1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * derived from drivers/kvm/kvm_main.c 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2008 Qumranet, Inc. 8 * Copyright IBM Corporation, 2008 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 * Amit Shah <amit.shah@qumranet.com> 15 * Ben-Ami Yassour <benami@il.ibm.com> 16 * 17 * This work is licensed under the terms of the GNU GPL, version 2. See 18 * the COPYING file in the top-level directory. 19 * 20 */ 21 22 #include <linux/kvm_host.h> 23 #include "irq.h" 24 #include "mmu.h" 25 #include "i8254.h" 26 #include "tss.h" 27 #include "kvm_cache_regs.h" 28 #include "x86.h" 29 #include "cpuid.h" 30 #include "assigned-dev.h" 31 #include "pmu.h" 32 #include "hyperv.h" 33 34 #include <linux/clocksource.h> 35 #include <linux/interrupt.h> 36 #include <linux/kvm.h> 37 #include <linux/fs.h> 38 #include <linux/vmalloc.h> 39 #include <linux/export.h> 40 #include <linux/moduleparam.h> 41 #include <linux/mman.h> 42 #include <linux/highmem.h> 43 #include <linux/iommu.h> 44 #include <linux/intel-iommu.h> 45 #include <linux/cpufreq.h> 46 #include <linux/user-return-notifier.h> 47 #include <linux/srcu.h> 48 #include <linux/slab.h> 49 #include <linux/perf_event.h> 50 #include <linux/uaccess.h> 51 #include <linux/hash.h> 52 #include <linux/pci.h> 53 #include <linux/timekeeper_internal.h> 54 #include <linux/pvclock_gtod.h> 55 #include <linux/kvm_irqfd.h> 56 #include <linux/irqbypass.h> 57 #include <linux/sched/stat.h> 58 59 #include <trace/events/kvm.h> 60 61 #include <asm/debugreg.h> 62 #include <asm/msr.h> 63 #include <asm/desc.h> 64 #include <asm/mce.h> 65 #include <linux/kernel_stat.h> 66 #include <asm/fpu/internal.h> /* Ugh! */ 67 #include <asm/pvclock.h> 68 #include <asm/div64.h> 69 #include <asm/irq_remapping.h> 70 71 #define CREATE_TRACE_POINTS 72 #include "trace.h" 73 74 #define MAX_IO_MSRS 256 75 #define KVM_MAX_MCE_BANKS 32 76 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P; 77 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported); 78 79 #define emul_to_vcpu(ctxt) \ 80 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt) 81 82 /* EFER defaults: 83 * - enable syscall per default because its emulated by KVM 84 * - enable LME and LMA per default on 64 bit KVM 85 */ 86 #ifdef CONFIG_X86_64 87 static 88 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 89 #else 90 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 91 #endif 92 93 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM 94 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU 95 96 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 97 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 98 99 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 100 static void process_nmi(struct kvm_vcpu *vcpu); 101 static void enter_smm(struct kvm_vcpu *vcpu); 102 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 103 104 struct kvm_x86_ops *kvm_x86_ops __read_mostly; 105 EXPORT_SYMBOL_GPL(kvm_x86_ops); 106 107 static bool __read_mostly ignore_msrs = 0; 108 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 109 110 unsigned int min_timer_period_us = 500; 111 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 112 113 static bool __read_mostly kvmclock_periodic_sync = true; 114 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 115 116 bool __read_mostly kvm_has_tsc_control; 117 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 118 u32 __read_mostly kvm_max_guest_tsc_khz; 119 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 120 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits; 121 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits); 122 u64 __read_mostly kvm_max_tsc_scaling_ratio; 123 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio); 124 u64 __read_mostly kvm_default_tsc_scaling_ratio; 125 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio); 126 127 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 128 static u32 __read_mostly tsc_tolerance_ppm = 250; 129 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 130 131 /* lapic timer advance (tscdeadline mode only) in nanoseconds */ 132 unsigned int __read_mostly lapic_timer_advance_ns = 0; 133 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR); 134 135 static bool __read_mostly vector_hashing = true; 136 module_param(vector_hashing, bool, S_IRUGO); 137 138 static bool __read_mostly backwards_tsc_observed = false; 139 140 #define KVM_NR_SHARED_MSRS 16 141 142 struct kvm_shared_msrs_global { 143 int nr; 144 u32 msrs[KVM_NR_SHARED_MSRS]; 145 }; 146 147 struct kvm_shared_msrs { 148 struct user_return_notifier urn; 149 bool registered; 150 struct kvm_shared_msr_values { 151 u64 host; 152 u64 curr; 153 } values[KVM_NR_SHARED_MSRS]; 154 }; 155 156 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; 157 static struct kvm_shared_msrs __percpu *shared_msrs; 158 159 struct kvm_stats_debugfs_item debugfs_entries[] = { 160 { "pf_fixed", VCPU_STAT(pf_fixed) }, 161 { "pf_guest", VCPU_STAT(pf_guest) }, 162 { "tlb_flush", VCPU_STAT(tlb_flush) }, 163 { "invlpg", VCPU_STAT(invlpg) }, 164 { "exits", VCPU_STAT(exits) }, 165 { "io_exits", VCPU_STAT(io_exits) }, 166 { "mmio_exits", VCPU_STAT(mmio_exits) }, 167 { "signal_exits", VCPU_STAT(signal_exits) }, 168 { "irq_window", VCPU_STAT(irq_window_exits) }, 169 { "nmi_window", VCPU_STAT(nmi_window_exits) }, 170 { "halt_exits", VCPU_STAT(halt_exits) }, 171 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) }, 172 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) }, 173 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) }, 174 { "halt_wakeup", VCPU_STAT(halt_wakeup) }, 175 { "hypercalls", VCPU_STAT(hypercalls) }, 176 { "request_irq", VCPU_STAT(request_irq_exits) }, 177 { "irq_exits", VCPU_STAT(irq_exits) }, 178 { "host_state_reload", VCPU_STAT(host_state_reload) }, 179 { "efer_reload", VCPU_STAT(efer_reload) }, 180 { "fpu_reload", VCPU_STAT(fpu_reload) }, 181 { "insn_emulation", VCPU_STAT(insn_emulation) }, 182 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, 183 { "irq_injections", VCPU_STAT(irq_injections) }, 184 { "nmi_injections", VCPU_STAT(nmi_injections) }, 185 { "req_event", VCPU_STAT(req_event) }, 186 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, 187 { "mmu_pte_write", VM_STAT(mmu_pte_write) }, 188 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, 189 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, 190 { "mmu_flooded", VM_STAT(mmu_flooded) }, 191 { "mmu_recycled", VM_STAT(mmu_recycled) }, 192 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, 193 { "mmu_unsync", VM_STAT(mmu_unsync) }, 194 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, 195 { "largepages", VM_STAT(lpages) }, 196 { "max_mmu_page_hash_collisions", 197 VM_STAT(max_mmu_page_hash_collisions) }, 198 { NULL } 199 }; 200 201 u64 __read_mostly host_xcr0; 202 203 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 204 205 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 206 { 207 int i; 208 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) 209 vcpu->arch.apf.gfns[i] = ~0; 210 } 211 212 static void kvm_on_user_return(struct user_return_notifier *urn) 213 { 214 unsigned slot; 215 struct kvm_shared_msrs *locals 216 = container_of(urn, struct kvm_shared_msrs, urn); 217 struct kvm_shared_msr_values *values; 218 unsigned long flags; 219 220 /* 221 * Disabling irqs at this point since the following code could be 222 * interrupted and executed through kvm_arch_hardware_disable() 223 */ 224 local_irq_save(flags); 225 if (locals->registered) { 226 locals->registered = false; 227 user_return_notifier_unregister(urn); 228 } 229 local_irq_restore(flags); 230 for (slot = 0; slot < shared_msrs_global.nr; ++slot) { 231 values = &locals->values[slot]; 232 if (values->host != values->curr) { 233 wrmsrl(shared_msrs_global.msrs[slot], values->host); 234 values->curr = values->host; 235 } 236 } 237 } 238 239 static void shared_msr_update(unsigned slot, u32 msr) 240 { 241 u64 value; 242 unsigned int cpu = smp_processor_id(); 243 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 244 245 /* only read, and nobody should modify it at this time, 246 * so don't need lock */ 247 if (slot >= shared_msrs_global.nr) { 248 printk(KERN_ERR "kvm: invalid MSR slot!"); 249 return; 250 } 251 rdmsrl_safe(msr, &value); 252 smsr->values[slot].host = value; 253 smsr->values[slot].curr = value; 254 } 255 256 void kvm_define_shared_msr(unsigned slot, u32 msr) 257 { 258 BUG_ON(slot >= KVM_NR_SHARED_MSRS); 259 shared_msrs_global.msrs[slot] = msr; 260 if (slot >= shared_msrs_global.nr) 261 shared_msrs_global.nr = slot + 1; 262 } 263 EXPORT_SYMBOL_GPL(kvm_define_shared_msr); 264 265 static void kvm_shared_msr_cpu_online(void) 266 { 267 unsigned i; 268 269 for (i = 0; i < shared_msrs_global.nr; ++i) 270 shared_msr_update(i, shared_msrs_global.msrs[i]); 271 } 272 273 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) 274 { 275 unsigned int cpu = smp_processor_id(); 276 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 277 int err; 278 279 if (((value ^ smsr->values[slot].curr) & mask) == 0) 280 return 0; 281 smsr->values[slot].curr = value; 282 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value); 283 if (err) 284 return 1; 285 286 if (!smsr->registered) { 287 smsr->urn.on_user_return = kvm_on_user_return; 288 user_return_notifier_register(&smsr->urn); 289 smsr->registered = true; 290 } 291 return 0; 292 } 293 EXPORT_SYMBOL_GPL(kvm_set_shared_msr); 294 295 static void drop_user_return_notifiers(void) 296 { 297 unsigned int cpu = smp_processor_id(); 298 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 299 300 if (smsr->registered) 301 kvm_on_user_return(&smsr->urn); 302 } 303 304 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 305 { 306 return vcpu->arch.apic_base; 307 } 308 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 309 310 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 311 { 312 u64 old_state = vcpu->arch.apic_base & 313 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE); 314 u64 new_state = msr_info->data & 315 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE); 316 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 317 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE); 318 319 if (!msr_info->host_initiated && 320 ((msr_info->data & reserved_bits) != 0 || 321 new_state == X2APIC_ENABLE || 322 (new_state == MSR_IA32_APICBASE_ENABLE && 323 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) || 324 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) && 325 old_state == 0))) 326 return 1; 327 328 kvm_lapic_set_base(vcpu, msr_info->data); 329 return 0; 330 } 331 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 332 333 asmlinkage __visible void kvm_spurious_fault(void) 334 { 335 /* Fault while not rebooting. We want the trace. */ 336 BUG(); 337 } 338 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 339 340 #define EXCPT_BENIGN 0 341 #define EXCPT_CONTRIBUTORY 1 342 #define EXCPT_PF 2 343 344 static int exception_class(int vector) 345 { 346 switch (vector) { 347 case PF_VECTOR: 348 return EXCPT_PF; 349 case DE_VECTOR: 350 case TS_VECTOR: 351 case NP_VECTOR: 352 case SS_VECTOR: 353 case GP_VECTOR: 354 return EXCPT_CONTRIBUTORY; 355 default: 356 break; 357 } 358 return EXCPT_BENIGN; 359 } 360 361 #define EXCPT_FAULT 0 362 #define EXCPT_TRAP 1 363 #define EXCPT_ABORT 2 364 #define EXCPT_INTERRUPT 3 365 366 static int exception_type(int vector) 367 { 368 unsigned int mask; 369 370 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 371 return EXCPT_INTERRUPT; 372 373 mask = 1 << vector; 374 375 /* #DB is trap, as instruction watchpoints are handled elsewhere */ 376 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR))) 377 return EXCPT_TRAP; 378 379 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 380 return EXCPT_ABORT; 381 382 /* Reserved exceptions will result in fault */ 383 return EXCPT_FAULT; 384 } 385 386 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 387 unsigned nr, bool has_error, u32 error_code, 388 bool reinject) 389 { 390 u32 prev_nr; 391 int class1, class2; 392 393 kvm_make_request(KVM_REQ_EVENT, vcpu); 394 395 if (!vcpu->arch.exception.pending) { 396 queue: 397 if (has_error && !is_protmode(vcpu)) 398 has_error = false; 399 vcpu->arch.exception.pending = true; 400 vcpu->arch.exception.has_error_code = has_error; 401 vcpu->arch.exception.nr = nr; 402 vcpu->arch.exception.error_code = error_code; 403 vcpu->arch.exception.reinject = reinject; 404 return; 405 } 406 407 /* to check exception */ 408 prev_nr = vcpu->arch.exception.nr; 409 if (prev_nr == DF_VECTOR) { 410 /* triple fault -> shutdown */ 411 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 412 return; 413 } 414 class1 = exception_class(prev_nr); 415 class2 = exception_class(nr); 416 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 417 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 418 /* generate double fault per SDM Table 5-5 */ 419 vcpu->arch.exception.pending = true; 420 vcpu->arch.exception.has_error_code = true; 421 vcpu->arch.exception.nr = DF_VECTOR; 422 vcpu->arch.exception.error_code = 0; 423 } else 424 /* replace previous exception with a new one in a hope 425 that instruction re-execution will regenerate lost 426 exception */ 427 goto queue; 428 } 429 430 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 431 { 432 kvm_multiple_exception(vcpu, nr, false, 0, false); 433 } 434 EXPORT_SYMBOL_GPL(kvm_queue_exception); 435 436 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 437 { 438 kvm_multiple_exception(vcpu, nr, false, 0, true); 439 } 440 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 441 442 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 443 { 444 if (err) 445 kvm_inject_gp(vcpu, 0); 446 else 447 return kvm_skip_emulated_instruction(vcpu); 448 449 return 1; 450 } 451 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 452 453 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 454 { 455 ++vcpu->stat.pf_guest; 456 vcpu->arch.cr2 = fault->address; 457 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 458 } 459 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 460 461 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 462 { 463 if (mmu_is_nested(vcpu) && !fault->nested_page_fault) 464 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); 465 else 466 vcpu->arch.mmu.inject_page_fault(vcpu, fault); 467 468 return fault->nested_page_fault; 469 } 470 471 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 472 { 473 atomic_inc(&vcpu->arch.nmi_queued); 474 kvm_make_request(KVM_REQ_NMI, vcpu); 475 } 476 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 477 478 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 479 { 480 kvm_multiple_exception(vcpu, nr, true, error_code, false); 481 } 482 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 483 484 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 485 { 486 kvm_multiple_exception(vcpu, nr, true, error_code, true); 487 } 488 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 489 490 /* 491 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 492 * a #GP and return false. 493 */ 494 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 495 { 496 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) 497 return true; 498 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 499 return false; 500 } 501 EXPORT_SYMBOL_GPL(kvm_require_cpl); 502 503 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 504 { 505 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 506 return true; 507 508 kvm_queue_exception(vcpu, UD_VECTOR); 509 return false; 510 } 511 EXPORT_SYMBOL_GPL(kvm_require_dr); 512 513 /* 514 * This function will be used to read from the physical memory of the currently 515 * running guest. The difference to kvm_vcpu_read_guest_page is that this function 516 * can read from guest physical or from the guest's guest physical memory. 517 */ 518 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 519 gfn_t ngfn, void *data, int offset, int len, 520 u32 access) 521 { 522 struct x86_exception exception; 523 gfn_t real_gfn; 524 gpa_t ngpa; 525 526 ngpa = gfn_to_gpa(ngfn); 527 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception); 528 if (real_gfn == UNMAPPED_GVA) 529 return -EFAULT; 530 531 real_gfn = gpa_to_gfn(real_gfn); 532 533 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len); 534 } 535 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); 536 537 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 538 void *data, int offset, int len, u32 access) 539 { 540 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, 541 data, offset, len, access); 542 } 543 544 /* 545 * Load the pae pdptrs. Return true is they are all valid. 546 */ 547 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) 548 { 549 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 550 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; 551 int i; 552 int ret; 553 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 554 555 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, 556 offset * sizeof(u64), sizeof(pdpte), 557 PFERR_USER_MASK|PFERR_WRITE_MASK); 558 if (ret < 0) { 559 ret = 0; 560 goto out; 561 } 562 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 563 if ((pdpte[i] & PT_PRESENT_MASK) && 564 (pdpte[i] & 565 vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) { 566 ret = 0; 567 goto out; 568 } 569 } 570 ret = 1; 571 572 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 573 __set_bit(VCPU_EXREG_PDPTR, 574 (unsigned long *)&vcpu->arch.regs_avail); 575 __set_bit(VCPU_EXREG_PDPTR, 576 (unsigned long *)&vcpu->arch.regs_dirty); 577 out: 578 579 return ret; 580 } 581 EXPORT_SYMBOL_GPL(load_pdptrs); 582 583 bool pdptrs_changed(struct kvm_vcpu *vcpu) 584 { 585 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; 586 bool changed = true; 587 int offset; 588 gfn_t gfn; 589 int r; 590 591 if (is_long_mode(vcpu) || !is_pae(vcpu)) 592 return false; 593 594 if (!test_bit(VCPU_EXREG_PDPTR, 595 (unsigned long *)&vcpu->arch.regs_avail)) 596 return true; 597 598 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT; 599 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1); 600 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), 601 PFERR_USER_MASK | PFERR_WRITE_MASK); 602 if (r < 0) 603 goto out; 604 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; 605 out: 606 607 return changed; 608 } 609 EXPORT_SYMBOL_GPL(pdptrs_changed); 610 611 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 612 { 613 unsigned long old_cr0 = kvm_read_cr0(vcpu); 614 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP; 615 616 cr0 |= X86_CR0_ET; 617 618 #ifdef CONFIG_X86_64 619 if (cr0 & 0xffffffff00000000UL) 620 return 1; 621 #endif 622 623 cr0 &= ~CR0_RESERVED_BITS; 624 625 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 626 return 1; 627 628 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 629 return 1; 630 631 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 632 #ifdef CONFIG_X86_64 633 if ((vcpu->arch.efer & EFER_LME)) { 634 int cs_db, cs_l; 635 636 if (!is_pae(vcpu)) 637 return 1; 638 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 639 if (cs_l) 640 return 1; 641 } else 642 #endif 643 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 644 kvm_read_cr3(vcpu))) 645 return 1; 646 } 647 648 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 649 return 1; 650 651 kvm_x86_ops->set_cr0(vcpu, cr0); 652 653 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 654 kvm_clear_async_pf_completion_queue(vcpu); 655 kvm_async_pf_hash_reset(vcpu); 656 } 657 658 if ((cr0 ^ old_cr0) & update_bits) 659 kvm_mmu_reset_context(vcpu); 660 661 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 662 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 663 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 664 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 665 666 return 0; 667 } 668 EXPORT_SYMBOL_GPL(kvm_set_cr0); 669 670 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 671 { 672 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 673 } 674 EXPORT_SYMBOL_GPL(kvm_lmsw); 675 676 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu) 677 { 678 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) && 679 !vcpu->guest_xcr0_loaded) { 680 /* kvm_set_xcr() also depends on this */ 681 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 682 vcpu->guest_xcr0_loaded = 1; 683 } 684 } 685 686 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu) 687 { 688 if (vcpu->guest_xcr0_loaded) { 689 if (vcpu->arch.xcr0 != host_xcr0) 690 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 691 vcpu->guest_xcr0_loaded = 0; 692 } 693 } 694 695 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 696 { 697 u64 xcr0 = xcr; 698 u64 old_xcr0 = vcpu->arch.xcr0; 699 u64 valid_bits; 700 701 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 702 if (index != XCR_XFEATURE_ENABLED_MASK) 703 return 1; 704 if (!(xcr0 & XFEATURE_MASK_FP)) 705 return 1; 706 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 707 return 1; 708 709 /* 710 * Do not allow the guest to set bits that we do not support 711 * saving. However, xcr0 bit 0 is always set, even if the 712 * emulated CPU does not support XSAVE (see fx_init). 713 */ 714 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 715 if (xcr0 & ~valid_bits) 716 return 1; 717 718 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 719 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 720 return 1; 721 722 if (xcr0 & XFEATURE_MASK_AVX512) { 723 if (!(xcr0 & XFEATURE_MASK_YMM)) 724 return 1; 725 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 726 return 1; 727 } 728 vcpu->arch.xcr0 = xcr0; 729 730 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 731 kvm_update_cpuid(vcpu); 732 return 0; 733 } 734 735 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 736 { 737 if (kvm_x86_ops->get_cpl(vcpu) != 0 || 738 __kvm_set_xcr(vcpu, index, xcr)) { 739 kvm_inject_gp(vcpu, 0); 740 return 1; 741 } 742 return 0; 743 } 744 EXPORT_SYMBOL_GPL(kvm_set_xcr); 745 746 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 747 { 748 unsigned long old_cr4 = kvm_read_cr4(vcpu); 749 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | 750 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE; 751 752 if (cr4 & CR4_RESERVED_BITS) 753 return 1; 754 755 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE)) 756 return 1; 757 758 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP)) 759 return 1; 760 761 if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP)) 762 return 1; 763 764 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE)) 765 return 1; 766 767 if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE)) 768 return 1; 769 770 if (is_long_mode(vcpu)) { 771 if (!(cr4 & X86_CR4_PAE)) 772 return 1; 773 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 774 && ((cr4 ^ old_cr4) & pdptr_bits) 775 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 776 kvm_read_cr3(vcpu))) 777 return 1; 778 779 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 780 if (!guest_cpuid_has_pcid(vcpu)) 781 return 1; 782 783 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 784 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 785 return 1; 786 } 787 788 if (kvm_x86_ops->set_cr4(vcpu, cr4)) 789 return 1; 790 791 if (((cr4 ^ old_cr4) & pdptr_bits) || 792 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 793 kvm_mmu_reset_context(vcpu); 794 795 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 796 kvm_update_cpuid(vcpu); 797 798 return 0; 799 } 800 EXPORT_SYMBOL_GPL(kvm_set_cr4); 801 802 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 803 { 804 #ifdef CONFIG_X86_64 805 cr3 &= ~CR3_PCID_INVD; 806 #endif 807 808 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { 809 kvm_mmu_sync_roots(vcpu); 810 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 811 return 0; 812 } 813 814 if (is_long_mode(vcpu)) { 815 if (cr3 & CR3_L_MODE_RESERVED_BITS) 816 return 1; 817 } else if (is_pae(vcpu) && is_paging(vcpu) && 818 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) 819 return 1; 820 821 vcpu->arch.cr3 = cr3; 822 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 823 kvm_mmu_new_cr3(vcpu); 824 return 0; 825 } 826 EXPORT_SYMBOL_GPL(kvm_set_cr3); 827 828 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 829 { 830 if (cr8 & CR8_RESERVED_BITS) 831 return 1; 832 if (lapic_in_kernel(vcpu)) 833 kvm_lapic_set_tpr(vcpu, cr8); 834 else 835 vcpu->arch.cr8 = cr8; 836 return 0; 837 } 838 EXPORT_SYMBOL_GPL(kvm_set_cr8); 839 840 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 841 { 842 if (lapic_in_kernel(vcpu)) 843 return kvm_lapic_get_cr8(vcpu); 844 else 845 return vcpu->arch.cr8; 846 } 847 EXPORT_SYMBOL_GPL(kvm_get_cr8); 848 849 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 850 { 851 int i; 852 853 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 854 for (i = 0; i < KVM_NR_DB_REGS; i++) 855 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 856 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD; 857 } 858 } 859 860 static void kvm_update_dr6(struct kvm_vcpu *vcpu) 861 { 862 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 863 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6); 864 } 865 866 static void kvm_update_dr7(struct kvm_vcpu *vcpu) 867 { 868 unsigned long dr7; 869 870 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 871 dr7 = vcpu->arch.guest_debug_dr7; 872 else 873 dr7 = vcpu->arch.dr7; 874 kvm_x86_ops->set_dr7(vcpu, dr7); 875 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 876 if (dr7 & DR7_BP_EN_MASK) 877 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 878 } 879 880 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 881 { 882 u64 fixed = DR6_FIXED_1; 883 884 if (!guest_cpuid_has_rtm(vcpu)) 885 fixed |= DR6_RTM; 886 return fixed; 887 } 888 889 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 890 { 891 switch (dr) { 892 case 0 ... 3: 893 vcpu->arch.db[dr] = val; 894 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 895 vcpu->arch.eff_db[dr] = val; 896 break; 897 case 4: 898 /* fall through */ 899 case 6: 900 if (val & 0xffffffff00000000ULL) 901 return -1; /* #GP */ 902 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 903 kvm_update_dr6(vcpu); 904 break; 905 case 5: 906 /* fall through */ 907 default: /* 7 */ 908 if (val & 0xffffffff00000000ULL) 909 return -1; /* #GP */ 910 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 911 kvm_update_dr7(vcpu); 912 break; 913 } 914 915 return 0; 916 } 917 918 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 919 { 920 if (__kvm_set_dr(vcpu, dr, val)) { 921 kvm_inject_gp(vcpu, 0); 922 return 1; 923 } 924 return 0; 925 } 926 EXPORT_SYMBOL_GPL(kvm_set_dr); 927 928 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 929 { 930 switch (dr) { 931 case 0 ... 3: 932 *val = vcpu->arch.db[dr]; 933 break; 934 case 4: 935 /* fall through */ 936 case 6: 937 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 938 *val = vcpu->arch.dr6; 939 else 940 *val = kvm_x86_ops->get_dr6(vcpu); 941 break; 942 case 5: 943 /* fall through */ 944 default: /* 7 */ 945 *val = vcpu->arch.dr7; 946 break; 947 } 948 return 0; 949 } 950 EXPORT_SYMBOL_GPL(kvm_get_dr); 951 952 bool kvm_rdpmc(struct kvm_vcpu *vcpu) 953 { 954 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); 955 u64 data; 956 int err; 957 958 err = kvm_pmu_rdpmc(vcpu, ecx, &data); 959 if (err) 960 return err; 961 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data); 962 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32); 963 return err; 964 } 965 EXPORT_SYMBOL_GPL(kvm_rdpmc); 966 967 /* 968 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 969 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 970 * 971 * This list is modified at module load time to reflect the 972 * capabilities of the host cpu. This capabilities test skips MSRs that are 973 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs 974 * may depend on host virtualization features rather than host cpu features. 975 */ 976 977 static u32 msrs_to_save[] = { 978 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 979 MSR_STAR, 980 #ifdef CONFIG_X86_64 981 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 982 #endif 983 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 984 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 985 }; 986 987 static unsigned num_msrs_to_save; 988 989 static u32 emulated_msrs[] = { 990 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 991 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 992 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 993 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 994 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 995 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 996 HV_X64_MSR_RESET, 997 HV_X64_MSR_VP_INDEX, 998 HV_X64_MSR_VP_RUNTIME, 999 HV_X64_MSR_SCONTROL, 1000 HV_X64_MSR_STIMER0_CONFIG, 1001 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1002 MSR_KVM_PV_EOI_EN, 1003 1004 MSR_IA32_TSC_ADJUST, 1005 MSR_IA32_TSCDEADLINE, 1006 MSR_IA32_MISC_ENABLE, 1007 MSR_IA32_MCG_STATUS, 1008 MSR_IA32_MCG_CTL, 1009 MSR_IA32_MCG_EXT_CTL, 1010 MSR_IA32_SMBASE, 1011 }; 1012 1013 static unsigned num_emulated_msrs; 1014 1015 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1016 { 1017 if (efer & efer_reserved_bits) 1018 return false; 1019 1020 if (efer & EFER_FFXSR) { 1021 struct kvm_cpuid_entry2 *feat; 1022 1023 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 1024 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) 1025 return false; 1026 } 1027 1028 if (efer & EFER_SVME) { 1029 struct kvm_cpuid_entry2 *feat; 1030 1031 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 1032 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) 1033 return false; 1034 } 1035 1036 return true; 1037 } 1038 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1039 1040 static int set_efer(struct kvm_vcpu *vcpu, u64 efer) 1041 { 1042 u64 old_efer = vcpu->arch.efer; 1043 1044 if (!kvm_valid_efer(vcpu, efer)) 1045 return 1; 1046 1047 if (is_paging(vcpu) 1048 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1049 return 1; 1050 1051 efer &= ~EFER_LMA; 1052 efer |= vcpu->arch.efer & EFER_LMA; 1053 1054 kvm_x86_ops->set_efer(vcpu, efer); 1055 1056 /* Update reserved bits */ 1057 if ((efer ^ old_efer) & EFER_NX) 1058 kvm_mmu_reset_context(vcpu); 1059 1060 return 0; 1061 } 1062 1063 void kvm_enable_efer_bits(u64 mask) 1064 { 1065 efer_reserved_bits &= ~mask; 1066 } 1067 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1068 1069 /* 1070 * Writes msr value into into the appropriate "register". 1071 * Returns 0 on success, non-0 otherwise. 1072 * Assumes vcpu_load() was already called. 1073 */ 1074 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 1075 { 1076 switch (msr->index) { 1077 case MSR_FS_BASE: 1078 case MSR_GS_BASE: 1079 case MSR_KERNEL_GS_BASE: 1080 case MSR_CSTAR: 1081 case MSR_LSTAR: 1082 if (is_noncanonical_address(msr->data)) 1083 return 1; 1084 break; 1085 case MSR_IA32_SYSENTER_EIP: 1086 case MSR_IA32_SYSENTER_ESP: 1087 /* 1088 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1089 * non-canonical address is written on Intel but not on 1090 * AMD (which ignores the top 32-bits, because it does 1091 * not implement 64-bit SYSENTER). 1092 * 1093 * 64-bit code should hence be able to write a non-canonical 1094 * value on AMD. Making the address canonical ensures that 1095 * vmentry does not fail on Intel after writing a non-canonical 1096 * value, and that something deterministic happens if the guest 1097 * invokes 64-bit SYSENTER. 