xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 163b0991)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33 
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 
62 #include <trace/events/kvm.h>
63 
64 #include <asm/debugreg.h>
65 #include <asm/msr.h>
66 #include <asm/desc.h>
67 #include <asm/mce.h>
68 #include <linux/kernel_stat.h>
69 #include <asm/fpu/internal.h> /* Ugh! */
70 #include <asm/pvclock.h>
71 #include <asm/div64.h>
72 #include <asm/irq_remapping.h>
73 #include <asm/mshyperv.h>
74 #include <asm/hypervisor.h>
75 #include <asm/tlbflush.h>
76 #include <asm/intel_pt.h>
77 #include <asm/emulate_prefix.h>
78 #include <clocksource/hyperv_timer.h>
79 
80 #define CREATE_TRACE_POINTS
81 #include "trace.h"
82 
83 #define MAX_IO_MSRS 256
84 #define KVM_MAX_MCE_BANKS 32
85 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
86 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
87 
88 #define emul_to_vcpu(ctxt) \
89 	((struct kvm_vcpu *)(ctxt)->vcpu)
90 
91 /* EFER defaults:
92  * - enable syscall per default because its emulated by KVM
93  * - enable LME and LMA per default on 64 bit KVM
94  */
95 #ifdef CONFIG_X86_64
96 static
97 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
98 #else
99 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
100 #endif
101 
102 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
103 
104 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
105                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
106 
107 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
108 static void process_nmi(struct kvm_vcpu *vcpu);
109 static void process_smi(struct kvm_vcpu *vcpu);
110 static void enter_smm(struct kvm_vcpu *vcpu);
111 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
112 static void store_regs(struct kvm_vcpu *vcpu);
113 static int sync_regs(struct kvm_vcpu *vcpu);
114 
115 struct kvm_x86_ops kvm_x86_ops __read_mostly;
116 EXPORT_SYMBOL_GPL(kvm_x86_ops);
117 
118 #define KVM_X86_OP(func)					     \
119 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
120 				*(((struct kvm_x86_ops *)0)->func));
121 #define KVM_X86_OP_NULL KVM_X86_OP
122 #include <asm/kvm-x86-ops.h>
123 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
124 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
125 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
126 
127 static bool __read_mostly ignore_msrs = 0;
128 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
129 
130 bool __read_mostly report_ignored_msrs = true;
131 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
132 EXPORT_SYMBOL_GPL(report_ignored_msrs);
133 
134 unsigned int min_timer_period_us = 200;
135 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
136 
137 static bool __read_mostly kvmclock_periodic_sync = true;
138 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
139 
140 bool __read_mostly kvm_has_tsc_control;
141 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
142 u32  __read_mostly kvm_max_guest_tsc_khz;
143 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
144 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
145 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
146 u64  __read_mostly kvm_max_tsc_scaling_ratio;
147 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
148 u64 __read_mostly kvm_default_tsc_scaling_ratio;
149 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
150 bool __read_mostly kvm_has_bus_lock_exit;
151 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
152 
153 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
154 static u32 __read_mostly tsc_tolerance_ppm = 250;
155 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
156 
157 /*
158  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
159  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
160  * advancement entirely.  Any other value is used as-is and disables adaptive
161  * tuning, i.e. allows privileged userspace to set an exact advancement time.
162  */
163 static int __read_mostly lapic_timer_advance_ns = -1;
164 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
165 
166 static bool __read_mostly vector_hashing = true;
167 module_param(vector_hashing, bool, S_IRUGO);
168 
169 bool __read_mostly enable_vmware_backdoor = false;
170 module_param(enable_vmware_backdoor, bool, S_IRUGO);
171 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
172 
173 static bool __read_mostly force_emulation_prefix = false;
174 module_param(force_emulation_prefix, bool, S_IRUGO);
175 
176 int __read_mostly pi_inject_timer = -1;
177 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
178 
179 /*
180  * Restoring the host value for MSRs that are only consumed when running in
181  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
182  * returns to userspace, i.e. the kernel can run with the guest's value.
183  */
184 #define KVM_MAX_NR_USER_RETURN_MSRS 16
185 
186 struct kvm_user_return_msrs_global {
187 	int nr;
188 	u32 msrs[KVM_MAX_NR_USER_RETURN_MSRS];
189 };
190 
191 struct kvm_user_return_msrs {
192 	struct user_return_notifier urn;
193 	bool registered;
194 	struct kvm_user_return_msr_values {
195 		u64 host;
196 		u64 curr;
197 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
198 };
199 
200 static struct kvm_user_return_msrs_global __read_mostly user_return_msrs_global;
201 static struct kvm_user_return_msrs __percpu *user_return_msrs;
202 
203 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
204 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
205 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
206 				| XFEATURE_MASK_PKRU)
207 
208 u64 __read_mostly host_efer;
209 EXPORT_SYMBOL_GPL(host_efer);
210 
211 bool __read_mostly allow_smaller_maxphyaddr = 0;
212 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
213 
214 u64 __read_mostly host_xss;
215 EXPORT_SYMBOL_GPL(host_xss);
216 u64 __read_mostly supported_xss;
217 EXPORT_SYMBOL_GPL(supported_xss);
218 
219 struct kvm_stats_debugfs_item debugfs_entries[] = {
220 	VCPU_STAT("pf_fixed", pf_fixed),
221 	VCPU_STAT("pf_guest", pf_guest),
222 	VCPU_STAT("tlb_flush", tlb_flush),
223 	VCPU_STAT("invlpg", invlpg),
224 	VCPU_STAT("exits", exits),
225 	VCPU_STAT("io_exits", io_exits),
226 	VCPU_STAT("mmio_exits", mmio_exits),
227 	VCPU_STAT("signal_exits", signal_exits),
228 	VCPU_STAT("irq_window", irq_window_exits),
229 	VCPU_STAT("nmi_window", nmi_window_exits),
230 	VCPU_STAT("halt_exits", halt_exits),
231 	VCPU_STAT("halt_successful_poll", halt_successful_poll),
232 	VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
233 	VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
234 	VCPU_STAT("halt_wakeup", halt_wakeup),
235 	VCPU_STAT("hypercalls", hypercalls),
236 	VCPU_STAT("request_irq", request_irq_exits),
237 	VCPU_STAT("irq_exits", irq_exits),
238 	VCPU_STAT("host_state_reload", host_state_reload),
239 	VCPU_STAT("fpu_reload", fpu_reload),
240 	VCPU_STAT("insn_emulation", insn_emulation),
241 	VCPU_STAT("insn_emulation_fail", insn_emulation_fail),
242 	VCPU_STAT("irq_injections", irq_injections),
243 	VCPU_STAT("nmi_injections", nmi_injections),
244 	VCPU_STAT("req_event", req_event),
245 	VCPU_STAT("l1d_flush", l1d_flush),
246 	VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
247 	VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
248 	VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped),
249 	VM_STAT("mmu_pte_write", mmu_pte_write),
250 	VM_STAT("mmu_pde_zapped", mmu_pde_zapped),
251 	VM_STAT("mmu_flooded", mmu_flooded),
252 	VM_STAT("mmu_recycled", mmu_recycled),
253 	VM_STAT("mmu_cache_miss", mmu_cache_miss),
254 	VM_STAT("mmu_unsync", mmu_unsync),
255 	VM_STAT("remote_tlb_flush", remote_tlb_flush),
256 	VM_STAT("largepages", lpages, .mode = 0444),
257 	VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444),
258 	VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions),
259 	{ NULL }
260 };
261 
262 u64 __read_mostly host_xcr0;
263 u64 __read_mostly supported_xcr0;
264 EXPORT_SYMBOL_GPL(supported_xcr0);
265 
266 static struct kmem_cache *x86_fpu_cache;
267 
268 static struct kmem_cache *x86_emulator_cache;
269 
270 /*
271  * When called, it means the previous get/set msr reached an invalid msr.
272  * Return true if we want to ignore/silent this failed msr access.
273  */
274 static bool kvm_msr_ignored_check(struct kvm_vcpu *vcpu, u32 msr,
275 				  u64 data, bool write)
276 {
277 	const char *op = write ? "wrmsr" : "rdmsr";
278 
279 	if (ignore_msrs) {
280 		if (report_ignored_msrs)
281 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
282 				      op, msr, data);
283 		/* Mask the error */
284 		return true;
285 	} else {
286 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
287 				      op, msr, data);
288 		return false;
289 	}
290 }
291 
292 static struct kmem_cache *kvm_alloc_emulator_cache(void)
293 {
294 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
295 	unsigned int size = sizeof(struct x86_emulate_ctxt);
296 
297 	return kmem_cache_create_usercopy("x86_emulator", size,
298 					  __alignof__(struct x86_emulate_ctxt),
299 					  SLAB_ACCOUNT, useroffset,
300 					  size - useroffset, NULL);
301 }
302 
303 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
304 
305 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
306 {
307 	int i;
308 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
309 		vcpu->arch.apf.gfns[i] = ~0;
310 }
311 
312 static void kvm_on_user_return(struct user_return_notifier *urn)
313 {
314 	unsigned slot;
315 	struct kvm_user_return_msrs *msrs
316 		= container_of(urn, struct kvm_user_return_msrs, urn);
317 	struct kvm_user_return_msr_values *values;
318 	unsigned long flags;
319 
320 	/*
321 	 * Disabling irqs at this point since the following code could be
322 	 * interrupted and executed through kvm_arch_hardware_disable()
323 	 */
324 	local_irq_save(flags);
325 	if (msrs->registered) {
326 		msrs->registered = false;
327 		user_return_notifier_unregister(urn);
328 	}
329 	local_irq_restore(flags);
330 	for (slot = 0; slot < user_return_msrs_global.nr; ++slot) {
331 		values = &msrs->values[slot];
332 		if (values->host != values->curr) {
333 			wrmsrl(user_return_msrs_global.msrs[slot], values->host);
334 			values->curr = values->host;
335 		}
336 	}
337 }
338 
339 void kvm_define_user_return_msr(unsigned slot, u32 msr)
340 {
341 	BUG_ON(slot >= KVM_MAX_NR_USER_RETURN_MSRS);
342 	user_return_msrs_global.msrs[slot] = msr;
343 	if (slot >= user_return_msrs_global.nr)
344 		user_return_msrs_global.nr = slot + 1;
345 }
346 EXPORT_SYMBOL_GPL(kvm_define_user_return_msr);
347 
348 static void kvm_user_return_msr_cpu_online(void)
349 {
350 	unsigned int cpu = smp_processor_id();
351 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
352 	u64 value;
353 	int i;
354 
355 	for (i = 0; i < user_return_msrs_global.nr; ++i) {
356 		rdmsrl_safe(user_return_msrs_global.msrs[i], &value);
357 		msrs->values[i].host = value;
358 		msrs->values[i].curr = value;
359 	}
360 }
361 
362 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
363 {
364 	unsigned int cpu = smp_processor_id();
365 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
366 	int err;
367 
368 	value = (value & mask) | (msrs->values[slot].host & ~mask);
369 	if (value == msrs->values[slot].curr)
370 		return 0;
371 	err = wrmsrl_safe(user_return_msrs_global.msrs[slot], value);
372 	if (err)
373 		return 1;
374 
375 	msrs->values[slot].curr = value;
376 	if (!msrs->registered) {
377 		msrs->urn.on_user_return = kvm_on_user_return;
378 		user_return_notifier_register(&msrs->urn);
379 		msrs->registered = true;
380 	}
381 	return 0;
382 }
383 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
384 
385 static void drop_user_return_notifiers(void)
386 {
387 	unsigned int cpu = smp_processor_id();
388 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
389 
390 	if (msrs->registered)
391 		kvm_on_user_return(&msrs->urn);
392 }
393 
394 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
395 {
396 	return vcpu->arch.apic_base;
397 }
398 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
399 
400 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
401 {
402 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
403 }
404 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
405 
406 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
407 {
408 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
409 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
410 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
411 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
412 
413 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
414 		return 1;
415 	if (!msr_info->host_initiated) {
416 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
417 			return 1;
418 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
419 			return 1;
420 	}
421 
422 	kvm_lapic_set_base(vcpu, msr_info->data);
423 	kvm_recalculate_apic_map(vcpu->kvm);
424 	return 0;
425 }
426 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
427 
428 asmlinkage __visible noinstr void kvm_spurious_fault(void)
429 {
430 	/* Fault while not rebooting.  We want the trace. */
431 	BUG_ON(!kvm_rebooting);
432 }
433 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
434 
435 #define EXCPT_BENIGN		0
436 #define EXCPT_CONTRIBUTORY	1
437 #define EXCPT_PF		2
438 
439 static int exception_class(int vector)
440 {
441 	switch (vector) {
442 	case PF_VECTOR:
443 		return EXCPT_PF;
444 	case DE_VECTOR:
445 	case TS_VECTOR:
446 	case NP_VECTOR:
447 	case SS_VECTOR:
448 	case GP_VECTOR:
449 		return EXCPT_CONTRIBUTORY;
450 	default:
451 		break;
452 	}
453 	return EXCPT_BENIGN;
454 }
455 
456 #define EXCPT_FAULT		0
457 #define EXCPT_TRAP		1
458 #define EXCPT_ABORT		2
459 #define EXCPT_INTERRUPT		3
460 
461 static int exception_type(int vector)
462 {
463 	unsigned int mask;
464 
465 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
466 		return EXCPT_INTERRUPT;
467 
468 	mask = 1 << vector;
469 
470 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
471 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
472 		return EXCPT_TRAP;
473 
474 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
475 		return EXCPT_ABORT;
476 
477 	/* Reserved exceptions will result in fault */
478 	return EXCPT_FAULT;
479 }
480 
481 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
482 {
483 	unsigned nr = vcpu->arch.exception.nr;
484 	bool has_payload = vcpu->arch.exception.has_payload;
485 	unsigned long payload = vcpu->arch.exception.payload;
486 
487 	if (!has_payload)
488 		return;
489 
490 	switch (nr) {
491 	case DB_VECTOR:
492 		/*
493 		 * "Certain debug exceptions may clear bit 0-3.  The
494 		 * remaining contents of the DR6 register are never
495 		 * cleared by the processor".
496 		 */
497 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
498 		/*
499 		 * In order to reflect the #DB exception payload in guest
500 		 * dr6, three components need to be considered: active low
501 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
502 		 * DR6_BS and DR6_BT)
503 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
504 		 * In the target guest dr6:
505 		 * FIXED_1 bits should always be set.
506 		 * Active low bits should be cleared if 1-setting in payload.
507 		 * Active high bits should be set if 1-setting in payload.
508 		 *
509 		 * Note, the payload is compatible with the pending debug
510 		 * exceptions/exit qualification under VMX, that active_low bits
511 		 * are active high in payload.
512 		 * So they need to be flipped for DR6.
513 		 */
514 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
515 		vcpu->arch.dr6 |= payload;
516 		vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
517 
518 		/*
519 		 * The #DB payload is defined as compatible with the 'pending
520 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
521 		 * defined in the 'pending debug exceptions' field (enabled
522 		 * breakpoint), it is reserved and must be zero in DR6.
523 		 */
524 		vcpu->arch.dr6 &= ~BIT(12);
525 		break;
526 	case PF_VECTOR:
527 		vcpu->arch.cr2 = payload;
528 		break;
529 	}
530 
531 	vcpu->arch.exception.has_payload = false;
532 	vcpu->arch.exception.payload = 0;
533 }
534 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
535 
536 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
537 		unsigned nr, bool has_error, u32 error_code,
538 	        bool has_payload, unsigned long payload, bool reinject)
539 {
540 	u32 prev_nr;
541 	int class1, class2;
542 
543 	kvm_make_request(KVM_REQ_EVENT, vcpu);
544 
545 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
546 	queue:
547 		if (has_error && !is_protmode(vcpu))
548 			has_error = false;
549 		if (reinject) {
550 			/*
551 			 * On vmentry, vcpu->arch.exception.pending is only
552 			 * true if an event injection was blocked by
553 			 * nested_run_pending.  In that case, however,
554 			 * vcpu_enter_guest requests an immediate exit,
555 			 * and the guest shouldn't proceed far enough to
556 			 * need reinjection.
557 			 */
558 			WARN_ON_ONCE(vcpu->arch.exception.pending);
559 			vcpu->arch.exception.injected = true;
560 			if (WARN_ON_ONCE(has_payload)) {
561 				/*
562 				 * A reinjected event has already
563 				 * delivered its payload.
564 				 */
565 				has_payload = false;
566 				payload = 0;
567 			}
568 		} else {
569 			vcpu->arch.exception.pending = true;
570 			vcpu->arch.exception.injected = false;
571 		}
572 		vcpu->arch.exception.has_error_code = has_error;
573 		vcpu->arch.exception.nr = nr;
574 		vcpu->arch.exception.error_code = error_code;
575 		vcpu->arch.exception.has_payload = has_payload;
576 		vcpu->arch.exception.payload = payload;
577 		if (!is_guest_mode(vcpu))
578 			kvm_deliver_exception_payload(vcpu);
579 		return;
580 	}
581 
582 	/* to check exception */
583 	prev_nr = vcpu->arch.exception.nr;
584 	if (prev_nr == DF_VECTOR) {
585 		/* triple fault -> shutdown */
586 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
587 		return;
588 	}
589 	class1 = exception_class(prev_nr);
590 	class2 = exception_class(nr);
591 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
592 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
593 		/*
594 		 * Generate double fault per SDM Table 5-5.  Set
595 		 * exception.pending = true so that the double fault
596 		 * can trigger a nested vmexit.
597 		 */
598 		vcpu->arch.exception.pending = true;
599 		vcpu->arch.exception.injected = false;
600 		vcpu->arch.exception.has_error_code = true;
601 		vcpu->arch.exception.nr = DF_VECTOR;
602 		vcpu->arch.exception.error_code = 0;
603 		vcpu->arch.exception.has_payload = false;
604 		vcpu->arch.exception.payload = 0;
605 	} else
606 		/* replace previous exception with a new one in a hope
607 		   that instruction re-execution will regenerate lost
608 		   exception */
609 		goto queue;
610 }
611 
612 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
613 {
614 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
615 }
616 EXPORT_SYMBOL_GPL(kvm_queue_exception);
617 
618 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
619 {
620 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
621 }
622 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
623 
624 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
625 			   unsigned long payload)
626 {
627 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
628 }
629 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
630 
631 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
632 				    u32 error_code, unsigned long payload)
633 {
634 	kvm_multiple_exception(vcpu, nr, true, error_code,
635 			       true, payload, false);
636 }
637 
638 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
639 {
640 	if (err)
641 		kvm_inject_gp(vcpu, 0);
642 	else
643 		return kvm_skip_emulated_instruction(vcpu);
644 
645 	return 1;
646 }
647 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
648 
649 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
650 {
651 	++vcpu->stat.pf_guest;
652 	vcpu->arch.exception.nested_apf =
653 		is_guest_mode(vcpu) && fault->async_page_fault;
654 	if (vcpu->arch.exception.nested_apf) {
655 		vcpu->arch.apf.nested_apf_token = fault->address;
656 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
657 	} else {
658 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
659 					fault->address);
660 	}
661 }
662 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
663 
664 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
665 				    struct x86_exception *fault)
666 {
667 	struct kvm_mmu *fault_mmu;
668 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
669 
670 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
671 					       vcpu->arch.walk_mmu;
672 
673 	/*
674 	 * Invalidate the TLB entry for the faulting address, if it exists,
675 	 * else the access will fault indefinitely (and to emulate hardware).
676 	 */
677 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
678 	    !(fault->error_code & PFERR_RSVD_MASK))
679 		kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
680 				       fault_mmu->root_hpa);
681 
682 	fault_mmu->inject_page_fault(vcpu, fault);
683 	return fault->nested_page_fault;
684 }
685 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
686 
687 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
688 {
689 	atomic_inc(&vcpu->arch.nmi_queued);
690 	kvm_make_request(KVM_REQ_NMI, vcpu);
691 }
692 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
693 
694 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
695 {
696 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
697 }
698 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
699 
700 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
701 {
702 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
703 }
704 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
705 
706 /*
707  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
708  * a #GP and return false.
709  */
710 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
711 {
712 	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
713 		return true;
714 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
715 	return false;
716 }
717 EXPORT_SYMBOL_GPL(kvm_require_cpl);
718 
719 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
720 {
721 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
722 		return true;
723 
724 	kvm_queue_exception(vcpu, UD_VECTOR);
725 	return false;
726 }
727 EXPORT_SYMBOL_GPL(kvm_require_dr);
728 
729 /*
730  * This function will be used to read from the physical memory of the currently
731  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
732  * can read from guest physical or from the guest's guest physical memory.
733  */
734 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
735 			    gfn_t ngfn, void *data, int offset, int len,
736 			    u32 access)
737 {
738 	struct x86_exception exception;
739 	gfn_t real_gfn;
740 	gpa_t ngpa;
741 
742 	ngpa     = gfn_to_gpa(ngfn);
743 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
744 	if (real_gfn == UNMAPPED_GVA)
745 		return -EFAULT;
746 
747 	real_gfn = gpa_to_gfn(real_gfn);
748 
749 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
750 }
751 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
752 
753 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
754 			       void *data, int offset, int len, u32 access)
755 {
756 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
757 				       data, offset, len, access);
758 }
759 
760 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
761 {
762 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
763 }
764 
765 /*
766  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
767  */
768 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
769 {
770 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
771 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
772 	int i;
773 	int ret;
774 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
775 
776 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
777 				      offset * sizeof(u64), sizeof(pdpte),
778 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
779 	if (ret < 0) {
780 		ret = 0;
781 		goto out;
782 	}
783 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
784 		if ((pdpte[i] & PT_PRESENT_MASK) &&
785 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
786 			ret = 0;
787 			goto out;
788 		}
789 	}
790 	ret = 1;
791 
792 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
793 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
794 
795 out:
796 
797 	return ret;
798 }
799 EXPORT_SYMBOL_GPL(load_pdptrs);
800 
801 bool pdptrs_changed(struct kvm_vcpu *vcpu)
802 {
803 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
804 	int offset;
805 	gfn_t gfn;
806 	int r;
807 
808 	if (!is_pae_paging(vcpu))
809 		return false;
810 
811 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
812 		return true;
813 
814 	gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
815 	offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
816 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
817 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
818 	if (r < 0)
819 		return true;
820 
821 	return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
822 }
823 EXPORT_SYMBOL_GPL(pdptrs_changed);
824 
825 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
826 {
827 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
828 
829 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
830 		kvm_clear_async_pf_completion_queue(vcpu);
831 		kvm_async_pf_hash_reset(vcpu);
832 	}
833 
834 	if ((cr0 ^ old_cr0) & update_bits)
835 		kvm_mmu_reset_context(vcpu);
836 
837 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
838 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
839 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
840 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
841 }
842 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
843 
844 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
845 {
846 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
847 	unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
848 
849 	cr0 |= X86_CR0_ET;
850 
851 #ifdef CONFIG_X86_64
852 	if (cr0 & 0xffffffff00000000UL)
853 		return 1;
854 #endif
855 
856 	cr0 &= ~CR0_RESERVED_BITS;
857 
858 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
859 		return 1;
860 
861 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
862 		return 1;
863 
864 #ifdef CONFIG_X86_64
865 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
866 	    (cr0 & X86_CR0_PG)) {
867 		int cs_db, cs_l;
868 
869 		if (!is_pae(vcpu))
870 			return 1;
871 		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
872 		if (cs_l)
873 			return 1;
874 	}
875 #endif
876 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
877 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
878 	    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
879 		return 1;
880 
881 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
882 		return 1;
883 
884 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
885 
886 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
887 
888 	return 0;
889 }
890 EXPORT_SYMBOL_GPL(kvm_set_cr0);
891 
892 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
893 {
894 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
895 }
896 EXPORT_SYMBOL_GPL(kvm_lmsw);
897 
898 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
899 {
900 	if (vcpu->arch.guest_state_protected)
901 		return;
902 
903 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
904 
905 		if (vcpu->arch.xcr0 != host_xcr0)
906 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
907 
908 		if (vcpu->arch.xsaves_enabled &&
909 		    vcpu->arch.ia32_xss != host_xss)
910 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
911 	}
912 
913 	if (static_cpu_has(X86_FEATURE_PKU) &&
914 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
915 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
916 	    vcpu->arch.pkru != vcpu->arch.host_pkru)
917 		__write_pkru(vcpu->arch.pkru);
918 }
919 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
920 
921 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
922 {
923 	if (vcpu->arch.guest_state_protected)
924 		return;
925 
926 	if (static_cpu_has(X86_FEATURE_PKU) &&
927 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
928 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
929 		vcpu->arch.pkru = rdpkru();
930 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
931 			__write_pkru(vcpu->arch.host_pkru);
932 	}
933 
934 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
935 
936 		if (vcpu->arch.xcr0 != host_xcr0)
937 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
938 
939 		if (vcpu->arch.xsaves_enabled &&
940 		    vcpu->arch.ia32_xss != host_xss)
941 			wrmsrl(MSR_IA32_XSS, host_xss);
942 	}
943 
944 }
945 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
946 
947 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
948 {
949 	u64 xcr0 = xcr;
950 	u64 old_xcr0 = vcpu->arch.xcr0;
951 	u64 valid_bits;
952 
953 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
954 	if (index != XCR_XFEATURE_ENABLED_MASK)
955 		return 1;
956 	if (!(xcr0 & XFEATURE_MASK_FP))
957 		return 1;
958 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
959 		return 1;
960 
961 	/*
962 	 * Do not allow the guest to set bits that we do not support
963 	 * saving.  However, xcr0 bit 0 is always set, even if the
964 	 * emulated CPU does not support XSAVE (see fx_init).
965 	 */
966 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
967 	if (xcr0 & ~valid_bits)
968 		return 1;
969 
970 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
971 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
972 		return 1;
973 
974 	if (xcr0 & XFEATURE_MASK_AVX512) {
975 		if (!(xcr0 & XFEATURE_MASK_YMM))
976 			return 1;
977 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
978 			return 1;
979 	}
980 	vcpu->arch.xcr0 = xcr0;
981 
982 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
983 		kvm_update_cpuid_runtime(vcpu);
984 	return 0;
985 }
986 
987 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
988 {
989 	if (static_call(kvm_x86_get_cpl)(vcpu) == 0)
990 		return __kvm_set_xcr(vcpu, index, xcr);
991 
992 	return 1;
993 }
994 EXPORT_SYMBOL_GPL(kvm_set_xcr);
995 
996 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
997 {
998 	if (cr4 & cr4_reserved_bits)
999 		return false;
1000 
1001 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1002 		return false;
1003 
1004 	return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1005 }
1006 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1007 
1008 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1009 {
1010 	unsigned long mmu_role_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1011 				      X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
1012 
1013 	if (((cr4 ^ old_cr4) & mmu_role_bits) ||
1014 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1015 		kvm_mmu_reset_context(vcpu);
1016 }
1017 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1018 
1019 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1020 {
1021 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1022 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1023 				   X86_CR4_SMEP;
1024 
1025 	if (!kvm_is_valid_cr4(vcpu, cr4))
1026 		return 1;
1027 
1028 	if (is_long_mode(vcpu)) {
1029 		if (!(cr4 & X86_CR4_PAE))
1030 			return 1;
1031 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1032 			return 1;
1033 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1034 		   && ((cr4 ^ old_cr4) & pdptr_bits)
1035 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1036 				   kvm_read_cr3(vcpu)))
1037 		return 1;
1038 
1039 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1040 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1041 			return 1;
1042 
1043 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1044 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1045 			return 1;
1046 	}
1047 
1048 	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1049 
1050 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1051 
1052 	return 0;
1053 }
1054 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1055 
1056 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1057 {
1058 	bool skip_tlb_flush = false;
1059 #ifdef CONFIG_X86_64
1060 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1061 
1062 	if (pcid_enabled) {
1063 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1064 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1065 	}
1066 #endif
1067 
1068 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1069 		if (!skip_tlb_flush) {
1070 			kvm_mmu_sync_roots(vcpu);
1071 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1072 		}
1073 		return 0;
1074 	}
1075 
1076 	if (is_long_mode(vcpu) && kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1077 		return 1;
1078 	else if (is_pae_paging(vcpu) &&
1079 		 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1080 		return 1;
1081 
1082 	kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush);
1083 	vcpu->arch.cr3 = cr3;
1084 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1085 
1086 	return 0;
1087 }
1088 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1089 
1090 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1091 {
1092 	if (cr8 & CR8_RESERVED_BITS)
1093 		return 1;
1094 	if (lapic_in_kernel(vcpu))
1095 		kvm_lapic_set_tpr(vcpu, cr8);
1096 	else
1097 		vcpu->arch.cr8 = cr8;
1098 	return 0;
1099 }
1100 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1101 
1102 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1103 {
1104 	if (lapic_in_kernel(vcpu))
1105 		return kvm_lapic_get_cr8(vcpu);
1106 	else
1107 		return vcpu->arch.cr8;
1108 }
1109 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1110 
1111 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1112 {
1113 	int i;
1114 
1115 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1116 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1117 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1118 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1119 	}
1120 }
1121 
1122 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1123 {
1124 	unsigned long dr7;
1125 
1126 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1127 		dr7 = vcpu->arch.guest_debug_dr7;
1128 	else
1129 		dr7 = vcpu->arch.dr7;
1130 	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1131 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1132 	if (dr7 & DR7_BP_EN_MASK)
1133 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1134 }
1135 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1136 
1137 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1138 {
1139 	u64 fixed = DR6_FIXED_1;
1140 
1141 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1142 		fixed |= DR6_RTM;
1143 	return fixed;
1144 }
1145 
1146 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1147 {
1148 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1149 
1150 	switch (dr) {
1151 	case 0 ... 3:
1152 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1153 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1154 			vcpu->arch.eff_db[dr] = val;
1155 		break;
1156 	case 4:
1157 	case 6:
1158 		if (!kvm_dr6_valid(val))
1159 			return 1; /* #GP */
1160 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1161 		break;
1162 	case 5:
1163 	default: /* 7 */
1164 		if (!kvm_dr7_valid(val))
1165 			return 1; /* #GP */
1166 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1167 		kvm_update_dr7(vcpu);
1168 		break;
1169 	}
1170 
1171 	return 0;
1172 }
1173 EXPORT_SYMBOL_GPL(kvm_set_dr);
1174 
1175 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1176 {
1177 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1178 
1179 	switch (dr) {
1180 	case 0 ... 3:
1181 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1182 		break;
1183 	case 4:
1184 	case 6:
1185 		*val = vcpu->arch.dr6;
1186 		break;
1187 	case 5:
1188 	default: /* 7 */
1189 		*val = vcpu->arch.dr7;
1190 		break;
1191 	}
1192 }
1193 EXPORT_SYMBOL_GPL(kvm_get_dr);
1194 
1195 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1196 {
1197 	u32 ecx = kvm_rcx_read(vcpu);
1198 	u64 data;
1199 	int err;
1200 
1201 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1202 	if (err)
1203 		return err;
1204 	kvm_rax_write(vcpu, (u32)data);
1205 	kvm_rdx_write(vcpu, data >> 32);
1206 	return err;
1207 }
1208 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1209 
1210 /*
1211  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1212  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1213  *
1214  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1215  * extract the supported MSRs from the related const lists.
1216  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1217  * capabilities of the host cpu. This capabilities test skips MSRs that are
1218  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1219  * may depend on host virtualization features rather than host cpu features.
1220  */
1221 
1222 static const u32 msrs_to_save_all[] = {
1223 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1224 	MSR_STAR,
1225 #ifdef CONFIG_X86_64
1226 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1227 #endif
1228 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1229 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1230 	MSR_IA32_SPEC_CTRL,
1231 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1232 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1233 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1234 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1235 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1236 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1237 	MSR_IA32_UMWAIT_CONTROL,
1238 
1239 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1240 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1241 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1242 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1243 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1244 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1245 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1246 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1247 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1248 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1249 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1250 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1251 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1252 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1253 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1254 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1255 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1256 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1257 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1258 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1259 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1260 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1261 };
1262 
1263 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1264 static unsigned num_msrs_to_save;
1265 
1266 static const u32 emulated_msrs_all[] = {
1267 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1268 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1269 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1270 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1271 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1272 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1273 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1274 	HV_X64_MSR_RESET,
1275 	HV_X64_MSR_VP_INDEX,
1276 	HV_X64_MSR_VP_RUNTIME,
1277 	HV_X64_MSR_SCONTROL,
1278 	HV_X64_MSR_STIMER0_CONFIG,
1279 	HV_X64_MSR_VP_ASSIST_PAGE,
1280 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1281 	HV_X64_MSR_TSC_EMULATION_STATUS,
1282 	HV_X64_MSR_SYNDBG_OPTIONS,
1283 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1284 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1285 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1286 
1287 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1288 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1289 
1290 	MSR_IA32_TSC_ADJUST,
1291 	MSR_IA32_TSC_DEADLINE,
1292 	MSR_IA32_ARCH_CAPABILITIES,
1293 	MSR_IA32_PERF_CAPABILITIES,
1294 	MSR_IA32_MISC_ENABLE,
1295 	MSR_IA32_MCG_STATUS,
1296 	MSR_IA32_MCG_CTL,
1297 	MSR_IA32_MCG_EXT_CTL,
1298 	MSR_IA32_SMBASE,
1299 	MSR_SMI_COUNT,
1300 	MSR_PLATFORM_INFO,
1301 	MSR_MISC_FEATURES_ENABLES,
1302 	MSR_AMD64_VIRT_SPEC_CTRL,
1303 	MSR_IA32_POWER_CTL,
1304 	MSR_IA32_UCODE_REV,
1305 
1306 	/*
1307 	 * The following list leaves out MSRs whose values are determined
1308 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1309 	 * We always support the "true" VMX control MSRs, even if the host
1310 	 * processor does not, so I am putting these registers here rather
1311 	 * than in msrs_to_save_all.
1312 	 */
1313 	MSR_IA32_VMX_BASIC,
1314 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1315 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1316 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1317 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1318 	MSR_IA32_VMX_MISC,
1319 	MSR_IA32_VMX_CR0_FIXED0,
1320 	MSR_IA32_VMX_CR4_FIXED0,
1321 	MSR_IA32_VMX_VMCS_ENUM,
1322 	MSR_IA32_VMX_PROCBASED_CTLS2,
1323 	MSR_IA32_VMX_EPT_VPID_CAP,
1324 	MSR_IA32_VMX_VMFUNC,
1325 
1326 	MSR_K7_HWCR,
1327 	MSR_KVM_POLL_CONTROL,
1328 };
1329 
1330 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1331 static unsigned num_emulated_msrs;
1332 
1333 /*
1334  * List of msr numbers which are used to expose MSR-based features that
1335  * can be used by a hypervisor to validate requested CPU features.
1336  */
1337 static const u32 msr_based_features_all[] = {
1338 	MSR_IA32_VMX_BASIC,
1339 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1340 	MSR_IA32_VMX_PINBASED_CTLS,
1341 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1342 	MSR_IA32_VMX_PROCBASED_CTLS,
1343 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1344 	MSR_IA32_VMX_EXIT_CTLS,
1345 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1346 	MSR_IA32_VMX_ENTRY_CTLS,
1347 	MSR_IA32_VMX_MISC,
1348 	MSR_IA32_VMX_CR0_FIXED0,
1349 	MSR_IA32_VMX_CR0_FIXED1,
1350 	MSR_IA32_VMX_CR4_FIXED0,
1351 	MSR_IA32_VMX_CR4_FIXED1,
1352 	MSR_IA32_VMX_VMCS_ENUM,
1353 	MSR_IA32_VMX_PROCBASED_CTLS2,
1354 	MSR_IA32_VMX_EPT_VPID_CAP,
1355 	MSR_IA32_VMX_VMFUNC,
1356 
1357 	MSR_F10H_DECFG,
1358 	MSR_IA32_UCODE_REV,
1359 	MSR_IA32_ARCH_CAPABILITIES,
1360 	MSR_IA32_PERF_CAPABILITIES,
1361 };
1362 
1363 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1364 static unsigned int num_msr_based_features;
1365 
1366 static u64 kvm_get_arch_capabilities(void)
1367 {
1368 	u64 data = 0;
1369 
1370 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1371 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1372 
1373 	/*
1374 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1375 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1376 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1377 	 * L1 guests, so it need not worry about its own (L2) guests.
1378 	 */
1379 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1380 
1381 	/*
1382 	 * If we're doing cache flushes (either "always" or "cond")
1383 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1384 	 * If an outer hypervisor is doing the cache flush for us
1385 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1386 	 * capability to the guest too, and if EPT is disabled we're not
1387 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1388 	 * require a nested hypervisor to do a flush of its own.
1389 	 */
1390 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1391 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1392 
1393 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1394 		data |= ARCH_CAP_RDCL_NO;
1395 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1396 		data |= ARCH_CAP_SSB_NO;
1397 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1398 		data |= ARCH_CAP_MDS_NO;
1399 
1400 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1401 		/*
1402 		 * If RTM=0 because the kernel has disabled TSX, the host might
1403 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1404 		 * and therefore knows that there cannot be TAA) but keep
1405 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1406 		 * and we want to allow migrating those guests to tsx=off hosts.
1407 		 */
1408 		data &= ~ARCH_CAP_TAA_NO;
1409 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1410 		data |= ARCH_CAP_TAA_NO;
1411 	} else {
1412 		/*
1413 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1414 		 * host so the guest can choose between disabling TSX or
1415 		 * using VERW to clear CPU buffers.
1416 		 */
1417 	}
1418 
1419 	return data;
1420 }
1421 
1422 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1423 {
1424 	switch (msr->index) {
1425 	case MSR_IA32_ARCH_CAPABILITIES:
1426 		msr->data = kvm_get_arch_capabilities();
1427 		break;
1428 	case MSR_IA32_UCODE_REV:
1429 		rdmsrl_safe(msr->index, &msr->data);
1430 		break;
1431 	default:
1432 		return static_call(kvm_x86_get_msr_feature)(msr);
1433 	}
1434 	return 0;
1435 }
1436 
1437 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1438 {
1439 	struct kvm_msr_entry msr;
1440 	int r;
1441 
1442 	msr.index = index;
1443 	r = kvm_get_msr_feature(&msr);
1444 
1445 	if (r == KVM_MSR_RET_INVALID) {
1446 		/* Unconditionally clear the output for simplicity */
1447 		*data = 0;
1448 		if (kvm_msr_ignored_check(vcpu, index, 0, false))
1449 			r = 0;
1450 	}
1451 
1452 	if (r)
1453 		return r;
1454 
1455 	*data = msr.data;
1456 
1457 	return 0;
1458 }
1459 
1460 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1461 {
1462 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1463 		return false;
1464 
1465 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1466 		return false;
1467 
1468 	if (efer & (EFER_LME | EFER_LMA) &&
1469 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1470 		return false;
1471 
1472 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1473 		return false;
1474 
1475 	return true;
1476 
1477 }
1478 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1479 {
1480 	if (efer & efer_reserved_bits)
1481 		return false;
1482 
1483 	return __kvm_valid_efer(vcpu, efer);
1484 }
1485 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1486 
1487 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1488 {
1489 	u64 old_efer = vcpu->arch.efer;
1490 	u64 efer = msr_info->data;
1491 	int r;
1492 
1493 	if (efer & efer_reserved_bits)
1494 		return 1;
1495 
1496 	if (!msr_info->host_initiated) {
1497 		if (!__kvm_valid_efer(vcpu, efer))
1498 			return 1;
1499 
1500 		if (is_paging(vcpu) &&
1501 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1502 			return 1;
1503 	}
1504 
1505 	efer &= ~EFER_LMA;
1506 	efer |= vcpu->arch.efer & EFER_LMA;
1507 
1508 	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1509 	if (r) {
1510 		WARN_ON(r > 0);
1511 		return r;
1512 	}
1513 
1514 	/* Update reserved bits */
1515 	if ((efer ^ old_efer) & EFER_NX)
1516 		kvm_mmu_reset_context(vcpu);
1517 
1518 	return 0;
1519 }
1520 
1521 void kvm_enable_efer_bits(u64 mask)
1522 {
1523        efer_reserved_bits &= ~mask;
1524 }
1525 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1526 
1527 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1528 {
1529 	struct kvm_x86_msr_filter *msr_filter;
1530 	struct msr_bitmap_range *ranges;
1531 	struct kvm *kvm = vcpu->kvm;
1532 	bool allowed;
1533 	int idx;
1534 	u32 i;
1535 
1536 	/* x2APIC MSRs do not support filtering. */
1537 	if (index >= 0x800 && index <= 0x8ff)
1538 		return true;
1539 
1540 	idx = srcu_read_lock(&kvm->srcu);
1541 
1542 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1543 	if (!msr_filter) {
1544 		allowed = true;
1545 		goto out;
1546 	}
1547 
1548 	allowed = msr_filter->default_allow;
1549 	ranges = msr_filter->ranges;
1550 
1551 	for (i = 0; i < msr_filter->count; i++) {
1552 		u32 start = ranges[i].base;
1553 		u32 end = start + ranges[i].nmsrs;
1554 		u32 flags = ranges[i].flags;
1555 		unsigned long *bitmap = ranges[i].bitmap;
1556 
1557 		if ((index >= start) && (index < end) && (flags & type)) {
1558 			allowed = !!test_bit(index - start, bitmap);
1559 			break;
1560 		}
1561 	}
1562 
1563 out:
1564 	srcu_read_unlock(&kvm->srcu, idx);
1565 
1566 	return allowed;
1567 }
1568 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1569 
1570 /*
1571  * Write @data into the MSR specified by @index.  Select MSR specific fault
1572  * checks are bypassed if @host_initiated is %true.
1573  * Returns 0 on success, non-0 otherwise.
1574  * Assumes vcpu_load() was already called.
1575  */
1576 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1577 			 bool host_initiated)
1578 {
1579 	struct msr_data msr;
1580 
1581 	if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1582 		return KVM_MSR_RET_FILTERED;
1583 
1584 	switch (index) {
1585 	case MSR_FS_BASE:
1586 	case MSR_GS_BASE:
1587 	case MSR_KERNEL_GS_BASE:
1588 	case MSR_CSTAR:
1589 	case MSR_LSTAR:
1590 		if (is_noncanonical_address(data, vcpu))
1591 			return 1;
1592 		break;
1593 	case MSR_IA32_SYSENTER_EIP:
1594 	case MSR_IA32_SYSENTER_ESP:
1595 		/*
1596 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1597 		 * non-canonical address is written on Intel but not on
1598 		 * AMD (which ignores the top 32-bits, because it does
1599 		 * not implement 64-bit SYSENTER).
