1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * derived from drivers/kvm/kvm_main.c 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2008 Qumranet, Inc. 8 * Copyright IBM Corporation, 2008 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 * Amit Shah <amit.shah@qumranet.com> 15 * Ben-Ami Yassour <benami@il.ibm.com> 16 * 17 * This work is licensed under the terms of the GNU GPL, version 2. See 18 * the COPYING file in the top-level directory. 19 * 20 */ 21 22 #include <linux/kvm_host.h> 23 #include "irq.h" 24 #include "mmu.h" 25 #include "i8254.h" 26 #include "tss.h" 27 #include "kvm_cache_regs.h" 28 #include "x86.h" 29 #include "cpuid.h" 30 #include "assigned-dev.h" 31 #include "pmu.h" 32 #include "hyperv.h" 33 34 #include <linux/clocksource.h> 35 #include <linux/interrupt.h> 36 #include <linux/kvm.h> 37 #include <linux/fs.h> 38 #include <linux/vmalloc.h> 39 #include <linux/export.h> 40 #include <linux/moduleparam.h> 41 #include <linux/mman.h> 42 #include <linux/highmem.h> 43 #include <linux/iommu.h> 44 #include <linux/intel-iommu.h> 45 #include <linux/cpufreq.h> 46 #include <linux/user-return-notifier.h> 47 #include <linux/srcu.h> 48 #include <linux/slab.h> 49 #include <linux/perf_event.h> 50 #include <linux/uaccess.h> 51 #include <linux/hash.h> 52 #include <linux/pci.h> 53 #include <linux/timekeeper_internal.h> 54 #include <linux/pvclock_gtod.h> 55 #include <linux/kvm_irqfd.h> 56 #include <linux/irqbypass.h> 57 #include <trace/events/kvm.h> 58 59 #include <asm/debugreg.h> 60 #include <asm/msr.h> 61 #include <asm/desc.h> 62 #include <asm/mce.h> 63 #include <linux/kernel_stat.h> 64 #include <asm/fpu/internal.h> /* Ugh! */ 65 #include <asm/pvclock.h> 66 #include <asm/div64.h> 67 #include <asm/irq_remapping.h> 68 69 #define CREATE_TRACE_POINTS 70 #include "trace.h" 71 72 #define MAX_IO_MSRS 256 73 #define KVM_MAX_MCE_BANKS 32 74 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P; 75 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported); 76 77 #define emul_to_vcpu(ctxt) \ 78 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt) 79 80 /* EFER defaults: 81 * - enable syscall per default because its emulated by KVM 82 * - enable LME and LMA per default on 64 bit KVM 83 */ 84 #ifdef CONFIG_X86_64 85 static 86 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 87 #else 88 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 89 #endif 90 91 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM 92 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU 93 94 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 95 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 96 97 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 98 static void process_nmi(struct kvm_vcpu *vcpu); 99 static void enter_smm(struct kvm_vcpu *vcpu); 100 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 101 102 struct kvm_x86_ops *kvm_x86_ops __read_mostly; 103 EXPORT_SYMBOL_GPL(kvm_x86_ops); 104 105 static bool __read_mostly ignore_msrs = 0; 106 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 107 108 unsigned int min_timer_period_us = 500; 109 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 110 111 static bool __read_mostly kvmclock_periodic_sync = true; 112 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 113 114 bool __read_mostly kvm_has_tsc_control; 115 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 116 u32 __read_mostly kvm_max_guest_tsc_khz; 117 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 118 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits; 119 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits); 120 u64 __read_mostly kvm_max_tsc_scaling_ratio; 121 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio); 122 u64 __read_mostly kvm_default_tsc_scaling_ratio; 123 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio); 124 125 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 126 static u32 __read_mostly tsc_tolerance_ppm = 250; 127 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 128 129 /* lapic timer advance (tscdeadline mode only) in nanoseconds */ 130 unsigned int __read_mostly lapic_timer_advance_ns = 0; 131 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR); 132 133 static bool __read_mostly vector_hashing = true; 134 module_param(vector_hashing, bool, S_IRUGO); 135 136 static bool __read_mostly backwards_tsc_observed = false; 137 138 #define KVM_NR_SHARED_MSRS 16 139 140 struct kvm_shared_msrs_global { 141 int nr; 142 u32 msrs[KVM_NR_SHARED_MSRS]; 143 }; 144 145 struct kvm_shared_msrs { 146 struct user_return_notifier urn; 147 bool registered; 148 struct kvm_shared_msr_values { 149 u64 host; 150 u64 curr; 151 } values[KVM_NR_SHARED_MSRS]; 152 }; 153 154 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; 155 static struct kvm_shared_msrs __percpu *shared_msrs; 156 157 struct kvm_stats_debugfs_item debugfs_entries[] = { 158 { "pf_fixed", VCPU_STAT(pf_fixed) }, 159 { "pf_guest", VCPU_STAT(pf_guest) }, 160 { "tlb_flush", VCPU_STAT(tlb_flush) }, 161 { "invlpg", VCPU_STAT(invlpg) }, 162 { "exits", VCPU_STAT(exits) }, 163 { "io_exits", VCPU_STAT(io_exits) }, 164 { "mmio_exits", VCPU_STAT(mmio_exits) }, 165 { "signal_exits", VCPU_STAT(signal_exits) }, 166 { "irq_window", VCPU_STAT(irq_window_exits) }, 167 { "nmi_window", VCPU_STAT(nmi_window_exits) }, 168 { "halt_exits", VCPU_STAT(halt_exits) }, 169 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) }, 170 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) }, 171 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) }, 172 { "halt_wakeup", VCPU_STAT(halt_wakeup) }, 173 { "hypercalls", VCPU_STAT(hypercalls) }, 174 { "request_irq", VCPU_STAT(request_irq_exits) }, 175 { "irq_exits", VCPU_STAT(irq_exits) }, 176 { "host_state_reload", VCPU_STAT(host_state_reload) }, 177 { "efer_reload", VCPU_STAT(efer_reload) }, 178 { "fpu_reload", VCPU_STAT(fpu_reload) }, 179 { "insn_emulation", VCPU_STAT(insn_emulation) }, 180 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, 181 { "irq_injections", VCPU_STAT(irq_injections) }, 182 { "nmi_injections", VCPU_STAT(nmi_injections) }, 183 { "req_event", VCPU_STAT(req_event) }, 184 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, 185 { "mmu_pte_write", VM_STAT(mmu_pte_write) }, 186 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, 187 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, 188 { "mmu_flooded", VM_STAT(mmu_flooded) }, 189 { "mmu_recycled", VM_STAT(mmu_recycled) }, 190 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, 191 { "mmu_unsync", VM_STAT(mmu_unsync) }, 192 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, 193 { "largepages", VM_STAT(lpages) }, 194 { "max_mmu_page_hash_collisions", 195 VM_STAT(max_mmu_page_hash_collisions) }, 196 { NULL } 197 }; 198 199 u64 __read_mostly host_xcr0; 200 201 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 202 203 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 204 { 205 int i; 206 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) 207 vcpu->arch.apf.gfns[i] = ~0; 208 } 209 210 static void kvm_on_user_return(struct user_return_notifier *urn) 211 { 212 unsigned slot; 213 struct kvm_shared_msrs *locals 214 = container_of(urn, struct kvm_shared_msrs, urn); 215 struct kvm_shared_msr_values *values; 216 unsigned long flags; 217 218 /* 219 * Disabling irqs at this point since the following code could be 220 * interrupted and executed through kvm_arch_hardware_disable() 221 */ 222 local_irq_save(flags); 223 if (locals->registered) { 224 locals->registered = false; 225 user_return_notifier_unregister(urn); 226 } 227 local_irq_restore(flags); 228 for (slot = 0; slot < shared_msrs_global.nr; ++slot) { 229 values = &locals->values[slot]; 230 if (values->host != values->curr) { 231 wrmsrl(shared_msrs_global.msrs[slot], values->host); 232 values->curr = values->host; 233 } 234 } 235 } 236 237 static void shared_msr_update(unsigned slot, u32 msr) 238 { 239 u64 value; 240 unsigned int cpu = smp_processor_id(); 241 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 242 243 /* only read, and nobody should modify it at this time, 244 * so don't need lock */ 245 if (slot >= shared_msrs_global.nr) { 246 printk(KERN_ERR "kvm: invalid MSR slot!"); 247 return; 248 } 249 rdmsrl_safe(msr, &value); 250 smsr->values[slot].host = value; 251 smsr->values[slot].curr = value; 252 } 253 254 void kvm_define_shared_msr(unsigned slot, u32 msr) 255 { 256 BUG_ON(slot >= KVM_NR_SHARED_MSRS); 257 shared_msrs_global.msrs[slot] = msr; 258 if (slot >= shared_msrs_global.nr) 259 shared_msrs_global.nr = slot + 1; 260 } 261 EXPORT_SYMBOL_GPL(kvm_define_shared_msr); 262 263 static void kvm_shared_msr_cpu_online(void) 264 { 265 unsigned i; 266 267 for (i = 0; i < shared_msrs_global.nr; ++i) 268 shared_msr_update(i, shared_msrs_global.msrs[i]); 269 } 270 271 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) 272 { 273 unsigned int cpu = smp_processor_id(); 274 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 275 int err; 276 277 if (((value ^ smsr->values[slot].curr) & mask) == 0) 278 return 0; 279 smsr->values[slot].curr = value; 280 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value); 281 if (err) 282 return 1; 283 284 if (!smsr->registered) { 285 smsr->urn.on_user_return = kvm_on_user_return; 286 user_return_notifier_register(&smsr->urn); 287 smsr->registered = true; 288 } 289 return 0; 290 } 291 EXPORT_SYMBOL_GPL(kvm_set_shared_msr); 292 293 static void drop_user_return_notifiers(void) 294 { 295 unsigned int cpu = smp_processor_id(); 296 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 297 298 if (smsr->registered) 299 kvm_on_user_return(&smsr->urn); 300 } 301 302 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 303 { 304 return vcpu->arch.apic_base; 305 } 306 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 307 308 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 309 { 310 u64 old_state = vcpu->arch.apic_base & 311 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE); 312 u64 new_state = msr_info->data & 313 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE); 314 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 315 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE); 316 317 if (!msr_info->host_initiated && 318 ((msr_info->data & reserved_bits) != 0 || 319 new_state == X2APIC_ENABLE || 320 (new_state == MSR_IA32_APICBASE_ENABLE && 321 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) || 322 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) && 323 old_state == 0))) 324 return 1; 325 326 kvm_lapic_set_base(vcpu, msr_info->data); 327 return 0; 328 } 329 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 330 331 asmlinkage __visible void kvm_spurious_fault(void) 332 { 333 /* Fault while not rebooting. We want the trace. */ 334 BUG(); 335 } 336 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 337 338 #define EXCPT_BENIGN 0 339 #define EXCPT_CONTRIBUTORY 1 340 #define EXCPT_PF 2 341 342 static int exception_class(int vector) 343 { 344 switch (vector) { 345 case PF_VECTOR: 346 return EXCPT_PF; 347 case DE_VECTOR: 348 case TS_VECTOR: 349 case NP_VECTOR: 350 case SS_VECTOR: 351 case GP_VECTOR: 352 return EXCPT_CONTRIBUTORY; 353 default: 354 break; 355 } 356 return EXCPT_BENIGN; 357 } 358 359 #define EXCPT_FAULT 0 360 #define EXCPT_TRAP 1 361 #define EXCPT_ABORT 2 362 #define EXCPT_INTERRUPT 3 363 364 static int exception_type(int vector) 365 { 366 unsigned int mask; 367 368 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 369 return EXCPT_INTERRUPT; 370 371 mask = 1 << vector; 372 373 /* #DB is trap, as instruction watchpoints are handled elsewhere */ 374 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR))) 375 return EXCPT_TRAP; 376 377 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 378 return EXCPT_ABORT; 379 380 /* Reserved exceptions will result in fault */ 381 return EXCPT_FAULT; 382 } 383 384 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 385 unsigned nr, bool has_error, u32 error_code, 386 bool reinject) 387 { 388 u32 prev_nr; 389 int class1, class2; 390 391 kvm_make_request(KVM_REQ_EVENT, vcpu); 392 393 if (!vcpu->arch.exception.pending) { 394 queue: 395 if (has_error && !is_protmode(vcpu)) 396 has_error = false; 397 vcpu->arch.exception.pending = true; 398 vcpu->arch.exception.has_error_code = has_error; 399 vcpu->arch.exception.nr = nr; 400 vcpu->arch.exception.error_code = error_code; 401 vcpu->arch.exception.reinject = reinject; 402 return; 403 } 404 405 /* to check exception */ 406 prev_nr = vcpu->arch.exception.nr; 407 if (prev_nr == DF_VECTOR) { 408 /* triple fault -> shutdown */ 409 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 410 return; 411 } 412 class1 = exception_class(prev_nr); 413 class2 = exception_class(nr); 414 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 415 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 416 /* generate double fault per SDM Table 5-5 */ 417 vcpu->arch.exception.pending = true; 418 vcpu->arch.exception.has_error_code = true; 419 vcpu->arch.exception.nr = DF_VECTOR; 420 vcpu->arch.exception.error_code = 0; 421 } else 422 /* replace previous exception with a new one in a hope 423 that instruction re-execution will regenerate lost 424 exception */ 425 goto queue; 426 } 427 428 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 429 { 430 kvm_multiple_exception(vcpu, nr, false, 0, false); 431 } 432 EXPORT_SYMBOL_GPL(kvm_queue_exception); 433 434 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 435 { 436 kvm_multiple_exception(vcpu, nr, false, 0, true); 437 } 438 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 439 440 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 441 { 442 if (err) 443 kvm_inject_gp(vcpu, 0); 444 else 445 return kvm_skip_emulated_instruction(vcpu); 446 447 return 1; 448 } 449 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 450 451 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 452 { 453 ++vcpu->stat.pf_guest; 454 vcpu->arch.cr2 = fault->address; 455 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 456 } 457 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 458 459 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 460 { 461 if (mmu_is_nested(vcpu) && !fault->nested_page_fault) 462 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); 463 else 464 vcpu->arch.mmu.inject_page_fault(vcpu, fault); 465 466 return fault->nested_page_fault; 467 } 468 469 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 470 { 471 atomic_inc(&vcpu->arch.nmi_queued); 472 kvm_make_request(KVM_REQ_NMI, vcpu); 473 } 474 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 475 476 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 477 { 478 kvm_multiple_exception(vcpu, nr, true, error_code, false); 479 } 480 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 481 482 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 483 { 484 kvm_multiple_exception(vcpu, nr, true, error_code, true); 485 } 486 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 487 488 /* 489 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 490 * a #GP and return false. 491 */ 492 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 493 { 494 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) 495 return true; 496 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 497 return false; 498 } 499 EXPORT_SYMBOL_GPL(kvm_require_cpl); 500 501 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 502 { 503 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 504 return true; 505 506 kvm_queue_exception(vcpu, UD_VECTOR); 507 return false; 508 } 509 EXPORT_SYMBOL_GPL(kvm_require_dr); 510 511 /* 512 * This function will be used to read from the physical memory of the currently 513 * running guest. The difference to kvm_vcpu_read_guest_page is that this function 514 * can read from guest physical or from the guest's guest physical memory. 515 */ 516 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 517 gfn_t ngfn, void *data, int offset, int len, 518 u32 access) 519 { 520 struct x86_exception exception; 521 gfn_t real_gfn; 522 gpa_t ngpa; 523 524 ngpa = gfn_to_gpa(ngfn); 525 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception); 526 if (real_gfn == UNMAPPED_GVA) 527 return -EFAULT; 528 529 real_gfn = gpa_to_gfn(real_gfn); 530 531 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len); 532 } 533 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); 534 535 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 536 void *data, int offset, int len, u32 access) 537 { 538 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, 539 data, offset, len, access); 540 } 541 542 /* 543 * Load the pae pdptrs. Return true is they are all valid. 544 */ 545 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) 546 { 547 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 548 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; 549 int i; 550 int ret; 551 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 552 553 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, 554 offset * sizeof(u64), sizeof(pdpte), 555 PFERR_USER_MASK|PFERR_WRITE_MASK); 556 if (ret < 0) { 557 ret = 0; 558 goto out; 559 } 560 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 561 if ((pdpte[i] & PT_PRESENT_MASK) && 562 (pdpte[i] & 563 vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) { 564 ret = 0; 565 goto out; 566 } 567 } 568 ret = 1; 569 570 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 571 __set_bit(VCPU_EXREG_PDPTR, 572 (unsigned long *)&vcpu->arch.regs_avail); 573 __set_bit(VCPU_EXREG_PDPTR, 574 (unsigned long *)&vcpu->arch.regs_dirty); 575 out: 576 577 return ret; 578 } 579 EXPORT_SYMBOL_GPL(load_pdptrs); 580 581 bool pdptrs_changed(struct kvm_vcpu *vcpu) 582 { 583 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; 584 bool changed = true; 585 int offset; 586 gfn_t gfn; 587 int r; 588 589 if (is_long_mode(vcpu) || !is_pae(vcpu)) 590 return false; 591 592 if (!test_bit(VCPU_EXREG_PDPTR, 593 (unsigned long *)&vcpu->arch.regs_avail)) 594 return true; 595 596 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT; 597 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1); 598 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), 599 PFERR_USER_MASK | PFERR_WRITE_MASK); 600 if (r < 0) 601 goto out; 602 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; 603 out: 604 605 return changed; 606 } 607 EXPORT_SYMBOL_GPL(pdptrs_changed); 608 609 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 610 { 611 unsigned long old_cr0 = kvm_read_cr0(vcpu); 612 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP; 613 614 cr0 |= X86_CR0_ET; 615 616 #ifdef CONFIG_X86_64 617 if (cr0 & 0xffffffff00000000UL) 618 return 1; 619 #endif 620 621 cr0 &= ~CR0_RESERVED_BITS; 622 623 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 624 return 1; 625 626 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 627 return 1; 628 629 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 630 #ifdef CONFIG_X86_64 631 if ((vcpu->arch.efer & EFER_LME)) { 632 int cs_db, cs_l; 633 634 if (!is_pae(vcpu)) 635 return 1; 636 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 637 if (cs_l) 638 return 1; 639 } else 640 #endif 641 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 642 kvm_read_cr3(vcpu))) 643 return 1; 644 } 645 646 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 647 return 1; 648 649 kvm_x86_ops->set_cr0(vcpu, cr0); 650 651 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 652 kvm_clear_async_pf_completion_queue(vcpu); 653 kvm_async_pf_hash_reset(vcpu); 654 } 655 656 if ((cr0 ^ old_cr0) & update_bits) 657 kvm_mmu_reset_context(vcpu); 658 659 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 660 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 661 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 662 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 663 664 return 0; 665 } 666 EXPORT_SYMBOL_GPL(kvm_set_cr0); 667 668 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 669 { 670 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 671 } 672 EXPORT_SYMBOL_GPL(kvm_lmsw); 673 674 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu) 675 { 676 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) && 677 !vcpu->guest_xcr0_loaded) { 678 /* kvm_set_xcr() also depends on this */ 679 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 680 vcpu->guest_xcr0_loaded = 1; 681 } 682 } 683 684 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu) 685 { 686 if (vcpu->guest_xcr0_loaded) { 687 if (vcpu->arch.xcr0 != host_xcr0) 688 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 689 vcpu->guest_xcr0_loaded = 0; 690 } 691 } 692 693 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 694 { 695 u64 xcr0 = xcr; 696 u64 old_xcr0 = vcpu->arch.xcr0; 697 u64 valid_bits; 698 699 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 700 if (index != XCR_XFEATURE_ENABLED_MASK) 701 return 1; 702 if (!(xcr0 & XFEATURE_MASK_FP)) 703 return 1; 704 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 705 return 1; 706 707 /* 708 * Do not allow the guest to set bits that we do not support 709 * saving. However, xcr0 bit 0 is always set, even if the 710 * emulated CPU does not support XSAVE (see fx_init). 711 */ 712 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 713 if (xcr0 & ~valid_bits) 714 return 1; 715 716 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 717 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 718 return 1; 719 720 if (xcr0 & XFEATURE_MASK_AVX512) { 721 if (!(xcr0 & XFEATURE_MASK_YMM)) 722 return 1; 723 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 724 return 1; 725 } 726 vcpu->arch.xcr0 = xcr0; 727 728 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 729 kvm_update_cpuid(vcpu); 730 return 0; 731 } 732 733 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 734 { 735 if (kvm_x86_ops->get_cpl(vcpu) != 0 || 736 __kvm_set_xcr(vcpu, index, xcr)) { 737 kvm_inject_gp(vcpu, 0); 738 return 1; 739 } 740 return 0; 741 } 742 EXPORT_SYMBOL_GPL(kvm_set_xcr); 743 744 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 745 { 746 unsigned long old_cr4 = kvm_read_cr4(vcpu); 747 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | 748 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE; 749 750 if (cr4 & CR4_RESERVED_BITS) 751 return 1; 752 753 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE)) 754 return 1; 755 756 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP)) 757 return 1; 758 759 if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP)) 760 return 1; 761 762 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE)) 763 return 1; 764 765 if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE)) 766 return 1; 767 768 if (is_long_mode(vcpu)) { 769 if (!(cr4 & X86_CR4_PAE)) 770 return 1; 771 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 772 && ((cr4 ^ old_cr4) & pdptr_bits) 773 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 774 kvm_read_cr3(vcpu))) 775 return 1; 776 777 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 778 if (!guest_cpuid_has_pcid(vcpu)) 779 return 1; 780 781 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 782 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 783 return 1; 784 } 785 786 if (kvm_x86_ops->set_cr4(vcpu, cr4)) 787 return 1; 788 789 if (((cr4 ^ old_cr4) & pdptr_bits) || 790 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 791 kvm_mmu_reset_context(vcpu); 792 793 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 794 kvm_update_cpuid(vcpu); 795 796 return 0; 797 } 798 EXPORT_SYMBOL_GPL(kvm_set_cr4); 799 800 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 801 { 802 #ifdef CONFIG_X86_64 803 cr3 &= ~CR3_PCID_INVD; 804 #endif 805 806 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { 807 kvm_mmu_sync_roots(vcpu); 808 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 809 return 0; 810 } 811 812 if (is_long_mode(vcpu)) { 813 if (cr3 & CR3_L_MODE_RESERVED_BITS) 814 return 1; 815 } else if (is_pae(vcpu) && is_paging(vcpu) && 816 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) 817 return 1; 818 819 vcpu->arch.cr3 = cr3; 820 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 821 kvm_mmu_new_cr3(vcpu); 822 return 0; 823 } 824 EXPORT_SYMBOL_GPL(kvm_set_cr3); 825 826 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 827 { 828 if (cr8 & CR8_RESERVED_BITS) 829 return 1; 830 if (lapic_in_kernel(vcpu)) 831 kvm_lapic_set_tpr(vcpu, cr8); 832 else 833 vcpu->arch.cr8 = cr8; 834 return 0; 835 } 836 EXPORT_SYMBOL_GPL(kvm_set_cr8); 837 838 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 839 { 840 if (lapic_in_kernel(vcpu)) 841 return kvm_lapic_get_cr8(vcpu); 842 else 843 return vcpu->arch.cr8; 844 } 845 EXPORT_SYMBOL_GPL(kvm_get_cr8); 846 847 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 848 { 849 int i; 850 851 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 852 for (i = 0; i < KVM_NR_DB_REGS; i++) 853 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 854 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD; 855 } 856 } 857 858 static void kvm_update_dr6(struct kvm_vcpu *vcpu) 859 { 860 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 861 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6); 862 } 863 864 static void kvm_update_dr7(struct kvm_vcpu *vcpu) 865 { 866 unsigned long dr7; 867 868 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 869 dr7 = vcpu->arch.guest_debug_dr7; 870 else 871 dr7 = vcpu->arch.dr7; 872 kvm_x86_ops->set_dr7(vcpu, dr7); 873 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 874 if (dr7 & DR7_BP_EN_MASK) 875 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 876 } 877 878 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 879 { 880 u64 fixed = DR6_FIXED_1; 881 882 if (!guest_cpuid_has_rtm(vcpu)) 883 fixed |= DR6_RTM; 884 return fixed; 885 } 886 887 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 888 { 889 switch (dr) { 890 case 0 ... 3: 891 vcpu->arch.db[dr] = val; 892 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 893 vcpu->arch.eff_db[dr] = val; 894 break; 895 case 4: 896 /* fall through */ 897 case 6: 898 if (val & 0xffffffff00000000ULL) 899 return -1; /* #GP */ 900 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 901 kvm_update_dr6(vcpu); 902 break; 903 case 5: 904 /* fall through */ 905 default: /* 7 */ 906 if (val & 0xffffffff00000000ULL) 907 return -1; /* #GP */ 908 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 909 kvm_update_dr7(vcpu); 910 break; 911 } 912 913 return 0; 914 } 915 916 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 917 { 918 if (__kvm_set_dr(vcpu, dr, val)) { 919 kvm_inject_gp(vcpu, 0); 920 return 1; 921 } 922 return 0; 923 } 924 EXPORT_SYMBOL_GPL(kvm_set_dr); 925 926 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 927 { 928 switch (dr) { 929 case 0 ... 3: 930 *val = vcpu->arch.db[dr]; 931 break; 932 case 4: 933 /* fall through */ 934 case 6: 935 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 936 *val = vcpu->arch.dr6; 937 else 938 *val = kvm_x86_ops->get_dr6(vcpu); 939 break; 940 case 5: 941 /* fall through */ 942 default: /* 7 */ 943 *val = vcpu->arch.dr7; 944 break; 945 } 946 return 0; 947 } 948 EXPORT_SYMBOL_GPL(kvm_get_dr); 949 950 bool kvm_rdpmc(struct kvm_vcpu *vcpu) 951 { 952 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); 953 u64 data; 954 int err; 955 956 err = kvm_pmu_rdpmc(vcpu, ecx, &data); 957 if (err) 958 return err; 959 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data); 960 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32); 961 return err; 962 } 963 EXPORT_SYMBOL_GPL(kvm_rdpmc); 964 965 /* 966 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 967 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 968 * 969 * This list is modified at module load time to reflect the 970 * capabilities of the host cpu. This capabilities test skips MSRs that are 971 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs 972 * may depend on host virtualization features rather than host cpu features. 973 */ 974 975 static u32 msrs_to_save[] = { 976 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 977 MSR_STAR, 978 #ifdef CONFIG_X86_64 979 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 980 #endif 981 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 982 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 983 }; 984 985 static unsigned num_msrs_to_save; 986 987 static u32 emulated_msrs[] = { 988 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 989 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 990 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 991 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 992 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 993 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 994 HV_X64_MSR_RESET, 995 HV_X64_MSR_VP_INDEX, 996 HV_X64_MSR_VP_RUNTIME, 997 HV_X64_MSR_SCONTROL, 998 HV_X64_MSR_STIMER0_CONFIG, 999 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1000 MSR_KVM_PV_EOI_EN, 1001 1002 MSR_IA32_TSC_ADJUST, 1003 MSR_IA32_TSCDEADLINE, 1004 MSR_IA32_MISC_ENABLE, 1005 MSR_IA32_MCG_STATUS, 1006 MSR_IA32_MCG_CTL, 1007 MSR_IA32_MCG_EXT_CTL, 1008 MSR_IA32_SMBASE, 1009 }; 1010 1011 static unsigned num_emulated_msrs; 1012 1013 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1014 { 1015 if (efer & efer_reserved_bits) 1016 return false; 1017 1018 if (efer & EFER_FFXSR) { 1019 struct kvm_cpuid_entry2 *feat; 1020 1021 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 1022 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) 1023 return false; 1024 } 1025 1026 if (efer & EFER_SVME) { 1027 struct kvm_cpuid_entry2 *feat; 1028 1029 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 1030 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) 1031 return false; 1032 } 1033 1034 return true; 1035 } 1036 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1037 1038 static int set_efer(struct kvm_vcpu *vcpu, u64 efer) 1039 { 1040 u64 old_efer = vcpu->arch.efer; 1041 1042 if (!kvm_valid_efer(vcpu, efer)) 1043 return 1; 1044 1045 if (is_paging(vcpu) 1046 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1047 return 1; 1048 1049 efer &= ~EFER_LMA; 1050 efer |= vcpu->arch.efer & EFER_LMA; 1051 1052 kvm_x86_ops->set_efer(vcpu, efer); 1053 1054 /* Update reserved bits */ 1055 if ((efer ^ old_efer) & EFER_NX) 1056 kvm_mmu_reset_context(vcpu); 1057 1058 return 0; 1059 } 1060 1061 void kvm_enable_efer_bits(u64 mask) 1062 { 1063 efer_reserved_bits &= ~mask; 1064 } 1065 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1066 1067 /* 1068 * Writes msr value into into the appropriate "register". 1069 * Returns 0 on success, non-0 otherwise. 1070 * Assumes vcpu_load() was already called. 1071 */ 1072 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 1073 { 1074 switch (msr->index) { 1075 case MSR_FS_BASE: 1076 case MSR_GS_BASE: 1077 case MSR_KERNEL_GS_BASE: 1078 case MSR_CSTAR: 1079 case MSR_LSTAR: 1080 if (is_noncanonical_address(msr->data)) 1081 return 1; 1082 break; 1083 case MSR_IA32_SYSENTER_EIP: 1084 case MSR_IA32_SYSENTER_ESP: 1085 /* 1086 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1087 * non-canonical address is written on Intel but not on 1088 * AMD (which ignores the top 32-bits, because it does 1089 * not implement 64-bit SYSENTER). 1090 * 1091 * 64-bit code should hence be able to write a non-canonical 1092 * value on AMD. Making the address canonical ensures that 1093 * vmentry does not fail on Intel after writing a non-canonical 1094 * value, and that something deterministic happens if the guest 1095 * invokes 64-bit SYSENTER. 