1098 */ 1099 msr->data = get_canonical(msr->data); 1100 } 1101 return kvm_x86_ops->set_msr(vcpu, msr); 1102 } 1103 EXPORT_SYMBOL_GPL(kvm_set_msr); 1104 1105 /* 1106 * Adapt set_msr() to msr_io()'s calling convention 1107 */ 1108 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1109 { 1110 struct msr_data msr; 1111 int r; 1112 1113 msr.index = index; 1114 msr.host_initiated = true; 1115 r = kvm_get_msr(vcpu, &msr); 1116 if (r) 1117 return r; 1118 1119 *data = msr.data; 1120 return 0; 1121 } 1122 1123 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1124 { 1125 struct msr_data msr; 1126 1127 msr.data = *data; 1128 msr.index = index; 1129 msr.host_initiated = true; 1130 return kvm_set_msr(vcpu, &msr); 1131 } 1132 1133 #ifdef CONFIG_X86_64 1134 struct pvclock_gtod_data { 1135 seqcount_t seq; 1136 1137 struct { /* extract of a clocksource struct */ 1138 int vclock_mode; 1139 u64 cycle_last; 1140 u64 mask; 1141 u32 mult; 1142 u32 shift; 1143 } clock; 1144 1145 u64 boot_ns; 1146 u64 nsec_base; 1147 u64 wall_time_sec; 1148 }; 1149 1150 static struct pvclock_gtod_data pvclock_gtod_data; 1151 1152 static void update_pvclock_gtod(struct timekeeper *tk) 1153 { 1154 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 1155 u64 boot_ns; 1156 1157 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot)); 1158 1159 write_seqcount_begin(&vdata->seq); 1160 1161 /* copy pvclock gtod data */ 1162 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode; 1163 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 1164 vdata->clock.mask = tk->tkr_mono.mask; 1165 vdata->clock.mult = tk->tkr_mono.mult; 1166 vdata->clock.shift = tk->tkr_mono.shift; 1167 1168 vdata->boot_ns = boot_ns; 1169 vdata->nsec_base = tk->tkr_mono.xtime_nsec; 1170 1171 vdata->wall_time_sec = tk->xtime_sec; 1172 1173 write_seqcount_end(&vdata->seq); 1174 } 1175 #endif 1176 1177 void kvm_set_pending_timer(struct kvm_vcpu *vcpu) 1178 { 1179 /* 1180 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in 1181 * vcpu_enter_guest. This function is only called from 1182 * the physical CPU that is running vcpu. 1183 */ 1184 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu); 1185 } 1186 1187 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) 1188 { 1189 int version; 1190 int r; 1191 struct pvclock_wall_clock wc; 1192 struct timespec64 boot; 1193 1194 if (!wall_clock) 1195 return; 1196 1197 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 1198 if (r) 1199 return; 1200 1201 if (version & 1) 1202 ++version; /* first time write, random junk */ 1203 1204 ++version; 1205 1206 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 1207 return; 1208 1209 /* 1210 * The guest calculates current wall clock time by adding 1211 * system time (updated by kvm_guest_time_update below) to the 1212 * wall clock specified here. guest system time equals host 1213 * system time for us, thus we must fill in host boot time here. 1214 */ 1215 getboottime64(&boot); 1216 1217 if (kvm->arch.kvmclock_offset) { 1218 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset); 1219 boot = timespec64_sub(boot, ts); 1220 } 1221 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */ 1222 wc.nsec = boot.tv_nsec; 1223 wc.version = version; 1224 1225 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 1226 1227 version++; 1228 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 1229 } 1230 1231 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 1232 { 1233 do_shl32_div32(dividend, divisor); 1234 return dividend; 1235 } 1236 1237 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 1238 s8 *pshift, u32 *pmultiplier) 1239 { 1240 uint64_t scaled64; 1241 int32_t shift = 0; 1242 uint64_t tps64; 1243 uint32_t tps32; 1244 1245 tps64 = base_hz; 1246 scaled64 = scaled_hz; 1247 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 1248 tps64 >>= 1; 1249 shift--; 1250 } 1251 1252 tps32 = (uint32_t)tps64; 1253 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 1254 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 1255 scaled64 >>= 1; 1256 else 1257 tps32 <<= 1; 1258 shift++; 1259 } 1260 1261 *pshift = shift; 1262 *pmultiplier = div_frac(scaled64, tps32); 1263 1264 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n", 1265 __func__, base_hz, scaled_hz, shift, *pmultiplier); 1266 } 1267 1268 #ifdef CONFIG_X86_64 1269 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 1270 #endif 1271 1272 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 1273 static unsigned long max_tsc_khz; 1274 1275 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 1276 { 1277 u64 v = (u64)khz * (1000000 + ppm); 1278 do_div(v, 1000000); 1279 return v; 1280 } 1281 1282 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 1283 { 1284 u64 ratio; 1285 1286 /* Guest TSC same frequency as host TSC? */ 1287 if (!scale) { 1288 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 1289 return 0; 1290 } 1291 1292 /* TSC scaling supported? */ 1293 if (!kvm_has_tsc_control) { 1294 if (user_tsc_khz > tsc_khz) { 1295 vcpu->arch.tsc_catchup = 1; 1296 vcpu->arch.tsc_always_catchup = 1; 1297 return 0; 1298 } else { 1299 WARN(1, "user requested TSC rate below hardware speed\n"); 1300 return -1; 1301 } 1302 } 1303 1304 /* TSC scaling required - calculate ratio */ 1305 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits, 1306 user_tsc_khz, tsc_khz); 1307 1308 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) { 1309 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 1310 user_tsc_khz); 1311 return -1; 1312 } 1313 1314 vcpu->arch.tsc_scaling_ratio = ratio; 1315 return 0; 1316 } 1317 1318 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 1319 { 1320 u32 thresh_lo, thresh_hi; 1321 int use_scaling = 0; 1322 1323 /* tsc_khz can be zero if TSC calibration fails */ 1324 if (user_tsc_khz == 0) { 1325 /* set tsc_scaling_ratio to a safe value */ 1326 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 1327 return -1; 1328 } 1329 1330 /* Compute a scale to convert nanoseconds in TSC cycles */ 1331 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 1332 &vcpu->arch.virtual_tsc_shift, 1333 &vcpu->arch.virtual_tsc_mult); 1334 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 1335 1336 /* 1337 * Compute the variation in TSC rate which is acceptable 1338 * within the range of tolerance and decide if the 1339 * rate being applied is within that bounds of the hardware 1340 * rate. If so, no scaling or compensation need be done. 1341 */ 1342 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 1343 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 1344 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 1345 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); 1346 use_scaling = 1; 1347 } 1348 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 1349 } 1350 1351 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 1352 { 1353 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 1354 vcpu->arch.virtual_tsc_mult, 1355 vcpu->arch.virtual_tsc_shift); 1356 tsc += vcpu->arch.this_tsc_write; 1357 return tsc; 1358 } 1359 1360 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 1361 { 1362 #ifdef CONFIG_X86_64 1363 bool vcpus_matched; 1364 struct kvm_arch *ka = &vcpu->kvm->arch; 1365 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1366 1367 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1368 atomic_read(&vcpu->kvm->online_vcpus)); 1369 1370 /* 1371 * Once the masterclock is enabled, always perform request in 1372 * order to update it. 1373 * 1374 * In order to enable masterclock, the host clocksource must be TSC 1375 * and the vcpus need to have matched TSCs. When that happens, 1376 * perform request to enable masterclock. 1377 */ 1378 if (ka->use_master_clock || 1379 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched)) 1380 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 1381 1382 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 1383 atomic_read(&vcpu->kvm->online_vcpus), 1384 ka->use_master_clock, gtod->clock.vclock_mode); 1385 #endif 1386 } 1387 1388 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset) 1389 { 1390 u64 curr_offset = vcpu->arch.tsc_offset; 1391 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset; 1392 } 1393 1394 /* 1395 * Multiply tsc by a fixed point number represented by ratio. 1396 * 1397 * The most significant 64-N bits (mult) of ratio represent the 1398 * integral part of the fixed point number; the remaining N bits 1399 * (frac) represent the fractional part, ie. ratio represents a fixed 1400 * point number (mult + frac * 2^(-N)). 1401 * 1402 * N equals to kvm_tsc_scaling_ratio_frac_bits. 1403 */ 1404 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 1405 { 1406 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits); 1407 } 1408 1409 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc) 1410 { 1411 u64 _tsc = tsc; 1412 u64 ratio = vcpu->arch.tsc_scaling_ratio; 1413 1414 if (ratio != kvm_default_tsc_scaling_ratio) 1415 _tsc = __scale_tsc(ratio, tsc); 1416 1417 return _tsc; 1418 } 1419 EXPORT_SYMBOL_GPL(kvm_scale_tsc); 1420 1421 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 1422 { 1423 u64 tsc; 1424 1425 tsc = kvm_scale_tsc(vcpu, rdtsc()); 1426 1427 return target_tsc - tsc; 1428 } 1429 1430 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 1431 { 1432 return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc); 1433 } 1434 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 1435 1436 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1437 { 1438 kvm_x86_ops->write_tsc_offset(vcpu, offset); 1439 vcpu->arch.tsc_offset = offset; 1440 } 1441 1442 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr) 1443 { 1444 struct kvm *kvm = vcpu->kvm; 1445 u64 offset, ns, elapsed; 1446 unsigned long flags; 1447 s64 usdiff; 1448 bool matched; 1449 bool already_matched; 1450 u64 data = msr->data; 1451 1452 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 1453 offset = kvm_compute_tsc_offset(vcpu, data); 1454 ns = ktime_get_boot_ns(); 1455 elapsed = ns - kvm->arch.last_tsc_nsec; 1456 1457 if (vcpu->arch.virtual_tsc_khz) { 1458 int faulted = 0; 1459 1460 /* n.b - signed multiplication and division required */ 1461 usdiff = data - kvm->arch.last_tsc_write; 1462 #ifdef CONFIG_X86_64 1463 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz; 1464 #else 1465 /* do_div() only does unsigned */ 1466 asm("1: idivl %[divisor]\n" 1467 "2: xor %%edx, %%edx\n" 1468 " movl $0, %[faulted]\n" 1469 "3:\n" 1470 ".section .fixup,\"ax\"\n" 1471 "4: movl $1, %[faulted]\n" 1472 " jmp 3b\n" 1473 ".previous\n" 1474 1475 _ASM_EXTABLE(1b, 4b) 1476 1477 : "=A"(usdiff), [faulted] "=r" (faulted) 1478 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz)); 1479 1480 #endif 1481 do_div(elapsed, 1000); 1482 usdiff -= elapsed; 1483 if (usdiff < 0) 1484 usdiff = -usdiff; 1485 1486 /* idivl overflow => difference is larger than USEC_PER_SEC */ 1487 if (faulted) 1488 usdiff = USEC_PER_SEC; 1489 } else 1490 usdiff = USEC_PER_SEC; /* disable TSC match window below */ 1491 1492 /* 1493 * Special case: TSC write with a small delta (1 second) of virtual 1494 * cycle time against real time is interpreted as an attempt to 1495 * synchronize the CPU. 1496 * 1497 * For a reliable TSC, we can match TSC offsets, and for an unstable 1498 * TSC, we add elapsed time in this computation. We could let the 1499 * compensation code attempt to catch up if we fall behind, but 1500 * it's better to try to match offsets from the beginning. 1501 */ 1502 if (usdiff < USEC_PER_SEC && 1503 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 1504 if (!check_tsc_unstable()) { 1505 offset = kvm->arch.cur_tsc_offset; 1506 pr_debug("kvm: matched tsc offset for %llu\n", data); 1507 } else { 1508 u64 delta = nsec_to_cycles(vcpu, elapsed); 1509 data += delta; 1510 offset = kvm_compute_tsc_offset(vcpu, data); 1511 pr_debug("kvm: adjusted tsc offset by %llu\n", delta); 1512 } 1513 matched = true; 1514 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation); 1515 } else { 1516 /* 1517 * We split periods of matched TSC writes into generations. 1518 * For each generation, we track the original measured 1519 * nanosecond time, offset, and write, so if TSCs are in 1520 * sync, we can match exact offset, and if not, we can match 1521 * exact software computation in compute_guest_tsc() 1522 * 1523 * These values are tracked in kvm->arch.cur_xxx variables. 1524 */ 1525 kvm->arch.cur_tsc_generation++; 1526 kvm->arch.cur_tsc_nsec = ns; 1527 kvm->arch.cur_tsc_write = data; 1528 kvm->arch.cur_tsc_offset = offset; 1529 matched = false; 1530 pr_debug("kvm: new tsc generation %llu, clock %llu\n", 1531 kvm->arch.cur_tsc_generation, data); 1532 } 1533 1534 /* 1535 * We also track th most recent recorded KHZ, write and time to 1536 * allow the matching interval to be extended at each write. 1537 */ 1538 kvm->arch.last_tsc_nsec = ns; 1539 kvm->arch.last_tsc_write = data; 1540 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 1541 1542 vcpu->arch.last_guest_tsc = data; 1543 1544 /* Keep track of which generation this VCPU has synchronized to */ 1545 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 1546 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 1547 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 1548 1549 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated) 1550 update_ia32_tsc_adjust_msr(vcpu, offset); 1551 kvm_vcpu_write_tsc_offset(vcpu, offset); 1552 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 1553 1554 spin_lock(&kvm->arch.pvclock_gtod_sync_lock); 1555 if (!matched) { 1556 kvm->arch.nr_vcpus_matched_tsc = 0; 1557 } else if (!already_matched) { 1558 kvm->arch.nr_vcpus_matched_tsc++; 1559 } 1560 1561 kvm_track_tsc_matching(vcpu); 1562 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); 1563 } 1564 1565 EXPORT_SYMBOL_GPL(kvm_write_tsc); 1566 1567 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 1568 s64 adjustment) 1569 { 1570 kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment); 1571 } 1572 1573 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 1574 { 1575 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio) 1576 WARN_ON(adjustment < 0); 1577 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment); 1578 adjust_tsc_offset_guest(vcpu, adjustment); 1579 } 1580 1581 #ifdef CONFIG_X86_64 1582 1583 static u64 read_tsc(void) 1584 { 1585 u64 ret = (u64)rdtsc_ordered(); 1586 u64 last = pvclock_gtod_data.clock.cycle_last; 1587 1588 if (likely(ret >= last)) 1589 return ret; 1590 1591 /* 1592 * GCC likes to generate cmov here, but this branch is extremely 1593 * predictable (it's just a function of time and the likely is 1594 * very likely) and there's a data dependence, so force GCC 1595 * to generate a branch instead. I don't barrier() because 1596 * we don't actually need a barrier, and if this function 1597 * ever gets inlined it will generate worse code. 1598 */ 1599 asm volatile (""); 1600 return last; 1601 } 1602 1603 static inline u64 vgettsc(u64 *cycle_now) 1604 { 1605 long v; 1606 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1607 1608 *cycle_now = read_tsc(); 1609 1610 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask; 1611 return v * gtod->clock.mult; 1612 } 1613 1614 static int do_monotonic_boot(s64 *t, u64 *cycle_now) 1615 { 1616 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1617 unsigned long seq; 1618 int mode; 1619 u64 ns; 1620 1621 do { 1622 seq = read_seqcount_begin(>od->seq); 1623 mode = gtod->clock.vclock_mode; 1624 ns = gtod->nsec_base; 1625 ns += vgettsc(cycle_now); 1626 ns >>= gtod->clock.shift; 1627 ns += gtod->boot_ns; 1628 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 1629 *t = ns; 1630 1631 return mode; 1632 } 1633 1634 static int do_realtime(struct timespec *ts, u64 *cycle_now) 1635 { 1636 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1637 unsigned long seq; 1638 int mode; 1639 u64 ns; 1640 1641 do { 1642 seq = read_seqcount_begin(>od->seq); 1643 mode = gtod->clock.vclock_mode; 1644 ts->tv_sec = gtod->wall_time_sec; 1645 ns = gtod->nsec_base; 1646 ns += vgettsc(cycle_now); 1647 ns >>= gtod->clock.shift; 1648 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 1649 1650 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 1651 ts->tv_nsec = ns; 1652 1653 return mode; 1654 } 1655 1656 /* returns true if host is using tsc clocksource */ 1657 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now) 1658 { 1659 /* checked again under seqlock below */ 1660 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC) 1661 return false; 1662 1663 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC; 1664 } 1665 1666 /* returns true if host is using tsc clocksource */ 1667 static bool kvm_get_walltime_and_clockread(struct timespec *ts, 1668 u64 *cycle_now) 1669 { 1670 /* checked again under seqlock below */ 1671 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC) 1672 return false; 1673 1674 return do_realtime(ts, cycle_now) == VCLOCK_TSC; 1675 } 1676 #endif 1677 1678 /* 1679 * 1680 * Assuming a stable TSC across physical CPUS, and a stable TSC 1681 * across virtual CPUs, the following condition is possible. 1682 * Each numbered line represents an event visible to both 1683 * CPUs at the next numbered event. 1684 * 1685 * "timespecX" represents host monotonic time. "tscX" represents 1686 * RDTSC value. 1687 * 1688 * VCPU0 on CPU0 | VCPU1 on CPU1 1689 * 1690 * 1. read timespec0,tsc0 1691 * 2. | timespec1 = timespec0 + N 1692 * | tsc1 = tsc0 + M 1693 * 3. transition to guest | transition to guest 1694 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 1695 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 1696 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 1697 * 1698 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 1699 * 1700 * - ret0 < ret1 1701 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 1702 * ... 1703 * - 0 < N - M => M < N 1704 * 1705 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 1706 * always the case (the difference between two distinct xtime instances 1707 * might be smaller then the difference between corresponding TSC reads, 1708 * when updating guest vcpus pvclock areas). 1709 * 1710 * To avoid that problem, do not allow visibility of distinct 1711 * system_timestamp/tsc_timestamp values simultaneously: use a master 1712 * copy of host monotonic time values. Update that master copy 1713 * in lockstep. 1714 * 1715 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 1716 * 1717 */ 1718 1719 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 1720 { 1721 #ifdef CONFIG_X86_64 1722 struct kvm_arch *ka = &kvm->arch; 1723 int vclock_mode; 1724 bool host_tsc_clocksource, vcpus_matched; 1725 1726 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1727 atomic_read(&kvm->online_vcpus)); 1728 1729 /* 1730 * If the host uses TSC clock, then passthrough TSC as stable 1731 * to the guest. 1732 */ 1733 host_tsc_clocksource = kvm_get_time_and_clockread( 1734 &ka->master_kernel_ns, 1735 &ka->master_cycle_now); 1736 1737 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 1738 && !backwards_tsc_observed 1739 && !ka->boot_vcpu_runs_old_kvmclock; 1740 1741 if (ka->use_master_clock) 1742 atomic_set(&kvm_guest_has_master_clock, 1); 1743 1744 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 1745 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 1746 vcpus_matched); 1747 #endif 1748 } 1749 1750 void kvm_make_mclock_inprogress_request(struct kvm *kvm) 1751 { 1752 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 1753 } 1754 1755 static void kvm_gen_update_masterclock(struct kvm *kvm) 1756 { 1757 #ifdef CONFIG_X86_64 1758 int i; 1759 struct kvm_vcpu *vcpu; 1760 struct kvm_arch *ka = &kvm->arch; 1761 1762 spin_lock(&ka->pvclock_gtod_sync_lock); 1763 kvm_make_mclock_inprogress_request(kvm); 1764 /* no guest entries from this point */ 1765 pvclock_update_vm_gtod_copy(kvm); 1766 1767 kvm_for_each_vcpu(i, vcpu, kvm) 1768 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 1769 1770 /* guest entries allowed */ 1771 kvm_for_each_vcpu(i, vcpu, kvm) 1772 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests); 1773 1774 spin_unlock(&ka->pvclock_gtod_sync_lock); 1775 #endif 1776 } 1777 1778 static u64 __get_kvmclock_ns(struct kvm *kvm) 1779 { 1780 struct kvm_arch *ka = &kvm->arch; 1781 struct pvclock_vcpu_time_info hv_clock; 1782 1783 spin_lock(&ka->pvclock_gtod_sync_lock); 1784 if (!ka->use_master_clock) { 1785 spin_unlock(&ka->pvclock_gtod_sync_lock); 1786 return ktime_get_boot_ns() + ka->kvmclock_offset; 1787 } 1788 1789 hv_clock.tsc_timestamp = ka->master_cycle_now; 1790 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 1791 spin_unlock(&ka->pvclock_gtod_sync_lock); 1792 1793 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL, 1794 &hv_clock.tsc_shift, 1795 &hv_clock.tsc_to_system_mul); 1796 return __pvclock_read_cycles(&hv_clock, rdtsc()); 1797 } 1798 1799 u64 get_kvmclock_ns(struct kvm *kvm) 1800 { 1801 unsigned long flags; 1802 s64 ns; 1803 1804 local_irq_save(flags); 1805 ns = __get_kvmclock_ns(kvm); 1806 local_irq_restore(flags); 1807 1808 return ns; 1809 } 1810 1811 static void kvm_setup_pvclock_page(struct kvm_vcpu *v) 1812 { 1813 struct kvm_vcpu_arch *vcpu = &v->arch; 1814 struct pvclock_vcpu_time_info guest_hv_clock; 1815 1816 if (unlikely(kvm_vcpu_read_guest_cached(v, &vcpu->pv_time, 1817 &guest_hv_clock, sizeof(guest_hv_clock)))) 1818 return; 1819 1820 /* This VCPU is paused, but it's legal for a guest to read another 1821 * VCPU's kvmclock, so we really have to follow the specification where 1822 * it says that version is odd if data is being modified, and even after 1823 * it is consistent. 1824 * 1825 * Version field updates must be kept separate. This is because 1826 * kvm_write_guest_cached might use a "rep movs" instruction, and 1827 * writes within a string instruction are weakly ordered. So there 1828 * are three writes overall. 1829 * 1830 * As a small optimization, only write the version field in the first 1831 * and third write. The vcpu->pv_time cache is still valid, because the 1832 * version field is the first in the struct. 1833 */ 1834 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); 1835 1836 vcpu->hv_clock.version = guest_hv_clock.version + 1; 1837 kvm_vcpu_write_guest_cached(v, &vcpu->pv_time, 1838 &vcpu->hv_clock, 1839 sizeof(vcpu->hv_clock.version)); 1840 1841 smp_wmb(); 1842 1843 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 1844 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); 1845 1846 if (vcpu->pvclock_set_guest_stopped_request) { 1847 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 1848 vcpu->pvclock_set_guest_stopped_request = false; 1849 } 1850 1851 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 1852 1853 kvm_vcpu_write_guest_cached(v, &vcpu->pv_time, 1854 &vcpu->hv_clock, 1855 sizeof(vcpu->hv_clock)); 1856 1857 smp_wmb(); 1858 1859 vcpu->hv_clock.version++; 1860 kvm_vcpu_write_guest_cached(v, &vcpu->pv_time, 1861 &vcpu->hv_clock, 1862 sizeof(vcpu->hv_clock.version)); 1863 } 1864 1865 static int kvm_guest_time_update(struct kvm_vcpu *v) 1866 { 1867 unsigned long flags, tgt_tsc_khz; 1868 struct kvm_vcpu_arch *vcpu = &v->arch; 1869 struct kvm_arch *ka = &v->kvm->arch; 1870 s64 kernel_ns; 1871 u64 tsc_timestamp, host_tsc; 1872 u8 pvclock_flags; 1873 bool use_master_clock; 1874 1875 kernel_ns = 0; 1876 host_tsc = 0; 1877 1878 /* 1879 * If the host uses TSC clock, then passthrough TSC as stable 1880 * to the guest. 1881 */ 1882 spin_lock(&ka->pvclock_gtod_sync_lock); 1883 use_master_clock = ka->use_master_clock; 1884 if (use_master_clock) { 1885 host_tsc = ka->master_cycle_now; 1886 kernel_ns = ka->master_kernel_ns; 1887 } 1888 spin_unlock(&ka->pvclock_gtod_sync_lock); 1889 1890 /* Keep irq disabled to prevent changes to the clock */ 1891 local_irq_save(flags); 1892 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz); 1893 if (unlikely(tgt_tsc_khz == 0)) { 1894 local_irq_restore(flags); 1895 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 1896 return 1; 1897 } 1898 if (!use_master_clock) { 1899 host_tsc = rdtsc(); 1900 kernel_ns = ktime_get_boot_ns(); 1901 } 1902 1903 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 1904 1905 /* 1906 * We may have to catch up the TSC to match elapsed wall clock 1907 * time for two reasons, even if kvmclock is used. 1908 * 1) CPU could have been running below the maximum TSC rate 1909 * 2) Broken TSC compensation resets the base at each VCPU 1910 * entry to avoid unknown leaps of TSC even when running 1911 * again on the same CPU. This may cause apparent elapsed 1912 * time to disappear, and the guest to stand still or run 1913 * very slowly. 1914 */ 1915 if (vcpu->tsc_catchup) { 1916 u64 tsc = compute_guest_tsc(v, kernel_ns); 1917 if (tsc > tsc_timestamp) { 1918 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 1919 tsc_timestamp = tsc; 1920 } 1921 } 1922 1923 local_irq_restore(flags); 1924 1925 /* With all the info we got, fill in the values */ 1926 1927 if (kvm_has_tsc_control) 1928 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz); 1929 1930 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 1931 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 1932 &vcpu->hv_clock.tsc_shift, 1933 &vcpu->hv_clock.tsc_to_system_mul); 1934 vcpu->hw_tsc_khz = tgt_tsc_khz; 1935 } 1936 1937 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 1938 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 1939 vcpu->last_guest_tsc = tsc_timestamp; 1940 1941 /* If the host uses TSC clocksource, then it is stable */ 1942 pvclock_flags = 0; 1943 if (use_master_clock) 1944 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 1945 1946 vcpu->hv_clock.flags = pvclock_flags; 1947 1948 if (vcpu->pv_time_enabled) 1949 kvm_setup_pvclock_page(v); 1950 if (v == kvm_get_vcpu(v->kvm, 0)) 1951 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 1952 return 0; 1953 } 1954 1955 /* 1956 * kvmclock updates which are isolated to a given vcpu, such as 1957 * vcpu->cpu migration, should not allow system_timestamp from 1958 * the rest of the vcpus to remain static. Otherwise ntp frequency 1959 * correction applies to one vcpu's system_timestamp but not 1960 * the others. 1961 * 1962 * So in those cases, request a kvmclock update for all vcpus. 1963 * We need to rate-limit these requests though, as they can 1964 * considerably slow guests that have a large number of vcpus. 1965 * The time for a remote vcpu to update its kvmclock is bound 1966 * by the delay we use to rate-limit the updates. 1967 */ 1968 1969 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 1970 1971 static void kvmclock_update_fn(struct work_struct *work) 1972 { 1973 int i; 1974 struct delayed_work *dwork = to_delayed_work(work); 1975 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 1976 kvmclock_update_work); 1977 struct kvm *kvm = container_of(ka, struct kvm, arch); 1978 struct kvm_vcpu *vcpu; 1979 1980 kvm_for_each_vcpu(i, vcpu, kvm) { 1981 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 1982 kvm_vcpu_kick(vcpu); 1983 } 1984 } 1985 1986 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 1987 { 1988 struct kvm *kvm = v->kvm; 1989 1990 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 1991 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 1992 KVMCLOCK_UPDATE_DELAY); 1993 } 1994 1995 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 1996 1997 static void kvmclock_sync_fn(struct work_struct *work) 1998 { 1999 struct delayed_work *dwork = to_delayed_work(work); 2000 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 2001 kvmclock_sync_work); 2002 struct kvm *kvm = container_of(ka, struct kvm, arch); 2003 2004 if (!kvmclock_periodic_sync) 2005 return; 2006 2007 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 2008 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 2009 KVMCLOCK_SYNC_PERIOD); 2010 } 2011 2012 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data) 2013 { 2014 u64 mcg_cap = vcpu->arch.mcg_cap; 2015 unsigned bank_num = mcg_cap & 0xff; 2016 2017 switch (msr) { 2018 case MSR_IA32_MCG_STATUS: 2019 vcpu->arch.mcg_status = data; 2020 break; 2021 case MSR_IA32_MCG_CTL: 2022 if (!(mcg_cap & MCG_CTL_P)) 2023 return 1; 2024 if (data != 0 && data != ~(u64)0) 2025 return -1; 2026 vcpu->arch.mcg_ctl = data; 2027 break; 2028 default: 2029 if (msr >= MSR_IA32_MC0_CTL && 2030 msr < MSR_IA32_MCx_CTL(bank_num)) { 2031 u32 offset = msr - MSR_IA32_MC0_CTL; 2032 /* only 0 or all 1s can be written to IA32_MCi_CTL 2033 * some Linux kernels though clear bit 10 in bank 4 to 2034 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 2035 * this to avoid an uncatched #GP in the guest 2036 */ 2037 if ((offset & 0x3) == 0 && 2038 data != 0 && (data | (1 << 10)) != ~(u64)0) 2039 return -1; 2040 vcpu->arch.mce_banks[offset] = data; 2041 break; 2042 } 2043 return 1; 2044 } 2045 return 0; 2046 } 2047 2048 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) 2049 { 2050 struct kvm *kvm = vcpu->kvm; 2051 int lm = is_long_mode(vcpu); 2052 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 2053 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; 2054 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 2055 : kvm->arch.xen_hvm_config.blob_size_32; 2056 u32 page_num = data & ~PAGE_MASK; 2057 u64 page_addr = data & PAGE_MASK; 2058 u8 *page; 2059 int r; 2060 2061 r = -E2BIG; 2062 if (page_num >= blob_size) 2063 goto out; 2064 r = -ENOMEM; 2065 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); 2066 if (IS_ERR(page)) { 2067 r = PTR_ERR(page); 2068 goto out; 2069 } 2070 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) 2071 goto out_free; 2072 r = 0; 2073 out_free: 2074 kfree(page); 2075 out: 2076 return r; 2077 } 2078 2079 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 2080 { 2081 gpa_t gpa = data & ~0x3f; 2082 2083 /* Bits 2:5 are reserved, Should be zero */ 2084 if (data & 0x3c) 2085 return 1; 2086 2087 vcpu->arch.apf.msr_val = data; 2088 2089 if (!(data & KVM_ASYNC_PF_ENABLED)) { 2090 kvm_clear_async_pf_completion_queue(vcpu); 2091 kvm_async_pf_hash_reset(vcpu); 2092 return 0; 2093 } 2094 2095 if (kvm_vcpu_gfn_to_hva_cache_init(vcpu, &vcpu->arch.apf.data, gpa, 2096 sizeof(u32))) 2097 return 1; 2098 2099 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 2100 kvm_async_pf_wakeup_all(vcpu); 2101 return 0; 2102 } 2103 2104 static void kvmclock_reset(struct kvm_vcpu *vcpu) 2105 { 2106 vcpu->arch.pv_time_enabled = false; 2107 } 2108 2109 static void record_steal_time(struct kvm_vcpu *vcpu) 2110 { 2111 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 2112 return; 2113 2114 if (unlikely(kvm_vcpu_read_guest_cached(vcpu, &vcpu->arch.st.stime, 2115 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)))) 2116 return; 2117 2118 vcpu->arch.st.steal.preempted = 0; 2119 2120 if (vcpu->arch.st.steal.version & 1) 2121 vcpu->arch.st.steal.version += 1; /* first time write, random junk */ 2122 2123 vcpu->arch.st.steal.version += 1; 2124 2125 kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.st.stime, 2126 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 2127 2128 smp_wmb(); 2129 2130 vcpu->arch.st.steal.steal += current->sched_info.run_delay - 2131 vcpu->arch.st.last_steal; 2132 vcpu->arch.st.last_steal = current->sched_info.run_delay; 2133 2134 kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.st.stime, 2135 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 2136 2137 smp_wmb(); 2138 2139 vcpu->arch.st.steal.version += 1; 2140 2141 kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.st.stime, 2142 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 2143 } 2144 2145 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2146 { 2147 bool pr = false; 2148 u32 msr = msr_info->index; 2149 u64 data = msr_info->data; 2150 2151 switch (msr) { 2152 case MSR_AMD64_NB_CFG: 2153 case MSR_IA32_UCODE_REV: 2154 case MSR_IA32_UCODE_WRITE: 2155 case MSR_VM_HSAVE_PA: 2156 case MSR_AMD64_PATCH_LOADER: 2157 case MSR_AMD64_BU_CFG2: 2158 break; 2159 2160 case MSR_EFER: 2161 return set_efer(vcpu, data); 2162 case MSR_K7_HWCR: 2163 data &= ~(u64)0x40; /* ignore flush filter disable */ 2164 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 2165 data &= ~(u64)0x8; /* ignore TLB cache disable */ 2166 data &= ~(u64)0x40000; /* ignore Mc status write enable */ 2167 if (data != 0) { 2168 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 2169 data); 2170 return 1; 2171 } 2172 break; 2173 case MSR_FAM10H_MMIO_CONF_BASE: 2174 if (data != 0) { 2175 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 2176 "0x%llx\n", data); 2177 return 1; 2178 } 2179 break; 2180 case MSR_IA32_DEBUGCTLMSR: 2181 if (!data) { 2182 /* We support the non-activated case already */ 2183 break; 2184 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { 2185 /* Values other than LBR and BTF are vendor-specific, 2186 thus reserved and should throw a #GP */ 2187 return 1; 2188 } 2189 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", 2190 __func__, data); 2191 break; 2192 case 0x200 ... 