xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 174cd4b1)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <trace/events/kvm.h>
58 
59 #include <asm/debugreg.h>
60 #include <asm/msr.h>
61 #include <asm/desc.h>
62 #include <asm/mce.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 #include <asm/irq_remapping.h>
68 
69 #define CREATE_TRACE_POINTS
70 #include "trace.h"
71 
72 #define MAX_IO_MSRS 256
73 #define KVM_MAX_MCE_BANKS 32
74 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
75 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
76 
77 #define emul_to_vcpu(ctxt) \
78 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
79 
80 /* EFER defaults:
81  * - enable syscall per default because its emulated by KVM
82  * - enable LME and LMA per default on 64 bit KVM
83  */
84 #ifdef CONFIG_X86_64
85 static
86 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
87 #else
88 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
89 #endif
90 
91 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
92 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
93 
94 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
95                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
96 
97 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
98 static void process_nmi(struct kvm_vcpu *vcpu);
99 static void enter_smm(struct kvm_vcpu *vcpu);
100 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
101 
102 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
103 EXPORT_SYMBOL_GPL(kvm_x86_ops);
104 
105 static bool __read_mostly ignore_msrs = 0;
106 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
107 
108 unsigned int min_timer_period_us = 500;
109 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
110 
111 static bool __read_mostly kvmclock_periodic_sync = true;
112 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
113 
114 bool __read_mostly kvm_has_tsc_control;
115 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
116 u32  __read_mostly kvm_max_guest_tsc_khz;
117 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
118 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
119 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
120 u64  __read_mostly kvm_max_tsc_scaling_ratio;
121 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
122 u64 __read_mostly kvm_default_tsc_scaling_ratio;
123 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
124 
125 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
126 static u32 __read_mostly tsc_tolerance_ppm = 250;
127 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
128 
129 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
130 unsigned int __read_mostly lapic_timer_advance_ns = 0;
131 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
132 
133 static bool __read_mostly vector_hashing = true;
134 module_param(vector_hashing, bool, S_IRUGO);
135 
136 static bool __read_mostly backwards_tsc_observed = false;
137 
138 #define KVM_NR_SHARED_MSRS 16
139 
140 struct kvm_shared_msrs_global {
141 	int nr;
142 	u32 msrs[KVM_NR_SHARED_MSRS];
143 };
144 
145 struct kvm_shared_msrs {
146 	struct user_return_notifier urn;
147 	bool registered;
148 	struct kvm_shared_msr_values {
149 		u64 host;
150 		u64 curr;
151 	} values[KVM_NR_SHARED_MSRS];
152 };
153 
154 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
155 static struct kvm_shared_msrs __percpu *shared_msrs;
156 
157 struct kvm_stats_debugfs_item debugfs_entries[] = {
158 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
159 	{ "pf_guest", VCPU_STAT(pf_guest) },
160 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
161 	{ "invlpg", VCPU_STAT(invlpg) },
162 	{ "exits", VCPU_STAT(exits) },
163 	{ "io_exits", VCPU_STAT(io_exits) },
164 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
165 	{ "signal_exits", VCPU_STAT(signal_exits) },
166 	{ "irq_window", VCPU_STAT(irq_window_exits) },
167 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
168 	{ "halt_exits", VCPU_STAT(halt_exits) },
169 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
170 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
171 	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
172 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
173 	{ "hypercalls", VCPU_STAT(hypercalls) },
174 	{ "request_irq", VCPU_STAT(request_irq_exits) },
175 	{ "irq_exits", VCPU_STAT(irq_exits) },
176 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
177 	{ "efer_reload", VCPU_STAT(efer_reload) },
178 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
179 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
180 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
181 	{ "irq_injections", VCPU_STAT(irq_injections) },
182 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
183 	{ "req_event", VCPU_STAT(req_event) },
184 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
185 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
186 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
187 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
188 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
189 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
190 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
191 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
192 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
193 	{ "largepages", VM_STAT(lpages) },
194 	{ "max_mmu_page_hash_collisions",
195 		VM_STAT(max_mmu_page_hash_collisions) },
196 	{ NULL }
197 };
198 
199 u64 __read_mostly host_xcr0;
200 
201 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
202 
203 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
204 {
205 	int i;
206 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
207 		vcpu->arch.apf.gfns[i] = ~0;
208 }
209 
210 static void kvm_on_user_return(struct user_return_notifier *urn)
211 {
212 	unsigned slot;
213 	struct kvm_shared_msrs *locals
214 		= container_of(urn, struct kvm_shared_msrs, urn);
215 	struct kvm_shared_msr_values *values;
216 	unsigned long flags;
217 
218 	/*
219 	 * Disabling irqs at this point since the following code could be
220 	 * interrupted and executed through kvm_arch_hardware_disable()
221 	 */
222 	local_irq_save(flags);
223 	if (locals->registered) {
224 		locals->registered = false;
225 		user_return_notifier_unregister(urn);
226 	}
227 	local_irq_restore(flags);
228 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
229 		values = &locals->values[slot];
230 		if (values->host != values->curr) {
231 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
232 			values->curr = values->host;
233 		}
234 	}
235 }
236 
237 static void shared_msr_update(unsigned slot, u32 msr)
238 {
239 	u64 value;
240 	unsigned int cpu = smp_processor_id();
241 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
242 
243 	/* only read, and nobody should modify it at this time,
244 	 * so don't need lock */
245 	if (slot >= shared_msrs_global.nr) {
246 		printk(KERN_ERR "kvm: invalid MSR slot!");
247 		return;
248 	}
249 	rdmsrl_safe(msr, &value);
250 	smsr->values[slot].host = value;
251 	smsr->values[slot].curr = value;
252 }
253 
254 void kvm_define_shared_msr(unsigned slot, u32 msr)
255 {
256 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
257 	shared_msrs_global.msrs[slot] = msr;
258 	if (slot >= shared_msrs_global.nr)
259 		shared_msrs_global.nr = slot + 1;
260 }
261 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
262 
263 static void kvm_shared_msr_cpu_online(void)
264 {
265 	unsigned i;
266 
267 	for (i = 0; i < shared_msrs_global.nr; ++i)
268 		shared_msr_update(i, shared_msrs_global.msrs[i]);
269 }
270 
271 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
272 {
273 	unsigned int cpu = smp_processor_id();
274 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
275 	int err;
276 
277 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
278 		return 0;
279 	smsr->values[slot].curr = value;
280 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
281 	if (err)
282 		return 1;
283 
284 	if (!smsr->registered) {
285 		smsr->urn.on_user_return = kvm_on_user_return;
286 		user_return_notifier_register(&smsr->urn);
287 		smsr->registered = true;
288 	}
289 	return 0;
290 }
291 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
292 
293 static void drop_user_return_notifiers(void)
294 {
295 	unsigned int cpu = smp_processor_id();
296 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
297 
298 	if (smsr->registered)
299 		kvm_on_user_return(&smsr->urn);
300 }
301 
302 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
303 {
304 	return vcpu->arch.apic_base;
305 }
306 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
307 
308 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
309 {
310 	u64 old_state = vcpu->arch.apic_base &
311 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
312 	u64 new_state = msr_info->data &
313 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
314 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
315 		0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
316 
317 	if (!msr_info->host_initiated &&
318 	    ((msr_info->data & reserved_bits) != 0 ||
319 	     new_state == X2APIC_ENABLE ||
320 	     (new_state == MSR_IA32_APICBASE_ENABLE &&
321 	      old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
322 	     (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
323 	      old_state == 0)))
324 		return 1;
325 
326 	kvm_lapic_set_base(vcpu, msr_info->data);
327 	return 0;
328 }
329 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
330 
331 asmlinkage __visible void kvm_spurious_fault(void)
332 {
333 	/* Fault while not rebooting.  We want the trace. */
334 	BUG();
335 }
336 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
337 
338 #define EXCPT_BENIGN		0
339 #define EXCPT_CONTRIBUTORY	1
340 #define EXCPT_PF		2
341 
342 static int exception_class(int vector)
343 {
344 	switch (vector) {
345 	case PF_VECTOR:
346 		return EXCPT_PF;
347 	case DE_VECTOR:
348 	case TS_VECTOR:
349 	case NP_VECTOR:
350 	case SS_VECTOR:
351 	case GP_VECTOR:
352 		return EXCPT_CONTRIBUTORY;
353 	default:
354 		break;
355 	}
356 	return EXCPT_BENIGN;
357 }
358 
359 #define EXCPT_FAULT		0
360 #define EXCPT_TRAP		1
361 #define EXCPT_ABORT		2
362 #define EXCPT_INTERRUPT		3
363 
364 static int exception_type(int vector)
365 {
366 	unsigned int mask;
367 
368 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
369 		return EXCPT_INTERRUPT;
370 
371 	mask = 1 << vector;
372 
373 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
374 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
375 		return EXCPT_TRAP;
376 
377 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
378 		return EXCPT_ABORT;
379 
380 	/* Reserved exceptions will result in fault */
381 	return EXCPT_FAULT;
382 }
383 
384 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
385 		unsigned nr, bool has_error, u32 error_code,
386 		bool reinject)
387 {
388 	u32 prev_nr;
389 	int class1, class2;
390 
391 	kvm_make_request(KVM_REQ_EVENT, vcpu);
392 
393 	if (!vcpu->arch.exception.pending) {
394 	queue:
395 		if (has_error && !is_protmode(vcpu))
396 			has_error = false;
397 		vcpu->arch.exception.pending = true;
398 		vcpu->arch.exception.has_error_code = has_error;
399 		vcpu->arch.exception.nr = nr;
400 		vcpu->arch.exception.error_code = error_code;
401 		vcpu->arch.exception.reinject = reinject;
402 		return;
403 	}
404 
405 	/* to check exception */
406 	prev_nr = vcpu->arch.exception.nr;
407 	if (prev_nr == DF_VECTOR) {
408 		/* triple fault -> shutdown */
409 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
410 		return;
411 	}
412 	class1 = exception_class(prev_nr);
413 	class2 = exception_class(nr);
414 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
415 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
416 		/* generate double fault per SDM Table 5-5 */
417 		vcpu->arch.exception.pending = true;
418 		vcpu->arch.exception.has_error_code = true;
419 		vcpu->arch.exception.nr = DF_VECTOR;
420 		vcpu->arch.exception.error_code = 0;
421 	} else
422 		/* replace previous exception with a new one in a hope
423 		   that instruction re-execution will regenerate lost
424 		   exception */
425 		goto queue;
426 }
427 
428 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
429 {
430 	kvm_multiple_exception(vcpu, nr, false, 0, false);
431 }
432 EXPORT_SYMBOL_GPL(kvm_queue_exception);
433 
434 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
435 {
436 	kvm_multiple_exception(vcpu, nr, false, 0, true);
437 }
438 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
439 
440 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
441 {
442 	if (err)
443 		kvm_inject_gp(vcpu, 0);
444 	else
445 		return kvm_skip_emulated_instruction(vcpu);
446 
447 	return 1;
448 }
449 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
450 
451 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
452 {
453 	++vcpu->stat.pf_guest;
454 	vcpu->arch.cr2 = fault->address;
455 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
456 }
457 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
458 
459 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
460 {
461 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
462 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
463 	else
464 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
465 
466 	return fault->nested_page_fault;
467 }
468 
469 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
470 {
471 	atomic_inc(&vcpu->arch.nmi_queued);
472 	kvm_make_request(KVM_REQ_NMI, vcpu);
473 }
474 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
475 
476 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
477 {
478 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
479 }
480 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
481 
482 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
483 {
484 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
485 }
486 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
487 
488 /*
489  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
490  * a #GP and return false.
491  */
492 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
493 {
494 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
495 		return true;
496 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
497 	return false;
498 }
499 EXPORT_SYMBOL_GPL(kvm_require_cpl);
500 
501 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
502 {
503 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
504 		return true;
505 
506 	kvm_queue_exception(vcpu, UD_VECTOR);
507 	return false;
508 }
509 EXPORT_SYMBOL_GPL(kvm_require_dr);
510 
511 /*
512  * This function will be used to read from the physical memory of the currently
513  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
514  * can read from guest physical or from the guest's guest physical memory.
515  */
516 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
517 			    gfn_t ngfn, void *data, int offset, int len,
518 			    u32 access)
519 {
520 	struct x86_exception exception;
521 	gfn_t real_gfn;
522 	gpa_t ngpa;
523 
524 	ngpa     = gfn_to_gpa(ngfn);
525 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
526 	if (real_gfn == UNMAPPED_GVA)
527 		return -EFAULT;
528 
529 	real_gfn = gpa_to_gfn(real_gfn);
530 
531 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
532 }
533 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
534 
535 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
536 			       void *data, int offset, int len, u32 access)
537 {
538 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
539 				       data, offset, len, access);
540 }
541 
542 /*
543  * Load the pae pdptrs.  Return true is they are all valid.
544  */
545 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
546 {
547 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
548 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
549 	int i;
550 	int ret;
551 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
552 
553 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
554 				      offset * sizeof(u64), sizeof(pdpte),
555 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
556 	if (ret < 0) {
557 		ret = 0;
558 		goto out;
559 	}
560 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
561 		if ((pdpte[i] & PT_PRESENT_MASK) &&
562 		    (pdpte[i] &
563 		     vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
564 			ret = 0;
565 			goto out;
566 		}
567 	}
568 	ret = 1;
569 
570 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
571 	__set_bit(VCPU_EXREG_PDPTR,
572 		  (unsigned long *)&vcpu->arch.regs_avail);
573 	__set_bit(VCPU_EXREG_PDPTR,
574 		  (unsigned long *)&vcpu->arch.regs_dirty);
575 out:
576 
577 	return ret;
578 }
579 EXPORT_SYMBOL_GPL(load_pdptrs);
580 
581 bool pdptrs_changed(struct kvm_vcpu *vcpu)
582 {
583 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
584 	bool changed = true;
585 	int offset;
586 	gfn_t gfn;
587 	int r;
588 
589 	if (is_long_mode(vcpu) || !is_pae(vcpu))
590 		return false;
591 
592 	if (!test_bit(VCPU_EXREG_PDPTR,
593 		      (unsigned long *)&vcpu->arch.regs_avail))
594 		return true;
595 
596 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
597 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
598 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
599 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
600 	if (r < 0)
601 		goto out;
602 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
603 out:
604 
605 	return changed;
606 }
607 EXPORT_SYMBOL_GPL(pdptrs_changed);
608 
609 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
610 {
611 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
612 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
613 
614 	cr0 |= X86_CR0_ET;
615 
616 #ifdef CONFIG_X86_64
617 	if (cr0 & 0xffffffff00000000UL)
618 		return 1;
619 #endif
620 
621 	cr0 &= ~CR0_RESERVED_BITS;
622 
623 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
624 		return 1;
625 
626 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
627 		return 1;
628 
629 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
630 #ifdef CONFIG_X86_64
631 		if ((vcpu->arch.efer & EFER_LME)) {
632 			int cs_db, cs_l;
633 
634 			if (!is_pae(vcpu))
635 				return 1;
636 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
637 			if (cs_l)
638 				return 1;
639 		} else
640 #endif
641 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
642 						 kvm_read_cr3(vcpu)))
643 			return 1;
644 	}
645 
646 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
647 		return 1;
648 
649 	kvm_x86_ops->set_cr0(vcpu, cr0);
650 
651 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
652 		kvm_clear_async_pf_completion_queue(vcpu);
653 		kvm_async_pf_hash_reset(vcpu);
654 	}
655 
656 	if ((cr0 ^ old_cr0) & update_bits)
657 		kvm_mmu_reset_context(vcpu);
658 
659 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
660 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
661 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
662 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
663 
664 	return 0;
665 }
666 EXPORT_SYMBOL_GPL(kvm_set_cr0);
667 
668 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
669 {
670 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
671 }
672 EXPORT_SYMBOL_GPL(kvm_lmsw);
673 
674 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
675 {
676 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
677 			!vcpu->guest_xcr0_loaded) {
678 		/* kvm_set_xcr() also depends on this */
679 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
680 		vcpu->guest_xcr0_loaded = 1;
681 	}
682 }
683 
684 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
685 {
686 	if (vcpu->guest_xcr0_loaded) {
687 		if (vcpu->arch.xcr0 != host_xcr0)
688 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
689 		vcpu->guest_xcr0_loaded = 0;
690 	}
691 }
692 
693 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
694 {
695 	u64 xcr0 = xcr;
696 	u64 old_xcr0 = vcpu->arch.xcr0;
697 	u64 valid_bits;
698 
699 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
700 	if (index != XCR_XFEATURE_ENABLED_MASK)
701 		return 1;
702 	if (!(xcr0 & XFEATURE_MASK_FP))
703 		return 1;
704 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
705 		return 1;
706 
707 	/*
708 	 * Do not allow the guest to set bits that we do not support
709 	 * saving.  However, xcr0 bit 0 is always set, even if the
710 	 * emulated CPU does not support XSAVE (see fx_init).
711 	 */
712 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
713 	if (xcr0 & ~valid_bits)
714 		return 1;
715 
716 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
717 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
718 		return 1;
719 
720 	if (xcr0 & XFEATURE_MASK_AVX512) {
721 		if (!(xcr0 & XFEATURE_MASK_YMM))
722 			return 1;
723 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
724 			return 1;
725 	}
726 	vcpu->arch.xcr0 = xcr0;
727 
728 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
729 		kvm_update_cpuid(vcpu);
730 	return 0;
731 }
732 
733 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
734 {
735 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
736 	    __kvm_set_xcr(vcpu, index, xcr)) {
737 		kvm_inject_gp(vcpu, 0);
738 		return 1;
739 	}
740 	return 0;
741 }
742 EXPORT_SYMBOL_GPL(kvm_set_xcr);
743 
744 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
745 {
746 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
747 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
748 				   X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
749 
750 	if (cr4 & CR4_RESERVED_BITS)
751 		return 1;
752 
753 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
754 		return 1;
755 
756 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
757 		return 1;
758 
759 	if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
760 		return 1;
761 
762 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
763 		return 1;
764 
765 	if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
766 		return 1;
767 
768 	if (is_long_mode(vcpu)) {
769 		if (!(cr4 & X86_CR4_PAE))
770 			return 1;
771 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
772 		   && ((cr4 ^ old_cr4) & pdptr_bits)
773 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
774 				   kvm_read_cr3(vcpu)))
775 		return 1;
776 
777 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
778 		if (!guest_cpuid_has_pcid(vcpu))
779 			return 1;
780 
781 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
782 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
783 			return 1;
784 	}
785 
786 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
787 		return 1;
788 
789 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
790 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
791 		kvm_mmu_reset_context(vcpu);
792 
793 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
794 		kvm_update_cpuid(vcpu);
795 
796 	return 0;
797 }
798 EXPORT_SYMBOL_GPL(kvm_set_cr4);
799 
800 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
801 {
802 #ifdef CONFIG_X86_64
803 	cr3 &= ~CR3_PCID_INVD;
804 #endif
805 
806 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
807 		kvm_mmu_sync_roots(vcpu);
808 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
809 		return 0;
810 	}
811 
812 	if (is_long_mode(vcpu)) {
813 		if (cr3 & CR3_L_MODE_RESERVED_BITS)
814 			return 1;
815 	} else if (is_pae(vcpu) && is_paging(vcpu) &&
816 		   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
817 		return 1;
818 
819 	vcpu->arch.cr3 = cr3;
820 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
821 	kvm_mmu_new_cr3(vcpu);
822 	return 0;
823 }
824 EXPORT_SYMBOL_GPL(kvm_set_cr3);
825 
826 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
827 {
828 	if (cr8 & CR8_RESERVED_BITS)
829 		return 1;
830 	if (lapic_in_kernel(vcpu))
831 		kvm_lapic_set_tpr(vcpu, cr8);
832 	else
833 		vcpu->arch.cr8 = cr8;
834 	return 0;
835 }
836 EXPORT_SYMBOL_GPL(kvm_set_cr8);
837 
838 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
839 {
840 	if (lapic_in_kernel(vcpu))
841 		return kvm_lapic_get_cr8(vcpu);
842 	else
843 		return vcpu->arch.cr8;
844 }
845 EXPORT_SYMBOL_GPL(kvm_get_cr8);
846 
847 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
848 {
849 	int i;
850 
851 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
852 		for (i = 0; i < KVM_NR_DB_REGS; i++)
853 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
854 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
855 	}
856 }
857 
858 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
859 {
860 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
861 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
862 }
863 
864 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
865 {
866 	unsigned long dr7;
867 
868 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
869 		dr7 = vcpu->arch.guest_debug_dr7;
870 	else
871 		dr7 = vcpu->arch.dr7;
872 	kvm_x86_ops->set_dr7(vcpu, dr7);
873 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
874 	if (dr7 & DR7_BP_EN_MASK)
875 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
876 }
877 
878 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
879 {
880 	u64 fixed = DR6_FIXED_1;
881 
882 	if (!guest_cpuid_has_rtm(vcpu))
883 		fixed |= DR6_RTM;
884 	return fixed;
885 }
886 
887 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
888 {
889 	switch (dr) {
890 	case 0 ... 3:
891 		vcpu->arch.db[dr] = val;
892 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
893 			vcpu->arch.eff_db[dr] = val;
894 		break;
895 	case 4:
896 		/* fall through */
897 	case 6:
898 		if (val & 0xffffffff00000000ULL)
899 			return -1; /* #GP */
900 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
901 		kvm_update_dr6(vcpu);
902 		break;
903 	case 5:
904 		/* fall through */
905 	default: /* 7 */
906 		if (val & 0xffffffff00000000ULL)
907 			return -1; /* #GP */
908 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
909 		kvm_update_dr7(vcpu);
910 		break;
911 	}
912 
913 	return 0;
914 }
915 
916 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
917 {
918 	if (__kvm_set_dr(vcpu, dr, val)) {
919 		kvm_inject_gp(vcpu, 0);
920 		return 1;
921 	}
922 	return 0;
923 }
924 EXPORT_SYMBOL_GPL(kvm_set_dr);
925 
926 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
927 {
928 	switch (dr) {
929 	case 0 ... 3:
930 		*val = vcpu->arch.db[dr];
931 		break;
932 	case 4:
933 		/* fall through */
934 	case 6:
935 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
936 			*val = vcpu->arch.dr6;
937 		else
938 			*val = kvm_x86_ops->get_dr6(vcpu);
939 		break;
940 	case 5:
941 		/* fall through */
942 	default: /* 7 */
943 		*val = vcpu->arch.dr7;
944 		break;
945 	}
946 	return 0;
947 }
948 EXPORT_SYMBOL_GPL(kvm_get_dr);
949 
950 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
951 {
952 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
953 	u64 data;
954 	int err;
955 
956 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
957 	if (err)
958 		return err;
959 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
960 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
961 	return err;
962 }
963 EXPORT_SYMBOL_GPL(kvm_rdpmc);
964 
965 /*
966  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
967  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
968  *
969  * This list is modified at module load time to reflect the
970  * capabilities of the host cpu. This capabilities test skips MSRs that are
971  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
972  * may depend on host virtualization features rather than host cpu features.
973  */
974 
975 static u32 msrs_to_save[] = {
976 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
977 	MSR_STAR,
978 #ifdef CONFIG_X86_64
979 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
980 #endif
981 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
982 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
983 };
984 
985 static unsigned num_msrs_to_save;
986 
987 static u32 emulated_msrs[] = {
988 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
989 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
990 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
991 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
992 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
993 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
994 	HV_X64_MSR_RESET,
995 	HV_X64_MSR_VP_INDEX,
996 	HV_X64_MSR_VP_RUNTIME,
997 	HV_X64_MSR_SCONTROL,
998 	HV_X64_MSR_STIMER0_CONFIG,
999 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1000 	MSR_KVM_PV_EOI_EN,
1001 
1002 	MSR_IA32_TSC_ADJUST,
1003 	MSR_IA32_TSCDEADLINE,
1004 	MSR_IA32_MISC_ENABLE,
1005 	MSR_IA32_MCG_STATUS,
1006 	MSR_IA32_MCG_CTL,
1007 	MSR_IA32_MCG_EXT_CTL,
1008 	MSR_IA32_SMBASE,
1009 };
1010 
1011 static unsigned num_emulated_msrs;
1012 
1013 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1014 {
1015 	if (efer & efer_reserved_bits)
1016 		return false;
1017 
1018 	if (efer & EFER_FFXSR) {
1019 		struct kvm_cpuid_entry2 *feat;
1020 
1021 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1022 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1023 			return false;
1024 	}
1025 
1026 	if (efer & EFER_SVME) {
1027 		struct kvm_cpuid_entry2 *feat;
1028 
1029 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1030 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1031 			return false;
1032 	}
1033 
1034 	return true;
1035 }
1036 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1037 
1038 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1039 {
1040 	u64 old_efer = vcpu->arch.efer;
1041 
1042 	if (!kvm_valid_efer(vcpu, efer))
1043 		return 1;
1044 
1045 	if (is_paging(vcpu)
1046 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1047 		return 1;
1048 
1049 	efer &= ~EFER_LMA;
1050 	efer |= vcpu->arch.efer & EFER_LMA;
1051 
1052 	kvm_x86_ops->set_efer(vcpu, efer);
1053 
1054 	/* Update reserved bits */
1055 	if ((efer ^ old_efer) & EFER_NX)
1056 		kvm_mmu_reset_context(vcpu);
1057 
1058 	return 0;
1059 }
1060 
1061 void kvm_enable_efer_bits(u64 mask)
1062 {
1063        efer_reserved_bits &= ~mask;
1064 }
1065 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1066 
1067 /*
1068  * Writes msr value into into the appropriate "register".
1069  * Returns 0 on success, non-0 otherwise.
1070  * Assumes vcpu_load() was already called.
1071  */
1072 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1073 {
1074 	switch (msr->index) {
1075 	case MSR_FS_BASE:
1076 	case MSR_GS_BASE:
1077 	case MSR_KERNEL_GS_BASE:
1078 	case MSR_CSTAR:
1079 	case MSR_LSTAR:
1080 		if (is_noncanonical_address(msr->data))
1081 			return 1;
1082 		break;
1083 	case MSR_IA32_SYSENTER_EIP:
1084 	case MSR_IA32_SYSENTER_ESP:
1085 		/*
1086 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1087 		 * non-canonical address is written on Intel but not on
1088 		 * AMD (which ignores the top 32-bits, because it does
1089 		 * not implement 64-bit SYSENTER).
1090 		 *
1091 		 * 64-bit code should hence be able to write a non-canonical
1092 		 * value on AMD.  Making the address canonical ensures that
1093 		 * vmentry does not fail on Intel after writing a non-canonical
1094 		 * value, and that something deterministic happens if the guest
1095 		 * invokes 64-bit SYSENTER.
1096 		 */
1097 		msr->data = get_canonical(msr->data);
1098 	}
1099 	return kvm_x86_ops->set_msr(vcpu, msr);
1100 }
1101 EXPORT_SYMBOL_GPL(kvm_set_msr);
1102 
1103 /*
1104  * Adapt set_msr() to msr_io()'s calling convention
1105  */
1106 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1107 {
1108 	struct msr_data msr;
1109 	int r;
1110 
1111 	msr.index = index;
1112 	msr.host_initiated = true;
1113 	r = kvm_get_msr(vcpu, &msr);
1114 	if (r)
1115 		return r;
1116 
1117 	*data = msr.data;
1118 	return 0;
1119 }
1120 
1121 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1122 {
1123 	struct msr_data msr;
1124 
1125 	msr.data = *data;
1126 	msr.index = index;
1127 	msr.host_initiated = true;
1128 	return kvm_set_msr(vcpu, &msr);
1129 }
1130 
1131 #ifdef CONFIG_X86_64
1132 struct pvclock_gtod_data {
1133 	seqcount_t	seq;
1134 
1135 	struct { /* extract of a clocksource struct */
1136 		int vclock_mode;
1137 		u64	cycle_last;
1138 		u64	mask;
1139 		u32	mult;
1140 		u32	shift;
1141 	} clock;
1142 
1143 	u64		boot_ns;
1144 	u64		nsec_base;
1145 	u64		wall_time_sec;
1146 };
1147 
1148 static struct pvclock_gtod_data pvclock_gtod_data;
1149 
1150 static void update_pvclock_gtod(struct timekeeper *tk)
1151 {
1152 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1153 	u64 boot_ns;
1154 
1155 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1156 
1157 	write_seqcount_begin(&vdata->seq);
1158 
1159 	/* copy pvclock gtod data */
1160 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1161 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1162 	vdata->clock.mask		= tk->tkr_mono.mask;
1163 	vdata->clock.mult		= tk->tkr_mono.mult;
1164 	vdata->clock.shift		= tk->tkr_mono.shift;
1165 
1166 	vdata->boot_ns			= boot_ns;
1167 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1168 
1169 	vdata->wall_time_sec            = tk->xtime_sec;
1170 
1171 	write_seqcount_end(&vdata->seq);
1172 }
1173 #endif
1174 
1175 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1176 {
1177 	/*
1178 	 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1179 	 * vcpu_enter_guest.  This function is only called from
1180 	 * the physical CPU that is running vcpu.
1181 	 */
1182 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1183 }
1184 
1185 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1186 {
1187 	int version;
1188 	int r;
1189 	struct pvclock_wall_clock wc;
1190 	struct timespec64 boot;
1191 
1192 	if (!wall_clock)
1193 		return;
1194 
1195 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1196 	if (r)
1197 		return;
1198 
1199 	if (version & 1)
1200 		++version;  /* first time write, random junk */
1201 
1202 	++version;
1203 
1204 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1205 		return;
1206 
1207 	/*
1208 	 * The guest calculates current wall clock time by adding
1209 	 * system time (updated by kvm_guest_time_update below) to the
1210 	 * wall clock specified here.  guest system time equals host
1211 	 * system time for us, thus we must fill in host boot time here.
