1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 19 #include <linux/kvm_host.h> 20 #include "irq.h" 21 #include "mmu.h" 22 #include "i8254.h" 23 #include "tss.h" 24 #include "kvm_cache_regs.h" 25 #include "kvm_emulate.h" 26 #include "x86.h" 27 #include "cpuid.h" 28 #include "pmu.h" 29 #include "hyperv.h" 30 #include "lapic.h" 31 32 #include <linux/clocksource.h> 33 #include <linux/interrupt.h> 34 #include <linux/kvm.h> 35 #include <linux/fs.h> 36 #include <linux/vmalloc.h> 37 #include <linux/export.h> 38 #include <linux/moduleparam.h> 39 #include <linux/mman.h> 40 #include <linux/highmem.h> 41 #include <linux/iommu.h> 42 #include <linux/intel-iommu.h> 43 #include <linux/cpufreq.h> 44 #include <linux/user-return-notifier.h> 45 #include <linux/srcu.h> 46 #include <linux/slab.h> 47 #include <linux/perf_event.h> 48 #include <linux/uaccess.h> 49 #include <linux/hash.h> 50 #include <linux/pci.h> 51 #include <linux/timekeeper_internal.h> 52 #include <linux/pvclock_gtod.h> 53 #include <linux/kvm_irqfd.h> 54 #include <linux/irqbypass.h> 55 #include <linux/sched/stat.h> 56 #include <linux/sched/isolation.h> 57 #include <linux/mem_encrypt.h> 58 59 #include <trace/events/kvm.h> 60 61 #include <asm/debugreg.h> 62 #include <asm/msr.h> 63 #include <asm/desc.h> 64 #include <asm/mce.h> 65 #include <linux/kernel_stat.h> 66 #include <asm/fpu/internal.h> /* Ugh! */ 67 #include <asm/pvclock.h> 68 #include <asm/div64.h> 69 #include <asm/irq_remapping.h> 70 #include <asm/mshyperv.h> 71 #include <asm/hypervisor.h> 72 #include <asm/intel_pt.h> 73 #include <asm/emulate_prefix.h> 74 #include <clocksource/hyperv_timer.h> 75 76 #define CREATE_TRACE_POINTS 77 #include "trace.h" 78 79 #define MAX_IO_MSRS 256 80 #define KVM_MAX_MCE_BANKS 32 81 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P; 82 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported); 83 84 #define emul_to_vcpu(ctxt) \ 85 ((struct kvm_vcpu *)(ctxt)->vcpu) 86 87 /* EFER defaults: 88 * - enable syscall per default because its emulated by KVM 89 * - enable LME and LMA per default on 64 bit KVM 90 */ 91 #ifdef CONFIG_X86_64 92 static 93 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 94 #else 95 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 96 #endif 97 98 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 99 100 #define VM_STAT(x, ...) offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__ 101 #define VCPU_STAT(x, ...) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__ 102 103 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 104 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 105 106 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 107 static void process_nmi(struct kvm_vcpu *vcpu); 108 static void enter_smm(struct kvm_vcpu *vcpu); 109 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 110 static void store_regs(struct kvm_vcpu *vcpu); 111 static int sync_regs(struct kvm_vcpu *vcpu); 112 113 struct kvm_x86_ops kvm_x86_ops __read_mostly; 114 EXPORT_SYMBOL_GPL(kvm_x86_ops); 115 116 static bool __read_mostly ignore_msrs = 0; 117 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 118 119 static bool __read_mostly report_ignored_msrs = true; 120 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 121 122 unsigned int min_timer_period_us = 200; 123 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 124 125 static bool __read_mostly kvmclock_periodic_sync = true; 126 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 127 128 bool __read_mostly kvm_has_tsc_control; 129 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 130 u32 __read_mostly kvm_max_guest_tsc_khz; 131 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 132 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits; 133 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits); 134 u64 __read_mostly kvm_max_tsc_scaling_ratio; 135 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio); 136 u64 __read_mostly kvm_default_tsc_scaling_ratio; 137 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio); 138 139 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 140 static u32 __read_mostly tsc_tolerance_ppm = 250; 141 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 142 143 /* 144 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 145 * adaptive tuning starting from default advancment of 1000ns. '0' disables 146 * advancement entirely. Any other value is used as-is and disables adaptive 147 * tuning, i.e. allows priveleged userspace to set an exact advancement time. 148 */ 149 static int __read_mostly lapic_timer_advance_ns = -1; 150 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 151 152 static bool __read_mostly vector_hashing = true; 153 module_param(vector_hashing, bool, S_IRUGO); 154 155 bool __read_mostly enable_vmware_backdoor = false; 156 module_param(enable_vmware_backdoor, bool, S_IRUGO); 157 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 158 159 static bool __read_mostly force_emulation_prefix = false; 160 module_param(force_emulation_prefix, bool, S_IRUGO); 161 162 int __read_mostly pi_inject_timer = -1; 163 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 164 165 #define KVM_NR_SHARED_MSRS 16 166 167 struct kvm_shared_msrs_global { 168 int nr; 169 u32 msrs[KVM_NR_SHARED_MSRS]; 170 }; 171 172 struct kvm_shared_msrs { 173 struct user_return_notifier urn; 174 bool registered; 175 struct kvm_shared_msr_values { 176 u64 host; 177 u64 curr; 178 } values[KVM_NR_SHARED_MSRS]; 179 }; 180 181 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; 182 static struct kvm_shared_msrs __percpu *shared_msrs; 183 184 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 185 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 186 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 187 | XFEATURE_MASK_PKRU) 188 189 u64 __read_mostly host_efer; 190 EXPORT_SYMBOL_GPL(host_efer); 191 192 static u64 __read_mostly host_xss; 193 u64 __read_mostly supported_xss; 194 EXPORT_SYMBOL_GPL(supported_xss); 195 196 struct kvm_stats_debugfs_item debugfs_entries[] = { 197 { "pf_fixed", VCPU_STAT(pf_fixed) }, 198 { "pf_guest", VCPU_STAT(pf_guest) }, 199 { "tlb_flush", VCPU_STAT(tlb_flush) }, 200 { "invlpg", VCPU_STAT(invlpg) }, 201 { "exits", VCPU_STAT(exits) }, 202 { "io_exits", VCPU_STAT(io_exits) }, 203 { "mmio_exits", VCPU_STAT(mmio_exits) }, 204 { "signal_exits", VCPU_STAT(signal_exits) }, 205 { "irq_window", VCPU_STAT(irq_window_exits) }, 206 { "nmi_window", VCPU_STAT(nmi_window_exits) }, 207 { "halt_exits", VCPU_STAT(halt_exits) }, 208 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) }, 209 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) }, 210 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) }, 211 { "halt_wakeup", VCPU_STAT(halt_wakeup) }, 212 { "hypercalls", VCPU_STAT(hypercalls) }, 213 { "request_irq", VCPU_STAT(request_irq_exits) }, 214 { "irq_exits", VCPU_STAT(irq_exits) }, 215 { "host_state_reload", VCPU_STAT(host_state_reload) }, 216 { "fpu_reload", VCPU_STAT(fpu_reload) }, 217 { "insn_emulation", VCPU_STAT(insn_emulation) }, 218 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, 219 { "irq_injections", VCPU_STAT(irq_injections) }, 220 { "nmi_injections", VCPU_STAT(nmi_injections) }, 221 { "req_event", VCPU_STAT(req_event) }, 222 { "l1d_flush", VCPU_STAT(l1d_flush) }, 223 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, 224 { "mmu_pte_write", VM_STAT(mmu_pte_write) }, 225 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, 226 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, 227 { "mmu_flooded", VM_STAT(mmu_flooded) }, 228 { "mmu_recycled", VM_STAT(mmu_recycled) }, 229 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, 230 { "mmu_unsync", VM_STAT(mmu_unsync) }, 231 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, 232 { "largepages", VM_STAT(lpages, .mode = 0444) }, 233 { "nx_largepages_splitted", VM_STAT(nx_lpage_splits, .mode = 0444) }, 234 { "max_mmu_page_hash_collisions", 235 VM_STAT(max_mmu_page_hash_collisions) }, 236 { NULL } 237 }; 238 239 u64 __read_mostly host_xcr0; 240 u64 __read_mostly supported_xcr0; 241 EXPORT_SYMBOL_GPL(supported_xcr0); 242 243 struct kmem_cache *x86_fpu_cache; 244 EXPORT_SYMBOL_GPL(x86_fpu_cache); 245 246 static struct kmem_cache *x86_emulator_cache; 247 248 static struct kmem_cache *kvm_alloc_emulator_cache(void) 249 { 250 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 251 unsigned int size = sizeof(struct x86_emulate_ctxt); 252 253 return kmem_cache_create_usercopy("x86_emulator", size, 254 __alignof__(struct x86_emulate_ctxt), 255 SLAB_ACCOUNT, useroffset, 256 size - useroffset, NULL); 257 } 258 259 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 260 261 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 262 { 263 int i; 264 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) 265 vcpu->arch.apf.gfns[i] = ~0; 266 } 267 268 static void kvm_on_user_return(struct user_return_notifier *urn) 269 { 270 unsigned slot; 271 struct kvm_shared_msrs *locals 272 = container_of(urn, struct kvm_shared_msrs, urn); 273 struct kvm_shared_msr_values *values; 274 unsigned long flags; 275 276 /* 277 * Disabling irqs at this point since the following code could be 278 * interrupted and executed through kvm_arch_hardware_disable() 279 */ 280 local_irq_save(flags); 281 if (locals->registered) { 282 locals->registered = false; 283 user_return_notifier_unregister(urn); 284 } 285 local_irq_restore(flags); 286 for (slot = 0; slot < shared_msrs_global.nr; ++slot) { 287 values = &locals->values[slot]; 288 if (values->host != values->curr) { 289 wrmsrl(shared_msrs_global.msrs[slot], values->host); 290 values->curr = values->host; 291 } 292 } 293 } 294 295 void kvm_define_shared_msr(unsigned slot, u32 msr) 296 { 297 BUG_ON(slot >= KVM_NR_SHARED_MSRS); 298 shared_msrs_global.msrs[slot] = msr; 299 if (slot >= shared_msrs_global.nr) 300 shared_msrs_global.nr = slot + 1; 301 } 302 EXPORT_SYMBOL_GPL(kvm_define_shared_msr); 303 304 static void kvm_shared_msr_cpu_online(void) 305 { 306 unsigned int cpu = smp_processor_id(); 307 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 308 u64 value; 309 int i; 310 311 for (i = 0; i < shared_msrs_global.nr; ++i) { 312 rdmsrl_safe(shared_msrs_global.msrs[i], &value); 313 smsr->values[i].host = value; 314 smsr->values[i].curr = value; 315 } 316 } 317 318 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) 319 { 320 unsigned int cpu = smp_processor_id(); 321 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 322 int err; 323 324 value = (value & mask) | (smsr->values[slot].host & ~mask); 325 if (value == smsr->values[slot].curr) 326 return 0; 327 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value); 328 if (err) 329 return 1; 330 331 smsr->values[slot].curr = value; 332 if (!smsr->registered) { 333 smsr->urn.on_user_return = kvm_on_user_return; 334 user_return_notifier_register(&smsr->urn); 335 smsr->registered = true; 336 } 337 return 0; 338 } 339 EXPORT_SYMBOL_GPL(kvm_set_shared_msr); 340 341 static void drop_user_return_notifiers(void) 342 { 343 unsigned int cpu = smp_processor_id(); 344 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 345 346 if (smsr->registered) 347 kvm_on_user_return(&smsr->urn); 348 } 349 350 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 351 { 352 return vcpu->arch.apic_base; 353 } 354 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 355 356 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 357 { 358 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 359 } 360 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 361 362 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 363 { 364 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 365 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 366 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff | 367 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 368 369 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 370 return 1; 371 if (!msr_info->host_initiated) { 372 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 373 return 1; 374 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 375 return 1; 376 } 377 378 kvm_lapic_set_base(vcpu, msr_info->data); 379 kvm_recalculate_apic_map(vcpu->kvm); 380 return 0; 381 } 382 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 383 384 asmlinkage __visible void kvm_spurious_fault(void) 385 { 386 /* Fault while not rebooting. We want the trace. */ 387 BUG_ON(!kvm_rebooting); 388 } 389 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 390 391 #define EXCPT_BENIGN 0 392 #define EXCPT_CONTRIBUTORY 1 393 #define EXCPT_PF 2 394 395 static int exception_class(int vector) 396 { 397 switch (vector) { 398 case PF_VECTOR: 399 return EXCPT_PF; 400 case DE_VECTOR: 401 case TS_VECTOR: 402 case NP_VECTOR: 403 case SS_VECTOR: 404 case GP_VECTOR: 405 return EXCPT_CONTRIBUTORY; 406 default: 407 break; 408 } 409 return EXCPT_BENIGN; 410 } 411 412 #define EXCPT_FAULT 0 413 #define EXCPT_TRAP 1 414 #define EXCPT_ABORT 2 415 #define EXCPT_INTERRUPT 3 416 417 static int exception_type(int vector) 418 { 419 unsigned int mask; 420 421 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 422 return EXCPT_INTERRUPT; 423 424 mask = 1 << vector; 425 426 /* #DB is trap, as instruction watchpoints are handled elsewhere */ 427 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR))) 428 return EXCPT_TRAP; 429 430 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 431 return EXCPT_ABORT; 432 433 /* Reserved exceptions will result in fault */ 434 return EXCPT_FAULT; 435 } 436 437 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu) 438 { 439 unsigned nr = vcpu->arch.exception.nr; 440 bool has_payload = vcpu->arch.exception.has_payload; 441 unsigned long payload = vcpu->arch.exception.payload; 442 443 if (!has_payload) 444 return; 445 446 switch (nr) { 447 case DB_VECTOR: 448 /* 449 * "Certain debug exceptions may clear bit 0-3. The 450 * remaining contents of the DR6 register are never 451 * cleared by the processor". 452 */ 453 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 454 /* 455 * DR6.RTM is set by all #DB exceptions that don't clear it. 456 */ 457 vcpu->arch.dr6 |= DR6_RTM; 458 vcpu->arch.dr6 |= payload; 459 /* 460 * Bit 16 should be set in the payload whenever the #DB 461 * exception should clear DR6.RTM. This makes the payload 462 * compatible with the pending debug exceptions under VMX. 463 * Though not currently documented in the SDM, this also 464 * makes the payload compatible with the exit qualification 465 * for #DB exceptions under VMX. 466 */ 467 vcpu->arch.dr6 ^= payload & DR6_RTM; 468 469 /* 470 * The #DB payload is defined as compatible with the 'pending 471 * debug exceptions' field under VMX, not DR6. While bit 12 is 472 * defined in the 'pending debug exceptions' field (enabled 473 * breakpoint), it is reserved and must be zero in DR6. 474 */ 475 vcpu->arch.dr6 &= ~BIT(12); 476 break; 477 case PF_VECTOR: 478 vcpu->arch.cr2 = payload; 479 break; 480 } 481 482 vcpu->arch.exception.has_payload = false; 483 vcpu->arch.exception.payload = 0; 484 } 485 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 486 487 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 488 unsigned nr, bool has_error, u32 error_code, 489 bool has_payload, unsigned long payload, bool reinject) 490 { 491 u32 prev_nr; 492 int class1, class2; 493 494 kvm_make_request(KVM_REQ_EVENT, vcpu); 495 496 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 497 queue: 498 if (has_error && !is_protmode(vcpu)) 499 has_error = false; 500 if (reinject) { 501 /* 502 * On vmentry, vcpu->arch.exception.pending is only 503 * true if an event injection was blocked by 504 * nested_run_pending. In that case, however, 505 * vcpu_enter_guest requests an immediate exit, 506 * and the guest shouldn't proceed far enough to 507 * need reinjection. 508 */ 509 WARN_ON_ONCE(vcpu->arch.exception.pending); 510 vcpu->arch.exception.injected = true; 511 if (WARN_ON_ONCE(has_payload)) { 512 /* 513 * A reinjected event has already 514 * delivered its payload. 515 */ 516 has_payload = false; 517 payload = 0; 518 } 519 } else { 520 vcpu->arch.exception.pending = true; 521 vcpu->arch.exception.injected = false; 522 } 523 vcpu->arch.exception.has_error_code = has_error; 524 vcpu->arch.exception.nr = nr; 525 vcpu->arch.exception.error_code = error_code; 526 vcpu->arch.exception.has_payload = has_payload; 527 vcpu->arch.exception.payload = payload; 528 if (!is_guest_mode(vcpu)) 529 kvm_deliver_exception_payload(vcpu); 530 return; 531 } 532 533 /* to check exception */ 534 prev_nr = vcpu->arch.exception.nr; 535 if (prev_nr == DF_VECTOR) { 536 /* triple fault -> shutdown */ 537 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 538 return; 539 } 540 class1 = exception_class(prev_nr); 541 class2 = exception_class(nr); 542 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 543 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 544 /* 545 * Generate double fault per SDM Table 5-5. Set 546 * exception.pending = true so that the double fault 547 * can trigger a nested vmexit. 548 */ 549 vcpu->arch.exception.pending = true; 550 vcpu->arch.exception.injected = false; 551 vcpu->arch.exception.has_error_code = true; 552 vcpu->arch.exception.nr = DF_VECTOR; 553 vcpu->arch.exception.error_code = 0; 554 vcpu->arch.exception.has_payload = false; 555 vcpu->arch.exception.payload = 0; 556 } else 557 /* replace previous exception with a new one in a hope 558 that instruction re-execution will regenerate lost 559 exception */ 560 goto queue; 561 } 562 563 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 564 { 565 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 566 } 567 EXPORT_SYMBOL_GPL(kvm_queue_exception); 568 569 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 570 { 571 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 572 } 573 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 574 575 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 576 unsigned long payload) 577 { 578 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 579 } 580 581 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 582 u32 error_code, unsigned long payload) 583 { 584 kvm_multiple_exception(vcpu, nr, true, error_code, 585 true, payload, false); 586 } 587 588 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 589 { 590 if (err) 591 kvm_inject_gp(vcpu, 0); 592 else 593 return kvm_skip_emulated_instruction(vcpu); 594 595 return 1; 596 } 597 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 598 599 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 600 { 601 ++vcpu->stat.pf_guest; 602 vcpu->arch.exception.nested_apf = 603 is_guest_mode(vcpu) && fault->async_page_fault; 604 if (vcpu->arch.exception.nested_apf) { 605 vcpu->arch.apf.nested_apf_token = fault->address; 606 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 607 } else { 608 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 609 fault->address); 610 } 611 } 612 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 613 614 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 615 { 616 if (mmu_is_nested(vcpu) && !fault->nested_page_fault) 617 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); 618 else 619 vcpu->arch.mmu->inject_page_fault(vcpu, fault); 620 621 return fault->nested_page_fault; 622 } 623 624 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 625 { 626 atomic_inc(&vcpu->arch.nmi_queued); 627 kvm_make_request(KVM_REQ_NMI, vcpu); 628 } 629 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 630 631 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 632 { 633 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 634 } 635 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 636 637 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 638 { 639 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 640 } 641 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 642 643 /* 644 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 645 * a #GP and return false. 646 */ 647 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 648 { 649 if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl) 650 return true; 651 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 652 return false; 653 } 654 EXPORT_SYMBOL_GPL(kvm_require_cpl); 655 656 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 657 { 658 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 659 return true; 660 661 kvm_queue_exception(vcpu, UD_VECTOR); 662 return false; 663 } 664 EXPORT_SYMBOL_GPL(kvm_require_dr); 665 666 /* 667 * This function will be used to read from the physical memory of the currently 668 * running guest. The difference to kvm_vcpu_read_guest_page is that this function 669 * can read from guest physical or from the guest's guest physical memory. 670 */ 671 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 672 gfn_t ngfn, void *data, int offset, int len, 673 u32 access) 674 { 675 struct x86_exception exception; 676 gfn_t real_gfn; 677 gpa_t ngpa; 678 679 ngpa = gfn_to_gpa(ngfn); 680 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception); 681 if (real_gfn == UNMAPPED_GVA) 682 return -EFAULT; 683 684 real_gfn = gpa_to_gfn(real_gfn); 685 686 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len); 687 } 688 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); 689 690 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 691 void *data, int offset, int len, u32 access) 692 { 693 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, 694 data, offset, len, access); 695 } 696 697 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 698 { 699 return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) | 700 rsvd_bits(1, 2); 701 } 702 703 /* 704 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 705 */ 706 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) 707 { 708 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 709 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; 710 int i; 711 int ret; 712 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 713 714 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, 715 offset * sizeof(u64), sizeof(pdpte), 716 PFERR_USER_MASK|PFERR_WRITE_MASK); 717 if (ret < 0) { 718 ret = 0; 719 goto out; 720 } 721 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 722 if ((pdpte[i] & PT_PRESENT_MASK) && 723 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 724 ret = 0; 725 goto out; 726 } 727 } 728 ret = 1; 729 730 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 731 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 732 733 out: 734 735 return ret; 736 } 737 EXPORT_SYMBOL_GPL(load_pdptrs); 738 739 bool pdptrs_changed(struct kvm_vcpu *vcpu) 740 { 741 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; 742 int offset; 743 gfn_t gfn; 744 int r; 745 746 if (!is_pae_paging(vcpu)) 747 return false; 748 749 if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR)) 750 return true; 751 752 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT; 753 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1); 754 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), 755 PFERR_USER_MASK | PFERR_WRITE_MASK); 756 if (r < 0) 757 return true; 758 759 return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; 760 } 761 EXPORT_SYMBOL_GPL(pdptrs_changed); 762 763 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 764 { 765 unsigned long old_cr0 = kvm_read_cr0(vcpu); 766 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP; 767 768 cr0 |= X86_CR0_ET; 769 770 #ifdef CONFIG_X86_64 771 if (cr0 & 0xffffffff00000000UL) 772 return 1; 773 #endif 774 775 cr0 &= ~CR0_RESERVED_BITS; 776 777 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 778 return 1; 779 780 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 781 return 1; 782 783 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 784 #ifdef CONFIG_X86_64 785 if ((vcpu->arch.efer & EFER_LME)) { 786 int cs_db, cs_l; 787 788 if (!is_pae(vcpu)) 789 return 1; 790 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 791 if (cs_l) 792 return 1; 793 } else 794 #endif 795 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 796 kvm_read_cr3(vcpu))) 797 return 1; 798 } 799 800 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 801 return 1; 802 803 kvm_x86_ops.set_cr0(vcpu, cr0); 804 805 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 806 kvm_clear_async_pf_completion_queue(vcpu); 807 kvm_async_pf_hash_reset(vcpu); 808 } 809 810 if ((cr0 ^ old_cr0) & update_bits) 811 kvm_mmu_reset_context(vcpu); 812 813 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 814 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 815 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 816 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 817 818 return 0; 819 } 820 EXPORT_SYMBOL_GPL(kvm_set_cr0); 821 822 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 823 { 824 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 825 } 826 EXPORT_SYMBOL_GPL(kvm_lmsw); 827 828 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 829 { 830 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 831 832 if (vcpu->arch.xcr0 != host_xcr0) 833 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 834 835 if (vcpu->arch.xsaves_enabled && 836 vcpu->arch.ia32_xss != host_xss) 837 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 838 } 839 } 840 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 841 842 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 843 { 844 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 845 846 if (vcpu->arch.xcr0 != host_xcr0) 847 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 848 849 if (vcpu->arch.xsaves_enabled && 850 vcpu->arch.ia32_xss != host_xss) 851 wrmsrl(MSR_IA32_XSS, host_xss); 852 } 853 854 } 855 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 856 857 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 858 { 859 u64 xcr0 = xcr; 860 u64 old_xcr0 = vcpu->arch.xcr0; 861 u64 valid_bits; 862 863 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 864 if (index != XCR_XFEATURE_ENABLED_MASK) 865 return 1; 866 if (!(xcr0 & XFEATURE_MASK_FP)) 867 return 1; 868 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 869 return 1; 870 871 /* 872 * Do not allow the guest to set bits that we do not support 873 * saving. However, xcr0 bit 0 is always set, even if the 874 * emulated CPU does not support XSAVE (see fx_init). 875 */ 876 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 877 if (xcr0 & ~valid_bits) 878 return 1; 879 880 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 881 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 882 return 1; 883 884 if (xcr0 & XFEATURE_MASK_AVX512) { 885 if (!(xcr0 & XFEATURE_MASK_YMM)) 886 return 1; 887 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 888 return 1; 889 } 890 vcpu->arch.xcr0 = xcr0; 891 892 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 893 kvm_update_cpuid(vcpu); 894 return 0; 895 } 896 897 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 898 { 899 if (kvm_x86_ops.get_cpl(vcpu) != 0 || 900 __kvm_set_xcr(vcpu, index, xcr)) { 901 kvm_inject_gp(vcpu, 0); 902 return 1; 903 } 904 return 0; 905 } 906 EXPORT_SYMBOL_GPL(kvm_set_xcr); 907 908 #define __cr4_reserved_bits(__cpu_has, __c) \ 909 ({ \ 910 u64 __reserved_bits = CR4_RESERVED_BITS; \ 911 \ 912 if (!__cpu_has(__c, X86_FEATURE_XSAVE)) \ 913 __reserved_bits |= X86_CR4_OSXSAVE; \ 914 if (!__cpu_has(__c, X86_FEATURE_SMEP)) \ 915 __reserved_bits |= X86_CR4_SMEP; \ 916 if (!__cpu_has(__c, X86_FEATURE_SMAP)) \ 917 __reserved_bits |= X86_CR4_SMAP; \ 918 if (!__cpu_has(__c, X86_FEATURE_FSGSBASE)) \ 919 __reserved_bits |= X86_CR4_FSGSBASE; \ 920 if (!__cpu_has(__c, X86_FEATURE_PKU)) \ 921 __reserved_bits |= X86_CR4_PKE; \ 922 if (!__cpu_has(__c, X86_FEATURE_LA57)) \ 923 __reserved_bits |= X86_CR4_LA57; \ 924 if (!__cpu_has(__c, X86_FEATURE_UMIP)) \ 925 __reserved_bits |= X86_CR4_UMIP; \ 926 __reserved_bits; \ 927 }) 928 929 static u64 kvm_host_cr4_reserved_bits(struct cpuinfo_x86 *c) 930 { 931 u64 reserved_bits = __cr4_reserved_bits(cpu_has, c); 932 933 if (kvm_cpu_cap_has(X86_FEATURE_LA57)) 934 reserved_bits &= ~X86_CR4_LA57; 935 936 if (kvm_cpu_cap_has(X86_FEATURE_UMIP)) 937 reserved_bits &= ~X86_CR4_UMIP; 938 939 return reserved_bits; 940 } 941 942 static int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 943 { 944 if (cr4 & cr4_reserved_bits) 945 return -EINVAL; 946 947 if (cr4 & __cr4_reserved_bits(guest_cpuid_has, vcpu)) 948 return -EINVAL; 949 950 return 0; 951 } 952 953 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 954 { 955 unsigned long old_cr4 = kvm_read_cr4(vcpu); 956 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | 957 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE; 958 959 if (kvm_valid_cr4(vcpu, cr4)) 960 return 1; 961 962 if (is_long_mode(vcpu)) { 963 if (!(cr4 & X86_CR4_PAE)) 964 return 1; 965 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 966 && ((cr4 ^ old_cr4) & pdptr_bits) 967 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 968 kvm_read_cr3(vcpu))) 969 return 1; 970 971 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 972 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 973 return 1; 974 975 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 976 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 977 return 1; 978 } 979 980 if (kvm_x86_ops.set_cr4(vcpu, cr4)) 981 return 1; 982 983 if (((cr4 ^ old_cr4) & pdptr_bits) || 984 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 985 kvm_mmu_reset_context(vcpu); 986 987 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 988 kvm_update_cpuid(vcpu); 989 990 return 0; 991 } 992 EXPORT_SYMBOL_GPL(kvm_set_cr4); 993 994 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 995 { 996 bool skip_tlb_flush = false; 997 #ifdef CONFIG_X86_64 998 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 999 1000 if (pcid_enabled) { 1001 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1002 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1003 } 1004 #endif 1005 1006 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { 1007 if (!skip_tlb_flush) { 1008 kvm_mmu_sync_roots(vcpu); 1009 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 1010 } 1011 return 0; 1012 } 1013 1014 if (is_long_mode(vcpu) && 1015 (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63))) 1016 return 1; 1017 else if (is_pae_paging(vcpu) && 1018 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) 1019 return 1; 1020 1021 kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush); 1022 vcpu->arch.cr3 = cr3; 1023 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3); 1024 1025 return 0; 1026 } 1027 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1028 1029 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1030 { 1031 if (cr8 & CR8_RESERVED_BITS) 1032 return 1; 1033 if (lapic_in_kernel(vcpu)) 1034 kvm_lapic_set_tpr(vcpu, cr8); 1035 else 1036 vcpu->arch.cr8 = cr8; 1037 return 0; 1038 } 1039 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1040 1041 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1042 { 1043 if (lapic_in_kernel(vcpu)) 1044 return kvm_lapic_get_cr8(vcpu); 1045 else 1046 return vcpu->arch.cr8; 1047 } 1048 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1049 1050 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1051 { 1052 int i; 1053 1054 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1055 for (i = 0; i < KVM_NR_DB_REGS; i++) 1056 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1057 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD; 1058 } 1059 } 1060 1061 static void kvm_update_dr6(struct kvm_vcpu *vcpu) 1062 { 1063 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1064 kvm_x86_ops.set_dr6(vcpu, vcpu->arch.dr6); 1065 } 1066 1067 static void kvm_update_dr7(struct kvm_vcpu *vcpu) 1068 { 1069 unsigned long dr7; 1070 1071 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1072 dr7 = vcpu->arch.guest_debug_dr7; 1073 else 1074 dr7 = vcpu->arch.dr7; 1075 kvm_x86_ops.set_dr7(vcpu, dr7); 1076 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1077 if (dr7 & DR7_BP_EN_MASK) 1078 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1079 } 1080 1081 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1082 { 1083 u64 fixed = DR6_FIXED_1; 1084 1085 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1086 fixed |= DR6_RTM; 1087 return fixed; 1088 } 1089 1090 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1091 { 1092 size_t size = ARRAY_SIZE(vcpu->arch.db); 1093 1094 switch (dr) { 1095 case 0 ... 3: 1096 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1097 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1098 vcpu->arch.eff_db[dr] = val; 1099 break; 1100 case 4: 1101 /* fall through */ 1102 case 6: 1103 if (val & 0xffffffff00000000ULL) 1104 return -1; /* #GP */ 1105 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1106 kvm_update_dr6(vcpu); 1107 break; 1108 case 5: 1109 /* fall through */ 1110 default: /* 7 */ 1111 if (!kvm_dr7_valid(val)) 1112 return -1; /* #GP */ 1113 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1114 kvm_update_dr7(vcpu); 1115 break; 1116 } 1117 1118 return 0; 1119 } 1120 1121 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1122 { 1123 if (__kvm_set_dr(vcpu, dr, val)) { 1124 kvm_inject_gp(vcpu, 0); 1125 return 1; 1126 } 1127 return 0; 1128 } 1129 EXPORT_SYMBOL_GPL(kvm_set_dr); 1130 1131 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1132 { 1133 size_t size = ARRAY_SIZE(vcpu->arch.db); 1134 1135 switch (dr) { 1136 case 0 ... 3: 1137 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1138 break; 1139 case 4: 1140 /* fall through */ 1141 case 6: 1142 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1143 *val = vcpu->arch.dr6; 1144 else 1145 *val = kvm_x86_ops.get_dr6(vcpu); 1146 break; 1147 case 5: 1148 /* fall through */ 1149 default: /* 7 */ 1150 *val = vcpu->arch.dr7; 1151 break; 1152 } 1153 return 0; 1154 } 1155 EXPORT_SYMBOL_GPL(kvm_get_dr); 1156 1157 bool kvm_rdpmc(struct kvm_vcpu *vcpu) 1158 { 1159 u32 ecx = kvm_rcx_read(vcpu); 1160 u64 data; 1161 int err; 1162 1163 err = kvm_pmu_rdpmc(vcpu, ecx, &data); 1164 if (err) 1165 return err; 1166 kvm_rax_write(vcpu, (u32)data); 1167 kvm_rdx_write(vcpu, data >> 32); 1168 return err; 1169 } 1170 EXPORT_SYMBOL_GPL(kvm_rdpmc); 1171 1172 /* 1173 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1174 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1175 * 1176 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) 1177 * extract the supported MSRs from the related const lists. 1178 * msrs_to_save is selected from the msrs_to_save_all to reflect the 1179 * capabilities of the host cpu. This capabilities test skips MSRs that are 1180 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs 1181 * may depend on host virtualization features rather than host cpu features. 1182 */ 1183 1184 static const u32 msrs_to_save_all[] = { 1185 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1186 MSR_STAR, 1187 #ifdef CONFIG_X86_64 1188 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1189 #endif 1190 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1191 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1192 MSR_IA32_SPEC_CTRL, 1193 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1194 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1195 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1196 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1197 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1198 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1199 MSR_IA32_UMWAIT_CONTROL, 1200 1201 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1202 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3, 1203 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1204 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1205 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1206 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1207 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1208 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1209 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9, 1210 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11, 1211 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13, 1212 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15, 1213 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17, 1214 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1215 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1216 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1217 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1218 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9, 1219 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11, 1220 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13, 1221 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15, 1222 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17, 1223 }; 1224 1225 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)]; 1226 static unsigned num_msrs_to_save; 1227 1228 static const u32 emulated_msrs_all[] = { 1229 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1230 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1231 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1232 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1233 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1234 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1235 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1236 HV_X64_MSR_RESET, 1237 HV_X64_MSR_VP_INDEX, 1238 HV_X64_MSR_VP_RUNTIME, 1239 HV_X64_MSR_SCONTROL, 1240 HV_X64_MSR_STIMER0_CONFIG, 1241 HV_X64_MSR_VP_ASSIST_PAGE, 1242 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1243 HV_X64_MSR_TSC_EMULATION_STATUS, 1244 1245 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1246 MSR_KVM_PV_EOI_EN, 1247 1248 MSR_IA32_TSC_ADJUST, 1249 MSR_IA32_TSCDEADLINE, 1250 MSR_IA32_ARCH_CAPABILITIES, 1251 MSR_IA32_MISC_ENABLE, 1252 MSR_IA32_MCG_STATUS, 1253 MSR_IA32_MCG_CTL, 1254 MSR_IA32_MCG_EXT_CTL, 1255 MSR_IA32_SMBASE, 1256 MSR_SMI_COUNT, 1257 MSR_PLATFORM_INFO, 1258 MSR_MISC_FEATURES_ENABLES, 1259 MSR_AMD64_VIRT_SPEC_CTRL, 1260 MSR_IA32_POWER_CTL, 1261 MSR_IA32_UCODE_REV, 1262 1263 /* 1264 * The following list leaves out MSRs whose values are determined 1265 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs. 1266 * We always support the "true" VMX control MSRs, even if the host 1267 * processor does not, so I am putting these registers here rather 1268 * than in msrs_to_save_all. 1269 */ 1270 MSR_IA32_VMX_BASIC, 1271 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1272 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1273 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1274 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1275 MSR_IA32_VMX_MISC, 1276 MSR_IA32_VMX_CR0_FIXED0, 1277 MSR_IA32_VMX_CR4_FIXED0, 1278 MSR_IA32_VMX_VMCS_ENUM, 1279 MSR_IA32_VMX_PROCBASED_CTLS2, 1280 MSR_IA32_VMX_EPT_VPID_CAP, 1281 MSR_IA32_VMX_VMFUNC, 1282 1283 MSR_K7_HWCR, 1284 MSR_KVM_POLL_CONTROL, 1285 }; 1286 1287 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1288 static unsigned num_emulated_msrs; 1289 1290 /* 1291 * List of msr numbers which are used to expose MSR-based features that 1292 * can be used by a hypervisor to validate requested CPU features. 