIT:
3642 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3643 		goto create_pit;
3644 	case KVM_CREATE_PIT2:
3645 		r = -EFAULT;
3646 		if (copy_from_user(&u.pit_config, argp,
3647 				   sizeof(struct kvm_pit_config)))
3648 			goto out;
3649 	create_pit:
3650 		mutex_lock(&kvm->slots_lock);
3651 		r = -EEXIST;
3652 		if (kvm->arch.vpit)
3653 			goto create_pit_unlock;
3654 		r = -ENOMEM;
3655 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3656 		if (kvm->arch.vpit)
3657 			r = 0;
3658 	create_pit_unlock:
3659 		mutex_unlock(&kvm->slots_lock);
3660 		break;
3661 	case KVM_GET_IRQCHIP: {
3662 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3663 		struct kvm_irqchip *chip;
3664 
3665 		chip = memdup_user(argp, sizeof(*chip));
3666 		if (IS_ERR(chip)) {
3667 			r = PTR_ERR(chip);
3668 			goto out;
3669 		}
3670 
3671 		r = -ENXIO;
3672 		if (!irqchip_in_kernel(kvm))
3673 			goto get_irqchip_out;
3674 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3675 		if (r)
3676 			goto get_irqchip_out;
3677 		r = -EFAULT;
3678 		if (copy_to_user(argp, chip, sizeof *chip))
3679 			goto get_irqchip_out;
3680 		r = 0;
3681 	get_irqchip_out:
3682 		kfree(chip);
3683 		break;
3684 	}
3685 	case KVM_SET_IRQCHIP: {
3686 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3687 		struct kvm_irqchip *chip;
3688 
3689 		chip = memdup_user(argp, sizeof(*chip));
3690 		if (IS_ERR(chip)) {
3691 			r = PTR_ERR(chip);
3692 			goto out;
3693 		}
3694 
3695 		r = -ENXIO;
3696 		if (!irqchip_in_kernel(kvm))
3697 			goto set_irqchip_out;
3698 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3699 		if (r)
3700 			goto set_irqchip_out;
3701 		r = 0;
3702 	set_irqchip_out:
3703 		kfree(chip);
3704 		break;
3705 	}
3706 	case KVM_GET_PIT: {
3707 		r = -EFAULT;
3708 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3709 			goto out;
3710 		r = -ENXIO;
3711 		if (!kvm->arch.vpit)
3712 			goto out;
3713 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3714 		if (r)
3715 			goto out;
3716 		r = -EFAULT;
3717 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3718 			goto out;
3719 		r = 0;
3720 		break;
3721 	}
3722 	case KVM_SET_PIT: {
3723 		r = -EFAULT;
3724 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
3725 			goto out;
3726 		r = -ENXIO;
3727 		if (!kvm->arch.vpit)
3728 			goto out;
3729 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3730 		break;
3731 	}
3732 	case KVM_GET_PIT2: {
3733 		r = -ENXIO;
3734 		if (!kvm->arch.vpit)
3735 			goto out;
3736 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3737 		if (r)
3738 			goto out;
3739 		r = -EFAULT;
3740 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3741 			goto out;
3742 		r = 0;
3743 		break;
3744 	}
3745 	case KVM_SET_PIT2: {
3746 		r = -EFAULT;
3747 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3748 			goto out;
3749 		r = -ENXIO;
3750 		if (!kvm->arch.vpit)
3751 			goto out;
3752 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3753 		break;
3754 	}
3755 	case KVM_REINJECT_CONTROL: {
3756 		struct kvm_reinject_control control;
3757 		r =  -EFAULT;
3758 		if (copy_from_user(&control, argp, sizeof(control)))
3759 			goto out;
3760 		r = kvm_vm_ioctl_reinject(kvm, &control);
3761 		break;
3762 	}
3763 	case KVM_SET_BOOT_CPU_ID:
3764 		r = 0;
3765 		mutex_lock(&kvm->lock);
3766 		if (atomic_read(&kvm->online_vcpus) != 0)
3767 			r = -EBUSY;
3768 		else
3769 			kvm->arch.bsp_vcpu_id = arg;
3770 		mutex_unlock(&kvm->lock);
3771 		break;
3772 	case KVM_XEN_HVM_CONFIG: {
3773 		r = -EFAULT;
3774 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3775 				   sizeof(struct kvm_xen_hvm_config)))
3776 			goto out;
3777 		r = -EINVAL;
3778 		if (kvm->arch.xen_hvm_config.flags)
3779 			goto out;
3780 		r = 0;
3781 		break;
3782 	}
3783 	case KVM_SET_CLOCK: {
3784 		struct kvm_clock_data user_ns;
3785 		u64 now_ns;
3786 		s64 delta;
3787 
3788 		r = -EFAULT;
3789 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3790 			goto out;
3791 
3792 		r = -EINVAL;
3793 		if (user_ns.flags)
3794 			goto out;
3795 
3796 		r = 0;
3797 		local_irq_disable();
3798 		now_ns = get_kernel_ns();
3799 		delta = user_ns.clock - now_ns;
3800 		local_irq_enable();
3801 		kvm->arch.kvmclock_offset = delta;
3802 		kvm_gen_update_masterclock(kvm);
3803 		break;
3804 	}
3805 	case KVM_GET_CLOCK: {
3806 		struct kvm_clock_data user_ns;
3807 		u64 now_ns;
3808 
3809 		local_irq_disable();
3810 		now_ns = get_kernel_ns();
3811 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3812 		local_irq_enable();
3813 		user_ns.flags = 0;
3814 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3815 
3816 		r = -EFAULT;
3817 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3818 			goto out;
3819 		r = 0;
3820 		break;
3821 	}
3822 	case KVM_ENABLE_CAP: {
3823 		struct kvm_enable_cap cap;
3824 
3825 		r = -EFAULT;
3826 		if (copy_from_user(&cap, argp, sizeof(cap)))
3827 			goto out;
3828 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
3829 		break;
3830 	}
3831 	default:
3832 		r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
3833 	}
3834 out:
3835 	return r;
3836 }
3837 
3838 static void kvm_init_msr_list(void)
3839 {
3840 	u32 dummy[2];
3841 	unsigned i, j;
3842 
3843 	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
3844 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3845 			continue;
3846 
3847 		/*
3848 		 * Even MSRs that are valid in the host may not be exposed
3849 		 * to the guests in some cases.  We could work around this
3850 		 * in VMX with the generic MSR save/load machinery, but it
3851 		 * is not really worthwhile since it will really only
3852 		 * happen with nested virtualization.
3853 		 */
3854 		switch (msrs_to_save[i]) {
3855 		case MSR_IA32_BNDCFGS:
3856 			if (!kvm_x86_ops->mpx_supported())
3857 				continue;
3858 			break;
3859 		default:
3860 			break;
3861 		}
3862 
3863 		if (j < i)
3864 			msrs_to_save[j] = msrs_to_save[i];
3865 		j++;
3866 	}
3867 	num_msrs_to_save = j;
3868 
3869 	for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
3870 		switch (emulated_msrs[i]) {
3871 		case MSR_IA32_SMBASE:
3872 			if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
3873 				continue;
3874 			break;
3875 		default:
3876 			break;
3877 		}
3878 
3879 		if (j < i)
3880 			emulated_msrs[j] = emulated_msrs[i];
3881 		j++;
3882 	}
3883 	num_emulated_msrs = j;
3884 }
3885 
3886 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3887 			   const void *v)
3888 {
3889 	int handled = 0;
3890 	int n;
3891 
3892 	do {
3893 		n = min(len, 8);
3894 		if (!(vcpu->arch.apic &&
3895 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
3896 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
3897 			break;
3898 		handled += n;
3899 		addr += n;
3900 		len -= n;
3901 		v += n;
3902 	} while (len);
3903 
3904 	return handled;
3905 }
3906 
3907 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3908 {
3909 	int handled = 0;
3910 	int n;
3911 
3912 	do {
3913 		n = min(len, 8);
3914 		if (!(vcpu->arch.apic &&
3915 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
3916 					 addr, n, v))
3917 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
3918 			break;
3919 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3920 		handled += n;
3921 		addr += n;
3922 		len -= n;
3923 		v += n;
3924 	} while (len);
3925 
3926 	return handled;
3927 }
3928 
3929 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3930 			struct kvm_segment *var, int seg)
3931 {
3932 	kvm_x86_ops->set_segment(vcpu, var, seg);
3933 }
3934 
3935 void kvm_get_segment(struct kvm_vcpu *vcpu,
3936 		     struct kvm_segment *var, int seg)
3937 {
3938 	kvm_x86_ops->get_segment(vcpu, var, seg);
3939 }
3940 
3941 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
3942 			   struct x86_exception *exception)
3943 {
3944 	gpa_t t_gpa;
3945 
3946 	BUG_ON(!mmu_is_nested(vcpu));
3947 
3948 	/* NPT walks are always user-walks */
3949 	access |= PFERR_USER_MASK;
3950 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
3951 
3952 	return t_gpa;
3953 }
3954 
3955 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3956 			      struct x86_exception *exception)
3957 {
3958 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3959 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3960 }
3961 
3962  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3963 				struct x86_exception *exception)
3964 {
3965 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3966 	access |= PFERR_FETCH_MASK;
3967 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3968 }
3969 
3970 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3971 			       struct x86_exception *exception)
3972 {
3973 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3974 	access |= PFERR_WRITE_MASK;
3975 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3976 }
3977 
3978 /* uses this to access any guest's mapped memory without checking CPL */
3979 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3980 				struct x86_exception *exception)
3981 {
3982 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3983 }
3984 
3985 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3986 				      struct kvm_vcpu *vcpu, u32 access,
3987 				      struct x86_exception *exception)
3988 {
3989 	void *data = val;
3990 	int r = X86EMUL_CONTINUE;
3991 
3992 	while (bytes) {
3993 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3994 							    exception);
3995 		unsigned offset = addr & (PAGE_SIZE-1);
3996 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3997 		int ret;
3998 
3999 		if (gpa == UNMAPPED_GVA)
4000 			return X86EMUL_PROPAGATE_FAULT;
4001 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4002 					       offset, toread);
4003 		if (ret < 0) {
4004 			r = X86EMUL_IO_NEEDED;
4005 			goto out;
4006 		}
4007 
4008 		bytes -= toread;
4009 		data += toread;
4010 		addr += toread;
4011 	}
4012 out:
4013 	return r;
4014 }
4015 
4016 /* used for instruction fetching */
4017 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4018 				gva_t addr, void *val, unsigned int bytes,
4019 				struct x86_exception *exception)
4020 {
4021 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4022 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4023 	unsigned offset;
4024 	int ret;
4025 
4026 	/* Inline kvm_read_guest_virt_helper for speed.  */
4027 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4028 						    exception);
4029 	if (unlikely(gpa == UNMAPPED_GVA))
4030 		return X86EMUL_PROPAGATE_FAULT;
4031 
4032 	offset = addr & (PAGE_SIZE-1);
4033 	if (WARN_ON(offset + bytes > PAGE_SIZE))
4034 		bytes = (unsigned)PAGE_SIZE - offset;
4035 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4036 				       offset, bytes);
4037 	if (unlikely(ret < 0))
4038 		return X86EMUL_IO_NEEDED;
4039 
4040 	return X86EMUL_CONTINUE;
4041 }
4042 
4043 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4044 			       gva_t addr, void *val, unsigned int bytes,
4045 			       struct x86_exception *exception)
4046 {
4047 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4048 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4049 
4050 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4051 					  exception);
4052 }
4053 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4054 
4055 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4056 				      gva_t addr, void *val, unsigned int bytes,
4057 				      struct x86_exception *exception)
4058 {
4059 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4060 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4061 }
4062 
4063 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4064 				       gva_t addr, void *val,
4065 				       unsigned int bytes,
4066 				       struct x86_exception *exception)
4067 {
4068 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4069 	void *data = val;
4070 	int r = X86EMUL_CONTINUE;
4071 
4072 	while (bytes) {
4073 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4074 							     PFERR_WRITE_MASK,
4075 							     exception);
4076 		unsigned offset = addr & (PAGE_SIZE-1);
4077 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4078 		int ret;
4079 
4080 		if (gpa == UNMAPPED_GVA)
4081 			return X86EMUL_PROPAGATE_FAULT;
4082 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4083 		if (ret < 0) {
4084 			r = X86EMUL_IO_NEEDED;
4085 			goto out;
4086 		}
4087 
4088 		bytes -= towrite;
4089 		data += towrite;
4090 		addr += towrite;
4091 	}
4092 out:
4093 	return r;
4094 }
4095 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4096 
4097 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4098 				gpa_t *gpa, struct x86_exception *exception,
4099 				bool write)
4100 {
4101 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4102 		| (write ? PFERR_WRITE_MASK : 0);
4103 
4104 	if (vcpu_match_mmio_gva(vcpu, gva)
4105 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4106 				 vcpu->arch.access, access)) {
4107 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4108 					(gva & (PAGE_SIZE - 1));
4109 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4110 		return 1;
4111 	}
4112 
4113 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4114 
4115 	if (*gpa == UNMAPPED_GVA)
4116 		return -1;
4117 
4118 	/* For APIC access vmexit */
4119 	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4120 		return 1;
4121 
4122 	if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4123 		trace_vcpu_match_mmio(gva, *gpa, write, true);
4124 		return 1;
4125 	}
4126 
4127 	return 0;
4128 }
4129 
4130 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4131 			const void *val, int bytes)
4132 {
4133 	int ret;
4134 
4135 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4136 	if (ret < 0)
4137 		return 0;
4138 	kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4139 	return 1;
4140 }
4141 
4142 struct read_write_emulator_ops {
4143 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4144 				  int bytes);
4145 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4146 				  void *val, int bytes);
4147 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4148 			       int bytes, void *val);
4149 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4150 				    void *val, int bytes);
4151 	bool write;
4152 };
4153 
4154 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4155 {
4156 	if (vcpu->mmio_read_completed) {
4157 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4158 			       vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4159 		vcpu->mmio_read_completed = 0;
4160 		return 1;
4161 	}
4162 
4163 	return 0;
4164 }
4165 
4166 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4167 			void *val, int bytes)
4168 {
4169 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4170 }
4171 
4172 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4173 			 void *val, int bytes)
4174 {
4175 	return emulator_write_phys(vcpu, gpa, val, bytes);
4176 }
4177 
4178 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4179 {
4180 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4181 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4182 }
4183 
4184 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4185 			  void *val, int bytes)
4186 {
4187 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4188 	return X86EMUL_IO_NEEDED;
4189 }
4190 
4191 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4192 			   void *val, int bytes)
4193 {
4194 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4195 
4196 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4197 	return X86EMUL_CONTINUE;
4198 }
4199 
4200 static const struct read_write_emulator_ops read_emultor = {
4201 	.read_write_prepare = read_prepare,
4202 	.read_write_emulate = read_emulate,
4203 	.read_write_mmio = vcpu_mmio_read,
4204 	.read_write_exit_mmio = read_exit_mmio,
4205 };
4206 
4207 static const struct read_write_emulator_ops write_emultor = {
4208 	.read_write_emulate = write_emulate,
4209 	.read_write_mmio = write_mmio,
4210 	.read_write_exit_mmio = write_exit_mmio,
4211 	.write = true,
4212 };
4213 
4214 static int emulator_read_write_onepage(unsigned long addr, void *val,
4215 				       unsigned int bytes,
4216 				       struct x86_exception *exception,
4217 				       struct kvm_vcpu *vcpu,
4218 				       const struct read_write_emulator_ops *ops)
4219 {
4220 	gpa_t gpa;
4221 	int handled, ret;
4222 	bool write = ops->write;
4223 	struct kvm_mmio_fragment *frag;
4224 
4225 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4226 
4227 	if (ret < 0)
4228 		return X86EMUL_PROPAGATE_FAULT;
4229 
4230 	/* For APIC access vmexit */
4231 	if (ret)
4232 		goto mmio;
4233 
4234 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4235 		return X86EMUL_CONTINUE;
4236 
4237 mmio:
4238 	/*
4239 	 * Is this MMIO handled locally?