0x2ff: 2193 return kvm_mtrr_set_msr(vcpu, msr, data); 2194 case MSR_IA32_APICBASE: 2195 return kvm_set_apic_base(vcpu, msr_info); 2196 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2197 return kvm_x2apic_msr_write(vcpu, msr, data); 2198 case MSR_IA32_TSCDEADLINE: 2199 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2200 break; 2201 case MSR_IA32_TSC_ADJUST: 2202 if (guest_cpuid_has_tsc_adjust(vcpu)) { 2203 if (!msr_info->host_initiated) { 2204 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 2205 adjust_tsc_offset_guest(vcpu, adj); 2206 } 2207 vcpu->arch.ia32_tsc_adjust_msr = data; 2208 } 2209 break; 2210 case MSR_IA32_MISC_ENABLE: 2211 vcpu->arch.ia32_misc_enable_msr = data; 2212 break; 2213 case MSR_IA32_SMBASE: 2214 if (!msr_info->host_initiated) 2215 return 1; 2216 vcpu->arch.smbase = data; 2217 break; 2218 case MSR_KVM_WALL_CLOCK_NEW: 2219 case MSR_KVM_WALL_CLOCK: 2220 vcpu->kvm->arch.wall_clock = data; 2221 kvm_write_wall_clock(vcpu->kvm, data); 2222 break; 2223 case MSR_KVM_SYSTEM_TIME_NEW: 2224 case MSR_KVM_SYSTEM_TIME: { 2225 struct kvm_arch *ka = &vcpu->kvm->arch; 2226 2227 kvmclock_reset(vcpu); 2228 2229 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) { 2230 bool tmp = (msr == MSR_KVM_SYSTEM_TIME); 2231 2232 if (ka->boot_vcpu_runs_old_kvmclock != tmp) 2233 set_bit(KVM_REQ_MASTERCLOCK_UPDATE, 2234 &vcpu->requests); 2235 2236 ka->boot_vcpu_runs_old_kvmclock = tmp; 2237 } 2238 2239 vcpu->arch.time = data; 2240 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2241 2242 /* we verify if the enable bit is set... */ 2243 if (!(data & 1)) 2244 break; 2245 2246 if (kvm_vcpu_gfn_to_hva_cache_init(vcpu, 2247 &vcpu->arch.pv_time, data & ~1ULL, 2248 sizeof(struct pvclock_vcpu_time_info))) 2249 vcpu->arch.pv_time_enabled = false; 2250 else 2251 vcpu->arch.pv_time_enabled = true; 2252 2253 break; 2254 } 2255 case MSR_KVM_ASYNC_PF_EN: 2256 if (kvm_pv_enable_async_pf(vcpu, data)) 2257 return 1; 2258 break; 2259 case MSR_KVM_STEAL_TIME: 2260 2261 if (unlikely(!sched_info_on())) 2262 return 1; 2263 2264 if (data & KVM_STEAL_RESERVED_MASK) 2265 return 1; 2266 2267 if (kvm_vcpu_gfn_to_hva_cache_init(vcpu, &vcpu->arch.st.stime, 2268 data & KVM_STEAL_VALID_BITS, 2269 sizeof(struct kvm_steal_time))) 2270 return 1; 2271 2272 vcpu->arch.st.msr_val = data; 2273 2274 if (!(data & KVM_MSR_ENABLED)) 2275 break; 2276 2277 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2278 2279 break; 2280 case MSR_KVM_PV_EOI_EN: 2281 if (kvm_lapic_enable_pv_eoi(vcpu, data)) 2282 return 1; 2283 break; 2284 2285 case MSR_IA32_MCG_CTL: 2286 case MSR_IA32_MCG_STATUS: 2287 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 2288 return set_msr_mce(vcpu, msr, data); 2289 2290 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 2291 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 2292 pr = true; /* fall through */ 2293 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 2294 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 2295 if (kvm_pmu_is_valid_msr(vcpu, msr)) 2296 return kvm_pmu_set_msr(vcpu, msr_info); 2297 2298 if (pr || data != 0) 2299 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 2300 "0x%x data 0x%llx\n", msr, data); 2301 break; 2302 case MSR_K7_CLK_CTL: 2303 /* 2304 * Ignore all writes to this no longer documented MSR. 2305 * Writes are only relevant for old K7 processors, 2306 * all pre-dating SVM, but a recommended workaround from 2307 * AMD for these chips. It is possible to specify the 2308 * affected processor models on the command line, hence 2309 * the need to ignore the workaround. 2310 */ 2311 break; 2312 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2313 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 2314 case HV_X64_MSR_CRASH_CTL: 2315 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 2316 return kvm_hv_set_msr_common(vcpu, msr, data, 2317 msr_info->host_initiated); 2318 case MSR_IA32_BBL_CR_CTL3: 2319 /* Drop writes to this legacy MSR -- see rdmsr 2320 * counterpart for further detail. 2321 */ 2322 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data); 2323 break; 2324 case MSR_AMD64_OSVW_ID_LENGTH: 2325 if (!guest_cpuid_has_osvw(vcpu)) 2326 return 1; 2327 vcpu->arch.osvw.length = data; 2328 break; 2329 case MSR_AMD64_OSVW_STATUS: 2330 if (!guest_cpuid_has_osvw(vcpu)) 2331 return 1; 2332 vcpu->arch.osvw.status = data; 2333 break; 2334 default: 2335 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) 2336 return xen_hvm_config(vcpu, data); 2337 if (kvm_pmu_is_valid_msr(vcpu, msr)) 2338 return kvm_pmu_set_msr(vcpu, msr_info); 2339 if (!ignore_msrs) { 2340 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n", 2341 msr, data); 2342 return 1; 2343 } else { 2344 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", 2345 msr, data); 2346 break; 2347 } 2348 } 2349 return 0; 2350 } 2351 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 2352 2353 2354 /* 2355 * Reads an msr value (of 'msr_index') into 'pdata'. 2356 * Returns 0 on success, non-0 otherwise. 2357 * Assumes vcpu_load() was already called. 2358 */ 2359 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 2360 { 2361 return kvm_x86_ops->get_msr(vcpu, msr); 2362 } 2363 EXPORT_SYMBOL_GPL(kvm_get_msr); 2364 2365 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2366 { 2367 u64 data; 2368 u64 mcg_cap = vcpu->arch.mcg_cap; 2369 unsigned bank_num = mcg_cap & 0xff; 2370 2371 switch (msr) { 2372 case MSR_IA32_P5_MC_ADDR: 2373 case MSR_IA32_P5_MC_TYPE: 2374 data = 0; 2375 break; 2376 case MSR_IA32_MCG_CAP: 2377 data = vcpu->arch.mcg_cap; 2378 break; 2379 case MSR_IA32_MCG_CTL: 2380 if (!(mcg_cap & MCG_CTL_P)) 2381 return 1; 2382 data = vcpu->arch.mcg_ctl; 2383 break; 2384 case MSR_IA32_MCG_STATUS: 2385 data = vcpu->arch.mcg_status; 2386 break; 2387 default: 2388 if (msr >= MSR_IA32_MC0_CTL && 2389 msr < MSR_IA32_MCx_CTL(bank_num)) { 2390 u32 offset = msr - MSR_IA32_MC0_CTL; 2391 data = vcpu->arch.mce_banks[offset]; 2392 break; 2393 } 2394 return 1; 2395 } 2396 *pdata = data; 2397 return 0; 2398 } 2399 2400 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2401 { 2402 switch (msr_info->index) { 2403 case MSR_IA32_PLATFORM_ID: 2404 case MSR_IA32_EBL_CR_POWERON: 2405 case MSR_IA32_DEBUGCTLMSR: 2406 case MSR_IA32_LASTBRANCHFROMIP: 2407 case MSR_IA32_LASTBRANCHTOIP: 2408 case MSR_IA32_LASTINTFROMIP: 2409 case MSR_IA32_LASTINTTOIP: 2410 case MSR_K8_SYSCFG: 2411 case MSR_K8_TSEG_ADDR: 2412 case MSR_K8_TSEG_MASK: 2413 case MSR_K7_HWCR: 2414 case MSR_VM_HSAVE_PA: 2415 case MSR_K8_INT_PENDING_MSG: 2416 case MSR_AMD64_NB_CFG: 2417 case MSR_FAM10H_MMIO_CONF_BASE: 2418 case MSR_AMD64_BU_CFG2: 2419 case MSR_IA32_PERF_CTL: 2420 msr_info->data = 0; 2421 break; 2422 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 2423 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 2424 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 2425 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 2426 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 2427 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data); 2428 msr_info->data = 0; 2429 break; 2430 case MSR_IA32_UCODE_REV: 2431 msr_info->data = 0x100000000ULL; 2432 break; 2433 case MSR_MTRRcap: 2434 case 0x200 ... 0x2ff: 2435 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 2436 case 0xcd: /* fsb frequency */ 2437 msr_info->data = 3; 2438 break; 2439 /* 2440 * MSR_EBC_FREQUENCY_ID 2441 * Conservative value valid for even the basic CPU models. 2442 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 2443 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 2444 * and 266MHz for model 3, or 4. Set Core Clock 2445 * Frequency to System Bus Frequency Ratio to 1 (bits 2446 * 31:24) even though these are only valid for CPU 2447 * models > 2, however guests may end up dividing or 2448 * multiplying by zero otherwise. 2449 */ 2450 case MSR_EBC_FREQUENCY_ID: 2451 msr_info->data = 1 << 24; 2452 break; 2453 case MSR_IA32_APICBASE: 2454 msr_info->data = kvm_get_apic_base(vcpu); 2455 break; 2456 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2457 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 2458 break; 2459 case MSR_IA32_TSCDEADLINE: 2460 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 2461 break; 2462 case MSR_IA32_TSC_ADJUST: 2463 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 2464 break; 2465 case MSR_IA32_MISC_ENABLE: 2466 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 2467 break; 2468 case MSR_IA32_SMBASE: 2469 if (!msr_info->host_initiated) 2470 return 1; 2471 msr_info->data = vcpu->arch.smbase; 2472 break; 2473 case MSR_IA32_PERF_STATUS: 2474 /* TSC increment by tick */ 2475 msr_info->data = 1000ULL; 2476 /* CPU multiplier */ 2477 msr_info->data |= (((uint64_t)4ULL) << 40); 2478 break; 2479 case MSR_EFER: 2480 msr_info->data = vcpu->arch.efer; 2481 break; 2482 case MSR_KVM_WALL_CLOCK: 2483 case MSR_KVM_WALL_CLOCK_NEW: 2484 msr_info->data = vcpu->kvm->arch.wall_clock; 2485 break; 2486 case MSR_KVM_SYSTEM_TIME: 2487 case MSR_KVM_SYSTEM_TIME_NEW: 2488 msr_info->data = vcpu->arch.time; 2489 break; 2490 case MSR_KVM_ASYNC_PF_EN: 2491 msr_info->data = vcpu->arch.apf.msr_val; 2492 break; 2493 case MSR_KVM_STEAL_TIME: 2494 msr_info->data = vcpu->arch.st.msr_val; 2495 break; 2496 case MSR_KVM_PV_EOI_EN: 2497 msr_info->data = vcpu->arch.pv_eoi.msr_val; 2498 break; 2499 case MSR_IA32_P5_MC_ADDR: 2500 case MSR_IA32_P5_MC_TYPE: 2501 case MSR_IA32_MCG_CAP: 2502 case MSR_IA32_MCG_CTL: 2503 case MSR_IA32_MCG_STATUS: 2504 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 2505 return get_msr_mce(vcpu, msr_info->index, &msr_info->data); 2506 case MSR_K7_CLK_CTL: 2507 /* 2508 * Provide expected ramp-up count for K7. All other 2509 * are set to zero, indicating minimum divisors for 2510 * every field. 2511 * 2512 * This prevents guest kernels on AMD host with CPU 2513 * type 6, model 8 and higher from exploding due to 2514 * the rdmsr failing. 2515 */ 2516 msr_info->data = 0x20000000; 2517 break; 2518 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2519 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 2520 case HV_X64_MSR_CRASH_CTL: 2521 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 2522 return kvm_hv_get_msr_common(vcpu, 2523 msr_info->index, &msr_info->data); 2524 break; 2525 case MSR_IA32_BBL_CR_CTL3: 2526 /* This legacy MSR exists but isn't fully documented in current 2527 * silicon. It is however accessed by winxp in very narrow 2528 * scenarios where it sets bit #19, itself documented as 2529 * a "reserved" bit. Best effort attempt to source coherent 2530 * read data here should the balance of the register be 2531 * interpreted by the guest: 2532 * 2533 * L2 cache control register 3: 64GB range, 256KB size, 2534 * enabled, latency 0x1, configured 2535 */ 2536 msr_info->data = 0xbe702111; 2537 break; 2538 case MSR_AMD64_OSVW_ID_LENGTH: 2539 if (!guest_cpuid_has_osvw(vcpu)) 2540 return 1; 2541 msr_info->data = vcpu->arch.osvw.length; 2542 break; 2543 case MSR_AMD64_OSVW_STATUS: 2544 if (!guest_cpuid_has_osvw(vcpu)) 2545 return 1; 2546 msr_info->data = vcpu->arch.osvw.status; 2547 break; 2548 default: 2549 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 2550 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data); 2551 if (!ignore_msrs) { 2552 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n", 2553 msr_info->index); 2554 return 1; 2555 } else { 2556 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index); 2557 msr_info->data = 0; 2558 } 2559 break; 2560 } 2561 return 0; 2562 } 2563 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 2564 2565 /* 2566 * Read or write a bunch of msrs. All parameters are kernel addresses. 2567 * 2568 * @return number of msrs set successfully. 2569 */ 2570 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 2571 struct kvm_msr_entry *entries, 2572 int (*do_msr)(struct kvm_vcpu *vcpu, 2573 unsigned index, u64 *data)) 2574 { 2575 int i, idx; 2576 2577 idx = srcu_read_lock(&vcpu->kvm->srcu); 2578 for (i = 0; i < msrs->nmsrs; ++i) 2579 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 2580 break; 2581 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2582 2583 return i; 2584 } 2585 2586 /* 2587 * Read or write a bunch of msrs. Parameters are user addresses. 2588 * 2589 * @return number of msrs set successfully. 2590 */ 2591 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 2592 int (*do_msr)(struct kvm_vcpu *vcpu, 2593 unsigned index, u64 *data), 2594 int writeback) 2595 { 2596 struct kvm_msrs msrs; 2597 struct kvm_msr_entry *entries; 2598 int r, n; 2599 unsigned size; 2600 2601 r = -EFAULT; 2602 if (copy_from_user(&msrs, user_msrs, sizeof msrs)) 2603 goto out; 2604 2605 r = -E2BIG; 2606 if (msrs.nmsrs >= MAX_IO_MSRS) 2607 goto out; 2608 2609 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 2610 entries = memdup_user(user_msrs->entries, size); 2611 if (IS_ERR(entries)) { 2612 r = PTR_ERR(entries); 2613 goto out; 2614 } 2615 2616 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 2617 if (r < 0) 2618 goto out_free; 2619 2620 r = -EFAULT; 2621 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 2622 goto out_free; 2623 2624 r = n; 2625 2626 out_free: 2627 kfree(entries); 2628 out: 2629 return r; 2630 } 2631 2632 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 2633 { 2634 int r; 2635 2636 switch (ext) { 2637 case KVM_CAP_IRQCHIP: 2638 case KVM_CAP_HLT: 2639 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 2640 case KVM_CAP_SET_TSS_ADDR: 2641 case KVM_CAP_EXT_CPUID: 2642 case KVM_CAP_EXT_EMUL_CPUID: 2643 case KVM_CAP_CLOCKSOURCE: 2644 case KVM_CAP_PIT: 2645 case KVM_CAP_NOP_IO_DELAY: 2646 case KVM_CAP_MP_STATE: 2647 case KVM_CAP_SYNC_MMU: 2648 case KVM_CAP_USER_NMI: 2649 case KVM_CAP_REINJECT_CONTROL: 2650 case KVM_CAP_IRQ_INJECT_STATUS: 2651 case KVM_CAP_IOEVENTFD: 2652 case KVM_CAP_IOEVENTFD_NO_LENGTH: 2653 case KVM_CAP_PIT2: 2654 case KVM_CAP_PIT_STATE2: 2655 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 2656 case KVM_CAP_XEN_HVM: 2657 case KVM_CAP_VCPU_EVENTS: 2658 case KVM_CAP_HYPERV: 2659 case KVM_CAP_HYPERV_VAPIC: 2660 case KVM_CAP_HYPERV_SPIN: 2661 case KVM_CAP_HYPERV_SYNIC: 2662 case KVM_CAP_PCI_SEGMENT: 2663 case KVM_CAP_DEBUGREGS: 2664 case KVM_CAP_X86_ROBUST_SINGLESTEP: 2665 case KVM_CAP_XSAVE: 2666 case KVM_CAP_ASYNC_PF: 2667 case KVM_CAP_GET_TSC_KHZ: 2668 case KVM_CAP_KVMCLOCK_CTRL: 2669 case KVM_CAP_READONLY_MEM: 2670 case KVM_CAP_HYPERV_TIME: 2671 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 2672 case KVM_CAP_TSC_DEADLINE_TIMER: 2673 case KVM_CAP_ENABLE_CAP_VM: 2674 case KVM_CAP_DISABLE_QUIRKS: 2675 case KVM_CAP_SET_BOOT_CPU_ID: 2676 case KVM_CAP_SPLIT_IRQCHIP: 2677 case KVM_CAP_IMMEDIATE_EXIT: 2678 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT 2679 case KVM_CAP_ASSIGN_DEV_IRQ: 2680 case KVM_CAP_PCI_2_3: 2681 #endif 2682 r = 1; 2683 break; 2684 case KVM_CAP_ADJUST_CLOCK: 2685 r = KVM_CLOCK_TSC_STABLE; 2686 break; 2687 case KVM_CAP_X86_SMM: 2688 /* SMBASE is usually relocated above 1M on modern chipsets, 2689 * and SMM handlers might indeed rely on 4G segment limits, 2690 * so do not report SMM to be available if real mode is 2691 * emulated via vm86 mode. Still, do not go to great lengths 2692 * to avoid userspace's usage of the feature, because it is a 2693 * fringe case that is not enabled except via specific settings 2694 * of the module parameters. 2695 */ 2696 r = kvm_x86_ops->cpu_has_high_real_mode_segbase(); 2697 break; 2698 case KVM_CAP_COALESCED_MMIO: 2699 r = KVM_COALESCED_MMIO_PAGE_OFFSET; 2700 break; 2701 case KVM_CAP_VAPIC: 2702 r = !kvm_x86_ops->cpu_has_accelerated_tpr(); 2703 break; 2704 case KVM_CAP_NR_VCPUS: 2705 r = KVM_SOFT_MAX_VCPUS; 2706 break; 2707 case KVM_CAP_MAX_VCPUS: 2708 r = KVM_MAX_VCPUS; 2709 break; 2710 case KVM_CAP_NR_MEMSLOTS: 2711 r = KVM_USER_MEM_SLOTS; 2712 break; 2713 case KVM_CAP_PV_MMU: /* obsolete */ 2714 r = 0; 2715 break; 2716 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT 2717 case KVM_CAP_IOMMU: 2718 r = iommu_present(&pci_bus_type); 2719 break; 2720 #endif 2721 case KVM_CAP_MCE: 2722 r = KVM_MAX_MCE_BANKS; 2723 break; 2724 case KVM_CAP_XCRS: 2725 r = boot_cpu_has(X86_FEATURE_XSAVE); 2726 break; 2727 case KVM_CAP_TSC_CONTROL: 2728 r = kvm_has_tsc_control; 2729 break; 2730 case KVM_CAP_X2APIC_API: 2731 r = KVM_X2APIC_API_VALID_FLAGS; 2732 break; 2733 default: 2734 r = 0; 2735 break; 2736 } 2737 return r; 2738 2739 } 2740 2741 long kvm_arch_dev_ioctl(struct file *filp, 2742 unsigned int ioctl, unsigned long arg) 2743 { 2744 void __user *argp = (void __user *)arg; 2745 long r; 2746 2747 switch (ioctl) { 2748 case KVM_GET_MSR_INDEX_LIST: { 2749 struct kvm_msr_list __user *user_msr_list = argp; 2750 struct kvm_msr_list msr_list; 2751 unsigned n; 2752 2753 r = -EFAULT; 2754 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) 2755 goto out; 2756 n = msr_list.nmsrs; 2757 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 2758 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) 2759 goto out; 2760 r = -E2BIG; 2761 if (n < msr_list.nmsrs) 2762 goto out; 2763 r = -EFAULT; 2764 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 2765 num_msrs_to_save * sizeof(u32))) 2766 goto out; 2767 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 2768 &emulated_msrs, 2769 num_emulated_msrs * sizeof(u32))) 2770 goto out; 2771 r = 0; 2772 break; 2773 } 2774 case KVM_GET_SUPPORTED_CPUID: 2775 case KVM_GET_EMULATED_CPUID: { 2776 struct kvm_cpuid2 __user *cpuid_arg = argp; 2777 struct kvm_cpuid2 cpuid; 2778 2779 r = -EFAULT; 2780 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2781 goto out; 2782 2783 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 2784 ioctl); 2785 if (r) 2786 goto out; 2787 2788 r = -EFAULT; 2789 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 2790 goto out; 2791 r = 0; 2792 break; 2793 } 2794 case KVM_X86_GET_MCE_CAP_SUPPORTED: { 2795 r = -EFAULT; 2796 if (copy_to_user(argp, &kvm_mce_cap_supported, 2797 sizeof(kvm_mce_cap_supported))) 2798 goto out; 2799 r = 0; 2800 break; 2801 } 2802 default: 2803 r = -EINVAL; 2804 } 2805 out: 2806 return r; 2807 } 2808 2809 static void wbinvd_ipi(void *garbage) 2810 { 2811 wbinvd(); 2812 } 2813 2814 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 2815 { 2816 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 2817 } 2818 2819 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu) 2820 { 2821 set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests); 2822 } 2823 2824 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 2825 { 2826 /* Address WBINVD may be executed by guest */ 2827 if (need_emulate_wbinvd(vcpu)) { 2828 if (kvm_x86_ops->has_wbinvd_exit()) 2829 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 2830 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 2831 smp_call_function_single(vcpu->cpu, 2832 wbinvd_ipi, NULL, 1); 2833 } 2834 2835 kvm_x86_ops->vcpu_load(vcpu, cpu); 2836 2837 /* Apply any externally detected TSC adjustments (due to suspend) */ 2838 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 2839 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 2840 vcpu->arch.tsc_offset_adjustment = 0; 2841 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2842 } 2843 2844 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) { 2845 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 2846 rdtsc() - vcpu->arch.last_host_tsc; 2847 if (tsc_delta < 0) 2848 mark_tsc_unstable("KVM discovered backwards TSC"); 2849 2850 if (check_tsc_unstable()) { 2851 u64 offset = kvm_compute_tsc_offset(vcpu, 2852 vcpu->arch.last_guest_tsc); 2853 kvm_vcpu_write_tsc_offset(vcpu, offset); 2854 vcpu->arch.tsc_catchup = 1; 2855 } 2856 if (kvm_lapic_hv_timer_in_use(vcpu) && 2857 kvm_x86_ops->set_hv_timer(vcpu, 2858 kvm_get_lapic_target_expiration_tsc(vcpu))) 2859 kvm_lapic_switch_to_sw_timer(vcpu); 2860 /* 2861 * On a host with synchronized TSC, there is no need to update 2862 * kvmclock on vcpu->cpu migration 2863 */ 2864 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 2865 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2866 if (vcpu->cpu != cpu) 2867 kvm_migrate_timers(vcpu); 2868 vcpu->cpu = cpu; 2869 } 2870 2871 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2872 } 2873 2874 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 2875 { 2876 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 2877 return; 2878 2879 vcpu->arch.st.steal.preempted = 1; 2880 2881 kvm_vcpu_write_guest_offset_cached(vcpu, &vcpu->arch.st.stime, 2882 &vcpu->arch.st.steal.preempted, 2883 offsetof(struct kvm_steal_time, preempted), 2884 sizeof(vcpu->arch.st.steal.preempted)); 2885 } 2886 2887 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 2888 { 2889 int idx; 2890 /* 2891 * Disable page faults because we're in atomic context here. 2892 * kvm_write_guest_offset_cached() would call might_fault() 2893 * that relies on pagefault_disable() to tell if there's a 2894 * bug. NOTE: the write to guest memory may not go through if 2895 * during postcopy live migration or if there's heavy guest 2896 * paging. 2897 */ 2898 pagefault_disable(); 2899 /* 2900 * kvm_memslots() will be called by 2901 * kvm_write_guest_offset_cached() so take the srcu lock. 2902 */ 2903 idx = srcu_read_lock(&vcpu->kvm->srcu); 2904 kvm_steal_time_set_preempted(vcpu); 2905 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2906 pagefault_enable(); 2907 kvm_x86_ops->vcpu_put(vcpu); 2908 kvm_put_guest_fpu(vcpu); 2909 vcpu->arch.last_host_tsc = rdtsc(); 2910 } 2911 2912 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 2913 struct kvm_lapic_state *s) 2914 { 2915 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active) 2916 kvm_x86_ops->sync_pir_to_irr(vcpu); 2917 2918 return kvm_apic_get_state(vcpu, s); 2919 } 2920 2921 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 2922 struct kvm_lapic_state *s) 2923 { 2924 int r; 2925 2926 r = kvm_apic_set_state(vcpu, s); 2927 if (r) 2928 return r; 2929 update_cr8_intercept(vcpu); 2930 2931 return 0; 2932 } 2933 2934 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 2935 { 2936 return (!lapic_in_kernel(vcpu) || 2937 kvm_apic_accept_pic_intr(vcpu)); 2938 } 2939 2940 /* 2941 * if userspace requested an interrupt window, check that the 2942 * interrupt window is open. 2943 * 2944 * No need to exit to userspace if we already have an interrupt queued. 2945 */ 2946 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 2947 { 2948 return kvm_arch_interrupt_allowed(vcpu) && 2949 !kvm_cpu_has_interrupt(vcpu) && 2950 !kvm_event_needs_reinjection(vcpu) && 2951 kvm_cpu_accept_dm_intr(vcpu); 2952 } 2953 2954 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 2955 struct kvm_interrupt *irq) 2956 { 2957 if (irq->irq >= KVM_NR_INTERRUPTS) 2958 return -EINVAL; 2959 2960 if (!irqchip_in_kernel(vcpu->kvm)) { 2961 kvm_queue_interrupt(vcpu, irq->irq, false); 2962 kvm_make_request(KVM_REQ_EVENT, vcpu); 2963 return 0; 2964 } 2965 2966 /* 2967 * With in-kernel LAPIC, we only use this to inject EXTINT, so 2968 * fail for in-kernel 8259. 2969 */ 2970 if (pic_in_kernel(vcpu->kvm)) 2971 return -ENXIO; 2972 2973 if (vcpu->arch.pending_external_vector != -1) 2974 return -EEXIST; 2975 2976 vcpu->arch.pending_external_vector = irq->irq; 2977 kvm_make_request(KVM_REQ_EVENT, vcpu); 2978 return 0; 2979 } 2980 2981 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 2982 { 2983 kvm_inject_nmi(vcpu); 2984 2985 return 0; 2986 } 2987 2988 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu) 2989 { 2990 kvm_make_request(KVM_REQ_SMI, vcpu); 2991 2992 return 0; 2993 } 2994 2995 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 2996 struct kvm_tpr_access_ctl *tac) 2997 { 2998 if (tac->flags) 2999 return -EINVAL; 3000 vcpu->arch.tpr_access_reporting = !!tac->enabled; 3001 return 0; 3002 } 3003 3004 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 3005 u64 mcg_cap) 3006 { 3007 int r; 3008 unsigned bank_num = mcg_cap & 0xff, bank; 3009 3010 r = -EINVAL; 3011 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) 3012 goto out; 3013 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000)) 3014 goto out; 3015 r = 0; 3016 vcpu->arch.mcg_cap = mcg_cap; 3017 /* Init IA32_MCG_CTL to all 1s */ 3018 if (mcg_cap & MCG_CTL_P) 3019 vcpu->arch.mcg_ctl = ~(u64)0; 3020 /* Init IA32_MCi_CTL to all 1s */ 3021 for (bank = 0; bank < bank_num; bank++) 3022 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 3023 3024 if (kvm_x86_ops->setup_mce) 3025 kvm_x86_ops->setup_mce(vcpu); 3026 out: 3027 return r; 3028 } 3029 3030 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 3031 struct kvm_x86_mce *mce) 3032 { 3033 u64 mcg_cap = vcpu->arch.mcg_cap; 3034 unsigned bank_num = mcg_cap & 0xff; 3035 u64 *banks = vcpu->arch.mce_banks; 3036 3037 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 3038 return -EINVAL; 3039 /* 3040 * if IA32_MCG_CTL is not all 1s, the uncorrected error 3041 * reporting is disabled 3042 */ 3043 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 3044 vcpu->arch.mcg_ctl != ~(u64)0) 3045 return 0; 3046 banks += 4 * mce->bank; 3047 /* 3048 * if IA32_MCi_CTL is not all 1s, the uncorrected error 3049 * reporting is disabled for the bank 3050 */ 3051 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 3052 return 0; 3053 if (mce->status & MCI_STATUS_UC) { 3054 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 3055 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 3056 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3057 return 0; 3058 } 3059 if (banks[1] & MCI_STATUS_VAL) 3060 mce->status |= MCI_STATUS_OVER; 3061 banks[2] = mce->addr; 3062 banks[3] = mce->misc; 3063 vcpu->arch.mcg_status = mce->mcg_status; 3064 banks[1] = mce->status; 3065 kvm_queue_exception(vcpu, MC_VECTOR); 3066 } else if (!(banks[1] & MCI_STATUS_VAL) 3067 || !(banks[1] & MCI_STATUS_UC)) { 3068 if (banks[1] & MCI_STATUS_VAL) 3069 mce->status |= MCI_STATUS_OVER; 3070 banks[2] = mce->addr; 3071 banks[3] = mce->misc; 3072 banks[1] = mce->status; 3073 } else 3074 banks[1] |= MCI_STATUS_OVER; 3075 return 0; 3076 } 3077 3078 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 3079 struct kvm_vcpu_events *events) 3080 { 3081 process_nmi(vcpu); 3082 events->exception.injected = 3083 vcpu->arch.exception.pending && 3084 !kvm_exception_is_soft(vcpu->arch.exception.nr); 3085 events->exception.nr = vcpu->arch.exception.nr; 3086 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 3087 events->exception.pad = 0; 3088 events->exception.error_code = vcpu->arch.exception.error_code; 3089 3090 events->interrupt.injected = 3091 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft; 3092 events->interrupt.nr = vcpu->arch.interrupt.nr; 3093 events->interrupt.soft = 0; 3094 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu); 3095 3096 events->nmi.injected = vcpu->arch.nmi_injected; 3097 events->nmi.pending = vcpu->arch.nmi_pending != 0; 3098 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); 3099 events->nmi.pad = 0; 3100 3101 events->sipi_vector = 0; /* never valid when reporting to user space */ 3102 3103 events->smi.smm = is_smm(vcpu); 3104 events->smi.pending = vcpu->arch.smi_pending; 3105 events->smi.smm_inside_nmi = 3106 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 3107 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 3108 3109 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 3110 | KVM_VCPUEVENT_VALID_SHADOW 3111 | KVM_VCPUEVENT_VALID_SMM); 3112 memset(&events->reserved, 0, sizeof(events->reserved)); 3113 } 3114 3115 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags); 3116 3117 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 3118 struct kvm_vcpu_events *events) 3119 { 3120 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 3121 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 3122 | KVM_VCPUEVENT_VALID_SHADOW 3123 | KVM_VCPUEVENT_VALID_SMM)) 3124 return -EINVAL; 3125 3126 if (events->exception.injected && 3127 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 3128 return -EINVAL; 3129 3130 process_nmi(vcpu); 3131 vcpu->arch.exception.pending = events->exception.injected; 3132 vcpu->arch.exception.nr = events->exception.nr; 3133 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 3134 vcpu->arch.exception.error_code = events->exception.error_code; 3135 3136 vcpu->arch.interrupt.pending = events->interrupt.injected; 3137 vcpu->arch.interrupt.nr = events->interrupt.nr; 3138 vcpu->arch.interrupt.soft = events->interrupt.soft; 3139 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 3140 kvm_x86_ops->set_interrupt_shadow(vcpu, 3141 events->interrupt.shadow); 3142 3143 vcpu->arch.nmi_injected = events->nmi.injected; 3144 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 3145 vcpu->arch.nmi_pending = events->nmi.pending; 3146 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); 3147 3148 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 3149 lapic_in_kernel(vcpu)) 3150 vcpu->arch.apic->sipi_vector = events->sipi_vector; 3151 3152 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 3153 u32 hflags = vcpu->arch.hflags; 3154 if (events->smi.smm) 3155 hflags |= HF_SMM_MASK; 3156 else 3157 hflags &= ~HF_SMM_MASK; 3158 kvm_set_hflags(vcpu, hflags); 3159 3160 vcpu->arch.smi_pending = events->smi.pending; 3161 if (events->smi.smm_inside_nmi) 3162 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 3163 else 3164 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 3165 if (lapic_in_kernel(vcpu)) { 3166 if (events->smi.latched_init) 3167 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 3168 else 3169 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 3170 } 3171 } 3172 3173 kvm_make_request(KVM_REQ_EVENT, vcpu); 3174 3175 return 0; 3176 } 3177 3178 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 3179 struct kvm_debugregs *dbgregs) 3180 { 3181 unsigned long val; 3182 3183 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 3184 kvm_get_dr(vcpu, 6, &val); 3185 dbgregs->dr6 = val; 3186 dbgregs->dr7 = vcpu->arch.dr7; 3187 dbgregs->flags = 0; 3188 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 3189 } 3190 3191 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 3192 struct kvm_debugregs *dbgregs) 3193 { 3194 if (dbgregs->flags) 3195 return -EINVAL; 3196 3197 if (dbgregs->dr6 & ~0xffffffffull) 3198 return -EINVAL; 3199 if (dbgregs->dr7 & ~0xffffffffull) 3200 return -EINVAL; 3201 3202 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 3203 kvm_update_dr0123(vcpu); 3204 vcpu->arch.dr6 = dbgregs->dr6; 3205 kvm_update_dr6(vcpu); 3206 vcpu->arch.dr7 = dbgregs->dr7; 3207 kvm_update_dr7(vcpu); 3208 3209 return 0; 3210 } 3211 3212 #define XSTATE_COMPACTION_ENABLED (1ULL << 63) 3213 3214 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu) 3215 { 3216 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave; 3217 u64 xstate_bv = xsave->header.xfeatures; 3218 u64 valid; 3219 3220 /* 3221 * Copy legacy XSAVE area, to avoid complications with CPUID 3222 * leaves 0 and 1 in the loop below. 