1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 19 #include <linux/kvm_host.h> 20 #include "irq.h" 21 #include "ioapic.h" 22 #include "mmu.h" 23 #include "i8254.h" 24 #include "tss.h" 25 #include "kvm_cache_regs.h" 26 #include "kvm_emulate.h" 27 #include "x86.h" 28 #include "cpuid.h" 29 #include "pmu.h" 30 #include "hyperv.h" 31 #include "lapic.h" 32 33 #include <linux/clocksource.h> 34 #include <linux/interrupt.h> 35 #include <linux/kvm.h> 36 #include <linux/fs.h> 37 #include <linux/vmalloc.h> 38 #include <linux/export.h> 39 #include <linux/moduleparam.h> 40 #include <linux/mman.h> 41 #include <linux/highmem.h> 42 #include <linux/iommu.h> 43 #include <linux/intel-iommu.h> 44 #include <linux/cpufreq.h> 45 #include <linux/user-return-notifier.h> 46 #include <linux/srcu.h> 47 #include <linux/slab.h> 48 #include <linux/perf_event.h> 49 #include <linux/uaccess.h> 50 #include <linux/hash.h> 51 #include <linux/pci.h> 52 #include <linux/timekeeper_internal.h> 53 #include <linux/pvclock_gtod.h> 54 #include <linux/kvm_irqfd.h> 55 #include <linux/irqbypass.h> 56 #include <linux/sched/stat.h> 57 #include <linux/sched/isolation.h> 58 #include <linux/mem_encrypt.h> 59 #include <linux/entry-kvm.h> 60 61 #include <trace/events/kvm.h> 62 63 #include <asm/debugreg.h> 64 #include <asm/msr.h> 65 #include <asm/desc.h> 66 #include <asm/mce.h> 67 #include <linux/kernel_stat.h> 68 #include <asm/fpu/internal.h> /* Ugh! */ 69 #include <asm/pvclock.h> 70 #include <asm/div64.h> 71 #include <asm/irq_remapping.h> 72 #include <asm/mshyperv.h> 73 #include <asm/hypervisor.h> 74 #include <asm/intel_pt.h> 75 #include <asm/emulate_prefix.h> 76 #include <clocksource/hyperv_timer.h> 77 78 #define CREATE_TRACE_POINTS 79 #include "trace.h" 80 81 #define MAX_IO_MSRS 256 82 #define KVM_MAX_MCE_BANKS 32 83 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P; 84 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported); 85 86 #define emul_to_vcpu(ctxt) \ 87 ((struct kvm_vcpu *)(ctxt)->vcpu) 88 89 /* EFER defaults: 90 * - enable syscall per default because its emulated by KVM 91 * - enable LME and LMA per default on 64 bit KVM 92 */ 93 #ifdef CONFIG_X86_64 94 static 95 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 96 #else 97 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 98 #endif 99 100 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 101 102 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 103 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 104 105 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 106 static void process_nmi(struct kvm_vcpu *vcpu); 107 static void enter_smm(struct kvm_vcpu *vcpu); 108 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 109 static void store_regs(struct kvm_vcpu *vcpu); 110 static int sync_regs(struct kvm_vcpu *vcpu); 111 112 struct kvm_x86_ops kvm_x86_ops __read_mostly; 113 EXPORT_SYMBOL_GPL(kvm_x86_ops); 114 115 static bool __read_mostly ignore_msrs = 0; 116 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 117 118 static bool __read_mostly report_ignored_msrs = true; 119 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 120 121 unsigned int min_timer_period_us = 200; 122 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 123 124 static bool __read_mostly kvmclock_periodic_sync = true; 125 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 126 127 bool __read_mostly kvm_has_tsc_control; 128 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 129 u32 __read_mostly kvm_max_guest_tsc_khz; 130 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 131 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits; 132 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits); 133 u64 __read_mostly kvm_max_tsc_scaling_ratio; 134 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio); 135 u64 __read_mostly kvm_default_tsc_scaling_ratio; 136 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio); 137 138 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 139 static u32 __read_mostly tsc_tolerance_ppm = 250; 140 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 141 142 /* 143 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 144 * adaptive tuning starting from default advancment of 1000ns. '0' disables 145 * advancement entirely. Any other value is used as-is and disables adaptive 146 * tuning, i.e. allows priveleged userspace to set an exact advancement time. 147 */ 148 static int __read_mostly lapic_timer_advance_ns = -1; 149 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 150 151 static bool __read_mostly vector_hashing = true; 152 module_param(vector_hashing, bool, S_IRUGO); 153 154 bool __read_mostly enable_vmware_backdoor = false; 155 module_param(enable_vmware_backdoor, bool, S_IRUGO); 156 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 157 158 static bool __read_mostly force_emulation_prefix = false; 159 module_param(force_emulation_prefix, bool, S_IRUGO); 160 161 int __read_mostly pi_inject_timer = -1; 162 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 163 164 #define KVM_NR_SHARED_MSRS 16 165 166 struct kvm_shared_msrs_global { 167 int nr; 168 u32 msrs[KVM_NR_SHARED_MSRS]; 169 }; 170 171 struct kvm_shared_msrs { 172 struct user_return_notifier urn; 173 bool registered; 174 struct kvm_shared_msr_values { 175 u64 host; 176 u64 curr; 177 } values[KVM_NR_SHARED_MSRS]; 178 }; 179 180 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; 181 static struct kvm_shared_msrs __percpu *shared_msrs; 182 183 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 184 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 185 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 186 | XFEATURE_MASK_PKRU) 187 188 u64 __read_mostly host_efer; 189 EXPORT_SYMBOL_GPL(host_efer); 190 191 bool __read_mostly allow_smaller_maxphyaddr; 192 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 193 194 static u64 __read_mostly host_xss; 195 u64 __read_mostly supported_xss; 196 EXPORT_SYMBOL_GPL(supported_xss); 197 198 struct kvm_stats_debugfs_item debugfs_entries[] = { 199 VCPU_STAT("pf_fixed", pf_fixed), 200 VCPU_STAT("pf_guest", pf_guest), 201 VCPU_STAT("tlb_flush", tlb_flush), 202 VCPU_STAT("invlpg", invlpg), 203 VCPU_STAT("exits", exits), 204 VCPU_STAT("io_exits", io_exits), 205 VCPU_STAT("mmio_exits", mmio_exits), 206 VCPU_STAT("signal_exits", signal_exits), 207 VCPU_STAT("irq_window", irq_window_exits), 208 VCPU_STAT("nmi_window", nmi_window_exits), 209 VCPU_STAT("halt_exits", halt_exits), 210 VCPU_STAT("halt_successful_poll", halt_successful_poll), 211 VCPU_STAT("halt_attempted_poll", halt_attempted_poll), 212 VCPU_STAT("halt_poll_invalid", halt_poll_invalid), 213 VCPU_STAT("halt_wakeup", halt_wakeup), 214 VCPU_STAT("hypercalls", hypercalls), 215 VCPU_STAT("request_irq", request_irq_exits), 216 VCPU_STAT("irq_exits", irq_exits), 217 VCPU_STAT("host_state_reload", host_state_reload), 218 VCPU_STAT("fpu_reload", fpu_reload), 219 VCPU_STAT("insn_emulation", insn_emulation), 220 VCPU_STAT("insn_emulation_fail", insn_emulation_fail), 221 VCPU_STAT("irq_injections", irq_injections), 222 VCPU_STAT("nmi_injections", nmi_injections), 223 VCPU_STAT("req_event", req_event), 224 VCPU_STAT("l1d_flush", l1d_flush), 225 VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns), 226 VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns), 227 VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped), 228 VM_STAT("mmu_pte_write", mmu_pte_write), 229 VM_STAT("mmu_pte_updated", mmu_pte_updated), 230 VM_STAT("mmu_pde_zapped", mmu_pde_zapped), 231 VM_STAT("mmu_flooded", mmu_flooded), 232 VM_STAT("mmu_recycled", mmu_recycled), 233 VM_STAT("mmu_cache_miss", mmu_cache_miss), 234 VM_STAT("mmu_unsync", mmu_unsync), 235 VM_STAT("remote_tlb_flush", remote_tlb_flush), 236 VM_STAT("largepages", lpages, .mode = 0444), 237 VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444), 238 VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions), 239 { NULL } 240 }; 241 242 u64 __read_mostly host_xcr0; 243 u64 __read_mostly supported_xcr0; 244 EXPORT_SYMBOL_GPL(supported_xcr0); 245 246 static struct kmem_cache *x86_fpu_cache; 247 248 static struct kmem_cache *x86_emulator_cache; 249 250 /* 251 * When called, it means the previous get/set msr reached an invalid msr. 252 * Return 0 if we want to ignore/silent this failed msr access, or 1 if we want 253 * to fail the caller. 254 */ 255 static int kvm_msr_ignored_check(struct kvm_vcpu *vcpu, u32 msr, 256 u64 data, bool write) 257 { 258 const char *op = write ? "wrmsr" : "rdmsr"; 259 260 if (ignore_msrs) { 261 if (report_ignored_msrs) 262 vcpu_unimpl(vcpu, "ignored %s: 0x%x data 0x%llx\n", 263 op, msr, data); 264 /* Mask the error */ 265 return 0; 266 } else { 267 vcpu_debug_ratelimited(vcpu, "unhandled %s: 0x%x data 0x%llx\n", 268 op, msr, data); 269 return 1; 270 } 271 } 272 273 static struct kmem_cache *kvm_alloc_emulator_cache(void) 274 { 275 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 276 unsigned int size = sizeof(struct x86_emulate_ctxt); 277 278 return kmem_cache_create_usercopy("x86_emulator", size, 279 __alignof__(struct x86_emulate_ctxt), 280 SLAB_ACCOUNT, useroffset, 281 size - useroffset, NULL); 282 } 283 284 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 285 286 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 287 { 288 int i; 289 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 290 vcpu->arch.apf.gfns[i] = ~0; 291 } 292 293 static void kvm_on_user_return(struct user_return_notifier *urn) 294 { 295 unsigned slot; 296 struct kvm_shared_msrs *locals 297 = container_of(urn, struct kvm_shared_msrs, urn); 298 struct kvm_shared_msr_values *values; 299 unsigned long flags; 300 301 /* 302 * Disabling irqs at this point since the following code could be 303 * interrupted and executed through kvm_arch_hardware_disable() 304 */ 305 local_irq_save(flags); 306 if (locals->registered) { 307 locals->registered = false; 308 user_return_notifier_unregister(urn); 309 } 310 local_irq_restore(flags); 311 for (slot = 0; slot < shared_msrs_global.nr; ++slot) { 312 values = &locals->values[slot]; 313 if (values->host != values->curr) { 314 wrmsrl(shared_msrs_global.msrs[slot], values->host); 315 values->curr = values->host; 316 } 317 } 318 } 319 320 void kvm_define_shared_msr(unsigned slot, u32 msr) 321 { 322 BUG_ON(slot >= KVM_NR_SHARED_MSRS); 323 shared_msrs_global.msrs[slot] = msr; 324 if (slot >= shared_msrs_global.nr) 325 shared_msrs_global.nr = slot + 1; 326 } 327 EXPORT_SYMBOL_GPL(kvm_define_shared_msr); 328 329 static void kvm_shared_msr_cpu_online(void) 330 { 331 unsigned int cpu = smp_processor_id(); 332 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 333 u64 value; 334 int i; 335 336 for (i = 0; i < shared_msrs_global.nr; ++i) { 337 rdmsrl_safe(shared_msrs_global.msrs[i], &value); 338 smsr->values[i].host = value; 339 smsr->values[i].curr = value; 340 } 341 } 342 343 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) 344 { 345 unsigned int cpu = smp_processor_id(); 346 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 347 int err; 348 349 value = (value & mask) | (smsr->values[slot].host & ~mask); 350 if (value == smsr->values[slot].curr) 351 return 0; 352 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value); 353 if (err) 354 return 1; 355 356 smsr->values[slot].curr = value; 357 if (!smsr->registered) { 358 smsr->urn.on_user_return = kvm_on_user_return; 359 user_return_notifier_register(&smsr->urn); 360 smsr->registered = true; 361 } 362 return 0; 363 } 364 EXPORT_SYMBOL_GPL(kvm_set_shared_msr); 365 366 static void drop_user_return_notifiers(void) 367 { 368 unsigned int cpu = smp_processor_id(); 369 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 370 371 if (smsr->registered) 372 kvm_on_user_return(&smsr->urn); 373 } 374 375 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 376 { 377 return vcpu->arch.apic_base; 378 } 379 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 380 381 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 382 { 383 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 384 } 385 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 386 387 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 388 { 389 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 390 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 391 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff | 392 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 393 394 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 395 return 1; 396 if (!msr_info->host_initiated) { 397 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 398 return 1; 399 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 400 return 1; 401 } 402 403 kvm_lapic_set_base(vcpu, msr_info->data); 404 kvm_recalculate_apic_map(vcpu->kvm); 405 return 0; 406 } 407 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 408 409 asmlinkage __visible noinstr void kvm_spurious_fault(void) 410 { 411 /* Fault while not rebooting. We want the trace. */ 412 BUG_ON(!kvm_rebooting); 413 } 414 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 415 416 #define EXCPT_BENIGN 0 417 #define EXCPT_CONTRIBUTORY 1 418 #define EXCPT_PF 2 419 420 static int exception_class(int vector) 421 { 422 switch (vector) { 423 case PF_VECTOR: 424 return EXCPT_PF; 425 case DE_VECTOR: 426 case TS_VECTOR: 427 case NP_VECTOR: 428 case SS_VECTOR: 429 case GP_VECTOR: 430 return EXCPT_CONTRIBUTORY; 431 default: 432 break; 433 } 434 return EXCPT_BENIGN; 435 } 436 437 #define EXCPT_FAULT 0 438 #define EXCPT_TRAP 1 439 #define EXCPT_ABORT 2 440 #define EXCPT_INTERRUPT 3 441 442 static int exception_type(int vector) 443 { 444 unsigned int mask; 445 446 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 447 return EXCPT_INTERRUPT; 448 449 mask = 1 << vector; 450 451 /* #DB is trap, as instruction watchpoints are handled elsewhere */ 452 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR))) 453 return EXCPT_TRAP; 454 455 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 456 return EXCPT_ABORT; 457 458 /* Reserved exceptions will result in fault */ 459 return EXCPT_FAULT; 460 } 461 462 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu) 463 { 464 unsigned nr = vcpu->arch.exception.nr; 465 bool has_payload = vcpu->arch.exception.has_payload; 466 unsigned long payload = vcpu->arch.exception.payload; 467 468 if (!has_payload) 469 return; 470 471 switch (nr) { 472 case DB_VECTOR: 473 /* 474 * "Certain debug exceptions may clear bit 0-3. The 475 * remaining contents of the DR6 register are never 476 * cleared by the processor". 477 */ 478 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 479 /* 480 * DR6.RTM is set by all #DB exceptions that don't clear it. 481 */ 482 vcpu->arch.dr6 |= DR6_RTM; 483 vcpu->arch.dr6 |= payload; 484 /* 485 * Bit 16 should be set in the payload whenever the #DB 486 * exception should clear DR6.RTM. This makes the payload 487 * compatible with the pending debug exceptions under VMX. 488 * Though not currently documented in the SDM, this also 489 * makes the payload compatible with the exit qualification 490 * for #DB exceptions under VMX. 491 */ 492 vcpu->arch.dr6 ^= payload & DR6_RTM; 493 494 /* 495 * The #DB payload is defined as compatible with the 'pending 496 * debug exceptions' field under VMX, not DR6. While bit 12 is 497 * defined in the 'pending debug exceptions' field (enabled 498 * breakpoint), it is reserved and must be zero in DR6. 499 */ 500 vcpu->arch.dr6 &= ~BIT(12); 501 break; 502 case PF_VECTOR: 503 vcpu->arch.cr2 = payload; 504 break; 505 } 506 507 vcpu->arch.exception.has_payload = false; 508 vcpu->arch.exception.payload = 0; 509 } 510 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 511 512 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 513 unsigned nr, bool has_error, u32 error_code, 514 bool has_payload, unsigned long payload, bool reinject) 515 { 516 u32 prev_nr; 517 int class1, class2; 518 519 kvm_make_request(KVM_REQ_EVENT, vcpu); 520 521 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 522 queue: 523 if (has_error && !is_protmode(vcpu)) 524 has_error = false; 525 if (reinject) { 526 /* 527 * On vmentry, vcpu->arch.exception.pending is only 528 * true if an event injection was blocked by 529 * nested_run_pending. In that case, however, 530 * vcpu_enter_guest requests an immediate exit, 531 * and the guest shouldn't proceed far enough to 532 * need reinjection. 533 */ 534 WARN_ON_ONCE(vcpu->arch.exception.pending); 535 vcpu->arch.exception.injected = true; 536 if (WARN_ON_ONCE(has_payload)) { 537 /* 538 * A reinjected event has already 539 * delivered its payload. 540 */ 541 has_payload = false; 542 payload = 0; 543 } 544 } else { 545 vcpu->arch.exception.pending = true; 546 vcpu->arch.exception.injected = false; 547 } 548 vcpu->arch.exception.has_error_code = has_error; 549 vcpu->arch.exception.nr = nr; 550 vcpu->arch.exception.error_code = error_code; 551 vcpu->arch.exception.has_payload = has_payload; 552 vcpu->arch.exception.payload = payload; 553 if (!is_guest_mode(vcpu)) 554 kvm_deliver_exception_payload(vcpu); 555 return; 556 } 557 558 /* to check exception */ 559 prev_nr = vcpu->arch.exception.nr; 560 if (prev_nr == DF_VECTOR) { 561 /* triple fault -> shutdown */ 562 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 563 return; 564 } 565 class1 = exception_class(prev_nr); 566 class2 = exception_class(nr); 567 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 568 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 569 /* 570 * Generate double fault per SDM Table 5-5. Set 571 * exception.pending = true so that the double fault 572 * can trigger a nested vmexit. 573 */ 574 vcpu->arch.exception.pending = true; 575 vcpu->arch.exception.injected = false; 576 vcpu->arch.exception.has_error_code = true; 577 vcpu->arch.exception.nr = DF_VECTOR; 578 vcpu->arch.exception.error_code = 0; 579 vcpu->arch.exception.has_payload = false; 580 vcpu->arch.exception.payload = 0; 581 } else 582 /* replace previous exception with a new one in a hope 583 that instruction re-execution will regenerate lost 584 exception */ 585 goto queue; 586 } 587 588 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 589 { 590 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 591 } 592 EXPORT_SYMBOL_GPL(kvm_queue_exception); 593 594 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 595 { 596 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 597 } 598 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 599 600 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 601 unsigned long payload) 602 { 603 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 604 } 605 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 606 607 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 608 u32 error_code, unsigned long payload) 609 { 610 kvm_multiple_exception(vcpu, nr, true, error_code, 611 true, payload, false); 612 } 613 614 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 615 { 616 if (err) 617 kvm_inject_gp(vcpu, 0); 618 else 619 return kvm_skip_emulated_instruction(vcpu); 620 621 return 1; 622 } 623 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 624 625 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 626 { 627 ++vcpu->stat.pf_guest; 628 vcpu->arch.exception.nested_apf = 629 is_guest_mode(vcpu) && fault->async_page_fault; 630 if (vcpu->arch.exception.nested_apf) { 631 vcpu->arch.apf.nested_apf_token = fault->address; 632 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 633 } else { 634 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 635 fault->address); 636 } 637 } 638 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 639 640 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 641 struct x86_exception *fault) 642 { 643 struct kvm_mmu *fault_mmu; 644 WARN_ON_ONCE(fault->vector != PF_VECTOR); 645 646 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 647 vcpu->arch.walk_mmu; 648 649 /* 650 * Invalidate the TLB entry for the faulting address, if it exists, 651 * else the access will fault indefinitely (and to emulate hardware). 652 */ 653 if ((fault->error_code & PFERR_PRESENT_MASK) && 654 !(fault->error_code & PFERR_RSVD_MASK)) 655 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address, 656 fault_mmu->root_hpa); 657 658 fault_mmu->inject_page_fault(vcpu, fault); 659 return fault->nested_page_fault; 660 } 661 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 662 663 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 664 { 665 atomic_inc(&vcpu->arch.nmi_queued); 666 kvm_make_request(KVM_REQ_NMI, vcpu); 667 } 668 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 669 670 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 671 { 672 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 673 } 674 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 675 676 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 677 { 678 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 679 } 680 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 681 682 /* 683 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 684 * a #GP and return false. 685 */ 686 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 687 { 688 if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl) 689 return true; 690 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 691 return false; 692 } 693 EXPORT_SYMBOL_GPL(kvm_require_cpl); 694 695 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 696 { 697 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 698 return true; 699 700 kvm_queue_exception(vcpu, UD_VECTOR); 701 return false; 702 } 703 EXPORT_SYMBOL_GPL(kvm_require_dr); 704 705 /* 706 * This function will be used to read from the physical memory of the currently 707 * running guest. The difference to kvm_vcpu_read_guest_page is that this function 708 * can read from guest physical or from the guest's guest physical memory. 709 */ 710 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 711 gfn_t ngfn, void *data, int offset, int len, 712 u32 access) 713 { 714 struct x86_exception exception; 715 gfn_t real_gfn; 716 gpa_t ngpa; 717 718 ngpa = gfn_to_gpa(ngfn); 719 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception); 720 if (real_gfn == UNMAPPED_GVA) 721 return -EFAULT; 722 723 real_gfn = gpa_to_gfn(real_gfn); 724 725 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len); 726 } 727 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); 728 729 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 730 void *data, int offset, int len, u32 access) 731 { 732 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, 733 data, offset, len, access); 734 } 735 736 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 737 { 738 return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) | 739 rsvd_bits(1, 2); 740 } 741 742 /* 743 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 744 */ 745 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) 746 { 747 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 748 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; 749 int i; 750 int ret; 751 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 752 753 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, 754 offset * sizeof(u64), sizeof(pdpte), 755 PFERR_USER_MASK|PFERR_WRITE_MASK); 756 if (ret < 0) { 757 ret = 0; 758 goto out; 759 } 760 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 761 if ((pdpte[i] & PT_PRESENT_MASK) && 762 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 763 ret = 0; 764 goto out; 765 } 766 } 767 ret = 1; 768 769 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 770 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 771 772 out: 773 774 return ret; 775 } 776 EXPORT_SYMBOL_GPL(load_pdptrs); 777 778 bool pdptrs_changed(struct kvm_vcpu *vcpu) 779 { 780 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; 781 int offset; 782 gfn_t gfn; 783 int r; 784 785 if (!is_pae_paging(vcpu)) 786 return false; 787 788 if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR)) 789 return true; 790 791 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT; 792 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1); 793 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), 794 PFERR_USER_MASK | PFERR_WRITE_MASK); 795 if (r < 0) 796 return true; 797 798 return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; 799 } 800 EXPORT_SYMBOL_GPL(pdptrs_changed); 801 802 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 803 { 804 unsigned long old_cr0 = kvm_read_cr0(vcpu); 805 unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG; 806 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP; 807 808 cr0 |= X86_CR0_ET; 809 810 #ifdef CONFIG_X86_64 811 if (cr0 & 0xffffffff00000000UL) 812 return 1; 813 #endif 814 815 cr0 &= ~CR0_RESERVED_BITS; 816 817 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 818 return 1; 819 820 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 821 return 1; 822 823 #ifdef CONFIG_X86_64 824 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 825 (cr0 & X86_CR0_PG)) { 826 int cs_db, cs_l; 827 828 if (!is_pae(vcpu)) 829 return 1; 830 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 831 if (cs_l) 832 return 1; 833 } 834 #endif 835 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 836 is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) && 837 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu))) 838 return 1; 839 840 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 841 return 1; 842 843 kvm_x86_ops.set_cr0(vcpu, cr0); 844 845 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 846 kvm_clear_async_pf_completion_queue(vcpu); 847 kvm_async_pf_hash_reset(vcpu); 848 } 849 850 if ((cr0 ^ old_cr0) & update_bits) 851 kvm_mmu_reset_context(vcpu); 852 853 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 854 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 855 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 856 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 857 858 return 0; 859 } 860 EXPORT_SYMBOL_GPL(kvm_set_cr0); 861 862 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 863 { 864 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 865 } 866 EXPORT_SYMBOL_GPL(kvm_lmsw); 867 868 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 869 { 870 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 871 872 if (vcpu->arch.xcr0 != host_xcr0) 873 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 874 875 if (vcpu->arch.xsaves_enabled && 876 vcpu->arch.ia32_xss != host_xss) 877 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 878 } 879 880 if (static_cpu_has(X86_FEATURE_PKU) && 881 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || 882 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) && 883 vcpu->arch.pkru != vcpu->arch.host_pkru) 884 __write_pkru(vcpu->arch.pkru); 885 } 886 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 887 888 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 889 { 890 if (static_cpu_has(X86_FEATURE_PKU) && 891 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || 892 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) { 893 vcpu->arch.pkru = rdpkru(); 894 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 895 __write_pkru(vcpu->arch.host_pkru); 896 } 897 898 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 899 900 if (vcpu->arch.xcr0 != host_xcr0) 901 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 902 903 if (vcpu->arch.xsaves_enabled && 904 vcpu->arch.ia32_xss != host_xss) 905 wrmsrl(MSR_IA32_XSS, host_xss); 906 } 907 908 } 909 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 910 911 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 912 { 913 u64 xcr0 = xcr; 914 u64 old_xcr0 = vcpu->arch.xcr0; 915 u64 valid_bits; 916 917 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 918 if (index != XCR_XFEATURE_ENABLED_MASK) 919 return 1; 920 if (!(xcr0 & XFEATURE_MASK_FP)) 921 return 1; 922 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 923 return 1; 924 925 /* 926 * Do not allow the guest to set bits that we do not support 927 * saving. However, xcr0 bit 0 is always set, even if the 928 * emulated CPU does not support XSAVE (see fx_init). 929 */ 930 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 931 if (xcr0 & ~valid_bits) 932 return 1; 933 934 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 935 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 936 return 1; 937 938 if (xcr0 & XFEATURE_MASK_AVX512) { 939 if (!(xcr0 & XFEATURE_MASK_YMM)) 940 return 1; 941 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 942 return 1; 943 } 944 vcpu->arch.xcr0 = xcr0; 945 946 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 947 kvm_update_cpuid_runtime(vcpu); 948 return 0; 949 } 950 951 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 952 { 953 if (kvm_x86_ops.get_cpl(vcpu) != 0 || 954 __kvm_set_xcr(vcpu, index, xcr)) { 955 kvm_inject_gp(vcpu, 0); 956 return 1; 957 } 958 return 0; 959 } 960 EXPORT_SYMBOL_GPL(kvm_set_xcr); 961 962 int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 963 { 964 if (cr4 & cr4_reserved_bits) 965 return -EINVAL; 966 967 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 968 return -EINVAL; 969 970 return 0; 971 } 972 EXPORT_SYMBOL_GPL(kvm_valid_cr4); 973 974 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 975 { 976 unsigned long old_cr4 = kvm_read_cr4(vcpu); 977 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | 978 X86_CR4_SMEP; 979 980 if (kvm_valid_cr4(vcpu, cr4)) 981 return 1; 982 983 if (is_long_mode(vcpu)) { 984 if (!(cr4 & X86_CR4_PAE)) 985 return 1; 986 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 987 return 1; 988 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 989 && ((cr4 ^ old_cr4) & pdptr_bits) 990 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 991 kvm_read_cr3(vcpu))) 992 return 1; 993 994 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 995 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 996 return 1; 997 998 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 999 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1000 return 1; 1001 } 1002 1003 if (kvm_x86_ops.set_cr4(vcpu, cr4)) 1004 return 1; 1005 1006 if (((cr4 ^ old_cr4) & pdptr_bits) || 1007 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1008 kvm_mmu_reset_context(vcpu); 1009 1010 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 1011 kvm_update_cpuid_runtime(vcpu); 1012 1013 return 0; 1014 } 1015 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1016 1017 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1018 { 1019 bool skip_tlb_flush = false; 1020 #ifdef CONFIG_X86_64 1021 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 1022 1023 if (pcid_enabled) { 1024 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1025 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1026 } 1027 #endif 1028 1029 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { 1030 if (!skip_tlb_flush) { 1031 kvm_mmu_sync_roots(vcpu); 1032 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1033 } 1034 return 0; 1035 } 1036 1037 if (is_long_mode(vcpu) && 1038 (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63))) 1039 return 1; 1040 else if (is_pae_paging(vcpu) && 1041 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) 1042 return 1; 1043 1044 kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush); 1045 vcpu->arch.cr3 = cr3; 1046 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3); 1047 1048 return 0; 1049 } 1050 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1051 1052 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1053 { 1054 if (cr8 & CR8_RESERVED_BITS) 1055 return 1; 1056 if (lapic_in_kernel(vcpu)) 1057 kvm_lapic_set_tpr(vcpu, cr8); 1058 else 1059 vcpu->arch.cr8 = cr8; 1060 return 0; 1061 } 1062 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1063 1064 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1065 { 1066 if (lapic_in_kernel(vcpu)) 1067 return kvm_lapic_get_cr8(vcpu); 1068 else 1069 return vcpu->arch.cr8; 1070 } 1071 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1072 1073 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1074 { 1075 int i; 1076 1077 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1078 for (i = 0; i < KVM_NR_DB_REGS; i++) 1079 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1080 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD; 1081 } 1082 } 1083 1084 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1085 { 1086 unsigned long dr7; 1087 1088 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1089 dr7 = vcpu->arch.guest_debug_dr7; 1090 else 1091 dr7 = vcpu->arch.dr7; 1092 kvm_x86_ops.set_dr7(vcpu, dr7); 1093 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1094 if (dr7 & DR7_BP_EN_MASK) 1095 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1096 } 1097 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1098 1099 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1100 { 1101 u64 fixed = DR6_FIXED_1; 1102 1103 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1104 fixed |= DR6_RTM; 1105 return fixed; 1106 } 1107 1108 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1109 { 1110 size_t size = ARRAY_SIZE(vcpu->arch.db); 1111 1112 switch (dr) { 1113 case 0 ... 3: 1114 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1115 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1116 vcpu->arch.eff_db[dr] = val; 1117 break; 1118 case 4: 1119 case 6: 1120 if (!kvm_dr6_valid(val)) 1121 return -1; /* #GP */ 1122 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1123 break; 1124 case 5: 1125 default: /* 7 */ 1126 if (!kvm_dr7_valid(val)) 1127 return -1; /* #GP */ 1128 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1129 kvm_update_dr7(vcpu); 1130 break; 1131 } 1132 1133 return 0; 1134 } 1135 1136 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1137 { 1138 if (__kvm_set_dr(vcpu, dr, val)) { 1139 kvm_inject_gp(vcpu, 0); 1140 return 1; 1141 } 1142 return 0; 1143 } 1144 EXPORT_SYMBOL_GPL(kvm_set_dr); 1145 1146 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1147 { 1148 size_t size = ARRAY_SIZE(vcpu->arch.db); 1149 1150 switch (dr) { 1151 case 0 ... 3: 1152 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1153 break; 1154 case 4: 1155 case 6: 1156 *val = vcpu->arch.dr6; 1157 break; 1158 case 5: 1159 default: /* 7 */ 1160 *val = vcpu->arch.dr7; 1161 break; 1162 } 1163 return 0; 1164 } 1165 EXPORT_SYMBOL_GPL(kvm_get_dr); 1166 1167 bool kvm_rdpmc(struct kvm_vcpu *vcpu) 1168 { 1169 u32 ecx = kvm_rcx_read(vcpu); 1170 u64 data; 1171 int err; 1172 1173 err = kvm_pmu_rdpmc(vcpu, ecx, &data); 1174 if (err) 1175 return err; 1176 kvm_rax_write(vcpu, (u32)data); 1177 kvm_rdx_write(vcpu, data >> 32); 1178 return err; 1179 } 1180 EXPORT_SYMBOL_GPL(kvm_rdpmc); 1181 1182 /* 1183 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1184 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1185 * 1186 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) 1187 * extract the supported MSRs from the related const lists. 1188 * msrs_to_save is selected from the msrs_to_save_all to reflect the 1189 * capabilities of the host cpu. This capabilities test skips MSRs that are 1190 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs 1191 * may depend on host virtualization features rather than host cpu features. 1192 */ 1193 1194 static const u32 msrs_to_save_all[] = { 1195 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1196 MSR_STAR, 1197 #ifdef CONFIG_X86_64 1198 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1199 #endif 1200 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1201 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1202 MSR_IA32_SPEC_CTRL, 1203 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1204 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1205 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1206 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1207 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1208 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1209 MSR_IA32_UMWAIT_CONTROL, 1210 1211 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1212 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3, 1213 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1214 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1215 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1216 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1217 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1218 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1219 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9, 1220 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11, 1221 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13, 1222 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15, 1223 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17, 1224 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1225 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1226 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1227 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1228 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9, 1229 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11, 1230 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13, 1231 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15, 1232 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17, 1233 }; 1234 1235 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)]; 1236 static unsigned num_msrs_to_save; 1237 1238 static const u32 emulated_msrs_all[] = { 1239 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1240 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1241 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1242 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1243 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1244 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1245 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1246 HV_X64_MSR_RESET, 1247 HV_X64_MSR_VP_INDEX, 1248 HV_X64_MSR_VP_RUNTIME, 1249 HV_X64_MSR_SCONTROL, 1250 HV_X64_MSR_STIMER0_CONFIG, 1251 HV_X64_MSR_VP_ASSIST_PAGE, 1252 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1253 HV_X64_MSR_TSC_EMULATION_STATUS, 1254 HV_X64_MSR_SYNDBG_OPTIONS, 1255 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1256 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1257 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1258 1259 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1260 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1261 1262 MSR_IA32_TSC_ADJUST, 1263 MSR_IA32_TSCDEADLINE, 1264 MSR_IA32_ARCH_CAPABILITIES, 1265 MSR_IA32_PERF_CAPABILITIES, 1266 MSR_IA32_MISC_ENABLE, 1267 MSR_IA32_MCG_STATUS, 1268 MSR_IA32_MCG_CTL, 1269 MSR_IA32_MCG_EXT_CTL, 1270 MSR_IA32_SMBASE, 1271 MSR_SMI_COUNT, 1272 MSR_PLATFORM_INFO, 1273 MSR_MISC_FEATURES_ENABLES, 1274 MSR_AMD64_VIRT_SPEC_CTRL, 1275 MSR_IA32_POWER_CTL, 1276 MSR_IA32_UCODE_REV, 1277 1278 /* 1279 * The following list leaves out MSRs whose values are determined 1280 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs. 1281 * We always support the "true" VMX control MSRs, even if the host 1282 * processor does not, so I am putting these registers here rather 1283 * than in msrs_to_save_all. 1284 */ 1285 MSR_IA32_VMX_BASIC, 1286 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1287 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1288 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1289 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1290 MSR_IA32_VMX_MISC, 1291 MSR_IA32_VMX_CR0_FIXED0, 1292 MSR_IA32_VMX_CR4_FIXED0, 1293 MSR_IA32_VMX_VMCS_ENUM, 1294 MSR_IA32_VMX_PROCBASED_CTLS2, 1295 MSR_IA32_VMX_EPT_VPID_CAP, 1296 MSR_IA32_VMX_VMFUNC, 1297 1298 MSR_K7_HWCR, 1299 MSR_KVM_POLL_CONTROL, 1300 }; 1301 1302 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1303 static unsigned num_emulated_msrs; 1304 1305 /* 1306 * List of msr numbers which are used to expose MSR-based features that 1307 * can be used by a hypervisor to validate requested CPU features. 