4240 	 */
4241 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4242 	if (handled == bytes)
4243 		return X86EMUL_CONTINUE;
4244 
4245 	gpa += handled;
4246 	bytes -= handled;
4247 	val += handled;
4248 
4249 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4250 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4251 	frag->gpa = gpa;
4252 	frag->data = val;
4253 	frag->len = bytes;
4254 	return X86EMUL_CONTINUE;
4255 }
4256 
4257 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4258 			unsigned long addr,
4259 			void *val, unsigned int bytes,
4260 			struct x86_exception *exception,
4261 			const struct read_write_emulator_ops *ops)
4262 {
4263 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4264 	gpa_t gpa;
4265 	int rc;
4266 
4267 	if (ops->read_write_prepare &&
4268 		  ops->read_write_prepare(vcpu, val, bytes))
4269 		return X86EMUL_CONTINUE;
4270 
4271 	vcpu->mmio_nr_fragments = 0;
4272 
4273 	/* Crossing a page boundary? */
4274 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4275 		int now;
4276 
4277 		now = -addr & ~PAGE_MASK;
4278 		rc = emulator_read_write_onepage(addr, val, now, exception,
4279 						 vcpu, ops);
4280 
4281 		if (rc != X86EMUL_CONTINUE)
4282 			return rc;
4283 		addr += now;
4284 		if (ctxt->mode != X86EMUL_MODE_PROT64)
4285 			addr = (u32)addr;
4286 		val += now;
4287 		bytes -= now;
4288 	}
4289 
4290 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
4291 					 vcpu, ops);
4292 	if (rc != X86EMUL_CONTINUE)
4293 		return rc;
4294 
4295 	if (!vcpu->mmio_nr_fragments)
4296 		return rc;
4297 
4298 	gpa = vcpu->mmio_fragments[0].gpa;
4299 
4300 	vcpu->mmio_needed = 1;
4301 	vcpu->mmio_cur_fragment = 0;
4302 
4303 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4304 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4305 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
4306 	vcpu->run->mmio.phys_addr = gpa;
4307 
4308 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4309 }
4310 
4311 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4312 				  unsigned long addr,
4313 				  void *val,
4314 				  unsigned int bytes,
4315 				  struct x86_exception *exception)
4316 {
4317 	return emulator_read_write(ctxt, addr, val, bytes,
4318 				   exception, &read_emultor);
4319 }
4320 
4321 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4322 			    unsigned long addr,
4323 			    const void *val,
4324 			    unsigned int bytes,
4325 			    struct x86_exception *exception)
4326 {
4327 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
4328 				   exception, &write_emultor);
4329 }
4330 
4331 #define CMPXCHG_TYPE(t, ptr, old, new) \
4332 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4333 
4334 #ifdef CONFIG_X86_64
4335 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4336 #else
4337 #  define CMPXCHG64(ptr, old, new) \
4338 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4339 #endif
4340 
4341 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4342 				     unsigned long addr,
4343 				     const void *old,
4344 				     const void *new,
4345 				     unsigned int bytes,
4346 				     struct x86_exception *exception)
4347 {
4348 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4349 	gpa_t gpa;
4350 	struct page *page;
4351 	char *kaddr;
4352 	bool exchanged;
4353 
4354 	/* guests cmpxchg8b have to be emulated atomically */
4355 	if (bytes > 8 || (bytes & (bytes - 1)))
4356 		goto emul_write;
4357 
4358 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4359 
4360 	if (gpa == UNMAPPED_GVA ||
4361 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4362 		goto emul_write;
4363 
4364 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4365 		goto emul_write;
4366 
4367 	page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4368 	if (is_error_page(page))
4369 		goto emul_write;
4370 
4371 	kaddr = kmap_atomic(page);
4372 	kaddr += offset_in_page(gpa);
4373 	switch (bytes) {
4374 	case 1:
4375 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4376 		break;
4377 	case 2:
4378 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4379 		break;
4380 	case 4:
4381 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4382 		break;
4383 	case 8:
4384 		exchanged = CMPXCHG64(kaddr, old, new);
4385 		break;
4386 	default:
4387 		BUG();
4388 	}
4389 	kunmap_atomic(kaddr);
4390 	kvm_release_page_dirty(page);
4391 
4392 	if (!exchanged)
4393 		return X86EMUL_CMPXCHG_FAILED;
4394 
4395 	kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4396 	kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4397 
4398 	return X86EMUL_CONTINUE;
4399 
4400 emul_write:
4401 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4402 
4403 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4404 }
4405 
4406 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4407 {
4408 	/* TODO: String I/O for in kernel device */
4409 	int r;
4410 
4411 	if (vcpu->arch.pio.in)
4412 		r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4413 				    vcpu->arch.pio.size, pd);
4414 	else
4415 		r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4416 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
4417 				     pd);
4418 	return r;
4419 }
4420 
4421 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4422 			       unsigned short port, void *val,
4423 			       unsigned int count, bool in)
4424 {
4425 	vcpu->arch.pio.port = port;
4426 	vcpu->arch.pio.in = in;
4427 	vcpu->arch.pio.count  = count;
4428 	vcpu->arch.pio.size = size;
4429 
4430 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4431 		vcpu->arch.pio.count = 0;
4432 		return 1;
4433 	}
4434 
4435 	vcpu->run->exit_reason = KVM_EXIT_IO;
4436 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4437 	vcpu->run->io.size = size;
4438 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4439 	vcpu->run->io.count = count;
4440 	vcpu->run->io.port = port;
4441 
4442 	return 0;
4443 }
4444 
4445 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4446 				    int size, unsigned short port, void *val,
4447 				    unsigned int count)
4448 {
4449 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4450 	int ret;
4451 
4452 	if (vcpu->arch.pio.count)
4453 		goto data_avail;
4454 
4455 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4456 	if (ret) {
4457 data_avail:
4458 		memcpy(val, vcpu->arch.pio_data, size * count);
4459 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4460 		vcpu->arch.pio.count = 0;
4461 		return 1;
4462 	}
4463 
4464 	return 0;
4465 }
4466 
4467 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4468 				     int size, unsigned short port,
4469 				     const void *val, unsigned int count)
4470 {
4471 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4472 
4473 	memcpy(vcpu->arch.pio_data, val, size * count);
4474 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4475 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4476 }
4477 
4478 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4479 {
4480 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4481 }
4482 
4483 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4484 {
4485 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4486 }
4487 
4488 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4489 {
4490 	if (!need_emulate_wbinvd(vcpu))
4491 		return X86EMUL_CONTINUE;
4492 
4493 	if (kvm_x86_ops->has_wbinvd_exit()) {
4494 		int cpu = get_cpu();
4495 
4496 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4497 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4498 				wbinvd_ipi, NULL, 1);
4499 		put_cpu();
4500 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4501 	} else
4502 		wbinvd();
4503 	return X86EMUL_CONTINUE;
4504 }
4505 
4506 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4507 {
4508 	kvm_x86_ops->skip_emulated_instruction(vcpu);
4509 	return kvm_emulate_wbinvd_noskip(vcpu);
4510 }
4511 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4512 
4513 
4514 
4515 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4516 {
4517 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4518 }
4519 
4520 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4521 			   unsigned long *dest)
4522 {
4523 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4524 }
4525 
4526 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4527 			   unsigned long value)
4528 {
4529 
4530 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4531 }
4532 
4533 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4534 {
4535 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4536 }
4537 
4538 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4539 {
4540 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4541 	unsigned long value;
4542 
4543 	switch (cr) {
4544 	case 0:
4545 		value = kvm_read_cr0(vcpu);
4546 		break;
4547 	case 2:
4548 		value = vcpu->arch.cr2;
4549 		break;
4550 	case 3:
4551 		value = kvm_read_cr3(vcpu);
4552 		break;
4553 	case 4:
4554 		value = kvm_read_cr4(vcpu);
4555 		break;
4556 	case 8:
4557 		value = kvm_get_cr8(vcpu);
4558 		break;
4559 	default:
4560 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4561 		return 0;
4562 	}
4563 
4564 	return value;
4565 }
4566 
4567 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4568 {
4569 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4570 	int res = 0;
4571 
4572 	switch (cr) {
4573 	case 0:
4574 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4575 		break;
4576 	case 2:
4577 		vcpu->arch.cr2 = val;
4578 		break;
4579 	case 3:
4580 		res = kvm_set_cr3(vcpu, val);
4581 		break;
4582 	case 4:
4583 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4584 		break;
4585 	case 8:
4586 		res = kvm_set_cr8(vcpu, val);
4587 		break;
4588 	default:
4589 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4590 		res = -1;
4591 	}
4592 
4593 	return res;
4594 }
4595 
4596 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4597 {
4598 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4599 }
4600 
4601 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4602 {
4603 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4604 }
4605 
4606 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4607 {
4608 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4609 }
4610 
4611 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4612 {
4613 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4614 }
4615 
4616 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4617 {
4618 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4619 }
4620 
4621 static unsigned long emulator_get_cached_segment_base(
4622 	struct x86_emulate_ctxt *ctxt, int seg)
4623 {
4624 	return get_segment_base(emul_to_vcpu(ctxt), seg);
4625 }
4626 
4627 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4628 				 struct desc_struct *desc, u32 *base3,
4629 				 int seg)
4630 {
4631 	struct kvm_segment var;
4632 
4633 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4634 	*selector = var.selector;
4635 
4636 	if (var.unusable) {
4637 		memset(desc, 0, sizeof(*desc));
4638 		return false;
4639 	}
4640 
4641 	if (var.g)
4642 		var.limit >>= 12;
4643 	set_desc_limit(desc, var.limit);
4644 	set_desc_base(desc, (unsigned long)var.base);
4645 #ifdef CONFIG_X86_64
4646 	if (base3)
4647 		*base3 = var.base >> 32;
4648 #endif
4649 	desc->type = var.type;
4650 	desc->s = var.s;
4651 	desc->dpl = var.dpl;
4652 	desc->p = var.present;
4653 	desc->avl = var.avl;
4654 	desc->l = var.l;
4655 	desc->d = var.db;
4656 	desc->g = var.g;
4657 
4658 	return true;
4659 }
4660 
4661 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4662 				 struct desc_struct *desc, u32 base3,
4663 				 int seg)
4664 {
4665 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4666 	struct kvm_segment var;
4667 
4668 	var.selector = selector;
4669 	var.base = get_desc_base(desc);
4670 #ifdef CONFIG_X86_64
4671 	var.base |= ((u64)base3) << 32;
4672 #endif
4673 	var.limit = get_desc_limit(desc);
4674 	if (desc->g)
4675 		var.limit = (var.limit << 12) | 0xfff;
4676 	var.type = desc->type;
4677 	var.dpl = desc->dpl;
4678 	var.db = desc->d;
4679 	var.s = desc->s;
4680 	var.l = desc->l;
4681 	var.g = desc->g;
4682 	var.avl = desc->avl;
4683 	var.present = desc->p;
4684 	var.unusable = !var.present;
4685 	var.padding = 0;
4686 
4687 	kvm_set_segment(vcpu, &var, seg);
4688 	return;
4689 }
4690 
4691 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4692 			    u32 msr_index, u64 *pdata)
4693 {
4694 	struct msr_data msr;
4695 	int r;
4696 
4697 	msr.index = msr_index;
4698 	msr.host_initiated = false;
4699 	r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
4700 	if (r)
4701 		return r;
4702 
4703 	*pdata = msr.data;
4704 	return 0;
4705 }
4706 
4707 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4708 			    u32 msr_index, u64 data)
4709 {
4710 	struct msr_data msr;
4711 
4712 	msr.data = data;
4713 	msr.index = msr_index;
4714 	msr.host_initiated = false;
4715 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4716 }
4717 
4718 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
4719 {
4720 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4721 
4722 	return vcpu->arch.smbase;
4723 }
4724 
4725 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
4726 {
4727 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4728 
4729 	vcpu->arch.smbase = smbase;
4730 }
4731 
4732 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4733 			      u32 pmc)
4734 {
4735 	return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
4736 }
4737 
4738 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4739 			     u32 pmc, u64 *pdata)
4740 {
4741 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
4742 }
4743 
4744 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4745 {
4746 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
4747 }
4748 
4749 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4750 {
4751 	preempt_disable();
4752 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4753 	/*
4754 	 * CR0.TS may reference the host fpu state, not the guest fpu state,
4755 	 * so it may be clear at this point.
4756 	 */
4757 	clts();
4758 }
4759 
4760 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4761 {
4762 	preempt_enable();
4763 }
4764 
4765 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4766 			      struct x86_instruction_info *info,
4767 			      enum x86_intercept_stage stage)
4768 {
4769 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4770 }
4771 
4772 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4773 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4774 {
4775 	kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4776 }
4777 
4778 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4779 {
4780 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
4781 }
4782 
4783 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4784 {
4785 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4786 }
4787 
4788 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
4789 {
4790 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
4791 }
4792 
4793 static const struct x86_emulate_ops emulate_ops = {
4794 	.read_gpr            = emulator_read_gpr,
4795 	.write_gpr           = emulator_write_gpr,
4796 	.read_std            = kvm_read_guest_virt_system,
4797 	.write_std           = kvm_write_guest_virt_system,
4798 	.fetch               = kvm_fetch_guest_virt,
4799 	.read_emulated       = emulator_read_emulated,
4800 	.write_emulated      = emulator_write_emulated,
4801 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
4802 	.invlpg              = emulator_invlpg,
4803 	.pio_in_emulated     = emulator_pio_in_emulated,
4804 	.pio_out_emulated    = emulator_pio_out_emulated,
4805 	.get_segment         = emulator_get_segment,
4806 	.set_segment         = emulator_set_segment,
4807 	.get_cached_segment_base = emulator_get_cached_segment_base,
4808 	.get_gdt             = emulator_get_gdt,
4809 	.get_idt	     = emulator_get_idt,
4810 	.set_gdt             = emulator_set_gdt,
4811 	.set_idt	     = emulator_set_idt,
4812 	.get_cr              = emulator_get_cr,
4813 	.set_cr              = emulator_set_cr,
4814 	.cpl                 = emulator_get_cpl,
4815 	.get_dr              = emulator_get_dr,
4816 	.set_dr              = emulator_set_dr,
4817 	.get_smbase          = emulator_get_smbase,
4818 	.set_smbase          = emulator_set_smbase,
4819 	.set_msr             = emulator_set_msr,
4820 	.get_msr             = emulator_get_msr,
4821 	.check_pmc	     = emulator_check_pmc,
4822 	.read_pmc            = emulator_read_pmc,
4823 	.halt                = emulator_halt,
4824 	.wbinvd              = emulator_wbinvd,
4825 	.fix_hypercall       = emulator_fix_hypercall,
4826 	.get_fpu             = emulator_get_fpu,
4827 	.put_fpu             = emulator_put_fpu,
4828 	.intercept           = emulator_intercept,
4829 	.get_cpuid           = emulator_get_cpuid,
4830 	.set_nmi_mask        = emulator_set_nmi_mask,
4831 };
4832 
4833 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4834 {
4835 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
4836 	/*
4837 	 * an sti; sti; sequence only disable interrupts for the first
4838 	 * instruction. So, if the last instruction, be it emulated or
4839 	 * not, left the system with the INT_STI flag enabled, it
4840 	 * means that the last instruction is an sti. We should not
4841 	 * leave the flag on in this case. The same goes for mov ss
4842 	 */
4843 	if (int_shadow & mask)
4844 		mask = 0;
4845 	if (unlikely(int_shadow || mask)) {
4846 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4847 		if (!mask)
4848 			kvm_make_request(KVM_REQ_EVENT, vcpu);
4849 	}
4850 }
4851 
4852 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
4853 {
4854 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4855 	if (ctxt->exception.vector == PF_VECTOR)
4856 		return kvm_propagate_fault(vcpu, &ctxt->exception);
4857 
4858 	if (ctxt->exception.error_code_valid)
4859 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4860 				      ctxt->exception.error_code);
4861 	else
4862 		kvm_queue_exception(vcpu, ctxt->exception.vector);
4863 	return false;
4864 }
4865 
4866 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4867 {
4868 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4869 	int cs_db, cs_l;
4870 
4871 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4872 
4873 	ctxt->eflags = kvm_get_rflags(vcpu);
4874 	ctxt->eip = kvm_rip_read(vcpu);
4875 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
4876 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
4877 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
4878 		     cs_db				? X86EMUL_MODE_PROT32 :
4879 							  X86EMUL_MODE_PROT16;
4880 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
4881 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
4882 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
4883 	ctxt->emul_flags = vcpu->arch.hflags;
4884 
4885 	init_decode_cache(ctxt);
4886 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4887 }
4888 
4889 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4890 {
4891 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4892 	int ret;
4893 
4894 	init_emulate_ctxt(vcpu);
4895 
4896 	ctxt->op_bytes = 2;
4897 	ctxt->ad_bytes = 2;
4898 	ctxt->_eip = ctxt->eip + inc_eip;
4899 	ret = emulate_int_real(ctxt, irq);
4900 
4901 	if (ret != X86EMUL_CONTINUE)
4902 		return EMULATE_FAIL;
4903 
4904 	ctxt->eip = ctxt->_eip;
4905 	kvm_rip_write(vcpu, ctxt->eip);
4906 	kvm_set_rflags(vcpu, ctxt->eflags);
4907 
4908 	if (irq == NMI_VECTOR)
4909 		vcpu->arch.nmi_pending = 0;
4910 	else
4911 		vcpu->arch.interrupt.pending = false;
4912 
4913 	return EMULATE_DONE;
4914 }
4915 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4916 
4917 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4918 {
4919 	int r = EMULATE_DONE;
4920 
4921 	++vcpu->stat.insn_emulation_fail;
4922 	trace_kvm_emulate_insn_failed(vcpu);
4923 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
4924 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4925 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4926 		vcpu->run->internal.ndata = 0;
4927 		r = EMULATE_FAIL;
4928 	}
4929 	kvm_queue_exception(vcpu, UD_VECTOR);
4930 
4931 	return r;
4932 }
4933 
4934 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
4935 				  bool write_fault_to_shadow_pgtable,
4936 				  int emulation_type)
4937 {
4938 	gpa_t gpa = cr2;
4939 	pfn_t pfn;
4940 
4941 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
4942 		return false;
4943 
4944 	if (!vcpu->arch.mmu.direct_map) {
4945 		/*
4946 		 * Write permission should be allowed since only
4947 		 * write access need to be emulated.
