xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 1dd0dd0b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33 
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/sched/isolation.h>
58 #include <linux/mem_encrypt.h>
59 #include <linux/entry-kvm.h>
60 #include <linux/suspend.h>
61 
62 #include <trace/events/kvm.h>
63 
64 #include <asm/debugreg.h>
65 #include <asm/msr.h>
66 #include <asm/desc.h>
67 #include <asm/mce.h>
68 #include <asm/pkru.h>
69 #include <linux/kernel_stat.h>
70 #include <asm/fpu/api.h>
71 #include <asm/fpu/xcr.h>
72 #include <asm/fpu/xstate.h>
73 #include <asm/pvclock.h>
74 #include <asm/div64.h>
75 #include <asm/irq_remapping.h>
76 #include <asm/mshyperv.h>
77 #include <asm/hypervisor.h>
78 #include <asm/tlbflush.h>
79 #include <asm/intel_pt.h>
80 #include <asm/emulate_prefix.h>
81 #include <asm/sgx.h>
82 #include <clocksource/hyperv_timer.h>
83 
84 #define CREATE_TRACE_POINTS
85 #include "trace.h"
86 
87 #define MAX_IO_MSRS 256
88 #define KVM_MAX_MCE_BANKS 32
89 
90 struct kvm_caps kvm_caps __read_mostly = {
91 	.supported_mce_cap = MCG_CTL_P | MCG_SER_P,
92 };
93 EXPORT_SYMBOL_GPL(kvm_caps);
94 
95 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
96 
97 #define emul_to_vcpu(ctxt) \
98 	((struct kvm_vcpu *)(ctxt)->vcpu)
99 
100 /* EFER defaults:
101  * - enable syscall per default because its emulated by KVM
102  * - enable LME and LMA per default on 64 bit KVM
103  */
104 #ifdef CONFIG_X86_64
105 static
106 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
107 #else
108 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
109 #endif
110 
111 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
112 
113 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
114 
115 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
116 
117 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
118                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
119 
120 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
121 static void process_nmi(struct kvm_vcpu *vcpu);
122 static void process_smi(struct kvm_vcpu *vcpu);
123 static void enter_smm(struct kvm_vcpu *vcpu);
124 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
125 static void store_regs(struct kvm_vcpu *vcpu);
126 static int sync_regs(struct kvm_vcpu *vcpu);
127 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
128 
129 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
130 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
131 
132 struct kvm_x86_ops kvm_x86_ops __read_mostly;
133 
134 #define KVM_X86_OP(func)					     \
135 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
136 				*(((struct kvm_x86_ops *)0)->func));
137 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
138 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
139 #include <asm/kvm-x86-ops.h>
140 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
141 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
142 
143 static bool __read_mostly ignore_msrs = 0;
144 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
145 
146 bool __read_mostly report_ignored_msrs = true;
147 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
148 EXPORT_SYMBOL_GPL(report_ignored_msrs);
149 
150 unsigned int min_timer_period_us = 200;
151 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
152 
153 static bool __read_mostly kvmclock_periodic_sync = true;
154 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
155 
156 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
157 static u32 __read_mostly tsc_tolerance_ppm = 250;
158 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
159 
160 /*
161  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
162  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
163  * advancement entirely.  Any other value is used as-is and disables adaptive
164  * tuning, i.e. allows privileged userspace to set an exact advancement time.
165  */
166 static int __read_mostly lapic_timer_advance_ns = -1;
167 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
168 
169 static bool __read_mostly vector_hashing = true;
170 module_param(vector_hashing, bool, S_IRUGO);
171 
172 bool __read_mostly enable_vmware_backdoor = false;
173 module_param(enable_vmware_backdoor, bool, S_IRUGO);
174 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
175 
176 static bool __read_mostly force_emulation_prefix = false;
177 module_param(force_emulation_prefix, bool, S_IRUGO);
178 
179 int __read_mostly pi_inject_timer = -1;
180 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
181 
182 /* Enable/disable PMU virtualization */
183 bool __read_mostly enable_pmu = true;
184 EXPORT_SYMBOL_GPL(enable_pmu);
185 module_param(enable_pmu, bool, 0444);
186 
187 bool __read_mostly eager_page_split = true;
188 module_param(eager_page_split, bool, 0644);
189 
190 /*
191  * Restoring the host value for MSRs that are only consumed when running in
192  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
193  * returns to userspace, i.e. the kernel can run with the guest's value.
194  */
195 #define KVM_MAX_NR_USER_RETURN_MSRS 16
196 
197 struct kvm_user_return_msrs {
198 	struct user_return_notifier urn;
199 	bool registered;
200 	struct kvm_user_return_msr_values {
201 		u64 host;
202 		u64 curr;
203 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
204 };
205 
206 u32 __read_mostly kvm_nr_uret_msrs;
207 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
208 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
209 static struct kvm_user_return_msrs __percpu *user_return_msrs;
210 
211 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
212 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
213 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
214 				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
215 
216 u64 __read_mostly host_efer;
217 EXPORT_SYMBOL_GPL(host_efer);
218 
219 bool __read_mostly allow_smaller_maxphyaddr = 0;
220 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
221 
222 bool __read_mostly enable_apicv = true;
223 EXPORT_SYMBOL_GPL(enable_apicv);
224 
225 u64 __read_mostly host_xss;
226 EXPORT_SYMBOL_GPL(host_xss);
227 
228 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
229 	KVM_GENERIC_VM_STATS(),
230 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
231 	STATS_DESC_COUNTER(VM, mmu_pte_write),
232 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
233 	STATS_DESC_COUNTER(VM, mmu_flooded),
234 	STATS_DESC_COUNTER(VM, mmu_recycled),
235 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
236 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
237 	STATS_DESC_ICOUNTER(VM, pages_4k),
238 	STATS_DESC_ICOUNTER(VM, pages_2m),
239 	STATS_DESC_ICOUNTER(VM, pages_1g),
240 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
241 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
242 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
243 };
244 
245 const struct kvm_stats_header kvm_vm_stats_header = {
246 	.name_size = KVM_STATS_NAME_SIZE,
247 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
248 	.id_offset = sizeof(struct kvm_stats_header),
249 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
250 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
251 		       sizeof(kvm_vm_stats_desc),
252 };
253 
254 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
255 	KVM_GENERIC_VCPU_STATS(),
256 	STATS_DESC_COUNTER(VCPU, pf_taken),
257 	STATS_DESC_COUNTER(VCPU, pf_fixed),
258 	STATS_DESC_COUNTER(VCPU, pf_emulate),
259 	STATS_DESC_COUNTER(VCPU, pf_spurious),
260 	STATS_DESC_COUNTER(VCPU, pf_fast),
261 	STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
262 	STATS_DESC_COUNTER(VCPU, pf_guest),
263 	STATS_DESC_COUNTER(VCPU, tlb_flush),
264 	STATS_DESC_COUNTER(VCPU, invlpg),
265 	STATS_DESC_COUNTER(VCPU, exits),
266 	STATS_DESC_COUNTER(VCPU, io_exits),
267 	STATS_DESC_COUNTER(VCPU, mmio_exits),
268 	STATS_DESC_COUNTER(VCPU, signal_exits),
269 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
270 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
271 	STATS_DESC_COUNTER(VCPU, l1d_flush),
272 	STATS_DESC_COUNTER(VCPU, halt_exits),
273 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
274 	STATS_DESC_COUNTER(VCPU, irq_exits),
275 	STATS_DESC_COUNTER(VCPU, host_state_reload),
276 	STATS_DESC_COUNTER(VCPU, fpu_reload),
277 	STATS_DESC_COUNTER(VCPU, insn_emulation),
278 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
279 	STATS_DESC_COUNTER(VCPU, hypercalls),
280 	STATS_DESC_COUNTER(VCPU, irq_injections),
281 	STATS_DESC_COUNTER(VCPU, nmi_injections),
282 	STATS_DESC_COUNTER(VCPU, req_event),
283 	STATS_DESC_COUNTER(VCPU, nested_run),
284 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
285 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
286 	STATS_DESC_COUNTER(VCPU, preemption_reported),
287 	STATS_DESC_COUNTER(VCPU, preemption_other),
288 	STATS_DESC_IBOOLEAN(VCPU, guest_mode),
289 	STATS_DESC_COUNTER(VCPU, notify_window_exits),
290 };
291 
292 const struct kvm_stats_header kvm_vcpu_stats_header = {
293 	.name_size = KVM_STATS_NAME_SIZE,
294 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
295 	.id_offset = sizeof(struct kvm_stats_header),
296 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
297 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
298 		       sizeof(kvm_vcpu_stats_desc),
299 };
300 
301 u64 __read_mostly host_xcr0;
302 
303 static struct kmem_cache *x86_emulator_cache;
304 
305 /*
306  * When called, it means the previous get/set msr reached an invalid msr.
307  * Return true if we want to ignore/silent this failed msr access.
308  */
309 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
310 {
311 	const char *op = write ? "wrmsr" : "rdmsr";
312 
313 	if (ignore_msrs) {
314 		if (report_ignored_msrs)
315 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
316 				      op, msr, data);
317 		/* Mask the error */
318 		return true;
319 	} else {
320 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
321 				      op, msr, data);
322 		return false;
323 	}
324 }
325 
326 static struct kmem_cache *kvm_alloc_emulator_cache(void)
327 {
328 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
329 	unsigned int size = sizeof(struct x86_emulate_ctxt);
330 
331 	return kmem_cache_create_usercopy("x86_emulator", size,
332 					  __alignof__(struct x86_emulate_ctxt),
333 					  SLAB_ACCOUNT, useroffset,
334 					  size - useroffset, NULL);
335 }
336 
337 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
338 
339 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
340 {
341 	int i;
342 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
343 		vcpu->arch.apf.gfns[i] = ~0;
344 }
345 
346 static void kvm_on_user_return(struct user_return_notifier *urn)
347 {
348 	unsigned slot;
349 	struct kvm_user_return_msrs *msrs
350 		= container_of(urn, struct kvm_user_return_msrs, urn);
351 	struct kvm_user_return_msr_values *values;
352 	unsigned long flags;
353 
354 	/*
355 	 * Disabling irqs at this point since the following code could be
356 	 * interrupted and executed through kvm_arch_hardware_disable()
357 	 */
358 	local_irq_save(flags);
359 	if (msrs->registered) {
360 		msrs->registered = false;
361 		user_return_notifier_unregister(urn);
362 	}
363 	local_irq_restore(flags);
364 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
365 		values = &msrs->values[slot];
366 		if (values->host != values->curr) {
367 			wrmsrl(kvm_uret_msrs_list[slot], values->host);
368 			values->curr = values->host;
369 		}
370 	}
371 }
372 
373 static int kvm_probe_user_return_msr(u32 msr)
374 {
375 	u64 val;
376 	int ret;
377 
378 	preempt_disable();
379 	ret = rdmsrl_safe(msr, &val);
380 	if (ret)
381 		goto out;
382 	ret = wrmsrl_safe(msr, val);
383 out:
384 	preempt_enable();
385 	return ret;
386 }
387 
388 int kvm_add_user_return_msr(u32 msr)
389 {
390 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
391 
392 	if (kvm_probe_user_return_msr(msr))
393 		return -1;
394 
395 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
396 	return kvm_nr_uret_msrs++;
397 }
398 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
399 
400 int kvm_find_user_return_msr(u32 msr)
401 {
402 	int i;
403 
404 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
405 		if (kvm_uret_msrs_list[i] == msr)
406 			return i;
407 	}
408 	return -1;
409 }
410 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
411 
412 static void kvm_user_return_msr_cpu_online(void)
413 {
414 	unsigned int cpu = smp_processor_id();
415 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
416 	u64 value;
417 	int i;
418 
419 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
420 		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
421 		msrs->values[i].host = value;
422 		msrs->values[i].curr = value;
423 	}
424 }
425 
426 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
427 {
428 	unsigned int cpu = smp_processor_id();
429 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
430 	int err;
431 
432 	value = (value & mask) | (msrs->values[slot].host & ~mask);
433 	if (value == msrs->values[slot].curr)
434 		return 0;
435 	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
436 	if (err)
437 		return 1;
438 
439 	msrs->values[slot].curr = value;
440 	if (!msrs->registered) {
441 		msrs->urn.on_user_return = kvm_on_user_return;
442 		user_return_notifier_register(&msrs->urn);
443 		msrs->registered = true;
444 	}
445 	return 0;
446 }
447 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
448 
449 static void drop_user_return_notifiers(void)
450 {
451 	unsigned int cpu = smp_processor_id();
452 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
453 
454 	if (msrs->registered)
455 		kvm_on_user_return(&msrs->urn);
456 }
457 
458 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
459 {
460 	return vcpu->arch.apic_base;
461 }
462 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
463 
464 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
465 {
466 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
467 }
468 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
469 
470 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
471 {
472 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
473 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
474 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
475 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
476 
477 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
478 		return 1;
479 	if (!msr_info->host_initiated) {
480 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
481 			return 1;
482 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
483 			return 1;
484 	}
485 
486 	kvm_lapic_set_base(vcpu, msr_info->data);
487 	kvm_recalculate_apic_map(vcpu->kvm);
488 	return 0;
489 }
490 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
491 
492 /*
493  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
494  *
495  * Hardware virtualization extension instructions may fault if a reboot turns
496  * off virtualization while processes are running.  Usually after catching the
497  * fault we just panic; during reboot instead the instruction is ignored.
498  */
499 noinstr void kvm_spurious_fault(void)
500 {
501 	/* Fault while not rebooting.  We want the trace. */
502 	BUG_ON(!kvm_rebooting);
503 }
504 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
505 
506 #define EXCPT_BENIGN		0
507 #define EXCPT_CONTRIBUTORY	1
508 #define EXCPT_PF		2
509 
510 static int exception_class(int vector)
511 {
512 	switch (vector) {
513 	case PF_VECTOR:
514 		return EXCPT_PF;
515 	case DE_VECTOR:
516 	case TS_VECTOR:
517 	case NP_VECTOR:
518 	case SS_VECTOR:
519 	case GP_VECTOR:
520 		return EXCPT_CONTRIBUTORY;
521 	default:
522 		break;
523 	}
524 	return EXCPT_BENIGN;
525 }
526 
527 #define EXCPT_FAULT		0
528 #define EXCPT_TRAP		1
529 #define EXCPT_ABORT		2
530 #define EXCPT_INTERRUPT		3
531 
532 static int exception_type(int vector)
533 {
534 	unsigned int mask;
535 
536 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
537 		return EXCPT_INTERRUPT;
538 
539 	mask = 1 << vector;
540 
541 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
542 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
543 		return EXCPT_TRAP;
544 
545 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
546 		return EXCPT_ABORT;
547 
548 	/* Reserved exceptions will result in fault */
549 	return EXCPT_FAULT;
550 }
551 
552 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
553 {
554 	unsigned nr = vcpu->arch.exception.nr;
555 	bool has_payload = vcpu->arch.exception.has_payload;
556 	unsigned long payload = vcpu->arch.exception.payload;
557 
558 	if (!has_payload)
559 		return;
560 
561 	switch (nr) {
562 	case DB_VECTOR:
563 		/*
564 		 * "Certain debug exceptions may clear bit 0-3.  The
565 		 * remaining contents of the DR6 register are never
566 		 * cleared by the processor".
567 		 */
568 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
569 		/*
570 		 * In order to reflect the #DB exception payload in guest
571 		 * dr6, three components need to be considered: active low
572 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
573 		 * DR6_BS and DR6_BT)
574 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
575 		 * In the target guest dr6:
576 		 * FIXED_1 bits should always be set.
577 		 * Active low bits should be cleared if 1-setting in payload.
578 		 * Active high bits should be set if 1-setting in payload.
579 		 *
580 		 * Note, the payload is compatible with the pending debug
581 		 * exceptions/exit qualification under VMX, that active_low bits
582 		 * are active high in payload.
583 		 * So they need to be flipped for DR6.
584 		 */
585 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
586 		vcpu->arch.dr6 |= payload;
587 		vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
588 
589 		/*
590 		 * The #DB payload is defined as compatible with the 'pending
591 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
592 		 * defined in the 'pending debug exceptions' field (enabled
593 		 * breakpoint), it is reserved and must be zero in DR6.
594 		 */
595 		vcpu->arch.dr6 &= ~BIT(12);
596 		break;
597 	case PF_VECTOR:
598 		vcpu->arch.cr2 = payload;
599 		break;
600 	}
601 
602 	vcpu->arch.exception.has_payload = false;
603 	vcpu->arch.exception.payload = 0;
604 }
605 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
606 
607 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
608 		unsigned nr, bool has_error, u32 error_code,
609 	        bool has_payload, unsigned long payload, bool reinject)
610 {
611 	u32 prev_nr;
612 	int class1, class2;
613 
614 	kvm_make_request(KVM_REQ_EVENT, vcpu);
615 
616 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
617 	queue:
618 		if (reinject) {
619 			/*
620 			 * On vmentry, vcpu->arch.exception.pending is only
621 			 * true if an event injection was blocked by
622 			 * nested_run_pending.  In that case, however,
623 			 * vcpu_enter_guest requests an immediate exit,
624 			 * and the guest shouldn't proceed far enough to
625 			 * need reinjection.
626 			 */
627 			WARN_ON_ONCE(vcpu->arch.exception.pending);
628 			vcpu->arch.exception.injected = true;
629 			if (WARN_ON_ONCE(has_payload)) {
630 				/*
631 				 * A reinjected event has already
632 				 * delivered its payload.
633 				 */
634 				has_payload = false;
635 				payload = 0;
636 			}
637 		} else {
638 			vcpu->arch.exception.pending = true;
639 			vcpu->arch.exception.injected = false;
640 		}
641 		vcpu->arch.exception.has_error_code = has_error;
642 		vcpu->arch.exception.nr = nr;
643 		vcpu->arch.exception.error_code = error_code;
644 		vcpu->arch.exception.has_payload = has_payload;
645 		vcpu->arch.exception.payload = payload;
646 		if (!is_guest_mode(vcpu))
647 			kvm_deliver_exception_payload(vcpu);
648 		return;
649 	}
650 
651 	/* to check exception */
652 	prev_nr = vcpu->arch.exception.nr;
653 	if (prev_nr == DF_VECTOR) {
654 		/* triple fault -> shutdown */
655 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
656 		return;
657 	}
658 	class1 = exception_class(prev_nr);
659 	class2 = exception_class(nr);
660 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
661 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
662 		/*
663 		 * Generate double fault per SDM Table 5-5.  Set
664 		 * exception.pending = true so that the double fault
665 		 * can trigger a nested vmexit.
666 		 */
667 		vcpu->arch.exception.pending = true;
668 		vcpu->arch.exception.injected = false;
669 		vcpu->arch.exception.has_error_code = true;
670 		vcpu->arch.exception.nr = DF_VECTOR;
671 		vcpu->arch.exception.error_code = 0;
672 		vcpu->arch.exception.has_payload = false;
673 		vcpu->arch.exception.payload = 0;
674 	} else
675 		/* replace previous exception with a new one in a hope
676 		   that instruction re-execution will regenerate lost
677 		   exception */
678 		goto queue;
679 }
680 
681 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
682 {
683 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
684 }
685 EXPORT_SYMBOL_GPL(kvm_queue_exception);
686 
687 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
688 {
689 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
690 }
691 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
692 
693 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
694 			   unsigned long payload)
695 {
696 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
697 }
698 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
699 
700 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
701 				    u32 error_code, unsigned long payload)
702 {
703 	kvm_multiple_exception(vcpu, nr, true, error_code,
704 			       true, payload, false);
705 }
706 
707 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
708 {
709 	if (err)
710 		kvm_inject_gp(vcpu, 0);
711 	else
712 		return kvm_skip_emulated_instruction(vcpu);
713 
714 	return 1;
715 }
716 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
717 
718 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
719 {
720 	if (err) {
721 		kvm_inject_gp(vcpu, 0);
722 		return 1;
723 	}
724 
725 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
726 				       EMULTYPE_COMPLETE_USER_EXIT);
727 }
728 
729 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
730 {
731 	++vcpu->stat.pf_guest;
732 	vcpu->arch.exception.nested_apf =
733 		is_guest_mode(vcpu) && fault->async_page_fault;
734 	if (vcpu->arch.exception.nested_apf) {
735 		vcpu->arch.apf.nested_apf_token = fault->address;
736 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
737 	} else {
738 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
739 					fault->address);
740 	}
741 }
742 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
743 
744 /* Returns true if the page fault was immediately morphed into a VM-Exit. */
745 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
746 				    struct x86_exception *fault)
747 {
748 	struct kvm_mmu *fault_mmu;
749 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
750 
751 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
752 					       vcpu->arch.walk_mmu;
753 
754 	/*
755 	 * Invalidate the TLB entry for the faulting address, if it exists,
756 	 * else the access will fault indefinitely (and to emulate hardware).
757 	 */
758 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
759 	    !(fault->error_code & PFERR_RSVD_MASK))
760 		kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
761 				       fault_mmu->root.hpa);
762 
763 	/*
764 	 * A workaround for KVM's bad exception handling.  If KVM injected an
765 	 * exception into L2, and L2 encountered a #PF while vectoring the
766 	 * injected exception, manually check to see if L1 wants to intercept
767 	 * #PF, otherwise queuing the #PF will lead to #DF or a lost exception.
768 	 * In all other cases, defer the check to nested_ops->check_events(),
769 	 * which will correctly handle priority (this does not).  Note, other
770 	 * exceptions, e.g. #GP, are theoretically affected, #PF is simply the
771 	 * most problematic, e.g. when L0 and L1 are both intercepting #PF for
772 	 * shadow paging.
773 	 *
774 	 * TODO: Rewrite exception handling to track injected and pending
775 	 *       (VM-Exit) exceptions separately.
776 	 */
777 	if (unlikely(vcpu->arch.exception.injected && is_guest_mode(vcpu)) &&
778 	    kvm_x86_ops.nested_ops->handle_page_fault_workaround(vcpu, fault))
779 		return true;
780 
781 	fault_mmu->inject_page_fault(vcpu, fault);
782 	return false;
783 }
784 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
785 
786 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
787 {
788 	atomic_inc(&vcpu->arch.nmi_queued);
789 	kvm_make_request(KVM_REQ_NMI, vcpu);
790 }
791 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
792 
793 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
794 {
795 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
796 }
797 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
798 
799 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
800 {
801 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
802 }
803 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
804 
805 /*
806  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
807  * a #GP and return false.
808  */
809 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
810 {
811 	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
812 		return true;
813 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
814 	return false;
815 }
816 EXPORT_SYMBOL_GPL(kvm_require_cpl);
817 
818 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
819 {
820 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
821 		return true;
822 
823 	kvm_queue_exception(vcpu, UD_VECTOR);
824 	return false;
825 }
826 EXPORT_SYMBOL_GPL(kvm_require_dr);
827 
828 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
829 {
830 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
831 }
832 
833 /*
834  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
835  */
836 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
837 {
838 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
839 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
840 	gpa_t real_gpa;
841 	int i;
842 	int ret;
843 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
844 
845 	/*
846 	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
847 	 * to an L1 GPA.
848 	 */
849 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
850 				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
851 	if (real_gpa == INVALID_GPA)
852 		return 0;
853 
854 	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
855 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
856 				       cr3 & GENMASK(11, 5), sizeof(pdpte));
857 	if (ret < 0)
858 		return 0;
859 
860 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
861 		if ((pdpte[i] & PT_PRESENT_MASK) &&
862 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
863 			return 0;
864 		}
865 	}
866 
867 	/*
868 	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
869 	 * Shadow page roots need to be reconstructed instead.
870 	 */
871 	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
872 		kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
873 
874 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
875 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
876 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
877 	vcpu->arch.pdptrs_from_userspace = false;
878 
879 	return 1;
880 }
881 EXPORT_SYMBOL_GPL(load_pdptrs);
882 
883 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
884 {
885 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
886 		kvm_clear_async_pf_completion_queue(vcpu);
887 		kvm_async_pf_hash_reset(vcpu);
888 
889 		/*
890 		 * Clearing CR0.PG is defined to flush the TLB from the guest's
891 		 * perspective.
892 		 */
893 		if (!(cr0 & X86_CR0_PG))
894 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
895 	}
896 
897 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
898 		kvm_mmu_reset_context(vcpu);
899 
900 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
901 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
902 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
903 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
904 }
905 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
906 
907 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
908 {
909 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
910 
911 	cr0 |= X86_CR0_ET;
912 
913 #ifdef CONFIG_X86_64
914 	if (cr0 & 0xffffffff00000000UL)
915 		return 1;
916 #endif
917 
918 	cr0 &= ~CR0_RESERVED_BITS;
919 
920 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
921 		return 1;
922 
923 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
924 		return 1;
925 
926 #ifdef CONFIG_X86_64
927 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
928 	    (cr0 & X86_CR0_PG)) {
929 		int cs_db, cs_l;
930 
931 		if (!is_pae(vcpu))
932 			return 1;
933 		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
934 		if (cs_l)
935 			return 1;
936 	}
937 #endif
938 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
939 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
940 	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
941 		return 1;
942 
943 	if (!(cr0 & X86_CR0_PG) &&
944 	    (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)))
945 		return 1;
946 
947 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
948 
949 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
950 
951 	return 0;
952 }
953 EXPORT_SYMBOL_GPL(kvm_set_cr0);
954 
955 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
956 {
957 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
958 }
959 EXPORT_SYMBOL_GPL(kvm_lmsw);
960 
961 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
962 {
963 	if (vcpu->arch.guest_state_protected)
964 		return;
965 
966 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
967 
968 		if (vcpu->arch.xcr0 != host_xcr0)
969 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
970 
971 		if (vcpu->arch.xsaves_enabled &&
972 		    vcpu->arch.ia32_xss != host_xss)
973 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
974 	}
975 
976 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
977 	if (static_cpu_has(X86_FEATURE_PKU) &&
978 	    vcpu->arch.pkru != vcpu->arch.host_pkru &&
979 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
980 	     kvm_read_cr4_bits(vcpu, X86_CR4_PKE)))
981 		write_pkru(vcpu->arch.pkru);
982 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
983 }
984 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
985 
986 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
987 {
988 	if (vcpu->arch.guest_state_protected)
989 		return;
990 
991 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
992 	if (static_cpu_has(X86_FEATURE_PKU) &&
993 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
994 	     kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) {
995 		vcpu->arch.pkru = rdpkru();
996 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
997 			write_pkru(vcpu->arch.host_pkru);
998 	}
999 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1000 
1001 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
1002 
1003 		if (vcpu->arch.xcr0 != host_xcr0)
1004 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1005 
1006 		if (vcpu->arch.xsaves_enabled &&
1007 		    vcpu->arch.ia32_xss != host_xss)
1008 			wrmsrl(MSR_IA32_XSS, host_xss);
1009 	}
1010 
1011 }
1012 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1013 
1014 static inline u64 kvm_guest_supported_xcr0(struct kvm_vcpu *vcpu)
1015 {
1016 	return vcpu->arch.guest_fpu.fpstate->user_xfeatures;
1017 }
1018 
1019 #ifdef CONFIG_X86_64
1020 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1021 {
1022 	return kvm_guest_supported_xcr0(vcpu) & XFEATURE_MASK_USER_DYNAMIC;
1023 }
1024 #endif
1025 
1026 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1027 {
1028 	u64 xcr0 = xcr;
1029 	u64 old_xcr0 = vcpu->arch.xcr0;
1030 	u64 valid_bits;
1031 
1032 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1033 	if (index != XCR_XFEATURE_ENABLED_MASK)
1034 		return 1;
1035 	if (!(xcr0 & XFEATURE_MASK_FP))
1036 		return 1;
1037 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1038 		return 1;
1039 
1040 	/*
1041 	 * Do not allow the guest to set bits that we do not support
1042 	 * saving.  However, xcr0 bit 0 is always set, even if the
1043 	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1044 	 */
1045 	valid_bits = kvm_guest_supported_xcr0(vcpu) | XFEATURE_MASK_FP;
1046 	if (xcr0 & ~valid_bits)
1047 		return 1;
1048 
1049 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1050 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1051 		return 1;
1052 
1053 	if (xcr0 & XFEATURE_MASK_AVX512) {
1054 		if (!(xcr0 & XFEATURE_MASK_YMM))
1055 			return 1;
1056 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1057 			return 1;
1058 	}
1059 
1060 	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1061 	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1062 		return 1;
1063 
1064 	vcpu->arch.xcr0 = xcr0;
1065 
1066 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1067 		kvm_update_cpuid_runtime(vcpu);
1068 	return 0;
1069 }
1070 
1071 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1072 {
1073 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1074 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1075 		kvm_inject_gp(vcpu, 0);
1076 		return 1;
1077 	}
1078 
1079 	return kvm_skip_emulated_instruction(vcpu);
1080 }
1081 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1082 
1083 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1084 {
1085 	if (cr4 & cr4_reserved_bits)
1086 		return false;
1087 
1088 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1089 		return false;
1090 
1091 	return true;
1092 }
1093 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1094 
1095 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1096 {
1097 	return __kvm_is_valid_cr4(vcpu, cr4) &&
1098 	       static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1099 }
1100 
1101 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1102 {
1103 	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1104 		kvm_mmu_reset_context(vcpu);
1105 
1106 	/*
1107 	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1108 	 * according to the SDM; however, stale prev_roots could be reused
1109 	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1110 	 * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1111 	 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1112 	 * so fall through.
1113 	 */
1114 	if (!tdp_enabled &&
1115 	    (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1116 		kvm_mmu_unload(vcpu);
1117 
1118 	/*
1119 	 * The TLB has to be flushed for all PCIDs if any of the following
1120 	 * (architecturally required) changes happen:
1121 	 * - CR4.PCIDE is changed from 1 to 0
1122 	 * - CR4.PGE is toggled
1123 	 *
1124 	 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1125 	 */
1126 	if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1127 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1128 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1129 
1130 	/*
1131 	 * The TLB has to be flushed for the current PCID if any of the
1132 	 * following (architecturally required) changes happen:
1133 	 * - CR4.SMEP is changed from 0 to 1
1134 	 * - CR4.PAE is toggled
1135 	 */
1136 	else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1137 		 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1138 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1139 
1140 }
1141 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1142 
1143 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1144 {
1145 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1146 
1147 	if (!kvm_is_valid_cr4(vcpu, cr4))
1148 		return 1;
1149 
1150 	if (is_long_mode(vcpu)) {
1151 		if (!(cr4 & X86_CR4_PAE))
1152 			return 1;
1153 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1154 			return 1;
1155 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1156 		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1157 		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1158 		return 1;
1159 
1160 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1161 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1162 			return 1;
1163 
1164 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1165 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1166 			return 1;
1167 	}
1168 
1169 	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1170 
1171 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1172 
1173 	return 0;
1174 }
1175 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1176 
1177 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1178 {
1179 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1180 	unsigned long roots_to_free = 0;
1181 	int i;
1182 
1183 	/*
1184 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1185 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1186 	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1187 	 * the invalidation, but the guest's TLB entries need to be flushed as
1188 	 * the CPU may have cached entries in its TLB for the target PCID.
1189 	 */
1190 	if (unlikely(tdp_enabled)) {
1191 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1192 		return;
1193 	}
1194 
1195 	/*
1196 	 * If neither the current CR3 nor any of the prev_roots use the given
1197 	 * PCID, then nothing needs to be done here because a resync will
1198 	 * happen anyway before switching to any other CR3.
1199 	 */
1200 	if (kvm_get_active_pcid(vcpu) == pcid) {
1201 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1202 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1203 	}
1204 
1205 	/*
1206 	 * If PCID is disabled, there is no need to free prev_roots even if the
1207 	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1208 	 * with PCIDE=0.
1209 	 */
1210 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1211 		return;
1212 
1213 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1214 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1215 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1216 
1217 	kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1218 }
1219 
1220 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1221 {
1222 	bool skip_tlb_flush = false;
1223 	unsigned long pcid = 0;
1224 #ifdef CONFIG_X86_64
1225 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1226 
1227 	if (pcid_enabled) {
1228 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1229 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1230 		pcid = cr3 & X86_CR3_PCID_MASK;
1231 	}
1232 #endif
1233 
1234 	/* PDPTRs are always reloaded for PAE paging. */
1235 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1236 		goto handle_tlb_flush;
1237 
1238 	/*
1239 	 * Do not condition the GPA check on long mode, this helper is used to
1240 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1241 	 * the current vCPU mode is accurate.
1242 	 */
1243 	if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1244 		return 1;
1245 
1246 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1247 		return 1;
1248 
1249 	if (cr3 != kvm_read_cr3(vcpu))
1250 		kvm_mmu_new_pgd(vcpu, cr3);
1251 
1252 	vcpu->arch.cr3 = cr3;
1253 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1254 	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1255 
1256 handle_tlb_flush:
1257 	/*
1258 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1259 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1260 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1261 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1262 	 * i.e. only PCID=0 can be relevant.
1263 	 */
1264 	if (!skip_tlb_flush)
1265 		kvm_invalidate_pcid(vcpu, pcid);
1266 
1267 	return 0;
1268 }
1269 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1270 
1271 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1272 {
1273 	if (cr8 & CR8_RESERVED_BITS)
1274 		return 1;
1275 	if (lapic_in_kernel(vcpu))
1276 		kvm_lapic_set_tpr(vcpu, cr8);
1277 	else
1278 		vcpu->arch.cr8 = cr8;
1279 	return 0;
1280 }
1281 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1282 
1283 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1284 {
1285 	if (lapic_in_kernel(vcpu))
1286 		return kvm_lapic_get_cr8(vcpu);
1287 	else
1288 		return vcpu->arch.cr8;
1289 }
1290 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1291 
1292 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1293 {
1294 	int i;
1295 
1296 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1297 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1298 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1299 	}
1300 }
1301 
1302 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1303 {
1304 	unsigned long dr7;
1305 
1306 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1307 		dr7 = vcpu->arch.guest_debug_dr7;
1308 	else
1309 		dr7 = vcpu->arch.dr7;
1310 	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1311 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1312 	if (dr7 & DR7_BP_EN_MASK)
1313 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1314 }
1315 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1316 
1317 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1318 {
1319 	u64 fixed = DR6_FIXED_1;
1320 
1321 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1322 		fixed |= DR6_RTM;
1323 
1324 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1325 		fixed |= DR6_BUS_LOCK;
1326 	return fixed;
1327 }
1328 
1329 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1330 {
1331 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1332 
1333 	switch (dr) {
1334 	case 0 ... 3:
1335 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1336 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1337 			vcpu->arch.eff_db[dr] = val;
1338 		break;
1339 	case 4:
1340 	case 6:
1341 		if (!kvm_dr6_valid(val))
1342 			return 1; /* #GP */
1343 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1344 		break;
1345 	case 5:
1346 	default: /* 7 */
1347 		if (!kvm_dr7_valid(val))
1348 			return 1; /* #GP */
1349 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1350 		kvm_update_dr7(vcpu);
1351 		break;
1352 	}
1353 
1354 	return 0;
1355 }
1356 EXPORT_SYMBOL_GPL(kvm_set_dr);
1357 
1358 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1359 {
1360 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1361 
1362 	switch (dr) {
1363 	case 0 ... 3:
1364 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1365 		break;
1366 	case 4:
1367 	case 6:
1368 		*val = vcpu->arch.dr6;
1369 		break;
1370 	case 5:
1371 	default: /* 7 */
1372 		*val = vcpu->arch.dr7;
1373 		break;
1374 	}
1375 }
1376 EXPORT_SYMBOL_GPL(kvm_get_dr);
1377 
1378 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1379 {
1380 	u32 ecx = kvm_rcx_read(vcpu);
1381 	u64 data;
1382 
1383 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1384 		kvm_inject_gp(vcpu, 0);
1385 		return 1;
1386 	}
1387 
1388 	kvm_rax_write(vcpu, (u32)data);
1389 	kvm_rdx_write(vcpu, data >> 32);
1390 	return kvm_skip_emulated_instruction(vcpu);
1391 }
1392 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1393 
1394 /*
1395  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1396  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1397  *
1398  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1399  * extract the supported MSRs from the related const lists.
1400  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1401  * capabilities of the host cpu. This capabilities test skips MSRs that are
1402  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1403  * may depend on host virtualization features rather than host cpu features.
1404  */
1405 
1406 static const u32 msrs_to_save_all[] = {
1407 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1408 	MSR_STAR,
1409 #ifdef CONFIG_X86_64
1410 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1411 #endif
1412 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1413 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1414 	MSR_IA32_SPEC_CTRL,
1415 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1416 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1417 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1418 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1419 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1420 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1421 	MSR_IA32_UMWAIT_CONTROL,
1422 
1423 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1424 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1425 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1426 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1427 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1428 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1429 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1430 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1431 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1432 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1433 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1434 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1435 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1436 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1437 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1438 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1439 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1440 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1441 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1442 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1443 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1444 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1445 	MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1446 
1447 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1448 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1449 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1450 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1451 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1452 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1453 	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1454 };
1455 
1456 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1457 static unsigned num_msrs_to_save;
1458 
1459 static const u32 emulated_msrs_all[] = {
1460 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1461 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1462 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1463 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1464 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1465 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1466 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1467 	HV_X64_MSR_RESET,
1468 	HV_X64_MSR_VP_INDEX,
1469 	HV_X64_MSR_VP_RUNTIME,
1470 	HV_X64_MSR_SCONTROL,
1471 	HV_X64_MSR_STIMER0_CONFIG,
1472 	HV_X64_MSR_VP_ASSIST_PAGE,
1473 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1474 	HV_X64_MSR_TSC_EMULATION_STATUS,
1475 	HV_X64_MSR_SYNDBG_OPTIONS,
1476 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1477 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1478 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1479 
1480 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1481 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1482 
1483 	MSR_IA32_TSC_ADJUST,
1484 	MSR_IA32_TSC_DEADLINE,
1485 	MSR_IA32_ARCH_CAPABILITIES,
1486 	MSR_IA32_PERF_CAPABILITIES,
1487 	MSR_IA32_MISC_ENABLE,
1488 	MSR_IA32_MCG_STATUS,
1489 	MSR_IA32_MCG_CTL,
1490 	MSR_IA32_MCG_EXT_CTL,
1491 	MSR_IA32_SMBASE,
1492 	MSR_SMI_COUNT,
1493 	MSR_PLATFORM_INFO,
1494 	MSR_MISC_FEATURES_ENABLES,
1495 	MSR_AMD64_VIRT_SPEC_CTRL,
1496 	MSR_AMD64_TSC_RATIO,
1497 	MSR_IA32_POWER_CTL,
1498 	MSR_IA32_UCODE_REV,
1499 
1500 	/*
1501 	 * The following list leaves out MSRs whose values are determined
1502 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1503 	 * We always support the "true" VMX control MSRs, even if the host
1504 	 * processor does not, so I am putting these registers here rather
1505 	 * than in msrs_to_save_all.
1506 	 */
1507 	MSR_IA32_VMX_BASIC,
1508 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1509 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1510 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1511 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1512 	MSR_IA32_VMX_MISC,
1513 	MSR_IA32_VMX_CR0_FIXED0,
1514 	MSR_IA32_VMX_CR4_FIXED0,
1515 	MSR_IA32_VMX_VMCS_ENUM,
1516 	MSR_IA32_VMX_PROCBASED_CTLS2,
1517 	MSR_IA32_VMX_EPT_VPID_CAP,
1518 	MSR_IA32_VMX_VMFUNC,
1519 
1520 	MSR_K7_HWCR,
1521 	MSR_KVM_POLL_CONTROL,
1522 };
1523 
1524 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1525 static unsigned num_emulated_msrs;
1526 
1527 /*
1528  * List of msr numbers which are used to expose MSR-based features that
1529  * can be used by a hypervisor to validate requested CPU features.
1530  */
1531 static const u32 msr_based_features_all[] = {
1532 	MSR_IA32_VMX_BASIC,
1533 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1534 	MSR_IA32_VMX_PINBASED_CTLS,
1535 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1536 	MSR_IA32_VMX_PROCBASED_CTLS,
1537 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1538 	MSR_IA32_VMX_EXIT_CTLS,
1539 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1540 	MSR_IA32_VMX_ENTRY_CTLS,
1541 	MSR_IA32_VMX_MISC,
1542 	MSR_IA32_VMX_CR0_FIXED0,
1543 	MSR_IA32_VMX_CR0_FIXED1,
1544 	MSR_IA32_VMX_CR4_FIXED0,
1545 	MSR_IA32_VMX_CR4_FIXED1,
1546 	MSR_IA32_VMX_VMCS_ENUM,
1547 	MSR_IA32_VMX_PROCBASED_CTLS2,
1548 	MSR_IA32_VMX_EPT_VPID_CAP,
1549 	MSR_IA32_VMX_VMFUNC,
1550 
1551 	MSR_F10H_DECFG,
1552 	MSR_IA32_UCODE_REV,
1553 	MSR_IA32_ARCH_CAPABILITIES,
1554 	MSR_IA32_PERF_CAPABILITIES,
1555 };
1556 
1557 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1558 static unsigned int num_msr_based_features;
1559 
1560 /*
1561  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1562  * does not yet virtualize. These include:
1563  *   10 - MISC_PACKAGE_CTRLS
1564  *   11 - ENERGY_FILTERING_CTL
1565  *   12 - DOITM
1566  *   18 - FB_CLEAR_CTRL
1567  *   21 - XAPIC_DISABLE_STATUS
1568  *   23 - OVERCLOCKING_STATUS
1569  */
1570 
1571 #define KVM_SUPPORTED_ARCH_CAP \
1572 	(ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1573 	 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1574 	 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1575 	 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1576 	 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO)
1577 
1578 static u64 kvm_get_arch_capabilities(void)
1579 {
1580 	u64 data = 0;
1581 
1582 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
1583 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1584 		data &= KVM_SUPPORTED_ARCH_CAP;
1585 	}
1586 
1587 	/*
1588 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1589 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1590 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1591 	 * L1 guests, so it need not worry about its own (L2) guests.
1592 	 */
1593 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1594 
1595 	/*
1596 	 * If we're doing cache flushes (either "always" or "cond")
1597 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1598 	 * If an outer hypervisor is doing the cache flush for us
1599 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1600 	 * capability to the guest too, and if EPT is disabled we're not
1601 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1602 	 * require a nested hypervisor to do a flush of its own.
1603 	 */
1604 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1605 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1606 
1607 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1608 		data |= ARCH_CAP_RDCL_NO;
1609 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1610 		data |= ARCH_CAP_SSB_NO;
1611 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1612 		data |= ARCH_CAP_MDS_NO;
1613 
1614 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1615 		/*
1616 		 * If RTM=0 because the kernel has disabled TSX, the host might
1617 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1618 		 * and therefore knows that there cannot be TAA) but keep
1619 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1620 		 * and we want to allow migrating those guests to tsx=off hosts.
1621 		 */
1622 		data &= ~ARCH_CAP_TAA_NO;
1623 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1624 		data |= ARCH_CAP_TAA_NO;
1625 	} else {
1626 		/*
1627 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1628 		 * host so the guest can choose between disabling TSX or
1629 		 * using VERW to clear CPU buffers.
1630 		 */
1631 	}
1632 
1633 	return data;
1634 }
1635 
1636 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1637 {
1638 	switch (msr->index) {
1639 	case MSR_IA32_ARCH_CAPABILITIES:
1640 		msr->data = kvm_get_arch_capabilities();
1641 		break;
1642 	case MSR_IA32_UCODE_REV:
1643 		rdmsrl_safe(msr->index, &msr->data);
1644 		break;
1645 	default:
1646 		return static_call(kvm_x86_get_msr_feature)(msr);
1647 	}
1648 	return 0;
1649 }
1650 
1651 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1652 {
1653 	struct kvm_msr_entry msr;
1654 	int r;
1655 
1656 	msr.index = index;
1657 	r = kvm_get_msr_feature(&msr);
1658 
1659 	if (r == KVM_MSR_RET_INVALID) {
1660 		/* Unconditionally clear the output for simplicity */
1661 		*data = 0;
1662 		if (kvm_msr_ignored_check(index, 0, false))
1663 			r = 0;
1664 	}
1665 
1666 	if (r)
1667 		return r;
1668 
1669 	*data = msr.data;
1670 
1671 	return 0;
1672 }
1673 
1674 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1675 {
1676 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1677 		return false;
1678 
1679 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1680 		return false;
1681 
1682 	if (efer & (EFER_LME | EFER_LMA) &&
1683 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1684 		return false;
1685 
1686 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1687 		return false;
1688 
1689 	return true;
1690 
1691 }
1692 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1693 {
1694 	if (efer & efer_reserved_bits)
1695 		return false;
1696 
1697 	return __kvm_valid_efer(vcpu, efer);
1698 }
1699 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1700 
1701 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1702 {
1703 	u64 old_efer = vcpu->arch.efer;
1704 	u64 efer = msr_info->data;
1705 	int r;
1706 
1707 	if (efer & efer_reserved_bits)
1708 		return 1;
1709 
1710 	if (!msr_info->host_initiated) {
1711 		if (!__kvm_valid_efer(vcpu, efer))
1712 			return 1;
1713 
1714 		if (is_paging(vcpu) &&
1715 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1716 			return 1;
1717 	}
1718 
1719 	efer &= ~EFER_LMA;
1720 	efer |= vcpu->arch.efer & EFER_LMA;
1721 
1722 	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1723 	if (r) {
1724 		WARN_ON(r > 0);
1725 		return r;
1726 	}
1727 
1728 	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1729 		kvm_mmu_reset_context(vcpu);
1730 
1731 	return 0;
1732 }
1733 
1734 void kvm_enable_efer_bits(u64 mask)
1735 {
1736        efer_reserved_bits &= ~mask;
1737 }
1738 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1739 
1740 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1741 {
1742 	struct kvm_x86_msr_filter *msr_filter;
1743 	struct msr_bitmap_range *ranges;
1744 	struct kvm *kvm = vcpu->kvm;
1745 	bool allowed;
1746 	int idx;
1747 	u32 i;
1748 
1749 	/* x2APIC MSRs do not support filtering. */
1750 	if (index >= 0x800 && index <= 0x8ff)
1751 		return true;
1752 
1753 	idx = srcu_read_lock(&kvm->srcu);
1754 
1755 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1756 	if (!msr_filter) {
1757 		allowed = true;
1758 		goto out;
1759 	}
1760 
1761 	allowed = msr_filter->default_allow;
1762 	ranges = msr_filter->ranges;
1763 
1764 	for (i = 0; i < msr_filter->count; i++) {
1765 		u32 start = ranges[i].base;
1766 		u32 end = start + ranges[i].nmsrs;
1767 		u32 flags = ranges[i].flags;
1768 		unsigned long *bitmap = ranges[i].bitmap;
1769 
1770 		if ((index >= start) && (index < end) && (flags & type)) {
1771 			allowed = !!test_bit(index - start, bitmap);
1772 			break;
1773 		}
1774 	}
1775 
1776 out:
1777 	srcu_read_unlock(&kvm->srcu, idx);
1778 
1779 	return allowed;
1780 }
1781 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1782 
1783 /*
1784  * Write @data into the MSR specified by @index.  Select MSR specific fault
1785  * checks are bypassed if @host_initiated is %true.
1786  * Returns 0 on success, non-0 otherwise.
1787  * Assumes vcpu_load() was already called.
1788  */
1789 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1790 			 bool host_initiated)
1791 {
1792 	struct msr_data msr;
1793 
1794 	switch (index) {
1795 	case MSR_FS_BASE:
1796 	case MSR_GS_BASE:
1797 	case MSR_KERNEL_GS_BASE:
1798 	case MSR_CSTAR:
1799 	case MSR_LSTAR:
1800 		if (is_noncanonical_address(data, vcpu))
1801 			return 1;
1802 		break;
1803 	case MSR_IA32_SYSENTER_EIP:
1804 	case MSR_IA32_SYSENTER_ESP:
1805 		/*
1806 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1807 		 * non-canonical address is written on Intel but not on
1808 		 * AMD (which ignores the top 32-bits, because it does
1809 		 * not implement 64-bit SYSENTER).
1810 		 *
1811 		 * 64-bit code should hence be able to write a non-canonical
1812 		 * value on AMD.  Making the address canonical ensures that
1813 		 * vmentry does not fail on Intel after writing a non-canonical
1814 		 * value, and that something deterministic happens if the guest
1815 		 * invokes 64-bit SYSENTER.
