xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 160b8e75)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32 
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58 
59 #include <trace/events/kvm.h>
60 
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
72 
73 #define CREATE_TRACE_POINTS
74 #include "trace.h"
75 
76 #define MAX_IO_MSRS 256
77 #define KVM_MAX_MCE_BANKS 32
78 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
80 
81 #define emul_to_vcpu(ctxt) \
82 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
83 
84 /* EFER defaults:
85  * - enable syscall per default because its emulated by KVM
86  * - enable LME and LMA per default on 64 bit KVM
87  */
88 #ifdef CONFIG_X86_64
89 static
90 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
91 #else
92 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
93 #endif
94 
95 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
96 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
97 
98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
99                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
100 
101 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
102 static void process_nmi(struct kvm_vcpu *vcpu);
103 static void enter_smm(struct kvm_vcpu *vcpu);
104 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
105 
106 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
107 EXPORT_SYMBOL_GPL(kvm_x86_ops);
108 
109 static bool __read_mostly ignore_msrs = 0;
110 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
111 
112 static bool __read_mostly report_ignored_msrs = true;
113 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
114 
115 unsigned int min_timer_period_us = 500;
116 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
117 
118 static bool __read_mostly kvmclock_periodic_sync = true;
119 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
120 
121 bool __read_mostly kvm_has_tsc_control;
122 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
123 u32  __read_mostly kvm_max_guest_tsc_khz;
124 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
125 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
126 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
127 u64  __read_mostly kvm_max_tsc_scaling_ratio;
128 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
129 u64 __read_mostly kvm_default_tsc_scaling_ratio;
130 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
131 
132 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
133 static u32 __read_mostly tsc_tolerance_ppm = 250;
134 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
135 
136 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
137 unsigned int __read_mostly lapic_timer_advance_ns = 0;
138 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
139 
140 static bool __read_mostly vector_hashing = true;
141 module_param(vector_hashing, bool, S_IRUGO);
142 
143 #define KVM_NR_SHARED_MSRS 16
144 
145 struct kvm_shared_msrs_global {
146 	int nr;
147 	u32 msrs[KVM_NR_SHARED_MSRS];
148 };
149 
150 struct kvm_shared_msrs {
151 	struct user_return_notifier urn;
152 	bool registered;
153 	struct kvm_shared_msr_values {
154 		u64 host;
155 		u64 curr;
156 	} values[KVM_NR_SHARED_MSRS];
157 };
158 
159 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
160 static struct kvm_shared_msrs __percpu *shared_msrs;
161 
162 struct kvm_stats_debugfs_item debugfs_entries[] = {
163 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
164 	{ "pf_guest", VCPU_STAT(pf_guest) },
165 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
166 	{ "invlpg", VCPU_STAT(invlpg) },
167 	{ "exits", VCPU_STAT(exits) },
168 	{ "io_exits", VCPU_STAT(io_exits) },
169 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
170 	{ "signal_exits", VCPU_STAT(signal_exits) },
171 	{ "irq_window", VCPU_STAT(irq_window_exits) },
172 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
173 	{ "halt_exits", VCPU_STAT(halt_exits) },
174 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
175 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
176 	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
177 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
178 	{ "hypercalls", VCPU_STAT(hypercalls) },
179 	{ "request_irq", VCPU_STAT(request_irq_exits) },
180 	{ "irq_exits", VCPU_STAT(irq_exits) },
181 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
182 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
183 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
184 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
185 	{ "irq_injections", VCPU_STAT(irq_injections) },
186 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
187 	{ "req_event", VCPU_STAT(req_event) },
188 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
189 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
190 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
191 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
192 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
193 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
194 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
195 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
196 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
197 	{ "largepages", VM_STAT(lpages) },
198 	{ "max_mmu_page_hash_collisions",
199 		VM_STAT(max_mmu_page_hash_collisions) },
200 	{ NULL }
201 };
202 
203 u64 __read_mostly host_xcr0;
204 
205 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
206 
207 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
208 {
209 	int i;
210 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
211 		vcpu->arch.apf.gfns[i] = ~0;
212 }
213 
214 static void kvm_on_user_return(struct user_return_notifier *urn)
215 {
216 	unsigned slot;
217 	struct kvm_shared_msrs *locals
218 		= container_of(urn, struct kvm_shared_msrs, urn);
219 	struct kvm_shared_msr_values *values;
220 	unsigned long flags;
221 
222 	/*
223 	 * Disabling irqs at this point since the following code could be
224 	 * interrupted and executed through kvm_arch_hardware_disable()
225 	 */
226 	local_irq_save(flags);
227 	if (locals->registered) {
228 		locals->registered = false;
229 		user_return_notifier_unregister(urn);
230 	}
231 	local_irq_restore(flags);
232 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
233 		values = &locals->values[slot];
234 		if (values->host != values->curr) {
235 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
236 			values->curr = values->host;
237 		}
238 	}
239 }
240 
241 static void shared_msr_update(unsigned slot, u32 msr)
242 {
243 	u64 value;
244 	unsigned int cpu = smp_processor_id();
245 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
246 
247 	/* only read, and nobody should modify it at this time,
248 	 * so don't need lock */
249 	if (slot >= shared_msrs_global.nr) {
250 		printk(KERN_ERR "kvm: invalid MSR slot!");
251 		return;
252 	}
253 	rdmsrl_safe(msr, &value);
254 	smsr->values[slot].host = value;
255 	smsr->values[slot].curr = value;
256 }
257 
258 void kvm_define_shared_msr(unsigned slot, u32 msr)
259 {
260 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
261 	shared_msrs_global.msrs[slot] = msr;
262 	if (slot >= shared_msrs_global.nr)
263 		shared_msrs_global.nr = slot + 1;
264 }
265 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
266 
267 static void kvm_shared_msr_cpu_online(void)
268 {
269 	unsigned i;
270 
271 	for (i = 0; i < shared_msrs_global.nr; ++i)
272 		shared_msr_update(i, shared_msrs_global.msrs[i]);
273 }
274 
275 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
276 {
277 	unsigned int cpu = smp_processor_id();
278 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
279 	int err;
280 
281 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
282 		return 0;
283 	smsr->values[slot].curr = value;
284 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
285 	if (err)
286 		return 1;
287 
288 	if (!smsr->registered) {
289 		smsr->urn.on_user_return = kvm_on_user_return;
290 		user_return_notifier_register(&smsr->urn);
291 		smsr->registered = true;
292 	}
293 	return 0;
294 }
295 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
296 
297 static void drop_user_return_notifiers(void)
298 {
299 	unsigned int cpu = smp_processor_id();
300 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
301 
302 	if (smsr->registered)
303 		kvm_on_user_return(&smsr->urn);
304 }
305 
306 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
307 {
308 	return vcpu->arch.apic_base;
309 }
310 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
311 
312 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
313 {
314 	u64 old_state = vcpu->arch.apic_base &
315 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
316 	u64 new_state = msr_info->data &
317 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
318 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
319 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
320 
321 	if ((msr_info->data & reserved_bits) || new_state == X2APIC_ENABLE)
322 		return 1;
323 	if (!msr_info->host_initiated &&
324 	    ((new_state == MSR_IA32_APICBASE_ENABLE &&
325 	      old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
326 	     (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
327 	      old_state == 0)))
328 		return 1;
329 
330 	kvm_lapic_set_base(vcpu, msr_info->data);
331 	return 0;
332 }
333 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
334 
335 asmlinkage __visible void kvm_spurious_fault(void)
336 {
337 	/* Fault while not rebooting.  We want the trace. */
338 	BUG();
339 }
340 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
341 
342 #define EXCPT_BENIGN		0
343 #define EXCPT_CONTRIBUTORY	1
344 #define EXCPT_PF		2
345 
346 static int exception_class(int vector)
347 {
348 	switch (vector) {
349 	case PF_VECTOR:
350 		return EXCPT_PF;
351 	case DE_VECTOR:
352 	case TS_VECTOR:
353 	case NP_VECTOR:
354 	case SS_VECTOR:
355 	case GP_VECTOR:
356 		return EXCPT_CONTRIBUTORY;
357 	default:
358 		break;
359 	}
360 	return EXCPT_BENIGN;
361 }
362 
363 #define EXCPT_FAULT		0
364 #define EXCPT_TRAP		1
365 #define EXCPT_ABORT		2
366 #define EXCPT_INTERRUPT		3
367 
368 static int exception_type(int vector)
369 {
370 	unsigned int mask;
371 
372 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
373 		return EXCPT_INTERRUPT;
374 
375 	mask = 1 << vector;
376 
377 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
378 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
379 		return EXCPT_TRAP;
380 
381 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
382 		return EXCPT_ABORT;
383 
384 	/* Reserved exceptions will result in fault */
385 	return EXCPT_FAULT;
386 }
387 
388 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
389 		unsigned nr, bool has_error, u32 error_code,
390 		bool reinject)
391 {
392 	u32 prev_nr;
393 	int class1, class2;
394 
395 	kvm_make_request(KVM_REQ_EVENT, vcpu);
396 
397 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
398 	queue:
399 		if (has_error && !is_protmode(vcpu))
400 			has_error = false;
401 		if (reinject) {
402 			/*
403 			 * On vmentry, vcpu->arch.exception.pending is only
404 			 * true if an event injection was blocked by
405 			 * nested_run_pending.  In that case, however,
406 			 * vcpu_enter_guest requests an immediate exit,
407 			 * and the guest shouldn't proceed far enough to
408 			 * need reinjection.
409 			 */
410 			WARN_ON_ONCE(vcpu->arch.exception.pending);
411 			vcpu->arch.exception.injected = true;
412 		} else {
413 			vcpu->arch.exception.pending = true;
414 			vcpu->arch.exception.injected = false;
415 		}
416 		vcpu->arch.exception.has_error_code = has_error;
417 		vcpu->arch.exception.nr = nr;
418 		vcpu->arch.exception.error_code = error_code;
419 		return;
420 	}
421 
422 	/* to check exception */
423 	prev_nr = vcpu->arch.exception.nr;
424 	if (prev_nr == DF_VECTOR) {
425 		/* triple fault -> shutdown */
426 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
427 		return;
428 	}
429 	class1 = exception_class(prev_nr);
430 	class2 = exception_class(nr);
431 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
432 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
433 		/*
434 		 * Generate double fault per SDM Table 5-5.  Set
435 		 * exception.pending = true so that the double fault
436 		 * can trigger a nested vmexit.
437 		 */
438 		vcpu->arch.exception.pending = true;
439 		vcpu->arch.exception.injected = false;
440 		vcpu->arch.exception.has_error_code = true;
441 		vcpu->arch.exception.nr = DF_VECTOR;
442 		vcpu->arch.exception.error_code = 0;
443 	} else
444 		/* replace previous exception with a new one in a hope
445 		   that instruction re-execution will regenerate lost
446 		   exception */
447 		goto queue;
448 }
449 
450 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
451 {
452 	kvm_multiple_exception(vcpu, nr, false, 0, false);
453 }
454 EXPORT_SYMBOL_GPL(kvm_queue_exception);
455 
456 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
457 {
458 	kvm_multiple_exception(vcpu, nr, false, 0, true);
459 }
460 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
461 
462 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
463 {
464 	if (err)
465 		kvm_inject_gp(vcpu, 0);
466 	else
467 		return kvm_skip_emulated_instruction(vcpu);
468 
469 	return 1;
470 }
471 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
472 
473 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
474 {
475 	++vcpu->stat.pf_guest;
476 	vcpu->arch.exception.nested_apf =
477 		is_guest_mode(vcpu) && fault->async_page_fault;
478 	if (vcpu->arch.exception.nested_apf)
479 		vcpu->arch.apf.nested_apf_token = fault->address;
480 	else
481 		vcpu->arch.cr2 = fault->address;
482 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
483 }
484 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
485 
486 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
487 {
488 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
489 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
490 	else
491 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
492 
493 	return fault->nested_page_fault;
494 }
495 
496 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
497 {
498 	atomic_inc(&vcpu->arch.nmi_queued);
499 	kvm_make_request(KVM_REQ_NMI, vcpu);
500 }
501 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
502 
503 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
504 {
505 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
506 }
507 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
508 
509 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
510 {
511 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
512 }
513 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
514 
515 /*
516  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
517  * a #GP and return false.
518  */
519 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
520 {
521 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
522 		return true;
523 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
524 	return false;
525 }
526 EXPORT_SYMBOL_GPL(kvm_require_cpl);
527 
528 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
529 {
530 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
531 		return true;
532 
533 	kvm_queue_exception(vcpu, UD_VECTOR);
534 	return false;
535 }
536 EXPORT_SYMBOL_GPL(kvm_require_dr);
537 
538 /*
539  * This function will be used to read from the physical memory of the currently
540  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
541  * can read from guest physical or from the guest's guest physical memory.
542  */
543 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
544 			    gfn_t ngfn, void *data, int offset, int len,
545 			    u32 access)
546 {
547 	struct x86_exception exception;
548 	gfn_t real_gfn;
549 	gpa_t ngpa;
550 
551 	ngpa     = gfn_to_gpa(ngfn);
552 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
553 	if (real_gfn == UNMAPPED_GVA)
554 		return -EFAULT;
555 
556 	real_gfn = gpa_to_gfn(real_gfn);
557 
558 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
559 }
560 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
561 
562 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
563 			       void *data, int offset, int len, u32 access)
564 {
565 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
566 				       data, offset, len, access);
567 }
568 
569 /*
570  * Load the pae pdptrs.  Return true is they are all valid.
571  */
572 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
573 {
574 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
575 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
576 	int i;
577 	int ret;
578 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
579 
580 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
581 				      offset * sizeof(u64), sizeof(pdpte),
582 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
583 	if (ret < 0) {
584 		ret = 0;
585 		goto out;
586 	}
587 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
588 		if ((pdpte[i] & PT_PRESENT_MASK) &&
589 		    (pdpte[i] &
590 		     vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
591 			ret = 0;
592 			goto out;
593 		}
594 	}
595 	ret = 1;
596 
597 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
598 	__set_bit(VCPU_EXREG_PDPTR,
599 		  (unsigned long *)&vcpu->arch.regs_avail);
600 	__set_bit(VCPU_EXREG_PDPTR,
601 		  (unsigned long *)&vcpu->arch.regs_dirty);
602 out:
603 
604 	return ret;
605 }
606 EXPORT_SYMBOL_GPL(load_pdptrs);
607 
608 bool pdptrs_changed(struct kvm_vcpu *vcpu)
609 {
610 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
611 	bool changed = true;
612 	int offset;
613 	gfn_t gfn;
614 	int r;
615 
616 	if (is_long_mode(vcpu) || !is_pae(vcpu))
617 		return false;
618 
619 	if (!test_bit(VCPU_EXREG_PDPTR,
620 		      (unsigned long *)&vcpu->arch.regs_avail))
621 		return true;
622 
623 	gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
624 	offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
625 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
626 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
627 	if (r < 0)
628 		goto out;
629 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
630 out:
631 
632 	return changed;
633 }
634 EXPORT_SYMBOL_GPL(pdptrs_changed);
635 
636 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
637 {
638 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
639 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
640 
641 	cr0 |= X86_CR0_ET;
642 
643 #ifdef CONFIG_X86_64
644 	if (cr0 & 0xffffffff00000000UL)
645 		return 1;
646 #endif
647 
648 	cr0 &= ~CR0_RESERVED_BITS;
649 
650 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
651 		return 1;
652 
653 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
654 		return 1;
655 
656 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
657 #ifdef CONFIG_X86_64
658 		if ((vcpu->arch.efer & EFER_LME)) {
659 			int cs_db, cs_l;
660 
661 			if (!is_pae(vcpu))
662 				return 1;
663 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
664 			if (cs_l)
665 				return 1;
666 		} else
667 #endif
668 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
669 						 kvm_read_cr3(vcpu)))
670 			return 1;
671 	}
672 
673 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
674 		return 1;
675 
676 	kvm_x86_ops->set_cr0(vcpu, cr0);
677 
678 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
679 		kvm_clear_async_pf_completion_queue(vcpu);
680 		kvm_async_pf_hash_reset(vcpu);
681 	}
682 
683 	if ((cr0 ^ old_cr0) & update_bits)
684 		kvm_mmu_reset_context(vcpu);
685 
686 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
687 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
688 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
689 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
690 
691 	return 0;
692 }
693 EXPORT_SYMBOL_GPL(kvm_set_cr0);
694 
695 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
696 {
697 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
698 }
699 EXPORT_SYMBOL_GPL(kvm_lmsw);
700 
701 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
702 {
703 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
704 			!vcpu->guest_xcr0_loaded) {
705 		/* kvm_set_xcr() also depends on this */
706 		if (vcpu->arch.xcr0 != host_xcr0)
707 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
708 		vcpu->guest_xcr0_loaded = 1;
709 	}
710 }
711 
712 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
713 {
714 	if (vcpu->guest_xcr0_loaded) {
715 		if (vcpu->arch.xcr0 != host_xcr0)
716 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
717 		vcpu->guest_xcr0_loaded = 0;
718 	}
719 }
720 
721 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
722 {
723 	u64 xcr0 = xcr;
724 	u64 old_xcr0 = vcpu->arch.xcr0;
725 	u64 valid_bits;
726 
727 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
728 	if (index != XCR_XFEATURE_ENABLED_MASK)
729 		return 1;
730 	if (!(xcr0 & XFEATURE_MASK_FP))
731 		return 1;
732 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
733 		return 1;
734 
735 	/*
736 	 * Do not allow the guest to set bits that we do not support
737 	 * saving.  However, xcr0 bit 0 is always set, even if the
738 	 * emulated CPU does not support XSAVE (see fx_init).
739 	 */
740 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
741 	if (xcr0 & ~valid_bits)
742 		return 1;
743 
744 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
745 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
746 		return 1;
747 
748 	if (xcr0 & XFEATURE_MASK_AVX512) {
749 		if (!(xcr0 & XFEATURE_MASK_YMM))
750 			return 1;
751 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
752 			return 1;
753 	}
754 	vcpu->arch.xcr0 = xcr0;
755 
756 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
757 		kvm_update_cpuid(vcpu);
758 	return 0;
759 }
760 
761 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
762 {
763 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
764 	    __kvm_set_xcr(vcpu, index, xcr)) {
765 		kvm_inject_gp(vcpu, 0);
766 		return 1;
767 	}
768 	return 0;
769 }
770 EXPORT_SYMBOL_GPL(kvm_set_xcr);
771 
772 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
773 {
774 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
775 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
776 				   X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
777 
778 	if (cr4 & CR4_RESERVED_BITS)
779 		return 1;
780 
781 	if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
782 		return 1;
783 
784 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
785 		return 1;
786 
787 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
788 		return 1;
789 
790 	if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
791 		return 1;
792 
793 	if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
794 		return 1;
795 
796 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
797 		return 1;
798 
799 	if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
800 		return 1;
801 
802 	if (is_long_mode(vcpu)) {
803 		if (!(cr4 & X86_CR4_PAE))
804 			return 1;
805 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
806 		   && ((cr4 ^ old_cr4) & pdptr_bits)
807 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
808 				   kvm_read_cr3(vcpu)))
809 		return 1;
810 
811 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
812 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
813 			return 1;
814 
815 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
816 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
817 			return 1;
818 	}
819 
820 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
821 		return 1;
822 
823 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
824 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
825 		kvm_mmu_reset_context(vcpu);
826 
827 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
828 		kvm_update_cpuid(vcpu);
829 
830 	return 0;
831 }
832 EXPORT_SYMBOL_GPL(kvm_set_cr4);
833 
834 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
835 {
836 #ifdef CONFIG_X86_64
837 	cr3 &= ~CR3_PCID_INVD;
838 #endif
839 
840 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
841 		kvm_mmu_sync_roots(vcpu);
842 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
843 		return 0;
844 	}
845 
846 	if (is_long_mode(vcpu) &&
847 	    (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 62)))
848 		return 1;
849 	else if (is_pae(vcpu) && is_paging(vcpu) &&
850 		   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
851 		return 1;
852 
853 	vcpu->arch.cr3 = cr3;
854 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
855 	kvm_mmu_new_cr3(vcpu);
856 	return 0;
857 }
858 EXPORT_SYMBOL_GPL(kvm_set_cr3);
859 
860 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
861 {
862 	if (cr8 & CR8_RESERVED_BITS)
863 		return 1;
864 	if (lapic_in_kernel(vcpu))
865 		kvm_lapic_set_tpr(vcpu, cr8);
866 	else
867 		vcpu->arch.cr8 = cr8;
868 	return 0;
869 }
870 EXPORT_SYMBOL_GPL(kvm_set_cr8);
871 
872 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
873 {
874 	if (lapic_in_kernel(vcpu))
875 		return kvm_lapic_get_cr8(vcpu);
876 	else
877 		return vcpu->arch.cr8;
878 }
879 EXPORT_SYMBOL_GPL(kvm_get_cr8);
880 
881 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
882 {
883 	int i;
884 
885 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
886 		for (i = 0; i < KVM_NR_DB_REGS; i++)
887 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
888 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
889 	}
890 }
891 
892 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
893 {
894 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
895 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
896 }
897 
898 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
899 {
900 	unsigned long dr7;
901 
902 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
903 		dr7 = vcpu->arch.guest_debug_dr7;
904 	else
905 		dr7 = vcpu->arch.dr7;
906 	kvm_x86_ops->set_dr7(vcpu, dr7);
907 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
908 	if (dr7 & DR7_BP_EN_MASK)
909 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
910 }
911 
912 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
913 {
914 	u64 fixed = DR6_FIXED_1;
915 
916 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
917 		fixed |= DR6_RTM;
918 	return fixed;
919 }
920 
921 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
922 {
923 	switch (dr) {
924 	case 0 ... 3:
925 		vcpu->arch.db[dr] = val;
926 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
927 			vcpu->arch.eff_db[dr] = val;
928 		break;
929 	case 4:
930 		/* fall through */
931 	case 6:
932 		if (val & 0xffffffff00000000ULL)
933 			return -1; /* #GP */
934 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
935 		kvm_update_dr6(vcpu);
936 		break;
937 	case 5:
938 		/* fall through */
939 	default: /* 7 */
940 		if (val & 0xffffffff00000000ULL)
941 			return -1; /* #GP */
942 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
943 		kvm_update_dr7(vcpu);
944 		break;
945 	}
946 
947 	return 0;
948 }
949 
950 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
951 {
952 	if (__kvm_set_dr(vcpu, dr, val)) {
953 		kvm_inject_gp(vcpu, 0);
954 		return 1;
955 	}
956 	return 0;
957 }
958 EXPORT_SYMBOL_GPL(kvm_set_dr);
959 
960 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
961 {
962 	switch (dr) {
963 	case 0 ... 3:
964 		*val = vcpu->arch.db[dr];
965 		break;
966 	case 4:
967 		/* fall through */
968 	case 6:
969 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
970 			*val = vcpu->arch.dr6;
971 		else
972 			*val = kvm_x86_ops->get_dr6(vcpu);
973 		break;
974 	case 5:
975 		/* fall through */
976 	default: /* 7 */
977 		*val = vcpu->arch.dr7;
978 		break;
979 	}
980 	return 0;
981 }
982 EXPORT_SYMBOL_GPL(kvm_get_dr);
983 
984 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
985 {
986 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
987 	u64 data;
988 	int err;
989 
990 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
991 	if (err)
992 		return err;
993 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
994 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
995 	return err;
996 }
997 EXPORT_SYMBOL_GPL(kvm_rdpmc);
998 
999 /*
1000  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1001  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1002  *
1003  * This list is modified at module load time to reflect the
1004  * capabilities of the host cpu. This capabilities test skips MSRs that are
1005  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1006  * may depend on host virtualization features rather than host cpu features.
1007  */
1008 
1009 static u32 msrs_to_save[] = {
1010 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1011 	MSR_STAR,
1012 #ifdef CONFIG_X86_64
1013 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1014 #endif
1015 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1016 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1017 	MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
1018 };
1019 
1020 static unsigned num_msrs_to_save;
1021 
1022 static u32 emulated_msrs[] = {
1023 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1024 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1025 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1026 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1027 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1028 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1029 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1030 	HV_X64_MSR_RESET,
1031 	HV_X64_MSR_VP_INDEX,
1032 	HV_X64_MSR_VP_RUNTIME,
1033 	HV_X64_MSR_SCONTROL,
1034 	HV_X64_MSR_STIMER0_CONFIG,
1035 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1036 	MSR_KVM_PV_EOI_EN,
1037 
1038 	MSR_IA32_TSC_ADJUST,
1039 	MSR_IA32_TSCDEADLINE,
1040 	MSR_IA32_MISC_ENABLE,
1041 	MSR_IA32_MCG_STATUS,
1042 	MSR_IA32_MCG_CTL,
1043 	MSR_IA32_MCG_EXT_CTL,
1044 	MSR_IA32_SMBASE,
1045 	MSR_SMI_COUNT,
1046 	MSR_PLATFORM_INFO,
1047 	MSR_MISC_FEATURES_ENABLES,
1048 };
1049 
1050 static unsigned num_emulated_msrs;
1051 
1052 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1053 {
1054 	if (efer & efer_reserved_bits)
1055 		return false;
1056 
1057 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1058 			return false;
1059 
1060 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1061 			return false;
1062 
1063 	return true;
1064 }
1065 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1066 
1067 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1068 {
1069 	u64 old_efer = vcpu->arch.efer;
1070 
1071 	if (!kvm_valid_efer(vcpu, efer))
1072 		return 1;
1073 
1074 	if (is_paging(vcpu)
1075 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1076 		return 1;
1077 
1078 	efer &= ~EFER_LMA;
1079 	efer |= vcpu->arch.efer & EFER_LMA;
1080 
1081 	kvm_x86_ops->set_efer(vcpu, efer);
1082 
1083 	/* Update reserved bits */
1084 	if ((efer ^ old_efer) & EFER_NX)
1085 		kvm_mmu_reset_context(vcpu);
1086 
1087 	return 0;
1088 }
1089 
1090 void kvm_enable_efer_bits(u64 mask)
1091 {
1092        efer_reserved_bits &= ~mask;
1093 }
1094 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1095 
1096 /*
1097  * Writes msr value into into the appropriate "register".
1098  * Returns 0 on success, non-0 otherwise.
1099  * Assumes vcpu_load() was already called.
1100  */
1101 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1102 {
1103 	switch (msr->index) {
1104 	case MSR_FS_BASE:
1105 	case MSR_GS_BASE:
1106 	case MSR_KERNEL_GS_BASE:
1107 	case MSR_CSTAR:
1108 	case MSR_LSTAR:
1109 		if (is_noncanonical_address(msr->data, vcpu))
1110 			return 1;
1111 		break;
1112 	case MSR_IA32_SYSENTER_EIP:
1113 	case MSR_IA32_SYSENTER_ESP:
1114 		/*
1115 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1116 		 * non-canonical address is written on Intel but not on
1117 		 * AMD (which ignores the top 32-bits, because it does
1118 		 * not implement 64-bit SYSENTER).
1119 		 *
1120 		 * 64-bit code should hence be able to write a non-canonical
1121 		 * value on AMD.  Making the address canonical ensures that
1122 		 * vmentry does not fail on Intel after writing a non-canonical
1123 		 * value, and that something deterministic happens if the guest
1124 		 * invokes 64-bit SYSENTER.
1125 		 */
1126 		msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1127 	}
1128 	return kvm_x86_ops->set_msr(vcpu, msr);
1129 }
1130 EXPORT_SYMBOL_GPL(kvm_set_msr);
1131 
1132 /*
1133  * Adapt set_msr() to msr_io()'s calling convention
1134  */
1135 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1136 {
1137 	struct msr_data msr;
1138 	int r;
1139 
1140 	msr.index = index;
1141 	msr.host_initiated = true;
1142 	r = kvm_get_msr(vcpu, &msr);
1143 	if (r)
1144 		return r;
1145 
1146 	*data = msr.data;
1147 	return 0;
1148 }
1149 
1150 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1151 {
1152 	struct msr_data msr;
1153 
1154 	msr.data = *data;
1155 	msr.index = index;
1156 	msr.host_initiated = true;
1157 	return kvm_set_msr(vcpu, &msr);
1158 }
1159 
1160 #ifdef CONFIG_X86_64
1161 struct pvclock_gtod_data {
1162 	seqcount_t	seq;
1163 
1164 	struct { /* extract of a clocksource struct */
1165 		int vclock_mode;
1166 		u64	cycle_last;
1167 		u64	mask;
1168 		u32	mult;
1169 		u32	shift;
1170 	} clock;
1171 
1172 	u64		boot_ns;
1173 	u64		nsec_base;
1174 	u64		wall_time_sec;
1175 };
1176 
1177 static struct pvclock_gtod_data pvclock_gtod_data;
1178 
1179 static void update_pvclock_gtod(struct timekeeper *tk)
1180 {
1181 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1182 	u64 boot_ns;
1183 
1184 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1185 
1186 	write_seqcount_begin(&vdata->seq);
1187 
1188 	/* copy pvclock gtod data */
1189 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1190 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1191 	vdata->clock.mask		= tk->tkr_mono.mask;
1192 	vdata->clock.mult		= tk->tkr_mono.mult;
1193 	vdata->clock.shift		= tk->tkr_mono.shift;
1194 
1195 	vdata->boot_ns			= boot_ns;
1196 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1197 
1198 	vdata->wall_time_sec            = tk->xtime_sec;
1199 
1200 	write_seqcount_end(&vdata->seq);
1201 }
1202 #endif
1203 
1204 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1205 {
1206 	/*
1207 	 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1208 	 * vcpu_enter_guest.  This function is only called from
1209 	 * the physical CPU that is running vcpu.
1210 	 */
1211 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1212 }
1213 
1214 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1215 {
1216 	int version;
1217 	int r;
1218 	struct pvclock_wall_clock wc;
1219 	struct timespec64 boot;
1220 
1221 	if (!wall_clock)
1222 		return;
1223 
1224 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1225 	if (r)
1226 		return;
1227 
1228 	if (version & 1)
1229 		++version;  /* first time write, random junk */
1230 
1231 	++version;
1232 
1233 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1234 		return;
1235 
1236 	/*
1237 	 * The guest calculates current wall clock time by adding
1238 	 * system time (updated by kvm_guest_time_update below) to the
1239 	 * wall clock specified here.  guest system time equals host
1240 	 * system time for us, thus we must fill in host boot time here.
1241 	 */
1242 	getboottime64(&boot);
1243 
1244 	if (kvm->arch.kvmclock_offset) {
1245 		struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1246 		boot = timespec64_sub(boot, ts);
1247 	}
1248 	wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1249 	wc.nsec = boot.tv_nsec;
1250 	wc.version = version;
1251 
1252 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1253 
1254 	version++;
1255 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1256 }
1257 
1258 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1259 {
1260 	do_shl32_div32(dividend, divisor);
1261 	return dividend;
1262 }
1263 
1264 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1265 			       s8 *pshift, u32 *pmultiplier)
1266 {
1267 	uint64_t scaled64;
1268 	int32_t  shift = 0;
1269 	uint64_t tps64;
1270 	uint32_t tps32;
1271 
1272 	tps64 = base_hz;
1273 	scaled64 = scaled_hz;
1274 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1275 		tps64 >>= 1;
1276 		shift--;
1277 	}
1278 
1279 	tps32 = (uint32_t)tps64;
1280 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1281 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1282 			scaled64 >>= 1;
1283 		else
1284 			tps32 <<= 1;
1285 		shift++;
1286 	}
1287 
1288 	*pshift = shift;
1289 	*pmultiplier = div_frac(scaled64, tps32);
1290 
1291 	pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1292 		 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1293 }
1294 
1295 #ifdef CONFIG_X86_64
1296 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1297 #endif
1298 
1299 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1300 static unsigned long max_tsc_khz;
1301 
1302 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1303 {
1304 	u64 v = (u64)khz * (1000000 + ppm);
1305 	do_div(v, 1000000);
1306 	return v;
1307 }
1308 
1309 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1310 {
1311 	u64 ratio;
1312 
1313 	/* Guest TSC same frequency as host TSC? */
1314 	if (!scale) {
1315 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1316 		return 0;
1317 	}
1318 
1319 	/* TSC scaling supported? */
1320 	if (!kvm_has_tsc_control) {
1321 		if (user_tsc_khz > tsc_khz) {
1322 			vcpu->arch.tsc_catchup = 1;
1323 			vcpu->arch.tsc_always_catchup = 1;
1324 			return 0;
1325 		} else {
1326 			WARN(1, "user requested TSC rate below hardware speed\n");
1327 			return -1;
1328 		}
1329 	}
1330 
1331 	/* TSC scaling required  - calculate ratio */
1332 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1333 				user_tsc_khz, tsc_khz);
1334 
1335 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1336 		WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1337 			  user_tsc_khz);
1338 		return -1;
1339 	}
1340 
1341 	vcpu->arch.tsc_scaling_ratio = ratio;
1342 	return 0;
1343 }
1344 
1345 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1346 {
1347 	u32 thresh_lo, thresh_hi;
1348 	int use_scaling = 0;
1349 
1350 	/* tsc_khz can be zero if TSC calibration fails */
1351 	if (user_tsc_khz == 0) {
1352 		/* set tsc_scaling_ratio to a safe value */
1353 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1354 		return -1;
1355 	}
1356 
1357 	/* Compute a scale to convert nanoseconds in TSC cycles */
1358 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1359 			   &vcpu->arch.virtual_tsc_shift,
1360 			   &vcpu->arch.virtual_tsc_mult);
1361 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1362 
1363 	/*
1364 	 * Compute the variation in TSC rate which is acceptable
1365 	 * within the range of tolerance and decide if the
1366 	 * rate being applied is within that bounds of the hardware
1367 	 * rate.  If so, no scaling or compensation need be done.