4948 		 */
4949 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4950 
4951 		/*
4952 		 * If the mapping is invalid in guest, let cpu retry
4953 		 * it to generate fault.
4954 		 */
4955 		if (gpa == UNMAPPED_GVA)
4956 			return true;
4957 	}
4958 
4959 	/*
4960 	 * Do not retry the unhandleable instruction if it faults on the
4961 	 * readonly host memory, otherwise it will goto a infinite loop:
4962 	 * retry instruction -> write #PF -> emulation fail -> retry
4963 	 * instruction -> ...
4964 	 */
4965 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4966 
4967 	/*
4968 	 * If the instruction failed on the error pfn, it can not be fixed,
4969 	 * report the error to userspace.
4970 	 */
4971 	if (is_error_noslot_pfn(pfn))
4972 		return false;
4973 
4974 	kvm_release_pfn_clean(pfn);
4975 
4976 	/* The instructions are well-emulated on direct mmu. */
4977 	if (vcpu->arch.mmu.direct_map) {
4978 		unsigned int indirect_shadow_pages;
4979 
4980 		spin_lock(&vcpu->kvm->mmu_lock);
4981 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
4982 		spin_unlock(&vcpu->kvm->mmu_lock);
4983 
4984 		if (indirect_shadow_pages)
4985 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4986 
4987 		return true;
4988 	}
4989 
4990 	/*
4991 	 * if emulation was due to access to shadowed page table
4992 	 * and it failed try to unshadow page and re-enter the
4993 	 * guest to let CPU execute the instruction.
4994 	 */
4995 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4996 
4997 	/*
4998 	 * If the access faults on its page table, it can not
4999 	 * be fixed by unprotecting shadow page and it should
5000 	 * be reported to userspace.
5001 	 */
5002 	return !write_fault_to_shadow_pgtable;
5003 }
5004 
5005 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5006 			      unsigned long cr2,  int emulation_type)
5007 {
5008 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5009 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5010 
5011 	last_retry_eip = vcpu->arch.last_retry_eip;
5012 	last_retry_addr = vcpu->arch.last_retry_addr;
5013 
5014 	/*
5015 	 * If the emulation is caused by #PF and it is non-page_table
5016 	 * writing instruction, it means the VM-EXIT is caused by shadow
5017 	 * page protected, we can zap the shadow page and retry this
5018 	 * instruction directly.
5019 	 *
5020 	 * Note: if the guest uses a non-page-table modifying instruction
5021 	 * on the PDE that points to the instruction, then we will unmap
5022 	 * the instruction and go to an infinite loop. So, we cache the
5023 	 * last retried eip and the last fault address, if we meet the eip
5024 	 * and the address again, we can break out of the potential infinite
5025 	 * loop.
5026 	 */
5027 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5028 
5029 	if (!(emulation_type & EMULTYPE_RETRY))
5030 		return false;
5031 
5032 	if (x86_page_table_writing_insn(ctxt))
5033 		return false;
5034 
5035 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5036 		return false;
5037 
5038 	vcpu->arch.last_retry_eip = ctxt->eip;
5039 	vcpu->arch.last_retry_addr = cr2;
5040 
5041 	if (!vcpu->arch.mmu.direct_map)
5042 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5043 
5044 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5045 
5046 	return true;
5047 }
5048 
5049 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5050 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5051 
5052 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5053 {
5054 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5055 		/* This is a good place to trace that we are exiting SMM.  */
5056 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5057 
5058 		if (unlikely(vcpu->arch.smi_pending)) {
5059 			kvm_make_request(KVM_REQ_SMI, vcpu);
5060 			vcpu->arch.smi_pending = 0;
5061 		} else {
5062 			/* Process a latched INIT, if any.  */
5063 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5064 		}
5065 	}
5066 
5067 	kvm_mmu_reset_context(vcpu);
5068 }
5069 
5070 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5071 {
5072 	unsigned changed = vcpu->arch.hflags ^ emul_flags;
5073 
5074 	vcpu->arch.hflags = emul_flags;
5075 
5076 	if (changed & HF_SMM_MASK)
5077 		kvm_smm_changed(vcpu);
5078 }
5079 
5080 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5081 				unsigned long *db)
5082 {
5083 	u32 dr6 = 0;
5084 	int i;
5085 	u32 enable, rwlen;
5086 
5087 	enable = dr7;
5088 	rwlen = dr7 >> 16;
5089 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5090 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5091 			dr6 |= (1 << i);
5092 	return dr6;
5093 }
5094 
5095 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5096 {
5097 	struct kvm_run *kvm_run = vcpu->run;
5098 
5099 	/*
5100 	 * rflags is the old, "raw" value of the flags.  The new value has
5101 	 * not been saved yet.
5102 	 *
5103 	 * This is correct even for TF set by the guest, because "the
5104 	 * processor will not generate this exception after the instruction
5105 	 * that sets the TF flag".
5106 	 */
5107 	if (unlikely(rflags & X86_EFLAGS_TF)) {
5108 		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5109 			kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5110 						  DR6_RTM;
5111 			kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5112 			kvm_run->debug.arch.exception = DB_VECTOR;
5113 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5114 			*r = EMULATE_USER_EXIT;
5115 		} else {
5116 			vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5117 			/*
5118 			 * "Certain debug exceptions may clear bit 0-3.  The
5119 			 * remaining contents of the DR6 register are never
5120 			 * cleared by the processor".
5121 			 */
5122 			vcpu->arch.dr6 &= ~15;
5123 			vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5124 			kvm_queue_exception(vcpu, DB_VECTOR);
5125 		}
5126 	}
5127 }
5128 
5129 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5130 {
5131 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5132 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5133 		struct kvm_run *kvm_run = vcpu->run;
5134 		unsigned long eip = kvm_get_linear_rip(vcpu);
5135 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5136 					   vcpu->arch.guest_debug_dr7,
5137 					   vcpu->arch.eff_db);
5138 
5139 		if (dr6 != 0) {
5140 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5141 			kvm_run->debug.arch.pc = eip;
5142 			kvm_run->debug.arch.exception = DB_VECTOR;
5143 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5144 			*r = EMULATE_USER_EXIT;
5145 			return true;
5146 		}
5147 	}
5148 
5149 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5150 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5151 		unsigned long eip = kvm_get_linear_rip(vcpu);
5152 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5153 					   vcpu->arch.dr7,
5154 					   vcpu->arch.db);
5155 
5156 		if (dr6 != 0) {
5157 			vcpu->arch.dr6 &= ~15;
5158 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
5159 			kvm_queue_exception(vcpu, DB_VECTOR);
5160 			*r = EMULATE_DONE;
5161 			return true;
5162 		}
5163 	}
5164 
5165 	return false;
5166 }
5167 
5168 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5169 			    unsigned long cr2,
5170 			    int emulation_type,
5171 			    void *insn,
5172 			    int insn_len)
5173 {
5174 	int r;
5175 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5176 	bool writeback = true;
5177 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5178 
5179 	/*
5180 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
5181 	 * never reused.
5182 	 */
5183 	vcpu->arch.write_fault_to_shadow_pgtable = false;
5184 	kvm_clear_exception_queue(vcpu);
5185 
5186 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5187 		init_emulate_ctxt(vcpu);
5188 
5189 		/*
5190 		 * We will reenter on the same instruction since
5191 		 * we do not set complete_userspace_io.  This does not
5192 		 * handle watchpoints yet, those would be handled in
5193 		 * the emulate_ops.
5194 		 */
5195 		if (kvm_vcpu_check_breakpoint(vcpu, &r))
5196 			return r;
5197 
5198 		ctxt->interruptibility = 0;
5199 		ctxt->have_exception = false;
5200 		ctxt->exception.vector = -1;
5201 		ctxt->perm_ok = false;
5202 
5203 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5204 
5205 		r = x86_decode_insn(ctxt, insn, insn_len);
5206 
5207 		trace_kvm_emulate_insn_start(vcpu);
5208 		++vcpu->stat.insn_emulation;
5209 		if (r != EMULATION_OK)  {
5210 			if (emulation_type & EMULTYPE_TRAP_UD)
5211 				return EMULATE_FAIL;
5212 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5213 						emulation_type))
5214 				return EMULATE_DONE;
5215 			if (emulation_type & EMULTYPE_SKIP)
5216 				return EMULATE_FAIL;
5217 			return handle_emulation_failure(vcpu);
5218 		}
5219 	}
5220 
5221 	if (emulation_type & EMULTYPE_SKIP) {
5222 		kvm_rip_write(vcpu, ctxt->_eip);
5223 		if (ctxt->eflags & X86_EFLAGS_RF)
5224 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5225 		return EMULATE_DONE;
5226 	}
5227 
5228 	if (retry_instruction(ctxt, cr2, emulation_type))
5229 		return EMULATE_DONE;
5230 
5231 	/* this is needed for vmware backdoor interface to work since it
5232 	   changes registers values  during IO operation */
5233 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5234 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5235 		emulator_invalidate_register_cache(ctxt);
5236 	}
5237 
5238 restart:
5239 	r = x86_emulate_insn(ctxt);
5240 
5241 	if (r == EMULATION_INTERCEPTED)
5242 		return EMULATE_DONE;
5243 
5244 	if (r == EMULATION_FAILED) {
5245 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5246 					emulation_type))
5247 			return EMULATE_DONE;
5248 
5249 		return handle_emulation_failure(vcpu);
5250 	}
5251 
5252 	if (ctxt->have_exception) {
5253 		r = EMULATE_DONE;
5254 		if (inject_emulated_exception(vcpu))
5255 			return r;
5256 	} else if (vcpu->arch.pio.count) {
5257 		if (!vcpu->arch.pio.in) {
5258 			/* FIXME: return into emulator if single-stepping.  */
5259 			vcpu->arch.pio.count = 0;
5260 		} else {
5261 			writeback = false;
5262 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
5263 		}
5264 		r = EMULATE_USER_EXIT;
5265 	} else if (vcpu->mmio_needed) {
5266 		if (!vcpu->mmio_is_write)
5267 			writeback = false;
5268 		r = EMULATE_USER_EXIT;
5269 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5270 	} else if (r == EMULATION_RESTART)
5271 		goto restart;
5272 	else
5273 		r = EMULATE_DONE;
5274 
5275 	if (writeback) {
5276 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5277 		toggle_interruptibility(vcpu, ctxt->interruptibility);
5278 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5279 		if (vcpu->arch.hflags != ctxt->emul_flags)
5280 			kvm_set_hflags(vcpu, ctxt->emul_flags);
5281 		kvm_rip_write(vcpu, ctxt->eip);
5282 		if (r == EMULATE_DONE)
5283 			kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5284 		if (!ctxt->have_exception ||
5285 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5286 			__kvm_set_rflags(vcpu, ctxt->eflags);
5287 
5288 		/*
5289 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5290 		 * do nothing, and it will be requested again as soon as
5291 		 * the shadow expires.  But we still need to check here,
5292 		 * because POPF has no interrupt shadow.
5293 		 */
5294 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5295 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5296 	} else
5297 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5298 
5299 	return r;
5300 }
5301 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5302 
5303 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5304 {
5305 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5306 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5307 					    size, port, &val, 1);
5308 	/* do not return to emulator after return from userspace */
5309 	vcpu->arch.pio.count = 0;
5310 	return ret;
5311 }
5312 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5313 
5314 static void tsc_bad(void *info)
5315 {
5316 	__this_cpu_write(cpu_tsc_khz, 0);
5317 }
5318 
5319 static void tsc_khz_changed(void *data)
5320 {
5321 	struct cpufreq_freqs *freq = data;
5322 	unsigned long khz = 0;
5323 
5324 	if (data)
5325 		khz = freq->new;
5326 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5327 		khz = cpufreq_quick_get(raw_smp_processor_id());
5328 	if (!khz)
5329 		khz = tsc_khz;
5330 	__this_cpu_write(cpu_tsc_khz, khz);
5331 }
5332 
5333 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5334 				     void *data)
5335 {
5336 	struct cpufreq_freqs *freq = data;
5337 	struct kvm *kvm;
5338 	struct kvm_vcpu *vcpu;
5339 	int i, send_ipi = 0;
5340 
5341 	/*
5342 	 * We allow guests to temporarily run on slowing clocks,
5343 	 * provided we notify them after, or to run on accelerating
5344 	 * clocks, provided we notify them before.  Thus time never
5345 	 * goes backwards.
5346 	 *
5347 	 * However, we have a problem.  We can't atomically update
5348 	 * the frequency of a given CPU from this function; it is
5349 	 * merely a notifier, which can be called from any CPU.
5350 	 * Changing the TSC frequency at arbitrary points in time
5351 	 * requires a recomputation of local variables related to
5352 	 * the TSC for each VCPU.  We must flag these local variables
5353 	 * to be updated and be sure the update takes place with the
5354 	 * new frequency before any guests proceed.