1816 		 */
1817 		data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1818 		break;
1819 	case MSR_TSC_AUX:
1820 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1821 			return 1;
1822 
1823 		if (!host_initiated &&
1824 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1825 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1826 			return 1;
1827 
1828 		/*
1829 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1830 		 * incomplete and conflicting architectural behavior.  Current
1831 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1832 		 * reserved and always read as zeros.  Enforce Intel's reserved
1833 		 * bits check if and only if the guest CPU is Intel, and clear
1834 		 * the bits in all other cases.  This ensures cross-vendor
1835 		 * migration will provide consistent behavior for the guest.
1836 		 */
1837 		if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1838 			return 1;
1839 
1840 		data = (u32)data;
1841 		break;
1842 	}
1843 
1844 	msr.data = data;
1845 	msr.index = index;
1846 	msr.host_initiated = host_initiated;
1847 
1848 	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1849 }
1850 
1851 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1852 				     u32 index, u64 data, bool host_initiated)
1853 {
1854 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1855 
1856 	if (ret == KVM_MSR_RET_INVALID)
1857 		if (kvm_msr_ignored_check(index, data, true))
1858 			ret = 0;
1859 
1860 	return ret;
1861 }
1862 
1863 /*
1864  * Read the MSR specified by @index into @data.  Select MSR specific fault
1865  * checks are bypassed if @host_initiated is %true.
1866  * Returns 0 on success, non-0 otherwise.
1867  * Assumes vcpu_load() was already called.
1868  */
1869 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1870 		  bool host_initiated)
1871 {
1872 	struct msr_data msr;
1873 	int ret;
1874 
1875 	switch (index) {
1876 	case MSR_TSC_AUX:
1877 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1878 			return 1;
1879 
1880 		if (!host_initiated &&
1881 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1882 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1883 			return 1;
1884 		break;
1885 	}
1886 
1887 	msr.index = index;
1888 	msr.host_initiated = host_initiated;
1889 
1890 	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1891 	if (!ret)
1892 		*data = msr.data;
1893 	return ret;
1894 }
1895 
1896 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1897 				     u32 index, u64 *data, bool host_initiated)
1898 {
1899 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1900 
1901 	if (ret == KVM_MSR_RET_INVALID) {
1902 		/* Unconditionally clear *data for simplicity */
1903 		*data = 0;
1904 		if (kvm_msr_ignored_check(index, 0, false))
1905 			ret = 0;
1906 	}
1907 
1908 	return ret;
1909 }
1910 
1911 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1912 {
1913 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1914 		return KVM_MSR_RET_FILTERED;
1915 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1916 }
1917 
1918 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1919 {
1920 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1921 		return KVM_MSR_RET_FILTERED;
1922 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1923 }
1924 
1925 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1926 {
1927 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1928 }
1929 EXPORT_SYMBOL_GPL(kvm_get_msr);
1930 
1931 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1932 {
1933 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1934 }
1935 EXPORT_SYMBOL_GPL(kvm_set_msr);
1936 
1937 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1938 {
1939 	if (!vcpu->run->msr.error) {
1940 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1941 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1942 	}
1943 }
1944 
1945 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1946 {
1947 	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1948 }
1949 
1950 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1951 {
1952 	complete_userspace_rdmsr(vcpu);
1953 	return complete_emulated_msr_access(vcpu);
1954 }
1955 
1956 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1957 {
1958 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1959 }
1960 
1961 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1962 {
1963 	complete_userspace_rdmsr(vcpu);
1964 	return complete_fast_msr_access(vcpu);
1965 }
1966 
1967 static u64 kvm_msr_reason(int r)
1968 {
1969 	switch (r) {
1970 	case KVM_MSR_RET_INVALID:
1971 		return KVM_MSR_EXIT_REASON_UNKNOWN;
1972 	case KVM_MSR_RET_FILTERED:
1973 		return KVM_MSR_EXIT_REASON_FILTER;
1974 	default:
1975 		return KVM_MSR_EXIT_REASON_INVAL;
1976 	}
1977 }
1978 
1979 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1980 			      u32 exit_reason, u64 data,
1981 			      int (*completion)(struct kvm_vcpu *vcpu),
1982 			      int r)
1983 {
1984 	u64 msr_reason = kvm_msr_reason(r);
1985 
1986 	/* Check if the user wanted to know about this MSR fault */
1987 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1988 		return 0;
1989 
1990 	vcpu->run->exit_reason = exit_reason;
1991 	vcpu->run->msr.error = 0;
1992 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1993 	vcpu->run->msr.reason = msr_reason;
1994 	vcpu->run->msr.index = index;
1995 	vcpu->run->msr.data = data;
1996 	vcpu->arch.complete_userspace_io = completion;
1997 
1998 	return 1;
1999 }
2000 
2001 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2002 {
2003 	u32 ecx = kvm_rcx_read(vcpu);
2004 	u64 data;
2005 	int r;
2006 
2007 	r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2008 
2009 	if (!r) {
2010 		trace_kvm_msr_read(ecx, data);
2011 
2012 		kvm_rax_write(vcpu, data & -1u);
2013 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
2014 	} else {
2015 		/* MSR read failed? See if we should ask user space */
2016 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2017 				       complete_fast_rdmsr, r))
2018 			return 0;
2019 		trace_kvm_msr_read_ex(ecx);
2020 	}
2021 
2022 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2023 }
2024 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2025 
2026 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2027 {
2028 	u32 ecx = kvm_rcx_read(vcpu);
2029 	u64 data = kvm_read_edx_eax(vcpu);
2030 	int r;
2031 
2032 	r = kvm_set_msr_with_filter(vcpu, ecx, data);
2033 
2034 	if (!r) {
2035 		trace_kvm_msr_write(ecx, data);
2036 	} else {
2037 		/* MSR write failed? See if we should ask user space */
2038 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2039 				       complete_fast_msr_access, r))
2040 			return 0;
2041 		/* Signal all other negative errors to userspace */
2042 		if (r < 0)
2043 			return r;
2044 		trace_kvm_msr_write_ex(ecx, data);
2045 	}
2046 
2047 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2048 }
2049 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2050 
2051 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2052 {
2053 	return kvm_skip_emulated_instruction(vcpu);
2054 }
2055 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
2056 
2057 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2058 {
2059 	/* Treat an INVD instruction as a NOP and just skip it. */
2060 	return kvm_emulate_as_nop(vcpu);
2061 }
2062 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2063 
2064 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2065 {
2066 	kvm_queue_exception(vcpu, UD_VECTOR);
2067 	return 1;
2068 }
2069 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2070 
2071 
2072 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2073 {
2074 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2075 	    !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2076 		return kvm_handle_invalid_op(vcpu);
2077 
2078 	pr_warn_once("kvm: %s instruction emulated as NOP!\n", insn);
2079 	return kvm_emulate_as_nop(vcpu);
2080 }
2081 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2082 {
2083 	return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2084 }
2085 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2086 
2087 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2088 {
2089 	return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2090 }
2091 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2092 
2093 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2094 {
2095 	xfer_to_guest_mode_prepare();
2096 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2097 		xfer_to_guest_mode_work_pending();
2098 }
2099 
2100 /*
2101  * The fast path for frequent and performance sensitive wrmsr emulation,
2102  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2103  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2104  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2105  * other cases which must be called after interrupts are enabled on the host.
2106  */
2107 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2108 {
2109 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2110 		return 1;
2111 
2112 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2113 	    ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2114 	    ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2115 	    ((u32)(data >> 32) != X2APIC_BROADCAST))
2116 		return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2117 
2118 	return 1;
2119 }
2120 
2121 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2122 {
2123 	if (!kvm_can_use_hv_timer(vcpu))
2124 		return 1;
2125 
2126 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2127 	return 0;
2128 }
2129 
2130 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2131 {
2132 	u32 msr = kvm_rcx_read(vcpu);
2133 	u64 data;
2134 	fastpath_t ret = EXIT_FASTPATH_NONE;
2135 
2136 	switch (msr) {
2137 	case APIC_BASE_MSR + (APIC_ICR >> 4):
2138 		data = kvm_read_edx_eax(vcpu);
2139 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2140 			kvm_skip_emulated_instruction(vcpu);
2141 			ret = EXIT_FASTPATH_EXIT_HANDLED;
2142 		}
2143 		break;
2144 	case MSR_IA32_TSC_DEADLINE:
2145 		data = kvm_read_edx_eax(vcpu);
2146 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2147 			kvm_skip_emulated_instruction(vcpu);
2148 			ret = EXIT_FASTPATH_REENTER_GUEST;
2149 		}
2150 		break;
2151 	default:
2152 		break;
2153 	}
2154 
2155 	if (ret != EXIT_FASTPATH_NONE)
2156 		trace_kvm_msr_write(msr, data);
2157 
2158 	return ret;
2159 }
2160 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2161 
2162 /*
2163  * Adapt set_msr() to msr_io()'s calling convention
2164  */
2165 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2166 {
2167 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2168 }
2169 
2170 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2171 {
2172 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2173 }
2174 
2175 #ifdef CONFIG_X86_64
2176 struct pvclock_clock {
2177 	int vclock_mode;
2178 	u64 cycle_last;
2179 	u64 mask;
2180 	u32 mult;
2181 	u32 shift;
2182 	u64 base_cycles;
2183 	u64 offset;
2184 };
2185 
2186 struct pvclock_gtod_data {
2187 	seqcount_t	seq;
2188 
2189 	struct pvclock_clock clock; /* extract of a clocksource struct */
2190 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2191 
2192 	ktime_t		offs_boot;
2193 	u64		wall_time_sec;
2194 };
2195 
2196 static struct pvclock_gtod_data pvclock_gtod_data;
2197 
2198 static void update_pvclock_gtod(struct timekeeper *tk)
2199 {
2200 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2201 
2202 	write_seqcount_begin(&vdata->seq);
2203 
2204 	/* copy pvclock gtod data */
2205 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2206 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2207 	vdata->clock.mask		= tk->tkr_mono.mask;
2208 	vdata->clock.mult		= tk->tkr_mono.mult;
2209 	vdata->clock.shift		= tk->tkr_mono.shift;
2210 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2211 	vdata->clock.offset		= tk->tkr_mono.base;
2212 
2213 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2214 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2215 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2216 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2217 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2218 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2219 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2220 
2221 	vdata->wall_time_sec            = tk->xtime_sec;
2222 
2223 	vdata->offs_boot		= tk->offs_boot;
2224 
2225 	write_seqcount_end(&vdata->seq);
2226 }
2227 
2228 static s64 get_kvmclock_base_ns(void)
2229 {
2230 	/* Count up from boot time, but with the frequency of the raw clock.  */
2231 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2232 }
2233 #else
2234 static s64 get_kvmclock_base_ns(void)
2235 {
2236 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2237 	return ktime_get_boottime_ns();
2238 }
2239 #endif
2240 
2241 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2242 {
2243 	int version;
2244 	int r;
2245 	struct pvclock_wall_clock wc;
2246 	u32 wc_sec_hi;
2247 	u64 wall_nsec;
2248 
2249 	if (!wall_clock)
2250 		return;
2251 
2252 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2253 	if (r)
2254 		return;
2255 
2256 	if (version & 1)
2257 		++version;  /* first time write, random junk */
2258 
2259 	++version;
2260 
2261 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2262 		return;
2263 
2264 	/*
2265 	 * The guest calculates current wall clock time by adding
2266 	 * system time (updated by kvm_guest_time_update below) to the
2267 	 * wall clock specified here.  We do the reverse here.
2268 	 */
2269 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2270 
2271 	wc.nsec = do_div(wall_nsec, 1000000000);
2272 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2273 	wc.version = version;
2274 
2275 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2276 
2277 	if (sec_hi_ofs) {
2278 		wc_sec_hi = wall_nsec >> 32;
2279 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2280 				&wc_sec_hi, sizeof(wc_sec_hi));
2281 	}
2282 
2283 	version++;
2284 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2285 }
2286 
2287 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2288 				  bool old_msr, bool host_initiated)
2289 {
2290 	struct kvm_arch *ka = &vcpu->kvm->arch;
2291 
2292 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2293 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2294 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2295 
2296 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2297 	}
2298 
2299 	vcpu->arch.time = system_time;
2300 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2301 
2302 	/* we verify if the enable bit is set... */
2303 	if (system_time & 1) {
2304 		kvm_gfn_to_pfn_cache_init(vcpu->kvm, &vcpu->arch.pv_time, vcpu,
2305 					  KVM_HOST_USES_PFN, system_time & ~1ULL,
2306 					  sizeof(struct pvclock_vcpu_time_info));
2307 	} else {
2308 		kvm_gfn_to_pfn_cache_destroy(vcpu->kvm, &vcpu->arch.pv_time);
2309 	}
2310 
2311 	return;
2312 }
2313 
2314 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2315 {
2316 	do_shl32_div32(dividend, divisor);
2317 	return dividend;
2318 }
2319 
2320 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2321 			       s8 *pshift, u32 *pmultiplier)
2322 {
2323 	uint64_t scaled64;
2324 	int32_t  shift = 0;
2325 	uint64_t tps64;
2326 	uint32_t tps32;
2327 
2328 	tps64 = base_hz;
2329 	scaled64 = scaled_hz;
2330 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2331 		tps64 >>= 1;
2332 		shift--;
2333 	}
2334 
2335 	tps32 = (uint32_t)tps64;
2336 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2337 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2338 			scaled64 >>= 1;
2339 		else
2340 			tps32 <<= 1;
2341 		shift++;
2342 	}
2343 
2344 	*pshift = shift;
2345 	*pmultiplier = div_frac(scaled64, tps32);
2346 }
2347 
2348 #ifdef CONFIG_X86_64
2349 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2350 #endif
2351 
2352 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2353 static unsigned long max_tsc_khz;
2354 
2355 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2356 {
2357 	u64 v = (u64)khz * (1000000 + ppm);
2358 	do_div(v, 1000000);
2359 	return v;
2360 }
2361 
2362 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2363 
2364 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2365 {
2366 	u64 ratio;
2367 
2368 	/* Guest TSC same frequency as host TSC? */
2369 	if (!scale) {
2370 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2371 		return 0;
2372 	}
2373 
2374 	/* TSC scaling supported? */
2375 	if (!kvm_caps.has_tsc_control) {
2376 		if (user_tsc_khz > tsc_khz) {
2377 			vcpu->arch.tsc_catchup = 1;
2378 			vcpu->arch.tsc_always_catchup = 1;
2379 			return 0;
2380 		} else {
2381 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2382 			return -1;
2383 		}
2384 	}
2385 
2386 	/* TSC scaling required  - calculate ratio */
2387 	ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2388 				user_tsc_khz, tsc_khz);
2389 
2390 	if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2391 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2392 			            user_tsc_khz);
2393 		return -1;
2394 	}
2395 
2396 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2397 	return 0;
2398 }
2399 
2400 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2401 {
2402 	u32 thresh_lo, thresh_hi;
2403 	int use_scaling = 0;
2404 
2405 	/* tsc_khz can be zero if TSC calibration fails */
2406 	if (user_tsc_khz == 0) {
2407 		/* set tsc_scaling_ratio to a safe value */
2408 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2409 		return -1;
2410 	}
2411 
2412 	/* Compute a scale to convert nanoseconds in TSC cycles */
2413 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2414 			   &vcpu->arch.virtual_tsc_shift,
2415 			   &vcpu->arch.virtual_tsc_mult);
2416 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2417 
2418 	/*
2419 	 * Compute the variation in TSC rate which is acceptable
2420 	 * within the range of tolerance and decide if the
2421 	 * rate being applied is within that bounds of the hardware
2422 	 * rate.  If so, no scaling or compensation need be done.
2423 	 */
2424 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2425 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2426 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2427 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2428 		use_scaling = 1;
2429 	}
2430 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2431 }
2432 
2433 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2434 {
2435 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2436 				      vcpu->arch.virtual_tsc_mult,
2437 				      vcpu->arch.virtual_tsc_shift);
2438 	tsc += vcpu->arch.this_tsc_write;
2439 	return tsc;
2440 }
2441 
2442 #ifdef CONFIG_X86_64
2443 static inline int gtod_is_based_on_tsc(int mode)
2444 {
2445 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2446 }
2447 #endif
2448 
2449 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2450 {
2451 #ifdef CONFIG_X86_64
2452 	bool vcpus_matched;
2453 	struct kvm_arch *ka = &vcpu->kvm->arch;
2454 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2455 
2456 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2457 			 atomic_read(&vcpu->kvm->online_vcpus));
2458 
2459 	/*
2460 	 * Once the masterclock is enabled, always perform request in
2461 	 * order to update it.
2462 	 *
2463 	 * In order to enable masterclock, the host clocksource must be TSC
2464 	 * and the vcpus need to have matched TSCs.  When that happens,
2465 	 * perform request to enable masterclock.
2466 	 */
2467 	if (ka->use_master_clock ||
2468 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2469 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2470 
2471 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2472 			    atomic_read(&vcpu->kvm->online_vcpus),
2473 		            ka->use_master_clock, gtod->clock.vclock_mode);
2474 #endif
2475 }
2476 
2477 /*
2478  * Multiply tsc by a fixed point number represented by ratio.
2479  *
2480  * The most significant 64-N bits (mult) of ratio represent the
2481  * integral part of the fixed point number; the remaining N bits
2482  * (frac) represent the fractional part, ie. ratio represents a fixed
2483  * point number (mult + frac * 2^(-N)).
2484  *
2485  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2486  */
2487 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2488 {
2489 	return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2490 }
2491 
2492 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2493 {
2494 	u64 _tsc = tsc;
2495 
2496 	if (ratio != kvm_caps.default_tsc_scaling_ratio)
2497 		_tsc = __scale_tsc(ratio, tsc);
2498 
2499 	return _tsc;
2500 }
2501 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2502 
2503 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2504 {
2505 	u64 tsc;
2506 
2507 	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2508 
2509 	return target_tsc - tsc;
2510 }
2511 
2512 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2513 {
2514 	return vcpu->arch.l1_tsc_offset +
2515 		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2516 }
2517 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2518 
2519 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2520 {
2521 	u64 nested_offset;
2522 
2523 	if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2524 		nested_offset = l1_offset;
2525 	else
2526 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2527 						kvm_caps.tsc_scaling_ratio_frac_bits);
2528 
2529 	nested_offset += l2_offset;
2530 	return nested_offset;
2531 }
2532 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2533 
2534 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2535 {
2536 	if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2537 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2538 				       kvm_caps.tsc_scaling_ratio_frac_bits);
2539 
2540 	return l1_multiplier;
2541 }
2542 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2543 
2544 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2545 {
2546 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2547 				   vcpu->arch.l1_tsc_offset,
2548 				   l1_offset);
2549 
2550 	vcpu->arch.l1_tsc_offset = l1_offset;
2551 
2552 	/*
2553 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2554 	 * according to the spec this should set L1's TSC (as opposed to
2555 	 * setting L1's offset for L2).
2556 	 */
2557 	if (is_guest_mode(vcpu))
2558 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2559 			l1_offset,
2560 			static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2561 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2562 	else
2563 		vcpu->arch.tsc_offset = l1_offset;
2564 
2565 	static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2566 }
2567 
2568 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2569 {
2570 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2571 
2572 	/* Userspace is changing the multiplier while L2 is active */
2573 	if (is_guest_mode(vcpu))
2574 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2575 			l1_multiplier,
2576 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2577 	else
2578 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2579 
2580 	if (kvm_caps.has_tsc_control)
2581 		static_call(kvm_x86_write_tsc_multiplier)(
2582 			vcpu, vcpu->arch.tsc_scaling_ratio);
2583 }
2584 
2585 static inline bool kvm_check_tsc_unstable(void)
2586 {
2587 #ifdef CONFIG_X86_64
2588 	/*
2589 	 * TSC is marked unstable when we're running on Hyper-V,
2590 	 * 'TSC page' clocksource is good.
2591 	 */
2592 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2593 		return false;
2594 #endif
2595 	return check_tsc_unstable();
2596 }
2597 
2598 /*
2599  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2600  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2601  * participates in.
2602  */
2603 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2604 				  u64 ns, bool matched)
2605 {
2606 	struct kvm *kvm = vcpu->kvm;
2607 
2608 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2609 
2610 	/*
2611 	 * We also track th most recent recorded KHZ, write and time to
2612 	 * allow the matching interval to be extended at each write.
2613 	 */
2614 	kvm->arch.last_tsc_nsec = ns;
2615 	kvm->arch.last_tsc_write = tsc;
2616 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2617 	kvm->arch.last_tsc_offset = offset;
2618 
2619 	vcpu->arch.last_guest_tsc = tsc;
2620 
2621 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2622 
2623 	if (!matched) {
2624 		/*
2625 		 * We split periods of matched TSC writes into generations.
2626 		 * For each generation, we track the original measured
2627 		 * nanosecond time, offset, and write, so if TSCs are in
2628 		 * sync, we can match exact offset, and if not, we can match
2629 		 * exact software computation in compute_guest_tsc()
2630 		 *
2631 		 * These values are tracked in kvm->arch.cur_xxx variables.
2632 		 */
2633 		kvm->arch.cur_tsc_generation++;
2634 		kvm->arch.cur_tsc_nsec = ns;
2635 		kvm->arch.cur_tsc_write = tsc;
2636 		kvm->arch.cur_tsc_offset = offset;
2637 		kvm->arch.nr_vcpus_matched_tsc = 0;
2638 	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2639 		kvm->arch.nr_vcpus_matched_tsc++;
2640 	}
2641 
2642 	/* Keep track of which generation this VCPU has synchronized to */
2643 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2644 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2645 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2646 
2647 	kvm_track_tsc_matching(vcpu);
2648 }
2649 
2650 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2651 {
2652 	struct kvm *kvm = vcpu->kvm;
2653 	u64 offset, ns, elapsed;
2654 	unsigned long flags;
2655 	bool matched = false;
2656 	bool synchronizing = false;
2657 
2658 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2659 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2660 	ns = get_kvmclock_base_ns();
2661 	elapsed = ns - kvm->arch.last_tsc_nsec;
2662 
2663 	if (vcpu->arch.virtual_tsc_khz) {
2664 		if (data == 0) {
2665 			/*
2666 			 * detection of vcpu initialization -- need to sync
2667 			 * with other vCPUs. This particularly helps to keep
2668 			 * kvm_clock stable after CPU hotplug
2669 			 */
2670 			synchronizing = true;
2671 		} else {
2672 			u64 tsc_exp = kvm->arch.last_tsc_write +
2673 						nsec_to_cycles(vcpu, elapsed);
2674 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2675 			/*
2676 			 * Special case: TSC write with a small delta (1 second)
2677 			 * of virtual cycle time against real time is
2678 			 * interpreted as an attempt to synchronize the CPU.
2679 			 */
2680 			synchronizing = data < tsc_exp + tsc_hz &&
2681 					data + tsc_hz > tsc_exp;
2682 		}
2683 	}
2684 
2685 	/*
2686 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2687 	 * TSC, we add elapsed time in this computation.  We could let the
2688 	 * compensation code attempt to catch up if we fall behind, but
2689 	 * it's better to try to match offsets from the beginning.
2690          */
2691 	if (synchronizing &&
2692 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2693 		if (!kvm_check_tsc_unstable()) {
2694 			offset = kvm->arch.cur_tsc_offset;
2695 		} else {
2696 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2697 			data += delta;
2698 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2699 		}
2700 		matched = true;
2701 	}
2702 
2703 	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2704 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2705 }
2706 
2707 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2708 					   s64 adjustment)
2709 {
2710 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2711 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2712 }
2713 
2714 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2715 {
2716 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2717 		WARN_ON(adjustment < 0);
2718 	adjustment = kvm_scale_tsc((u64) adjustment,
2719 				   vcpu->arch.l1_tsc_scaling_ratio);
2720 	adjust_tsc_offset_guest(vcpu, adjustment);
2721 }
2722 
2723 #ifdef CONFIG_X86_64
2724 
2725 static u64 read_tsc(void)
2726 {
2727 	u64 ret = (u64)rdtsc_ordered();
2728 	u64 last = pvclock_gtod_data.clock.cycle_last;
2729 
2730 	if (likely(ret >= last))
2731 		return ret;
2732 
2733 	/*
2734 	 * GCC likes to generate cmov here, but this branch is extremely
2735 	 * predictable (it's just a function of time and the likely is
2736 	 * very likely) and there's a data dependence, so force GCC
2737 	 * to generate a branch instead.  I don't barrier() because
2738 	 * we don't actually need a barrier, and if this function
2739 	 * ever gets inlined it will generate worse code.
2740 	 */
2741 	asm volatile ("");
2742 	return last;
2743 }
2744 
2745 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2746 			  int *mode)
2747 {
2748 	long v;
2749 	u64 tsc_pg_val;
2750 
2751 	switch (clock->vclock_mode) {
2752 	case VDSO_CLOCKMODE_HVCLOCK:
2753 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2754 						  tsc_timestamp);
2755 		if (tsc_pg_val != U64_MAX) {
2756 			/* TSC page valid */
2757 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2758 			v = (tsc_pg_val - clock->cycle_last) &
2759 				clock->mask;
2760 		} else {
2761 			/* TSC page invalid */
2762 			*mode = VDSO_CLOCKMODE_NONE;
2763 		}
2764 		break;
2765 	case VDSO_CLOCKMODE_TSC:
2766 		*mode = VDSO_CLOCKMODE_TSC;
2767 		*tsc_timestamp = read_tsc();
2768 		v = (*tsc_timestamp - clock->cycle_last) &
2769 			clock->mask;
2770 		break;
2771 	default:
2772 		*mode = VDSO_CLOCKMODE_NONE;
2773 	}
2774 
2775 	if (*mode == VDSO_CLOCKMODE_NONE)
2776 		*tsc_timestamp = v = 0;
2777 
2778 	return v * clock->mult;
2779 }
2780 
2781 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2782 {
2783 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2784 	unsigned long seq;
2785 	int mode;
2786 	u64 ns;
2787 
2788 	do {
2789 		seq = read_seqcount_begin(&gtod->seq);
2790 		ns = gtod->raw_clock.base_cycles;
2791 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2792 		ns >>= gtod->raw_clock.shift;
2793 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2794 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2795 	*t = ns;
2796 
2797 	return mode;
2798 }
2799 
2800 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2801 {
2802 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2803 	unsigned long seq;
2804 	int mode;
2805 	u64 ns;
2806 
2807 	do {
2808 		seq = read_seqcount_begin(&gtod->seq);
2809 		ts->tv_sec = gtod->wall_time_sec;
2810 		ns = gtod->clock.base_cycles;
2811 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2812 		ns >>= gtod->clock.shift;
2813 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2814 
2815 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2816 	ts->tv_nsec = ns;
2817 
2818 	return mode;
2819 }
2820 
2821 /* returns true if host is using TSC based clocksource */
2822 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2823 {
2824 	/* checked again under seqlock below */
2825 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2826 		return false;
2827 
2828 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2829 						      tsc_timestamp));
2830 }
2831 
2832 /* returns true if host is using TSC based clocksource */
2833 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2834 					   u64 *tsc_timestamp)
2835 {
2836 	/* checked again under seqlock below */
2837 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2838 		return false;
2839 
2840 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2841 }
2842 #endif
2843 
2844 /*
2845  *
2846  * Assuming a stable TSC across physical CPUS, and a stable TSC
2847  * across virtual CPUs, the following condition is possible.
2848  * Each numbered line represents an event visible to both
2849  * CPUs at the next numbered event.
2850  *
2851  * "timespecX" represents host monotonic time. "tscX" represents
2852  * RDTSC value.
2853  *
2854  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2855  *
2856  * 1.  read timespec0,tsc0
2857  * 2.					| timespec1 = timespec0 + N
2858  * 					| tsc1 = tsc0 + M
2859  * 3. transition to guest		| transition to guest
2860  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2861  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2862  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2863  *
2864  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2865  *
2866  * 	- ret0 < ret1
2867  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2868  *		...
2869  *	- 0 < N - M => M < N
2870  *
2871  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2872  * always the case (the difference between two distinct xtime instances
2873  * might be smaller then the difference between corresponding TSC reads,
2874  * when updating guest vcpus pvclock areas).
2875  *
2876  * To avoid that problem, do not allow visibility of distinct
2877  * system_timestamp/tsc_timestamp values simultaneously: use a master
2878  * copy of host monotonic time values. Update that master copy
2879  * in lockstep.
2880  *
2881  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2882  *
2883  */
2884 
2885 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2886 {
2887 #ifdef CONFIG_X86_64
2888 	struct kvm_arch *ka = &kvm->arch;
2889 	int vclock_mode;
2890 	bool host_tsc_clocksource, vcpus_matched;
2891 
2892 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2893 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2894 			atomic_read(&kvm->online_vcpus));
2895 
2896 	/*
2897 	 * If the host uses TSC clock, then passthrough TSC as stable
2898 	 * to the guest.
2899 	 */
2900 	host_tsc_clocksource = kvm_get_time_and_clockread(
2901 					&ka->master_kernel_ns,
2902 					&ka->master_cycle_now);
2903 
2904 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2905 				&& !ka->backwards_tsc_observed
2906 				&& !ka->boot_vcpu_runs_old_kvmclock;
2907 
2908 	if (ka->use_master_clock)
2909 		atomic_set(&kvm_guest_has_master_clock, 1);
2910 
2911 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2912 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2913 					vcpus_matched);
2914 #endif
2915 }
2916 
2917 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2918 {
2919 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2920 }
2921 
2922 static void __kvm_start_pvclock_update(struct kvm *kvm)
2923 {
2924 	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2925 	write_seqcount_begin(&kvm->arch.pvclock_sc);
2926 }
2927 
2928 static void kvm_start_pvclock_update(struct kvm *kvm)
2929 {
2930 	kvm_make_mclock_inprogress_request(kvm);
2931 
2932 	/* no guest entries from this point */
2933 	__kvm_start_pvclock_update(kvm);
2934 }
2935 
2936 static void kvm_end_pvclock_update(struct kvm *kvm)
2937 {
2938 	struct kvm_arch *ka = &kvm->arch;
2939 	struct kvm_vcpu *vcpu;
2940 	unsigned long i;
2941 
2942 	write_seqcount_end(&ka->pvclock_sc);
2943 	raw_spin_unlock_irq(&ka->tsc_write_lock);
2944 	kvm_for_each_vcpu(i, vcpu, kvm)
2945 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2946 
2947 	/* guest entries allowed */
2948 	kvm_for_each_vcpu(i, vcpu, kvm)
2949 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2950 }
2951 
2952 static void kvm_update_masterclock(struct kvm *kvm)
2953 {
2954 	kvm_hv_request_tsc_page_update(kvm);
2955 	kvm_start_pvclock_update(kvm);
2956 	pvclock_update_vm_gtod_copy(kvm);
2957 	kvm_end_pvclock_update(kvm);
2958 }
2959 
2960 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
2961 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2962 {
2963 	struct kvm_arch *ka = &kvm->arch;
2964 	struct pvclock_vcpu_time_info hv_clock;
2965 
2966 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2967 	get_cpu();
2968 
2969 	data->flags = 0;
2970 	if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) {
2971 #ifdef CONFIG_X86_64
2972 		struct timespec64 ts;
2973 
2974 		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
2975 			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
2976 			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
2977 		} else
2978 #endif
2979 		data->host_tsc = rdtsc();
2980 
2981 		data->flags |= KVM_CLOCK_TSC_STABLE;
2982 		hv_clock.tsc_timestamp = ka->master_cycle_now;
2983 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2984 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2985 				   &hv_clock.tsc_shift,
2986 				   &hv_clock.tsc_to_system_mul);
2987 		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
2988 	} else {
2989 		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
2990 	}
2991 
2992 	put_cpu();
2993 }
2994 
2995 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2996 {
2997 	struct kvm_arch *ka = &kvm->arch;
2998 	unsigned seq;
2999 
3000 	do {
3001 		seq = read_seqcount_begin(&ka->pvclock_sc);
3002 		__get_kvmclock(kvm, data);
3003 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3004 }
3005 
3006 u64 get_kvmclock_ns(struct kvm *kvm)
3007 {
3008 	struct kvm_clock_data data;
3009 
3010 	get_kvmclock(kvm, &data);
3011 	return data.clock;
3012 }
3013 
3014 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3015 				    struct gfn_to_pfn_cache *gpc,
3016 				    unsigned int offset)
3017 {
3018 	struct kvm_vcpu_arch *vcpu = &v->arch;
3019 	struct pvclock_vcpu_time_info *guest_hv_clock;
3020 	unsigned long flags;
3021 
3022 	read_lock_irqsave(&gpc->lock, flags);
3023 	while (!kvm_gfn_to_pfn_cache_check(v->kvm, gpc, gpc->gpa,
3024 					   offset + sizeof(*guest_hv_clock))) {
3025 		read_unlock_irqrestore(&gpc->lock, flags);
3026 
3027 		if (kvm_gfn_to_pfn_cache_refresh(v->kvm, gpc, gpc->gpa,
3028 						 offset + sizeof(*guest_hv_clock)))
3029 			return;
3030 
3031 		read_lock_irqsave(&gpc->lock, flags);
3032 	}
3033 
3034 	guest_hv_clock = (void *)(gpc->khva + offset);
3035 
3036 	/*
3037 	 * This VCPU is paused, but it's legal for a guest to read another
3038 	 * VCPU's kvmclock, so we really have to follow the specification where
3039 	 * it says that version is odd if data is being modified, and even after
3040 	 * it is consistent.
3041 	 */
3042 
3043 	guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3044 	smp_wmb();
3045 
3046 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3047 	vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3048 
3049 	if (vcpu->pvclock_set_guest_stopped_request) {
3050 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3051 		vcpu->pvclock_set_guest_stopped_request = false;
3052 	}
3053 
3054 	memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3055 	smp_wmb();
3056 
3057 	guest_hv_clock->version = ++vcpu->hv_clock.version;
3058 
3059 	mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3060 	read_unlock_irqrestore(&gpc->lock, flags);
3061 
3062 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3063 }
3064 
3065 static int kvm_guest_time_update(struct kvm_vcpu *v)
3066 {
3067 	unsigned long flags, tgt_tsc_khz;
3068 	unsigned seq;
3069 	struct kvm_vcpu_arch *vcpu = &v->arch;
3070 	struct kvm_arch *ka = &v->kvm->arch;
3071 	s64 kernel_ns;
3072 	u64 tsc_timestamp, host_tsc;
3073 	u8 pvclock_flags;
3074 	bool use_master_clock;
3075 
3076 	kernel_ns = 0;
3077 	host_tsc = 0;
3078 
3079 	/*
3080 	 * If the host uses TSC clock, then passthrough TSC as stable
3081 	 * to the guest.
3082 	 */
3083 	do {
3084 		seq = read_seqcount_begin(&ka->pvclock_sc);
3085 		use_master_clock = ka->use_master_clock;
3086 		if (use_master_clock) {
3087 			host_tsc = ka->master_cycle_now;
3088 			kernel_ns = ka->master_kernel_ns;
3089 		}
3090 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3091 
3092 	/* Keep irq disabled to prevent changes to the clock */
3093 	local_irq_save(flags);
3094 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
3095 	if (unlikely(tgt_tsc_khz == 0)) {
3096 		local_irq_restore(flags);
3097 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3098 		return 1;
3099 	}
3100 	if (!use_master_clock) {
3101 		host_tsc = rdtsc();
3102 		kernel_ns = get_kvmclock_base_ns();
3103 	}
3104 
3105 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3106 
3107 	/*
3108 	 * We may have to catch up the TSC to match elapsed wall clock
3109 	 * time for two reasons, even if kvmclock is used.
3110 	 *   1) CPU could have been running below the maximum TSC rate
3111 	 *   2) Broken TSC compensation resets the base at each VCPU
3112 	 *      entry to avoid unknown leaps of TSC even when running
3113 	 *      again on the same CPU.  This may cause apparent elapsed
3114 	 *      time to disappear, and the guest to stand still or run
3115 	 *	very slowly.
3116 	 */
3117 	if (vcpu->tsc_catchup) {
3118 		u64 tsc = compute_guest_tsc(v, kernel_ns);
3119 		if (tsc > tsc_timestamp) {
3120 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3121 			tsc_timestamp = tsc;
3122 		}
3123 	}
3124 
3125 	local_irq_restore(flags);
3126 
3127 	/* With all the info we got, fill in the values */
3128 
3129 	if (kvm_caps.has_tsc_control)
3130 		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3131 					    v->arch.l1_tsc_scaling_ratio);
3132 
3133 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3134 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3135 				   &vcpu->hv_clock.tsc_shift,
3136 				   &vcpu->hv_clock.tsc_to_system_mul);
3137 		vcpu->hw_tsc_khz = tgt_tsc_khz;
3138 	}
3139 
3140 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3141 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3142 	vcpu->last_guest_tsc = tsc_timestamp;
3143 
3144 	/* If the host uses TSC clocksource, then it is stable */
3145 	pvclock_flags = 0;
3146 	if (use_master_clock)
3147 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3148 
3149 	vcpu->hv_clock.flags = pvclock_flags;
3150 
3151 	if (vcpu->pv_time.active)
3152 		kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3153 	if (vcpu->xen.vcpu_info_cache.active)
3154 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3155 					offsetof(struct compat_vcpu_info, time));
3156 	if (vcpu->xen.vcpu_time_info_cache.active)
3157 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3158 	kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3159 	return 0;
3160 }
3161 
3162 /*
3163  * kvmclock updates which are isolated to a given vcpu, such as
3164  * vcpu->cpu migration, should not allow system_timestamp from
3165  * the rest of the vcpus to remain static. Otherwise ntp frequency
3166  * correction applies to one vcpu's system_timestamp but not
3167  * the others.
3168  *
3169  * So in those cases, request a kvmclock update for all vcpus.
3170  * We need to rate-limit these requests though, as they can
3171  * considerably slow guests that have a large number of vcpus.
3172  * The time for a remote vcpu to update its kvmclock is bound
3173  * by the delay we use to rate-limit the updates.
3174  */
3175 
3176 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3177 
3178 static void kvmclock_update_fn(struct work_struct *work)
3179 {
3180 	unsigned long i;
3181 	struct delayed_work *dwork = to_delayed_work(work);
3182 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3183 					   kvmclock_update_work);
3184 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3185 	struct kvm_vcpu *vcpu;
3186 
3187 	kvm_for_each_vcpu(i, vcpu, kvm) {
3188 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3189 		kvm_vcpu_kick(vcpu);
3190 	}
3191 }
3192 
3193 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3194 {
3195 	struct kvm *kvm = v->kvm;
3196 
3197 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3198 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3199 					KVMCLOCK_UPDATE_DELAY);
3200 }
3201 
3202 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3203 
3204 static void kvmclock_sync_fn(struct work_struct *work)
3205 {
3206 	struct delayed_work *dwork = to_delayed_work(work);
3207 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3208 					   kvmclock_sync_work);
3209 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3210 
3211 	if (!kvmclock_periodic_sync)
3212 		return;
3213 
3214 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3215 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3216 					KVMCLOCK_SYNC_PERIOD);
3217 }
3218 
3219 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3220 static bool is_mci_control_msr(u32 msr)
3221 {
3222 	return (msr & 3) == 0;
3223 }
3224 static bool is_mci_status_msr(u32 msr)
3225 {
3226 	return (msr & 3) == 1;
3227 }
3228 
3229 /*
3230  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3231  */
3232 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3233 {
3234 	/* McStatusWrEn enabled? */
3235 	if (guest_cpuid_is_amd_or_hygon(vcpu))
3236 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3237 
3238 	return false;
3239 }
3240 
3241 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3242 {
3243 	u64 mcg_cap = vcpu->arch.mcg_cap;
3244 	unsigned bank_num = mcg_cap & 0xff;
3245 	u32 msr = msr_info->index;
3246 	u64 data = msr_info->data;
3247 	u32 offset, last_msr;
3248 
3249 	switch (msr) {
3250 	case MSR_IA32_MCG_STATUS:
3251 		vcpu->arch.mcg_status = data;
3252 		break;
3253 	case MSR_IA32_MCG_CTL:
3254 		if (!(mcg_cap & MCG_CTL_P) &&
3255 		    (data || !msr_info->host_initiated))
3256 			return 1;
3257 		if (data != 0 && data != ~(u64)0)
3258 			return 1;
3259 		vcpu->arch.mcg_ctl = data;
3260 		break;
3261 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3262 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3263 		if (msr > last_msr)
3264 			return 1;
3265 
3266 		if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3267 			return 1;
3268 		/* An attempt to write a 1 to a reserved bit raises #GP */
3269 		if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3270 			return 1;
3271 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3272 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3273 		vcpu->arch.mci_ctl2_banks[offset] = data;
3274 		break;
3275 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3276 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3277 		if (msr > last_msr)
3278 			return 1;
3279 
3280 		/*
3281 		 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3282 		 * values are architecturally undefined.  But, some Linux
3283 		 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3284 		 * issue on AMD K8s, allow bit 10 to be clear when setting all
3285 		 * other bits in order to avoid an uncaught #GP in the guest.
3286 		 *
3287 		 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3288 		 * single-bit ECC data errors.
3289 		 */
3290 		if (is_mci_control_msr(msr) &&
3291 		    data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3292 			return 1;
3293 
3294 		/*
3295 		 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3296 		 * AMD-based CPUs allow non-zero values, but if and only if
3297 		 * HWCR[McStatusWrEn] is set.
3298 		 */
3299 		if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3300 		    data != 0 && !can_set_mci_status(vcpu))
3301 			return 1;
3302 
3303 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3304 					    last_msr + 1 - MSR_IA32_MC0_CTL);
3305 		vcpu->arch.mce_banks[offset] = data;
3306 		break;
3307 	default:
3308 		return 1;
3309 	}
3310 	return 0;
3311 }
3312 
3313 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3314 {
3315 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3316 
3317 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3318 }
3319 
3320 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3321 {
3322 	gpa_t gpa = data & ~0x3f;
3323 
3324 	/* Bits 4:5 are reserved, Should be zero */
3325 	if (data & 0x30)
3326 		return 1;
3327 
3328 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3329 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3330 		return 1;
3331 
3332 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3333 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3334 		return 1;
3335 
3336 	if (!lapic_in_kernel(vcpu))
3337 		return data ? 1 : 0;
3338 
3339 	vcpu->arch.apf.msr_en_val = data;
3340 
3341 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3342 		kvm_clear_async_pf_completion_queue(vcpu);
3343 		kvm_async_pf_hash_reset(vcpu);
3344 		return 0;
3345 	}
3346 
3347 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3348 					sizeof(u64)))
3349 		return 1;
3350 
3351 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3352 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3353 
3354 	kvm_async_pf_wakeup_all(vcpu);
3355 
3356 	return 0;
3357 }
3358 
3359 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3360 {
3361 	/* Bits 8-63 are reserved */
3362 	if (data >> 8)
3363 		return 1;
3364 
3365 	if (!lapic_in_kernel(vcpu))
3366 		return 1;
3367 
3368 	vcpu->arch.apf.msr_int_val = data;
3369 
3370 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3371 
3372 	return 0;
3373 }
3374 
3375 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3376 {
3377 	kvm_gfn_to_pfn_cache_destroy(vcpu->kvm, &vcpu->arch.pv_time);
3378 	vcpu->arch.time = 0;
3379 }
3380 
3381 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3382 {
3383 	++vcpu->stat.tlb_flush;
3384 	static_call(kvm_x86_flush_tlb_all)(vcpu);
3385 }
3386 
3387 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3388 {
3389 	++vcpu->stat.tlb_flush;
3390 
3391 	if (!tdp_enabled) {
3392 		/*
3393 		 * A TLB flush on behalf of the guest is equivalent to
3394 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3395 		 * a forced sync of the shadow page tables.  Ensure all the
3396 		 * roots are synced and the guest TLB in hardware is clean.
3397 		 */
3398 		kvm_mmu_sync_roots(vcpu);
3399 		kvm_mmu_sync_prev_roots(vcpu);
3400 	}
3401 
3402 	static_call(kvm_x86_flush_tlb_guest)(vcpu);
3403 }
3404 
3405 
3406 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3407 {
3408 	++vcpu->stat.tlb_flush;
3409 	static_call(kvm_x86_flush_tlb_current)(vcpu);
3410 }
3411 
3412 /*
3413  * Service "local" TLB flush requests, which are specific to the current MMU
3414  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3415  * TLB flushes that are targeted at an MMU context also need to be serviced
3416  * prior before nested VM-Enter/VM-Exit.
3417  */
3418 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3419 {
3420 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3421 		kvm_vcpu_flush_tlb_current(vcpu);
3422 
3423 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3424 		kvm_vcpu_flush_tlb_guest(vcpu);
3425 }
3426 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3427 
3428 static void record_steal_time(struct kvm_vcpu *vcpu)
3429 {
3430 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3431 	struct kvm_steal_time __user *st;
3432 	struct kvm_memslots *slots;
3433 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3434 	u64 steal;
3435 	u32 version;
3436 
3437 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3438 		kvm_xen_runstate_set_running(vcpu);
3439 		return;
3440 	}
3441 
3442 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3443 		return;
3444 
3445 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3446 		return;
3447 
3448 	slots = kvm_memslots(vcpu->kvm);
3449 
3450 	if (unlikely(slots->generation != ghc->generation ||
3451 		     gpa != ghc->gpa ||
3452 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3453 		/* We rely on the fact that it fits in a single page. */
3454 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3455 
3456 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3457 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3458 			return;
3459 	}
3460 
3461 	st = (struct kvm_steal_time __user *)ghc->hva;
3462 	/*
3463 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3464 	 * expensive IPIs.
3465 	 */
3466 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3467 		u8 st_preempted = 0;
3468 		int err = -EFAULT;
3469 
3470 		if (!user_access_begin(st, sizeof(*st)))
3471 			return;
3472 
3473 		asm volatile("1: xchgb %0, %2\n"
3474 			     "xor %1, %1\n"
3475 			     "2:\n"
3476 			     _ASM_EXTABLE_UA(1b, 2b)
3477 			     : "+q" (st_preempted),
3478 			       "+&r" (err),
3479 			       "+m" (st->preempted));
3480 		if (err)
3481 			goto out;
3482 
3483 		user_access_end();
3484 
3485 		vcpu->arch.st.preempted = 0;
3486 
3487 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3488 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3489 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3490 			kvm_vcpu_flush_tlb_guest(vcpu);
3491 
3492 		if (!user_access_begin(st, sizeof(*st)))
3493 			goto dirty;
3494 	} else {
3495 		if (!user_access_begin(st, sizeof(*st)))
3496 			return;
3497 
3498 		unsafe_put_user(0, &st->preempted, out);
3499 		vcpu->arch.st.preempted = 0;
3500 	}
3501 
3502 	unsafe_get_user(version, &st->version, out);
3503 	if (version & 1)
3504 		version += 1;  /* first time write, random junk */
3505 
3506 	version += 1;
3507 	unsafe_put_user(version, &st->version, out);
3508 
3509 	smp_wmb();
3510 
3511 	unsafe_get_user(steal, &st->steal, out);
3512 	steal += current->sched_info.run_delay -
3513 		vcpu->arch.st.last_steal;
3514 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3515 	unsafe_put_user(steal, &st->steal, out);
3516 
3517 	version += 1;
3518 	unsafe_put_user(version, &st->version, out);
3519 
3520  out:
3521 	user_access_end();
3522  dirty:
3523 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3524 }
3525 
3526 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3527 {
3528 	bool pr = false;
3529 	u32 msr = msr_info->index;
3530 	u64 data = msr_info->data;
3531 
3532 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3533 		return kvm_xen_write_hypercall_page(vcpu, data);
3534 
3535 	switch (msr) {
3536 	case MSR_AMD64_NB_CFG:
3537 	case MSR_IA32_UCODE_WRITE:
3538 	case MSR_VM_HSAVE_PA:
3539 	case MSR_AMD64_PATCH_LOADER:
3540 	case MSR_AMD64_BU_CFG2:
3541 	case MSR_AMD64_DC_CFG:
3542 	case MSR_F15H_EX_CFG:
3543 		break;
3544 
3545 	case MSR_IA32_UCODE_REV:
3546 		if (msr_info->host_initiated)
3547 			vcpu->arch.microcode_version = data;
3548 		break;
3549 	case MSR_IA32_ARCH_CAPABILITIES:
3550 		if (!msr_info->host_initiated)
3551 			return 1;
3552 		vcpu->arch.arch_capabilities = data;
3553 		break;
3554 	case MSR_IA32_PERF_CAPABILITIES: {
3555 		struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3556 
3557 		if (!msr_info->host_initiated)
3558 			return 1;
3559 		if (kvm_get_msr_feature(&msr_ent))
3560 			return 1;
3561 		if (data & ~msr_ent.data)
3562 			return 1;
3563 
3564 		vcpu->arch.perf_capabilities = data;
3565 		kvm_pmu_refresh(vcpu);
3566 		return 0;
3567 	}
3568 	case MSR_EFER:
3569 		return set_efer(vcpu, msr_info);
3570 	case MSR_K7_HWCR:
3571 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3572 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3573 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3574 
3575 		/* Handle McStatusWrEn */
3576 		if (data == BIT_ULL(18)) {
3577 			vcpu->arch.msr_hwcr = data;
3578 		} else if (data != 0) {
3579 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3580 				    data);
3581 			return 1;
3582 		}
3583 		break;
3584 	case MSR_FAM10H_MMIO_CONF_BASE:
3585 		if (data != 0) {
3586 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3587 				    "0x%llx\n", data);
3588 			return 1;
3589 		}
3590 		break;
3591 	case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
3592 	case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff:
3593 		return kvm_mtrr_set_msr(vcpu, msr, data);
3594 	case MSR_IA32_APICBASE:
3595 		return kvm_set_apic_base(vcpu, msr_info);
3596 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3597 		return kvm_x2apic_msr_write(vcpu, msr, data);
3598 	case MSR_IA32_TSC_DEADLINE:
3599 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3600 		break;
3601 	case MSR_IA32_TSC_ADJUST:
3602 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3603 			if (!msr_info->host_initiated) {
3604 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3605 				adjust_tsc_offset_guest(vcpu, adj);
3606 				/* Before back to guest, tsc_timestamp must be adjusted
3607 				 * as well, otherwise guest's percpu pvclock time could jump.
