xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 179dd8c0)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/module.h>
39 #include <linux/mman.h>
40 #include <linux/highmem.h>
41 #include <linux/iommu.h>
42 #include <linux/intel-iommu.h>
43 #include <linux/cpufreq.h>
44 #include <linux/user-return-notifier.h>
45 #include <linux/srcu.h>
46 #include <linux/slab.h>
47 #include <linux/perf_event.h>
48 #include <linux/uaccess.h>
49 #include <linux/hash.h>
50 #include <linux/pci.h>
51 #include <linux/timekeeper_internal.h>
52 #include <linux/pvclock_gtod.h>
53 #include <trace/events/kvm.h>
54 
55 #define CREATE_TRACE_POINTS
56 #include "trace.h"
57 
58 #include <asm/debugreg.h>
59 #include <asm/msr.h>
60 #include <asm/desc.h>
61 #include <asm/mce.h>
62 #include <linux/kernel_stat.h>
63 #include <asm/fpu/internal.h> /* Ugh! */
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66 
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70 
71 #define emul_to_vcpu(ctxt) \
72 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73 
74 /* EFER defaults:
75  * - enable syscall per default because its emulated by KVM
76  * - enable LME and LMA per default on 64 bit KVM
77  */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84 
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87 
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
91 
92 struct kvm_x86_ops *kvm_x86_ops;
93 EXPORT_SYMBOL_GPL(kvm_x86_ops);
94 
95 static bool ignore_msrs = 0;
96 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
97 
98 unsigned int min_timer_period_us = 500;
99 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
100 
101 static bool __read_mostly kvmclock_periodic_sync = true;
102 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
103 
104 bool kvm_has_tsc_control;
105 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
106 u32  kvm_max_guest_tsc_khz;
107 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
108 
109 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
110 static u32 tsc_tolerance_ppm = 250;
111 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
112 
113 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
114 unsigned int lapic_timer_advance_ns = 0;
115 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
116 
117 static bool backwards_tsc_observed = false;
118 
119 #define KVM_NR_SHARED_MSRS 16
120 
121 struct kvm_shared_msrs_global {
122 	int nr;
123 	u32 msrs[KVM_NR_SHARED_MSRS];
124 };
125 
126 struct kvm_shared_msrs {
127 	struct user_return_notifier urn;
128 	bool registered;
129 	struct kvm_shared_msr_values {
130 		u64 host;
131 		u64 curr;
132 	} values[KVM_NR_SHARED_MSRS];
133 };
134 
135 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
136 static struct kvm_shared_msrs __percpu *shared_msrs;
137 
138 struct kvm_stats_debugfs_item debugfs_entries[] = {
139 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
140 	{ "pf_guest", VCPU_STAT(pf_guest) },
141 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
142 	{ "invlpg", VCPU_STAT(invlpg) },
143 	{ "exits", VCPU_STAT(exits) },
144 	{ "io_exits", VCPU_STAT(io_exits) },
145 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
146 	{ "signal_exits", VCPU_STAT(signal_exits) },
147 	{ "irq_window", VCPU_STAT(irq_window_exits) },
148 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
149 	{ "halt_exits", VCPU_STAT(halt_exits) },
150 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
151 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
152 	{ "hypercalls", VCPU_STAT(hypercalls) },
153 	{ "request_irq", VCPU_STAT(request_irq_exits) },
154 	{ "irq_exits", VCPU_STAT(irq_exits) },
155 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
156 	{ "efer_reload", VCPU_STAT(efer_reload) },
157 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
158 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
159 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
160 	{ "irq_injections", VCPU_STAT(irq_injections) },
161 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
162 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
163 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
164 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
165 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
166 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
167 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
168 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
169 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
170 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
171 	{ "largepages", VM_STAT(lpages) },
172 	{ NULL }
173 };
174 
175 u64 __read_mostly host_xcr0;
176 
177 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
178 
179 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
180 {
181 	int i;
182 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
183 		vcpu->arch.apf.gfns[i] = ~0;
184 }
185 
186 static void kvm_on_user_return(struct user_return_notifier *urn)
187 {
188 	unsigned slot;
189 	struct kvm_shared_msrs *locals
190 		= container_of(urn, struct kvm_shared_msrs, urn);
191 	struct kvm_shared_msr_values *values;
192 
193 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
194 		values = &locals->values[slot];
195 		if (values->host != values->curr) {
196 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
197 			values->curr = values->host;
198 		}
199 	}
200 	locals->registered = false;
201 	user_return_notifier_unregister(urn);
202 }
203 
204 static void shared_msr_update(unsigned slot, u32 msr)
205 {
206 	u64 value;
207 	unsigned int cpu = smp_processor_id();
208 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
209 
210 	/* only read, and nobody should modify it at this time,
211 	 * so don't need lock */
212 	if (slot >= shared_msrs_global.nr) {
213 		printk(KERN_ERR "kvm: invalid MSR slot!");
214 		return;
215 	}
216 	rdmsrl_safe(msr, &value);
217 	smsr->values[slot].host = value;
218 	smsr->values[slot].curr = value;
219 }
220 
221 void kvm_define_shared_msr(unsigned slot, u32 msr)
222 {
223 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
224 	if (slot >= shared_msrs_global.nr)
225 		shared_msrs_global.nr = slot + 1;
226 	shared_msrs_global.msrs[slot] = msr;
227 	/* we need ensured the shared_msr_global have been updated */
228 	smp_wmb();
229 }
230 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
231 
232 static void kvm_shared_msr_cpu_online(void)
233 {
234 	unsigned i;
235 
236 	for (i = 0; i < shared_msrs_global.nr; ++i)
237 		shared_msr_update(i, shared_msrs_global.msrs[i]);
238 }
239 
240 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
241 {
242 	unsigned int cpu = smp_processor_id();
243 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
244 	int err;
245 
246 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
247 		return 0;
248 	smsr->values[slot].curr = value;
249 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
250 	if (err)
251 		return 1;
252 
253 	if (!smsr->registered) {
254 		smsr->urn.on_user_return = kvm_on_user_return;
255 		user_return_notifier_register(&smsr->urn);
256 		smsr->registered = true;
257 	}
258 	return 0;
259 }
260 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
261 
262 static void drop_user_return_notifiers(void)
263 {
264 	unsigned int cpu = smp_processor_id();
265 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
266 
267 	if (smsr->registered)
268 		kvm_on_user_return(&smsr->urn);
269 }
270 
271 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
272 {
273 	return vcpu->arch.apic_base;
274 }
275 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
276 
277 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
278 {
279 	u64 old_state = vcpu->arch.apic_base &
280 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
281 	u64 new_state = msr_info->data &
282 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
283 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
284 		0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
285 
286 	if (!msr_info->host_initiated &&
287 	    ((msr_info->data & reserved_bits) != 0 ||
288 	     new_state == X2APIC_ENABLE ||
289 	     (new_state == MSR_IA32_APICBASE_ENABLE &&
290 	      old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
291 	     (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
292 	      old_state == 0)))
293 		return 1;
294 
295 	kvm_lapic_set_base(vcpu, msr_info->data);
296 	return 0;
297 }
298 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
299 
300 asmlinkage __visible void kvm_spurious_fault(void)
301 {
302 	/* Fault while not rebooting.  We want the trace. */
303 	BUG();
304 }
305 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
306 
307 #define EXCPT_BENIGN		0
308 #define EXCPT_CONTRIBUTORY	1
309 #define EXCPT_PF		2
310 
311 static int exception_class(int vector)
312 {
313 	switch (vector) {
314 	case PF_VECTOR:
315 		return EXCPT_PF;
316 	case DE_VECTOR:
317 	case TS_VECTOR:
318 	case NP_VECTOR:
319 	case SS_VECTOR:
320 	case GP_VECTOR:
321 		return EXCPT_CONTRIBUTORY;
322 	default:
323 		break;
324 	}
325 	return EXCPT_BENIGN;
326 }
327 
328 #define EXCPT_FAULT		0
329 #define EXCPT_TRAP		1
330 #define EXCPT_ABORT		2
331 #define EXCPT_INTERRUPT		3
332 
333 static int exception_type(int vector)
334 {
335 	unsigned int mask;
336 
337 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
338 		return EXCPT_INTERRUPT;
339 
340 	mask = 1 << vector;
341 
342 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
343 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
344 		return EXCPT_TRAP;
345 
346 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
347 		return EXCPT_ABORT;
348 
349 	/* Reserved exceptions will result in fault */
350 	return EXCPT_FAULT;
351 }
352 
353 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
354 		unsigned nr, bool has_error, u32 error_code,
355 		bool reinject)
356 {
357 	u32 prev_nr;
358 	int class1, class2;
359 
360 	kvm_make_request(KVM_REQ_EVENT, vcpu);
361 
362 	if (!vcpu->arch.exception.pending) {
363 	queue:
364 		if (has_error && !is_protmode(vcpu))
365 			has_error = false;
366 		vcpu->arch.exception.pending = true;
367 		vcpu->arch.exception.has_error_code = has_error;
368 		vcpu->arch.exception.nr = nr;
369 		vcpu->arch.exception.error_code = error_code;
370 		vcpu->arch.exception.reinject = reinject;
371 		return;
372 	}
373 
374 	/* to check exception */
375 	prev_nr = vcpu->arch.exception.nr;
376 	if (prev_nr == DF_VECTOR) {
377 		/* triple fault -> shutdown */
378 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
379 		return;
380 	}
381 	class1 = exception_class(prev_nr);
382 	class2 = exception_class(nr);
383 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
384 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
385 		/* generate double fault per SDM Table 5-5 */
386 		vcpu->arch.exception.pending = true;
387 		vcpu->arch.exception.has_error_code = true;
388 		vcpu->arch.exception.nr = DF_VECTOR;
389 		vcpu->arch.exception.error_code = 0;
390 	} else
391 		/* replace previous exception with a new one in a hope
392 		   that instruction re-execution will regenerate lost
393 		   exception */
394 		goto queue;
395 }
396 
397 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
398 {
399 	kvm_multiple_exception(vcpu, nr, false, 0, false);
400 }
401 EXPORT_SYMBOL_GPL(kvm_queue_exception);
402 
403 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
404 {
405 	kvm_multiple_exception(vcpu, nr, false, 0, true);
406 }
407 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
408 
409 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
410 {
411 	if (err)
412 		kvm_inject_gp(vcpu, 0);
413 	else
414 		kvm_x86_ops->skip_emulated_instruction(vcpu);
415 }
416 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
417 
418 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
419 {
420 	++vcpu->stat.pf_guest;
421 	vcpu->arch.cr2 = fault->address;
422 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
423 }
424 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
425 
426 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
427 {
428 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
429 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
430 	else
431 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
432 
433 	return fault->nested_page_fault;
434 }
435 
436 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
437 {
438 	atomic_inc(&vcpu->arch.nmi_queued);
439 	kvm_make_request(KVM_REQ_NMI, vcpu);
440 }
441 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
442 
443 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
444 {
445 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
446 }
447 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
448 
449 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
450 {
451 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
452 }
453 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
454 
455 /*
456  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
457  * a #GP and return false.
458  */
459 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
460 {
461 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
462 		return true;
463 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
464 	return false;
465 }
466 EXPORT_SYMBOL_GPL(kvm_require_cpl);
467 
468 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
469 {
470 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
471 		return true;
472 
473 	kvm_queue_exception(vcpu, UD_VECTOR);
474 	return false;
475 }
476 EXPORT_SYMBOL_GPL(kvm_require_dr);
477 
478 /*
479  * This function will be used to read from the physical memory of the currently
480  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
481  * can read from guest physical or from the guest's guest physical memory.
482  */
483 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
484 			    gfn_t ngfn, void *data, int offset, int len,
485 			    u32 access)
486 {
487 	struct x86_exception exception;
488 	gfn_t real_gfn;
489 	gpa_t ngpa;
490 
491 	ngpa     = gfn_to_gpa(ngfn);
492 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
493 	if (real_gfn == UNMAPPED_GVA)
494 		return -EFAULT;
495 
496 	real_gfn = gpa_to_gfn(real_gfn);
497 
498 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
499 }
500 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
501 
502 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
503 			       void *data, int offset, int len, u32 access)
504 {
505 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
506 				       data, offset, len, access);
507 }
508 
509 /*
510  * Load the pae pdptrs.  Return true is they are all valid.
511  */
512 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
513 {
514 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
515 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
516 	int i;
517 	int ret;
518 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
519 
520 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
521 				      offset * sizeof(u64), sizeof(pdpte),
522 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
523 	if (ret < 0) {
524 		ret = 0;
525 		goto out;
526 	}
527 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
528 		if (is_present_gpte(pdpte[i]) &&
529 		    (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
530 			ret = 0;
531 			goto out;
532 		}
533 	}
534 	ret = 1;
535 
536 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
537 	__set_bit(VCPU_EXREG_PDPTR,
538 		  (unsigned long *)&vcpu->arch.regs_avail);
539 	__set_bit(VCPU_EXREG_PDPTR,
540 		  (unsigned long *)&vcpu->arch.regs_dirty);
541 out:
542 
543 	return ret;
544 }
545 EXPORT_SYMBOL_GPL(load_pdptrs);
546 
547 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
548 {
549 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
550 	bool changed = true;
551 	int offset;
552 	gfn_t gfn;
553 	int r;
554 
555 	if (is_long_mode(vcpu) || !is_pae(vcpu))
556 		return false;
557 
558 	if (!test_bit(VCPU_EXREG_PDPTR,
559 		      (unsigned long *)&vcpu->arch.regs_avail))
560 		return true;
561 
562 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
563 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
564 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
565 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
566 	if (r < 0)
567 		goto out;
568 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
569 out:
570 
571 	return changed;
572 }
573 
574 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
575 {
576 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
577 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
578 
579 	cr0 |= X86_CR0_ET;
580 
581 #ifdef CONFIG_X86_64
582 	if (cr0 & 0xffffffff00000000UL)
583 		return 1;
584 #endif
585 
586 	cr0 &= ~CR0_RESERVED_BITS;
587 
588 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
589 		return 1;
590 
591 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
592 		return 1;
593 
594 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
595 #ifdef CONFIG_X86_64
596 		if ((vcpu->arch.efer & EFER_LME)) {
597 			int cs_db, cs_l;
598 
599 			if (!is_pae(vcpu))
600 				return 1;
601 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
602 			if (cs_l)
603 				return 1;
604 		} else
605 #endif
606 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
607 						 kvm_read_cr3(vcpu)))
608 			return 1;
609 	}
610 
611 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
612 		return 1;
613 
614 	kvm_x86_ops->set_cr0(vcpu, cr0);
615 
616 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
617 		kvm_clear_async_pf_completion_queue(vcpu);
618 		kvm_async_pf_hash_reset(vcpu);
619 	}
620 
621 	if ((cr0 ^ old_cr0) & update_bits)
622 		kvm_mmu_reset_context(vcpu);
623 
624 	if ((cr0 ^ old_cr0) & X86_CR0_CD)
625 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
626 
627 	return 0;
628 }
629 EXPORT_SYMBOL_GPL(kvm_set_cr0);
630 
631 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
632 {
633 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
634 }
635 EXPORT_SYMBOL_GPL(kvm_lmsw);
636 
637 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
638 {
639 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
640 			!vcpu->guest_xcr0_loaded) {
641 		/* kvm_set_xcr() also depends on this */
642 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
643 		vcpu->guest_xcr0_loaded = 1;
644 	}
645 }
646 
647 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
648 {
649 	if (vcpu->guest_xcr0_loaded) {
650 		if (vcpu->arch.xcr0 != host_xcr0)
651 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
652 		vcpu->guest_xcr0_loaded = 0;
653 	}
654 }
655 
656 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
657 {
658 	u64 xcr0 = xcr;
659 	u64 old_xcr0 = vcpu->arch.xcr0;
660 	u64 valid_bits;
661 
662 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
663 	if (index != XCR_XFEATURE_ENABLED_MASK)
664 		return 1;
665 	if (!(xcr0 & XSTATE_FP))
666 		return 1;
667 	if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
668 		return 1;
669 
670 	/*
671 	 * Do not allow the guest to set bits that we do not support
672 	 * saving.  However, xcr0 bit 0 is always set, even if the
673 	 * emulated CPU does not support XSAVE (see fx_init).
674 	 */
675 	valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
676 	if (xcr0 & ~valid_bits)
677 		return 1;
678 
679 	if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
680 		return 1;
681 
682 	if (xcr0 & XSTATE_AVX512) {
683 		if (!(xcr0 & XSTATE_YMM))
684 			return 1;
685 		if ((xcr0 & XSTATE_AVX512) != XSTATE_AVX512)
686 			return 1;
687 	}
688 	kvm_put_guest_xcr0(vcpu);
689 	vcpu->arch.xcr0 = xcr0;
690 
691 	if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
692 		kvm_update_cpuid(vcpu);
693 	return 0;
694 }
695 
696 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
697 {
698 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
699 	    __kvm_set_xcr(vcpu, index, xcr)) {
700 		kvm_inject_gp(vcpu, 0);
701 		return 1;
702 	}
703 	return 0;
704 }
705 EXPORT_SYMBOL_GPL(kvm_set_xcr);
706 
707 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
708 {
709 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
710 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
711 				   X86_CR4_SMEP | X86_CR4_SMAP;
712 
713 	if (cr4 & CR4_RESERVED_BITS)
714 		return 1;
715 
716 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
717 		return 1;
718 
719 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
720 		return 1;
721 
722 	if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
723 		return 1;
724 
725 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
726 		return 1;
727 
728 	if (is_long_mode(vcpu)) {
729 		if (!(cr4 & X86_CR4_PAE))
730 			return 1;
731 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
732 		   && ((cr4 ^ old_cr4) & pdptr_bits)
733 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
734 				   kvm_read_cr3(vcpu)))
735 		return 1;
736 
737 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
738 		if (!guest_cpuid_has_pcid(vcpu))
739 			return 1;
740 
741 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
742 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
743 			return 1;
744 	}
745 
746 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
747 		return 1;
748 
749 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
750 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
751 		kvm_mmu_reset_context(vcpu);
752 
753 	if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
754 		kvm_update_cpuid(vcpu);
755 
756 	return 0;
757 }
758 EXPORT_SYMBOL_GPL(kvm_set_cr4);
759 
760 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
761 {
762 #ifdef CONFIG_X86_64
763 	cr3 &= ~CR3_PCID_INVD;
764 #endif
765 
766 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
767 		kvm_mmu_sync_roots(vcpu);
768 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
769 		return 0;
770 	}
771 
772 	if (is_long_mode(vcpu)) {
773 		if (cr3 & CR3_L_MODE_RESERVED_BITS)
774 			return 1;
775 	} else if (is_pae(vcpu) && is_paging(vcpu) &&
776 		   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
777 		return 1;
778 
779 	vcpu->arch.cr3 = cr3;
780 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
781 	kvm_mmu_new_cr3(vcpu);
782 	return 0;
783 }
784 EXPORT_SYMBOL_GPL(kvm_set_cr3);
785 
786 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
787 {
788 	if (cr8 & CR8_RESERVED_BITS)
789 		return 1;
790 	if (irqchip_in_kernel(vcpu->kvm))
791 		kvm_lapic_set_tpr(vcpu, cr8);
792 	else
793 		vcpu->arch.cr8 = cr8;
794 	return 0;
795 }
796 EXPORT_SYMBOL_GPL(kvm_set_cr8);
797 
798 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
799 {
800 	if (irqchip_in_kernel(vcpu->kvm))
801 		return kvm_lapic_get_cr8(vcpu);
802 	else
803 		return vcpu->arch.cr8;
804 }
805 EXPORT_SYMBOL_GPL(kvm_get_cr8);
806 
807 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
808 {
809 	int i;
810 
811 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
812 		for (i = 0; i < KVM_NR_DB_REGS; i++)
813 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
814 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
815 	}
816 }
817 
818 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
819 {
820 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
821 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
822 }
823 
824 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
825 {
826 	unsigned long dr7;
827 
828 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
829 		dr7 = vcpu->arch.guest_debug_dr7;
830 	else
831 		dr7 = vcpu->arch.dr7;
832 	kvm_x86_ops->set_dr7(vcpu, dr7);
833 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
834 	if (dr7 & DR7_BP_EN_MASK)
835 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
836 }
837 
838 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
839 {
840 	u64 fixed = DR6_FIXED_1;
841 
842 	if (!guest_cpuid_has_rtm(vcpu))
843 		fixed |= DR6_RTM;
844 	return fixed;
845 }
846 
847 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
848 {
849 	switch (dr) {
850 	case 0 ... 3:
851 		vcpu->arch.db[dr] = val;
852 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
853 			vcpu->arch.eff_db[dr] = val;
854 		break;
855 	case 4:
856 		/* fall through */
857 	case 6:
858 		if (val & 0xffffffff00000000ULL)
859 			return -1; /* #GP */
860 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
861 		kvm_update_dr6(vcpu);
862 		break;
863 	case 5:
864 		/* fall through */
865 	default: /* 7 */
866 		if (val & 0xffffffff00000000ULL)
867 			return -1; /* #GP */
868 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
869 		kvm_update_dr7(vcpu);
870 		break;
871 	}
872 
873 	return 0;
874 }
875 
876 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
877 {
878 	if (__kvm_set_dr(vcpu, dr, val)) {
879 		kvm_inject_gp(vcpu, 0);
880 		return 1;
881 	}
882 	return 0;
883 }
884 EXPORT_SYMBOL_GPL(kvm_set_dr);
885 
886 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
887 {
888 	switch (dr) {
889 	case 0 ... 3:
890 		*val = vcpu->arch.db[dr];
891 		break;
892 	case 4:
893 		/* fall through */
894 	case 6:
895 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
896 			*val = vcpu->arch.dr6;
897 		else
898 			*val = kvm_x86_ops->get_dr6(vcpu);
899 		break;
900 	case 5:
901 		/* fall through */
902 	default: /* 7 */
903 		*val = vcpu->arch.dr7;
904 		break;
905 	}
906 	return 0;
907 }
908 EXPORT_SYMBOL_GPL(kvm_get_dr);
909 
910 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
911 {
912 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
913 	u64 data;
914 	int err;
915 
916 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
917 	if (err)
918 		return err;
919 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
920 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
921 	return err;
922 }
923 EXPORT_SYMBOL_GPL(kvm_rdpmc);
924 
925 /*
926  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
927  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
928  *
929  * This list is modified at module load time to reflect the
930  * capabilities of the host cpu. This capabilities test skips MSRs that are
931  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
932  * may depend on host virtualization features rather than host cpu features.
933  */
934 
935 static u32 msrs_to_save[] = {
936 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
937 	MSR_STAR,
938 #ifdef CONFIG_X86_64
939 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
940 #endif
941 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
942 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
943 };
944 
945 static unsigned num_msrs_to_save;
946 
947 static u32 emulated_msrs[] = {
948 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
949 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
950 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
951 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
952 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
953 	MSR_KVM_PV_EOI_EN,
954 
955 	MSR_IA32_TSC_ADJUST,
956 	MSR_IA32_TSCDEADLINE,
957 	MSR_IA32_MISC_ENABLE,
958 	MSR_IA32_MCG_STATUS,
959 	MSR_IA32_MCG_CTL,
960 	MSR_IA32_SMBASE,
961 };
962 
963 static unsigned num_emulated_msrs;
964 
965 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
966 {
967 	if (efer & efer_reserved_bits)
968 		return false;
969 
970 	if (efer & EFER_FFXSR) {
971 		struct kvm_cpuid_entry2 *feat;
972 
973 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
974 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
975 			return false;
976 	}
977 
978 	if (efer & EFER_SVME) {
979 		struct kvm_cpuid_entry2 *feat;
980 
981 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
982 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
983 			return false;
984 	}
985 
986 	return true;
987 }
988 EXPORT_SYMBOL_GPL(kvm_valid_efer);
989 
990 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
991 {
992 	u64 old_efer = vcpu->arch.efer;
993 
994 	if (!kvm_valid_efer(vcpu, efer))
995 		return 1;
996 
997 	if (is_paging(vcpu)
998 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
999 		return 1;
1000 
1001 	efer &= ~EFER_LMA;
1002 	efer |= vcpu->arch.efer & EFER_LMA;
1003 
1004 	kvm_x86_ops->set_efer(vcpu, efer);
1005 
1006 	/* Update reserved bits */
1007 	if ((efer ^ old_efer) & EFER_NX)
1008 		kvm_mmu_reset_context(vcpu);
1009 
1010 	return 0;
1011 }
1012 
1013 void kvm_enable_efer_bits(u64 mask)
1014 {
1015        efer_reserved_bits &= ~mask;
1016 }
1017 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1018 
1019 /*
1020  * Writes msr value into into the appropriate "register".
1021  * Returns 0 on success, non-0 otherwise.
1022  * Assumes vcpu_load() was already called.
1023  */
1024 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1025 {
1026 	switch (msr->index) {
1027 	case MSR_FS_BASE:
1028 	case MSR_GS_BASE:
1029 	case MSR_KERNEL_GS_BASE:
1030 	case MSR_CSTAR:
1031 	case MSR_LSTAR:
1032 		if (is_noncanonical_address(msr->data))
1033 			return 1;
1034 		break;
1035 	case MSR_IA32_SYSENTER_EIP:
1036 	case MSR_IA32_SYSENTER_ESP:
1037 		/*
1038 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1039 		 * non-canonical address is written on Intel but not on
1040 		 * AMD (which ignores the top 32-bits, because it does
1041 		 * not implement 64-bit SYSENTER).
1042 		 *
1043 		 * 64-bit code should hence be able to write a non-canonical
1044 		 * value on AMD.  Making the address canonical ensures that
1045 		 * vmentry does not fail on Intel after writing a non-canonical
1046 		 * value, and that something deterministic happens if the guest
1047 		 * invokes 64-bit SYSENTER.
1048 		 */
1049 		msr->data = get_canonical(msr->data);
1050 	}
1051 	return kvm_x86_ops->set_msr(vcpu, msr);
1052 }
1053 EXPORT_SYMBOL_GPL(kvm_set_msr);
1054 
1055 /*
1056  * Adapt set_msr() to msr_io()'s calling convention
1057  */
1058 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1059 {
1060 	struct msr_data msr;
1061 	int r;
1062 
1063 	msr.index = index;
1064 	msr.host_initiated = true;
1065 	r = kvm_get_msr(vcpu, &msr);
1066 	if (r)
1067 		return r;
1068 
1069 	*data = msr.data;
1070 	return 0;
1071 }
1072 
1073 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1074 {
1075 	struct msr_data msr;
1076 
1077 	msr.data = *data;
1078 	msr.index = index;
1079 	msr.host_initiated = true;
1080 	return kvm_set_msr(vcpu, &msr);
1081 }
1082 
1083 #ifdef CONFIG_X86_64
1084 struct pvclock_gtod_data {
1085 	seqcount_t	seq;
1086 
1087 	struct { /* extract of a clocksource struct */
1088 		int vclock_mode;
1089 		cycle_t	cycle_last;
1090 		cycle_t	mask;
1091 		u32	mult;
1092 		u32	shift;
1093 	} clock;
1094 
1095 	u64		boot_ns;
1096 	u64		nsec_base;
1097 };
1098 
1099 static struct pvclock_gtod_data pvclock_gtod_data;
1100 
1101 static void update_pvclock_gtod(struct timekeeper *tk)
1102 {
1103 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1104 	u64 boot_ns;
1105 
1106 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1107 
1108 	write_seqcount_begin(&vdata->seq);
1109 
1110 	/* copy pvclock gtod data */
1111 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1112 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1113 	vdata->clock.mask		= tk->tkr_mono.mask;
1114 	vdata->clock.mult		= tk->tkr_mono.mult;
1115 	vdata->clock.shift		= tk->tkr_mono.shift;
1116 
1117 	vdata->boot_ns			= boot_ns;
1118 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1119 
1120 	write_seqcount_end(&vdata->seq);
1121 }
1122 #endif
1123 
1124 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1125 {
1126 	/*
1127 	 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1128 	 * vcpu_enter_guest.  This function is only called from
1129 	 * the physical CPU that is running vcpu.
1130 	 */
1131 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1132 }
1133 
1134 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1135 {
1136 	int version;
1137 	int r;
1138 	struct pvclock_wall_clock wc;
1139 	struct timespec boot;
1140 
1141 	if (!wall_clock)
1142 		return;
1143 
1144 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1145 	if (r)
1146 		return;
1147 
1148 	if (version & 1)
1149 		++version;  /* first time write, random junk */
1150 
1151 	++version;
1152 
1153 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1154 
1155 	/*
1156 	 * The guest calculates current wall clock time by adding
1157 	 * system time (updated by kvm_guest_time_update below) to the
1158 	 * wall clock specified here.  guest system time equals host
1159 	 * system time for us, thus we must fill in host boot time here.