1368 	 */
1369 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1370 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1371 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1372 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1373 		use_scaling = 1;
1374 	}
1375 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1376 }
1377 
1378 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1379 {
1380 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1381 				      vcpu->arch.virtual_tsc_mult,
1382 				      vcpu->arch.virtual_tsc_shift);
1383 	tsc += vcpu->arch.this_tsc_write;
1384 	return tsc;
1385 }
1386 
1387 static inline int gtod_is_based_on_tsc(int mode)
1388 {
1389 	return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1390 }
1391 
1392 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1393 {
1394 #ifdef CONFIG_X86_64
1395 	bool vcpus_matched;
1396 	struct kvm_arch *ka = &vcpu->kvm->arch;
1397 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1398 
1399 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1400 			 atomic_read(&vcpu->kvm->online_vcpus));
1401 
1402 	/*
1403 	 * Once the masterclock is enabled, always perform request in
1404 	 * order to update it.
1405 	 *
1406 	 * In order to enable masterclock, the host clocksource must be TSC
1407 	 * and the vcpus need to have matched TSCs.  When that happens,
1408 	 * perform request to enable masterclock.
1409 	 */
1410 	if (ka->use_master_clock ||
1411 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1412 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1413 
1414 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1415 			    atomic_read(&vcpu->kvm->online_vcpus),
1416 		            ka->use_master_clock, gtod->clock.vclock_mode);
1417 #endif
1418 }
1419 
1420 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1421 {
1422 	u64 curr_offset = vcpu->arch.tsc_offset;
1423 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1424 }
1425 
1426 /*
1427  * Multiply tsc by a fixed point number represented by ratio.
1428  *
1429  * The most significant 64-N bits (mult) of ratio represent the
1430  * integral part of the fixed point number; the remaining N bits
1431  * (frac) represent the fractional part, ie. ratio represents a fixed
1432  * point number (mult + frac * 2^(-N)).
1433  *
1434  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1435  */
1436 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1437 {
1438 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1439 }
1440 
1441 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1442 {
1443 	u64 _tsc = tsc;
1444 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1445 
1446 	if (ratio != kvm_default_tsc_scaling_ratio)
1447 		_tsc = __scale_tsc(ratio, tsc);
1448 
1449 	return _tsc;
1450 }
1451 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1452 
1453 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1454 {
1455 	u64 tsc;
1456 
1457 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1458 
1459 	return target_tsc - tsc;
1460 }
1461 
1462 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1463 {
1464 	return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1465 }
1466 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1467 
1468 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1469 {
1470 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1471 	vcpu->arch.tsc_offset = offset;
1472 }
1473 
1474 static inline bool kvm_check_tsc_unstable(void)
1475 {
1476 #ifdef CONFIG_X86_64
1477 	/*
1478 	 * TSC is marked unstable when we're running on Hyper-V,
1479 	 * 'TSC page' clocksource is good.
1480 	 */
1481 	if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1482 		return false;
1483 #endif
1484 	return check_tsc_unstable();
1485 }
1486 
1487 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1488 {
1489 	struct kvm *kvm = vcpu->kvm;
1490 	u64 offset, ns, elapsed;
1491 	unsigned long flags;
1492 	bool matched;
1493 	bool already_matched;
1494 	u64 data = msr->data;
1495 	bool synchronizing = false;
1496 
1497 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1498 	offset = kvm_compute_tsc_offset(vcpu, data);
1499 	ns = ktime_get_boot_ns();
1500 	elapsed = ns - kvm->arch.last_tsc_nsec;
1501 
1502 	if (vcpu->arch.virtual_tsc_khz) {
1503 		if (data == 0 && msr->host_initiated) {
1504 			/*
1505 			 * detection of vcpu initialization -- need to sync
1506 			 * with other vCPUs. This particularly helps to keep
1507 			 * kvm_clock stable after CPU hotplug
1508 			 */
1509 			synchronizing = true;
1510 		} else {
1511 			u64 tsc_exp = kvm->arch.last_tsc_write +
1512 						nsec_to_cycles(vcpu, elapsed);
1513 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1514 			/*
1515 			 * Special case: TSC write with a small delta (1 second)
1516 			 * of virtual cycle time against real time is
1517 			 * interpreted as an attempt to synchronize the CPU.
1518 			 */
1519 			synchronizing = data < tsc_exp + tsc_hz &&
1520 					data + tsc_hz > tsc_exp;
1521 		}
1522 	}
1523 
1524 	/*
1525 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1526 	 * TSC, we add elapsed time in this computation.  We could let the
1527 	 * compensation code attempt to catch up if we fall behind, but
1528 	 * it's better to try to match offsets from the beginning.
1529          */
1530 	if (synchronizing &&
1531 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1532 		if (!kvm_check_tsc_unstable()) {
1533 			offset = kvm->arch.cur_tsc_offset;
1534 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1535 		} else {
1536 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1537 			data += delta;
1538 			offset = kvm_compute_tsc_offset(vcpu, data);
1539 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1540 		}
1541 		matched = true;
1542 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1543 	} else {
1544 		/*
1545 		 * We split periods of matched TSC writes into generations.
1546 		 * For each generation, we track the original measured
1547 		 * nanosecond time, offset, and write, so if TSCs are in
1548 		 * sync, we can match exact offset, and if not, we can match
1549 		 * exact software computation in compute_guest_tsc()
1550 		 *
1551 		 * These values are tracked in kvm->arch.cur_xxx variables.
1552 		 */
1553 		kvm->arch.cur_tsc_generation++;
1554 		kvm->arch.cur_tsc_nsec = ns;
1555 		kvm->arch.cur_tsc_write = data;
1556 		kvm->arch.cur_tsc_offset = offset;
1557 		matched = false;
1558 		pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1559 			 kvm->arch.cur_tsc_generation, data);
1560 	}
1561 
1562 	/*
1563 	 * We also track th most recent recorded KHZ, write and time to
1564 	 * allow the matching interval to be extended at each write.
1565 	 */
1566 	kvm->arch.last_tsc_nsec = ns;
1567 	kvm->arch.last_tsc_write = data;
1568 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1569 
1570 	vcpu->arch.last_guest_tsc = data;
1571 
1572 	/* Keep track of which generation this VCPU has synchronized to */
1573 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1574 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1575 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1576 
1577 	if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1578 		update_ia32_tsc_adjust_msr(vcpu, offset);
1579 
1580 	kvm_vcpu_write_tsc_offset(vcpu, offset);
1581 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1582 
1583 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1584 	if (!matched) {
1585 		kvm->arch.nr_vcpus_matched_tsc = 0;
1586 	} else if (!already_matched) {
1587 		kvm->arch.nr_vcpus_matched_tsc++;
1588 	}
1589 
1590 	kvm_track_tsc_matching(vcpu);
1591 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1592 }
1593 
1594 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1595 
1596 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1597 					   s64 adjustment)
1598 {
1599 	kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1600 }
1601 
1602 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1603 {
1604 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1605 		WARN_ON(adjustment < 0);
1606 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1607 	adjust_tsc_offset_guest(vcpu, adjustment);
1608 }
1609 
1610 #ifdef CONFIG_X86_64
1611 
1612 static u64 read_tsc(void)
1613 {
1614 	u64 ret = (u64)rdtsc_ordered();
1615 	u64 last = pvclock_gtod_data.clock.cycle_last;
1616 
1617 	if (likely(ret >= last))
1618 		return ret;
1619 
1620 	/*
1621 	 * GCC likes to generate cmov here, but this branch is extremely
1622 	 * predictable (it's just a function of time and the likely is
1623 	 * very likely) and there's a data dependence, so force GCC
1624 	 * to generate a branch instead.  I don't barrier() because
1625 	 * we don't actually need a barrier, and if this function
1626 	 * ever gets inlined it will generate worse code.
1627 	 */
1628 	asm volatile ("");
1629 	return last;
1630 }
1631 
1632 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1633 {
1634 	long v;
1635 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1636 	u64 tsc_pg_val;
1637 
1638 	switch (gtod->clock.vclock_mode) {
1639 	case VCLOCK_HVCLOCK:
1640 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1641 						  tsc_timestamp);
1642 		if (tsc_pg_val != U64_MAX) {
1643 			/* TSC page valid */
1644 			*mode = VCLOCK_HVCLOCK;
1645 			v = (tsc_pg_val - gtod->clock.cycle_last) &
1646 				gtod->clock.mask;
1647 		} else {
1648 			/* TSC page invalid */
1649 			*mode = VCLOCK_NONE;
1650 		}
1651 		break;
1652 	case VCLOCK_TSC:
1653 		*mode = VCLOCK_TSC;
1654 		*tsc_timestamp = read_tsc();
1655 		v = (*tsc_timestamp - gtod->clock.cycle_last) &
1656 			gtod->clock.mask;
1657 		break;
1658 	default:
1659 		*mode = VCLOCK_NONE;
1660 	}
1661 
1662 	if (*mode == VCLOCK_NONE)
1663 		*tsc_timestamp = v = 0;
1664 
1665 	return v * gtod->clock.mult;
1666 }
1667 
1668 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1669 {
1670 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1671 	unsigned long seq;
1672 	int mode;
1673 	u64 ns;
1674 
1675 	do {
1676 		seq = read_seqcount_begin(&gtod->seq);
1677 		ns = gtod->nsec_base;
1678 		ns += vgettsc(tsc_timestamp, &mode);
1679 		ns >>= gtod->clock.shift;
1680 		ns += gtod->boot_ns;
1681 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1682 	*t = ns;
1683 
1684 	return mode;
1685 }
1686 
1687 static int do_realtime(struct timespec *ts, u64 *tsc_timestamp)
1688 {
1689 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1690 	unsigned long seq;
1691 	int mode;
1692 	u64 ns;
1693 
1694 	do {
1695 		seq = read_seqcount_begin(&gtod->seq);
1696 		ts->tv_sec = gtod->wall_time_sec;
1697 		ns = gtod->nsec_base;
1698 		ns += vgettsc(tsc_timestamp, &mode);
1699 		ns >>= gtod->clock.shift;
1700 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1701 
1702 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1703 	ts->tv_nsec = ns;
1704 
1705 	return mode;
1706 }
1707 
1708 /* returns true if host is using TSC based clocksource */
1709 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1710 {
1711 	/* checked again under seqlock below */
1712 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1713 		return false;
1714 
1715 	return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1716 						      tsc_timestamp));
1717 }
1718 
1719 /* returns true if host is using TSC based clocksource */
1720 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1721 					   u64 *tsc_timestamp)
1722 {
1723 	/* checked again under seqlock below */
1724 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1725 		return false;
1726 
1727 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1728 }
1729 #endif
1730 
1731 /*
1732  *
1733  * Assuming a stable TSC across physical CPUS, and a stable TSC
1734  * across virtual CPUs, the following condition is possible.
1735  * Each numbered line represents an event visible to both
1736  * CPUs at the next numbered event.
1737  *
1738  * "timespecX" represents host monotonic time. "tscX" represents
1739  * RDTSC value.
1740  *
1741  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1742  *
1743  * 1.  read timespec0,tsc0
1744  * 2.					| timespec1 = timespec0 + N
1745  * 					| tsc1 = tsc0 + M
1746  * 3. transition to guest		| transition to guest
1747  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1748  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1749  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1750  *
1751  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1752  *
1753  * 	- ret0 < ret1
1754  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1755  *		...
1756  *	- 0 < N - M => M < N
1757  *
1758  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1759  * always the case (the difference between two distinct xtime instances
1760  * might be smaller then the difference between corresponding TSC reads,
1761  * when updating guest vcpus pvclock areas).
1762  *
1763  * To avoid that problem, do not allow visibility of distinct
1764  * system_timestamp/tsc_timestamp values simultaneously: use a master
1765  * copy of host monotonic time values. Update that master copy
1766  * in lockstep.
1767  *
1768  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1769  *
1770  */
1771 
1772 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1773 {
1774 #ifdef CONFIG_X86_64
1775 	struct kvm_arch *ka = &kvm->arch;
1776 	int vclock_mode;
1777 	bool host_tsc_clocksource, vcpus_matched;
1778 
1779 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1780 			atomic_read(&kvm->online_vcpus));
1781 
1782 	/*
1783 	 * If the host uses TSC clock, then passthrough TSC as stable
1784 	 * to the guest.
1785 	 */
1786 	host_tsc_clocksource = kvm_get_time_and_clockread(
1787 					&ka->master_kernel_ns,
1788 					&ka->master_cycle_now);
1789 
1790 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1791 				&& !ka->backwards_tsc_observed
1792 				&& !ka->boot_vcpu_runs_old_kvmclock;
1793 
1794 	if (ka->use_master_clock)
1795 		atomic_set(&kvm_guest_has_master_clock, 1);
1796 
1797 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1798 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1799 					vcpus_matched);
1800 #endif
1801 }
1802 
1803 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1804 {
1805 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1806 }
1807 
1808 static void kvm_gen_update_masterclock(struct kvm *kvm)
1809 {
1810 #ifdef CONFIG_X86_64
1811 	int i;
1812 	struct kvm_vcpu *vcpu;
1813 	struct kvm_arch *ka = &kvm->arch;
1814 
1815 	spin_lock(&ka->pvclock_gtod_sync_lock);
1816 	kvm_make_mclock_inprogress_request(kvm);
1817 	/* no guest entries from this point */
1818 	pvclock_update_vm_gtod_copy(kvm);
1819 
1820 	kvm_for_each_vcpu(i, vcpu, kvm)
1821 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1822 
1823 	/* guest entries allowed */
1824 	kvm_for_each_vcpu(i, vcpu, kvm)
1825 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1826 
1827 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1828 #endif
1829 }
1830 
1831 u64 get_kvmclock_ns(struct kvm *kvm)
1832 {
1833 	struct kvm_arch *ka = &kvm->arch;
1834 	struct pvclock_vcpu_time_info hv_clock;
1835 	u64 ret;
1836 
1837 	spin_lock(&ka->pvclock_gtod_sync_lock);
1838 	if (!ka->use_master_clock) {
1839 		spin_unlock(&ka->pvclock_gtod_sync_lock);
1840 		return ktime_get_boot_ns() + ka->kvmclock_offset;
1841 	}
1842 
1843 	hv_clock.tsc_timestamp = ka->master_cycle_now;
1844 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1845 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1846 
1847 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
1848 	get_cpu();
1849 
1850 	if (__this_cpu_read(cpu_tsc_khz)) {
1851 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1852 				   &hv_clock.tsc_shift,
1853 				   &hv_clock.tsc_to_system_mul);
1854 		ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1855 	} else
1856 		ret = ktime_get_boot_ns() + ka->kvmclock_offset;
1857 
1858 	put_cpu();
1859 
1860 	return ret;
1861 }
1862 
1863 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1864 {
1865 	struct kvm_vcpu_arch *vcpu = &v->arch;
1866 	struct pvclock_vcpu_time_info guest_hv_clock;
1867 
1868 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1869 		&guest_hv_clock, sizeof(guest_hv_clock))))
1870 		return;
1871 
1872 	/* This VCPU is paused, but it's legal for a guest to read another
1873 	 * VCPU's kvmclock, so we really have to follow the specification where
1874 	 * it says that version is odd if data is being modified, and even after
1875 	 * it is consistent.
1876 	 *
1877 	 * Version field updates must be kept separate.  This is because
1878 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
1879 	 * writes within a string instruction are weakly ordered.  So there
1880 	 * are three writes overall.
1881 	 *
1882 	 * As a small optimization, only write the version field in the first
1883 	 * and third write.  The vcpu->pv_time cache is still valid, because the
1884 	 * version field is the first in the struct.
1885 	 */
1886 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1887 
1888 	if (guest_hv_clock.version & 1)
1889 		++guest_hv_clock.version;  /* first time write, random junk */
1890 
1891 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
1892 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1893 				&vcpu->hv_clock,
1894 				sizeof(vcpu->hv_clock.version));
1895 
1896 	smp_wmb();
1897 
1898 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1899 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1900 
1901 	if (vcpu->pvclock_set_guest_stopped_request) {
1902 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1903 		vcpu->pvclock_set_guest_stopped_request = false;
1904 	}
1905 
1906 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1907 
1908 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1909 				&vcpu->hv_clock,
1910 				sizeof(vcpu->hv_clock));
1911 
1912 	smp_wmb();
1913 
1914 	vcpu->hv_clock.version++;
1915 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1916 				&vcpu->hv_clock,
1917 				sizeof(vcpu->hv_clock.version));
1918 }
1919 
1920 static int kvm_guest_time_update(struct kvm_vcpu *v)
1921 {
1922 	unsigned long flags, tgt_tsc_khz;
1923 	struct kvm_vcpu_arch *vcpu = &v->arch;
1924 	struct kvm_arch *ka = &v->kvm->arch;
1925 	s64 kernel_ns;
1926 	u64 tsc_timestamp, host_tsc;
1927 	u8 pvclock_flags;
1928 	bool use_master_clock;
1929 
1930 	kernel_ns = 0;
1931 	host_tsc = 0;
1932 
1933 	/*
1934 	 * If the host uses TSC clock, then passthrough TSC as stable
1935 	 * to the guest.
1936 	 */
1937 	spin_lock(&ka->pvclock_gtod_sync_lock);
1938 	use_master_clock = ka->use_master_clock;
1939 	if (use_master_clock) {
1940 		host_tsc = ka->master_cycle_now;
1941 		kernel_ns = ka->master_kernel_ns;
1942 	}
1943 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1944 
1945 	/* Keep irq disabled to prevent changes to the clock */
1946 	local_irq_save(flags);
1947 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1948 	if (unlikely(tgt_tsc_khz == 0)) {
1949 		local_irq_restore(flags);
1950 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1951 		return 1;
1952 	}
1953 	if (!use_master_clock) {
1954 		host_tsc = rdtsc();
1955 		kernel_ns = ktime_get_boot_ns();
1956 	}
1957 
1958 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1959 
1960 	/*
1961 	 * We may have to catch up the TSC to match elapsed wall clock
1962 	 * time for two reasons, even if kvmclock is used.
1963 	 *   1) CPU could have been running below the maximum TSC rate
1964 	 *   2) Broken TSC compensation resets the base at each VCPU
1965 	 *      entry to avoid unknown leaps of TSC even when running
1966 	 *      again on the same CPU.  This may cause apparent elapsed
1967 	 *      time to disappear, and the guest to stand still or run
1968 	 *	very slowly.
1969 	 */
1970 	if (vcpu->tsc_catchup) {
1971 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1972 		if (tsc > tsc_timestamp) {
1973 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1974 			tsc_timestamp = tsc;
1975 		}
1976 	}
1977 
1978 	local_irq_restore(flags);
1979 
1980 	/* With all the info we got, fill in the values */
1981 
1982 	if (kvm_has_tsc_control)
1983 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1984 
1985 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1986 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1987 				   &vcpu->hv_clock.tsc_shift,
1988 				   &vcpu->hv_clock.tsc_to_system_mul);
1989 		vcpu->hw_tsc_khz = tgt_tsc_khz;
1990 	}
1991 
1992 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1993 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1994 	vcpu->last_guest_tsc = tsc_timestamp;
1995 
1996 	/* If the host uses TSC clocksource, then it is stable */
1997 	pvclock_flags = 0;
1998 	if (use_master_clock)
1999 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2000 
2001 	vcpu->hv_clock.flags = pvclock_flags;
2002 
2003 	if (vcpu->pv_time_enabled)
2004 		kvm_setup_pvclock_page(v);
2005 	if (v == kvm_get_vcpu(v->kvm, 0))
2006 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2007 	return 0;
2008 }
2009 
2010 /*
2011  * kvmclock updates which are isolated to a given vcpu, such as
2012  * vcpu->cpu migration, should not allow system_timestamp from
2013  * the rest of the vcpus to remain static. Otherwise ntp frequency
2014  * correction applies to one vcpu's system_timestamp but not
2015  * the others.
2016  *
2017  * So in those cases, request a kvmclock update for all vcpus.
2018  * We need to rate-limit these requests though, as they can
2019  * considerably slow guests that have a large number of vcpus.
2020  * The time for a remote vcpu to update its kvmclock is bound
2021  * by the delay we use to rate-limit the updates.
2022  */
2023 
2024 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2025 
2026 static void kvmclock_update_fn(struct work_struct *work)
2027 {
2028 	int i;
2029 	struct delayed_work *dwork = to_delayed_work(work);
2030 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2031 					   kvmclock_update_work);
2032 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2033 	struct kvm_vcpu *vcpu;
2034 
2035 	kvm_for_each_vcpu(i, vcpu, kvm) {
2036 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2037 		kvm_vcpu_kick(vcpu);
2038 	}
2039 }
2040 
2041 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2042 {
2043 	struct kvm *kvm = v->kvm;
2044 
2045 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2046 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2047 					KVMCLOCK_UPDATE_DELAY);
2048 }
2049 
2050 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2051 
2052 static void kvmclock_sync_fn(struct work_struct *work)
2053 {
2054 	struct delayed_work *dwork = to_delayed_work(work);
2055 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2056 					   kvmclock_sync_work);
2057 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2058 
2059 	if (!kvmclock_periodic_sync)
2060 		return;
2061 
2062 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2063 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2064 					KVMCLOCK_SYNC_PERIOD);
2065 }
2066 
2067 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2068 {
2069 	u64 mcg_cap = vcpu->arch.mcg_cap;
2070 	unsigned bank_num = mcg_cap & 0xff;
2071 	u32 msr = msr_info->index;
2072 	u64 data = msr_info->data;
2073 
2074 	switch (msr) {
2075 	case MSR_IA32_MCG_STATUS:
2076 		vcpu->arch.mcg_status = data;
2077 		break;
2078 	case MSR_IA32_MCG_CTL:
2079 		if (!(mcg_cap & MCG_CTL_P))
2080 			return 1;
2081 		if (data != 0 && data != ~(u64)0)
2082 			return -1;
2083 		vcpu->arch.mcg_ctl = data;
2084 		break;
2085 	default:
2086 		if (msr >= MSR_IA32_MC0_CTL &&
2087 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2088 			u32 offset = msr - MSR_IA32_MC0_CTL;
2089 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2090 			 * some Linux kernels though clear bit 10 in bank 4 to
2091 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2092 			 * this to avoid an uncatched #GP in the guest
2093 			 */
2094 			if ((offset & 0x3) == 0 &&
2095 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
2096 				return -1;
2097 			if (!msr_info->host_initiated &&
2098 				(offset & 0x3) == 1 && data != 0)
2099 				return -1;
2100 			vcpu->arch.mce_banks[offset] = data;
2101 			break;
2102 		}
2103 		return 1;
2104 	}
2105 	return 0;
2106 }
2107 
2108 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2109 {
2110 	struct kvm *kvm = vcpu->kvm;
2111 	int lm = is_long_mode(vcpu);
2112 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2113 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2114 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2115 		: kvm->arch.xen_hvm_config.blob_size_32;
2116 	u32 page_num = data & ~PAGE_MASK;
2117 	u64 page_addr = data & PAGE_MASK;
2118 	u8 *page;
2119 	int r;
2120 
2121 	r = -E2BIG;
2122 	if (page_num >= blob_size)
2123 		goto out;
2124 	r = -ENOMEM;
2125 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2126 	if (IS_ERR(page)) {
2127 		r = PTR_ERR(page);
2128 		goto out;
2129 	}
2130 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2131 		goto out_free;
2132 	r = 0;
2133 out_free:
2134 	kfree(page);
2135 out:
2136 	return r;
2137 }
2138 
2139 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2140 {
2141 	gpa_t gpa = data & ~0x3f;
2142 
2143 	/* Bits 3:5 are reserved, Should be zero */
2144 	if (data & 0x38)
2145 		return 1;
2146 
2147 	vcpu->arch.apf.msr_val = data;
2148 
2149 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
2150 		kvm_clear_async_pf_completion_queue(vcpu);
2151 		kvm_async_pf_hash_reset(vcpu);
2152 		return 0;
2153 	}
2154 
2155 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2156 					sizeof(u32)))
2157 		return 1;
2158 
2159 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2160 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2161 	kvm_async_pf_wakeup_all(vcpu);
2162 	return 0;
2163 }
2164 
2165 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2166 {
2167 	vcpu->arch.pv_time_enabled = false;
2168 }
2169 
2170 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2171 {
2172 	++vcpu->stat.tlb_flush;
2173 	kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2174 }
2175 
2176 static void record_steal_time(struct kvm_vcpu *vcpu)
2177 {
2178 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2179 		return;
2180 
2181 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2182 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2183 		return;
2184 
2185 	/*
2186 	 * Doing a TLB flush here, on the guest's behalf, can avoid
2187 	 * expensive IPIs.
2188 	 */
2189 	if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2190 		kvm_vcpu_flush_tlb(vcpu, false);
2191 
2192 	if (vcpu->arch.st.steal.version & 1)
2193 		vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2194 
2195 	vcpu->arch.st.steal.version += 1;
2196 
2197 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2198 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2199 
2200 	smp_wmb();
2201 
2202 	vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2203 		vcpu->arch.st.last_steal;
2204 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2205 
2206 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2207 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2208 
2209 	smp_wmb();
2210 
2211 	vcpu->arch.st.steal.version += 1;
2212 
2213 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2214 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2215 }
2216 
2217 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2218 {
2219 	bool pr = false;
2220 	u32 msr = msr_info->index;
2221 	u64 data = msr_info->data;
2222 
2223 	switch (msr) {
2224 	case MSR_AMD64_NB_CFG:
2225 	case MSR_IA32_UCODE_REV:
2226 	case MSR_IA32_UCODE_WRITE:
2227 	case MSR_VM_HSAVE_PA:
2228 	case MSR_AMD64_PATCH_LOADER:
2229 	case MSR_AMD64_BU_CFG2:
2230 	case MSR_AMD64_DC_CFG:
2231 		break;
2232 
2233 	case MSR_EFER:
2234 		return set_efer(vcpu, data);
2235 	case MSR_K7_HWCR:
2236 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2237 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2238 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2239 		data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2240 		if (data != 0) {
2241 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2242 				    data);
2243 			return 1;
2244 		}
2245 		break;
2246 	case MSR_FAM10H_MMIO_CONF_BASE:
2247 		if (data != 0) {
2248 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2249 				    "0x%llx\n", data);
2250 			return 1;
2251 		}
2252 		break;
2253 	case MSR_IA32_DEBUGCTLMSR:
2254 		if (!data) {
2255 			/* We support the non-activated case already */
2256 			break;
2257 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2258 			/* Values other than LBR and BTF are vendor-specific,
2259 			   thus reserved and should throw a #GP */
2260 			return 1;
2261 		}
2262 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2263 			    __func__, data);
2264 		break;
2265 	case 0x200 ... 0x2ff:
2266 		return kvm_mtrr_set_msr(vcpu, msr, data);
2267 	case MSR_IA32_APICBASE:
2268 		return kvm_set_apic_base(vcpu, msr_info);
2269 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2270 		return kvm_x2apic_msr_write(vcpu, msr, data);
2271 	case MSR_IA32_TSCDEADLINE:
2272 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2273 		break;
2274 	case MSR_IA32_TSC_ADJUST:
2275 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2276 			if (!msr_info->host_initiated) {
2277 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2278 				adjust_tsc_offset_guest(vcpu, adj);
2279 			}
2280 			vcpu->arch.ia32_tsc_adjust_msr = data;
2281 		}
2282 		break;
2283 	case MSR_IA32_MISC_ENABLE:
2284 		vcpu->arch.ia32_misc_enable_msr = data;
2285 		break;
2286 	case MSR_IA32_SMBASE:
2287 		if (!msr_info->host_initiated)
2288 			return 1;
2289 		vcpu->arch.smbase = data;
2290 		break;
2291 	case MSR_SMI_COUNT:
2292 		if (!msr_info->host_initiated)
2293 			return 1;
2294 		vcpu->arch.smi_count = data;
2295 		break;
2296 	case MSR_KVM_WALL_CLOCK_NEW:
2297 	case MSR_KVM_WALL_CLOCK:
2298 		vcpu->kvm->arch.wall_clock = data;
2299 		kvm_write_wall_clock(vcpu->kvm, data);
2300 		break;
2301 	case MSR_KVM_SYSTEM_TIME_NEW:
2302 	case MSR_KVM_SYSTEM_TIME: {
2303 		struct kvm_arch *ka = &vcpu->kvm->arch;
2304 
2305 		kvmclock_reset(vcpu);
2306 
2307 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2308 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2309 
2310 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2311 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2312 
2313 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2314 		}
2315 
2316 		vcpu->arch.time = data;
2317 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2318 
2319 		/* we verify if the enable bit is set... */
2320 		if (!(data & 1))
2321 			break;
2322 
2323 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2324 		     &vcpu->arch.pv_time, data & ~1ULL,
2325 		     sizeof(struct pvclock_vcpu_time_info)))
2326 			vcpu->arch.pv_time_enabled = false;
2327 		else
2328 			vcpu->arch.pv_time_enabled = true;
2329 
2330 		break;
2331 	}
2332 	case MSR_KVM_ASYNC_PF_EN:
2333 		if (kvm_pv_enable_async_pf(vcpu, data))
2334 			return 1;
2335 		break;
2336 	case MSR_KVM_STEAL_TIME:
2337 
2338 		if (unlikely(!sched_info_on()))
2339 			return 1;
2340 
2341 		if (data & KVM_STEAL_RESERVED_MASK)
2342 			return 1;
2343 
2344 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2345 						data & KVM_STEAL_VALID_BITS,
2346 						sizeof(struct kvm_steal_time)))
2347 			return 1;
2348 
2349 		vcpu->arch.st.msr_val = data;
2350 
2351 		if (!(data & KVM_MSR_ENABLED))
2352 			break;
2353 
2354 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2355 
2356 		break;
2357 	case MSR_KVM_PV_EOI_EN:
2358 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2359 			return 1;
2360 		break;
2361 
2362 	case MSR_IA32_MCG_CTL:
2363 	case MSR_IA32_MCG_STATUS:
2364 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2365 		return set_msr_mce(vcpu, msr_info);
2366 
2367 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2368 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2369 		pr = true; /* fall through */
2370 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2371 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2372 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2373 			return kvm_pmu_set_msr(vcpu, msr_info);
2374 
2375 		if (pr || data != 0)
2376 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2377 				    "0x%x data 0x%llx\n", msr, data);
2378 		break;
2379 	case MSR_K7_CLK_CTL:
2380 		/*
2381 		 * Ignore all writes to this no longer documented MSR.
2382 		 * Writes are only relevant for old K7 processors,
2383 		 * all pre-dating SVM, but a recommended workaround from
2384 		 * AMD for these chips. It is possible to specify the
2385 		 * affected processor models on the command line, hence
2386 		 * the need to ignore the workaround.
2387 		 */
2388 		break;
2389 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2390 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2391 	case HV_X64_MSR_CRASH_CTL:
2392 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2393 		return kvm_hv_set_msr_common(vcpu, msr, data,
2394 					     msr_info->host_initiated);
2395 	case MSR_IA32_BBL_CR_CTL3:
2396 		/* Drop writes to this legacy MSR -- see rdmsr
2397 		 * counterpart for further detail.