1293 */ 1294 static const u32 msr_based_features_all[] = { 1295 MSR_IA32_VMX_BASIC, 1296 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1297 MSR_IA32_VMX_PINBASED_CTLS, 1298 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1299 MSR_IA32_VMX_PROCBASED_CTLS, 1300 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1301 MSR_IA32_VMX_EXIT_CTLS, 1302 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1303 MSR_IA32_VMX_ENTRY_CTLS, 1304 MSR_IA32_VMX_MISC, 1305 MSR_IA32_VMX_CR0_FIXED0, 1306 MSR_IA32_VMX_CR0_FIXED1, 1307 MSR_IA32_VMX_CR4_FIXED0, 1308 MSR_IA32_VMX_CR4_FIXED1, 1309 MSR_IA32_VMX_VMCS_ENUM, 1310 MSR_IA32_VMX_PROCBASED_CTLS2, 1311 MSR_IA32_VMX_EPT_VPID_CAP, 1312 MSR_IA32_VMX_VMFUNC, 1313 1314 MSR_F10H_DECFG, 1315 MSR_IA32_UCODE_REV, 1316 MSR_IA32_ARCH_CAPABILITIES, 1317 }; 1318 1319 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)]; 1320 static unsigned int num_msr_based_features; 1321 1322 static u64 kvm_get_arch_capabilities(void) 1323 { 1324 u64 data = 0; 1325 1326 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 1327 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1328 1329 /* 1330 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1331 * the nested hypervisor runs with NX huge pages. If it is not, 1332 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other 1333 * L1 guests, so it need not worry about its own (L2) guests. 1334 */ 1335 data |= ARCH_CAP_PSCHANGE_MC_NO; 1336 1337 /* 1338 * If we're doing cache flushes (either "always" or "cond") 1339 * we will do one whenever the guest does a vmlaunch/vmresume. 1340 * If an outer hypervisor is doing the cache flush for us 1341 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1342 * capability to the guest too, and if EPT is disabled we're not 1343 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1344 * require a nested hypervisor to do a flush of its own. 1345 */ 1346 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1347 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1348 1349 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1350 data |= ARCH_CAP_RDCL_NO; 1351 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1352 data |= ARCH_CAP_SSB_NO; 1353 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1354 data |= ARCH_CAP_MDS_NO; 1355 1356 /* 1357 * On TAA affected systems: 1358 * - nothing to do if TSX is disabled on the host. 1359 * - we emulate TSX_CTRL if present on the host. 1360 * This lets the guest use VERW to clear CPU buffers. 1361 */ 1362 if (!boot_cpu_has(X86_FEATURE_RTM)) 1363 data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR); 1364 else if (!boot_cpu_has_bug(X86_BUG_TAA)) 1365 data |= ARCH_CAP_TAA_NO; 1366 1367 return data; 1368 } 1369 1370 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1371 { 1372 switch (msr->index) { 1373 case MSR_IA32_ARCH_CAPABILITIES: 1374 msr->data = kvm_get_arch_capabilities(); 1375 break; 1376 case MSR_IA32_UCODE_REV: 1377 rdmsrl_safe(msr->index, &msr->data); 1378 break; 1379 default: 1380 if (kvm_x86_ops.get_msr_feature(msr)) 1381 return 1; 1382 } 1383 return 0; 1384 } 1385 1386 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1387 { 1388 struct kvm_msr_entry msr; 1389 int r; 1390 1391 msr.index = index; 1392 r = kvm_get_msr_feature(&msr); 1393 if (r) 1394 return r; 1395 1396 *data = msr.data; 1397 1398 return 0; 1399 } 1400 1401 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1402 { 1403 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1404 return false; 1405 1406 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1407 return false; 1408 1409 if (efer & (EFER_LME | EFER_LMA) && 1410 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1411 return false; 1412 1413 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1414 return false; 1415 1416 return true; 1417 1418 } 1419 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1420 { 1421 if (efer & efer_reserved_bits) 1422 return false; 1423 1424 return __kvm_valid_efer(vcpu, efer); 1425 } 1426 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1427 1428 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1429 { 1430 u64 old_efer = vcpu->arch.efer; 1431 u64 efer = msr_info->data; 1432 1433 if (efer & efer_reserved_bits) 1434 return 1; 1435 1436 if (!msr_info->host_initiated) { 1437 if (!__kvm_valid_efer(vcpu, efer)) 1438 return 1; 1439 1440 if (is_paging(vcpu) && 1441 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1442 return 1; 1443 } 1444 1445 efer &= ~EFER_LMA; 1446 efer |= vcpu->arch.efer & EFER_LMA; 1447 1448 kvm_x86_ops.set_efer(vcpu, efer); 1449 1450 /* Update reserved bits */ 1451 if ((efer ^ old_efer) & EFER_NX) 1452 kvm_mmu_reset_context(vcpu); 1453 1454 return 0; 1455 } 1456 1457 void kvm_enable_efer_bits(u64 mask) 1458 { 1459 efer_reserved_bits &= ~mask; 1460 } 1461 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1462 1463 /* 1464 * Write @data into the MSR specified by @index. Select MSR specific fault 1465 * checks are bypassed if @host_initiated is %true. 1466 * Returns 0 on success, non-0 otherwise. 1467 * Assumes vcpu_load() was already called. 1468 */ 1469 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1470 bool host_initiated) 1471 { 1472 struct msr_data msr; 1473 1474 switch (index) { 1475 case MSR_FS_BASE: 1476 case MSR_GS_BASE: 1477 case MSR_KERNEL_GS_BASE: 1478 case MSR_CSTAR: 1479 case MSR_LSTAR: 1480 if (is_noncanonical_address(data, vcpu)) 1481 return 1; 1482 break; 1483 case MSR_IA32_SYSENTER_EIP: 1484 case MSR_IA32_SYSENTER_ESP: 1485 /* 1486 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1487 * non-canonical address is written on Intel but not on 1488 * AMD (which ignores the top 32-bits, because it does 1489 * not implement 64-bit SYSENTER). 1490 * 1491 * 64-bit code should hence be able to write a non-canonical 1492 * value on AMD. Making the address canonical ensures that 1493 * vmentry does not fail on Intel after writing a non-canonical 1494 * value, and that something deterministic happens if the guest 1495 * invokes 64-bit SYSENTER. 1496 */ 1497 data = get_canonical(data, vcpu_virt_addr_bits(vcpu)); 1498 } 1499 1500 msr.data = data; 1501 msr.index = index; 1502 msr.host_initiated = host_initiated; 1503 1504 return kvm_x86_ops.set_msr(vcpu, &msr); 1505 } 1506 1507 /* 1508 * Read the MSR specified by @index into @data. Select MSR specific fault 1509 * checks are bypassed if @host_initiated is %true. 1510 * Returns 0 on success, non-0 otherwise. 1511 * Assumes vcpu_load() was already called. 1512 */ 1513 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1514 bool host_initiated) 1515 { 1516 struct msr_data msr; 1517 int ret; 1518 1519 msr.index = index; 1520 msr.host_initiated = host_initiated; 1521 1522 ret = kvm_x86_ops.get_msr(vcpu, &msr); 1523 if (!ret) 1524 *data = msr.data; 1525 return ret; 1526 } 1527 1528 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1529 { 1530 return __kvm_get_msr(vcpu, index, data, false); 1531 } 1532 EXPORT_SYMBOL_GPL(kvm_get_msr); 1533 1534 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1535 { 1536 return __kvm_set_msr(vcpu, index, data, false); 1537 } 1538 EXPORT_SYMBOL_GPL(kvm_set_msr); 1539 1540 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 1541 { 1542 u32 ecx = kvm_rcx_read(vcpu); 1543 u64 data; 1544 1545 if (kvm_get_msr(vcpu, ecx, &data)) { 1546 trace_kvm_msr_read_ex(ecx); 1547 kvm_inject_gp(vcpu, 0); 1548 return 1; 1549 } 1550 1551 trace_kvm_msr_read(ecx, data); 1552 1553 kvm_rax_write(vcpu, data & -1u); 1554 kvm_rdx_write(vcpu, (data >> 32) & -1u); 1555 return kvm_skip_emulated_instruction(vcpu); 1556 } 1557 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 1558 1559 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 1560 { 1561 u32 ecx = kvm_rcx_read(vcpu); 1562 u64 data = kvm_read_edx_eax(vcpu); 1563 1564 if (kvm_set_msr(vcpu, ecx, data)) { 1565 trace_kvm_msr_write_ex(ecx, data); 1566 kvm_inject_gp(vcpu, 0); 1567 return 1; 1568 } 1569 1570 trace_kvm_msr_write(ecx, data); 1571 return kvm_skip_emulated_instruction(vcpu); 1572 } 1573 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 1574 1575 /* 1576 * The fast path for frequent and performance sensitive wrmsr emulation, 1577 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 1578 * the latency of virtual IPI by avoiding the expensive bits of transitioning 1579 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 1580 * other cases which must be called after interrupts are enabled on the host. 1581 */ 1582 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 1583 { 1584 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 1585 return 1; 1586 1587 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 1588 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 1589 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 1590 ((u32)(data >> 32) != X2APIC_BROADCAST)) { 1591 1592 data &= ~(1 << 12); 1593 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32)); 1594 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32)); 1595 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data); 1596 trace_kvm_apic_write(APIC_ICR, (u32)data); 1597 return 0; 1598 } 1599 1600 return 1; 1601 } 1602 1603 enum exit_fastpath_completion handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 1604 { 1605 u32 msr = kvm_rcx_read(vcpu); 1606 u64 data; 1607 int ret = 0; 1608 1609 switch (msr) { 1610 case APIC_BASE_MSR + (APIC_ICR >> 4): 1611 data = kvm_read_edx_eax(vcpu); 1612 ret = handle_fastpath_set_x2apic_icr_irqoff(vcpu, data); 1613 break; 1614 default: 1615 return EXIT_FASTPATH_NONE; 1616 } 1617 1618 if (!ret) { 1619 trace_kvm_msr_write(msr, data); 1620 return EXIT_FASTPATH_SKIP_EMUL_INS; 1621 } 1622 1623 return EXIT_FASTPATH_NONE; 1624 } 1625 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 1626 1627 /* 1628 * Adapt set_msr() to msr_io()'s calling convention 1629 */ 1630 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1631 { 1632 return __kvm_get_msr(vcpu, index, data, true); 1633 } 1634 1635 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1636 { 1637 return __kvm_set_msr(vcpu, index, *data, true); 1638 } 1639 1640 #ifdef CONFIG_X86_64 1641 struct pvclock_clock { 1642 int vclock_mode; 1643 u64 cycle_last; 1644 u64 mask; 1645 u32 mult; 1646 u32 shift; 1647 u64 base_cycles; 1648 u64 offset; 1649 }; 1650 1651 struct pvclock_gtod_data { 1652 seqcount_t seq; 1653 1654 struct pvclock_clock clock; /* extract of a clocksource struct */ 1655 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 1656 1657 ktime_t offs_boot; 1658 u64 wall_time_sec; 1659 }; 1660 1661 static struct pvclock_gtod_data pvclock_gtod_data; 1662 1663 static void update_pvclock_gtod(struct timekeeper *tk) 1664 { 1665 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 1666 1667 write_seqcount_begin(&vdata->seq); 1668 1669 /* copy pvclock gtod data */ 1670 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 1671 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 1672 vdata->clock.mask = tk->tkr_mono.mask; 1673 vdata->clock.mult = tk->tkr_mono.mult; 1674 vdata->clock.shift = tk->tkr_mono.shift; 1675 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 1676 vdata->clock.offset = tk->tkr_mono.base; 1677 1678 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 1679 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 1680 vdata->raw_clock.mask = tk->tkr_raw.mask; 1681 vdata->raw_clock.mult = tk->tkr_raw.mult; 1682 vdata->raw_clock.shift = tk->tkr_raw.shift; 1683 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 1684 vdata->raw_clock.offset = tk->tkr_raw.base; 1685 1686 vdata->wall_time_sec = tk->xtime_sec; 1687 1688 vdata->offs_boot = tk->offs_boot; 1689 1690 write_seqcount_end(&vdata->seq); 1691 } 1692 1693 static s64 get_kvmclock_base_ns(void) 1694 { 1695 /* Count up from boot time, but with the frequency of the raw clock. */ 1696 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 1697 } 1698 #else 1699 static s64 get_kvmclock_base_ns(void) 1700 { 1701 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 1702 return ktime_get_boottime_ns(); 1703 } 1704 #endif 1705 1706 void kvm_set_pending_timer(struct kvm_vcpu *vcpu) 1707 { 1708 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu); 1709 kvm_vcpu_kick(vcpu); 1710 } 1711 1712 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) 1713 { 1714 int version; 1715 int r; 1716 struct pvclock_wall_clock wc; 1717 u64 wall_nsec; 1718 1719 if (!wall_clock) 1720 return; 1721 1722 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 1723 if (r) 1724 return; 1725 1726 if (version & 1) 1727 ++version; /* first time write, random junk */ 1728 1729 ++version; 1730 1731 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 1732 return; 1733 1734 /* 1735 * The guest calculates current wall clock time by adding 1736 * system time (updated by kvm_guest_time_update below) to the 1737 * wall clock specified here. We do the reverse here. 1738 */ 1739 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 1740 1741 wc.nsec = do_div(wall_nsec, 1000000000); 1742 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 1743 wc.version = version; 1744 1745 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 1746 1747 version++; 1748 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 1749 } 1750 1751 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 1752 { 1753 do_shl32_div32(dividend, divisor); 1754 return dividend; 1755 } 1756 1757 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 1758 s8 *pshift, u32 *pmultiplier) 1759 { 1760 uint64_t scaled64; 1761 int32_t shift = 0; 1762 uint64_t tps64; 1763 uint32_t tps32; 1764 1765 tps64 = base_hz; 1766 scaled64 = scaled_hz; 1767 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 1768 tps64 >>= 1; 1769 shift--; 1770 } 1771 1772 tps32 = (uint32_t)tps64; 1773 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 1774 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 1775 scaled64 >>= 1; 1776 else 1777 tps32 <<= 1; 1778 shift++; 1779 } 1780 1781 *pshift = shift; 1782 *pmultiplier = div_frac(scaled64, tps32); 1783 } 1784 1785 #ifdef CONFIG_X86_64 1786 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 1787 #endif 1788 1789 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 1790 static unsigned long max_tsc_khz; 1791 1792 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 1793 { 1794 u64 v = (u64)khz * (1000000 + ppm); 1795 do_div(v, 1000000); 1796 return v; 1797 } 1798 1799 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 1800 { 1801 u64 ratio; 1802 1803 /* Guest TSC same frequency as host TSC? */ 1804 if (!scale) { 1805 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 1806 return 0; 1807 } 1808 1809 /* TSC scaling supported? */ 1810 if (!kvm_has_tsc_control) { 1811 if (user_tsc_khz > tsc_khz) { 1812 vcpu->arch.tsc_catchup = 1; 1813 vcpu->arch.tsc_always_catchup = 1; 1814 return 0; 1815 } else { 1816 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 1817 return -1; 1818 } 1819 } 1820 1821 /* TSC scaling required - calculate ratio */ 1822 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits, 1823 user_tsc_khz, tsc_khz); 1824 1825 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) { 1826 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 1827 user_tsc_khz); 1828 return -1; 1829 } 1830 1831 vcpu->arch.tsc_scaling_ratio = ratio; 1832 return 0; 1833 } 1834 1835 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 1836 { 1837 u32 thresh_lo, thresh_hi; 1838 int use_scaling = 0; 1839 1840 /* tsc_khz can be zero if TSC calibration fails */ 1841 if (user_tsc_khz == 0) { 1842 /* set tsc_scaling_ratio to a safe value */ 1843 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 1844 return -1; 1845 } 1846 1847 /* Compute a scale to convert nanoseconds in TSC cycles */ 1848 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 1849 &vcpu->arch.virtual_tsc_shift, 1850 &vcpu->arch.virtual_tsc_mult); 1851 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 1852 1853 /* 1854 * Compute the variation in TSC rate which is acceptable 1855 * within the range of tolerance and decide if the 1856 * rate being applied is within that bounds of the hardware 1857 * rate. If so, no scaling or compensation need be done. 1858 */ 1859 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 1860 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 1861 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 1862 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); 1863 use_scaling = 1; 1864 } 1865 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 1866 } 1867 1868 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 1869 { 1870 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 1871 vcpu->arch.virtual_tsc_mult, 1872 vcpu->arch.virtual_tsc_shift); 1873 tsc += vcpu->arch.this_tsc_write; 1874 return tsc; 1875 } 1876 1877 static inline int gtod_is_based_on_tsc(int mode) 1878 { 1879 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 1880 } 1881 1882 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 1883 { 1884 #ifdef CONFIG_X86_64 1885 bool vcpus_matched; 1886 struct kvm_arch *ka = &vcpu->kvm->arch; 1887 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1888 1889 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1890 atomic_read(&vcpu->kvm->online_vcpus)); 1891 1892 /* 1893 * Once the masterclock is enabled, always perform request in 1894 * order to update it. 1895 * 1896 * In order to enable masterclock, the host clocksource must be TSC 1897 * and the vcpus need to have matched TSCs. When that happens, 1898 * perform request to enable masterclock. 1899 */ 1900 if (ka->use_master_clock || 1901 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 1902 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 1903 1904 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 1905 atomic_read(&vcpu->kvm->online_vcpus), 1906 ka->use_master_clock, gtod->clock.vclock_mode); 1907 #endif 1908 } 1909 1910 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset) 1911 { 1912 u64 curr_offset = kvm_x86_ops.read_l1_tsc_offset(vcpu); 1913 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset; 1914 } 1915 1916 /* 1917 * Multiply tsc by a fixed point number represented by ratio. 1918 * 1919 * The most significant 64-N bits (mult) of ratio represent the 1920 * integral part of the fixed point number; the remaining N bits 1921 * (frac) represent the fractional part, ie. ratio represents a fixed 1922 * point number (mult + frac * 2^(-N)). 1923 * 1924 * N equals to kvm_tsc_scaling_ratio_frac_bits. 1925 */ 1926 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 1927 { 1928 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits); 1929 } 1930 1931 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc) 1932 { 1933 u64 _tsc = tsc; 1934 u64 ratio = vcpu->arch.tsc_scaling_ratio; 1935 1936 if (ratio != kvm_default_tsc_scaling_ratio) 1937 _tsc = __scale_tsc(ratio, tsc); 1938 1939 return _tsc; 1940 } 1941 EXPORT_SYMBOL_GPL(kvm_scale_tsc); 1942 1943 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 1944 { 1945 u64 tsc; 1946 1947 tsc = kvm_scale_tsc(vcpu, rdtsc()); 1948 1949 return target_tsc - tsc; 1950 } 1951 1952 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 1953 { 1954 u64 tsc_offset = kvm_x86_ops.read_l1_tsc_offset(vcpu); 1955 1956 return tsc_offset + kvm_scale_tsc(vcpu, host_tsc); 1957 } 1958 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 1959 1960 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1961 { 1962 vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset); 1963 } 1964 1965 static inline bool kvm_check_tsc_unstable(void) 1966 { 1967 #ifdef CONFIG_X86_64 1968 /* 1969 * TSC is marked unstable when we're running on Hyper-V, 1970 * 'TSC page' clocksource is good. 1971 */ 1972 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 1973 return false; 1974 #endif 1975 return check_tsc_unstable(); 1976 } 1977 1978 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr) 1979 { 1980 struct kvm *kvm = vcpu->kvm; 1981 u64 offset, ns, elapsed; 1982 unsigned long flags; 1983 bool matched; 1984 bool already_matched; 1985 u64 data = msr->data; 1986 bool synchronizing = false; 1987 1988 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 1989 offset = kvm_compute_tsc_offset(vcpu, data); 1990 ns = get_kvmclock_base_ns(); 1991 elapsed = ns - kvm->arch.last_tsc_nsec; 1992 1993 if (vcpu->arch.virtual_tsc_khz) { 1994 if (data == 0 && msr->host_initiated) { 1995 /* 1996 * detection of vcpu initialization -- need to sync 1997 * with other vCPUs. This particularly helps to keep 1998 * kvm_clock stable after CPU hotplug 1999 */ 2000 synchronizing = true; 2001 } else { 2002 u64 tsc_exp = kvm->arch.last_tsc_write + 2003 nsec_to_cycles(vcpu, elapsed); 2004 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2005 /* 2006 * Special case: TSC write with a small delta (1 second) 2007 * of virtual cycle time against real time is 2008 * interpreted as an attempt to synchronize the CPU. 2009 */ 2010 synchronizing = data < tsc_exp + tsc_hz && 2011 data + tsc_hz > tsc_exp; 2012 } 2013 } 2014 2015 /* 2016 * For a reliable TSC, we can match TSC offsets, and for an unstable 2017 * TSC, we add elapsed time in this computation. We could let the 2018 * compensation code attempt to catch up if we fall behind, but 2019 * it's better to try to match offsets from the beginning. 2020 */ 2021 if (synchronizing && 2022 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2023 if (!kvm_check_tsc_unstable()) { 2024 offset = kvm->arch.cur_tsc_offset; 2025 } else { 2026 u64 delta = nsec_to_cycles(vcpu, elapsed); 2027 data += delta; 2028 offset = kvm_compute_tsc_offset(vcpu, data); 2029 } 2030 matched = true; 2031 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation); 2032 } else { 2033 /* 2034 * We split periods of matched TSC writes into generations. 2035 * For each generation, we track the original measured 2036 * nanosecond time, offset, and write, so if TSCs are in 2037 * sync, we can match exact offset, and if not, we can match 2038 * exact software computation in compute_guest_tsc() 2039 * 2040 * These values are tracked in kvm->arch.cur_xxx variables. 2041 */ 2042 kvm->arch.cur_tsc_generation++; 2043 kvm->arch.cur_tsc_nsec = ns; 2044 kvm->arch.cur_tsc_write = data; 2045 kvm->arch.cur_tsc_offset = offset; 2046 matched = false; 2047 } 2048 2049 /* 2050 * We also track th most recent recorded KHZ, write and time to 2051 * allow the matching interval to be extended at each write. 2052 */ 2053 kvm->arch.last_tsc_nsec = ns; 2054 kvm->arch.last_tsc_write = data; 2055 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2056 2057 vcpu->arch.last_guest_tsc = data; 2058 2059 /* Keep track of which generation this VCPU has synchronized to */ 2060 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2061 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2062 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2063 2064 if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) 2065 update_ia32_tsc_adjust_msr(vcpu, offset); 2066 2067 kvm_vcpu_write_tsc_offset(vcpu, offset); 2068 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2069 2070 spin_lock(&kvm->arch.pvclock_gtod_sync_lock); 2071 if (!matched) { 2072 kvm->arch.nr_vcpus_matched_tsc = 0; 2073 } else if (!already_matched) { 2074 kvm->arch.nr_vcpus_matched_tsc++; 2075 } 2076 2077 kvm_track_tsc_matching(vcpu); 2078 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); 2079 } 2080 2081 EXPORT_SYMBOL_GPL(kvm_write_tsc); 2082 2083 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2084 s64 adjustment) 2085 { 2086 u64 tsc_offset = kvm_x86_ops.read_l1_tsc_offset(vcpu); 2087 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2088 } 2089 2090 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2091 { 2092 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio) 2093 WARN_ON(adjustment < 0); 2094 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment); 2095 adjust_tsc_offset_guest(vcpu, adjustment); 2096 } 2097 2098 #ifdef CONFIG_X86_64 2099 2100 static u64 read_tsc(void) 2101 { 2102 u64 ret = (u64)rdtsc_ordered(); 2103 u64 last = pvclock_gtod_data.clock.cycle_last; 2104 2105 if (likely(ret >= last)) 2106 return ret; 2107 2108 /* 2109 * GCC likes to generate cmov here, but this branch is extremely 2110 * predictable (it's just a function of time and the likely is 2111 * very likely) and there's a data dependence, so force GCC 2112 * to generate a branch instead. I don't barrier() because 2113 * we don't actually need a barrier, and if this function 2114 * ever gets inlined it will generate worse code. 2115 */ 2116 asm volatile (""); 2117 return last; 2118 } 2119 2120 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2121 int *mode) 2122 { 2123 long v; 2124 u64 tsc_pg_val; 2125 2126 switch (clock->vclock_mode) { 2127 case VDSO_CLOCKMODE_HVCLOCK: 2128 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 2129 tsc_timestamp); 2130 if (tsc_pg_val != U64_MAX) { 2131 /* TSC page valid */ 2132 *mode = VDSO_CLOCKMODE_HVCLOCK; 2133 v = (tsc_pg_val - clock->cycle_last) & 2134 clock->mask; 2135 } else { 2136 /* TSC page invalid */ 2137 *mode = VDSO_CLOCKMODE_NONE; 2138 } 2139 break; 2140 case VDSO_CLOCKMODE_TSC: 2141 *mode = VDSO_CLOCKMODE_TSC; 2142 *tsc_timestamp = read_tsc(); 2143 v = (*tsc_timestamp - clock->cycle_last) & 2144 clock->mask; 2145 break; 2146 default: 2147 *mode = VDSO_CLOCKMODE_NONE; 2148 } 2149 2150 if (*mode == VDSO_CLOCKMODE_NONE) 2151 *tsc_timestamp = v = 0; 2152 2153 return v * clock->mult; 2154 } 2155 2156 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2157 { 2158 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2159 unsigned long seq; 2160 int mode; 2161 u64 ns; 2162 2163 do { 2164 seq = read_seqcount_begin(>od->seq); 2165 ns = gtod->raw_clock.base_cycles; 2166 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2167 ns >>= gtod->raw_clock.shift; 2168 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2169 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2170 *t = ns; 2171 2172 return mode; 2173 } 2174 2175 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2176 { 2177 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2178 unsigned long seq; 2179 int mode; 2180 u64 ns; 2181 2182 do { 2183 seq = read_seqcount_begin(>od->seq); 2184 ts->tv_sec = gtod->wall_time_sec; 2185 ns = gtod->clock.base_cycles; 2186 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2187 ns >>= gtod->clock.shift; 2188 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2189 2190 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2191 ts->tv_nsec = ns; 2192 2193 return mode; 2194 } 2195 2196 /* returns true if host is using TSC based clocksource */ 2197 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2198 { 2199 /* checked again under seqlock below */ 2200 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2201 return false; 2202 2203 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2204 tsc_timestamp)); 2205 } 2206 2207 /* returns true if host is using TSC based clocksource */ 2208 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2209 u64 *tsc_timestamp) 2210 { 2211 /* checked again under seqlock below */ 2212 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2213 return false; 2214 2215 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2216 } 2217 #endif 2218 2219 /* 2220 * 2221 * Assuming a stable TSC across physical CPUS, and a stable TSC 2222 * across virtual CPUs, the following condition is possible. 2223 * Each numbered line represents an event visible to both 2224 * CPUs at the next numbered event. 2225 * 2226 * "timespecX" represents host monotonic time. "tscX" represents 2227 * RDTSC value. 2228 * 2229 * VCPU0 on CPU0 | VCPU1 on CPU1 2230 * 2231 * 1. read timespec0,tsc0 2232 * 2. | timespec1 = timespec0 + N 2233 * | tsc1 = tsc0 + M 2234 * 3. transition to guest | transition to guest 2235 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2236 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2237 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2238 * 2239 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2240 * 2241 * - ret0 < ret1 2242 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2243 * ... 2244 * - 0 < N - M => M < N 2245 * 2246 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2247 * always the case (the difference between two distinct xtime instances 2248 * might be smaller then the difference between corresponding TSC reads, 2249 * when updating guest vcpus pvclock areas). 2250 * 2251 * To avoid that problem, do not allow visibility of distinct 2252 * system_timestamp/tsc_timestamp values simultaneously: use a master 2253 * copy of host monotonic time values. Update that master copy 2254 * in lockstep. 2255 * 2256 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2257 * 2258 */ 2259 2260 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2261 { 2262 #ifdef CONFIG_X86_64 2263 struct kvm_arch *ka = &kvm->arch; 2264 int vclock_mode; 2265 bool host_tsc_clocksource, vcpus_matched; 2266 2267 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2268 atomic_read(&kvm->online_vcpus)); 2269 2270 /* 2271 * If the host uses TSC clock, then passthrough TSC as stable 2272 * to the guest. 2273 */ 2274 host_tsc_clocksource = kvm_get_time_and_clockread( 2275 &ka->master_kernel_ns, 2276 &ka->master_cycle_now); 2277 2278 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2279 && !ka->backwards_tsc_observed 2280 && !ka->boot_vcpu_runs_old_kvmclock; 2281 2282 if (ka->use_master_clock) 2283 atomic_set(&kvm_guest_has_master_clock, 1); 2284 2285 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2286 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2287 vcpus_matched); 2288 #endif 2289 } 2290 2291 void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2292 { 2293 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2294 } 2295 2296 static void kvm_gen_update_masterclock(struct kvm *kvm) 2297 { 2298 #ifdef CONFIG_X86_64 2299 int i; 2300 struct kvm_vcpu *vcpu; 2301 struct kvm_arch *ka = &kvm->arch; 2302 2303 spin_lock(&ka->pvclock_gtod_sync_lock); 2304 kvm_make_mclock_inprogress_request(kvm); 2305 /* no guest entries from this point */ 2306 pvclock_update_vm_gtod_copy(kvm); 2307 2308 kvm_for_each_vcpu(i, vcpu, kvm) 2309 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2310 2311 /* guest entries allowed */ 2312 kvm_for_each_vcpu(i, vcpu, kvm) 2313 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 2314 2315 spin_unlock(&ka->pvclock_gtod_sync_lock); 2316 #endif 2317 } 2318 2319 u64 get_kvmclock_ns(struct kvm *kvm) 2320 { 2321 struct kvm_arch *ka = &kvm->arch; 2322 struct pvclock_vcpu_time_info hv_clock; 2323 u64 ret; 2324 2325 spin_lock(&ka->pvclock_gtod_sync_lock); 2326 if (!ka->use_master_clock) { 2327 spin_unlock(&ka->pvclock_gtod_sync_lock); 2328 return get_kvmclock_base_ns() + ka->kvmclock_offset; 2329 } 2330 2331 hv_clock.tsc_timestamp = ka->master_cycle_now; 2332 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 2333 spin_unlock(&ka->pvclock_gtod_sync_lock); 2334 2335 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 2336 get_cpu(); 2337 2338 if (__this_cpu_read(cpu_tsc_khz)) { 2339 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL, 2340 &hv_clock.tsc_shift, 2341 &hv_clock.tsc_to_system_mul); 2342 ret = __pvclock_read_cycles(&hv_clock, rdtsc()); 2343 } else 2344 ret = get_kvmclock_base_ns() + ka->kvmclock_offset; 2345 2346 put_cpu(); 2347 2348 return ret; 2349 } 2350 2351 static void kvm_setup_pvclock_page(struct kvm_vcpu *v) 2352 { 2353 struct kvm_vcpu_arch *vcpu = &v->arch; 2354 struct pvclock_vcpu_time_info guest_hv_clock; 2355 2356 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time, 2357 &guest_hv_clock, sizeof(guest_hv_clock)))) 2358 return; 2359 2360 /* This VCPU is paused, but it's legal for a guest to read another 2361 * VCPU's kvmclock, so we really have to follow the specification where 2362 * it says that version is odd if data is being modified, and even after 2363 * it is consistent. 2364 * 2365 * Version field updates must be kept separate. This is because 2366 * kvm_write_guest_cached might use a "rep movs" instruction, and 2367 * writes within a string instruction are weakly ordered. So there 2368 * are three writes overall. 2369 * 2370 * As a small optimization, only write the version field in the first 2371 * and third write. The vcpu->pv_time cache is still valid, because the 2372 * version field is the first in the struct. 2373 */ 2374 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); 2375 2376 if (guest_hv_clock.version & 1) 2377 ++guest_hv_clock.version; /* first time write, random junk */ 2378 2379 vcpu->hv_clock.version = guest_hv_clock.version + 1; 2380 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2381 &vcpu->hv_clock, 2382 sizeof(vcpu->hv_clock.version)); 2383 2384 smp_wmb(); 2385 2386 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 2387 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); 2388 2389 if (vcpu->pvclock_set_guest_stopped_request) { 2390 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 2391 vcpu->pvclock_set_guest_stopped_request = false; 2392 } 2393 2394 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 2395 2396 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2397 &vcpu->hv_clock, 2398 sizeof(vcpu->hv_clock)); 2399 2400 smp_wmb(); 2401 2402 vcpu->hv_clock.version++; 2403 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2404 &vcpu->hv_clock, 2405 sizeof(vcpu->hv_clock.version)); 2406 } 2407 2408 static int kvm_guest_time_update(struct kvm_vcpu *v) 2409 { 2410 unsigned long flags, tgt_tsc_khz; 2411 struct kvm_vcpu_arch *vcpu = &v->arch; 2412 struct kvm_arch *ka = &v->kvm->arch; 2413 s64 kernel_ns; 2414 u64 tsc_timestamp, host_tsc; 2415 u8 pvclock_flags; 2416 bool use_master_clock; 2417 2418 kernel_ns = 0; 2419 host_tsc = 0; 2420 2421 /* 2422 * If the host uses TSC clock, then passthrough TSC as stable 2423 * to the guest. 2424 */ 2425 spin_lock(&ka->pvclock_gtod_sync_lock); 2426 use_master_clock = ka->use_master_clock; 2427 if (use_master_clock) { 2428 host_tsc = ka->master_cycle_now; 2429 kernel_ns = ka->master_kernel_ns; 2430 } 2431 spin_unlock(&ka->pvclock_gtod_sync_lock); 2432 2433 /* Keep irq disabled to prevent changes to the clock */ 2434 local_irq_save(flags); 2435 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz); 2436 if (unlikely(tgt_tsc_khz == 0)) { 2437 local_irq_restore(flags); 2438 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 2439 return 1; 2440 } 2441 if (!use_master_clock) { 2442 host_tsc = rdtsc(); 2443 kernel_ns = get_kvmclock_base_ns(); 2444 } 2445 2446 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 2447 2448 /* 2449 * We may have to catch up the TSC to match elapsed wall clock 2450 * time for two reasons, even if kvmclock is used. 2451 * 1) CPU could have been running below the maximum TSC rate 2452 * 2) Broken TSC compensation resets the base at each VCPU 2453 * entry to avoid unknown leaps of TSC even when running 2454 * again on the same CPU. This may cause apparent elapsed 2455 * time to disappear, and the guest to stand still or run 2456 * very slowly. 2457 */ 2458 if (vcpu->tsc_catchup) { 2459 u64 tsc = compute_guest_tsc(v, kernel_ns); 2460 if (tsc > tsc_timestamp) { 2461 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 2462 tsc_timestamp = tsc; 2463 } 2464 } 2465 2466 local_irq_restore(flags); 2467 2468 /* With all the info we got, fill in the values */ 2469 2470 if (kvm_has_tsc_control) 2471 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz); 2472 2473 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 2474 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 2475 &vcpu->hv_clock.tsc_shift, 2476 &vcpu->hv_clock.tsc_to_system_mul); 2477 vcpu->hw_tsc_khz = tgt_tsc_khz; 2478 } 2479 2480 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 2481 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 2482 vcpu->last_guest_tsc = tsc_timestamp; 2483 2484 /* If the host uses TSC clocksource, then it is stable */ 2485 pvclock_flags = 0; 2486 if (use_master_clock) 2487 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 2488 2489 vcpu->hv_clock.flags = pvclock_flags; 2490 2491 if (vcpu->pv_time_enabled) 2492 kvm_setup_pvclock_page(v); 2493 if (v == kvm_get_vcpu(v->kvm, 0)) 2494 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 2495 return 0; 2496 } 2497 2498 /* 2499 * kvmclock updates which are isolated to a given vcpu, such as 2500 * vcpu->cpu migration, should not allow system_timestamp from 2501 * the rest of the vcpus to remain static. Otherwise ntp frequency 2502 * correction applies to one vcpu's system_timestamp but not 2503 * the others. 2504 * 2505 * So in those cases, request a kvmclock update for all vcpus. 2506 * We need to rate-limit these requests though, as they can 2507 * considerably slow guests that have a large number of vcpus. 2508 * The time for a remote vcpu to update its kvmclock is bound 2509 * by the delay we use to rate-limit the updates. 2510 */ 2511 2512 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 2513 2514 static void kvmclock_update_fn(struct work_struct *work) 2515 { 2516 int i; 2517 struct delayed_work *dwork = to_delayed_work(work); 2518 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 2519 kvmclock_update_work); 2520 struct kvm *kvm = container_of(ka, struct kvm, arch); 2521 struct kvm_vcpu *vcpu; 2522 2523 kvm_for_each_vcpu(i, vcpu, kvm) { 2524 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2525 kvm_vcpu_kick(vcpu); 2526 } 2527 } 2528 2529 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 2530 { 2531 struct kvm *kvm = v->kvm; 2532 2533 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 2534 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 2535 KVMCLOCK_UPDATE_DELAY); 2536 } 2537 2538 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 2539 2540 static void kvmclock_sync_fn(struct work_struct *work) 2541 { 2542 struct delayed_work *dwork = to_delayed_work(work); 2543 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 2544 kvmclock_sync_work); 2545 struct kvm *kvm = container_of(ka, struct kvm, arch); 2546 2547 if (!kvmclock_periodic_sync) 2548 return; 2549 2550 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 2551 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 2552 KVMCLOCK_SYNC_PERIOD); 2553 } 2554 2555 /* 2556 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 2557 */ 2558 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 2559 { 2560 /* McStatusWrEn enabled? */ 2561 if (guest_cpuid_is_amd_or_hygon(vcpu)) 2562 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 2563 2564 return false; 2565 } 2566 2567 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2568 { 2569 u64 mcg_cap = vcpu->arch.mcg_cap; 2570 unsigned bank_num = mcg_cap & 0xff; 2571 u32 msr = msr_info->index; 2572 u64 data = msr_info->data; 2573 2574 switch (msr) { 2575 case MSR_IA32_MCG_STATUS: 2576 vcpu->arch.mcg_status = data; 2577 break; 2578 case MSR_IA32_MCG_CTL: 2579 if (!