1212 	 */
1213 	getboottime64(&boot);
1214 
1215 	if (kvm->arch.kvmclock_offset) {
1216 		struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1217 		boot = timespec64_sub(boot, ts);
1218 	}
1219 	wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1220 	wc.nsec = boot.tv_nsec;
1221 	wc.version = version;
1222 
1223 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1224 
1225 	version++;
1226 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1227 }
1228 
1229 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1230 {
1231 	do_shl32_div32(dividend, divisor);
1232 	return dividend;
1233 }
1234 
1235 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1236 			       s8 *pshift, u32 *pmultiplier)
1237 {
1238 	uint64_t scaled64;
1239 	int32_t  shift = 0;
1240 	uint64_t tps64;
1241 	uint32_t tps32;
1242 
1243 	tps64 = base_hz;
1244 	scaled64 = scaled_hz;
1245 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1246 		tps64 >>= 1;
1247 		shift--;
1248 	}
1249 
1250 	tps32 = (uint32_t)tps64;
1251 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1252 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1253 			scaled64 >>= 1;
1254 		else
1255 			tps32 <<= 1;
1256 		shift++;
1257 	}
1258 
1259 	*pshift = shift;
1260 	*pmultiplier = div_frac(scaled64, tps32);
1261 
1262 	pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1263 		 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1264 }
1265 
1266 #ifdef CONFIG_X86_64
1267 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1268 #endif
1269 
1270 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1271 static unsigned long max_tsc_khz;
1272 
1273 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1274 {
1275 	u64 v = (u64)khz * (1000000 + ppm);
1276 	do_div(v, 1000000);
1277 	return v;
1278 }
1279 
1280 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1281 {
1282 	u64 ratio;
1283 
1284 	/* Guest TSC same frequency as host TSC? */
1285 	if (!scale) {
1286 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1287 		return 0;
1288 	}
1289 
1290 	/* TSC scaling supported? */
1291 	if (!kvm_has_tsc_control) {
1292 		if (user_tsc_khz > tsc_khz) {
1293 			vcpu->arch.tsc_catchup = 1;
1294 			vcpu->arch.tsc_always_catchup = 1;
1295 			return 0;
1296 		} else {
1297 			WARN(1, "user requested TSC rate below hardware speed\n");
1298 			return -1;
1299 		}
1300 	}
1301 
1302 	/* TSC scaling required  - calculate ratio */
1303 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1304 				user_tsc_khz, tsc_khz);
1305 
1306 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1307 		WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1308 			  user_tsc_khz);
1309 		return -1;
1310 	}
1311 
1312 	vcpu->arch.tsc_scaling_ratio = ratio;
1313 	return 0;
1314 }
1315 
1316 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1317 {
1318 	u32 thresh_lo, thresh_hi;
1319 	int use_scaling = 0;
1320 
1321 	/* tsc_khz can be zero if TSC calibration fails */
1322 	if (user_tsc_khz == 0) {
1323 		/* set tsc_scaling_ratio to a safe value */
1324 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1325 		return -1;
1326 	}
1327 
1328 	/* Compute a scale to convert nanoseconds in TSC cycles */
1329 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1330 			   &vcpu->arch.virtual_tsc_shift,
1331 			   &vcpu->arch.virtual_tsc_mult);
1332 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1333 
1334 	/*
1335 	 * Compute the variation in TSC rate which is acceptable
1336 	 * within the range of tolerance and decide if the
1337 	 * rate being applied is within that bounds of the hardware
1338 	 * rate.  If so, no scaling or compensation need be done.
1339 	 */
1340 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1341 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1342 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1343 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1344 		use_scaling = 1;
1345 	}
1346 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1347 }
1348 
1349 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1350 {
1351 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1352 				      vcpu->arch.virtual_tsc_mult,
1353 				      vcpu->arch.virtual_tsc_shift);
1354 	tsc += vcpu->arch.this_tsc_write;
1355 	return tsc;
1356 }
1357 
1358 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1359 {
1360 #ifdef CONFIG_X86_64
1361 	bool vcpus_matched;
1362 	struct kvm_arch *ka = &vcpu->kvm->arch;
1363 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1364 
1365 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1366 			 atomic_read(&vcpu->kvm->online_vcpus));
1367 
1368 	/*
1369 	 * Once the masterclock is enabled, always perform request in
1370 	 * order to update it.
1371 	 *
1372 	 * In order to enable masterclock, the host clocksource must be TSC
1373 	 * and the vcpus need to have matched TSCs.  When that happens,
1374 	 * perform request to enable masterclock.
1375 	 */
1376 	if (ka->use_master_clock ||
1377 	    (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1378 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1379 
1380 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1381 			    atomic_read(&vcpu->kvm->online_vcpus),
1382 		            ka->use_master_clock, gtod->clock.vclock_mode);
1383 #endif
1384 }
1385 
1386 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1387 {
1388 	u64 curr_offset = vcpu->arch.tsc_offset;
1389 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1390 }
1391 
1392 /*
1393  * Multiply tsc by a fixed point number represented by ratio.
1394  *
1395  * The most significant 64-N bits (mult) of ratio represent the
1396  * integral part of the fixed point number; the remaining N bits
1397  * (frac) represent the fractional part, ie. ratio represents a fixed
1398  * point number (mult + frac * 2^(-N)).
1399  *
1400  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1401  */
1402 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1403 {
1404 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1405 }
1406 
1407 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1408 {
1409 	u64 _tsc = tsc;
1410 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1411 
1412 	if (ratio != kvm_default_tsc_scaling_ratio)
1413 		_tsc = __scale_tsc(ratio, tsc);
1414 
1415 	return _tsc;
1416 }
1417 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1418 
1419 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1420 {
1421 	u64 tsc;
1422 
1423 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1424 
1425 	return target_tsc - tsc;
1426 }
1427 
1428 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1429 {
1430 	return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1431 }
1432 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1433 
1434 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1435 {
1436 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1437 	vcpu->arch.tsc_offset = offset;
1438 }
1439 
1440 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1441 {
1442 	struct kvm *kvm = vcpu->kvm;
1443 	u64 offset, ns, elapsed;
1444 	unsigned long flags;
1445 	s64 usdiff;
1446 	bool matched;
1447 	bool already_matched;
1448 	u64 data = msr->data;
1449 
1450 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1451 	offset = kvm_compute_tsc_offset(vcpu, data);
1452 	ns = ktime_get_boot_ns();
1453 	elapsed = ns - kvm->arch.last_tsc_nsec;
1454 
1455 	if (vcpu->arch.virtual_tsc_khz) {
1456 		int faulted = 0;
1457 
1458 		/* n.b - signed multiplication and division required */
1459 		usdiff = data - kvm->arch.last_tsc_write;
1460 #ifdef CONFIG_X86_64
1461 		usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1462 #else
1463 		/* do_div() only does unsigned */
1464 		asm("1: idivl %[divisor]\n"
1465 		    "2: xor %%edx, %%edx\n"
1466 		    "   movl $0, %[faulted]\n"
1467 		    "3:\n"
1468 		    ".section .fixup,\"ax\"\n"
1469 		    "4: movl $1, %[faulted]\n"
1470 		    "   jmp  3b\n"
1471 		    ".previous\n"
1472 
1473 		_ASM_EXTABLE(1b, 4b)
1474 
1475 		: "=A"(usdiff), [faulted] "=r" (faulted)
1476 		: "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1477 
1478 #endif
1479 		do_div(elapsed, 1000);
1480 		usdiff -= elapsed;
1481 		if (usdiff < 0)
1482 			usdiff = -usdiff;
1483 
1484 		/* idivl overflow => difference is larger than USEC_PER_SEC */
1485 		if (faulted)
1486 			usdiff = USEC_PER_SEC;
1487 	} else
1488 		usdiff = USEC_PER_SEC; /* disable TSC match window below */
1489 
1490 	/*
1491 	 * Special case: TSC write with a small delta (1 second) of virtual
1492 	 * cycle time against real time is interpreted as an attempt to
1493 	 * synchronize the CPU.
1494          *
1495 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1496 	 * TSC, we add elapsed time in this computation.  We could let the
1497 	 * compensation code attempt to catch up if we fall behind, but
1498 	 * it's better to try to match offsets from the beginning.
1499          */
1500 	if (usdiff < USEC_PER_SEC &&
1501 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1502 		if (!check_tsc_unstable()) {
1503 			offset = kvm->arch.cur_tsc_offset;
1504 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1505 		} else {
1506 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1507 			data += delta;
1508 			offset = kvm_compute_tsc_offset(vcpu, data);
1509 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1510 		}
1511 		matched = true;
1512 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1513 	} else {
1514 		/*
1515 		 * We split periods of matched TSC writes into generations.
1516 		 * For each generation, we track the original measured
1517 		 * nanosecond time, offset, and write, so if TSCs are in
1518 		 * sync, we can match exact offset, and if not, we can match
1519 		 * exact software computation in compute_guest_tsc()
1520 		 *
1521 		 * These values are tracked in kvm->arch.cur_xxx variables.
1522 		 */
1523 		kvm->arch.cur_tsc_generation++;
1524 		kvm->arch.cur_tsc_nsec = ns;
1525 		kvm->arch.cur_tsc_write = data;
1526 		kvm->arch.cur_tsc_offset = offset;
1527 		matched = false;
1528 		pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1529 			 kvm->arch.cur_tsc_generation, data);
1530 	}
1531 
1532 	/*
1533 	 * We also track th most recent recorded KHZ, write and time to
1534 	 * allow the matching interval to be extended at each write.
1535 	 */
1536 	kvm->arch.last_tsc_nsec = ns;
1537 	kvm->arch.last_tsc_write = data;
1538 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1539 
1540 	vcpu->arch.last_guest_tsc = data;
1541 
1542 	/* Keep track of which generation this VCPU has synchronized to */
1543 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1544 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1545 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1546 
1547 	if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1548 		update_ia32_tsc_adjust_msr(vcpu, offset);
1549 	kvm_vcpu_write_tsc_offset(vcpu, offset);
1550 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1551 
1552 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1553 	if (!matched) {
1554 		kvm->arch.nr_vcpus_matched_tsc = 0;
1555 	} else if (!already_matched) {
1556 		kvm->arch.nr_vcpus_matched_tsc++;
1557 	}
1558 
1559 	kvm_track_tsc_matching(vcpu);
1560 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1561 }
1562 
1563 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1564 
1565 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1566 					   s64 adjustment)
1567 {
1568 	kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1569 }
1570 
1571 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1572 {
1573 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1574 		WARN_ON(adjustment < 0);
1575 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1576 	adjust_tsc_offset_guest(vcpu, adjustment);
1577 }
1578 
1579 #ifdef CONFIG_X86_64
1580 
1581 static u64 read_tsc(void)
1582 {
1583 	u64 ret = (u64)rdtsc_ordered();
1584 	u64 last = pvclock_gtod_data.clock.cycle_last;
1585 
1586 	if (likely(ret >= last))
1587 		return ret;
1588 
1589 	/*
1590 	 * GCC likes to generate cmov here, but this branch is extremely
1591 	 * predictable (it's just a function of time and the likely is
1592 	 * very likely) and there's a data dependence, so force GCC
1593 	 * to generate a branch instead.  I don't barrier() because
1594 	 * we don't actually need a barrier, and if this function
1595 	 * ever gets inlined it will generate worse code.
1596 	 */
1597 	asm volatile ("");
1598 	return last;
1599 }
1600 
1601 static inline u64 vgettsc(u64 *cycle_now)
1602 {
1603 	long v;
1604 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1605 
1606 	*cycle_now = read_tsc();
1607 
1608 	v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1609 	return v * gtod->clock.mult;
1610 }
1611 
1612 static int do_monotonic_boot(s64 *t, u64 *cycle_now)
1613 {
1614 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1615 	unsigned long seq;
1616 	int mode;
1617 	u64 ns;
1618 
1619 	do {
1620 		seq = read_seqcount_begin(&gtod->seq);
1621 		mode = gtod->clock.vclock_mode;
1622 		ns = gtod->nsec_base;
1623 		ns += vgettsc(cycle_now);
1624 		ns >>= gtod->clock.shift;
1625 		ns += gtod->boot_ns;
1626 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1627 	*t = ns;
1628 
1629 	return mode;
1630 }
1631 
1632 static int do_realtime(struct timespec *ts, u64 *cycle_now)
1633 {
1634 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1635 	unsigned long seq;
1636 	int mode;
1637 	u64 ns;
1638 
1639 	do {
1640 		seq = read_seqcount_begin(&gtod->seq);
1641 		mode = gtod->clock.vclock_mode;
1642 		ts->tv_sec = gtod->wall_time_sec;
1643 		ns = gtod->nsec_base;
1644 		ns += vgettsc(cycle_now);
1645 		ns >>= gtod->clock.shift;
1646 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1647 
1648 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1649 	ts->tv_nsec = ns;
1650 
1651 	return mode;
1652 }
1653 
1654 /* returns true if host is using tsc clocksource */
1655 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
1656 {
1657 	/* checked again under seqlock below */
1658 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1659 		return false;
1660 
1661 	return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1662 }
1663 
1664 /* returns true if host is using tsc clocksource */
1665 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1666 					   u64 *cycle_now)
1667 {
1668 	/* checked again under seqlock below */
1669 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1670 		return false;
1671 
1672 	return do_realtime(ts, cycle_now) == VCLOCK_TSC;
1673 }
1674 #endif
1675 
1676 /*
1677  *
1678  * Assuming a stable TSC across physical CPUS, and a stable TSC
1679  * across virtual CPUs, the following condition is possible.
1680  * Each numbered line represents an event visible to both
1681  * CPUs at the next numbered event.
1682  *
1683  * "timespecX" represents host monotonic time. "tscX" represents
1684  * RDTSC value.
1685  *
1686  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1687  *
1688  * 1.  read timespec0,tsc0
1689  * 2.					| timespec1 = timespec0 + N
1690  * 					| tsc1 = tsc0 + M
1691  * 3. transition to guest		| transition to guest
1692  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1693  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1694  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1695  *
1696  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1697  *
1698  * 	- ret0 < ret1
1699  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1700  *		...
1701  *	- 0 < N - M => M < N
1702  *
1703  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1704  * always the case (the difference between two distinct xtime instances
1705  * might be smaller then the difference between corresponding TSC reads,
1706  * when updating guest vcpus pvclock areas).
1707  *
1708  * To avoid that problem, do not allow visibility of distinct
1709  * system_timestamp/tsc_timestamp values simultaneously: use a master
1710  * copy of host monotonic time values. Update that master copy
1711  * in lockstep.
1712  *
1713  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1714  *
1715  */
1716 
1717 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1718 {
1719 #ifdef CONFIG_X86_64
1720 	struct kvm_arch *ka = &kvm->arch;
1721 	int vclock_mode;
1722 	bool host_tsc_clocksource, vcpus_matched;
1723 
1724 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1725 			atomic_read(&kvm->online_vcpus));
1726 
1727 	/*
1728 	 * If the host uses TSC clock, then passthrough TSC as stable
1729 	 * to the guest.
1730 	 */
1731 	host_tsc_clocksource = kvm_get_time_and_clockread(
1732 					&ka->master_kernel_ns,
1733 					&ka->master_cycle_now);
1734 
1735 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1736 				&& !backwards_tsc_observed
1737 				&& !ka->boot_vcpu_runs_old_kvmclock;
1738 
1739 	if (ka->use_master_clock)
1740 		atomic_set(&kvm_guest_has_master_clock, 1);
1741 
1742 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1743 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1744 					vcpus_matched);
1745 #endif
1746 }
1747 
1748 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1749 {
1750 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1751 }
1752 
1753 static void kvm_gen_update_masterclock(struct kvm *kvm)
1754 {
1755 #ifdef CONFIG_X86_64
1756 	int i;
1757 	struct kvm_vcpu *vcpu;
1758 	struct kvm_arch *ka = &kvm->arch;
1759 
1760 	spin_lock(&ka->pvclock_gtod_sync_lock);
1761 	kvm_make_mclock_inprogress_request(kvm);
1762 	/* no guest entries from this point */
1763 	pvclock_update_vm_gtod_copy(kvm);
1764 
1765 	kvm_for_each_vcpu(i, vcpu, kvm)
1766 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1767 
1768 	/* guest entries allowed */
1769 	kvm_for_each_vcpu(i, vcpu, kvm)
1770 		clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1771 
1772 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1773 #endif
1774 }
1775 
1776 static u64 __get_kvmclock_ns(struct kvm *kvm)
1777 {
1778 	struct kvm_arch *ka = &kvm->arch;
1779 	struct pvclock_vcpu_time_info hv_clock;
1780 
1781 	spin_lock(&ka->pvclock_gtod_sync_lock);
1782 	if (!ka->use_master_clock) {
1783 		spin_unlock(&ka->pvclock_gtod_sync_lock);
1784 		return ktime_get_boot_ns() + ka->kvmclock_offset;
1785 	}
1786 
1787 	hv_clock.tsc_timestamp = ka->master_cycle_now;
1788 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1789 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1790 
1791 	kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1792 			   &hv_clock.tsc_shift,
1793 			   &hv_clock.tsc_to_system_mul);
1794 	return __pvclock_read_cycles(&hv_clock, rdtsc());
1795 }
1796 
1797 u64 get_kvmclock_ns(struct kvm *kvm)
1798 {
1799 	unsigned long flags;
1800 	s64 ns;
1801 
1802 	local_irq_save(flags);
1803 	ns = __get_kvmclock_ns(kvm);
1804 	local_irq_restore(flags);
1805 
1806 	return ns;
1807 }
1808 
1809 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1810 {
1811 	struct kvm_vcpu_arch *vcpu = &v->arch;
1812 	struct pvclock_vcpu_time_info guest_hv_clock;
1813 
1814 	if (unlikely(kvm_vcpu_read_guest_cached(v, &vcpu->pv_time,
1815 		&guest_hv_clock, sizeof(guest_hv_clock))))
1816 		return;
1817 
1818 	/* This VCPU is paused, but it's legal for a guest to read another
1819 	 * VCPU's kvmclock, so we really have to follow the specification where
1820 	 * it says that version is odd if data is being modified, and even after
1821 	 * it is consistent.
1822 	 *
1823 	 * Version field updates must be kept separate.  This is because
1824 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
1825 	 * writes within a string instruction are weakly ordered.  So there
1826 	 * are three writes overall.
1827 	 *
1828 	 * As a small optimization, only write the version field in the first
1829 	 * and third write.  The vcpu->pv_time cache is still valid, because the
1830 	 * version field is the first in the struct.
1831 	 */
1832 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1833 
1834 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
1835 	kvm_vcpu_write_guest_cached(v, &vcpu->pv_time,
1836 				    &vcpu->hv_clock,
1837 				    sizeof(vcpu->hv_clock.version));
1838 
1839 	smp_wmb();
1840 
1841 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1842 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1843 
1844 	if (vcpu->pvclock_set_guest_stopped_request) {
1845 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1846 		vcpu->pvclock_set_guest_stopped_request = false;
1847 	}
1848 
1849 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1850 
1851 	kvm_vcpu_write_guest_cached(v, &vcpu->pv_time,
1852 				    &vcpu->hv_clock,
1853 				    sizeof(vcpu->hv_clock));
1854 
1855 	smp_wmb();
1856 
1857 	vcpu->hv_clock.version++;
1858 	kvm_vcpu_write_guest_cached(v, &vcpu->pv_time,
1859 				    &vcpu->hv_clock,
1860 				    sizeof(vcpu->hv_clock.version));
1861 }
1862 
1863 static int kvm_guest_time_update(struct kvm_vcpu *v)
1864 {
1865 	unsigned long flags, tgt_tsc_khz;
1866 	struct kvm_vcpu_arch *vcpu = &v->arch;
1867 	struct kvm_arch *ka = &v->kvm->arch;
1868 	s64 kernel_ns;
1869 	u64 tsc_timestamp, host_tsc;
1870 	u8 pvclock_flags;
1871 	bool use_master_clock;
1872 
1873 	kernel_ns = 0;
1874 	host_tsc = 0;
1875 
1876 	/*
1877 	 * If the host uses TSC clock, then passthrough TSC as stable
1878 	 * to the guest.
1879 	 */
1880 	spin_lock(&ka->pvclock_gtod_sync_lock);
1881 	use_master_clock = ka->use_master_clock;
1882 	if (use_master_clock) {
1883 		host_tsc = ka->master_cycle_now;
1884 		kernel_ns = ka->master_kernel_ns;
1885 	}
1886 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1887 
1888 	/* Keep irq disabled to prevent changes to the clock */
1889 	local_irq_save(flags);
1890 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1891 	if (unlikely(tgt_tsc_khz == 0)) {
1892 		local_irq_restore(flags);
1893 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1894 		return 1;
1895 	}
1896 	if (!use_master_clock) {
1897 		host_tsc = rdtsc();
1898 		kernel_ns = ktime_get_boot_ns();
1899 	}
1900 
1901 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1902 
1903 	/*
1904 	 * We may have to catch up the TSC to match elapsed wall clock
1905 	 * time for two reasons, even if kvmclock is used.
1906 	 *   1) CPU could have been running below the maximum TSC rate
1907 	 *   2) Broken TSC compensation resets the base at each VCPU
1908 	 *      entry to avoid unknown leaps of TSC even when running
1909 	 *      again on the same CPU.  This may cause apparent elapsed
1910 	 *      time to disappear, and the guest to stand still or run
1911 	 *	very slowly.
1912 	 */
1913 	if (vcpu->tsc_catchup) {
1914 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1915 		if (tsc > tsc_timestamp) {
1916 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1917 			tsc_timestamp = tsc;
1918 		}
1919 	}
1920 
1921 	local_irq_restore(flags);
1922 
1923 	/* With all the info we got, fill in the values */
1924 
1925 	if (kvm_has_tsc_control)
1926 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1927 
1928 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1929 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1930 				   &vcpu->hv_clock.tsc_shift,
1931 				   &vcpu->hv_clock.tsc_to_system_mul);
1932 		vcpu->hw_tsc_khz = tgt_tsc_khz;
1933 	}
1934 
1935 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1936 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1937 	vcpu->last_guest_tsc = tsc_timestamp;
1938 
1939 	/* If the host uses TSC clocksource, then it is stable */
1940 	pvclock_flags = 0;
1941 	if (use_master_clock)
1942 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1943 
1944 	vcpu->hv_clock.flags = pvclock_flags;
1945 
1946 	if (vcpu->pv_time_enabled)
1947 		kvm_setup_pvclock_page(v);
1948 	if (v == kvm_get_vcpu(v->kvm, 0))
1949 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
1950 	return 0;
1951 }
1952 
1953 /*
1954  * kvmclock updates which are isolated to a given vcpu, such as
1955  * vcpu->cpu migration, should not allow system_timestamp from
1956  * the rest of the vcpus to remain static. Otherwise ntp frequency
1957  * correction applies to one vcpu's system_timestamp but not
1958  * the others.
1959  *
1960  * So in those cases, request a kvmclock update for all vcpus.
1961  * We need to rate-limit these requests though, as they can
1962  * considerably slow guests that have a large number of vcpus.
1963  * The time for a remote vcpu to update its kvmclock is bound
1964  * by the delay we use to rate-limit the updates.
1965  */
1966 
1967 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1968 
1969 static void kvmclock_update_fn(struct work_struct *work)
1970 {
1971 	int i;
1972 	struct delayed_work *dwork = to_delayed_work(work);
1973 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1974 					   kvmclock_update_work);
1975 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1976 	struct kvm_vcpu *vcpu;
1977 
1978 	kvm_for_each_vcpu(i, vcpu, kvm) {
1979 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1980 		kvm_vcpu_kick(vcpu);
1981 	}
1982 }
1983 
1984 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1985 {
1986 	struct kvm *kvm = v->kvm;
1987 
1988 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1989 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1990 					KVMCLOCK_UPDATE_DELAY);
1991 }
1992 
1993 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1994 
1995 static void kvmclock_sync_fn(struct work_struct *work)
1996 {
1997 	struct delayed_work *dwork = to_delayed_work(work);
1998 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1999 					   kvmclock_sync_work);
2000 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2001 
2002 	if (!kvmclock_periodic_sync)
2003 		return;
2004 
2005 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2006 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2007 					KVMCLOCK_SYNC_PERIOD);
2008 }
2009 
2010 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2011 {
2012 	u64 mcg_cap = vcpu->arch.mcg_cap;
2013 	unsigned bank_num = mcg_cap & 0xff;
2014 
2015 	switch (msr) {
2016 	case MSR_IA32_MCG_STATUS:
2017 		vcpu->arch.mcg_status = data;
2018 		break;
2019 	case MSR_IA32_MCG_CTL:
2020 		if (!(mcg_cap & MCG_CTL_P))
2021 			return 1;
2022 		if (data != 0 && data != ~(u64)0)
2023 			return -1;
2024 		vcpu->arch.mcg_ctl = data;
2025 		break;
2026 	default:
2027 		if (msr >= MSR_IA32_MC0_CTL &&
2028 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2029 			u32 offset = msr - MSR_IA32_MC0_CTL;
2030 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2031 			 * some Linux kernels though clear bit 10 in bank 4 to
2032 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2033 			 * this to avoid an uncatched #GP in the guest
2034 			 */
2035 			if ((offset & 0x3) == 0 &&
2036 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
2037 				return -1;
2038 			vcpu->arch.mce_banks[offset] = data;
2039 			break;
2040 		}
2041 		return 1;
2042 	}
2043 	return 0;
2044 }
2045 
2046 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2047 {
2048 	struct kvm *kvm = vcpu->kvm;
2049 	int lm = is_long_mode(vcpu);
2050 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2051 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2052 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2053 		: kvm->arch.xen_hvm_config.blob_size_32;
2054 	u32 page_num = data & ~PAGE_MASK;
2055 	u64 page_addr = data & PAGE_MASK;
2056 	u8 *page;
2057 	int r;
2058 
2059 	r = -E2BIG;
2060 	if (page_num >= blob_size)
2061 		goto out;
2062 	r = -ENOMEM;
2063 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2064 	if (IS_ERR(page)) {
2065 		r = PTR_ERR(page);
2066 		goto out;
2067 	}
2068 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2069 		goto out_free;
2070 	r = 0;
2071 out_free:
2072 	kfree(page);
2073 out:
2074 	return r;
2075 }
2076 
2077 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2078 {
2079 	gpa_t gpa = data & ~0x3f;
2080 
2081 	/* Bits 2:5 are reserved, Should be zero */
2082 	if (data & 0x3c)
2083 		return 1;
2084 
2085 	vcpu->arch.apf.msr_val = data;
2086 
2087 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
2088 		kvm_clear_async_pf_completion_queue(vcpu);
2089 		kvm_async_pf_hash_reset(vcpu);
2090 		return 0;
2091 	}
2092 
2093 	if (kvm_vcpu_gfn_to_hva_cache_init(vcpu, &vcpu->arch.apf.data, gpa,
2094 					sizeof(u32)))
2095 		return 1;
2096 
2097 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2098 	kvm_async_pf_wakeup_all(vcpu);
2099 	return 0;
2100 }
2101 
2102 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2103 {
2104 	vcpu->arch.pv_time_enabled = false;
2105 }
2106 
2107 static void record_steal_time(struct kvm_vcpu *vcpu)
2108 {
2109 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2110 		return;
2111 
2112 	if (unlikely(kvm_vcpu_read_guest_cached(vcpu, &vcpu->arch.st.stime,
2113 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2114 		return;
2115 
2116 	vcpu->arch.st.steal.preempted = 0;
2117 
2118 	if (vcpu->arch.st.steal.version & 1)
2119 		vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2120 
2121 	vcpu->arch.st.steal.version += 1;
2122 
2123 	kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.st.stime,
2124 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2125 
2126 	smp_wmb();
2127 
2128 	vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2129 		vcpu->arch.st.last_steal;
2130 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2131 
2132 	kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.st.stime,
2133 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2134 
2135 	smp_wmb();
2136 
2137 	vcpu->arch.st.steal.version += 1;
2138 
2139 	kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.st.stime,
2140 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2141 }
2142 
2143 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2144 {
2145 	bool pr = false;
2146 	u32 msr = msr_info->index;
2147 	u64 data = msr_info->data;
2148 
2149 	switch (msr) {
2150 	case MSR_AMD64_NB_CFG:
2151 	case MSR_IA32_UCODE_REV:
2152 	case MSR_IA32_UCODE_WRITE:
2153 	case MSR_VM_HSAVE_PA:
2154 	case MSR_AMD64_PATCH_LOADER:
2155 	case MSR_AMD64_BU_CFG2:
2156 		break;
2157 
2158 	case MSR_EFER:
2159 		return set_efer(vcpu, data);
2160 	case MSR_K7_HWCR:
2161 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2162 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2163 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2164 		data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2165 		if (data != 0) {
2166 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2167 				    data);
2168 			return 1;
2169 		}
2170 		break;
2171 	case MSR_FAM10H_MMIO_CONF_BASE:
2172 		if (data != 0) {
2173 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2174 				    "0x%llx\n", data);
2175 			return 1;
2176 		}
2177 		break;
2178 	case MSR_IA32_DEBUGCTLMSR:
2179 		if (!data) {
2180 			/* We support the non-activated case already */
2181 			break;
2182 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2183 			/* Values other than LBR and BTF are vendor-specific,
2184 			   thus reserved and should throw a #GP */
2185 			return 1;
2186 		}
2187 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2188 			    __func__, data);
2189 		break;
2190 	case 0x200 ... 0x2ff:
2191 		return kvm_mtrr_set_msr(vcpu, msr, data);
2192 	case MSR_IA32_APICBASE:
2193 		return kvm_set_apic_base(vcpu, msr_info);
2194 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2195 		return kvm_x2apic_msr_write(vcpu, msr, data);
2196 	case MSR_IA32_TSCDEADLINE:
2197 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2198 		break;
2199 	case MSR_IA32_TSC_ADJUST:
2200 		if (guest_cpuid_has_tsc_adjust(vcpu)) {
2201 			if (!msr_info->host_initiated) {
2202 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2203 				adjust_tsc_offset_guest(vcpu, adj);
2204 			}
2205 			vcpu->arch.ia32_tsc_adjust_msr = data;
2206 		}
2207 		break;
2208 	case MSR_IA32_MISC_ENABLE:
2209 		vcpu->arch.ia32_misc_enable_msr = data;
2210 		break;
2211 	case MSR_IA32_SMBASE:
2212 		if (!msr_info->host_initiated)
2213 			return 1;
2214 		vcpu->arch.smbase = data;
2215 		break;
2216 	case MSR_KVM_WALL_CLOCK_NEW:
2217 	case MSR_KVM_WALL_CLOCK:
2218 		vcpu->kvm->arch.wall_clock = data;
2219 		kvm_write_wall_clock(vcpu->kvm, data);
2220 		break;
2221 	case MSR_KVM_SYSTEM_TIME_NEW:
2222 	case MSR_KVM_SYSTEM_TIME: {
2223 		struct kvm_arch *ka = &vcpu->kvm->arch;
2224 
2225 		kvmclock_reset(vcpu);
2226 
2227 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2228 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2229 
2230 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2231 				set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2232 					&vcpu->requests);
2233 
2234 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2235 		}
2236 
2237 		vcpu->arch.time = data;
2238 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2239 
2240 		/* we verify if the enable bit is set... */
2241 		if (!(data & 1))
2242 			break;
2243 
2244 		if (kvm_vcpu_gfn_to_hva_cache_init(vcpu,
2245 		     &vcpu->arch.pv_time, data & ~1ULL,
2246 		     sizeof(struct pvclock_vcpu_time_info)))
2247 			vcpu->arch.pv_time_enabled = false;
2248 		else
2249 			vcpu->arch.pv_time_enabled = true;
2250 
2251 		break;
2252 	}
2253 	case MSR_KVM_ASYNC_PF_EN:
2254 		if (kvm_pv_enable_async_pf(vcpu, data))
2255 			return 1;
2256 		break;
2257 	case MSR_KVM_STEAL_TIME:
2258 
2259 		if (unlikely(!sched_info_on()))
2260 			return 1;
2261 
2262 		if (data & KVM_STEAL_RESERVED_MASK)
2263 			return 1;
2264 
2265 		if (kvm_vcpu_gfn_to_hva_cache_init(vcpu, &vcpu->arch.st.stime,
2266 						data & KVM_STEAL_VALID_BITS,
2267 						sizeof(struct kvm_steal_time)))
2268 			return 1;
2269 
2270 		vcpu->arch.st.msr_val = data;
2271 
2272 		if (!(data & KVM_MSR_ENABLED))
2273 			break;
2274 
2275 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2276 
2277 		break;
2278 	case MSR_KVM_PV_EOI_EN:
2279 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2280 			return 1;
2281 		break;
2282 
2283 	case MSR_IA32_MCG_CTL:
2284 	case MSR_IA32_MCG_STATUS:
2285 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2286 		return set_msr_mce(vcpu, msr, data);
2287 
2288 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2289 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2290 		pr = true; /* fall through */
2291 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2292 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2293 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2294 			return kvm_pmu_set_msr(vcpu, msr_info);
2295 
2296 		if (pr || data != 0)
2297 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2298 				    "0x%x data 0x%llx\n", msr, data);
2299 		break;
2300 	case MSR_K7_CLK_CTL:
2301 		/*
2302 		 * Ignore all writes to this no longer documented MSR.