2398 		 */
2399 		if (report_ignored_msrs)
2400 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2401 				msr, data);
2402 		break;
2403 	case MSR_AMD64_OSVW_ID_LENGTH:
2404 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2405 			return 1;
2406 		vcpu->arch.osvw.length = data;
2407 		break;
2408 	case MSR_AMD64_OSVW_STATUS:
2409 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2410 			return 1;
2411 		vcpu->arch.osvw.status = data;
2412 		break;
2413 	case MSR_PLATFORM_INFO:
2414 		if (!msr_info->host_initiated ||
2415 		    data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2416 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2417 		     cpuid_fault_enabled(vcpu)))
2418 			return 1;
2419 		vcpu->arch.msr_platform_info = data;
2420 		break;
2421 	case MSR_MISC_FEATURES_ENABLES:
2422 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2423 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2424 		     !supports_cpuid_fault(vcpu)))
2425 			return 1;
2426 		vcpu->arch.msr_misc_features_enables = data;
2427 		break;
2428 	default:
2429 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2430 			return xen_hvm_config(vcpu, data);
2431 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2432 			return kvm_pmu_set_msr(vcpu, msr_info);
2433 		if (!ignore_msrs) {
2434 			vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2435 				    msr, data);
2436 			return 1;
2437 		} else {
2438 			if (report_ignored_msrs)
2439 				vcpu_unimpl(vcpu,
2440 					"ignored wrmsr: 0x%x data 0x%llx\n",
2441 					msr, data);
2442 			break;
2443 		}
2444 	}
2445 	return 0;
2446 }
2447 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2448 
2449 
2450 /*
2451  * Reads an msr value (of 'msr_index') into 'pdata'.
2452  * Returns 0 on success, non-0 otherwise.
2453  * Assumes vcpu_load() was already called.
2454  */
2455 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2456 {
2457 	return kvm_x86_ops->get_msr(vcpu, msr);
2458 }
2459 EXPORT_SYMBOL_GPL(kvm_get_msr);
2460 
2461 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2462 {
2463 	u64 data;
2464 	u64 mcg_cap = vcpu->arch.mcg_cap;
2465 	unsigned bank_num = mcg_cap & 0xff;
2466 
2467 	switch (msr) {
2468 	case MSR_IA32_P5_MC_ADDR:
2469 	case MSR_IA32_P5_MC_TYPE:
2470 		data = 0;
2471 		break;
2472 	case MSR_IA32_MCG_CAP:
2473 		data = vcpu->arch.mcg_cap;
2474 		break;
2475 	case MSR_IA32_MCG_CTL:
2476 		if (!(mcg_cap & MCG_CTL_P))
2477 			return 1;
2478 		data = vcpu->arch.mcg_ctl;
2479 		break;
2480 	case MSR_IA32_MCG_STATUS:
2481 		data = vcpu->arch.mcg_status;
2482 		break;
2483 	default:
2484 		if (msr >= MSR_IA32_MC0_CTL &&
2485 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2486 			u32 offset = msr - MSR_IA32_MC0_CTL;
2487 			data = vcpu->arch.mce_banks[offset];
2488 			break;
2489 		}
2490 		return 1;
2491 	}
2492 	*pdata = data;
2493 	return 0;
2494 }
2495 
2496 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2497 {
2498 	switch (msr_info->index) {
2499 	case MSR_IA32_PLATFORM_ID:
2500 	case MSR_IA32_EBL_CR_POWERON:
2501 	case MSR_IA32_DEBUGCTLMSR:
2502 	case MSR_IA32_LASTBRANCHFROMIP:
2503 	case MSR_IA32_LASTBRANCHTOIP:
2504 	case MSR_IA32_LASTINTFROMIP:
2505 	case MSR_IA32_LASTINTTOIP:
2506 	case MSR_K8_SYSCFG:
2507 	case MSR_K8_TSEG_ADDR:
2508 	case MSR_K8_TSEG_MASK:
2509 	case MSR_K7_HWCR:
2510 	case MSR_VM_HSAVE_PA:
2511 	case MSR_K8_INT_PENDING_MSG:
2512 	case MSR_AMD64_NB_CFG:
2513 	case MSR_FAM10H_MMIO_CONF_BASE:
2514 	case MSR_AMD64_BU_CFG2:
2515 	case MSR_IA32_PERF_CTL:
2516 	case MSR_AMD64_DC_CFG:
2517 		msr_info->data = 0;
2518 		break;
2519 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2520 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2521 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2522 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2523 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2524 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2525 		msr_info->data = 0;
2526 		break;
2527 	case MSR_IA32_UCODE_REV:
2528 		msr_info->data = 0x100000000ULL;
2529 		break;
2530 	case MSR_MTRRcap:
2531 	case 0x200 ... 0x2ff:
2532 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2533 	case 0xcd: /* fsb frequency */
2534 		msr_info->data = 3;
2535 		break;
2536 		/*
2537 		 * MSR_EBC_FREQUENCY_ID
2538 		 * Conservative value valid for even the basic CPU models.
2539 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2540 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2541 		 * and 266MHz for model 3, or 4. Set Core Clock
2542 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2543 		 * 31:24) even though these are only valid for CPU
2544 		 * models > 2, however guests may end up dividing or
2545 		 * multiplying by zero otherwise.
2546 		 */
2547 	case MSR_EBC_FREQUENCY_ID:
2548 		msr_info->data = 1 << 24;
2549 		break;
2550 	case MSR_IA32_APICBASE:
2551 		msr_info->data = kvm_get_apic_base(vcpu);
2552 		break;
2553 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2554 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2555 		break;
2556 	case MSR_IA32_TSCDEADLINE:
2557 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2558 		break;
2559 	case MSR_IA32_TSC_ADJUST:
2560 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2561 		break;
2562 	case MSR_IA32_MISC_ENABLE:
2563 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2564 		break;
2565 	case MSR_IA32_SMBASE:
2566 		if (!msr_info->host_initiated)
2567 			return 1;
2568 		msr_info->data = vcpu->arch.smbase;
2569 		break;
2570 	case MSR_SMI_COUNT:
2571 		msr_info->data = vcpu->arch.smi_count;
2572 		break;
2573 	case MSR_IA32_PERF_STATUS:
2574 		/* TSC increment by tick */
2575 		msr_info->data = 1000ULL;
2576 		/* CPU multiplier */
2577 		msr_info->data |= (((uint64_t)4ULL) << 40);
2578 		break;
2579 	case MSR_EFER:
2580 		msr_info->data = vcpu->arch.efer;
2581 		break;
2582 	case MSR_KVM_WALL_CLOCK:
2583 	case MSR_KVM_WALL_CLOCK_NEW:
2584 		msr_info->data = vcpu->kvm->arch.wall_clock;
2585 		break;
2586 	case MSR_KVM_SYSTEM_TIME:
2587 	case MSR_KVM_SYSTEM_TIME_NEW:
2588 		msr_info->data = vcpu->arch.time;
2589 		break;
2590 	case MSR_KVM_ASYNC_PF_EN:
2591 		msr_info->data = vcpu->arch.apf.msr_val;
2592 		break;
2593 	case MSR_KVM_STEAL_TIME:
2594 		msr_info->data = vcpu->arch.st.msr_val;
2595 		break;
2596 	case MSR_KVM_PV_EOI_EN:
2597 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
2598 		break;
2599 	case MSR_IA32_P5_MC_ADDR:
2600 	case MSR_IA32_P5_MC_TYPE:
2601 	case MSR_IA32_MCG_CAP:
2602 	case MSR_IA32_MCG_CTL:
2603 	case MSR_IA32_MCG_STATUS:
2604 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2605 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2606 	case MSR_K7_CLK_CTL:
2607 		/*
2608 		 * Provide expected ramp-up count for K7. All other
2609 		 * are set to zero, indicating minimum divisors for
2610 		 * every field.
2611 		 *
2612 		 * This prevents guest kernels on AMD host with CPU
2613 		 * type 6, model 8 and higher from exploding due to
2614 		 * the rdmsr failing.
2615 		 */
2616 		msr_info->data = 0x20000000;
2617 		break;
2618 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2619 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2620 	case HV_X64_MSR_CRASH_CTL:
2621 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2622 		return kvm_hv_get_msr_common(vcpu,
2623 					     msr_info->index, &msr_info->data);
2624 		break;
2625 	case MSR_IA32_BBL_CR_CTL3:
2626 		/* This legacy MSR exists but isn't fully documented in current
2627 		 * silicon.  It is however accessed by winxp in very narrow
2628 		 * scenarios where it sets bit #19, itself documented as
2629 		 * a "reserved" bit.  Best effort attempt to source coherent
2630 		 * read data here should the balance of the register be
2631 		 * interpreted by the guest:
2632 		 *
2633 		 * L2 cache control register 3: 64GB range, 256KB size,
2634 		 * enabled, latency 0x1, configured
2635 		 */
2636 		msr_info->data = 0xbe702111;
2637 		break;
2638 	case MSR_AMD64_OSVW_ID_LENGTH:
2639 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2640 			return 1;
2641 		msr_info->data = vcpu->arch.osvw.length;
2642 		break;
2643 	case MSR_AMD64_OSVW_STATUS:
2644 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2645 			return 1;
2646 		msr_info->data = vcpu->arch.osvw.status;
2647 		break;
2648 	case MSR_PLATFORM_INFO:
2649 		msr_info->data = vcpu->arch.msr_platform_info;
2650 		break;
2651 	case MSR_MISC_FEATURES_ENABLES:
2652 		msr_info->data = vcpu->arch.msr_misc_features_enables;
2653 		break;
2654 	default:
2655 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2656 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2657 		if (!ignore_msrs) {
2658 			vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2659 					       msr_info->index);
2660 			return 1;
2661 		} else {
2662 			if (report_ignored_msrs)
2663 				vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2664 					msr_info->index);
2665 			msr_info->data = 0;
2666 		}
2667 		break;
2668 	}
2669 	return 0;
2670 }
2671 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2672 
2673 /*
2674  * Read or write a bunch of msrs. All parameters are kernel addresses.
2675  *
2676  * @return number of msrs set successfully.
2677  */
2678 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2679 		    struct kvm_msr_entry *entries,
2680 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2681 				  unsigned index, u64 *data))
2682 {
2683 	int i, idx;
2684 
2685 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2686 	for (i = 0; i < msrs->nmsrs; ++i)
2687 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2688 			break;
2689 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2690 
2691 	return i;
2692 }
2693 
2694 /*
2695  * Read or write a bunch of msrs. Parameters are user addresses.
2696  *
2697  * @return number of msrs set successfully.
2698  */
2699 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2700 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2701 				unsigned index, u64 *data),
2702 		  int writeback)
2703 {
2704 	struct kvm_msrs msrs;
2705 	struct kvm_msr_entry *entries;
2706 	int r, n;
2707 	unsigned size;
2708 
2709 	r = -EFAULT;
2710 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2711 		goto out;
2712 
2713 	r = -E2BIG;
2714 	if (msrs.nmsrs >= MAX_IO_MSRS)
2715 		goto out;
2716 
2717 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2718 	entries = memdup_user(user_msrs->entries, size);
2719 	if (IS_ERR(entries)) {
2720 		r = PTR_ERR(entries);
2721 		goto out;
2722 	}
2723 
2724 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2725 	if (r < 0)
2726 		goto out_free;
2727 
2728 	r = -EFAULT;
2729 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2730 		goto out_free;
2731 
2732 	r = n;
2733 
2734 out_free:
2735 	kfree(entries);
2736 out:
2737 	return r;
2738 }
2739 
2740 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2741 {
2742 	int r;
2743 
2744 	switch (ext) {
2745 	case KVM_CAP_IRQCHIP:
2746 	case KVM_CAP_HLT:
2747 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2748 	case KVM_CAP_SET_TSS_ADDR:
2749 	case KVM_CAP_EXT_CPUID:
2750 	case KVM_CAP_EXT_EMUL_CPUID:
2751 	case KVM_CAP_CLOCKSOURCE:
2752 	case KVM_CAP_PIT:
2753 	case KVM_CAP_NOP_IO_DELAY:
2754 	case KVM_CAP_MP_STATE:
2755 	case KVM_CAP_SYNC_MMU:
2756 	case KVM_CAP_USER_NMI:
2757 	case KVM_CAP_REINJECT_CONTROL:
2758 	case KVM_CAP_IRQ_INJECT_STATUS:
2759 	case KVM_CAP_IOEVENTFD:
2760 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
2761 	case KVM_CAP_PIT2:
2762 	case KVM_CAP_PIT_STATE2:
2763 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2764 	case KVM_CAP_XEN_HVM:
2765 	case KVM_CAP_VCPU_EVENTS:
2766 	case KVM_CAP_HYPERV:
2767 	case KVM_CAP_HYPERV_VAPIC:
2768 	case KVM_CAP_HYPERV_SPIN:
2769 	case KVM_CAP_HYPERV_SYNIC:
2770 	case KVM_CAP_HYPERV_SYNIC2:
2771 	case KVM_CAP_HYPERV_VP_INDEX:
2772 	case KVM_CAP_PCI_SEGMENT:
2773 	case KVM_CAP_DEBUGREGS:
2774 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2775 	case KVM_CAP_XSAVE:
2776 	case KVM_CAP_ASYNC_PF:
2777 	case KVM_CAP_GET_TSC_KHZ:
2778 	case KVM_CAP_KVMCLOCK_CTRL:
2779 	case KVM_CAP_READONLY_MEM:
2780 	case KVM_CAP_HYPERV_TIME:
2781 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2782 	case KVM_CAP_TSC_DEADLINE_TIMER:
2783 	case KVM_CAP_ENABLE_CAP_VM:
2784 	case KVM_CAP_DISABLE_QUIRKS:
2785 	case KVM_CAP_SET_BOOT_CPU_ID:
2786  	case KVM_CAP_SPLIT_IRQCHIP:
2787 	case KVM_CAP_IMMEDIATE_EXIT:
2788 		r = 1;
2789 		break;
2790 	case KVM_CAP_ADJUST_CLOCK:
2791 		r = KVM_CLOCK_TSC_STABLE;
2792 		break;
2793 	case KVM_CAP_X86_GUEST_MWAIT:
2794 		r = kvm_mwait_in_guest();
2795 		break;
2796 	case KVM_CAP_X86_SMM:
2797 		/* SMBASE is usually relocated above 1M on modern chipsets,
2798 		 * and SMM handlers might indeed rely on 4G segment limits,
2799 		 * so do not report SMM to be available if real mode is
2800 		 * emulated via vm86 mode.  Still, do not go to great lengths
2801 		 * to avoid userspace's usage of the feature, because it is a
2802 		 * fringe case that is not enabled except via specific settings
2803 		 * of the module parameters.
2804 		 */
2805 		r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2806 		break;
2807 	case KVM_CAP_VAPIC:
2808 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2809 		break;
2810 	case KVM_CAP_NR_VCPUS:
2811 		r = KVM_SOFT_MAX_VCPUS;
2812 		break;
2813 	case KVM_CAP_MAX_VCPUS:
2814 		r = KVM_MAX_VCPUS;
2815 		break;
2816 	case KVM_CAP_NR_MEMSLOTS:
2817 		r = KVM_USER_MEM_SLOTS;
2818 		break;
2819 	case KVM_CAP_PV_MMU:	/* obsolete */
2820 		r = 0;
2821 		break;
2822 	case KVM_CAP_MCE:
2823 		r = KVM_MAX_MCE_BANKS;
2824 		break;
2825 	case KVM_CAP_XCRS:
2826 		r = boot_cpu_has(X86_FEATURE_XSAVE);
2827 		break;
2828 	case KVM_CAP_TSC_CONTROL:
2829 		r = kvm_has_tsc_control;
2830 		break;
2831 	case KVM_CAP_X2APIC_API:
2832 		r = KVM_X2APIC_API_VALID_FLAGS;
2833 		break;
2834 	default:
2835 		r = 0;
2836 		break;
2837 	}
2838 	return r;
2839 
2840 }
2841 
2842 long kvm_arch_dev_ioctl(struct file *filp,
2843 			unsigned int ioctl, unsigned long arg)
2844 {
2845 	void __user *argp = (void __user *)arg;
2846 	long r;
2847 
2848 	switch (ioctl) {
2849 	case KVM_GET_MSR_INDEX_LIST: {
2850 		struct kvm_msr_list __user *user_msr_list = argp;
2851 		struct kvm_msr_list msr_list;
2852 		unsigned n;
2853 
2854 		r = -EFAULT;
2855 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2856 			goto out;
2857 		n = msr_list.nmsrs;
2858 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2859 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2860 			goto out;
2861 		r = -E2BIG;
2862 		if (n < msr_list.nmsrs)
2863 			goto out;
2864 		r = -EFAULT;
2865 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2866 				 num_msrs_to_save * sizeof(u32)))
2867 			goto out;
2868 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2869 				 &emulated_msrs,
2870 				 num_emulated_msrs * sizeof(u32)))
2871 			goto out;
2872 		r = 0;
2873 		break;
2874 	}
2875 	case KVM_GET_SUPPORTED_CPUID:
2876 	case KVM_GET_EMULATED_CPUID: {
2877 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2878 		struct kvm_cpuid2 cpuid;
2879 
2880 		r = -EFAULT;
2881 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2882 			goto out;
2883 
2884 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2885 					    ioctl);
2886 		if (r)
2887 			goto out;
2888 
2889 		r = -EFAULT;
2890 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2891 			goto out;
2892 		r = 0;
2893 		break;
2894 	}
2895 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2896 		r = -EFAULT;
2897 		if (copy_to_user(argp, &kvm_mce_cap_supported,
2898 				 sizeof(kvm_mce_cap_supported)))
2899 			goto out;
2900 		r = 0;
2901 		break;
2902 	}
2903 	default:
2904 		r = -EINVAL;
2905 	}
2906 out:
2907 	return r;
2908 }
2909 
2910 static void wbinvd_ipi(void *garbage)
2911 {
2912 	wbinvd();
2913 }
2914 
2915 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2916 {
2917 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2918 }
2919 
2920 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2921 {
2922 	/* Address WBINVD may be executed by guest */
2923 	if (need_emulate_wbinvd(vcpu)) {
2924 		if (kvm_x86_ops->has_wbinvd_exit())
2925 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2926 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2927 			smp_call_function_single(vcpu->cpu,
2928 					wbinvd_ipi, NULL, 1);
2929 	}
2930 
2931 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2932 
2933 	/* Apply any externally detected TSC adjustments (due to suspend) */
2934 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2935 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2936 		vcpu->arch.tsc_offset_adjustment = 0;
2937 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2938 	}
2939 
2940 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
2941 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2942 				rdtsc() - vcpu->arch.last_host_tsc;
2943 		if (tsc_delta < 0)
2944 			mark_tsc_unstable("KVM discovered backwards TSC");
2945 
2946 		if (kvm_check_tsc_unstable()) {
2947 			u64 offset = kvm_compute_tsc_offset(vcpu,
2948 						vcpu->arch.last_guest_tsc);
2949 			kvm_vcpu_write_tsc_offset(vcpu, offset);
2950 			vcpu->arch.tsc_catchup = 1;
2951 		}
2952 
2953 		if (kvm_lapic_hv_timer_in_use(vcpu))
2954 			kvm_lapic_restart_hv_timer(vcpu);
2955 
2956 		/*
2957 		 * On a host with synchronized TSC, there is no need to update
2958 		 * kvmclock on vcpu->cpu migration
2959 		 */
2960 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2961 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2962 		if (vcpu->cpu != cpu)
2963 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
2964 		vcpu->cpu = cpu;
2965 	}
2966 
2967 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2968 }
2969 
2970 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
2971 {
2972 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2973 		return;
2974 
2975 	vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
2976 
2977 	kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
2978 			&vcpu->arch.st.steal.preempted,
2979 			offsetof(struct kvm_steal_time, preempted),
2980 			sizeof(vcpu->arch.st.steal.preempted));
2981 }
2982 
2983 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2984 {
2985 	int idx;
2986 
2987 	if (vcpu->preempted)
2988 		vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
2989 
2990 	/*
2991 	 * Disable page faults because we're in atomic context here.
2992 	 * kvm_write_guest_offset_cached() would call might_fault()
2993 	 * that relies on pagefault_disable() to tell if there's a
2994 	 * bug. NOTE: the write to guest memory may not go through if
2995 	 * during postcopy live migration or if there's heavy guest
2996 	 * paging.
2997 	 */
2998 	pagefault_disable();
2999 	/*
3000 	 * kvm_memslots() will be called by
3001 	 * kvm_write_guest_offset_cached() so take the srcu lock.
3002 	 */
3003 	idx = srcu_read_lock(&vcpu->kvm->srcu);
3004 	kvm_steal_time_set_preempted(vcpu);
3005 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3006 	pagefault_enable();
3007 	kvm_x86_ops->vcpu_put(vcpu);
3008 	vcpu->arch.last_host_tsc = rdtsc();
3009 	/*
3010 	 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3011 	 * on every vmexit, but if not, we might have a stale dr6 from the
3012 	 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3013 	 */
3014 	set_debugreg(0, 6);
3015 }
3016 
3017 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3018 				    struct kvm_lapic_state *s)
3019 {
3020 	if (vcpu->arch.apicv_active)
3021 		kvm_x86_ops->sync_pir_to_irr(vcpu);
3022 
3023 	return kvm_apic_get_state(vcpu, s);
3024 }
3025 
3026 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3027 				    struct kvm_lapic_state *s)
3028 {
3029 	int r;
3030 
3031 	r = kvm_apic_set_state(vcpu, s);
3032 	if (r)
3033 		return r;
3034 	update_cr8_intercept(vcpu);
3035 
3036 	return 0;
3037 }
3038 
3039 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3040 {
3041 	return (!lapic_in_kernel(vcpu) ||
3042 		kvm_apic_accept_pic_intr(vcpu));
3043 }
3044 
3045 /*
3046  * if userspace requested an interrupt window, check that the
3047  * interrupt window is open.
3048  *
3049  * No need to exit to userspace if we already have an interrupt queued.
3050  */
3051 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3052 {
3053 	return kvm_arch_interrupt_allowed(vcpu) &&
3054 		!kvm_cpu_has_interrupt(vcpu) &&
3055 		!kvm_event_needs_reinjection(vcpu) &&
3056 		kvm_cpu_accept_dm_intr(vcpu);
3057 }
3058 
3059 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3060 				    struct kvm_interrupt *irq)
3061 {
3062 	if (irq->irq >= KVM_NR_INTERRUPTS)
3063 		return -EINVAL;
3064 
3065 	if (!irqchip_in_kernel(vcpu->kvm)) {
3066 		kvm_queue_interrupt(vcpu, irq->irq, false);
3067 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3068 		return 0;
3069 	}
3070 
3071 	/*
3072 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3073 	 * fail for in-kernel 8259.
3074 	 */
3075 	if (pic_in_kernel(vcpu->kvm))
3076 		return -ENXIO;
3077 
3078 	if (vcpu->arch.pending_external_vector != -1)
3079 		return -EEXIST;
3080 
3081 	vcpu->arch.pending_external_vector = irq->irq;
3082 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3083 	return 0;
3084 }
3085 
3086 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3087 {
3088 	kvm_inject_nmi(vcpu);
3089 
3090 	return 0;
3091 }
3092 
3093 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3094 {
3095 	kvm_make_request(KVM_REQ_SMI, vcpu);
3096 
3097 	return 0;
3098 }
3099 
3100 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3101 					   struct kvm_tpr_access_ctl *tac)
3102 {
3103 	if (tac->flags)
3104 		return -EINVAL;
3105 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
3106 	return 0;
3107 }
3108 
3109 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3110 					u64 mcg_cap)
3111 {
3112 	int r;
3113 	unsigned bank_num = mcg_cap & 0xff, bank;
3114 
3115 	r = -EINVAL;
3116 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3117 		goto out;
3118 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3119 		goto out;
3120 	r = 0;
3121 	vcpu->arch.mcg_cap = mcg_cap;
3122 	/* Init IA32_MCG_CTL to all 1s */
3123 	if (mcg_cap & MCG_CTL_P)
3124 		vcpu->arch.mcg_ctl = ~(u64)0;
3125 	/* Init IA32_MCi_CTL to all 1s */
3126 	for (bank = 0; bank < bank_num; bank++)
3127 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3128 
3129 	if (kvm_x86_ops->setup_mce)
3130 		kvm_x86_ops->setup_mce(vcpu);
3131 out:
3132 	return r;
3133 }
3134 
3135 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3136 				      struct kvm_x86_mce *mce)
3137 {
3138 	u64 mcg_cap = vcpu->arch.mcg_cap;
3139 	unsigned bank_num = mcg_cap & 0xff;
3140 	u64 *banks = vcpu->arch.mce_banks;
3141 
3142 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3143 		return -EINVAL;
3144 	/*
3145 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3146 	 * reporting is disabled
3147 	 */
3148 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3149 	    vcpu->arch.mcg_ctl != ~(u64)0)
3150 		return 0;
3151 	banks += 4 * mce->bank;
3152 	/*
3153 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3154 	 * reporting is disabled for the bank
3155 	 */
3156 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3157 		return 0;
3158 	if (mce->status & MCI_STATUS_UC) {
3159 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3160 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3161 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3162 			return 0;
3163 		}
3164 		if (banks[1] & MCI_STATUS_VAL)
3165 			mce->status |= MCI_STATUS_OVER;
3166 		banks[2] = mce->addr;
3167 		banks[3] = mce->misc;
3168 		vcpu->arch.mcg_status = mce->mcg_status;
3169 		banks[1] = mce->status;
3170 		kvm_queue_exception(vcpu, MC_VECTOR);
3171 	} else if (!(banks[1] & MCI_STATUS_VAL)
3172 		   || !(banks[1] & MCI_STATUS_UC)) {
3173 		if (banks[1] & MCI_STATUS_VAL)
3174 			mce->status |= MCI_STATUS_OVER;
3175 		banks[2] = mce->addr;
3176 		banks[3] = mce->misc;
3177 		banks[1] = mce->status;
3178 	} else
3179 		banks[1] |= MCI_STATUS_OVER;
3180 	return 0;
3181 }
3182 
3183 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3184 					       struct kvm_vcpu_events *events)
3185 {
3186 	process_nmi(vcpu);
3187 	/*
3188 	 * FIXME: pass injected and pending separately.  This is only
3189 	 * needed for nested virtualization, whose state cannot be
3190 	 * migrated yet.  For now we can combine them.
3191 	 */
3192 	events->exception.injected =
3193 		(vcpu->arch.exception.pending ||
3194 		 vcpu->arch.exception.injected) &&
3195 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
3196 	events->exception.nr = vcpu->arch.exception.nr;
3197 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3198 	events->exception.pad = 0;
3199 	events->exception.error_code = vcpu->arch.exception.error_code;
3200 
3201 	events->interrupt.injected =
3202 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3203 	events->interrupt.nr = vcpu->arch.interrupt.nr;
3204 	events->interrupt.soft = 0;
3205 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3206 
3207 	events->nmi.injected = vcpu->arch.nmi_injected;
3208 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
3209 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3210 	events->nmi.pad = 0;
3211 
3212 	events->sipi_vector = 0; /* never valid when reporting to user space */
3213 
3214 	events->smi.smm = is_smm(vcpu);
3215 	events->smi.pending = vcpu->arch.smi_pending;
3216 	events->smi.smm_inside_nmi =
3217 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3218 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3219 
3220 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3221 			 | KVM_VCPUEVENT_VALID_SHADOW
3222 			 | KVM_VCPUEVENT_VALID_SMM);
3223 	memset(&events->reserved, 0, sizeof(events->reserved));
3224 }
3225 
3226 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3227 
3228 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3229 					      struct kvm_vcpu_events *events)
3230 {
3231 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3232 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3233 			      | KVM_VCPUEVENT_VALID_SHADOW
3234 			      | KVM_VCPUEVENT_VALID_SMM))
3235 		return -EINVAL;
3236 
3237 	if (events->exception.injected &&
3238 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3239 	     is_guest_mode(vcpu)))
3240 		return -EINVAL;
3241 
3242 	/* INITs are latched while in SMM */
3243 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3244 	    (events->smi.smm || events->smi.pending) &&
3245 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3246 		return -EINVAL;
3247 
3248 	process_nmi(vcpu);
3249 	vcpu->arch.exception.injected = false;
3250 	vcpu->arch.exception.pending = events->exception.injected;
3251 	vcpu->arch.exception.nr = events->exception.nr;
3252 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3253 	vcpu->arch.exception.error_code = events->exception.error_code;
3254 
3255 	vcpu->arch.interrupt.pending = events->interrupt.injected;
3256 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3257 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3258 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3259 		kvm_x86_ops->set_interrupt_shadow(vcpu,
3260 						  events->interrupt.shadow);
3261 
3262 	vcpu->arch.nmi_injected = events->nmi.injected;
3263 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3264 		vcpu->arch.nmi_pending = events->nmi.pending;
3265 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3266 
3267 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3268 	    lapic_in_kernel(vcpu))
3269 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3270 
3271 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3272 		u32 hflags = vcpu->arch.hflags;
3273 		if (events->smi.smm)
3274 			hflags |= HF_SMM_MASK;
3275 		else
3276 			hflags &= ~HF_SMM_MASK;
3277 		kvm_set_hflags(vcpu, hflags);
3278 
3279 		vcpu->arch.smi_pending = events->smi.pending;
3280 
3281 		if (events->smi.smm) {
3282 			if (events->smi.smm_inside_nmi)
3283 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3284 			else
3285 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3286 			if (lapic_in_kernel(vcpu)) {
3287 				if (events->smi.latched_init)
3288 					set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3289 				else
3290 					clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3291 			}
3292 		}
3293 	}
3294 
3295 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3296 
3297 	return 0;
3298 }
3299 
3300 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3301 					     struct kvm_debugregs *dbgregs)
3302 {
3303 	unsigned long val;
3304 
3305 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3306 	kvm_get_dr(vcpu, 6, &val);
3307 	dbgregs->dr6 = val;
3308 	dbgregs->dr7 = vcpu->arch.dr7;
3309 	dbgregs->flags = 0;
3310 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3311 }
3312 
3313 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3314 					    struct kvm_debugregs *dbgregs)
3315 {
3316 	if (dbgregs->flags)
3317 		return -EINVAL;
3318 
3319 	if (dbgregs->dr6 & ~0xffffffffull)
3320 		return -EINVAL;
3321 	if (dbgregs->dr7 & ~0xffffffffull)
3322 		return -EINVAL;
3323 
3324 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3325 	kvm_update_dr0123(vcpu);
3326 	vcpu->arch.dr6 = dbgregs->dr6;
3327 	kvm_update_dr6(vcpu);
3328 	vcpu->arch.dr7 = dbgregs->dr7;
3329 	kvm_update_dr7(vcpu);
3330 
3331 	return 0;
3332 }
3333 
3334 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3335 
3336 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3337 {
3338 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3339 	u64 xstate_bv = xsave->header.xfeatures;
3340 	u64 valid;
3341 
3342 	/*
3343 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3344 	 * leaves 0 and 1 in the loop below.
3345 	 */
3346 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3347 
3348 	/* Set XSTATE_BV */
3349 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3350 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3351 
3352 	/*
3353 	 * Copy each region from the possibly compacted offset to the
3354 	 * non-compacted offset.
3355 	 */
3356 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3357 	while (valid) {
3358 		u64 feature = valid & -valid;
3359 		int index = fls64(feature) - 1;
3360 		void *src = get_xsave_addr(xsave, feature);
3361 
3362 		if (src) {
3363 			u32 size, offset, ecx, edx;
3364 			cpuid_count(XSTATE_CPUID, index,
3365 				    &size, &offset, &ecx, &edx);
3366 			if (feature == XFEATURE_MASK_PKRU)
3367 				memcpy(dest + offset, &vcpu->arch.pkru,
3368 				       sizeof(vcpu->arch.pkru));
3369 			else
3370 				memcpy(dest + offset, src, size);
3371 
3372 		}
3373 
3374 		valid -= feature;
3375 	}
3376 }
3377 
3378 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3379 {
3380 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3381 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3382 	u64 valid;
3383 
3384 	/*
3385 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3386 	 * leaves 0 and 1 in the loop below.
3387 	 */
3388 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3389 
3390 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3391 	xsave->header.xfeatures = xstate_bv;
3392 	if (boot_cpu_has(X86_FEATURE_XSAVES))
3393 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3394 
3395 	/*
3396 	 * Copy each region from the non-compacted offset to the
3397 	 * possibly compacted offset.