(mcg_cap & MCG_CTL_P) && 2580 (data || !msr_info->host_initiated)) 2581 return 1; 2582 if (data != 0 && data != ~(u64)0) 2583 return 1; 2584 vcpu->arch.mcg_ctl = data; 2585 break; 2586 default: 2587 if (msr >= MSR_IA32_MC0_CTL && 2588 msr < MSR_IA32_MCx_CTL(bank_num)) { 2589 u32 offset = array_index_nospec( 2590 msr - MSR_IA32_MC0_CTL, 2591 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL); 2592 2593 /* only 0 or all 1s can be written to IA32_MCi_CTL 2594 * some Linux kernels though clear bit 10 in bank 4 to 2595 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 2596 * this to avoid an uncatched #GP in the guest 2597 */ 2598 if ((offset & 0x3) == 0 && 2599 data != 0 && (data | (1 << 10)) != ~(u64)0) 2600 return -1; 2601 2602 /* MCi_STATUS */ 2603 if (!msr_info->host_initiated && 2604 (offset & 0x3) == 1 && data != 0) { 2605 if (!can_set_mci_status(vcpu)) 2606 return -1; 2607 } 2608 2609 vcpu->arch.mce_banks[offset] = data; 2610 break; 2611 } 2612 return 1; 2613 } 2614 return 0; 2615 } 2616 2617 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) 2618 { 2619 struct kvm *kvm = vcpu->kvm; 2620 int lm = is_long_mode(vcpu); 2621 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 2622 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; 2623 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 2624 : kvm->arch.xen_hvm_config.blob_size_32; 2625 u32 page_num = data & ~PAGE_MASK; 2626 u64 page_addr = data & PAGE_MASK; 2627 u8 *page; 2628 int r; 2629 2630 r = -E2BIG; 2631 if (page_num >= blob_size) 2632 goto out; 2633 r = -ENOMEM; 2634 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); 2635 if (IS_ERR(page)) { 2636 r = PTR_ERR(page); 2637 goto out; 2638 } 2639 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) 2640 goto out_free; 2641 r = 0; 2642 out_free: 2643 kfree(page); 2644 out: 2645 return r; 2646 } 2647 2648 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 2649 { 2650 gpa_t gpa = data & ~0x3f; 2651 2652 /* Bits 3:5 are reserved, Should be zero */ 2653 if (data & 0x38) 2654 return 1; 2655 2656 vcpu->arch.apf.msr_val = data; 2657 2658 if (!(data & KVM_ASYNC_PF_ENABLED)) { 2659 kvm_clear_async_pf_completion_queue(vcpu); 2660 kvm_async_pf_hash_reset(vcpu); 2661 return 0; 2662 } 2663 2664 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 2665 sizeof(u32))) 2666 return 1; 2667 2668 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 2669 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 2670 kvm_async_pf_wakeup_all(vcpu); 2671 return 0; 2672 } 2673 2674 static void kvmclock_reset(struct kvm_vcpu *vcpu) 2675 { 2676 vcpu->arch.pv_time_enabled = false; 2677 vcpu->arch.time = 0; 2678 } 2679 2680 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa) 2681 { 2682 ++vcpu->stat.tlb_flush; 2683 kvm_x86_ops.tlb_flush(vcpu, invalidate_gpa); 2684 } 2685 2686 static void record_steal_time(struct kvm_vcpu *vcpu) 2687 { 2688 struct kvm_host_map map; 2689 struct kvm_steal_time *st; 2690 2691 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 2692 return; 2693 2694 /* -EAGAIN is returned in atomic context so we can just return. */ 2695 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, 2696 &map, &vcpu->arch.st.cache, false)) 2697 return; 2698 2699 st = map.hva + 2700 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS); 2701 2702 /* 2703 * Doing a TLB flush here, on the guest's behalf, can avoid 2704 * expensive IPIs. 2705 */ 2706 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 2707 st->preempted & KVM_VCPU_FLUSH_TLB); 2708 if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB) 2709 kvm_vcpu_flush_tlb(vcpu, false); 2710 2711 vcpu->arch.st.preempted = 0; 2712 2713 if (st->version & 1) 2714 st->version += 1; /* first time write, random junk */ 2715 2716 st->version += 1; 2717 2718 smp_wmb(); 2719 2720 st->steal += current->sched_info.run_delay - 2721 vcpu->arch.st.last_steal; 2722 vcpu->arch.st.last_steal = current->sched_info.run_delay; 2723 2724 smp_wmb(); 2725 2726 st->version += 1; 2727 2728 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false); 2729 } 2730 2731 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2732 { 2733 bool pr = false; 2734 u32 msr = msr_info->index; 2735 u64 data = msr_info->data; 2736 2737 switch (msr) { 2738 case MSR_AMD64_NB_CFG: 2739 case MSR_IA32_UCODE_WRITE: 2740 case MSR_VM_HSAVE_PA: 2741 case MSR_AMD64_PATCH_LOADER: 2742 case MSR_AMD64_BU_CFG2: 2743 case MSR_AMD64_DC_CFG: 2744 case MSR_F15H_EX_CFG: 2745 break; 2746 2747 case MSR_IA32_UCODE_REV: 2748 if (msr_info->host_initiated) 2749 vcpu->arch.microcode_version = data; 2750 break; 2751 case MSR_IA32_ARCH_CAPABILITIES: 2752 if (!msr_info->host_initiated) 2753 return 1; 2754 vcpu->arch.arch_capabilities = data; 2755 break; 2756 case MSR_EFER: 2757 return set_efer(vcpu, msr_info); 2758 case MSR_K7_HWCR: 2759 data &= ~(u64)0x40; /* ignore flush filter disable */ 2760 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 2761 data &= ~(u64)0x8; /* ignore TLB cache disable */ 2762 2763 /* Handle McStatusWrEn */ 2764 if (data == BIT_ULL(18)) { 2765 vcpu->arch.msr_hwcr = data; 2766 } else if (data != 0) { 2767 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 2768 data); 2769 return 1; 2770 } 2771 break; 2772 case MSR_FAM10H_MMIO_CONF_BASE: 2773 if (data != 0) { 2774 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 2775 "0x%llx\n", data); 2776 return 1; 2777 } 2778 break; 2779 case MSR_IA32_DEBUGCTLMSR: 2780 if (!data) { 2781 /* We support the non-activated case already */ 2782 break; 2783 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { 2784 /* Values other than LBR and BTF are vendor-specific, 2785 thus reserved and should throw a #GP */ 2786 return 1; 2787 } 2788 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", 2789 __func__, data); 2790 break; 2791 case 0x200 ... 0x2ff: 2792 return kvm_mtrr_set_msr(vcpu, msr, data); 2793 case MSR_IA32_APICBASE: 2794 return kvm_set_apic_base(vcpu, msr_info); 2795 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2796 return kvm_x2apic_msr_write(vcpu, msr, data); 2797 case MSR_IA32_TSCDEADLINE: 2798 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2799 break; 2800 case MSR_IA32_TSC_ADJUST: 2801 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 2802 if (!msr_info->host_initiated) { 2803 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 2804 adjust_tsc_offset_guest(vcpu, adj); 2805 } 2806 vcpu->arch.ia32_tsc_adjust_msr = data; 2807 } 2808 break; 2809 case MSR_IA32_MISC_ENABLE: 2810 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 2811 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 2812 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 2813 return 1; 2814 vcpu->arch.ia32_misc_enable_msr = data; 2815 kvm_update_cpuid(vcpu); 2816 } else { 2817 vcpu->arch.ia32_misc_enable_msr = data; 2818 } 2819 break; 2820 case MSR_IA32_SMBASE: 2821 if (!msr_info->host_initiated) 2822 return 1; 2823 vcpu->arch.smbase = data; 2824 break; 2825 case MSR_IA32_POWER_CTL: 2826 vcpu->arch.msr_ia32_power_ctl = data; 2827 break; 2828 case MSR_IA32_TSC: 2829 kvm_write_tsc(vcpu, msr_info); 2830 break; 2831 case MSR_IA32_XSS: 2832 if (!msr_info->host_initiated && 2833 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 2834 return 1; 2835 /* 2836 * KVM supports exposing PT to the guest, but does not support 2837 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 2838 * XSAVES/XRSTORS to save/restore PT MSRs. 2839 */ 2840 if (data & ~supported_xss) 2841 return 1; 2842 vcpu->arch.ia32_xss = data; 2843 break; 2844 case MSR_SMI_COUNT: 2845 if (!msr_info->host_initiated) 2846 return 1; 2847 vcpu->arch.smi_count = data; 2848 break; 2849 case MSR_KVM_WALL_CLOCK_NEW: 2850 case MSR_KVM_WALL_CLOCK: 2851 vcpu->kvm->arch.wall_clock = data; 2852 kvm_write_wall_clock(vcpu->kvm, data); 2853 break; 2854 case MSR_KVM_SYSTEM_TIME_NEW: 2855 case MSR_KVM_SYSTEM_TIME: { 2856 struct kvm_arch *ka = &vcpu->kvm->arch; 2857 2858 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) { 2859 bool tmp = (msr == MSR_KVM_SYSTEM_TIME); 2860 2861 if (ka->boot_vcpu_runs_old_kvmclock != tmp) 2862 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2863 2864 ka->boot_vcpu_runs_old_kvmclock = tmp; 2865 } 2866 2867 vcpu->arch.time = data; 2868 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2869 2870 /* we verify if the enable bit is set... */ 2871 vcpu->arch.pv_time_enabled = false; 2872 if (!(data & 1)) 2873 break; 2874 2875 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm, 2876 &vcpu->arch.pv_time, data & ~1ULL, 2877 sizeof(struct pvclock_vcpu_time_info))) 2878 vcpu->arch.pv_time_enabled = true; 2879 2880 break; 2881 } 2882 case MSR_KVM_ASYNC_PF_EN: 2883 if (kvm_pv_enable_async_pf(vcpu, data)) 2884 return 1; 2885 break; 2886 case MSR_KVM_STEAL_TIME: 2887 2888 if (unlikely(!sched_info_on())) 2889 return 1; 2890 2891 if (data & KVM_STEAL_RESERVED_MASK) 2892 return 1; 2893 2894 vcpu->arch.st.msr_val = data; 2895 2896 if (!(data & KVM_MSR_ENABLED)) 2897 break; 2898 2899 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2900 2901 break; 2902 case MSR_KVM_PV_EOI_EN: 2903 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8))) 2904 return 1; 2905 break; 2906 2907 case MSR_KVM_POLL_CONTROL: 2908 /* only enable bit supported */ 2909 if (data & (-1ULL << 1)) 2910 return 1; 2911 2912 vcpu->arch.msr_kvm_poll_control = data; 2913 break; 2914 2915 case MSR_IA32_MCG_CTL: 2916 case MSR_IA32_MCG_STATUS: 2917 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 2918 return set_msr_mce(vcpu, msr_info); 2919 2920 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 2921 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 2922 pr = true; /* fall through */ 2923 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 2924 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 2925 if (kvm_pmu_is_valid_msr(vcpu, msr)) 2926 return kvm_pmu_set_msr(vcpu, msr_info); 2927 2928 if (pr || data != 0) 2929 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 2930 "0x%x data 0x%llx\n", msr, data); 2931 break; 2932 case MSR_K7_CLK_CTL: 2933 /* 2934 * Ignore all writes to this no longer documented MSR. 2935 * Writes are only relevant for old K7 processors, 2936 * all pre-dating SVM, but a recommended workaround from 2937 * AMD for these chips. It is possible to specify the 2938 * affected processor models on the command line, hence 2939 * the need to ignore the workaround. 2940 */ 2941 break; 2942 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2943 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 2944 case HV_X64_MSR_CRASH_CTL: 2945 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 2946 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 2947 case HV_X64_MSR_TSC_EMULATION_CONTROL: 2948 case HV_X64_MSR_TSC_EMULATION_STATUS: 2949 return kvm_hv_set_msr_common(vcpu, msr, data, 2950 msr_info->host_initiated); 2951 case MSR_IA32_BBL_CR_CTL3: 2952 /* Drop writes to this legacy MSR -- see rdmsr 2953 * counterpart for further detail. 2954 */ 2955 if (report_ignored_msrs) 2956 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", 2957 msr, data); 2958 break; 2959 case MSR_AMD64_OSVW_ID_LENGTH: 2960 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 2961 return 1; 2962 vcpu->arch.osvw.length = data; 2963 break; 2964 case MSR_AMD64_OSVW_STATUS: 2965 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 2966 return 1; 2967 vcpu->arch.osvw.status = data; 2968 break; 2969 case MSR_PLATFORM_INFO: 2970 if (!msr_info->host_initiated || 2971 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 2972 cpuid_fault_enabled(vcpu))) 2973 return 1; 2974 vcpu->arch.msr_platform_info = data; 2975 break; 2976 case MSR_MISC_FEATURES_ENABLES: 2977 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 2978 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 2979 !supports_cpuid_fault(vcpu))) 2980 return 1; 2981 vcpu->arch.msr_misc_features_enables = data; 2982 break; 2983 default: 2984 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) 2985 return xen_hvm_config(vcpu, data); 2986 if (kvm_pmu_is_valid_msr(vcpu, msr)) 2987 return kvm_pmu_set_msr(vcpu, msr_info); 2988 if (!ignore_msrs) { 2989 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n", 2990 msr, data); 2991 return 1; 2992 } else { 2993 if (report_ignored_msrs) 2994 vcpu_unimpl(vcpu, 2995 "ignored wrmsr: 0x%x data 0x%llx\n", 2996 msr, data); 2997 break; 2998 } 2999 } 3000 return 0; 3001 } 3002 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 3003 3004 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 3005 { 3006 u64 data; 3007 u64 mcg_cap = vcpu->arch.mcg_cap; 3008 unsigned bank_num = mcg_cap & 0xff; 3009 3010 switch (msr) { 3011 case MSR_IA32_P5_MC_ADDR: 3012 case MSR_IA32_P5_MC_TYPE: 3013 data = 0; 3014 break; 3015 case MSR_IA32_MCG_CAP: 3016 data = vcpu->arch.mcg_cap; 3017 break; 3018 case MSR_IA32_MCG_CTL: 3019 if (!(mcg_cap & MCG_CTL_P) && !host) 3020 return 1; 3021 data = vcpu->arch.mcg_ctl; 3022 break; 3023 case MSR_IA32_MCG_STATUS: 3024 data = vcpu->arch.mcg_status; 3025 break; 3026 default: 3027 if (msr >= MSR_IA32_MC0_CTL && 3028 msr < MSR_IA32_MCx_CTL(bank_num)) { 3029 u32 offset = array_index_nospec( 3030 msr - MSR_IA32_MC0_CTL, 3031 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL); 3032 3033 data = vcpu->arch.mce_banks[offset]; 3034 break; 3035 } 3036 return 1; 3037 } 3038 *pdata = data; 3039 return 0; 3040 } 3041 3042 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3043 { 3044 switch (msr_info->index) { 3045 case MSR_IA32_PLATFORM_ID: 3046 case MSR_IA32_EBL_CR_POWERON: 3047 case MSR_IA32_DEBUGCTLMSR: 3048 case MSR_IA32_LASTBRANCHFROMIP: 3049 case MSR_IA32_LASTBRANCHTOIP: 3050 case MSR_IA32_LASTINTFROMIP: 3051 case MSR_IA32_LASTINTTOIP: 3052 case MSR_K8_SYSCFG: 3053 case MSR_K8_TSEG_ADDR: 3054 case MSR_K8_TSEG_MASK: 3055 case MSR_VM_HSAVE_PA: 3056 case MSR_K8_INT_PENDING_MSG: 3057 case MSR_AMD64_NB_CFG: 3058 case MSR_FAM10H_MMIO_CONF_BASE: 3059 case MSR_AMD64_BU_CFG2: 3060 case MSR_IA32_PERF_CTL: 3061 case MSR_AMD64_DC_CFG: 3062 case MSR_F15H_EX_CFG: 3063 msr_info->data = 0; 3064 break; 3065 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3066 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3067 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3068 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3069 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3070 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3071 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data); 3072 msr_info->data = 0; 3073 break; 3074 case MSR_IA32_UCODE_REV: 3075 msr_info->data = vcpu->arch.microcode_version; 3076 break; 3077 case MSR_IA32_ARCH_CAPABILITIES: 3078 if (!msr_info->host_initiated && 3079 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 3080 return 1; 3081 msr_info->data = vcpu->arch.arch_capabilities; 3082 break; 3083 case MSR_IA32_POWER_CTL: 3084 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 3085 break; 3086 case MSR_IA32_TSC: 3087 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset; 3088 break; 3089 case MSR_MTRRcap: 3090 case 0x200 ... 0x2ff: 3091 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 3092 case 0xcd: /* fsb frequency */ 3093 msr_info->data = 3; 3094 break; 3095 /* 3096 * MSR_EBC_FREQUENCY_ID 3097 * Conservative value valid for even the basic CPU models. 3098 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 3099 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 3100 * and 266MHz for model 3, or 4. Set Core Clock 3101 * Frequency to System Bus Frequency Ratio to 1 (bits 3102 * 31:24) even though these are only valid for CPU 3103 * models > 2, however guests may end up dividing or 3104 * multiplying by zero otherwise. 3105 */ 3106 case MSR_EBC_FREQUENCY_ID: 3107 msr_info->data = 1 << 24; 3108 break; 3109 case MSR_IA32_APICBASE: 3110 msr_info->data = kvm_get_apic_base(vcpu); 3111 break; 3112 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 3113 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 3114 case MSR_IA32_TSCDEADLINE: 3115 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 3116 break; 3117 case MSR_IA32_TSC_ADJUST: 3118 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 3119 break; 3120 case MSR_IA32_MISC_ENABLE: 3121 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 3122 break; 3123 case MSR_IA32_SMBASE: 3124 if (!msr_info->host_initiated) 3125 return 1; 3126 msr_info->data = vcpu->arch.smbase; 3127 break; 3128 case MSR_SMI_COUNT: 3129 msr_info->data = vcpu->arch.smi_count; 3130 break; 3131 case MSR_IA32_PERF_STATUS: 3132 /* TSC increment by tick */ 3133 msr_info->data = 1000ULL; 3134 /* CPU multiplier */ 3135 msr_info->data |= (((uint64_t)4ULL) << 40); 3136 break; 3137 case MSR_EFER: 3138 msr_info->data = vcpu->arch.efer; 3139 break; 3140 case MSR_KVM_WALL_CLOCK: 3141 case MSR_KVM_WALL_CLOCK_NEW: 3142 msr_info->data = vcpu->kvm->arch.wall_clock; 3143 break; 3144 case MSR_KVM_SYSTEM_TIME: 3145 case MSR_KVM_SYSTEM_TIME_NEW: 3146 msr_info->data = vcpu->arch.time; 3147 break; 3148 case MSR_KVM_ASYNC_PF_EN: 3149 msr_info->data = vcpu->arch.apf.msr_val; 3150 break; 3151 case MSR_KVM_STEAL_TIME: 3152 msr_info->data = vcpu->arch.st.msr_val; 3153 break; 3154 case MSR_KVM_PV_EOI_EN: 3155 msr_info->data = vcpu->arch.pv_eoi.msr_val; 3156 break; 3157 case MSR_KVM_POLL_CONTROL: 3158 msr_info->data = vcpu->arch.msr_kvm_poll_control; 3159 break; 3160 case MSR_IA32_P5_MC_ADDR: 3161 case MSR_IA32_P5_MC_TYPE: 3162 case MSR_IA32_MCG_CAP: 3163 case MSR_IA32_MCG_CTL: 3164 case MSR_IA32_MCG_STATUS: 3165 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3166 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 3167 msr_info->host_initiated); 3168 case MSR_IA32_XSS: 3169 if (!msr_info->host_initiated && 3170 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3171 return 1; 3172 msr_info->data = vcpu->arch.ia32_xss; 3173 break; 3174 case MSR_K7_CLK_CTL: 3175 /* 3176 * Provide expected ramp-up count for K7. All other 3177 * are set to zero, indicating minimum divisors for 3178 * every field. 3179 * 3180 * This prevents guest kernels on AMD host with CPU 3181 * type 6, model 8 and higher from exploding due to 3182 * the rdmsr failing. 3183 */ 3184 msr_info->data = 0x20000000; 3185 break; 3186 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3187 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3188 case HV_X64_MSR_CRASH_CTL: 3189 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3190 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3191 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3192 case HV_X64_MSR_TSC_EMULATION_STATUS: 3193 return kvm_hv_get_msr_common(vcpu, 3194 msr_info->index, &msr_info->data, 3195 msr_info->host_initiated); 3196 case MSR_IA32_BBL_CR_CTL3: 3197 /* This legacy MSR exists but isn't fully documented in current 3198 * silicon. It is however accessed by winxp in very narrow 3199 * scenarios where it sets bit #19, itself documented as 3200 * a "reserved" bit. Best effort attempt to source coherent 3201 * read data here should the balance of the register be 3202 * interpreted by the guest: 3203 * 3204 * L2 cache control register 3: 64GB range, 256KB size, 3205 * enabled, latency 0x1, configured 3206 */ 3207 msr_info->data = 0xbe702111; 3208 break; 3209 case MSR_AMD64_OSVW_ID_LENGTH: 3210 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3211 return 1; 3212 msr_info->data = vcpu->arch.osvw.length; 3213 break; 3214 case MSR_AMD64_OSVW_STATUS: 3215 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3216 return 1; 3217 msr_info->data = vcpu->arch.osvw.status; 3218 break; 3219 case MSR_PLATFORM_INFO: 3220 if (!msr_info->host_initiated && 3221 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 3222 return 1; 3223 msr_info->data = vcpu->arch.msr_platform_info; 3224 break; 3225 case MSR_MISC_FEATURES_ENABLES: 3226 msr_info->data = vcpu->arch.msr_misc_features_enables; 3227 break; 3228 case MSR_K7_HWCR: 3229 msr_info->data = vcpu->arch.msr_hwcr; 3230 break; 3231 default: 3232 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3233 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data); 3234 if (!ignore_msrs) { 3235 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n", 3236 msr_info->index); 3237 return 1; 3238 } else { 3239 if (report_ignored_msrs) 3240 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", 3241 msr_info->index); 3242 msr_info->data = 0; 3243 } 3244 break; 3245 } 3246 return 0; 3247 } 3248 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 3249 3250 /* 3251 * Read or write a bunch of msrs. All parameters are kernel addresses. 3252 * 3253 * @return number of msrs set successfully. 3254 */ 3255 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 3256 struct kvm_msr_entry *entries, 3257 int (*do_msr)(struct kvm_vcpu *vcpu, 3258 unsigned index, u64 *data)) 3259 { 3260 int i; 3261 3262 for (i = 0; i < msrs->nmsrs; ++i) 3263 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 3264 break; 3265 3266 return i; 3267 } 3268 3269 /* 3270 * Read or write a bunch of msrs. Parameters are user addresses. 3271 * 3272 * @return number of msrs set successfully. 3273 */ 3274 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 3275 int (*do_msr)(struct kvm_vcpu *vcpu, 3276 unsigned index, u64 *data), 3277 int writeback) 3278 { 3279 struct kvm_msrs msrs; 3280 struct kvm_msr_entry *entries; 3281 int r, n; 3282 unsigned size; 3283 3284 r = -EFAULT; 3285 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 3286 goto out; 3287 3288 r = -E2BIG; 3289 if (msrs.nmsrs >= MAX_IO_MSRS) 3290 goto out; 3291 3292 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 3293 entries = memdup_user(user_msrs->entries, size); 3294 if (IS_ERR(entries)) { 3295 r = PTR_ERR(entries); 3296 goto out; 3297 } 3298 3299 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 3300 if (r < 0) 3301 goto out_free; 3302 3303 r = -EFAULT; 3304 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 3305 goto out_free; 3306 3307 r = n; 3308 3309 out_free: 3310 kfree(entries); 3311 out: 3312 return r; 3313 } 3314 3315 static inline bool kvm_can_mwait_in_guest(void) 3316 { 3317 return boot_cpu_has(X86_FEATURE_MWAIT) && 3318 !boot_cpu_has_bug(X86_BUG_MONITOR) && 3319 boot_cpu_has(X86_FEATURE_ARAT); 3320 } 3321 3322 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 3323 { 3324 int r = 0; 3325 3326 switch (ext) { 3327 case KVM_CAP_IRQCHIP: 3328 case KVM_CAP_HLT: 3329 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 3330 case KVM_CAP_SET_TSS_ADDR: 3331 case KVM_CAP_EXT_CPUID: 3332 case KVM_CAP_EXT_EMUL_CPUID: 3333 case KVM_CAP_CLOCKSOURCE: 3334 case KVM_CAP_PIT: 3335 case KVM_CAP_NOP_IO_DELAY: 3336 case KVM_CAP_MP_STATE: 3337 case KVM_CAP_SYNC_MMU: 3338 case KVM_CAP_USER_NMI: 3339 case KVM_CAP_REINJECT_CONTROL: 3340 case KVM_CAP_IRQ_INJECT_STATUS: 3341 case KVM_CAP_IOEVENTFD: 3342 case KVM_CAP_IOEVENTFD_NO_LENGTH: 3343 case KVM_CAP_PIT2: 3344 case KVM_CAP_PIT_STATE2: 3345 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 3346 case KVM_CAP_XEN_HVM: 3347 case KVM_CAP_VCPU_EVENTS: 3348 case KVM_CAP_HYPERV: 3349 case KVM_CAP_HYPERV_VAPIC: 3350 case KVM_CAP_HYPERV_SPIN: 3351 case KVM_CAP_HYPERV_SYNIC: 3352 case KVM_CAP_HYPERV_SYNIC2: 3353 case KVM_CAP_HYPERV_VP_INDEX: 3354 case KVM_CAP_HYPERV_EVENTFD: 3355 case KVM_CAP_HYPERV_TLBFLUSH: 3356 case KVM_CAP_HYPERV_SEND_IPI: 3357 case KVM_CAP_HYPERV_CPUID: 3358 case KVM_CAP_PCI_SEGMENT: 3359 case KVM_CAP_DEBUGREGS: 3360 case KVM_CAP_X86_ROBUST_SINGLESTEP: 3361 case KVM_CAP_XSAVE: 3362 case KVM_CAP_ASYNC_PF: 3363 case KVM_CAP_GET_TSC_KHZ: 3364 case KVM_CAP_KVMCLOCK_CTRL: 3365 case KVM_CAP_READONLY_MEM: 3366 case KVM_CAP_HYPERV_TIME: 3367 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 3368 case KVM_CAP_TSC_DEADLINE_TIMER: 3369 case KVM_CAP_DISABLE_QUIRKS: 3370 case KVM_CAP_SET_BOOT_CPU_ID: 3371 case KVM_CAP_SPLIT_IRQCHIP: 3372 case KVM_CAP_IMMEDIATE_EXIT: 3373 case KVM_CAP_PMU_EVENT_FILTER: 3374 case KVM_CAP_GET_MSR_FEATURES: 3375 case KVM_CAP_MSR_PLATFORM_INFO: 3376 case KVM_CAP_EXCEPTION_PAYLOAD: 3377 r = 1; 3378 break; 3379 case KVM_CAP_SYNC_REGS: 3380 r = KVM_SYNC_X86_VALID_FIELDS; 3381 break; 3382 case KVM_CAP_ADJUST_CLOCK: 3383 r = KVM_CLOCK_TSC_STABLE; 3384 break; 3385 case KVM_CAP_X86_DISABLE_EXITS: 3386 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE | 3387 KVM_X86_DISABLE_EXITS_CSTATE; 3388 if(kvm_can_mwait_in_guest()) 3389 r |= KVM_X86_DISABLE_EXITS_MWAIT; 3390 break; 3391 case KVM_CAP_X86_SMM: 3392 /* SMBASE is usually relocated above 1M on modern chipsets, 3393 * and SMM handlers might indeed rely on 4G segment limits, 3394 * so do not report SMM to be available if real mode is 3395 * emulated via vm86 mode. Still, do not go to great lengths 3396 * to avoid userspace's usage of the feature, because it is a 3397 * fringe case that is not enabled except via specific settings 3398 * of the module parameters. 3399 */ 3400 r = kvm_x86_ops.has_emulated_msr(MSR_IA32_SMBASE); 3401 break; 3402 case KVM_CAP_VAPIC: 3403 r = !kvm_x86_ops.cpu_has_accelerated_tpr(); 3404 break; 3405 case KVM_CAP_NR_VCPUS: 3406 r = KVM_SOFT_MAX_VCPUS; 3407 break; 3408 case KVM_CAP_MAX_VCPUS: 3409 r = KVM_MAX_VCPUS; 3410 break; 3411 case KVM_CAP_MAX_VCPU_ID: 3412 r = KVM_MAX_VCPU_ID; 3413 break; 3414 case KVM_CAP_PV_MMU: /* obsolete */ 3415 r = 0; 3416 break; 3417 case KVM_CAP_MCE: 3418 r = KVM_MAX_MCE_BANKS; 3419 break; 3420 case KVM_CAP_XCRS: 3421 r = boot_cpu_has(X86_FEATURE_XSAVE); 3422 break; 3423 case KVM_CAP_TSC_CONTROL: 3424 r = kvm_has_tsc_control; 3425 break; 3426 case KVM_CAP_X2APIC_API: 3427 r = KVM_X2APIC_API_VALID_FLAGS; 3428 break; 3429 case KVM_CAP_NESTED_STATE: 3430 r = kvm_x86_ops.get_nested_state ? 3431 kvm_x86_ops.get_nested_state(NULL, NULL, 0) : 0; 3432 break; 3433 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 3434 r = kvm_x86_ops.enable_direct_tlbflush != NULL; 3435 break; 3436 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 3437 r = kvm_x86_ops.nested_enable_evmcs != NULL; 3438 break; 3439 default: 3440 break; 3441 } 3442 return r; 3443 3444 } 3445 3446 long kvm_arch_dev_ioctl(struct file *filp, 3447 unsigned int ioctl, unsigned long arg) 3448 { 3449 void __user *argp = (void __user *)arg; 3450 long r; 3451 3452 switch (ioctl) { 3453 case KVM_GET_MSR_INDEX_LIST: { 3454 struct kvm_msr_list __user *user_msr_list = argp; 3455 struct kvm_msr_list msr_list; 3456 unsigned n; 3457 3458 r = -EFAULT; 3459 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 3460 goto out; 3461 n = msr_list.nmsrs; 3462 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 3463 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 3464 goto out; 3465 r = -E2BIG; 3466 if (n < msr_list.nmsrs) 3467 goto out; 3468 r = -EFAULT; 3469 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 3470 num_msrs_to_save * sizeof(u32))) 3471 goto out; 3472 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 3473 &emulated_msrs, 3474 num_emulated_msrs * sizeof(u32))) 3475 goto out; 3476 r = 0; 3477 break; 3478 } 3479 case KVM_GET_SUPPORTED_CPUID: 3480 case KVM_GET_EMULATED_CPUID: { 3481 struct kvm_cpuid2 __user *cpuid_arg = argp; 3482 struct kvm_cpuid2 cpuid; 3483 3484 r = -EFAULT; 3485 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 3486 goto out; 3487 3488 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 3489 ioctl); 3490 if (r) 3491 goto out; 3492 3493 r = -EFAULT; 3494 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 3495 goto out; 3496 r = 0; 3497 break; 3498 } 3499 case KVM_X86_GET_MCE_CAP_SUPPORTED: 3500 r = -EFAULT; 3501 if (copy_to_user(argp, &kvm_mce_cap_supported, 3502 sizeof(kvm_mce_cap_supported))) 3503 goto out; 3504 r = 0; 3505 break; 3506 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 3507 struct kvm_msr_list __user *user_msr_list = argp; 3508 struct kvm_msr_list msr_list; 3509 unsigned int n; 3510 3511 r = -EFAULT; 3512 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 3513 goto out; 3514 n = msr_list.nmsrs; 3515 msr_list.nmsrs = num_msr_based_features; 3516 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 3517 goto out; 3518 r = -E2BIG; 3519 if (n < msr_list.nmsrs) 3520 goto out; 3521 r = -EFAULT; 3522 if (copy_to_user(user_msr_list->indices, &msr_based_features, 3523 num_msr_based_features * sizeof(u32))) 3524 goto out; 3525 r = 0; 3526 break; 3527 } 3528 case KVM_GET_MSRS: 3529 r = msr_io(NULL, argp, do_get_msr_feature, 1); 3530 break; 3531 default: 3532 r = -EINVAL; 3533 break; 3534 } 3535 out: 3536 return r; 3537 } 3538 3539 static void wbinvd_ipi(void *garbage) 3540 { 3541 wbinvd(); 3542 } 3543 3544 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 3545 { 3546 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 3547 } 3548 3549 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 3550 { 3551 /* Address WBINVD may be executed by guest */ 3552 if (need_emulate_wbinvd(vcpu)) { 3553 if (kvm_x86_ops.has_wbinvd_exit()) 3554 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 3555 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 3556 smp_call_function_single(vcpu->cpu, 3557 wbinvd_ipi, NULL, 1); 3558 } 3559 3560 kvm_x86_ops.vcpu_load(vcpu, cpu); 3561 3562 /* Apply any externally detected TSC adjustments (due to suspend) */ 3563 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 3564 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 3565 vcpu->arch.tsc_offset_adjustment = 0; 3566 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3567 } 3568 3569 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 3570 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 3571 rdtsc() - vcpu->arch.last_host_tsc; 3572 if (tsc_delta < 0) 3573 mark_tsc_unstable("KVM discovered backwards TSC"); 3574 3575 if (kvm_check_tsc_unstable()) { 3576 u64 offset = kvm_compute_tsc_offset(vcpu, 3577 vcpu->arch.last_guest_tsc); 3578 kvm_vcpu_write_tsc_offset(vcpu, offset); 3579 vcpu->arch.tsc_catchup = 1; 3580 } 3581 3582 if (kvm_lapic_hv_timer_in_use(vcpu)) 3583 kvm_lapic_restart_hv_timer(vcpu); 3584 3585 /* 3586 * On a host with synchronized TSC, there is no need to update 3587 * kvmclock on vcpu->cpu migration 3588 */ 3589 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 3590 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 3591 if (vcpu->cpu != cpu) 3592 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 3593 vcpu->cpu = cpu; 3594 } 3595 3596 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3597 } 3598 3599 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 3600 { 3601 struct kvm_host_map map; 3602 struct kvm_steal_time *st; 3603 3604 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3605 return; 3606 3607 if (vcpu->arch.st.preempted) 3608 return; 3609 3610 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map, 3611 &vcpu->arch.st.cache, true)) 3612 return; 3613 3614 st = map.hva + 3615 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS); 3616 3617 st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 3618 3619 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true); 3620 } 3621 3622 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 3623 { 3624 int idx; 3625 3626 if (vcpu->preempted) 3627 vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu); 3628 3629 /* 3630 * Disable page faults because we're in atomic context here. 3631 * kvm_write_guest_offset_cached() would call might_fault() 3632 * that relies on pagefault_disable() to tell if there's a 3633 * bug. NOTE: the write to guest memory may not go through if 3634 * during postcopy live migration or if there's heavy guest 3635 * paging. 3636 */ 3637 pagefault_disable(); 3638 /* 3639 * kvm_memslots() will be called by 3640 * kvm_write_guest_offset_cached() so take the srcu lock. 3641 */ 3642 idx = srcu_read_lock(&vcpu->kvm->srcu); 3643 kvm_steal_time_set_preempted(vcpu); 3644 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3645 pagefault_enable(); 3646 kvm_x86_ops.vcpu_put(vcpu); 3647 vcpu->arch.last_host_tsc = rdtsc(); 3648 /* 3649 * If userspace has set any breakpoints or watchpoints, dr6 is restored 3650 * on every vmexit, but if not, we might have a stale dr6 from the 3651 * guest. do_debug expects dr6 to be cleared after it runs, do the same. 3652 */ 3653 set_debugreg(0, 6); 3654 } 3655 3656 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 3657 struct kvm_lapic_state *s) 3658 { 3659 if (vcpu->arch.apicv_active) 3660 kvm_x86_ops.sync_pir_to_irr(vcpu); 3661 3662 return kvm_apic_get_state(vcpu, s); 3663 } 3664 3665 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 3666 struct kvm_lapic_state *s) 3667 { 3668 int r; 3669 3670 r = kvm_apic_set_state(vcpu, s); 3671 if (r) 3672 return r; 3673 update_cr8_intercept(vcpu); 3674 3675 return 0; 3676 } 3677 3678 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 3679 { 3680 return (!lapic_in_kernel(vcpu) || 3681 kvm_apic_accept_pic_intr(vcpu)); 3682 } 3683 3684 /* 3685 * if userspace requested an interrupt window, check that the 3686 * interrupt window is open. 3687 * 3688 * No need to exit to userspace if we already have an interrupt queued. 3689 */ 3690 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 3691 { 3692 return kvm_arch_interrupt_allowed(vcpu) && 3693 !kvm_cpu_has_interrupt(vcpu) && 3694 !kvm_event_needs_reinjection(vcpu) && 3695 kvm_cpu_accept_dm_intr(vcpu); 3696 } 3697 3698 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 3699 struct kvm_interrupt *irq) 3700 { 3701 if (irq->irq >= KVM_NR_INTERRUPTS) 3702 return -EINVAL; 3703 3704 if (!irqchip_in_kernel(vcpu->kvm)) { 3705 kvm_queue_interrupt(vcpu, irq->irq, false); 3706 kvm_make_request(KVM_REQ_EVENT, vcpu); 3707 return 0; 3708 } 3709 3710 /* 3711 * With in-kernel LAPIC, we only use this to inject EXTINT, so 3712 * fail for in-kernel 8259. 3713 */ 3714 if (pic_in_kernel(vcpu->kvm)) 3715 return -ENXIO; 3716 3717 if (vcpu->arch.pending_external_vector != -1) 3718 return -EEXIST; 3719 3720 vcpu->arch.pending_external_vector = irq->irq; 3721 kvm_make_request(KVM_REQ_EVENT, vcpu); 3722 return 0; 3723 } 3724 3725 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 3726 { 3727 kvm_inject_nmi(vcpu); 3728 3729 return 0; 3730 } 3731 3732 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu) 3733 { 3734 kvm_make_request(KVM_REQ_SMI, vcpu); 3735 3736 return 0; 3737 } 3738 3739 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 3740 struct kvm_tpr_access_ctl *tac) 3741 { 3742 if (tac->flags) 3743 return -EINVAL; 3744 vcpu->arch.tpr_access_reporting = !!tac->enabled; 3745 return 0; 3746 } 3747 3748 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 3749 u64 mcg_cap) 3750 { 3751 int r; 3752 unsigned bank_num = mcg_cap & 0xff, bank; 3753 3754 r = -EINVAL; 3755 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) 3756 goto out; 3757 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000)) 3758 goto out; 3759 r = 0; 3760 vcpu->arch.mcg_cap = mcg_cap; 3761 /* Init IA32_MCG_CTL to all 1s */ 3762 if (mcg_cap & MCG_CTL_P) 3763 vcpu->arch.mcg_ctl = ~(u64)0; 3764 /* Init IA32_MCi_CTL to all 1s */ 3765 for (bank = 0; bank < bank_num; bank++) 3766 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 3767 3768 kvm_x86_ops.setup_mce(vcpu); 3769 out: 3770 return r; 3771 } 3772 3773 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 3774 struct kvm_x86_mce *mce) 3775 { 3776 u64 mcg_cap = vcpu->arch.mcg_cap; 3777 unsigned bank_num = mcg_cap & 0xff; 3778 u64 *banks = vcpu->arch.mce_banks; 3779 3780 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 3781 return -EINVAL; 3782 /* 3783 * if IA32_MCG_CTL is not all 1s, the uncorrected error 3784 * reporting is disabled 3785 */ 3786 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 3787 vcpu->arch.mcg_ctl != ~(u64)0) 3788 return 0; 3789 banks += 4 * mce->bank; 3790 /* 3791 * if IA32_MCi_CTL is not all 1s, the uncorrected error 3792 * reporting is disabled for the bank 3793 */ 3794 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 3795 return 0; 3796 if (mce->status & MCI_STATUS_UC) { 3797 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 3798 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 3799 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3800 return 0; 3801 } 3802 if (banks[1] & MCI_STATUS_VAL) 3803 mce->status |= MCI_STATUS_OVER; 3804 banks[2] = mce->addr; 3805 banks[3] = mce->misc; 3806 vcpu->arch.mcg_status = mce->mcg_status; 3807 banks[1] = mce->status; 3808 kvm_queue_exception(vcpu, MC_VECTOR); 3809 } else if (!(banks[1] & MCI_STATUS_VAL) 3810 || !(banks[1] & MCI_STATUS_UC)) { 3811 if (banks[1] & MCI_STATUS_VAL) 3812 mce->status |= MCI_STATUS_OVER; 3813 banks[2] = mce->addr; 3814 banks[3] = mce->misc; 3815 banks[1] = mce->status; 3816 } else 3817 banks[1] |= MCI_STATUS_OVER; 3818 return 0; 3819 } 3820 3821 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 3822 struct kvm_vcpu_events *events) 3823 { 3824 process_nmi(vcpu); 3825 3826 /* 3827 * In guest mode, payload delivery should be deferred, 3828 * so that the L1 hypervisor can intercept #PF before 3829 * CR2 is modified (or intercept #DB before DR6 is 3830 * modified under nVMX). Unless the per-VM capability, 3831 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of 3832 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we 3833 * opportunistically defer the exception payload, deliver it if the 3834 * capability hasn't been requested before processing a 3835 * KVM_GET_VCPU_EVENTS. 3836 */ 3837 if (!vcpu->kvm->arch.exception_payload_enabled && 3838 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload) 3839 kvm_deliver_exception_payload(vcpu); 3840 3841 /* 3842 * The API doesn't provide the instruction length for software 3843 * exceptions, so don't report them. As long as the guest RIP 3844 * isn't advanced, we should expect to encounter the exception 3845 * again. 