1160 	 */
1161 	getboottime(&boot);
1162 
1163 	if (kvm->arch.kvmclock_offset) {
1164 		struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1165 		boot = timespec_sub(boot, ts);
1166 	}
1167 	wc.sec = boot.tv_sec;
1168 	wc.nsec = boot.tv_nsec;
1169 	wc.version = version;
1170 
1171 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1172 
1173 	version++;
1174 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1175 }
1176 
1177 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1178 {
1179 	uint32_t quotient, remainder;
1180 
1181 	/* Don't try to replace with do_div(), this one calculates
1182 	 * "(dividend << 32) / divisor" */
1183 	__asm__ ( "divl %4"
1184 		  : "=a" (quotient), "=d" (remainder)
1185 		  : "0" (0), "1" (dividend), "r" (divisor) );
1186 	return quotient;
1187 }
1188 
1189 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1190 			       s8 *pshift, u32 *pmultiplier)
1191 {
1192 	uint64_t scaled64;
1193 	int32_t  shift = 0;
1194 	uint64_t tps64;
1195 	uint32_t tps32;
1196 
1197 	tps64 = base_khz * 1000LL;
1198 	scaled64 = scaled_khz * 1000LL;
1199 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1200 		tps64 >>= 1;
1201 		shift--;
1202 	}
1203 
1204 	tps32 = (uint32_t)tps64;
1205 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1206 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1207 			scaled64 >>= 1;
1208 		else
1209 			tps32 <<= 1;
1210 		shift++;
1211 	}
1212 
1213 	*pshift = shift;
1214 	*pmultiplier = div_frac(scaled64, tps32);
1215 
1216 	pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1217 		 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1218 }
1219 
1220 static inline u64 get_kernel_ns(void)
1221 {
1222 	return ktime_get_boot_ns();
1223 }
1224 
1225 #ifdef CONFIG_X86_64
1226 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1227 #endif
1228 
1229 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1230 static unsigned long max_tsc_khz;
1231 
1232 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1233 {
1234 	return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1235 				   vcpu->arch.virtual_tsc_shift);
1236 }
1237 
1238 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1239 {
1240 	u64 v = (u64)khz * (1000000 + ppm);
1241 	do_div(v, 1000000);
1242 	return v;
1243 }
1244 
1245 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1246 {
1247 	u32 thresh_lo, thresh_hi;
1248 	int use_scaling = 0;
1249 
1250 	/* tsc_khz can be zero if TSC calibration fails */
1251 	if (this_tsc_khz == 0)
1252 		return;
1253 
1254 	/* Compute a scale to convert nanoseconds in TSC cycles */
1255 	kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1256 			   &vcpu->arch.virtual_tsc_shift,
1257 			   &vcpu->arch.virtual_tsc_mult);
1258 	vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1259 
1260 	/*
1261 	 * Compute the variation in TSC rate which is acceptable
1262 	 * within the range of tolerance and decide if the
1263 	 * rate being applied is within that bounds of the hardware
1264 	 * rate.  If so, no scaling or compensation need be done.
1265 	 */
1266 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1267 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1268 	if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1269 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1270 		use_scaling = 1;
1271 	}
1272 	kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1273 }
1274 
1275 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1276 {
1277 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1278 				      vcpu->arch.virtual_tsc_mult,
1279 				      vcpu->arch.virtual_tsc_shift);
1280 	tsc += vcpu->arch.this_tsc_write;
1281 	return tsc;
1282 }
1283 
1284 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1285 {
1286 #ifdef CONFIG_X86_64
1287 	bool vcpus_matched;
1288 	struct kvm_arch *ka = &vcpu->kvm->arch;
1289 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1290 
1291 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1292 			 atomic_read(&vcpu->kvm->online_vcpus));
1293 
1294 	/*
1295 	 * Once the masterclock is enabled, always perform request in
1296 	 * order to update it.
1297 	 *
1298 	 * In order to enable masterclock, the host clocksource must be TSC
1299 	 * and the vcpus need to have matched TSCs.  When that happens,
1300 	 * perform request to enable masterclock.
1301 	 */
1302 	if (ka->use_master_clock ||
1303 	    (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1304 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1305 
1306 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1307 			    atomic_read(&vcpu->kvm->online_vcpus),
1308 		            ka->use_master_clock, gtod->clock.vclock_mode);
1309 #endif
1310 }
1311 
1312 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1313 {
1314 	u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1315 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1316 }
1317 
1318 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1319 {
1320 	struct kvm *kvm = vcpu->kvm;
1321 	u64 offset, ns, elapsed;
1322 	unsigned long flags;
1323 	s64 usdiff;
1324 	bool matched;
1325 	bool already_matched;
1326 	u64 data = msr->data;
1327 
1328 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1329 	offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1330 	ns = get_kernel_ns();
1331 	elapsed = ns - kvm->arch.last_tsc_nsec;
1332 
1333 	if (vcpu->arch.virtual_tsc_khz) {
1334 		int faulted = 0;
1335 
1336 		/* n.b - signed multiplication and division required */
1337 		usdiff = data - kvm->arch.last_tsc_write;
1338 #ifdef CONFIG_X86_64
1339 		usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1340 #else
1341 		/* do_div() only does unsigned */
1342 		asm("1: idivl %[divisor]\n"
1343 		    "2: xor %%edx, %%edx\n"
1344 		    "   movl $0, %[faulted]\n"
1345 		    "3:\n"
1346 		    ".section .fixup,\"ax\"\n"
1347 		    "4: movl $1, %[faulted]\n"
1348 		    "   jmp  3b\n"
1349 		    ".previous\n"
1350 
1351 		_ASM_EXTABLE(1b, 4b)
1352 
1353 		: "=A"(usdiff), [faulted] "=r" (faulted)
1354 		: "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1355 
1356 #endif
1357 		do_div(elapsed, 1000);
1358 		usdiff -= elapsed;
1359 		if (usdiff < 0)
1360 			usdiff = -usdiff;
1361 
1362 		/* idivl overflow => difference is larger than USEC_PER_SEC */
1363 		if (faulted)
1364 			usdiff = USEC_PER_SEC;
1365 	} else
1366 		usdiff = USEC_PER_SEC; /* disable TSC match window below */
1367 
1368 	/*
1369 	 * Special case: TSC write with a small delta (1 second) of virtual
1370 	 * cycle time against real time is interpreted as an attempt to
1371 	 * synchronize the CPU.
1372          *
1373 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1374 	 * TSC, we add elapsed time in this computation.  We could let the
1375 	 * compensation code attempt to catch up if we fall behind, but
1376 	 * it's better to try to match offsets from the beginning.
1377          */
1378 	if (usdiff < USEC_PER_SEC &&
1379 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1380 		if (!check_tsc_unstable()) {
1381 			offset = kvm->arch.cur_tsc_offset;
1382 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1383 		} else {
1384 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1385 			data += delta;
1386 			offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1387 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1388 		}
1389 		matched = true;
1390 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1391 	} else {
1392 		/*
1393 		 * We split periods of matched TSC writes into generations.
1394 		 * For each generation, we track the original measured
1395 		 * nanosecond time, offset, and write, so if TSCs are in
1396 		 * sync, we can match exact offset, and if not, we can match
1397 		 * exact software computation in compute_guest_tsc()
1398 		 *
1399 		 * These values are tracked in kvm->arch.cur_xxx variables.
1400 		 */
1401 		kvm->arch.cur_tsc_generation++;
1402 		kvm->arch.cur_tsc_nsec = ns;
1403 		kvm->arch.cur_tsc_write = data;
1404 		kvm->arch.cur_tsc_offset = offset;
1405 		matched = false;
1406 		pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1407 			 kvm->arch.cur_tsc_generation, data);
1408 	}
1409 
1410 	/*
1411 	 * We also track th most recent recorded KHZ, write and time to
1412 	 * allow the matching interval to be extended at each write.
1413 	 */
1414 	kvm->arch.last_tsc_nsec = ns;
1415 	kvm->arch.last_tsc_write = data;
1416 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1417 
1418 	vcpu->arch.last_guest_tsc = data;
1419 
1420 	/* Keep track of which generation this VCPU has synchronized to */
1421 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1422 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1423 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1424 
1425 	if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1426 		update_ia32_tsc_adjust_msr(vcpu, offset);
1427 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1428 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1429 
1430 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1431 	if (!matched) {
1432 		kvm->arch.nr_vcpus_matched_tsc = 0;
1433 	} else if (!already_matched) {
1434 		kvm->arch.nr_vcpus_matched_tsc++;
1435 	}
1436 
1437 	kvm_track_tsc_matching(vcpu);
1438 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1439 }
1440 
1441 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1442 
1443 #ifdef CONFIG_X86_64
1444 
1445 static cycle_t read_tsc(void)
1446 {
1447 	cycle_t ret;
1448 	u64 last;
1449 
1450 	/*
1451 	 * Empirically, a fence (of type that depends on the CPU)
1452 	 * before rdtsc is enough to ensure that rdtsc is ordered
1453 	 * with respect to loads.  The various CPU manuals are unclear
1454 	 * as to whether rdtsc can be reordered with later loads,
1455 	 * but no one has ever seen it happen.
1456 	 */
1457 	rdtsc_barrier();
1458 	ret = (cycle_t)vget_cycles();
1459 
1460 	last = pvclock_gtod_data.clock.cycle_last;
1461 
1462 	if (likely(ret >= last))
1463 		return ret;
1464 
1465 	/*
1466 	 * GCC likes to generate cmov here, but this branch is extremely
1467 	 * predictable (it's just a funciton of time and the likely is
1468 	 * very likely) and there's a data dependence, so force GCC
1469 	 * to generate a branch instead.  I don't barrier() because
1470 	 * we don't actually need a barrier, and if this function
1471 	 * ever gets inlined it will generate worse code.
1472 	 */
1473 	asm volatile ("");
1474 	return last;
1475 }
1476 
1477 static inline u64 vgettsc(cycle_t *cycle_now)
1478 {
1479 	long v;
1480 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1481 
1482 	*cycle_now = read_tsc();
1483 
1484 	v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1485 	return v * gtod->clock.mult;
1486 }
1487 
1488 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1489 {
1490 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1491 	unsigned long seq;
1492 	int mode;
1493 	u64 ns;
1494 
1495 	do {
1496 		seq = read_seqcount_begin(&gtod->seq);
1497 		mode = gtod->clock.vclock_mode;
1498 		ns = gtod->nsec_base;
1499 		ns += vgettsc(cycle_now);
1500 		ns >>= gtod->clock.shift;
1501 		ns += gtod->boot_ns;
1502 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1503 	*t = ns;
1504 
1505 	return mode;
1506 }
1507 
1508 /* returns true if host is using tsc clocksource */
1509 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1510 {
1511 	/* checked again under seqlock below */
1512 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1513 		return false;
1514 
1515 	return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1516 }
1517 #endif
1518 
1519 /*
1520  *
1521  * Assuming a stable TSC across physical CPUS, and a stable TSC
1522  * across virtual CPUs, the following condition is possible.
1523  * Each numbered line represents an event visible to both
1524  * CPUs at the next numbered event.
1525  *
1526  * "timespecX" represents host monotonic time. "tscX" represents
1527  * RDTSC value.
1528  *
1529  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1530  *
1531  * 1.  read timespec0,tsc0
1532  * 2.					| timespec1 = timespec0 + N
1533  * 					| tsc1 = tsc0 + M
1534  * 3. transition to guest		| transition to guest
1535  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1536  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1537  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1538  *
1539  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1540  *
1541  * 	- ret0 < ret1
1542  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1543  *		...
1544  *	- 0 < N - M => M < N
1545  *
1546  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1547  * always the case (the difference between two distinct xtime instances
1548  * might be smaller then the difference between corresponding TSC reads,
1549  * when updating guest vcpus pvclock areas).
1550  *
1551  * To avoid that problem, do not allow visibility of distinct
1552  * system_timestamp/tsc_timestamp values simultaneously: use a master
1553  * copy of host monotonic time values. Update that master copy
1554  * in lockstep.
1555  *
1556  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1557  *
1558  */
1559 
1560 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1561 {
1562 #ifdef CONFIG_X86_64
1563 	struct kvm_arch *ka = &kvm->arch;
1564 	int vclock_mode;
1565 	bool host_tsc_clocksource, vcpus_matched;
1566 
1567 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1568 			atomic_read(&kvm->online_vcpus));
1569 
1570 	/*
1571 	 * If the host uses TSC clock, then passthrough TSC as stable
1572 	 * to the guest.
1573 	 */
1574 	host_tsc_clocksource = kvm_get_time_and_clockread(
1575 					&ka->master_kernel_ns,
1576 					&ka->master_cycle_now);
1577 
1578 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1579 				&& !backwards_tsc_observed
1580 				&& !ka->boot_vcpu_runs_old_kvmclock;
1581 
1582 	if (ka->use_master_clock)
1583 		atomic_set(&kvm_guest_has_master_clock, 1);
1584 
1585 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1586 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1587 					vcpus_matched);
1588 #endif
1589 }
1590 
1591 static void kvm_gen_update_masterclock(struct kvm *kvm)
1592 {
1593 #ifdef CONFIG_X86_64
1594 	int i;
1595 	struct kvm_vcpu *vcpu;
1596 	struct kvm_arch *ka = &kvm->arch;
1597 
1598 	spin_lock(&ka->pvclock_gtod_sync_lock);
1599 	kvm_make_mclock_inprogress_request(kvm);
1600 	/* no guest entries from this point */
1601 	pvclock_update_vm_gtod_copy(kvm);
1602 
1603 	kvm_for_each_vcpu(i, vcpu, kvm)
1604 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1605 
1606 	/* guest entries allowed */
1607 	kvm_for_each_vcpu(i, vcpu, kvm)
1608 		clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1609 
1610 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1611 #endif
1612 }
1613 
1614 static int kvm_guest_time_update(struct kvm_vcpu *v)
1615 {
1616 	unsigned long flags, this_tsc_khz;
1617 	struct kvm_vcpu_arch *vcpu = &v->arch;
1618 	struct kvm_arch *ka = &v->kvm->arch;
1619 	s64 kernel_ns;
1620 	u64 tsc_timestamp, host_tsc;
1621 	struct pvclock_vcpu_time_info guest_hv_clock;
1622 	u8 pvclock_flags;
1623 	bool use_master_clock;
1624 
1625 	kernel_ns = 0;
1626 	host_tsc = 0;
1627 
1628 	/*
1629 	 * If the host uses TSC clock, then passthrough TSC as stable
1630 	 * to the guest.
1631 	 */
1632 	spin_lock(&ka->pvclock_gtod_sync_lock);
1633 	use_master_clock = ka->use_master_clock;
1634 	if (use_master_clock) {
1635 		host_tsc = ka->master_cycle_now;
1636 		kernel_ns = ka->master_kernel_ns;
1637 	}
1638 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1639 
1640 	/* Keep irq disabled to prevent changes to the clock */
1641 	local_irq_save(flags);
1642 	this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1643 	if (unlikely(this_tsc_khz == 0)) {
1644 		local_irq_restore(flags);
1645 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1646 		return 1;
1647 	}
1648 	if (!use_master_clock) {
1649 		host_tsc = native_read_tsc();
1650 		kernel_ns = get_kernel_ns();
1651 	}
1652 
1653 	tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1654 
1655 	/*
1656 	 * We may have to catch up the TSC to match elapsed wall clock
1657 	 * time for two reasons, even if kvmclock is used.
1658 	 *   1) CPU could have been running below the maximum TSC rate
1659 	 *   2) Broken TSC compensation resets the base at each VCPU
1660 	 *      entry to avoid unknown leaps of TSC even when running
1661 	 *      again on the same CPU.  This may cause apparent elapsed
1662 	 *      time to disappear, and the guest to stand still or run
1663 	 *	very slowly.
1664 	 */
1665 	if (vcpu->tsc_catchup) {
1666 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1667 		if (tsc > tsc_timestamp) {
1668 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1669 			tsc_timestamp = tsc;
1670 		}
1671 	}
1672 
1673 	local_irq_restore(flags);
1674 
1675 	if (!vcpu->pv_time_enabled)
1676 		return 0;
1677 
1678 	if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1679 		kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1680 				   &vcpu->hv_clock.tsc_shift,
1681 				   &vcpu->hv_clock.tsc_to_system_mul);
1682 		vcpu->hw_tsc_khz = this_tsc_khz;
1683 	}
1684 
1685 	/* With all the info we got, fill in the values */
1686 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1687 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1688 	vcpu->last_guest_tsc = tsc_timestamp;
1689 
1690 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1691 		&guest_hv_clock, sizeof(guest_hv_clock))))
1692 		return 0;
1693 
1694 	/* This VCPU is paused, but it's legal for a guest to read another
1695 	 * VCPU's kvmclock, so we really have to follow the specification where
1696 	 * it says that version is odd if data is being modified, and even after
1697 	 * it is consistent.
1698 	 *
1699 	 * Version field updates must be kept separate.  This is because
1700 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
1701 	 * writes within a string instruction are weakly ordered.  So there
1702 	 * are three writes overall.
1703 	 *
1704 	 * As a small optimization, only write the version field in the first
1705 	 * and third write.  The vcpu->pv_time cache is still valid, because the
1706 	 * version field is the first in the struct.
1707 	 */
1708 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1709 
1710 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
1711 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1712 				&vcpu->hv_clock,
1713 				sizeof(vcpu->hv_clock.version));
1714 
1715 	smp_wmb();
1716 
1717 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1718 	pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1719 
1720 	if (vcpu->pvclock_set_guest_stopped_request) {
1721 		pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1722 		vcpu->pvclock_set_guest_stopped_request = false;
1723 	}
1724 
1725 	pvclock_flags |= PVCLOCK_COUNTS_FROM_ZERO;
1726 
1727 	/* If the host uses TSC clocksource, then it is stable */
1728 	if (use_master_clock)
1729 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1730 
1731 	vcpu->hv_clock.flags = pvclock_flags;
1732 
1733 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1734 
1735 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1736 				&vcpu->hv_clock,
1737 				sizeof(vcpu->hv_clock));
1738 
1739 	smp_wmb();
1740 
1741 	vcpu->hv_clock.version++;
1742 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1743 				&vcpu->hv_clock,
1744 				sizeof(vcpu->hv_clock.version));
1745 	return 0;
1746 }
1747 
1748 /*
1749  * kvmclock updates which are isolated to a given vcpu, such as
1750  * vcpu->cpu migration, should not allow system_timestamp from
1751  * the rest of the vcpus to remain static. Otherwise ntp frequency
1752  * correction applies to one vcpu's system_timestamp but not
1753  * the others.
1754  *
1755  * So in those cases, request a kvmclock update for all vcpus.
1756  * We need to rate-limit these requests though, as they can
1757  * considerably slow guests that have a large number of vcpus.
1758  * The time for a remote vcpu to update its kvmclock is bound
1759  * by the delay we use to rate-limit the updates.
1760  */
1761 
1762 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1763 
1764 static void kvmclock_update_fn(struct work_struct *work)
1765 {
1766 	int i;
1767 	struct delayed_work *dwork = to_delayed_work(work);
1768 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1769 					   kvmclock_update_work);
1770 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1771 	struct kvm_vcpu *vcpu;
1772 
1773 	kvm_for_each_vcpu(i, vcpu, kvm) {
1774 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1775 		kvm_vcpu_kick(vcpu);
1776 	}
1777 }
1778 
1779 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1780 {
1781 	struct kvm *kvm = v->kvm;
1782 
1783 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1784 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1785 					KVMCLOCK_UPDATE_DELAY);
1786 }
1787 
1788 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1789 
1790 static void kvmclock_sync_fn(struct work_struct *work)
1791 {
1792 	struct delayed_work *dwork = to_delayed_work(work);
1793 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1794 					   kvmclock_sync_work);
1795 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1796 
1797 	if (!kvmclock_periodic_sync)
1798 		return;
1799 
1800 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1801 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1802 					KVMCLOCK_SYNC_PERIOD);
1803 }
1804 
1805 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1806 {
1807 	u64 mcg_cap = vcpu->arch.mcg_cap;
1808 	unsigned bank_num = mcg_cap & 0xff;
1809 
1810 	switch (msr) {
1811 	case MSR_IA32_MCG_STATUS:
1812 		vcpu->arch.mcg_status = data;
1813 		break;
1814 	case MSR_IA32_MCG_CTL:
1815 		if (!(mcg_cap & MCG_CTL_P))
1816 			return 1;
1817 		if (data != 0 && data != ~(u64)0)
1818 			return -1;
1819 		vcpu->arch.mcg_ctl = data;
1820 		break;
1821 	default:
1822 		if (msr >= MSR_IA32_MC0_CTL &&
1823 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
1824 			u32 offset = msr - MSR_IA32_MC0_CTL;
1825 			/* only 0 or all 1s can be written to IA32_MCi_CTL
1826 			 * some Linux kernels though clear bit 10 in bank 4 to
1827 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1828 			 * this to avoid an uncatched #GP in the guest
1829 			 */
1830 			if ((offset & 0x3) == 0 &&
1831 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
1832 				return -1;
1833 			vcpu->arch.mce_banks[offset] = data;
1834 			break;
1835 		}
1836 		return 1;
1837 	}
1838 	return 0;
1839 }
1840 
1841 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1842 {
1843 	struct kvm *kvm = vcpu->kvm;
1844 	int lm = is_long_mode(vcpu);
1845 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1846 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1847 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1848 		: kvm->arch.xen_hvm_config.blob_size_32;
1849 	u32 page_num = data & ~PAGE_MASK;
1850 	u64 page_addr = data & PAGE_MASK;
1851 	u8 *page;
1852 	int r;
1853 
1854 	r = -E2BIG;
1855 	if (page_num >= blob_size)
1856 		goto out;
1857 	r = -ENOMEM;
1858 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1859 	if (IS_ERR(page)) {
1860 		r = PTR_ERR(page);
1861 		goto out;
1862 	}
1863 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
1864 		goto out_free;
1865 	r = 0;
1866 out_free:
1867 	kfree(page);
1868 out:
1869 	return r;
1870 }
1871 
1872 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1873 {
1874 	return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1875 }
1876 
1877 static bool kvm_hv_msr_partition_wide(u32 msr)
1878 {
1879 	bool r = false;
1880 	switch (msr) {
1881 	case HV_X64_MSR_GUEST_OS_ID:
1882 	case HV_X64_MSR_HYPERCALL:
1883 	case HV_X64_MSR_REFERENCE_TSC:
1884 	case HV_X64_MSR_TIME_REF_COUNT:
1885 		r = true;
1886 		break;
1887 	}
1888 
1889 	return r;
1890 }
1891 
1892 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1893 {
1894 	struct kvm *kvm = vcpu->kvm;
1895 
1896 	switch (msr) {
1897 	case HV_X64_MSR_GUEST_OS_ID:
1898 		kvm->arch.hv_guest_os_id = data;
1899 		/* setting guest os id to zero disables hypercall page */
1900 		if (!kvm->arch.hv_guest_os_id)
1901 			kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1902 		break;
1903 	case HV_X64_MSR_HYPERCALL: {
1904 		u64 gfn;
1905 		unsigned long addr;
1906 		u8 instructions[4];
1907 
1908 		/* if guest os id is not set hypercall should remain disabled */
1909 		if (!kvm->arch.hv_guest_os_id)
1910 			break;
1911 		if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1912 			kvm->arch.hv_hypercall = data;
1913 			break;
1914 		}
1915 		gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1916 		addr = gfn_to_hva(kvm, gfn);
1917 		if (kvm_is_error_hva(addr))
1918 			return 1;
1919 		kvm_x86_ops->patch_hypercall(vcpu, instructions);
1920 		((unsigned char *)instructions)[3] = 0xc3; /* ret */
1921 		if (__copy_to_user((void __user *)addr, instructions, 4))
1922 			return 1;
1923 		kvm->arch.hv_hypercall = data;
1924 		mark_page_dirty(kvm, gfn);
1925 		break;
1926 	}
1927 	case HV_X64_MSR_REFERENCE_TSC: {
1928 		u64 gfn;
1929 		HV_REFERENCE_TSC_PAGE tsc_ref;
1930 		memset(&tsc_ref, 0, sizeof(tsc_ref));
1931 		kvm->arch.hv_tsc_page = data;
1932 		if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1933 			break;
1934 		gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1935 		if (kvm_write_guest(kvm, gfn << HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT,
1936 			&tsc_ref, sizeof(tsc_ref)))
1937 			return 1;
1938 		mark_page_dirty(kvm, gfn);
1939 		break;
1940 	}
1941 	default:
1942 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1943 			    "data 0x%llx\n", msr, data);
1944 		return 1;
1945 	}
1946 	return 0;
1947 }
1948 
1949 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1950 {
1951 	switch (msr) {
1952 	case HV_X64_MSR_APIC_ASSIST_PAGE: {
1953 		u64 gfn;
1954 		unsigned long addr;
1955 
1956 		if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1957 			vcpu->arch.hv_vapic = data;
1958 			if (kvm_lapic_enable_pv_eoi(vcpu, 0))
1959 				return 1;
1960 			break;
1961 		}
1962 		gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
1963 		addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
1964 		if (kvm_is_error_hva(addr))
1965 			return 1;
1966 		if (__clear_user((void __user *)addr, PAGE_SIZE))
1967 			return 1;
1968 		vcpu->arch.hv_vapic = data;
1969 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
1970 		if (kvm_lapic_enable_pv_eoi(vcpu, gfn_to_gpa(gfn) | KVM_MSR_ENABLED))
1971 			return 1;
1972 		break;
1973 	}
1974 	case HV_X64_MSR_EOI:
1975 		return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1976 	case HV_X64_MSR_ICR:
1977 		return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1978 	case HV_X64_MSR_TPR:
1979 		return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1980 	default:
1981 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1982 			    "data 0x%llx\n", msr, data);
1983 		return 1;
1984 	}
1985 
1986 	return 0;
1987 }
1988 
1989 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1990 {
1991 	gpa_t gpa = data & ~0x3f;
1992 
1993 	/* Bits 2:5 are reserved, Should be zero */
1994 	if (data & 0x3c)
1995 		return 1;
1996 
1997 	vcpu->arch.apf.msr_val = data;
1998 
1999 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
2000 		kvm_clear_async_pf_completion_queue(vcpu);
2001 		kvm_async_pf_hash_reset(vcpu);
2002 		return 0;
2003 	}
2004 
2005 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2006 					sizeof(u32)))
2007 		return 1;
2008 
2009 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2010 	kvm_async_pf_wakeup_all(vcpu);
2011 	return 0;
2012 }
2013 
2014 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2015 {
2016 	vcpu->arch.pv_time_enabled = false;
2017 }
2018 
2019 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2020 {
2021 	u64 delta;
2022 
2023 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2024 		return;
2025 
2026 	delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2027 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2028 	vcpu->arch.st.accum_steal = delta;
2029 }
2030 
2031 static void record_steal_time(struct kvm_vcpu *vcpu)
2032 {
2033 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2034 		return;
2035 
2036 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2037 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2038 		return;
2039 
2040 	vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2041 	vcpu->arch.st.steal.version += 2;
2042 	vcpu->arch.st.accum_steal = 0;
2043 
2044 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2045 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2046 }
2047 
2048 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2049 {
2050 	bool pr = false;
2051 	u32 msr = msr_info->index;
2052 	u64 data = msr_info->data;
2053 
2054 	switch (msr) {
2055 	case MSR_AMD64_NB_CFG:
2056 	case MSR_IA32_UCODE_REV:
2057 	case MSR_IA32_UCODE_WRITE:
2058 	case MSR_VM_HSAVE_PA:
2059 	case MSR_AMD64_PATCH_LOADER:
2060 	case MSR_AMD64_BU_CFG2:
2061 		break;
2062 
2063 	case MSR_EFER:
2064 		return set_efer(vcpu, data);
2065 	case MSR_K7_HWCR:
2066 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2067 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2068 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2069 		data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2070 		if (data != 0) {
2071 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2072 				    data);
2073 			return 1;
2074 		}
2075 		break;
2076 	case MSR_FAM10H_MMIO_CONF_BASE:
2077 		if (data != 0) {
2078 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2079 				    "0x%llx\n", data);
2080 			return 1;
2081 		}
2082 		break;
2083 	case MSR_IA32_DEBUGCTLMSR:
2084 		if (!data) {
2085 			/* We support the non-activated case already */
2086 			break;
2087 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2088 			/* Values other than LBR and BTF are vendor-specific,
2089 			   thus reserved and should throw a #GP */
2090 			return 1;
2091 		}
2092 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2093 			    __func__, data);
2094 		break;
2095 	case 0x200 ... 0x2ff:
2096 		return kvm_mtrr_set_msr(vcpu, msr, data);
2097 	case MSR_IA32_APICBASE:
2098 		return kvm_set_apic_base(vcpu, msr_info);
2099 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2100 		return kvm_x2apic_msr_write(vcpu, msr, data);
2101 	case MSR_IA32_TSCDEADLINE:
2102 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2103 		break;
2104 	case MSR_IA32_TSC_ADJUST:
2105 		if (guest_cpuid_has_tsc_adjust(vcpu)) {
2106 			if (!msr_info->host_initiated) {
2107 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2108 				kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2109 			}
2110 			vcpu->arch.ia32_tsc_adjust_msr = data;
2111 		}
2112 		break;
2113 	case MSR_IA32_MISC_ENABLE:
2114 		vcpu->arch.ia32_misc_enable_msr = data;
2115 		break;
2116 	case MSR_IA32_SMBASE:
2117 		if (!msr_info->host_initiated)
2118 			return 1;
2119 		vcpu->arch.smbase = data;
2120 		break;
2121 	case MSR_KVM_WALL_CLOCK_NEW:
2122 	case MSR_KVM_WALL_CLOCK:
2123 		vcpu->kvm->arch.wall_clock = data;
2124 		kvm_write_wall_clock(vcpu->kvm, data);
2125 		break;
2126 	case MSR_KVM_SYSTEM_TIME_NEW:
2127 	case MSR_KVM_SYSTEM_TIME: {
2128 		u64 gpa_offset;
2129 		struct kvm_arch *ka = &vcpu->kvm->arch;
2130 
2131 		kvmclock_reset(vcpu);
2132 
2133 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2134 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2135 
2136 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2137 				set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2138 					&vcpu->requests);
2139 
2140 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2141 
2142 			ka->kvmclock_offset = -get_kernel_ns();
2143 		}
2144 
2145 		vcpu->arch.time = data;
2146 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2147 
2148 		/* we verify if the enable bit is set... */
2149 		if (!(data & 1))
2150 			break;
2151 
2152 		gpa_offset = data & ~(PAGE_MASK | 1);
2153 
2154 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2155 		     &vcpu->arch.pv_time, data & ~1ULL,
2156 		     sizeof(struct pvclock_vcpu_time_info)))
2157 			vcpu->arch.pv_time_enabled = false;
2158 		else
2159 			vcpu->arch.pv_time_enabled = true;
2160 
2161 		break;
2162 	}
2163 	case MSR_KVM_ASYNC_PF_EN:
2164 		if (kvm_pv_enable_async_pf(vcpu, data))
2165 			return 1;
2166 		break;
2167 	case MSR_KVM_STEAL_TIME:
2168 
2169 		if (unlikely(!sched_info_on()))
2170 			return 1;
2171 
2172 		if (data & KVM_STEAL_RESERVED_MASK)
2173 			return 1;
2174 
2175 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2176 						data & KVM_STEAL_VALID_BITS,
2177 						sizeof(struct kvm_steal_time)))
2178 			return 1;
2179 
2180 		vcpu->arch.st.msr_val = data;
2181 
2182 		if (!(data & KVM_MSR_ENABLED))
2183 			break;
2184 
2185 		vcpu->arch.st.last_steal = current->sched_info.run_delay;
2186 
2187 		preempt_disable();
2188 		accumulate_steal_time(vcpu);
2189 		preempt_enable();
2190 
2191 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2192 
2193 		break;
2194 	case MSR_KVM_PV_EOI_EN:
2195 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2196 			return 1;
2197 		break;
2198 
2199 	case MSR_IA32_MCG_CTL:
2200 	case MSR_IA32_MCG_STATUS:
2201 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2202 		return set_msr_mce(vcpu, msr, data);
2203 
2204 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2205 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2206 		pr = true; /* fall through */
2207 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2208 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2209 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2210 			return kvm_pmu_set_msr(vcpu, msr_info);
2211 
2212 		if (pr || data != 0)
2213 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2214 				    "0x%x data 0x%llx\n", msr, data);
2215 		break;
2216 	case MSR_K7_CLK_CTL:
2217 		/*
2218 		 * Ignore all writes to this no longer documented MSR.