1308 */ 1309 static const u32 msr_based_features_all[] = { 1310 MSR_IA32_VMX_BASIC, 1311 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1312 MSR_IA32_VMX_PINBASED_CTLS, 1313 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1314 MSR_IA32_VMX_PROCBASED_CTLS, 1315 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1316 MSR_IA32_VMX_EXIT_CTLS, 1317 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1318 MSR_IA32_VMX_ENTRY_CTLS, 1319 MSR_IA32_VMX_MISC, 1320 MSR_IA32_VMX_CR0_FIXED0, 1321 MSR_IA32_VMX_CR0_FIXED1, 1322 MSR_IA32_VMX_CR4_FIXED0, 1323 MSR_IA32_VMX_CR4_FIXED1, 1324 MSR_IA32_VMX_VMCS_ENUM, 1325 MSR_IA32_VMX_PROCBASED_CTLS2, 1326 MSR_IA32_VMX_EPT_VPID_CAP, 1327 MSR_IA32_VMX_VMFUNC, 1328 1329 MSR_F10H_DECFG, 1330 MSR_IA32_UCODE_REV, 1331 MSR_IA32_ARCH_CAPABILITIES, 1332 MSR_IA32_PERF_CAPABILITIES, 1333 }; 1334 1335 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)]; 1336 static unsigned int num_msr_based_features; 1337 1338 static u64 kvm_get_arch_capabilities(void) 1339 { 1340 u64 data = 0; 1341 1342 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 1343 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1344 1345 /* 1346 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1347 * the nested hypervisor runs with NX huge pages. If it is not, 1348 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other 1349 * L1 guests, so it need not worry about its own (L2) guests. 1350 */ 1351 data |= ARCH_CAP_PSCHANGE_MC_NO; 1352 1353 /* 1354 * If we're doing cache flushes (either "always" or "cond") 1355 * we will do one whenever the guest does a vmlaunch/vmresume. 1356 * If an outer hypervisor is doing the cache flush for us 1357 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1358 * capability to the guest too, and if EPT is disabled we're not 1359 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1360 * require a nested hypervisor to do a flush of its own. 1361 */ 1362 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1363 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1364 1365 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1366 data |= ARCH_CAP_RDCL_NO; 1367 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1368 data |= ARCH_CAP_SSB_NO; 1369 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1370 data |= ARCH_CAP_MDS_NO; 1371 1372 /* 1373 * On TAA affected systems: 1374 * - nothing to do if TSX is disabled on the host. 1375 * - we emulate TSX_CTRL if present on the host. 1376 * This lets the guest use VERW to clear CPU buffers. 1377 */ 1378 if (!boot_cpu_has(X86_FEATURE_RTM)) 1379 data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR); 1380 else if (!boot_cpu_has_bug(X86_BUG_TAA)) 1381 data |= ARCH_CAP_TAA_NO; 1382 1383 return data; 1384 } 1385 1386 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1387 { 1388 switch (msr->index) { 1389 case MSR_IA32_ARCH_CAPABILITIES: 1390 msr->data = kvm_get_arch_capabilities(); 1391 break; 1392 case MSR_IA32_UCODE_REV: 1393 rdmsrl_safe(msr->index, &msr->data); 1394 break; 1395 default: 1396 return kvm_x86_ops.get_msr_feature(msr); 1397 } 1398 return 0; 1399 } 1400 1401 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1402 { 1403 struct kvm_msr_entry msr; 1404 int r; 1405 1406 msr.index = index; 1407 r = kvm_get_msr_feature(&msr); 1408 1409 if (r == KVM_MSR_RET_INVALID) { 1410 /* Unconditionally clear the output for simplicity */ 1411 *data = 0; 1412 r = kvm_msr_ignored_check(vcpu, index, 0, false); 1413 } 1414 1415 if (r) 1416 return r; 1417 1418 *data = msr.data; 1419 1420 return 0; 1421 } 1422 1423 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1424 { 1425 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1426 return false; 1427 1428 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1429 return false; 1430 1431 if (efer & (EFER_LME | EFER_LMA) && 1432 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1433 return false; 1434 1435 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1436 return false; 1437 1438 return true; 1439 1440 } 1441 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1442 { 1443 if (efer & efer_reserved_bits) 1444 return false; 1445 1446 return __kvm_valid_efer(vcpu, efer); 1447 } 1448 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1449 1450 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1451 { 1452 u64 old_efer = vcpu->arch.efer; 1453 u64 efer = msr_info->data; 1454 1455 if (efer & efer_reserved_bits) 1456 return 1; 1457 1458 if (!msr_info->host_initiated) { 1459 if (!__kvm_valid_efer(vcpu, efer)) 1460 return 1; 1461 1462 if (is_paging(vcpu) && 1463 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1464 return 1; 1465 } 1466 1467 efer &= ~EFER_LMA; 1468 efer |= vcpu->arch.efer & EFER_LMA; 1469 1470 kvm_x86_ops.set_efer(vcpu, efer); 1471 1472 /* Update reserved bits */ 1473 if ((efer ^ old_efer) & EFER_NX) 1474 kvm_mmu_reset_context(vcpu); 1475 1476 return 0; 1477 } 1478 1479 void kvm_enable_efer_bits(u64 mask) 1480 { 1481 efer_reserved_bits &= ~mask; 1482 } 1483 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1484 1485 /* 1486 * Write @data into the MSR specified by @index. Select MSR specific fault 1487 * checks are bypassed if @host_initiated is %true. 1488 * Returns 0 on success, non-0 otherwise. 1489 * Assumes vcpu_load() was already called. 1490 */ 1491 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1492 bool host_initiated) 1493 { 1494 struct msr_data msr; 1495 1496 switch (index) { 1497 case MSR_FS_BASE: 1498 case MSR_GS_BASE: 1499 case MSR_KERNEL_GS_BASE: 1500 case MSR_CSTAR: 1501 case MSR_LSTAR: 1502 if (is_noncanonical_address(data, vcpu)) 1503 return 1; 1504 break; 1505 case MSR_IA32_SYSENTER_EIP: 1506 case MSR_IA32_SYSENTER_ESP: 1507 /* 1508 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1509 * non-canonical address is written on Intel but not on 1510 * AMD (which ignores the top 32-bits, because it does 1511 * not implement 64-bit SYSENTER). 1512 * 1513 * 64-bit code should hence be able to write a non-canonical 1514 * value on AMD. Making the address canonical ensures that 1515 * vmentry does not fail on Intel after writing a non-canonical 1516 * value, and that something deterministic happens if the guest 1517 * invokes 64-bit SYSENTER. 1518 */ 1519 data = get_canonical(data, vcpu_virt_addr_bits(vcpu)); 1520 } 1521 1522 msr.data = data; 1523 msr.index = index; 1524 msr.host_initiated = host_initiated; 1525 1526 return kvm_x86_ops.set_msr(vcpu, &msr); 1527 } 1528 1529 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1530 u32 index, u64 data, bool host_initiated) 1531 { 1532 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1533 1534 if (ret == KVM_MSR_RET_INVALID) 1535 ret = kvm_msr_ignored_check(vcpu, index, data, true); 1536 1537 return ret; 1538 } 1539 1540 /* 1541 * Read the MSR specified by @index into @data. Select MSR specific fault 1542 * checks are bypassed if @host_initiated is %true. 1543 * Returns 0 on success, non-0 otherwise. 1544 * Assumes vcpu_load() was already called. 1545 */ 1546 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1547 bool host_initiated) 1548 { 1549 struct msr_data msr; 1550 int ret; 1551 1552 msr.index = index; 1553 msr.host_initiated = host_initiated; 1554 1555 ret = kvm_x86_ops.get_msr(vcpu, &msr); 1556 if (!ret) 1557 *data = msr.data; 1558 return ret; 1559 } 1560 1561 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1562 u32 index, u64 *data, bool host_initiated) 1563 { 1564 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1565 1566 if (ret == KVM_MSR_RET_INVALID) { 1567 /* Unconditionally clear *data for simplicity */ 1568 *data = 0; 1569 ret = kvm_msr_ignored_check(vcpu, index, 0, false); 1570 } 1571 1572 return ret; 1573 } 1574 1575 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1576 { 1577 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1578 } 1579 EXPORT_SYMBOL_GPL(kvm_get_msr); 1580 1581 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1582 { 1583 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1584 } 1585 EXPORT_SYMBOL_GPL(kvm_set_msr); 1586 1587 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 1588 { 1589 u32 ecx = kvm_rcx_read(vcpu); 1590 u64 data; 1591 1592 if (kvm_get_msr(vcpu, ecx, &data)) { 1593 trace_kvm_msr_read_ex(ecx); 1594 kvm_inject_gp(vcpu, 0); 1595 return 1; 1596 } 1597 1598 trace_kvm_msr_read(ecx, data); 1599 1600 kvm_rax_write(vcpu, data & -1u); 1601 kvm_rdx_write(vcpu, (data >> 32) & -1u); 1602 return kvm_skip_emulated_instruction(vcpu); 1603 } 1604 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 1605 1606 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 1607 { 1608 u32 ecx = kvm_rcx_read(vcpu); 1609 u64 data = kvm_read_edx_eax(vcpu); 1610 1611 if (kvm_set_msr(vcpu, ecx, data)) { 1612 trace_kvm_msr_write_ex(ecx, data); 1613 kvm_inject_gp(vcpu, 0); 1614 return 1; 1615 } 1616 1617 trace_kvm_msr_write(ecx, data); 1618 return kvm_skip_emulated_instruction(vcpu); 1619 } 1620 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 1621 1622 bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 1623 { 1624 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 1625 xfer_to_guest_mode_work_pending(); 1626 } 1627 EXPORT_SYMBOL_GPL(kvm_vcpu_exit_request); 1628 1629 /* 1630 * The fast path for frequent and performance sensitive wrmsr emulation, 1631 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 1632 * the latency of virtual IPI by avoiding the expensive bits of transitioning 1633 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 1634 * other cases which must be called after interrupts are enabled on the host. 1635 */ 1636 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 1637 { 1638 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 1639 return 1; 1640 1641 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 1642 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 1643 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 1644 ((u32)(data >> 32) != X2APIC_BROADCAST)) { 1645 1646 data &= ~(1 << 12); 1647 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32)); 1648 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32)); 1649 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data); 1650 trace_kvm_apic_write(APIC_ICR, (u32)data); 1651 return 0; 1652 } 1653 1654 return 1; 1655 } 1656 1657 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 1658 { 1659 if (!kvm_can_use_hv_timer(vcpu)) 1660 return 1; 1661 1662 kvm_set_lapic_tscdeadline_msr(vcpu, data); 1663 return 0; 1664 } 1665 1666 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 1667 { 1668 u32 msr = kvm_rcx_read(vcpu); 1669 u64 data; 1670 fastpath_t ret = EXIT_FASTPATH_NONE; 1671 1672 switch (msr) { 1673 case APIC_BASE_MSR + (APIC_ICR >> 4): 1674 data = kvm_read_edx_eax(vcpu); 1675 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 1676 kvm_skip_emulated_instruction(vcpu); 1677 ret = EXIT_FASTPATH_EXIT_HANDLED; 1678 } 1679 break; 1680 case MSR_IA32_TSCDEADLINE: 1681 data = kvm_read_edx_eax(vcpu); 1682 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 1683 kvm_skip_emulated_instruction(vcpu); 1684 ret = EXIT_FASTPATH_REENTER_GUEST; 1685 } 1686 break; 1687 default: 1688 break; 1689 } 1690 1691 if (ret != EXIT_FASTPATH_NONE) 1692 trace_kvm_msr_write(msr, data); 1693 1694 return ret; 1695 } 1696 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 1697 1698 /* 1699 * Adapt set_msr() to msr_io()'s calling convention 1700 */ 1701 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1702 { 1703 return kvm_get_msr_ignored_check(vcpu, index, data, true); 1704 } 1705 1706 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1707 { 1708 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 1709 } 1710 1711 #ifdef CONFIG_X86_64 1712 struct pvclock_clock { 1713 int vclock_mode; 1714 u64 cycle_last; 1715 u64 mask; 1716 u32 mult; 1717 u32 shift; 1718 u64 base_cycles; 1719 u64 offset; 1720 }; 1721 1722 struct pvclock_gtod_data { 1723 seqcount_t seq; 1724 1725 struct pvclock_clock clock; /* extract of a clocksource struct */ 1726 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 1727 1728 ktime_t offs_boot; 1729 u64 wall_time_sec; 1730 }; 1731 1732 static struct pvclock_gtod_data pvclock_gtod_data; 1733 1734 static void update_pvclock_gtod(struct timekeeper *tk) 1735 { 1736 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 1737 1738 write_seqcount_begin(&vdata->seq); 1739 1740 /* copy pvclock gtod data */ 1741 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 1742 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 1743 vdata->clock.mask = tk->tkr_mono.mask; 1744 vdata->clock.mult = tk->tkr_mono.mult; 1745 vdata->clock.shift = tk->tkr_mono.shift; 1746 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 1747 vdata->clock.offset = tk->tkr_mono.base; 1748 1749 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 1750 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 1751 vdata->raw_clock.mask = tk->tkr_raw.mask; 1752 vdata->raw_clock.mult = tk->tkr_raw.mult; 1753 vdata->raw_clock.shift = tk->tkr_raw.shift; 1754 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 1755 vdata->raw_clock.offset = tk->tkr_raw.base; 1756 1757 vdata->wall_time_sec = tk->xtime_sec; 1758 1759 vdata->offs_boot = tk->offs_boot; 1760 1761 write_seqcount_end(&vdata->seq); 1762 } 1763 1764 static s64 get_kvmclock_base_ns(void) 1765 { 1766 /* Count up from boot time, but with the frequency of the raw clock. */ 1767 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 1768 } 1769 #else 1770 static s64 get_kvmclock_base_ns(void) 1771 { 1772 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 1773 return ktime_get_boottime_ns(); 1774 } 1775 #endif 1776 1777 void kvm_set_pending_timer(struct kvm_vcpu *vcpu) 1778 { 1779 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu); 1780 kvm_vcpu_kick(vcpu); 1781 } 1782 1783 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) 1784 { 1785 int version; 1786 int r; 1787 struct pvclock_wall_clock wc; 1788 u64 wall_nsec; 1789 1790 if (!wall_clock) 1791 return; 1792 1793 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 1794 if (r) 1795 return; 1796 1797 if (version & 1) 1798 ++version; /* first time write, random junk */ 1799 1800 ++version; 1801 1802 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 1803 return; 1804 1805 /* 1806 * The guest calculates current wall clock time by adding 1807 * system time (updated by kvm_guest_time_update below) to the 1808 * wall clock specified here. We do the reverse here. 1809 */ 1810 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 1811 1812 wc.nsec = do_div(wall_nsec, 1000000000); 1813 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 1814 wc.version = version; 1815 1816 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 1817 1818 version++; 1819 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 1820 } 1821 1822 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 1823 { 1824 do_shl32_div32(dividend, divisor); 1825 return dividend; 1826 } 1827 1828 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 1829 s8 *pshift, u32 *pmultiplier) 1830 { 1831 uint64_t scaled64; 1832 int32_t shift = 0; 1833 uint64_t tps64; 1834 uint32_t tps32; 1835 1836 tps64 = base_hz; 1837 scaled64 = scaled_hz; 1838 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 1839 tps64 >>= 1; 1840 shift--; 1841 } 1842 1843 tps32 = (uint32_t)tps64; 1844 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 1845 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 1846 scaled64 >>= 1; 1847 else 1848 tps32 <<= 1; 1849 shift++; 1850 } 1851 1852 *pshift = shift; 1853 *pmultiplier = div_frac(scaled64, tps32); 1854 } 1855 1856 #ifdef CONFIG_X86_64 1857 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 1858 #endif 1859 1860 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 1861 static unsigned long max_tsc_khz; 1862 1863 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 1864 { 1865 u64 v = (u64)khz * (1000000 + ppm); 1866 do_div(v, 1000000); 1867 return v; 1868 } 1869 1870 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 1871 { 1872 u64 ratio; 1873 1874 /* Guest TSC same frequency as host TSC? */ 1875 if (!scale) { 1876 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 1877 return 0; 1878 } 1879 1880 /* TSC scaling supported? */ 1881 if (!kvm_has_tsc_control) { 1882 if (user_tsc_khz > tsc_khz) { 1883 vcpu->arch.tsc_catchup = 1; 1884 vcpu->arch.tsc_always_catchup = 1; 1885 return 0; 1886 } else { 1887 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 1888 return -1; 1889 } 1890 } 1891 1892 /* TSC scaling required - calculate ratio */ 1893 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits, 1894 user_tsc_khz, tsc_khz); 1895 1896 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) { 1897 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 1898 user_tsc_khz); 1899 return -1; 1900 } 1901 1902 vcpu->arch.tsc_scaling_ratio = ratio; 1903 return 0; 1904 } 1905 1906 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 1907 { 1908 u32 thresh_lo, thresh_hi; 1909 int use_scaling = 0; 1910 1911 /* tsc_khz can be zero if TSC calibration fails */ 1912 if (user_tsc_khz == 0) { 1913 /* set tsc_scaling_ratio to a safe value */ 1914 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 1915 return -1; 1916 } 1917 1918 /* Compute a scale to convert nanoseconds in TSC cycles */ 1919 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 1920 &vcpu->arch.virtual_tsc_shift, 1921 &vcpu->arch.virtual_tsc_mult); 1922 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 1923 1924 /* 1925 * Compute the variation in TSC rate which is acceptable 1926 * within the range of tolerance and decide if the 1927 * rate being applied is within that bounds of the hardware 1928 * rate. If so, no scaling or compensation need be done. 1929 */ 1930 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 1931 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 1932 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 1933 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); 1934 use_scaling = 1; 1935 } 1936 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 1937 } 1938 1939 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 1940 { 1941 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 1942 vcpu->arch.virtual_tsc_mult, 1943 vcpu->arch.virtual_tsc_shift); 1944 tsc += vcpu->arch.this_tsc_write; 1945 return tsc; 1946 } 1947 1948 static inline int gtod_is_based_on_tsc(int mode) 1949 { 1950 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 1951 } 1952 1953 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 1954 { 1955 #ifdef CONFIG_X86_64 1956 bool vcpus_matched; 1957 struct kvm_arch *ka = &vcpu->kvm->arch; 1958 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1959 1960 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1961 atomic_read(&vcpu->kvm->online_vcpus)); 1962 1963 /* 1964 * Once the masterclock is enabled, always perform request in 1965 * order to update it. 1966 * 1967 * In order to enable masterclock, the host clocksource must be TSC 1968 * and the vcpus need to have matched TSCs. When that happens, 1969 * perform request to enable masterclock. 1970 */ 1971 if (ka->use_master_clock || 1972 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 1973 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 1974 1975 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 1976 atomic_read(&vcpu->kvm->online_vcpus), 1977 ka->use_master_clock, gtod->clock.vclock_mode); 1978 #endif 1979 } 1980 1981 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset) 1982 { 1983 u64 curr_offset = vcpu->arch.l1_tsc_offset; 1984 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset; 1985 } 1986 1987 /* 1988 * Multiply tsc by a fixed point number represented by ratio. 1989 * 1990 * The most significant 64-N bits (mult) of ratio represent the 1991 * integral part of the fixed point number; the remaining N bits 1992 * (frac) represent the fractional part, ie. ratio represents a fixed 1993 * point number (mult + frac * 2^(-N)). 1994 * 1995 * N equals to kvm_tsc_scaling_ratio_frac_bits. 1996 */ 1997 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 1998 { 1999 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits); 2000 } 2001 2002 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc) 2003 { 2004 u64 _tsc = tsc; 2005 u64 ratio = vcpu->arch.tsc_scaling_ratio; 2006 2007 if (ratio != kvm_default_tsc_scaling_ratio) 2008 _tsc = __scale_tsc(ratio, tsc); 2009 2010 return _tsc; 2011 } 2012 EXPORT_SYMBOL_GPL(kvm_scale_tsc); 2013 2014 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2015 { 2016 u64 tsc; 2017 2018 tsc = kvm_scale_tsc(vcpu, rdtsc()); 2019 2020 return target_tsc - tsc; 2021 } 2022 2023 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2024 { 2025 return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc); 2026 } 2027 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2028 2029 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 2030 { 2031 vcpu->arch.l1_tsc_offset = offset; 2032 vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset); 2033 } 2034 2035 static inline bool kvm_check_tsc_unstable(void) 2036 { 2037 #ifdef CONFIG_X86_64 2038 /* 2039 * TSC is marked unstable when we're running on Hyper-V, 2040 * 'TSC page' clocksource is good. 2041 */ 2042 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2043 return false; 2044 #endif 2045 return check_tsc_unstable(); 2046 } 2047 2048 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr) 2049 { 2050 struct kvm *kvm = vcpu->kvm; 2051 u64 offset, ns, elapsed; 2052 unsigned long flags; 2053 bool matched; 2054 bool already_matched; 2055 u64 data = msr->data; 2056 bool synchronizing = false; 2057 2058 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2059 offset = kvm_compute_tsc_offset(vcpu, data); 2060 ns = get_kvmclock_base_ns(); 2061 elapsed = ns - kvm->arch.last_tsc_nsec; 2062 2063 if (vcpu->arch.virtual_tsc_khz) { 2064 if (data == 0 && msr->host_initiated) { 2065 /* 2066 * detection of vcpu initialization -- need to sync 2067 * with other vCPUs. This particularly helps to keep 2068 * kvm_clock stable after CPU hotplug 2069 */ 2070 synchronizing = true; 2071 } else { 2072 u64 tsc_exp = kvm->arch.last_tsc_write + 2073 nsec_to_cycles(vcpu, elapsed); 2074 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2075 /* 2076 * Special case: TSC write with a small delta (1 second) 2077 * of virtual cycle time against real time is 2078 * interpreted as an attempt to synchronize the CPU. 2079 */ 2080 synchronizing = data < tsc_exp + tsc_hz && 2081 data + tsc_hz > tsc_exp; 2082 } 2083 } 2084 2085 /* 2086 * For a reliable TSC, we can match TSC offsets, and for an unstable 2087 * TSC, we add elapsed time in this computation. We could let the 2088 * compensation code attempt to catch up if we fall behind, but 2089 * it's better to try to match offsets from the beginning. 2090 */ 2091 if (synchronizing && 2092 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2093 if (!kvm_check_tsc_unstable()) { 2094 offset = kvm->arch.cur_tsc_offset; 2095 } else { 2096 u64 delta = nsec_to_cycles(vcpu, elapsed); 2097 data += delta; 2098 offset = kvm_compute_tsc_offset(vcpu, data); 2099 } 2100 matched = true; 2101 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation); 2102 } else { 2103 /* 2104 * We split periods of matched TSC writes into generations. 2105 * For each generation, we track the original measured 2106 * nanosecond time, offset, and write, so if TSCs are in 2107 * sync, we can match exact offset, and if not, we can match 2108 * exact software computation in compute_guest_tsc() 2109 * 2110 * These values are tracked in kvm->arch.cur_xxx variables. 2111 */ 2112 kvm->arch.cur_tsc_generation++; 2113 kvm->arch.cur_tsc_nsec = ns; 2114 kvm->arch.cur_tsc_write = data; 2115 kvm->arch.cur_tsc_offset = offset; 2116 matched = false; 2117 } 2118 2119 /* 2120 * We also track th most recent recorded KHZ, write and time to 2121 * allow the matching interval to be extended at each write. 2122 */ 2123 kvm->arch.last_tsc_nsec = ns; 2124 kvm->arch.last_tsc_write = data; 2125 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2126 2127 vcpu->arch.last_guest_tsc = data; 2128 2129 /* Keep track of which generation this VCPU has synchronized to */ 2130 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2131 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2132 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2133 2134 if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) 2135 update_ia32_tsc_adjust_msr(vcpu, offset); 2136 2137 kvm_vcpu_write_tsc_offset(vcpu, offset); 2138 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2139 2140 spin_lock(&kvm->arch.pvclock_gtod_sync_lock); 2141 if (!matched) { 2142 kvm->arch.nr_vcpus_matched_tsc = 0; 2143 } else if (!already_matched) { 2144 kvm->arch.nr_vcpus_matched_tsc++; 2145 } 2146 2147 kvm_track_tsc_matching(vcpu); 2148 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); 2149 } 2150 2151 EXPORT_SYMBOL_GPL(kvm_write_tsc); 2152 2153 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2154 s64 adjustment) 2155 { 2156 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2157 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2158 } 2159 2160 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2161 { 2162 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio) 2163 WARN_ON(adjustment < 0); 2164 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment); 2165 adjust_tsc_offset_guest(vcpu, adjustment); 2166 } 2167 2168 #ifdef CONFIG_X86_64 2169 2170 static u64 read_tsc(void) 2171 { 2172 u64 ret = (u64)rdtsc_ordered(); 2173 u64 last = pvclock_gtod_data.clock.cycle_last; 2174 2175 if (likely(ret >= last)) 2176 return ret; 2177 2178 /* 2179 * GCC likes to generate cmov here, but this branch is extremely 2180 * predictable (it's just a function of time and the likely is 2181 * very likely) and there's a data dependence, so force GCC 2182 * to generate a branch instead. I don't barrier() because 2183 * we don't actually need a barrier, and if this function 2184 * ever gets inlined it will generate worse code. 2185 */ 2186 asm volatile (""); 2187 return last; 2188 } 2189 2190 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2191 int *mode) 2192 { 2193 long v; 2194 u64 tsc_pg_val; 2195 2196 switch (clock->vclock_mode) { 2197 case VDSO_CLOCKMODE_HVCLOCK: 2198 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 2199 tsc_timestamp); 2200 if (tsc_pg_val != U64_MAX) { 2201 /* TSC page valid */ 2202 *mode = VDSO_CLOCKMODE_HVCLOCK; 2203 v = (tsc_pg_val - clock->cycle_last) & 2204 clock->mask; 2205 } else { 2206 /* TSC page invalid */ 2207 *mode = VDSO_CLOCKMODE_NONE; 2208 } 2209 break; 2210 case VDSO_CLOCKMODE_TSC: 2211 *mode = VDSO_CLOCKMODE_TSC; 2212 *tsc_timestamp = read_tsc(); 2213 v = (*tsc_timestamp - clock->cycle_last) & 2214 clock->mask; 2215 break; 2216 default: 2217 *mode = VDSO_CLOCKMODE_NONE; 2218 } 2219 2220 if (*mode == VDSO_CLOCKMODE_NONE) 2221 *tsc_timestamp = v = 0; 2222 2223 return v * clock->mult; 2224 } 2225 2226 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2227 { 2228 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2229 unsigned long seq; 2230 int mode; 2231 u64 ns; 2232 2233 do { 2234 seq = read_seqcount_begin(>od->seq); 2235 ns = gtod->raw_clock.base_cycles; 2236 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2237 ns >>= gtod->raw_clock.shift; 2238 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2239 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2240 *t = ns; 2241 2242 return mode; 2243 } 2244 2245 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2246 { 2247 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2248 unsigned long seq; 2249 int mode; 2250 u64 ns; 2251 2252 do { 2253 seq = read_seqcount_begin(>od->seq); 2254 ts->tv_sec = gtod->wall_time_sec; 2255 ns = gtod->clock.base_cycles; 2256 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2257 ns >>= gtod->clock.shift; 2258 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2259 2260 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2261 ts->tv_nsec = ns; 2262 2263 return mode; 2264 } 2265 2266 /* returns true if host is using TSC based clocksource */ 2267 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2268 { 2269 /* checked again under seqlock below */ 2270 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2271 return false; 2272 2273 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2274 tsc_timestamp)); 2275 } 2276 2277 /* returns true if host is using TSC based clocksource */ 2278 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2279 u64 *tsc_timestamp) 2280 { 2281 /* checked again under seqlock below */ 2282 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2283 return false; 2284 2285 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2286 } 2287 #endif 2288 2289 /* 2290 * 2291 * Assuming a stable TSC across physical CPUS, and a stable TSC 2292 * across virtual CPUs, the following condition is possible. 2293 * Each numbered line represents an event visible to both 2294 * CPUs at the next numbered event. 2295 * 2296 * "timespecX" represents host monotonic time. "tscX" represents 2297 * RDTSC value. 2298 * 2299 * VCPU0 on CPU0 | VCPU1 on CPU1 2300 * 2301 * 1. read timespec0,tsc0 2302 * 2. | timespec1 = timespec0 + N 2303 * | tsc1 = tsc0 + M 2304 * 3. transition to guest | transition to guest 2305 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2306 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2307 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2308 * 2309 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2310 * 2311 * - ret0 < ret1 2312 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2313 * ... 2314 * - 0 < N - M => M < N 2315 * 2316 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2317 * always the case (the difference between two distinct xtime instances 2318 * might be smaller then the difference between corresponding TSC reads, 2319 * when updating guest vcpus pvclock areas). 2320 * 2321 * To avoid that problem, do not allow visibility of distinct 2322 * system_timestamp/tsc_timestamp values simultaneously: use a master 2323 * copy of host monotonic time values. Update that master copy 2324 * in lockstep. 2325 * 2326 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2327 * 2328 */ 2329 2330 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2331 { 2332 #ifdef CONFIG_X86_64 2333 struct kvm_arch *ka = &kvm->arch; 2334 int vclock_mode; 2335 bool host_tsc_clocksource, vcpus_matched; 2336 2337 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2338 atomic_read(&kvm->online_vcpus)); 2339 2340 /* 2341 * If the host uses TSC clock, then passthrough TSC as stable 2342 * to the guest. 2343 */ 2344 host_tsc_clocksource = kvm_get_time_and_clockread( 2345 &ka->master_kernel_ns, 2346 &ka->master_cycle_now); 2347 2348 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2349 && !ka->backwards_tsc_observed 2350 && !ka->boot_vcpu_runs_old_kvmclock; 2351 2352 if (ka->use_master_clock) 2353 atomic_set(&kvm_guest_has_master_clock, 1); 2354 2355 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2356 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2357 vcpus_matched); 2358 #endif 2359 } 2360 2361 void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2362 { 2363 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2364 } 2365 2366 static void kvm_gen_update_masterclock(struct kvm *kvm) 2367 { 2368 #ifdef CONFIG_X86_64 2369 int i; 2370 struct kvm_vcpu *vcpu; 2371 struct kvm_arch *ka = &kvm->arch; 2372 2373 spin_lock(&ka->pvclock_gtod_sync_lock); 2374 kvm_make_mclock_inprogress_request(kvm); 2375 /* no guest entries from this point */ 2376 pvclock_update_vm_gtod_copy(kvm); 2377 2378 kvm_for_each_vcpu(i, vcpu, kvm) 2379 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2380 2381 /* guest entries allowed */ 2382 kvm_for_each_vcpu(i, vcpu, kvm) 2383 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 2384 2385 spin_unlock(&ka->pvclock_gtod_sync_lock); 2386 #endif 2387 } 2388 2389 u64 get_kvmclock_ns(struct kvm *kvm) 2390 { 2391 struct kvm_arch *ka = &kvm->arch; 2392 struct pvclock_vcpu_time_info hv_clock; 2393 u64 ret; 2394 2395 spin_lock(&ka->pvclock_gtod_sync_lock); 2396 if (!ka->use_master_clock) { 2397 spin_unlock(&ka->pvclock_gtod_sync_lock); 2398 return get_kvmclock_base_ns() + ka->kvmclock_offset; 2399 } 2400 2401 hv_clock.tsc_timestamp = ka->master_cycle_now; 2402 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 2403 spin_unlock(&ka->pvclock_gtod_sync_lock); 2404 2405 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 2406 get_cpu(); 2407 2408 if (__this_cpu_read(cpu_tsc_khz)) { 2409 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL, 2410 &hv_clock.tsc_shift, 2411 &hv_clock.tsc_to_system_mul); 2412 ret = __pvclock_read_cycles(&hv_clock, rdtsc()); 2413 } else 2414 ret = get_kvmclock_base_ns() + ka->kvmclock_offset; 2415 2416 put_cpu(); 2417 2418 return ret; 2419 } 2420 2421 static void kvm_setup_pvclock_page(struct kvm_vcpu *v) 2422 { 2423 struct kvm_vcpu_arch *vcpu = &v->arch; 2424 struct pvclock_vcpu_time_info guest_hv_clock; 2425 2426 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time, 2427 &guest_hv_clock, sizeof(guest_hv_clock)))) 2428 return; 2429 2430 /* This VCPU is paused, but it's legal for a guest to read another 2431 * VCPU's kvmclock, so we really have to follow the specification where 2432 * it says that version is odd if data is being modified, and even after 2433 * it is consistent. 2434 * 2435 * Version field updates must be kept separate. This is because 2436 * kvm_write_guest_cached might use a "rep movs" instruction, and 2437 * writes within a string instruction are weakly ordered. So there 2438 * are three writes overall. 2439 * 2440 * As a small optimization, only write the version field in the first 2441 * and third write. The vcpu->pv_time cache is still valid, because the 2442 * version field is the first in the struct. 2443 */ 2444 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); 2445 2446 if (guest_hv_clock.version & 1) 2447 ++guest_hv_clock.version; /* first time write, random junk */ 2448 2449 vcpu->hv_clock.version = guest_hv_clock.version + 1; 2450 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2451 &vcpu->hv_clock, 2452 sizeof(vcpu->hv_clock.version)); 2453 2454 smp_wmb(); 2455 2456 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 2457 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); 2458 2459 if (vcpu->pvclock_set_guest_stopped_request) { 2460 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 2461 vcpu->pvclock_set_guest_stopped_request = false; 2462 } 2463 2464 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 2465 2466 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2467 &vcpu->hv_clock, 2468 sizeof(vcpu->hv_clock)); 2469 2470 smp_wmb(); 2471 2472 vcpu->hv_clock.version++; 2473 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2474 &vcpu->hv_clock, 2475 sizeof(vcpu->hv_clock.version)); 2476 } 2477 2478 static int kvm_guest_time_update(struct kvm_vcpu *v) 2479 { 2480 unsigned long flags, tgt_tsc_khz; 2481 struct kvm_vcpu_arch *vcpu = &v->arch; 2482 struct kvm_arch *ka = &v->kvm->arch; 2483 s64 kernel_ns; 2484 u64 tsc_timestamp, host_tsc; 2485 u8 pvclock_flags; 2486 bool use_master_clock; 2487 2488 kernel_ns = 0; 2489 host_tsc = 0; 2490 2491 /* 2492 * If the host uses TSC clock, then passthrough TSC as stable 2493 * to the guest. 2494 */ 2495 spin_lock(&ka->pvclock_gtod_sync_lock); 2496 use_master_clock = ka->use_master_clock; 2497 if (use_master_clock) { 2498 host_tsc = ka->master_cycle_now; 2499 kernel_ns = ka->master_kernel_ns; 2500 } 2501 spin_unlock(&ka->pvclock_gtod_sync_lock); 2502 2503 /* Keep irq disabled to prevent changes to the clock */ 2504 local_irq_save(flags); 2505 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz); 2506 if (unlikely(tgt_tsc_khz == 0)) { 2507 local_irq_restore(flags); 2508 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 2509 return 1; 2510 } 2511 if (!use_master_clock) { 2512 host_tsc = rdtsc(); 2513 kernel_ns = get_kvmclock_base_ns(); 2514 } 2515 2516 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 2517 2518 /* 2519 * We may have to catch up the TSC to match elapsed wall clock 2520 * time for two reasons, even if kvmclock is used. 2521 * 1) CPU could have been running below the maximum TSC rate 2522 * 2) Broken TSC compensation resets the base at each VCPU 2523 * entry to avoid unknown leaps of TSC even when running 2524 * again on the same CPU. This may cause apparent elapsed 2525 * time to disappear, and the guest to stand still or run 2526 * very slowly. 2527 */ 2528 if (vcpu->tsc_catchup) { 2529 u64 tsc = compute_guest_tsc(v, kernel_ns); 2530 if (tsc > tsc_timestamp) { 2531 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 2532 tsc_timestamp = tsc; 2533 } 2534 } 2535 2536 local_irq_restore(flags); 2537 2538 /* With all the info we got, fill in the values */ 2539 2540 if (kvm_has_tsc_control) 2541 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz); 2542 2543 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 2544 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 2545 &vcpu->hv_clock.tsc_shift, 2546 &vcpu->hv_clock.tsc_to_system_mul); 2547 vcpu->hw_tsc_khz = tgt_tsc_khz; 2548 } 2549 2550 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 2551 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 2552 vcpu->last_guest_tsc = tsc_timestamp; 2553 2554 /* If the host uses TSC clocksource, then it is stable */ 2555 pvclock_flags = 0; 2556 if (use_master_clock) 2557 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 2558 2559 vcpu->hv_clock.flags = pvclock_flags; 2560 2561 if (vcpu->pv_time_enabled) 2562 kvm_setup_pvclock_page(v); 2563 if (v == kvm_get_vcpu(v->kvm, 0)) 2564 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 2565 return 0; 2566 } 2567 2568 /* 2569 * kvmclock updates which are isolated to a given vcpu, such as 2570 * vcpu->cpu migration, should not allow system_timestamp from 2571 * the rest of the vcpus to remain static. Otherwise ntp frequency 2572 * correction applies to one vcpu's system_timestamp but not 2573 * the others. 2574 * 2575 * So in those cases, request a kvmclock update for all vcpus. 2576 * We need to rate-limit these requests though, as they can 2577 * considerably slow guests that have a large number of vcpus. 2578 * The time for a remote vcpu to update its kvmclock is bound 2579 * by the delay we use to rate-limit the updates. 2580 */ 2581 2582 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 2583 2584 static void kvmclock_update_fn(struct work_struct *work) 2585 { 2586 int i; 2587 struct delayed_work *dwork = to_delayed_work(work); 2588 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 2589 kvmclock_update_work); 2590 struct kvm *kvm = container_of(ka, struct kvm, arch); 2591 struct kvm_vcpu *vcpu; 2592 2593 kvm_for_each_vcpu(i, vcpu, kvm) { 2594 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2595 kvm_vcpu_kick(vcpu); 2596 } 2597 } 2598 2599 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 2600 { 2601 struct kvm *kvm = v->kvm; 2602 2603 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 2604 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 2605 KVMCLOCK_UPDATE_DELAY); 2606 } 2607 2608 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 2609 2610 static void kvmclock_sync_fn(struct work_struct *work) 2611 { 2612 struct delayed_work *dwork = to_delayed_work(work); 2613 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 2614 kvmclock_sync_work); 2615 struct kvm *kvm = container_of(ka, struct kvm, arch); 2616 2617 if (!kvmclock_periodic_sync) 2618 return; 2619 2620 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 2621 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 2622 KVMCLOCK_SYNC_PERIOD); 2623 } 2624 2625 /* 2626 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 2627 */ 2628 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 2629 { 2630 /* McStatusWrEn enabled? */ 2631 if (guest_cpuid_is_amd_or_hygon(vcpu)) 2632 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 2633 2634 return false; 2635 } 2636 2637 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2638 { 2639 u64 mcg_cap = vcpu->arch.mcg_cap; 2640 unsigned bank_num = mcg_cap & 0xff; 2641 u32 msr = msr_info->index; 2642 u64 data = msr_info->data; 2643 2644 switch (msr) { 2645 case MSR_IA32_MCG_STATUS: 2646 vcpu->arch.mcg_status = data; 2647 break; 2648 case MSR_IA32_MCG_CTL: 2649 if (!