1600 		 *
1601 		 * 64-bit code should hence be able to write a non-canonical
1602 		 * value on AMD.  Making the address canonical ensures that
1603 		 * vmentry does not fail on Intel after writing a non-canonical
1604 		 * value, and that something deterministic happens if the guest
1605 		 * invokes 64-bit SYSENTER.
1606 		 */
1607 		data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1608 	}
1609 
1610 	msr.data = data;
1611 	msr.index = index;
1612 	msr.host_initiated = host_initiated;
1613 
1614 	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1615 }
1616 
1617 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1618 				     u32 index, u64 data, bool host_initiated)
1619 {
1620 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1621 
1622 	if (ret == KVM_MSR_RET_INVALID)
1623 		if (kvm_msr_ignored_check(vcpu, index, data, true))
1624 			ret = 0;
1625 
1626 	return ret;
1627 }
1628 
1629 /*
1630  * Read the MSR specified by @index into @data.  Select MSR specific fault
1631  * checks are bypassed if @host_initiated is %true.
1632  * Returns 0 on success, non-0 otherwise.
1633  * Assumes vcpu_load() was already called.
1634  */
1635 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1636 		  bool host_initiated)
1637 {
1638 	struct msr_data msr;
1639 	int ret;
1640 
1641 	if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1642 		return KVM_MSR_RET_FILTERED;
1643 
1644 	msr.index = index;
1645 	msr.host_initiated = host_initiated;
1646 
1647 	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1648 	if (!ret)
1649 		*data = msr.data;
1650 	return ret;
1651 }
1652 
1653 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1654 				     u32 index, u64 *data, bool host_initiated)
1655 {
1656 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1657 
1658 	if (ret == KVM_MSR_RET_INVALID) {
1659 		/* Unconditionally clear *data for simplicity */
1660 		*data = 0;
1661 		if (kvm_msr_ignored_check(vcpu, index, 0, false))
1662 			ret = 0;
1663 	}
1664 
1665 	return ret;
1666 }
1667 
1668 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1669 {
1670 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1671 }
1672 EXPORT_SYMBOL_GPL(kvm_get_msr);
1673 
1674 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1675 {
1676 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1677 }
1678 EXPORT_SYMBOL_GPL(kvm_set_msr);
1679 
1680 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1681 {
1682 	int err = vcpu->run->msr.error;
1683 	if (!err) {
1684 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1685 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1686 	}
1687 
1688 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, err);
1689 }
1690 
1691 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1692 {
1693 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1694 }
1695 
1696 static u64 kvm_msr_reason(int r)
1697 {
1698 	switch (r) {
1699 	case KVM_MSR_RET_INVALID:
1700 		return KVM_MSR_EXIT_REASON_UNKNOWN;
1701 	case KVM_MSR_RET_FILTERED:
1702 		return KVM_MSR_EXIT_REASON_FILTER;
1703 	default:
1704 		return KVM_MSR_EXIT_REASON_INVAL;
1705 	}
1706 }
1707 
1708 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1709 			      u32 exit_reason, u64 data,
1710 			      int (*completion)(struct kvm_vcpu *vcpu),
1711 			      int r)
1712 {
1713 	u64 msr_reason = kvm_msr_reason(r);
1714 
1715 	/* Check if the user wanted to know about this MSR fault */
1716 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1717 		return 0;
1718 
1719 	vcpu->run->exit_reason = exit_reason;
1720 	vcpu->run->msr.error = 0;
1721 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1722 	vcpu->run->msr.reason = msr_reason;
1723 	vcpu->run->msr.index = index;
1724 	vcpu->run->msr.data = data;
1725 	vcpu->arch.complete_userspace_io = completion;
1726 
1727 	return 1;
1728 }
1729 
1730 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1731 {
1732 	return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1733 				   complete_emulated_rdmsr, r);
1734 }
1735 
1736 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1737 {
1738 	return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1739 				   complete_emulated_wrmsr, r);
1740 }
1741 
1742 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1743 {
1744 	u32 ecx = kvm_rcx_read(vcpu);
1745 	u64 data;
1746 	int r;
1747 
1748 	r = kvm_get_msr(vcpu, ecx, &data);
1749 
1750 	/* MSR read failed? See if we should ask user space */
1751 	if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1752 		/* Bounce to user space */
1753 		return 0;
1754 	}
1755 
1756 	if (!r) {
1757 		trace_kvm_msr_read(ecx, data);
1758 
1759 		kvm_rax_write(vcpu, data & -1u);
1760 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
1761 	} else {
1762 		trace_kvm_msr_read_ex(ecx);
1763 	}
1764 
1765 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1766 }
1767 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1768 
1769 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1770 {
1771 	u32 ecx = kvm_rcx_read(vcpu);
1772 	u64 data = kvm_read_edx_eax(vcpu);
1773 	int r;
1774 
1775 	r = kvm_set_msr(vcpu, ecx, data);
1776 
1777 	/* MSR write failed? See if we should ask user space */
1778 	if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1779 		/* Bounce to user space */
1780 		return 0;
1781 
1782 	/* Signal all other negative errors to userspace */
1783 	if (r < 0)
1784 		return r;
1785 
1786 	if (!r)
1787 		trace_kvm_msr_write(ecx, data);
1788 	else
1789 		trace_kvm_msr_write_ex(ecx, data);
1790 
1791 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1792 }
1793 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1794 
1795 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1796 {
1797 	xfer_to_guest_mode_prepare();
1798 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1799 		xfer_to_guest_mode_work_pending();
1800 }
1801 
1802 /*
1803  * The fast path for frequent and performance sensitive wrmsr emulation,
1804  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1805  * the latency of virtual IPI by avoiding the expensive bits of transitioning
1806  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1807  * other cases which must be called after interrupts are enabled on the host.
1808  */
1809 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1810 {
1811 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1812 		return 1;
1813 
1814 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1815 		((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1816 		((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1817 		((u32)(data >> 32) != X2APIC_BROADCAST)) {
1818 
1819 		data &= ~(1 << 12);
1820 		kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1821 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1822 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1823 		trace_kvm_apic_write(APIC_ICR, (u32)data);
1824 		return 0;
1825 	}
1826 
1827 	return 1;
1828 }
1829 
1830 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1831 {
1832 	if (!kvm_can_use_hv_timer(vcpu))
1833 		return 1;
1834 
1835 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
1836 	return 0;
1837 }
1838 
1839 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1840 {
1841 	u32 msr = kvm_rcx_read(vcpu);
1842 	u64 data;
1843 	fastpath_t ret = EXIT_FASTPATH_NONE;
1844 
1845 	switch (msr) {
1846 	case APIC_BASE_MSR + (APIC_ICR >> 4):
1847 		data = kvm_read_edx_eax(vcpu);
1848 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1849 			kvm_skip_emulated_instruction(vcpu);
1850 			ret = EXIT_FASTPATH_EXIT_HANDLED;
1851 		}
1852 		break;
1853 	case MSR_IA32_TSC_DEADLINE:
1854 		data = kvm_read_edx_eax(vcpu);
1855 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1856 			kvm_skip_emulated_instruction(vcpu);
1857 			ret = EXIT_FASTPATH_REENTER_GUEST;
1858 		}
1859 		break;
1860 	default:
1861 		break;
1862 	}
1863 
1864 	if (ret != EXIT_FASTPATH_NONE)
1865 		trace_kvm_msr_write(msr, data);
1866 
1867 	return ret;
1868 }
1869 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1870 
1871 /*
1872  * Adapt set_msr() to msr_io()'s calling convention
1873  */
1874 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1875 {
1876 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
1877 }
1878 
1879 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1880 {
1881 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
1882 }
1883 
1884 #ifdef CONFIG_X86_64
1885 struct pvclock_clock {
1886 	int vclock_mode;
1887 	u64 cycle_last;
1888 	u64 mask;
1889 	u32 mult;
1890 	u32 shift;
1891 	u64 base_cycles;
1892 	u64 offset;
1893 };
1894 
1895 struct pvclock_gtod_data {
1896 	seqcount_t	seq;
1897 
1898 	struct pvclock_clock clock; /* extract of a clocksource struct */
1899 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1900 
1901 	ktime_t		offs_boot;
1902 	u64		wall_time_sec;
1903 };
1904 
1905 static struct pvclock_gtod_data pvclock_gtod_data;
1906 
1907 static void update_pvclock_gtod(struct timekeeper *tk)
1908 {
1909 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1910 
1911 	write_seqcount_begin(&vdata->seq);
1912 
1913 	/* copy pvclock gtod data */
1914 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
1915 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1916 	vdata->clock.mask		= tk->tkr_mono.mask;
1917 	vdata->clock.mult		= tk->tkr_mono.mult;
1918 	vdata->clock.shift		= tk->tkr_mono.shift;
1919 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
1920 	vdata->clock.offset		= tk->tkr_mono.base;
1921 
1922 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
1923 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
1924 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
1925 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
1926 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
1927 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
1928 	vdata->raw_clock.offset		= tk->tkr_raw.base;
1929 
1930 	vdata->wall_time_sec            = tk->xtime_sec;
1931 
1932 	vdata->offs_boot		= tk->offs_boot;
1933 
1934 	write_seqcount_end(&vdata->seq);
1935 }
1936 
1937 static s64 get_kvmclock_base_ns(void)
1938 {
1939 	/* Count up from boot time, but with the frequency of the raw clock.  */
1940 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1941 }
1942 #else
1943 static s64 get_kvmclock_base_ns(void)
1944 {
1945 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
1946 	return ktime_get_boottime_ns();
1947 }
1948 #endif
1949 
1950 void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
1951 {
1952 	int version;
1953 	int r;
1954 	struct pvclock_wall_clock wc;
1955 	u32 wc_sec_hi;
1956 	u64 wall_nsec;
1957 
1958 	if (!wall_clock)
1959 		return;
1960 
1961 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1962 	if (r)
1963 		return;
1964 
1965 	if (version & 1)
1966 		++version;  /* first time write, random junk */
1967 
1968 	++version;
1969 
1970 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1971 		return;
1972 
1973 	/*
1974 	 * The guest calculates current wall clock time by adding
1975 	 * system time (updated by kvm_guest_time_update below) to the
1976 	 * wall clock specified here.  We do the reverse here.
1977 	 */
1978 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
1979 
1980 	wc.nsec = do_div(wall_nsec, 1000000000);
1981 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
1982 	wc.version = version;
1983 
1984 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1985 
1986 	if (sec_hi_ofs) {
1987 		wc_sec_hi = wall_nsec >> 32;
1988 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
1989 				&wc_sec_hi, sizeof(wc_sec_hi));
1990 	}
1991 
1992 	version++;
1993 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1994 }
1995 
1996 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
1997 				  bool old_msr, bool host_initiated)
1998 {
1999 	struct kvm_arch *ka = &vcpu->kvm->arch;
2000 
2001 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2002 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2003 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2004 
2005 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2006 	}
2007 
2008 	vcpu->arch.time = system_time;
2009 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2010 
2011 	/* we verify if the enable bit is set... */
2012 	vcpu->arch.pv_time_enabled = false;
2013 	if (!(system_time & 1))
2014 		return;
2015 
2016 	if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2017 				       &vcpu->arch.pv_time, system_time & ~1ULL,
2018 				       sizeof(struct pvclock_vcpu_time_info)))
2019 		vcpu->arch.pv_time_enabled = true;
2020 
2021 	return;
2022 }
2023 
2024 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2025 {
2026 	do_shl32_div32(dividend, divisor);
2027 	return dividend;
2028 }
2029 
2030 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2031 			       s8 *pshift, u32 *pmultiplier)
2032 {
2033 	uint64_t scaled64;
2034 	int32_t  shift = 0;
2035 	uint64_t tps64;
2036 	uint32_t tps32;
2037 
2038 	tps64 = base_hz;
2039 	scaled64 = scaled_hz;
2040 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2041 		tps64 >>= 1;
2042 		shift--;
2043 	}
2044 
2045 	tps32 = (uint32_t)tps64;
2046 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2047 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2048 			scaled64 >>= 1;
2049 		else
2050 			tps32 <<= 1;
2051 		shift++;
2052 	}
2053 
2054 	*pshift = shift;
2055 	*pmultiplier = div_frac(scaled64, tps32);
2056 }
2057 
2058 #ifdef CONFIG_X86_64
2059 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2060 #endif
2061 
2062 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2063 static unsigned long max_tsc_khz;
2064 
2065 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2066 {
2067 	u64 v = (u64)khz * (1000000 + ppm);
2068 	do_div(v, 1000000);
2069 	return v;
2070 }
2071 
2072 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2073 {
2074 	u64 ratio;
2075 
2076 	/* Guest TSC same frequency as host TSC? */
2077 	if (!scale) {
2078 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2079 		return 0;
2080 	}
2081 
2082 	/* TSC scaling supported? */
2083 	if (!kvm_has_tsc_control) {
2084 		if (user_tsc_khz > tsc_khz) {
2085 			vcpu->arch.tsc_catchup = 1;
2086 			vcpu->arch.tsc_always_catchup = 1;
2087 			return 0;
2088 		} else {
2089 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2090 			return -1;
2091 		}
2092 	}
2093 
2094 	/* TSC scaling required  - calculate ratio */
2095 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2096 				user_tsc_khz, tsc_khz);
2097 
2098 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2099 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2100 			            user_tsc_khz);
2101 		return -1;
2102 	}
2103 
2104 	vcpu->arch.tsc_scaling_ratio = ratio;
2105 	return 0;
2106 }
2107 
2108 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2109 {
2110 	u32 thresh_lo, thresh_hi;
2111 	int use_scaling = 0;
2112 
2113 	/* tsc_khz can be zero if TSC calibration fails */
2114 	if (user_tsc_khz == 0) {
2115 		/* set tsc_scaling_ratio to a safe value */
2116 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2117 		return -1;
2118 	}
2119 
2120 	/* Compute a scale to convert nanoseconds in TSC cycles */
2121 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2122 			   &vcpu->arch.virtual_tsc_shift,
2123 			   &vcpu->arch.virtual_tsc_mult);
2124 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2125 
2126 	/*
2127 	 * Compute the variation in TSC rate which is acceptable
2128 	 * within the range of tolerance and decide if the
2129 	 * rate being applied is within that bounds of the hardware
2130 	 * rate.  If so, no scaling or compensation need be done.
2131 	 */
2132 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2133 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2134 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2135 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2136 		use_scaling = 1;
2137 	}
2138 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2139 }
2140 
2141 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2142 {
2143 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2144 				      vcpu->arch.virtual_tsc_mult,
2145 				      vcpu->arch.virtual_tsc_shift);
2146 	tsc += vcpu->arch.this_tsc_write;
2147 	return tsc;
2148 }
2149 
2150 static inline int gtod_is_based_on_tsc(int mode)
2151 {
2152 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2153 }
2154 
2155 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2156 {
2157 #ifdef CONFIG_X86_64
2158 	bool vcpus_matched;
2159 	struct kvm_arch *ka = &vcpu->kvm->arch;
2160 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2161 
2162 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2163 			 atomic_read(&vcpu->kvm->online_vcpus));
2164 
2165 	/*
2166 	 * Once the masterclock is enabled, always perform request in
2167 	 * order to update it.
2168 	 *
2169 	 * In order to enable masterclock, the host clocksource must be TSC
2170 	 * and the vcpus need to have matched TSCs.  When that happens,
2171 	 * perform request to enable masterclock.
2172 	 */
2173 	if (ka->use_master_clock ||
2174 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2175 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2176 
2177 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2178 			    atomic_read(&vcpu->kvm->online_vcpus),
2179 		            ka->use_master_clock, gtod->clock.vclock_mode);
2180 #endif
2181 }
2182 
2183 /*
2184  * Multiply tsc by a fixed point number represented by ratio.
2185  *
2186  * The most significant 64-N bits (mult) of ratio represent the
2187  * integral part of the fixed point number; the remaining N bits
2188  * (frac) represent the fractional part, ie. ratio represents a fixed
2189  * point number (mult + frac * 2^(-N)).
2190  *
2191  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2192  */
2193 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2194 {
2195 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2196 }
2197 
2198 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
2199 {
2200 	u64 _tsc = tsc;
2201 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
2202 
2203 	if (ratio != kvm_default_tsc_scaling_ratio)
2204 		_tsc = __scale_tsc(ratio, tsc);
2205 
2206 	return _tsc;
2207 }
2208 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2209 
2210 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2211 {
2212 	u64 tsc;
2213 
2214 	tsc = kvm_scale_tsc(vcpu, rdtsc());
2215 
2216 	return target_tsc - tsc;
2217 }
2218 
2219 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2220 {
2221 	return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
2222 }
2223 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2224 
2225 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2226 {
2227 	vcpu->arch.l1_tsc_offset = offset;
2228 	vcpu->arch.tsc_offset = static_call(kvm_x86_write_l1_tsc_offset)(vcpu, offset);
2229 }
2230 
2231 static inline bool kvm_check_tsc_unstable(void)
2232 {
2233 #ifdef CONFIG_X86_64
2234 	/*
2235 	 * TSC is marked unstable when we're running on Hyper-V,
2236 	 * 'TSC page' clocksource is good.
2237 	 */
2238 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2239 		return false;
2240 #endif
2241 	return check_tsc_unstable();
2242 }
2243 
2244 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2245 {
2246 	struct kvm *kvm = vcpu->kvm;
2247 	u64 offset, ns, elapsed;
2248 	unsigned long flags;
2249 	bool matched;
2250 	bool already_matched;
2251 	bool synchronizing = false;
2252 
2253 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2254 	offset = kvm_compute_tsc_offset(vcpu, data);
2255 	ns = get_kvmclock_base_ns();
2256 	elapsed = ns - kvm->arch.last_tsc_nsec;
2257 
2258 	if (vcpu->arch.virtual_tsc_khz) {
2259 		if (data == 0) {
2260 			/*
2261 			 * detection of vcpu initialization -- need to sync
2262 			 * with other vCPUs. This particularly helps to keep
2263 			 * kvm_clock stable after CPU hotplug
2264 			 */
2265 			synchronizing = true;
2266 		} else {
2267 			u64 tsc_exp = kvm->arch.last_tsc_write +
2268 						nsec_to_cycles(vcpu, elapsed);
2269 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2270 			/*
2271 			 * Special case: TSC write with a small delta (1 second)
2272 			 * of virtual cycle time against real time is
2273 			 * interpreted as an attempt to synchronize the CPU.
2274 			 */
2275 			synchronizing = data < tsc_exp + tsc_hz &&
2276 					data + tsc_hz > tsc_exp;
2277 		}
2278 	}
2279 
2280 	/*
2281 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2282 	 * TSC, we add elapsed time in this computation.  We could let the
2283 	 * compensation code attempt to catch up if we fall behind, but
2284 	 * it's better to try to match offsets from the beginning.
2285          */
2286 	if (synchronizing &&
2287 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2288 		if (!kvm_check_tsc_unstable()) {
2289 			offset = kvm->arch.cur_tsc_offset;
2290 		} else {
2291 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2292 			data += delta;
2293 			offset = kvm_compute_tsc_offset(vcpu, data);
2294 		}
2295 		matched = true;
2296 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2297 	} else {
2298 		/*
2299 		 * We split periods of matched TSC writes into generations.
2300 		 * For each generation, we track the original measured
2301 		 * nanosecond time, offset, and write, so if TSCs are in
2302 		 * sync, we can match exact offset, and if not, we can match
2303 		 * exact software computation in compute_guest_tsc()
2304 		 *
2305 		 * These values are tracked in kvm->arch.cur_xxx variables.
2306 		 */
2307 		kvm->arch.cur_tsc_generation++;
2308 		kvm->arch.cur_tsc_nsec = ns;
2309 		kvm->arch.cur_tsc_write = data;
2310 		kvm->arch.cur_tsc_offset = offset;
2311 		matched = false;
2312 	}
2313 
2314 	/*
2315 	 * We also track th most recent recorded KHZ, write and time to
2316 	 * allow the matching interval to be extended at each write.
2317 	 */
2318 	kvm->arch.last_tsc_nsec = ns;
2319 	kvm->arch.last_tsc_write = data;
2320 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2321 
2322 	vcpu->arch.last_guest_tsc = data;
2323 
2324 	/* Keep track of which generation this VCPU has synchronized to */
2325 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2326 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2327 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2328 
2329 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2330 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2331 
2332 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
2333 	if (!matched) {
2334 		kvm->arch.nr_vcpus_matched_tsc = 0;
2335 	} else if (!already_matched) {
2336 		kvm->arch.nr_vcpus_matched_tsc++;
2337 	}
2338 
2339 	kvm_track_tsc_matching(vcpu);
2340 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
2341 }
2342 
2343 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2344 					   s64 adjustment)
2345 {
2346 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2347 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2348 }
2349 
2350 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2351 {
2352 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2353 		WARN_ON(adjustment < 0);
2354 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2355 	adjust_tsc_offset_guest(vcpu, adjustment);
2356 }
2357 
2358 #ifdef CONFIG_X86_64
2359 
2360 static u64 read_tsc(void)
2361 {
2362 	u64 ret = (u64)rdtsc_ordered();
2363 	u64 last = pvclock_gtod_data.clock.cycle_last;
2364 
2365 	if (likely(ret >= last))
2366 		return ret;
2367 
2368 	/*
2369 	 * GCC likes to generate cmov here, but this branch is extremely
2370 	 * predictable (it's just a function of time and the likely is
2371 	 * very likely) and there's a data dependence, so force GCC
2372 	 * to generate a branch instead.  I don't barrier() because
2373 	 * we don't actually need a barrier, and if this function
2374 	 * ever gets inlined it will generate worse code.
2375 	 */
2376 	asm volatile ("");
2377 	return last;
2378 }
2379 
2380 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2381 			  int *mode)
2382 {
2383 	long v;
2384 	u64 tsc_pg_val;
2385 
2386 	switch (clock->vclock_mode) {
2387 	case VDSO_CLOCKMODE_HVCLOCK:
2388 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2389 						  tsc_timestamp);
2390 		if (tsc_pg_val != U64_MAX) {
2391 			/* TSC page valid */
2392 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2393 			v = (tsc_pg_val - clock->cycle_last) &
2394 				clock->mask;
2395 		} else {
2396 			/* TSC page invalid */
2397 			*mode = VDSO_CLOCKMODE_NONE;
2398 		}
2399 		break;
2400 	case VDSO_CLOCKMODE_TSC:
2401 		*mode = VDSO_CLOCKMODE_TSC;
2402 		*tsc_timestamp = read_tsc();
2403 		v = (*tsc_timestamp - clock->cycle_last) &
2404 			clock->mask;
2405 		break;
2406 	default:
2407 		*mode = VDSO_CLOCKMODE_NONE;
2408 	}
2409 
2410 	if (*mode == VDSO_CLOCKMODE_NONE)
2411 		*tsc_timestamp = v = 0;
2412 
2413 	return v * clock->mult;
2414 }
2415 
2416 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2417 {
2418 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2419 	unsigned long seq;
2420 	int mode;
2421 	u64 ns;
2422 
2423 	do {
2424 		seq = read_seqcount_begin(&gtod->seq);
2425 		ns = gtod->raw_clock.base_cycles;
2426 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2427 		ns >>= gtod->raw_clock.shift;
2428 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2429 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2430 	*t = ns;
2431 
2432 	return mode;
2433 }
2434 
2435 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2436 {
2437 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2438 	unsigned long seq;
2439 	int mode;
2440 	u64 ns;
2441 
2442 	do {
2443 		seq = read_seqcount_begin(&gtod->seq);
2444 		ts->tv_sec = gtod->wall_time_sec;
2445 		ns = gtod->clock.base_cycles;
2446 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2447 		ns >>= gtod->clock.shift;
2448 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2449 
2450 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2451 	ts->tv_nsec = ns;
2452 
2453 	return mode;
2454 }
2455 
2456 /* returns true if host is using TSC based clocksource */
2457 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2458 {
2459 	/* checked again under seqlock below */
2460 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2461 		return false;
2462 
2463 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2464 						      tsc_timestamp));
2465 }
2466 
2467 /* returns true if host is using TSC based clocksource */
2468 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2469 					   u64 *tsc_timestamp)
2470 {
2471 	/* checked again under seqlock below */
2472 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2473 		return false;
2474 
2475 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2476 }
2477 #endif
2478 
2479 /*
2480  *
2481  * Assuming a stable TSC across physical CPUS, and a stable TSC
2482  * across virtual CPUs, the following condition is possible.
2483  * Each numbered line represents an event visible to both
2484  * CPUs at the next numbered event.
2485  *
2486  * "timespecX" represents host monotonic time. "tscX" represents
2487  * RDTSC value.
2488  *
2489  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2490  *
2491  * 1.  read timespec0,tsc0
2492  * 2.					| timespec1 = timespec0 + N
2493  * 					| tsc1 = tsc0 + M
2494  * 3. transition to guest		| transition to guest
2495  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2496  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2497  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2498  *
2499  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2500  *
2501  * 	- ret0 < ret1
2502  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2503  *		...
2504  *	- 0 < N - M => M < N
2505  *
2506  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2507  * always the case (the difference between two distinct xtime instances
2508  * might be smaller then the difference between corresponding TSC reads,
2509  * when updating guest vcpus pvclock areas).
2510  *
2511  * To avoid that problem, do not allow visibility of distinct
2512  * system_timestamp/tsc_timestamp values simultaneously: use a master
2513  * copy of host monotonic time values. Update that master copy
2514  * in lockstep.
2515  *
2516  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2517  *
2518  */
2519 
2520 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2521 {
2522 #ifdef CONFIG_X86_64
2523 	struct kvm_arch *ka = &kvm->arch;
2524 	int vclock_mode;
2525 	bool host_tsc_clocksource, vcpus_matched;
2526 
2527 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2528 			atomic_read(&kvm->online_vcpus));
2529 
2530 	/*
2531 	 * If the host uses TSC clock, then passthrough TSC as stable
2532 	 * to the guest.
2533 	 */
2534 	host_tsc_clocksource = kvm_get_time_and_clockread(
2535 					&ka->master_kernel_ns,
2536 					&ka->master_cycle_now);
2537 
2538 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2539 				&& !ka->backwards_tsc_observed
2540 				&& !ka->boot_vcpu_runs_old_kvmclock;
2541 
2542 	if (ka->use_master_clock)
2543 		atomic_set(&kvm_guest_has_master_clock, 1);
2544 
2545 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2546 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2547 					vcpus_matched);
2548 #endif
2549 }
2550 
2551 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2552 {
2553 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2554 }
2555 
2556 static void kvm_gen_update_masterclock(struct kvm *kvm)
2557 {
2558 #ifdef CONFIG_X86_64
2559 	int i;
2560 	struct kvm_vcpu *vcpu;
2561 	struct kvm_arch *ka = &kvm->arch;
2562 
2563 	kvm_hv_invalidate_tsc_page(kvm);
2564 
2565 	spin_lock(&ka->pvclock_gtod_sync_lock);
2566 	kvm_make_mclock_inprogress_request(kvm);
2567 	/* no guest entries from this point */
2568 	pvclock_update_vm_gtod_copy(kvm);
2569 
2570 	kvm_for_each_vcpu(i, vcpu, kvm)
2571 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2572 
2573 	/* guest entries allowed */
2574 	kvm_for_each_vcpu(i, vcpu, kvm)
2575 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2576 
2577 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2578 #endif
2579 }
2580 
2581 u64 get_kvmclock_ns(struct kvm *kvm)
2582 {
2583 	struct kvm_arch *ka = &kvm->arch;
2584 	struct pvclock_vcpu_time_info hv_clock;
2585 	u64 ret;
2586 
2587 	spin_lock(&ka->pvclock_gtod_sync_lock);
2588 	if (!ka->use_master_clock) {
2589 		spin_unlock(&ka->pvclock_gtod_sync_lock);
2590 		return get_kvmclock_base_ns() + ka->kvmclock_offset;
2591 	}
2592 
2593 	hv_clock.tsc_timestamp = ka->master_cycle_now;
2594 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2595 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2596 
2597 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2598 	get_cpu();
2599 
2600 	if (__this_cpu_read(cpu_tsc_khz)) {
2601 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2602 				   &hv_clock.tsc_shift,
2603 				   &hv_clock.tsc_to_system_mul);
2604 		ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2605 	} else
2606 		ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2607 
2608 	put_cpu();
2609 
2610 	return ret;
2611 }
2612 
2613 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2614 				   struct gfn_to_hva_cache *cache,
2615 				   unsigned int offset)
2616 {
2617 	struct kvm_vcpu_arch *vcpu = &v->arch;
2618 	struct pvclock_vcpu_time_info guest_hv_clock;
2619 
2620 	if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2621 		&guest_hv_clock, offset, sizeof(guest_hv_clock))))
2622 		return;
2623 
2624 	/* This VCPU is paused, but it's legal for a guest to read another
2625 	 * VCPU's kvmclock, so we really have to follow the specification where
2626 	 * it says that version is odd if data is being modified, and even after
2627 	 * it is consistent.
2628 	 *
2629 	 * Version field updates must be kept separate.  This is because
2630 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
2631 	 * writes within a string instruction are weakly ordered.  So there
2632 	 * are three writes overall.
2633 	 *
2634 	 * As a small optimization, only write the version field in the first
2635 	 * and third write.  The vcpu->pv_time cache is still valid, because the
2636 	 * version field is the first in the struct.
2637 	 */
2638 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2639 
2640 	if (guest_hv_clock.version & 1)
2641 		++guest_hv_clock.version;  /* first time write, random junk */
2642 
2643 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2644 	kvm_write_guest_offset_cached(v->kvm, cache,
2645 				      &vcpu->hv_clock, offset,
2646 				      sizeof(vcpu->hv_clock.version));
2647 
2648 	smp_wmb();
2649 
2650 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2651 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2652 
2653 	if (vcpu->pvclock_set_guest_stopped_request) {
2654 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2655 		vcpu->pvclock_set_guest_stopped_request = false;
2656 	}
2657 
2658 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2659 
2660 	kvm_write_guest_offset_cached(v->kvm, cache,
2661 				      &vcpu->hv_clock, offset,
2662 				      sizeof(vcpu->hv_clock));
2663 
2664 	smp_wmb();
2665 
2666 	vcpu->hv_clock.version++;
2667 	kvm_write_guest_offset_cached(v->kvm, cache,
2668 				     &vcpu->hv_clock, offset,
2669 				     sizeof(vcpu->hv_clock.version));
2670 }
2671 
2672 static int kvm_guest_time_update(struct kvm_vcpu *v)
2673 {
2674 	unsigned long flags, tgt_tsc_khz;
2675 	struct kvm_vcpu_arch *vcpu = &v->arch;
2676 	struct kvm_arch *ka = &v->kvm->arch;
2677 	s64 kernel_ns;
2678 	u64 tsc_timestamp, host_tsc;
2679 	u8 pvclock_flags;
2680 	bool use_master_clock;
2681 
2682 	kernel_ns = 0;
2683 	host_tsc = 0;
2684 
2685 	/*
2686 	 * If the host uses TSC clock, then passthrough TSC as stable
2687 	 * to the guest.
2688 	 */
2689 	spin_lock(&ka->pvclock_gtod_sync_lock);
2690 	use_master_clock = ka->use_master_clock;
2691 	if (use_master_clock) {
2692 		host_tsc = ka->master_cycle_now;
2693 		kernel_ns = ka->master_kernel_ns;
2694 	}
2695 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2696 
2697 	/* Keep irq disabled to prevent changes to the clock */
2698 	local_irq_save(flags);
2699 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2700 	if (unlikely(tgt_tsc_khz == 0)) {
2701 		local_irq_restore(flags);
2702 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2703 		return 1;
2704 	}
2705 	if (!use_master_clock) {
2706 		host_tsc = rdtsc();
2707 		kernel_ns = get_kvmclock_base_ns();
2708 	}
2709 
2710 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2711 
2712 	/*
2713 	 * We may have to catch up the TSC to match elapsed wall clock
2714 	 * time for two reasons, even if kvmclock is used.
2715 	 *   1) CPU could have been running below the maximum TSC rate
2716 	 *   2) Broken TSC compensation resets the base at each VCPU
2717 	 *      entry to avoid unknown leaps of TSC even when running
2718 	 *      again on the same CPU.  This may cause apparent elapsed
2719 	 *      time to disappear, and the guest to stand still or run
2720 	 *	very slowly.
2721 	 */
2722 	if (vcpu->tsc_catchup) {
2723 		u64 tsc = compute_guest_tsc(v, kernel_ns);
2724 		if (tsc > tsc_timestamp) {
2725 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2726 			tsc_timestamp = tsc;
2727 		}
2728 	}
2729 
2730 	local_irq_restore(flags);
2731 
2732 	/* With all the info we got, fill in the values */
2733 
2734 	if (kvm_has_tsc_control)
2735 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2736 
2737 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2738 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2739 				   &vcpu->hv_clock.tsc_shift,
2740 				   &vcpu->hv_clock.tsc_to_system_mul);
2741 		vcpu->hw_tsc_khz = tgt_tsc_khz;
2742 	}
2743 
2744 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2745 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2746 	vcpu->last_guest_tsc = tsc_timestamp;
2747 
2748 	/* If the host uses TSC clocksource, then it is stable */
2749 	pvclock_flags = 0;
2750 	if (use_master_clock)
2751 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2752 
2753 	vcpu->hv_clock.flags = pvclock_flags;
2754 
2755 	if (vcpu->pv_time_enabled)
2756 		kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
2757 	if (vcpu->xen.vcpu_info_set)
2758 		kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
2759 				       offsetof(struct compat_vcpu_info, time));
2760 	if (vcpu->xen.vcpu_time_info_set)
2761 		kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
2762 	if (v == kvm_get_vcpu(v->kvm, 0))
2763 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2764 	return 0;
2765 }
2766 
2767 /*
2768  * kvmclock updates which are isolated to a given vcpu, such as
2769  * vcpu->cpu migration, should not allow system_timestamp from
2770  * the rest of the vcpus to remain static. Otherwise ntp frequency
2771  * correction applies to one vcpu's system_timestamp but not
2772  * the others.
2773  *
2774  * So in those cases, request a kvmclock update for all vcpus.
2775  * We need to rate-limit these requests though, as they can
2776  * considerably slow guests that have a large number of vcpus.
2777  * The time for a remote vcpu to update its kvmclock is bound
2778  * by the delay we use to rate-limit the updates.
2779  */
2780 
2781 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2782 
2783 static void kvmclock_update_fn(struct work_struct *work)
2784 {
2785 	int i;
2786 	struct delayed_work *dwork = to_delayed_work(work);
2787 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2788 					   kvmclock_update_work);
2789 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2790 	struct kvm_vcpu *vcpu;
2791 
2792 	kvm_for_each_vcpu(i, vcpu, kvm) {
2793 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2794 		kvm_vcpu_kick(vcpu);
2795 	}
2796 }
2797 
2798 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2799 {
2800 	struct kvm *kvm = v->kvm;
2801 
2802 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2803 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2804 					KVMCLOCK_UPDATE_DELAY);
2805 }
2806 
2807 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2808 
2809 static void kvmclock_sync_fn(struct work_struct *work)
2810 {
2811 	struct delayed_work *dwork = to_delayed_work(work);
2812 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2813 					   kvmclock_sync_work);
2814 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2815 
2816 	if (!kvmclock_periodic_sync)
2817 		return;
2818 
2819 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2820 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2821 					KVMCLOCK_SYNC_PERIOD);
2822 }
2823 
2824 /*
2825  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2826  */
2827 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2828 {
2829 	/* McStatusWrEn enabled? */
2830 	if (guest_cpuid_is_amd_or_hygon(vcpu))
2831 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2832 
2833 	return false;
2834 }
2835 
2836 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2837 {
2838 	u64 mcg_cap = vcpu->arch.mcg_cap;
2839 	unsigned bank_num = mcg_cap & 0xff;
2840 	u32 msr = msr_info->index;
2841 	u64 data = msr_info->data;
2842 
2843 	switch (msr) {
2844 	case MSR_IA32_MCG_STATUS:
2845 		vcpu->arch.mcg_status = data;
2846 		break;
2847 	case MSR_IA32_MCG_CTL:
2848 		if (!(mcg_cap & MCG_CTL_P) &&
2849 		    (data || !msr_info->host_initiated))
2850 			return 1;
2851 		if (data != 0 && data != ~(u64)0)
2852 			return 1;
2853 		vcpu->arch.mcg_ctl = data;
2854 		break;
2855 	default:
2856 		if (msr >= MSR_IA32_MC0_CTL &&
2857 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2858 			u32 offset = array_index_nospec(
2859 				msr - MSR_IA32_MC0_CTL,
2860 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2861 
2862 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2863 			 * some Linux kernels though clear bit 10 in bank 4 to
2864 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2865 			 * this to avoid an uncatched #GP in the guest
2866 			 */
2867 			if ((offset & 0x3) == 0 &&
2868 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
2869 				return -1;
2870 
2871 			/* MCi_STATUS */
2872 			if (!msr_info->host_initiated &&
2873 			    (offset & 0x3) == 1 && data != 0) {
2874 				if (!can_set_mci_status(vcpu))
2875 					return -1;
2876 			}
2877 
2878 			vcpu->arch.mce_banks[offset] = data;
2879 			break;
2880 		}
2881 		return 1;
2882 	}
2883 	return 0;
2884 }
2885 
2886 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
2887 {
2888 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
2889 
2890 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
2891 }
2892 
2893 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2894 {
2895 	gpa_t gpa = data & ~0x3f;
2896 
2897 	/* Bits 4:5 are reserved, Should be zero */
2898 	if (data & 0x30)
2899 		return 1;
2900 
2901 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
2902 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
2903 		return 1;
2904 
2905 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
2906 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
2907 		return 1;
2908 
2909 	if (!lapic_in_kernel(vcpu))
2910 		return data ? 1 : 0;
2911 
2912 	vcpu->arch.apf.msr_en_val = data;
2913 
2914 	if (!kvm_pv_async_pf_enabled(vcpu)) {
2915 		kvm_clear_async_pf_completion_queue(vcpu);
2916 		kvm_async_pf_hash_reset(vcpu);
2917 		return 0;
2918 	}
2919 
2920 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2921 					sizeof(u64)))
2922 		return 1;
2923 
2924 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2925 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2926 
2927 	kvm_async_pf_wakeup_all(vcpu);
2928 
2929 	return 0;
2930 }
2931 
2932 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
2933 {
2934 	/* Bits 8-63 are reserved */
2935 	if (data >> 8)
2936 		return 1;
2937 
2938 	if (!lapic_in_kernel(vcpu))
2939 		return 1;
2940 
2941 	vcpu->arch.apf.msr_int_val = data;
2942 
2943 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
2944 
2945 	return 0;
2946 }
2947 
2948 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2949 {
2950 	vcpu->arch.pv_time_enabled = false;
2951 	vcpu->arch.time = 0;
2952 }
2953 
2954 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
2955 {
2956 	++vcpu->stat.tlb_flush;
2957 	static_call(kvm_x86_tlb_flush_all)(vcpu);
2958 }
2959 
2960 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
2961 {
2962 	++vcpu->stat.tlb_flush;
2963 	static_call(kvm_x86_tlb_flush_guest)(vcpu);
2964 }
2965 
2966 static void record_steal_time(struct kvm_vcpu *vcpu)
2967 {
2968 	struct kvm_host_map map;
2969 	struct kvm_steal_time *st;
2970 
2971 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
2972 		kvm_xen_runstate_set_running(vcpu);
2973 		return;
2974 	}
2975 
2976 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2977 		return;
2978 
2979 	/* -EAGAIN is returned in atomic context so we can just return. */
2980 	if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
2981 			&map, &vcpu->arch.st.cache, false))
2982 		return;
2983 
2984 	st = map.hva +
2985 		offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
2986 
2987 	/*
2988 	 * Doing a TLB flush here, on the guest's behalf, can avoid
2989 	 * expensive IPIs.