2303 		 * Writes are only relevant for old K7 processors,
2304 		 * all pre-dating SVM, but a recommended workaround from
2305 		 * AMD for these chips. It is possible to specify the
2306 		 * affected processor models on the command line, hence
2307 		 * the need to ignore the workaround.
2308 		 */
2309 		break;
2310 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2311 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2312 	case HV_X64_MSR_CRASH_CTL:
2313 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2314 		return kvm_hv_set_msr_common(vcpu, msr, data,
2315 					     msr_info->host_initiated);
2316 	case MSR_IA32_BBL_CR_CTL3:
2317 		/* Drop writes to this legacy MSR -- see rdmsr
2318 		 * counterpart for further detail.
2319 		 */
2320 		vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data);
2321 		break;
2322 	case MSR_AMD64_OSVW_ID_LENGTH:
2323 		if (!guest_cpuid_has_osvw(vcpu))
2324 			return 1;
2325 		vcpu->arch.osvw.length = data;
2326 		break;
2327 	case MSR_AMD64_OSVW_STATUS:
2328 		if (!guest_cpuid_has_osvw(vcpu))
2329 			return 1;
2330 		vcpu->arch.osvw.status = data;
2331 		break;
2332 	default:
2333 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2334 			return xen_hvm_config(vcpu, data);
2335 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2336 			return kvm_pmu_set_msr(vcpu, msr_info);
2337 		if (!ignore_msrs) {
2338 			vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2339 				    msr, data);
2340 			return 1;
2341 		} else {
2342 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2343 				    msr, data);
2344 			break;
2345 		}
2346 	}
2347 	return 0;
2348 }
2349 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2350 
2351 
2352 /*
2353  * Reads an msr value (of 'msr_index') into 'pdata'.
2354  * Returns 0 on success, non-0 otherwise.
2355  * Assumes vcpu_load() was already called.
2356  */
2357 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2358 {
2359 	return kvm_x86_ops->get_msr(vcpu, msr);
2360 }
2361 EXPORT_SYMBOL_GPL(kvm_get_msr);
2362 
2363 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2364 {
2365 	u64 data;
2366 	u64 mcg_cap = vcpu->arch.mcg_cap;
2367 	unsigned bank_num = mcg_cap & 0xff;
2368 
2369 	switch (msr) {
2370 	case MSR_IA32_P5_MC_ADDR:
2371 	case MSR_IA32_P5_MC_TYPE:
2372 		data = 0;
2373 		break;
2374 	case MSR_IA32_MCG_CAP:
2375 		data = vcpu->arch.mcg_cap;
2376 		break;
2377 	case MSR_IA32_MCG_CTL:
2378 		if (!(mcg_cap & MCG_CTL_P))
2379 			return 1;
2380 		data = vcpu->arch.mcg_ctl;
2381 		break;
2382 	case MSR_IA32_MCG_STATUS:
2383 		data = vcpu->arch.mcg_status;
2384 		break;
2385 	default:
2386 		if (msr >= MSR_IA32_MC0_CTL &&
2387 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2388 			u32 offset = msr - MSR_IA32_MC0_CTL;
2389 			data = vcpu->arch.mce_banks[offset];
2390 			break;
2391 		}
2392 		return 1;
2393 	}
2394 	*pdata = data;
2395 	return 0;
2396 }
2397 
2398 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2399 {
2400 	switch (msr_info->index) {
2401 	case MSR_IA32_PLATFORM_ID:
2402 	case MSR_IA32_EBL_CR_POWERON:
2403 	case MSR_IA32_DEBUGCTLMSR:
2404 	case MSR_IA32_LASTBRANCHFROMIP:
2405 	case MSR_IA32_LASTBRANCHTOIP:
2406 	case MSR_IA32_LASTINTFROMIP:
2407 	case MSR_IA32_LASTINTTOIP:
2408 	case MSR_K8_SYSCFG:
2409 	case MSR_K8_TSEG_ADDR:
2410 	case MSR_K8_TSEG_MASK:
2411 	case MSR_K7_HWCR:
2412 	case MSR_VM_HSAVE_PA:
2413 	case MSR_K8_INT_PENDING_MSG:
2414 	case MSR_AMD64_NB_CFG:
2415 	case MSR_FAM10H_MMIO_CONF_BASE:
2416 	case MSR_AMD64_BU_CFG2:
2417 	case MSR_IA32_PERF_CTL:
2418 		msr_info->data = 0;
2419 		break;
2420 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2421 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2422 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2423 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2424 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2425 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2426 		msr_info->data = 0;
2427 		break;
2428 	case MSR_IA32_UCODE_REV:
2429 		msr_info->data = 0x100000000ULL;
2430 		break;
2431 	case MSR_MTRRcap:
2432 	case 0x200 ... 0x2ff:
2433 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2434 	case 0xcd: /* fsb frequency */
2435 		msr_info->data = 3;
2436 		break;
2437 		/*
2438 		 * MSR_EBC_FREQUENCY_ID
2439 		 * Conservative value valid for even the basic CPU models.
2440 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2441 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2442 		 * and 266MHz for model 3, or 4. Set Core Clock
2443 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2444 		 * 31:24) even though these are only valid for CPU
2445 		 * models > 2, however guests may end up dividing or
2446 		 * multiplying by zero otherwise.
2447 		 */
2448 	case MSR_EBC_FREQUENCY_ID:
2449 		msr_info->data = 1 << 24;
2450 		break;
2451 	case MSR_IA32_APICBASE:
2452 		msr_info->data = kvm_get_apic_base(vcpu);
2453 		break;
2454 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2455 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2456 		break;
2457 	case MSR_IA32_TSCDEADLINE:
2458 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2459 		break;
2460 	case MSR_IA32_TSC_ADJUST:
2461 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2462 		break;
2463 	case MSR_IA32_MISC_ENABLE:
2464 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2465 		break;
2466 	case MSR_IA32_SMBASE:
2467 		if (!msr_info->host_initiated)
2468 			return 1;
2469 		msr_info->data = vcpu->arch.smbase;
2470 		break;
2471 	case MSR_IA32_PERF_STATUS:
2472 		/* TSC increment by tick */
2473 		msr_info->data = 1000ULL;
2474 		/* CPU multiplier */
2475 		msr_info->data |= (((uint64_t)4ULL) << 40);
2476 		break;
2477 	case MSR_EFER:
2478 		msr_info->data = vcpu->arch.efer;
2479 		break;
2480 	case MSR_KVM_WALL_CLOCK:
2481 	case MSR_KVM_WALL_CLOCK_NEW:
2482 		msr_info->data = vcpu->kvm->arch.wall_clock;
2483 		break;
2484 	case MSR_KVM_SYSTEM_TIME:
2485 	case MSR_KVM_SYSTEM_TIME_NEW:
2486 		msr_info->data = vcpu->arch.time;
2487 		break;
2488 	case MSR_KVM_ASYNC_PF_EN:
2489 		msr_info->data = vcpu->arch.apf.msr_val;
2490 		break;
2491 	case MSR_KVM_STEAL_TIME:
2492 		msr_info->data = vcpu->arch.st.msr_val;
2493 		break;
2494 	case MSR_KVM_PV_EOI_EN:
2495 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
2496 		break;
2497 	case MSR_IA32_P5_MC_ADDR:
2498 	case MSR_IA32_P5_MC_TYPE:
2499 	case MSR_IA32_MCG_CAP:
2500 	case MSR_IA32_MCG_CTL:
2501 	case MSR_IA32_MCG_STATUS:
2502 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2503 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2504 	case MSR_K7_CLK_CTL:
2505 		/*
2506 		 * Provide expected ramp-up count for K7. All other
2507 		 * are set to zero, indicating minimum divisors for
2508 		 * every field.
2509 		 *
2510 		 * This prevents guest kernels on AMD host with CPU
2511 		 * type 6, model 8 and higher from exploding due to
2512 		 * the rdmsr failing.
2513 		 */
2514 		msr_info->data = 0x20000000;
2515 		break;
2516 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2517 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2518 	case HV_X64_MSR_CRASH_CTL:
2519 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2520 		return kvm_hv_get_msr_common(vcpu,
2521 					     msr_info->index, &msr_info->data);
2522 		break;
2523 	case MSR_IA32_BBL_CR_CTL3:
2524 		/* This legacy MSR exists but isn't fully documented in current
2525 		 * silicon.  It is however accessed by winxp in very narrow
2526 		 * scenarios where it sets bit #19, itself documented as
2527 		 * a "reserved" bit.  Best effort attempt to source coherent
2528 		 * read data here should the balance of the register be
2529 		 * interpreted by the guest:
2530 		 *
2531 		 * L2 cache control register 3: 64GB range, 256KB size,
2532 		 * enabled, latency 0x1, configured
2533 		 */
2534 		msr_info->data = 0xbe702111;
2535 		break;
2536 	case MSR_AMD64_OSVW_ID_LENGTH:
2537 		if (!guest_cpuid_has_osvw(vcpu))
2538 			return 1;
2539 		msr_info->data = vcpu->arch.osvw.length;
2540 		break;
2541 	case MSR_AMD64_OSVW_STATUS:
2542 		if (!guest_cpuid_has_osvw(vcpu))
2543 			return 1;
2544 		msr_info->data = vcpu->arch.osvw.status;
2545 		break;
2546 	default:
2547 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2548 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2549 		if (!ignore_msrs) {
2550 			vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2551 					       msr_info->index);
2552 			return 1;
2553 		} else {
2554 			vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2555 			msr_info->data = 0;
2556 		}
2557 		break;
2558 	}
2559 	return 0;
2560 }
2561 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2562 
2563 /*
2564  * Read or write a bunch of msrs. All parameters are kernel addresses.
2565  *
2566  * @return number of msrs set successfully.
2567  */
2568 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2569 		    struct kvm_msr_entry *entries,
2570 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2571 				  unsigned index, u64 *data))
2572 {
2573 	int i, idx;
2574 
2575 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2576 	for (i = 0; i < msrs->nmsrs; ++i)
2577 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2578 			break;
2579 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2580 
2581 	return i;
2582 }
2583 
2584 /*
2585  * Read or write a bunch of msrs. Parameters are user addresses.
2586  *
2587  * @return number of msrs set successfully.
2588  */
2589 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2590 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2591 				unsigned index, u64 *data),
2592 		  int writeback)
2593 {
2594 	struct kvm_msrs msrs;
2595 	struct kvm_msr_entry *entries;
2596 	int r, n;
2597 	unsigned size;
2598 
2599 	r = -EFAULT;
2600 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2601 		goto out;
2602 
2603 	r = -E2BIG;
2604 	if (msrs.nmsrs >= MAX_IO_MSRS)
2605 		goto out;
2606 
2607 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2608 	entries = memdup_user(user_msrs->entries, size);
2609 	if (IS_ERR(entries)) {
2610 		r = PTR_ERR(entries);
2611 		goto out;
2612 	}
2613 
2614 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2615 	if (r < 0)
2616 		goto out_free;
2617 
2618 	r = -EFAULT;
2619 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2620 		goto out_free;
2621 
2622 	r = n;
2623 
2624 out_free:
2625 	kfree(entries);
2626 out:
2627 	return r;
2628 }
2629 
2630 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2631 {
2632 	int r;
2633 
2634 	switch (ext) {
2635 	case KVM_CAP_IRQCHIP:
2636 	case KVM_CAP_HLT:
2637 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2638 	case KVM_CAP_SET_TSS_ADDR:
2639 	case KVM_CAP_EXT_CPUID:
2640 	case KVM_CAP_EXT_EMUL_CPUID:
2641 	case KVM_CAP_CLOCKSOURCE:
2642 	case KVM_CAP_PIT:
2643 	case KVM_CAP_NOP_IO_DELAY:
2644 	case KVM_CAP_MP_STATE:
2645 	case KVM_CAP_SYNC_MMU:
2646 	case KVM_CAP_USER_NMI:
2647 	case KVM_CAP_REINJECT_CONTROL:
2648 	case KVM_CAP_IRQ_INJECT_STATUS:
2649 	case KVM_CAP_IOEVENTFD:
2650 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
2651 	case KVM_CAP_PIT2:
2652 	case KVM_CAP_PIT_STATE2:
2653 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2654 	case KVM_CAP_XEN_HVM:
2655 	case KVM_CAP_VCPU_EVENTS:
2656 	case KVM_CAP_HYPERV:
2657 	case KVM_CAP_HYPERV_VAPIC:
2658 	case KVM_CAP_HYPERV_SPIN:
2659 	case KVM_CAP_HYPERV_SYNIC:
2660 	case KVM_CAP_PCI_SEGMENT:
2661 	case KVM_CAP_DEBUGREGS:
2662 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2663 	case KVM_CAP_XSAVE:
2664 	case KVM_CAP_ASYNC_PF:
2665 	case KVM_CAP_GET_TSC_KHZ:
2666 	case KVM_CAP_KVMCLOCK_CTRL:
2667 	case KVM_CAP_READONLY_MEM:
2668 	case KVM_CAP_HYPERV_TIME:
2669 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2670 	case KVM_CAP_TSC_DEADLINE_TIMER:
2671 	case KVM_CAP_ENABLE_CAP_VM:
2672 	case KVM_CAP_DISABLE_QUIRKS:
2673 	case KVM_CAP_SET_BOOT_CPU_ID:
2674  	case KVM_CAP_SPLIT_IRQCHIP:
2675 	case KVM_CAP_IMMEDIATE_EXIT:
2676 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2677 	case KVM_CAP_ASSIGN_DEV_IRQ:
2678 	case KVM_CAP_PCI_2_3:
2679 #endif
2680 		r = 1;
2681 		break;
2682 	case KVM_CAP_ADJUST_CLOCK:
2683 		r = KVM_CLOCK_TSC_STABLE;
2684 		break;
2685 	case KVM_CAP_X86_SMM:
2686 		/* SMBASE is usually relocated above 1M on modern chipsets,
2687 		 * and SMM handlers might indeed rely on 4G segment limits,
2688 		 * so do not report SMM to be available if real mode is
2689 		 * emulated via vm86 mode.  Still, do not go to great lengths
2690 		 * to avoid userspace's usage of the feature, because it is a
2691 		 * fringe case that is not enabled except via specific settings
2692 		 * of the module parameters.
2693 		 */
2694 		r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2695 		break;
2696 	case KVM_CAP_COALESCED_MMIO:
2697 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2698 		break;
2699 	case KVM_CAP_VAPIC:
2700 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2701 		break;
2702 	case KVM_CAP_NR_VCPUS:
2703 		r = KVM_SOFT_MAX_VCPUS;
2704 		break;
2705 	case KVM_CAP_MAX_VCPUS:
2706 		r = KVM_MAX_VCPUS;
2707 		break;
2708 	case KVM_CAP_NR_MEMSLOTS:
2709 		r = KVM_USER_MEM_SLOTS;
2710 		break;
2711 	case KVM_CAP_PV_MMU:	/* obsolete */
2712 		r = 0;
2713 		break;
2714 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2715 	case KVM_CAP_IOMMU:
2716 		r = iommu_present(&pci_bus_type);
2717 		break;
2718 #endif
2719 	case KVM_CAP_MCE:
2720 		r = KVM_MAX_MCE_BANKS;
2721 		break;
2722 	case KVM_CAP_XCRS:
2723 		r = boot_cpu_has(X86_FEATURE_XSAVE);
2724 		break;
2725 	case KVM_CAP_TSC_CONTROL:
2726 		r = kvm_has_tsc_control;
2727 		break;
2728 	case KVM_CAP_X2APIC_API:
2729 		r = KVM_X2APIC_API_VALID_FLAGS;
2730 		break;
2731 	default:
2732 		r = 0;
2733 		break;
2734 	}
2735 	return r;
2736 
2737 }
2738 
2739 long kvm_arch_dev_ioctl(struct file *filp,
2740 			unsigned int ioctl, unsigned long arg)
2741 {
2742 	void __user *argp = (void __user *)arg;
2743 	long r;
2744 
2745 	switch (ioctl) {
2746 	case KVM_GET_MSR_INDEX_LIST: {
2747 		struct kvm_msr_list __user *user_msr_list = argp;
2748 		struct kvm_msr_list msr_list;
2749 		unsigned n;
2750 
2751 		r = -EFAULT;
2752 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2753 			goto out;
2754 		n = msr_list.nmsrs;
2755 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2756 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2757 			goto out;
2758 		r = -E2BIG;
2759 		if (n < msr_list.nmsrs)
2760 			goto out;
2761 		r = -EFAULT;
2762 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2763 				 num_msrs_to_save * sizeof(u32)))
2764 			goto out;
2765 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2766 				 &emulated_msrs,
2767 				 num_emulated_msrs * sizeof(u32)))
2768 			goto out;
2769 		r = 0;
2770 		break;
2771 	}
2772 	case KVM_GET_SUPPORTED_CPUID:
2773 	case KVM_GET_EMULATED_CPUID: {
2774 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2775 		struct kvm_cpuid2 cpuid;
2776 
2777 		r = -EFAULT;
2778 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2779 			goto out;
2780 
2781 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2782 					    ioctl);
2783 		if (r)
2784 			goto out;
2785 
2786 		r = -EFAULT;
2787 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2788 			goto out;
2789 		r = 0;
2790 		break;
2791 	}
2792 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2793 		r = -EFAULT;
2794 		if (copy_to_user(argp, &kvm_mce_cap_supported,
2795 				 sizeof(kvm_mce_cap_supported)))
2796 			goto out;
2797 		r = 0;
2798 		break;
2799 	}
2800 	default:
2801 		r = -EINVAL;
2802 	}
2803 out:
2804 	return r;
2805 }
2806 
2807 static void wbinvd_ipi(void *garbage)
2808 {
2809 	wbinvd();
2810 }
2811 
2812 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2813 {
2814 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2815 }
2816 
2817 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu)
2818 {
2819 	set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests);
2820 }
2821 
2822 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2823 {
2824 	/* Address WBINVD may be executed by guest */
2825 	if (need_emulate_wbinvd(vcpu)) {
2826 		if (kvm_x86_ops->has_wbinvd_exit())
2827 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2828 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2829 			smp_call_function_single(vcpu->cpu,
2830 					wbinvd_ipi, NULL, 1);
2831 	}
2832 
2833 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2834 
2835 	/* Apply any externally detected TSC adjustments (due to suspend) */
2836 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2837 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2838 		vcpu->arch.tsc_offset_adjustment = 0;
2839 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2840 	}
2841 
2842 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2843 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2844 				rdtsc() - vcpu->arch.last_host_tsc;
2845 		if (tsc_delta < 0)
2846 			mark_tsc_unstable("KVM discovered backwards TSC");
2847 
2848 		if (check_tsc_unstable()) {
2849 			u64 offset = kvm_compute_tsc_offset(vcpu,
2850 						vcpu->arch.last_guest_tsc);
2851 			kvm_vcpu_write_tsc_offset(vcpu, offset);
2852 			vcpu->arch.tsc_catchup = 1;
2853 		}
2854 		if (kvm_lapic_hv_timer_in_use(vcpu) &&
2855 				kvm_x86_ops->set_hv_timer(vcpu,
2856 					kvm_get_lapic_target_expiration_tsc(vcpu)))
2857 			kvm_lapic_switch_to_sw_timer(vcpu);
2858 		/*
2859 		 * On a host with synchronized TSC, there is no need to update
2860 		 * kvmclock on vcpu->cpu migration
2861 		 */
2862 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2863 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2864 		if (vcpu->cpu != cpu)
2865 			kvm_migrate_timers(vcpu);
2866 		vcpu->cpu = cpu;
2867 	}
2868 
2869 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2870 }
2871 
2872 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
2873 {
2874 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2875 		return;
2876 
2877 	vcpu->arch.st.steal.preempted = 1;
2878 
2879 	kvm_vcpu_write_guest_offset_cached(vcpu, &vcpu->arch.st.stime,
2880 			&vcpu->arch.st.steal.preempted,
2881 			offsetof(struct kvm_steal_time, preempted),
2882 			sizeof(vcpu->arch.st.steal.preempted));
2883 }
2884 
2885 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2886 {
2887 	int idx;
2888 	/*
2889 	 * Disable page faults because we're in atomic context here.
2890 	 * kvm_write_guest_offset_cached() would call might_fault()
2891 	 * that relies on pagefault_disable() to tell if there's a
2892 	 * bug. NOTE: the write to guest memory may not go through if
2893 	 * during postcopy live migration or if there's heavy guest
2894 	 * paging.
2895 	 */
2896 	pagefault_disable();
2897 	/*
2898 	 * kvm_memslots() will be called by
2899 	 * kvm_write_guest_offset_cached() so take the srcu lock.
2900 	 */
2901 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2902 	kvm_steal_time_set_preempted(vcpu);
2903 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2904 	pagefault_enable();
2905 	kvm_x86_ops->vcpu_put(vcpu);
2906 	kvm_put_guest_fpu(vcpu);
2907 	vcpu->arch.last_host_tsc = rdtsc();
2908 }
2909 
2910 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2911 				    struct kvm_lapic_state *s)
2912 {
2913 	if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
2914 		kvm_x86_ops->sync_pir_to_irr(vcpu);
2915 
2916 	return kvm_apic_get_state(vcpu, s);
2917 }
2918 
2919 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2920 				    struct kvm_lapic_state *s)
2921 {
2922 	int r;
2923 
2924 	r = kvm_apic_set_state(vcpu, s);
2925 	if (r)
2926 		return r;
2927 	update_cr8_intercept(vcpu);
2928 
2929 	return 0;
2930 }
2931 
2932 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2933 {
2934 	return (!lapic_in_kernel(vcpu) ||
2935 		kvm_apic_accept_pic_intr(vcpu));
2936 }
2937 
2938 /*
2939  * if userspace requested an interrupt window, check that the
2940  * interrupt window is open.
2941  *
2942  * No need to exit to userspace if we already have an interrupt queued.
2943  */
2944 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2945 {
2946 	return kvm_arch_interrupt_allowed(vcpu) &&
2947 		!kvm_cpu_has_interrupt(vcpu) &&
2948 		!kvm_event_needs_reinjection(vcpu) &&
2949 		kvm_cpu_accept_dm_intr(vcpu);
2950 }
2951 
2952 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2953 				    struct kvm_interrupt *irq)
2954 {
2955 	if (irq->irq >= KVM_NR_INTERRUPTS)
2956 		return -EINVAL;
2957 
2958 	if (!irqchip_in_kernel(vcpu->kvm)) {
2959 		kvm_queue_interrupt(vcpu, irq->irq, false);
2960 		kvm_make_request(KVM_REQ_EVENT, vcpu);
2961 		return 0;
2962 	}
2963 
2964 	/*
2965 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2966 	 * fail for in-kernel 8259.
2967 	 */
2968 	if (pic_in_kernel(vcpu->kvm))
2969 		return -ENXIO;
2970 
2971 	if (vcpu->arch.pending_external_vector != -1)
2972 		return -EEXIST;
2973 
2974 	vcpu->arch.pending_external_vector = irq->irq;
2975 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2976 	return 0;
2977 }
2978 
2979 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2980 {
2981 	kvm_inject_nmi(vcpu);
2982 
2983 	return 0;
2984 }
2985 
2986 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2987 {
2988 	kvm_make_request(KVM_REQ_SMI, vcpu);
2989 
2990 	return 0;
2991 }
2992 
2993 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2994 					   struct kvm_tpr_access_ctl *tac)
2995 {
2996 	if (tac->flags)
2997 		return -EINVAL;
2998 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
2999 	return 0;
3000 }
3001 
3002 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3003 					u64 mcg_cap)
3004 {
3005 	int r;
3006 	unsigned bank_num = mcg_cap & 0xff, bank;
3007 
3008 	r = -EINVAL;
3009 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3010 		goto out;
3011 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3012 		goto out;
3013 	r = 0;
3014 	vcpu->arch.mcg_cap = mcg_cap;
3015 	/* Init IA32_MCG_CTL to all 1s */
3016 	if (mcg_cap & MCG_CTL_P)
3017 		vcpu->arch.mcg_ctl = ~(u64)0;
3018 	/* Init IA32_MCi_CTL to all 1s */
3019 	for (bank = 0; bank < bank_num; bank++)
3020 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3021 
3022 	if (kvm_x86_ops->setup_mce)
3023 		kvm_x86_ops->setup_mce(vcpu);
3024 out:
3025 	return r;
3026 }
3027 
3028 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3029 				      struct kvm_x86_mce *mce)
3030 {
3031 	u64 mcg_cap = vcpu->arch.mcg_cap;
3032 	unsigned bank_num = mcg_cap & 0xff;
3033 	u64 *banks = vcpu->arch.mce_banks;
3034 
3035 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3036 		return -EINVAL;
3037 	/*
3038 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3039 	 * reporting is disabled
3040 	 */
3041 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3042 	    vcpu->arch.mcg_ctl != ~(u64)0)
3043 		return 0;
3044 	banks += 4 * mce->bank;
3045 	/*
3046 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3047 	 * reporting is disabled for the bank
3048 	 */
3049 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3050 		return 0;
3051 	if (mce->status & MCI_STATUS_UC) {
3052 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3053 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3054 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3055 			return 0;
3056 		}
3057 		if (banks[1] & MCI_STATUS_VAL)
3058 			mce->status |= MCI_STATUS_OVER;
3059 		banks[2] = mce->addr;
3060 		banks[3] = mce->misc;
3061 		vcpu->arch.mcg_status = mce->mcg_status;
3062 		banks[1] = mce->status;
3063 		kvm_queue_exception(vcpu, MC_VECTOR);
3064 	} else if (!(banks[1] & MCI_STATUS_VAL)
3065 		   || !(banks[1] & MCI_STATUS_UC)) {
3066 		if (banks[1] & MCI_STATUS_VAL)
3067 			mce->status |= MCI_STATUS_OVER;
3068 		banks[2] = mce->addr;
3069 		banks[3] = mce->misc;
3070 		banks[1] = mce->status;
3071 	} else
3072 		banks[1] |= MCI_STATUS_OVER;
3073 	return 0;
3074 }
3075 
3076 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3077 					       struct kvm_vcpu_events *events)
3078 {
3079 	process_nmi(vcpu);
3080 	events->exception.injected =
3081 		vcpu->arch.exception.pending &&
3082 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
3083 	events->exception.nr = vcpu->arch.exception.nr;
3084 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3085 	events->exception.pad = 0;
3086 	events->exception.error_code = vcpu->arch.exception.error_code;
3087 
3088 	events->interrupt.injected =
3089 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3090 	events->interrupt.nr = vcpu->arch.interrupt.nr;
3091 	events->interrupt.soft = 0;
3092 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3093 
3094 	events->nmi.injected = vcpu->arch.nmi_injected;
3095 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
3096 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3097 	events->nmi.pad = 0;
3098 
3099 	events->sipi_vector = 0; /* never valid when reporting to user space */
3100 
3101 	events->smi.smm = is_smm(vcpu);
3102 	events->smi.pending = vcpu->arch.smi_pending;
3103 	events->smi.smm_inside_nmi =
3104 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3105 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3106 
3107 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3108 			 | KVM_VCPUEVENT_VALID_SHADOW
3109 			 | KVM_VCPUEVENT_VALID_SMM);
3110 	memset(&events->reserved, 0, sizeof(events->reserved));
3111 }
3112 
3113 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3114 
3115 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3116 					      struct kvm_vcpu_events *events)
3117 {
3118 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3119 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3120 			      | KVM_VCPUEVENT_VALID_SHADOW
3121 			      | KVM_VCPUEVENT_VALID_SMM))
3122 		return -EINVAL;
3123 
3124 	if (events->exception.injected &&
3125 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3126 		return -EINVAL;
3127 
3128 	process_nmi(vcpu);
3129 	vcpu->arch.exception.pending = events->exception.injected;
3130 	vcpu->arch.exception.nr = events->exception.nr;
3131 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3132 	vcpu->arch.exception.error_code = events->exception.error_code;
3133 
3134 	vcpu->arch.interrupt.pending = events->interrupt.injected;
3135 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3136 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3137 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3138 		kvm_x86_ops->set_interrupt_shadow(vcpu,
3139 						  events->interrupt.shadow);
3140 
3141 	vcpu->arch.nmi_injected = events->nmi.injected;
3142 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3143 		vcpu->arch.nmi_pending = events->nmi.pending;
3144 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3145 
3146 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3147 	    lapic_in_kernel(vcpu))
3148 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3149 
3150 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3151 		u32 hflags = vcpu->arch.hflags;
3152 		if (events->smi.smm)
3153 			hflags |= HF_SMM_MASK;
3154 		else
3155 			hflags &= ~HF_SMM_MASK;
3156 		kvm_set_hflags(vcpu, hflags);
3157 
3158 		vcpu->arch.smi_pending = events->smi.pending;
3159 		if (events->smi.smm_inside_nmi)
3160 			vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3161 		else
3162 			vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3163 		if (lapic_in_kernel(vcpu)) {
3164 			if (events->smi.latched_init)
3165 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3166 			else
3167 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3168 		}
3169 	}
3170 
3171 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3172 
3173 	return 0;
3174 }
3175 
3176 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3177 					     struct kvm_debugregs *dbgregs)
3178 {
3179 	unsigned long val;
3180 
3181 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3182 	kvm_get_dr(vcpu, 6, &val);
3183 	dbgregs->dr6 = val;
3184 	dbgregs->dr7 = vcpu->arch.dr7;
3185 	dbgregs->flags = 0;
3186 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3187 }
3188 
3189 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3190 					    struct kvm_debugregs *dbgregs)
3191 {
3192 	if (dbgregs->flags)
3193 		return -EINVAL;
3194 
3195 	if (dbgregs->dr6 & ~0xffffffffull)
3196 		return -EINVAL;
3197 	if (dbgregs->dr7 & ~0xffffffffull)
3198 		return -EINVAL;
3199 
3200 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3201 	kvm_update_dr0123(vcpu);
3202 	vcpu->arch.dr6 = dbgregs->dr6;
3203 	kvm_update_dr6(vcpu);
3204 	vcpu->arch.dr7 = dbgregs->dr7;
3205 	kvm_update_dr7(vcpu);
3206 
3207 	return 0;
3208 }
3209 
3210 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3211 
3212 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3213 {
3214 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3215 	u64 xstate_bv = xsave->header.xfeatures;
3216 	u64 valid;
3217 
3218 	/*
3219 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3220 	 * leaves 0 and 1 in the loop below.