3223 */ 3224 memcpy(dest, xsave, XSAVE_HDR_OFFSET); 3225 3226 /* Set XSTATE_BV */ 3227 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE; 3228 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv; 3229 3230 /* 3231 * Copy each region from the possibly compacted offset to the 3232 * non-compacted offset. 3233 */ 3234 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 3235 while (valid) { 3236 u64 feature = valid & -valid; 3237 int index = fls64(feature) - 1; 3238 void *src = get_xsave_addr(xsave, feature); 3239 3240 if (src) { 3241 u32 size, offset, ecx, edx; 3242 cpuid_count(XSTATE_CPUID, index, 3243 &size, &offset, &ecx, &edx); 3244 memcpy(dest + offset, src, size); 3245 } 3246 3247 valid -= feature; 3248 } 3249 } 3250 3251 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src) 3252 { 3253 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave; 3254 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET); 3255 u64 valid; 3256 3257 /* 3258 * Copy legacy XSAVE area, to avoid complications with CPUID 3259 * leaves 0 and 1 in the loop below. 3260 */ 3261 memcpy(xsave, src, XSAVE_HDR_OFFSET); 3262 3263 /* Set XSTATE_BV and possibly XCOMP_BV. */ 3264 xsave->header.xfeatures = xstate_bv; 3265 if (boot_cpu_has(X86_FEATURE_XSAVES)) 3266 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED; 3267 3268 /* 3269 * Copy each region from the non-compacted offset to the 3270 * possibly compacted offset. 3271 */ 3272 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 3273 while (valid) { 3274 u64 feature = valid & -valid; 3275 int index = fls64(feature) - 1; 3276 void *dest = get_xsave_addr(xsave, feature); 3277 3278 if (dest) { 3279 u32 size, offset, ecx, edx; 3280 cpuid_count(XSTATE_CPUID, index, 3281 &size, &offset, &ecx, &edx); 3282 memcpy(dest, src + offset, size); 3283 } 3284 3285 valid -= feature; 3286 } 3287 } 3288 3289 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 3290 struct kvm_xsave *guest_xsave) 3291 { 3292 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 3293 memset(guest_xsave, 0, sizeof(struct kvm_xsave)); 3294 fill_xsave((u8 *) guest_xsave->region, vcpu); 3295 } else { 3296 memcpy(guest_xsave->region, 3297 &vcpu->arch.guest_fpu.state.fxsave, 3298 sizeof(struct fxregs_state)); 3299 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = 3300 XFEATURE_MASK_FPSSE; 3301 } 3302 } 3303 3304 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 3305 struct kvm_xsave *guest_xsave) 3306 { 3307 u64 xstate_bv = 3308 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; 3309 3310 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 3311 /* 3312 * Here we allow setting states that are not present in 3313 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility 3314 * with old userspace. 3315 */ 3316 if (xstate_bv & ~kvm_supported_xcr0()) 3317 return -EINVAL; 3318 load_xsave(vcpu, (u8 *)guest_xsave->region); 3319 } else { 3320 if (xstate_bv & ~XFEATURE_MASK_FPSSE) 3321 return -EINVAL; 3322 memcpy(&vcpu->arch.guest_fpu.state.fxsave, 3323 guest_xsave->region, sizeof(struct fxregs_state)); 3324 } 3325 return 0; 3326 } 3327 3328 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 3329 struct kvm_xcrs *guest_xcrs) 3330 { 3331 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 3332 guest_xcrs->nr_xcrs = 0; 3333 return; 3334 } 3335 3336 guest_xcrs->nr_xcrs = 1; 3337 guest_xcrs->flags = 0; 3338 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 3339 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 3340 } 3341 3342 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 3343 struct kvm_xcrs *guest_xcrs) 3344 { 3345 int i, r = 0; 3346 3347 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 3348 return -EINVAL; 3349 3350 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 3351 return -EINVAL; 3352 3353 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 3354 /* Only support XCR0 currently */ 3355 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 3356 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 3357 guest_xcrs->xcrs[i].value); 3358 break; 3359 } 3360 if (r) 3361 r = -EINVAL; 3362 return r; 3363 } 3364 3365 /* 3366 * kvm_set_guest_paused() indicates to the guest kernel that it has been 3367 * stopped by the hypervisor. This function will be called from the host only. 3368 * EINVAL is returned when the host attempts to set the flag for a guest that 3369 * does not support pv clocks. 3370 */ 3371 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 3372 { 3373 if (!vcpu->arch.pv_time_enabled) 3374 return -EINVAL; 3375 vcpu->arch.pvclock_set_guest_stopped_request = true; 3376 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3377 return 0; 3378 } 3379 3380 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 3381 struct kvm_enable_cap *cap) 3382 { 3383 if (cap->flags) 3384 return -EINVAL; 3385 3386 switch (cap->cap) { 3387 case KVM_CAP_HYPERV_SYNIC: 3388 if (!irqchip_in_kernel(vcpu->kvm)) 3389 return -EINVAL; 3390 return kvm_hv_activate_synic(vcpu); 3391 default: 3392 return -EINVAL; 3393 } 3394 } 3395 3396 long kvm_arch_vcpu_ioctl(struct file *filp, 3397 unsigned int ioctl, unsigned long arg) 3398 { 3399 struct kvm_vcpu *vcpu = filp->private_data; 3400 void __user *argp = (void __user *)arg; 3401 int r; 3402 union { 3403 struct kvm_lapic_state *lapic; 3404 struct kvm_xsave *xsave; 3405 struct kvm_xcrs *xcrs; 3406 void *buffer; 3407 } u; 3408 3409 u.buffer = NULL; 3410 switch (ioctl) { 3411 case KVM_GET_LAPIC: { 3412 r = -EINVAL; 3413 if (!lapic_in_kernel(vcpu)) 3414 goto out; 3415 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); 3416 3417 r = -ENOMEM; 3418 if (!u.lapic) 3419 goto out; 3420 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 3421 if (r) 3422 goto out; 3423 r = -EFAULT; 3424 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 3425 goto out; 3426 r = 0; 3427 break; 3428 } 3429 case KVM_SET_LAPIC: { 3430 r = -EINVAL; 3431 if (!lapic_in_kernel(vcpu)) 3432 goto out; 3433 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 3434 if (IS_ERR(u.lapic)) 3435 return PTR_ERR(u.lapic); 3436 3437 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 3438 break; 3439 } 3440 case KVM_INTERRUPT: { 3441 struct kvm_interrupt irq; 3442 3443 r = -EFAULT; 3444 if (copy_from_user(&irq, argp, sizeof irq)) 3445 goto out; 3446 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 3447 break; 3448 } 3449 case KVM_NMI: { 3450 r = kvm_vcpu_ioctl_nmi(vcpu); 3451 break; 3452 } 3453 case KVM_SMI: { 3454 r = kvm_vcpu_ioctl_smi(vcpu); 3455 break; 3456 } 3457 case KVM_SET_CPUID: { 3458 struct kvm_cpuid __user *cpuid_arg = argp; 3459 struct kvm_cpuid cpuid; 3460 3461 r = -EFAULT; 3462 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3463 goto out; 3464 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 3465 break; 3466 } 3467 case KVM_SET_CPUID2: { 3468 struct kvm_cpuid2 __user *cpuid_arg = argp; 3469 struct kvm_cpuid2 cpuid; 3470 3471 r = -EFAULT; 3472 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3473 goto out; 3474 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 3475 cpuid_arg->entries); 3476 break; 3477 } 3478 case KVM_GET_CPUID2: { 3479 struct kvm_cpuid2 __user *cpuid_arg = argp; 3480 struct kvm_cpuid2 cpuid; 3481 3482 r = -EFAULT; 3483 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3484 goto out; 3485 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 3486 cpuid_arg->entries); 3487 if (r) 3488 goto out; 3489 r = -EFAULT; 3490 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 3491 goto out; 3492 r = 0; 3493 break; 3494 } 3495 case KVM_GET_MSRS: 3496 r = msr_io(vcpu, argp, do_get_msr, 1); 3497 break; 3498 case KVM_SET_MSRS: 3499 r = msr_io(vcpu, argp, do_set_msr, 0); 3500 break; 3501 case KVM_TPR_ACCESS_REPORTING: { 3502 struct kvm_tpr_access_ctl tac; 3503 3504 r = -EFAULT; 3505 if (copy_from_user(&tac, argp, sizeof tac)) 3506 goto out; 3507 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 3508 if (r) 3509 goto out; 3510 r = -EFAULT; 3511 if (copy_to_user(argp, &tac, sizeof tac)) 3512 goto out; 3513 r = 0; 3514 break; 3515 }; 3516 case KVM_SET_VAPIC_ADDR: { 3517 struct kvm_vapic_addr va; 3518 int idx; 3519 3520 r = -EINVAL; 3521 if (!lapic_in_kernel(vcpu)) 3522 goto out; 3523 r = -EFAULT; 3524 if (copy_from_user(&va, argp, sizeof va)) 3525 goto out; 3526 idx = srcu_read_lock(&vcpu->kvm->srcu); 3527 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 3528 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3529 break; 3530 } 3531 case KVM_X86_SETUP_MCE: { 3532 u64 mcg_cap; 3533 3534 r = -EFAULT; 3535 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap)) 3536 goto out; 3537 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 3538 break; 3539 } 3540 case KVM_X86_SET_MCE: { 3541 struct kvm_x86_mce mce; 3542 3543 r = -EFAULT; 3544 if (copy_from_user(&mce, argp, sizeof mce)) 3545 goto out; 3546 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 3547 break; 3548 } 3549 case KVM_GET_VCPU_EVENTS: { 3550 struct kvm_vcpu_events events; 3551 3552 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 3553 3554 r = -EFAULT; 3555 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 3556 break; 3557 r = 0; 3558 break; 3559 } 3560 case KVM_SET_VCPU_EVENTS: { 3561 struct kvm_vcpu_events events; 3562 3563 r = -EFAULT; 3564 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 3565 break; 3566 3567 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 3568 break; 3569 } 3570 case KVM_GET_DEBUGREGS: { 3571 struct kvm_debugregs dbgregs; 3572 3573 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 3574 3575 r = -EFAULT; 3576 if (copy_to_user(argp, &dbgregs, 3577 sizeof(struct kvm_debugregs))) 3578 break; 3579 r = 0; 3580 break; 3581 } 3582 case KVM_SET_DEBUGREGS: { 3583 struct kvm_debugregs dbgregs; 3584 3585 r = -EFAULT; 3586 if (copy_from_user(&dbgregs, argp, 3587 sizeof(struct kvm_debugregs))) 3588 break; 3589 3590 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 3591 break; 3592 } 3593 case KVM_GET_XSAVE: { 3594 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); 3595 r = -ENOMEM; 3596 if (!u.xsave) 3597 break; 3598 3599 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 3600 3601 r = -EFAULT; 3602 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 3603 break; 3604 r = 0; 3605 break; 3606 } 3607 case KVM_SET_XSAVE: { 3608 u.xsave = memdup_user(argp, sizeof(*u.xsave)); 3609 if (IS_ERR(u.xsave)) 3610 return PTR_ERR(u.xsave); 3611 3612 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 3613 break; 3614 } 3615 case KVM_GET_XCRS: { 3616 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); 3617 r = -ENOMEM; 3618 if (!u.xcrs) 3619 break; 3620 3621 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 3622 3623 r = -EFAULT; 3624 if (copy_to_user(argp, u.xcrs, 3625 sizeof(struct kvm_xcrs))) 3626 break; 3627 r = 0; 3628 break; 3629 } 3630 case KVM_SET_XCRS: { 3631 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 3632 if (IS_ERR(u.xcrs)) 3633 return PTR_ERR(u.xcrs); 3634 3635 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 3636 break; 3637 } 3638 case KVM_SET_TSC_KHZ: { 3639 u32 user_tsc_khz; 3640 3641 r = -EINVAL; 3642 user_tsc_khz = (u32)arg; 3643 3644 if (user_tsc_khz >= kvm_max_guest_tsc_khz) 3645 goto out; 3646 3647 if (user_tsc_khz == 0) 3648 user_tsc_khz = tsc_khz; 3649 3650 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 3651 r = 0; 3652 3653 goto out; 3654 } 3655 case KVM_GET_TSC_KHZ: { 3656 r = vcpu->arch.virtual_tsc_khz; 3657 goto out; 3658 } 3659 case KVM_KVMCLOCK_CTRL: { 3660 r = kvm_set_guest_paused(vcpu); 3661 goto out; 3662 } 3663 case KVM_ENABLE_CAP: { 3664 struct kvm_enable_cap cap; 3665 3666 r = -EFAULT; 3667 if (copy_from_user(&cap, argp, sizeof(cap))) 3668 goto out; 3669 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 3670 break; 3671 } 3672 default: 3673 r = -EINVAL; 3674 } 3675 out: 3676 kfree(u.buffer); 3677 return r; 3678 } 3679 3680 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 3681 { 3682 return VM_FAULT_SIGBUS; 3683 } 3684 3685 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 3686 { 3687 int ret; 3688 3689 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 3690 return -EINVAL; 3691 ret = kvm_x86_ops->set_tss_addr(kvm, addr); 3692 return ret; 3693 } 3694 3695 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 3696 u64 ident_addr) 3697 { 3698 kvm->arch.ept_identity_map_addr = ident_addr; 3699 return 0; 3700 } 3701 3702 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 3703 u32 kvm_nr_mmu_pages) 3704 { 3705 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 3706 return -EINVAL; 3707 3708 mutex_lock(&kvm->slots_lock); 3709 3710 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 3711 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 3712 3713 mutex_unlock(&kvm->slots_lock); 3714 return 0; 3715 } 3716 3717 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 3718 { 3719 return kvm->arch.n_max_mmu_pages; 3720 } 3721 3722 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 3723 { 3724 int r; 3725 3726 r = 0; 3727 switch (chip->chip_id) { 3728 case KVM_IRQCHIP_PIC_MASTER: 3729 memcpy(&chip->chip.pic, 3730 &pic_irqchip(kvm)->pics[0], 3731 sizeof(struct kvm_pic_state)); 3732 break; 3733 case KVM_IRQCHIP_PIC_SLAVE: 3734 memcpy(&chip->chip.pic, 3735 &pic_irqchip(kvm)->pics[1], 3736 sizeof(struct kvm_pic_state)); 3737 break; 3738 case KVM_IRQCHIP_IOAPIC: 3739 r = kvm_get_ioapic(kvm, &chip->chip.ioapic); 3740 break; 3741 default: 3742 r = -EINVAL; 3743 break; 3744 } 3745 return r; 3746 } 3747 3748 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 3749 { 3750 int r; 3751 3752 r = 0; 3753 switch (chip->chip_id) { 3754 case KVM_IRQCHIP_PIC_MASTER: 3755 spin_lock(&pic_irqchip(kvm)->lock); 3756 memcpy(&pic_irqchip(kvm)->pics[0], 3757 &chip->chip.pic, 3758 sizeof(struct kvm_pic_state)); 3759 spin_unlock(&pic_irqchip(kvm)->lock); 3760 break; 3761 case KVM_IRQCHIP_PIC_SLAVE: 3762 spin_lock(&pic_irqchip(kvm)->lock); 3763 memcpy(&pic_irqchip(kvm)->pics[1], 3764 &chip->chip.pic, 3765 sizeof(struct kvm_pic_state)); 3766 spin_unlock(&pic_irqchip(kvm)->lock); 3767 break; 3768 case KVM_IRQCHIP_IOAPIC: 3769 r = kvm_set_ioapic(kvm, &chip->chip.ioapic); 3770 break; 3771 default: 3772 r = -EINVAL; 3773 break; 3774 } 3775 kvm_pic_update_irq(pic_irqchip(kvm)); 3776 return r; 3777 } 3778 3779 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 3780 { 3781 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 3782 3783 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 3784 3785 mutex_lock(&kps->lock); 3786 memcpy(ps, &kps->channels, sizeof(*ps)); 3787 mutex_unlock(&kps->lock); 3788 return 0; 3789 } 3790 3791 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 3792 { 3793 int i; 3794 struct kvm_pit *pit = kvm->arch.vpit; 3795 3796 mutex_lock(&pit->pit_state.lock); 3797 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 3798 for (i = 0; i < 3; i++) 3799 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 3800 mutex_unlock(&pit->pit_state.lock); 3801 return 0; 3802 } 3803 3804 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3805 { 3806 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3807 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 3808 sizeof(ps->channels)); 3809 ps->flags = kvm->arch.vpit->pit_state.flags; 3810 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3811 memset(&ps->reserved, 0, sizeof(ps->reserved)); 3812 return 0; 3813 } 3814 3815 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3816 { 3817 int start = 0; 3818 int i; 3819 u32 prev_legacy, cur_legacy; 3820 struct kvm_pit *pit = kvm->arch.vpit; 3821 3822 mutex_lock(&pit->pit_state.lock); 3823 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 3824 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 3825 if (!prev_legacy && cur_legacy) 3826 start = 1; 3827 memcpy(&pit->pit_state.channels, &ps->channels, 3828 sizeof(pit->pit_state.channels)); 3829 pit->pit_state.flags = ps->flags; 3830 for (i = 0; i < 3; i++) 3831 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 3832 start && i == 0); 3833 mutex_unlock(&pit->pit_state.lock); 3834 return 0; 3835 } 3836 3837 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 3838 struct kvm_reinject_control *control) 3839 { 3840 struct kvm_pit *pit = kvm->arch.vpit; 3841 3842 if (!pit) 3843 return -ENXIO; 3844 3845 /* pit->pit_state.lock was overloaded to prevent userspace from getting 3846 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 3847 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 3848 */ 3849 mutex_lock(&pit->pit_state.lock); 3850 kvm_pit_set_reinject(pit, control->pit_reinject); 3851 mutex_unlock(&pit->pit_state.lock); 3852 3853 return 0; 3854 } 3855 3856 /** 3857 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 3858 * @kvm: kvm instance 3859 * @log: slot id and address to which we copy the log 3860 * 3861 * Steps 1-4 below provide general overview of dirty page logging. See 3862 * kvm_get_dirty_log_protect() function description for additional details. 3863 * 3864 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 3865 * always flush the TLB (step 4) even if previous step failed and the dirty 3866 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 3867 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 3868 * writes will be marked dirty for next log read. 3869 * 3870 * 1. Take a snapshot of the bit and clear it if needed. 3871 * 2. Write protect the corresponding page. 3872 * 3. Copy the snapshot to the userspace. 3873 * 4. Flush TLB's if needed. 3874 */ 3875 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) 3876 { 3877 bool is_dirty = false; 3878 int r; 3879 3880 mutex_lock(&kvm->slots_lock); 3881 3882 /* 3883 * Flush potentially hardware-cached dirty pages to dirty_bitmap. 3884 */ 3885 if (kvm_x86_ops->flush_log_dirty) 3886 kvm_x86_ops->flush_log_dirty(kvm); 3887 3888 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty); 3889 3890 /* 3891 * All the TLBs can be flushed out of mmu lock, see the comments in 3892 * kvm_mmu_slot_remove_write_access(). 3893 */ 3894 lockdep_assert_held(&kvm->slots_lock); 3895 if (is_dirty) 3896 kvm_flush_remote_tlbs(kvm); 3897 3898 mutex_unlock(&kvm->slots_lock); 3899 return r; 3900 } 3901 3902 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 3903 bool line_status) 3904 { 3905 if (!irqchip_in_kernel(kvm)) 3906 return -ENXIO; 3907 3908 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 3909 irq_event->irq, irq_event->level, 3910 line_status); 3911 return 0; 3912 } 3913 3914 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 3915 struct kvm_enable_cap *cap) 3916 { 3917 int r; 3918 3919 if (cap->flags) 3920 return -EINVAL; 3921 3922 switch (cap->cap) { 3923 case KVM_CAP_DISABLE_QUIRKS: 3924 kvm->arch.disabled_quirks = cap->args[0]; 3925 r = 0; 3926 break; 3927 case KVM_CAP_SPLIT_IRQCHIP: { 3928 mutex_lock(&kvm->lock); 3929 r = -EINVAL; 3930 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 3931 goto split_irqchip_unlock; 3932 r = -EEXIST; 3933 if (irqchip_in_kernel(kvm)) 3934 goto split_irqchip_unlock; 3935 if (kvm->created_vcpus) 3936 goto split_irqchip_unlock; 3937 r = kvm_setup_empty_irq_routing(kvm); 3938 if (r) 3939 goto split_irqchip_unlock; 3940 /* Pairs with irqchip_in_kernel. */ 3941 smp_wmb(); 3942 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 3943 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 3944 r = 0; 3945 split_irqchip_unlock: 3946 mutex_unlock(&kvm->lock); 3947 break; 3948 } 3949 case KVM_CAP_X2APIC_API: 3950 r = -EINVAL; 3951 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 3952 break; 3953 3954 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 3955 kvm->arch.x2apic_format = true; 3956 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 3957 kvm->arch.x2apic_broadcast_quirk_disabled = true; 3958 3959 r = 0; 3960 break; 3961 default: 3962 r = -EINVAL; 3963 break; 3964 } 3965 return r; 3966 } 3967 3968 long kvm_arch_vm_ioctl(struct file *filp, 3969 unsigned int ioctl, unsigned long arg) 3970 { 3971 struct kvm *kvm = filp->private_data; 3972 void __user *argp = (void __user *)arg; 3973 int r = -ENOTTY; 3974 /* 3975 * This union makes it completely explicit to gcc-3.x 3976 * that these two variables' stack usage should be 3977 * combined, not added together. 3978 */ 3979 union { 3980 struct kvm_pit_state ps; 3981 struct kvm_pit_state2 ps2; 3982 struct kvm_pit_config pit_config; 3983 } u; 3984 3985 switch (ioctl) { 3986 case KVM_SET_TSS_ADDR: 3987 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 3988 break; 3989 case KVM_SET_IDENTITY_MAP_ADDR: { 3990 u64 ident_addr; 3991 3992 r = -EFAULT; 3993 if (copy_from_user(&ident_addr, argp, sizeof ident_addr)) 3994 goto out; 3995 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 3996 break; 3997 } 3998 case KVM_SET_NR_MMU_PAGES: 3999 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 4000 break; 4001 case KVM_GET_NR_MMU_PAGES: 4002 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 4003 break; 4004 case KVM_CREATE_IRQCHIP: { 4005 mutex_lock(&kvm->lock); 4006 4007 r = -EEXIST; 4008 if (irqchip_in_kernel(kvm)) 4009 goto create_irqchip_unlock; 4010 4011 r = -EINVAL; 4012 if (kvm->created_vcpus) 4013 goto create_irqchip_unlock; 4014 4015 r = kvm_pic_init(kvm); 4016 if (r) 4017 goto create_irqchip_unlock; 4018 4019 r = kvm_ioapic_init(kvm); 4020 if (r) { 4021 mutex_lock(&kvm->slots_lock); 4022 kvm_pic_destroy(kvm); 4023 mutex_unlock(&kvm->slots_lock); 4024 goto create_irqchip_unlock; 4025 } 4026 4027 r = kvm_setup_default_irq_routing(kvm); 4028 if (r) { 4029 mutex_lock(&kvm->slots_lock); 4030 mutex_lock(&kvm->irq_lock); 4031 kvm_ioapic_destroy(kvm); 4032 kvm_pic_destroy(kvm); 4033 mutex_unlock(&kvm->irq_lock); 4034 mutex_unlock(&kvm->slots_lock); 4035 goto create_irqchip_unlock; 4036 } 4037 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 4038 smp_wmb(); 4039 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 4040 create_irqchip_unlock: 4041 mutex_unlock(&kvm->lock); 4042 break; 4043 } 4044 case KVM_CREATE_PIT: 4045 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 4046 goto create_pit; 4047 case KVM_CREATE_PIT2: 4048 r = -EFAULT; 4049 if (copy_from_user(&u.pit_config, argp, 4050 sizeof(struct kvm_pit_config))) 4051 goto out; 4052 create_pit: 4053 mutex_lock(&kvm->lock); 4054 r = -EEXIST; 4055 if (kvm->arch.vpit) 4056 goto create_pit_unlock; 4057 r = -ENOMEM; 4058 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 4059 if (kvm->arch.vpit) 4060 r = 0; 4061 create_pit_unlock: 4062 mutex_unlock(&kvm->lock); 4063 break; 4064 case KVM_GET_IRQCHIP: { 4065 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 4066 struct kvm_irqchip *chip; 4067 4068 chip = memdup_user(argp, sizeof(*chip)); 4069 if (IS_ERR(chip)) { 4070 r = PTR_ERR(chip); 4071 goto out; 4072 } 4073 4074 r = -ENXIO; 4075 if (!irqchip_kernel(kvm)) 4076 goto get_irqchip_out; 4077 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 4078 if (r) 4079 goto get_irqchip_out; 4080 r = -EFAULT; 4081 if (copy_to_user(argp, chip, sizeof *chip)) 4082 goto get_irqchip_out; 4083 r = 0; 4084 get_irqchip_out: 4085 kfree(chip); 4086 break; 4087 } 4088 case KVM_SET_IRQCHIP: { 4089 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 4090 struct kvm_irqchip *chip; 4091 4092 chip = memdup_user(argp, sizeof(*chip)); 4093 if (IS_ERR(chip)) { 4094 r = PTR_ERR(chip); 4095 goto out; 4096 } 4097 4098 r = -ENXIO; 4099 if (!irqchip_kernel(kvm)) 4100 goto set_irqchip_out; 4101 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 4102 if (r) 4103 goto set_irqchip_out; 4104 r = 0; 4105 set_irqchip_out: 4106 kfree(chip); 4107 break; 4108 } 4109 case KVM_GET_PIT: { 4110 r = -EFAULT; 4111 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 4112 goto out; 4113 r = -ENXIO; 4114 if (!kvm->arch.vpit) 4115 goto out; 4116 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 4117 if (r) 4118 goto out; 4119 r = -EFAULT; 4120 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 4121 goto out; 4122 r = 0; 4123 break; 4124 } 4125 case KVM_SET_PIT: { 4126 r = -EFAULT; 4127 if (copy_from_user(&u.ps, argp, sizeof u.ps)) 4128 goto out; 4129 r = -ENXIO; 4130 if (!kvm->arch.vpit) 4131 goto out; 4132 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 4133 break; 4134 } 4135 case KVM_GET_PIT2: { 4136 r = -ENXIO; 4137 if (!kvm->arch.vpit) 4138 goto out; 4139 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 4140 if (r) 4141 goto out; 4142 r = -EFAULT; 4143 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 4144 goto out; 4145 r = 0; 4146 break; 4147 } 4148 case KVM_SET_PIT2: { 4149 r = -EFAULT; 4150 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 4151 goto out; 4152 r = -ENXIO; 4153 if (!kvm->arch.vpit) 4154 goto out; 4155 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 4156 break; 4157 } 4158 case KVM_REINJECT_CONTROL: { 4159 struct kvm_reinject_control control; 4160 r = -EFAULT; 4161 if (copy_from_user(&control, argp, sizeof(control))) 4162 goto out; 4163 r = kvm_vm_ioctl_reinject(kvm, &control); 4164 break; 4165 } 4166 case KVM_SET_BOOT_CPU_ID: 4167 r = 0; 4168 mutex_lock(&kvm->lock); 4169 if (kvm->created_vcpus) 4170 r = -EBUSY; 4171 else 4172 kvm->arch.bsp_vcpu_id = arg; 4173 mutex_unlock(&kvm->lock); 4174 break; 4175 case KVM_XEN_HVM_CONFIG: { 4176 r = -EFAULT; 4177 if (copy_from_user(&kvm->arch.xen_hvm_config, argp, 4178 sizeof(struct kvm_xen_hvm_config))) 4179 goto out; 4180 r = -EINVAL; 4181 if (kvm->arch.xen_hvm_config.flags) 4182 goto out; 4183 r = 0; 4184 break; 4185 } 4186 case KVM_SET_CLOCK: { 4187 struct kvm_clock_data user_ns; 4188 u64 now_ns; 4189 4190 r = -EFAULT; 4191 if (copy_from_user(&user_ns, argp, sizeof(user_ns))) 4192 goto out; 4193 4194 r = -EINVAL; 4195 if (user_ns.flags) 4196 goto out; 4197 4198 r = 0; 4199 local_irq_disable(); 4200 now_ns = __get_kvmclock_ns(kvm); 4201 kvm->arch.kvmclock_offset += user_ns.clock - now_ns; 4202 local_irq_enable(); 4203 kvm_gen_update_masterclock(kvm); 4204 break; 4205 } 4206 case KVM_GET_CLOCK: { 4207 struct kvm_clock_data user_ns; 4208 u64 now_ns; 4209 4210 local_irq_disable(); 4211 now_ns = __get_kvmclock_ns(kvm); 4212 user_ns.clock = now_ns; 4213 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0; 4214 local_irq_enable(); 4215 memset(&user_ns.pad, 0, sizeof(user_ns.pad)); 4216 4217 r = -EFAULT; 4218 if (copy_to_user(argp, &user_ns, sizeof(user_ns))) 4219 goto out; 4220 r = 0; 4221 break; 4222 } 4223 case KVM_ENABLE_CAP: { 4224 struct kvm_enable_cap cap; 4225 4226 r = -EFAULT; 4227 if (copy_from_user(&cap, argp, sizeof(cap))) 4228 goto out; 4229 r = kvm_vm_ioctl_enable_cap(kvm, &cap); 4230 break; 4231 } 4232 default: 4233 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg); 4234 } 4235 out: 4236 return r; 4237 } 4238 4239 static void kvm_init_msr_list(void) 4240 { 4241 u32 dummy[2]; 4242 unsigned i, j; 4243 4244 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) { 4245 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) 4246 continue; 4247 4248 /* 4249 * Even MSRs that are valid in the host may not be exposed 4250 * to the guests in some cases. 4251 */ 4252 switch (msrs_to_save[i]) { 4253 case MSR_IA32_BNDCFGS: 4254 if (!kvm_x86_ops->mpx_supported()) 4255 continue; 4256 break; 4257 case MSR_TSC_AUX: 4258 if (!kvm_x86_ops->rdtscp_supported()) 4259 continue; 4260 break; 4261 default: 4262 break; 4263 } 4264 4265 if (j < i) 4266 msrs_to_save[j] = msrs_to_save[i]; 4267 j++; 4268 } 4269 num_msrs_to_save = j; 4270 4271 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) { 4272 switch (emulated_msrs[i]) { 4273 case MSR_IA32_SMBASE: 4274 if (!kvm_x86_ops->cpu_has_high_real_mode_segbase()) 4275 continue; 4276 break; 4277 default: 4278 break; 4279 } 4280 4281 if (j < i) 4282 emulated_msrs[j] = emulated_msrs[i]; 4283 j++; 4284 } 4285 num_emulated_msrs = j; 4286 } 4287 4288 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 4289 const void *v) 4290 { 4291 int handled = 0; 4292 int n; 4293 4294 do { 4295 n = min(len, 8); 4296 if (!(lapic_in_kernel(vcpu) && 4297 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 4298 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 4299 break; 4300 handled += n; 4301 addr += n; 4302 len -= n; 4303 v += n; 4304 } while (len); 4305 4306 return handled; 4307 } 4308 4309 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 4310 { 4311 int handled = 0; 4312 int n; 4313 4314 do { 4315 n = min(len, 8); 4316 if (!(lapic_in_kernel(vcpu) && 4317 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 4318 addr, n, v)) 4319 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 4320 break; 4321 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v); 4322 handled += n; 4323 addr += n; 4324 len -= n; 4325 v += n; 4326 } while (len); 4327 4328 return handled; 4329 } 4330 4331 static void kvm_set_segment(struct kvm_vcpu *vcpu, 4332 struct kvm_segment *var, int seg) 4333 { 4334 kvm_x86_ops->set_segment(vcpu, var, seg); 4335 } 4336 4337 void kvm_get_segment(struct kvm_vcpu *vcpu, 4338 struct kvm_segment *var, int seg) 4339 { 4340 kvm_x86_ops->get_segment(vcpu, var, seg); 4341 } 4342 4343 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 4344 struct x86_exception *exception) 4345 { 4346 gpa_t t_gpa; 4347 4348 BUG_ON(!mmu_is_nested(vcpu)); 4349 4350 /* NPT walks are always user-walks */ 4351 access |= PFERR_USER_MASK; 4352 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception); 4353 4354 return t_gpa; 4355 } 4356 4357 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 4358 struct x86_exception *exception) 4359 { 4360 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4361 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4362 } 4363 4364 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 4365 struct x86_exception *exception) 4366 { 4367 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4368 access |= PFERR_FETCH_MASK; 4369 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4370 } 4371 4372 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 4373 struct x86_exception *exception) 4374 { 4375 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4376 access |= PFERR_WRITE_MASK; 4377 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4378 } 4379 4380 /* uses this to access any guest's mapped memory without checking CPL */ 4381 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 4382 struct x86_exception *exception) 4383 { 4384 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); 4385 } 4386 4387 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 4388 struct kvm_vcpu *vcpu, u32 access, 4389 struct x86_exception *exception) 4390 { 4391 void *data = val; 4392 int r = X86EMUL_CONTINUE; 4393 4394 while (bytes) { 4395 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, 4396 exception); 4397 unsigned offset = addr & (PAGE_SIZE-1); 4398 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 4399 int ret; 4400 4401 if (gpa == UNMAPPED_GVA) 4402 return X86EMUL_PROPAGATE_FAULT; 4403 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 4404 offset, toread); 4405 if (ret < 0) { 4406 r = X86EMUL_IO_NEEDED; 4407 goto out; 4408 } 4409 4410 bytes -= toread; 4411 data += toread; 4412 addr += toread; 4413 } 4414 out: 4415 return r; 4416 } 4417 4418 /* used for instruction fetching */ 4419 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 4420 gva_t addr, void *val, unsigned int bytes, 4421 struct x86_exception *exception) 4422 { 4423 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4424 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4425 unsigned offset; 4426 int ret; 4427 4428 /* Inline kvm_read_guest_virt_helper for speed. */ 4429 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK, 4430 exception); 4431 if (unlikely(gpa == UNMAPPED_GVA)) 4432 return X86EMUL_PROPAGATE_FAULT; 4433 4434 offset = addr & (PAGE_SIZE-1); 4435 if (WARN_ON(offset + bytes > PAGE_SIZE)) 4436 bytes = (unsigned)PAGE_SIZE - offset; 4437 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 4438 offset, bytes); 4439 if (unlikely(ret < 0)) 4440 return X86EMUL_IO_NEEDED; 4441 4442 return X86EMUL_CONTINUE; 4443 } 4444 4445 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt, 4446 gva_t addr, void *val, unsigned int bytes, 4447 struct x86_exception *exception) 4448 { 4449 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4450 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4451 4452 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 4453 exception); 4454 } 4455 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 4456 4457 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt, 4458 gva_t addr, void *val, unsigned int bytes, 4459 struct x86_exception *exception) 4460 { 4461 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4462 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception); 4463 } 4464 4465 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, 4466 unsigned long addr, void *val, unsigned int bytes) 4467 { 4468 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4469 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes); 4470 4471 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE; 4472 } 4473 4474 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt, 4475 gva_t addr, void *val, 4476 unsigned int bytes, 4477 struct x86_exception *exception) 4478 { 4479 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4480 void *data = val; 4481 int r = X86EMUL_CONTINUE; 4482 4483 while (bytes) { 4484 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, 4485 PFERR_WRITE_MASK, 4486 exception); 4487 unsigned offset = addr & (PAGE_SIZE-1); 4488 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 4489 int ret; 4490 4491 if (gpa == UNMAPPED_GVA) 4492 return X86EMUL_PROPAGATE_FAULT; 4493 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 4494 if (ret < 0) { 4495 r = X86EMUL_IO_NEEDED; 4496 goto out; 4497 } 4498 4499 bytes -= towrite; 4500 data += towrite; 4501 addr += towrite; 4502 } 4503 out: 4504 return r; 4505 } 4506 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 4507 4508 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 4509 gpa_t gpa, bool write) 4510 { 4511 /* For APIC access vmexit */ 4512 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 4513 return 1; 4514 4515 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 4516 trace_vcpu_match_mmio(gva, gpa, write, true); 4517 return 1; 4518 } 4519 4520 return 0; 4521 } 4522 4523 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 4524 gpa_t *gpa, struct x86_exception *exception, 4525 bool write) 4526 { 4527 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) 4528 | (write ? PFERR_WRITE_MASK : 0); 4529 4530 /* 4531 * currently PKRU is only applied to ept enabled guest so 4532 * there is no pkey in EPT page table for L1 guest or EPT 4533 * shadow page table for L2 guest. 