2990 	 */
2991 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
2992 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2993 				       st->preempted & KVM_VCPU_FLUSH_TLB);
2994 		if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
2995 			kvm_vcpu_flush_tlb_guest(vcpu);
2996 	}
2997 
2998 	vcpu->arch.st.preempted = 0;
2999 
3000 	if (st->version & 1)
3001 		st->version += 1;  /* first time write, random junk */
3002 
3003 	st->version += 1;
3004 
3005 	smp_wmb();
3006 
3007 	st->steal += current->sched_info.run_delay -
3008 		vcpu->arch.st.last_steal;
3009 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3010 
3011 	smp_wmb();
3012 
3013 	st->version += 1;
3014 
3015 	kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
3016 }
3017 
3018 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3019 {
3020 	bool pr = false;
3021 	u32 msr = msr_info->index;
3022 	u64 data = msr_info->data;
3023 
3024 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3025 		return kvm_xen_write_hypercall_page(vcpu, data);
3026 
3027 	switch (msr) {
3028 	case MSR_AMD64_NB_CFG:
3029 	case MSR_IA32_UCODE_WRITE:
3030 	case MSR_VM_HSAVE_PA:
3031 	case MSR_AMD64_PATCH_LOADER:
3032 	case MSR_AMD64_BU_CFG2:
3033 	case MSR_AMD64_DC_CFG:
3034 	case MSR_F15H_EX_CFG:
3035 		break;
3036 
3037 	case MSR_IA32_UCODE_REV:
3038 		if (msr_info->host_initiated)
3039 			vcpu->arch.microcode_version = data;
3040 		break;
3041 	case MSR_IA32_ARCH_CAPABILITIES:
3042 		if (!msr_info->host_initiated)
3043 			return 1;
3044 		vcpu->arch.arch_capabilities = data;
3045 		break;
3046 	case MSR_IA32_PERF_CAPABILITIES: {
3047 		struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3048 
3049 		if (!msr_info->host_initiated)
3050 			return 1;
3051 		if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
3052 			return 1;
3053 		if (data & ~msr_ent.data)
3054 			return 1;
3055 
3056 		vcpu->arch.perf_capabilities = data;
3057 
3058 		return 0;
3059 		}
3060 	case MSR_EFER:
3061 		return set_efer(vcpu, msr_info);
3062 	case MSR_K7_HWCR:
3063 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3064 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3065 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3066 
3067 		/* Handle McStatusWrEn */
3068 		if (data == BIT_ULL(18)) {
3069 			vcpu->arch.msr_hwcr = data;
3070 		} else if (data != 0) {
3071 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3072 				    data);
3073 			return 1;
3074 		}
3075 		break;
3076 	case MSR_FAM10H_MMIO_CONF_BASE:
3077 		if (data != 0) {
3078 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3079 				    "0x%llx\n", data);
3080 			return 1;
3081 		}
3082 		break;
3083 	case 0x200 ... 0x2ff:
3084 		return kvm_mtrr_set_msr(vcpu, msr, data);
3085 	case MSR_IA32_APICBASE:
3086 		return kvm_set_apic_base(vcpu, msr_info);
3087 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3088 		return kvm_x2apic_msr_write(vcpu, msr, data);
3089 	case MSR_IA32_TSC_DEADLINE:
3090 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3091 		break;
3092 	case MSR_IA32_TSC_ADJUST:
3093 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3094 			if (!msr_info->host_initiated) {
3095 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3096 				adjust_tsc_offset_guest(vcpu, adj);
3097 			}
3098 			vcpu->arch.ia32_tsc_adjust_msr = data;
3099 		}
3100 		break;
3101 	case MSR_IA32_MISC_ENABLE:
3102 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3103 		    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3104 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3105 				return 1;
3106 			vcpu->arch.ia32_misc_enable_msr = data;
3107 			kvm_update_cpuid_runtime(vcpu);
3108 		} else {
3109 			vcpu->arch.ia32_misc_enable_msr = data;
3110 		}
3111 		break;
3112 	case MSR_IA32_SMBASE:
3113 		if (!msr_info->host_initiated)
3114 			return 1;
3115 		vcpu->arch.smbase = data;
3116 		break;
3117 	case MSR_IA32_POWER_CTL:
3118 		vcpu->arch.msr_ia32_power_ctl = data;
3119 		break;
3120 	case MSR_IA32_TSC:
3121 		if (msr_info->host_initiated) {
3122 			kvm_synchronize_tsc(vcpu, data);
3123 		} else {
3124 			u64 adj = kvm_compute_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3125 			adjust_tsc_offset_guest(vcpu, adj);
3126 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3127 		}
3128 		break;
3129 	case MSR_IA32_XSS:
3130 		if (!msr_info->host_initiated &&
3131 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3132 			return 1;
3133 		/*
3134 		 * KVM supports exposing PT to the guest, but does not support
3135 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3136 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3137 		 */
3138 		if (data & ~supported_xss)
3139 			return 1;
3140 		vcpu->arch.ia32_xss = data;
3141 		break;
3142 	case MSR_SMI_COUNT:
3143 		if (!msr_info->host_initiated)
3144 			return 1;
3145 		vcpu->arch.smi_count = data;
3146 		break;
3147 	case MSR_KVM_WALL_CLOCK_NEW:
3148 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3149 			return 1;
3150 
3151 		vcpu->kvm->arch.wall_clock = data;
3152 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3153 		break;
3154 	case MSR_KVM_WALL_CLOCK:
3155 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3156 			return 1;
3157 
3158 		vcpu->kvm->arch.wall_clock = data;
3159 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3160 		break;
3161 	case MSR_KVM_SYSTEM_TIME_NEW:
3162 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3163 			return 1;
3164 
3165 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3166 		break;
3167 	case MSR_KVM_SYSTEM_TIME:
3168 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3169 			return 1;
3170 
3171 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3172 		break;
3173 	case MSR_KVM_ASYNC_PF_EN:
3174 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3175 			return 1;
3176 
3177 		if (kvm_pv_enable_async_pf(vcpu, data))
3178 			return 1;
3179 		break;
3180 	case MSR_KVM_ASYNC_PF_INT:
3181 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3182 			return 1;
3183 
3184 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3185 			return 1;
3186 		break;
3187 	case MSR_KVM_ASYNC_PF_ACK:
3188 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3189 			return 1;
3190 		if (data & 0x1) {
3191 			vcpu->arch.apf.pageready_pending = false;
3192 			kvm_check_async_pf_completion(vcpu);
3193 		}
3194 		break;
3195 	case MSR_KVM_STEAL_TIME:
3196 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3197 			return 1;
3198 
3199 		if (unlikely(!sched_info_on()))
3200 			return 1;
3201 
3202 		if (data & KVM_STEAL_RESERVED_MASK)
3203 			return 1;
3204 
3205 		vcpu->arch.st.msr_val = data;
3206 
3207 		if (!(data & KVM_MSR_ENABLED))
3208 			break;
3209 
3210 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3211 
3212 		break;
3213 	case MSR_KVM_PV_EOI_EN:
3214 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3215 			return 1;
3216 
3217 		if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3218 			return 1;
3219 		break;
3220 
3221 	case MSR_KVM_POLL_CONTROL:
3222 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3223 			return 1;
3224 
3225 		/* only enable bit supported */
3226 		if (data & (-1ULL << 1))
3227 			return 1;
3228 
3229 		vcpu->arch.msr_kvm_poll_control = data;
3230 		break;
3231 
3232 	case MSR_IA32_MCG_CTL:
3233 	case MSR_IA32_MCG_STATUS:
3234 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3235 		return set_msr_mce(vcpu, msr_info);
3236 
3237 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3238 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3239 		pr = true;
3240 		fallthrough;
3241 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3242 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3243 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3244 			return kvm_pmu_set_msr(vcpu, msr_info);
3245 
3246 		if (pr || data != 0)
3247 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3248 				    "0x%x data 0x%llx\n", msr, data);
3249 		break;
3250 	case MSR_K7_CLK_CTL:
3251 		/*
3252 		 * Ignore all writes to this no longer documented MSR.
3253 		 * Writes are only relevant for old K7 processors,
3254 		 * all pre-dating SVM, but a recommended workaround from
3255 		 * AMD for these chips. It is possible to specify the
3256 		 * affected processor models on the command line, hence
3257 		 * the need to ignore the workaround.
3258 		 */
3259 		break;
3260 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3261 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3262 	case HV_X64_MSR_SYNDBG_OPTIONS:
3263 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3264 	case HV_X64_MSR_CRASH_CTL:
3265 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3266 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3267 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3268 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3269 		return kvm_hv_set_msr_common(vcpu, msr, data,
3270 					     msr_info->host_initiated);
3271 	case MSR_IA32_BBL_CR_CTL3:
3272 		/* Drop writes to this legacy MSR -- see rdmsr
3273 		 * counterpart for further detail.
3274 		 */
3275 		if (report_ignored_msrs)
3276 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3277 				msr, data);
3278 		break;
3279 	case MSR_AMD64_OSVW_ID_LENGTH:
3280 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3281 			return 1;
3282 		vcpu->arch.osvw.length = data;
3283 		break;
3284 	case MSR_AMD64_OSVW_STATUS:
3285 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3286 			return 1;
3287 		vcpu->arch.osvw.status = data;
3288 		break;
3289 	case MSR_PLATFORM_INFO:
3290 		if (!msr_info->host_initiated ||
3291 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3292 		     cpuid_fault_enabled(vcpu)))
3293 			return 1;
3294 		vcpu->arch.msr_platform_info = data;
3295 		break;
3296 	case MSR_MISC_FEATURES_ENABLES:
3297 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3298 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3299 		     !supports_cpuid_fault(vcpu)))
3300 			return 1;
3301 		vcpu->arch.msr_misc_features_enables = data;
3302 		break;
3303 	default:
3304 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3305 			return kvm_pmu_set_msr(vcpu, msr_info);
3306 		return KVM_MSR_RET_INVALID;
3307 	}
3308 	return 0;
3309 }
3310 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3311 
3312 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3313 {
3314 	u64 data;
3315 	u64 mcg_cap = vcpu->arch.mcg_cap;
3316 	unsigned bank_num = mcg_cap & 0xff;
3317 
3318 	switch (msr) {
3319 	case MSR_IA32_P5_MC_ADDR:
3320 	case MSR_IA32_P5_MC_TYPE:
3321 		data = 0;
3322 		break;
3323 	case MSR_IA32_MCG_CAP:
3324 		data = vcpu->arch.mcg_cap;
3325 		break;
3326 	case MSR_IA32_MCG_CTL:
3327 		if (!(mcg_cap & MCG_CTL_P) && !host)
3328 			return 1;
3329 		data = vcpu->arch.mcg_ctl;
3330 		break;
3331 	case MSR_IA32_MCG_STATUS:
3332 		data = vcpu->arch.mcg_status;
3333 		break;
3334 	default:
3335 		if (msr >= MSR_IA32_MC0_CTL &&
3336 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3337 			u32 offset = array_index_nospec(
3338 				msr - MSR_IA32_MC0_CTL,
3339 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3340 
3341 			data = vcpu->arch.mce_banks[offset];
3342 			break;
3343 		}
3344 		return 1;
3345 	}
3346 	*pdata = data;
3347 	return 0;
3348 }
3349 
3350 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3351 {
3352 	switch (msr_info->index) {
3353 	case MSR_IA32_PLATFORM_ID:
3354 	case MSR_IA32_EBL_CR_POWERON:
3355 	case MSR_IA32_LASTBRANCHFROMIP:
3356 	case MSR_IA32_LASTBRANCHTOIP:
3357 	case MSR_IA32_LASTINTFROMIP:
3358 	case MSR_IA32_LASTINTTOIP:
3359 	case MSR_K8_SYSCFG:
3360 	case MSR_K8_TSEG_ADDR:
3361 	case MSR_K8_TSEG_MASK:
3362 	case MSR_VM_HSAVE_PA:
3363 	case MSR_K8_INT_PENDING_MSG:
3364 	case MSR_AMD64_NB_CFG:
3365 	case MSR_FAM10H_MMIO_CONF_BASE:
3366 	case MSR_AMD64_BU_CFG2:
3367 	case MSR_IA32_PERF_CTL:
3368 	case MSR_AMD64_DC_CFG:
3369 	case MSR_F15H_EX_CFG:
3370 	/*
3371 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3372 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3373 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3374 	 * so for existing CPU-specific MSRs.
3375 	 */
3376 	case MSR_RAPL_POWER_UNIT:
3377 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3378 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3379 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3380 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3381 		msr_info->data = 0;
3382 		break;
3383 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3384 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3385 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3386 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3387 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3388 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3389 			return kvm_pmu_get_msr(vcpu, msr_info);
3390 		msr_info->data = 0;
3391 		break;
3392 	case MSR_IA32_UCODE_REV:
3393 		msr_info->data = vcpu->arch.microcode_version;
3394 		break;
3395 	case MSR_IA32_ARCH_CAPABILITIES:
3396 		if (!msr_info->host_initiated &&
3397 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3398 			return 1;
3399 		msr_info->data = vcpu->arch.arch_capabilities;
3400 		break;
3401 	case MSR_IA32_PERF_CAPABILITIES:
3402 		if (!msr_info->host_initiated &&
3403 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3404 			return 1;
3405 		msr_info->data = vcpu->arch.perf_capabilities;
3406 		break;
3407 	case MSR_IA32_POWER_CTL:
3408 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3409 		break;
3410 	case MSR_IA32_TSC: {
3411 		/*
3412 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3413 		 * even when not intercepted. AMD manual doesn't explicitly
3414 		 * state this but appears to behave the same.
3415 		 *
3416 		 * On userspace reads and writes, however, we unconditionally
3417 		 * return L1's TSC value to ensure backwards-compatible
3418 		 * behavior for migration.
3419 		 */
3420 		u64 tsc_offset = msr_info->host_initiated ? vcpu->arch.l1_tsc_offset :
3421 							    vcpu->arch.tsc_offset;
3422 
3423 		msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + tsc_offset;
3424 		break;
3425 	}
3426 	case MSR_MTRRcap:
3427 	case 0x200 ... 0x2ff:
3428 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3429 	case 0xcd: /* fsb frequency */
3430 		msr_info->data = 3;
3431 		break;
3432 		/*
3433 		 * MSR_EBC_FREQUENCY_ID
3434 		 * Conservative value valid for even the basic CPU models.
3435 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3436 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3437 		 * and 266MHz for model 3, or 4. Set Core Clock
3438 		 * Frequency to System Bus Frequency Ratio to 1 (bits
3439 		 * 31:24) even though these are only valid for CPU
3440 		 * models > 2, however guests may end up dividing or
3441 		 * multiplying by zero otherwise.
3442 		 */
3443 	case MSR_EBC_FREQUENCY_ID:
3444 		msr_info->data = 1 << 24;
3445 		break;
3446 	case MSR_IA32_APICBASE:
3447 		msr_info->data = kvm_get_apic_base(vcpu);
3448 		break;
3449 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3450 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3451 	case MSR_IA32_TSC_DEADLINE:
3452 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3453 		break;
3454 	case MSR_IA32_TSC_ADJUST:
3455 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3456 		break;
3457 	case MSR_IA32_MISC_ENABLE:
3458 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3459 		break;
3460 	case MSR_IA32_SMBASE:
3461 		if (!msr_info->host_initiated)
3462 			return 1;
3463 		msr_info->data = vcpu->arch.smbase;
3464 		break;
3465 	case MSR_SMI_COUNT:
3466 		msr_info->data = vcpu->arch.smi_count;
3467 		break;
3468 	case MSR_IA32_PERF_STATUS:
3469 		/* TSC increment by tick */
3470 		msr_info->data = 1000ULL;
3471 		/* CPU multiplier */
3472 		msr_info->data |= (((uint64_t)4ULL) << 40);
3473 		break;
3474 	case MSR_EFER:
3475 		msr_info->data = vcpu->arch.efer;
3476 		break;
3477 	case MSR_KVM_WALL_CLOCK:
3478 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3479 			return 1;
3480 
3481 		msr_info->data = vcpu->kvm->arch.wall_clock;
3482 		break;
3483 	case MSR_KVM_WALL_CLOCK_NEW:
3484 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3485 			return 1;
3486 
3487 		msr_info->data = vcpu->kvm->arch.wall_clock;
3488 		break;
3489 	case MSR_KVM_SYSTEM_TIME:
3490 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3491 			return 1;
3492 
3493 		msr_info->data = vcpu->arch.time;
3494 		break;
3495 	case MSR_KVM_SYSTEM_TIME_NEW:
3496 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3497 			return 1;
3498 
3499 		msr_info->data = vcpu->arch.time;
3500 		break;
3501 	case MSR_KVM_ASYNC_PF_EN:
3502 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3503 			return 1;
3504 
3505 		msr_info->data = vcpu->arch.apf.msr_en_val;
3506 		break;
3507 	case MSR_KVM_ASYNC_PF_INT:
3508 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3509 			return 1;
3510 
3511 		msr_info->data = vcpu->arch.apf.msr_int_val;
3512 		break;
3513 	case MSR_KVM_ASYNC_PF_ACK:
3514 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3515 			return 1;
3516 
3517 		msr_info->data = 0;
3518 		break;
3519 	case MSR_KVM_STEAL_TIME:
3520 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3521 			return 1;
3522 
3523 		msr_info->data = vcpu->arch.st.msr_val;
3524 		break;
3525 	case MSR_KVM_PV_EOI_EN:
3526 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3527 			return 1;
3528 
3529 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
3530 		break;
3531 	case MSR_KVM_POLL_CONTROL:
3532 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3533 			return 1;
3534 
3535 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
3536 		break;
3537 	case MSR_IA32_P5_MC_ADDR:
3538 	case MSR_IA32_P5_MC_TYPE:
3539 	case MSR_IA32_MCG_CAP:
3540 	case MSR_IA32_MCG_CTL:
3541 	case MSR_IA32_MCG_STATUS:
3542 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3543 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3544 				   msr_info->host_initiated);
3545 	case MSR_IA32_XSS:
3546 		if (!msr_info->host_initiated &&
3547 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3548 			return 1;
3549 		msr_info->data = vcpu->arch.ia32_xss;
3550 		break;
3551 	case MSR_K7_CLK_CTL:
3552 		/*
3553 		 * Provide expected ramp-up count for K7. All other
3554 		 * are set to zero, indicating minimum divisors for
3555 		 * every field.
3556 		 *
3557 		 * This prevents guest kernels on AMD host with CPU
3558 		 * type 6, model 8 and higher from exploding due to
3559 		 * the rdmsr failing.
3560 		 */
3561 		msr_info->data = 0x20000000;
3562 		break;
3563 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3564 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3565 	case HV_X64_MSR_SYNDBG_OPTIONS:
3566 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3567 	case HV_X64_MSR_CRASH_CTL:
3568 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3569 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3570 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3571 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3572 		return kvm_hv_get_msr_common(vcpu,
3573 					     msr_info->index, &msr_info->data,
3574 					     msr_info->host_initiated);
3575 	case MSR_IA32_BBL_CR_CTL3:
3576 		/* This legacy MSR exists but isn't fully documented in current
3577 		 * silicon.  It is however accessed by winxp in very narrow
3578 		 * scenarios where it sets bit #19, itself documented as
3579 		 * a "reserved" bit.  Best effort attempt to source coherent
3580 		 * read data here should the balance of the register be
3581 		 * interpreted by the guest:
3582 		 *
3583 		 * L2 cache control register 3: 64GB range, 256KB size,
3584 		 * enabled, latency 0x1, configured
3585 		 */
3586 		msr_info->data = 0xbe702111;
3587 		break;
3588 	case MSR_AMD64_OSVW_ID_LENGTH:
3589 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3590 			return 1;
3591 		msr_info->data = vcpu->arch.osvw.length;
3592 		break;
3593 	case MSR_AMD64_OSVW_STATUS:
3594 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3595 			return 1;
3596 		msr_info->data = vcpu->arch.osvw.status;
3597 		break;
3598 	case MSR_PLATFORM_INFO:
3599 		if (!msr_info->host_initiated &&
3600 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3601 			return 1;
3602 		msr_info->data = vcpu->arch.msr_platform_info;
3603 		break;
3604 	case MSR_MISC_FEATURES_ENABLES:
3605 		msr_info->data = vcpu->arch.msr_misc_features_enables;
3606 		break;
3607 	case MSR_K7_HWCR:
3608 		msr_info->data = vcpu->arch.msr_hwcr;
3609 		break;
3610 	default:
3611 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3612 			return kvm_pmu_get_msr(vcpu, msr_info);
3613 		return KVM_MSR_RET_INVALID;
3614 	}
3615 	return 0;
3616 }
3617 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3618 
3619 /*
3620  * Read or write a bunch of msrs. All parameters are kernel addresses.
3621  *
3622  * @return number of msrs set successfully.
3623  */
3624 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3625 		    struct kvm_msr_entry *entries,
3626 		    int (*do_msr)(struct kvm_vcpu *vcpu,
3627 				  unsigned index, u64 *data))
3628 {
3629 	int i;
3630 
3631 	for (i = 0; i < msrs->nmsrs; ++i)
3632 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
3633 			break;
3634 
3635 	return i;
3636 }
3637 
3638 /*
3639  * Read or write a bunch of msrs. Parameters are user addresses.
3640  *
3641  * @return number of msrs set successfully.
3642  */
3643 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3644 		  int (*do_msr)(struct kvm_vcpu *vcpu,
3645 				unsigned index, u64 *data),
3646 		  int writeback)
3647 {
3648 	struct kvm_msrs msrs;
3649 	struct kvm_msr_entry *entries;
3650 	int r, n;
3651 	unsigned size;
3652 
3653 	r = -EFAULT;
3654 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3655 		goto out;
3656 
3657 	r = -E2BIG;
3658 	if (msrs.nmsrs >= MAX_IO_MSRS)
3659 		goto out;
3660 
3661 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3662 	entries = memdup_user(user_msrs->entries, size);
3663 	if (IS_ERR(entries)) {
3664 		r = PTR_ERR(entries);
3665 		goto out;
3666 	}
3667 
3668 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3669 	if (r < 0)
3670 		goto out_free;
3671 
3672 	r = -EFAULT;
3673 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
3674 		goto out_free;
3675 
3676 	r = n;
3677 
3678 out_free:
3679 	kfree(entries);
3680 out:
3681 	return r;
3682 }
3683 
3684 static inline bool kvm_can_mwait_in_guest(void)
3685 {
3686 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
3687 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
3688 		boot_cpu_has(X86_FEATURE_ARAT);
3689 }
3690 
3691 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
3692 					    struct kvm_cpuid2 __user *cpuid_arg)
3693 {
3694 	struct kvm_cpuid2 cpuid;
3695 	int r;
3696 
3697 	r = -EFAULT;
3698 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3699 		return r;
3700 
3701 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3702 	if (r)
3703 		return r;
3704 
3705 	r = -EFAULT;
3706 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3707 		return r;
3708 
3709 	return 0;
3710 }
3711 
3712 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3713 {
3714 	int r = 0;
3715 
3716 	switch (ext) {
3717 	case KVM_CAP_IRQCHIP:
3718 	case KVM_CAP_HLT:
3719 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3720 	case KVM_CAP_SET_TSS_ADDR:
3721 	case KVM_CAP_EXT_CPUID:
3722 	case KVM_CAP_EXT_EMUL_CPUID:
3723 	case KVM_CAP_CLOCKSOURCE:
3724 	case KVM_CAP_PIT:
3725 	case KVM_CAP_NOP_IO_DELAY:
3726 	case KVM_CAP_MP_STATE:
3727 	case KVM_CAP_SYNC_MMU:
3728 	case KVM_CAP_USER_NMI:
3729 	case KVM_CAP_REINJECT_CONTROL:
3730 	case KVM_CAP_IRQ_INJECT_STATUS:
3731 	case KVM_CAP_IOEVENTFD:
3732 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
3733 	case KVM_CAP_PIT2:
3734 	case KVM_CAP_PIT_STATE2:
3735 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3736 	case KVM_CAP_VCPU_EVENTS:
3737 	case KVM_CAP_HYPERV:
3738 	case KVM_CAP_HYPERV_VAPIC:
3739 	case KVM_CAP_HYPERV_SPIN:
3740 	case KVM_CAP_HYPERV_SYNIC:
3741 	case KVM_CAP_HYPERV_SYNIC2:
3742 	case KVM_CAP_HYPERV_VP_INDEX:
3743 	case KVM_CAP_HYPERV_EVENTFD:
3744 	case KVM_CAP_HYPERV_TLBFLUSH:
3745 	case KVM_CAP_HYPERV_SEND_IPI:
3746 	case KVM_CAP_HYPERV_CPUID:
3747 	case KVM_CAP_SYS_HYPERV_CPUID:
3748 	case KVM_CAP_PCI_SEGMENT:
3749 	case KVM_CAP_DEBUGREGS:
3750 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
3751 	case KVM_CAP_XSAVE:
3752 	case KVM_CAP_ASYNC_PF:
3753 	case KVM_CAP_ASYNC_PF_INT:
3754 	case KVM_CAP_GET_TSC_KHZ:
3755 	case KVM_CAP_KVMCLOCK_CTRL:
3756 	case KVM_CAP_READONLY_MEM:
3757 	case KVM_CAP_HYPERV_TIME:
3758 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3759 	case KVM_CAP_TSC_DEADLINE_TIMER:
3760 	case KVM_CAP_DISABLE_QUIRKS:
3761 	case KVM_CAP_SET_BOOT_CPU_ID:
3762  	case KVM_CAP_SPLIT_IRQCHIP:
3763 	case KVM_CAP_IMMEDIATE_EXIT:
3764 	case KVM_CAP_PMU_EVENT_FILTER:
3765 	case KVM_CAP_GET_MSR_FEATURES:
3766 	case KVM_CAP_MSR_PLATFORM_INFO:
3767 	case KVM_CAP_EXCEPTION_PAYLOAD:
3768 	case KVM_CAP_SET_GUEST_DEBUG:
3769 	case KVM_CAP_LAST_CPU:
3770 	case KVM_CAP_X86_USER_SPACE_MSR:
3771 	case KVM_CAP_X86_MSR_FILTER:
3772 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
3773 		r = 1;
3774 		break;
3775 #ifdef CONFIG_KVM_XEN
3776 	case KVM_CAP_XEN_HVM:
3777 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
3778 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
3779 		    KVM_XEN_HVM_CONFIG_SHARED_INFO;
3780 		if (sched_info_on())
3781 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
3782 		break;
3783 #endif
3784 	case KVM_CAP_SYNC_REGS:
3785 		r = KVM_SYNC_X86_VALID_FIELDS;
3786 		break;
3787 	case KVM_CAP_ADJUST_CLOCK:
3788 		r = KVM_CLOCK_TSC_STABLE;
3789 		break;
3790 	case KVM_CAP_X86_DISABLE_EXITS:
3791 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3792 		      KVM_X86_DISABLE_EXITS_CSTATE;
3793 		if(kvm_can_mwait_in_guest())
3794 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
3795 		break;
3796 	case KVM_CAP_X86_SMM:
3797 		/* SMBASE is usually relocated above 1M on modern chipsets,
3798 		 * and SMM handlers might indeed rely on 4G segment limits,
3799 		 * so do not report SMM to be available if real mode is
3800 		 * emulated via vm86 mode.  Still, do not go to great lengths
3801 		 * to avoid userspace's usage of the feature, because it is a
3802 		 * fringe case that is not enabled except via specific settings
3803 		 * of the module parameters.
3804 		 */
3805 		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
3806 		break;
3807 	case KVM_CAP_VAPIC:
3808 		r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
3809 		break;
3810 	case KVM_CAP_NR_VCPUS:
3811 		r = KVM_SOFT_MAX_VCPUS;
3812 		break;
3813 	case KVM_CAP_MAX_VCPUS:
3814 		r = KVM_MAX_VCPUS;
3815 		break;
3816 	case KVM_CAP_MAX_VCPU_ID:
3817 		r = KVM_MAX_VCPU_ID;
3818 		break;
3819 	case KVM_CAP_PV_MMU:	/* obsolete */
3820 		r = 0;
3821 		break;
3822 	case KVM_CAP_MCE:
3823 		r = KVM_MAX_MCE_BANKS;
3824 		break;
3825 	case KVM_CAP_XCRS:
3826 		r = boot_cpu_has(X86_FEATURE_XSAVE);
3827 		break;
3828 	case KVM_CAP_TSC_CONTROL:
3829 		r = kvm_has_tsc_control;
3830 		break;
3831 	case KVM_CAP_X2APIC_API:
3832 		r = KVM_X2APIC_API_VALID_FLAGS;
3833 		break;
3834 	case KVM_CAP_NESTED_STATE:
3835 		r = kvm_x86_ops.nested_ops->get_state ?
3836 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
3837 		break;
3838 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3839 		r = kvm_x86_ops.enable_direct_tlbflush != NULL;
3840 		break;
3841 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3842 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
3843 		break;
3844 	case KVM_CAP_SMALLER_MAXPHYADDR:
3845 		r = (int) allow_smaller_maxphyaddr;
3846 		break;
3847 	case KVM_CAP_STEAL_TIME:
3848 		r = sched_info_on();
3849 		break;
3850 	case KVM_CAP_X86_BUS_LOCK_EXIT:
3851 		if (kvm_has_bus_lock_exit)
3852 			r = KVM_BUS_LOCK_DETECTION_OFF |
3853 			    KVM_BUS_LOCK_DETECTION_EXIT;
3854 		else
3855 			r = 0;
3856 		break;
3857 	default:
3858 		break;
3859 	}
3860 	return r;
3861 
3862 }
3863 
3864 long kvm_arch_dev_ioctl(struct file *filp,
3865 			unsigned int ioctl, unsigned long arg)
3866 {
3867 	void __user *argp = (void __user *)arg;
3868 	long r;
3869 
3870 	switch (ioctl) {
3871 	case KVM_GET_MSR_INDEX_LIST: {
3872 		struct kvm_msr_list __user *user_msr_list = argp;
3873 		struct kvm_msr_list msr_list;
3874 		unsigned n;
3875 
3876 		r = -EFAULT;
3877 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3878 			goto out;
3879 		n = msr_list.nmsrs;
3880 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3881 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3882 			goto out;
3883 		r = -E2BIG;
3884 		if (n < msr_list.nmsrs)
3885 			goto out;
3886 		r = -EFAULT;
3887 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3888 				 num_msrs_to_save * sizeof(u32)))
3889 			goto out;
3890 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3891 				 &emulated_msrs,
3892 				 num_emulated_msrs * sizeof(u32)))
3893 			goto out;
3894 		r = 0;
3895 		break;
3896 	}
3897 	case KVM_GET_SUPPORTED_CPUID:
3898 	case KVM_GET_EMULATED_CPUID: {
3899 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3900 		struct kvm_cpuid2 cpuid;
3901 
3902 		r = -EFAULT;
3903 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3904 			goto out;
3905 
3906 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3907 					    ioctl);
3908 		if (r)
3909 			goto out;
3910 
3911 		r = -EFAULT;
3912 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3913 			goto out;
3914 		r = 0;
3915 		break;
3916 	}
3917 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
3918 		r = -EFAULT;
3919 		if (copy_to_user(argp, &kvm_mce_cap_supported,
3920 				 sizeof(kvm_mce_cap_supported)))
3921 			goto out;
3922 		r = 0;
3923 		break;
3924 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3925 		struct kvm_msr_list __user *user_msr_list = argp;
3926 		struct kvm_msr_list msr_list;
3927 		unsigned int n;
3928 
3929 		r = -EFAULT;
3930 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3931 			goto out;
3932 		n = msr_list.nmsrs;
3933 		msr_list.nmsrs = num_msr_based_features;
3934 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3935 			goto out;
3936 		r = -E2BIG;
3937 		if (n < msr_list.nmsrs)
3938 			goto out;
3939 		r = -EFAULT;
3940 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
3941 				 num_msr_based_features * sizeof(u32)))
3942 			goto out;
3943 		r = 0;
3944 		break;
3945 	}
3946 	case KVM_GET_MSRS:
3947 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
3948 		break;
3949 	case KVM_GET_SUPPORTED_HV_CPUID:
3950 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
3951 		break;
3952 	default:
3953 		r = -EINVAL;
3954 		break;
3955 	}
3956 out:
3957 	return r;
3958 }
3959 
3960 static void wbinvd_ipi(void *garbage)
3961 {
3962 	wbinvd();
3963 }
3964 
3965 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3966 {
3967 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3968 }
3969 
3970 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3971 {
3972 	/* Address WBINVD may be executed by guest */
3973 	if (need_emulate_wbinvd(vcpu)) {
3974 		if (static_call(kvm_x86_has_wbinvd_exit)())
3975 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3976 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3977 			smp_call_function_single(vcpu->cpu,
3978 					wbinvd_ipi, NULL, 1);
3979 	}
3980 
3981 	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
3982 
3983 	/* Save host pkru register if supported */
3984 	vcpu->arch.host_pkru = read_pkru();
3985 
3986 	/* Apply any externally detected TSC adjustments (due to suspend) */
3987 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3988 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3989 		vcpu->arch.tsc_offset_adjustment = 0;
3990 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3991 	}
3992 
3993 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3994 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3995 				rdtsc() - vcpu->arch.last_host_tsc;
3996 		if (tsc_delta < 0)
3997 			mark_tsc_unstable("KVM discovered backwards TSC");
3998 
3999 		if (kvm_check_tsc_unstable()) {
4000 			u64 offset = kvm_compute_tsc_offset(vcpu,
4001 						vcpu->arch.last_guest_tsc);
4002 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4003 			vcpu->arch.tsc_catchup = 1;
4004 		}
4005 
4006 		if (kvm_lapic_hv_timer_in_use(vcpu))
4007 			kvm_lapic_restart_hv_timer(vcpu);
4008 
4009 		/*
4010 		 * On a host with synchronized TSC, there is no need to update
4011 		 * kvmclock on vcpu->cpu migration
4012 		 */
4013 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4014 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4015 		if (vcpu->cpu != cpu)
4016 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4017 		vcpu->cpu = cpu;
4018 	}
4019 
4020 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4021 }
4022 
4023 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4024 {
4025 	struct kvm_host_map map;
4026 	struct kvm_steal_time *st;
4027 	int idx;
4028 
4029 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4030 		return;
4031 
4032 	if (vcpu->arch.st.preempted)
4033 		return;
4034 
4035 	/*
4036 	 * Take the srcu lock as memslots will be accessed to check the gfn
4037 	 * cache generation against the memslots generation.
4038 	 */
4039 	idx = srcu_read_lock(&vcpu->kvm->srcu);
4040 
4041 	if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
4042 			&vcpu->arch.st.cache, true))
4043 		goto out;
4044 
4045 	st = map.hva +
4046 		offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
4047 
4048 	st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4049 
4050 	kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
4051 
4052 out:
4053 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
4054 }
4055 
4056 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4057 {
4058 	if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4059 		vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4060 
4061 	if (kvm_xen_msr_enabled(vcpu->kvm))
4062 		kvm_xen_runstate_set_preempted(vcpu);
4063 	else
4064 		kvm_steal_time_set_preempted(vcpu);
4065 
4066 	static_call(kvm_x86_vcpu_put)(vcpu);
4067 	vcpu->arch.last_host_tsc = rdtsc();
4068 	/*
4069 	 * If userspace has set any breakpoints or watchpoints, dr6 is restored
4070 	 * on every vmexit, but if not, we might have a stale dr6 from the
4071 	 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
4072 	 */
4073 	set_debugreg(0, 6);
4074 }
4075 
4076 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4077 				    struct kvm_lapic_state *s)
4078 {
4079 	if (vcpu->arch.apicv_active)
4080 		static_call(kvm_x86_sync_pir_to_irr)(vcpu);
4081 
4082 	return kvm_apic_get_state(vcpu, s);
4083 }
4084 
4085 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4086 				    struct kvm_lapic_state *s)
4087 {
4088 	int r;
4089 
4090 	r = kvm_apic_set_state(vcpu, s);
4091 	if (r)
4092 		return r;
4093 	update_cr8_intercept(vcpu);
4094 
4095 	return 0;
4096 }
4097 
4098 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4099 {
4100 	/*
4101 	 * We can accept userspace's request for interrupt injection
4102 	 * as long as we have a place to store the interrupt number.
4103 	 * The actual injection will happen when the CPU is able to
4104 	 * deliver the interrupt.
4105 	 */
4106 	if (kvm_cpu_has_extint(vcpu))
4107 		return false;
4108 
4109 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4110 	return (!lapic_in_kernel(vcpu) ||
4111 		kvm_apic_accept_pic_intr(vcpu));
4112 }
4113 
4114 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4115 {
4116 	return kvm_arch_interrupt_allowed(vcpu) &&
4117 		kvm_cpu_accept_dm_intr(vcpu);
4118 }
4119 
4120 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4121 				    struct kvm_interrupt *irq)
4122 {
4123 	if (irq->irq >= KVM_NR_INTERRUPTS)
4124 		return -EINVAL;
4125 
4126 	if (!irqchip_in_kernel(vcpu->kvm)) {
4127 		kvm_queue_interrupt(vcpu, irq->irq, false);
4128 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4129 		return 0;
4130 	}
4131 
4132 	/*
4133 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4134 	 * fail for in-kernel 8259.
4135 	 */
4136 	if (pic_in_kernel(vcpu->kvm))
4137 		return -ENXIO;
4138 
4139 	if (vcpu->arch.pending_external_vector != -1)
4140 		return -EEXIST;
4141 
4142 	vcpu->arch.pending_external_vector = irq->irq;
4143 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4144 	return 0;
4145 }
4146 
4147 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4148 {
4149 	kvm_inject_nmi(vcpu);
4150 
4151 	return 0;
4152 }
4153 
4154 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4155 {
4156 	kvm_make_request(KVM_REQ_SMI, vcpu);
4157 
4158 	return 0;
4159 }
4160 
4161 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4162 					   struct kvm_tpr_access_ctl *tac)
4163 {
4164 	if (tac->flags)
4165 		return -EINVAL;
4166 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
4167 	return 0;
4168 }
4169 
4170 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4171 					u64 mcg_cap)
4172 {
4173 	int r;
4174 	unsigned bank_num = mcg_cap & 0xff, bank;
4175 
4176 	r = -EINVAL;
4177 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4178 		goto out;
4179 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4180 		goto out;
4181 	r = 0;
4182 	vcpu->arch.mcg_cap = mcg_cap;
4183 	/* Init IA32_MCG_CTL to all 1s */
4184 	if (mcg_cap & MCG_CTL_P)
4185 		vcpu->arch.mcg_ctl = ~(u64)0;
4186 	/* Init IA32_MCi_CTL to all 1s */
4187 	for (bank = 0; bank < bank_num; bank++)
4188 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4189 
4190 	static_call(kvm_x86_setup_mce)(vcpu);
4191 out:
4192 	return r;
4193 }
4194 
4195 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4196 				      struct kvm_x86_mce *mce)
4197 {
4198 	u64 mcg_cap = vcpu->arch.mcg_cap;
4199 	unsigned bank_num = mcg_cap & 0xff;
4200 	u64 *banks = vcpu->arch.mce_banks;
4201 
4202 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4203 		return -EINVAL;
4204 	/*
4205 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4206 	 * reporting is disabled
4207 	 */
4208 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4209 	    vcpu->arch.mcg_ctl != ~(u64)0)
4210 		return 0;
4211 	banks += 4 * mce->bank;
4212 	/*
4213 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4214 	 * reporting is disabled for the bank
4215 	 */
4216 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4217 		return 0;
4218 	if (mce->status & MCI_STATUS_UC) {
4219 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4220 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4221 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4222 			return 0;
4223 		}
4224 		if (banks[1] & MCI_STATUS_VAL)
4225 			mce->status |= MCI_STATUS_OVER;
4226 		banks[2] = mce->addr;
4227 		banks[3] = mce->misc;
4228 		vcpu->arch.mcg_status = mce->mcg_status;
4229 		banks[1] = mce->status;
4230 		kvm_queue_exception(vcpu, MC_VECTOR);
4231 	} else if (!(banks[1] & MCI_STATUS_VAL)
4232 		   || !(banks[1] & MCI_STATUS_UC)) {
4233 		if (banks[1] & MCI_STATUS_VAL)
4234 			mce->status |= MCI_STATUS_OVER;
4235 		banks[2] = mce->addr;
4236 		banks[3] = mce->misc;
4237 		banks[1] = mce->status;
4238 	} else
4239 		banks[1] |= MCI_STATUS_OVER;
4240 	return 0;
4241 }
4242 
4243 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4244 					       struct kvm_vcpu_events *events)
4245 {
4246 	process_nmi(vcpu);
4247 
4248 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
4249 		process_smi(vcpu);
4250 
4251 	/*
4252 	 * In guest mode, payload delivery should be deferred,
4253 	 * so that the L1 hypervisor can intercept #PF before
4254 	 * CR2 is modified (or intercept #DB before DR6 is
4255 	 * modified under nVMX). Unless the per-VM capability,
4256 	 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4257 	 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4258 	 * opportunistically defer the exception payload, deliver it if the
4259 	 * capability hasn't been requested before processing a
4260 	 * KVM_GET_VCPU_EVENTS.
4261 	 */
4262 	if (!vcpu->kvm->arch.exception_payload_enabled &&
4263 	    vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4264 		kvm_deliver_exception_payload(vcpu);
4265 
4266 	/*
4267 	 * The API doesn't provide the instruction length for software
4268 	 * exceptions, so don't report them. As long as the guest RIP
4269 	 * isn't advanced, we should expect to encounter the exception
4270 	 * again.
4271 	 */
4272 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4273 		events->exception.injected = 0;
4274 		events->exception.pending = 0;
4275 	} else {
4276 		events->exception.injected = vcpu->arch.exception.injected;
4277 		events->exception.pending = vcpu->arch.exception.pending;
4278 		/*
4279 		 * For ABI compatibility, deliberately conflate
4280 		 * pending and injected exceptions when
4281 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4282 		 */
4283 		if (!vcpu->kvm->arch.exception_payload_enabled)
4284 			events->exception.injected |=
4285 				vcpu->arch.exception.pending;
4286 	}
4287 	events->exception.nr = vcpu->arch.exception.nr;
4288 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4289 	events->exception.error_code = vcpu->arch.exception.error_code;
4290 	events->exception_has_payload = vcpu->arch.exception.has_payload;
4291 	events->exception_payload = vcpu->arch.exception.payload;
4292 
4293 	events->interrupt.injected =
4294 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4295 	events->interrupt.nr = vcpu->arch.interrupt.nr;
4296 	events->interrupt.soft = 0;
4297 	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4298 
4299 	events->nmi.injected = vcpu->arch.nmi_injected;
4300 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
4301 	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4302 	events->nmi.pad = 0;
4303 
4304 	events->sipi_vector = 0; /* never valid when reporting to user space */
4305 
4306 	events->smi.smm = is_smm(vcpu);
4307 	events->smi.pending = vcpu->arch.smi_pending;
4308 	events->smi.smm_inside_nmi =
4309 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4310 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4311 
4312 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4313 			 | KVM_VCPUEVENT_VALID_SHADOW
4314 			 | KVM_VCPUEVENT_VALID_SMM);
4315 	if (vcpu->kvm->arch.exception_payload_enabled)
4316 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4317 
4318 	memset(&events->reserved, 0, sizeof(events->reserved));
4319 }
4320 
4321 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
4322 
4323 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4324 					      struct kvm_vcpu_events *events)
4325 {
4326 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4327 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4328 			      | KVM_VCPUEVENT_VALID_SHADOW
4329 			      | KVM_VCPUEVENT_VALID_SMM
4330 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
4331 		return -EINVAL;
4332 
4333 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4334 		if (!vcpu->kvm->arch.exception_payload_enabled)
4335 			return -EINVAL;
4336 		if (events->exception.pending)
4337 			events->exception.injected = 0;
4338 		else
4339 			events->exception_has_payload = 0;
4340 	} else {
4341 		events->exception.pending = 0;
4342 		events->exception_has_payload = 0;
4343 	}
4344 
4345 	if ((events->exception.injected || events->exception.pending) &&
4346 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4347 		return -EINVAL;
4348 
4349 	/* INITs are latched while in SMM */
4350 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4351 	    (events->smi.smm || events->smi.pending) &&
4352 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4353 		return -EINVAL;
4354 
4355 	process_nmi(vcpu);
4356 	vcpu->arch.exception.injected = events->exception.injected;
4357 	vcpu->arch.exception.pending = events->exception.pending;
4358 	vcpu->arch.exception.nr = events->exception.nr;
4359 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4360 	vcpu->arch.exception.error_code = events->exception.error_code;
4361 	vcpu->arch.exception.has_payload = events->exception_has_payload;
4362 	vcpu->arch.exception.payload = events->exception_payload;
4363 
4364 	vcpu->arch.interrupt.injected = events->interrupt.injected;
4365 	vcpu->arch.interrupt.nr = events->interrupt.nr;
4366 	vcpu->arch.interrupt.soft = events->interrupt.soft;
4367 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4368 		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4369 						events->interrupt.shadow);
4370 
4371 	vcpu->arch.nmi_injected = events->nmi.injected;
4372 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4373 		vcpu->arch.nmi_pending = events->nmi.pending;
4374 	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4375 
4376 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4377 	    lapic_in_kernel(vcpu))
4378 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
4379 
4380 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4381 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4382 			if (events->smi.smm)
4383 				vcpu->arch.hflags |= HF_SMM_MASK;
4384 			else
4385 				vcpu->arch.hflags &= ~HF_SMM_MASK;
4386 			kvm_smm_changed(vcpu);
4387 		}
4388 
4389 		vcpu->arch.smi_pending = events->smi.pending;
4390 
4391 		if (events->smi.smm) {
4392 			if (events->smi.smm_inside_nmi)
4393 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4394 			else
4395 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4396 		}
4397 
4398 		if (lapic_in_kernel(vcpu)) {
4399 			if (events->smi.latched_init)
4400 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4401 			else
4402 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4403 		}
4404 	}
4405 
4406 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4407 
4408 	return 0;
4409 }
4410 
4411 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4412 					     struct kvm_debugregs *dbgregs)
4413 {
4414 	unsigned long val;
4415 
4416 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4417 	kvm_get_dr(vcpu, 6, &val);
4418 	dbgregs->dr6 = val;
4419 	dbgregs->dr7 = vcpu->arch.dr7;
4420 	dbgregs->flags = 0;
4421 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4422 }
4423 
4424 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4425 					    struct kvm_debugregs *dbgregs)
4426 {
4427 	if (dbgregs->flags)
4428 		return -EINVAL;
4429 
4430 	if (!kvm_dr6_valid(dbgregs->dr6))
4431 		return -EINVAL;
4432 	if (!kvm_dr7_valid(dbgregs->dr7))
4433 		return -EINVAL;
4434 
4435 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4436 	kvm_update_dr0123(vcpu);
4437 	vcpu->arch.dr6 = dbgregs->dr6;
4438 	vcpu->arch.dr7 = dbgregs->dr7;
4439 	kvm_update_dr7(vcpu);
4440 
4441 	return 0;
4442 }
4443 
4444 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4445 
4446 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4447 {
4448 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4449 	u64 xstate_bv = xsave->header.xfeatures;
4450 	u64 valid;
4451 
4452 	/*
4453 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4454 	 * leaves 0 and 1 in the loop below.