3221 	 */
3222 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3223 
3224 	/* Set XSTATE_BV */
3225 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3226 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3227 
3228 	/*
3229 	 * Copy each region from the possibly compacted offset to the
3230 	 * non-compacted offset.
3231 	 */
3232 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3233 	while (valid) {
3234 		u64 feature = valid & -valid;
3235 		int index = fls64(feature) - 1;
3236 		void *src = get_xsave_addr(xsave, feature);
3237 
3238 		if (src) {
3239 			u32 size, offset, ecx, edx;
3240 			cpuid_count(XSTATE_CPUID, index,
3241 				    &size, &offset, &ecx, &edx);
3242 			memcpy(dest + offset, src, size);
3243 		}
3244 
3245 		valid -= feature;
3246 	}
3247 }
3248 
3249 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3250 {
3251 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3252 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3253 	u64 valid;
3254 
3255 	/*
3256 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3257 	 * leaves 0 and 1 in the loop below.
3258 	 */
3259 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3260 
3261 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3262 	xsave->header.xfeatures = xstate_bv;
3263 	if (boot_cpu_has(X86_FEATURE_XSAVES))
3264 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3265 
3266 	/*
3267 	 * Copy each region from the non-compacted offset to the
3268 	 * possibly compacted offset.
3269 	 */
3270 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3271 	while (valid) {
3272 		u64 feature = valid & -valid;
3273 		int index = fls64(feature) - 1;
3274 		void *dest = get_xsave_addr(xsave, feature);
3275 
3276 		if (dest) {
3277 			u32 size, offset, ecx, edx;
3278 			cpuid_count(XSTATE_CPUID, index,
3279 				    &size, &offset, &ecx, &edx);
3280 			memcpy(dest, src + offset, size);
3281 		}
3282 
3283 		valid -= feature;
3284 	}
3285 }
3286 
3287 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3288 					 struct kvm_xsave *guest_xsave)
3289 {
3290 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3291 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3292 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3293 	} else {
3294 		memcpy(guest_xsave->region,
3295 			&vcpu->arch.guest_fpu.state.fxsave,
3296 			sizeof(struct fxregs_state));
3297 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3298 			XFEATURE_MASK_FPSSE;
3299 	}
3300 }
3301 
3302 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3303 					struct kvm_xsave *guest_xsave)
3304 {
3305 	u64 xstate_bv =
3306 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3307 
3308 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3309 		/*
3310 		 * Here we allow setting states that are not present in
3311 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3312 		 * with old userspace.
3313 		 */
3314 		if (xstate_bv & ~kvm_supported_xcr0())
3315 			return -EINVAL;
3316 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3317 	} else {
3318 		if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3319 			return -EINVAL;
3320 		memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3321 			guest_xsave->region, sizeof(struct fxregs_state));
3322 	}
3323 	return 0;
3324 }
3325 
3326 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3327 					struct kvm_xcrs *guest_xcrs)
3328 {
3329 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3330 		guest_xcrs->nr_xcrs = 0;
3331 		return;
3332 	}
3333 
3334 	guest_xcrs->nr_xcrs = 1;
3335 	guest_xcrs->flags = 0;
3336 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3337 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3338 }
3339 
3340 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3341 				       struct kvm_xcrs *guest_xcrs)
3342 {
3343 	int i, r = 0;
3344 
3345 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
3346 		return -EINVAL;
3347 
3348 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3349 		return -EINVAL;
3350 
3351 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3352 		/* Only support XCR0 currently */
3353 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3354 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3355 				guest_xcrs->xcrs[i].value);
3356 			break;
3357 		}
3358 	if (r)
3359 		r = -EINVAL;
3360 	return r;
3361 }
3362 
3363 /*
3364  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3365  * stopped by the hypervisor.  This function will be called from the host only.
3366  * EINVAL is returned when the host attempts to set the flag for a guest that
3367  * does not support pv clocks.
3368  */
3369 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3370 {
3371 	if (!vcpu->arch.pv_time_enabled)
3372 		return -EINVAL;
3373 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3374 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3375 	return 0;
3376 }
3377 
3378 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3379 				     struct kvm_enable_cap *cap)
3380 {
3381 	if (cap->flags)
3382 		return -EINVAL;
3383 
3384 	switch (cap->cap) {
3385 	case KVM_CAP_HYPERV_SYNIC:
3386 		if (!irqchip_in_kernel(vcpu->kvm))
3387 			return -EINVAL;
3388 		return kvm_hv_activate_synic(vcpu);
3389 	default:
3390 		return -EINVAL;
3391 	}
3392 }
3393 
3394 long kvm_arch_vcpu_ioctl(struct file *filp,
3395 			 unsigned int ioctl, unsigned long arg)
3396 {
3397 	struct kvm_vcpu *vcpu = filp->private_data;
3398 	void __user *argp = (void __user *)arg;
3399 	int r;
3400 	union {
3401 		struct kvm_lapic_state *lapic;
3402 		struct kvm_xsave *xsave;
3403 		struct kvm_xcrs *xcrs;
3404 		void *buffer;
3405 	} u;
3406 
3407 	u.buffer = NULL;
3408 	switch (ioctl) {
3409 	case KVM_GET_LAPIC: {
3410 		r = -EINVAL;
3411 		if (!lapic_in_kernel(vcpu))
3412 			goto out;
3413 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3414 
3415 		r = -ENOMEM;
3416 		if (!u.lapic)
3417 			goto out;
3418 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3419 		if (r)
3420 			goto out;
3421 		r = -EFAULT;
3422 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3423 			goto out;
3424 		r = 0;
3425 		break;
3426 	}
3427 	case KVM_SET_LAPIC: {
3428 		r = -EINVAL;
3429 		if (!lapic_in_kernel(vcpu))
3430 			goto out;
3431 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3432 		if (IS_ERR(u.lapic))
3433 			return PTR_ERR(u.lapic);
3434 
3435 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3436 		break;
3437 	}
3438 	case KVM_INTERRUPT: {
3439 		struct kvm_interrupt irq;
3440 
3441 		r = -EFAULT;
3442 		if (copy_from_user(&irq, argp, sizeof irq))
3443 			goto out;
3444 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3445 		break;
3446 	}
3447 	case KVM_NMI: {
3448 		r = kvm_vcpu_ioctl_nmi(vcpu);
3449 		break;
3450 	}
3451 	case KVM_SMI: {
3452 		r = kvm_vcpu_ioctl_smi(vcpu);
3453 		break;
3454 	}
3455 	case KVM_SET_CPUID: {
3456 		struct kvm_cpuid __user *cpuid_arg = argp;
3457 		struct kvm_cpuid cpuid;
3458 
3459 		r = -EFAULT;
3460 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3461 			goto out;
3462 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3463 		break;
3464 	}
3465 	case KVM_SET_CPUID2: {
3466 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3467 		struct kvm_cpuid2 cpuid;
3468 
3469 		r = -EFAULT;
3470 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3471 			goto out;
3472 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3473 					      cpuid_arg->entries);
3474 		break;
3475 	}
3476 	case KVM_GET_CPUID2: {
3477 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3478 		struct kvm_cpuid2 cpuid;
3479 
3480 		r = -EFAULT;
3481 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3482 			goto out;
3483 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3484 					      cpuid_arg->entries);
3485 		if (r)
3486 			goto out;
3487 		r = -EFAULT;
3488 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3489 			goto out;
3490 		r = 0;
3491 		break;
3492 	}
3493 	case KVM_GET_MSRS:
3494 		r = msr_io(vcpu, argp, do_get_msr, 1);
3495 		break;
3496 	case KVM_SET_MSRS:
3497 		r = msr_io(vcpu, argp, do_set_msr, 0);
3498 		break;
3499 	case KVM_TPR_ACCESS_REPORTING: {
3500 		struct kvm_tpr_access_ctl tac;
3501 
3502 		r = -EFAULT;
3503 		if (copy_from_user(&tac, argp, sizeof tac))
3504 			goto out;
3505 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3506 		if (r)
3507 			goto out;
3508 		r = -EFAULT;
3509 		if (copy_to_user(argp, &tac, sizeof tac))
3510 			goto out;
3511 		r = 0;
3512 		break;
3513 	};
3514 	case KVM_SET_VAPIC_ADDR: {
3515 		struct kvm_vapic_addr va;
3516 		int idx;
3517 
3518 		r = -EINVAL;
3519 		if (!lapic_in_kernel(vcpu))
3520 			goto out;
3521 		r = -EFAULT;
3522 		if (copy_from_user(&va, argp, sizeof va))
3523 			goto out;
3524 		idx = srcu_read_lock(&vcpu->kvm->srcu);
3525 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3526 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3527 		break;
3528 	}
3529 	case KVM_X86_SETUP_MCE: {
3530 		u64 mcg_cap;
3531 
3532 		r = -EFAULT;
3533 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3534 			goto out;
3535 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3536 		break;
3537 	}
3538 	case KVM_X86_SET_MCE: {
3539 		struct kvm_x86_mce mce;
3540 
3541 		r = -EFAULT;
3542 		if (copy_from_user(&mce, argp, sizeof mce))
3543 			goto out;
3544 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3545 		break;
3546 	}
3547 	case KVM_GET_VCPU_EVENTS: {
3548 		struct kvm_vcpu_events events;
3549 
3550 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3551 
3552 		r = -EFAULT;
3553 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3554 			break;
3555 		r = 0;
3556 		break;
3557 	}
3558 	case KVM_SET_VCPU_EVENTS: {
3559 		struct kvm_vcpu_events events;
3560 
3561 		r = -EFAULT;
3562 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3563 			break;
3564 
3565 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3566 		break;
3567 	}
3568 	case KVM_GET_DEBUGREGS: {
3569 		struct kvm_debugregs dbgregs;
3570 
3571 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3572 
3573 		r = -EFAULT;
3574 		if (copy_to_user(argp, &dbgregs,
3575 				 sizeof(struct kvm_debugregs)))
3576 			break;
3577 		r = 0;
3578 		break;
3579 	}
3580 	case KVM_SET_DEBUGREGS: {
3581 		struct kvm_debugregs dbgregs;
3582 
3583 		r = -EFAULT;
3584 		if (copy_from_user(&dbgregs, argp,
3585 				   sizeof(struct kvm_debugregs)))
3586 			break;
3587 
3588 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3589 		break;
3590 	}
3591 	case KVM_GET_XSAVE: {
3592 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3593 		r = -ENOMEM;
3594 		if (!u.xsave)
3595 			break;
3596 
3597 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3598 
3599 		r = -EFAULT;
3600 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3601 			break;
3602 		r = 0;
3603 		break;
3604 	}
3605 	case KVM_SET_XSAVE: {
3606 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3607 		if (IS_ERR(u.xsave))
3608 			return PTR_ERR(u.xsave);
3609 
3610 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3611 		break;
3612 	}
3613 	case KVM_GET_XCRS: {
3614 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3615 		r = -ENOMEM;
3616 		if (!u.xcrs)
3617 			break;
3618 
3619 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3620 
3621 		r = -EFAULT;
3622 		if (copy_to_user(argp, u.xcrs,
3623 				 sizeof(struct kvm_xcrs)))
3624 			break;
3625 		r = 0;
3626 		break;
3627 	}
3628 	case KVM_SET_XCRS: {
3629 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3630 		if (IS_ERR(u.xcrs))
3631 			return PTR_ERR(u.xcrs);
3632 
3633 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3634 		break;
3635 	}
3636 	case KVM_SET_TSC_KHZ: {
3637 		u32 user_tsc_khz;
3638 
3639 		r = -EINVAL;
3640 		user_tsc_khz = (u32)arg;
3641 
3642 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3643 			goto out;
3644 
3645 		if (user_tsc_khz == 0)
3646 			user_tsc_khz = tsc_khz;
3647 
3648 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3649 			r = 0;
3650 
3651 		goto out;
3652 	}
3653 	case KVM_GET_TSC_KHZ: {
3654 		r = vcpu->arch.virtual_tsc_khz;
3655 		goto out;
3656 	}
3657 	case KVM_KVMCLOCK_CTRL: {
3658 		r = kvm_set_guest_paused(vcpu);
3659 		goto out;
3660 	}
3661 	case KVM_ENABLE_CAP: {
3662 		struct kvm_enable_cap cap;
3663 
3664 		r = -EFAULT;
3665 		if (copy_from_user(&cap, argp, sizeof(cap)))
3666 			goto out;
3667 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3668 		break;
3669 	}
3670 	default:
3671 		r = -EINVAL;
3672 	}
3673 out:
3674 	kfree(u.buffer);
3675 	return r;
3676 }
3677 
3678 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3679 {
3680 	return VM_FAULT_SIGBUS;
3681 }
3682 
3683 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3684 {
3685 	int ret;
3686 
3687 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3688 		return -EINVAL;
3689 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3690 	return ret;
3691 }
3692 
3693 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3694 					      u64 ident_addr)
3695 {
3696 	kvm->arch.ept_identity_map_addr = ident_addr;
3697 	return 0;
3698 }
3699 
3700 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3701 					  u32 kvm_nr_mmu_pages)
3702 {
3703 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3704 		return -EINVAL;
3705 
3706 	mutex_lock(&kvm->slots_lock);
3707 
3708 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3709 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3710 
3711 	mutex_unlock(&kvm->slots_lock);
3712 	return 0;
3713 }
3714 
3715 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3716 {
3717 	return kvm->arch.n_max_mmu_pages;
3718 }
3719 
3720 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3721 {
3722 	int r;
3723 
3724 	r = 0;
3725 	switch (chip->chip_id) {
3726 	case KVM_IRQCHIP_PIC_MASTER:
3727 		memcpy(&chip->chip.pic,
3728 			&pic_irqchip(kvm)->pics[0],
3729 			sizeof(struct kvm_pic_state));
3730 		break;
3731 	case KVM_IRQCHIP_PIC_SLAVE:
3732 		memcpy(&chip->chip.pic,
3733 			&pic_irqchip(kvm)->pics[1],
3734 			sizeof(struct kvm_pic_state));
3735 		break;
3736 	case KVM_IRQCHIP_IOAPIC:
3737 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3738 		break;
3739 	default:
3740 		r = -EINVAL;
3741 		break;
3742 	}
3743 	return r;
3744 }
3745 
3746 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3747 {
3748 	int r;
3749 
3750 	r = 0;
3751 	switch (chip->chip_id) {
3752 	case KVM_IRQCHIP_PIC_MASTER:
3753 		spin_lock(&pic_irqchip(kvm)->lock);
3754 		memcpy(&pic_irqchip(kvm)->pics[0],
3755 			&chip->chip.pic,
3756 			sizeof(struct kvm_pic_state));
3757 		spin_unlock(&pic_irqchip(kvm)->lock);
3758 		break;
3759 	case KVM_IRQCHIP_PIC_SLAVE:
3760 		spin_lock(&pic_irqchip(kvm)->lock);
3761 		memcpy(&pic_irqchip(kvm)->pics[1],
3762 			&chip->chip.pic,
3763 			sizeof(struct kvm_pic_state));
3764 		spin_unlock(&pic_irqchip(kvm)->lock);
3765 		break;
3766 	case KVM_IRQCHIP_IOAPIC:
3767 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3768 		break;
3769 	default:
3770 		r = -EINVAL;
3771 		break;
3772 	}
3773 	kvm_pic_update_irq(pic_irqchip(kvm));
3774 	return r;
3775 }
3776 
3777 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3778 {
3779 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3780 
3781 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3782 
3783 	mutex_lock(&kps->lock);
3784 	memcpy(ps, &kps->channels, sizeof(*ps));
3785 	mutex_unlock(&kps->lock);
3786 	return 0;
3787 }
3788 
3789 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3790 {
3791 	int i;
3792 	struct kvm_pit *pit = kvm->arch.vpit;
3793 
3794 	mutex_lock(&pit->pit_state.lock);
3795 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3796 	for (i = 0; i < 3; i++)
3797 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3798 	mutex_unlock(&pit->pit_state.lock);
3799 	return 0;
3800 }
3801 
3802 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3803 {
3804 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3805 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3806 		sizeof(ps->channels));
3807 	ps->flags = kvm->arch.vpit->pit_state.flags;
3808 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3809 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3810 	return 0;
3811 }
3812 
3813 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3814 {
3815 	int start = 0;
3816 	int i;
3817 	u32 prev_legacy, cur_legacy;
3818 	struct kvm_pit *pit = kvm->arch.vpit;
3819 
3820 	mutex_lock(&pit->pit_state.lock);
3821 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3822 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3823 	if (!prev_legacy && cur_legacy)
3824 		start = 1;
3825 	memcpy(&pit->pit_state.channels, &ps->channels,
3826 	       sizeof(pit->pit_state.channels));
3827 	pit->pit_state.flags = ps->flags;
3828 	for (i = 0; i < 3; i++)
3829 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3830 				   start && i == 0);
3831 	mutex_unlock(&pit->pit_state.lock);
3832 	return 0;
3833 }
3834 
3835 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3836 				 struct kvm_reinject_control *control)
3837 {
3838 	struct kvm_pit *pit = kvm->arch.vpit;
3839 
3840 	if (!pit)
3841 		return -ENXIO;
3842 
3843 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
3844 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3845 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3846 	 */
3847 	mutex_lock(&pit->pit_state.lock);
3848 	kvm_pit_set_reinject(pit, control->pit_reinject);
3849 	mutex_unlock(&pit->pit_state.lock);
3850 
3851 	return 0;
3852 }
3853 
3854 /**
3855  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3856  * @kvm: kvm instance
3857  * @log: slot id and address to which we copy the log
3858  *
3859  * Steps 1-4 below provide general overview of dirty page logging. See
3860  * kvm_get_dirty_log_protect() function description for additional details.
3861  *
3862  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3863  * always flush the TLB (step 4) even if previous step failed  and the dirty
3864  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3865  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3866  * writes will be marked dirty for next log read.
3867  *
3868  *   1. Take a snapshot of the bit and clear it if needed.
3869  *   2. Write protect the corresponding page.
3870  *   3. Copy the snapshot to the userspace.
3871  *   4. Flush TLB's if needed.
3872  */
3873 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3874 {
3875 	bool is_dirty = false;
3876 	int r;
3877 
3878 	mutex_lock(&kvm->slots_lock);
3879 
3880 	/*
3881 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3882 	 */
3883 	if (kvm_x86_ops->flush_log_dirty)
3884 		kvm_x86_ops->flush_log_dirty(kvm);
3885 
3886 	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3887 
3888 	/*
3889 	 * All the TLBs can be flushed out of mmu lock, see the comments in
3890 	 * kvm_mmu_slot_remove_write_access().
3891 	 */
3892 	lockdep_assert_held(&kvm->slots_lock);
3893 	if (is_dirty)
3894 		kvm_flush_remote_tlbs(kvm);
3895 
3896 	mutex_unlock(&kvm->slots_lock);
3897 	return r;
3898 }
3899 
3900 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3901 			bool line_status)
3902 {
3903 	if (!irqchip_in_kernel(kvm))
3904 		return -ENXIO;
3905 
3906 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3907 					irq_event->irq, irq_event->level,
3908 					line_status);
3909 	return 0;
3910 }
3911 
3912 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3913 				   struct kvm_enable_cap *cap)
3914 {
3915 	int r;
3916 
3917 	if (cap->flags)
3918 		return -EINVAL;
3919 
3920 	switch (cap->cap) {
3921 	case KVM_CAP_DISABLE_QUIRKS:
3922 		kvm->arch.disabled_quirks = cap->args[0];
3923 		r = 0;
3924 		break;
3925 	case KVM_CAP_SPLIT_IRQCHIP: {
3926 		mutex_lock(&kvm->lock);
3927 		r = -EINVAL;
3928 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3929 			goto split_irqchip_unlock;
3930 		r = -EEXIST;
3931 		if (irqchip_in_kernel(kvm))
3932 			goto split_irqchip_unlock;
3933 		if (kvm->created_vcpus)
3934 			goto split_irqchip_unlock;
3935 		r = kvm_setup_empty_irq_routing(kvm);
3936 		if (r)
3937 			goto split_irqchip_unlock;
3938 		/* Pairs with irqchip_in_kernel. */
3939 		smp_wmb();
3940 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
3941 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3942 		r = 0;
3943 split_irqchip_unlock:
3944 		mutex_unlock(&kvm->lock);
3945 		break;
3946 	}
3947 	case KVM_CAP_X2APIC_API:
3948 		r = -EINVAL;
3949 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
3950 			break;
3951 
3952 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
3953 			kvm->arch.x2apic_format = true;
3954 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
3955 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
3956 
3957 		r = 0;
3958 		break;
3959 	default:
3960 		r = -EINVAL;
3961 		break;
3962 	}
3963 	return r;
3964 }
3965 
3966 long kvm_arch_vm_ioctl(struct file *filp,
3967 		       unsigned int ioctl, unsigned long arg)
3968 {
3969 	struct kvm *kvm = filp->private_data;
3970 	void __user *argp = (void __user *)arg;
3971 	int r = -ENOTTY;
3972 	/*
3973 	 * This union makes it completely explicit to gcc-3.x
3974 	 * that these two variables' stack usage should be
3975 	 * combined, not added together.
3976 	 */
3977 	union {
3978 		struct kvm_pit_state ps;
3979 		struct kvm_pit_state2 ps2;
3980 		struct kvm_pit_config pit_config;
3981 	} u;
3982 
3983 	switch (ioctl) {
3984 	case KVM_SET_TSS_ADDR:
3985 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3986 		break;
3987 	case KVM_SET_IDENTITY_MAP_ADDR: {
3988 		u64 ident_addr;
3989 
3990 		r = -EFAULT;
3991 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3992 			goto out;
3993 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3994 		break;
3995 	}
3996 	case KVM_SET_NR_MMU_PAGES:
3997 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3998 		break;
3999 	case KVM_GET_NR_MMU_PAGES:
4000 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4001 		break;
4002 	case KVM_CREATE_IRQCHIP: {
4003 		mutex_lock(&kvm->lock);
4004 
4005 		r = -EEXIST;
4006 		if (irqchip_in_kernel(kvm))
4007 			goto create_irqchip_unlock;
4008 
4009 		r = -EINVAL;
4010 		if (kvm->created_vcpus)
4011 			goto create_irqchip_unlock;
4012 
4013 		r = kvm_pic_init(kvm);
4014 		if (r)
4015 			goto create_irqchip_unlock;
4016 
4017 		r = kvm_ioapic_init(kvm);
4018 		if (r) {
4019 			mutex_lock(&kvm->slots_lock);
4020 			kvm_pic_destroy(kvm);
4021 			mutex_unlock(&kvm->slots_lock);
4022 			goto create_irqchip_unlock;
4023 		}
4024 
4025 		r = kvm_setup_default_irq_routing(kvm);
4026 		if (r) {
4027 			mutex_lock(&kvm->slots_lock);
4028 			mutex_lock(&kvm->irq_lock);
4029 			kvm_ioapic_destroy(kvm);
4030 			kvm_pic_destroy(kvm);
4031 			mutex_unlock(&kvm->irq_lock);
4032 			mutex_unlock(&kvm->slots_lock);
4033 			goto create_irqchip_unlock;
4034 		}
4035 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4036 		smp_wmb();
4037 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4038 	create_irqchip_unlock:
4039 		mutex_unlock(&kvm->lock);
4040 		break;
4041 	}
4042 	case KVM_CREATE_PIT:
4043 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4044 		goto create_pit;
4045 	case KVM_CREATE_PIT2:
4046 		r = -EFAULT;
4047 		if (copy_from_user(&u.pit_config, argp,
4048 				   sizeof(struct kvm_pit_config)))
4049 			goto out;
4050 	create_pit:
4051 		mutex_lock(&kvm->lock);
4052 		r = -EEXIST;
4053 		if (kvm->arch.vpit)
4054 			goto create_pit_unlock;
4055 		r = -ENOMEM;
4056 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4057 		if (kvm->arch.vpit)
4058 			r = 0;
4059 	create_pit_unlock:
4060 		mutex_unlock(&kvm->lock);
4061 		break;
4062 	case KVM_GET_IRQCHIP: {
4063 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4064 		struct kvm_irqchip *chip;
4065 
4066 		chip = memdup_user(argp, sizeof(*chip));
4067 		if (IS_ERR(chip)) {
4068 			r = PTR_ERR(chip);
4069 			goto out;
4070 		}
4071 
4072 		r = -ENXIO;
4073 		if (!irqchip_kernel(kvm))
4074 			goto get_irqchip_out;
4075 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4076 		if (r)
4077 			goto get_irqchip_out;
4078 		r = -EFAULT;
4079 		if (copy_to_user(argp, chip, sizeof *chip))
4080 			goto get_irqchip_out;
4081 		r = 0;
4082 	get_irqchip_out:
4083 		kfree(chip);
4084 		break;
4085 	}
4086 	case KVM_SET_IRQCHIP: {
4087 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4088 		struct kvm_irqchip *chip;
4089 
4090 		chip = memdup_user(argp, sizeof(*chip));
4091 		if (IS_ERR(chip)) {
4092 			r = PTR_ERR(chip);
4093 			goto out;
4094 		}
4095 
4096 		r = -ENXIO;
4097 		if (!irqchip_kernel(kvm))
4098 			goto set_irqchip_out;
4099 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4100 		if (r)
4101 			goto set_irqchip_out;
4102 		r = 0;
4103 	set_irqchip_out:
4104 		kfree(chip);
4105 		break;
4106 	}
4107 	case KVM_GET_PIT: {
4108 		r = -EFAULT;
4109 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4110 			goto out;
4111 		r = -ENXIO;
4112 		if (!kvm->arch.vpit)
4113 			goto out;
4114 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4115 		if (r)
4116 			goto out;
4117 		r = -EFAULT;
4118 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4119 			goto out;
4120 		r = 0;
4121 		break;
4122 	}
4123 	case KVM_SET_PIT: {
4124 		r = -EFAULT;
4125 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
4126 			goto out;
4127 		r = -ENXIO;
4128 		if (!kvm->arch.vpit)
4129 			goto out;
4130 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4131 		break;
4132 	}
4133 	case KVM_GET_PIT2: {
4134 		r = -ENXIO;
4135 		if (!kvm->arch.vpit)
4136 			goto out;
4137 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4138 		if (r)
4139 			goto out;
4140 		r = -EFAULT;
4141 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4142 			goto out;
4143 		r = 0;
4144 		break;
4145 	}
4146 	case KVM_SET_PIT2: {
4147 		r = -EFAULT;
4148 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4149 			goto out;
4150 		r = -ENXIO;
4151 		if (!kvm->arch.vpit)
4152 			goto out;
4153 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4154 		break;
4155 	}
4156 	case KVM_REINJECT_CONTROL: {
4157 		struct kvm_reinject_control control;
4158 		r =  -EFAULT;
4159 		if (copy_from_user(&control, argp, sizeof(control)))
4160 			goto out;
4161 		r = kvm_vm_ioctl_reinject(kvm, &control);
4162 		break;
4163 	}
4164 	case KVM_SET_BOOT_CPU_ID:
4165 		r = 0;
4166 		mutex_lock(&kvm->lock);
4167 		if (kvm->created_vcpus)
4168 			r = -EBUSY;
4169 		else
4170 			kvm->arch.bsp_vcpu_id = arg;
4171 		mutex_unlock(&kvm->lock);
4172 		break;
4173 	case KVM_XEN_HVM_CONFIG: {
4174 		r = -EFAULT;
4175 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4176 				   sizeof(struct kvm_xen_hvm_config)))
4177 			goto out;
4178 		r = -EINVAL;
4179 		if (kvm->arch.xen_hvm_config.flags)
4180 			goto out;
4181 		r = 0;
4182 		break;
4183 	}
4184 	case KVM_SET_CLOCK: {
4185 		struct kvm_clock_data user_ns;
4186 		u64 now_ns;
4187 
4188 		r = -EFAULT;
4189 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4190 			goto out;
4191 
4192 		r = -EINVAL;
4193 		if (user_ns.flags)
4194 			goto out;
4195 
4196 		r = 0;
4197 		local_irq_disable();
4198 		now_ns = __get_kvmclock_ns(kvm);
4199 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4200 		local_irq_enable();
4201 		kvm_gen_update_masterclock(kvm);
4202 		break;
4203 	}
4204 	case KVM_GET_CLOCK: {
4205 		struct kvm_clock_data user_ns;
4206 		u64 now_ns;
4207 
4208 		local_irq_disable();
4209 		now_ns = __get_kvmclock_ns(kvm);
4210 		user_ns.clock = now_ns;
4211 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4212 		local_irq_enable();
4213 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4214 
4215 		r = -EFAULT;
4216 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4217 			goto out;
4218 		r = 0;
4219 		break;
4220 	}
4221 	case KVM_ENABLE_CAP: {
4222 		struct kvm_enable_cap cap;
4223 
4224 		r = -EFAULT;
4225 		if (copy_from_user(&cap, argp, sizeof(cap)))
4226 			goto out;
4227 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4228 		break;
4229 	}
4230 	default:
4231 		r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4232 	}
4233 out:
4234 	return r;
4235 }
4236 
4237 static void kvm_init_msr_list(void)
4238 {
4239 	u32 dummy[2];
4240 	unsigned i, j;
4241 
4242 	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4243 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4244 			continue;
4245 
4246 		/*
4247 		 * Even MSRs that are valid in the host may not be exposed
4248 		 * to the guests in some cases.