5355 	 *
5356 	 * Unfortunately, the combination of hotplug CPU and frequency
5357 	 * change creates an intractable locking scenario; the order
5358 	 * of when these callouts happen is undefined with respect to
5359 	 * CPU hotplug, and they can race with each other.  As such,
5360 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5361 	 * undefined; you can actually have a CPU frequency change take
5362 	 * place in between the computation of X and the setting of the
5363 	 * variable.  To protect against this problem, all updates of
5364 	 * the per_cpu tsc_khz variable are done in an interrupt
5365 	 * protected IPI, and all callers wishing to update the value
5366 	 * must wait for a synchronous IPI to complete (which is trivial
5367 	 * if the caller is on the CPU already).  This establishes the
5368 	 * necessary total order on variable updates.
5369 	 *
5370 	 * Note that because a guest time update may take place
5371 	 * anytime after the setting of the VCPU's request bit, the
5372 	 * correct TSC value must be set before the request.  However,
5373 	 * to ensure the update actually makes it to any guest which
5374 	 * starts running in hardware virtualization between the set
5375 	 * and the acquisition of the spinlock, we must also ping the
5376 	 * CPU after setting the request bit.
5377 	 *
5378 	 */
5379 
5380 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5381 		return 0;
5382 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5383 		return 0;
5384 
5385 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5386 
5387 	spin_lock(&kvm_lock);
5388 	list_for_each_entry(kvm, &vm_list, vm_list) {
5389 		kvm_for_each_vcpu(i, vcpu, kvm) {
5390 			if (vcpu->cpu != freq->cpu)
5391 				continue;
5392 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5393 			if (vcpu->cpu != smp_processor_id())
5394 				send_ipi = 1;
5395 		}
5396 	}
5397 	spin_unlock(&kvm_lock);
5398 
5399 	if (freq->old < freq->new && send_ipi) {
5400 		/*
5401 		 * We upscale the frequency.  Must make the guest
5402 		 * doesn't see old kvmclock values while running with
5403 		 * the new frequency, otherwise we risk the guest sees
5404 		 * time go backwards.
5405 		 *
5406 		 * In case we update the frequency for another cpu
5407 		 * (which might be in guest context) send an interrupt
5408 		 * to kick the cpu out of guest context.  Next time
5409 		 * guest context is entered kvmclock will be updated,
5410 		 * so the guest will not see stale values.
5411 		 */
5412 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5413 	}
5414 	return 0;
5415 }
5416 
5417 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5418 	.notifier_call  = kvmclock_cpufreq_notifier
5419 };
5420 
5421 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5422 					unsigned long action, void *hcpu)
5423 {
5424 	unsigned int cpu = (unsigned long)hcpu;
5425 
5426 	switch (action) {
5427 		case CPU_ONLINE:
5428 		case CPU_DOWN_FAILED:
5429 			smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5430 			break;
5431 		case CPU_DOWN_PREPARE:
5432 			smp_call_function_single(cpu, tsc_bad, NULL, 1);
5433 			break;
5434 	}
5435 	return NOTIFY_OK;
5436 }
5437 
5438 static struct notifier_block kvmclock_cpu_notifier_block = {
5439 	.notifier_call  = kvmclock_cpu_notifier,
5440 	.priority = -INT_MAX
5441 };
5442 
5443 static void kvm_timer_init(void)
5444 {
5445 	int cpu;
5446 
5447 	max_tsc_khz = tsc_khz;
5448 
5449 	cpu_notifier_register_begin();
5450 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5451 #ifdef CONFIG_CPU_FREQ
5452 		struct cpufreq_policy policy;
5453 		memset(&policy, 0, sizeof(policy));
5454 		cpu = get_cpu();
5455 		cpufreq_get_policy(&policy, cpu);
5456 		if (policy.cpuinfo.max_freq)
5457 			max_tsc_khz = policy.cpuinfo.max_freq;
5458 		put_cpu();
5459 #endif
5460 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5461 					  CPUFREQ_TRANSITION_NOTIFIER);
5462 	}
5463 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5464 	for_each_online_cpu(cpu)
5465 		smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5466 
5467 	__register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5468 	cpu_notifier_register_done();
5469 
5470 }
5471 
5472 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5473 
5474 int kvm_is_in_guest(void)
5475 {
5476 	return __this_cpu_read(current_vcpu) != NULL;
5477 }
5478 
5479 static int kvm_is_user_mode(void)
5480 {
5481 	int user_mode = 3;
5482 
5483 	if (__this_cpu_read(current_vcpu))
5484 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5485 
5486 	return user_mode != 0;
5487 }
5488 
5489 static unsigned long kvm_get_guest_ip(void)
5490 {
5491 	unsigned long ip = 0;
5492 
5493 	if (__this_cpu_read(current_vcpu))
5494 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5495 
5496 	return ip;
5497 }
5498 
5499 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5500 	.is_in_guest		= kvm_is_in_guest,
5501 	.is_user_mode		= kvm_is_user_mode,
5502 	.get_guest_ip		= kvm_get_guest_ip,
5503 };
5504 
5505 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5506 {
5507 	__this_cpu_write(current_vcpu, vcpu);
5508 }
5509 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5510 
5511 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5512 {
5513 	__this_cpu_write(current_vcpu, NULL);
5514 }
5515 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5516 
5517 static void kvm_set_mmio_spte_mask(void)
5518 {
5519 	u64 mask;
5520 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
5521 
5522 	/*
5523 	 * Set the reserved bits and the present bit of an paging-structure
5524 	 * entry to generate page fault with PFER.RSV = 1.
5525 	 */
5526 	 /* Mask the reserved physical address bits. */
5527 	mask = rsvd_bits(maxphyaddr, 51);
5528 
5529 	/* Bit 62 is always reserved for 32bit host. */
5530 	mask |= 0x3ull << 62;
5531 
5532 	/* Set the present bit. */
5533 	mask |= 1ull;
5534 
5535 #ifdef CONFIG_X86_64
5536 	/*
5537 	 * If reserved bit is not supported, clear the present bit to disable
5538 	 * mmio page fault.
5539 	 */
5540 	if (maxphyaddr == 52)
5541 		mask &= ~1ull;
5542 #endif
5543 
5544 	kvm_mmu_set_mmio_spte_mask(mask);
5545 }
5546 
5547 #ifdef CONFIG_X86_64
5548 static void pvclock_gtod_update_fn(struct work_struct *work)
5549 {
5550 	struct kvm *kvm;
5551 
5552 	struct kvm_vcpu *vcpu;
5553 	int i;
5554 
5555 	spin_lock(&kvm_lock);
5556 	list_for_each_entry(kvm, &vm_list, vm_list)
5557 		kvm_for_each_vcpu(i, vcpu, kvm)
5558 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5559 	atomic_set(&kvm_guest_has_master_clock, 0);
5560 	spin_unlock(&kvm_lock);
5561 }
5562 
5563 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5564 
5565 /*
5566  * Notification about pvclock gtod data update.
5567  */
5568 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5569 			       void *priv)
5570 {
5571 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5572 	struct timekeeper *tk = priv;
5573 
5574 	update_pvclock_gtod(tk);
5575 
5576 	/* disable master clock if host does not trust, or does not
5577 	 * use, TSC clocksource
5578 	 */
5579 	if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5580 	    atomic_read(&kvm_guest_has_master_clock) != 0)
5581 		queue_work(system_long_wq, &pvclock_gtod_work);
5582 
5583 	return 0;
5584 }
5585 
5586 static struct notifier_block pvclock_gtod_notifier = {
5587 	.notifier_call = pvclock_gtod_notify,
5588 };
5589 #endif
5590 
5591 int kvm_arch_init(void *opaque)
5592 {
5593 	int r;
5594 	struct kvm_x86_ops *ops = opaque;
5595 
5596 	if (kvm_x86_ops) {
5597 		printk(KERN_ERR "kvm: already loaded the other module\n");
5598 		r = -EEXIST;
5599 		goto out;
5600 	}
5601 
5602 	if (!ops->cpu_has_kvm_support()) {
5603 		printk(KERN_ERR "kvm: no hardware support\n");
5604 		r = -EOPNOTSUPP;
5605 		goto out;
5606 	}
5607 	if (ops->disabled_by_bios()) {
5608 		printk(KERN_ERR "kvm: disabled by bios\n");
5609 		r = -EOPNOTSUPP;
5610 		goto out;
5611 	}
5612 
5613 	r = -ENOMEM;
5614 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5615 	if (!shared_msrs) {
5616 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5617 		goto out;
5618 	}
5619 
5620 	r = kvm_mmu_module_init();
5621 	if (r)
5622 		goto out_free_percpu;
5623 
5624 	kvm_set_mmio_spte_mask();
5625 
5626 	kvm_x86_ops = ops;
5627 
5628 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5629 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
5630 
5631 	kvm_timer_init();
5632 
5633 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5634 
5635 	if (cpu_has_xsave)
5636 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5637 
5638 	kvm_lapic_init();
5639 #ifdef CONFIG_X86_64
5640 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5641 #endif
5642 
5643 	return 0;
5644 
5645 out_free_percpu:
5646 	free_percpu(shared_msrs);
5647 out:
5648 	return r;
5649 }
5650 
5651 void kvm_arch_exit(void)
5652 {
5653 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5654 
5655 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5656 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5657 					    CPUFREQ_TRANSITION_NOTIFIER);
5658 	unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5659 #ifdef CONFIG_X86_64
5660 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5661 #endif
5662 	kvm_x86_ops = NULL;
5663 	kvm_mmu_module_exit();
5664 	free_percpu(shared_msrs);
5665 }
5666 
5667 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5668 {
5669 	++vcpu->stat.halt_exits;
5670 	if (irqchip_in_kernel(vcpu->kvm)) {
5671 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5672 		return 1;
5673 	} else {
5674 		vcpu->run->exit_reason = KVM_EXIT_HLT;
5675 		return 0;
5676 	}
5677 }
5678 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5679 
5680 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5681 {
5682 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5683 	return kvm_vcpu_halt(vcpu);
5684 }
5685 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5686 
5687 /*
5688  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5689  *
5690  * @apicid - apicid of vcpu to be kicked.
5691  */
5692 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5693 {
5694 	struct kvm_lapic_irq lapic_irq;
5695 
5696 	lapic_irq.shorthand = 0;
5697 	lapic_irq.dest_mode = 0;
5698 	lapic_irq.dest_id = apicid;
5699 	lapic_irq.msi_redir_hint = false;
5700 
5701 	lapic_irq.delivery_mode = APIC_DM_REMRD;
5702 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5703 }
5704 
5705 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5706 {
5707 	unsigned long nr, a0, a1, a2, a3, ret;
5708 	int op_64_bit, r = 1;
5709 
5710 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5711 
5712 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
5713 		return kvm_hv_hypercall(vcpu);
5714 
5715 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5716 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5717 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5718 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5719 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5720 
5721 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
5722 
5723 	op_64_bit = is_64_bit_mode(vcpu);
5724 	if (!op_64_bit) {
5725 		nr &= 0xFFFFFFFF;
5726 		a0 &= 0xFFFFFFFF;
5727 		a1 &= 0xFFFFFFFF;
5728 		a2 &= 0xFFFFFFFF;
5729 		a3 &= 0xFFFFFFFF;
5730 	}
5731 
5732 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5733 		ret = -KVM_EPERM;
5734 		goto out;
5735 	}
5736 
5737 	switch (nr) {
5738 	case KVM_HC_VAPIC_POLL_IRQ:
5739 		ret = 0;
5740 		break;
5741 	case KVM_HC_KICK_CPU:
5742 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5743 		ret = 0;
5744 		break;
5745 	default:
5746 		ret = -KVM_ENOSYS;
5747 		break;
5748 	}
5749 out:
5750 	if (!op_64_bit)
5751 		ret = (u32)ret;
5752 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5753 	++vcpu->stat.hypercalls;
5754 	return r;
5755 }
5756 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5757 
5758 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5759 {
5760 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5761 	char instruction[3];
5762 	unsigned long rip = kvm_rip_read(vcpu);
5763 
5764 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
5765 
5766 	return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5767 }
5768 
5769 /*
5770  * Check if userspace requested an interrupt window, and that the
5771  * interrupt window is open.
5772  *
5773  * No need to exit to userspace if we already have an interrupt queued.
5774  */
5775 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5776 {
5777 	return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5778 		vcpu->run->request_interrupt_window &&
5779 		kvm_arch_interrupt_allowed(vcpu));
5780 }
5781 
5782 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5783 {
5784 	struct kvm_run *kvm_run = vcpu->run;
5785 
5786 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5787 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
5788 	kvm_run->cr8 = kvm_get_cr8(vcpu);
5789 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
5790 	if (irqchip_in_kernel(vcpu->kvm))
5791 		kvm_run->ready_for_interrupt_injection = 1;
5792 	else
5793 		kvm_run->ready_for_interrupt_injection =
5794 			kvm_arch_interrupt_allowed(vcpu) &&
5795 			!kvm_cpu_has_interrupt(vcpu) &&
5796 			!kvm_event_needs_reinjection(vcpu);
5797 }
5798 
5799 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5800 {
5801 	int max_irr, tpr;
5802 
5803 	if (!kvm_x86_ops->update_cr8_intercept)
5804 		return;
5805 
5806 	if (!vcpu->arch.apic)
5807 		return;
5808 
5809 	if (!vcpu->arch.apic->vapic_addr)
5810 		max_irr = kvm_lapic_find_highest_irr(vcpu);
5811 	else
5812 		max_irr = -1;
5813 
5814 	if (max_irr != -1)
5815 		max_irr >>= 4;
5816 
5817 	tpr = kvm_lapic_get_cr8(vcpu);
5818 
5819 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5820 }
5821 
5822 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
5823 {
5824 	int r;
5825 
5826 	/* try to reinject previous events if any */
5827 	if (vcpu->arch.exception.pending) {
5828 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
5829 					vcpu->arch.exception.has_error_code,
5830 					vcpu->arch.exception.error_code);
5831 
5832 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
5833 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
5834 					     X86_EFLAGS_RF);
5835 
5836 		if (vcpu->arch.exception.nr == DB_VECTOR &&
5837 		    (vcpu->arch.dr7 & DR7_GD)) {
5838 			vcpu->arch.dr7 &= ~DR7_GD;
5839 			kvm_update_dr7(vcpu);
5840 		}
5841 
5842 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5843 					  vcpu->arch.exception.has_error_code,
5844 					  vcpu->arch.exception.error_code,
5845 					  vcpu->arch.exception.reinject);
5846 		return 0;
5847 	}
5848 
5849 	if (vcpu->arch.nmi_injected) {
5850 		kvm_x86_ops->set_nmi(vcpu);
5851 		return 0;
5852 	}
5853 
5854 	if (vcpu->arch.interrupt.pending) {
5855 		kvm_x86_ops->set_irq(vcpu);
5856 		return 0;
5857 	}
5858 
5859 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
5860 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
5861 		if (r != 0)
5862 			return r;
5863 	}
5864 
5865 	/* try to inject new event if pending */
5866 	if (vcpu->arch.nmi_pending) {
5867 		if (kvm_x86_ops->nmi_allowed(vcpu)) {
5868 			--vcpu->arch.nmi_pending;
5869 			vcpu->arch.nmi_injected = true;
5870 			kvm_x86_ops->set_nmi(vcpu);
5871 		}
5872 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
5873 		/*
5874 		 * Because interrupts can be injected asynchronously, we are
5875 		 * calling check_nested_events again here to avoid a race condition.
5876 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
5877 		 * proposal and current concerns.  Perhaps we should be setting
5878 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
5879 		 */
5880 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
5881 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
5882 			if (r != 0)
5883 				return r;
5884 		}
5885 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5886 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5887 					    false);
5888 			kvm_x86_ops->set_irq(vcpu);
5889 		}
5890 	}
5891 	return 0;
5892 }
5893 
5894 static void process_nmi(struct kvm_vcpu *vcpu)
5895 {
5896 	unsigned limit = 2;
5897 
5898 	/*
5899 	 * x86 is limited to one NMI running, and one NMI pending after it.
5900 	 * If an NMI is already in progress, limit further NMIs to just one.