4455 	 */
4456 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4457 
4458 	/* Set XSTATE_BV */
4459 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4460 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4461 
4462 	/*
4463 	 * Copy each region from the possibly compacted offset to the
4464 	 * non-compacted offset.
4465 	 */
4466 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4467 	while (valid) {
4468 		u64 xfeature_mask = valid & -valid;
4469 		int xfeature_nr = fls64(xfeature_mask) - 1;
4470 		void *src = get_xsave_addr(xsave, xfeature_nr);
4471 
4472 		if (src) {
4473 			u32 size, offset, ecx, edx;
4474 			cpuid_count(XSTATE_CPUID, xfeature_nr,
4475 				    &size, &offset, &ecx, &edx);
4476 			if (xfeature_nr == XFEATURE_PKRU)
4477 				memcpy(dest + offset, &vcpu->arch.pkru,
4478 				       sizeof(vcpu->arch.pkru));
4479 			else
4480 				memcpy(dest + offset, src, size);
4481 
4482 		}
4483 
4484 		valid -= xfeature_mask;
4485 	}
4486 }
4487 
4488 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4489 {
4490 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4491 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4492 	u64 valid;
4493 
4494 	/*
4495 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4496 	 * leaves 0 and 1 in the loop below.
4497 	 */
4498 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
4499 
4500 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
4501 	xsave->header.xfeatures = xstate_bv;
4502 	if (boot_cpu_has(X86_FEATURE_XSAVES))
4503 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4504 
4505 	/*
4506 	 * Copy each region from the non-compacted offset to the
4507 	 * possibly compacted offset.
4508 	 */
4509 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4510 	while (valid) {
4511 		u64 xfeature_mask = valid & -valid;
4512 		int xfeature_nr = fls64(xfeature_mask) - 1;
4513 		void *dest = get_xsave_addr(xsave, xfeature_nr);
4514 
4515 		if (dest) {
4516 			u32 size, offset, ecx, edx;
4517 			cpuid_count(XSTATE_CPUID, xfeature_nr,
4518 				    &size, &offset, &ecx, &edx);
4519 			if (xfeature_nr == XFEATURE_PKRU)
4520 				memcpy(&vcpu->arch.pkru, src + offset,
4521 				       sizeof(vcpu->arch.pkru));
4522 			else
4523 				memcpy(dest, src + offset, size);
4524 		}
4525 
4526 		valid -= xfeature_mask;
4527 	}
4528 }
4529 
4530 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4531 					 struct kvm_xsave *guest_xsave)
4532 {
4533 	if (!vcpu->arch.guest_fpu)
4534 		return;
4535 
4536 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4537 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4538 		fill_xsave((u8 *) guest_xsave->region, vcpu);
4539 	} else {
4540 		memcpy(guest_xsave->region,
4541 			&vcpu->arch.guest_fpu->state.fxsave,
4542 			sizeof(struct fxregs_state));
4543 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4544 			XFEATURE_MASK_FPSSE;
4545 	}
4546 }
4547 
4548 #define XSAVE_MXCSR_OFFSET 24
4549 
4550 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4551 					struct kvm_xsave *guest_xsave)
4552 {
4553 	u64 xstate_bv;
4554 	u32 mxcsr;
4555 
4556 	if (!vcpu->arch.guest_fpu)
4557 		return 0;
4558 
4559 	xstate_bv = *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4560 	mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4561 
4562 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4563 		/*
4564 		 * Here we allow setting states that are not present in
4565 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4566 		 * with old userspace.
4567 		 */
4568 		if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4569 			return -EINVAL;
4570 		load_xsave(vcpu, (u8 *)guest_xsave->region);
4571 	} else {
4572 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4573 			mxcsr & ~mxcsr_feature_mask)
4574 			return -EINVAL;
4575 		memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4576 			guest_xsave->region, sizeof(struct fxregs_state));
4577 	}
4578 	return 0;
4579 }
4580 
4581 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4582 					struct kvm_xcrs *guest_xcrs)
4583 {
4584 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4585 		guest_xcrs->nr_xcrs = 0;
4586 		return;
4587 	}
4588 
4589 	guest_xcrs->nr_xcrs = 1;
4590 	guest_xcrs->flags = 0;
4591 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4592 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4593 }
4594 
4595 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4596 				       struct kvm_xcrs *guest_xcrs)
4597 {
4598 	int i, r = 0;
4599 
4600 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
4601 		return -EINVAL;
4602 
4603 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4604 		return -EINVAL;
4605 
4606 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4607 		/* Only support XCR0 currently */
4608 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4609 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4610 				guest_xcrs->xcrs[i].value);
4611 			break;
4612 		}
4613 	if (r)
4614 		r = -EINVAL;
4615 	return r;
4616 }
4617 
4618 /*
4619  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4620  * stopped by the hypervisor.  This function will be called from the host only.
4621  * EINVAL is returned when the host attempts to set the flag for a guest that
4622  * does not support pv clocks.
4623  */
4624 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4625 {
4626 	if (!vcpu->arch.pv_time_enabled)
4627 		return -EINVAL;
4628 	vcpu->arch.pvclock_set_guest_stopped_request = true;
4629 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4630 	return 0;
4631 }
4632 
4633 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4634 				     struct kvm_enable_cap *cap)
4635 {
4636 	int r;
4637 	uint16_t vmcs_version;
4638 	void __user *user_ptr;
4639 
4640 	if (cap->flags)
4641 		return -EINVAL;
4642 
4643 	switch (cap->cap) {
4644 	case KVM_CAP_HYPERV_SYNIC2:
4645 		if (cap->args[0])
4646 			return -EINVAL;
4647 		fallthrough;
4648 
4649 	case KVM_CAP_HYPERV_SYNIC:
4650 		if (!irqchip_in_kernel(vcpu->kvm))
4651 			return -EINVAL;
4652 		return kvm_hv_activate_synic(vcpu, cap->cap ==
4653 					     KVM_CAP_HYPERV_SYNIC2);
4654 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4655 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
4656 			return -ENOTTY;
4657 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4658 		if (!r) {
4659 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
4660 			if (copy_to_user(user_ptr, &vmcs_version,
4661 					 sizeof(vmcs_version)))
4662 				r = -EFAULT;
4663 		}
4664 		return r;
4665 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4666 		if (!kvm_x86_ops.enable_direct_tlbflush)
4667 			return -ENOTTY;
4668 
4669 		return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
4670 
4671 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4672 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
4673 		if (vcpu->arch.pv_cpuid.enforce)
4674 			kvm_update_pv_runtime(vcpu);
4675 
4676 		return 0;
4677 
4678 	default:
4679 		return -EINVAL;
4680 	}
4681 }
4682 
4683 long kvm_arch_vcpu_ioctl(struct file *filp,
4684 			 unsigned int ioctl, unsigned long arg)
4685 {
4686 	struct kvm_vcpu *vcpu = filp->private_data;
4687 	void __user *argp = (void __user *)arg;
4688 	int r;
4689 	union {
4690 		struct kvm_lapic_state *lapic;
4691 		struct kvm_xsave *xsave;
4692 		struct kvm_xcrs *xcrs;
4693 		void *buffer;
4694 	} u;
4695 
4696 	vcpu_load(vcpu);
4697 
4698 	u.buffer = NULL;
4699 	switch (ioctl) {
4700 	case KVM_GET_LAPIC: {
4701 		r = -EINVAL;
4702 		if (!lapic_in_kernel(vcpu))
4703 			goto out;
4704 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4705 				GFP_KERNEL_ACCOUNT);
4706 
4707 		r = -ENOMEM;
4708 		if (!u.lapic)
4709 			goto out;
4710 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4711 		if (r)
4712 			goto out;
4713 		r = -EFAULT;
4714 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4715 			goto out;
4716 		r = 0;
4717 		break;
4718 	}
4719 	case KVM_SET_LAPIC: {
4720 		r = -EINVAL;
4721 		if (!lapic_in_kernel(vcpu))
4722 			goto out;
4723 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
4724 		if (IS_ERR(u.lapic)) {
4725 			r = PTR_ERR(u.lapic);
4726 			goto out_nofree;
4727 		}
4728 
4729 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4730 		break;
4731 	}
4732 	case KVM_INTERRUPT: {
4733 		struct kvm_interrupt irq;
4734 
4735 		r = -EFAULT;
4736 		if (copy_from_user(&irq, argp, sizeof(irq)))
4737 			goto out;
4738 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4739 		break;
4740 	}
4741 	case KVM_NMI: {
4742 		r = kvm_vcpu_ioctl_nmi(vcpu);
4743 		break;
4744 	}
4745 	case KVM_SMI: {
4746 		r = kvm_vcpu_ioctl_smi(vcpu);
4747 		break;
4748 	}
4749 	case KVM_SET_CPUID: {
4750 		struct kvm_cpuid __user *cpuid_arg = argp;
4751 		struct kvm_cpuid cpuid;
4752 
4753 		r = -EFAULT;
4754 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4755 			goto out;
4756 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4757 		break;
4758 	}
4759 	case KVM_SET_CPUID2: {
4760 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4761 		struct kvm_cpuid2 cpuid;
4762 
4763 		r = -EFAULT;
4764 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4765 			goto out;
4766 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4767 					      cpuid_arg->entries);
4768 		break;
4769 	}
4770 	case KVM_GET_CPUID2: {
4771 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4772 		struct kvm_cpuid2 cpuid;
4773 
4774 		r = -EFAULT;
4775 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4776 			goto out;
4777 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4778 					      cpuid_arg->entries);
4779 		if (r)
4780 			goto out;
4781 		r = -EFAULT;
4782 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4783 			goto out;
4784 		r = 0;
4785 		break;
4786 	}
4787 	case KVM_GET_MSRS: {
4788 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4789 		r = msr_io(vcpu, argp, do_get_msr, 1);
4790 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4791 		break;
4792 	}
4793 	case KVM_SET_MSRS: {
4794 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4795 		r = msr_io(vcpu, argp, do_set_msr, 0);
4796 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4797 		break;
4798 	}
4799 	case KVM_TPR_ACCESS_REPORTING: {
4800 		struct kvm_tpr_access_ctl tac;
4801 
4802 		r = -EFAULT;
4803 		if (copy_from_user(&tac, argp, sizeof(tac)))
4804 			goto out;
4805 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4806 		if (r)
4807 			goto out;
4808 		r = -EFAULT;
4809 		if (copy_to_user(argp, &tac, sizeof(tac)))
4810 			goto out;
4811 		r = 0;
4812 		break;
4813 	};
4814 	case KVM_SET_VAPIC_ADDR: {
4815 		struct kvm_vapic_addr va;
4816 		int idx;
4817 
4818 		r = -EINVAL;
4819 		if (!lapic_in_kernel(vcpu))
4820 			goto out;
4821 		r = -EFAULT;
4822 		if (copy_from_user(&va, argp, sizeof(va)))
4823 			goto out;
4824 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4825 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4826 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4827 		break;
4828 	}
4829 	case KVM_X86_SETUP_MCE: {
4830 		u64 mcg_cap;
4831 
4832 		r = -EFAULT;
4833 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4834 			goto out;
4835 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4836 		break;
4837 	}
4838 	case KVM_X86_SET_MCE: {
4839 		struct kvm_x86_mce mce;
4840 
4841 		r = -EFAULT;
4842 		if (copy_from_user(&mce, argp, sizeof(mce)))
4843 			goto out;
4844 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4845 		break;
4846 	}
4847 	case KVM_GET_VCPU_EVENTS: {
4848 		struct kvm_vcpu_events events;
4849 
4850 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4851 
4852 		r = -EFAULT;
4853 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4854 			break;
4855 		r = 0;
4856 		break;
4857 	}
4858 	case KVM_SET_VCPU_EVENTS: {
4859 		struct kvm_vcpu_events events;
4860 
4861 		r = -EFAULT;
4862 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4863 			break;
4864 
4865 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4866 		break;
4867 	}
4868 	case KVM_GET_DEBUGREGS: {
4869 		struct kvm_debugregs dbgregs;
4870 
4871 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4872 
4873 		r = -EFAULT;
4874 		if (copy_to_user(argp, &dbgregs,
4875 				 sizeof(struct kvm_debugregs)))
4876 			break;
4877 		r = 0;
4878 		break;
4879 	}
4880 	case KVM_SET_DEBUGREGS: {
4881 		struct kvm_debugregs dbgregs;
4882 
4883 		r = -EFAULT;
4884 		if (copy_from_user(&dbgregs, argp,
4885 				   sizeof(struct kvm_debugregs)))
4886 			break;
4887 
4888 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4889 		break;
4890 	}
4891 	case KVM_GET_XSAVE: {
4892 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4893 		r = -ENOMEM;
4894 		if (!u.xsave)
4895 			break;
4896 
4897 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4898 
4899 		r = -EFAULT;
4900 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4901 			break;
4902 		r = 0;
4903 		break;
4904 	}
4905 	case KVM_SET_XSAVE: {
4906 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
4907 		if (IS_ERR(u.xsave)) {
4908 			r = PTR_ERR(u.xsave);
4909 			goto out_nofree;
4910 		}
4911 
4912 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4913 		break;
4914 	}
4915 	case KVM_GET_XCRS: {
4916 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4917 		r = -ENOMEM;
4918 		if (!u.xcrs)
4919 			break;
4920 
4921 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4922 
4923 		r = -EFAULT;
4924 		if (copy_to_user(argp, u.xcrs,
4925 				 sizeof(struct kvm_xcrs)))
4926 			break;
4927 		r = 0;
4928 		break;
4929 	}
4930 	case KVM_SET_XCRS: {
4931 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4932 		if (IS_ERR(u.xcrs)) {
4933 			r = PTR_ERR(u.xcrs);
4934 			goto out_nofree;
4935 		}
4936 
4937 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4938 		break;
4939 	}
4940 	case KVM_SET_TSC_KHZ: {
4941 		u32 user_tsc_khz;
4942 
4943 		r = -EINVAL;
4944 		user_tsc_khz = (u32)arg;
4945 
4946 		if (kvm_has_tsc_control &&
4947 		    user_tsc_khz >= kvm_max_guest_tsc_khz)
4948 			goto out;
4949 
4950 		if (user_tsc_khz == 0)
4951 			user_tsc_khz = tsc_khz;
4952 
4953 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4954 			r = 0;
4955 
4956 		goto out;
4957 	}
4958 	case KVM_GET_TSC_KHZ: {
4959 		r = vcpu->arch.virtual_tsc_khz;
4960 		goto out;
4961 	}
4962 	case KVM_KVMCLOCK_CTRL: {
4963 		r = kvm_set_guest_paused(vcpu);
4964 		goto out;
4965 	}
4966 	case KVM_ENABLE_CAP: {
4967 		struct kvm_enable_cap cap;
4968 
4969 		r = -EFAULT;
4970 		if (copy_from_user(&cap, argp, sizeof(cap)))
4971 			goto out;
4972 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4973 		break;
4974 	}
4975 	case KVM_GET_NESTED_STATE: {
4976 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4977 		u32 user_data_size;
4978 
4979 		r = -EINVAL;
4980 		if (!kvm_x86_ops.nested_ops->get_state)
4981 			break;
4982 
4983 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4984 		r = -EFAULT;
4985 		if (get_user(user_data_size, &user_kvm_nested_state->size))
4986 			break;
4987 
4988 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
4989 						     user_data_size);
4990 		if (r < 0)
4991 			break;
4992 
4993 		if (r > user_data_size) {
4994 			if (put_user(r, &user_kvm_nested_state->size))
4995 				r = -EFAULT;
4996 			else
4997 				r = -E2BIG;
4998 			break;
4999 		}
5000 
5001 		r = 0;
5002 		break;
5003 	}
5004 	case KVM_SET_NESTED_STATE: {
5005 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5006 		struct kvm_nested_state kvm_state;
5007 		int idx;
5008 
5009 		r = -EINVAL;
5010 		if (!kvm_x86_ops.nested_ops->set_state)
5011 			break;
5012 
5013 		r = -EFAULT;
5014 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5015 			break;
5016 
5017 		r = -EINVAL;
5018 		if (kvm_state.size < sizeof(kvm_state))
5019 			break;
5020 
5021 		if (kvm_state.flags &
5022 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5023 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5024 		      | KVM_STATE_NESTED_GIF_SET))
5025 			break;
5026 
5027 		/* nested_run_pending implies guest_mode.  */
5028 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5029 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5030 			break;
5031 
5032 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5033 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5034 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5035 		break;
5036 	}
5037 	case KVM_GET_SUPPORTED_HV_CPUID:
5038 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5039 		break;
5040 #ifdef CONFIG_KVM_XEN
5041 	case KVM_XEN_VCPU_GET_ATTR: {
5042 		struct kvm_xen_vcpu_attr xva;
5043 
5044 		r = -EFAULT;
5045 		if (copy_from_user(&xva, argp, sizeof(xva)))
5046 			goto out;
5047 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5048 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5049 			r = -EFAULT;
5050 		break;
5051 	}
5052 	case KVM_XEN_VCPU_SET_ATTR: {
5053 		struct kvm_xen_vcpu_attr xva;
5054 
5055 		r = -EFAULT;
5056 		if (copy_from_user(&xva, argp, sizeof(xva)))
5057 			goto out;
5058 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5059 		break;
5060 	}
5061 #endif
5062 	default:
5063 		r = -EINVAL;
5064 	}
5065 out:
5066 	kfree(u.buffer);
5067 out_nofree:
5068 	vcpu_put(vcpu);
5069 	return r;
5070 }
5071 
5072 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5073 {
5074 	return VM_FAULT_SIGBUS;
5075 }
5076 
5077 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5078 {
5079 	int ret;
5080 
5081 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
5082 		return -EINVAL;
5083 	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5084 	return ret;
5085 }
5086 
5087 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5088 					      u64 ident_addr)
5089 {
5090 	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5091 }
5092 
5093 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5094 					 unsigned long kvm_nr_mmu_pages)
5095 {
5096 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5097 		return -EINVAL;
5098 
5099 	mutex_lock(&kvm->slots_lock);
5100 
5101 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5102 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5103 
5104 	mutex_unlock(&kvm->slots_lock);
5105 	return 0;
5106 }
5107 
5108 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5109 {
5110 	return kvm->arch.n_max_mmu_pages;
5111 }
5112 
5113 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5114 {
5115 	struct kvm_pic *pic = kvm->arch.vpic;
5116 	int r;
5117 
5118 	r = 0;
5119 	switch (chip->chip_id) {
5120 	case KVM_IRQCHIP_PIC_MASTER:
5121 		memcpy(&chip->chip.pic, &pic->pics[0],
5122 			sizeof(struct kvm_pic_state));
5123 		break;
5124 	case KVM_IRQCHIP_PIC_SLAVE:
5125 		memcpy(&chip->chip.pic, &pic->pics[1],
5126 			sizeof(struct kvm_pic_state));
5127 		break;
5128 	case KVM_IRQCHIP_IOAPIC:
5129 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
5130 		break;
5131 	default:
5132 		r = -EINVAL;
5133 		break;
5134 	}
5135 	return r;
5136 }
5137 
5138 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5139 {
5140 	struct kvm_pic *pic = kvm->arch.vpic;
5141 	int r;
5142 
5143 	r = 0;
5144 	switch (chip->chip_id) {
5145 	case KVM_IRQCHIP_PIC_MASTER:
5146 		spin_lock(&pic->lock);
5147 		memcpy(&pic->pics[0], &chip->chip.pic,
5148 			sizeof(struct kvm_pic_state));
5149 		spin_unlock(&pic->lock);
5150 		break;
5151 	case KVM_IRQCHIP_PIC_SLAVE:
5152 		spin_lock(&pic->lock);
5153 		memcpy(&pic->pics[1], &chip->chip.pic,
5154 			sizeof(struct kvm_pic_state));
5155 		spin_unlock(&pic->lock);
5156 		break;
5157 	case KVM_IRQCHIP_IOAPIC:
5158 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
5159 		break;
5160 	default:
5161 		r = -EINVAL;
5162 		break;
5163 	}
5164 	kvm_pic_update_irq(pic);
5165 	return r;
5166 }
5167 
5168 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5169 {
5170 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5171 
5172 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5173 
5174 	mutex_lock(&kps->lock);
5175 	memcpy(ps, &kps->channels, sizeof(*ps));
5176 	mutex_unlock(&kps->lock);
5177 	return 0;
5178 }
5179 
5180 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5181 {
5182 	int i;
5183 	struct kvm_pit *pit = kvm->arch.vpit;
5184 
5185 	mutex_lock(&pit->pit_state.lock);
5186 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5187 	for (i = 0; i < 3; i++)
5188 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5189 	mutex_unlock(&pit->pit_state.lock);
5190 	return 0;
5191 }
5192 
5193 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5194 {
5195 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
5196 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5197 		sizeof(ps->channels));
5198 	ps->flags = kvm->arch.vpit->pit_state.flags;
5199 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5200 	memset(&ps->reserved, 0, sizeof(ps->reserved));
5201 	return 0;
5202 }
5203 
5204 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5205 {
5206 	int start = 0;
5207 	int i;
5208 	u32 prev_legacy, cur_legacy;
5209 	struct kvm_pit *pit = kvm->arch.vpit;
5210 
5211 	mutex_lock(&pit->pit_state.lock);
5212 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5213 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5214 	if (!prev_legacy && cur_legacy)
5215 		start = 1;
5216 	memcpy(&pit->pit_state.channels, &ps->channels,
5217 	       sizeof(pit->pit_state.channels));
5218 	pit->pit_state.flags = ps->flags;
5219 	for (i = 0; i < 3; i++)
5220 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5221 				   start && i == 0);
5222 	mutex_unlock(&pit->pit_state.lock);
5223 	return 0;
5224 }
5225 
5226 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5227 				 struct kvm_reinject_control *control)
5228 {
5229 	struct kvm_pit *pit = kvm->arch.vpit;
5230 
5231 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
5232 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5233 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5234 	 */
5235 	mutex_lock(&pit->pit_state.lock);
5236 	kvm_pit_set_reinject(pit, control->pit_reinject);
5237 	mutex_unlock(&pit->pit_state.lock);
5238 
5239 	return 0;
5240 }
5241 
5242 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5243 {
5244 
5245 	/*
5246 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
5247 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
5248 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
5249 	 * VM-Exit.
5250 	 */
5251 	struct kvm_vcpu *vcpu;
5252 	int i;
5253 
5254 	kvm_for_each_vcpu(i, vcpu, kvm)
5255 		kvm_vcpu_kick(vcpu);
5256 }
5257 
5258 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5259 			bool line_status)
5260 {
5261 	if (!irqchip_in_kernel(kvm))
5262 		return -ENXIO;
5263 
5264 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5265 					irq_event->irq, irq_event->level,
5266 					line_status);
5267 	return 0;
5268 }
5269 
5270 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5271 			    struct kvm_enable_cap *cap)
5272 {
5273 	int r;
5274 
5275 	if (cap->flags)
5276 		return -EINVAL;
5277 
5278 	switch (cap->cap) {
5279 	case KVM_CAP_DISABLE_QUIRKS:
5280 		kvm->arch.disabled_quirks = cap->args[0];
5281 		r = 0;
5282 		break;
5283 	case KVM_CAP_SPLIT_IRQCHIP: {
5284 		mutex_lock(&kvm->lock);
5285 		r = -EINVAL;
5286 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5287 			goto split_irqchip_unlock;
5288 		r = -EEXIST;
5289 		if (irqchip_in_kernel(kvm))
5290 			goto split_irqchip_unlock;
5291 		if (kvm->created_vcpus)
5292 			goto split_irqchip_unlock;
5293 		r = kvm_setup_empty_irq_routing(kvm);
5294 		if (r)
5295 			goto split_irqchip_unlock;
5296 		/* Pairs with irqchip_in_kernel. */
5297 		smp_wmb();
5298 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5299 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5300 		r = 0;
5301 split_irqchip_unlock:
5302 		mutex_unlock(&kvm->lock);
5303 		break;
5304 	}
5305 	case KVM_CAP_X2APIC_API:
5306 		r = -EINVAL;
5307 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5308 			break;
5309 
5310 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5311 			kvm->arch.x2apic_format = true;
5312 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5313 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
5314 
5315 		r = 0;
5316 		break;
5317 	case KVM_CAP_X86_DISABLE_EXITS:
5318 		r = -EINVAL;
5319 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5320 			break;
5321 
5322 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5323 			kvm_can_mwait_in_guest())
5324 			kvm->arch.mwait_in_guest = true;
5325 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5326 			kvm->arch.hlt_in_guest = true;
5327 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5328 			kvm->arch.pause_in_guest = true;
5329 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5330 			kvm->arch.cstate_in_guest = true;
5331 		r = 0;
5332 		break;
5333 	case KVM_CAP_MSR_PLATFORM_INFO:
5334 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5335 		r = 0;
5336 		break;
5337 	case KVM_CAP_EXCEPTION_PAYLOAD:
5338 		kvm->arch.exception_payload_enabled = cap->args[0];
5339 		r = 0;
5340 		break;
5341 	case KVM_CAP_X86_USER_SPACE_MSR:
5342 		kvm->arch.user_space_msr_mask = cap->args[0];
5343 		r = 0;
5344 		break;
5345 	case KVM_CAP_X86_BUS_LOCK_EXIT:
5346 		r = -EINVAL;
5347 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5348 			break;
5349 
5350 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5351 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5352 			break;
5353 
5354 		if (kvm_has_bus_lock_exit &&
5355 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5356 			kvm->arch.bus_lock_detection_enabled = true;
5357 		r = 0;
5358 		break;
5359 	default:
5360 		r = -EINVAL;
5361 		break;
5362 	}
5363 	return r;
5364 }
5365 
5366 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
5367 {
5368 	struct kvm_x86_msr_filter *msr_filter;
5369 
5370 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
5371 	if (!msr_filter)
5372 		return NULL;
5373 
5374 	msr_filter->default_allow = default_allow;
5375 	return msr_filter;
5376 }
5377 
5378 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
5379 {
5380 	u32 i;
5381 
5382 	if (!msr_filter)
5383 		return;
5384 
5385 	for (i = 0; i < msr_filter->count; i++)
5386 		kfree(msr_filter->ranges[i].bitmap);
5387 
5388 	kfree(msr_filter);
5389 }
5390 
5391 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
5392 			      struct kvm_msr_filter_range *user_range)
5393 {
5394 	struct msr_bitmap_range range;
5395 	unsigned long *bitmap = NULL;
5396 	size_t bitmap_size;
5397 	int r;
5398 
5399 	if (!user_range->nmsrs)
5400 		return 0;
5401 
5402 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5403 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5404 		return -EINVAL;
5405 
5406 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5407 	if (IS_ERR(bitmap))
5408 		return PTR_ERR(bitmap);
5409 
5410 	range = (struct msr_bitmap_range) {
5411 		.flags = user_range->flags,
5412 		.base = user_range->base,
5413 		.nmsrs = user_range->nmsrs,
5414 		.bitmap = bitmap,
5415 	};
5416 
5417 	if (range.flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) {
5418 		r = -EINVAL;
5419 		goto err;
5420 	}
5421 
5422 	if (!range.flags) {
5423 		r = -EINVAL;
5424 		goto err;
5425 	}
5426 
5427 	/* Everything ok, add this range identifier. */
5428 	msr_filter->ranges[msr_filter->count] = range;
5429 	msr_filter->count++;
5430 
5431 	return 0;
5432 err:
5433 	kfree(bitmap);
5434 	return r;
5435 }
5436 
5437 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5438 {
5439 	struct kvm_msr_filter __user *user_msr_filter = argp;
5440 	struct kvm_x86_msr_filter *new_filter, *old_filter;
5441 	struct kvm_msr_filter filter;
5442 	bool default_allow;
5443 	bool empty = true;
5444 	int r = 0;
5445 	u32 i;
5446 
5447 	if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5448 		return -EFAULT;
5449 
5450 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5451 		empty &= !filter.ranges[i].nmsrs;
5452 
5453 	default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5454 	if (empty && !default_allow)
5455 		return -EINVAL;
5456 
5457 	new_filter = kvm_alloc_msr_filter(default_allow);
5458 	if (!new_filter)
5459 		return -ENOMEM;
5460 
5461 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5462 		r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
5463 		if (r) {
5464 			kvm_free_msr_filter(new_filter);
5465 			return r;
5466 		}
5467 	}
5468 
5469 	mutex_lock(&kvm->lock);
5470 
5471 	/* The per-VM filter is protected by kvm->lock... */
5472 	old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
5473 
5474 	rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
5475 	synchronize_srcu(&kvm->srcu);
5476 
5477 	kvm_free_msr_filter(old_filter);
5478 
5479 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5480 	mutex_unlock(&kvm->lock);
5481 
5482 	return 0;
5483 }
5484 
5485 long kvm_arch_vm_ioctl(struct file *filp,
5486 		       unsigned int ioctl, unsigned long arg)
5487 {
5488 	struct kvm *kvm = filp->private_data;
5489 	void __user *argp = (void __user *)arg;
5490 	int r = -ENOTTY;
5491 	/*
5492 	 * This union makes it completely explicit to gcc-3.x
5493 	 * that these two variables' stack usage should be
5494 	 * combined, not added together.
5495 	 */
5496 	union {
5497 		struct kvm_pit_state ps;
5498 		struct kvm_pit_state2 ps2;
5499 		struct kvm_pit_config pit_config;
5500 	} u;
5501 
5502 	switch (ioctl) {
5503 	case KVM_SET_TSS_ADDR:
5504 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5505 		break;
5506 	case KVM_SET_IDENTITY_MAP_ADDR: {
5507 		u64 ident_addr;
5508 
5509 		mutex_lock(&kvm->lock);
5510 		r = -EINVAL;
5511 		if (kvm->created_vcpus)
5512 			goto set_identity_unlock;
5513 		r = -EFAULT;
5514 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5515 			goto set_identity_unlock;
5516 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5517 set_identity_unlock:
5518 		mutex_unlock(&kvm->lock);
5519 		break;
5520 	}
5521 	case KVM_SET_NR_MMU_PAGES:
5522 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5523 		break;
5524 	case KVM_GET_NR_MMU_PAGES:
5525 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5526 		break;
5527 	case KVM_CREATE_IRQCHIP: {
5528 		mutex_lock(&kvm->lock);
5529 
5530 		r = -EEXIST;
5531 		if (irqchip_in_kernel(kvm))
5532 			goto create_irqchip_unlock;
5533 
5534 		r = -EINVAL;
5535 		if (kvm->created_vcpus)
5536 			goto create_irqchip_unlock;
5537 
5538 		r = kvm_pic_init(kvm);
5539 		if (r)
5540 			goto create_irqchip_unlock;
5541 
5542 		r = kvm_ioapic_init(kvm);
5543 		if (r) {
5544 			kvm_pic_destroy(kvm);
5545 			goto create_irqchip_unlock;
5546 		}
5547 
5548 		r = kvm_setup_default_irq_routing(kvm);
5549 		if (r) {
5550 			kvm_ioapic_destroy(kvm);
5551 			kvm_pic_destroy(kvm);
5552 			goto create_irqchip_unlock;
5553 		}
5554 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5555 		smp_wmb();
5556 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5557 	create_irqchip_unlock:
5558 		mutex_unlock(&kvm->lock);
5559 		break;
5560 	}
5561 	case KVM_CREATE_PIT:
5562 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5563 		goto create_pit;
5564 	case KVM_CREATE_PIT2:
5565 		r = -EFAULT;
5566 		if (copy_from_user(&u.pit_config, argp,
5567 				   sizeof(struct kvm_pit_config)))
5568 			goto out;
5569 	create_pit:
5570 		mutex_lock(&kvm->lock);
5571 		r = -EEXIST;
5572 		if (kvm->arch.vpit)
5573 			goto create_pit_unlock;
5574 		r = -ENOMEM;
5575 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5576 		if (kvm->arch.vpit)
5577 			r = 0;
5578 	create_pit_unlock:
5579 		mutex_unlock(&kvm->lock);
5580 		break;
5581 	case KVM_GET_IRQCHIP: {
5582 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5583 		struct kvm_irqchip *chip;
5584 
5585 		chip = memdup_user(argp, sizeof(*chip));
5586 		if (IS_ERR(chip)) {
5587 			r = PTR_ERR(chip);
5588 			goto out;
5589 		}
5590 
5591 		r = -ENXIO;
5592 		if (!irqchip_kernel(kvm))
5593 			goto get_irqchip_out;
5594 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5595 		if (r)
5596 			goto get_irqchip_out;
5597 		r = -EFAULT;
5598 		if (copy_to_user(argp, chip, sizeof(*chip)))
5599 			goto get_irqchip_out;
5600 		r = 0;
5601 	get_irqchip_out:
5602 		kfree(chip);
5603 		break;
5604 	}
5605 	case KVM_SET_IRQCHIP: {
5606 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5607 		struct kvm_irqchip *chip;
5608 
5609 		chip = memdup_user(argp, sizeof(*chip));
5610 		if (IS_ERR(chip)) {
5611 			r = PTR_ERR(chip);
5612 			goto out;
5613 		}
5614 
5615 		r = -ENXIO;
5616 		if (!irqchip_kernel(kvm))
5617 			goto set_irqchip_out;
5618 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5619 	set_irqchip_out:
5620 		kfree(chip);
5621 		break;
5622 	}
5623 	case KVM_GET_PIT: {
5624 		r = -EFAULT;
5625 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5626 			goto out;
5627 		r = -ENXIO;
5628 		if (!kvm->arch.vpit)
5629 			goto out;
5630 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5631 		if (r)
5632 			goto out;
5633 		r = -EFAULT;
5634 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5635 			goto out;
5636 		r = 0;
5637 		break;
5638 	}
5639 	case KVM_SET_PIT: {
5640 		r = -EFAULT;
5641 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5642 			goto out;
5643 		mutex_lock(&kvm->lock);
5644 		r = -ENXIO;
5645 		if (!kvm->arch.vpit)
5646 			goto set_pit_out;
5647 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5648 set_pit_out:
5649 		mutex_unlock(&kvm->lock);
5650 		break;
5651 	}
5652 	case KVM_GET_PIT2: {
5653 		r = -ENXIO;
5654 		if (!kvm->arch.vpit)
5655 			goto out;
5656 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5657 		if (r)
5658 			goto out;
5659 		r = -EFAULT;
5660 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5661 			goto out;
5662 		r = 0;
5663 		break;
5664 	}
5665 	case KVM_SET_PIT2: {
5666 		r = -EFAULT;
5667 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5668 			goto out;
5669 		mutex_lock(&kvm->lock);
5670 		r = -ENXIO;
5671 		if (!kvm->arch.vpit)
5672 			goto set_pit2_out;
5673 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5674 set_pit2_out:
5675 		mutex_unlock(&kvm->lock);
5676 		break;
5677 	}
5678 	case KVM_REINJECT_CONTROL: {
5679 		struct kvm_reinject_control control;
5680 		r =  -EFAULT;
5681 		if (copy_from_user(&control, argp, sizeof(control)))
5682 			goto out;
5683 		r = -ENXIO;
5684 		if (!kvm->arch.vpit)
5685 			goto out;
5686 		r = kvm_vm_ioctl_reinject(kvm, &control);
5687 		break;
5688 	}
5689 	case KVM_SET_BOOT_CPU_ID:
5690 		r = 0;
5691 		mutex_lock(&kvm->lock);
5692 		if (kvm->created_vcpus)
5693 			r = -EBUSY;
5694 		else
5695 			kvm->arch.bsp_vcpu_id = arg;
5696 		mutex_unlock(&kvm->lock);
5697 		break;
5698 #ifdef CONFIG_KVM_XEN
5699 	case KVM_XEN_HVM_CONFIG: {
5700 		struct kvm_xen_hvm_config xhc;
5701 		r = -EFAULT;
5702 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
5703 			goto out;
5704 		r = kvm_xen_hvm_config(kvm, &xhc);
5705 		break;
5706 	}
5707 	case KVM_XEN_HVM_GET_ATTR: {
5708 		struct kvm_xen_hvm_attr xha;
5709 
5710 		r = -EFAULT;
5711 		if (copy_from_user(&xha, argp, sizeof(xha)))
5712 			goto out;
5713 		r = kvm_xen_hvm_get_attr(kvm, &xha);
5714 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
5715 			r = -EFAULT;
5716 		break;
5717 	}
5718 	case KVM_XEN_HVM_SET_ATTR: {
5719 		struct kvm_xen_hvm_attr xha;
5720 
5721 		r = -EFAULT;
5722 		if (copy_from_user(&xha, argp, sizeof(xha)))
5723 			goto out;
5724 		r = kvm_xen_hvm_set_attr(kvm, &xha);
5725 		break;
5726 	}
5727 #endif
5728 	case KVM_SET_CLOCK: {
5729 		struct kvm_clock_data user_ns;
5730 		u64 now_ns;
5731 
5732 		r = -EFAULT;
5733 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5734 			goto out;
5735 
5736 		r = -EINVAL;
5737 		if (user_ns.flags)
5738 			goto out;
5739 
5740 		r = 0;
5741 		/*
5742 		 * TODO: userspace has to take care of races with VCPU_RUN, so
5743 		 * kvm_gen_update_masterclock() can be cut down to locked
5744 		 * pvclock_update_vm_gtod_copy().
5745 		 */
5746 		kvm_gen_update_masterclock(kvm);
5747 		now_ns = get_kvmclock_ns(kvm);
5748 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5749 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5750 		break;
5751 	}
5752 	case KVM_GET_CLOCK: {
5753 		struct kvm_clock_data user_ns;
5754 		u64 now_ns;
5755 
5756 		now_ns = get_kvmclock_ns(kvm);
5757 		user_ns.clock = now_ns;
5758 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5759 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5760 
5761 		r = -EFAULT;
5762 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5763 			goto out;
5764 		r = 0;
5765 		break;
5766 	}
5767 	case KVM_MEMORY_ENCRYPT_OP: {
5768 		r = -ENOTTY;
5769 		if (kvm_x86_ops.mem_enc_op)
5770 			r = static_call(kvm_x86_mem_enc_op)(kvm, argp);
5771 		break;
5772 	}
5773 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
5774 		struct kvm_enc_region region;
5775 
5776 		r = -EFAULT;
5777 		if (copy_from_user(&region, argp, sizeof(region)))
5778 			goto out;
5779 
5780 		r = -ENOTTY;
5781 		if (kvm_x86_ops.mem_enc_reg_region)
5782 			r = static_call(kvm_x86_mem_enc_reg_region)(kvm, &region);
5783 		break;
5784 	}
5785 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5786 		struct kvm_enc_region region;
5787 
5788 		r = -EFAULT;
5789 		if (copy_from_user(&region, argp, sizeof(region)))
5790 			goto out;
5791 
5792 		r = -ENOTTY;
5793 		if (kvm_x86_ops.mem_enc_unreg_region)
5794 			r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, &region);
5795 		break;
5796 	}
5797 	case KVM_HYPERV_EVENTFD: {
5798 		struct kvm_hyperv_eventfd hvevfd;
5799 
5800 		r = -EFAULT;
5801 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5802 			goto out;
5803 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5804 		break;
5805 	}
5806 	case KVM_SET_PMU_EVENT_FILTER:
5807 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5808 		break;
5809 	case KVM_X86_SET_MSR_FILTER:
5810 		r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
5811 		break;
5812 	default:
5813 		r = -ENOTTY;
5814 	}
5815 out:
5816 	return r;
5817 }
5818 
5819 static void kvm_init_msr_list(void)
5820 {
5821 	struct x86_pmu_capability x86_pmu;
5822 	u32 dummy[2];
5823 	unsigned i;
5824 
5825 	BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5826 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
5827 
5828 	perf_get_x86_pmu_capability(&x86_pmu);
5829 
5830 	num_msrs_to_save = 0;
5831 	num_emulated_msrs = 0;
5832 	num_msr_based_features = 0;
5833 
5834 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5835 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5836 			continue;
5837 
5838 		/*
5839 		 * Even MSRs that are valid in the host may not be exposed
5840 		 * to the guests in some cases.