4534 */ 4535 if (vcpu_match_mmio_gva(vcpu, gva) 4536 && !permission_fault(vcpu, vcpu->arch.walk_mmu, 4537 vcpu->arch.access, 0, access)) { 4538 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 4539 (gva & (PAGE_SIZE - 1)); 4540 trace_vcpu_match_mmio(gva, *gpa, write, false); 4541 return 1; 4542 } 4543 4544 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4545 4546 if (*gpa == UNMAPPED_GVA) 4547 return -1; 4548 4549 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 4550 } 4551 4552 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 4553 const void *val, int bytes) 4554 { 4555 int ret; 4556 4557 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 4558 if (ret < 0) 4559 return 0; 4560 kvm_page_track_write(vcpu, gpa, val, bytes); 4561 return 1; 4562 } 4563 4564 struct read_write_emulator_ops { 4565 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 4566 int bytes); 4567 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 4568 void *val, int bytes); 4569 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 4570 int bytes, void *val); 4571 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 4572 void *val, int bytes); 4573 bool write; 4574 }; 4575 4576 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 4577 { 4578 if (vcpu->mmio_read_completed) { 4579 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 4580 vcpu->mmio_fragments[0].gpa, *(u64 *)val); 4581 vcpu->mmio_read_completed = 0; 4582 return 1; 4583 } 4584 4585 return 0; 4586 } 4587 4588 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 4589 void *val, int bytes) 4590 { 4591 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 4592 } 4593 4594 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 4595 void *val, int bytes) 4596 { 4597 return emulator_write_phys(vcpu, gpa, val, bytes); 4598 } 4599 4600 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 4601 { 4602 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val); 4603 return vcpu_mmio_write(vcpu, gpa, bytes, val); 4604 } 4605 4606 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 4607 void *val, int bytes) 4608 { 4609 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0); 4610 return X86EMUL_IO_NEEDED; 4611 } 4612 4613 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 4614 void *val, int bytes) 4615 { 4616 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 4617 4618 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 4619 return X86EMUL_CONTINUE; 4620 } 4621 4622 static const struct read_write_emulator_ops read_emultor = { 4623 .read_write_prepare = read_prepare, 4624 .read_write_emulate = read_emulate, 4625 .read_write_mmio = vcpu_mmio_read, 4626 .read_write_exit_mmio = read_exit_mmio, 4627 }; 4628 4629 static const struct read_write_emulator_ops write_emultor = { 4630 .read_write_emulate = write_emulate, 4631 .read_write_mmio = write_mmio, 4632 .read_write_exit_mmio = write_exit_mmio, 4633 .write = true, 4634 }; 4635 4636 static int emulator_read_write_onepage(unsigned long addr, void *val, 4637 unsigned int bytes, 4638 struct x86_exception *exception, 4639 struct kvm_vcpu *vcpu, 4640 const struct read_write_emulator_ops *ops) 4641 { 4642 gpa_t gpa; 4643 int handled, ret; 4644 bool write = ops->write; 4645 struct kvm_mmio_fragment *frag; 4646 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4647 4648 /* 4649 * If the exit was due to a NPF we may already have a GPA. 4650 * If the GPA is present, use it to avoid the GVA to GPA table walk. 4651 * Note, this cannot be used on string operations since string 4652 * operation using rep will only have the initial GPA from the NPF 4653 * occurred. 4654 */ 4655 if (vcpu->arch.gpa_available && 4656 emulator_can_use_gpa(ctxt) && 4657 vcpu_is_mmio_gpa(vcpu, addr, exception->address, write) && 4658 (addr & ~PAGE_MASK) == (exception->address & ~PAGE_MASK)) { 4659 gpa = exception->address; 4660 goto mmio; 4661 } 4662 4663 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 4664 4665 if (ret < 0) 4666 return X86EMUL_PROPAGATE_FAULT; 4667 4668 /* For APIC access vmexit */ 4669 if (ret) 4670 goto mmio; 4671 4672 if (ops->read_write_emulate(vcpu, gpa, val, bytes)) 4673 return X86EMUL_CONTINUE; 4674 4675 mmio: 4676 /* 4677 * Is this MMIO handled locally? 4678 */ 4679 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 4680 if (handled == bytes) 4681 return X86EMUL_CONTINUE; 4682 4683 gpa += handled; 4684 bytes -= handled; 4685 val += handled; 4686 4687 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 4688 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 4689 frag->gpa = gpa; 4690 frag->data = val; 4691 frag->len = bytes; 4692 return X86EMUL_CONTINUE; 4693 } 4694 4695 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 4696 unsigned long addr, 4697 void *val, unsigned int bytes, 4698 struct x86_exception *exception, 4699 const struct read_write_emulator_ops *ops) 4700 { 4701 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4702 gpa_t gpa; 4703 int rc; 4704 4705 if (ops->read_write_prepare && 4706 ops->read_write_prepare(vcpu, val, bytes)) 4707 return X86EMUL_CONTINUE; 4708 4709 vcpu->mmio_nr_fragments = 0; 4710 4711 /* Crossing a page boundary? */ 4712 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 4713 int now; 4714 4715 now = -addr & ~PAGE_MASK; 4716 rc = emulator_read_write_onepage(addr, val, now, exception, 4717 vcpu, ops); 4718 4719 if (rc != X86EMUL_CONTINUE) 4720 return rc; 4721 addr += now; 4722 if (ctxt->mode != X86EMUL_MODE_PROT64) 4723 addr = (u32)addr; 4724 val += now; 4725 bytes -= now; 4726 } 4727 4728 rc = emulator_read_write_onepage(addr, val, bytes, exception, 4729 vcpu, ops); 4730 if (rc != X86EMUL_CONTINUE) 4731 return rc; 4732 4733 if (!vcpu->mmio_nr_fragments) 4734 return rc; 4735 4736 gpa = vcpu->mmio_fragments[0].gpa; 4737 4738 vcpu->mmio_needed = 1; 4739 vcpu->mmio_cur_fragment = 0; 4740 4741 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 4742 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 4743 vcpu->run->exit_reason = KVM_EXIT_MMIO; 4744 vcpu->run->mmio.phys_addr = gpa; 4745 4746 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 4747 } 4748 4749 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 4750 unsigned long addr, 4751 void *val, 4752 unsigned int bytes, 4753 struct x86_exception *exception) 4754 { 4755 return emulator_read_write(ctxt, addr, val, bytes, 4756 exception, &read_emultor); 4757 } 4758 4759 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 4760 unsigned long addr, 4761 const void *val, 4762 unsigned int bytes, 4763 struct x86_exception *exception) 4764 { 4765 return emulator_read_write(ctxt, addr, (void *)val, bytes, 4766 exception, &write_emultor); 4767 } 4768 4769 #define CMPXCHG_TYPE(t, ptr, old, new) \ 4770 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 4771 4772 #ifdef CONFIG_X86_64 4773 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 4774 #else 4775 # define CMPXCHG64(ptr, old, new) \ 4776 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 4777 #endif 4778 4779 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 4780 unsigned long addr, 4781 const void *old, 4782 const void *new, 4783 unsigned int bytes, 4784 struct x86_exception *exception) 4785 { 4786 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4787 gpa_t gpa; 4788 struct page *page; 4789 char *kaddr; 4790 bool exchanged; 4791 4792 /* guests cmpxchg8b have to be emulated atomically */ 4793 if (bytes > 8 || (bytes & (bytes - 1))) 4794 goto emul_write; 4795 4796 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 4797 4798 if (gpa == UNMAPPED_GVA || 4799 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 4800 goto emul_write; 4801 4802 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) 4803 goto emul_write; 4804 4805 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT); 4806 if (is_error_page(page)) 4807 goto emul_write; 4808 4809 kaddr = kmap_atomic(page); 4810 kaddr += offset_in_page(gpa); 4811 switch (bytes) { 4812 case 1: 4813 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 4814 break; 4815 case 2: 4816 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 4817 break; 4818 case 4: 4819 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 4820 break; 4821 case 8: 4822 exchanged = CMPXCHG64(kaddr, old, new); 4823 break; 4824 default: 4825 BUG(); 4826 } 4827 kunmap_atomic(kaddr); 4828 kvm_release_page_dirty(page); 4829 4830 if (!exchanged) 4831 return X86EMUL_CMPXCHG_FAILED; 4832 4833 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); 4834 kvm_page_track_write(vcpu, gpa, new, bytes); 4835 4836 return X86EMUL_CONTINUE; 4837 4838 emul_write: 4839 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 4840 4841 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 4842 } 4843 4844 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 4845 { 4846 /* TODO: String I/O for in kernel device */ 4847 int r; 4848 4849 if (vcpu->arch.pio.in) 4850 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port, 4851 vcpu->arch.pio.size, pd); 4852 else 4853 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, 4854 vcpu->arch.pio.port, vcpu->arch.pio.size, 4855 pd); 4856 return r; 4857 } 4858 4859 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 4860 unsigned short port, void *val, 4861 unsigned int count, bool in) 4862 { 4863 vcpu->arch.pio.port = port; 4864 vcpu->arch.pio.in = in; 4865 vcpu->arch.pio.count = count; 4866 vcpu->arch.pio.size = size; 4867 4868 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { 4869 vcpu->arch.pio.count = 0; 4870 return 1; 4871 } 4872 4873 vcpu->run->exit_reason = KVM_EXIT_IO; 4874 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 4875 vcpu->run->io.size = size; 4876 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 4877 vcpu->run->io.count = count; 4878 vcpu->run->io.port = port; 4879 4880 return 0; 4881 } 4882 4883 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 4884 int size, unsigned short port, void *val, 4885 unsigned int count) 4886 { 4887 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4888 int ret; 4889 4890 if (vcpu->arch.pio.count) 4891 goto data_avail; 4892 4893 ret = emulator_pio_in_out(vcpu, size, port, val, count, true); 4894 if (ret) { 4895 data_avail: 4896 memcpy(val, vcpu->arch.pio_data, size * count); 4897 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data); 4898 vcpu->arch.pio.count = 0; 4899 return 1; 4900 } 4901 4902 return 0; 4903 } 4904 4905 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 4906 int size, unsigned short port, 4907 const void *val, unsigned int count) 4908 { 4909 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4910 4911 memcpy(vcpu->arch.pio_data, val, size * count); 4912 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data); 4913 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 4914 } 4915 4916 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 4917 { 4918 return kvm_x86_ops->get_segment_base(vcpu, seg); 4919 } 4920 4921 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 4922 { 4923 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 4924 } 4925 4926 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 4927 { 4928 if (!need_emulate_wbinvd(vcpu)) 4929 return X86EMUL_CONTINUE; 4930 4931 if (kvm_x86_ops->has_wbinvd_exit()) { 4932 int cpu = get_cpu(); 4933 4934 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4935 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, 4936 wbinvd_ipi, NULL, 1); 4937 put_cpu(); 4938 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 4939 } else 4940 wbinvd(); 4941 return X86EMUL_CONTINUE; 4942 } 4943 4944 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 4945 { 4946 kvm_emulate_wbinvd_noskip(vcpu); 4947 return kvm_skip_emulated_instruction(vcpu); 4948 } 4949 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 4950 4951 4952 4953 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 4954 { 4955 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 4956 } 4957 4958 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 4959 unsigned long *dest) 4960 { 4961 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 4962 } 4963 4964 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 4965 unsigned long value) 4966 { 4967 4968 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 4969 } 4970 4971 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 4972 { 4973 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 4974 } 4975 4976 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 4977 { 4978 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4979 unsigned long value; 4980 4981 switch (cr) { 4982 case 0: 4983 value = kvm_read_cr0(vcpu); 4984 break; 4985 case 2: 4986 value = vcpu->arch.cr2; 4987 break; 4988 case 3: 4989 value = kvm_read_cr3(vcpu); 4990 break; 4991 case 4: 4992 value = kvm_read_cr4(vcpu); 4993 break; 4994 case 8: 4995 value = kvm_get_cr8(vcpu); 4996 break; 4997 default: 4998 kvm_err("%s: unexpected cr %u\n", __func__, cr); 4999 return 0; 5000 } 5001 5002 return value; 5003 } 5004 5005 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 5006 { 5007 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5008 int res = 0; 5009 5010 switch (cr) { 5011 case 0: 5012 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 5013 break; 5014 case 2: 5015 vcpu->arch.cr2 = val; 5016 break; 5017 case 3: 5018 res = kvm_set_cr3(vcpu, val); 5019 break; 5020 case 4: 5021 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 5022 break; 5023 case 8: 5024 res = kvm_set_cr8(vcpu, val); 5025 break; 5026 default: 5027 kvm_err("%s: unexpected cr %u\n", __func__, cr); 5028 res = -1; 5029 } 5030 5031 return res; 5032 } 5033 5034 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 5035 { 5036 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt)); 5037 } 5038 5039 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 5040 { 5041 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt); 5042 } 5043 5044 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 5045 { 5046 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt); 5047 } 5048 5049 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 5050 { 5051 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt); 5052 } 5053 5054 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 5055 { 5056 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt); 5057 } 5058 5059 static unsigned long emulator_get_cached_segment_base( 5060 struct x86_emulate_ctxt *ctxt, int seg) 5061 { 5062 return get_segment_base(emul_to_vcpu(ctxt), seg); 5063 } 5064 5065 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 5066 struct desc_struct *desc, u32 *base3, 5067 int seg) 5068 { 5069 struct kvm_segment var; 5070 5071 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 5072 *selector = var.selector; 5073 5074 if (var.unusable) { 5075 memset(desc, 0, sizeof(*desc)); 5076 return false; 5077 } 5078 5079 if (var.g) 5080 var.limit >>= 12; 5081 set_desc_limit(desc, var.limit); 5082 set_desc_base(desc, (unsigned long)var.base); 5083 #ifdef CONFIG_X86_64 5084 if (base3) 5085 *base3 = var.base >> 32; 5086 #endif 5087 desc->type = var.type; 5088 desc->s = var.s; 5089 desc->dpl = var.dpl; 5090 desc->p = var.present; 5091 desc->avl = var.avl; 5092 desc->l = var.l; 5093 desc->d = var.db; 5094 desc->g = var.g; 5095 5096 return true; 5097 } 5098 5099 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 5100 struct desc_struct *desc, u32 base3, 5101 int seg) 5102 { 5103 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5104 struct kvm_segment var; 5105 5106 var.selector = selector; 5107 var.base = get_desc_base(desc); 5108 #ifdef CONFIG_X86_64 5109 var.base |= ((u64)base3) << 32; 5110 #endif 5111 var.limit = get_desc_limit(desc); 5112 if (desc->g) 5113 var.limit = (var.limit << 12) | 0xfff; 5114 var.type = desc->type; 5115 var.dpl = desc->dpl; 5116 var.db = desc->d; 5117 var.s = desc->s; 5118 var.l = desc->l; 5119 var.g = desc->g; 5120 var.avl = desc->avl; 5121 var.present = desc->p; 5122 var.unusable = !var.present; 5123 var.padding = 0; 5124 5125 kvm_set_segment(vcpu, &var, seg); 5126 return; 5127 } 5128 5129 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 5130 u32 msr_index, u64 *pdata) 5131 { 5132 struct msr_data msr; 5133 int r; 5134 5135 msr.index = msr_index; 5136 msr.host_initiated = false; 5137 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr); 5138 if (r) 5139 return r; 5140 5141 *pdata = msr.data; 5142 return 0; 5143 } 5144 5145 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 5146 u32 msr_index, u64 data) 5147 { 5148 struct msr_data msr; 5149 5150 msr.data = data; 5151 msr.index = msr_index; 5152 msr.host_initiated = false; 5153 return kvm_set_msr(emul_to_vcpu(ctxt), &msr); 5154 } 5155 5156 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt) 5157 { 5158 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5159 5160 return vcpu->arch.smbase; 5161 } 5162 5163 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase) 5164 { 5165 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5166 5167 vcpu->arch.smbase = smbase; 5168 } 5169 5170 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 5171 u32 pmc) 5172 { 5173 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc); 5174 } 5175 5176 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 5177 u32 pmc, u64 *pdata) 5178 { 5179 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 5180 } 5181 5182 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 5183 { 5184 emul_to_vcpu(ctxt)->arch.halt_request = 1; 5185 } 5186 5187 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt) 5188 { 5189 preempt_disable(); 5190 kvm_load_guest_fpu(emul_to_vcpu(ctxt)); 5191 } 5192 5193 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt) 5194 { 5195 preempt_enable(); 5196 } 5197 5198 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 5199 struct x86_instruction_info *info, 5200 enum x86_intercept_stage stage) 5201 { 5202 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage); 5203 } 5204 5205 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 5206 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx) 5207 { 5208 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx); 5209 } 5210 5211 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 5212 { 5213 return kvm_register_read(emul_to_vcpu(ctxt), reg); 5214 } 5215 5216 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 5217 { 5218 kvm_register_write(emul_to_vcpu(ctxt), reg, val); 5219 } 5220 5221 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 5222 { 5223 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked); 5224 } 5225 5226 static const struct x86_emulate_ops emulate_ops = { 5227 .read_gpr = emulator_read_gpr, 5228 .write_gpr = emulator_write_gpr, 5229 .read_std = kvm_read_guest_virt_system, 5230 .write_std = kvm_write_guest_virt_system, 5231 .read_phys = kvm_read_guest_phys_system, 5232 .fetch = kvm_fetch_guest_virt, 5233 .read_emulated = emulator_read_emulated, 5234 .write_emulated = emulator_write_emulated, 5235 .cmpxchg_emulated = emulator_cmpxchg_emulated, 5236 .invlpg = emulator_invlpg, 5237 .pio_in_emulated = emulator_pio_in_emulated, 5238 .pio_out_emulated = emulator_pio_out_emulated, 5239 .get_segment = emulator_get_segment, 5240 .set_segment = emulator_set_segment, 5241 .get_cached_segment_base = emulator_get_cached_segment_base, 5242 .get_gdt = emulator_get_gdt, 5243 .get_idt = emulator_get_idt, 5244 .set_gdt = emulator_set_gdt, 5245 .set_idt = emulator_set_idt, 5246 .get_cr = emulator_get_cr, 5247 .set_cr = emulator_set_cr, 5248 .cpl = emulator_get_cpl, 5249 .get_dr = emulator_get_dr, 5250 .set_dr = emulator_set_dr, 5251 .get_smbase = emulator_get_smbase, 5252 .set_smbase = emulator_set_smbase, 5253 .set_msr = emulator_set_msr, 5254 .get_msr = emulator_get_msr, 5255 .check_pmc = emulator_check_pmc, 5256 .read_pmc = emulator_read_pmc, 5257 .halt = emulator_halt, 5258 .wbinvd = emulator_wbinvd, 5259 .fix_hypercall = emulator_fix_hypercall, 5260 .get_fpu = emulator_get_fpu, 5261 .put_fpu = emulator_put_fpu, 5262 .intercept = emulator_intercept, 5263 .get_cpuid = emulator_get_cpuid, 5264 .set_nmi_mask = emulator_set_nmi_mask, 5265 }; 5266 5267 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 5268 { 5269 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu); 5270 /* 5271 * an sti; sti; sequence only disable interrupts for the first 5272 * instruction. So, if the last instruction, be it emulated or 5273 * not, left the system with the INT_STI flag enabled, it 5274 * means that the last instruction is an sti. We should not 5275 * leave the flag on in this case. The same goes for mov ss 5276 */ 5277 if (int_shadow & mask) 5278 mask = 0; 5279 if (unlikely(int_shadow || mask)) { 5280 kvm_x86_ops->set_interrupt_shadow(vcpu, mask); 5281 if (!mask) 5282 kvm_make_request(KVM_REQ_EVENT, vcpu); 5283 } 5284 } 5285 5286 static bool inject_emulated_exception(struct kvm_vcpu *vcpu) 5287 { 5288 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5289 if (ctxt->exception.vector == PF_VECTOR) 5290 return kvm_propagate_fault(vcpu, &ctxt->exception); 5291 5292 if (ctxt->exception.error_code_valid) 5293 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 5294 ctxt->exception.error_code); 5295 else 5296 kvm_queue_exception(vcpu, ctxt->exception.vector); 5297 return false; 5298 } 5299 5300 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 5301 { 5302 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5303 int cs_db, cs_l; 5304 5305 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 5306 5307 ctxt->eflags = kvm_get_rflags(vcpu); 5308 ctxt->eip = kvm_rip_read(vcpu); 5309 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 5310 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 5311 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 5312 cs_db ? X86EMUL_MODE_PROT32 : 5313 X86EMUL_MODE_PROT16; 5314 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 5315 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK); 5316 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK); 5317 ctxt->emul_flags = vcpu->arch.hflags; 5318 5319 init_decode_cache(ctxt); 5320 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 5321 } 5322 5323 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 5324 { 5325 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5326 int ret; 5327 5328 init_emulate_ctxt(vcpu); 5329 5330 ctxt->op_bytes = 2; 5331 ctxt->ad_bytes = 2; 5332 ctxt->_eip = ctxt->eip + inc_eip; 5333 ret = emulate_int_real(ctxt, irq); 5334 5335 if (ret != X86EMUL_CONTINUE) 5336 return EMULATE_FAIL; 5337 5338 ctxt->eip = ctxt->_eip; 5339 kvm_rip_write(vcpu, ctxt->eip); 5340 kvm_set_rflags(vcpu, ctxt->eflags); 5341 5342 if (irq == NMI_VECTOR) 5343 vcpu->arch.nmi_pending = 0; 5344 else 5345 vcpu->arch.interrupt.pending = false; 5346 5347 return EMULATE_DONE; 5348 } 5349 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 5350 5351 static int handle_emulation_failure(struct kvm_vcpu *vcpu) 5352 { 5353 int r = EMULATE_DONE; 5354 5355 ++vcpu->stat.insn_emulation_fail; 5356 trace_kvm_emulate_insn_failed(vcpu); 5357 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) { 5358 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5359 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 5360 vcpu->run->internal.ndata = 0; 5361 r = EMULATE_FAIL; 5362 } 5363 kvm_queue_exception(vcpu, UD_VECTOR); 5364 5365 return r; 5366 } 5367 5368 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2, 5369 bool write_fault_to_shadow_pgtable, 5370 int emulation_type) 5371 { 5372 gpa_t gpa = cr2; 5373 kvm_pfn_t pfn; 5374 5375 if (emulation_type & EMULTYPE_NO_REEXECUTE) 5376 return false; 5377 5378 if (!vcpu->arch.mmu.direct_map) { 5379 /* 5380 * Write permission should be allowed since only 5381 * write access need to be emulated. 5382 */ 5383 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 5384 5385 /* 5386 * If the mapping is invalid in guest, let cpu retry 5387 * it to generate fault. 5388 */ 5389 if (gpa == UNMAPPED_GVA) 5390 return true; 5391 } 5392 5393 /* 5394 * Do not retry the unhandleable instruction if it faults on the 5395 * readonly host memory, otherwise it will goto a infinite loop: 5396 * retry instruction -> write #PF -> emulation fail -> retry 5397 * instruction -> ... 5398 */ 5399 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 5400 5401 /* 5402 * If the instruction failed on the error pfn, it can not be fixed, 5403 * report the error to userspace. 5404 */ 5405 if (is_error_noslot_pfn(pfn)) 5406 return false; 5407 5408 kvm_release_pfn_clean(pfn); 5409 5410 /* The instructions are well-emulated on direct mmu. */ 5411 if (vcpu->arch.mmu.direct_map) { 5412 unsigned int indirect_shadow_pages; 5413 5414 spin_lock(&vcpu->kvm->mmu_lock); 5415 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 5416 spin_unlock(&vcpu->kvm->mmu_lock); 5417 5418 if (indirect_shadow_pages) 5419 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 5420 5421 return true; 5422 } 5423 5424 /* 5425 * if emulation was due to access to shadowed page table 5426 * and it failed try to unshadow page and re-enter the 5427 * guest to let CPU execute the instruction. 5428 */ 5429 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 5430 5431 /* 5432 * If the access faults on its page table, it can not 5433 * be fixed by unprotecting shadow page and it should 5434 * be reported to userspace. 5435 */ 5436 return !write_fault_to_shadow_pgtable; 5437 } 5438 5439 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 5440 unsigned long cr2, int emulation_type) 5441 { 5442 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5443 unsigned long last_retry_eip, last_retry_addr, gpa = cr2; 5444 5445 last_retry_eip = vcpu->arch.last_retry_eip; 5446 last_retry_addr = vcpu->arch.last_retry_addr; 5447 5448 /* 5449 * If the emulation is caused by #PF and it is non-page_table 5450 * writing instruction, it means the VM-EXIT is caused by shadow 5451 * page protected, we can zap the shadow page and retry this 5452 * instruction directly. 5453 * 5454 * Note: if the guest uses a non-page-table modifying instruction 5455 * on the PDE that points to the instruction, then we will unmap 5456 * the instruction and go to an infinite loop. So, we cache the 5457 * last retried eip and the last fault address, if we meet the eip 5458 * and the address again, we can break out of the potential infinite 5459 * loop. 5460 */ 5461 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 5462 5463 if (!(emulation_type & EMULTYPE_RETRY)) 5464 return false; 5465 5466 if (x86_page_table_writing_insn(ctxt)) 5467 return false; 5468 5469 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2) 5470 return false; 5471 5472 vcpu->arch.last_retry_eip = ctxt->eip; 5473 vcpu->arch.last_retry_addr = cr2; 5474 5475 if (!vcpu->arch.mmu.direct_map) 5476 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 5477 5478 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 5479 5480 return true; 5481 } 5482 5483 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 5484 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 5485 5486 static void kvm_smm_changed(struct kvm_vcpu *vcpu) 5487 { 5488 if (!(vcpu->arch.hflags & HF_SMM_MASK)) { 5489 /* This is a good place to trace that we are exiting SMM. */ 5490 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false); 5491 5492 /* Process a latched INIT or SMI, if any. */ 5493 kvm_make_request(KVM_REQ_EVENT, vcpu); 5494 } 5495 5496 kvm_mmu_reset_context(vcpu); 5497 } 5498 5499 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags) 5500 { 5501 unsigned changed = vcpu->arch.hflags ^ emul_flags; 5502 5503 vcpu->arch.hflags = emul_flags; 5504 5505 if (changed & HF_SMM_MASK) 5506 kvm_smm_changed(vcpu); 5507 } 5508 5509 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 5510 unsigned long *db) 5511 { 5512 u32 dr6 = 0; 5513 int i; 5514 u32 enable, rwlen; 5515 5516 enable = dr7; 5517 rwlen = dr7 >> 16; 5518 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 5519 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 5520 dr6 |= (1 << i); 5521 return dr6; 5522 } 5523 5524 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r) 5525 { 5526 struct kvm_run *kvm_run = vcpu->run; 5527 5528 /* 5529 * rflags is the old, "raw" value of the flags. The new value has 5530 * not been saved yet. 5531 * 5532 * This is correct even for TF set by the guest, because "the 5533 * processor will not generate this exception after the instruction 5534 * that sets the TF flag". 5535 */ 5536 if (unlikely(rflags & X86_EFLAGS_TF)) { 5537 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 5538 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | 5539 DR6_RTM; 5540 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip; 5541 kvm_run->debug.arch.exception = DB_VECTOR; 5542 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5543 *r = EMULATE_USER_EXIT; 5544 } else { 5545 /* 5546 * "Certain debug exceptions may clear bit 0-3. The 5547 * remaining contents of the DR6 register are never 5548 * cleared by the processor". 