3846 */ 3847 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) { 3848 events->exception.injected = 0; 3849 events->exception.pending = 0; 3850 } else { 3851 events->exception.injected = vcpu->arch.exception.injected; 3852 events->exception.pending = vcpu->arch.exception.pending; 3853 /* 3854 * For ABI compatibility, deliberately conflate 3855 * pending and injected exceptions when 3856 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 3857 */ 3858 if (!vcpu->kvm->arch.exception_payload_enabled) 3859 events->exception.injected |= 3860 vcpu->arch.exception.pending; 3861 } 3862 events->exception.nr = vcpu->arch.exception.nr; 3863 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 3864 events->exception.error_code = vcpu->arch.exception.error_code; 3865 events->exception_has_payload = vcpu->arch.exception.has_payload; 3866 events->exception_payload = vcpu->arch.exception.payload; 3867 3868 events->interrupt.injected = 3869 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 3870 events->interrupt.nr = vcpu->arch.interrupt.nr; 3871 events->interrupt.soft = 0; 3872 events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu); 3873 3874 events->nmi.injected = vcpu->arch.nmi_injected; 3875 events->nmi.pending = vcpu->arch.nmi_pending != 0; 3876 events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu); 3877 events->nmi.pad = 0; 3878 3879 events->sipi_vector = 0; /* never valid when reporting to user space */ 3880 3881 events->smi.smm = is_smm(vcpu); 3882 events->smi.pending = vcpu->arch.smi_pending; 3883 events->smi.smm_inside_nmi = 3884 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 3885 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 3886 3887 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 3888 | KVM_VCPUEVENT_VALID_SHADOW 3889 | KVM_VCPUEVENT_VALID_SMM); 3890 if (vcpu->kvm->arch.exception_payload_enabled) 3891 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 3892 3893 memset(&events->reserved, 0, sizeof(events->reserved)); 3894 } 3895 3896 static void kvm_smm_changed(struct kvm_vcpu *vcpu); 3897 3898 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 3899 struct kvm_vcpu_events *events) 3900 { 3901 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 3902 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 3903 | KVM_VCPUEVENT_VALID_SHADOW 3904 | KVM_VCPUEVENT_VALID_SMM 3905 | KVM_VCPUEVENT_VALID_PAYLOAD)) 3906 return -EINVAL; 3907 3908 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 3909 if (!vcpu->kvm->arch.exception_payload_enabled) 3910 return -EINVAL; 3911 if (events->exception.pending) 3912 events->exception.injected = 0; 3913 else 3914 events->exception_has_payload = 0; 3915 } else { 3916 events->exception.pending = 0; 3917 events->exception_has_payload = 0; 3918 } 3919 3920 if ((events->exception.injected || events->exception.pending) && 3921 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 3922 return -EINVAL; 3923 3924 /* INITs are latched while in SMM */ 3925 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 3926 (events->smi.smm || events->smi.pending) && 3927 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 3928 return -EINVAL; 3929 3930 process_nmi(vcpu); 3931 vcpu->arch.exception.injected = events->exception.injected; 3932 vcpu->arch.exception.pending = events->exception.pending; 3933 vcpu->arch.exception.nr = events->exception.nr; 3934 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 3935 vcpu->arch.exception.error_code = events->exception.error_code; 3936 vcpu->arch.exception.has_payload = events->exception_has_payload; 3937 vcpu->arch.exception.payload = events->exception_payload; 3938 3939 vcpu->arch.interrupt.injected = events->interrupt.injected; 3940 vcpu->arch.interrupt.nr = events->interrupt.nr; 3941 vcpu->arch.interrupt.soft = events->interrupt.soft; 3942 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 3943 kvm_x86_ops.set_interrupt_shadow(vcpu, 3944 events->interrupt.shadow); 3945 3946 vcpu->arch.nmi_injected = events->nmi.injected; 3947 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 3948 vcpu->arch.nmi_pending = events->nmi.pending; 3949 kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked); 3950 3951 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 3952 lapic_in_kernel(vcpu)) 3953 vcpu->arch.apic->sipi_vector = events->sipi_vector; 3954 3955 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 3956 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 3957 if (events->smi.smm) 3958 vcpu->arch.hflags |= HF_SMM_MASK; 3959 else 3960 vcpu->arch.hflags &= ~HF_SMM_MASK; 3961 kvm_smm_changed(vcpu); 3962 } 3963 3964 vcpu->arch.smi_pending = events->smi.pending; 3965 3966 if (events->smi.smm) { 3967 if (events->smi.smm_inside_nmi) 3968 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 3969 else 3970 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 3971 } 3972 3973 if (lapic_in_kernel(vcpu)) { 3974 if (events->smi.latched_init) 3975 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 3976 else 3977 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 3978 } 3979 } 3980 3981 kvm_make_request(KVM_REQ_EVENT, vcpu); 3982 3983 return 0; 3984 } 3985 3986 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 3987 struct kvm_debugregs *dbgregs) 3988 { 3989 unsigned long val; 3990 3991 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 3992 kvm_get_dr(vcpu, 6, &val); 3993 dbgregs->dr6 = val; 3994 dbgregs->dr7 = vcpu->arch.dr7; 3995 dbgregs->flags = 0; 3996 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 3997 } 3998 3999 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 4000 struct kvm_debugregs *dbgregs) 4001 { 4002 if (dbgregs->flags) 4003 return -EINVAL; 4004 4005 if (dbgregs->dr6 & ~0xffffffffull) 4006 return -EINVAL; 4007 if (dbgregs->dr7 & ~0xffffffffull) 4008 return -EINVAL; 4009 4010 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 4011 kvm_update_dr0123(vcpu); 4012 vcpu->arch.dr6 = dbgregs->dr6; 4013 kvm_update_dr6(vcpu); 4014 vcpu->arch.dr7 = dbgregs->dr7; 4015 kvm_update_dr7(vcpu); 4016 4017 return 0; 4018 } 4019 4020 #define XSTATE_COMPACTION_ENABLED (1ULL << 63) 4021 4022 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu) 4023 { 4024 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave; 4025 u64 xstate_bv = xsave->header.xfeatures; 4026 u64 valid; 4027 4028 /* 4029 * Copy legacy XSAVE area, to avoid complications with CPUID 4030 * leaves 0 and 1 in the loop below. 4031 */ 4032 memcpy(dest, xsave, XSAVE_HDR_OFFSET); 4033 4034 /* Set XSTATE_BV */ 4035 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE; 4036 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv; 4037 4038 /* 4039 * Copy each region from the possibly compacted offset to the 4040 * non-compacted offset. 4041 */ 4042 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 4043 while (valid) { 4044 u64 xfeature_mask = valid & -valid; 4045 int xfeature_nr = fls64(xfeature_mask) - 1; 4046 void *src = get_xsave_addr(xsave, xfeature_nr); 4047 4048 if (src) { 4049 u32 size, offset, ecx, edx; 4050 cpuid_count(XSTATE_CPUID, xfeature_nr, 4051 &size, &offset, &ecx, &edx); 4052 if (xfeature_nr == XFEATURE_PKRU) 4053 memcpy(dest + offset, &vcpu->arch.pkru, 4054 sizeof(vcpu->arch.pkru)); 4055 else 4056 memcpy(dest + offset, src, size); 4057 4058 } 4059 4060 valid -= xfeature_mask; 4061 } 4062 } 4063 4064 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src) 4065 { 4066 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave; 4067 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET); 4068 u64 valid; 4069 4070 /* 4071 * Copy legacy XSAVE area, to avoid complications with CPUID 4072 * leaves 0 and 1 in the loop below. 4073 */ 4074 memcpy(xsave, src, XSAVE_HDR_OFFSET); 4075 4076 /* Set XSTATE_BV and possibly XCOMP_BV. */ 4077 xsave->header.xfeatures = xstate_bv; 4078 if (boot_cpu_has(X86_FEATURE_XSAVES)) 4079 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED; 4080 4081 /* 4082 * Copy each region from the non-compacted offset to the 4083 * possibly compacted offset. 4084 */ 4085 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 4086 while (valid) { 4087 u64 xfeature_mask = valid & -valid; 4088 int xfeature_nr = fls64(xfeature_mask) - 1; 4089 void *dest = get_xsave_addr(xsave, xfeature_nr); 4090 4091 if (dest) { 4092 u32 size, offset, ecx, edx; 4093 cpuid_count(XSTATE_CPUID, xfeature_nr, 4094 &size, &offset, &ecx, &edx); 4095 if (xfeature_nr == XFEATURE_PKRU) 4096 memcpy(&vcpu->arch.pkru, src + offset, 4097 sizeof(vcpu->arch.pkru)); 4098 else 4099 memcpy(dest, src + offset, size); 4100 } 4101 4102 valid -= xfeature_mask; 4103 } 4104 } 4105 4106 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 4107 struct kvm_xsave *guest_xsave) 4108 { 4109 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 4110 memset(guest_xsave, 0, sizeof(struct kvm_xsave)); 4111 fill_xsave((u8 *) guest_xsave->region, vcpu); 4112 } else { 4113 memcpy(guest_xsave->region, 4114 &vcpu->arch.guest_fpu->state.fxsave, 4115 sizeof(struct fxregs_state)); 4116 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = 4117 XFEATURE_MASK_FPSSE; 4118 } 4119 } 4120 4121 #define XSAVE_MXCSR_OFFSET 24 4122 4123 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 4124 struct kvm_xsave *guest_xsave) 4125 { 4126 u64 xstate_bv = 4127 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; 4128 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)]; 4129 4130 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 4131 /* 4132 * Here we allow setting states that are not present in 4133 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility 4134 * with old userspace. 4135 */ 4136 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask) 4137 return -EINVAL; 4138 load_xsave(vcpu, (u8 *)guest_xsave->region); 4139 } else { 4140 if (xstate_bv & ~XFEATURE_MASK_FPSSE || 4141 mxcsr & ~mxcsr_feature_mask) 4142 return -EINVAL; 4143 memcpy(&vcpu->arch.guest_fpu->state.fxsave, 4144 guest_xsave->region, sizeof(struct fxregs_state)); 4145 } 4146 return 0; 4147 } 4148 4149 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 4150 struct kvm_xcrs *guest_xcrs) 4151 { 4152 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 4153 guest_xcrs->nr_xcrs = 0; 4154 return; 4155 } 4156 4157 guest_xcrs->nr_xcrs = 1; 4158 guest_xcrs->flags = 0; 4159 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 4160 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 4161 } 4162 4163 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 4164 struct kvm_xcrs *guest_xcrs) 4165 { 4166 int i, r = 0; 4167 4168 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 4169 return -EINVAL; 4170 4171 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 4172 return -EINVAL; 4173 4174 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 4175 /* Only support XCR0 currently */ 4176 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 4177 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 4178 guest_xcrs->xcrs[i].value); 4179 break; 4180 } 4181 if (r) 4182 r = -EINVAL; 4183 return r; 4184 } 4185 4186 /* 4187 * kvm_set_guest_paused() indicates to the guest kernel that it has been 4188 * stopped by the hypervisor. This function will be called from the host only. 4189 * EINVAL is returned when the host attempts to set the flag for a guest that 4190 * does not support pv clocks. 4191 */ 4192 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 4193 { 4194 if (!vcpu->arch.pv_time_enabled) 4195 return -EINVAL; 4196 vcpu->arch.pvclock_set_guest_stopped_request = true; 4197 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4198 return 0; 4199 } 4200 4201 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 4202 struct kvm_enable_cap *cap) 4203 { 4204 int r; 4205 uint16_t vmcs_version; 4206 void __user *user_ptr; 4207 4208 if (cap->flags) 4209 return -EINVAL; 4210 4211 switch (cap->cap) { 4212 case KVM_CAP_HYPERV_SYNIC2: 4213 if (cap->args[0]) 4214 return -EINVAL; 4215 /* fall through */ 4216 4217 case KVM_CAP_HYPERV_SYNIC: 4218 if (!irqchip_in_kernel(vcpu->kvm)) 4219 return -EINVAL; 4220 return kvm_hv_activate_synic(vcpu, cap->cap == 4221 KVM_CAP_HYPERV_SYNIC2); 4222 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4223 if (!kvm_x86_ops.nested_enable_evmcs) 4224 return -ENOTTY; 4225 r = kvm_x86_ops.nested_enable_evmcs(vcpu, &vmcs_version); 4226 if (!r) { 4227 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 4228 if (copy_to_user(user_ptr, &vmcs_version, 4229 sizeof(vmcs_version))) 4230 r = -EFAULT; 4231 } 4232 return r; 4233 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4234 if (!kvm_x86_ops.enable_direct_tlbflush) 4235 return -ENOTTY; 4236 4237 return kvm_x86_ops.enable_direct_tlbflush(vcpu); 4238 4239 default: 4240 return -EINVAL; 4241 } 4242 } 4243 4244 long kvm_arch_vcpu_ioctl(struct file *filp, 4245 unsigned int ioctl, unsigned long arg) 4246 { 4247 struct kvm_vcpu *vcpu = filp->private_data; 4248 void __user *argp = (void __user *)arg; 4249 int r; 4250 union { 4251 struct kvm_lapic_state *lapic; 4252 struct kvm_xsave *xsave; 4253 struct kvm_xcrs *xcrs; 4254 void *buffer; 4255 } u; 4256 4257 vcpu_load(vcpu); 4258 4259 u.buffer = NULL; 4260 switch (ioctl) { 4261 case KVM_GET_LAPIC: { 4262 r = -EINVAL; 4263 if (!lapic_in_kernel(vcpu)) 4264 goto out; 4265 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 4266 GFP_KERNEL_ACCOUNT); 4267 4268 r = -ENOMEM; 4269 if (!u.lapic) 4270 goto out; 4271 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 4272 if (r) 4273 goto out; 4274 r = -EFAULT; 4275 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 4276 goto out; 4277 r = 0; 4278 break; 4279 } 4280 case KVM_SET_LAPIC: { 4281 r = -EINVAL; 4282 if (!lapic_in_kernel(vcpu)) 4283 goto out; 4284 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 4285 if (IS_ERR(u.lapic)) { 4286 r = PTR_ERR(u.lapic); 4287 goto out_nofree; 4288 } 4289 4290 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 4291 break; 4292 } 4293 case KVM_INTERRUPT: { 4294 struct kvm_interrupt irq; 4295 4296 r = -EFAULT; 4297 if (copy_from_user(&irq, argp, sizeof(irq))) 4298 goto out; 4299 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 4300 break; 4301 } 4302 case KVM_NMI: { 4303 r = kvm_vcpu_ioctl_nmi(vcpu); 4304 break; 4305 } 4306 case KVM_SMI: { 4307 r = kvm_vcpu_ioctl_smi(vcpu); 4308 break; 4309 } 4310 case KVM_SET_CPUID: { 4311 struct kvm_cpuid __user *cpuid_arg = argp; 4312 struct kvm_cpuid cpuid; 4313 4314 r = -EFAULT; 4315 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4316 goto out; 4317 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4318 break; 4319 } 4320 case KVM_SET_CPUID2: { 4321 struct kvm_cpuid2 __user *cpuid_arg = argp; 4322 struct kvm_cpuid2 cpuid; 4323 4324 r = -EFAULT; 4325 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4326 goto out; 4327 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 4328 cpuid_arg->entries); 4329 break; 4330 } 4331 case KVM_GET_CPUID2: { 4332 struct kvm_cpuid2 __user *cpuid_arg = argp; 4333 struct kvm_cpuid2 cpuid; 4334 4335 r = -EFAULT; 4336 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4337 goto out; 4338 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 4339 cpuid_arg->entries); 4340 if (r) 4341 goto out; 4342 r = -EFAULT; 4343 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4344 goto out; 4345 r = 0; 4346 break; 4347 } 4348 case KVM_GET_MSRS: { 4349 int idx = srcu_read_lock(&vcpu->kvm->srcu); 4350 r = msr_io(vcpu, argp, do_get_msr, 1); 4351 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4352 break; 4353 } 4354 case KVM_SET_MSRS: { 4355 int idx = srcu_read_lock(&vcpu->kvm->srcu); 4356 r = msr_io(vcpu, argp, do_set_msr, 0); 4357 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4358 break; 4359 } 4360 case KVM_TPR_ACCESS_REPORTING: { 4361 struct kvm_tpr_access_ctl tac; 4362 4363 r = -EFAULT; 4364 if (copy_from_user(&tac, argp, sizeof(tac))) 4365 goto out; 4366 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 4367 if (r) 4368 goto out; 4369 r = -EFAULT; 4370 if (copy_to_user(argp, &tac, sizeof(tac))) 4371 goto out; 4372 r = 0; 4373 break; 4374 }; 4375 case KVM_SET_VAPIC_ADDR: { 4376 struct kvm_vapic_addr va; 4377 int idx; 4378 4379 r = -EINVAL; 4380 if (!lapic_in_kernel(vcpu)) 4381 goto out; 4382 r = -EFAULT; 4383 if (copy_from_user(&va, argp, sizeof(va))) 4384 goto out; 4385 idx = srcu_read_lock(&vcpu->kvm->srcu); 4386 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 4387 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4388 break; 4389 } 4390 case KVM_X86_SETUP_MCE: { 4391 u64 mcg_cap; 4392 4393 r = -EFAULT; 4394 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 4395 goto out; 4396 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 4397 break; 4398 } 4399 case KVM_X86_SET_MCE: { 4400 struct kvm_x86_mce mce; 4401 4402 r = -EFAULT; 4403 if (copy_from_user(&mce, argp, sizeof(mce))) 4404 goto out; 4405 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 4406 break; 4407 } 4408 case KVM_GET_VCPU_EVENTS: { 4409 struct kvm_vcpu_events events; 4410 4411 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 4412 4413 r = -EFAULT; 4414 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 4415 break; 4416 r = 0; 4417 break; 4418 } 4419 case KVM_SET_VCPU_EVENTS: { 4420 struct kvm_vcpu_events events; 4421 4422 r = -EFAULT; 4423 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 4424 break; 4425 4426 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 4427 break; 4428 } 4429 case KVM_GET_DEBUGREGS: { 4430 struct kvm_debugregs dbgregs; 4431 4432 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 4433 4434 r = -EFAULT; 4435 if (copy_to_user(argp, &dbgregs, 4436 sizeof(struct kvm_debugregs))) 4437 break; 4438 r = 0; 4439 break; 4440 } 4441 case KVM_SET_DEBUGREGS: { 4442 struct kvm_debugregs dbgregs; 4443 4444 r = -EFAULT; 4445 if (copy_from_user(&dbgregs, argp, 4446 sizeof(struct kvm_debugregs))) 4447 break; 4448 4449 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 4450 break; 4451 } 4452 case KVM_GET_XSAVE: { 4453 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 4454 r = -ENOMEM; 4455 if (!u.xsave) 4456 break; 4457 4458 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 4459 4460 r = -EFAULT; 4461 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 4462 break; 4463 r = 0; 4464 break; 4465 } 4466 case KVM_SET_XSAVE: { 4467 u.xsave = memdup_user(argp, sizeof(*u.xsave)); 4468 if (IS_ERR(u.xsave)) { 4469 r = PTR_ERR(u.xsave); 4470 goto out_nofree; 4471 } 4472 4473 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 4474 break; 4475 } 4476 case KVM_GET_XCRS: { 4477 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 4478 r = -ENOMEM; 4479 if (!u.xcrs) 4480 break; 4481 4482 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 4483 4484 r = -EFAULT; 4485 if (copy_to_user(argp, u.xcrs, 4486 sizeof(struct kvm_xcrs))) 4487 break; 4488 r = 0; 4489 break; 4490 } 4491 case KVM_SET_XCRS: { 4492 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 4493 if (IS_ERR(u.xcrs)) { 4494 r = PTR_ERR(u.xcrs); 4495 goto out_nofree; 4496 } 4497 4498 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 4499 break; 4500 } 4501 case KVM_SET_TSC_KHZ: { 4502 u32 user_tsc_khz; 4503 4504 r = -EINVAL; 4505 user_tsc_khz = (u32)arg; 4506 4507 if (user_tsc_khz >= kvm_max_guest_tsc_khz) 4508 goto out; 4509 4510 if (user_tsc_khz == 0) 4511 user_tsc_khz = tsc_khz; 4512 4513 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 4514 r = 0; 4515 4516 goto out; 4517 } 4518 case KVM_GET_TSC_KHZ: { 4519 r = vcpu->arch.virtual_tsc_khz; 4520 goto out; 4521 } 4522 case KVM_KVMCLOCK_CTRL: { 4523 r = kvm_set_guest_paused(vcpu); 4524 goto out; 4525 } 4526 case KVM_ENABLE_CAP: { 4527 struct kvm_enable_cap cap; 4528 4529 r = -EFAULT; 4530 if (copy_from_user(&cap, argp, sizeof(cap))) 4531 goto out; 4532 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 4533 break; 4534 } 4535 case KVM_GET_NESTED_STATE: { 4536 struct kvm_nested_state __user *user_kvm_nested_state = argp; 4537 u32 user_data_size; 4538 4539 r = -EINVAL; 4540 if (!kvm_x86_ops.get_nested_state) 4541 break; 4542 4543 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 4544 r = -EFAULT; 4545 if (get_user(user_data_size, &user_kvm_nested_state->size)) 4546 break; 4547 4548 r = kvm_x86_ops.get_nested_state(vcpu, user_kvm_nested_state, 4549 user_data_size); 4550 if (r < 0) 4551 break; 4552 4553 if (r > user_data_size) { 4554 if (put_user(r, &user_kvm_nested_state->size)) 4555 r = -EFAULT; 4556 else 4557 r = -E2BIG; 4558 break; 4559 } 4560 4561 r = 0; 4562 break; 4563 } 4564 case KVM_SET_NESTED_STATE: { 4565 struct kvm_nested_state __user *user_kvm_nested_state = argp; 4566 struct kvm_nested_state kvm_state; 4567 int idx; 4568 4569 r = -EINVAL; 4570 if (!kvm_x86_ops.set_nested_state) 4571 break; 4572 4573 r = -EFAULT; 4574 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 4575 break; 4576 4577 r = -EINVAL; 4578 if (kvm_state.size < sizeof(kvm_state)) 4579 break; 4580 4581 if (kvm_state.flags & 4582 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 4583 | KVM_STATE_NESTED_EVMCS)) 4584 break; 4585 4586 /* nested_run_pending implies guest_mode. */ 4587 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 4588 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 4589 break; 4590 4591 idx = srcu_read_lock(&vcpu->kvm->srcu); 4592 r = kvm_x86_ops.set_nested_state(vcpu, user_kvm_nested_state, &kvm_state); 4593 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4594 break; 4595 } 4596 case KVM_GET_SUPPORTED_HV_CPUID: { 4597 struct kvm_cpuid2 __user *cpuid_arg = argp; 4598 struct kvm_cpuid2 cpuid; 4599 4600 r = -EFAULT; 4601 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4602 goto out; 4603 4604 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid, 4605 cpuid_arg->entries); 4606 if (r) 4607 goto out; 4608 4609 r = -EFAULT; 4610 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4611 goto out; 4612 r = 0; 4613 break; 4614 } 4615 default: 4616 r = -EINVAL; 4617 } 4618 out: 4619 kfree(u.buffer); 4620 out_nofree: 4621 vcpu_put(vcpu); 4622 return r; 4623 } 4624 4625 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 4626 { 4627 return VM_FAULT_SIGBUS; 4628 } 4629 4630 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 4631 { 4632 int ret; 4633 4634 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 4635 return -EINVAL; 4636 ret = kvm_x86_ops.set_tss_addr(kvm, addr); 4637 return ret; 4638 } 4639 4640 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 4641 u64 ident_addr) 4642 { 4643 return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr); 4644 } 4645 4646 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 4647 unsigned long kvm_nr_mmu_pages) 4648 { 4649 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 4650 return -EINVAL; 4651 4652 mutex_lock(&kvm->slots_lock); 4653 4654 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 4655 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 4656 4657 mutex_unlock(&kvm->slots_lock); 4658 return 0; 4659 } 4660 4661 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 4662 { 4663 return kvm->arch.n_max_mmu_pages; 4664 } 4665 4666 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 4667 { 4668 struct kvm_pic *pic = kvm->arch.vpic; 4669 int r; 4670 4671 r = 0; 4672 switch (chip->chip_id) { 4673 case KVM_IRQCHIP_PIC_MASTER: 4674 memcpy(&chip->chip.pic, &pic->pics[0], 4675 sizeof(struct kvm_pic_state)); 4676 break; 4677 case KVM_IRQCHIP_PIC_SLAVE: 4678 memcpy(&chip->chip.pic, &pic->pics[1], 4679 sizeof(struct kvm_pic_state)); 4680 break; 4681 case KVM_IRQCHIP_IOAPIC: 4682 kvm_get_ioapic(kvm, &chip->chip.ioapic); 4683 break; 4684 default: 4685 r = -EINVAL; 4686 break; 4687 } 4688 return r; 4689 } 4690 4691 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 4692 { 4693 struct kvm_pic *pic = kvm->arch.vpic; 4694 int r; 4695 4696 r = 0; 4697 switch (chip->chip_id) { 4698 case KVM_IRQCHIP_PIC_MASTER: 4699 spin_lock(&pic->lock); 4700 memcpy(&pic->pics[0], &chip->chip.pic, 4701 sizeof(struct kvm_pic_state)); 4702 spin_unlock(&pic->lock); 4703 break; 4704 case KVM_IRQCHIP_PIC_SLAVE: 4705 spin_lock(&pic->lock); 4706 memcpy(&pic->pics[1], &chip->chip.pic, 4707 sizeof(struct kvm_pic_state)); 4708 spin_unlock(&pic->lock); 4709 break; 4710 case KVM_IRQCHIP_IOAPIC: 4711 kvm_set_ioapic(kvm, &chip->chip.ioapic); 4712 break; 4713 default: 4714 r = -EINVAL; 4715 break; 4716 } 4717 kvm_pic_update_irq(pic); 4718 return r; 4719 } 4720 4721 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 4722 { 4723 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 4724 4725 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 4726 4727 mutex_lock(&kps->lock); 4728 memcpy(ps, &kps->channels, sizeof(*ps)); 4729 mutex_unlock(&kps->lock); 4730 return 0; 4731 } 4732 4733 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 4734 { 4735 int i; 4736 struct kvm_pit *pit = kvm->arch.vpit; 4737 4738 mutex_lock(&pit->pit_state.lock); 4739 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 4740 for (i = 0; i < 3; i++) 4741 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 4742 mutex_unlock(&pit->pit_state.lock); 4743 return 0; 4744 } 4745 4746 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 4747 { 4748 mutex_lock(&kvm->arch.vpit->pit_state.lock); 4749 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 4750 sizeof(ps->channels)); 4751 ps->flags = kvm->arch.vpit->pit_state.flags; 4752 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 4753 memset(&ps->reserved, 0, sizeof(ps->reserved)); 4754 return 0; 4755 } 4756 4757 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 4758 { 4759 int start = 0; 4760 int i; 4761 u32 prev_legacy, cur_legacy; 4762 struct kvm_pit *pit = kvm->arch.vpit; 4763 4764 mutex_lock(&pit->pit_state.lock); 4765 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 4766 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 4767 if (!prev_legacy && cur_legacy) 4768 start = 1; 4769 memcpy(&pit->pit_state.channels, &ps->channels, 4770 sizeof(pit->pit_state.channels)); 4771 pit->pit_state.flags = ps->flags; 4772 for (i = 0; i < 3; i++) 4773 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 4774 start && i == 0); 4775 mutex_unlock(&pit->pit_state.lock); 4776 return 0; 4777 } 4778 4779 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 4780 struct kvm_reinject_control *control) 4781 { 4782 struct kvm_pit *pit = kvm->arch.vpit; 4783 4784 /* pit->pit_state.lock was overloaded to prevent userspace from getting 4785 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 4786 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 4787 */ 4788 mutex_lock(&pit->pit_state.lock); 4789 kvm_pit_set_reinject(pit, control->pit_reinject); 4790 mutex_unlock(&pit->pit_state.lock); 4791 4792 return 0; 4793 } 4794 4795 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 4796 { 4797 /* 4798 * Flush potentially hardware-cached dirty pages to dirty_bitmap. 4799 */ 4800 if (kvm_x86_ops.flush_log_dirty) 4801 kvm_x86_ops.flush_log_dirty(kvm); 4802 } 4803 4804 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 4805 bool line_status) 4806 { 4807 if (!irqchip_in_kernel(kvm)) 4808 return -ENXIO; 4809 4810 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 4811 irq_event->irq, irq_event->level, 4812 line_status); 4813 return 0; 4814 } 4815 4816 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4817 struct kvm_enable_cap *cap) 4818 { 4819 int r; 4820 4821 if (cap->flags) 4822 return -EINVAL; 4823 4824 switch (cap->cap) { 4825 case KVM_CAP_DISABLE_QUIRKS: 4826 kvm->arch.disabled_quirks = cap->args[0]; 4827 r = 0; 4828 break; 4829 case KVM_CAP_SPLIT_IRQCHIP: { 4830 mutex_lock(&kvm->lock); 4831 r = -EINVAL; 4832 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 4833 goto split_irqchip_unlock; 4834 r = -EEXIST; 4835 if (irqchip_in_kernel(kvm)) 4836 goto split_irqchip_unlock; 4837 if (kvm->created_vcpus) 4838 goto split_irqchip_unlock; 4839 r = kvm_setup_empty_irq_routing(kvm); 4840 if (r) 4841 goto split_irqchip_unlock; 4842 /* Pairs with irqchip_in_kernel. */ 4843 smp_wmb(); 4844 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 4845 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 4846 r = 0; 4847 split_irqchip_unlock: 4848 mutex_unlock(&kvm->lock); 4849 break; 4850 } 4851 case KVM_CAP_X2APIC_API: 4852 r = -EINVAL; 4853 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 4854 break; 4855 4856 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 4857 kvm->arch.x2apic_format = true; 4858 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 4859 kvm->arch.x2apic_broadcast_quirk_disabled = true; 4860 4861 r = 0; 4862 break; 4863 case KVM_CAP_X86_DISABLE_EXITS: 4864 r = -EINVAL; 4865 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 4866 break; 4867 4868 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 4869 kvm_can_mwait_in_guest()) 4870 kvm->arch.mwait_in_guest = true; 4871 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 4872 kvm->arch.hlt_in_guest = true; 4873 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 4874 kvm->arch.pause_in_guest = true; 4875 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 4876 kvm->arch.cstate_in_guest = true; 4877 r = 0; 4878 break; 4879 case KVM_CAP_MSR_PLATFORM_INFO: 4880 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 4881 r = 0; 4882 break; 4883 case KVM_CAP_EXCEPTION_PAYLOAD: 4884 kvm->arch.exception_payload_enabled = cap->args[0]; 4885 r = 0; 4886 break; 4887 default: 4888 r = -EINVAL; 4889 break; 4890 } 4891 return r; 4892 } 4893 4894 long kvm_arch_vm_ioctl(struct file *filp, 4895 unsigned int ioctl, unsigned long arg) 4896 { 4897 struct kvm *kvm = filp->private_data; 4898 void __user *argp = (void __user *)arg; 4899 int r = -ENOTTY; 4900 /* 4901 * This union makes it completely explicit to gcc-3.x 4902 * that these two variables' stack usage should be 4903 * combined, not added together. 4904 */ 4905 union { 4906 struct kvm_pit_state ps; 4907 struct kvm_pit_state2 ps2; 4908 struct kvm_pit_config pit_config; 4909 } u; 4910 4911 switch (ioctl) { 4912 case KVM_SET_TSS_ADDR: 4913 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 4914 break; 4915 case KVM_SET_IDENTITY_MAP_ADDR: { 4916 u64 ident_addr; 4917 4918 mutex_lock(&kvm->lock); 4919 r = -EINVAL; 4920 if (kvm->created_vcpus) 4921 goto set_identity_unlock; 4922 r = -EFAULT; 4923 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 4924 goto set_identity_unlock; 4925 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 4926 set_identity_unlock: 4927 mutex_unlock(&kvm->lock); 4928 break; 4929 } 4930 case KVM_SET_NR_MMU_PAGES: 4931 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 4932 break; 4933 case KVM_GET_NR_MMU_PAGES: 4934 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 4935 break; 4936 case KVM_CREATE_IRQCHIP: { 4937 mutex_lock(&kvm->lock); 4938 4939 r = -EEXIST; 4940 if (irqchip_in_kernel(kvm)) 4941 goto create_irqchip_unlock; 4942 4943 r = -EINVAL; 4944 if (kvm->created_vcpus) 4945 goto create_irqchip_unlock; 4946 4947 r = kvm_pic_init(kvm); 4948 if (r) 4949 goto create_irqchip_unlock; 4950 4951 r = kvm_ioapic_init(kvm); 4952 if (r) { 4953 kvm_pic_destroy(kvm); 4954 goto create_irqchip_unlock; 4955 } 4956 4957 r = kvm_setup_default_irq_routing(kvm); 4958 if (r) { 4959 kvm_ioapic_destroy(kvm); 4960 kvm_pic_destroy(kvm); 4961 goto create_irqchip_unlock; 4962 } 4963 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 4964 smp_wmb(); 4965 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 4966 create_irqchip_unlock: 4967 mutex_unlock(&kvm->lock); 4968 break; 4969 } 4970 case KVM_CREATE_PIT: 4971 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 4972 goto create_pit; 4973 case KVM_CREATE_PIT2: 4974 r = -EFAULT; 4975 if (copy_from_user(&u.pit_config, argp, 4976 sizeof(struct kvm_pit_config))) 4977 goto out; 4978 create_pit: 4979 mutex_lock(&kvm->lock); 4980 r = -EEXIST; 4981 if (kvm->arch.vpit) 4982 goto create_pit_unlock; 4983 r = -ENOMEM; 4984 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 4985 if (kvm->arch.vpit) 4986 r = 0; 4987 create_pit_unlock: 4988 mutex_unlock(&kvm->lock); 4989 break; 4990 case KVM_GET_IRQCHIP: { 4991 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 4992 struct kvm_irqchip *chip; 4993 4994 chip = memdup_user(argp, sizeof(*chip)); 4995 if (IS_ERR(chip)) { 4996 r = PTR_ERR(chip); 4997 goto out; 4998 } 4999 5000 r = -ENXIO; 5001 if (!irqchip_kernel(kvm)) 5002 goto get_irqchip_out; 5003 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 5004 if (r) 5005 goto get_irqchip_out; 5006 r = -EFAULT; 5007 if (copy_to_user(argp, chip, sizeof(*chip))) 5008 goto get_irqchip_out; 5009 r = 0; 5010 get_irqchip_out: 5011 kfree(chip); 5012 break; 5013 } 5014 case KVM_SET_IRQCHIP: { 5015 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 5016 struct kvm_irqchip *chip; 5017 5018 chip = memdup_user(argp, sizeof(*chip)); 5019 if (IS_ERR(chip)) { 5020 r = PTR_ERR(chip); 5021 goto out; 5022 } 5023 5024 r = -ENXIO; 5025 if (!irqchip_kernel(kvm)) 5026 goto set_irqchip_out; 5027 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 5028 set_irqchip_out: 5029 kfree(chip); 5030 break; 5031 } 5032 case KVM_GET_PIT: { 5033 r = -EFAULT; 5034 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 5035 goto out; 5036 r = -ENXIO; 5037 if (!kvm->arch.vpit) 5038 goto out; 5039 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 5040 if (r) 5041 goto out; 5042 r = -EFAULT; 5043 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 5044 goto out; 5045 r = 0; 5046 break; 5047 } 5048 case KVM_SET_PIT: { 5049 r = -EFAULT; 5050 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 5051 goto out; 5052 r = -ENXIO; 5053 if (!kvm->arch.vpit) 5054 goto out; 5055 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 5056 break; 5057 } 5058 case KVM_GET_PIT2: { 5059 r = -ENXIO; 5060 if (!kvm->arch.vpit) 5061 goto out; 5062 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 5063 if (r) 5064 goto out; 5065 r = -EFAULT; 5066 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 5067 goto out; 5068 r = 0; 5069 break; 5070 } 5071 case KVM_SET_PIT2: { 5072 r = -EFAULT; 5073 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 5074 goto out; 5075 r = -ENXIO; 5076 if (!kvm->arch.vpit) 5077 goto out; 5078 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 5079 break; 5080 } 5081 case KVM_REINJECT_CONTROL: { 5082 struct kvm_reinject_control control; 5083 r = -EFAULT; 5084 if (copy_from_user(&control, argp, sizeof(control))) 5085 goto out; 5086 r = -ENXIO; 5087 if (!kvm->arch.vpit) 5088 goto out; 5089 r = kvm_vm_ioctl_reinject(kvm, &control); 5090 break; 5091 } 5092 case KVM_SET_BOOT_CPU_ID: 5093 r = 0; 5094 mutex_lock(&kvm->lock); 5095 if (kvm->created_vcpus) 5096 r = -EBUSY; 5097 else 5098 kvm->arch.bsp_vcpu_id = arg; 5099 mutex_unlock(&kvm->lock); 5100 break; 5101 case KVM_XEN_HVM_CONFIG: { 5102 struct kvm_xen_hvm_config xhc; 5103 r = -EFAULT; 5104 if (copy_from_user(&xhc, argp, sizeof(xhc))) 5105 goto out; 5106 r = -EINVAL; 5107 if (xhc.flags) 5108 goto out; 5109 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc)); 5110 r = 0; 5111 break; 5112 } 5113 case KVM_SET_CLOCK: { 5114 struct kvm_clock_data user_ns; 5115 u64 now_ns; 5116 5117 r = -EFAULT; 5118 if (copy_from_user(&user_ns, argp, sizeof(user_ns))) 5119 goto out; 5120 5121 r = -EINVAL; 5122 if (user_ns.flags) 5123 goto out; 5124 5125 r = 0; 5126 /* 5127 * TODO: userspace has to take care of races with VCPU_RUN, so 5128 * kvm_gen_update_masterclock() can be cut down to locked 5129 * pvclock_update_vm_gtod_copy(). 5130 */ 5131 kvm_gen_update_masterclock(kvm); 5132 now_ns = get_kvmclock_ns(kvm); 5133 kvm->arch.kvmclock_offset += user_ns.clock - now_ns; 5134 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE); 5135 break; 5136 } 5137 case KVM_GET_CLOCK: { 5138 struct kvm_clock_data user_ns; 5139 u64 now_ns; 5140 5141 now_ns = get_kvmclock_ns(kvm); 5142 user_ns.clock = now_ns; 5143 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0; 5144 memset(&user_ns.pad, 0, sizeof(user_ns.pad)); 5145 5146 r = -EFAULT; 5147 if (copy_to_user(argp, &user_ns, sizeof(user_ns))) 5148 goto out; 5149 r = 0; 5150 break; 5151 } 5152 case KVM_MEMORY_ENCRYPT_OP: { 5153 r = -ENOTTY; 5154 if (kvm_x86_ops.mem_enc_op) 5155 r = kvm_x86_ops.mem_enc_op(kvm, argp); 5156 break; 5157 } 5158 case KVM_MEMORY_ENCRYPT_REG_REGION: { 5159 struct kvm_enc_region region; 5160 5161 r = -EFAULT; 5162 if (copy_from_user(®ion, argp, sizeof(region))) 5163 goto out; 5164 5165 r = -ENOTTY; 5166 if (kvm_x86_ops.mem_enc_reg_region) 5167 r = kvm_x86_ops.mem_enc_reg_region(kvm, ®ion); 5168 break; 5169 } 5170 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 5171 struct kvm_enc_region region; 5172 5173 r = -EFAULT; 5174 if (copy_from_user(®ion, argp, sizeof(region))) 5175 goto out; 5176 5177 r = -ENOTTY; 5178 if (kvm_x86_ops.mem_enc_unreg_region) 5179 r = kvm_x86_ops.mem_enc_unreg_region(kvm, ®ion); 5180 break; 5181 } 5182 case KVM_HYPERV_EVENTFD: { 5183 struct kvm_hyperv_eventfd hvevfd; 5184 5185 r = -EFAULT; 5186 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 5187 goto out; 5188 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 5189 break; 5190 } 5191 case KVM_SET_PMU_EVENT_FILTER: 5192 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 5193 break; 5194 default: 5195 r = -ENOTTY; 5196 } 5197 out: 5198 return r; 5199 } 5200 5201 static void kvm_init_msr_list(void) 5202 { 5203 struct x86_pmu_capability x86_pmu; 5204 u32 dummy[2]; 5205 unsigned i; 5206 5207 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4, 5208 "Please update the fixed PMCs in msrs_to_saved_all[]"); 5209 5210 perf_get_x86_pmu_capability(&x86_pmu); 5211 5212 num_msrs_to_save = 0; 5213 num_emulated_msrs = 0; 5214 num_msr_based_features = 0; 5215 5216 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) { 5217 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0) 5218 continue; 5219 5220 /* 5221 * Even MSRs that are valid in the host may not be exposed 5222 * to the guests in some cases. 5223 */ 5224 switch (msrs_to_save_all[i]) { 5225 case MSR_IA32_BNDCFGS: 5226 if (!kvm_mpx_supported()) 5227 continue; 5228 break; 5229 case MSR_TSC_AUX: 5230 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) 5231 continue; 5232 break; 5233 case MSR_IA32_RTIT_CTL: 5234 case MSR_IA32_RTIT_STATUS: 5235 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 5236 continue; 5237 break; 5238 case MSR_IA32_RTIT_CR3_MATCH: 5239 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 5240 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 5241 continue; 5242 break; 5243 case MSR_IA32_RTIT_OUTPUT_BASE: 5244 case MSR_IA32_RTIT_OUTPUT_MASK: 5245 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 5246 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 5247 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 5248 continue; 5249 break; 5250 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: { 5251 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 5252 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >= 5253 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2) 5254 continue; 5255 break; 5256 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17: 5257 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >= 5258 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp)) 5259 continue; 5260 break; 5261 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17: 5262 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >= 5263 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp)) 5264 continue; 5265 } 5266 default: 5267 break; 5268 } 5269 5270 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i]; 5271 } 5272 5273 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 5274 if (!kvm_x86_ops.has_emulated_msr(emulated_msrs_all[i])) 5275 continue; 5276 5277 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 5278 } 5279 5280 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) { 5281 struct kvm_msr_entry msr; 5282 5283 msr.index = msr_based_features_all[i]; 5284 if (kvm_get_msr_feature(&msr)) 5285 continue; 5286 5287 msr_based_features[num_msr_based_features++] = msr_based_features_all[i]; 5288 } 5289 } 5290 5291 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 5292 const void *v) 5293 { 5294 int handled = 0; 5295 int n; 5296 5297 do { 5298 n = min(len, 8); 5299 if (!(lapic_in_kernel(vcpu) && 5300 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 5301 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 5302 break; 5303 handled += n; 5304 addr += n; 5305 len -= n; 5306 v += n; 5307 } while (len); 5308 5309 return handled; 5310 } 5311 5312 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 5313 { 5314 int handled = 0; 5315 int n; 5316 5317 do { 5318 n = min(len, 8); 5319 if (!