4249 		 */
4250 		switch (msrs_to_save[i]) {
4251 		case MSR_IA32_BNDCFGS:
4252 			if (!kvm_x86_ops->mpx_supported())
4253 				continue;
4254 			break;
4255 		case MSR_TSC_AUX:
4256 			if (!kvm_x86_ops->rdtscp_supported())
4257 				continue;
4258 			break;
4259 		default:
4260 			break;
4261 		}
4262 
4263 		if (j < i)
4264 			msrs_to_save[j] = msrs_to_save[i];
4265 		j++;
4266 	}
4267 	num_msrs_to_save = j;
4268 
4269 	for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4270 		switch (emulated_msrs[i]) {
4271 		case MSR_IA32_SMBASE:
4272 			if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4273 				continue;
4274 			break;
4275 		default:
4276 			break;
4277 		}
4278 
4279 		if (j < i)
4280 			emulated_msrs[j] = emulated_msrs[i];
4281 		j++;
4282 	}
4283 	num_emulated_msrs = j;
4284 }
4285 
4286 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4287 			   const void *v)
4288 {
4289 	int handled = 0;
4290 	int n;
4291 
4292 	do {
4293 		n = min(len, 8);
4294 		if (!(lapic_in_kernel(vcpu) &&
4295 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4296 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4297 			break;
4298 		handled += n;
4299 		addr += n;
4300 		len -= n;
4301 		v += n;
4302 	} while (len);
4303 
4304 	return handled;
4305 }
4306 
4307 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4308 {
4309 	int handled = 0;
4310 	int n;
4311 
4312 	do {
4313 		n = min(len, 8);
4314 		if (!(lapic_in_kernel(vcpu) &&
4315 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4316 					 addr, n, v))
4317 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4318 			break;
4319 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4320 		handled += n;
4321 		addr += n;
4322 		len -= n;
4323 		v += n;
4324 	} while (len);
4325 
4326 	return handled;
4327 }
4328 
4329 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4330 			struct kvm_segment *var, int seg)
4331 {
4332 	kvm_x86_ops->set_segment(vcpu, var, seg);
4333 }
4334 
4335 void kvm_get_segment(struct kvm_vcpu *vcpu,
4336 		     struct kvm_segment *var, int seg)
4337 {
4338 	kvm_x86_ops->get_segment(vcpu, var, seg);
4339 }
4340 
4341 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4342 			   struct x86_exception *exception)
4343 {
4344 	gpa_t t_gpa;
4345 
4346 	BUG_ON(!mmu_is_nested(vcpu));
4347 
4348 	/* NPT walks are always user-walks */
4349 	access |= PFERR_USER_MASK;
4350 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4351 
4352 	return t_gpa;
4353 }
4354 
4355 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4356 			      struct x86_exception *exception)
4357 {
4358 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4359 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4360 }
4361 
4362  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4363 				struct x86_exception *exception)
4364 {
4365 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4366 	access |= PFERR_FETCH_MASK;
4367 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4368 }
4369 
4370 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4371 			       struct x86_exception *exception)
4372 {
4373 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4374 	access |= PFERR_WRITE_MASK;
4375 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4376 }
4377 
4378 /* uses this to access any guest's mapped memory without checking CPL */
4379 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4380 				struct x86_exception *exception)
4381 {
4382 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4383 }
4384 
4385 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4386 				      struct kvm_vcpu *vcpu, u32 access,
4387 				      struct x86_exception *exception)
4388 {
4389 	void *data = val;
4390 	int r = X86EMUL_CONTINUE;
4391 
4392 	while (bytes) {
4393 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4394 							    exception);
4395 		unsigned offset = addr & (PAGE_SIZE-1);
4396 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4397 		int ret;
4398 
4399 		if (gpa == UNMAPPED_GVA)
4400 			return X86EMUL_PROPAGATE_FAULT;
4401 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4402 					       offset, toread);
4403 		if (ret < 0) {
4404 			r = X86EMUL_IO_NEEDED;
4405 			goto out;
4406 		}
4407 
4408 		bytes -= toread;
4409 		data += toread;
4410 		addr += toread;
4411 	}
4412 out:
4413 	return r;
4414 }
4415 
4416 /* used for instruction fetching */
4417 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4418 				gva_t addr, void *val, unsigned int bytes,
4419 				struct x86_exception *exception)
4420 {
4421 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4422 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4423 	unsigned offset;
4424 	int ret;
4425 
4426 	/* Inline kvm_read_guest_virt_helper for speed.  */
4427 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4428 						    exception);
4429 	if (unlikely(gpa == UNMAPPED_GVA))
4430 		return X86EMUL_PROPAGATE_FAULT;
4431 
4432 	offset = addr & (PAGE_SIZE-1);
4433 	if (WARN_ON(offset + bytes > PAGE_SIZE))
4434 		bytes = (unsigned)PAGE_SIZE - offset;
4435 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4436 				       offset, bytes);
4437 	if (unlikely(ret < 0))
4438 		return X86EMUL_IO_NEEDED;
4439 
4440 	return X86EMUL_CONTINUE;
4441 }
4442 
4443 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4444 			       gva_t addr, void *val, unsigned int bytes,
4445 			       struct x86_exception *exception)
4446 {
4447 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4448 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4449 
4450 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4451 					  exception);
4452 }
4453 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4454 
4455 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4456 				      gva_t addr, void *val, unsigned int bytes,
4457 				      struct x86_exception *exception)
4458 {
4459 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4460 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4461 }
4462 
4463 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4464 		unsigned long addr, void *val, unsigned int bytes)
4465 {
4466 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4467 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4468 
4469 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4470 }
4471 
4472 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4473 				       gva_t addr, void *val,
4474 				       unsigned int bytes,
4475 				       struct x86_exception *exception)
4476 {
4477 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4478 	void *data = val;
4479 	int r = X86EMUL_CONTINUE;
4480 
4481 	while (bytes) {
4482 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4483 							     PFERR_WRITE_MASK,
4484 							     exception);
4485 		unsigned offset = addr & (PAGE_SIZE-1);
4486 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4487 		int ret;
4488 
4489 		if (gpa == UNMAPPED_GVA)
4490 			return X86EMUL_PROPAGATE_FAULT;
4491 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4492 		if (ret < 0) {
4493 			r = X86EMUL_IO_NEEDED;
4494 			goto out;
4495 		}
4496 
4497 		bytes -= towrite;
4498 		data += towrite;
4499 		addr += towrite;
4500 	}
4501 out:
4502 	return r;
4503 }
4504 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4505 
4506 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4507 			    gpa_t gpa, bool write)
4508 {
4509 	/* For APIC access vmexit */
4510 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4511 		return 1;
4512 
4513 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4514 		trace_vcpu_match_mmio(gva, gpa, write, true);
4515 		return 1;
4516 	}
4517 
4518 	return 0;
4519 }
4520 
4521 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4522 				gpa_t *gpa, struct x86_exception *exception,
4523 				bool write)
4524 {
4525 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4526 		| (write ? PFERR_WRITE_MASK : 0);
4527 
4528 	/*
4529 	 * currently PKRU is only applied to ept enabled guest so
4530 	 * there is no pkey in EPT page table for L1 guest or EPT
4531 	 * shadow page table for L2 guest.
4532 	 */
4533 	if (vcpu_match_mmio_gva(vcpu, gva)
4534 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4535 				 vcpu->arch.access, 0, access)) {
4536 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4537 					(gva & (PAGE_SIZE - 1));
4538 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4539 		return 1;
4540 	}
4541 
4542 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4543 
4544 	if (*gpa == UNMAPPED_GVA)
4545 		return -1;
4546 
4547 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4548 }
4549 
4550 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4551 			const void *val, int bytes)
4552 {
4553 	int ret;
4554 
4555 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4556 	if (ret < 0)
4557 		return 0;
4558 	kvm_page_track_write(vcpu, gpa, val, bytes);
4559 	return 1;
4560 }
4561 
4562 struct read_write_emulator_ops {
4563 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4564 				  int bytes);
4565 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4566 				  void *val, int bytes);
4567 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4568 			       int bytes, void *val);
4569 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4570 				    void *val, int bytes);
4571 	bool write;
4572 };
4573 
4574 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4575 {
4576 	if (vcpu->mmio_read_completed) {
4577 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4578 			       vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4579 		vcpu->mmio_read_completed = 0;
4580 		return 1;
4581 	}
4582 
4583 	return 0;
4584 }
4585 
4586 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4587 			void *val, int bytes)
4588 {
4589 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4590 }
4591 
4592 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4593 			 void *val, int bytes)
4594 {
4595 	return emulator_write_phys(vcpu, gpa, val, bytes);
4596 }
4597 
4598 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4599 {
4600 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4601 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4602 }
4603 
4604 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4605 			  void *val, int bytes)
4606 {
4607 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4608 	return X86EMUL_IO_NEEDED;
4609 }
4610 
4611 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4612 			   void *val, int bytes)
4613 {
4614 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4615 
4616 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4617 	return X86EMUL_CONTINUE;
4618 }
4619 
4620 static const struct read_write_emulator_ops read_emultor = {
4621 	.read_write_prepare = read_prepare,
4622 	.read_write_emulate = read_emulate,
4623 	.read_write_mmio = vcpu_mmio_read,
4624 	.read_write_exit_mmio = read_exit_mmio,
4625 };
4626 
4627 static const struct read_write_emulator_ops write_emultor = {
4628 	.read_write_emulate = write_emulate,
4629 	.read_write_mmio = write_mmio,
4630 	.read_write_exit_mmio = write_exit_mmio,
4631 	.write = true,
4632 };
4633 
4634 static int emulator_read_write_onepage(unsigned long addr, void *val,
4635 				       unsigned int bytes,
4636 				       struct x86_exception *exception,
4637 				       struct kvm_vcpu *vcpu,
4638 				       const struct read_write_emulator_ops *ops)
4639 {
4640 	gpa_t gpa;
4641 	int handled, ret;
4642 	bool write = ops->write;
4643 	struct kvm_mmio_fragment *frag;
4644 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4645 
4646 	/*
4647 	 * If the exit was due to a NPF we may already have a GPA.
4648 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
4649 	 * Note, this cannot be used on string operations since string
4650 	 * operation using rep will only have the initial GPA from the NPF
4651 	 * occurred.
4652 	 */
4653 	if (vcpu->arch.gpa_available &&
4654 	    emulator_can_use_gpa(ctxt) &&
4655 	    vcpu_is_mmio_gpa(vcpu, addr, exception->address, write) &&
4656 	    (addr & ~PAGE_MASK) == (exception->address & ~PAGE_MASK)) {
4657 		gpa = exception->address;
4658 		goto mmio;
4659 	}
4660 
4661 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4662 
4663 	if (ret < 0)
4664 		return X86EMUL_PROPAGATE_FAULT;
4665 
4666 	/* For APIC access vmexit */
4667 	if (ret)
4668 		goto mmio;
4669 
4670 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4671 		return X86EMUL_CONTINUE;
4672 
4673 mmio:
4674 	/*
4675 	 * Is this MMIO handled locally?
4676 	 */
4677 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4678 	if (handled == bytes)
4679 		return X86EMUL_CONTINUE;
4680 
4681 	gpa += handled;
4682 	bytes -= handled;
4683 	val += handled;
4684 
4685 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4686 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4687 	frag->gpa = gpa;
4688 	frag->data = val;
4689 	frag->len = bytes;
4690 	return X86EMUL_CONTINUE;
4691 }
4692 
4693 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4694 			unsigned long addr,
4695 			void *val, unsigned int bytes,
4696 			struct x86_exception *exception,
4697 			const struct read_write_emulator_ops *ops)
4698 {
4699 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4700 	gpa_t gpa;
4701 	int rc;
4702 
4703 	if (ops->read_write_prepare &&
4704 		  ops->read_write_prepare(vcpu, val, bytes))
4705 		return X86EMUL_CONTINUE;
4706 
4707 	vcpu->mmio_nr_fragments = 0;
4708 
4709 	/* Crossing a page boundary? */
4710 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4711 		int now;
4712 
4713 		now = -addr & ~PAGE_MASK;
4714 		rc = emulator_read_write_onepage(addr, val, now, exception,
4715 						 vcpu, ops);
4716 
4717 		if (rc != X86EMUL_CONTINUE)
4718 			return rc;
4719 		addr += now;
4720 		if (ctxt->mode != X86EMUL_MODE_PROT64)
4721 			addr = (u32)addr;
4722 		val += now;
4723 		bytes -= now;
4724 	}
4725 
4726 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
4727 					 vcpu, ops);
4728 	if (rc != X86EMUL_CONTINUE)
4729 		return rc;
4730 
4731 	if (!vcpu->mmio_nr_fragments)
4732 		return rc;
4733 
4734 	gpa = vcpu->mmio_fragments[0].gpa;
4735 
4736 	vcpu->mmio_needed = 1;
4737 	vcpu->mmio_cur_fragment = 0;
4738 
4739 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4740 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4741 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
4742 	vcpu->run->mmio.phys_addr = gpa;
4743 
4744 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4745 }
4746 
4747 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4748 				  unsigned long addr,
4749 				  void *val,
4750 				  unsigned int bytes,
4751 				  struct x86_exception *exception)
4752 {
4753 	return emulator_read_write(ctxt, addr, val, bytes,
4754 				   exception, &read_emultor);
4755 }
4756 
4757 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4758 			    unsigned long addr,
4759 			    const void *val,
4760 			    unsigned int bytes,
4761 			    struct x86_exception *exception)
4762 {
4763 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
4764 				   exception, &write_emultor);
4765 }
4766 
4767 #define CMPXCHG_TYPE(t, ptr, old, new) \
4768 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4769 
4770 #ifdef CONFIG_X86_64
4771 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4772 #else
4773 #  define CMPXCHG64(ptr, old, new) \
4774 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4775 #endif
4776 
4777 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4778 				     unsigned long addr,
4779 				     const void *old,
4780 				     const void *new,
4781 				     unsigned int bytes,
4782 				     struct x86_exception *exception)
4783 {
4784 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4785 	gpa_t gpa;
4786 	struct page *page;
4787 	char *kaddr;
4788 	bool exchanged;
4789 
4790 	/* guests cmpxchg8b have to be emulated atomically */
4791 	if (bytes > 8 || (bytes & (bytes - 1)))
4792 		goto emul_write;
4793 
4794 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4795 
4796 	if (gpa == UNMAPPED_GVA ||
4797 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4798 		goto emul_write;
4799 
4800 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4801 		goto emul_write;
4802 
4803 	page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4804 	if (is_error_page(page))
4805 		goto emul_write;
4806 
4807 	kaddr = kmap_atomic(page);
4808 	kaddr += offset_in_page(gpa);
4809 	switch (bytes) {
4810 	case 1:
4811 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4812 		break;
4813 	case 2:
4814 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4815 		break;
4816 	case 4:
4817 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4818 		break;
4819 	case 8:
4820 		exchanged = CMPXCHG64(kaddr, old, new);
4821 		break;
4822 	default:
4823 		BUG();
4824 	}
4825 	kunmap_atomic(kaddr);
4826 	kvm_release_page_dirty(page);
4827 
4828 	if (!exchanged)
4829 		return X86EMUL_CMPXCHG_FAILED;
4830 
4831 	kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4832 	kvm_page_track_write(vcpu, gpa, new, bytes);
4833 
4834 	return X86EMUL_CONTINUE;
4835 
4836 emul_write:
4837 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4838 
4839 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4840 }
4841 
4842 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4843 {
4844 	/* TODO: String I/O for in kernel device */
4845 	int r;
4846 
4847 	if (vcpu->arch.pio.in)
4848 		r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4849 				    vcpu->arch.pio.size, pd);
4850 	else
4851 		r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4852 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
4853 				     pd);
4854 	return r;
4855 }
4856 
4857 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4858 			       unsigned short port, void *val,
4859 			       unsigned int count, bool in)
4860 {
4861 	vcpu->arch.pio.port = port;
4862 	vcpu->arch.pio.in = in;
4863 	vcpu->arch.pio.count  = count;
4864 	vcpu->arch.pio.size = size;
4865 
4866 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4867 		vcpu->arch.pio.count = 0;
4868 		return 1;
4869 	}
4870 
4871 	vcpu->run->exit_reason = KVM_EXIT_IO;
4872 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4873 	vcpu->run->io.size = size;
4874 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4875 	vcpu->run->io.count = count;
4876 	vcpu->run->io.port = port;
4877 
4878 	return 0;
4879 }
4880 
4881 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4882 				    int size, unsigned short port, void *val,
4883 				    unsigned int count)
4884 {
4885 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4886 	int ret;
4887 
4888 	if (vcpu->arch.pio.count)
4889 		goto data_avail;
4890 
4891 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4892 	if (ret) {
4893 data_avail:
4894 		memcpy(val, vcpu->arch.pio_data, size * count);
4895 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4896 		vcpu->arch.pio.count = 0;
4897 		return 1;
4898 	}
4899 
4900 	return 0;
4901 }
4902 
4903 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4904 				     int size, unsigned short port,
4905 				     const void *val, unsigned int count)
4906 {
4907 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4908 
4909 	memcpy(vcpu->arch.pio_data, val, size * count);
4910 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4911 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4912 }
4913 
4914 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4915 {
4916 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4917 }
4918 
4919 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4920 {
4921 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4922 }
4923 
4924 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4925 {
4926 	if (!need_emulate_wbinvd(vcpu))
4927 		return X86EMUL_CONTINUE;
4928 
4929 	if (kvm_x86_ops->has_wbinvd_exit()) {
4930 		int cpu = get_cpu();
4931 
4932 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4933 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4934 				wbinvd_ipi, NULL, 1);
4935 		put_cpu();
4936 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4937 	} else
4938 		wbinvd();
4939 	return X86EMUL_CONTINUE;
4940 }
4941 
4942 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4943 {
4944 	kvm_emulate_wbinvd_noskip(vcpu);
4945 	return kvm_skip_emulated_instruction(vcpu);
4946 }
4947 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4948 
4949 
4950 
4951 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4952 {
4953 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4954 }
4955 
4956 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4957 			   unsigned long *dest)
4958 {
4959 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4960 }
4961 
4962 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4963 			   unsigned long value)
4964 {
4965 
4966 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4967 }
4968 
4969 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4970 {
4971 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4972 }
4973 
4974 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4975 {
4976 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4977 	unsigned long value;
4978 
4979 	switch (cr) {
4980 	case 0:
4981 		value = kvm_read_cr0(vcpu);
4982 		break;
4983 	case 2:
4984 		value = vcpu->arch.cr2;
4985 		break;
4986 	case 3:
4987 		value = kvm_read_cr3(vcpu);
4988 		break;
4989 	case 4:
4990 		value = kvm_read_cr4(vcpu);
4991 		break;
4992 	case 8:
4993 		value = kvm_get_cr8(vcpu);
4994 		break;
4995 	default:
4996 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4997 		return 0;
4998 	}
4999 
5000 	return value;
5001 }
5002 
5003 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5004 {
5005 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5006 	int res = 0;
5007 
5008 	switch (cr) {
5009 	case 0:
5010 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5011 		break;
5012 	case 2:
5013 		vcpu->arch.cr2 = val;
5014 		break;
5015 	case 3:
5016 		res = kvm_set_cr3(vcpu, val);
5017 		break;
5018 	case 4:
5019 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5020 		break;
5021 	case 8:
5022 		res = kvm_set_cr8(vcpu, val);
5023 		break;
5024 	default:
5025 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
5026 		res = -1;
5027 	}
5028 
5029 	return res;
5030 }
5031 
5032 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5033 {
5034 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5035 }
5036 
5037 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5038 {
5039 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5040 }
5041 
5042 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5043 {
5044 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5045 }
5046 
5047 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5048 {
5049 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5050 }
5051 
5052 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5053 {
5054 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5055 }
5056 
5057 static unsigned long emulator_get_cached_segment_base(
5058 	struct x86_emulate_ctxt *ctxt, int seg)
5059 {
5060 	return get_segment_base(emul_to_vcpu(ctxt), seg);
5061 }
5062 
5063 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5064 				 struct desc_struct *desc, u32 *base3,
5065 				 int seg)
5066 {
5067 	struct kvm_segment var;
5068 
5069 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5070 	*selector = var.selector;
5071 
5072 	if (var.unusable) {
5073 		memset(desc, 0, sizeof(*desc));
5074 		return false;
5075 	}
5076 
5077 	if (var.g)
5078 		var.limit >>= 12;
5079 	set_desc_limit(desc, var.limit);
5080 	set_desc_base(desc, (unsigned long)var.base);
5081 #ifdef CONFIG_X86_64
5082 	if (base3)
5083 		*base3 = var.base >> 32;
5084 #endif
5085 	desc->type = var.type;
5086 	desc->s = var.s;
5087 	desc->dpl = var.dpl;
5088 	desc->p = var.present;
5089 	desc->avl = var.avl;
5090 	desc->l = var.l;
5091 	desc->d = var.db;
5092 	desc->g = var.g;
5093 
5094 	return true;
5095 }
5096 
5097 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5098 				 struct desc_struct *desc, u32 base3,
5099 				 int seg)
5100 {
5101 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5102 	struct kvm_segment var;
5103 
5104 	var.selector = selector;
5105 	var.base = get_desc_base(desc);
5106 #ifdef CONFIG_X86_64
5107 	var.base |= ((u64)base3) << 32;
5108 #endif
5109 	var.limit = get_desc_limit(desc);
5110 	if (desc->g)
5111 		var.limit = (var.limit << 12) | 0xfff;
5112 	var.type = desc->type;
5113 	var.dpl = desc->dpl;
5114 	var.db = desc->d;
5115 	var.s = desc->s;
5116 	var.l = desc->l;
5117 	var.g = desc->g;
5118 	var.avl = desc->avl;
5119 	var.present = desc->p;
5120 	var.unusable = !var.present;
5121 	var.padding = 0;
5122 
5123 	kvm_set_segment(vcpu, &var, seg);
5124 	return;
5125 }
5126 
5127 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5128 			    u32 msr_index, u64 *pdata)
5129 {
5130 	struct msr_data msr;
5131 	int r;
5132 
5133 	msr.index = msr_index;
5134 	msr.host_initiated = false;
5135 	r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5136 	if (r)
5137 		return r;
5138 
5139 	*pdata = msr.data;
5140 	return 0;
5141 }
5142 
5143 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5144 			    u32 msr_index, u64 data)
5145 {
5146 	struct msr_data msr;
5147 
5148 	msr.data = data;
5149 	msr.index = msr_index;
5150 	msr.host_initiated = false;
5151 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5152 }
5153 
5154 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5155 {
5156 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5157 
5158 	return vcpu->arch.smbase;
5159 }
5160 
5161 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5162 {
5163 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5164 
5165 	vcpu->arch.smbase = smbase;
5166 }
5167 
5168 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5169 			      u32 pmc)
5170 {
5171 	return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5172 }
5173 
5174 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5175 			     u32 pmc, u64 *pdata)
5176 {
5177 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5178 }
5179 
5180 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5181 {
5182 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
5183 }
5184 
5185 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5186 {
5187 	preempt_disable();
5188 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5189 }
5190 
5191 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5192 {
5193 	preempt_enable();
5194 }
5195 
5196 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5197 			      struct x86_instruction_info *info,
5198 			      enum x86_intercept_stage stage)
5199 {
5200 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5201 }
5202 
5203 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5204 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5205 {
5206 	kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5207 }
5208 
5209 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5210 {
5211 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
5212 }
5213 
5214 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5215 {
5216 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5217 }
5218 
5219 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5220 {
5221 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5222 }
5223 
5224 static const struct x86_emulate_ops emulate_ops = {
5225 	.read_gpr            = emulator_read_gpr,
5226 	.write_gpr           = emulator_write_gpr,
5227 	.read_std            = kvm_read_guest_virt_system,
5228 	.write_std           = kvm_write_guest_virt_system,
5229 	.read_phys           = kvm_read_guest_phys_system,
5230 	.fetch               = kvm_fetch_guest_virt,
5231 	.read_emulated       = emulator_read_emulated,
5232 	.write_emulated      = emulator_write_emulated,
5233 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
5234 	.invlpg              = emulator_invlpg,
5235 	.pio_in_emulated     = emulator_pio_in_emulated,
5236 	.pio_out_emulated    = emulator_pio_out_emulated,
5237 	.get_segment         = emulator_get_segment,
5238 	.set_segment         = emulator_set_segment,
5239 	.get_cached_segment_base = emulator_get_cached_segment_base,
5240 	.get_gdt             = emulator_get_gdt,
5241 	.get_idt	     = emulator_get_idt,
5242 	.set_gdt             = emulator_set_gdt,
5243 	.set_idt	     = emulator_set_idt,
5244 	.get_cr              = emulator_get_cr,
5245 	.set_cr              = emulator_set_cr,
5246 	.cpl                 = emulator_get_cpl,
5247 	.get_dr              = emulator_get_dr,
5248 	.set_dr              = emulator_set_dr,
5249 	.get_smbase          = emulator_get_smbase,
5250 	.set_smbase          = emulator_set_smbase,
5251 	.set_msr             = emulator_set_msr,
5252 	.get_msr             = emulator_get_msr,
5253 	.check_pmc	     = emulator_check_pmc,
5254 	.read_pmc            = emulator_read_pmc,
5255 	.halt                = emulator_halt,
5256 	.wbinvd              = emulator_wbinvd,
5257 	.fix_hypercall       = emulator_fix_hypercall,
5258 	.get_fpu             = emulator_get_fpu,
5259 	.put_fpu             = emulator_put_fpu,
5260 	.intercept           = emulator_intercept,
5261 	.get_cpuid           = emulator_get_cpuid,
5262 	.set_nmi_mask        = emulator_set_nmi_mask,
5263 };
5264 
5265 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5266 {
5267 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5268 	/*
5269 	 * an sti; sti; sequence only disable interrupts for the first
5270 	 * instruction. So, if the last instruction, be it emulated or
5271 	 * not, left the system with the INT_STI flag enabled, it
5272 	 * means that the last instruction is an sti. We should not
5273 	 * leave the flag on in this case. The same goes for mov ss
5274 	 */
5275 	if (int_shadow & mask)
5276 		mask = 0;
5277 	if (unlikely(int_shadow || mask)) {
5278 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5279 		if (!mask)
5280 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5281 	}
5282 }
5283 
5284 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5285 {
5286 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5287 	if (ctxt->exception.vector == PF_VECTOR)
5288 		return kvm_propagate_fault(vcpu, &ctxt->exception);
5289 
5290 	if (ctxt->exception.error_code_valid)
5291 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5292 				      ctxt->exception.error_code);
5293 	else
5294 		kvm_queue_exception(vcpu, ctxt->exception.vector);
5295 	return false;
5296 }
5297 
5298 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5299 {
5300 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5301 	int cs_db, cs_l;
5302 
5303 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5304 
5305 	ctxt->eflags = kvm_get_rflags(vcpu);
5306 	ctxt->eip = kvm_rip_read(vcpu);
5307 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
5308 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
5309 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
5310 		     cs_db				? X86EMUL_MODE_PROT32 :
5311 							  X86EMUL_MODE_PROT16;
5312 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5313 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5314 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5315 	ctxt->emul_flags = vcpu->arch.hflags;
5316 
5317 	init_decode_cache(ctxt);
5318 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5319 }
5320 
5321 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5322 {
5323 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5324 	int ret;
5325 
5326 	init_emulate_ctxt(vcpu);
5327 
5328 	ctxt->op_bytes = 2;
5329 	ctxt->ad_bytes = 2;
5330 	ctxt->_eip = ctxt->eip + inc_eip;
5331 	ret = emulate_int_real(ctxt, irq);
5332 
5333 	if (ret != X86EMUL_CONTINUE)
5334 		return EMULATE_FAIL;
5335 
5336 	ctxt->eip = ctxt->_eip;
5337 	kvm_rip_write(vcpu, ctxt->eip);
5338 	kvm_set_rflags(vcpu, ctxt->eflags);
5339 
5340 	if (irq == NMI_VECTOR)
5341 		vcpu->arch.nmi_pending = 0;
5342 	else
5343 		vcpu->arch.interrupt.pending = false;
5344 
5345 	return EMULATE_DONE;
5346 }
5347 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5348 
5349 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5350 {
5351 	int r = EMULATE_DONE;
5352 
5353 	++vcpu->stat.insn_emulation_fail;
5354 	trace_kvm_emulate_insn_failed(vcpu);
5355 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5356 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5357 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5358 		vcpu->run->internal.ndata = 0;
5359 		r = EMULATE_FAIL;
5360 	}
5361 	kvm_queue_exception(vcpu, UD_VECTOR);
5362 
5363 	return r;
5364 }
5365 
5366 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5367 				  bool write_fault_to_shadow_pgtable,
5368 				  int emulation_type)
5369 {
5370 	gpa_t gpa = cr2;
5371 	kvm_pfn_t pfn;
5372 
5373 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
5374 		return false;
5375 
5376 	if (!vcpu->arch.mmu.direct_map) {
5377 		/*
5378 		 * Write permission should be allowed since only
5379 		 * write access need to be emulated.
5380 		 */
5381 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5382 
5383 		/*
5384 		 * If the mapping is invalid in guest, let cpu retry
5385 		 * it to generate fault.
5386 		 */
5387 		if (gpa == UNMAPPED_GVA)
5388 			return true;
5389 	}
5390 
5391 	/*
5392 	 * Do not retry the unhandleable instruction if it faults on the
5393 	 * readonly host memory, otherwise it will goto a infinite loop:
5394 	 * retry instruction -> write #PF -> emulation fail -> retry
5395 	 * instruction -> ...
5396 	 */
5397 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5398 
5399 	/*
5400 	 * If the instruction failed on the error pfn, it can not be fixed,
5401 	 * report the error to userspace.
5402 	 */
5403 	if (is_error_noslot_pfn(pfn))
5404 		return false;
5405 
5406 	kvm_release_pfn_clean(pfn);
5407 
5408 	/* The instructions are well-emulated on direct mmu. */
5409 	if (vcpu->arch.mmu.direct_map) {
5410 		unsigned int indirect_shadow_pages;
5411 
5412 		spin_lock(&vcpu->kvm->mmu_lock);
5413 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5414 		spin_unlock(&vcpu->kvm->mmu_lock);
5415 
5416 		if (indirect_shadow_pages)
5417 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5418 
5419 		return true;
5420 	}
5421 
5422 	/*
5423 	 * if emulation was due to access to shadowed page table
5424 	 * and it failed try to unshadow page and re-enter the
5425 	 * guest to let CPU execute the instruction.
5426 	 */
5427 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5428 
5429 	/*
5430 	 * If the access faults on its page table, it can not
5431 	 * be fixed by unprotecting shadow page and it should
5432 	 * be reported to userspace.
5433 	 */
5434 	return !write_fault_to_shadow_pgtable;
5435 }
5436 
5437 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5438 			      unsigned long cr2,  int emulation_type)
5439 {
5440 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5441 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5442 
5443 	last_retry_eip = vcpu->arch.last_retry_eip;
5444 	last_retry_addr = vcpu->arch.last_retry_addr;
5445 
5446 	/*
5447 	 * If the emulation is caused by #PF and it is non-page_table
5448 	 * writing instruction, it means the VM-EXIT is caused by shadow
5449 	 * page protected, we can zap the shadow page and retry this
5450 	 * instruction directly.
5451 	 *
5452 	 * Note: if the guest uses a non-page-table modifying instruction
5453 	 * on the PDE that points to the instruction, then we will unmap
5454 	 * the instruction and go to an infinite loop. So, we cache the
5455 	 * last retried eip and the last fault address, if we meet the eip
5456 	 * and the address again, we can break out of the potential infinite
5457 	 * loop.