1096 */ 1097 msr->data = get_canonical(msr->data); 1098 } 1099 return kvm_x86_ops->set_msr(vcpu, msr); 1100 } 1101 EXPORT_SYMBOL_GPL(kvm_set_msr); 1102 1103 /* 1104 * Adapt set_msr() to msr_io()'s calling convention 1105 */ 1106 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1107 { 1108 struct msr_data msr; 1109 int r; 1110 1111 msr.index = index; 1112 msr.host_initiated = true; 1113 r = kvm_get_msr(vcpu, &msr); 1114 if (r) 1115 return r; 1116 1117 *data = msr.data; 1118 return 0; 1119 } 1120 1121 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1122 { 1123 struct msr_data msr; 1124 1125 msr.data = *data; 1126 msr.index = index; 1127 msr.host_initiated = true; 1128 return kvm_set_msr(vcpu, &msr); 1129 } 1130 1131 #ifdef CONFIG_X86_64 1132 struct pvclock_gtod_data { 1133 seqcount_t seq; 1134 1135 struct { /* extract of a clocksource struct */ 1136 int vclock_mode; 1137 u64 cycle_last; 1138 u64 mask; 1139 u32 mult; 1140 u32 shift; 1141 } clock; 1142 1143 u64 boot_ns; 1144 u64 nsec_base; 1145 u64 wall_time_sec; 1146 }; 1147 1148 static struct pvclock_gtod_data pvclock_gtod_data; 1149 1150 static void update_pvclock_gtod(struct timekeeper *tk) 1151 { 1152 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 1153 u64 boot_ns; 1154 1155 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot)); 1156 1157 write_seqcount_begin(&vdata->seq); 1158 1159 /* copy pvclock gtod data */ 1160 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode; 1161 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 1162 vdata->clock.mask = tk->tkr_mono.mask; 1163 vdata->clock.mult = tk->tkr_mono.mult; 1164 vdata->clock.shift = tk->tkr_mono.shift; 1165 1166 vdata->boot_ns = boot_ns; 1167 vdata->nsec_base = tk->tkr_mono.xtime_nsec; 1168 1169 vdata->wall_time_sec = tk->xtime_sec; 1170 1171 write_seqcount_end(&vdata->seq); 1172 } 1173 #endif 1174 1175 void kvm_set_pending_timer(struct kvm_vcpu *vcpu) 1176 { 1177 /* 1178 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in 1179 * vcpu_enter_guest. This function is only called from 1180 * the physical CPU that is running vcpu. 1181 */ 1182 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu); 1183 } 1184 1185 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) 1186 { 1187 int version; 1188 int r; 1189 struct pvclock_wall_clock wc; 1190 struct timespec64 boot; 1191 1192 if (!wall_clock) 1193 return; 1194 1195 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 1196 if (r) 1197 return; 1198 1199 if (version & 1) 1200 ++version; /* first time write, random junk */ 1201 1202 ++version; 1203 1204 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 1205 return; 1206 1207 /* 1208 * The guest calculates current wall clock time by adding 1209 * system time (updated by kvm_guest_time_update below) to the 1210 * wall clock specified here. guest system time equals host 1211 * system time for us, thus we must fill in host boot time here. 1212 */ 1213 getboottime64(&boot); 1214 1215 if (kvm->arch.kvmclock_offset) { 1216 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset); 1217 boot = timespec64_sub(boot, ts); 1218 } 1219 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */ 1220 wc.nsec = boot.tv_nsec; 1221 wc.version = version; 1222 1223 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 1224 1225 version++; 1226 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 1227 } 1228 1229 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 1230 { 1231 do_shl32_div32(dividend, divisor); 1232 return dividend; 1233 } 1234 1235 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 1236 s8 *pshift, u32 *pmultiplier) 1237 { 1238 uint64_t scaled64; 1239 int32_t shift = 0; 1240 uint64_t tps64; 1241 uint32_t tps32; 1242 1243 tps64 = base_hz; 1244 scaled64 = scaled_hz; 1245 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 1246 tps64 >>= 1; 1247 shift--; 1248 } 1249 1250 tps32 = (uint32_t)tps64; 1251 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 1252 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 1253 scaled64 >>= 1; 1254 else 1255 tps32 <<= 1; 1256 shift++; 1257 } 1258 1259 *pshift = shift; 1260 *pmultiplier = div_frac(scaled64, tps32); 1261 1262 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n", 1263 __func__, base_hz, scaled_hz, shift, *pmultiplier); 1264 } 1265 1266 #ifdef CONFIG_X86_64 1267 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 1268 #endif 1269 1270 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 1271 static unsigned long max_tsc_khz; 1272 1273 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 1274 { 1275 u64 v = (u64)khz * (1000000 + ppm); 1276 do_div(v, 1000000); 1277 return v; 1278 } 1279 1280 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 1281 { 1282 u64 ratio; 1283 1284 /* Guest TSC same frequency as host TSC? */ 1285 if (!scale) { 1286 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 1287 return 0; 1288 } 1289 1290 /* TSC scaling supported? */ 1291 if (!kvm_has_tsc_control) { 1292 if (user_tsc_khz > tsc_khz) { 1293 vcpu->arch.tsc_catchup = 1; 1294 vcpu->arch.tsc_always_catchup = 1; 1295 return 0; 1296 } else { 1297 WARN(1, "user requested TSC rate below hardware speed\n"); 1298 return -1; 1299 } 1300 } 1301 1302 /* TSC scaling required - calculate ratio */ 1303 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits, 1304 user_tsc_khz, tsc_khz); 1305 1306 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) { 1307 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 1308 user_tsc_khz); 1309 return -1; 1310 } 1311 1312 vcpu->arch.tsc_scaling_ratio = ratio; 1313 return 0; 1314 } 1315 1316 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 1317 { 1318 u32 thresh_lo, thresh_hi; 1319 int use_scaling = 0; 1320 1321 /* tsc_khz can be zero if TSC calibration fails */ 1322 if (user_tsc_khz == 0) { 1323 /* set tsc_scaling_ratio to a safe value */ 1324 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 1325 return -1; 1326 } 1327 1328 /* Compute a scale to convert nanoseconds in TSC cycles */ 1329 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 1330 &vcpu->arch.virtual_tsc_shift, 1331 &vcpu->arch.virtual_tsc_mult); 1332 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 1333 1334 /* 1335 * Compute the variation in TSC rate which is acceptable 1336 * within the range of tolerance and decide if the 1337 * rate being applied is within that bounds of the hardware 1338 * rate. If so, no scaling or compensation need be done. 1339 */ 1340 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 1341 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 1342 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 1343 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); 1344 use_scaling = 1; 1345 } 1346 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 1347 } 1348 1349 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 1350 { 1351 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 1352 vcpu->arch.virtual_tsc_mult, 1353 vcpu->arch.virtual_tsc_shift); 1354 tsc += vcpu->arch.this_tsc_write; 1355 return tsc; 1356 } 1357 1358 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 1359 { 1360 #ifdef CONFIG_X86_64 1361 bool vcpus_matched; 1362 struct kvm_arch *ka = &vcpu->kvm->arch; 1363 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1364 1365 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1366 atomic_read(&vcpu->kvm->online_vcpus)); 1367 1368 /* 1369 * Once the masterclock is enabled, always perform request in 1370 * order to update it. 1371 * 1372 * In order to enable masterclock, the host clocksource must be TSC 1373 * and the vcpus need to have matched TSCs. When that happens, 1374 * perform request to enable masterclock. 1375 */ 1376 if (ka->use_master_clock || 1377 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched)) 1378 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 1379 1380 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 1381 atomic_read(&vcpu->kvm->online_vcpus), 1382 ka->use_master_clock, gtod->clock.vclock_mode); 1383 #endif 1384 } 1385 1386 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset) 1387 { 1388 u64 curr_offset = vcpu->arch.tsc_offset; 1389 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset; 1390 } 1391 1392 /* 1393 * Multiply tsc by a fixed point number represented by ratio. 1394 * 1395 * The most significant 64-N bits (mult) of ratio represent the 1396 * integral part of the fixed point number; the remaining N bits 1397 * (frac) represent the fractional part, ie. ratio represents a fixed 1398 * point number (mult + frac * 2^(-N)). 1399 * 1400 * N equals to kvm_tsc_scaling_ratio_frac_bits. 1401 */ 1402 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 1403 { 1404 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits); 1405 } 1406 1407 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc) 1408 { 1409 u64 _tsc = tsc; 1410 u64 ratio = vcpu->arch.tsc_scaling_ratio; 1411 1412 if (ratio != kvm_default_tsc_scaling_ratio) 1413 _tsc = __scale_tsc(ratio, tsc); 1414 1415 return _tsc; 1416 } 1417 EXPORT_SYMBOL_GPL(kvm_scale_tsc); 1418 1419 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 1420 { 1421 u64 tsc; 1422 1423 tsc = kvm_scale_tsc(vcpu, rdtsc()); 1424 1425 return target_tsc - tsc; 1426 } 1427 1428 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 1429 { 1430 return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc); 1431 } 1432 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 1433 1434 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1435 { 1436 kvm_x86_ops->write_tsc_offset(vcpu, offset); 1437 vcpu->arch.tsc_offset = offset; 1438 } 1439 1440 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr) 1441 { 1442 struct kvm *kvm = vcpu->kvm; 1443 u64 offset, ns, elapsed; 1444 unsigned long flags; 1445 s64 usdiff; 1446 bool matched; 1447 bool already_matched; 1448 u64 data = msr->data; 1449 1450 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 1451 offset = kvm_compute_tsc_offset(vcpu, data); 1452 ns = ktime_get_boot_ns(); 1453 elapsed = ns - kvm->arch.last_tsc_nsec; 1454 1455 if (vcpu->arch.virtual_tsc_khz) { 1456 int faulted = 0; 1457 1458 /* n.b - signed multiplication and division required */ 1459 usdiff = data - kvm->arch.last_tsc_write; 1460 #ifdef CONFIG_X86_64 1461 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz; 1462 #else 1463 /* do_div() only does unsigned */ 1464 asm("1: idivl %[divisor]\n" 1465 "2: xor %%edx, %%edx\n" 1466 " movl $0, %[faulted]\n" 1467 "3:\n" 1468 ".section .fixup,\"ax\"\n" 1469 "4: movl $1, %[faulted]\n" 1470 " jmp 3b\n" 1471 ".previous\n" 1472 1473 _ASM_EXTABLE(1b, 4b) 1474 1475 : "=A"(usdiff), [faulted] "=r" (faulted) 1476 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz)); 1477 1478 #endif 1479 do_div(elapsed, 1000); 1480 usdiff -= elapsed; 1481 if (usdiff < 0) 1482 usdiff = -usdiff; 1483 1484 /* idivl overflow => difference is larger than USEC_PER_SEC */ 1485 if (faulted) 1486 usdiff = USEC_PER_SEC; 1487 } else 1488 usdiff = USEC_PER_SEC; /* disable TSC match window below */ 1489 1490 /* 1491 * Special case: TSC write with a small delta (1 second) of virtual 1492 * cycle time against real time is interpreted as an attempt to 1493 * synchronize the CPU. 1494 * 1495 * For a reliable TSC, we can match TSC offsets, and for an unstable 1496 * TSC, we add elapsed time in this computation. We could let the 1497 * compensation code attempt to catch up if we fall behind, but 1498 * it's better to try to match offsets from the beginning. 1499 */ 1500 if (usdiff < USEC_PER_SEC && 1501 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 1502 if (!check_tsc_unstable()) { 1503 offset = kvm->arch.cur_tsc_offset; 1504 pr_debug("kvm: matched tsc offset for %llu\n", data); 1505 } else { 1506 u64 delta = nsec_to_cycles(vcpu, elapsed); 1507 data += delta; 1508 offset = kvm_compute_tsc_offset(vcpu, data); 1509 pr_debug("kvm: adjusted tsc offset by %llu\n", delta); 1510 } 1511 matched = true; 1512 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation); 1513 } else { 1514 /* 1515 * We split periods of matched TSC writes into generations. 1516 * For each generation, we track the original measured 1517 * nanosecond time, offset, and write, so if TSCs are in 1518 * sync, we can match exact offset, and if not, we can match 1519 * exact software computation in compute_guest_tsc() 1520 * 1521 * These values are tracked in kvm->arch.cur_xxx variables. 1522 */ 1523 kvm->arch.cur_tsc_generation++; 1524 kvm->arch.cur_tsc_nsec = ns; 1525 kvm->arch.cur_tsc_write = data; 1526 kvm->arch.cur_tsc_offset = offset; 1527 matched = false; 1528 pr_debug("kvm: new tsc generation %llu, clock %llu\n", 1529 kvm->arch.cur_tsc_generation, data); 1530 } 1531 1532 /* 1533 * We also track th most recent recorded KHZ, write and time to 1534 * allow the matching interval to be extended at each write. 1535 */ 1536 kvm->arch.last_tsc_nsec = ns; 1537 kvm->arch.last_tsc_write = data; 1538 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 1539 1540 vcpu->arch.last_guest_tsc = data; 1541 1542 /* Keep track of which generation this VCPU has synchronized to */ 1543 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 1544 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 1545 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 1546 1547 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated) 1548 update_ia32_tsc_adjust_msr(vcpu, offset); 1549 kvm_vcpu_write_tsc_offset(vcpu, offset); 1550 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 1551 1552 spin_lock(&kvm->arch.pvclock_gtod_sync_lock); 1553 if (!matched) { 1554 kvm->arch.nr_vcpus_matched_tsc = 0; 1555 } else if (!already_matched) { 1556 kvm->arch.nr_vcpus_matched_tsc++; 1557 } 1558 1559 kvm_track_tsc_matching(vcpu); 1560 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); 1561 } 1562 1563 EXPORT_SYMBOL_GPL(kvm_write_tsc); 1564 1565 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 1566 s64 adjustment) 1567 { 1568 kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment); 1569 } 1570 1571 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 1572 { 1573 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio) 1574 WARN_ON(adjustment < 0); 1575 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment); 1576 adjust_tsc_offset_guest(vcpu, adjustment); 1577 } 1578 1579 #ifdef CONFIG_X86_64 1580 1581 static u64 read_tsc(void) 1582 { 1583 u64 ret = (u64)rdtsc_ordered(); 1584 u64 last = pvclock_gtod_data.clock.cycle_last; 1585 1586 if (likely(ret >= last)) 1587 return ret; 1588 1589 /* 1590 * GCC likes to generate cmov here, but this branch is extremely 1591 * predictable (it's just a function of time and the likely is 1592 * very likely) and there's a data dependence, so force GCC 1593 * to generate a branch instead. I don't barrier() because 1594 * we don't actually need a barrier, and if this function 1595 * ever gets inlined it will generate worse code. 1596 */ 1597 asm volatile (""); 1598 return last; 1599 } 1600 1601 static inline u64 vgettsc(u64 *cycle_now) 1602 { 1603 long v; 1604 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1605 1606 *cycle_now = read_tsc(); 1607 1608 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask; 1609 return v * gtod->clock.mult; 1610 } 1611 1612 static int do_monotonic_boot(s64 *t, u64 *cycle_now) 1613 { 1614 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1615 unsigned long seq; 1616 int mode; 1617 u64 ns; 1618 1619 do { 1620 seq = read_seqcount_begin(>od->seq); 1621 mode = gtod->clock.vclock_mode; 1622 ns = gtod->nsec_base; 1623 ns += vgettsc(cycle_now); 1624 ns >>= gtod->clock.shift; 1625 ns += gtod->boot_ns; 1626 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 1627 *t = ns; 1628 1629 return mode; 1630 } 1631 1632 static int do_realtime(struct timespec *ts, u64 *cycle_now) 1633 { 1634 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1635 unsigned long seq; 1636 int mode; 1637 u64 ns; 1638 1639 do { 1640 seq = read_seqcount_begin(>od->seq); 1641 mode = gtod->clock.vclock_mode; 1642 ts->tv_sec = gtod->wall_time_sec; 1643 ns = gtod->nsec_base; 1644 ns += vgettsc(cycle_now); 1645 ns >>= gtod->clock.shift; 1646 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 1647 1648 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 1649 ts->tv_nsec = ns; 1650 1651 return mode; 1652 } 1653 1654 /* returns true if host is using tsc clocksource */ 1655 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now) 1656 { 1657 /* checked again under seqlock below */ 1658 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC) 1659 return false; 1660 1661 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC; 1662 } 1663 1664 /* returns true if host is using tsc clocksource */ 1665 static bool kvm_get_walltime_and_clockread(struct timespec *ts, 1666 u64 *cycle_now) 1667 { 1668 /* checked again under seqlock below */ 1669 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC) 1670 return false; 1671 1672 return do_realtime(ts, cycle_now) == VCLOCK_TSC; 1673 } 1674 #endif 1675 1676 /* 1677 * 1678 * Assuming a stable TSC across physical CPUS, and a stable TSC 1679 * across virtual CPUs, the following condition is possible. 1680 * Each numbered line represents an event visible to both 1681 * CPUs at the next numbered event. 1682 * 1683 * "timespecX" represents host monotonic time. "tscX" represents 1684 * RDTSC value. 1685 * 1686 * VCPU0 on CPU0 | VCPU1 on CPU1 1687 * 1688 * 1. read timespec0,tsc0 1689 * 2. | timespec1 = timespec0 + N 1690 * | tsc1 = tsc0 + M 1691 * 3. transition to guest | transition to guest 1692 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 1693 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 1694 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 1695 * 1696 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 1697 * 1698 * - ret0 < ret1 1699 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 1700 * ... 1701 * - 0 < N - M => M < N 1702 * 1703 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 1704 * always the case (the difference between two distinct xtime instances 1705 * might be smaller then the difference between corresponding TSC reads, 1706 * when updating guest vcpus pvclock areas). 1707 * 1708 * To avoid that problem, do not allow visibility of distinct 1709 * system_timestamp/tsc_timestamp values simultaneously: use a master 1710 * copy of host monotonic time values. Update that master copy 1711 * in lockstep. 1712 * 1713 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 1714 * 1715 */ 1716 1717 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 1718 { 1719 #ifdef CONFIG_X86_64 1720 struct kvm_arch *ka = &kvm->arch; 1721 int vclock_mode; 1722 bool host_tsc_clocksource, vcpus_matched; 1723 1724 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1725 atomic_read(&kvm->online_vcpus)); 1726 1727 /* 1728 * If the host uses TSC clock, then passthrough TSC as stable 1729 * to the guest. 1730 */ 1731 host_tsc_clocksource = kvm_get_time_and_clockread( 1732 &ka->master_kernel_ns, 1733 &ka->master_cycle_now); 1734 1735 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 1736 && !backwards_tsc_observed 1737 && !ka->boot_vcpu_runs_old_kvmclock; 1738 1739 if (ka->use_master_clock) 1740 atomic_set(&kvm_guest_has_master_clock, 1); 1741 1742 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 1743 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 1744 vcpus_matched); 1745 #endif 1746 } 1747 1748 void kvm_make_mclock_inprogress_request(struct kvm *kvm) 1749 { 1750 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 1751 } 1752 1753 static void kvm_gen_update_masterclock(struct kvm *kvm) 1754 { 1755 #ifdef CONFIG_X86_64 1756 int i; 1757 struct kvm_vcpu *vcpu; 1758 struct kvm_arch *ka = &kvm->arch; 1759 1760 spin_lock(&ka->pvclock_gtod_sync_lock); 1761 kvm_make_mclock_inprogress_request(kvm); 1762 /* no guest entries from this point */ 1763 pvclock_update_vm_gtod_copy(kvm); 1764 1765 kvm_for_each_vcpu(i, vcpu, kvm) 1766 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 1767 1768 /* guest entries allowed */ 1769 kvm_for_each_vcpu(i, vcpu, kvm) 1770 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests); 1771 1772 spin_unlock(&ka->pvclock_gtod_sync_lock); 1773 #endif 1774 } 1775 1776 static u64 __get_kvmclock_ns(struct kvm *kvm) 1777 { 1778 struct kvm_arch *ka = &kvm->arch; 1779 struct pvclock_vcpu_time_info hv_clock; 1780 1781 spin_lock(&ka->pvclock_gtod_sync_lock); 1782 if (!ka->use_master_clock) { 1783 spin_unlock(&ka->pvclock_gtod_sync_lock); 1784 return ktime_get_boot_ns() + ka->kvmclock_offset; 1785 } 1786 1787 hv_clock.tsc_timestamp = ka->master_cycle_now; 1788 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 1789 spin_unlock(&ka->pvclock_gtod_sync_lock); 1790 1791 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL, 1792 &hv_clock.tsc_shift, 1793 &hv_clock.tsc_to_system_mul); 1794 return __pvclock_read_cycles(&hv_clock, rdtsc()); 1795 } 1796 1797 u64 get_kvmclock_ns(struct kvm *kvm) 1798 { 1799 unsigned long flags; 1800 s64 ns; 1801 1802 local_irq_save(flags); 1803 ns = __get_kvmclock_ns(kvm); 1804 local_irq_restore(flags); 1805 1806 return ns; 1807 } 1808 1809 static void kvm_setup_pvclock_page(struct kvm_vcpu *v) 1810 { 1811 struct kvm_vcpu_arch *vcpu = &v->arch; 1812 struct pvclock_vcpu_time_info guest_hv_clock; 1813 1814 if (unlikely(kvm_vcpu_read_guest_cached(v, &vcpu->pv_time, 1815 &guest_hv_clock, sizeof(guest_hv_clock)))) 1816 return; 1817 1818 /* This VCPU is paused, but it's legal for a guest to read another 1819 * VCPU's kvmclock, so we really have to follow the specification where 1820 * it says that version is odd if data is being modified, and even after 1821 * it is consistent. 1822 * 1823 * Version field updates must be kept separate. This is because 1824 * kvm_write_guest_cached might use a "rep movs" instruction, and 1825 * writes within a string instruction are weakly ordered. So there 1826 * are three writes overall. 1827 * 1828 * As a small optimization, only write the version field in the first 1829 * and third write. The vcpu->pv_time cache is still valid, because the 1830 * version field is the first in the struct. 1831 */ 1832 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); 1833 1834 vcpu->hv_clock.version = guest_hv_clock.version + 1; 1835 kvm_vcpu_write_guest_cached(v, &vcpu->pv_time, 1836 &vcpu->hv_clock, 1837 sizeof(vcpu->hv_clock.version)); 1838 1839 smp_wmb(); 1840 1841 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 1842 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); 1843 1844 if (vcpu->pvclock_set_guest_stopped_request) { 1845 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 1846 vcpu->pvclock_set_guest_stopped_request = false; 1847 } 1848 1849 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 1850 1851 kvm_vcpu_write_guest_cached(v, &vcpu->pv_time, 1852 &vcpu->hv_clock, 1853 sizeof(vcpu->hv_clock)); 1854 1855 smp_wmb(); 1856 1857 vcpu->hv_clock.version++; 1858 kvm_vcpu_write_guest_cached(v, &vcpu->pv_time, 1859 &vcpu->hv_clock, 1860 sizeof(vcpu->hv_clock.version)); 1861 } 1862 1863 static int kvm_guest_time_update(struct kvm_vcpu *v) 1864 { 1865 unsigned long flags, tgt_tsc_khz; 1866 struct kvm_vcpu_arch *vcpu = &v->arch; 1867 struct kvm_arch *ka = &v->kvm->arch; 1868 s64 kernel_ns; 1869 u64 tsc_timestamp, host_tsc; 1870 u8 pvclock_flags; 1871 bool use_master_clock; 1872 1873 kernel_ns = 0; 1874 host_tsc = 0; 1875 1876 /* 1877 * If the host uses TSC clock, then passthrough TSC as stable 1878 * to the guest. 1879 */ 1880 spin_lock(&ka->pvclock_gtod_sync_lock); 1881 use_master_clock = ka->use_master_clock; 1882 if (use_master_clock) { 1883 host_tsc = ka->master_cycle_now; 1884 kernel_ns = ka->master_kernel_ns; 1885 } 1886 spin_unlock(&ka->pvclock_gtod_sync_lock); 1887 1888 /* Keep irq disabled to prevent changes to the clock */ 1889 local_irq_save(flags); 1890 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz); 1891 if (unlikely(tgt_tsc_khz == 0)) { 1892 local_irq_restore(flags); 1893 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 1894 return 1; 1895 } 1896 if (!use_master_clock) { 1897 host_tsc = rdtsc(); 1898 kernel_ns = ktime_get_boot_ns(); 1899 } 1900 1901 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 1902 1903 /* 1904 * We may have to catch up the TSC to match elapsed wall clock 1905 * time for two reasons, even if kvmclock is used. 1906 * 1) CPU could have been running below the maximum TSC rate 1907 * 2) Broken TSC compensation resets the base at each VCPU 1908 * entry to avoid unknown leaps of TSC even when running 1909 * again on the same CPU. This may cause apparent elapsed 1910 * time to disappear, and the guest to stand still or run 1911 * very slowly. 1912 */ 1913 if (vcpu->tsc_catchup) { 1914 u64 tsc = compute_guest_tsc(v, kernel_ns); 1915 if (tsc > tsc_timestamp) { 1916 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 1917 tsc_timestamp = tsc; 1918 } 1919 } 1920 1921 local_irq_restore(flags); 1922 1923 /* With all the info we got, fill in the values */ 1924 1925 if (kvm_has_tsc_control) 1926 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz); 1927 1928 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 1929 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 1930 &vcpu->hv_clock.tsc_shift, 1931 &vcpu->hv_clock.tsc_to_system_mul); 1932 vcpu->hw_tsc_khz = tgt_tsc_khz; 1933 } 1934 1935 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 1936 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 1937 vcpu->last_guest_tsc = tsc_timestamp; 1938 1939 /* If the host uses TSC clocksource, then it is stable */ 1940 pvclock_flags = 0; 1941 if (use_master_clock) 1942 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 1943 1944 vcpu->hv_clock.flags = pvclock_flags; 1945 1946 if (vcpu->pv_time_enabled) 1947 kvm_setup_pvclock_page(v); 1948 if (v == kvm_get_vcpu(v->kvm, 0)) 1949 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 1950 return 0; 1951 } 1952 1953 /* 1954 * kvmclock updates which are isolated to a given vcpu, such as 1955 * vcpu->cpu migration, should not allow system_timestamp from 1956 * the rest of the vcpus to remain static. Otherwise ntp frequency 1957 * correction applies to one vcpu's system_timestamp but not 1958 * the others. 1959 * 1960 * So in those cases, request a kvmclock update for all vcpus. 1961 * We need to rate-limit these requests though, as they can 1962 * considerably slow guests that have a large number of vcpus. 1963 * The time for a remote vcpu to update its kvmclock is bound 1964 * by the delay we use to rate-limit the updates. 1965 */ 1966 1967 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 1968 1969 static void kvmclock_update_fn(struct work_struct *work) 1970 { 1971 int i; 1972 struct delayed_work *dwork = to_delayed_work(work); 1973 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 1974 kvmclock_update_work); 1975 struct kvm *kvm = container_of(ka, struct kvm, arch); 1976 struct kvm_vcpu *vcpu; 1977 1978 kvm_for_each_vcpu(i, vcpu, kvm) { 1979 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 1980 kvm_vcpu_kick(vcpu); 1981 } 1982 } 1983 1984 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 1985 { 1986 struct kvm *kvm = v->kvm; 1987 1988 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 1989 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 1990 KVMCLOCK_UPDATE_DELAY); 1991 } 1992 1993 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 1994 1995 static void kvmclock_sync_fn(struct work_struct *work) 1996 { 1997 struct delayed_work *dwork = to_delayed_work(work); 1998 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 1999 kvmclock_sync_work); 2000 struct kvm *kvm = container_of(ka, struct kvm, arch); 2001 2002 if (!kvmclock_periodic_sync) 2003 return; 2004 2005 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 2006 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 2007 KVMCLOCK_SYNC_PERIOD); 2008 } 2009 2010 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data) 2011 { 2012 u64 mcg_cap = vcpu->arch.mcg_cap; 2013 unsigned bank_num = mcg_cap & 0xff; 2014 2015 switch (msr) { 2016 case MSR_IA32_MCG_STATUS: 2017 vcpu->arch.mcg_status = data; 2018 break; 2019 case MSR_IA32_MCG_CTL: 2020 if (!(mcg_cap & MCG_CTL_P)) 2021 return 1; 2022 if (data != 0 && data != ~(u64)0) 2023 return -1; 2024 vcpu->arch.mcg_ctl = data; 2025 break; 2026 default: 2027 if (msr >= MSR_IA32_MC0_CTL && 2028 msr < MSR_IA32_MCx_CTL(bank_num)) { 2029 u32 offset = msr - MSR_IA32_MC0_CTL; 2030 /* only 0 or all 1s can be written to IA32_MCi_CTL 2031 * some Linux kernels though clear bit 10 in bank 4 to 2032 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 2033 * this to avoid an uncatched #GP in the guest 2034 */ 2035 if ((offset & 0x3) == 0 && 2036 data != 0 && (data | (1 << 10)) != ~(u64)0) 2037 return -1; 2038 vcpu->arch.mce_banks[offset] = data; 2039 break; 2040 } 2041 return 1; 2042 } 2043 return 0; 2044 } 2045 2046 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) 2047 { 2048 struct kvm *kvm = vcpu->kvm; 2049 int lm = is_long_mode(vcpu); 2050 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 2051 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; 2052 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 2053 : kvm->arch.xen_hvm_config.blob_size_32; 2054 u32 page_num = data & ~PAGE_MASK; 2055 u64 page_addr = data & PAGE_MASK; 2056 u8 *page; 2057 int r; 2058 2059 r = -E2BIG; 2060 if (page_num >= blob_size) 2061 goto out; 2062 r = -ENOMEM; 2063 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); 2064 if (IS_ERR(page)) { 2065 r = PTR_ERR(page); 2066 goto out; 2067 } 2068 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) 2069 goto out_free; 2070 r = 0; 2071 out_free: 2072 kfree(page); 2073 out: 2074 return r; 2075 } 2076 2077 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 2078 { 2079 gpa_t gpa = data & ~0x3f; 2080 2081 /* Bits 2:5 are reserved, Should be zero */ 2082 if (data & 0x3c) 2083 return 1; 2084 2085 vcpu->arch.apf.msr_val = data; 2086 2087 if (!(data & KVM_ASYNC_PF_ENABLED)) { 2088 kvm_clear_async_pf_completion_queue(vcpu); 2089 kvm_async_pf_hash_reset(vcpu); 2090 return 0; 2091 } 2092 2093 if (kvm_vcpu_gfn_to_hva_cache_init(vcpu, &vcpu->arch.apf.data, gpa, 2094 sizeof(u32))) 2095 return 1; 2096 2097 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 2098 kvm_async_pf_wakeup_all(vcpu); 2099 return 0; 2100 } 2101 2102 static void kvmclock_reset(struct kvm_vcpu *vcpu) 2103 { 2104 vcpu->arch.pv_time_enabled = false; 2105 } 2106 2107 static void record_steal_time(struct kvm_vcpu *vcpu) 2108 { 2109 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 2110 return; 2111 2112 if (unlikely(kvm_vcpu_read_guest_cached(vcpu, &vcpu->arch.st.stime, 2113 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)))) 2114 return; 2115 2116 vcpu->arch.st.steal.preempted = 0; 2117 2118 if (vcpu->arch.st.steal.version & 1) 2119 vcpu->arch.st.steal.version += 1; /* first time write, random junk */ 2120 2121 vcpu->arch.st.steal.version += 1; 2122 2123 kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.st.stime, 2124 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 2125 2126 smp_wmb(); 2127 2128 vcpu->arch.st.steal.steal += current->sched_info.run_delay - 2129 vcpu->arch.st.last_steal; 2130 vcpu->arch.st.last_steal = current->sched_info.run_delay; 2131 2132 kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.st.stime, 2133 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 2134 2135 smp_wmb(); 2136 2137 vcpu->arch.st.steal.version += 1; 2138 2139 kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.st.stime, 2140 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 2141 } 2142 2143 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2144 { 2145 bool pr = false; 2146 u32 msr = msr_info->index; 2147 u64 data = msr_info->data; 2148 2149 switch (msr) { 2150 case MSR_AMD64_NB_CFG: 2151 case MSR_IA32_UCODE_REV: 2152 case MSR_IA32_UCODE_WRITE: 2153 case MSR_VM_HSAVE_PA: 2154 case MSR_AMD64_PATCH_LOADER: 2155 case MSR_AMD64_BU_CFG2: 2156 break; 2157 2158 case MSR_EFER: 2159 return set_efer(vcpu, data); 2160 case MSR_K7_HWCR: 2161 data &= ~(u64)0x40; /* ignore flush filter disable */ 2162 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 2163 data &= ~(u64)0x8; /* ignore TLB cache disable */ 2164 data &= ~(u64)0x40000; /* ignore Mc status write enable */ 2165 if (data != 0) { 2166 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 2167 data); 2168 return 1; 2169 } 2170 break; 2171 case MSR_FAM10H_MMIO_CONF_BASE: 2172 if (data != 0) { 2173 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 2174 "0x%llx\n", data); 2175 return 1; 2176 } 2177 break; 2178 case MSR_IA32_DEBUGCTLMSR: 2179 if (!data) { 2180 /* We support the non-activated case already */ 2181 break; 2182 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { 2183 /* Values other than LBR and BTF are vendor-specific, 2184 thus reserved and should throw a #GP */ 2185 return 1; 2186 } 2187 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", 2188 __func__, data); 2189 break; 2190 case 0x200 ... 