5841 		 */
5842 		switch (msrs_to_save_all[i]) {
5843 		case MSR_IA32_BNDCFGS:
5844 			if (!kvm_mpx_supported())
5845 				continue;
5846 			break;
5847 		case MSR_TSC_AUX:
5848 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
5849 				continue;
5850 			break;
5851 		case MSR_IA32_UMWAIT_CONTROL:
5852 			if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
5853 				continue;
5854 			break;
5855 		case MSR_IA32_RTIT_CTL:
5856 		case MSR_IA32_RTIT_STATUS:
5857 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
5858 				continue;
5859 			break;
5860 		case MSR_IA32_RTIT_CR3_MATCH:
5861 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5862 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5863 				continue;
5864 			break;
5865 		case MSR_IA32_RTIT_OUTPUT_BASE:
5866 		case MSR_IA32_RTIT_OUTPUT_MASK:
5867 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5868 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5869 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5870 				continue;
5871 			break;
5872 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
5873 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5874 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5875 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5876 				continue;
5877 			break;
5878 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5879 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5880 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5881 				continue;
5882 			break;
5883 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5884 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5885 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5886 				continue;
5887 			break;
5888 		default:
5889 			break;
5890 		}
5891 
5892 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5893 	}
5894 
5895 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5896 		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
5897 			continue;
5898 
5899 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5900 	}
5901 
5902 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5903 		struct kvm_msr_entry msr;
5904 
5905 		msr.index = msr_based_features_all[i];
5906 		if (kvm_get_msr_feature(&msr))
5907 			continue;
5908 
5909 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5910 	}
5911 }
5912 
5913 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5914 			   const void *v)
5915 {
5916 	int handled = 0;
5917 	int n;
5918 
5919 	do {
5920 		n = min(len, 8);
5921 		if (!(lapic_in_kernel(vcpu) &&
5922 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5923 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5924 			break;
5925 		handled += n;
5926 		addr += n;
5927 		len -= n;
5928 		v += n;
5929 	} while (len);
5930 
5931 	return handled;
5932 }
5933 
5934 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5935 {
5936 	int handled = 0;
5937 	int n;
5938 
5939 	do {
5940 		n = min(len, 8);
5941 		if (!(lapic_in_kernel(vcpu) &&
5942 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5943 					 addr, n, v))
5944 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5945 			break;
5946 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5947 		handled += n;
5948 		addr += n;
5949 		len -= n;
5950 		v += n;
5951 	} while (len);
5952 
5953 	return handled;
5954 }
5955 
5956 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5957 			struct kvm_segment *var, int seg)
5958 {
5959 	static_call(kvm_x86_set_segment)(vcpu, var, seg);
5960 }
5961 
5962 void kvm_get_segment(struct kvm_vcpu *vcpu,
5963 		     struct kvm_segment *var, int seg)
5964 {
5965 	static_call(kvm_x86_get_segment)(vcpu, var, seg);
5966 }
5967 
5968 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5969 			   struct x86_exception *exception)
5970 {
5971 	gpa_t t_gpa;
5972 
5973 	BUG_ON(!mmu_is_nested(vcpu));
5974 
5975 	/* NPT walks are always user-walks */
5976 	access |= PFERR_USER_MASK;
5977 	t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5978 
5979 	return t_gpa;
5980 }
5981 
5982 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5983 			      struct x86_exception *exception)
5984 {
5985 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
5986 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5987 }
5988 
5989  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5990 				struct x86_exception *exception)
5991 {
5992 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
5993 	access |= PFERR_FETCH_MASK;
5994 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5995 }
5996 
5997 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5998 			       struct x86_exception *exception)
5999 {
6000 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6001 	access |= PFERR_WRITE_MASK;
6002 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6003 }
6004 
6005 /* uses this to access any guest's mapped memory without checking CPL */
6006 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6007 				struct x86_exception *exception)
6008 {
6009 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
6010 }
6011 
6012 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6013 				      struct kvm_vcpu *vcpu, u32 access,
6014 				      struct x86_exception *exception)
6015 {
6016 	void *data = val;
6017 	int r = X86EMUL_CONTINUE;
6018 
6019 	while (bytes) {
6020 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
6021 							    exception);
6022 		unsigned offset = addr & (PAGE_SIZE-1);
6023 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6024 		int ret;
6025 
6026 		if (gpa == UNMAPPED_GVA)
6027 			return X86EMUL_PROPAGATE_FAULT;
6028 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6029 					       offset, toread);
6030 		if (ret < 0) {
6031 			r = X86EMUL_IO_NEEDED;
6032 			goto out;
6033 		}
6034 
6035 		bytes -= toread;
6036 		data += toread;
6037 		addr += toread;
6038 	}
6039 out:
6040 	return r;
6041 }
6042 
6043 /* used for instruction fetching */
6044 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6045 				gva_t addr, void *val, unsigned int bytes,
6046 				struct x86_exception *exception)
6047 {
6048 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6049 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6050 	unsigned offset;
6051 	int ret;
6052 
6053 	/* Inline kvm_read_guest_virt_helper for speed.  */
6054 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
6055 						    exception);
6056 	if (unlikely(gpa == UNMAPPED_GVA))
6057 		return X86EMUL_PROPAGATE_FAULT;
6058 
6059 	offset = addr & (PAGE_SIZE-1);
6060 	if (WARN_ON(offset + bytes > PAGE_SIZE))
6061 		bytes = (unsigned)PAGE_SIZE - offset;
6062 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6063 				       offset, bytes);
6064 	if (unlikely(ret < 0))
6065 		return X86EMUL_IO_NEEDED;
6066 
6067 	return X86EMUL_CONTINUE;
6068 }
6069 
6070 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6071 			       gva_t addr, void *val, unsigned int bytes,
6072 			       struct x86_exception *exception)
6073 {
6074 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6075 
6076 	/*
6077 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6078 	 * is returned, but our callers are not ready for that and they blindly
6079 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
6080 	 * uninitialized kernel stack memory into cr2 and error code.
6081 	 */
6082 	memset(exception, 0, sizeof(*exception));
6083 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6084 					  exception);
6085 }
6086 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6087 
6088 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6089 			     gva_t addr, void *val, unsigned int bytes,
6090 			     struct x86_exception *exception, bool system)
6091 {
6092 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6093 	u32 access = 0;
6094 
6095 	if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6096 		access |= PFERR_USER_MASK;
6097 
6098 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6099 }
6100 
6101 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6102 		unsigned long addr, void *val, unsigned int bytes)
6103 {
6104 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6105 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6106 
6107 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6108 }
6109 
6110 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6111 				      struct kvm_vcpu *vcpu, u32 access,
6112 				      struct x86_exception *exception)
6113 {
6114 	void *data = val;
6115 	int r = X86EMUL_CONTINUE;
6116 
6117 	while (bytes) {
6118 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6119 							     access,
6120 							     exception);
6121 		unsigned offset = addr & (PAGE_SIZE-1);
6122 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6123 		int ret;
6124 
6125 		if (gpa == UNMAPPED_GVA)
6126 			return X86EMUL_PROPAGATE_FAULT;
6127 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6128 		if (ret < 0) {
6129 			r = X86EMUL_IO_NEEDED;
6130 			goto out;
6131 		}
6132 
6133 		bytes -= towrite;
6134 		data += towrite;
6135 		addr += towrite;
6136 	}
6137 out:
6138 	return r;
6139 }
6140 
6141 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6142 			      unsigned int bytes, struct x86_exception *exception,
6143 			      bool system)
6144 {
6145 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6146 	u32 access = PFERR_WRITE_MASK;
6147 
6148 	if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6149 		access |= PFERR_USER_MASK;
6150 
6151 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6152 					   access, exception);
6153 }
6154 
6155 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6156 				unsigned int bytes, struct x86_exception *exception)
6157 {
6158 	/* kvm_write_guest_virt_system can pull in tons of pages. */
6159 	vcpu->arch.l1tf_flush_l1d = true;
6160 
6161 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6162 					   PFERR_WRITE_MASK, exception);
6163 }
6164 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6165 
6166 int handle_ud(struct kvm_vcpu *vcpu)
6167 {
6168 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6169 	int emul_type = EMULTYPE_TRAP_UD;
6170 	char sig[5]; /* ud2; .ascii "kvm" */
6171 	struct x86_exception e;
6172 
6173 	if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, NULL, 0)))
6174 		return 1;
6175 
6176 	if (force_emulation_prefix &&
6177 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6178 				sig, sizeof(sig), &e) == 0 &&
6179 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6180 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6181 		emul_type = EMULTYPE_TRAP_UD_FORCED;
6182 	}
6183 
6184 	return kvm_emulate_instruction(vcpu, emul_type);
6185 }
6186 EXPORT_SYMBOL_GPL(handle_ud);
6187 
6188 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6189 			    gpa_t gpa, bool write)
6190 {
6191 	/* For APIC access vmexit */
6192 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6193 		return 1;
6194 
6195 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6196 		trace_vcpu_match_mmio(gva, gpa, write, true);
6197 		return 1;
6198 	}
6199 
6200 	return 0;
6201 }
6202 
6203 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6204 				gpa_t *gpa, struct x86_exception *exception,
6205 				bool write)
6206 {
6207 	u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6208 		| (write ? PFERR_WRITE_MASK : 0);
6209 
6210 	/*
6211 	 * currently PKRU is only applied to ept enabled guest so
6212 	 * there is no pkey in EPT page table for L1 guest or EPT
6213 	 * shadow page table for L2 guest.
6214 	 */
6215 	if (vcpu_match_mmio_gva(vcpu, gva)
6216 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
6217 				 vcpu->arch.mmio_access, 0, access)) {
6218 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6219 					(gva & (PAGE_SIZE - 1));
6220 		trace_vcpu_match_mmio(gva, *gpa, write, false);
6221 		return 1;
6222 	}
6223 
6224 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6225 
6226 	if (*gpa == UNMAPPED_GVA)
6227 		return -1;
6228 
6229 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6230 }
6231 
6232 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6233 			const void *val, int bytes)
6234 {
6235 	int ret;
6236 
6237 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6238 	if (ret < 0)
6239 		return 0;
6240 	kvm_page_track_write(vcpu, gpa, val, bytes);
6241 	return 1;
6242 }
6243 
6244 struct read_write_emulator_ops {
6245 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6246 				  int bytes);
6247 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6248 				  void *val, int bytes);
6249 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6250 			       int bytes, void *val);
6251 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6252 				    void *val, int bytes);
6253 	bool write;
6254 };
6255 
6256 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6257 {
6258 	if (vcpu->mmio_read_completed) {
6259 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6260 			       vcpu->mmio_fragments[0].gpa, val);
6261 		vcpu->mmio_read_completed = 0;
6262 		return 1;
6263 	}
6264 
6265 	return 0;
6266 }
6267 
6268 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6269 			void *val, int bytes)
6270 {
6271 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6272 }
6273 
6274 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6275 			 void *val, int bytes)
6276 {
6277 	return emulator_write_phys(vcpu, gpa, val, bytes);
6278 }
6279 
6280 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6281 {
6282 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6283 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
6284 }
6285 
6286 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6287 			  void *val, int bytes)
6288 {
6289 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6290 	return X86EMUL_IO_NEEDED;
6291 }
6292 
6293 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6294 			   void *val, int bytes)
6295 {
6296 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6297 
6298 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6299 	return X86EMUL_CONTINUE;
6300 }
6301 
6302 static const struct read_write_emulator_ops read_emultor = {
6303 	.read_write_prepare = read_prepare,
6304 	.read_write_emulate = read_emulate,
6305 	.read_write_mmio = vcpu_mmio_read,
6306 	.read_write_exit_mmio = read_exit_mmio,
6307 };
6308 
6309 static const struct read_write_emulator_ops write_emultor = {
6310 	.read_write_emulate = write_emulate,
6311 	.read_write_mmio = write_mmio,
6312 	.read_write_exit_mmio = write_exit_mmio,
6313 	.write = true,
6314 };
6315 
6316 static int emulator_read_write_onepage(unsigned long addr, void *val,
6317 				       unsigned int bytes,
6318 				       struct x86_exception *exception,
6319 				       struct kvm_vcpu *vcpu,
6320 				       const struct read_write_emulator_ops *ops)
6321 {
6322 	gpa_t gpa;
6323 	int handled, ret;
6324 	bool write = ops->write;
6325 	struct kvm_mmio_fragment *frag;
6326 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6327 
6328 	/*
6329 	 * If the exit was due to a NPF we may already have a GPA.
6330 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
6331 	 * Note, this cannot be used on string operations since string
6332 	 * operation using rep will only have the initial GPA from the NPF
6333 	 * occurred.
6334 	 */
6335 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6336 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6337 		gpa = ctxt->gpa_val;
6338 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6339 	} else {
6340 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6341 		if (ret < 0)
6342 			return X86EMUL_PROPAGATE_FAULT;
6343 	}
6344 
6345 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6346 		return X86EMUL_CONTINUE;
6347 
6348 	/*
6349 	 * Is this MMIO handled locally?
6350 	 */
6351 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6352 	if (handled == bytes)
6353 		return X86EMUL_CONTINUE;
6354 
6355 	gpa += handled;
6356 	bytes -= handled;
6357 	val += handled;
6358 
6359 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6360 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6361 	frag->gpa = gpa;
6362 	frag->data = val;
6363 	frag->len = bytes;
6364 	return X86EMUL_CONTINUE;
6365 }
6366 
6367 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6368 			unsigned long addr,
6369 			void *val, unsigned int bytes,
6370 			struct x86_exception *exception,
6371 			const struct read_write_emulator_ops *ops)
6372 {
6373 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6374 	gpa_t gpa;
6375 	int rc;
6376 
6377 	if (ops->read_write_prepare &&
6378 		  ops->read_write_prepare(vcpu, val, bytes))
6379 		return X86EMUL_CONTINUE;
6380 
6381 	vcpu->mmio_nr_fragments = 0;
6382 
6383 	/* Crossing a page boundary? */
6384 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6385 		int now;
6386 
6387 		now = -addr & ~PAGE_MASK;
6388 		rc = emulator_read_write_onepage(addr, val, now, exception,
6389 						 vcpu, ops);
6390 
6391 		if (rc != X86EMUL_CONTINUE)
6392 			return rc;
6393 		addr += now;
6394 		if (ctxt->mode != X86EMUL_MODE_PROT64)
6395 			addr = (u32)addr;
6396 		val += now;
6397 		bytes -= now;
6398 	}
6399 
6400 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
6401 					 vcpu, ops);
6402 	if (rc != X86EMUL_CONTINUE)
6403 		return rc;
6404 
6405 	if (!vcpu->mmio_nr_fragments)
6406 		return rc;
6407 
6408 	gpa = vcpu->mmio_fragments[0].gpa;
6409 
6410 	vcpu->mmio_needed = 1;
6411 	vcpu->mmio_cur_fragment = 0;
6412 
6413 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6414 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6415 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
6416 	vcpu->run->mmio.phys_addr = gpa;
6417 
6418 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6419 }
6420 
6421 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6422 				  unsigned long addr,
6423 				  void *val,
6424 				  unsigned int bytes,
6425 				  struct x86_exception *exception)
6426 {
6427 	return emulator_read_write(ctxt, addr, val, bytes,
6428 				   exception, &read_emultor);
6429 }
6430 
6431 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6432 			    unsigned long addr,
6433 			    const void *val,
6434 			    unsigned int bytes,
6435 			    struct x86_exception *exception)
6436 {
6437 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
6438 				   exception, &write_emultor);
6439 }
6440 
6441 #define CMPXCHG_TYPE(t, ptr, old, new) \
6442 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6443 
6444 #ifdef CONFIG_X86_64
6445 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6446 #else
6447 #  define CMPXCHG64(ptr, old, new) \
6448 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6449 #endif
6450 
6451 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6452 				     unsigned long addr,
6453 				     const void *old,
6454 				     const void *new,
6455 				     unsigned int bytes,
6456 				     struct x86_exception *exception)
6457 {
6458 	struct kvm_host_map map;
6459 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6460 	u64 page_line_mask;
6461 	gpa_t gpa;
6462 	char *kaddr;
6463 	bool exchanged;
6464 
6465 	/* guests cmpxchg8b have to be emulated atomically */
6466 	if (bytes > 8 || (bytes & (bytes - 1)))
6467 		goto emul_write;
6468 
6469 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6470 
6471 	if (gpa == UNMAPPED_GVA ||
6472 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6473 		goto emul_write;
6474 
6475 	/*
6476 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
6477 	 * enabled in the host and the access splits a cache line.
6478 	 */
6479 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6480 		page_line_mask = ~(cache_line_size() - 1);
6481 	else
6482 		page_line_mask = PAGE_MASK;
6483 
6484 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6485 		goto emul_write;
6486 
6487 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6488 		goto emul_write;
6489 
6490 	kaddr = map.hva + offset_in_page(gpa);
6491 
6492 	switch (bytes) {
6493 	case 1:
6494 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6495 		break;
6496 	case 2:
6497 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6498 		break;
6499 	case 4:
6500 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6501 		break;
6502 	case 8:
6503 		exchanged = CMPXCHG64(kaddr, old, new);
6504 		break;
6505 	default:
6506 		BUG();
6507 	}
6508 
6509 	kvm_vcpu_unmap(vcpu, &map, true);
6510 
6511 	if (!exchanged)
6512 		return X86EMUL_CMPXCHG_FAILED;
6513 
6514 	kvm_page_track_write(vcpu, gpa, new, bytes);
6515 
6516 	return X86EMUL_CONTINUE;
6517 
6518 emul_write:
6519 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6520 
6521 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6522 }
6523 
6524 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6525 {
6526 	int r = 0, i;
6527 
6528 	for (i = 0; i < vcpu->arch.pio.count; i++) {
6529 		if (vcpu->arch.pio.in)
6530 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6531 					    vcpu->arch.pio.size, pd);
6532 		else
6533 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6534 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
6535 					     pd);
6536 		if (r)
6537 			break;
6538 		pd += vcpu->arch.pio.size;
6539 	}
6540 	return r;
6541 }
6542 
6543 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6544 			       unsigned short port, void *val,
6545 			       unsigned int count, bool in)
6546 {
6547 	vcpu->arch.pio.port = port;
6548 	vcpu->arch.pio.in = in;
6549 	vcpu->arch.pio.count  = count;
6550 	vcpu->arch.pio.size = size;
6551 
6552 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6553 		vcpu->arch.pio.count = 0;
6554 		return 1;
6555 	}
6556 
6557 	vcpu->run->exit_reason = KVM_EXIT_IO;
6558 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6559 	vcpu->run->io.size = size;
6560 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6561 	vcpu->run->io.count = count;
6562 	vcpu->run->io.port = port;
6563 
6564 	return 0;
6565 }
6566 
6567 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6568 			   unsigned short port, void *val, unsigned int count)
6569 {
6570 	int ret;
6571 
6572 	if (vcpu->arch.pio.count)
6573 		goto data_avail;
6574 
6575 	memset(vcpu->arch.pio_data, 0, size * count);
6576 
6577 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6578 	if (ret) {
6579 data_avail:
6580 		memcpy(val, vcpu->arch.pio_data, size * count);
6581 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6582 		vcpu->arch.pio.count = 0;
6583 		return 1;
6584 	}
6585 
6586 	return 0;
6587 }
6588 
6589 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6590 				    int size, unsigned short port, void *val,
6591 				    unsigned int count)
6592 {
6593 	return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6594 
6595 }
6596 
6597 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6598 			    unsigned short port, const void *val,
6599 			    unsigned int count)
6600 {
6601 	memcpy(vcpu->arch.pio_data, val, size * count);
6602 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6603 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6604 }
6605 
6606 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6607 				     int size, unsigned short port,
6608 				     const void *val, unsigned int count)
6609 {
6610 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6611 }
6612 
6613 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6614 {
6615 	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
6616 }
6617 
6618 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6619 {
6620 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6621 }
6622 
6623 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6624 {
6625 	if (!need_emulate_wbinvd(vcpu))
6626 		return X86EMUL_CONTINUE;
6627 
6628 	if (static_call(kvm_x86_has_wbinvd_exit)()) {
6629 		int cpu = get_cpu();
6630 
6631 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6632 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
6633 				wbinvd_ipi, NULL, 1);
6634 		put_cpu();
6635 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6636 	} else
6637 		wbinvd();
6638 	return X86EMUL_CONTINUE;
6639 }
6640 
6641 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6642 {
6643 	kvm_emulate_wbinvd_noskip(vcpu);
6644 	return kvm_skip_emulated_instruction(vcpu);
6645 }
6646 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6647 
6648 
6649 
6650 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6651 {
6652 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6653 }
6654 
6655 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6656 			    unsigned long *dest)
6657 {
6658 	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6659 }
6660 
6661 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6662 			   unsigned long value)
6663 {
6664 
6665 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6666 }
6667 
6668 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6669 {
6670 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6671 }
6672 
6673 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6674 {
6675 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6676 	unsigned long value;
6677 
6678 	switch (cr) {
6679 	case 0:
6680 		value = kvm_read_cr0(vcpu);
6681 		break;
6682 	case 2:
6683 		value = vcpu->arch.cr2;
6684 		break;
6685 	case 3:
6686 		value = kvm_read_cr3(vcpu);
6687 		break;
6688 	case 4:
6689 		value = kvm_read_cr4(vcpu);
6690 		break;
6691 	case 8:
6692 		value = kvm_get_cr8(vcpu);
6693 		break;
6694 	default:
6695 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6696 		return 0;
6697 	}
6698 
6699 	return value;
6700 }
6701 
6702 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6703 {
6704 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6705 	int res = 0;
6706 
6707 	switch (cr) {
6708 	case 0:
6709 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6710 		break;
6711 	case 2:
6712 		vcpu->arch.cr2 = val;
6713 		break;
6714 	case 3:
6715 		res = kvm_set_cr3(vcpu, val);
6716 		break;
6717 	case 4:
6718 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6719 		break;
6720 	case 8:
6721 		res = kvm_set_cr8(vcpu, val);
6722 		break;
6723 	default:
6724 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6725 		res = -1;
6726 	}
6727 
6728 	return res;
6729 }
6730 
6731 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6732 {
6733 	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
6734 }
6735 
6736 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6737 {
6738 	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
6739 }
6740 
6741 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6742 {
6743 	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
6744 }
6745 
6746 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6747 {
6748 	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
6749 }
6750 
6751 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6752 {
6753 	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
6754 }
6755 
6756 static unsigned long emulator_get_cached_segment_base(
6757 	struct x86_emulate_ctxt *ctxt, int seg)
6758 {
6759 	return get_segment_base(emul_to_vcpu(ctxt), seg);
6760 }
6761 
6762 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6763 				 struct desc_struct *desc, u32 *base3,
6764 				 int seg)
6765 {
6766 	struct kvm_segment var;
6767 
6768 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6769 	*selector = var.selector;
6770 
6771 	if (var.unusable) {
6772 		memset(desc, 0, sizeof(*desc));
6773 		if (base3)
6774 			*base3 = 0;
6775 		return false;
6776 	}
6777 
6778 	if (var.g)
6779 		var.limit >>= 12;
6780 	set_desc_limit(desc, var.limit);
6781 	set_desc_base(desc, (unsigned long)var.base);
6782 #ifdef CONFIG_X86_64
6783 	if (base3)
6784 		*base3 = var.base >> 32;
6785 #endif
6786 	desc->type = var.type;
6787 	desc->s = var.s;
6788 	desc->dpl = var.dpl;
6789 	desc->p = var.present;
6790 	desc->avl = var.avl;
6791 	desc->l = var.l;
6792 	desc->d = var.db;
6793 	desc->g = var.g;
6794 
6795 	return true;
6796 }
6797 
6798 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6799 				 struct desc_struct *desc, u32 base3,
6800 				 int seg)
6801 {
6802 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6803 	struct kvm_segment var;
6804 
6805 	var.selector = selector;
6806 	var.base = get_desc_base(desc);
6807 #ifdef CONFIG_X86_64
6808 	var.base |= ((u64)base3) << 32;
6809 #endif
6810 	var.limit = get_desc_limit(desc);
6811 	if (desc->g)
6812 		var.limit = (var.limit << 12) | 0xfff;
6813 	var.type = desc->type;
6814 	var.dpl = desc->dpl;
6815 	var.db = desc->d;
6816 	var.s = desc->s;
6817 	var.l = desc->l;
6818 	var.g = desc->g;
6819 	var.avl = desc->avl;
6820 	var.present = desc->p;
6821 	var.unusable = !var.present;
6822 	var.padding = 0;
6823 
6824 	kvm_set_segment(vcpu, &var, seg);
6825 	return;
6826 }
6827 
6828 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6829 			    u32 msr_index, u64 *pdata)
6830 {
6831 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6832 	int r;
6833 
6834 	r = kvm_get_msr(vcpu, msr_index, pdata);
6835 
6836 	if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
6837 		/* Bounce to user space */
6838 		return X86EMUL_IO_NEEDED;
6839 	}
6840 
6841 	return r;
6842 }
6843 
6844 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6845 			    u32 msr_index, u64 data)
6846 {
6847 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6848 	int r;
6849 
6850 	r = kvm_set_msr(vcpu, msr_index, data);
6851 
6852 	if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
6853 		/* Bounce to user space */
6854 		return X86EMUL_IO_NEEDED;
6855 	}
6856 
6857 	return r;
6858 }
6859 
6860 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6861 {
6862 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6863 
6864 	return vcpu->arch.smbase;
6865 }
6866 
6867 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6868 {
6869 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6870 
6871 	vcpu->arch.smbase = smbase;
6872 }
6873 
6874 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6875 			      u32 pmc)
6876 {
6877 	return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6878 }
6879 
6880 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6881 			     u32 pmc, u64 *pdata)
6882 {
6883 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6884 }
6885 
6886 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6887 {
6888 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
6889 }
6890 
6891 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6892 			      struct x86_instruction_info *info,
6893 			      enum x86_intercept_stage stage)
6894 {
6895 	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
6896 					    &ctxt->exception);
6897 }
6898 
6899 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6900 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
6901 			      bool exact_only)
6902 {
6903 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
6904 }
6905 
6906 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
6907 {
6908 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
6909 }
6910 
6911 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
6912 {
6913 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
6914 }
6915 
6916 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
6917 {
6918 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
6919 }
6920 
6921 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6922 {
6923 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
6924 }
6925 
6926 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6927 {
6928 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6929 }
6930 
6931 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6932 {
6933 	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
6934 }
6935 
6936 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6937 {
6938 	return emul_to_vcpu(ctxt)->arch.hflags;
6939 }
6940 
6941 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6942 {
6943 	emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6944 }
6945 
6946 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6947 				  const char *smstate)
6948 {
6949 	return static_call(kvm_x86_pre_leave_smm)(emul_to_vcpu(ctxt), smstate);
6950 }
6951 
6952 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6953 {
6954 	kvm_smm_changed(emul_to_vcpu(ctxt));
6955 }
6956 
6957 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6958 {
6959 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6960 }
6961 
6962 static const struct x86_emulate_ops emulate_ops = {
6963 	.read_gpr            = emulator_read_gpr,
6964 	.write_gpr           = emulator_write_gpr,
6965 	.read_std            = emulator_read_std,
6966 	.write_std           = emulator_write_std,
6967 	.read_phys           = kvm_read_guest_phys_system,
6968 	.fetch               = kvm_fetch_guest_virt,
6969 	.read_emulated       = emulator_read_emulated,
6970 	.write_emulated      = emulator_write_emulated,
6971 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
6972 	.invlpg              = emulator_invlpg,
6973 	.pio_in_emulated     = emulator_pio_in_emulated,
6974 	.pio_out_emulated    = emulator_pio_out_emulated,
6975 	.get_segment         = emulator_get_segment,
6976 	.set_segment         = emulator_set_segment,
6977 	.get_cached_segment_base = emulator_get_cached_segment_base,
6978 	.get_gdt             = emulator_get_gdt,
6979 	.get_idt	     = emulator_get_idt,
6980 	.set_gdt             = emulator_set_gdt,
6981 	.set_idt	     = emulator_set_idt,
6982 	.get_cr              = emulator_get_cr,
6983 	.set_cr              = emulator_set_cr,
6984 	.cpl                 = emulator_get_cpl,
6985 	.get_dr              = emulator_get_dr,
6986 	.set_dr              = emulator_set_dr,
6987 	.get_smbase          = emulator_get_smbase,
6988 	.set_smbase          = emulator_set_smbase,
6989 	.set_msr             = emulator_set_msr,
6990 	.get_msr             = emulator_get_msr,
6991 	.check_pmc	     = emulator_check_pmc,
6992 	.read_pmc            = emulator_read_pmc,
6993 	.halt                = emulator_halt,
6994 	.wbinvd              = emulator_wbinvd,
6995 	.fix_hypercall       = emulator_fix_hypercall,
6996 	.intercept           = emulator_intercept,
6997 	.get_cpuid           = emulator_get_cpuid,
6998 	.guest_has_long_mode = emulator_guest_has_long_mode,
6999 	.guest_has_movbe     = emulator_guest_has_movbe,
7000 	.guest_has_fxsr      = emulator_guest_has_fxsr,
7001 	.set_nmi_mask        = emulator_set_nmi_mask,
7002 	.get_hflags          = emulator_get_hflags,
7003 	.set_hflags          = emulator_set_hflags,
7004 	.pre_leave_smm       = emulator_pre_leave_smm,
7005 	.post_leave_smm      = emulator_post_leave_smm,
7006 	.set_xcr             = emulator_set_xcr,
7007 };
7008 
7009 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7010 {
7011 	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7012 	/*
7013 	 * an sti; sti; sequence only disable interrupts for the first
7014 	 * instruction. So, if the last instruction, be it emulated or
7015 	 * not, left the system with the INT_STI flag enabled, it
7016 	 * means that the last instruction is an sti. We should not
7017 	 * leave the flag on in this case. The same goes for mov ss
7018 	 */
7019 	if (int_shadow & mask)
7020 		mask = 0;
7021 	if (unlikely(int_shadow || mask)) {
7022 		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7023 		if (!mask)
7024 			kvm_make_request(KVM_REQ_EVENT, vcpu);
7025 	}
7026 }
7027 
7028 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7029 {
7030 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7031 	if (ctxt->exception.vector == PF_VECTOR)
7032 		return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7033 
7034 	if (ctxt->exception.error_code_valid)
7035 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7036 				      ctxt->exception.error_code);
7037 	else
7038 		kvm_queue_exception(vcpu, ctxt->exception.vector);
7039 	return false;
7040 }
7041 
7042 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7043 {
7044 	struct x86_emulate_ctxt *ctxt;
7045 
7046 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7047 	if (!ctxt) {
7048 		pr_err("kvm: failed to allocate vcpu's emulator\n");
7049 		return NULL;
7050 	}
7051 
7052 	ctxt->vcpu = vcpu;
7053 	ctxt->ops = &emulate_ops;
7054 	vcpu->arch.emulate_ctxt = ctxt;
7055 
7056 	return ctxt;
7057 }
7058 
7059 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7060 {
7061 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7062 	int cs_db, cs_l;
7063 
7064 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7065 
7066 	ctxt->gpa_available = false;
7067 	ctxt->eflags = kvm_get_rflags(vcpu);
7068 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7069 
7070 	ctxt->eip = kvm_rip_read(vcpu);
7071 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
7072 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
7073 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
7074 		     cs_db				? X86EMUL_MODE_PROT32 :
7075 							  X86EMUL_MODE_PROT16;
7076 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7077 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7078 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7079 
7080 	init_decode_cache(ctxt);
7081 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7082 }
7083 
7084 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7085 {
7086 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7087 	int ret;
7088 
7089 	init_emulate_ctxt(vcpu);
7090 
7091 	ctxt->op_bytes = 2;
7092 	ctxt->ad_bytes = 2;
7093 	ctxt->_eip = ctxt->eip + inc_eip;
7094 	ret = emulate_int_real(ctxt, irq);
7095 
7096 	if (ret != X86EMUL_CONTINUE) {
7097 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7098 	} else {
7099 		ctxt->eip = ctxt->_eip;
7100 		kvm_rip_write(vcpu, ctxt->eip);
7101 		kvm_set_rflags(vcpu, ctxt->eflags);
7102 	}
7103 }
7104 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7105 
7106 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7107 {
7108 	++vcpu->stat.insn_emulation_fail;
7109 	trace_kvm_emulate_insn_failed(vcpu);
7110 
7111 	if (emulation_type & EMULTYPE_VMWARE_GP) {
7112 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7113 		return 1;
7114 	}
7115 
7116 	if (emulation_type & EMULTYPE_SKIP) {
7117 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7118 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7119 		vcpu->run->internal.ndata = 0;
7120 		return 0;
7121 	}
7122 
7123 	kvm_queue_exception(vcpu, UD_VECTOR);
7124 
7125 	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7126 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7127 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7128 		vcpu->run->internal.ndata = 0;
7129 		return 0;
7130 	}
7131 
7132 	return 1;
7133 }
7134 
7135 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7136 				  bool write_fault_to_shadow_pgtable,
7137 				  int emulation_type)
7138 {
7139 	gpa_t gpa = cr2_or_gpa;
7140 	kvm_pfn_t pfn;
7141 
7142 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7143 		return false;
7144 
7145 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7146 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7147 		return false;
7148 
7149 	if (!vcpu->arch.mmu->direct_map) {
7150 		/*
7151 		 * Write permission should be allowed since only
7152 		 * write access need to be emulated.
7153 		 */
7154 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7155 
7156 		/*
7157 		 * If the mapping is invalid in guest, let cpu retry
7158 		 * it to generate fault.
7159 		 */
7160 		if (gpa == UNMAPPED_GVA)
7161 			return true;
7162 	}
7163 
7164 	/*
7165 	 * Do not retry the unhandleable instruction if it faults on the
7166 	 * readonly host memory, otherwise it will goto a infinite loop:
7167 	 * retry instruction -> write #PF -> emulation fail -> retry
7168 	 * instruction -> ...
7169 	 */
7170 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7171 
7172 	/*
7173 	 * If the instruction failed on the error pfn, it can not be fixed,
7174 	 * report the error to userspace.
7175 	 */
7176 	if (is_error_noslot_pfn(pfn))
7177 		return false;
7178 
7179 	kvm_release_pfn_clean(pfn);
7180 
7181 	/* The instructions are well-emulated on direct mmu. */
7182 	if (vcpu->arch.mmu->direct_map) {
7183 		unsigned int indirect_shadow_pages;
7184 
7185 		write_lock(&vcpu->kvm->mmu_lock);
7186 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7187 		write_unlock(&vcpu->kvm->mmu_lock);
7188 
7189 		if (indirect_shadow_pages)
7190 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7191 
7192 		return true;
7193 	}
7194 
7195 	/*
7196 	 * if emulation was due to access to shadowed page table
7197 	 * and it failed try to unshadow page and re-enter the
7198 	 * guest to let CPU execute the instruction.
7199 	 */
7200 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7201 
7202 	/*
7203 	 * If the access faults on its page table, it can not
7204 	 * be fixed by unprotecting shadow page and it should
7205 	 * be reported to userspace.
7206 	 */
7207 	return !write_fault_to_shadow_pgtable;
7208 }
7209 
7210 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7211 			      gpa_t cr2_or_gpa,  int emulation_type)
7212 {
7213 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7214 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7215 
7216 	last_retry_eip = vcpu->arch.last_retry_eip;
7217 	last_retry_addr = vcpu->arch.last_retry_addr;
7218 
7219 	/*
7220 	 * If the emulation is caused by #PF and it is non-page_table
7221 	 * writing instruction, it means the VM-EXIT is caused by shadow
7222 	 * page protected, we can zap the shadow page and retry this
7223 	 * instruction directly.
7224 	 *
7225 	 * Note: if the guest uses a non-page-table modifying instruction
7226 	 * on the PDE that points to the instruction, then we will unmap
7227 	 * the instruction and go to an infinite loop. So, we cache the
7228 	 * last retried eip and the last fault address, if we meet the eip
7229 	 * and the address again, we can break out of the potential infinite
7230 	 * loop.
7231 	 */
7232 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7233 
7234 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7235 		return false;
7236 
7237 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7238 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7239 		return false;
7240 
7241 	if (x86_page_table_writing_insn(ctxt))
7242 		return false;
7243 
7244 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7245 		return false;
7246 
7247 	vcpu->arch.last_retry_eip = ctxt->eip;
7248 	vcpu->arch.last_retry_addr = cr2_or_gpa;
7249 
7250 	if (!vcpu->arch.mmu->direct_map)
7251 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7252 
7253 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7254 
7255 	return true;
7256 }
7257 
7258 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7259 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7260 
7261 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
7262 {
7263 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
7264 		/* This is a good place to trace that we are exiting SMM.  */
7265 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
7266 
7267 		/* Process a latched INIT or SMI, if any.  */
7268 		kvm_make_request(KVM_REQ_EVENT, vcpu);
7269 	}
7270 
7271 	kvm_mmu_reset_context(vcpu);
7272 }
7273 
7274 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7275 				unsigned long *db)
7276 {
7277 	u32 dr6 = 0;
7278 	int i;
7279 	u32 enable, rwlen;
7280 
7281 	enable = dr7;
7282 	rwlen = dr7 >> 16;
7283 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7284 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7285 			dr6 |= (1 << i);
7286 	return dr6;
7287 }
7288 
7289 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7290 {
7291 	struct kvm_run *kvm_run = vcpu->run;
7292 
7293 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7294 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
7295 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7296 		kvm_run->debug.arch.exception = DB_VECTOR;
7297 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
7298 		return 0;
7299 	}
7300 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7301 	return 1;
7302 }
7303 
7304 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7305 {
7306 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7307 	int r;
7308 
7309 	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
7310 	if (unlikely(!r))
7311 		return 0;
7312 
7313 	/*
7314 	 * rflags is the old, "raw" value of the flags.  The new value has
7315 	 * not been saved yet.
7316 	 *
7317 	 * This is correct even for TF set by the guest, because "the
7318 	 * processor will not generate this exception after the instruction
7319 	 * that sets the TF flag".
7320 	 */
7321 	if (unlikely(rflags & X86_EFLAGS_TF))
7322 		r = kvm_vcpu_do_singlestep(vcpu);
7323 	return r;
7324 }
7325 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7326 
7327 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7328 {
7329 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7330 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7331 		struct kvm_run *kvm_run = vcpu->run;
7332 		unsigned long eip = kvm_get_linear_rip(vcpu);
7333 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7334 					   vcpu->arch.guest_debug_dr7,
7335 					   vcpu->arch.eff_db);
7336 
7337 		if (dr6 != 0) {
7338 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
7339 			kvm_run->debug.arch.pc = eip;
7340 			kvm_run->debug.arch.exception = DB_VECTOR;
7341 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
7342 			*r = 0;
7343 			return true;
7344 		}
7345 	}
7346 
7347 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7348 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7349 		unsigned long eip = kvm_get_linear_rip(vcpu);
7350 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7351 					   vcpu->arch.dr7,
7352 					   vcpu->arch.db);
7353 
7354 		if (dr6 != 0) {
7355 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7356 			*r = 1;
7357 			return true;
7358 		}
7359 	}
7360 
7361 	return false;
7362 }
7363 
7364 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7365 {
7366 	switch (ctxt->opcode_len) {
7367 	case 1:
7368 		switch (ctxt->b) {
7369 		case 0xe4:	/* IN */
7370 		case 0xe5:
7371 		case 0xec:
7372 		case 0xed:
7373 		case 0xe6:	/* OUT */
7374 		case 0xe7:
7375 		case 0xee:
7376 		case 0xef:
7377 		case 0x6c:	/* INS */
7378 		case 0x6d:
7379 		case 0x6e:	/* OUTS */
7380 		case 0x6f:
7381 			return true;
7382 		}
7383 		break;
7384 	case 2:
7385 		switch (ctxt->b) {
7386 		case 0x33:	/* RDPMC */
7387 			return true;
7388 		}
7389 		break;
7390 	}
7391 
7392 	return false;
7393 }
7394 
7395 /*
7396  * Decode to be emulated instruction. Return EMULATION_OK if success.
7397  */
7398 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
7399 				    void *insn, int insn_len)
7400 {
7401 	int r = EMULATION_OK;
7402 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7403 
7404 	init_emulate_ctxt(vcpu);
7405 
7406 	/*
7407 	 * We will reenter on the same instruction since we do not set
7408 	 * complete_userspace_io. This does not handle watchpoints yet,
7409 	 * those would be handled in the emulate_ops.
7410 	 */
7411 	if (!(emulation_type & EMULTYPE_SKIP) &&
7412 	    kvm_vcpu_check_breakpoint(vcpu, &r))
7413 		return r;
7414 
7415 	ctxt->interruptibility = 0;
7416 	ctxt->have_exception = false;
7417 	ctxt->exception.vector = -1;
7418 	ctxt->perm_ok = false;
7419 
7420 	ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
7421 
7422 	r = x86_decode_insn(ctxt, insn, insn_len);
7423 
7424 	trace_kvm_emulate_insn_start(vcpu);
7425 	++vcpu->stat.insn_emulation;
7426 
7427 	return r;
7428 }
7429 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
7430 
7431 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7432 			    int emulation_type, void *insn, int insn_len)
7433 {
7434 	int r;
7435 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7436 	bool writeback = true;
7437 	bool write_fault_to_spt;
7438 
7439 	if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, insn, insn_len)))
7440 		return 1;
7441 
7442 	vcpu->arch.l1tf_flush_l1d = true;
7443 
7444 	/*
7445 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
7446 	 * never reused.
7447 	 */
7448 	write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7449 	vcpu->arch.write_fault_to_shadow_pgtable = false;
7450 
7451 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7452 		kvm_clear_exception_queue(vcpu);
7453 
7454 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
7455 						    insn, insn_len);
7456 		if (r != EMULATION_OK)  {
7457 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
7458 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7459 				kvm_queue_exception(vcpu, UD_VECTOR);
7460 				return 1;
7461 			}
7462 			if (reexecute_instruction(vcpu, cr2_or_gpa,
7463 						  write_fault_to_spt,
7464 						  emulation_type))
7465 				return 1;
7466 			if (ctxt->have_exception) {
7467 				/*
7468 				 * #UD should result in just EMULATION_FAILED, and trap-like
7469 				 * exception should not be encountered during decode.
7470 				 */
7471 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7472 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7473 				inject_emulated_exception(vcpu);
7474 				return 1;
7475 			}
7476 			return handle_emulation_failure(vcpu, emulation_type);
7477 		}
7478 	}
7479 
7480 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7481 	    !is_vmware_backdoor_opcode(ctxt)) {
7482 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7483 		return 1;
7484 	}
7485 
7486 	/*
7487 	 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7488 	 * for kvm_skip_emulated_instruction().  The caller is responsible for
7489 	 * updating interruptibility state and injecting single-step #DBs.