(mcg_cap & MCG_CTL_P) && 2650 (data || !msr_info->host_initiated)) 2651 return 1; 2652 if (data != 0 && data != ~(u64)0) 2653 return 1; 2654 vcpu->arch.mcg_ctl = data; 2655 break; 2656 default: 2657 if (msr >= MSR_IA32_MC0_CTL && 2658 msr < MSR_IA32_MCx_CTL(bank_num)) { 2659 u32 offset = array_index_nospec( 2660 msr - MSR_IA32_MC0_CTL, 2661 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL); 2662 2663 /* only 0 or all 1s can be written to IA32_MCi_CTL 2664 * some Linux kernels though clear bit 10 in bank 4 to 2665 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 2666 * this to avoid an uncatched #GP in the guest 2667 */ 2668 if ((offset & 0x3) == 0 && 2669 data != 0 && (data | (1 << 10)) != ~(u64)0) 2670 return -1; 2671 2672 /* MCi_STATUS */ 2673 if (!msr_info->host_initiated && 2674 (offset & 0x3) == 1 && data != 0) { 2675 if (!can_set_mci_status(vcpu)) 2676 return -1; 2677 } 2678 2679 vcpu->arch.mce_banks[offset] = data; 2680 break; 2681 } 2682 return 1; 2683 } 2684 return 0; 2685 } 2686 2687 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) 2688 { 2689 struct kvm *kvm = vcpu->kvm; 2690 int lm = is_long_mode(vcpu); 2691 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 2692 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; 2693 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 2694 : kvm->arch.xen_hvm_config.blob_size_32; 2695 u32 page_num = data & ~PAGE_MASK; 2696 u64 page_addr = data & PAGE_MASK; 2697 u8 *page; 2698 int r; 2699 2700 r = -E2BIG; 2701 if (page_num >= blob_size) 2702 goto out; 2703 r = -ENOMEM; 2704 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); 2705 if (IS_ERR(page)) { 2706 r = PTR_ERR(page); 2707 goto out; 2708 } 2709 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) 2710 goto out_free; 2711 r = 0; 2712 out_free: 2713 kfree(page); 2714 out: 2715 return r; 2716 } 2717 2718 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 2719 { 2720 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 2721 2722 return (vcpu->arch.apf.msr_en_val & mask) == mask; 2723 } 2724 2725 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 2726 { 2727 gpa_t gpa = data & ~0x3f; 2728 2729 /* Bits 4:5 are reserved, Should be zero */ 2730 if (data & 0x30) 2731 return 1; 2732 2733 if (!lapic_in_kernel(vcpu)) 2734 return data ? 1 : 0; 2735 2736 vcpu->arch.apf.msr_en_val = data; 2737 2738 if (!kvm_pv_async_pf_enabled(vcpu)) { 2739 kvm_clear_async_pf_completion_queue(vcpu); 2740 kvm_async_pf_hash_reset(vcpu); 2741 return 0; 2742 } 2743 2744 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 2745 sizeof(u64))) 2746 return 1; 2747 2748 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 2749 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 2750 2751 kvm_async_pf_wakeup_all(vcpu); 2752 2753 return 0; 2754 } 2755 2756 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 2757 { 2758 /* Bits 8-63 are reserved */ 2759 if (data >> 8) 2760 return 1; 2761 2762 if (!lapic_in_kernel(vcpu)) 2763 return 1; 2764 2765 vcpu->arch.apf.msr_int_val = data; 2766 2767 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 2768 2769 return 0; 2770 } 2771 2772 static void kvmclock_reset(struct kvm_vcpu *vcpu) 2773 { 2774 vcpu->arch.pv_time_enabled = false; 2775 vcpu->arch.time = 0; 2776 } 2777 2778 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 2779 { 2780 ++vcpu->stat.tlb_flush; 2781 kvm_x86_ops.tlb_flush_all(vcpu); 2782 } 2783 2784 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 2785 { 2786 ++vcpu->stat.tlb_flush; 2787 kvm_x86_ops.tlb_flush_guest(vcpu); 2788 } 2789 2790 static void record_steal_time(struct kvm_vcpu *vcpu) 2791 { 2792 struct kvm_host_map map; 2793 struct kvm_steal_time *st; 2794 2795 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 2796 return; 2797 2798 /* -EAGAIN is returned in atomic context so we can just return. */ 2799 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, 2800 &map, &vcpu->arch.st.cache, false)) 2801 return; 2802 2803 st = map.hva + 2804 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS); 2805 2806 /* 2807 * Doing a TLB flush here, on the guest's behalf, can avoid 2808 * expensive IPIs. 2809 */ 2810 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 2811 st->preempted & KVM_VCPU_FLUSH_TLB); 2812 if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB) 2813 kvm_vcpu_flush_tlb_guest(vcpu); 2814 2815 vcpu->arch.st.preempted = 0; 2816 2817 if (st->version & 1) 2818 st->version += 1; /* first time write, random junk */ 2819 2820 st->version += 1; 2821 2822 smp_wmb(); 2823 2824 st->steal += current->sched_info.run_delay - 2825 vcpu->arch.st.last_steal; 2826 vcpu->arch.st.last_steal = current->sched_info.run_delay; 2827 2828 smp_wmb(); 2829 2830 st->version += 1; 2831 2832 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false); 2833 } 2834 2835 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2836 { 2837 bool pr = false; 2838 u32 msr = msr_info->index; 2839 u64 data = msr_info->data; 2840 2841 switch (msr) { 2842 case MSR_AMD64_NB_CFG: 2843 case MSR_IA32_UCODE_WRITE: 2844 case MSR_VM_HSAVE_PA: 2845 case MSR_AMD64_PATCH_LOADER: 2846 case MSR_AMD64_BU_CFG2: 2847 case MSR_AMD64_DC_CFG: 2848 case MSR_F15H_EX_CFG: 2849 break; 2850 2851 case MSR_IA32_UCODE_REV: 2852 if (msr_info->host_initiated) 2853 vcpu->arch.microcode_version = data; 2854 break; 2855 case MSR_IA32_ARCH_CAPABILITIES: 2856 if (!msr_info->host_initiated) 2857 return 1; 2858 vcpu->arch.arch_capabilities = data; 2859 break; 2860 case MSR_IA32_PERF_CAPABILITIES: { 2861 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0}; 2862 2863 if (!msr_info->host_initiated) 2864 return 1; 2865 if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent)) 2866 return 1; 2867 if (data & ~msr_ent.data) 2868 return 1; 2869 2870 vcpu->arch.perf_capabilities = data; 2871 2872 return 0; 2873 } 2874 case MSR_EFER: 2875 return set_efer(vcpu, msr_info); 2876 case MSR_K7_HWCR: 2877 data &= ~(u64)0x40; /* ignore flush filter disable */ 2878 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 2879 data &= ~(u64)0x8; /* ignore TLB cache disable */ 2880 2881 /* Handle McStatusWrEn */ 2882 if (data == BIT_ULL(18)) { 2883 vcpu->arch.msr_hwcr = data; 2884 } else if (data != 0) { 2885 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 2886 data); 2887 return 1; 2888 } 2889 break; 2890 case MSR_FAM10H_MMIO_CONF_BASE: 2891 if (data != 0) { 2892 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 2893 "0x%llx\n", data); 2894 return 1; 2895 } 2896 break; 2897 case MSR_IA32_DEBUGCTLMSR: 2898 if (!data) { 2899 /* We support the non-activated case already */ 2900 break; 2901 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { 2902 /* Values other than LBR and BTF are vendor-specific, 2903 thus reserved and should throw a #GP */ 2904 return 1; 2905 } 2906 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", 2907 __func__, data); 2908 break; 2909 case 0x200 ... 0x2ff: 2910 return kvm_mtrr_set_msr(vcpu, msr, data); 2911 case MSR_IA32_APICBASE: 2912 return kvm_set_apic_base(vcpu, msr_info); 2913 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 2914 return kvm_x2apic_msr_write(vcpu, msr, data); 2915 case MSR_IA32_TSCDEADLINE: 2916 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2917 break; 2918 case MSR_IA32_TSC_ADJUST: 2919 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 2920 if (!msr_info->host_initiated) { 2921 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 2922 adjust_tsc_offset_guest(vcpu, adj); 2923 } 2924 vcpu->arch.ia32_tsc_adjust_msr = data; 2925 } 2926 break; 2927 case MSR_IA32_MISC_ENABLE: 2928 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 2929 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 2930 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 2931 return 1; 2932 vcpu->arch.ia32_misc_enable_msr = data; 2933 kvm_update_cpuid_runtime(vcpu); 2934 } else { 2935 vcpu->arch.ia32_misc_enable_msr = data; 2936 } 2937 break; 2938 case MSR_IA32_SMBASE: 2939 if (!msr_info->host_initiated) 2940 return 1; 2941 vcpu->arch.smbase = data; 2942 break; 2943 case MSR_IA32_POWER_CTL: 2944 vcpu->arch.msr_ia32_power_ctl = data; 2945 break; 2946 case MSR_IA32_TSC: 2947 kvm_write_tsc(vcpu, msr_info); 2948 break; 2949 case MSR_IA32_XSS: 2950 if (!msr_info->host_initiated && 2951 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 2952 return 1; 2953 /* 2954 * KVM supports exposing PT to the guest, but does not support 2955 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 2956 * XSAVES/XRSTORS to save/restore PT MSRs. 2957 */ 2958 if (data & ~supported_xss) 2959 return 1; 2960 vcpu->arch.ia32_xss = data; 2961 break; 2962 case MSR_SMI_COUNT: 2963 if (!msr_info->host_initiated) 2964 return 1; 2965 vcpu->arch.smi_count = data; 2966 break; 2967 case MSR_KVM_WALL_CLOCK_NEW: 2968 case MSR_KVM_WALL_CLOCK: 2969 vcpu->kvm->arch.wall_clock = data; 2970 kvm_write_wall_clock(vcpu->kvm, data); 2971 break; 2972 case MSR_KVM_SYSTEM_TIME_NEW: 2973 case MSR_KVM_SYSTEM_TIME: { 2974 struct kvm_arch *ka = &vcpu->kvm->arch; 2975 2976 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) { 2977 bool tmp = (msr == MSR_KVM_SYSTEM_TIME); 2978 2979 if (ka->boot_vcpu_runs_old_kvmclock != tmp) 2980 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2981 2982 ka->boot_vcpu_runs_old_kvmclock = tmp; 2983 } 2984 2985 vcpu->arch.time = data; 2986 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2987 2988 /* we verify if the enable bit is set... */ 2989 vcpu->arch.pv_time_enabled = false; 2990 if (!(data & 1)) 2991 break; 2992 2993 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm, 2994 &vcpu->arch.pv_time, data & ~1ULL, 2995 sizeof(struct pvclock_vcpu_time_info))) 2996 vcpu->arch.pv_time_enabled = true; 2997 2998 break; 2999 } 3000 case MSR_KVM_ASYNC_PF_EN: 3001 if (kvm_pv_enable_async_pf(vcpu, data)) 3002 return 1; 3003 break; 3004 case MSR_KVM_ASYNC_PF_INT: 3005 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3006 return 1; 3007 break; 3008 case MSR_KVM_ASYNC_PF_ACK: 3009 if (data & 0x1) { 3010 vcpu->arch.apf.pageready_pending = false; 3011 kvm_check_async_pf_completion(vcpu); 3012 } 3013 break; 3014 case MSR_KVM_STEAL_TIME: 3015 3016 if (unlikely(!sched_info_on())) 3017 return 1; 3018 3019 if (data & KVM_STEAL_RESERVED_MASK) 3020 return 1; 3021 3022 vcpu->arch.st.msr_val = data; 3023 3024 if (!(data & KVM_MSR_ENABLED)) 3025 break; 3026 3027 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3028 3029 break; 3030 case MSR_KVM_PV_EOI_EN: 3031 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8))) 3032 return 1; 3033 break; 3034 3035 case MSR_KVM_POLL_CONTROL: 3036 /* only enable bit supported */ 3037 if (data & (-1ULL << 1)) 3038 return 1; 3039 3040 vcpu->arch.msr_kvm_poll_control = data; 3041 break; 3042 3043 case MSR_IA32_MCG_CTL: 3044 case MSR_IA32_MCG_STATUS: 3045 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3046 return set_msr_mce(vcpu, msr_info); 3047 3048 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3049 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3050 pr = true; 3051 fallthrough; 3052 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3053 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3054 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3055 return kvm_pmu_set_msr(vcpu, msr_info); 3056 3057 if (pr || data != 0) 3058 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 3059 "0x%x data 0x%llx\n", msr, data); 3060 break; 3061 case MSR_K7_CLK_CTL: 3062 /* 3063 * Ignore all writes to this no longer documented MSR. 3064 * Writes are only relevant for old K7 processors, 3065 * all pre-dating SVM, but a recommended workaround from 3066 * AMD for these chips. It is possible to specify the 3067 * affected processor models on the command line, hence 3068 * the need to ignore the workaround. 3069 */ 3070 break; 3071 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3072 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3073 case HV_X64_MSR_SYNDBG_OPTIONS: 3074 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3075 case HV_X64_MSR_CRASH_CTL: 3076 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3077 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3078 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3079 case HV_X64_MSR_TSC_EMULATION_STATUS: 3080 return kvm_hv_set_msr_common(vcpu, msr, data, 3081 msr_info->host_initiated); 3082 case MSR_IA32_BBL_CR_CTL3: 3083 /* Drop writes to this legacy MSR -- see rdmsr 3084 * counterpart for further detail. 3085 */ 3086 if (report_ignored_msrs) 3087 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", 3088 msr, data); 3089 break; 3090 case MSR_AMD64_OSVW_ID_LENGTH: 3091 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3092 return 1; 3093 vcpu->arch.osvw.length = data; 3094 break; 3095 case MSR_AMD64_OSVW_STATUS: 3096 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3097 return 1; 3098 vcpu->arch.osvw.status = data; 3099 break; 3100 case MSR_PLATFORM_INFO: 3101 if (!msr_info->host_initiated || 3102 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3103 cpuid_fault_enabled(vcpu))) 3104 return 1; 3105 vcpu->arch.msr_platform_info = data; 3106 break; 3107 case MSR_MISC_FEATURES_ENABLES: 3108 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3109 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3110 !supports_cpuid_fault(vcpu))) 3111 return 1; 3112 vcpu->arch.msr_misc_features_enables = data; 3113 break; 3114 default: 3115 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) 3116 return xen_hvm_config(vcpu, data); 3117 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3118 return kvm_pmu_set_msr(vcpu, msr_info); 3119 return KVM_MSR_RET_INVALID; 3120 } 3121 return 0; 3122 } 3123 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 3124 3125 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 3126 { 3127 u64 data; 3128 u64 mcg_cap = vcpu->arch.mcg_cap; 3129 unsigned bank_num = mcg_cap & 0xff; 3130 3131 switch (msr) { 3132 case MSR_IA32_P5_MC_ADDR: 3133 case MSR_IA32_P5_MC_TYPE: 3134 data = 0; 3135 break; 3136 case MSR_IA32_MCG_CAP: 3137 data = vcpu->arch.mcg_cap; 3138 break; 3139 case MSR_IA32_MCG_CTL: 3140 if (!(mcg_cap & MCG_CTL_P) && !host) 3141 return 1; 3142 data = vcpu->arch.mcg_ctl; 3143 break; 3144 case MSR_IA32_MCG_STATUS: 3145 data = vcpu->arch.mcg_status; 3146 break; 3147 default: 3148 if (msr >= MSR_IA32_MC0_CTL && 3149 msr < MSR_IA32_MCx_CTL(bank_num)) { 3150 u32 offset = array_index_nospec( 3151 msr - MSR_IA32_MC0_CTL, 3152 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL); 3153 3154 data = vcpu->arch.mce_banks[offset]; 3155 break; 3156 } 3157 return 1; 3158 } 3159 *pdata = data; 3160 return 0; 3161 } 3162 3163 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3164 { 3165 switch (msr_info->index) { 3166 case MSR_IA32_PLATFORM_ID: 3167 case MSR_IA32_EBL_CR_POWERON: 3168 case MSR_IA32_DEBUGCTLMSR: 3169 case MSR_IA32_LASTBRANCHFROMIP: 3170 case MSR_IA32_LASTBRANCHTOIP: 3171 case MSR_IA32_LASTINTFROMIP: 3172 case MSR_IA32_LASTINTTOIP: 3173 case MSR_K8_SYSCFG: 3174 case MSR_K8_TSEG_ADDR: 3175 case MSR_K8_TSEG_MASK: 3176 case MSR_VM_HSAVE_PA: 3177 case MSR_K8_INT_PENDING_MSG: 3178 case MSR_AMD64_NB_CFG: 3179 case MSR_FAM10H_MMIO_CONF_BASE: 3180 case MSR_AMD64_BU_CFG2: 3181 case MSR_IA32_PERF_CTL: 3182 case MSR_AMD64_DC_CFG: 3183 case MSR_F15H_EX_CFG: 3184 /* 3185 * Intel Sandy Bridge CPUs must support the RAPL (running average power 3186 * limit) MSRs. Just return 0, as we do not want to expose the host 3187 * data here. Do not conditionalize this on CPUID, as KVM does not do 3188 * so for existing CPU-specific MSRs. 3189 */ 3190 case MSR_RAPL_POWER_UNIT: 3191 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 3192 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 3193 case MSR_PKG_ENERGY_STATUS: /* Total package */ 3194 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 3195 msr_info->data = 0; 3196 break; 3197 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3198 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3199 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3200 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3201 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3202 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3203 return kvm_pmu_get_msr(vcpu, msr_info); 3204 msr_info->data = 0; 3205 break; 3206 case MSR_IA32_UCODE_REV: 3207 msr_info->data = vcpu->arch.microcode_version; 3208 break; 3209 case MSR_IA32_ARCH_CAPABILITIES: 3210 if (!msr_info->host_initiated && 3211 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 3212 return 1; 3213 msr_info->data = vcpu->arch.arch_capabilities; 3214 break; 3215 case MSR_IA32_PERF_CAPABILITIES: 3216 if (!msr_info->host_initiated && 3217 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 3218 return 1; 3219 msr_info->data = vcpu->arch.perf_capabilities; 3220 break; 3221 case MSR_IA32_POWER_CTL: 3222 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 3223 break; 3224 case MSR_IA32_TSC: 3225 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset; 3226 break; 3227 case MSR_MTRRcap: 3228 case 0x200 ... 0x2ff: 3229 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 3230 case 0xcd: /* fsb frequency */ 3231 msr_info->data = 3; 3232 break; 3233 /* 3234 * MSR_EBC_FREQUENCY_ID 3235 * Conservative value valid for even the basic CPU models. 3236 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 3237 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 3238 * and 266MHz for model 3, or 4. Set Core Clock 3239 * Frequency to System Bus Frequency Ratio to 1 (bits 3240 * 31:24) even though these are only valid for CPU 3241 * models > 2, however guests may end up dividing or 3242 * multiplying by zero otherwise. 3243 */ 3244 case MSR_EBC_FREQUENCY_ID: 3245 msr_info->data = 1 << 24; 3246 break; 3247 case MSR_IA32_APICBASE: 3248 msr_info->data = kvm_get_apic_base(vcpu); 3249 break; 3250 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3251 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 3252 case MSR_IA32_TSCDEADLINE: 3253 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 3254 break; 3255 case MSR_IA32_TSC_ADJUST: 3256 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 3257 break; 3258 case MSR_IA32_MISC_ENABLE: 3259 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 3260 break; 3261 case MSR_IA32_SMBASE: 3262 if (!msr_info->host_initiated) 3263 return 1; 3264 msr_info->data = vcpu->arch.smbase; 3265 break; 3266 case MSR_SMI_COUNT: 3267 msr_info->data = vcpu->arch.smi_count; 3268 break; 3269 case MSR_IA32_PERF_STATUS: 3270 /* TSC increment by tick */ 3271 msr_info->data = 1000ULL; 3272 /* CPU multiplier */ 3273 msr_info->data |= (((uint64_t)4ULL) << 40); 3274 break; 3275 case MSR_EFER: 3276 msr_info->data = vcpu->arch.efer; 3277 break; 3278 case MSR_KVM_WALL_CLOCK: 3279 case MSR_KVM_WALL_CLOCK_NEW: 3280 msr_info->data = vcpu->kvm->arch.wall_clock; 3281 break; 3282 case MSR_KVM_SYSTEM_TIME: 3283 case MSR_KVM_SYSTEM_TIME_NEW: 3284 msr_info->data = vcpu->arch.time; 3285 break; 3286 case MSR_KVM_ASYNC_PF_EN: 3287 msr_info->data = vcpu->arch.apf.msr_en_val; 3288 break; 3289 case MSR_KVM_ASYNC_PF_INT: 3290 msr_info->data = vcpu->arch.apf.msr_int_val; 3291 break; 3292 case MSR_KVM_ASYNC_PF_ACK: 3293 msr_info->data = 0; 3294 break; 3295 case MSR_KVM_STEAL_TIME: 3296 msr_info->data = vcpu->arch.st.msr_val; 3297 break; 3298 case MSR_KVM_PV_EOI_EN: 3299 msr_info->data = vcpu->arch.pv_eoi.msr_val; 3300 break; 3301 case MSR_KVM_POLL_CONTROL: 3302 msr_info->data = vcpu->arch.msr_kvm_poll_control; 3303 break; 3304 case MSR_IA32_P5_MC_ADDR: 3305 case MSR_IA32_P5_MC_TYPE: 3306 case MSR_IA32_MCG_CAP: 3307 case MSR_IA32_MCG_CTL: 3308 case MSR_IA32_MCG_STATUS: 3309 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3310 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 3311 msr_info->host_initiated); 3312 case MSR_IA32_XSS: 3313 if (!msr_info->host_initiated && 3314 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3315 return 1; 3316 msr_info->data = vcpu->arch.ia32_xss; 3317 break; 3318 case MSR_K7_CLK_CTL: 3319 /* 3320 * Provide expected ramp-up count for K7. All other 3321 * are set to zero, indicating minimum divisors for 3322 * every field. 3323 * 3324 * This prevents guest kernels on AMD host with CPU 3325 * type 6, model 8 and higher from exploding due to 3326 * the rdmsr failing. 3327 */ 3328 msr_info->data = 0x20000000; 3329 break; 3330 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3331 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3332 case HV_X64_MSR_SYNDBG_OPTIONS: 3333 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3334 case HV_X64_MSR_CRASH_CTL: 3335 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3336 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3337 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3338 case HV_X64_MSR_TSC_EMULATION_STATUS: 3339 return kvm_hv_get_msr_common(vcpu, 3340 msr_info->index, &msr_info->data, 3341 msr_info->host_initiated); 3342 case MSR_IA32_BBL_CR_CTL3: 3343 /* This legacy MSR exists but isn't fully documented in current 3344 * silicon. It is however accessed by winxp in very narrow 3345 * scenarios where it sets bit #19, itself documented as 3346 * a "reserved" bit. Best effort attempt to source coherent 3347 * read data here should the balance of the register be 3348 * interpreted by the guest: 3349 * 3350 * L2 cache control register 3: 64GB range, 256KB size, 3351 * enabled, latency 0x1, configured 3352 */ 3353 msr_info->data = 0xbe702111; 3354 break; 3355 case MSR_AMD64_OSVW_ID_LENGTH: 3356 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3357 return 1; 3358 msr_info->data = vcpu->arch.osvw.length; 3359 break; 3360 case MSR_AMD64_OSVW_STATUS: 3361 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3362 return 1; 3363 msr_info->data = vcpu->arch.osvw.status; 3364 break; 3365 case MSR_PLATFORM_INFO: 3366 if (!msr_info->host_initiated && 3367 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 3368 return 1; 3369 msr_info->data = vcpu->arch.msr_platform_info; 3370 break; 3371 case MSR_MISC_FEATURES_ENABLES: 3372 msr_info->data = vcpu->arch.msr_misc_features_enables; 3373 break; 3374 case MSR_K7_HWCR: 3375 msr_info->data = vcpu->arch.msr_hwcr; 3376 break; 3377 default: 3378 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3379 return kvm_pmu_get_msr(vcpu, msr_info); 3380 return KVM_MSR_RET_INVALID; 3381 } 3382 return 0; 3383 } 3384 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 3385 3386 /* 3387 * Read or write a bunch of msrs. All parameters are kernel addresses. 3388 * 3389 * @return number of msrs set successfully. 3390 */ 3391 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 3392 struct kvm_msr_entry *entries, 3393 int (*do_msr)(struct kvm_vcpu *vcpu, 3394 unsigned index, u64 *data)) 3395 { 3396 int i; 3397 3398 for (i = 0; i < msrs->nmsrs; ++i) 3399 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 3400 break; 3401 3402 return i; 3403 } 3404 3405 /* 3406 * Read or write a bunch of msrs. Parameters are user addresses. 3407 * 3408 * @return number of msrs set successfully. 3409 */ 3410 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 3411 int (*do_msr)(struct kvm_vcpu *vcpu, 3412 unsigned index, u64 *data), 3413 int writeback) 3414 { 3415 struct kvm_msrs msrs; 3416 struct kvm_msr_entry *entries; 3417 int r, n; 3418 unsigned size; 3419 3420 r = -EFAULT; 3421 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 3422 goto out; 3423 3424 r = -E2BIG; 3425 if (msrs.nmsrs >= MAX_IO_MSRS) 3426 goto out; 3427 3428 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 3429 entries = memdup_user(user_msrs->entries, size); 3430 if (IS_ERR(entries)) { 3431 r = PTR_ERR(entries); 3432 goto out; 3433 } 3434 3435 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 3436 if (r < 0) 3437 goto out_free; 3438 3439 r = -EFAULT; 3440 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 3441 goto out_free; 3442 3443 r = n; 3444 3445 out_free: 3446 kfree(entries); 3447 out: 3448 return r; 3449 } 3450 3451 static inline bool kvm_can_mwait_in_guest(void) 3452 { 3453 return boot_cpu_has(X86_FEATURE_MWAIT) && 3454 !boot_cpu_has_bug(X86_BUG_MONITOR) && 3455 boot_cpu_has(X86_FEATURE_ARAT); 3456 } 3457 3458 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 3459 { 3460 int r = 0; 3461 3462 switch (ext) { 3463 case KVM_CAP_IRQCHIP: 3464 case KVM_CAP_HLT: 3465 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 3466 case KVM_CAP_SET_TSS_ADDR: 3467 case KVM_CAP_EXT_CPUID: 3468 case KVM_CAP_EXT_EMUL_CPUID: 3469 case KVM_CAP_CLOCKSOURCE: 3470 case KVM_CAP_PIT: 3471 case KVM_CAP_NOP_IO_DELAY: 3472 case KVM_CAP_MP_STATE: 3473 case KVM_CAP_SYNC_MMU: 3474 case KVM_CAP_USER_NMI: 3475 case KVM_CAP_REINJECT_CONTROL: 3476 case KVM_CAP_IRQ_INJECT_STATUS: 3477 case KVM_CAP_IOEVENTFD: 3478 case KVM_CAP_IOEVENTFD_NO_LENGTH: 3479 case KVM_CAP_PIT2: 3480 case KVM_CAP_PIT_STATE2: 3481 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 3482 case KVM_CAP_XEN_HVM: 3483 case KVM_CAP_VCPU_EVENTS: 3484 case KVM_CAP_HYPERV: 3485 case KVM_CAP_HYPERV_VAPIC: 3486 case KVM_CAP_HYPERV_SPIN: 3487 case KVM_CAP_HYPERV_SYNIC: 3488 case KVM_CAP_HYPERV_SYNIC2: 3489 case KVM_CAP_HYPERV_VP_INDEX: 3490 case KVM_CAP_HYPERV_EVENTFD: 3491 case KVM_CAP_HYPERV_TLBFLUSH: 3492 case KVM_CAP_HYPERV_SEND_IPI: 3493 case KVM_CAP_HYPERV_CPUID: 3494 case KVM_CAP_PCI_SEGMENT: 3495 case KVM_CAP_DEBUGREGS: 3496 case KVM_CAP_X86_ROBUST_SINGLESTEP: 3497 case KVM_CAP_XSAVE: 3498 case KVM_CAP_ASYNC_PF: 3499 case KVM_CAP_ASYNC_PF_INT: 3500 case KVM_CAP_GET_TSC_KHZ: 3501 case KVM_CAP_KVMCLOCK_CTRL: 3502 case KVM_CAP_READONLY_MEM: 3503 case KVM_CAP_HYPERV_TIME: 3504 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 3505 case KVM_CAP_TSC_DEADLINE_TIMER: 3506 case KVM_CAP_DISABLE_QUIRKS: 3507 case KVM_CAP_SET_BOOT_CPU_ID: 3508 case KVM_CAP_SPLIT_IRQCHIP: 3509 case KVM_CAP_IMMEDIATE_EXIT: 3510 case KVM_CAP_PMU_EVENT_FILTER: 3511 case KVM_CAP_GET_MSR_FEATURES: 3512 case KVM_CAP_MSR_PLATFORM_INFO: 3513 case KVM_CAP_EXCEPTION_PAYLOAD: 3514 case KVM_CAP_SET_GUEST_DEBUG: 3515 case KVM_CAP_LAST_CPU: 3516 r = 1; 3517 break; 3518 case KVM_CAP_SYNC_REGS: 3519 r = KVM_SYNC_X86_VALID_FIELDS; 3520 break; 3521 case KVM_CAP_ADJUST_CLOCK: 3522 r = KVM_CLOCK_TSC_STABLE; 3523 break; 3524 case KVM_CAP_X86_DISABLE_EXITS: 3525 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE | 3526 KVM_X86_DISABLE_EXITS_CSTATE; 3527 if(kvm_can_mwait_in_guest()) 3528 r |= KVM_X86_DISABLE_EXITS_MWAIT; 3529 break; 3530 case KVM_CAP_X86_SMM: 3531 /* SMBASE is usually relocated above 1M on modern chipsets, 3532 * and SMM handlers might indeed rely on 4G segment limits, 3533 * so do not report SMM to be available if real mode is 3534 * emulated via vm86 mode. Still, do not go to great lengths 3535 * to avoid userspace's usage of the feature, because it is a 3536 * fringe case that is not enabled except via specific settings 3537 * of the module parameters. 3538 */ 3539 r = kvm_x86_ops.has_emulated_msr(MSR_IA32_SMBASE); 3540 break; 3541 case KVM_CAP_VAPIC: 3542 r = !kvm_x86_ops.cpu_has_accelerated_tpr(); 3543 break; 3544 case KVM_CAP_NR_VCPUS: 3545 r = KVM_SOFT_MAX_VCPUS; 3546 break; 3547 case KVM_CAP_MAX_VCPUS: 3548 r = KVM_MAX_VCPUS; 3549 break; 3550 case KVM_CAP_MAX_VCPU_ID: 3551 r = KVM_MAX_VCPU_ID; 3552 break; 3553 case KVM_CAP_PV_MMU: /* obsolete */ 3554 r = 0; 3555 break; 3556 case KVM_CAP_MCE: 3557 r = KVM_MAX_MCE_BANKS; 3558 break; 3559 case KVM_CAP_XCRS: 3560 r = boot_cpu_has(X86_FEATURE_XSAVE); 3561 break; 3562 case KVM_CAP_TSC_CONTROL: 3563 r = kvm_has_tsc_control; 3564 break; 3565 case KVM_CAP_X2APIC_API: 3566 r = KVM_X2APIC_API_VALID_FLAGS; 3567 break; 3568 case KVM_CAP_NESTED_STATE: 3569 r = kvm_x86_ops.nested_ops->get_state ? 3570 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 3571 break; 3572 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 3573 r = kvm_x86_ops.enable_direct_tlbflush != NULL; 3574 break; 3575 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 3576 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 3577 break; 3578 case KVM_CAP_SMALLER_MAXPHYADDR: 3579 r = (int) allow_smaller_maxphyaddr; 3580 break; 3581 case KVM_CAP_STEAL_TIME: 3582 r = sched_info_on(); 3583 break; 3584 default: 3585 break; 3586 } 3587 return r; 3588 3589 } 3590 3591 long kvm_arch_dev_ioctl(struct file *filp, 3592 unsigned int ioctl, unsigned long arg) 3593 { 3594 void __user *argp = (void __user *)arg; 3595 long r; 3596 3597 switch (ioctl) { 3598 case KVM_GET_MSR_INDEX_LIST: { 3599 struct kvm_msr_list __user *user_msr_list = argp; 3600 struct kvm_msr_list msr_list; 3601 unsigned n; 3602 3603 r = -EFAULT; 3604 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 3605 goto out; 3606 n = msr_list.nmsrs; 3607 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 3608 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 3609 goto out; 3610 r = -E2BIG; 3611 if (n < msr_list.nmsrs) 3612 goto out; 3613 r = -EFAULT; 3614 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 3615 num_msrs_to_save * sizeof(u32))) 3616 goto out; 3617 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 3618 &emulated_msrs, 3619 num_emulated_msrs * sizeof(u32))) 3620 goto out; 3621 r = 0; 3622 break; 3623 } 3624 case KVM_GET_SUPPORTED_CPUID: 3625 case KVM_GET_EMULATED_CPUID: { 3626 struct kvm_cpuid2 __user *cpuid_arg = argp; 3627 struct kvm_cpuid2 cpuid; 3628 3629 r = -EFAULT; 3630 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 3631 goto out; 3632 3633 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 3634 ioctl); 3635 if (r) 3636 goto out; 3637 3638 r = -EFAULT; 3639 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 3640 goto out; 3641 r = 0; 3642 break; 3643 } 3644 case KVM_X86_GET_MCE_CAP_SUPPORTED: 3645 r = -EFAULT; 3646 if (copy_to_user(argp, &kvm_mce_cap_supported, 3647 sizeof(kvm_mce_cap_supported))) 3648 goto out; 3649 r = 0; 3650 break; 3651 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 3652 struct kvm_msr_list __user *user_msr_list = argp; 3653 struct kvm_msr_list msr_list; 3654 unsigned int n; 3655 3656 r = -EFAULT; 3657 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 3658 goto out; 3659 n = msr_list.nmsrs; 3660 msr_list.nmsrs = num_msr_based_features; 3661 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 3662 goto out; 3663 r = -E2BIG; 3664 if (n < msr_list.nmsrs) 3665 goto out; 3666 r = -EFAULT; 3667 if (copy_to_user(user_msr_list->indices, &msr_based_features, 3668 num_msr_based_features * sizeof(u32))) 3669 goto out; 3670 r = 0; 3671 break; 3672 } 3673 case KVM_GET_MSRS: 3674 r = msr_io(NULL, argp, do_get_msr_feature, 1); 3675 break; 3676 default: 3677 r = -EINVAL; 3678 break; 3679 } 3680 out: 3681 return r; 3682 } 3683 3684 static void wbinvd_ipi(void *garbage) 3685 { 3686 wbinvd(); 3687 } 3688 3689 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 3690 { 3691 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 3692 } 3693 3694 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 3695 { 3696 /* Address WBINVD may be executed by guest */ 3697 if (need_emulate_wbinvd(vcpu)) { 3698 if (kvm_x86_ops.has_wbinvd_exit()) 3699 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 3700 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 3701 smp_call_function_single(vcpu->cpu, 3702 wbinvd_ipi, NULL, 1); 3703 } 3704 3705 kvm_x86_ops.vcpu_load(vcpu, cpu); 3706 3707 /* Save host pkru register if supported */ 3708 vcpu->arch.host_pkru = read_pkru(); 3709 3710 /* Apply any externally detected TSC adjustments (due to suspend) */ 3711 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 3712 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 3713 vcpu->arch.tsc_offset_adjustment = 0; 3714 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3715 } 3716 3717 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 3718 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 3719 rdtsc() - vcpu->arch.last_host_tsc; 3720 if (tsc_delta < 0) 3721 mark_tsc_unstable("KVM discovered backwards TSC"); 3722 3723 if (kvm_check_tsc_unstable()) { 3724 u64 offset = kvm_compute_tsc_offset(vcpu, 3725 vcpu->arch.last_guest_tsc); 3726 kvm_vcpu_write_tsc_offset(vcpu, offset); 3727 vcpu->arch.tsc_catchup = 1; 3728 } 3729 3730 if (kvm_lapic_hv_timer_in_use(vcpu)) 3731 kvm_lapic_restart_hv_timer(vcpu); 3732 3733 /* 3734 * On a host with synchronized TSC, there is no need to update 3735 * kvmclock on vcpu->cpu migration 3736 */ 3737 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 3738 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 3739 if (vcpu->cpu != cpu) 3740 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 3741 vcpu->cpu = cpu; 3742 } 3743 3744 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3745 } 3746 3747 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 3748 { 3749 struct kvm_host_map map; 3750 struct kvm_steal_time *st; 3751 3752 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3753 return; 3754 3755 if (vcpu->arch.st.preempted) 3756 return; 3757 3758 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map, 3759 &vcpu->arch.st.cache, true)) 3760 return; 3761 3762 st = map.hva + 3763 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS); 3764 3765 st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 3766 3767 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true); 3768 } 3769 3770 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 3771 { 3772 int idx; 3773 3774 if (vcpu->preempted) 3775 vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu); 3776 3777 /* 3778 * Disable page faults because we're in atomic context here. 3779 * kvm_write_guest_offset_cached() would call might_fault() 3780 * that relies on pagefault_disable() to tell if there's a 3781 * bug. NOTE: the write to guest memory may not go through if 3782 * during postcopy live migration or if there's heavy guest 3783 * paging. 3784 */ 3785 pagefault_disable(); 3786 /* 3787 * kvm_memslots() will be called by 3788 * kvm_write_guest_offset_cached() so take the srcu lock. 3789 */ 3790 idx = srcu_read_lock(&vcpu->kvm->srcu); 3791 kvm_steal_time_set_preempted(vcpu); 3792 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3793 pagefault_enable(); 3794 kvm_x86_ops.vcpu_put(vcpu); 3795 vcpu->arch.last_host_tsc = rdtsc(); 3796 /* 3797 * If userspace has set any breakpoints or watchpoints, dr6 is restored 3798 * on every vmexit, but if not, we might have a stale dr6 from the 3799 * guest. do_debug expects dr6 to be cleared after it runs, do the same. 3800 */ 3801 set_debugreg(0, 6); 3802 } 3803 3804 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 3805 struct kvm_lapic_state *s) 3806 { 3807 if (vcpu->arch.apicv_active) 3808 kvm_x86_ops.sync_pir_to_irr(vcpu); 3809 3810 return kvm_apic_get_state(vcpu, s); 3811 } 3812 3813 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 3814 struct kvm_lapic_state *s) 3815 { 3816 int r; 3817 3818 r = kvm_apic_set_state(vcpu, s); 3819 if (r) 3820 return r; 3821 update_cr8_intercept(vcpu); 3822 3823 return 0; 3824 } 3825 3826 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 3827 { 3828 return (!lapic_in_kernel(vcpu) || 3829 kvm_apic_accept_pic_intr(vcpu)); 3830 } 3831 3832 /* 3833 * if userspace requested an interrupt window, check that the 3834 * interrupt window is open. 3835 * 3836 * No need to exit to userspace if we already have an interrupt queued. 3837 */ 3838 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 3839 { 3840 return kvm_arch_interrupt_allowed(vcpu) && 3841 !kvm_cpu_has_interrupt(vcpu) && 3842 !kvm_event_needs_reinjection(vcpu) && 3843 kvm_cpu_accept_dm_intr(vcpu); 3844 } 3845 3846 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 3847 struct kvm_interrupt *irq) 3848 { 3849 if (irq->irq >= KVM_NR_INTERRUPTS) 3850 return -EINVAL; 3851 3852 if (!irqchip_in_kernel(vcpu->kvm)) { 3853 kvm_queue_interrupt(vcpu, irq->irq, false); 3854 kvm_make_request(KVM_REQ_EVENT, vcpu); 3855 return 0; 3856 } 3857 3858 /* 3859 * With in-kernel LAPIC, we only use this to inject EXTINT, so 3860 * fail for in-kernel 8259. 3861 */ 3862 if (pic_in_kernel(vcpu->kvm)) 3863 return -ENXIO; 3864 3865 if (vcpu->arch.pending_external_vector != -1) 3866 return -EEXIST; 3867 3868 vcpu->arch.pending_external_vector = irq->irq; 3869 kvm_make_request(KVM_REQ_EVENT, vcpu); 3870 return 0; 3871 } 3872 3873 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 3874 { 3875 kvm_inject_nmi(vcpu); 3876 3877 return 0; 3878 } 3879 3880 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu) 3881 { 3882 kvm_make_request(KVM_REQ_SMI, vcpu); 3883 3884 return 0; 3885 } 3886 3887 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 3888 struct kvm_tpr_access_ctl *tac) 3889 { 3890 if (tac->flags) 3891 return -EINVAL; 3892 vcpu->arch.tpr_access_reporting = !!tac->enabled; 3893 return 0; 3894 } 3895 3896 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 3897 u64 mcg_cap) 3898 { 3899 int r; 3900 unsigned bank_num = mcg_cap & 0xff, bank; 3901 3902 r = -EINVAL; 3903 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 3904 goto out; 3905 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000)) 3906 goto out; 3907 r = 0; 3908 vcpu->arch.mcg_cap = mcg_cap; 3909 /* Init IA32_MCG_CTL to all 1s */ 3910 if (mcg_cap & MCG_CTL_P) 3911 vcpu->arch.mcg_ctl = ~(u64)0; 3912 /* Init IA32_MCi_CTL to all 1s */ 3913 for (bank = 0; bank < bank_num; bank++) 3914 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 3915 3916 kvm_x86_ops.setup_mce(vcpu); 3917 out: 3918 return r; 3919 } 3920 3921 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 3922 struct kvm_x86_mce *mce) 3923 { 3924 u64 mcg_cap = vcpu->arch.mcg_cap; 3925 unsigned bank_num = mcg_cap & 0xff; 3926 u64 *banks = vcpu->arch.mce_banks; 3927 3928 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 3929 return -EINVAL; 3930 /* 3931 * if IA32_MCG_CTL is not all 1s, the uncorrected error 3932 * reporting is disabled 3933 */ 3934 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 3935 vcpu->arch.mcg_ctl != ~(u64)0) 3936 return 0; 3937 banks += 4 * mce->bank; 3938 /* 3939 * if IA32_MCi_CTL is not all 1s, the uncorrected error 3940 * reporting is disabled for the bank 3941 */ 3942 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 3943 return 0; 3944 if (mce->status & MCI_STATUS_UC) { 3945 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 3946 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 3947 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3948 return 0; 3949 } 3950 if (banks[1] & MCI_STATUS_VAL) 3951 mce->status |= MCI_STATUS_OVER; 3952 banks[2] = mce->addr; 3953 banks[3] = mce->misc; 3954 vcpu->arch.mcg_status = mce->mcg_status; 3955 banks[1] = mce->status; 3956 kvm_queue_exception(vcpu, MC_VECTOR); 3957 } else if (!(banks[1] & MCI_STATUS_VAL) 3958 || !(banks[1] & MCI_STATUS_UC)) { 3959 if (banks[1] & MCI_STATUS_VAL) 3960 mce->status |= MCI_STATUS_OVER; 3961 banks[2] = mce->addr; 3962 banks[3] = mce->misc; 3963 banks[1] = mce->status; 3964 } else 3965 banks[1] |= MCI_STATUS_OVER; 3966 return 0; 3967 } 3968 3969 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 3970 struct kvm_vcpu_events *events) 3971 { 3972 process_nmi(vcpu); 3973 3974 /* 3975 * In guest mode, payload delivery should be deferred, 3976 * so that the L1 hypervisor can intercept #PF before 3977 * CR2 is modified (or intercept #DB before DR6 is 3978 * modified under nVMX). Unless the per-VM capability, 3979 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of 3980 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we 3981 * opportunistically defer the exception payload, deliver it if the 3982 * capability hasn't been requested before processing a 3983 * KVM_GET_VCPU_EVENTS. 