0x2ff: 2191 return kvm_mtrr_set_msr(vcpu, msr, data); 2192 case MSR_IA32_APICBASE: 2193 return kvm_set_apic_base(vcpu, msr_info); 2194 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2195 return kvm_x2apic_msr_write(vcpu, msr, data); 2196 case MSR_IA32_TSCDEADLINE: 2197 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2198 break; 2199 case MSR_IA32_TSC_ADJUST: 2200 if (guest_cpuid_has_tsc_adjust(vcpu)) { 2201 if (!msr_info->host_initiated) { 2202 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 2203 adjust_tsc_offset_guest(vcpu, adj); 2204 } 2205 vcpu->arch.ia32_tsc_adjust_msr = data; 2206 } 2207 break; 2208 case MSR_IA32_MISC_ENABLE: 2209 vcpu->arch.ia32_misc_enable_msr = data; 2210 break; 2211 case MSR_IA32_SMBASE: 2212 if (!msr_info->host_initiated) 2213 return 1; 2214 vcpu->arch.smbase = data; 2215 break; 2216 case MSR_KVM_WALL_CLOCK_NEW: 2217 case MSR_KVM_WALL_CLOCK: 2218 vcpu->kvm->arch.wall_clock = data; 2219 kvm_write_wall_clock(vcpu->kvm, data); 2220 break; 2221 case MSR_KVM_SYSTEM_TIME_NEW: 2222 case MSR_KVM_SYSTEM_TIME: { 2223 struct kvm_arch *ka = &vcpu->kvm->arch; 2224 2225 kvmclock_reset(vcpu); 2226 2227 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) { 2228 bool tmp = (msr == MSR_KVM_SYSTEM_TIME); 2229 2230 if (ka->boot_vcpu_runs_old_kvmclock != tmp) 2231 set_bit(KVM_REQ_MASTERCLOCK_UPDATE, 2232 &vcpu->requests); 2233 2234 ka->boot_vcpu_runs_old_kvmclock = tmp; 2235 } 2236 2237 vcpu->arch.time = data; 2238 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2239 2240 /* we verify if the enable bit is set... */ 2241 if (!(data & 1)) 2242 break; 2243 2244 if (kvm_vcpu_gfn_to_hva_cache_init(vcpu, 2245 &vcpu->arch.pv_time, data & ~1ULL, 2246 sizeof(struct pvclock_vcpu_time_info))) 2247 vcpu->arch.pv_time_enabled = false; 2248 else 2249 vcpu->arch.pv_time_enabled = true; 2250 2251 break; 2252 } 2253 case MSR_KVM_ASYNC_PF_EN: 2254 if (kvm_pv_enable_async_pf(vcpu, data)) 2255 return 1; 2256 break; 2257 case MSR_KVM_STEAL_TIME: 2258 2259 if (unlikely(!sched_info_on())) 2260 return 1; 2261 2262 if (data & KVM_STEAL_RESERVED_MASK) 2263 return 1; 2264 2265 if (kvm_vcpu_gfn_to_hva_cache_init(vcpu, &vcpu->arch.st.stime, 2266 data & KVM_STEAL_VALID_BITS, 2267 sizeof(struct kvm_steal_time))) 2268 return 1; 2269 2270 vcpu->arch.st.msr_val = data; 2271 2272 if (!(data & KVM_MSR_ENABLED)) 2273 break; 2274 2275 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2276 2277 break; 2278 case MSR_KVM_PV_EOI_EN: 2279 if (kvm_lapic_enable_pv_eoi(vcpu, data)) 2280 return 1; 2281 break; 2282 2283 case MSR_IA32_MCG_CTL: 2284 case MSR_IA32_MCG_STATUS: 2285 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 2286 return set_msr_mce(vcpu, msr, data); 2287 2288 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 2289 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 2290 pr = true; /* fall through */ 2291 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 2292 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 2293 if (kvm_pmu_is_valid_msr(vcpu, msr)) 2294 return kvm_pmu_set_msr(vcpu, msr_info); 2295 2296 if (pr || data != 0) 2297 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 2298 "0x%x data 0x%llx\n", msr, data); 2299 break; 2300 case MSR_K7_CLK_CTL: 2301 /* 2302 * Ignore all writes to this no longer documented MSR. 2303 * Writes are only relevant for old K7 processors, 2304 * all pre-dating SVM, but a recommended workaround from 2305 * AMD for these chips. It is possible to specify the 2306 * affected processor models on the command line, hence 2307 * the need to ignore the workaround. 2308 */ 2309 break; 2310 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2311 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 2312 case HV_X64_MSR_CRASH_CTL: 2313 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 2314 return kvm_hv_set_msr_common(vcpu, msr, data, 2315 msr_info->host_initiated); 2316 case MSR_IA32_BBL_CR_CTL3: 2317 /* Drop writes to this legacy MSR -- see rdmsr 2318 * counterpart for further detail. 2319 */ 2320 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data); 2321 break; 2322 case MSR_AMD64_OSVW_ID_LENGTH: 2323 if (!guest_cpuid_has_osvw(vcpu)) 2324 return 1; 2325 vcpu->arch.osvw.length = data; 2326 break; 2327 case MSR_AMD64_OSVW_STATUS: 2328 if (!guest_cpuid_has_osvw(vcpu)) 2329 return 1; 2330 vcpu->arch.osvw.status = data; 2331 break; 2332 default: 2333 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) 2334 return xen_hvm_config(vcpu, data); 2335 if (kvm_pmu_is_valid_msr(vcpu, msr)) 2336 return kvm_pmu_set_msr(vcpu, msr_info); 2337 if (!ignore_msrs) { 2338 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n", 2339 msr, data); 2340 return 1; 2341 } else { 2342 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", 2343 msr, data); 2344 break; 2345 } 2346 } 2347 return 0; 2348 } 2349 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 2350 2351 2352 /* 2353 * Reads an msr value (of 'msr_index') into 'pdata'. 2354 * Returns 0 on success, non-0 otherwise. 2355 * Assumes vcpu_load() was already called. 2356 */ 2357 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 2358 { 2359 return kvm_x86_ops->get_msr(vcpu, msr); 2360 } 2361 EXPORT_SYMBOL_GPL(kvm_get_msr); 2362 2363 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2364 { 2365 u64 data; 2366 u64 mcg_cap = vcpu->arch.mcg_cap; 2367 unsigned bank_num = mcg_cap & 0xff; 2368 2369 switch (msr) { 2370 case MSR_IA32_P5_MC_ADDR: 2371 case MSR_IA32_P5_MC_TYPE: 2372 data = 0; 2373 break; 2374 case MSR_IA32_MCG_CAP: 2375 data = vcpu->arch.mcg_cap; 2376 break; 2377 case MSR_IA32_MCG_CTL: 2378 if (!(mcg_cap & MCG_CTL_P)) 2379 return 1; 2380 data = vcpu->arch.mcg_ctl; 2381 break; 2382 case MSR_IA32_MCG_STATUS: 2383 data = vcpu->arch.mcg_status; 2384 break; 2385 default: 2386 if (msr >= MSR_IA32_MC0_CTL && 2387 msr < MSR_IA32_MCx_CTL(bank_num)) { 2388 u32 offset = msr - MSR_IA32_MC0_CTL; 2389 data = vcpu->arch.mce_banks[offset]; 2390 break; 2391 } 2392 return 1; 2393 } 2394 *pdata = data; 2395 return 0; 2396 } 2397 2398 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2399 { 2400 switch (msr_info->index) { 2401 case MSR_IA32_PLATFORM_ID: 2402 case MSR_IA32_EBL_CR_POWERON: 2403 case MSR_IA32_DEBUGCTLMSR: 2404 case MSR_IA32_LASTBRANCHFROMIP: 2405 case MSR_IA32_LASTBRANCHTOIP: 2406 case MSR_IA32_LASTINTFROMIP: 2407 case MSR_IA32_LASTINTTOIP: 2408 case MSR_K8_SYSCFG: 2409 case MSR_K8_TSEG_ADDR: 2410 case MSR_K8_TSEG_MASK: 2411 case MSR_K7_HWCR: 2412 case MSR_VM_HSAVE_PA: 2413 case MSR_K8_INT_PENDING_MSG: 2414 case MSR_AMD64_NB_CFG: 2415 case MSR_FAM10H_MMIO_CONF_BASE: 2416 case MSR_AMD64_BU_CFG2: 2417 case MSR_IA32_PERF_CTL: 2418 msr_info->data = 0; 2419 break; 2420 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 2421 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 2422 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 2423 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 2424 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 2425 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data); 2426 msr_info->data = 0; 2427 break; 2428 case MSR_IA32_UCODE_REV: 2429 msr_info->data = 0x100000000ULL; 2430 break; 2431 case MSR_MTRRcap: 2432 case 0x200 ... 0x2ff: 2433 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 2434 case 0xcd: /* fsb frequency */ 2435 msr_info->data = 3; 2436 break; 2437 /* 2438 * MSR_EBC_FREQUENCY_ID 2439 * Conservative value valid for even the basic CPU models. 2440 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 2441 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 2442 * and 266MHz for model 3, or 4. Set Core Clock 2443 * Frequency to System Bus Frequency Ratio to 1 (bits 2444 * 31:24) even though these are only valid for CPU 2445 * models > 2, however guests may end up dividing or 2446 * multiplying by zero otherwise. 2447 */ 2448 case MSR_EBC_FREQUENCY_ID: 2449 msr_info->data = 1 << 24; 2450 break; 2451 case MSR_IA32_APICBASE: 2452 msr_info->data = kvm_get_apic_base(vcpu); 2453 break; 2454 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2455 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 2456 break; 2457 case MSR_IA32_TSCDEADLINE: 2458 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 2459 break; 2460 case MSR_IA32_TSC_ADJUST: 2461 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 2462 break; 2463 case MSR_IA32_MISC_ENABLE: 2464 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 2465 break; 2466 case MSR_IA32_SMBASE: 2467 if (!msr_info->host_initiated) 2468 return 1; 2469 msr_info->data = vcpu->arch.smbase; 2470 break; 2471 case MSR_IA32_PERF_STATUS: 2472 /* TSC increment by tick */ 2473 msr_info->data = 1000ULL; 2474 /* CPU multiplier */ 2475 msr_info->data |= (((uint64_t)4ULL) << 40); 2476 break; 2477 case MSR_EFER: 2478 msr_info->data = vcpu->arch.efer; 2479 break; 2480 case MSR_KVM_WALL_CLOCK: 2481 case MSR_KVM_WALL_CLOCK_NEW: 2482 msr_info->data = vcpu->kvm->arch.wall_clock; 2483 break; 2484 case MSR_KVM_SYSTEM_TIME: 2485 case MSR_KVM_SYSTEM_TIME_NEW: 2486 msr_info->data = vcpu->arch.time; 2487 break; 2488 case MSR_KVM_ASYNC_PF_EN: 2489 msr_info->data = vcpu->arch.apf.msr_val; 2490 break; 2491 case MSR_KVM_STEAL_TIME: 2492 msr_info->data = vcpu->arch.st.msr_val; 2493 break; 2494 case MSR_KVM_PV_EOI_EN: 2495 msr_info->data = vcpu->arch.pv_eoi.msr_val; 2496 break; 2497 case MSR_IA32_P5_MC_ADDR: 2498 case MSR_IA32_P5_MC_TYPE: 2499 case MSR_IA32_MCG_CAP: 2500 case MSR_IA32_MCG_CTL: 2501 case MSR_IA32_MCG_STATUS: 2502 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 2503 return get_msr_mce(vcpu, msr_info->index, &msr_info->data); 2504 case MSR_K7_CLK_CTL: 2505 /* 2506 * Provide expected ramp-up count for K7. All other 2507 * are set to zero, indicating minimum divisors for 2508 * every field. 2509 * 2510 * This prevents guest kernels on AMD host with CPU 2511 * type 6, model 8 and higher from exploding due to 2512 * the rdmsr failing. 2513 */ 2514 msr_info->data = 0x20000000; 2515 break; 2516 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2517 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 2518 case HV_X64_MSR_CRASH_CTL: 2519 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 2520 return kvm_hv_get_msr_common(vcpu, 2521 msr_info->index, &msr_info->data); 2522 break; 2523 case MSR_IA32_BBL_CR_CTL3: 2524 /* This legacy MSR exists but isn't fully documented in current 2525 * silicon. It is however accessed by winxp in very narrow 2526 * scenarios where it sets bit #19, itself documented as 2527 * a "reserved" bit. Best effort attempt to source coherent 2528 * read data here should the balance of the register be 2529 * interpreted by the guest: 2530 * 2531 * L2 cache control register 3: 64GB range, 256KB size, 2532 * enabled, latency 0x1, configured 2533 */ 2534 msr_info->data = 0xbe702111; 2535 break; 2536 case MSR_AMD64_OSVW_ID_LENGTH: 2537 if (!guest_cpuid_has_osvw(vcpu)) 2538 return 1; 2539 msr_info->data = vcpu->arch.osvw.length; 2540 break; 2541 case MSR_AMD64_OSVW_STATUS: 2542 if (!guest_cpuid_has_osvw(vcpu)) 2543 return 1; 2544 msr_info->data = vcpu->arch.osvw.status; 2545 break; 2546 default: 2547 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 2548 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data); 2549 if (!ignore_msrs) { 2550 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n", 2551 msr_info->index); 2552 return 1; 2553 } else { 2554 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index); 2555 msr_info->data = 0; 2556 } 2557 break; 2558 } 2559 return 0; 2560 } 2561 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 2562 2563 /* 2564 * Read or write a bunch of msrs. All parameters are kernel addresses. 2565 * 2566 * @return number of msrs set successfully. 2567 */ 2568 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 2569 struct kvm_msr_entry *entries, 2570 int (*do_msr)(struct kvm_vcpu *vcpu, 2571 unsigned index, u64 *data)) 2572 { 2573 int i, idx; 2574 2575 idx = srcu_read_lock(&vcpu->kvm->srcu); 2576 for (i = 0; i < msrs->nmsrs; ++i) 2577 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 2578 break; 2579 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2580 2581 return i; 2582 } 2583 2584 /* 2585 * Read or write a bunch of msrs. Parameters are user addresses. 2586 * 2587 * @return number of msrs set successfully. 2588 */ 2589 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 2590 int (*do_msr)(struct kvm_vcpu *vcpu, 2591 unsigned index, u64 *data), 2592 int writeback) 2593 { 2594 struct kvm_msrs msrs; 2595 struct kvm_msr_entry *entries; 2596 int r, n; 2597 unsigned size; 2598 2599 r = -EFAULT; 2600 if (copy_from_user(&msrs, user_msrs, sizeof msrs)) 2601 goto out; 2602 2603 r = -E2BIG; 2604 if (msrs.nmsrs >= MAX_IO_MSRS) 2605 goto out; 2606 2607 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 2608 entries = memdup_user(user_msrs->entries, size); 2609 if (IS_ERR(entries)) { 2610 r = PTR_ERR(entries); 2611 goto out; 2612 } 2613 2614 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 2615 if (r < 0) 2616 goto out_free; 2617 2618 r = -EFAULT; 2619 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 2620 goto out_free; 2621 2622 r = n; 2623 2624 out_free: 2625 kfree(entries); 2626 out: 2627 return r; 2628 } 2629 2630 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 2631 { 2632 int r; 2633 2634 switch (ext) { 2635 case KVM_CAP_IRQCHIP: 2636 case KVM_CAP_HLT: 2637 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 2638 case KVM_CAP_SET_TSS_ADDR: 2639 case KVM_CAP_EXT_CPUID: 2640 case KVM_CAP_EXT_EMUL_CPUID: 2641 case KVM_CAP_CLOCKSOURCE: 2642 case KVM_CAP_PIT: 2643 case KVM_CAP_NOP_IO_DELAY: 2644 case KVM_CAP_MP_STATE: 2645 case KVM_CAP_SYNC_MMU: 2646 case KVM_CAP_USER_NMI: 2647 case KVM_CAP_REINJECT_CONTROL: 2648 case KVM_CAP_IRQ_INJECT_STATUS: 2649 case KVM_CAP_IOEVENTFD: 2650 case KVM_CAP_IOEVENTFD_NO_LENGTH: 2651 case KVM_CAP_PIT2: 2652 case KVM_CAP_PIT_STATE2: 2653 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 2654 case KVM_CAP_XEN_HVM: 2655 case KVM_CAP_VCPU_EVENTS: 2656 case KVM_CAP_HYPERV: 2657 case KVM_CAP_HYPERV_VAPIC: 2658 case KVM_CAP_HYPERV_SPIN: 2659 case KVM_CAP_HYPERV_SYNIC: 2660 case KVM_CAP_PCI_SEGMENT: 2661 case KVM_CAP_DEBUGREGS: 2662 case KVM_CAP_X86_ROBUST_SINGLESTEP: 2663 case KVM_CAP_XSAVE: 2664 case KVM_CAP_ASYNC_PF: 2665 case KVM_CAP_GET_TSC_KHZ: 2666 case KVM_CAP_KVMCLOCK_CTRL: 2667 case KVM_CAP_READONLY_MEM: 2668 case KVM_CAP_HYPERV_TIME: 2669 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 2670 case KVM_CAP_TSC_DEADLINE_TIMER: 2671 case KVM_CAP_ENABLE_CAP_VM: 2672 case KVM_CAP_DISABLE_QUIRKS: 2673 case KVM_CAP_SET_BOOT_CPU_ID: 2674 case KVM_CAP_SPLIT_IRQCHIP: 2675 case KVM_CAP_IMMEDIATE_EXIT: 2676 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT 2677 case KVM_CAP_ASSIGN_DEV_IRQ: 2678 case KVM_CAP_PCI_2_3: 2679 #endif 2680 r = 1; 2681 break; 2682 case KVM_CAP_ADJUST_CLOCK: 2683 r = KVM_CLOCK_TSC_STABLE; 2684 break; 2685 case KVM_CAP_X86_SMM: 2686 /* SMBASE is usually relocated above 1M on modern chipsets, 2687 * and SMM handlers might indeed rely on 4G segment limits, 2688 * so do not report SMM to be available if real mode is 2689 * emulated via vm86 mode. Still, do not go to great lengths 2690 * to avoid userspace's usage of the feature, because it is a 2691 * fringe case that is not enabled except via specific settings 2692 * of the module parameters. 2693 */ 2694 r = kvm_x86_ops->cpu_has_high_real_mode_segbase(); 2695 break; 2696 case KVM_CAP_COALESCED_MMIO: 2697 r = KVM_COALESCED_MMIO_PAGE_OFFSET; 2698 break; 2699 case KVM_CAP_VAPIC: 2700 r = !kvm_x86_ops->cpu_has_accelerated_tpr(); 2701 break; 2702 case KVM_CAP_NR_VCPUS: 2703 r = KVM_SOFT_MAX_VCPUS; 2704 break; 2705 case KVM_CAP_MAX_VCPUS: 2706 r = KVM_MAX_VCPUS; 2707 break; 2708 case KVM_CAP_NR_MEMSLOTS: 2709 r = KVM_USER_MEM_SLOTS; 2710 break; 2711 case KVM_CAP_PV_MMU: /* obsolete */ 2712 r = 0; 2713 break; 2714 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT 2715 case KVM_CAP_IOMMU: 2716 r = iommu_present(&pci_bus_type); 2717 break; 2718 #endif 2719 case KVM_CAP_MCE: 2720 r = KVM_MAX_MCE_BANKS; 2721 break; 2722 case KVM_CAP_XCRS: 2723 r = boot_cpu_has(X86_FEATURE_XSAVE); 2724 break; 2725 case KVM_CAP_TSC_CONTROL: 2726 r = kvm_has_tsc_control; 2727 break; 2728 case KVM_CAP_X2APIC_API: 2729 r = KVM_X2APIC_API_VALID_FLAGS; 2730 break; 2731 default: 2732 r = 0; 2733 break; 2734 } 2735 return r; 2736 2737 } 2738 2739 long kvm_arch_dev_ioctl(struct file *filp, 2740 unsigned int ioctl, unsigned long arg) 2741 { 2742 void __user *argp = (void __user *)arg; 2743 long r; 2744 2745 switch (ioctl) { 2746 case KVM_GET_MSR_INDEX_LIST: { 2747 struct kvm_msr_list __user *user_msr_list = argp; 2748 struct kvm_msr_list msr_list; 2749 unsigned n; 2750 2751 r = -EFAULT; 2752 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) 2753 goto out; 2754 n = msr_list.nmsrs; 2755 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 2756 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) 2757 goto out; 2758 r = -E2BIG; 2759 if (n < msr_list.nmsrs) 2760 goto out; 2761 r = -EFAULT; 2762 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 2763 num_msrs_to_save * sizeof(u32))) 2764 goto out; 2765 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 2766 &emulated_msrs, 2767 num_emulated_msrs * sizeof(u32))) 2768 goto out; 2769 r = 0; 2770 break; 2771 } 2772 case KVM_GET_SUPPORTED_CPUID: 2773 case KVM_GET_EMULATED_CPUID: { 2774 struct kvm_cpuid2 __user *cpuid_arg = argp; 2775 struct kvm_cpuid2 cpuid; 2776 2777 r = -EFAULT; 2778 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2779 goto out; 2780 2781 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 2782 ioctl); 2783 if (r) 2784 goto out; 2785 2786 r = -EFAULT; 2787 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 2788 goto out; 2789 r = 0; 2790 break; 2791 } 2792 case KVM_X86_GET_MCE_CAP_SUPPORTED: { 2793 r = -EFAULT; 2794 if (copy_to_user(argp, &kvm_mce_cap_supported, 2795 sizeof(kvm_mce_cap_supported))) 2796 goto out; 2797 r = 0; 2798 break; 2799 } 2800 default: 2801 r = -EINVAL; 2802 } 2803 out: 2804 return r; 2805 } 2806 2807 static void wbinvd_ipi(void *garbage) 2808 { 2809 wbinvd(); 2810 } 2811 2812 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 2813 { 2814 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 2815 } 2816 2817 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu) 2818 { 2819 set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests); 2820 } 2821 2822 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 2823 { 2824 /* Address WBINVD may be executed by guest */ 2825 if (need_emulate_wbinvd(vcpu)) { 2826 if (kvm_x86_ops->has_wbinvd_exit()) 2827 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 2828 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 2829 smp_call_function_single(vcpu->cpu, 2830 wbinvd_ipi, NULL, 1); 2831 } 2832 2833 kvm_x86_ops->vcpu_load(vcpu, cpu); 2834 2835 /* Apply any externally detected TSC adjustments (due to suspend) */ 2836 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 2837 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 2838 vcpu->arch.tsc_offset_adjustment = 0; 2839 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2840 } 2841 2842 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) { 2843 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 2844 rdtsc() - vcpu->arch.last_host_tsc; 2845 if (tsc_delta < 0) 2846 mark_tsc_unstable("KVM discovered backwards TSC"); 2847 2848 if (check_tsc_unstable()) { 2849 u64 offset = kvm_compute_tsc_offset(vcpu, 2850 vcpu->arch.last_guest_tsc); 2851 kvm_vcpu_write_tsc_offset(vcpu, offset); 2852 vcpu->arch.tsc_catchup = 1; 2853 } 2854 if (kvm_lapic_hv_timer_in_use(vcpu) && 2855 kvm_x86_ops->set_hv_timer(vcpu, 2856 kvm_get_lapic_target_expiration_tsc(vcpu))) 2857 kvm_lapic_switch_to_sw_timer(vcpu); 2858 /* 2859 * On a host with synchronized TSC, there is no need to update 2860 * kvmclock on vcpu->cpu migration 2861 */ 2862 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 2863 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2864 if (vcpu->cpu != cpu) 2865 kvm_migrate_timers(vcpu); 2866 vcpu->cpu = cpu; 2867 } 2868 2869 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2870 } 2871 2872 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 2873 { 2874 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 2875 return; 2876 2877 vcpu->arch.st.steal.preempted = 1; 2878 2879 kvm_vcpu_write_guest_offset_cached(vcpu, &vcpu->arch.st.stime, 2880 &vcpu->arch.st.steal.preempted, 2881 offsetof(struct kvm_steal_time, preempted), 2882 sizeof(vcpu->arch.st.steal.preempted)); 2883 } 2884 2885 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 2886 { 2887 int idx; 2888 /* 2889 * Disable page faults because we're in atomic context here. 2890 * kvm_write_guest_offset_cached() would call might_fault() 2891 * that relies on pagefault_disable() to tell if there's a 2892 * bug. NOTE: the write to guest memory may not go through if 2893 * during postcopy live migration or if there's heavy guest 2894 * paging. 2895 */ 2896 pagefault_disable(); 2897 /* 2898 * kvm_memslots() will be called by 2899 * kvm_write_guest_offset_cached() so take the srcu lock. 2900 */ 2901 idx = srcu_read_lock(&vcpu->kvm->srcu); 2902 kvm_steal_time_set_preempted(vcpu); 2903 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2904 pagefault_enable(); 2905 kvm_x86_ops->vcpu_put(vcpu); 2906 kvm_put_guest_fpu(vcpu); 2907 vcpu->arch.last_host_tsc = rdtsc(); 2908 } 2909 2910 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 2911 struct kvm_lapic_state *s) 2912 { 2913 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active) 2914 kvm_x86_ops->sync_pir_to_irr(vcpu); 2915 2916 return kvm_apic_get_state(vcpu, s); 2917 } 2918 2919 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 2920 struct kvm_lapic_state *s) 2921 { 2922 int r; 2923 2924 r = kvm_apic_set_state(vcpu, s); 2925 if (r) 2926 return r; 2927 update_cr8_intercept(vcpu); 2928 2929 return 0; 2930 } 2931 2932 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 2933 { 2934 return (!lapic_in_kernel(vcpu) || 2935 kvm_apic_accept_pic_intr(vcpu)); 2936 } 2937 2938 /* 2939 * if userspace requested an interrupt window, check that the 2940 * interrupt window is open. 2941 * 2942 * No need to exit to userspace if we already have an interrupt queued. 2943 */ 2944 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 2945 { 2946 return kvm_arch_interrupt_allowed(vcpu) && 2947 !kvm_cpu_has_interrupt(vcpu) && 2948 !kvm_event_needs_reinjection(vcpu) && 2949 kvm_cpu_accept_dm_intr(vcpu); 2950 } 2951 2952 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 2953 struct kvm_interrupt *irq) 2954 { 2955 if (irq->irq >= KVM_NR_INTERRUPTS) 2956 return -EINVAL; 2957 2958 if (!irqchip_in_kernel(vcpu->kvm)) { 2959 kvm_queue_interrupt(vcpu, irq->irq, false); 2960 kvm_make_request(KVM_REQ_EVENT, vcpu); 2961 return 0; 2962 } 2963 2964 /* 2965 * With in-kernel LAPIC, we only use this to inject EXTINT, so 2966 * fail for in-kernel 8259. 2967 */ 2968 if (pic_in_kernel(vcpu->kvm)) 2969 return -ENXIO; 2970 2971 if (vcpu->arch.pending_external_vector != -1) 2972 return -EEXIST; 2973 2974 vcpu->arch.pending_external_vector = irq->irq; 2975 kvm_make_request(KVM_REQ_EVENT, vcpu); 2976 return 0; 2977 } 2978 2979 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 2980 { 2981 kvm_inject_nmi(vcpu); 2982 2983 return 0; 2984 } 2985 2986 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu) 2987 { 2988 kvm_make_request(KVM_REQ_SMI, vcpu); 2989 2990 return 0; 2991 } 2992 2993 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 2994 struct kvm_tpr_access_ctl *tac) 2995 { 2996 if (tac->flags) 2997 return -EINVAL; 2998 vcpu->arch.tpr_access_reporting = !!tac->enabled; 2999 return 0; 3000 } 3001 3002 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 3003 u64 mcg_cap) 3004 { 3005 int r; 3006 unsigned bank_num = mcg_cap & 0xff, bank; 3007 3008 r = -EINVAL; 3009 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) 3010 goto out; 3011 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000)) 3012 goto out; 3013 r = 0; 3014 vcpu->arch.mcg_cap = mcg_cap; 3015 /* Init IA32_MCG_CTL to all 1s */ 3016 if (mcg_cap & MCG_CTL_P) 3017 vcpu->arch.mcg_ctl = ~(u64)0; 3018 /* Init IA32_MCi_CTL to all 1s */ 3019 for (bank = 0; bank < bank_num; bank++) 3020 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 3021 3022 if (kvm_x86_ops->setup_mce) 3023 kvm_x86_ops->setup_mce(vcpu); 3024 out: 3025 return r; 3026 } 3027 3028 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 3029 struct kvm_x86_mce *mce) 3030 { 3031 u64 mcg_cap = vcpu->arch.mcg_cap; 3032 unsigned bank_num = mcg_cap & 0xff; 3033 u64 *banks = vcpu->arch.mce_banks; 3034 3035 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 3036 return -EINVAL; 3037 /* 3038 * if IA32_MCG_CTL is not all 1s, the uncorrected error 3039 * reporting is disabled 3040 */ 3041 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 3042 vcpu->arch.mcg_ctl != ~(u64)0) 3043 return 0; 3044 banks += 4 * mce->bank; 3045 /* 3046 * if IA32_MCi_CTL is not all 1s, the uncorrected error 3047 * reporting is disabled for the bank 3048 */ 3049 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 3050 return 0; 3051 if (mce->status & MCI_STATUS_UC) { 3052 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 3053 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 3054 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3055 return 0; 3056 } 3057 if (banks[1] & MCI_STATUS_VAL) 3058 mce->status |= MCI_STATUS_OVER; 3059 banks[2] = mce->addr; 3060 banks[3] = mce->misc; 3061 vcpu->arch.mcg_status = mce->mcg_status; 3062 banks[1] = mce->status; 3063 kvm_queue_exception(vcpu, MC_VECTOR); 3064 } else if (!(banks[1] & MCI_STATUS_VAL) 3065 || !(banks[1] & MCI_STATUS_UC)) { 3066 if (banks[1] & MCI_STATUS_VAL) 3067 mce->status |= MCI_STATUS_OVER; 3068 banks[2] = mce->addr; 3069 banks[3] = mce->misc; 3070 banks[1] = mce->status; 3071 } else 3072 banks[1] |= MCI_STATUS_OVER; 3073 return 0; 3074 } 3075 3076 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 3077 struct kvm_vcpu_events *events) 3078 { 3079 process_nmi(vcpu); 3080 events->exception.injected = 3081 vcpu->arch.exception.pending && 3082 !kvm_exception_is_soft(vcpu->arch.exception.nr); 3083 events->exception.nr = vcpu->arch.exception.nr; 3084 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 3085 events->exception.pad = 0; 3086 events->exception.error_code = vcpu->arch.exception.error_code; 3087 3088 events->interrupt.injected = 3089 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft; 3090 events->interrupt.nr = vcpu->arch.interrupt.nr; 3091 events->interrupt.soft = 0; 3092 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu); 3093 3094 events->nmi.injected = vcpu->arch.nmi_injected; 3095 events->nmi.pending = vcpu->arch.nmi_pending != 0; 3096 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); 3097 events->nmi.pad = 0; 3098 3099 events->sipi_vector = 0; /* never valid when reporting to user space */ 3100 3101 events->smi.smm = is_smm(vcpu); 3102 events->smi.pending = vcpu->arch.smi_pending; 3103 events->smi.smm_inside_nmi = 3104 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 3105 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 3106 3107 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 3108 | KVM_VCPUEVENT_VALID_SHADOW 3109 | KVM_VCPUEVENT_VALID_SMM); 3110 memset(&events->reserved, 0, sizeof(events->reserved)); 3111 } 3112 3113 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags); 3114 3115 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 3116 struct kvm_vcpu_events *events) 3117 { 3118 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 3119 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 3120 | KVM_VCPUEVENT_VALID_SHADOW 3121 | KVM_VCPUEVENT_VALID_SMM)) 3122 return -EINVAL; 3123 3124 if (events->exception.injected && 3125 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 3126 return -EINVAL; 3127 3128 process_nmi(vcpu); 3129 vcpu->arch.exception.pending = events->exception.injected; 3130 vcpu->arch.exception.nr = events->exception.nr; 3131 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 3132 vcpu->arch.exception.error_code = events->exception.error_code; 3133 3134 vcpu->arch.interrupt.pending = events->interrupt.injected; 3135 vcpu->arch.interrupt.nr = events->interrupt.nr; 3136 vcpu->arch.interrupt.soft = events->interrupt.soft; 3137 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 3138 kvm_x86_ops->set_interrupt_shadow(vcpu, 3139 events->interrupt.shadow); 3140 3141 vcpu->arch.nmi_injected = events->nmi.injected; 3142 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 3143 vcpu->arch.nmi_pending = events->nmi.pending; 3144 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); 3145 3146 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 3147 lapic_in_kernel(vcpu)) 3148 vcpu->arch.apic->sipi_vector = events->sipi_vector; 3149 3150 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 3151 u32 hflags = vcpu->arch.hflags; 3152 if (events->smi.smm) 3153 hflags |= HF_SMM_MASK; 3154 else 3155 hflags &= ~HF_SMM_MASK; 3156 kvm_set_hflags(vcpu, hflags); 3157 3158 vcpu->arch.smi_pending = events->smi.pending; 3159 if (events->smi.smm_inside_nmi) 3160 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 3161 else 3162 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 3163 if (lapic_in_kernel(vcpu)) { 3164 if (events->smi.latched_init) 3165 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 3166 else 3167 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 3168 } 3169 } 3170 3171 kvm_make_request(KVM_REQ_EVENT, vcpu); 3172 3173 return 0; 3174 } 3175 3176 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 3177 struct kvm_debugregs *dbgregs) 3178 { 3179 unsigned long val; 3180 3181 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 3182 kvm_get_dr(vcpu, 6, &val); 3183 dbgregs->dr6 = val; 3184 dbgregs->dr7 = vcpu->arch.dr7; 3185 dbgregs->flags = 0; 3186 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 3187 } 3188 3189 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 3190 struct kvm_debugregs *dbgregs) 3191 { 3192 if (dbgregs->flags) 3193 return -EINVAL; 3194 3195 if (dbgregs->dr6 & ~0xffffffffull) 3196 return -EINVAL; 3197 if (dbgregs->dr7 & ~0xffffffffull) 3198 return -EINVAL; 3199 3200 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 3201 kvm_update_dr0123(vcpu); 3202 vcpu->arch.dr6 = dbgregs->dr6; 3203 kvm_update_dr6(vcpu); 3204 vcpu->arch.dr7 = dbgregs->dr7; 3205 kvm_update_dr7(vcpu); 3206 3207 return 0; 3208 } 3209 3210 #define XSTATE_COMPACTION_ENABLED (1ULL << 63) 3211 3212 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu) 3213 { 3214 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave; 3215 u64 xstate_bv = xsave->header.xfeatures; 3216 u64 valid; 3217 3218 /* 3219 * Copy legacy XSAVE area, to avoid complications with CPUID 3220 * leaves 0 and 1 in the loop below. 