3398 	 */
3399 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3400 	while (valid) {
3401 		u64 feature = valid & -valid;
3402 		int index = fls64(feature) - 1;
3403 		void *dest = get_xsave_addr(xsave, feature);
3404 
3405 		if (dest) {
3406 			u32 size, offset, ecx, edx;
3407 			cpuid_count(XSTATE_CPUID, index,
3408 				    &size, &offset, &ecx, &edx);
3409 			if (feature == XFEATURE_MASK_PKRU)
3410 				memcpy(&vcpu->arch.pkru, src + offset,
3411 				       sizeof(vcpu->arch.pkru));
3412 			else
3413 				memcpy(dest, src + offset, size);
3414 		}
3415 
3416 		valid -= feature;
3417 	}
3418 }
3419 
3420 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3421 					 struct kvm_xsave *guest_xsave)
3422 {
3423 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3424 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3425 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3426 	} else {
3427 		memcpy(guest_xsave->region,
3428 			&vcpu->arch.guest_fpu.state.fxsave,
3429 			sizeof(struct fxregs_state));
3430 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3431 			XFEATURE_MASK_FPSSE;
3432 	}
3433 }
3434 
3435 #define XSAVE_MXCSR_OFFSET 24
3436 
3437 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3438 					struct kvm_xsave *guest_xsave)
3439 {
3440 	u64 xstate_bv =
3441 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3442 	u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3443 
3444 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3445 		/*
3446 		 * Here we allow setting states that are not present in
3447 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3448 		 * with old userspace.
3449 		 */
3450 		if (xstate_bv & ~kvm_supported_xcr0() ||
3451 			mxcsr & ~mxcsr_feature_mask)
3452 			return -EINVAL;
3453 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3454 	} else {
3455 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3456 			mxcsr & ~mxcsr_feature_mask)
3457 			return -EINVAL;
3458 		memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3459 			guest_xsave->region, sizeof(struct fxregs_state));
3460 	}
3461 	return 0;
3462 }
3463 
3464 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3465 					struct kvm_xcrs *guest_xcrs)
3466 {
3467 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3468 		guest_xcrs->nr_xcrs = 0;
3469 		return;
3470 	}
3471 
3472 	guest_xcrs->nr_xcrs = 1;
3473 	guest_xcrs->flags = 0;
3474 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3475 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3476 }
3477 
3478 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3479 				       struct kvm_xcrs *guest_xcrs)
3480 {
3481 	int i, r = 0;
3482 
3483 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
3484 		return -EINVAL;
3485 
3486 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3487 		return -EINVAL;
3488 
3489 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3490 		/* Only support XCR0 currently */
3491 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3492 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3493 				guest_xcrs->xcrs[i].value);
3494 			break;
3495 		}
3496 	if (r)
3497 		r = -EINVAL;
3498 	return r;
3499 }
3500 
3501 /*
3502  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3503  * stopped by the hypervisor.  This function will be called from the host only.
3504  * EINVAL is returned when the host attempts to set the flag for a guest that
3505  * does not support pv clocks.
3506  */
3507 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3508 {
3509 	if (!vcpu->arch.pv_time_enabled)
3510 		return -EINVAL;
3511 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3512 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3513 	return 0;
3514 }
3515 
3516 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3517 				     struct kvm_enable_cap *cap)
3518 {
3519 	if (cap->flags)
3520 		return -EINVAL;
3521 
3522 	switch (cap->cap) {
3523 	case KVM_CAP_HYPERV_SYNIC2:
3524 		if (cap->args[0])
3525 			return -EINVAL;
3526 	case KVM_CAP_HYPERV_SYNIC:
3527 		if (!irqchip_in_kernel(vcpu->kvm))
3528 			return -EINVAL;
3529 		return kvm_hv_activate_synic(vcpu, cap->cap ==
3530 					     KVM_CAP_HYPERV_SYNIC2);
3531 	default:
3532 		return -EINVAL;
3533 	}
3534 }
3535 
3536 long kvm_arch_vcpu_ioctl(struct file *filp,
3537 			 unsigned int ioctl, unsigned long arg)
3538 {
3539 	struct kvm_vcpu *vcpu = filp->private_data;
3540 	void __user *argp = (void __user *)arg;
3541 	int r;
3542 	union {
3543 		struct kvm_lapic_state *lapic;
3544 		struct kvm_xsave *xsave;
3545 		struct kvm_xcrs *xcrs;
3546 		void *buffer;
3547 	} u;
3548 
3549 	vcpu_load(vcpu);
3550 
3551 	u.buffer = NULL;
3552 	switch (ioctl) {
3553 	case KVM_GET_LAPIC: {
3554 		r = -EINVAL;
3555 		if (!lapic_in_kernel(vcpu))
3556 			goto out;
3557 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3558 
3559 		r = -ENOMEM;
3560 		if (!u.lapic)
3561 			goto out;
3562 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3563 		if (r)
3564 			goto out;
3565 		r = -EFAULT;
3566 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3567 			goto out;
3568 		r = 0;
3569 		break;
3570 	}
3571 	case KVM_SET_LAPIC: {
3572 		r = -EINVAL;
3573 		if (!lapic_in_kernel(vcpu))
3574 			goto out;
3575 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3576 		if (IS_ERR(u.lapic)) {
3577 			r = PTR_ERR(u.lapic);
3578 			goto out_nofree;
3579 		}
3580 
3581 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3582 		break;
3583 	}
3584 	case KVM_INTERRUPT: {
3585 		struct kvm_interrupt irq;
3586 
3587 		r = -EFAULT;
3588 		if (copy_from_user(&irq, argp, sizeof irq))
3589 			goto out;
3590 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3591 		break;
3592 	}
3593 	case KVM_NMI: {
3594 		r = kvm_vcpu_ioctl_nmi(vcpu);
3595 		break;
3596 	}
3597 	case KVM_SMI: {
3598 		r = kvm_vcpu_ioctl_smi(vcpu);
3599 		break;
3600 	}
3601 	case KVM_SET_CPUID: {
3602 		struct kvm_cpuid __user *cpuid_arg = argp;
3603 		struct kvm_cpuid cpuid;
3604 
3605 		r = -EFAULT;
3606 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3607 			goto out;
3608 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3609 		break;
3610 	}
3611 	case KVM_SET_CPUID2: {
3612 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3613 		struct kvm_cpuid2 cpuid;
3614 
3615 		r = -EFAULT;
3616 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3617 			goto out;
3618 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3619 					      cpuid_arg->entries);
3620 		break;
3621 	}
3622 	case KVM_GET_CPUID2: {
3623 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3624 		struct kvm_cpuid2 cpuid;
3625 
3626 		r = -EFAULT;
3627 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3628 			goto out;
3629 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3630 					      cpuid_arg->entries);
3631 		if (r)
3632 			goto out;
3633 		r = -EFAULT;
3634 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3635 			goto out;
3636 		r = 0;
3637 		break;
3638 	}
3639 	case KVM_GET_MSRS:
3640 		r = msr_io(vcpu, argp, do_get_msr, 1);
3641 		break;
3642 	case KVM_SET_MSRS:
3643 		r = msr_io(vcpu, argp, do_set_msr, 0);
3644 		break;
3645 	case KVM_TPR_ACCESS_REPORTING: {
3646 		struct kvm_tpr_access_ctl tac;
3647 
3648 		r = -EFAULT;
3649 		if (copy_from_user(&tac, argp, sizeof tac))
3650 			goto out;
3651 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3652 		if (r)
3653 			goto out;
3654 		r = -EFAULT;
3655 		if (copy_to_user(argp, &tac, sizeof tac))
3656 			goto out;
3657 		r = 0;
3658 		break;
3659 	};
3660 	case KVM_SET_VAPIC_ADDR: {
3661 		struct kvm_vapic_addr va;
3662 		int idx;
3663 
3664 		r = -EINVAL;
3665 		if (!lapic_in_kernel(vcpu))
3666 			goto out;
3667 		r = -EFAULT;
3668 		if (copy_from_user(&va, argp, sizeof va))
3669 			goto out;
3670 		idx = srcu_read_lock(&vcpu->kvm->srcu);
3671 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3672 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3673 		break;
3674 	}
3675 	case KVM_X86_SETUP_MCE: {
3676 		u64 mcg_cap;
3677 
3678 		r = -EFAULT;
3679 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3680 			goto out;
3681 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3682 		break;
3683 	}
3684 	case KVM_X86_SET_MCE: {
3685 		struct kvm_x86_mce mce;
3686 
3687 		r = -EFAULT;
3688 		if (copy_from_user(&mce, argp, sizeof mce))
3689 			goto out;
3690 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3691 		break;
3692 	}
3693 	case KVM_GET_VCPU_EVENTS: {
3694 		struct kvm_vcpu_events events;
3695 
3696 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3697 
3698 		r = -EFAULT;
3699 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3700 			break;
3701 		r = 0;
3702 		break;
3703 	}
3704 	case KVM_SET_VCPU_EVENTS: {
3705 		struct kvm_vcpu_events events;
3706 
3707 		r = -EFAULT;
3708 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3709 			break;
3710 
3711 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3712 		break;
3713 	}
3714 	case KVM_GET_DEBUGREGS: {
3715 		struct kvm_debugregs dbgregs;
3716 
3717 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3718 
3719 		r = -EFAULT;
3720 		if (copy_to_user(argp, &dbgregs,
3721 				 sizeof(struct kvm_debugregs)))
3722 			break;
3723 		r = 0;
3724 		break;
3725 	}
3726 	case KVM_SET_DEBUGREGS: {
3727 		struct kvm_debugregs dbgregs;
3728 
3729 		r = -EFAULT;
3730 		if (copy_from_user(&dbgregs, argp,
3731 				   sizeof(struct kvm_debugregs)))
3732 			break;
3733 
3734 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3735 		break;
3736 	}
3737 	case KVM_GET_XSAVE: {
3738 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3739 		r = -ENOMEM;
3740 		if (!u.xsave)
3741 			break;
3742 
3743 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3744 
3745 		r = -EFAULT;
3746 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3747 			break;
3748 		r = 0;
3749 		break;
3750 	}
3751 	case KVM_SET_XSAVE: {
3752 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3753 		if (IS_ERR(u.xsave)) {
3754 			r = PTR_ERR(u.xsave);
3755 			goto out_nofree;
3756 		}
3757 
3758 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3759 		break;
3760 	}
3761 	case KVM_GET_XCRS: {
3762 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3763 		r = -ENOMEM;
3764 		if (!u.xcrs)
3765 			break;
3766 
3767 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3768 
3769 		r = -EFAULT;
3770 		if (copy_to_user(argp, u.xcrs,
3771 				 sizeof(struct kvm_xcrs)))
3772 			break;
3773 		r = 0;
3774 		break;
3775 	}
3776 	case KVM_SET_XCRS: {
3777 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3778 		if (IS_ERR(u.xcrs)) {
3779 			r = PTR_ERR(u.xcrs);
3780 			goto out_nofree;
3781 		}
3782 
3783 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3784 		break;
3785 	}
3786 	case KVM_SET_TSC_KHZ: {
3787 		u32 user_tsc_khz;
3788 
3789 		r = -EINVAL;
3790 		user_tsc_khz = (u32)arg;
3791 
3792 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3793 			goto out;
3794 
3795 		if (user_tsc_khz == 0)
3796 			user_tsc_khz = tsc_khz;
3797 
3798 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3799 			r = 0;
3800 
3801 		goto out;
3802 	}
3803 	case KVM_GET_TSC_KHZ: {
3804 		r = vcpu->arch.virtual_tsc_khz;
3805 		goto out;
3806 	}
3807 	case KVM_KVMCLOCK_CTRL: {
3808 		r = kvm_set_guest_paused(vcpu);
3809 		goto out;
3810 	}
3811 	case KVM_ENABLE_CAP: {
3812 		struct kvm_enable_cap cap;
3813 
3814 		r = -EFAULT;
3815 		if (copy_from_user(&cap, argp, sizeof(cap)))
3816 			goto out;
3817 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3818 		break;
3819 	}
3820 	default:
3821 		r = -EINVAL;
3822 	}
3823 out:
3824 	kfree(u.buffer);
3825 out_nofree:
3826 	vcpu_put(vcpu);
3827 	return r;
3828 }
3829 
3830 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3831 {
3832 	return VM_FAULT_SIGBUS;
3833 }
3834 
3835 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3836 {
3837 	int ret;
3838 
3839 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3840 		return -EINVAL;
3841 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3842 	return ret;
3843 }
3844 
3845 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3846 					      u64 ident_addr)
3847 {
3848 	kvm->arch.ept_identity_map_addr = ident_addr;
3849 	return 0;
3850 }
3851 
3852 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3853 					  u32 kvm_nr_mmu_pages)
3854 {
3855 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3856 		return -EINVAL;
3857 
3858 	mutex_lock(&kvm->slots_lock);
3859 
3860 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3861 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3862 
3863 	mutex_unlock(&kvm->slots_lock);
3864 	return 0;
3865 }
3866 
3867 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3868 {
3869 	return kvm->arch.n_max_mmu_pages;
3870 }
3871 
3872 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3873 {
3874 	struct kvm_pic *pic = kvm->arch.vpic;
3875 	int r;
3876 
3877 	r = 0;
3878 	switch (chip->chip_id) {
3879 	case KVM_IRQCHIP_PIC_MASTER:
3880 		memcpy(&chip->chip.pic, &pic->pics[0],
3881 			sizeof(struct kvm_pic_state));
3882 		break;
3883 	case KVM_IRQCHIP_PIC_SLAVE:
3884 		memcpy(&chip->chip.pic, &pic->pics[1],
3885 			sizeof(struct kvm_pic_state));
3886 		break;
3887 	case KVM_IRQCHIP_IOAPIC:
3888 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
3889 		break;
3890 	default:
3891 		r = -EINVAL;
3892 		break;
3893 	}
3894 	return r;
3895 }
3896 
3897 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3898 {
3899 	struct kvm_pic *pic = kvm->arch.vpic;
3900 	int r;
3901 
3902 	r = 0;
3903 	switch (chip->chip_id) {
3904 	case KVM_IRQCHIP_PIC_MASTER:
3905 		spin_lock(&pic->lock);
3906 		memcpy(&pic->pics[0], &chip->chip.pic,
3907 			sizeof(struct kvm_pic_state));
3908 		spin_unlock(&pic->lock);
3909 		break;
3910 	case KVM_IRQCHIP_PIC_SLAVE:
3911 		spin_lock(&pic->lock);
3912 		memcpy(&pic->pics[1], &chip->chip.pic,
3913 			sizeof(struct kvm_pic_state));
3914 		spin_unlock(&pic->lock);
3915 		break;
3916 	case KVM_IRQCHIP_IOAPIC:
3917 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
3918 		break;
3919 	default:
3920 		r = -EINVAL;
3921 		break;
3922 	}
3923 	kvm_pic_update_irq(pic);
3924 	return r;
3925 }
3926 
3927 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3928 {
3929 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3930 
3931 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3932 
3933 	mutex_lock(&kps->lock);
3934 	memcpy(ps, &kps->channels, sizeof(*ps));
3935 	mutex_unlock(&kps->lock);
3936 	return 0;
3937 }
3938 
3939 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3940 {
3941 	int i;
3942 	struct kvm_pit *pit = kvm->arch.vpit;
3943 
3944 	mutex_lock(&pit->pit_state.lock);
3945 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3946 	for (i = 0; i < 3; i++)
3947 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3948 	mutex_unlock(&pit->pit_state.lock);
3949 	return 0;
3950 }
3951 
3952 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3953 {
3954 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3955 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3956 		sizeof(ps->channels));
3957 	ps->flags = kvm->arch.vpit->pit_state.flags;
3958 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3959 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3960 	return 0;
3961 }
3962 
3963 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3964 {
3965 	int start = 0;
3966 	int i;
3967 	u32 prev_legacy, cur_legacy;
3968 	struct kvm_pit *pit = kvm->arch.vpit;
3969 
3970 	mutex_lock(&pit->pit_state.lock);
3971 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3972 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3973 	if (!prev_legacy && cur_legacy)
3974 		start = 1;
3975 	memcpy(&pit->pit_state.channels, &ps->channels,
3976 	       sizeof(pit->pit_state.channels));
3977 	pit->pit_state.flags = ps->flags;
3978 	for (i = 0; i < 3; i++)
3979 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3980 				   start && i == 0);
3981 	mutex_unlock(&pit->pit_state.lock);
3982 	return 0;
3983 }
3984 
3985 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3986 				 struct kvm_reinject_control *control)
3987 {
3988 	struct kvm_pit *pit = kvm->arch.vpit;
3989 
3990 	if (!pit)
3991 		return -ENXIO;
3992 
3993 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
3994 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3995 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3996 	 */
3997 	mutex_lock(&pit->pit_state.lock);
3998 	kvm_pit_set_reinject(pit, control->pit_reinject);
3999 	mutex_unlock(&pit->pit_state.lock);
4000 
4001 	return 0;
4002 }
4003 
4004 /**
4005  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4006  * @kvm: kvm instance
4007  * @log: slot id and address to which we copy the log
4008  *
4009  * Steps 1-4 below provide general overview of dirty page logging. See
4010  * kvm_get_dirty_log_protect() function description for additional details.
4011  *
4012  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4013  * always flush the TLB (step 4) even if previous step failed  and the dirty
4014  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4015  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4016  * writes will be marked dirty for next log read.
4017  *
4018  *   1. Take a snapshot of the bit and clear it if needed.
4019  *   2. Write protect the corresponding page.
4020  *   3. Copy the snapshot to the userspace.
4021  *   4. Flush TLB's if needed.
4022  */
4023 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4024 {
4025 	bool is_dirty = false;
4026 	int r;
4027 
4028 	mutex_lock(&kvm->slots_lock);
4029 
4030 	/*
4031 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4032 	 */
4033 	if (kvm_x86_ops->flush_log_dirty)
4034 		kvm_x86_ops->flush_log_dirty(kvm);
4035 
4036 	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
4037 
4038 	/*
4039 	 * All the TLBs can be flushed out of mmu lock, see the comments in
4040 	 * kvm_mmu_slot_remove_write_access().
4041 	 */
4042 	lockdep_assert_held(&kvm->slots_lock);
4043 	if (is_dirty)
4044 		kvm_flush_remote_tlbs(kvm);
4045 
4046 	mutex_unlock(&kvm->slots_lock);
4047 	return r;
4048 }
4049 
4050 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4051 			bool line_status)
4052 {
4053 	if (!irqchip_in_kernel(kvm))
4054 		return -ENXIO;
4055 
4056 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4057 					irq_event->irq, irq_event->level,
4058 					line_status);
4059 	return 0;
4060 }
4061 
4062 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4063 				   struct kvm_enable_cap *cap)
4064 {
4065 	int r;
4066 
4067 	if (cap->flags)
4068 		return -EINVAL;
4069 
4070 	switch (cap->cap) {
4071 	case KVM_CAP_DISABLE_QUIRKS:
4072 		kvm->arch.disabled_quirks = cap->args[0];
4073 		r = 0;
4074 		break;
4075 	case KVM_CAP_SPLIT_IRQCHIP: {
4076 		mutex_lock(&kvm->lock);
4077 		r = -EINVAL;
4078 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4079 			goto split_irqchip_unlock;
4080 		r = -EEXIST;
4081 		if (irqchip_in_kernel(kvm))
4082 			goto split_irqchip_unlock;
4083 		if (kvm->created_vcpus)
4084 			goto split_irqchip_unlock;
4085 		r = kvm_setup_empty_irq_routing(kvm);
4086 		if (r)
4087 			goto split_irqchip_unlock;
4088 		/* Pairs with irqchip_in_kernel. */
4089 		smp_wmb();
4090 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4091 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4092 		r = 0;
4093 split_irqchip_unlock:
4094 		mutex_unlock(&kvm->lock);
4095 		break;
4096 	}
4097 	case KVM_CAP_X2APIC_API:
4098 		r = -EINVAL;
4099 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4100 			break;
4101 
4102 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4103 			kvm->arch.x2apic_format = true;
4104 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4105 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
4106 
4107 		r = 0;
4108 		break;
4109 	default:
4110 		r = -EINVAL;
4111 		break;
4112 	}
4113 	return r;
4114 }
4115 
4116 long kvm_arch_vm_ioctl(struct file *filp,
4117 		       unsigned int ioctl, unsigned long arg)
4118 {
4119 	struct kvm *kvm = filp->private_data;
4120 	void __user *argp = (void __user *)arg;
4121 	int r = -ENOTTY;
4122 	/*
4123 	 * This union makes it completely explicit to gcc-3.x
4124 	 * that these two variables' stack usage should be
4125 	 * combined, not added together.
4126 	 */
4127 	union {
4128 		struct kvm_pit_state ps;
4129 		struct kvm_pit_state2 ps2;
4130 		struct kvm_pit_config pit_config;
4131 	} u;
4132 
4133 	switch (ioctl) {
4134 	case KVM_SET_TSS_ADDR:
4135 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4136 		break;
4137 	case KVM_SET_IDENTITY_MAP_ADDR: {
4138 		u64 ident_addr;
4139 
4140 		mutex_lock(&kvm->lock);
4141 		r = -EINVAL;
4142 		if (kvm->created_vcpus)
4143 			goto set_identity_unlock;
4144 		r = -EFAULT;
4145 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4146 			goto set_identity_unlock;
4147 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4148 set_identity_unlock:
4149 		mutex_unlock(&kvm->lock);
4150 		break;
4151 	}
4152 	case KVM_SET_NR_MMU_PAGES:
4153 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4154 		break;
4155 	case KVM_GET_NR_MMU_PAGES:
4156 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4157 		break;
4158 	case KVM_CREATE_IRQCHIP: {
4159 		mutex_lock(&kvm->lock);
4160 
4161 		r = -EEXIST;
4162 		if (irqchip_in_kernel(kvm))
4163 			goto create_irqchip_unlock;
4164 
4165 		r = -EINVAL;
4166 		if (kvm->created_vcpus)
4167 			goto create_irqchip_unlock;
4168 
4169 		r = kvm_pic_init(kvm);
4170 		if (r)
4171 			goto create_irqchip_unlock;
4172 
4173 		r = kvm_ioapic_init(kvm);
4174 		if (r) {
4175 			kvm_pic_destroy(kvm);
4176 			goto create_irqchip_unlock;
4177 		}
4178 
4179 		r = kvm_setup_default_irq_routing(kvm);
4180 		if (r) {
4181 			kvm_ioapic_destroy(kvm);
4182 			kvm_pic_destroy(kvm);
4183 			goto create_irqchip_unlock;
4184 		}
4185 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4186 		smp_wmb();
4187 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4188 	create_irqchip_unlock:
4189 		mutex_unlock(&kvm->lock);
4190 		break;
4191 	}
4192 	case KVM_CREATE_PIT:
4193 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4194 		goto create_pit;
4195 	case KVM_CREATE_PIT2:
4196 		r = -EFAULT;
4197 		if (copy_from_user(&u.pit_config, argp,
4198 				   sizeof(struct kvm_pit_config)))
4199 			goto out;
4200 	create_pit:
4201 		mutex_lock(&kvm->lock);
4202 		r = -EEXIST;
4203 		if (kvm->arch.vpit)
4204 			goto create_pit_unlock;
4205 		r = -ENOMEM;
4206 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4207 		if (kvm->arch.vpit)
4208 			r = 0;
4209 	create_pit_unlock:
4210 		mutex_unlock(&kvm->lock);
4211 		break;
4212 	case KVM_GET_IRQCHIP: {
4213 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4214 		struct kvm_irqchip *chip;
4215 
4216 		chip = memdup_user(argp, sizeof(*chip));
4217 		if (IS_ERR(chip)) {
4218 			r = PTR_ERR(chip);
4219 			goto out;
4220 		}
4221 
4222 		r = -ENXIO;
4223 		if (!irqchip_kernel(kvm))
4224 			goto get_irqchip_out;
4225 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4226 		if (r)
4227 			goto get_irqchip_out;
4228 		r = -EFAULT;
4229 		if (copy_to_user(argp, chip, sizeof *chip))
4230 			goto get_irqchip_out;
4231 		r = 0;
4232 	get_irqchip_out:
4233 		kfree(chip);
4234 		break;
4235 	}
4236 	case KVM_SET_IRQCHIP: {
4237 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4238 		struct kvm_irqchip *chip;
4239 
4240 		chip = memdup_user(argp, sizeof(*chip));
4241 		if (IS_ERR(chip)) {
4242 			r = PTR_ERR(chip);
4243 			goto out;
4244 		}
4245 
4246 		r = -ENXIO;
4247 		if (!irqchip_kernel(kvm))
4248 			goto set_irqchip_out;
4249 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4250 		if (r)
4251 			goto set_irqchip_out;
4252 		r = 0;
4253 	set_irqchip_out:
4254 		kfree(chip);
4255 		break;
4256 	}
4257 	case KVM_GET_PIT: {
4258 		r = -EFAULT;
4259 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4260 			goto out;
4261 		r = -ENXIO;
4262 		if (!kvm->arch.vpit)
4263 			goto out;
4264 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4265 		if (r)
4266 			goto out;
4267 		r = -EFAULT;
4268 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4269 			goto out;
4270 		r = 0;
4271 		break;
4272 	}
4273 	case KVM_SET_PIT: {
4274 		r = -EFAULT;
4275 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
4276 			goto out;
4277 		r = -ENXIO;
4278 		if (!kvm->arch.vpit)
4279 			goto out;
4280 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4281 		break;
4282 	}
4283 	case KVM_GET_PIT2: {
4284 		r = -ENXIO;
4285 		if (!kvm->arch.vpit)
4286 			goto out;
4287 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4288 		if (r)
4289 			goto out;
4290 		r = -EFAULT;
4291 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4292 			goto out;
4293 		r = 0;
4294 		break;
4295 	}
4296 	case KVM_SET_PIT2: {
4297 		r = -EFAULT;
4298 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4299 			goto out;
4300 		r = -ENXIO;
4301 		if (!kvm->arch.vpit)
4302 			goto out;
4303 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4304 		break;
4305 	}
4306 	case KVM_REINJECT_CONTROL: {
4307 		struct kvm_reinject_control control;
4308 		r =  -EFAULT;
4309 		if (copy_from_user(&control, argp, sizeof(control)))
4310 			goto out;
4311 		r = kvm_vm_ioctl_reinject(kvm, &control);
4312 		break;
4313 	}
4314 	case KVM_SET_BOOT_CPU_ID:
4315 		r = 0;
4316 		mutex_lock(&kvm->lock);
4317 		if (kvm->created_vcpus)
4318 			r = -EBUSY;
4319 		else
4320 			kvm->arch.bsp_vcpu_id = arg;
4321 		mutex_unlock(&kvm->lock);
4322 		break;
4323 	case KVM_XEN_HVM_CONFIG: {
4324 		struct kvm_xen_hvm_config xhc;
4325 		r = -EFAULT;
4326 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
4327 			goto out;
4328 		r = -EINVAL;
4329 		if (xhc.flags)
4330 			goto out;
4331 		memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4332 		r = 0;
4333 		break;
4334 	}
4335 	case KVM_SET_CLOCK: {
4336 		struct kvm_clock_data user_ns;
4337 		u64 now_ns;
4338 
4339 		r = -EFAULT;
4340 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4341 			goto out;
4342 
4343 		r = -EINVAL;
4344 		if (user_ns.flags)
4345 			goto out;
4346 
4347 		r = 0;
4348 		/*
4349 		 * TODO: userspace has to take care of races with VCPU_RUN, so
4350 		 * kvm_gen_update_masterclock() can be cut down to locked
4351 		 * pvclock_update_vm_gtod_copy().
4352 		 */
4353 		kvm_gen_update_masterclock(kvm);
4354 		now_ns = get_kvmclock_ns(kvm);
4355 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4356 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4357 		break;
4358 	}
4359 	case KVM_GET_CLOCK: {
4360 		struct kvm_clock_data user_ns;
4361 		u64 now_ns;
4362 
4363 		now_ns = get_kvmclock_ns(kvm);
4364 		user_ns.clock = now_ns;
4365 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4366 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4367 
4368 		r = -EFAULT;
4369 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4370 			goto out;
4371 		r = 0;
4372 		break;
4373 	}
4374 	case KVM_ENABLE_CAP: {
4375 		struct kvm_enable_cap cap;
4376 
4377 		r = -EFAULT;
4378 		if (copy_from_user(&cap, argp, sizeof(cap)))
4379 			goto out;
4380 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4381 		break;
4382 	}
4383 	case KVM_MEMORY_ENCRYPT_OP: {
4384 		r = -ENOTTY;
4385 		if (kvm_x86_ops->mem_enc_op)
4386 			r = kvm_x86_ops->mem_enc_op(kvm, argp);
4387 		break;
4388 	}
4389 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
4390 		struct kvm_enc_region region;
4391 
4392 		r = -EFAULT;
4393 		if (copy_from_user(&region, argp, sizeof(region)))
4394 			goto out;
4395 
4396 		r = -ENOTTY;
4397 		if (kvm_x86_ops->mem_enc_reg_region)
4398 			r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
4399 		break;
4400 	}
4401 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4402 		struct kvm_enc_region region;
4403 
4404 		r = -EFAULT;
4405 		if (copy_from_user(&region, argp, sizeof(region)))
4406 			goto out;
4407 
4408 		r = -ENOTTY;
4409 		if (kvm_x86_ops->mem_enc_unreg_region)
4410 			r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
4411 		break;
4412 	}
4413 	default:
4414 		r = -ENOTTY;
4415 	}
4416 out:
4417 	return r;
4418 }
4419 
4420 static void kvm_init_msr_list(void)
4421 {
4422 	u32 dummy[2];
4423 	unsigned i, j;
4424 
4425 	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4426 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4427 			continue;
4428 
4429 		/*
4430 		 * Even MSRs that are valid in the host may not be exposed
4431 		 * to the guests in some cases.