5901 	 * Otherwise, allow two (and we'll inject the first one immediately).
5902 	 */
5903 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5904 		limit = 1;
5905 
5906 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5907 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5908 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5909 }
5910 
5911 #define put_smstate(type, buf, offset, val)			  \
5912 	*(type *)((buf) + (offset) - 0x7e00) = val
5913 
5914 static u32 process_smi_get_segment_flags(struct kvm_segment *seg)
5915 {
5916 	u32 flags = 0;
5917 	flags |= seg->g       << 23;
5918 	flags |= seg->db      << 22;
5919 	flags |= seg->l       << 21;
5920 	flags |= seg->avl     << 20;
5921 	flags |= seg->present << 15;
5922 	flags |= seg->dpl     << 13;
5923 	flags |= seg->s       << 12;
5924 	flags |= seg->type    << 8;
5925 	return flags;
5926 }
5927 
5928 static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
5929 {
5930 	struct kvm_segment seg;
5931 	int offset;
5932 
5933 	kvm_get_segment(vcpu, &seg, n);
5934 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
5935 
5936 	if (n < 3)
5937 		offset = 0x7f84 + n * 12;
5938 	else
5939 		offset = 0x7f2c + (n - 3) * 12;
5940 
5941 	put_smstate(u32, buf, offset + 8, seg.base);
5942 	put_smstate(u32, buf, offset + 4, seg.limit);
5943 	put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg));
5944 }
5945 
5946 #ifdef CONFIG_X86_64
5947 static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
5948 {
5949 	struct kvm_segment seg;
5950 	int offset;
5951 	u16 flags;
5952 
5953 	kvm_get_segment(vcpu, &seg, n);
5954 	offset = 0x7e00 + n * 16;
5955 
5956 	flags = process_smi_get_segment_flags(&seg) >> 8;
5957 	put_smstate(u16, buf, offset, seg.selector);
5958 	put_smstate(u16, buf, offset + 2, flags);
5959 	put_smstate(u32, buf, offset + 4, seg.limit);
5960 	put_smstate(u64, buf, offset + 8, seg.base);
5961 }
5962 #endif
5963 
5964 static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf)
5965 {
5966 	struct desc_ptr dt;
5967 	struct kvm_segment seg;
5968 	unsigned long val;
5969 	int i;
5970 
5971 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
5972 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
5973 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
5974 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
5975 
5976 	for (i = 0; i < 8; i++)
5977 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
5978 
5979 	kvm_get_dr(vcpu, 6, &val);
5980 	put_smstate(u32, buf, 0x7fcc, (u32)val);
5981 	kvm_get_dr(vcpu, 7, &val);
5982 	put_smstate(u32, buf, 0x7fc8, (u32)val);
5983 
5984 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
5985 	put_smstate(u32, buf, 0x7fc4, seg.selector);
5986 	put_smstate(u32, buf, 0x7f64, seg.base);
5987 	put_smstate(u32, buf, 0x7f60, seg.limit);
5988 	put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg));
5989 
5990 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
5991 	put_smstate(u32, buf, 0x7fc0, seg.selector);
5992 	put_smstate(u32, buf, 0x7f80, seg.base);
5993 	put_smstate(u32, buf, 0x7f7c, seg.limit);
5994 	put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg));
5995 
5996 	kvm_x86_ops->get_gdt(vcpu, &dt);
5997 	put_smstate(u32, buf, 0x7f74, dt.address);
5998 	put_smstate(u32, buf, 0x7f70, dt.size);
5999 
6000 	kvm_x86_ops->get_idt(vcpu, &dt);
6001 	put_smstate(u32, buf, 0x7f58, dt.address);
6002 	put_smstate(u32, buf, 0x7f54, dt.size);
6003 
6004 	for (i = 0; i < 6; i++)
6005 		process_smi_save_seg_32(vcpu, buf, i);
6006 
6007 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6008 
6009 	/* revision id */
6010 	put_smstate(u32, buf, 0x7efc, 0x00020000);
6011 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6012 }
6013 
6014 static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6015 {
6016 #ifdef CONFIG_X86_64
6017 	struct desc_ptr dt;
6018 	struct kvm_segment seg;
6019 	unsigned long val;
6020 	int i;
6021 
6022 	for (i = 0; i < 16; i++)
6023 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6024 
6025 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6026 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6027 
6028 	kvm_get_dr(vcpu, 6, &val);
6029 	put_smstate(u64, buf, 0x7f68, val);
6030 	kvm_get_dr(vcpu, 7, &val);
6031 	put_smstate(u64, buf, 0x7f60, val);
6032 
6033 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6034 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6035 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6036 
6037 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6038 
6039 	/* revision id */
6040 	put_smstate(u32, buf, 0x7efc, 0x00020064);
6041 
6042 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6043 
6044 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6045 	put_smstate(u16, buf, 0x7e90, seg.selector);
6046 	put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8);
6047 	put_smstate(u32, buf, 0x7e94, seg.limit);
6048 	put_smstate(u64, buf, 0x7e98, seg.base);
6049 
6050 	kvm_x86_ops->get_idt(vcpu, &dt);
6051 	put_smstate(u32, buf, 0x7e84, dt.size);
6052 	put_smstate(u64, buf, 0x7e88, dt.address);
6053 
6054 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6055 	put_smstate(u16, buf, 0x7e70, seg.selector);
6056 	put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8);
6057 	put_smstate(u32, buf, 0x7e74, seg.limit);
6058 	put_smstate(u64, buf, 0x7e78, seg.base);
6059 
6060 	kvm_x86_ops->get_gdt(vcpu, &dt);
6061 	put_smstate(u32, buf, 0x7e64, dt.size);
6062 	put_smstate(u64, buf, 0x7e68, dt.address);
6063 
6064 	for (i = 0; i < 6; i++)
6065 		process_smi_save_seg_64(vcpu, buf, i);
6066 #else
6067 	WARN_ON_ONCE(1);
6068 #endif
6069 }
6070 
6071 static void process_smi(struct kvm_vcpu *vcpu)
6072 {
6073 	struct kvm_segment cs, ds;
6074 	struct desc_ptr dt;
6075 	char buf[512];
6076 	u32 cr0;
6077 
6078 	if (is_smm(vcpu)) {
6079 		vcpu->arch.smi_pending = true;
6080 		return;
6081 	}
6082 
6083 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6084 	vcpu->arch.hflags |= HF_SMM_MASK;
6085 	memset(buf, 0, 512);
6086 	if (guest_cpuid_has_longmode(vcpu))
6087 		process_smi_save_state_64(vcpu, buf);
6088 	else
6089 		process_smi_save_state_32(vcpu, buf);
6090 
6091 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6092 
6093 	if (kvm_x86_ops->get_nmi_mask(vcpu))
6094 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6095 	else
6096 		kvm_x86_ops->set_nmi_mask(vcpu, true);
6097 
6098 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6099 	kvm_rip_write(vcpu, 0x8000);
6100 
6101 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6102 	kvm_x86_ops->set_cr0(vcpu, cr0);
6103 	vcpu->arch.cr0 = cr0;
6104 
6105 	kvm_x86_ops->set_cr4(vcpu, 0);
6106 
6107 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
6108 	dt.address = dt.size = 0;
6109 	kvm_x86_ops->set_idt(vcpu, &dt);
6110 
6111 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6112 
6113 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6114 	cs.base = vcpu->arch.smbase;
6115 
6116 	ds.selector = 0;
6117 	ds.base = 0;
6118 
6119 	cs.limit    = ds.limit = 0xffffffff;
6120 	cs.type     = ds.type = 0x3;
6121 	cs.dpl      = ds.dpl = 0;
6122 	cs.db       = ds.db = 0;
6123 	cs.s        = ds.s = 1;
6124 	cs.l        = ds.l = 0;
6125 	cs.g        = ds.g = 1;
6126 	cs.avl      = ds.avl = 0;
6127 	cs.present  = ds.present = 1;
6128 	cs.unusable = ds.unusable = 0;
6129 	cs.padding  = ds.padding = 0;
6130 
6131 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6132 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6133 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6134 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6135 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6136 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6137 
6138 	if (guest_cpuid_has_longmode(vcpu))
6139 		kvm_x86_ops->set_efer(vcpu, 0);
6140 
6141 	kvm_update_cpuid(vcpu);
6142 	kvm_mmu_reset_context(vcpu);
6143 }
6144 
6145 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6146 {
6147 	u64 eoi_exit_bitmap[4];
6148 	u32 tmr[8];
6149 
6150 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6151 		return;
6152 
6153 	memset(eoi_exit_bitmap, 0, 32);
6154 	memset(tmr, 0, 32);
6155 
6156 	kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
6157 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6158 	kvm_apic_update_tmr(vcpu, tmr);
6159 }
6160 
6161 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6162 {
6163 	++vcpu->stat.tlb_flush;
6164 	kvm_x86_ops->tlb_flush(vcpu);
6165 }
6166 
6167 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6168 {
6169 	struct page *page = NULL;
6170 
6171 	if (!irqchip_in_kernel(vcpu->kvm))
6172 		return;
6173 
6174 	if (!kvm_x86_ops->set_apic_access_page_addr)
6175 		return;
6176 
6177 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6178 	if (is_error_page(page))
6179 		return;
6180 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6181 
6182 	/*
6183 	 * Do not pin apic access page in memory, the MMU notifier
6184 	 * will call us again if it is migrated or swapped out.
6185 	 */
6186 	put_page(page);
6187 }
6188 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6189 
6190 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6191 					   unsigned long address)
6192 {
6193 	/*
6194 	 * The physical address of apic access page is stored in the VMCS.
6195 	 * Update it when it becomes invalid.
6196 	 */
6197 	if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6198 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6199 }
6200 
6201 /*
6202  * Returns 1 to let vcpu_run() continue the guest execution loop without
6203  * exiting to the userspace.  Otherwise, the value will be returned to the
6204  * userspace.
6205  */
6206 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6207 {
6208 	int r;
6209 	bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
6210 		vcpu->run->request_interrupt_window;
6211 	bool req_immediate_exit = false;
6212 
6213 	if (vcpu->requests) {
6214 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6215 			kvm_mmu_unload(vcpu);
6216 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6217 			__kvm_migrate_timers(vcpu);
6218 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6219 			kvm_gen_update_masterclock(vcpu->kvm);
6220 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6221 			kvm_gen_kvmclock_update(vcpu);
6222 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6223 			r = kvm_guest_time_update(vcpu);
6224 			if (unlikely(r))
6225 				goto out;
6226 		}
6227 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6228 			kvm_mmu_sync_roots(vcpu);
6229 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6230 			kvm_vcpu_flush_tlb(vcpu);
6231 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6232 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6233 			r = 0;
6234 			goto out;
6235 		}
6236 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6237 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6238 			r = 0;
6239 			goto out;
6240 		}
6241 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6242 			vcpu->fpu_active = 0;
6243 			kvm_x86_ops->fpu_deactivate(vcpu);
6244 		}
6245 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6246 			/* Page is swapped out. Do synthetic halt */
6247 			vcpu->arch.apf.halted = true;
6248 			r = 1;
6249 			goto out;
6250 		}
6251 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6252 			record_steal_time(vcpu);
6253 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
6254 			process_smi(vcpu);
6255 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
6256 			process_nmi(vcpu);
6257 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
6258 			kvm_pmu_handle_event(vcpu);
6259 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
6260 			kvm_pmu_deliver_pmi(vcpu);
6261 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6262 			vcpu_scan_ioapic(vcpu);
6263 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6264 			kvm_vcpu_reload_apic_access_page(vcpu);
6265 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6266 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6267 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6268 			r = 0;
6269 			goto out;
6270 		}
6271 	}
6272 
6273 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6274 		kvm_apic_accept_events(vcpu);
6275 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6276 			r = 1;
6277 			goto out;
6278 		}
6279 
6280 		if (inject_pending_event(vcpu, req_int_win) != 0)
6281 			req_immediate_exit = true;
6282 		/* enable NMI/IRQ window open exits if needed */
6283 		else if (vcpu->arch.nmi_pending)
6284 			kvm_x86_ops->enable_nmi_window(vcpu);
6285 		else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6286 			kvm_x86_ops->enable_irq_window(vcpu);
6287 
6288 		if (kvm_lapic_enabled(vcpu)) {
6289 			/*
6290 			 * Update architecture specific hints for APIC
6291 			 * virtual interrupt delivery.
6292 			 */
6293 			if (kvm_x86_ops->hwapic_irr_update)
6294 				kvm_x86_ops->hwapic_irr_update(vcpu,
6295 					kvm_lapic_find_highest_irr(vcpu));
6296 			update_cr8_intercept(vcpu);
6297 			kvm_lapic_sync_to_vapic(vcpu);
6298 		}
6299 	}
6300 
6301 	r = kvm_mmu_reload(vcpu);
6302 	if (unlikely(r)) {
6303 		goto cancel_injection;
6304 	}
6305 
6306 	preempt_disable();
6307 
6308 	kvm_x86_ops->prepare_guest_switch(vcpu);
6309 	if (vcpu->fpu_active)
6310 		kvm_load_guest_fpu(vcpu);
6311 	kvm_load_guest_xcr0(vcpu);
6312 
6313 	vcpu->mode = IN_GUEST_MODE;
6314 
6315 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6316 
6317 	/* We should set ->mode before check ->requests,
6318 	 * see the comment in make_all_cpus_request.
6319 	 */
6320 	smp_mb__after_srcu_read_unlock();
6321 
6322 	local_irq_disable();
6323 
6324 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6325 	    || need_resched() || signal_pending(current)) {
6326 		vcpu->mode = OUTSIDE_GUEST_MODE;
6327 		smp_wmb();
6328 		local_irq_enable();
6329 		preempt_enable();
6330 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6331 		r = 1;
6332 		goto cancel_injection;
6333 	}
6334 
6335 	if (req_immediate_exit)
6336 		smp_send_reschedule(vcpu->cpu);
6337 
6338 	__kvm_guest_enter();
6339 
6340 	if (unlikely(vcpu->arch.switch_db_regs)) {
6341 		set_debugreg(0, 7);
6342 		set_debugreg(vcpu->arch.eff_db[0], 0);
6343 		set_debugreg(vcpu->arch.eff_db[1], 1);
6344 		set_debugreg(vcpu->arch.eff_db[2], 2);
6345 		set_debugreg(vcpu->arch.eff_db[3], 3);
6346 		set_debugreg(vcpu->arch.dr6, 6);
6347 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6348 	}
6349 
6350 	trace_kvm_entry(vcpu->vcpu_id);
6351 	wait_lapic_expire(vcpu);
6352 	kvm_x86_ops->run(vcpu);
6353 
6354 	/*
6355 	 * Do this here before restoring debug registers on the host.  And
6356 	 * since we do this before handling the vmexit, a DR access vmexit
6357 	 * can (a) read the correct value of the debug registers, (b) set
6358 	 * KVM_DEBUGREG_WONT_EXIT again.
6359 	 */
6360 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6361 		int i;
6362 
6363 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6364 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6365 		for (i = 0; i < KVM_NR_DB_REGS; i++)
6366 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6367 	}
6368 
6369 	/*
6370 	 * If the guest has used debug registers, at least dr7
6371 	 * will be disabled while returning to the host.
6372 	 * If we don't have active breakpoints in the host, we don't
6373 	 * care about the messed up debug address registers. But if
6374 	 * we have some of them active, restore the old state.
6375 	 */
6376 	if (hw_breakpoint_active())
6377 		hw_breakpoint_restore();
6378 
6379 	vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6380 							   rdtsc());
6381 
6382 	vcpu->mode = OUTSIDE_GUEST_MODE;
6383 	smp_wmb();
6384 
6385 	/* Interrupt is enabled by handle_external_intr() */
6386 	kvm_x86_ops->handle_external_intr(vcpu);
6387 
6388 	++vcpu->stat.exits;
6389 
6390 	/*
6391 	 * We must have an instruction between local_irq_enable() and
6392 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6393 	 * the interrupt shadow.  The stat.exits increment will do nicely.