3608 				 */
3609 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3610 			}
3611 			vcpu->arch.ia32_tsc_adjust_msr = data;
3612 		}
3613 		break;
3614 	case MSR_IA32_MISC_ENABLE: {
3615 		u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3616 
3617 		if (!msr_info->host_initiated) {
3618 			/* RO bits */
3619 			if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3620 				return 1;
3621 
3622 			/* R bits, i.e. writes are ignored, but don't fault. */
3623 			data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3624 			data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3625 		}
3626 
3627 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3628 		    ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3629 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3630 				return 1;
3631 			vcpu->arch.ia32_misc_enable_msr = data;
3632 			kvm_update_cpuid_runtime(vcpu);
3633 		} else {
3634 			vcpu->arch.ia32_misc_enable_msr = data;
3635 		}
3636 		break;
3637 	}
3638 	case MSR_IA32_SMBASE:
3639 		if (!msr_info->host_initiated)
3640 			return 1;
3641 		vcpu->arch.smbase = data;
3642 		break;
3643 	case MSR_IA32_POWER_CTL:
3644 		vcpu->arch.msr_ia32_power_ctl = data;
3645 		break;
3646 	case MSR_IA32_TSC:
3647 		if (msr_info->host_initiated) {
3648 			kvm_synchronize_tsc(vcpu, data);
3649 		} else {
3650 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3651 			adjust_tsc_offset_guest(vcpu, adj);
3652 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3653 		}
3654 		break;
3655 	case MSR_IA32_XSS:
3656 		if (!msr_info->host_initiated &&
3657 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3658 			return 1;
3659 		/*
3660 		 * KVM supports exposing PT to the guest, but does not support
3661 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3662 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3663 		 */
3664 		if (data & ~kvm_caps.supported_xss)
3665 			return 1;
3666 		vcpu->arch.ia32_xss = data;
3667 		kvm_update_cpuid_runtime(vcpu);
3668 		break;
3669 	case MSR_SMI_COUNT:
3670 		if (!msr_info->host_initiated)
3671 			return 1;
3672 		vcpu->arch.smi_count = data;
3673 		break;
3674 	case MSR_KVM_WALL_CLOCK_NEW:
3675 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3676 			return 1;
3677 
3678 		vcpu->kvm->arch.wall_clock = data;
3679 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3680 		break;
3681 	case MSR_KVM_WALL_CLOCK:
3682 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3683 			return 1;
3684 
3685 		vcpu->kvm->arch.wall_clock = data;
3686 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3687 		break;
3688 	case MSR_KVM_SYSTEM_TIME_NEW:
3689 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3690 			return 1;
3691 
3692 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3693 		break;
3694 	case MSR_KVM_SYSTEM_TIME:
3695 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3696 			return 1;
3697 
3698 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3699 		break;
3700 	case MSR_KVM_ASYNC_PF_EN:
3701 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3702 			return 1;
3703 
3704 		if (kvm_pv_enable_async_pf(vcpu, data))
3705 			return 1;
3706 		break;
3707 	case MSR_KVM_ASYNC_PF_INT:
3708 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3709 			return 1;
3710 
3711 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3712 			return 1;
3713 		break;
3714 	case MSR_KVM_ASYNC_PF_ACK:
3715 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3716 			return 1;
3717 		if (data & 0x1) {
3718 			vcpu->arch.apf.pageready_pending = false;
3719 			kvm_check_async_pf_completion(vcpu);
3720 		}
3721 		break;
3722 	case MSR_KVM_STEAL_TIME:
3723 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3724 			return 1;
3725 
3726 		if (unlikely(!sched_info_on()))
3727 			return 1;
3728 
3729 		if (data & KVM_STEAL_RESERVED_MASK)
3730 			return 1;
3731 
3732 		vcpu->arch.st.msr_val = data;
3733 
3734 		if (!(data & KVM_MSR_ENABLED))
3735 			break;
3736 
3737 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3738 
3739 		break;
3740 	case MSR_KVM_PV_EOI_EN:
3741 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3742 			return 1;
3743 
3744 		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3745 			return 1;
3746 		break;
3747 
3748 	case MSR_KVM_POLL_CONTROL:
3749 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3750 			return 1;
3751 
3752 		/* only enable bit supported */
3753 		if (data & (-1ULL << 1))
3754 			return 1;
3755 
3756 		vcpu->arch.msr_kvm_poll_control = data;
3757 		break;
3758 
3759 	case MSR_IA32_MCG_CTL:
3760 	case MSR_IA32_MCG_STATUS:
3761 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3762 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3763 		return set_msr_mce(vcpu, msr_info);
3764 
3765 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3766 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3767 		pr = true;
3768 		fallthrough;
3769 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3770 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3771 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3772 			return kvm_pmu_set_msr(vcpu, msr_info);
3773 
3774 		if (pr || data != 0)
3775 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3776 				    "0x%x data 0x%llx\n", msr, data);
3777 		break;
3778 	case MSR_K7_CLK_CTL:
3779 		/*
3780 		 * Ignore all writes to this no longer documented MSR.
3781 		 * Writes are only relevant for old K7 processors,
3782 		 * all pre-dating SVM, but a recommended workaround from
3783 		 * AMD for these chips. It is possible to specify the
3784 		 * affected processor models on the command line, hence
3785 		 * the need to ignore the workaround.
3786 		 */
3787 		break;
3788 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3789 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3790 	case HV_X64_MSR_SYNDBG_OPTIONS:
3791 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3792 	case HV_X64_MSR_CRASH_CTL:
3793 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3794 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3795 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3796 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3797 		return kvm_hv_set_msr_common(vcpu, msr, data,
3798 					     msr_info->host_initiated);
3799 	case MSR_IA32_BBL_CR_CTL3:
3800 		/* Drop writes to this legacy MSR -- see rdmsr
3801 		 * counterpart for further detail.
3802 		 */
3803 		if (report_ignored_msrs)
3804 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3805 				msr, data);
3806 		break;
3807 	case MSR_AMD64_OSVW_ID_LENGTH:
3808 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3809 			return 1;
3810 		vcpu->arch.osvw.length = data;
3811 		break;
3812 	case MSR_AMD64_OSVW_STATUS:
3813 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3814 			return 1;
3815 		vcpu->arch.osvw.status = data;
3816 		break;
3817 	case MSR_PLATFORM_INFO:
3818 		if (!msr_info->host_initiated ||
3819 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3820 		     cpuid_fault_enabled(vcpu)))
3821 			return 1;
3822 		vcpu->arch.msr_platform_info = data;
3823 		break;
3824 	case MSR_MISC_FEATURES_ENABLES:
3825 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3826 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3827 		     !supports_cpuid_fault(vcpu)))
3828 			return 1;
3829 		vcpu->arch.msr_misc_features_enables = data;
3830 		break;
3831 #ifdef CONFIG_X86_64
3832 	case MSR_IA32_XFD:
3833 		if (!msr_info->host_initiated &&
3834 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3835 			return 1;
3836 
3837 		if (data & ~kvm_guest_supported_xfd(vcpu))
3838 			return 1;
3839 
3840 		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3841 		break;
3842 	case MSR_IA32_XFD_ERR:
3843 		if (!msr_info->host_initiated &&
3844 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3845 			return 1;
3846 
3847 		if (data & ~kvm_guest_supported_xfd(vcpu))
3848 			return 1;
3849 
3850 		vcpu->arch.guest_fpu.xfd_err = data;
3851 		break;
3852 #endif
3853 	case MSR_IA32_PEBS_ENABLE:
3854 	case MSR_IA32_DS_AREA:
3855 	case MSR_PEBS_DATA_CFG:
3856 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3857 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3858 			return kvm_pmu_set_msr(vcpu, msr_info);
3859 		/*
3860 		 * Userspace is allowed to write '0' to MSRs that KVM reports
3861 		 * as to-be-saved, even if an MSRs isn't fully supported.
3862 		 */
3863 		return !msr_info->host_initiated || data;
3864 	default:
3865 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3866 			return kvm_pmu_set_msr(vcpu, msr_info);
3867 		return KVM_MSR_RET_INVALID;
3868 	}
3869 	return 0;
3870 }
3871 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3872 
3873 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3874 {
3875 	u64 data;
3876 	u64 mcg_cap = vcpu->arch.mcg_cap;
3877 	unsigned bank_num = mcg_cap & 0xff;
3878 	u32 offset, last_msr;
3879 
3880 	switch (msr) {
3881 	case MSR_IA32_P5_MC_ADDR:
3882 	case MSR_IA32_P5_MC_TYPE:
3883 		data = 0;
3884 		break;
3885 	case MSR_IA32_MCG_CAP:
3886 		data = vcpu->arch.mcg_cap;
3887 		break;
3888 	case MSR_IA32_MCG_CTL:
3889 		if (!(mcg_cap & MCG_CTL_P) && !host)
3890 			return 1;
3891 		data = vcpu->arch.mcg_ctl;
3892 		break;
3893 	case MSR_IA32_MCG_STATUS:
3894 		data = vcpu->arch.mcg_status;
3895 		break;
3896 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3897 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3898 		if (msr > last_msr)
3899 			return 1;
3900 
3901 		if (!(mcg_cap & MCG_CMCI_P) && !host)
3902 			return 1;
3903 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3904 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3905 		data = vcpu->arch.mci_ctl2_banks[offset];
3906 		break;
3907 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3908 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3909 		if (msr > last_msr)
3910 			return 1;
3911 
3912 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3913 					    last_msr + 1 - MSR_IA32_MC0_CTL);
3914 		data = vcpu->arch.mce_banks[offset];
3915 		break;
3916 	default:
3917 		return 1;
3918 	}
3919 	*pdata = data;
3920 	return 0;
3921 }
3922 
3923 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3924 {
3925 	switch (msr_info->index) {
3926 	case MSR_IA32_PLATFORM_ID:
3927 	case MSR_IA32_EBL_CR_POWERON:
3928 	case MSR_IA32_LASTBRANCHFROMIP:
3929 	case MSR_IA32_LASTBRANCHTOIP:
3930 	case MSR_IA32_LASTINTFROMIP:
3931 	case MSR_IA32_LASTINTTOIP:
3932 	case MSR_AMD64_SYSCFG:
3933 	case MSR_K8_TSEG_ADDR:
3934 	case MSR_K8_TSEG_MASK:
3935 	case MSR_VM_HSAVE_PA:
3936 	case MSR_K8_INT_PENDING_MSG:
3937 	case MSR_AMD64_NB_CFG:
3938 	case MSR_FAM10H_MMIO_CONF_BASE:
3939 	case MSR_AMD64_BU_CFG2:
3940 	case MSR_IA32_PERF_CTL:
3941 	case MSR_AMD64_DC_CFG:
3942 	case MSR_F15H_EX_CFG:
3943 	/*
3944 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3945 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3946 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3947 	 * so for existing CPU-specific MSRs.
3948 	 */
3949 	case MSR_RAPL_POWER_UNIT:
3950 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3951 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3952 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3953 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3954 		msr_info->data = 0;
3955 		break;
3956 	case MSR_IA32_PEBS_ENABLE:
3957 	case MSR_IA32_DS_AREA:
3958 	case MSR_PEBS_DATA_CFG:
3959 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3960 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3961 			return kvm_pmu_get_msr(vcpu, msr_info);
3962 		/*
3963 		 * Userspace is allowed to read MSRs that KVM reports as
3964 		 * to-be-saved, even if an MSR isn't fully supported.
3965 		 */
3966 		if (!msr_info->host_initiated)
3967 			return 1;
3968 		msr_info->data = 0;
3969 		break;
3970 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3971 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3972 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3973 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3974 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3975 			return kvm_pmu_get_msr(vcpu, msr_info);
3976 		msr_info->data = 0;
3977 		break;
3978 	case MSR_IA32_UCODE_REV:
3979 		msr_info->data = vcpu->arch.microcode_version;
3980 		break;
3981 	case MSR_IA32_ARCH_CAPABILITIES:
3982 		if (!msr_info->host_initiated &&
3983 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3984 			return 1;
3985 		msr_info->data = vcpu->arch.arch_capabilities;
3986 		break;
3987 	case MSR_IA32_PERF_CAPABILITIES:
3988 		if (!msr_info->host_initiated &&
3989 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3990 			return 1;
3991 		msr_info->data = vcpu->arch.perf_capabilities;
3992 		break;
3993 	case MSR_IA32_POWER_CTL:
3994 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3995 		break;
3996 	case MSR_IA32_TSC: {
3997 		/*
3998 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3999 		 * even when not intercepted. AMD manual doesn't explicitly
4000 		 * state this but appears to behave the same.
4001 		 *
4002 		 * On userspace reads and writes, however, we unconditionally
4003 		 * return L1's TSC value to ensure backwards-compatible
4004 		 * behavior for migration.
4005 		 */
4006 		u64 offset, ratio;
4007 
4008 		if (msr_info->host_initiated) {
4009 			offset = vcpu->arch.l1_tsc_offset;
4010 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
4011 		} else {
4012 			offset = vcpu->arch.tsc_offset;
4013 			ratio = vcpu->arch.tsc_scaling_ratio;
4014 		}
4015 
4016 		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4017 		break;
4018 	}
4019 	case MSR_MTRRcap:
4020 	case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
4021 	case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff:
4022 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4023 	case 0xcd: /* fsb frequency */
4024 		msr_info->data = 3;
4025 		break;
4026 		/*
4027 		 * MSR_EBC_FREQUENCY_ID
4028 		 * Conservative value valid for even the basic CPU models.
4029 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4030 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4031 		 * and 266MHz for model 3, or 4. Set Core Clock
4032 		 * Frequency to System Bus Frequency Ratio to 1 (bits
4033 		 * 31:24) even though these are only valid for CPU
4034 		 * models > 2, however guests may end up dividing or
4035 		 * multiplying by zero otherwise.
4036 		 */
4037 	case MSR_EBC_FREQUENCY_ID:
4038 		msr_info->data = 1 << 24;
4039 		break;
4040 	case MSR_IA32_APICBASE:
4041 		msr_info->data = kvm_get_apic_base(vcpu);
4042 		break;
4043 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4044 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4045 	case MSR_IA32_TSC_DEADLINE:
4046 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4047 		break;
4048 	case MSR_IA32_TSC_ADJUST:
4049 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4050 		break;
4051 	case MSR_IA32_MISC_ENABLE:
4052 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4053 		break;
4054 	case MSR_IA32_SMBASE:
4055 		if (!msr_info->host_initiated)
4056 			return 1;
4057 		msr_info->data = vcpu->arch.smbase;
4058 		break;
4059 	case MSR_SMI_COUNT:
4060 		msr_info->data = vcpu->arch.smi_count;
4061 		break;
4062 	case MSR_IA32_PERF_STATUS:
4063 		/* TSC increment by tick */
4064 		msr_info->data = 1000ULL;
4065 		/* CPU multiplier */
4066 		msr_info->data |= (((uint64_t)4ULL) << 40);
4067 		break;
4068 	case MSR_EFER:
4069 		msr_info->data = vcpu->arch.efer;
4070 		break;
4071 	case MSR_KVM_WALL_CLOCK:
4072 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4073 			return 1;
4074 
4075 		msr_info->data = vcpu->kvm->arch.wall_clock;
4076 		break;
4077 	case MSR_KVM_WALL_CLOCK_NEW:
4078 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4079 			return 1;
4080 
4081 		msr_info->data = vcpu->kvm->arch.wall_clock;
4082 		break;
4083 	case MSR_KVM_SYSTEM_TIME:
4084 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4085 			return 1;
4086 
4087 		msr_info->data = vcpu->arch.time;
4088 		break;
4089 	case MSR_KVM_SYSTEM_TIME_NEW:
4090 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4091 			return 1;
4092 
4093 		msr_info->data = vcpu->arch.time;
4094 		break;
4095 	case MSR_KVM_ASYNC_PF_EN:
4096 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4097 			return 1;
4098 
4099 		msr_info->data = vcpu->arch.apf.msr_en_val;
4100 		break;
4101 	case MSR_KVM_ASYNC_PF_INT:
4102 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4103 			return 1;
4104 
4105 		msr_info->data = vcpu->arch.apf.msr_int_val;
4106 		break;
4107 	case MSR_KVM_ASYNC_PF_ACK:
4108 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4109 			return 1;
4110 
4111 		msr_info->data = 0;
4112 		break;
4113 	case MSR_KVM_STEAL_TIME:
4114 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4115 			return 1;
4116 
4117 		msr_info->data = vcpu->arch.st.msr_val;
4118 		break;
4119 	case MSR_KVM_PV_EOI_EN:
4120 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4121 			return 1;
4122 
4123 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
4124 		break;
4125 	case MSR_KVM_POLL_CONTROL:
4126 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4127 			return 1;
4128 
4129 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
4130 		break;
4131 	case MSR_IA32_P5_MC_ADDR:
4132 	case MSR_IA32_P5_MC_TYPE:
4133 	case MSR_IA32_MCG_CAP:
4134 	case MSR_IA32_MCG_CTL:
4135 	case MSR_IA32_MCG_STATUS:
4136 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4137 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4138 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4139 				   msr_info->host_initiated);
4140 	case MSR_IA32_XSS:
4141 		if (!msr_info->host_initiated &&
4142 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4143 			return 1;
4144 		msr_info->data = vcpu->arch.ia32_xss;
4145 		break;
4146 	case MSR_K7_CLK_CTL:
4147 		/*
4148 		 * Provide expected ramp-up count for K7. All other
4149 		 * are set to zero, indicating minimum divisors for
4150 		 * every field.
4151 		 *
4152 		 * This prevents guest kernels on AMD host with CPU
4153 		 * type 6, model 8 and higher from exploding due to
4154 		 * the rdmsr failing.
4155 		 */
4156 		msr_info->data = 0x20000000;
4157 		break;
4158 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4159 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4160 	case HV_X64_MSR_SYNDBG_OPTIONS:
4161 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4162 	case HV_X64_MSR_CRASH_CTL:
4163 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4164 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4165 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4166 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4167 		return kvm_hv_get_msr_common(vcpu,
4168 					     msr_info->index, &msr_info->data,
4169 					     msr_info->host_initiated);
4170 	case MSR_IA32_BBL_CR_CTL3:
4171 		/* This legacy MSR exists but isn't fully documented in current
4172 		 * silicon.  It is however accessed by winxp in very narrow
4173 		 * scenarios where it sets bit #19, itself documented as
4174 		 * a "reserved" bit.  Best effort attempt to source coherent
4175 		 * read data here should the balance of the register be
4176 		 * interpreted by the guest:
4177 		 *
4178 		 * L2 cache control register 3: 64GB range, 256KB size,
4179 		 * enabled, latency 0x1, configured
4180 		 */
4181 		msr_info->data = 0xbe702111;
4182 		break;
4183 	case MSR_AMD64_OSVW_ID_LENGTH:
4184 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4185 			return 1;
4186 		msr_info->data = vcpu->arch.osvw.length;
4187 		break;
4188 	case MSR_AMD64_OSVW_STATUS:
4189 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4190 			return 1;
4191 		msr_info->data = vcpu->arch.osvw.status;
4192 		break;
4193 	case MSR_PLATFORM_INFO:
4194 		if (!msr_info->host_initiated &&
4195 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4196 			return 1;
4197 		msr_info->data = vcpu->arch.msr_platform_info;
4198 		break;
4199 	case MSR_MISC_FEATURES_ENABLES:
4200 		msr_info->data = vcpu->arch.msr_misc_features_enables;
4201 		break;
4202 	case MSR_K7_HWCR:
4203 		msr_info->data = vcpu->arch.msr_hwcr;
4204 		break;
4205 #ifdef CONFIG_X86_64
4206 	case MSR_IA32_XFD:
4207 		if (!msr_info->host_initiated &&
4208 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4209 			return 1;
4210 
4211 		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4212 		break;
4213 	case MSR_IA32_XFD_ERR:
4214 		if (!msr_info->host_initiated &&
4215 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4216 			return 1;
4217 
4218 		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4219 		break;
4220 #endif
4221 	default:
4222 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4223 			return kvm_pmu_get_msr(vcpu, msr_info);
4224 		return KVM_MSR_RET_INVALID;
4225 	}
4226 	return 0;
4227 }
4228 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4229 
4230 /*
4231  * Read or write a bunch of msrs. All parameters are kernel addresses.
4232  *
4233  * @return number of msrs set successfully.
4234  */
4235 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4236 		    struct kvm_msr_entry *entries,
4237 		    int (*do_msr)(struct kvm_vcpu *vcpu,
4238 				  unsigned index, u64 *data))
4239 {
4240 	int i;
4241 
4242 	for (i = 0; i < msrs->nmsrs; ++i)
4243 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4244 			break;
4245 
4246 	return i;
4247 }
4248 
4249 /*
4250  * Read or write a bunch of msrs. Parameters are user addresses.
4251  *
4252  * @return number of msrs set successfully.
4253  */
4254 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4255 		  int (*do_msr)(struct kvm_vcpu *vcpu,
4256 				unsigned index, u64 *data),
4257 		  int writeback)
4258 {
4259 	struct kvm_msrs msrs;
4260 	struct kvm_msr_entry *entries;
4261 	int r, n;
4262 	unsigned size;
4263 
4264 	r = -EFAULT;
4265 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4266 		goto out;
4267 
4268 	r = -E2BIG;
4269 	if (msrs.nmsrs >= MAX_IO_MSRS)
4270 		goto out;
4271 
4272 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4273 	entries = memdup_user(user_msrs->entries, size);
4274 	if (IS_ERR(entries)) {
4275 		r = PTR_ERR(entries);
4276 		goto out;
4277 	}
4278 
4279 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4280 	if (r < 0)
4281 		goto out_free;
4282 
4283 	r = -EFAULT;
4284 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4285 		goto out_free;
4286 
4287 	r = n;
4288 
4289 out_free:
4290 	kfree(entries);
4291 out:
4292 	return r;
4293 }
4294 
4295 static inline bool kvm_can_mwait_in_guest(void)
4296 {
4297 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4298 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4299 		boot_cpu_has(X86_FEATURE_ARAT);
4300 }
4301 
4302 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4303 					    struct kvm_cpuid2 __user *cpuid_arg)
4304 {
4305 	struct kvm_cpuid2 cpuid;
4306 	int r;
4307 
4308 	r = -EFAULT;
4309 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4310 		return r;
4311 
4312 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4313 	if (r)
4314 		return r;
4315 
4316 	r = -EFAULT;
4317 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4318 		return r;
4319 
4320 	return 0;
4321 }
4322 
4323 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4324 {
4325 	int r = 0;
4326 
4327 	switch (ext) {
4328 	case KVM_CAP_IRQCHIP:
4329 	case KVM_CAP_HLT:
4330 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4331 	case KVM_CAP_SET_TSS_ADDR:
4332 	case KVM_CAP_EXT_CPUID:
4333 	case KVM_CAP_EXT_EMUL_CPUID:
4334 	case KVM_CAP_CLOCKSOURCE:
4335 	case KVM_CAP_PIT:
4336 	case KVM_CAP_NOP_IO_DELAY:
4337 	case KVM_CAP_MP_STATE:
4338 	case KVM_CAP_SYNC_MMU:
4339 	case KVM_CAP_USER_NMI:
4340 	case KVM_CAP_REINJECT_CONTROL:
4341 	case KVM_CAP_IRQ_INJECT_STATUS:
4342 	case KVM_CAP_IOEVENTFD:
4343 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4344 	case KVM_CAP_PIT2:
4345 	case KVM_CAP_PIT_STATE2:
4346 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4347 	case KVM_CAP_VCPU_EVENTS:
4348 	case KVM_CAP_HYPERV:
4349 	case KVM_CAP_HYPERV_VAPIC:
4350 	case KVM_CAP_HYPERV_SPIN:
4351 	case KVM_CAP_HYPERV_SYNIC:
4352 	case KVM_CAP_HYPERV_SYNIC2:
4353 	case KVM_CAP_HYPERV_VP_INDEX:
4354 	case KVM_CAP_HYPERV_EVENTFD:
4355 	case KVM_CAP_HYPERV_TLBFLUSH:
4356 	case KVM_CAP_HYPERV_SEND_IPI:
4357 	case KVM_CAP_HYPERV_CPUID:
4358 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4359 	case KVM_CAP_SYS_HYPERV_CPUID:
4360 	case KVM_CAP_PCI_SEGMENT:
4361 	case KVM_CAP_DEBUGREGS:
4362 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4363 	case KVM_CAP_XSAVE:
4364 	case KVM_CAP_ASYNC_PF:
4365 	case KVM_CAP_ASYNC_PF_INT:
4366 	case KVM_CAP_GET_TSC_KHZ:
4367 	case KVM_CAP_KVMCLOCK_CTRL:
4368 	case KVM_CAP_READONLY_MEM:
4369 	case KVM_CAP_HYPERV_TIME:
4370 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4371 	case KVM_CAP_TSC_DEADLINE_TIMER:
4372 	case KVM_CAP_DISABLE_QUIRKS:
4373 	case KVM_CAP_SET_BOOT_CPU_ID:
4374  	case KVM_CAP_SPLIT_IRQCHIP:
4375 	case KVM_CAP_IMMEDIATE_EXIT:
4376 	case KVM_CAP_PMU_EVENT_FILTER:
4377 	case KVM_CAP_GET_MSR_FEATURES:
4378 	case KVM_CAP_MSR_PLATFORM_INFO:
4379 	case KVM_CAP_EXCEPTION_PAYLOAD:
4380 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4381 	case KVM_CAP_SET_GUEST_DEBUG:
4382 	case KVM_CAP_LAST_CPU:
4383 	case KVM_CAP_X86_USER_SPACE_MSR:
4384 	case KVM_CAP_X86_MSR_FILTER:
4385 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4386 #ifdef CONFIG_X86_SGX_KVM
4387 	case KVM_CAP_SGX_ATTRIBUTE:
4388 #endif
4389 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4390 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4391 	case KVM_CAP_SREGS2:
4392 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4393 	case KVM_CAP_VCPU_ATTRIBUTES:
4394 	case KVM_CAP_SYS_ATTRIBUTES:
4395 	case KVM_CAP_VAPIC:
4396 	case KVM_CAP_ENABLE_CAP:
4397 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4398 		r = 1;
4399 		break;
4400 	case KVM_CAP_EXIT_HYPERCALL:
4401 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4402 		break;
4403 	case KVM_CAP_SET_GUEST_DEBUG2:
4404 		return KVM_GUESTDBG_VALID_MASK;
4405 #ifdef CONFIG_KVM_XEN
4406 	case KVM_CAP_XEN_HVM:
4407 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4408 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4409 		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4410 		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4411 		    KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4412 		if (sched_info_on())
4413 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4414 		break;
4415 #endif
4416 	case KVM_CAP_SYNC_REGS:
4417 		r = KVM_SYNC_X86_VALID_FIELDS;
4418 		break;
4419 	case KVM_CAP_ADJUST_CLOCK:
4420 		r = KVM_CLOCK_VALID_FLAGS;
4421 		break;
4422 	case KVM_CAP_X86_DISABLE_EXITS:
4423 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4424 		      KVM_X86_DISABLE_EXITS_CSTATE;
4425 		if(kvm_can_mwait_in_guest())
4426 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
4427 		break;
4428 	case KVM_CAP_X86_SMM:
4429 		/* SMBASE is usually relocated above 1M on modern chipsets,
4430 		 * and SMM handlers might indeed rely on 4G segment limits,
4431 		 * so do not report SMM to be available if real mode is
4432 		 * emulated via vm86 mode.  Still, do not go to great lengths
4433 		 * to avoid userspace's usage of the feature, because it is a
4434 		 * fringe case that is not enabled except via specific settings
4435 		 * of the module parameters.
4436 		 */
4437 		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4438 		break;
4439 	case KVM_CAP_NR_VCPUS:
4440 		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4441 		break;
4442 	case KVM_CAP_MAX_VCPUS:
4443 		r = KVM_MAX_VCPUS;
4444 		break;
4445 	case KVM_CAP_MAX_VCPU_ID:
4446 		r = KVM_MAX_VCPU_IDS;
4447 		break;
4448 	case KVM_CAP_PV_MMU:	/* obsolete */
4449 		r = 0;
4450 		break;
4451 	case KVM_CAP_MCE:
4452 		r = KVM_MAX_MCE_BANKS;
4453 		break;
4454 	case KVM_CAP_XCRS:
4455 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4456 		break;
4457 	case KVM_CAP_TSC_CONTROL:
4458 	case KVM_CAP_VM_TSC_CONTROL:
4459 		r = kvm_caps.has_tsc_control;
4460 		break;
4461 	case KVM_CAP_X2APIC_API:
4462 		r = KVM_X2APIC_API_VALID_FLAGS;
4463 		break;
4464 	case KVM_CAP_NESTED_STATE:
4465 		r = kvm_x86_ops.nested_ops->get_state ?
4466 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4467 		break;
4468 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4469 		r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4470 		break;
4471 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4472 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4473 		break;
4474 	case KVM_CAP_SMALLER_MAXPHYADDR:
4475 		r = (int) allow_smaller_maxphyaddr;
4476 		break;
4477 	case KVM_CAP_STEAL_TIME:
4478 		r = sched_info_on();
4479 		break;
4480 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4481 		if (kvm_caps.has_bus_lock_exit)
4482 			r = KVM_BUS_LOCK_DETECTION_OFF |
4483 			    KVM_BUS_LOCK_DETECTION_EXIT;
4484 		else
4485 			r = 0;
4486 		break;
4487 	case KVM_CAP_XSAVE2: {
4488 		u64 guest_perm = xstate_get_guest_group_perm();
4489 
4490 		r = xstate_required_size(kvm_caps.supported_xcr0 & guest_perm, false);
4491 		if (r < sizeof(struct kvm_xsave))
4492 			r = sizeof(struct kvm_xsave);
4493 		break;
4494 	}
4495 	case KVM_CAP_PMU_CAPABILITY:
4496 		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4497 		break;
4498 	case KVM_CAP_DISABLE_QUIRKS2:
4499 		r = KVM_X86_VALID_QUIRKS;
4500 		break;
4501 	case KVM_CAP_X86_NOTIFY_VMEXIT:
4502 		r = kvm_caps.has_notify_vmexit;
4503 		break;
4504 	default:
4505 		break;
4506 	}
4507 	return r;
4508 }
4509 
4510 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4511 {
4512 	void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4513 
4514 	if ((u64)(unsigned long)uaddr != attr->addr)
4515 		return ERR_PTR_USR(-EFAULT);
4516 	return uaddr;
4517 }
4518 
4519 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4520 {
4521 	u64 __user *uaddr = kvm_get_attr_addr(attr);
4522 
4523 	if (attr->group)
4524 		return -ENXIO;
4525 
4526 	if (IS_ERR(uaddr))
4527 		return PTR_ERR(uaddr);
4528 
4529 	switch (attr->attr) {
4530 	case KVM_X86_XCOMP_GUEST_SUPP:
4531 		if (put_user(kvm_caps.supported_xcr0, uaddr))
4532 			return -EFAULT;
4533 		return 0;
4534 	default:
4535 		return -ENXIO;
4536 		break;
4537 	}
4538 }
4539 
4540 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4541 {
4542 	if (attr->group)
4543 		return -ENXIO;
4544 
4545 	switch (attr->attr) {
4546 	case KVM_X86_XCOMP_GUEST_SUPP:
4547 		return 0;
4548 	default:
4549 		return -ENXIO;
4550 	}
4551 }
4552 
4553 long kvm_arch_dev_ioctl(struct file *filp,
4554 			unsigned int ioctl, unsigned long arg)
4555 {
4556 	void __user *argp = (void __user *)arg;
4557 	long r;
4558 
4559 	switch (ioctl) {
4560 	case KVM_GET_MSR_INDEX_LIST: {
4561 		struct kvm_msr_list __user *user_msr_list = argp;
4562 		struct kvm_msr_list msr_list;
4563 		unsigned n;
4564 
4565 		r = -EFAULT;
4566 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4567 			goto out;
4568 		n = msr_list.nmsrs;
4569 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4570 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4571 			goto out;
4572 		r = -E2BIG;
4573 		if (n < msr_list.nmsrs)
4574 			goto out;
4575 		r = -EFAULT;
4576 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4577 				 num_msrs_to_save * sizeof(u32)))
4578 			goto out;
4579 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4580 				 &emulated_msrs,
4581 				 num_emulated_msrs * sizeof(u32)))
4582 			goto out;
4583 		r = 0;
4584 		break;
4585 	}
4586 	case KVM_GET_SUPPORTED_CPUID:
4587 	case KVM_GET_EMULATED_CPUID: {
4588 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4589 		struct kvm_cpuid2 cpuid;
4590 
4591 		r = -EFAULT;
4592 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4593 			goto out;
4594 
4595 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4596 					    ioctl);
4597 		if (r)
4598 			goto out;
4599 
4600 		r = -EFAULT;
4601 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4602 			goto out;
4603 		r = 0;
4604 		break;
4605 	}
4606 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4607 		r = -EFAULT;
4608 		if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4609 				 sizeof(kvm_caps.supported_mce_cap)))
4610 			goto out;
4611 		r = 0;
4612 		break;
4613 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4614 		struct kvm_msr_list __user *user_msr_list = argp;
4615 		struct kvm_msr_list msr_list;
4616 		unsigned int n;
4617 
4618 		r = -EFAULT;
4619 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4620 			goto out;
4621 		n = msr_list.nmsrs;
4622 		msr_list.nmsrs = num_msr_based_features;
4623 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4624 			goto out;
4625 		r = -E2BIG;
4626 		if (n < msr_list.nmsrs)
4627 			goto out;
4628 		r = -EFAULT;
4629 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4630 				 num_msr_based_features * sizeof(u32)))
4631 			goto out;
4632 		r = 0;
4633 		break;
4634 	}
4635 	case KVM_GET_MSRS:
4636 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4637 		break;
4638 	case KVM_GET_SUPPORTED_HV_CPUID:
4639 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4640 		break;
4641 	case KVM_GET_DEVICE_ATTR: {
4642 		struct kvm_device_attr attr;
4643 		r = -EFAULT;
4644 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4645 			break;
4646 		r = kvm_x86_dev_get_attr(&attr);
4647 		break;
4648 	}
4649 	case KVM_HAS_DEVICE_ATTR: {
4650 		struct kvm_device_attr attr;
4651 		r = -EFAULT;
4652 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4653 			break;
4654 		r = kvm_x86_dev_has_attr(&attr);
4655 		break;
4656 	}
4657 	default:
4658 		r = -EINVAL;
4659 		break;
4660 	}
4661 out:
4662 	return r;
4663 }
4664 
4665 static void wbinvd_ipi(void *garbage)
4666 {
4667 	wbinvd();
4668 }
4669 
4670 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4671 {
4672 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4673 }
4674 
4675 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4676 {
4677 	/* Address WBINVD may be executed by guest */
4678 	if (need_emulate_wbinvd(vcpu)) {
4679 		if (static_call(kvm_x86_has_wbinvd_exit)())
4680 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4681 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4682 			smp_call_function_single(vcpu->cpu,
4683 					wbinvd_ipi, NULL, 1);
4684 	}
4685 
4686 	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4687 
4688 	/* Save host pkru register if supported */
4689 	vcpu->arch.host_pkru = read_pkru();
4690 
4691 	/* Apply any externally detected TSC adjustments (due to suspend) */
4692 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4693 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4694 		vcpu->arch.tsc_offset_adjustment = 0;
4695 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4696 	}
4697 
4698 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4699 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4700 				rdtsc() - vcpu->arch.last_host_tsc;
4701 		if (tsc_delta < 0)
4702 			mark_tsc_unstable("KVM discovered backwards TSC");
4703 
4704 		if (kvm_check_tsc_unstable()) {
4705 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4706 						vcpu->arch.last_guest_tsc);
4707 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4708 			vcpu->arch.tsc_catchup = 1;
4709 		}
4710 
4711 		if (kvm_lapic_hv_timer_in_use(vcpu))
4712 			kvm_lapic_restart_hv_timer(vcpu);
4713 
4714 		/*
4715 		 * On a host with synchronized TSC, there is no need to update
4716 		 * kvmclock on vcpu->cpu migration
4717 		 */
4718 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4719 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4720 		if (vcpu->cpu != cpu)
4721 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4722 		vcpu->cpu = cpu;
4723 	}
4724 
4725 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4726 }
4727 
4728 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4729 {
4730 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4731 	struct kvm_steal_time __user *st;
4732 	struct kvm_memslots *slots;
4733 	static const u8 preempted = KVM_VCPU_PREEMPTED;
4734 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
4735 
4736 	/*
4737 	 * The vCPU can be marked preempted if and only if the VM-Exit was on
4738 	 * an instruction boundary and will not trigger guest emulation of any
4739 	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
4740 	 * when this is true, for example allowing the vCPU to be marked
4741 	 * preempted if and only if the VM-Exit was due to a host interrupt.
4742 	 */
4743 	if (!vcpu->arch.at_instruction_boundary) {
4744 		vcpu->stat.preemption_other++;
4745 		return;
4746 	}
4747 
4748 	vcpu->stat.preemption_reported++;
4749 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4750 		return;
4751 
4752 	if (vcpu->arch.st.preempted)
4753 		return;
4754 
4755 	/* This happens on process exit */
4756 	if (unlikely(current->mm != vcpu->kvm->mm))
4757 		return;
4758 
4759 	slots = kvm_memslots(vcpu->kvm);
4760 
4761 	if (unlikely(slots->generation != ghc->generation ||
4762 		     gpa != ghc->gpa ||
4763 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4764 		return;
4765 
4766 	st = (struct kvm_steal_time __user *)ghc->hva;
4767 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4768 
4769 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4770 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4771 
4772 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4773 }
4774 
4775 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4776 {
4777 	int idx;
4778 
4779 	if (vcpu->preempted) {
4780 		if (!vcpu->arch.guest_state_protected)
4781 			vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4782 
4783 		/*
4784 		 * Take the srcu lock as memslots will be accessed to check the gfn
4785 		 * cache generation against the memslots generation.
4786 		 */
4787 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4788 		if (kvm_xen_msr_enabled(vcpu->kvm))
4789 			kvm_xen_runstate_set_preempted(vcpu);
4790 		else
4791 			kvm_steal_time_set_preempted(vcpu);
4792 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4793 	}
4794 
4795 	static_call(kvm_x86_vcpu_put)(vcpu);
4796 	vcpu->arch.last_host_tsc = rdtsc();
4797 }
4798 
4799 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4800 				    struct kvm_lapic_state *s)
4801 {
4802 	static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4803 
4804 	return kvm_apic_get_state(vcpu, s);
4805 }
4806 
4807 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4808 				    struct kvm_lapic_state *s)
4809 {
4810 	int r;
4811 
4812 	r = kvm_apic_set_state(vcpu, s);
4813 	if (r)
4814 		return r;
4815 	update_cr8_intercept(vcpu);
4816 
4817 	return 0;
4818 }
4819 
4820 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4821 {
4822 	/*
4823 	 * We can accept userspace's request for interrupt injection
4824 	 * as long as we have a place to store the interrupt number.
4825 	 * The actual injection will happen when the CPU is able to
4826 	 * deliver the interrupt.
4827 	 */
4828 	if (kvm_cpu_has_extint(vcpu))
4829 		return false;
4830 
4831 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4832 	return (!lapic_in_kernel(vcpu) ||
4833 		kvm_apic_accept_pic_intr(vcpu));
4834 }
4835 
4836 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4837 {
4838 	/*
4839 	 * Do not cause an interrupt window exit if an exception
4840 	 * is pending or an event needs reinjection; userspace
4841 	 * might want to inject the interrupt manually using KVM_SET_REGS
4842 	 * or KVM_SET_SREGS.  For that to work, we must be at an
4843 	 * instruction boundary and with no events half-injected.
4844 	 */
4845 	return (kvm_arch_interrupt_allowed(vcpu) &&
4846 		kvm_cpu_accept_dm_intr(vcpu) &&
4847 		!kvm_event_needs_reinjection(vcpu) &&
4848 		!vcpu->arch.exception.pending);
4849 }
4850 
4851 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4852 				    struct kvm_interrupt *irq)
4853 {
4854 	if (irq->irq >= KVM_NR_INTERRUPTS)
4855 		return -EINVAL;
4856 
4857 	if (!irqchip_in_kernel(vcpu->kvm)) {
4858 		kvm_queue_interrupt(vcpu, irq->irq, false);
4859 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4860 		return 0;
4861 	}
4862 
4863 	/*
4864 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4865 	 * fail for in-kernel 8259.
4866 	 */
4867 	if (pic_in_kernel(vcpu->kvm))
4868 		return -ENXIO;
4869 
4870 	if (vcpu->arch.pending_external_vector != -1)
4871 		return -EEXIST;
4872 
4873 	vcpu->arch.pending_external_vector = irq->irq;
4874 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4875 	return 0;
4876 }
4877 
4878 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4879 {
4880 	kvm_inject_nmi(vcpu);
4881 
4882 	return 0;
4883 }
4884 
4885 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4886 {
4887 	kvm_make_request(KVM_REQ_SMI, vcpu);
4888 
4889 	return 0;
4890 }
4891 
4892 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4893 					   struct kvm_tpr_access_ctl *tac)
4894 {
4895 	if (tac->flags)
4896 		return -EINVAL;
4897 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
4898 	return 0;
4899 }
4900 
4901 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4902 					u64 mcg_cap)
4903 {
4904 	int r;
4905 	unsigned bank_num = mcg_cap & 0xff, bank;
4906 
4907 	r = -EINVAL;
4908 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4909 		goto out;
4910 	if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
4911 		goto out;
4912 	r = 0;
4913 	vcpu->arch.mcg_cap = mcg_cap;
4914 	/* Init IA32_MCG_CTL to all 1s */
4915 	if (mcg_cap & MCG_CTL_P)
4916 		vcpu->arch.mcg_ctl = ~(u64)0;
4917 	/* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
4918 	for (bank = 0; bank < bank_num; bank++) {
4919 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4920 		if (mcg_cap & MCG_CMCI_P)
4921 			vcpu->arch.mci_ctl2_banks[bank] = 0;
4922 	}
4923 
4924 	kvm_apic_after_set_mcg_cap(vcpu);
4925 
4926 	static_call(kvm_x86_setup_mce)(vcpu);
4927 out:
4928 	return r;
4929 }
4930 
4931 /*
4932  * Validate this is an UCNA (uncorrectable no action) error by checking the
4933  * MCG_STATUS and MCi_STATUS registers:
4934  * - none of the bits for Machine Check Exceptions are set
4935  * - both the VAL (valid) and UC (uncorrectable) bits are set
4936  * MCI_STATUS_PCC - Processor Context Corrupted
4937  * MCI_STATUS_S - Signaled as a Machine Check Exception
4938  * MCI_STATUS_AR - Software recoverable Action Required
4939  */
4940 static bool is_ucna(struct kvm_x86_mce *mce)
4941 {
4942 	return	!mce->mcg_status &&
4943 		!(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
4944 		(mce->status & MCI_STATUS_VAL) &&
4945 		(mce->status & MCI_STATUS_UC);
4946 }
4947 
4948 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
4949 {
4950 	u64 mcg_cap = vcpu->arch.mcg_cap;
4951 
4952 	banks[1] = mce->status;
4953 	banks[2] = mce->addr;
4954 	banks[3] = mce->misc;
4955 	vcpu->arch.mcg_status = mce->mcg_status;
4956 
4957 	if (!(mcg_cap & MCG_CMCI_P) ||
4958 	    !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
4959 		return 0;
4960 
4961 	if (lapic_in_kernel(vcpu))
4962 		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
4963 
4964 	return 0;
4965 }
4966 
4967 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4968 				      struct kvm_x86_mce *mce)
4969 {
4970 	u64 mcg_cap = vcpu->arch.mcg_cap;
4971 	unsigned bank_num = mcg_cap & 0xff;
4972 	u64 *banks = vcpu->arch.mce_banks;
4973 
4974 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4975 		return -EINVAL;
4976 
4977 	banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
4978 
4979 	if (is_ucna(mce))
4980 		return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
4981 
4982 	/*
4983 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4984 	 * reporting is disabled
4985 	 */
4986 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4987 	    vcpu->arch.mcg_ctl != ~(u64)0)
4988 		return 0;
4989 	/*
4990 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4991 	 * reporting is disabled for the bank
4992 	 */
4993 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4994 		return 0;
4995 	if (mce->status & MCI_STATUS_UC) {
4996 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4997 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4998 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4999 			return 0;
5000 		}
5001 		if (banks[1] & MCI_STATUS_VAL)
5002 			mce->status |= MCI_STATUS_OVER;
5003 		banks[2] = mce->addr;
5004 		banks[3] = mce->misc;
5005 		vcpu->arch.mcg_status = mce->mcg_status;
5006 		banks[1] = mce->status;
5007 		kvm_queue_exception(vcpu, MC_VECTOR);
5008 	} else if (!(banks[1] & MCI_STATUS_VAL)
5009 		   || !(banks[1] & MCI_STATUS_UC)) {
5010 		if (banks[1] & MCI_STATUS_VAL)
5011 			mce->status |= MCI_STATUS_OVER;
5012 		banks[2] = mce->addr;
5013 		banks[3] = mce->misc;
5014 		banks[1] = mce->status;
5015 	} else
5016 		banks[1] |= MCI_STATUS_OVER;
5017 	return 0;
5018 }
5019 
5020 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5021 					       struct kvm_vcpu_events *events)
5022 {
5023 	process_nmi(vcpu);
5024 
5025 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
5026 		process_smi(vcpu);
5027 
5028 	/*
5029 	 * In guest mode, payload delivery should be deferred,
5030 	 * so that the L1 hypervisor can intercept #PF before
5031 	 * CR2 is modified (or intercept #DB before DR6 is
5032 	 * modified under nVMX). Unless the per-VM capability,
5033 	 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
5034 	 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
5035 	 * opportunistically defer the exception payload, deliver it if the
5036 	 * capability hasn't been requested before processing a
5037 	 * KVM_GET_VCPU_EVENTS.
5038 	 */
5039 	if (!vcpu->kvm->arch.exception_payload_enabled &&
5040 	    vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
5041 		kvm_deliver_exception_payload(vcpu);
5042 
5043 	/*
5044 	 * The API doesn't provide the instruction length for software
5045 	 * exceptions, so don't report them. As long as the guest RIP
5046 	 * isn't advanced, we should expect to encounter the exception
5047 	 * again.