3221 */ 3222 memcpy(dest, xsave, XSAVE_HDR_OFFSET); 3223 3224 /* Set XSTATE_BV */ 3225 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE; 3226 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv; 3227 3228 /* 3229 * Copy each region from the possibly compacted offset to the 3230 * non-compacted offset. 3231 */ 3232 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 3233 while (valid) { 3234 u64 feature = valid & -valid; 3235 int index = fls64(feature) - 1; 3236 void *src = get_xsave_addr(xsave, feature); 3237 3238 if (src) { 3239 u32 size, offset, ecx, edx; 3240 cpuid_count(XSTATE_CPUID, index, 3241 &size, &offset, &ecx, &edx); 3242 memcpy(dest + offset, src, size); 3243 } 3244 3245 valid -= feature; 3246 } 3247 } 3248 3249 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src) 3250 { 3251 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave; 3252 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET); 3253 u64 valid; 3254 3255 /* 3256 * Copy legacy XSAVE area, to avoid complications with CPUID 3257 * leaves 0 and 1 in the loop below. 3258 */ 3259 memcpy(xsave, src, XSAVE_HDR_OFFSET); 3260 3261 /* Set XSTATE_BV and possibly XCOMP_BV. */ 3262 xsave->header.xfeatures = xstate_bv; 3263 if (boot_cpu_has(X86_FEATURE_XSAVES)) 3264 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED; 3265 3266 /* 3267 * Copy each region from the non-compacted offset to the 3268 * possibly compacted offset. 3269 */ 3270 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 3271 while (valid) { 3272 u64 feature = valid & -valid; 3273 int index = fls64(feature) - 1; 3274 void *dest = get_xsave_addr(xsave, feature); 3275 3276 if (dest) { 3277 u32 size, offset, ecx, edx; 3278 cpuid_count(XSTATE_CPUID, index, 3279 &size, &offset, &ecx, &edx); 3280 memcpy(dest, src + offset, size); 3281 } 3282 3283 valid -= feature; 3284 } 3285 } 3286 3287 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 3288 struct kvm_xsave *guest_xsave) 3289 { 3290 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 3291 memset(guest_xsave, 0, sizeof(struct kvm_xsave)); 3292 fill_xsave((u8 *) guest_xsave->region, vcpu); 3293 } else { 3294 memcpy(guest_xsave->region, 3295 &vcpu->arch.guest_fpu.state.fxsave, 3296 sizeof(struct fxregs_state)); 3297 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = 3298 XFEATURE_MASK_FPSSE; 3299 } 3300 } 3301 3302 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 3303 struct kvm_xsave *guest_xsave) 3304 { 3305 u64 xstate_bv = 3306 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; 3307 3308 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 3309 /* 3310 * Here we allow setting states that are not present in 3311 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility 3312 * with old userspace. 3313 */ 3314 if (xstate_bv & ~kvm_supported_xcr0()) 3315 return -EINVAL; 3316 load_xsave(vcpu, (u8 *)guest_xsave->region); 3317 } else { 3318 if (xstate_bv & ~XFEATURE_MASK_FPSSE) 3319 return -EINVAL; 3320 memcpy(&vcpu->arch.guest_fpu.state.fxsave, 3321 guest_xsave->region, sizeof(struct fxregs_state)); 3322 } 3323 return 0; 3324 } 3325 3326 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 3327 struct kvm_xcrs *guest_xcrs) 3328 { 3329 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 3330 guest_xcrs->nr_xcrs = 0; 3331 return; 3332 } 3333 3334 guest_xcrs->nr_xcrs = 1; 3335 guest_xcrs->flags = 0; 3336 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 3337 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 3338 } 3339 3340 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 3341 struct kvm_xcrs *guest_xcrs) 3342 { 3343 int i, r = 0; 3344 3345 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 3346 return -EINVAL; 3347 3348 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 3349 return -EINVAL; 3350 3351 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 3352 /* Only support XCR0 currently */ 3353 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 3354 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 3355 guest_xcrs->xcrs[i].value); 3356 break; 3357 } 3358 if (r) 3359 r = -EINVAL; 3360 return r; 3361 } 3362 3363 /* 3364 * kvm_set_guest_paused() indicates to the guest kernel that it has been 3365 * stopped by the hypervisor. This function will be called from the host only. 3366 * EINVAL is returned when the host attempts to set the flag for a guest that 3367 * does not support pv clocks. 3368 */ 3369 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 3370 { 3371 if (!vcpu->arch.pv_time_enabled) 3372 return -EINVAL; 3373 vcpu->arch.pvclock_set_guest_stopped_request = true; 3374 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3375 return 0; 3376 } 3377 3378 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 3379 struct kvm_enable_cap *cap) 3380 { 3381 if (cap->flags) 3382 return -EINVAL; 3383 3384 switch (cap->cap) { 3385 case KVM_CAP_HYPERV_SYNIC: 3386 if (!irqchip_in_kernel(vcpu->kvm)) 3387 return -EINVAL; 3388 return kvm_hv_activate_synic(vcpu); 3389 default: 3390 return -EINVAL; 3391 } 3392 } 3393 3394 long kvm_arch_vcpu_ioctl(struct file *filp, 3395 unsigned int ioctl, unsigned long arg) 3396 { 3397 struct kvm_vcpu *vcpu = filp->private_data; 3398 void __user *argp = (void __user *)arg; 3399 int r; 3400 union { 3401 struct kvm_lapic_state *lapic; 3402 struct kvm_xsave *xsave; 3403 struct kvm_xcrs *xcrs; 3404 void *buffer; 3405 } u; 3406 3407 u.buffer = NULL; 3408 switch (ioctl) { 3409 case KVM_GET_LAPIC: { 3410 r = -EINVAL; 3411 if (!lapic_in_kernel(vcpu)) 3412 goto out; 3413 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); 3414 3415 r = -ENOMEM; 3416 if (!u.lapic) 3417 goto out; 3418 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 3419 if (r) 3420 goto out; 3421 r = -EFAULT; 3422 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 3423 goto out; 3424 r = 0; 3425 break; 3426 } 3427 case KVM_SET_LAPIC: { 3428 r = -EINVAL; 3429 if (!lapic_in_kernel(vcpu)) 3430 goto out; 3431 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 3432 if (IS_ERR(u.lapic)) 3433 return PTR_ERR(u.lapic); 3434 3435 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 3436 break; 3437 } 3438 case KVM_INTERRUPT: { 3439 struct kvm_interrupt irq; 3440 3441 r = -EFAULT; 3442 if (copy_from_user(&irq, argp, sizeof irq)) 3443 goto out; 3444 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 3445 break; 3446 } 3447 case KVM_NMI: { 3448 r = kvm_vcpu_ioctl_nmi(vcpu); 3449 break; 3450 } 3451 case KVM_SMI: { 3452 r = kvm_vcpu_ioctl_smi(vcpu); 3453 break; 3454 } 3455 case KVM_SET_CPUID: { 3456 struct kvm_cpuid __user *cpuid_arg = argp; 3457 struct kvm_cpuid cpuid; 3458 3459 r = -EFAULT; 3460 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3461 goto out; 3462 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 3463 break; 3464 } 3465 case KVM_SET_CPUID2: { 3466 struct kvm_cpuid2 __user *cpuid_arg = argp; 3467 struct kvm_cpuid2 cpuid; 3468 3469 r = -EFAULT; 3470 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3471 goto out; 3472 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 3473 cpuid_arg->entries); 3474 break; 3475 } 3476 case KVM_GET_CPUID2: { 3477 struct kvm_cpuid2 __user *cpuid_arg = argp; 3478 struct kvm_cpuid2 cpuid; 3479 3480 r = -EFAULT; 3481 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3482 goto out; 3483 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 3484 cpuid_arg->entries); 3485 if (r) 3486 goto out; 3487 r = -EFAULT; 3488 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 3489 goto out; 3490 r = 0; 3491 break; 3492 } 3493 case KVM_GET_MSRS: 3494 r = msr_io(vcpu, argp, do_get_msr, 1); 3495 break; 3496 case KVM_SET_MSRS: 3497 r = msr_io(vcpu, argp, do_set_msr, 0); 3498 break; 3499 case KVM_TPR_ACCESS_REPORTING: { 3500 struct kvm_tpr_access_ctl tac; 3501 3502 r = -EFAULT; 3503 if (copy_from_user(&tac, argp, sizeof tac)) 3504 goto out; 3505 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 3506 if (r) 3507 goto out; 3508 r = -EFAULT; 3509 if (copy_to_user(argp, &tac, sizeof tac)) 3510 goto out; 3511 r = 0; 3512 break; 3513 }; 3514 case KVM_SET_VAPIC_ADDR: { 3515 struct kvm_vapic_addr va; 3516 int idx; 3517 3518 r = -EINVAL; 3519 if (!lapic_in_kernel(vcpu)) 3520 goto out; 3521 r = -EFAULT; 3522 if (copy_from_user(&va, argp, sizeof va)) 3523 goto out; 3524 idx = srcu_read_lock(&vcpu->kvm->srcu); 3525 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 3526 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3527 break; 3528 } 3529 case KVM_X86_SETUP_MCE: { 3530 u64 mcg_cap; 3531 3532 r = -EFAULT; 3533 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap)) 3534 goto out; 3535 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 3536 break; 3537 } 3538 case KVM_X86_SET_MCE: { 3539 struct kvm_x86_mce mce; 3540 3541 r = -EFAULT; 3542 if (copy_from_user(&mce, argp, sizeof mce)) 3543 goto out; 3544 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 3545 break; 3546 } 3547 case KVM_GET_VCPU_EVENTS: { 3548 struct kvm_vcpu_events events; 3549 3550 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 3551 3552 r = -EFAULT; 3553 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 3554 break; 3555 r = 0; 3556 break; 3557 } 3558 case KVM_SET_VCPU_EVENTS: { 3559 struct kvm_vcpu_events events; 3560 3561 r = -EFAULT; 3562 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 3563 break; 3564 3565 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 3566 break; 3567 } 3568 case KVM_GET_DEBUGREGS: { 3569 struct kvm_debugregs dbgregs; 3570 3571 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 3572 3573 r = -EFAULT; 3574 if (copy_to_user(argp, &dbgregs, 3575 sizeof(struct kvm_debugregs))) 3576 break; 3577 r = 0; 3578 break; 3579 } 3580 case KVM_SET_DEBUGREGS: { 3581 struct kvm_debugregs dbgregs; 3582 3583 r = -EFAULT; 3584 if (copy_from_user(&dbgregs, argp, 3585 sizeof(struct kvm_debugregs))) 3586 break; 3587 3588 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 3589 break; 3590 } 3591 case KVM_GET_XSAVE: { 3592 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); 3593 r = -ENOMEM; 3594 if (!u.xsave) 3595 break; 3596 3597 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 3598 3599 r = -EFAULT; 3600 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 3601 break; 3602 r = 0; 3603 break; 3604 } 3605 case KVM_SET_XSAVE: { 3606 u.xsave = memdup_user(argp, sizeof(*u.xsave)); 3607 if (IS_ERR(u.xsave)) 3608 return PTR_ERR(u.xsave); 3609 3610 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 3611 break; 3612 } 3613 case KVM_GET_XCRS: { 3614 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); 3615 r = -ENOMEM; 3616 if (!u.xcrs) 3617 break; 3618 3619 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 3620 3621 r = -EFAULT; 3622 if (copy_to_user(argp, u.xcrs, 3623 sizeof(struct kvm_xcrs))) 3624 break; 3625 r = 0; 3626 break; 3627 } 3628 case KVM_SET_XCRS: { 3629 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 3630 if (IS_ERR(u.xcrs)) 3631 return PTR_ERR(u.xcrs); 3632 3633 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 3634 break; 3635 } 3636 case KVM_SET_TSC_KHZ: { 3637 u32 user_tsc_khz; 3638 3639 r = -EINVAL; 3640 user_tsc_khz = (u32)arg; 3641 3642 if (user_tsc_khz >= kvm_max_guest_tsc_khz) 3643 goto out; 3644 3645 if (user_tsc_khz == 0) 3646 user_tsc_khz = tsc_khz; 3647 3648 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 3649 r = 0; 3650 3651 goto out; 3652 } 3653 case KVM_GET_TSC_KHZ: { 3654 r = vcpu->arch.virtual_tsc_khz; 3655 goto out; 3656 } 3657 case KVM_KVMCLOCK_CTRL: { 3658 r = kvm_set_guest_paused(vcpu); 3659 goto out; 3660 } 3661 case KVM_ENABLE_CAP: { 3662 struct kvm_enable_cap cap; 3663 3664 r = -EFAULT; 3665 if (copy_from_user(&cap, argp, sizeof(cap))) 3666 goto out; 3667 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 3668 break; 3669 } 3670 default: 3671 r = -EINVAL; 3672 } 3673 out: 3674 kfree(u.buffer); 3675 return r; 3676 } 3677 3678 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 3679 { 3680 return VM_FAULT_SIGBUS; 3681 } 3682 3683 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 3684 { 3685 int ret; 3686 3687 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 3688 return -EINVAL; 3689 ret = kvm_x86_ops->set_tss_addr(kvm, addr); 3690 return ret; 3691 } 3692 3693 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 3694 u64 ident_addr) 3695 { 3696 kvm->arch.ept_identity_map_addr = ident_addr; 3697 return 0; 3698 } 3699 3700 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 3701 u32 kvm_nr_mmu_pages) 3702 { 3703 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 3704 return -EINVAL; 3705 3706 mutex_lock(&kvm->slots_lock); 3707 3708 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 3709 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 3710 3711 mutex_unlock(&kvm->slots_lock); 3712 return 0; 3713 } 3714 3715 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 3716 { 3717 return kvm->arch.n_max_mmu_pages; 3718 } 3719 3720 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 3721 { 3722 int r; 3723 3724 r = 0; 3725 switch (chip->chip_id) { 3726 case KVM_IRQCHIP_PIC_MASTER: 3727 memcpy(&chip->chip.pic, 3728 &pic_irqchip(kvm)->pics[0], 3729 sizeof(struct kvm_pic_state)); 3730 break; 3731 case KVM_IRQCHIP_PIC_SLAVE: 3732 memcpy(&chip->chip.pic, 3733 &pic_irqchip(kvm)->pics[1], 3734 sizeof(struct kvm_pic_state)); 3735 break; 3736 case KVM_IRQCHIP_IOAPIC: 3737 r = kvm_get_ioapic(kvm, &chip->chip.ioapic); 3738 break; 3739 default: 3740 r = -EINVAL; 3741 break; 3742 } 3743 return r; 3744 } 3745 3746 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 3747 { 3748 int r; 3749 3750 r = 0; 3751 switch (chip->chip_id) { 3752 case KVM_IRQCHIP_PIC_MASTER: 3753 spin_lock(&pic_irqchip(kvm)->lock); 3754 memcpy(&pic_irqchip(kvm)->pics[0], 3755 &chip->chip.pic, 3756 sizeof(struct kvm_pic_state)); 3757 spin_unlock(&pic_irqchip(kvm)->lock); 3758 break; 3759 case KVM_IRQCHIP_PIC_SLAVE: 3760 spin_lock(&pic_irqchip(kvm)->lock); 3761 memcpy(&pic_irqchip(kvm)->pics[1], 3762 &chip->chip.pic, 3763 sizeof(struct kvm_pic_state)); 3764 spin_unlock(&pic_irqchip(kvm)->lock); 3765 break; 3766 case KVM_IRQCHIP_IOAPIC: 3767 r = kvm_set_ioapic(kvm, &chip->chip.ioapic); 3768 break; 3769 default: 3770 r = -EINVAL; 3771 break; 3772 } 3773 kvm_pic_update_irq(pic_irqchip(kvm)); 3774 return r; 3775 } 3776 3777 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 3778 { 3779 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 3780 3781 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 3782 3783 mutex_lock(&kps->lock); 3784 memcpy(ps, &kps->channels, sizeof(*ps)); 3785 mutex_unlock(&kps->lock); 3786 return 0; 3787 } 3788 3789 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 3790 { 3791 int i; 3792 struct kvm_pit *pit = kvm->arch.vpit; 3793 3794 mutex_lock(&pit->pit_state.lock); 3795 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 3796 for (i = 0; i < 3; i++) 3797 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 3798 mutex_unlock(&pit->pit_state.lock); 3799 return 0; 3800 } 3801 3802 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3803 { 3804 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3805 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 3806 sizeof(ps->channels)); 3807 ps->flags = kvm->arch.vpit->pit_state.flags; 3808 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3809 memset(&ps->reserved, 0, sizeof(ps->reserved)); 3810 return 0; 3811 } 3812 3813 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3814 { 3815 int start = 0; 3816 int i; 3817 u32 prev_legacy, cur_legacy; 3818 struct kvm_pit *pit = kvm->arch.vpit; 3819 3820 mutex_lock(&pit->pit_state.lock); 3821 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 3822 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 3823 if (!prev_legacy && cur_legacy) 3824 start = 1; 3825 memcpy(&pit->pit_state.channels, &ps->channels, 3826 sizeof(pit->pit_state.channels)); 3827 pit->pit_state.flags = ps->flags; 3828 for (i = 0; i < 3; i++) 3829 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 3830 start && i == 0); 3831 mutex_unlock(&pit->pit_state.lock); 3832 return 0; 3833 } 3834 3835 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 3836 struct kvm_reinject_control *control) 3837 { 3838 struct kvm_pit *pit = kvm->arch.vpit; 3839 3840 if (!pit) 3841 return -ENXIO; 3842 3843 /* pit->pit_state.lock was overloaded to prevent userspace from getting 3844 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 3845 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 3846 */ 3847 mutex_lock(&pit->pit_state.lock); 3848 kvm_pit_set_reinject(pit, control->pit_reinject); 3849 mutex_unlock(&pit->pit_state.lock); 3850 3851 return 0; 3852 } 3853 3854 /** 3855 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 3856 * @kvm: kvm instance 3857 * @log: slot id and address to which we copy the log 3858 * 3859 * Steps 1-4 below provide general overview of dirty page logging. See 3860 * kvm_get_dirty_log_protect() function description for additional details. 3861 * 3862 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 3863 * always flush the TLB (step 4) even if previous step failed and the dirty 3864 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 3865 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 3866 * writes will be marked dirty for next log read. 3867 * 3868 * 1. Take a snapshot of the bit and clear it if needed. 3869 * 2. Write protect the corresponding page. 3870 * 3. Copy the snapshot to the userspace. 3871 * 4. Flush TLB's if needed. 3872 */ 3873 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) 3874 { 3875 bool is_dirty = false; 3876 int r; 3877 3878 mutex_lock(&kvm->slots_lock); 3879 3880 /* 3881 * Flush potentially hardware-cached dirty pages to dirty_bitmap. 3882 */ 3883 if (kvm_x86_ops->flush_log_dirty) 3884 kvm_x86_ops->flush_log_dirty(kvm); 3885 3886 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty); 3887 3888 /* 3889 * All the TLBs can be flushed out of mmu lock, see the comments in 3890 * kvm_mmu_slot_remove_write_access(). 3891 */ 3892 lockdep_assert_held(&kvm->slots_lock); 3893 if (is_dirty) 3894 kvm_flush_remote_tlbs(kvm); 3895 3896 mutex_unlock(&kvm->slots_lock); 3897 return r; 3898 } 3899 3900 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 3901 bool line_status) 3902 { 3903 if (!irqchip_in_kernel(kvm)) 3904 return -ENXIO; 3905 3906 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 3907 irq_event->irq, irq_event->level, 3908 line_status); 3909 return 0; 3910 } 3911 3912 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 3913 struct kvm_enable_cap *cap) 3914 { 3915 int r; 3916 3917 if (cap->flags) 3918 return -EINVAL; 3919 3920 switch (cap->cap) { 3921 case KVM_CAP_DISABLE_QUIRKS: 3922 kvm->arch.disabled_quirks = cap->args[0]; 3923 r = 0; 3924 break; 3925 case KVM_CAP_SPLIT_IRQCHIP: { 3926 mutex_lock(&kvm->lock); 3927 r = -EINVAL; 3928 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 3929 goto split_irqchip_unlock; 3930 r = -EEXIST; 3931 if (irqchip_in_kernel(kvm)) 3932 goto split_irqchip_unlock; 3933 if (kvm->created_vcpus) 3934 goto split_irqchip_unlock; 3935 r = kvm_setup_empty_irq_routing(kvm); 3936 if (r) 3937 goto split_irqchip_unlock; 3938 /* Pairs with irqchip_in_kernel. */ 3939 smp_wmb(); 3940 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 3941 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 3942 r = 0; 3943 split_irqchip_unlock: 3944 mutex_unlock(&kvm->lock); 3945 break; 3946 } 3947 case KVM_CAP_X2APIC_API: 3948 r = -EINVAL; 3949 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 3950 break; 3951 3952 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 3953 kvm->arch.x2apic_format = true; 3954 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 3955 kvm->arch.x2apic_broadcast_quirk_disabled = true; 3956 3957 r = 0; 3958 break; 3959 default: 3960 r = -EINVAL; 3961 break; 3962 } 3963 return r; 3964 } 3965 3966 long kvm_arch_vm_ioctl(struct file *filp, 3967 unsigned int ioctl, unsigned long arg) 3968 { 3969 struct kvm *kvm = filp->private_data; 3970 void __user *argp = (void __user *)arg; 3971 int r = -ENOTTY; 3972 /* 3973 * This union makes it completely explicit to gcc-3.x 3974 * that these two variables' stack usage should be 3975 * combined, not added together. 3976 */ 3977 union { 3978 struct kvm_pit_state ps; 3979 struct kvm_pit_state2 ps2; 3980 struct kvm_pit_config pit_config; 3981 } u; 3982 3983 switch (ioctl) { 3984 case KVM_SET_TSS_ADDR: 3985 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 3986 break; 3987 case KVM_SET_IDENTITY_MAP_ADDR: { 3988 u64 ident_addr; 3989 3990 r = -EFAULT; 3991 if (copy_from_user(&ident_addr, argp, sizeof ident_addr)) 3992 goto out; 3993 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 3994 break; 3995 } 3996 case KVM_SET_NR_MMU_PAGES: 3997 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 3998 break; 3999 case KVM_GET_NR_MMU_PAGES: 4000 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 4001 break; 4002 case KVM_CREATE_IRQCHIP: { 4003 mutex_lock(&kvm->lock); 4004 4005 r = -EEXIST; 4006 if (irqchip_in_kernel(kvm)) 4007 goto create_irqchip_unlock; 4008 4009 r = -EINVAL; 4010 if (kvm->created_vcpus) 4011 goto create_irqchip_unlock; 4012 4013 r = kvm_pic_init(kvm); 4014 if (r) 4015 goto create_irqchip_unlock; 4016 4017 r = kvm_ioapic_init(kvm); 4018 if (r) { 4019 mutex_lock(&kvm->slots_lock); 4020 kvm_pic_destroy(kvm); 4021 mutex_unlock(&kvm->slots_lock); 4022 goto create_irqchip_unlock; 4023 } 4024 4025 r = kvm_setup_default_irq_routing(kvm); 4026 if (r) { 4027 mutex_lock(&kvm->slots_lock); 4028 mutex_lock(&kvm->irq_lock); 4029 kvm_ioapic_destroy(kvm); 4030 kvm_pic_destroy(kvm); 4031 mutex_unlock(&kvm->irq_lock); 4032 mutex_unlock(&kvm->slots_lock); 4033 goto create_irqchip_unlock; 4034 } 4035 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 4036 smp_wmb(); 4037 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 4038 create_irqchip_unlock: 4039 mutex_unlock(&kvm->lock); 4040 break; 4041 } 4042 case KVM_CREATE_PIT: 4043 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 4044 goto create_pit; 4045 case KVM_CREATE_PIT2: 4046 r = -EFAULT; 4047 if (copy_from_user(&u.pit_config, argp, 4048 sizeof(struct kvm_pit_config))) 4049 goto out; 4050 create_pit: 4051 mutex_lock(&kvm->lock); 4052 r = -EEXIST; 4053 if (kvm->arch.vpit) 4054 goto create_pit_unlock; 4055 r = -ENOMEM; 4056 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 4057 if (kvm->arch.vpit) 4058 r = 0; 4059 create_pit_unlock: 4060 mutex_unlock(&kvm->lock); 4061 break; 4062 case KVM_GET_IRQCHIP: { 4063 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 4064 struct kvm_irqchip *chip; 4065 4066 chip = memdup_user(argp, sizeof(*chip)); 4067 if (IS_ERR(chip)) { 4068 r = PTR_ERR(chip); 4069 goto out; 4070 } 4071 4072 r = -ENXIO; 4073 if (!irqchip_kernel(kvm)) 4074 goto get_irqchip_out; 4075 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 4076 if (r) 4077 goto get_irqchip_out; 4078 r = -EFAULT; 4079 if (copy_to_user(argp, chip, sizeof *chip)) 4080 goto get_irqchip_out; 4081 r = 0; 4082 get_irqchip_out: 4083 kfree(chip); 4084 break; 4085 } 4086 case KVM_SET_IRQCHIP: { 4087 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 4088 struct kvm_irqchip *chip; 4089 4090 chip = memdup_user(argp, sizeof(*chip)); 4091 if (IS_ERR(chip)) { 4092 r = PTR_ERR(chip); 4093 goto out; 4094 } 4095 4096 r = -ENXIO; 4097 if (!irqchip_kernel(kvm)) 4098 goto set_irqchip_out; 4099 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 4100 if (r) 4101 goto set_irqchip_out; 4102 r = 0; 4103 set_irqchip_out: 4104 kfree(chip); 4105 break; 4106 } 4107 case KVM_GET_PIT: { 4108 r = -EFAULT; 4109 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 4110 goto out; 4111 r = -ENXIO; 4112 if (!kvm->arch.vpit) 4113 goto out; 4114 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 4115 if (r) 4116 goto out; 4117 r = -EFAULT; 4118 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 4119 goto out; 4120 r = 0; 4121 break; 4122 } 4123 case KVM_SET_PIT: { 4124 r = -EFAULT; 4125 if (copy_from_user(&u.ps, argp, sizeof u.ps)) 4126 goto out; 4127 r = -ENXIO; 4128 if (!kvm->arch.vpit) 4129 goto out; 4130 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 4131 break; 4132 } 4133 case KVM_GET_PIT2: { 4134 r = -ENXIO; 4135 if (!kvm->arch.vpit) 4136 goto out; 4137 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 4138 if (r) 4139 goto out; 4140 r = -EFAULT; 4141 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 4142 goto out; 4143 r = 0; 4144 break; 4145 } 4146 case KVM_SET_PIT2: { 4147 r = -EFAULT; 4148 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 4149 goto out; 4150 r = -ENXIO; 4151 if (!kvm->arch.vpit) 4152 goto out; 4153 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 4154 break; 4155 } 4156 case KVM_REINJECT_CONTROL: { 4157 struct kvm_reinject_control control; 4158 r = -EFAULT; 4159 if (copy_from_user(&control, argp, sizeof(control))) 4160 goto out; 4161 r = kvm_vm_ioctl_reinject(kvm, &control); 4162 break; 4163 } 4164 case KVM_SET_BOOT_CPU_ID: 4165 r = 0; 4166 mutex_lock(&kvm->lock); 4167 if (kvm->created_vcpus) 4168 r = -EBUSY; 4169 else 4170 kvm->arch.bsp_vcpu_id = arg; 4171 mutex_unlock(&kvm->lock); 4172 break; 4173 case KVM_XEN_HVM_CONFIG: { 4174 r = -EFAULT; 4175 if (copy_from_user(&kvm->arch.xen_hvm_config, argp, 4176 sizeof(struct kvm_xen_hvm_config))) 4177 goto out; 4178 r = -EINVAL; 4179 if (kvm->arch.xen_hvm_config.flags) 4180 goto out; 4181 r = 0; 4182 break; 4183 } 4184 case KVM_SET_CLOCK: { 4185 struct kvm_clock_data user_ns; 4186 u64 now_ns; 4187 4188 r = -EFAULT; 4189 if (copy_from_user(&user_ns, argp, sizeof(user_ns))) 4190 goto out; 4191 4192 r = -EINVAL; 4193 if (user_ns.flags) 4194 goto out; 4195 4196 r = 0; 4197 local_irq_disable(); 4198 now_ns = __get_kvmclock_ns(kvm); 4199 kvm->arch.kvmclock_offset += user_ns.clock - now_ns; 4200 local_irq_enable(); 4201 kvm_gen_update_masterclock(kvm); 4202 break; 4203 } 4204 case KVM_GET_CLOCK: { 4205 struct kvm_clock_data user_ns; 4206 u64 now_ns; 4207 4208 local_irq_disable(); 4209 now_ns = __get_kvmclock_ns(kvm); 4210 user_ns.clock = now_ns; 4211 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0; 4212 local_irq_enable(); 4213 memset(&user_ns.pad, 0, sizeof(user_ns.pad)); 4214 4215 r = -EFAULT; 4216 if (copy_to_user(argp, &user_ns, sizeof(user_ns))) 4217 goto out; 4218 r = 0; 4219 break; 4220 } 4221 case KVM_ENABLE_CAP: { 4222 struct kvm_enable_cap cap; 4223 4224 r = -EFAULT; 4225 if (copy_from_user(&cap, argp, sizeof(cap))) 4226 goto out; 4227 r = kvm_vm_ioctl_enable_cap(kvm, &cap); 4228 break; 4229 } 4230 default: 4231 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg); 4232 } 4233 out: 4234 return r; 4235 } 4236 4237 static void kvm_init_msr_list(void) 4238 { 4239 u32 dummy[2]; 4240 unsigned i, j; 4241 4242 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) { 4243 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) 4244 continue; 4245 4246 /* 4247 * Even MSRs that are valid in the host may not be exposed 4248 * to the guests in some cases. 4249 */ 4250 switch (msrs_to_save[i]) { 4251 case MSR_IA32_BNDCFGS: 4252 if (!kvm_x86_ops->mpx_supported()) 4253 continue; 4254 break; 4255 case MSR_TSC_AUX: 4256 if (!kvm_x86_ops->rdtscp_supported()) 4257 continue; 4258 break; 4259 default: 4260 break; 4261 } 4262 4263 if (j < i) 4264 msrs_to_save[j] = msrs_to_save[i]; 4265 j++; 4266 } 4267 num_msrs_to_save = j; 4268 4269 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) { 4270 switch (emulated_msrs[i]) { 4271 case MSR_IA32_SMBASE: 4272 if (!kvm_x86_ops->cpu_has_high_real_mode_segbase()) 4273 continue; 4274 break; 4275 default: 4276 break; 4277 } 4278 4279 if (j < i) 4280 emulated_msrs[j] = emulated_msrs[i]; 4281 j++; 4282 } 4283 num_emulated_msrs = j; 4284 } 4285 4286 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 4287 const void *v) 4288 { 4289 int handled = 0; 4290 int n; 4291 4292 do { 4293 n = min(len, 8); 4294 if (!(lapic_in_kernel(vcpu) && 4295 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 4296 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 4297 break; 4298 handled += n; 4299 addr += n; 4300 len -= n; 4301 v += n; 4302 } while (len); 4303 4304 return handled; 4305 } 4306 4307 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 4308 { 4309 int handled = 0; 4310 int n; 4311 4312 do { 4313 n = min(len, 8); 4314 if (!(lapic_in_kernel(vcpu) && 4315 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 4316 addr, n, v)) 4317 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 4318 break; 4319 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v); 4320 handled += n; 4321 addr += n; 4322 len -= n; 4323 v += n; 4324 } while (len); 4325 4326 return handled; 4327 } 4328 4329 static void kvm_set_segment(struct kvm_vcpu *vcpu, 4330 struct kvm_segment *var, int seg) 4331 { 4332 kvm_x86_ops->set_segment(vcpu, var, seg); 4333 } 4334 4335 void kvm_get_segment(struct kvm_vcpu *vcpu, 4336 struct kvm_segment *var, int seg) 4337 { 4338 kvm_x86_ops->get_segment(vcpu, var, seg); 4339 } 4340 4341 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 4342 struct x86_exception *exception) 4343 { 4344 gpa_t t_gpa; 4345 4346 BUG_ON(!mmu_is_nested(vcpu)); 4347 4348 /* NPT walks are always user-walks */ 4349 access |= PFERR_USER_MASK; 4350 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception); 4351 4352 return t_gpa; 4353 } 4354 4355 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 4356 struct x86_exception *exception) 4357 { 4358 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4359 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4360 } 4361 4362 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 4363 struct x86_exception *exception) 4364 { 4365 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4366 access |= PFERR_FETCH_MASK; 4367 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4368 } 4369 4370 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 4371 struct x86_exception *exception) 4372 { 4373 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4374 access |= PFERR_WRITE_MASK; 4375 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4376 } 4377 4378 /* uses this to access any guest's mapped memory without checking CPL */ 4379 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 4380 struct x86_exception *exception) 4381 { 4382 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); 4383 } 4384 4385 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 4386 struct kvm_vcpu *vcpu, u32 access, 4387 struct x86_exception *exception) 4388 { 4389 void *data = val; 4390 int r = X86EMUL_CONTINUE; 4391 4392 while (bytes) { 4393 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, 4394 exception); 4395 unsigned offset = addr & (PAGE_SIZE-1); 4396 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 4397 int ret; 4398 4399 if (gpa == UNMAPPED_GVA) 4400 return X86EMUL_PROPAGATE_FAULT; 4401 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 4402 offset, toread); 4403 if (ret < 0) { 4404 r = X86EMUL_IO_NEEDED; 4405 goto out; 4406 } 4407 4408 bytes -= toread; 4409 data += toread; 4410 addr += toread; 4411 } 4412 out: 4413 return r; 4414 } 4415 4416 /* used for instruction fetching */ 4417 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 4418 gva_t addr, void *val, unsigned int bytes, 4419 struct x86_exception *exception) 4420 { 4421 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4422 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4423 unsigned offset; 4424 int ret; 4425 4426 /* Inline kvm_read_guest_virt_helper for speed. */ 4427 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK, 4428 exception); 4429 if (unlikely(gpa == UNMAPPED_GVA)) 4430 return X86EMUL_PROPAGATE_FAULT; 4431 4432 offset = addr & (PAGE_SIZE-1); 4433 if (WARN_ON(offset + bytes > PAGE_SIZE)) 4434 bytes = (unsigned)PAGE_SIZE - offset; 4435 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 4436 offset, bytes); 4437 if (unlikely(ret < 0)) 4438 return X86EMUL_IO_NEEDED; 4439 4440 return X86EMUL_CONTINUE; 4441 } 4442 4443 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt, 4444 gva_t addr, void *val, unsigned int bytes, 4445 struct x86_exception *exception) 4446 { 4447 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4448 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4449 4450 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 4451 exception); 4452 } 4453 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 4454 4455 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt, 4456 gva_t addr, void *val, unsigned int bytes, 4457 struct x86_exception *exception) 4458 { 4459 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4460 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception); 4461 } 4462 4463 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, 4464 unsigned long addr, void *val, unsigned int bytes) 4465 { 4466 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4467 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes); 4468 4469 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE; 4470 } 4471 4472 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt, 4473 gva_t addr, void *val, 4474 unsigned int bytes, 4475 struct x86_exception *exception) 4476 { 4477 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4478 void *data = val; 4479 int r = X86EMUL_CONTINUE; 4480 4481 while (bytes) { 4482 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, 4483 PFERR_WRITE_MASK, 4484 exception); 4485 unsigned offset = addr & (PAGE_SIZE-1); 4486 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 4487 int ret; 4488 4489 if (gpa == UNMAPPED_GVA) 4490 return X86EMUL_PROPAGATE_FAULT; 4491 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 4492 if (ret < 0) { 4493 r = X86EMUL_IO_NEEDED; 4494 goto out; 4495 } 4496 4497 bytes -= towrite; 4498 data += towrite; 4499 addr += towrite; 4500 } 4501 out: 4502 return r; 4503 } 4504 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 4505 4506 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 4507 gpa_t gpa, bool write) 4508 { 4509 /* For APIC access vmexit */ 4510 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 4511 return 1; 4512 4513 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 4514 trace_vcpu_match_mmio(gva, gpa, write, true); 4515 return 1; 4516 } 4517 4518 return 0; 4519 } 4520 4521 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 4522 gpa_t *gpa, struct x86_exception *exception, 4523 bool write) 4524 { 4525 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) 4526 | (write ? PFERR_WRITE_MASK : 0); 4527 4528 /* 4529 * currently PKRU is only applied to ept enabled guest so 4530 * there is no pkey in EPT page table for L1 guest or EPT 4531 * shadow page table for L2 guest. 