7490 	 */
7491 	if (emulation_type & EMULTYPE_SKIP) {
7492 		kvm_rip_write(vcpu, ctxt->_eip);
7493 		if (ctxt->eflags & X86_EFLAGS_RF)
7494 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7495 		return 1;
7496 	}
7497 
7498 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7499 		return 1;
7500 
7501 	/* this is needed for vmware backdoor interface to work since it
7502 	   changes registers values  during IO operation */
7503 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7504 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7505 		emulator_invalidate_register_cache(ctxt);
7506 	}
7507 
7508 restart:
7509 	if (emulation_type & EMULTYPE_PF) {
7510 		/* Save the faulting GPA (cr2) in the address field */
7511 		ctxt->exception.address = cr2_or_gpa;
7512 
7513 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
7514 		if (vcpu->arch.mmu->direct_map) {
7515 			ctxt->gpa_available = true;
7516 			ctxt->gpa_val = cr2_or_gpa;
7517 		}
7518 	} else {
7519 		/* Sanitize the address out of an abundance of paranoia. */
7520 		ctxt->exception.address = 0;
7521 	}
7522 
7523 	r = x86_emulate_insn(ctxt);
7524 
7525 	if (r == EMULATION_INTERCEPTED)
7526 		return 1;
7527 
7528 	if (r == EMULATION_FAILED) {
7529 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7530 					emulation_type))
7531 			return 1;
7532 
7533 		return handle_emulation_failure(vcpu, emulation_type);
7534 	}
7535 
7536 	if (ctxt->have_exception) {
7537 		r = 1;
7538 		if (inject_emulated_exception(vcpu))
7539 			return r;
7540 	} else if (vcpu->arch.pio.count) {
7541 		if (!vcpu->arch.pio.in) {
7542 			/* FIXME: return into emulator if single-stepping.  */
7543 			vcpu->arch.pio.count = 0;
7544 		} else {
7545 			writeback = false;
7546 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
7547 		}
7548 		r = 0;
7549 	} else if (vcpu->mmio_needed) {
7550 		++vcpu->stat.mmio_exits;
7551 
7552 		if (!vcpu->mmio_is_write)
7553 			writeback = false;
7554 		r = 0;
7555 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7556 	} else if (r == EMULATION_RESTART)
7557 		goto restart;
7558 	else
7559 		r = 1;
7560 
7561 	if (writeback) {
7562 		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7563 		toggle_interruptibility(vcpu, ctxt->interruptibility);
7564 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7565 		if (!ctxt->have_exception ||
7566 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7567 			kvm_rip_write(vcpu, ctxt->eip);
7568 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7569 				r = kvm_vcpu_do_singlestep(vcpu);
7570 			if (kvm_x86_ops.update_emulated_instruction)
7571 				static_call(kvm_x86_update_emulated_instruction)(vcpu);
7572 			__kvm_set_rflags(vcpu, ctxt->eflags);
7573 		}
7574 
7575 		/*
7576 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7577 		 * do nothing, and it will be requested again as soon as
7578 		 * the shadow expires.  But we still need to check here,
7579 		 * because POPF has no interrupt shadow.
7580 		 */
7581 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7582 			kvm_make_request(KVM_REQ_EVENT, vcpu);
7583 	} else
7584 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7585 
7586 	return r;
7587 }
7588 
7589 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7590 {
7591 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7592 }
7593 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7594 
7595 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7596 					void *insn, int insn_len)
7597 {
7598 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7599 }
7600 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7601 
7602 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7603 {
7604 	vcpu->arch.pio.count = 0;
7605 	return 1;
7606 }
7607 
7608 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7609 {
7610 	vcpu->arch.pio.count = 0;
7611 
7612 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7613 		return 1;
7614 
7615 	return kvm_skip_emulated_instruction(vcpu);
7616 }
7617 
7618 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
7619 			    unsigned short port)
7620 {
7621 	unsigned long val = kvm_rax_read(vcpu);
7622 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
7623 
7624 	if (ret)
7625 		return ret;
7626 
7627 	/*
7628 	 * Workaround userspace that relies on old KVM behavior of %rip being
7629 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
7630 	 */
7631 	if (port == 0x7e &&
7632 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
7633 		vcpu->arch.complete_userspace_io =
7634 			complete_fast_pio_out_port_0x7e;
7635 		kvm_skip_emulated_instruction(vcpu);
7636 	} else {
7637 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7638 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
7639 	}
7640 	return 0;
7641 }
7642 
7643 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
7644 {
7645 	unsigned long val;
7646 
7647 	/* We should only ever be called with arch.pio.count equal to 1 */
7648 	BUG_ON(vcpu->arch.pio.count != 1);
7649 
7650 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7651 		vcpu->arch.pio.count = 0;
7652 		return 1;
7653 	}
7654 
7655 	/* For size less than 4 we merge, else we zero extend */
7656 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
7657 
7658 	/*
7659 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
7660 	 * the copy and tracing
7661 	 */
7662 	emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
7663 	kvm_rax_write(vcpu, val);
7664 
7665 	return kvm_skip_emulated_instruction(vcpu);
7666 }
7667 
7668 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7669 			   unsigned short port)
7670 {
7671 	unsigned long val;
7672 	int ret;
7673 
7674 	/* For size less than 4 we merge, else we zero extend */
7675 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7676 
7677 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
7678 	if (ret) {
7679 		kvm_rax_write(vcpu, val);
7680 		return ret;
7681 	}
7682 
7683 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7684 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7685 
7686 	return 0;
7687 }
7688 
7689 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7690 {
7691 	int ret;
7692 
7693 	if (in)
7694 		ret = kvm_fast_pio_in(vcpu, size, port);
7695 	else
7696 		ret = kvm_fast_pio_out(vcpu, size, port);
7697 	return ret && kvm_skip_emulated_instruction(vcpu);
7698 }
7699 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7700 
7701 static int kvmclock_cpu_down_prep(unsigned int cpu)
7702 {
7703 	__this_cpu_write(cpu_tsc_khz, 0);
7704 	return 0;
7705 }
7706 
7707 static void tsc_khz_changed(void *data)
7708 {
7709 	struct cpufreq_freqs *freq = data;
7710 	unsigned long khz = 0;
7711 
7712 	if (data)
7713 		khz = freq->new;
7714 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7715 		khz = cpufreq_quick_get(raw_smp_processor_id());
7716 	if (!khz)
7717 		khz = tsc_khz;
7718 	__this_cpu_write(cpu_tsc_khz, khz);
7719 }
7720 
7721 #ifdef CONFIG_X86_64
7722 static void kvm_hyperv_tsc_notifier(void)
7723 {
7724 	struct kvm *kvm;
7725 	struct kvm_vcpu *vcpu;
7726 	int cpu;
7727 
7728 	mutex_lock(&kvm_lock);
7729 	list_for_each_entry(kvm, &vm_list, vm_list)
7730 		kvm_make_mclock_inprogress_request(kvm);
7731 
7732 	hyperv_stop_tsc_emulation();
7733 
7734 	/* TSC frequency always matches when on Hyper-V */
7735 	for_each_present_cpu(cpu)
7736 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7737 	kvm_max_guest_tsc_khz = tsc_khz;
7738 
7739 	list_for_each_entry(kvm, &vm_list, vm_list) {
7740 		struct kvm_arch *ka = &kvm->arch;
7741 
7742 		spin_lock(&ka->pvclock_gtod_sync_lock);
7743 
7744 		pvclock_update_vm_gtod_copy(kvm);
7745 
7746 		kvm_for_each_vcpu(cpu, vcpu, kvm)
7747 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7748 
7749 		kvm_for_each_vcpu(cpu, vcpu, kvm)
7750 			kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7751 
7752 		spin_unlock(&ka->pvclock_gtod_sync_lock);
7753 	}
7754 	mutex_unlock(&kvm_lock);
7755 }
7756 #endif
7757 
7758 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7759 {
7760 	struct kvm *kvm;
7761 	struct kvm_vcpu *vcpu;
7762 	int i, send_ipi = 0;
7763 
7764 	/*
7765 	 * We allow guests to temporarily run on slowing clocks,
7766 	 * provided we notify them after, or to run on accelerating
7767 	 * clocks, provided we notify them before.  Thus time never
7768 	 * goes backwards.
7769 	 *
7770 	 * However, we have a problem.  We can't atomically update
7771 	 * the frequency of a given CPU from this function; it is
7772 	 * merely a notifier, which can be called from any CPU.
7773 	 * Changing the TSC frequency at arbitrary points in time
7774 	 * requires a recomputation of local variables related to
7775 	 * the TSC for each VCPU.  We must flag these local variables
7776 	 * to be updated and be sure the update takes place with the
7777 	 * new frequency before any guests proceed.
7778 	 *
7779 	 * Unfortunately, the combination of hotplug CPU and frequency
7780 	 * change creates an intractable locking scenario; the order
7781 	 * of when these callouts happen is undefined with respect to
7782 	 * CPU hotplug, and they can race with each other.  As such,
7783 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7784 	 * undefined; you can actually have a CPU frequency change take
7785 	 * place in between the computation of X and the setting of the
7786 	 * variable.  To protect against this problem, all updates of
7787 	 * the per_cpu tsc_khz variable are done in an interrupt
7788 	 * protected IPI, and all callers wishing to update the value
7789 	 * must wait for a synchronous IPI to complete (which is trivial
7790 	 * if the caller is on the CPU already).  This establishes the
7791 	 * necessary total order on variable updates.
7792 	 *
7793 	 * Note that because a guest time update may take place
7794 	 * anytime after the setting of the VCPU's request bit, the
7795 	 * correct TSC value must be set before the request.  However,
7796 	 * to ensure the update actually makes it to any guest which
7797 	 * starts running in hardware virtualization between the set
7798 	 * and the acquisition of the spinlock, we must also ping the
7799 	 * CPU after setting the request bit.
7800 	 *
7801 	 */
7802 
7803 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7804 
7805 	mutex_lock(&kvm_lock);
7806 	list_for_each_entry(kvm, &vm_list, vm_list) {
7807 		kvm_for_each_vcpu(i, vcpu, kvm) {
7808 			if (vcpu->cpu != cpu)
7809 				continue;
7810 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7811 			if (vcpu->cpu != raw_smp_processor_id())
7812 				send_ipi = 1;
7813 		}
7814 	}
7815 	mutex_unlock(&kvm_lock);
7816 
7817 	if (freq->old < freq->new && send_ipi) {
7818 		/*
7819 		 * We upscale the frequency.  Must make the guest
7820 		 * doesn't see old kvmclock values while running with
7821 		 * the new frequency, otherwise we risk the guest sees
7822 		 * time go backwards.
7823 		 *
7824 		 * In case we update the frequency for another cpu
7825 		 * (which might be in guest context) send an interrupt
7826 		 * to kick the cpu out of guest context.  Next time
7827 		 * guest context is entered kvmclock will be updated,
7828 		 * so the guest will not see stale values.
7829 		 */
7830 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7831 	}
7832 }
7833 
7834 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7835 				     void *data)
7836 {
7837 	struct cpufreq_freqs *freq = data;
7838 	int cpu;
7839 
7840 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7841 		return 0;
7842 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7843 		return 0;
7844 
7845 	for_each_cpu(cpu, freq->policy->cpus)
7846 		__kvmclock_cpufreq_notifier(freq, cpu);
7847 
7848 	return 0;
7849 }
7850 
7851 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7852 	.notifier_call  = kvmclock_cpufreq_notifier
7853 };
7854 
7855 static int kvmclock_cpu_online(unsigned int cpu)
7856 {
7857 	tsc_khz_changed(NULL);
7858 	return 0;
7859 }
7860 
7861 static void kvm_timer_init(void)
7862 {
7863 	max_tsc_khz = tsc_khz;
7864 
7865 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7866 #ifdef CONFIG_CPU_FREQ
7867 		struct cpufreq_policy *policy;
7868 		int cpu;
7869 
7870 		cpu = get_cpu();
7871 		policy = cpufreq_cpu_get(cpu);
7872 		if (policy) {
7873 			if (policy->cpuinfo.max_freq)
7874 				max_tsc_khz = policy->cpuinfo.max_freq;
7875 			cpufreq_cpu_put(policy);
7876 		}
7877 		put_cpu();
7878 #endif
7879 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7880 					  CPUFREQ_TRANSITION_NOTIFIER);
7881 	}
7882 
7883 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7884 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
7885 }
7886 
7887 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7888 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7889 
7890 int kvm_is_in_guest(void)
7891 {
7892 	return __this_cpu_read(current_vcpu) != NULL;
7893 }
7894 
7895 static int kvm_is_user_mode(void)
7896 {
7897 	int user_mode = 3;
7898 
7899 	if (__this_cpu_read(current_vcpu))
7900 		user_mode = static_call(kvm_x86_get_cpl)(__this_cpu_read(current_vcpu));
7901 
7902 	return user_mode != 0;
7903 }
7904 
7905 static unsigned long kvm_get_guest_ip(void)
7906 {
7907 	unsigned long ip = 0;
7908 
7909 	if (__this_cpu_read(current_vcpu))
7910 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7911 
7912 	return ip;
7913 }
7914 
7915 static void kvm_handle_intel_pt_intr(void)
7916 {
7917 	struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7918 
7919 	kvm_make_request(KVM_REQ_PMI, vcpu);
7920 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7921 			(unsigned long *)&vcpu->arch.pmu.global_status);
7922 }
7923 
7924 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7925 	.is_in_guest		= kvm_is_in_guest,
7926 	.is_user_mode		= kvm_is_user_mode,
7927 	.get_guest_ip		= kvm_get_guest_ip,
7928 	.handle_intel_pt_intr	= kvm_handle_intel_pt_intr,
7929 };
7930 
7931 #ifdef CONFIG_X86_64
7932 static void pvclock_gtod_update_fn(struct work_struct *work)
7933 {
7934 	struct kvm *kvm;
7935 
7936 	struct kvm_vcpu *vcpu;
7937 	int i;
7938 
7939 	mutex_lock(&kvm_lock);
7940 	list_for_each_entry(kvm, &vm_list, vm_list)
7941 		kvm_for_each_vcpu(i, vcpu, kvm)
7942 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7943 	atomic_set(&kvm_guest_has_master_clock, 0);
7944 	mutex_unlock(&kvm_lock);
7945 }
7946 
7947 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7948 
7949 /*
7950  * Notification about pvclock gtod data update.
7951  */
7952 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7953 			       void *priv)
7954 {
7955 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7956 	struct timekeeper *tk = priv;
7957 
7958 	update_pvclock_gtod(tk);
7959 
7960 	/* disable master clock if host does not trust, or does not
7961 	 * use, TSC based clocksource.
7962 	 */
7963 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7964 	    atomic_read(&kvm_guest_has_master_clock) != 0)
7965 		queue_work(system_long_wq, &pvclock_gtod_work);
7966 
7967 	return 0;
7968 }
7969 
7970 static struct notifier_block pvclock_gtod_notifier = {
7971 	.notifier_call = pvclock_gtod_notify,
7972 };
7973 #endif
7974 
7975 int kvm_arch_init(void *opaque)
7976 {
7977 	struct kvm_x86_init_ops *ops = opaque;
7978 	int r;
7979 
7980 	if (kvm_x86_ops.hardware_enable) {
7981 		printk(KERN_ERR "kvm: already loaded the other module\n");
7982 		r = -EEXIST;
7983 		goto out;
7984 	}
7985 
7986 	if (!ops->cpu_has_kvm_support()) {
7987 		pr_err_ratelimited("kvm: no hardware support\n");
7988 		r = -EOPNOTSUPP;
7989 		goto out;
7990 	}
7991 	if (ops->disabled_by_bios()) {
7992 		pr_err_ratelimited("kvm: disabled by bios\n");
7993 		r = -EOPNOTSUPP;
7994 		goto out;
7995 	}
7996 
7997 	/*
7998 	 * KVM explicitly assumes that the guest has an FPU and
7999 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8000 	 * vCPU's FPU state as a fxregs_state struct.
8001 	 */
8002 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8003 		printk(KERN_ERR "kvm: inadequate fpu\n");
8004 		r = -EOPNOTSUPP;
8005 		goto out;
8006 	}
8007 
8008 	r = -ENOMEM;
8009 	x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
8010 					  __alignof__(struct fpu), SLAB_ACCOUNT,
8011 					  NULL);
8012 	if (!x86_fpu_cache) {
8013 		printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
8014 		goto out;
8015 	}
8016 
8017 	x86_emulator_cache = kvm_alloc_emulator_cache();
8018 	if (!x86_emulator_cache) {
8019 		pr_err("kvm: failed to allocate cache for x86 emulator\n");
8020 		goto out_free_x86_fpu_cache;
8021 	}
8022 
8023 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8024 	if (!user_return_msrs) {
8025 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8026 		goto out_free_x86_emulator_cache;
8027 	}
8028 
8029 	r = kvm_mmu_module_init();
8030 	if (r)
8031 		goto out_free_percpu;
8032 
8033 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
8034 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
8035 			PT_PRESENT_MASK, 0, sme_me_mask);
8036 	kvm_timer_init();
8037 
8038 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
8039 
8040 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8041 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8042 		supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8043 	}
8044 
8045 	if (pi_inject_timer == -1)
8046 		pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8047 #ifdef CONFIG_X86_64
8048 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8049 
8050 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8051 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8052 #endif
8053 
8054 	return 0;
8055 
8056 out_free_percpu:
8057 	free_percpu(user_return_msrs);
8058 out_free_x86_emulator_cache:
8059 	kmem_cache_destroy(x86_emulator_cache);
8060 out_free_x86_fpu_cache:
8061 	kmem_cache_destroy(x86_fpu_cache);
8062 out:
8063 	return r;
8064 }
8065 
8066 void kvm_arch_exit(void)
8067 {
8068 #ifdef CONFIG_X86_64
8069 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8070 		clear_hv_tscchange_cb();
8071 #endif
8072 	kvm_lapic_exit();
8073 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
8074 
8075 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8076 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8077 					    CPUFREQ_TRANSITION_NOTIFIER);
8078 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8079 #ifdef CONFIG_X86_64
8080 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8081 #endif
8082 	kvm_x86_ops.hardware_enable = NULL;
8083 	kvm_mmu_module_exit();
8084 	free_percpu(user_return_msrs);
8085 	kmem_cache_destroy(x86_fpu_cache);
8086 #ifdef CONFIG_KVM_XEN
8087 	static_key_deferred_flush(&kvm_xen_enabled);
8088 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8089 #endif
8090 }
8091 
8092 static int __kvm_vcpu_halt(struct kvm_vcpu *vcpu, int state, int reason)
8093 {
8094 	++vcpu->stat.halt_exits;
8095 	if (lapic_in_kernel(vcpu)) {
8096 		vcpu->arch.mp_state = state;
8097 		return 1;
8098 	} else {
8099 		vcpu->run->exit_reason = reason;
8100 		return 0;
8101 	}
8102 }
8103 
8104 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8105 {
8106 	return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8107 }
8108 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8109 
8110 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8111 {
8112 	int ret = kvm_skip_emulated_instruction(vcpu);
8113 	/*
8114 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8115 	 * KVM_EXIT_DEBUG here.
8116 	 */
8117 	return kvm_vcpu_halt(vcpu) && ret;
8118 }
8119 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8120 
8121 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8122 {
8123 	int ret = kvm_skip_emulated_instruction(vcpu);
8124 
8125 	return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, KVM_EXIT_AP_RESET_HOLD) && ret;
8126 }
8127 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8128 
8129 #ifdef CONFIG_X86_64
8130 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8131 			        unsigned long clock_type)
8132 {
8133 	struct kvm_clock_pairing clock_pairing;
8134 	struct timespec64 ts;
8135 	u64 cycle;
8136 	int ret;
8137 
8138 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8139 		return -KVM_EOPNOTSUPP;
8140 
8141 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8142 		return -KVM_EOPNOTSUPP;
8143 
8144 	clock_pairing.sec = ts.tv_sec;
8145 	clock_pairing.nsec = ts.tv_nsec;
8146 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8147 	clock_pairing.flags = 0;
8148 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8149 
8150 	ret = 0;
8151 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8152 			    sizeof(struct kvm_clock_pairing)))
8153 		ret = -KVM_EFAULT;
8154 
8155 	return ret;
8156 }
8157 #endif
8158 
8159 /*
8160  * kvm_pv_kick_cpu_op:  Kick a vcpu.
8161  *
8162  * @apicid - apicid of vcpu to be kicked.
8163  */
8164 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8165 {
8166 	struct kvm_lapic_irq lapic_irq;
8167 
8168 	lapic_irq.shorthand = APIC_DEST_NOSHORT;
8169 	lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8170 	lapic_irq.level = 0;
8171 	lapic_irq.dest_id = apicid;
8172 	lapic_irq.msi_redir_hint = false;
8173 
8174 	lapic_irq.delivery_mode = APIC_DM_REMRD;
8175 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8176 }
8177 
8178 bool kvm_apicv_activated(struct kvm *kvm)
8179 {
8180 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8181 }
8182 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8183 
8184 void kvm_apicv_init(struct kvm *kvm, bool enable)
8185 {
8186 	if (enable)
8187 		clear_bit(APICV_INHIBIT_REASON_DISABLE,
8188 			  &kvm->arch.apicv_inhibit_reasons);
8189 	else
8190 		set_bit(APICV_INHIBIT_REASON_DISABLE,
8191 			&kvm->arch.apicv_inhibit_reasons);
8192 }
8193 EXPORT_SYMBOL_GPL(kvm_apicv_init);
8194 
8195 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
8196 {
8197 	struct kvm_vcpu *target = NULL;
8198 	struct kvm_apic_map *map;
8199 
8200 	rcu_read_lock();
8201 	map = rcu_dereference(kvm->arch.apic_map);
8202 
8203 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8204 		target = map->phys_map[dest_id]->vcpu;
8205 
8206 	rcu_read_unlock();
8207 
8208 	if (target && READ_ONCE(target->ready))
8209 		kvm_vcpu_yield_to(target);
8210 }
8211 
8212 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8213 {
8214 	unsigned long nr, a0, a1, a2, a3, ret;
8215 	int op_64_bit;
8216 
8217 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
8218 		return kvm_xen_hypercall(vcpu);
8219 
8220 	if (kvm_hv_hypercall_enabled(vcpu))
8221 		return kvm_hv_hypercall(vcpu);
8222 
8223 	nr = kvm_rax_read(vcpu);
8224 	a0 = kvm_rbx_read(vcpu);
8225 	a1 = kvm_rcx_read(vcpu);
8226 	a2 = kvm_rdx_read(vcpu);
8227 	a3 = kvm_rsi_read(vcpu);
8228 
8229 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
8230 
8231 	op_64_bit = is_64_bit_mode(vcpu);
8232 	if (!op_64_bit) {
8233 		nr &= 0xFFFFFFFF;
8234 		a0 &= 0xFFFFFFFF;
8235 		a1 &= 0xFFFFFFFF;
8236 		a2 &= 0xFFFFFFFF;
8237 		a3 &= 0xFFFFFFFF;
8238 	}
8239 
8240 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
8241 		ret = -KVM_EPERM;
8242 		goto out;
8243 	}
8244 
8245 	ret = -KVM_ENOSYS;
8246 
8247 	switch (nr) {
8248 	case KVM_HC_VAPIC_POLL_IRQ:
8249 		ret = 0;
8250 		break;
8251 	case KVM_HC_KICK_CPU:
8252 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8253 			break;
8254 
8255 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8256 		kvm_sched_yield(vcpu->kvm, a1);
8257 		ret = 0;
8258 		break;
8259 #ifdef CONFIG_X86_64
8260 	case KVM_HC_CLOCK_PAIRING:
8261 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8262 		break;
8263 #endif
8264 	case KVM_HC_SEND_IPI:
8265 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8266 			break;
8267 
8268 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8269 		break;
8270 	case KVM_HC_SCHED_YIELD:
8271 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8272 			break;
8273 
8274 		kvm_sched_yield(vcpu->kvm, a0);
8275 		ret = 0;
8276 		break;
8277 	default:
8278 		ret = -KVM_ENOSYS;
8279 		break;
8280 	}
8281 out:
8282 	if (!op_64_bit)
8283 		ret = (u32)ret;
8284 	kvm_rax_write(vcpu, ret);
8285 
8286 	++vcpu->stat.hypercalls;
8287 	return kvm_skip_emulated_instruction(vcpu);
8288 }
8289 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8290 
8291 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8292 {
8293 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8294 	char instruction[3];
8295 	unsigned long rip = kvm_rip_read(vcpu);
8296 
8297 	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
8298 
8299 	return emulator_write_emulated(ctxt, rip, instruction, 3,
8300 		&ctxt->exception);
8301 }
8302 
8303 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8304 {
8305 	return vcpu->run->request_interrupt_window &&
8306 		likely(!pic_in_kernel(vcpu->kvm));
8307 }
8308 
8309 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8310 {
8311 	struct kvm_run *kvm_run = vcpu->run;
8312 
8313 	/*
8314 	 * if_flag is obsolete and useless, so do not bother
8315 	 * setting it for SEV-ES guests.  Userspace can just
8316 	 * use kvm_run->ready_for_interrupt_injection.
8317 	 */
8318 	kvm_run->if_flag = !vcpu->arch.guest_state_protected
8319 		&& (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8320 
8321 	kvm_run->cr8 = kvm_get_cr8(vcpu);
8322 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
8323 	kvm_run->ready_for_interrupt_injection =
8324 		pic_in_kernel(vcpu->kvm) ||
8325 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
8326 
8327 	if (is_smm(vcpu))
8328 		kvm_run->flags |= KVM_RUN_X86_SMM;
8329 }
8330 
8331 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8332 {
8333 	int max_irr, tpr;
8334 
8335 	if (!kvm_x86_ops.update_cr8_intercept)
8336 		return;
8337 
8338 	if (!lapic_in_kernel(vcpu))
8339 		return;
8340 
8341 	if (vcpu->arch.apicv_active)
8342 		return;
8343 
8344 	if (!vcpu->arch.apic->vapic_addr)
8345 		max_irr = kvm_lapic_find_highest_irr(vcpu);
8346 	else
8347 		max_irr = -1;
8348 
8349 	if (max_irr != -1)
8350 		max_irr >>= 4;
8351 
8352 	tpr = kvm_lapic_get_cr8(vcpu);
8353 
8354 	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
8355 }
8356 
8357 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8358 {
8359 	int r;
8360 	bool can_inject = true;
8361 
8362 	/* try to reinject previous events if any */
8363 
8364 	if (vcpu->arch.exception.injected) {
8365 		static_call(kvm_x86_queue_exception)(vcpu);
8366 		can_inject = false;
8367 	}
8368 	/*
8369 	 * Do not inject an NMI or interrupt if there is a pending
8370 	 * exception.  Exceptions and interrupts are recognized at
8371 	 * instruction boundaries, i.e. the start of an instruction.
8372 	 * Trap-like exceptions, e.g. #DB, have higher priority than
8373 	 * NMIs and interrupts, i.e. traps are recognized before an
8374 	 * NMI/interrupt that's pending on the same instruction.
8375 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8376 	 * priority, but are only generated (pended) during instruction
8377 	 * execution, i.e. a pending fault-like exception means the
8378 	 * fault occurred on the *previous* instruction and must be
8379 	 * serviced prior to recognizing any new events in order to
8380 	 * fully complete the previous instruction.
8381 	 */
8382 	else if (!vcpu->arch.exception.pending) {
8383 		if (vcpu->arch.nmi_injected) {
8384 			static_call(kvm_x86_set_nmi)(vcpu);
8385 			can_inject = false;
8386 		} else if (vcpu->arch.interrupt.injected) {
8387 			static_call(kvm_x86_set_irq)(vcpu);
8388 			can_inject = false;
8389 		}
8390 	}
8391 
8392 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
8393 		     vcpu->arch.exception.pending);
8394 
8395 	/*
8396 	 * Call check_nested_events() even if we reinjected a previous event
8397 	 * in order for caller to determine if it should require immediate-exit
8398 	 * from L2 to L1 due to pending L1 events which require exit
8399 	 * from L2 to L1.
8400 	 */
8401 	if (is_guest_mode(vcpu)) {
8402 		r = kvm_x86_ops.nested_ops->check_events(vcpu);
8403 		if (r < 0)
8404 			goto busy;
8405 	}
8406 
8407 	/* try to inject new event if pending */
8408 	if (vcpu->arch.exception.pending) {
8409 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
8410 					vcpu->arch.exception.has_error_code,
8411 					vcpu->arch.exception.error_code);
8412 
8413 		vcpu->arch.exception.pending = false;
8414 		vcpu->arch.exception.injected = true;
8415 
8416 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8417 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8418 					     X86_EFLAGS_RF);
8419 
8420 		if (vcpu->arch.exception.nr == DB_VECTOR) {
8421 			kvm_deliver_exception_payload(vcpu);
8422 			if (vcpu->arch.dr7 & DR7_GD) {
8423 				vcpu->arch.dr7 &= ~DR7_GD;
8424 				kvm_update_dr7(vcpu);
8425 			}
8426 		}
8427 
8428 		static_call(kvm_x86_queue_exception)(vcpu);
8429 		can_inject = false;
8430 	}
8431 
8432 	/*
8433 	 * Finally, inject interrupt events.  If an event cannot be injected
8434 	 * due to architectural conditions (e.g. IF=0) a window-open exit
8435 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
8436 	 * and can architecturally be injected, but we cannot do it right now:
8437 	 * an interrupt could have arrived just now and we have to inject it
8438 	 * as a vmexit, or there could already an event in the queue, which is
8439 	 * indicated by can_inject.  In that case we request an immediate exit
8440 	 * in order to make progress and get back here for another iteration.
8441 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
8442 	 */
8443 	if (vcpu->arch.smi_pending) {
8444 		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
8445 		if (r < 0)
8446 			goto busy;
8447 		if (r) {
8448 			vcpu->arch.smi_pending = false;
8449 			++vcpu->arch.smi_count;
8450 			enter_smm(vcpu);
8451 			can_inject = false;
8452 		} else
8453 			static_call(kvm_x86_enable_smi_window)(vcpu);
8454 	}
8455 
8456 	if (vcpu->arch.nmi_pending) {
8457 		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
8458 		if (r < 0)
8459 			goto busy;
8460 		if (r) {
8461 			--vcpu->arch.nmi_pending;
8462 			vcpu->arch.nmi_injected = true;
8463 			static_call(kvm_x86_set_nmi)(vcpu);
8464 			can_inject = false;
8465 			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
8466 		}
8467 		if (vcpu->arch.nmi_pending)
8468 			static_call(kvm_x86_enable_nmi_window)(vcpu);
8469 	}
8470 
8471 	if (kvm_cpu_has_injectable_intr(vcpu)) {
8472 		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
8473 		if (r < 0)
8474 			goto busy;
8475 		if (r) {
8476 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
8477 			static_call(kvm_x86_set_irq)(vcpu);
8478 			WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
8479 		}
8480 		if (kvm_cpu_has_injectable_intr(vcpu))
8481 			static_call(kvm_x86_enable_irq_window)(vcpu);
8482 	}
8483 
8484 	if (is_guest_mode(vcpu) &&
8485 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
8486 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
8487 		*req_immediate_exit = true;
8488 
8489 	WARN_ON(vcpu->arch.exception.pending);
8490 	return;
8491 
8492 busy:
8493 	*req_immediate_exit = true;
8494 	return;
8495 }
8496 
8497 static void process_nmi(struct kvm_vcpu *vcpu)
8498 {
8499 	unsigned limit = 2;
8500 
8501 	/*
8502 	 * x86 is limited to one NMI running, and one NMI pending after it.
8503 	 * If an NMI is already in progress, limit further NMIs to just one.
8504 	 * Otherwise, allow two (and we'll inject the first one immediately).
8505 	 */
8506 	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
8507 		limit = 1;
8508 
8509 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
8510 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
8511 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8512 }
8513 
8514 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
8515 {
8516 	u32 flags = 0;
8517 	flags |= seg->g       << 23;
8518 	flags |= seg->db      << 22;
8519 	flags |= seg->l       << 21;
8520 	flags |= seg->avl     << 20;
8521 	flags |= seg->present << 15;
8522 	flags |= seg->dpl     << 13;
8523 	flags |= seg->s       << 12;
8524 	flags |= seg->type    << 8;
8525 	return flags;
8526 }
8527 
8528 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
8529 {
8530 	struct kvm_segment seg;
8531 	int offset;
8532 
8533 	kvm_get_segment(vcpu, &seg, n);
8534 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
8535 
8536 	if (n < 3)
8537 		offset = 0x7f84 + n * 12;
8538 	else
8539 		offset = 0x7f2c + (n - 3) * 12;
8540 
8541 	put_smstate(u32, buf, offset + 8, seg.base);
8542 	put_smstate(u32, buf, offset + 4, seg.limit);
8543 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
8544 }
8545 
8546 #ifdef CONFIG_X86_64
8547 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
8548 {
8549 	struct kvm_segment seg;
8550 	int offset;
8551 	u16 flags;
8552 
8553 	kvm_get_segment(vcpu, &seg, n);
8554 	offset = 0x7e00 + n * 16;
8555 
8556 	flags = enter_smm_get_segment_flags(&seg) >> 8;
8557 	put_smstate(u16, buf, offset, seg.selector);
8558 	put_smstate(u16, buf, offset + 2, flags);
8559 	put_smstate(u32, buf, offset + 4, seg.limit);
8560 	put_smstate(u64, buf, offset + 8, seg.base);
8561 }
8562 #endif
8563 
8564 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
8565 {
8566 	struct desc_ptr dt;
8567 	struct kvm_segment seg;
8568 	unsigned long val;
8569 	int i;
8570 
8571 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
8572 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
8573 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
8574 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
8575 
8576 	for (i = 0; i < 8; i++)
8577 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
8578 
8579 	kvm_get_dr(vcpu, 6, &val);
8580 	put_smstate(u32, buf, 0x7fcc, (u32)val);
8581 	kvm_get_dr(vcpu, 7, &val);
8582 	put_smstate(u32, buf, 0x7fc8, (u32)val);
8583 
8584 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8585 	put_smstate(u32, buf, 0x7fc4, seg.selector);
8586 	put_smstate(u32, buf, 0x7f64, seg.base);
8587 	put_smstate(u32, buf, 0x7f60, seg.limit);
8588 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
8589 
8590 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8591 	put_smstate(u32, buf, 0x7fc0, seg.selector);
8592 	put_smstate(u32, buf, 0x7f80, seg.base);
8593 	put_smstate(u32, buf, 0x7f7c, seg.limit);
8594 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
8595 
8596 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
8597 	put_smstate(u32, buf, 0x7f74, dt.address);
8598 	put_smstate(u32, buf, 0x7f70, dt.size);
8599 
8600 	static_call(kvm_x86_get_idt)(vcpu, &dt);
8601 	put_smstate(u32, buf, 0x7f58, dt.address);
8602 	put_smstate(u32, buf, 0x7f54, dt.size);
8603 
8604 	for (i = 0; i < 6; i++)
8605 		enter_smm_save_seg_32(vcpu, buf, i);
8606 
8607 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
8608 
8609 	/* revision id */
8610 	put_smstate(u32, buf, 0x7efc, 0x00020000);
8611 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
8612 }
8613 
8614 #ifdef CONFIG_X86_64
8615 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
8616 {
8617 	struct desc_ptr dt;
8618 	struct kvm_segment seg;
8619 	unsigned long val;
8620 	int i;
8621 
8622 	for (i = 0; i < 16; i++)
8623 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
8624 
8625 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
8626 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
8627 
8628 	kvm_get_dr(vcpu, 6, &val);
8629 	put_smstate(u64, buf, 0x7f68, val);
8630 	kvm_get_dr(vcpu, 7, &val);
8631 	put_smstate(u64, buf, 0x7f60, val);
8632 
8633 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
8634 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
8635 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
8636 
8637 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
8638 
8639 	/* revision id */
8640 	put_smstate(u32, buf, 0x7efc, 0x00020064);
8641 
8642 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
8643 
8644 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8645 	put_smstate(u16, buf, 0x7e90, seg.selector);
8646 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
8647 	put_smstate(u32, buf, 0x7e94, seg.limit);
8648 	put_smstate(u64, buf, 0x7e98, seg.base);
8649 
8650 	static_call(kvm_x86_get_idt)(vcpu, &dt);
8651 	put_smstate(u32, buf, 0x7e84, dt.size);
8652 	put_smstate(u64, buf, 0x7e88, dt.address);
8653 
8654 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8655 	put_smstate(u16, buf, 0x7e70, seg.selector);
8656 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
8657 	put_smstate(u32, buf, 0x7e74, seg.limit);
8658 	put_smstate(u64, buf, 0x7e78, seg.base);
8659 
8660 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
8661 	put_smstate(u32, buf, 0x7e64, dt.size);
8662 	put_smstate(u64, buf, 0x7e68, dt.address);
8663 
8664 	for (i = 0; i < 6; i++)
8665 		enter_smm_save_seg_64(vcpu, buf, i);
8666 }
8667 #endif
8668 
8669 static void enter_smm(struct kvm_vcpu *vcpu)
8670 {
8671 	struct kvm_segment cs, ds;
8672 	struct desc_ptr dt;
8673 	char buf[512];
8674 	u32 cr0;
8675 
8676 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
8677 	memset(buf, 0, 512);
8678 #ifdef CONFIG_X86_64
8679 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8680 		enter_smm_save_state_64(vcpu, buf);
8681 	else
8682 #endif
8683 		enter_smm_save_state_32(vcpu, buf);
8684 
8685 	/*
8686 	 * Give pre_enter_smm() a chance to make ISA-specific changes to the
8687 	 * vCPU state (e.g. leave guest mode) after we've saved the state into
8688 	 * the SMM state-save area.
8689 	 */
8690 	static_call(kvm_x86_pre_enter_smm)(vcpu, buf);
8691 
8692 	vcpu->arch.hflags |= HF_SMM_MASK;
8693 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
8694 
8695 	if (static_call(kvm_x86_get_nmi_mask)(vcpu))
8696 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
8697 	else
8698 		static_call(kvm_x86_set_nmi_mask)(vcpu, true);
8699 
8700 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
8701 	kvm_rip_write(vcpu, 0x8000);
8702 
8703 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
8704 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
8705 	vcpu->arch.cr0 = cr0;
8706 
8707 	static_call(kvm_x86_set_cr4)(vcpu, 0);
8708 
8709 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
8710 	dt.address = dt.size = 0;
8711 	static_call(kvm_x86_set_idt)(vcpu, &dt);
8712 
8713 	kvm_set_dr(vcpu, 7, DR7_FIXED_1);
8714 
8715 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
8716 	cs.base = vcpu->arch.smbase;
8717 
8718 	ds.selector = 0;
8719 	ds.base = 0;
8720 
8721 	cs.limit    = ds.limit = 0xffffffff;
8722 	cs.type     = ds.type = 0x3;
8723 	cs.dpl      = ds.dpl = 0;
8724 	cs.db       = ds.db = 0;
8725 	cs.s        = ds.s = 1;
8726 	cs.l        = ds.l = 0;
8727 	cs.g        = ds.g = 1;
8728 	cs.avl      = ds.avl = 0;
8729 	cs.present  = ds.present = 1;
8730 	cs.unusable = ds.unusable = 0;
8731 	cs.padding  = ds.padding = 0;
8732 
8733 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8734 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8735 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8736 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8737 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8738 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8739 
8740 #ifdef CONFIG_X86_64
8741 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8742 		static_call(kvm_x86_set_efer)(vcpu, 0);
8743 #endif
8744 
8745 	kvm_update_cpuid_runtime(vcpu);
8746 	kvm_mmu_reset_context(vcpu);
8747 }
8748 
8749 static void process_smi(struct kvm_vcpu *vcpu)
8750 {
8751 	vcpu->arch.smi_pending = true;
8752 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8753 }
8754 
8755 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8756 				       unsigned long *vcpu_bitmap)
8757 {
8758 	cpumask_var_t cpus;
8759 
8760 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8761 
8762 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8763 				    NULL, vcpu_bitmap, cpus);
8764 
8765 	free_cpumask_var(cpus);
8766 }
8767 
8768 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8769 {
8770 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8771 }
8772 
8773 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8774 {
8775 	if (!lapic_in_kernel(vcpu))
8776 		return;
8777 
8778 	vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8779 	kvm_apic_update_apicv(vcpu);
8780 	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
8781 }
8782 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8783 
8784 /*
8785  * NOTE: Do not hold any lock prior to calling this.
8786  *
8787  * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8788  * locked, because it calls __x86_set_memory_region() which does
8789  * synchronize_srcu(&kvm->srcu).
8790  */
8791 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8792 {
8793 	struct kvm_vcpu *except;
8794 	unsigned long old, new, expected;
8795 
8796 	if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
8797 	    !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
8798 		return;
8799 
8800 	old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8801 	do {
8802 		expected = new = old;
8803 		if (activate)
8804 			__clear_bit(bit, &new);
8805 		else
8806 			__set_bit(bit, &new);
8807 		if (new == old)
8808 			break;
8809 		old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
8810 	} while (old != expected);
8811 
8812 	if (!!old == !!new)
8813 		return;
8814 
8815 	trace_kvm_apicv_update_request(activate, bit);
8816 	if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
8817 		static_call(kvm_x86_pre_update_apicv_exec_ctrl)(kvm, activate);
8818 
8819 	/*
8820 	 * Sending request to update APICV for all other vcpus,
8821 	 * while update the calling vcpu immediately instead of
8822 	 * waiting for another #VMEXIT to handle the request.
8823 	 */
8824 	except = kvm_get_running_vcpu();
8825 	kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE,
8826 					 except);
8827 	if (except)
8828 		kvm_vcpu_update_apicv(except);
8829 }
8830 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8831 
8832 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8833 {
8834 	if (!kvm_apic_present(vcpu))
8835 		return;
8836 
8837 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8838 
8839 	if (irqchip_split(vcpu->kvm))
8840 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
8841 	else {
8842 		if (vcpu->arch.apicv_active)
8843 			static_call(kvm_x86_sync_pir_to_irr)(vcpu);
8844 		if (ioapic_in_kernel(vcpu->kvm))
8845 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
8846 	}
8847 
8848 	if (is_guest_mode(vcpu))
8849 		vcpu->arch.load_eoi_exitmap_pending = true;
8850 	else
8851 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8852 }
8853 
8854 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8855 {
8856 	u64 eoi_exit_bitmap[4];
8857 
8858 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8859 		return;
8860 
8861 	if (to_hv_vcpu(vcpu))
8862 		bitmap_or((ulong *)eoi_exit_bitmap,
8863 			  vcpu->arch.ioapic_handled_vectors,
8864 			  to_hv_synic(vcpu)->vec_bitmap, 256);
8865 
8866 	static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
8867 }
8868 
8869 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8870 					    unsigned long start, unsigned long end)
8871 {
8872 	unsigned long apic_address;
8873 
8874 	/*
8875 	 * The physical address of apic access page is stored in the VMCS.
8876 	 * Update it when it becomes invalid.