5549 */ 5550 vcpu->arch.dr6 &= ~15; 5551 vcpu->arch.dr6 |= DR6_BS | DR6_RTM; 5552 kvm_queue_exception(vcpu, DB_VECTOR); 5553 } 5554 } 5555 } 5556 5557 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 5558 { 5559 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); 5560 int r = EMULATE_DONE; 5561 5562 kvm_x86_ops->skip_emulated_instruction(vcpu); 5563 kvm_vcpu_check_singlestep(vcpu, rflags, &r); 5564 return r == EMULATE_DONE; 5565 } 5566 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 5567 5568 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r) 5569 { 5570 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 5571 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 5572 struct kvm_run *kvm_run = vcpu->run; 5573 unsigned long eip = kvm_get_linear_rip(vcpu); 5574 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 5575 vcpu->arch.guest_debug_dr7, 5576 vcpu->arch.eff_db); 5577 5578 if (dr6 != 0) { 5579 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM; 5580 kvm_run->debug.arch.pc = eip; 5581 kvm_run->debug.arch.exception = DB_VECTOR; 5582 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5583 *r = EMULATE_USER_EXIT; 5584 return true; 5585 } 5586 } 5587 5588 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 5589 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) { 5590 unsigned long eip = kvm_get_linear_rip(vcpu); 5591 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 5592 vcpu->arch.dr7, 5593 vcpu->arch.db); 5594 5595 if (dr6 != 0) { 5596 vcpu->arch.dr6 &= ~15; 5597 vcpu->arch.dr6 |= dr6 | DR6_RTM; 5598 kvm_queue_exception(vcpu, DB_VECTOR); 5599 *r = EMULATE_DONE; 5600 return true; 5601 } 5602 } 5603 5604 return false; 5605 } 5606 5607 int x86_emulate_instruction(struct kvm_vcpu *vcpu, 5608 unsigned long cr2, 5609 int emulation_type, 5610 void *insn, 5611 int insn_len) 5612 { 5613 int r; 5614 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5615 bool writeback = true; 5616 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 5617 5618 /* 5619 * Clear write_fault_to_shadow_pgtable here to ensure it is 5620 * never reused. 5621 */ 5622 vcpu->arch.write_fault_to_shadow_pgtable = false; 5623 kvm_clear_exception_queue(vcpu); 5624 5625 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 5626 init_emulate_ctxt(vcpu); 5627 5628 /* 5629 * We will reenter on the same instruction since 5630 * we do not set complete_userspace_io. This does not 5631 * handle watchpoints yet, those would be handled in 5632 * the emulate_ops. 5633 */ 5634 if (kvm_vcpu_check_breakpoint(vcpu, &r)) 5635 return r; 5636 5637 ctxt->interruptibility = 0; 5638 ctxt->have_exception = false; 5639 ctxt->exception.vector = -1; 5640 ctxt->perm_ok = false; 5641 5642 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD; 5643 5644 r = x86_decode_insn(ctxt, insn, insn_len); 5645 5646 trace_kvm_emulate_insn_start(vcpu); 5647 ++vcpu->stat.insn_emulation; 5648 if (r != EMULATION_OK) { 5649 if (emulation_type & EMULTYPE_TRAP_UD) 5650 return EMULATE_FAIL; 5651 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, 5652 emulation_type)) 5653 return EMULATE_DONE; 5654 if (emulation_type & EMULTYPE_SKIP) 5655 return EMULATE_FAIL; 5656 return handle_emulation_failure(vcpu); 5657 } 5658 } 5659 5660 if (emulation_type & EMULTYPE_SKIP) { 5661 kvm_rip_write(vcpu, ctxt->_eip); 5662 if (ctxt->eflags & X86_EFLAGS_RF) 5663 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 5664 return EMULATE_DONE; 5665 } 5666 5667 if (retry_instruction(ctxt, cr2, emulation_type)) 5668 return EMULATE_DONE; 5669 5670 /* this is needed for vmware backdoor interface to work since it 5671 changes registers values during IO operation */ 5672 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 5673 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 5674 emulator_invalidate_register_cache(ctxt); 5675 } 5676 5677 restart: 5678 /* Save the faulting GPA (cr2) in the address field */ 5679 ctxt->exception.address = cr2; 5680 5681 r = x86_emulate_insn(ctxt); 5682 5683 if (r == EMULATION_INTERCEPTED) 5684 return EMULATE_DONE; 5685 5686 if (r == EMULATION_FAILED) { 5687 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, 5688 emulation_type)) 5689 return EMULATE_DONE; 5690 5691 return handle_emulation_failure(vcpu); 5692 } 5693 5694 if (ctxt->have_exception) { 5695 r = EMULATE_DONE; 5696 if (inject_emulated_exception(vcpu)) 5697 return r; 5698 } else if (vcpu->arch.pio.count) { 5699 if (!vcpu->arch.pio.in) { 5700 /* FIXME: return into emulator if single-stepping. */ 5701 vcpu->arch.pio.count = 0; 5702 } else { 5703 writeback = false; 5704 vcpu->arch.complete_userspace_io = complete_emulated_pio; 5705 } 5706 r = EMULATE_USER_EXIT; 5707 } else if (vcpu->mmio_needed) { 5708 if (!vcpu->mmio_is_write) 5709 writeback = false; 5710 r = EMULATE_USER_EXIT; 5711 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 5712 } else if (r == EMULATION_RESTART) 5713 goto restart; 5714 else 5715 r = EMULATE_DONE; 5716 5717 if (writeback) { 5718 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); 5719 toggle_interruptibility(vcpu, ctxt->interruptibility); 5720 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 5721 if (vcpu->arch.hflags != ctxt->emul_flags) 5722 kvm_set_hflags(vcpu, ctxt->emul_flags); 5723 kvm_rip_write(vcpu, ctxt->eip); 5724 if (r == EMULATE_DONE) 5725 kvm_vcpu_check_singlestep(vcpu, rflags, &r); 5726 if (!ctxt->have_exception || 5727 exception_type(ctxt->exception.vector) == EXCPT_TRAP) 5728 __kvm_set_rflags(vcpu, ctxt->eflags); 5729 5730 /* 5731 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 5732 * do nothing, and it will be requested again as soon as 5733 * the shadow expires. But we still need to check here, 5734 * because POPF has no interrupt shadow. 5735 */ 5736 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 5737 kvm_make_request(KVM_REQ_EVENT, vcpu); 5738 } else 5739 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 5740 5741 return r; 5742 } 5743 EXPORT_SYMBOL_GPL(x86_emulate_instruction); 5744 5745 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port) 5746 { 5747 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX); 5748 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt, 5749 size, port, &val, 1); 5750 /* do not return to emulator after return from userspace */ 5751 vcpu->arch.pio.count = 0; 5752 return ret; 5753 } 5754 EXPORT_SYMBOL_GPL(kvm_fast_pio_out); 5755 5756 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 5757 { 5758 unsigned long val; 5759 5760 /* We should only ever be called with arch.pio.count equal to 1 */ 5761 BUG_ON(vcpu->arch.pio.count != 1); 5762 5763 /* For size less than 4 we merge, else we zero extend */ 5764 val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) 5765 : 0; 5766 5767 /* 5768 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform 5769 * the copy and tracing 5770 */ 5771 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size, 5772 vcpu->arch.pio.port, &val, 1); 5773 kvm_register_write(vcpu, VCPU_REGS_RAX, val); 5774 5775 return 1; 5776 } 5777 5778 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port) 5779 { 5780 unsigned long val; 5781 int ret; 5782 5783 /* For size less than 4 we merge, else we zero extend */ 5784 val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0; 5785 5786 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port, 5787 &val, 1); 5788 if (ret) { 5789 kvm_register_write(vcpu, VCPU_REGS_RAX, val); 5790 return ret; 5791 } 5792 5793 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 5794 5795 return 0; 5796 } 5797 EXPORT_SYMBOL_GPL(kvm_fast_pio_in); 5798 5799 static int kvmclock_cpu_down_prep(unsigned int cpu) 5800 { 5801 __this_cpu_write(cpu_tsc_khz, 0); 5802 return 0; 5803 } 5804 5805 static void tsc_khz_changed(void *data) 5806 { 5807 struct cpufreq_freqs *freq = data; 5808 unsigned long khz = 0; 5809 5810 if (data) 5811 khz = freq->new; 5812 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 5813 khz = cpufreq_quick_get(raw_smp_processor_id()); 5814 if (!khz) 5815 khz = tsc_khz; 5816 __this_cpu_write(cpu_tsc_khz, khz); 5817 } 5818 5819 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 5820 void *data) 5821 { 5822 struct cpufreq_freqs *freq = data; 5823 struct kvm *kvm; 5824 struct kvm_vcpu *vcpu; 5825 int i, send_ipi = 0; 5826 5827 /* 5828 * We allow guests to temporarily run on slowing clocks, 5829 * provided we notify them after, or to run on accelerating 5830 * clocks, provided we notify them before. Thus time never 5831 * goes backwards. 5832 * 5833 * However, we have a problem. We can't atomically update 5834 * the frequency of a given CPU from this function; it is 5835 * merely a notifier, which can be called from any CPU. 5836 * Changing the TSC frequency at arbitrary points in time 5837 * requires a recomputation of local variables related to 5838 * the TSC for each VCPU. We must flag these local variables 5839 * to be updated and be sure the update takes place with the 5840 * new frequency before any guests proceed. 5841 * 5842 * Unfortunately, the combination of hotplug CPU and frequency 5843 * change creates an intractable locking scenario; the order 5844 * of when these callouts happen is undefined with respect to 5845 * CPU hotplug, and they can race with each other. As such, 5846 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 5847 * undefined; you can actually have a CPU frequency change take 5848 * place in between the computation of X and the setting of the 5849 * variable. To protect against this problem, all updates of 5850 * the per_cpu tsc_khz variable are done in an interrupt 5851 * protected IPI, and all callers wishing to update the value 5852 * must wait for a synchronous IPI to complete (which is trivial 5853 * if the caller is on the CPU already). This establishes the 5854 * necessary total order on variable updates. 5855 * 5856 * Note that because a guest time update may take place 5857 * anytime after the setting of the VCPU's request bit, the 5858 * correct TSC value must be set before the request. However, 5859 * to ensure the update actually makes it to any guest which 5860 * starts running in hardware virtualization between the set 5861 * and the acquisition of the spinlock, we must also ping the 5862 * CPU after setting the request bit. 5863 * 5864 */ 5865 5866 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 5867 return 0; 5868 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 5869 return 0; 5870 5871 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 5872 5873 spin_lock(&kvm_lock); 5874 list_for_each_entry(kvm, &vm_list, vm_list) { 5875 kvm_for_each_vcpu(i, vcpu, kvm) { 5876 if (vcpu->cpu != freq->cpu) 5877 continue; 5878 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5879 if (vcpu->cpu != smp_processor_id()) 5880 send_ipi = 1; 5881 } 5882 } 5883 spin_unlock(&kvm_lock); 5884 5885 if (freq->old < freq->new && send_ipi) { 5886 /* 5887 * We upscale the frequency. Must make the guest 5888 * doesn't see old kvmclock values while running with 5889 * the new frequency, otherwise we risk the guest sees 5890 * time go backwards. 5891 * 5892 * In case we update the frequency for another cpu 5893 * (which might be in guest context) send an interrupt 5894 * to kick the cpu out of guest context. Next time 5895 * guest context is entered kvmclock will be updated, 5896 * so the guest will not see stale values. 5897 */ 5898 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 5899 } 5900 return 0; 5901 } 5902 5903 static struct notifier_block kvmclock_cpufreq_notifier_block = { 5904 .notifier_call = kvmclock_cpufreq_notifier 5905 }; 5906 5907 static int kvmclock_cpu_online(unsigned int cpu) 5908 { 5909 tsc_khz_changed(NULL); 5910 return 0; 5911 } 5912 5913 static void kvm_timer_init(void) 5914 { 5915 max_tsc_khz = tsc_khz; 5916 5917 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 5918 #ifdef CONFIG_CPU_FREQ 5919 struct cpufreq_policy policy; 5920 int cpu; 5921 5922 memset(&policy, 0, sizeof(policy)); 5923 cpu = get_cpu(); 5924 cpufreq_get_policy(&policy, cpu); 5925 if (policy.cpuinfo.max_freq) 5926 max_tsc_khz = policy.cpuinfo.max_freq; 5927 put_cpu(); 5928 #endif 5929 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 5930 CPUFREQ_TRANSITION_NOTIFIER); 5931 } 5932 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz); 5933 5934 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 5935 kvmclock_cpu_online, kvmclock_cpu_down_prep); 5936 } 5937 5938 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); 5939 5940 int kvm_is_in_guest(void) 5941 { 5942 return __this_cpu_read(current_vcpu) != NULL; 5943 } 5944 5945 static int kvm_is_user_mode(void) 5946 { 5947 int user_mode = 3; 5948 5949 if (__this_cpu_read(current_vcpu)) 5950 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu)); 5951 5952 return user_mode != 0; 5953 } 5954 5955 static unsigned long kvm_get_guest_ip(void) 5956 { 5957 unsigned long ip = 0; 5958 5959 if (__this_cpu_read(current_vcpu)) 5960 ip = kvm_rip_read(__this_cpu_read(current_vcpu)); 5961 5962 return ip; 5963 } 5964 5965 static struct perf_guest_info_callbacks kvm_guest_cbs = { 5966 .is_in_guest = kvm_is_in_guest, 5967 .is_user_mode = kvm_is_user_mode, 5968 .get_guest_ip = kvm_get_guest_ip, 5969 }; 5970 5971 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu) 5972 { 5973 __this_cpu_write(current_vcpu, vcpu); 5974 } 5975 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi); 5976 5977 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu) 5978 { 5979 __this_cpu_write(current_vcpu, NULL); 5980 } 5981 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi); 5982 5983 static void kvm_set_mmio_spte_mask(void) 5984 { 5985 u64 mask; 5986 int maxphyaddr = boot_cpu_data.x86_phys_bits; 5987 5988 /* 5989 * Set the reserved bits and the present bit of an paging-structure 5990 * entry to generate page fault with PFER.RSV = 1. 5991 */ 5992 /* Mask the reserved physical address bits. */ 5993 mask = rsvd_bits(maxphyaddr, 51); 5994 5995 /* Set the present bit. */ 5996 mask |= 1ull; 5997 5998 #ifdef CONFIG_X86_64 5999 /* 6000 * If reserved bit is not supported, clear the present bit to disable 6001 * mmio page fault. 6002 */ 6003 if (maxphyaddr == 52) 6004 mask &= ~1ull; 6005 #endif 6006 6007 kvm_mmu_set_mmio_spte_mask(mask); 6008 } 6009 6010 #ifdef CONFIG_X86_64 6011 static void pvclock_gtod_update_fn(struct work_struct *work) 6012 { 6013 struct kvm *kvm; 6014 6015 struct kvm_vcpu *vcpu; 6016 int i; 6017 6018 spin_lock(&kvm_lock); 6019 list_for_each_entry(kvm, &vm_list, vm_list) 6020 kvm_for_each_vcpu(i, vcpu, kvm) 6021 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 6022 atomic_set(&kvm_guest_has_master_clock, 0); 6023 spin_unlock(&kvm_lock); 6024 } 6025 6026 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 6027 6028 /* 6029 * Notification about pvclock gtod data update. 6030 */ 6031 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 6032 void *priv) 6033 { 6034 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 6035 struct timekeeper *tk = priv; 6036 6037 update_pvclock_gtod(tk); 6038 6039 /* disable master clock if host does not trust, or does not 6040 * use, TSC clocksource 6041 */ 6042 if (gtod->clock.vclock_mode != VCLOCK_TSC && 6043 atomic_read(&kvm_guest_has_master_clock) != 0) 6044 queue_work(system_long_wq, &pvclock_gtod_work); 6045 6046 return 0; 6047 } 6048 6049 static struct notifier_block pvclock_gtod_notifier = { 6050 .notifier_call = pvclock_gtod_notify, 6051 }; 6052 #endif 6053 6054 int kvm_arch_init(void *opaque) 6055 { 6056 int r; 6057 struct kvm_x86_ops *ops = opaque; 6058 6059 if (kvm_x86_ops) { 6060 printk(KERN_ERR "kvm: already loaded the other module\n"); 6061 r = -EEXIST; 6062 goto out; 6063 } 6064 6065 if (!ops->cpu_has_kvm_support()) { 6066 printk(KERN_ERR "kvm: no hardware support\n"); 6067 r = -EOPNOTSUPP; 6068 goto out; 6069 } 6070 if (ops->disabled_by_bios()) { 6071 printk(KERN_ERR "kvm: disabled by bios\n"); 6072 r = -EOPNOTSUPP; 6073 goto out; 6074 } 6075 6076 r = -ENOMEM; 6077 shared_msrs = alloc_percpu(struct kvm_shared_msrs); 6078 if (!shared_msrs) { 6079 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n"); 6080 goto out; 6081 } 6082 6083 r = kvm_mmu_module_init(); 6084 if (r) 6085 goto out_free_percpu; 6086 6087 kvm_set_mmio_spte_mask(); 6088 6089 kvm_x86_ops = ops; 6090 6091 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, 6092 PT_DIRTY_MASK, PT64_NX_MASK, 0, 6093 PT_PRESENT_MASK, 0); 6094 kvm_timer_init(); 6095 6096 perf_register_guest_info_callbacks(&kvm_guest_cbs); 6097 6098 if (boot_cpu_has(X86_FEATURE_XSAVE)) 6099 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 6100 6101 kvm_lapic_init(); 6102 #ifdef CONFIG_X86_64 6103 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 6104 #endif 6105 6106 return 0; 6107 6108 out_free_percpu: 6109 free_percpu(shared_msrs); 6110 out: 6111 return r; 6112 } 6113 6114 void kvm_arch_exit(void) 6115 { 6116 kvm_lapic_exit(); 6117 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 6118 6119 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 6120 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 6121 CPUFREQ_TRANSITION_NOTIFIER); 6122 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 6123 #ifdef CONFIG_X86_64 6124 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 6125 #endif 6126 kvm_x86_ops = NULL; 6127 kvm_mmu_module_exit(); 6128 free_percpu(shared_msrs); 6129 } 6130 6131 int kvm_vcpu_halt(struct kvm_vcpu *vcpu) 6132 { 6133 ++vcpu->stat.halt_exits; 6134 if (lapic_in_kernel(vcpu)) { 6135 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 6136 return 1; 6137 } else { 6138 vcpu->run->exit_reason = KVM_EXIT_HLT; 6139 return 0; 6140 } 6141 } 6142 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 6143 6144 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 6145 { 6146 int ret = kvm_skip_emulated_instruction(vcpu); 6147 /* 6148 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 6149 * KVM_EXIT_DEBUG here. 6150 */ 6151 return kvm_vcpu_halt(vcpu) && ret; 6152 } 6153 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 6154 6155 #ifdef CONFIG_X86_64 6156 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 6157 unsigned long clock_type) 6158 { 6159 struct kvm_clock_pairing clock_pairing; 6160 struct timespec ts; 6161 u64 cycle; 6162 int ret; 6163 6164 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 6165 return -KVM_EOPNOTSUPP; 6166 6167 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false) 6168 return -KVM_EOPNOTSUPP; 6169 6170 clock_pairing.sec = ts.tv_sec; 6171 clock_pairing.nsec = ts.tv_nsec; 6172 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 6173 clock_pairing.flags = 0; 6174 6175 ret = 0; 6176 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 6177 sizeof(struct kvm_clock_pairing))) 6178 ret = -KVM_EFAULT; 6179 6180 return ret; 6181 } 6182 #endif 6183 6184 /* 6185 * kvm_pv_kick_cpu_op: Kick a vcpu. 6186 * 6187 * @apicid - apicid of vcpu to be kicked. 6188 */ 6189 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid) 6190 { 6191 struct kvm_lapic_irq lapic_irq; 6192 6193 lapic_irq.shorthand = 0; 6194 lapic_irq.dest_mode = 0; 6195 lapic_irq.dest_id = apicid; 6196 lapic_irq.msi_redir_hint = false; 6197 6198 lapic_irq.delivery_mode = APIC_DM_REMRD; 6199 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 6200 } 6201 6202 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu) 6203 { 6204 vcpu->arch.apicv_active = false; 6205 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu); 6206 } 6207 6208 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 6209 { 6210 unsigned long nr, a0, a1, a2, a3, ret; 6211 int op_64_bit, r; 6212 6213 r = kvm_skip_emulated_instruction(vcpu); 6214 6215 if (kvm_hv_hypercall_enabled(vcpu->kvm)) 6216 return kvm_hv_hypercall(vcpu); 6217 6218 nr = kvm_register_read(vcpu, VCPU_REGS_RAX); 6219 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX); 6220 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX); 6221 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX); 6222 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI); 6223 6224 trace_kvm_hypercall(nr, a0, a1, a2, a3); 6225 6226 op_64_bit = is_64_bit_mode(vcpu); 6227 if (!op_64_bit) { 6228 nr &= 0xFFFFFFFF; 6229 a0 &= 0xFFFFFFFF; 6230 a1 &= 0xFFFFFFFF; 6231 a2 &= 0xFFFFFFFF; 6232 a3 &= 0xFFFFFFFF; 6233 } 6234 6235 if (kvm_x86_ops->get_cpl(vcpu) != 0) { 6236 ret = -KVM_EPERM; 6237 goto out; 6238 } 6239 6240 switch (nr) { 6241 case KVM_HC_VAPIC_POLL_IRQ: 6242 ret = 0; 6243 break; 6244 case KVM_HC_KICK_CPU: 6245 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1); 6246 ret = 0; 6247 break; 6248 #ifdef CONFIG_X86_64 6249 case KVM_HC_CLOCK_PAIRING: 6250 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 6251 break; 6252 #endif 6253 default: 6254 ret = -KVM_ENOSYS; 6255 break; 6256 } 6257 out: 6258 if (!op_64_bit) 6259 ret = (u32)ret; 6260 kvm_register_write(vcpu, VCPU_REGS_RAX, ret); 6261 ++vcpu->stat.hypercalls; 6262 return r; 6263 } 6264 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 6265 6266 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 6267 { 6268 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6269 char instruction[3]; 6270 unsigned long rip = kvm_rip_read(vcpu); 6271 6272 kvm_x86_ops->patch_hypercall(vcpu, instruction); 6273 6274 return emulator_write_emulated(ctxt, rip, instruction, 3, 6275 &ctxt->exception); 6276 } 6277 6278 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 6279 { 6280 return vcpu->run->request_interrupt_window && 6281 likely(!pic_in_kernel(vcpu->kvm)); 6282 } 6283 6284 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 6285 { 6286 struct kvm_run *kvm_run = vcpu->run; 6287 6288 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; 6289 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0; 6290 kvm_run->cr8 = kvm_get_cr8(vcpu); 6291 kvm_run->apic_base = kvm_get_apic_base(vcpu); 6292 kvm_run->ready_for_interrupt_injection = 6293 pic_in_kernel(vcpu->kvm) || 6294 kvm_vcpu_ready_for_interrupt_injection(vcpu); 6295 } 6296 6297 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 6298 { 6299 int max_irr, tpr; 6300 6301 if (!kvm_x86_ops->update_cr8_intercept) 6302 return; 6303 6304 if (!lapic_in_kernel(vcpu)) 6305 return; 6306 6307 if (vcpu->arch.apicv_active) 6308 return; 6309 6310 if (!vcpu->arch.apic->vapic_addr) 6311 max_irr = kvm_lapic_find_highest_irr(vcpu); 6312 else 6313 max_irr = -1; 6314 6315 if (max_irr != -1) 6316 max_irr >>= 4; 6317 6318 tpr = kvm_lapic_get_cr8(vcpu); 6319 6320 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); 6321 } 6322 6323 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win) 6324 { 6325 int r; 6326 6327 /* try to reinject previous events if any */ 6328 if (vcpu->arch.exception.pending) { 6329 trace_kvm_inj_exception(vcpu->arch.exception.nr, 6330 vcpu->arch.exception.has_error_code, 6331 vcpu->arch.exception.error_code); 6332 6333 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT) 6334 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 6335 X86_EFLAGS_RF); 6336 6337 if (vcpu->arch.exception.nr == DB_VECTOR && 6338 (vcpu->arch.dr7 & DR7_GD)) { 6339 vcpu->arch.dr7 &= ~DR7_GD; 6340 kvm_update_dr7(vcpu); 6341 } 6342 6343 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr, 6344 vcpu->arch.exception.has_error_code, 6345 vcpu->arch.exception.error_code, 6346 vcpu->arch.exception.reinject); 6347 return 0; 6348 } 6349 6350 if (vcpu->arch.nmi_injected) { 6351 kvm_x86_ops->set_nmi(vcpu); 6352 return 0; 6353 } 6354 6355 if (vcpu->arch.interrupt.pending) { 6356 kvm_x86_ops->set_irq(vcpu); 6357 return 0; 6358 } 6359 6360 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) { 6361 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win); 6362 if (r != 0) 6363 return r; 6364 } 6365 6366 /* try to inject new event if pending */ 6367 if (vcpu->arch.smi_pending && !is_smm(vcpu)) { 6368 vcpu->arch.smi_pending = false; 6369 enter_smm(vcpu); 6370 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) { 6371 --vcpu->arch.nmi_pending; 6372 vcpu->arch.nmi_injected = true; 6373 kvm_x86_ops->set_nmi(vcpu); 6374 } else if (kvm_cpu_has_injectable_intr(vcpu)) { 6375 /* 6376 * Because interrupts can be injected asynchronously, we are 6377 * calling check_nested_events again here to avoid a race condition. 6378 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this 6379 * proposal and current concerns. Perhaps we should be setting 6380 * KVM_REQ_EVENT only on certain events and not unconditionally? 6381 */ 6382 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) { 6383 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win); 6384 if (r != 0) 6385 return r; 6386 } 6387 if (kvm_x86_ops->interrupt_allowed(vcpu)) { 6388 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), 6389 false); 6390 kvm_x86_ops->set_irq(vcpu); 6391 } 6392 } 6393 6394 return 0; 6395 } 6396 6397 static void process_nmi(struct kvm_vcpu *vcpu) 6398 { 6399 unsigned limit = 2; 6400 6401 /* 6402 * x86 is limited to one NMI running, and one NMI pending after it. 6403 * If an NMI is already in progress, limit further NMIs to just one. 6404 * Otherwise, allow two (and we'll inject the first one immediately). 6405 */ 6406 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) 6407 limit = 1; 6408 6409 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 6410 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 6411 kvm_make_request(KVM_REQ_EVENT, vcpu); 6412 } 6413 6414 #define put_smstate(type, buf, offset, val) \ 6415 *(type *)((buf) + (offset) - 0x7e00) = val 6416 6417 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg) 6418 { 6419 u32 flags = 0; 6420 flags |= seg->g << 23; 6421 flags |= seg->db << 22; 6422 flags |= seg->l << 21; 6423 flags |= seg->avl << 20; 6424 flags |= seg->present << 15; 6425 flags |= seg->dpl << 13; 6426 flags |= seg->s << 12; 6427 flags |= seg->type << 8; 6428 return flags; 6429 } 6430 6431 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n) 6432 { 6433 struct kvm_segment seg; 6434 int offset; 6435 6436 kvm_get_segment(vcpu, &seg, n); 6437 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector); 6438 6439 if (n < 3) 6440 offset = 0x7f84 + n * 12; 6441 else 6442 offset = 0x7f2c + (n - 3) * 12; 6443 6444 put_smstate(u32, buf, offset + 8, seg.base); 6445 put_smstate(u32, buf, offset + 4, seg.limit); 6446 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg)); 6447 } 6448 6449 #ifdef CONFIG_X86_64 6450 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n) 6451 { 6452 struct kvm_segment seg; 6453 int offset; 6454 u16 flags; 6455 6456 kvm_get_segment(vcpu, &seg, n); 6457 offset = 0x7e00 + n * 16; 6458 6459 flags = enter_smm_get_segment_flags(&seg) >> 8; 6460 put_smstate(u16, buf, offset, seg.selector); 6461 put_smstate(u16, buf, offset + 2, flags); 6462 put_smstate(u32, buf, offset + 4, seg.limit); 6463 put_smstate(u64, buf, offset + 8, seg.base); 6464 } 6465 #endif 6466 6467 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf) 6468 { 6469 struct desc_ptr dt; 6470 struct kvm_segment seg; 6471 unsigned long val; 6472 int i; 6473 6474 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu)); 6475 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu)); 6476 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu)); 6477 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu)); 6478 6479 for (i = 0; i < 8; i++) 6480 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i)); 6481 6482 kvm_get_dr(vcpu, 6, &val); 6483 put_smstate(u32, buf, 0x7fcc, (u32)val); 6484 kvm_get_dr(vcpu, 7, &val); 6485 put_smstate(u32, buf, 0x7fc8, (u32)val); 6486 6487 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 6488 put_smstate(u32, buf, 0x7fc4, seg.selector); 6489 put_smstate(u32, buf, 0x7f64, seg.base); 6490 put_smstate(u32, buf, 0x7f60, seg.limit); 6491 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg)); 6492 6493 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 6494 put_smstate(u32, buf, 0x7fc0, seg.selector); 6495 put_smstate(u32, buf, 0x7f80, seg.base); 6496 put_smstate(u32, buf, 0x7f7c, seg.limit); 6497 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg)); 6498 6499 kvm_x86_ops->get_gdt(vcpu, &dt); 6500 put_smstate(u32, buf, 0x7f74, dt.address); 6501 put_smstate(u32, buf, 0x7f70, dt.size); 6502 6503 kvm_x86_ops->get_idt(vcpu, &dt); 6504 put_smstate(u32, buf, 0x7f58, dt.address); 6505 put_smstate(u32, buf, 0x7f54, dt.size); 6506 6507 for (i = 0; i < 6; i++) 6508 enter_smm_save_seg_32(vcpu, buf, i); 6509 6510 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu)); 6511 6512 /* revision id */ 6513 put_smstate(u32, buf, 0x7efc, 0x00020000); 6514 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase); 6515 } 6516 6517 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf) 6518 { 6519 #ifdef CONFIG_X86_64 6520 struct desc_ptr dt; 6521 struct kvm_segment seg; 6522 unsigned long val; 6523 int i; 6524 6525 for (i = 0; i < 16; i++) 6526 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i)); 6527 6528 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu)); 6529 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu)); 6530 6531 kvm_get_dr(vcpu, 6, &val); 6532 put_smstate(u64, buf, 0x7f68, val); 6533 kvm_get_dr(vcpu, 7, &val); 6534 put_smstate(u64, buf, 0x7f60, val); 6535 6536 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu)); 6537 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu)); 6538 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu)); 6539 6540 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase); 6541 6542 /* revision id */ 6543 put_smstate(u32, buf, 0x7efc, 0x00020064); 6544 6545 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer); 6546 6547 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 6548 put_smstate(u16, buf, 0x7e90, seg.selector); 6549 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8); 6550 put_smstate(u32, buf, 0x7e94, seg.limit); 6551 put_smstate(u64, buf, 0x7e98, seg.base); 6552 6553 kvm_x86_ops->get_idt(vcpu, &dt); 6554 put_smstate(u32, buf, 0x7e84, dt.size); 6555 put_smstate(u64, buf, 0x7e88, dt.address); 6556 6557 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 6558 put_smstate(u16, buf, 0x7e70, seg.selector); 6559 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8); 6560 put_smstate(u32, buf, 0x7e74, seg.limit); 6561 put_smstate(u64, buf, 0x7e78, seg.base); 6562 6563 kvm_x86_ops->get_gdt(vcpu, &dt); 6564 put_smstate(u32, buf, 0x7e64, dt.size); 6565 put_smstate(u64, buf, 0x7e68, dt.address); 6566 6567 for (i = 0; i < 6; i++) 6568 enter_smm_save_seg_64(vcpu, buf, i); 6569 #else 6570 WARN_ON_ONCE(1); 6571 #endif 6572 } 6573 6574 static void enter_smm(struct kvm_vcpu *vcpu) 6575 { 6576 struct kvm_segment cs, ds; 6577 struct desc_ptr dt; 6578 char buf[512]; 6579 u32 cr0; 6580 6581 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true); 6582 vcpu->arch.hflags |= HF_SMM_MASK; 6583 memset(buf, 0, 512); 6584 if (guest_cpuid_has_longmode(vcpu)) 6585 enter_smm_save_state_64(vcpu, buf); 6586 else 6587 enter_smm_save_state_32(vcpu, buf); 6588 6589 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf)); 6590 6591 if (kvm_x86_ops->get_nmi_mask(vcpu)) 6592 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 6593 else 6594 kvm_x86_ops->set_nmi_mask(vcpu, true); 6595 6596 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 6597 kvm_rip_write(vcpu, 0x8000); 6598 6599 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG); 6600 kvm_x86_ops->set_cr0(vcpu, cr0); 6601 vcpu->arch.cr0 = cr0; 6602 6603 kvm_x86_ops->set_cr4(vcpu, 0); 6604 6605 /* Undocumented: IDT limit is set to zero on entry to SMM. */ 6606 dt.address = dt.size = 0; 6607 kvm_x86_ops->set_idt(vcpu, &dt); 6608 6609 __kvm_set_dr(vcpu, 7, DR7_FIXED_1); 6610 6611 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff; 6612 cs.base = vcpu->arch.smbase; 6613 6614 ds.selector = 0; 6615 ds.base = 0; 6616 6617 cs.limit = ds.limit = 0xffffffff; 6618 cs.type = ds.type = 0x3; 6619 cs.dpl = ds.dpl = 0; 6620 cs.db = ds.db = 0; 6621 cs.s = ds.s = 1; 6622 cs.l = ds.l = 0; 6623 cs.g = ds.g = 1; 6624 cs.avl = ds.avl = 0; 6625 cs.present = ds.present = 1; 6626 cs.unusable = ds.unusable = 0; 6627 cs.padding = ds.padding = 0; 6628 6629 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 6630 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS); 6631 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES); 6632 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS); 6633 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS); 6634 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS); 6635 6636 if (guest_cpuid_has_longmode(vcpu)) 6637 kvm_x86_ops->set_efer(vcpu, 0); 6638 6639 kvm_update_cpuid(vcpu); 6640 kvm_mmu_reset_context(vcpu); 6641 } 6642 6643 static void process_smi(struct kvm_vcpu *vcpu) 6644 { 6645 vcpu->arch.smi_pending = true; 6646 kvm_make_request(KVM_REQ_EVENT, vcpu); 6647 } 6648 6649 void kvm_make_scan_ioapic_request(struct kvm *kvm) 6650 { 6651 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 6652 } 6653 6654 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 6655 { 6656 u64 eoi_exit_bitmap[4]; 6657 6658 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 6659 return; 6660 6661 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 6662 6663 if (irqchip_split(vcpu->kvm)) 6664 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 6665 else { 6666 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active) 6667 kvm_x86_ops->sync_pir_to_irr(vcpu); 6668 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 6669 } 6670 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors, 6671 vcpu_to_synic(vcpu)->vec_bitmap, 256); 6672 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap); 6673 } 6674 6675 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu) 6676 { 6677 ++vcpu->stat.tlb_flush; 6678 kvm_x86_ops->tlb_flush(vcpu); 6679 } 6680 6681 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 6682 { 6683 struct page *page = NULL; 6684 6685 if (!lapic_in_kernel(vcpu)) 6686 return; 6687 6688 if (!kvm_x86_ops->set_apic_access_page_addr) 6689 return; 6690 6691 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 6692 if (is_error_page(page)) 6693 return; 6694 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page)); 6695 6696 /* 6697 * Do not pin apic access page in memory, the MMU notifier 6698 * will call us again if it is migrated or swapped out. 6699 */ 6700 put_page(page); 6701 } 6702 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page); 6703 6704 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm, 6705 unsigned long address) 6706 { 6707 /* 6708 * The physical address of apic access page is stored in the VMCS. 6709 * Update it when it becomes invalid. 