5048 	 */
5049 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
5050 		events->exception.injected = 0;
5051 		events->exception.pending = 0;
5052 	} else {
5053 		events->exception.injected = vcpu->arch.exception.injected;
5054 		events->exception.pending = vcpu->arch.exception.pending;
5055 		/*
5056 		 * For ABI compatibility, deliberately conflate
5057 		 * pending and injected exceptions when
5058 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5059 		 */
5060 		if (!vcpu->kvm->arch.exception_payload_enabled)
5061 			events->exception.injected |=
5062 				vcpu->arch.exception.pending;
5063 	}
5064 	events->exception.nr = vcpu->arch.exception.nr;
5065 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
5066 	events->exception.error_code = vcpu->arch.exception.error_code;
5067 	events->exception_has_payload = vcpu->arch.exception.has_payload;
5068 	events->exception_payload = vcpu->arch.exception.payload;
5069 
5070 	events->interrupt.injected =
5071 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5072 	events->interrupt.nr = vcpu->arch.interrupt.nr;
5073 	events->interrupt.soft = 0;
5074 	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5075 
5076 	events->nmi.injected = vcpu->arch.nmi_injected;
5077 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
5078 	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5079 	events->nmi.pad = 0;
5080 
5081 	events->sipi_vector = 0; /* never valid when reporting to user space */
5082 
5083 	events->smi.smm = is_smm(vcpu);
5084 	events->smi.pending = vcpu->arch.smi_pending;
5085 	events->smi.smm_inside_nmi =
5086 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5087 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5088 
5089 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5090 			 | KVM_VCPUEVENT_VALID_SHADOW
5091 			 | KVM_VCPUEVENT_VALID_SMM);
5092 	if (vcpu->kvm->arch.exception_payload_enabled)
5093 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5094 	if (vcpu->kvm->arch.triple_fault_event) {
5095 		events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5096 		events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5097 	}
5098 
5099 	memset(&events->reserved, 0, sizeof(events->reserved));
5100 }
5101 
5102 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
5103 
5104 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5105 					      struct kvm_vcpu_events *events)
5106 {
5107 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5108 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5109 			      | KVM_VCPUEVENT_VALID_SHADOW
5110 			      | KVM_VCPUEVENT_VALID_SMM
5111 			      | KVM_VCPUEVENT_VALID_PAYLOAD
5112 			      | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5113 		return -EINVAL;
5114 
5115 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5116 		if (!vcpu->kvm->arch.exception_payload_enabled)
5117 			return -EINVAL;
5118 		if (events->exception.pending)
5119 			events->exception.injected = 0;
5120 		else
5121 			events->exception_has_payload = 0;
5122 	} else {
5123 		events->exception.pending = 0;
5124 		events->exception_has_payload = 0;
5125 	}
5126 
5127 	if ((events->exception.injected || events->exception.pending) &&
5128 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5129 		return -EINVAL;
5130 
5131 	/* INITs are latched while in SMM */
5132 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5133 	    (events->smi.smm || events->smi.pending) &&
5134 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5135 		return -EINVAL;
5136 
5137 	process_nmi(vcpu);
5138 	vcpu->arch.exception.injected = events->exception.injected;
5139 	vcpu->arch.exception.pending = events->exception.pending;
5140 	vcpu->arch.exception.nr = events->exception.nr;
5141 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5142 	vcpu->arch.exception.error_code = events->exception.error_code;
5143 	vcpu->arch.exception.has_payload = events->exception_has_payload;
5144 	vcpu->arch.exception.payload = events->exception_payload;
5145 
5146 	vcpu->arch.interrupt.injected = events->interrupt.injected;
5147 	vcpu->arch.interrupt.nr = events->interrupt.nr;
5148 	vcpu->arch.interrupt.soft = events->interrupt.soft;
5149 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5150 		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5151 						events->interrupt.shadow);
5152 
5153 	vcpu->arch.nmi_injected = events->nmi.injected;
5154 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
5155 		vcpu->arch.nmi_pending = events->nmi.pending;
5156 	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5157 
5158 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5159 	    lapic_in_kernel(vcpu))
5160 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
5161 
5162 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5163 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5164 			kvm_x86_ops.nested_ops->leave_nested(vcpu);
5165 			kvm_smm_changed(vcpu, events->smi.smm);
5166 		}
5167 
5168 		vcpu->arch.smi_pending = events->smi.pending;
5169 
5170 		if (events->smi.smm) {
5171 			if (events->smi.smm_inside_nmi)
5172 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5173 			else
5174 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5175 		}
5176 
5177 		if (lapic_in_kernel(vcpu)) {
5178 			if (events->smi.latched_init)
5179 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5180 			else
5181 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5182 		}
5183 	}
5184 
5185 	if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5186 		if (!vcpu->kvm->arch.triple_fault_event)
5187 			return -EINVAL;
5188 		if (events->triple_fault.pending)
5189 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5190 		else
5191 			kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5192 	}
5193 
5194 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5195 
5196 	return 0;
5197 }
5198 
5199 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5200 					     struct kvm_debugregs *dbgregs)
5201 {
5202 	unsigned long val;
5203 
5204 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5205 	kvm_get_dr(vcpu, 6, &val);
5206 	dbgregs->dr6 = val;
5207 	dbgregs->dr7 = vcpu->arch.dr7;
5208 	dbgregs->flags = 0;
5209 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
5210 }
5211 
5212 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5213 					    struct kvm_debugregs *dbgregs)
5214 {
5215 	if (dbgregs->flags)
5216 		return -EINVAL;
5217 
5218 	if (!kvm_dr6_valid(dbgregs->dr6))
5219 		return -EINVAL;
5220 	if (!kvm_dr7_valid(dbgregs->dr7))
5221 		return -EINVAL;
5222 
5223 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5224 	kvm_update_dr0123(vcpu);
5225 	vcpu->arch.dr6 = dbgregs->dr6;
5226 	vcpu->arch.dr7 = dbgregs->dr7;
5227 	kvm_update_dr7(vcpu);
5228 
5229 	return 0;
5230 }
5231 
5232 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5233 					 struct kvm_xsave *guest_xsave)
5234 {
5235 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5236 		return;
5237 
5238 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5239 				       guest_xsave->region,
5240 				       sizeof(guest_xsave->region),
5241 				       vcpu->arch.pkru);
5242 }
5243 
5244 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5245 					  u8 *state, unsigned int size)
5246 {
5247 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5248 		return;
5249 
5250 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5251 				       state, size, vcpu->arch.pkru);
5252 }
5253 
5254 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5255 					struct kvm_xsave *guest_xsave)
5256 {
5257 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5258 		return 0;
5259 
5260 	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5261 					      guest_xsave->region,
5262 					      kvm_caps.supported_xcr0,
5263 					      &vcpu->arch.pkru);
5264 }
5265 
5266 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5267 					struct kvm_xcrs *guest_xcrs)
5268 {
5269 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5270 		guest_xcrs->nr_xcrs = 0;
5271 		return;
5272 	}
5273 
5274 	guest_xcrs->nr_xcrs = 1;
5275 	guest_xcrs->flags = 0;
5276 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5277 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5278 }
5279 
5280 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5281 				       struct kvm_xcrs *guest_xcrs)
5282 {
5283 	int i, r = 0;
5284 
5285 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5286 		return -EINVAL;
5287 
5288 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5289 		return -EINVAL;
5290 
5291 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5292 		/* Only support XCR0 currently */
5293 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5294 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5295 				guest_xcrs->xcrs[i].value);
5296 			break;
5297 		}
5298 	if (r)
5299 		r = -EINVAL;
5300 	return r;
5301 }
5302 
5303 /*
5304  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5305  * stopped by the hypervisor.  This function will be called from the host only.
5306  * EINVAL is returned when the host attempts to set the flag for a guest that
5307  * does not support pv clocks.
5308  */
5309 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5310 {
5311 	if (!vcpu->arch.pv_time.active)
5312 		return -EINVAL;
5313 	vcpu->arch.pvclock_set_guest_stopped_request = true;
5314 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5315 	return 0;
5316 }
5317 
5318 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5319 				 struct kvm_device_attr *attr)
5320 {
5321 	int r;
5322 
5323 	switch (attr->attr) {
5324 	case KVM_VCPU_TSC_OFFSET:
5325 		r = 0;
5326 		break;
5327 	default:
5328 		r = -ENXIO;
5329 	}
5330 
5331 	return r;
5332 }
5333 
5334 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5335 				 struct kvm_device_attr *attr)
5336 {
5337 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5338 	int r;
5339 
5340 	if (IS_ERR(uaddr))
5341 		return PTR_ERR(uaddr);
5342 
5343 	switch (attr->attr) {
5344 	case KVM_VCPU_TSC_OFFSET:
5345 		r = -EFAULT;
5346 		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5347 			break;
5348 		r = 0;
5349 		break;
5350 	default:
5351 		r = -ENXIO;
5352 	}
5353 
5354 	return r;
5355 }
5356 
5357 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5358 				 struct kvm_device_attr *attr)
5359 {
5360 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5361 	struct kvm *kvm = vcpu->kvm;
5362 	int r;
5363 
5364 	if (IS_ERR(uaddr))
5365 		return PTR_ERR(uaddr);
5366 
5367 	switch (attr->attr) {
5368 	case KVM_VCPU_TSC_OFFSET: {
5369 		u64 offset, tsc, ns;
5370 		unsigned long flags;
5371 		bool matched;
5372 
5373 		r = -EFAULT;
5374 		if (get_user(offset, uaddr))
5375 			break;
5376 
5377 		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5378 
5379 		matched = (vcpu->arch.virtual_tsc_khz &&
5380 			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5381 			   kvm->arch.last_tsc_offset == offset);
5382 
5383 		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5384 		ns = get_kvmclock_base_ns();
5385 
5386 		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5387 		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5388 
5389 		r = 0;
5390 		break;
5391 	}
5392 	default:
5393 		r = -ENXIO;
5394 	}
5395 
5396 	return r;
5397 }
5398 
5399 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5400 				      unsigned int ioctl,
5401 				      void __user *argp)
5402 {
5403 	struct kvm_device_attr attr;
5404 	int r;
5405 
5406 	if (copy_from_user(&attr, argp, sizeof(attr)))
5407 		return -EFAULT;
5408 
5409 	if (attr.group != KVM_VCPU_TSC_CTRL)
5410 		return -ENXIO;
5411 
5412 	switch (ioctl) {
5413 	case KVM_HAS_DEVICE_ATTR:
5414 		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5415 		break;
5416 	case KVM_GET_DEVICE_ATTR:
5417 		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5418 		break;
5419 	case KVM_SET_DEVICE_ATTR:
5420 		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5421 		break;
5422 	}
5423 
5424 	return r;
5425 }
5426 
5427 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5428 				     struct kvm_enable_cap *cap)
5429 {
5430 	int r;
5431 	uint16_t vmcs_version;
5432 	void __user *user_ptr;
5433 
5434 	if (cap->flags)
5435 		return -EINVAL;
5436 
5437 	switch (cap->cap) {
5438 	case KVM_CAP_HYPERV_SYNIC2:
5439 		if (cap->args[0])
5440 			return -EINVAL;
5441 		fallthrough;
5442 
5443 	case KVM_CAP_HYPERV_SYNIC:
5444 		if (!irqchip_in_kernel(vcpu->kvm))
5445 			return -EINVAL;
5446 		return kvm_hv_activate_synic(vcpu, cap->cap ==
5447 					     KVM_CAP_HYPERV_SYNIC2);
5448 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5449 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
5450 			return -ENOTTY;
5451 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5452 		if (!r) {
5453 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
5454 			if (copy_to_user(user_ptr, &vmcs_version,
5455 					 sizeof(vmcs_version)))
5456 				r = -EFAULT;
5457 		}
5458 		return r;
5459 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5460 		if (!kvm_x86_ops.enable_direct_tlbflush)
5461 			return -ENOTTY;
5462 
5463 		return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
5464 
5465 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5466 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5467 
5468 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5469 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5470 		if (vcpu->arch.pv_cpuid.enforce)
5471 			kvm_update_pv_runtime(vcpu);
5472 
5473 		return 0;
5474 	default:
5475 		return -EINVAL;
5476 	}
5477 }
5478 
5479 long kvm_arch_vcpu_ioctl(struct file *filp,
5480 			 unsigned int ioctl, unsigned long arg)
5481 {
5482 	struct kvm_vcpu *vcpu = filp->private_data;
5483 	void __user *argp = (void __user *)arg;
5484 	int r;
5485 	union {
5486 		struct kvm_sregs2 *sregs2;
5487 		struct kvm_lapic_state *lapic;
5488 		struct kvm_xsave *xsave;
5489 		struct kvm_xcrs *xcrs;
5490 		void *buffer;
5491 	} u;
5492 
5493 	vcpu_load(vcpu);
5494 
5495 	u.buffer = NULL;
5496 	switch (ioctl) {
5497 	case KVM_GET_LAPIC: {
5498 		r = -EINVAL;
5499 		if (!lapic_in_kernel(vcpu))
5500 			goto out;
5501 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5502 				GFP_KERNEL_ACCOUNT);
5503 
5504 		r = -ENOMEM;
5505 		if (!u.lapic)
5506 			goto out;
5507 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5508 		if (r)
5509 			goto out;
5510 		r = -EFAULT;
5511 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5512 			goto out;
5513 		r = 0;
5514 		break;
5515 	}
5516 	case KVM_SET_LAPIC: {
5517 		r = -EINVAL;
5518 		if (!lapic_in_kernel(vcpu))
5519 			goto out;
5520 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5521 		if (IS_ERR(u.lapic)) {
5522 			r = PTR_ERR(u.lapic);
5523 			goto out_nofree;
5524 		}
5525 
5526 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5527 		break;
5528 	}
5529 	case KVM_INTERRUPT: {
5530 		struct kvm_interrupt irq;
5531 
5532 		r = -EFAULT;
5533 		if (copy_from_user(&irq, argp, sizeof(irq)))
5534 			goto out;
5535 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5536 		break;
5537 	}
5538 	case KVM_NMI: {
5539 		r = kvm_vcpu_ioctl_nmi(vcpu);
5540 		break;
5541 	}
5542 	case KVM_SMI: {
5543 		r = kvm_vcpu_ioctl_smi(vcpu);
5544 		break;
5545 	}
5546 	case KVM_SET_CPUID: {
5547 		struct kvm_cpuid __user *cpuid_arg = argp;
5548 		struct kvm_cpuid cpuid;
5549 
5550 		r = -EFAULT;
5551 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5552 			goto out;
5553 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5554 		break;
5555 	}
5556 	case KVM_SET_CPUID2: {
5557 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5558 		struct kvm_cpuid2 cpuid;
5559 
5560 		r = -EFAULT;
5561 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5562 			goto out;
5563 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5564 					      cpuid_arg->entries);
5565 		break;
5566 	}
5567 	case KVM_GET_CPUID2: {
5568 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5569 		struct kvm_cpuid2 cpuid;
5570 
5571 		r = -EFAULT;
5572 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5573 			goto out;
5574 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5575 					      cpuid_arg->entries);
5576 		if (r)
5577 			goto out;
5578 		r = -EFAULT;
5579 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5580 			goto out;
5581 		r = 0;
5582 		break;
5583 	}
5584 	case KVM_GET_MSRS: {
5585 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5586 		r = msr_io(vcpu, argp, do_get_msr, 1);
5587 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5588 		break;
5589 	}
5590 	case KVM_SET_MSRS: {
5591 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5592 		r = msr_io(vcpu, argp, do_set_msr, 0);
5593 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5594 		break;
5595 	}
5596 	case KVM_TPR_ACCESS_REPORTING: {
5597 		struct kvm_tpr_access_ctl tac;
5598 
5599 		r = -EFAULT;
5600 		if (copy_from_user(&tac, argp, sizeof(tac)))
5601 			goto out;
5602 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5603 		if (r)
5604 			goto out;
5605 		r = -EFAULT;
5606 		if (copy_to_user(argp, &tac, sizeof(tac)))
5607 			goto out;
5608 		r = 0;
5609 		break;
5610 	};
5611 	case KVM_SET_VAPIC_ADDR: {
5612 		struct kvm_vapic_addr va;
5613 		int idx;
5614 
5615 		r = -EINVAL;
5616 		if (!lapic_in_kernel(vcpu))
5617 			goto out;
5618 		r = -EFAULT;
5619 		if (copy_from_user(&va, argp, sizeof(va)))
5620 			goto out;
5621 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5622 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5623 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5624 		break;
5625 	}
5626 	case KVM_X86_SETUP_MCE: {
5627 		u64 mcg_cap;
5628 
5629 		r = -EFAULT;
5630 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5631 			goto out;
5632 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5633 		break;
5634 	}
5635 	case KVM_X86_SET_MCE: {
5636 		struct kvm_x86_mce mce;
5637 
5638 		r = -EFAULT;
5639 		if (copy_from_user(&mce, argp, sizeof(mce)))
5640 			goto out;
5641 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5642 		break;
5643 	}
5644 	case KVM_GET_VCPU_EVENTS: {
5645 		struct kvm_vcpu_events events;
5646 
5647 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5648 
5649 		r = -EFAULT;
5650 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5651 			break;
5652 		r = 0;
5653 		break;
5654 	}
5655 	case KVM_SET_VCPU_EVENTS: {
5656 		struct kvm_vcpu_events events;
5657 
5658 		r = -EFAULT;
5659 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5660 			break;
5661 
5662 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5663 		break;
5664 	}
5665 	case KVM_GET_DEBUGREGS: {
5666 		struct kvm_debugregs dbgregs;
5667 
5668 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5669 
5670 		r = -EFAULT;
5671 		if (copy_to_user(argp, &dbgregs,
5672 				 sizeof(struct kvm_debugregs)))
5673 			break;
5674 		r = 0;
5675 		break;
5676 	}
5677 	case KVM_SET_DEBUGREGS: {
5678 		struct kvm_debugregs dbgregs;
5679 
5680 		r = -EFAULT;
5681 		if (copy_from_user(&dbgregs, argp,
5682 				   sizeof(struct kvm_debugregs)))
5683 			break;
5684 
5685 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5686 		break;
5687 	}
5688 	case KVM_GET_XSAVE: {
5689 		r = -EINVAL;
5690 		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5691 			break;
5692 
5693 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5694 		r = -ENOMEM;
5695 		if (!u.xsave)
5696 			break;
5697 
5698 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5699 
5700 		r = -EFAULT;
5701 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5702 			break;
5703 		r = 0;
5704 		break;
5705 	}
5706 	case KVM_SET_XSAVE: {
5707 		int size = vcpu->arch.guest_fpu.uabi_size;
5708 
5709 		u.xsave = memdup_user(argp, size);
5710 		if (IS_ERR(u.xsave)) {
5711 			r = PTR_ERR(u.xsave);
5712 			goto out_nofree;
5713 		}
5714 
5715 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5716 		break;
5717 	}
5718 
5719 	case KVM_GET_XSAVE2: {
5720 		int size = vcpu->arch.guest_fpu.uabi_size;
5721 
5722 		u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5723 		r = -ENOMEM;
5724 		if (!u.xsave)
5725 			break;
5726 
5727 		kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5728 
5729 		r = -EFAULT;
5730 		if (copy_to_user(argp, u.xsave, size))
5731 			break;
5732 
5733 		r = 0;
5734 		break;
5735 	}
5736 
5737 	case KVM_GET_XCRS: {
5738 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5739 		r = -ENOMEM;
5740 		if (!u.xcrs)
5741 			break;
5742 
5743 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5744 
5745 		r = -EFAULT;
5746 		if (copy_to_user(argp, u.xcrs,
5747 				 sizeof(struct kvm_xcrs)))
5748 			break;
5749 		r = 0;
5750 		break;
5751 	}
5752 	case KVM_SET_XCRS: {
5753 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5754 		if (IS_ERR(u.xcrs)) {
5755 			r = PTR_ERR(u.xcrs);
5756 			goto out_nofree;
5757 		}
5758 
5759 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5760 		break;
5761 	}
5762 	case KVM_SET_TSC_KHZ: {
5763 		u32 user_tsc_khz;
5764 
5765 		r = -EINVAL;
5766 		user_tsc_khz = (u32)arg;
5767 
5768 		if (kvm_caps.has_tsc_control &&
5769 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
5770 			goto out;
5771 
5772 		if (user_tsc_khz == 0)
5773 			user_tsc_khz = tsc_khz;
5774 
5775 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5776 			r = 0;
5777 
5778 		goto out;
5779 	}
5780 	case KVM_GET_TSC_KHZ: {
5781 		r = vcpu->arch.virtual_tsc_khz;
5782 		goto out;
5783 	}
5784 	case KVM_KVMCLOCK_CTRL: {
5785 		r = kvm_set_guest_paused(vcpu);
5786 		goto out;
5787 	}
5788 	case KVM_ENABLE_CAP: {
5789 		struct kvm_enable_cap cap;
5790 
5791 		r = -EFAULT;
5792 		if (copy_from_user(&cap, argp, sizeof(cap)))
5793 			goto out;
5794 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5795 		break;
5796 	}
5797 	case KVM_GET_NESTED_STATE: {
5798 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5799 		u32 user_data_size;
5800 
5801 		r = -EINVAL;
5802 		if (!kvm_x86_ops.nested_ops->get_state)
5803 			break;
5804 
5805 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5806 		r = -EFAULT;
5807 		if (get_user(user_data_size, &user_kvm_nested_state->size))
5808 			break;
5809 
5810 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5811 						     user_data_size);
5812 		if (r < 0)
5813 			break;
5814 
5815 		if (r > user_data_size) {
5816 			if (put_user(r, &user_kvm_nested_state->size))
5817 				r = -EFAULT;
5818 			else
5819 				r = -E2BIG;
5820 			break;
5821 		}
5822 
5823 		r = 0;
5824 		break;
5825 	}
5826 	case KVM_SET_NESTED_STATE: {
5827 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5828 		struct kvm_nested_state kvm_state;
5829 		int idx;
5830 
5831 		r = -EINVAL;
5832 		if (!kvm_x86_ops.nested_ops->set_state)
5833 			break;
5834 
5835 		r = -EFAULT;
5836 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5837 			break;
5838 
5839 		r = -EINVAL;
5840 		if (kvm_state.size < sizeof(kvm_state))
5841 			break;
5842 
5843 		if (kvm_state.flags &
5844 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5845 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5846 		      | KVM_STATE_NESTED_GIF_SET))
5847 			break;
5848 
5849 		/* nested_run_pending implies guest_mode.  */
5850 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5851 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5852 			break;
5853 
5854 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5855 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5856 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5857 		break;
5858 	}
5859 	case KVM_GET_SUPPORTED_HV_CPUID:
5860 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5861 		break;
5862 #ifdef CONFIG_KVM_XEN
5863 	case KVM_XEN_VCPU_GET_ATTR: {
5864 		struct kvm_xen_vcpu_attr xva;
5865 
5866 		r = -EFAULT;
5867 		if (copy_from_user(&xva, argp, sizeof(xva)))
5868 			goto out;
5869 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5870 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5871 			r = -EFAULT;
5872 		break;
5873 	}
5874 	case KVM_XEN_VCPU_SET_ATTR: {
5875 		struct kvm_xen_vcpu_attr xva;
5876 
5877 		r = -EFAULT;
5878 		if (copy_from_user(&xva, argp, sizeof(xva)))
5879 			goto out;
5880 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5881 		break;
5882 	}
5883 #endif
5884 	case KVM_GET_SREGS2: {
5885 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5886 		r = -ENOMEM;
5887 		if (!u.sregs2)
5888 			goto out;
5889 		__get_sregs2(vcpu, u.sregs2);
5890 		r = -EFAULT;
5891 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5892 			goto out;
5893 		r = 0;
5894 		break;
5895 	}
5896 	case KVM_SET_SREGS2: {
5897 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5898 		if (IS_ERR(u.sregs2)) {
5899 			r = PTR_ERR(u.sregs2);
5900 			u.sregs2 = NULL;
5901 			goto out;
5902 		}
5903 		r = __set_sregs2(vcpu, u.sregs2);
5904 		break;
5905 	}
5906 	case KVM_HAS_DEVICE_ATTR:
5907 	case KVM_GET_DEVICE_ATTR:
5908 	case KVM_SET_DEVICE_ATTR:
5909 		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5910 		break;
5911 	default:
5912 		r = -EINVAL;
5913 	}
5914 out:
5915 	kfree(u.buffer);
5916 out_nofree:
5917 	vcpu_put(vcpu);
5918 	return r;
5919 }
5920 
5921 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5922 {
5923 	return VM_FAULT_SIGBUS;
5924 }
5925 
5926 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5927 {
5928 	int ret;
5929 
5930 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
5931 		return -EINVAL;
5932 	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5933 	return ret;
5934 }
5935 
5936 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5937 					      u64 ident_addr)
5938 {
5939 	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5940 }
5941 
5942 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5943 					 unsigned long kvm_nr_mmu_pages)
5944 {
5945 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5946 		return -EINVAL;
5947 
5948 	mutex_lock(&kvm->slots_lock);
5949 
5950 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5951 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5952 
5953 	mutex_unlock(&kvm->slots_lock);
5954 	return 0;
5955 }
5956 
5957 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5958 {
5959 	return kvm->arch.n_max_mmu_pages;
5960 }
5961 
5962 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5963 {
5964 	struct kvm_pic *pic = kvm->arch.vpic;
5965 	int r;
5966 
5967 	r = 0;
5968 	switch (chip->chip_id) {
5969 	case KVM_IRQCHIP_PIC_MASTER:
5970 		memcpy(&chip->chip.pic, &pic->pics[0],
5971 			sizeof(struct kvm_pic_state));
5972 		break;
5973 	case KVM_IRQCHIP_PIC_SLAVE:
5974 		memcpy(&chip->chip.pic, &pic->pics[1],
5975 			sizeof(struct kvm_pic_state));
5976 		break;
5977 	case KVM_IRQCHIP_IOAPIC:
5978 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
5979 		break;
5980 	default:
5981 		r = -EINVAL;
5982 		break;
5983 	}
5984 	return r;
5985 }
5986 
5987 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5988 {
5989 	struct kvm_pic *pic = kvm->arch.vpic;
5990 	int r;
5991 
5992 	r = 0;
5993 	switch (chip->chip_id) {
5994 	case KVM_IRQCHIP_PIC_MASTER:
5995 		spin_lock(&pic->lock);
5996 		memcpy(&pic->pics[0], &chip->chip.pic,
5997 			sizeof(struct kvm_pic_state));
5998 		spin_unlock(&pic->lock);
5999 		break;
6000 	case KVM_IRQCHIP_PIC_SLAVE:
6001 		spin_lock(&pic->lock);
6002 		memcpy(&pic->pics[1], &chip->chip.pic,
6003 			sizeof(struct kvm_pic_state));
6004 		spin_unlock(&pic->lock);
6005 		break;
6006 	case KVM_IRQCHIP_IOAPIC:
6007 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
6008 		break;
6009 	default:
6010 		r = -EINVAL;
6011 		break;
6012 	}
6013 	kvm_pic_update_irq(pic);
6014 	return r;
6015 }
6016 
6017 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6018 {
6019 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6020 
6021 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6022 
6023 	mutex_lock(&kps->lock);
6024 	memcpy(ps, &kps->channels, sizeof(*ps));
6025 	mutex_unlock(&kps->lock);
6026 	return 0;
6027 }
6028 
6029 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6030 {
6031 	int i;
6032 	struct kvm_pit *pit = kvm->arch.vpit;
6033 
6034 	mutex_lock(&pit->pit_state.lock);
6035 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6036 	for (i = 0; i < 3; i++)
6037 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6038 	mutex_unlock(&pit->pit_state.lock);
6039 	return 0;
6040 }
6041 
6042 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6043 {
6044 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
6045 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6046 		sizeof(ps->channels));
6047 	ps->flags = kvm->arch.vpit->pit_state.flags;
6048 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6049 	memset(&ps->reserved, 0, sizeof(ps->reserved));
6050 	return 0;
6051 }
6052 
6053 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6054 {
6055 	int start = 0;
6056 	int i;
6057 	u32 prev_legacy, cur_legacy;
6058 	struct kvm_pit *pit = kvm->arch.vpit;
6059 
6060 	mutex_lock(&pit->pit_state.lock);
6061 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6062 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6063 	if (!prev_legacy && cur_legacy)
6064 		start = 1;
6065 	memcpy(&pit->pit_state.channels, &ps->channels,
6066 	       sizeof(pit->pit_state.channels));
6067 	pit->pit_state.flags = ps->flags;
6068 	for (i = 0; i < 3; i++)
6069 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6070 				   start && i == 0);
6071 	mutex_unlock(&pit->pit_state.lock);
6072 	return 0;
6073 }
6074 
6075 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6076 				 struct kvm_reinject_control *control)
6077 {
6078 	struct kvm_pit *pit = kvm->arch.vpit;
6079 
6080 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
6081 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6082 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6083 	 */
6084 	mutex_lock(&pit->pit_state.lock);
6085 	kvm_pit_set_reinject(pit, control->pit_reinject);
6086 	mutex_unlock(&pit->pit_state.lock);
6087 
6088 	return 0;
6089 }
6090 
6091 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6092 {
6093 
6094 	/*
6095 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6096 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6097 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6098 	 * VM-Exit.
6099 	 */
6100 	struct kvm_vcpu *vcpu;
6101 	unsigned long i;
6102 
6103 	kvm_for_each_vcpu(i, vcpu, kvm)
6104 		kvm_vcpu_kick(vcpu);
6105 }
6106 
6107 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6108 			bool line_status)
6109 {
6110 	if (!irqchip_in_kernel(kvm))
6111 		return -ENXIO;
6112 
6113 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6114 					irq_event->irq, irq_event->level,
6115 					line_status);
6116 	return 0;
6117 }
6118 
6119 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6120 			    struct kvm_enable_cap *cap)
6121 {
6122 	int r;
6123 
6124 	if (cap->flags)
6125 		return -EINVAL;
6126 
6127 	switch (cap->cap) {
6128 	case KVM_CAP_DISABLE_QUIRKS2:
6129 		r = -EINVAL;
6130 		if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6131 			break;
6132 		fallthrough;
6133 	case KVM_CAP_DISABLE_QUIRKS:
6134 		kvm->arch.disabled_quirks = cap->args[0];
6135 		r = 0;
6136 		break;
6137 	case KVM_CAP_SPLIT_IRQCHIP: {
6138 		mutex_lock(&kvm->lock);
6139 		r = -EINVAL;
6140 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6141 			goto split_irqchip_unlock;
6142 		r = -EEXIST;
6143 		if (irqchip_in_kernel(kvm))
6144 			goto split_irqchip_unlock;
6145 		if (kvm->created_vcpus)
6146 			goto split_irqchip_unlock;
6147 		r = kvm_setup_empty_irq_routing(kvm);
6148 		if (r)
6149 			goto split_irqchip_unlock;
6150 		/* Pairs with irqchip_in_kernel. */
6151 		smp_wmb();
6152 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6153 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6154 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6155 		r = 0;
6156 split_irqchip_unlock:
6157 		mutex_unlock(&kvm->lock);
6158 		break;
6159 	}
6160 	case KVM_CAP_X2APIC_API:
6161 		r = -EINVAL;
6162 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6163 			break;
6164 
6165 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6166 			kvm->arch.x2apic_format = true;
6167 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6168 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
6169 
6170 		r = 0;
6171 		break;
6172 	case KVM_CAP_X86_DISABLE_EXITS:
6173 		r = -EINVAL;
6174 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6175 			break;
6176 
6177 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6178 			kvm_can_mwait_in_guest())
6179 			kvm->arch.mwait_in_guest = true;
6180 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6181 			kvm->arch.hlt_in_guest = true;
6182 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6183 			kvm->arch.pause_in_guest = true;
6184 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6185 			kvm->arch.cstate_in_guest = true;
6186 		r = 0;
6187 		break;
6188 	case KVM_CAP_MSR_PLATFORM_INFO:
6189 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6190 		r = 0;
6191 		break;
6192 	case KVM_CAP_EXCEPTION_PAYLOAD:
6193 		kvm->arch.exception_payload_enabled = cap->args[0];
6194 		r = 0;
6195 		break;
6196 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6197 		kvm->arch.triple_fault_event = cap->args[0];
6198 		r = 0;
6199 		break;
6200 	case KVM_CAP_X86_USER_SPACE_MSR:
6201 		r = -EINVAL;
6202 		if (cap->args[0] & ~(KVM_MSR_EXIT_REASON_INVAL |
6203 				     KVM_MSR_EXIT_REASON_UNKNOWN |
6204 				     KVM_MSR_EXIT_REASON_FILTER))
6205 			break;
6206 		kvm->arch.user_space_msr_mask = cap->args[0];
6207 		r = 0;
6208 		break;
6209 	case KVM_CAP_X86_BUS_LOCK_EXIT:
6210 		r = -EINVAL;
6211 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6212 			break;
6213 
6214 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6215 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6216 			break;
6217 
6218 		if (kvm_caps.has_bus_lock_exit &&
6219 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6220 			kvm->arch.bus_lock_detection_enabled = true;
6221 		r = 0;
6222 		break;
6223 #ifdef CONFIG_X86_SGX_KVM
6224 	case KVM_CAP_SGX_ATTRIBUTE: {
6225 		unsigned long allowed_attributes = 0;
6226 
6227 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6228 		if (r)
6229 			break;
6230 
6231 		/* KVM only supports the PROVISIONKEY privileged attribute. */
6232 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6233 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6234 			kvm->arch.sgx_provisioning_allowed = true;
6235 		else
6236 			r = -EINVAL;
6237 		break;
6238 	}
6239 #endif
6240 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6241 		r = -EINVAL;
6242 		if (!kvm_x86_ops.vm_copy_enc_context_from)
6243 			break;
6244 
6245 		r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6246 		break;
6247 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6248 		r = -EINVAL;
6249 		if (!kvm_x86_ops.vm_move_enc_context_from)
6250 			break;
6251 
6252 		r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6253 		break;
6254 	case KVM_CAP_EXIT_HYPERCALL:
6255 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6256 			r = -EINVAL;
6257 			break;
6258 		}
6259 		kvm->arch.hypercall_exit_enabled = cap->args[0];
6260 		r = 0;
6261 		break;
6262 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6263 		r = -EINVAL;
6264 		if (cap->args[0] & ~1)
6265 			break;
6266 		kvm->arch.exit_on_emulation_error = cap->args[0];
6267 		r = 0;
6268 		break;
6269 	case KVM_CAP_PMU_CAPABILITY:
6270 		r = -EINVAL;
6271 		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6272 			break;
6273 
6274 		mutex_lock(&kvm->lock);
6275 		if (!kvm->created_vcpus) {
6276 			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6277 			r = 0;
6278 		}
6279 		mutex_unlock(&kvm->lock);
6280 		break;
6281 	case KVM_CAP_MAX_VCPU_ID:
6282 		r = -EINVAL;
6283 		if (cap->args[0] > KVM_MAX_VCPU_IDS)
6284 			break;
6285 
6286 		mutex_lock(&kvm->lock);
6287 		if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6288 			r = 0;
6289 		} else if (!kvm->arch.max_vcpu_ids) {
6290 			kvm->arch.max_vcpu_ids = cap->args[0];
6291 			r = 0;
6292 		}
6293 		mutex_unlock(&kvm->lock);
6294 		break;
6295 	case KVM_CAP_X86_NOTIFY_VMEXIT:
6296 		r = -EINVAL;
6297 		if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6298 			break;
6299 		if (!kvm_caps.has_notify_vmexit)
6300 			break;
6301 		if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6302 			break;
6303 		mutex_lock(&kvm->lock);
6304 		if (!kvm->created_vcpus) {
6305 			kvm->arch.notify_window = cap->args[0] >> 32;
6306 			kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6307 			r = 0;
6308 		}
6309 		mutex_unlock(&kvm->lock);
6310 		break;
6311 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6312 		r = -EINVAL;
6313 
6314 		/*
6315 		 * Since the risk of disabling NX hugepages is a guest crashing
6316 		 * the system, ensure the userspace process has permission to
6317 		 * reboot the system.
6318 		 *
6319 		 * Note that unlike the reboot() syscall, the process must have
6320 		 * this capability in the root namespace because exposing
6321 		 * /dev/kvm into a container does not limit the scope of the
6322 		 * iTLB multihit bug to that container. In other words,
6323 		 * this must use capable(), not ns_capable().
6324 		 */
6325 		if (!capable(CAP_SYS_BOOT)) {
6326 			r = -EPERM;
6327 			break;
6328 		}
6329 
6330 		if (cap->args[0])
6331 			break;
6332 
6333 		mutex_lock(&kvm->lock);
6334 		if (!kvm->created_vcpus) {
6335 			kvm->arch.disable_nx_huge_pages = true;
6336 			r = 0;
6337 		}
6338 		mutex_unlock(&kvm->lock);
6339 		break;
6340 	default:
6341 		r = -EINVAL;
6342 		break;
6343 	}
6344 	return r;
6345 }
6346 
6347 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6348 {
6349 	struct kvm_x86_msr_filter *msr_filter;
6350 
6351 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6352 	if (!msr_filter)
6353 		return NULL;
6354 
6355 	msr_filter->default_allow = default_allow;
6356 	return msr_filter;
6357 }
6358 
6359 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6360 {
6361 	u32 i;
6362 
6363 	if (!msr_filter)
6364 		return;
6365 
6366 	for (i = 0; i < msr_filter->count; i++)
6367 		kfree(msr_filter->ranges[i].bitmap);
6368 
6369 	kfree(msr_filter);
6370 }
6371 
6372 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6373 			      struct kvm_msr_filter_range *user_range)
6374 {
6375 	unsigned long *bitmap = NULL;
6376 	size_t bitmap_size;
6377 
6378 	if (!user_range->nmsrs)
6379 		return 0;
6380 
6381 	if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
6382 		return -EINVAL;
6383 
6384 	if (!user_range->flags)
6385 		return -EINVAL;
6386 
6387 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6388 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6389 		return -EINVAL;
6390 
6391 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6392 	if (IS_ERR(bitmap))
6393 		return PTR_ERR(bitmap);
6394 
6395 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6396 		.flags = user_range->flags,
6397 		.base = user_range->base,
6398 		.nmsrs = user_range->nmsrs,
6399 		.bitmap = bitmap,
6400 	};
6401 
6402 	msr_filter->count++;
6403 	return 0;
6404 }
6405 
6406 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
6407 {
6408 	struct kvm_msr_filter __user *user_msr_filter = argp;
6409 	struct kvm_x86_msr_filter *new_filter, *old_filter;
6410 	struct kvm_msr_filter filter;
6411 	bool default_allow;
6412 	bool empty = true;
6413 	int r = 0;
6414 	u32 i;
6415 
6416 	if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
6417 		return -EFAULT;
6418 
6419 	if (filter.flags & ~KVM_MSR_FILTER_DEFAULT_DENY)
6420 		return -EINVAL;
6421 
6422 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
6423 		empty &= !filter.ranges[i].nmsrs;
6424 
6425 	default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
6426 	if (empty && !default_allow)
6427 		return -EINVAL;
6428 
6429 	new_filter = kvm_alloc_msr_filter(default_allow);
6430 	if (!new_filter)
6431 		return -ENOMEM;
6432 
6433 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6434 		r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
6435 		if (r) {
6436 			kvm_free_msr_filter(new_filter);
6437 			return r;
6438 		}
6439 	}
6440 
6441 	mutex_lock(&kvm->lock);
6442 
6443 	/* The per-VM filter is protected by kvm->lock... */
6444 	old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
6445 
6446 	rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
6447 	synchronize_srcu(&kvm->srcu);
6448 
6449 	kvm_free_msr_filter(old_filter);
6450 
6451 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6452 	mutex_unlock(&kvm->lock);
6453 
6454 	return 0;
6455 }
6456 
6457 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6458 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6459 {
6460 	struct kvm_vcpu *vcpu;
6461 	unsigned long i;
6462 	int ret = 0;
6463 
6464 	mutex_lock(&kvm->lock);
6465 	kvm_for_each_vcpu(i, vcpu, kvm) {
6466 		if (!vcpu->arch.pv_time.active)
6467 			continue;
6468 
6469 		ret = kvm_set_guest_paused(vcpu);
6470 		if (ret) {
6471 			kvm_err("Failed to pause guest VCPU%d: %d\n",
6472 				vcpu->vcpu_id, ret);
6473 			break;
6474 		}
6475 	}
6476 	mutex_unlock(&kvm->lock);
6477 
6478 	return ret ? NOTIFY_BAD : NOTIFY_DONE;
6479 }
6480 
6481 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6482 {
6483 	switch (state) {
6484 	case PM_HIBERNATION_PREPARE:
6485 	case PM_SUSPEND_PREPARE:
6486 		return kvm_arch_suspend_notifier(kvm);
6487 	}
6488 
6489 	return NOTIFY_DONE;
6490 }
6491 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6492 
6493 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6494 {
6495 	struct kvm_clock_data data = { 0 };
6496 
6497 	get_kvmclock(kvm, &data);
6498 	if (copy_to_user(argp, &data, sizeof(data)))
6499 		return -EFAULT;
6500 
6501 	return 0;
6502 }
6503 
6504 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6505 {
6506 	struct kvm_arch *ka = &kvm->arch;
6507 	struct kvm_clock_data data;
6508 	u64 now_raw_ns;
6509 
6510 	if (copy_from_user(&data, argp, sizeof(data)))
6511 		return -EFAULT;
6512 
6513 	/*
6514 	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6515 	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6516 	 */
6517 	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6518 		return -EINVAL;
6519 
6520 	kvm_hv_request_tsc_page_update(kvm);
6521 	kvm_start_pvclock_update(kvm);
6522 	pvclock_update_vm_gtod_copy(kvm);
6523 
6524 	/*
6525 	 * This pairs with kvm_guest_time_update(): when masterclock is
6526 	 * in use, we use master_kernel_ns + kvmclock_offset to set
6527 	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6528 	 * is slightly ahead) here we risk going negative on unsigned
6529 	 * 'system_time' when 'data.clock' is very small.
6530 	 */
6531 	if (data.flags & KVM_CLOCK_REALTIME) {
6532 		u64 now_real_ns = ktime_get_real_ns();
6533 
6534 		/*
6535 		 * Avoid stepping the kvmclock backwards.
6536 		 */
6537 		if (now_real_ns > data.realtime)
6538 			data.clock += now_real_ns - data.realtime;
6539 	}
6540 
6541 	if (ka->use_master_clock)
6542 		now_raw_ns = ka->master_kernel_ns;
6543 	else
6544 		now_raw_ns = get_kvmclock_base_ns();
6545 	ka->kvmclock_offset = data.clock - now_raw_ns;
6546 	kvm_end_pvclock_update(kvm);
6547 	return 0;
6548 }
6549 
6550 long kvm_arch_vm_ioctl(struct file *filp,
6551 		       unsigned int ioctl, unsigned long arg)
6552 {
6553 	struct kvm *kvm = filp->private_data;
6554 	void __user *argp = (void __user *)arg;
6555 	int r = -ENOTTY;
6556 	/*
6557 	 * This union makes it completely explicit to gcc-3.x
6558 	 * that these two variables' stack usage should be
6559 	 * combined, not added together.
6560 	 */
6561 	union {
6562 		struct kvm_pit_state ps;
6563 		struct kvm_pit_state2 ps2;
6564 		struct kvm_pit_config pit_config;
6565 	} u;
6566 
6567 	switch (ioctl) {
6568 	case KVM_SET_TSS_ADDR:
6569 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6570 		break;
6571 	case KVM_SET_IDENTITY_MAP_ADDR: {
6572 		u64 ident_addr;
6573 
6574 		mutex_lock(&kvm->lock);
6575 		r = -EINVAL;
6576 		if (kvm->created_vcpus)
6577 			goto set_identity_unlock;
6578 		r = -EFAULT;
6579 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6580 			goto set_identity_unlock;
6581 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6582 set_identity_unlock:
6583 		mutex_unlock(&kvm->lock);
6584 		break;
6585 	}
6586 	case KVM_SET_NR_MMU_PAGES:
6587 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6588 		break;
6589 	case KVM_GET_NR_MMU_PAGES:
6590 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6591 		break;
6592 	case KVM_CREATE_IRQCHIP: {
6593 		mutex_lock(&kvm->lock);
6594 
6595 		r = -EEXIST;
6596 		if (irqchip_in_kernel(kvm))
6597 			goto create_irqchip_unlock;
6598 
6599 		r = -EINVAL;
6600 		if (kvm->created_vcpus)
6601 			goto create_irqchip_unlock;
6602 
6603 		r = kvm_pic_init(kvm);
6604 		if (r)
6605 			goto create_irqchip_unlock;
6606 
6607 		r = kvm_ioapic_init(kvm);
6608 		if (r) {
6609 			kvm_pic_destroy(kvm);
6610 			goto create_irqchip_unlock;
6611 		}
6612 
6613 		r = kvm_setup_default_irq_routing(kvm);
6614 		if (r) {
6615 			kvm_ioapic_destroy(kvm);
6616 			kvm_pic_destroy(kvm);
6617 			goto create_irqchip_unlock;
6618 		}
6619 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6620 		smp_wmb();
6621 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6622 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6623 	create_irqchip_unlock:
6624 		mutex_unlock(&kvm->lock);
6625 		break;
6626 	}
6627 	case KVM_CREATE_PIT:
6628 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6629 		goto create_pit;
6630 	case KVM_CREATE_PIT2:
6631 		r = -EFAULT;
6632 		if (copy_from_user(&u.pit_config, argp,
6633 				   sizeof(struct kvm_pit_config)))
6634 			goto out;
6635 	create_pit:
6636 		mutex_lock(&kvm->lock);
6637 		r = -EEXIST;
6638 		if (kvm->arch.vpit)
6639 			goto create_pit_unlock;
6640 		r = -ENOMEM;
6641 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6642 		if (kvm->arch.vpit)
6643 			r = 0;
6644 	create_pit_unlock:
6645 		mutex_unlock(&kvm->lock);
6646 		break;
6647 	case KVM_GET_IRQCHIP: {
6648 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6649 		struct kvm_irqchip *chip;
6650 
6651 		chip = memdup_user(argp, sizeof(*chip));
6652 		if (IS_ERR(chip)) {
6653 			r = PTR_ERR(chip);
6654 			goto out;
6655 		}
6656 
6657 		r = -ENXIO;
6658 		if (!irqchip_kernel(kvm))
6659 			goto get_irqchip_out;
6660 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6661 		if (r)
6662 			goto get_irqchip_out;
6663 		r = -EFAULT;
6664 		if (copy_to_user(argp, chip, sizeof(*chip)))
6665 			goto get_irqchip_out;
6666 		r = 0;
6667 	get_irqchip_out:
6668 		kfree(chip);
6669 		break;
6670 	}
6671 	case KVM_SET_IRQCHIP: {
6672 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6673 		struct kvm_irqchip *chip;
6674 
6675 		chip = memdup_user(argp, sizeof(*chip));
6676 		if (IS_ERR(chip)) {
6677 			r = PTR_ERR(chip);
6678 			goto out;
6679 		}
6680 
6681 		r = -ENXIO;
6682 		if (!irqchip_kernel(kvm))
6683 			goto set_irqchip_out;
6684 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6685 	set_irqchip_out:
6686 		kfree(chip);
6687 		break;
6688 	}
6689 	case KVM_GET_PIT: {
6690 		r = -EFAULT;
6691 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6692 			goto out;
6693 		r = -ENXIO;
6694 		if (!kvm->arch.vpit)
6695 			goto out;
6696 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6697 		if (r)
6698 			goto out;
6699 		r = -EFAULT;
6700 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6701 			goto out;
6702 		r = 0;
6703 		break;
6704 	}
6705 	case KVM_SET_PIT: {
6706 		r = -EFAULT;
6707 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6708 			goto out;
6709 		mutex_lock(&kvm->lock);
6710 		r = -ENXIO;
6711 		if (!kvm->arch.vpit)
6712 			goto set_pit_out;
6713 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6714 set_pit_out:
6715 		mutex_unlock(&kvm->lock);
6716 		break;
6717 	}
6718 	case KVM_GET_PIT2: {
6719 		r = -ENXIO;
6720 		if (!kvm->arch.vpit)
6721 			goto out;
6722 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6723 		if (r)
6724 			goto out;
6725 		r = -EFAULT;
6726 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6727 			goto out;
6728 		r = 0;
6729 		break;
6730 	}
6731 	case KVM_SET_PIT2: {
6732 		r = -EFAULT;
6733 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6734 			goto out;
6735 		mutex_lock(&kvm->lock);
6736 		r = -ENXIO;
6737 		if (!kvm->arch.vpit)
6738 			goto set_pit2_out;
6739 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6740 set_pit2_out:
6741 		mutex_unlock(&kvm->lock);
6742 		break;
6743 	}
6744 	case KVM_REINJECT_CONTROL: {
6745 		struct kvm_reinject_control control;
6746 		r =  -EFAULT;
6747 		if (copy_from_user(&control, argp, sizeof(control)))
6748 			goto out;
6749 		r = -ENXIO;
6750 		if (!kvm->arch.vpit)
6751 			goto out;
6752 		r = kvm_vm_ioctl_reinject(kvm, &control);
6753 		break;
6754 	}
6755 	case KVM_SET_BOOT_CPU_ID:
6756 		r = 0;
6757 		mutex_lock(&kvm->lock);
6758 		if (kvm->created_vcpus)
6759 			r = -EBUSY;
6760 		else
6761 			kvm->arch.bsp_vcpu_id = arg;
6762 		mutex_unlock(&kvm->lock);
6763 		break;
6764 #ifdef CONFIG_KVM_XEN
6765 	case KVM_XEN_HVM_CONFIG: {
6766 		struct kvm_xen_hvm_config xhc;
6767 		r = -EFAULT;
6768 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
6769 			goto out;
6770 		r = kvm_xen_hvm_config(kvm, &xhc);
6771 		break;
6772 	}
6773 	case KVM_XEN_HVM_GET_ATTR: {
6774 		struct kvm_xen_hvm_attr xha;
6775 
6776 		r = -EFAULT;
6777 		if (copy_from_user(&xha, argp, sizeof(xha)))
6778 			goto out;
6779 		r = kvm_xen_hvm_get_attr(kvm, &xha);
6780 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6781 			r = -EFAULT;
6782 		break;
6783 	}
6784 	case KVM_XEN_HVM_SET_ATTR: {
6785 		struct kvm_xen_hvm_attr xha;
6786 
6787 		r = -EFAULT;
6788 		if (copy_from_user(&xha, argp, sizeof(xha)))
6789 			goto out;
6790 		r = kvm_xen_hvm_set_attr(kvm, &xha);
6791 		break;
6792 	}
6793 	case KVM_XEN_HVM_EVTCHN_SEND: {
6794 		struct kvm_irq_routing_xen_evtchn uxe;
6795 
6796 		r = -EFAULT;
6797 		if (copy_from_user(&uxe, argp, sizeof(uxe)))
6798 			goto out;
6799 		r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
6800 		break;
6801 	}
6802 #endif
6803 	case KVM_SET_CLOCK:
6804 		r = kvm_vm_ioctl_set_clock(kvm, argp);
6805 		break;
6806 	case KVM_GET_CLOCK:
6807 		r = kvm_vm_ioctl_get_clock(kvm, argp);
6808 		break;
6809 	case KVM_SET_TSC_KHZ: {
6810 		u32 user_tsc_khz;
6811 
6812 		r = -EINVAL;
6813 		user_tsc_khz = (u32)arg;
6814 
6815 		if (kvm_caps.has_tsc_control &&
6816 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6817 			goto out;
6818 
6819 		if (user_tsc_khz == 0)
6820 			user_tsc_khz = tsc_khz;
6821 
6822 		WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
6823 		r = 0;
6824 
6825 		goto out;
6826 	}
6827 	case KVM_GET_TSC_KHZ: {
6828 		r = READ_ONCE(kvm->arch.default_tsc_khz);
6829 		goto out;
6830 	}
6831 	case KVM_MEMORY_ENCRYPT_OP: {
6832 		r = -ENOTTY;
6833 		if (!kvm_x86_ops.mem_enc_ioctl)
6834 			goto out;
6835 
6836 		r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
6837 		break;
6838 	}
6839 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
6840 		struct kvm_enc_region region;
6841 
6842 		r = -EFAULT;
6843 		if (copy_from_user(&region, argp, sizeof(region)))
6844 			goto out;
6845 
6846 		r = -ENOTTY;
6847 		if (!kvm_x86_ops.mem_enc_register_region)
6848 			goto out;
6849 
6850 		r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
6851 		break;
6852 	}
6853 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6854 		struct kvm_enc_region region;
6855 
6856 		r = -EFAULT;
6857 		if (copy_from_user(&region, argp, sizeof(region)))
6858 			goto out;
6859 
6860 		r = -ENOTTY;
6861 		if (!kvm_x86_ops.mem_enc_unregister_region)
6862 			goto out;
6863 
6864 		r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
6865 		break;
6866 	}
6867 	case KVM_HYPERV_EVENTFD: {
6868 		struct kvm_hyperv_eventfd hvevfd;
6869 
6870 		r = -EFAULT;
6871 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6872 			goto out;
6873 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6874 		break;
6875 	}
6876 	case KVM_SET_PMU_EVENT_FILTER:
6877 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6878 		break;
6879 	case KVM_X86_SET_MSR_FILTER:
6880 		r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6881 		break;
6882 	default:
6883 		r = -ENOTTY;
6884 	}
6885 out:
6886 	return r;
6887 }
6888 
6889 static void kvm_init_msr_list(void)
6890 {
6891 	u32 dummy[2];
6892 	unsigned i;
6893 
6894 	BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
6895 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
6896 
6897 	num_msrs_to_save = 0;
6898 	num_emulated_msrs = 0;
6899 	num_msr_based_features = 0;
6900 
6901 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6902 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6903 			continue;
6904 
6905 		/*
6906 		 * Even MSRs that are valid in the host may not be exposed
6907 		 * to the guests in some cases.