2219 		 * Writes are only relevant for old K7 processors,
2220 		 * all pre-dating SVM, but a recommended workaround from
2221 		 * AMD for these chips. It is possible to specify the
2222 		 * affected processor models on the command line, hence
2223 		 * the need to ignore the workaround.
2224 		 */
2225 		break;
2226 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2227 		if (kvm_hv_msr_partition_wide(msr)) {
2228 			int r;
2229 			mutex_lock(&vcpu->kvm->lock);
2230 			r = set_msr_hyperv_pw(vcpu, msr, data);
2231 			mutex_unlock(&vcpu->kvm->lock);
2232 			return r;
2233 		} else
2234 			return set_msr_hyperv(vcpu, msr, data);
2235 		break;
2236 	case MSR_IA32_BBL_CR_CTL3:
2237 		/* Drop writes to this legacy MSR -- see rdmsr
2238 		 * counterpart for further detail.
2239 		 */
2240 		vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2241 		break;
2242 	case MSR_AMD64_OSVW_ID_LENGTH:
2243 		if (!guest_cpuid_has_osvw(vcpu))
2244 			return 1;
2245 		vcpu->arch.osvw.length = data;
2246 		break;
2247 	case MSR_AMD64_OSVW_STATUS:
2248 		if (!guest_cpuid_has_osvw(vcpu))
2249 			return 1;
2250 		vcpu->arch.osvw.status = data;
2251 		break;
2252 	default:
2253 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2254 			return xen_hvm_config(vcpu, data);
2255 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2256 			return kvm_pmu_set_msr(vcpu, msr_info);
2257 		if (!ignore_msrs) {
2258 			vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2259 				    msr, data);
2260 			return 1;
2261 		} else {
2262 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2263 				    msr, data);
2264 			break;
2265 		}
2266 	}
2267 	return 0;
2268 }
2269 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2270 
2271 
2272 /*
2273  * Reads an msr value (of 'msr_index') into 'pdata'.
2274  * Returns 0 on success, non-0 otherwise.
2275  * Assumes vcpu_load() was already called.
2276  */
2277 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2278 {
2279 	return kvm_x86_ops->get_msr(vcpu, msr);
2280 }
2281 EXPORT_SYMBOL_GPL(kvm_get_msr);
2282 
2283 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2284 {
2285 	u64 data;
2286 	u64 mcg_cap = vcpu->arch.mcg_cap;
2287 	unsigned bank_num = mcg_cap & 0xff;
2288 
2289 	switch (msr) {
2290 	case MSR_IA32_P5_MC_ADDR:
2291 	case MSR_IA32_P5_MC_TYPE:
2292 		data = 0;
2293 		break;
2294 	case MSR_IA32_MCG_CAP:
2295 		data = vcpu->arch.mcg_cap;
2296 		break;
2297 	case MSR_IA32_MCG_CTL:
2298 		if (!(mcg_cap & MCG_CTL_P))
2299 			return 1;
2300 		data = vcpu->arch.mcg_ctl;
2301 		break;
2302 	case MSR_IA32_MCG_STATUS:
2303 		data = vcpu->arch.mcg_status;
2304 		break;
2305 	default:
2306 		if (msr >= MSR_IA32_MC0_CTL &&
2307 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2308 			u32 offset = msr - MSR_IA32_MC0_CTL;
2309 			data = vcpu->arch.mce_banks[offset];
2310 			break;
2311 		}
2312 		return 1;
2313 	}
2314 	*pdata = data;
2315 	return 0;
2316 }
2317 
2318 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2319 {
2320 	u64 data = 0;
2321 	struct kvm *kvm = vcpu->kvm;
2322 
2323 	switch (msr) {
2324 	case HV_X64_MSR_GUEST_OS_ID:
2325 		data = kvm->arch.hv_guest_os_id;
2326 		break;
2327 	case HV_X64_MSR_HYPERCALL:
2328 		data = kvm->arch.hv_hypercall;
2329 		break;
2330 	case HV_X64_MSR_TIME_REF_COUNT: {
2331 		data =
2332 		     div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
2333 		break;
2334 	}
2335 	case HV_X64_MSR_REFERENCE_TSC:
2336 		data = kvm->arch.hv_tsc_page;
2337 		break;
2338 	default:
2339 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2340 		return 1;
2341 	}
2342 
2343 	*pdata = data;
2344 	return 0;
2345 }
2346 
2347 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2348 {
2349 	u64 data = 0;
2350 
2351 	switch (msr) {
2352 	case HV_X64_MSR_VP_INDEX: {
2353 		int r;
2354 		struct kvm_vcpu *v;
2355 		kvm_for_each_vcpu(r, v, vcpu->kvm) {
2356 			if (v == vcpu) {
2357 				data = r;
2358 				break;
2359 			}
2360 		}
2361 		break;
2362 	}
2363 	case HV_X64_MSR_EOI:
2364 		return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2365 	case HV_X64_MSR_ICR:
2366 		return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2367 	case HV_X64_MSR_TPR:
2368 		return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2369 	case HV_X64_MSR_APIC_ASSIST_PAGE:
2370 		data = vcpu->arch.hv_vapic;
2371 		break;
2372 	default:
2373 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2374 		return 1;
2375 	}
2376 	*pdata = data;
2377 	return 0;
2378 }
2379 
2380 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2381 {
2382 	switch (msr_info->index) {
2383 	case MSR_IA32_PLATFORM_ID:
2384 	case MSR_IA32_EBL_CR_POWERON:
2385 	case MSR_IA32_DEBUGCTLMSR:
2386 	case MSR_IA32_LASTBRANCHFROMIP:
2387 	case MSR_IA32_LASTBRANCHTOIP:
2388 	case MSR_IA32_LASTINTFROMIP:
2389 	case MSR_IA32_LASTINTTOIP:
2390 	case MSR_K8_SYSCFG:
2391 	case MSR_K7_HWCR:
2392 	case MSR_VM_HSAVE_PA:
2393 	case MSR_K8_INT_PENDING_MSG:
2394 	case MSR_AMD64_NB_CFG:
2395 	case MSR_FAM10H_MMIO_CONF_BASE:
2396 	case MSR_AMD64_BU_CFG2:
2397 		msr_info->data = 0;
2398 		break;
2399 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2400 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2401 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2402 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2403 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2404 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2405 		msr_info->data = 0;
2406 		break;
2407 	case MSR_IA32_UCODE_REV:
2408 		msr_info->data = 0x100000000ULL;
2409 		break;
2410 	case MSR_MTRRcap:
2411 	case 0x200 ... 0x2ff:
2412 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2413 	case 0xcd: /* fsb frequency */
2414 		msr_info->data = 3;
2415 		break;
2416 		/*
2417 		 * MSR_EBC_FREQUENCY_ID
2418 		 * Conservative value valid for even the basic CPU models.
2419 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2420 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2421 		 * and 266MHz for model 3, or 4. Set Core Clock
2422 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2423 		 * 31:24) even though these are only valid for CPU
2424 		 * models > 2, however guests may end up dividing or
2425 		 * multiplying by zero otherwise.
2426 		 */
2427 	case MSR_EBC_FREQUENCY_ID:
2428 		msr_info->data = 1 << 24;
2429 		break;
2430 	case MSR_IA32_APICBASE:
2431 		msr_info->data = kvm_get_apic_base(vcpu);
2432 		break;
2433 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2434 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2435 		break;
2436 	case MSR_IA32_TSCDEADLINE:
2437 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2438 		break;
2439 	case MSR_IA32_TSC_ADJUST:
2440 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2441 		break;
2442 	case MSR_IA32_MISC_ENABLE:
2443 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2444 		break;
2445 	case MSR_IA32_SMBASE:
2446 		if (!msr_info->host_initiated)
2447 			return 1;
2448 		msr_info->data = vcpu->arch.smbase;
2449 		break;
2450 	case MSR_IA32_PERF_STATUS:
2451 		/* TSC increment by tick */
2452 		msr_info->data = 1000ULL;
2453 		/* CPU multiplier */
2454 		msr_info->data |= (((uint64_t)4ULL) << 40);
2455 		break;
2456 	case MSR_EFER:
2457 		msr_info->data = vcpu->arch.efer;
2458 		break;
2459 	case MSR_KVM_WALL_CLOCK:
2460 	case MSR_KVM_WALL_CLOCK_NEW:
2461 		msr_info->data = vcpu->kvm->arch.wall_clock;
2462 		break;
2463 	case MSR_KVM_SYSTEM_TIME:
2464 	case MSR_KVM_SYSTEM_TIME_NEW:
2465 		msr_info->data = vcpu->arch.time;
2466 		break;
2467 	case MSR_KVM_ASYNC_PF_EN:
2468 		msr_info->data = vcpu->arch.apf.msr_val;
2469 		break;
2470 	case MSR_KVM_STEAL_TIME:
2471 		msr_info->data = vcpu->arch.st.msr_val;
2472 		break;
2473 	case MSR_KVM_PV_EOI_EN:
2474 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
2475 		break;
2476 	case MSR_IA32_P5_MC_ADDR:
2477 	case MSR_IA32_P5_MC_TYPE:
2478 	case MSR_IA32_MCG_CAP:
2479 	case MSR_IA32_MCG_CTL:
2480 	case MSR_IA32_MCG_STATUS:
2481 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2482 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2483 	case MSR_K7_CLK_CTL:
2484 		/*
2485 		 * Provide expected ramp-up count for K7. All other
2486 		 * are set to zero, indicating minimum divisors for
2487 		 * every field.
2488 		 *
2489 		 * This prevents guest kernels on AMD host with CPU
2490 		 * type 6, model 8 and higher from exploding due to
2491 		 * the rdmsr failing.
2492 		 */
2493 		msr_info->data = 0x20000000;
2494 		break;
2495 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2496 		if (kvm_hv_msr_partition_wide(msr_info->index)) {
2497 			int r;
2498 			mutex_lock(&vcpu->kvm->lock);
2499 			r = get_msr_hyperv_pw(vcpu, msr_info->index, &msr_info->data);
2500 			mutex_unlock(&vcpu->kvm->lock);
2501 			return r;
2502 		} else
2503 			return get_msr_hyperv(vcpu, msr_info->index, &msr_info->data);
2504 		break;
2505 	case MSR_IA32_BBL_CR_CTL3:
2506 		/* This legacy MSR exists but isn't fully documented in current
2507 		 * silicon.  It is however accessed by winxp in very narrow
2508 		 * scenarios where it sets bit #19, itself documented as
2509 		 * a "reserved" bit.  Best effort attempt to source coherent
2510 		 * read data here should the balance of the register be
2511 		 * interpreted by the guest:
2512 		 *
2513 		 * L2 cache control register 3: 64GB range, 256KB size,
2514 		 * enabled, latency 0x1, configured
2515 		 */
2516 		msr_info->data = 0xbe702111;
2517 		break;
2518 	case MSR_AMD64_OSVW_ID_LENGTH:
2519 		if (!guest_cpuid_has_osvw(vcpu))
2520 			return 1;
2521 		msr_info->data = vcpu->arch.osvw.length;
2522 		break;
2523 	case MSR_AMD64_OSVW_STATUS:
2524 		if (!guest_cpuid_has_osvw(vcpu))
2525 			return 1;
2526 		msr_info->data = vcpu->arch.osvw.status;
2527 		break;
2528 	default:
2529 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2530 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2531 		if (!ignore_msrs) {
2532 			vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2533 			return 1;
2534 		} else {
2535 			vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2536 			msr_info->data = 0;
2537 		}
2538 		break;
2539 	}
2540 	return 0;
2541 }
2542 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2543 
2544 /*
2545  * Read or write a bunch of msrs. All parameters are kernel addresses.
2546  *
2547  * @return number of msrs set successfully.
2548  */
2549 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2550 		    struct kvm_msr_entry *entries,
2551 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2552 				  unsigned index, u64 *data))
2553 {
2554 	int i, idx;
2555 
2556 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2557 	for (i = 0; i < msrs->nmsrs; ++i)
2558 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2559 			break;
2560 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2561 
2562 	return i;
2563 }
2564 
2565 /*
2566  * Read or write a bunch of msrs. Parameters are user addresses.
2567  *
2568  * @return number of msrs set successfully.
2569  */
2570 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2571 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2572 				unsigned index, u64 *data),
2573 		  int writeback)
2574 {
2575 	struct kvm_msrs msrs;
2576 	struct kvm_msr_entry *entries;
2577 	int r, n;
2578 	unsigned size;
2579 
2580 	r = -EFAULT;
2581 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2582 		goto out;
2583 
2584 	r = -E2BIG;
2585 	if (msrs.nmsrs >= MAX_IO_MSRS)
2586 		goto out;
2587 
2588 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2589 	entries = memdup_user(user_msrs->entries, size);
2590 	if (IS_ERR(entries)) {
2591 		r = PTR_ERR(entries);
2592 		goto out;
2593 	}
2594 
2595 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2596 	if (r < 0)
2597 		goto out_free;
2598 
2599 	r = -EFAULT;
2600 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2601 		goto out_free;
2602 
2603 	r = n;
2604 
2605 out_free:
2606 	kfree(entries);
2607 out:
2608 	return r;
2609 }
2610 
2611 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2612 {
2613 	int r;
2614 
2615 	switch (ext) {
2616 	case KVM_CAP_IRQCHIP:
2617 	case KVM_CAP_HLT:
2618 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2619 	case KVM_CAP_SET_TSS_ADDR:
2620 	case KVM_CAP_EXT_CPUID:
2621 	case KVM_CAP_EXT_EMUL_CPUID:
2622 	case KVM_CAP_CLOCKSOURCE:
2623 	case KVM_CAP_PIT:
2624 	case KVM_CAP_NOP_IO_DELAY:
2625 	case KVM_CAP_MP_STATE:
2626 	case KVM_CAP_SYNC_MMU:
2627 	case KVM_CAP_USER_NMI:
2628 	case KVM_CAP_REINJECT_CONTROL:
2629 	case KVM_CAP_IRQ_INJECT_STATUS:
2630 	case KVM_CAP_IOEVENTFD:
2631 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
2632 	case KVM_CAP_PIT2:
2633 	case KVM_CAP_PIT_STATE2:
2634 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2635 	case KVM_CAP_XEN_HVM:
2636 	case KVM_CAP_ADJUST_CLOCK:
2637 	case KVM_CAP_VCPU_EVENTS:
2638 	case KVM_CAP_HYPERV:
2639 	case KVM_CAP_HYPERV_VAPIC:
2640 	case KVM_CAP_HYPERV_SPIN:
2641 	case KVM_CAP_PCI_SEGMENT:
2642 	case KVM_CAP_DEBUGREGS:
2643 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2644 	case KVM_CAP_XSAVE:
2645 	case KVM_CAP_ASYNC_PF:
2646 	case KVM_CAP_GET_TSC_KHZ:
2647 	case KVM_CAP_KVMCLOCK_CTRL:
2648 	case KVM_CAP_READONLY_MEM:
2649 	case KVM_CAP_HYPERV_TIME:
2650 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2651 	case KVM_CAP_TSC_DEADLINE_TIMER:
2652 	case KVM_CAP_ENABLE_CAP_VM:
2653 	case KVM_CAP_DISABLE_QUIRKS:
2654 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2655 	case KVM_CAP_ASSIGN_DEV_IRQ:
2656 	case KVM_CAP_PCI_2_3:
2657 #endif
2658 		r = 1;
2659 		break;
2660 	case KVM_CAP_X86_SMM:
2661 		/* SMBASE is usually relocated above 1M on modern chipsets,
2662 		 * and SMM handlers might indeed rely on 4G segment limits,
2663 		 * so do not report SMM to be available if real mode is
2664 		 * emulated via vm86 mode.  Still, do not go to great lengths
2665 		 * to avoid userspace's usage of the feature, because it is a
2666 		 * fringe case that is not enabled except via specific settings
2667 		 * of the module parameters.
2668 		 */
2669 		r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2670 		break;
2671 	case KVM_CAP_COALESCED_MMIO:
2672 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2673 		break;
2674 	case KVM_CAP_VAPIC:
2675 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2676 		break;
2677 	case KVM_CAP_NR_VCPUS:
2678 		r = KVM_SOFT_MAX_VCPUS;
2679 		break;
2680 	case KVM_CAP_MAX_VCPUS:
2681 		r = KVM_MAX_VCPUS;
2682 		break;
2683 	case KVM_CAP_NR_MEMSLOTS:
2684 		r = KVM_USER_MEM_SLOTS;
2685 		break;
2686 	case KVM_CAP_PV_MMU:	/* obsolete */
2687 		r = 0;
2688 		break;
2689 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2690 	case KVM_CAP_IOMMU:
2691 		r = iommu_present(&pci_bus_type);
2692 		break;
2693 #endif
2694 	case KVM_CAP_MCE:
2695 		r = KVM_MAX_MCE_BANKS;
2696 		break;
2697 	case KVM_CAP_XCRS:
2698 		r = cpu_has_xsave;
2699 		break;
2700 	case KVM_CAP_TSC_CONTROL:
2701 		r = kvm_has_tsc_control;
2702 		break;
2703 	default:
2704 		r = 0;
2705 		break;
2706 	}
2707 	return r;
2708 
2709 }
2710 
2711 long kvm_arch_dev_ioctl(struct file *filp,
2712 			unsigned int ioctl, unsigned long arg)
2713 {
2714 	void __user *argp = (void __user *)arg;
2715 	long r;
2716 
2717 	switch (ioctl) {
2718 	case KVM_GET_MSR_INDEX_LIST: {
2719 		struct kvm_msr_list __user *user_msr_list = argp;
2720 		struct kvm_msr_list msr_list;
2721 		unsigned n;
2722 
2723 		r = -EFAULT;
2724 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2725 			goto out;
2726 		n = msr_list.nmsrs;
2727 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2728 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2729 			goto out;
2730 		r = -E2BIG;
2731 		if (n < msr_list.nmsrs)
2732 			goto out;
2733 		r = -EFAULT;
2734 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2735 				 num_msrs_to_save * sizeof(u32)))
2736 			goto out;
2737 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2738 				 &emulated_msrs,
2739 				 num_emulated_msrs * sizeof(u32)))
2740 			goto out;
2741 		r = 0;
2742 		break;
2743 	}
2744 	case KVM_GET_SUPPORTED_CPUID:
2745 	case KVM_GET_EMULATED_CPUID: {
2746 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2747 		struct kvm_cpuid2 cpuid;
2748 
2749 		r = -EFAULT;
2750 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2751 			goto out;
2752 
2753 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2754 					    ioctl);
2755 		if (r)
2756 			goto out;
2757 
2758 		r = -EFAULT;
2759 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2760 			goto out;
2761 		r = 0;
2762 		break;
2763 	}
2764 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2765 		u64 mce_cap;
2766 
2767 		mce_cap = KVM_MCE_CAP_SUPPORTED;
2768 		r = -EFAULT;
2769 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2770 			goto out;
2771 		r = 0;
2772 		break;
2773 	}
2774 	default:
2775 		r = -EINVAL;
2776 	}
2777 out:
2778 	return r;
2779 }
2780 
2781 static void wbinvd_ipi(void *garbage)
2782 {
2783 	wbinvd();
2784 }
2785 
2786 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2787 {
2788 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2789 }
2790 
2791 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2792 {
2793 	/* Address WBINVD may be executed by guest */
2794 	if (need_emulate_wbinvd(vcpu)) {
2795 		if (kvm_x86_ops->has_wbinvd_exit())
2796 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2797 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2798 			smp_call_function_single(vcpu->cpu,
2799 					wbinvd_ipi, NULL, 1);
2800 	}
2801 
2802 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2803 
2804 	/* Apply any externally detected TSC adjustments (due to suspend) */
2805 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2806 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2807 		vcpu->arch.tsc_offset_adjustment = 0;
2808 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2809 	}
2810 
2811 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2812 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2813 				native_read_tsc() - vcpu->arch.last_host_tsc;
2814 		if (tsc_delta < 0)
2815 			mark_tsc_unstable("KVM discovered backwards TSC");
2816 		if (check_tsc_unstable()) {
2817 			u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2818 						vcpu->arch.last_guest_tsc);
2819 			kvm_x86_ops->write_tsc_offset(vcpu, offset);
2820 			vcpu->arch.tsc_catchup = 1;
2821 		}
2822 		/*
2823 		 * On a host with synchronized TSC, there is no need to update
2824 		 * kvmclock on vcpu->cpu migration
2825 		 */
2826 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2827 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2828 		if (vcpu->cpu != cpu)
2829 			kvm_migrate_timers(vcpu);
2830 		vcpu->cpu = cpu;
2831 	}
2832 
2833 	accumulate_steal_time(vcpu);
2834 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2835 }
2836 
2837 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2838 {
2839 	kvm_x86_ops->vcpu_put(vcpu);
2840 	kvm_put_guest_fpu(vcpu);
2841 	vcpu->arch.last_host_tsc = native_read_tsc();
2842 }
2843 
2844 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2845 				    struct kvm_lapic_state *s)
2846 {
2847 	kvm_x86_ops->sync_pir_to_irr(vcpu);
2848 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2849 
2850 	return 0;
2851 }
2852 
2853 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2854 				    struct kvm_lapic_state *s)
2855 {
2856 	kvm_apic_post_state_restore(vcpu, s);
2857 	update_cr8_intercept(vcpu);
2858 
2859 	return 0;
2860 }
2861 
2862 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2863 				    struct kvm_interrupt *irq)
2864 {
2865 	if (irq->irq >= KVM_NR_INTERRUPTS)
2866 		return -EINVAL;
2867 	if (irqchip_in_kernel(vcpu->kvm))
2868 		return -ENXIO;
2869 
2870 	kvm_queue_interrupt(vcpu, irq->irq, false);
2871 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2872 
2873 	return 0;
2874 }
2875 
2876 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2877 {
2878 	kvm_inject_nmi(vcpu);
2879 
2880 	return 0;
2881 }
2882 
2883 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2884 {
2885 	kvm_make_request(KVM_REQ_SMI, vcpu);
2886 
2887 	return 0;
2888 }
2889 
2890 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2891 					   struct kvm_tpr_access_ctl *tac)
2892 {
2893 	if (tac->flags)
2894 		return -EINVAL;
2895 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
2896 	return 0;
2897 }
2898 
2899 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2900 					u64 mcg_cap)
2901 {
2902 	int r;
2903 	unsigned bank_num = mcg_cap & 0xff, bank;
2904 
2905 	r = -EINVAL;
2906 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2907 		goto out;
2908 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2909 		goto out;
2910 	r = 0;
2911 	vcpu->arch.mcg_cap = mcg_cap;
2912 	/* Init IA32_MCG_CTL to all 1s */
2913 	if (mcg_cap & MCG_CTL_P)
2914 		vcpu->arch.mcg_ctl = ~(u64)0;
2915 	/* Init IA32_MCi_CTL to all 1s */
2916 	for (bank = 0; bank < bank_num; bank++)
2917 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2918 out:
2919 	return r;
2920 }
2921 
2922 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2923 				      struct kvm_x86_mce *mce)
2924 {
2925 	u64 mcg_cap = vcpu->arch.mcg_cap;
2926 	unsigned bank_num = mcg_cap & 0xff;
2927 	u64 *banks = vcpu->arch.mce_banks;
2928 
2929 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2930 		return -EINVAL;
2931 	/*
2932 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2933 	 * reporting is disabled
2934 	 */
2935 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2936 	    vcpu->arch.mcg_ctl != ~(u64)0)
2937 		return 0;
2938 	banks += 4 * mce->bank;
2939 	/*
2940 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2941 	 * reporting is disabled for the bank
2942 	 */
2943 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2944 		return 0;
2945 	if (mce->status & MCI_STATUS_UC) {
2946 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2947 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2948 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2949 			return 0;
2950 		}
2951 		if (banks[1] & MCI_STATUS_VAL)
2952 			mce->status |= MCI_STATUS_OVER;
2953 		banks[2] = mce->addr;
2954 		banks[3] = mce->misc;
2955 		vcpu->arch.mcg_status = mce->mcg_status;
2956 		banks[1] = mce->status;
2957 		kvm_queue_exception(vcpu, MC_VECTOR);
2958 	} else if (!(banks[1] & MCI_STATUS_VAL)
2959 		   || !(banks[1] & MCI_STATUS_UC)) {
2960 		if (banks[1] & MCI_STATUS_VAL)
2961 			mce->status |= MCI_STATUS_OVER;
2962 		banks[2] = mce->addr;
2963 		banks[3] = mce->misc;
2964 		banks[1] = mce->status;
2965 	} else
2966 		banks[1] |= MCI_STATUS_OVER;
2967 	return 0;
2968 }
2969 
2970 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2971 					       struct kvm_vcpu_events *events)
2972 {
2973 	process_nmi(vcpu);
2974 	events->exception.injected =
2975 		vcpu->arch.exception.pending &&
2976 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
2977 	events->exception.nr = vcpu->arch.exception.nr;
2978 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2979 	events->exception.pad = 0;
2980 	events->exception.error_code = vcpu->arch.exception.error_code;
2981 
2982 	events->interrupt.injected =
2983 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2984 	events->interrupt.nr = vcpu->arch.interrupt.nr;
2985 	events->interrupt.soft = 0;
2986 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
2987 
2988 	events->nmi.injected = vcpu->arch.nmi_injected;
2989 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
2990 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2991 	events->nmi.pad = 0;
2992 
2993 	events->sipi_vector = 0; /* never valid when reporting to user space */
2994 
2995 	events->smi.smm = is_smm(vcpu);
2996 	events->smi.pending = vcpu->arch.smi_pending;
2997 	events->smi.smm_inside_nmi =
2998 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
2999 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3000 
3001 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3002 			 | KVM_VCPUEVENT_VALID_SHADOW
3003 			 | KVM_VCPUEVENT_VALID_SMM);
3004 	memset(&events->reserved, 0, sizeof(events->reserved));
3005 }
3006 
3007 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3008 					      struct kvm_vcpu_events *events)
3009 {
3010 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3011 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3012 			      | KVM_VCPUEVENT_VALID_SHADOW
3013 			      | KVM_VCPUEVENT_VALID_SMM))
3014 		return -EINVAL;
3015 
3016 	process_nmi(vcpu);
3017 	vcpu->arch.exception.pending = events->exception.injected;
3018 	vcpu->arch.exception.nr = events->exception.nr;
3019 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3020 	vcpu->arch.exception.error_code = events->exception.error_code;
3021 
3022 	vcpu->arch.interrupt.pending = events->interrupt.injected;
3023 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3024 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3025 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3026 		kvm_x86_ops->set_interrupt_shadow(vcpu,
3027 						  events->interrupt.shadow);
3028 
3029 	vcpu->arch.nmi_injected = events->nmi.injected;
3030 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3031 		vcpu->arch.nmi_pending = events->nmi.pending;
3032 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3033 
3034 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3035 	    kvm_vcpu_has_lapic(vcpu))
3036 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3037 
3038 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3039 		if (events->smi.smm)
3040 			vcpu->arch.hflags |= HF_SMM_MASK;
3041 		else
3042 			vcpu->arch.hflags &= ~HF_SMM_MASK;
3043 		vcpu->arch.smi_pending = events->smi.pending;
3044 		if (events->smi.smm_inside_nmi)
3045 			vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3046 		else
3047 			vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3048 		if (kvm_vcpu_has_lapic(vcpu)) {
3049 			if (events->smi.latched_init)
3050 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3051 			else
3052 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3053 		}
3054 	}
3055 
3056 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3057 
3058 	return 0;
3059 }
3060 
3061 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3062 					     struct kvm_debugregs *dbgregs)
3063 {
3064 	unsigned long val;
3065 
3066 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3067 	kvm_get_dr(vcpu, 6, &val);
3068 	dbgregs->dr6 = val;
3069 	dbgregs->dr7 = vcpu->arch.dr7;
3070 	dbgregs->flags = 0;
3071 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3072 }
3073 
3074 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3075 					    struct kvm_debugregs *dbgregs)
3076 {
3077 	if (dbgregs->flags)
3078 		return -EINVAL;
3079 
3080 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3081 	kvm_update_dr0123(vcpu);
3082 	vcpu->arch.dr6 = dbgregs->dr6;
3083 	kvm_update_dr6(vcpu);
3084 	vcpu->arch.dr7 = dbgregs->dr7;
3085 	kvm_update_dr7(vcpu);
3086 
3087 	return 0;
3088 }
3089 
3090 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3091 
3092 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3093 {
3094 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3095 	u64 xstate_bv = xsave->header.xfeatures;
3096 	u64 valid;
3097 
3098 	/*
3099 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3100 	 * leaves 0 and 1 in the loop below.