3984 */ 3985 if (!vcpu->kvm->arch.exception_payload_enabled && 3986 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload) 3987 kvm_deliver_exception_payload(vcpu); 3988 3989 /* 3990 * The API doesn't provide the instruction length for software 3991 * exceptions, so don't report them. As long as the guest RIP 3992 * isn't advanced, we should expect to encounter the exception 3993 * again. 3994 */ 3995 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) { 3996 events->exception.injected = 0; 3997 events->exception.pending = 0; 3998 } else { 3999 events->exception.injected = vcpu->arch.exception.injected; 4000 events->exception.pending = vcpu->arch.exception.pending; 4001 /* 4002 * For ABI compatibility, deliberately conflate 4003 * pending and injected exceptions when 4004 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 4005 */ 4006 if (!vcpu->kvm->arch.exception_payload_enabled) 4007 events->exception.injected |= 4008 vcpu->arch.exception.pending; 4009 } 4010 events->exception.nr = vcpu->arch.exception.nr; 4011 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 4012 events->exception.error_code = vcpu->arch.exception.error_code; 4013 events->exception_has_payload = vcpu->arch.exception.has_payload; 4014 events->exception_payload = vcpu->arch.exception.payload; 4015 4016 events->interrupt.injected = 4017 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 4018 events->interrupt.nr = vcpu->arch.interrupt.nr; 4019 events->interrupt.soft = 0; 4020 events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu); 4021 4022 events->nmi.injected = vcpu->arch.nmi_injected; 4023 events->nmi.pending = vcpu->arch.nmi_pending != 0; 4024 events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu); 4025 events->nmi.pad = 0; 4026 4027 events->sipi_vector = 0; /* never valid when reporting to user space */ 4028 4029 events->smi.smm = is_smm(vcpu); 4030 events->smi.pending = vcpu->arch.smi_pending; 4031 events->smi.smm_inside_nmi = 4032 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 4033 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 4034 4035 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 4036 | KVM_VCPUEVENT_VALID_SHADOW 4037 | KVM_VCPUEVENT_VALID_SMM); 4038 if (vcpu->kvm->arch.exception_payload_enabled) 4039 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 4040 4041 memset(&events->reserved, 0, sizeof(events->reserved)); 4042 } 4043 4044 static void kvm_smm_changed(struct kvm_vcpu *vcpu); 4045 4046 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 4047 struct kvm_vcpu_events *events) 4048 { 4049 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 4050 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 4051 | KVM_VCPUEVENT_VALID_SHADOW 4052 | KVM_VCPUEVENT_VALID_SMM 4053 | KVM_VCPUEVENT_VALID_PAYLOAD)) 4054 return -EINVAL; 4055 4056 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 4057 if (!vcpu->kvm->arch.exception_payload_enabled) 4058 return -EINVAL; 4059 if (events->exception.pending) 4060 events->exception.injected = 0; 4061 else 4062 events->exception_has_payload = 0; 4063 } else { 4064 events->exception.pending = 0; 4065 events->exception_has_payload = 0; 4066 } 4067 4068 if ((events->exception.injected || events->exception.pending) && 4069 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 4070 return -EINVAL; 4071 4072 /* INITs are latched while in SMM */ 4073 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 4074 (events->smi.smm || events->smi.pending) && 4075 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 4076 return -EINVAL; 4077 4078 process_nmi(vcpu); 4079 vcpu->arch.exception.injected = events->exception.injected; 4080 vcpu->arch.exception.pending = events->exception.pending; 4081 vcpu->arch.exception.nr = events->exception.nr; 4082 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 4083 vcpu->arch.exception.error_code = events->exception.error_code; 4084 vcpu->arch.exception.has_payload = events->exception_has_payload; 4085 vcpu->arch.exception.payload = events->exception_payload; 4086 4087 vcpu->arch.interrupt.injected = events->interrupt.injected; 4088 vcpu->arch.interrupt.nr = events->interrupt.nr; 4089 vcpu->arch.interrupt.soft = events->interrupt.soft; 4090 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 4091 kvm_x86_ops.set_interrupt_shadow(vcpu, 4092 events->interrupt.shadow); 4093 4094 vcpu->arch.nmi_injected = events->nmi.injected; 4095 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 4096 vcpu->arch.nmi_pending = events->nmi.pending; 4097 kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked); 4098 4099 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 4100 lapic_in_kernel(vcpu)) 4101 vcpu->arch.apic->sipi_vector = events->sipi_vector; 4102 4103 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 4104 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 4105 if (events->smi.smm) 4106 vcpu->arch.hflags |= HF_SMM_MASK; 4107 else 4108 vcpu->arch.hflags &= ~HF_SMM_MASK; 4109 kvm_smm_changed(vcpu); 4110 } 4111 4112 vcpu->arch.smi_pending = events->smi.pending; 4113 4114 if (events->smi.smm) { 4115 if (events->smi.smm_inside_nmi) 4116 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 4117 else 4118 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 4119 } 4120 4121 if (lapic_in_kernel(vcpu)) { 4122 if (events->smi.latched_init) 4123 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 4124 else 4125 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 4126 } 4127 } 4128 4129 kvm_make_request(KVM_REQ_EVENT, vcpu); 4130 4131 return 0; 4132 } 4133 4134 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 4135 struct kvm_debugregs *dbgregs) 4136 { 4137 unsigned long val; 4138 4139 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 4140 kvm_get_dr(vcpu, 6, &val); 4141 dbgregs->dr6 = val; 4142 dbgregs->dr7 = vcpu->arch.dr7; 4143 dbgregs->flags = 0; 4144 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 4145 } 4146 4147 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 4148 struct kvm_debugregs *dbgregs) 4149 { 4150 if (dbgregs->flags) 4151 return -EINVAL; 4152 4153 if (dbgregs->dr6 & ~0xffffffffull) 4154 return -EINVAL; 4155 if (dbgregs->dr7 & ~0xffffffffull) 4156 return -EINVAL; 4157 4158 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 4159 kvm_update_dr0123(vcpu); 4160 vcpu->arch.dr6 = dbgregs->dr6; 4161 vcpu->arch.dr7 = dbgregs->dr7; 4162 kvm_update_dr7(vcpu); 4163 4164 return 0; 4165 } 4166 4167 #define XSTATE_COMPACTION_ENABLED (1ULL << 63) 4168 4169 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu) 4170 { 4171 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave; 4172 u64 xstate_bv = xsave->header.xfeatures; 4173 u64 valid; 4174 4175 /* 4176 * Copy legacy XSAVE area, to avoid complications with CPUID 4177 * leaves 0 and 1 in the loop below. 4178 */ 4179 memcpy(dest, xsave, XSAVE_HDR_OFFSET); 4180 4181 /* Set XSTATE_BV */ 4182 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE; 4183 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv; 4184 4185 /* 4186 * Copy each region from the possibly compacted offset to the 4187 * non-compacted offset. 4188 */ 4189 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 4190 while (valid) { 4191 u64 xfeature_mask = valid & -valid; 4192 int xfeature_nr = fls64(xfeature_mask) - 1; 4193 void *src = get_xsave_addr(xsave, xfeature_nr); 4194 4195 if (src) { 4196 u32 size, offset, ecx, edx; 4197 cpuid_count(XSTATE_CPUID, xfeature_nr, 4198 &size, &offset, &ecx, &edx); 4199 if (xfeature_nr == XFEATURE_PKRU) 4200 memcpy(dest + offset, &vcpu->arch.pkru, 4201 sizeof(vcpu->arch.pkru)); 4202 else 4203 memcpy(dest + offset, src, size); 4204 4205 } 4206 4207 valid -= xfeature_mask; 4208 } 4209 } 4210 4211 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src) 4212 { 4213 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave; 4214 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET); 4215 u64 valid; 4216 4217 /* 4218 * Copy legacy XSAVE area, to avoid complications with CPUID 4219 * leaves 0 and 1 in the loop below. 4220 */ 4221 memcpy(xsave, src, XSAVE_HDR_OFFSET); 4222 4223 /* Set XSTATE_BV and possibly XCOMP_BV. */ 4224 xsave->header.xfeatures = xstate_bv; 4225 if (boot_cpu_has(X86_FEATURE_XSAVES)) 4226 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED; 4227 4228 /* 4229 * Copy each region from the non-compacted offset to the 4230 * possibly compacted offset. 4231 */ 4232 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 4233 while (valid) { 4234 u64 xfeature_mask = valid & -valid; 4235 int xfeature_nr = fls64(xfeature_mask) - 1; 4236 void *dest = get_xsave_addr(xsave, xfeature_nr); 4237 4238 if (dest) { 4239 u32 size, offset, ecx, edx; 4240 cpuid_count(XSTATE_CPUID, xfeature_nr, 4241 &size, &offset, &ecx, &edx); 4242 if (xfeature_nr == XFEATURE_PKRU) 4243 memcpy(&vcpu->arch.pkru, src + offset, 4244 sizeof(vcpu->arch.pkru)); 4245 else 4246 memcpy(dest, src + offset, size); 4247 } 4248 4249 valid -= xfeature_mask; 4250 } 4251 } 4252 4253 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 4254 struct kvm_xsave *guest_xsave) 4255 { 4256 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 4257 memset(guest_xsave, 0, sizeof(struct kvm_xsave)); 4258 fill_xsave((u8 *) guest_xsave->region, vcpu); 4259 } else { 4260 memcpy(guest_xsave->region, 4261 &vcpu->arch.guest_fpu->state.fxsave, 4262 sizeof(struct fxregs_state)); 4263 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = 4264 XFEATURE_MASK_FPSSE; 4265 } 4266 } 4267 4268 #define XSAVE_MXCSR_OFFSET 24 4269 4270 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 4271 struct kvm_xsave *guest_xsave) 4272 { 4273 u64 xstate_bv = 4274 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; 4275 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)]; 4276 4277 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 4278 /* 4279 * Here we allow setting states that are not present in 4280 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility 4281 * with old userspace. 4282 */ 4283 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask) 4284 return -EINVAL; 4285 load_xsave(vcpu, (u8 *)guest_xsave->region); 4286 } else { 4287 if (xstate_bv & ~XFEATURE_MASK_FPSSE || 4288 mxcsr & ~mxcsr_feature_mask) 4289 return -EINVAL; 4290 memcpy(&vcpu->arch.guest_fpu->state.fxsave, 4291 guest_xsave->region, sizeof(struct fxregs_state)); 4292 } 4293 return 0; 4294 } 4295 4296 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 4297 struct kvm_xcrs *guest_xcrs) 4298 { 4299 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 4300 guest_xcrs->nr_xcrs = 0; 4301 return; 4302 } 4303 4304 guest_xcrs->nr_xcrs = 1; 4305 guest_xcrs->flags = 0; 4306 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 4307 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 4308 } 4309 4310 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 4311 struct kvm_xcrs *guest_xcrs) 4312 { 4313 int i, r = 0; 4314 4315 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 4316 return -EINVAL; 4317 4318 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 4319 return -EINVAL; 4320 4321 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 4322 /* Only support XCR0 currently */ 4323 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 4324 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 4325 guest_xcrs->xcrs[i].value); 4326 break; 4327 } 4328 if (r) 4329 r = -EINVAL; 4330 return r; 4331 } 4332 4333 /* 4334 * kvm_set_guest_paused() indicates to the guest kernel that it has been 4335 * stopped by the hypervisor. This function will be called from the host only. 4336 * EINVAL is returned when the host attempts to set the flag for a guest that 4337 * does not support pv clocks. 4338 */ 4339 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 4340 { 4341 if (!vcpu->arch.pv_time_enabled) 4342 return -EINVAL; 4343 vcpu->arch.pvclock_set_guest_stopped_request = true; 4344 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4345 return 0; 4346 } 4347 4348 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 4349 struct kvm_enable_cap *cap) 4350 { 4351 int r; 4352 uint16_t vmcs_version; 4353 void __user *user_ptr; 4354 4355 if (cap->flags) 4356 return -EINVAL; 4357 4358 switch (cap->cap) { 4359 case KVM_CAP_HYPERV_SYNIC2: 4360 if (cap->args[0]) 4361 return -EINVAL; 4362 fallthrough; 4363 4364 case KVM_CAP_HYPERV_SYNIC: 4365 if (!irqchip_in_kernel(vcpu->kvm)) 4366 return -EINVAL; 4367 return kvm_hv_activate_synic(vcpu, cap->cap == 4368 KVM_CAP_HYPERV_SYNIC2); 4369 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4370 if (!kvm_x86_ops.nested_ops->enable_evmcs) 4371 return -ENOTTY; 4372 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 4373 if (!r) { 4374 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 4375 if (copy_to_user(user_ptr, &vmcs_version, 4376 sizeof(vmcs_version))) 4377 r = -EFAULT; 4378 } 4379 return r; 4380 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4381 if (!kvm_x86_ops.enable_direct_tlbflush) 4382 return -ENOTTY; 4383 4384 return kvm_x86_ops.enable_direct_tlbflush(vcpu); 4385 4386 default: 4387 return -EINVAL; 4388 } 4389 } 4390 4391 long kvm_arch_vcpu_ioctl(struct file *filp, 4392 unsigned int ioctl, unsigned long arg) 4393 { 4394 struct kvm_vcpu *vcpu = filp->private_data; 4395 void __user *argp = (void __user *)arg; 4396 int r; 4397 union { 4398 struct kvm_lapic_state *lapic; 4399 struct kvm_xsave *xsave; 4400 struct kvm_xcrs *xcrs; 4401 void *buffer; 4402 } u; 4403 4404 vcpu_load(vcpu); 4405 4406 u.buffer = NULL; 4407 switch (ioctl) { 4408 case KVM_GET_LAPIC: { 4409 r = -EINVAL; 4410 if (!lapic_in_kernel(vcpu)) 4411 goto out; 4412 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 4413 GFP_KERNEL_ACCOUNT); 4414 4415 r = -ENOMEM; 4416 if (!u.lapic) 4417 goto out; 4418 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 4419 if (r) 4420 goto out; 4421 r = -EFAULT; 4422 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 4423 goto out; 4424 r = 0; 4425 break; 4426 } 4427 case KVM_SET_LAPIC: { 4428 r = -EINVAL; 4429 if (!lapic_in_kernel(vcpu)) 4430 goto out; 4431 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 4432 if (IS_ERR(u.lapic)) { 4433 r = PTR_ERR(u.lapic); 4434 goto out_nofree; 4435 } 4436 4437 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 4438 break; 4439 } 4440 case KVM_INTERRUPT: { 4441 struct kvm_interrupt irq; 4442 4443 r = -EFAULT; 4444 if (copy_from_user(&irq, argp, sizeof(irq))) 4445 goto out; 4446 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 4447 break; 4448 } 4449 case KVM_NMI: { 4450 r = kvm_vcpu_ioctl_nmi(vcpu); 4451 break; 4452 } 4453 case KVM_SMI: { 4454 r = kvm_vcpu_ioctl_smi(vcpu); 4455 break; 4456 } 4457 case KVM_SET_CPUID: { 4458 struct kvm_cpuid __user *cpuid_arg = argp; 4459 struct kvm_cpuid cpuid; 4460 4461 r = -EFAULT; 4462 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4463 goto out; 4464 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4465 break; 4466 } 4467 case KVM_SET_CPUID2: { 4468 struct kvm_cpuid2 __user *cpuid_arg = argp; 4469 struct kvm_cpuid2 cpuid; 4470 4471 r = -EFAULT; 4472 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4473 goto out; 4474 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 4475 cpuid_arg->entries); 4476 break; 4477 } 4478 case KVM_GET_CPUID2: { 4479 struct kvm_cpuid2 __user *cpuid_arg = argp; 4480 struct kvm_cpuid2 cpuid; 4481 4482 r = -EFAULT; 4483 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4484 goto out; 4485 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 4486 cpuid_arg->entries); 4487 if (r) 4488 goto out; 4489 r = -EFAULT; 4490 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4491 goto out; 4492 r = 0; 4493 break; 4494 } 4495 case KVM_GET_MSRS: { 4496 int idx = srcu_read_lock(&vcpu->kvm->srcu); 4497 r = msr_io(vcpu, argp, do_get_msr, 1); 4498 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4499 break; 4500 } 4501 case KVM_SET_MSRS: { 4502 int idx = srcu_read_lock(&vcpu->kvm->srcu); 4503 r = msr_io(vcpu, argp, do_set_msr, 0); 4504 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4505 break; 4506 } 4507 case KVM_TPR_ACCESS_REPORTING: { 4508 struct kvm_tpr_access_ctl tac; 4509 4510 r = -EFAULT; 4511 if (copy_from_user(&tac, argp, sizeof(tac))) 4512 goto out; 4513 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 4514 if (r) 4515 goto out; 4516 r = -EFAULT; 4517 if (copy_to_user(argp, &tac, sizeof(tac))) 4518 goto out; 4519 r = 0; 4520 break; 4521 }; 4522 case KVM_SET_VAPIC_ADDR: { 4523 struct kvm_vapic_addr va; 4524 int idx; 4525 4526 r = -EINVAL; 4527 if (!lapic_in_kernel(vcpu)) 4528 goto out; 4529 r = -EFAULT; 4530 if (copy_from_user(&va, argp, sizeof(va))) 4531 goto out; 4532 idx = srcu_read_lock(&vcpu->kvm->srcu); 4533 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 4534 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4535 break; 4536 } 4537 case KVM_X86_SETUP_MCE: { 4538 u64 mcg_cap; 4539 4540 r = -EFAULT; 4541 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 4542 goto out; 4543 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 4544 break; 4545 } 4546 case KVM_X86_SET_MCE: { 4547 struct kvm_x86_mce mce; 4548 4549 r = -EFAULT; 4550 if (copy_from_user(&mce, argp, sizeof(mce))) 4551 goto out; 4552 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 4553 break; 4554 } 4555 case KVM_GET_VCPU_EVENTS: { 4556 struct kvm_vcpu_events events; 4557 4558 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 4559 4560 r = -EFAULT; 4561 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 4562 break; 4563 r = 0; 4564 break; 4565 } 4566 case KVM_SET_VCPU_EVENTS: { 4567 struct kvm_vcpu_events events; 4568 4569 r = -EFAULT; 4570 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 4571 break; 4572 4573 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 4574 break; 4575 } 4576 case KVM_GET_DEBUGREGS: { 4577 struct kvm_debugregs dbgregs; 4578 4579 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 4580 4581 r = -EFAULT; 4582 if (copy_to_user(argp, &dbgregs, 4583 sizeof(struct kvm_debugregs))) 4584 break; 4585 r = 0; 4586 break; 4587 } 4588 case KVM_SET_DEBUGREGS: { 4589 struct kvm_debugregs dbgregs; 4590 4591 r = -EFAULT; 4592 if (copy_from_user(&dbgregs, argp, 4593 sizeof(struct kvm_debugregs))) 4594 break; 4595 4596 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 4597 break; 4598 } 4599 case KVM_GET_XSAVE: { 4600 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 4601 r = -ENOMEM; 4602 if (!u.xsave) 4603 break; 4604 4605 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 4606 4607 r = -EFAULT; 4608 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 4609 break; 4610 r = 0; 4611 break; 4612 } 4613 case KVM_SET_XSAVE: { 4614 u.xsave = memdup_user(argp, sizeof(*u.xsave)); 4615 if (IS_ERR(u.xsave)) { 4616 r = PTR_ERR(u.xsave); 4617 goto out_nofree; 4618 } 4619 4620 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 4621 break; 4622 } 4623 case KVM_GET_XCRS: { 4624 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 4625 r = -ENOMEM; 4626 if (!u.xcrs) 4627 break; 4628 4629 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 4630 4631 r = -EFAULT; 4632 if (copy_to_user(argp, u.xcrs, 4633 sizeof(struct kvm_xcrs))) 4634 break; 4635 r = 0; 4636 break; 4637 } 4638 case KVM_SET_XCRS: { 4639 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 4640 if (IS_ERR(u.xcrs)) { 4641 r = PTR_ERR(u.xcrs); 4642 goto out_nofree; 4643 } 4644 4645 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 4646 break; 4647 } 4648 case KVM_SET_TSC_KHZ: { 4649 u32 user_tsc_khz; 4650 4651 r = -EINVAL; 4652 user_tsc_khz = (u32)arg; 4653 4654 if (kvm_has_tsc_control && 4655 user_tsc_khz >= kvm_max_guest_tsc_khz) 4656 goto out; 4657 4658 if (user_tsc_khz == 0) 4659 user_tsc_khz = tsc_khz; 4660 4661 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 4662 r = 0; 4663 4664 goto out; 4665 } 4666 case KVM_GET_TSC_KHZ: { 4667 r = vcpu->arch.virtual_tsc_khz; 4668 goto out; 4669 } 4670 case KVM_KVMCLOCK_CTRL: { 4671 r = kvm_set_guest_paused(vcpu); 4672 goto out; 4673 } 4674 case KVM_ENABLE_CAP: { 4675 struct kvm_enable_cap cap; 4676 4677 r = -EFAULT; 4678 if (copy_from_user(&cap, argp, sizeof(cap))) 4679 goto out; 4680 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 4681 break; 4682 } 4683 case KVM_GET_NESTED_STATE: { 4684 struct kvm_nested_state __user *user_kvm_nested_state = argp; 4685 u32 user_data_size; 4686 4687 r = -EINVAL; 4688 if (!kvm_x86_ops.nested_ops->get_state) 4689 break; 4690 4691 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 4692 r = -EFAULT; 4693 if (get_user(user_data_size, &user_kvm_nested_state->size)) 4694 break; 4695 4696 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 4697 user_data_size); 4698 if (r < 0) 4699 break; 4700 4701 if (r > user_data_size) { 4702 if (put_user(r, &user_kvm_nested_state->size)) 4703 r = -EFAULT; 4704 else 4705 r = -E2BIG; 4706 break; 4707 } 4708 4709 r = 0; 4710 break; 4711 } 4712 case KVM_SET_NESTED_STATE: { 4713 struct kvm_nested_state __user *user_kvm_nested_state = argp; 4714 struct kvm_nested_state kvm_state; 4715 int idx; 4716 4717 r = -EINVAL; 4718 if (!kvm_x86_ops.nested_ops->set_state) 4719 break; 4720 4721 r = -EFAULT; 4722 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 4723 break; 4724 4725 r = -EINVAL; 4726 if (kvm_state.size < sizeof(kvm_state)) 4727 break; 4728 4729 if (kvm_state.flags & 4730 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 4731 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 4732 | KVM_STATE_NESTED_GIF_SET)) 4733 break; 4734 4735 /* nested_run_pending implies guest_mode. */ 4736 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 4737 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 4738 break; 4739 4740 idx = srcu_read_lock(&vcpu->kvm->srcu); 4741 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 4742 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4743 break; 4744 } 4745 case KVM_GET_SUPPORTED_HV_CPUID: { 4746 struct kvm_cpuid2 __user *cpuid_arg = argp; 4747 struct kvm_cpuid2 cpuid; 4748 4749 r = -EFAULT; 4750 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4751 goto out; 4752 4753 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid, 4754 cpuid_arg->entries); 4755 if (r) 4756 goto out; 4757 4758 r = -EFAULT; 4759 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4760 goto out; 4761 r = 0; 4762 break; 4763 } 4764 default: 4765 r = -EINVAL; 4766 } 4767 out: 4768 kfree(u.buffer); 4769 out_nofree: 4770 vcpu_put(vcpu); 4771 return r; 4772 } 4773 4774 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 4775 { 4776 return VM_FAULT_SIGBUS; 4777 } 4778 4779 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 4780 { 4781 int ret; 4782 4783 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 4784 return -EINVAL; 4785 ret = kvm_x86_ops.set_tss_addr(kvm, addr); 4786 return ret; 4787 } 4788 4789 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 4790 u64 ident_addr) 4791 { 4792 return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr); 4793 } 4794 4795 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 4796 unsigned long kvm_nr_mmu_pages) 4797 { 4798 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 4799 return -EINVAL; 4800 4801 mutex_lock(&kvm->slots_lock); 4802 4803 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 4804 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 4805 4806 mutex_unlock(&kvm->slots_lock); 4807 return 0; 4808 } 4809 4810 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 4811 { 4812 return kvm->arch.n_max_mmu_pages; 4813 } 4814 4815 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 4816 { 4817 struct kvm_pic *pic = kvm->arch.vpic; 4818 int r; 4819 4820 r = 0; 4821 switch (chip->chip_id) { 4822 case KVM_IRQCHIP_PIC_MASTER: 4823 memcpy(&chip->chip.pic, &pic->pics[0], 4824 sizeof(struct kvm_pic_state)); 4825 break; 4826 case KVM_IRQCHIP_PIC_SLAVE: 4827 memcpy(&chip->chip.pic, &pic->pics[1], 4828 sizeof(struct kvm_pic_state)); 4829 break; 4830 case KVM_IRQCHIP_IOAPIC: 4831 kvm_get_ioapic(kvm, &chip->chip.ioapic); 4832 break; 4833 default: 4834 r = -EINVAL; 4835 break; 4836 } 4837 return r; 4838 } 4839 4840 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 4841 { 4842 struct kvm_pic *pic = kvm->arch.vpic; 4843 int r; 4844 4845 r = 0; 4846 switch (chip->chip_id) { 4847 case KVM_IRQCHIP_PIC_MASTER: 4848 spin_lock(&pic->lock); 4849 memcpy(&pic->pics[0], &chip->chip.pic, 4850 sizeof(struct kvm_pic_state)); 4851 spin_unlock(&pic->lock); 4852 break; 4853 case KVM_IRQCHIP_PIC_SLAVE: 4854 spin_lock(&pic->lock); 4855 memcpy(&pic->pics[1], &chip->chip.pic, 4856 sizeof(struct kvm_pic_state)); 4857 spin_unlock(&pic->lock); 4858 break; 4859 case KVM_IRQCHIP_IOAPIC: 4860 kvm_set_ioapic(kvm, &chip->chip.ioapic); 4861 break; 4862 default: 4863 r = -EINVAL; 4864 break; 4865 } 4866 kvm_pic_update_irq(pic); 4867 return r; 4868 } 4869 4870 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 4871 { 4872 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 4873 4874 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 4875 4876 mutex_lock(&kps->lock); 4877 memcpy(ps, &kps->channels, sizeof(*ps)); 4878 mutex_unlock(&kps->lock); 4879 return 0; 4880 } 4881 4882 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 4883 { 4884 int i; 4885 struct kvm_pit *pit = kvm->arch.vpit; 4886 4887 mutex_lock(&pit->pit_state.lock); 4888 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 4889 for (i = 0; i < 3; i++) 4890 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 4891 mutex_unlock(&pit->pit_state.lock); 4892 return 0; 4893 } 4894 4895 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 4896 { 4897 mutex_lock(&kvm->arch.vpit->pit_state.lock); 4898 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 4899 sizeof(ps->channels)); 4900 ps->flags = kvm->arch.vpit->pit_state.flags; 4901 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 4902 memset(&ps->reserved, 0, sizeof(ps->reserved)); 4903 return 0; 4904 } 4905 4906 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 4907 { 4908 int start = 0; 4909 int i; 4910 u32 prev_legacy, cur_legacy; 4911 struct kvm_pit *pit = kvm->arch.vpit; 4912 4913 mutex_lock(&pit->pit_state.lock); 4914 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 4915 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 4916 if (!prev_legacy && cur_legacy) 4917 start = 1; 4918 memcpy(&pit->pit_state.channels, &ps->channels, 4919 sizeof(pit->pit_state.channels)); 4920 pit->pit_state.flags = ps->flags; 4921 for (i = 0; i < 3; i++) 4922 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 4923 start && i == 0); 4924 mutex_unlock(&pit->pit_state.lock); 4925 return 0; 4926 } 4927 4928 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 4929 struct kvm_reinject_control *control) 4930 { 4931 struct kvm_pit *pit = kvm->arch.vpit; 4932 4933 /* pit->pit_state.lock was overloaded to prevent userspace from getting 4934 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 4935 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 4936 */ 4937 mutex_lock(&pit->pit_state.lock); 4938 kvm_pit_set_reinject(pit, control->pit_reinject); 4939 mutex_unlock(&pit->pit_state.lock); 4940 4941 return 0; 4942 } 4943 4944 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 4945 { 4946 /* 4947 * Flush potentially hardware-cached dirty pages to dirty_bitmap. 4948 */ 4949 if (kvm_x86_ops.flush_log_dirty) 4950 kvm_x86_ops.flush_log_dirty(kvm); 4951 } 4952 4953 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 4954 bool line_status) 4955 { 4956 if (!irqchip_in_kernel(kvm)) 4957 return -ENXIO; 4958 4959 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 4960 irq_event->irq, irq_event->level, 4961 line_status); 4962 return 0; 4963 } 4964 4965 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4966 struct kvm_enable_cap *cap) 4967 { 4968 int r; 4969 4970 if (cap->flags) 4971 return -EINVAL; 4972 4973 switch (cap->cap) { 4974 case KVM_CAP_DISABLE_QUIRKS: 4975 kvm->arch.disabled_quirks = cap->args[0]; 4976 r = 0; 4977 break; 4978 case KVM_CAP_SPLIT_IRQCHIP: { 4979 mutex_lock(&kvm->lock); 4980 r = -EINVAL; 4981 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 4982 goto split_irqchip_unlock; 4983 r = -EEXIST; 4984 if (irqchip_in_kernel(kvm)) 4985 goto split_irqchip_unlock; 4986 if (kvm->created_vcpus) 4987 goto split_irqchip_unlock; 4988 r = kvm_setup_empty_irq_routing(kvm); 4989 if (r) 4990 goto split_irqchip_unlock; 4991 /* Pairs with irqchip_in_kernel. */ 4992 smp_wmb(); 4993 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 4994 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 4995 r = 0; 4996 split_irqchip_unlock: 4997 mutex_unlock(&kvm->lock); 4998 break; 4999 } 5000 case KVM_CAP_X2APIC_API: 5001 r = -EINVAL; 5002 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 5003 break; 5004 5005 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 5006 kvm->arch.x2apic_format = true; 5007 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 5008 kvm->arch.x2apic_broadcast_quirk_disabled = true; 5009 5010 r = 0; 5011 break; 5012 case KVM_CAP_X86_DISABLE_EXITS: 5013 r = -EINVAL; 5014 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 5015 break; 5016 5017 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 5018 kvm_can_mwait_in_guest()) 5019 kvm->arch.mwait_in_guest = true; 5020 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 5021 kvm->arch.hlt_in_guest = true; 5022 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 5023 kvm->arch.pause_in_guest = true; 5024 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 5025 kvm->arch.cstate_in_guest = true; 5026 r = 0; 5027 break; 5028 case KVM_CAP_MSR_PLATFORM_INFO: 5029 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 5030 r = 0; 5031 break; 5032 case KVM_CAP_EXCEPTION_PAYLOAD: 5033 kvm->arch.exception_payload_enabled = cap->args[0]; 5034 r = 0; 5035 break; 5036 default: 5037 r = -EINVAL; 5038 break; 5039 } 5040 return r; 5041 } 5042 5043 long kvm_arch_vm_ioctl(struct file *filp, 5044 unsigned int ioctl, unsigned long arg) 5045 { 5046 struct kvm *kvm = filp->private_data; 5047 void __user *argp = (void __user *)arg; 5048 int r = -ENOTTY; 5049 /* 5050 * This union makes it completely explicit to gcc-3.x 5051 * that these two variables' stack usage should be 5052 * combined, not added together. 5053 */ 5054 union { 5055 struct kvm_pit_state ps; 5056 struct kvm_pit_state2 ps2; 5057 struct kvm_pit_config pit_config; 5058 } u; 5059 5060 switch (ioctl) { 5061 case KVM_SET_TSS_ADDR: 5062 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 5063 break; 5064 case KVM_SET_IDENTITY_MAP_ADDR: { 5065 u64 ident_addr; 5066 5067 mutex_lock(&kvm->lock); 5068 r = -EINVAL; 5069 if (kvm->created_vcpus) 5070 goto set_identity_unlock; 5071 r = -EFAULT; 5072 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 5073 goto set_identity_unlock; 5074 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 5075 set_identity_unlock: 5076 mutex_unlock(&kvm->lock); 5077 break; 5078 } 5079 case KVM_SET_NR_MMU_PAGES: 5080 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 5081 break; 5082 case KVM_GET_NR_MMU_PAGES: 5083 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 5084 break; 5085 case KVM_CREATE_IRQCHIP: { 5086 mutex_lock(&kvm->lock); 5087 5088 r = -EEXIST; 5089 if (irqchip_in_kernel(kvm)) 5090 goto create_irqchip_unlock; 5091 5092 r = -EINVAL; 5093 if (kvm->created_vcpus) 5094 goto create_irqchip_unlock; 5095 5096 r = kvm_pic_init(kvm); 5097 if (r) 5098 goto create_irqchip_unlock; 5099 5100 r = kvm_ioapic_init(kvm); 5101 if (r) { 5102 kvm_pic_destroy(kvm); 5103 goto create_irqchip_unlock; 5104 } 5105 5106 r = kvm_setup_default_irq_routing(kvm); 5107 if (r) { 5108 kvm_ioapic_destroy(kvm); 5109 kvm_pic_destroy(kvm); 5110 goto create_irqchip_unlock; 5111 } 5112 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 5113 smp_wmb(); 5114 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 5115 create_irqchip_unlock: 5116 mutex_unlock(&kvm->lock); 5117 break; 5118 } 5119 case KVM_CREATE_PIT: 5120 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 5121 goto create_pit; 5122 case KVM_CREATE_PIT2: 5123 r = -EFAULT; 5124 if (copy_from_user(&u.pit_config, argp, 5125 sizeof(struct kvm_pit_config))) 5126 goto out; 5127 create_pit: 5128 mutex_lock(&kvm->lock); 5129 r = -EEXIST; 5130 if (kvm->arch.vpit) 5131 goto create_pit_unlock; 5132 r = -ENOMEM; 5133 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 5134 if (kvm->arch.vpit) 5135 r = 0; 5136 create_pit_unlock: 5137 mutex_unlock(&kvm->lock); 5138 break; 5139 case KVM_GET_IRQCHIP: { 5140 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 5141 struct kvm_irqchip *chip; 5142 5143 chip = memdup_user(argp, sizeof(*chip)); 5144 if (IS_ERR(chip)) { 5145 r = PTR_ERR(chip); 5146 goto out; 5147 } 5148 5149 r = -ENXIO; 5150 if (!irqchip_kernel(kvm)) 5151 goto get_irqchip_out; 5152 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 5153 if (r) 5154 goto get_irqchip_out; 5155 r = -EFAULT; 5156 if (copy_to_user(argp, chip, sizeof(*chip))) 5157 goto get_irqchip_out; 5158 r = 0; 5159 get_irqchip_out: 5160 kfree(chip); 5161 break; 5162 } 5163 case KVM_SET_IRQCHIP: { 5164 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 5165 struct kvm_irqchip *chip; 5166 5167 chip = memdup_user(argp, sizeof(*chip)); 5168 if (IS_ERR(chip)) { 5169 r = PTR_ERR(chip); 5170 goto out; 5171 } 5172 5173 r = -ENXIO; 5174 if (!irqchip_kernel(kvm)) 5175 goto set_irqchip_out; 5176 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 5177 set_irqchip_out: 5178 kfree(chip); 5179 break; 5180 } 5181 case KVM_GET_PIT: { 5182 r = -EFAULT; 5183 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 5184 goto out; 5185 r = -ENXIO; 5186 if (!kvm->arch.vpit) 5187 goto out; 5188 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 5189 if (r) 5190 goto out; 5191 r = -EFAULT; 5192 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 5193 goto out; 5194 r = 0; 5195 break; 5196 } 5197 case KVM_SET_PIT: { 5198 r = -EFAULT; 5199 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 5200 goto out; 5201 mutex_lock(&kvm->lock); 5202 r = -ENXIO; 5203 if (!kvm->arch.vpit) 5204 goto set_pit_out; 5205 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 5206 set_pit_out: 5207 mutex_unlock(&kvm->lock); 5208 break; 5209 } 5210 case KVM_GET_PIT2: { 5211 r = -ENXIO; 5212 if (!kvm->arch.vpit) 5213 goto out; 5214 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 5215 if (r) 5216 goto out; 5217 r = -EFAULT; 5218 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 5219 goto out; 5220 r = 0; 5221 break; 5222 } 5223 case KVM_SET_PIT2: { 5224 r = -EFAULT; 5225 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 5226 goto out; 5227 mutex_lock(&kvm->lock); 5228 r = -ENXIO; 5229 if (!kvm->arch.vpit) 5230 goto set_pit2_out; 5231 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 5232 set_pit2_out: 5233 mutex_unlock(&kvm->lock); 5234 break; 5235 } 5236 case KVM_REINJECT_CONTROL: { 5237 struct kvm_reinject_control control; 5238 r = -EFAULT; 5239 if (copy_from_user(&control, argp, sizeof(control))) 5240 goto out; 5241 r = -ENXIO; 5242 if (!kvm->arch.vpit) 5243 goto out; 5244 r = kvm_vm_ioctl_reinject(kvm, &control); 5245 break; 5246 } 5247 case KVM_SET_BOOT_CPU_ID: 5248 r = 0; 5249 mutex_lock(&kvm->lock); 5250 if (kvm->created_vcpus) 5251 r = -EBUSY; 5252 else 5253 kvm->arch.bsp_vcpu_id = arg; 5254 mutex_unlock(&kvm->lock); 5255 break; 5256 case KVM_XEN_HVM_CONFIG: { 5257 struct kvm_xen_hvm_config xhc; 5258 r = -EFAULT; 5259 if (copy_from_user(&xhc, argp, sizeof(xhc))) 5260 goto out; 5261 r = -EINVAL; 5262 if (xhc.flags) 5263 goto out; 5264 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc)); 5265 r = 0; 5266 break; 5267 } 5268 case KVM_SET_CLOCK: { 5269 struct kvm_clock_data user_ns; 5270 u64 now_ns; 5271 5272 r = -EFAULT; 5273 if (copy_from_user(&user_ns, argp, sizeof(user_ns))) 5274 goto out; 5275 5276 r = -EINVAL; 5277 if (user_ns.flags) 5278 goto out; 5279 5280 r = 0; 5281 /* 5282 * TODO: userspace has to take care of races with VCPU_RUN, so 5283 * kvm_gen_update_masterclock() can be cut down to locked 5284 * pvclock_update_vm_gtod_copy(). 5285 */ 5286 kvm_gen_update_masterclock(kvm); 5287 now_ns = get_kvmclock_ns(kvm); 5288 kvm->arch.kvmclock_offset += user_ns.clock - now_ns; 5289 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE); 5290 break; 5291 } 5292 case KVM_GET_CLOCK: { 5293 struct kvm_clock_data user_ns; 5294 u64 now_ns; 5295 5296 now_ns = get_kvmclock_ns(kvm); 5297 user_ns.clock = now_ns; 5298 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0; 5299 memset(&user_ns.pad, 0, sizeof(user_ns.pad)); 5300 5301 r = -EFAULT; 5302 if (copy_to_user(argp, &user_ns, sizeof(user_ns))) 5303 goto out; 5304 r = 0; 5305 break; 5306 } 5307 case KVM_MEMORY_ENCRYPT_OP: { 5308 r = -ENOTTY; 5309 if (kvm_x86_ops.mem_enc_op) 5310 r = kvm_x86_ops.mem_enc_op(kvm, argp); 5311 break; 5312 } 5313 case KVM_MEMORY_ENCRYPT_REG_REGION: { 5314 struct kvm_enc_region region; 5315 5316 r = -EFAULT; 5317 if (copy_from_user(®ion, argp, sizeof(region))) 5318 goto out; 5319 5320 r = -ENOTTY; 5321 if (kvm_x86_ops.mem_enc_reg_region) 5322 r = kvm_x86_ops.mem_enc_reg_region(kvm, ®ion); 5323 break; 5324 } 5325 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 5326 struct kvm_enc_region region; 5327 5328 r = -EFAULT; 5329 if (copy_from_user(®ion, argp, sizeof(region))) 5330 goto out; 5331 5332 r = -ENOTTY; 5333 if (kvm_x86_ops.mem_enc_unreg_region) 5334 r = kvm_x86_ops.mem_enc_unreg_region(kvm, ®ion); 5335 break; 5336 } 5337 case KVM_HYPERV_EVENTFD: { 5338 struct kvm_hyperv_eventfd hvevfd; 5339 5340 r = -EFAULT; 5341 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 5342 goto out; 5343 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 5344 break; 5345 } 5346 case KVM_SET_PMU_EVENT_FILTER: 5347 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 5348 break; 5349 default: 5350 r = -ENOTTY; 5351 } 5352 out: 5353 return r; 5354 } 5355 5356 static void kvm_init_msr_list(void) 5357 { 5358 struct x86_pmu_capability x86_pmu; 5359 u32 dummy[2]; 5360 unsigned i; 5361 5362 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4, 5363 "Please update the fixed PMCs in msrs_to_saved_all[]"); 5364 5365 perf_get_x86_pmu_capability(&x86_pmu); 5366 5367 num_msrs_to_save = 0; 5368 num_emulated_msrs = 0; 5369 num_msr_based_features = 0; 5370 5371 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) { 5372 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0) 5373 continue; 5374 5375 /* 5376 * Even MSRs that are valid in the host may not be exposed 5377 * to the guests in some cases. 5378 */ 5379 switch (msrs_to_save_all[i]) { 5380 case MSR_IA32_BNDCFGS: 5381 if (!kvm_mpx_supported()) 5382 continue; 5383 break; 5384 case MSR_TSC_AUX: 5385 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) 5386 continue; 5387 break; 5388 case MSR_IA32_UMWAIT_CONTROL: 5389 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 5390 continue; 5391 break; 5392 case MSR_IA32_RTIT_CTL: 5393 case MSR_IA32_RTIT_STATUS: 5394 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 5395 continue; 5396 break; 5397 case MSR_IA32_RTIT_CR3_MATCH: 5398 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 5399 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 5400 continue; 5401 break; 5402 case MSR_IA32_RTIT_OUTPUT_BASE: 5403 case MSR_IA32_RTIT_OUTPUT_MASK: 5404 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 5405 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 5406 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 5407 continue; 5408 break; 5409 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 5410 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 5411 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >= 5412 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2) 5413 continue; 5414 break; 5415 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17: 5416 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >= 5417 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp)) 5418 continue; 5419 break; 5420 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17: 5421 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >= 5422 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp)) 5423 continue; 5424 break; 5425 default: 5426 break; 5427 } 5428 5429 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i]; 5430 } 5431 5432 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 5433 if (!kvm_x86_ops.has_emulated_msr(emulated_msrs_all[i])) 5434 continue; 5435 5436 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 5437 } 5438 5439 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) { 5440 struct kvm_msr_entry msr; 5441 5442 msr.index = msr_based_features_all[i]; 5443 if (kvm_get_msr_feature(&msr)) 5444 continue; 5445 5446 msr_based_features[num_msr_based_features++] = msr_based_features_all[i]; 5447 } 5448 } 5449 5450 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 5451 const void *v) 5452 { 5453 int handled = 0; 5454 int n; 5455 5456 do { 5457 n = min(len, 8); 5458 if (!