8877 	 */
8878 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8879 	if (start <= apic_address && apic_address < end)
8880 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
8881 }
8882 
8883 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8884 {
8885 	if (!lapic_in_kernel(vcpu))
8886 		return;
8887 
8888 	if (!kvm_x86_ops.set_apic_access_page_addr)
8889 		return;
8890 
8891 	static_call(kvm_x86_set_apic_access_page_addr)(vcpu);
8892 }
8893 
8894 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
8895 {
8896 	smp_send_reschedule(vcpu->cpu);
8897 }
8898 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
8899 
8900 /*
8901  * Returns 1 to let vcpu_run() continue the guest execution loop without
8902  * exiting to the userspace.  Otherwise, the value will be returned to the
8903  * userspace.
8904  */
8905 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
8906 {
8907 	int r;
8908 	bool req_int_win =
8909 		dm_request_for_irq_injection(vcpu) &&
8910 		kvm_cpu_accept_dm_intr(vcpu);
8911 	fastpath_t exit_fastpath;
8912 
8913 	bool req_immediate_exit = false;
8914 
8915 	/* Forbid vmenter if vcpu dirty ring is soft-full */
8916 	if (unlikely(vcpu->kvm->dirty_ring_size &&
8917 		     kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
8918 		vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
8919 		trace_kvm_dirty_ring_exit(vcpu);
8920 		r = 0;
8921 		goto out;
8922 	}
8923 
8924 	if (kvm_request_pending(vcpu)) {
8925 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
8926 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
8927 				r = 0;
8928 				goto out;
8929 			}
8930 		}
8931 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
8932 			kvm_mmu_unload(vcpu);
8933 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
8934 			__kvm_migrate_timers(vcpu);
8935 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8936 			kvm_gen_update_masterclock(vcpu->kvm);
8937 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8938 			kvm_gen_kvmclock_update(vcpu);
8939 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8940 			r = kvm_guest_time_update(vcpu);
8941 			if (unlikely(r))
8942 				goto out;
8943 		}
8944 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
8945 			kvm_mmu_sync_roots(vcpu);
8946 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
8947 			kvm_mmu_load_pgd(vcpu);
8948 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
8949 			kvm_vcpu_flush_tlb_all(vcpu);
8950 
8951 			/* Flushing all ASIDs flushes the current ASID... */
8952 			kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
8953 		}
8954 		if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
8955 			kvm_vcpu_flush_tlb_current(vcpu);
8956 		if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu))
8957 			kvm_vcpu_flush_tlb_guest(vcpu);
8958 
8959 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
8960 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
8961 			r = 0;
8962 			goto out;
8963 		}
8964 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8965 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8966 			vcpu->mmio_needed = 0;
8967 			r = 0;
8968 			goto out;
8969 		}
8970 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8971 			/* Page is swapped out. Do synthetic halt */
8972 			vcpu->arch.apf.halted = true;
8973 			r = 1;
8974 			goto out;
8975 		}
8976 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8977 			record_steal_time(vcpu);
8978 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
8979 			process_smi(vcpu);
8980 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
8981 			process_nmi(vcpu);
8982 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
8983 			kvm_pmu_handle_event(vcpu);
8984 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
8985 			kvm_pmu_deliver_pmi(vcpu);
8986 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8987 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8988 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
8989 				     vcpu->arch.ioapic_handled_vectors)) {
8990 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8991 				vcpu->run->eoi.vector =
8992 						vcpu->arch.pending_ioapic_eoi;
8993 				r = 0;
8994 				goto out;
8995 			}
8996 		}
8997 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8998 			vcpu_scan_ioapic(vcpu);
8999 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9000 			vcpu_load_eoi_exitmap(vcpu);
9001 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9002 			kvm_vcpu_reload_apic_access_page(vcpu);
9003 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9004 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9005 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9006 			r = 0;
9007 			goto out;
9008 		}
9009 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9010 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9011 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9012 			r = 0;
9013 			goto out;
9014 		}
9015 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9016 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
9017 
9018 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9019 			vcpu->run->hyperv = hv_vcpu->exit;
9020 			r = 0;
9021 			goto out;
9022 		}
9023 
9024 		/*
9025 		 * KVM_REQ_HV_STIMER has to be processed after
9026 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9027 		 * depend on the guest clock being up-to-date
9028 		 */
9029 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9030 			kvm_hv_process_stimers(vcpu);
9031 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9032 			kvm_vcpu_update_apicv(vcpu);
9033 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9034 			kvm_check_async_pf_completion(vcpu);
9035 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9036 			static_call(kvm_x86_msr_filter_changed)(vcpu);
9037 
9038 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
9039 			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
9040 	}
9041 
9042 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
9043 	    kvm_xen_has_interrupt(vcpu)) {
9044 		++vcpu->stat.req_event;
9045 		kvm_apic_accept_events(vcpu);
9046 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9047 			r = 1;
9048 			goto out;
9049 		}
9050 
9051 		inject_pending_event(vcpu, &req_immediate_exit);
9052 		if (req_int_win)
9053 			static_call(kvm_x86_enable_irq_window)(vcpu);
9054 
9055 		if (kvm_lapic_enabled(vcpu)) {
9056 			update_cr8_intercept(vcpu);
9057 			kvm_lapic_sync_to_vapic(vcpu);
9058 		}
9059 	}
9060 
9061 	r = kvm_mmu_reload(vcpu);
9062 	if (unlikely(r)) {
9063 		goto cancel_injection;
9064 	}
9065 
9066 	preempt_disable();
9067 
9068 	static_call(kvm_x86_prepare_guest_switch)(vcpu);
9069 
9070 	/*
9071 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
9072 	 * IPI are then delayed after guest entry, which ensures that they
9073 	 * result in virtual interrupt delivery.
9074 	 */
9075 	local_irq_disable();
9076 	vcpu->mode = IN_GUEST_MODE;
9077 
9078 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9079 
9080 	/*
9081 	 * 1) We should set ->mode before checking ->requests.  Please see
9082 	 * the comment in kvm_vcpu_exiting_guest_mode().
9083 	 *
9084 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
9085 	 * pairs with the memory barrier implicit in pi_test_and_set_on
9086 	 * (see vmx_deliver_posted_interrupt).
9087 	 *
9088 	 * 3) This also orders the write to mode from any reads to the page
9089 	 * tables done while the VCPU is running.  Please see the comment
9090 	 * in kvm_flush_remote_tlbs.
9091 	 */
9092 	smp_mb__after_srcu_read_unlock();
9093 
9094 	/*
9095 	 * This handles the case where a posted interrupt was
9096 	 * notified with kvm_vcpu_kick.
9097 	 */
9098 	if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
9099 		static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9100 
9101 	if (kvm_vcpu_exit_request(vcpu)) {
9102 		vcpu->mode = OUTSIDE_GUEST_MODE;
9103 		smp_wmb();
9104 		local_irq_enable();
9105 		preempt_enable();
9106 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9107 		r = 1;
9108 		goto cancel_injection;
9109 	}
9110 
9111 	if (req_immediate_exit) {
9112 		kvm_make_request(KVM_REQ_EVENT, vcpu);
9113 		static_call(kvm_x86_request_immediate_exit)(vcpu);
9114 	}
9115 
9116 	fpregs_assert_state_consistent();
9117 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
9118 		switch_fpu_return();
9119 
9120 	if (unlikely(vcpu->arch.switch_db_regs)) {
9121 		set_debugreg(0, 7);
9122 		set_debugreg(vcpu->arch.eff_db[0], 0);
9123 		set_debugreg(vcpu->arch.eff_db[1], 1);
9124 		set_debugreg(vcpu->arch.eff_db[2], 2);
9125 		set_debugreg(vcpu->arch.eff_db[3], 3);
9126 		set_debugreg(vcpu->arch.dr6, 6);
9127 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9128 	}
9129 
9130 	for (;;) {
9131 		exit_fastpath = static_call(kvm_x86_run)(vcpu);
9132 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
9133 			break;
9134 
9135                 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
9136 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
9137 			break;
9138 		}
9139 
9140 		if (vcpu->arch.apicv_active)
9141 			static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9142         }
9143 
9144 	/*
9145 	 * Do this here before restoring debug registers on the host.  And
9146 	 * since we do this before handling the vmexit, a DR access vmexit
9147 	 * can (a) read the correct value of the debug registers, (b) set
9148 	 * KVM_DEBUGREG_WONT_EXIT again.
9149 	 */
9150 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9151 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9152 		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
9153 		kvm_update_dr0123(vcpu);
9154 		kvm_update_dr7(vcpu);
9155 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9156 	}
9157 
9158 	/*
9159 	 * If the guest has used debug registers, at least dr7
9160 	 * will be disabled while returning to the host.
9161 	 * If we don't have active breakpoints in the host, we don't
9162 	 * care about the messed up debug address registers. But if
9163 	 * we have some of them active, restore the old state.
9164 	 */
9165 	if (hw_breakpoint_active())
9166 		hw_breakpoint_restore();
9167 
9168 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9169 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9170 
9171 	vcpu->mode = OUTSIDE_GUEST_MODE;
9172 	smp_wmb();
9173 
9174 	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
9175 
9176 	/*
9177 	 * Consume any pending interrupts, including the possible source of
9178 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9179 	 * An instruction is required after local_irq_enable() to fully unblock
9180 	 * interrupts on processors that implement an interrupt shadow, the
9181 	 * stat.exits increment will do nicely.
9182 	 */
9183 	kvm_before_interrupt(vcpu);
9184 	local_irq_enable();
9185 	++vcpu->stat.exits;
9186 	local_irq_disable();
9187 	kvm_after_interrupt(vcpu);
9188 
9189 	if (lapic_in_kernel(vcpu)) {
9190 		s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9191 		if (delta != S64_MIN) {
9192 			trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9193 			vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9194 		}
9195 	}
9196 
9197 	local_irq_enable();
9198 	preempt_enable();
9199 
9200 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9201 
9202 	/*
9203 	 * Profile KVM exit RIPs:
9204 	 */
9205 	if (unlikely(prof_on == KVM_PROFILING)) {
9206 		unsigned long rip = kvm_rip_read(vcpu);
9207 		profile_hit(KVM_PROFILING, (void *)rip);
9208 	}
9209 
9210 	if (unlikely(vcpu->arch.tsc_always_catchup))
9211 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9212 
9213 	if (vcpu->arch.apic_attention)
9214 		kvm_lapic_sync_from_vapic(vcpu);
9215 
9216 	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
9217 	return r;
9218 
9219 cancel_injection:
9220 	if (req_immediate_exit)
9221 		kvm_make_request(KVM_REQ_EVENT, vcpu);
9222 	static_call(kvm_x86_cancel_injection)(vcpu);
9223 	if (unlikely(vcpu->arch.apic_attention))
9224 		kvm_lapic_sync_from_vapic(vcpu);
9225 out:
9226 	return r;
9227 }
9228 
9229 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9230 {
9231 	if (!kvm_arch_vcpu_runnable(vcpu) &&
9232 	    (!kvm_x86_ops.pre_block || static_call(kvm_x86_pre_block)(vcpu) == 0)) {
9233 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9234 		kvm_vcpu_block(vcpu);
9235 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9236 
9237 		if (kvm_x86_ops.post_block)
9238 			static_call(kvm_x86_post_block)(vcpu);
9239 
9240 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9241 			return 1;
9242 	}
9243 
9244 	kvm_apic_accept_events(vcpu);
9245 	switch(vcpu->arch.mp_state) {
9246 	case KVM_MP_STATE_HALTED:
9247 	case KVM_MP_STATE_AP_RESET_HOLD:
9248 		vcpu->arch.pv.pv_unhalted = false;
9249 		vcpu->arch.mp_state =
9250 			KVM_MP_STATE_RUNNABLE;
9251 		fallthrough;
9252 	case KVM_MP_STATE_RUNNABLE:
9253 		vcpu->arch.apf.halted = false;
9254 		break;
9255 	case KVM_MP_STATE_INIT_RECEIVED:
9256 		break;
9257 	default:
9258 		return -EINTR;
9259 	}
9260 	return 1;
9261 }
9262 
9263 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9264 {
9265 	if (is_guest_mode(vcpu))
9266 		kvm_x86_ops.nested_ops->check_events(vcpu);
9267 
9268 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9269 		!vcpu->arch.apf.halted);
9270 }
9271 
9272 static int vcpu_run(struct kvm_vcpu *vcpu)
9273 {
9274 	int r;
9275 	struct kvm *kvm = vcpu->kvm;
9276 
9277 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9278 	vcpu->arch.l1tf_flush_l1d = true;
9279 
9280 	for (;;) {
9281 		if (kvm_vcpu_running(vcpu)) {
9282 			r = vcpu_enter_guest(vcpu);
9283 		} else {
9284 			r = vcpu_block(kvm, vcpu);
9285 		}
9286 
9287 		if (r <= 0)
9288 			break;
9289 
9290 		kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
9291 		if (kvm_cpu_has_pending_timer(vcpu))
9292 			kvm_inject_pending_timer_irqs(vcpu);
9293 
9294 		if (dm_request_for_irq_injection(vcpu) &&
9295 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9296 			r = 0;
9297 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9298 			++vcpu->stat.request_irq_exits;
9299 			break;
9300 		}
9301 
9302 		if (__xfer_to_guest_mode_work_pending()) {
9303 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9304 			r = xfer_to_guest_mode_handle_work(vcpu);
9305 			if (r)
9306 				return r;
9307 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9308 		}
9309 	}
9310 
9311 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9312 
9313 	return r;
9314 }
9315 
9316 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9317 {
9318 	int r;
9319 
9320 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9321 	r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9322 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9323 	return r;
9324 }
9325 
9326 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9327 {
9328 	BUG_ON(!vcpu->arch.pio.count);
9329 
9330 	return complete_emulated_io(vcpu);
9331 }
9332 
9333 /*
9334  * Implements the following, as a state machine:
9335  *
9336  * read:
9337  *   for each fragment
9338  *     for each mmio piece in the fragment
9339  *       write gpa, len
9340  *       exit
9341  *       copy data
9342  *   execute insn
9343  *
9344  * write:
9345  *   for each fragment
9346  *     for each mmio piece in the fragment
9347  *       write gpa, len
9348  *       copy data
9349  *       exit
9350  */
9351 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9352 {
9353 	struct kvm_run *run = vcpu->run;
9354 	struct kvm_mmio_fragment *frag;
9355 	unsigned len;
9356 
9357 	BUG_ON(!vcpu->mmio_needed);
9358 
9359 	/* Complete previous fragment */
9360 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9361 	len = min(8u, frag->len);
9362 	if (!vcpu->mmio_is_write)
9363 		memcpy(frag->data, run->mmio.data, len);
9364 
9365 	if (frag->len <= 8) {
9366 		/* Switch to the next fragment. */
9367 		frag++;
9368 		vcpu->mmio_cur_fragment++;
9369 	} else {
9370 		/* Go forward to the next mmio piece. */
9371 		frag->data += len;
9372 		frag->gpa += len;
9373 		frag->len -= len;
9374 	}
9375 
9376 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9377 		vcpu->mmio_needed = 0;
9378 
9379 		/* FIXME: return into emulator if single-stepping.  */
9380 		if (vcpu->mmio_is_write)
9381 			return 1;
9382 		vcpu->mmio_read_completed = 1;
9383 		return complete_emulated_io(vcpu);
9384 	}
9385 
9386 	run->exit_reason = KVM_EXIT_MMIO;
9387 	run->mmio.phys_addr = frag->gpa;
9388 	if (vcpu->mmio_is_write)
9389 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9390 	run->mmio.len = min(8u, frag->len);
9391 	run->mmio.is_write = vcpu->mmio_is_write;
9392 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9393 	return 0;
9394 }
9395 
9396 static void kvm_save_current_fpu(struct fpu *fpu)
9397 {
9398 	/*
9399 	 * If the target FPU state is not resident in the CPU registers, just
9400 	 * memcpy() from current, else save CPU state directly to the target.
9401 	 */
9402 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
9403 		memcpy(&fpu->state, &current->thread.fpu.state,
9404 		       fpu_kernel_xstate_size);
9405 	else
9406 		copy_fpregs_to_fpstate(fpu);
9407 }
9408 
9409 /* Swap (qemu) user FPU context for the guest FPU context. */
9410 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
9411 {
9412 	fpregs_lock();
9413 
9414 	kvm_save_current_fpu(vcpu->arch.user_fpu);
9415 
9416 	/*
9417 	 * Guests with protected state can't have it set by the hypervisor,
9418 	 * so skip trying to set it.
9419 	 */
9420 	if (vcpu->arch.guest_fpu)
9421 		/* PKRU is separately restored in kvm_x86_ops.run. */
9422 		__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
9423 					~XFEATURE_MASK_PKRU);
9424 
9425 	fpregs_mark_activate();
9426 	fpregs_unlock();
9427 
9428 	trace_kvm_fpu(1);
9429 }
9430 
9431 /* When vcpu_run ends, restore user space FPU context. */
9432 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
9433 {
9434 	fpregs_lock();
9435 
9436 	/*
9437 	 * Guests with protected state can't have it read by the hypervisor,
9438 	 * so skip trying to save it.
9439 	 */
9440 	if (vcpu->arch.guest_fpu)
9441 		kvm_save_current_fpu(vcpu->arch.guest_fpu);
9442 
9443 	copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
9444 
9445 	fpregs_mark_activate();
9446 	fpregs_unlock();
9447 
9448 	++vcpu->stat.fpu_reload;
9449 	trace_kvm_fpu(0);
9450 }
9451 
9452 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
9453 {
9454 	struct kvm_run *kvm_run = vcpu->run;
9455 	int r;
9456 
9457 	vcpu_load(vcpu);
9458 	kvm_sigset_activate(vcpu);
9459 	kvm_run->flags = 0;
9460 	kvm_load_guest_fpu(vcpu);
9461 
9462 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
9463 		if (kvm_run->immediate_exit) {
9464 			r = -EINTR;
9465 			goto out;
9466 		}
9467 		kvm_vcpu_block(vcpu);
9468 		kvm_apic_accept_events(vcpu);
9469 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
9470 		r = -EAGAIN;
9471 		if (signal_pending(current)) {
9472 			r = -EINTR;
9473 			kvm_run->exit_reason = KVM_EXIT_INTR;
9474 			++vcpu->stat.signal_exits;
9475 		}
9476 		goto out;
9477 	}
9478 
9479 	if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
9480 		r = -EINVAL;
9481 		goto out;
9482 	}
9483 
9484 	if (kvm_run->kvm_dirty_regs) {
9485 		r = sync_regs(vcpu);
9486 		if (r != 0)
9487 			goto out;
9488 	}
9489 
9490 	/* re-sync apic's tpr */
9491 	if (!lapic_in_kernel(vcpu)) {
9492 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
9493 			r = -EINVAL;
9494 			goto out;
9495 		}
9496 	}
9497 
9498 	if (unlikely(vcpu->arch.complete_userspace_io)) {
9499 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
9500 		vcpu->arch.complete_userspace_io = NULL;
9501 		r = cui(vcpu);
9502 		if (r <= 0)
9503 			goto out;
9504 	} else
9505 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
9506 
9507 	if (kvm_run->immediate_exit)
9508 		r = -EINTR;
9509 	else
9510 		r = vcpu_run(vcpu);
9511 
9512 out:
9513 	kvm_put_guest_fpu(vcpu);
9514 	if (kvm_run->kvm_valid_regs)
9515 		store_regs(vcpu);
9516 	post_kvm_run_save(vcpu);
9517 	kvm_sigset_deactivate(vcpu);
9518 
9519 	vcpu_put(vcpu);
9520 	return r;
9521 }
9522 
9523 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9524 {
9525 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
9526 		/*
9527 		 * We are here if userspace calls get_regs() in the middle of
9528 		 * instruction emulation. Registers state needs to be copied
9529 		 * back from emulation context to vcpu. Userspace shouldn't do
9530 		 * that usually, but some bad designed PV devices (vmware
9531 		 * backdoor interface) need this to work
9532 		 */
9533 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
9534 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9535 	}
9536 	regs->rax = kvm_rax_read(vcpu);
9537 	regs->rbx = kvm_rbx_read(vcpu);
9538 	regs->rcx = kvm_rcx_read(vcpu);
9539 	regs->rdx = kvm_rdx_read(vcpu);
9540 	regs->rsi = kvm_rsi_read(vcpu);
9541 	regs->rdi = kvm_rdi_read(vcpu);
9542 	regs->rsp = kvm_rsp_read(vcpu);
9543 	regs->rbp = kvm_rbp_read(vcpu);
9544 #ifdef CONFIG_X86_64
9545 	regs->r8 = kvm_r8_read(vcpu);
9546 	regs->r9 = kvm_r9_read(vcpu);
9547 	regs->r10 = kvm_r10_read(vcpu);
9548 	regs->r11 = kvm_r11_read(vcpu);
9549 	regs->r12 = kvm_r12_read(vcpu);
9550 	regs->r13 = kvm_r13_read(vcpu);
9551 	regs->r14 = kvm_r14_read(vcpu);
9552 	regs->r15 = kvm_r15_read(vcpu);
9553 #endif
9554 
9555 	regs->rip = kvm_rip_read(vcpu);
9556 	regs->rflags = kvm_get_rflags(vcpu);
9557 }
9558 
9559 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9560 {
9561 	vcpu_load(vcpu);
9562 	__get_regs(vcpu, regs);
9563 	vcpu_put(vcpu);
9564 	return 0;
9565 }
9566 
9567 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9568 {
9569 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
9570 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9571 
9572 	kvm_rax_write(vcpu, regs->rax);
9573 	kvm_rbx_write(vcpu, regs->rbx);
9574 	kvm_rcx_write(vcpu, regs->rcx);
9575 	kvm_rdx_write(vcpu, regs->rdx);
9576 	kvm_rsi_write(vcpu, regs->rsi);
9577 	kvm_rdi_write(vcpu, regs->rdi);
9578 	kvm_rsp_write(vcpu, regs->rsp);
9579 	kvm_rbp_write(vcpu, regs->rbp);
9580 #ifdef CONFIG_X86_64
9581 	kvm_r8_write(vcpu, regs->r8);
9582 	kvm_r9_write(vcpu, regs->r9);
9583 	kvm_r10_write(vcpu, regs->r10);
9584 	kvm_r11_write(vcpu, regs->r11);
9585 	kvm_r12_write(vcpu, regs->r12);
9586 	kvm_r13_write(vcpu, regs->r13);
9587 	kvm_r14_write(vcpu, regs->r14);
9588 	kvm_r15_write(vcpu, regs->r15);
9589 #endif
9590 
9591 	kvm_rip_write(vcpu, regs->rip);
9592 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
9593 
9594 	vcpu->arch.exception.pending = false;
9595 
9596 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9597 }
9598 
9599 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9600 {
9601 	vcpu_load(vcpu);
9602 	__set_regs(vcpu, regs);
9603 	vcpu_put(vcpu);
9604 	return 0;
9605 }
9606 
9607 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
9608 {
9609 	struct kvm_segment cs;
9610 
9611 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9612 	*db = cs.db;
9613 	*l = cs.l;
9614 }
9615 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
9616 
9617 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9618 {
9619 	struct desc_ptr dt;
9620 
9621 	if (vcpu->arch.guest_state_protected)
9622 		goto skip_protected_regs;
9623 
9624 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9625 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9626 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9627 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9628 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9629 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9630 
9631 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9632 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9633 
9634 	static_call(kvm_x86_get_idt)(vcpu, &dt);
9635 	sregs->idt.limit = dt.size;
9636 	sregs->idt.base = dt.address;
9637 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
9638 	sregs->gdt.limit = dt.size;
9639 	sregs->gdt.base = dt.address;
9640 
9641 	sregs->cr2 = vcpu->arch.cr2;
9642 	sregs->cr3 = kvm_read_cr3(vcpu);
9643 
9644 skip_protected_regs:
9645 	sregs->cr0 = kvm_read_cr0(vcpu);
9646 	sregs->cr4 = kvm_read_cr4(vcpu);
9647 	sregs->cr8 = kvm_get_cr8(vcpu);
9648 	sregs->efer = vcpu->arch.efer;
9649 	sregs->apic_base = kvm_get_apic_base(vcpu);
9650 
9651 	memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
9652 
9653 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
9654 		set_bit(vcpu->arch.interrupt.nr,
9655 			(unsigned long *)sregs->interrupt_bitmap);
9656 }
9657 
9658 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
9659 				  struct kvm_sregs *sregs)
9660 {
9661 	vcpu_load(vcpu);
9662 	__get_sregs(vcpu, sregs);
9663 	vcpu_put(vcpu);
9664 	return 0;
9665 }
9666 
9667 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
9668 				    struct kvm_mp_state *mp_state)
9669 {
9670 	vcpu_load(vcpu);
9671 	if (kvm_mpx_supported())
9672 		kvm_load_guest_fpu(vcpu);
9673 
9674 	kvm_apic_accept_events(vcpu);
9675 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
9676 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
9677 	    vcpu->arch.pv.pv_unhalted)
9678 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
9679 	else
9680 		mp_state->mp_state = vcpu->arch.mp_state;
9681 
9682 	if (kvm_mpx_supported())
9683 		kvm_put_guest_fpu(vcpu);
9684 	vcpu_put(vcpu);
9685 	return 0;
9686 }
9687 
9688 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
9689 				    struct kvm_mp_state *mp_state)
9690 {
9691 	int ret = -EINVAL;
9692 
9693 	vcpu_load(vcpu);
9694 
9695 	if (!lapic_in_kernel(vcpu) &&
9696 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
9697 		goto out;
9698 
9699 	/*
9700 	 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
9701 	 * INIT state; latched init should be reported using
9702 	 * KVM_SET_VCPU_EVENTS, so reject it here.
9703 	 */
9704 	if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
9705 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
9706 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
9707 		goto out;
9708 
9709 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
9710 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
9711 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
9712 	} else
9713 		vcpu->arch.mp_state = mp_state->mp_state;
9714 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9715 
9716 	ret = 0;
9717 out:
9718 	vcpu_put(vcpu);
9719 	return ret;
9720 }
9721 
9722 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
9723 		    int reason, bool has_error_code, u32 error_code)
9724 {
9725 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9726 	int ret;
9727 
9728 	init_emulate_ctxt(vcpu);
9729 
9730 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
9731 				   has_error_code, error_code);
9732 	if (ret) {
9733 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9734 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
9735 		vcpu->run->internal.ndata = 0;
9736 		return 0;
9737 	}
9738 
9739 	kvm_rip_write(vcpu, ctxt->eip);
9740 	kvm_set_rflags(vcpu, ctxt->eflags);
9741 	return 1;
9742 }
9743 EXPORT_SYMBOL_GPL(kvm_task_switch);
9744 
9745 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9746 {
9747 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
9748 		/*
9749 		 * When EFER.LME and CR0.PG are set, the processor is in
9750 		 * 64-bit mode (though maybe in a 32-bit code segment).
9751 		 * CR4.PAE and EFER.LMA must be set.
9752 		 */
9753 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
9754 			return false;
9755 		if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
9756 			return false;
9757 	} else {
9758 		/*
9759 		 * Not in 64-bit mode: EFER.LMA is clear and the code
9760 		 * segment cannot be 64-bit.
9761 		 */
9762 		if (sregs->efer & EFER_LMA || sregs->cs.l)
9763 			return false;
9764 	}
9765 
9766 	return kvm_is_valid_cr4(vcpu, sregs->cr4);
9767 }
9768 
9769 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9770 {
9771 	struct msr_data apic_base_msr;
9772 	int mmu_reset_needed = 0;
9773 	int pending_vec, max_bits, idx;
9774 	struct desc_ptr dt;
9775 	int ret = -EINVAL;
9776 
9777 	if (!kvm_is_valid_sregs(vcpu, sregs))
9778 		goto out;
9779 
9780 	apic_base_msr.data = sregs->apic_base;
9781 	apic_base_msr.host_initiated = true;
9782 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
9783 		goto out;
9784 
9785 	if (vcpu->arch.guest_state_protected)
9786 		goto skip_protected_regs;
9787 
9788 	dt.size = sregs->idt.limit;
9789 	dt.address = sregs->idt.base;
9790 	static_call(kvm_x86_set_idt)(vcpu, &dt);
9791 	dt.size = sregs->gdt.limit;
9792 	dt.address = sregs->gdt.base;
9793 	static_call(kvm_x86_set_gdt)(vcpu, &dt);
9794 
9795 	vcpu->arch.cr2 = sregs->cr2;
9796 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
9797 	vcpu->arch.cr3 = sregs->cr3;
9798 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9799 
9800 	kvm_set_cr8(vcpu, sregs->cr8);
9801 
9802 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9803 	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
9804 
9805 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9806 	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
9807 	vcpu->arch.cr0 = sregs->cr0;
9808 
9809 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9810 	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
9811 
9812 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9813 	if (is_pae_paging(vcpu)) {
9814 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9815 		mmu_reset_needed = 1;
9816 	}
9817 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9818 
9819 	if (mmu_reset_needed)
9820 		kvm_mmu_reset_context(vcpu);
9821 
9822 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9823 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9824 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9825 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9826 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9827 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9828 
9829 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9830 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9831 
9832 	update_cr8_intercept(vcpu);
9833 
9834 	/* Older userspace won't unhalt the vcpu on reset. */
9835 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9836 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9837 	    !is_protmode(vcpu))
9838 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9839 
9840 skip_protected_regs:
9841 	max_bits = KVM_NR_INTERRUPTS;
9842 	pending_vec = find_first_bit(
9843 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
9844 	if (pending_vec < max_bits) {
9845 		kvm_queue_interrupt(vcpu, pending_vec, false);
9846 		pr_debug("Set back pending irq %d\n", pending_vec);
9847 	}
9848 
9849 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9850 
9851 	ret = 0;
9852 out:
9853 	return ret;
9854 }
9855 
9856 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9857 				  struct kvm_sregs *sregs)
9858 {
9859 	int ret;
9860 
9861 	vcpu_load(vcpu);
9862 	ret = __set_sregs(vcpu, sregs);
9863 	vcpu_put(vcpu);
9864 	return ret;
9865 }
9866 
9867 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
9868 					struct kvm_guest_debug *dbg)
9869 {
9870 	unsigned long rflags;
9871 	int i, r;
9872 
9873 	if (vcpu->arch.guest_state_protected)
9874 		return -EINVAL;
9875 
9876 	vcpu_load(vcpu);
9877 
9878 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9879 		r = -EBUSY;
9880 		if (vcpu->arch.exception.pending)
9881 			goto out;
9882 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
9883 			kvm_queue_exception(vcpu, DB_VECTOR);
9884 		else
9885 			kvm_queue_exception(vcpu, BP_VECTOR);
9886 	}
9887 
9888 	/*
9889 	 * Read rflags as long as potentially injected trace flags are still
9890 	 * filtered out.
9891 	 */
9892 	rflags = kvm_get_rflags(vcpu);
9893 
9894 	vcpu->guest_debug = dbg->control;
9895 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
9896 		vcpu->guest_debug = 0;
9897 
9898 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
9899 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
9900 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
9901 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
9902 	} else {
9903 		for (i = 0; i < KVM_NR_DB_REGS; i++)
9904 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
9905 	}
9906 	kvm_update_dr7(vcpu);
9907 
9908 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9909 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
9910 			get_segment_base(vcpu, VCPU_SREG_CS);
9911 
9912 	/*
9913 	 * Trigger an rflags update that will inject or remove the trace
9914 	 * flags.
9915 	 */
9916 	kvm_set_rflags(vcpu, rflags);
9917 
9918 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
9919 
9920 	r = 0;
9921 
9922 out:
9923 	vcpu_put(vcpu);
9924 	return r;
9925 }
9926 
9927 /*
9928  * Translate a guest virtual address to a guest physical address.
9929  */
9930 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
9931 				    struct kvm_translation *tr)
9932 {
9933 	unsigned long vaddr = tr->linear_address;
9934 	gpa_t gpa;
9935 	int idx;
9936 
9937 	vcpu_load(vcpu);
9938 
9939 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9940 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
9941 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9942 	tr->physical_address = gpa;
9943 	tr->valid = gpa != UNMAPPED_GVA;
9944 	tr->writeable = 1;
9945 	tr->usermode = 0;
9946 
9947 	vcpu_put(vcpu);
9948 	return 0;
9949 }
9950 
9951 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9952 {
9953 	struct fxregs_state *fxsave;
9954 
9955 	if (!vcpu->arch.guest_fpu)
9956 		return 0;
9957 
9958 	vcpu_load(vcpu);
9959 
9960 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9961 	memcpy(fpu->fpr, fxsave->st_space, 128);
9962 	fpu->fcw = fxsave->cwd;
9963 	fpu->fsw = fxsave->swd;
9964 	fpu->ftwx = fxsave->twd;
9965 	fpu->last_opcode = fxsave->fop;
9966 	fpu->last_ip = fxsave->rip;
9967 	fpu->last_dp = fxsave->rdp;
9968 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
9969 
9970 	vcpu_put(vcpu);
9971 	return 0;
9972 }
9973 
9974 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9975 {
9976 	struct fxregs_state *fxsave;
9977 
9978 	if (!vcpu->arch.guest_fpu)
9979 		return 0;
9980 
9981 	vcpu_load(vcpu);
9982 
9983 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9984 
9985 	memcpy(fxsave->st_space, fpu->fpr, 128);
9986 	fxsave->cwd = fpu->fcw;
9987 	fxsave->swd = fpu->fsw;
9988 	fxsave->twd = fpu->ftwx;
9989 	fxsave->fop = fpu->last_opcode;
9990 	fxsave->rip = fpu->last_ip;
9991 	fxsave->rdp = fpu->last_dp;
9992 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
9993 
9994 	vcpu_put(vcpu);
9995 	return 0;
9996 }
9997 
9998 static void store_regs(struct kvm_vcpu *vcpu)
9999 {
10000 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
10001 
10002 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
10003 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
10004 
10005 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
10006 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
10007 
10008 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
10009 		kvm_vcpu_ioctl_x86_get_vcpu_events(
10010 				vcpu, &vcpu->run->s.regs.events);
10011 }
10012 
10013 static int sync_regs(struct kvm_vcpu *vcpu)
10014 {
10015 	if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
10016 		return -EINVAL;
10017 
10018 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
10019 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
10020 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
10021 	}
10022 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
10023 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
10024 			return -EINVAL;
10025 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
10026 	}
10027 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
10028 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
10029 				vcpu, &vcpu->run->s.regs.events))
10030 			return -EINVAL;
10031 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
10032 	}
10033 
10034 	return 0;
10035 }
10036 
10037 static void fx_init(struct kvm_vcpu *vcpu)
10038 {
10039 	if (!vcpu->arch.guest_fpu)
10040 		return;
10041 
10042 	fpstate_init(&vcpu->arch.guest_fpu->state);
10043 	if (boot_cpu_has(X86_FEATURE_XSAVES))
10044 		vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
10045 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
10046 
10047 	/*
10048 	 * Ensure guest xcr0 is valid for loading
10049 	 */
10050 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10051 
10052 	vcpu->arch.cr0 |= X86_CR0_ET;
10053 }
10054 
10055 void kvm_free_guest_fpu(struct kvm_vcpu *vcpu)
10056 {
10057 	if (vcpu->arch.guest_fpu) {
10058 		kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
10059 		vcpu->arch.guest_fpu = NULL;
10060 	}
10061 }
10062 EXPORT_SYMBOL_GPL(kvm_free_guest_fpu);
10063 
10064 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
10065 {
10066 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
10067 		pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
10068 			     "guest TSC will not be reliable\n");
10069 
10070 	return 0;
10071 }
10072 
10073 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
10074 {
10075 	struct page *page;
10076 	int r;
10077 
10078 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
10079 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10080 	else
10081 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
10082 
10083 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
10084 
10085 	r = kvm_mmu_create(vcpu);
10086 	if (r < 0)
10087 		return r;
10088 
10089 	if (irqchip_in_kernel(vcpu->kvm)) {
10090 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
10091 		if (r < 0)
10092 			goto fail_mmu_destroy;
10093 		if (kvm_apicv_activated(vcpu->kvm))
10094 			vcpu->arch.apicv_active = true;
10095 	} else
10096 		static_branch_inc(&kvm_has_noapic_vcpu);
10097 
10098 	r = -ENOMEM;
10099 
10100 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
10101 	if (!page)
10102 		goto fail_free_lapic;
10103 	vcpu->arch.pio_data = page_address(page);
10104 
10105 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
10106 				       GFP_KERNEL_ACCOUNT);
10107 	if (!vcpu->arch.mce_banks)
10108 		goto fail_free_pio_data;
10109 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
10110 
10111 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
10112 				GFP_KERNEL_ACCOUNT))
10113 		goto fail_free_mce_banks;
10114 
10115 	if (!alloc_emulate_ctxt(vcpu))
10116 		goto free_wbinvd_dirty_mask;
10117 
10118 	vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
10119 						GFP_KERNEL_ACCOUNT);
10120 	if (!vcpu->arch.user_fpu) {
10121 		pr_err("kvm: failed to allocate userspace's fpu\n");
10122 		goto free_emulate_ctxt;
10123 	}
10124 
10125 	vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
10126 						 GFP_KERNEL_ACCOUNT);
10127 	if (!vcpu->arch.guest_fpu) {
10128 		pr_err("kvm: failed to allocate vcpu's fpu\n");
10129 		goto free_user_fpu;
10130 	}
10131 	fx_init(vcpu);
10132 
10133 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
10134 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
10135 
10136 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
10137 
10138 	kvm_async_pf_hash_reset(vcpu);
10139 	kvm_pmu_init(vcpu);
10140 
10141 	vcpu->arch.pending_external_vector = -1;
10142 	vcpu->arch.preempted_in_kernel = false;
10143 
10144 	r = static_call(kvm_x86_vcpu_create)(vcpu);
10145 	if (r)
10146 		goto free_guest_fpu;
10147 
10148 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
10149 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
10150 	kvm_vcpu_mtrr_init(vcpu);
10151 	vcpu_load(vcpu);
10152 	kvm_vcpu_reset(vcpu, false);
10153 	kvm_init_mmu(vcpu, false);
10154 	vcpu_put(vcpu);
10155 	return 0;
10156 
10157 free_guest_fpu:
10158 	kvm_free_guest_fpu(vcpu);
10159 free_user_fpu:
10160 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10161 free_emulate_ctxt:
10162 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10163 free_wbinvd_dirty_mask:
10164 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10165 fail_free_mce_banks:
10166 	kfree(vcpu->arch.mce_banks);
10167 fail_free_pio_data:
10168 	free_page((unsigned long)vcpu->arch.pio_data);
10169 fail_free_lapic:
10170 	kvm_free_lapic(vcpu);
10171 fail_mmu_destroy:
10172 	kvm_mmu_destroy(vcpu);
10173 	return r;
10174 }
10175 
10176 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
10177 {
10178 	struct kvm *kvm = vcpu->kvm;
10179 
10180 	if (mutex_lock_killable(&vcpu->mutex))
10181 		return;
10182 	vcpu_load(vcpu);
10183 	kvm_synchronize_tsc(vcpu, 0);
10184 	vcpu_put(vcpu);
10185 
10186 	/* poll control enabled by default */
10187 	vcpu->arch.msr_kvm_poll_control = 1;
10188 
10189 	mutex_unlock(&vcpu->mutex);
10190 
10191 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
10192 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
10193 						KVMCLOCK_SYNC_PERIOD);
10194 }
10195 
10196 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
10197 {
10198 	struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
10199 	int idx;
10200 
10201 	kvm_release_pfn(cache->pfn, cache->dirty, cache);
10202 
10203 	kvmclock_reset(vcpu);
10204 
10205 	static_call(kvm_x86_vcpu_free)(vcpu);
10206 
10207 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10208 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10209 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10210 	kvm_free_guest_fpu(vcpu);
10211 
10212 	kvm_hv_vcpu_uninit(vcpu);
10213 	kvm_pmu_destroy(vcpu);
10214 	kfree(vcpu->arch.mce_banks);
10215 	kvm_free_lapic(vcpu);
10216 	idx = srcu_read_lock(&vcpu->kvm->srcu);
10217 	kvm_mmu_destroy(vcpu);
10218 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
10219 	free_page((unsigned long)vcpu->arch.pio_data);
10220 	kvfree(vcpu->arch.cpuid_entries);
10221 	if (!lapic_in_kernel(vcpu))
10222 		static_branch_dec(&kvm_has_noapic_vcpu);
10223 }
10224 
10225 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10226 {
10227 	kvm_lapic_reset(vcpu, init_event);
10228 
10229 	vcpu->arch.hflags = 0;
10230 
10231 	vcpu->arch.smi_pending = 0;
10232 	vcpu->arch.smi_count = 0;
10233 	atomic_set(&vcpu->arch.nmi_queued, 0);
10234 	vcpu->arch.nmi_pending = 0;
10235 	vcpu->arch.nmi_injected = false;
10236 	kvm_clear_interrupt_queue(vcpu);
10237 	kvm_clear_exception_queue(vcpu);
10238 
10239 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10240 	kvm_update_dr0123(vcpu);
10241 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
10242 	vcpu->arch.dr7 = DR7_FIXED_1;
10243 	kvm_update_dr7(vcpu);
10244 
10245 	vcpu->arch.cr2 = 0;
10246 
10247 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10248 	vcpu->arch.apf.msr_en_val = 0;
10249 	vcpu->arch.apf.msr_int_val = 0;
10250 	vcpu->arch.st.msr_val = 0;
10251 
10252 	kvmclock_reset(vcpu);
10253 
10254 	kvm_clear_async_pf_completion_queue(vcpu);
10255 	kvm_async_pf_hash_reset(vcpu);
10256 	vcpu->arch.apf.halted = false;
10257 
10258 	if (vcpu->arch.guest_fpu && kvm_mpx_supported()) {
10259 		void *mpx_state_buffer;
10260 
10261 		/*
10262 		 * To avoid have the INIT path from kvm_apic_has_events() that be
10263 		 * called with loaded FPU and does not let userspace fix the state.