6908 		 */
6909 		switch (msrs_to_save_all[i]) {
6910 		case MSR_IA32_BNDCFGS:
6911 			if (!kvm_mpx_supported())
6912 				continue;
6913 			break;
6914 		case MSR_TSC_AUX:
6915 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6916 			    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6917 				continue;
6918 			break;
6919 		case MSR_IA32_UMWAIT_CONTROL:
6920 			if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6921 				continue;
6922 			break;
6923 		case MSR_IA32_RTIT_CTL:
6924 		case MSR_IA32_RTIT_STATUS:
6925 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6926 				continue;
6927 			break;
6928 		case MSR_IA32_RTIT_CR3_MATCH:
6929 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6930 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6931 				continue;
6932 			break;
6933 		case MSR_IA32_RTIT_OUTPUT_BASE:
6934 		case MSR_IA32_RTIT_OUTPUT_MASK:
6935 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6936 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6937 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6938 				continue;
6939 			break;
6940 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6941 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6942 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6943 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6944 				continue;
6945 			break;
6946 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6947 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6948 			    min(INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp))
6949 				continue;
6950 			break;
6951 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6952 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6953 			    min(INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp))
6954 				continue;
6955 			break;
6956 		case MSR_IA32_XFD:
6957 		case MSR_IA32_XFD_ERR:
6958 			if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
6959 				continue;
6960 			break;
6961 		default:
6962 			break;
6963 		}
6964 
6965 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6966 	}
6967 
6968 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6969 		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6970 			continue;
6971 
6972 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6973 	}
6974 
6975 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6976 		struct kvm_msr_entry msr;
6977 
6978 		msr.index = msr_based_features_all[i];
6979 		if (kvm_get_msr_feature(&msr))
6980 			continue;
6981 
6982 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6983 	}
6984 }
6985 
6986 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6987 			   const void *v)
6988 {
6989 	int handled = 0;
6990 	int n;
6991 
6992 	do {
6993 		n = min(len, 8);
6994 		if (!(lapic_in_kernel(vcpu) &&
6995 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6996 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6997 			break;
6998 		handled += n;
6999 		addr += n;
7000 		len -= n;
7001 		v += n;
7002 	} while (len);
7003 
7004 	return handled;
7005 }
7006 
7007 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7008 {
7009 	int handled = 0;
7010 	int n;
7011 
7012 	do {
7013 		n = min(len, 8);
7014 		if (!(lapic_in_kernel(vcpu) &&
7015 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7016 					 addr, n, v))
7017 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7018 			break;
7019 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7020 		handled += n;
7021 		addr += n;
7022 		len -= n;
7023 		v += n;
7024 	} while (len);
7025 
7026 	return handled;
7027 }
7028 
7029 static void kvm_set_segment(struct kvm_vcpu *vcpu,
7030 			struct kvm_segment *var, int seg)
7031 {
7032 	static_call(kvm_x86_set_segment)(vcpu, var, seg);
7033 }
7034 
7035 void kvm_get_segment(struct kvm_vcpu *vcpu,
7036 		     struct kvm_segment *var, int seg)
7037 {
7038 	static_call(kvm_x86_get_segment)(vcpu, var, seg);
7039 }
7040 
7041 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7042 			   struct x86_exception *exception)
7043 {
7044 	struct kvm_mmu *mmu = vcpu->arch.mmu;
7045 	gpa_t t_gpa;
7046 
7047 	BUG_ON(!mmu_is_nested(vcpu));
7048 
7049 	/* NPT walks are always user-walks */
7050 	access |= PFERR_USER_MASK;
7051 	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7052 
7053 	return t_gpa;
7054 }
7055 
7056 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7057 			      struct x86_exception *exception)
7058 {
7059 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7060 
7061 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7062 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7063 }
7064 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7065 
7066  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
7067 				struct x86_exception *exception)
7068 {
7069 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7070 
7071 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7072 	access |= PFERR_FETCH_MASK;
7073 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7074 }
7075 
7076 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7077 			       struct x86_exception *exception)
7078 {
7079 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7080 
7081 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7082 	access |= PFERR_WRITE_MASK;
7083 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7084 }
7085 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7086 
7087 /* uses this to access any guest's mapped memory without checking CPL */
7088 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7089 				struct x86_exception *exception)
7090 {
7091 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7092 
7093 	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7094 }
7095 
7096 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7097 				      struct kvm_vcpu *vcpu, u64 access,
7098 				      struct x86_exception *exception)
7099 {
7100 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7101 	void *data = val;
7102 	int r = X86EMUL_CONTINUE;
7103 
7104 	while (bytes) {
7105 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7106 		unsigned offset = addr & (PAGE_SIZE-1);
7107 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7108 		int ret;
7109 
7110 		if (gpa == INVALID_GPA)
7111 			return X86EMUL_PROPAGATE_FAULT;
7112 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7113 					       offset, toread);
7114 		if (ret < 0) {
7115 			r = X86EMUL_IO_NEEDED;
7116 			goto out;
7117 		}
7118 
7119 		bytes -= toread;
7120 		data += toread;
7121 		addr += toread;
7122 	}
7123 out:
7124 	return r;
7125 }
7126 
7127 /* used for instruction fetching */
7128 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7129 				gva_t addr, void *val, unsigned int bytes,
7130 				struct x86_exception *exception)
7131 {
7132 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7133 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7134 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7135 	unsigned offset;
7136 	int ret;
7137 
7138 	/* Inline kvm_read_guest_virt_helper for speed.  */
7139 	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7140 				    exception);
7141 	if (unlikely(gpa == INVALID_GPA))
7142 		return X86EMUL_PROPAGATE_FAULT;
7143 
7144 	offset = addr & (PAGE_SIZE-1);
7145 	if (WARN_ON(offset + bytes > PAGE_SIZE))
7146 		bytes = (unsigned)PAGE_SIZE - offset;
7147 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7148 				       offset, bytes);
7149 	if (unlikely(ret < 0))
7150 		return X86EMUL_IO_NEEDED;
7151 
7152 	return X86EMUL_CONTINUE;
7153 }
7154 
7155 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7156 			       gva_t addr, void *val, unsigned int bytes,
7157 			       struct x86_exception *exception)
7158 {
7159 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7160 
7161 	/*
7162 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7163 	 * is returned, but our callers are not ready for that and they blindly
7164 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
7165 	 * uninitialized kernel stack memory into cr2 and error code.
7166 	 */
7167 	memset(exception, 0, sizeof(*exception));
7168 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7169 					  exception);
7170 }
7171 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7172 
7173 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7174 			     gva_t addr, void *val, unsigned int bytes,
7175 			     struct x86_exception *exception, bool system)
7176 {
7177 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7178 	u64 access = 0;
7179 
7180 	if (system)
7181 		access |= PFERR_IMPLICIT_ACCESS;
7182 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7183 		access |= PFERR_USER_MASK;
7184 
7185 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7186 }
7187 
7188 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
7189 		unsigned long addr, void *val, unsigned int bytes)
7190 {
7191 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7192 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
7193 
7194 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
7195 }
7196 
7197 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7198 				      struct kvm_vcpu *vcpu, u64 access,
7199 				      struct x86_exception *exception)
7200 {
7201 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7202 	void *data = val;
7203 	int r = X86EMUL_CONTINUE;
7204 
7205 	while (bytes) {
7206 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7207 		unsigned offset = addr & (PAGE_SIZE-1);
7208 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7209 		int ret;
7210 
7211 		if (gpa == INVALID_GPA)
7212 			return X86EMUL_PROPAGATE_FAULT;
7213 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7214 		if (ret < 0) {
7215 			r = X86EMUL_IO_NEEDED;
7216 			goto out;
7217 		}
7218 
7219 		bytes -= towrite;
7220 		data += towrite;
7221 		addr += towrite;
7222 	}
7223 out:
7224 	return r;
7225 }
7226 
7227 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7228 			      unsigned int bytes, struct x86_exception *exception,
7229 			      bool system)
7230 {
7231 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7232 	u64 access = PFERR_WRITE_MASK;
7233 
7234 	if (system)
7235 		access |= PFERR_IMPLICIT_ACCESS;
7236 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7237 		access |= PFERR_USER_MASK;
7238 
7239 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7240 					   access, exception);
7241 }
7242 
7243 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7244 				unsigned int bytes, struct x86_exception *exception)
7245 {
7246 	/* kvm_write_guest_virt_system can pull in tons of pages. */
7247 	vcpu->arch.l1tf_flush_l1d = true;
7248 
7249 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7250 					   PFERR_WRITE_MASK, exception);
7251 }
7252 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7253 
7254 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7255 				void *insn, int insn_len)
7256 {
7257 	return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
7258 							    insn, insn_len);
7259 }
7260 
7261 int handle_ud(struct kvm_vcpu *vcpu)
7262 {
7263 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7264 	int emul_type = EMULTYPE_TRAP_UD;
7265 	char sig[5]; /* ud2; .ascii "kvm" */
7266 	struct x86_exception e;
7267 
7268 	if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
7269 		return 1;
7270 
7271 	if (force_emulation_prefix &&
7272 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7273 				sig, sizeof(sig), &e) == 0 &&
7274 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7275 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7276 		emul_type = EMULTYPE_TRAP_UD_FORCED;
7277 	}
7278 
7279 	return kvm_emulate_instruction(vcpu, emul_type);
7280 }
7281 EXPORT_SYMBOL_GPL(handle_ud);
7282 
7283 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7284 			    gpa_t gpa, bool write)
7285 {
7286 	/* For APIC access vmexit */
7287 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7288 		return 1;
7289 
7290 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7291 		trace_vcpu_match_mmio(gva, gpa, write, true);
7292 		return 1;
7293 	}
7294 
7295 	return 0;
7296 }
7297 
7298 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7299 				gpa_t *gpa, struct x86_exception *exception,
7300 				bool write)
7301 {
7302 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7303 	u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7304 		| (write ? PFERR_WRITE_MASK : 0);
7305 
7306 	/*
7307 	 * currently PKRU is only applied to ept enabled guest so
7308 	 * there is no pkey in EPT page table for L1 guest or EPT
7309 	 * shadow page table for L2 guest.
7310 	 */
7311 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7312 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
7313 			      vcpu->arch.mmio_access, 0, access))) {
7314 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7315 					(gva & (PAGE_SIZE - 1));
7316 		trace_vcpu_match_mmio(gva, *gpa, write, false);
7317 		return 1;
7318 	}
7319 
7320 	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7321 
7322 	if (*gpa == INVALID_GPA)
7323 		return -1;
7324 
7325 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7326 }
7327 
7328 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7329 			const void *val, int bytes)
7330 {
7331 	int ret;
7332 
7333 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7334 	if (ret < 0)
7335 		return 0;
7336 	kvm_page_track_write(vcpu, gpa, val, bytes);
7337 	return 1;
7338 }
7339 
7340 struct read_write_emulator_ops {
7341 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7342 				  int bytes);
7343 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7344 				  void *val, int bytes);
7345 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7346 			       int bytes, void *val);
7347 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7348 				    void *val, int bytes);
7349 	bool write;
7350 };
7351 
7352 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7353 {
7354 	if (vcpu->mmio_read_completed) {
7355 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7356 			       vcpu->mmio_fragments[0].gpa, val);
7357 		vcpu->mmio_read_completed = 0;
7358 		return 1;
7359 	}
7360 
7361 	return 0;
7362 }
7363 
7364 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7365 			void *val, int bytes)
7366 {
7367 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7368 }
7369 
7370 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7371 			 void *val, int bytes)
7372 {
7373 	return emulator_write_phys(vcpu, gpa, val, bytes);
7374 }
7375 
7376 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7377 {
7378 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7379 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
7380 }
7381 
7382 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7383 			  void *val, int bytes)
7384 {
7385 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7386 	return X86EMUL_IO_NEEDED;
7387 }
7388 
7389 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7390 			   void *val, int bytes)
7391 {
7392 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7393 
7394 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7395 	return X86EMUL_CONTINUE;
7396 }
7397 
7398 static const struct read_write_emulator_ops read_emultor = {
7399 	.read_write_prepare = read_prepare,
7400 	.read_write_emulate = read_emulate,
7401 	.read_write_mmio = vcpu_mmio_read,
7402 	.read_write_exit_mmio = read_exit_mmio,
7403 };
7404 
7405 static const struct read_write_emulator_ops write_emultor = {
7406 	.read_write_emulate = write_emulate,
7407 	.read_write_mmio = write_mmio,
7408 	.read_write_exit_mmio = write_exit_mmio,
7409 	.write = true,
7410 };
7411 
7412 static int emulator_read_write_onepage(unsigned long addr, void *val,
7413 				       unsigned int bytes,
7414 				       struct x86_exception *exception,
7415 				       struct kvm_vcpu *vcpu,
7416 				       const struct read_write_emulator_ops *ops)
7417 {
7418 	gpa_t gpa;
7419 	int handled, ret;
7420 	bool write = ops->write;
7421 	struct kvm_mmio_fragment *frag;
7422 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7423 
7424 	/*
7425 	 * If the exit was due to a NPF we may already have a GPA.
7426 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7427 	 * Note, this cannot be used on string operations since string
7428 	 * operation using rep will only have the initial GPA from the NPF
7429 	 * occurred.
7430 	 */
7431 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7432 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7433 		gpa = ctxt->gpa_val;
7434 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7435 	} else {
7436 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7437 		if (ret < 0)
7438 			return X86EMUL_PROPAGATE_FAULT;
7439 	}
7440 
7441 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7442 		return X86EMUL_CONTINUE;
7443 
7444 	/*
7445 	 * Is this MMIO handled locally?
7446 	 */
7447 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7448 	if (handled == bytes)
7449 		return X86EMUL_CONTINUE;
7450 
7451 	gpa += handled;
7452 	bytes -= handled;
7453 	val += handled;
7454 
7455 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7456 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7457 	frag->gpa = gpa;
7458 	frag->data = val;
7459 	frag->len = bytes;
7460 	return X86EMUL_CONTINUE;
7461 }
7462 
7463 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7464 			unsigned long addr,
7465 			void *val, unsigned int bytes,
7466 			struct x86_exception *exception,
7467 			const struct read_write_emulator_ops *ops)
7468 {
7469 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7470 	gpa_t gpa;
7471 	int rc;
7472 
7473 	if (ops->read_write_prepare &&
7474 		  ops->read_write_prepare(vcpu, val, bytes))
7475 		return X86EMUL_CONTINUE;
7476 
7477 	vcpu->mmio_nr_fragments = 0;
7478 
7479 	/* Crossing a page boundary? */
7480 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7481 		int now;
7482 
7483 		now = -addr & ~PAGE_MASK;
7484 		rc = emulator_read_write_onepage(addr, val, now, exception,
7485 						 vcpu, ops);
7486 
7487 		if (rc != X86EMUL_CONTINUE)
7488 			return rc;
7489 		addr += now;
7490 		if (ctxt->mode != X86EMUL_MODE_PROT64)
7491 			addr = (u32)addr;
7492 		val += now;
7493 		bytes -= now;
7494 	}
7495 
7496 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
7497 					 vcpu, ops);
7498 	if (rc != X86EMUL_CONTINUE)
7499 		return rc;
7500 
7501 	if (!vcpu->mmio_nr_fragments)
7502 		return rc;
7503 
7504 	gpa = vcpu->mmio_fragments[0].gpa;
7505 
7506 	vcpu->mmio_needed = 1;
7507 	vcpu->mmio_cur_fragment = 0;
7508 
7509 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7510 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7511 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
7512 	vcpu->run->mmio.phys_addr = gpa;
7513 
7514 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7515 }
7516 
7517 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7518 				  unsigned long addr,
7519 				  void *val,
7520 				  unsigned int bytes,
7521 				  struct x86_exception *exception)
7522 {
7523 	return emulator_read_write(ctxt, addr, val, bytes,
7524 				   exception, &read_emultor);
7525 }
7526 
7527 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7528 			    unsigned long addr,
7529 			    const void *val,
7530 			    unsigned int bytes,
7531 			    struct x86_exception *exception)
7532 {
7533 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
7534 				   exception, &write_emultor);
7535 }
7536 
7537 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7538 	(__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7539 
7540 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7541 				     unsigned long addr,
7542 				     const void *old,
7543 				     const void *new,
7544 				     unsigned int bytes,
7545 				     struct x86_exception *exception)
7546 {
7547 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7548 	u64 page_line_mask;
7549 	unsigned long hva;
7550 	gpa_t gpa;
7551 	int r;
7552 
7553 	/* guests cmpxchg8b have to be emulated atomically */
7554 	if (bytes > 8 || (bytes & (bytes - 1)))
7555 		goto emul_write;
7556 
7557 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7558 
7559 	if (gpa == INVALID_GPA ||
7560 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7561 		goto emul_write;
7562 
7563 	/*
7564 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
7565 	 * enabled in the host and the access splits a cache line.
7566 	 */
7567 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7568 		page_line_mask = ~(cache_line_size() - 1);
7569 	else
7570 		page_line_mask = PAGE_MASK;
7571 
7572 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7573 		goto emul_write;
7574 
7575 	hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7576 	if (kvm_is_error_hva(hva))
7577 		goto emul_write;
7578 
7579 	hva += offset_in_page(gpa);
7580 
7581 	switch (bytes) {
7582 	case 1:
7583 		r = emulator_try_cmpxchg_user(u8, hva, old, new);
7584 		break;
7585 	case 2:
7586 		r = emulator_try_cmpxchg_user(u16, hva, old, new);
7587 		break;
7588 	case 4:
7589 		r = emulator_try_cmpxchg_user(u32, hva, old, new);
7590 		break;
7591 	case 8:
7592 		r = emulator_try_cmpxchg_user(u64, hva, old, new);
7593 		break;
7594 	default:
7595 		BUG();
7596 	}
7597 
7598 	if (r < 0)
7599 		return X86EMUL_UNHANDLEABLE;
7600 	if (r)
7601 		return X86EMUL_CMPXCHG_FAILED;
7602 
7603 	kvm_page_track_write(vcpu, gpa, new, bytes);
7604 
7605 	return X86EMUL_CONTINUE;
7606 
7607 emul_write:
7608 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
7609 
7610 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7611 }
7612 
7613 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7614 			       unsigned short port, void *data,
7615 			       unsigned int count, bool in)
7616 {
7617 	unsigned i;
7618 	int r;
7619 
7620 	WARN_ON_ONCE(vcpu->arch.pio.count);
7621 	for (i = 0; i < count; i++) {
7622 		if (in)
7623 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
7624 		else
7625 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
7626 
7627 		if (r) {
7628 			if (i == 0)
7629 				goto userspace_io;
7630 
7631 			/*
7632 			 * Userspace must have unregistered the device while PIO
7633 			 * was running.  Drop writes / read as 0.
7634 			 */
7635 			if (in)
7636 				memset(data, 0, size * (count - i));
7637 			break;
7638 		}
7639 
7640 		data += size;
7641 	}
7642 	return 1;
7643 
7644 userspace_io:
7645 	vcpu->arch.pio.port = port;
7646 	vcpu->arch.pio.in = in;
7647 	vcpu->arch.pio.count = count;
7648 	vcpu->arch.pio.size = size;
7649 
7650 	if (in)
7651 		memset(vcpu->arch.pio_data, 0, size * count);
7652 	else
7653 		memcpy(vcpu->arch.pio_data, data, size * count);
7654 
7655 	vcpu->run->exit_reason = KVM_EXIT_IO;
7656 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7657 	vcpu->run->io.size = size;
7658 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7659 	vcpu->run->io.count = count;
7660 	vcpu->run->io.port = port;
7661 	return 0;
7662 }
7663 
7664 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7665       			   unsigned short port, void *val, unsigned int count)
7666 {
7667 	int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
7668 	if (r)
7669 		trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
7670 
7671 	return r;
7672 }
7673 
7674 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7675 {
7676 	int size = vcpu->arch.pio.size;
7677 	unsigned int count = vcpu->arch.pio.count;
7678 	memcpy(val, vcpu->arch.pio_data, size * count);
7679 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7680 	vcpu->arch.pio.count = 0;
7681 }
7682 
7683 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7684 				    int size, unsigned short port, void *val,
7685 				    unsigned int count)
7686 {
7687 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7688 	if (vcpu->arch.pio.count) {
7689 		/*
7690 		 * Complete a previous iteration that required userspace I/O.
7691 		 * Note, @count isn't guaranteed to match pio.count as userspace
7692 		 * can modify ECX before rerunning the vCPU.  Ignore any such
7693 		 * shenanigans as KVM doesn't support modifying the rep count,
7694 		 * and the emulator ensures @count doesn't overflow the buffer.
7695 		 */
7696 		complete_emulator_pio_in(vcpu, val);
7697 		return 1;
7698 	}
7699 
7700 	return emulator_pio_in(vcpu, size, port, val, count);
7701 }
7702 
7703 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7704 			    unsigned short port, const void *val,
7705 			    unsigned int count)
7706 {
7707 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
7708 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
7709 }
7710 
7711 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7712 				     int size, unsigned short port,
7713 				     const void *val, unsigned int count)
7714 {
7715 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7716 }
7717 
7718 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7719 {
7720 	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7721 }
7722 
7723 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7724 {
7725 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7726 }
7727 
7728 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7729 {
7730 	if (!need_emulate_wbinvd(vcpu))
7731 		return X86EMUL_CONTINUE;
7732 
7733 	if (static_call(kvm_x86_has_wbinvd_exit)()) {
7734 		int cpu = get_cpu();
7735 
7736 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7737 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7738 				wbinvd_ipi, NULL, 1);
7739 		put_cpu();
7740 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7741 	} else
7742 		wbinvd();
7743 	return X86EMUL_CONTINUE;
7744 }
7745 
7746 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7747 {
7748 	kvm_emulate_wbinvd_noskip(vcpu);
7749 	return kvm_skip_emulated_instruction(vcpu);
7750 }
7751 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7752 
7753 
7754 
7755 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7756 {
7757 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7758 }
7759 
7760 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7761 			    unsigned long *dest)
7762 {
7763 	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7764 }
7765 
7766 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7767 			   unsigned long value)
7768 {
7769 
7770 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7771 }
7772 
7773 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7774 {
7775 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7776 }
7777 
7778 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7779 {
7780 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7781 	unsigned long value;
7782 
7783 	switch (cr) {
7784 	case 0:
7785 		value = kvm_read_cr0(vcpu);
7786 		break;
7787 	case 2:
7788 		value = vcpu->arch.cr2;
7789 		break;
7790 	case 3:
7791 		value = kvm_read_cr3(vcpu);
7792 		break;
7793 	case 4:
7794 		value = kvm_read_cr4(vcpu);
7795 		break;
7796 	case 8:
7797 		value = kvm_get_cr8(vcpu);
7798 		break;
7799 	default:
7800 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7801 		return 0;
7802 	}
7803 
7804 	return value;
7805 }
7806 
7807 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7808 {
7809 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7810 	int res = 0;
7811 
7812 	switch (cr) {
7813 	case 0:
7814 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7815 		break;
7816 	case 2:
7817 		vcpu->arch.cr2 = val;
7818 		break;
7819 	case 3:
7820 		res = kvm_set_cr3(vcpu, val);
7821 		break;
7822 	case 4:
7823 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7824 		break;
7825 	case 8:
7826 		res = kvm_set_cr8(vcpu, val);
7827 		break;
7828 	default:
7829 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7830 		res = -1;
7831 	}
7832 
7833 	return res;
7834 }
7835 
7836 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7837 {
7838 	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7839 }
7840 
7841 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7842 {
7843 	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7844 }
7845 
7846 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7847 {
7848 	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7849 }
7850 
7851 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7852 {
7853 	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7854 }
7855 
7856 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7857 {
7858 	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7859 }
7860 
7861 static unsigned long emulator_get_cached_segment_base(
7862 	struct x86_emulate_ctxt *ctxt, int seg)
7863 {
7864 	return get_segment_base(emul_to_vcpu(ctxt), seg);
7865 }
7866 
7867 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7868 				 struct desc_struct *desc, u32 *base3,
7869 				 int seg)
7870 {
7871 	struct kvm_segment var;
7872 
7873 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7874 	*selector = var.selector;
7875 
7876 	if (var.unusable) {
7877 		memset(desc, 0, sizeof(*desc));
7878 		if (base3)
7879 			*base3 = 0;
7880 		return false;
7881 	}
7882 
7883 	if (var.g)
7884 		var.limit >>= 12;
7885 	set_desc_limit(desc, var.limit);
7886 	set_desc_base(desc, (unsigned long)var.base);
7887 #ifdef CONFIG_X86_64
7888 	if (base3)
7889 		*base3 = var.base >> 32;
7890 #endif
7891 	desc->type = var.type;
7892 	desc->s = var.s;
7893 	desc->dpl = var.dpl;
7894 	desc->p = var.present;
7895 	desc->avl = var.avl;
7896 	desc->l = var.l;
7897 	desc->d = var.db;
7898 	desc->g = var.g;
7899 
7900 	return true;
7901 }
7902 
7903 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7904 				 struct desc_struct *desc, u32 base3,
7905 				 int seg)
7906 {
7907 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7908 	struct kvm_segment var;
7909 
7910 	var.selector = selector;
7911 	var.base = get_desc_base(desc);
7912 #ifdef CONFIG_X86_64
7913 	var.base |= ((u64)base3) << 32;
7914 #endif
7915 	var.limit = get_desc_limit(desc);
7916 	if (desc->g)
7917 		var.limit = (var.limit << 12) | 0xfff;
7918 	var.type = desc->type;
7919 	var.dpl = desc->dpl;
7920 	var.db = desc->d;
7921 	var.s = desc->s;
7922 	var.l = desc->l;
7923 	var.g = desc->g;
7924 	var.avl = desc->avl;
7925 	var.present = desc->p;
7926 	var.unusable = !var.present;
7927 	var.padding = 0;
7928 
7929 	kvm_set_segment(vcpu, &var, seg);
7930 	return;
7931 }
7932 
7933 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
7934 					u32 msr_index, u64 *pdata)
7935 {
7936 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7937 	int r;
7938 
7939 	r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
7940 
7941 	if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
7942 				    complete_emulated_rdmsr, r)) {
7943 		/* Bounce to user space */
7944 		return X86EMUL_IO_NEEDED;
7945 	}
7946 
7947 	return r;
7948 }
7949 
7950 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
7951 					u32 msr_index, u64 data)
7952 {
7953 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7954 	int r;
7955 
7956 	r = kvm_set_msr_with_filter(vcpu, msr_index, data);
7957 
7958 	if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
7959 				    complete_emulated_msr_access, r)) {
7960 		/* Bounce to user space */
7961 		return X86EMUL_IO_NEEDED;
7962 	}
7963 
7964 	return r;
7965 }
7966 
7967 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7968 			    u32 msr_index, u64 *pdata)
7969 {
7970 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
7971 }
7972 
7973 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7974 			    u32 msr_index, u64 data)
7975 {
7976 	return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
7977 }
7978 
7979 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7980 {
7981 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7982 
7983 	return vcpu->arch.smbase;
7984 }
7985 
7986 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7987 {
7988 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7989 
7990 	vcpu->arch.smbase = smbase;
7991 }
7992 
7993 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7994 			      u32 pmc)
7995 {
7996 	if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
7997 		return 0;
7998 	return -EINVAL;
7999 }
8000 
8001 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8002 			     u32 pmc, u64 *pdata)
8003 {
8004 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8005 }
8006 
8007 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8008 {
8009 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
8010 }
8011 
8012 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8013 			      struct x86_instruction_info *info,
8014 			      enum x86_intercept_stage stage)
8015 {
8016 	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8017 					    &ctxt->exception);
8018 }
8019 
8020 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8021 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8022 			      bool exact_only)
8023 {
8024 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8025 }
8026 
8027 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
8028 {
8029 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
8030 }
8031 
8032 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8033 {
8034 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8035 }
8036 
8037 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8038 {
8039 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8040 }
8041 
8042 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8043 {
8044 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8045 }
8046 
8047 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8048 {
8049 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8050 }
8051 
8052 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8053 {
8054 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8055 }
8056 
8057 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8058 {
8059 	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8060 }
8061 
8062 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
8063 {
8064 	return emul_to_vcpu(ctxt)->arch.hflags;
8065 }
8066 
8067 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
8068 {
8069 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8070 
8071 	kvm_smm_changed(vcpu, false);
8072 }
8073 
8074 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
8075 				  const char *smstate)
8076 {
8077 	return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
8078 }
8079 
8080 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8081 {
8082 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8083 }
8084 
8085 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8086 {
8087 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8088 }
8089 
8090 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8091 {
8092 	struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8093 
8094 	if (!kvm->vm_bugged)
8095 		kvm_vm_bugged(kvm);
8096 }
8097 
8098 static const struct x86_emulate_ops emulate_ops = {
8099 	.vm_bugged           = emulator_vm_bugged,
8100 	.read_gpr            = emulator_read_gpr,
8101 	.write_gpr           = emulator_write_gpr,
8102 	.read_std            = emulator_read_std,
8103 	.write_std           = emulator_write_std,
8104 	.read_phys           = kvm_read_guest_phys_system,
8105 	.fetch               = kvm_fetch_guest_virt,
8106 	.read_emulated       = emulator_read_emulated,
8107 	.write_emulated      = emulator_write_emulated,
8108 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
8109 	.invlpg              = emulator_invlpg,
8110 	.pio_in_emulated     = emulator_pio_in_emulated,
8111 	.pio_out_emulated    = emulator_pio_out_emulated,
8112 	.get_segment         = emulator_get_segment,
8113 	.set_segment         = emulator_set_segment,
8114 	.get_cached_segment_base = emulator_get_cached_segment_base,
8115 	.get_gdt             = emulator_get_gdt,
8116 	.get_idt	     = emulator_get_idt,
8117 	.set_gdt             = emulator_set_gdt,
8118 	.set_idt	     = emulator_set_idt,
8119 	.get_cr              = emulator_get_cr,
8120 	.set_cr              = emulator_set_cr,
8121 	.cpl                 = emulator_get_cpl,
8122 	.get_dr              = emulator_get_dr,
8123 	.set_dr              = emulator_set_dr,
8124 	.get_smbase          = emulator_get_smbase,
8125 	.set_smbase          = emulator_set_smbase,
8126 	.set_msr_with_filter = emulator_set_msr_with_filter,
8127 	.get_msr_with_filter = emulator_get_msr_with_filter,
8128 	.set_msr             = emulator_set_msr,
8129 	.get_msr             = emulator_get_msr,
8130 	.check_pmc	     = emulator_check_pmc,
8131 	.read_pmc            = emulator_read_pmc,
8132 	.halt                = emulator_halt,
8133 	.wbinvd              = emulator_wbinvd,
8134 	.fix_hypercall       = emulator_fix_hypercall,
8135 	.intercept           = emulator_intercept,
8136 	.get_cpuid           = emulator_get_cpuid,
8137 	.guest_has_long_mode = emulator_guest_has_long_mode,
8138 	.guest_has_movbe     = emulator_guest_has_movbe,
8139 	.guest_has_fxsr      = emulator_guest_has_fxsr,
8140 	.guest_has_rdpid     = emulator_guest_has_rdpid,
8141 	.set_nmi_mask        = emulator_set_nmi_mask,
8142 	.get_hflags          = emulator_get_hflags,
8143 	.exiting_smm         = emulator_exiting_smm,
8144 	.leave_smm           = emulator_leave_smm,
8145 	.triple_fault        = emulator_triple_fault,
8146 	.set_xcr             = emulator_set_xcr,
8147 };
8148 
8149 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8150 {
8151 	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8152 	/*
8153 	 * an sti; sti; sequence only disable interrupts for the first
8154 	 * instruction. So, if the last instruction, be it emulated or
8155 	 * not, left the system with the INT_STI flag enabled, it
8156 	 * means that the last instruction is an sti. We should not
8157 	 * leave the flag on in this case. The same goes for mov ss
8158 	 */
8159 	if (int_shadow & mask)
8160 		mask = 0;
8161 	if (unlikely(int_shadow || mask)) {
8162 		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8163 		if (!mask)
8164 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8165 	}
8166 }
8167 
8168 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
8169 {
8170 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8171 	if (ctxt->exception.vector == PF_VECTOR)
8172 		return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8173 
8174 	if (ctxt->exception.error_code_valid)
8175 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8176 				      ctxt->exception.error_code);
8177 	else
8178 		kvm_queue_exception(vcpu, ctxt->exception.vector);
8179 	return false;
8180 }
8181 
8182 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8183 {
8184 	struct x86_emulate_ctxt *ctxt;
8185 
8186 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8187 	if (!ctxt) {
8188 		pr_err("kvm: failed to allocate vcpu's emulator\n");
8189 		return NULL;
8190 	}
8191 
8192 	ctxt->vcpu = vcpu;
8193 	ctxt->ops = &emulate_ops;
8194 	vcpu->arch.emulate_ctxt = ctxt;
8195 
8196 	return ctxt;
8197 }
8198 
8199 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8200 {
8201 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8202 	int cs_db, cs_l;
8203 
8204 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8205 
8206 	ctxt->gpa_available = false;
8207 	ctxt->eflags = kvm_get_rflags(vcpu);
8208 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8209 
8210 	ctxt->eip = kvm_rip_read(vcpu);
8211 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
8212 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
8213 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
8214 		     cs_db				? X86EMUL_MODE_PROT32 :
8215 							  X86EMUL_MODE_PROT16;
8216 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
8217 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
8218 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
8219 
8220 	ctxt->interruptibility = 0;
8221 	ctxt->have_exception = false;
8222 	ctxt->exception.vector = -1;
8223 	ctxt->perm_ok = false;
8224 
8225 	init_decode_cache(ctxt);
8226 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8227 }
8228 
8229 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8230 {
8231 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8232 	int ret;
8233 
8234 	init_emulate_ctxt(vcpu);
8235 
8236 	ctxt->op_bytes = 2;
8237 	ctxt->ad_bytes = 2;
8238 	ctxt->_eip = ctxt->eip + inc_eip;
8239 	ret = emulate_int_real(ctxt, irq);
8240 
8241 	if (ret != X86EMUL_CONTINUE) {
8242 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8243 	} else {
8244 		ctxt->eip = ctxt->_eip;
8245 		kvm_rip_write(vcpu, ctxt->eip);
8246 		kvm_set_rflags(vcpu, ctxt->eflags);
8247 	}
8248 }
8249 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8250 
8251 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8252 					   u8 ndata, u8 *insn_bytes, u8 insn_size)
8253 {
8254 	struct kvm_run *run = vcpu->run;
8255 	u64 info[5];
8256 	u8 info_start;
8257 
8258 	/*
8259 	 * Zero the whole array used to retrieve the exit info, as casting to
8260 	 * u32 for select entries will leave some chunks uninitialized.
8261 	 */
8262 	memset(&info, 0, sizeof(info));
8263 
8264 	static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8265 					   &info[2], (u32 *)&info[3],
8266 					   (u32 *)&info[4]);
8267 
8268 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8269 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8270 
8271 	/*
8272 	 * There's currently space for 13 entries, but 5 are used for the exit
8273 	 * reason and info.  Restrict to 4 to reduce the maintenance burden
8274 	 * when expanding kvm_run.emulation_failure in the future.
8275 	 */
8276 	if (WARN_ON_ONCE(ndata > 4))
8277 		ndata = 4;
8278 
8279 	/* Always include the flags as a 'data' entry. */
8280 	info_start = 1;
8281 	run->emulation_failure.flags = 0;
8282 
8283 	if (insn_size) {
8284 		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8285 			      sizeof(run->emulation_failure.insn_bytes) != 16));
8286 		info_start += 2;
8287 		run->emulation_failure.flags |=
8288 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8289 		run->emulation_failure.insn_size = insn_size;
8290 		memset(run->emulation_failure.insn_bytes, 0x90,
8291 		       sizeof(run->emulation_failure.insn_bytes));
8292 		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8293 	}
8294 
8295 	memcpy(&run->internal.data[info_start], info, sizeof(info));
8296 	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8297 	       ndata * sizeof(data[0]));
8298 
8299 	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8300 }
8301 
8302 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8303 {
8304 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8305 
8306 	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8307 				       ctxt->fetch.end - ctxt->fetch.data);
8308 }
8309 
8310 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8311 					  u8 ndata)
8312 {
8313 	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8314 }
8315 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8316 
8317 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8318 {
8319 	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8320 }
8321 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8322 
8323 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8324 {
8325 	struct kvm *kvm = vcpu->kvm;
8326 
8327 	++vcpu->stat.insn_emulation_fail;
8328 	trace_kvm_emulate_insn_failed(vcpu);
8329 
8330 	if (emulation_type & EMULTYPE_VMWARE_GP) {
8331 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8332 		return 1;
8333 	}
8334 
8335 	if (kvm->arch.exit_on_emulation_error ||
8336 	    (emulation_type & EMULTYPE_SKIP)) {
8337 		prepare_emulation_ctxt_failure_exit(vcpu);
8338 		return 0;
8339 	}
8340 
8341 	kvm_queue_exception(vcpu, UD_VECTOR);
8342 
8343 	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8344 		prepare_emulation_ctxt_failure_exit(vcpu);
8345 		return 0;
8346 	}
8347 
8348 	return 1;
8349 }
8350 
8351 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8352 				  bool write_fault_to_shadow_pgtable,
8353 				  int emulation_type)
8354 {
8355 	gpa_t gpa = cr2_or_gpa;
8356 	kvm_pfn_t pfn;
8357 
8358 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8359 		return false;
8360 
8361 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8362 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8363 		return false;
8364 
8365 	if (!vcpu->arch.mmu->root_role.direct) {
8366 		/*
8367 		 * Write permission should be allowed since only
8368 		 * write access need to be emulated.
8369 		 */
8370 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8371 
8372 		/*
8373 		 * If the mapping is invalid in guest, let cpu retry
8374 		 * it to generate fault.
8375 		 */
8376 		if (gpa == INVALID_GPA)
8377 			return true;
8378 	}
8379 
8380 	/*
8381 	 * Do not retry the unhandleable instruction if it faults on the
8382 	 * readonly host memory, otherwise it will goto a infinite loop:
8383 	 * retry instruction -> write #PF -> emulation fail -> retry
8384 	 * instruction -> ...
8385 	 */
8386 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8387 
8388 	/*
8389 	 * If the instruction failed on the error pfn, it can not be fixed,
8390 	 * report the error to userspace.
8391 	 */
8392 	if (is_error_noslot_pfn(pfn))
8393 		return false;
8394 
8395 	kvm_release_pfn_clean(pfn);
8396 
8397 	/* The instructions are well-emulated on direct mmu. */
8398 	if (vcpu->arch.mmu->root_role.direct) {
8399 		unsigned int indirect_shadow_pages;
8400 
8401 		write_lock(&vcpu->kvm->mmu_lock);
8402 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8403 		write_unlock(&vcpu->kvm->mmu_lock);
8404 
8405 		if (indirect_shadow_pages)
8406 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8407 
8408 		return true;
8409 	}
8410 
8411 	/*
8412 	 * if emulation was due to access to shadowed page table
8413 	 * and it failed try to unshadow page and re-enter the
8414 	 * guest to let CPU execute the instruction.
8415 	 */
8416 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8417 
8418 	/*
8419 	 * If the access faults on its page table, it can not
8420 	 * be fixed by unprotecting shadow page and it should
8421 	 * be reported to userspace.
8422 	 */
8423 	return !write_fault_to_shadow_pgtable;
8424 }
8425 
8426 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8427 			      gpa_t cr2_or_gpa,  int emulation_type)
8428 {
8429 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8430 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8431 
8432 	last_retry_eip = vcpu->arch.last_retry_eip;
8433 	last_retry_addr = vcpu->arch.last_retry_addr;
8434 
8435 	/*
8436 	 * If the emulation is caused by #PF and it is non-page_table
8437 	 * writing instruction, it means the VM-EXIT is caused by shadow
8438 	 * page protected, we can zap the shadow page and retry this
8439 	 * instruction directly.
8440 	 *
8441 	 * Note: if the guest uses a non-page-table modifying instruction
8442 	 * on the PDE that points to the instruction, then we will unmap
8443 	 * the instruction and go to an infinite loop. So, we cache the
8444 	 * last retried eip and the last fault address, if we meet the eip
8445 	 * and the address again, we can break out of the potential infinite
8446 	 * loop.
8447 	 */
8448 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8449 
8450 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8451 		return false;
8452 
8453 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8454 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8455 		return false;
8456 
8457 	if (x86_page_table_writing_insn(ctxt))
8458 		return false;
8459 
8460 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8461 		return false;
8462 
8463 	vcpu->arch.last_retry_eip = ctxt->eip;
8464 	vcpu->arch.last_retry_addr = cr2_or_gpa;
8465 
8466 	if (!vcpu->arch.mmu->root_role.direct)
8467 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8468 
8469 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8470 
8471 	return true;
8472 }
8473 
8474 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8475 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8476 
8477 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
8478 {
8479 	trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
8480 
8481 	if (entering_smm) {
8482 		vcpu->arch.hflags |= HF_SMM_MASK;
8483 	} else {
8484 		vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
8485 
8486 		/* Process a latched INIT or SMI, if any.  */
8487 		kvm_make_request(KVM_REQ_EVENT, vcpu);
8488 
8489 		/*
8490 		 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
8491 		 * on SMM exit we still need to reload them from
8492 		 * guest memory
8493 		 */
8494 		vcpu->arch.pdptrs_from_userspace = false;
8495 	}
8496 
8497 	kvm_mmu_reset_context(vcpu);
8498 }
8499 
8500 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8501 				unsigned long *db)
8502 {
8503 	u32 dr6 = 0;
8504 	int i;
8505 	u32 enable, rwlen;
8506 
8507 	enable = dr7;
8508 	rwlen = dr7 >> 16;
8509 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8510 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8511 			dr6 |= (1 << i);
8512 	return dr6;
8513 }
8514 
8515 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8516 {
8517 	struct kvm_run *kvm_run = vcpu->run;
8518 
8519 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8520 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8521 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8522 		kvm_run->debug.arch.exception = DB_VECTOR;
8523 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
8524 		return 0;
8525 	}
8526 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8527 	return 1;
8528 }
8529 
8530 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8531 {
8532 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8533 	int r;
8534 
8535 	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8536 	if (unlikely(!r))
8537 		return 0;
8538 
8539 	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8540 
8541 	/*
8542 	 * rflags is the old, "raw" value of the flags.  The new value has
8543 	 * not been saved yet.
8544 	 *
8545 	 * This is correct even for TF set by the guest, because "the
8546 	 * processor will not generate this exception after the instruction
8547 	 * that sets the TF flag".