(lapic_in_kernel(vcpu) && 5320 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 5321 addr, n, v)) 5322 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 5323 break; 5324 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 5325 handled += n; 5326 addr += n; 5327 len -= n; 5328 v += n; 5329 } while (len); 5330 5331 return handled; 5332 } 5333 5334 static void kvm_set_segment(struct kvm_vcpu *vcpu, 5335 struct kvm_segment *var, int seg) 5336 { 5337 kvm_x86_ops.set_segment(vcpu, var, seg); 5338 } 5339 5340 void kvm_get_segment(struct kvm_vcpu *vcpu, 5341 struct kvm_segment *var, int seg) 5342 { 5343 kvm_x86_ops.get_segment(vcpu, var, seg); 5344 } 5345 5346 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 5347 struct x86_exception *exception) 5348 { 5349 gpa_t t_gpa; 5350 5351 BUG_ON(!mmu_is_nested(vcpu)); 5352 5353 /* NPT walks are always user-walks */ 5354 access |= PFERR_USER_MASK; 5355 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception); 5356 5357 return t_gpa; 5358 } 5359 5360 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 5361 struct x86_exception *exception) 5362 { 5363 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5364 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5365 } 5366 5367 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 5368 struct x86_exception *exception) 5369 { 5370 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5371 access |= PFERR_FETCH_MASK; 5372 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5373 } 5374 5375 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 5376 struct x86_exception *exception) 5377 { 5378 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5379 access |= PFERR_WRITE_MASK; 5380 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5381 } 5382 5383 /* uses this to access any guest's mapped memory without checking CPL */ 5384 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 5385 struct x86_exception *exception) 5386 { 5387 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); 5388 } 5389 5390 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 5391 struct kvm_vcpu *vcpu, u32 access, 5392 struct x86_exception *exception) 5393 { 5394 void *data = val; 5395 int r = X86EMUL_CONTINUE; 5396 5397 while (bytes) { 5398 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, 5399 exception); 5400 unsigned offset = addr & (PAGE_SIZE-1); 5401 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 5402 int ret; 5403 5404 if (gpa == UNMAPPED_GVA) 5405 return X86EMUL_PROPAGATE_FAULT; 5406 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 5407 offset, toread); 5408 if (ret < 0) { 5409 r = X86EMUL_IO_NEEDED; 5410 goto out; 5411 } 5412 5413 bytes -= toread; 5414 data += toread; 5415 addr += toread; 5416 } 5417 out: 5418 return r; 5419 } 5420 5421 /* used for instruction fetching */ 5422 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 5423 gva_t addr, void *val, unsigned int bytes, 5424 struct x86_exception *exception) 5425 { 5426 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5427 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5428 unsigned offset; 5429 int ret; 5430 5431 /* Inline kvm_read_guest_virt_helper for speed. */ 5432 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK, 5433 exception); 5434 if (unlikely(gpa == UNMAPPED_GVA)) 5435 return X86EMUL_PROPAGATE_FAULT; 5436 5437 offset = addr & (PAGE_SIZE-1); 5438 if (WARN_ON(offset + bytes > PAGE_SIZE)) 5439 bytes = (unsigned)PAGE_SIZE - offset; 5440 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 5441 offset, bytes); 5442 if (unlikely(ret < 0)) 5443 return X86EMUL_IO_NEEDED; 5444 5445 return X86EMUL_CONTINUE; 5446 } 5447 5448 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 5449 gva_t addr, void *val, unsigned int bytes, 5450 struct x86_exception *exception) 5451 { 5452 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5453 5454 /* 5455 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 5456 * is returned, but our callers are not ready for that and they blindly 5457 * call kvm_inject_page_fault. Ensure that they at least do not leak 5458 * uninitialized kernel stack memory into cr2 and error code. 5459 */ 5460 memset(exception, 0, sizeof(*exception)); 5461 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 5462 exception); 5463 } 5464 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 5465 5466 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 5467 gva_t addr, void *val, unsigned int bytes, 5468 struct x86_exception *exception, bool system) 5469 { 5470 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5471 u32 access = 0; 5472 5473 if (!system && kvm_x86_ops.get_cpl(vcpu) == 3) 5474 access |= PFERR_USER_MASK; 5475 5476 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 5477 } 5478 5479 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, 5480 unsigned long addr, void *val, unsigned int bytes) 5481 { 5482 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5483 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes); 5484 5485 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE; 5486 } 5487 5488 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 5489 struct kvm_vcpu *vcpu, u32 access, 5490 struct x86_exception *exception) 5491 { 5492 void *data = val; 5493 int r = X86EMUL_CONTINUE; 5494 5495 while (bytes) { 5496 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, 5497 access, 5498 exception); 5499 unsigned offset = addr & (PAGE_SIZE-1); 5500 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 5501 int ret; 5502 5503 if (gpa == UNMAPPED_GVA) 5504 return X86EMUL_PROPAGATE_FAULT; 5505 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 5506 if (ret < 0) { 5507 r = X86EMUL_IO_NEEDED; 5508 goto out; 5509 } 5510 5511 bytes -= towrite; 5512 data += towrite; 5513 addr += towrite; 5514 } 5515 out: 5516 return r; 5517 } 5518 5519 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 5520 unsigned int bytes, struct x86_exception *exception, 5521 bool system) 5522 { 5523 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5524 u32 access = PFERR_WRITE_MASK; 5525 5526 if (!system && kvm_x86_ops.get_cpl(vcpu) == 3) 5527 access |= PFERR_USER_MASK; 5528 5529 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 5530 access, exception); 5531 } 5532 5533 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 5534 unsigned int bytes, struct x86_exception *exception) 5535 { 5536 /* kvm_write_guest_virt_system can pull in tons of pages. */ 5537 vcpu->arch.l1tf_flush_l1d = true; 5538 5539 /* 5540 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 5541 * is returned, but our callers are not ready for that and they blindly 5542 * call kvm_inject_page_fault. Ensure that they at least do not leak 5543 * uninitialized kernel stack memory into cr2 and error code. 5544 */ 5545 memset(exception, 0, sizeof(*exception)); 5546 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 5547 PFERR_WRITE_MASK, exception); 5548 } 5549 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 5550 5551 int handle_ud(struct kvm_vcpu *vcpu) 5552 { 5553 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 5554 int emul_type = EMULTYPE_TRAP_UD; 5555 char sig[5]; /* ud2; .ascii "kvm" */ 5556 struct x86_exception e; 5557 5558 if (force_emulation_prefix && 5559 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 5560 sig, sizeof(sig), &e) == 0 && 5561 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 5562 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 5563 emul_type = EMULTYPE_TRAP_UD_FORCED; 5564 } 5565 5566 return kvm_emulate_instruction(vcpu, emul_type); 5567 } 5568 EXPORT_SYMBOL_GPL(handle_ud); 5569 5570 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 5571 gpa_t gpa, bool write) 5572 { 5573 /* For APIC access vmexit */ 5574 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 5575 return 1; 5576 5577 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 5578 trace_vcpu_match_mmio(gva, gpa, write, true); 5579 return 1; 5580 } 5581 5582 return 0; 5583 } 5584 5585 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 5586 gpa_t *gpa, struct x86_exception *exception, 5587 bool write) 5588 { 5589 u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) 5590 | (write ? PFERR_WRITE_MASK : 0); 5591 5592 /* 5593 * currently PKRU is only applied to ept enabled guest so 5594 * there is no pkey in EPT page table for L1 guest or EPT 5595 * shadow page table for L2 guest. 5596 */ 5597 if (vcpu_match_mmio_gva(vcpu, gva) 5598 && !permission_fault(vcpu, vcpu->arch.walk_mmu, 5599 vcpu->arch.mmio_access, 0, access)) { 5600 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 5601 (gva & (PAGE_SIZE - 1)); 5602 trace_vcpu_match_mmio(gva, *gpa, write, false); 5603 return 1; 5604 } 5605 5606 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5607 5608 if (*gpa == UNMAPPED_GVA) 5609 return -1; 5610 5611 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 5612 } 5613 5614 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 5615 const void *val, int bytes) 5616 { 5617 int ret; 5618 5619 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 5620 if (ret < 0) 5621 return 0; 5622 kvm_page_track_write(vcpu, gpa, val, bytes); 5623 return 1; 5624 } 5625 5626 struct read_write_emulator_ops { 5627 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 5628 int bytes); 5629 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 5630 void *val, int bytes); 5631 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 5632 int bytes, void *val); 5633 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 5634 void *val, int bytes); 5635 bool write; 5636 }; 5637 5638 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 5639 { 5640 if (vcpu->mmio_read_completed) { 5641 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 5642 vcpu->mmio_fragments[0].gpa, val); 5643 vcpu->mmio_read_completed = 0; 5644 return 1; 5645 } 5646 5647 return 0; 5648 } 5649 5650 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 5651 void *val, int bytes) 5652 { 5653 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 5654 } 5655 5656 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 5657 void *val, int bytes) 5658 { 5659 return emulator_write_phys(vcpu, gpa, val, bytes); 5660 } 5661 5662 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 5663 { 5664 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 5665 return vcpu_mmio_write(vcpu, gpa, bytes, val); 5666 } 5667 5668 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 5669 void *val, int bytes) 5670 { 5671 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 5672 return X86EMUL_IO_NEEDED; 5673 } 5674 5675 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 5676 void *val, int bytes) 5677 { 5678 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 5679 5680 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 5681 return X86EMUL_CONTINUE; 5682 } 5683 5684 static const struct read_write_emulator_ops read_emultor = { 5685 .read_write_prepare = read_prepare, 5686 .read_write_emulate = read_emulate, 5687 .read_write_mmio = vcpu_mmio_read, 5688 .read_write_exit_mmio = read_exit_mmio, 5689 }; 5690 5691 static const struct read_write_emulator_ops write_emultor = { 5692 .read_write_emulate = write_emulate, 5693 .read_write_mmio = write_mmio, 5694 .read_write_exit_mmio = write_exit_mmio, 5695 .write = true, 5696 }; 5697 5698 static int emulator_read_write_onepage(unsigned long addr, void *val, 5699 unsigned int bytes, 5700 struct x86_exception *exception, 5701 struct kvm_vcpu *vcpu, 5702 const struct read_write_emulator_ops *ops) 5703 { 5704 gpa_t gpa; 5705 int handled, ret; 5706 bool write = ops->write; 5707 struct kvm_mmio_fragment *frag; 5708 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 5709 5710 /* 5711 * If the exit was due to a NPF we may already have a GPA. 5712 * If the GPA is present, use it to avoid the GVA to GPA table walk. 5713 * Note, this cannot be used on string operations since string 5714 * operation using rep will only have the initial GPA from the NPF 5715 * occurred. 5716 */ 5717 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 5718 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 5719 gpa = ctxt->gpa_val; 5720 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 5721 } else { 5722 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 5723 if (ret < 0) 5724 return X86EMUL_PROPAGATE_FAULT; 5725 } 5726 5727 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 5728 return X86EMUL_CONTINUE; 5729 5730 /* 5731 * Is this MMIO handled locally? 5732 */ 5733 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 5734 if (handled == bytes) 5735 return X86EMUL_CONTINUE; 5736 5737 gpa += handled; 5738 bytes -= handled; 5739 val += handled; 5740 5741 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 5742 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 5743 frag->gpa = gpa; 5744 frag->data = val; 5745 frag->len = bytes; 5746 return X86EMUL_CONTINUE; 5747 } 5748 5749 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 5750 unsigned long addr, 5751 void *val, unsigned int bytes, 5752 struct x86_exception *exception, 5753 const struct read_write_emulator_ops *ops) 5754 { 5755 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5756 gpa_t gpa; 5757 int rc; 5758 5759 if (ops->read_write_prepare && 5760 ops->read_write_prepare(vcpu, val, bytes)) 5761 return X86EMUL_CONTINUE; 5762 5763 vcpu->mmio_nr_fragments = 0; 5764 5765 /* Crossing a page boundary? */ 5766 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 5767 int now; 5768 5769 now = -addr & ~PAGE_MASK; 5770 rc = emulator_read_write_onepage(addr, val, now, exception, 5771 vcpu, ops); 5772 5773 if (rc != X86EMUL_CONTINUE) 5774 return rc; 5775 addr += now; 5776 if (ctxt->mode != X86EMUL_MODE_PROT64) 5777 addr = (u32)addr; 5778 val += now; 5779 bytes -= now; 5780 } 5781 5782 rc = emulator_read_write_onepage(addr, val, bytes, exception, 5783 vcpu, ops); 5784 if (rc != X86EMUL_CONTINUE) 5785 return rc; 5786 5787 if (!vcpu->mmio_nr_fragments) 5788 return rc; 5789 5790 gpa = vcpu->mmio_fragments[0].gpa; 5791 5792 vcpu->mmio_needed = 1; 5793 vcpu->mmio_cur_fragment = 0; 5794 5795 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 5796 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 5797 vcpu->run->exit_reason = KVM_EXIT_MMIO; 5798 vcpu->run->mmio.phys_addr = gpa; 5799 5800 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 5801 } 5802 5803 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 5804 unsigned long addr, 5805 void *val, 5806 unsigned int bytes, 5807 struct x86_exception *exception) 5808 { 5809 return emulator_read_write(ctxt, addr, val, bytes, 5810 exception, &read_emultor); 5811 } 5812 5813 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 5814 unsigned long addr, 5815 const void *val, 5816 unsigned int bytes, 5817 struct x86_exception *exception) 5818 { 5819 return emulator_read_write(ctxt, addr, (void *)val, bytes, 5820 exception, &write_emultor); 5821 } 5822 5823 #define CMPXCHG_TYPE(t, ptr, old, new) \ 5824 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 5825 5826 #ifdef CONFIG_X86_64 5827 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 5828 #else 5829 # define CMPXCHG64(ptr, old, new) \ 5830 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 5831 #endif 5832 5833 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 5834 unsigned long addr, 5835 const void *old, 5836 const void *new, 5837 unsigned int bytes, 5838 struct x86_exception *exception) 5839 { 5840 struct kvm_host_map map; 5841 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5842 u64 page_line_mask; 5843 gpa_t gpa; 5844 char *kaddr; 5845 bool exchanged; 5846 5847 /* guests cmpxchg8b have to be emulated atomically */ 5848 if (bytes > 8 || (bytes & (bytes - 1))) 5849 goto emul_write; 5850 5851 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 5852 5853 if (gpa == UNMAPPED_GVA || 5854 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 5855 goto emul_write; 5856 5857 /* 5858 * Emulate the atomic as a straight write to avoid #AC if SLD is 5859 * enabled in the host and the access splits a cache line. 5860 */ 5861 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 5862 page_line_mask = ~(cache_line_size() - 1); 5863 else 5864 page_line_mask = PAGE_MASK; 5865 5866 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 5867 goto emul_write; 5868 5869 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map)) 5870 goto emul_write; 5871 5872 kaddr = map.hva + offset_in_page(gpa); 5873 5874 switch (bytes) { 5875 case 1: 5876 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 5877 break; 5878 case 2: 5879 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 5880 break; 5881 case 4: 5882 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 5883 break; 5884 case 8: 5885 exchanged = CMPXCHG64(kaddr, old, new); 5886 break; 5887 default: 5888 BUG(); 5889 } 5890 5891 kvm_vcpu_unmap(vcpu, &map, true); 5892 5893 if (!exchanged) 5894 return X86EMUL_CMPXCHG_FAILED; 5895 5896 kvm_page_track_write(vcpu, gpa, new, bytes); 5897 5898 return X86EMUL_CONTINUE; 5899 5900 emul_write: 5901 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 5902 5903 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 5904 } 5905 5906 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 5907 { 5908 int r = 0, i; 5909 5910 for (i = 0; i < vcpu->arch.pio.count; i++) { 5911 if (vcpu->arch.pio.in) 5912 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port, 5913 vcpu->arch.pio.size, pd); 5914 else 5915 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, 5916 vcpu->arch.pio.port, vcpu->arch.pio.size, 5917 pd); 5918 if (r) 5919 break; 5920 pd += vcpu->arch.pio.size; 5921 } 5922 return r; 5923 } 5924 5925 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 5926 unsigned short port, void *val, 5927 unsigned int count, bool in) 5928 { 5929 vcpu->arch.pio.port = port; 5930 vcpu->arch.pio.in = in; 5931 vcpu->arch.pio.count = count; 5932 vcpu->arch.pio.size = size; 5933 5934 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { 5935 vcpu->arch.pio.count = 0; 5936 return 1; 5937 } 5938 5939 vcpu->run->exit_reason = KVM_EXIT_IO; 5940 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 5941 vcpu->run->io.size = size; 5942 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 5943 vcpu->run->io.count = count; 5944 vcpu->run->io.port = port; 5945 5946 return 0; 5947 } 5948 5949 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 5950 unsigned short port, void *val, unsigned int count) 5951 { 5952 int ret; 5953 5954 if (vcpu->arch.pio.count) 5955 goto data_avail; 5956 5957 memset(vcpu->arch.pio_data, 0, size * count); 5958 5959 ret = emulator_pio_in_out(vcpu, size, port, val, count, true); 5960 if (ret) { 5961 data_avail: 5962 memcpy(val, vcpu->arch.pio_data, size * count); 5963 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data); 5964 vcpu->arch.pio.count = 0; 5965 return 1; 5966 } 5967 5968 return 0; 5969 } 5970 5971 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 5972 int size, unsigned short port, void *val, 5973 unsigned int count) 5974 { 5975 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count); 5976 5977 } 5978 5979 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 5980 unsigned short port, const void *val, 5981 unsigned int count) 5982 { 5983 memcpy(vcpu->arch.pio_data, val, size * count); 5984 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data); 5985 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 5986 } 5987 5988 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 5989 int size, unsigned short port, 5990 const void *val, unsigned int count) 5991 { 5992 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 5993 } 5994 5995 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 5996 { 5997 return kvm_x86_ops.get_segment_base(vcpu, seg); 5998 } 5999 6000 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 6001 { 6002 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 6003 } 6004 6005 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 6006 { 6007 if (!need_emulate_wbinvd(vcpu)) 6008 return X86EMUL_CONTINUE; 6009 6010 if (kvm_x86_ops.has_wbinvd_exit()) { 6011 int cpu = get_cpu(); 6012 6013 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 6014 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, 6015 wbinvd_ipi, NULL, 1); 6016 put_cpu(); 6017 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 6018 } else 6019 wbinvd(); 6020 return X86EMUL_CONTINUE; 6021 } 6022 6023 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 6024 { 6025 kvm_emulate_wbinvd_noskip(vcpu); 6026 return kvm_skip_emulated_instruction(vcpu); 6027 } 6028 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 6029 6030 6031 6032 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 6033 { 6034 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 6035 } 6036 6037 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 6038 unsigned long *dest) 6039 { 6040 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 6041 } 6042 6043 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 6044 unsigned long value) 6045 { 6046 6047 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 6048 } 6049 6050 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 6051 { 6052 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 6053 } 6054 6055 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 6056 { 6057 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6058 unsigned long value; 6059 6060 switch (cr) { 6061 case 0: 6062 value = kvm_read_cr0(vcpu); 6063 break; 6064 case 2: 6065 value = vcpu->arch.cr2; 6066 break; 6067 case 3: 6068 value = kvm_read_cr3(vcpu); 6069 break; 6070 case 4: 6071 value = kvm_read_cr4(vcpu); 6072 break; 6073 case 8: 6074 value = kvm_get_cr8(vcpu); 6075 break; 6076 default: 6077 kvm_err("%s: unexpected cr %u\n", __func__, cr); 6078 return 0; 6079 } 6080 6081 return value; 6082 } 6083 6084 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 6085 { 6086 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6087 int res = 0; 6088 6089 switch (cr) { 6090 case 0: 6091 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 6092 break; 6093 case 2: 6094 vcpu->arch.cr2 = val; 6095 break; 6096 case 3: 6097 res = kvm_set_cr3(vcpu, val); 6098 break; 6099 case 4: 6100 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 6101 break; 6102 case 8: 6103 res = kvm_set_cr8(vcpu, val); 6104 break; 6105 default: 6106 kvm_err("%s: unexpected cr %u\n", __func__, cr); 6107 res = -1; 6108 } 6109 6110 return res; 6111 } 6112 6113 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 6114 { 6115 return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt)); 6116 } 6117 6118 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6119 { 6120 kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt); 6121 } 6122 6123 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6124 { 6125 kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt); 6126 } 6127 6128 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6129 { 6130 kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt); 6131 } 6132 6133 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6134 { 6135 kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt); 6136 } 6137 6138 static unsigned long emulator_get_cached_segment_base( 6139 struct x86_emulate_ctxt *ctxt, int seg) 6140 { 6141 return get_segment_base(emul_to_vcpu(ctxt), seg); 6142 } 6143 6144 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 6145 struct desc_struct *desc, u32 *base3, 6146 int seg) 6147 { 6148 struct kvm_segment var; 6149 6150 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 6151 *selector = var.selector; 6152 6153 if (var.unusable) { 6154 memset(desc, 0, sizeof(*desc)); 6155 if (base3) 6156 *base3 = 0; 6157 return false; 6158 } 6159 6160 if (var.g) 6161 var.limit >>= 12; 6162 set_desc_limit(desc, var.limit); 6163 set_desc_base(desc, (unsigned long)var.base); 6164 #ifdef CONFIG_X86_64 6165 if (base3) 6166 *base3 = var.base >> 32; 6167 #endif 6168 desc->type = var.type; 6169 desc->s = var.s; 6170 desc->dpl = var.dpl; 6171 desc->p = var.present; 6172 desc->avl = var.avl; 6173 desc->l = var.l; 6174 desc->d = var.db; 6175 desc->g = var.g; 6176 6177 return true; 6178 } 6179 6180 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 6181 struct desc_struct *desc, u32 base3, 6182 int seg) 6183 { 6184 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6185 struct kvm_segment var; 6186 6187 var.selector = selector; 6188 var.base = get_desc_base(desc); 6189 #ifdef CONFIG_X86_64 6190 var.base |= ((u64)base3) << 32; 6191 #endif 6192 var.limit = get_desc_limit(desc); 6193 if (desc->g) 6194 var.limit = (var.limit << 12) | 0xfff; 6195 var.type = desc->type; 6196 var.dpl = desc->dpl; 6197 var.db = desc->d; 6198 var.s = desc->s; 6199 var.l = desc->l; 6200 var.g = desc->g; 6201 var.avl = desc->avl; 6202 var.present = desc->p; 6203 var.unusable = !var.present; 6204 var.padding = 0; 6205 6206 kvm_set_segment(vcpu, &var, seg); 6207 return; 6208 } 6209 6210 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 6211 u32 msr_index, u64 *pdata) 6212 { 6213 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 6214 } 6215 6216 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 6217 u32 msr_index, u64 data) 6218 { 6219 return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data); 6220 } 6221 6222 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt) 6223 { 6224 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6225 6226 return vcpu->arch.smbase; 6227 } 6228 6229 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase) 6230 { 6231 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6232 6233 vcpu->arch.smbase = smbase; 6234 } 6235 6236 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 6237 u32 pmc) 6238 { 6239 return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc); 6240 } 6241 6242 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 6243 u32 pmc, u64 *pdata) 6244 { 6245 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 6246 } 6247 6248 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 6249 { 6250 emul_to_vcpu(ctxt)->arch.halt_request = 1; 6251 } 6252 6253 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 6254 struct x86_instruction_info *info, 6255 enum x86_intercept_stage stage) 6256 { 6257 return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage, 6258 &ctxt->exception); 6259 } 6260 6261 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 6262 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 6263 bool exact_only) 6264 { 6265 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 6266 } 6267 6268 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt) 6269 { 6270 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM); 6271 } 6272 6273 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 6274 { 6275 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 6276 } 6277 6278 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 6279 { 6280 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 6281 } 6282 6283 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 6284 { 6285 return kvm_register_read(emul_to_vcpu(ctxt), reg); 6286 } 6287 6288 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 6289 { 6290 kvm_register_write(emul_to_vcpu(ctxt), reg, val); 6291 } 6292 6293 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 6294 { 6295 kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked); 6296 } 6297 6298 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 6299 { 6300 return emul_to_vcpu(ctxt)->arch.hflags; 6301 } 6302 6303 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags) 6304 { 6305 emul_to_vcpu(ctxt)->arch.hflags = emul_flags; 6306 } 6307 6308 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, 6309 const char *smstate) 6310 { 6311 return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate); 6312 } 6313 6314 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt) 6315 { 6316 kvm_smm_changed(emul_to_vcpu(ctxt)); 6317 } 6318 6319 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 6320 { 6321 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 6322 } 6323 6324 static const struct x86_emulate_ops emulate_ops = { 6325 .read_gpr = emulator_read_gpr, 6326 .write_gpr = emulator_write_gpr, 6327 .read_std = emulator_read_std, 6328 .write_std = emulator_write_std, 6329 .read_phys = kvm_read_guest_phys_system, 6330 .fetch = kvm_fetch_guest_virt, 6331 .read_emulated = emulator_read_emulated, 6332 .write_emulated = emulator_write_emulated, 6333 .cmpxchg_emulated = emulator_cmpxchg_emulated, 6334 .invlpg = emulator_invlpg, 6335 .pio_in_emulated = emulator_pio_in_emulated, 6336 .pio_out_emulated = emulator_pio_out_emulated, 6337 .get_segment = emulator_get_segment, 6338 .set_segment = emulator_set_segment, 6339 .get_cached_segment_base = emulator_get_cached_segment_base, 6340 .get_gdt = emulator_get_gdt, 6341 .get_idt = emulator_get_idt, 6342 .set_gdt = emulator_set_gdt, 6343 .set_idt = emulator_set_idt, 6344 .get_cr = emulator_get_cr, 6345 .set_cr = emulator_set_cr, 6346 .cpl = emulator_get_cpl, 6347 .get_dr = emulator_get_dr, 6348 .set_dr = emulator_set_dr, 6349 .get_smbase = emulator_get_smbase, 6350 .set_smbase = emulator_set_smbase, 6351 .set_msr = emulator_set_msr, 6352 .get_msr = emulator_get_msr, 6353 .check_pmc = emulator_check_pmc, 6354 .read_pmc = emulator_read_pmc, 6355 .halt = emulator_halt, 6356 .wbinvd = emulator_wbinvd, 6357 .fix_hypercall = emulator_fix_hypercall, 6358 .intercept = emulator_intercept, 6359 .get_cpuid = emulator_get_cpuid, 6360 .guest_has_long_mode = emulator_guest_has_long_mode, 6361 .guest_has_movbe = emulator_guest_has_movbe, 6362 .guest_has_fxsr = emulator_guest_has_fxsr, 6363 .set_nmi_mask = emulator_set_nmi_mask, 6364 .get_hflags = emulator_get_hflags, 6365 .set_hflags = emulator_set_hflags, 6366 .pre_leave_smm = emulator_pre_leave_smm, 6367 .post_leave_smm = emulator_post_leave_smm, 6368 .set_xcr = emulator_set_xcr, 6369 }; 6370 6371 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 6372 { 6373 u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu); 6374 /* 6375 * an sti; sti; sequence only disable interrupts for the first 6376 * instruction. So, if the last instruction, be it emulated or 6377 * not, left the system with the INT_STI flag enabled, it 6378 * means that the last instruction is an sti. We should not 6379 * leave the flag on in this case. The same goes for mov ss 6380 */ 6381 if (int_shadow & mask) 6382 mask = 0; 6383 if (unlikely(int_shadow || mask)) { 6384 kvm_x86_ops.set_interrupt_shadow(vcpu, mask); 6385 if (!mask) 6386 kvm_make_request(KVM_REQ_EVENT, vcpu); 6387 } 6388 } 6389 6390 static bool inject_emulated_exception(struct kvm_vcpu *vcpu) 6391 { 6392 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 6393 if (ctxt->exception.vector == PF_VECTOR) 6394 return kvm_propagate_fault(vcpu, &ctxt->exception); 6395 6396 if (ctxt->exception.error_code_valid) 6397 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 6398 ctxt->exception.error_code); 6399 else 6400 kvm_queue_exception(vcpu, ctxt->exception.vector); 6401 return false; 6402 } 6403 6404 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 6405 { 6406 struct x86_emulate_ctxt *ctxt; 6407 6408 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 6409 if (!ctxt) { 6410 pr_err("kvm: failed to allocate vcpu's emulator\n"); 6411 return NULL; 6412 } 6413 6414 ctxt->vcpu = vcpu; 6415 ctxt->ops = &emulate_ops; 6416 vcpu->arch.emulate_ctxt = ctxt; 6417 6418 return ctxt; 6419 } 6420 6421 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 6422 { 6423 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 6424 int cs_db, cs_l; 6425 6426 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 6427 6428 ctxt->gpa_available = false; 6429 ctxt->eflags = kvm_get_rflags(vcpu); 6430 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 6431 6432 ctxt->eip = kvm_rip_read(vcpu); 6433 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 6434 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 6435 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 6436 cs_db ? X86EMUL_MODE_PROT32 : 6437 X86EMUL_MODE_PROT16; 6438 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 6439 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK); 6440 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK); 6441 6442 init_decode_cache(ctxt); 6443 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 6444 } 6445 6446 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 6447 { 6448 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 6449 int ret; 6450 6451 init_emulate_ctxt(vcpu); 6452 6453 ctxt->op_bytes = 2; 6454 ctxt->ad_bytes = 2; 6455 ctxt->_eip = ctxt->eip + inc_eip; 6456 ret = emulate_int_real(ctxt, irq); 6457 6458 if (ret != X86EMUL_CONTINUE) { 6459 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 6460 } else { 6461 ctxt->eip = ctxt->_eip; 6462 kvm_rip_write(vcpu, ctxt->eip); 6463 kvm_set_rflags(vcpu, ctxt->eflags); 6464 } 6465 } 6466 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 6467 6468 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 6469 { 6470 ++vcpu->stat.insn_emulation_fail; 6471 trace_kvm_emulate_insn_failed(vcpu); 6472 6473 if (emulation_type & EMULTYPE_VMWARE_GP) { 6474 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 6475 return 1; 6476 } 6477 6478 if (emulation_type & EMULTYPE_SKIP) { 6479 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6480 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 6481 vcpu->run->internal.ndata = 0; 6482 return 0; 6483 } 6484 6485 kvm_queue_exception(vcpu, UD_VECTOR); 6486 6487 if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) { 6488 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6489 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 6490 vcpu->run->internal.ndata = 0; 6491 return 0; 6492 } 6493 6494 return 1; 6495 } 6496 6497 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 6498 bool write_fault_to_shadow_pgtable, 6499 int emulation_type) 6500 { 6501 gpa_t gpa = cr2_or_gpa; 6502 kvm_pfn_t pfn; 6503 6504 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 6505 return false; 6506 6507 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 6508 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 6509 return false; 6510 6511 if (!vcpu->arch.mmu->direct_map) { 6512 /* 6513 * Write permission should be allowed since only 6514 * write access need to be emulated. 6515 */ 6516 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 6517 6518 /* 6519 * If the mapping is invalid in guest, let cpu retry 6520 * it to generate fault. 6521 */ 6522 if (gpa == UNMAPPED_GVA) 6523 return true; 6524 } 6525 6526 /* 6527 * Do not retry the unhandleable instruction if it faults on the 6528 * readonly host memory, otherwise it will goto a infinite loop: 6529 * retry instruction -> write #PF -> emulation fail -> retry 6530 * instruction -> ... 6531 */ 6532 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 6533 6534 /* 6535 * If the instruction failed on the error pfn, it can not be fixed, 6536 * report the error to userspace. 6537 */ 6538 if (is_error_noslot_pfn(pfn)) 6539 return false; 6540 6541 kvm_release_pfn_clean(pfn); 6542 6543 /* The instructions are well-emulated on direct mmu. */ 6544 if (vcpu->arch.mmu->direct_map) { 6545 unsigned int indirect_shadow_pages; 6546 6547 spin_lock(&vcpu->kvm->mmu_lock); 6548 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 6549 spin_unlock(&vcpu->kvm->mmu_lock); 6550 6551 if (indirect_shadow_pages) 6552 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 6553 6554 return true; 6555 } 6556 6557 /* 6558 * if emulation was due to access to shadowed page table 6559 * and it failed try to unshadow page and re-enter the 6560 * guest to let CPU execute the instruction. 6561 */ 6562 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 6563 6564 /* 6565 * If the access faults on its page table, it can not 6566 * be fixed by unprotecting shadow page and it should 6567 * be reported to userspace. 6568 */ 6569 return !write_fault_to_shadow_pgtable; 6570 } 6571 6572 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 6573 gpa_t cr2_or_gpa, int emulation_type) 6574 { 6575 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6576 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 6577 6578 last_retry_eip = vcpu->arch.last_retry_eip; 6579 last_retry_addr = vcpu->arch.last_retry_addr; 6580 6581 /* 6582 * If the emulation is caused by #PF and it is non-page_table 6583 * writing instruction, it means the VM-EXIT is caused by shadow 6584 * page protected, we can zap the shadow page and retry this 6585 * instruction directly. 6586 * 6587 * Note: if the guest uses a non-page-table modifying instruction 6588 * on the PDE that points to the instruction, then we will unmap 6589 * the instruction and go to an infinite loop. So, we cache the 6590 * last retried eip and the last fault address, if we meet the eip 6591 * and the address again, we can break out of the potential infinite 6592 * loop. 6593 */ 6594 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 6595 6596 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 6597 return false; 6598 6599 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 6600 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 6601 return false; 6602 6603 if (x86_page_table_writing_insn(ctxt)) 6604 return false; 6605 6606 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 6607 return false; 6608 6609 vcpu->arch.last_retry_eip = ctxt->eip; 6610 vcpu->arch.last_retry_addr = cr2_or_gpa; 6611 6612 if (!vcpu->arch.mmu->direct_map) 6613 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 6614 6615 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 6616 6617 return true; 6618 } 6619 6620 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 6621 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 6622 6623 static void kvm_smm_changed(struct kvm_vcpu *vcpu) 6624 { 6625 if (!(vcpu->arch.hflags & HF_SMM_MASK)) { 6626 /* This is a good place to trace that we are exiting SMM. */ 6627 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false); 6628 6629 /* Process a latched INIT or SMI, if any. */ 6630 kvm_make_request(KVM_REQ_EVENT, vcpu); 6631 } 6632 6633 kvm_mmu_reset_context(vcpu); 6634 } 6635 6636 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 6637 unsigned long *db) 6638 { 6639 u32 dr6 = 0; 6640 int i; 6641 u32 enable, rwlen; 6642 6643 enable = dr7; 6644 rwlen = dr7 >> 16; 6645 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 6646 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 6647 dr6 |= (1 << i); 6648 return dr6; 6649 } 6650 6651 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 6652 { 6653 struct kvm_run *kvm_run = vcpu->run; 6654 6655 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 6656 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM; 6657 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip; 6658 kvm_run->debug.arch.exception = DB_VECTOR; 6659 kvm_run->exit_reason = KVM_EXIT_DEBUG; 6660 return 0; 6661 } 6662 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 6663 return 1; 6664 } 6665 6666 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 6667 { 6668 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu); 6669 int r; 6670 6671 r = kvm_x86_ops.skip_emulated_instruction(vcpu); 6672 if (unlikely(!r)) 6673 return 0; 6674 6675 /* 6676 * rflags is the old, "raw" value of the flags. The new value has 6677 * not been saved yet. 6678 * 6679 * This is correct even for TF set by the guest, because "the 6680 * processor will not generate this exception after the instruction 6681 * that sets the TF flag". 