(lapic_in_kernel(vcpu) && 5459 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 5460 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 5461 break; 5462 handled += n; 5463 addr += n; 5464 len -= n; 5465 v += n; 5466 } while (len); 5467 5468 return handled; 5469 } 5470 5471 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 5472 { 5473 int handled = 0; 5474 int n; 5475 5476 do { 5477 n = min(len, 8); 5478 if (!(lapic_in_kernel(vcpu) && 5479 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 5480 addr, n, v)) 5481 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 5482 break; 5483 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 5484 handled += n; 5485 addr += n; 5486 len -= n; 5487 v += n; 5488 } while (len); 5489 5490 return handled; 5491 } 5492 5493 static void kvm_set_segment(struct kvm_vcpu *vcpu, 5494 struct kvm_segment *var, int seg) 5495 { 5496 kvm_x86_ops.set_segment(vcpu, var, seg); 5497 } 5498 5499 void kvm_get_segment(struct kvm_vcpu *vcpu, 5500 struct kvm_segment *var, int seg) 5501 { 5502 kvm_x86_ops.get_segment(vcpu, var, seg); 5503 } 5504 5505 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 5506 struct x86_exception *exception) 5507 { 5508 gpa_t t_gpa; 5509 5510 BUG_ON(!mmu_is_nested(vcpu)); 5511 5512 /* NPT walks are always user-walks */ 5513 access |= PFERR_USER_MASK; 5514 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception); 5515 5516 return t_gpa; 5517 } 5518 5519 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 5520 struct x86_exception *exception) 5521 { 5522 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5523 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5524 } 5525 5526 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 5527 struct x86_exception *exception) 5528 { 5529 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5530 access |= PFERR_FETCH_MASK; 5531 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5532 } 5533 5534 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 5535 struct x86_exception *exception) 5536 { 5537 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5538 access |= PFERR_WRITE_MASK; 5539 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5540 } 5541 5542 /* uses this to access any guest's mapped memory without checking CPL */ 5543 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 5544 struct x86_exception *exception) 5545 { 5546 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); 5547 } 5548 5549 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 5550 struct kvm_vcpu *vcpu, u32 access, 5551 struct x86_exception *exception) 5552 { 5553 void *data = val; 5554 int r = X86EMUL_CONTINUE; 5555 5556 while (bytes) { 5557 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, 5558 exception); 5559 unsigned offset = addr & (PAGE_SIZE-1); 5560 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 5561 int ret; 5562 5563 if (gpa == UNMAPPED_GVA) 5564 return X86EMUL_PROPAGATE_FAULT; 5565 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 5566 offset, toread); 5567 if (ret < 0) { 5568 r = X86EMUL_IO_NEEDED; 5569 goto out; 5570 } 5571 5572 bytes -= toread; 5573 data += toread; 5574 addr += toread; 5575 } 5576 out: 5577 return r; 5578 } 5579 5580 /* used for instruction fetching */ 5581 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 5582 gva_t addr, void *val, unsigned int bytes, 5583 struct x86_exception *exception) 5584 { 5585 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5586 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5587 unsigned offset; 5588 int ret; 5589 5590 /* Inline kvm_read_guest_virt_helper for speed. */ 5591 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK, 5592 exception); 5593 if (unlikely(gpa == UNMAPPED_GVA)) 5594 return X86EMUL_PROPAGATE_FAULT; 5595 5596 offset = addr & (PAGE_SIZE-1); 5597 if (WARN_ON(offset + bytes > PAGE_SIZE)) 5598 bytes = (unsigned)PAGE_SIZE - offset; 5599 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 5600 offset, bytes); 5601 if (unlikely(ret < 0)) 5602 return X86EMUL_IO_NEEDED; 5603 5604 return X86EMUL_CONTINUE; 5605 } 5606 5607 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 5608 gva_t addr, void *val, unsigned int bytes, 5609 struct x86_exception *exception) 5610 { 5611 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5612 5613 /* 5614 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 5615 * is returned, but our callers are not ready for that and they blindly 5616 * call kvm_inject_page_fault. Ensure that they at least do not leak 5617 * uninitialized kernel stack memory into cr2 and error code. 5618 */ 5619 memset(exception, 0, sizeof(*exception)); 5620 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 5621 exception); 5622 } 5623 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 5624 5625 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 5626 gva_t addr, void *val, unsigned int bytes, 5627 struct x86_exception *exception, bool system) 5628 { 5629 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5630 u32 access = 0; 5631 5632 if (!system && kvm_x86_ops.get_cpl(vcpu) == 3) 5633 access |= PFERR_USER_MASK; 5634 5635 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 5636 } 5637 5638 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, 5639 unsigned long addr, void *val, unsigned int bytes) 5640 { 5641 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5642 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes); 5643 5644 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE; 5645 } 5646 5647 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 5648 struct kvm_vcpu *vcpu, u32 access, 5649 struct x86_exception *exception) 5650 { 5651 void *data = val; 5652 int r = X86EMUL_CONTINUE; 5653 5654 while (bytes) { 5655 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, 5656 access, 5657 exception); 5658 unsigned offset = addr & (PAGE_SIZE-1); 5659 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 5660 int ret; 5661 5662 if (gpa == UNMAPPED_GVA) 5663 return X86EMUL_PROPAGATE_FAULT; 5664 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 5665 if (ret < 0) { 5666 r = X86EMUL_IO_NEEDED; 5667 goto out; 5668 } 5669 5670 bytes -= towrite; 5671 data += towrite; 5672 addr += towrite; 5673 } 5674 out: 5675 return r; 5676 } 5677 5678 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 5679 unsigned int bytes, struct x86_exception *exception, 5680 bool system) 5681 { 5682 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5683 u32 access = PFERR_WRITE_MASK; 5684 5685 if (!system && kvm_x86_ops.get_cpl(vcpu) == 3) 5686 access |= PFERR_USER_MASK; 5687 5688 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 5689 access, exception); 5690 } 5691 5692 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 5693 unsigned int bytes, struct x86_exception *exception) 5694 { 5695 /* kvm_write_guest_virt_system can pull in tons of pages. */ 5696 vcpu->arch.l1tf_flush_l1d = true; 5697 5698 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 5699 PFERR_WRITE_MASK, exception); 5700 } 5701 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 5702 5703 int handle_ud(struct kvm_vcpu *vcpu) 5704 { 5705 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 5706 int emul_type = EMULTYPE_TRAP_UD; 5707 char sig[5]; /* ud2; .ascii "kvm" */ 5708 struct x86_exception e; 5709 5710 if (force_emulation_prefix && 5711 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 5712 sig, sizeof(sig), &e) == 0 && 5713 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 5714 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 5715 emul_type = EMULTYPE_TRAP_UD_FORCED; 5716 } 5717 5718 return kvm_emulate_instruction(vcpu, emul_type); 5719 } 5720 EXPORT_SYMBOL_GPL(handle_ud); 5721 5722 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 5723 gpa_t gpa, bool write) 5724 { 5725 /* For APIC access vmexit */ 5726 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 5727 return 1; 5728 5729 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 5730 trace_vcpu_match_mmio(gva, gpa, write, true); 5731 return 1; 5732 } 5733 5734 return 0; 5735 } 5736 5737 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 5738 gpa_t *gpa, struct x86_exception *exception, 5739 bool write) 5740 { 5741 u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) 5742 | (write ? PFERR_WRITE_MASK : 0); 5743 5744 /* 5745 * currently PKRU is only applied to ept enabled guest so 5746 * there is no pkey in EPT page table for L1 guest or EPT 5747 * shadow page table for L2 guest. 5748 */ 5749 if (vcpu_match_mmio_gva(vcpu, gva) 5750 && !permission_fault(vcpu, vcpu->arch.walk_mmu, 5751 vcpu->arch.mmio_access, 0, access)) { 5752 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 5753 (gva & (PAGE_SIZE - 1)); 5754 trace_vcpu_match_mmio(gva, *gpa, write, false); 5755 return 1; 5756 } 5757 5758 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5759 5760 if (*gpa == UNMAPPED_GVA) 5761 return -1; 5762 5763 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 5764 } 5765 5766 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 5767 const void *val, int bytes) 5768 { 5769 int ret; 5770 5771 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 5772 if (ret < 0) 5773 return 0; 5774 kvm_page_track_write(vcpu, gpa, val, bytes); 5775 return 1; 5776 } 5777 5778 struct read_write_emulator_ops { 5779 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 5780 int bytes); 5781 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 5782 void *val, int bytes); 5783 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 5784 int bytes, void *val); 5785 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 5786 void *val, int bytes); 5787 bool write; 5788 }; 5789 5790 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 5791 { 5792 if (vcpu->mmio_read_completed) { 5793 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 5794 vcpu->mmio_fragments[0].gpa, val); 5795 vcpu->mmio_read_completed = 0; 5796 return 1; 5797 } 5798 5799 return 0; 5800 } 5801 5802 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 5803 void *val, int bytes) 5804 { 5805 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 5806 } 5807 5808 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 5809 void *val, int bytes) 5810 { 5811 return emulator_write_phys(vcpu, gpa, val, bytes); 5812 } 5813 5814 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 5815 { 5816 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 5817 return vcpu_mmio_write(vcpu, gpa, bytes, val); 5818 } 5819 5820 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 5821 void *val, int bytes) 5822 { 5823 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 5824 return X86EMUL_IO_NEEDED; 5825 } 5826 5827 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 5828 void *val, int bytes) 5829 { 5830 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 5831 5832 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 5833 return X86EMUL_CONTINUE; 5834 } 5835 5836 static const struct read_write_emulator_ops read_emultor = { 5837 .read_write_prepare = read_prepare, 5838 .read_write_emulate = read_emulate, 5839 .read_write_mmio = vcpu_mmio_read, 5840 .read_write_exit_mmio = read_exit_mmio, 5841 }; 5842 5843 static const struct read_write_emulator_ops write_emultor = { 5844 .read_write_emulate = write_emulate, 5845 .read_write_mmio = write_mmio, 5846 .read_write_exit_mmio = write_exit_mmio, 5847 .write = true, 5848 }; 5849 5850 static int emulator_read_write_onepage(unsigned long addr, void *val, 5851 unsigned int bytes, 5852 struct x86_exception *exception, 5853 struct kvm_vcpu *vcpu, 5854 const struct read_write_emulator_ops *ops) 5855 { 5856 gpa_t gpa; 5857 int handled, ret; 5858 bool write = ops->write; 5859 struct kvm_mmio_fragment *frag; 5860 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 5861 5862 /* 5863 * If the exit was due to a NPF we may already have a GPA. 5864 * If the GPA is present, use it to avoid the GVA to GPA table walk. 5865 * Note, this cannot be used on string operations since string 5866 * operation using rep will only have the initial GPA from the NPF 5867 * occurred. 5868 */ 5869 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 5870 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 5871 gpa = ctxt->gpa_val; 5872 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 5873 } else { 5874 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 5875 if (ret < 0) 5876 return X86EMUL_PROPAGATE_FAULT; 5877 } 5878 5879 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 5880 return X86EMUL_CONTINUE; 5881 5882 /* 5883 * Is this MMIO handled locally? 5884 */ 5885 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 5886 if (handled == bytes) 5887 return X86EMUL_CONTINUE; 5888 5889 gpa += handled; 5890 bytes -= handled; 5891 val += handled; 5892 5893 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 5894 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 5895 frag->gpa = gpa; 5896 frag->data = val; 5897 frag->len = bytes; 5898 return X86EMUL_CONTINUE; 5899 } 5900 5901 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 5902 unsigned long addr, 5903 void *val, unsigned int bytes, 5904 struct x86_exception *exception, 5905 const struct read_write_emulator_ops *ops) 5906 { 5907 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5908 gpa_t gpa; 5909 int rc; 5910 5911 if (ops->read_write_prepare && 5912 ops->read_write_prepare(vcpu, val, bytes)) 5913 return X86EMUL_CONTINUE; 5914 5915 vcpu->mmio_nr_fragments = 0; 5916 5917 /* Crossing a page boundary? */ 5918 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 5919 int now; 5920 5921 now = -addr & ~PAGE_MASK; 5922 rc = emulator_read_write_onepage(addr, val, now, exception, 5923 vcpu, ops); 5924 5925 if (rc != X86EMUL_CONTINUE) 5926 return rc; 5927 addr += now; 5928 if (ctxt->mode != X86EMUL_MODE_PROT64) 5929 addr = (u32)addr; 5930 val += now; 5931 bytes -= now; 5932 } 5933 5934 rc = emulator_read_write_onepage(addr, val, bytes, exception, 5935 vcpu, ops); 5936 if (rc != X86EMUL_CONTINUE) 5937 return rc; 5938 5939 if (!vcpu->mmio_nr_fragments) 5940 return rc; 5941 5942 gpa = vcpu->mmio_fragments[0].gpa; 5943 5944 vcpu->mmio_needed = 1; 5945 vcpu->mmio_cur_fragment = 0; 5946 5947 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 5948 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 5949 vcpu->run->exit_reason = KVM_EXIT_MMIO; 5950 vcpu->run->mmio.phys_addr = gpa; 5951 5952 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 5953 } 5954 5955 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 5956 unsigned long addr, 5957 void *val, 5958 unsigned int bytes, 5959 struct x86_exception *exception) 5960 { 5961 return emulator_read_write(ctxt, addr, val, bytes, 5962 exception, &read_emultor); 5963 } 5964 5965 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 5966 unsigned long addr, 5967 const void *val, 5968 unsigned int bytes, 5969 struct x86_exception *exception) 5970 { 5971 return emulator_read_write(ctxt, addr, (void *)val, bytes, 5972 exception, &write_emultor); 5973 } 5974 5975 #define CMPXCHG_TYPE(t, ptr, old, new) \ 5976 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 5977 5978 #ifdef CONFIG_X86_64 5979 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 5980 #else 5981 # define CMPXCHG64(ptr, old, new) \ 5982 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 5983 #endif 5984 5985 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 5986 unsigned long addr, 5987 const void *old, 5988 const void *new, 5989 unsigned int bytes, 5990 struct x86_exception *exception) 5991 { 5992 struct kvm_host_map map; 5993 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5994 u64 page_line_mask; 5995 gpa_t gpa; 5996 char *kaddr; 5997 bool exchanged; 5998 5999 /* guests cmpxchg8b have to be emulated atomically */ 6000 if (bytes > 8 || (bytes & (bytes - 1))) 6001 goto emul_write; 6002 6003 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 6004 6005 if (gpa == UNMAPPED_GVA || 6006 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 6007 goto emul_write; 6008 6009 /* 6010 * Emulate the atomic as a straight write to avoid #AC if SLD is 6011 * enabled in the host and the access splits a cache line. 6012 */ 6013 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 6014 page_line_mask = ~(cache_line_size() - 1); 6015 else 6016 page_line_mask = PAGE_MASK; 6017 6018 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 6019 goto emul_write; 6020 6021 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map)) 6022 goto emul_write; 6023 6024 kaddr = map.hva + offset_in_page(gpa); 6025 6026 switch (bytes) { 6027 case 1: 6028 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 6029 break; 6030 case 2: 6031 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 6032 break; 6033 case 4: 6034 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 6035 break; 6036 case 8: 6037 exchanged = CMPXCHG64(kaddr, old, new); 6038 break; 6039 default: 6040 BUG(); 6041 } 6042 6043 kvm_vcpu_unmap(vcpu, &map, true); 6044 6045 if (!exchanged) 6046 return X86EMUL_CMPXCHG_FAILED; 6047 6048 kvm_page_track_write(vcpu, gpa, new, bytes); 6049 6050 return X86EMUL_CONTINUE; 6051 6052 emul_write: 6053 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 6054 6055 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 6056 } 6057 6058 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 6059 { 6060 int r = 0, i; 6061 6062 for (i = 0; i < vcpu->arch.pio.count; i++) { 6063 if (vcpu->arch.pio.in) 6064 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port, 6065 vcpu->arch.pio.size, pd); 6066 else 6067 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, 6068 vcpu->arch.pio.port, vcpu->arch.pio.size, 6069 pd); 6070 if (r) 6071 break; 6072 pd += vcpu->arch.pio.size; 6073 } 6074 return r; 6075 } 6076 6077 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 6078 unsigned short port, void *val, 6079 unsigned int count, bool in) 6080 { 6081 vcpu->arch.pio.port = port; 6082 vcpu->arch.pio.in = in; 6083 vcpu->arch.pio.count = count; 6084 vcpu->arch.pio.size = size; 6085 6086 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { 6087 vcpu->arch.pio.count = 0; 6088 return 1; 6089 } 6090 6091 vcpu->run->exit_reason = KVM_EXIT_IO; 6092 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 6093 vcpu->run->io.size = size; 6094 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 6095 vcpu->run->io.count = count; 6096 vcpu->run->io.port = port; 6097 6098 return 0; 6099 } 6100 6101 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 6102 unsigned short port, void *val, unsigned int count) 6103 { 6104 int ret; 6105 6106 if (vcpu->arch.pio.count) 6107 goto data_avail; 6108 6109 memset(vcpu->arch.pio_data, 0, size * count); 6110 6111 ret = emulator_pio_in_out(vcpu, size, port, val, count, true); 6112 if (ret) { 6113 data_avail: 6114 memcpy(val, vcpu->arch.pio_data, size * count); 6115 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data); 6116 vcpu->arch.pio.count = 0; 6117 return 1; 6118 } 6119 6120 return 0; 6121 } 6122 6123 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 6124 int size, unsigned short port, void *val, 6125 unsigned int count) 6126 { 6127 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count); 6128 6129 } 6130 6131 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 6132 unsigned short port, const void *val, 6133 unsigned int count) 6134 { 6135 memcpy(vcpu->arch.pio_data, val, size * count); 6136 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data); 6137 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 6138 } 6139 6140 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 6141 int size, unsigned short port, 6142 const void *val, unsigned int count) 6143 { 6144 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 6145 } 6146 6147 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 6148 { 6149 return kvm_x86_ops.get_segment_base(vcpu, seg); 6150 } 6151 6152 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 6153 { 6154 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 6155 } 6156 6157 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 6158 { 6159 if (!need_emulate_wbinvd(vcpu)) 6160 return X86EMUL_CONTINUE; 6161 6162 if (kvm_x86_ops.has_wbinvd_exit()) { 6163 int cpu = get_cpu(); 6164 6165 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 6166 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, 6167 wbinvd_ipi, NULL, 1); 6168 put_cpu(); 6169 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 6170 } else 6171 wbinvd(); 6172 return X86EMUL_CONTINUE; 6173 } 6174 6175 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 6176 { 6177 kvm_emulate_wbinvd_noskip(vcpu); 6178 return kvm_skip_emulated_instruction(vcpu); 6179 } 6180 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 6181 6182 6183 6184 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 6185 { 6186 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 6187 } 6188 6189 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 6190 unsigned long *dest) 6191 { 6192 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 6193 } 6194 6195 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 6196 unsigned long value) 6197 { 6198 6199 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 6200 } 6201 6202 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 6203 { 6204 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 6205 } 6206 6207 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 6208 { 6209 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6210 unsigned long value; 6211 6212 switch (cr) { 6213 case 0: 6214 value = kvm_read_cr0(vcpu); 6215 break; 6216 case 2: 6217 value = vcpu->arch.cr2; 6218 break; 6219 case 3: 6220 value = kvm_read_cr3(vcpu); 6221 break; 6222 case 4: 6223 value = kvm_read_cr4(vcpu); 6224 break; 6225 case 8: 6226 value = kvm_get_cr8(vcpu); 6227 break; 6228 default: 6229 kvm_err("%s: unexpected cr %u\n", __func__, cr); 6230 return 0; 6231 } 6232 6233 return value; 6234 } 6235 6236 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 6237 { 6238 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6239 int res = 0; 6240 6241 switch (cr) { 6242 case 0: 6243 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 6244 break; 6245 case 2: 6246 vcpu->arch.cr2 = val; 6247 break; 6248 case 3: 6249 res = kvm_set_cr3(vcpu, val); 6250 break; 6251 case 4: 6252 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 6253 break; 6254 case 8: 6255 res = kvm_set_cr8(vcpu, val); 6256 break; 6257 default: 6258 kvm_err("%s: unexpected cr %u\n", __func__, cr); 6259 res = -1; 6260 } 6261 6262 return res; 6263 } 6264 6265 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 6266 { 6267 return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt)); 6268 } 6269 6270 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6271 { 6272 kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt); 6273 } 6274 6275 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6276 { 6277 kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt); 6278 } 6279 6280 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6281 { 6282 kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt); 6283 } 6284 6285 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6286 { 6287 kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt); 6288 } 6289 6290 static unsigned long emulator_get_cached_segment_base( 6291 struct x86_emulate_ctxt *ctxt, int seg) 6292 { 6293 return get_segment_base(emul_to_vcpu(ctxt), seg); 6294 } 6295 6296 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 6297 struct desc_struct *desc, u32 *base3, 6298 int seg) 6299 { 6300 struct kvm_segment var; 6301 6302 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 6303 *selector = var.selector; 6304 6305 if (var.unusable) { 6306 memset(desc, 0, sizeof(*desc)); 6307 if (base3) 6308 *base3 = 0; 6309 return false; 6310 } 6311 6312 if (var.g) 6313 var.limit >>= 12; 6314 set_desc_limit(desc, var.limit); 6315 set_desc_base(desc, (unsigned long)var.base); 6316 #ifdef CONFIG_X86_64 6317 if (base3) 6318 *base3 = var.base >> 32; 6319 #endif 6320 desc->type = var.type; 6321 desc->s = var.s; 6322 desc->dpl = var.dpl; 6323 desc->p = var.present; 6324 desc->avl = var.avl; 6325 desc->l = var.l; 6326 desc->d = var.db; 6327 desc->g = var.g; 6328 6329 return true; 6330 } 6331 6332 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 6333 struct desc_struct *desc, u32 base3, 6334 int seg) 6335 { 6336 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6337 struct kvm_segment var; 6338 6339 var.selector = selector; 6340 var.base = get_desc_base(desc); 6341 #ifdef CONFIG_X86_64 6342 var.base |= ((u64)base3) << 32; 6343 #endif 6344 var.limit = get_desc_limit(desc); 6345 if (desc->g) 6346 var.limit = (var.limit << 12) | 0xfff; 6347 var.type = desc->type; 6348 var.dpl = desc->dpl; 6349 var.db = desc->d; 6350 var.s = desc->s; 6351 var.l = desc->l; 6352 var.g = desc->g; 6353 var.avl = desc->avl; 6354 var.present = desc->p; 6355 var.unusable = !var.present; 6356 var.padding = 0; 6357 6358 kvm_set_segment(vcpu, &var, seg); 6359 return; 6360 } 6361 6362 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 6363 u32 msr_index, u64 *pdata) 6364 { 6365 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 6366 } 6367 6368 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 6369 u32 msr_index, u64 data) 6370 { 6371 return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data); 6372 } 6373 6374 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt) 6375 { 6376 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6377 6378 return vcpu->arch.smbase; 6379 } 6380 6381 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase) 6382 { 6383 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6384 6385 vcpu->arch.smbase = smbase; 6386 } 6387 6388 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 6389 u32 pmc) 6390 { 6391 return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc); 6392 } 6393 6394 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 6395 u32 pmc, u64 *pdata) 6396 { 6397 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 6398 } 6399 6400 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 6401 { 6402 emul_to_vcpu(ctxt)->arch.halt_request = 1; 6403 } 6404 6405 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 6406 struct x86_instruction_info *info, 6407 enum x86_intercept_stage stage) 6408 { 6409 return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage, 6410 &ctxt->exception); 6411 } 6412 6413 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 6414 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 6415 bool exact_only) 6416 { 6417 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 6418 } 6419 6420 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt) 6421 { 6422 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM); 6423 } 6424 6425 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 6426 { 6427 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 6428 } 6429 6430 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 6431 { 6432 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 6433 } 6434 6435 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 6436 { 6437 return kvm_register_read(emul_to_vcpu(ctxt), reg); 6438 } 6439 6440 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 6441 { 6442 kvm_register_write(emul_to_vcpu(ctxt), reg, val); 6443 } 6444 6445 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 6446 { 6447 kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked); 6448 } 6449 6450 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 6451 { 6452 return emul_to_vcpu(ctxt)->arch.hflags; 6453 } 6454 6455 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags) 6456 { 6457 emul_to_vcpu(ctxt)->arch.hflags = emul_flags; 6458 } 6459 6460 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, 6461 const char *smstate) 6462 { 6463 return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate); 6464 } 6465 6466 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt) 6467 { 6468 kvm_smm_changed(emul_to_vcpu(ctxt)); 6469 } 6470 6471 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 6472 { 6473 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 6474 } 6475 6476 static const struct x86_emulate_ops emulate_ops = { 6477 .read_gpr = emulator_read_gpr, 6478 .write_gpr = emulator_write_gpr, 6479 .read_std = emulator_read_std, 6480 .write_std = emulator_write_std, 6481 .read_phys = kvm_read_guest_phys_system, 6482 .fetch = kvm_fetch_guest_virt, 6483 .read_emulated = emulator_read_emulated, 6484 .write_emulated = emulator_write_emulated, 6485 .cmpxchg_emulated = emulator_cmpxchg_emulated, 6486 .invlpg = emulator_invlpg, 6487 .pio_in_emulated = emulator_pio_in_emulated, 6488 .pio_out_emulated = emulator_pio_out_emulated, 6489 .get_segment = emulator_get_segment, 6490 .set_segment = emulator_set_segment, 6491 .get_cached_segment_base = emulator_get_cached_segment_base, 6492 .get_gdt = emulator_get_gdt, 6493 .get_idt = emulator_get_idt, 6494 .set_gdt = emulator_set_gdt, 6495 .set_idt = emulator_set_idt, 6496 .get_cr = emulator_get_cr, 6497 .set_cr = emulator_set_cr, 6498 .cpl = emulator_get_cpl, 6499 .get_dr = emulator_get_dr, 6500 .set_dr = emulator_set_dr, 6501 .get_smbase = emulator_get_smbase, 6502 .set_smbase = emulator_set_smbase, 6503 .set_msr = emulator_set_msr, 6504 .get_msr = emulator_get_msr, 6505 .check_pmc = emulator_check_pmc, 6506 .read_pmc = emulator_read_pmc, 6507 .halt = emulator_halt, 6508 .wbinvd = emulator_wbinvd, 6509 .fix_hypercall = emulator_fix_hypercall, 6510 .intercept = emulator_intercept, 6511 .get_cpuid = emulator_get_cpuid, 6512 .guest_has_long_mode = emulator_guest_has_long_mode, 6513 .guest_has_movbe = emulator_guest_has_movbe, 6514 .guest_has_fxsr = emulator_guest_has_fxsr, 6515 .set_nmi_mask = emulator_set_nmi_mask, 6516 .get_hflags = emulator_get_hflags, 6517 .set_hflags = emulator_set_hflags, 6518 .pre_leave_smm = emulator_pre_leave_smm, 6519 .post_leave_smm = emulator_post_leave_smm, 6520 .set_xcr = emulator_set_xcr, 6521 }; 6522 6523 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 6524 { 6525 u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu); 6526 /* 6527 * an sti; sti; sequence only disable interrupts for the first 6528 * instruction. So, if the last instruction, be it emulated or 6529 * not, left the system with the INT_STI flag enabled, it 6530 * means that the last instruction is an sti. We should not 6531 * leave the flag on in this case. The same goes for mov ss 6532 */ 6533 if (int_shadow & mask) 6534 mask = 0; 6535 if (unlikely(int_shadow || mask)) { 6536 kvm_x86_ops.set_interrupt_shadow(vcpu, mask); 6537 if (!mask) 6538 kvm_make_request(KVM_REQ_EVENT, vcpu); 6539 } 6540 } 6541 6542 static bool inject_emulated_exception(struct kvm_vcpu *vcpu) 6543 { 6544 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 6545 if (ctxt->exception.vector == PF_VECTOR) 6546 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 6547 6548 if (ctxt->exception.error_code_valid) 6549 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 6550 ctxt->exception.error_code); 6551 else 6552 kvm_queue_exception(vcpu, ctxt->exception.vector); 6553 return false; 6554 } 6555 6556 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 6557 { 6558 struct x86_emulate_ctxt *ctxt; 6559 6560 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 6561 if (!ctxt) { 6562 pr_err("kvm: failed to allocate vcpu's emulator\n"); 6563 return NULL; 6564 } 6565 6566 ctxt->vcpu = vcpu; 6567 ctxt->ops = &emulate_ops; 6568 vcpu->arch.emulate_ctxt = ctxt; 6569 6570 return ctxt; 6571 } 6572 6573 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 6574 { 6575 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 6576 int cs_db, cs_l; 6577 6578 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 6579 6580 ctxt->gpa_available = false; 6581 ctxt->eflags = kvm_get_rflags(vcpu); 6582 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 6583 6584 ctxt->eip = kvm_rip_read(vcpu); 6585 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 6586 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 6587 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 6588 cs_db ? X86EMUL_MODE_PROT32 : 6589 X86EMUL_MODE_PROT16; 6590 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 6591 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK); 6592 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK); 6593 6594 init_decode_cache(ctxt); 6595 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 6596 } 6597 6598 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 6599 { 6600 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 6601 int ret; 6602 6603 init_emulate_ctxt(vcpu); 6604 6605 ctxt->op_bytes = 2; 6606 ctxt->ad_bytes = 2; 6607 ctxt->_eip = ctxt->eip + inc_eip; 6608 ret = emulate_int_real(ctxt, irq); 6609 6610 if (ret != X86EMUL_CONTINUE) { 6611 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 6612 } else { 6613 ctxt->eip = ctxt->_eip; 6614 kvm_rip_write(vcpu, ctxt->eip); 6615 kvm_set_rflags(vcpu, ctxt->eflags); 6616 } 6617 } 6618 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 6619 6620 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 6621 { 6622 ++vcpu->stat.insn_emulation_fail; 6623 trace_kvm_emulate_insn_failed(vcpu); 6624 6625 if (emulation_type & EMULTYPE_VMWARE_GP) { 6626 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 6627 return 1; 6628 } 6629 6630 if (emulation_type & EMULTYPE_SKIP) { 6631 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6632 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 6633 vcpu->run->internal.ndata = 0; 6634 return 0; 6635 } 6636 6637 kvm_queue_exception(vcpu, UD_VECTOR); 6638 6639 if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) { 6640 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6641 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 6642 vcpu->run->internal.ndata = 0; 6643 return 0; 6644 } 6645 6646 return 1; 6647 } 6648 6649 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 6650 bool write_fault_to_shadow_pgtable, 6651 int emulation_type) 6652 { 6653 gpa_t gpa = cr2_or_gpa; 6654 kvm_pfn_t pfn; 6655 6656 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 6657 return false; 6658 6659 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 6660 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 6661 return false; 6662 6663 if (!vcpu->arch.mmu->direct_map) { 6664 /* 6665 * Write permission should be allowed since only 6666 * write access need to be emulated. 6667 */ 6668 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 6669 6670 /* 6671 * If the mapping is invalid in guest, let cpu retry 6672 * it to generate fault. 6673 */ 6674 if (gpa == UNMAPPED_GVA) 6675 return true; 6676 } 6677 6678 /* 6679 * Do not retry the unhandleable instruction if it faults on the 6680 * readonly host memory, otherwise it will goto a infinite loop: 6681 * retry instruction -> write #PF -> emulation fail -> retry 6682 * instruction -> ... 6683 */ 6684 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 6685 6686 /* 6687 * If the instruction failed on the error pfn, it can not be fixed, 6688 * report the error to userspace. 6689 */ 6690 if (is_error_noslot_pfn(pfn)) 6691 return false; 6692 6693 kvm_release_pfn_clean(pfn); 6694 6695 /* The instructions are well-emulated on direct mmu. */ 6696 if (vcpu->arch.mmu->direct_map) { 6697 unsigned int indirect_shadow_pages; 6698 6699 spin_lock(&vcpu->kvm->mmu_lock); 6700 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 6701 spin_unlock(&vcpu->kvm->mmu_lock); 6702 6703 if (indirect_shadow_pages) 6704 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 6705 6706 return true; 6707 } 6708 6709 /* 6710 * if emulation was due to access to shadowed page table 6711 * and it failed try to unshadow page and re-enter the 6712 * guest to let CPU execute the instruction. 6713 */ 6714 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 6715 6716 /* 6717 * If the access faults on its page table, it can not 6718 * be fixed by unprotecting shadow page and it should 6719 * be reported to userspace. 6720 */ 6721 return !write_fault_to_shadow_pgtable; 6722 } 6723 6724 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 6725 gpa_t cr2_or_gpa, int emulation_type) 6726 { 6727 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6728 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 6729 6730 last_retry_eip = vcpu->arch.last_retry_eip; 6731 last_retry_addr = vcpu->arch.last_retry_addr; 6732 6733 /* 6734 * If the emulation is caused by #PF and it is non-page_table 6735 * writing instruction, it means the VM-EXIT is caused by shadow 6736 * page protected, we can zap the shadow page and retry this 6737 * instruction directly. 6738 * 6739 * Note: if the guest uses a non-page-table modifying instruction 6740 * on the PDE that points to the instruction, then we will unmap 6741 * the instruction and go to an infinite loop. So, we cache the 6742 * last retried eip and the last fault address, if we meet the eip 6743 * and the address again, we can break out of the potential infinite 6744 * loop. 6745 */ 6746 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 6747 6748 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 6749 return false; 6750 6751 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 6752 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 6753 return false; 6754 6755 if (x86_page_table_writing_insn(ctxt)) 6756 return false; 6757 6758 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 6759 return false; 6760 6761 vcpu->arch.last_retry_eip = ctxt->eip; 6762 vcpu->arch.last_retry_addr = cr2_or_gpa; 6763 6764 if (!vcpu->arch.mmu->direct_map) 6765 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 6766 6767 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 6768 6769 return true; 6770 } 6771 6772 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 6773 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 6774 6775 static void kvm_smm_changed(struct kvm_vcpu *vcpu) 6776 { 6777 if (!(vcpu->arch.hflags & HF_SMM_MASK)) { 6778 /* This is a good place to trace that we are exiting SMM. */ 6779 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false); 6780 6781 /* Process a latched INIT or SMI, if any. */ 6782 kvm_make_request(KVM_REQ_EVENT, vcpu); 6783 } 6784 6785 kvm_mmu_reset_context(vcpu); 6786 } 6787 6788 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 6789 unsigned long *db) 6790 { 6791 u32 dr6 = 0; 6792 int i; 6793 u32 enable, rwlen; 6794 6795 enable = dr7; 6796 rwlen = dr7 >> 16; 6797 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 6798 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 6799 dr6 |= (1 << i); 6800 return dr6; 6801 } 6802 6803 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 6804 { 6805 struct kvm_run *kvm_run = vcpu->run; 6806 6807 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 6808 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM; 6809 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 6810 kvm_run->debug.arch.exception = DB_VECTOR; 6811 kvm_run->exit_reason = KVM_EXIT_DEBUG; 6812 return 0; 6813 } 6814 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 6815 return 1; 6816 } 6817 6818 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 6819 { 6820 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu); 6821 int r; 6822 6823 r = kvm_x86_ops.skip_emulated_instruction(vcpu); 6824 if (unlikely(!r)) 6825 return 0; 6826 6827 /* 6828 * rflags is the old, "raw" value of the flags. The new value has 6829 * not been saved yet. 6830 * 6831 * This is correct even for TF set by the guest, because "the 6832 * processor will not generate this exception after the instruction 6833 * that sets the TF flag". 