8548 	 */
8549 	if (unlikely(rflags & X86_EFLAGS_TF))
8550 		r = kvm_vcpu_do_singlestep(vcpu);
8551 	return r;
8552 }
8553 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8554 
8555 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, int *r)
8556 {
8557 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8558 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8559 		struct kvm_run *kvm_run = vcpu->run;
8560 		unsigned long eip = kvm_get_linear_rip(vcpu);
8561 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8562 					   vcpu->arch.guest_debug_dr7,
8563 					   vcpu->arch.eff_db);
8564 
8565 		if (dr6 != 0) {
8566 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8567 			kvm_run->debug.arch.pc = eip;
8568 			kvm_run->debug.arch.exception = DB_VECTOR;
8569 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
8570 			*r = 0;
8571 			return true;
8572 		}
8573 	}
8574 
8575 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8576 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
8577 		unsigned long eip = kvm_get_linear_rip(vcpu);
8578 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8579 					   vcpu->arch.dr7,
8580 					   vcpu->arch.db);
8581 
8582 		if (dr6 != 0) {
8583 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8584 			*r = 1;
8585 			return true;
8586 		}
8587 	}
8588 
8589 	return false;
8590 }
8591 
8592 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8593 {
8594 	switch (ctxt->opcode_len) {
8595 	case 1:
8596 		switch (ctxt->b) {
8597 		case 0xe4:	/* IN */
8598 		case 0xe5:
8599 		case 0xec:
8600 		case 0xed:
8601 		case 0xe6:	/* OUT */
8602 		case 0xe7:
8603 		case 0xee:
8604 		case 0xef:
8605 		case 0x6c:	/* INS */
8606 		case 0x6d:
8607 		case 0x6e:	/* OUTS */
8608 		case 0x6f:
8609 			return true;
8610 		}
8611 		break;
8612 	case 2:
8613 		switch (ctxt->b) {
8614 		case 0x33:	/* RDPMC */
8615 			return true;
8616 		}
8617 		break;
8618 	}
8619 
8620 	return false;
8621 }
8622 
8623 /*
8624  * Decode an instruction for emulation.  The caller is responsible for handling
8625  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
8626  * (and wrong) when emulating on an intercepted fault-like exception[*], as
8627  * code breakpoints have higher priority and thus have already been done by
8628  * hardware.
8629  *
8630  * [*] Except #MC, which is higher priority, but KVM should never emulate in
8631  *     response to a machine check.
8632  */
8633 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8634 				    void *insn, int insn_len)
8635 {
8636 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8637 	int r;
8638 
8639 	init_emulate_ctxt(vcpu);
8640 
8641 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8642 
8643 	trace_kvm_emulate_insn_start(vcpu);
8644 	++vcpu->stat.insn_emulation;
8645 
8646 	return r;
8647 }
8648 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8649 
8650 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8651 			    int emulation_type, void *insn, int insn_len)
8652 {
8653 	int r;
8654 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8655 	bool writeback = true;
8656 	bool write_fault_to_spt;
8657 
8658 	if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8659 		return 1;
8660 
8661 	vcpu->arch.l1tf_flush_l1d = true;
8662 
8663 	/*
8664 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
8665 	 * never reused.
8666 	 */
8667 	write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8668 	vcpu->arch.write_fault_to_shadow_pgtable = false;
8669 
8670 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8671 		kvm_clear_exception_queue(vcpu);
8672 
8673 		/*
8674 		 * Return immediately if RIP hits a code breakpoint, such #DBs
8675 		 * are fault-like and are higher priority than any faults on
8676 		 * the code fetch itself.
8677 		 */
8678 		if (!(emulation_type & EMULTYPE_SKIP) &&
8679 		    kvm_vcpu_check_code_breakpoint(vcpu, &r))
8680 			return r;
8681 
8682 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
8683 						    insn, insn_len);
8684 		if (r != EMULATION_OK)  {
8685 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
8686 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8687 				kvm_queue_exception(vcpu, UD_VECTOR);
8688 				return 1;
8689 			}
8690 			if (reexecute_instruction(vcpu, cr2_or_gpa,
8691 						  write_fault_to_spt,
8692 						  emulation_type))
8693 				return 1;
8694 			if (ctxt->have_exception) {
8695 				/*
8696 				 * #UD should result in just EMULATION_FAILED, and trap-like
8697 				 * exception should not be encountered during decode.
8698 				 */
8699 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8700 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8701 				inject_emulated_exception(vcpu);
8702 				return 1;
8703 			}
8704 			return handle_emulation_failure(vcpu, emulation_type);
8705 		}
8706 	}
8707 
8708 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8709 	    !is_vmware_backdoor_opcode(ctxt)) {
8710 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8711 		return 1;
8712 	}
8713 
8714 	/*
8715 	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8716 	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8717 	 * The caller is responsible for updating interruptibility state and
8718 	 * injecting single-step #DBs.
8719 	 */
8720 	if (emulation_type & EMULTYPE_SKIP) {
8721 		if (ctxt->mode != X86EMUL_MODE_PROT64)
8722 			ctxt->eip = (u32)ctxt->_eip;
8723 		else
8724 			ctxt->eip = ctxt->_eip;
8725 
8726 		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8727 			r = 1;
8728 			goto writeback;
8729 		}
8730 
8731 		kvm_rip_write(vcpu, ctxt->eip);
8732 		if (ctxt->eflags & X86_EFLAGS_RF)
8733 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8734 		return 1;
8735 	}
8736 
8737 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8738 		return 1;
8739 
8740 	/* this is needed for vmware backdoor interface to work since it
8741 	   changes registers values  during IO operation */
8742 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8743 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8744 		emulator_invalidate_register_cache(ctxt);
8745 	}
8746 
8747 restart:
8748 	if (emulation_type & EMULTYPE_PF) {
8749 		/* Save the faulting GPA (cr2) in the address field */
8750 		ctxt->exception.address = cr2_or_gpa;
8751 
8752 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
8753 		if (vcpu->arch.mmu->root_role.direct) {
8754 			ctxt->gpa_available = true;
8755 			ctxt->gpa_val = cr2_or_gpa;
8756 		}
8757 	} else {
8758 		/* Sanitize the address out of an abundance of paranoia. */
8759 		ctxt->exception.address = 0;
8760 	}
8761 
8762 	r = x86_emulate_insn(ctxt);
8763 
8764 	if (r == EMULATION_INTERCEPTED)
8765 		return 1;
8766 
8767 	if (r == EMULATION_FAILED) {
8768 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8769 					emulation_type))
8770 			return 1;
8771 
8772 		return handle_emulation_failure(vcpu, emulation_type);
8773 	}
8774 
8775 	if (ctxt->have_exception) {
8776 		r = 1;
8777 		if (inject_emulated_exception(vcpu))
8778 			return r;
8779 	} else if (vcpu->arch.pio.count) {
8780 		if (!vcpu->arch.pio.in) {
8781 			/* FIXME: return into emulator if single-stepping.  */
8782 			vcpu->arch.pio.count = 0;
8783 		} else {
8784 			writeback = false;
8785 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
8786 		}
8787 		r = 0;
8788 	} else if (vcpu->mmio_needed) {
8789 		++vcpu->stat.mmio_exits;
8790 
8791 		if (!vcpu->mmio_is_write)
8792 			writeback = false;
8793 		r = 0;
8794 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8795 	} else if (vcpu->arch.complete_userspace_io) {
8796 		writeback = false;
8797 		r = 0;
8798 	} else if (r == EMULATION_RESTART)
8799 		goto restart;
8800 	else
8801 		r = 1;
8802 
8803 writeback:
8804 	if (writeback) {
8805 		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8806 		toggle_interruptibility(vcpu, ctxt->interruptibility);
8807 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8808 		if (!ctxt->have_exception ||
8809 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8810 			kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8811 			if (ctxt->is_branch)
8812 				kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
8813 			kvm_rip_write(vcpu, ctxt->eip);
8814 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8815 				r = kvm_vcpu_do_singlestep(vcpu);
8816 			static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
8817 			__kvm_set_rflags(vcpu, ctxt->eflags);
8818 		}
8819 
8820 		/*
8821 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8822 		 * do nothing, and it will be requested again as soon as
8823 		 * the shadow expires.  But we still need to check here,
8824 		 * because POPF has no interrupt shadow.
8825 		 */
8826 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8827 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8828 	} else
8829 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8830 
8831 	return r;
8832 }
8833 
8834 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8835 {
8836 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8837 }
8838 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8839 
8840 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8841 					void *insn, int insn_len)
8842 {
8843 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8844 }
8845 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8846 
8847 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8848 {
8849 	vcpu->arch.pio.count = 0;
8850 	return 1;
8851 }
8852 
8853 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8854 {
8855 	vcpu->arch.pio.count = 0;
8856 
8857 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8858 		return 1;
8859 
8860 	return kvm_skip_emulated_instruction(vcpu);
8861 }
8862 
8863 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8864 			    unsigned short port)
8865 {
8866 	unsigned long val = kvm_rax_read(vcpu);
8867 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8868 
8869 	if (ret)
8870 		return ret;
8871 
8872 	/*
8873 	 * Workaround userspace that relies on old KVM behavior of %rip being
8874 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
8875 	 */
8876 	if (port == 0x7e &&
8877 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8878 		vcpu->arch.complete_userspace_io =
8879 			complete_fast_pio_out_port_0x7e;
8880 		kvm_skip_emulated_instruction(vcpu);
8881 	} else {
8882 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8883 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8884 	}
8885 	return 0;
8886 }
8887 
8888 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8889 {
8890 	unsigned long val;
8891 
8892 	/* We should only ever be called with arch.pio.count equal to 1 */
8893 	BUG_ON(vcpu->arch.pio.count != 1);
8894 
8895 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8896 		vcpu->arch.pio.count = 0;
8897 		return 1;
8898 	}
8899 
8900 	/* For size less than 4 we merge, else we zero extend */
8901 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8902 
8903 	complete_emulator_pio_in(vcpu, &val);
8904 	kvm_rax_write(vcpu, val);
8905 
8906 	return kvm_skip_emulated_instruction(vcpu);
8907 }
8908 
8909 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8910 			   unsigned short port)
8911 {
8912 	unsigned long val;
8913 	int ret;
8914 
8915 	/* For size less than 4 we merge, else we zero extend */
8916 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8917 
8918 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
8919 	if (ret) {
8920 		kvm_rax_write(vcpu, val);
8921 		return ret;
8922 	}
8923 
8924 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8925 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8926 
8927 	return 0;
8928 }
8929 
8930 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8931 {
8932 	int ret;
8933 
8934 	if (in)
8935 		ret = kvm_fast_pio_in(vcpu, size, port);
8936 	else
8937 		ret = kvm_fast_pio_out(vcpu, size, port);
8938 	return ret && kvm_skip_emulated_instruction(vcpu);
8939 }
8940 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8941 
8942 static int kvmclock_cpu_down_prep(unsigned int cpu)
8943 {
8944 	__this_cpu_write(cpu_tsc_khz, 0);
8945 	return 0;
8946 }
8947 
8948 static void tsc_khz_changed(void *data)
8949 {
8950 	struct cpufreq_freqs *freq = data;
8951 	unsigned long khz = 0;
8952 
8953 	if (data)
8954 		khz = freq->new;
8955 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8956 		khz = cpufreq_quick_get(raw_smp_processor_id());
8957 	if (!khz)
8958 		khz = tsc_khz;
8959 	__this_cpu_write(cpu_tsc_khz, khz);
8960 }
8961 
8962 #ifdef CONFIG_X86_64
8963 static void kvm_hyperv_tsc_notifier(void)
8964 {
8965 	struct kvm *kvm;
8966 	int cpu;
8967 
8968 	mutex_lock(&kvm_lock);
8969 	list_for_each_entry(kvm, &vm_list, vm_list)
8970 		kvm_make_mclock_inprogress_request(kvm);
8971 
8972 	/* no guest entries from this point */
8973 	hyperv_stop_tsc_emulation();
8974 
8975 	/* TSC frequency always matches when on Hyper-V */
8976 	for_each_present_cpu(cpu)
8977 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8978 	kvm_caps.max_guest_tsc_khz = tsc_khz;
8979 
8980 	list_for_each_entry(kvm, &vm_list, vm_list) {
8981 		__kvm_start_pvclock_update(kvm);
8982 		pvclock_update_vm_gtod_copy(kvm);
8983 		kvm_end_pvclock_update(kvm);
8984 	}
8985 
8986 	mutex_unlock(&kvm_lock);
8987 }
8988 #endif
8989 
8990 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8991 {
8992 	struct kvm *kvm;
8993 	struct kvm_vcpu *vcpu;
8994 	int send_ipi = 0;
8995 	unsigned long i;
8996 
8997 	/*
8998 	 * We allow guests to temporarily run on slowing clocks,
8999 	 * provided we notify them after, or to run on accelerating
9000 	 * clocks, provided we notify them before.  Thus time never
9001 	 * goes backwards.
9002 	 *
9003 	 * However, we have a problem.  We can't atomically update
9004 	 * the frequency of a given CPU from this function; it is
9005 	 * merely a notifier, which can be called from any CPU.
9006 	 * Changing the TSC frequency at arbitrary points in time
9007 	 * requires a recomputation of local variables related to
9008 	 * the TSC for each VCPU.  We must flag these local variables
9009 	 * to be updated and be sure the update takes place with the
9010 	 * new frequency before any guests proceed.
9011 	 *
9012 	 * Unfortunately, the combination of hotplug CPU and frequency
9013 	 * change creates an intractable locking scenario; the order
9014 	 * of when these callouts happen is undefined with respect to
9015 	 * CPU hotplug, and they can race with each other.  As such,
9016 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9017 	 * undefined; you can actually have a CPU frequency change take
9018 	 * place in between the computation of X and the setting of the
9019 	 * variable.  To protect against this problem, all updates of
9020 	 * the per_cpu tsc_khz variable are done in an interrupt
9021 	 * protected IPI, and all callers wishing to update the value
9022 	 * must wait for a synchronous IPI to complete (which is trivial
9023 	 * if the caller is on the CPU already).  This establishes the
9024 	 * necessary total order on variable updates.
9025 	 *
9026 	 * Note that because a guest time update may take place
9027 	 * anytime after the setting of the VCPU's request bit, the
9028 	 * correct TSC value must be set before the request.  However,
9029 	 * to ensure the update actually makes it to any guest which
9030 	 * starts running in hardware virtualization between the set
9031 	 * and the acquisition of the spinlock, we must also ping the
9032 	 * CPU after setting the request bit.
9033 	 *
9034 	 */
9035 
9036 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9037 
9038 	mutex_lock(&kvm_lock);
9039 	list_for_each_entry(kvm, &vm_list, vm_list) {
9040 		kvm_for_each_vcpu(i, vcpu, kvm) {
9041 			if (vcpu->cpu != cpu)
9042 				continue;
9043 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9044 			if (vcpu->cpu != raw_smp_processor_id())
9045 				send_ipi = 1;
9046 		}
9047 	}
9048 	mutex_unlock(&kvm_lock);
9049 
9050 	if (freq->old < freq->new && send_ipi) {
9051 		/*
9052 		 * We upscale the frequency.  Must make the guest
9053 		 * doesn't see old kvmclock values while running with
9054 		 * the new frequency, otherwise we risk the guest sees
9055 		 * time go backwards.
9056 		 *
9057 		 * In case we update the frequency for another cpu
9058 		 * (which might be in guest context) send an interrupt
9059 		 * to kick the cpu out of guest context.  Next time
9060 		 * guest context is entered kvmclock will be updated,
9061 		 * so the guest will not see stale values.
9062 		 */
9063 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9064 	}
9065 }
9066 
9067 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9068 				     void *data)
9069 {
9070 	struct cpufreq_freqs *freq = data;
9071 	int cpu;
9072 
9073 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9074 		return 0;
9075 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9076 		return 0;
9077 
9078 	for_each_cpu(cpu, freq->policy->cpus)
9079 		__kvmclock_cpufreq_notifier(freq, cpu);
9080 
9081 	return 0;
9082 }
9083 
9084 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9085 	.notifier_call  = kvmclock_cpufreq_notifier
9086 };
9087 
9088 static int kvmclock_cpu_online(unsigned int cpu)
9089 {
9090 	tsc_khz_changed(NULL);
9091 	return 0;
9092 }
9093 
9094 static void kvm_timer_init(void)
9095 {
9096 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9097 		max_tsc_khz = tsc_khz;
9098 
9099 		if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9100 			struct cpufreq_policy *policy;
9101 			int cpu;
9102 
9103 			cpu = get_cpu();
9104 			policy = cpufreq_cpu_get(cpu);
9105 			if (policy) {
9106 				if (policy->cpuinfo.max_freq)
9107 					max_tsc_khz = policy->cpuinfo.max_freq;
9108 				cpufreq_cpu_put(policy);
9109 			}
9110 			put_cpu();
9111 		}
9112 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9113 					  CPUFREQ_TRANSITION_NOTIFIER);
9114 	}
9115 
9116 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9117 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
9118 }
9119 
9120 #ifdef CONFIG_X86_64
9121 static void pvclock_gtod_update_fn(struct work_struct *work)
9122 {
9123 	struct kvm *kvm;
9124 	struct kvm_vcpu *vcpu;
9125 	unsigned long i;
9126 
9127 	mutex_lock(&kvm_lock);
9128 	list_for_each_entry(kvm, &vm_list, vm_list)
9129 		kvm_for_each_vcpu(i, vcpu, kvm)
9130 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9131 	atomic_set(&kvm_guest_has_master_clock, 0);
9132 	mutex_unlock(&kvm_lock);
9133 }
9134 
9135 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9136 
9137 /*
9138  * Indirection to move queue_work() out of the tk_core.seq write held
9139  * region to prevent possible deadlocks against time accessors which
9140  * are invoked with work related locks held.
9141  */
9142 static void pvclock_irq_work_fn(struct irq_work *w)
9143 {
9144 	queue_work(system_long_wq, &pvclock_gtod_work);
9145 }
9146 
9147 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9148 
9149 /*
9150  * Notification about pvclock gtod data update.
9151  */
9152 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9153 			       void *priv)
9154 {
9155 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9156 	struct timekeeper *tk = priv;
9157 
9158 	update_pvclock_gtod(tk);
9159 
9160 	/*
9161 	 * Disable master clock if host does not trust, or does not use,
9162 	 * TSC based clocksource. Delegate queue_work() to irq_work as
9163 	 * this is invoked with tk_core.seq write held.
9164 	 */
9165 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9166 	    atomic_read(&kvm_guest_has_master_clock) != 0)
9167 		irq_work_queue(&pvclock_irq_work);
9168 	return 0;
9169 }
9170 
9171 static struct notifier_block pvclock_gtod_notifier = {
9172 	.notifier_call = pvclock_gtod_notify,
9173 };
9174 #endif
9175 
9176 int kvm_arch_init(void *opaque)
9177 {
9178 	struct kvm_x86_init_ops *ops = opaque;
9179 	u64 host_pat;
9180 	int r;
9181 
9182 	if (kvm_x86_ops.hardware_enable) {
9183 		pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name);
9184 		return -EEXIST;
9185 	}
9186 
9187 	if (!ops->cpu_has_kvm_support()) {
9188 		pr_err_ratelimited("kvm: no hardware support for '%s'\n",
9189 				   ops->runtime_ops->name);
9190 		return -EOPNOTSUPP;
9191 	}
9192 	if (ops->disabled_by_bios()) {
9193 		pr_err_ratelimited("kvm: support for '%s' disabled by bios\n",
9194 				   ops->runtime_ops->name);
9195 		return -EOPNOTSUPP;
9196 	}
9197 
9198 	/*
9199 	 * KVM explicitly assumes that the guest has an FPU and
9200 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9201 	 * vCPU's FPU state as a fxregs_state struct.
9202 	 */
9203 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9204 		printk(KERN_ERR "kvm: inadequate fpu\n");
9205 		return -EOPNOTSUPP;
9206 	}
9207 
9208 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9209 		pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9210 		return -EOPNOTSUPP;
9211 	}
9212 
9213 	/*
9214 	 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9215 	 * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9216 	 * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9217 	 * with an exception.  PAT[0] is set to WB on RESET and also by the
9218 	 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9219 	 */
9220 	if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9221 	    (host_pat & GENMASK(2, 0)) != 6) {
9222 		pr_err("kvm: host PAT[0] is not WB\n");
9223 		return -EIO;
9224 	}
9225 
9226 	x86_emulator_cache = kvm_alloc_emulator_cache();
9227 	if (!x86_emulator_cache) {
9228 		pr_err("kvm: failed to allocate cache for x86 emulator\n");
9229 		return -ENOMEM;
9230 	}
9231 
9232 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9233 	if (!user_return_msrs) {
9234 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
9235 		r = -ENOMEM;
9236 		goto out_free_x86_emulator_cache;
9237 	}
9238 	kvm_nr_uret_msrs = 0;
9239 
9240 	r = kvm_mmu_vendor_module_init();
9241 	if (r)
9242 		goto out_free_percpu;
9243 
9244 	kvm_timer_init();
9245 
9246 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9247 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9248 		kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9249 	}
9250 
9251 	if (pi_inject_timer == -1)
9252 		pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9253 #ifdef CONFIG_X86_64
9254 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9255 
9256 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9257 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9258 #endif
9259 
9260 	return 0;
9261 
9262 out_free_percpu:
9263 	free_percpu(user_return_msrs);
9264 out_free_x86_emulator_cache:
9265 	kmem_cache_destroy(x86_emulator_cache);
9266 	return r;
9267 }
9268 
9269 void kvm_arch_exit(void)
9270 {
9271 #ifdef CONFIG_X86_64
9272 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9273 		clear_hv_tscchange_cb();
9274 #endif
9275 	kvm_lapic_exit();
9276 
9277 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
9278 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9279 					    CPUFREQ_TRANSITION_NOTIFIER);
9280 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9281 #ifdef CONFIG_X86_64
9282 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9283 	irq_work_sync(&pvclock_irq_work);
9284 	cancel_work_sync(&pvclock_gtod_work);
9285 #endif
9286 	kvm_x86_ops.hardware_enable = NULL;
9287 	kvm_mmu_vendor_module_exit();
9288 	free_percpu(user_return_msrs);
9289 	kmem_cache_destroy(x86_emulator_cache);
9290 #ifdef CONFIG_KVM_XEN
9291 	static_key_deferred_flush(&kvm_xen_enabled);
9292 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9293 #endif
9294 }
9295 
9296 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9297 {
9298 	/*
9299 	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9300 	 * local APIC is in-kernel, the run loop will detect the non-runnable
9301 	 * state and halt the vCPU.  Exit to userspace if the local APIC is
9302 	 * managed by userspace, in which case userspace is responsible for
9303 	 * handling wake events.
9304 	 */
9305 	++vcpu->stat.halt_exits;
9306 	if (lapic_in_kernel(vcpu)) {
9307 		vcpu->arch.mp_state = state;
9308 		return 1;
9309 	} else {
9310 		vcpu->run->exit_reason = reason;
9311 		return 0;
9312 	}
9313 }
9314 
9315 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9316 {
9317 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9318 }
9319 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9320 
9321 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9322 {
9323 	int ret = kvm_skip_emulated_instruction(vcpu);
9324 	/*
9325 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9326 	 * KVM_EXIT_DEBUG here.
9327 	 */
9328 	return kvm_emulate_halt_noskip(vcpu) && ret;
9329 }
9330 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9331 
9332 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9333 {
9334 	int ret = kvm_skip_emulated_instruction(vcpu);
9335 
9336 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9337 					KVM_EXIT_AP_RESET_HOLD) && ret;
9338 }
9339 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9340 
9341 #ifdef CONFIG_X86_64
9342 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9343 			        unsigned long clock_type)
9344 {
9345 	struct kvm_clock_pairing clock_pairing;
9346 	struct timespec64 ts;
9347 	u64 cycle;
9348 	int ret;
9349 
9350 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9351 		return -KVM_EOPNOTSUPP;
9352 
9353 	/*
9354 	 * When tsc is in permanent catchup mode guests won't be able to use
9355 	 * pvclock_read_retry loop to get consistent view of pvclock
9356 	 */
9357 	if (vcpu->arch.tsc_always_catchup)
9358 		return -KVM_EOPNOTSUPP;
9359 
9360 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9361 		return -KVM_EOPNOTSUPP;
9362 
9363 	clock_pairing.sec = ts.tv_sec;
9364 	clock_pairing.nsec = ts.tv_nsec;
9365 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9366 	clock_pairing.flags = 0;
9367 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9368 
9369 	ret = 0;
9370 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9371 			    sizeof(struct kvm_clock_pairing)))
9372 		ret = -KVM_EFAULT;
9373 
9374 	return ret;
9375 }
9376 #endif
9377 
9378 /*
9379  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9380  *
9381  * @apicid - apicid of vcpu to be kicked.
9382  */
9383 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9384 {
9385 	/*
9386 	 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9387 	 * common code, e.g. for tracing. Defer initialization to the compiler.
9388 	 */
9389 	struct kvm_lapic_irq lapic_irq = {
9390 		.delivery_mode = APIC_DM_REMRD,
9391 		.dest_mode = APIC_DEST_PHYSICAL,
9392 		.shorthand = APIC_DEST_NOSHORT,
9393 		.dest_id = apicid,
9394 	};
9395 
9396 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9397 }
9398 
9399 bool kvm_apicv_activated(struct kvm *kvm)
9400 {
9401 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9402 }
9403 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9404 
9405 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9406 {
9407 	ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9408 	ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9409 
9410 	return (vm_reasons | vcpu_reasons) == 0;
9411 }
9412 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9413 
9414 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9415 				       enum kvm_apicv_inhibit reason, bool set)
9416 {
9417 	if (set)
9418 		__set_bit(reason, inhibits);
9419 	else
9420 		__clear_bit(reason, inhibits);
9421 
9422 	trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9423 }
9424 
9425 static void kvm_apicv_init(struct kvm *kvm)
9426 {
9427 	unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9428 
9429 	init_rwsem(&kvm->arch.apicv_update_lock);
9430 
9431 	set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9432 
9433 	if (!enable_apicv)
9434 		set_or_clear_apicv_inhibit(inhibits,
9435 					   APICV_INHIBIT_REASON_DISABLE, true);
9436 }
9437 
9438 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9439 {
9440 	struct kvm_vcpu *target = NULL;
9441 	struct kvm_apic_map *map;
9442 
9443 	vcpu->stat.directed_yield_attempted++;
9444 
9445 	if (single_task_running())
9446 		goto no_yield;
9447 
9448 	rcu_read_lock();
9449 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
9450 
9451 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9452 		target = map->phys_map[dest_id]->vcpu;
9453 
9454 	rcu_read_unlock();
9455 
9456 	if (!target || !READ_ONCE(target->ready))
9457 		goto no_yield;
9458 
9459 	/* Ignore requests to yield to self */
9460 	if (vcpu == target)
9461 		goto no_yield;
9462 
9463 	if (kvm_vcpu_yield_to(target) <= 0)
9464 		goto no_yield;
9465 
9466 	vcpu->stat.directed_yield_successful++;
9467 
9468 no_yield:
9469 	return;
9470 }
9471 
9472 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9473 {
9474 	u64 ret = vcpu->run->hypercall.ret;
9475 
9476 	if (!is_64_bit_mode(vcpu))
9477 		ret = (u32)ret;
9478 	kvm_rax_write(vcpu, ret);
9479 	++vcpu->stat.hypercalls;
9480 	return kvm_skip_emulated_instruction(vcpu);
9481 }
9482 
9483 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9484 {
9485 	unsigned long nr, a0, a1, a2, a3, ret;
9486 	int op_64_bit;
9487 
9488 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
9489 		return kvm_xen_hypercall(vcpu);
9490 
9491 	if (kvm_hv_hypercall_enabled(vcpu))
9492 		return kvm_hv_hypercall(vcpu);
9493 
9494 	nr = kvm_rax_read(vcpu);
9495 	a0 = kvm_rbx_read(vcpu);
9496 	a1 = kvm_rcx_read(vcpu);
9497 	a2 = kvm_rdx_read(vcpu);
9498 	a3 = kvm_rsi_read(vcpu);
9499 
9500 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
9501 
9502 	op_64_bit = is_64_bit_hypercall(vcpu);
9503 	if (!op_64_bit) {
9504 		nr &= 0xFFFFFFFF;
9505 		a0 &= 0xFFFFFFFF;
9506 		a1 &= 0xFFFFFFFF;
9507 		a2 &= 0xFFFFFFFF;
9508 		a3 &= 0xFFFFFFFF;
9509 	}
9510 
9511 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9512 		ret = -KVM_EPERM;
9513 		goto out;
9514 	}
9515 
9516 	ret = -KVM_ENOSYS;
9517 
9518 	switch (nr) {
9519 	case KVM_HC_VAPIC_POLL_IRQ:
9520 		ret = 0;
9521 		break;
9522 	case KVM_HC_KICK_CPU:
9523 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9524 			break;
9525 
9526 		kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9527 		kvm_sched_yield(vcpu, a1);
9528 		ret = 0;
9529 		break;
9530 #ifdef CONFIG_X86_64
9531 	case KVM_HC_CLOCK_PAIRING:
9532 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9533 		break;
9534 #endif
9535 	case KVM_HC_SEND_IPI:
9536 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9537 			break;
9538 
9539 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9540 		break;
9541 	case KVM_HC_SCHED_YIELD:
9542 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9543 			break;
9544 
9545 		kvm_sched_yield(vcpu, a0);
9546 		ret = 0;
9547 		break;
9548 	case KVM_HC_MAP_GPA_RANGE: {
9549 		u64 gpa = a0, npages = a1, attrs = a2;
9550 
9551 		ret = -KVM_ENOSYS;
9552 		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9553 			break;
9554 
9555 		if (!PAGE_ALIGNED(gpa) || !npages ||
9556 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9557 			ret = -KVM_EINVAL;
9558 			break;
9559 		}
9560 
9561 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9562 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9563 		vcpu->run->hypercall.args[0]  = gpa;
9564 		vcpu->run->hypercall.args[1]  = npages;
9565 		vcpu->run->hypercall.args[2]  = attrs;
9566 		vcpu->run->hypercall.longmode = op_64_bit;
9567 		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9568 		return 0;
9569 	}
9570 	default:
9571 		ret = -KVM_ENOSYS;
9572 		break;
9573 	}
9574 out:
9575 	if (!op_64_bit)
9576 		ret = (u32)ret;
9577 	kvm_rax_write(vcpu, ret);
9578 
9579 	++vcpu->stat.hypercalls;
9580 	return kvm_skip_emulated_instruction(vcpu);
9581 }
9582 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9583 
9584 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9585 {
9586 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9587 	char instruction[3];
9588 	unsigned long rip = kvm_rip_read(vcpu);
9589 
9590 	/*
9591 	 * If the quirk is disabled, synthesize a #UD and let the guest pick up
9592 	 * the pieces.
9593 	 */
9594 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
9595 		ctxt->exception.error_code_valid = false;
9596 		ctxt->exception.vector = UD_VECTOR;
9597 		ctxt->have_exception = true;
9598 		return X86EMUL_PROPAGATE_FAULT;
9599 	}
9600 
9601 	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9602 
9603 	return emulator_write_emulated(ctxt, rip, instruction, 3,
9604 		&ctxt->exception);
9605 }
9606 
9607 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9608 {
9609 	return vcpu->run->request_interrupt_window &&
9610 		likely(!pic_in_kernel(vcpu->kvm));
9611 }
9612 
9613 /* Called within kvm->srcu read side.  */
9614 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9615 {
9616 	struct kvm_run *kvm_run = vcpu->run;
9617 
9618 	kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9619 	kvm_run->cr8 = kvm_get_cr8(vcpu);
9620 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
9621 
9622 	kvm_run->ready_for_interrupt_injection =
9623 		pic_in_kernel(vcpu->kvm) ||
9624 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
9625 
9626 	if (is_smm(vcpu))
9627 		kvm_run->flags |= KVM_RUN_X86_SMM;
9628 }
9629 
9630 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9631 {
9632 	int max_irr, tpr;
9633 
9634 	if (!kvm_x86_ops.update_cr8_intercept)
9635 		return;
9636 
9637 	if (!lapic_in_kernel(vcpu))
9638 		return;
9639 
9640 	if (vcpu->arch.apic->apicv_active)
9641 		return;
9642 
9643 	if (!vcpu->arch.apic->vapic_addr)
9644 		max_irr = kvm_lapic_find_highest_irr(vcpu);
9645 	else
9646 		max_irr = -1;
9647 
9648 	if (max_irr != -1)
9649 		max_irr >>= 4;
9650 
9651 	tpr = kvm_lapic_get_cr8(vcpu);
9652 
9653 	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9654 }
9655 
9656 
9657 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9658 {
9659 	if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9660 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
9661 		return 1;
9662 	}
9663 
9664 	return kvm_x86_ops.nested_ops->check_events(vcpu);
9665 }
9666 
9667 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9668 {
9669 	trace_kvm_inj_exception(vcpu->arch.exception.nr,
9670 				vcpu->arch.exception.has_error_code,
9671 				vcpu->arch.exception.error_code,
9672 				vcpu->arch.exception.injected);
9673 
9674 	if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9675 		vcpu->arch.exception.error_code = false;
9676 	static_call(kvm_x86_queue_exception)(vcpu);
9677 }
9678 
9679 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
9680 {
9681 	int r;
9682 	bool can_inject = true;
9683 
9684 	/* try to reinject previous events if any */
9685 
9686 	if (vcpu->arch.exception.injected) {
9687 		kvm_inject_exception(vcpu);
9688 		can_inject = false;
9689 	}
9690 	/*
9691 	 * Do not inject an NMI or interrupt if there is a pending
9692 	 * exception.  Exceptions and interrupts are recognized at
9693 	 * instruction boundaries, i.e. the start of an instruction.
9694 	 * Trap-like exceptions, e.g. #DB, have higher priority than
9695 	 * NMIs and interrupts, i.e. traps are recognized before an
9696 	 * NMI/interrupt that's pending on the same instruction.
9697 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
9698 	 * priority, but are only generated (pended) during instruction
9699 	 * execution, i.e. a pending fault-like exception means the
9700 	 * fault occurred on the *previous* instruction and must be
9701 	 * serviced prior to recognizing any new events in order to
9702 	 * fully complete the previous instruction.
9703 	 */
9704 	else if (!vcpu->arch.exception.pending) {
9705 		if (vcpu->arch.nmi_injected) {
9706 			static_call(kvm_x86_inject_nmi)(vcpu);
9707 			can_inject = false;
9708 		} else if (vcpu->arch.interrupt.injected) {
9709 			static_call(kvm_x86_inject_irq)(vcpu, true);
9710 			can_inject = false;
9711 		}
9712 	}
9713 
9714 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
9715 		     vcpu->arch.exception.pending);
9716 
9717 	/*
9718 	 * Call check_nested_events() even if we reinjected a previous event
9719 	 * in order for caller to determine if it should require immediate-exit
9720 	 * from L2 to L1 due to pending L1 events which require exit
9721 	 * from L2 to L1.
9722 	 */
9723 	if (is_guest_mode(vcpu)) {
9724 		r = kvm_check_nested_events(vcpu);
9725 		if (r < 0)
9726 			goto out;
9727 	}
9728 
9729 	/* try to inject new event if pending */
9730 	if (vcpu->arch.exception.pending) {
9731 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
9732 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
9733 					     X86_EFLAGS_RF);
9734 
9735 		if (vcpu->arch.exception.nr == DB_VECTOR) {
9736 			kvm_deliver_exception_payload(vcpu);
9737 			if (vcpu->arch.dr7 & DR7_GD) {
9738 				vcpu->arch.dr7 &= ~DR7_GD;
9739 				kvm_update_dr7(vcpu);
9740 			}
9741 		}
9742 
9743 		kvm_inject_exception(vcpu);
9744 
9745 		vcpu->arch.exception.pending = false;
9746 		vcpu->arch.exception.injected = true;
9747 
9748 		can_inject = false;
9749 	}
9750 
9751 	/* Don't inject interrupts if the user asked to avoid doing so */
9752 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
9753 		return 0;
9754 
9755 	/*
9756 	 * Finally, inject interrupt events.  If an event cannot be injected
9757 	 * due to architectural conditions (e.g. IF=0) a window-open exit
9758 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
9759 	 * and can architecturally be injected, but we cannot do it right now:
9760 	 * an interrupt could have arrived just now and we have to inject it
9761 	 * as a vmexit, or there could already an event in the queue, which is
9762 	 * indicated by can_inject.  In that case we request an immediate exit
9763 	 * in order to make progress and get back here for another iteration.
9764 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
9765 	 */
9766 	if (vcpu->arch.smi_pending) {
9767 		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
9768 		if (r < 0)
9769 			goto out;
9770 		if (r) {
9771 			vcpu->arch.smi_pending = false;
9772 			++vcpu->arch.smi_count;
9773 			enter_smm(vcpu);
9774 			can_inject = false;
9775 		} else
9776 			static_call(kvm_x86_enable_smi_window)(vcpu);
9777 	}
9778 
9779 	if (vcpu->arch.nmi_pending) {
9780 		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
9781 		if (r < 0)
9782 			goto out;
9783 		if (r) {
9784 			--vcpu->arch.nmi_pending;
9785 			vcpu->arch.nmi_injected = true;
9786 			static_call(kvm_x86_inject_nmi)(vcpu);
9787 			can_inject = false;
9788 			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
9789 		}
9790 		if (vcpu->arch.nmi_pending)
9791 			static_call(kvm_x86_enable_nmi_window)(vcpu);
9792 	}
9793 
9794 	if (kvm_cpu_has_injectable_intr(vcpu)) {
9795 		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
9796 		if (r < 0)
9797 			goto out;
9798 		if (r) {
9799 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
9800 			static_call(kvm_x86_inject_irq)(vcpu, false);
9801 			WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
9802 		}
9803 		if (kvm_cpu_has_injectable_intr(vcpu))
9804 			static_call(kvm_x86_enable_irq_window)(vcpu);
9805 	}
9806 
9807 	if (is_guest_mode(vcpu) &&
9808 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
9809 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
9810 		*req_immediate_exit = true;
9811 
9812 	WARN_ON(vcpu->arch.exception.pending);
9813 	return 0;
9814 
9815 out:
9816 	if (r == -EBUSY) {
9817 		*req_immediate_exit = true;
9818 		r = 0;
9819 	}
9820 	return r;
9821 }
9822 
9823 static void process_nmi(struct kvm_vcpu *vcpu)
9824 {
9825 	unsigned limit = 2;
9826 
9827 	/*
9828 	 * x86 is limited to one NMI running, and one NMI pending after it.
9829 	 * If an NMI is already in progress, limit further NMIs to just one.
9830 	 * Otherwise, allow two (and we'll inject the first one immediately).
9831 	 */
9832 	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
9833 		limit = 1;
9834 
9835 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9836 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9837 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9838 }
9839 
9840 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9841 {
9842 	u32 flags = 0;
9843 	flags |= seg->g       << 23;
9844 	flags |= seg->db      << 22;
9845 	flags |= seg->l       << 21;
9846 	flags |= seg->avl     << 20;
9847 	flags |= seg->present << 15;
9848 	flags |= seg->dpl     << 13;
9849 	flags |= seg->s       << 12;
9850 	flags |= seg->type    << 8;
9851 	return flags;
9852 }
9853 
9854 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9855 {
9856 	struct kvm_segment seg;
9857 	int offset;
9858 
9859 	kvm_get_segment(vcpu, &seg, n);
9860 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9861 
9862 	if (n < 3)
9863 		offset = 0x7f84 + n * 12;
9864 	else
9865 		offset = 0x7f2c + (n - 3) * 12;
9866 
9867 	put_smstate(u32, buf, offset + 8, seg.base);
9868 	put_smstate(u32, buf, offset + 4, seg.limit);
9869 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9870 }
9871 
9872 #ifdef CONFIG_X86_64
9873 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9874 {
9875 	struct kvm_segment seg;
9876 	int offset;
9877 	u16 flags;
9878 
9879 	kvm_get_segment(vcpu, &seg, n);
9880 	offset = 0x7e00 + n * 16;
9881 
9882 	flags = enter_smm_get_segment_flags(&seg) >> 8;
9883 	put_smstate(u16, buf, offset, seg.selector);
9884 	put_smstate(u16, buf, offset + 2, flags);
9885 	put_smstate(u32, buf, offset + 4, seg.limit);
9886 	put_smstate(u64, buf, offset + 8, seg.base);
9887 }
9888 #endif
9889 
9890 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9891 {
9892 	struct desc_ptr dt;
9893 	struct kvm_segment seg;
9894 	unsigned long val;
9895 	int i;
9896 
9897 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9898 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9899 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9900 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9901 
9902 	for (i = 0; i < 8; i++)
9903 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9904 
9905 	kvm_get_dr(vcpu, 6, &val);
9906 	put_smstate(u32, buf, 0x7fcc, (u32)val);
9907 	kvm_get_dr(vcpu, 7, &val);
9908 	put_smstate(u32, buf, 0x7fc8, (u32)val);
9909 
9910 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9911 	put_smstate(u32, buf, 0x7fc4, seg.selector);
9912 	put_smstate(u32, buf, 0x7f64, seg.base);
9913 	put_smstate(u32, buf, 0x7f60, seg.limit);
9914 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9915 
9916 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9917 	put_smstate(u32, buf, 0x7fc0, seg.selector);
9918 	put_smstate(u32, buf, 0x7f80, seg.base);
9919 	put_smstate(u32, buf, 0x7f7c, seg.limit);
9920 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9921 
9922 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
9923 	put_smstate(u32, buf, 0x7f74, dt.address);
9924 	put_smstate(u32, buf, 0x7f70, dt.size);
9925 
9926 	static_call(kvm_x86_get_idt)(vcpu, &dt);
9927 	put_smstate(u32, buf, 0x7f58, dt.address);
9928 	put_smstate(u32, buf, 0x7f54, dt.size);
9929 
9930 	for (i = 0; i < 6; i++)
9931 		enter_smm_save_seg_32(vcpu, buf, i);
9932 
9933 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9934 
9935 	/* revision id */
9936 	put_smstate(u32, buf, 0x7efc, 0x00020000);
9937 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9938 }
9939 
9940 #ifdef CONFIG_X86_64
9941 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9942 {
9943 	struct desc_ptr dt;
9944 	struct kvm_segment seg;
9945 	unsigned long val;
9946 	int i;
9947 
9948 	for (i = 0; i < 16; i++)
9949 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9950 
9951 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9952 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9953 
9954 	kvm_get_dr(vcpu, 6, &val);
9955 	put_smstate(u64, buf, 0x7f68, val);
9956 	kvm_get_dr(vcpu, 7, &val);
9957 	put_smstate(u64, buf, 0x7f60, val);
9958 
9959 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9960 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9961 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9962 
9963 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9964 
9965 	/* revision id */
9966 	put_smstate(u32, buf, 0x7efc, 0x00020064);
9967 
9968 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9969 
9970 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9971 	put_smstate(u16, buf, 0x7e90, seg.selector);
9972 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9973 	put_smstate(u32, buf, 0x7e94, seg.limit);
9974 	put_smstate(u64, buf, 0x7e98, seg.base);
9975 
9976 	static_call(kvm_x86_get_idt)(vcpu, &dt);
9977 	put_smstate(u32, buf, 0x7e84, dt.size);
9978 	put_smstate(u64, buf, 0x7e88, dt.address);
9979 
9980 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9981 	put_smstate(u16, buf, 0x7e70, seg.selector);
9982 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9983 	put_smstate(u32, buf, 0x7e74, seg.limit);
9984 	put_smstate(u64, buf, 0x7e78, seg.base);
9985 
9986 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
9987 	put_smstate(u32, buf, 0x7e64, dt.size);
9988 	put_smstate(u64, buf, 0x7e68, dt.address);
9989 
9990 	for (i = 0; i < 6; i++)
9991 		enter_smm_save_seg_64(vcpu, buf, i);
9992 }
9993 #endif
9994 
9995 static void enter_smm(struct kvm_vcpu *vcpu)
9996 {
9997 	struct kvm_segment cs, ds;
9998 	struct desc_ptr dt;
9999 	unsigned long cr0;
10000 	char buf[512];
10001 
10002 	memset(buf, 0, 512);
10003 #ifdef CONFIG_X86_64
10004 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
10005 		enter_smm_save_state_64(vcpu, buf);
10006 	else
10007 #endif
10008 		enter_smm_save_state_32(vcpu, buf);
10009 
10010 	/*
10011 	 * Give enter_smm() a chance to make ISA-specific changes to the vCPU
10012 	 * state (e.g. leave guest mode) after we've saved the state into the
10013 	 * SMM state-save area.
10014 	 */
10015 	static_call(kvm_x86_enter_smm)(vcpu, buf);
10016 
10017 	kvm_smm_changed(vcpu, true);
10018 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
10019 
10020 	if (static_call(kvm_x86_get_nmi_mask)(vcpu))
10021 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
10022 	else
10023 		static_call(kvm_x86_set_nmi_mask)(vcpu, true);
10024 
10025 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
10026 	kvm_rip_write(vcpu, 0x8000);
10027 
10028 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
10029 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
10030 	vcpu->arch.cr0 = cr0;
10031 
10032 	static_call(kvm_x86_set_cr4)(vcpu, 0);
10033 
10034 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
10035 	dt.address = dt.size = 0;
10036 	static_call(kvm_x86_set_idt)(vcpu, &dt);
10037 
10038 	kvm_set_dr(vcpu, 7, DR7_FIXED_1);
10039 
10040 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
10041 	cs.base = vcpu->arch.smbase;
10042 
10043 	ds.selector = 0;
10044 	ds.base = 0;
10045 
10046 	cs.limit    = ds.limit = 0xffffffff;
10047 	cs.type     = ds.type = 0x3;
10048 	cs.dpl      = ds.dpl = 0;
10049 	cs.db       = ds.db = 0;
10050 	cs.s        = ds.s = 1;
10051 	cs.l        = ds.l = 0;
10052 	cs.g        = ds.g = 1;
10053 	cs.avl      = ds.avl = 0;
10054 	cs.present  = ds.present = 1;
10055 	cs.unusable = ds.unusable = 0;
10056 	cs.padding  = ds.padding = 0;
10057 
10058 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10059 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
10060 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
10061 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
10062 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
10063 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
10064 
10065 #ifdef CONFIG_X86_64
10066 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
10067 		static_call(kvm_x86_set_efer)(vcpu, 0);
10068 #endif
10069 
10070 	kvm_update_cpuid_runtime(vcpu);
10071 	kvm_mmu_reset_context(vcpu);
10072 }
10073 
10074 static void process_smi(struct kvm_vcpu *vcpu)
10075 {
10076 	vcpu->arch.smi_pending = true;
10077 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10078 }
10079 
10080 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10081 				       unsigned long *vcpu_bitmap)
10082 {
10083 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10084 }
10085 
10086 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10087 {
10088 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10089 }
10090 
10091 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10092 {
10093 	struct kvm_lapic *apic = vcpu->arch.apic;
10094 	bool activate;
10095 
10096 	if (!lapic_in_kernel(vcpu))
10097 		return;
10098 
10099 	down_read(&vcpu->kvm->arch.apicv_update_lock);
10100 	preempt_disable();
10101 
10102 	/* Do not activate APICV when APIC is disabled */
10103 	activate = kvm_vcpu_apicv_activated(vcpu) &&
10104 		   (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10105 
10106 	if (apic->apicv_active == activate)
10107 		goto out;
10108 
10109 	apic->apicv_active = activate;
10110 	kvm_apic_update_apicv(vcpu);
10111 	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10112 
10113 	/*
10114 	 * When APICv gets disabled, we may still have injected interrupts
10115 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10116 	 * still active when the interrupt got accepted. Make sure
10117 	 * inject_pending_event() is called to check for that.
10118 	 */
10119 	if (!apic->apicv_active)
10120 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10121 
10122 out:
10123 	preempt_enable();
10124 	up_read(&vcpu->kvm->arch.apicv_update_lock);
10125 }
10126 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
10127 
10128 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10129 				      enum kvm_apicv_inhibit reason, bool set)
10130 {
10131 	unsigned long old, new;
10132 
10133 	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10134 
10135 	if (!static_call(kvm_x86_check_apicv_inhibit_reasons)(reason))
10136 		return;
10137 
10138 	old = new = kvm->arch.apicv_inhibit_reasons;
10139 
10140 	set_or_clear_apicv_inhibit(&new, reason, set);
10141 
10142 	if (!!old != !!new) {
10143 		/*
10144 		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10145 		 * false positives in the sanity check WARN in svm_vcpu_run().
10146 		 * This task will wait for all vCPUs to ack the kick IRQ before
10147 		 * updating apicv_inhibit_reasons, and all other vCPUs will
10148 		 * block on acquiring apicv_update_lock so that vCPUs can't
10149 		 * redo svm_vcpu_run() without seeing the new inhibit state.