6682 */ 6683 if (unlikely(rflags & X86_EFLAGS_TF)) 6684 r = kvm_vcpu_do_singlestep(vcpu); 6685 return r; 6686 } 6687 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 6688 6689 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r) 6690 { 6691 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 6692 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 6693 struct kvm_run *kvm_run = vcpu->run; 6694 unsigned long eip = kvm_get_linear_rip(vcpu); 6695 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 6696 vcpu->arch.guest_debug_dr7, 6697 vcpu->arch.eff_db); 6698 6699 if (dr6 != 0) { 6700 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM; 6701 kvm_run->debug.arch.pc = eip; 6702 kvm_run->debug.arch.exception = DB_VECTOR; 6703 kvm_run->exit_reason = KVM_EXIT_DEBUG; 6704 *r = 0; 6705 return true; 6706 } 6707 } 6708 6709 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 6710 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) { 6711 unsigned long eip = kvm_get_linear_rip(vcpu); 6712 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 6713 vcpu->arch.dr7, 6714 vcpu->arch.db); 6715 6716 if (dr6 != 0) { 6717 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 6718 vcpu->arch.dr6 |= dr6 | DR6_RTM; 6719 kvm_queue_exception(vcpu, DB_VECTOR); 6720 *r = 1; 6721 return true; 6722 } 6723 } 6724 6725 return false; 6726 } 6727 6728 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 6729 { 6730 switch (ctxt->opcode_len) { 6731 case 1: 6732 switch (ctxt->b) { 6733 case 0xe4: /* IN */ 6734 case 0xe5: 6735 case 0xec: 6736 case 0xed: 6737 case 0xe6: /* OUT */ 6738 case 0xe7: 6739 case 0xee: 6740 case 0xef: 6741 case 0x6c: /* INS */ 6742 case 0x6d: 6743 case 0x6e: /* OUTS */ 6744 case 0x6f: 6745 return true; 6746 } 6747 break; 6748 case 2: 6749 switch (ctxt->b) { 6750 case 0x33: /* RDPMC */ 6751 return true; 6752 } 6753 break; 6754 } 6755 6756 return false; 6757 } 6758 6759 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 6760 int emulation_type, void *insn, int insn_len) 6761 { 6762 int r; 6763 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 6764 bool writeback = true; 6765 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 6766 6767 vcpu->arch.l1tf_flush_l1d = true; 6768 6769 /* 6770 * Clear write_fault_to_shadow_pgtable here to ensure it is 6771 * never reused. 6772 */ 6773 vcpu->arch.write_fault_to_shadow_pgtable = false; 6774 kvm_clear_exception_queue(vcpu); 6775 6776 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 6777 init_emulate_ctxt(vcpu); 6778 6779 /* 6780 * We will reenter on the same instruction since 6781 * we do not set complete_userspace_io. This does not 6782 * handle watchpoints yet, those would be handled in 6783 * the emulate_ops. 6784 */ 6785 if (!(emulation_type & EMULTYPE_SKIP) && 6786 kvm_vcpu_check_breakpoint(vcpu, &r)) 6787 return r; 6788 6789 ctxt->interruptibility = 0; 6790 ctxt->have_exception = false; 6791 ctxt->exception.vector = -1; 6792 ctxt->perm_ok = false; 6793 6794 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD; 6795 6796 r = x86_decode_insn(ctxt, insn, insn_len); 6797 6798 trace_kvm_emulate_insn_start(vcpu); 6799 ++vcpu->stat.insn_emulation; 6800 if (r != EMULATION_OK) { 6801 if ((emulation_type & EMULTYPE_TRAP_UD) || 6802 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 6803 kvm_queue_exception(vcpu, UD_VECTOR); 6804 return 1; 6805 } 6806 if (reexecute_instruction(vcpu, cr2_or_gpa, 6807 write_fault_to_spt, 6808 emulation_type)) 6809 return 1; 6810 if (ctxt->have_exception) { 6811 /* 6812 * #UD should result in just EMULATION_FAILED, and trap-like 6813 * exception should not be encountered during decode. 6814 */ 6815 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 6816 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 6817 inject_emulated_exception(vcpu); 6818 return 1; 6819 } 6820 return handle_emulation_failure(vcpu, emulation_type); 6821 } 6822 } 6823 6824 if ((emulation_type & EMULTYPE_VMWARE_GP) && 6825 !is_vmware_backdoor_opcode(ctxt)) { 6826 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 6827 return 1; 6828 } 6829 6830 /* 6831 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks 6832 * for kvm_skip_emulated_instruction(). The caller is responsible for 6833 * updating interruptibility state and injecting single-step #DBs. 6834 */ 6835 if (emulation_type & EMULTYPE_SKIP) { 6836 kvm_rip_write(vcpu, ctxt->_eip); 6837 if (ctxt->eflags & X86_EFLAGS_RF) 6838 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 6839 return 1; 6840 } 6841 6842 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 6843 return 1; 6844 6845 /* this is needed for vmware backdoor interface to work since it 6846 changes registers values during IO operation */ 6847 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 6848 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 6849 emulator_invalidate_register_cache(ctxt); 6850 } 6851 6852 restart: 6853 if (emulation_type & EMULTYPE_PF) { 6854 /* Save the faulting GPA (cr2) in the address field */ 6855 ctxt->exception.address = cr2_or_gpa; 6856 6857 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 6858 if (vcpu->arch.mmu->direct_map) { 6859 ctxt->gpa_available = true; 6860 ctxt->gpa_val = cr2_or_gpa; 6861 } 6862 } else { 6863 /* Sanitize the address out of an abundance of paranoia. */ 6864 ctxt->exception.address = 0; 6865 } 6866 6867 r = x86_emulate_insn(ctxt); 6868 6869 if (r == EMULATION_INTERCEPTED) 6870 return 1; 6871 6872 if (r == EMULATION_FAILED) { 6873 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt, 6874 emulation_type)) 6875 return 1; 6876 6877 return handle_emulation_failure(vcpu, emulation_type); 6878 } 6879 6880 if (ctxt->have_exception) { 6881 r = 1; 6882 if (inject_emulated_exception(vcpu)) 6883 return r; 6884 } else if (vcpu->arch.pio.count) { 6885 if (!vcpu->arch.pio.in) { 6886 /* FIXME: return into emulator if single-stepping. */ 6887 vcpu->arch.pio.count = 0; 6888 } else { 6889 writeback = false; 6890 vcpu->arch.complete_userspace_io = complete_emulated_pio; 6891 } 6892 r = 0; 6893 } else if (vcpu->mmio_needed) { 6894 ++vcpu->stat.mmio_exits; 6895 6896 if (!vcpu->mmio_is_write) 6897 writeback = false; 6898 r = 0; 6899 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 6900 } else if (r == EMULATION_RESTART) 6901 goto restart; 6902 else 6903 r = 1; 6904 6905 if (writeback) { 6906 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu); 6907 toggle_interruptibility(vcpu, ctxt->interruptibility); 6908 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 6909 if (!ctxt->have_exception || 6910 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 6911 kvm_rip_write(vcpu, ctxt->eip); 6912 if (r && ctxt->tf) 6913 r = kvm_vcpu_do_singlestep(vcpu); 6914 if (kvm_x86_ops.update_emulated_instruction) 6915 kvm_x86_ops.update_emulated_instruction(vcpu); 6916 __kvm_set_rflags(vcpu, ctxt->eflags); 6917 } 6918 6919 /* 6920 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 6921 * do nothing, and it will be requested again as soon as 6922 * the shadow expires. But we still need to check here, 6923 * because POPF has no interrupt shadow. 6924 */ 6925 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 6926 kvm_make_request(KVM_REQ_EVENT, vcpu); 6927 } else 6928 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 6929 6930 return r; 6931 } 6932 6933 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 6934 { 6935 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 6936 } 6937 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 6938 6939 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 6940 void *insn, int insn_len) 6941 { 6942 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 6943 } 6944 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 6945 6946 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 6947 { 6948 vcpu->arch.pio.count = 0; 6949 return 1; 6950 } 6951 6952 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 6953 { 6954 vcpu->arch.pio.count = 0; 6955 6956 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 6957 return 1; 6958 6959 return kvm_skip_emulated_instruction(vcpu); 6960 } 6961 6962 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 6963 unsigned short port) 6964 { 6965 unsigned long val = kvm_rax_read(vcpu); 6966 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 6967 6968 if (ret) 6969 return ret; 6970 6971 /* 6972 * Workaround userspace that relies on old KVM behavior of %rip being 6973 * incremented prior to exiting to userspace to handle "OUT 0x7e". 6974 */ 6975 if (port == 0x7e && 6976 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 6977 vcpu->arch.complete_userspace_io = 6978 complete_fast_pio_out_port_0x7e; 6979 kvm_skip_emulated_instruction(vcpu); 6980 } else { 6981 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 6982 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 6983 } 6984 return 0; 6985 } 6986 6987 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 6988 { 6989 unsigned long val; 6990 6991 /* We should only ever be called with arch.pio.count equal to 1 */ 6992 BUG_ON(vcpu->arch.pio.count != 1); 6993 6994 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 6995 vcpu->arch.pio.count = 0; 6996 return 1; 6997 } 6998 6999 /* For size less than 4 we merge, else we zero extend */ 7000 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 7001 7002 /* 7003 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform 7004 * the copy and tracing 7005 */ 7006 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1); 7007 kvm_rax_write(vcpu, val); 7008 7009 return kvm_skip_emulated_instruction(vcpu); 7010 } 7011 7012 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 7013 unsigned short port) 7014 { 7015 unsigned long val; 7016 int ret; 7017 7018 /* For size less than 4 we merge, else we zero extend */ 7019 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 7020 7021 ret = emulator_pio_in(vcpu, size, port, &val, 1); 7022 if (ret) { 7023 kvm_rax_write(vcpu, val); 7024 return ret; 7025 } 7026 7027 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 7028 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 7029 7030 return 0; 7031 } 7032 7033 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 7034 { 7035 int ret; 7036 7037 if (in) 7038 ret = kvm_fast_pio_in(vcpu, size, port); 7039 else 7040 ret = kvm_fast_pio_out(vcpu, size, port); 7041 return ret && kvm_skip_emulated_instruction(vcpu); 7042 } 7043 EXPORT_SYMBOL_GPL(kvm_fast_pio); 7044 7045 static int kvmclock_cpu_down_prep(unsigned int cpu) 7046 { 7047 __this_cpu_write(cpu_tsc_khz, 0); 7048 return 0; 7049 } 7050 7051 static void tsc_khz_changed(void *data) 7052 { 7053 struct cpufreq_freqs *freq = data; 7054 unsigned long khz = 0; 7055 7056 if (data) 7057 khz = freq->new; 7058 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 7059 khz = cpufreq_quick_get(raw_smp_processor_id()); 7060 if (!khz) 7061 khz = tsc_khz; 7062 __this_cpu_write(cpu_tsc_khz, khz); 7063 } 7064 7065 #ifdef CONFIG_X86_64 7066 static void kvm_hyperv_tsc_notifier(void) 7067 { 7068 struct kvm *kvm; 7069 struct kvm_vcpu *vcpu; 7070 int cpu; 7071 7072 mutex_lock(&kvm_lock); 7073 list_for_each_entry(kvm, &vm_list, vm_list) 7074 kvm_make_mclock_inprogress_request(kvm); 7075 7076 hyperv_stop_tsc_emulation(); 7077 7078 /* TSC frequency always matches when on Hyper-V */ 7079 for_each_present_cpu(cpu) 7080 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 7081 kvm_max_guest_tsc_khz = tsc_khz; 7082 7083 list_for_each_entry(kvm, &vm_list, vm_list) { 7084 struct kvm_arch *ka = &kvm->arch; 7085 7086 spin_lock(&ka->pvclock_gtod_sync_lock); 7087 7088 pvclock_update_vm_gtod_copy(kvm); 7089 7090 kvm_for_each_vcpu(cpu, vcpu, kvm) 7091 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 7092 7093 kvm_for_each_vcpu(cpu, vcpu, kvm) 7094 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 7095 7096 spin_unlock(&ka->pvclock_gtod_sync_lock); 7097 } 7098 mutex_unlock(&kvm_lock); 7099 } 7100 #endif 7101 7102 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 7103 { 7104 struct kvm *kvm; 7105 struct kvm_vcpu *vcpu; 7106 int i, send_ipi = 0; 7107 7108 /* 7109 * We allow guests to temporarily run on slowing clocks, 7110 * provided we notify them after, or to run on accelerating 7111 * clocks, provided we notify them before. Thus time never 7112 * goes backwards. 7113 * 7114 * However, we have a problem. We can't atomically update 7115 * the frequency of a given CPU from this function; it is 7116 * merely a notifier, which can be called from any CPU. 7117 * Changing the TSC frequency at arbitrary points in time 7118 * requires a recomputation of local variables related to 7119 * the TSC for each VCPU. We must flag these local variables 7120 * to be updated and be sure the update takes place with the 7121 * new frequency before any guests proceed. 7122 * 7123 * Unfortunately, the combination of hotplug CPU and frequency 7124 * change creates an intractable locking scenario; the order 7125 * of when these callouts happen is undefined with respect to 7126 * CPU hotplug, and they can race with each other. As such, 7127 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 7128 * undefined; you can actually have a CPU frequency change take 7129 * place in between the computation of X and the setting of the 7130 * variable. To protect against this problem, all updates of 7131 * the per_cpu tsc_khz variable are done in an interrupt 7132 * protected IPI, and all callers wishing to update the value 7133 * must wait for a synchronous IPI to complete (which is trivial 7134 * if the caller is on the CPU already). This establishes the 7135 * necessary total order on variable updates. 7136 * 7137 * Note that because a guest time update may take place 7138 * anytime after the setting of the VCPU's request bit, the 7139 * correct TSC value must be set before the request. However, 7140 * to ensure the update actually makes it to any guest which 7141 * starts running in hardware virtualization between the set 7142 * and the acquisition of the spinlock, we must also ping the 7143 * CPU after setting the request bit. 7144 * 7145 */ 7146 7147 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 7148 7149 mutex_lock(&kvm_lock); 7150 list_for_each_entry(kvm, &vm_list, vm_list) { 7151 kvm_for_each_vcpu(i, vcpu, kvm) { 7152 if (vcpu->cpu != cpu) 7153 continue; 7154 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 7155 if (vcpu->cpu != raw_smp_processor_id()) 7156 send_ipi = 1; 7157 } 7158 } 7159 mutex_unlock(&kvm_lock); 7160 7161 if (freq->old < freq->new && send_ipi) { 7162 /* 7163 * We upscale the frequency. Must make the guest 7164 * doesn't see old kvmclock values while running with 7165 * the new frequency, otherwise we risk the guest sees 7166 * time go backwards. 7167 * 7168 * In case we update the frequency for another cpu 7169 * (which might be in guest context) send an interrupt 7170 * to kick the cpu out of guest context. Next time 7171 * guest context is entered kvmclock will be updated, 7172 * so the guest will not see stale values. 7173 */ 7174 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 7175 } 7176 } 7177 7178 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 7179 void *data) 7180 { 7181 struct cpufreq_freqs *freq = data; 7182 int cpu; 7183 7184 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 7185 return 0; 7186 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 7187 return 0; 7188 7189 for_each_cpu(cpu, freq->policy->cpus) 7190 __kvmclock_cpufreq_notifier(freq, cpu); 7191 7192 return 0; 7193 } 7194 7195 static struct notifier_block kvmclock_cpufreq_notifier_block = { 7196 .notifier_call = kvmclock_cpufreq_notifier 7197 }; 7198 7199 static int kvmclock_cpu_online(unsigned int cpu) 7200 { 7201 tsc_khz_changed(NULL); 7202 return 0; 7203 } 7204 7205 static void kvm_timer_init(void) 7206 { 7207 max_tsc_khz = tsc_khz; 7208 7209 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 7210 #ifdef CONFIG_CPU_FREQ 7211 struct cpufreq_policy *policy; 7212 int cpu; 7213 7214 cpu = get_cpu(); 7215 policy = cpufreq_cpu_get(cpu); 7216 if (policy) { 7217 if (policy->cpuinfo.max_freq) 7218 max_tsc_khz = policy->cpuinfo.max_freq; 7219 cpufreq_cpu_put(policy); 7220 } 7221 put_cpu(); 7222 #endif 7223 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 7224 CPUFREQ_TRANSITION_NOTIFIER); 7225 } 7226 7227 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 7228 kvmclock_cpu_online, kvmclock_cpu_down_prep); 7229 } 7230 7231 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); 7232 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu); 7233 7234 int kvm_is_in_guest(void) 7235 { 7236 return __this_cpu_read(current_vcpu) != NULL; 7237 } 7238 7239 static int kvm_is_user_mode(void) 7240 { 7241 int user_mode = 3; 7242 7243 if (__this_cpu_read(current_vcpu)) 7244 user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu)); 7245 7246 return user_mode != 0; 7247 } 7248 7249 static unsigned long kvm_get_guest_ip(void) 7250 { 7251 unsigned long ip = 0; 7252 7253 if (__this_cpu_read(current_vcpu)) 7254 ip = kvm_rip_read(__this_cpu_read(current_vcpu)); 7255 7256 return ip; 7257 } 7258 7259 static void kvm_handle_intel_pt_intr(void) 7260 { 7261 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu); 7262 7263 kvm_make_request(KVM_REQ_PMI, vcpu); 7264 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT, 7265 (unsigned long *)&vcpu->arch.pmu.global_status); 7266 } 7267 7268 static struct perf_guest_info_callbacks kvm_guest_cbs = { 7269 .is_in_guest = kvm_is_in_guest, 7270 .is_user_mode = kvm_is_user_mode, 7271 .get_guest_ip = kvm_get_guest_ip, 7272 .handle_intel_pt_intr = kvm_handle_intel_pt_intr, 7273 }; 7274 7275 #ifdef CONFIG_X86_64 7276 static void pvclock_gtod_update_fn(struct work_struct *work) 7277 { 7278 struct kvm *kvm; 7279 7280 struct kvm_vcpu *vcpu; 7281 int i; 7282 7283 mutex_lock(&kvm_lock); 7284 list_for_each_entry(kvm, &vm_list, vm_list) 7285 kvm_for_each_vcpu(i, vcpu, kvm) 7286 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 7287 atomic_set(&kvm_guest_has_master_clock, 0); 7288 mutex_unlock(&kvm_lock); 7289 } 7290 7291 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 7292 7293 /* 7294 * Notification about pvclock gtod data update. 7295 */ 7296 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 7297 void *priv) 7298 { 7299 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 7300 struct timekeeper *tk = priv; 7301 7302 update_pvclock_gtod(tk); 7303 7304 /* disable master clock if host does not trust, or does not 7305 * use, TSC based clocksource. 7306 */ 7307 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 7308 atomic_read(&kvm_guest_has_master_clock) != 0) 7309 queue_work(system_long_wq, &pvclock_gtod_work); 7310 7311 return 0; 7312 } 7313 7314 static struct notifier_block pvclock_gtod_notifier = { 7315 .notifier_call = pvclock_gtod_notify, 7316 }; 7317 #endif 7318 7319 int kvm_arch_init(void *opaque) 7320 { 7321 struct kvm_x86_init_ops *ops = opaque; 7322 int r; 7323 7324 if (kvm_x86_ops.hardware_enable) { 7325 printk(KERN_ERR "kvm: already loaded the other module\n"); 7326 r = -EEXIST; 7327 goto out; 7328 } 7329 7330 if (!ops->cpu_has_kvm_support()) { 7331 pr_err_ratelimited("kvm: no hardware support\n"); 7332 r = -EOPNOTSUPP; 7333 goto out; 7334 } 7335 if (ops->disabled_by_bios()) { 7336 pr_err_ratelimited("kvm: disabled by bios\n"); 7337 r = -EOPNOTSUPP; 7338 goto out; 7339 } 7340 7341 /* 7342 * KVM explicitly assumes that the guest has an FPU and 7343 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 7344 * vCPU's FPU state as a fxregs_state struct. 7345 */ 7346 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 7347 printk(KERN_ERR "kvm: inadequate fpu\n"); 7348 r = -EOPNOTSUPP; 7349 goto out; 7350 } 7351 7352 r = -ENOMEM; 7353 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu), 7354 __alignof__(struct fpu), SLAB_ACCOUNT, 7355 NULL); 7356 if (!x86_fpu_cache) { 7357 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n"); 7358 goto out; 7359 } 7360 7361 x86_emulator_cache = kvm_alloc_emulator_cache(); 7362 if (!x86_emulator_cache) { 7363 pr_err("kvm: failed to allocate cache for x86 emulator\n"); 7364 goto out_free_x86_fpu_cache; 7365 } 7366 7367 shared_msrs = alloc_percpu(struct kvm_shared_msrs); 7368 if (!shared_msrs) { 7369 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n"); 7370 goto out_free_x86_emulator_cache; 7371 } 7372 7373 r = kvm_mmu_module_init(); 7374 if (r) 7375 goto out_free_percpu; 7376 7377 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, 7378 PT_DIRTY_MASK, PT64_NX_MASK, 0, 7379 PT_PRESENT_MASK, 0, sme_me_mask); 7380 kvm_timer_init(); 7381 7382 perf_register_guest_info_callbacks(&kvm_guest_cbs); 7383 7384 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 7385 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 7386 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 7387 } 7388 7389 kvm_lapic_init(); 7390 if (pi_inject_timer == -1) 7391 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER); 7392 #ifdef CONFIG_X86_64 7393 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 7394 7395 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 7396 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 7397 #endif 7398 7399 return 0; 7400 7401 out_free_percpu: 7402 free_percpu(shared_msrs); 7403 out_free_x86_emulator_cache: 7404 kmem_cache_destroy(x86_emulator_cache); 7405 out_free_x86_fpu_cache: 7406 kmem_cache_destroy(x86_fpu_cache); 7407 out: 7408 return r; 7409 } 7410 7411 void kvm_arch_exit(void) 7412 { 7413 #ifdef CONFIG_X86_64 7414 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 7415 clear_hv_tscchange_cb(); 7416 #endif 7417 kvm_lapic_exit(); 7418 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 7419 7420 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 7421 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 7422 CPUFREQ_TRANSITION_NOTIFIER); 7423 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 7424 #ifdef CONFIG_X86_64 7425 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 7426 #endif 7427 kvm_x86_ops.hardware_enable = NULL; 7428 kvm_mmu_module_exit(); 7429 free_percpu(shared_msrs); 7430 kmem_cache_destroy(x86_fpu_cache); 7431 } 7432 7433 int kvm_vcpu_halt(struct kvm_vcpu *vcpu) 7434 { 7435 ++vcpu->stat.halt_exits; 7436 if (lapic_in_kernel(vcpu)) { 7437 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 7438 return 1; 7439 } else { 7440 vcpu->run->exit_reason = KVM_EXIT_HLT; 7441 return 0; 7442 } 7443 } 7444 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 7445 7446 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 7447 { 7448 int ret = kvm_skip_emulated_instruction(vcpu); 7449 /* 7450 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 7451 * KVM_EXIT_DEBUG here. 7452 */ 7453 return kvm_vcpu_halt(vcpu) && ret; 7454 } 7455 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 7456 7457 #ifdef CONFIG_X86_64 7458 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 7459 unsigned long clock_type) 7460 { 7461 struct kvm_clock_pairing clock_pairing; 7462 struct timespec64 ts; 7463 u64 cycle; 7464 int ret; 7465 7466 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 7467 return -KVM_EOPNOTSUPP; 7468 7469 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false) 7470 return -KVM_EOPNOTSUPP; 7471 7472 clock_pairing.sec = ts.tv_sec; 7473 clock_pairing.nsec = ts.tv_nsec; 7474 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 7475 clock_pairing.flags = 0; 7476 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 7477 7478 ret = 0; 7479 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 7480 sizeof(struct kvm_clock_pairing))) 7481 ret = -KVM_EFAULT; 7482 7483 return ret; 7484 } 7485 #endif 7486 7487 /* 7488 * kvm_pv_kick_cpu_op: Kick a vcpu. 7489 * 7490 * @apicid - apicid of vcpu to be kicked. 7491 */ 7492 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid) 7493 { 7494 struct kvm_lapic_irq lapic_irq; 7495 7496 lapic_irq.shorthand = APIC_DEST_NOSHORT; 7497 lapic_irq.dest_mode = APIC_DEST_PHYSICAL; 7498 lapic_irq.level = 0; 7499 lapic_irq.dest_id = apicid; 7500 lapic_irq.msi_redir_hint = false; 7501 7502 lapic_irq.delivery_mode = APIC_DM_REMRD; 7503 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 7504 } 7505 7506 bool kvm_apicv_activated(struct kvm *kvm) 7507 { 7508 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 7509 } 7510 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 7511 7512 void kvm_apicv_init(struct kvm *kvm, bool enable) 7513 { 7514 if (enable) 7515 clear_bit(APICV_INHIBIT_REASON_DISABLE, 7516 &kvm->arch.apicv_inhibit_reasons); 7517 else 7518 set_bit(APICV_INHIBIT_REASON_DISABLE, 7519 &kvm->arch.apicv_inhibit_reasons); 7520 } 7521 EXPORT_SYMBOL_GPL(kvm_apicv_init); 7522 7523 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id) 7524 { 7525 struct kvm_vcpu *target = NULL; 7526 struct kvm_apic_map *map; 7527 7528 rcu_read_lock(); 7529 map = rcu_dereference(kvm->arch.apic_map); 7530 7531 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 7532 target = map->phys_map[dest_id]->vcpu; 7533 7534 rcu_read_unlock(); 7535 7536 if (target && READ_ONCE(target->ready)) 7537 kvm_vcpu_yield_to(target); 7538 } 7539 7540 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 7541 { 7542 unsigned long nr, a0, a1, a2, a3, ret; 7543 int op_64_bit; 7544 7545 if (kvm_hv_hypercall_enabled(vcpu->kvm)) 7546 return kvm_hv_hypercall(vcpu); 7547 7548 nr = kvm_rax_read(vcpu); 7549 a0 = kvm_rbx_read(vcpu); 7550 a1 = kvm_rcx_read(vcpu); 7551 a2 = kvm_rdx_read(vcpu); 7552 a3 = kvm_rsi_read(vcpu); 7553 7554 trace_kvm_hypercall(nr, a0, a1, a2, a3); 7555 7556 op_64_bit = is_64_bit_mode(vcpu); 7557 if (!op_64_bit) { 7558 nr &= 0xFFFFFFFF; 7559 a0 &= 0xFFFFFFFF; 7560 a1 &= 0xFFFFFFFF; 7561 a2 &= 0xFFFFFFFF; 7562 a3 &= 0xFFFFFFFF; 7563 } 7564 7565 if (kvm_x86_ops.get_cpl(vcpu) != 0) { 7566 ret = -KVM_EPERM; 7567 goto out; 7568 } 7569 7570 switch (nr) { 7571 case KVM_HC_VAPIC_POLL_IRQ: 7572 ret = 0; 7573 break; 7574 case KVM_HC_KICK_CPU: 7575 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1); 7576 kvm_sched_yield(vcpu->kvm, a1); 7577 ret = 0; 7578 break; 7579 #ifdef CONFIG_X86_64 7580 case KVM_HC_CLOCK_PAIRING: 7581 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 7582 break; 7583 #endif 7584 case KVM_HC_SEND_IPI: 7585 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 7586 break; 7587 case KVM_HC_SCHED_YIELD: 7588 kvm_sched_yield(vcpu->kvm, a0); 7589 ret = 0; 7590 break; 7591 default: 7592 ret = -KVM_ENOSYS; 7593 break; 7594 } 7595 out: 7596 if (!op_64_bit) 7597 ret = (u32)ret; 7598 kvm_rax_write(vcpu, ret); 7599 7600 ++vcpu->stat.hypercalls; 7601 return kvm_skip_emulated_instruction(vcpu); 7602 } 7603 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 7604 7605 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 7606 { 7607 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7608 char instruction[3]; 7609 unsigned long rip = kvm_rip_read(vcpu); 7610 7611 kvm_x86_ops.patch_hypercall(vcpu, instruction); 7612 7613 return emulator_write_emulated(ctxt, rip, instruction, 3, 7614 &ctxt->exception); 7615 } 7616 7617 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 7618 { 7619 return vcpu->run->request_interrupt_window && 7620 likely(!pic_in_kernel(vcpu->kvm)); 7621 } 7622 7623 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 7624 { 7625 struct kvm_run *kvm_run = vcpu->run; 7626 7627 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; 7628 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0; 7629 kvm_run->cr8 = kvm_get_cr8(vcpu); 7630 kvm_run->apic_base = kvm_get_apic_base(vcpu); 7631 kvm_run->ready_for_interrupt_injection = 7632 pic_in_kernel(vcpu->kvm) || 7633 kvm_vcpu_ready_for_interrupt_injection(vcpu); 7634 } 7635 7636 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 7637 { 7638 int max_irr, tpr; 7639 7640 if (!kvm_x86_ops.update_cr8_intercept) 7641 return; 7642 7643 if (!lapic_in_kernel(vcpu)) 7644 return; 7645 7646 if (vcpu->arch.apicv_active) 7647 return; 7648 7649 if (!vcpu->arch.apic->vapic_addr) 7650 max_irr = kvm_lapic_find_highest_irr(vcpu); 7651 else 7652 max_irr = -1; 7653 7654 if (max_irr != -1) 7655 max_irr >>= 4; 7656 7657 tpr = kvm_lapic_get_cr8(vcpu); 7658 7659 kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr); 7660 } 7661 7662 static int inject_pending_event(struct kvm_vcpu *vcpu) 7663 { 7664 int r; 7665 7666 /* try to reinject previous events if any */ 7667 7668 if (vcpu->arch.exception.injected) 7669 kvm_x86_ops.queue_exception(vcpu); 7670 /* 7671 * Do not inject an NMI or interrupt if there is a pending 7672 * exception. Exceptions and interrupts are recognized at 7673 * instruction boundaries, i.e. the start of an instruction. 7674 * Trap-like exceptions, e.g. #DB, have higher priority than 7675 * NMIs and interrupts, i.e. traps are recognized before an 7676 * NMI/interrupt that's pending on the same instruction. 7677 * Fault-like exceptions, e.g. #GP and #PF, are the lowest 7678 * priority, but are only generated (pended) during instruction 7679 * execution, i.e. a pending fault-like exception means the 7680 * fault occurred on the *previous* instruction and must be 7681 * serviced prior to recognizing any new events in order to 7682 * fully complete the previous instruction. 7683 */ 7684 else if (!vcpu->arch.exception.pending) { 7685 if (vcpu->arch.nmi_injected) 7686 kvm_x86_ops.set_nmi(vcpu); 7687 else if (vcpu->arch.interrupt.injected) 7688 kvm_x86_ops.set_irq(vcpu); 7689 } 7690 7691 /* 7692 * Call check_nested_events() even if we reinjected a previous event 7693 * in order for caller to determine if it should require immediate-exit 7694 * from L2 to L1 due to pending L1 events which require exit 7695 * from L2 to L1. 7696 */ 7697 if (is_guest_mode(vcpu) && kvm_x86_ops.check_nested_events) { 7698 r = kvm_x86_ops.check_nested_events(vcpu); 7699 if (r != 0) 7700 return r; 7701 } 7702 7703 /* try to inject new event if pending */ 7704 if (vcpu->arch.exception.pending) { 7705 trace_kvm_inj_exception(vcpu->arch.exception.nr, 7706 vcpu->arch.exception.has_error_code, 7707 vcpu->arch.exception.error_code); 7708 7709 WARN_ON_ONCE(vcpu->arch.exception.injected); 7710 vcpu->arch.exception.pending = false; 7711 vcpu->arch.exception.injected = true; 7712 7713 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT) 7714 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 7715 X86_EFLAGS_RF); 7716 7717 if (vcpu->arch.exception.nr == DB_VECTOR) { 7718 /* 7719 * This code assumes that nSVM doesn't use 7720 * check_nested_events(). If it does, the 7721 * DR6/DR7 changes should happen before L1 7722 * gets a #VMEXIT for an intercepted #DB in 7723 * L2. (Under VMX, on the other hand, the 7724 * DR6/DR7 changes should not happen in the 7725 * event of a VM-exit to L1 for an intercepted 7726 * #DB in L2.) 7727 */ 7728 kvm_deliver_exception_payload(vcpu); 7729 if (vcpu->arch.dr7 & DR7_GD) { 7730 vcpu->arch.dr7 &= ~DR7_GD; 7731 kvm_update_dr7(vcpu); 7732 } 7733 } 7734 7735 kvm_x86_ops.queue_exception(vcpu); 7736 } 7737 7738 /* Don't consider new event if we re-injected an event */ 7739 if (kvm_event_needs_reinjection(vcpu)) 7740 return 0; 7741 7742 if (vcpu->arch.smi_pending && !is_smm(vcpu) && 7743 kvm_x86_ops.smi_allowed(vcpu)) { 7744 vcpu->arch.smi_pending = false; 7745 ++vcpu->arch.smi_count; 7746 enter_smm(vcpu); 7747 } else if (vcpu->arch.nmi_pending && kvm_x86_ops.nmi_allowed(vcpu)) { 7748 --vcpu->arch.nmi_pending; 7749 vcpu->arch.nmi_injected = true; 7750 kvm_x86_ops.set_nmi(vcpu); 7751 } else if (kvm_cpu_has_injectable_intr(vcpu)) { 7752 /* 7753 * Because interrupts can be injected asynchronously, we are 7754 * calling check_nested_events again here to avoid a race condition. 7755 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this 7756 * proposal and current concerns. Perhaps we should be setting 7757 * KVM_REQ_EVENT only on certain events and not unconditionally? 7758 */ 7759 if (is_guest_mode(vcpu) && kvm_x86_ops.check_nested_events) { 7760 r = kvm_x86_ops.check_nested_events(vcpu); 7761 if (r != 0) 7762 return r; 7763 } 7764 if (kvm_x86_ops.interrupt_allowed(vcpu)) { 7765 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), 7766 false); 7767 kvm_x86_ops.set_irq(vcpu); 7768 } 7769 } 7770 7771 return 0; 7772 } 7773 7774 static void process_nmi(struct kvm_vcpu *vcpu) 7775 { 7776 unsigned limit = 2; 7777 7778 /* 7779 * x86 is limited to one NMI running, and one NMI pending after it. 7780 * If an NMI is already in progress, limit further NMIs to just one. 7781 * Otherwise, allow two (and we'll inject the first one immediately). 7782 */ 7783 if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) 7784 limit = 1; 7785 7786 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 7787 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 7788 kvm_make_request(KVM_REQ_EVENT, vcpu); 7789 } 7790 7791 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg) 7792 { 7793 u32 flags = 0; 7794 flags |= seg->g << 23; 7795 flags |= seg->db << 22; 7796 flags |= seg->l << 21; 7797 flags |= seg->avl << 20; 7798 flags |= seg->present << 15; 7799 flags |= seg->dpl << 13; 7800 flags |= seg->s << 12; 7801 flags |= seg->type << 8; 7802 return flags; 7803 } 7804 7805 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n) 7806 { 7807 struct kvm_segment seg; 7808 int offset; 7809 7810 kvm_get_segment(vcpu, &seg, n); 7811 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector); 7812 7813 if (n < 3) 7814 offset = 0x7f84 + n * 12; 7815 else 7816 offset = 0x7f2c + (n - 3) * 12; 7817 7818 put_smstate(u32, buf, offset + 8, seg.base); 7819 put_smstate(u32, buf, offset + 4, seg.limit); 7820 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg)); 7821 } 7822 7823 #ifdef CONFIG_X86_64 7824 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n) 7825 { 7826 struct kvm_segment seg; 7827 int offset; 7828 u16 flags; 7829 7830 kvm_get_segment(vcpu, &seg, n); 7831 offset = 0x7e00 + n * 16; 7832 7833 flags = enter_smm_get_segment_flags(&seg) >> 8; 7834 put_smstate(u16, buf, offset, seg.selector); 7835 put_smstate(u16, buf, offset + 2, flags); 7836 put_smstate(u32, buf, offset + 4, seg.limit); 7837 put_smstate(u64, buf, offset + 8, seg.base); 7838 } 7839 #endif 7840 7841 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf) 7842 { 7843 struct desc_ptr dt; 7844 struct kvm_segment seg; 7845 unsigned long val; 7846 int i; 7847 7848 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu)); 7849 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu)); 7850 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu)); 7851 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu)); 7852 7853 for (i = 0; i < 8; i++) 7854 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i)); 7855 7856 kvm_get_dr(vcpu, 6, &val); 7857 put_smstate(u32, buf, 0x7fcc, (u32)val); 7858 kvm_get_dr(vcpu, 7, &val); 7859 put_smstate(u32, buf, 0x7fc8, (u32)val); 7860 7861 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 7862 put_smstate(u32, buf, 0x7fc4, seg.selector); 7863 put_smstate(u32, buf, 0x7f64, seg.base); 7864 put_smstate(u32, buf, 0x7f60, seg.limit); 7865 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg)); 7866 7867 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 7868 put_smstate(u32, buf, 0x7fc0, seg.selector); 7869 put_smstate(u32, buf, 0x7f80, seg.base); 7870 put_smstate(u32, buf, 0x7f7c, seg.limit); 7871 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg)); 7872 7873 kvm_x86_ops.get_gdt(vcpu, &dt); 7874 put_smstate(u32, buf, 0x7f74, dt.address); 7875 put_smstate(u32, buf, 0x7f70, dt.size); 7876 7877 kvm_x86_ops.get_idt(vcpu, &dt); 7878 put_smstate(u32, buf, 0x7f58, dt.address); 7879 put_smstate(u32, buf, 0x7f54, dt.size); 7880 7881 for (i = 0; i < 6; i++) 7882 enter_smm_save_seg_32(vcpu, buf, i); 7883 7884 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu)); 7885 7886 /* revision id */ 7887 put_smstate(u32, buf, 0x7efc, 0x00020000); 7888 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase); 7889 } 7890 7891 #ifdef CONFIG_X86_64 7892 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf) 7893 { 7894 struct desc_ptr dt; 7895 struct kvm_segment seg; 7896 unsigned long val; 7897 int i; 7898 7899 for (i = 0; i < 16; i++) 7900 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i)); 7901 7902 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu)); 7903 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu)); 7904 7905 kvm_get_dr(vcpu, 6, &val); 7906 put_smstate(u64, buf, 0x7f68, val); 7907 kvm_get_dr(vcpu, 7, &val); 7908 put_smstate(u64, buf, 0x7f60, val); 7909 7910 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu)); 7911 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu)); 7912 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu)); 7913 7914 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase); 7915 7916 /* revision id */ 7917 put_smstate(u32, buf, 0x7efc, 0x00020064); 7918 7919 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer); 7920 7921 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 7922 put_smstate(u16, buf, 0x7e90, seg.selector); 7923 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8); 7924 put_smstate(u32, buf, 0x7e94, seg.limit); 7925 put_smstate(u64, buf, 0x7e98, seg.base); 7926 7927 kvm_x86_ops.get_idt(vcpu, &dt); 7928 put_smstate(u32, buf, 0x7e84, dt.size); 7929 put_smstate(u64, buf, 0x7e88, dt.address); 7930 7931 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 7932 put_smstate(u16, buf, 0x7e70, seg.selector); 7933 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8); 7934 put_smstate(u32, buf, 0x7e74, seg.limit); 7935 put_smstate(u64, buf, 0x7e78, seg.base); 7936 7937 kvm_x86_ops.get_gdt(vcpu, &dt); 7938 put_smstate(u32, buf, 0x7e64, dt.size); 7939 put_smstate(u64, buf, 0x7e68, dt.address); 7940 7941 for (i = 0; i < 6; i++) 7942 enter_smm_save_seg_64(vcpu, buf, i); 7943 } 7944 #endif 7945 7946 static void enter_smm(struct kvm_vcpu *vcpu) 7947 { 7948 struct kvm_segment cs, ds; 7949 struct desc_ptr dt; 7950 char buf[512]; 7951 u32 cr0; 7952 7953 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true); 7954 memset(buf, 0, 512); 7955 #ifdef CONFIG_X86_64 7956 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 7957 enter_smm_save_state_64(vcpu, buf); 7958 else 7959 #endif 7960 enter_smm_save_state_32(vcpu, buf); 7961 7962 /* 7963 * Give pre_enter_smm() a chance to make ISA-specific changes to the 7964 * vCPU state (e.g. leave guest mode) after we've saved the state into 7965 * the SMM state-save area. 7966 */ 7967 kvm_x86_ops.pre_enter_smm(vcpu, buf); 7968 7969 vcpu->arch.hflags |= HF_SMM_MASK; 7970 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf)); 7971 7972 if (kvm_x86_ops.get_nmi_mask(vcpu)) 7973 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 7974 else 7975 kvm_x86_ops.set_nmi_mask(vcpu, true); 7976 7977 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 7978 kvm_rip_write(vcpu, 0x8000); 7979 7980 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG); 7981 kvm_x86_ops.set_cr0(vcpu, cr0); 7982 vcpu->arch.cr0 = cr0; 7983 7984 kvm_x86_ops.set_cr4(vcpu, 0); 7985 7986 /* Undocumented: IDT limit is set to zero on entry to SMM. */ 7987 dt.address = dt.size = 0; 7988 kvm_x86_ops.set_idt(vcpu, &dt); 7989 7990 __kvm_set_dr(vcpu, 7, DR7_FIXED_1); 7991 7992 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff; 7993 cs.base = vcpu->arch.smbase; 7994 7995 ds.selector = 0; 7996 ds.base = 0; 7997 7998 cs.limit = ds.limit = 0xffffffff; 7999 cs.type = ds.type = 0x3; 8000 cs.dpl = ds.dpl = 0; 8001 cs.db = ds.db = 0; 8002 cs.s = ds.s = 1; 8003 cs.l = ds.l = 0; 8004 cs.g = ds.g = 1; 8005 cs.avl = ds.avl = 0; 8006 cs.present = ds.present = 1; 8007 cs.unusable = ds.unusable = 0; 8008 cs.padding = ds.padding = 0; 8009 8010 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 8011 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS); 8012 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES); 8013 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS); 8014 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS); 8015 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS); 8016 8017 #ifdef CONFIG_X86_64 8018 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 8019 kvm_x86_ops.set_efer(vcpu, 0); 8020 #endif 8021 8022 kvm_update_cpuid(vcpu); 8023 kvm_mmu_reset_context(vcpu); 8024 } 8025 8026 static void process_smi(struct kvm_vcpu *vcpu) 8027 { 8028 vcpu->arch.smi_pending = true; 8029 kvm_make_request(KVM_REQ_EVENT, vcpu); 8030 } 8031 8032 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 8033 unsigned long *vcpu_bitmap) 8034 { 8035 cpumask_var_t cpus; 8036 8037 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 8038 8039 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, 8040 vcpu_bitmap, cpus); 8041 8042 free_cpumask_var(cpus); 8043 } 8044 8045 void kvm_make_scan_ioapic_request(struct kvm *kvm) 8046 { 8047 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 8048 } 8049 8050 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 8051 { 8052 if (!lapic_in_kernel(vcpu)) 8053 return; 8054 8055 vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm); 8056 kvm_apic_update_apicv(vcpu); 8057 kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu); 8058 } 8059 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv); 8060 8061 /* 8062 * NOTE: Do not hold any lock prior to calling this. 8063 * 8064 * In particular, kvm_request_apicv_update() expects kvm->srcu not to be 8065 * locked, because it calls __x86_set_memory_region() which does 8066 * synchronize_srcu(&kvm->srcu). 