3101 	 */
3102 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3103 
3104 	/* Set XSTATE_BV */
3105 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3106 
3107 	/*
3108 	 * Copy each region from the possibly compacted offset to the
3109 	 * non-compacted offset.
3110 	 */
3111 	valid = xstate_bv & ~XSTATE_FPSSE;
3112 	while (valid) {
3113 		u64 feature = valid & -valid;
3114 		int index = fls64(feature) - 1;
3115 		void *src = get_xsave_addr(xsave, feature);
3116 
3117 		if (src) {
3118 			u32 size, offset, ecx, edx;
3119 			cpuid_count(XSTATE_CPUID, index,
3120 				    &size, &offset, &ecx, &edx);
3121 			memcpy(dest + offset, src, size);
3122 		}
3123 
3124 		valid -= feature;
3125 	}
3126 }
3127 
3128 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3129 {
3130 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3131 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3132 	u64 valid;
3133 
3134 	/*
3135 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3136 	 * leaves 0 and 1 in the loop below.
3137 	 */
3138 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3139 
3140 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3141 	xsave->header.xfeatures = xstate_bv;
3142 	if (cpu_has_xsaves)
3143 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3144 
3145 	/*
3146 	 * Copy each region from the non-compacted offset to the
3147 	 * possibly compacted offset.
3148 	 */
3149 	valid = xstate_bv & ~XSTATE_FPSSE;
3150 	while (valid) {
3151 		u64 feature = valid & -valid;
3152 		int index = fls64(feature) - 1;
3153 		void *dest = get_xsave_addr(xsave, feature);
3154 
3155 		if (dest) {
3156 			u32 size, offset, ecx, edx;
3157 			cpuid_count(XSTATE_CPUID, index,
3158 				    &size, &offset, &ecx, &edx);
3159 			memcpy(dest, src + offset, size);
3160 		} else
3161 			WARN_ON_ONCE(1);
3162 
3163 		valid -= feature;
3164 	}
3165 }
3166 
3167 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3168 					 struct kvm_xsave *guest_xsave)
3169 {
3170 	if (cpu_has_xsave) {
3171 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3172 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3173 	} else {
3174 		memcpy(guest_xsave->region,
3175 			&vcpu->arch.guest_fpu.state.fxsave,
3176 			sizeof(struct fxregs_state));
3177 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3178 			XSTATE_FPSSE;
3179 	}
3180 }
3181 
3182 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3183 					struct kvm_xsave *guest_xsave)
3184 {
3185 	u64 xstate_bv =
3186 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3187 
3188 	if (cpu_has_xsave) {
3189 		/*
3190 		 * Here we allow setting states that are not present in
3191 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3192 		 * with old userspace.
3193 		 */
3194 		if (xstate_bv & ~kvm_supported_xcr0())
3195 			return -EINVAL;
3196 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3197 	} else {
3198 		if (xstate_bv & ~XSTATE_FPSSE)
3199 			return -EINVAL;
3200 		memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3201 			guest_xsave->region, sizeof(struct fxregs_state));
3202 	}
3203 	return 0;
3204 }
3205 
3206 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3207 					struct kvm_xcrs *guest_xcrs)
3208 {
3209 	if (!cpu_has_xsave) {
3210 		guest_xcrs->nr_xcrs = 0;
3211 		return;
3212 	}
3213 
3214 	guest_xcrs->nr_xcrs = 1;
3215 	guest_xcrs->flags = 0;
3216 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3217 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3218 }
3219 
3220 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3221 				       struct kvm_xcrs *guest_xcrs)
3222 {
3223 	int i, r = 0;
3224 
3225 	if (!cpu_has_xsave)
3226 		return -EINVAL;
3227 
3228 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3229 		return -EINVAL;
3230 
3231 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3232 		/* Only support XCR0 currently */
3233 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3234 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3235 				guest_xcrs->xcrs[i].value);
3236 			break;
3237 		}
3238 	if (r)
3239 		r = -EINVAL;
3240 	return r;
3241 }
3242 
3243 /*
3244  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3245  * stopped by the hypervisor.  This function will be called from the host only.
3246  * EINVAL is returned when the host attempts to set the flag for a guest that
3247  * does not support pv clocks.
3248  */
3249 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3250 {
3251 	if (!vcpu->arch.pv_time_enabled)
3252 		return -EINVAL;
3253 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3254 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3255 	return 0;
3256 }
3257 
3258 long kvm_arch_vcpu_ioctl(struct file *filp,
3259 			 unsigned int ioctl, unsigned long arg)
3260 {
3261 	struct kvm_vcpu *vcpu = filp->private_data;
3262 	void __user *argp = (void __user *)arg;
3263 	int r;
3264 	union {
3265 		struct kvm_lapic_state *lapic;
3266 		struct kvm_xsave *xsave;
3267 		struct kvm_xcrs *xcrs;
3268 		void *buffer;
3269 	} u;
3270 
3271 	u.buffer = NULL;
3272 	switch (ioctl) {
3273 	case KVM_GET_LAPIC: {
3274 		r = -EINVAL;
3275 		if (!vcpu->arch.apic)
3276 			goto out;
3277 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3278 
3279 		r = -ENOMEM;
3280 		if (!u.lapic)
3281 			goto out;
3282 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3283 		if (r)
3284 			goto out;
3285 		r = -EFAULT;
3286 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3287 			goto out;
3288 		r = 0;
3289 		break;
3290 	}
3291 	case KVM_SET_LAPIC: {
3292 		r = -EINVAL;
3293 		if (!vcpu->arch.apic)
3294 			goto out;
3295 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3296 		if (IS_ERR(u.lapic))
3297 			return PTR_ERR(u.lapic);
3298 
3299 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3300 		break;
3301 	}
3302 	case KVM_INTERRUPT: {
3303 		struct kvm_interrupt irq;
3304 
3305 		r = -EFAULT;
3306 		if (copy_from_user(&irq, argp, sizeof irq))
3307 			goto out;
3308 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3309 		break;
3310 	}
3311 	case KVM_NMI: {
3312 		r = kvm_vcpu_ioctl_nmi(vcpu);
3313 		break;
3314 	}
3315 	case KVM_SMI: {
3316 		r = kvm_vcpu_ioctl_smi(vcpu);
3317 		break;
3318 	}
3319 	case KVM_SET_CPUID: {
3320 		struct kvm_cpuid __user *cpuid_arg = argp;
3321 		struct kvm_cpuid cpuid;
3322 
3323 		r = -EFAULT;
3324 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3325 			goto out;
3326 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3327 		break;
3328 	}
3329 	case KVM_SET_CPUID2: {
3330 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3331 		struct kvm_cpuid2 cpuid;
3332 
3333 		r = -EFAULT;
3334 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3335 			goto out;
3336 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3337 					      cpuid_arg->entries);
3338 		break;
3339 	}
3340 	case KVM_GET_CPUID2: {
3341 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3342 		struct kvm_cpuid2 cpuid;
3343 
3344 		r = -EFAULT;
3345 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3346 			goto out;
3347 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3348 					      cpuid_arg->entries);
3349 		if (r)
3350 			goto out;
3351 		r = -EFAULT;
3352 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3353 			goto out;
3354 		r = 0;
3355 		break;
3356 	}
3357 	case KVM_GET_MSRS:
3358 		r = msr_io(vcpu, argp, do_get_msr, 1);
3359 		break;
3360 	case KVM_SET_MSRS:
3361 		r = msr_io(vcpu, argp, do_set_msr, 0);
3362 		break;
3363 	case KVM_TPR_ACCESS_REPORTING: {
3364 		struct kvm_tpr_access_ctl tac;
3365 
3366 		r = -EFAULT;
3367 		if (copy_from_user(&tac, argp, sizeof tac))
3368 			goto out;
3369 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3370 		if (r)
3371 			goto out;
3372 		r = -EFAULT;
3373 		if (copy_to_user(argp, &tac, sizeof tac))
3374 			goto out;
3375 		r = 0;
3376 		break;
3377 	};
3378 	case KVM_SET_VAPIC_ADDR: {
3379 		struct kvm_vapic_addr va;
3380 
3381 		r = -EINVAL;
3382 		if (!irqchip_in_kernel(vcpu->kvm))
3383 			goto out;
3384 		r = -EFAULT;
3385 		if (copy_from_user(&va, argp, sizeof va))
3386 			goto out;
3387 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3388 		break;
3389 	}
3390 	case KVM_X86_SETUP_MCE: {
3391 		u64 mcg_cap;
3392 
3393 		r = -EFAULT;
3394 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3395 			goto out;
3396 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3397 		break;
3398 	}
3399 	case KVM_X86_SET_MCE: {
3400 		struct kvm_x86_mce mce;
3401 
3402 		r = -EFAULT;
3403 		if (copy_from_user(&mce, argp, sizeof mce))
3404 			goto out;
3405 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3406 		break;
3407 	}
3408 	case KVM_GET_VCPU_EVENTS: {
3409 		struct kvm_vcpu_events events;
3410 
3411 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3412 
3413 		r = -EFAULT;
3414 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3415 			break;
3416 		r = 0;
3417 		break;
3418 	}
3419 	case KVM_SET_VCPU_EVENTS: {
3420 		struct kvm_vcpu_events events;
3421 
3422 		r = -EFAULT;
3423 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3424 			break;
3425 
3426 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3427 		break;
3428 	}
3429 	case KVM_GET_DEBUGREGS: {
3430 		struct kvm_debugregs dbgregs;
3431 
3432 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3433 
3434 		r = -EFAULT;
3435 		if (copy_to_user(argp, &dbgregs,
3436 				 sizeof(struct kvm_debugregs)))
3437 			break;
3438 		r = 0;
3439 		break;
3440 	}
3441 	case KVM_SET_DEBUGREGS: {
3442 		struct kvm_debugregs dbgregs;
3443 
3444 		r = -EFAULT;
3445 		if (copy_from_user(&dbgregs, argp,
3446 				   sizeof(struct kvm_debugregs)))
3447 			break;
3448 
3449 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3450 		break;
3451 	}
3452 	case KVM_GET_XSAVE: {
3453 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3454 		r = -ENOMEM;
3455 		if (!u.xsave)
3456 			break;
3457 
3458 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3459 
3460 		r = -EFAULT;
3461 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3462 			break;
3463 		r = 0;
3464 		break;
3465 	}
3466 	case KVM_SET_XSAVE: {
3467 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3468 		if (IS_ERR(u.xsave))
3469 			return PTR_ERR(u.xsave);
3470 
3471 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3472 		break;
3473 	}
3474 	case KVM_GET_XCRS: {
3475 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3476 		r = -ENOMEM;
3477 		if (!u.xcrs)
3478 			break;
3479 
3480 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3481 
3482 		r = -EFAULT;
3483 		if (copy_to_user(argp, u.xcrs,
3484 				 sizeof(struct kvm_xcrs)))
3485 			break;
3486 		r = 0;
3487 		break;
3488 	}
3489 	case KVM_SET_XCRS: {
3490 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3491 		if (IS_ERR(u.xcrs))
3492 			return PTR_ERR(u.xcrs);
3493 
3494 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3495 		break;
3496 	}
3497 	case KVM_SET_TSC_KHZ: {
3498 		u32 user_tsc_khz;
3499 
3500 		r = -EINVAL;
3501 		user_tsc_khz = (u32)arg;
3502 
3503 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3504 			goto out;
3505 
3506 		if (user_tsc_khz == 0)
3507 			user_tsc_khz = tsc_khz;
3508 
3509 		kvm_set_tsc_khz(vcpu, user_tsc_khz);
3510 
3511 		r = 0;
3512 		goto out;
3513 	}
3514 	case KVM_GET_TSC_KHZ: {
3515 		r = vcpu->arch.virtual_tsc_khz;
3516 		goto out;
3517 	}
3518 	case KVM_KVMCLOCK_CTRL: {
3519 		r = kvm_set_guest_paused(vcpu);
3520 		goto out;
3521 	}
3522 	default:
3523 		r = -EINVAL;
3524 	}
3525 out:
3526 	kfree(u.buffer);
3527 	return r;
3528 }
3529 
3530 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3531 {
3532 	return VM_FAULT_SIGBUS;
3533 }
3534 
3535 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3536 {
3537 	int ret;
3538 
3539 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3540 		return -EINVAL;
3541 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3542 	return ret;
3543 }
3544 
3545 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3546 					      u64 ident_addr)
3547 {
3548 	kvm->arch.ept_identity_map_addr = ident_addr;
3549 	return 0;
3550 }
3551 
3552 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3553 					  u32 kvm_nr_mmu_pages)
3554 {
3555 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3556 		return -EINVAL;
3557 
3558 	mutex_lock(&kvm->slots_lock);
3559 
3560 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3561 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3562 
3563 	mutex_unlock(&kvm->slots_lock);
3564 	return 0;
3565 }
3566 
3567 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3568 {
3569 	return kvm->arch.n_max_mmu_pages;
3570 }
3571 
3572 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3573 {
3574 	int r;
3575 
3576 	r = 0;
3577 	switch (chip->chip_id) {
3578 	case KVM_IRQCHIP_PIC_MASTER:
3579 		memcpy(&chip->chip.pic,
3580 			&pic_irqchip(kvm)->pics[0],
3581 			sizeof(struct kvm_pic_state));
3582 		break;
3583 	case KVM_IRQCHIP_PIC_SLAVE:
3584 		memcpy(&chip->chip.pic,
3585 			&pic_irqchip(kvm)->pics[1],
3586 			sizeof(struct kvm_pic_state));
3587 		break;
3588 	case KVM_IRQCHIP_IOAPIC:
3589 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3590 		break;
3591 	default:
3592 		r = -EINVAL;
3593 		break;
3594 	}
3595 	return r;
3596 }
3597 
3598 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3599 {
3600 	int r;
3601 
3602 	r = 0;
3603 	switch (chip->chip_id) {
3604 	case KVM_IRQCHIP_PIC_MASTER:
3605 		spin_lock(&pic_irqchip(kvm)->lock);
3606 		memcpy(&pic_irqchip(kvm)->pics[0],
3607 			&chip->chip.pic,
3608 			sizeof(struct kvm_pic_state));
3609 		spin_unlock(&pic_irqchip(kvm)->lock);
3610 		break;
3611 	case KVM_IRQCHIP_PIC_SLAVE:
3612 		spin_lock(&pic_irqchip(kvm)->lock);
3613 		memcpy(&pic_irqchip(kvm)->pics[1],
3614 			&chip->chip.pic,
3615 			sizeof(struct kvm_pic_state));
3616 		spin_unlock(&pic_irqchip(kvm)->lock);
3617 		break;
3618 	case KVM_IRQCHIP_IOAPIC:
3619 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3620 		break;
3621 	default:
3622 		r = -EINVAL;
3623 		break;
3624 	}
3625 	kvm_pic_update_irq(pic_irqchip(kvm));
3626 	return r;
3627 }
3628 
3629 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3630 {
3631 	int r = 0;
3632 
3633 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3634 	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3635 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3636 	return r;
3637 }
3638 
3639 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3640 {
3641 	int r = 0;
3642 
3643 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3644 	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3645 	kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3646 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3647 	return r;
3648 }
3649 
3650 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3651 {
3652 	int r = 0;
3653 
3654 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3655 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3656 		sizeof(ps->channels));
3657 	ps->flags = kvm->arch.vpit->pit_state.flags;
3658 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3659 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3660 	return r;
3661 }
3662 
3663 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3664 {
3665 	int r = 0, start = 0;
3666 	u32 prev_legacy, cur_legacy;
3667 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3668 	prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3669 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3670 	if (!prev_legacy && cur_legacy)
3671 		start = 1;
3672 	memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3673 	       sizeof(kvm->arch.vpit->pit_state.channels));
3674 	kvm->arch.vpit->pit_state.flags = ps->flags;
3675 	kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3676 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3677 	return r;
3678 }
3679 
3680 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3681 				 struct kvm_reinject_control *control)
3682 {
3683 	if (!kvm->arch.vpit)
3684 		return -ENXIO;
3685 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3686 	kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3687 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3688 	return 0;
3689 }
3690 
3691 /**
3692  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3693  * @kvm: kvm instance
3694  * @log: slot id and address to which we copy the log
3695  *
3696  * Steps 1-4 below provide general overview of dirty page logging. See
3697  * kvm_get_dirty_log_protect() function description for additional details.
3698  *
3699  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3700  * always flush the TLB (step 4) even if previous step failed  and the dirty
3701  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3702  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3703  * writes will be marked dirty for next log read.
3704  *
3705  *   1. Take a snapshot of the bit and clear it if needed.
3706  *   2. Write protect the corresponding page.
3707  *   3. Copy the snapshot to the userspace.
3708  *   4. Flush TLB's if needed.
3709  */
3710 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3711 {
3712 	bool is_dirty = false;
3713 	int r;
3714 
3715 	mutex_lock(&kvm->slots_lock);
3716 
3717 	/*
3718 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3719 	 */
3720 	if (kvm_x86_ops->flush_log_dirty)
3721 		kvm_x86_ops->flush_log_dirty(kvm);
3722 
3723 	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3724 
3725 	/*
3726 	 * All the TLBs can be flushed out of mmu lock, see the comments in
3727 	 * kvm_mmu_slot_remove_write_access().
3728 	 */
3729 	lockdep_assert_held(&kvm->slots_lock);
3730 	if (is_dirty)
3731 		kvm_flush_remote_tlbs(kvm);
3732 
3733 	mutex_unlock(&kvm->slots_lock);
3734 	return r;
3735 }
3736 
3737 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3738 			bool line_status)
3739 {
3740 	if (!irqchip_in_kernel(kvm))
3741 		return -ENXIO;
3742 
3743 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3744 					irq_event->irq, irq_event->level,
3745 					line_status);
3746 	return 0;
3747 }
3748 
3749 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3750 				   struct kvm_enable_cap *cap)
3751 {
3752 	int r;
3753 
3754 	if (cap->flags)
3755 		return -EINVAL;
3756 
3757 	switch (cap->cap) {
3758 	case KVM_CAP_DISABLE_QUIRKS:
3759 		kvm->arch.disabled_quirks = cap->args[0];
3760 		r = 0;
3761 		break;
3762 	default:
3763 		r = -EINVAL;
3764 		break;
3765 	}
3766 	return r;
3767 }
3768 
3769 long kvm_arch_vm_ioctl(struct file *filp,
3770 		       unsigned int ioctl, unsigned long arg)
3771 {
3772 	struct kvm *kvm = filp->private_data;
3773 	void __user *argp = (void __user *)arg;
3774 	int r = -ENOTTY;
3775 	/*
3776 	 * This union makes it completely explicit to gcc-3.x
3777 	 * that these two variables' stack usage should be
3778 	 * combined, not added together.
3779 	 */
3780 	union {
3781 		struct kvm_pit_state ps;
3782 		struct kvm_pit_state2 ps2;
3783 		struct kvm_pit_config pit_config;
3784 	} u;
3785 
3786 	switch (ioctl) {
3787 	case KVM_SET_TSS_ADDR:
3788 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3789 		break;
3790 	case KVM_SET_IDENTITY_MAP_ADDR: {
3791 		u64 ident_addr;
3792 
3793 		r = -EFAULT;
3794 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3795 			goto out;
3796 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3797 		break;
3798 	}
3799 	case KVM_SET_NR_MMU_PAGES:
3800 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3801 		break;
3802 	case KVM_GET_NR_MMU_PAGES:
3803 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3804 		break;
3805 	case KVM_CREATE_IRQCHIP: {
3806 		struct kvm_pic *vpic;
3807 
3808 		mutex_lock(&kvm->lock);
3809 		r = -EEXIST;
3810 		if (kvm->arch.vpic)
3811 			goto create_irqchip_unlock;
3812 		r = -EINVAL;
3813 		if (atomic_read(&kvm->online_vcpus))
3814 			goto create_irqchip_unlock;
3815 		r = -ENOMEM;
3816 		vpic = kvm_create_pic(kvm);
3817 		if (vpic) {
3818 			r = kvm_ioapic_init(kvm);
3819 			if (r) {
3820 				mutex_lock(&kvm->slots_lock);
3821 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3822 							  &vpic->dev_master);
3823 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3824 							  &vpic->dev_slave);
3825 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3826 							  &vpic->dev_eclr);
3827 				mutex_unlock(&kvm->slots_lock);
3828 				kfree(vpic);
3829 				goto create_irqchip_unlock;
3830 			}
3831 		} else
3832 			goto create_irqchip_unlock;
3833 		smp_wmb();
3834 		kvm->arch.vpic = vpic;
3835 		smp_wmb();
3836 		r = kvm_setup_default_irq_routing(kvm);
3837 		if (r) {
3838 			mutex_lock(&kvm->slots_lock);
3839 			mutex_lock(&kvm->irq_lock);
3840 			kvm_ioapic_destroy(kvm);
3841 			kvm_destroy_pic(kvm);
3842 			mutex_unlock(&kvm->irq_lock);
3843 			mutex_unlock(&kvm->slots_lock);
3844 		}
3845 	create_irqchip_unlock:
3846 		mutex_unlock(&kvm->lock);
3847 		break;
3848 	}
3849 	case KVM_CREATE_PIT:
3850 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3851 		goto create_pit;
3852 	case KVM_CREATE_PIT2:
3853 		r = -EFAULT;
3854 		if (copy_from_user(&u.pit_config, argp,
3855 				   sizeof(struct kvm_pit_config)))
3856 			goto out;
3857 	create_pit:
3858 		mutex_lock(&kvm->slots_lock);
3859 		r = -EEXIST;
3860 		if (kvm->arch.vpit)
3861 			goto create_pit_unlock;
3862 		r = -ENOMEM;
3863 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3864 		if (kvm->arch.vpit)
3865 			r = 0;
3866 	create_pit_unlock:
3867 		mutex_unlock(&kvm->slots_lock);
3868 		break;
3869 	case KVM_GET_IRQCHIP: {
3870 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3871 		struct kvm_irqchip *chip;
3872 
3873 		chip = memdup_user(argp, sizeof(*chip));
3874 		if (IS_ERR(chip)) {
3875 			r = PTR_ERR(chip);
3876 			goto out;
3877 		}
3878 
3879 		r = -ENXIO;
3880 		if (!irqchip_in_kernel(kvm))
3881 			goto get_irqchip_out;
3882 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3883 		if (r)
3884 			goto get_irqchip_out;
3885 		r = -EFAULT;
3886 		if (copy_to_user(argp, chip, sizeof *chip))
3887 			goto get_irqchip_out;
3888 		r = 0;
3889 	get_irqchip_out:
3890 		kfree(chip);
3891 		break;
3892 	}
3893 	case KVM_SET_IRQCHIP: {
3894 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3895 		struct kvm_irqchip *chip;
3896 
3897 		chip = memdup_user(argp, sizeof(*chip));
3898 		if (IS_ERR(chip)) {
3899 			r = PTR_ERR(chip);
3900 			goto out;
3901 		}
3902 
3903 		r = -ENXIO;
3904 		if (!irqchip_in_kernel(kvm))
3905 			goto set_irqchip_out;
3906 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3907 		if (r)
3908 			goto set_irqchip_out;
3909 		r = 0;
3910 	set_irqchip_out:
3911 		kfree(chip);
3912 		break;
3913 	}
3914 	case KVM_GET_PIT: {
3915 		r = -EFAULT;
3916 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3917 			goto out;
3918 		r = -ENXIO;
3919 		if (!kvm->arch.vpit)
3920 			goto out;
3921 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3922 		if (r)
3923 			goto out;
3924 		r = -EFAULT;
3925 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3926 			goto out;
3927 		r = 0;
3928 		break;
3929 	}
3930 	case KVM_SET_PIT: {
3931 		r = -EFAULT;
3932 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
3933 			goto out;
3934 		r = -ENXIO;
3935 		if (!kvm->arch.vpit)
3936 			goto out;
3937 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3938 		break;
3939 	}
3940 	case KVM_GET_PIT2: {
3941 		r = -ENXIO;
3942 		if (!kvm->arch.vpit)
3943 			goto out;
3944 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3945 		if (r)
3946 			goto out;
3947 		r = -EFAULT;
3948 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3949 			goto out;
3950 		r = 0;
3951 		break;
3952 	}
3953 	case KVM_SET_PIT2: {
3954 		r = -EFAULT;
3955 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3956 			goto out;
3957 		r = -ENXIO;
3958 		if (!kvm->arch.vpit)
3959 			goto out;
3960 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3961 		break;
3962 	}
3963 	case KVM_REINJECT_CONTROL: {
3964 		struct kvm_reinject_control control;
3965 		r =  -EFAULT;
3966 		if (copy_from_user(&control, argp, sizeof(control)))
3967 			goto out;
3968 		r = kvm_vm_ioctl_reinject(kvm, &control);
3969 		break;
3970 	}
3971 	case KVM_XEN_HVM_CONFIG: {
3972 		r = -EFAULT;
3973 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3974 				   sizeof(struct kvm_xen_hvm_config)))
3975 			goto out;
3976 		r = -EINVAL;
3977 		if (kvm->arch.xen_hvm_config.flags)
3978 			goto out;
3979 		r = 0;
3980 		break;
3981 	}
3982 	case KVM_SET_CLOCK: {
3983 		struct kvm_clock_data user_ns;
3984 		u64 now_ns;
3985 		s64 delta;
3986 
3987 		r = -EFAULT;
3988 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3989 			goto out;
3990 
3991 		r = -EINVAL;
3992 		if (user_ns.flags)
3993 			goto out;
3994 
3995 		r = 0;
3996 		local_irq_disable();
3997 		now_ns = get_kernel_ns();
3998 		delta = user_ns.clock - now_ns;
3999 		local_irq_enable();
4000 		kvm->arch.kvmclock_offset = delta;
4001 		kvm_gen_update_masterclock(kvm);
4002 		break;
4003 	}
4004 	case KVM_GET_CLOCK: {
4005 		struct kvm_clock_data user_ns;
4006 		u64 now_ns;
4007 
4008 		local_irq_disable();
4009 		now_ns = get_kernel_ns();
4010 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4011 		local_irq_enable();
4012 		user_ns.flags = 0;
4013 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4014 
4015 		r = -EFAULT;
4016 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4017 			goto out;
4018 		r = 0;
4019 		break;
4020 	}
4021 	case KVM_ENABLE_CAP: {
4022 		struct kvm_enable_cap cap;
4023 
4024 		r = -EFAULT;
4025 		if (copy_from_user(&cap, argp, sizeof(cap)))
4026 			goto out;
4027 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4028 		break;
4029 	}
4030 	default:
4031 		r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4032 	}
4033 out:
4034 	return r;
4035 }
4036 
4037 static void kvm_init_msr_list(void)
4038 {
4039 	u32 dummy[2];
4040 	unsigned i, j;
4041 
4042 	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4043 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4044 			continue;
4045 
4046 		/*
4047 		 * Even MSRs that are valid in the host may not be exposed
4048 		 * to the guests in some cases.  We could work around this
4049 		 * in VMX with the generic MSR save/load machinery, but it
4050 		 * is not really worthwhile since it will really only
4051 		 * happen with nested virtualization.