4432 		 */
4433 		switch (msrs_to_save[i]) {
4434 		case MSR_IA32_BNDCFGS:
4435 			if (!kvm_x86_ops->mpx_supported())
4436 				continue;
4437 			break;
4438 		case MSR_TSC_AUX:
4439 			if (!kvm_x86_ops->rdtscp_supported())
4440 				continue;
4441 			break;
4442 		default:
4443 			break;
4444 		}
4445 
4446 		if (j < i)
4447 			msrs_to_save[j] = msrs_to_save[i];
4448 		j++;
4449 	}
4450 	num_msrs_to_save = j;
4451 
4452 	for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4453 		switch (emulated_msrs[i]) {
4454 		case MSR_IA32_SMBASE:
4455 			if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4456 				continue;
4457 			break;
4458 		default:
4459 			break;
4460 		}
4461 
4462 		if (j < i)
4463 			emulated_msrs[j] = emulated_msrs[i];
4464 		j++;
4465 	}
4466 	num_emulated_msrs = j;
4467 }
4468 
4469 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4470 			   const void *v)
4471 {
4472 	int handled = 0;
4473 	int n;
4474 
4475 	do {
4476 		n = min(len, 8);
4477 		if (!(lapic_in_kernel(vcpu) &&
4478 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4479 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4480 			break;
4481 		handled += n;
4482 		addr += n;
4483 		len -= n;
4484 		v += n;
4485 	} while (len);
4486 
4487 	return handled;
4488 }
4489 
4490 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4491 {
4492 	int handled = 0;
4493 	int n;
4494 
4495 	do {
4496 		n = min(len, 8);
4497 		if (!(lapic_in_kernel(vcpu) &&
4498 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4499 					 addr, n, v))
4500 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4501 			break;
4502 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4503 		handled += n;
4504 		addr += n;
4505 		len -= n;
4506 		v += n;
4507 	} while (len);
4508 
4509 	return handled;
4510 }
4511 
4512 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4513 			struct kvm_segment *var, int seg)
4514 {
4515 	kvm_x86_ops->set_segment(vcpu, var, seg);
4516 }
4517 
4518 void kvm_get_segment(struct kvm_vcpu *vcpu,
4519 		     struct kvm_segment *var, int seg)
4520 {
4521 	kvm_x86_ops->get_segment(vcpu, var, seg);
4522 }
4523 
4524 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4525 			   struct x86_exception *exception)
4526 {
4527 	gpa_t t_gpa;
4528 
4529 	BUG_ON(!mmu_is_nested(vcpu));
4530 
4531 	/* NPT walks are always user-walks */
4532 	access |= PFERR_USER_MASK;
4533 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4534 
4535 	return t_gpa;
4536 }
4537 
4538 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4539 			      struct x86_exception *exception)
4540 {
4541 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4542 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4543 }
4544 
4545  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4546 				struct x86_exception *exception)
4547 {
4548 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4549 	access |= PFERR_FETCH_MASK;
4550 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4551 }
4552 
4553 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4554 			       struct x86_exception *exception)
4555 {
4556 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4557 	access |= PFERR_WRITE_MASK;
4558 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4559 }
4560 
4561 /* uses this to access any guest's mapped memory without checking CPL */
4562 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4563 				struct x86_exception *exception)
4564 {
4565 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4566 }
4567 
4568 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4569 				      struct kvm_vcpu *vcpu, u32 access,
4570 				      struct x86_exception *exception)
4571 {
4572 	void *data = val;
4573 	int r = X86EMUL_CONTINUE;
4574 
4575 	while (bytes) {
4576 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4577 							    exception);
4578 		unsigned offset = addr & (PAGE_SIZE-1);
4579 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4580 		int ret;
4581 
4582 		if (gpa == UNMAPPED_GVA)
4583 			return X86EMUL_PROPAGATE_FAULT;
4584 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4585 					       offset, toread);
4586 		if (ret < 0) {
4587 			r = X86EMUL_IO_NEEDED;
4588 			goto out;
4589 		}
4590 
4591 		bytes -= toread;
4592 		data += toread;
4593 		addr += toread;
4594 	}
4595 out:
4596 	return r;
4597 }
4598 
4599 /* used for instruction fetching */
4600 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4601 				gva_t addr, void *val, unsigned int bytes,
4602 				struct x86_exception *exception)
4603 {
4604 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4605 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4606 	unsigned offset;
4607 	int ret;
4608 
4609 	/* Inline kvm_read_guest_virt_helper for speed.  */
4610 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4611 						    exception);
4612 	if (unlikely(gpa == UNMAPPED_GVA))
4613 		return X86EMUL_PROPAGATE_FAULT;
4614 
4615 	offset = addr & (PAGE_SIZE-1);
4616 	if (WARN_ON(offset + bytes > PAGE_SIZE))
4617 		bytes = (unsigned)PAGE_SIZE - offset;
4618 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4619 				       offset, bytes);
4620 	if (unlikely(ret < 0))
4621 		return X86EMUL_IO_NEEDED;
4622 
4623 	return X86EMUL_CONTINUE;
4624 }
4625 
4626 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4627 			       gva_t addr, void *val, unsigned int bytes,
4628 			       struct x86_exception *exception)
4629 {
4630 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4631 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4632 
4633 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4634 					  exception);
4635 }
4636 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4637 
4638 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4639 				      gva_t addr, void *val, unsigned int bytes,
4640 				      struct x86_exception *exception)
4641 {
4642 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4643 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4644 }
4645 
4646 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4647 		unsigned long addr, void *val, unsigned int bytes)
4648 {
4649 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4650 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4651 
4652 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4653 }
4654 
4655 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4656 				       gva_t addr, void *val,
4657 				       unsigned int bytes,
4658 				       struct x86_exception *exception)
4659 {
4660 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4661 	void *data = val;
4662 	int r = X86EMUL_CONTINUE;
4663 
4664 	while (bytes) {
4665 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4666 							     PFERR_WRITE_MASK,
4667 							     exception);
4668 		unsigned offset = addr & (PAGE_SIZE-1);
4669 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4670 		int ret;
4671 
4672 		if (gpa == UNMAPPED_GVA)
4673 			return X86EMUL_PROPAGATE_FAULT;
4674 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4675 		if (ret < 0) {
4676 			r = X86EMUL_IO_NEEDED;
4677 			goto out;
4678 		}
4679 
4680 		bytes -= towrite;
4681 		data += towrite;
4682 		addr += towrite;
4683 	}
4684 out:
4685 	return r;
4686 }
4687 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4688 
4689 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4690 			    gpa_t gpa, bool write)
4691 {
4692 	/* For APIC access vmexit */
4693 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4694 		return 1;
4695 
4696 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4697 		trace_vcpu_match_mmio(gva, gpa, write, true);
4698 		return 1;
4699 	}
4700 
4701 	return 0;
4702 }
4703 
4704 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4705 				gpa_t *gpa, struct x86_exception *exception,
4706 				bool write)
4707 {
4708 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4709 		| (write ? PFERR_WRITE_MASK : 0);
4710 
4711 	/*
4712 	 * currently PKRU is only applied to ept enabled guest so
4713 	 * there is no pkey in EPT page table for L1 guest or EPT
4714 	 * shadow page table for L2 guest.
4715 	 */
4716 	if (vcpu_match_mmio_gva(vcpu, gva)
4717 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4718 				 vcpu->arch.access, 0, access)) {
4719 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4720 					(gva & (PAGE_SIZE - 1));
4721 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4722 		return 1;
4723 	}
4724 
4725 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4726 
4727 	if (*gpa == UNMAPPED_GVA)
4728 		return -1;
4729 
4730 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4731 }
4732 
4733 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4734 			const void *val, int bytes)
4735 {
4736 	int ret;
4737 
4738 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4739 	if (ret < 0)
4740 		return 0;
4741 	kvm_page_track_write(vcpu, gpa, val, bytes);
4742 	return 1;
4743 }
4744 
4745 struct read_write_emulator_ops {
4746 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4747 				  int bytes);
4748 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4749 				  void *val, int bytes);
4750 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4751 			       int bytes, void *val);
4752 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4753 				    void *val, int bytes);
4754 	bool write;
4755 };
4756 
4757 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4758 {
4759 	if (vcpu->mmio_read_completed) {
4760 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4761 			       vcpu->mmio_fragments[0].gpa, val);
4762 		vcpu->mmio_read_completed = 0;
4763 		return 1;
4764 	}
4765 
4766 	return 0;
4767 }
4768 
4769 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4770 			void *val, int bytes)
4771 {
4772 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4773 }
4774 
4775 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4776 			 void *val, int bytes)
4777 {
4778 	return emulator_write_phys(vcpu, gpa, val, bytes);
4779 }
4780 
4781 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4782 {
4783 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
4784 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4785 }
4786 
4787 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4788 			  void *val, int bytes)
4789 {
4790 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
4791 	return X86EMUL_IO_NEEDED;
4792 }
4793 
4794 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4795 			   void *val, int bytes)
4796 {
4797 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4798 
4799 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4800 	return X86EMUL_CONTINUE;
4801 }
4802 
4803 static const struct read_write_emulator_ops read_emultor = {
4804 	.read_write_prepare = read_prepare,
4805 	.read_write_emulate = read_emulate,
4806 	.read_write_mmio = vcpu_mmio_read,
4807 	.read_write_exit_mmio = read_exit_mmio,
4808 };
4809 
4810 static const struct read_write_emulator_ops write_emultor = {
4811 	.read_write_emulate = write_emulate,
4812 	.read_write_mmio = write_mmio,
4813 	.read_write_exit_mmio = write_exit_mmio,
4814 	.write = true,
4815 };
4816 
4817 static int emulator_read_write_onepage(unsigned long addr, void *val,
4818 				       unsigned int bytes,
4819 				       struct x86_exception *exception,
4820 				       struct kvm_vcpu *vcpu,
4821 				       const struct read_write_emulator_ops *ops)
4822 {
4823 	gpa_t gpa;
4824 	int handled, ret;
4825 	bool write = ops->write;
4826 	struct kvm_mmio_fragment *frag;
4827 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4828 
4829 	/*
4830 	 * If the exit was due to a NPF we may already have a GPA.
4831 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
4832 	 * Note, this cannot be used on string operations since string
4833 	 * operation using rep will only have the initial GPA from the NPF
4834 	 * occurred.
4835 	 */
4836 	if (vcpu->arch.gpa_available &&
4837 	    emulator_can_use_gpa(ctxt) &&
4838 	    (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
4839 		gpa = vcpu->arch.gpa_val;
4840 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
4841 	} else {
4842 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4843 		if (ret < 0)
4844 			return X86EMUL_PROPAGATE_FAULT;
4845 	}
4846 
4847 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
4848 		return X86EMUL_CONTINUE;
4849 
4850 	/*
4851 	 * Is this MMIO handled locally?
4852 	 */
4853 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4854 	if (handled == bytes)
4855 		return X86EMUL_CONTINUE;
4856 
4857 	gpa += handled;
4858 	bytes -= handled;
4859 	val += handled;
4860 
4861 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4862 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4863 	frag->gpa = gpa;
4864 	frag->data = val;
4865 	frag->len = bytes;
4866 	return X86EMUL_CONTINUE;
4867 }
4868 
4869 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4870 			unsigned long addr,
4871 			void *val, unsigned int bytes,
4872 			struct x86_exception *exception,
4873 			const struct read_write_emulator_ops *ops)
4874 {
4875 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4876 	gpa_t gpa;
4877 	int rc;
4878 
4879 	if (ops->read_write_prepare &&
4880 		  ops->read_write_prepare(vcpu, val, bytes))
4881 		return X86EMUL_CONTINUE;
4882 
4883 	vcpu->mmio_nr_fragments = 0;
4884 
4885 	/* Crossing a page boundary? */
4886 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4887 		int now;
4888 
4889 		now = -addr & ~PAGE_MASK;
4890 		rc = emulator_read_write_onepage(addr, val, now, exception,
4891 						 vcpu, ops);
4892 
4893 		if (rc != X86EMUL_CONTINUE)
4894 			return rc;
4895 		addr += now;
4896 		if (ctxt->mode != X86EMUL_MODE_PROT64)
4897 			addr = (u32)addr;
4898 		val += now;
4899 		bytes -= now;
4900 	}
4901 
4902 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
4903 					 vcpu, ops);
4904 	if (rc != X86EMUL_CONTINUE)
4905 		return rc;
4906 
4907 	if (!vcpu->mmio_nr_fragments)
4908 		return rc;
4909 
4910 	gpa = vcpu->mmio_fragments[0].gpa;
4911 
4912 	vcpu->mmio_needed = 1;
4913 	vcpu->mmio_cur_fragment = 0;
4914 
4915 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4916 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4917 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
4918 	vcpu->run->mmio.phys_addr = gpa;
4919 
4920 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4921 }
4922 
4923 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4924 				  unsigned long addr,
4925 				  void *val,
4926 				  unsigned int bytes,
4927 				  struct x86_exception *exception)
4928 {
4929 	return emulator_read_write(ctxt, addr, val, bytes,
4930 				   exception, &read_emultor);
4931 }
4932 
4933 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4934 			    unsigned long addr,
4935 			    const void *val,
4936 			    unsigned int bytes,
4937 			    struct x86_exception *exception)
4938 {
4939 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
4940 				   exception, &write_emultor);
4941 }
4942 
4943 #define CMPXCHG_TYPE(t, ptr, old, new) \
4944 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4945 
4946 #ifdef CONFIG_X86_64
4947 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4948 #else
4949 #  define CMPXCHG64(ptr, old, new) \
4950 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4951 #endif
4952 
4953 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4954 				     unsigned long addr,
4955 				     const void *old,
4956 				     const void *new,
4957 				     unsigned int bytes,
4958 				     struct x86_exception *exception)
4959 {
4960 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4961 	gpa_t gpa;
4962 	struct page *page;
4963 	char *kaddr;
4964 	bool exchanged;
4965 
4966 	/* guests cmpxchg8b have to be emulated atomically */
4967 	if (bytes > 8 || (bytes & (bytes - 1)))
4968 		goto emul_write;
4969 
4970 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4971 
4972 	if (gpa == UNMAPPED_GVA ||
4973 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4974 		goto emul_write;
4975 
4976 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4977 		goto emul_write;
4978 
4979 	page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4980 	if (is_error_page(page))
4981 		goto emul_write;
4982 
4983 	kaddr = kmap_atomic(page);
4984 	kaddr += offset_in_page(gpa);
4985 	switch (bytes) {
4986 	case 1:
4987 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4988 		break;
4989 	case 2:
4990 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4991 		break;
4992 	case 4:
4993 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4994 		break;
4995 	case 8:
4996 		exchanged = CMPXCHG64(kaddr, old, new);
4997 		break;
4998 	default:
4999 		BUG();
5000 	}
5001 	kunmap_atomic(kaddr);
5002 	kvm_release_page_dirty(page);
5003 
5004 	if (!exchanged)
5005 		return X86EMUL_CMPXCHG_FAILED;
5006 
5007 	kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5008 	kvm_page_track_write(vcpu, gpa, new, bytes);
5009 
5010 	return X86EMUL_CONTINUE;
5011 
5012 emul_write:
5013 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5014 
5015 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5016 }
5017 
5018 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5019 {
5020 	int r = 0, i;
5021 
5022 	for (i = 0; i < vcpu->arch.pio.count; i++) {
5023 		if (vcpu->arch.pio.in)
5024 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5025 					    vcpu->arch.pio.size, pd);
5026 		else
5027 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5028 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
5029 					     pd);
5030 		if (r)
5031 			break;
5032 		pd += vcpu->arch.pio.size;
5033 	}
5034 	return r;
5035 }
5036 
5037 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5038 			       unsigned short port, void *val,
5039 			       unsigned int count, bool in)
5040 {
5041 	vcpu->arch.pio.port = port;
5042 	vcpu->arch.pio.in = in;
5043 	vcpu->arch.pio.count  = count;
5044 	vcpu->arch.pio.size = size;
5045 
5046 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5047 		vcpu->arch.pio.count = 0;
5048 		return 1;
5049 	}
5050 
5051 	vcpu->run->exit_reason = KVM_EXIT_IO;
5052 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5053 	vcpu->run->io.size = size;
5054 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5055 	vcpu->run->io.count = count;
5056 	vcpu->run->io.port = port;
5057 
5058 	return 0;
5059 }
5060 
5061 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5062 				    int size, unsigned short port, void *val,
5063 				    unsigned int count)
5064 {
5065 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5066 	int ret;
5067 
5068 	if (vcpu->arch.pio.count)
5069 		goto data_avail;
5070 
5071 	memset(vcpu->arch.pio_data, 0, size * count);
5072 
5073 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5074 	if (ret) {
5075 data_avail:
5076 		memcpy(val, vcpu->arch.pio_data, size * count);
5077 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5078 		vcpu->arch.pio.count = 0;
5079 		return 1;
5080 	}
5081 
5082 	return 0;
5083 }
5084 
5085 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5086 				     int size, unsigned short port,
5087 				     const void *val, unsigned int count)
5088 {
5089 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5090 
5091 	memcpy(vcpu->arch.pio_data, val, size * count);
5092 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5093 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5094 }
5095 
5096 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5097 {
5098 	return kvm_x86_ops->get_segment_base(vcpu, seg);
5099 }
5100 
5101 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5102 {
5103 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5104 }
5105 
5106 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5107 {
5108 	if (!need_emulate_wbinvd(vcpu))
5109 		return X86EMUL_CONTINUE;
5110 
5111 	if (kvm_x86_ops->has_wbinvd_exit()) {
5112 		int cpu = get_cpu();
5113 
5114 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5115 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5116 				wbinvd_ipi, NULL, 1);
5117 		put_cpu();
5118 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5119 	} else
5120 		wbinvd();
5121 	return X86EMUL_CONTINUE;
5122 }
5123 
5124 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5125 {
5126 	kvm_emulate_wbinvd_noskip(vcpu);
5127 	return kvm_skip_emulated_instruction(vcpu);
5128 }
5129 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5130 
5131 
5132 
5133 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5134 {
5135 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5136 }
5137 
5138 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5139 			   unsigned long *dest)
5140 {
5141 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5142 }
5143 
5144 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5145 			   unsigned long value)
5146 {
5147 
5148 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5149 }
5150 
5151 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5152 {
5153 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5154 }
5155 
5156 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5157 {
5158 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5159 	unsigned long value;
5160 
5161 	switch (cr) {
5162 	case 0:
5163 		value = kvm_read_cr0(vcpu);
5164 		break;
5165 	case 2:
5166 		value = vcpu->arch.cr2;
5167 		break;
5168 	case 3:
5169 		value = kvm_read_cr3(vcpu);
5170 		break;
5171 	case 4:
5172 		value = kvm_read_cr4(vcpu);
5173 		break;
5174 	case 8:
5175 		value = kvm_get_cr8(vcpu);
5176 		break;
5177 	default:
5178 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
5179 		return 0;
5180 	}
5181 
5182 	return value;
5183 }
5184 
5185 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5186 {
5187 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5188 	int res = 0;
5189 
5190 	switch (cr) {
5191 	case 0:
5192 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5193 		break;
5194 	case 2:
5195 		vcpu->arch.cr2 = val;
5196 		break;
5197 	case 3:
5198 		res = kvm_set_cr3(vcpu, val);
5199 		break;
5200 	case 4:
5201 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5202 		break;
5203 	case 8:
5204 		res = kvm_set_cr8(vcpu, val);
5205 		break;
5206 	default:
5207 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
5208 		res = -1;
5209 	}
5210 
5211 	return res;
5212 }
5213 
5214 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5215 {
5216 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5217 }
5218 
5219 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5220 {
5221 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5222 }
5223 
5224 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5225 {
5226 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5227 }
5228 
5229 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5230 {
5231 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5232 }
5233 
5234 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5235 {
5236 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5237 }
5238 
5239 static unsigned long emulator_get_cached_segment_base(
5240 	struct x86_emulate_ctxt *ctxt, int seg)
5241 {
5242 	return get_segment_base(emul_to_vcpu(ctxt), seg);
5243 }
5244 
5245 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5246 				 struct desc_struct *desc, u32 *base3,
5247 				 int seg)
5248 {
5249 	struct kvm_segment var;
5250 
5251 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5252 	*selector = var.selector;
5253 
5254 	if (var.unusable) {
5255 		memset(desc, 0, sizeof(*desc));
5256 		if (base3)
5257 			*base3 = 0;
5258 		return false;
5259 	}
5260 
5261 	if (var.g)
5262 		var.limit >>= 12;
5263 	set_desc_limit(desc, var.limit);
5264 	set_desc_base(desc, (unsigned long)var.base);
5265 #ifdef CONFIG_X86_64
5266 	if (base3)
5267 		*base3 = var.base >> 32;
5268 #endif
5269 	desc->type = var.type;
5270 	desc->s = var.s;
5271 	desc->dpl = var.dpl;
5272 	desc->p = var.present;
5273 	desc->avl = var.avl;
5274 	desc->l = var.l;
5275 	desc->d = var.db;
5276 	desc->g = var.g;
5277 
5278 	return true;
5279 }
5280 
5281 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5282 				 struct desc_struct *desc, u32 base3,
5283 				 int seg)
5284 {
5285 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5286 	struct kvm_segment var;
5287 
5288 	var.selector = selector;
5289 	var.base = get_desc_base(desc);
5290 #ifdef CONFIG_X86_64
5291 	var.base |= ((u64)base3) << 32;
5292 #endif
5293 	var.limit = get_desc_limit(desc);
5294 	if (desc->g)
5295 		var.limit = (var.limit << 12) | 0xfff;
5296 	var.type = desc->type;
5297 	var.dpl = desc->dpl;
5298 	var.db = desc->d;
5299 	var.s = desc->s;
5300 	var.l = desc->l;
5301 	var.g = desc->g;
5302 	var.avl = desc->avl;
5303 	var.present = desc->p;
5304 	var.unusable = !var.present;
5305 	var.padding = 0;
5306 
5307 	kvm_set_segment(vcpu, &var, seg);
5308 	return;
5309 }
5310 
5311 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5312 			    u32 msr_index, u64 *pdata)
5313 {
5314 	struct msr_data msr;
5315 	int r;
5316 
5317 	msr.index = msr_index;
5318 	msr.host_initiated = false;
5319 	r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5320 	if (r)
5321 		return r;
5322 
5323 	*pdata = msr.data;
5324 	return 0;
5325 }
5326 
5327 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5328 			    u32 msr_index, u64 data)
5329 {
5330 	struct msr_data msr;
5331 
5332 	msr.data = data;
5333 	msr.index = msr_index;
5334 	msr.host_initiated = false;
5335 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5336 }
5337 
5338 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5339 {
5340 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5341 
5342 	return vcpu->arch.smbase;
5343 }
5344 
5345 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5346 {
5347 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5348 
5349 	vcpu->arch.smbase = smbase;
5350 }
5351 
5352 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5353 			      u32 pmc)
5354 {
5355 	return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5356 }
5357 
5358 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5359 			     u32 pmc, u64 *pdata)
5360 {
5361 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5362 }
5363 
5364 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5365 {
5366 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
5367 }
5368 
5369 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5370 			      struct x86_instruction_info *info,
5371 			      enum x86_intercept_stage stage)
5372 {
5373 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5374 }
5375 
5376 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5377 			u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5378 {
5379 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5380 }
5381 
5382 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5383 {
5384 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
5385 }
5386 
5387 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5388 {
5389 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5390 }
5391 
5392 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5393 {
5394 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5395 }
5396 
5397 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5398 {
5399 	return emul_to_vcpu(ctxt)->arch.hflags;
5400 }
5401 
5402 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5403 {
5404 	kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5405 }
5406 
5407 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
5408 {
5409 	return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
5410 }
5411 
5412 static const struct x86_emulate_ops emulate_ops = {
5413 	.read_gpr            = emulator_read_gpr,
5414 	.write_gpr           = emulator_write_gpr,
5415 	.read_std            = kvm_read_guest_virt_system,
5416 	.write_std           = kvm_write_guest_virt_system,
5417 	.read_phys           = kvm_read_guest_phys_system,
5418 	.fetch               = kvm_fetch_guest_virt,
5419 	.read_emulated       = emulator_read_emulated,
5420 	.write_emulated      = emulator_write_emulated,
5421 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
5422 	.invlpg              = emulator_invlpg,
5423 	.pio_in_emulated     = emulator_pio_in_emulated,
5424 	.pio_out_emulated    = emulator_pio_out_emulated,
5425 	.get_segment         = emulator_get_segment,
5426 	.set_segment         = emulator_set_segment,
5427 	.get_cached_segment_base = emulator_get_cached_segment_base,
5428 	.get_gdt             = emulator_get_gdt,
5429 	.get_idt	     = emulator_get_idt,
5430 	.set_gdt             = emulator_set_gdt,
5431 	.set_idt	     = emulator_set_idt,
5432 	.get_cr              = emulator_get_cr,
5433 	.set_cr              = emulator_set_cr,
5434 	.cpl                 = emulator_get_cpl,
5435 	.get_dr              = emulator_get_dr,
5436 	.set_dr              = emulator_set_dr,
5437 	.get_smbase          = emulator_get_smbase,
5438 	.set_smbase          = emulator_set_smbase,
5439 	.set_msr             = emulator_set_msr,
5440 	.get_msr             = emulator_get_msr,
5441 	.check_pmc	     = emulator_check_pmc,
5442 	.read_pmc            = emulator_read_pmc,
5443 	.halt                = emulator_halt,
5444 	.wbinvd              = emulator_wbinvd,
5445 	.fix_hypercall       = emulator_fix_hypercall,
5446 	.intercept           = emulator_intercept,
5447 	.get_cpuid           = emulator_get_cpuid,
5448 	.set_nmi_mask        = emulator_set_nmi_mask,
5449 	.get_hflags          = emulator_get_hflags,
5450 	.set_hflags          = emulator_set_hflags,
5451 	.pre_leave_smm       = emulator_pre_leave_smm,
5452 };
5453 
5454 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5455 {
5456 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5457 	/*
5458 	 * an sti; sti; sequence only disable interrupts for the first
5459 	 * instruction. So, if the last instruction, be it emulated or
5460 	 * not, left the system with the INT_STI flag enabled, it
5461 	 * means that the last instruction is an sti. We should not
5462 	 * leave the flag on in this case. The same goes for mov ss
5463 	 */
5464 	if (int_shadow & mask)
5465 		mask = 0;
5466 	if (unlikely(int_shadow || mask)) {
5467 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5468 		if (!mask)
5469 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5470 	}
5471 }
5472 
5473 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5474 {
5475 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5476 	if (ctxt->exception.vector == PF_VECTOR)
5477 		return kvm_propagate_fault(vcpu, &ctxt->exception);
5478 
5479 	if (ctxt->exception.error_code_valid)
5480 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5481 				      ctxt->exception.error_code);
5482 	else
5483 		kvm_queue_exception(vcpu, ctxt->exception.vector);
5484 	return false;
5485 }
5486 
5487 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5488 {
5489 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5490 	int cs_db, cs_l;
5491 
5492 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5493 
5494 	ctxt->eflags = kvm_get_rflags(vcpu);
5495 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5496 
5497 	ctxt->eip = kvm_rip_read(vcpu);
5498 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
5499 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
5500 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
5501 		     cs_db				? X86EMUL_MODE_PROT32 :
5502 							  X86EMUL_MODE_PROT16;
5503 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5504 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5505 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5506 
5507 	init_decode_cache(ctxt);
5508 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5509 }
5510 
5511 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5512 {
5513 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5514 	int ret;
5515 
5516 	init_emulate_ctxt(vcpu);
5517 
5518 	ctxt->op_bytes = 2;
5519 	ctxt->ad_bytes = 2;
5520 	ctxt->_eip = ctxt->eip + inc_eip;
5521 	ret = emulate_int_real(ctxt, irq);
5522 
5523 	if (ret != X86EMUL_CONTINUE)
5524 		return EMULATE_FAIL;
5525 
5526 	ctxt->eip = ctxt->_eip;
5527 	kvm_rip_write(vcpu, ctxt->eip);
5528 	kvm_set_rflags(vcpu, ctxt->eflags);
5529 
5530 	if (irq == NMI_VECTOR)
5531 		vcpu->arch.nmi_pending = 0;
5532 	else
5533 		vcpu->arch.interrupt.pending = false;
5534 
5535 	return EMULATE_DONE;
5536 }
5537 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5538 
5539 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5540 {
5541 	int r = EMULATE_DONE;
5542 
5543 	++vcpu->stat.insn_emulation_fail;
5544 	trace_kvm_emulate_insn_failed(vcpu);
5545 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5546 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5547 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5548 		vcpu->run->internal.ndata = 0;
5549 		r = EMULATE_USER_EXIT;
5550 	}
5551 	kvm_queue_exception(vcpu, UD_VECTOR);
5552 
5553 	return r;
5554 }
5555 
5556 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5557 				  bool write_fault_to_shadow_pgtable,
5558 				  int emulation_type)
5559 {
5560 	gpa_t gpa = cr2;
5561 	kvm_pfn_t pfn;
5562 
5563 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
5564 		return false;
5565 
5566 	if (!vcpu->arch.mmu.direct_map) {
5567 		/*
5568 		 * Write permission should be allowed since only
5569 		 * write access need to be emulated.
5570 		 */
5571 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5572 
5573 		/*
5574 		 * If the mapping is invalid in guest, let cpu retry
5575 		 * it to generate fault.
5576 		 */
5577 		if (gpa == UNMAPPED_GVA)
5578 			return true;
5579 	}
5580 
5581 	/*
5582 	 * Do not retry the unhandleable instruction if it faults on the
5583 	 * readonly host memory, otherwise it will goto a infinite loop:
5584 	 * retry instruction -> write #PF -> emulation fail -> retry
5585 	 * instruction -> ...
5586 	 */
5587 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5588 
5589 	/*
5590 	 * If the instruction failed on the error pfn, it can not be fixed,
5591 	 * report the error to userspace.
5592 	 */
5593 	if (is_error_noslot_pfn(pfn))
5594 		return false;
5595 
5596 	kvm_release_pfn_clean(pfn);
5597 
5598 	/* The instructions are well-emulated on direct mmu. */
5599 	if (vcpu->arch.mmu.direct_map) {
5600 		unsigned int indirect_shadow_pages;
5601 
5602 		spin_lock(&vcpu->kvm->mmu_lock);
5603 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5604 		spin_unlock(&vcpu->kvm->mmu_lock);
5605 
5606 		if (indirect_shadow_pages)
5607 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5608 
5609 		return true;
5610 	}
5611 
5612 	/*
5613 	 * if emulation was due to access to shadowed page table
5614 	 * and it failed try to unshadow page and re-enter the
5615 	 * guest to let CPU execute the instruction.
5616 	 */
5617 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5618 
5619 	/*
5620 	 * If the access faults on its page table, it can not
5621 	 * be fixed by unprotecting shadow page and it should
5622 	 * be reported to userspace.
5623 	 */
5624 	return !write_fault_to_shadow_pgtable;
5625 }
5626 
5627 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5628 			      unsigned long cr2,  int emulation_type)
5629 {
5630 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5631 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5632 
5633 	last_retry_eip = vcpu->arch.last_retry_eip;
5634 	last_retry_addr = vcpu->arch.last_retry_addr;
5635 
5636 	/*
5637 	 * If the emulation is caused by #PF and it is non-page_table
5638 	 * writing instruction, it means the VM-EXIT is caused by shadow
5639 	 * page protected, we can zap the shadow page and retry this
5640 	 * instruction directly.
5641 	 *
5642 	 * Note: if the guest uses a non-page-table modifying instruction
5643 	 * on the PDE that points to the instruction, then we will unmap
5644 	 * the instruction and go to an infinite loop. So, we cache the
5645 	 * last retried eip and the last fault address, if we meet the eip
5646 	 * and the address again, we can break out of the potential infinite
5647 	 * loop.
5648 	 */
5649 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5650 
5651 	if (!(emulation_type & EMULTYPE_RETRY))
5652 		return false;
5653 
5654 	if (x86_page_table_writing_insn(ctxt))
5655 		return false;
5656 
5657 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5658 		return false;
5659 
5660 	vcpu->arch.last_retry_eip = ctxt->eip;
5661 	vcpu->arch.last_retry_addr = cr2;
5662 
5663 	if (!vcpu->arch.mmu.direct_map)
5664 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5665 
5666 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5667 
5668 	return true;
5669 }
5670 
5671 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5672 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5673 
5674 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5675 {
5676 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5677 		/* This is a good place to trace that we are exiting SMM.  */
5678 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5679 
5680 		/* Process a latched INIT or SMI, if any.  */
5681 		kvm_make_request(KVM_REQ_EVENT, vcpu);
5682 	}
5683 
5684 	kvm_mmu_reset_context(vcpu);
5685 }
5686 
5687 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5688 {
5689 	unsigned changed = vcpu->arch.hflags ^ emul_flags;
5690 
5691 	vcpu->arch.hflags = emul_flags;
5692 
5693 	if (changed & HF_SMM_MASK)
5694 		kvm_smm_changed(vcpu);
5695 }
5696 
5697 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5698 				unsigned long *db)
5699 {
5700 	u32 dr6 = 0;
5701 	int i;
5702 	u32 enable, rwlen;
5703 
5704 	enable = dr7;
5705 	rwlen = dr7 >> 16;
5706 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5707 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5708 			dr6 |= (1 << i);
5709 	return dr6;
5710 }
5711 
5712 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5713 {
5714 	struct kvm_run *kvm_run = vcpu->run;
5715 
5716 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5717 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5718 		kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5719 		kvm_run->debug.arch.exception = DB_VECTOR;
5720 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
5721 		*r = EMULATE_USER_EXIT;
5722 	} else {
5723 		/*
5724 		 * "Certain debug exceptions may clear bit 0-3.  The
5725 		 * remaining contents of the DR6 register are never
5726 		 * cleared by the processor".
5727 		 */
5728 		vcpu->arch.dr6 &= ~15;
5729 		vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5730 		kvm_queue_exception(vcpu, DB_VECTOR);
5731 	}
5732 }
5733 
5734 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5735 {
5736 	unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5737 	int r = EMULATE_DONE;
5738 
5739 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5740 
5741 	/*
5742 	 * rflags is the old, "raw" value of the flags.  The new value has
5743 	 * not been saved yet.
5744 	 *
5745 	 * This is correct even for TF set by the guest, because "the
5746 	 * processor will not generate this exception after the instruction
5747 	 * that sets the TF flag".