8067 */ 8068 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit) 8069 { 8070 unsigned long old, new, expected; 8071 8072 if (!kvm_x86_ops.check_apicv_inhibit_reasons || 8073 !kvm_x86_ops.check_apicv_inhibit_reasons(bit)) 8074 return; 8075 8076 old = READ_ONCE(kvm->arch.apicv_inhibit_reasons); 8077 do { 8078 expected = new = old; 8079 if (activate) 8080 __clear_bit(bit, &new); 8081 else 8082 __set_bit(bit, &new); 8083 if (new == old) 8084 break; 8085 old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new); 8086 } while (old != expected); 8087 8088 if (!!old == !!new) 8089 return; 8090 8091 trace_kvm_apicv_update_request(activate, bit); 8092 if (kvm_x86_ops.pre_update_apicv_exec_ctrl) 8093 kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate); 8094 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 8095 } 8096 EXPORT_SYMBOL_GPL(kvm_request_apicv_update); 8097 8098 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 8099 { 8100 if (!kvm_apic_present(vcpu)) 8101 return; 8102 8103 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 8104 8105 if (irqchip_split(vcpu->kvm)) 8106 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 8107 else { 8108 if (vcpu->arch.apicv_active) 8109 kvm_x86_ops.sync_pir_to_irr(vcpu); 8110 if (ioapic_in_kernel(vcpu->kvm)) 8111 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 8112 } 8113 8114 if (is_guest_mode(vcpu)) 8115 vcpu->arch.load_eoi_exitmap_pending = true; 8116 else 8117 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 8118 } 8119 8120 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 8121 { 8122 u64 eoi_exit_bitmap[4]; 8123 8124 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 8125 return; 8126 8127 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors, 8128 vcpu_to_synic(vcpu)->vec_bitmap, 256); 8129 kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap); 8130 } 8131 8132 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 8133 unsigned long start, unsigned long end, 8134 bool blockable) 8135 { 8136 unsigned long apic_address; 8137 8138 /* 8139 * The physical address of apic access page is stored in the VMCS. 8140 * Update it when it becomes invalid. 8141 */ 8142 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 8143 if (start <= apic_address && apic_address < end) 8144 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 8145 8146 return 0; 8147 } 8148 8149 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 8150 { 8151 struct page *page = NULL; 8152 8153 if (!lapic_in_kernel(vcpu)) 8154 return; 8155 8156 if (!kvm_x86_ops.set_apic_access_page_addr) 8157 return; 8158 8159 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 8160 if (is_error_page(page)) 8161 return; 8162 kvm_x86_ops.set_apic_access_page_addr(vcpu, page_to_phys(page)); 8163 8164 /* 8165 * Do not pin apic access page in memory, the MMU notifier 8166 * will call us again if it is migrated or swapped out. 8167 */ 8168 put_page(page); 8169 } 8170 8171 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 8172 { 8173 smp_send_reschedule(vcpu->cpu); 8174 } 8175 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 8176 8177 /* 8178 * Returns 1 to let vcpu_run() continue the guest execution loop without 8179 * exiting to the userspace. Otherwise, the value will be returned to the 8180 * userspace. 8181 */ 8182 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 8183 { 8184 int r; 8185 bool req_int_win = 8186 dm_request_for_irq_injection(vcpu) && 8187 kvm_cpu_accept_dm_intr(vcpu); 8188 enum exit_fastpath_completion exit_fastpath = EXIT_FASTPATH_NONE; 8189 8190 bool req_immediate_exit = false; 8191 8192 if (kvm_request_pending(vcpu)) { 8193 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu)) { 8194 if (unlikely(!kvm_x86_ops.get_vmcs12_pages(vcpu))) { 8195 r = 0; 8196 goto out; 8197 } 8198 } 8199 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) 8200 kvm_mmu_unload(vcpu); 8201 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 8202 __kvm_migrate_timers(vcpu); 8203 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 8204 kvm_gen_update_masterclock(vcpu->kvm); 8205 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 8206 kvm_gen_kvmclock_update(vcpu); 8207 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 8208 r = kvm_guest_time_update(vcpu); 8209 if (unlikely(r)) 8210 goto out; 8211 } 8212 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 8213 kvm_mmu_sync_roots(vcpu); 8214 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 8215 kvm_mmu_load_pgd(vcpu); 8216 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 8217 kvm_vcpu_flush_tlb(vcpu, true); 8218 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 8219 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 8220 r = 0; 8221 goto out; 8222 } 8223 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 8224 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 8225 vcpu->mmio_needed = 0; 8226 r = 0; 8227 goto out; 8228 } 8229 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 8230 /* Page is swapped out. Do synthetic halt */ 8231 vcpu->arch.apf.halted = true; 8232 r = 1; 8233 goto out; 8234 } 8235 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 8236 record_steal_time(vcpu); 8237 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 8238 process_smi(vcpu); 8239 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 8240 process_nmi(vcpu); 8241 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 8242 kvm_pmu_handle_event(vcpu); 8243 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 8244 kvm_pmu_deliver_pmi(vcpu); 8245 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 8246 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 8247 if (test_bit(vcpu->arch.pending_ioapic_eoi, 8248 vcpu->arch.ioapic_handled_vectors)) { 8249 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 8250 vcpu->run->eoi.vector = 8251 vcpu->arch.pending_ioapic_eoi; 8252 r = 0; 8253 goto out; 8254 } 8255 } 8256 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 8257 vcpu_scan_ioapic(vcpu); 8258 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 8259 vcpu_load_eoi_exitmap(vcpu); 8260 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 8261 kvm_vcpu_reload_apic_access_page(vcpu); 8262 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 8263 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 8264 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 8265 r = 0; 8266 goto out; 8267 } 8268 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 8269 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 8270 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 8271 r = 0; 8272 goto out; 8273 } 8274 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 8275 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 8276 vcpu->run->hyperv = vcpu->arch.hyperv.exit; 8277 r = 0; 8278 goto out; 8279 } 8280 8281 /* 8282 * KVM_REQ_HV_STIMER has to be processed after 8283 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 8284 * depend on the guest clock being up-to-date 8285 */ 8286 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 8287 kvm_hv_process_stimers(vcpu); 8288 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 8289 kvm_vcpu_update_apicv(vcpu); 8290 } 8291 8292 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { 8293 ++vcpu->stat.req_event; 8294 kvm_apic_accept_events(vcpu); 8295 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 8296 r = 1; 8297 goto out; 8298 } 8299 8300 if (inject_pending_event(vcpu) != 0) 8301 req_immediate_exit = true; 8302 else { 8303 /* Enable SMI/NMI/IRQ window open exits if needed. 8304 * 8305 * SMIs have three cases: 8306 * 1) They can be nested, and then there is nothing to 8307 * do here because RSM will cause a vmexit anyway. 8308 * 2) There is an ISA-specific reason why SMI cannot be 8309 * injected, and the moment when this changes can be 8310 * intercepted. 8311 * 3) Or the SMI can be pending because 8312 * inject_pending_event has completed the injection 8313 * of an IRQ or NMI from the previous vmexit, and 8314 * then we request an immediate exit to inject the 8315 * SMI. 8316 */ 8317 if (vcpu->arch.smi_pending && !is_smm(vcpu)) 8318 if (!kvm_x86_ops.enable_smi_window(vcpu)) 8319 req_immediate_exit = true; 8320 if (vcpu->arch.nmi_pending) 8321 kvm_x86_ops.enable_nmi_window(vcpu); 8322 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win) 8323 kvm_x86_ops.enable_irq_window(vcpu); 8324 WARN_ON(vcpu->arch.exception.pending); 8325 } 8326 8327 if (kvm_lapic_enabled(vcpu)) { 8328 update_cr8_intercept(vcpu); 8329 kvm_lapic_sync_to_vapic(vcpu); 8330 } 8331 } 8332 8333 r = kvm_mmu_reload(vcpu); 8334 if (unlikely(r)) { 8335 goto cancel_injection; 8336 } 8337 8338 preempt_disable(); 8339 8340 kvm_x86_ops.prepare_guest_switch(vcpu); 8341 8342 /* 8343 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 8344 * IPI are then delayed after guest entry, which ensures that they 8345 * result in virtual interrupt delivery. 8346 */ 8347 local_irq_disable(); 8348 vcpu->mode = IN_GUEST_MODE; 8349 8350 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 8351 8352 /* 8353 * 1) We should set ->mode before checking ->requests. Please see 8354 * the comment in kvm_vcpu_exiting_guest_mode(). 8355 * 8356 * 2) For APICv, we should set ->mode before checking PID.ON. This 8357 * pairs with the memory barrier implicit in pi_test_and_set_on 8358 * (see vmx_deliver_posted_interrupt). 8359 * 8360 * 3) This also orders the write to mode from any reads to the page 8361 * tables done while the VCPU is running. Please see the comment 8362 * in kvm_flush_remote_tlbs. 8363 */ 8364 smp_mb__after_srcu_read_unlock(); 8365 8366 /* 8367 * This handles the case where a posted interrupt was 8368 * notified with kvm_vcpu_kick. 8369 */ 8370 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active) 8371 kvm_x86_ops.sync_pir_to_irr(vcpu); 8372 8373 if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) 8374 || need_resched() || signal_pending(current)) { 8375 vcpu->mode = OUTSIDE_GUEST_MODE; 8376 smp_wmb(); 8377 local_irq_enable(); 8378 preempt_enable(); 8379 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 8380 r = 1; 8381 goto cancel_injection; 8382 } 8383 8384 if (req_immediate_exit) { 8385 kvm_make_request(KVM_REQ_EVENT, vcpu); 8386 kvm_x86_ops.request_immediate_exit(vcpu); 8387 } 8388 8389 trace_kvm_entry(vcpu->vcpu_id); 8390 guest_enter_irqoff(); 8391 8392 fpregs_assert_state_consistent(); 8393 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 8394 switch_fpu_return(); 8395 8396 if (unlikely(vcpu->arch.switch_db_regs)) { 8397 set_debugreg(0, 7); 8398 set_debugreg(vcpu->arch.eff_db[0], 0); 8399 set_debugreg(vcpu->arch.eff_db[1], 1); 8400 set_debugreg(vcpu->arch.eff_db[2], 2); 8401 set_debugreg(vcpu->arch.eff_db[3], 3); 8402 set_debugreg(vcpu->arch.dr6, 6); 8403 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 8404 } 8405 8406 kvm_x86_ops.run(vcpu); 8407 8408 /* 8409 * Do this here before restoring debug registers on the host. And 8410 * since we do this before handling the vmexit, a DR access vmexit 8411 * can (a) read the correct value of the debug registers, (b) set 8412 * KVM_DEBUGREG_WONT_EXIT again. 8413 */ 8414 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 8415 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 8416 kvm_x86_ops.sync_dirty_debug_regs(vcpu); 8417 kvm_update_dr0123(vcpu); 8418 kvm_update_dr6(vcpu); 8419 kvm_update_dr7(vcpu); 8420 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 8421 } 8422 8423 /* 8424 * If the guest has used debug registers, at least dr7 8425 * will be disabled while returning to the host. 8426 * If we don't have active breakpoints in the host, we don't 8427 * care about the messed up debug address registers. But if 8428 * we have some of them active, restore the old state. 8429 */ 8430 if (hw_breakpoint_active()) 8431 hw_breakpoint_restore(); 8432 8433 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 8434 8435 vcpu->mode = OUTSIDE_GUEST_MODE; 8436 smp_wmb(); 8437 8438 kvm_x86_ops.handle_exit_irqoff(vcpu, &exit_fastpath); 8439 8440 /* 8441 * Consume any pending interrupts, including the possible source of 8442 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 8443 * An instruction is required after local_irq_enable() to fully unblock 8444 * interrupts on processors that implement an interrupt shadow, the 8445 * stat.exits increment will do nicely. 8446 */ 8447 kvm_before_interrupt(vcpu); 8448 local_irq_enable(); 8449 ++vcpu->stat.exits; 8450 local_irq_disable(); 8451 kvm_after_interrupt(vcpu); 8452 8453 guest_exit_irqoff(); 8454 if (lapic_in_kernel(vcpu)) { 8455 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta; 8456 if (delta != S64_MIN) { 8457 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta); 8458 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN; 8459 } 8460 } 8461 8462 local_irq_enable(); 8463 preempt_enable(); 8464 8465 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 8466 8467 /* 8468 * Profile KVM exit RIPs: 8469 */ 8470 if (unlikely(prof_on == KVM_PROFILING)) { 8471 unsigned long rip = kvm_rip_read(vcpu); 8472 profile_hit(KVM_PROFILING, (void *)rip); 8473 } 8474 8475 if (unlikely(vcpu->arch.tsc_always_catchup)) 8476 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 8477 8478 if (vcpu->arch.apic_attention) 8479 kvm_lapic_sync_from_vapic(vcpu); 8480 8481 r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath); 8482 return r; 8483 8484 cancel_injection: 8485 kvm_x86_ops.cancel_injection(vcpu); 8486 if (unlikely(vcpu->arch.apic_attention)) 8487 kvm_lapic_sync_from_vapic(vcpu); 8488 out: 8489 return r; 8490 } 8491 8492 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu) 8493 { 8494 if (!kvm_arch_vcpu_runnable(vcpu) && 8495 (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) { 8496 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 8497 kvm_vcpu_block(vcpu); 8498 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 8499 8500 if (kvm_x86_ops.post_block) 8501 kvm_x86_ops.post_block(vcpu); 8502 8503 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu)) 8504 return 1; 8505 } 8506 8507 kvm_apic_accept_events(vcpu); 8508 switch(vcpu->arch.mp_state) { 8509 case KVM_MP_STATE_HALTED: 8510 vcpu->arch.pv.pv_unhalted = false; 8511 vcpu->arch.mp_state = 8512 KVM_MP_STATE_RUNNABLE; 8513 /* fall through */ 8514 case KVM_MP_STATE_RUNNABLE: 8515 vcpu->arch.apf.halted = false; 8516 break; 8517 case KVM_MP_STATE_INIT_RECEIVED: 8518 break; 8519 default: 8520 return -EINTR; 8521 } 8522 return 1; 8523 } 8524 8525 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 8526 { 8527 if (is_guest_mode(vcpu) && kvm_x86_ops.check_nested_events) 8528 kvm_x86_ops.check_nested_events(vcpu); 8529 8530 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 8531 !vcpu->arch.apf.halted); 8532 } 8533 8534 static int vcpu_run(struct kvm_vcpu *vcpu) 8535 { 8536 int r; 8537 struct kvm *kvm = vcpu->kvm; 8538 8539 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 8540 vcpu->arch.l1tf_flush_l1d = true; 8541 8542 for (;;) { 8543 if (kvm_vcpu_running(vcpu)) { 8544 r = vcpu_enter_guest(vcpu); 8545 } else { 8546 r = vcpu_block(kvm, vcpu); 8547 } 8548 8549 if (r <= 0) 8550 break; 8551 8552 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu); 8553 if (kvm_cpu_has_pending_timer(vcpu)) 8554 kvm_inject_pending_timer_irqs(vcpu); 8555 8556 if (dm_request_for_irq_injection(vcpu) && 8557 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 8558 r = 0; 8559 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 8560 ++vcpu->stat.request_irq_exits; 8561 break; 8562 } 8563 8564 kvm_check_async_pf_completion(vcpu); 8565 8566 if (signal_pending(current)) { 8567 r = -EINTR; 8568 vcpu->run->exit_reason = KVM_EXIT_INTR; 8569 ++vcpu->stat.signal_exits; 8570 break; 8571 } 8572 if (need_resched()) { 8573 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 8574 cond_resched(); 8575 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 8576 } 8577 } 8578 8579 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 8580 8581 return r; 8582 } 8583 8584 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 8585 { 8586 int r; 8587 8588 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 8589 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 8590 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 8591 return r; 8592 } 8593 8594 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 8595 { 8596 BUG_ON(!vcpu->arch.pio.count); 8597 8598 return complete_emulated_io(vcpu); 8599 } 8600 8601 /* 8602 * Implements the following, as a state machine: 8603 * 8604 * read: 8605 * for each fragment 8606 * for each mmio piece in the fragment 8607 * write gpa, len 8608 * exit 8609 * copy data 8610 * execute insn 8611 * 8612 * write: 8613 * for each fragment 8614 * for each mmio piece in the fragment 8615 * write gpa, len 8616 * copy data 8617 * exit 8618 */ 8619 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 8620 { 8621 struct kvm_run *run = vcpu->run; 8622 struct kvm_mmio_fragment *frag; 8623 unsigned len; 8624 8625 BUG_ON(!vcpu->mmio_needed); 8626 8627 /* Complete previous fragment */ 8628 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 8629 len = min(8u, frag->len); 8630 if (!vcpu->mmio_is_write) 8631 memcpy(frag->data, run->mmio.data, len); 8632 8633 if (frag->len <= 8) { 8634 /* Switch to the next fragment. */ 8635 frag++; 8636 vcpu->mmio_cur_fragment++; 8637 } else { 8638 /* Go forward to the next mmio piece. */ 8639 frag->data += len; 8640 frag->gpa += len; 8641 frag->len -= len; 8642 } 8643 8644 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 8645 vcpu->mmio_needed = 0; 8646 8647 /* FIXME: return into emulator if single-stepping. */ 8648 if (vcpu->mmio_is_write) 8649 return 1; 8650 vcpu->mmio_read_completed = 1; 8651 return complete_emulated_io(vcpu); 8652 } 8653 8654 run->exit_reason = KVM_EXIT_MMIO; 8655 run->mmio.phys_addr = frag->gpa; 8656 if (vcpu->mmio_is_write) 8657 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 8658 run->mmio.len = min(8u, frag->len); 8659 run->mmio.is_write = vcpu->mmio_is_write; 8660 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 8661 return 0; 8662 } 8663 8664 static void kvm_save_current_fpu(struct fpu *fpu) 8665 { 8666 /* 8667 * If the target FPU state is not resident in the CPU registers, just 8668 * memcpy() from current, else save CPU state directly to the target. 8669 */ 8670 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 8671 memcpy(&fpu->state, ¤t->thread.fpu.state, 8672 fpu_kernel_xstate_size); 8673 else 8674 copy_fpregs_to_fpstate(fpu); 8675 } 8676 8677 /* Swap (qemu) user FPU context for the guest FPU context. */ 8678 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 8679 { 8680 fpregs_lock(); 8681 8682 kvm_save_current_fpu(vcpu->arch.user_fpu); 8683 8684 /* PKRU is separately restored in kvm_x86_ops.run. */ 8685 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state, 8686 ~XFEATURE_MASK_PKRU); 8687 8688 fpregs_mark_activate(); 8689 fpregs_unlock(); 8690 8691 trace_kvm_fpu(1); 8692 } 8693 8694 /* When vcpu_run ends, restore user space FPU context. */ 8695 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 8696 { 8697 fpregs_lock(); 8698 8699 kvm_save_current_fpu(vcpu->arch.guest_fpu); 8700 8701 copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state); 8702 8703 fpregs_mark_activate(); 8704 fpregs_unlock(); 8705 8706 ++vcpu->stat.fpu_reload; 8707 trace_kvm_fpu(0); 8708 } 8709 8710 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 8711 { 8712 int r; 8713 8714 vcpu_load(vcpu); 8715 kvm_sigset_activate(vcpu); 8716 kvm_load_guest_fpu(vcpu); 8717 8718 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 8719 if (kvm_run->immediate_exit) { 8720 r = -EINTR; 8721 goto out; 8722 } 8723 kvm_vcpu_block(vcpu); 8724 kvm_apic_accept_events(vcpu); 8725 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 8726 r = -EAGAIN; 8727 if (signal_pending(current)) { 8728 r = -EINTR; 8729 vcpu->run->exit_reason = KVM_EXIT_INTR; 8730 ++vcpu->stat.signal_exits; 8731 } 8732 goto out; 8733 } 8734 8735 if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) { 8736 r = -EINVAL; 8737 goto out; 8738 } 8739 8740 if (vcpu->run->kvm_dirty_regs) { 8741 r = sync_regs(vcpu); 8742 if (r != 0) 8743 goto out; 8744 } 8745 8746 /* re-sync apic's tpr */ 8747 if (!lapic_in_kernel(vcpu)) { 8748 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 8749 r = -EINVAL; 8750 goto out; 8751 } 8752 } 8753 8754 if (unlikely(vcpu->arch.complete_userspace_io)) { 8755 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 8756 vcpu->arch.complete_userspace_io = NULL; 8757 r = cui(vcpu); 8758 if (r <= 0) 8759 goto out; 8760 } else 8761 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); 8762 8763 if (kvm_run->immediate_exit) 8764 r = -EINTR; 8765 else 8766 r = vcpu_run(vcpu); 8767 8768 out: 8769 kvm_put_guest_fpu(vcpu); 8770 if (vcpu->run->kvm_valid_regs) 8771 store_regs(vcpu); 8772 post_kvm_run_save(vcpu); 8773 kvm_sigset_deactivate(vcpu); 8774 8775 vcpu_put(vcpu); 8776 return r; 8777 } 8778 8779 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 8780 { 8781 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 8782 /* 8783 * We are here if userspace calls get_regs() in the middle of 8784 * instruction emulation. Registers state needs to be copied 8785 * back from emulation context to vcpu. Userspace shouldn't do 8786 * that usually, but some bad designed PV devices (vmware 8787 * backdoor interface) need this to work 8788 */ 8789 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 8790 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8791 } 8792 regs->rax = kvm_rax_read(vcpu); 8793 regs->rbx = kvm_rbx_read(vcpu); 8794 regs->rcx = kvm_rcx_read(vcpu); 8795 regs->rdx = kvm_rdx_read(vcpu); 8796 regs->rsi = kvm_rsi_read(vcpu); 8797 regs->rdi = kvm_rdi_read(vcpu); 8798 regs->rsp = kvm_rsp_read(vcpu); 8799 regs->rbp = kvm_rbp_read(vcpu); 8800 #ifdef CONFIG_X86_64 8801 regs->r8 = kvm_r8_read(vcpu); 8802 regs->r9 = kvm_r9_read(vcpu); 8803 regs->r10 = kvm_r10_read(vcpu); 8804 regs->r11 = kvm_r11_read(vcpu); 8805 regs->r12 = kvm_r12_read(vcpu); 8806 regs->r13 = kvm_r13_read(vcpu); 8807 regs->r14 = kvm_r14_read(vcpu); 8808 regs->r15 = kvm_r15_read(vcpu); 8809 #endif 8810 8811 regs->rip = kvm_rip_read(vcpu); 8812 regs->rflags = kvm_get_rflags(vcpu); 8813 } 8814 8815 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 8816 { 8817 vcpu_load(vcpu); 8818 __get_regs(vcpu, regs); 8819 vcpu_put(vcpu); 8820 return 0; 8821 } 8822 8823 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 8824 { 8825 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 8826 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8827 8828 kvm_rax_write(vcpu, regs->rax); 8829 kvm_rbx_write(vcpu, regs->rbx); 8830 kvm_rcx_write(vcpu, regs->rcx); 8831 kvm_rdx_write(vcpu, regs->rdx); 8832 kvm_rsi_write(vcpu, regs->rsi); 8833 kvm_rdi_write(vcpu, regs->rdi); 8834 kvm_rsp_write(vcpu, regs->rsp); 8835 kvm_rbp_write(vcpu, regs->rbp); 8836 #ifdef CONFIG_X86_64 8837 kvm_r8_write(vcpu, regs->r8); 8838 kvm_r9_write(vcpu, regs->r9); 8839 kvm_r10_write(vcpu, regs->r10); 8840 kvm_r11_write(vcpu, regs->r11); 8841 kvm_r12_write(vcpu, regs->r12); 8842 kvm_r13_write(vcpu, regs->r13); 8843 kvm_r14_write(vcpu, regs->r14); 8844 kvm_r15_write(vcpu, regs->r15); 8845 #endif 8846 8847 kvm_rip_write(vcpu, regs->rip); 8848 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 8849 8850 vcpu->arch.exception.pending = false; 8851 8852 kvm_make_request(KVM_REQ_EVENT, vcpu); 8853 } 8854 8855 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 8856 { 8857 vcpu_load(vcpu); 8858 __set_regs(vcpu, regs); 8859 vcpu_put(vcpu); 8860 return 0; 8861 } 8862 8863 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 8864 { 8865 struct kvm_segment cs; 8866 8867 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 8868 *db = cs.db; 8869 *l = cs.l; 8870 } 8871 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); 8872 8873 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 8874 { 8875 struct desc_ptr dt; 8876 8877 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 8878 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 8879 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 8880 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 8881 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 8882 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 8883 8884 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 8885 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 8886 8887 kvm_x86_ops.get_idt(vcpu, &dt); 8888 sregs->idt.limit = dt.size; 8889 sregs->idt.base = dt.address; 8890 kvm_x86_ops.get_gdt(vcpu, &dt); 8891 sregs->gdt.limit = dt.size; 8892 sregs->gdt.base = dt.address; 8893 8894 sregs->cr0 = kvm_read_cr0(vcpu); 8895 sregs->cr2 = vcpu->arch.cr2; 8896 sregs->cr3 = kvm_read_cr3(vcpu); 8897 sregs->cr4 = kvm_read_cr4(vcpu); 8898 sregs->cr8 = kvm_get_cr8(vcpu); 8899 sregs->efer = vcpu->arch.efer; 8900 sregs->apic_base = kvm_get_apic_base(vcpu); 8901 8902 memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap)); 8903 8904 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 8905 set_bit(vcpu->arch.interrupt.nr, 8906 (unsigned long *)sregs->interrupt_bitmap); 8907 } 8908 8909 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 8910 struct kvm_sregs *sregs) 8911 { 8912 vcpu_load(vcpu); 8913 __get_sregs(vcpu, sregs); 8914 vcpu_put(vcpu); 8915 return 0; 8916 } 8917 8918 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 8919 struct kvm_mp_state *mp_state) 8920 { 8921 vcpu_load(vcpu); 8922 if (kvm_mpx_supported()) 8923 kvm_load_guest_fpu(vcpu); 8924 8925 kvm_apic_accept_events(vcpu); 8926 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED && 8927 vcpu->arch.pv.pv_unhalted) 8928 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 8929 else 8930 mp_state->mp_state = vcpu->arch.mp_state; 8931 8932 if (kvm_mpx_supported()) 8933 kvm_put_guest_fpu(vcpu); 8934 vcpu_put(vcpu); 8935 return 0; 8936 } 8937 8938 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 8939 struct kvm_mp_state *mp_state) 8940 { 8941 int ret = -EINVAL; 8942 8943 vcpu_load(vcpu); 8944 8945 if (!lapic_in_kernel(vcpu) && 8946 mp_state->mp_state != KVM_MP_STATE_RUNNABLE) 8947 goto out; 8948 8949 /* 8950 * KVM_MP_STATE_INIT_RECEIVED means the processor is in 8951 * INIT state; latched init should be reported using 8952 * KVM_SET_VCPU_EVENTS, so reject it here. 8953 */ 8954 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) && 8955 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 8956 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 8957 goto out; 8958 8959 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 8960 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 8961 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 8962 } else 8963 vcpu->arch.mp_state = mp_state->mp_state; 8964 kvm_make_request(KVM_REQ_EVENT, vcpu); 8965 8966 ret = 0; 8967 out: 8968 vcpu_put(vcpu); 8969 return ret; 8970 } 8971 8972 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 8973 int reason, bool has_error_code, u32 error_code) 8974 { 8975 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8976 int ret; 8977 8978 init_emulate_ctxt(vcpu); 8979 8980 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 8981 has_error_code, error_code); 8982 if (ret) { 8983 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8984 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 8985 vcpu->run->internal.ndata = 0; 8986 return 0; 8987 } 8988 8989 kvm_rip_write(vcpu, ctxt->eip); 8990 kvm_set_rflags(vcpu, ctxt->eflags); 8991 return 1; 8992 } 8993 EXPORT_SYMBOL_GPL(kvm_task_switch); 8994 8995 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 8996 { 8997 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 8998 /* 8999 * When EFER.LME and CR0.PG are set, the processor is in 9000 * 64-bit mode (though maybe in a 32-bit code segment). 9001 * CR4.PAE and EFER.LMA must be set. 9002 */ 9003 if (!(sregs->cr4 & X86_CR4_PAE) 9004 || !(sregs->efer & EFER_LMA)) 9005 return -EINVAL; 9006 } else { 9007 /* 9008 * Not in 64-bit mode: EFER.LMA is clear and the code 9009 * segment cannot be 64-bit. 9010 */ 9011 if (sregs->efer & EFER_LMA || sregs->cs.l) 9012 return -EINVAL; 9013 } 9014 9015 return kvm_valid_cr4(vcpu, sregs->cr4); 9016 } 9017 9018 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 9019 { 9020 struct msr_data apic_base_msr; 9021 int mmu_reset_needed = 0; 9022 int cpuid_update_needed = 0; 9023 int pending_vec, max_bits, idx; 9024 struct desc_ptr dt; 9025 int ret = -EINVAL; 9026 9027 if (kvm_valid_sregs(vcpu, sregs)) 9028 goto out; 9029 9030 apic_base_msr.data = sregs->apic_base; 9031 apic_base_msr.host_initiated = true; 9032 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 9033 goto out; 9034 9035 dt.size = sregs->idt.limit; 9036 dt.address = sregs->idt.base; 9037 kvm_x86_ops.set_idt(vcpu, &dt); 9038 dt.size = sregs->gdt.limit; 9039 dt.address = sregs->gdt.base; 9040 kvm_x86_ops.set_gdt(vcpu, &dt); 9041 9042 vcpu->arch.cr2 = sregs->cr2; 9043 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 9044 vcpu->arch.cr3 = sregs->cr3; 9045 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3); 9046 9047 kvm_set_cr8(vcpu, sregs->cr8); 9048 9049 mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 9050 kvm_x86_ops.set_efer(vcpu, sregs->efer); 9051 9052 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 9053 kvm_x86_ops.set_cr0(vcpu, sregs->cr0); 9054 vcpu->arch.cr0 = sregs->cr0; 9055 9056 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 9057 cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) & 9058 (X86_CR4_OSXSAVE | X86_CR4_PKE)); 9059 kvm_x86_ops.set_cr4(vcpu, sregs->cr4); 9060 if (cpuid_update_needed) 9061 kvm_update_cpuid(vcpu); 9062 9063 idx = srcu_read_lock(&vcpu->kvm->srcu); 9064 if (is_pae_paging(vcpu)) { 9065 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 9066 mmu_reset_needed = 1; 9067 } 9068 srcu_read_unlock(&vcpu->kvm->srcu, idx); 9069 9070 if (mmu_reset_needed) 9071 kvm_mmu_reset_context(vcpu); 9072 9073 max_bits = KVM_NR_INTERRUPTS; 9074 pending_vec = find_first_bit( 9075 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 9076 if (pending_vec < max_bits) { 9077 kvm_queue_interrupt(vcpu, pending_vec, false); 9078 pr_debug("Set back pending irq %d\n", pending_vec); 9079 } 9080 9081 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 9082 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 9083 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 9084 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 9085 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 9086 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 9087 9088 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 9089 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 9090 9091 update_cr8_intercept(vcpu); 9092 9093 /* Older userspace won't unhalt the vcpu on reset. */ 9094 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 9095 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 9096 !is_protmode(vcpu)) 9097 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 9098 9099 kvm_make_request(KVM_REQ_EVENT, vcpu); 9100 9101 ret = 0; 9102 out: 9103 return ret; 9104 } 9105 9106 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 9107 struct kvm_sregs *sregs) 9108 { 9109 int ret; 9110 9111 vcpu_load(vcpu); 9112 ret = __set_sregs(vcpu, sregs); 9113 vcpu_put(vcpu); 9114 return ret; 9115 } 9116 9117 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 9118 struct kvm_guest_debug *dbg) 9119 { 9120 unsigned long rflags; 9121 int i, r; 9122 9123 vcpu_load(vcpu); 9124 9125 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 9126 r = -EBUSY; 9127 if (vcpu->arch.exception.pending) 9128 goto out; 9129 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 9130 kvm_queue_exception(vcpu, DB_VECTOR); 9131 else 9132 kvm_queue_exception(vcpu, BP_VECTOR); 9133 } 9134 9135 /* 9136 * Read rflags as long as potentially injected trace flags are still 9137 * filtered out. 9138 */ 9139 rflags = kvm_get_rflags(vcpu); 9140 9141 vcpu->guest_debug = dbg->control; 9142 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 9143 vcpu->guest_debug = 0; 9144 9145 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 9146 for (i = 0; i < KVM_NR_DB_REGS; ++i) 9147 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 9148 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 9149 } else { 9150 for (i = 0; i < KVM_NR_DB_REGS; i++) 9151 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 9152 } 9153 kvm_update_dr7(vcpu); 9154 9155 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 9156 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + 9157 get_segment_base(vcpu, VCPU_SREG_CS); 9158 9159 /* 9160 * Trigger an rflags update that will inject or remove the trace 9161 * flags. 9162 */ 9163 kvm_set_rflags(vcpu, rflags); 9164 9165 kvm_x86_ops.update_bp_intercept(vcpu); 9166 9167 r = 0; 9168 9169 out: 9170 vcpu_put(vcpu); 9171 return r; 9172 } 9173 9174 /* 9175 * Translate a guest virtual address to a guest physical address. 9176 */ 9177 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 9178 struct kvm_translation *tr) 9179 { 9180 unsigned long vaddr = tr->linear_address; 9181 gpa_t gpa; 9182 int idx; 9183 9184 vcpu_load(vcpu); 9185 9186 idx = srcu_read_lock(&vcpu->kvm->srcu); 9187 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 9188 srcu_read_unlock(&vcpu->kvm->srcu, idx); 9189 tr->physical_address = gpa; 9190 tr->valid = gpa != UNMAPPED_GVA; 9191 tr->writeable = 1; 9192 tr->usermode = 0; 9193 9194 vcpu_put(vcpu); 9195 return 0; 9196 } 9197 9198 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 9199 { 9200 struct fxregs_state *fxsave; 9201 9202 vcpu_load(vcpu); 9203 9204 fxsave = &vcpu->arch.guest_fpu->state.fxsave; 9205 memcpy(fpu->fpr, fxsave->st_space, 128); 9206 fpu->fcw = fxsave->cwd; 9207 fpu->fsw = fxsave->swd; 9208 fpu->ftwx = fxsave->twd; 9209 fpu->last_opcode = fxsave->fop; 9210 fpu->last_ip = fxsave->rip; 9211 fpu->last_dp = fxsave->rdp; 9212 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 9213 9214 vcpu_put(vcpu); 9215 return 0; 9216 } 9217 9218 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 9219 { 9220 struct fxregs_state *fxsave; 9221 9222 vcpu_load(vcpu); 9223 9224 fxsave = &vcpu->arch.guest_fpu->state.fxsave; 9225 9226 memcpy(fxsave->st_space, fpu->fpr, 128); 9227 fxsave->cwd = fpu->fcw; 9228 fxsave->swd = fpu->fsw; 9229 fxsave->twd = fpu->ftwx; 9230 fxsave->fop = fpu->last_opcode; 9231 fxsave->rip = fpu->last_ip; 9232 fxsave->rdp = fpu->last_dp; 9233 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 9234 9235 vcpu_put(vcpu); 9236 return 0; 9237 } 9238 9239 static void store_regs(struct kvm_vcpu *vcpu) 9240 { 9241 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 9242 9243 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 9244 __get_regs(vcpu, &vcpu->run->s.regs.regs); 9245 9246 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 9247 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 9248 9249 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 9250 kvm_vcpu_ioctl_x86_get_vcpu_events( 9251 vcpu, &vcpu->run->s.regs.events); 9252 } 9253 9254 static int sync_regs(struct kvm_vcpu *vcpu) 9255 { 9256 if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS) 9257 return -EINVAL; 9258 9259 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 9260 __set_regs(vcpu, &vcpu->run->s.regs.regs); 9261 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 9262 } 9263 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 9264 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 9265 return -EINVAL; 9266 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 9267 } 9268 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 9269 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 9270 vcpu, &vcpu->run->s.regs.events)) 9271 return -EINVAL; 9272 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 9273 } 9274 9275 return 0; 9276 } 9277 9278 static void fx_init(struct kvm_vcpu *vcpu) 9279 { 9280 fpstate_init(&vcpu->arch.guest_fpu->state); 9281 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9282 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv = 9283 host_xcr0 | XSTATE_COMPACTION_ENABLED; 9284 9285 /* 9286 * Ensure guest xcr0 is valid for loading 9287 */ 9288 vcpu->arch.xcr0 = XFEATURE_MASK_FP; 9289 9290 vcpu->arch.cr0 |= X86_CR0_ET; 9291 } 9292 9293 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 9294 { 9295 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 9296 pr_warn_once("kvm: SMP vm created on host with unstable TSC; " 9297 "guest TSC will not be reliable\n"); 9298 9299 return 0; 9300 } 9301 9302 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 9303 { 9304 struct page *page; 9305 int r; 9306 9307 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 9308 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 9309 else 9310 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 9311 9312 kvm_set_tsc_khz(vcpu, max_tsc_khz); 9313 9314 r = kvm_mmu_create(vcpu); 9315 if (r < 0) 9316 return r; 9317 9318 if (irqchip_in_kernel(vcpu->kvm)) { 9319 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 9320 if (r < 0) 9321 goto fail_mmu_destroy; 9322 if (kvm_apicv_activated(vcpu->kvm)) 9323 vcpu->arch.apicv_active = true; 9324 } else 9325 static_key_slow_inc(&kvm_no_apic_vcpu); 9326 9327 r = -ENOMEM; 9328 9329 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 9330 if (!page) 9331 goto fail_free_lapic; 9332 vcpu->arch.pio_data = page_address(page); 9333 9334 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 9335 GFP_KERNEL_ACCOUNT); 9336 if (!vcpu->arch.mce_banks) 9337 goto fail_free_pio_data; 9338 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 9339 9340 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 9341 GFP_KERNEL_ACCOUNT)) 9342 goto fail_free_mce_banks; 9343 9344 if (!alloc_emulate_ctxt(vcpu)) 9345 goto free_wbinvd_dirty_mask; 9346 9347 vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache, 9348 GFP_KERNEL_ACCOUNT); 9349 if (!vcpu->arch.user_fpu) { 9350 pr_err("kvm: failed to allocate userspace's fpu\n"); 9351 goto free_emulate_ctxt; 9352 } 9353 9354 vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache, 9355 GFP_KERNEL_ACCOUNT); 9356 if (!vcpu->arch.guest_fpu) { 9357 pr_err("kvm: failed to allocate vcpu's fpu\n"); 9358 goto free_user_fpu; 9359 } 9360 fx_init(vcpu); 9361 9362 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; 9363 9364 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 9365 9366 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 9367 9368 kvm_async_pf_hash_reset(vcpu); 9369 kvm_pmu_init(vcpu); 9370 9371 vcpu->arch.pending_external_vector = -1; 9372 vcpu->arch.preempted_in_kernel = false; 9373 9374 kvm_hv_vcpu_init(vcpu); 9375 9376 r = kvm_x86_ops.vcpu_create(vcpu); 9377 if (r) 9378 goto free_guest_fpu; 9379 9380 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 9381 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 9382 kvm_vcpu_mtrr_init(vcpu); 9383 vcpu_load(vcpu); 9384 kvm_vcpu_reset(vcpu, false); 9385 kvm_init_mmu(vcpu, false); 9386 vcpu_put(vcpu); 9387 return 0; 9388 9389 free_guest_fpu: 9390 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu); 9391 free_user_fpu: 9392 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu); 9393 free_emulate_ctxt: 9394 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 9395 free_wbinvd_dirty_mask: 9396 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 9397 fail_free_mce_banks: 9398 kfree(vcpu->arch.mce_banks); 9399 fail_free_pio_data: 9400 free_page((unsigned long)vcpu->arch.pio_data); 9401 fail_free_lapic: 9402 kvm_free_lapic(vcpu); 9403 fail_mmu_destroy: 9404 kvm_mmu_destroy(vcpu); 9405 return r; 9406 } 9407 9408 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 9409 { 9410 struct msr_data msr; 9411 struct kvm *kvm = vcpu->kvm; 9412 9413 kvm_hv_vcpu_postcreate(vcpu); 9414 9415 if (mutex_lock_killable(&vcpu->mutex)) 9416 return; 9417 vcpu_load(vcpu); 9418 msr.data = 0x0; 9419 msr.index = MSR_IA32_TSC; 9420 msr.host_initiated = true; 9421 kvm_write_tsc(vcpu, &msr); 9422 vcpu_put(vcpu); 9423 9424 /* poll control enabled by default */ 9425 vcpu->arch.msr_kvm_poll_control = 1; 9426 9427 mutex_unlock(&vcpu->mutex); 9428 9429 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 9430 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 9431 KVMCLOCK_SYNC_PERIOD); 9432 } 9433 9434 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 9435 { 9436 struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache; 9437 int idx; 9438 9439 kvm_release_pfn(cache->pfn, cache->dirty, cache); 9440 9441 kvmclock_reset(vcpu); 9442 9443 kvm_x86_ops.vcpu_free(vcpu); 9444 9445 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 9446 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 9447 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu); 9448 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu); 9449 9450 kvm_hv_vcpu_uninit(vcpu); 9451 kvm_pmu_destroy(vcpu); 9452 kfree(vcpu->arch.mce_banks); 9453 kvm_free_lapic(vcpu); 9454 idx = srcu_read_lock(&vcpu->kvm->srcu); 9455 kvm_mmu_destroy(vcpu); 9456 srcu_read_unlock(&vcpu->kvm->srcu, idx); 9457 free_page((unsigned long)vcpu->arch.pio_data); 9458 if (!lapic_in_kernel(vcpu)) 9459 static_key_slow_dec(&kvm_no_apic_vcpu); 9460 } 9461 9462 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 9463 { 9464 kvm_lapic_reset(vcpu, init_event); 9465 9466 vcpu->arch.hflags = 0; 9467 9468 vcpu->arch.smi_pending = 0; 9469 vcpu->arch.smi_count = 0; 9470 atomic_set(&vcpu->arch.nmi_queued, 0); 9471 vcpu->arch.nmi_pending = 0; 9472 vcpu->arch.nmi_injected = false; 9473 kvm_clear_interrupt_queue(vcpu); 9474 kvm_clear_exception_queue(vcpu); 9475 9476 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 9477 kvm_update_dr0123(vcpu); 9478 vcpu->arch.dr6 = DR6_INIT; 9479 kvm_update_dr6(vcpu); 9480 vcpu->arch.dr7 = DR7_FIXED_1; 9481 kvm_update_dr7(vcpu); 9482 9483 vcpu->arch.cr2 = 0; 9484 9485 kvm_make_request(KVM_REQ_EVENT, vcpu); 9486 vcpu->arch.apf.msr_val = 0; 9487 vcpu->arch.st.msr_val = 0; 9488 9489 kvmclock_reset(vcpu); 9490 9491 kvm_clear_async_pf_completion_queue(vcpu); 9492 kvm_async_pf_hash_reset(vcpu); 9493 vcpu->arch.apf.halted = false; 9494 9495 if (kvm_mpx_supported()) { 9496 void *mpx_state_buffer; 9497 9498 /* 9499 * To avoid have the INIT path from kvm_apic_has_events() that be 9500 * called with loaded FPU and does not let userspace fix the state. 