4532 */ 4533 if (vcpu_match_mmio_gva(vcpu, gva) 4534 && !permission_fault(vcpu, vcpu->arch.walk_mmu, 4535 vcpu->arch.access, 0, access)) { 4536 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 4537 (gva & (PAGE_SIZE - 1)); 4538 trace_vcpu_match_mmio(gva, *gpa, write, false); 4539 return 1; 4540 } 4541 4542 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4543 4544 if (*gpa == UNMAPPED_GVA) 4545 return -1; 4546 4547 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 4548 } 4549 4550 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 4551 const void *val, int bytes) 4552 { 4553 int ret; 4554 4555 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 4556 if (ret < 0) 4557 return 0; 4558 kvm_page_track_write(vcpu, gpa, val, bytes); 4559 return 1; 4560 } 4561 4562 struct read_write_emulator_ops { 4563 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 4564 int bytes); 4565 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 4566 void *val, int bytes); 4567 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 4568 int bytes, void *val); 4569 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 4570 void *val, int bytes); 4571 bool write; 4572 }; 4573 4574 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 4575 { 4576 if (vcpu->mmio_read_completed) { 4577 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 4578 vcpu->mmio_fragments[0].gpa, *(u64 *)val); 4579 vcpu->mmio_read_completed = 0; 4580 return 1; 4581 } 4582 4583 return 0; 4584 } 4585 4586 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 4587 void *val, int bytes) 4588 { 4589 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 4590 } 4591 4592 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 4593 void *val, int bytes) 4594 { 4595 return emulator_write_phys(vcpu, gpa, val, bytes); 4596 } 4597 4598 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 4599 { 4600 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val); 4601 return vcpu_mmio_write(vcpu, gpa, bytes, val); 4602 } 4603 4604 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 4605 void *val, int bytes) 4606 { 4607 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0); 4608 return X86EMUL_IO_NEEDED; 4609 } 4610 4611 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 4612 void *val, int bytes) 4613 { 4614 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 4615 4616 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 4617 return X86EMUL_CONTINUE; 4618 } 4619 4620 static const struct read_write_emulator_ops read_emultor = { 4621 .read_write_prepare = read_prepare, 4622 .read_write_emulate = read_emulate, 4623 .read_write_mmio = vcpu_mmio_read, 4624 .read_write_exit_mmio = read_exit_mmio, 4625 }; 4626 4627 static const struct read_write_emulator_ops write_emultor = { 4628 .read_write_emulate = write_emulate, 4629 .read_write_mmio = write_mmio, 4630 .read_write_exit_mmio = write_exit_mmio, 4631 .write = true, 4632 }; 4633 4634 static int emulator_read_write_onepage(unsigned long addr, void *val, 4635 unsigned int bytes, 4636 struct x86_exception *exception, 4637 struct kvm_vcpu *vcpu, 4638 const struct read_write_emulator_ops *ops) 4639 { 4640 gpa_t gpa; 4641 int handled, ret; 4642 bool write = ops->write; 4643 struct kvm_mmio_fragment *frag; 4644 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4645 4646 /* 4647 * If the exit was due to a NPF we may already have a GPA. 4648 * If the GPA is present, use it to avoid the GVA to GPA table walk. 4649 * Note, this cannot be used on string operations since string 4650 * operation using rep will only have the initial GPA from the NPF 4651 * occurred. 4652 */ 4653 if (vcpu->arch.gpa_available && 4654 emulator_can_use_gpa(ctxt) && 4655 vcpu_is_mmio_gpa(vcpu, addr, exception->address, write) && 4656 (addr & ~PAGE_MASK) == (exception->address & ~PAGE_MASK)) { 4657 gpa = exception->address; 4658 goto mmio; 4659 } 4660 4661 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 4662 4663 if (ret < 0) 4664 return X86EMUL_PROPAGATE_FAULT; 4665 4666 /* For APIC access vmexit */ 4667 if (ret) 4668 goto mmio; 4669 4670 if (ops->read_write_emulate(vcpu, gpa, val, bytes)) 4671 return X86EMUL_CONTINUE; 4672 4673 mmio: 4674 /* 4675 * Is this MMIO handled locally? 4676 */ 4677 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 4678 if (handled == bytes) 4679 return X86EMUL_CONTINUE; 4680 4681 gpa += handled; 4682 bytes -= handled; 4683 val += handled; 4684 4685 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 4686 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 4687 frag->gpa = gpa; 4688 frag->data = val; 4689 frag->len = bytes; 4690 return X86EMUL_CONTINUE; 4691 } 4692 4693 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 4694 unsigned long addr, 4695 void *val, unsigned int bytes, 4696 struct x86_exception *exception, 4697 const struct read_write_emulator_ops *ops) 4698 { 4699 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4700 gpa_t gpa; 4701 int rc; 4702 4703 if (ops->read_write_prepare && 4704 ops->read_write_prepare(vcpu, val, bytes)) 4705 return X86EMUL_CONTINUE; 4706 4707 vcpu->mmio_nr_fragments = 0; 4708 4709 /* Crossing a page boundary? */ 4710 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 4711 int now; 4712 4713 now = -addr & ~PAGE_MASK; 4714 rc = emulator_read_write_onepage(addr, val, now, exception, 4715 vcpu, ops); 4716 4717 if (rc != X86EMUL_CONTINUE) 4718 return rc; 4719 addr += now; 4720 if (ctxt->mode != X86EMUL_MODE_PROT64) 4721 addr = (u32)addr; 4722 val += now; 4723 bytes -= now; 4724 } 4725 4726 rc = emulator_read_write_onepage(addr, val, bytes, exception, 4727 vcpu, ops); 4728 if (rc != X86EMUL_CONTINUE) 4729 return rc; 4730 4731 if (!vcpu->mmio_nr_fragments) 4732 return rc; 4733 4734 gpa = vcpu->mmio_fragments[0].gpa; 4735 4736 vcpu->mmio_needed = 1; 4737 vcpu->mmio_cur_fragment = 0; 4738 4739 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 4740 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 4741 vcpu->run->exit_reason = KVM_EXIT_MMIO; 4742 vcpu->run->mmio.phys_addr = gpa; 4743 4744 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 4745 } 4746 4747 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 4748 unsigned long addr, 4749 void *val, 4750 unsigned int bytes, 4751 struct x86_exception *exception) 4752 { 4753 return emulator_read_write(ctxt, addr, val, bytes, 4754 exception, &read_emultor); 4755 } 4756 4757 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 4758 unsigned long addr, 4759 const void *val, 4760 unsigned int bytes, 4761 struct x86_exception *exception) 4762 { 4763 return emulator_read_write(ctxt, addr, (void *)val, bytes, 4764 exception, &write_emultor); 4765 } 4766 4767 #define CMPXCHG_TYPE(t, ptr, old, new) \ 4768 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 4769 4770 #ifdef CONFIG_X86_64 4771 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 4772 #else 4773 # define CMPXCHG64(ptr, old, new) \ 4774 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 4775 #endif 4776 4777 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 4778 unsigned long addr, 4779 const void *old, 4780 const void *new, 4781 unsigned int bytes, 4782 struct x86_exception *exception) 4783 { 4784 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4785 gpa_t gpa; 4786 struct page *page; 4787 char *kaddr; 4788 bool exchanged; 4789 4790 /* guests cmpxchg8b have to be emulated atomically */ 4791 if (bytes > 8 || (bytes & (bytes - 1))) 4792 goto emul_write; 4793 4794 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 4795 4796 if (gpa == UNMAPPED_GVA || 4797 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 4798 goto emul_write; 4799 4800 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) 4801 goto emul_write; 4802 4803 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT); 4804 if (is_error_page(page)) 4805 goto emul_write; 4806 4807 kaddr = kmap_atomic(page); 4808 kaddr += offset_in_page(gpa); 4809 switch (bytes) { 4810 case 1: 4811 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 4812 break; 4813 case 2: 4814 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 4815 break; 4816 case 4: 4817 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 4818 break; 4819 case 8: 4820 exchanged = CMPXCHG64(kaddr, old, new); 4821 break; 4822 default: 4823 BUG(); 4824 } 4825 kunmap_atomic(kaddr); 4826 kvm_release_page_dirty(page); 4827 4828 if (!exchanged) 4829 return X86EMUL_CMPXCHG_FAILED; 4830 4831 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); 4832 kvm_page_track_write(vcpu, gpa, new, bytes); 4833 4834 return X86EMUL_CONTINUE; 4835 4836 emul_write: 4837 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 4838 4839 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 4840 } 4841 4842 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 4843 { 4844 /* TODO: String I/O for in kernel device */ 4845 int r; 4846 4847 if (vcpu->arch.pio.in) 4848 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port, 4849 vcpu->arch.pio.size, pd); 4850 else 4851 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, 4852 vcpu->arch.pio.port, vcpu->arch.pio.size, 4853 pd); 4854 return r; 4855 } 4856 4857 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 4858 unsigned short port, void *val, 4859 unsigned int count, bool in) 4860 { 4861 vcpu->arch.pio.port = port; 4862 vcpu->arch.pio.in = in; 4863 vcpu->arch.pio.count = count; 4864 vcpu->arch.pio.size = size; 4865 4866 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { 4867 vcpu->arch.pio.count = 0; 4868 return 1; 4869 } 4870 4871 vcpu->run->exit_reason = KVM_EXIT_IO; 4872 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 4873 vcpu->run->io.size = size; 4874 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 4875 vcpu->run->io.count = count; 4876 vcpu->run->io.port = port; 4877 4878 return 0; 4879 } 4880 4881 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 4882 int size, unsigned short port, void *val, 4883 unsigned int count) 4884 { 4885 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4886 int ret; 4887 4888 if (vcpu->arch.pio.count) 4889 goto data_avail; 4890 4891 ret = emulator_pio_in_out(vcpu, size, port, val, count, true); 4892 if (ret) { 4893 data_avail: 4894 memcpy(val, vcpu->arch.pio_data, size * count); 4895 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data); 4896 vcpu->arch.pio.count = 0; 4897 return 1; 4898 } 4899 4900 return 0; 4901 } 4902 4903 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 4904 int size, unsigned short port, 4905 const void *val, unsigned int count) 4906 { 4907 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4908 4909 memcpy(vcpu->arch.pio_data, val, size * count); 4910 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data); 4911 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 4912 } 4913 4914 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 4915 { 4916 return kvm_x86_ops->get_segment_base(vcpu, seg); 4917 } 4918 4919 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 4920 { 4921 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 4922 } 4923 4924 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 4925 { 4926 if (!need_emulate_wbinvd(vcpu)) 4927 return X86EMUL_CONTINUE; 4928 4929 if (kvm_x86_ops->has_wbinvd_exit()) { 4930 int cpu = get_cpu(); 4931 4932 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4933 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, 4934 wbinvd_ipi, NULL, 1); 4935 put_cpu(); 4936 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 4937 } else 4938 wbinvd(); 4939 return X86EMUL_CONTINUE; 4940 } 4941 4942 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 4943 { 4944 kvm_emulate_wbinvd_noskip(vcpu); 4945 return kvm_skip_emulated_instruction(vcpu); 4946 } 4947 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 4948 4949 4950 4951 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 4952 { 4953 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 4954 } 4955 4956 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 4957 unsigned long *dest) 4958 { 4959 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 4960 } 4961 4962 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 4963 unsigned long value) 4964 { 4965 4966 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 4967 } 4968 4969 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 4970 { 4971 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 4972 } 4973 4974 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 4975 { 4976 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4977 unsigned long value; 4978 4979 switch (cr) { 4980 case 0: 4981 value = kvm_read_cr0(vcpu); 4982 break; 4983 case 2: 4984 value = vcpu->arch.cr2; 4985 break; 4986 case 3: 4987 value = kvm_read_cr3(vcpu); 4988 break; 4989 case 4: 4990 value = kvm_read_cr4(vcpu); 4991 break; 4992 case 8: 4993 value = kvm_get_cr8(vcpu); 4994 break; 4995 default: 4996 kvm_err("%s: unexpected cr %u\n", __func__, cr); 4997 return 0; 4998 } 4999 5000 return value; 5001 } 5002 5003 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 5004 { 5005 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5006 int res = 0; 5007 5008 switch (cr) { 5009 case 0: 5010 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 5011 break; 5012 case 2: 5013 vcpu->arch.cr2 = val; 5014 break; 5015 case 3: 5016 res = kvm_set_cr3(vcpu, val); 5017 break; 5018 case 4: 5019 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 5020 break; 5021 case 8: 5022 res = kvm_set_cr8(vcpu, val); 5023 break; 5024 default: 5025 kvm_err("%s: unexpected cr %u\n", __func__, cr); 5026 res = -1; 5027 } 5028 5029 return res; 5030 } 5031 5032 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 5033 { 5034 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt)); 5035 } 5036 5037 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 5038 { 5039 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt); 5040 } 5041 5042 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 5043 { 5044 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt); 5045 } 5046 5047 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 5048 { 5049 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt); 5050 } 5051 5052 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 5053 { 5054 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt); 5055 } 5056 5057 static unsigned long emulator_get_cached_segment_base( 5058 struct x86_emulate_ctxt *ctxt, int seg) 5059 { 5060 return get_segment_base(emul_to_vcpu(ctxt), seg); 5061 } 5062 5063 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 5064 struct desc_struct *desc, u32 *base3, 5065 int seg) 5066 { 5067 struct kvm_segment var; 5068 5069 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 5070 *selector = var.selector; 5071 5072 if (var.unusable) { 5073 memset(desc, 0, sizeof(*desc)); 5074 return false; 5075 } 5076 5077 if (var.g) 5078 var.limit >>= 12; 5079 set_desc_limit(desc, var.limit); 5080 set_desc_base(desc, (unsigned long)var.base); 5081 #ifdef CONFIG_X86_64 5082 if (base3) 5083 *base3 = var.base >> 32; 5084 #endif 5085 desc->type = var.type; 5086 desc->s = var.s; 5087 desc->dpl = var.dpl; 5088 desc->p = var.present; 5089 desc->avl = var.avl; 5090 desc->l = var.l; 5091 desc->d = var.db; 5092 desc->g = var.g; 5093 5094 return true; 5095 } 5096 5097 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 5098 struct desc_struct *desc, u32 base3, 5099 int seg) 5100 { 5101 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5102 struct kvm_segment var; 5103 5104 var.selector = selector; 5105 var.base = get_desc_base(desc); 5106 #ifdef CONFIG_X86_64 5107 var.base |= ((u64)base3) << 32; 5108 #endif 5109 var.limit = get_desc_limit(desc); 5110 if (desc->g) 5111 var.limit = (var.limit << 12) | 0xfff; 5112 var.type = desc->type; 5113 var.dpl = desc->dpl; 5114 var.db = desc->d; 5115 var.s = desc->s; 5116 var.l = desc->l; 5117 var.g = desc->g; 5118 var.avl = desc->avl; 5119 var.present = desc->p; 5120 var.unusable = !var.present; 5121 var.padding = 0; 5122 5123 kvm_set_segment(vcpu, &var, seg); 5124 return; 5125 } 5126 5127 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 5128 u32 msr_index, u64 *pdata) 5129 { 5130 struct msr_data msr; 5131 int r; 5132 5133 msr.index = msr_index; 5134 msr.host_initiated = false; 5135 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr); 5136 if (r) 5137 return r; 5138 5139 *pdata = msr.data; 5140 return 0; 5141 } 5142 5143 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 5144 u32 msr_index, u64 data) 5145 { 5146 struct msr_data msr; 5147 5148 msr.data = data; 5149 msr.index = msr_index; 5150 msr.host_initiated = false; 5151 return kvm_set_msr(emul_to_vcpu(ctxt), &msr); 5152 } 5153 5154 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt) 5155 { 5156 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5157 5158 return vcpu->arch.smbase; 5159 } 5160 5161 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase) 5162 { 5163 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5164 5165 vcpu->arch.smbase = smbase; 5166 } 5167 5168 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 5169 u32 pmc) 5170 { 5171 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc); 5172 } 5173 5174 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 5175 u32 pmc, u64 *pdata) 5176 { 5177 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 5178 } 5179 5180 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 5181 { 5182 emul_to_vcpu(ctxt)->arch.halt_request = 1; 5183 } 5184 5185 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt) 5186 { 5187 preempt_disable(); 5188 kvm_load_guest_fpu(emul_to_vcpu(ctxt)); 5189 } 5190 5191 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt) 5192 { 5193 preempt_enable(); 5194 } 5195 5196 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 5197 struct x86_instruction_info *info, 5198 enum x86_intercept_stage stage) 5199 { 5200 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage); 5201 } 5202 5203 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 5204 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx) 5205 { 5206 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx); 5207 } 5208 5209 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 5210 { 5211 return kvm_register_read(emul_to_vcpu(ctxt), reg); 5212 } 5213 5214 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 5215 { 5216 kvm_register_write(emul_to_vcpu(ctxt), reg, val); 5217 } 5218 5219 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 5220 { 5221 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked); 5222 } 5223 5224 static const struct x86_emulate_ops emulate_ops = { 5225 .read_gpr = emulator_read_gpr, 5226 .write_gpr = emulator_write_gpr, 5227 .read_std = kvm_read_guest_virt_system, 5228 .write_std = kvm_write_guest_virt_system, 5229 .read_phys = kvm_read_guest_phys_system, 5230 .fetch = kvm_fetch_guest_virt, 5231 .read_emulated = emulator_read_emulated, 5232 .write_emulated = emulator_write_emulated, 5233 .cmpxchg_emulated = emulator_cmpxchg_emulated, 5234 .invlpg = emulator_invlpg, 5235 .pio_in_emulated = emulator_pio_in_emulated, 5236 .pio_out_emulated = emulator_pio_out_emulated, 5237 .get_segment = emulator_get_segment, 5238 .set_segment = emulator_set_segment, 5239 .get_cached_segment_base = emulator_get_cached_segment_base, 5240 .get_gdt = emulator_get_gdt, 5241 .get_idt = emulator_get_idt, 5242 .set_gdt = emulator_set_gdt, 5243 .set_idt = emulator_set_idt, 5244 .get_cr = emulator_get_cr, 5245 .set_cr = emulator_set_cr, 5246 .cpl = emulator_get_cpl, 5247 .get_dr = emulator_get_dr, 5248 .set_dr = emulator_set_dr, 5249 .get_smbase = emulator_get_smbase, 5250 .set_smbase = emulator_set_smbase, 5251 .set_msr = emulator_set_msr, 5252 .get_msr = emulator_get_msr, 5253 .check_pmc = emulator_check_pmc, 5254 .read_pmc = emulator_read_pmc, 5255 .halt = emulator_halt, 5256 .wbinvd = emulator_wbinvd, 5257 .fix_hypercall = emulator_fix_hypercall, 5258 .get_fpu = emulator_get_fpu, 5259 .put_fpu = emulator_put_fpu, 5260 .intercept = emulator_intercept, 5261 .get_cpuid = emulator_get_cpuid, 5262 .set_nmi_mask = emulator_set_nmi_mask, 5263 }; 5264 5265 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 5266 { 5267 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu); 5268 /* 5269 * an sti; sti; sequence only disable interrupts for the first 5270 * instruction. So, if the last instruction, be it emulated or 5271 * not, left the system with the INT_STI flag enabled, it 5272 * means that the last instruction is an sti. We should not 5273 * leave the flag on in this case. The same goes for mov ss 5274 */ 5275 if (int_shadow & mask) 5276 mask = 0; 5277 if (unlikely(int_shadow || mask)) { 5278 kvm_x86_ops->set_interrupt_shadow(vcpu, mask); 5279 if (!mask) 5280 kvm_make_request(KVM_REQ_EVENT, vcpu); 5281 } 5282 } 5283 5284 static bool inject_emulated_exception(struct kvm_vcpu *vcpu) 5285 { 5286 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5287 if (ctxt->exception.vector == PF_VECTOR) 5288 return kvm_propagate_fault(vcpu, &ctxt->exception); 5289 5290 if (ctxt->exception.error_code_valid) 5291 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 5292 ctxt->exception.error_code); 5293 else 5294 kvm_queue_exception(vcpu, ctxt->exception.vector); 5295 return false; 5296 } 5297 5298 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 5299 { 5300 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5301 int cs_db, cs_l; 5302 5303 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 5304 5305 ctxt->eflags = kvm_get_rflags(vcpu); 5306 ctxt->eip = kvm_rip_read(vcpu); 5307 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 5308 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 5309 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 5310 cs_db ? X86EMUL_MODE_PROT32 : 5311 X86EMUL_MODE_PROT16; 5312 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 5313 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK); 5314 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK); 5315 ctxt->emul_flags = vcpu->arch.hflags; 5316 5317 init_decode_cache(ctxt); 5318 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 5319 } 5320 5321 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 5322 { 5323 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5324 int ret; 5325 5326 init_emulate_ctxt(vcpu); 5327 5328 ctxt->op_bytes = 2; 5329 ctxt->ad_bytes = 2; 5330 ctxt->_eip = ctxt->eip + inc_eip; 5331 ret = emulate_int_real(ctxt, irq); 5332 5333 if (ret != X86EMUL_CONTINUE) 5334 return EMULATE_FAIL; 5335 5336 ctxt->eip = ctxt->_eip; 5337 kvm_rip_write(vcpu, ctxt->eip); 5338 kvm_set_rflags(vcpu, ctxt->eflags); 5339 5340 if (irq == NMI_VECTOR) 5341 vcpu->arch.nmi_pending = 0; 5342 else 5343 vcpu->arch.interrupt.pending = false; 5344 5345 return EMULATE_DONE; 5346 } 5347 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 5348 5349 static int handle_emulation_failure(struct kvm_vcpu *vcpu) 5350 { 5351 int r = EMULATE_DONE; 5352 5353 ++vcpu->stat.insn_emulation_fail; 5354 trace_kvm_emulate_insn_failed(vcpu); 5355 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) { 5356 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5357 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 5358 vcpu->run->internal.ndata = 0; 5359 r = EMULATE_FAIL; 5360 } 5361 kvm_queue_exception(vcpu, UD_VECTOR); 5362 5363 return r; 5364 } 5365 5366 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2, 5367 bool write_fault_to_shadow_pgtable, 5368 int emulation_type) 5369 { 5370 gpa_t gpa = cr2; 5371 kvm_pfn_t pfn; 5372 5373 if (emulation_type & EMULTYPE_NO_REEXECUTE) 5374 return false; 5375 5376 if (!vcpu->arch.mmu.direct_map) { 5377 /* 5378 * Write permission should be allowed since only 5379 * write access need to be emulated. 5380 */ 5381 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 5382 5383 /* 5384 * If the mapping is invalid in guest, let cpu retry 5385 * it to generate fault. 5386 */ 5387 if (gpa == UNMAPPED_GVA) 5388 return true; 5389 } 5390 5391 /* 5392 * Do not retry the unhandleable instruction if it faults on the 5393 * readonly host memory, otherwise it will goto a infinite loop: 5394 * retry instruction -> write #PF -> emulation fail -> retry 5395 * instruction -> ... 5396 */ 5397 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 5398 5399 /* 5400 * If the instruction failed on the error pfn, it can not be fixed, 5401 * report the error to userspace. 5402 */ 5403 if (is_error_noslot_pfn(pfn)) 5404 return false; 5405 5406 kvm_release_pfn_clean(pfn); 5407 5408 /* The instructions are well-emulated on direct mmu. */ 5409 if (vcpu->arch.mmu.direct_map) { 5410 unsigned int indirect_shadow_pages; 5411 5412 spin_lock(&vcpu->kvm->mmu_lock); 5413 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 5414 spin_unlock(&vcpu->kvm->mmu_lock); 5415 5416 if (indirect_shadow_pages) 5417 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 5418 5419 return true; 5420 } 5421 5422 /* 5423 * if emulation was due to access to shadowed page table 5424 * and it failed try to unshadow page and re-enter the 5425 * guest to let CPU execute the instruction. 5426 */ 5427 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 5428 5429 /* 5430 * If the access faults on its page table, it can not 5431 * be fixed by unprotecting shadow page and it should 5432 * be reported to userspace. 5433 */ 5434 return !write_fault_to_shadow_pgtable; 5435 } 5436 5437 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 5438 unsigned long cr2, int emulation_type) 5439 { 5440 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5441 unsigned long last_retry_eip, last_retry_addr, gpa = cr2; 5442 5443 last_retry_eip = vcpu->arch.last_retry_eip; 5444 last_retry_addr = vcpu->arch.last_retry_addr; 5445 5446 /* 5447 * If the emulation is caused by #PF and it is non-page_table 5448 * writing instruction, it means the VM-EXIT is caused by shadow 5449 * page protected, we can zap the shadow page and retry this 5450 * instruction directly. 5451 * 5452 * Note: if the guest uses a non-page-table modifying instruction 5453 * on the PDE that points to the instruction, then we will unmap 5454 * the instruction and go to an infinite loop. So, we cache the 5455 * last retried eip and the last fault address, if we meet the eip 5456 * and the address again, we can break out of the potential infinite 5457 * loop. 5458 */ 5459 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 5460 5461 if (!(emulation_type & EMULTYPE_RETRY)) 5462 return false; 5463 5464 if (x86_page_table_writing_insn(ctxt)) 5465 return false; 5466 5467 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2) 5468 return false; 5469 5470 vcpu->arch.last_retry_eip = ctxt->eip; 5471 vcpu->arch.last_retry_addr = cr2; 5472 5473 if (!vcpu->arch.mmu.direct_map) 5474 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 5475 5476 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 5477 5478 return true; 5479 } 5480 5481 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 5482 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 5483 5484 static void kvm_smm_changed(struct kvm_vcpu *vcpu) 5485 { 5486 if (!(vcpu->arch.hflags & HF_SMM_MASK)) { 5487 /* This is a good place to trace that we are exiting SMM. */ 5488 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false); 5489 5490 /* Process a latched INIT or SMI, if any. */ 5491 kvm_make_request(KVM_REQ_EVENT, vcpu); 5492 } 5493 5494 kvm_mmu_reset_context(vcpu); 5495 } 5496 5497 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags) 5498 { 5499 unsigned changed = vcpu->arch.hflags ^ emul_flags; 5500 5501 vcpu->arch.hflags = emul_flags; 5502 5503 if (changed & HF_SMM_MASK) 5504 kvm_smm_changed(vcpu); 5505 } 5506 5507 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 5508 unsigned long *db) 5509 { 5510 u32 dr6 = 0; 5511 int i; 5512 u32 enable, rwlen; 5513 5514 enable = dr7; 5515 rwlen = dr7 >> 16; 5516 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 5517 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 5518 dr6 |= (1 << i); 5519 return dr6; 5520 } 5521 5522 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r) 5523 { 5524 struct kvm_run *kvm_run = vcpu->run; 5525 5526 /* 5527 * rflags is the old, "raw" value of the flags. The new value has 5528 * not been saved yet. 5529 * 5530 * This is correct even for TF set by the guest, because "the 5531 * processor will not generate this exception after the instruction 5532 * that sets the TF flag". 5533 */ 5534 if (unlikely(rflags & X86_EFLAGS_TF)) { 5535 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 5536 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | 5537 DR6_RTM; 5538 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip; 5539 kvm_run->debug.arch.exception = DB_VECTOR; 5540 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5541 *r = EMULATE_USER_EXIT; 5542 } else { 5543 /* 5544 * "Certain debug exceptions may clear bit 0-3. The 5545 * remaining contents of the DR6 register are never 5546 * cleared by the processor". 