10150 		 *
10151 		 * Note, holding apicv_update_lock and taking it in the read
10152 		 * side (handling the request) also prevents other vCPUs from
10153 		 * servicing the request with a stale apicv_inhibit_reasons.
10154 		 */
10155 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10156 		kvm->arch.apicv_inhibit_reasons = new;
10157 		if (new) {
10158 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10159 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
10160 		}
10161 	} else {
10162 		kvm->arch.apicv_inhibit_reasons = new;
10163 	}
10164 }
10165 
10166 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10167 				    enum kvm_apicv_inhibit reason, bool set)
10168 {
10169 	if (!enable_apicv)
10170 		return;
10171 
10172 	down_write(&kvm->arch.apicv_update_lock);
10173 	__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10174 	up_write(&kvm->arch.apicv_update_lock);
10175 }
10176 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10177 
10178 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10179 {
10180 	if (!kvm_apic_present(vcpu))
10181 		return;
10182 
10183 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10184 
10185 	if (irqchip_split(vcpu->kvm))
10186 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10187 	else {
10188 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10189 		if (ioapic_in_kernel(vcpu->kvm))
10190 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10191 	}
10192 
10193 	if (is_guest_mode(vcpu))
10194 		vcpu->arch.load_eoi_exitmap_pending = true;
10195 	else
10196 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10197 }
10198 
10199 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10200 {
10201 	u64 eoi_exit_bitmap[4];
10202 
10203 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10204 		return;
10205 
10206 	if (to_hv_vcpu(vcpu)) {
10207 		bitmap_or((ulong *)eoi_exit_bitmap,
10208 			  vcpu->arch.ioapic_handled_vectors,
10209 			  to_hv_synic(vcpu)->vec_bitmap, 256);
10210 		static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10211 		return;
10212 	}
10213 
10214 	static_call_cond(kvm_x86_load_eoi_exitmap)(
10215 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10216 }
10217 
10218 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
10219 					    unsigned long start, unsigned long end)
10220 {
10221 	unsigned long apic_address;
10222 
10223 	/*
10224 	 * The physical address of apic access page is stored in the VMCS.
10225 	 * Update it when it becomes invalid.
10226 	 */
10227 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
10228 	if (start <= apic_address && apic_address < end)
10229 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
10230 }
10231 
10232 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10233 {
10234 	static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10235 }
10236 
10237 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10238 {
10239 	if (!lapic_in_kernel(vcpu))
10240 		return;
10241 
10242 	static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10243 }
10244 
10245 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10246 {
10247 	smp_send_reschedule(vcpu->cpu);
10248 }
10249 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10250 
10251 /*
10252  * Called within kvm->srcu read side.
10253  * Returns 1 to let vcpu_run() continue the guest execution loop without
10254  * exiting to the userspace.  Otherwise, the value will be returned to the
10255  * userspace.
10256  */
10257 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10258 {
10259 	int r;
10260 	bool req_int_win =
10261 		dm_request_for_irq_injection(vcpu) &&
10262 		kvm_cpu_accept_dm_intr(vcpu);
10263 	fastpath_t exit_fastpath;
10264 
10265 	bool req_immediate_exit = false;
10266 
10267 	/* Forbid vmenter if vcpu dirty ring is soft-full */
10268 	if (unlikely(vcpu->kvm->dirty_ring_size &&
10269 		     kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
10270 		vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
10271 		trace_kvm_dirty_ring_exit(vcpu);
10272 		r = 0;
10273 		goto out;
10274 	}
10275 
10276 	if (kvm_request_pending(vcpu)) {
10277 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10278 			r = -EIO;
10279 			goto out;
10280 		}
10281 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10282 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10283 				r = 0;
10284 				goto out;
10285 			}
10286 		}
10287 		if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10288 			kvm_mmu_free_obsolete_roots(vcpu);
10289 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10290 			__kvm_migrate_timers(vcpu);
10291 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10292 			kvm_update_masterclock(vcpu->kvm);
10293 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10294 			kvm_gen_kvmclock_update(vcpu);
10295 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10296 			r = kvm_guest_time_update(vcpu);
10297 			if (unlikely(r))
10298 				goto out;
10299 		}
10300 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10301 			kvm_mmu_sync_roots(vcpu);
10302 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10303 			kvm_mmu_load_pgd(vcpu);
10304 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
10305 			kvm_vcpu_flush_tlb_all(vcpu);
10306 
10307 			/* Flushing all ASIDs flushes the current ASID... */
10308 			kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
10309 		}
10310 		kvm_service_local_tlb_flush_requests(vcpu);
10311 
10312 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10313 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10314 			r = 0;
10315 			goto out;
10316 		}
10317 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10318 			if (is_guest_mode(vcpu)) {
10319 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
10320 			} else {
10321 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10322 				vcpu->mmio_needed = 0;
10323 				r = 0;
10324 				goto out;
10325 			}
10326 		}
10327 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10328 			/* Page is swapped out. Do synthetic halt */
10329 			vcpu->arch.apf.halted = true;
10330 			r = 1;
10331 			goto out;
10332 		}
10333 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10334 			record_steal_time(vcpu);
10335 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
10336 			process_smi(vcpu);
10337 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
10338 			process_nmi(vcpu);
10339 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
10340 			kvm_pmu_handle_event(vcpu);
10341 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
10342 			kvm_pmu_deliver_pmi(vcpu);
10343 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10344 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10345 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
10346 				     vcpu->arch.ioapic_handled_vectors)) {
10347 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10348 				vcpu->run->eoi.vector =
10349 						vcpu->arch.pending_ioapic_eoi;
10350 				r = 0;
10351 				goto out;
10352 			}
10353 		}
10354 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10355 			vcpu_scan_ioapic(vcpu);
10356 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10357 			vcpu_load_eoi_exitmap(vcpu);
10358 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10359 			kvm_vcpu_reload_apic_access_page(vcpu);
10360 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10361 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10362 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10363 			vcpu->run->system_event.ndata = 0;
10364 			r = 0;
10365 			goto out;
10366 		}
10367 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10368 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10369 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10370 			vcpu->run->system_event.ndata = 0;
10371 			r = 0;
10372 			goto out;
10373 		}
10374 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10375 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10376 
10377 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10378 			vcpu->run->hyperv = hv_vcpu->exit;
10379 			r = 0;
10380 			goto out;
10381 		}
10382 
10383 		/*
10384 		 * KVM_REQ_HV_STIMER has to be processed after
10385 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10386 		 * depend on the guest clock being up-to-date
10387 		 */
10388 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10389 			kvm_hv_process_stimers(vcpu);
10390 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10391 			kvm_vcpu_update_apicv(vcpu);
10392 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10393 			kvm_check_async_pf_completion(vcpu);
10394 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10395 			static_call(kvm_x86_msr_filter_changed)(vcpu);
10396 
10397 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10398 			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10399 	}
10400 
10401 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10402 	    kvm_xen_has_interrupt(vcpu)) {
10403 		++vcpu->stat.req_event;
10404 		r = kvm_apic_accept_events(vcpu);
10405 		if (r < 0) {
10406 			r = 0;
10407 			goto out;
10408 		}
10409 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10410 			r = 1;
10411 			goto out;
10412 		}
10413 
10414 		r = inject_pending_event(vcpu, &req_immediate_exit);
10415 		if (r < 0) {
10416 			r = 0;
10417 			goto out;
10418 		}
10419 		if (req_int_win)
10420 			static_call(kvm_x86_enable_irq_window)(vcpu);
10421 
10422 		if (kvm_lapic_enabled(vcpu)) {
10423 			update_cr8_intercept(vcpu);
10424 			kvm_lapic_sync_to_vapic(vcpu);
10425 		}
10426 	}
10427 
10428 	r = kvm_mmu_reload(vcpu);
10429 	if (unlikely(r)) {
10430 		goto cancel_injection;
10431 	}
10432 
10433 	preempt_disable();
10434 
10435 	static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10436 
10437 	/*
10438 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10439 	 * IPI are then delayed after guest entry, which ensures that they
10440 	 * result in virtual interrupt delivery.
10441 	 */
10442 	local_irq_disable();
10443 
10444 	/* Store vcpu->apicv_active before vcpu->mode.  */
10445 	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10446 
10447 	kvm_vcpu_srcu_read_unlock(vcpu);
10448 
10449 	/*
10450 	 * 1) We should set ->mode before checking ->requests.  Please see
10451 	 * the comment in kvm_vcpu_exiting_guest_mode().
10452 	 *
10453 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
10454 	 * pairs with the memory barrier implicit in pi_test_and_set_on
10455 	 * (see vmx_deliver_posted_interrupt).
10456 	 *
10457 	 * 3) This also orders the write to mode from any reads to the page
10458 	 * tables done while the VCPU is running.  Please see the comment
10459 	 * in kvm_flush_remote_tlbs.
10460 	 */
10461 	smp_mb__after_srcu_read_unlock();
10462 
10463 	/*
10464 	 * Process pending posted interrupts to handle the case where the
10465 	 * notification IRQ arrived in the host, or was never sent (because the
10466 	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10467 	 * status, KVM doesn't update assigned devices when APICv is inhibited,
10468 	 * i.e. they can post interrupts even if APICv is temporarily disabled.
10469 	 */
10470 	if (kvm_lapic_enabled(vcpu))
10471 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10472 
10473 	if (kvm_vcpu_exit_request(vcpu)) {
10474 		vcpu->mode = OUTSIDE_GUEST_MODE;
10475 		smp_wmb();
10476 		local_irq_enable();
10477 		preempt_enable();
10478 		kvm_vcpu_srcu_read_lock(vcpu);
10479 		r = 1;
10480 		goto cancel_injection;
10481 	}
10482 
10483 	if (req_immediate_exit) {
10484 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10485 		static_call(kvm_x86_request_immediate_exit)(vcpu);
10486 	}
10487 
10488 	fpregs_assert_state_consistent();
10489 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
10490 		switch_fpu_return();
10491 
10492 	if (vcpu->arch.guest_fpu.xfd_err)
10493 		wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10494 
10495 	if (unlikely(vcpu->arch.switch_db_regs)) {
10496 		set_debugreg(0, 7);
10497 		set_debugreg(vcpu->arch.eff_db[0], 0);
10498 		set_debugreg(vcpu->arch.eff_db[1], 1);
10499 		set_debugreg(vcpu->arch.eff_db[2], 2);
10500 		set_debugreg(vcpu->arch.eff_db[3], 3);
10501 	} else if (unlikely(hw_breakpoint_active())) {
10502 		set_debugreg(0, 7);
10503 	}
10504 
10505 	guest_timing_enter_irqoff();
10506 
10507 	for (;;) {
10508 		/*
10509 		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10510 		 * update must kick and wait for all vCPUs before toggling the
10511 		 * per-VM state, and responsing vCPUs must wait for the update
10512 		 * to complete before servicing KVM_REQ_APICV_UPDATE.
10513 		 */
10514 		WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10515 			     (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10516 
10517 		exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10518 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10519 			break;
10520 
10521 		if (kvm_lapic_enabled(vcpu))
10522 			static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10523 
10524 		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10525 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10526 			break;
10527 		}
10528 	}
10529 
10530 	/*
10531 	 * Do this here before restoring debug registers on the host.  And
10532 	 * since we do this before handling the vmexit, a DR access vmexit
10533 	 * can (a) read the correct value of the debug registers, (b) set
10534 	 * KVM_DEBUGREG_WONT_EXIT again.
10535 	 */
10536 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10537 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10538 		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10539 		kvm_update_dr0123(vcpu);
10540 		kvm_update_dr7(vcpu);
10541 	}
10542 
10543 	/*
10544 	 * If the guest has used debug registers, at least dr7
10545 	 * will be disabled while returning to the host.
10546 	 * If we don't have active breakpoints in the host, we don't
10547 	 * care about the messed up debug address registers. But if
10548 	 * we have some of them active, restore the old state.
10549 	 */
10550 	if (hw_breakpoint_active())
10551 		hw_breakpoint_restore();
10552 
10553 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10554 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10555 
10556 	vcpu->mode = OUTSIDE_GUEST_MODE;
10557 	smp_wmb();
10558 
10559 	/*
10560 	 * Sync xfd before calling handle_exit_irqoff() which may
10561 	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10562 	 * in #NM irqoff handler).
10563 	 */
10564 	if (vcpu->arch.xfd_no_write_intercept)
10565 		fpu_sync_guest_vmexit_xfd_state();
10566 
10567 	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10568 
10569 	if (vcpu->arch.guest_fpu.xfd_err)
10570 		wrmsrl(MSR_IA32_XFD_ERR, 0);
10571 
10572 	/*
10573 	 * Consume any pending interrupts, including the possible source of
10574 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10575 	 * An instruction is required after local_irq_enable() to fully unblock
10576 	 * interrupts on processors that implement an interrupt shadow, the
10577 	 * stat.exits increment will do nicely.
10578 	 */
10579 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10580 	local_irq_enable();
10581 	++vcpu->stat.exits;
10582 	local_irq_disable();
10583 	kvm_after_interrupt(vcpu);
10584 
10585 	/*
10586 	 * Wait until after servicing IRQs to account guest time so that any
10587 	 * ticks that occurred while running the guest are properly accounted
10588 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10589 	 * of accounting via context tracking, but the loss of accuracy is
10590 	 * acceptable for all known use cases.
10591 	 */
10592 	guest_timing_exit_irqoff();
10593 
10594 	local_irq_enable();
10595 	preempt_enable();
10596 
10597 	kvm_vcpu_srcu_read_lock(vcpu);
10598 
10599 	/*
10600 	 * Profile KVM exit RIPs:
10601 	 */
10602 	if (unlikely(prof_on == KVM_PROFILING)) {
10603 		unsigned long rip = kvm_rip_read(vcpu);
10604 		profile_hit(KVM_PROFILING, (void *)rip);
10605 	}
10606 
10607 	if (unlikely(vcpu->arch.tsc_always_catchup))
10608 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10609 
10610 	if (vcpu->arch.apic_attention)
10611 		kvm_lapic_sync_from_vapic(vcpu);
10612 
10613 	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10614 	return r;
10615 
10616 cancel_injection:
10617 	if (req_immediate_exit)
10618 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10619 	static_call(kvm_x86_cancel_injection)(vcpu);
10620 	if (unlikely(vcpu->arch.apic_attention))
10621 		kvm_lapic_sync_from_vapic(vcpu);
10622 out:
10623 	return r;
10624 }
10625 
10626 /* Called within kvm->srcu read side.  */
10627 static inline int vcpu_block(struct kvm_vcpu *vcpu)
10628 {
10629 	bool hv_timer;
10630 
10631 	if (!kvm_arch_vcpu_runnable(vcpu)) {
10632 		/*
10633 		 * Switch to the software timer before halt-polling/blocking as
10634 		 * the guest's timer may be a break event for the vCPU, and the
10635 		 * hypervisor timer runs only when the CPU is in guest mode.
10636 		 * Switch before halt-polling so that KVM recognizes an expired
10637 		 * timer before blocking.
10638 		 */
10639 		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10640 		if (hv_timer)
10641 			kvm_lapic_switch_to_sw_timer(vcpu);
10642 
10643 		kvm_vcpu_srcu_read_unlock(vcpu);
10644 		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10645 			kvm_vcpu_halt(vcpu);
10646 		else
10647 			kvm_vcpu_block(vcpu);
10648 		kvm_vcpu_srcu_read_lock(vcpu);
10649 
10650 		if (hv_timer)
10651 			kvm_lapic_switch_to_hv_timer(vcpu);
10652 
10653 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
10654 			return 1;
10655 	}
10656 
10657 	if (kvm_apic_accept_events(vcpu) < 0)
10658 		return 0;
10659 	switch(vcpu->arch.mp_state) {
10660 	case KVM_MP_STATE_HALTED:
10661 	case KVM_MP_STATE_AP_RESET_HOLD:
10662 		vcpu->arch.pv.pv_unhalted = false;
10663 		vcpu->arch.mp_state =
10664 			KVM_MP_STATE_RUNNABLE;
10665 		fallthrough;
10666 	case KVM_MP_STATE_RUNNABLE:
10667 		vcpu->arch.apf.halted = false;
10668 		break;
10669 	case KVM_MP_STATE_INIT_RECEIVED:
10670 		break;
10671 	default:
10672 		WARN_ON_ONCE(1);
10673 		break;
10674 	}
10675 	return 1;
10676 }
10677 
10678 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10679 {
10680 	if (is_guest_mode(vcpu))
10681 		kvm_check_nested_events(vcpu);
10682 
10683 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10684 		!vcpu->arch.apf.halted);
10685 }
10686 
10687 /* Called within kvm->srcu read side.  */
10688 static int vcpu_run(struct kvm_vcpu *vcpu)
10689 {
10690 	int r;
10691 
10692 	vcpu->arch.l1tf_flush_l1d = true;
10693 
10694 	for (;;) {
10695 		/*
10696 		 * If another guest vCPU requests a PV TLB flush in the middle
10697 		 * of instruction emulation, the rest of the emulation could
10698 		 * use a stale page translation. Assume that any code after
10699 		 * this point can start executing an instruction.
10700 		 */
10701 		vcpu->arch.at_instruction_boundary = false;
10702 		if (kvm_vcpu_running(vcpu)) {
10703 			r = vcpu_enter_guest(vcpu);
10704 		} else {
10705 			r = vcpu_block(vcpu);
10706 		}
10707 
10708 		if (r <= 0)
10709 			break;
10710 
10711 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10712 		if (kvm_xen_has_pending_events(vcpu))
10713 			kvm_xen_inject_pending_events(vcpu);
10714 
10715 		if (kvm_cpu_has_pending_timer(vcpu))
10716 			kvm_inject_pending_timer_irqs(vcpu);
10717 
10718 		if (dm_request_for_irq_injection(vcpu) &&
10719 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10720 			r = 0;
10721 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10722 			++vcpu->stat.request_irq_exits;
10723 			break;
10724 		}
10725 
10726 		if (__xfer_to_guest_mode_work_pending()) {
10727 			kvm_vcpu_srcu_read_unlock(vcpu);
10728 			r = xfer_to_guest_mode_handle_work(vcpu);
10729 			kvm_vcpu_srcu_read_lock(vcpu);
10730 			if (r)
10731 				return r;
10732 		}
10733 	}
10734 
10735 	return r;
10736 }
10737 
10738 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10739 {
10740 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10741 }
10742 
10743 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10744 {
10745 	BUG_ON(!vcpu->arch.pio.count);
10746 
10747 	return complete_emulated_io(vcpu);
10748 }
10749 
10750 /*
10751  * Implements the following, as a state machine:
10752  *
10753  * read:
10754  *   for each fragment
10755  *     for each mmio piece in the fragment
10756  *       write gpa, len
10757  *       exit
10758  *       copy data
10759  *   execute insn
10760  *
10761  * write:
10762  *   for each fragment
10763  *     for each mmio piece in the fragment
10764  *       write gpa, len
10765  *       copy data
10766  *       exit
10767  */
10768 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10769 {
10770 	struct kvm_run *run = vcpu->run;
10771 	struct kvm_mmio_fragment *frag;
10772 	unsigned len;
10773 
10774 	BUG_ON(!vcpu->mmio_needed);
10775 
10776 	/* Complete previous fragment */
10777 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10778 	len = min(8u, frag->len);
10779 	if (!vcpu->mmio_is_write)
10780 		memcpy(frag->data, run->mmio.data, len);
10781 
10782 	if (frag->len <= 8) {
10783 		/* Switch to the next fragment. */
10784 		frag++;
10785 		vcpu->mmio_cur_fragment++;
10786 	} else {
10787 		/* Go forward to the next mmio piece. */
10788 		frag->data += len;
10789 		frag->gpa += len;
10790 		frag->len -= len;
10791 	}
10792 
10793 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10794 		vcpu->mmio_needed = 0;
10795 
10796 		/* FIXME: return into emulator if single-stepping.  */
10797 		if (vcpu->mmio_is_write)
10798 			return 1;
10799 		vcpu->mmio_read_completed = 1;
10800 		return complete_emulated_io(vcpu);
10801 	}
10802 
10803 	run->exit_reason = KVM_EXIT_MMIO;
10804 	run->mmio.phys_addr = frag->gpa;
10805 	if (vcpu->mmio_is_write)
10806 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10807 	run->mmio.len = min(8u, frag->len);
10808 	run->mmio.is_write = vcpu->mmio_is_write;
10809 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10810 	return 0;
10811 }
10812 
10813 /* Swap (qemu) user FPU context for the guest FPU context. */
10814 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10815 {
10816 	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
10817 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
10818 	trace_kvm_fpu(1);
10819 }
10820 
10821 /* When vcpu_run ends, restore user space FPU context. */
10822 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10823 {
10824 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
10825 	++vcpu->stat.fpu_reload;
10826 	trace_kvm_fpu(0);
10827 }
10828 
10829 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10830 {
10831 	struct kvm_run *kvm_run = vcpu->run;
10832 	int r;
10833 
10834 	vcpu_load(vcpu);
10835 	kvm_sigset_activate(vcpu);
10836 	kvm_run->flags = 0;
10837 	kvm_load_guest_fpu(vcpu);
10838 
10839 	kvm_vcpu_srcu_read_lock(vcpu);
10840 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10841 		if (kvm_run->immediate_exit) {
10842 			r = -EINTR;
10843 			goto out;
10844 		}
10845 		/*
10846 		 * It should be impossible for the hypervisor timer to be in
10847 		 * use before KVM has ever run the vCPU.
10848 		 */
10849 		WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
10850 
10851 		kvm_vcpu_srcu_read_unlock(vcpu);
10852 		kvm_vcpu_block(vcpu);
10853 		kvm_vcpu_srcu_read_lock(vcpu);
10854 
10855 		if (kvm_apic_accept_events(vcpu) < 0) {
10856 			r = 0;
10857 			goto out;
10858 		}
10859 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
10860 		r = -EAGAIN;
10861 		if (signal_pending(current)) {
10862 			r = -EINTR;
10863 			kvm_run->exit_reason = KVM_EXIT_INTR;
10864 			++vcpu->stat.signal_exits;
10865 		}
10866 		goto out;
10867 	}
10868 
10869 	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10870 	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10871 		r = -EINVAL;
10872 		goto out;
10873 	}
10874 
10875 	if (kvm_run->kvm_dirty_regs) {
10876 		r = sync_regs(vcpu);
10877 		if (r != 0)
10878 			goto out;
10879 	}
10880 
10881 	/* re-sync apic's tpr */
10882 	if (!lapic_in_kernel(vcpu)) {
10883 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10884 			r = -EINVAL;
10885 			goto out;
10886 		}
10887 	}
10888 
10889 	if (unlikely(vcpu->arch.complete_userspace_io)) {
10890 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10891 		vcpu->arch.complete_userspace_io = NULL;
10892 		r = cui(vcpu);
10893 		if (r <= 0)
10894 			goto out;
10895 	} else {
10896 		WARN_ON_ONCE(vcpu->arch.pio.count);
10897 		WARN_ON_ONCE(vcpu->mmio_needed);
10898 	}
10899 
10900 	if (kvm_run->immediate_exit) {
10901 		r = -EINTR;
10902 		goto out;
10903 	}
10904 
10905 	r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
10906 	if (r <= 0)
10907 		goto out;
10908 
10909 	r = vcpu_run(vcpu);
10910 
10911 out:
10912 	kvm_put_guest_fpu(vcpu);
10913 	if (kvm_run->kvm_valid_regs)
10914 		store_regs(vcpu);
10915 	post_kvm_run_save(vcpu);
10916 	kvm_vcpu_srcu_read_unlock(vcpu);
10917 
10918 	kvm_sigset_deactivate(vcpu);
10919 	vcpu_put(vcpu);
10920 	return r;
10921 }
10922 
10923 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10924 {
10925 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10926 		/*
10927 		 * We are here if userspace calls get_regs() in the middle of
10928 		 * instruction emulation. Registers state needs to be copied
10929 		 * back from emulation context to vcpu. Userspace shouldn't do
10930 		 * that usually, but some bad designed PV devices (vmware
10931 		 * backdoor interface) need this to work
10932 		 */
10933 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10934 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10935 	}
10936 	regs->rax = kvm_rax_read(vcpu);
10937 	regs->rbx = kvm_rbx_read(vcpu);
10938 	regs->rcx = kvm_rcx_read(vcpu);
10939 	regs->rdx = kvm_rdx_read(vcpu);
10940 	regs->rsi = kvm_rsi_read(vcpu);
10941 	regs->rdi = kvm_rdi_read(vcpu);
10942 	regs->rsp = kvm_rsp_read(vcpu);
10943 	regs->rbp = kvm_rbp_read(vcpu);
10944 #ifdef CONFIG_X86_64
10945 	regs->r8 = kvm_r8_read(vcpu);
10946 	regs->r9 = kvm_r9_read(vcpu);
10947 	regs->r10 = kvm_r10_read(vcpu);
10948 	regs->r11 = kvm_r11_read(vcpu);
10949 	regs->r12 = kvm_r12_read(vcpu);
10950 	regs->r13 = kvm_r13_read(vcpu);
10951 	regs->r14 = kvm_r14_read(vcpu);
10952 	regs->r15 = kvm_r15_read(vcpu);
10953 #endif
10954 
10955 	regs->rip = kvm_rip_read(vcpu);
10956 	regs->rflags = kvm_get_rflags(vcpu);
10957 }
10958 
10959 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10960 {
10961 	vcpu_load(vcpu);
10962 	__get_regs(vcpu, regs);
10963 	vcpu_put(vcpu);
10964 	return 0;
10965 }
10966 
10967 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10968 {
10969 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10970 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10971 
10972 	kvm_rax_write(vcpu, regs->rax);
10973 	kvm_rbx_write(vcpu, regs->rbx);
10974 	kvm_rcx_write(vcpu, regs->rcx);
10975 	kvm_rdx_write(vcpu, regs->rdx);
10976 	kvm_rsi_write(vcpu, regs->rsi);
10977 	kvm_rdi_write(vcpu, regs->rdi);
10978 	kvm_rsp_write(vcpu, regs->rsp);
10979 	kvm_rbp_write(vcpu, regs->rbp);
10980 #ifdef CONFIG_X86_64
10981 	kvm_r8_write(vcpu, regs->r8);
10982 	kvm_r9_write(vcpu, regs->r9);
10983 	kvm_r10_write(vcpu, regs->r10);
10984 	kvm_r11_write(vcpu, regs->r11);
10985 	kvm_r12_write(vcpu, regs->r12);
10986 	kvm_r13_write(vcpu, regs->r13);
10987 	kvm_r14_write(vcpu, regs->r14);
10988 	kvm_r15_write(vcpu, regs->r15);
10989 #endif
10990 
10991 	kvm_rip_write(vcpu, regs->rip);
10992 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10993 
10994 	vcpu->arch.exception.pending = false;
10995 
10996 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10997 }
10998 
10999 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11000 {
11001 	vcpu_load(vcpu);
11002 	__set_regs(vcpu, regs);
11003 	vcpu_put(vcpu);
11004 	return 0;
11005 }
11006 
11007 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11008 {
11009 	struct desc_ptr dt;
11010 
11011 	if (vcpu->arch.guest_state_protected)
11012 		goto skip_protected_regs;
11013 
11014 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11015 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11016 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11017 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11018 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11019 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11020 
11021 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11022 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11023 
11024 	static_call(kvm_x86_get_idt)(vcpu, &dt);
11025 	sregs->idt.limit = dt.size;
11026 	sregs->idt.base = dt.address;
11027 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
11028 	sregs->gdt.limit = dt.size;
11029 	sregs->gdt.base = dt.address;
11030 
11031 	sregs->cr2 = vcpu->arch.cr2;
11032 	sregs->cr3 = kvm_read_cr3(vcpu);
11033 
11034 skip_protected_regs:
11035 	sregs->cr0 = kvm_read_cr0(vcpu);
11036 	sregs->cr4 = kvm_read_cr4(vcpu);
11037 	sregs->cr8 = kvm_get_cr8(vcpu);
11038 	sregs->efer = vcpu->arch.efer;
11039 	sregs->apic_base = kvm_get_apic_base(vcpu);
11040 }
11041 
11042 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11043 {
11044 	__get_sregs_common(vcpu, sregs);
11045 
11046 	if (vcpu->arch.guest_state_protected)
11047 		return;
11048 
11049 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11050 		set_bit(vcpu->arch.interrupt.nr,
11051 			(unsigned long *)sregs->interrupt_bitmap);
11052 }
11053 
11054 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11055 {
11056 	int i;
11057 
11058 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11059 
11060 	if (vcpu->arch.guest_state_protected)
11061 		return;
11062 
11063 	if (is_pae_paging(vcpu)) {
11064 		for (i = 0 ; i < 4 ; i++)
11065 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11066 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11067 	}
11068 }
11069 
11070 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11071 				  struct kvm_sregs *sregs)
11072 {
11073 	vcpu_load(vcpu);
11074 	__get_sregs(vcpu, sregs);
11075 	vcpu_put(vcpu);
11076 	return 0;
11077 }
11078 
11079 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11080 				    struct kvm_mp_state *mp_state)
11081 {
11082 	int r;
11083 
11084 	vcpu_load(vcpu);
11085 	if (kvm_mpx_supported())
11086 		kvm_load_guest_fpu(vcpu);
11087 
11088 	r = kvm_apic_accept_events(vcpu);
11089 	if (r < 0)
11090 		goto out;
11091 	r = 0;
11092 
11093 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11094 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11095 	    vcpu->arch.pv.pv_unhalted)
11096 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11097 	else
11098 		mp_state->mp_state = vcpu->arch.mp_state;
11099 
11100 out:
11101 	if (kvm_mpx_supported())
11102 		kvm_put_guest_fpu(vcpu);
11103 	vcpu_put(vcpu);
11104 	return r;
11105 }
11106 
11107 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11108 				    struct kvm_mp_state *mp_state)
11109 {
11110 	int ret = -EINVAL;
11111 
11112 	vcpu_load(vcpu);
11113 
11114 	switch (mp_state->mp_state) {
11115 	case KVM_MP_STATE_UNINITIALIZED:
11116 	case KVM_MP_STATE_HALTED:
11117 	case KVM_MP_STATE_AP_RESET_HOLD:
11118 	case KVM_MP_STATE_INIT_RECEIVED:
11119 	case KVM_MP_STATE_SIPI_RECEIVED:
11120 		if (!lapic_in_kernel(vcpu))
11121 			goto out;
11122 		break;
11123 
11124 	case KVM_MP_STATE_RUNNABLE:
11125 		break;
11126 
11127 	default:
11128 		goto out;
11129 	}
11130 
11131 	/*
11132 	 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
11133 	 * INIT state; latched init should be reported using
11134 	 * KVM_SET_VCPU_EVENTS, so reject it here.
11135 	 */
11136 	if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
11137 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11138 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11139 		goto out;
11140 
11141 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11142 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11143 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11144 	} else
11145 		vcpu->arch.mp_state = mp_state->mp_state;
11146 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11147 
11148 	ret = 0;
11149 out:
11150 	vcpu_put(vcpu);
11151 	return ret;
11152 }
11153 
11154 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11155 		    int reason, bool has_error_code, u32 error_code)
11156 {
11157 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11158 	int ret;
11159 
11160 	init_emulate_ctxt(vcpu);
11161 
11162 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11163 				   has_error_code, error_code);
11164 	if (ret) {
11165 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11166 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11167 		vcpu->run->internal.ndata = 0;
11168 		return 0;
11169 	}
11170 
11171 	kvm_rip_write(vcpu, ctxt->eip);
11172 	kvm_set_rflags(vcpu, ctxt->eflags);
11173 	return 1;
11174 }
11175 EXPORT_SYMBOL_GPL(kvm_task_switch);
11176 
11177 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11178 {
11179 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11180 		/*
11181 		 * When EFER.LME and CR0.PG are set, the processor is in
11182 		 * 64-bit mode (though maybe in a 32-bit code segment).
11183 		 * CR4.PAE and EFER.LMA must be set.
11184 		 */
11185 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11186 			return false;
11187 		if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
11188 			return false;
11189 	} else {
11190 		/*
11191 		 * Not in 64-bit mode: EFER.LMA is clear and the code
11192 		 * segment cannot be 64-bit.
11193 		 */
11194 		if (sregs->efer & EFER_LMA || sregs->cs.l)
11195 			return false;
11196 	}
11197 
11198 	return kvm_is_valid_cr4(vcpu, sregs->cr4);
11199 }
11200 
11201 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11202 		int *mmu_reset_needed, bool update_pdptrs)
11203 {
11204 	struct msr_data apic_base_msr;
11205 	int idx;
11206 	struct desc_ptr dt;
11207 
11208 	if (!kvm_is_valid_sregs(vcpu, sregs))
11209 		return -EINVAL;
11210 
11211 	apic_base_msr.data = sregs->apic_base;
11212 	apic_base_msr.host_initiated = true;
11213 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
11214 		return -EINVAL;
11215 
11216 	if (vcpu->arch.guest_state_protected)
11217 		return 0;
11218 
11219 	dt.size = sregs->idt.limit;
11220 	dt.address = sregs->idt.base;
11221 	static_call(kvm_x86_set_idt)(vcpu, &dt);
11222 	dt.size = sregs->gdt.limit;
11223 	dt.address = sregs->gdt.base;
11224 	static_call(kvm_x86_set_gdt)(vcpu, &dt);
11225 
11226 	vcpu->arch.cr2 = sregs->cr2;
11227 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11228 	vcpu->arch.cr3 = sregs->cr3;
11229 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11230 	static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11231 
11232 	kvm_set_cr8(vcpu, sregs->cr8);
11233 
11234 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11235 	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11236 
11237 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11238 	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11239 	vcpu->arch.cr0 = sregs->cr0;
11240 
11241 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11242 	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11243 
11244 	if (update_pdptrs) {
11245 		idx = srcu_read_lock(&vcpu->kvm->srcu);
11246 		if (is_pae_paging(vcpu)) {
11247 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11248 			*mmu_reset_needed = 1;
11249 		}
11250 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
11251 	}
11252 
11253 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11254 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11255 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11256 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11257 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11258 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11259 
11260 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11261 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11262 
11263 	update_cr8_intercept(vcpu);
11264 
11265 	/* Older userspace won't unhalt the vcpu on reset. */
11266 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11267 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11268 	    !is_protmode(vcpu))
11269 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11270 
11271 	return 0;
11272 }
11273 
11274 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11275 {
11276 	int pending_vec, max_bits;
11277 	int mmu_reset_needed = 0;
11278 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11279 
11280 	if (ret)
11281 		return ret;
11282 
11283 	if (mmu_reset_needed)
11284 		kvm_mmu_reset_context(vcpu);
11285 
11286 	max_bits = KVM_NR_INTERRUPTS;
11287 	pending_vec = find_first_bit(
11288 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
11289 
11290 	if (pending_vec < max_bits) {
11291 		kvm_queue_interrupt(vcpu, pending_vec, false);
11292 		pr_debug("Set back pending irq %d\n", pending_vec);
11293 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11294 	}
11295 	return 0;
11296 }
11297 
11298 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11299 {
11300 	int mmu_reset_needed = 0;
11301 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11302 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11303 		!(sregs2->efer & EFER_LMA);
11304 	int i, ret;
11305 
11306 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11307 		return -EINVAL;
11308 
11309 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11310 		return -EINVAL;
11311 
11312 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11313 				 &mmu_reset_needed, !valid_pdptrs);
11314 	if (ret)
11315 		return ret;
11316 
11317 	if (valid_pdptrs) {
11318 		for (i = 0; i < 4 ; i++)
11319 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11320 
11321 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11322 		mmu_reset_needed = 1;
11323 		vcpu->arch.pdptrs_from_userspace = true;
11324 	}
11325 	if (mmu_reset_needed)
11326 		kvm_mmu_reset_context(vcpu);
11327 	return 0;
11328 }
11329 
11330 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11331 				  struct kvm_sregs *sregs)
11332 {
11333 	int ret;
11334 
11335 	vcpu_load(vcpu);
11336 	ret = __set_sregs(vcpu, sregs);
11337 	vcpu_put(vcpu);
11338 	return ret;
11339 }
11340 
11341 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11342 {
11343 	bool set = false;
11344 	struct kvm_vcpu *vcpu;
11345 	unsigned long i;
11346 
11347 	if (!enable_apicv)
11348 		return;
11349 
11350 	down_write(&kvm->arch.apicv_update_lock);
11351 
11352 	kvm_for_each_vcpu(i, vcpu, kvm) {
11353 		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11354 			set = true;
11355 			break;
11356 		}
11357 	}
11358 	__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11359 	up_write(&kvm->arch.apicv_update_lock);
11360 }
11361 
11362 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11363 					struct kvm_guest_debug *dbg)
11364 {
11365 	unsigned long rflags;
11366 	int i, r;
11367 
11368 	if (vcpu->arch.guest_state_protected)
11369 		return -EINVAL;
11370 
11371 	vcpu_load(vcpu);
11372 
11373 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11374 		r = -EBUSY;
11375 		if (vcpu->arch.exception.pending)
11376 			goto out;
11377 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11378 			kvm_queue_exception(vcpu, DB_VECTOR);
11379 		else
11380 			kvm_queue_exception(vcpu, BP_VECTOR);
11381 	}
11382 
11383 	/*
11384 	 * Read rflags as long as potentially injected trace flags are still
11385 	 * filtered out.
11386 	 */
11387 	rflags = kvm_get_rflags(vcpu);
11388 
11389 	vcpu->guest_debug = dbg->control;
11390 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11391 		vcpu->guest_debug = 0;
11392 
11393 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11394 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
11395 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11396 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11397 	} else {
11398 		for (i = 0; i < KVM_NR_DB_REGS; i++)
11399 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11400 	}
11401 	kvm_update_dr7(vcpu);
11402 
11403 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11404 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11405 
11406 	/*
11407 	 * Trigger an rflags update that will inject or remove the trace
11408 	 * flags.
11409 	 */
11410 	kvm_set_rflags(vcpu, rflags);
11411 
11412 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11413 
11414 	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11415 
11416 	r = 0;
11417 
11418 out:
11419 	vcpu_put(vcpu);
11420 	return r;
11421 }
11422 
11423 /*
11424  * Translate a guest virtual address to a guest physical address.
11425  */
11426 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11427 				    struct kvm_translation *tr)
11428 {
11429 	unsigned long vaddr = tr->linear_address;
11430 	gpa_t gpa;
11431 	int idx;
11432 
11433 	vcpu_load(vcpu);
11434 
11435 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11436 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11437 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11438 	tr->physical_address = gpa;
11439 	tr->valid = gpa != INVALID_GPA;
11440 	tr->writeable = 1;
11441 	tr->usermode = 0;
11442 
11443 	vcpu_put(vcpu);
11444 	return 0;
11445 }
11446 
11447 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11448 {
11449 	struct fxregs_state *fxsave;
11450 
11451 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11452 		return 0;
11453 
11454 	vcpu_load(vcpu);
11455 
11456 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11457 	memcpy(fpu->fpr, fxsave->st_space, 128);
11458 	fpu->fcw = fxsave->cwd;
11459 	fpu->fsw = fxsave->swd;
11460 	fpu->ftwx = fxsave->twd;
11461 	fpu->last_opcode = fxsave->fop;
11462 	fpu->last_ip = fxsave->rip;
11463 	fpu->last_dp = fxsave->rdp;
11464 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11465 
11466 	vcpu_put(vcpu);
11467 	return 0;
11468 }
11469 
11470 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11471 {
11472 	struct fxregs_state *fxsave;
11473 
11474 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11475 		return 0;
11476 
11477 	vcpu_load(vcpu);
11478 
11479 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11480 
11481 	memcpy(fxsave->st_space, fpu->fpr, 128);
11482 	fxsave->cwd = fpu->fcw;
11483 	fxsave->swd = fpu->fsw;
11484 	fxsave->twd = fpu->ftwx;
11485 	fxsave->fop = fpu->last_opcode;
11486 	fxsave->rip = fpu->last_ip;
11487 	fxsave->rdp = fpu->last_dp;
11488 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11489 
11490 	vcpu_put(vcpu);
11491 	return 0;
11492 }
11493 
11494 static void store_regs(struct kvm_vcpu *vcpu)
11495 {
11496 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11497 
11498 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11499 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
11500 
11501 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11502 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11503 
11504 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11505 		kvm_vcpu_ioctl_x86_get_vcpu_events(
11506 				vcpu, &vcpu->run->s.regs.events);
11507 }
11508 
11509 static int sync_regs(struct kvm_vcpu *vcpu)
11510 {
11511 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11512 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
11513 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11514 	}
11515 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11516 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11517 			return -EINVAL;
11518 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11519 	}
11520 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11521 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11522 				vcpu, &vcpu->run->s.regs.events))
11523 			return -EINVAL;
11524 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11525 	}
11526 
11527 	return 0;
11528 }
11529 
11530 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11531 {
11532 	if (kvm_check_tsc_unstable() && kvm->created_vcpus)
11533 		pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
11534 			     "guest TSC will not be reliable\n");
11535 
11536 	if (!kvm->arch.max_vcpu_ids)
11537 		kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
11538 
11539 	if (id >= kvm->arch.max_vcpu_ids)
11540 		return -EINVAL;
11541 
11542 	return static_call(kvm_x86_vcpu_precreate)(kvm);
11543 }
11544 
11545 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11546 {
11547 	struct page *page;
11548 	int r;
11549 
11550 	vcpu->arch.last_vmentry_cpu = -1;
11551 	vcpu->arch.regs_avail = ~0;
11552 	vcpu->arch.regs_dirty = ~0;
11553 
11554 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11555 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11556 	else
11557 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11558 
11559 	r = kvm_mmu_create(vcpu);
11560 	if (r < 0)
11561 		return r;
11562 
11563 	if (irqchip_in_kernel(vcpu->kvm)) {
11564 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11565 		if (r < 0)
11566 			goto fail_mmu_destroy;
11567 
11568 		/*
11569 		 * Defer evaluating inhibits until the vCPU is first run, as
11570 		 * this vCPU will not get notified of any changes until this
11571 		 * vCPU is visible to other vCPUs (marked online and added to
11572 		 * the set of vCPUs).  Opportunistically mark APICv active as
11573 		 * VMX in particularly is highly unlikely to have inhibits.
11574 		 * Ignore the current per-VM APICv state so that vCPU creation
11575 		 * is guaranteed to run with a deterministic value, the request
11576 		 * will ensure the vCPU gets the correct state before VM-Entry.
11577 		 */
11578 		if (enable_apicv) {
11579 			vcpu->arch.apic->apicv_active = true;
11580 			kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11581 		}
11582 	} else
11583 		static_branch_inc(&kvm_has_noapic_vcpu);
11584 
11585 	r = -ENOMEM;
11586 
11587 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11588 	if (!page)
11589 		goto fail_free_lapic;
11590 	vcpu->arch.pio_data = page_address(page);
11591 
11592 	vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
11593 				       GFP_KERNEL_ACCOUNT);
11594 	vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
11595 					    GFP_KERNEL_ACCOUNT);
11596 	if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
11597 		goto fail_free_mce_banks;
11598 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11599 
11600 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11601 				GFP_KERNEL_ACCOUNT))
11602 		goto fail_free_mce_banks;
11603 
11604 	if (!alloc_emulate_ctxt(vcpu))
11605 		goto free_wbinvd_dirty_mask;
11606 
11607 	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11608 		pr_err("kvm: failed to allocate vcpu's fpu\n");
11609 		goto free_emulate_ctxt;
11610 	}
11611 
11612 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11613 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11614 
11615 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11616 
11617 	kvm_async_pf_hash_reset(vcpu);
11618 	kvm_pmu_init(vcpu);
11619 
11620 	vcpu->arch.pending_external_vector = -1;
11621 	vcpu->arch.preempted_in_kernel = false;
11622 
11623 #if IS_ENABLED(CONFIG_HYPERV)
11624 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
11625 #endif
11626 
11627 	r = static_call(kvm_x86_vcpu_create)(vcpu);
11628 	if (r)
11629 		goto free_guest_fpu;
11630 
11631 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11632 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11633 	kvm_xen_init_vcpu(vcpu);
11634 	kvm_vcpu_mtrr_init(vcpu);
11635 	vcpu_load(vcpu);
11636 	kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
11637 	kvm_vcpu_reset(vcpu, false);
11638 	kvm_init_mmu(vcpu);
11639 	vcpu_put(vcpu);
11640 	return 0;
11641 
11642 free_guest_fpu:
11643 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11644 free_emulate_ctxt:
11645 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11646 free_wbinvd_dirty_mask:
11647 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11648 fail_free_mce_banks:
11649 	kfree(vcpu->arch.mce_banks);
11650 	kfree(vcpu->arch.mci_ctl2_banks);
11651 	free_page((unsigned long)vcpu->arch.pio_data);
11652 fail_free_lapic:
11653 	kvm_free_lapic(vcpu);
11654 fail_mmu_destroy:
11655 	kvm_mmu_destroy(vcpu);
11656 	return r;
11657 }
11658 
11659 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11660 {
11661 	struct kvm *kvm = vcpu->kvm;
11662 
11663 	if (mutex_lock_killable(&vcpu->mutex))
11664 		return;
11665 	vcpu_load(vcpu);
11666 	kvm_synchronize_tsc(vcpu, 0);
11667 	vcpu_put(vcpu);
11668 
11669 	/* poll control enabled by default */
11670 	vcpu->arch.msr_kvm_poll_control = 1;
11671 
11672 	mutex_unlock(&vcpu->mutex);
11673 
11674 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11675 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11676 						KVMCLOCK_SYNC_PERIOD);
11677 }
11678 
11679 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11680 {
11681 	int idx;
11682 
11683 	kvmclock_reset(vcpu);
11684 
11685 	static_call(kvm_x86_vcpu_free)(vcpu);
11686 
11687 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11688 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11689 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11690 
11691 	kvm_xen_destroy_vcpu(vcpu);
11692 	kvm_hv_vcpu_uninit(vcpu);
11693 	kvm_pmu_destroy(vcpu);
11694 	kfree(vcpu->arch.mce_banks);
11695 	kfree(vcpu->arch.mci_ctl2_banks);
11696 	kvm_free_lapic(vcpu);
11697 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11698 	kvm_mmu_destroy(vcpu);
11699 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11700 	free_page((unsigned long)vcpu->arch.pio_data);
11701 	kvfree(vcpu->arch.cpuid_entries);
11702 	if (!lapic_in_kernel(vcpu))
11703 		static_branch_dec(&kvm_has_noapic_vcpu);
11704 }
11705 
11706 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11707 {
11708 	struct kvm_cpuid_entry2 *cpuid_0x1;
11709 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
11710 	unsigned long new_cr0;
11711 
11712 	/*
11713 	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11714 	 * to handle side effects.  RESET emulation hits those flows and relies
11715 	 * on emulated/virtualized registers, including those that are loaded
11716 	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
11717 	 * to detect improper or missing initialization.
11718 	 */
11719 	WARN_ON_ONCE(!init_event &&
11720 		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11721 
11722 	kvm_lapic_reset(vcpu, init_event);
11723 
11724 	vcpu->arch.hflags = 0;
11725 
11726 	vcpu->arch.smi_pending = 0;
11727 	vcpu->arch.smi_count = 0;
11728 	atomic_set(&vcpu->arch.nmi_queued, 0);
11729 	vcpu->arch.nmi_pending = 0;
11730 	vcpu->arch.nmi_injected = false;
11731 	kvm_clear_interrupt_queue(vcpu);
11732 	kvm_clear_exception_queue(vcpu);
11733 
11734 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
11735 	kvm_update_dr0123(vcpu);
11736 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
11737 	vcpu->arch.dr7 = DR7_FIXED_1;
11738 	kvm_update_dr7(vcpu);
11739 
11740 	vcpu->arch.cr2 = 0;
11741 
11742 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11743 	vcpu->arch.apf.msr_en_val = 0;
11744 	vcpu->arch.apf.msr_int_val = 0;
11745 	vcpu->arch.st.msr_val = 0;
11746 
11747 	kvmclock_reset(vcpu);
11748 
11749 	kvm_clear_async_pf_completion_queue(vcpu);
11750 	kvm_async_pf_hash_reset(vcpu);
11751 	vcpu->arch.apf.halted = false;
11752 
11753 	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
11754 		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
11755 
11756 		/*
11757 		 * To avoid have the INIT path from kvm_apic_has_events() that be
11758 		 * called with loaded FPU and does not let userspace fix the state.