6834 */ 6835 if (unlikely(rflags & X86_EFLAGS_TF)) 6836 r = kvm_vcpu_do_singlestep(vcpu); 6837 return r; 6838 } 6839 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 6840 6841 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r) 6842 { 6843 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 6844 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 6845 struct kvm_run *kvm_run = vcpu->run; 6846 unsigned long eip = kvm_get_linear_rip(vcpu); 6847 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 6848 vcpu->arch.guest_debug_dr7, 6849 vcpu->arch.eff_db); 6850 6851 if (dr6 != 0) { 6852 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM; 6853 kvm_run->debug.arch.pc = eip; 6854 kvm_run->debug.arch.exception = DB_VECTOR; 6855 kvm_run->exit_reason = KVM_EXIT_DEBUG; 6856 *r = 0; 6857 return true; 6858 } 6859 } 6860 6861 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 6862 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) { 6863 unsigned long eip = kvm_get_linear_rip(vcpu); 6864 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 6865 vcpu->arch.dr7, 6866 vcpu->arch.db); 6867 6868 if (dr6 != 0) { 6869 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 6870 *r = 1; 6871 return true; 6872 } 6873 } 6874 6875 return false; 6876 } 6877 6878 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 6879 { 6880 switch (ctxt->opcode_len) { 6881 case 1: 6882 switch (ctxt->b) { 6883 case 0xe4: /* IN */ 6884 case 0xe5: 6885 case 0xec: 6886 case 0xed: 6887 case 0xe6: /* OUT */ 6888 case 0xe7: 6889 case 0xee: 6890 case 0xef: 6891 case 0x6c: /* INS */ 6892 case 0x6d: 6893 case 0x6e: /* OUTS */ 6894 case 0x6f: 6895 return true; 6896 } 6897 break; 6898 case 2: 6899 switch (ctxt->b) { 6900 case 0x33: /* RDPMC */ 6901 return true; 6902 } 6903 break; 6904 } 6905 6906 return false; 6907 } 6908 6909 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 6910 int emulation_type, void *insn, int insn_len) 6911 { 6912 int r; 6913 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 6914 bool writeback = true; 6915 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 6916 6917 vcpu->arch.l1tf_flush_l1d = true; 6918 6919 /* 6920 * Clear write_fault_to_shadow_pgtable here to ensure it is 6921 * never reused. 6922 */ 6923 vcpu->arch.write_fault_to_shadow_pgtable = false; 6924 kvm_clear_exception_queue(vcpu); 6925 6926 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 6927 init_emulate_ctxt(vcpu); 6928 6929 /* 6930 * We will reenter on the same instruction since 6931 * we do not set complete_userspace_io. This does not 6932 * handle watchpoints yet, those would be handled in 6933 * the emulate_ops. 6934 */ 6935 if (!(emulation_type & EMULTYPE_SKIP) && 6936 kvm_vcpu_check_breakpoint(vcpu, &r)) 6937 return r; 6938 6939 ctxt->interruptibility = 0; 6940 ctxt->have_exception = false; 6941 ctxt->exception.vector = -1; 6942 ctxt->perm_ok = false; 6943 6944 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD; 6945 6946 r = x86_decode_insn(ctxt, insn, insn_len); 6947 6948 trace_kvm_emulate_insn_start(vcpu); 6949 ++vcpu->stat.insn_emulation; 6950 if (r != EMULATION_OK) { 6951 if ((emulation_type & EMULTYPE_TRAP_UD) || 6952 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 6953 kvm_queue_exception(vcpu, UD_VECTOR); 6954 return 1; 6955 } 6956 if (reexecute_instruction(vcpu, cr2_or_gpa, 6957 write_fault_to_spt, 6958 emulation_type)) 6959 return 1; 6960 if (ctxt->have_exception) { 6961 /* 6962 * #UD should result in just EMULATION_FAILED, and trap-like 6963 * exception should not be encountered during decode. 6964 */ 6965 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 6966 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 6967 inject_emulated_exception(vcpu); 6968 return 1; 6969 } 6970 return handle_emulation_failure(vcpu, emulation_type); 6971 } 6972 } 6973 6974 if ((emulation_type & EMULTYPE_VMWARE_GP) && 6975 !is_vmware_backdoor_opcode(ctxt)) { 6976 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 6977 return 1; 6978 } 6979 6980 /* 6981 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks 6982 * for kvm_skip_emulated_instruction(). The caller is responsible for 6983 * updating interruptibility state and injecting single-step #DBs. 6984 */ 6985 if (emulation_type & EMULTYPE_SKIP) { 6986 kvm_rip_write(vcpu, ctxt->_eip); 6987 if (ctxt->eflags & X86_EFLAGS_RF) 6988 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 6989 return 1; 6990 } 6991 6992 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 6993 return 1; 6994 6995 /* this is needed for vmware backdoor interface to work since it 6996 changes registers values during IO operation */ 6997 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 6998 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 6999 emulator_invalidate_register_cache(ctxt); 7000 } 7001 7002 restart: 7003 if (emulation_type & EMULTYPE_PF) { 7004 /* Save the faulting GPA (cr2) in the address field */ 7005 ctxt->exception.address = cr2_or_gpa; 7006 7007 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 7008 if (vcpu->arch.mmu->direct_map) { 7009 ctxt->gpa_available = true; 7010 ctxt->gpa_val = cr2_or_gpa; 7011 } 7012 } else { 7013 /* Sanitize the address out of an abundance of paranoia. */ 7014 ctxt->exception.address = 0; 7015 } 7016 7017 r = x86_emulate_insn(ctxt); 7018 7019 if (r == EMULATION_INTERCEPTED) 7020 return 1; 7021 7022 if (r == EMULATION_FAILED) { 7023 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt, 7024 emulation_type)) 7025 return 1; 7026 7027 return handle_emulation_failure(vcpu, emulation_type); 7028 } 7029 7030 if (ctxt->have_exception) { 7031 r = 1; 7032 if (inject_emulated_exception(vcpu)) 7033 return r; 7034 } else if (vcpu->arch.pio.count) { 7035 if (!vcpu->arch.pio.in) { 7036 /* FIXME: return into emulator if single-stepping. */ 7037 vcpu->arch.pio.count = 0; 7038 } else { 7039 writeback = false; 7040 vcpu->arch.complete_userspace_io = complete_emulated_pio; 7041 } 7042 r = 0; 7043 } else if (vcpu->mmio_needed) { 7044 ++vcpu->stat.mmio_exits; 7045 7046 if (!vcpu->mmio_is_write) 7047 writeback = false; 7048 r = 0; 7049 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 7050 } else if (r == EMULATION_RESTART) 7051 goto restart; 7052 else 7053 r = 1; 7054 7055 if (writeback) { 7056 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu); 7057 toggle_interruptibility(vcpu, ctxt->interruptibility); 7058 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 7059 if (!ctxt->have_exception || 7060 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 7061 kvm_rip_write(vcpu, ctxt->eip); 7062 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 7063 r = kvm_vcpu_do_singlestep(vcpu); 7064 if (kvm_x86_ops.update_emulated_instruction) 7065 kvm_x86_ops.update_emulated_instruction(vcpu); 7066 __kvm_set_rflags(vcpu, ctxt->eflags); 7067 } 7068 7069 /* 7070 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 7071 * do nothing, and it will be requested again as soon as 7072 * the shadow expires. But we still need to check here, 7073 * because POPF has no interrupt shadow. 7074 */ 7075 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 7076 kvm_make_request(KVM_REQ_EVENT, vcpu); 7077 } else 7078 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 7079 7080 return r; 7081 } 7082 7083 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 7084 { 7085 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 7086 } 7087 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 7088 7089 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 7090 void *insn, int insn_len) 7091 { 7092 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 7093 } 7094 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 7095 7096 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 7097 { 7098 vcpu->arch.pio.count = 0; 7099 return 1; 7100 } 7101 7102 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 7103 { 7104 vcpu->arch.pio.count = 0; 7105 7106 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 7107 return 1; 7108 7109 return kvm_skip_emulated_instruction(vcpu); 7110 } 7111 7112 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 7113 unsigned short port) 7114 { 7115 unsigned long val = kvm_rax_read(vcpu); 7116 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 7117 7118 if (ret) 7119 return ret; 7120 7121 /* 7122 * Workaround userspace that relies on old KVM behavior of %rip being 7123 * incremented prior to exiting to userspace to handle "OUT 0x7e". 7124 */ 7125 if (port == 0x7e && 7126 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 7127 vcpu->arch.complete_userspace_io = 7128 complete_fast_pio_out_port_0x7e; 7129 kvm_skip_emulated_instruction(vcpu); 7130 } else { 7131 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 7132 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 7133 } 7134 return 0; 7135 } 7136 7137 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 7138 { 7139 unsigned long val; 7140 7141 /* We should only ever be called with arch.pio.count equal to 1 */ 7142 BUG_ON(vcpu->arch.pio.count != 1); 7143 7144 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 7145 vcpu->arch.pio.count = 0; 7146 return 1; 7147 } 7148 7149 /* For size less than 4 we merge, else we zero extend */ 7150 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 7151 7152 /* 7153 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform 7154 * the copy and tracing 7155 */ 7156 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1); 7157 kvm_rax_write(vcpu, val); 7158 7159 return kvm_skip_emulated_instruction(vcpu); 7160 } 7161 7162 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 7163 unsigned short port) 7164 { 7165 unsigned long val; 7166 int ret; 7167 7168 /* For size less than 4 we merge, else we zero extend */ 7169 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 7170 7171 ret = emulator_pio_in(vcpu, size, port, &val, 1); 7172 if (ret) { 7173 kvm_rax_write(vcpu, val); 7174 return ret; 7175 } 7176 7177 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 7178 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 7179 7180 return 0; 7181 } 7182 7183 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 7184 { 7185 int ret; 7186 7187 if (in) 7188 ret = kvm_fast_pio_in(vcpu, size, port); 7189 else 7190 ret = kvm_fast_pio_out(vcpu, size, port); 7191 return ret && kvm_skip_emulated_instruction(vcpu); 7192 } 7193 EXPORT_SYMBOL_GPL(kvm_fast_pio); 7194 7195 static int kvmclock_cpu_down_prep(unsigned int cpu) 7196 { 7197 __this_cpu_write(cpu_tsc_khz, 0); 7198 return 0; 7199 } 7200 7201 static void tsc_khz_changed(void *data) 7202 { 7203 struct cpufreq_freqs *freq = data; 7204 unsigned long khz = 0; 7205 7206 if (data) 7207 khz = freq->new; 7208 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 7209 khz = cpufreq_quick_get(raw_smp_processor_id()); 7210 if (!khz) 7211 khz = tsc_khz; 7212 __this_cpu_write(cpu_tsc_khz, khz); 7213 } 7214 7215 #ifdef CONFIG_X86_64 7216 static void kvm_hyperv_tsc_notifier(void) 7217 { 7218 struct kvm *kvm; 7219 struct kvm_vcpu *vcpu; 7220 int cpu; 7221 7222 mutex_lock(&kvm_lock); 7223 list_for_each_entry(kvm, &vm_list, vm_list) 7224 kvm_make_mclock_inprogress_request(kvm); 7225 7226 hyperv_stop_tsc_emulation(); 7227 7228 /* TSC frequency always matches when on Hyper-V */ 7229 for_each_present_cpu(cpu) 7230 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 7231 kvm_max_guest_tsc_khz = tsc_khz; 7232 7233 list_for_each_entry(kvm, &vm_list, vm_list) { 7234 struct kvm_arch *ka = &kvm->arch; 7235 7236 spin_lock(&ka->pvclock_gtod_sync_lock); 7237 7238 pvclock_update_vm_gtod_copy(kvm); 7239 7240 kvm_for_each_vcpu(cpu, vcpu, kvm) 7241 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 7242 7243 kvm_for_each_vcpu(cpu, vcpu, kvm) 7244 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 7245 7246 spin_unlock(&ka->pvclock_gtod_sync_lock); 7247 } 7248 mutex_unlock(&kvm_lock); 7249 } 7250 #endif 7251 7252 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 7253 { 7254 struct kvm *kvm; 7255 struct kvm_vcpu *vcpu; 7256 int i, send_ipi = 0; 7257 7258 /* 7259 * We allow guests to temporarily run on slowing clocks, 7260 * provided we notify them after, or to run on accelerating 7261 * clocks, provided we notify them before. Thus time never 7262 * goes backwards. 7263 * 7264 * However, we have a problem. We can't atomically update 7265 * the frequency of a given CPU from this function; it is 7266 * merely a notifier, which can be called from any CPU. 7267 * Changing the TSC frequency at arbitrary points in time 7268 * requires a recomputation of local variables related to 7269 * the TSC for each VCPU. We must flag these local variables 7270 * to be updated and be sure the update takes place with the 7271 * new frequency before any guests proceed. 7272 * 7273 * Unfortunately, the combination of hotplug CPU and frequency 7274 * change creates an intractable locking scenario; the order 7275 * of when these callouts happen is undefined with respect to 7276 * CPU hotplug, and they can race with each other. As such, 7277 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 7278 * undefined; you can actually have a CPU frequency change take 7279 * place in between the computation of X and the setting of the 7280 * variable. To protect against this problem, all updates of 7281 * the per_cpu tsc_khz variable are done in an interrupt 7282 * protected IPI, and all callers wishing to update the value 7283 * must wait for a synchronous IPI to complete (which is trivial 7284 * if the caller is on the CPU already). This establishes the 7285 * necessary total order on variable updates. 7286 * 7287 * Note that because a guest time update may take place 7288 * anytime after the setting of the VCPU's request bit, the 7289 * correct TSC value must be set before the request. However, 7290 * to ensure the update actually makes it to any guest which 7291 * starts running in hardware virtualization between the set 7292 * and the acquisition of the spinlock, we must also ping the 7293 * CPU after setting the request bit. 7294 * 7295 */ 7296 7297 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 7298 7299 mutex_lock(&kvm_lock); 7300 list_for_each_entry(kvm, &vm_list, vm_list) { 7301 kvm_for_each_vcpu(i, vcpu, kvm) { 7302 if (vcpu->cpu != cpu) 7303 continue; 7304 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 7305 if (vcpu->cpu != raw_smp_processor_id()) 7306 send_ipi = 1; 7307 } 7308 } 7309 mutex_unlock(&kvm_lock); 7310 7311 if (freq->old < freq->new && send_ipi) { 7312 /* 7313 * We upscale the frequency. Must make the guest 7314 * doesn't see old kvmclock values while running with 7315 * the new frequency, otherwise we risk the guest sees 7316 * time go backwards. 7317 * 7318 * In case we update the frequency for another cpu 7319 * (which might be in guest context) send an interrupt 7320 * to kick the cpu out of guest context. Next time 7321 * guest context is entered kvmclock will be updated, 7322 * so the guest will not see stale values. 7323 */ 7324 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 7325 } 7326 } 7327 7328 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 7329 void *data) 7330 { 7331 struct cpufreq_freqs *freq = data; 7332 int cpu; 7333 7334 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 7335 return 0; 7336 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 7337 return 0; 7338 7339 for_each_cpu(cpu, freq->policy->cpus) 7340 __kvmclock_cpufreq_notifier(freq, cpu); 7341 7342 return 0; 7343 } 7344 7345 static struct notifier_block kvmclock_cpufreq_notifier_block = { 7346 .notifier_call = kvmclock_cpufreq_notifier 7347 }; 7348 7349 static int kvmclock_cpu_online(unsigned int cpu) 7350 { 7351 tsc_khz_changed(NULL); 7352 return 0; 7353 } 7354 7355 static void kvm_timer_init(void) 7356 { 7357 max_tsc_khz = tsc_khz; 7358 7359 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 7360 #ifdef CONFIG_CPU_FREQ 7361 struct cpufreq_policy *policy; 7362 int cpu; 7363 7364 cpu = get_cpu(); 7365 policy = cpufreq_cpu_get(cpu); 7366 if (policy) { 7367 if (policy->cpuinfo.max_freq) 7368 max_tsc_khz = policy->cpuinfo.max_freq; 7369 cpufreq_cpu_put(policy); 7370 } 7371 put_cpu(); 7372 #endif 7373 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 7374 CPUFREQ_TRANSITION_NOTIFIER); 7375 } 7376 7377 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 7378 kvmclock_cpu_online, kvmclock_cpu_down_prep); 7379 } 7380 7381 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); 7382 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu); 7383 7384 int kvm_is_in_guest(void) 7385 { 7386 return __this_cpu_read(current_vcpu) != NULL; 7387 } 7388 7389 static int kvm_is_user_mode(void) 7390 { 7391 int user_mode = 3; 7392 7393 if (__this_cpu_read(current_vcpu)) 7394 user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu)); 7395 7396 return user_mode != 0; 7397 } 7398 7399 static unsigned long kvm_get_guest_ip(void) 7400 { 7401 unsigned long ip = 0; 7402 7403 if (__this_cpu_read(current_vcpu)) 7404 ip = kvm_rip_read(__this_cpu_read(current_vcpu)); 7405 7406 return ip; 7407 } 7408 7409 static void kvm_handle_intel_pt_intr(void) 7410 { 7411 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu); 7412 7413 kvm_make_request(KVM_REQ_PMI, vcpu); 7414 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT, 7415 (unsigned long *)&vcpu->arch.pmu.global_status); 7416 } 7417 7418 static struct perf_guest_info_callbacks kvm_guest_cbs = { 7419 .is_in_guest = kvm_is_in_guest, 7420 .is_user_mode = kvm_is_user_mode, 7421 .get_guest_ip = kvm_get_guest_ip, 7422 .handle_intel_pt_intr = kvm_handle_intel_pt_intr, 7423 }; 7424 7425 #ifdef CONFIG_X86_64 7426 static void pvclock_gtod_update_fn(struct work_struct *work) 7427 { 7428 struct kvm *kvm; 7429 7430 struct kvm_vcpu *vcpu; 7431 int i; 7432 7433 mutex_lock(&kvm_lock); 7434 list_for_each_entry(kvm, &vm_list, vm_list) 7435 kvm_for_each_vcpu(i, vcpu, kvm) 7436 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 7437 atomic_set(&kvm_guest_has_master_clock, 0); 7438 mutex_unlock(&kvm_lock); 7439 } 7440 7441 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 7442 7443 /* 7444 * Notification about pvclock gtod data update. 7445 */ 7446 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 7447 void *priv) 7448 { 7449 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 7450 struct timekeeper *tk = priv; 7451 7452 update_pvclock_gtod(tk); 7453 7454 /* disable master clock if host does not trust, or does not 7455 * use, TSC based clocksource. 7456 */ 7457 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 7458 atomic_read(&kvm_guest_has_master_clock) != 0) 7459 queue_work(system_long_wq, &pvclock_gtod_work); 7460 7461 return 0; 7462 } 7463 7464 static struct notifier_block pvclock_gtod_notifier = { 7465 .notifier_call = pvclock_gtod_notify, 7466 }; 7467 #endif 7468 7469 int kvm_arch_init(void *opaque) 7470 { 7471 struct kvm_x86_init_ops *ops = opaque; 7472 int r; 7473 7474 if (kvm_x86_ops.hardware_enable) { 7475 printk(KERN_ERR "kvm: already loaded the other module\n"); 7476 r = -EEXIST; 7477 goto out; 7478 } 7479 7480 if (!ops->cpu_has_kvm_support()) { 7481 pr_err_ratelimited("kvm: no hardware support\n"); 7482 r = -EOPNOTSUPP; 7483 goto out; 7484 } 7485 if (ops->disabled_by_bios()) { 7486 pr_err_ratelimited("kvm: disabled by bios\n"); 7487 r = -EOPNOTSUPP; 7488 goto out; 7489 } 7490 7491 /* 7492 * KVM explicitly assumes that the guest has an FPU and 7493 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 7494 * vCPU's FPU state as a fxregs_state struct. 7495 */ 7496 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 7497 printk(KERN_ERR "kvm: inadequate fpu\n"); 7498 r = -EOPNOTSUPP; 7499 goto out; 7500 } 7501 7502 r = -ENOMEM; 7503 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu), 7504 __alignof__(struct fpu), SLAB_ACCOUNT, 7505 NULL); 7506 if (!x86_fpu_cache) { 7507 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n"); 7508 goto out; 7509 } 7510 7511 x86_emulator_cache = kvm_alloc_emulator_cache(); 7512 if (!x86_emulator_cache) { 7513 pr_err("kvm: failed to allocate cache for x86 emulator\n"); 7514 goto out_free_x86_fpu_cache; 7515 } 7516 7517 shared_msrs = alloc_percpu(struct kvm_shared_msrs); 7518 if (!shared_msrs) { 7519 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n"); 7520 goto out_free_x86_emulator_cache; 7521 } 7522 7523 r = kvm_mmu_module_init(); 7524 if (r) 7525 goto out_free_percpu; 7526 7527 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, 7528 PT_DIRTY_MASK, PT64_NX_MASK, 0, 7529 PT_PRESENT_MASK, 0, sme_me_mask); 7530 kvm_timer_init(); 7531 7532 perf_register_guest_info_callbacks(&kvm_guest_cbs); 7533 7534 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 7535 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 7536 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 7537 } 7538 7539 kvm_lapic_init(); 7540 if (pi_inject_timer == -1) 7541 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER); 7542 #ifdef CONFIG_X86_64 7543 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 7544 7545 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 7546 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 7547 #endif 7548 7549 return 0; 7550 7551 out_free_percpu: 7552 free_percpu(shared_msrs); 7553 out_free_x86_emulator_cache: 7554 kmem_cache_destroy(x86_emulator_cache); 7555 out_free_x86_fpu_cache: 7556 kmem_cache_destroy(x86_fpu_cache); 7557 out: 7558 return r; 7559 } 7560 7561 void kvm_arch_exit(void) 7562 { 7563 #ifdef CONFIG_X86_64 7564 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 7565 clear_hv_tscchange_cb(); 7566 #endif 7567 kvm_lapic_exit(); 7568 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 7569 7570 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 7571 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 7572 CPUFREQ_TRANSITION_NOTIFIER); 7573 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 7574 #ifdef CONFIG_X86_64 7575 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 7576 #endif 7577 kvm_x86_ops.hardware_enable = NULL; 7578 kvm_mmu_module_exit(); 7579 free_percpu(shared_msrs); 7580 kmem_cache_destroy(x86_fpu_cache); 7581 } 7582 7583 int kvm_vcpu_halt(struct kvm_vcpu *vcpu) 7584 { 7585 ++vcpu->stat.halt_exits; 7586 if (lapic_in_kernel(vcpu)) { 7587 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 7588 return 1; 7589 } else { 7590 vcpu->run->exit_reason = KVM_EXIT_HLT; 7591 return 0; 7592 } 7593 } 7594 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 7595 7596 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 7597 { 7598 int ret = kvm_skip_emulated_instruction(vcpu); 7599 /* 7600 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 7601 * KVM_EXIT_DEBUG here. 7602 */ 7603 return kvm_vcpu_halt(vcpu) && ret; 7604 } 7605 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 7606 7607 #ifdef CONFIG_X86_64 7608 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 7609 unsigned long clock_type) 7610 { 7611 struct kvm_clock_pairing clock_pairing; 7612 struct timespec64 ts; 7613 u64 cycle; 7614 int ret; 7615 7616 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 7617 return -KVM_EOPNOTSUPP; 7618 7619 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false) 7620 return -KVM_EOPNOTSUPP; 7621 7622 clock_pairing.sec = ts.tv_sec; 7623 clock_pairing.nsec = ts.tv_nsec; 7624 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 7625 clock_pairing.flags = 0; 7626 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 7627 7628 ret = 0; 7629 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 7630 sizeof(struct kvm_clock_pairing))) 7631 ret = -KVM_EFAULT; 7632 7633 return ret; 7634 } 7635 #endif 7636 7637 /* 7638 * kvm_pv_kick_cpu_op: Kick a vcpu. 7639 * 7640 * @apicid - apicid of vcpu to be kicked. 7641 */ 7642 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid) 7643 { 7644 struct kvm_lapic_irq lapic_irq; 7645 7646 lapic_irq.shorthand = APIC_DEST_NOSHORT; 7647 lapic_irq.dest_mode = APIC_DEST_PHYSICAL; 7648 lapic_irq.level = 0; 7649 lapic_irq.dest_id = apicid; 7650 lapic_irq.msi_redir_hint = false; 7651 7652 lapic_irq.delivery_mode = APIC_DM_REMRD; 7653 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 7654 } 7655 7656 bool kvm_apicv_activated(struct kvm *kvm) 7657 { 7658 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 7659 } 7660 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 7661 7662 void kvm_apicv_init(struct kvm *kvm, bool enable) 7663 { 7664 if (enable) 7665 clear_bit(APICV_INHIBIT_REASON_DISABLE, 7666 &kvm->arch.apicv_inhibit_reasons); 7667 else 7668 set_bit(APICV_INHIBIT_REASON_DISABLE, 7669 &kvm->arch.apicv_inhibit_reasons); 7670 } 7671 EXPORT_SYMBOL_GPL(kvm_apicv_init); 7672 7673 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id) 7674 { 7675 struct kvm_vcpu *target = NULL; 7676 struct kvm_apic_map *map; 7677 7678 rcu_read_lock(); 7679 map = rcu_dereference(kvm->arch.apic_map); 7680 7681 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 7682 target = map->phys_map[dest_id]->vcpu; 7683 7684 rcu_read_unlock(); 7685 7686 if (target && READ_ONCE(target->ready)) 7687 kvm_vcpu_yield_to(target); 7688 } 7689 7690 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 7691 { 7692 unsigned long nr, a0, a1, a2, a3, ret; 7693 int op_64_bit; 7694 7695 if (kvm_hv_hypercall_enabled(vcpu->kvm)) 7696 return kvm_hv_hypercall(vcpu); 7697 7698 nr = kvm_rax_read(vcpu); 7699 a0 = kvm_rbx_read(vcpu); 7700 a1 = kvm_rcx_read(vcpu); 7701 a2 = kvm_rdx_read(vcpu); 7702 a3 = kvm_rsi_read(vcpu); 7703 7704 trace_kvm_hypercall(nr, a0, a1, a2, a3); 7705 7706 op_64_bit = is_64_bit_mode(vcpu); 7707 if (!op_64_bit) { 7708 nr &= 0xFFFFFFFF; 7709 a0 &= 0xFFFFFFFF; 7710 a1 &= 0xFFFFFFFF; 7711 a2 &= 0xFFFFFFFF; 7712 a3 &= 0xFFFFFFFF; 7713 } 7714 7715 if (kvm_x86_ops.get_cpl(vcpu) != 0) { 7716 ret = -KVM_EPERM; 7717 goto out; 7718 } 7719 7720 switch (nr) { 7721 case KVM_HC_VAPIC_POLL_IRQ: 7722 ret = 0; 7723 break; 7724 case KVM_HC_KICK_CPU: 7725 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1); 7726 kvm_sched_yield(vcpu->kvm, a1); 7727 ret = 0; 7728 break; 7729 #ifdef CONFIG_X86_64 7730 case KVM_HC_CLOCK_PAIRING: 7731 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 7732 break; 7733 #endif 7734 case KVM_HC_SEND_IPI: 7735 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 7736 break; 7737 case KVM_HC_SCHED_YIELD: 7738 kvm_sched_yield(vcpu->kvm, a0); 7739 ret = 0; 7740 break; 7741 default: 7742 ret = -KVM_ENOSYS; 7743 break; 7744 } 7745 out: 7746 if (!op_64_bit) 7747 ret = (u32)ret; 7748 kvm_rax_write(vcpu, ret); 7749 7750 ++vcpu->stat.hypercalls; 7751 return kvm_skip_emulated_instruction(vcpu); 7752 } 7753 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 7754 7755 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 7756 { 7757 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7758 char instruction[3]; 7759 unsigned long rip = kvm_rip_read(vcpu); 7760 7761 kvm_x86_ops.patch_hypercall(vcpu, instruction); 7762 7763 return emulator_write_emulated(ctxt, rip, instruction, 3, 7764 &ctxt->exception); 7765 } 7766 7767 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 7768 { 7769 return vcpu->run->request_interrupt_window && 7770 likely(!pic_in_kernel(vcpu->kvm)); 7771 } 7772 7773 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 7774 { 7775 struct kvm_run *kvm_run = vcpu->run; 7776 7777 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; 7778 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0; 7779 kvm_run->cr8 = kvm_get_cr8(vcpu); 7780 kvm_run->apic_base = kvm_get_apic_base(vcpu); 7781 kvm_run->ready_for_interrupt_injection = 7782 pic_in_kernel(vcpu->kvm) || 7783 kvm_vcpu_ready_for_interrupt_injection(vcpu); 7784 } 7785 7786 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 7787 { 7788 int max_irr, tpr; 7789 7790 if (!kvm_x86_ops.update_cr8_intercept) 7791 return; 7792 7793 if (!lapic_in_kernel(vcpu)) 7794 return; 7795 7796 if (vcpu->arch.apicv_active) 7797 return; 7798 7799 if (!vcpu->arch.apic->vapic_addr) 7800 max_irr = kvm_lapic_find_highest_irr(vcpu); 7801 else 7802 max_irr = -1; 7803 7804 if (max_irr != -1) 7805 max_irr >>= 4; 7806 7807 tpr = kvm_lapic_get_cr8(vcpu); 7808 7809 kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr); 7810 } 7811 7812 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit) 7813 { 7814 int r; 7815 bool can_inject = true; 7816 7817 /* try to reinject previous events if any */ 7818 7819 if (vcpu->arch.exception.injected) { 7820 kvm_x86_ops.queue_exception(vcpu); 7821 can_inject = false; 7822 } 7823 /* 7824 * Do not inject an NMI or interrupt if there is a pending 7825 * exception. Exceptions and interrupts are recognized at 7826 * instruction boundaries, i.e. the start of an instruction. 7827 * Trap-like exceptions, e.g. #DB, have higher priority than 7828 * NMIs and interrupts, i.e. traps are recognized before an 7829 * NMI/interrupt that's pending on the same instruction. 7830 * Fault-like exceptions, e.g. #GP and #PF, are the lowest 7831 * priority, but are only generated (pended) during instruction 7832 * execution, i.e. a pending fault-like exception means the 7833 * fault occurred on the *previous* instruction and must be 7834 * serviced prior to recognizing any new events in order to 7835 * fully complete the previous instruction. 7836 */ 7837 else if (!vcpu->arch.exception.pending) { 7838 if (vcpu->arch.nmi_injected) { 7839 kvm_x86_ops.set_nmi(vcpu); 7840 can_inject = false; 7841 } else if (vcpu->arch.interrupt.injected) { 7842 kvm_x86_ops.set_irq(vcpu); 7843 can_inject = false; 7844 } 7845 } 7846 7847 WARN_ON_ONCE(vcpu->arch.exception.injected && 7848 vcpu->arch.exception.pending); 7849 7850 /* 7851 * Call check_nested_events() even if we reinjected a previous event 7852 * in order for caller to determine if it should require immediate-exit 7853 * from L2 to L1 due to pending L1 events which require exit 7854 * from L2 to L1. 7855 */ 7856 if (is_guest_mode(vcpu)) { 7857 r = kvm_x86_ops.nested_ops->check_events(vcpu); 7858 if (r < 0) 7859 goto busy; 7860 } 7861 7862 /* try to inject new event if pending */ 7863 if (vcpu->arch.exception.pending) { 7864 trace_kvm_inj_exception(vcpu->arch.exception.nr, 7865 vcpu->arch.exception.has_error_code, 7866 vcpu->arch.exception.error_code); 7867 7868 vcpu->arch.exception.pending = false; 7869 vcpu->arch.exception.injected = true; 7870 7871 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT) 7872 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 7873 X86_EFLAGS_RF); 7874 7875 if (vcpu->arch.exception.nr == DB_VECTOR) { 7876 kvm_deliver_exception_payload(vcpu); 7877 if (vcpu->arch.dr7 & DR7_GD) { 7878 vcpu->arch.dr7 &= ~DR7_GD; 7879 kvm_update_dr7(vcpu); 7880 } 7881 } 7882 7883 kvm_x86_ops.queue_exception(vcpu); 7884 can_inject = false; 7885 } 7886 7887 /* 7888 * Finally, inject interrupt events. If an event cannot be injected 7889 * due to architectural conditions (e.g. IF=0) a window-open exit 7890 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 7891 * and can architecturally be injected, but we cannot do it right now: 7892 * an interrupt could have arrived just now and we have to inject it 7893 * as a vmexit, or there could already an event in the queue, which is 7894 * indicated by can_inject. In that case we request an immediate exit 7895 * in order to make progress and get back here for another iteration. 7896 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 7897 */ 7898 if (vcpu->arch.smi_pending) { 7899 r = can_inject ? kvm_x86_ops.smi_allowed(vcpu, true) : -EBUSY; 7900 if (r < 0) 7901 goto busy; 7902 if (r) { 7903 vcpu->arch.smi_pending = false; 7904 ++vcpu->arch.smi_count; 7905 enter_smm(vcpu); 7906 can_inject = false; 7907 } else 7908 kvm_x86_ops.enable_smi_window(vcpu); 7909 } 7910 7911 if (vcpu->arch.nmi_pending) { 7912 r = can_inject ? kvm_x86_ops.nmi_allowed(vcpu, true) : -EBUSY; 7913 if (r < 0) 7914 goto busy; 7915 if (r) { 7916 --vcpu->arch.nmi_pending; 7917 vcpu->arch.nmi_injected = true; 7918 kvm_x86_ops.set_nmi(vcpu); 7919 can_inject = false; 7920 WARN_ON(kvm_x86_ops.nmi_allowed(vcpu, true) < 0); 7921 } 7922 if (vcpu->arch.nmi_pending) 7923 kvm_x86_ops.enable_nmi_window(vcpu); 7924 } 7925 7926 if (kvm_cpu_has_injectable_intr(vcpu)) { 7927 r = can_inject ? kvm_x86_ops.interrupt_allowed(vcpu, true) : -EBUSY; 7928 if (r < 0) 7929 goto busy; 7930 if (r) { 7931 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false); 7932 kvm_x86_ops.set_irq(vcpu); 7933 WARN_ON(kvm_x86_ops.interrupt_allowed(vcpu, true) < 0); 7934 } 7935 if (kvm_cpu_has_injectable_intr(vcpu)) 7936 kvm_x86_ops.enable_irq_window(vcpu); 7937 } 7938 7939 if (is_guest_mode(vcpu) && 7940 kvm_x86_ops.nested_ops->hv_timer_pending && 7941 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu)) 7942 *req_immediate_exit = true; 7943 7944 WARN_ON(vcpu->arch.exception.pending); 7945 return; 7946 7947 busy: 7948 *req_immediate_exit = true; 7949 return; 7950 } 7951 7952 static void process_nmi(struct kvm_vcpu *vcpu) 7953 { 7954 unsigned limit = 2; 7955 7956 /* 7957 * x86 is limited to one NMI running, and one NMI pending after it. 7958 * If an NMI is already in progress, limit further NMIs to just one. 7959 * Otherwise, allow two (and we'll inject the first one immediately). 7960 */ 7961 if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) 7962 limit = 1; 7963 7964 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 7965 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 7966 kvm_make_request(KVM_REQ_EVENT, vcpu); 7967 } 7968 7969 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg) 7970 { 7971 u32 flags = 0; 7972 flags |= seg->g << 23; 7973 flags |= seg->db << 22; 7974 flags |= seg->l << 21; 7975 flags |= seg->avl << 20; 7976 flags |= seg->present << 15; 7977 flags |= seg->dpl << 13; 7978 flags |= seg->s << 12; 7979 flags |= seg->type << 8; 7980 return flags; 7981 } 7982 7983 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n) 7984 { 7985 struct kvm_segment seg; 7986 int offset; 7987 7988 kvm_get_segment(vcpu, &seg, n); 7989 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector); 7990 7991 if (n < 3) 7992 offset = 0x7f84 + n * 12; 7993 else 7994 offset = 0x7f2c + (n - 3) * 12; 7995 7996 put_smstate(u32, buf, offset + 8, seg.base); 7997 put_smstate(u32, buf, offset + 4, seg.limit); 7998 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg)); 7999 } 8000 8001 #ifdef CONFIG_X86_64 8002 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n) 8003 { 8004 struct kvm_segment seg; 8005 int offset; 8006 u16 flags; 8007 8008 kvm_get_segment(vcpu, &seg, n); 8009 offset = 0x7e00 + n * 16; 8010 8011 flags = enter_smm_get_segment_flags(&seg) >> 8; 8012 put_smstate(u16, buf, offset, seg.selector); 8013 put_smstate(u16, buf, offset + 2, flags); 8014 put_smstate(u32, buf, offset + 4, seg.limit); 8015 put_smstate(u64, buf, offset + 8, seg.base); 8016 } 8017 #endif 8018 8019 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf) 8020 { 8021 struct desc_ptr dt; 8022 struct kvm_segment seg; 8023 unsigned long val; 8024 int i; 8025 8026 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu)); 8027 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu)); 8028 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu)); 8029 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu)); 8030 8031 for (i = 0; i < 8; i++) 8032 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i)); 8033 8034 kvm_get_dr(vcpu, 6, &val); 8035 put_smstate(u32, buf, 0x7fcc, (u32)val); 8036 kvm_get_dr(vcpu, 7, &val); 8037 put_smstate(u32, buf, 0x7fc8, (u32)val); 8038 8039 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 8040 put_smstate(u32, buf, 0x7fc4, seg.selector); 8041 put_smstate(u32, buf, 0x7f64, seg.base); 8042 put_smstate(u32, buf, 0x7f60, seg.limit); 8043 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg)); 8044 8045 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 8046 put_smstate(u32, buf, 0x7fc0, seg.selector); 8047 put_smstate(u32, buf, 0x7f80, seg.base); 8048 put_smstate(u32, buf, 0x7f7c, seg.limit); 8049 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg)); 8050 8051 kvm_x86_ops.get_gdt(vcpu, &dt); 8052 put_smstate(u32, buf, 0x7f74, dt.address); 8053 put_smstate(u32, buf, 0x7f70, dt.size); 8054 8055 kvm_x86_ops.get_idt(vcpu, &dt); 8056 put_smstate(u32, buf, 0x7f58, dt.address); 8057 put_smstate(u32, buf, 0x7f54, dt.size); 8058 8059 for (i = 0; i < 6; i++) 8060 enter_smm_save_seg_32(vcpu, buf, i); 8061 8062 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu)); 8063 8064 /* revision id */ 8065 put_smstate(u32, buf, 0x7efc, 0x00020000); 8066 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase); 8067 } 8068 8069 #ifdef CONFIG_X86_64 8070 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf) 8071 { 8072 struct desc_ptr dt; 8073 struct kvm_segment seg; 8074 unsigned long val; 8075 int i; 8076 8077 for (i = 0; i < 16; i++) 8078 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i)); 8079 8080 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu)); 8081 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu)); 8082 8083 kvm_get_dr(vcpu, 6, &val); 8084 put_smstate(u64, buf, 0x7f68, val); 8085 kvm_get_dr(vcpu, 7, &val); 8086 put_smstate(u64, buf, 0x7f60, val); 8087 8088 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu)); 8089 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu)); 8090 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu)); 8091 8092 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase); 8093 8094 /* revision id */ 8095 put_smstate(u32, buf, 0x7efc, 0x00020064); 8096 8097 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer); 8098 8099 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 8100 put_smstate(u16, buf, 0x7e90, seg.selector); 8101 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8); 8102 put_smstate(u32, buf, 0x7e94, seg.limit); 8103 put_smstate(u64, buf, 0x7e98, seg.base); 8104 8105 kvm_x86_ops.get_idt(vcpu, &dt); 8106 put_smstate(u32, buf, 0x7e84, dt.size); 8107 put_smstate(u64, buf, 0x7e88, dt.address); 8108 8109 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 8110 put_smstate(u16, buf, 0x7e70, seg.selector); 8111 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8); 8112 put_smstate(u32, buf, 0x7e74, seg.limit); 8113 put_smstate(u64, buf, 0x7e78, seg.base); 8114 8115 kvm_x86_ops.get_gdt(vcpu, &dt); 8116 put_smstate(u32, buf, 0x7e64, dt.size); 8117 put_smstate(u64, buf, 0x7e68, dt.address); 8118 8119 for (i = 0; i < 6; i++) 8120 enter_smm_save_seg_64(vcpu, buf, i); 8121 } 8122 #endif 8123 8124 static void enter_smm(struct kvm_vcpu *vcpu) 8125 { 8126 struct kvm_segment cs, ds; 8127 struct desc_ptr dt; 8128 char buf[512]; 8129 u32 cr0; 8130 8131 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true); 8132 memset(buf, 0, 512); 8133 #ifdef CONFIG_X86_64 8134 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 8135 enter_smm_save_state_64(vcpu, buf); 8136 else 8137 #endif 8138 enter_smm_save_state_32(vcpu, buf); 8139 8140 /* 8141 * Give pre_enter_smm() a chance to make ISA-specific changes to the 8142 * vCPU state (e.g. leave guest mode) after we've saved the state into 8143 * the SMM state-save area. 8144 */ 8145 kvm_x86_ops.pre_enter_smm(vcpu, buf); 8146 8147 vcpu->arch.hflags |= HF_SMM_MASK; 8148 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf)); 8149 8150 if (kvm_x86_ops.get_nmi_mask(vcpu)) 8151 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 8152 else 8153 kvm_x86_ops.set_nmi_mask(vcpu, true); 8154 8155 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 8156 kvm_rip_write(vcpu, 0x8000); 8157 8158 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG); 8159 kvm_x86_ops.set_cr0(vcpu, cr0); 8160 vcpu->arch.cr0 = cr0; 8161 8162 kvm_x86_ops.set_cr4(vcpu, 0); 8163 8164 /* Undocumented: IDT limit is set to zero on entry to SMM. */ 8165 dt.address = dt.size = 0; 8166 kvm_x86_ops.set_idt(vcpu, &dt); 8167 8168 __kvm_set_dr(vcpu, 7, DR7_FIXED_1); 8169 8170 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff; 8171 cs.base = vcpu->arch.smbase; 8172 8173 ds.selector = 0; 8174 ds.base = 0; 8175 8176 cs.limit = ds.limit = 0xffffffff; 8177 cs.type = ds.type = 0x3; 8178 cs.dpl = ds.dpl = 0; 8179 cs.db = ds.db = 0; 8180 cs.s = ds.s = 1; 8181 cs.l = ds.l = 0; 8182 cs.g = ds.g = 1; 8183 cs.avl = ds.avl = 0; 8184 cs.present = ds.present = 1; 8185 cs.unusable = ds.unusable = 0; 8186 cs.padding = ds.padding = 0; 8187 8188 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 8189 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS); 8190 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES); 8191 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS); 8192 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS); 8193 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS); 8194 8195 #ifdef CONFIG_X86_64 8196 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 8197 kvm_x86_ops.set_efer(vcpu, 0); 8198 #endif 8199 8200 kvm_update_cpuid_runtime(vcpu); 8201 kvm_mmu_reset_context(vcpu); 8202 } 8203 8204 static void process_smi(struct kvm_vcpu *vcpu) 8205 { 8206 vcpu->arch.smi_pending = true; 8207 kvm_make_request(KVM_REQ_EVENT, vcpu); 8208 } 8209 8210 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 8211 unsigned long *vcpu_bitmap) 8212 { 8213 cpumask_var_t cpus; 8214 8215 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 8216 8217 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, 8218 NULL, vcpu_bitmap, cpus); 8219 8220 free_cpumask_var(cpus); 8221 } 8222 8223 void kvm_make_scan_ioapic_request(struct kvm *kvm) 8224 { 8225 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 8226 } 8227 8228 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 8229 { 8230 if (!lapic_in_kernel(vcpu)) 8231 return; 8232 8233 vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm); 8234 kvm_apic_update_apicv(vcpu); 8235 kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu); 8236 } 8237 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv); 8238 8239 /* 8240 * NOTE: Do not hold any lock prior to calling this. 8241 * 8242 * In particular, kvm_request_apicv_update() expects kvm->srcu not to be 8243 * locked, because it calls __x86_set_memory_region() which does 8244 * synchronize_srcu(&kvm->srcu). 