5547 */ 5548 vcpu->arch.dr6 &= ~15; 5549 vcpu->arch.dr6 |= DR6_BS | DR6_RTM; 5550 kvm_queue_exception(vcpu, DB_VECTOR); 5551 } 5552 } 5553 } 5554 5555 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 5556 { 5557 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); 5558 int r = EMULATE_DONE; 5559 5560 kvm_x86_ops->skip_emulated_instruction(vcpu); 5561 kvm_vcpu_check_singlestep(vcpu, rflags, &r); 5562 return r == EMULATE_DONE; 5563 } 5564 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 5565 5566 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r) 5567 { 5568 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 5569 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 5570 struct kvm_run *kvm_run = vcpu->run; 5571 unsigned long eip = kvm_get_linear_rip(vcpu); 5572 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 5573 vcpu->arch.guest_debug_dr7, 5574 vcpu->arch.eff_db); 5575 5576 if (dr6 != 0) { 5577 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM; 5578 kvm_run->debug.arch.pc = eip; 5579 kvm_run->debug.arch.exception = DB_VECTOR; 5580 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5581 *r = EMULATE_USER_EXIT; 5582 return true; 5583 } 5584 } 5585 5586 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 5587 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) { 5588 unsigned long eip = kvm_get_linear_rip(vcpu); 5589 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 5590 vcpu->arch.dr7, 5591 vcpu->arch.db); 5592 5593 if (dr6 != 0) { 5594 vcpu->arch.dr6 &= ~15; 5595 vcpu->arch.dr6 |= dr6 | DR6_RTM; 5596 kvm_queue_exception(vcpu, DB_VECTOR); 5597 *r = EMULATE_DONE; 5598 return true; 5599 } 5600 } 5601 5602 return false; 5603 } 5604 5605 int x86_emulate_instruction(struct kvm_vcpu *vcpu, 5606 unsigned long cr2, 5607 int emulation_type, 5608 void *insn, 5609 int insn_len) 5610 { 5611 int r; 5612 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5613 bool writeback = true; 5614 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 5615 5616 /* 5617 * Clear write_fault_to_shadow_pgtable here to ensure it is 5618 * never reused. 5619 */ 5620 vcpu->arch.write_fault_to_shadow_pgtable = false; 5621 kvm_clear_exception_queue(vcpu); 5622 5623 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 5624 init_emulate_ctxt(vcpu); 5625 5626 /* 5627 * We will reenter on the same instruction since 5628 * we do not set complete_userspace_io. This does not 5629 * handle watchpoints yet, those would be handled in 5630 * the emulate_ops. 5631 */ 5632 if (kvm_vcpu_check_breakpoint(vcpu, &r)) 5633 return r; 5634 5635 ctxt->interruptibility = 0; 5636 ctxt->have_exception = false; 5637 ctxt->exception.vector = -1; 5638 ctxt->perm_ok = false; 5639 5640 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD; 5641 5642 r = x86_decode_insn(ctxt, insn, insn_len); 5643 5644 trace_kvm_emulate_insn_start(vcpu); 5645 ++vcpu->stat.insn_emulation; 5646 if (r != EMULATION_OK) { 5647 if (emulation_type & EMULTYPE_TRAP_UD) 5648 return EMULATE_FAIL; 5649 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, 5650 emulation_type)) 5651 return EMULATE_DONE; 5652 if (emulation_type & EMULTYPE_SKIP) 5653 return EMULATE_FAIL; 5654 return handle_emulation_failure(vcpu); 5655 } 5656 } 5657 5658 if (emulation_type & EMULTYPE_SKIP) { 5659 kvm_rip_write(vcpu, ctxt->_eip); 5660 if (ctxt->eflags & X86_EFLAGS_RF) 5661 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 5662 return EMULATE_DONE; 5663 } 5664 5665 if (retry_instruction(ctxt, cr2, emulation_type)) 5666 return EMULATE_DONE; 5667 5668 /* this is needed for vmware backdoor interface to work since it 5669 changes registers values during IO operation */ 5670 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 5671 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 5672 emulator_invalidate_register_cache(ctxt); 5673 } 5674 5675 restart: 5676 /* Save the faulting GPA (cr2) in the address field */ 5677 ctxt->exception.address = cr2; 5678 5679 r = x86_emulate_insn(ctxt); 5680 5681 if (r == EMULATION_INTERCEPTED) 5682 return EMULATE_DONE; 5683 5684 if (r == EMULATION_FAILED) { 5685 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, 5686 emulation_type)) 5687 return EMULATE_DONE; 5688 5689 return handle_emulation_failure(vcpu); 5690 } 5691 5692 if (ctxt->have_exception) { 5693 r = EMULATE_DONE; 5694 if (inject_emulated_exception(vcpu)) 5695 return r; 5696 } else if (vcpu->arch.pio.count) { 5697 if (!vcpu->arch.pio.in) { 5698 /* FIXME: return into emulator if single-stepping. */ 5699 vcpu->arch.pio.count = 0; 5700 } else { 5701 writeback = false; 5702 vcpu->arch.complete_userspace_io = complete_emulated_pio; 5703 } 5704 r = EMULATE_USER_EXIT; 5705 } else if (vcpu->mmio_needed) { 5706 if (!vcpu->mmio_is_write) 5707 writeback = false; 5708 r = EMULATE_USER_EXIT; 5709 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 5710 } else if (r == EMULATION_RESTART) 5711 goto restart; 5712 else 5713 r = EMULATE_DONE; 5714 5715 if (writeback) { 5716 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); 5717 toggle_interruptibility(vcpu, ctxt->interruptibility); 5718 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 5719 if (vcpu->arch.hflags != ctxt->emul_flags) 5720 kvm_set_hflags(vcpu, ctxt->emul_flags); 5721 kvm_rip_write(vcpu, ctxt->eip); 5722 if (r == EMULATE_DONE) 5723 kvm_vcpu_check_singlestep(vcpu, rflags, &r); 5724 if (!ctxt->have_exception || 5725 exception_type(ctxt->exception.vector) == EXCPT_TRAP) 5726 __kvm_set_rflags(vcpu, ctxt->eflags); 5727 5728 /* 5729 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 5730 * do nothing, and it will be requested again as soon as 5731 * the shadow expires. But we still need to check here, 5732 * because POPF has no interrupt shadow. 5733 */ 5734 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 5735 kvm_make_request(KVM_REQ_EVENT, vcpu); 5736 } else 5737 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 5738 5739 return r; 5740 } 5741 EXPORT_SYMBOL_GPL(x86_emulate_instruction); 5742 5743 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port) 5744 { 5745 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX); 5746 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt, 5747 size, port, &val, 1); 5748 /* do not return to emulator after return from userspace */ 5749 vcpu->arch.pio.count = 0; 5750 return ret; 5751 } 5752 EXPORT_SYMBOL_GPL(kvm_fast_pio_out); 5753 5754 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 5755 { 5756 unsigned long val; 5757 5758 /* We should only ever be called with arch.pio.count equal to 1 */ 5759 BUG_ON(vcpu->arch.pio.count != 1); 5760 5761 /* For size less than 4 we merge, else we zero extend */ 5762 val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) 5763 : 0; 5764 5765 /* 5766 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform 5767 * the copy and tracing 5768 */ 5769 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size, 5770 vcpu->arch.pio.port, &val, 1); 5771 kvm_register_write(vcpu, VCPU_REGS_RAX, val); 5772 5773 return 1; 5774 } 5775 5776 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port) 5777 { 5778 unsigned long val; 5779 int ret; 5780 5781 /* For size less than 4 we merge, else we zero extend */ 5782 val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0; 5783 5784 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port, 5785 &val, 1); 5786 if (ret) { 5787 kvm_register_write(vcpu, VCPU_REGS_RAX, val); 5788 return ret; 5789 } 5790 5791 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 5792 5793 return 0; 5794 } 5795 EXPORT_SYMBOL_GPL(kvm_fast_pio_in); 5796 5797 static int kvmclock_cpu_down_prep(unsigned int cpu) 5798 { 5799 __this_cpu_write(cpu_tsc_khz, 0); 5800 return 0; 5801 } 5802 5803 static void tsc_khz_changed(void *data) 5804 { 5805 struct cpufreq_freqs *freq = data; 5806 unsigned long khz = 0; 5807 5808 if (data) 5809 khz = freq->new; 5810 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 5811 khz = cpufreq_quick_get(raw_smp_processor_id()); 5812 if (!khz) 5813 khz = tsc_khz; 5814 __this_cpu_write(cpu_tsc_khz, khz); 5815 } 5816 5817 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 5818 void *data) 5819 { 5820 struct cpufreq_freqs *freq = data; 5821 struct kvm *kvm; 5822 struct kvm_vcpu *vcpu; 5823 int i, send_ipi = 0; 5824 5825 /* 5826 * We allow guests to temporarily run on slowing clocks, 5827 * provided we notify them after, or to run on accelerating 5828 * clocks, provided we notify them before. Thus time never 5829 * goes backwards. 5830 * 5831 * However, we have a problem. We can't atomically update 5832 * the frequency of a given CPU from this function; it is 5833 * merely a notifier, which can be called from any CPU. 5834 * Changing the TSC frequency at arbitrary points in time 5835 * requires a recomputation of local variables related to 5836 * the TSC for each VCPU. We must flag these local variables 5837 * to be updated and be sure the update takes place with the 5838 * new frequency before any guests proceed. 5839 * 5840 * Unfortunately, the combination of hotplug CPU and frequency 5841 * change creates an intractable locking scenario; the order 5842 * of when these callouts happen is undefined with respect to 5843 * CPU hotplug, and they can race with each other. As such, 5844 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 5845 * undefined; you can actually have a CPU frequency change take 5846 * place in between the computation of X and the setting of the 5847 * variable. To protect against this problem, all updates of 5848 * the per_cpu tsc_khz variable are done in an interrupt 5849 * protected IPI, and all callers wishing to update the value 5850 * must wait for a synchronous IPI to complete (which is trivial 5851 * if the caller is on the CPU already). This establishes the 5852 * necessary total order on variable updates. 5853 * 5854 * Note that because a guest time update may take place 5855 * anytime after the setting of the VCPU's request bit, the 5856 * correct TSC value must be set before the request. However, 5857 * to ensure the update actually makes it to any guest which 5858 * starts running in hardware virtualization between the set 5859 * and the acquisition of the spinlock, we must also ping the 5860 * CPU after setting the request bit. 5861 * 5862 */ 5863 5864 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 5865 return 0; 5866 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 5867 return 0; 5868 5869 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 5870 5871 spin_lock(&kvm_lock); 5872 list_for_each_entry(kvm, &vm_list, vm_list) { 5873 kvm_for_each_vcpu(i, vcpu, kvm) { 5874 if (vcpu->cpu != freq->cpu) 5875 continue; 5876 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5877 if (vcpu->cpu != smp_processor_id()) 5878 send_ipi = 1; 5879 } 5880 } 5881 spin_unlock(&kvm_lock); 5882 5883 if (freq->old < freq->new && send_ipi) { 5884 /* 5885 * We upscale the frequency. Must make the guest 5886 * doesn't see old kvmclock values while running with 5887 * the new frequency, otherwise we risk the guest sees 5888 * time go backwards. 5889 * 5890 * In case we update the frequency for another cpu 5891 * (which might be in guest context) send an interrupt 5892 * to kick the cpu out of guest context. Next time 5893 * guest context is entered kvmclock will be updated, 5894 * so the guest will not see stale values. 5895 */ 5896 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 5897 } 5898 return 0; 5899 } 5900 5901 static struct notifier_block kvmclock_cpufreq_notifier_block = { 5902 .notifier_call = kvmclock_cpufreq_notifier 5903 }; 5904 5905 static int kvmclock_cpu_online(unsigned int cpu) 5906 { 5907 tsc_khz_changed(NULL); 5908 return 0; 5909 } 5910 5911 static void kvm_timer_init(void) 5912 { 5913 max_tsc_khz = tsc_khz; 5914 5915 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 5916 #ifdef CONFIG_CPU_FREQ 5917 struct cpufreq_policy policy; 5918 int cpu; 5919 5920 memset(&policy, 0, sizeof(policy)); 5921 cpu = get_cpu(); 5922 cpufreq_get_policy(&policy, cpu); 5923 if (policy.cpuinfo.max_freq) 5924 max_tsc_khz = policy.cpuinfo.max_freq; 5925 put_cpu(); 5926 #endif 5927 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 5928 CPUFREQ_TRANSITION_NOTIFIER); 5929 } 5930 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz); 5931 5932 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 5933 kvmclock_cpu_online, kvmclock_cpu_down_prep); 5934 } 5935 5936 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); 5937 5938 int kvm_is_in_guest(void) 5939 { 5940 return __this_cpu_read(current_vcpu) != NULL; 5941 } 5942 5943 static int kvm_is_user_mode(void) 5944 { 5945 int user_mode = 3; 5946 5947 if (__this_cpu_read(current_vcpu)) 5948 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu)); 5949 5950 return user_mode != 0; 5951 } 5952 5953 static unsigned long kvm_get_guest_ip(void) 5954 { 5955 unsigned long ip = 0; 5956 5957 if (__this_cpu_read(current_vcpu)) 5958 ip = kvm_rip_read(__this_cpu_read(current_vcpu)); 5959 5960 return ip; 5961 } 5962 5963 static struct perf_guest_info_callbacks kvm_guest_cbs = { 5964 .is_in_guest = kvm_is_in_guest, 5965 .is_user_mode = kvm_is_user_mode, 5966 .get_guest_ip = kvm_get_guest_ip, 5967 }; 5968 5969 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu) 5970 { 5971 __this_cpu_write(current_vcpu, vcpu); 5972 } 5973 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi); 5974 5975 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu) 5976 { 5977 __this_cpu_write(current_vcpu, NULL); 5978 } 5979 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi); 5980 5981 static void kvm_set_mmio_spte_mask(void) 5982 { 5983 u64 mask; 5984 int maxphyaddr = boot_cpu_data.x86_phys_bits; 5985 5986 /* 5987 * Set the reserved bits and the present bit of an paging-structure 5988 * entry to generate page fault with PFER.RSV = 1. 5989 */ 5990 /* Mask the reserved physical address bits. */ 5991 mask = rsvd_bits(maxphyaddr, 51); 5992 5993 /* Set the present bit. */ 5994 mask |= 1ull; 5995 5996 #ifdef CONFIG_X86_64 5997 /* 5998 * If reserved bit is not supported, clear the present bit to disable 5999 * mmio page fault. 6000 */ 6001 if (maxphyaddr == 52) 6002 mask &= ~1ull; 6003 #endif 6004 6005 kvm_mmu_set_mmio_spte_mask(mask); 6006 } 6007 6008 #ifdef CONFIG_X86_64 6009 static void pvclock_gtod_update_fn(struct work_struct *work) 6010 { 6011 struct kvm *kvm; 6012 6013 struct kvm_vcpu *vcpu; 6014 int i; 6015 6016 spin_lock(&kvm_lock); 6017 list_for_each_entry(kvm, &vm_list, vm_list) 6018 kvm_for_each_vcpu(i, vcpu, kvm) 6019 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 6020 atomic_set(&kvm_guest_has_master_clock, 0); 6021 spin_unlock(&kvm_lock); 6022 } 6023 6024 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 6025 6026 /* 6027 * Notification about pvclock gtod data update. 6028 */ 6029 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 6030 void *priv) 6031 { 6032 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 6033 struct timekeeper *tk = priv; 6034 6035 update_pvclock_gtod(tk); 6036 6037 /* disable master clock if host does not trust, or does not 6038 * use, TSC clocksource 6039 */ 6040 if (gtod->clock.vclock_mode != VCLOCK_TSC && 6041 atomic_read(&kvm_guest_has_master_clock) != 0) 6042 queue_work(system_long_wq, &pvclock_gtod_work); 6043 6044 return 0; 6045 } 6046 6047 static struct notifier_block pvclock_gtod_notifier = { 6048 .notifier_call = pvclock_gtod_notify, 6049 }; 6050 #endif 6051 6052 int kvm_arch_init(void *opaque) 6053 { 6054 int r; 6055 struct kvm_x86_ops *ops = opaque; 6056 6057 if (kvm_x86_ops) { 6058 printk(KERN_ERR "kvm: already loaded the other module\n"); 6059 r = -EEXIST; 6060 goto out; 6061 } 6062 6063 if (!ops->cpu_has_kvm_support()) { 6064 printk(KERN_ERR "kvm: no hardware support\n"); 6065 r = -EOPNOTSUPP; 6066 goto out; 6067 } 6068 if (ops->disabled_by_bios()) { 6069 printk(KERN_ERR "kvm: disabled by bios\n"); 6070 r = -EOPNOTSUPP; 6071 goto out; 6072 } 6073 6074 r = -ENOMEM; 6075 shared_msrs = alloc_percpu(struct kvm_shared_msrs); 6076 if (!shared_msrs) { 6077 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n"); 6078 goto out; 6079 } 6080 6081 r = kvm_mmu_module_init(); 6082 if (r) 6083 goto out_free_percpu; 6084 6085 kvm_set_mmio_spte_mask(); 6086 6087 kvm_x86_ops = ops; 6088 6089 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, 6090 PT_DIRTY_MASK, PT64_NX_MASK, 0, 6091 PT_PRESENT_MASK, 0); 6092 kvm_timer_init(); 6093 6094 perf_register_guest_info_callbacks(&kvm_guest_cbs); 6095 6096 if (boot_cpu_has(X86_FEATURE_XSAVE)) 6097 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 6098 6099 kvm_lapic_init(); 6100 #ifdef CONFIG_X86_64 6101 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 6102 #endif 6103 6104 return 0; 6105 6106 out_free_percpu: 6107 free_percpu(shared_msrs); 6108 out: 6109 return r; 6110 } 6111 6112 void kvm_arch_exit(void) 6113 { 6114 kvm_lapic_exit(); 6115 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 6116 6117 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 6118 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 6119 CPUFREQ_TRANSITION_NOTIFIER); 6120 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 6121 #ifdef CONFIG_X86_64 6122 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 6123 #endif 6124 kvm_x86_ops = NULL; 6125 kvm_mmu_module_exit(); 6126 free_percpu(shared_msrs); 6127 } 6128 6129 int kvm_vcpu_halt(struct kvm_vcpu *vcpu) 6130 { 6131 ++vcpu->stat.halt_exits; 6132 if (lapic_in_kernel(vcpu)) { 6133 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 6134 return 1; 6135 } else { 6136 vcpu->run->exit_reason = KVM_EXIT_HLT; 6137 return 0; 6138 } 6139 } 6140 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 6141 6142 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 6143 { 6144 int ret = kvm_skip_emulated_instruction(vcpu); 6145 /* 6146 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 6147 * KVM_EXIT_DEBUG here. 6148 */ 6149 return kvm_vcpu_halt(vcpu) && ret; 6150 } 6151 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 6152 6153 #ifdef CONFIG_X86_64 6154 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 6155 unsigned long clock_type) 6156 { 6157 struct kvm_clock_pairing clock_pairing; 6158 struct timespec ts; 6159 u64 cycle; 6160 int ret; 6161 6162 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 6163 return -KVM_EOPNOTSUPP; 6164 6165 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false) 6166 return -KVM_EOPNOTSUPP; 6167 6168 clock_pairing.sec = ts.tv_sec; 6169 clock_pairing.nsec = ts.tv_nsec; 6170 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 6171 clock_pairing.flags = 0; 6172 6173 ret = 0; 6174 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 6175 sizeof(struct kvm_clock_pairing))) 6176 ret = -KVM_EFAULT; 6177 6178 return ret; 6179 } 6180 #endif 6181 6182 /* 6183 * kvm_pv_kick_cpu_op: Kick a vcpu. 6184 * 6185 * @apicid - apicid of vcpu to be kicked. 6186 */ 6187 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid) 6188 { 6189 struct kvm_lapic_irq lapic_irq; 6190 6191 lapic_irq.shorthand = 0; 6192 lapic_irq.dest_mode = 0; 6193 lapic_irq.dest_id = apicid; 6194 lapic_irq.msi_redir_hint = false; 6195 6196 lapic_irq.delivery_mode = APIC_DM_REMRD; 6197 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 6198 } 6199 6200 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu) 6201 { 6202 vcpu->arch.apicv_active = false; 6203 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu); 6204 } 6205 6206 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 6207 { 6208 unsigned long nr, a0, a1, a2, a3, ret; 6209 int op_64_bit, r; 6210 6211 r = kvm_skip_emulated_instruction(vcpu); 6212 6213 if (kvm_hv_hypercall_enabled(vcpu->kvm)) 6214 return kvm_hv_hypercall(vcpu); 6215 6216 nr = kvm_register_read(vcpu, VCPU_REGS_RAX); 6217 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX); 6218 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX); 6219 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX); 6220 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI); 6221 6222 trace_kvm_hypercall(nr, a0, a1, a2, a3); 6223 6224 op_64_bit = is_64_bit_mode(vcpu); 6225 if (!op_64_bit) { 6226 nr &= 0xFFFFFFFF; 6227 a0 &= 0xFFFFFFFF; 6228 a1 &= 0xFFFFFFFF; 6229 a2 &= 0xFFFFFFFF; 6230 a3 &= 0xFFFFFFFF; 6231 } 6232 6233 if (kvm_x86_ops->get_cpl(vcpu) != 0) { 6234 ret = -KVM_EPERM; 6235 goto out; 6236 } 6237 6238 switch (nr) { 6239 case KVM_HC_VAPIC_POLL_IRQ: 6240 ret = 0; 6241 break; 6242 case KVM_HC_KICK_CPU: 6243 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1); 6244 ret = 0; 6245 break; 6246 #ifdef CONFIG_X86_64 6247 case KVM_HC_CLOCK_PAIRING: 6248 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 6249 break; 6250 #endif 6251 default: 6252 ret = -KVM_ENOSYS; 6253 break; 6254 } 6255 out: 6256 if (!op_64_bit) 6257 ret = (u32)ret; 6258 kvm_register_write(vcpu, VCPU_REGS_RAX, ret); 6259 ++vcpu->stat.hypercalls; 6260 return r; 6261 } 6262 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 6263 6264 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 6265 { 6266 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6267 char instruction[3]; 6268 unsigned long rip = kvm_rip_read(vcpu); 6269 6270 kvm_x86_ops->patch_hypercall(vcpu, instruction); 6271 6272 return emulator_write_emulated(ctxt, rip, instruction, 3, 6273 &ctxt->exception); 6274 } 6275 6276 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 6277 { 6278 return vcpu->run->request_interrupt_window && 6279 likely(!pic_in_kernel(vcpu->kvm)); 6280 } 6281 6282 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 6283 { 6284 struct kvm_run *kvm_run = vcpu->run; 6285 6286 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; 6287 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0; 6288 kvm_run->cr8 = kvm_get_cr8(vcpu); 6289 kvm_run->apic_base = kvm_get_apic_base(vcpu); 6290 kvm_run->ready_for_interrupt_injection = 6291 pic_in_kernel(vcpu->kvm) || 6292 kvm_vcpu_ready_for_interrupt_injection(vcpu); 6293 } 6294 6295 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 6296 { 6297 int max_irr, tpr; 6298 6299 if (!kvm_x86_ops->update_cr8_intercept) 6300 return; 6301 6302 if (!lapic_in_kernel(vcpu)) 6303 return; 6304 6305 if (vcpu->arch.apicv_active) 6306 return; 6307 6308 if (!vcpu->arch.apic->vapic_addr) 6309 max_irr = kvm_lapic_find_highest_irr(vcpu); 6310 else 6311 max_irr = -1; 6312 6313 if (max_irr != -1) 6314 max_irr >>= 4; 6315 6316 tpr = kvm_lapic_get_cr8(vcpu); 6317 6318 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); 6319 } 6320 6321 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win) 6322 { 6323 int r; 6324 6325 /* try to reinject previous events if any */ 6326 if (vcpu->arch.exception.pending) { 6327 trace_kvm_inj_exception(vcpu->arch.exception.nr, 6328 vcpu->arch.exception.has_error_code, 6329 vcpu->arch.exception.error_code); 6330 6331 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT) 6332 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 6333 X86_EFLAGS_RF); 6334 6335 if (vcpu->arch.exception.nr == DB_VECTOR && 6336 (vcpu->arch.dr7 & DR7_GD)) { 6337 vcpu->arch.dr7 &= ~DR7_GD; 6338 kvm_update_dr7(vcpu); 6339 } 6340 6341 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr, 6342 vcpu->arch.exception.has_error_code, 6343 vcpu->arch.exception.error_code, 6344 vcpu->arch.exception.reinject); 6345 return 0; 6346 } 6347 6348 if (vcpu->arch.nmi_injected) { 6349 kvm_x86_ops->set_nmi(vcpu); 6350 return 0; 6351 } 6352 6353 if (vcpu->arch.interrupt.pending) { 6354 kvm_x86_ops->set_irq(vcpu); 6355 return 0; 6356 } 6357 6358 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) { 6359 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win); 6360 if (r != 0) 6361 return r; 6362 } 6363 6364 /* try to inject new event if pending */ 6365 if (vcpu->arch.smi_pending && !is_smm(vcpu)) { 6366 vcpu->arch.smi_pending = false; 6367 enter_smm(vcpu); 6368 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) { 6369 --vcpu->arch.nmi_pending; 6370 vcpu->arch.nmi_injected = true; 6371 kvm_x86_ops->set_nmi(vcpu); 6372 } else if (kvm_cpu_has_injectable_intr(vcpu)) { 6373 /* 6374 * Because interrupts can be injected asynchronously, we are 6375 * calling check_nested_events again here to avoid a race condition. 6376 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this 6377 * proposal and current concerns. Perhaps we should be setting 6378 * KVM_REQ_EVENT only on certain events and not unconditionally? 6379 */ 6380 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) { 6381 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win); 6382 if (r != 0) 6383 return r; 6384 } 6385 if (kvm_x86_ops->interrupt_allowed(vcpu)) { 6386 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), 6387 false); 6388 kvm_x86_ops->set_irq(vcpu); 6389 } 6390 } 6391 6392 return 0; 6393 } 6394 6395 static void process_nmi(struct kvm_vcpu *vcpu) 6396 { 6397 unsigned limit = 2; 6398 6399 /* 6400 * x86 is limited to one NMI running, and one NMI pending after it. 6401 * If an NMI is already in progress, limit further NMIs to just one. 6402 * Otherwise, allow two (and we'll inject the first one immediately). 6403 */ 6404 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) 6405 limit = 1; 6406 6407 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 6408 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 6409 kvm_make_request(KVM_REQ_EVENT, vcpu); 6410 } 6411 6412 #define put_smstate(type, buf, offset, val) \ 6413 *(type *)((buf) + (offset) - 0x7e00) = val 6414 6415 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg) 6416 { 6417 u32 flags = 0; 6418 flags |= seg->g << 23; 6419 flags |= seg->db << 22; 6420 flags |= seg->l << 21; 6421 flags |= seg->avl << 20; 6422 flags |= seg->present << 15; 6423 flags |= seg->dpl << 13; 6424 flags |= seg->s << 12; 6425 flags |= seg->type << 8; 6426 return flags; 6427 } 6428 6429 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n) 6430 { 6431 struct kvm_segment seg; 6432 int offset; 6433 6434 kvm_get_segment(vcpu, &seg, n); 6435 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector); 6436 6437 if (n < 3) 6438 offset = 0x7f84 + n * 12; 6439 else 6440 offset = 0x7f2c + (n - 3) * 12; 6441 6442 put_smstate(u32, buf, offset + 8, seg.base); 6443 put_smstate(u32, buf, offset + 4, seg.limit); 6444 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg)); 6445 } 6446 6447 #ifdef CONFIG_X86_64 6448 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n) 6449 { 6450 struct kvm_segment seg; 6451 int offset; 6452 u16 flags; 6453 6454 kvm_get_segment(vcpu, &seg, n); 6455 offset = 0x7e00 + n * 16; 6456 6457 flags = enter_smm_get_segment_flags(&seg) >> 8; 6458 put_smstate(u16, buf, offset, seg.selector); 6459 put_smstate(u16, buf, offset + 2, flags); 6460 put_smstate(u32, buf, offset + 4, seg.limit); 6461 put_smstate(u64, buf, offset + 8, seg.base); 6462 } 6463 #endif 6464 6465 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf) 6466 { 6467 struct desc_ptr dt; 6468 struct kvm_segment seg; 6469 unsigned long val; 6470 int i; 6471 6472 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu)); 6473 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu)); 6474 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu)); 6475 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu)); 6476 6477 for (i = 0; i < 8; i++) 6478 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i)); 6479 6480 kvm_get_dr(vcpu, 6, &val); 6481 put_smstate(u32, buf, 0x7fcc, (u32)val); 6482 kvm_get_dr(vcpu, 7, &val); 6483 put_smstate(u32, buf, 0x7fc8, (u32)val); 6484 6485 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 6486 put_smstate(u32, buf, 0x7fc4, seg.selector); 6487 put_smstate(u32, buf, 0x7f64, seg.base); 6488 put_smstate(u32, buf, 0x7f60, seg.limit); 6489 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg)); 6490 6491 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 6492 put_smstate(u32, buf, 0x7fc0, seg.selector); 6493 put_smstate(u32, buf, 0x7f80, seg.base); 6494 put_smstate(u32, buf, 0x7f7c, seg.limit); 6495 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg)); 6496 6497 kvm_x86_ops->get_gdt(vcpu, &dt); 6498 put_smstate(u32, buf, 0x7f74, dt.address); 6499 put_smstate(u32, buf, 0x7f70, dt.size); 6500 6501 kvm_x86_ops->get_idt(vcpu, &dt); 6502 put_smstate(u32, buf, 0x7f58, dt.address); 6503 put_smstate(u32, buf, 0x7f54, dt.size); 6504 6505 for (i = 0; i < 6; i++) 6506 enter_smm_save_seg_32(vcpu, buf, i); 6507 6508 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu)); 6509 6510 /* revision id */ 6511 put_smstate(u32, buf, 0x7efc, 0x00020000); 6512 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase); 6513 } 6514 6515 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf) 6516 { 6517 #ifdef CONFIG_X86_64 6518 struct desc_ptr dt; 6519 struct kvm_segment seg; 6520 unsigned long val; 6521 int i; 6522 6523 for (i = 0; i < 16; i++) 6524 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i)); 6525 6526 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu)); 6527 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu)); 6528 6529 kvm_get_dr(vcpu, 6, &val); 6530 put_smstate(u64, buf, 0x7f68, val); 6531 kvm_get_dr(vcpu, 7, &val); 6532 put_smstate(u64, buf, 0x7f60, val); 6533 6534 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu)); 6535 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu)); 6536 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu)); 6537 6538 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase); 6539 6540 /* revision id */ 6541 put_smstate(u32, buf, 0x7efc, 0x00020064); 6542 6543 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer); 6544 6545 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 6546 put_smstate(u16, buf, 0x7e90, seg.selector); 6547 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8); 6548 put_smstate(u32, buf, 0x7e94, seg.limit); 6549 put_smstate(u64, buf, 0x7e98, seg.base); 6550 6551 kvm_x86_ops->get_idt(vcpu, &dt); 6552 put_smstate(u32, buf, 0x7e84, dt.size); 6553 put_smstate(u64, buf, 0x7e88, dt.address); 6554 6555 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 6556 put_smstate(u16, buf, 0x7e70, seg.selector); 6557 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8); 6558 put_smstate(u32, buf, 0x7e74, seg.limit); 6559 put_smstate(u64, buf, 0x7e78, seg.base); 6560 6561 kvm_x86_ops->get_gdt(vcpu, &dt); 6562 put_smstate(u32, buf, 0x7e64, dt.size); 6563 put_smstate(u64, buf, 0x7e68, dt.address); 6564 6565 for (i = 0; i < 6; i++) 6566 enter_smm_save_seg_64(vcpu, buf, i); 6567 #else 6568 WARN_ON_ONCE(1); 6569 #endif 6570 } 6571 6572 static void enter_smm(struct kvm_vcpu *vcpu) 6573 { 6574 struct kvm_segment cs, ds; 6575 struct desc_ptr dt; 6576 char buf[512]; 6577 u32 cr0; 6578 6579 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true); 6580 vcpu->arch.hflags |= HF_SMM_MASK; 6581 memset(buf, 0, 512); 6582 if (guest_cpuid_has_longmode(vcpu)) 6583 enter_smm_save_state_64(vcpu, buf); 6584 else 6585 enter_smm_save_state_32(vcpu, buf); 6586 6587 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf)); 6588 6589 if (kvm_x86_ops->get_nmi_mask(vcpu)) 6590 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 6591 else 6592 kvm_x86_ops->set_nmi_mask(vcpu, true); 6593 6594 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 6595 kvm_rip_write(vcpu, 0x8000); 6596 6597 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG); 6598 kvm_x86_ops->set_cr0(vcpu, cr0); 6599 vcpu->arch.cr0 = cr0; 6600 6601 kvm_x86_ops->set_cr4(vcpu, 0); 6602 6603 /* Undocumented: IDT limit is set to zero on entry to SMM. */ 6604 dt.address = dt.size = 0; 6605 kvm_x86_ops->set_idt(vcpu, &dt); 6606 6607 __kvm_set_dr(vcpu, 7, DR7_FIXED_1); 6608 6609 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff; 6610 cs.base = vcpu->arch.smbase; 6611 6612 ds.selector = 0; 6613 ds.base = 0; 6614 6615 cs.limit = ds.limit = 0xffffffff; 6616 cs.type = ds.type = 0x3; 6617 cs.dpl = ds.dpl = 0; 6618 cs.db = ds.db = 0; 6619 cs.s = ds.s = 1; 6620 cs.l = ds.l = 0; 6621 cs.g = ds.g = 1; 6622 cs.avl = ds.avl = 0; 6623 cs.present = ds.present = 1; 6624 cs.unusable = ds.unusable = 0; 6625 cs.padding = ds.padding = 0; 6626 6627 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 6628 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS); 6629 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES); 6630 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS); 6631 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS); 6632 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS); 6633 6634 if (guest_cpuid_has_longmode(vcpu)) 6635 kvm_x86_ops->set_efer(vcpu, 0); 6636 6637 kvm_update_cpuid(vcpu); 6638 kvm_mmu_reset_context(vcpu); 6639 } 6640 6641 static void process_smi(struct kvm_vcpu *vcpu) 6642 { 6643 vcpu->arch.smi_pending = true; 6644 kvm_make_request(KVM_REQ_EVENT, vcpu); 6645 } 6646 6647 void kvm_make_scan_ioapic_request(struct kvm *kvm) 6648 { 6649 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 6650 } 6651 6652 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 6653 { 6654 u64 eoi_exit_bitmap[4]; 6655 6656 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 6657 return; 6658 6659 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 6660 6661 if (irqchip_split(vcpu->kvm)) 6662 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 6663 else { 6664 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active) 6665 kvm_x86_ops->sync_pir_to_irr(vcpu); 6666 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 6667 } 6668 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors, 6669 vcpu_to_synic(vcpu)->vec_bitmap, 256); 6670 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap); 6671 } 6672 6673 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu) 6674 { 6675 ++vcpu->stat.tlb_flush; 6676 kvm_x86_ops->tlb_flush(vcpu); 6677 } 6678 6679 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 6680 { 6681 struct page *page = NULL; 6682 6683 if (!lapic_in_kernel(vcpu)) 6684 return; 6685 6686 if (!kvm_x86_ops->set_apic_access_page_addr) 6687 return; 6688 6689 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 6690 if (is_error_page(page)) 6691 return; 6692 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page)); 6693 6694 /* 6695 * Do not pin apic access page in memory, the MMU notifier 6696 * will call us again if it is migrated or swapped out. 6697 */ 6698 put_page(page); 6699 } 6700 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page); 6701 6702 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm, 6703 unsigned long address) 6704 { 6705 /* 6706 * The physical address of apic access page is stored in the VMCS. 6707 * Update it when it becomes invalid. 