11759 		 */
11760 		if (init_event)
11761 			kvm_put_guest_fpu(vcpu);
11762 
11763 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
11764 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
11765 
11766 		if (init_event)
11767 			kvm_load_guest_fpu(vcpu);
11768 	}
11769 
11770 	if (!init_event) {
11771 		kvm_pmu_reset(vcpu);
11772 		vcpu->arch.smbase = 0x30000;
11773 
11774 		vcpu->arch.msr_misc_features_enables = 0;
11775 		vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
11776 						  MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
11777 
11778 		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
11779 		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
11780 	}
11781 
11782 	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
11783 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11784 	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
11785 
11786 	/*
11787 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11788 	 * if no CPUID match is found.  Note, it's impossible to get a match at
11789 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11790 	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
11791 	 * on RESET.  But, go through the motions in case that's ever remedied.
11792 	 */
11793 	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
11794 	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
11795 
11796 	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11797 
11798 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11799 	kvm_rip_write(vcpu, 0xfff0);
11800 
11801 	vcpu->arch.cr3 = 0;
11802 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11803 
11804 	/*
11805 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
11806 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11807 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
11808 	 */
11809 	new_cr0 = X86_CR0_ET;
11810 	if (init_event)
11811 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11812 	else
11813 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11814 
11815 	static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11816 	static_call(kvm_x86_set_cr4)(vcpu, 0);
11817 	static_call(kvm_x86_set_efer)(vcpu, 0);
11818 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11819 
11820 	/*
11821 	 * On the standard CR0/CR4/EFER modification paths, there are several
11822 	 * complex conditions determining whether the MMU has to be reset and/or
11823 	 * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
11824 	 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
11825 	 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
11826 	 * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
11827 	 */
11828 	if (old_cr0 & X86_CR0_PG) {
11829 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11830 		kvm_mmu_reset_context(vcpu);
11831 	}
11832 
11833 	/*
11834 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
11835 	 * APM states the TLBs are untouched by INIT, but it also states that
11836 	 * the TLBs are flushed on "External initialization of the processor."
11837 	 * Flush the guest TLB regardless of vendor, there is no meaningful
11838 	 * benefit in relying on the guest to flush the TLB immediately after
11839 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
11840 	 * performance perspective.
11841 	 */
11842 	if (init_event)
11843 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11844 }
11845 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11846 
11847 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11848 {
11849 	struct kvm_segment cs;
11850 
11851 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11852 	cs.selector = vector << 8;
11853 	cs.base = vector << 12;
11854 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11855 	kvm_rip_write(vcpu, 0);
11856 }
11857 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
11858 
11859 int kvm_arch_hardware_enable(void)
11860 {
11861 	struct kvm *kvm;
11862 	struct kvm_vcpu *vcpu;
11863 	unsigned long i;
11864 	int ret;
11865 	u64 local_tsc;
11866 	u64 max_tsc = 0;
11867 	bool stable, backwards_tsc = false;
11868 
11869 	kvm_user_return_msr_cpu_online();
11870 	ret = static_call(kvm_x86_hardware_enable)();
11871 	if (ret != 0)
11872 		return ret;
11873 
11874 	local_tsc = rdtsc();
11875 	stable = !kvm_check_tsc_unstable();
11876 	list_for_each_entry(kvm, &vm_list, vm_list) {
11877 		kvm_for_each_vcpu(i, vcpu, kvm) {
11878 			if (!stable && vcpu->cpu == smp_processor_id())
11879 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11880 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11881 				backwards_tsc = true;
11882 				if (vcpu->arch.last_host_tsc > max_tsc)
11883 					max_tsc = vcpu->arch.last_host_tsc;
11884 			}
11885 		}
11886 	}
11887 
11888 	/*
11889 	 * Sometimes, even reliable TSCs go backwards.  This happens on
11890 	 * platforms that reset TSC during suspend or hibernate actions, but
11891 	 * maintain synchronization.  We must compensate.  Fortunately, we can
11892 	 * detect that condition here, which happens early in CPU bringup,
11893 	 * before any KVM threads can be running.  Unfortunately, we can't
11894 	 * bring the TSCs fully up to date with real time, as we aren't yet far
11895 	 * enough into CPU bringup that we know how much real time has actually
11896 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11897 	 * variables that haven't been updated yet.
11898 	 *
11899 	 * So we simply find the maximum observed TSC above, then record the
11900 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
11901 	 * the adjustment will be applied.  Note that we accumulate
11902 	 * adjustments, in case multiple suspend cycles happen before some VCPU
11903 	 * gets a chance to run again.  In the event that no KVM threads get a
11904 	 * chance to run, we will miss the entire elapsed period, as we'll have
11905 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11906 	 * loose cycle time.  This isn't too big a deal, since the loss will be
11907 	 * uniform across all VCPUs (not to mention the scenario is extremely
11908 	 * unlikely). It is possible that a second hibernate recovery happens
11909 	 * much faster than a first, causing the observed TSC here to be
11910 	 * smaller; this would require additional padding adjustment, which is
11911 	 * why we set last_host_tsc to the local tsc observed here.
11912 	 *
11913 	 * N.B. - this code below runs only on platforms with reliable TSC,
11914 	 * as that is the only way backwards_tsc is set above.  Also note
11915 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11916 	 * have the same delta_cyc adjustment applied if backwards_tsc
11917 	 * is detected.  Note further, this adjustment is only done once,
11918 	 * as we reset last_host_tsc on all VCPUs to stop this from being
11919 	 * called multiple times (one for each physical CPU bringup).
11920 	 *
11921 	 * Platforms with unreliable TSCs don't have to deal with this, they
11922 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
11923 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
11924 	 * guarantee that they stay in perfect synchronization.
11925 	 */
11926 	if (backwards_tsc) {
11927 		u64 delta_cyc = max_tsc - local_tsc;
11928 		list_for_each_entry(kvm, &vm_list, vm_list) {
11929 			kvm->arch.backwards_tsc_observed = true;
11930 			kvm_for_each_vcpu(i, vcpu, kvm) {
11931 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
11932 				vcpu->arch.last_host_tsc = local_tsc;
11933 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11934 			}
11935 
11936 			/*
11937 			 * We have to disable TSC offset matching.. if you were
11938 			 * booting a VM while issuing an S4 host suspend....
11939 			 * you may have some problem.  Solving this issue is
11940 			 * left as an exercise to the reader.
11941 			 */
11942 			kvm->arch.last_tsc_nsec = 0;
11943 			kvm->arch.last_tsc_write = 0;
11944 		}
11945 
11946 	}
11947 	return 0;
11948 }
11949 
11950 void kvm_arch_hardware_disable(void)
11951 {
11952 	static_call(kvm_x86_hardware_disable)();
11953 	drop_user_return_notifiers();
11954 }
11955 
11956 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
11957 {
11958 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11959 
11960 #define __KVM_X86_OP(func) \
11961 	static_call_update(kvm_x86_##func, kvm_x86_ops.func);
11962 #define KVM_X86_OP(func) \
11963 	WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
11964 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
11965 #define KVM_X86_OP_OPTIONAL_RET0(func) \
11966 	static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
11967 					   (void *)__static_call_return0);
11968 #include <asm/kvm-x86-ops.h>
11969 #undef __KVM_X86_OP
11970 
11971 	kvm_pmu_ops_update(ops->pmu_ops);
11972 }
11973 
11974 int kvm_arch_hardware_setup(void *opaque)
11975 {
11976 	struct kvm_x86_init_ops *ops = opaque;
11977 	int r;
11978 
11979 	rdmsrl_safe(MSR_EFER, &host_efer);
11980 
11981 	if (boot_cpu_has(X86_FEATURE_XSAVES))
11982 		rdmsrl(MSR_IA32_XSS, host_xss);
11983 
11984 	kvm_init_pmu_capability();
11985 
11986 	r = ops->hardware_setup();
11987 	if (r != 0)
11988 		return r;
11989 
11990 	kvm_ops_update(ops);
11991 
11992 	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
11993 
11994 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11995 		kvm_caps.supported_xss = 0;
11996 
11997 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11998 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11999 #undef __kvm_cpu_cap_has
12000 
12001 	if (kvm_caps.has_tsc_control) {
12002 		/*
12003 		 * Make sure the user can only configure tsc_khz values that
12004 		 * fit into a signed integer.
12005 		 * A min value is not calculated because it will always
12006 		 * be 1 on all machines.
12007 		 */
12008 		u64 max = min(0x7fffffffULL,
12009 			      __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
12010 		kvm_caps.max_guest_tsc_khz = max;
12011 	}
12012 	kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
12013 	kvm_init_msr_list();
12014 	return 0;
12015 }
12016 
12017 void kvm_arch_hardware_unsetup(void)
12018 {
12019 	kvm_unregister_perf_callbacks();
12020 
12021 	static_call(kvm_x86_hardware_unsetup)();
12022 }
12023 
12024 int kvm_arch_check_processor_compat(void *opaque)
12025 {
12026 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
12027 	struct kvm_x86_init_ops *ops = opaque;
12028 
12029 	WARN_ON(!irqs_disabled());
12030 
12031 	if (__cr4_reserved_bits(cpu_has, c) !=
12032 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
12033 		return -EIO;
12034 
12035 	return ops->check_processor_compatibility();
12036 }
12037 
12038 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12039 {
12040 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12041 }
12042 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
12043 
12044 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12045 {
12046 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12047 }
12048 
12049 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12050 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12051 
12052 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12053 {
12054 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12055 
12056 	vcpu->arch.l1tf_flush_l1d = true;
12057 	if (pmu->version && unlikely(pmu->event_count)) {
12058 		pmu->need_cleanup = true;
12059 		kvm_make_request(KVM_REQ_PMU, vcpu);
12060 	}
12061 	static_call(kvm_x86_sched_in)(vcpu, cpu);
12062 }
12063 
12064 void kvm_arch_free_vm(struct kvm *kvm)
12065 {
12066 	kfree(to_kvm_hv(kvm)->hv_pa_pg);
12067 	__kvm_arch_free_vm(kvm);
12068 }
12069 
12070 
12071 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12072 {
12073 	int ret;
12074 	unsigned long flags;
12075 
12076 	if (type)
12077 		return -EINVAL;
12078 
12079 	ret = kvm_page_track_init(kvm);
12080 	if (ret)
12081 		goto out;
12082 
12083 	ret = kvm_mmu_init_vm(kvm);
12084 	if (ret)
12085 		goto out_page_track;
12086 
12087 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12088 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
12089 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12090 
12091 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12092 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12093 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12094 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12095 		&kvm->arch.irq_sources_bitmap);
12096 
12097 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12098 	mutex_init(&kvm->arch.apic_map_lock);
12099 	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12100 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12101 
12102 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12103 	pvclock_update_vm_gtod_copy(kvm);
12104 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12105 
12106 	kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12107 	kvm->arch.guest_can_read_msr_platform_info = true;
12108 	kvm->arch.enable_pmu = enable_pmu;
12109 
12110 #if IS_ENABLED(CONFIG_HYPERV)
12111 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12112 	kvm->arch.hv_root_tdp = INVALID_PAGE;
12113 #endif
12114 
12115 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12116 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12117 
12118 	kvm_apicv_init(kvm);
12119 	kvm_hv_init_vm(kvm);
12120 	kvm_xen_init_vm(kvm);
12121 
12122 	return static_call(kvm_x86_vm_init)(kvm);
12123 
12124 out_page_track:
12125 	kvm_page_track_cleanup(kvm);
12126 out:
12127 	return ret;
12128 }
12129 
12130 int kvm_arch_post_init_vm(struct kvm *kvm)
12131 {
12132 	return kvm_mmu_post_init_vm(kvm);
12133 }
12134 
12135 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12136 {
12137 	vcpu_load(vcpu);
12138 	kvm_mmu_unload(vcpu);
12139 	vcpu_put(vcpu);
12140 }
12141 
12142 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12143 {
12144 	unsigned long i;
12145 	struct kvm_vcpu *vcpu;
12146 
12147 	kvm_for_each_vcpu(i, vcpu, kvm) {
12148 		kvm_clear_async_pf_completion_queue(vcpu);
12149 		kvm_unload_vcpu_mmu(vcpu);
12150 	}
12151 }
12152 
12153 void kvm_arch_sync_events(struct kvm *kvm)
12154 {
12155 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12156 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12157 	kvm_free_pit(kvm);
12158 }
12159 
12160 /**
12161  * __x86_set_memory_region: Setup KVM internal memory slot
12162  *
12163  * @kvm: the kvm pointer to the VM.
12164  * @id: the slot ID to setup.
12165  * @gpa: the GPA to install the slot (unused when @size == 0).
12166  * @size: the size of the slot. Set to zero to uninstall a slot.
12167  *
12168  * This function helps to setup a KVM internal memory slot.  Specify
12169  * @size > 0 to install a new slot, while @size == 0 to uninstall a
12170  * slot.  The return code can be one of the following:
12171  *
12172  *   HVA:           on success (uninstall will return a bogus HVA)
12173  *   -errno:        on error
12174  *
12175  * The caller should always use IS_ERR() to check the return value
12176  * before use.  Note, the KVM internal memory slots are guaranteed to
12177  * remain valid and unchanged until the VM is destroyed, i.e., the
12178  * GPA->HVA translation will not change.  However, the HVA is a user
12179  * address, i.e. its accessibility is not guaranteed, and must be
12180  * accessed via __copy_{to,from}_user().
12181  */
12182 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12183 				      u32 size)
12184 {
12185 	int i, r;
12186 	unsigned long hva, old_npages;
12187 	struct kvm_memslots *slots = kvm_memslots(kvm);
12188 	struct kvm_memory_slot *slot;
12189 
12190 	/* Called with kvm->slots_lock held.  */
12191 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12192 		return ERR_PTR_USR(-EINVAL);
12193 
12194 	slot = id_to_memslot(slots, id);
12195 	if (size) {
12196 		if (slot && slot->npages)
12197 			return ERR_PTR_USR(-EEXIST);
12198 
12199 		/*
12200 		 * MAP_SHARED to prevent internal slot pages from being moved
12201 		 * by fork()/COW.
12202 		 */
12203 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12204 			      MAP_SHARED | MAP_ANONYMOUS, 0);
12205 		if (IS_ERR((void *)hva))
12206 			return (void __user *)hva;
12207 	} else {
12208 		if (!slot || !slot->npages)
12209 			return NULL;
12210 
12211 		old_npages = slot->npages;
12212 		hva = slot->userspace_addr;
12213 	}
12214 
12215 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
12216 		struct kvm_userspace_memory_region m;
12217 
12218 		m.slot = id | (i << 16);
12219 		m.flags = 0;
12220 		m.guest_phys_addr = gpa;
12221 		m.userspace_addr = hva;
12222 		m.memory_size = size;
12223 		r = __kvm_set_memory_region(kvm, &m);
12224 		if (r < 0)
12225 			return ERR_PTR_USR(r);
12226 	}
12227 
12228 	if (!size)
12229 		vm_munmap(hva, old_npages * PAGE_SIZE);
12230 
12231 	return (void __user *)hva;
12232 }
12233 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12234 
12235 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12236 {
12237 	kvm_mmu_pre_destroy_vm(kvm);
12238 }
12239 
12240 void kvm_arch_destroy_vm(struct kvm *kvm)
12241 {
12242 	if (current->mm == kvm->mm) {
12243 		/*
12244 		 * Free memory regions allocated on behalf of userspace,
12245 		 * unless the memory map has changed due to process exit
12246 		 * or fd copying.
12247 		 */
12248 		mutex_lock(&kvm->slots_lock);
12249 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12250 					0, 0);
12251 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12252 					0, 0);
12253 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12254 		mutex_unlock(&kvm->slots_lock);
12255 	}
12256 	kvm_unload_vcpu_mmus(kvm);
12257 	static_call_cond(kvm_x86_vm_destroy)(kvm);
12258 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12259 	kvm_pic_destroy(kvm);
12260 	kvm_ioapic_destroy(kvm);
12261 	kvm_destroy_vcpus(kvm);
12262 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12263 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12264 	kvm_mmu_uninit_vm(kvm);
12265 	kvm_page_track_cleanup(kvm);
12266 	kvm_xen_destroy_vm(kvm);
12267 	kvm_hv_destroy_vm(kvm);
12268 }
12269 
12270 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12271 {
12272 	int i;
12273 
12274 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12275 		kvfree(slot->arch.rmap[i]);
12276 		slot->arch.rmap[i] = NULL;
12277 	}
12278 }
12279 
12280 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12281 {
12282 	int i;
12283 
12284 	memslot_rmap_free(slot);
12285 
12286 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12287 		kvfree(slot->arch.lpage_info[i - 1]);
12288 		slot->arch.lpage_info[i - 1] = NULL;
12289 	}
12290 
12291 	kvm_page_track_free_memslot(slot);
12292 }
12293 
12294 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12295 {
12296 	const int sz = sizeof(*slot->arch.rmap[0]);
12297 	int i;
12298 
12299 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12300 		int level = i + 1;
12301 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12302 
12303 		if (slot->arch.rmap[i])
12304 			continue;
12305 
12306 		slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12307 		if (!slot->arch.rmap[i]) {
12308 			memslot_rmap_free(slot);
12309 			return -ENOMEM;
12310 		}
12311 	}
12312 
12313 	return 0;
12314 }
12315 
12316 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12317 				      struct kvm_memory_slot *slot)
12318 {
12319 	unsigned long npages = slot->npages;
12320 	int i, r;
12321 
12322 	/*
12323 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12324 	 * old arrays will be freed by __kvm_set_memory_region() if installing
12325 	 * the new memslot is successful.
12326 	 */
12327 	memset(&slot->arch, 0, sizeof(slot->arch));
12328 
12329 	if (kvm_memslots_have_rmaps(kvm)) {
12330 		r = memslot_rmap_alloc(slot, npages);
12331 		if (r)
12332 			return r;
12333 	}
12334 
12335 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12336 		struct kvm_lpage_info *linfo;
12337 		unsigned long ugfn;
12338 		int lpages;
12339 		int level = i + 1;
12340 
12341 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12342 
12343 		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12344 		if (!linfo)
12345 			goto out_free;
12346 
12347 		slot->arch.lpage_info[i - 1] = linfo;
12348 
12349 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12350 			linfo[0].disallow_lpage = 1;
12351 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12352 			linfo[lpages - 1].disallow_lpage = 1;
12353 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
12354 		/*
12355 		 * If the gfn and userspace address are not aligned wrt each
12356 		 * other, disable large page support for this slot.
12357 		 */
12358 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12359 			unsigned long j;
12360 
12361 			for (j = 0; j < lpages; ++j)
12362 				linfo[j].disallow_lpage = 1;
12363 		}
12364 	}
12365 
12366 	if (kvm_page_track_create_memslot(kvm, slot, npages))
12367 		goto out_free;
12368 
12369 	return 0;
12370 
12371 out_free:
12372 	memslot_rmap_free(slot);
12373 
12374 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12375 		kvfree(slot->arch.lpage_info[i - 1]);
12376 		slot->arch.lpage_info[i - 1] = NULL;
12377 	}
12378 	return -ENOMEM;
12379 }
12380 
12381 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12382 {
12383 	struct kvm_vcpu *vcpu;
12384 	unsigned long i;
12385 
12386 	/*
12387 	 * memslots->generation has been incremented.
12388 	 * mmio generation may have reached its maximum value.
12389 	 */
12390 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12391 
12392 	/* Force re-initialization of steal_time cache */
12393 	kvm_for_each_vcpu(i, vcpu, kvm)
12394 		kvm_vcpu_kick(vcpu);
12395 }
12396 
12397 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12398 				   const struct kvm_memory_slot *old,
12399 				   struct kvm_memory_slot *new,
12400 				   enum kvm_mr_change change)
12401 {
12402 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12403 		if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12404 			return -EINVAL;
12405 
12406 		return kvm_alloc_memslot_metadata(kvm, new);
12407 	}
12408 
12409 	if (change == KVM_MR_FLAGS_ONLY)
12410 		memcpy(&new->arch, &old->arch, sizeof(old->arch));
12411 	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12412 		return -EIO;
12413 
12414 	return 0;
12415 }
12416 
12417 
12418 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12419 {
12420 	struct kvm_arch *ka = &kvm->arch;
12421 
12422 	if (!kvm_x86_ops.cpu_dirty_log_size)
12423 		return;
12424 
12425 	if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
12426 	    (!enable && --ka->cpu_dirty_logging_count == 0))
12427 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12428 
12429 	WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
12430 }
12431 
12432 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12433 				     struct kvm_memory_slot *old,
12434 				     const struct kvm_memory_slot *new,
12435 				     enum kvm_mr_change change)
12436 {
12437 	u32 old_flags = old ? old->flags : 0;
12438 	u32 new_flags = new ? new->flags : 0;
12439 	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12440 
12441 	/*
12442 	 * Update CPU dirty logging if dirty logging is being toggled.  This
12443 	 * applies to all operations.
12444 	 */
12445 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12446 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12447 
12448 	/*
12449 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
12450 	 * made writable) or CREATE/MOVE/DELETE of a slot.
12451 	 *
12452 	 * For a memslot with dirty logging disabled:
12453 	 * CREATE:      No dirty mappings will already exist.
12454 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12455 	 *		kvm_arch_flush_shadow_memslot()
12456 	 *
12457 	 * For a memslot with dirty logging enabled:
12458 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
12459 	 *		and no dirty bits to clear.
12460 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12461 	 *		kvm_arch_flush_shadow_memslot().
12462 	 */
12463 	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12464 		return;
12465 
12466 	/*
12467 	 * READONLY and non-flags changes were filtered out above, and the only
12468 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12469 	 * logging isn't being toggled on or off.
12470 	 */
12471 	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12472 		return;
12473 
12474 	if (!log_dirty_pages) {
12475 		/*
12476 		 * Dirty logging tracks sptes in 4k granularity, meaning that
12477 		 * large sptes have to be split.  If live migration succeeds,
12478 		 * the guest in the source machine will be destroyed and large
12479 		 * sptes will be created in the destination.  However, if the
12480 		 * guest continues to run in the source machine (for example if
12481 		 * live migration fails), small sptes will remain around and
12482 		 * cause bad performance.
12483 		 *
12484 		 * Scan sptes if dirty logging has been stopped, dropping those
12485 		 * which can be collapsed into a single large-page spte.  Later
12486 		 * page faults will create the large-page sptes.
12487 		 */
12488 		kvm_mmu_zap_collapsible_sptes(kvm, new);
12489 	} else {
12490 		/*
12491 		 * Initially-all-set does not require write protecting any page,
12492 		 * because they're all assumed to be dirty.
12493 		 */
12494 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12495 			return;
12496 
12497 		if (READ_ONCE(eager_page_split))
12498 			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12499 
12500 		if (kvm_x86_ops.cpu_dirty_log_size) {
12501 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12502 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12503 		} else {
12504 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12505 		}
12506 
12507 		/*
12508 		 * Unconditionally flush the TLBs after enabling dirty logging.
12509 		 * A flush is almost always going to be necessary (see below),
12510 		 * and unconditionally flushing allows the helpers to omit
12511 		 * the subtly complex checks when removing write access.
12512 		 *
12513 		 * Do the flush outside of mmu_lock to reduce the amount of
12514 		 * time mmu_lock is held.  Flushing after dropping mmu_lock is
12515 		 * safe as KVM only needs to guarantee the slot is fully
12516 		 * write-protected before returning to userspace, i.e. before
12517 		 * userspace can consume the dirty status.
12518 		 *
12519 		 * Flushing outside of mmu_lock requires KVM to be careful when
12520 		 * making decisions based on writable status of an SPTE, e.g. a
12521 		 * !writable SPTE doesn't guarantee a CPU can't perform writes.
12522 		 *
12523 		 * Specifically, KVM also write-protects guest page tables to
12524 		 * monitor changes when using shadow paging, and must guarantee
12525 		 * no CPUs can write to those page before mmu_lock is dropped.
12526 		 * Because CPUs may have stale TLB entries at this point, a
12527 		 * !writable SPTE doesn't guarantee CPUs can't perform writes.
12528 		 *
12529 		 * KVM also allows making SPTES writable outside of mmu_lock,
12530 		 * e.g. to allow dirty logging without taking mmu_lock.
12531 		 *
12532 		 * To handle these scenarios, KVM uses a separate software-only
12533 		 * bit (MMU-writable) to track if a SPTE is !writable due to
12534 		 * a guest page table being write-protected (KVM clears the
12535 		 * MMU-writable flag when write-protecting for shadow paging).
12536 		 *
12537 		 * The use of MMU-writable is also the primary motivation for
12538 		 * the unconditional flush.  Because KVM must guarantee that a
12539 		 * CPU doesn't contain stale, writable TLB entries for a
12540 		 * !MMU-writable SPTE, KVM must flush if it encounters any
12541 		 * MMU-writable SPTE regardless of whether the actual hardware
12542 		 * writable bit was set.  I.e. KVM is almost guaranteed to need
12543 		 * to flush, while unconditionally flushing allows the "remove
12544 		 * write access" helpers to ignore MMU-writable entirely.
12545 		 *
12546 		 * See is_writable_pte() for more details (the case involving
12547 		 * access-tracked SPTEs is particularly relevant).
12548 		 */
12549 		kvm_arch_flush_remote_tlbs_memslot(kvm, new);
12550 	}
12551 }
12552 
12553 void kvm_arch_commit_memory_region(struct kvm *kvm,
12554 				struct kvm_memory_slot *old,
12555 				const struct kvm_memory_slot *new,
12556 				enum kvm_mr_change change)
12557 {
12558 	if (!kvm->arch.n_requested_mmu_pages &&
12559 	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12560 		unsigned long nr_mmu_pages;
12561 
12562 		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12563 		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12564 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12565 	}
12566 
12567 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
12568 
12569 	/* Free the arrays associated with the old memslot. */
12570 	if (change == KVM_MR_MOVE)
12571 		kvm_arch_free_memslot(kvm, old);
12572 }
12573 
12574 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12575 {
12576 	kvm_mmu_zap_all(kvm);
12577 }
12578 
12579 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12580 				   struct kvm_memory_slot *slot)
12581 {
12582 	kvm_page_track_flush_slot(kvm, slot);
12583 }
12584 
12585 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12586 {
12587 	return (is_guest_mode(vcpu) &&
12588 		static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12589 }
12590 
12591 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12592 {
12593 	if (!list_empty_careful(&vcpu->async_pf.done))
12594 		return true;
12595 
12596 	if (kvm_apic_has_events(vcpu))
12597 		return true;
12598 
12599 	if (vcpu->arch.pv.pv_unhalted)
12600 		return true;
12601 
12602 	if (vcpu->arch.exception.pending)
12603 		return true;
12604 
12605 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12606 	    (vcpu->arch.nmi_pending &&
12607 	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12608 		return true;
12609 
12610 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12611 	    (vcpu->arch.smi_pending &&
12612 	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
12613 		return true;
12614 
12615 	if (kvm_arch_interrupt_allowed(vcpu) &&
12616 	    (kvm_cpu_has_interrupt(vcpu) ||
12617 	    kvm_guest_apic_has_interrupt(vcpu)))
12618 		return true;
12619 
12620 	if (kvm_hv_has_stimer_pending(vcpu))
12621 		return true;
12622 
12623 	if (is_guest_mode(vcpu) &&
12624 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
12625 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
12626 		return true;
12627 
12628 	if (kvm_xen_has_pending_events(vcpu))
12629 		return true;
12630 
12631 	if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu))
12632 		return true;
12633 
12634 	return false;
12635 }
12636 
12637 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12638 {
12639 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12640 }
12641 
12642 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12643 {
12644 	if (kvm_vcpu_apicv_active(vcpu) &&
12645 	    static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12646 		return true;
12647 
12648 	return false;
12649 }
12650 
12651 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12652 {
12653 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12654 		return true;
12655 
12656 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12657 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
12658 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
12659 		return true;
12660 
12661 	return kvm_arch_dy_has_pending_interrupt(vcpu);
12662 }
12663 
12664 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12665 {
12666 	if (vcpu->arch.guest_state_protected)
12667 		return true;
12668 
12669 	return vcpu->arch.preempted_in_kernel;
12670 }
12671 
12672 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12673 {
12674 	return kvm_rip_read(vcpu);
12675 }
12676 
12677 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12678 {
12679 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12680 }
12681 
12682 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12683 {
12684 	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12685 }
12686 
12687 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12688 {
12689 	/* Can't read the RIP when guest state is protected, just return 0 */
12690 	if (vcpu->arch.guest_state_protected)
12691 		return 0;
12692 
12693 	if (is_64_bit_mode(vcpu))
12694 		return kvm_rip_read(vcpu);
12695 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12696 		     kvm_rip_read(vcpu));
12697 }
12698 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12699 
12700 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12701 {
12702 	return kvm_get_linear_rip(vcpu) == linear_rip;
12703 }
12704 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12705 
12706 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12707 {
12708 	unsigned long rflags;
12709 
12710 	rflags = static_call(kvm_x86_get_rflags)(vcpu);
12711 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12712 		rflags &= ~X86_EFLAGS_TF;
12713 	return rflags;
12714 }
12715 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12716 
12717 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12718 {
12719 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12720 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12721 		rflags |= X86_EFLAGS_TF;
12722 	static_call(kvm_x86_set_rflags)(vcpu, rflags);
12723 }
12724 
12725 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12726 {
12727 	__kvm_set_rflags(vcpu, rflags);
12728 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12729 }
12730 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12731 
12732 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12733 {
12734 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12735 
12736 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12737 }
12738 
12739 static inline u32 kvm_async_pf_next_probe(u32 key)
12740 {
12741 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12742 }
12743 
12744 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12745 {
12746 	u32 key = kvm_async_pf_hash_fn(gfn);
12747 
12748 	while (vcpu->arch.apf.gfns[key] != ~0)
12749 		key = kvm_async_pf_next_probe(key);
12750 
12751 	vcpu->arch.apf.gfns[key] = gfn;
12752 }
12753 
12754 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12755 {
12756 	int i;
12757 	u32 key = kvm_async_pf_hash_fn(gfn);
12758 
12759 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
12760 		     (vcpu->arch.apf.gfns[key] != gfn &&
12761 		      vcpu->arch.apf.gfns[key] != ~0); i++)
12762 		key = kvm_async_pf_next_probe(key);
12763 
12764 	return key;
12765 }
12766 
12767 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12768 {
12769 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12770 }
12771 
12772 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12773 {
12774 	u32 i, j, k;
12775 
12776 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12777 
12778 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12779 		return;
12780 
12781 	while (true) {
12782 		vcpu->arch.apf.gfns[i] = ~0;
12783 		do {
12784 			j = kvm_async_pf_next_probe(j);
12785 			if (vcpu->arch.apf.gfns[j] == ~0)
12786 				return;
12787 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12788 			/*
12789 			 * k lies cyclically in ]i,j]
12790 			 * |    i.k.j |
12791 			 * |....j i.k.| or  |.k..j i...|
12792 			 */
12793 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12794 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
12795 		i = j;
12796 	}
12797 }
12798 
12799 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
12800 {
12801 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
12802 
12803 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
12804 				      sizeof(reason));
12805 }
12806 
12807 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12808 {
12809 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12810 
12811 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12812 					     &token, offset, sizeof(token));
12813 }
12814 
12815 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12816 {
12817 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12818 	u32 val;
12819 
12820 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12821 					 &val, offset, sizeof(val)))
12822 		return false;
12823 
12824 	return !val;
12825 }
12826 
12827 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12828 {
12829 
12830 	if (!kvm_pv_async_pf_enabled(vcpu))
12831 		return false;
12832 
12833 	if (vcpu->arch.apf.send_user_only &&
12834 	    static_call(kvm_x86_get_cpl)(vcpu) == 0)
12835 		return false;
12836 
12837 	if (is_guest_mode(vcpu)) {
12838 		/*
12839 		 * L1 needs to opt into the special #PF vmexits that are
12840 		 * used to deliver async page faults.
12841 		 */
12842 		return vcpu->arch.apf.delivery_as_pf_vmexit;
12843 	} else {
12844 		/*
12845 		 * Play it safe in case the guest temporarily disables paging.
12846 		 * The real mode IDT in particular is unlikely to have a #PF
12847 		 * exception setup.
12848 		 */
12849 		return is_paging(vcpu);
12850 	}
12851 }
12852 
12853 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12854 {
12855 	if (unlikely(!lapic_in_kernel(vcpu) ||
12856 		     kvm_event_needs_reinjection(vcpu) ||
12857 		     vcpu->arch.exception.pending))
12858 		return false;
12859 
12860 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12861 		return false;
12862 
12863 	/*
12864 	 * If interrupts are off we cannot even use an artificial
12865 	 * halt state.
12866 	 */
12867 	return kvm_arch_interrupt_allowed(vcpu);
12868 }
12869 
12870 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12871 				     struct kvm_async_pf *work)
12872 {
12873 	struct x86_exception fault;
12874 
12875 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12876 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12877 
12878 	if (kvm_can_deliver_async_pf(vcpu) &&
12879 	    !apf_put_user_notpresent(vcpu)) {
12880 		fault.vector = PF_VECTOR;
12881 		fault.error_code_valid = true;
12882 		fault.error_code = 0;
12883 		fault.nested_page_fault = false;
12884 		fault.address = work->arch.token;
12885 		fault.async_page_fault = true;
12886 		kvm_inject_page_fault(vcpu, &fault);
12887 		return true;
12888 	} else {
12889 		/*
12890 		 * It is not possible to deliver a paravirtualized asynchronous
12891 		 * page fault, but putting the guest in an artificial halt state
12892 		 * can be beneficial nevertheless: if an interrupt arrives, we
12893 		 * can deliver it timely and perhaps the guest will schedule
12894 		 * another process.  When the instruction that triggered a page
12895 		 * fault is retried, hopefully the page will be ready in the host.
12896 		 */
12897 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12898 		return false;
12899 	}
12900 }
12901 
12902 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12903 				 struct kvm_async_pf *work)
12904 {
12905 	struct kvm_lapic_irq irq = {
12906 		.delivery_mode = APIC_DM_FIXED,
12907 		.vector = vcpu->arch.apf.vec
12908 	};
12909 
12910 	if (work->wakeup_all)
12911 		work->arch.token = ~0; /* broadcast wakeup */
12912 	else
12913 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12914 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12915 
12916 	if ((work->wakeup_all || work->notpresent_injected) &&
12917 	    kvm_pv_async_pf_enabled(vcpu) &&
12918 	    !apf_put_user_ready(vcpu, work->arch.token)) {
12919 		vcpu->arch.apf.pageready_pending = true;
12920 		kvm_apic_set_irq(vcpu, &irq, NULL);
12921 	}
12922 
12923 	vcpu->arch.apf.halted = false;
12924 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12925 }
12926 
12927 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12928 {
12929 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
12930 	if (!vcpu->arch.apf.pageready_pending)
12931 		kvm_vcpu_kick(vcpu);
12932 }
12933 
12934 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12935 {
12936 	if (!kvm_pv_async_pf_enabled(vcpu))
12937 		return true;
12938 	else
12939 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12940 }
12941 
12942 void kvm_arch_start_assignment(struct kvm *kvm)
12943 {
12944 	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12945 		static_call_cond(kvm_x86_pi_start_assignment)(kvm);
12946 }
12947 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12948 
12949 void kvm_arch_end_assignment(struct kvm *kvm)
12950 {
12951 	atomic_dec(&kvm->arch.assigned_device_count);
12952 }
12953 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12954 
12955 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
12956 {
12957 	return arch_atomic_read(&kvm->arch.assigned_device_count);
12958 }
12959 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12960 
12961 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12962 {
12963 	atomic_inc(&kvm->arch.noncoherent_dma_count);
12964 }
12965 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12966 
12967 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12968 {
12969 	atomic_dec(&kvm->arch.noncoherent_dma_count);
12970 }
12971 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12972 
12973 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12974 {
12975 	return atomic_read(&kvm->arch.noncoherent_dma_count);
12976 }
12977 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12978 
12979 bool kvm_arch_has_irq_bypass(void)
12980 {
12981 	return true;
12982 }
12983 
12984 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12985 				      struct irq_bypass_producer *prod)
12986 {
12987 	struct kvm_kernel_irqfd *irqfd =
12988 		container_of(cons, struct kvm_kernel_irqfd, consumer);
12989 	int ret;
12990 
12991 	irqfd->producer = prod;
12992 	kvm_arch_start_assignment(irqfd->kvm);
12993 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
12994 					 prod->irq, irqfd->gsi, 1);
12995 
12996 	if (ret)
12997 		kvm_arch_end_assignment(irqfd->kvm);
12998 
12999 	return ret;
13000 }
13001 
13002 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13003 				      struct irq_bypass_producer *prod)
13004 {
13005 	int ret;
13006 	struct kvm_kernel_irqfd *irqfd =
13007 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13008 
13009 	WARN_ON(irqfd->producer != prod);
13010 	irqfd->producer = NULL;
13011 
13012 	/*
13013 	 * When producer of consumer is unregistered, we change back to
13014 	 * remapped mode, so we can re-use the current implementation
13015 	 * when the irq is masked/disabled or the consumer side (KVM
13016 	 * int this case doesn't want to receive the interrupts.
13017 	*/
13018 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13019 	if (ret)
13020 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13021 		       " fails: %d\n", irqfd->consumer.token, ret);
13022 
13023 	kvm_arch_end_assignment(irqfd->kvm);
13024 }
13025 
13026 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13027 				   uint32_t guest_irq, bool set)
13028 {
13029 	return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13030 }
13031 
13032 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13033 				  struct kvm_kernel_irq_routing_entry *new)
13034 {
13035 	if (new->type != KVM_IRQ_ROUTING_MSI)
13036 		return true;
13037 
13038 	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13039 }
13040 
13041 bool kvm_vector_hashing_enabled(void)
13042 {
13043 	return vector_hashing;
13044 }
13045 
13046 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13047 {
13048 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13049 }
13050 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13051 
13052 
13053 int kvm_spec_ctrl_test_value(u64 value)
13054 {
13055 	/*
13056 	 * test that setting IA32_SPEC_CTRL to given value
13057 	 * is allowed by the host processor
13058 	 */
13059 
13060 	u64 saved_value;
13061 	unsigned long flags;
13062 	int ret = 0;
13063 
13064 	local_irq_save(flags);
13065 
13066 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13067 		ret = 1;
13068 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13069 		ret = 1;
13070 	else
13071 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13072 
13073 	local_irq_restore(flags);
13074 
13075 	return ret;
13076 }
13077 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13078 
13079 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13080 {
13081 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13082 	struct x86_exception fault;
13083 	u64 access = error_code &
13084 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13085 
13086 	if (!(error_code & PFERR_PRESENT_MASK) ||
13087 	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13088 		/*
13089 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13090 		 * tables probably do not match the TLB.  Just proceed
13091 		 * with the error code that the processor gave.
13092 		 */
13093 		fault.vector = PF_VECTOR;
13094 		fault.error_code_valid = true;
13095 		fault.error_code = error_code;
13096 		fault.nested_page_fault = false;
13097 		fault.address = gva;
13098 		fault.async_page_fault = false;
13099 	}
13100 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13101 }
13102 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13103 
13104 /*
13105  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13106  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13107  * indicates whether exit to userspace is needed.
13108  */
13109 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13110 			      struct x86_exception *e)
13111 {
13112 	if (r == X86EMUL_PROPAGATE_FAULT) {
13113 		kvm_inject_emulated_page_fault(vcpu, e);
13114 		return 1;
13115 	}
13116 
13117 	/*
13118 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13119 	 * while handling a VMX instruction KVM could've handled the request
13120 	 * correctly by exiting to userspace and performing I/O but there
13121 	 * doesn't seem to be a real use-case behind such requests, just return
13122 	 * KVM_EXIT_INTERNAL_ERROR for now.
13123 	 */
13124 	kvm_prepare_emulation_failure_exit(vcpu);
13125 
13126 	return 0;
13127 }
13128 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13129 
13130 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13131 {
13132 	bool pcid_enabled;
13133 	struct x86_exception e;
13134 	struct {
13135 		u64 pcid;
13136 		u64 gla;
13137 	} operand;
13138 	int r;
13139 
13140 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13141 	if (r != X86EMUL_CONTINUE)
13142 		return kvm_handle_memory_failure(vcpu, r, &e);
13143 
13144 	if (operand.pcid >> 12 != 0) {
13145 		kvm_inject_gp(vcpu, 0);
13146 		return 1;
13147 	}
13148 
13149 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
13150 
13151 	switch (type) {
13152 	case INVPCID_TYPE_INDIV_ADDR:
13153 		if ((!pcid_enabled && (operand.pcid != 0)) ||
13154 		    is_noncanonical_address(operand.gla, vcpu)) {
13155 			kvm_inject_gp(vcpu, 0);
13156 			return 1;
13157 		}
13158 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13159 		return kvm_skip_emulated_instruction(vcpu);
13160 
13161 	case INVPCID_TYPE_SINGLE_CTXT:
13162 		if (!pcid_enabled && (operand.pcid != 0)) {
13163 			kvm_inject_gp(vcpu, 0);
13164 			return 1;
13165 		}
13166 
13167 		kvm_invalidate_pcid(vcpu, operand.pcid);
13168 		return kvm_skip_emulated_instruction(vcpu);
13169 
13170 	case INVPCID_TYPE_ALL_NON_GLOBAL:
13171 		/*
13172 		 * Currently, KVM doesn't mark global entries in the shadow
13173 		 * page tables, so a non-global flush just degenerates to a
13174 		 * global flush. If needed, we could optimize this later by
13175 		 * keeping track of global entries in shadow page tables.
13176 		 */
13177 
13178 		fallthrough;
13179 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
13180 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13181 		return kvm_skip_emulated_instruction(vcpu);
13182 
13183 	default:
13184 		kvm_inject_gp(vcpu, 0);
13185 		return 1;
13186 	}
13187 }
13188 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13189 
13190 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13191 {
13192 	struct kvm_run *run = vcpu->run;
13193 	struct kvm_mmio_fragment *frag;
13194 	unsigned int len;
13195 
13196 	BUG_ON(!vcpu->mmio_needed);
13197 
13198 	/* Complete previous fragment */
13199 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13200 	len = min(8u, frag->len);
13201 	if (!vcpu->mmio_is_write)
13202 		memcpy(frag->data, run->mmio.data, len);
13203 
13204 	if (frag->len <= 8) {
13205 		/* Switch to the next fragment. */
13206 		frag++;
13207 		vcpu->mmio_cur_fragment++;
13208 	} else {
13209 		/* Go forward to the next mmio piece. */
13210 		frag->data += len;
13211 		frag->gpa += len;
13212 		frag->len -= len;
13213 	}
13214 
13215 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13216 		vcpu->mmio_needed = 0;
13217 
13218 		// VMG change, at this point, we're always done
13219 		// RIP has already been advanced
13220 		return 1;
13221 	}
13222 
13223 	// More MMIO is needed
13224 	run->mmio.phys_addr = frag->gpa;
13225 	run->mmio.len = min(8u, frag->len);
13226 	run->mmio.is_write = vcpu->mmio_is_write;
13227 	if (run->mmio.is_write)
13228 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13229 	run->exit_reason = KVM_EXIT_MMIO;
13230 
13231 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13232 
13233 	return 0;
13234 }
13235 
13236 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13237 			  void *data)
13238 {
13239 	int handled;
13240 	struct kvm_mmio_fragment *frag;
13241 
13242 	if (!data)
13243 		return -EINVAL;
13244 
13245 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13246 	if (handled == bytes)
13247 		return 1;
13248 
13249 	bytes -= handled;
13250 	gpa += handled;
13251 	data += handled;
13252 
13253 	/*TODO: Check if need to increment number of frags */
13254 	frag = vcpu->mmio_fragments;
13255 	vcpu->mmio_nr_fragments = 1;
13256 	frag->len = bytes;
13257 	frag->gpa = gpa;
13258 	frag->data = data;
13259 
13260 	vcpu->mmio_needed = 1;
13261 	vcpu->mmio_cur_fragment = 0;
13262 
13263 	vcpu->run->mmio.phys_addr = gpa;
13264 	vcpu->run->mmio.len = min(8u, frag->len);
13265 	vcpu->run->mmio.is_write = 1;
13266 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13267 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13268 
13269 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13270 
13271 	return 0;
13272 }
13273 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13274 
13275 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13276 			 void *data)
13277 {
13278 	int handled;
13279 	struct kvm_mmio_fragment *frag;
13280 
13281 	if (!data)
13282 		return -EINVAL;
13283 
13284 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13285 	if (handled == bytes)
13286 		return 1;
13287 
13288 	bytes -= handled;
13289 	gpa += handled;
13290 	data += handled;
13291 
13292 	/*TODO: Check if need to increment number of frags */
13293 	frag = vcpu->mmio_fragments;
13294 	vcpu->mmio_nr_fragments = 1;
13295 	frag->len = bytes;
13296 	frag->gpa = gpa;
13297 	frag->data = data;
13298 
13299 	vcpu->mmio_needed = 1;
13300 	vcpu->mmio_cur_fragment = 0;
13301 
13302 	vcpu->run->mmio.phys_addr = gpa;
13303 	vcpu->run->mmio.len = min(8u, frag->len);
13304 	vcpu->run->mmio.is_write = 0;
13305 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13306 
13307 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13308 
13309 	return 0;
13310 }
13311 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13312 
13313 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13314 {
13315 	vcpu->arch.sev_pio_count -= count;
13316 	vcpu->arch.sev_pio_data += count * size;
13317 }
13318 
13319 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13320 			   unsigned int port);
13321 
13322 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13323 {
13324 	int size = vcpu->arch.pio.size;
13325 	int port = vcpu->arch.pio.port;
13326 
13327 	vcpu->arch.pio.count = 0;
13328 	if (vcpu->arch.sev_pio_count)
13329 		return kvm_sev_es_outs(vcpu, size, port);
13330 	return 1;
13331 }
13332 
13333 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13334 			   unsigned int port)
13335 {
13336 	for (;;) {
13337 		unsigned int count =
13338 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13339 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13340 
13341 		/* memcpy done already by emulator_pio_out.  */
13342 		advance_sev_es_emulated_pio(vcpu, count, size);
13343 		if (!ret)
13344 			break;
13345 
13346 		/* Emulation done by the kernel.  */
13347 		if (!vcpu->arch.sev_pio_count)
13348 			return 1;
13349 	}
13350 
13351 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13352 	return 0;
13353 }
13354 
13355 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13356 			  unsigned int port);
13357 
13358 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13359 {
13360 	unsigned count = vcpu->arch.pio.count;
13361 	int size = vcpu->arch.pio.size;
13362 	int port = vcpu->arch.pio.port;
13363 
13364 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13365 	advance_sev_es_emulated_pio(vcpu, count, size);
13366 	if (vcpu->arch.sev_pio_count)
13367 		return kvm_sev_es_ins(vcpu, size, port);
13368 	return 1;
13369 }
13370 
13371 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13372 			  unsigned int port)
13373 {
13374 	for (;;) {
13375 		unsigned int count =
13376 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13377 		if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13378 			break;
13379 
13380 		/* Emulation done by the kernel.  */
13381 		advance_sev_es_emulated_pio(vcpu, count, size);
13382 		if (!vcpu->arch.sev_pio_count)
13383 			return 1;
13384 	}
13385 
13386 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13387 	return 0;
13388 }
13389 
13390 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13391 			 unsigned int port, void *data,  unsigned int count,
13392 			 int in)
13393 {
13394 	vcpu->arch.sev_pio_data = data;
13395 	vcpu->arch.sev_pio_count = count;
13396 	return in ? kvm_sev_es_ins(vcpu, size, port)
13397 		  : kvm_sev_es_outs(vcpu, size, port);
13398 }
13399 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13400 
13401 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13402 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13403 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13404 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13405 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13406 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13407 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13408 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
13409 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13410 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13411 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13412 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13413 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13414 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13415 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13416 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13417 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13418 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13419 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13420 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13421 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13422 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13423 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13424 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13425 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13426 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13427 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13428 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13429 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13430 
13431 static int __init kvm_x86_init(void)
13432 {
13433 	kvm_mmu_x86_module_init();
13434 	return 0;
13435 }
13436 module_init(kvm_x86_init);
13437 
13438 static void __exit kvm_x86_exit(void)
13439 {
13440 	/*
13441 	 * If module_init() is implemented, module_exit() must also be
13442 	 * implemented to allow module unload.
13443 	 */
13444 }
13445 module_exit(kvm_x86_exit);
13446