5748 	 */
5749 	if (unlikely(rflags & X86_EFLAGS_TF))
5750 		kvm_vcpu_do_singlestep(vcpu, &r);
5751 	return r == EMULATE_DONE;
5752 }
5753 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5754 
5755 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5756 {
5757 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5758 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5759 		struct kvm_run *kvm_run = vcpu->run;
5760 		unsigned long eip = kvm_get_linear_rip(vcpu);
5761 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5762 					   vcpu->arch.guest_debug_dr7,
5763 					   vcpu->arch.eff_db);
5764 
5765 		if (dr6 != 0) {
5766 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5767 			kvm_run->debug.arch.pc = eip;
5768 			kvm_run->debug.arch.exception = DB_VECTOR;
5769 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5770 			*r = EMULATE_USER_EXIT;
5771 			return true;
5772 		}
5773 	}
5774 
5775 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5776 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5777 		unsigned long eip = kvm_get_linear_rip(vcpu);
5778 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5779 					   vcpu->arch.dr7,
5780 					   vcpu->arch.db);
5781 
5782 		if (dr6 != 0) {
5783 			vcpu->arch.dr6 &= ~15;
5784 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
5785 			kvm_queue_exception(vcpu, DB_VECTOR);
5786 			*r = EMULATE_DONE;
5787 			return true;
5788 		}
5789 	}
5790 
5791 	return false;
5792 }
5793 
5794 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5795 			    unsigned long cr2,
5796 			    int emulation_type,
5797 			    void *insn,
5798 			    int insn_len)
5799 {
5800 	int r;
5801 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5802 	bool writeback = true;
5803 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5804 
5805 	/*
5806 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
5807 	 * never reused.
5808 	 */
5809 	vcpu->arch.write_fault_to_shadow_pgtable = false;
5810 	kvm_clear_exception_queue(vcpu);
5811 
5812 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5813 		init_emulate_ctxt(vcpu);
5814 
5815 		/*
5816 		 * We will reenter on the same instruction since
5817 		 * we do not set complete_userspace_io.  This does not
5818 		 * handle watchpoints yet, those would be handled in
5819 		 * the emulate_ops.
5820 		 */
5821 		if (!(emulation_type & EMULTYPE_SKIP) &&
5822 		    kvm_vcpu_check_breakpoint(vcpu, &r))
5823 			return r;
5824 
5825 		ctxt->interruptibility = 0;
5826 		ctxt->have_exception = false;
5827 		ctxt->exception.vector = -1;
5828 		ctxt->perm_ok = false;
5829 
5830 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5831 
5832 		r = x86_decode_insn(ctxt, insn, insn_len);
5833 
5834 		trace_kvm_emulate_insn_start(vcpu);
5835 		++vcpu->stat.insn_emulation;
5836 		if (r != EMULATION_OK)  {
5837 			if (emulation_type & EMULTYPE_TRAP_UD)
5838 				return EMULATE_FAIL;
5839 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5840 						emulation_type))
5841 				return EMULATE_DONE;
5842 			if (ctxt->have_exception && inject_emulated_exception(vcpu))
5843 				return EMULATE_DONE;
5844 			if (emulation_type & EMULTYPE_SKIP)
5845 				return EMULATE_FAIL;
5846 			return handle_emulation_failure(vcpu);
5847 		}
5848 	}
5849 
5850 	if (emulation_type & EMULTYPE_SKIP) {
5851 		kvm_rip_write(vcpu, ctxt->_eip);
5852 		if (ctxt->eflags & X86_EFLAGS_RF)
5853 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5854 		return EMULATE_DONE;
5855 	}
5856 
5857 	if (retry_instruction(ctxt, cr2, emulation_type))
5858 		return EMULATE_DONE;
5859 
5860 	/* this is needed for vmware backdoor interface to work since it
5861 	   changes registers values  during IO operation */
5862 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5863 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5864 		emulator_invalidate_register_cache(ctxt);
5865 	}
5866 
5867 restart:
5868 	/* Save the faulting GPA (cr2) in the address field */
5869 	ctxt->exception.address = cr2;
5870 
5871 	r = x86_emulate_insn(ctxt);
5872 
5873 	if (r == EMULATION_INTERCEPTED)
5874 		return EMULATE_DONE;
5875 
5876 	if (r == EMULATION_FAILED) {
5877 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5878 					emulation_type))
5879 			return EMULATE_DONE;
5880 
5881 		return handle_emulation_failure(vcpu);
5882 	}
5883 
5884 	if (ctxt->have_exception) {
5885 		r = EMULATE_DONE;
5886 		if (inject_emulated_exception(vcpu))
5887 			return r;
5888 	} else if (vcpu->arch.pio.count) {
5889 		if (!vcpu->arch.pio.in) {
5890 			/* FIXME: return into emulator if single-stepping.  */
5891 			vcpu->arch.pio.count = 0;
5892 		} else {
5893 			writeback = false;
5894 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
5895 		}
5896 		r = EMULATE_USER_EXIT;
5897 	} else if (vcpu->mmio_needed) {
5898 		if (!vcpu->mmio_is_write)
5899 			writeback = false;
5900 		r = EMULATE_USER_EXIT;
5901 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5902 	} else if (r == EMULATION_RESTART)
5903 		goto restart;
5904 	else
5905 		r = EMULATE_DONE;
5906 
5907 	if (writeback) {
5908 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5909 		toggle_interruptibility(vcpu, ctxt->interruptibility);
5910 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5911 		kvm_rip_write(vcpu, ctxt->eip);
5912 		if (r == EMULATE_DONE &&
5913 		    (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
5914 			kvm_vcpu_do_singlestep(vcpu, &r);
5915 		if (!ctxt->have_exception ||
5916 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5917 			__kvm_set_rflags(vcpu, ctxt->eflags);
5918 
5919 		/*
5920 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5921 		 * do nothing, and it will be requested again as soon as
5922 		 * the shadow expires.  But we still need to check here,
5923 		 * because POPF has no interrupt shadow.
5924 		 */
5925 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5926 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5927 	} else
5928 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5929 
5930 	return r;
5931 }
5932 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5933 
5934 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5935 {
5936 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5937 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5938 					    size, port, &val, 1);
5939 	/* do not return to emulator after return from userspace */
5940 	vcpu->arch.pio.count = 0;
5941 	return ret;
5942 }
5943 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5944 
5945 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
5946 {
5947 	unsigned long val;
5948 
5949 	/* We should only ever be called with arch.pio.count equal to 1 */
5950 	BUG_ON(vcpu->arch.pio.count != 1);
5951 
5952 	/* For size less than 4 we merge, else we zero extend */
5953 	val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
5954 					: 0;
5955 
5956 	/*
5957 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5958 	 * the copy and tracing
5959 	 */
5960 	emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
5961 				 vcpu->arch.pio.port, &val, 1);
5962 	kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5963 
5964 	return 1;
5965 }
5966 
5967 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
5968 {
5969 	unsigned long val;
5970 	int ret;
5971 
5972 	/* For size less than 4 we merge, else we zero extend */
5973 	val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
5974 
5975 	ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
5976 				       &val, 1);
5977 	if (ret) {
5978 		kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5979 		return ret;
5980 	}
5981 
5982 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
5983 
5984 	return 0;
5985 }
5986 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
5987 
5988 static int kvmclock_cpu_down_prep(unsigned int cpu)
5989 {
5990 	__this_cpu_write(cpu_tsc_khz, 0);
5991 	return 0;
5992 }
5993 
5994 static void tsc_khz_changed(void *data)
5995 {
5996 	struct cpufreq_freqs *freq = data;
5997 	unsigned long khz = 0;
5998 
5999 	if (data)
6000 		khz = freq->new;
6001 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6002 		khz = cpufreq_quick_get(raw_smp_processor_id());
6003 	if (!khz)
6004 		khz = tsc_khz;
6005 	__this_cpu_write(cpu_tsc_khz, khz);
6006 }
6007 
6008 #ifdef CONFIG_X86_64
6009 static void kvm_hyperv_tsc_notifier(void)
6010 {
6011 	struct kvm *kvm;
6012 	struct kvm_vcpu *vcpu;
6013 	int cpu;
6014 
6015 	spin_lock(&kvm_lock);
6016 	list_for_each_entry(kvm, &vm_list, vm_list)
6017 		kvm_make_mclock_inprogress_request(kvm);
6018 
6019 	hyperv_stop_tsc_emulation();
6020 
6021 	/* TSC frequency always matches when on Hyper-V */
6022 	for_each_present_cpu(cpu)
6023 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6024 	kvm_max_guest_tsc_khz = tsc_khz;
6025 
6026 	list_for_each_entry(kvm, &vm_list, vm_list) {
6027 		struct kvm_arch *ka = &kvm->arch;
6028 
6029 		spin_lock(&ka->pvclock_gtod_sync_lock);
6030 
6031 		pvclock_update_vm_gtod_copy(kvm);
6032 
6033 		kvm_for_each_vcpu(cpu, vcpu, kvm)
6034 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6035 
6036 		kvm_for_each_vcpu(cpu, vcpu, kvm)
6037 			kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6038 
6039 		spin_unlock(&ka->pvclock_gtod_sync_lock);
6040 	}
6041 	spin_unlock(&kvm_lock);
6042 }
6043 #endif
6044 
6045 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6046 				     void *data)
6047 {
6048 	struct cpufreq_freqs *freq = data;
6049 	struct kvm *kvm;
6050 	struct kvm_vcpu *vcpu;
6051 	int i, send_ipi = 0;
6052 
6053 	/*
6054 	 * We allow guests to temporarily run on slowing clocks,
6055 	 * provided we notify them after, or to run on accelerating
6056 	 * clocks, provided we notify them before.  Thus time never
6057 	 * goes backwards.
6058 	 *
6059 	 * However, we have a problem.  We can't atomically update
6060 	 * the frequency of a given CPU from this function; it is
6061 	 * merely a notifier, which can be called from any CPU.
6062 	 * Changing the TSC frequency at arbitrary points in time
6063 	 * requires a recomputation of local variables related to
6064 	 * the TSC for each VCPU.  We must flag these local variables
6065 	 * to be updated and be sure the update takes place with the
6066 	 * new frequency before any guests proceed.
6067 	 *
6068 	 * Unfortunately, the combination of hotplug CPU and frequency
6069 	 * change creates an intractable locking scenario; the order
6070 	 * of when these callouts happen is undefined with respect to
6071 	 * CPU hotplug, and they can race with each other.  As such,
6072 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6073 	 * undefined; you can actually have a CPU frequency change take
6074 	 * place in between the computation of X and the setting of the
6075 	 * variable.  To protect against this problem, all updates of
6076 	 * the per_cpu tsc_khz variable are done in an interrupt
6077 	 * protected IPI, and all callers wishing to update the value
6078 	 * must wait for a synchronous IPI to complete (which is trivial
6079 	 * if the caller is on the CPU already).  This establishes the
6080 	 * necessary total order on variable updates.
6081 	 *
6082 	 * Note that because a guest time update may take place
6083 	 * anytime after the setting of the VCPU's request bit, the
6084 	 * correct TSC value must be set before the request.  However,
6085 	 * to ensure the update actually makes it to any guest which
6086 	 * starts running in hardware virtualization between the set
6087 	 * and the acquisition of the spinlock, we must also ping the
6088 	 * CPU after setting the request bit.
6089 	 *
6090 	 */
6091 
6092 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6093 		return 0;
6094 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6095 		return 0;
6096 
6097 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6098 
6099 	spin_lock(&kvm_lock);
6100 	list_for_each_entry(kvm, &vm_list, vm_list) {
6101 		kvm_for_each_vcpu(i, vcpu, kvm) {
6102 			if (vcpu->cpu != freq->cpu)
6103 				continue;
6104 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6105 			if (vcpu->cpu != smp_processor_id())
6106 				send_ipi = 1;
6107 		}
6108 	}
6109 	spin_unlock(&kvm_lock);
6110 
6111 	if (freq->old < freq->new && send_ipi) {
6112 		/*
6113 		 * We upscale the frequency.  Must make the guest
6114 		 * doesn't see old kvmclock values while running with
6115 		 * the new frequency, otherwise we risk the guest sees
6116 		 * time go backwards.
6117 		 *
6118 		 * In case we update the frequency for another cpu
6119 		 * (which might be in guest context) send an interrupt
6120 		 * to kick the cpu out of guest context.  Next time
6121 		 * guest context is entered kvmclock will be updated,
6122 		 * so the guest will not see stale values.
6123 		 */
6124 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6125 	}
6126 	return 0;
6127 }
6128 
6129 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6130 	.notifier_call  = kvmclock_cpufreq_notifier
6131 };
6132 
6133 static int kvmclock_cpu_online(unsigned int cpu)
6134 {
6135 	tsc_khz_changed(NULL);
6136 	return 0;
6137 }
6138 
6139 static void kvm_timer_init(void)
6140 {
6141 	max_tsc_khz = tsc_khz;
6142 
6143 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6144 #ifdef CONFIG_CPU_FREQ
6145 		struct cpufreq_policy policy;
6146 		int cpu;
6147 
6148 		memset(&policy, 0, sizeof(policy));
6149 		cpu = get_cpu();
6150 		cpufreq_get_policy(&policy, cpu);
6151 		if (policy.cpuinfo.max_freq)
6152 			max_tsc_khz = policy.cpuinfo.max_freq;
6153 		put_cpu();
6154 #endif
6155 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6156 					  CPUFREQ_TRANSITION_NOTIFIER);
6157 	}
6158 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6159 
6160 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6161 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
6162 }
6163 
6164 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6165 
6166 int kvm_is_in_guest(void)
6167 {
6168 	return __this_cpu_read(current_vcpu) != NULL;
6169 }
6170 
6171 static int kvm_is_user_mode(void)
6172 {
6173 	int user_mode = 3;
6174 
6175 	if (__this_cpu_read(current_vcpu))
6176 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6177 
6178 	return user_mode != 0;
6179 }
6180 
6181 static unsigned long kvm_get_guest_ip(void)
6182 {
6183 	unsigned long ip = 0;
6184 
6185 	if (__this_cpu_read(current_vcpu))
6186 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6187 
6188 	return ip;
6189 }
6190 
6191 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6192 	.is_in_guest		= kvm_is_in_guest,
6193 	.is_user_mode		= kvm_is_user_mode,
6194 	.get_guest_ip		= kvm_get_guest_ip,
6195 };
6196 
6197 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
6198 {
6199 	__this_cpu_write(current_vcpu, vcpu);
6200 }
6201 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
6202 
6203 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
6204 {
6205 	__this_cpu_write(current_vcpu, NULL);
6206 }
6207 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
6208 
6209 static void kvm_set_mmio_spte_mask(void)
6210 {
6211 	u64 mask;
6212 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
6213 
6214 	/*
6215 	 * Set the reserved bits and the present bit of an paging-structure
6216 	 * entry to generate page fault with PFER.RSV = 1.
6217 	 */
6218 	 /* Mask the reserved physical address bits. */
6219 	mask = rsvd_bits(maxphyaddr, 51);
6220 
6221 	/* Set the present bit. */
6222 	mask |= 1ull;
6223 
6224 #ifdef CONFIG_X86_64
6225 	/*
6226 	 * If reserved bit is not supported, clear the present bit to disable
6227 	 * mmio page fault.
6228 	 */
6229 	if (maxphyaddr == 52)
6230 		mask &= ~1ull;
6231 #endif
6232 
6233 	kvm_mmu_set_mmio_spte_mask(mask, mask);
6234 }
6235 
6236 #ifdef CONFIG_X86_64
6237 static void pvclock_gtod_update_fn(struct work_struct *work)
6238 {
6239 	struct kvm *kvm;
6240 
6241 	struct kvm_vcpu *vcpu;
6242 	int i;
6243 
6244 	spin_lock(&kvm_lock);
6245 	list_for_each_entry(kvm, &vm_list, vm_list)
6246 		kvm_for_each_vcpu(i, vcpu, kvm)
6247 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6248 	atomic_set(&kvm_guest_has_master_clock, 0);
6249 	spin_unlock(&kvm_lock);
6250 }
6251 
6252 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6253 
6254 /*
6255  * Notification about pvclock gtod data update.
6256  */
6257 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6258 			       void *priv)
6259 {
6260 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6261 	struct timekeeper *tk = priv;
6262 
6263 	update_pvclock_gtod(tk);
6264 
6265 	/* disable master clock if host does not trust, or does not
6266 	 * use, TSC based clocksource.
6267 	 */
6268 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6269 	    atomic_read(&kvm_guest_has_master_clock) != 0)
6270 		queue_work(system_long_wq, &pvclock_gtod_work);
6271 
6272 	return 0;
6273 }
6274 
6275 static struct notifier_block pvclock_gtod_notifier = {
6276 	.notifier_call = pvclock_gtod_notify,
6277 };
6278 #endif
6279 
6280 int kvm_arch_init(void *opaque)
6281 {
6282 	int r;
6283 	struct kvm_x86_ops *ops = opaque;
6284 
6285 	if (kvm_x86_ops) {
6286 		printk(KERN_ERR "kvm: already loaded the other module\n");
6287 		r = -EEXIST;
6288 		goto out;
6289 	}
6290 
6291 	if (!ops->cpu_has_kvm_support()) {
6292 		printk(KERN_ERR "kvm: no hardware support\n");
6293 		r = -EOPNOTSUPP;
6294 		goto out;
6295 	}
6296 	if (ops->disabled_by_bios()) {
6297 		printk(KERN_ERR "kvm: disabled by bios\n");
6298 		r = -EOPNOTSUPP;
6299 		goto out;
6300 	}
6301 
6302 	r = -ENOMEM;
6303 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6304 	if (!shared_msrs) {
6305 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6306 		goto out;
6307 	}
6308 
6309 	r = kvm_mmu_module_init();
6310 	if (r)
6311 		goto out_free_percpu;
6312 
6313 	kvm_set_mmio_spte_mask();
6314 
6315 	kvm_x86_ops = ops;
6316 
6317 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6318 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
6319 			PT_PRESENT_MASK, 0, sme_me_mask);
6320 	kvm_timer_init();
6321 
6322 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
6323 
6324 	if (boot_cpu_has(X86_FEATURE_XSAVE))
6325 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6326 
6327 	kvm_lapic_init();
6328 #ifdef CONFIG_X86_64
6329 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6330 
6331 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6332 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
6333 #endif
6334 
6335 	return 0;
6336 
6337 out_free_percpu:
6338 	free_percpu(shared_msrs);
6339 out:
6340 	return r;
6341 }
6342 
6343 void kvm_arch_exit(void)
6344 {
6345 #ifdef CONFIG_X86_64
6346 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6347 		clear_hv_tscchange_cb();
6348 #endif
6349 	kvm_lapic_exit();
6350 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6351 
6352 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6353 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6354 					    CPUFREQ_TRANSITION_NOTIFIER);
6355 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6356 #ifdef CONFIG_X86_64
6357 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6358 #endif
6359 	kvm_x86_ops = NULL;
6360 	kvm_mmu_module_exit();
6361 	free_percpu(shared_msrs);
6362 }
6363 
6364 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6365 {
6366 	++vcpu->stat.halt_exits;
6367 	if (lapic_in_kernel(vcpu)) {
6368 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6369 		return 1;
6370 	} else {
6371 		vcpu->run->exit_reason = KVM_EXIT_HLT;
6372 		return 0;
6373 	}
6374 }
6375 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6376 
6377 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6378 {
6379 	int ret = kvm_skip_emulated_instruction(vcpu);
6380 	/*
6381 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6382 	 * KVM_EXIT_DEBUG here.
6383 	 */
6384 	return kvm_vcpu_halt(vcpu) && ret;
6385 }
6386 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6387 
6388 #ifdef CONFIG_X86_64
6389 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6390 			        unsigned long clock_type)
6391 {
6392 	struct kvm_clock_pairing clock_pairing;
6393 	struct timespec ts;
6394 	u64 cycle;
6395 	int ret;
6396 
6397 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6398 		return -KVM_EOPNOTSUPP;
6399 
6400 	if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6401 		return -KVM_EOPNOTSUPP;
6402 
6403 	clock_pairing.sec = ts.tv_sec;
6404 	clock_pairing.nsec = ts.tv_nsec;
6405 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6406 	clock_pairing.flags = 0;
6407 
6408 	ret = 0;
6409 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6410 			    sizeof(struct kvm_clock_pairing)))
6411 		ret = -KVM_EFAULT;
6412 
6413 	return ret;
6414 }
6415 #endif
6416 
6417 /*
6418  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6419  *
6420  * @apicid - apicid of vcpu to be kicked.
6421  */
6422 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6423 {
6424 	struct kvm_lapic_irq lapic_irq;
6425 
6426 	lapic_irq.shorthand = 0;
6427 	lapic_irq.dest_mode = 0;
6428 	lapic_irq.level = 0;
6429 	lapic_irq.dest_id = apicid;
6430 	lapic_irq.msi_redir_hint = false;
6431 
6432 	lapic_irq.delivery_mode = APIC_DM_REMRD;
6433 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6434 }
6435 
6436 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6437 {
6438 	vcpu->arch.apicv_active = false;
6439 	kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6440 }
6441 
6442 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6443 {
6444 	unsigned long nr, a0, a1, a2, a3, ret;
6445 	int op_64_bit, r;
6446 
6447 	r = kvm_skip_emulated_instruction(vcpu);
6448 
6449 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
6450 		return kvm_hv_hypercall(vcpu);
6451 
6452 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6453 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6454 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6455 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6456 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6457 
6458 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
6459 
6460 	op_64_bit = is_64_bit_mode(vcpu);
6461 	if (!op_64_bit) {
6462 		nr &= 0xFFFFFFFF;
6463 		a0 &= 0xFFFFFFFF;
6464 		a1 &= 0xFFFFFFFF;
6465 		a2 &= 0xFFFFFFFF;
6466 		a3 &= 0xFFFFFFFF;
6467 	}
6468 
6469 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6470 		ret = -KVM_EPERM;
6471 		goto out;
6472 	}
6473 
6474 	switch (nr) {
6475 	case KVM_HC_VAPIC_POLL_IRQ:
6476 		ret = 0;
6477 		break;
6478 	case KVM_HC_KICK_CPU:
6479 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6480 		ret = 0;
6481 		break;
6482 #ifdef CONFIG_X86_64
6483 	case KVM_HC_CLOCK_PAIRING:
6484 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6485 		break;
6486 #endif
6487 	default:
6488 		ret = -KVM_ENOSYS;
6489 		break;
6490 	}
6491 out:
6492 	if (!op_64_bit)
6493 		ret = (u32)ret;
6494 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6495 	++vcpu->stat.hypercalls;
6496 	return r;
6497 }
6498 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6499 
6500 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6501 {
6502 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6503 	char instruction[3];
6504 	unsigned long rip = kvm_rip_read(vcpu);
6505 
6506 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
6507 
6508 	return emulator_write_emulated(ctxt, rip, instruction, 3,
6509 		&ctxt->exception);
6510 }
6511 
6512 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6513 {
6514 	return vcpu->run->request_interrupt_window &&
6515 		likely(!pic_in_kernel(vcpu->kvm));
6516 }
6517 
6518 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6519 {
6520 	struct kvm_run *kvm_run = vcpu->run;
6521 
6522 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6523 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6524 	kvm_run->cr8 = kvm_get_cr8(vcpu);
6525 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
6526 	kvm_run->ready_for_interrupt_injection =
6527 		pic_in_kernel(vcpu->kvm) ||
6528 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
6529 }
6530 
6531 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6532 {
6533 	int max_irr, tpr;
6534 
6535 	if (!kvm_x86_ops->update_cr8_intercept)
6536 		return;
6537 
6538 	if (!lapic_in_kernel(vcpu))
6539 		return;
6540 
6541 	if (vcpu->arch.apicv_active)
6542 		return;
6543 
6544 	if (!vcpu->arch.apic->vapic_addr)
6545 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6546 	else
6547 		max_irr = -1;
6548 
6549 	if (max_irr != -1)
6550 		max_irr >>= 4;
6551 
6552 	tpr = kvm_lapic_get_cr8(vcpu);
6553 
6554 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6555 }
6556 
6557 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6558 {
6559 	int r;
6560 
6561 	/* try to reinject previous events if any */
6562 	if (vcpu->arch.exception.injected) {
6563 		kvm_x86_ops->queue_exception(vcpu);
6564 		return 0;
6565 	}
6566 
6567 	/*
6568 	 * Exceptions must be injected immediately, or the exception
6569 	 * frame will have the address of the NMI or interrupt handler.
6570 	 */
6571 	if (!vcpu->arch.exception.pending) {
6572 		if (vcpu->arch.nmi_injected) {
6573 			kvm_x86_ops->set_nmi(vcpu);
6574 			return 0;
6575 		}
6576 
6577 		if (vcpu->arch.interrupt.pending) {
6578 			kvm_x86_ops->set_irq(vcpu);
6579 			return 0;
6580 		}
6581 	}
6582 
6583 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6584 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6585 		if (r != 0)
6586 			return r;
6587 	}
6588 
6589 	/* try to inject new event if pending */
6590 	if (vcpu->arch.exception.pending) {
6591 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
6592 					vcpu->arch.exception.has_error_code,
6593 					vcpu->arch.exception.error_code);
6594 
6595 		vcpu->arch.exception.pending = false;
6596 		vcpu->arch.exception.injected = true;
6597 
6598 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6599 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6600 					     X86_EFLAGS_RF);
6601 
6602 		if (vcpu->arch.exception.nr == DB_VECTOR &&
6603 		    (vcpu->arch.dr7 & DR7_GD)) {
6604 			vcpu->arch.dr7 &= ~DR7_GD;
6605 			kvm_update_dr7(vcpu);
6606 		}
6607 
6608 		kvm_x86_ops->queue_exception(vcpu);
6609 	} else if (vcpu->arch.smi_pending && !is_smm(vcpu) && kvm_x86_ops->smi_allowed(vcpu)) {
6610 		vcpu->arch.smi_pending = false;
6611 		++vcpu->arch.smi_count;
6612 		enter_smm(vcpu);
6613 	} else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6614 		--vcpu->arch.nmi_pending;
6615 		vcpu->arch.nmi_injected = true;
6616 		kvm_x86_ops->set_nmi(vcpu);
6617 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
6618 		/*
6619 		 * Because interrupts can be injected asynchronously, we are
6620 		 * calling check_nested_events again here to avoid a race condition.
6621 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6622 		 * proposal and current concerns.  Perhaps we should be setting
6623 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
6624 		 */
6625 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6626 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6627 			if (r != 0)
6628 				return r;
6629 		}
6630 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6631 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6632 					    false);
6633 			kvm_x86_ops->set_irq(vcpu);
6634 		}
6635 	}
6636 
6637 	return 0;
6638 }
6639 
6640 static void process_nmi(struct kvm_vcpu *vcpu)
6641 {
6642 	unsigned limit = 2;
6643 
6644 	/*
6645 	 * x86 is limited to one NMI running, and one NMI pending after it.
6646 	 * If an NMI is already in progress, limit further NMIs to just one.
6647 	 * Otherwise, allow two (and we'll inject the first one immediately).
6648 	 */
6649 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6650 		limit = 1;
6651 
6652 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6653 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6654 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6655 }
6656 
6657 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6658 {
6659 	u32 flags = 0;
6660 	flags |= seg->g       << 23;
6661 	flags |= seg->db      << 22;
6662 	flags |= seg->l       << 21;
6663 	flags |= seg->avl     << 20;
6664 	flags |= seg->present << 15;
6665 	flags |= seg->dpl     << 13;
6666 	flags |= seg->s       << 12;
6667 	flags |= seg->type    << 8;
6668 	return flags;
6669 }
6670 
6671 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6672 {
6673 	struct kvm_segment seg;
6674 	int offset;
6675 
6676 	kvm_get_segment(vcpu, &seg, n);
6677 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6678 
6679 	if (n < 3)
6680 		offset = 0x7f84 + n * 12;
6681 	else
6682 		offset = 0x7f2c + (n - 3) * 12;
6683 
6684 	put_smstate(u32, buf, offset + 8, seg.base);
6685 	put_smstate(u32, buf, offset + 4, seg.limit);
6686 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6687 }
6688 
6689 #ifdef CONFIG_X86_64
6690 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6691 {
6692 	struct kvm_segment seg;
6693 	int offset;
6694 	u16 flags;
6695 
6696 	kvm_get_segment(vcpu, &seg, n);
6697 	offset = 0x7e00 + n * 16;
6698 
6699 	flags = enter_smm_get_segment_flags(&seg) >> 8;
6700 	put_smstate(u16, buf, offset, seg.selector);
6701 	put_smstate(u16, buf, offset + 2, flags);
6702 	put_smstate(u32, buf, offset + 4, seg.limit);
6703 	put_smstate(u64, buf, offset + 8, seg.base);
6704 }
6705 #endif
6706 
6707 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6708 {
6709 	struct desc_ptr dt;
6710 	struct kvm_segment seg;
6711 	unsigned long val;
6712 	int i;
6713 
6714 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6715 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6716 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6717 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6718 
6719 	for (i = 0; i < 8; i++)
6720 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6721 
6722 	kvm_get_dr(vcpu, 6, &val);
6723 	put_smstate(u32, buf, 0x7fcc, (u32)val);
6724 	kvm_get_dr(vcpu, 7, &val);
6725 	put_smstate(u32, buf, 0x7fc8, (u32)val);
6726 
6727 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6728 	put_smstate(u32, buf, 0x7fc4, seg.selector);
6729 	put_smstate(u32, buf, 0x7f64, seg.base);
6730 	put_smstate(u32, buf, 0x7f60, seg.limit);
6731 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6732 
6733 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6734 	put_smstate(u32, buf, 0x7fc0, seg.selector);
6735 	put_smstate(u32, buf, 0x7f80, seg.base);
6736 	put_smstate(u32, buf, 0x7f7c, seg.limit);
6737 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6738 
6739 	kvm_x86_ops->get_gdt(vcpu, &dt);
6740 	put_smstate(u32, buf, 0x7f74, dt.address);
6741 	put_smstate(u32, buf, 0x7f70, dt.size);
6742 
6743 	kvm_x86_ops->get_idt(vcpu, &dt);
6744 	put_smstate(u32, buf, 0x7f58, dt.address);
6745 	put_smstate(u32, buf, 0x7f54, dt.size);
6746 
6747 	for (i = 0; i < 6; i++)
6748 		enter_smm_save_seg_32(vcpu, buf, i);
6749 
6750 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6751 
6752 	/* revision id */
6753 	put_smstate(u32, buf, 0x7efc, 0x00020000);
6754 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6755 }
6756 
6757 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6758 {
6759 #ifdef CONFIG_X86_64
6760 	struct desc_ptr dt;
6761 	struct kvm_segment seg;
6762 	unsigned long val;
6763 	int i;
6764 
6765 	for (i = 0; i < 16; i++)
6766 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6767 
6768 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6769 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6770 
6771 	kvm_get_dr(vcpu, 6, &val);
6772 	put_smstate(u64, buf, 0x7f68, val);
6773 	kvm_get_dr(vcpu, 7, &val);
6774 	put_smstate(u64, buf, 0x7f60, val);
6775 
6776 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6777 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6778 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6779 
6780 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6781 
6782 	/* revision id */
6783 	put_smstate(u32, buf, 0x7efc, 0x00020064);
6784 
6785 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6786 
6787 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6788 	put_smstate(u16, buf, 0x7e90, seg.selector);
6789 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6790 	put_smstate(u32, buf, 0x7e94, seg.limit);
6791 	put_smstate(u64, buf, 0x7e98, seg.base);
6792 
6793 	kvm_x86_ops->get_idt(vcpu, &dt);
6794 	put_smstate(u32, buf, 0x7e84, dt.size);
6795 	put_smstate(u64, buf, 0x7e88, dt.address);
6796 
6797 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6798 	put_smstate(u16, buf, 0x7e70, seg.selector);
6799 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6800 	put_smstate(u32, buf, 0x7e74, seg.limit);
6801 	put_smstate(u64, buf, 0x7e78, seg.base);
6802 
6803 	kvm_x86_ops->get_gdt(vcpu, &dt);
6804 	put_smstate(u32, buf, 0x7e64, dt.size);
6805 	put_smstate(u64, buf, 0x7e68, dt.address);
6806 
6807 	for (i = 0; i < 6; i++)
6808 		enter_smm_save_seg_64(vcpu, buf, i);
6809 #else
6810 	WARN_ON_ONCE(1);
6811 #endif
6812 }
6813 
6814 static void enter_smm(struct kvm_vcpu *vcpu)
6815 {
6816 	struct kvm_segment cs, ds;
6817 	struct desc_ptr dt;
6818 	char buf[512];
6819 	u32 cr0;
6820 
6821 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6822 	memset(buf, 0, 512);
6823 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6824 		enter_smm_save_state_64(vcpu, buf);
6825 	else
6826 		enter_smm_save_state_32(vcpu, buf);
6827 
6828 	/*
6829 	 * Give pre_enter_smm() a chance to make ISA-specific changes to the
6830 	 * vCPU state (e.g. leave guest mode) after we've saved the state into
6831 	 * the SMM state-save area.