6708 */ 6709 if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT)) 6710 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 6711 } 6712 6713 /* 6714 * Returns 1 to let vcpu_run() continue the guest execution loop without 6715 * exiting to the userspace. Otherwise, the value will be returned to the 6716 * userspace. 6717 */ 6718 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 6719 { 6720 int r; 6721 bool req_int_win = 6722 dm_request_for_irq_injection(vcpu) && 6723 kvm_cpu_accept_dm_intr(vcpu); 6724 6725 bool req_immediate_exit = false; 6726 6727 if (vcpu->requests) { 6728 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) 6729 kvm_mmu_unload(vcpu); 6730 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 6731 __kvm_migrate_timers(vcpu); 6732 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 6733 kvm_gen_update_masterclock(vcpu->kvm); 6734 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 6735 kvm_gen_kvmclock_update(vcpu); 6736 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 6737 r = kvm_guest_time_update(vcpu); 6738 if (unlikely(r)) 6739 goto out; 6740 } 6741 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 6742 kvm_mmu_sync_roots(vcpu); 6743 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 6744 kvm_vcpu_flush_tlb(vcpu); 6745 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 6746 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 6747 r = 0; 6748 goto out; 6749 } 6750 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 6751 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 6752 r = 0; 6753 goto out; 6754 } 6755 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 6756 /* Page is swapped out. Do synthetic halt */ 6757 vcpu->arch.apf.halted = true; 6758 r = 1; 6759 goto out; 6760 } 6761 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 6762 record_steal_time(vcpu); 6763 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 6764 process_smi(vcpu); 6765 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 6766 process_nmi(vcpu); 6767 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 6768 kvm_pmu_handle_event(vcpu); 6769 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 6770 kvm_pmu_deliver_pmi(vcpu); 6771 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 6772 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 6773 if (test_bit(vcpu->arch.pending_ioapic_eoi, 6774 vcpu->arch.ioapic_handled_vectors)) { 6775 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 6776 vcpu->run->eoi.vector = 6777 vcpu->arch.pending_ioapic_eoi; 6778 r = 0; 6779 goto out; 6780 } 6781 } 6782 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 6783 vcpu_scan_ioapic(vcpu); 6784 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 6785 kvm_vcpu_reload_apic_access_page(vcpu); 6786 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 6787 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 6788 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 6789 r = 0; 6790 goto out; 6791 } 6792 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 6793 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 6794 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 6795 r = 0; 6796 goto out; 6797 } 6798 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 6799 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 6800 vcpu->run->hyperv = vcpu->arch.hyperv.exit; 6801 r = 0; 6802 goto out; 6803 } 6804 6805 /* 6806 * KVM_REQ_HV_STIMER has to be processed after 6807 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 6808 * depend on the guest clock being up-to-date 6809 */ 6810 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 6811 kvm_hv_process_stimers(vcpu); 6812 } 6813 6814 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { 6815 ++vcpu->stat.req_event; 6816 kvm_apic_accept_events(vcpu); 6817 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 6818 r = 1; 6819 goto out; 6820 } 6821 6822 if (inject_pending_event(vcpu, req_int_win) != 0) 6823 req_immediate_exit = true; 6824 else { 6825 /* Enable NMI/IRQ window open exits if needed. 6826 * 6827 * SMIs have two cases: 1) they can be nested, and 6828 * then there is nothing to do here because RSM will 6829 * cause a vmexit anyway; 2) or the SMI can be pending 6830 * because inject_pending_event has completed the 6831 * injection of an IRQ or NMI from the previous vmexit, 6832 * and then we request an immediate exit to inject the SMI. 6833 */ 6834 if (vcpu->arch.smi_pending && !is_smm(vcpu)) 6835 req_immediate_exit = true; 6836 if (vcpu->arch.nmi_pending) 6837 kvm_x86_ops->enable_nmi_window(vcpu); 6838 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win) 6839 kvm_x86_ops->enable_irq_window(vcpu); 6840 } 6841 6842 if (kvm_lapic_enabled(vcpu)) { 6843 update_cr8_intercept(vcpu); 6844 kvm_lapic_sync_to_vapic(vcpu); 6845 } 6846 } 6847 6848 r = kvm_mmu_reload(vcpu); 6849 if (unlikely(r)) { 6850 goto cancel_injection; 6851 } 6852 6853 preempt_disable(); 6854 6855 kvm_x86_ops->prepare_guest_switch(vcpu); 6856 kvm_load_guest_fpu(vcpu); 6857 6858 /* 6859 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 6860 * IPI are then delayed after guest entry, which ensures that they 6861 * result in virtual interrupt delivery. 6862 */ 6863 local_irq_disable(); 6864 vcpu->mode = IN_GUEST_MODE; 6865 6866 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 6867 6868 /* 6869 * 1) We should set ->mode before checking ->requests. Please see 6870 * the comment in kvm_make_all_cpus_request. 6871 * 6872 * 2) For APICv, we should set ->mode before checking PIR.ON. This 6873 * pairs with the memory barrier implicit in pi_test_and_set_on 6874 * (see vmx_deliver_posted_interrupt). 6875 * 6876 * 3) This also orders the write to mode from any reads to the page 6877 * tables done while the VCPU is running. Please see the comment 6878 * in kvm_flush_remote_tlbs. 6879 */ 6880 smp_mb__after_srcu_read_unlock(); 6881 6882 /* 6883 * This handles the case where a posted interrupt was 6884 * notified with kvm_vcpu_kick. 6885 */ 6886 if (kvm_lapic_enabled(vcpu)) { 6887 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active) 6888 kvm_x86_ops->sync_pir_to_irr(vcpu); 6889 } 6890 6891 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests 6892 || need_resched() || signal_pending(current)) { 6893 vcpu->mode = OUTSIDE_GUEST_MODE; 6894 smp_wmb(); 6895 local_irq_enable(); 6896 preempt_enable(); 6897 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 6898 r = 1; 6899 goto cancel_injection; 6900 } 6901 6902 kvm_load_guest_xcr0(vcpu); 6903 6904 if (req_immediate_exit) { 6905 kvm_make_request(KVM_REQ_EVENT, vcpu); 6906 smp_send_reschedule(vcpu->cpu); 6907 } 6908 6909 trace_kvm_entry(vcpu->vcpu_id); 6910 wait_lapic_expire(vcpu); 6911 guest_enter_irqoff(); 6912 6913 if (unlikely(vcpu->arch.switch_db_regs)) { 6914 set_debugreg(0, 7); 6915 set_debugreg(vcpu->arch.eff_db[0], 0); 6916 set_debugreg(vcpu->arch.eff_db[1], 1); 6917 set_debugreg(vcpu->arch.eff_db[2], 2); 6918 set_debugreg(vcpu->arch.eff_db[3], 3); 6919 set_debugreg(vcpu->arch.dr6, 6); 6920 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 6921 } 6922 6923 kvm_x86_ops->run(vcpu); 6924 6925 /* 6926 * Do this here before restoring debug registers on the host. And 6927 * since we do this before handling the vmexit, a DR access vmexit 6928 * can (a) read the correct value of the debug registers, (b) set 6929 * KVM_DEBUGREG_WONT_EXIT again. 6930 */ 6931 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 6932 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 6933 kvm_x86_ops->sync_dirty_debug_regs(vcpu); 6934 kvm_update_dr0123(vcpu); 6935 kvm_update_dr6(vcpu); 6936 kvm_update_dr7(vcpu); 6937 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 6938 } 6939 6940 /* 6941 * If the guest has used debug registers, at least dr7 6942 * will be disabled while returning to the host. 6943 * If we don't have active breakpoints in the host, we don't 6944 * care about the messed up debug address registers. But if 6945 * we have some of them active, restore the old state. 6946 */ 6947 if (hw_breakpoint_active()) 6948 hw_breakpoint_restore(); 6949 6950 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 6951 6952 vcpu->mode = OUTSIDE_GUEST_MODE; 6953 smp_wmb(); 6954 6955 kvm_put_guest_xcr0(vcpu); 6956 6957 kvm_x86_ops->handle_external_intr(vcpu); 6958 6959 ++vcpu->stat.exits; 6960 6961 guest_exit_irqoff(); 6962 6963 local_irq_enable(); 6964 preempt_enable(); 6965 6966 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 6967 6968 /* 6969 * Profile KVM exit RIPs: 6970 */ 6971 if (unlikely(prof_on == KVM_PROFILING)) { 6972 unsigned long rip = kvm_rip_read(vcpu); 6973 profile_hit(KVM_PROFILING, (void *)rip); 6974 } 6975 6976 if (unlikely(vcpu->arch.tsc_always_catchup)) 6977 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 6978 6979 if (vcpu->arch.apic_attention) 6980 kvm_lapic_sync_from_vapic(vcpu); 6981 6982 r = kvm_x86_ops->handle_exit(vcpu); 6983 return r; 6984 6985 cancel_injection: 6986 kvm_x86_ops->cancel_injection(vcpu); 6987 if (unlikely(vcpu->arch.apic_attention)) 6988 kvm_lapic_sync_from_vapic(vcpu); 6989 out: 6990 return r; 6991 } 6992 6993 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu) 6994 { 6995 if (!kvm_arch_vcpu_runnable(vcpu) && 6996 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) { 6997 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 6998 kvm_vcpu_block(vcpu); 6999 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 7000 7001 if (kvm_x86_ops->post_block) 7002 kvm_x86_ops->post_block(vcpu); 7003 7004 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu)) 7005 return 1; 7006 } 7007 7008 kvm_apic_accept_events(vcpu); 7009 switch(vcpu->arch.mp_state) { 7010 case KVM_MP_STATE_HALTED: 7011 vcpu->arch.pv.pv_unhalted = false; 7012 vcpu->arch.mp_state = 7013 KVM_MP_STATE_RUNNABLE; 7014 case KVM_MP_STATE_RUNNABLE: 7015 vcpu->arch.apf.halted = false; 7016 break; 7017 case KVM_MP_STATE_INIT_RECEIVED: 7018 break; 7019 default: 7020 return -EINTR; 7021 break; 7022 } 7023 return 1; 7024 } 7025 7026 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 7027 { 7028 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) 7029 kvm_x86_ops->check_nested_events(vcpu, false); 7030 7031 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 7032 !vcpu->arch.apf.halted); 7033 } 7034 7035 static int vcpu_run(struct kvm_vcpu *vcpu) 7036 { 7037 int r; 7038 struct kvm *kvm = vcpu->kvm; 7039 7040 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 7041 7042 for (;;) { 7043 if (kvm_vcpu_running(vcpu)) { 7044 r = vcpu_enter_guest(vcpu); 7045 } else { 7046 r = vcpu_block(kvm, vcpu); 7047 } 7048 7049 if (r <= 0) 7050 break; 7051 7052 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests); 7053 if (kvm_cpu_has_pending_timer(vcpu)) 7054 kvm_inject_pending_timer_irqs(vcpu); 7055 7056 if (dm_request_for_irq_injection(vcpu) && 7057 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 7058 r = 0; 7059 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 7060 ++vcpu->stat.request_irq_exits; 7061 break; 7062 } 7063 7064 kvm_check_async_pf_completion(vcpu); 7065 7066 if (signal_pending(current)) { 7067 r = -EINTR; 7068 vcpu->run->exit_reason = KVM_EXIT_INTR; 7069 ++vcpu->stat.signal_exits; 7070 break; 7071 } 7072 if (need_resched()) { 7073 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 7074 cond_resched(); 7075 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 7076 } 7077 } 7078 7079 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 7080 7081 return r; 7082 } 7083 7084 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 7085 { 7086 int r; 7087 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 7088 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 7089 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 7090 if (r != EMULATE_DONE) 7091 return 0; 7092 return 1; 7093 } 7094 7095 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 7096 { 7097 BUG_ON(!vcpu->arch.pio.count); 7098 7099 return complete_emulated_io(vcpu); 7100 } 7101 7102 /* 7103 * Implements the following, as a state machine: 7104 * 7105 * read: 7106 * for each fragment 7107 * for each mmio piece in the fragment 7108 * write gpa, len 7109 * exit 7110 * copy data 7111 * execute insn 7112 * 7113 * write: 7114 * for each fragment 7115 * for each mmio piece in the fragment 7116 * write gpa, len 7117 * copy data 7118 * exit 7119 */ 7120 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 7121 { 7122 struct kvm_run *run = vcpu->run; 7123 struct kvm_mmio_fragment *frag; 7124 unsigned len; 7125 7126 BUG_ON(!vcpu->mmio_needed); 7127 7128 /* Complete previous fragment */ 7129 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 7130 len = min(8u, frag->len); 7131 if (!vcpu->mmio_is_write) 7132 memcpy(frag->data, run->mmio.data, len); 7133 7134 if (frag->len <= 8) { 7135 /* Switch to the next fragment. */ 7136 frag++; 7137 vcpu->mmio_cur_fragment++; 7138 } else { 7139 /* Go forward to the next mmio piece. */ 7140 frag->data += len; 7141 frag->gpa += len; 7142 frag->len -= len; 7143 } 7144 7145 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 7146 vcpu->mmio_needed = 0; 7147 7148 /* FIXME: return into emulator if single-stepping. */ 7149 if (vcpu->mmio_is_write) 7150 return 1; 7151 vcpu->mmio_read_completed = 1; 7152 return complete_emulated_io(vcpu); 7153 } 7154 7155 run->exit_reason = KVM_EXIT_MMIO; 7156 run->mmio.phys_addr = frag->gpa; 7157 if (vcpu->mmio_is_write) 7158 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 7159 run->mmio.len = min(8u, frag->len); 7160 run->mmio.is_write = vcpu->mmio_is_write; 7161 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 7162 return 0; 7163 } 7164 7165 7166 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 7167 { 7168 struct fpu *fpu = ¤t->thread.fpu; 7169 int r; 7170 sigset_t sigsaved; 7171 7172 fpu__activate_curr(fpu); 7173 7174 if (vcpu->sigset_active) 7175 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); 7176 7177 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 7178 kvm_vcpu_block(vcpu); 7179 kvm_apic_accept_events(vcpu); 7180 clear_bit(KVM_REQ_UNHALT, &vcpu->requests); 7181 r = -EAGAIN; 7182 goto out; 7183 } 7184 7185 /* re-sync apic's tpr */ 7186 if (!lapic_in_kernel(vcpu)) { 7187 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 7188 r = -EINVAL; 7189 goto out; 7190 } 7191 } 7192 7193 if (unlikely(vcpu->arch.complete_userspace_io)) { 7194 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 7195 vcpu->arch.complete_userspace_io = NULL; 7196 r = cui(vcpu); 7197 if (r <= 0) 7198 goto out; 7199 } else 7200 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); 7201 7202 if (kvm_run->immediate_exit) 7203 r = -EINTR; 7204 else 7205 r = vcpu_run(vcpu); 7206 7207 out: 7208 post_kvm_run_save(vcpu); 7209 if (vcpu->sigset_active) 7210 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 7211 7212 return r; 7213 } 7214 7215 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 7216 { 7217 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 7218 /* 7219 * We are here if userspace calls get_regs() in the middle of 7220 * instruction emulation. Registers state needs to be copied 7221 * back from emulation context to vcpu. Userspace shouldn't do 7222 * that usually, but some bad designed PV devices (vmware 7223 * backdoor interface) need this to work 7224 */ 7225 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt); 7226 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 7227 } 7228 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX); 7229 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX); 7230 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX); 7231 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX); 7232 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI); 7233 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI); 7234 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); 7235 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP); 7236 #ifdef CONFIG_X86_64 7237 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8); 7238 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9); 7239 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10); 7240 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11); 7241 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12); 7242 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13); 7243 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14); 7244 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15); 7245 #endif 7246 7247 regs->rip = kvm_rip_read(vcpu); 7248 regs->rflags = kvm_get_rflags(vcpu); 7249 7250 return 0; 7251 } 7252 7253 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 7254 { 7255 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 7256 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 7257 7258 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax); 7259 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx); 7260 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx); 7261 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx); 7262 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi); 7263 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi); 7264 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp); 7265 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp); 7266 #ifdef CONFIG_X86_64 7267 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8); 7268 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9); 7269 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10); 7270 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11); 7271 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12); 7272 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13); 7273 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14); 7274 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15); 7275 #endif 7276 7277 kvm_rip_write(vcpu, regs->rip); 7278 kvm_set_rflags(vcpu, regs->rflags); 7279 7280 vcpu->arch.exception.pending = false; 7281 7282 kvm_make_request(KVM_REQ_EVENT, vcpu); 7283 7284 return 0; 7285 } 7286 7287 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 7288 { 7289 struct kvm_segment cs; 7290 7291 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 7292 *db = cs.db; 7293 *l = cs.l; 7294 } 7295 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); 7296 7297 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 7298 struct kvm_sregs *sregs) 7299 { 7300 struct desc_ptr dt; 7301 7302 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 7303 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 7304 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 7305 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 7306 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 7307 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 7308 7309 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 7310 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 7311 7312 kvm_x86_ops->get_idt(vcpu, &dt); 7313 sregs->idt.limit = dt.size; 7314 sregs->idt.base = dt.address; 7315 kvm_x86_ops->get_gdt(vcpu, &dt); 7316 sregs->gdt.limit = dt.size; 7317 sregs->gdt.base = dt.address; 7318 7319 sregs->cr0 = kvm_read_cr0(vcpu); 7320 sregs->cr2 = vcpu->arch.cr2; 7321 sregs->cr3 = kvm_read_cr3(vcpu); 7322 sregs->cr4 = kvm_read_cr4(vcpu); 7323 sregs->cr8 = kvm_get_cr8(vcpu); 7324 sregs->efer = vcpu->arch.efer; 7325 sregs->apic_base = kvm_get_apic_base(vcpu); 7326 7327 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap); 7328 7329 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft) 7330 set_bit(vcpu->arch.interrupt.nr, 7331 (unsigned long *)sregs->interrupt_bitmap); 7332 7333 return 0; 7334 } 7335 7336 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 7337 struct kvm_mp_state *mp_state) 7338 { 7339 kvm_apic_accept_events(vcpu); 7340 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED && 7341 vcpu->arch.pv.pv_unhalted) 7342 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 7343 else 7344 mp_state->mp_state = vcpu->arch.mp_state; 7345 7346 return 0; 7347 } 7348 7349 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 7350 struct kvm_mp_state *mp_state) 7351 { 7352 if (!lapic_in_kernel(vcpu) && 7353 mp_state->mp_state != KVM_MP_STATE_RUNNABLE) 7354 return -EINVAL; 7355 7356 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 7357 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 7358 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 7359 } else 7360 vcpu->arch.mp_state = mp_state->mp_state; 7361 kvm_make_request(KVM_REQ_EVENT, vcpu); 7362 return 0; 7363 } 7364 7365 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 7366 int reason, bool has_error_code, u32 error_code) 7367 { 7368 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 7369 int ret; 7370 7371 init_emulate_ctxt(vcpu); 7372 7373 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 7374 has_error_code, error_code); 7375 7376 if (ret) 7377 return EMULATE_FAIL; 7378 7379 kvm_rip_write(vcpu, ctxt->eip); 7380 kvm_set_rflags(vcpu, ctxt->eflags); 7381 kvm_make_request(KVM_REQ_EVENT, vcpu); 7382 return EMULATE_DONE; 7383 } 7384 EXPORT_SYMBOL_GPL(kvm_task_switch); 7385 7386 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 7387 struct kvm_sregs *sregs) 7388 { 7389 struct msr_data apic_base_msr; 7390 int mmu_reset_needed = 0; 7391 int pending_vec, max_bits, idx; 7392 struct desc_ptr dt; 7393 7394 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE)) 7395 return -EINVAL; 7396 7397 dt.size = sregs->idt.limit; 7398 dt.address = sregs->idt.base; 7399 kvm_x86_ops->set_idt(vcpu, &dt); 7400 dt.size = sregs->gdt.limit; 7401 dt.address = sregs->gdt.base; 7402 kvm_x86_ops->set_gdt(vcpu, &dt); 7403 7404 vcpu->arch.cr2 = sregs->cr2; 7405 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 7406 vcpu->arch.cr3 = sregs->cr3; 7407 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 7408 7409 kvm_set_cr8(vcpu, sregs->cr8); 7410 7411 mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 7412 kvm_x86_ops->set_efer(vcpu, sregs->efer); 7413 apic_base_msr.data = sregs->apic_base; 7414 apic_base_msr.host_initiated = true; 7415 kvm_set_apic_base(vcpu, &apic_base_msr); 7416 7417 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 7418 kvm_x86_ops->set_cr0(vcpu, sregs->cr0); 7419 vcpu->arch.cr0 = sregs->cr0; 7420 7421 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 7422 kvm_x86_ops->set_cr4(vcpu, sregs->cr4); 7423 if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 7424 kvm_update_cpuid(vcpu); 7425 7426 idx = srcu_read_lock(&vcpu->kvm->srcu); 7427 if (!is_long_mode(vcpu) && is_pae(vcpu)) { 7428 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 7429 mmu_reset_needed = 1; 7430 } 7431 srcu_read_unlock(&vcpu->kvm->srcu, idx); 7432 7433 if (mmu_reset_needed) 7434 kvm_mmu_reset_context(vcpu); 7435 7436 max_bits = KVM_NR_INTERRUPTS; 7437 pending_vec = find_first_bit( 7438 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 7439 if (pending_vec < max_bits) { 7440 kvm_queue_interrupt(vcpu, pending_vec, false); 7441 pr_debug("Set back pending irq %d\n", pending_vec); 7442 } 7443 7444 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 7445 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 7446 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 7447 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 7448 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 7449 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 7450 7451 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 7452 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 7453 7454 update_cr8_intercept(vcpu); 7455 7456 /* Older userspace won't unhalt the vcpu on reset. */ 7457 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 7458 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 7459 !is_protmode(vcpu)) 7460 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 7461 7462 kvm_make_request(KVM_REQ_EVENT, vcpu); 7463 7464 return 0; 7465 } 7466 7467 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 7468 struct kvm_guest_debug *dbg) 7469 { 7470 unsigned long rflags; 7471 int i, r; 7472 7473 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 7474 r = -EBUSY; 7475 if (vcpu->arch.exception.pending) 7476 goto out; 7477 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 7478 kvm_queue_exception(vcpu, DB_VECTOR); 7479 else 7480 kvm_queue_exception(vcpu, BP_VECTOR); 7481 } 7482 7483 /* 7484 * Read rflags as long as potentially injected trace flags are still 7485 * filtered out. 7486 */ 7487 rflags = kvm_get_rflags(vcpu); 7488 7489 vcpu->guest_debug = dbg->control; 7490 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 7491 vcpu->guest_debug = 0; 7492 7493 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 7494 for (i = 0; i < KVM_NR_DB_REGS; ++i) 7495 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 7496 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 7497 } else { 7498 for (i = 0; i < KVM_NR_DB_REGS; i++) 7499 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 7500 } 7501 kvm_update_dr7(vcpu); 7502 7503 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 7504 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + 7505 get_segment_base(vcpu, VCPU_SREG_CS); 7506 7507 /* 7508 * Trigger an rflags update that will inject or remove the trace 7509 * flags. 7510 */ 7511 kvm_set_rflags(vcpu, rflags); 7512 7513 kvm_x86_ops->update_bp_intercept(vcpu); 7514 7515 r = 0; 7516 7517 out: 7518 7519 return r; 7520 } 7521 7522 /* 7523 * Translate a guest virtual address to a guest physical address. 7524 */ 7525 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 7526 struct kvm_translation *tr) 7527 { 7528 unsigned long vaddr = tr->linear_address; 7529 gpa_t gpa; 7530 int idx; 7531 7532 idx = srcu_read_lock(&vcpu->kvm->srcu); 7533 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 7534 srcu_read_unlock(&vcpu->kvm->srcu, idx); 7535 tr->physical_address = gpa; 7536 tr->valid = gpa != UNMAPPED_GVA; 7537 tr->writeable = 1; 7538 tr->usermode = 0; 7539 7540 return 0; 7541 } 7542 7543 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 7544 { 7545 struct fxregs_state *fxsave = 7546 &vcpu->arch.guest_fpu.state.fxsave; 7547 7548 memcpy(fpu->fpr, fxsave->st_space, 128); 7549 fpu->fcw = fxsave->cwd; 7550 fpu->fsw = fxsave->swd; 7551 fpu->ftwx = fxsave->twd; 7552 fpu->last_opcode = fxsave->fop; 7553 fpu->last_ip = fxsave->rip; 7554 fpu->last_dp = fxsave->rdp; 7555 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); 7556 7557 return 0; 7558 } 7559 7560 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 7561 { 7562 struct fxregs_state *fxsave = 7563 &vcpu->arch.guest_fpu.state.fxsave; 7564 7565 memcpy(fxsave->st_space, fpu->fpr, 128); 7566 fxsave->cwd = fpu->fcw; 7567 fxsave->swd = fpu->fsw; 7568 fxsave->twd = fpu->ftwx; 7569 fxsave->fop = fpu->last_opcode; 7570 fxsave->rip = fpu->last_ip; 7571 fxsave->rdp = fpu->last_dp; 7572 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); 7573 7574 return 0; 7575 } 7576 7577 static void fx_init(struct kvm_vcpu *vcpu) 7578 { 7579 fpstate_init(&vcpu->arch.guest_fpu.state); 7580 if (boot_cpu_has(X86_FEATURE_XSAVES)) 7581 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv = 7582 host_xcr0 | XSTATE_COMPACTION_ENABLED; 7583 7584 /* 7585 * Ensure guest xcr0 is valid for loading 7586 */ 7587 vcpu->arch.xcr0 = XFEATURE_MASK_FP; 7588 7589 vcpu->arch.cr0 |= X86_CR0_ET; 7590 } 7591 7592 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 7593 { 7594 if (vcpu->guest_fpu_loaded) 7595 return; 7596 7597 /* 7598 * Restore all possible states in the guest, 7599 * and assume host would use all available bits. 7600 * Guest xcr0 would be loaded later. 