8245 */ 8246 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit) 8247 { 8248 struct kvm_vcpu *except; 8249 unsigned long old, new, expected; 8250 8251 if (!kvm_x86_ops.check_apicv_inhibit_reasons || 8252 !kvm_x86_ops.check_apicv_inhibit_reasons(bit)) 8253 return; 8254 8255 old = READ_ONCE(kvm->arch.apicv_inhibit_reasons); 8256 do { 8257 expected = new = old; 8258 if (activate) 8259 __clear_bit(bit, &new); 8260 else 8261 __set_bit(bit, &new); 8262 if (new == old) 8263 break; 8264 old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new); 8265 } while (old != expected); 8266 8267 if (!!old == !!new) 8268 return; 8269 8270 trace_kvm_apicv_update_request(activate, bit); 8271 if (kvm_x86_ops.pre_update_apicv_exec_ctrl) 8272 kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate); 8273 8274 /* 8275 * Sending request to update APICV for all other vcpus, 8276 * while update the calling vcpu immediately instead of 8277 * waiting for another #VMEXIT to handle the request. 8278 */ 8279 except = kvm_get_running_vcpu(); 8280 kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE, 8281 except); 8282 if (except) 8283 kvm_vcpu_update_apicv(except); 8284 } 8285 EXPORT_SYMBOL_GPL(kvm_request_apicv_update); 8286 8287 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 8288 { 8289 if (!kvm_apic_present(vcpu)) 8290 return; 8291 8292 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 8293 8294 if (irqchip_split(vcpu->kvm)) 8295 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 8296 else { 8297 if (vcpu->arch.apicv_active) 8298 kvm_x86_ops.sync_pir_to_irr(vcpu); 8299 if (ioapic_in_kernel(vcpu->kvm)) 8300 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 8301 } 8302 8303 if (is_guest_mode(vcpu)) 8304 vcpu->arch.load_eoi_exitmap_pending = true; 8305 else 8306 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 8307 } 8308 8309 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 8310 { 8311 u64 eoi_exit_bitmap[4]; 8312 8313 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 8314 return; 8315 8316 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors, 8317 vcpu_to_synic(vcpu)->vec_bitmap, 256); 8318 kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap); 8319 } 8320 8321 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 8322 unsigned long start, unsigned long end) 8323 { 8324 unsigned long apic_address; 8325 8326 /* 8327 * The physical address of apic access page is stored in the VMCS. 8328 * Update it when it becomes invalid. 8329 */ 8330 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 8331 if (start <= apic_address && apic_address < end) 8332 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 8333 } 8334 8335 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 8336 { 8337 if (!lapic_in_kernel(vcpu)) 8338 return; 8339 8340 if (!kvm_x86_ops.set_apic_access_page_addr) 8341 return; 8342 8343 kvm_x86_ops.set_apic_access_page_addr(vcpu); 8344 } 8345 8346 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 8347 { 8348 smp_send_reschedule(vcpu->cpu); 8349 } 8350 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 8351 8352 /* 8353 * Returns 1 to let vcpu_run() continue the guest execution loop without 8354 * exiting to the userspace. Otherwise, the value will be returned to the 8355 * userspace. 8356 */ 8357 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 8358 { 8359 int r; 8360 bool req_int_win = 8361 dm_request_for_irq_injection(vcpu) && 8362 kvm_cpu_accept_dm_intr(vcpu); 8363 fastpath_t exit_fastpath; 8364 8365 bool req_immediate_exit = false; 8366 8367 if (kvm_request_pending(vcpu)) { 8368 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu)) { 8369 if (unlikely(!kvm_x86_ops.nested_ops->get_vmcs12_pages(vcpu))) { 8370 r = 0; 8371 goto out; 8372 } 8373 } 8374 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) 8375 kvm_mmu_unload(vcpu); 8376 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 8377 __kvm_migrate_timers(vcpu); 8378 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 8379 kvm_gen_update_masterclock(vcpu->kvm); 8380 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 8381 kvm_gen_kvmclock_update(vcpu); 8382 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 8383 r = kvm_guest_time_update(vcpu); 8384 if (unlikely(r)) 8385 goto out; 8386 } 8387 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 8388 kvm_mmu_sync_roots(vcpu); 8389 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 8390 kvm_mmu_load_pgd(vcpu); 8391 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { 8392 kvm_vcpu_flush_tlb_all(vcpu); 8393 8394 /* Flushing all ASIDs flushes the current ASID... */ 8395 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 8396 } 8397 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 8398 kvm_vcpu_flush_tlb_current(vcpu); 8399 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu)) 8400 kvm_vcpu_flush_tlb_guest(vcpu); 8401 8402 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 8403 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 8404 r = 0; 8405 goto out; 8406 } 8407 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 8408 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 8409 vcpu->mmio_needed = 0; 8410 r = 0; 8411 goto out; 8412 } 8413 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 8414 /* Page is swapped out. Do synthetic halt */ 8415 vcpu->arch.apf.halted = true; 8416 r = 1; 8417 goto out; 8418 } 8419 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 8420 record_steal_time(vcpu); 8421 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 8422 process_smi(vcpu); 8423 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 8424 process_nmi(vcpu); 8425 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 8426 kvm_pmu_handle_event(vcpu); 8427 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 8428 kvm_pmu_deliver_pmi(vcpu); 8429 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 8430 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 8431 if (test_bit(vcpu->arch.pending_ioapic_eoi, 8432 vcpu->arch.ioapic_handled_vectors)) { 8433 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 8434 vcpu->run->eoi.vector = 8435 vcpu->arch.pending_ioapic_eoi; 8436 r = 0; 8437 goto out; 8438 } 8439 } 8440 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 8441 vcpu_scan_ioapic(vcpu); 8442 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 8443 vcpu_load_eoi_exitmap(vcpu); 8444 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 8445 kvm_vcpu_reload_apic_access_page(vcpu); 8446 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 8447 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 8448 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 8449 r = 0; 8450 goto out; 8451 } 8452 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 8453 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 8454 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 8455 r = 0; 8456 goto out; 8457 } 8458 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 8459 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 8460 vcpu->run->hyperv = vcpu->arch.hyperv.exit; 8461 r = 0; 8462 goto out; 8463 } 8464 8465 /* 8466 * KVM_REQ_HV_STIMER has to be processed after 8467 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 8468 * depend on the guest clock being up-to-date 8469 */ 8470 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 8471 kvm_hv_process_stimers(vcpu); 8472 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 8473 kvm_vcpu_update_apicv(vcpu); 8474 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 8475 kvm_check_async_pf_completion(vcpu); 8476 } 8477 8478 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { 8479 ++vcpu->stat.req_event; 8480 kvm_apic_accept_events(vcpu); 8481 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 8482 r = 1; 8483 goto out; 8484 } 8485 8486 inject_pending_event(vcpu, &req_immediate_exit); 8487 if (req_int_win) 8488 kvm_x86_ops.enable_irq_window(vcpu); 8489 8490 if (kvm_lapic_enabled(vcpu)) { 8491 update_cr8_intercept(vcpu); 8492 kvm_lapic_sync_to_vapic(vcpu); 8493 } 8494 } 8495 8496 r = kvm_mmu_reload(vcpu); 8497 if (unlikely(r)) { 8498 goto cancel_injection; 8499 } 8500 8501 preempt_disable(); 8502 8503 kvm_x86_ops.prepare_guest_switch(vcpu); 8504 8505 /* 8506 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 8507 * IPI are then delayed after guest entry, which ensures that they 8508 * result in virtual interrupt delivery. 8509 */ 8510 local_irq_disable(); 8511 vcpu->mode = IN_GUEST_MODE; 8512 8513 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 8514 8515 /* 8516 * 1) We should set ->mode before checking ->requests. Please see 8517 * the comment in kvm_vcpu_exiting_guest_mode(). 8518 * 8519 * 2) For APICv, we should set ->mode before checking PID.ON. This 8520 * pairs with the memory barrier implicit in pi_test_and_set_on 8521 * (see vmx_deliver_posted_interrupt). 8522 * 8523 * 3) This also orders the write to mode from any reads to the page 8524 * tables done while the VCPU is running. Please see the comment 8525 * in kvm_flush_remote_tlbs. 8526 */ 8527 smp_mb__after_srcu_read_unlock(); 8528 8529 /* 8530 * This handles the case where a posted interrupt was 8531 * notified with kvm_vcpu_kick. 8532 */ 8533 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active) 8534 kvm_x86_ops.sync_pir_to_irr(vcpu); 8535 8536 if (kvm_vcpu_exit_request(vcpu)) { 8537 vcpu->mode = OUTSIDE_GUEST_MODE; 8538 smp_wmb(); 8539 local_irq_enable(); 8540 preempt_enable(); 8541 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 8542 r = 1; 8543 goto cancel_injection; 8544 } 8545 8546 if (req_immediate_exit) { 8547 kvm_make_request(KVM_REQ_EVENT, vcpu); 8548 kvm_x86_ops.request_immediate_exit(vcpu); 8549 } 8550 8551 trace_kvm_entry(vcpu->vcpu_id); 8552 8553 fpregs_assert_state_consistent(); 8554 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 8555 switch_fpu_return(); 8556 8557 if (unlikely(vcpu->arch.switch_db_regs)) { 8558 set_debugreg(0, 7); 8559 set_debugreg(vcpu->arch.eff_db[0], 0); 8560 set_debugreg(vcpu->arch.eff_db[1], 1); 8561 set_debugreg(vcpu->arch.eff_db[2], 2); 8562 set_debugreg(vcpu->arch.eff_db[3], 3); 8563 set_debugreg(vcpu->arch.dr6, 6); 8564 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 8565 } 8566 8567 exit_fastpath = kvm_x86_ops.run(vcpu); 8568 8569 /* 8570 * Do this here before restoring debug registers on the host. And 8571 * since we do this before handling the vmexit, a DR access vmexit 8572 * can (a) read the correct value of the debug registers, (b) set 8573 * KVM_DEBUGREG_WONT_EXIT again. 8574 */ 8575 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 8576 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 8577 kvm_x86_ops.sync_dirty_debug_regs(vcpu); 8578 kvm_update_dr0123(vcpu); 8579 kvm_update_dr7(vcpu); 8580 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 8581 } 8582 8583 /* 8584 * If the guest has used debug registers, at least dr7 8585 * will be disabled while returning to the host. 8586 * If we don't have active breakpoints in the host, we don't 8587 * care about the messed up debug address registers. But if 8588 * we have some of them active, restore the old state. 8589 */ 8590 if (hw_breakpoint_active()) 8591 hw_breakpoint_restore(); 8592 8593 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 8594 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 8595 8596 vcpu->mode = OUTSIDE_GUEST_MODE; 8597 smp_wmb(); 8598 8599 kvm_x86_ops.handle_exit_irqoff(vcpu); 8600 8601 /* 8602 * Consume any pending interrupts, including the possible source of 8603 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 8604 * An instruction is required after local_irq_enable() to fully unblock 8605 * interrupts on processors that implement an interrupt shadow, the 8606 * stat.exits increment will do nicely. 8607 */ 8608 kvm_before_interrupt(vcpu); 8609 local_irq_enable(); 8610 ++vcpu->stat.exits; 8611 local_irq_disable(); 8612 kvm_after_interrupt(vcpu); 8613 8614 if (lapic_in_kernel(vcpu)) { 8615 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta; 8616 if (delta != S64_MIN) { 8617 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta); 8618 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN; 8619 } 8620 } 8621 8622 local_irq_enable(); 8623 preempt_enable(); 8624 8625 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 8626 8627 /* 8628 * Profile KVM exit RIPs: 8629 */ 8630 if (unlikely(prof_on == KVM_PROFILING)) { 8631 unsigned long rip = kvm_rip_read(vcpu); 8632 profile_hit(KVM_PROFILING, (void *)rip); 8633 } 8634 8635 if (unlikely(vcpu->arch.tsc_always_catchup)) 8636 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 8637 8638 if (vcpu->arch.apic_attention) 8639 kvm_lapic_sync_from_vapic(vcpu); 8640 8641 r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath); 8642 return r; 8643 8644 cancel_injection: 8645 if (req_immediate_exit) 8646 kvm_make_request(KVM_REQ_EVENT, vcpu); 8647 kvm_x86_ops.cancel_injection(vcpu); 8648 if (unlikely(vcpu->arch.apic_attention)) 8649 kvm_lapic_sync_from_vapic(vcpu); 8650 out: 8651 return r; 8652 } 8653 8654 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu) 8655 { 8656 if (!kvm_arch_vcpu_runnable(vcpu) && 8657 (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) { 8658 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 8659 kvm_vcpu_block(vcpu); 8660 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 8661 8662 if (kvm_x86_ops.post_block) 8663 kvm_x86_ops.post_block(vcpu); 8664 8665 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu)) 8666 return 1; 8667 } 8668 8669 kvm_apic_accept_events(vcpu); 8670 switch(vcpu->arch.mp_state) { 8671 case KVM_MP_STATE_HALTED: 8672 vcpu->arch.pv.pv_unhalted = false; 8673 vcpu->arch.mp_state = 8674 KVM_MP_STATE_RUNNABLE; 8675 fallthrough; 8676 case KVM_MP_STATE_RUNNABLE: 8677 vcpu->arch.apf.halted = false; 8678 break; 8679 case KVM_MP_STATE_INIT_RECEIVED: 8680 break; 8681 default: 8682 return -EINTR; 8683 } 8684 return 1; 8685 } 8686 8687 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 8688 { 8689 if (is_guest_mode(vcpu)) 8690 kvm_x86_ops.nested_ops->check_events(vcpu); 8691 8692 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 8693 !vcpu->arch.apf.halted); 8694 } 8695 8696 static int vcpu_run(struct kvm_vcpu *vcpu) 8697 { 8698 int r; 8699 struct kvm *kvm = vcpu->kvm; 8700 8701 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 8702 vcpu->arch.l1tf_flush_l1d = true; 8703 8704 for (;;) { 8705 if (kvm_vcpu_running(vcpu)) { 8706 r = vcpu_enter_guest(vcpu); 8707 } else { 8708 r = vcpu_block(kvm, vcpu); 8709 } 8710 8711 if (r <= 0) 8712 break; 8713 8714 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu); 8715 if (kvm_cpu_has_pending_timer(vcpu)) 8716 kvm_inject_pending_timer_irqs(vcpu); 8717 8718 if (dm_request_for_irq_injection(vcpu) && 8719 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 8720 r = 0; 8721 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 8722 ++vcpu->stat.request_irq_exits; 8723 break; 8724 } 8725 8726 if (__xfer_to_guest_mode_work_pending()) { 8727 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 8728 r = xfer_to_guest_mode_handle_work(vcpu); 8729 if (r) 8730 return r; 8731 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 8732 } 8733 } 8734 8735 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 8736 8737 return r; 8738 } 8739 8740 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 8741 { 8742 int r; 8743 8744 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 8745 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 8746 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 8747 return r; 8748 } 8749 8750 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 8751 { 8752 BUG_ON(!vcpu->arch.pio.count); 8753 8754 return complete_emulated_io(vcpu); 8755 } 8756 8757 /* 8758 * Implements the following, as a state machine: 8759 * 8760 * read: 8761 * for each fragment 8762 * for each mmio piece in the fragment 8763 * write gpa, len 8764 * exit 8765 * copy data 8766 * execute insn 8767 * 8768 * write: 8769 * for each fragment 8770 * for each mmio piece in the fragment 8771 * write gpa, len 8772 * copy data 8773 * exit 8774 */ 8775 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 8776 { 8777 struct kvm_run *run = vcpu->run; 8778 struct kvm_mmio_fragment *frag; 8779 unsigned len; 8780 8781 BUG_ON(!vcpu->mmio_needed); 8782 8783 /* Complete previous fragment */ 8784 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 8785 len = min(8u, frag->len); 8786 if (!vcpu->mmio_is_write) 8787 memcpy(frag->data, run->mmio.data, len); 8788 8789 if (frag->len <= 8) { 8790 /* Switch to the next fragment. */ 8791 frag++; 8792 vcpu->mmio_cur_fragment++; 8793 } else { 8794 /* Go forward to the next mmio piece. */ 8795 frag->data += len; 8796 frag->gpa += len; 8797 frag->len -= len; 8798 } 8799 8800 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 8801 vcpu->mmio_needed = 0; 8802 8803 /* FIXME: return into emulator if single-stepping. */ 8804 if (vcpu->mmio_is_write) 8805 return 1; 8806 vcpu->mmio_read_completed = 1; 8807 return complete_emulated_io(vcpu); 8808 } 8809 8810 run->exit_reason = KVM_EXIT_MMIO; 8811 run->mmio.phys_addr = frag->gpa; 8812 if (vcpu->mmio_is_write) 8813 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 8814 run->mmio.len = min(8u, frag->len); 8815 run->mmio.is_write = vcpu->mmio_is_write; 8816 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 8817 return 0; 8818 } 8819 8820 static void kvm_save_current_fpu(struct fpu *fpu) 8821 { 8822 /* 8823 * If the target FPU state is not resident in the CPU registers, just 8824 * memcpy() from current, else save CPU state directly to the target. 8825 */ 8826 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 8827 memcpy(&fpu->state, ¤t->thread.fpu.state, 8828 fpu_kernel_xstate_size); 8829 else 8830 copy_fpregs_to_fpstate(fpu); 8831 } 8832 8833 /* Swap (qemu) user FPU context for the guest FPU context. */ 8834 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 8835 { 8836 fpregs_lock(); 8837 8838 kvm_save_current_fpu(vcpu->arch.user_fpu); 8839 8840 /* PKRU is separately restored in kvm_x86_ops.run. */ 8841 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state, 8842 ~XFEATURE_MASK_PKRU); 8843 8844 fpregs_mark_activate(); 8845 fpregs_unlock(); 8846 8847 trace_kvm_fpu(1); 8848 } 8849 8850 /* When vcpu_run ends, restore user space FPU context. */ 8851 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 8852 { 8853 fpregs_lock(); 8854 8855 kvm_save_current_fpu(vcpu->arch.guest_fpu); 8856 8857 copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state); 8858 8859 fpregs_mark_activate(); 8860 fpregs_unlock(); 8861 8862 ++vcpu->stat.fpu_reload; 8863 trace_kvm_fpu(0); 8864 } 8865 8866 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 8867 { 8868 struct kvm_run *kvm_run = vcpu->run; 8869 int r; 8870 8871 vcpu_load(vcpu); 8872 kvm_sigset_activate(vcpu); 8873 kvm_load_guest_fpu(vcpu); 8874 8875 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 8876 if (kvm_run->immediate_exit) { 8877 r = -EINTR; 8878 goto out; 8879 } 8880 kvm_vcpu_block(vcpu); 8881 kvm_apic_accept_events(vcpu); 8882 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 8883 r = -EAGAIN; 8884 if (signal_pending(current)) { 8885 r = -EINTR; 8886 kvm_run->exit_reason = KVM_EXIT_INTR; 8887 ++vcpu->stat.signal_exits; 8888 } 8889 goto out; 8890 } 8891 8892 if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) { 8893 r = -EINVAL; 8894 goto out; 8895 } 8896 8897 if (kvm_run->kvm_dirty_regs) { 8898 r = sync_regs(vcpu); 8899 if (r != 0) 8900 goto out; 8901 } 8902 8903 /* re-sync apic's tpr */ 8904 if (!lapic_in_kernel(vcpu)) { 8905 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 8906 r = -EINVAL; 8907 goto out; 8908 } 8909 } 8910 8911 if (unlikely(vcpu->arch.complete_userspace_io)) { 8912 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 8913 vcpu->arch.complete_userspace_io = NULL; 8914 r = cui(vcpu); 8915 if (r <= 0) 8916 goto out; 8917 } else 8918 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); 8919 8920 if (kvm_run->immediate_exit) 8921 r = -EINTR; 8922 else 8923 r = vcpu_run(vcpu); 8924 8925 out: 8926 kvm_put_guest_fpu(vcpu); 8927 if (kvm_run->kvm_valid_regs) 8928 store_regs(vcpu); 8929 post_kvm_run_save(vcpu); 8930 kvm_sigset_deactivate(vcpu); 8931 8932 vcpu_put(vcpu); 8933 return r; 8934 } 8935 8936 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 8937 { 8938 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 8939 /* 8940 * We are here if userspace calls get_regs() in the middle of 8941 * instruction emulation. Registers state needs to be copied 8942 * back from emulation context to vcpu. Userspace shouldn't do 8943 * that usually, but some bad designed PV devices (vmware 8944 * backdoor interface) need this to work 8945 */ 8946 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 8947 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8948 } 8949 regs->rax = kvm_rax_read(vcpu); 8950 regs->rbx = kvm_rbx_read(vcpu); 8951 regs->rcx = kvm_rcx_read(vcpu); 8952 regs->rdx = kvm_rdx_read(vcpu); 8953 regs->rsi = kvm_rsi_read(vcpu); 8954 regs->rdi = kvm_rdi_read(vcpu); 8955 regs->rsp = kvm_rsp_read(vcpu); 8956 regs->rbp = kvm_rbp_read(vcpu); 8957 #ifdef CONFIG_X86_64 8958 regs->r8 = kvm_r8_read(vcpu); 8959 regs->r9 = kvm_r9_read(vcpu); 8960 regs->r10 = kvm_r10_read(vcpu); 8961 regs->r11 = kvm_r11_read(vcpu); 8962 regs->r12 = kvm_r12_read(vcpu); 8963 regs->r13 = kvm_r13_read(vcpu); 8964 regs->r14 = kvm_r14_read(vcpu); 8965 regs->r15 = kvm_r15_read(vcpu); 8966 #endif 8967 8968 regs->rip = kvm_rip_read(vcpu); 8969 regs->rflags = kvm_get_rflags(vcpu); 8970 } 8971 8972 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 8973 { 8974 vcpu_load(vcpu); 8975 __get_regs(vcpu, regs); 8976 vcpu_put(vcpu); 8977 return 0; 8978 } 8979 8980 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 8981 { 8982 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 8983 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8984 8985 kvm_rax_write(vcpu, regs->rax); 8986 kvm_rbx_write(vcpu, regs->rbx); 8987 kvm_rcx_write(vcpu, regs->rcx); 8988 kvm_rdx_write(vcpu, regs->rdx); 8989 kvm_rsi_write(vcpu, regs->rsi); 8990 kvm_rdi_write(vcpu, regs->rdi); 8991 kvm_rsp_write(vcpu, regs->rsp); 8992 kvm_rbp_write(vcpu, regs->rbp); 8993 #ifdef CONFIG_X86_64 8994 kvm_r8_write(vcpu, regs->r8); 8995 kvm_r9_write(vcpu, regs->r9); 8996 kvm_r10_write(vcpu, regs->r10); 8997 kvm_r11_write(vcpu, regs->r11); 8998 kvm_r12_write(vcpu, regs->r12); 8999 kvm_r13_write(vcpu, regs->r13); 9000 kvm_r14_write(vcpu, regs->r14); 9001 kvm_r15_write(vcpu, regs->r15); 9002 #endif 9003 9004 kvm_rip_write(vcpu, regs->rip); 9005 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 9006 9007 vcpu->arch.exception.pending = false; 9008 9009 kvm_make_request(KVM_REQ_EVENT, vcpu); 9010 } 9011 9012 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 9013 { 9014 vcpu_load(vcpu); 9015 __set_regs(vcpu, regs); 9016 vcpu_put(vcpu); 9017 return 0; 9018 } 9019 9020 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 9021 { 9022 struct kvm_segment cs; 9023 9024 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 9025 *db = cs.db; 9026 *l = cs.l; 9027 } 9028 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); 9029 9030 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 9031 { 9032 struct desc_ptr dt; 9033 9034 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 9035 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 9036 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 9037 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 9038 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 9039 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 9040 9041 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 9042 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 9043 9044 kvm_x86_ops.get_idt(vcpu, &dt); 9045 sregs->idt.limit = dt.size; 9046 sregs->idt.base = dt.address; 9047 kvm_x86_ops.get_gdt(vcpu, &dt); 9048 sregs->gdt.limit = dt.size; 9049 sregs->gdt.base = dt.address; 9050 9051 sregs->cr0 = kvm_read_cr0(vcpu); 9052 sregs->cr2 = vcpu->arch.cr2; 9053 sregs->cr3 = kvm_read_cr3(vcpu); 9054 sregs->cr4 = kvm_read_cr4(vcpu); 9055 sregs->cr8 = kvm_get_cr8(vcpu); 9056 sregs->efer = vcpu->arch.efer; 9057 sregs->apic_base = kvm_get_apic_base(vcpu); 9058 9059 memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap)); 9060 9061 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 9062 set_bit(vcpu->arch.interrupt.nr, 9063 (unsigned long *)sregs->interrupt_bitmap); 9064 } 9065 9066 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 9067 struct kvm_sregs *sregs) 9068 { 9069 vcpu_load(vcpu); 9070 __get_sregs(vcpu, sregs); 9071 vcpu_put(vcpu); 9072 return 0; 9073 } 9074 9075 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 9076 struct kvm_mp_state *mp_state) 9077 { 9078 vcpu_load(vcpu); 9079 if (kvm_mpx_supported()) 9080 kvm_load_guest_fpu(vcpu); 9081 9082 kvm_apic_accept_events(vcpu); 9083 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED && 9084 vcpu->arch.pv.pv_unhalted) 9085 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 9086 else 9087 mp_state->mp_state = vcpu->arch.mp_state; 9088 9089 if (kvm_mpx_supported()) 9090 kvm_put_guest_fpu(vcpu); 9091 vcpu_put(vcpu); 9092 return 0; 9093 } 9094 9095 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 9096 struct kvm_mp_state *mp_state) 9097 { 9098 int ret = -EINVAL; 9099 9100 vcpu_load(vcpu); 9101 9102 if (!lapic_in_kernel(vcpu) && 9103 mp_state->mp_state != KVM_MP_STATE_RUNNABLE) 9104 goto out; 9105 9106 /* 9107 * KVM_MP_STATE_INIT_RECEIVED means the processor is in 9108 * INIT state; latched init should be reported using 9109 * KVM_SET_VCPU_EVENTS, so reject it here. 9110 */ 9111 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) && 9112 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 9113 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 9114 goto out; 9115 9116 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 9117 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 9118 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 9119 } else 9120 vcpu->arch.mp_state = mp_state->mp_state; 9121 kvm_make_request(KVM_REQ_EVENT, vcpu); 9122 9123 ret = 0; 9124 out: 9125 vcpu_put(vcpu); 9126 return ret; 9127 } 9128 9129 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 9130 int reason, bool has_error_code, u32 error_code) 9131 { 9132 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9133 int ret; 9134 9135 init_emulate_ctxt(vcpu); 9136 9137 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 9138 has_error_code, error_code); 9139 if (ret) { 9140 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 9141 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 9142 vcpu->run->internal.ndata = 0; 9143 return 0; 9144 } 9145 9146 kvm_rip_write(vcpu, ctxt->eip); 9147 kvm_set_rflags(vcpu, ctxt->eflags); 9148 return 1; 9149 } 9150 EXPORT_SYMBOL_GPL(kvm_task_switch); 9151 9152 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 9153 { 9154 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 9155 /* 9156 * When EFER.LME and CR0.PG are set, the processor is in 9157 * 64-bit mode (though maybe in a 32-bit code segment). 9158 * CR4.PAE and EFER.LMA must be set. 9159 */ 9160 if (!(sregs->cr4 & X86_CR4_PAE) 9161 || !(sregs->efer & EFER_LMA)) 9162 return -EINVAL; 9163 } else { 9164 /* 9165 * Not in 64-bit mode: EFER.LMA is clear and the code 9166 * segment cannot be 64-bit. 9167 */ 9168 if (sregs->efer & EFER_LMA || sregs->cs.l) 9169 return -EINVAL; 9170 } 9171 9172 return kvm_valid_cr4(vcpu, sregs->cr4); 9173 } 9174 9175 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 9176 { 9177 struct msr_data apic_base_msr; 9178 int mmu_reset_needed = 0; 9179 int cpuid_update_needed = 0; 9180 int pending_vec, max_bits, idx; 9181 struct desc_ptr dt; 9182 int ret = -EINVAL; 9183 9184 if (kvm_valid_sregs(vcpu, sregs)) 9185 goto out; 9186 9187 apic_base_msr.data = sregs->apic_base; 9188 apic_base_msr.host_initiated = true; 9189 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 9190 goto out; 9191 9192 dt.size = sregs->idt.limit; 9193 dt.address = sregs->idt.base; 9194 kvm_x86_ops.set_idt(vcpu, &dt); 9195 dt.size = sregs->gdt.limit; 9196 dt.address = sregs->gdt.base; 9197 kvm_x86_ops.set_gdt(vcpu, &dt); 9198 9199 vcpu->arch.cr2 = sregs->cr2; 9200 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 9201 vcpu->arch.cr3 = sregs->cr3; 9202 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3); 9203 9204 kvm_set_cr8(vcpu, sregs->cr8); 9205 9206 mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 9207 kvm_x86_ops.set_efer(vcpu, sregs->efer); 9208 9209 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 9210 kvm_x86_ops.set_cr0(vcpu, sregs->cr0); 9211 vcpu->arch.cr0 = sregs->cr0; 9212 9213 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 9214 cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) & 9215 (X86_CR4_OSXSAVE | X86_CR4_PKE)); 9216 kvm_x86_ops.set_cr4(vcpu, sregs->cr4); 9217 if (cpuid_update_needed) 9218 kvm_update_cpuid_runtime(vcpu); 9219 9220 idx = srcu_read_lock(&vcpu->kvm->srcu); 9221 if (is_pae_paging(vcpu)) { 9222 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 9223 mmu_reset_needed = 1; 9224 } 9225 srcu_read_unlock(&vcpu->kvm->srcu, idx); 9226 9227 if (mmu_reset_needed) 9228 kvm_mmu_reset_context(vcpu); 9229 9230 max_bits = KVM_NR_INTERRUPTS; 9231 pending_vec = find_first_bit( 9232 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 9233 if (pending_vec < max_bits) { 9234 kvm_queue_interrupt(vcpu, pending_vec, false); 9235 pr_debug("Set back pending irq %d\n", pending_vec); 9236 } 9237 9238 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 9239 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 9240 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 9241 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 9242 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 9243 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 9244 9245 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 9246 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 9247 9248 update_cr8_intercept(vcpu); 9249 9250 /* Older userspace won't unhalt the vcpu on reset. */ 9251 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 9252 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 9253 !is_protmode(vcpu)) 9254 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 9255 9256 kvm_make_request(KVM_REQ_EVENT, vcpu); 9257 9258 ret = 0; 9259 out: 9260 return ret; 9261 } 9262 9263 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 9264 struct kvm_sregs *sregs) 9265 { 9266 int ret; 9267 9268 vcpu_load(vcpu); 9269 ret = __set_sregs(vcpu, sregs); 9270 vcpu_put(vcpu); 9271 return ret; 9272 } 9273 9274 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 9275 struct kvm_guest_debug *dbg) 9276 { 9277 unsigned long rflags; 9278 int i, r; 9279 9280 vcpu_load(vcpu); 9281 9282 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 9283 r = -EBUSY; 9284 if (vcpu->arch.exception.pending) 9285 goto out; 9286 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 9287 kvm_queue_exception(vcpu, DB_VECTOR); 9288 else 9289 kvm_queue_exception(vcpu, BP_VECTOR); 9290 } 9291 9292 /* 9293 * Read rflags as long as potentially injected trace flags are still 9294 * filtered out. 9295 */ 9296 rflags = kvm_get_rflags(vcpu); 9297 9298 vcpu->guest_debug = dbg->control; 9299 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 9300 vcpu->guest_debug = 0; 9301 9302 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 9303 for (i = 0; i < KVM_NR_DB_REGS; ++i) 9304 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 9305 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 9306 } else { 9307 for (i = 0; i < KVM_NR_DB_REGS; i++) 9308 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 9309 } 9310 kvm_update_dr7(vcpu); 9311 9312 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 9313 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + 9314 get_segment_base(vcpu, VCPU_SREG_CS); 9315 9316 /* 9317 * Trigger an rflags update that will inject or remove the trace 9318 * flags. 9319 */ 9320 kvm_set_rflags(vcpu, rflags); 9321 9322 kvm_x86_ops.update_exception_bitmap(vcpu); 9323 9324 r = 0; 9325 9326 out: 9327 vcpu_put(vcpu); 9328 return r; 9329 } 9330 9331 /* 9332 * Translate a guest virtual address to a guest physical address. 9333 */ 9334 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 9335 struct kvm_translation *tr) 9336 { 9337 unsigned long vaddr = tr->linear_address; 9338 gpa_t gpa; 9339 int idx; 9340 9341 vcpu_load(vcpu); 9342 9343 idx = srcu_read_lock(&vcpu->kvm->srcu); 9344 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 9345 srcu_read_unlock(&vcpu->kvm->srcu, idx); 9346 tr->physical_address = gpa; 9347 tr->valid = gpa != UNMAPPED_GVA; 9348 tr->writeable = 1; 9349 tr->usermode = 0; 9350 9351 vcpu_put(vcpu); 9352 return 0; 9353 } 9354 9355 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 9356 { 9357 struct fxregs_state *fxsave; 9358 9359 vcpu_load(vcpu); 9360 9361 fxsave = &vcpu->arch.guest_fpu->state.fxsave; 9362 memcpy(fpu->fpr, fxsave->st_space, 128); 9363 fpu->fcw = fxsave->cwd; 9364 fpu->fsw = fxsave->swd; 9365 fpu->ftwx = fxsave->twd; 9366 fpu->last_opcode = fxsave->fop; 9367 fpu->last_ip = fxsave->rip; 9368 fpu->last_dp = fxsave->rdp; 9369 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 9370 9371 vcpu_put(vcpu); 9372 return 0; 9373 } 9374 9375 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 9376 { 9377 struct fxregs_state *fxsave; 9378 9379 vcpu_load(vcpu); 9380 9381 fxsave = &vcpu->arch.guest_fpu->state.fxsave; 9382 9383 memcpy(fxsave->st_space, fpu->fpr, 128); 9384 fxsave->cwd = fpu->fcw; 9385 fxsave->swd = fpu->fsw; 9386 fxsave->twd = fpu->ftwx; 9387 fxsave->fop = fpu->last_opcode; 9388 fxsave->rip = fpu->last_ip; 9389 fxsave->rdp = fpu->last_dp; 9390 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 9391 9392 vcpu_put(vcpu); 9393 return 0; 9394 } 9395 9396 static void store_regs(struct kvm_vcpu *vcpu) 9397 { 9398 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 9399 9400 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 9401 __get_regs(vcpu, &vcpu->run->s.regs.regs); 9402 9403 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 9404 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 9405 9406 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 9407 kvm_vcpu_ioctl_x86_get_vcpu_events( 9408 vcpu, &vcpu->run->s.regs.events); 9409 } 9410 9411 static int sync_regs(struct kvm_vcpu *vcpu) 9412 { 9413 if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS) 9414 return -EINVAL; 9415 9416 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 9417 __set_regs(vcpu, &vcpu->run->s.regs.regs); 9418 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 9419 } 9420 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 9421 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 9422 return -EINVAL; 9423 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 9424 } 9425 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 9426 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 9427 vcpu, &vcpu->run->s.regs.events)) 9428 return -EINVAL; 9429 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 9430 } 9431 9432 return 0; 9433 } 9434 9435 static void fx_init(struct kvm_vcpu *vcpu) 9436 { 9437 fpstate_init(&vcpu->arch.guest_fpu->state); 9438 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9439 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv = 9440 host_xcr0 | XSTATE_COMPACTION_ENABLED; 9441 9442 /* 9443 * Ensure guest xcr0 is valid for loading 9444 */ 9445 vcpu->arch.xcr0 = XFEATURE_MASK_FP; 9446 9447 vcpu->arch.cr0 |= X86_CR0_ET; 9448 } 9449 9450 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 9451 { 9452 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 9453 pr_warn_once("kvm: SMP vm created on host with unstable TSC; " 9454 "guest TSC will not be reliable\n"); 9455 9456 return 0; 9457 } 9458 9459 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 9460 { 9461 struct page *page; 9462 int r; 9463 9464 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 9465 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 9466 else 9467 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 9468 9469 kvm_set_tsc_khz(vcpu, max_tsc_khz); 9470 9471 r = kvm_mmu_create(vcpu); 9472 if (r < 0) 9473 return r; 9474 9475 if (irqchip_in_kernel(vcpu->kvm)) { 9476 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 9477 if (r < 0) 9478 goto fail_mmu_destroy; 9479 if (kvm_apicv_activated(vcpu->kvm)) 9480 vcpu->arch.apicv_active = true; 9481 } else 9482 static_key_slow_inc(&kvm_no_apic_vcpu); 9483 9484 r = -ENOMEM; 9485 9486 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 9487 if (!page) 9488 goto fail_free_lapic; 9489 vcpu->arch.pio_data = page_address(page); 9490 9491 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 9492 GFP_KERNEL_ACCOUNT); 9493 if (!vcpu->arch.mce_banks) 9494 goto fail_free_pio_data; 9495 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 9496 9497 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 9498 GFP_KERNEL_ACCOUNT)) 9499 goto fail_free_mce_banks; 9500 9501 if (!alloc_emulate_ctxt(vcpu)) 9502 goto free_wbinvd_dirty_mask; 9503 9504 vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache, 9505 GFP_KERNEL_ACCOUNT); 9506 if (!vcpu->arch.user_fpu) { 9507 pr_err("kvm: failed to allocate userspace's fpu\n"); 9508 goto free_emulate_ctxt; 9509 } 9510 9511 vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache, 9512 GFP_KERNEL_ACCOUNT); 9513 if (!vcpu->arch.guest_fpu) { 9514 pr_err("kvm: failed to allocate vcpu's fpu\n"); 9515 goto free_user_fpu; 9516 } 9517 fx_init(vcpu); 9518 9519 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 9520 9521 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 9522 9523 kvm_async_pf_hash_reset(vcpu); 9524 kvm_pmu_init(vcpu); 9525 9526 vcpu->arch.pending_external_vector = -1; 9527 vcpu->arch.preempted_in_kernel = false; 9528 9529 kvm_hv_vcpu_init(vcpu); 9530 9531 r = kvm_x86_ops.vcpu_create(vcpu); 9532 if (r) 9533 goto free_guest_fpu; 9534 9535 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 9536 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 9537 kvm_vcpu_mtrr_init(vcpu); 9538 vcpu_load(vcpu); 9539 kvm_vcpu_reset(vcpu, false); 9540 kvm_init_mmu(vcpu, false); 9541 vcpu_put(vcpu); 9542 return 0; 9543 9544 free_guest_fpu: 9545 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu); 9546 free_user_fpu: 9547 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu); 9548 free_emulate_ctxt: 9549 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 9550 free_wbinvd_dirty_mask: 9551 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 9552 fail_free_mce_banks: 9553 kfree(vcpu->arch.mce_banks); 9554 fail_free_pio_data: 9555 free_page((unsigned long)vcpu->arch.pio_data); 9556 fail_free_lapic: 9557 kvm_free_lapic(vcpu); 9558 fail_mmu_destroy: 9559 kvm_mmu_destroy(vcpu); 9560 return r; 9561 } 9562 9563 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 9564 { 9565 struct msr_data msr; 9566 struct kvm *kvm = vcpu->kvm; 9567 9568 kvm_hv_vcpu_postcreate(vcpu); 9569 9570 if (mutex_lock_killable(&vcpu->mutex)) 9571 return; 9572 vcpu_load(vcpu); 9573 msr.data = 0x0; 9574 msr.index = MSR_IA32_TSC; 9575 msr.host_initiated = true; 9576 kvm_write_tsc(vcpu, &msr); 9577 vcpu_put(vcpu); 9578 9579 /* poll control enabled by default */ 9580 vcpu->arch.msr_kvm_poll_control = 1; 9581 9582 mutex_unlock(&vcpu->mutex); 9583 9584 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 9585 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 9586 KVMCLOCK_SYNC_PERIOD); 9587 } 9588 9589 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 9590 { 9591 struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache; 9592 int idx; 9593 9594 kvm_release_pfn(cache->pfn, cache->dirty, cache); 9595 9596 kvmclock_reset(vcpu); 9597 9598 kvm_x86_ops.vcpu_free(vcpu); 9599 9600 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 9601 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 9602 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu); 9603 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu); 9604 9605 kvm_hv_vcpu_uninit(vcpu); 9606 kvm_pmu_destroy(vcpu); 9607 kfree(vcpu->arch.mce_banks); 9608 kvm_free_lapic(vcpu); 9609 idx = srcu_read_lock(&vcpu->kvm->srcu); 9610 kvm_mmu_destroy(vcpu); 9611 srcu_read_unlock(&vcpu->kvm->srcu, idx); 9612 free_page((unsigned long)vcpu->arch.pio_data); 9613 if (!lapic_in_kernel(vcpu)) 9614 static_key_slow_dec(&kvm_no_apic_vcpu); 9615 } 9616 9617 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 9618 { 9619 kvm_lapic_reset(vcpu, init_event); 9620 9621 vcpu->arch.hflags = 0; 9622 9623 vcpu->arch.smi_pending = 0; 9624 vcpu->arch.smi_count = 0; 9625 atomic_set(&vcpu->arch.nmi_queued, 0); 9626 vcpu->arch.nmi_pending = 0; 9627 vcpu->arch.nmi_injected = false; 9628 kvm_clear_interrupt_queue(vcpu); 9629 kvm_clear_exception_queue(vcpu); 9630 9631 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 9632 kvm_update_dr0123(vcpu); 9633 vcpu->arch.dr6 = DR6_INIT; 9634 vcpu->arch.dr7 = DR7_FIXED_1; 9635 kvm_update_dr7(vcpu); 9636 9637 vcpu->arch.cr2 = 0; 9638 9639 kvm_make_request(KVM_REQ_EVENT, vcpu); 9640 vcpu->arch.apf.msr_en_val = 0; 9641 vcpu->arch.apf.msr_int_val = 0; 9642 vcpu->arch.st.msr_val = 0; 9643 9644 kvmclock_reset(vcpu); 9645 9646 kvm_clear_async_pf_completion_queue(vcpu); 9647 kvm_async_pf_hash_reset(vcpu); 9648 vcpu->arch.apf.halted = false; 9649 9650 if (kvm_mpx_supported()) { 9651 void *mpx_state_buffer; 9652 9653 /* 9654 * To avoid have the INIT path from kvm_apic_has_events() that be 9655 * called with loaded FPU and does not let userspace fix the state. 