9501 */ 9502 if (init_event) 9503 kvm_put_guest_fpu(vcpu); 9504 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave, 9505 XFEATURE_BNDREGS); 9506 if (mpx_state_buffer) 9507 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state)); 9508 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave, 9509 XFEATURE_BNDCSR); 9510 if (mpx_state_buffer) 9511 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr)); 9512 if (init_event) 9513 kvm_load_guest_fpu(vcpu); 9514 } 9515 9516 if (!init_event) { 9517 kvm_pmu_reset(vcpu); 9518 vcpu->arch.smbase = 0x30000; 9519 9520 vcpu->arch.msr_misc_features_enables = 0; 9521 9522 vcpu->arch.xcr0 = XFEATURE_MASK_FP; 9523 } 9524 9525 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 9526 vcpu->arch.regs_avail = ~0; 9527 vcpu->arch.regs_dirty = ~0; 9528 9529 vcpu->arch.ia32_xss = 0; 9530 9531 kvm_x86_ops.vcpu_reset(vcpu, init_event); 9532 } 9533 9534 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 9535 { 9536 struct kvm_segment cs; 9537 9538 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 9539 cs.selector = vector << 8; 9540 cs.base = vector << 12; 9541 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 9542 kvm_rip_write(vcpu, 0); 9543 } 9544 9545 int kvm_arch_hardware_enable(void) 9546 { 9547 struct kvm *kvm; 9548 struct kvm_vcpu *vcpu; 9549 int i; 9550 int ret; 9551 u64 local_tsc; 9552 u64 max_tsc = 0; 9553 bool stable, backwards_tsc = false; 9554 9555 kvm_shared_msr_cpu_online(); 9556 ret = kvm_x86_ops.hardware_enable(); 9557 if (ret != 0) 9558 return ret; 9559 9560 local_tsc = rdtsc(); 9561 stable = !kvm_check_tsc_unstable(); 9562 list_for_each_entry(kvm, &vm_list, vm_list) { 9563 kvm_for_each_vcpu(i, vcpu, kvm) { 9564 if (!stable && vcpu->cpu == smp_processor_id()) 9565 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9566 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 9567 backwards_tsc = true; 9568 if (vcpu->arch.last_host_tsc > max_tsc) 9569 max_tsc = vcpu->arch.last_host_tsc; 9570 } 9571 } 9572 } 9573 9574 /* 9575 * Sometimes, even reliable TSCs go backwards. This happens on 9576 * platforms that reset TSC during suspend or hibernate actions, but 9577 * maintain synchronization. We must compensate. Fortunately, we can 9578 * detect that condition here, which happens early in CPU bringup, 9579 * before any KVM threads can be running. Unfortunately, we can't 9580 * bring the TSCs fully up to date with real time, as we aren't yet far 9581 * enough into CPU bringup that we know how much real time has actually 9582 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 9583 * variables that haven't been updated yet. 9584 * 9585 * So we simply find the maximum observed TSC above, then record the 9586 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 9587 * the adjustment will be applied. Note that we accumulate 9588 * adjustments, in case multiple suspend cycles happen before some VCPU 9589 * gets a chance to run again. In the event that no KVM threads get a 9590 * chance to run, we will miss the entire elapsed period, as we'll have 9591 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 9592 * loose cycle time. This isn't too big a deal, since the loss will be 9593 * uniform across all VCPUs (not to mention the scenario is extremely 9594 * unlikely). It is possible that a second hibernate recovery happens 9595 * much faster than a first, causing the observed TSC here to be 9596 * smaller; this would require additional padding adjustment, which is 9597 * why we set last_host_tsc to the local tsc observed here. 9598 * 9599 * N.B. - this code below runs only on platforms with reliable TSC, 9600 * as that is the only way backwards_tsc is set above. Also note 9601 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 9602 * have the same delta_cyc adjustment applied if backwards_tsc 9603 * is detected. Note further, this adjustment is only done once, 9604 * as we reset last_host_tsc on all VCPUs to stop this from being 9605 * called multiple times (one for each physical CPU bringup). 9606 * 9607 * Platforms with unreliable TSCs don't have to deal with this, they 9608 * will be compensated by the logic in vcpu_load, which sets the TSC to 9609 * catchup mode. This will catchup all VCPUs to real time, but cannot 9610 * guarantee that they stay in perfect synchronization. 9611 */ 9612 if (backwards_tsc) { 9613 u64 delta_cyc = max_tsc - local_tsc; 9614 list_for_each_entry(kvm, &vm_list, vm_list) { 9615 kvm->arch.backwards_tsc_observed = true; 9616 kvm_for_each_vcpu(i, vcpu, kvm) { 9617 vcpu->arch.tsc_offset_adjustment += delta_cyc; 9618 vcpu->arch.last_host_tsc = local_tsc; 9619 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9620 } 9621 9622 /* 9623 * We have to disable TSC offset matching.. if you were 9624 * booting a VM while issuing an S4 host suspend.... 9625 * you may have some problem. Solving this issue is 9626 * left as an exercise to the reader. 9627 */ 9628 kvm->arch.last_tsc_nsec = 0; 9629 kvm->arch.last_tsc_write = 0; 9630 } 9631 9632 } 9633 return 0; 9634 } 9635 9636 void kvm_arch_hardware_disable(void) 9637 { 9638 kvm_x86_ops.hardware_disable(); 9639 drop_user_return_notifiers(); 9640 } 9641 9642 int kvm_arch_hardware_setup(void *opaque) 9643 { 9644 struct kvm_x86_init_ops *ops = opaque; 9645 int r; 9646 9647 rdmsrl_safe(MSR_EFER, &host_efer); 9648 9649 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9650 rdmsrl(MSR_IA32_XSS, host_xss); 9651 9652 r = ops->hardware_setup(); 9653 if (r != 0) 9654 return r; 9655 9656 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 9657 9658 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 9659 supported_xss = 0; 9660 9661 cr4_reserved_bits = kvm_host_cr4_reserved_bits(&boot_cpu_data); 9662 9663 if (kvm_has_tsc_control) { 9664 /* 9665 * Make sure the user can only configure tsc_khz values that 9666 * fit into a signed integer. 9667 * A min value is not calculated because it will always 9668 * be 1 on all machines. 9669 */ 9670 u64 max = min(0x7fffffffULL, 9671 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz)); 9672 kvm_max_guest_tsc_khz = max; 9673 9674 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits; 9675 } 9676 9677 kvm_init_msr_list(); 9678 return 0; 9679 } 9680 9681 void kvm_arch_hardware_unsetup(void) 9682 { 9683 kvm_x86_ops.hardware_unsetup(); 9684 } 9685 9686 int kvm_arch_check_processor_compat(void *opaque) 9687 { 9688 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id()); 9689 struct kvm_x86_init_ops *ops = opaque; 9690 9691 WARN_ON(!irqs_disabled()); 9692 9693 if (kvm_host_cr4_reserved_bits(c) != cr4_reserved_bits) 9694 return -EIO; 9695 9696 return ops->check_processor_compatibility(); 9697 } 9698 9699 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 9700 { 9701 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 9702 } 9703 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); 9704 9705 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 9706 { 9707 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 9708 } 9709 9710 struct static_key kvm_no_apic_vcpu __read_mostly; 9711 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu); 9712 9713 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 9714 { 9715 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 9716 9717 vcpu->arch.l1tf_flush_l1d = true; 9718 if (pmu->version && unlikely(pmu->event_count)) { 9719 pmu->need_cleanup = true; 9720 kvm_make_request(KVM_REQ_PMU, vcpu); 9721 } 9722 kvm_x86_ops.sched_in(vcpu, cpu); 9723 } 9724 9725 void kvm_arch_free_vm(struct kvm *kvm) 9726 { 9727 kfree(kvm->arch.hyperv.hv_pa_pg); 9728 vfree(kvm); 9729 } 9730 9731 9732 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 9733 { 9734 if (type) 9735 return -EINVAL; 9736 9737 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 9738 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 9739 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 9740 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages); 9741 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 9742 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 9743 9744 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 9745 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 9746 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 9747 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 9748 &kvm->arch.irq_sources_bitmap); 9749 9750 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 9751 mutex_init(&kvm->arch.apic_map_lock); 9752 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); 9753 9754 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 9755 pvclock_update_vm_gtod_copy(kvm); 9756 9757 kvm->arch.guest_can_read_msr_platform_info = true; 9758 9759 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 9760 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 9761 9762 kvm_hv_init_vm(kvm); 9763 kvm_page_track_init(kvm); 9764 kvm_mmu_init_vm(kvm); 9765 9766 return kvm_x86_ops.vm_init(kvm); 9767 } 9768 9769 int kvm_arch_post_init_vm(struct kvm *kvm) 9770 { 9771 return kvm_mmu_post_init_vm(kvm); 9772 } 9773 9774 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 9775 { 9776 vcpu_load(vcpu); 9777 kvm_mmu_unload(vcpu); 9778 vcpu_put(vcpu); 9779 } 9780 9781 static void kvm_free_vcpus(struct kvm *kvm) 9782 { 9783 unsigned int i; 9784 struct kvm_vcpu *vcpu; 9785 9786 /* 9787 * Unpin any mmu pages first. 9788 */ 9789 kvm_for_each_vcpu(i, vcpu, kvm) { 9790 kvm_clear_async_pf_completion_queue(vcpu); 9791 kvm_unload_vcpu_mmu(vcpu); 9792 } 9793 kvm_for_each_vcpu(i, vcpu, kvm) 9794 kvm_vcpu_destroy(vcpu); 9795 9796 mutex_lock(&kvm->lock); 9797 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 9798 kvm->vcpus[i] = NULL; 9799 9800 atomic_set(&kvm->online_vcpus, 0); 9801 mutex_unlock(&kvm->lock); 9802 } 9803 9804 void kvm_arch_sync_events(struct kvm *kvm) 9805 { 9806 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 9807 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 9808 kvm_free_pit(kvm); 9809 } 9810 9811 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size) 9812 { 9813 int i, r; 9814 unsigned long hva, uninitialized_var(old_npages); 9815 struct kvm_memslots *slots = kvm_memslots(kvm); 9816 struct kvm_memory_slot *slot; 9817 9818 /* Called with kvm->slots_lock held. */ 9819 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 9820 return -EINVAL; 9821 9822 slot = id_to_memslot(slots, id); 9823 if (size) { 9824 if (slot && slot->npages) 9825 return -EEXIST; 9826 9827 /* 9828 * MAP_SHARED to prevent internal slot pages from being moved 9829 * by fork()/COW. 9830 */ 9831 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 9832 MAP_SHARED | MAP_ANONYMOUS, 0); 9833 if (IS_ERR((void *)hva)) 9834 return PTR_ERR((void *)hva); 9835 } else { 9836 if (!slot || !slot->npages) 9837 return 0; 9838 9839 /* 9840 * Stuff a non-canonical value to catch use-after-delete. This 9841 * ends up being 0 on 32-bit KVM, but there's no better 9842 * alternative. 9843 */ 9844 hva = (unsigned long)(0xdeadull << 48); 9845 old_npages = slot->npages; 9846 } 9847 9848 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 9849 struct kvm_userspace_memory_region m; 9850 9851 m.slot = id | (i << 16); 9852 m.flags = 0; 9853 m.guest_phys_addr = gpa; 9854 m.userspace_addr = hva; 9855 m.memory_size = size; 9856 r = __kvm_set_memory_region(kvm, &m); 9857 if (r < 0) 9858 return r; 9859 } 9860 9861 if (!size) 9862 vm_munmap(hva, old_npages * PAGE_SIZE); 9863 9864 return 0; 9865 } 9866 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 9867 9868 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 9869 { 9870 kvm_mmu_pre_destroy_vm(kvm); 9871 } 9872 9873 void kvm_arch_destroy_vm(struct kvm *kvm) 9874 { 9875 if (current->mm == kvm->mm) { 9876 /* 9877 * Free memory regions allocated on behalf of userspace, 9878 * unless the the memory map has changed due to process exit 9879 * or fd copying. 9880 */ 9881 mutex_lock(&kvm->slots_lock); 9882 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 9883 0, 0); 9884 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 9885 0, 0); 9886 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 9887 mutex_unlock(&kvm->slots_lock); 9888 } 9889 if (kvm_x86_ops.vm_destroy) 9890 kvm_x86_ops.vm_destroy(kvm); 9891 kvm_pic_destroy(kvm); 9892 kvm_ioapic_destroy(kvm); 9893 kvm_free_vcpus(kvm); 9894 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 9895 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 9896 kvm_mmu_uninit_vm(kvm); 9897 kvm_page_track_cleanup(kvm); 9898 kvm_hv_destroy_vm(kvm); 9899 } 9900 9901 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 9902 { 9903 int i; 9904 9905 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 9906 kvfree(slot->arch.rmap[i]); 9907 slot->arch.rmap[i] = NULL; 9908 9909 if (i == 0) 9910 continue; 9911 9912 kvfree(slot->arch.lpage_info[i - 1]); 9913 slot->arch.lpage_info[i - 1] = NULL; 9914 } 9915 9916 kvm_page_track_free_memslot(slot); 9917 } 9918 9919 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot, 9920 unsigned long npages) 9921 { 9922 int i; 9923 9924 /* 9925 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 9926 * old arrays will be freed by __kvm_set_memory_region() if installing 9927 * the new memslot is successful. 9928 */ 9929 memset(&slot->arch, 0, sizeof(slot->arch)); 9930 9931 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 9932 struct kvm_lpage_info *linfo; 9933 unsigned long ugfn; 9934 int lpages; 9935 int level = i + 1; 9936 9937 lpages = gfn_to_index(slot->base_gfn + npages - 1, 9938 slot->base_gfn, level) + 1; 9939 9940 slot->arch.rmap[i] = 9941 kvcalloc(lpages, sizeof(*slot->arch.rmap[i]), 9942 GFP_KERNEL_ACCOUNT); 9943 if (!slot->arch.rmap[i]) 9944 goto out_free; 9945 if (i == 0) 9946 continue; 9947 9948 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 9949 if (!linfo) 9950 goto out_free; 9951 9952 slot->arch.lpage_info[i - 1] = linfo; 9953 9954 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 9955 linfo[0].disallow_lpage = 1; 9956 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 9957 linfo[lpages - 1].disallow_lpage = 1; 9958 ugfn = slot->userspace_addr >> PAGE_SHIFT; 9959 /* 9960 * If the gfn and userspace address are not aligned wrt each 9961 * other, disable large page support for this slot. 9962 */ 9963 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 9964 unsigned long j; 9965 9966 for (j = 0; j < lpages; ++j) 9967 linfo[j].disallow_lpage = 1; 9968 } 9969 } 9970 9971 if (kvm_page_track_create_memslot(slot, npages)) 9972 goto out_free; 9973 9974 return 0; 9975 9976 out_free: 9977 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 9978 kvfree(slot->arch.rmap[i]); 9979 slot->arch.rmap[i] = NULL; 9980 if (i == 0) 9981 continue; 9982 9983 kvfree(slot->arch.lpage_info[i - 1]); 9984 slot->arch.lpage_info[i - 1] = NULL; 9985 } 9986 return -ENOMEM; 9987 } 9988 9989 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 9990 { 9991 struct kvm_vcpu *vcpu; 9992 int i; 9993 9994 /* 9995 * memslots->generation has been incremented. 9996 * mmio generation may have reached its maximum value. 9997 */ 9998 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 9999 10000 /* Force re-initialization of steal_time cache */ 10001 kvm_for_each_vcpu(i, vcpu, kvm) 10002 kvm_vcpu_kick(vcpu); 10003 } 10004 10005 int kvm_arch_prepare_memory_region(struct kvm *kvm, 10006 struct kvm_memory_slot *memslot, 10007 const struct kvm_userspace_memory_region *mem, 10008 enum kvm_mr_change change) 10009 { 10010 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) 10011 return kvm_alloc_memslot_metadata(memslot, 10012 mem->memory_size >> PAGE_SHIFT); 10013 return 0; 10014 } 10015 10016 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 10017 struct kvm_memory_slot *new) 10018 { 10019 /* Still write protect RO slot */ 10020 if (new->flags & KVM_MEM_READONLY) { 10021 kvm_mmu_slot_remove_write_access(kvm, new, PT_PAGE_TABLE_LEVEL); 10022 return; 10023 } 10024 10025 /* 10026 * Call kvm_x86_ops dirty logging hooks when they are valid. 10027 * 10028 * kvm_x86_ops.slot_disable_log_dirty is called when: 10029 * 10030 * - KVM_MR_CREATE with dirty logging is disabled 10031 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag 10032 * 10033 * The reason is, in case of PML, we need to set D-bit for any slots 10034 * with dirty logging disabled in order to eliminate unnecessary GPA 10035 * logging in PML buffer (and potential PML buffer full VMEXIT). This 10036 * guarantees leaving PML enabled during guest's lifetime won't have 10037 * any additional overhead from PML when guest is running with dirty 10038 * logging disabled for memory slots. 10039 * 10040 * kvm_x86_ops.slot_enable_log_dirty is called when switching new slot 10041 * to dirty logging mode. 10042 * 10043 * If kvm_x86_ops dirty logging hooks are invalid, use write protect. 10044 * 10045 * In case of write protect: 10046 * 10047 * Write protect all pages for dirty logging. 10048 * 10049 * All the sptes including the large sptes which point to this 10050 * slot are set to readonly. We can not create any new large 10051 * spte on this slot until the end of the logging. 10052 * 10053 * See the comments in fast_page_fault(). 10054 */ 10055 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) { 10056 if (kvm_x86_ops.slot_enable_log_dirty) { 10057 kvm_x86_ops.slot_enable_log_dirty(kvm, new); 10058 } else { 10059 int level = 10060 kvm_dirty_log_manual_protect_and_init_set(kvm) ? 10061 PT_DIRECTORY_LEVEL : PT_PAGE_TABLE_LEVEL; 10062 10063 /* 10064 * If we're with initial-all-set, we don't need 10065 * to write protect any small page because 10066 * they're reported as dirty already. However 10067 * we still need to write-protect huge pages 10068 * so that the page split can happen lazily on 10069 * the first write to the huge page. 10070 */ 10071 kvm_mmu_slot_remove_write_access(kvm, new, level); 10072 } 10073 } else { 10074 if (kvm_x86_ops.slot_disable_log_dirty) 10075 kvm_x86_ops.slot_disable_log_dirty(kvm, new); 10076 } 10077 } 10078 10079 void kvm_arch_commit_memory_region(struct kvm *kvm, 10080 const struct kvm_userspace_memory_region *mem, 10081 struct kvm_memory_slot *old, 10082 const struct kvm_memory_slot *new, 10083 enum kvm_mr_change change) 10084 { 10085 if (!kvm->arch.n_requested_mmu_pages) 10086 kvm_mmu_change_mmu_pages(kvm, 10087 kvm_mmu_calculate_default_mmu_pages(kvm)); 10088 10089 /* 10090 * Dirty logging tracks sptes in 4k granularity, meaning that large 10091 * sptes have to be split. If live migration is successful, the guest 10092 * in the source machine will be destroyed and large sptes will be 10093 * created in the destination. However, if the guest continues to run 10094 * in the source machine (for example if live migration fails), small 10095 * sptes will remain around and cause bad performance. 10096 * 10097 * Scan sptes if dirty logging has been stopped, dropping those 10098 * which can be collapsed into a single large-page spte. Later 10099 * page faults will create the large-page sptes. 10100 * 10101 * There is no need to do this in any of the following cases: 10102 * CREATE: No dirty mappings will already exist. 10103 * MOVE/DELETE: The old mappings will already have been cleaned up by 10104 * kvm_arch_flush_shadow_memslot() 10105 */ 10106 if (change == KVM_MR_FLAGS_ONLY && 10107 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) && 10108 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 10109 kvm_mmu_zap_collapsible_sptes(kvm, new); 10110 10111 /* 10112 * Set up write protection and/or dirty logging for the new slot. 10113 * 10114 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have 10115 * been zapped so no dirty logging staff is needed for old slot. For 10116 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the 10117 * new and it's also covered when dealing with the new slot. 10118 * 10119 * FIXME: const-ify all uses of struct kvm_memory_slot. 10120 */ 10121 if (change != KVM_MR_DELETE) 10122 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new); 10123 10124 /* Free the arrays associated with the old memslot. */ 10125 if (change == KVM_MR_MOVE) 10126 kvm_arch_free_memslot(kvm, old); 10127 } 10128 10129 void kvm_arch_flush_shadow_all(struct kvm *kvm) 10130 { 10131 kvm_mmu_zap_all(kvm); 10132 } 10133 10134 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 10135 struct kvm_memory_slot *slot) 10136 { 10137 kvm_page_track_flush_slot(kvm, slot); 10138 } 10139 10140 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 10141 { 10142 return (is_guest_mode(vcpu) && 10143 kvm_x86_ops.guest_apic_has_interrupt && 10144 kvm_x86_ops.guest_apic_has_interrupt(vcpu)); 10145 } 10146 10147 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 10148 { 10149 if (!list_empty_careful(&vcpu->async_pf.done)) 10150 return true; 10151 10152 if (kvm_apic_has_events(vcpu)) 10153 return true; 10154 10155 if (vcpu->arch.pv.pv_unhalted) 10156 return true; 10157 10158 if (vcpu->arch.exception.pending) 10159 return true; 10160 10161 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 10162 (vcpu->arch.nmi_pending && 10163 kvm_x86_ops.nmi_allowed(vcpu))) 10164 return true; 10165 10166 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 10167 (vcpu->arch.smi_pending && !is_smm(vcpu))) 10168 return true; 10169 10170 if (kvm_arch_interrupt_allowed(vcpu) && 10171 (kvm_cpu_has_interrupt(vcpu) || 10172 kvm_guest_apic_has_interrupt(vcpu))) 10173 return true; 10174 10175 if (kvm_hv_has_stimer_pending(vcpu)) 10176 return true; 10177 10178 return false; 10179 } 10180 10181 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 10182 { 10183 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 10184 } 10185 10186 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 10187 { 10188 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 10189 return true; 10190 10191 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 10192 kvm_test_request(KVM_REQ_SMI, vcpu) || 10193 kvm_test_request(KVM_REQ_EVENT, vcpu)) 10194 return true; 10195 10196 if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu)) 10197 return true; 10198 10199 return false; 10200 } 10201 10202 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 10203 { 10204 return vcpu->arch.preempted_in_kernel; 10205 } 10206 10207 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 10208 { 10209 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 10210 } 10211 10212 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 10213 { 10214 return kvm_x86_ops.interrupt_allowed(vcpu); 10215 } 10216 10217 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 10218 { 10219 if (is_64_bit_mode(vcpu)) 10220 return kvm_rip_read(vcpu); 10221 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 10222 kvm_rip_read(vcpu)); 10223 } 10224 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 10225 10226 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 10227 { 10228 return kvm_get_linear_rip(vcpu) == linear_rip; 10229 } 10230 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 10231 10232 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 10233 { 10234 unsigned long rflags; 10235 10236 rflags = kvm_x86_ops.get_rflags(vcpu); 10237 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 10238 rflags &= ~X86_EFLAGS_TF; 10239 return rflags; 10240 } 10241 EXPORT_SYMBOL_GPL(kvm_get_rflags); 10242 10243 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 10244 { 10245 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 10246 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 10247 rflags |= X86_EFLAGS_TF; 10248 kvm_x86_ops.set_rflags(vcpu, rflags); 10249 } 10250 10251 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 10252 { 10253 __kvm_set_rflags(vcpu, rflags); 10254 kvm_make_request(KVM_REQ_EVENT, vcpu); 10255 } 10256 EXPORT_SYMBOL_GPL(kvm_set_rflags); 10257 10258 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 10259 { 10260 int r; 10261 10262 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) || 10263 work->wakeup_all) 10264 return; 10265 10266 r = kvm_mmu_reload(vcpu); 10267 if (unlikely(r)) 10268 return; 10269 10270 if (!vcpu->arch.mmu->direct_map && 10271 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu)) 10272 return; 10273 10274 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true); 10275 } 10276 10277 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 10278 { 10279 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 10280 } 10281 10282 static inline u32 kvm_async_pf_next_probe(u32 key) 10283 { 10284 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); 10285 } 10286 10287 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 10288 { 10289 u32 key = kvm_async_pf_hash_fn(gfn); 10290 10291 while (vcpu->arch.apf.gfns[key] != ~0) 10292 key = kvm_async_pf_next_probe(key); 10293 10294 vcpu->arch.apf.gfns[key] = gfn; 10295 } 10296 10297 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 10298 { 10299 int i; 10300 u32 key = kvm_async_pf_hash_fn(gfn); 10301 10302 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && 10303 (vcpu->arch.apf.gfns[key] != gfn && 10304 vcpu->arch.apf.gfns[key] != ~0); i++) 10305 key = kvm_async_pf_next_probe(key); 10306 10307 return key; 10308 } 10309 10310 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 10311 { 10312 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 10313 } 10314 10315 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 10316 { 10317 u32 i, j, k; 10318 10319 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 10320 while (true) { 10321 vcpu->arch.apf.gfns[i] = ~0; 10322 do { 10323 j = kvm_async_pf_next_probe(j); 10324 if (vcpu->arch.apf.gfns[j] == ~0) 10325 return; 10326 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 10327 /* 10328 * k lies cyclically in ]i,j] 10329 * | i.k.j | 10330 * |....j i.k.| or |.k..j i...| 10331 */ 10332 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 10333 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 10334 i = j; 10335 } 10336 } 10337 10338 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) 10339 { 10340 10341 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, 10342 sizeof(val)); 10343 } 10344 10345 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val) 10346 { 10347 10348 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val, 10349 sizeof(u32)); 10350 } 10351 10352 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 10353 { 10354 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu)) 10355 return false; 10356 10357 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || 10358 (vcpu->arch.apf.send_user_only && 10359 kvm_x86_ops.get_cpl(vcpu) == 0)) 10360 return false; 10361 10362 return true; 10363 } 10364 10365 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 10366 { 10367 if (unlikely(!lapic_in_kernel(vcpu) || 10368 kvm_event_needs_reinjection(vcpu) || 10369 vcpu->arch.exception.pending)) 10370 return false; 10371 10372 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 10373 return false; 10374 10375 /* 10376 * If interrupts are off we cannot even use an artificial 10377 * halt state. 10378 */ 10379 return kvm_x86_ops.interrupt_allowed(vcpu); 10380 } 10381 10382 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 10383 struct kvm_async_pf *work) 10384 { 10385 struct x86_exception fault; 10386 10387 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 10388 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 10389 10390 if (kvm_can_deliver_async_pf(vcpu) && 10391 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { 10392 fault.vector = PF_VECTOR; 10393 fault.error_code_valid = true; 10394 fault.error_code = 0; 10395 fault.nested_page_fault = false; 10396 fault.address = work->arch.token; 10397 fault.async_page_fault = true; 10398 kvm_inject_page_fault(vcpu, &fault); 10399 } else { 10400 /* 10401 * It is not possible to deliver a paravirtualized asynchronous 10402 * page fault, but putting the guest in an artificial halt state 10403 * can be beneficial nevertheless: if an interrupt arrives, we 10404 * can deliver it timely and perhaps the guest will schedule 10405 * another process. When the instruction that triggered a page 10406 * fault is retried, hopefully the page will be ready in the host. 10407 */ 10408 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 10409 } 10410 } 10411 10412 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 10413 struct kvm_async_pf *work) 10414 { 10415 struct x86_exception fault; 10416 u32 val; 10417 10418 if (work->wakeup_all) 10419 work->arch.token = ~0; /* broadcast wakeup */ 10420 else 10421 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 10422 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 10423 10424 if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED && 10425 !apf_get_user(vcpu, &val)) { 10426 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT && 10427 vcpu->arch.exception.pending && 10428 vcpu->arch.exception.nr == PF_VECTOR && 10429 !apf_put_user(vcpu, 0)) { 10430 vcpu->arch.exception.injected = false; 10431 vcpu->arch.exception.pending = false; 10432 vcpu->arch.exception.nr = 0; 10433 vcpu->arch.exception.has_error_code = false; 10434 vcpu->arch.exception.error_code = 0; 10435 vcpu->arch.exception.has_payload = false; 10436 vcpu->arch.exception.payload = 0; 10437 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { 10438 fault.vector = PF_VECTOR; 10439 fault.error_code_valid = true; 10440 fault.error_code = 0; 10441 fault.nested_page_fault = false; 10442 fault.address = work->arch.token; 10443 fault.async_page_fault = true; 10444 kvm_inject_page_fault(vcpu, &fault); 10445 } 10446 } 10447 vcpu->arch.apf.halted = false; 10448 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 10449 } 10450 10451 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) 10452 { 10453 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) 10454 return true; 10455 else 10456 return kvm_can_do_async_pf(vcpu); 10457 } 10458 10459 void kvm_arch_start_assignment(struct kvm *kvm) 10460 { 10461 atomic_inc(&kvm->arch.assigned_device_count); 10462 } 10463 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 10464 10465 void kvm_arch_end_assignment(struct kvm *kvm) 10466 { 10467 atomic_dec(&kvm->arch.assigned_device_count); 10468 } 10469 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 10470 10471 bool kvm_arch_has_assigned_device(struct kvm *kvm) 10472 { 10473 return atomic_read(&kvm->arch.assigned_device_count); 10474 } 10475 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 10476 10477 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 10478 { 10479 atomic_inc(&kvm->arch.noncoherent_dma_count); 10480 } 10481 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 10482 10483 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 10484 { 10485 atomic_dec(&kvm->arch.noncoherent_dma_count); 10486 } 10487 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 10488 10489 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 10490 { 10491 return atomic_read(&kvm->arch.noncoherent_dma_count); 10492 } 10493 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 10494 10495 bool kvm_arch_has_irq_bypass(void) 10496 { 10497 return true; 10498 } 10499 10500 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 10501 struct irq_bypass_producer *prod) 10502 { 10503 struct kvm_kernel_irqfd *irqfd = 10504 container_of(cons, struct kvm_kernel_irqfd, consumer); 10505 10506 irqfd->producer = prod; 10507 10508 return kvm_x86_ops.update_pi_irte(irqfd->kvm, 10509 prod->irq, irqfd->gsi, 1); 10510 } 10511 10512 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 10513 struct irq_bypass_producer *prod) 10514 { 10515 int ret; 10516 struct kvm_kernel_irqfd *irqfd = 10517 container_of(cons, struct kvm_kernel_irqfd, consumer); 10518 10519 WARN_ON(irqfd->producer != prod); 10520 irqfd->producer = NULL; 10521 10522 /* 10523 * When producer of consumer is unregistered, we change back to 10524 * remapped mode, so we can re-use the current implementation 10525 * when the irq is masked/disabled or the consumer side (KVM 10526 * int this case doesn't want to receive the interrupts. 10527 */ 10528 ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0); 10529 if (ret) 10530 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 10531 " fails: %d\n", irqfd->consumer.token, ret); 10532 } 10533 10534 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 10535 uint32_t guest_irq, bool set) 10536 { 10537 return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set); 10538 } 10539 10540 bool kvm_vector_hashing_enabled(void) 10541 { 10542 return vector_hashing; 10543 } 10544 10545 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 10546 { 10547 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 10548 } 10549 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 10550 10551 u64 kvm_spec_ctrl_valid_bits(struct kvm_vcpu *vcpu) 10552 { 10553 uint64_t bits = SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD; 10554 10555 /* The STIBP bit doesn't fault even if it's not advertised */ 10556 if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) && 10557 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS)) 10558 bits &= ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP); 10559 if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL) && 10560 !boot_cpu_has(X86_FEATURE_AMD_IBRS)) 10561 bits &= ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP); 10562 10563 if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL_SSBD) && 10564 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD)) 10565 bits &= ~SPEC_CTRL_SSBD; 10566 if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) && 10567 !boot_cpu_has(X86_FEATURE_AMD_SSBD)) 10568 bits &= ~SPEC_CTRL_SSBD; 10569 10570 return bits; 10571 } 10572 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_valid_bits); 10573 10574 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 10575 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 10576 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 10577 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 10578 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 10579 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 10580 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 10581 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 10582 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 10583 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 10584 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 10585 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 10586 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 10587 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 10588 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 10589 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 10590 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 10591 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 10592 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 10593 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 10594 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 10595 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request); 10596