7601 */ 7602 vcpu->guest_fpu_loaded = 1; 7603 __kernel_fpu_begin(); 7604 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state); 7605 trace_kvm_fpu(1); 7606 } 7607 7608 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 7609 { 7610 if (!vcpu->guest_fpu_loaded) 7611 return; 7612 7613 vcpu->guest_fpu_loaded = 0; 7614 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu); 7615 __kernel_fpu_end(); 7616 ++vcpu->stat.fpu_reload; 7617 trace_kvm_fpu(0); 7618 } 7619 7620 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 7621 { 7622 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask; 7623 7624 kvmclock_reset(vcpu); 7625 7626 kvm_x86_ops->vcpu_free(vcpu); 7627 free_cpumask_var(wbinvd_dirty_mask); 7628 } 7629 7630 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, 7631 unsigned int id) 7632 { 7633 struct kvm_vcpu *vcpu; 7634 7635 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 7636 printk_once(KERN_WARNING 7637 "kvm: SMP vm created on host with unstable TSC; " 7638 "guest TSC will not be reliable\n"); 7639 7640 vcpu = kvm_x86_ops->vcpu_create(kvm, id); 7641 7642 return vcpu; 7643 } 7644 7645 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) 7646 { 7647 int r; 7648 7649 kvm_vcpu_mtrr_init(vcpu); 7650 r = vcpu_load(vcpu); 7651 if (r) 7652 return r; 7653 kvm_vcpu_reset(vcpu, false); 7654 kvm_mmu_setup(vcpu); 7655 vcpu_put(vcpu); 7656 return r; 7657 } 7658 7659 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 7660 { 7661 struct msr_data msr; 7662 struct kvm *kvm = vcpu->kvm; 7663 7664 if (vcpu_load(vcpu)) 7665 return; 7666 msr.data = 0x0; 7667 msr.index = MSR_IA32_TSC; 7668 msr.host_initiated = true; 7669 kvm_write_tsc(vcpu, &msr); 7670 vcpu_put(vcpu); 7671 7672 if (!kvmclock_periodic_sync) 7673 return; 7674 7675 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 7676 KVMCLOCK_SYNC_PERIOD); 7677 } 7678 7679 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 7680 { 7681 int r; 7682 vcpu->arch.apf.msr_val = 0; 7683 7684 r = vcpu_load(vcpu); 7685 BUG_ON(r); 7686 kvm_mmu_unload(vcpu); 7687 vcpu_put(vcpu); 7688 7689 kvm_x86_ops->vcpu_free(vcpu); 7690 } 7691 7692 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 7693 { 7694 vcpu->arch.hflags = 0; 7695 7696 vcpu->arch.smi_pending = 0; 7697 atomic_set(&vcpu->arch.nmi_queued, 0); 7698 vcpu->arch.nmi_pending = 0; 7699 vcpu->arch.nmi_injected = false; 7700 kvm_clear_interrupt_queue(vcpu); 7701 kvm_clear_exception_queue(vcpu); 7702 7703 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 7704 kvm_update_dr0123(vcpu); 7705 vcpu->arch.dr6 = DR6_INIT; 7706 kvm_update_dr6(vcpu); 7707 vcpu->arch.dr7 = DR7_FIXED_1; 7708 kvm_update_dr7(vcpu); 7709 7710 vcpu->arch.cr2 = 0; 7711 7712 kvm_make_request(KVM_REQ_EVENT, vcpu); 7713 vcpu->arch.apf.msr_val = 0; 7714 vcpu->arch.st.msr_val = 0; 7715 7716 kvmclock_reset(vcpu); 7717 7718 kvm_clear_async_pf_completion_queue(vcpu); 7719 kvm_async_pf_hash_reset(vcpu); 7720 vcpu->arch.apf.halted = false; 7721 7722 if (!init_event) { 7723 kvm_pmu_reset(vcpu); 7724 vcpu->arch.smbase = 0x30000; 7725 } 7726 7727 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 7728 vcpu->arch.regs_avail = ~0; 7729 vcpu->arch.regs_dirty = ~0; 7730 7731 kvm_x86_ops->vcpu_reset(vcpu, init_event); 7732 } 7733 7734 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 7735 { 7736 struct kvm_segment cs; 7737 7738 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 7739 cs.selector = vector << 8; 7740 cs.base = vector << 12; 7741 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 7742 kvm_rip_write(vcpu, 0); 7743 } 7744 7745 int kvm_arch_hardware_enable(void) 7746 { 7747 struct kvm *kvm; 7748 struct kvm_vcpu *vcpu; 7749 int i; 7750 int ret; 7751 u64 local_tsc; 7752 u64 max_tsc = 0; 7753 bool stable, backwards_tsc = false; 7754 7755 kvm_shared_msr_cpu_online(); 7756 ret = kvm_x86_ops->hardware_enable(); 7757 if (ret != 0) 7758 return ret; 7759 7760 local_tsc = rdtsc(); 7761 stable = !check_tsc_unstable(); 7762 list_for_each_entry(kvm, &vm_list, vm_list) { 7763 kvm_for_each_vcpu(i, vcpu, kvm) { 7764 if (!stable && vcpu->cpu == smp_processor_id()) 7765 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 7766 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 7767 backwards_tsc = true; 7768 if (vcpu->arch.last_host_tsc > max_tsc) 7769 max_tsc = vcpu->arch.last_host_tsc; 7770 } 7771 } 7772 } 7773 7774 /* 7775 * Sometimes, even reliable TSCs go backwards. This happens on 7776 * platforms that reset TSC during suspend or hibernate actions, but 7777 * maintain synchronization. We must compensate. Fortunately, we can 7778 * detect that condition here, which happens early in CPU bringup, 7779 * before any KVM threads can be running. Unfortunately, we can't 7780 * bring the TSCs fully up to date with real time, as we aren't yet far 7781 * enough into CPU bringup that we know how much real time has actually 7782 * elapsed; our helper function, ktime_get_boot_ns() will be using boot 7783 * variables that haven't been updated yet. 7784 * 7785 * So we simply find the maximum observed TSC above, then record the 7786 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 7787 * the adjustment will be applied. Note that we accumulate 7788 * adjustments, in case multiple suspend cycles happen before some VCPU 7789 * gets a chance to run again. In the event that no KVM threads get a 7790 * chance to run, we will miss the entire elapsed period, as we'll have 7791 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 7792 * loose cycle time. This isn't too big a deal, since the loss will be 7793 * uniform across all VCPUs (not to mention the scenario is extremely 7794 * unlikely). It is possible that a second hibernate recovery happens 7795 * much faster than a first, causing the observed TSC here to be 7796 * smaller; this would require additional padding adjustment, which is 7797 * why we set last_host_tsc to the local tsc observed here. 7798 * 7799 * N.B. - this code below runs only on platforms with reliable TSC, 7800 * as that is the only way backwards_tsc is set above. Also note 7801 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 7802 * have the same delta_cyc adjustment applied if backwards_tsc 7803 * is detected. Note further, this adjustment is only done once, 7804 * as we reset last_host_tsc on all VCPUs to stop this from being 7805 * called multiple times (one for each physical CPU bringup). 7806 * 7807 * Platforms with unreliable TSCs don't have to deal with this, they 7808 * will be compensated by the logic in vcpu_load, which sets the TSC to 7809 * catchup mode. This will catchup all VCPUs to real time, but cannot 7810 * guarantee that they stay in perfect synchronization. 7811 */ 7812 if (backwards_tsc) { 7813 u64 delta_cyc = max_tsc - local_tsc; 7814 backwards_tsc_observed = true; 7815 list_for_each_entry(kvm, &vm_list, vm_list) { 7816 kvm_for_each_vcpu(i, vcpu, kvm) { 7817 vcpu->arch.tsc_offset_adjustment += delta_cyc; 7818 vcpu->arch.last_host_tsc = local_tsc; 7819 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 7820 } 7821 7822 /* 7823 * We have to disable TSC offset matching.. if you were 7824 * booting a VM while issuing an S4 host suspend.... 7825 * you may have some problem. Solving this issue is 7826 * left as an exercise to the reader. 7827 */ 7828 kvm->arch.last_tsc_nsec = 0; 7829 kvm->arch.last_tsc_write = 0; 7830 } 7831 7832 } 7833 return 0; 7834 } 7835 7836 void kvm_arch_hardware_disable(void) 7837 { 7838 kvm_x86_ops->hardware_disable(); 7839 drop_user_return_notifiers(); 7840 } 7841 7842 int kvm_arch_hardware_setup(void) 7843 { 7844 int r; 7845 7846 r = kvm_x86_ops->hardware_setup(); 7847 if (r != 0) 7848 return r; 7849 7850 if (kvm_has_tsc_control) { 7851 /* 7852 * Make sure the user can only configure tsc_khz values that 7853 * fit into a signed integer. 7854 * A min value is not calculated needed because it will always 7855 * be 1 on all machines. 7856 */ 7857 u64 max = min(0x7fffffffULL, 7858 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz)); 7859 kvm_max_guest_tsc_khz = max; 7860 7861 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits; 7862 } 7863 7864 kvm_init_msr_list(); 7865 return 0; 7866 } 7867 7868 void kvm_arch_hardware_unsetup(void) 7869 { 7870 kvm_x86_ops->hardware_unsetup(); 7871 } 7872 7873 void kvm_arch_check_processor_compat(void *rtn) 7874 { 7875 kvm_x86_ops->check_processor_compatibility(rtn); 7876 } 7877 7878 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 7879 { 7880 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 7881 } 7882 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); 7883 7884 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 7885 { 7886 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 7887 } 7888 7889 struct static_key kvm_no_apic_vcpu __read_mostly; 7890 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu); 7891 7892 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 7893 { 7894 struct page *page; 7895 struct kvm *kvm; 7896 int r; 7897 7898 BUG_ON(vcpu->kvm == NULL); 7899 kvm = vcpu->kvm; 7900 7901 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(); 7902 vcpu->arch.pv.pv_unhalted = false; 7903 vcpu->arch.emulate_ctxt.ops = &emulate_ops; 7904 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 7905 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 7906 else 7907 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 7908 7909 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 7910 if (!page) { 7911 r = -ENOMEM; 7912 goto fail; 7913 } 7914 vcpu->arch.pio_data = page_address(page); 7915 7916 kvm_set_tsc_khz(vcpu, max_tsc_khz); 7917 7918 r = kvm_mmu_create(vcpu); 7919 if (r < 0) 7920 goto fail_free_pio_data; 7921 7922 if (irqchip_in_kernel(kvm)) { 7923 r = kvm_create_lapic(vcpu); 7924 if (r < 0) 7925 goto fail_mmu_destroy; 7926 } else 7927 static_key_slow_inc(&kvm_no_apic_vcpu); 7928 7929 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 7930 GFP_KERNEL); 7931 if (!vcpu->arch.mce_banks) { 7932 r = -ENOMEM; 7933 goto fail_free_lapic; 7934 } 7935 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 7936 7937 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) { 7938 r = -ENOMEM; 7939 goto fail_free_mce_banks; 7940 } 7941 7942 fx_init(vcpu); 7943 7944 vcpu->arch.ia32_tsc_adjust_msr = 0x0; 7945 vcpu->arch.pv_time_enabled = false; 7946 7947 vcpu->arch.guest_supported_xcr0 = 0; 7948 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; 7949 7950 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 7951 7952 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 7953 7954 kvm_async_pf_hash_reset(vcpu); 7955 kvm_pmu_init(vcpu); 7956 7957 vcpu->arch.pending_external_vector = -1; 7958 7959 kvm_hv_vcpu_init(vcpu); 7960 7961 return 0; 7962 7963 fail_free_mce_banks: 7964 kfree(vcpu->arch.mce_banks); 7965 fail_free_lapic: 7966 kvm_free_lapic(vcpu); 7967 fail_mmu_destroy: 7968 kvm_mmu_destroy(vcpu); 7969 fail_free_pio_data: 7970 free_page((unsigned long)vcpu->arch.pio_data); 7971 fail: 7972 return r; 7973 } 7974 7975 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) 7976 { 7977 int idx; 7978 7979 kvm_hv_vcpu_uninit(vcpu); 7980 kvm_pmu_destroy(vcpu); 7981 kfree(vcpu->arch.mce_banks); 7982 kvm_free_lapic(vcpu); 7983 idx = srcu_read_lock(&vcpu->kvm->srcu); 7984 kvm_mmu_destroy(vcpu); 7985 srcu_read_unlock(&vcpu->kvm->srcu, idx); 7986 free_page((unsigned long)vcpu->arch.pio_data); 7987 if (!lapic_in_kernel(vcpu)) 7988 static_key_slow_dec(&kvm_no_apic_vcpu); 7989 } 7990 7991 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 7992 { 7993 kvm_x86_ops->sched_in(vcpu, cpu); 7994 } 7995 7996 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 7997 { 7998 if (type) 7999 return -EINVAL; 8000 8001 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 8002 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 8003 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 8004 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 8005 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 8006 8007 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 8008 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 8009 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 8010 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 8011 &kvm->arch.irq_sources_bitmap); 8012 8013 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 8014 mutex_init(&kvm->arch.apic_map_lock); 8015 mutex_init(&kvm->arch.hyperv.hv_lock); 8016 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); 8017 8018 kvm->arch.kvmclock_offset = -ktime_get_boot_ns(); 8019 pvclock_update_vm_gtod_copy(kvm); 8020 8021 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 8022 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 8023 8024 kvm_page_track_init(kvm); 8025 kvm_mmu_init_vm(kvm); 8026 8027 if (kvm_x86_ops->vm_init) 8028 return kvm_x86_ops->vm_init(kvm); 8029 8030 return 0; 8031 } 8032 8033 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 8034 { 8035 int r; 8036 r = vcpu_load(vcpu); 8037 BUG_ON(r); 8038 kvm_mmu_unload(vcpu); 8039 vcpu_put(vcpu); 8040 } 8041 8042 static void kvm_free_vcpus(struct kvm *kvm) 8043 { 8044 unsigned int i; 8045 struct kvm_vcpu *vcpu; 8046 8047 /* 8048 * Unpin any mmu pages first. 8049 */ 8050 kvm_for_each_vcpu(i, vcpu, kvm) { 8051 kvm_clear_async_pf_completion_queue(vcpu); 8052 kvm_unload_vcpu_mmu(vcpu); 8053 } 8054 kvm_for_each_vcpu(i, vcpu, kvm) 8055 kvm_arch_vcpu_free(vcpu); 8056 8057 mutex_lock(&kvm->lock); 8058 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 8059 kvm->vcpus[i] = NULL; 8060 8061 atomic_set(&kvm->online_vcpus, 0); 8062 mutex_unlock(&kvm->lock); 8063 } 8064 8065 void kvm_arch_sync_events(struct kvm *kvm) 8066 { 8067 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 8068 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 8069 kvm_free_all_assigned_devices(kvm); 8070 kvm_free_pit(kvm); 8071 } 8072 8073 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size) 8074 { 8075 int i, r; 8076 unsigned long hva; 8077 struct kvm_memslots *slots = kvm_memslots(kvm); 8078 struct kvm_memory_slot *slot, old; 8079 8080 /* Called with kvm->slots_lock held. */ 8081 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 8082 return -EINVAL; 8083 8084 slot = id_to_memslot(slots, id); 8085 if (size) { 8086 if (slot->npages) 8087 return -EEXIST; 8088 8089 /* 8090 * MAP_SHARED to prevent internal slot pages from being moved 8091 * by fork()/COW. 8092 */ 8093 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 8094 MAP_SHARED | MAP_ANONYMOUS, 0); 8095 if (IS_ERR((void *)hva)) 8096 return PTR_ERR((void *)hva); 8097 } else { 8098 if (!slot->npages) 8099 return 0; 8100 8101 hva = 0; 8102 } 8103 8104 old = *slot; 8105 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 8106 struct kvm_userspace_memory_region m; 8107 8108 m.slot = id | (i << 16); 8109 m.flags = 0; 8110 m.guest_phys_addr = gpa; 8111 m.userspace_addr = hva; 8112 m.memory_size = size; 8113 r = __kvm_set_memory_region(kvm, &m); 8114 if (r < 0) 8115 return r; 8116 } 8117 8118 if (!size) { 8119 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE); 8120 WARN_ON(r < 0); 8121 } 8122 8123 return 0; 8124 } 8125 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 8126 8127 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size) 8128 { 8129 int r; 8130 8131 mutex_lock(&kvm->slots_lock); 8132 r = __x86_set_memory_region(kvm, id, gpa, size); 8133 mutex_unlock(&kvm->slots_lock); 8134 8135 return r; 8136 } 8137 EXPORT_SYMBOL_GPL(x86_set_memory_region); 8138 8139 void kvm_arch_destroy_vm(struct kvm *kvm) 8140 { 8141 if (current->mm == kvm->mm) { 8142 /* 8143 * Free memory regions allocated on behalf of userspace, 8144 * unless the the memory map has changed due to process exit 8145 * or fd copying. 8146 */ 8147 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0); 8148 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0); 8149 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 8150 } 8151 if (kvm_x86_ops->vm_destroy) 8152 kvm_x86_ops->vm_destroy(kvm); 8153 kvm_iommu_unmap_guest(kvm); 8154 kfree(kvm->arch.vpic); 8155 kfree(kvm->arch.vioapic); 8156 kvm_free_vcpus(kvm); 8157 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 8158 kvm_mmu_uninit_vm(kvm); 8159 } 8160 8161 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 8162 struct kvm_memory_slot *dont) 8163 { 8164 int i; 8165 8166 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 8167 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) { 8168 kvfree(free->arch.rmap[i]); 8169 free->arch.rmap[i] = NULL; 8170 } 8171 if (i == 0) 8172 continue; 8173 8174 if (!dont || free->arch.lpage_info[i - 1] != 8175 dont->arch.lpage_info[i - 1]) { 8176 kvfree(free->arch.lpage_info[i - 1]); 8177 free->arch.lpage_info[i - 1] = NULL; 8178 } 8179 } 8180 8181 kvm_page_track_free_memslot(free, dont); 8182 } 8183 8184 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 8185 unsigned long npages) 8186 { 8187 int i; 8188 8189 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 8190 struct kvm_lpage_info *linfo; 8191 unsigned long ugfn; 8192 int lpages; 8193 int level = i + 1; 8194 8195 lpages = gfn_to_index(slot->base_gfn + npages - 1, 8196 slot->base_gfn, level) + 1; 8197 8198 slot->arch.rmap[i] = 8199 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i])); 8200 if (!slot->arch.rmap[i]) 8201 goto out_free; 8202 if (i == 0) 8203 continue; 8204 8205 linfo = kvm_kvzalloc(lpages * sizeof(*linfo)); 8206 if (!linfo) 8207 goto out_free; 8208 8209 slot->arch.lpage_info[i - 1] = linfo; 8210 8211 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 8212 linfo[0].disallow_lpage = 1; 8213 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 8214 linfo[lpages - 1].disallow_lpage = 1; 8215 ugfn = slot->userspace_addr >> PAGE_SHIFT; 8216 /* 8217 * If the gfn and userspace address are not aligned wrt each 8218 * other, or if explicitly asked to, disable large page 8219 * support for this slot 8220 */ 8221 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) || 8222 !kvm_largepages_enabled()) { 8223 unsigned long j; 8224 8225 for (j = 0; j < lpages; ++j) 8226 linfo[j].disallow_lpage = 1; 8227 } 8228 } 8229 8230 if (kvm_page_track_create_memslot(slot, npages)) 8231 goto out_free; 8232 8233 return 0; 8234 8235 out_free: 8236 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 8237 kvfree(slot->arch.rmap[i]); 8238 slot->arch.rmap[i] = NULL; 8239 if (i == 0) 8240 continue; 8241 8242 kvfree(slot->arch.lpage_info[i - 1]); 8243 slot->arch.lpage_info[i - 1] = NULL; 8244 } 8245 return -ENOMEM; 8246 } 8247 8248 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots) 8249 { 8250 /* 8251 * memslots->generation has been incremented. 8252 * mmio generation may have reached its maximum value. 8253 */ 8254 kvm_mmu_invalidate_mmio_sptes(kvm, slots); 8255 } 8256 8257 int kvm_arch_prepare_memory_region(struct kvm *kvm, 8258 struct kvm_memory_slot *memslot, 8259 const struct kvm_userspace_memory_region *mem, 8260 enum kvm_mr_change change) 8261 { 8262 return 0; 8263 } 8264 8265 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 8266 struct kvm_memory_slot *new) 8267 { 8268 /* Still write protect RO slot */ 8269 if (new->flags & KVM_MEM_READONLY) { 8270 kvm_mmu_slot_remove_write_access(kvm, new); 8271 return; 8272 } 8273 8274 /* 8275 * Call kvm_x86_ops dirty logging hooks when they are valid. 8276 * 8277 * kvm_x86_ops->slot_disable_log_dirty is called when: 8278 * 8279 * - KVM_MR_CREATE with dirty logging is disabled 8280 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag 8281 * 8282 * The reason is, in case of PML, we need to set D-bit for any slots 8283 * with dirty logging disabled in order to eliminate unnecessary GPA 8284 * logging in PML buffer (and potential PML buffer full VMEXT). This 8285 * guarantees leaving PML enabled during guest's lifetime won't have 8286 * any additonal overhead from PML when guest is running with dirty 8287 * logging disabled for memory slots. 8288 * 8289 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot 8290 * to dirty logging mode. 8291 * 8292 * If kvm_x86_ops dirty logging hooks are invalid, use write protect. 8293 * 8294 * In case of write protect: 8295 * 8296 * Write protect all pages for dirty logging. 8297 * 8298 * All the sptes including the large sptes which point to this 8299 * slot are set to readonly. We can not create any new large 8300 * spte on this slot until the end of the logging. 8301 * 8302 * See the comments in fast_page_fault(). 8303 */ 8304 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) { 8305 if (kvm_x86_ops->slot_enable_log_dirty) 8306 kvm_x86_ops->slot_enable_log_dirty(kvm, new); 8307 else 8308 kvm_mmu_slot_remove_write_access(kvm, new); 8309 } else { 8310 if (kvm_x86_ops->slot_disable_log_dirty) 8311 kvm_x86_ops->slot_disable_log_dirty(kvm, new); 8312 } 8313 } 8314 8315 void kvm_arch_commit_memory_region(struct kvm *kvm, 8316 const struct kvm_userspace_memory_region *mem, 8317 const struct kvm_memory_slot *old, 8318 const struct kvm_memory_slot *new, 8319 enum kvm_mr_change change) 8320 { 8321 int nr_mmu_pages = 0; 8322 8323 if (!kvm->arch.n_requested_mmu_pages) 8324 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); 8325 8326 if (nr_mmu_pages) 8327 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 8328 8329 /* 8330 * Dirty logging tracks sptes in 4k granularity, meaning that large 8331 * sptes have to be split. If live migration is successful, the guest 8332 * in the source machine will be destroyed and large sptes will be 8333 * created in the destination. However, if the guest continues to run 8334 * in the source machine (for example if live migration fails), small 8335 * sptes will remain around and cause bad performance. 8336 * 8337 * Scan sptes if dirty logging has been stopped, dropping those 8338 * which can be collapsed into a single large-page spte. Later 8339 * page faults will create the large-page sptes. 8340 */ 8341 if ((change != KVM_MR_DELETE) && 8342 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) && 8343 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 8344 kvm_mmu_zap_collapsible_sptes(kvm, new); 8345 8346 /* 8347 * Set up write protection and/or dirty logging for the new slot. 8348 * 8349 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have 8350 * been zapped so no dirty logging staff is needed for old slot. For 8351 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the 8352 * new and it's also covered when dealing with the new slot. 8353 * 8354 * FIXME: const-ify all uses of struct kvm_memory_slot. 8355 */ 8356 if (change != KVM_MR_DELETE) 8357 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new); 8358 } 8359 8360 void kvm_arch_flush_shadow_all(struct kvm *kvm) 8361 { 8362 kvm_mmu_invalidate_zap_all_pages(kvm); 8363 } 8364 8365 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 8366 struct kvm_memory_slot *slot) 8367 { 8368 kvm_page_track_flush_slot(kvm, slot); 8369 } 8370 8371 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 8372 { 8373 if (!list_empty_careful(&vcpu->async_pf.done)) 8374 return true; 8375 8376 if (kvm_apic_has_events(vcpu)) 8377 return true; 8378 8379 if (vcpu->arch.pv.pv_unhalted) 8380 return true; 8381 8382 if (atomic_read(&vcpu->arch.nmi_queued)) 8383 return true; 8384 8385 if (test_bit(KVM_REQ_SMI, &vcpu->requests)) 8386 return true; 8387 8388 if (kvm_arch_interrupt_allowed(vcpu) && 8389 kvm_cpu_has_interrupt(vcpu)) 8390 return true; 8391 8392 if (kvm_hv_has_stimer_pending(vcpu)) 8393 return true; 8394 8395 return false; 8396 } 8397 8398 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 8399 { 8400 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 8401 } 8402 8403 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 8404 { 8405 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 8406 } 8407 8408 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 8409 { 8410 return kvm_x86_ops->interrupt_allowed(vcpu); 8411 } 8412 8413 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 8414 { 8415 if (is_64_bit_mode(vcpu)) 8416 return kvm_rip_read(vcpu); 8417 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 8418 kvm_rip_read(vcpu)); 8419 } 8420 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 8421 8422 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 8423 { 8424 return kvm_get_linear_rip(vcpu) == linear_rip; 8425 } 8426 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 8427 8428 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 8429 { 8430 unsigned long rflags; 8431 8432 rflags = kvm_x86_ops->get_rflags(vcpu); 8433 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 8434 rflags &= ~X86_EFLAGS_TF; 8435 return rflags; 8436 } 8437 EXPORT_SYMBOL_GPL(kvm_get_rflags); 8438 8439 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 8440 { 8441 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 8442 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 8443 rflags |= X86_EFLAGS_TF; 8444 kvm_x86_ops->set_rflags(vcpu, rflags); 8445 } 8446 8447 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 8448 { 8449 __kvm_set_rflags(vcpu, rflags); 8450 kvm_make_request(KVM_REQ_EVENT, vcpu); 8451 } 8452 EXPORT_SYMBOL_GPL(kvm_set_rflags); 8453 8454 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 8455 { 8456 int r; 8457 8458 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) || 8459 work->wakeup_all) 8460 return; 8461 8462 r = kvm_mmu_reload(vcpu); 8463 if (unlikely(r)) 8464 return; 8465 8466 if (!vcpu->arch.mmu.direct_map && 8467 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu)) 8468 return; 8469 8470 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true); 8471 } 8472 8473 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 8474 { 8475 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 8476 } 8477 8478 static inline u32 kvm_async_pf_next_probe(u32 key) 8479 { 8480 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); 8481 } 8482 8483 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 8484 { 8485 u32 key = kvm_async_pf_hash_fn(gfn); 8486 8487 while (vcpu->arch.apf.gfns[key] != ~0) 8488 key = kvm_async_pf_next_probe(key); 8489 8490 vcpu->arch.apf.gfns[key] = gfn; 8491 } 8492 8493 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 8494 { 8495 int i; 8496 u32 key = kvm_async_pf_hash_fn(gfn); 8497 8498 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && 8499 (vcpu->arch.apf.gfns[key] != gfn && 8500 vcpu->arch.apf.gfns[key] != ~0); i++) 8501 key = kvm_async_pf_next_probe(key); 8502 8503 return key; 8504 } 8505 8506 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 8507 { 8508 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 8509 } 8510 8511 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 8512 { 8513 u32 i, j, k; 8514 8515 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 8516 while (true) { 8517 vcpu->arch.apf.gfns[i] = ~0; 8518 do { 8519 j = kvm_async_pf_next_probe(j); 8520 if (vcpu->arch.apf.gfns[j] == ~0) 8521 return; 8522 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 8523 /* 8524 * k lies cyclically in ]i,j] 8525 * | i.k.j | 8526 * |....j i.k.| or |.k..j i...| 8527 */ 8528 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 8529 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 8530 i = j; 8531 } 8532 } 8533 8534 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) 8535 { 8536 return kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.apf.data, &val, 8537 sizeof(val)); 8538 } 8539 8540 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 8541 struct kvm_async_pf *work) 8542 { 8543 struct x86_exception fault; 8544 8545 trace_kvm_async_pf_not_present(work->arch.token, work->gva); 8546 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 8547 8548 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || 8549 (vcpu->arch.apf.send_user_only && 8550 kvm_x86_ops->get_cpl(vcpu) == 0)) 8551 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 8552 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { 8553 fault.vector = PF_VECTOR; 8554 fault.error_code_valid = true; 8555 fault.error_code = 0; 8556 fault.nested_page_fault = false; 8557 fault.address = work->arch.token; 8558 kvm_inject_page_fault(vcpu, &fault); 8559 } 8560 } 8561 8562 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 8563 struct kvm_async_pf *work) 8564 { 8565 struct x86_exception fault; 8566 8567 trace_kvm_async_pf_ready(work->arch.token, work->gva); 8568 if (work->wakeup_all) 8569 work->arch.token = ~0; /* broadcast wakeup */ 8570 else 8571 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 8572 8573 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) && 8574 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { 8575 fault.vector = PF_VECTOR; 8576 fault.error_code_valid = true; 8577 fault.error_code = 0; 8578 fault.nested_page_fault = false; 8579 fault.address = work->arch.token; 8580 kvm_inject_page_fault(vcpu, &fault); 8581 } 8582 vcpu->arch.apf.halted = false; 8583 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 8584 } 8585 8586 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) 8587 { 8588 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) 8589 return true; 8590 else 8591 return !kvm_event_needs_reinjection(vcpu) && 8592 kvm_x86_ops->interrupt_allowed(vcpu); 8593 } 8594 8595 void kvm_arch_start_assignment(struct kvm *kvm) 8596 { 8597 atomic_inc(&kvm->arch.assigned_device_count); 8598 } 8599 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 8600 8601 void kvm_arch_end_assignment(struct kvm *kvm) 8602 { 8603 atomic_dec(&kvm->arch.assigned_device_count); 8604 } 8605 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 8606 8607 bool kvm_arch_has_assigned_device(struct kvm *kvm) 8608 { 8609 return atomic_read(&kvm->arch.assigned_device_count); 8610 } 8611 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 8612 8613 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 8614 { 8615 atomic_inc(&kvm->arch.noncoherent_dma_count); 8616 } 8617 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 8618 8619 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 8620 { 8621 atomic_dec(&kvm->arch.noncoherent_dma_count); 8622 } 8623 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 8624 8625 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 8626 { 8627 return atomic_read(&kvm->arch.noncoherent_dma_count); 8628 } 8629 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 8630 8631 bool kvm_arch_has_irq_bypass(void) 8632 { 8633 return kvm_x86_ops->update_pi_irte != NULL; 8634 } 8635 8636 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 8637 struct irq_bypass_producer *prod) 8638 { 8639 struct kvm_kernel_irqfd *irqfd = 8640 container_of(cons, struct kvm_kernel_irqfd, consumer); 8641 8642 irqfd->producer = prod; 8643 8644 return kvm_x86_ops->update_pi_irte(irqfd->kvm, 8645 prod->irq, irqfd->gsi, 1); 8646 } 8647 8648 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 8649 struct irq_bypass_producer *prod) 8650 { 8651 int ret; 8652 struct kvm_kernel_irqfd *irqfd = 8653 container_of(cons, struct kvm_kernel_irqfd, consumer); 8654 8655 WARN_ON(irqfd->producer != prod); 8656 irqfd->producer = NULL; 8657 8658 /* 8659 * When producer of consumer is unregistered, we change back to 8660 * remapped mode, so we can re-use the current implementation 8661 * when the irq is masked/disabled or the consumer side (KVM 8662 * int this case doesn't want to receive the interrupts. 8663 */ 8664 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0); 8665 if (ret) 8666 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 8667 " fails: %d\n", irqfd->consumer.token, ret); 8668 } 8669 8670 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 8671 uint32_t guest_irq, bool set) 8672 { 8673 if (!kvm_x86_ops->update_pi_irte) 8674 return -EINVAL; 8675 8676 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set); 8677 } 8678 8679 bool kvm_vector_hashing_enabled(void) 8680 { 8681 return vector_hashing; 8682 } 8683 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled); 8684 8685 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 8686 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 8687 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 8688 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 8689 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 8690 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 8691 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 8692 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 8693 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 8694 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 8695 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 8696 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 8697 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 8698 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 8699 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window); 8700 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 8701 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 8702 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 8703 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 8704