5458 	 */
5459 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5460 
5461 	if (!(emulation_type & EMULTYPE_RETRY))
5462 		return false;
5463 
5464 	if (x86_page_table_writing_insn(ctxt))
5465 		return false;
5466 
5467 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5468 		return false;
5469 
5470 	vcpu->arch.last_retry_eip = ctxt->eip;
5471 	vcpu->arch.last_retry_addr = cr2;
5472 
5473 	if (!vcpu->arch.mmu.direct_map)
5474 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5475 
5476 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5477 
5478 	return true;
5479 }
5480 
5481 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5482 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5483 
5484 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5485 {
5486 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5487 		/* This is a good place to trace that we are exiting SMM.  */
5488 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5489 
5490 		/* Process a latched INIT or SMI, if any.  */
5491 		kvm_make_request(KVM_REQ_EVENT, vcpu);
5492 	}
5493 
5494 	kvm_mmu_reset_context(vcpu);
5495 }
5496 
5497 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5498 {
5499 	unsigned changed = vcpu->arch.hflags ^ emul_flags;
5500 
5501 	vcpu->arch.hflags = emul_flags;
5502 
5503 	if (changed & HF_SMM_MASK)
5504 		kvm_smm_changed(vcpu);
5505 }
5506 
5507 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5508 				unsigned long *db)
5509 {
5510 	u32 dr6 = 0;
5511 	int i;
5512 	u32 enable, rwlen;
5513 
5514 	enable = dr7;
5515 	rwlen = dr7 >> 16;
5516 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5517 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5518 			dr6 |= (1 << i);
5519 	return dr6;
5520 }
5521 
5522 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5523 {
5524 	struct kvm_run *kvm_run = vcpu->run;
5525 
5526 	/*
5527 	 * rflags is the old, "raw" value of the flags.  The new value has
5528 	 * not been saved yet.
5529 	 *
5530 	 * This is correct even for TF set by the guest, because "the
5531 	 * processor will not generate this exception after the instruction
5532 	 * that sets the TF flag".
5533 	 */
5534 	if (unlikely(rflags & X86_EFLAGS_TF)) {
5535 		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5536 			kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5537 						  DR6_RTM;
5538 			kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5539 			kvm_run->debug.arch.exception = DB_VECTOR;
5540 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5541 			*r = EMULATE_USER_EXIT;
5542 		} else {
5543 			/*
5544 			 * "Certain debug exceptions may clear bit 0-3.  The
5545 			 * remaining contents of the DR6 register are never
5546 			 * cleared by the processor".
5547 			 */
5548 			vcpu->arch.dr6 &= ~15;
5549 			vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5550 			kvm_queue_exception(vcpu, DB_VECTOR);
5551 		}
5552 	}
5553 }
5554 
5555 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5556 {
5557 	unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5558 	int r = EMULATE_DONE;
5559 
5560 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5561 	kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5562 	return r == EMULATE_DONE;
5563 }
5564 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5565 
5566 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5567 {
5568 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5569 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5570 		struct kvm_run *kvm_run = vcpu->run;
5571 		unsigned long eip = kvm_get_linear_rip(vcpu);
5572 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5573 					   vcpu->arch.guest_debug_dr7,
5574 					   vcpu->arch.eff_db);
5575 
5576 		if (dr6 != 0) {
5577 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5578 			kvm_run->debug.arch.pc = eip;
5579 			kvm_run->debug.arch.exception = DB_VECTOR;
5580 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5581 			*r = EMULATE_USER_EXIT;
5582 			return true;
5583 		}
5584 	}
5585 
5586 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5587 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5588 		unsigned long eip = kvm_get_linear_rip(vcpu);
5589 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5590 					   vcpu->arch.dr7,
5591 					   vcpu->arch.db);
5592 
5593 		if (dr6 != 0) {
5594 			vcpu->arch.dr6 &= ~15;
5595 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
5596 			kvm_queue_exception(vcpu, DB_VECTOR);
5597 			*r = EMULATE_DONE;
5598 			return true;
5599 		}
5600 	}
5601 
5602 	return false;
5603 }
5604 
5605 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5606 			    unsigned long cr2,
5607 			    int emulation_type,
5608 			    void *insn,
5609 			    int insn_len)
5610 {
5611 	int r;
5612 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5613 	bool writeback = true;
5614 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5615 
5616 	/*
5617 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
5618 	 * never reused.
5619 	 */
5620 	vcpu->arch.write_fault_to_shadow_pgtable = false;
5621 	kvm_clear_exception_queue(vcpu);
5622 
5623 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5624 		init_emulate_ctxt(vcpu);
5625 
5626 		/*
5627 		 * We will reenter on the same instruction since
5628 		 * we do not set complete_userspace_io.  This does not
5629 		 * handle watchpoints yet, those would be handled in
5630 		 * the emulate_ops.
5631 		 */
5632 		if (kvm_vcpu_check_breakpoint(vcpu, &r))
5633 			return r;
5634 
5635 		ctxt->interruptibility = 0;
5636 		ctxt->have_exception = false;
5637 		ctxt->exception.vector = -1;
5638 		ctxt->perm_ok = false;
5639 
5640 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5641 
5642 		r = x86_decode_insn(ctxt, insn, insn_len);
5643 
5644 		trace_kvm_emulate_insn_start(vcpu);
5645 		++vcpu->stat.insn_emulation;
5646 		if (r != EMULATION_OK)  {
5647 			if (emulation_type & EMULTYPE_TRAP_UD)
5648 				return EMULATE_FAIL;
5649 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5650 						emulation_type))
5651 				return EMULATE_DONE;
5652 			if (emulation_type & EMULTYPE_SKIP)
5653 				return EMULATE_FAIL;
5654 			return handle_emulation_failure(vcpu);
5655 		}
5656 	}
5657 
5658 	if (emulation_type & EMULTYPE_SKIP) {
5659 		kvm_rip_write(vcpu, ctxt->_eip);
5660 		if (ctxt->eflags & X86_EFLAGS_RF)
5661 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5662 		return EMULATE_DONE;
5663 	}
5664 
5665 	if (retry_instruction(ctxt, cr2, emulation_type))
5666 		return EMULATE_DONE;
5667 
5668 	/* this is needed for vmware backdoor interface to work since it
5669 	   changes registers values  during IO operation */
5670 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5671 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5672 		emulator_invalidate_register_cache(ctxt);
5673 	}
5674 
5675 restart:
5676 	/* Save the faulting GPA (cr2) in the address field */
5677 	ctxt->exception.address = cr2;
5678 
5679 	r = x86_emulate_insn(ctxt);
5680 
5681 	if (r == EMULATION_INTERCEPTED)
5682 		return EMULATE_DONE;
5683 
5684 	if (r == EMULATION_FAILED) {
5685 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5686 					emulation_type))
5687 			return EMULATE_DONE;
5688 
5689 		return handle_emulation_failure(vcpu);
5690 	}
5691 
5692 	if (ctxt->have_exception) {
5693 		r = EMULATE_DONE;
5694 		if (inject_emulated_exception(vcpu))
5695 			return r;
5696 	} else if (vcpu->arch.pio.count) {
5697 		if (!vcpu->arch.pio.in) {
5698 			/* FIXME: return into emulator if single-stepping.  */
5699 			vcpu->arch.pio.count = 0;
5700 		} else {
5701 			writeback = false;
5702 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
5703 		}
5704 		r = EMULATE_USER_EXIT;
5705 	} else if (vcpu->mmio_needed) {
5706 		if (!vcpu->mmio_is_write)
5707 			writeback = false;
5708 		r = EMULATE_USER_EXIT;
5709 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5710 	} else if (r == EMULATION_RESTART)
5711 		goto restart;
5712 	else
5713 		r = EMULATE_DONE;
5714 
5715 	if (writeback) {
5716 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5717 		toggle_interruptibility(vcpu, ctxt->interruptibility);
5718 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5719 		if (vcpu->arch.hflags != ctxt->emul_flags)
5720 			kvm_set_hflags(vcpu, ctxt->emul_flags);
5721 		kvm_rip_write(vcpu, ctxt->eip);
5722 		if (r == EMULATE_DONE)
5723 			kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5724 		if (!ctxt->have_exception ||
5725 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5726 			__kvm_set_rflags(vcpu, ctxt->eflags);
5727 
5728 		/*
5729 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5730 		 * do nothing, and it will be requested again as soon as
5731 		 * the shadow expires.  But we still need to check here,
5732 		 * because POPF has no interrupt shadow.
5733 		 */
5734 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5735 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5736 	} else
5737 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5738 
5739 	return r;
5740 }
5741 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5742 
5743 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5744 {
5745 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5746 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5747 					    size, port, &val, 1);
5748 	/* do not return to emulator after return from userspace */
5749 	vcpu->arch.pio.count = 0;
5750 	return ret;
5751 }
5752 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5753 
5754 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
5755 {
5756 	unsigned long val;
5757 
5758 	/* We should only ever be called with arch.pio.count equal to 1 */
5759 	BUG_ON(vcpu->arch.pio.count != 1);
5760 
5761 	/* For size less than 4 we merge, else we zero extend */
5762 	val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
5763 					: 0;
5764 
5765 	/*
5766 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5767 	 * the copy and tracing
5768 	 */
5769 	emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
5770 				 vcpu->arch.pio.port, &val, 1);
5771 	kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5772 
5773 	return 1;
5774 }
5775 
5776 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
5777 {
5778 	unsigned long val;
5779 	int ret;
5780 
5781 	/* For size less than 4 we merge, else we zero extend */
5782 	val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
5783 
5784 	ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
5785 				       &val, 1);
5786 	if (ret) {
5787 		kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5788 		return ret;
5789 	}
5790 
5791 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
5792 
5793 	return 0;
5794 }
5795 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
5796 
5797 static int kvmclock_cpu_down_prep(unsigned int cpu)
5798 {
5799 	__this_cpu_write(cpu_tsc_khz, 0);
5800 	return 0;
5801 }
5802 
5803 static void tsc_khz_changed(void *data)
5804 {
5805 	struct cpufreq_freqs *freq = data;
5806 	unsigned long khz = 0;
5807 
5808 	if (data)
5809 		khz = freq->new;
5810 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5811 		khz = cpufreq_quick_get(raw_smp_processor_id());
5812 	if (!khz)
5813 		khz = tsc_khz;
5814 	__this_cpu_write(cpu_tsc_khz, khz);
5815 }
5816 
5817 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5818 				     void *data)
5819 {
5820 	struct cpufreq_freqs *freq = data;
5821 	struct kvm *kvm;
5822 	struct kvm_vcpu *vcpu;
5823 	int i, send_ipi = 0;
5824 
5825 	/*
5826 	 * We allow guests to temporarily run on slowing clocks,
5827 	 * provided we notify them after, or to run on accelerating
5828 	 * clocks, provided we notify them before.  Thus time never
5829 	 * goes backwards.
5830 	 *
5831 	 * However, we have a problem.  We can't atomically update
5832 	 * the frequency of a given CPU from this function; it is
5833 	 * merely a notifier, which can be called from any CPU.
5834 	 * Changing the TSC frequency at arbitrary points in time
5835 	 * requires a recomputation of local variables related to
5836 	 * the TSC for each VCPU.  We must flag these local variables
5837 	 * to be updated and be sure the update takes place with the
5838 	 * new frequency before any guests proceed.
5839 	 *
5840 	 * Unfortunately, the combination of hotplug CPU and frequency
5841 	 * change creates an intractable locking scenario; the order
5842 	 * of when these callouts happen is undefined with respect to
5843 	 * CPU hotplug, and they can race with each other.  As such,
5844 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5845 	 * undefined; you can actually have a CPU frequency change take
5846 	 * place in between the computation of X and the setting of the
5847 	 * variable.  To protect against this problem, all updates of
5848 	 * the per_cpu tsc_khz variable are done in an interrupt
5849 	 * protected IPI, and all callers wishing to update the value
5850 	 * must wait for a synchronous IPI to complete (which is trivial
5851 	 * if the caller is on the CPU already).  This establishes the
5852 	 * necessary total order on variable updates.
5853 	 *
5854 	 * Note that because a guest time update may take place
5855 	 * anytime after the setting of the VCPU's request bit, the
5856 	 * correct TSC value must be set before the request.  However,
5857 	 * to ensure the update actually makes it to any guest which
5858 	 * starts running in hardware virtualization between the set
5859 	 * and the acquisition of the spinlock, we must also ping the
5860 	 * CPU after setting the request bit.
5861 	 *
5862 	 */
5863 
5864 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5865 		return 0;
5866 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5867 		return 0;
5868 
5869 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5870 
5871 	spin_lock(&kvm_lock);
5872 	list_for_each_entry(kvm, &vm_list, vm_list) {
5873 		kvm_for_each_vcpu(i, vcpu, kvm) {
5874 			if (vcpu->cpu != freq->cpu)
5875 				continue;
5876 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5877 			if (vcpu->cpu != smp_processor_id())
5878 				send_ipi = 1;
5879 		}
5880 	}
5881 	spin_unlock(&kvm_lock);
5882 
5883 	if (freq->old < freq->new && send_ipi) {
5884 		/*
5885 		 * We upscale the frequency.  Must make the guest
5886 		 * doesn't see old kvmclock values while running with
5887 		 * the new frequency, otherwise we risk the guest sees
5888 		 * time go backwards.
5889 		 *
5890 		 * In case we update the frequency for another cpu
5891 		 * (which might be in guest context) send an interrupt
5892 		 * to kick the cpu out of guest context.  Next time
5893 		 * guest context is entered kvmclock will be updated,
5894 		 * so the guest will not see stale values.
5895 		 */
5896 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5897 	}
5898 	return 0;
5899 }
5900 
5901 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5902 	.notifier_call  = kvmclock_cpufreq_notifier
5903 };
5904 
5905 static int kvmclock_cpu_online(unsigned int cpu)
5906 {
5907 	tsc_khz_changed(NULL);
5908 	return 0;
5909 }
5910 
5911 static void kvm_timer_init(void)
5912 {
5913 	max_tsc_khz = tsc_khz;
5914 
5915 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5916 #ifdef CONFIG_CPU_FREQ
5917 		struct cpufreq_policy policy;
5918 		int cpu;
5919 
5920 		memset(&policy, 0, sizeof(policy));
5921 		cpu = get_cpu();
5922 		cpufreq_get_policy(&policy, cpu);
5923 		if (policy.cpuinfo.max_freq)
5924 			max_tsc_khz = policy.cpuinfo.max_freq;
5925 		put_cpu();
5926 #endif
5927 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5928 					  CPUFREQ_TRANSITION_NOTIFIER);
5929 	}
5930 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5931 
5932 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
5933 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
5934 }
5935 
5936 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5937 
5938 int kvm_is_in_guest(void)
5939 {
5940 	return __this_cpu_read(current_vcpu) != NULL;
5941 }
5942 
5943 static int kvm_is_user_mode(void)
5944 {
5945 	int user_mode = 3;
5946 
5947 	if (__this_cpu_read(current_vcpu))
5948 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5949 
5950 	return user_mode != 0;
5951 }
5952 
5953 static unsigned long kvm_get_guest_ip(void)
5954 {
5955 	unsigned long ip = 0;
5956 
5957 	if (__this_cpu_read(current_vcpu))
5958 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5959 
5960 	return ip;
5961 }
5962 
5963 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5964 	.is_in_guest		= kvm_is_in_guest,
5965 	.is_user_mode		= kvm_is_user_mode,
5966 	.get_guest_ip		= kvm_get_guest_ip,
5967 };
5968 
5969 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5970 {
5971 	__this_cpu_write(current_vcpu, vcpu);
5972 }
5973 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5974 
5975 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5976 {
5977 	__this_cpu_write(current_vcpu, NULL);
5978 }
5979 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5980 
5981 static void kvm_set_mmio_spte_mask(void)
5982 {
5983 	u64 mask;
5984 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
5985 
5986 	/*
5987 	 * Set the reserved bits and the present bit of an paging-structure
5988 	 * entry to generate page fault with PFER.RSV = 1.
5989 	 */
5990 	 /* Mask the reserved physical address bits. */
5991 	mask = rsvd_bits(maxphyaddr, 51);
5992 
5993 	/* Set the present bit. */
5994 	mask |= 1ull;
5995 
5996 #ifdef CONFIG_X86_64
5997 	/*
5998 	 * If reserved bit is not supported, clear the present bit to disable
5999 	 * mmio page fault.
6000 	 */
6001 	if (maxphyaddr == 52)
6002 		mask &= ~1ull;
6003 #endif
6004 
6005 	kvm_mmu_set_mmio_spte_mask(mask);
6006 }
6007 
6008 #ifdef CONFIG_X86_64
6009 static void pvclock_gtod_update_fn(struct work_struct *work)
6010 {
6011 	struct kvm *kvm;
6012 
6013 	struct kvm_vcpu *vcpu;
6014 	int i;
6015 
6016 	spin_lock(&kvm_lock);
6017 	list_for_each_entry(kvm, &vm_list, vm_list)
6018 		kvm_for_each_vcpu(i, vcpu, kvm)
6019 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6020 	atomic_set(&kvm_guest_has_master_clock, 0);
6021 	spin_unlock(&kvm_lock);
6022 }
6023 
6024 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6025 
6026 /*
6027  * Notification about pvclock gtod data update.
6028  */
6029 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6030 			       void *priv)
6031 {
6032 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6033 	struct timekeeper *tk = priv;
6034 
6035 	update_pvclock_gtod(tk);
6036 
6037 	/* disable master clock if host does not trust, or does not
6038 	 * use, TSC clocksource
6039 	 */
6040 	if (gtod->clock.vclock_mode != VCLOCK_TSC &&
6041 	    atomic_read(&kvm_guest_has_master_clock) != 0)
6042 		queue_work(system_long_wq, &pvclock_gtod_work);
6043 
6044 	return 0;
6045 }
6046 
6047 static struct notifier_block pvclock_gtod_notifier = {
6048 	.notifier_call = pvclock_gtod_notify,
6049 };
6050 #endif
6051 
6052 int kvm_arch_init(void *opaque)
6053 {
6054 	int r;
6055 	struct kvm_x86_ops *ops = opaque;
6056 
6057 	if (kvm_x86_ops) {
6058 		printk(KERN_ERR "kvm: already loaded the other module\n");
6059 		r = -EEXIST;
6060 		goto out;
6061 	}
6062 
6063 	if (!ops->cpu_has_kvm_support()) {
6064 		printk(KERN_ERR "kvm: no hardware support\n");
6065 		r = -EOPNOTSUPP;
6066 		goto out;
6067 	}
6068 	if (ops->disabled_by_bios()) {
6069 		printk(KERN_ERR "kvm: disabled by bios\n");
6070 		r = -EOPNOTSUPP;
6071 		goto out;
6072 	}
6073 
6074 	r = -ENOMEM;
6075 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6076 	if (!shared_msrs) {
6077 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6078 		goto out;
6079 	}
6080 
6081 	r = kvm_mmu_module_init();
6082 	if (r)
6083 		goto out_free_percpu;
6084 
6085 	kvm_set_mmio_spte_mask();
6086 
6087 	kvm_x86_ops = ops;
6088 
6089 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6090 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
6091 			PT_PRESENT_MASK, 0);
6092 	kvm_timer_init();
6093 
6094 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
6095 
6096 	if (boot_cpu_has(X86_FEATURE_XSAVE))
6097 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6098 
6099 	kvm_lapic_init();
6100 #ifdef CONFIG_X86_64
6101 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6102 #endif
6103 
6104 	return 0;
6105 
6106 out_free_percpu:
6107 	free_percpu(shared_msrs);
6108 out:
6109 	return r;
6110 }
6111 
6112 void kvm_arch_exit(void)
6113 {
6114 	kvm_lapic_exit();
6115 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6116 
6117 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6118 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6119 					    CPUFREQ_TRANSITION_NOTIFIER);
6120 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6121 #ifdef CONFIG_X86_64
6122 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6123 #endif
6124 	kvm_x86_ops = NULL;
6125 	kvm_mmu_module_exit();
6126 	free_percpu(shared_msrs);
6127 }
6128 
6129 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6130 {
6131 	++vcpu->stat.halt_exits;
6132 	if (lapic_in_kernel(vcpu)) {
6133 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6134 		return 1;
6135 	} else {
6136 		vcpu->run->exit_reason = KVM_EXIT_HLT;
6137 		return 0;
6138 	}
6139 }
6140 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6141 
6142 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6143 {
6144 	int ret = kvm_skip_emulated_instruction(vcpu);
6145 	/*
6146 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6147 	 * KVM_EXIT_DEBUG here.
6148 	 */
6149 	return kvm_vcpu_halt(vcpu) && ret;
6150 }
6151 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6152 
6153 #ifdef CONFIG_X86_64
6154 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6155 			        unsigned long clock_type)
6156 {
6157 	struct kvm_clock_pairing clock_pairing;
6158 	struct timespec ts;
6159 	u64 cycle;
6160 	int ret;
6161 
6162 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6163 		return -KVM_EOPNOTSUPP;
6164 
6165 	if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6166 		return -KVM_EOPNOTSUPP;
6167 
6168 	clock_pairing.sec = ts.tv_sec;
6169 	clock_pairing.nsec = ts.tv_nsec;
6170 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6171 	clock_pairing.flags = 0;
6172 
6173 	ret = 0;
6174 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6175 			    sizeof(struct kvm_clock_pairing)))
6176 		ret = -KVM_EFAULT;
6177 
6178 	return ret;
6179 }
6180 #endif
6181 
6182 /*
6183  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6184  *
6185  * @apicid - apicid of vcpu to be kicked.
6186  */
6187 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6188 {
6189 	struct kvm_lapic_irq lapic_irq;
6190 
6191 	lapic_irq.shorthand = 0;
6192 	lapic_irq.dest_mode = 0;
6193 	lapic_irq.dest_id = apicid;
6194 	lapic_irq.msi_redir_hint = false;
6195 
6196 	lapic_irq.delivery_mode = APIC_DM_REMRD;
6197 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6198 }
6199 
6200 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6201 {
6202 	vcpu->arch.apicv_active = false;
6203 	kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6204 }
6205 
6206 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6207 {
6208 	unsigned long nr, a0, a1, a2, a3, ret;
6209 	int op_64_bit, r;
6210 
6211 	r = kvm_skip_emulated_instruction(vcpu);
6212 
6213 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
6214 		return kvm_hv_hypercall(vcpu);
6215 
6216 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6217 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6218 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6219 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6220 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6221 
6222 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
6223 
6224 	op_64_bit = is_64_bit_mode(vcpu);
6225 	if (!op_64_bit) {
6226 		nr &= 0xFFFFFFFF;
6227 		a0 &= 0xFFFFFFFF;
6228 		a1 &= 0xFFFFFFFF;
6229 		a2 &= 0xFFFFFFFF;
6230 		a3 &= 0xFFFFFFFF;
6231 	}
6232 
6233 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6234 		ret = -KVM_EPERM;
6235 		goto out;
6236 	}
6237 
6238 	switch (nr) {
6239 	case KVM_HC_VAPIC_POLL_IRQ:
6240 		ret = 0;
6241 		break;
6242 	case KVM_HC_KICK_CPU:
6243 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6244 		ret = 0;
6245 		break;
6246 #ifdef CONFIG_X86_64
6247 	case KVM_HC_CLOCK_PAIRING:
6248 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6249 		break;
6250 #endif
6251 	default:
6252 		ret = -KVM_ENOSYS;
6253 		break;
6254 	}
6255 out:
6256 	if (!op_64_bit)
6257 		ret = (u32)ret;
6258 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6259 	++vcpu->stat.hypercalls;
6260 	return r;
6261 }
6262 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6263 
6264 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6265 {
6266 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6267 	char instruction[3];
6268 	unsigned long rip = kvm_rip_read(vcpu);
6269 
6270 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
6271 
6272 	return emulator_write_emulated(ctxt, rip, instruction, 3,
6273 		&ctxt->exception);
6274 }
6275 
6276 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6277 {
6278 	return vcpu->run->request_interrupt_window &&
6279 		likely(!pic_in_kernel(vcpu->kvm));
6280 }
6281 
6282 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6283 {
6284 	struct kvm_run *kvm_run = vcpu->run;
6285 
6286 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6287 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6288 	kvm_run->cr8 = kvm_get_cr8(vcpu);
6289 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
6290 	kvm_run->ready_for_interrupt_injection =
6291 		pic_in_kernel(vcpu->kvm) ||
6292 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
6293 }
6294 
6295 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6296 {
6297 	int max_irr, tpr;
6298 
6299 	if (!kvm_x86_ops->update_cr8_intercept)
6300 		return;
6301 
6302 	if (!lapic_in_kernel(vcpu))
6303 		return;
6304 
6305 	if (vcpu->arch.apicv_active)
6306 		return;
6307 
6308 	if (!vcpu->arch.apic->vapic_addr)
6309 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6310 	else
6311 		max_irr = -1;
6312 
6313 	if (max_irr != -1)
6314 		max_irr >>= 4;
6315 
6316 	tpr = kvm_lapic_get_cr8(vcpu);
6317 
6318 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6319 }
6320 
6321 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6322 {
6323 	int r;
6324 
6325 	/* try to reinject previous events if any */
6326 	if (vcpu->arch.exception.pending) {
6327 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
6328 					vcpu->arch.exception.has_error_code,
6329 					vcpu->arch.exception.error_code);
6330 
6331 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6332 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6333 					     X86_EFLAGS_RF);
6334 
6335 		if (vcpu->arch.exception.nr == DB_VECTOR &&
6336 		    (vcpu->arch.dr7 & DR7_GD)) {
6337 			vcpu->arch.dr7 &= ~DR7_GD;
6338 			kvm_update_dr7(vcpu);
6339 		}
6340 
6341 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6342 					  vcpu->arch.exception.has_error_code,
6343 					  vcpu->arch.exception.error_code,
6344 					  vcpu->arch.exception.reinject);
6345 		return 0;
6346 	}
6347 
6348 	if (vcpu->arch.nmi_injected) {
6349 		kvm_x86_ops->set_nmi(vcpu);
6350 		return 0;
6351 	}
6352 
6353 	if (vcpu->arch.interrupt.pending) {
6354 		kvm_x86_ops->set_irq(vcpu);
6355 		return 0;
6356 	}
6357 
6358 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6359 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6360 		if (r != 0)
6361 			return r;
6362 	}
6363 
6364 	/* try to inject new event if pending */
6365 	if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
6366 		vcpu->arch.smi_pending = false;
6367 		enter_smm(vcpu);
6368 	} else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6369 		--vcpu->arch.nmi_pending;
6370 		vcpu->arch.nmi_injected = true;
6371 		kvm_x86_ops->set_nmi(vcpu);
6372 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
6373 		/*
6374 		 * Because interrupts can be injected asynchronously, we are
6375 		 * calling check_nested_events again here to avoid a race condition.
6376 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6377 		 * proposal and current concerns.  Perhaps we should be setting
6378 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
6379 		 */
6380 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6381 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6382 			if (r != 0)
6383 				return r;
6384 		}
6385 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6386 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6387 					    false);
6388 			kvm_x86_ops->set_irq(vcpu);
6389 		}
6390 	}
6391 
6392 	return 0;
6393 }
6394 
6395 static void process_nmi(struct kvm_vcpu *vcpu)
6396 {
6397 	unsigned limit = 2;
6398 
6399 	/*
6400 	 * x86 is limited to one NMI running, and one NMI pending after it.
6401 	 * If an NMI is already in progress, limit further NMIs to just one.
6402 	 * Otherwise, allow two (and we'll inject the first one immediately).