6710 */ 6711 if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT)) 6712 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 6713 } 6714 6715 /* 6716 * Returns 1 to let vcpu_run() continue the guest execution loop without 6717 * exiting to the userspace. Otherwise, the value will be returned to the 6718 * userspace. 6719 */ 6720 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 6721 { 6722 int r; 6723 bool req_int_win = 6724 dm_request_for_irq_injection(vcpu) && 6725 kvm_cpu_accept_dm_intr(vcpu); 6726 6727 bool req_immediate_exit = false; 6728 6729 if (vcpu->requests) { 6730 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) 6731 kvm_mmu_unload(vcpu); 6732 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 6733 __kvm_migrate_timers(vcpu); 6734 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 6735 kvm_gen_update_masterclock(vcpu->kvm); 6736 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 6737 kvm_gen_kvmclock_update(vcpu); 6738 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 6739 r = kvm_guest_time_update(vcpu); 6740 if (unlikely(r)) 6741 goto out; 6742 } 6743 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 6744 kvm_mmu_sync_roots(vcpu); 6745 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 6746 kvm_vcpu_flush_tlb(vcpu); 6747 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 6748 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 6749 r = 0; 6750 goto out; 6751 } 6752 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 6753 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 6754 r = 0; 6755 goto out; 6756 } 6757 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 6758 /* Page is swapped out. Do synthetic halt */ 6759 vcpu->arch.apf.halted = true; 6760 r = 1; 6761 goto out; 6762 } 6763 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 6764 record_steal_time(vcpu); 6765 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 6766 process_smi(vcpu); 6767 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 6768 process_nmi(vcpu); 6769 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 6770 kvm_pmu_handle_event(vcpu); 6771 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 6772 kvm_pmu_deliver_pmi(vcpu); 6773 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 6774 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 6775 if (test_bit(vcpu->arch.pending_ioapic_eoi, 6776 vcpu->arch.ioapic_handled_vectors)) { 6777 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 6778 vcpu->run->eoi.vector = 6779 vcpu->arch.pending_ioapic_eoi; 6780 r = 0; 6781 goto out; 6782 } 6783 } 6784 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 6785 vcpu_scan_ioapic(vcpu); 6786 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 6787 kvm_vcpu_reload_apic_access_page(vcpu); 6788 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 6789 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 6790 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 6791 r = 0; 6792 goto out; 6793 } 6794 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 6795 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 6796 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 6797 r = 0; 6798 goto out; 6799 } 6800 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 6801 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 6802 vcpu->run->hyperv = vcpu->arch.hyperv.exit; 6803 r = 0; 6804 goto out; 6805 } 6806 6807 /* 6808 * KVM_REQ_HV_STIMER has to be processed after 6809 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 6810 * depend on the guest clock being up-to-date 6811 */ 6812 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 6813 kvm_hv_process_stimers(vcpu); 6814 } 6815 6816 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { 6817 ++vcpu->stat.req_event; 6818 kvm_apic_accept_events(vcpu); 6819 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 6820 r = 1; 6821 goto out; 6822 } 6823 6824 if (inject_pending_event(vcpu, req_int_win) != 0) 6825 req_immediate_exit = true; 6826 else { 6827 /* Enable NMI/IRQ window open exits if needed. 6828 * 6829 * SMIs have two cases: 1) they can be nested, and 6830 * then there is nothing to do here because RSM will 6831 * cause a vmexit anyway; 2) or the SMI can be pending 6832 * because inject_pending_event has completed the 6833 * injection of an IRQ or NMI from the previous vmexit, 6834 * and then we request an immediate exit to inject the SMI. 6835 */ 6836 if (vcpu->arch.smi_pending && !is_smm(vcpu)) 6837 req_immediate_exit = true; 6838 if (vcpu->arch.nmi_pending) 6839 kvm_x86_ops->enable_nmi_window(vcpu); 6840 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win) 6841 kvm_x86_ops->enable_irq_window(vcpu); 6842 } 6843 6844 if (kvm_lapic_enabled(vcpu)) { 6845 update_cr8_intercept(vcpu); 6846 kvm_lapic_sync_to_vapic(vcpu); 6847 } 6848 } 6849 6850 r = kvm_mmu_reload(vcpu); 6851 if (unlikely(r)) { 6852 goto cancel_injection; 6853 } 6854 6855 preempt_disable(); 6856 6857 kvm_x86_ops->prepare_guest_switch(vcpu); 6858 kvm_load_guest_fpu(vcpu); 6859 6860 /* 6861 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 6862 * IPI are then delayed after guest entry, which ensures that they 6863 * result in virtual interrupt delivery. 6864 */ 6865 local_irq_disable(); 6866 vcpu->mode = IN_GUEST_MODE; 6867 6868 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 6869 6870 /* 6871 * 1) We should set ->mode before checking ->requests. Please see 6872 * the comment in kvm_make_all_cpus_request. 6873 * 6874 * 2) For APICv, we should set ->mode before checking PIR.ON. This 6875 * pairs with the memory barrier implicit in pi_test_and_set_on 6876 * (see vmx_deliver_posted_interrupt). 6877 * 6878 * 3) This also orders the write to mode from any reads to the page 6879 * tables done while the VCPU is running. Please see the comment 6880 * in kvm_flush_remote_tlbs. 6881 */ 6882 smp_mb__after_srcu_read_unlock(); 6883 6884 /* 6885 * This handles the case where a posted interrupt was 6886 * notified with kvm_vcpu_kick. 6887 */ 6888 if (kvm_lapic_enabled(vcpu)) { 6889 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active) 6890 kvm_x86_ops->sync_pir_to_irr(vcpu); 6891 } 6892 6893 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests 6894 || need_resched() || signal_pending(current)) { 6895 vcpu->mode = OUTSIDE_GUEST_MODE; 6896 smp_wmb(); 6897 local_irq_enable(); 6898 preempt_enable(); 6899 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 6900 r = 1; 6901 goto cancel_injection; 6902 } 6903 6904 kvm_load_guest_xcr0(vcpu); 6905 6906 if (req_immediate_exit) { 6907 kvm_make_request(KVM_REQ_EVENT, vcpu); 6908 smp_send_reschedule(vcpu->cpu); 6909 } 6910 6911 trace_kvm_entry(vcpu->vcpu_id); 6912 wait_lapic_expire(vcpu); 6913 guest_enter_irqoff(); 6914 6915 if (unlikely(vcpu->arch.switch_db_regs)) { 6916 set_debugreg(0, 7); 6917 set_debugreg(vcpu->arch.eff_db[0], 0); 6918 set_debugreg(vcpu->arch.eff_db[1], 1); 6919 set_debugreg(vcpu->arch.eff_db[2], 2); 6920 set_debugreg(vcpu->arch.eff_db[3], 3); 6921 set_debugreg(vcpu->arch.dr6, 6); 6922 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 6923 } 6924 6925 kvm_x86_ops->run(vcpu); 6926 6927 /* 6928 * Do this here before restoring debug registers on the host. And 6929 * since we do this before handling the vmexit, a DR access vmexit 6930 * can (a) read the correct value of the debug registers, (b) set 6931 * KVM_DEBUGREG_WONT_EXIT again. 6932 */ 6933 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 6934 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 6935 kvm_x86_ops->sync_dirty_debug_regs(vcpu); 6936 kvm_update_dr0123(vcpu); 6937 kvm_update_dr6(vcpu); 6938 kvm_update_dr7(vcpu); 6939 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 6940 } 6941 6942 /* 6943 * If the guest has used debug registers, at least dr7 6944 * will be disabled while returning to the host. 6945 * If we don't have active breakpoints in the host, we don't 6946 * care about the messed up debug address registers. But if 6947 * we have some of them active, restore the old state. 6948 */ 6949 if (hw_breakpoint_active()) 6950 hw_breakpoint_restore(); 6951 6952 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 6953 6954 vcpu->mode = OUTSIDE_GUEST_MODE; 6955 smp_wmb(); 6956 6957 kvm_put_guest_xcr0(vcpu); 6958 6959 kvm_x86_ops->handle_external_intr(vcpu); 6960 6961 ++vcpu->stat.exits; 6962 6963 guest_exit_irqoff(); 6964 6965 local_irq_enable(); 6966 preempt_enable(); 6967 6968 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 6969 6970 /* 6971 * Profile KVM exit RIPs: 6972 */ 6973 if (unlikely(prof_on == KVM_PROFILING)) { 6974 unsigned long rip = kvm_rip_read(vcpu); 6975 profile_hit(KVM_PROFILING, (void *)rip); 6976 } 6977 6978 if (unlikely(vcpu->arch.tsc_always_catchup)) 6979 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 6980 6981 if (vcpu->arch.apic_attention) 6982 kvm_lapic_sync_from_vapic(vcpu); 6983 6984 r = kvm_x86_ops->handle_exit(vcpu); 6985 return r; 6986 6987 cancel_injection: 6988 kvm_x86_ops->cancel_injection(vcpu); 6989 if (unlikely(vcpu->arch.apic_attention)) 6990 kvm_lapic_sync_from_vapic(vcpu); 6991 out: 6992 return r; 6993 } 6994 6995 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu) 6996 { 6997 if (!kvm_arch_vcpu_runnable(vcpu) && 6998 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) { 6999 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 7000 kvm_vcpu_block(vcpu); 7001 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 7002 7003 if (kvm_x86_ops->post_block) 7004 kvm_x86_ops->post_block(vcpu); 7005 7006 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu)) 7007 return 1; 7008 } 7009 7010 kvm_apic_accept_events(vcpu); 7011 switch(vcpu->arch.mp_state) { 7012 case KVM_MP_STATE_HALTED: 7013 vcpu->arch.pv.pv_unhalted = false; 7014 vcpu->arch.mp_state = 7015 KVM_MP_STATE_RUNNABLE; 7016 case KVM_MP_STATE_RUNNABLE: 7017 vcpu->arch.apf.halted = false; 7018 break; 7019 case KVM_MP_STATE_INIT_RECEIVED: 7020 break; 7021 default: 7022 return -EINTR; 7023 break; 7024 } 7025 return 1; 7026 } 7027 7028 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 7029 { 7030 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) 7031 kvm_x86_ops->check_nested_events(vcpu, false); 7032 7033 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 7034 !vcpu->arch.apf.halted); 7035 } 7036 7037 static int vcpu_run(struct kvm_vcpu *vcpu) 7038 { 7039 int r; 7040 struct kvm *kvm = vcpu->kvm; 7041 7042 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 7043 7044 for (;;) { 7045 if (kvm_vcpu_running(vcpu)) { 7046 r = vcpu_enter_guest(vcpu); 7047 } else { 7048 r = vcpu_block(kvm, vcpu); 7049 } 7050 7051 if (r <= 0) 7052 break; 7053 7054 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests); 7055 if (kvm_cpu_has_pending_timer(vcpu)) 7056 kvm_inject_pending_timer_irqs(vcpu); 7057 7058 if (dm_request_for_irq_injection(vcpu) && 7059 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 7060 r = 0; 7061 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 7062 ++vcpu->stat.request_irq_exits; 7063 break; 7064 } 7065 7066 kvm_check_async_pf_completion(vcpu); 7067 7068 if (signal_pending(current)) { 7069 r = -EINTR; 7070 vcpu->run->exit_reason = KVM_EXIT_INTR; 7071 ++vcpu->stat.signal_exits; 7072 break; 7073 } 7074 if (need_resched()) { 7075 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 7076 cond_resched(); 7077 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 7078 } 7079 } 7080 7081 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 7082 7083 return r; 7084 } 7085 7086 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 7087 { 7088 int r; 7089 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 7090 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 7091 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 7092 if (r != EMULATE_DONE) 7093 return 0; 7094 return 1; 7095 } 7096 7097 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 7098 { 7099 BUG_ON(!vcpu->arch.pio.count); 7100 7101 return complete_emulated_io(vcpu); 7102 } 7103 7104 /* 7105 * Implements the following, as a state machine: 7106 * 7107 * read: 7108 * for each fragment 7109 * for each mmio piece in the fragment 7110 * write gpa, len 7111 * exit 7112 * copy data 7113 * execute insn 7114 * 7115 * write: 7116 * for each fragment 7117 * for each mmio piece in the fragment 7118 * write gpa, len 7119 * copy data 7120 * exit 7121 */ 7122 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 7123 { 7124 struct kvm_run *run = vcpu->run; 7125 struct kvm_mmio_fragment *frag; 7126 unsigned len; 7127 7128 BUG_ON(!vcpu->mmio_needed); 7129 7130 /* Complete previous fragment */ 7131 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 7132 len = min(8u, frag->len); 7133 if (!vcpu->mmio_is_write) 7134 memcpy(frag->data, run->mmio.data, len); 7135 7136 if (frag->len <= 8) { 7137 /* Switch to the next fragment. */ 7138 frag++; 7139 vcpu->mmio_cur_fragment++; 7140 } else { 7141 /* Go forward to the next mmio piece. */ 7142 frag->data += len; 7143 frag->gpa += len; 7144 frag->len -= len; 7145 } 7146 7147 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 7148 vcpu->mmio_needed = 0; 7149 7150 /* FIXME: return into emulator if single-stepping. */ 7151 if (vcpu->mmio_is_write) 7152 return 1; 7153 vcpu->mmio_read_completed = 1; 7154 return complete_emulated_io(vcpu); 7155 } 7156 7157 run->exit_reason = KVM_EXIT_MMIO; 7158 run->mmio.phys_addr = frag->gpa; 7159 if (vcpu->mmio_is_write) 7160 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 7161 run->mmio.len = min(8u, frag->len); 7162 run->mmio.is_write = vcpu->mmio_is_write; 7163 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 7164 return 0; 7165 } 7166 7167 7168 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 7169 { 7170 struct fpu *fpu = ¤t->thread.fpu; 7171 int r; 7172 sigset_t sigsaved; 7173 7174 fpu__activate_curr(fpu); 7175 7176 if (vcpu->sigset_active) 7177 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); 7178 7179 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 7180 kvm_vcpu_block(vcpu); 7181 kvm_apic_accept_events(vcpu); 7182 clear_bit(KVM_REQ_UNHALT, &vcpu->requests); 7183 r = -EAGAIN; 7184 goto out; 7185 } 7186 7187 /* re-sync apic's tpr */ 7188 if (!lapic_in_kernel(vcpu)) { 7189 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 7190 r = -EINVAL; 7191 goto out; 7192 } 7193 } 7194 7195 if (unlikely(vcpu->arch.complete_userspace_io)) { 7196 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 7197 vcpu->arch.complete_userspace_io = NULL; 7198 r = cui(vcpu); 7199 if (r <= 0) 7200 goto out; 7201 } else 7202 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); 7203 7204 if (kvm_run->immediate_exit) 7205 r = -EINTR; 7206 else 7207 r = vcpu_run(vcpu); 7208 7209 out: 7210 post_kvm_run_save(vcpu); 7211 if (vcpu->sigset_active) 7212 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 7213 7214 return r; 7215 } 7216 7217 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 7218 { 7219 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 7220 /* 7221 * We are here if userspace calls get_regs() in the middle of 7222 * instruction emulation. Registers state needs to be copied 7223 * back from emulation context to vcpu. Userspace shouldn't do 7224 * that usually, but some bad designed PV devices (vmware 7225 * backdoor interface) need this to work 7226 */ 7227 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt); 7228 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 7229 } 7230 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX); 7231 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX); 7232 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX); 7233 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX); 7234 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI); 7235 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI); 7236 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); 7237 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP); 7238 #ifdef CONFIG_X86_64 7239 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8); 7240 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9); 7241 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10); 7242 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11); 7243 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12); 7244 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13); 7245 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14); 7246 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15); 7247 #endif 7248 7249 regs->rip = kvm_rip_read(vcpu); 7250 regs->rflags = kvm_get_rflags(vcpu); 7251 7252 return 0; 7253 } 7254 7255 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 7256 { 7257 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 7258 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 7259 7260 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax); 7261 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx); 7262 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx); 7263 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx); 7264 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi); 7265 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi); 7266 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp); 7267 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp); 7268 #ifdef CONFIG_X86_64 7269 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8); 7270 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9); 7271 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10); 7272 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11); 7273 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12); 7274 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13); 7275 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14); 7276 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15); 7277 #endif 7278 7279 kvm_rip_write(vcpu, regs->rip); 7280 kvm_set_rflags(vcpu, regs->rflags); 7281 7282 vcpu->arch.exception.pending = false; 7283 7284 kvm_make_request(KVM_REQ_EVENT, vcpu); 7285 7286 return 0; 7287 } 7288 7289 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 7290 { 7291 struct kvm_segment cs; 7292 7293 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 7294 *db = cs.db; 7295 *l = cs.l; 7296 } 7297 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); 7298 7299 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 7300 struct kvm_sregs *sregs) 7301 { 7302 struct desc_ptr dt; 7303 7304 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 7305 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 7306 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 7307 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 7308 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 7309 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 7310 7311 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 7312 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 7313 7314 kvm_x86_ops->get_idt(vcpu, &dt); 7315 sregs->idt.limit = dt.size; 7316 sregs->idt.base = dt.address; 7317 kvm_x86_ops->get_gdt(vcpu, &dt); 7318 sregs->gdt.limit = dt.size; 7319 sregs->gdt.base = dt.address; 7320 7321 sregs->cr0 = kvm_read_cr0(vcpu); 7322 sregs->cr2 = vcpu->arch.cr2; 7323 sregs->cr3 = kvm_read_cr3(vcpu); 7324 sregs->cr4 = kvm_read_cr4(vcpu); 7325 sregs->cr8 = kvm_get_cr8(vcpu); 7326 sregs->efer = vcpu->arch.efer; 7327 sregs->apic_base = kvm_get_apic_base(vcpu); 7328 7329 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap); 7330 7331 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft) 7332 set_bit(vcpu->arch.interrupt.nr, 7333 (unsigned long *)sregs->interrupt_bitmap); 7334 7335 return 0; 7336 } 7337 7338 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 7339 struct kvm_mp_state *mp_state) 7340 { 7341 kvm_apic_accept_events(vcpu); 7342 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED && 7343 vcpu->arch.pv.pv_unhalted) 7344 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 7345 else 7346 mp_state->mp_state = vcpu->arch.mp_state; 7347 7348 return 0; 7349 } 7350 7351 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 7352 struct kvm_mp_state *mp_state) 7353 { 7354 if (!lapic_in_kernel(vcpu) && 7355 mp_state->mp_state != KVM_MP_STATE_RUNNABLE) 7356 return -EINVAL; 7357 7358 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 7359 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 7360 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 7361 } else 7362 vcpu->arch.mp_state = mp_state->mp_state; 7363 kvm_make_request(KVM_REQ_EVENT, vcpu); 7364 return 0; 7365 } 7366 7367 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 7368 int reason, bool has_error_code, u32 error_code) 7369 { 7370 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 7371 int ret; 7372 7373 init_emulate_ctxt(vcpu); 7374 7375 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 7376 has_error_code, error_code); 7377 7378 if (ret) 7379 return EMULATE_FAIL; 7380 7381 kvm_rip_write(vcpu, ctxt->eip); 7382 kvm_set_rflags(vcpu, ctxt->eflags); 7383 kvm_make_request(KVM_REQ_EVENT, vcpu); 7384 return EMULATE_DONE; 7385 } 7386 EXPORT_SYMBOL_GPL(kvm_task_switch); 7387 7388 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 7389 struct kvm_sregs *sregs) 7390 { 7391 struct msr_data apic_base_msr; 7392 int mmu_reset_needed = 0; 7393 int pending_vec, max_bits, idx; 7394 struct desc_ptr dt; 7395 7396 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE)) 7397 return -EINVAL; 7398 7399 dt.size = sregs->idt.limit; 7400 dt.address = sregs->idt.base; 7401 kvm_x86_ops->set_idt(vcpu, &dt); 7402 dt.size = sregs->gdt.limit; 7403 dt.address = sregs->gdt.base; 7404 kvm_x86_ops->set_gdt(vcpu, &dt); 7405 7406 vcpu->arch.cr2 = sregs->cr2; 7407 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 7408 vcpu->arch.cr3 = sregs->cr3; 7409 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 7410 7411 kvm_set_cr8(vcpu, sregs->cr8); 7412 7413 mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 7414 kvm_x86_ops->set_efer(vcpu, sregs->efer); 7415 apic_base_msr.data = sregs->apic_base; 7416 apic_base_msr.host_initiated = true; 7417 kvm_set_apic_base(vcpu, &apic_base_msr); 7418 7419 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 7420 kvm_x86_ops->set_cr0(vcpu, sregs->cr0); 7421 vcpu->arch.cr0 = sregs->cr0; 7422 7423 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 7424 kvm_x86_ops->set_cr4(vcpu, sregs->cr4); 7425 if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 7426 kvm_update_cpuid(vcpu); 7427 7428 idx = srcu_read_lock(&vcpu->kvm->srcu); 7429 if (!is_long_mode(vcpu) && is_pae(vcpu)) { 7430 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 7431 mmu_reset_needed = 1; 7432 } 7433 srcu_read_unlock(&vcpu->kvm->srcu, idx); 7434 7435 if (mmu_reset_needed) 7436 kvm_mmu_reset_context(vcpu); 7437 7438 max_bits = KVM_NR_INTERRUPTS; 7439 pending_vec = find_first_bit( 7440 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 7441 if (pending_vec < max_bits) { 7442 kvm_queue_interrupt(vcpu, pending_vec, false); 7443 pr_debug("Set back pending irq %d\n", pending_vec); 7444 } 7445 7446 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 7447 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 7448 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 7449 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 7450 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 7451 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 7452 7453 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 7454 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 7455 7456 update_cr8_intercept(vcpu); 7457 7458 /* Older userspace won't unhalt the vcpu on reset. */ 7459 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 7460 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 7461 !is_protmode(vcpu)) 7462 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 7463 7464 kvm_make_request(KVM_REQ_EVENT, vcpu); 7465 7466 return 0; 7467 } 7468 7469 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 7470 struct kvm_guest_debug *dbg) 7471 { 7472 unsigned long rflags; 7473 int i, r; 7474 7475 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 7476 r = -EBUSY; 7477 if (vcpu->arch.exception.pending) 7478 goto out; 7479 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 7480 kvm_queue_exception(vcpu, DB_VECTOR); 7481 else 7482 kvm_queue_exception(vcpu, BP_VECTOR); 7483 } 7484 7485 /* 7486 * Read rflags as long as potentially injected trace flags are still 7487 * filtered out. 7488 */ 7489 rflags = kvm_get_rflags(vcpu); 7490 7491 vcpu->guest_debug = dbg->control; 7492 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 7493 vcpu->guest_debug = 0; 7494 7495 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 7496 for (i = 0; i < KVM_NR_DB_REGS; ++i) 7497 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 7498 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 7499 } else { 7500 for (i = 0; i < KVM_NR_DB_REGS; i++) 7501 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 7502 } 7503 kvm_update_dr7(vcpu); 7504 7505 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 7506 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + 7507 get_segment_base(vcpu, VCPU_SREG_CS); 7508 7509 /* 7510 * Trigger an rflags update that will inject or remove the trace 7511 * flags. 7512 */ 7513 kvm_set_rflags(vcpu, rflags); 7514 7515 kvm_x86_ops->update_bp_intercept(vcpu); 7516 7517 r = 0; 7518 7519 out: 7520 7521 return r; 7522 } 7523 7524 /* 7525 * Translate a guest virtual address to a guest physical address. 7526 */ 7527 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 7528 struct kvm_translation *tr) 7529 { 7530 unsigned long vaddr = tr->linear_address; 7531 gpa_t gpa; 7532 int idx; 7533 7534 idx = srcu_read_lock(&vcpu->kvm->srcu); 7535 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 7536 srcu_read_unlock(&vcpu->kvm->srcu, idx); 7537 tr->physical_address = gpa; 7538 tr->valid = gpa != UNMAPPED_GVA; 7539 tr->writeable = 1; 7540 tr->usermode = 0; 7541 7542 return 0; 7543 } 7544 7545 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 7546 { 7547 struct fxregs_state *fxsave = 7548 &vcpu->arch.guest_fpu.state.fxsave; 7549 7550 memcpy(fpu->fpr, fxsave->st_space, 128); 7551 fpu->fcw = fxsave->cwd; 7552 fpu->fsw = fxsave->swd; 7553 fpu->ftwx = fxsave->twd; 7554 fpu->last_opcode = fxsave->fop; 7555 fpu->last_ip = fxsave->rip; 7556 fpu->last_dp = fxsave->rdp; 7557 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); 7558 7559 return 0; 7560 } 7561 7562 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 7563 { 7564 struct fxregs_state *fxsave = 7565 &vcpu->arch.guest_fpu.state.fxsave; 7566 7567 memcpy(fxsave->st_space, fpu->fpr, 128); 7568 fxsave->cwd = fpu->fcw; 7569 fxsave->swd = fpu->fsw; 7570 fxsave->twd = fpu->ftwx; 7571 fxsave->fop = fpu->last_opcode; 7572 fxsave->rip = fpu->last_ip; 7573 fxsave->rdp = fpu->last_dp; 7574 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); 7575 7576 return 0; 7577 } 7578 7579 static void fx_init(struct kvm_vcpu *vcpu) 7580 { 7581 fpstate_init(&vcpu->arch.guest_fpu.state); 7582 if (boot_cpu_has(X86_FEATURE_XSAVES)) 7583 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv = 7584 host_xcr0 | XSTATE_COMPACTION_ENABLED; 7585 7586 /* 7587 * Ensure guest xcr0 is valid for loading 7588 */ 7589 vcpu->arch.xcr0 = XFEATURE_MASK_FP; 7590 7591 vcpu->arch.cr0 |= X86_CR0_ET; 7592 } 7593 7594 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 7595 { 7596 if (vcpu->guest_fpu_loaded) 7597 return; 7598 7599 /* 7600 * Restore all possible states in the guest, 7601 * and assume host would use all available bits. 7602 * Guest xcr0 would be loaded later. 