6394 	 * But we need to prevent reordering, hence this barrier():
6395 	 */
6396 	barrier();
6397 
6398 	kvm_guest_exit();
6399 
6400 	preempt_enable();
6401 
6402 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6403 
6404 	/*
6405 	 * Profile KVM exit RIPs:
6406 	 */
6407 	if (unlikely(prof_on == KVM_PROFILING)) {
6408 		unsigned long rip = kvm_rip_read(vcpu);
6409 		profile_hit(KVM_PROFILING, (void *)rip);
6410 	}
6411 
6412 	if (unlikely(vcpu->arch.tsc_always_catchup))
6413 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6414 
6415 	if (vcpu->arch.apic_attention)
6416 		kvm_lapic_sync_from_vapic(vcpu);
6417 
6418 	r = kvm_x86_ops->handle_exit(vcpu);
6419 	return r;
6420 
6421 cancel_injection:
6422 	kvm_x86_ops->cancel_injection(vcpu);
6423 	if (unlikely(vcpu->arch.apic_attention))
6424 		kvm_lapic_sync_from_vapic(vcpu);
6425 out:
6426 	return r;
6427 }
6428 
6429 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6430 {
6431 	if (!kvm_arch_vcpu_runnable(vcpu)) {
6432 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6433 		kvm_vcpu_block(vcpu);
6434 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6435 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6436 			return 1;
6437 	}
6438 
6439 	kvm_apic_accept_events(vcpu);
6440 	switch(vcpu->arch.mp_state) {
6441 	case KVM_MP_STATE_HALTED:
6442 		vcpu->arch.pv.pv_unhalted = false;
6443 		vcpu->arch.mp_state =
6444 			KVM_MP_STATE_RUNNABLE;
6445 	case KVM_MP_STATE_RUNNABLE:
6446 		vcpu->arch.apf.halted = false;
6447 		break;
6448 	case KVM_MP_STATE_INIT_RECEIVED:
6449 		break;
6450 	default:
6451 		return -EINTR;
6452 		break;
6453 	}
6454 	return 1;
6455 }
6456 
6457 static int vcpu_run(struct kvm_vcpu *vcpu)
6458 {
6459 	int r;
6460 	struct kvm *kvm = vcpu->kvm;
6461 
6462 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6463 
6464 	for (;;) {
6465 		if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6466 		    !vcpu->arch.apf.halted)
6467 			r = vcpu_enter_guest(vcpu);
6468 		else
6469 			r = vcpu_block(kvm, vcpu);
6470 		if (r <= 0)
6471 			break;
6472 
6473 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6474 		if (kvm_cpu_has_pending_timer(vcpu))
6475 			kvm_inject_pending_timer_irqs(vcpu);
6476 
6477 		if (dm_request_for_irq_injection(vcpu)) {
6478 			r = -EINTR;
6479 			vcpu->run->exit_reason = KVM_EXIT_INTR;
6480 			++vcpu->stat.request_irq_exits;
6481 			break;
6482 		}
6483 
6484 		kvm_check_async_pf_completion(vcpu);
6485 
6486 		if (signal_pending(current)) {
6487 			r = -EINTR;
6488 			vcpu->run->exit_reason = KVM_EXIT_INTR;
6489 			++vcpu->stat.signal_exits;
6490 			break;
6491 		}
6492 		if (need_resched()) {
6493 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6494 			cond_resched();
6495 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6496 		}
6497 	}
6498 
6499 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6500 
6501 	return r;
6502 }
6503 
6504 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6505 {
6506 	int r;
6507 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6508 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6509 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6510 	if (r != EMULATE_DONE)
6511 		return 0;
6512 	return 1;
6513 }
6514 
6515 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6516 {
6517 	BUG_ON(!vcpu->arch.pio.count);
6518 
6519 	return complete_emulated_io(vcpu);
6520 }
6521 
6522 /*
6523  * Implements the following, as a state machine:
6524  *
6525  * read:
6526  *   for each fragment
6527  *     for each mmio piece in the fragment
6528  *       write gpa, len
6529  *       exit
6530  *       copy data
6531  *   execute insn
6532  *
6533  * write:
6534  *   for each fragment
6535  *     for each mmio piece in the fragment
6536  *       write gpa, len
6537  *       copy data
6538  *       exit
6539  */
6540 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6541 {
6542 	struct kvm_run *run = vcpu->run;
6543 	struct kvm_mmio_fragment *frag;
6544 	unsigned len;
6545 
6546 	BUG_ON(!vcpu->mmio_needed);
6547 
6548 	/* Complete previous fragment */
6549 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6550 	len = min(8u, frag->len);
6551 	if (!vcpu->mmio_is_write)
6552 		memcpy(frag->data, run->mmio.data, len);
6553 
6554 	if (frag->len <= 8) {
6555 		/* Switch to the next fragment. */
6556 		frag++;
6557 		vcpu->mmio_cur_fragment++;
6558 	} else {
6559 		/* Go forward to the next mmio piece. */
6560 		frag->data += len;
6561 		frag->gpa += len;
6562 		frag->len -= len;
6563 	}
6564 
6565 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6566 		vcpu->mmio_needed = 0;
6567 
6568 		/* FIXME: return into emulator if single-stepping.  */
6569 		if (vcpu->mmio_is_write)
6570 			return 1;
6571 		vcpu->mmio_read_completed = 1;
6572 		return complete_emulated_io(vcpu);
6573 	}
6574 
6575 	run->exit_reason = KVM_EXIT_MMIO;
6576 	run->mmio.phys_addr = frag->gpa;
6577 	if (vcpu->mmio_is_write)
6578 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6579 	run->mmio.len = min(8u, frag->len);
6580 	run->mmio.is_write = vcpu->mmio_is_write;
6581 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6582 	return 0;
6583 }
6584 
6585 
6586 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6587 {
6588 	struct fpu *fpu = &current->thread.fpu;
6589 	int r;
6590 	sigset_t sigsaved;
6591 
6592 	fpu__activate_curr(fpu);
6593 
6594 	if (vcpu->sigset_active)
6595 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6596 
6597 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6598 		kvm_vcpu_block(vcpu);
6599 		kvm_apic_accept_events(vcpu);
6600 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6601 		r = -EAGAIN;
6602 		goto out;
6603 	}
6604 
6605 	/* re-sync apic's tpr */
6606 	if (!irqchip_in_kernel(vcpu->kvm)) {
6607 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6608 			r = -EINVAL;
6609 			goto out;
6610 		}
6611 	}
6612 
6613 	if (unlikely(vcpu->arch.complete_userspace_io)) {
6614 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6615 		vcpu->arch.complete_userspace_io = NULL;
6616 		r = cui(vcpu);
6617 		if (r <= 0)
6618 			goto out;
6619 	} else
6620 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6621 
6622 	r = vcpu_run(vcpu);
6623 
6624 out:
6625 	post_kvm_run_save(vcpu);
6626 	if (vcpu->sigset_active)
6627 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6628 
6629 	return r;
6630 }
6631 
6632 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6633 {
6634 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6635 		/*
6636 		 * We are here if userspace calls get_regs() in the middle of
6637 		 * instruction emulation. Registers state needs to be copied
6638 		 * back from emulation context to vcpu. Userspace shouldn't do
6639 		 * that usually, but some bad designed PV devices (vmware
6640 		 * backdoor interface) need this to work
6641 		 */
6642 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6643 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6644 	}
6645 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6646 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6647 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6648 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6649 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6650 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6651 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6652 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6653 #ifdef CONFIG_X86_64
6654 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6655 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6656 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6657 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6658 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6659 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6660 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6661 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6662 #endif
6663 
6664 	regs->rip = kvm_rip_read(vcpu);
6665 	regs->rflags = kvm_get_rflags(vcpu);
6666 
6667 	return 0;
6668 }
6669 
6670 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6671 {
6672 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6673 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6674 
6675 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6676 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6677 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6678 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6679 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6680 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6681 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6682 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6683 #ifdef CONFIG_X86_64
6684 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6685 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6686 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6687 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6688 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6689 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6690 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6691 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6692 #endif
6693 
6694 	kvm_rip_write(vcpu, regs->rip);
6695 	kvm_set_rflags(vcpu, regs->rflags);
6696 
6697 	vcpu->arch.exception.pending = false;
6698 
6699 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6700 
6701 	return 0;
6702 }
6703 
6704 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6705 {
6706 	struct kvm_segment cs;
6707 
6708 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6709 	*db = cs.db;
6710 	*l = cs.l;
6711 }
6712 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6713 
6714 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6715 				  struct kvm_sregs *sregs)
6716 {
6717 	struct desc_ptr dt;
6718 
6719 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6720 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6721 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6722 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6723 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6724 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6725 
6726 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6727 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6728 
6729 	kvm_x86_ops->get_idt(vcpu, &dt);
6730 	sregs->idt.limit = dt.size;
6731 	sregs->idt.base = dt.address;
6732 	kvm_x86_ops->get_gdt(vcpu, &dt);
6733 	sregs->gdt.limit = dt.size;
6734 	sregs->gdt.base = dt.address;
6735 
6736 	sregs->cr0 = kvm_read_cr0(vcpu);
6737 	sregs->cr2 = vcpu->arch.cr2;
6738 	sregs->cr3 = kvm_read_cr3(vcpu);
6739 	sregs->cr4 = kvm_read_cr4(vcpu);
6740 	sregs->cr8 = kvm_get_cr8(vcpu);
6741 	sregs->efer = vcpu->arch.efer;
6742 	sregs->apic_base = kvm_get_apic_base(vcpu);
6743 
6744 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6745 
6746 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6747 		set_bit(vcpu->arch.interrupt.nr,
6748 			(unsigned long *)sregs->interrupt_bitmap);
6749 
6750 	return 0;
6751 }
6752 
6753 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6754 				    struct kvm_mp_state *mp_state)
6755 {
6756 	kvm_apic_accept_events(vcpu);
6757 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6758 					vcpu->arch.pv.pv_unhalted)
6759 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6760 	else
6761 		mp_state->mp_state = vcpu->arch.mp_state;
6762 
6763 	return 0;
6764 }
6765 
6766 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6767 				    struct kvm_mp_state *mp_state)
6768 {
6769 	if (!kvm_vcpu_has_lapic(vcpu) &&
6770 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6771 		return -EINVAL;
6772 
6773 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6774 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6775 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6776 	} else
6777 		vcpu->arch.mp_state = mp_state->mp_state;
6778 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6779 	return 0;
6780 }
6781 
6782 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6783 		    int reason, bool has_error_code, u32 error_code)
6784 {
6785 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6786 	int ret;
6787 
6788 	init_emulate_ctxt(vcpu);
6789 
6790 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6791 				   has_error_code, error_code);
6792 
6793 	if (ret)
6794 		return EMULATE_FAIL;
6795 
6796 	kvm_rip_write(vcpu, ctxt->eip);
6797 	kvm_set_rflags(vcpu, ctxt->eflags);
6798 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6799 	return EMULATE_DONE;
6800 }
6801 EXPORT_SYMBOL_GPL(kvm_task_switch);
6802 
6803 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6804 				  struct kvm_sregs *sregs)
6805 {
6806 	struct msr_data apic_base_msr;
6807 	int mmu_reset_needed = 0;
6808 	int pending_vec, max_bits, idx;
6809 	struct desc_ptr dt;
6810 
6811 	if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6812 		return -EINVAL;
6813 
6814 	dt.size = sregs->idt.limit;
6815 	dt.address = sregs->idt.base;
6816 	kvm_x86_ops->set_idt(vcpu, &dt);
6817 	dt.size = sregs->gdt.limit;
6818 	dt.address = sregs->gdt.base;
6819 	kvm_x86_ops->set_gdt(vcpu, &dt);
6820 
6821 	vcpu->arch.cr2 = sregs->cr2;
6822 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6823 	vcpu->arch.cr3 = sregs->cr3;
6824 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6825 
6826 	kvm_set_cr8(vcpu, sregs->cr8);
6827 
6828 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6829 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
6830 	apic_base_msr.data = sregs->apic_base;
6831 	apic_base_msr.host_initiated = true;
6832 	kvm_set_apic_base(vcpu, &apic_base_msr);
6833 
6834 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6835 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6836 	vcpu->arch.cr0 = sregs->cr0;
6837 
6838 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6839 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6840 	if (sregs->cr4 & X86_CR4_OSXSAVE)
6841 		kvm_update_cpuid(vcpu);
6842 
6843 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6844 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6845 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6846 		mmu_reset_needed = 1;
6847 	}
6848 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6849 
6850 	if (mmu_reset_needed)
6851 		kvm_mmu_reset_context(vcpu);
6852 
6853 	max_bits = KVM_NR_INTERRUPTS;
6854 	pending_vec = find_first_bit(
6855 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
6856 	if (pending_vec < max_bits) {
6857 		kvm_queue_interrupt(vcpu, pending_vec, false);
6858 		pr_debug("Set back pending irq %d\n", pending_vec);
6859 	}
6860 
6861 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6862 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6863 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6864 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6865 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6866 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6867 
6868 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6869 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6870 
6871 	update_cr8_intercept(vcpu);
6872 
6873 	/* Older userspace won't unhalt the vcpu on reset. */
6874 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6875 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6876 	    !is_protmode(vcpu))
6877 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6878 
6879 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6880 
6881 	return 0;
6882 }
6883 
6884 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6885 					struct kvm_guest_debug *dbg)
6886 {
6887 	unsigned long rflags;
6888 	int i, r;
6889 
6890 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6891 		r = -EBUSY;
6892 		if (vcpu->arch.exception.pending)
6893 			goto out;
6894 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6895 			kvm_queue_exception(vcpu, DB_VECTOR);
6896 		else
6897 			kvm_queue_exception(vcpu, BP_VECTOR);
6898 	}
6899 
6900 	/*
6901 	 * Read rflags as long as potentially injected trace flags are still
6902 	 * filtered out.
6903 	 */
6904 	rflags = kvm_get_rflags(vcpu);
6905 
6906 	vcpu->guest_debug = dbg->control;
6907 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6908 		vcpu->guest_debug = 0;
6909 
6910 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6911 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
6912 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6913 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6914 	} else {
6915 		for (i = 0; i < KVM_NR_DB_REGS; i++)
6916 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6917 	}
6918 	kvm_update_dr7(vcpu);
6919 
6920 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6921 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6922 			get_segment_base(vcpu, VCPU_SREG_CS);
6923 
6924 	/*
6925 	 * Trigger an rflags update that will inject or remove the trace
6926 	 * flags.
6927 	 */
6928 	kvm_set_rflags(vcpu, rflags);
6929 
6930 	kvm_x86_ops->update_db_bp_intercept(vcpu);
6931 
6932 	r = 0;
6933 
6934 out:
6935 
6936 	return r;
6937 }
6938 
6939 /*
6940  * Translate a guest virtual address to a guest physical address.