10264 		 */
10265 		if (init_event)
10266 			kvm_put_guest_fpu(vcpu);
10267 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10268 					XFEATURE_BNDREGS);
10269 		if (mpx_state_buffer)
10270 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10271 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10272 					XFEATURE_BNDCSR);
10273 		if (mpx_state_buffer)
10274 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10275 		if (init_event)
10276 			kvm_load_guest_fpu(vcpu);
10277 	}
10278 
10279 	if (!init_event) {
10280 		kvm_pmu_reset(vcpu);
10281 		vcpu->arch.smbase = 0x30000;
10282 
10283 		vcpu->arch.msr_misc_features_enables = 0;
10284 
10285 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10286 	}
10287 
10288 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10289 	vcpu->arch.regs_avail = ~0;
10290 	vcpu->arch.regs_dirty = ~0;
10291 
10292 	vcpu->arch.ia32_xss = 0;
10293 
10294 	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
10295 }
10296 
10297 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
10298 {
10299 	struct kvm_segment cs;
10300 
10301 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10302 	cs.selector = vector << 8;
10303 	cs.base = vector << 12;
10304 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10305 	kvm_rip_write(vcpu, 0);
10306 }
10307 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
10308 
10309 int kvm_arch_hardware_enable(void)
10310 {
10311 	struct kvm *kvm;
10312 	struct kvm_vcpu *vcpu;
10313 	int i;
10314 	int ret;
10315 	u64 local_tsc;
10316 	u64 max_tsc = 0;
10317 	bool stable, backwards_tsc = false;
10318 
10319 	kvm_user_return_msr_cpu_online();
10320 	ret = static_call(kvm_x86_hardware_enable)();
10321 	if (ret != 0)
10322 		return ret;
10323 
10324 	local_tsc = rdtsc();
10325 	stable = !kvm_check_tsc_unstable();
10326 	list_for_each_entry(kvm, &vm_list, vm_list) {
10327 		kvm_for_each_vcpu(i, vcpu, kvm) {
10328 			if (!stable && vcpu->cpu == smp_processor_id())
10329 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10330 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
10331 				backwards_tsc = true;
10332 				if (vcpu->arch.last_host_tsc > max_tsc)
10333 					max_tsc = vcpu->arch.last_host_tsc;
10334 			}
10335 		}
10336 	}
10337 
10338 	/*
10339 	 * Sometimes, even reliable TSCs go backwards.  This happens on
10340 	 * platforms that reset TSC during suspend or hibernate actions, but
10341 	 * maintain synchronization.  We must compensate.  Fortunately, we can
10342 	 * detect that condition here, which happens early in CPU bringup,
10343 	 * before any KVM threads can be running.  Unfortunately, we can't
10344 	 * bring the TSCs fully up to date with real time, as we aren't yet far
10345 	 * enough into CPU bringup that we know how much real time has actually
10346 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
10347 	 * variables that haven't been updated yet.
10348 	 *
10349 	 * So we simply find the maximum observed TSC above, then record the
10350 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
10351 	 * the adjustment will be applied.  Note that we accumulate
10352 	 * adjustments, in case multiple suspend cycles happen before some VCPU
10353 	 * gets a chance to run again.  In the event that no KVM threads get a
10354 	 * chance to run, we will miss the entire elapsed period, as we'll have
10355 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
10356 	 * loose cycle time.  This isn't too big a deal, since the loss will be
10357 	 * uniform across all VCPUs (not to mention the scenario is extremely
10358 	 * unlikely). It is possible that a second hibernate recovery happens
10359 	 * much faster than a first, causing the observed TSC here to be
10360 	 * smaller; this would require additional padding adjustment, which is
10361 	 * why we set last_host_tsc to the local tsc observed here.
10362 	 *
10363 	 * N.B. - this code below runs only on platforms with reliable TSC,
10364 	 * as that is the only way backwards_tsc is set above.  Also note
10365 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
10366 	 * have the same delta_cyc adjustment applied if backwards_tsc
10367 	 * is detected.  Note further, this adjustment is only done once,
10368 	 * as we reset last_host_tsc on all VCPUs to stop this from being
10369 	 * called multiple times (one for each physical CPU bringup).
10370 	 *
10371 	 * Platforms with unreliable TSCs don't have to deal with this, they
10372 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
10373 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
10374 	 * guarantee that they stay in perfect synchronization.
10375 	 */
10376 	if (backwards_tsc) {
10377 		u64 delta_cyc = max_tsc - local_tsc;
10378 		list_for_each_entry(kvm, &vm_list, vm_list) {
10379 			kvm->arch.backwards_tsc_observed = true;
10380 			kvm_for_each_vcpu(i, vcpu, kvm) {
10381 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
10382 				vcpu->arch.last_host_tsc = local_tsc;
10383 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
10384 			}
10385 
10386 			/*
10387 			 * We have to disable TSC offset matching.. if you were
10388 			 * booting a VM while issuing an S4 host suspend....
10389 			 * you may have some problem.  Solving this issue is
10390 			 * left as an exercise to the reader.
10391 			 */
10392 			kvm->arch.last_tsc_nsec = 0;
10393 			kvm->arch.last_tsc_write = 0;
10394 		}
10395 
10396 	}
10397 	return 0;
10398 }
10399 
10400 void kvm_arch_hardware_disable(void)
10401 {
10402 	static_call(kvm_x86_hardware_disable)();
10403 	drop_user_return_notifiers();
10404 }
10405 
10406 int kvm_arch_hardware_setup(void *opaque)
10407 {
10408 	struct kvm_x86_init_ops *ops = opaque;
10409 	int r;
10410 
10411 	rdmsrl_safe(MSR_EFER, &host_efer);
10412 
10413 	if (boot_cpu_has(X86_FEATURE_XSAVES))
10414 		rdmsrl(MSR_IA32_XSS, host_xss);
10415 
10416 	r = ops->hardware_setup();
10417 	if (r != 0)
10418 		return r;
10419 
10420 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
10421 	kvm_ops_static_call_update();
10422 
10423 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
10424 		supported_xss = 0;
10425 
10426 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
10427 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
10428 #undef __kvm_cpu_cap_has
10429 
10430 	if (kvm_has_tsc_control) {
10431 		/*
10432 		 * Make sure the user can only configure tsc_khz values that
10433 		 * fit into a signed integer.
10434 		 * A min value is not calculated because it will always
10435 		 * be 1 on all machines.
10436 		 */
10437 		u64 max = min(0x7fffffffULL,
10438 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
10439 		kvm_max_guest_tsc_khz = max;
10440 
10441 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
10442 	}
10443 
10444 	kvm_init_msr_list();
10445 	return 0;
10446 }
10447 
10448 void kvm_arch_hardware_unsetup(void)
10449 {
10450 	static_call(kvm_x86_hardware_unsetup)();
10451 }
10452 
10453 int kvm_arch_check_processor_compat(void *opaque)
10454 {
10455 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
10456 	struct kvm_x86_init_ops *ops = opaque;
10457 
10458 	WARN_ON(!irqs_disabled());
10459 
10460 	if (__cr4_reserved_bits(cpu_has, c) !=
10461 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
10462 		return -EIO;
10463 
10464 	return ops->check_processor_compatibility();
10465 }
10466 
10467 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
10468 {
10469 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
10470 }
10471 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
10472 
10473 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
10474 {
10475 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
10476 }
10477 
10478 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
10479 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
10480 
10481 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
10482 {
10483 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
10484 
10485 	vcpu->arch.l1tf_flush_l1d = true;
10486 	if (pmu->version && unlikely(pmu->event_count)) {
10487 		pmu->need_cleanup = true;
10488 		kvm_make_request(KVM_REQ_PMU, vcpu);
10489 	}
10490 	static_call(kvm_x86_sched_in)(vcpu, cpu);
10491 }
10492 
10493 void kvm_arch_free_vm(struct kvm *kvm)
10494 {
10495 	kfree(to_kvm_hv(kvm)->hv_pa_pg);
10496 	vfree(kvm);
10497 }
10498 
10499 
10500 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
10501 {
10502 	if (type)
10503 		return -EINVAL;
10504 
10505 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
10506 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
10507 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
10508 	INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
10509 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
10510 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
10511 
10512 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
10513 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
10514 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
10515 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
10516 		&kvm->arch.irq_sources_bitmap);
10517 
10518 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
10519 	mutex_init(&kvm->arch.apic_map_lock);
10520 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
10521 
10522 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
10523 	pvclock_update_vm_gtod_copy(kvm);
10524 
10525 	kvm->arch.guest_can_read_msr_platform_info = true;
10526 
10527 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
10528 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
10529 
10530 	kvm_hv_init_vm(kvm);
10531 	kvm_page_track_init(kvm);
10532 	kvm_mmu_init_vm(kvm);
10533 
10534 	return static_call(kvm_x86_vm_init)(kvm);
10535 }
10536 
10537 int kvm_arch_post_init_vm(struct kvm *kvm)
10538 {
10539 	return kvm_mmu_post_init_vm(kvm);
10540 }
10541 
10542 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
10543 {
10544 	vcpu_load(vcpu);
10545 	kvm_mmu_unload(vcpu);
10546 	vcpu_put(vcpu);
10547 }
10548 
10549 static void kvm_free_vcpus(struct kvm *kvm)
10550 {
10551 	unsigned int i;
10552 	struct kvm_vcpu *vcpu;
10553 
10554 	/*
10555 	 * Unpin any mmu pages first.
10556 	 */
10557 	kvm_for_each_vcpu(i, vcpu, kvm) {
10558 		kvm_clear_async_pf_completion_queue(vcpu);
10559 		kvm_unload_vcpu_mmu(vcpu);
10560 	}
10561 	kvm_for_each_vcpu(i, vcpu, kvm)
10562 		kvm_vcpu_destroy(vcpu);
10563 
10564 	mutex_lock(&kvm->lock);
10565 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
10566 		kvm->vcpus[i] = NULL;
10567 
10568 	atomic_set(&kvm->online_vcpus, 0);
10569 	mutex_unlock(&kvm->lock);
10570 }
10571 
10572 void kvm_arch_sync_events(struct kvm *kvm)
10573 {
10574 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
10575 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
10576 	kvm_free_pit(kvm);
10577 }
10578 
10579 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
10580 
10581 /**
10582  * __x86_set_memory_region: Setup KVM internal memory slot
10583  *
10584  * @kvm: the kvm pointer to the VM.
10585  * @id: the slot ID to setup.
10586  * @gpa: the GPA to install the slot (unused when @size == 0).
10587  * @size: the size of the slot. Set to zero to uninstall a slot.
10588  *
10589  * This function helps to setup a KVM internal memory slot.  Specify
10590  * @size > 0 to install a new slot, while @size == 0 to uninstall a
10591  * slot.  The return code can be one of the following:
10592  *
10593  *   HVA:           on success (uninstall will return a bogus HVA)
10594  *   -errno:        on error
10595  *
10596  * The caller should always use IS_ERR() to check the return value
10597  * before use.  Note, the KVM internal memory slots are guaranteed to
10598  * remain valid and unchanged until the VM is destroyed, i.e., the
10599  * GPA->HVA translation will not change.  However, the HVA is a user
10600  * address, i.e. its accessibility is not guaranteed, and must be
10601  * accessed via __copy_{to,from}_user().
10602  */
10603 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
10604 				      u32 size)
10605 {
10606 	int i, r;
10607 	unsigned long hva, old_npages;
10608 	struct kvm_memslots *slots = kvm_memslots(kvm);
10609 	struct kvm_memory_slot *slot;
10610 
10611 	/* Called with kvm->slots_lock held.  */
10612 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
10613 		return ERR_PTR_USR(-EINVAL);
10614 
10615 	slot = id_to_memslot(slots, id);
10616 	if (size) {
10617 		if (slot && slot->npages)
10618 			return ERR_PTR_USR(-EEXIST);
10619 
10620 		/*
10621 		 * MAP_SHARED to prevent internal slot pages from being moved
10622 		 * by fork()/COW.
10623 		 */
10624 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
10625 			      MAP_SHARED | MAP_ANONYMOUS, 0);
10626 		if (IS_ERR((void *)hva))
10627 			return (void __user *)hva;
10628 	} else {
10629 		if (!slot || !slot->npages)
10630 			return NULL;
10631 
10632 		old_npages = slot->npages;
10633 		hva = slot->userspace_addr;
10634 	}
10635 
10636 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
10637 		struct kvm_userspace_memory_region m;
10638 
10639 		m.slot = id | (i << 16);
10640 		m.flags = 0;
10641 		m.guest_phys_addr = gpa;
10642 		m.userspace_addr = hva;
10643 		m.memory_size = size;
10644 		r = __kvm_set_memory_region(kvm, &m);
10645 		if (r < 0)
10646 			return ERR_PTR_USR(r);
10647 	}
10648 
10649 	if (!size)
10650 		vm_munmap(hva, old_npages * PAGE_SIZE);
10651 
10652 	return (void __user *)hva;
10653 }
10654 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
10655 
10656 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
10657 {
10658 	kvm_mmu_pre_destroy_vm(kvm);
10659 }
10660 
10661 void kvm_arch_destroy_vm(struct kvm *kvm)
10662 {
10663 	if (current->mm == kvm->mm) {
10664 		/*
10665 		 * Free memory regions allocated on behalf of userspace,
10666 		 * unless the the memory map has changed due to process exit
10667 		 * or fd copying.
10668 		 */
10669 		mutex_lock(&kvm->slots_lock);
10670 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
10671 					0, 0);
10672 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
10673 					0, 0);
10674 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
10675 		mutex_unlock(&kvm->slots_lock);
10676 	}
10677 	static_call_cond(kvm_x86_vm_destroy)(kvm);
10678 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
10679 	kvm_pic_destroy(kvm);
10680 	kvm_ioapic_destroy(kvm);
10681 	kvm_free_vcpus(kvm);
10682 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
10683 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
10684 	kvm_mmu_uninit_vm(kvm);
10685 	kvm_page_track_cleanup(kvm);
10686 	kvm_xen_destroy_vm(kvm);
10687 	kvm_hv_destroy_vm(kvm);
10688 }
10689 
10690 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
10691 {
10692 	int i;
10693 
10694 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10695 		kvfree(slot->arch.rmap[i]);
10696 		slot->arch.rmap[i] = NULL;
10697 
10698 		if (i == 0)
10699 			continue;
10700 
10701 		kvfree(slot->arch.lpage_info[i - 1]);
10702 		slot->arch.lpage_info[i - 1] = NULL;
10703 	}
10704 
10705 	kvm_page_track_free_memslot(slot);
10706 }
10707 
10708 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
10709 				      unsigned long npages)
10710 {
10711 	int i;
10712 
10713 	/*
10714 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
10715 	 * old arrays will be freed by __kvm_set_memory_region() if installing
10716 	 * the new memslot is successful.
10717 	 */
10718 	memset(&slot->arch, 0, sizeof(slot->arch));
10719 
10720 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10721 		struct kvm_lpage_info *linfo;
10722 		unsigned long ugfn;
10723 		int lpages;
10724 		int level = i + 1;
10725 
10726 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
10727 				      slot->base_gfn, level) + 1;
10728 
10729 		slot->arch.rmap[i] =
10730 			kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
10731 				 GFP_KERNEL_ACCOUNT);
10732 		if (!slot->arch.rmap[i])
10733 			goto out_free;
10734 		if (i == 0)
10735 			continue;
10736 
10737 		linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
10738 		if (!linfo)
10739 			goto out_free;
10740 
10741 		slot->arch.lpage_info[i - 1] = linfo;
10742 
10743 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
10744 			linfo[0].disallow_lpage = 1;
10745 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
10746 			linfo[lpages - 1].disallow_lpage = 1;
10747 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
10748 		/*
10749 		 * If the gfn and userspace address are not aligned wrt each
10750 		 * other, disable large page support for this slot.
10751 		 */
10752 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
10753 			unsigned long j;
10754 
10755 			for (j = 0; j < lpages; ++j)
10756 				linfo[j].disallow_lpage = 1;
10757 		}
10758 	}
10759 
10760 	if (kvm_page_track_create_memslot(slot, npages))
10761 		goto out_free;
10762 
10763 	return 0;
10764 
10765 out_free:
10766 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10767 		kvfree(slot->arch.rmap[i]);
10768 		slot->arch.rmap[i] = NULL;
10769 		if (i == 0)
10770 			continue;
10771 
10772 		kvfree(slot->arch.lpage_info[i - 1]);
10773 		slot->arch.lpage_info[i - 1] = NULL;
10774 	}
10775 	return -ENOMEM;
10776 }
10777 
10778 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
10779 {
10780 	struct kvm_vcpu *vcpu;
10781 	int i;
10782 
10783 	/*
10784 	 * memslots->generation has been incremented.
10785 	 * mmio generation may have reached its maximum value.
10786 	 */
10787 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
10788 
10789 	/* Force re-initialization of steal_time cache */
10790 	kvm_for_each_vcpu(i, vcpu, kvm)
10791 		kvm_vcpu_kick(vcpu);
10792 }
10793 
10794 int kvm_arch_prepare_memory_region(struct kvm *kvm,
10795 				struct kvm_memory_slot *memslot,
10796 				const struct kvm_userspace_memory_region *mem,
10797 				enum kvm_mr_change change)
10798 {
10799 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
10800 		return kvm_alloc_memslot_metadata(memslot,
10801 						  mem->memory_size >> PAGE_SHIFT);
10802 	return 0;
10803 }
10804 
10805 
10806 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
10807 {
10808 	struct kvm_arch *ka = &kvm->arch;
10809 
10810 	if (!kvm_x86_ops.cpu_dirty_log_size)
10811 		return;
10812 
10813 	if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
10814 	    (!enable && --ka->cpu_dirty_logging_count == 0))
10815 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
10816 
10817 	WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
10818 }
10819 
10820 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
10821 				     struct kvm_memory_slot *old,
10822 				     struct kvm_memory_slot *new,
10823 				     enum kvm_mr_change change)
10824 {
10825 	bool log_dirty_pages = new->flags & KVM_MEM_LOG_DIRTY_PAGES;
10826 
10827 	/*
10828 	 * Update CPU dirty logging if dirty logging is being toggled.  This
10829 	 * applies to all operations.
10830 	 */
10831 	if ((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)
10832 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
10833 
10834 	/*
10835 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
10836 	 * made writable) or CREATE/MOVE/DELETE of a slot.
10837 	 *
10838 	 * For a memslot with dirty logging disabled:
10839 	 * CREATE:      No dirty mappings will already exist.
10840 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
10841 	 *		kvm_arch_flush_shadow_memslot()
10842 	 *
10843 	 * For a memslot with dirty logging enabled:
10844 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
10845 	 *		and no dirty bits to clear.
10846 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
10847 	 *		kvm_arch_flush_shadow_memslot().
10848 	 */
10849 	if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
10850 		return;
10851 
10852 	/*
10853 	 * READONLY and non-flags changes were filtered out above, and the only
10854 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
10855 	 * logging isn't being toggled on or off.
10856 	 */
10857 	if (WARN_ON_ONCE(!((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)))
10858 		return;
10859 
10860 	if (!log_dirty_pages) {
10861 		/*
10862 		 * Dirty logging tracks sptes in 4k granularity, meaning that
10863 		 * large sptes have to be split.  If live migration succeeds,
10864 		 * the guest in the source machine will be destroyed and large
10865 		 * sptes will be created in the destination.  However, if the
10866 		 * guest continues to run in the source machine (for example if
10867 		 * live migration fails), small sptes will remain around and
10868 		 * cause bad performance.
10869 		 *
10870 		 * Scan sptes if dirty logging has been stopped, dropping those
10871 		 * which can be collapsed into a single large-page spte.  Later
10872 		 * page faults will create the large-page sptes.
10873 		 */
10874 		kvm_mmu_zap_collapsible_sptes(kvm, new);
10875 	} else {
10876 		/* By default, write-protect everything to log writes. */
10877 		int level = PG_LEVEL_4K;
10878 
10879 		if (kvm_x86_ops.cpu_dirty_log_size) {
10880 			/*
10881 			 * Clear all dirty bits, unless pages are treated as
10882 			 * dirty from the get-go.
10883 			 */
10884 			if (!kvm_dirty_log_manual_protect_and_init_set(kvm))
10885 				kvm_mmu_slot_leaf_clear_dirty(kvm, new);
10886 
10887 			/*
10888 			 * Write-protect large pages on write so that dirty
10889 			 * logging happens at 4k granularity.  No need to
10890 			 * write-protect small SPTEs since write accesses are
10891 			 * logged by the CPU via dirty bits.
10892 			 */
10893 			level = PG_LEVEL_2M;
10894 		} else if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
10895 			/*
10896 			 * If we're with initial-all-set, we don't need
10897 			 * to write protect any small page because
10898 			 * they're reported as dirty already.  However
10899 			 * we still need to write-protect huge pages
10900 			 * so that the page split can happen lazily on
10901 			 * the first write to the huge page.
10902 			 */
10903 			level = PG_LEVEL_2M;
10904 		}
10905 		kvm_mmu_slot_remove_write_access(kvm, new, level);
10906 	}
10907 }
10908 
10909 void kvm_arch_commit_memory_region(struct kvm *kvm,
10910 				const struct kvm_userspace_memory_region *mem,
10911 				struct kvm_memory_slot *old,
10912 				const struct kvm_memory_slot *new,
10913 				enum kvm_mr_change change)
10914 {
10915 	if (!kvm->arch.n_requested_mmu_pages)
10916 		kvm_mmu_change_mmu_pages(kvm,
10917 				kvm_mmu_calculate_default_mmu_pages(kvm));
10918 
10919 	/*
10920 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
10921 	 */
10922 	kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change);
10923 
10924 	/* Free the arrays associated with the old memslot. */
10925 	if (change == KVM_MR_MOVE)
10926 		kvm_arch_free_memslot(kvm, old);
10927 }
10928 
10929 void kvm_arch_flush_shadow_all(struct kvm *kvm)
10930 {
10931 	kvm_mmu_zap_all(kvm);
10932 }
10933 
10934 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
10935 				   struct kvm_memory_slot *slot)
10936 {
10937 	kvm_page_track_flush_slot(kvm, slot);
10938 }
10939 
10940 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
10941 {
10942 	return (is_guest_mode(vcpu) &&
10943 			kvm_x86_ops.guest_apic_has_interrupt &&
10944 			static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
10945 }
10946 
10947 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
10948 {
10949 	if (!list_empty_careful(&vcpu->async_pf.done))
10950 		return true;
10951 
10952 	if (kvm_apic_has_events(vcpu))
10953 		return true;
10954 
10955 	if (vcpu->arch.pv.pv_unhalted)
10956 		return true;
10957 
10958 	if (vcpu->arch.exception.pending)
10959 		return true;
10960 
10961 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10962 	    (vcpu->arch.nmi_pending &&
10963 	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
10964 		return true;
10965 
10966 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
10967 	    (vcpu->arch.smi_pending &&
10968 	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
10969 		return true;
10970 
10971 	if (kvm_arch_interrupt_allowed(vcpu) &&
10972 	    (kvm_cpu_has_interrupt(vcpu) ||
10973 	    kvm_guest_apic_has_interrupt(vcpu)))
10974 		return true;
10975 
10976 	if (kvm_hv_has_stimer_pending(vcpu))
10977 		return true;
10978 
10979 	if (is_guest_mode(vcpu) &&
10980 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
10981 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
10982 		return true;
10983 
10984 	return false;
10985 }
10986 
10987 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
10988 {
10989 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
10990 }
10991 
10992 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
10993 {
10994 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
10995 		return true;
10996 
10997 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10998 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
10999 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
11000 		return true;
11001 
11002 	if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
11003 		return true;
11004 
11005 	return false;
11006 }
11007 
11008 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
11009 {
11010 	return vcpu->arch.preempted_in_kernel;
11011 }
11012 
11013 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
11014 {
11015 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
11016 }
11017 
11018 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
11019 {
11020 	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
11021 }
11022 
11023 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
11024 {
11025 	/* Can't read the RIP when guest state is protected, just return 0 */
11026 	if (vcpu->arch.guest_state_protected)
11027 		return 0;
11028 
11029 	if (is_64_bit_mode(vcpu))
11030 		return kvm_rip_read(vcpu);
11031 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
11032 		     kvm_rip_read(vcpu));
11033 }
11034 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
11035 
11036 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
11037 {
11038 	return kvm_get_linear_rip(vcpu) == linear_rip;
11039 }
11040 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
11041 
11042 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
11043 {
11044 	unsigned long rflags;
11045 
11046 	rflags = static_call(kvm_x86_get_rflags)(vcpu);
11047 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11048 		rflags &= ~X86_EFLAGS_TF;
11049 	return rflags;
11050 }
11051 EXPORT_SYMBOL_GPL(kvm_get_rflags);
11052 
11053 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11054 {
11055 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
11056 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
11057 		rflags |= X86_EFLAGS_TF;
11058 	static_call(kvm_x86_set_rflags)(vcpu, rflags);
11059 }
11060 
11061 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11062 {
11063 	__kvm_set_rflags(vcpu, rflags);
11064 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11065 }
11066 EXPORT_SYMBOL_GPL(kvm_set_rflags);
11067 
11068 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
11069 {
11070 	int r;
11071 
11072 	if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
11073 	      work->wakeup_all)
11074 		return;
11075 
11076 	r = kvm_mmu_reload(vcpu);
11077 	if (unlikely(r))
11078 		return;
11079 
11080 	if (!vcpu->arch.mmu->direct_map &&
11081 	      work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
11082 		return;
11083 
11084 	kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
11085 }
11086 
11087 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
11088 {
11089 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
11090 
11091 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
11092 }
11093 
11094 static inline u32 kvm_async_pf_next_probe(u32 key)
11095 {
11096 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
11097 }
11098 
11099 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11100 {
11101 	u32 key = kvm_async_pf_hash_fn(gfn);
11102 
11103 	while (vcpu->arch.apf.gfns[key] != ~0)
11104 		key = kvm_async_pf_next_probe(key);
11105 
11106 	vcpu->arch.apf.gfns[key] = gfn;
11107 }
11108 
11109 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
11110 {
11111 	int i;
11112 	u32 key = kvm_async_pf_hash_fn(gfn);
11113 
11114 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
11115 		     (vcpu->arch.apf.gfns[key] != gfn &&
11116 		      vcpu->arch.apf.gfns[key] != ~0); i++)
11117 		key = kvm_async_pf_next_probe(key);
11118 
11119 	return key;
11120 }
11121 
11122 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11123 {
11124 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
11125 }
11126 
11127 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11128 {
11129 	u32 i, j, k;
11130 
11131 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
11132 
11133 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
11134 		return;
11135 
11136 	while (true) {
11137 		vcpu->arch.apf.gfns[i] = ~0;
11138 		do {
11139 			j = kvm_async_pf_next_probe(j);
11140 			if (vcpu->arch.apf.gfns[j] == ~0)
11141 				return;
11142 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
11143 			/*
11144 			 * k lies cyclically in ]i,j]
11145 			 * |    i.k.j |
11146 			 * |....j i.k.| or  |.k..j i...|
11147 			 */
11148 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
11149 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
11150 		i = j;
11151 	}
11152 }
11153 
11154 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
11155 {
11156 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
11157 
11158 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
11159 				      sizeof(reason));
11160 }
11161 
11162 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
11163 {
11164 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11165 
11166 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11167 					     &token, offset, sizeof(token));
11168 }
11169 
11170 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
11171 {
11172 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11173 	u32 val;
11174 
11175 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11176 					 &val, offset, sizeof(val)))
11177 		return false;
11178 
11179 	return !val;
11180 }
11181 
11182 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
11183 {
11184 	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
11185 		return false;
11186 
11187 	if (!kvm_pv_async_pf_enabled(vcpu) ||
11188 	    (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
11189 		return false;
11190 
11191 	return true;
11192 }
11193 
11194 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
11195 {
11196 	if (unlikely(!lapic_in_kernel(vcpu) ||
11197 		     kvm_event_needs_reinjection(vcpu) ||
11198 		     vcpu->arch.exception.pending))
11199 		return false;
11200 
11201 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
11202 		return false;
11203 
11204 	/*
11205 	 * If interrupts are off we cannot even use an artificial
11206 	 * halt state.
11207 	 */
11208 	return kvm_arch_interrupt_allowed(vcpu);
11209 }
11210 
11211 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
11212 				     struct kvm_async_pf *work)
11213 {
11214 	struct x86_exception fault;
11215 
11216 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
11217 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
11218 
11219 	if (kvm_can_deliver_async_pf(vcpu) &&
11220 	    !apf_put_user_notpresent(vcpu)) {
11221 		fault.vector = PF_VECTOR;
11222 		fault.error_code_valid = true;
11223 		fault.error_code = 0;
11224 		fault.nested_page_fault = false;
11225 		fault.address = work->arch.token;
11226 		fault.async_page_fault = true;
11227 		kvm_inject_page_fault(vcpu, &fault);
11228 		return true;
11229 	} else {
11230 		/*
11231 		 * It is not possible to deliver a paravirtualized asynchronous
11232 		 * page fault, but putting the guest in an artificial halt state
11233 		 * can be beneficial nevertheless: if an interrupt arrives, we
11234 		 * can deliver it timely and perhaps the guest will schedule
11235 		 * another process.  When the instruction that triggered a page
11236 		 * fault is retried, hopefully the page will be ready in the host.
11237 		 */
11238 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
11239 		return false;
11240 	}
11241 }
11242 
11243 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
11244 				 struct kvm_async_pf *work)
11245 {
11246 	struct kvm_lapic_irq irq = {
11247 		.delivery_mode = APIC_DM_FIXED,
11248 		.vector = vcpu->arch.apf.vec
11249 	};
11250 
11251 	if (work->wakeup_all)
11252 		work->arch.token = ~0; /* broadcast wakeup */
11253 	else
11254 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
11255 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
11256 
11257 	if ((work->wakeup_all || work->notpresent_injected) &&
11258 	    kvm_pv_async_pf_enabled(vcpu) &&
11259 	    !apf_put_user_ready(vcpu, work->arch.token)) {
11260 		vcpu->arch.apf.pageready_pending = true;
11261 		kvm_apic_set_irq(vcpu, &irq, NULL);
11262 	}
11263 
11264 	vcpu->arch.apf.halted = false;
11265 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11266 }
11267 
11268 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
11269 {
11270 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
11271 	if (!vcpu->arch.apf.pageready_pending)
11272 		kvm_vcpu_kick(vcpu);
11273 }
11274 
11275 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
11276 {
11277 	if (!kvm_pv_async_pf_enabled(vcpu))
11278 		return true;
11279 	else
11280 		return apf_pageready_slot_free(vcpu);
11281 }
11282 
11283 void kvm_arch_start_assignment(struct kvm *kvm)
11284 {
11285 	atomic_inc(&kvm->arch.assigned_device_count);
11286 }
11287 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
11288 
11289 void kvm_arch_end_assignment(struct kvm *kvm)
11290 {
11291 	atomic_dec(&kvm->arch.assigned_device_count);
11292 }
11293 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
11294 
11295 bool kvm_arch_has_assigned_device(struct kvm *kvm)
11296 {
11297 	return atomic_read(&kvm->arch.assigned_device_count);
11298 }
11299 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
11300 
11301 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
11302 {
11303 	atomic_inc(&kvm->arch.noncoherent_dma_count);
11304 }
11305 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
11306 
11307 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
11308 {
11309 	atomic_dec(&kvm->arch.noncoherent_dma_count);
11310 }
11311 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
11312 
11313 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
11314 {
11315 	return atomic_read(&kvm->arch.noncoherent_dma_count);
11316 }
11317 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
11318 
11319 bool kvm_arch_has_irq_bypass(void)
11320 {
11321 	return true;
11322 }
11323 
11324 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
11325 				      struct irq_bypass_producer *prod)
11326 {
11327 	struct kvm_kernel_irqfd *irqfd =
11328 		container_of(cons, struct kvm_kernel_irqfd, consumer);
11329 	int ret;
11330 
11331 	irqfd->producer = prod;
11332 	kvm_arch_start_assignment(irqfd->kvm);
11333 	ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm,
11334 					 prod->irq, irqfd->gsi, 1);
11335 
11336 	if (ret)
11337 		kvm_arch_end_assignment(irqfd->kvm);
11338 
11339 	return ret;
11340 }
11341 
11342 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
11343 				      struct irq_bypass_producer *prod)
11344 {
11345 	int ret;
11346 	struct kvm_kernel_irqfd *irqfd =
11347 		container_of(cons, struct kvm_kernel_irqfd, consumer);
11348 
11349 	WARN_ON(irqfd->producer != prod);
11350 	irqfd->producer = NULL;
11351 
11352 	/*
11353 	 * When producer of consumer is unregistered, we change back to
11354 	 * remapped mode, so we can re-use the current implementation
11355 	 * when the irq is masked/disabled or the consumer side (KVM
11356 	 * int this case doesn't want to receive the interrupts.
11357 	*/
11358 	ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
11359 	if (ret)
11360 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
11361 		       " fails: %d\n", irqfd->consumer.token, ret);
11362 
11363 	kvm_arch_end_assignment(irqfd->kvm);
11364 }
11365 
11366 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
11367 				   uint32_t guest_irq, bool set)
11368 {
11369 	return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set);
11370 }
11371 
11372 bool kvm_vector_hashing_enabled(void)
11373 {
11374 	return vector_hashing;
11375 }
11376 
11377 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
11378 {
11379 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
11380 }
11381 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
11382 
11383 
11384 int kvm_spec_ctrl_test_value(u64 value)
11385 {
11386 	/*
11387 	 * test that setting IA32_SPEC_CTRL to given value
11388 	 * is allowed by the host processor
11389 	 */
11390 
11391 	u64 saved_value;
11392 	unsigned long flags;
11393 	int ret = 0;
11394 
11395 	local_irq_save(flags);
11396 
11397 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
11398 		ret = 1;
11399 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
11400 		ret = 1;
11401 	else
11402 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
11403 
11404 	local_irq_restore(flags);
11405 
11406 	return ret;
11407 }
11408 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
11409 
11410 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
11411 {
11412 	struct x86_exception fault;
11413 	u32 access = error_code &
11414 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
11415 
11416 	if (!(error_code & PFERR_PRESENT_MASK) ||
11417 	    vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
11418 		/*
11419 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
11420 		 * tables probably do not match the TLB.  Just proceed
11421 		 * with the error code that the processor gave.
11422 		 */
11423 		fault.vector = PF_VECTOR;
11424 		fault.error_code_valid = true;
11425 		fault.error_code = error_code;
11426 		fault.nested_page_fault = false;
11427 		fault.address = gva;
11428 	}
11429 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
11430 }
11431 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
11432 
11433 /*
11434  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
11435  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
11436  * indicates whether exit to userspace is needed.
11437  */
11438 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
11439 			      struct x86_exception *e)
11440 {
11441 	if (r == X86EMUL_PROPAGATE_FAULT) {
11442 		kvm_inject_emulated_page_fault(vcpu, e);
11443 		return 1;
11444 	}
11445 
11446 	/*
11447 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
11448 	 * while handling a VMX instruction KVM could've handled the request
11449 	 * correctly by exiting to userspace and performing I/O but there
11450 	 * doesn't seem to be a real use-case behind such requests, just return
11451 	 * KVM_EXIT_INTERNAL_ERROR for now.
11452 	 */
11453 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11454 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11455 	vcpu->run->internal.ndata = 0;
11456 
11457 	return 0;
11458 }
11459 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
11460 
11461 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
11462 {
11463 	bool pcid_enabled;
11464 	struct x86_exception e;
11465 	unsigned i;
11466 	unsigned long roots_to_free = 0;
11467 	struct {
11468 		u64 pcid;
11469 		u64 gla;
11470 	} operand;
11471 	int r;
11472 
11473 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
11474 	if (r != X86EMUL_CONTINUE)
11475 		return kvm_handle_memory_failure(vcpu, r, &e);
11476 
11477 	if (operand.pcid >> 12 != 0) {
11478 		kvm_inject_gp(vcpu, 0);
11479 		return 1;
11480 	}
11481 
11482 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
11483 
11484 	switch (type) {
11485 	case INVPCID_TYPE_INDIV_ADDR:
11486 		if ((!pcid_enabled && (operand.pcid != 0)) ||
11487 		    is_noncanonical_address(operand.gla, vcpu)) {
11488 			kvm_inject_gp(vcpu, 0);
11489 			return 1;
11490 		}
11491 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
11492 		return kvm_skip_emulated_instruction(vcpu);
11493 
11494 	case INVPCID_TYPE_SINGLE_CTXT:
11495 		if (!pcid_enabled && (operand.pcid != 0)) {
11496 			kvm_inject_gp(vcpu, 0);
11497 			return 1;
11498 		}
11499 
11500 		if (kvm_get_active_pcid(vcpu) == operand.pcid) {
11501 			kvm_mmu_sync_roots(vcpu);
11502 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
11503 		}
11504 
11505 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
11506 			if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd)
11507 			    == operand.pcid)
11508 				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
11509 
11510 		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
11511 		/*
11512 		 * If neither the current cr3 nor any of the prev_roots use the
11513 		 * given PCID, then nothing needs to be done here because a
11514 		 * resync will happen anyway before switching to any other CR3.
11515 		 */
11516 
11517 		return kvm_skip_emulated_instruction(vcpu);
11518 
11519 	case INVPCID_TYPE_ALL_NON_GLOBAL:
11520 		/*
11521 		 * Currently, KVM doesn't mark global entries in the shadow
11522 		 * page tables, so a non-global flush just degenerates to a
11523 		 * global flush. If needed, we could optimize this later by
11524 		 * keeping track of global entries in shadow page tables.
11525 		 */
11526 
11527 		fallthrough;
11528 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
11529 		kvm_mmu_unload(vcpu);
11530 		return kvm_skip_emulated_instruction(vcpu);
11531 
11532 	default:
11533 		BUG(); /* We have already checked above that type <= 3 */
11534 	}
11535 }
11536 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
11537 
11538 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
11539 {
11540 	struct kvm_run *run = vcpu->run;
11541 	struct kvm_mmio_fragment *frag;
11542 	unsigned int len;
11543 
11544 	BUG_ON(!vcpu->mmio_needed);
11545 
11546 	/* Complete previous fragment */
11547 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11548 	len = min(8u, frag->len);
11549 	if (!vcpu->mmio_is_write)
11550 		memcpy(frag->data, run->mmio.data, len);
11551 
11552 	if (frag->len <= 8) {
11553 		/* Switch to the next fragment. */
11554 		frag++;
11555 		vcpu->mmio_cur_fragment++;
11556 	} else {
11557 		/* Go forward to the next mmio piece. */
11558 		frag->data += len;
11559 		frag->gpa += len;
11560 		frag->len -= len;
11561 	}
11562 
11563 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11564 		vcpu->mmio_needed = 0;
11565 
11566 		// VMG change, at this point, we're always done
11567 		// RIP has already been advanced
11568 		return 1;
11569 	}
11570 
11571 	// More MMIO is needed
11572 	run->mmio.phys_addr = frag->gpa;
11573 	run->mmio.len = min(8u, frag->len);
11574 	run->mmio.is_write = vcpu->mmio_is_write;
11575 	if (run->mmio.is_write)
11576 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11577 	run->exit_reason = KVM_EXIT_MMIO;
11578 
11579 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11580 
11581 	return 0;
11582 }
11583 
11584 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
11585 			  void *data)
11586 {
11587 	int handled;
11588 	struct kvm_mmio_fragment *frag;
11589 
11590 	if (!data)
11591 		return -EINVAL;
11592 
11593 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
11594 	if (handled == bytes)
11595 		return 1;
11596 
11597 	bytes -= handled;
11598 	gpa += handled;
11599 	data += handled;
11600 
11601 	/*TODO: Check if need to increment number of frags */
11602 	frag = vcpu->mmio_fragments;
11603 	vcpu->mmio_nr_fragments = 1;
11604 	frag->len = bytes;
11605 	frag->gpa = gpa;
11606 	frag->data = data;
11607 
11608 	vcpu->mmio_needed = 1;
11609 	vcpu->mmio_cur_fragment = 0;
11610 
11611 	vcpu->run->mmio.phys_addr = gpa;
11612 	vcpu->run->mmio.len = min(8u, frag->len);
11613 	vcpu->run->mmio.is_write = 1;
11614 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
11615 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
11616 
11617 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11618 
11619 	return 0;
11620 }
11621 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
11622 
11623 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
11624 			 void *data)
11625 {
11626 	int handled;
11627 	struct kvm_mmio_fragment *frag;
11628 
11629 	if (!data)
11630 		return -EINVAL;
11631 
11632 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
11633 	if (handled == bytes)
11634 		return 1;
11635 
11636 	bytes -= handled;
11637 	gpa += handled;
11638 	data += handled;
11639 
11640 	/*TODO: Check if need to increment number of frags */
11641 	frag = vcpu->mmio_fragments;
11642 	vcpu->mmio_nr_fragments = 1;
11643 	frag->len = bytes;
11644 	frag->gpa = gpa;
11645 	frag->data = data;
11646 
11647 	vcpu->mmio_needed = 1;
11648 	vcpu->mmio_cur_fragment = 0;
11649 
11650 	vcpu->run->mmio.phys_addr = gpa;
11651 	vcpu->run->mmio.len = min(8u, frag->len);
11652 	vcpu->run->mmio.is_write = 0;
11653 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
11654 
11655 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11656 
11657 	return 0;
11658 }
11659 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
11660 
11661 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
11662 {
11663 	memcpy(vcpu->arch.guest_ins_data, vcpu->arch.pio_data,
11664 	       vcpu->arch.pio.count * vcpu->arch.pio.size);
11665 	vcpu->arch.pio.count = 0;
11666 
11667 	return 1;
11668 }
11669 
11670 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
11671 			   unsigned int port, void *data,  unsigned int count)
11672 {
11673 	int ret;
11674 
11675 	ret = emulator_pio_out_emulated(vcpu->arch.emulate_ctxt, size, port,
11676 					data, count);
11677 	if (ret)
11678 		return ret;
11679 
11680 	vcpu->arch.pio.count = 0;
11681 
11682 	return 0;
11683 }
11684 
11685 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
11686 			  unsigned int port, void *data, unsigned int count)
11687 {
11688 	int ret;
11689 
11690 	ret = emulator_pio_in_emulated(vcpu->arch.emulate_ctxt, size, port,
11691 				       data, count);
11692 	if (ret) {
11693 		vcpu->arch.pio.count = 0;
11694 	} else {
11695 		vcpu->arch.guest_ins_data = data;
11696 		vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
11697 	}
11698 
11699 	return 0;
11700 }
11701 
11702 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
11703 			 unsigned int port, void *data,  unsigned int count,
11704 			 int in)
11705 {
11706 	return in ? kvm_sev_es_ins(vcpu, size, port, data, count)
11707 		  : kvm_sev_es_outs(vcpu, size, port, data, count);
11708 }
11709 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
11710 
11711 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
11712 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
11713 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
11714 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
11715 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
11716 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
11717 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
11718 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
11719 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
11720 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
11721 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
11722 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
11723 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
11724 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
11725 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
11726 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
11727 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
11728 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
11729 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
11730 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
11731 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
11732 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
11733 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
11734 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
11735 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
11736 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
11737 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
11738