6832 	 */
6833 	kvm_x86_ops->pre_enter_smm(vcpu, buf);
6834 
6835 	vcpu->arch.hflags |= HF_SMM_MASK;
6836 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6837 
6838 	if (kvm_x86_ops->get_nmi_mask(vcpu))
6839 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6840 	else
6841 		kvm_x86_ops->set_nmi_mask(vcpu, true);
6842 
6843 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6844 	kvm_rip_write(vcpu, 0x8000);
6845 
6846 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6847 	kvm_x86_ops->set_cr0(vcpu, cr0);
6848 	vcpu->arch.cr0 = cr0;
6849 
6850 	kvm_x86_ops->set_cr4(vcpu, 0);
6851 
6852 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
6853 	dt.address = dt.size = 0;
6854 	kvm_x86_ops->set_idt(vcpu, &dt);
6855 
6856 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6857 
6858 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6859 	cs.base = vcpu->arch.smbase;
6860 
6861 	ds.selector = 0;
6862 	ds.base = 0;
6863 
6864 	cs.limit    = ds.limit = 0xffffffff;
6865 	cs.type     = ds.type = 0x3;
6866 	cs.dpl      = ds.dpl = 0;
6867 	cs.db       = ds.db = 0;
6868 	cs.s        = ds.s = 1;
6869 	cs.l        = ds.l = 0;
6870 	cs.g        = ds.g = 1;
6871 	cs.avl      = ds.avl = 0;
6872 	cs.present  = ds.present = 1;
6873 	cs.unusable = ds.unusable = 0;
6874 	cs.padding  = ds.padding = 0;
6875 
6876 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6877 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6878 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6879 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6880 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6881 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6882 
6883 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6884 		kvm_x86_ops->set_efer(vcpu, 0);
6885 
6886 	kvm_update_cpuid(vcpu);
6887 	kvm_mmu_reset_context(vcpu);
6888 }
6889 
6890 static void process_smi(struct kvm_vcpu *vcpu)
6891 {
6892 	vcpu->arch.smi_pending = true;
6893 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6894 }
6895 
6896 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6897 {
6898 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6899 }
6900 
6901 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6902 {
6903 	u64 eoi_exit_bitmap[4];
6904 
6905 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6906 		return;
6907 
6908 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6909 
6910 	if (irqchip_split(vcpu->kvm))
6911 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6912 	else {
6913 		if (vcpu->arch.apicv_active)
6914 			kvm_x86_ops->sync_pir_to_irr(vcpu);
6915 		kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6916 	}
6917 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6918 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
6919 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6920 }
6921 
6922 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
6923 		unsigned long start, unsigned long end)
6924 {
6925 	unsigned long apic_address;
6926 
6927 	/*
6928 	 * The physical address of apic access page is stored in the VMCS.
6929 	 * Update it when it becomes invalid.
6930 	 */
6931 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6932 	if (start <= apic_address && apic_address < end)
6933 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6934 }
6935 
6936 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6937 {
6938 	struct page *page = NULL;
6939 
6940 	if (!lapic_in_kernel(vcpu))
6941 		return;
6942 
6943 	if (!kvm_x86_ops->set_apic_access_page_addr)
6944 		return;
6945 
6946 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6947 	if (is_error_page(page))
6948 		return;
6949 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6950 
6951 	/*
6952 	 * Do not pin apic access page in memory, the MMU notifier
6953 	 * will call us again if it is migrated or swapped out.
6954 	 */
6955 	put_page(page);
6956 }
6957 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6958 
6959 /*
6960  * Returns 1 to let vcpu_run() continue the guest execution loop without
6961  * exiting to the userspace.  Otherwise, the value will be returned to the
6962  * userspace.
6963  */
6964 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6965 {
6966 	int r;
6967 	bool req_int_win =
6968 		dm_request_for_irq_injection(vcpu) &&
6969 		kvm_cpu_accept_dm_intr(vcpu);
6970 
6971 	bool req_immediate_exit = false;
6972 
6973 	if (kvm_request_pending(vcpu)) {
6974 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6975 			kvm_mmu_unload(vcpu);
6976 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6977 			__kvm_migrate_timers(vcpu);
6978 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6979 			kvm_gen_update_masterclock(vcpu->kvm);
6980 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6981 			kvm_gen_kvmclock_update(vcpu);
6982 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6983 			r = kvm_guest_time_update(vcpu);
6984 			if (unlikely(r))
6985 				goto out;
6986 		}
6987 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6988 			kvm_mmu_sync_roots(vcpu);
6989 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6990 			kvm_vcpu_flush_tlb(vcpu, true);
6991 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6992 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6993 			r = 0;
6994 			goto out;
6995 		}
6996 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6997 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6998 			vcpu->mmio_needed = 0;
6999 			r = 0;
7000 			goto out;
7001 		}
7002 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7003 			/* Page is swapped out. Do synthetic halt */
7004 			vcpu->arch.apf.halted = true;
7005 			r = 1;
7006 			goto out;
7007 		}
7008 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7009 			record_steal_time(vcpu);
7010 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
7011 			process_smi(vcpu);
7012 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
7013 			process_nmi(vcpu);
7014 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
7015 			kvm_pmu_handle_event(vcpu);
7016 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
7017 			kvm_pmu_deliver_pmi(vcpu);
7018 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7019 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7020 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
7021 				     vcpu->arch.ioapic_handled_vectors)) {
7022 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7023 				vcpu->run->eoi.vector =
7024 						vcpu->arch.pending_ioapic_eoi;
7025 				r = 0;
7026 				goto out;
7027 			}
7028 		}
7029 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7030 			vcpu_scan_ioapic(vcpu);
7031 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7032 			kvm_vcpu_reload_apic_access_page(vcpu);
7033 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7034 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7035 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7036 			r = 0;
7037 			goto out;
7038 		}
7039 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7040 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7041 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7042 			r = 0;
7043 			goto out;
7044 		}
7045 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7046 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7047 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7048 			r = 0;
7049 			goto out;
7050 		}
7051 
7052 		/*
7053 		 * KVM_REQ_HV_STIMER has to be processed after
7054 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7055 		 * depend on the guest clock being up-to-date
7056 		 */
7057 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7058 			kvm_hv_process_stimers(vcpu);
7059 	}
7060 
7061 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7062 		++vcpu->stat.req_event;
7063 		kvm_apic_accept_events(vcpu);
7064 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7065 			r = 1;
7066 			goto out;
7067 		}
7068 
7069 		if (inject_pending_event(vcpu, req_int_win) != 0)
7070 			req_immediate_exit = true;
7071 		else {
7072 			/* Enable SMI/NMI/IRQ window open exits if needed.
7073 			 *
7074 			 * SMIs have three cases:
7075 			 * 1) They can be nested, and then there is nothing to
7076 			 *    do here because RSM will cause a vmexit anyway.
7077 			 * 2) There is an ISA-specific reason why SMI cannot be
7078 			 *    injected, and the moment when this changes can be
7079 			 *    intercepted.
7080 			 * 3) Or the SMI can be pending because
7081 			 *    inject_pending_event has completed the injection
7082 			 *    of an IRQ or NMI from the previous vmexit, and
7083 			 *    then we request an immediate exit to inject the
7084 			 *    SMI.
7085 			 */
7086 			if (vcpu->arch.smi_pending && !is_smm(vcpu))
7087 				if (!kvm_x86_ops->enable_smi_window(vcpu))
7088 					req_immediate_exit = true;
7089 			if (vcpu->arch.nmi_pending)
7090 				kvm_x86_ops->enable_nmi_window(vcpu);
7091 			if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7092 				kvm_x86_ops->enable_irq_window(vcpu);
7093 			WARN_ON(vcpu->arch.exception.pending);
7094 		}
7095 
7096 		if (kvm_lapic_enabled(vcpu)) {
7097 			update_cr8_intercept(vcpu);
7098 			kvm_lapic_sync_to_vapic(vcpu);
7099 		}
7100 	}
7101 
7102 	r = kvm_mmu_reload(vcpu);
7103 	if (unlikely(r)) {
7104 		goto cancel_injection;
7105 	}
7106 
7107 	preempt_disable();
7108 
7109 	kvm_x86_ops->prepare_guest_switch(vcpu);
7110 
7111 	/*
7112 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
7113 	 * IPI are then delayed after guest entry, which ensures that they
7114 	 * result in virtual interrupt delivery.
7115 	 */
7116 	local_irq_disable();
7117 	vcpu->mode = IN_GUEST_MODE;
7118 
7119 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7120 
7121 	/*
7122 	 * 1) We should set ->mode before checking ->requests.  Please see
7123 	 * the comment in kvm_vcpu_exiting_guest_mode().
7124 	 *
7125 	 * 2) For APICv, we should set ->mode before checking PIR.ON.  This
7126 	 * pairs with the memory barrier implicit in pi_test_and_set_on
7127 	 * (see vmx_deliver_posted_interrupt).
7128 	 *
7129 	 * 3) This also orders the write to mode from any reads to the page
7130 	 * tables done while the VCPU is running.  Please see the comment
7131 	 * in kvm_flush_remote_tlbs.
7132 	 */
7133 	smp_mb__after_srcu_read_unlock();
7134 
7135 	/*
7136 	 * This handles the case where a posted interrupt was
7137 	 * notified with kvm_vcpu_kick.
7138 	 */
7139 	if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7140 		kvm_x86_ops->sync_pir_to_irr(vcpu);
7141 
7142 	if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7143 	    || need_resched() || signal_pending(current)) {
7144 		vcpu->mode = OUTSIDE_GUEST_MODE;
7145 		smp_wmb();
7146 		local_irq_enable();
7147 		preempt_enable();
7148 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7149 		r = 1;
7150 		goto cancel_injection;
7151 	}
7152 
7153 	kvm_load_guest_xcr0(vcpu);
7154 
7155 	if (req_immediate_exit) {
7156 		kvm_make_request(KVM_REQ_EVENT, vcpu);
7157 		smp_send_reschedule(vcpu->cpu);
7158 	}
7159 
7160 	trace_kvm_entry(vcpu->vcpu_id);
7161 	if (lapic_timer_advance_ns)
7162 		wait_lapic_expire(vcpu);
7163 	guest_enter_irqoff();
7164 
7165 	if (unlikely(vcpu->arch.switch_db_regs)) {
7166 		set_debugreg(0, 7);
7167 		set_debugreg(vcpu->arch.eff_db[0], 0);
7168 		set_debugreg(vcpu->arch.eff_db[1], 1);
7169 		set_debugreg(vcpu->arch.eff_db[2], 2);
7170 		set_debugreg(vcpu->arch.eff_db[3], 3);
7171 		set_debugreg(vcpu->arch.dr6, 6);
7172 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7173 	}
7174 
7175 	kvm_x86_ops->run(vcpu);
7176 
7177 	/*
7178 	 * Do this here before restoring debug registers on the host.  And
7179 	 * since we do this before handling the vmexit, a DR access vmexit
7180 	 * can (a) read the correct value of the debug registers, (b) set
7181 	 * KVM_DEBUGREG_WONT_EXIT again.
7182 	 */
7183 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7184 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7185 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7186 		kvm_update_dr0123(vcpu);
7187 		kvm_update_dr6(vcpu);
7188 		kvm_update_dr7(vcpu);
7189 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7190 	}
7191 
7192 	/*
7193 	 * If the guest has used debug registers, at least dr7
7194 	 * will be disabled while returning to the host.
7195 	 * If we don't have active breakpoints in the host, we don't
7196 	 * care about the messed up debug address registers. But if
7197 	 * we have some of them active, restore the old state.
7198 	 */
7199 	if (hw_breakpoint_active())
7200 		hw_breakpoint_restore();
7201 
7202 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7203 
7204 	vcpu->mode = OUTSIDE_GUEST_MODE;
7205 	smp_wmb();
7206 
7207 	kvm_put_guest_xcr0(vcpu);
7208 
7209 	kvm_x86_ops->handle_external_intr(vcpu);
7210 
7211 	++vcpu->stat.exits;
7212 
7213 	guest_exit_irqoff();
7214 
7215 	local_irq_enable();
7216 	preempt_enable();
7217 
7218 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7219 
7220 	/*
7221 	 * Profile KVM exit RIPs:
7222 	 */
7223 	if (unlikely(prof_on == KVM_PROFILING)) {
7224 		unsigned long rip = kvm_rip_read(vcpu);
7225 		profile_hit(KVM_PROFILING, (void *)rip);
7226 	}
7227 
7228 	if (unlikely(vcpu->arch.tsc_always_catchup))
7229 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7230 
7231 	if (vcpu->arch.apic_attention)
7232 		kvm_lapic_sync_from_vapic(vcpu);
7233 
7234 	vcpu->arch.gpa_available = false;
7235 	r = kvm_x86_ops->handle_exit(vcpu);
7236 	return r;
7237 
7238 cancel_injection:
7239 	kvm_x86_ops->cancel_injection(vcpu);
7240 	if (unlikely(vcpu->arch.apic_attention))
7241 		kvm_lapic_sync_from_vapic(vcpu);
7242 out:
7243 	return r;
7244 }
7245 
7246 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7247 {
7248 	if (!kvm_arch_vcpu_runnable(vcpu) &&
7249 	    (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7250 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7251 		kvm_vcpu_block(vcpu);
7252 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7253 
7254 		if (kvm_x86_ops->post_block)
7255 			kvm_x86_ops->post_block(vcpu);
7256 
7257 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7258 			return 1;
7259 	}
7260 
7261 	kvm_apic_accept_events(vcpu);
7262 	switch(vcpu->arch.mp_state) {
7263 	case KVM_MP_STATE_HALTED:
7264 		vcpu->arch.pv.pv_unhalted = false;
7265 		vcpu->arch.mp_state =
7266 			KVM_MP_STATE_RUNNABLE;
7267 	case KVM_MP_STATE_RUNNABLE:
7268 		vcpu->arch.apf.halted = false;
7269 		break;
7270 	case KVM_MP_STATE_INIT_RECEIVED:
7271 		break;
7272 	default:
7273 		return -EINTR;
7274 		break;
7275 	}
7276 	return 1;
7277 }
7278 
7279 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7280 {
7281 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7282 		kvm_x86_ops->check_nested_events(vcpu, false);
7283 
7284 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7285 		!vcpu->arch.apf.halted);
7286 }
7287 
7288 static int vcpu_run(struct kvm_vcpu *vcpu)
7289 {
7290 	int r;
7291 	struct kvm *kvm = vcpu->kvm;
7292 
7293 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7294 
7295 	for (;;) {
7296 		if (kvm_vcpu_running(vcpu)) {
7297 			r = vcpu_enter_guest(vcpu);
7298 		} else {
7299 			r = vcpu_block(kvm, vcpu);
7300 		}
7301 
7302 		if (r <= 0)
7303 			break;
7304 
7305 		kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7306 		if (kvm_cpu_has_pending_timer(vcpu))
7307 			kvm_inject_pending_timer_irqs(vcpu);
7308 
7309 		if (dm_request_for_irq_injection(vcpu) &&
7310 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7311 			r = 0;
7312 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7313 			++vcpu->stat.request_irq_exits;
7314 			break;
7315 		}
7316 
7317 		kvm_check_async_pf_completion(vcpu);
7318 
7319 		if (signal_pending(current)) {
7320 			r = -EINTR;
7321 			vcpu->run->exit_reason = KVM_EXIT_INTR;
7322 			++vcpu->stat.signal_exits;
7323 			break;
7324 		}
7325 		if (need_resched()) {
7326 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7327 			cond_resched();
7328 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7329 		}
7330 	}
7331 
7332 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7333 
7334 	return r;
7335 }
7336 
7337 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7338 {
7339 	int r;
7340 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7341 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7342 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7343 	if (r != EMULATE_DONE)
7344 		return 0;
7345 	return 1;
7346 }
7347 
7348 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7349 {
7350 	BUG_ON(!vcpu->arch.pio.count);
7351 
7352 	return complete_emulated_io(vcpu);
7353 }
7354 
7355 /*
7356  * Implements the following, as a state machine:
7357  *
7358  * read:
7359  *   for each fragment
7360  *     for each mmio piece in the fragment
7361  *       write gpa, len
7362  *       exit
7363  *       copy data
7364  *   execute insn
7365  *
7366  * write:
7367  *   for each fragment
7368  *     for each mmio piece in the fragment
7369  *       write gpa, len
7370  *       copy data
7371  *       exit
7372  */
7373 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7374 {
7375 	struct kvm_run *run = vcpu->run;
7376 	struct kvm_mmio_fragment *frag;
7377 	unsigned len;
7378 
7379 	BUG_ON(!vcpu->mmio_needed);
7380 
7381 	/* Complete previous fragment */
7382 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7383 	len = min(8u, frag->len);
7384 	if (!vcpu->mmio_is_write)
7385 		memcpy(frag->data, run->mmio.data, len);
7386 
7387 	if (frag->len <= 8) {
7388 		/* Switch to the next fragment. */
7389 		frag++;
7390 		vcpu->mmio_cur_fragment++;
7391 	} else {
7392 		/* Go forward to the next mmio piece. */
7393 		frag->data += len;
7394 		frag->gpa += len;
7395 		frag->len -= len;
7396 	}
7397 
7398 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7399 		vcpu->mmio_needed = 0;
7400 
7401 		/* FIXME: return into emulator if single-stepping.  */
7402 		if (vcpu->mmio_is_write)
7403 			return 1;
7404 		vcpu->mmio_read_completed = 1;
7405 		return complete_emulated_io(vcpu);
7406 	}
7407 
7408 	run->exit_reason = KVM_EXIT_MMIO;
7409 	run->mmio.phys_addr = frag->gpa;
7410 	if (vcpu->mmio_is_write)
7411 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7412 	run->mmio.len = min(8u, frag->len);
7413 	run->mmio.is_write = vcpu->mmio_is_write;
7414 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7415 	return 0;
7416 }
7417 
7418 
7419 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7420 {
7421 	int r;
7422 
7423 	vcpu_load(vcpu);
7424 	kvm_sigset_activate(vcpu);
7425 	kvm_load_guest_fpu(vcpu);
7426 
7427 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7428 		if (kvm_run->immediate_exit) {
7429 			r = -EINTR;
7430 			goto out;
7431 		}
7432 		kvm_vcpu_block(vcpu);
7433 		kvm_apic_accept_events(vcpu);
7434 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7435 		r = -EAGAIN;
7436 		if (signal_pending(current)) {
7437 			r = -EINTR;
7438 			vcpu->run->exit_reason = KVM_EXIT_INTR;
7439 			++vcpu->stat.signal_exits;
7440 		}
7441 		goto out;
7442 	}
7443 
7444 	/* re-sync apic's tpr */
7445 	if (!lapic_in_kernel(vcpu)) {
7446 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7447 			r = -EINVAL;
7448 			goto out;
7449 		}
7450 	}
7451 
7452 	if (unlikely(vcpu->arch.complete_userspace_io)) {
7453 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7454 		vcpu->arch.complete_userspace_io = NULL;
7455 		r = cui(vcpu);
7456 		if (r <= 0)
7457 			goto out;
7458 	} else
7459 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7460 
7461 	if (kvm_run->immediate_exit)
7462 		r = -EINTR;
7463 	else
7464 		r = vcpu_run(vcpu);
7465 
7466 out:
7467 	kvm_put_guest_fpu(vcpu);
7468 	post_kvm_run_save(vcpu);
7469 	kvm_sigset_deactivate(vcpu);
7470 
7471 	vcpu_put(vcpu);
7472 	return r;
7473 }
7474 
7475 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7476 {
7477 	vcpu_load(vcpu);
7478 
7479 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7480 		/*
7481 		 * We are here if userspace calls get_regs() in the middle of
7482 		 * instruction emulation. Registers state needs to be copied
7483 		 * back from emulation context to vcpu. Userspace shouldn't do
7484 		 * that usually, but some bad designed PV devices (vmware
7485 		 * backdoor interface) need this to work
7486 		 */
7487 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7488 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7489 	}
7490 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7491 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7492 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7493 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7494 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7495 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7496 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7497 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7498 #ifdef CONFIG_X86_64
7499 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7500 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7501 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7502 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7503 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7504 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7505 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7506 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7507 #endif
7508 
7509 	regs->rip = kvm_rip_read(vcpu);
7510 	regs->rflags = kvm_get_rflags(vcpu);
7511 
7512 	vcpu_put(vcpu);
7513 	return 0;
7514 }
7515 
7516 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7517 {
7518 	vcpu_load(vcpu);
7519 
7520 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7521 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7522 
7523 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7524 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7525 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7526 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7527 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7528 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7529 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7530 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7531 #ifdef CONFIG_X86_64
7532 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7533 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7534 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7535 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7536 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7537 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7538 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7539 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7540 #endif
7541 
7542 	kvm_rip_write(vcpu, regs->rip);
7543 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
7544 
7545 	vcpu->arch.exception.pending = false;
7546 
7547 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7548 
7549 	vcpu_put(vcpu);
7550 	return 0;
7551 }
7552 
7553 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7554 {
7555 	struct kvm_segment cs;
7556 
7557 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7558 	*db = cs.db;
7559 	*l = cs.l;
7560 }
7561 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7562 
7563 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7564 				  struct kvm_sregs *sregs)
7565 {
7566 	struct desc_ptr dt;
7567 
7568 	vcpu_load(vcpu);
7569 
7570 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7571 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7572 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7573 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7574 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7575 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7576 
7577 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7578 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7579 
7580 	kvm_x86_ops->get_idt(vcpu, &dt);
7581 	sregs->idt.limit = dt.size;
7582 	sregs->idt.base = dt.address;
7583 	kvm_x86_ops->get_gdt(vcpu, &dt);
7584 	sregs->gdt.limit = dt.size;
7585 	sregs->gdt.base = dt.address;
7586 
7587 	sregs->cr0 = kvm_read_cr0(vcpu);
7588 	sregs->cr2 = vcpu->arch.cr2;
7589 	sregs->cr3 = kvm_read_cr3(vcpu);
7590 	sregs->cr4 = kvm_read_cr4(vcpu);
7591 	sregs->cr8 = kvm_get_cr8(vcpu);
7592 	sregs->efer = vcpu->arch.efer;
7593 	sregs->apic_base = kvm_get_apic_base(vcpu);
7594 
7595 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7596 
7597 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7598 		set_bit(vcpu->arch.interrupt.nr,
7599 			(unsigned long *)sregs->interrupt_bitmap);
7600 
7601 	vcpu_put(vcpu);
7602 	return 0;
7603 }
7604 
7605 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7606 				    struct kvm_mp_state *mp_state)
7607 {
7608 	vcpu_load(vcpu);
7609 
7610 	kvm_apic_accept_events(vcpu);
7611 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7612 					vcpu->arch.pv.pv_unhalted)
7613 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7614 	else
7615 		mp_state->mp_state = vcpu->arch.mp_state;
7616 
7617 	vcpu_put(vcpu);
7618 	return 0;
7619 }
7620 
7621 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7622 				    struct kvm_mp_state *mp_state)
7623 {
7624 	int ret = -EINVAL;
7625 
7626 	vcpu_load(vcpu);
7627 
7628 	if (!lapic_in_kernel(vcpu) &&
7629 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7630 		goto out;
7631 
7632 	/* INITs are latched while in SMM */
7633 	if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7634 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7635 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7636 		goto out;
7637 
7638 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7639 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7640 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7641 	} else
7642 		vcpu->arch.mp_state = mp_state->mp_state;
7643 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7644 
7645 	ret = 0;
7646 out:
7647 	vcpu_put(vcpu);
7648 	return ret;
7649 }
7650 
7651 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7652 		    int reason, bool has_error_code, u32 error_code)
7653 {
7654 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7655 	int ret;
7656 
7657 	init_emulate_ctxt(vcpu);
7658 
7659 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7660 				   has_error_code, error_code);
7661 
7662 	if (ret)
7663 		return EMULATE_FAIL;
7664 
7665 	kvm_rip_write(vcpu, ctxt->eip);
7666 	kvm_set_rflags(vcpu, ctxt->eflags);
7667 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7668 	return EMULATE_DONE;
7669 }
7670 EXPORT_SYMBOL_GPL(kvm_task_switch);
7671 
7672 int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7673 {
7674 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
7675 		/*
7676 		 * When EFER.LME and CR0.PG are set, the processor is in
7677 		 * 64-bit mode (though maybe in a 32-bit code segment).
7678 		 * CR4.PAE and EFER.LMA must be set.
7679 		 */
7680 		if (!(sregs->cr4 & X86_CR4_PAE)
7681 		    || !(sregs->efer & EFER_LMA))
7682 			return -EINVAL;
7683 	} else {
7684 		/*
7685 		 * Not in 64-bit mode: EFER.LMA is clear and the code
7686 		 * segment cannot be 64-bit.
7687 		 */
7688 		if (sregs->efer & EFER_LMA || sregs->cs.l)
7689 			return -EINVAL;
7690 	}
7691 
7692 	return 0;
7693 }
7694 
7695 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7696 				  struct kvm_sregs *sregs)
7697 {
7698 	struct msr_data apic_base_msr;
7699 	int mmu_reset_needed = 0;
7700 	int pending_vec, max_bits, idx;
7701 	struct desc_ptr dt;
7702 	int ret = -EINVAL;
7703 
7704 	vcpu_load(vcpu);
7705 
7706 	if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
7707 			(sregs->cr4 & X86_CR4_OSXSAVE))
7708 		goto out;
7709 
7710 	if (kvm_valid_sregs(vcpu, sregs))
7711 		goto out;
7712 
7713 	apic_base_msr.data = sregs->apic_base;
7714 	apic_base_msr.host_initiated = true;
7715 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
7716 		goto out;
7717 
7718 	dt.size = sregs->idt.limit;
7719 	dt.address = sregs->idt.base;
7720 	kvm_x86_ops->set_idt(vcpu, &dt);
7721 	dt.size = sregs->gdt.limit;
7722 	dt.address = sregs->gdt.base;
7723 	kvm_x86_ops->set_gdt(vcpu, &dt);
7724 
7725 	vcpu->arch.cr2 = sregs->cr2;
7726 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7727 	vcpu->arch.cr3 = sregs->cr3;
7728 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7729 
7730 	kvm_set_cr8(vcpu, sregs->cr8);
7731 
7732 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7733 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
7734 
7735 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7736 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7737 	vcpu->arch.cr0 = sregs->cr0;
7738 
7739 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7740 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7741 	if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7742 		kvm_update_cpuid(vcpu);
7743 
7744 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7745 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7746 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7747 		mmu_reset_needed = 1;
7748 	}
7749 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7750 
7751 	if (mmu_reset_needed)
7752 		kvm_mmu_reset_context(vcpu);
7753 
7754 	max_bits = KVM_NR_INTERRUPTS;
7755 	pending_vec = find_first_bit(
7756 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
7757 	if (pending_vec < max_bits) {
7758 		kvm_queue_interrupt(vcpu, pending_vec, false);
7759 		pr_debug("Set back pending irq %d\n", pending_vec);
7760 	}
7761 
7762 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7763 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7764 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7765 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7766 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7767 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7768 
7769 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7770 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7771 
7772 	update_cr8_intercept(vcpu);
7773 
7774 	/* Older userspace won't unhalt the vcpu on reset. */
7775 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7776 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7777 	    !is_protmode(vcpu))
7778 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7779 
7780 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7781 
7782 	ret = 0;
7783 out:
7784 	vcpu_put(vcpu);
7785 	return ret;
7786 }
7787 
7788 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7789 					struct kvm_guest_debug *dbg)
7790 {
7791 	unsigned long rflags;
7792 	int i, r;
7793 
7794 	vcpu_load(vcpu);
7795 
7796 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7797 		r = -EBUSY;
7798 		if (vcpu->arch.exception.pending)
7799 			goto out;
7800 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7801 			kvm_queue_exception(vcpu, DB_VECTOR);
7802 		else
7803 			kvm_queue_exception(vcpu, BP_VECTOR);
7804 	}
7805 
7806 	/*
7807 	 * Read rflags as long as potentially injected trace flags are still
7808 	 * filtered out.
7809 	 */
7810 	rflags = kvm_get_rflags(vcpu);
7811 
7812 	vcpu->guest_debug = dbg->control;
7813 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7814 		vcpu->guest_debug = 0;
7815 
7816 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7817 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
7818 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7819 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7820 	} else {
7821 		for (i = 0; i < KVM_NR_DB_REGS; i++)
7822 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7823 	}
7824 	kvm_update_dr7(vcpu);
7825 
7826 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7827 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7828 			get_segment_base(vcpu, VCPU_SREG_CS);
7829 
7830 	/*
7831 	 * Trigger an rflags update that will inject or remove the trace
7832 	 * flags.
7833 	 */
7834 	kvm_set_rflags(vcpu, rflags);
7835 
7836 	kvm_x86_ops->update_bp_intercept(vcpu);
7837 
7838 	r = 0;
7839 
7840 out:
7841 	vcpu_put(vcpu);
7842 	return r;
7843 }
7844 
7845 /*
7846  * Translate a guest virtual address to a guest physical address.
7847  */
7848 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7849 				    struct kvm_translation *tr)
7850 {
7851 	unsigned long vaddr = tr->linear_address;
7852 	gpa_t gpa;
7853 	int idx;
7854 
7855 	vcpu_load(vcpu);
7856 
7857 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7858 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7859 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7860 	tr->physical_address = gpa;
7861 	tr->valid = gpa != UNMAPPED_GVA;
7862 	tr->writeable = 1;
7863 	tr->usermode = 0;
7864 
7865 	vcpu_put(vcpu);
7866 	return 0;
7867 }
7868 
7869 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7870 {
7871 	struct fxregs_state *fxsave;
7872 
7873 	vcpu_load(vcpu);
7874 
7875 	fxsave = &vcpu->arch.guest_fpu.state.fxsave;
7876 	memcpy(fpu->fpr, fxsave->st_space, 128);
7877 	fpu->fcw = fxsave->cwd;
7878 	fpu->fsw = fxsave->swd;
7879 	fpu->ftwx = fxsave->twd;
7880 	fpu->last_opcode = fxsave->fop;
7881 	fpu->last_ip = fxsave->rip;
7882 	fpu->last_dp = fxsave->rdp;
7883 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7884 
7885 	vcpu_put(vcpu);
7886 	return 0;
7887 }
7888 
7889 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7890 {
7891 	struct fxregs_state *fxsave;
7892 
7893 	vcpu_load(vcpu);
7894 
7895 	fxsave = &vcpu->arch.guest_fpu.state.fxsave;
7896 
7897 	memcpy(fxsave->st_space, fpu->fpr, 128);
7898 	fxsave->cwd = fpu->fcw;
7899 	fxsave->swd = fpu->fsw;
7900 	fxsave->twd = fpu->ftwx;
7901 	fxsave->fop = fpu->last_opcode;
7902 	fxsave->rip = fpu->last_ip;
7903 	fxsave->rdp = fpu->last_dp;
7904 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7905 
7906 	vcpu_put(vcpu);
7907 	return 0;
7908 }
7909 
7910 static void fx_init(struct kvm_vcpu *vcpu)
7911 {
7912 	fpstate_init(&vcpu->arch.guest_fpu.state);
7913 	if (boot_cpu_has(X86_FEATURE_XSAVES))
7914 		vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7915 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
7916 
7917 	/*
7918 	 * Ensure guest xcr0 is valid for loading
7919 	 */
7920 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7921 
7922 	vcpu->arch.cr0 |= X86_CR0_ET;
7923 }
7924 
7925 /* Swap (qemu) user FPU context for the guest FPU context. */
7926 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7927 {
7928 	preempt_disable();
7929 	copy_fpregs_to_fpstate(&vcpu->arch.user_fpu);
7930 	/* PKRU is separately restored in kvm_x86_ops->run.  */
7931 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
7932 				~XFEATURE_MASK_PKRU);
7933 	preempt_enable();
7934 	trace_kvm_fpu(1);
7935 }
7936 
7937 /* When vcpu_run ends, restore user space FPU context. */
7938 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7939 {
7940 	preempt_disable();
7941 	copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7942 	copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state);
7943 	preempt_enable();
7944 	++vcpu->stat.fpu_reload;
7945 	trace_kvm_fpu(0);
7946 }
7947 
7948 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7949 {
7950 	void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7951 
7952 	kvmclock_reset(vcpu);
7953 
7954 	kvm_x86_ops->vcpu_free(vcpu);
7955 	free_cpumask_var(wbinvd_dirty_mask);
7956 }
7957 
7958 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7959 						unsigned int id)
7960 {
7961 	struct kvm_vcpu *vcpu;
7962 
7963 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7964 		printk_once(KERN_WARNING
7965 		"kvm: SMP vm created on host with unstable TSC; "
7966 		"guest TSC will not be reliable\n");
7967 
7968 	vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7969 
7970 	return vcpu;
7971 }
7972 
7973 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7974 {
7975 	kvm_vcpu_mtrr_init(vcpu);
7976 	vcpu_load(vcpu);
7977 	kvm_vcpu_reset(vcpu, false);
7978 	kvm_mmu_setup(vcpu);
7979 	vcpu_put(vcpu);
7980 	return 0;
7981 }
7982 
7983 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7984 {
7985 	struct msr_data msr;
7986 	struct kvm *kvm = vcpu->kvm;
7987 
7988 	kvm_hv_vcpu_postcreate(vcpu);
7989 
7990 	if (mutex_lock_killable(&vcpu->mutex))
7991 		return;
7992 	vcpu_load(vcpu);
7993 	msr.data = 0x0;
7994 	msr.index = MSR_IA32_TSC;
7995 	msr.host_initiated = true;
7996 	kvm_write_tsc(vcpu, &msr);
7997 	vcpu_put(vcpu);
7998 	mutex_unlock(&vcpu->mutex);
7999 
8000 	if (!kvmclock_periodic_sync)
8001 		return;
8002 
8003 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8004 					KVMCLOCK_SYNC_PERIOD);
8005 }
8006 
8007 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8008 {
8009 	vcpu->arch.apf.msr_val = 0;
8010 
8011 	vcpu_load(vcpu);
8012 	kvm_mmu_unload(vcpu);
8013 	vcpu_put(vcpu);
8014 
8015 	kvm_x86_ops->vcpu_free(vcpu);
8016 }
8017 
8018 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8019 {
8020 	vcpu->arch.hflags = 0;
8021 
8022 	vcpu->arch.smi_pending = 0;
8023 	vcpu->arch.smi_count = 0;
8024 	atomic_set(&vcpu->arch.nmi_queued, 0);
8025 	vcpu->arch.nmi_pending = 0;
8026 	vcpu->arch.nmi_injected = false;
8027 	kvm_clear_interrupt_queue(vcpu);
8028 	kvm_clear_exception_queue(vcpu);
8029 	vcpu->arch.exception.pending = false;
8030 
8031 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8032 	kvm_update_dr0123(vcpu);
8033 	vcpu->arch.dr6 = DR6_INIT;
8034 	kvm_update_dr6(vcpu);
8035 	vcpu->arch.dr7 = DR7_FIXED_1;
8036 	kvm_update_dr7(vcpu);
8037 
8038 	vcpu->arch.cr2 = 0;
8039 
8040 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8041 	vcpu->arch.apf.msr_val = 0;
8042 	vcpu->arch.st.msr_val = 0;
8043 
8044 	kvmclock_reset(vcpu);
8045 
8046 	kvm_clear_async_pf_completion_queue(vcpu);
8047 	kvm_async_pf_hash_reset(vcpu);
8048 	vcpu->arch.apf.halted = false;
8049 
8050 	if (kvm_mpx_supported()) {
8051 		void *mpx_state_buffer;
8052 
8053 		/*
8054 		 * To avoid have the INIT path from kvm_apic_has_events() that be
8055 		 * called with loaded FPU and does not let userspace fix the state.