6403 	 */
6404 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6405 		limit = 1;
6406 
6407 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6408 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6409 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6410 }
6411 
6412 #define put_smstate(type, buf, offset, val)			  \
6413 	*(type *)((buf) + (offset) - 0x7e00) = val
6414 
6415 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6416 {
6417 	u32 flags = 0;
6418 	flags |= seg->g       << 23;
6419 	flags |= seg->db      << 22;
6420 	flags |= seg->l       << 21;
6421 	flags |= seg->avl     << 20;
6422 	flags |= seg->present << 15;
6423 	flags |= seg->dpl     << 13;
6424 	flags |= seg->s       << 12;
6425 	flags |= seg->type    << 8;
6426 	return flags;
6427 }
6428 
6429 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6430 {
6431 	struct kvm_segment seg;
6432 	int offset;
6433 
6434 	kvm_get_segment(vcpu, &seg, n);
6435 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6436 
6437 	if (n < 3)
6438 		offset = 0x7f84 + n * 12;
6439 	else
6440 		offset = 0x7f2c + (n - 3) * 12;
6441 
6442 	put_smstate(u32, buf, offset + 8, seg.base);
6443 	put_smstate(u32, buf, offset + 4, seg.limit);
6444 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6445 }
6446 
6447 #ifdef CONFIG_X86_64
6448 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6449 {
6450 	struct kvm_segment seg;
6451 	int offset;
6452 	u16 flags;
6453 
6454 	kvm_get_segment(vcpu, &seg, n);
6455 	offset = 0x7e00 + n * 16;
6456 
6457 	flags = enter_smm_get_segment_flags(&seg) >> 8;
6458 	put_smstate(u16, buf, offset, seg.selector);
6459 	put_smstate(u16, buf, offset + 2, flags);
6460 	put_smstate(u32, buf, offset + 4, seg.limit);
6461 	put_smstate(u64, buf, offset + 8, seg.base);
6462 }
6463 #endif
6464 
6465 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6466 {
6467 	struct desc_ptr dt;
6468 	struct kvm_segment seg;
6469 	unsigned long val;
6470 	int i;
6471 
6472 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6473 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6474 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6475 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6476 
6477 	for (i = 0; i < 8; i++)
6478 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6479 
6480 	kvm_get_dr(vcpu, 6, &val);
6481 	put_smstate(u32, buf, 0x7fcc, (u32)val);
6482 	kvm_get_dr(vcpu, 7, &val);
6483 	put_smstate(u32, buf, 0x7fc8, (u32)val);
6484 
6485 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6486 	put_smstate(u32, buf, 0x7fc4, seg.selector);
6487 	put_smstate(u32, buf, 0x7f64, seg.base);
6488 	put_smstate(u32, buf, 0x7f60, seg.limit);
6489 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6490 
6491 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6492 	put_smstate(u32, buf, 0x7fc0, seg.selector);
6493 	put_smstate(u32, buf, 0x7f80, seg.base);
6494 	put_smstate(u32, buf, 0x7f7c, seg.limit);
6495 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6496 
6497 	kvm_x86_ops->get_gdt(vcpu, &dt);
6498 	put_smstate(u32, buf, 0x7f74, dt.address);
6499 	put_smstate(u32, buf, 0x7f70, dt.size);
6500 
6501 	kvm_x86_ops->get_idt(vcpu, &dt);
6502 	put_smstate(u32, buf, 0x7f58, dt.address);
6503 	put_smstate(u32, buf, 0x7f54, dt.size);
6504 
6505 	for (i = 0; i < 6; i++)
6506 		enter_smm_save_seg_32(vcpu, buf, i);
6507 
6508 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6509 
6510 	/* revision id */
6511 	put_smstate(u32, buf, 0x7efc, 0x00020000);
6512 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6513 }
6514 
6515 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6516 {
6517 #ifdef CONFIG_X86_64
6518 	struct desc_ptr dt;
6519 	struct kvm_segment seg;
6520 	unsigned long val;
6521 	int i;
6522 
6523 	for (i = 0; i < 16; i++)
6524 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6525 
6526 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6527 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6528 
6529 	kvm_get_dr(vcpu, 6, &val);
6530 	put_smstate(u64, buf, 0x7f68, val);
6531 	kvm_get_dr(vcpu, 7, &val);
6532 	put_smstate(u64, buf, 0x7f60, val);
6533 
6534 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6535 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6536 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6537 
6538 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6539 
6540 	/* revision id */
6541 	put_smstate(u32, buf, 0x7efc, 0x00020064);
6542 
6543 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6544 
6545 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6546 	put_smstate(u16, buf, 0x7e90, seg.selector);
6547 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6548 	put_smstate(u32, buf, 0x7e94, seg.limit);
6549 	put_smstate(u64, buf, 0x7e98, seg.base);
6550 
6551 	kvm_x86_ops->get_idt(vcpu, &dt);
6552 	put_smstate(u32, buf, 0x7e84, dt.size);
6553 	put_smstate(u64, buf, 0x7e88, dt.address);
6554 
6555 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6556 	put_smstate(u16, buf, 0x7e70, seg.selector);
6557 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6558 	put_smstate(u32, buf, 0x7e74, seg.limit);
6559 	put_smstate(u64, buf, 0x7e78, seg.base);
6560 
6561 	kvm_x86_ops->get_gdt(vcpu, &dt);
6562 	put_smstate(u32, buf, 0x7e64, dt.size);
6563 	put_smstate(u64, buf, 0x7e68, dt.address);
6564 
6565 	for (i = 0; i < 6; i++)
6566 		enter_smm_save_seg_64(vcpu, buf, i);
6567 #else
6568 	WARN_ON_ONCE(1);
6569 #endif
6570 }
6571 
6572 static void enter_smm(struct kvm_vcpu *vcpu)
6573 {
6574 	struct kvm_segment cs, ds;
6575 	struct desc_ptr dt;
6576 	char buf[512];
6577 	u32 cr0;
6578 
6579 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6580 	vcpu->arch.hflags |= HF_SMM_MASK;
6581 	memset(buf, 0, 512);
6582 	if (guest_cpuid_has_longmode(vcpu))
6583 		enter_smm_save_state_64(vcpu, buf);
6584 	else
6585 		enter_smm_save_state_32(vcpu, buf);
6586 
6587 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6588 
6589 	if (kvm_x86_ops->get_nmi_mask(vcpu))
6590 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6591 	else
6592 		kvm_x86_ops->set_nmi_mask(vcpu, true);
6593 
6594 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6595 	kvm_rip_write(vcpu, 0x8000);
6596 
6597 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6598 	kvm_x86_ops->set_cr0(vcpu, cr0);
6599 	vcpu->arch.cr0 = cr0;
6600 
6601 	kvm_x86_ops->set_cr4(vcpu, 0);
6602 
6603 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
6604 	dt.address = dt.size = 0;
6605 	kvm_x86_ops->set_idt(vcpu, &dt);
6606 
6607 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6608 
6609 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6610 	cs.base = vcpu->arch.smbase;
6611 
6612 	ds.selector = 0;
6613 	ds.base = 0;
6614 
6615 	cs.limit    = ds.limit = 0xffffffff;
6616 	cs.type     = ds.type = 0x3;
6617 	cs.dpl      = ds.dpl = 0;
6618 	cs.db       = ds.db = 0;
6619 	cs.s        = ds.s = 1;
6620 	cs.l        = ds.l = 0;
6621 	cs.g        = ds.g = 1;
6622 	cs.avl      = ds.avl = 0;
6623 	cs.present  = ds.present = 1;
6624 	cs.unusable = ds.unusable = 0;
6625 	cs.padding  = ds.padding = 0;
6626 
6627 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6628 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6629 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6630 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6631 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6632 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6633 
6634 	if (guest_cpuid_has_longmode(vcpu))
6635 		kvm_x86_ops->set_efer(vcpu, 0);
6636 
6637 	kvm_update_cpuid(vcpu);
6638 	kvm_mmu_reset_context(vcpu);
6639 }
6640 
6641 static void process_smi(struct kvm_vcpu *vcpu)
6642 {
6643 	vcpu->arch.smi_pending = true;
6644 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6645 }
6646 
6647 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6648 {
6649 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6650 }
6651 
6652 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6653 {
6654 	u64 eoi_exit_bitmap[4];
6655 
6656 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6657 		return;
6658 
6659 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6660 
6661 	if (irqchip_split(vcpu->kvm))
6662 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6663 	else {
6664 		if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6665 			kvm_x86_ops->sync_pir_to_irr(vcpu);
6666 		kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6667 	}
6668 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6669 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
6670 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6671 }
6672 
6673 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6674 {
6675 	++vcpu->stat.tlb_flush;
6676 	kvm_x86_ops->tlb_flush(vcpu);
6677 }
6678 
6679 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6680 {
6681 	struct page *page = NULL;
6682 
6683 	if (!lapic_in_kernel(vcpu))
6684 		return;
6685 
6686 	if (!kvm_x86_ops->set_apic_access_page_addr)
6687 		return;
6688 
6689 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6690 	if (is_error_page(page))
6691 		return;
6692 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6693 
6694 	/*
6695 	 * Do not pin apic access page in memory, the MMU notifier
6696 	 * will call us again if it is migrated or swapped out.
6697 	 */
6698 	put_page(page);
6699 }
6700 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6701 
6702 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6703 					   unsigned long address)
6704 {
6705 	/*
6706 	 * The physical address of apic access page is stored in the VMCS.
6707 	 * Update it when it becomes invalid.
6708 	 */
6709 	if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6710 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6711 }
6712 
6713 /*
6714  * Returns 1 to let vcpu_run() continue the guest execution loop without
6715  * exiting to the userspace.  Otherwise, the value will be returned to the
6716  * userspace.
6717  */
6718 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6719 {
6720 	int r;
6721 	bool req_int_win =
6722 		dm_request_for_irq_injection(vcpu) &&
6723 		kvm_cpu_accept_dm_intr(vcpu);
6724 
6725 	bool req_immediate_exit = false;
6726 
6727 	if (vcpu->requests) {
6728 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6729 			kvm_mmu_unload(vcpu);
6730 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6731 			__kvm_migrate_timers(vcpu);
6732 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6733 			kvm_gen_update_masterclock(vcpu->kvm);
6734 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6735 			kvm_gen_kvmclock_update(vcpu);
6736 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6737 			r = kvm_guest_time_update(vcpu);
6738 			if (unlikely(r))
6739 				goto out;
6740 		}
6741 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6742 			kvm_mmu_sync_roots(vcpu);
6743 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6744 			kvm_vcpu_flush_tlb(vcpu);
6745 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6746 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6747 			r = 0;
6748 			goto out;
6749 		}
6750 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6751 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6752 			r = 0;
6753 			goto out;
6754 		}
6755 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6756 			/* Page is swapped out. Do synthetic halt */
6757 			vcpu->arch.apf.halted = true;
6758 			r = 1;
6759 			goto out;
6760 		}
6761 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6762 			record_steal_time(vcpu);
6763 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
6764 			process_smi(vcpu);
6765 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
6766 			process_nmi(vcpu);
6767 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
6768 			kvm_pmu_handle_event(vcpu);
6769 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
6770 			kvm_pmu_deliver_pmi(vcpu);
6771 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6772 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6773 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
6774 				     vcpu->arch.ioapic_handled_vectors)) {
6775 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6776 				vcpu->run->eoi.vector =
6777 						vcpu->arch.pending_ioapic_eoi;
6778 				r = 0;
6779 				goto out;
6780 			}
6781 		}
6782 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6783 			vcpu_scan_ioapic(vcpu);
6784 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6785 			kvm_vcpu_reload_apic_access_page(vcpu);
6786 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6787 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6788 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6789 			r = 0;
6790 			goto out;
6791 		}
6792 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6793 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6794 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6795 			r = 0;
6796 			goto out;
6797 		}
6798 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6799 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6800 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6801 			r = 0;
6802 			goto out;
6803 		}
6804 
6805 		/*
6806 		 * KVM_REQ_HV_STIMER has to be processed after
6807 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6808 		 * depend on the guest clock being up-to-date
6809 		 */
6810 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6811 			kvm_hv_process_stimers(vcpu);
6812 	}
6813 
6814 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6815 		++vcpu->stat.req_event;
6816 		kvm_apic_accept_events(vcpu);
6817 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6818 			r = 1;
6819 			goto out;
6820 		}
6821 
6822 		if (inject_pending_event(vcpu, req_int_win) != 0)
6823 			req_immediate_exit = true;
6824 		else {
6825 			/* Enable NMI/IRQ window open exits if needed.
6826 			 *
6827 			 * SMIs have two cases: 1) they can be nested, and
6828 			 * then there is nothing to do here because RSM will
6829 			 * cause a vmexit anyway; 2) or the SMI can be pending
6830 			 * because inject_pending_event has completed the
6831 			 * injection of an IRQ or NMI from the previous vmexit,
6832 			 * and then we request an immediate exit to inject the SMI.
6833 			 */
6834 			if (vcpu->arch.smi_pending && !is_smm(vcpu))
6835 				req_immediate_exit = true;
6836 			if (vcpu->arch.nmi_pending)
6837 				kvm_x86_ops->enable_nmi_window(vcpu);
6838 			if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6839 				kvm_x86_ops->enable_irq_window(vcpu);
6840 		}
6841 
6842 		if (kvm_lapic_enabled(vcpu)) {
6843 			update_cr8_intercept(vcpu);
6844 			kvm_lapic_sync_to_vapic(vcpu);
6845 		}
6846 	}
6847 
6848 	r = kvm_mmu_reload(vcpu);
6849 	if (unlikely(r)) {
6850 		goto cancel_injection;
6851 	}
6852 
6853 	preempt_disable();
6854 
6855 	kvm_x86_ops->prepare_guest_switch(vcpu);
6856 	kvm_load_guest_fpu(vcpu);
6857 
6858 	/*
6859 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
6860 	 * IPI are then delayed after guest entry, which ensures that they
6861 	 * result in virtual interrupt delivery.
6862 	 */
6863 	local_irq_disable();
6864 	vcpu->mode = IN_GUEST_MODE;
6865 
6866 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6867 
6868 	/*
6869 	 * 1) We should set ->mode before checking ->requests.  Please see
6870 	 * the comment in kvm_make_all_cpus_request.
6871 	 *
6872 	 * 2) For APICv, we should set ->mode before checking PIR.ON.  This
6873 	 * pairs with the memory barrier implicit in pi_test_and_set_on
6874 	 * (see vmx_deliver_posted_interrupt).
6875 	 *
6876 	 * 3) This also orders the write to mode from any reads to the page
6877 	 * tables done while the VCPU is running.  Please see the comment
6878 	 * in kvm_flush_remote_tlbs.
6879 	 */
6880 	smp_mb__after_srcu_read_unlock();
6881 
6882 	/*
6883 	 * This handles the case where a posted interrupt was
6884 	 * notified with kvm_vcpu_kick.
6885 	 */
6886 	if (kvm_lapic_enabled(vcpu)) {
6887 		if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6888 			kvm_x86_ops->sync_pir_to_irr(vcpu);
6889 	}
6890 
6891 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6892 	    || need_resched() || signal_pending(current)) {
6893 		vcpu->mode = OUTSIDE_GUEST_MODE;
6894 		smp_wmb();
6895 		local_irq_enable();
6896 		preempt_enable();
6897 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6898 		r = 1;
6899 		goto cancel_injection;
6900 	}
6901 
6902 	kvm_load_guest_xcr0(vcpu);
6903 
6904 	if (req_immediate_exit) {
6905 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6906 		smp_send_reschedule(vcpu->cpu);
6907 	}
6908 
6909 	trace_kvm_entry(vcpu->vcpu_id);
6910 	wait_lapic_expire(vcpu);
6911 	guest_enter_irqoff();
6912 
6913 	if (unlikely(vcpu->arch.switch_db_regs)) {
6914 		set_debugreg(0, 7);
6915 		set_debugreg(vcpu->arch.eff_db[0], 0);
6916 		set_debugreg(vcpu->arch.eff_db[1], 1);
6917 		set_debugreg(vcpu->arch.eff_db[2], 2);
6918 		set_debugreg(vcpu->arch.eff_db[3], 3);
6919 		set_debugreg(vcpu->arch.dr6, 6);
6920 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6921 	}
6922 
6923 	kvm_x86_ops->run(vcpu);
6924 
6925 	/*
6926 	 * Do this here before restoring debug registers on the host.  And
6927 	 * since we do this before handling the vmexit, a DR access vmexit
6928 	 * can (a) read the correct value of the debug registers, (b) set
6929 	 * KVM_DEBUGREG_WONT_EXIT again.
6930 	 */
6931 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6932 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6933 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6934 		kvm_update_dr0123(vcpu);
6935 		kvm_update_dr6(vcpu);
6936 		kvm_update_dr7(vcpu);
6937 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6938 	}
6939 
6940 	/*
6941 	 * If the guest has used debug registers, at least dr7
6942 	 * will be disabled while returning to the host.
6943 	 * If we don't have active breakpoints in the host, we don't
6944 	 * care about the messed up debug address registers. But if
6945 	 * we have some of them active, restore the old state.
6946 	 */
6947 	if (hw_breakpoint_active())
6948 		hw_breakpoint_restore();
6949 
6950 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6951 
6952 	vcpu->mode = OUTSIDE_GUEST_MODE;
6953 	smp_wmb();
6954 
6955 	kvm_put_guest_xcr0(vcpu);
6956 
6957 	kvm_x86_ops->handle_external_intr(vcpu);
6958 
6959 	++vcpu->stat.exits;
6960 
6961 	guest_exit_irqoff();
6962 
6963 	local_irq_enable();
6964 	preempt_enable();
6965 
6966 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6967 
6968 	/*
6969 	 * Profile KVM exit RIPs:
6970 	 */
6971 	if (unlikely(prof_on == KVM_PROFILING)) {
6972 		unsigned long rip = kvm_rip_read(vcpu);
6973 		profile_hit(KVM_PROFILING, (void *)rip);
6974 	}
6975 
6976 	if (unlikely(vcpu->arch.tsc_always_catchup))
6977 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6978 
6979 	if (vcpu->arch.apic_attention)
6980 		kvm_lapic_sync_from_vapic(vcpu);
6981 
6982 	r = kvm_x86_ops->handle_exit(vcpu);
6983 	return r;
6984 
6985 cancel_injection:
6986 	kvm_x86_ops->cancel_injection(vcpu);
6987 	if (unlikely(vcpu->arch.apic_attention))
6988 		kvm_lapic_sync_from_vapic(vcpu);
6989 out:
6990 	return r;
6991 }
6992 
6993 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6994 {
6995 	if (!kvm_arch_vcpu_runnable(vcpu) &&
6996 	    (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6997 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6998 		kvm_vcpu_block(vcpu);
6999 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7000 
7001 		if (kvm_x86_ops->post_block)
7002 			kvm_x86_ops->post_block(vcpu);
7003 
7004 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7005 			return 1;
7006 	}
7007 
7008 	kvm_apic_accept_events(vcpu);
7009 	switch(vcpu->arch.mp_state) {
7010 	case KVM_MP_STATE_HALTED:
7011 		vcpu->arch.pv.pv_unhalted = false;
7012 		vcpu->arch.mp_state =
7013 			KVM_MP_STATE_RUNNABLE;
7014 	case KVM_MP_STATE_RUNNABLE:
7015 		vcpu->arch.apf.halted = false;
7016 		break;
7017 	case KVM_MP_STATE_INIT_RECEIVED:
7018 		break;
7019 	default:
7020 		return -EINTR;
7021 		break;
7022 	}
7023 	return 1;
7024 }
7025 
7026 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7027 {
7028 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7029 		kvm_x86_ops->check_nested_events(vcpu, false);
7030 
7031 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7032 		!vcpu->arch.apf.halted);
7033 }
7034 
7035 static int vcpu_run(struct kvm_vcpu *vcpu)
7036 {
7037 	int r;
7038 	struct kvm *kvm = vcpu->kvm;
7039 
7040 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7041 
7042 	for (;;) {
7043 		if (kvm_vcpu_running(vcpu)) {
7044 			r = vcpu_enter_guest(vcpu);
7045 		} else {
7046 			r = vcpu_block(kvm, vcpu);
7047 		}
7048 
7049 		if (r <= 0)
7050 			break;
7051 
7052 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
7053 		if (kvm_cpu_has_pending_timer(vcpu))
7054 			kvm_inject_pending_timer_irqs(vcpu);
7055 
7056 		if (dm_request_for_irq_injection(vcpu) &&
7057 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7058 			r = 0;
7059 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7060 			++vcpu->stat.request_irq_exits;
7061 			break;
7062 		}
7063 
7064 		kvm_check_async_pf_completion(vcpu);
7065 
7066 		if (signal_pending(current)) {
7067 			r = -EINTR;
7068 			vcpu->run->exit_reason = KVM_EXIT_INTR;
7069 			++vcpu->stat.signal_exits;
7070 			break;
7071 		}
7072 		if (need_resched()) {
7073 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7074 			cond_resched();
7075 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7076 		}
7077 	}
7078 
7079 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7080 
7081 	return r;
7082 }
7083 
7084 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7085 {
7086 	int r;
7087 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7088 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7089 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7090 	if (r != EMULATE_DONE)
7091 		return 0;
7092 	return 1;
7093 }
7094 
7095 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7096 {
7097 	BUG_ON(!vcpu->arch.pio.count);
7098 
7099 	return complete_emulated_io(vcpu);
7100 }
7101 
7102 /*
7103  * Implements the following, as a state machine:
7104  *
7105  * read:
7106  *   for each fragment
7107  *     for each mmio piece in the fragment
7108  *       write gpa, len
7109  *       exit
7110  *       copy data
7111  *   execute insn
7112  *
7113  * write:
7114  *   for each fragment
7115  *     for each mmio piece in the fragment
7116  *       write gpa, len
7117  *       copy data
7118  *       exit
7119  */
7120 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7121 {
7122 	struct kvm_run *run = vcpu->run;
7123 	struct kvm_mmio_fragment *frag;
7124 	unsigned len;
7125 
7126 	BUG_ON(!vcpu->mmio_needed);
7127 
7128 	/* Complete previous fragment */
7129 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7130 	len = min(8u, frag->len);
7131 	if (!vcpu->mmio_is_write)
7132 		memcpy(frag->data, run->mmio.data, len);
7133 
7134 	if (frag->len <= 8) {
7135 		/* Switch to the next fragment. */
7136 		frag++;
7137 		vcpu->mmio_cur_fragment++;
7138 	} else {
7139 		/* Go forward to the next mmio piece. */
7140 		frag->data += len;
7141 		frag->gpa += len;
7142 		frag->len -= len;
7143 	}
7144 
7145 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7146 		vcpu->mmio_needed = 0;
7147 
7148 		/* FIXME: return into emulator if single-stepping.  */
7149 		if (vcpu->mmio_is_write)
7150 			return 1;
7151 		vcpu->mmio_read_completed = 1;
7152 		return complete_emulated_io(vcpu);
7153 	}
7154 
7155 	run->exit_reason = KVM_EXIT_MMIO;
7156 	run->mmio.phys_addr = frag->gpa;
7157 	if (vcpu->mmio_is_write)
7158 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7159 	run->mmio.len = min(8u, frag->len);
7160 	run->mmio.is_write = vcpu->mmio_is_write;
7161 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7162 	return 0;
7163 }
7164 
7165 
7166 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7167 {
7168 	struct fpu *fpu = &current->thread.fpu;
7169 	int r;
7170 	sigset_t sigsaved;
7171 
7172 	fpu__activate_curr(fpu);
7173 
7174 	if (vcpu->sigset_active)
7175 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
7176 
7177 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7178 		kvm_vcpu_block(vcpu);
7179 		kvm_apic_accept_events(vcpu);
7180 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
7181 		r = -EAGAIN;
7182 		goto out;
7183 	}
7184 
7185 	/* re-sync apic's tpr */
7186 	if (!lapic_in_kernel(vcpu)) {
7187 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7188 			r = -EINVAL;
7189 			goto out;
7190 		}
7191 	}
7192 
7193 	if (unlikely(vcpu->arch.complete_userspace_io)) {
7194 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7195 		vcpu->arch.complete_userspace_io = NULL;
7196 		r = cui(vcpu);
7197 		if (r <= 0)
7198 			goto out;
7199 	} else
7200 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7201 
7202 	if (kvm_run->immediate_exit)
7203 		r = -EINTR;
7204 	else
7205 		r = vcpu_run(vcpu);
7206 
7207 out:
7208 	post_kvm_run_save(vcpu);
7209 	if (vcpu->sigset_active)
7210 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
7211 
7212 	return r;
7213 }
7214 
7215 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7216 {
7217 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7218 		/*
7219 		 * We are here if userspace calls get_regs() in the middle of
7220 		 * instruction emulation. Registers state needs to be copied
7221 		 * back from emulation context to vcpu. Userspace shouldn't do
7222 		 * that usually, but some bad designed PV devices (vmware
7223 		 * backdoor interface) need this to work
7224 		 */
7225 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7226 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7227 	}
7228 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7229 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7230 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7231 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7232 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7233 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7234 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7235 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7236 #ifdef CONFIG_X86_64
7237 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7238 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7239 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7240 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7241 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7242 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7243 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7244 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7245 #endif
7246 
7247 	regs->rip = kvm_rip_read(vcpu);
7248 	regs->rflags = kvm_get_rflags(vcpu);
7249 
7250 	return 0;
7251 }
7252 
7253 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7254 {
7255 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7256 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7257 
7258 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7259 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7260 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7261 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7262 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7263 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7264 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7265 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7266 #ifdef CONFIG_X86_64
7267 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7268 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7269 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7270 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7271 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7272 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7273 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7274 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7275 #endif
7276 
7277 	kvm_rip_write(vcpu, regs->rip);
7278 	kvm_set_rflags(vcpu, regs->rflags);
7279 
7280 	vcpu->arch.exception.pending = false;
7281 
7282 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7283 
7284 	return 0;
7285 }
7286 
7287 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7288 {
7289 	struct kvm_segment cs;
7290 
7291 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7292 	*db = cs.db;
7293 	*l = cs.l;
7294 }
7295 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7296 
7297 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7298 				  struct kvm_sregs *sregs)
7299 {
7300 	struct desc_ptr dt;
7301 
7302 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7303 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7304 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7305 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7306 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7307 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7308 
7309 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7310 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7311 
7312 	kvm_x86_ops->get_idt(vcpu, &dt);
7313 	sregs->idt.limit = dt.size;
7314 	sregs->idt.base = dt.address;
7315 	kvm_x86_ops->get_gdt(vcpu, &dt);
7316 	sregs->gdt.limit = dt.size;
7317 	sregs->gdt.base = dt.address;
7318 
7319 	sregs->cr0 = kvm_read_cr0(vcpu);
7320 	sregs->cr2 = vcpu->arch.cr2;
7321 	sregs->cr3 = kvm_read_cr3(vcpu);
7322 	sregs->cr4 = kvm_read_cr4(vcpu);
7323 	sregs->cr8 = kvm_get_cr8(vcpu);
7324 	sregs->efer = vcpu->arch.efer;
7325 	sregs->apic_base = kvm_get_apic_base(vcpu);
7326 
7327 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7328 
7329 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7330 		set_bit(vcpu->arch.interrupt.nr,
7331 			(unsigned long *)sregs->interrupt_bitmap);
7332 
7333 	return 0;
7334 }
7335 
7336 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7337 				    struct kvm_mp_state *mp_state)
7338 {
7339 	kvm_apic_accept_events(vcpu);
7340 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7341 					vcpu->arch.pv.pv_unhalted)
7342 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7343 	else
7344 		mp_state->mp_state = vcpu->arch.mp_state;
7345 
7346 	return 0;
7347 }
7348 
7349 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7350 				    struct kvm_mp_state *mp_state)
7351 {
7352 	if (!lapic_in_kernel(vcpu) &&
7353 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7354 		return -EINVAL;
7355 
7356 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7357 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7358 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7359 	} else
7360 		vcpu->arch.mp_state = mp_state->mp_state;
7361 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7362 	return 0;
7363 }
7364 
7365 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7366 		    int reason, bool has_error_code, u32 error_code)
7367 {
7368 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7369 	int ret;
7370 
7371 	init_emulate_ctxt(vcpu);
7372 
7373 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7374 				   has_error_code, error_code);
7375 
7376 	if (ret)
7377 		return EMULATE_FAIL;
7378 
7379 	kvm_rip_write(vcpu, ctxt->eip);
7380 	kvm_set_rflags(vcpu, ctxt->eflags);
7381 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7382 	return EMULATE_DONE;
7383 }
7384 EXPORT_SYMBOL_GPL(kvm_task_switch);
7385 
7386 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7387 				  struct kvm_sregs *sregs)
7388 {
7389 	struct msr_data apic_base_msr;
7390 	int mmu_reset_needed = 0;
7391 	int pending_vec, max_bits, idx;
7392 	struct desc_ptr dt;
7393 
7394 	if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7395 		return -EINVAL;
7396 
7397 	dt.size = sregs->idt.limit;
7398 	dt.address = sregs->idt.base;
7399 	kvm_x86_ops->set_idt(vcpu, &dt);
7400 	dt.size = sregs->gdt.limit;
7401 	dt.address = sregs->gdt.base;
7402 	kvm_x86_ops->set_gdt(vcpu, &dt);
7403 
7404 	vcpu->arch.cr2 = sregs->cr2;
7405 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7406 	vcpu->arch.cr3 = sregs->cr3;
7407 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7408 
7409 	kvm_set_cr8(vcpu, sregs->cr8);
7410 
7411 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7412 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
7413 	apic_base_msr.data = sregs->apic_base;
7414 	apic_base_msr.host_initiated = true;
7415 	kvm_set_apic_base(vcpu, &apic_base_msr);
7416 
7417 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7418 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7419 	vcpu->arch.cr0 = sregs->cr0;
7420 
7421 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7422 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7423 	if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7424 		kvm_update_cpuid(vcpu);
7425 
7426 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7427 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7428 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7429 		mmu_reset_needed = 1;
7430 	}
7431 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7432 
7433 	if (mmu_reset_needed)
7434 		kvm_mmu_reset_context(vcpu);
7435 
7436 	max_bits = KVM_NR_INTERRUPTS;
7437 	pending_vec = find_first_bit(
7438 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
7439 	if (pending_vec < max_bits) {
7440 		kvm_queue_interrupt(vcpu, pending_vec, false);
7441 		pr_debug("Set back pending irq %d\n", pending_vec);
7442 	}
7443 
7444 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7445 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7446 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7447 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7448 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7449 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7450 
7451 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7452 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7453 
7454 	update_cr8_intercept(vcpu);
7455 
7456 	/* Older userspace won't unhalt the vcpu on reset. */
7457 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7458 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7459 	    !is_protmode(vcpu))
7460 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7461 
7462 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7463 
7464 	return 0;
7465 }
7466 
7467 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7468 					struct kvm_guest_debug *dbg)
7469 {
7470 	unsigned long rflags;
7471 	int i, r;
7472 
7473 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7474 		r = -EBUSY;
7475 		if (vcpu->arch.exception.pending)
7476 			goto out;
7477 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7478 			kvm_queue_exception(vcpu, DB_VECTOR);
7479 		else
7480 			kvm_queue_exception(vcpu, BP_VECTOR);
7481 	}
7482 
7483 	/*
7484 	 * Read rflags as long as potentially injected trace flags are still
7485 	 * filtered out.
7486 	 */
7487 	rflags = kvm_get_rflags(vcpu);
7488 
7489 	vcpu->guest_debug = dbg->control;
7490 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7491 		vcpu->guest_debug = 0;
7492 
7493 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7494 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
7495 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7496 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7497 	} else {
7498 		for (i = 0; i < KVM_NR_DB_REGS; i++)
7499 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7500 	}
7501 	kvm_update_dr7(vcpu);
7502 
7503 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7504 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7505 			get_segment_base(vcpu, VCPU_SREG_CS);
7506 
7507 	/*
7508 	 * Trigger an rflags update that will inject or remove the trace
7509 	 * flags.
7510 	 */
7511 	kvm_set_rflags(vcpu, rflags);
7512 
7513 	kvm_x86_ops->update_bp_intercept(vcpu);
7514 
7515 	r = 0;
7516 
7517 out:
7518 
7519 	return r;
7520 }
7521 
7522 /*
7523  * Translate a guest virtual address to a guest physical address.
7524  */
7525 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7526 				    struct kvm_translation *tr)
7527 {
7528 	unsigned long vaddr = tr->linear_address;
7529 	gpa_t gpa;
7530 	int idx;
7531 
7532 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7533 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7534 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7535 	tr->physical_address = gpa;
7536 	tr->valid = gpa != UNMAPPED_GVA;
7537 	tr->writeable = 1;
7538 	tr->usermode = 0;
7539 
7540 	return 0;
7541 }
7542 
7543 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7544 {
7545 	struct fxregs_state *fxsave =
7546 			&vcpu->arch.guest_fpu.state.fxsave;
7547 
7548 	memcpy(fpu->fpr, fxsave->st_space, 128);
7549 	fpu->fcw = fxsave->cwd;
7550 	fpu->fsw = fxsave->swd;
7551 	fpu->ftwx = fxsave->twd;
7552 	fpu->last_opcode = fxsave->fop;
7553 	fpu->last_ip = fxsave->rip;
7554 	fpu->last_dp = fxsave->rdp;
7555 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7556 
7557 	return 0;
7558 }
7559 
7560 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7561 {
7562 	struct fxregs_state *fxsave =
7563 			&vcpu->arch.guest_fpu.state.fxsave;
7564 
7565 	memcpy(fxsave->st_space, fpu->fpr, 128);
7566 	fxsave->cwd = fpu->fcw;
7567 	fxsave->swd = fpu->fsw;
7568 	fxsave->twd = fpu->ftwx;
7569 	fxsave->fop = fpu->last_opcode;
7570 	fxsave->rip = fpu->last_ip;
7571 	fxsave->rdp = fpu->last_dp;
7572 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7573 
7574 	return 0;
7575 }
7576 
7577 static void fx_init(struct kvm_vcpu *vcpu)
7578 {
7579 	fpstate_init(&vcpu->arch.guest_fpu.state);
7580 	if (boot_cpu_has(X86_FEATURE_XSAVES))
7581 		vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7582 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
7583 
7584 	/*
7585 	 * Ensure guest xcr0 is valid for loading
7586 	 */
7587 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7588 
7589 	vcpu->arch.cr0 |= X86_CR0_ET;
7590 }
7591 
7592 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7593 {
7594 	if (vcpu->guest_fpu_loaded)
7595 		return;
7596 
7597 	/*
7598 	 * Restore all possible states in the guest,
7599 	 * and assume host would use all available bits.
7600 	 * Guest xcr0 would be loaded later.