4052 		 */
4053 		switch (msrs_to_save[i]) {
4054 		case MSR_IA32_BNDCFGS:
4055 			if (!kvm_x86_ops->mpx_supported())
4056 				continue;
4057 			break;
4058 		default:
4059 			break;
4060 		}
4061 
4062 		if (j < i)
4063 			msrs_to_save[j] = msrs_to_save[i];
4064 		j++;
4065 	}
4066 	num_msrs_to_save = j;
4067 
4068 	for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4069 		switch (emulated_msrs[i]) {
4070 		case MSR_IA32_SMBASE:
4071 			if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4072 				continue;
4073 			break;
4074 		default:
4075 			break;
4076 		}
4077 
4078 		if (j < i)
4079 			emulated_msrs[j] = emulated_msrs[i];
4080 		j++;
4081 	}
4082 	num_emulated_msrs = j;
4083 }
4084 
4085 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4086 			   const void *v)
4087 {
4088 	int handled = 0;
4089 	int n;
4090 
4091 	do {
4092 		n = min(len, 8);
4093 		if (!(vcpu->arch.apic &&
4094 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4095 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4096 			break;
4097 		handled += n;
4098 		addr += n;
4099 		len -= n;
4100 		v += n;
4101 	} while (len);
4102 
4103 	return handled;
4104 }
4105 
4106 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4107 {
4108 	int handled = 0;
4109 	int n;
4110 
4111 	do {
4112 		n = min(len, 8);
4113 		if (!(vcpu->arch.apic &&
4114 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4115 					 addr, n, v))
4116 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4117 			break;
4118 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4119 		handled += n;
4120 		addr += n;
4121 		len -= n;
4122 		v += n;
4123 	} while (len);
4124 
4125 	return handled;
4126 }
4127 
4128 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4129 			struct kvm_segment *var, int seg)
4130 {
4131 	kvm_x86_ops->set_segment(vcpu, var, seg);
4132 }
4133 
4134 void kvm_get_segment(struct kvm_vcpu *vcpu,
4135 		     struct kvm_segment *var, int seg)
4136 {
4137 	kvm_x86_ops->get_segment(vcpu, var, seg);
4138 }
4139 
4140 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4141 			   struct x86_exception *exception)
4142 {
4143 	gpa_t t_gpa;
4144 
4145 	BUG_ON(!mmu_is_nested(vcpu));
4146 
4147 	/* NPT walks are always user-walks */
4148 	access |= PFERR_USER_MASK;
4149 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4150 
4151 	return t_gpa;
4152 }
4153 
4154 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4155 			      struct x86_exception *exception)
4156 {
4157 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4158 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4159 }
4160 
4161  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4162 				struct x86_exception *exception)
4163 {
4164 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4165 	access |= PFERR_FETCH_MASK;
4166 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4167 }
4168 
4169 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4170 			       struct x86_exception *exception)
4171 {
4172 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4173 	access |= PFERR_WRITE_MASK;
4174 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4175 }
4176 
4177 /* uses this to access any guest's mapped memory without checking CPL */
4178 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4179 				struct x86_exception *exception)
4180 {
4181 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4182 }
4183 
4184 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4185 				      struct kvm_vcpu *vcpu, u32 access,
4186 				      struct x86_exception *exception)
4187 {
4188 	void *data = val;
4189 	int r = X86EMUL_CONTINUE;
4190 
4191 	while (bytes) {
4192 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4193 							    exception);
4194 		unsigned offset = addr & (PAGE_SIZE-1);
4195 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4196 		int ret;
4197 
4198 		if (gpa == UNMAPPED_GVA)
4199 			return X86EMUL_PROPAGATE_FAULT;
4200 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4201 					       offset, toread);
4202 		if (ret < 0) {
4203 			r = X86EMUL_IO_NEEDED;
4204 			goto out;
4205 		}
4206 
4207 		bytes -= toread;
4208 		data += toread;
4209 		addr += toread;
4210 	}
4211 out:
4212 	return r;
4213 }
4214 
4215 /* used for instruction fetching */
4216 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4217 				gva_t addr, void *val, unsigned int bytes,
4218 				struct x86_exception *exception)
4219 {
4220 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4221 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4222 	unsigned offset;
4223 	int ret;
4224 
4225 	/* Inline kvm_read_guest_virt_helper for speed.  */
4226 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4227 						    exception);
4228 	if (unlikely(gpa == UNMAPPED_GVA))
4229 		return X86EMUL_PROPAGATE_FAULT;
4230 
4231 	offset = addr & (PAGE_SIZE-1);
4232 	if (WARN_ON(offset + bytes > PAGE_SIZE))
4233 		bytes = (unsigned)PAGE_SIZE - offset;
4234 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4235 				       offset, bytes);
4236 	if (unlikely(ret < 0))
4237 		return X86EMUL_IO_NEEDED;
4238 
4239 	return X86EMUL_CONTINUE;
4240 }
4241 
4242 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4243 			       gva_t addr, void *val, unsigned int bytes,
4244 			       struct x86_exception *exception)
4245 {
4246 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4247 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4248 
4249 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4250 					  exception);
4251 }
4252 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4253 
4254 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4255 				      gva_t addr, void *val, unsigned int bytes,
4256 				      struct x86_exception *exception)
4257 {
4258 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4259 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4260 }
4261 
4262 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4263 				       gva_t addr, void *val,
4264 				       unsigned int bytes,
4265 				       struct x86_exception *exception)
4266 {
4267 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4268 	void *data = val;
4269 	int r = X86EMUL_CONTINUE;
4270 
4271 	while (bytes) {
4272 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4273 							     PFERR_WRITE_MASK,
4274 							     exception);
4275 		unsigned offset = addr & (PAGE_SIZE-1);
4276 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4277 		int ret;
4278 
4279 		if (gpa == UNMAPPED_GVA)
4280 			return X86EMUL_PROPAGATE_FAULT;
4281 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4282 		if (ret < 0) {
4283 			r = X86EMUL_IO_NEEDED;
4284 			goto out;
4285 		}
4286 
4287 		bytes -= towrite;
4288 		data += towrite;
4289 		addr += towrite;
4290 	}
4291 out:
4292 	return r;
4293 }
4294 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4295 
4296 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4297 				gpa_t *gpa, struct x86_exception *exception,
4298 				bool write)
4299 {
4300 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4301 		| (write ? PFERR_WRITE_MASK : 0);
4302 
4303 	if (vcpu_match_mmio_gva(vcpu, gva)
4304 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4305 				 vcpu->arch.access, access)) {
4306 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4307 					(gva & (PAGE_SIZE - 1));
4308 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4309 		return 1;
4310 	}
4311 
4312 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4313 
4314 	if (*gpa == UNMAPPED_GVA)
4315 		return -1;
4316 
4317 	/* For APIC access vmexit */
4318 	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4319 		return 1;
4320 
4321 	if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4322 		trace_vcpu_match_mmio(gva, *gpa, write, true);
4323 		return 1;
4324 	}
4325 
4326 	return 0;
4327 }
4328 
4329 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4330 			const void *val, int bytes)
4331 {
4332 	int ret;
4333 
4334 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4335 	if (ret < 0)
4336 		return 0;
4337 	kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4338 	return 1;
4339 }
4340 
4341 struct read_write_emulator_ops {
4342 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4343 				  int bytes);
4344 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4345 				  void *val, int bytes);
4346 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4347 			       int bytes, void *val);
4348 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4349 				    void *val, int bytes);
4350 	bool write;
4351 };
4352 
4353 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4354 {
4355 	if (vcpu->mmio_read_completed) {
4356 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4357 			       vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4358 		vcpu->mmio_read_completed = 0;
4359 		return 1;
4360 	}
4361 
4362 	return 0;
4363 }
4364 
4365 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4366 			void *val, int bytes)
4367 {
4368 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4369 }
4370 
4371 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4372 			 void *val, int bytes)
4373 {
4374 	return emulator_write_phys(vcpu, gpa, val, bytes);
4375 }
4376 
4377 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4378 {
4379 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4380 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4381 }
4382 
4383 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4384 			  void *val, int bytes)
4385 {
4386 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4387 	return X86EMUL_IO_NEEDED;
4388 }
4389 
4390 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4391 			   void *val, int bytes)
4392 {
4393 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4394 
4395 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4396 	return X86EMUL_CONTINUE;
4397 }
4398 
4399 static const struct read_write_emulator_ops read_emultor = {
4400 	.read_write_prepare = read_prepare,
4401 	.read_write_emulate = read_emulate,
4402 	.read_write_mmio = vcpu_mmio_read,
4403 	.read_write_exit_mmio = read_exit_mmio,
4404 };
4405 
4406 static const struct read_write_emulator_ops write_emultor = {
4407 	.read_write_emulate = write_emulate,
4408 	.read_write_mmio = write_mmio,
4409 	.read_write_exit_mmio = write_exit_mmio,
4410 	.write = true,
4411 };
4412 
4413 static int emulator_read_write_onepage(unsigned long addr, void *val,
4414 				       unsigned int bytes,
4415 				       struct x86_exception *exception,
4416 				       struct kvm_vcpu *vcpu,
4417 				       const struct read_write_emulator_ops *ops)
4418 {
4419 	gpa_t gpa;
4420 	int handled, ret;
4421 	bool write = ops->write;
4422 	struct kvm_mmio_fragment *frag;
4423 
4424 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4425 
4426 	if (ret < 0)
4427 		return X86EMUL_PROPAGATE_FAULT;
4428 
4429 	/* For APIC access vmexit */
4430 	if (ret)
4431 		goto mmio;
4432 
4433 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4434 		return X86EMUL_CONTINUE;
4435 
4436 mmio:
4437 	/*
4438 	 * Is this MMIO handled locally?
4439 	 */
4440 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4441 	if (handled == bytes)
4442 		return X86EMUL_CONTINUE;
4443 
4444 	gpa += handled;
4445 	bytes -= handled;
4446 	val += handled;
4447 
4448 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4449 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4450 	frag->gpa = gpa;
4451 	frag->data = val;
4452 	frag->len = bytes;
4453 	return X86EMUL_CONTINUE;
4454 }
4455 
4456 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4457 			unsigned long addr,
4458 			void *val, unsigned int bytes,
4459 			struct x86_exception *exception,
4460 			const struct read_write_emulator_ops *ops)
4461 {
4462 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4463 	gpa_t gpa;
4464 	int rc;
4465 
4466 	if (ops->read_write_prepare &&
4467 		  ops->read_write_prepare(vcpu, val, bytes))
4468 		return X86EMUL_CONTINUE;
4469 
4470 	vcpu->mmio_nr_fragments = 0;
4471 
4472 	/* Crossing a page boundary? */
4473 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4474 		int now;
4475 
4476 		now = -addr & ~PAGE_MASK;
4477 		rc = emulator_read_write_onepage(addr, val, now, exception,
4478 						 vcpu, ops);
4479 
4480 		if (rc != X86EMUL_CONTINUE)
4481 			return rc;
4482 		addr += now;
4483 		if (ctxt->mode != X86EMUL_MODE_PROT64)
4484 			addr = (u32)addr;
4485 		val += now;
4486 		bytes -= now;
4487 	}
4488 
4489 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
4490 					 vcpu, ops);
4491 	if (rc != X86EMUL_CONTINUE)
4492 		return rc;
4493 
4494 	if (!vcpu->mmio_nr_fragments)
4495 		return rc;
4496 
4497 	gpa = vcpu->mmio_fragments[0].gpa;
4498 
4499 	vcpu->mmio_needed = 1;
4500 	vcpu->mmio_cur_fragment = 0;
4501 
4502 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4503 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4504 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
4505 	vcpu->run->mmio.phys_addr = gpa;
4506 
4507 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4508 }
4509 
4510 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4511 				  unsigned long addr,
4512 				  void *val,
4513 				  unsigned int bytes,
4514 				  struct x86_exception *exception)
4515 {
4516 	return emulator_read_write(ctxt, addr, val, bytes,
4517 				   exception, &read_emultor);
4518 }
4519 
4520 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4521 			    unsigned long addr,
4522 			    const void *val,
4523 			    unsigned int bytes,
4524 			    struct x86_exception *exception)
4525 {
4526 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
4527 				   exception, &write_emultor);
4528 }
4529 
4530 #define CMPXCHG_TYPE(t, ptr, old, new) \
4531 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4532 
4533 #ifdef CONFIG_X86_64
4534 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4535 #else
4536 #  define CMPXCHG64(ptr, old, new) \
4537 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4538 #endif
4539 
4540 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4541 				     unsigned long addr,
4542 				     const void *old,
4543 				     const void *new,
4544 				     unsigned int bytes,
4545 				     struct x86_exception *exception)
4546 {
4547 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4548 	gpa_t gpa;
4549 	struct page *page;
4550 	char *kaddr;
4551 	bool exchanged;
4552 
4553 	/* guests cmpxchg8b have to be emulated atomically */
4554 	if (bytes > 8 || (bytes & (bytes - 1)))
4555 		goto emul_write;
4556 
4557 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4558 
4559 	if (gpa == UNMAPPED_GVA ||
4560 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4561 		goto emul_write;
4562 
4563 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4564 		goto emul_write;
4565 
4566 	page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4567 	if (is_error_page(page))
4568 		goto emul_write;
4569 
4570 	kaddr = kmap_atomic(page);
4571 	kaddr += offset_in_page(gpa);
4572 	switch (bytes) {
4573 	case 1:
4574 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4575 		break;
4576 	case 2:
4577 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4578 		break;
4579 	case 4:
4580 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4581 		break;
4582 	case 8:
4583 		exchanged = CMPXCHG64(kaddr, old, new);
4584 		break;
4585 	default:
4586 		BUG();
4587 	}
4588 	kunmap_atomic(kaddr);
4589 	kvm_release_page_dirty(page);
4590 
4591 	if (!exchanged)
4592 		return X86EMUL_CMPXCHG_FAILED;
4593 
4594 	kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4595 	kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4596 
4597 	return X86EMUL_CONTINUE;
4598 
4599 emul_write:
4600 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4601 
4602 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4603 }
4604 
4605 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4606 {
4607 	/* TODO: String I/O for in kernel device */
4608 	int r;
4609 
4610 	if (vcpu->arch.pio.in)
4611 		r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4612 				    vcpu->arch.pio.size, pd);
4613 	else
4614 		r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4615 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
4616 				     pd);
4617 	return r;
4618 }
4619 
4620 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4621 			       unsigned short port, void *val,
4622 			       unsigned int count, bool in)
4623 {
4624 	vcpu->arch.pio.port = port;
4625 	vcpu->arch.pio.in = in;
4626 	vcpu->arch.pio.count  = count;
4627 	vcpu->arch.pio.size = size;
4628 
4629 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4630 		vcpu->arch.pio.count = 0;
4631 		return 1;
4632 	}
4633 
4634 	vcpu->run->exit_reason = KVM_EXIT_IO;
4635 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4636 	vcpu->run->io.size = size;
4637 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4638 	vcpu->run->io.count = count;
4639 	vcpu->run->io.port = port;
4640 
4641 	return 0;
4642 }
4643 
4644 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4645 				    int size, unsigned short port, void *val,
4646 				    unsigned int count)
4647 {
4648 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4649 	int ret;
4650 
4651 	if (vcpu->arch.pio.count)
4652 		goto data_avail;
4653 
4654 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4655 	if (ret) {
4656 data_avail:
4657 		memcpy(val, vcpu->arch.pio_data, size * count);
4658 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4659 		vcpu->arch.pio.count = 0;
4660 		return 1;
4661 	}
4662 
4663 	return 0;
4664 }
4665 
4666 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4667 				     int size, unsigned short port,
4668 				     const void *val, unsigned int count)
4669 {
4670 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4671 
4672 	memcpy(vcpu->arch.pio_data, val, size * count);
4673 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4674 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4675 }
4676 
4677 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4678 {
4679 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4680 }
4681 
4682 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4683 {
4684 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4685 }
4686 
4687 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4688 {
4689 	if (!need_emulate_wbinvd(vcpu))
4690 		return X86EMUL_CONTINUE;
4691 
4692 	if (kvm_x86_ops->has_wbinvd_exit()) {
4693 		int cpu = get_cpu();
4694 
4695 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4696 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4697 				wbinvd_ipi, NULL, 1);
4698 		put_cpu();
4699 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4700 	} else
4701 		wbinvd();
4702 	return X86EMUL_CONTINUE;
4703 }
4704 
4705 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4706 {
4707 	kvm_x86_ops->skip_emulated_instruction(vcpu);
4708 	return kvm_emulate_wbinvd_noskip(vcpu);
4709 }
4710 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4711 
4712 
4713 
4714 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4715 {
4716 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4717 }
4718 
4719 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4720 			   unsigned long *dest)
4721 {
4722 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4723 }
4724 
4725 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4726 			   unsigned long value)
4727 {
4728 
4729 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4730 }
4731 
4732 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4733 {
4734 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4735 }
4736 
4737 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4738 {
4739 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4740 	unsigned long value;
4741 
4742 	switch (cr) {
4743 	case 0:
4744 		value = kvm_read_cr0(vcpu);
4745 		break;
4746 	case 2:
4747 		value = vcpu->arch.cr2;
4748 		break;
4749 	case 3:
4750 		value = kvm_read_cr3(vcpu);
4751 		break;
4752 	case 4:
4753 		value = kvm_read_cr4(vcpu);
4754 		break;
4755 	case 8:
4756 		value = kvm_get_cr8(vcpu);
4757 		break;
4758 	default:
4759 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4760 		return 0;
4761 	}
4762 
4763 	return value;
4764 }
4765 
4766 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4767 {
4768 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4769 	int res = 0;
4770 
4771 	switch (cr) {
4772 	case 0:
4773 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4774 		break;
4775 	case 2:
4776 		vcpu->arch.cr2 = val;
4777 		break;
4778 	case 3:
4779 		res = kvm_set_cr3(vcpu, val);
4780 		break;
4781 	case 4:
4782 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4783 		break;
4784 	case 8:
4785 		res = kvm_set_cr8(vcpu, val);
4786 		break;
4787 	default:
4788 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4789 		res = -1;
4790 	}
4791 
4792 	return res;
4793 }
4794 
4795 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4796 {
4797 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4798 }
4799 
4800 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4801 {
4802 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4803 }
4804 
4805 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4806 {
4807 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4808 }
4809 
4810 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4811 {
4812 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4813 }
4814 
4815 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4816 {
4817 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4818 }
4819 
4820 static unsigned long emulator_get_cached_segment_base(
4821 	struct x86_emulate_ctxt *ctxt, int seg)
4822 {
4823 	return get_segment_base(emul_to_vcpu(ctxt), seg);
4824 }
4825 
4826 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4827 				 struct desc_struct *desc, u32 *base3,
4828 				 int seg)
4829 {
4830 	struct kvm_segment var;
4831 
4832 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4833 	*selector = var.selector;
4834 
4835 	if (var.unusable) {
4836 		memset(desc, 0, sizeof(*desc));
4837 		return false;
4838 	}
4839 
4840 	if (var.g)
4841 		var.limit >>= 12;
4842 	set_desc_limit(desc, var.limit);
4843 	set_desc_base(desc, (unsigned long)var.base);
4844 #ifdef CONFIG_X86_64
4845 	if (base3)
4846 		*base3 = var.base >> 32;
4847 #endif
4848 	desc->type = var.type;
4849 	desc->s = var.s;
4850 	desc->dpl = var.dpl;
4851 	desc->p = var.present;
4852 	desc->avl = var.avl;
4853 	desc->l = var.l;
4854 	desc->d = var.db;
4855 	desc->g = var.g;
4856 
4857 	return true;
4858 }
4859 
4860 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4861 				 struct desc_struct *desc, u32 base3,
4862 				 int seg)
4863 {
4864 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4865 	struct kvm_segment var;
4866 
4867 	var.selector = selector;
4868 	var.base = get_desc_base(desc);
4869 #ifdef CONFIG_X86_64
4870 	var.base |= ((u64)base3) << 32;
4871 #endif
4872 	var.limit = get_desc_limit(desc);
4873 	if (desc->g)
4874 		var.limit = (var.limit << 12) | 0xfff;
4875 	var.type = desc->type;
4876 	var.dpl = desc->dpl;
4877 	var.db = desc->d;
4878 	var.s = desc->s;
4879 	var.l = desc->l;
4880 	var.g = desc->g;
4881 	var.avl = desc->avl;
4882 	var.present = desc->p;
4883 	var.unusable = !var.present;
4884 	var.padding = 0;
4885 
4886 	kvm_set_segment(vcpu, &var, seg);
4887 	return;
4888 }
4889 
4890 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4891 			    u32 msr_index, u64 *pdata)
4892 {
4893 	struct msr_data msr;
4894 	int r;
4895 
4896 	msr.index = msr_index;
4897 	msr.host_initiated = false;
4898 	r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
4899 	if (r)
4900 		return r;
4901 
4902 	*pdata = msr.data;
4903 	return 0;
4904 }
4905 
4906 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4907 			    u32 msr_index, u64 data)
4908 {
4909 	struct msr_data msr;
4910 
4911 	msr.data = data;
4912 	msr.index = msr_index;
4913 	msr.host_initiated = false;
4914 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4915 }
4916 
4917 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
4918 {
4919 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4920 
4921 	return vcpu->arch.smbase;
4922 }
4923 
4924 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
4925 {
4926 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4927 
4928 	vcpu->arch.smbase = smbase;
4929 }
4930 
4931 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4932 			      u32 pmc)
4933 {
4934 	return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
4935 }
4936 
4937 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4938 			     u32 pmc, u64 *pdata)
4939 {
4940 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
4941 }
4942 
4943 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4944 {
4945 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
4946 }
4947 
4948 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4949 {
4950 	preempt_disable();
4951 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4952 	/*
4953 	 * CR0.TS may reference the host fpu state, not the guest fpu state,
4954 	 * so it may be clear at this point.
4955 	 */
4956 	clts();
4957 }
4958 
4959 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4960 {
4961 	preempt_enable();
4962 }
4963 
4964 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4965 			      struct x86_instruction_info *info,
4966 			      enum x86_intercept_stage stage)
4967 {
4968 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4969 }
4970 
4971 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4972 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4973 {
4974 	kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4975 }
4976 
4977 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4978 {
4979 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
4980 }
4981 
4982 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4983 {
4984 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4985 }
4986 
4987 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
4988 {
4989 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
4990 }
4991 
4992 static const struct x86_emulate_ops emulate_ops = {
4993 	.read_gpr            = emulator_read_gpr,
4994 	.write_gpr           = emulator_write_gpr,
4995 	.read_std            = kvm_read_guest_virt_system,
4996 	.write_std           = kvm_write_guest_virt_system,
4997 	.fetch               = kvm_fetch_guest_virt,
4998 	.read_emulated       = emulator_read_emulated,
4999 	.write_emulated      = emulator_write_emulated,
5000 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
5001 	.invlpg              = emulator_invlpg,
5002 	.pio_in_emulated     = emulator_pio_in_emulated,
5003 	.pio_out_emulated    = emulator_pio_out_emulated,
5004 	.get_segment         = emulator_get_segment,
5005 	.set_segment         = emulator_set_segment,
5006 	.get_cached_segment_base = emulator_get_cached_segment_base,
5007 	.get_gdt             = emulator_get_gdt,
5008 	.get_idt	     = emulator_get_idt,
5009 	.set_gdt             = emulator_set_gdt,
5010 	.set_idt	     = emulator_set_idt,
5011 	.get_cr              = emulator_get_cr,
5012 	.set_cr              = emulator_set_cr,
5013 	.cpl                 = emulator_get_cpl,
5014 	.get_dr              = emulator_get_dr,
5015 	.set_dr              = emulator_set_dr,
5016 	.get_smbase          = emulator_get_smbase,
5017 	.set_smbase          = emulator_set_smbase,
5018 	.set_msr             = emulator_set_msr,
5019 	.get_msr             = emulator_get_msr,
5020 	.check_pmc	     = emulator_check_pmc,
5021 	.read_pmc            = emulator_read_pmc,
5022 	.halt                = emulator_halt,
5023 	.wbinvd              = emulator_wbinvd,
5024 	.fix_hypercall       = emulator_fix_hypercall,
5025 	.get_fpu             = emulator_get_fpu,
5026 	.put_fpu             = emulator_put_fpu,
5027 	.intercept           = emulator_intercept,
5028 	.get_cpuid           = emulator_get_cpuid,
5029 	.set_nmi_mask        = emulator_set_nmi_mask,
5030 };
5031 
5032 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5033 {
5034 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5035 	/*
5036 	 * an sti; sti; sequence only disable interrupts for the first
5037 	 * instruction. So, if the last instruction, be it emulated or
5038 	 * not, left the system with the INT_STI flag enabled, it
5039 	 * means that the last instruction is an sti. We should not
5040 	 * leave the flag on in this case. The same goes for mov ss
5041 	 */
5042 	if (int_shadow & mask)
5043 		mask = 0;
5044 	if (unlikely(int_shadow || mask)) {
5045 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5046 		if (!mask)
5047 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5048 	}
5049 }
5050 
5051 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5052 {
5053 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5054 	if (ctxt->exception.vector == PF_VECTOR)
5055 		return kvm_propagate_fault(vcpu, &ctxt->exception);
5056 
5057 	if (ctxt->exception.error_code_valid)
5058 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5059 				      ctxt->exception.error_code);
5060 	else
5061 		kvm_queue_exception(vcpu, ctxt->exception.vector);
5062 	return false;
5063 }
5064 
5065 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5066 {
5067 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5068 	int cs_db, cs_l;
5069 
5070 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5071 
5072 	ctxt->eflags = kvm_get_rflags(vcpu);
5073 	ctxt->eip = kvm_rip_read(vcpu);
5074 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
5075 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
5076 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
5077 		     cs_db				? X86EMUL_MODE_PROT32 :
5078 							  X86EMUL_MODE_PROT16;
5079 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5080 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5081 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5082 	ctxt->emul_flags = vcpu->arch.hflags;
5083 
5084 	init_decode_cache(ctxt);
5085 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5086 }
5087 
5088 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5089 {
5090 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5091 	int ret;
5092 
5093 	init_emulate_ctxt(vcpu);
5094 
5095 	ctxt->op_bytes = 2;
5096 	ctxt->ad_bytes = 2;
5097 	ctxt->_eip = ctxt->eip + inc_eip;
5098 	ret = emulate_int_real(ctxt, irq);
5099 
5100 	if (ret != X86EMUL_CONTINUE)
5101 		return EMULATE_FAIL;
5102 
5103 	ctxt->eip = ctxt->_eip;
5104 	kvm_rip_write(vcpu, ctxt->eip);
5105 	kvm_set_rflags(vcpu, ctxt->eflags);
5106 
5107 	if (irq == NMI_VECTOR)
5108 		vcpu->arch.nmi_pending = 0;
5109 	else
5110 		vcpu->arch.interrupt.pending = false;
5111 
5112 	return EMULATE_DONE;
5113 }
5114 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5115 
5116 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5117 {
5118 	int r = EMULATE_DONE;
5119 
5120 	++vcpu->stat.insn_emulation_fail;
5121 	trace_kvm_emulate_insn_failed(vcpu);
5122 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5123 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5124 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5125 		vcpu->run->internal.ndata = 0;
5126 		r = EMULATE_FAIL;
5127 	}
5128 	kvm_queue_exception(vcpu, UD_VECTOR);
5129 
5130 	return r;
5131 }
5132 
5133 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5134 				  bool write_fault_to_shadow_pgtable,
5135 				  int emulation_type)
5136 {
5137 	gpa_t gpa = cr2;
5138 	pfn_t pfn;
5139 
5140 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
5141 		return false;
5142 
5143 	if (!vcpu->arch.mmu.direct_map) {
5144 		/*
5145 		 * Write permission should be allowed since only
5146 		 * write access need to be emulated.
5147 		 */
5148 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5149 
5150 		/*
5151 		 * If the mapping is invalid in guest, let cpu retry
5152 		 * it to generate fault.
5153 		 */
5154 		if (gpa == UNMAPPED_GVA)
5155 			return true;
5156 	}
5157 
5158 	/*
5159 	 * Do not retry the unhandleable instruction if it faults on the
5160 	 * readonly host memory, otherwise it will goto a infinite loop:
5161 	 * retry instruction -> write #PF -> emulation fail -> retry
5162 	 * instruction -> ...
5163 	 */
5164 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5165 
5166 	/*
5167 	 * If the instruction failed on the error pfn, it can not be fixed,
5168 	 * report the error to userspace.
5169 	 */
5170 	if (is_error_noslot_pfn(pfn))
5171 		return false;
5172 
5173 	kvm_release_pfn_clean(pfn);
5174 
5175 	/* The instructions are well-emulated on direct mmu. */
5176 	if (vcpu->arch.mmu.direct_map) {
5177 		unsigned int indirect_shadow_pages;
5178 
5179 		spin_lock(&vcpu->kvm->mmu_lock);
5180 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5181 		spin_unlock(&vcpu->kvm->mmu_lock);
5182 
5183 		if (indirect_shadow_pages)
5184 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5185 
5186 		return true;
5187 	}
5188 
5189 	/*
5190 	 * if emulation was due to access to shadowed page table
5191 	 * and it failed try to unshadow page and re-enter the
5192 	 * guest to let CPU execute the instruction.
5193 	 */
5194 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5195 
5196 	/*
5197 	 * If the access faults on its page table, it can not
5198 	 * be fixed by unprotecting shadow page and it should
5199 	 * be reported to userspace.
5200 	 */
5201 	return !write_fault_to_shadow_pgtable;
5202 }
5203 
5204 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5205 			      unsigned long cr2,  int emulation_type)
5206 {
5207 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5208 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5209 
5210 	last_retry_eip = vcpu->arch.last_retry_eip;
5211 	last_retry_addr = vcpu->arch.last_retry_addr;
5212 
5213 	/*
5214 	 * If the emulation is caused by #PF and it is non-page_table
5215 	 * writing instruction, it means the VM-EXIT is caused by shadow
5216 	 * page protected, we can zap the shadow page and retry this
5217 	 * instruction directly.
5218 	 *
5219 	 * Note: if the guest uses a non-page-table modifying instruction
5220 	 * on the PDE that points to the instruction, then we will unmap
5221 	 * the instruction and go to an infinite loop. So, we cache the
5222 	 * last retried eip and the last fault address, if we meet the eip
5223 	 * and the address again, we can break out of the potential infinite
5224 	 * loop.