9656 */ 9657 if (init_event) 9658 kvm_put_guest_fpu(vcpu); 9659 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave, 9660 XFEATURE_BNDREGS); 9661 if (mpx_state_buffer) 9662 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state)); 9663 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave, 9664 XFEATURE_BNDCSR); 9665 if (mpx_state_buffer) 9666 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr)); 9667 if (init_event) 9668 kvm_load_guest_fpu(vcpu); 9669 } 9670 9671 if (!init_event) { 9672 kvm_pmu_reset(vcpu); 9673 vcpu->arch.smbase = 0x30000; 9674 9675 vcpu->arch.msr_misc_features_enables = 0; 9676 9677 vcpu->arch.xcr0 = XFEATURE_MASK_FP; 9678 } 9679 9680 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 9681 vcpu->arch.regs_avail = ~0; 9682 vcpu->arch.regs_dirty = ~0; 9683 9684 vcpu->arch.ia32_xss = 0; 9685 9686 kvm_x86_ops.vcpu_reset(vcpu, init_event); 9687 } 9688 9689 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 9690 { 9691 struct kvm_segment cs; 9692 9693 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 9694 cs.selector = vector << 8; 9695 cs.base = vector << 12; 9696 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 9697 kvm_rip_write(vcpu, 0); 9698 } 9699 9700 int kvm_arch_hardware_enable(void) 9701 { 9702 struct kvm *kvm; 9703 struct kvm_vcpu *vcpu; 9704 int i; 9705 int ret; 9706 u64 local_tsc; 9707 u64 max_tsc = 0; 9708 bool stable, backwards_tsc = false; 9709 9710 kvm_shared_msr_cpu_online(); 9711 ret = kvm_x86_ops.hardware_enable(); 9712 if (ret != 0) 9713 return ret; 9714 9715 local_tsc = rdtsc(); 9716 stable = !kvm_check_tsc_unstable(); 9717 list_for_each_entry(kvm, &vm_list, vm_list) { 9718 kvm_for_each_vcpu(i, vcpu, kvm) { 9719 if (!stable && vcpu->cpu == smp_processor_id()) 9720 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9721 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 9722 backwards_tsc = true; 9723 if (vcpu->arch.last_host_tsc > max_tsc) 9724 max_tsc = vcpu->arch.last_host_tsc; 9725 } 9726 } 9727 } 9728 9729 /* 9730 * Sometimes, even reliable TSCs go backwards. This happens on 9731 * platforms that reset TSC during suspend or hibernate actions, but 9732 * maintain synchronization. We must compensate. Fortunately, we can 9733 * detect that condition here, which happens early in CPU bringup, 9734 * before any KVM threads can be running. Unfortunately, we can't 9735 * bring the TSCs fully up to date with real time, as we aren't yet far 9736 * enough into CPU bringup that we know how much real time has actually 9737 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 9738 * variables that haven't been updated yet. 9739 * 9740 * So we simply find the maximum observed TSC above, then record the 9741 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 9742 * the adjustment will be applied. Note that we accumulate 9743 * adjustments, in case multiple suspend cycles happen before some VCPU 9744 * gets a chance to run again. In the event that no KVM threads get a 9745 * chance to run, we will miss the entire elapsed period, as we'll have 9746 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 9747 * loose cycle time. This isn't too big a deal, since the loss will be 9748 * uniform across all VCPUs (not to mention the scenario is extremely 9749 * unlikely). It is possible that a second hibernate recovery happens 9750 * much faster than a first, causing the observed TSC here to be 9751 * smaller; this would require additional padding adjustment, which is 9752 * why we set last_host_tsc to the local tsc observed here. 9753 * 9754 * N.B. - this code below runs only on platforms with reliable TSC, 9755 * as that is the only way backwards_tsc is set above. Also note 9756 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 9757 * have the same delta_cyc adjustment applied if backwards_tsc 9758 * is detected. Note further, this adjustment is only done once, 9759 * as we reset last_host_tsc on all VCPUs to stop this from being 9760 * called multiple times (one for each physical CPU bringup). 9761 * 9762 * Platforms with unreliable TSCs don't have to deal with this, they 9763 * will be compensated by the logic in vcpu_load, which sets the TSC to 9764 * catchup mode. This will catchup all VCPUs to real time, but cannot 9765 * guarantee that they stay in perfect synchronization. 9766 */ 9767 if (backwards_tsc) { 9768 u64 delta_cyc = max_tsc - local_tsc; 9769 list_for_each_entry(kvm, &vm_list, vm_list) { 9770 kvm->arch.backwards_tsc_observed = true; 9771 kvm_for_each_vcpu(i, vcpu, kvm) { 9772 vcpu->arch.tsc_offset_adjustment += delta_cyc; 9773 vcpu->arch.last_host_tsc = local_tsc; 9774 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9775 } 9776 9777 /* 9778 * We have to disable TSC offset matching.. if you were 9779 * booting a VM while issuing an S4 host suspend.... 9780 * you may have some problem. Solving this issue is 9781 * left as an exercise to the reader. 9782 */ 9783 kvm->arch.last_tsc_nsec = 0; 9784 kvm->arch.last_tsc_write = 0; 9785 } 9786 9787 } 9788 return 0; 9789 } 9790 9791 void kvm_arch_hardware_disable(void) 9792 { 9793 kvm_x86_ops.hardware_disable(); 9794 drop_user_return_notifiers(); 9795 } 9796 9797 int kvm_arch_hardware_setup(void *opaque) 9798 { 9799 struct kvm_x86_init_ops *ops = opaque; 9800 int r; 9801 9802 rdmsrl_safe(MSR_EFER, &host_efer); 9803 9804 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9805 rdmsrl(MSR_IA32_XSS, host_xss); 9806 9807 r = ops->hardware_setup(); 9808 if (r != 0) 9809 return r; 9810 9811 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 9812 9813 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 9814 supported_xss = 0; 9815 9816 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 9817 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 9818 #undef __kvm_cpu_cap_has 9819 9820 if (kvm_has_tsc_control) { 9821 /* 9822 * Make sure the user can only configure tsc_khz values that 9823 * fit into a signed integer. 9824 * A min value is not calculated because it will always 9825 * be 1 on all machines. 9826 */ 9827 u64 max = min(0x7fffffffULL, 9828 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz)); 9829 kvm_max_guest_tsc_khz = max; 9830 9831 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits; 9832 } 9833 9834 kvm_init_msr_list(); 9835 return 0; 9836 } 9837 9838 void kvm_arch_hardware_unsetup(void) 9839 { 9840 kvm_x86_ops.hardware_unsetup(); 9841 } 9842 9843 int kvm_arch_check_processor_compat(void *opaque) 9844 { 9845 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id()); 9846 struct kvm_x86_init_ops *ops = opaque; 9847 9848 WARN_ON(!irqs_disabled()); 9849 9850 if (__cr4_reserved_bits(cpu_has, c) != 9851 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 9852 return -EIO; 9853 9854 return ops->check_processor_compatibility(); 9855 } 9856 9857 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 9858 { 9859 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 9860 } 9861 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); 9862 9863 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 9864 { 9865 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 9866 } 9867 9868 struct static_key kvm_no_apic_vcpu __read_mostly; 9869 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu); 9870 9871 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 9872 { 9873 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 9874 9875 vcpu->arch.l1tf_flush_l1d = true; 9876 if (pmu->version && unlikely(pmu->event_count)) { 9877 pmu->need_cleanup = true; 9878 kvm_make_request(KVM_REQ_PMU, vcpu); 9879 } 9880 kvm_x86_ops.sched_in(vcpu, cpu); 9881 } 9882 9883 void kvm_arch_free_vm(struct kvm *kvm) 9884 { 9885 kfree(kvm->arch.hyperv.hv_pa_pg); 9886 vfree(kvm); 9887 } 9888 9889 9890 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 9891 { 9892 if (type) 9893 return -EINVAL; 9894 9895 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 9896 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 9897 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 9898 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages); 9899 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 9900 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 9901 9902 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 9903 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 9904 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 9905 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 9906 &kvm->arch.irq_sources_bitmap); 9907 9908 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 9909 mutex_init(&kvm->arch.apic_map_lock); 9910 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); 9911 9912 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 9913 pvclock_update_vm_gtod_copy(kvm); 9914 9915 kvm->arch.guest_can_read_msr_platform_info = true; 9916 9917 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 9918 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 9919 9920 kvm_hv_init_vm(kvm); 9921 kvm_page_track_init(kvm); 9922 kvm_mmu_init_vm(kvm); 9923 9924 return kvm_x86_ops.vm_init(kvm); 9925 } 9926 9927 int kvm_arch_post_init_vm(struct kvm *kvm) 9928 { 9929 return kvm_mmu_post_init_vm(kvm); 9930 } 9931 9932 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 9933 { 9934 vcpu_load(vcpu); 9935 kvm_mmu_unload(vcpu); 9936 vcpu_put(vcpu); 9937 } 9938 9939 static void kvm_free_vcpus(struct kvm *kvm) 9940 { 9941 unsigned int i; 9942 struct kvm_vcpu *vcpu; 9943 9944 /* 9945 * Unpin any mmu pages first. 9946 */ 9947 kvm_for_each_vcpu(i, vcpu, kvm) { 9948 kvm_clear_async_pf_completion_queue(vcpu); 9949 kvm_unload_vcpu_mmu(vcpu); 9950 } 9951 kvm_for_each_vcpu(i, vcpu, kvm) 9952 kvm_vcpu_destroy(vcpu); 9953 9954 mutex_lock(&kvm->lock); 9955 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 9956 kvm->vcpus[i] = NULL; 9957 9958 atomic_set(&kvm->online_vcpus, 0); 9959 mutex_unlock(&kvm->lock); 9960 } 9961 9962 void kvm_arch_sync_events(struct kvm *kvm) 9963 { 9964 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 9965 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 9966 kvm_free_pit(kvm); 9967 } 9968 9969 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size) 9970 { 9971 int i, r; 9972 unsigned long hva, old_npages; 9973 struct kvm_memslots *slots = kvm_memslots(kvm); 9974 struct kvm_memory_slot *slot; 9975 9976 /* Called with kvm->slots_lock held. */ 9977 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 9978 return -EINVAL; 9979 9980 slot = id_to_memslot(slots, id); 9981 if (size) { 9982 if (slot && slot->npages) 9983 return -EEXIST; 9984 9985 /* 9986 * MAP_SHARED to prevent internal slot pages from being moved 9987 * by fork()/COW. 9988 */ 9989 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 9990 MAP_SHARED | MAP_ANONYMOUS, 0); 9991 if (IS_ERR((void *)hva)) 9992 return PTR_ERR((void *)hva); 9993 } else { 9994 if (!slot || !slot->npages) 9995 return 0; 9996 9997 old_npages = slot->npages; 9998 hva = 0; 9999 } 10000 10001 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 10002 struct kvm_userspace_memory_region m; 10003 10004 m.slot = id | (i << 16); 10005 m.flags = 0; 10006 m.guest_phys_addr = gpa; 10007 m.userspace_addr = hva; 10008 m.memory_size = size; 10009 r = __kvm_set_memory_region(kvm, &m); 10010 if (r < 0) 10011 return r; 10012 } 10013 10014 if (!size) 10015 vm_munmap(hva, old_npages * PAGE_SIZE); 10016 10017 return 0; 10018 } 10019 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 10020 10021 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 10022 { 10023 kvm_mmu_pre_destroy_vm(kvm); 10024 } 10025 10026 void kvm_arch_destroy_vm(struct kvm *kvm) 10027 { 10028 if (current->mm == kvm->mm) { 10029 /* 10030 * Free memory regions allocated on behalf of userspace, 10031 * unless the the memory map has changed due to process exit 10032 * or fd copying. 10033 */ 10034 mutex_lock(&kvm->slots_lock); 10035 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 10036 0, 0); 10037 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 10038 0, 0); 10039 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 10040 mutex_unlock(&kvm->slots_lock); 10041 } 10042 if (kvm_x86_ops.vm_destroy) 10043 kvm_x86_ops.vm_destroy(kvm); 10044 kvm_pic_destroy(kvm); 10045 kvm_ioapic_destroy(kvm); 10046 kvm_free_vcpus(kvm); 10047 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 10048 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 10049 kvm_mmu_uninit_vm(kvm); 10050 kvm_page_track_cleanup(kvm); 10051 kvm_hv_destroy_vm(kvm); 10052 } 10053 10054 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 10055 { 10056 int i; 10057 10058 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 10059 kvfree(slot->arch.rmap[i]); 10060 slot->arch.rmap[i] = NULL; 10061 10062 if (i == 0) 10063 continue; 10064 10065 kvfree(slot->arch.lpage_info[i - 1]); 10066 slot->arch.lpage_info[i - 1] = NULL; 10067 } 10068 10069 kvm_page_track_free_memslot(slot); 10070 } 10071 10072 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot, 10073 unsigned long npages) 10074 { 10075 int i; 10076 10077 /* 10078 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 10079 * old arrays will be freed by __kvm_set_memory_region() if installing 10080 * the new memslot is successful. 10081 */ 10082 memset(&slot->arch, 0, sizeof(slot->arch)); 10083 10084 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 10085 struct kvm_lpage_info *linfo; 10086 unsigned long ugfn; 10087 int lpages; 10088 int level = i + 1; 10089 10090 lpages = gfn_to_index(slot->base_gfn + npages - 1, 10091 slot->base_gfn, level) + 1; 10092 10093 slot->arch.rmap[i] = 10094 kvcalloc(lpages, sizeof(*slot->arch.rmap[i]), 10095 GFP_KERNEL_ACCOUNT); 10096 if (!slot->arch.rmap[i]) 10097 goto out_free; 10098 if (i == 0) 10099 continue; 10100 10101 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 10102 if (!linfo) 10103 goto out_free; 10104 10105 slot->arch.lpage_info[i - 1] = linfo; 10106 10107 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 10108 linfo[0].disallow_lpage = 1; 10109 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 10110 linfo[lpages - 1].disallow_lpage = 1; 10111 ugfn = slot->userspace_addr >> PAGE_SHIFT; 10112 /* 10113 * If the gfn and userspace address are not aligned wrt each 10114 * other, disable large page support for this slot. 10115 */ 10116 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 10117 unsigned long j; 10118 10119 for (j = 0; j < lpages; ++j) 10120 linfo[j].disallow_lpage = 1; 10121 } 10122 } 10123 10124 if (kvm_page_track_create_memslot(slot, npages)) 10125 goto out_free; 10126 10127 return 0; 10128 10129 out_free: 10130 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 10131 kvfree(slot->arch.rmap[i]); 10132 slot->arch.rmap[i] = NULL; 10133 if (i == 0) 10134 continue; 10135 10136 kvfree(slot->arch.lpage_info[i - 1]); 10137 slot->arch.lpage_info[i - 1] = NULL; 10138 } 10139 return -ENOMEM; 10140 } 10141 10142 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 10143 { 10144 struct kvm_vcpu *vcpu; 10145 int i; 10146 10147 /* 10148 * memslots->generation has been incremented. 10149 * mmio generation may have reached its maximum value. 10150 */ 10151 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 10152 10153 /* Force re-initialization of steal_time cache */ 10154 kvm_for_each_vcpu(i, vcpu, kvm) 10155 kvm_vcpu_kick(vcpu); 10156 } 10157 10158 int kvm_arch_prepare_memory_region(struct kvm *kvm, 10159 struct kvm_memory_slot *memslot, 10160 const struct kvm_userspace_memory_region *mem, 10161 enum kvm_mr_change change) 10162 { 10163 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) 10164 return kvm_alloc_memslot_metadata(memslot, 10165 mem->memory_size >> PAGE_SHIFT); 10166 return 0; 10167 } 10168 10169 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 10170 struct kvm_memory_slot *old, 10171 struct kvm_memory_slot *new, 10172 enum kvm_mr_change change) 10173 { 10174 /* 10175 * Nothing to do for RO slots or CREATE/MOVE/DELETE of a slot. 10176 * See comments below. 10177 */ 10178 if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY)) 10179 return; 10180 10181 /* 10182 * Dirty logging tracks sptes in 4k granularity, meaning that large 10183 * sptes have to be split. If live migration is successful, the guest 10184 * in the source machine will be destroyed and large sptes will be 10185 * created in the destination. However, if the guest continues to run 10186 * in the source machine (for example if live migration fails), small 10187 * sptes will remain around and cause bad performance. 10188 * 10189 * Scan sptes if dirty logging has been stopped, dropping those 10190 * which can be collapsed into a single large-page spte. Later 10191 * page faults will create the large-page sptes. 10192 * 10193 * There is no need to do this in any of the following cases: 10194 * CREATE: No dirty mappings will already exist. 10195 * MOVE/DELETE: The old mappings will already have been cleaned up by 10196 * kvm_arch_flush_shadow_memslot() 10197 */ 10198 if ((old->flags & KVM_MEM_LOG_DIRTY_PAGES) && 10199 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 10200 kvm_mmu_zap_collapsible_sptes(kvm, new); 10201 10202 /* 10203 * Enable or disable dirty logging for the slot. 10204 * 10205 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of the old 10206 * slot have been zapped so no dirty logging updates are needed for 10207 * the old slot. 10208 * For KVM_MR_CREATE and KVM_MR_MOVE, once the new slot is visible 10209 * any mappings that might be created in it will consume the 10210 * properties of the new slot and do not need to be updated here. 10211 * 10212 * When PML is enabled, the kvm_x86_ops dirty logging hooks are 10213 * called to enable/disable dirty logging. 10214 * 10215 * When disabling dirty logging with PML enabled, the D-bit is set 10216 * for sptes in the slot in order to prevent unnecessary GPA 10217 * logging in the PML buffer (and potential PML buffer full VMEXIT). 10218 * This guarantees leaving PML enabled for the guest's lifetime 10219 * won't have any additional overhead from PML when the guest is 10220 * running with dirty logging disabled. 10221 * 10222 * When enabling dirty logging, large sptes are write-protected 10223 * so they can be split on first write. New large sptes cannot 10224 * be created for this slot until the end of the logging. 10225 * See the comments in fast_page_fault(). 10226 * For small sptes, nothing is done if the dirty log is in the 10227 * initial-all-set state. Otherwise, depending on whether pml 10228 * is enabled the D-bit or the W-bit will be cleared. 10229 */ 10230 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) { 10231 if (kvm_x86_ops.slot_enable_log_dirty) { 10232 kvm_x86_ops.slot_enable_log_dirty(kvm, new); 10233 } else { 10234 int level = 10235 kvm_dirty_log_manual_protect_and_init_set(kvm) ? 10236 PG_LEVEL_2M : PG_LEVEL_4K; 10237 10238 /* 10239 * If we're with initial-all-set, we don't need 10240 * to write protect any small page because 10241 * they're reported as dirty already. However 10242 * we still need to write-protect huge pages 10243 * so that the page split can happen lazily on 10244 * the first write to the huge page. 10245 */ 10246 kvm_mmu_slot_remove_write_access(kvm, new, level); 10247 } 10248 } else { 10249 if (kvm_x86_ops.slot_disable_log_dirty) 10250 kvm_x86_ops.slot_disable_log_dirty(kvm, new); 10251 } 10252 } 10253 10254 void kvm_arch_commit_memory_region(struct kvm *kvm, 10255 const struct kvm_userspace_memory_region *mem, 10256 struct kvm_memory_slot *old, 10257 const struct kvm_memory_slot *new, 10258 enum kvm_mr_change change) 10259 { 10260 if (!kvm->arch.n_requested_mmu_pages) 10261 kvm_mmu_change_mmu_pages(kvm, 10262 kvm_mmu_calculate_default_mmu_pages(kvm)); 10263 10264 /* 10265 * FIXME: const-ify all uses of struct kvm_memory_slot. 10266 */ 10267 kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change); 10268 10269 /* Free the arrays associated with the old memslot. */ 10270 if (change == KVM_MR_MOVE) 10271 kvm_arch_free_memslot(kvm, old); 10272 } 10273 10274 void kvm_arch_flush_shadow_all(struct kvm *kvm) 10275 { 10276 kvm_mmu_zap_all(kvm); 10277 } 10278 10279 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 10280 struct kvm_memory_slot *slot) 10281 { 10282 kvm_page_track_flush_slot(kvm, slot); 10283 } 10284 10285 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 10286 { 10287 return (is_guest_mode(vcpu) && 10288 kvm_x86_ops.guest_apic_has_interrupt && 10289 kvm_x86_ops.guest_apic_has_interrupt(vcpu)); 10290 } 10291 10292 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 10293 { 10294 if (!list_empty_careful(&vcpu->async_pf.done)) 10295 return true; 10296 10297 if (kvm_apic_has_events(vcpu)) 10298 return true; 10299 10300 if (vcpu->arch.pv.pv_unhalted) 10301 return true; 10302 10303 if (vcpu->arch.exception.pending) 10304 return true; 10305 10306 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 10307 (vcpu->arch.nmi_pending && 10308 kvm_x86_ops.nmi_allowed(vcpu, false))) 10309 return true; 10310 10311 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 10312 (vcpu->arch.smi_pending && 10313 kvm_x86_ops.smi_allowed(vcpu, false))) 10314 return true; 10315 10316 if (kvm_arch_interrupt_allowed(vcpu) && 10317 (kvm_cpu_has_interrupt(vcpu) || 10318 kvm_guest_apic_has_interrupt(vcpu))) 10319 return true; 10320 10321 if (kvm_hv_has_stimer_pending(vcpu)) 10322 return true; 10323 10324 if (is_guest_mode(vcpu) && 10325 kvm_x86_ops.nested_ops->hv_timer_pending && 10326 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu)) 10327 return true; 10328 10329 return false; 10330 } 10331 10332 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 10333 { 10334 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 10335 } 10336 10337 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 10338 { 10339 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 10340 return true; 10341 10342 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 10343 kvm_test_request(KVM_REQ_SMI, vcpu) || 10344 kvm_test_request(KVM_REQ_EVENT, vcpu)) 10345 return true; 10346 10347 if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu)) 10348 return true; 10349 10350 return false; 10351 } 10352 10353 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 10354 { 10355 return vcpu->arch.preempted_in_kernel; 10356 } 10357 10358 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 10359 { 10360 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 10361 } 10362 10363 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 10364 { 10365 return kvm_x86_ops.interrupt_allowed(vcpu, false); 10366 } 10367 10368 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 10369 { 10370 if (is_64_bit_mode(vcpu)) 10371 return kvm_rip_read(vcpu); 10372 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 10373 kvm_rip_read(vcpu)); 10374 } 10375 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 10376 10377 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 10378 { 10379 return kvm_get_linear_rip(vcpu) == linear_rip; 10380 } 10381 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 10382 10383 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 10384 { 10385 unsigned long rflags; 10386 10387 rflags = kvm_x86_ops.get_rflags(vcpu); 10388 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 10389 rflags &= ~X86_EFLAGS_TF; 10390 return rflags; 10391 } 10392 EXPORT_SYMBOL_GPL(kvm_get_rflags); 10393 10394 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 10395 { 10396 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 10397 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 10398 rflags |= X86_EFLAGS_TF; 10399 kvm_x86_ops.set_rflags(vcpu, rflags); 10400 } 10401 10402 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 10403 { 10404 __kvm_set_rflags(vcpu, rflags); 10405 kvm_make_request(KVM_REQ_EVENT, vcpu); 10406 } 10407 EXPORT_SYMBOL_GPL(kvm_set_rflags); 10408 10409 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 10410 { 10411 int r; 10412 10413 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) || 10414 work->wakeup_all) 10415 return; 10416 10417 r = kvm_mmu_reload(vcpu); 10418 if (unlikely(r)) 10419 return; 10420 10421 if (!vcpu->arch.mmu->direct_map && 10422 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu)) 10423 return; 10424 10425 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true); 10426 } 10427 10428 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 10429 { 10430 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 10431 10432 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 10433 } 10434 10435 static inline u32 kvm_async_pf_next_probe(u32 key) 10436 { 10437 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 10438 } 10439 10440 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 10441 { 10442 u32 key = kvm_async_pf_hash_fn(gfn); 10443 10444 while (vcpu->arch.apf.gfns[key] != ~0) 10445 key = kvm_async_pf_next_probe(key); 10446 10447 vcpu->arch.apf.gfns[key] = gfn; 10448 } 10449 10450 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 10451 { 10452 int i; 10453 u32 key = kvm_async_pf_hash_fn(gfn); 10454 10455 for (i = 0; i < ASYNC_PF_PER_VCPU && 10456 (vcpu->arch.apf.gfns[key] != gfn && 10457 vcpu->arch.apf.gfns[key] != ~0); i++) 10458 key = kvm_async_pf_next_probe(key); 10459 10460 return key; 10461 } 10462 10463 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 10464 { 10465 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 10466 } 10467 10468 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 10469 { 10470 u32 i, j, k; 10471 10472 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 10473 10474 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 10475 return; 10476 10477 while (true) { 10478 vcpu->arch.apf.gfns[i] = ~0; 10479 do { 10480 j = kvm_async_pf_next_probe(j); 10481 if (vcpu->arch.apf.gfns[j] == ~0) 10482 return; 10483 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 10484 /* 10485 * k lies cyclically in ]i,j] 10486 * | i.k.j | 10487 * |....j i.k.| or |.k..j i...| 10488 */ 10489 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 10490 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 10491 i = j; 10492 } 10493 } 10494 10495 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 10496 { 10497 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 10498 10499 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 10500 sizeof(reason)); 10501 } 10502 10503 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 10504 { 10505 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 10506 10507 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 10508 &token, offset, sizeof(token)); 10509 } 10510 10511 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 10512 { 10513 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 10514 u32 val; 10515 10516 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 10517 &val, offset, sizeof(val))) 10518 return false; 10519 10520 return !val; 10521 } 10522 10523 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 10524 { 10525 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu)) 10526 return false; 10527 10528 if (!kvm_pv_async_pf_enabled(vcpu) || 10529 (vcpu->arch.apf.send_user_only && kvm_x86_ops.get_cpl(vcpu) == 0)) 10530 return false; 10531 10532 return true; 10533 } 10534 10535 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 10536 { 10537 if (unlikely(!lapic_in_kernel(vcpu) || 10538 kvm_event_needs_reinjection(vcpu) || 10539 vcpu->arch.exception.pending)) 10540 return false; 10541 10542 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 10543 return false; 10544 10545 /* 10546 * If interrupts are off we cannot even use an artificial 10547 * halt state. 10548 */ 10549 return kvm_arch_interrupt_allowed(vcpu); 10550 } 10551 10552 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 10553 struct kvm_async_pf *work) 10554 { 10555 struct x86_exception fault; 10556 10557 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 10558 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 10559 10560 if (kvm_can_deliver_async_pf(vcpu) && 10561 !apf_put_user_notpresent(vcpu)) { 10562 fault.vector = PF_VECTOR; 10563 fault.error_code_valid = true; 10564 fault.error_code = 0; 10565 fault.nested_page_fault = false; 10566 fault.address = work->arch.token; 10567 fault.async_page_fault = true; 10568 kvm_inject_page_fault(vcpu, &fault); 10569 return true; 10570 } else { 10571 /* 10572 * It is not possible to deliver a paravirtualized asynchronous 10573 * page fault, but putting the guest in an artificial halt state 10574 * can be beneficial nevertheless: if an interrupt arrives, we 10575 * can deliver it timely and perhaps the guest will schedule 10576 * another process. When the instruction that triggered a page 10577 * fault is retried, hopefully the page will be ready in the host. 10578 */ 10579 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 10580 return false; 10581 } 10582 } 10583 10584 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 10585 struct kvm_async_pf *work) 10586 { 10587 struct kvm_lapic_irq irq = { 10588 .delivery_mode = APIC_DM_FIXED, 10589 .vector = vcpu->arch.apf.vec 10590 }; 10591 10592 if (work->wakeup_all) 10593 work->arch.token = ~0; /* broadcast wakeup */ 10594 else 10595 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 10596 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 10597 10598 if ((work->wakeup_all || work->notpresent_injected) && 10599 kvm_pv_async_pf_enabled(vcpu) && 10600 !apf_put_user_ready(vcpu, work->arch.token)) { 10601 vcpu->arch.apf.pageready_pending = true; 10602 kvm_apic_set_irq(vcpu, &irq, NULL); 10603 } 10604 10605 vcpu->arch.apf.halted = false; 10606 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 10607 } 10608 10609 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 10610 { 10611 kvm_make_request(KVM_REQ_APF_READY, vcpu); 10612 if (!vcpu->arch.apf.pageready_pending) 10613 kvm_vcpu_kick(vcpu); 10614 } 10615 10616 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 10617 { 10618 if (!kvm_pv_async_pf_enabled(vcpu)) 10619 return true; 10620 else 10621 return apf_pageready_slot_free(vcpu); 10622 } 10623 10624 void kvm_arch_start_assignment(struct kvm *kvm) 10625 { 10626 atomic_inc(&kvm->arch.assigned_device_count); 10627 } 10628 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 10629 10630 void kvm_arch_end_assignment(struct kvm *kvm) 10631 { 10632 atomic_dec(&kvm->arch.assigned_device_count); 10633 } 10634 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 10635 10636 bool kvm_arch_has_assigned_device(struct kvm *kvm) 10637 { 10638 return atomic_read(&kvm->arch.assigned_device_count); 10639 } 10640 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 10641 10642 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 10643 { 10644 atomic_inc(&kvm->arch.noncoherent_dma_count); 10645 } 10646 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 10647 10648 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 10649 { 10650 atomic_dec(&kvm->arch.noncoherent_dma_count); 10651 } 10652 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 10653 10654 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 10655 { 10656 return atomic_read(&kvm->arch.noncoherent_dma_count); 10657 } 10658 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 10659 10660 bool kvm_arch_has_irq_bypass(void) 10661 { 10662 return true; 10663 } 10664 10665 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 10666 struct irq_bypass_producer *prod) 10667 { 10668 struct kvm_kernel_irqfd *irqfd = 10669 container_of(cons, struct kvm_kernel_irqfd, consumer); 10670 int ret; 10671 10672 irqfd->producer = prod; 10673 kvm_arch_start_assignment(irqfd->kvm); 10674 ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, 10675 prod->irq, irqfd->gsi, 1); 10676 10677 if (ret) 10678 kvm_arch_end_assignment(irqfd->kvm); 10679 10680 return ret; 10681 } 10682 10683 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 10684 struct irq_bypass_producer *prod) 10685 { 10686 int ret; 10687 struct kvm_kernel_irqfd *irqfd = 10688 container_of(cons, struct kvm_kernel_irqfd, consumer); 10689 10690 WARN_ON(irqfd->producer != prod); 10691 irqfd->producer = NULL; 10692 10693 /* 10694 * When producer of consumer is unregistered, we change back to 10695 * remapped mode, so we can re-use the current implementation 10696 * when the irq is masked/disabled or the consumer side (KVM 10697 * int this case doesn't want to receive the interrupts. 10698 */ 10699 ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0); 10700 if (ret) 10701 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 10702 " fails: %d\n", irqfd->consumer.token, ret); 10703 10704 kvm_arch_end_assignment(irqfd->kvm); 10705 } 10706 10707 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 10708 uint32_t guest_irq, bool set) 10709 { 10710 return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set); 10711 } 10712 10713 bool kvm_vector_hashing_enabled(void) 10714 { 10715 return vector_hashing; 10716 } 10717 10718 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 10719 { 10720 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 10721 } 10722 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 10723 10724 10725 int kvm_spec_ctrl_test_value(u64 value) 10726 { 10727 /* 10728 * test that setting IA32_SPEC_CTRL to given value 10729 * is allowed by the host processor 10730 */ 10731 10732 u64 saved_value; 10733 unsigned long flags; 10734 int ret = 0; 10735 10736 local_irq_save(flags); 10737 10738 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 10739 ret = 1; 10740 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 10741 ret = 1; 10742 else 10743 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 10744 10745 local_irq_restore(flags); 10746 10747 return ret; 10748 } 10749 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 10750 10751 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 10752 { 10753 struct x86_exception fault; 10754 u32 access = error_code & 10755 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 10756 10757 if (!(error_code & PFERR_PRESENT_MASK) || 10758 vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) { 10759 /* 10760 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 10761 * tables probably do not match the TLB. Just proceed 10762 * with the error code that the processor gave. 10763 */ 10764 fault.vector = PF_VECTOR; 10765 fault.error_code_valid = true; 10766 fault.error_code = error_code; 10767 fault.nested_page_fault = false; 10768 fault.address = gva; 10769 } 10770 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 10771 } 10772 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 10773 10774 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 10775 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 10776 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 10777 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 10778 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 10779 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 10780 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 10781 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 10782 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 10783 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 10784 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 10785 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 10786 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 10787 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 10788 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 10789 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 10790 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 10791 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 10792 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 10793 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 10794 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 10795 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request); 10796