xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 110e6f26)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/module.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <trace/events/kvm.h>
57 
58 #define CREATE_TRACE_POINTS
59 #include "trace.h"
60 
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 
71 #define MAX_IO_MSRS 256
72 #define KVM_MAX_MCE_BANKS 32
73 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
74 
75 #define emul_to_vcpu(ctxt) \
76 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
77 
78 /* EFER defaults:
79  * - enable syscall per default because its emulated by KVM
80  * - enable LME and LMA per default on 64 bit KVM
81  */
82 #ifdef CONFIG_X86_64
83 static
84 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
85 #else
86 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
87 #endif
88 
89 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
90 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
91 
92 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
93 static void process_nmi(struct kvm_vcpu *vcpu);
94 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
95 
96 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
97 EXPORT_SYMBOL_GPL(kvm_x86_ops);
98 
99 static bool __read_mostly ignore_msrs = 0;
100 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
101 
102 unsigned int min_timer_period_us = 500;
103 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
104 
105 static bool __read_mostly kvmclock_periodic_sync = true;
106 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
107 
108 bool __read_mostly kvm_has_tsc_control;
109 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
110 u32  __read_mostly kvm_max_guest_tsc_khz;
111 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
112 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
113 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
114 u64  __read_mostly kvm_max_tsc_scaling_ratio;
115 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
116 static u64 __read_mostly kvm_default_tsc_scaling_ratio;
117 
118 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
119 static u32 __read_mostly tsc_tolerance_ppm = 250;
120 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
121 
122 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
123 unsigned int __read_mostly lapic_timer_advance_ns = 0;
124 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
125 
126 static bool __read_mostly vector_hashing = true;
127 module_param(vector_hashing, bool, S_IRUGO);
128 
129 static bool __read_mostly backwards_tsc_observed = false;
130 
131 #define KVM_NR_SHARED_MSRS 16
132 
133 struct kvm_shared_msrs_global {
134 	int nr;
135 	u32 msrs[KVM_NR_SHARED_MSRS];
136 };
137 
138 struct kvm_shared_msrs {
139 	struct user_return_notifier urn;
140 	bool registered;
141 	struct kvm_shared_msr_values {
142 		u64 host;
143 		u64 curr;
144 	} values[KVM_NR_SHARED_MSRS];
145 };
146 
147 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
148 static struct kvm_shared_msrs __percpu *shared_msrs;
149 
150 struct kvm_stats_debugfs_item debugfs_entries[] = {
151 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
152 	{ "pf_guest", VCPU_STAT(pf_guest) },
153 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
154 	{ "invlpg", VCPU_STAT(invlpg) },
155 	{ "exits", VCPU_STAT(exits) },
156 	{ "io_exits", VCPU_STAT(io_exits) },
157 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
158 	{ "signal_exits", VCPU_STAT(signal_exits) },
159 	{ "irq_window", VCPU_STAT(irq_window_exits) },
160 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
161 	{ "halt_exits", VCPU_STAT(halt_exits) },
162 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
163 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
164 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
165 	{ "hypercalls", VCPU_STAT(hypercalls) },
166 	{ "request_irq", VCPU_STAT(request_irq_exits) },
167 	{ "irq_exits", VCPU_STAT(irq_exits) },
168 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
169 	{ "efer_reload", VCPU_STAT(efer_reload) },
170 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
171 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
172 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
173 	{ "irq_injections", VCPU_STAT(irq_injections) },
174 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
175 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
176 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
177 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
178 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
179 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
180 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
181 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
182 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
183 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
184 	{ "largepages", VM_STAT(lpages) },
185 	{ NULL }
186 };
187 
188 u64 __read_mostly host_xcr0;
189 
190 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
191 
192 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
193 {
194 	int i;
195 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
196 		vcpu->arch.apf.gfns[i] = ~0;
197 }
198 
199 static void kvm_on_user_return(struct user_return_notifier *urn)
200 {
201 	unsigned slot;
202 	struct kvm_shared_msrs *locals
203 		= container_of(urn, struct kvm_shared_msrs, urn);
204 	struct kvm_shared_msr_values *values;
205 
206 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
207 		values = &locals->values[slot];
208 		if (values->host != values->curr) {
209 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
210 			values->curr = values->host;
211 		}
212 	}
213 	locals->registered = false;
214 	user_return_notifier_unregister(urn);
215 }
216 
217 static void shared_msr_update(unsigned slot, u32 msr)
218 {
219 	u64 value;
220 	unsigned int cpu = smp_processor_id();
221 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
222 
223 	/* only read, and nobody should modify it at this time,
224 	 * so don't need lock */
225 	if (slot >= shared_msrs_global.nr) {
226 		printk(KERN_ERR "kvm: invalid MSR slot!");
227 		return;
228 	}
229 	rdmsrl_safe(msr, &value);
230 	smsr->values[slot].host = value;
231 	smsr->values[slot].curr = value;
232 }
233 
234 void kvm_define_shared_msr(unsigned slot, u32 msr)
235 {
236 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
237 	shared_msrs_global.msrs[slot] = msr;
238 	if (slot >= shared_msrs_global.nr)
239 		shared_msrs_global.nr = slot + 1;
240 }
241 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
242 