5225 	 */
5226 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5227 
5228 	if (!(emulation_type & EMULTYPE_RETRY))
5229 		return false;
5230 
5231 	if (x86_page_table_writing_insn(ctxt))
5232 		return false;
5233 
5234 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5235 		return false;
5236 
5237 	vcpu->arch.last_retry_eip = ctxt->eip;
5238 	vcpu->arch.last_retry_addr = cr2;
5239 
5240 	if (!vcpu->arch.mmu.direct_map)
5241 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5242 
5243 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5244 
5245 	return true;
5246 }
5247 
5248 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5249 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5250 
5251 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5252 {
5253 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5254 		/* This is a good place to trace that we are exiting SMM.  */
5255 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5256 
5257 		if (unlikely(vcpu->arch.smi_pending)) {
5258 			kvm_make_request(KVM_REQ_SMI, vcpu);
5259 			vcpu->arch.smi_pending = 0;
5260 		} else {
5261 			/* Process a latched INIT, if any.  */
5262 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5263 		}
5264 	}
5265 
5266 	kvm_mmu_reset_context(vcpu);
5267 }
5268 
5269 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5270 {
5271 	unsigned changed = vcpu->arch.hflags ^ emul_flags;
5272 
5273 	vcpu->arch.hflags = emul_flags;
5274 
5275 	if (changed & HF_SMM_MASK)
5276 		kvm_smm_changed(vcpu);
5277 }
5278 
5279 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5280 				unsigned long *db)
5281 {
5282 	u32 dr6 = 0;
5283 	int i;
5284 	u32 enable, rwlen;
5285 
5286 	enable = dr7;
5287 	rwlen = dr7 >> 16;
5288 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5289 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5290 			dr6 |= (1 << i);
5291 	return dr6;
5292 }
5293 
5294 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5295 {
5296 	struct kvm_run *kvm_run = vcpu->run;
5297 
5298 	/*
5299 	 * rflags is the old, "raw" value of the flags.  The new value has
5300 	 * not been saved yet.
5301 	 *
5302 	 * This is correct even for TF set by the guest, because "the
5303 	 * processor will not generate this exception after the instruction
5304 	 * that sets the TF flag".
5305 	 */
5306 	if (unlikely(rflags & X86_EFLAGS_TF)) {
5307 		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5308 			kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5309 						  DR6_RTM;
5310 			kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5311 			kvm_run->debug.arch.exception = DB_VECTOR;
5312 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5313 			*r = EMULATE_USER_EXIT;
5314 		} else {
5315 			vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5316 			/*
5317 			 * "Certain debug exceptions may clear bit 0-3.  The
5318 			 * remaining contents of the DR6 register are never
5319 			 * cleared by the processor".
5320 			 */
5321 			vcpu->arch.dr6 &= ~15;
5322 			vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5323 			kvm_queue_exception(vcpu, DB_VECTOR);
5324 		}
5325 	}
5326 }
5327 
5328 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5329 {
5330 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5331 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5332 		struct kvm_run *kvm_run = vcpu->run;
5333 		unsigned long eip = kvm_get_linear_rip(vcpu);
5334 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5335 					   vcpu->arch.guest_debug_dr7,
5336 					   vcpu->arch.eff_db);
5337 
5338 		if (dr6 != 0) {
5339 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5340 			kvm_run->debug.arch.pc = eip;
5341 			kvm_run->debug.arch.exception = DB_VECTOR;
5342 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5343 			*r = EMULATE_USER_EXIT;
5344 			return true;
5345 		}
5346 	}
5347 
5348 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5349 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5350 		unsigned long eip = kvm_get_linear_rip(vcpu);
5351 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5352 					   vcpu->arch.dr7,
5353 					   vcpu->arch.db);
5354 
5355 		if (dr6 != 0) {
5356 			vcpu->arch.dr6 &= ~15;
5357 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
5358 			kvm_queue_exception(vcpu, DB_VECTOR);
5359 			*r = EMULATE_DONE;
5360 			return true;
5361 		}
5362 	}
5363 
5364 	return false;
5365 }
5366 
5367 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5368 			    unsigned long cr2,
5369 			    int emulation_type,
5370 			    void *insn,
5371 			    int insn_len)
5372 {
5373 	int r;
5374 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5375 	bool writeback = true;
5376 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5377 
5378 	/*
5379 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
5380 	 * never reused.
5381 	 */
5382 	vcpu->arch.write_fault_to_shadow_pgtable = false;
5383 	kvm_clear_exception_queue(vcpu);
5384 
5385 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5386 		init_emulate_ctxt(vcpu);
5387 
5388 		/*
5389 		 * We will reenter on the same instruction since
5390 		 * we do not set complete_userspace_io.  This does not
5391 		 * handle watchpoints yet, those would be handled in
5392 		 * the emulate_ops.
5393 		 */
5394 		if (kvm_vcpu_check_breakpoint(vcpu, &r))
5395 			return r;
5396 
5397 		ctxt->interruptibility = 0;
5398 		ctxt->have_exception = false;
5399 		ctxt->exception.vector = -1;
5400 		ctxt->perm_ok = false;
5401 
5402 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5403 
5404 		r = x86_decode_insn(ctxt, insn, insn_len);
5405 
5406 		trace_kvm_emulate_insn_start(vcpu);
5407 		++vcpu->stat.insn_emulation;
5408 		if (r != EMULATION_OK)  {
5409 			if (emulation_type & EMULTYPE_TRAP_UD)
5410 				return EMULATE_FAIL;
5411 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5412 						emulation_type))
5413 				return EMULATE_DONE;
5414 			if (emulation_type & EMULTYPE_SKIP)
5415 				return EMULATE_FAIL;
5416 			return handle_emulation_failure(vcpu);
5417 		}
5418 	}
5419 
5420 	if (emulation_type & EMULTYPE_SKIP) {
5421 		kvm_rip_write(vcpu, ctxt->_eip);
5422 		if (ctxt->eflags & X86_EFLAGS_RF)
5423 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5424 		return EMULATE_DONE;
5425 	}
5426 
5427 	if (retry_instruction(ctxt, cr2, emulation_type))
5428 		return EMULATE_DONE;
5429 
5430 	/* this is needed for vmware backdoor interface to work since it
5431 	   changes registers values  during IO operation */
5432 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5433 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5434 		emulator_invalidate_register_cache(ctxt);
5435 	}
5436 
5437 restart:
5438 	r = x86_emulate_insn(ctxt);
5439 
5440 	if (r == EMULATION_INTERCEPTED)
5441 		return EMULATE_DONE;
5442 
5443 	if (r == EMULATION_FAILED) {
5444 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5445 					emulation_type))
5446 			return EMULATE_DONE;
5447 
5448 		return handle_emulation_failure(vcpu);
5449 	}
5450 
5451 	if (ctxt->have_exception) {
5452 		r = EMULATE_DONE;
5453 		if (inject_emulated_exception(vcpu))
5454 			return r;
5455 	} else if (vcpu->arch.pio.count) {
5456 		if (!vcpu->arch.pio.in) {
5457 			/* FIXME: return into emulator if single-stepping.  */
5458 			vcpu->arch.pio.count = 0;
5459 		} else {
5460 			writeback = false;
5461 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
5462 		}
5463 		r = EMULATE_USER_EXIT;
5464 	} else if (vcpu->mmio_needed) {
5465 		if (!vcpu->mmio_is_write)
5466 			writeback = false;
5467 		r = EMULATE_USER_EXIT;
5468 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5469 	} else if (r == EMULATION_RESTART)
5470 		goto restart;
5471 	else
5472 		r = EMULATE_DONE;
5473 
5474 	if (writeback) {
5475 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5476 		toggle_interruptibility(vcpu, ctxt->interruptibility);
5477 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5478 		if (vcpu->arch.hflags != ctxt->emul_flags)
5479 			kvm_set_hflags(vcpu, ctxt->emul_flags);
5480 		kvm_rip_write(vcpu, ctxt->eip);
5481 		if (r == EMULATE_DONE)
5482 			kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5483 		if (!ctxt->have_exception ||
5484 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5485 			__kvm_set_rflags(vcpu, ctxt->eflags);
5486 
5487 		/*
5488 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5489 		 * do nothing, and it will be requested again as soon as
5490 		 * the shadow expires.  But we still need to check here,
5491 		 * because POPF has no interrupt shadow.
5492 		 */
5493 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5494 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5495 	} else
5496 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5497 
5498 	return r;
5499 }
5500 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5501 
5502 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5503 {
5504 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5505 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5506 					    size, port, &val, 1);
5507 	/* do not return to emulator after return from userspace */
5508 	vcpu->arch.pio.count = 0;
5509 	return ret;
5510 }
5511 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5512 
5513 static void tsc_bad(void *info)
5514 {
5515 	__this_cpu_write(cpu_tsc_khz, 0);
5516 }
5517 
5518 static void tsc_khz_changed(void *data)
5519 {
5520 	struct cpufreq_freqs *freq = data;
5521 	unsigned long khz = 0;
5522 
5523 	if (data)
5524 		khz = freq->new;
5525 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5526 		khz = cpufreq_quick_get(raw_smp_processor_id());
5527 	if (!khz)
5528 		khz = tsc_khz;
5529 	__this_cpu_write(cpu_tsc_khz, khz);
5530 }
5531 
5532 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5533 				     void *data)
5534 {
5535 	struct cpufreq_freqs *freq = data;
5536 	struct kvm *kvm;
5537 	struct kvm_vcpu *vcpu;
5538 	int i, send_ipi = 0;
5539 
5540 	/*
5541 	 * We allow guests to temporarily run on slowing clocks,
5542 	 * provided we notify them after, or to run on accelerating
5543 	 * clocks, provided we notify them before.  Thus time never
5544 	 * goes backwards.
5545 	 *
5546 	 * However, we have a problem.  We can't atomically update
5547 	 * the frequency of a given CPU from this function; it is
5548 	 * merely a notifier, which can be called from any CPU.
5549 	 * Changing the TSC frequency at arbitrary points in time
5550 	 * requires a recomputation of local variables related to
5551 	 * the TSC for each VCPU.  We must flag these local variables
5552 	 * to be updated and be sure the update takes place with the
5553 	 * new frequency before any guests proceed.
5554 	 *
5555 	 * Unfortunately, the combination of hotplug CPU and frequency
5556 	 * change creates an intractable locking scenario; the order
5557 	 * of when these callouts happen is undefined with respect to
5558 	 * CPU hotplug, and they can race with each other.  As such,
5559 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5560 	 * undefined; you can actually have a CPU frequency change take
5561 	 * place in between the computation of X and the setting of the
5562 	 * variable.  To protect against this problem, all updates of
5563 	 * the per_cpu tsc_khz variable are done in an interrupt
5564 	 * protected IPI, and all callers wishing to update the value
5565 	 * must wait for a synchronous IPI to complete (which is trivial
5566 	 * if the caller is on the CPU already).  This establishes the
5567 	 * necessary total order on variable updates.
5568 	 *
5569 	 * Note that because a guest time update may take place
5570 	 * anytime after the setting of the VCPU's request bit, the
5571 	 * correct TSC value must be set before the request.  However,
5572 	 * to ensure the update actually makes it to any guest which
5573 	 * starts running in hardware virtualization between the set
5574 	 * and the acquisition of the spinlock, we must also ping the
5575 	 * CPU after setting the request bit.
5576 	 *
5577 	 */
5578 
5579 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5580 		return 0;
5581 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5582 		return 0;
5583 
5584 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5585 
5586 	spin_lock(&kvm_lock);
5587 	list_for_each_entry(kvm, &vm_list, vm_list) {
5588 		kvm_for_each_vcpu(i, vcpu, kvm) {
5589 			if (vcpu->cpu != freq->cpu)
5590 				continue;
5591 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5592 			if (vcpu->cpu != smp_processor_id())
5593 				send_ipi = 1;
5594 		}
5595 	}
5596 	spin_unlock(&kvm_lock);
5597 
5598 	if (freq->old < freq->new && send_ipi) {
5599 		/*
5600 		 * We upscale the frequency.  Must make the guest
5601 		 * doesn't see old kvmclock values while running with
5602 		 * the new frequency, otherwise we risk the guest sees
5603 		 * time go backwards.
5604 		 *
5605 		 * In case we update the frequency for another cpu
5606 		 * (which might be in guest context) send an interrupt
5607 		 * to kick the cpu out of guest context.  Next time
5608 		 * guest context is entered kvmclock will be updated,
5609 		 * so the guest will not see stale values.
5610 		 */
5611 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5612 	}
5613 	return 0;
5614 }
5615 
5616 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5617 	.notifier_call  = kvmclock_cpufreq_notifier
5618 };
5619 
5620 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5621 					unsigned long action, void *hcpu)
5622 {
5623 	unsigned int cpu = (unsigned long)hcpu;
5624 
5625 	switch (action) {
5626 		case CPU_ONLINE:
5627 		case CPU_DOWN_FAILED:
5628 			smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5629 			break;
5630 		case CPU_DOWN_PREPARE:
5631 			smp_call_function_single(cpu, tsc_bad, NULL, 1);
5632 			break;
5633 	}
5634 	return NOTIFY_OK;
5635 }
5636 
5637 static struct notifier_block kvmclock_cpu_notifier_block = {
5638 	.notifier_call  = kvmclock_cpu_notifier,
5639 	.priority = -INT_MAX
5640 };
5641 
5642 static void kvm_timer_init(void)
5643 {
5644 	int cpu;
5645 
5646 	max_tsc_khz = tsc_khz;
5647 
5648 	cpu_notifier_register_begin();
5649 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5650 #ifdef CONFIG_CPU_FREQ
5651 		struct cpufreq_policy policy;
5652 		memset(&policy, 0, sizeof(policy));
5653 		cpu = get_cpu();
5654 		cpufreq_get_policy(&policy, cpu);
5655 		if (policy.cpuinfo.max_freq)
5656 			max_tsc_khz = policy.cpuinfo.max_freq;
5657 		put_cpu();
5658 #endif
5659 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5660 					  CPUFREQ_TRANSITION_NOTIFIER);
5661 	}
5662 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5663 	for_each_online_cpu(cpu)
5664 		smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5665 
5666 	__register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5667 	cpu_notifier_register_done();
5668 
5669 }
5670 
5671 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5672 
5673 int kvm_is_in_guest(void)
5674 {
5675 	return __this_cpu_read(current_vcpu) != NULL;
5676 }
5677 
5678 static int kvm_is_user_mode(void)
5679 {
5680 	int user_mode = 3;
5681 
5682 	if (__this_cpu_read(current_vcpu))
5683 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5684 
5685 	return user_mode != 0;
5686 }
5687 
5688 static unsigned long kvm_get_guest_ip(void)
5689 {
5690 	unsigned long ip = 0;
5691 
5692 	if (__this_cpu_read(current_vcpu))
5693 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5694 
5695 	return ip;
5696 }
5697 
5698 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5699 	.is_in_guest		= kvm_is_in_guest,
5700 	.is_user_mode		= kvm_is_user_mode,
5701 	.get_guest_ip		= kvm_get_guest_ip,
5702 };
5703 
5704 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5705 {
5706 	__this_cpu_write(current_vcpu, vcpu);
5707 }
5708 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5709 
5710 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5711 {
5712 	__this_cpu_write(current_vcpu, NULL);
5713 }
5714 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5715 
5716 static void kvm_set_mmio_spte_mask(void)
5717 {
5718 	u64 mask;
5719 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
5720 
5721 	/*
5722 	 * Set the reserved bits and the present bit of an paging-structure
5723 	 * entry to generate page fault with PFER.RSV = 1.
5724 	 */
5725 	 /* Mask the reserved physical address bits. */
5726 	mask = rsvd_bits(maxphyaddr, 51);
5727 
5728 	/* Bit 62 is always reserved for 32bit host. */
5729 	mask |= 0x3ull << 62;
5730 
5731 	/* Set the present bit. */
5732 	mask |= 1ull;
5733 
5734 #ifdef CONFIG_X86_64
5735 	/*
5736 	 * If reserved bit is not supported, clear the present bit to disable
5737 	 * mmio page fault.
5738 	 */
5739 	if (maxphyaddr == 52)
5740 		mask &= ~1ull;
5741 #endif
5742 
5743 	kvm_mmu_set_mmio_spte_mask(mask);
5744 }
5745 
5746 #ifdef CONFIG_X86_64
5747 static void pvclock_gtod_update_fn(struct work_struct *work)
5748 {
5749 	struct kvm *kvm;
5750 
5751 	struct kvm_vcpu *vcpu;
5752 	int i;
5753 
5754 	spin_lock(&kvm_lock);
5755 	list_for_each_entry(kvm, &vm_list, vm_list)
5756 		kvm_for_each_vcpu(i, vcpu, kvm)
5757 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5758 	atomic_set(&kvm_guest_has_master_clock, 0);
5759 	spin_unlock(&kvm_lock);
5760 }
5761 
5762 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5763 
5764 /*
5765  * Notification about pvclock gtod data update.
5766  */
5767 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5768 			       void *priv)
5769 {
5770 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5771 	struct timekeeper *tk = priv;
5772 
5773 	update_pvclock_gtod(tk);
5774 
5775 	/* disable master clock if host does not trust, or does not
5776 	 * use, TSC clocksource
5777 	 */
5778 	if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5779 	    atomic_read(&kvm_guest_has_master_clock) != 0)
5780 		queue_work(system_long_wq, &pvclock_gtod_work);
5781 
5782 	return 0;
5783 }
5784 
5785 static struct notifier_block pvclock_gtod_notifier = {
5786 	.notifier_call = pvclock_gtod_notify,
5787 };
5788 #endif
5789 
5790 int kvm_arch_init(void *opaque)
5791 {
5792 	int r;
5793 	struct kvm_x86_ops *ops = opaque;
5794 
5795 	if (kvm_x86_ops) {
5796 		printk(KERN_ERR "kvm: already loaded the other module\n");
5797 		r = -EEXIST;
5798 		goto out;
5799 	}
5800 
5801 	if (!ops->cpu_has_kvm_support()) {
5802 		printk(KERN_ERR "kvm: no hardware support\n");
5803 		r = -EOPNOTSUPP;
5804 		goto out;
5805 	}
5806 	if (ops->disabled_by_bios()) {
5807 		printk(KERN_ERR "kvm: disabled by bios\n");
5808 		r = -EOPNOTSUPP;
5809 		goto out;
5810 	}
5811 
5812 	r = -ENOMEM;
5813 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5814 	if (!shared_msrs) {
5815 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5816 		goto out;
5817 	}
5818 
5819 	r = kvm_mmu_module_init();
5820 	if (r)
5821 		goto out_free_percpu;
5822 
5823 	kvm_set_mmio_spte_mask();
5824 
5825 	kvm_x86_ops = ops;
5826 
5827 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5828 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
5829 
5830 	kvm_timer_init();
5831 
5832 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5833 
5834 	if (cpu_has_xsave)
5835 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5836 
5837 	kvm_lapic_init();
5838 #ifdef CONFIG_X86_64
5839 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5840 #endif
5841 
5842 	return 0;
5843 
5844 out_free_percpu:
5845 	free_percpu(shared_msrs);
5846 out:
5847 	return r;
5848 }
5849 
5850 void kvm_arch_exit(void)
5851 {
5852 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5853 
5854 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5855 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5856 					    CPUFREQ_TRANSITION_NOTIFIER);
5857 	unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5858 #ifdef CONFIG_X86_64
5859 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5860 #endif
5861 	kvm_x86_ops = NULL;
5862 	kvm_mmu_module_exit();
5863 	free_percpu(shared_msrs);
5864 }
5865 
5866 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5867 {
5868 	++vcpu->stat.halt_exits;
5869 	if (irqchip_in_kernel(vcpu->kvm)) {
5870 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5871 		return 1;
5872 	} else {
5873 		vcpu->run->exit_reason = KVM_EXIT_HLT;
5874 		return 0;
5875 	}
5876 }
5877 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5878 
5879 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5880 {
5881 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5882 	return kvm_vcpu_halt(vcpu);
5883 }
5884 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5885 
5886 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5887 {
5888 	u64 param, ingpa, outgpa, ret;
5889 	uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5890 	bool fast, longmode;
5891 
5892 	/*
5893 	 * hypercall generates UD from non zero cpl and real mode
5894 	 * per HYPER-V spec
5895 	 */
5896 	if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5897 		kvm_queue_exception(vcpu, UD_VECTOR);
5898 		return 0;
5899 	}
5900 
5901 	longmode = is_64_bit_mode(vcpu);
5902 
5903 	if (!longmode) {
5904 		param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5905 			(kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5906 		ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5907 			(kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5908 		outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5909 			(kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5910 	}
5911 #ifdef CONFIG_X86_64
5912 	else {
5913 		param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5914 		ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5915 		outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5916 	}
5917 #endif
5918 
5919 	code = param & 0xffff;
5920 	fast = (param >> 16) & 0x1;
5921 	rep_cnt = (param >> 32) & 0xfff;
5922 	rep_idx = (param >> 48) & 0xfff;
5923 
5924 	trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5925 
5926 	switch (code) {
5927 	case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5928 		kvm_vcpu_on_spin(vcpu);
5929 		break;
5930 	default:
5931 		res = HV_STATUS_INVALID_HYPERCALL_CODE;
5932 		break;
5933 	}
5934 
5935 	ret = res | (((u64)rep_done & 0xfff) << 32);
5936 	if (longmode) {
5937 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5938 	} else {
5939 		kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5940 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5941 	}
5942 
5943 	return 1;
5944 }
5945 
5946 /*
5947  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5948  *
5949  * @apicid - apicid of vcpu to be kicked.
5950  */
5951 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5952 {
5953 	struct kvm_lapic_irq lapic_irq;
5954 
5955 	lapic_irq.shorthand = 0;
5956 	lapic_irq.dest_mode = 0;
5957 	lapic_irq.dest_id = apicid;
5958 	lapic_irq.msi_redir_hint = false;
5959 
5960 	lapic_irq.delivery_mode = APIC_DM_REMRD;
5961 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5962 }
5963 
5964 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5965 {
5966 	unsigned long nr, a0, a1, a2, a3, ret;
5967 	int op_64_bit, r = 1;
5968 
5969 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5970 
5971 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
5972 		return kvm_hv_hypercall(vcpu);
5973 
5974 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5975 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5976 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5977 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5978 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5979 
5980 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
5981 
5982 	op_64_bit = is_64_bit_mode(vcpu);
5983 	if (!op_64_bit) {
5984 		nr &= 0xFFFFFFFF;
5985 		a0 &= 0xFFFFFFFF;
5986 		a1 &= 0xFFFFFFFF;
5987 		a2 &= 0xFFFFFFFF;
5988 		a3 &= 0xFFFFFFFF;
5989 	}
5990 
5991 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5992 		ret = -KVM_EPERM;
5993 		goto out;
5994 	}
5995 
5996 	switch (nr) {
5997 	case KVM_HC_VAPIC_POLL_IRQ:
5998 		ret = 0;
5999 		break;
6000 	case KVM_HC_KICK_CPU:
6001 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6002 		ret = 0;
6003 		break;
6004 	default:
6005 		ret = -KVM_ENOSYS;
6006 		break;
6007 	}
6008 out:
6009 	if (!op_64_bit)
6010 		ret = (u32)ret;
6011 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6012 	++vcpu->stat.hypercalls;
6013 	return r;
6014 }
6015 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6016 
6017 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6018 {
6019 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6020 	char instruction[3];
6021 	unsigned long rip = kvm_rip_read(vcpu);
6022 
6023 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
6024 
6025 	return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6026 }
6027 
6028 /*
6029  * Check if userspace requested an interrupt window, and that the
6030  * interrupt window is open.
6031  *
6032  * No need to exit to userspace if we already have an interrupt queued.
6033  */
6034 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6035 {
6036 	return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
6037 		vcpu->run->request_interrupt_window &&
6038 		kvm_arch_interrupt_allowed(vcpu));
6039 }
6040 
6041 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6042 {
6043 	struct kvm_run *kvm_run = vcpu->run;
6044 
6045 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6046 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6047 	kvm_run->cr8 = kvm_get_cr8(vcpu);
6048 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
6049 	if (irqchip_in_kernel(vcpu->kvm))
6050 		kvm_run->ready_for_interrupt_injection = 1;
6051 	else
6052 		kvm_run->ready_for_interrupt_injection =
6053 			kvm_arch_interrupt_allowed(vcpu) &&
6054 			!kvm_cpu_has_interrupt(vcpu) &&
6055 			!kvm_event_needs_reinjection(vcpu);
6056 }
6057 
6058 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6059 {
6060 	int max_irr, tpr;
6061 
6062 	if (!kvm_x86_ops->update_cr8_intercept)
6063 		return;
6064 
6065 	if (!vcpu->arch.apic)
6066 		return;
6067 
6068 	if (!vcpu->arch.apic->vapic_addr)
6069 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6070 	else
6071 		max_irr = -1;
6072 
6073 	if (max_irr != -1)
6074 		max_irr >>= 4;
6075 
6076 	tpr = kvm_lapic_get_cr8(vcpu);
6077 
6078 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6079 }
6080 
6081 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6082 {
6083 	int r;
6084 
6085 	/* try to reinject previous events if any */
6086 	if (vcpu->arch.exception.pending) {
6087 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
6088 					vcpu->arch.exception.has_error_code,
6089 					vcpu->arch.exception.error_code);
6090 
6091 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6092 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6093 					     X86_EFLAGS_RF);
6094 
6095 		if (vcpu->arch.exception.nr == DB_VECTOR &&
6096 		    (vcpu->arch.dr7 & DR7_GD)) {
6097 			vcpu->arch.dr7 &= ~DR7_GD;
6098 			kvm_update_dr7(vcpu);
6099 		}
6100 
6101 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6102 					  vcpu->arch.exception.has_error_code,
6103 					  vcpu->arch.exception.error_code,
6104 					  vcpu->arch.exception.reinject);
6105 		return 0;
6106 	}
6107 
6108 	if (vcpu->arch.nmi_injected) {
6109 		kvm_x86_ops->set_nmi(vcpu);
6110 		return 0;
6111 	}
6112 
6113 	if (vcpu->arch.interrupt.pending) {
6114 		kvm_x86_ops->set_irq(vcpu);
6115 		return 0;
6116 	}
6117 
6118 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6119 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6120 		if (r != 0)
6121 			return r;
6122 	}
6123 
6124 	/* try to inject new event if pending */
6125 	if (vcpu->arch.nmi_pending) {
6126 		if (kvm_x86_ops->nmi_allowed(vcpu)) {
6127 			--vcpu->arch.nmi_pending;
6128 			vcpu->arch.nmi_injected = true;
6129 			kvm_x86_ops->set_nmi(vcpu);
6130 		}
6131 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
6132 		/*
6133 		 * Because interrupts can be injected asynchronously, we are
6134 		 * calling check_nested_events again here to avoid a race condition.
6135 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6136 		 * proposal and current concerns.  Perhaps we should be setting
6137 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
6138 		 */
6139 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6140 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6141 			if (r != 0)
6142 				return r;
6143 		}
6144 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6145 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6146 					    false);
6147 			kvm_x86_ops->set_irq(vcpu);
6148 		}
6149 	}
6150 	return 0;
6151 }
6152 
6153 static void process_nmi(struct kvm_vcpu *vcpu)
6154 {
6155 	unsigned limit = 2;
6156 
6157 	/*
6158 	 * x86 is limited to one NMI running, and one NMI pending after it.
6159 	 * If an NMI is already in progress, limit further NMIs to just one.
6160 	 * Otherwise, allow two (and we'll inject the first one immediately).