6941  */
6942 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6943 				    struct kvm_translation *tr)
6944 {
6945 	unsigned long vaddr = tr->linear_address;
6946 	gpa_t gpa;
6947 	int idx;
6948 
6949 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6950 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6951 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6952 	tr->physical_address = gpa;
6953 	tr->valid = gpa != UNMAPPED_GVA;
6954 	tr->writeable = 1;
6955 	tr->usermode = 0;
6956 
6957 	return 0;
6958 }
6959 
6960 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6961 {
6962 	struct fxregs_state *fxsave =
6963 			&vcpu->arch.guest_fpu.state.fxsave;
6964 
6965 	memcpy(fpu->fpr, fxsave->st_space, 128);
6966 	fpu->fcw = fxsave->cwd;
6967 	fpu->fsw = fxsave->swd;
6968 	fpu->ftwx = fxsave->twd;
6969 	fpu->last_opcode = fxsave->fop;
6970 	fpu->last_ip = fxsave->rip;
6971 	fpu->last_dp = fxsave->rdp;
6972 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6973 
6974 	return 0;
6975 }
6976 
6977 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6978 {
6979 	struct fxregs_state *fxsave =
6980 			&vcpu->arch.guest_fpu.state.fxsave;
6981 
6982 	memcpy(fxsave->st_space, fpu->fpr, 128);
6983 	fxsave->cwd = fpu->fcw;
6984 	fxsave->swd = fpu->fsw;
6985 	fxsave->twd = fpu->ftwx;
6986 	fxsave->fop = fpu->last_opcode;
6987 	fxsave->rip = fpu->last_ip;
6988 	fxsave->rdp = fpu->last_dp;
6989 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6990 
6991 	return 0;
6992 }
6993 
6994 static void fx_init(struct kvm_vcpu *vcpu)
6995 {
6996 	fpstate_init(&vcpu->arch.guest_fpu.state);
6997 	if (cpu_has_xsaves)
6998 		vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
6999 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
7000 
7001 	/*
7002 	 * Ensure guest xcr0 is valid for loading
7003 	 */
7004 	vcpu->arch.xcr0 = XSTATE_FP;
7005 
7006 	vcpu->arch.cr0 |= X86_CR0_ET;
7007 }
7008 
7009 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7010 {
7011 	if (vcpu->guest_fpu_loaded)
7012 		return;
7013 
7014 	/*
7015 	 * Restore all possible states in the guest,
7016 	 * and assume host would use all available bits.
7017 	 * Guest xcr0 would be loaded later.
7018 	 */
7019 	kvm_put_guest_xcr0(vcpu);
7020 	vcpu->guest_fpu_loaded = 1;
7021 	__kernel_fpu_begin();
7022 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7023 	trace_kvm_fpu(1);
7024 }
7025 
7026 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7027 {
7028 	kvm_put_guest_xcr0(vcpu);
7029 
7030 	if (!vcpu->guest_fpu_loaded) {
7031 		vcpu->fpu_counter = 0;
7032 		return;
7033 	}
7034 
7035 	vcpu->guest_fpu_loaded = 0;
7036 	copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7037 	__kernel_fpu_end();
7038 	++vcpu->stat.fpu_reload;
7039 	/*
7040 	 * If using eager FPU mode, or if the guest is a frequent user
7041 	 * of the FPU, just leave the FPU active for next time.
7042 	 * Every 255 times fpu_counter rolls over to 0; a guest that uses
7043 	 * the FPU in bursts will revert to loading it on demand.
7044 	 */
7045 	if (!vcpu->arch.eager_fpu) {
7046 		if (++vcpu->fpu_counter < 5)
7047 			kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7048 	}
7049 	trace_kvm_fpu(0);
7050 }
7051 
7052 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7053 {
7054 	kvmclock_reset(vcpu);
7055 
7056 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7057 	kvm_x86_ops->vcpu_free(vcpu);
7058 }
7059 
7060 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7061 						unsigned int id)
7062 {
7063 	struct kvm_vcpu *vcpu;
7064 
7065 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7066 		printk_once(KERN_WARNING
7067 		"kvm: SMP vm created on host with unstable TSC; "
7068 		"guest TSC will not be reliable\n");
7069 
7070 	vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7071 
7072 	return vcpu;
7073 }
7074 
7075 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7076 {
7077 	int r;
7078 
7079 	kvm_vcpu_mtrr_init(vcpu);
7080 	r = vcpu_load(vcpu);
7081 	if (r)
7082 		return r;
7083 	kvm_vcpu_reset(vcpu, false);
7084 	kvm_mmu_setup(vcpu);
7085 	vcpu_put(vcpu);
7086 	return r;
7087 }
7088 
7089 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7090 {
7091 	struct msr_data msr;
7092 	struct kvm *kvm = vcpu->kvm;
7093 
7094 	if (vcpu_load(vcpu))
7095 		return;
7096 	msr.data = 0x0;
7097 	msr.index = MSR_IA32_TSC;
7098 	msr.host_initiated = true;
7099 	kvm_write_tsc(vcpu, &msr);
7100 	vcpu_put(vcpu);
7101 
7102 	if (!kvmclock_periodic_sync)
7103 		return;
7104 
7105 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7106 					KVMCLOCK_SYNC_PERIOD);
7107 }
7108 
7109 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7110 {
7111 	int r;
7112 	vcpu->arch.apf.msr_val = 0;
7113 
7114 	r = vcpu_load(vcpu);
7115 	BUG_ON(r);
7116 	kvm_mmu_unload(vcpu);
7117 	vcpu_put(vcpu);
7118 
7119 	kvm_x86_ops->vcpu_free(vcpu);
7120 }
7121 
7122 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7123 {
7124 	vcpu->arch.hflags = 0;
7125 
7126 	atomic_set(&vcpu->arch.nmi_queued, 0);
7127 	vcpu->arch.nmi_pending = 0;
7128 	vcpu->arch.nmi_injected = false;
7129 	kvm_clear_interrupt_queue(vcpu);
7130 	kvm_clear_exception_queue(vcpu);
7131 
7132 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7133 	kvm_update_dr0123(vcpu);
7134 	vcpu->arch.dr6 = DR6_INIT;
7135 	kvm_update_dr6(vcpu);
7136 	vcpu->arch.dr7 = DR7_FIXED_1;
7137 	kvm_update_dr7(vcpu);
7138 
7139 	vcpu->arch.cr2 = 0;
7140 
7141 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7142 	vcpu->arch.apf.msr_val = 0;
7143 	vcpu->arch.st.msr_val = 0;
7144 
7145 	kvmclock_reset(vcpu);
7146 
7147 	kvm_clear_async_pf_completion_queue(vcpu);
7148 	kvm_async_pf_hash_reset(vcpu);
7149 	vcpu->arch.apf.halted = false;
7150 
7151 	if (!init_event) {
7152 		kvm_pmu_reset(vcpu);
7153 		vcpu->arch.smbase = 0x30000;
7154 	}
7155 
7156 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7157 	vcpu->arch.regs_avail = ~0;
7158 	vcpu->arch.regs_dirty = ~0;
7159 
7160 	kvm_x86_ops->vcpu_reset(vcpu, init_event);
7161 }
7162 
7163 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7164 {
7165 	struct kvm_segment cs;
7166 
7167 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7168 	cs.selector = vector << 8;
7169 	cs.base = vector << 12;
7170 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7171 	kvm_rip_write(vcpu, 0);
7172 }
7173 
7174 int kvm_arch_hardware_enable(void)
7175 {
7176 	struct kvm *kvm;
7177 	struct kvm_vcpu *vcpu;
7178 	int i;
7179 	int ret;
7180 	u64 local_tsc;
7181 	u64 max_tsc = 0;
7182 	bool stable, backwards_tsc = false;
7183 
7184 	kvm_shared_msr_cpu_online();
7185 	ret = kvm_x86_ops->hardware_enable();
7186 	if (ret != 0)
7187 		return ret;
7188 
7189 	local_tsc = rdtsc();
7190 	stable = !check_tsc_unstable();
7191 	list_for_each_entry(kvm, &vm_list, vm_list) {
7192 		kvm_for_each_vcpu(i, vcpu, kvm) {
7193 			if (!stable && vcpu->cpu == smp_processor_id())
7194 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7195 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7196 				backwards_tsc = true;
7197 				if (vcpu->arch.last_host_tsc > max_tsc)
7198 					max_tsc = vcpu->arch.last_host_tsc;
7199 			}
7200 		}
7201 	}
7202 
7203 	/*
7204 	 * Sometimes, even reliable TSCs go backwards.  This happens on
7205 	 * platforms that reset TSC during suspend or hibernate actions, but
7206 	 * maintain synchronization.  We must compensate.  Fortunately, we can
7207 	 * detect that condition here, which happens early in CPU bringup,
7208 	 * before any KVM threads can be running.  Unfortunately, we can't
7209 	 * bring the TSCs fully up to date with real time, as we aren't yet far
7210 	 * enough into CPU bringup that we know how much real time has actually
7211 	 * elapsed; our helper function, get_kernel_ns() will be using boot
7212 	 * variables that haven't been updated yet.
7213 	 *
7214 	 * So we simply find the maximum observed TSC above, then record the
7215 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7216 	 * the adjustment will be applied.  Note that we accumulate
7217 	 * adjustments, in case multiple suspend cycles happen before some VCPU
7218 	 * gets a chance to run again.  In the event that no KVM threads get a
7219 	 * chance to run, we will miss the entire elapsed period, as we'll have
7220 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7221 	 * loose cycle time.  This isn't too big a deal, since the loss will be
7222 	 * uniform across all VCPUs (not to mention the scenario is extremely
7223 	 * unlikely). It is possible that a second hibernate recovery happens
7224 	 * much faster than a first, causing the observed TSC here to be
7225 	 * smaller; this would require additional padding adjustment, which is
7226 	 * why we set last_host_tsc to the local tsc observed here.
7227 	 *
7228 	 * N.B. - this code below runs only on platforms with reliable TSC,
7229 	 * as that is the only way backwards_tsc is set above.  Also note
7230 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7231 	 * have the same delta_cyc adjustment applied if backwards_tsc
7232 	 * is detected.  Note further, this adjustment is only done once,
7233 	 * as we reset last_host_tsc on all VCPUs to stop this from being
7234 	 * called multiple times (one for each physical CPU bringup).
7235 	 *
7236 	 * Platforms with unreliable TSCs don't have to deal with this, they
7237 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
7238 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
7239 	 * guarantee that they stay in perfect synchronization.
7240 	 */
7241 	if (backwards_tsc) {
7242 		u64 delta_cyc = max_tsc - local_tsc;
7243 		backwards_tsc_observed = true;
7244 		list_for_each_entry(kvm, &vm_list, vm_list) {
7245 			kvm_for_each_vcpu(i, vcpu, kvm) {
7246 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
7247 				vcpu->arch.last_host_tsc = local_tsc;
7248 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7249 			}
7250 
7251 			/*
7252 			 * We have to disable TSC offset matching.. if you were
7253 			 * booting a VM while issuing an S4 host suspend....
7254 			 * you may have some problem.  Solving this issue is
7255 			 * left as an exercise to the reader.
7256 			 */
7257 			kvm->arch.last_tsc_nsec = 0;
7258 			kvm->arch.last_tsc_write = 0;
7259 		}
7260 
7261 	}
7262 	return 0;
7263 }
7264 
7265 void kvm_arch_hardware_disable(void)
7266 {
7267 	kvm_x86_ops->hardware_disable();
7268 	drop_user_return_notifiers();
7269 }
7270 
7271 int kvm_arch_hardware_setup(void)
7272 {
7273 	int r;
7274 
7275 	r = kvm_x86_ops->hardware_setup();
7276 	if (r != 0)
7277 		return r;
7278 
7279 	kvm_init_msr_list();
7280 	return 0;
7281 }
7282 
7283 void kvm_arch_hardware_unsetup(void)
7284 {
7285 	kvm_x86_ops->hardware_unsetup();
7286 }
7287 
7288 void kvm_arch_check_processor_compat(void *rtn)
7289 {
7290 	kvm_x86_ops->check_processor_compatibility(rtn);
7291 }
7292 
7293 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7294 {
7295 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7296 }
7297 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7298 
7299 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7300 {
7301 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7302 }
7303 
7304 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7305 {
7306 	return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
7307 }
7308 
7309 struct static_key kvm_no_apic_vcpu __read_mostly;
7310 
7311 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7312 {
7313 	struct page *page;
7314 	struct kvm *kvm;
7315 	int r;
7316 
7317 	BUG_ON(vcpu->kvm == NULL);
7318 	kvm = vcpu->kvm;
7319 
7320 	vcpu->arch.pv.pv_unhalted = false;
7321 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7322 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7323 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7324 	else
7325 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7326 
7327 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7328 	if (!page) {
7329 		r = -ENOMEM;
7330 		goto fail;
7331 	}
7332 	vcpu->arch.pio_data = page_address(page);
7333 
7334 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
7335 
7336 	r = kvm_mmu_create(vcpu);
7337 	if (r < 0)
7338 		goto fail_free_pio_data;
7339 
7340 	if (irqchip_in_kernel(kvm)) {
7341 		r = kvm_create_lapic(vcpu);
7342 		if (r < 0)
7343 			goto fail_mmu_destroy;
7344 	} else
7345 		static_key_slow_inc(&kvm_no_apic_vcpu);
7346 
7347 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7348 				       GFP_KERNEL);
7349 	if (!vcpu->arch.mce_banks) {
7350 		r = -ENOMEM;
7351 		goto fail_free_lapic;
7352 	}
7353 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7354 
7355 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7356 		r = -ENOMEM;
7357 		goto fail_free_mce_banks;
7358 	}
7359 
7360 	fx_init(vcpu);
7361 
7362 	vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7363 	vcpu->arch.pv_time_enabled = false;
7364 
7365 	vcpu->arch.guest_supported_xcr0 = 0;
7366 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7367 
7368 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7369 
7370 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7371 
7372 	kvm_async_pf_hash_reset(vcpu);
7373 	kvm_pmu_init(vcpu);
7374 
7375 	return 0;
7376 
7377 fail_free_mce_banks:
7378 	kfree(vcpu->arch.mce_banks);
7379 fail_free_lapic:
7380 	kvm_free_lapic(vcpu);
7381 fail_mmu_destroy:
7382 	kvm_mmu_destroy(vcpu);
7383 fail_free_pio_data:
7384 	free_page((unsigned long)vcpu->arch.pio_data);
7385 fail:
7386 	return r;
7387 }
7388 
7389 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7390 {
7391 	int idx;
7392 
7393 	kvm_pmu_destroy(vcpu);
7394 	kfree(vcpu->arch.mce_banks);
7395 	kvm_free_lapic(vcpu);
7396 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7397 	kvm_mmu_destroy(vcpu);
7398 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7399 	free_page((unsigned long)vcpu->arch.pio_data);
7400 	if (!irqchip_in_kernel(vcpu->kvm))
7401 		static_key_slow_dec(&kvm_no_apic_vcpu);
7402 }
7403 
7404 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7405 {
7406 	kvm_x86_ops->sched_in(vcpu, cpu);
7407 }
7408 
7409 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7410 {
7411 	if (type)
7412 		return -EINVAL;
7413 
7414 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7415 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7416 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7417 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7418 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7419 
7420 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7421 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7422 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7423 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7424 		&kvm->arch.irq_sources_bitmap);
7425 
7426 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7427 	mutex_init(&kvm->arch.apic_map_lock);
7428 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7429 
7430 	pvclock_update_vm_gtod_copy(kvm);
7431 
7432 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7433 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7434 
7435 	return 0;
7436 }
7437 
7438 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7439 {
7440 	int r;
7441 	r = vcpu_load(vcpu);
7442 	BUG_ON(r);
7443 	kvm_mmu_unload(vcpu);
7444 	vcpu_put(vcpu);
7445 }
7446 
7447 static void kvm_free_vcpus(struct kvm *kvm)
7448 {
7449 	unsigned int i;
7450 	struct kvm_vcpu *vcpu;
7451 
7452 	/*
7453 	 * Unpin any mmu pages first.