7603 */ 7604 vcpu->guest_fpu_loaded = 1; 7605 __kernel_fpu_begin(); 7606 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state); 7607 trace_kvm_fpu(1); 7608 } 7609 7610 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 7611 { 7612 if (!vcpu->guest_fpu_loaded) 7613 return; 7614 7615 vcpu->guest_fpu_loaded = 0; 7616 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu); 7617 __kernel_fpu_end(); 7618 ++vcpu->stat.fpu_reload; 7619 trace_kvm_fpu(0); 7620 } 7621 7622 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 7623 { 7624 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask; 7625 7626 kvmclock_reset(vcpu); 7627 7628 kvm_x86_ops->vcpu_free(vcpu); 7629 free_cpumask_var(wbinvd_dirty_mask); 7630 } 7631 7632 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, 7633 unsigned int id) 7634 { 7635 struct kvm_vcpu *vcpu; 7636 7637 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 7638 printk_once(KERN_WARNING 7639 "kvm: SMP vm created on host with unstable TSC; " 7640 "guest TSC will not be reliable\n"); 7641 7642 vcpu = kvm_x86_ops->vcpu_create(kvm, id); 7643 7644 return vcpu; 7645 } 7646 7647 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) 7648 { 7649 int r; 7650 7651 kvm_vcpu_mtrr_init(vcpu); 7652 r = vcpu_load(vcpu); 7653 if (r) 7654 return r; 7655 kvm_vcpu_reset(vcpu, false); 7656 kvm_mmu_setup(vcpu); 7657 vcpu_put(vcpu); 7658 return r; 7659 } 7660 7661 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 7662 { 7663 struct msr_data msr; 7664 struct kvm *kvm = vcpu->kvm; 7665 7666 if (vcpu_load(vcpu)) 7667 return; 7668 msr.data = 0x0; 7669 msr.index = MSR_IA32_TSC; 7670 msr.host_initiated = true; 7671 kvm_write_tsc(vcpu, &msr); 7672 vcpu_put(vcpu); 7673 7674 if (!kvmclock_periodic_sync) 7675 return; 7676 7677 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 7678 KVMCLOCK_SYNC_PERIOD); 7679 } 7680 7681 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 7682 { 7683 int r; 7684 vcpu->arch.apf.msr_val = 0; 7685 7686 r = vcpu_load(vcpu); 7687 BUG_ON(r); 7688 kvm_mmu_unload(vcpu); 7689 vcpu_put(vcpu); 7690 7691 kvm_x86_ops->vcpu_free(vcpu); 7692 } 7693 7694 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 7695 { 7696 vcpu->arch.hflags = 0; 7697 7698 vcpu->arch.smi_pending = 0; 7699 atomic_set(&vcpu->arch.nmi_queued, 0); 7700 vcpu->arch.nmi_pending = 0; 7701 vcpu->arch.nmi_injected = false; 7702 kvm_clear_interrupt_queue(vcpu); 7703 kvm_clear_exception_queue(vcpu); 7704 7705 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 7706 kvm_update_dr0123(vcpu); 7707 vcpu->arch.dr6 = DR6_INIT; 7708 kvm_update_dr6(vcpu); 7709 vcpu->arch.dr7 = DR7_FIXED_1; 7710 kvm_update_dr7(vcpu); 7711 7712 vcpu->arch.cr2 = 0; 7713 7714 kvm_make_request(KVM_REQ_EVENT, vcpu); 7715 vcpu->arch.apf.msr_val = 0; 7716 vcpu->arch.st.msr_val = 0; 7717 7718 kvmclock_reset(vcpu); 7719 7720 kvm_clear_async_pf_completion_queue(vcpu); 7721 kvm_async_pf_hash_reset(vcpu); 7722 vcpu->arch.apf.halted = false; 7723 7724 if (!init_event) { 7725 kvm_pmu_reset(vcpu); 7726 vcpu->arch.smbase = 0x30000; 7727 } 7728 7729 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 7730 vcpu->arch.regs_avail = ~0; 7731 vcpu->arch.regs_dirty = ~0; 7732 7733 kvm_x86_ops->vcpu_reset(vcpu, init_event); 7734 } 7735 7736 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 7737 { 7738 struct kvm_segment cs; 7739 7740 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 7741 cs.selector = vector << 8; 7742 cs.base = vector << 12; 7743 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 7744 kvm_rip_write(vcpu, 0); 7745 } 7746 7747 int kvm_arch_hardware_enable(void) 7748 { 7749 struct kvm *kvm; 7750 struct kvm_vcpu *vcpu; 7751 int i; 7752 int ret; 7753 u64 local_tsc; 7754 u64 max_tsc = 0; 7755 bool stable, backwards_tsc = false; 7756 7757 kvm_shared_msr_cpu_online(); 7758 ret = kvm_x86_ops->hardware_enable(); 7759 if (ret != 0) 7760 return ret; 7761 7762 local_tsc = rdtsc(); 7763 stable = !check_tsc_unstable(); 7764 list_for_each_entry(kvm, &vm_list, vm_list) { 7765 kvm_for_each_vcpu(i, vcpu, kvm) { 7766 if (!stable && vcpu->cpu == smp_processor_id()) 7767 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 7768 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 7769 backwards_tsc = true; 7770 if (vcpu->arch.last_host_tsc > max_tsc) 7771 max_tsc = vcpu->arch.last_host_tsc; 7772 } 7773 } 7774 } 7775 7776 /* 7777 * Sometimes, even reliable TSCs go backwards. This happens on 7778 * platforms that reset TSC during suspend or hibernate actions, but 7779 * maintain synchronization. We must compensate. Fortunately, we can 7780 * detect that condition here, which happens early in CPU bringup, 7781 * before any KVM threads can be running. Unfortunately, we can't 7782 * bring the TSCs fully up to date with real time, as we aren't yet far 7783 * enough into CPU bringup that we know how much real time has actually 7784 * elapsed; our helper function, ktime_get_boot_ns() will be using boot 7785 * variables that haven't been updated yet. 7786 * 7787 * So we simply find the maximum observed TSC above, then record the 7788 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 7789 * the adjustment will be applied. Note that we accumulate 7790 * adjustments, in case multiple suspend cycles happen before some VCPU 7791 * gets a chance to run again. In the event that no KVM threads get a 7792 * chance to run, we will miss the entire elapsed period, as we'll have 7793 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 7794 * loose cycle time. This isn't too big a deal, since the loss will be 7795 * uniform across all VCPUs (not to mention the scenario is extremely 7796 * unlikely). It is possible that a second hibernate recovery happens 7797 * much faster than a first, causing the observed TSC here to be 7798 * smaller; this would require additional padding adjustment, which is 7799 * why we set last_host_tsc to the local tsc observed here. 7800 * 7801 * N.B. - this code below runs only on platforms with reliable TSC, 7802 * as that is the only way backwards_tsc is set above. Also note 7803 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 7804 * have the same delta_cyc adjustment applied if backwards_tsc 7805 * is detected. Note further, this adjustment is only done once, 7806 * as we reset last_host_tsc on all VCPUs to stop this from being 7807 * called multiple times (one for each physical CPU bringup). 7808 * 7809 * Platforms with unreliable TSCs don't have to deal with this, they 7810 * will be compensated by the logic in vcpu_load, which sets the TSC to 7811 * catchup mode. This will catchup all VCPUs to real time, but cannot 7812 * guarantee that they stay in perfect synchronization. 7813 */ 7814 if (backwards_tsc) { 7815 u64 delta_cyc = max_tsc - local_tsc; 7816 backwards_tsc_observed = true; 7817 list_for_each_entry(kvm, &vm_list, vm_list) { 7818 kvm_for_each_vcpu(i, vcpu, kvm) { 7819 vcpu->arch.tsc_offset_adjustment += delta_cyc; 7820 vcpu->arch.last_host_tsc = local_tsc; 7821 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 7822 } 7823 7824 /* 7825 * We have to disable TSC offset matching.. if you were 7826 * booting a VM while issuing an S4 host suspend.... 7827 * you may have some problem. Solving this issue is 7828 * left as an exercise to the reader. 7829 */ 7830 kvm->arch.last_tsc_nsec = 0; 7831 kvm->arch.last_tsc_write = 0; 7832 } 7833 7834 } 7835 return 0; 7836 } 7837 7838 void kvm_arch_hardware_disable(void) 7839 { 7840 kvm_x86_ops->hardware_disable(); 7841 drop_user_return_notifiers(); 7842 } 7843 7844 int kvm_arch_hardware_setup(void) 7845 { 7846 int r; 7847 7848 r = kvm_x86_ops->hardware_setup(); 7849 if (r != 0) 7850 return r; 7851 7852 if (kvm_has_tsc_control) { 7853 /* 7854 * Make sure the user can only configure tsc_khz values that 7855 * fit into a signed integer. 7856 * A min value is not calculated needed because it will always 7857 * be 1 on all machines. 7858 */ 7859 u64 max = min(0x7fffffffULL, 7860 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz)); 7861 kvm_max_guest_tsc_khz = max; 7862 7863 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits; 7864 } 7865 7866 kvm_init_msr_list(); 7867 return 0; 7868 } 7869 7870 void kvm_arch_hardware_unsetup(void) 7871 { 7872 kvm_x86_ops->hardware_unsetup(); 7873 } 7874 7875 void kvm_arch_check_processor_compat(void *rtn) 7876 { 7877 kvm_x86_ops->check_processor_compatibility(rtn); 7878 } 7879 7880 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 7881 { 7882 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 7883 } 7884 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); 7885 7886 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 7887 { 7888 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 7889 } 7890 7891 struct static_key kvm_no_apic_vcpu __read_mostly; 7892 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu); 7893 7894 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 7895 { 7896 struct page *page; 7897 struct kvm *kvm; 7898 int r; 7899 7900 BUG_ON(vcpu->kvm == NULL); 7901 kvm = vcpu->kvm; 7902 7903 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(); 7904 vcpu->arch.pv.pv_unhalted = false; 7905 vcpu->arch.emulate_ctxt.ops = &emulate_ops; 7906 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 7907 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 7908 else 7909 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 7910 7911 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 7912 if (!page) { 7913 r = -ENOMEM; 7914 goto fail; 7915 } 7916 vcpu->arch.pio_data = page_address(page); 7917 7918 kvm_set_tsc_khz(vcpu, max_tsc_khz); 7919 7920 r = kvm_mmu_create(vcpu); 7921 if (r < 0) 7922 goto fail_free_pio_data; 7923 7924 if (irqchip_in_kernel(kvm)) { 7925 r = kvm_create_lapic(vcpu); 7926 if (r < 0) 7927 goto fail_mmu_destroy; 7928 } else 7929 static_key_slow_inc(&kvm_no_apic_vcpu); 7930 7931 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 7932 GFP_KERNEL); 7933 if (!vcpu->arch.mce_banks) { 7934 r = -ENOMEM; 7935 goto fail_free_lapic; 7936 } 7937 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 7938 7939 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) { 7940 r = -ENOMEM; 7941 goto fail_free_mce_banks; 7942 } 7943 7944 fx_init(vcpu); 7945 7946 vcpu->arch.ia32_tsc_adjust_msr = 0x0; 7947 vcpu->arch.pv_time_enabled = false; 7948 7949 vcpu->arch.guest_supported_xcr0 = 0; 7950 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; 7951 7952 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 7953 7954 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 7955 7956 kvm_async_pf_hash_reset(vcpu); 7957 kvm_pmu_init(vcpu); 7958 7959 vcpu->arch.pending_external_vector = -1; 7960 7961 kvm_hv_vcpu_init(vcpu); 7962 7963 return 0; 7964 7965 fail_free_mce_banks: 7966 kfree(vcpu->arch.mce_banks); 7967 fail_free_lapic: 7968 kvm_free_lapic(vcpu); 7969 fail_mmu_destroy: 7970 kvm_mmu_destroy(vcpu); 7971 fail_free_pio_data: 7972 free_page((unsigned long)vcpu->arch.pio_data); 7973 fail: 7974 return r; 7975 } 7976 7977 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) 7978 { 7979 int idx; 7980 7981 kvm_hv_vcpu_uninit(vcpu); 7982 kvm_pmu_destroy(vcpu); 7983 kfree(vcpu->arch.mce_banks); 7984 kvm_free_lapic(vcpu); 7985 idx = srcu_read_lock(&vcpu->kvm->srcu); 7986 kvm_mmu_destroy(vcpu); 7987 srcu_read_unlock(&vcpu->kvm->srcu, idx); 7988 free_page((unsigned long)vcpu->arch.pio_data); 7989 if (!lapic_in_kernel(vcpu)) 7990 static_key_slow_dec(&kvm_no_apic_vcpu); 7991 } 7992 7993 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 7994 { 7995 kvm_x86_ops->sched_in(vcpu, cpu); 7996 } 7997 7998 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 7999 { 8000 if (type) 8001 return -EINVAL; 8002 8003 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 8004 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 8005 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 8006 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 8007 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 8008 8009 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 8010 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 8011 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 8012 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 8013 &kvm->arch.irq_sources_bitmap); 8014 8015 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 8016 mutex_init(&kvm->arch.apic_map_lock); 8017 mutex_init(&kvm->arch.hyperv.hv_lock); 8018 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); 8019 8020 kvm->arch.kvmclock_offset = -ktime_get_boot_ns(); 8021 pvclock_update_vm_gtod_copy(kvm); 8022 8023 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 8024 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 8025 8026 kvm_page_track_init(kvm); 8027 kvm_mmu_init_vm(kvm); 8028 8029 if (kvm_x86_ops->vm_init) 8030 return kvm_x86_ops->vm_init(kvm); 8031 8032 return 0; 8033 } 8034 8035 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 8036 { 8037 int r; 8038 r = vcpu_load(vcpu); 8039 BUG_ON(r); 8040 kvm_mmu_unload(vcpu); 8041 vcpu_put(vcpu); 8042 } 8043 8044 static void kvm_free_vcpus(struct kvm *kvm) 8045 { 8046 unsigned int i; 8047 struct kvm_vcpu *vcpu; 8048 8049 /* 8050 * Unpin any mmu pages first. 8051 */ 8052 kvm_for_each_vcpu(i, vcpu, kvm) { 8053 kvm_clear_async_pf_completion_queue(vcpu); 8054 kvm_unload_vcpu_mmu(vcpu); 8055 } 8056 kvm_for_each_vcpu(i, vcpu, kvm) 8057 kvm_arch_vcpu_free(vcpu); 8058 8059 mutex_lock(&kvm->lock); 8060 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 8061 kvm->vcpus[i] = NULL; 8062 8063 atomic_set(&kvm->online_vcpus, 0); 8064 mutex_unlock(&kvm->lock); 8065 } 8066 8067 void kvm_arch_sync_events(struct kvm *kvm) 8068 { 8069 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 8070 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 8071 kvm_free_all_assigned_devices(kvm); 8072 kvm_free_pit(kvm); 8073 } 8074 8075 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size) 8076 { 8077 int i, r; 8078 unsigned long hva; 8079 struct kvm_memslots *slots = kvm_memslots(kvm); 8080 struct kvm_memory_slot *slot, old; 8081 8082 /* Called with kvm->slots_lock held. */ 8083 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 8084 return -EINVAL; 8085 8086 slot = id_to_memslot(slots, id); 8087 if (size) { 8088 if (slot->npages) 8089 return -EEXIST; 8090 8091 /* 8092 * MAP_SHARED to prevent internal slot pages from being moved 8093 * by fork()/COW. 8094 */ 8095 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 8096 MAP_SHARED | MAP_ANONYMOUS, 0); 8097 if (IS_ERR((void *)hva)) 8098 return PTR_ERR((void *)hva); 8099 } else { 8100 if (!slot->npages) 8101 return 0; 8102 8103 hva = 0; 8104 } 8105 8106 old = *slot; 8107 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 8108 struct kvm_userspace_memory_region m; 8109 8110 m.slot = id | (i << 16); 8111 m.flags = 0; 8112 m.guest_phys_addr = gpa; 8113 m.userspace_addr = hva; 8114 m.memory_size = size; 8115 r = __kvm_set_memory_region(kvm, &m); 8116 if (r < 0) 8117 return r; 8118 } 8119 8120 if (!size) { 8121 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE); 8122 WARN_ON(r < 0); 8123 } 8124 8125 return 0; 8126 } 8127 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 8128 8129 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size) 8130 { 8131 int r; 8132 8133 mutex_lock(&kvm->slots_lock); 8134 r = __x86_set_memory_region(kvm, id, gpa, size); 8135 mutex_unlock(&kvm->slots_lock); 8136 8137 return r; 8138 } 8139 EXPORT_SYMBOL_GPL(x86_set_memory_region); 8140 8141 void kvm_arch_destroy_vm(struct kvm *kvm) 8142 { 8143 if (current->mm == kvm->mm) { 8144 /* 8145 * Free memory regions allocated on behalf of userspace, 8146 * unless the the memory map has changed due to process exit 8147 * or fd copying. 8148 */ 8149 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0); 8150 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0); 8151 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 8152 } 8153 if (kvm_x86_ops->vm_destroy) 8154 kvm_x86_ops->vm_destroy(kvm); 8155 kvm_iommu_unmap_guest(kvm); 8156 kvm_pic_destroy(kvm); 8157 kvm_ioapic_destroy(kvm); 8158 kvm_free_vcpus(kvm); 8159 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 8160 kvm_mmu_uninit_vm(kvm); 8161 kvm_page_track_cleanup(kvm); 8162 } 8163 8164 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 8165 struct kvm_memory_slot *dont) 8166 { 8167 int i; 8168 8169 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 8170 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) { 8171 kvfree(free->arch.rmap[i]); 8172 free->arch.rmap[i] = NULL; 8173 } 8174 if (i == 0) 8175 continue; 8176 8177 if (!dont || free->arch.lpage_info[i - 1] != 8178 dont->arch.lpage_info[i - 1]) { 8179 kvfree(free->arch.lpage_info[i - 1]); 8180 free->arch.lpage_info[i - 1] = NULL; 8181 } 8182 } 8183 8184 kvm_page_track_free_memslot(free, dont); 8185 } 8186 8187 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 8188 unsigned long npages) 8189 { 8190 int i; 8191 8192 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 8193 struct kvm_lpage_info *linfo; 8194 unsigned long ugfn; 8195 int lpages; 8196 int level = i + 1; 8197 8198 lpages = gfn_to_index(slot->base_gfn + npages - 1, 8199 slot->base_gfn, level) + 1; 8200 8201 slot->arch.rmap[i] = 8202 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i])); 8203 if (!slot->arch.rmap[i]) 8204 goto out_free; 8205 if (i == 0) 8206 continue; 8207 8208 linfo = kvm_kvzalloc(lpages * sizeof(*linfo)); 8209 if (!linfo) 8210 goto out_free; 8211 8212 slot->arch.lpage_info[i - 1] = linfo; 8213 8214 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 8215 linfo[0].disallow_lpage = 1; 8216 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 8217 linfo[lpages - 1].disallow_lpage = 1; 8218 ugfn = slot->userspace_addr >> PAGE_SHIFT; 8219 /* 8220 * If the gfn and userspace address are not aligned wrt each 8221 * other, or if explicitly asked to, disable large page 8222 * support for this slot 8223 */ 8224 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) || 8225 !kvm_largepages_enabled()) { 8226 unsigned long j; 8227 8228 for (j = 0; j < lpages; ++j) 8229 linfo[j].disallow_lpage = 1; 8230 } 8231 } 8232 8233 if (kvm_page_track_create_memslot(slot, npages)) 8234 goto out_free; 8235 8236 return 0; 8237 8238 out_free: 8239 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 8240 kvfree(slot->arch.rmap[i]); 8241 slot->arch.rmap[i] = NULL; 8242 if (i == 0) 8243 continue; 8244 8245 kvfree(slot->arch.lpage_info[i - 1]); 8246 slot->arch.lpage_info[i - 1] = NULL; 8247 } 8248 return -ENOMEM; 8249 } 8250 8251 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots) 8252 { 8253 /* 8254 * memslots->generation has been incremented. 8255 * mmio generation may have reached its maximum value. 8256 */ 8257 kvm_mmu_invalidate_mmio_sptes(kvm, slots); 8258 } 8259 8260 int kvm_arch_prepare_memory_region(struct kvm *kvm, 8261 struct kvm_memory_slot *memslot, 8262 const struct kvm_userspace_memory_region *mem, 8263 enum kvm_mr_change change) 8264 { 8265 return 0; 8266 } 8267 8268 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 8269 struct kvm_memory_slot *new) 8270 { 8271 /* Still write protect RO slot */ 8272 if (new->flags & KVM_MEM_READONLY) { 8273 kvm_mmu_slot_remove_write_access(kvm, new); 8274 return; 8275 } 8276 8277 /* 8278 * Call kvm_x86_ops dirty logging hooks when they are valid. 8279 * 8280 * kvm_x86_ops->slot_disable_log_dirty is called when: 8281 * 8282 * - KVM_MR_CREATE with dirty logging is disabled 8283 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag 8284 * 8285 * The reason is, in case of PML, we need to set D-bit for any slots 8286 * with dirty logging disabled in order to eliminate unnecessary GPA 8287 * logging in PML buffer (and potential PML buffer full VMEXT). This 8288 * guarantees leaving PML enabled during guest's lifetime won't have 8289 * any additonal overhead from PML when guest is running with dirty 8290 * logging disabled for memory slots. 8291 * 8292 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot 8293 * to dirty logging mode. 8294 * 8295 * If kvm_x86_ops dirty logging hooks are invalid, use write protect. 8296 * 8297 * In case of write protect: 8298 * 8299 * Write protect all pages for dirty logging. 8300 * 8301 * All the sptes including the large sptes which point to this 8302 * slot are set to readonly. We can not create any new large 8303 * spte on this slot until the end of the logging. 8304 * 8305 * See the comments in fast_page_fault(). 8306 */ 8307 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) { 8308 if (kvm_x86_ops->slot_enable_log_dirty) 8309 kvm_x86_ops->slot_enable_log_dirty(kvm, new); 8310 else 8311 kvm_mmu_slot_remove_write_access(kvm, new); 8312 } else { 8313 if (kvm_x86_ops->slot_disable_log_dirty) 8314 kvm_x86_ops->slot_disable_log_dirty(kvm, new); 8315 } 8316 } 8317 8318 void kvm_arch_commit_memory_region(struct kvm *kvm, 8319 const struct kvm_userspace_memory_region *mem, 8320 const struct kvm_memory_slot *old, 8321 const struct kvm_memory_slot *new, 8322 enum kvm_mr_change change) 8323 { 8324 int nr_mmu_pages = 0; 8325 8326 if (!kvm->arch.n_requested_mmu_pages) 8327 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); 8328 8329 if (nr_mmu_pages) 8330 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 8331 8332 /* 8333 * Dirty logging tracks sptes in 4k granularity, meaning that large 8334 * sptes have to be split. If live migration is successful, the guest 8335 * in the source machine will be destroyed and large sptes will be 8336 * created in the destination. However, if the guest continues to run 8337 * in the source machine (for example if live migration fails), small 8338 * sptes will remain around and cause bad performance. 8339 * 8340 * Scan sptes if dirty logging has been stopped, dropping those 8341 * which can be collapsed into a single large-page spte. Later 8342 * page faults will create the large-page sptes. 8343 */ 8344 if ((change != KVM_MR_DELETE) && 8345 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) && 8346 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 8347 kvm_mmu_zap_collapsible_sptes(kvm, new); 8348 8349 /* 8350 * Set up write protection and/or dirty logging for the new slot. 8351 * 8352 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have 8353 * been zapped so no dirty logging staff is needed for old slot. For 8354 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the 8355 * new and it's also covered when dealing with the new slot. 8356 * 8357 * FIXME: const-ify all uses of struct kvm_memory_slot. 8358 */ 8359 if (change != KVM_MR_DELETE) 8360 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new); 8361 } 8362 8363 void kvm_arch_flush_shadow_all(struct kvm *kvm) 8364 { 8365 kvm_mmu_invalidate_zap_all_pages(kvm); 8366 } 8367 8368 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 8369 struct kvm_memory_slot *slot) 8370 { 8371 kvm_page_track_flush_slot(kvm, slot); 8372 } 8373 8374 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 8375 { 8376 if (!list_empty_careful(&vcpu->async_pf.done)) 8377 return true; 8378 8379 if (kvm_apic_has_events(vcpu)) 8380 return true; 8381 8382 if (vcpu->arch.pv.pv_unhalted) 8383 return true; 8384 8385 if (atomic_read(&vcpu->arch.nmi_queued)) 8386 return true; 8387 8388 if (test_bit(KVM_REQ_SMI, &vcpu->requests)) 8389 return true; 8390 8391 if (kvm_arch_interrupt_allowed(vcpu) && 8392 kvm_cpu_has_interrupt(vcpu)) 8393 return true; 8394 8395 if (kvm_hv_has_stimer_pending(vcpu)) 8396 return true; 8397 8398 return false; 8399 } 8400 8401 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 8402 { 8403 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 8404 } 8405 8406 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 8407 { 8408 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 8409 } 8410 8411 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 8412 { 8413 return kvm_x86_ops->interrupt_allowed(vcpu); 8414 } 8415 8416 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 8417 { 8418 if (is_64_bit_mode(vcpu)) 8419 return kvm_rip_read(vcpu); 8420 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 8421 kvm_rip_read(vcpu)); 8422 } 8423 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 8424 8425 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 8426 { 8427 return kvm_get_linear_rip(vcpu) == linear_rip; 8428 } 8429 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 8430 8431 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 8432 { 8433 unsigned long rflags; 8434 8435 rflags = kvm_x86_ops->get_rflags(vcpu); 8436 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 8437 rflags &= ~X86_EFLAGS_TF; 8438 return rflags; 8439 } 8440 EXPORT_SYMBOL_GPL(kvm_get_rflags); 8441 8442 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 8443 { 8444 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 8445 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 8446 rflags |= X86_EFLAGS_TF; 8447 kvm_x86_ops->set_rflags(vcpu, rflags); 8448 } 8449 8450 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 8451 { 8452 __kvm_set_rflags(vcpu, rflags); 8453 kvm_make_request(KVM_REQ_EVENT, vcpu); 8454 } 8455 EXPORT_SYMBOL_GPL(kvm_set_rflags); 8456 8457 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 8458 { 8459 int r; 8460 8461 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) || 8462 work->wakeup_all) 8463 return; 8464 8465 r = kvm_mmu_reload(vcpu); 8466 if (unlikely(r)) 8467 return; 8468 8469 if (!vcpu->arch.mmu.direct_map && 8470 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu)) 8471 return; 8472 8473 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true); 8474 } 8475 8476 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 8477 { 8478 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 8479 } 8480 8481 static inline u32 kvm_async_pf_next_probe(u32 key) 8482 { 8483 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); 8484 } 8485 8486 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 8487 { 8488 u32 key = kvm_async_pf_hash_fn(gfn); 8489 8490 while (vcpu->arch.apf.gfns[key] != ~0) 8491 key = kvm_async_pf_next_probe(key); 8492 8493 vcpu->arch.apf.gfns[key] = gfn; 8494 } 8495 8496 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 8497 { 8498 int i; 8499 u32 key = kvm_async_pf_hash_fn(gfn); 8500 8501 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && 8502 (vcpu->arch.apf.gfns[key] != gfn && 8503 vcpu->arch.apf.gfns[key] != ~0); i++) 8504 key = kvm_async_pf_next_probe(key); 8505 8506 return key; 8507 } 8508 8509 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 8510 { 8511 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 8512 } 8513 8514 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 8515 { 8516 u32 i, j, k; 8517 8518 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 8519 while (true) { 8520 vcpu->arch.apf.gfns[i] = ~0; 8521 do { 8522 j = kvm_async_pf_next_probe(j); 8523 if (vcpu->arch.apf.gfns[j] == ~0) 8524 return; 8525 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 8526 /* 8527 * k lies cyclically in ]i,j] 8528 * | i.k.j | 8529 * |....j i.k.| or |.k..j i...| 8530 */ 8531 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 8532 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 8533 i = j; 8534 } 8535 } 8536 8537 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) 8538 { 8539 return kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.apf.data, &val, 8540 sizeof(val)); 8541 } 8542 8543 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 8544 struct kvm_async_pf *work) 8545 { 8546 struct x86_exception fault; 8547 8548 trace_kvm_async_pf_not_present(work->arch.token, work->gva); 8549 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 8550 8551 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || 8552 (vcpu->arch.apf.send_user_only && 8553 kvm_x86_ops->get_cpl(vcpu) == 0)) 8554 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 8555 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { 8556 fault.vector = PF_VECTOR; 8557 fault.error_code_valid = true; 8558 fault.error_code = 0; 8559 fault.nested_page_fault = false; 8560 fault.address = work->arch.token; 8561 kvm_inject_page_fault(vcpu, &fault); 8562 } 8563 } 8564 8565 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 8566 struct kvm_async_pf *work) 8567 { 8568 struct x86_exception fault; 8569 8570 if (work->wakeup_all) 8571 work->arch.token = ~0; /* broadcast wakeup */ 8572 else 8573 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 8574 trace_kvm_async_pf_ready(work->arch.token, work->gva); 8575 8576 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) && 8577 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { 8578 fault.vector = PF_VECTOR; 8579 fault.error_code_valid = true; 8580 fault.error_code = 0; 8581 fault.nested_page_fault = false; 8582 fault.address = work->arch.token; 8583 kvm_inject_page_fault(vcpu, &fault); 8584 } 8585 vcpu->arch.apf.halted = false; 8586 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 8587 } 8588 8589 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) 8590 { 8591 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) 8592 return true; 8593 else 8594 return !kvm_event_needs_reinjection(vcpu) && 8595 kvm_x86_ops->interrupt_allowed(vcpu); 8596 } 8597 8598 void kvm_arch_start_assignment(struct kvm *kvm) 8599 { 8600 atomic_inc(&kvm->arch.assigned_device_count); 8601 } 8602 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 8603 8604 void kvm_arch_end_assignment(struct kvm *kvm) 8605 { 8606 atomic_dec(&kvm->arch.assigned_device_count); 8607 } 8608 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 8609 8610 bool kvm_arch_has_assigned_device(struct kvm *kvm) 8611 { 8612 return atomic_read(&kvm->arch.assigned_device_count); 8613 } 8614 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 8615 8616 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 8617 { 8618 atomic_inc(&kvm->arch.noncoherent_dma_count); 8619 } 8620 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 8621 8622 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 8623 { 8624 atomic_dec(&kvm->arch.noncoherent_dma_count); 8625 } 8626 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 8627 8628 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 8629 { 8630 return atomic_read(&kvm->arch.noncoherent_dma_count); 8631 } 8632 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 8633 8634 bool kvm_arch_has_irq_bypass(void) 8635 { 8636 return kvm_x86_ops->update_pi_irte != NULL; 8637 } 8638 8639 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 8640 struct irq_bypass_producer *prod) 8641 { 8642 struct kvm_kernel_irqfd *irqfd = 8643 container_of(cons, struct kvm_kernel_irqfd, consumer); 8644 8645 irqfd->producer = prod; 8646 8647 return kvm_x86_ops->update_pi_irte(irqfd->kvm, 8648 prod->irq, irqfd->gsi, 1); 8649 } 8650 8651 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 8652 struct irq_bypass_producer *prod) 8653 { 8654 int ret; 8655 struct kvm_kernel_irqfd *irqfd = 8656 container_of(cons, struct kvm_kernel_irqfd, consumer); 8657 8658 WARN_ON(irqfd->producer != prod); 8659 irqfd->producer = NULL; 8660 8661 /* 8662 * When producer of consumer is unregistered, we change back to 8663 * remapped mode, so we can re-use the current implementation 8664 * when the irq is masked/disabled or the consumer side (KVM 8665 * int this case doesn't want to receive the interrupts. 8666 */ 8667 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0); 8668 if (ret) 8669 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 8670 " fails: %d\n", irqfd->consumer.token, ret); 8671 } 8672 8673 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 8674 uint32_t guest_irq, bool set) 8675 { 8676 if (!kvm_x86_ops->update_pi_irte) 8677 return -EINVAL; 8678 8679 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set); 8680 } 8681 8682 bool kvm_vector_hashing_enabled(void) 8683 { 8684 return vector_hashing; 8685 } 8686 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled); 8687 8688 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 8689 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 8690 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 8691 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 8692 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 8693 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 8694 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 8695 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 8696 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 8697 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 8698 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 8699 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 8700 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 8701 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 8702 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window); 8703 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 8704 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 8705 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 8706 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 8707