6161 	 */
6162 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6163 		limit = 1;
6164 
6165 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6166 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6167 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6168 }
6169 
6170 #define put_smstate(type, buf, offset, val)			  \
6171 	*(type *)((buf) + (offset) - 0x7e00) = val
6172 
6173 static u32 process_smi_get_segment_flags(struct kvm_segment *seg)
6174 {
6175 	u32 flags = 0;
6176 	flags |= seg->g       << 23;
6177 	flags |= seg->db      << 22;
6178 	flags |= seg->l       << 21;
6179 	flags |= seg->avl     << 20;
6180 	flags |= seg->present << 15;
6181 	flags |= seg->dpl     << 13;
6182 	flags |= seg->s       << 12;
6183 	flags |= seg->type    << 8;
6184 	return flags;
6185 }
6186 
6187 static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6188 {
6189 	struct kvm_segment seg;
6190 	int offset;
6191 
6192 	kvm_get_segment(vcpu, &seg, n);
6193 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6194 
6195 	if (n < 3)
6196 		offset = 0x7f84 + n * 12;
6197 	else
6198 		offset = 0x7f2c + (n - 3) * 12;
6199 
6200 	put_smstate(u32, buf, offset + 8, seg.base);
6201 	put_smstate(u32, buf, offset + 4, seg.limit);
6202 	put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg));
6203 }
6204 
6205 static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6206 {
6207 	struct kvm_segment seg;
6208 	int offset;
6209 	u16 flags;
6210 
6211 	kvm_get_segment(vcpu, &seg, n);
6212 	offset = 0x7e00 + n * 16;
6213 
6214 	flags = process_smi_get_segment_flags(&seg) >> 8;
6215 	put_smstate(u16, buf, offset, seg.selector);
6216 	put_smstate(u16, buf, offset + 2, flags);
6217 	put_smstate(u32, buf, offset + 4, seg.limit);
6218 	put_smstate(u64, buf, offset + 8, seg.base);
6219 }
6220 
6221 static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6222 {
6223 	struct desc_ptr dt;
6224 	struct kvm_segment seg;
6225 	unsigned long val;
6226 	int i;
6227 
6228 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6229 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6230 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6231 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6232 
6233 	for (i = 0; i < 8; i++)
6234 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6235 
6236 	kvm_get_dr(vcpu, 6, &val);
6237 	put_smstate(u32, buf, 0x7fcc, (u32)val);
6238 	kvm_get_dr(vcpu, 7, &val);
6239 	put_smstate(u32, buf, 0x7fc8, (u32)val);
6240 
6241 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6242 	put_smstate(u32, buf, 0x7fc4, seg.selector);
6243 	put_smstate(u32, buf, 0x7f64, seg.base);
6244 	put_smstate(u32, buf, 0x7f60, seg.limit);
6245 	put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg));
6246 
6247 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6248 	put_smstate(u32, buf, 0x7fc0, seg.selector);
6249 	put_smstate(u32, buf, 0x7f80, seg.base);
6250 	put_smstate(u32, buf, 0x7f7c, seg.limit);
6251 	put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg));
6252 
6253 	kvm_x86_ops->get_gdt(vcpu, &dt);
6254 	put_smstate(u32, buf, 0x7f74, dt.address);
6255 	put_smstate(u32, buf, 0x7f70, dt.size);
6256 
6257 	kvm_x86_ops->get_idt(vcpu, &dt);
6258 	put_smstate(u32, buf, 0x7f58, dt.address);
6259 	put_smstate(u32, buf, 0x7f54, dt.size);
6260 
6261 	for (i = 0; i < 6; i++)
6262 		process_smi_save_seg_32(vcpu, buf, i);
6263 
6264 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6265 
6266 	/* revision id */
6267 	put_smstate(u32, buf, 0x7efc, 0x00020000);
6268 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6269 }
6270 
6271 static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6272 {
6273 #ifdef CONFIG_X86_64
6274 	struct desc_ptr dt;
6275 	struct kvm_segment seg;
6276 	unsigned long val;
6277 	int i;
6278 
6279 	for (i = 0; i < 16; i++)
6280 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6281 
6282 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6283 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6284 
6285 	kvm_get_dr(vcpu, 6, &val);
6286 	put_smstate(u64, buf, 0x7f68, val);
6287 	kvm_get_dr(vcpu, 7, &val);
6288 	put_smstate(u64, buf, 0x7f60, val);
6289 
6290 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6291 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6292 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6293 
6294 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6295 
6296 	/* revision id */
6297 	put_smstate(u32, buf, 0x7efc, 0x00020064);
6298 
6299 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6300 
6301 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6302 	put_smstate(u16, buf, 0x7e90, seg.selector);
6303 	put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8);
6304 	put_smstate(u32, buf, 0x7e94, seg.limit);
6305 	put_smstate(u64, buf, 0x7e98, seg.base);
6306 
6307 	kvm_x86_ops->get_idt(vcpu, &dt);
6308 	put_smstate(u32, buf, 0x7e84, dt.size);
6309 	put_smstate(u64, buf, 0x7e88, dt.address);
6310 
6311 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6312 	put_smstate(u16, buf, 0x7e70, seg.selector);
6313 	put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8);
6314 	put_smstate(u32, buf, 0x7e74, seg.limit);
6315 	put_smstate(u64, buf, 0x7e78, seg.base);
6316 
6317 	kvm_x86_ops->get_gdt(vcpu, &dt);
6318 	put_smstate(u32, buf, 0x7e64, dt.size);
6319 	put_smstate(u64, buf, 0x7e68, dt.address);
6320 
6321 	for (i = 0; i < 6; i++)
6322 		process_smi_save_seg_64(vcpu, buf, i);
6323 #else
6324 	WARN_ON_ONCE(1);
6325 #endif
6326 }
6327 
6328 static void process_smi(struct kvm_vcpu *vcpu)
6329 {
6330 	struct kvm_segment cs, ds;
6331 	char buf[512];
6332 	u32 cr0;
6333 
6334 	if (is_smm(vcpu)) {
6335 		vcpu->arch.smi_pending = true;
6336 		return;
6337 	}
6338 
6339 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6340 	vcpu->arch.hflags |= HF_SMM_MASK;
6341 	memset(buf, 0, 512);
6342 	if (guest_cpuid_has_longmode(vcpu))
6343 		process_smi_save_state_64(vcpu, buf);
6344 	else
6345 		process_smi_save_state_32(vcpu, buf);
6346 
6347 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6348 
6349 	if (kvm_x86_ops->get_nmi_mask(vcpu))
6350 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6351 	else
6352 		kvm_x86_ops->set_nmi_mask(vcpu, true);
6353 
6354 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6355 	kvm_rip_write(vcpu, 0x8000);
6356 
6357 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6358 	kvm_x86_ops->set_cr0(vcpu, cr0);
6359 	vcpu->arch.cr0 = cr0;
6360 
6361 	kvm_x86_ops->set_cr4(vcpu, 0);
6362 
6363 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6364 
6365 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6366 	cs.base = vcpu->arch.smbase;
6367 
6368 	ds.selector = 0;
6369 	ds.base = 0;
6370 
6371 	cs.limit    = ds.limit = 0xffffffff;
6372 	cs.type     = ds.type = 0x3;
6373 	cs.dpl      = ds.dpl = 0;
6374 	cs.db       = ds.db = 0;
6375 	cs.s        = ds.s = 1;
6376 	cs.l        = ds.l = 0;
6377 	cs.g        = ds.g = 1;
6378 	cs.avl      = ds.avl = 0;
6379 	cs.present  = ds.present = 1;
6380 	cs.unusable = ds.unusable = 0;
6381 	cs.padding  = ds.padding = 0;
6382 
6383 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6384 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6385 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6386 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6387 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6388 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6389 
6390 	if (guest_cpuid_has_longmode(vcpu))
6391 		kvm_x86_ops->set_efer(vcpu, 0);
6392 
6393 	kvm_update_cpuid(vcpu);
6394 	kvm_mmu_reset_context(vcpu);
6395 }
6396 
6397 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6398 {
6399 	u64 eoi_exit_bitmap[4];
6400 	u32 tmr[8];
6401 
6402 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6403 		return;
6404 
6405 	memset(eoi_exit_bitmap, 0, 32);
6406 	memset(tmr, 0, 32);
6407 
6408 	kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
6409 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6410 	kvm_apic_update_tmr(vcpu, tmr);
6411 }
6412 
6413 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6414 {
6415 	++vcpu->stat.tlb_flush;
6416 	kvm_x86_ops->tlb_flush(vcpu);
6417 }
6418 
6419 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6420 {
6421 	struct page *page = NULL;
6422 
6423 	if (!irqchip_in_kernel(vcpu->kvm))
6424 		return;
6425 
6426 	if (!kvm_x86_ops->set_apic_access_page_addr)
6427 		return;
6428 
6429 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6430 	if (is_error_page(page))
6431 		return;
6432 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6433 
6434 	/*
6435 	 * Do not pin apic access page in memory, the MMU notifier
6436 	 * will call us again if it is migrated or swapped out.
6437 	 */
6438 	put_page(page);
6439 }
6440 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6441 
6442 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6443 					   unsigned long address)
6444 {
6445 	/*
6446 	 * The physical address of apic access page is stored in the VMCS.
6447 	 * Update it when it becomes invalid.
6448 	 */
6449 	if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6450 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6451 }
6452 
6453 /*
6454  * Returns 1 to let vcpu_run() continue the guest execution loop without
6455  * exiting to the userspace.  Otherwise, the value will be returned to the
6456  * userspace.
6457  */
6458 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6459 {
6460 	int r;
6461 	bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
6462 		vcpu->run->request_interrupt_window;
6463 	bool req_immediate_exit = false;
6464 
6465 	if (vcpu->requests) {
6466 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6467 			kvm_mmu_unload(vcpu);
6468 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6469 			__kvm_migrate_timers(vcpu);
6470 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6471 			kvm_gen_update_masterclock(vcpu->kvm);
6472 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6473 			kvm_gen_kvmclock_update(vcpu);
6474 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6475 			r = kvm_guest_time_update(vcpu);
6476 			if (unlikely(r))
6477 				goto out;
6478 		}
6479 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6480 			kvm_mmu_sync_roots(vcpu);
6481 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6482 			kvm_vcpu_flush_tlb(vcpu);
6483 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6484 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6485 			r = 0;
6486 			goto out;
6487 		}
6488 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6489 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6490 			r = 0;
6491 			goto out;
6492 		}
6493 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6494 			vcpu->fpu_active = 0;
6495 			kvm_x86_ops->fpu_deactivate(vcpu);
6496 		}
6497 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6498 			/* Page is swapped out. Do synthetic halt */
6499 			vcpu->arch.apf.halted = true;
6500 			r = 1;
6501 			goto out;
6502 		}
6503 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6504 			record_steal_time(vcpu);
6505 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
6506 			process_smi(vcpu);
6507 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
6508 			process_nmi(vcpu);
6509 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
6510 			kvm_pmu_handle_event(vcpu);
6511 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
6512 			kvm_pmu_deliver_pmi(vcpu);
6513 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6514 			vcpu_scan_ioapic(vcpu);
6515 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6516 			kvm_vcpu_reload_apic_access_page(vcpu);
6517 	}
6518 
6519 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6520 		kvm_apic_accept_events(vcpu);
6521 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6522 			r = 1;
6523 			goto out;
6524 		}
6525 
6526 		if (inject_pending_event(vcpu, req_int_win) != 0)
6527 			req_immediate_exit = true;
6528 		/* enable NMI/IRQ window open exits if needed */
6529 		else if (vcpu->arch.nmi_pending)
6530 			kvm_x86_ops->enable_nmi_window(vcpu);
6531 		else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6532 			kvm_x86_ops->enable_irq_window(vcpu);
6533 
6534 		if (kvm_lapic_enabled(vcpu)) {
6535 			/*
6536 			 * Update architecture specific hints for APIC
6537 			 * virtual interrupt delivery.
6538 			 */
6539 			if (kvm_x86_ops->hwapic_irr_update)
6540 				kvm_x86_ops->hwapic_irr_update(vcpu,
6541 					kvm_lapic_find_highest_irr(vcpu));
6542 			update_cr8_intercept(vcpu);
6543 			kvm_lapic_sync_to_vapic(vcpu);
6544 		}
6545 	}
6546 
6547 	r = kvm_mmu_reload(vcpu);
6548 	if (unlikely(r)) {
6549 		goto cancel_injection;
6550 	}
6551 
6552 	preempt_disable();
6553 
6554 	kvm_x86_ops->prepare_guest_switch(vcpu);
6555 	if (vcpu->fpu_active)
6556 		kvm_load_guest_fpu(vcpu);
6557 	kvm_load_guest_xcr0(vcpu);
6558 
6559 	vcpu->mode = IN_GUEST_MODE;
6560 
6561 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6562 
6563 	/* We should set ->mode before check ->requests,
6564 	 * see the comment in make_all_cpus_request.
6565 	 */
6566 	smp_mb__after_srcu_read_unlock();
6567 
6568 	local_irq_disable();
6569 
6570 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6571 	    || need_resched() || signal_pending(current)) {
6572 		vcpu->mode = OUTSIDE_GUEST_MODE;
6573 		smp_wmb();
6574 		local_irq_enable();
6575 		preempt_enable();
6576 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6577 		r = 1;
6578 		goto cancel_injection;
6579 	}
6580 
6581 	if (req_immediate_exit)
6582 		smp_send_reschedule(vcpu->cpu);
6583 
6584 	__kvm_guest_enter();
6585 
6586 	if (unlikely(vcpu->arch.switch_db_regs)) {
6587 		set_debugreg(0, 7);
6588 		set_debugreg(vcpu->arch.eff_db[0], 0);
6589 		set_debugreg(vcpu->arch.eff_db[1], 1);
6590 		set_debugreg(vcpu->arch.eff_db[2], 2);
6591 		set_debugreg(vcpu->arch.eff_db[3], 3);
6592 		set_debugreg(vcpu->arch.dr6, 6);
6593 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6594 	}
6595 
6596 	trace_kvm_entry(vcpu->vcpu_id);
6597 	wait_lapic_expire(vcpu);
6598 	kvm_x86_ops->run(vcpu);
6599 
6600 	/*
6601 	 * Do this here before restoring debug registers on the host.  And
6602 	 * since we do this before handling the vmexit, a DR access vmexit
6603 	 * can (a) read the correct value of the debug registers, (b) set
6604 	 * KVM_DEBUGREG_WONT_EXIT again.
6605 	 */
6606 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6607 		int i;
6608 
6609 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6610 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6611 		for (i = 0; i < KVM_NR_DB_REGS; i++)
6612 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6613 	}
6614 
6615 	/*
6616 	 * If the guest has used debug registers, at least dr7
6617 	 * will be disabled while returning to the host.
6618 	 * If we don't have active breakpoints in the host, we don't
6619 	 * care about the messed up debug address registers. But if
6620 	 * we have some of them active, restore the old state.
6621 	 */
6622 	if (hw_breakpoint_active())
6623 		hw_breakpoint_restore();
6624 
6625 	vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6626 							   native_read_tsc());
6627 
6628 	vcpu->mode = OUTSIDE_GUEST_MODE;
6629 	smp_wmb();
6630 
6631 	/* Interrupt is enabled by handle_external_intr() */
6632 	kvm_x86_ops->handle_external_intr(vcpu);
6633 
6634 	++vcpu->stat.exits;
6635 
6636 	/*
6637 	 * We must have an instruction between local_irq_enable() and
6638 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6639 	 * the interrupt shadow.  The stat.exits increment will do nicely.
6640 	 * But we need to prevent reordering, hence this barrier():
6641 	 */
6642 	barrier();
6643 
6644 	kvm_guest_exit();
6645 
6646 	preempt_enable();
6647 
6648 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6649 
6650 	/*
6651 	 * Profile KVM exit RIPs:
6652 	 */
6653 	if (unlikely(prof_on == KVM_PROFILING)) {
6654 		unsigned long rip = kvm_rip_read(vcpu);
6655 		profile_hit(KVM_PROFILING, (void *)rip);
6656 	}
6657 
6658 	if (unlikely(vcpu->arch.tsc_always_catchup))
6659 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6660 
6661 	if (vcpu->arch.apic_attention)
6662 		kvm_lapic_sync_from_vapic(vcpu);
6663 
6664 	r = kvm_x86_ops->handle_exit(vcpu);
6665 	return r;
6666 
6667 cancel_injection:
6668 	kvm_x86_ops->cancel_injection(vcpu);
6669 	if (unlikely(vcpu->arch.apic_attention))
6670 		kvm_lapic_sync_from_vapic(vcpu);
6671 out:
6672 	return r;
6673 }
6674 
6675 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6676 {
6677 	if (!kvm_arch_vcpu_runnable(vcpu)) {
6678 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6679 		kvm_vcpu_block(vcpu);
6680 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6681 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6682 			return 1;
6683 	}
6684 
6685 	kvm_apic_accept_events(vcpu);
6686 	switch(vcpu->arch.mp_state) {
6687 	case KVM_MP_STATE_HALTED:
6688 		vcpu->arch.pv.pv_unhalted = false;
6689 		vcpu->arch.mp_state =
6690 			KVM_MP_STATE_RUNNABLE;
6691 	case KVM_MP_STATE_RUNNABLE:
6692 		vcpu->arch.apf.halted = false;
6693 		break;
6694 	case KVM_MP_STATE_INIT_RECEIVED:
6695 		break;
6696 	default:
6697 		return -EINTR;
6698 		break;
6699 	}
6700 	return 1;
6701 }
6702 
6703 static int vcpu_run(struct kvm_vcpu *vcpu)
6704 {
6705 	int r;
6706 	struct kvm *kvm = vcpu->kvm;
6707 
6708 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6709 
6710 	for (;;) {
6711 		if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6712 		    !vcpu->arch.apf.halted)
6713 			r = vcpu_enter_guest(vcpu);
6714 		else
6715 			r = vcpu_block(kvm, vcpu);
6716 		if (r <= 0)
6717 			break;
6718 
6719 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6720 		if (kvm_cpu_has_pending_timer(vcpu))
6721 			kvm_inject_pending_timer_irqs(vcpu);
6722 
6723 		if (dm_request_for_irq_injection(vcpu)) {
6724 			r = -EINTR;
6725 			vcpu->run->exit_reason = KVM_EXIT_INTR;
6726 			++vcpu->stat.request_irq_exits;
6727 			break;
6728 		}
6729 
6730 		kvm_check_async_pf_completion(vcpu);
6731 
6732 		if (signal_pending(current)) {
6733 			r = -EINTR;
6734 			vcpu->run->exit_reason = KVM_EXIT_INTR;
6735 			++vcpu->stat.signal_exits;
6736 			break;
6737 		}
6738 		if (need_resched()) {
6739 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6740 			cond_resched();
6741 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6742 		}
6743 	}
6744 
6745 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6746 
6747 	return r;
6748 }
6749 
6750 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6751 {
6752 	int r;
6753 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6754 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6755 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6756 	if (r != EMULATE_DONE)
6757 		return 0;
6758 	return 1;
6759 }
6760 
6761 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6762 {
6763 	BUG_ON(!vcpu->arch.pio.count);
6764 
6765 	return complete_emulated_io(vcpu);
6766 }
6767 
6768 /*
6769  * Implements the following, as a state machine:
6770  *
6771  * read:
6772  *   for each fragment
6773  *     for each mmio piece in the fragment
6774  *       write gpa, len
6775  *       exit
6776  *       copy data
6777  *   execute insn
6778  *
6779  * write:
6780  *   for each fragment
6781  *     for each mmio piece in the fragment
6782  *       write gpa, len
6783  *       copy data
6784  *       exit
6785  */
6786 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6787 {
6788 	struct kvm_run *run = vcpu->run;
6789 	struct kvm_mmio_fragment *frag;
6790 	unsigned len;
6791 
6792 	BUG_ON(!vcpu->mmio_needed);
6793 
6794 	/* Complete previous fragment */
6795 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6796 	len = min(8u, frag->len);
6797 	if (!vcpu->mmio_is_write)
6798 		memcpy(frag->data, run->mmio.data, len);
6799 
6800 	if (frag->len <= 8) {
6801 		/* Switch to the next fragment. */
6802 		frag++;
6803 		vcpu->mmio_cur_fragment++;
6804 	} else {
6805 		/* Go forward to the next mmio piece. */
6806 		frag->data += len;
6807 		frag->gpa += len;
6808 		frag->len -= len;
6809 	}
6810 
6811 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6812 		vcpu->mmio_needed = 0;
6813 
6814 		/* FIXME: return into emulator if single-stepping.  */
6815 		if (vcpu->mmio_is_write)
6816 			return 1;
6817 		vcpu->mmio_read_completed = 1;
6818 		return complete_emulated_io(vcpu);
6819 	}
6820 
6821 	run->exit_reason = KVM_EXIT_MMIO;
6822 	run->mmio.phys_addr = frag->gpa;
6823 	if (vcpu->mmio_is_write)
6824 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6825 	run->mmio.len = min(8u, frag->len);
6826 	run->mmio.is_write = vcpu->mmio_is_write;
6827 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6828 	return 0;
6829 }
6830 
6831 
6832 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6833 {
6834 	struct fpu *fpu = &current->thread.fpu;
6835 	int r;
6836 	sigset_t sigsaved;
6837 
6838 	fpu__activate_curr(fpu);
6839 
6840 	if (vcpu->sigset_active)
6841 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6842 
6843 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6844 		kvm_vcpu_block(vcpu);
6845 		kvm_apic_accept_events(vcpu);
6846 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6847 		r = -EAGAIN;
6848 		goto out;
6849 	}
6850 
6851 	/* re-sync apic's tpr */
6852 	if (!irqchip_in_kernel(vcpu->kvm)) {
6853 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6854 			r = -EINVAL;
6855 			goto out;
6856 		}
6857 	}
6858 
6859 	if (unlikely(vcpu->arch.complete_userspace_io)) {
6860 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6861 		vcpu->arch.complete_userspace_io = NULL;
6862 		r = cui(vcpu);
6863 		if (r <= 0)
6864 			goto out;
6865 	} else
6866 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6867 
6868 	r = vcpu_run(vcpu);
6869 
6870 out:
6871 	post_kvm_run_save(vcpu);
6872 	if (vcpu->sigset_active)
6873 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6874 
6875 	return r;
6876 }
6877 
6878 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6879 {
6880 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6881 		/*
6882 		 * We are here if userspace calls get_regs() in the middle of
6883 		 * instruction emulation. Registers state needs to be copied
6884 		 * back from emulation context to vcpu. Userspace shouldn't do
6885 		 * that usually, but some bad designed PV devices (vmware
6886 		 * backdoor interface) need this to work
6887 		 */
6888 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6889 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6890 	}
6891 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6892 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6893 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6894 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6895 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6896 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6897 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6898 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6899 #ifdef CONFIG_X86_64
6900 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6901 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6902 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6903 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6904 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6905 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6906 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6907 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6908 #endif
6909 
6910 	regs->rip = kvm_rip_read(vcpu);
6911 	regs->rflags = kvm_get_rflags(vcpu);
6912 
6913 	return 0;
6914 }
6915 
6916 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6917 {
6918 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6919 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6920 
6921 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6922 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6923 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6924 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6925 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6926 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6927 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6928 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6929 #ifdef CONFIG_X86_64
6930 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6931 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6932 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6933 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6934 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6935 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6936 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6937 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6938 #endif
6939 
6940 	kvm_rip_write(vcpu, regs->rip);
6941 	kvm_set_rflags(vcpu, regs->rflags);
6942 
6943 	vcpu->arch.exception.pending = false;
6944 
6945 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6946 
6947 	return 0;
6948 }
6949 
6950 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6951 {
6952 	struct kvm_segment cs;
6953 
6954 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6955 	*db = cs.db;
6956 	*l = cs.l;
6957 }
6958 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6959 
6960 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6961 				  struct kvm_sregs *sregs)
6962 {
6963 	struct desc_ptr dt;
6964 
6965 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6966 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6967 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6968 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6969 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6970 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6971 
6972 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6973 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6974 
6975 	kvm_x86_ops->get_idt(vcpu, &dt);
6976 	sregs->idt.limit = dt.size;
6977 	sregs->idt.base = dt.address;
6978 	kvm_x86_ops->get_gdt(vcpu, &dt);
6979 	sregs->gdt.limit = dt.size;
6980 	sregs->gdt.base = dt.address;
6981 
6982 	sregs->cr0 = kvm_read_cr0(vcpu);
6983 	sregs->cr2 = vcpu->arch.cr2;
6984 	sregs->cr3 = kvm_read_cr3(vcpu);
6985 	sregs->cr4 = kvm_read_cr4(vcpu);
6986 	sregs->cr8 = kvm_get_cr8(vcpu);
6987 	sregs->efer = vcpu->arch.efer;
6988 	sregs->apic_base = kvm_get_apic_base(vcpu);
6989 
6990 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6991 
6992 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6993 		set_bit(vcpu->arch.interrupt.nr,
6994 			(unsigned long *)sregs->interrupt_bitmap);
6995 
6996 	return 0;
6997 }
6998 
6999 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7000 				    struct kvm_mp_state *mp_state)
7001 {
7002 	kvm_apic_accept_events(vcpu);
7003 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7004 					vcpu->arch.pv.pv_unhalted)
7005 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7006 	else
7007 		mp_state->mp_state = vcpu->arch.mp_state;
7008 
7009 	return 0;
7010 }
7011 
7012 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7013 				    struct kvm_mp_state *mp_state)
7014 {
7015 	if (!kvm_vcpu_has_lapic(vcpu) &&
7016 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7017 		return -EINVAL;
7018 
7019 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7020 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7021 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7022 	} else
7023 		vcpu->arch.mp_state = mp_state->mp_state;
7024 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7025 	return 0;
7026 }
7027 
7028 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7029 		    int reason, bool has_error_code, u32 error_code)
7030 {
7031 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7032 	int ret;
7033 
7034 	init_emulate_ctxt(vcpu);
7035 
7036 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7037 				   has_error_code, error_code);
7038 
7039 	if (ret)
7040 		return EMULATE_FAIL;
7041 
7042 	kvm_rip_write(vcpu, ctxt->eip);
7043 	kvm_set_rflags(vcpu, ctxt->eflags);
7044 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7045 	return EMULATE_DONE;
7046 }
7047 EXPORT_SYMBOL_GPL(kvm_task_switch);
7048 
7049 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7050 				  struct kvm_sregs *sregs)
7051 {
7052 	struct msr_data apic_base_msr;
7053 	int mmu_reset_needed = 0;
7054 	int pending_vec, max_bits, idx;
7055 	struct desc_ptr dt;
7056 
7057 	if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7058 		return -EINVAL;
7059 
7060 	dt.size = sregs->idt.limit;
7061 	dt.address = sregs->idt.base;
7062 	kvm_x86_ops->set_idt(vcpu, &dt);
7063 	dt.size = sregs->gdt.limit;
7064 	dt.address = sregs->gdt.base;
7065 	kvm_x86_ops->set_gdt(vcpu, &dt);
7066 
7067 	vcpu->arch.cr2 = sregs->cr2;
7068 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7069 	vcpu->arch.cr3 = sregs->cr3;
7070 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7071 
7072 	kvm_set_cr8(vcpu, sregs->cr8);
7073 
7074 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7075 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
7076 	apic_base_msr.data = sregs->apic_base;
7077 	apic_base_msr.host_initiated = true;
7078 	kvm_set_apic_base(vcpu, &apic_base_msr);
7079 
7080 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7081 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7082 	vcpu->arch.cr0 = sregs->cr0;
7083 
7084 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7085 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7086 	if (sregs->cr4 & X86_CR4_OSXSAVE)
7087 		kvm_update_cpuid(vcpu);
7088 
7089 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7090 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7091 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7092 		mmu_reset_needed = 1;
7093 	}
7094 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7095 
7096 	if (mmu_reset_needed)
7097 		kvm_mmu_reset_context(vcpu);
7098 
7099 	max_bits = KVM_NR_INTERRUPTS;
7100 	pending_vec = find_first_bit(
7101 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
7102 	if (pending_vec < max_bits) {
7103 		kvm_queue_interrupt(vcpu, pending_vec, false);
7104 		pr_debug("Set back pending irq %d\n", pending_vec);
7105 	}
7106 
7107 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7108 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7109 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7110 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7111 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7112 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7113 
7114 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7115 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7116 
7117 	update_cr8_intercept(vcpu);
7118 
7119 	/* Older userspace won't unhalt the vcpu on reset. */
7120 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7121 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7122 	    !is_protmode(vcpu))
7123 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7124 
7125 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7126 
7127 	return 0;
7128 }
7129 
7130 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7131 					struct kvm_guest_debug *dbg)
7132 {
7133 	unsigned long rflags;
7134 	int i, r;
7135 
7136 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7137 		r = -EBUSY;
7138 		if (vcpu->arch.exception.pending)
7139 			goto out;
7140 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7141 			kvm_queue_exception(vcpu, DB_VECTOR);
7142 		else
7143 			kvm_queue_exception(vcpu, BP_VECTOR);
7144 	}
7145 
7146 	/*
7147 	 * Read rflags as long as potentially injected trace flags are still
7148 	 * filtered out.
7149 	 */
7150 	rflags = kvm_get_rflags(vcpu);
7151 
7152 	vcpu->guest_debug = dbg->control;
7153 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7154 		vcpu->guest_debug = 0;
7155 
7156 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7157 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
7158 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7159 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7160 	} else {
7161 		for (i = 0; i < KVM_NR_DB_REGS; i++)
7162 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7163 	}
7164 	kvm_update_dr7(vcpu);
7165 
7166 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7167 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7168 			get_segment_base(vcpu, VCPU_SREG_CS);
7169 
7170 	/*
7171 	 * Trigger an rflags update that will inject or remove the trace
7172 	 * flags.
7173 	 */
7174 	kvm_set_rflags(vcpu, rflags);
7175 
7176 	kvm_x86_ops->update_db_bp_intercept(vcpu);
7177 
7178 	r = 0;
7179 
7180 out:
7181 
7182 	return r;
7183 }
7184 
7185 /*
7186  * Translate a guest virtual address to a guest physical address.
7187  */
7188 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7189 				    struct kvm_translation *tr)
7190 {
7191 	unsigned long vaddr = tr->linear_address;
7192 	gpa_t gpa;
7193 	int idx;
7194 
7195 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7196 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7197 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7198 	tr->physical_address = gpa;
7199 	tr->valid = gpa != UNMAPPED_GVA;
7200 	tr->writeable = 1;
7201 	tr->usermode = 0;
7202 
7203 	return 0;
7204 }
7205 
7206 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7207 {
7208 	struct fxregs_state *fxsave =
7209 			&vcpu->arch.guest_fpu.state.fxsave;
7210 
7211 	memcpy(fpu->fpr, fxsave->st_space, 128);
7212 	fpu->fcw = fxsave->cwd;
7213 	fpu->fsw = fxsave->swd;
7214 	fpu->ftwx = fxsave->twd;
7215 	fpu->last_opcode = fxsave->fop;
7216 	fpu->last_ip = fxsave->rip;
7217 	fpu->last_dp = fxsave->rdp;
7218 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7219 
7220 	return 0;
7221 }
7222 
7223 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7224 {
7225 	struct fxregs_state *fxsave =
7226 			&vcpu->arch.guest_fpu.state.fxsave;
7227 
7228 	memcpy(fxsave->st_space, fpu->fpr, 128);
7229 	fxsave->cwd = fpu->fcw;
7230 	fxsave->swd = fpu->fsw;
7231 	fxsave->twd = fpu->ftwx;
7232 	fxsave->fop = fpu->last_opcode;
7233 	fxsave->rip = fpu->last_ip;
7234 	fxsave->rdp = fpu->last_dp;
7235 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7236 
7237 	return 0;
7238 }
7239 
7240 static void fx_init(struct kvm_vcpu *vcpu)
7241 {
7242 	fpstate_init(&vcpu->arch.guest_fpu.state);
7243 	if (cpu_has_xsaves)
7244 		vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7245 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
7246 
7247 	/*
7248 	 * Ensure guest xcr0 is valid for loading
7249 	 */
7250 	vcpu->arch.xcr0 = XSTATE_FP;
7251 
7252 	vcpu->arch.cr0 |= X86_CR0_ET;
7253 }
7254 
7255 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7256 {
7257 	if (vcpu->guest_fpu_loaded)
7258 		return;
7259 
7260 	/*
7261 	 * Restore all possible states in the guest,
7262 	 * and assume host would use all available bits.