7454 	 */
7455 	kvm_for_each_vcpu(i, vcpu, kvm) {
7456 		kvm_clear_async_pf_completion_queue(vcpu);
7457 		kvm_unload_vcpu_mmu(vcpu);
7458 	}
7459 	kvm_for_each_vcpu(i, vcpu, kvm)
7460 		kvm_arch_vcpu_free(vcpu);
7461 
7462 	mutex_lock(&kvm->lock);
7463 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7464 		kvm->vcpus[i] = NULL;
7465 
7466 	atomic_set(&kvm->online_vcpus, 0);
7467 	mutex_unlock(&kvm->lock);
7468 }
7469 
7470 void kvm_arch_sync_events(struct kvm *kvm)
7471 {
7472 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7473 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7474 	kvm_free_all_assigned_devices(kvm);
7475 	kvm_free_pit(kvm);
7476 }
7477 
7478 int __x86_set_memory_region(struct kvm *kvm,
7479 			    const struct kvm_userspace_memory_region *mem)
7480 {
7481 	int i, r;
7482 
7483 	/* Called with kvm->slots_lock held.  */
7484 	BUG_ON(mem->slot >= KVM_MEM_SLOTS_NUM);
7485 
7486 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7487 		struct kvm_userspace_memory_region m = *mem;
7488 
7489 		m.slot |= i << 16;
7490 		r = __kvm_set_memory_region(kvm, &m);
7491 		if (r < 0)
7492 			return r;
7493 	}
7494 
7495 	return 0;
7496 }
7497 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7498 
7499 int x86_set_memory_region(struct kvm *kvm,
7500 			  const struct kvm_userspace_memory_region *mem)
7501 {
7502 	int r;
7503 
7504 	mutex_lock(&kvm->slots_lock);
7505 	r = __x86_set_memory_region(kvm, mem);
7506 	mutex_unlock(&kvm->slots_lock);
7507 
7508 	return r;
7509 }
7510 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7511 
7512 void kvm_arch_destroy_vm(struct kvm *kvm)
7513 {
7514 	if (current->mm == kvm->mm) {
7515 		/*
7516 		 * Free memory regions allocated on behalf of userspace,
7517 		 * unless the the memory map has changed due to process exit
7518 		 * or fd copying.
7519 		 */
7520 		struct kvm_userspace_memory_region mem;
7521 		memset(&mem, 0, sizeof(mem));
7522 		mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7523 		x86_set_memory_region(kvm, &mem);
7524 
7525 		mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7526 		x86_set_memory_region(kvm, &mem);
7527 
7528 		mem.slot = TSS_PRIVATE_MEMSLOT;
7529 		x86_set_memory_region(kvm, &mem);
7530 	}
7531 	kvm_iommu_unmap_guest(kvm);
7532 	kfree(kvm->arch.vpic);
7533 	kfree(kvm->arch.vioapic);
7534 	kvm_free_vcpus(kvm);
7535 	kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7536 }
7537 
7538 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7539 			   struct kvm_memory_slot *dont)
7540 {
7541 	int i;
7542 
7543 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7544 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7545 			kvfree(free->arch.rmap[i]);
7546 			free->arch.rmap[i] = NULL;
7547 		}
7548 		if (i == 0)
7549 			continue;
7550 
7551 		if (!dont || free->arch.lpage_info[i - 1] !=
7552 			     dont->arch.lpage_info[i - 1]) {
7553 			kvfree(free->arch.lpage_info[i - 1]);
7554 			free->arch.lpage_info[i - 1] = NULL;
7555 		}
7556 	}
7557 }
7558 
7559 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7560 			    unsigned long npages)
7561 {
7562 	int i;
7563 
7564 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7565 		unsigned long ugfn;
7566 		int lpages;
7567 		int level = i + 1;
7568 
7569 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
7570 				      slot->base_gfn, level) + 1;
7571 
7572 		slot->arch.rmap[i] =
7573 			kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7574 		if (!slot->arch.rmap[i])
7575 			goto out_free;
7576 		if (i == 0)
7577 			continue;
7578 
7579 		slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7580 					sizeof(*slot->arch.lpage_info[i - 1]));
7581 		if (!slot->arch.lpage_info[i - 1])
7582 			goto out_free;
7583 
7584 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7585 			slot->arch.lpage_info[i - 1][0].write_count = 1;
7586 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7587 			slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7588 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
7589 		/*
7590 		 * If the gfn and userspace address are not aligned wrt each
7591 		 * other, or if explicitly asked to, disable large page
7592 		 * support for this slot
7593 		 */
7594 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7595 		    !kvm_largepages_enabled()) {
7596 			unsigned long j;
7597 
7598 			for (j = 0; j < lpages; ++j)
7599 				slot->arch.lpage_info[i - 1][j].write_count = 1;
7600 		}
7601 	}
7602 
7603 	return 0;
7604 
7605 out_free:
7606 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7607 		kvfree(slot->arch.rmap[i]);
7608 		slot->arch.rmap[i] = NULL;
7609 		if (i == 0)
7610 			continue;
7611 
7612 		kvfree(slot->arch.lpage_info[i - 1]);
7613 		slot->arch.lpage_info[i - 1] = NULL;
7614 	}
7615 	return -ENOMEM;
7616 }
7617 
7618 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
7619 {
7620 	/*
7621 	 * memslots->generation has been incremented.
7622 	 * mmio generation may have reached its maximum value.
7623 	 */
7624 	kvm_mmu_invalidate_mmio_sptes(kvm, slots);
7625 }
7626 
7627 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7628 				struct kvm_memory_slot *memslot,
7629 				const struct kvm_userspace_memory_region *mem,
7630 				enum kvm_mr_change change)
7631 {
7632 	/*
7633 	 * Only private memory slots need to be mapped here since
7634 	 * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7635 	 */
7636 	if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7637 		unsigned long userspace_addr;
7638 
7639 		/*
7640 		 * MAP_SHARED to prevent internal slot pages from being moved
7641 		 * by fork()/COW.
7642 		 */
7643 		userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7644 					 PROT_READ | PROT_WRITE,
7645 					 MAP_SHARED | MAP_ANONYMOUS, 0);
7646 
7647 		if (IS_ERR((void *)userspace_addr))
7648 			return PTR_ERR((void *)userspace_addr);
7649 
7650 		memslot->userspace_addr = userspace_addr;
7651 	}
7652 
7653 	return 0;
7654 }
7655 
7656 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7657 				     struct kvm_memory_slot *new)
7658 {
7659 	/* Still write protect RO slot */
7660 	if (new->flags & KVM_MEM_READONLY) {
7661 		kvm_mmu_slot_remove_write_access(kvm, new);
7662 		return;
7663 	}
7664 
7665 	/*
7666 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
7667 	 *
7668 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
7669 	 *
7670 	 *  - KVM_MR_CREATE with dirty logging is disabled
7671 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7672 	 *
7673 	 * The reason is, in case of PML, we need to set D-bit for any slots
7674 	 * with dirty logging disabled in order to eliminate unnecessary GPA
7675 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
7676 	 * guarantees leaving PML enabled during guest's lifetime won't have
7677 	 * any additonal overhead from PML when guest is running with dirty
7678 	 * logging disabled for memory slots.
7679 	 *
7680 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
7681 	 * to dirty logging mode.
7682 	 *
7683 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
7684 	 *
7685 	 * In case of write protect:
7686 	 *
7687 	 * Write protect all pages for dirty logging.
7688 	 *
7689 	 * All the sptes including the large sptes which point to this
7690 	 * slot are set to readonly. We can not create any new large
7691 	 * spte on this slot until the end of the logging.
7692 	 *
7693 	 * See the comments in fast_page_fault().
7694 	 */
7695 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
7696 		if (kvm_x86_ops->slot_enable_log_dirty)
7697 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
7698 		else
7699 			kvm_mmu_slot_remove_write_access(kvm, new);
7700 	} else {
7701 		if (kvm_x86_ops->slot_disable_log_dirty)
7702 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
7703 	}
7704 }
7705 
7706 void kvm_arch_commit_memory_region(struct kvm *kvm,
7707 				const struct kvm_userspace_memory_region *mem,
7708 				const struct kvm_memory_slot *old,
7709 				const struct kvm_memory_slot *new,
7710 				enum kvm_mr_change change)
7711 {
7712 	int nr_mmu_pages = 0;
7713 
7714 	if (change == KVM_MR_DELETE && old->id >= KVM_USER_MEM_SLOTS) {
7715 		int ret;
7716 
7717 		ret = vm_munmap(old->userspace_addr,
7718 				old->npages * PAGE_SIZE);
7719 		if (ret < 0)
7720 			printk(KERN_WARNING
7721 			       "kvm_vm_ioctl_set_memory_region: "
7722 			       "failed to munmap memory\n");
7723 	}
7724 
7725 	if (!kvm->arch.n_requested_mmu_pages)
7726 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7727 
7728 	if (nr_mmu_pages)
7729 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7730 
7731 	/*
7732 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
7733 	 * sptes have to be split.  If live migration is successful, the guest
7734 	 * in the source machine will be destroyed and large sptes will be
7735 	 * created in the destination. However, if the guest continues to run
7736 	 * in the source machine (for example if live migration fails), small
7737 	 * sptes will remain around and cause bad performance.
7738 	 *
7739 	 * Scan sptes if dirty logging has been stopped, dropping those
7740 	 * which can be collapsed into a single large-page spte.  Later
7741 	 * page faults will create the large-page sptes.
7742 	 */
7743 	if ((change != KVM_MR_DELETE) &&
7744 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
7745 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
7746 		kvm_mmu_zap_collapsible_sptes(kvm, new);
7747 
7748 	/*
7749 	 * Set up write protection and/or dirty logging for the new slot.
7750 	 *
7751 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
7752 	 * been zapped so no dirty logging staff is needed for old slot. For
7753 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
7754 	 * new and it's also covered when dealing with the new slot.
7755 	 *
7756 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
7757 	 */
7758 	if (change != KVM_MR_DELETE)
7759 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
7760 }
7761 
7762 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7763 {
7764 	kvm_mmu_invalidate_zap_all_pages(kvm);
7765 }
7766 
7767 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7768 				   struct kvm_memory_slot *slot)
7769 {
7770 	kvm_mmu_invalidate_zap_all_pages(kvm);
7771 }
7772 
7773 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7774 {
7775 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7776 		kvm_x86_ops->check_nested_events(vcpu, false);
7777 
7778 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7779 		!vcpu->arch.apf.halted)
7780 		|| !list_empty_careful(&vcpu->async_pf.done)
7781 		|| kvm_apic_has_events(vcpu)
7782 		|| vcpu->arch.pv.pv_unhalted
7783 		|| atomic_read(&vcpu->arch.nmi_queued) ||
7784 		(kvm_arch_interrupt_allowed(vcpu) &&
7785 		 kvm_cpu_has_interrupt(vcpu));
7786 }
7787 
7788 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7789 {
7790 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7791 }
7792 
7793 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7794 {
7795 	return kvm_x86_ops->interrupt_allowed(vcpu);
7796 }
7797 
7798 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
7799 {
7800 	if (is_64_bit_mode(vcpu))
7801 		return kvm_rip_read(vcpu);
7802 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
7803 		     kvm_rip_read(vcpu));
7804 }
7805 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
7806 
7807 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7808 {
7809 	return kvm_get_linear_rip(vcpu) == linear_rip;
7810 }
7811 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7812 
7813 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7814 {
7815 	unsigned long rflags;
7816 
7817 	rflags = kvm_x86_ops->get_rflags(vcpu);
7818 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7819 		rflags &= ~X86_EFLAGS_TF;
7820 	return rflags;
7821 }
7822 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7823 
7824 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7825 {
7826 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7827 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7828 		rflags |= X86_EFLAGS_TF;
7829 	kvm_x86_ops->set_rflags(vcpu, rflags);
7830 }
7831 
7832 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7833 {
7834 	__kvm_set_rflags(vcpu, rflags);
7835 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7836 }
7837 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7838 
7839 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7840 {
7841 	int r;
7842 
7843 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7844 	      work->wakeup_all)
7845 		return;
7846 
7847 	r = kvm_mmu_reload(vcpu);
7848 	if (unlikely(r))
7849 		return;
7850 
7851 	if (!vcpu->arch.mmu.direct_map &&
7852 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7853 		return;
7854 
7855 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7856 }
7857 
7858 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7859 {
7860 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7861 }
7862 
7863 static inline u32 kvm_async_pf_next_probe(u32 key)
7864 {
7865 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7866 }
7867 
7868 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7869 {
7870 	u32 key = kvm_async_pf_hash_fn(gfn);
7871 
7872 	while (vcpu->arch.apf.gfns[key] != ~0)
7873 		key = kvm_async_pf_next_probe(key);
7874 
7875 	vcpu->arch.apf.gfns[key] = gfn;
7876 }
7877 
7878 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7879 {
7880 	int i;
7881 	u32 key = kvm_async_pf_hash_fn(gfn);
7882 
7883 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7884 		     (vcpu->arch.apf.gfns[key] != gfn &&
7885 		      vcpu->arch.apf.gfns[key] != ~0); i++)
7886 		key = kvm_async_pf_next_probe(key);
7887 
7888 	return key;
7889 }
7890 
7891 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7892 {
7893 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7894 }
7895 
7896 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7897 {
7898 	u32 i, j, k;
7899 
7900 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7901 	while (true) {
7902 		vcpu->arch.apf.gfns[i] = ~0;
7903 		do {
7904 			j = kvm_async_pf_next_probe(j);
7905 			if (vcpu->arch.apf.gfns[j] == ~0)
7906 				return;
7907 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7908 			/*
7909 			 * k lies cyclically in ]i,j]
7910 			 * |    i.k.j |
7911 			 * |....j i.k.| or  |.k..j i...|
7912 			 */
7913 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7914 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7915 		i = j;
7916 	}
7917 }
7918 
7919 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7920 {
7921 
7922 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7923 				      sizeof(val));
7924 }
7925 
7926 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7927 				     struct kvm_async_pf *work)
7928 {
7929 	struct x86_exception fault;
7930 
7931 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7932 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7933 
7934 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7935 	    (vcpu->arch.apf.send_user_only &&
7936 	     kvm_x86_ops->get_cpl(vcpu) == 0))
7937 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7938 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7939 		fault.vector = PF_VECTOR;
7940 		fault.error_code_valid = true;
7941 		fault.error_code = 0;
7942 		fault.nested_page_fault = false;
7943 		fault.address = work->arch.token;
7944 		kvm_inject_page_fault(vcpu, &fault);
7945 	}
7946 }
7947 
7948 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7949 				 struct kvm_async_pf *work)
7950 {
7951 	struct x86_exception fault;
7952 
7953 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
7954 	if (work->wakeup_all)
7955 		work->arch.token = ~0; /* broadcast wakeup */
7956 	else
7957 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7958 
7959 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7960 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7961 		fault.vector = PF_VECTOR;
7962 		fault.error_code_valid = true;
7963 		fault.error_code = 0;
7964 		fault.nested_page_fault = false;
7965 		fault.address = work->arch.token;
7966 		kvm_inject_page_fault(vcpu, &fault);
7967 	}
7968 	vcpu->arch.apf.halted = false;
7969 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7970 }
7971 
7972 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7973 {
7974 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7975 		return true;
7976 	else
7977 		return !kvm_event_needs_reinjection(vcpu) &&
7978 			kvm_x86_ops->interrupt_allowed(vcpu);
7979 }
7980 
7981 void kvm_arch_start_assignment(struct kvm *kvm)
7982 {
7983 	atomic_inc(&kvm->arch.assigned_device_count);
7984 }
7985 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
7986 
7987 void kvm_arch_end_assignment(struct kvm *kvm)
7988 {
7989 	atomic_dec(&kvm->arch.assigned_device_count);
7990 }
7991 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
7992 
7993 bool kvm_arch_has_assigned_device(struct kvm *kvm)
7994 {
7995 	return atomic_read(&kvm->arch.assigned_device_count);
7996 }
7997 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
7998 
7999 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8000 {
8001 	atomic_inc(&kvm->arch.noncoherent_dma_count);
8002 }
8003 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8004 
8005 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8006 {
8007 	atomic_dec(&kvm->arch.noncoherent_dma_count);
8008 }
8009 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8010 
8011 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8012 {
8013 	return atomic_read(&kvm->arch.noncoherent_dma_count);
8014 }
8015 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8016 
8017 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8018 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8019 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8020 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8021 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8022 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8023 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8024 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8025 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8026 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8027 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8028 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8029 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8030 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8031 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8032