8056 		 */
8057 		if (init_event)
8058 			kvm_put_guest_fpu(vcpu);
8059 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8060 					XFEATURE_MASK_BNDREGS);
8061 		if (mpx_state_buffer)
8062 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8063 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8064 					XFEATURE_MASK_BNDCSR);
8065 		if (mpx_state_buffer)
8066 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8067 		if (init_event)
8068 			kvm_load_guest_fpu(vcpu);
8069 	}
8070 
8071 	if (!init_event) {
8072 		kvm_pmu_reset(vcpu);
8073 		vcpu->arch.smbase = 0x30000;
8074 
8075 		vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8076 		vcpu->arch.msr_misc_features_enables = 0;
8077 
8078 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8079 	}
8080 
8081 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8082 	vcpu->arch.regs_avail = ~0;
8083 	vcpu->arch.regs_dirty = ~0;
8084 
8085 	vcpu->arch.ia32_xss = 0;
8086 
8087 	kvm_x86_ops->vcpu_reset(vcpu, init_event);
8088 }
8089 
8090 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8091 {
8092 	struct kvm_segment cs;
8093 
8094 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8095 	cs.selector = vector << 8;
8096 	cs.base = vector << 12;
8097 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8098 	kvm_rip_write(vcpu, 0);
8099 }
8100 
8101 int kvm_arch_hardware_enable(void)
8102 {
8103 	struct kvm *kvm;
8104 	struct kvm_vcpu *vcpu;
8105 	int i;
8106 	int ret;
8107 	u64 local_tsc;
8108 	u64 max_tsc = 0;
8109 	bool stable, backwards_tsc = false;
8110 
8111 	kvm_shared_msr_cpu_online();
8112 	ret = kvm_x86_ops->hardware_enable();
8113 	if (ret != 0)
8114 		return ret;
8115 
8116 	local_tsc = rdtsc();
8117 	stable = !kvm_check_tsc_unstable();
8118 	list_for_each_entry(kvm, &vm_list, vm_list) {
8119 		kvm_for_each_vcpu(i, vcpu, kvm) {
8120 			if (!stable && vcpu->cpu == smp_processor_id())
8121 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8122 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8123 				backwards_tsc = true;
8124 				if (vcpu->arch.last_host_tsc > max_tsc)
8125 					max_tsc = vcpu->arch.last_host_tsc;
8126 			}
8127 		}
8128 	}
8129 
8130 	/*
8131 	 * Sometimes, even reliable TSCs go backwards.  This happens on
8132 	 * platforms that reset TSC during suspend or hibernate actions, but
8133 	 * maintain synchronization.  We must compensate.  Fortunately, we can
8134 	 * detect that condition here, which happens early in CPU bringup,
8135 	 * before any KVM threads can be running.  Unfortunately, we can't
8136 	 * bring the TSCs fully up to date with real time, as we aren't yet far
8137 	 * enough into CPU bringup that we know how much real time has actually
8138 	 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8139 	 * variables that haven't been updated yet.
8140 	 *
8141 	 * So we simply find the maximum observed TSC above, then record the
8142 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
8143 	 * the adjustment will be applied.  Note that we accumulate
8144 	 * adjustments, in case multiple suspend cycles happen before some VCPU
8145 	 * gets a chance to run again.  In the event that no KVM threads get a
8146 	 * chance to run, we will miss the entire elapsed period, as we'll have
8147 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8148 	 * loose cycle time.  This isn't too big a deal, since the loss will be
8149 	 * uniform across all VCPUs (not to mention the scenario is extremely
8150 	 * unlikely). It is possible that a second hibernate recovery happens
8151 	 * much faster than a first, causing the observed TSC here to be
8152 	 * smaller; this would require additional padding adjustment, which is
8153 	 * why we set last_host_tsc to the local tsc observed here.
8154 	 *
8155 	 * N.B. - this code below runs only on platforms with reliable TSC,
8156 	 * as that is the only way backwards_tsc is set above.  Also note
8157 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8158 	 * have the same delta_cyc adjustment applied if backwards_tsc
8159 	 * is detected.  Note further, this adjustment is only done once,
8160 	 * as we reset last_host_tsc on all VCPUs to stop this from being
8161 	 * called multiple times (one for each physical CPU bringup).
8162 	 *
8163 	 * Platforms with unreliable TSCs don't have to deal with this, they
8164 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
8165 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
8166 	 * guarantee that they stay in perfect synchronization.
8167 	 */
8168 	if (backwards_tsc) {
8169 		u64 delta_cyc = max_tsc - local_tsc;
8170 		list_for_each_entry(kvm, &vm_list, vm_list) {
8171 			kvm->arch.backwards_tsc_observed = true;
8172 			kvm_for_each_vcpu(i, vcpu, kvm) {
8173 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
8174 				vcpu->arch.last_host_tsc = local_tsc;
8175 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8176 			}
8177 
8178 			/*
8179 			 * We have to disable TSC offset matching.. if you were
8180 			 * booting a VM while issuing an S4 host suspend....
8181 			 * you may have some problem.  Solving this issue is
8182 			 * left as an exercise to the reader.
8183 			 */
8184 			kvm->arch.last_tsc_nsec = 0;
8185 			kvm->arch.last_tsc_write = 0;
8186 		}
8187 
8188 	}
8189 	return 0;
8190 }
8191 
8192 void kvm_arch_hardware_disable(void)
8193 {
8194 	kvm_x86_ops->hardware_disable();
8195 	drop_user_return_notifiers();
8196 }
8197 
8198 int kvm_arch_hardware_setup(void)
8199 {
8200 	int r;
8201 
8202 	r = kvm_x86_ops->hardware_setup();
8203 	if (r != 0)
8204 		return r;
8205 
8206 	if (kvm_has_tsc_control) {
8207 		/*
8208 		 * Make sure the user can only configure tsc_khz values that
8209 		 * fit into a signed integer.
8210 		 * A min value is not calculated needed because it will always
8211 		 * be 1 on all machines.
8212 		 */
8213 		u64 max = min(0x7fffffffULL,
8214 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
8215 		kvm_max_guest_tsc_khz = max;
8216 
8217 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
8218 	}
8219 
8220 	kvm_init_msr_list();
8221 	return 0;
8222 }
8223 
8224 void kvm_arch_hardware_unsetup(void)
8225 {
8226 	kvm_x86_ops->hardware_unsetup();
8227 }
8228 
8229 void kvm_arch_check_processor_compat(void *rtn)
8230 {
8231 	kvm_x86_ops->check_processor_compatibility(rtn);
8232 }
8233 
8234 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8235 {
8236 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8237 }
8238 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8239 
8240 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8241 {
8242 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8243 }
8244 
8245 struct static_key kvm_no_apic_vcpu __read_mostly;
8246 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8247 
8248 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8249 {
8250 	struct page *page;
8251 	int r;
8252 
8253 	vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
8254 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
8255 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
8256 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8257 	else
8258 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
8259 
8260 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
8261 	if (!page) {
8262 		r = -ENOMEM;
8263 		goto fail;
8264 	}
8265 	vcpu->arch.pio_data = page_address(page);
8266 
8267 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
8268 
8269 	r = kvm_mmu_create(vcpu);
8270 	if (r < 0)
8271 		goto fail_free_pio_data;
8272 
8273 	if (irqchip_in_kernel(vcpu->kvm)) {
8274 		r = kvm_create_lapic(vcpu);
8275 		if (r < 0)
8276 			goto fail_mmu_destroy;
8277 	} else
8278 		static_key_slow_inc(&kvm_no_apic_vcpu);
8279 
8280 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8281 				       GFP_KERNEL);
8282 	if (!vcpu->arch.mce_banks) {
8283 		r = -ENOMEM;
8284 		goto fail_free_lapic;
8285 	}
8286 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8287 
8288 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8289 		r = -ENOMEM;
8290 		goto fail_free_mce_banks;
8291 	}
8292 
8293 	fx_init(vcpu);
8294 
8295 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8296 
8297 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8298 
8299 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8300 
8301 	kvm_async_pf_hash_reset(vcpu);
8302 	kvm_pmu_init(vcpu);
8303 
8304 	vcpu->arch.pending_external_vector = -1;
8305 	vcpu->arch.preempted_in_kernel = false;
8306 
8307 	kvm_hv_vcpu_init(vcpu);
8308 
8309 	return 0;
8310 
8311 fail_free_mce_banks:
8312 	kfree(vcpu->arch.mce_banks);
8313 fail_free_lapic:
8314 	kvm_free_lapic(vcpu);
8315 fail_mmu_destroy:
8316 	kvm_mmu_destroy(vcpu);
8317 fail_free_pio_data:
8318 	free_page((unsigned long)vcpu->arch.pio_data);
8319 fail:
8320 	return r;
8321 }
8322 
8323 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8324 {
8325 	int idx;
8326 
8327 	kvm_hv_vcpu_uninit(vcpu);
8328 	kvm_pmu_destroy(vcpu);
8329 	kfree(vcpu->arch.mce_banks);
8330 	kvm_free_lapic(vcpu);
8331 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8332 	kvm_mmu_destroy(vcpu);
8333 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
8334 	free_page((unsigned long)vcpu->arch.pio_data);
8335 	if (!lapic_in_kernel(vcpu))
8336 		static_key_slow_dec(&kvm_no_apic_vcpu);
8337 }
8338 
8339 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8340 {
8341 	kvm_x86_ops->sched_in(vcpu, cpu);
8342 }
8343 
8344 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8345 {
8346 	if (type)
8347 		return -EINVAL;
8348 
8349 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8350 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8351 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8352 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8353 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8354 
8355 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8356 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8357 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8358 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8359 		&kvm->arch.irq_sources_bitmap);
8360 
8361 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8362 	mutex_init(&kvm->arch.apic_map_lock);
8363 	mutex_init(&kvm->arch.hyperv.hv_lock);
8364 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8365 
8366 	kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8367 	pvclock_update_vm_gtod_copy(kvm);
8368 
8369 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8370 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8371 
8372 	kvm_page_track_init(kvm);
8373 	kvm_mmu_init_vm(kvm);
8374 
8375 	if (kvm_x86_ops->vm_init)
8376 		return kvm_x86_ops->vm_init(kvm);
8377 
8378 	return 0;
8379 }
8380 
8381 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8382 {
8383 	vcpu_load(vcpu);
8384 	kvm_mmu_unload(vcpu);
8385 	vcpu_put(vcpu);
8386 }
8387 
8388 static void kvm_free_vcpus(struct kvm *kvm)
8389 {
8390 	unsigned int i;
8391 	struct kvm_vcpu *vcpu;
8392 
8393 	/*
8394 	 * Unpin any mmu pages first.
8395 	 */
8396 	kvm_for_each_vcpu(i, vcpu, kvm) {
8397 		kvm_clear_async_pf_completion_queue(vcpu);
8398 		kvm_unload_vcpu_mmu(vcpu);
8399 	}
8400 	kvm_for_each_vcpu(i, vcpu, kvm)
8401 		kvm_arch_vcpu_free(vcpu);
8402 
8403 	mutex_lock(&kvm->lock);
8404 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8405 		kvm->vcpus[i] = NULL;
8406 
8407 	atomic_set(&kvm->online_vcpus, 0);
8408 	mutex_unlock(&kvm->lock);
8409 }
8410 
8411 void kvm_arch_sync_events(struct kvm *kvm)
8412 {
8413 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8414 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8415 	kvm_free_pit(kvm);
8416 }
8417 
8418 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8419 {
8420 	int i, r;
8421 	unsigned long hva;
8422 	struct kvm_memslots *slots = kvm_memslots(kvm);
8423 	struct kvm_memory_slot *slot, old;
8424 
8425 	/* Called with kvm->slots_lock held.  */
8426 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8427 		return -EINVAL;
8428 
8429 	slot = id_to_memslot(slots, id);
8430 	if (size) {
8431 		if (slot->npages)
8432 			return -EEXIST;
8433 
8434 		/*
8435 		 * MAP_SHARED to prevent internal slot pages from being moved
8436 		 * by fork()/COW.
8437 		 */
8438 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8439 			      MAP_SHARED | MAP_ANONYMOUS, 0);
8440 		if (IS_ERR((void *)hva))
8441 			return PTR_ERR((void *)hva);
8442 	} else {
8443 		if (!slot->npages)
8444 			return 0;
8445 
8446 		hva = 0;
8447 	}
8448 
8449 	old = *slot;
8450 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8451 		struct kvm_userspace_memory_region m;
8452 
8453 		m.slot = id | (i << 16);
8454 		m.flags = 0;
8455 		m.guest_phys_addr = gpa;
8456 		m.userspace_addr = hva;
8457 		m.memory_size = size;
8458 		r = __kvm_set_memory_region(kvm, &m);
8459 		if (r < 0)
8460 			return r;
8461 	}
8462 
8463 	if (!size) {
8464 		r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8465 		WARN_ON(r < 0);
8466 	}
8467 
8468 	return 0;
8469 }
8470 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8471 
8472 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8473 {
8474 	int r;
8475 
8476 	mutex_lock(&kvm->slots_lock);
8477 	r = __x86_set_memory_region(kvm, id, gpa, size);
8478 	mutex_unlock(&kvm->slots_lock);
8479 
8480 	return r;
8481 }
8482 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8483 
8484 void kvm_arch_destroy_vm(struct kvm *kvm)
8485 {
8486 	if (current->mm == kvm->mm) {
8487 		/*
8488 		 * Free memory regions allocated on behalf of userspace,
8489 		 * unless the the memory map has changed due to process exit
8490 		 * or fd copying.
8491 		 */
8492 		x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8493 		x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8494 		x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8495 	}
8496 	if (kvm_x86_ops->vm_destroy)
8497 		kvm_x86_ops->vm_destroy(kvm);
8498 	kvm_pic_destroy(kvm);
8499 	kvm_ioapic_destroy(kvm);
8500 	kvm_free_vcpus(kvm);
8501 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8502 	kvm_mmu_uninit_vm(kvm);
8503 	kvm_page_track_cleanup(kvm);
8504 }
8505 
8506 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8507 			   struct kvm_memory_slot *dont)
8508 {
8509 	int i;
8510 
8511 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8512 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8513 			kvfree(free->arch.rmap[i]);
8514 			free->arch.rmap[i] = NULL;
8515 		}
8516 		if (i == 0)
8517 			continue;
8518 
8519 		if (!dont || free->arch.lpage_info[i - 1] !=
8520 			     dont->arch.lpage_info[i - 1]) {
8521 			kvfree(free->arch.lpage_info[i - 1]);
8522 			free->arch.lpage_info[i - 1] = NULL;
8523 		}
8524 	}
8525 
8526 	kvm_page_track_free_memslot(free, dont);
8527 }
8528 
8529 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8530 			    unsigned long npages)
8531 {
8532 	int i;
8533 
8534 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8535 		struct kvm_lpage_info *linfo;
8536 		unsigned long ugfn;
8537 		int lpages;
8538 		int level = i + 1;
8539 
8540 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
8541 				      slot->base_gfn, level) + 1;
8542 
8543 		slot->arch.rmap[i] =
8544 			kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL);
8545 		if (!slot->arch.rmap[i])
8546 			goto out_free;
8547 		if (i == 0)
8548 			continue;
8549 
8550 		linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL);
8551 		if (!linfo)
8552 			goto out_free;
8553 
8554 		slot->arch.lpage_info[i - 1] = linfo;
8555 
8556 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8557 			linfo[0].disallow_lpage = 1;
8558 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8559 			linfo[lpages - 1].disallow_lpage = 1;
8560 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
8561 		/*
8562 		 * If the gfn and userspace address are not aligned wrt each
8563 		 * other, or if explicitly asked to, disable large page
8564 		 * support for this slot
8565 		 */
8566 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8567 		    !kvm_largepages_enabled()) {
8568 			unsigned long j;
8569 
8570 			for (j = 0; j < lpages; ++j)
8571 				linfo[j].disallow_lpage = 1;
8572 		}
8573 	}
8574 
8575 	if (kvm_page_track_create_memslot(slot, npages))
8576 		goto out_free;
8577 
8578 	return 0;
8579 
8580 out_free:
8581 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8582 		kvfree(slot->arch.rmap[i]);
8583 		slot->arch.rmap[i] = NULL;
8584 		if (i == 0)
8585 			continue;
8586 
8587 		kvfree(slot->arch.lpage_info[i - 1]);
8588 		slot->arch.lpage_info[i - 1] = NULL;
8589 	}
8590 	return -ENOMEM;
8591 }
8592 
8593 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8594 {
8595 	/*
8596 	 * memslots->generation has been incremented.
8597 	 * mmio generation may have reached its maximum value.
8598 	 */
8599 	kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8600 }
8601 
8602 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8603 				struct kvm_memory_slot *memslot,
8604 				const struct kvm_userspace_memory_region *mem,
8605 				enum kvm_mr_change change)
8606 {
8607 	return 0;
8608 }
8609 
8610 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8611 				     struct kvm_memory_slot *new)
8612 {
8613 	/* Still write protect RO slot */
8614 	if (new->flags & KVM_MEM_READONLY) {
8615 		kvm_mmu_slot_remove_write_access(kvm, new);
8616 		return;
8617 	}
8618 
8619 	/*
8620 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
8621 	 *
8622 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
8623 	 *
8624 	 *  - KVM_MR_CREATE with dirty logging is disabled
8625 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8626 	 *
8627 	 * The reason is, in case of PML, we need to set D-bit for any slots
8628 	 * with dirty logging disabled in order to eliminate unnecessary GPA
8629 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
8630 	 * guarantees leaving PML enabled during guest's lifetime won't have
8631 	 * any additonal overhead from PML when guest is running with dirty
8632 	 * logging disabled for memory slots.
8633 	 *
8634 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8635 	 * to dirty logging mode.
8636 	 *
8637 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8638 	 *
8639 	 * In case of write protect:
8640 	 *
8641 	 * Write protect all pages for dirty logging.
8642 	 *
8643 	 * All the sptes including the large sptes which point to this
8644 	 * slot are set to readonly. We can not create any new large
8645 	 * spte on this slot until the end of the logging.
8646 	 *
8647 	 * See the comments in fast_page_fault().
8648 	 */
8649 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8650 		if (kvm_x86_ops->slot_enable_log_dirty)
8651 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8652 		else
8653 			kvm_mmu_slot_remove_write_access(kvm, new);
8654 	} else {
8655 		if (kvm_x86_ops->slot_disable_log_dirty)
8656 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8657 	}
8658 }
8659 
8660 void kvm_arch_commit_memory_region(struct kvm *kvm,
8661 				const struct kvm_userspace_memory_region *mem,
8662 				const struct kvm_memory_slot *old,
8663 				const struct kvm_memory_slot *new,
8664 				enum kvm_mr_change change)
8665 {
8666 	int nr_mmu_pages = 0;
8667 
8668 	if (!kvm->arch.n_requested_mmu_pages)
8669 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8670 
8671 	if (nr_mmu_pages)
8672 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8673 
8674 	/*
8675 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
8676 	 * sptes have to be split.  If live migration is successful, the guest
8677 	 * in the source machine will be destroyed and large sptes will be
8678 	 * created in the destination. However, if the guest continues to run
8679 	 * in the source machine (for example if live migration fails), small
8680 	 * sptes will remain around and cause bad performance.
8681 	 *
8682 	 * Scan sptes if dirty logging has been stopped, dropping those
8683 	 * which can be collapsed into a single large-page spte.  Later
8684 	 * page faults will create the large-page sptes.
8685 	 */
8686 	if ((change != KVM_MR_DELETE) &&
8687 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8688 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8689 		kvm_mmu_zap_collapsible_sptes(kvm, new);
8690 
8691 	/*
8692 	 * Set up write protection and/or dirty logging for the new slot.
8693 	 *
8694 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8695 	 * been zapped so no dirty logging staff is needed for old slot. For
8696 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8697 	 * new and it's also covered when dealing with the new slot.
8698 	 *
8699 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
8700 	 */
8701 	if (change != KVM_MR_DELETE)
8702 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8703 }
8704 
8705 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8706 {
8707 	kvm_mmu_invalidate_zap_all_pages(kvm);
8708 }
8709 
8710 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8711 				   struct kvm_memory_slot *slot)
8712 {
8713 	kvm_page_track_flush_slot(kvm, slot);
8714 }
8715 
8716 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8717 {
8718 	if (!list_empty_careful(&vcpu->async_pf.done))
8719 		return true;
8720 
8721 	if (kvm_apic_has_events(vcpu))
8722 		return true;
8723 
8724 	if (vcpu->arch.pv.pv_unhalted)
8725 		return true;
8726 
8727 	if (vcpu->arch.exception.pending)
8728 		return true;
8729 
8730 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
8731 	    (vcpu->arch.nmi_pending &&
8732 	     kvm_x86_ops->nmi_allowed(vcpu)))
8733 		return true;
8734 
8735 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
8736 	    (vcpu->arch.smi_pending && !is_smm(vcpu)))
8737 		return true;
8738 
8739 	if (kvm_arch_interrupt_allowed(vcpu) &&
8740 	    kvm_cpu_has_interrupt(vcpu))
8741 		return true;
8742 
8743 	if (kvm_hv_has_stimer_pending(vcpu))
8744 		return true;
8745 
8746 	return false;
8747 }
8748 
8749 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8750 {
8751 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8752 }
8753 
8754 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
8755 {
8756 	return vcpu->arch.preempted_in_kernel;
8757 }
8758 
8759 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8760 {
8761 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8762 }
8763 
8764 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8765 {
8766 	return kvm_x86_ops->interrupt_allowed(vcpu);
8767 }
8768 
8769 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8770 {
8771 	if (is_64_bit_mode(vcpu))
8772 		return kvm_rip_read(vcpu);
8773 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8774 		     kvm_rip_read(vcpu));
8775 }
8776 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8777 
8778 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8779 {
8780 	return kvm_get_linear_rip(vcpu) == linear_rip;
8781 }
8782 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8783 
8784 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8785 {
8786 	unsigned long rflags;
8787 
8788 	rflags = kvm_x86_ops->get_rflags(vcpu);
8789 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8790 		rflags &= ~X86_EFLAGS_TF;
8791 	return rflags;
8792 }
8793 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8794 
8795 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8796 {
8797 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8798 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8799 		rflags |= X86_EFLAGS_TF;
8800 	kvm_x86_ops->set_rflags(vcpu, rflags);
8801 }
8802 
8803 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8804 {
8805 	__kvm_set_rflags(vcpu, rflags);
8806 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8807 }
8808 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8809 
8810 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8811 {
8812 	int r;
8813 
8814 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8815 	      work->wakeup_all)
8816 		return;
8817 
8818 	r = kvm_mmu_reload(vcpu);
8819 	if (unlikely(r))
8820 		return;
8821 
8822 	if (!vcpu->arch.mmu.direct_map &&
8823 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8824 		return;
8825 
8826 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8827 }
8828 
8829 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8830 {
8831 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8832 }
8833 
8834 static inline u32 kvm_async_pf_next_probe(u32 key)
8835 {
8836 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8837 }
8838 
8839 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8840 {
8841 	u32 key = kvm_async_pf_hash_fn(gfn);
8842 
8843 	while (vcpu->arch.apf.gfns[key] != ~0)
8844 		key = kvm_async_pf_next_probe(key);
8845 
8846 	vcpu->arch.apf.gfns[key] = gfn;
8847 }
8848 
8849 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8850 {
8851 	int i;
8852 	u32 key = kvm_async_pf_hash_fn(gfn);
8853 
8854 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8855 		     (vcpu->arch.apf.gfns[key] != gfn &&
8856 		      vcpu->arch.apf.gfns[key] != ~0); i++)
8857 		key = kvm_async_pf_next_probe(key);
8858 
8859 	return key;
8860 }
8861 
8862 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8863 {
8864 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8865 }
8866 
8867 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8868 {
8869 	u32 i, j, k;
8870 
8871 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8872 	while (true) {
8873 		vcpu->arch.apf.gfns[i] = ~0;
8874 		do {
8875 			j = kvm_async_pf_next_probe(j);
8876 			if (vcpu->arch.apf.gfns[j] == ~0)
8877 				return;
8878 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8879 			/*
8880 			 * k lies cyclically in ]i,j]
8881 			 * |    i.k.j |
8882 			 * |....j i.k.| or  |.k..j i...|
8883 			 */
8884 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8885 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8886 		i = j;
8887 	}
8888 }
8889 
8890 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8891 {
8892 
8893 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8894 				      sizeof(val));
8895 }
8896 
8897 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
8898 {
8899 
8900 	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
8901 				      sizeof(u32));
8902 }
8903 
8904 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8905 				     struct kvm_async_pf *work)
8906 {
8907 	struct x86_exception fault;
8908 
8909 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8910 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8911 
8912 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8913 	    (vcpu->arch.apf.send_user_only &&
8914 	     kvm_x86_ops->get_cpl(vcpu) == 0))
8915 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8916 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8917 		fault.vector = PF_VECTOR;
8918 		fault.error_code_valid = true;
8919 		fault.error_code = 0;
8920 		fault.nested_page_fault = false;
8921 		fault.address = work->arch.token;
8922 		fault.async_page_fault = true;
8923 		kvm_inject_page_fault(vcpu, &fault);
8924 	}
8925 }
8926 
8927 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8928 				 struct kvm_async_pf *work)
8929 {
8930 	struct x86_exception fault;
8931 	u32 val;
8932 
8933 	if (work->wakeup_all)
8934 		work->arch.token = ~0; /* broadcast wakeup */
8935 	else
8936 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8937 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
8938 
8939 	if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
8940 	    !apf_get_user(vcpu, &val)) {
8941 		if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
8942 		    vcpu->arch.exception.pending &&
8943 		    vcpu->arch.exception.nr == PF_VECTOR &&
8944 		    !apf_put_user(vcpu, 0)) {
8945 			vcpu->arch.exception.injected = false;
8946 			vcpu->arch.exception.pending = false;
8947 			vcpu->arch.exception.nr = 0;
8948 			vcpu->arch.exception.has_error_code = false;
8949 			vcpu->arch.exception.error_code = 0;
8950 		} else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8951 			fault.vector = PF_VECTOR;
8952 			fault.error_code_valid = true;
8953 			fault.error_code = 0;
8954 			fault.nested_page_fault = false;
8955 			fault.address = work->arch.token;
8956 			fault.async_page_fault = true;
8957 			kvm_inject_page_fault(vcpu, &fault);
8958 		}
8959 	}
8960 	vcpu->arch.apf.halted = false;
8961 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8962 }
8963 
8964 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8965 {
8966 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8967 		return true;
8968 	else
8969 		return kvm_can_do_async_pf(vcpu);
8970 }
8971 
8972 void kvm_arch_start_assignment(struct kvm *kvm)
8973 {
8974 	atomic_inc(&kvm->arch.assigned_device_count);
8975 }
8976 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8977 
8978 void kvm_arch_end_assignment(struct kvm *kvm)
8979 {
8980 	atomic_dec(&kvm->arch.assigned_device_count);
8981 }
8982 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8983 
8984 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8985 {
8986 	return atomic_read(&kvm->arch.assigned_device_count);
8987 }
8988 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8989 
8990 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8991 {
8992 	atomic_inc(&kvm->arch.noncoherent_dma_count);
8993 }
8994 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8995 
8996 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8997 {
8998 	atomic_dec(&kvm->arch.noncoherent_dma_count);
8999 }
9000 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9001 
9002 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9003 {
9004 	return atomic_read(&kvm->arch.noncoherent_dma_count);
9005 }
9006 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9007 
9008 bool kvm_arch_has_irq_bypass(void)
9009 {
9010 	return kvm_x86_ops->update_pi_irte != NULL;
9011 }
9012 
9013 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9014 				      struct irq_bypass_producer *prod)
9015 {
9016 	struct kvm_kernel_irqfd *irqfd =
9017 		container_of(cons, struct kvm_kernel_irqfd, consumer);
9018 
9019 	irqfd->producer = prod;
9020 
9021 	return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9022 					   prod->irq, irqfd->gsi, 1);
9023 }
9024 
9025 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9026 				      struct irq_bypass_producer *prod)
9027 {
9028 	int ret;
9029 	struct kvm_kernel_irqfd *irqfd =
9030 		container_of(cons, struct kvm_kernel_irqfd, consumer);
9031 
9032 	WARN_ON(irqfd->producer != prod);
9033 	irqfd->producer = NULL;
9034 
9035 	/*
9036 	 * When producer of consumer is unregistered, we change back to
9037 	 * remapped mode, so we can re-use the current implementation
9038 	 * when the irq is masked/disabled or the consumer side (KVM
9039 	 * int this case doesn't want to receive the interrupts.
9040 	*/
9041 	ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9042 	if (ret)
9043 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9044 		       " fails: %d\n", irqfd->consumer.token, ret);
9045 }
9046 
9047 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9048 				   uint32_t guest_irq, bool set)
9049 {
9050 	if (!kvm_x86_ops->update_pi_irte)
9051 		return -EINVAL;
9052 
9053 	return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9054 }
9055 
9056 bool kvm_vector_hashing_enabled(void)
9057 {
9058 	return vector_hashing;
9059 }
9060 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9061 
9062 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9063 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9064 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9065 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9066 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9067 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9068 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9069 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9070 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9071 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9072 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9073 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9074 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9075 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9076 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9077 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9078 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9079 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9080 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
9081