7601 	 */
7602 	vcpu->guest_fpu_loaded = 1;
7603 	__kernel_fpu_begin();
7604 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7605 	trace_kvm_fpu(1);
7606 }
7607 
7608 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7609 {
7610 	if (!vcpu->guest_fpu_loaded)
7611 		return;
7612 
7613 	vcpu->guest_fpu_loaded = 0;
7614 	copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7615 	__kernel_fpu_end();
7616 	++vcpu->stat.fpu_reload;
7617 	trace_kvm_fpu(0);
7618 }
7619 
7620 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7621 {
7622 	void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7623 
7624 	kvmclock_reset(vcpu);
7625 
7626 	kvm_x86_ops->vcpu_free(vcpu);
7627 	free_cpumask_var(wbinvd_dirty_mask);
7628 }
7629 
7630 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7631 						unsigned int id)
7632 {
7633 	struct kvm_vcpu *vcpu;
7634 
7635 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7636 		printk_once(KERN_WARNING
7637 		"kvm: SMP vm created on host with unstable TSC; "
7638 		"guest TSC will not be reliable\n");
7639 
7640 	vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7641 
7642 	return vcpu;
7643 }
7644 
7645 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7646 {
7647 	int r;
7648 
7649 	kvm_vcpu_mtrr_init(vcpu);
7650 	r = vcpu_load(vcpu);
7651 	if (r)
7652 		return r;
7653 	kvm_vcpu_reset(vcpu, false);
7654 	kvm_mmu_setup(vcpu);
7655 	vcpu_put(vcpu);
7656 	return r;
7657 }
7658 
7659 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7660 {
7661 	struct msr_data msr;
7662 	struct kvm *kvm = vcpu->kvm;
7663 
7664 	if (vcpu_load(vcpu))
7665 		return;
7666 	msr.data = 0x0;
7667 	msr.index = MSR_IA32_TSC;
7668 	msr.host_initiated = true;
7669 	kvm_write_tsc(vcpu, &msr);
7670 	vcpu_put(vcpu);
7671 
7672 	if (!kvmclock_periodic_sync)
7673 		return;
7674 
7675 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7676 					KVMCLOCK_SYNC_PERIOD);
7677 }
7678 
7679 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7680 {
7681 	int r;
7682 	vcpu->arch.apf.msr_val = 0;
7683 
7684 	r = vcpu_load(vcpu);
7685 	BUG_ON(r);
7686 	kvm_mmu_unload(vcpu);
7687 	vcpu_put(vcpu);
7688 
7689 	kvm_x86_ops->vcpu_free(vcpu);
7690 }
7691 
7692 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7693 {
7694 	vcpu->arch.hflags = 0;
7695 
7696 	vcpu->arch.smi_pending = 0;
7697 	atomic_set(&vcpu->arch.nmi_queued, 0);
7698 	vcpu->arch.nmi_pending = 0;
7699 	vcpu->arch.nmi_injected = false;
7700 	kvm_clear_interrupt_queue(vcpu);
7701 	kvm_clear_exception_queue(vcpu);
7702 
7703 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7704 	kvm_update_dr0123(vcpu);
7705 	vcpu->arch.dr6 = DR6_INIT;
7706 	kvm_update_dr6(vcpu);
7707 	vcpu->arch.dr7 = DR7_FIXED_1;
7708 	kvm_update_dr7(vcpu);
7709 
7710 	vcpu->arch.cr2 = 0;
7711 
7712 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7713 	vcpu->arch.apf.msr_val = 0;
7714 	vcpu->arch.st.msr_val = 0;
7715 
7716 	kvmclock_reset(vcpu);
7717 
7718 	kvm_clear_async_pf_completion_queue(vcpu);
7719 	kvm_async_pf_hash_reset(vcpu);
7720 	vcpu->arch.apf.halted = false;
7721 
7722 	if (!init_event) {
7723 		kvm_pmu_reset(vcpu);
7724 		vcpu->arch.smbase = 0x30000;
7725 	}
7726 
7727 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7728 	vcpu->arch.regs_avail = ~0;
7729 	vcpu->arch.regs_dirty = ~0;
7730 
7731 	kvm_x86_ops->vcpu_reset(vcpu, init_event);
7732 }
7733 
7734 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7735 {
7736 	struct kvm_segment cs;
7737 
7738 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7739 	cs.selector = vector << 8;
7740 	cs.base = vector << 12;
7741 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7742 	kvm_rip_write(vcpu, 0);
7743 }
7744 
7745 int kvm_arch_hardware_enable(void)
7746 {
7747 	struct kvm *kvm;
7748 	struct kvm_vcpu *vcpu;
7749 	int i;
7750 	int ret;
7751 	u64 local_tsc;
7752 	u64 max_tsc = 0;
7753 	bool stable, backwards_tsc = false;
7754 
7755 	kvm_shared_msr_cpu_online();
7756 	ret = kvm_x86_ops->hardware_enable();
7757 	if (ret != 0)
7758 		return ret;
7759 
7760 	local_tsc = rdtsc();
7761 	stable = !check_tsc_unstable();
7762 	list_for_each_entry(kvm, &vm_list, vm_list) {
7763 		kvm_for_each_vcpu(i, vcpu, kvm) {
7764 			if (!stable && vcpu->cpu == smp_processor_id())
7765 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7766 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7767 				backwards_tsc = true;
7768 				if (vcpu->arch.last_host_tsc > max_tsc)
7769 					max_tsc = vcpu->arch.last_host_tsc;
7770 			}
7771 		}
7772 	}
7773 
7774 	/*
7775 	 * Sometimes, even reliable TSCs go backwards.  This happens on
7776 	 * platforms that reset TSC during suspend or hibernate actions, but
7777 	 * maintain synchronization.  We must compensate.  Fortunately, we can
7778 	 * detect that condition here, which happens early in CPU bringup,
7779 	 * before any KVM threads can be running.  Unfortunately, we can't
7780 	 * bring the TSCs fully up to date with real time, as we aren't yet far
7781 	 * enough into CPU bringup that we know how much real time has actually
7782 	 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7783 	 * variables that haven't been updated yet.
7784 	 *
7785 	 * So we simply find the maximum observed TSC above, then record the
7786 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7787 	 * the adjustment will be applied.  Note that we accumulate
7788 	 * adjustments, in case multiple suspend cycles happen before some VCPU
7789 	 * gets a chance to run again.  In the event that no KVM threads get a
7790 	 * chance to run, we will miss the entire elapsed period, as we'll have
7791 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7792 	 * loose cycle time.  This isn't too big a deal, since the loss will be
7793 	 * uniform across all VCPUs (not to mention the scenario is extremely
7794 	 * unlikely). It is possible that a second hibernate recovery happens
7795 	 * much faster than a first, causing the observed TSC here to be
7796 	 * smaller; this would require additional padding adjustment, which is
7797 	 * why we set last_host_tsc to the local tsc observed here.
7798 	 *
7799 	 * N.B. - this code below runs only on platforms with reliable TSC,
7800 	 * as that is the only way backwards_tsc is set above.  Also note
7801 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7802 	 * have the same delta_cyc adjustment applied if backwards_tsc
7803 	 * is detected.  Note further, this adjustment is only done once,
7804 	 * as we reset last_host_tsc on all VCPUs to stop this from being
7805 	 * called multiple times (one for each physical CPU bringup).
7806 	 *
7807 	 * Platforms with unreliable TSCs don't have to deal with this, they
7808 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
7809 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
7810 	 * guarantee that they stay in perfect synchronization.
7811 	 */
7812 	if (backwards_tsc) {
7813 		u64 delta_cyc = max_tsc - local_tsc;
7814 		backwards_tsc_observed = true;
7815 		list_for_each_entry(kvm, &vm_list, vm_list) {
7816 			kvm_for_each_vcpu(i, vcpu, kvm) {
7817 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
7818 				vcpu->arch.last_host_tsc = local_tsc;
7819 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7820 			}
7821 
7822 			/*
7823 			 * We have to disable TSC offset matching.. if you were
7824 			 * booting a VM while issuing an S4 host suspend....
7825 			 * you may have some problem.  Solving this issue is
7826 			 * left as an exercise to the reader.
7827 			 */
7828 			kvm->arch.last_tsc_nsec = 0;
7829 			kvm->arch.last_tsc_write = 0;
7830 		}
7831 
7832 	}
7833 	return 0;
7834 }
7835 
7836 void kvm_arch_hardware_disable(void)
7837 {
7838 	kvm_x86_ops->hardware_disable();
7839 	drop_user_return_notifiers();
7840 }
7841 
7842 int kvm_arch_hardware_setup(void)
7843 {
7844 	int r;
7845 
7846 	r = kvm_x86_ops->hardware_setup();
7847 	if (r != 0)
7848 		return r;
7849 
7850 	if (kvm_has_tsc_control) {
7851 		/*
7852 		 * Make sure the user can only configure tsc_khz values that
7853 		 * fit into a signed integer.
7854 		 * A min value is not calculated needed because it will always
7855 		 * be 1 on all machines.
7856 		 */
7857 		u64 max = min(0x7fffffffULL,
7858 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7859 		kvm_max_guest_tsc_khz = max;
7860 
7861 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7862 	}
7863 
7864 	kvm_init_msr_list();
7865 	return 0;
7866 }
7867 
7868 void kvm_arch_hardware_unsetup(void)
7869 {
7870 	kvm_x86_ops->hardware_unsetup();
7871 }
7872 
7873 void kvm_arch_check_processor_compat(void *rtn)
7874 {
7875 	kvm_x86_ops->check_processor_compatibility(rtn);
7876 }
7877 
7878 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7879 {
7880 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7881 }
7882 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7883 
7884 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7885 {
7886 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7887 }
7888 
7889 struct static_key kvm_no_apic_vcpu __read_mostly;
7890 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7891 
7892 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7893 {
7894 	struct page *page;
7895 	struct kvm *kvm;
7896 	int r;
7897 
7898 	BUG_ON(vcpu->kvm == NULL);
7899 	kvm = vcpu->kvm;
7900 
7901 	vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7902 	vcpu->arch.pv.pv_unhalted = false;
7903 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7904 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7905 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7906 	else
7907 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7908 
7909 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7910 	if (!page) {
7911 		r = -ENOMEM;
7912 		goto fail;
7913 	}
7914 	vcpu->arch.pio_data = page_address(page);
7915 
7916 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
7917 
7918 	r = kvm_mmu_create(vcpu);
7919 	if (r < 0)
7920 		goto fail_free_pio_data;
7921 
7922 	if (irqchip_in_kernel(kvm)) {
7923 		r = kvm_create_lapic(vcpu);
7924 		if (r < 0)
7925 			goto fail_mmu_destroy;
7926 	} else
7927 		static_key_slow_inc(&kvm_no_apic_vcpu);
7928 
7929 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7930 				       GFP_KERNEL);
7931 	if (!vcpu->arch.mce_banks) {
7932 		r = -ENOMEM;
7933 		goto fail_free_lapic;
7934 	}
7935 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7936 
7937 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7938 		r = -ENOMEM;
7939 		goto fail_free_mce_banks;
7940 	}
7941 
7942 	fx_init(vcpu);
7943 
7944 	vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7945 	vcpu->arch.pv_time_enabled = false;
7946 
7947 	vcpu->arch.guest_supported_xcr0 = 0;
7948 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7949 
7950 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7951 
7952 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7953 
7954 	kvm_async_pf_hash_reset(vcpu);
7955 	kvm_pmu_init(vcpu);
7956 
7957 	vcpu->arch.pending_external_vector = -1;
7958 
7959 	kvm_hv_vcpu_init(vcpu);
7960 
7961 	return 0;
7962 
7963 fail_free_mce_banks:
7964 	kfree(vcpu->arch.mce_banks);
7965 fail_free_lapic:
7966 	kvm_free_lapic(vcpu);
7967 fail_mmu_destroy:
7968 	kvm_mmu_destroy(vcpu);
7969 fail_free_pio_data:
7970 	free_page((unsigned long)vcpu->arch.pio_data);
7971 fail:
7972 	return r;
7973 }
7974 
7975 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7976 {
7977 	int idx;
7978 
7979 	kvm_hv_vcpu_uninit(vcpu);
7980 	kvm_pmu_destroy(vcpu);
7981 	kfree(vcpu->arch.mce_banks);
7982 	kvm_free_lapic(vcpu);
7983 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7984 	kvm_mmu_destroy(vcpu);
7985 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7986 	free_page((unsigned long)vcpu->arch.pio_data);
7987 	if (!lapic_in_kernel(vcpu))
7988 		static_key_slow_dec(&kvm_no_apic_vcpu);
7989 }
7990 
7991 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7992 {
7993 	kvm_x86_ops->sched_in(vcpu, cpu);
7994 }
7995 
7996 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7997 {
7998 	if (type)
7999 		return -EINVAL;
8000 
8001 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8002 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8003 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8004 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8005 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8006 
8007 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8008 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8009 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8010 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8011 		&kvm->arch.irq_sources_bitmap);
8012 
8013 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8014 	mutex_init(&kvm->arch.apic_map_lock);
8015 	mutex_init(&kvm->arch.hyperv.hv_lock);
8016 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8017 
8018 	kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8019 	pvclock_update_vm_gtod_copy(kvm);
8020 
8021 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8022 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8023 
8024 	kvm_page_track_init(kvm);
8025 	kvm_mmu_init_vm(kvm);
8026 
8027 	if (kvm_x86_ops->vm_init)
8028 		return kvm_x86_ops->vm_init(kvm);
8029 
8030 	return 0;
8031 }
8032 
8033 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8034 {
8035 	int r;
8036 	r = vcpu_load(vcpu);
8037 	BUG_ON(r);
8038 	kvm_mmu_unload(vcpu);
8039 	vcpu_put(vcpu);
8040 }
8041 
8042 static void kvm_free_vcpus(struct kvm *kvm)
8043 {
8044 	unsigned int i;
8045 	struct kvm_vcpu *vcpu;
8046 
8047 	/*
8048 	 * Unpin any mmu pages first.
8049 	 */
8050 	kvm_for_each_vcpu(i, vcpu, kvm) {
8051 		kvm_clear_async_pf_completion_queue(vcpu);
8052 		kvm_unload_vcpu_mmu(vcpu);
8053 	}
8054 	kvm_for_each_vcpu(i, vcpu, kvm)
8055 		kvm_arch_vcpu_free(vcpu);
8056 
8057 	mutex_lock(&kvm->lock);
8058 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8059 		kvm->vcpus[i] = NULL;
8060 
8061 	atomic_set(&kvm->online_vcpus, 0);
8062 	mutex_unlock(&kvm->lock);
8063 }
8064 
8065 void kvm_arch_sync_events(struct kvm *kvm)
8066 {
8067 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8068 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8069 	kvm_free_all_assigned_devices(kvm);
8070 	kvm_free_pit(kvm);
8071 }
8072 
8073 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8074 {
8075 	int i, r;
8076 	unsigned long hva;
8077 	struct kvm_memslots *slots = kvm_memslots(kvm);
8078 	struct kvm_memory_slot *slot, old;
8079 
8080 	/* Called with kvm->slots_lock held.  */
8081 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8082 		return -EINVAL;
8083 
8084 	slot = id_to_memslot(slots, id);
8085 	if (size) {
8086 		if (slot->npages)
8087 			return -EEXIST;
8088 
8089 		/*
8090 		 * MAP_SHARED to prevent internal slot pages from being moved
8091 		 * by fork()/COW.
8092 		 */
8093 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8094 			      MAP_SHARED | MAP_ANONYMOUS, 0);
8095 		if (IS_ERR((void *)hva))
8096 			return PTR_ERR((void *)hva);
8097 	} else {
8098 		if (!slot->npages)
8099 			return 0;
8100 
8101 		hva = 0;
8102 	}
8103 
8104 	old = *slot;
8105 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8106 		struct kvm_userspace_memory_region m;
8107 
8108 		m.slot = id | (i << 16);
8109 		m.flags = 0;
8110 		m.guest_phys_addr = gpa;
8111 		m.userspace_addr = hva;
8112 		m.memory_size = size;
8113 		r = __kvm_set_memory_region(kvm, &m);
8114 		if (r < 0)
8115 			return r;
8116 	}
8117 
8118 	if (!size) {
8119 		r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8120 		WARN_ON(r < 0);
8121 	}
8122 
8123 	return 0;
8124 }
8125 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8126 
8127 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8128 {
8129 	int r;
8130 
8131 	mutex_lock(&kvm->slots_lock);
8132 	r = __x86_set_memory_region(kvm, id, gpa, size);
8133 	mutex_unlock(&kvm->slots_lock);
8134 
8135 	return r;
8136 }
8137 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8138 
8139 void kvm_arch_destroy_vm(struct kvm *kvm)
8140 {
8141 	if (current->mm == kvm->mm) {
8142 		/*
8143 		 * Free memory regions allocated on behalf of userspace,
8144 		 * unless the the memory map has changed due to process exit
8145 		 * or fd copying.
8146 		 */
8147 		x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8148 		x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8149 		x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8150 	}
8151 	if (kvm_x86_ops->vm_destroy)
8152 		kvm_x86_ops->vm_destroy(kvm);
8153 	kvm_iommu_unmap_guest(kvm);
8154 	kfree(kvm->arch.vpic);
8155 	kfree(kvm->arch.vioapic);
8156 	kvm_free_vcpus(kvm);
8157 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8158 	kvm_mmu_uninit_vm(kvm);
8159 }
8160 
8161 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8162 			   struct kvm_memory_slot *dont)
8163 {
8164 	int i;
8165 
8166 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8167 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8168 			kvfree(free->arch.rmap[i]);
8169 			free->arch.rmap[i] = NULL;
8170 		}
8171 		if (i == 0)
8172 			continue;
8173 
8174 		if (!dont || free->arch.lpage_info[i - 1] !=
8175 			     dont->arch.lpage_info[i - 1]) {
8176 			kvfree(free->arch.lpage_info[i - 1]);
8177 			free->arch.lpage_info[i - 1] = NULL;
8178 		}
8179 	}
8180 
8181 	kvm_page_track_free_memslot(free, dont);
8182 }
8183 
8184 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8185 			    unsigned long npages)
8186 {
8187 	int i;
8188 
8189 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8190 		struct kvm_lpage_info *linfo;
8191 		unsigned long ugfn;
8192 		int lpages;
8193 		int level = i + 1;
8194 
8195 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
8196 				      slot->base_gfn, level) + 1;
8197 
8198 		slot->arch.rmap[i] =
8199 			kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
8200 		if (!slot->arch.rmap[i])
8201 			goto out_free;
8202 		if (i == 0)
8203 			continue;
8204 
8205 		linfo = kvm_kvzalloc(lpages * sizeof(*linfo));
8206 		if (!linfo)
8207 			goto out_free;
8208 
8209 		slot->arch.lpage_info[i - 1] = linfo;
8210 
8211 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8212 			linfo[0].disallow_lpage = 1;
8213 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8214 			linfo[lpages - 1].disallow_lpage = 1;
8215 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
8216 		/*
8217 		 * If the gfn and userspace address are not aligned wrt each
8218 		 * other, or if explicitly asked to, disable large page
8219 		 * support for this slot
8220 		 */
8221 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8222 		    !kvm_largepages_enabled()) {
8223 			unsigned long j;
8224 
8225 			for (j = 0; j < lpages; ++j)
8226 				linfo[j].disallow_lpage = 1;
8227 		}
8228 	}
8229 
8230 	if (kvm_page_track_create_memslot(slot, npages))
8231 		goto out_free;
8232 
8233 	return 0;
8234 
8235 out_free:
8236 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8237 		kvfree(slot->arch.rmap[i]);
8238 		slot->arch.rmap[i] = NULL;
8239 		if (i == 0)
8240 			continue;
8241 
8242 		kvfree(slot->arch.lpage_info[i - 1]);
8243 		slot->arch.lpage_info[i - 1] = NULL;
8244 	}
8245 	return -ENOMEM;
8246 }
8247 
8248 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8249 {
8250 	/*
8251 	 * memslots->generation has been incremented.
8252 	 * mmio generation may have reached its maximum value.
8253 	 */
8254 	kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8255 }
8256 
8257 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8258 				struct kvm_memory_slot *memslot,
8259 				const struct kvm_userspace_memory_region *mem,
8260 				enum kvm_mr_change change)
8261 {
8262 	return 0;
8263 }
8264 
8265 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8266 				     struct kvm_memory_slot *new)
8267 {
8268 	/* Still write protect RO slot */
8269 	if (new->flags & KVM_MEM_READONLY) {
8270 		kvm_mmu_slot_remove_write_access(kvm, new);
8271 		return;
8272 	}
8273 
8274 	/*
8275 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
8276 	 *
8277 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
8278 	 *
8279 	 *  - KVM_MR_CREATE with dirty logging is disabled
8280 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8281 	 *
8282 	 * The reason is, in case of PML, we need to set D-bit for any slots
8283 	 * with dirty logging disabled in order to eliminate unnecessary GPA
8284 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
8285 	 * guarantees leaving PML enabled during guest's lifetime won't have
8286 	 * any additonal overhead from PML when guest is running with dirty
8287 	 * logging disabled for memory slots.
8288 	 *
8289 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8290 	 * to dirty logging mode.
8291 	 *
8292 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8293 	 *
8294 	 * In case of write protect:
8295 	 *
8296 	 * Write protect all pages for dirty logging.
8297 	 *
8298 	 * All the sptes including the large sptes which point to this
8299 	 * slot are set to readonly. We can not create any new large
8300 	 * spte on this slot until the end of the logging.
8301 	 *
8302 	 * See the comments in fast_page_fault().
8303 	 */
8304 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8305 		if (kvm_x86_ops->slot_enable_log_dirty)
8306 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8307 		else
8308 			kvm_mmu_slot_remove_write_access(kvm, new);
8309 	} else {
8310 		if (kvm_x86_ops->slot_disable_log_dirty)
8311 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8312 	}
8313 }
8314 
8315 void kvm_arch_commit_memory_region(struct kvm *kvm,
8316 				const struct kvm_userspace_memory_region *mem,
8317 				const struct kvm_memory_slot *old,
8318 				const struct kvm_memory_slot *new,
8319 				enum kvm_mr_change change)
8320 {
8321 	int nr_mmu_pages = 0;
8322 
8323 	if (!kvm->arch.n_requested_mmu_pages)
8324 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8325 
8326 	if (nr_mmu_pages)
8327 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8328 
8329 	/*
8330 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
8331 	 * sptes have to be split.  If live migration is successful, the guest
8332 	 * in the source machine will be destroyed and large sptes will be
8333 	 * created in the destination. However, if the guest continues to run
8334 	 * in the source machine (for example if live migration fails), small
8335 	 * sptes will remain around and cause bad performance.
8336 	 *
8337 	 * Scan sptes if dirty logging has been stopped, dropping those
8338 	 * which can be collapsed into a single large-page spte.  Later
8339 	 * page faults will create the large-page sptes.
8340 	 */
8341 	if ((change != KVM_MR_DELETE) &&
8342 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8343 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8344 		kvm_mmu_zap_collapsible_sptes(kvm, new);
8345 
8346 	/*
8347 	 * Set up write protection and/or dirty logging for the new slot.
8348 	 *
8349 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8350 	 * been zapped so no dirty logging staff is needed for old slot. For
8351 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8352 	 * new and it's also covered when dealing with the new slot.
8353 	 *
8354 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
8355 	 */
8356 	if (change != KVM_MR_DELETE)
8357 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8358 }
8359 
8360 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8361 {
8362 	kvm_mmu_invalidate_zap_all_pages(kvm);
8363 }
8364 
8365 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8366 				   struct kvm_memory_slot *slot)
8367 {
8368 	kvm_page_track_flush_slot(kvm, slot);
8369 }
8370 
8371 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8372 {
8373 	if (!list_empty_careful(&vcpu->async_pf.done))
8374 		return true;
8375 
8376 	if (kvm_apic_has_events(vcpu))
8377 		return true;
8378 
8379 	if (vcpu->arch.pv.pv_unhalted)
8380 		return true;
8381 
8382 	if (atomic_read(&vcpu->arch.nmi_queued))
8383 		return true;
8384 
8385 	if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8386 		return true;
8387 
8388 	if (kvm_arch_interrupt_allowed(vcpu) &&
8389 	    kvm_cpu_has_interrupt(vcpu))
8390 		return true;
8391 
8392 	if (kvm_hv_has_stimer_pending(vcpu))
8393 		return true;
8394 
8395 	return false;
8396 }
8397 
8398 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8399 {
8400 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8401 }
8402 
8403 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8404 {
8405 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8406 }
8407 
8408 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8409 {
8410 	return kvm_x86_ops->interrupt_allowed(vcpu);
8411 }
8412 
8413 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8414 {
8415 	if (is_64_bit_mode(vcpu))
8416 		return kvm_rip_read(vcpu);
8417 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8418 		     kvm_rip_read(vcpu));
8419 }
8420 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8421 
8422 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8423 {
8424 	return kvm_get_linear_rip(vcpu) == linear_rip;
8425 }
8426 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8427 
8428 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8429 {
8430 	unsigned long rflags;
8431 
8432 	rflags = kvm_x86_ops->get_rflags(vcpu);
8433 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8434 		rflags &= ~X86_EFLAGS_TF;
8435 	return rflags;
8436 }
8437 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8438 
8439 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8440 {
8441 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8442 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8443 		rflags |= X86_EFLAGS_TF;
8444 	kvm_x86_ops->set_rflags(vcpu, rflags);
8445 }
8446 
8447 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8448 {
8449 	__kvm_set_rflags(vcpu, rflags);
8450 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8451 }
8452 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8453 
8454 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8455 {
8456 	int r;
8457 
8458 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8459 	      work->wakeup_all)
8460 		return;
8461 
8462 	r = kvm_mmu_reload(vcpu);
8463 	if (unlikely(r))
8464 		return;
8465 
8466 	if (!vcpu->arch.mmu.direct_map &&
8467 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8468 		return;
8469 
8470 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8471 }
8472 
8473 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8474 {
8475 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8476 }
8477 
8478 static inline u32 kvm_async_pf_next_probe(u32 key)
8479 {
8480 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8481 }
8482 
8483 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8484 {
8485 	u32 key = kvm_async_pf_hash_fn(gfn);
8486 
8487 	while (vcpu->arch.apf.gfns[key] != ~0)
8488 		key = kvm_async_pf_next_probe(key);
8489 
8490 	vcpu->arch.apf.gfns[key] = gfn;
8491 }
8492 
8493 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8494 {
8495 	int i;
8496 	u32 key = kvm_async_pf_hash_fn(gfn);
8497 
8498 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8499 		     (vcpu->arch.apf.gfns[key] != gfn &&
8500 		      vcpu->arch.apf.gfns[key] != ~0); i++)
8501 		key = kvm_async_pf_next_probe(key);
8502 
8503 	return key;
8504 }
8505 
8506 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8507 {
8508 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8509 }
8510 
8511 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8512 {
8513 	u32 i, j, k;
8514 
8515 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8516 	while (true) {
8517 		vcpu->arch.apf.gfns[i] = ~0;
8518 		do {
8519 			j = kvm_async_pf_next_probe(j);
8520 			if (vcpu->arch.apf.gfns[j] == ~0)
8521 				return;
8522 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8523 			/*
8524 			 * k lies cyclically in ]i,j]
8525 			 * |    i.k.j |
8526 			 * |....j i.k.| or  |.k..j i...|
8527 			 */
8528 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8529 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8530 		i = j;
8531 	}
8532 }
8533 
8534 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8535 {
8536 	return kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.apf.data, &val,
8537 					   sizeof(val));
8538 }
8539 
8540 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8541 				     struct kvm_async_pf *work)
8542 {
8543 	struct x86_exception fault;
8544 
8545 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8546 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8547 
8548 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8549 	    (vcpu->arch.apf.send_user_only &&
8550 	     kvm_x86_ops->get_cpl(vcpu) == 0))
8551 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8552 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8553 		fault.vector = PF_VECTOR;
8554 		fault.error_code_valid = true;
8555 		fault.error_code = 0;
8556 		fault.nested_page_fault = false;
8557 		fault.address = work->arch.token;
8558 		kvm_inject_page_fault(vcpu, &fault);
8559 	}
8560 }
8561 
8562 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8563 				 struct kvm_async_pf *work)
8564 {
8565 	struct x86_exception fault;
8566 
8567 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
8568 	if (work->wakeup_all)
8569 		work->arch.token = ~0; /* broadcast wakeup */
8570 	else
8571 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8572 
8573 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8574 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8575 		fault.vector = PF_VECTOR;
8576 		fault.error_code_valid = true;
8577 		fault.error_code = 0;
8578 		fault.nested_page_fault = false;
8579 		fault.address = work->arch.token;
8580 		kvm_inject_page_fault(vcpu, &fault);
8581 	}
8582 	vcpu->arch.apf.halted = false;
8583 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8584 }
8585 
8586 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8587 {
8588 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8589 		return true;
8590 	else
8591 		return !kvm_event_needs_reinjection(vcpu) &&
8592 			kvm_x86_ops->interrupt_allowed(vcpu);
8593 }
8594 
8595 void kvm_arch_start_assignment(struct kvm *kvm)
8596 {
8597 	atomic_inc(&kvm->arch.assigned_device_count);
8598 }
8599 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8600 
8601 void kvm_arch_end_assignment(struct kvm *kvm)
8602 {
8603 	atomic_dec(&kvm->arch.assigned_device_count);
8604 }
8605 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8606 
8607 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8608 {
8609 	return atomic_read(&kvm->arch.assigned_device_count);
8610 }
8611 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8612 
8613 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8614 {
8615 	atomic_inc(&kvm->arch.noncoherent_dma_count);
8616 }
8617 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8618 
8619 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8620 {
8621 	atomic_dec(&kvm->arch.noncoherent_dma_count);
8622 }
8623 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8624 
8625 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8626 {
8627 	return atomic_read(&kvm->arch.noncoherent_dma_count);
8628 }
8629 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8630 
8631 bool kvm_arch_has_irq_bypass(void)
8632 {
8633 	return kvm_x86_ops->update_pi_irte != NULL;
8634 }
8635 
8636 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8637 				      struct irq_bypass_producer *prod)
8638 {
8639 	struct kvm_kernel_irqfd *irqfd =
8640 		container_of(cons, struct kvm_kernel_irqfd, consumer);
8641 
8642 	irqfd->producer = prod;
8643 
8644 	return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8645 					   prod->irq, irqfd->gsi, 1);
8646 }
8647 
8648 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8649 				      struct irq_bypass_producer *prod)
8650 {
8651 	int ret;
8652 	struct kvm_kernel_irqfd *irqfd =
8653 		container_of(cons, struct kvm_kernel_irqfd, consumer);
8654 
8655 	WARN_ON(irqfd->producer != prod);
8656 	irqfd->producer = NULL;
8657 
8658 	/*
8659 	 * When producer of consumer is unregistered, we change back to
8660 	 * remapped mode, so we can re-use the current implementation
8661 	 * when the irq is masked/disabled or the consumer side (KVM
8662 	 * int this case doesn't want to receive the interrupts.
8663 	*/
8664 	ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8665 	if (ret)
8666 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8667 		       " fails: %d\n", irqfd->consumer.token, ret);
8668 }
8669 
8670 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8671 				   uint32_t guest_irq, bool set)
8672 {
8673 	if (!kvm_x86_ops->update_pi_irte)
8674 		return -EINVAL;
8675 
8676 	return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8677 }
8678 
8679 bool kvm_vector_hashing_enabled(void)
8680 {
8681 	return vector_hashing;
8682 }
8683 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8684 
8685 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8686 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8687 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8688 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8689 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8690 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8691 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8692 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8693 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8694 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8695 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8696 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8697 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8698 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8699 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8700 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8701 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8702 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8703 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
8704