7263 	 * Guest xcr0 would be loaded later.
7264 	 */
7265 	kvm_put_guest_xcr0(vcpu);
7266 	vcpu->guest_fpu_loaded = 1;
7267 	__kernel_fpu_begin();
7268 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7269 	trace_kvm_fpu(1);
7270 }
7271 
7272 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7273 {
7274 	kvm_put_guest_xcr0(vcpu);
7275 
7276 	if (!vcpu->guest_fpu_loaded) {
7277 		vcpu->fpu_counter = 0;
7278 		return;
7279 	}
7280 
7281 	vcpu->guest_fpu_loaded = 0;
7282 	copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7283 	__kernel_fpu_end();
7284 	++vcpu->stat.fpu_reload;
7285 	/*
7286 	 * If using eager FPU mode, or if the guest is a frequent user
7287 	 * of the FPU, just leave the FPU active for next time.
7288 	 * Every 255 times fpu_counter rolls over to 0; a guest that uses
7289 	 * the FPU in bursts will revert to loading it on demand.
7290 	 */
7291 	if (!vcpu->arch.eager_fpu) {
7292 		if (++vcpu->fpu_counter < 5)
7293 			kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7294 	}
7295 	trace_kvm_fpu(0);
7296 }
7297 
7298 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7299 {
7300 	kvmclock_reset(vcpu);
7301 
7302 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7303 	kvm_x86_ops->vcpu_free(vcpu);
7304 }
7305 
7306 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7307 						unsigned int id)
7308 {
7309 	struct kvm_vcpu *vcpu;
7310 
7311 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7312 		printk_once(KERN_WARNING
7313 		"kvm: SMP vm created on host with unstable TSC; "
7314 		"guest TSC will not be reliable\n");
7315 
7316 	vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7317 
7318 	/*
7319 	 * Activate fpu unconditionally in case the guest needs eager FPU.  It will be
7320 	 * deactivated soon if it doesn't.
7321 	 */
7322 	kvm_x86_ops->fpu_activate(vcpu);
7323 	return vcpu;
7324 }
7325 
7326 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7327 {
7328 	int r;
7329 
7330 	kvm_vcpu_mtrr_init(vcpu);
7331 	r = vcpu_load(vcpu);
7332 	if (r)
7333 		return r;
7334 	kvm_vcpu_reset(vcpu, false);
7335 	kvm_mmu_setup(vcpu);
7336 	vcpu_put(vcpu);
7337 	return r;
7338 }
7339 
7340 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7341 {
7342 	struct msr_data msr;
7343 	struct kvm *kvm = vcpu->kvm;
7344 
7345 	if (vcpu_load(vcpu))
7346 		return;
7347 	msr.data = 0x0;
7348 	msr.index = MSR_IA32_TSC;
7349 	msr.host_initiated = true;
7350 	kvm_write_tsc(vcpu, &msr);
7351 	vcpu_put(vcpu);
7352 
7353 	if (!kvmclock_periodic_sync)
7354 		return;
7355 
7356 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7357 					KVMCLOCK_SYNC_PERIOD);
7358 }
7359 
7360 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7361 {
7362 	int r;
7363 	vcpu->arch.apf.msr_val = 0;
7364 
7365 	r = vcpu_load(vcpu);
7366 	BUG_ON(r);
7367 	kvm_mmu_unload(vcpu);
7368 	vcpu_put(vcpu);
7369 
7370 	kvm_x86_ops->vcpu_free(vcpu);
7371 }
7372 
7373 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7374 {
7375 	vcpu->arch.hflags = 0;
7376 
7377 	atomic_set(&vcpu->arch.nmi_queued, 0);
7378 	vcpu->arch.nmi_pending = 0;
7379 	vcpu->arch.nmi_injected = false;
7380 	kvm_clear_interrupt_queue(vcpu);
7381 	kvm_clear_exception_queue(vcpu);
7382 
7383 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7384 	kvm_update_dr0123(vcpu);
7385 	vcpu->arch.dr6 = DR6_INIT;
7386 	kvm_update_dr6(vcpu);
7387 	vcpu->arch.dr7 = DR7_FIXED_1;
7388 	kvm_update_dr7(vcpu);
7389 
7390 	vcpu->arch.cr2 = 0;
7391 
7392 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7393 	vcpu->arch.apf.msr_val = 0;
7394 	vcpu->arch.st.msr_val = 0;
7395 
7396 	kvmclock_reset(vcpu);
7397 
7398 	kvm_clear_async_pf_completion_queue(vcpu);
7399 	kvm_async_pf_hash_reset(vcpu);
7400 	vcpu->arch.apf.halted = false;
7401 
7402 	if (!init_event) {
7403 		kvm_pmu_reset(vcpu);
7404 		vcpu->arch.smbase = 0x30000;
7405 	}
7406 
7407 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7408 	vcpu->arch.regs_avail = ~0;
7409 	vcpu->arch.regs_dirty = ~0;
7410 
7411 	kvm_x86_ops->vcpu_reset(vcpu, init_event);
7412 }
7413 
7414 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7415 {
7416 	struct kvm_segment cs;
7417 
7418 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7419 	cs.selector = vector << 8;
7420 	cs.base = vector << 12;
7421 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7422 	kvm_rip_write(vcpu, 0);
7423 }
7424 
7425 int kvm_arch_hardware_enable(void)
7426 {
7427 	struct kvm *kvm;
7428 	struct kvm_vcpu *vcpu;
7429 	int i;
7430 	int ret;
7431 	u64 local_tsc;
7432 	u64 max_tsc = 0;
7433 	bool stable, backwards_tsc = false;
7434 
7435 	kvm_shared_msr_cpu_online();
7436 	ret = kvm_x86_ops->hardware_enable();
7437 	if (ret != 0)
7438 		return ret;
7439 
7440 	local_tsc = native_read_tsc();
7441 	stable = !check_tsc_unstable();
7442 	list_for_each_entry(kvm, &vm_list, vm_list) {
7443 		kvm_for_each_vcpu(i, vcpu, kvm) {
7444 			if (!stable && vcpu->cpu == smp_processor_id())
7445 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7446 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7447 				backwards_tsc = true;
7448 				if (vcpu->arch.last_host_tsc > max_tsc)
7449 					max_tsc = vcpu->arch.last_host_tsc;
7450 			}
7451 		}
7452 	}
7453 
7454 	/*
7455 	 * Sometimes, even reliable TSCs go backwards.  This happens on
7456 	 * platforms that reset TSC during suspend or hibernate actions, but
7457 	 * maintain synchronization.  We must compensate.  Fortunately, we can
7458 	 * detect that condition here, which happens early in CPU bringup,
7459 	 * before any KVM threads can be running.  Unfortunately, we can't
7460 	 * bring the TSCs fully up to date with real time, as we aren't yet far
7461 	 * enough into CPU bringup that we know how much real time has actually
7462 	 * elapsed; our helper function, get_kernel_ns() will be using boot
7463 	 * variables that haven't been updated yet.
7464 	 *
7465 	 * So we simply find the maximum observed TSC above, then record the
7466 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7467 	 * the adjustment will be applied.  Note that we accumulate
7468 	 * adjustments, in case multiple suspend cycles happen before some VCPU
7469 	 * gets a chance to run again.  In the event that no KVM threads get a
7470 	 * chance to run, we will miss the entire elapsed period, as we'll have
7471 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7472 	 * loose cycle time.  This isn't too big a deal, since the loss will be
7473 	 * uniform across all VCPUs (not to mention the scenario is extremely
7474 	 * unlikely). It is possible that a second hibernate recovery happens
7475 	 * much faster than a first, causing the observed TSC here to be
7476 	 * smaller; this would require additional padding adjustment, which is
7477 	 * why we set last_host_tsc to the local tsc observed here.
7478 	 *
7479 	 * N.B. - this code below runs only on platforms with reliable TSC,
7480 	 * as that is the only way backwards_tsc is set above.  Also note
7481 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7482 	 * have the same delta_cyc adjustment applied if backwards_tsc
7483 	 * is detected.  Note further, this adjustment is only done once,
7484 	 * as we reset last_host_tsc on all VCPUs to stop this from being
7485 	 * called multiple times (one for each physical CPU bringup).
7486 	 *
7487 	 * Platforms with unreliable TSCs don't have to deal with this, they
7488 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
7489 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
7490 	 * guarantee that they stay in perfect synchronization.
7491 	 */
7492 	if (backwards_tsc) {
7493 		u64 delta_cyc = max_tsc - local_tsc;
7494 		backwards_tsc_observed = true;
7495 		list_for_each_entry(kvm, &vm_list, vm_list) {
7496 			kvm_for_each_vcpu(i, vcpu, kvm) {
7497 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
7498 				vcpu->arch.last_host_tsc = local_tsc;
7499 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7500 			}
7501 
7502 			/*
7503 			 * We have to disable TSC offset matching.. if you were
7504 			 * booting a VM while issuing an S4 host suspend....
7505 			 * you may have some problem.  Solving this issue is
7506 			 * left as an exercise to the reader.
7507 			 */
7508 			kvm->arch.last_tsc_nsec = 0;
7509 			kvm->arch.last_tsc_write = 0;
7510 		}
7511 
7512 	}
7513 	return 0;
7514 }
7515 
7516 void kvm_arch_hardware_disable(void)
7517 {
7518 	kvm_x86_ops->hardware_disable();
7519 	drop_user_return_notifiers();
7520 }
7521 
7522 int kvm_arch_hardware_setup(void)
7523 {
7524 	int r;
7525 
7526 	r = kvm_x86_ops->hardware_setup();
7527 	if (r != 0)
7528 		return r;
7529 
7530 	kvm_init_msr_list();
7531 	return 0;
7532 }
7533 
7534 void kvm_arch_hardware_unsetup(void)
7535 {
7536 	kvm_x86_ops->hardware_unsetup();
7537 }
7538 
7539 void kvm_arch_check_processor_compat(void *rtn)
7540 {
7541 	kvm_x86_ops->check_processor_compatibility(rtn);
7542 }
7543 
7544 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7545 {
7546 	return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
7547 }
7548 
7549 struct static_key kvm_no_apic_vcpu __read_mostly;
7550 
7551 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7552 {
7553 	struct page *page;
7554 	struct kvm *kvm;
7555 	int r;
7556 
7557 	BUG_ON(vcpu->kvm == NULL);
7558 	kvm = vcpu->kvm;
7559 
7560 	vcpu->arch.pv.pv_unhalted = false;
7561 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7562 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7563 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7564 	else
7565 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7566 
7567 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7568 	if (!page) {
7569 		r = -ENOMEM;
7570 		goto fail;
7571 	}
7572 	vcpu->arch.pio_data = page_address(page);
7573 
7574 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
7575 
7576 	r = kvm_mmu_create(vcpu);
7577 	if (r < 0)
7578 		goto fail_free_pio_data;
7579 
7580 	if (irqchip_in_kernel(kvm)) {
7581 		r = kvm_create_lapic(vcpu);
7582 		if (r < 0)
7583 			goto fail_mmu_destroy;
7584 	} else
7585 		static_key_slow_inc(&kvm_no_apic_vcpu);
7586 
7587 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7588 				       GFP_KERNEL);
7589 	if (!vcpu->arch.mce_banks) {
7590 		r = -ENOMEM;
7591 		goto fail_free_lapic;
7592 	}
7593 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7594 
7595 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7596 		r = -ENOMEM;
7597 		goto fail_free_mce_banks;
7598 	}
7599 
7600 	fx_init(vcpu);
7601 
7602 	vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7603 	vcpu->arch.pv_time_enabled = false;
7604 
7605 	vcpu->arch.guest_supported_xcr0 = 0;
7606 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7607 
7608 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7609 
7610 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7611 
7612 	kvm_async_pf_hash_reset(vcpu);
7613 	kvm_pmu_init(vcpu);
7614 
7615 	return 0;
7616 
7617 fail_free_mce_banks:
7618 	kfree(vcpu->arch.mce_banks);
7619 fail_free_lapic:
7620 	kvm_free_lapic(vcpu);
7621 fail_mmu_destroy:
7622 	kvm_mmu_destroy(vcpu);
7623 fail_free_pio_data:
7624 	free_page((unsigned long)vcpu->arch.pio_data);
7625 fail:
7626 	return r;
7627 }
7628 
7629 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7630 {
7631 	int idx;
7632 
7633 	kvm_pmu_destroy(vcpu);
7634 	kfree(vcpu->arch.mce_banks);
7635 	kvm_free_lapic(vcpu);
7636 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7637 	kvm_mmu_destroy(vcpu);
7638 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7639 	free_page((unsigned long)vcpu->arch.pio_data);
7640 	if (!irqchip_in_kernel(vcpu->kvm))
7641 		static_key_slow_dec(&kvm_no_apic_vcpu);
7642 }
7643 
7644 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7645 {
7646 	kvm_x86_ops->sched_in(vcpu, cpu);
7647 }
7648 
7649 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7650 {
7651 	if (type)
7652 		return -EINVAL;
7653 
7654 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7655 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7656 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7657 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7658 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7659 
7660 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7661 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7662 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7663 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7664 		&kvm->arch.irq_sources_bitmap);
7665 
7666 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7667 	mutex_init(&kvm->arch.apic_map_lock);
7668 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7669 
7670 	pvclock_update_vm_gtod_copy(kvm);
7671 
7672 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7673 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7674 
7675 	return 0;
7676 }
7677 
7678 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7679 {
7680 	int r;
7681 	r = vcpu_load(vcpu);
7682 	BUG_ON(r);
7683 	kvm_mmu_unload(vcpu);
7684 	vcpu_put(vcpu);
7685 }
7686 
7687 static void kvm_free_vcpus(struct kvm *kvm)
7688 {
7689 	unsigned int i;
7690 	struct kvm_vcpu *vcpu;
7691 
7692 	/*
7693 	 * Unpin any mmu pages first.
7694 	 */
7695 	kvm_for_each_vcpu(i, vcpu, kvm) {
7696 		kvm_clear_async_pf_completion_queue(vcpu);
7697 		kvm_unload_vcpu_mmu(vcpu);
7698 	}
7699 	kvm_for_each_vcpu(i, vcpu, kvm)
7700 		kvm_arch_vcpu_free(vcpu);
7701 
7702 	mutex_lock(&kvm->lock);
7703 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7704 		kvm->vcpus[i] = NULL;
7705 
7706 	atomic_set(&kvm->online_vcpus, 0);
7707 	mutex_unlock(&kvm->lock);
7708 }
7709 
7710 void kvm_arch_sync_events(struct kvm *kvm)
7711 {
7712 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7713 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7714 	kvm_free_all_assigned_devices(kvm);
7715 	kvm_free_pit(kvm);
7716 }
7717 
7718 int __x86_set_memory_region(struct kvm *kvm,
7719 			    const struct kvm_userspace_memory_region *mem)
7720 {
7721 	int i, r;
7722 
7723 	/* Called with kvm->slots_lock held.  */
7724 	BUG_ON(mem->slot >= KVM_MEM_SLOTS_NUM);
7725 
7726 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7727 		struct kvm_userspace_memory_region m = *mem;
7728 
7729 		m.slot |= i << 16;
7730 		r = __kvm_set_memory_region(kvm, &m);
7731 		if (r < 0)
7732 			return r;
7733 	}
7734 
7735 	return 0;
7736 }
7737 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7738 
7739 int x86_set_memory_region(struct kvm *kvm,
7740 			  const struct kvm_userspace_memory_region *mem)
7741 {
7742 	int r;
7743 
7744 	mutex_lock(&kvm->slots_lock);
7745 	r = __x86_set_memory_region(kvm, mem);
7746 	mutex_unlock(&kvm->slots_lock);
7747 
7748 	return r;
7749 }
7750 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7751 
7752 void kvm_arch_destroy_vm(struct kvm *kvm)
7753 {
7754 	if (current->mm == kvm->mm) {
7755 		/*
7756 		 * Free memory regions allocated on behalf of userspace,
7757 		 * unless the the memory map has changed due to process exit
7758 		 * or fd copying.
7759 		 */
7760 		struct kvm_userspace_memory_region mem;
7761 		memset(&mem, 0, sizeof(mem));
7762 		mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7763 		x86_set_memory_region(kvm, &mem);
7764 
7765 		mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7766 		x86_set_memory_region(kvm, &mem);
7767 
7768 		mem.slot = TSS_PRIVATE_MEMSLOT;
7769 		x86_set_memory_region(kvm, &mem);
7770 	}
7771 	kvm_iommu_unmap_guest(kvm);
7772 	kfree(kvm->arch.vpic);
7773 	kfree(kvm->arch.vioapic);
7774 	kvm_free_vcpus(kvm);
7775 	kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7776 }
7777 
7778 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7779 			   struct kvm_memory_slot *dont)
7780 {
7781 	int i;
7782 
7783 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7784 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7785 			kvfree(free->arch.rmap[i]);
7786 			free->arch.rmap[i] = NULL;
7787 		}
7788 		if (i == 0)
7789 			continue;
7790 
7791 		if (!dont || free->arch.lpage_info[i - 1] !=
7792 			     dont->arch.lpage_info[i - 1]) {
7793 			kvfree(free->arch.lpage_info[i - 1]);
7794 			free->arch.lpage_info[i - 1] = NULL;
7795 		}
7796 	}
7797 }
7798 
7799 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7800 			    unsigned long npages)
7801 {
7802 	int i;
7803 
7804 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7805 		unsigned long ugfn;
7806 		int lpages;
7807 		int level = i + 1;
7808 
7809 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
7810 				      slot->base_gfn, level) + 1;
7811 
7812 		slot->arch.rmap[i] =
7813 			kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7814 		if (!slot->arch.rmap[i])
7815 			goto out_free;
7816 		if (i == 0)
7817 			continue;
7818 
7819 		slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7820 					sizeof(*slot->arch.lpage_info[i - 1]));
7821 		if (!slot->arch.lpage_info[i - 1])
7822 			goto out_free;
7823 
7824 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7825 			slot->arch.lpage_info[i - 1][0].write_count = 1;
7826 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7827 			slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7828 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
7829 		/*
7830 		 * If the gfn and userspace address are not aligned wrt each
7831 		 * other, or if explicitly asked to, disable large page
7832 		 * support for this slot
7833 		 */
7834 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7835 		    !kvm_largepages_enabled()) {
7836 			unsigned long j;
7837 
7838 			for (j = 0; j < lpages; ++j)
7839 				slot->arch.lpage_info[i - 1][j].write_count = 1;
7840 		}
7841 	}
7842 
7843 	return 0;
7844 
7845 out_free:
7846 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7847 		kvfree(slot->arch.rmap[i]);
7848 		slot->arch.rmap[i] = NULL;
7849 		if (i == 0)
7850 			continue;
7851 
7852 		kvfree(slot->arch.lpage_info[i - 1]);
7853 		slot->arch.lpage_info[i - 1] = NULL;
7854 	}
7855 	return -ENOMEM;
7856 }
7857 
7858 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
7859 {
7860 	/*
7861 	 * memslots->generation has been incremented.
7862 	 * mmio generation may have reached its maximum value.
7863 	 */
7864 	kvm_mmu_invalidate_mmio_sptes(kvm, slots);
7865 }
7866 
7867 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7868 				struct kvm_memory_slot *memslot,
7869 				const struct kvm_userspace_memory_region *mem,
7870 				enum kvm_mr_change change)
7871 {
7872 	/*
7873 	 * Only private memory slots need to be mapped here since
7874 	 * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7875 	 */
7876 	if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7877 		unsigned long userspace_addr;
7878 
7879 		/*
7880 		 * MAP_SHARED to prevent internal slot pages from being moved
7881 		 * by fork()/COW.
7882 		 */
7883 		userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7884 					 PROT_READ | PROT_WRITE,
7885 					 MAP_SHARED | MAP_ANONYMOUS, 0);
7886 
7887 		if (IS_ERR((void *)userspace_addr))
7888 			return PTR_ERR((void *)userspace_addr);
7889 
7890 		memslot->userspace_addr = userspace_addr;
7891 	}
7892 
7893 	return 0;
7894 }
7895 
7896 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7897 				     struct kvm_memory_slot *new)
7898 {
7899 	/* Still write protect RO slot */
7900 	if (new->flags & KVM_MEM_READONLY) {
7901 		kvm_mmu_slot_remove_write_access(kvm, new);
7902 		return;
7903 	}
7904 
7905 	/*
7906 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
7907 	 *
7908 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
7909 	 *
7910 	 *  - KVM_MR_CREATE with dirty logging is disabled
7911 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7912 	 *
7913 	 * The reason is, in case of PML, we need to set D-bit for any slots
7914 	 * with dirty logging disabled in order to eliminate unnecessary GPA
7915 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
7916 	 * guarantees leaving PML enabled during guest's lifetime won't have
7917 	 * any additonal overhead from PML when guest is running with dirty
7918 	 * logging disabled for memory slots.
7919 	 *
7920 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
7921 	 * to dirty logging mode.
7922 	 *
7923 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
7924 	 *
7925 	 * In case of write protect:
7926 	 *
7927 	 * Write protect all pages for dirty logging.
7928 	 *
7929 	 * All the sptes including the large sptes which point to this
7930 	 * slot are set to readonly. We can not create any new large
7931 	 * spte on this slot until the end of the logging.
7932 	 *
7933 	 * See the comments in fast_page_fault().
7934 	 */
7935 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
7936 		if (kvm_x86_ops->slot_enable_log_dirty)
7937 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
7938 		else
7939 			kvm_mmu_slot_remove_write_access(kvm, new);
7940 	} else {
7941 		if (kvm_x86_ops->slot_disable_log_dirty)
7942 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
7943 	}
7944 }
7945 
7946 void kvm_arch_commit_memory_region(struct kvm *kvm,
7947 				const struct kvm_userspace_memory_region *mem,
7948 				const struct kvm_memory_slot *old,
7949 				const struct kvm_memory_slot *new,
7950 				enum kvm_mr_change change)
7951 {
7952 	int nr_mmu_pages = 0;
7953 
7954 	if (change == KVM_MR_DELETE && old->id >= KVM_USER_MEM_SLOTS) {
7955 		int ret;
7956 
7957 		ret = vm_munmap(old->userspace_addr,
7958 				old->npages * PAGE_SIZE);
7959 		if (ret < 0)
7960 			printk(KERN_WARNING
7961 			       "kvm_vm_ioctl_set_memory_region: "
7962 			       "failed to munmap memory\n");
7963 	}
7964 
7965 	if (!kvm->arch.n_requested_mmu_pages)
7966 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7967 
7968 	if (nr_mmu_pages)
7969 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7970 
7971 	/*
7972 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
7973 	 * sptes have to be split.  If live migration is successful, the guest
7974 	 * in the source machine will be destroyed and large sptes will be
7975 	 * created in the destination. However, if the guest continues to run
7976 	 * in the source machine (for example if live migration fails), small
7977 	 * sptes will remain around and cause bad performance.
7978 	 *
7979 	 * Scan sptes if dirty logging has been stopped, dropping those
7980 	 * which can be collapsed into a single large-page spte.  Later
7981 	 * page faults will create the large-page sptes.
7982 	 */
7983 	if ((change != KVM_MR_DELETE) &&
7984 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
7985 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
7986 		kvm_mmu_zap_collapsible_sptes(kvm, new);
7987 
7988 	/*
7989 	 * Set up write protection and/or dirty logging for the new slot.
7990 	 *
7991 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
7992 	 * been zapped so no dirty logging staff is needed for old slot. For
7993 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
7994 	 * new and it's also covered when dealing with the new slot.
7995 	 *
7996 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
7997 	 */
7998 	if (change != KVM_MR_DELETE)
7999 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8000 }
8001 
8002 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8003 {
8004 	kvm_mmu_invalidate_zap_all_pages(kvm);
8005 }
8006 
8007 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8008 				   struct kvm_memory_slot *slot)
8009 {
8010 	kvm_mmu_invalidate_zap_all_pages(kvm);
8011 }
8012 
8013 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8014 {
8015 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8016 		kvm_x86_ops->check_nested_events(vcpu, false);
8017 
8018 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8019 		!vcpu->arch.apf.halted)
8020 		|| !list_empty_careful(&vcpu->async_pf.done)
8021 		|| kvm_apic_has_events(vcpu)
8022 		|| vcpu->arch.pv.pv_unhalted
8023 		|| atomic_read(&vcpu->arch.nmi_queued) ||
8024 		(kvm_arch_interrupt_allowed(vcpu) &&
8025 		 kvm_cpu_has_interrupt(vcpu));
8026 }
8027 
8028 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8029 {
8030 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8031 }
8032 
8033 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8034 {
8035 	return kvm_x86_ops->interrupt_allowed(vcpu);
8036 }
8037 
8038 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8039 {
8040 	if (is_64_bit_mode(vcpu))
8041 		return kvm_rip_read(vcpu);
8042 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8043 		     kvm_rip_read(vcpu));
8044 }
8045 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8046 
8047 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8048 {
8049 	return kvm_get_linear_rip(vcpu) == linear_rip;
8050 }
8051 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8052 
8053 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8054 {
8055 	unsigned long rflags;
8056 
8057 	rflags = kvm_x86_ops->get_rflags(vcpu);
8058 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8059 		rflags &= ~X86_EFLAGS_TF;
8060 	return rflags;
8061 }
8062 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8063 
8064 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8065 {
8066 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8067 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8068 		rflags |= X86_EFLAGS_TF;
8069 	kvm_x86_ops->set_rflags(vcpu, rflags);
8070 }
8071 
8072 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8073 {
8074 	__kvm_set_rflags(vcpu, rflags);
8075 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8076 }
8077 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8078 
8079 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8080 {
8081 	int r;
8082 
8083 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8084 	      work->wakeup_all)
8085 		return;
8086 
8087 	r = kvm_mmu_reload(vcpu);
8088 	if (unlikely(r))
8089 		return;
8090 
8091 	if (!vcpu->arch.mmu.direct_map &&
8092 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8093 		return;
8094 
8095 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8096 }
8097 
8098 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8099 {
8100 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8101 }
8102 
8103 static inline u32 kvm_async_pf_next_probe(u32 key)
8104 {
8105 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8106 }
8107 
8108 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8109 {
8110 	u32 key = kvm_async_pf_hash_fn(gfn);
8111 
8112 	while (vcpu->arch.apf.gfns[key] != ~0)
8113 		key = kvm_async_pf_next_probe(key);
8114 
8115 	vcpu->arch.apf.gfns[key] = gfn;
8116 }
8117 
8118 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8119 {
8120 	int i;
8121 	u32 key = kvm_async_pf_hash_fn(gfn);
8122 
8123 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8124 		     (vcpu->arch.apf.gfns[key] != gfn &&
8125 		      vcpu->arch.apf.gfns[key] != ~0); i++)
8126 		key = kvm_async_pf_next_probe(key);
8127 
8128 	return key;
8129 }
8130 
8131 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8132 {
8133 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8134 }
8135 
8136 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8137 {
8138 	u32 i, j, k;
8139 
8140 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8141 	while (true) {
8142 		vcpu->arch.apf.gfns[i] = ~0;
8143 		do {
8144 			j = kvm_async_pf_next_probe(j);
8145 			if (vcpu->arch.apf.gfns[j] == ~0)
8146 				return;
8147 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8148 			/*
8149 			 * k lies cyclically in ]i,j]
8150 			 * |    i.k.j |
8151 			 * |....j i.k.| or  |.k..j i...|
8152 			 */
8153 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8154 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8155 		i = j;
8156 	}
8157 }
8158 
8159 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8160 {
8161 
8162 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8163 				      sizeof(val));
8164 }
8165 
8166 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8167 				     struct kvm_async_pf *work)
8168 {
8169 	struct x86_exception fault;
8170 
8171 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8172 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8173 
8174 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8175 	    (vcpu->arch.apf.send_user_only &&
8176 	     kvm_x86_ops->get_cpl(vcpu) == 0))
8177 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8178 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8179 		fault.vector = PF_VECTOR;
8180 		fault.error_code_valid = true;
8181 		fault.error_code = 0;
8182 		fault.nested_page_fault = false;
8183 		fault.address = work->arch.token;
8184 		kvm_inject_page_fault(vcpu, &fault);
8185 	}
8186 }
8187 
8188 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8189 				 struct kvm_async_pf *work)
8190 {
8191 	struct x86_exception fault;
8192 
8193 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
8194 	if (work->wakeup_all)
8195 		work->arch.token = ~0; /* broadcast wakeup */
8196 	else
8197 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8198 
8199 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8200 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8201 		fault.vector = PF_VECTOR;
8202 		fault.error_code_valid = true;
8203 		fault.error_code = 0;
8204 		fault.nested_page_fault = false;
8205 		fault.address = work->arch.token;
8206 		kvm_inject_page_fault(vcpu, &fault);
8207 	}
8208 	vcpu->arch.apf.halted = false;
8209 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8210 }
8211 
8212 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8213 {
8214 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8215 		return true;
8216 	else
8217 		return !kvm_event_needs_reinjection(vcpu) &&
8218 			kvm_x86_ops->interrupt_allowed(vcpu);
8219 }
8220 
8221 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8222 {
8223 	atomic_inc(&kvm->arch.noncoherent_dma_count);
8224 }
8225 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8226 
8227 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8228 {
8229 	atomic_dec(&kvm->arch.noncoherent_dma_count);
8230 }
8231 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8232 
8233 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8234 {
8235 	return atomic_read(&kvm->arch.noncoherent_dma_count);
8236 }
8237 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8238 
8239 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8240 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8241 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8242 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8243 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8244 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8245 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8246 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8247 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8248 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8249 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8250 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8251 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8252 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8253 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8254