243 static void kvm_shared_msr_cpu_online(void)
244 {
245 	unsigned i;
246 
247 	for (i = 0; i < shared_msrs_global.nr; ++i)
248 		shared_msr_update(i, shared_msrs_global.msrs[i]);
249 }
250 
251 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
252 {
253 	unsigned int cpu = smp_processor_id();
254 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
255 	int err;
256 
257 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
258 		return 0;
259 	smsr->values[slot].curr = value;
260 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
261 	if (err)
262 		return 1;
263 
264 	if (!smsr->registered) {
265 		smsr->urn.on_user_return = kvm_on_user_return;
266 		user_return_notifier_register(&smsr->urn);
267 		smsr->registered = true;
268 	}
269 	return 0;
270 }
271 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
272 
273 static void drop_user_return_notifiers(void)
274 {
275 	unsigned int cpu = smp_processor_id();
276 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
277 
278 	if (smsr->registered)
279 		kvm_on_user_return(&smsr->urn);
280 }
281 
282 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
283 {
284 	return vcpu->arch.apic_base;
285 }
286 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
287 
288 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
289 {
290 	u64 old_state = vcpu->arch.apic_base &
291 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
292 	u64 new_state = msr_info->data &
293 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
294 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
295 		0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
296 
297 	if (!msr_info->host_initiated &&
298 	    ((msr_info->data & reserved_bits) != 0 ||
299 	     new_state == X2APIC_ENABLE ||
300 	     (new_state == MSR_IA32_APICBASE_ENABLE &&
301 	      old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
302 	     (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
303 	      old_state == 0)))
304 		return 1;
305 
306 	kvm_lapic_set_base(vcpu, msr_info->data);
307 	return 0;
308 }
309 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
310 
311 asmlinkage __visible void kvm_spurious_fault(void)
312 {
313 	/* Fault while not rebooting.  We want the trace. */
314 	BUG();
315 }
316 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
317 
318 #define EXCPT_BENIGN		0
319 #define EXCPT_CONTRIBUTORY	1
320 #define EXCPT_PF		2
321 
322 static int exception_class(int vector)
323 {
324 	switch (vector) {
325 	case PF_VECTOR:
326 		return EXCPT_PF;
327 	case DE_VECTOR:
328 	case TS_VECTOR:
329 	case NP_VECTOR:
330 	case SS_VECTOR:
331 	case GP_VECTOR:
332 		return EXCPT_CONTRIBUTORY;
333 	default:
334 		break;
335 	}
336 	return EXCPT_BENIGN;
337 }
338 
339 #define EXCPT_FAULT		0
340 #define EXCPT_TRAP		1
341 #define EXCPT_ABORT		2
342 #define EXCPT_INTERRUPT		3
343 
344 static int exception_type(int vector)
345 {
346 	unsigned int mask;
347 
348 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
349 		return EXCPT_INTERRUPT;
350 
351 	mask = 1 << vector;
352 
353 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
354 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
355 		return EXCPT_TRAP;
356 
357 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
358 		return EXCPT_ABORT;
359 
360 	/* Reserved exceptions will result in fault */
361 	return EXCPT_FAULT;
362 }
363 
364 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
365 		unsigned nr, bool has_error, u32 error_code,
366 		bool reinject)
367 {
368 	u32 prev_nr;
369 	int class1, class2;
370 
371 	kvm_make_request(KVM_REQ_EVENT, vcpu);
372 
373 	if (!vcpu->arch.exception.pending) {
374 	queue:
375 		if (has_error && !is_protmode(vcpu))
376 			has_error = false;
377 		vcpu->arch.exception.pending = true;
378 		vcpu->arch.exception.has_error_code = has_error;
379 		vcpu->arch.exception.nr = nr;
380 		vcpu->arch.exception.error_code = error_code;
381 		vcpu->arch.exception.reinject = reinject;
382 		return;
383 	}
384 
385 	/* to check exception */
386 	prev_nr = vcpu->arch.exception.nr;
387 	if (prev_nr == DF_VECTOR) {
388 		/* triple fault -> shutdown */
389 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
390 		return;
391 	}
392 	class1 = exception_class(prev_nr);
393 	class2 = exception_class(nr);
394 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
395 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
396 		/* generate double fault per SDM Table 5-5 */
397 		vcpu->arch.exception.pending = true;
398 		vcpu->arch.exception.has_error_code = true;
399 		vcpu->arch.exception.nr = DF_VECTOR;
400 		vcpu->arch.exception.error_code = 0;
401 	} else
402 		/* replace previous exception with a new one in a hope
403 		   that instruction re-execution will regenerate lost
404 		   exception */
405 		goto queue;
406 }
407 
408 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
409 {
410 	kvm_multiple_exception(vcpu, nr, false, 0, false);
411 }
412 EXPORT_SYMBOL_GPL(kvm_queue_exception);
413 
414 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
415 {
416 	kvm_multiple_exception(vcpu, nr, false, 0, true);
417 }
418 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
419 
420 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
421 {
422 	if (err)
423 		kvm_inject_gp(vcpu, 0);
424 	else
425 		kvm_x86_ops->skip_emulated_instruction(vcpu);
426 }
427 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
428 
429 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
430 {
431 	++vcpu->stat.pf_guest;
432 	vcpu->arch.cr2 = fault->address;
433 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
434 }
435 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
436 
437 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
438 {
439 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
440 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
441 	else
442 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
443 
444 	return fault->nested_page_fault;
445 }
446 
447 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
448 {
449 	atomic_inc(&vcpu->arch.nmi_queued);
450 	kvm_make_request(KVM_REQ_NMI, vcpu);
451 }
452 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
453 
454 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
455 {
456 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
457 }
458 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
459 
460 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
461 {
462 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
463 }
464 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
465 
466 /*
467  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
468  * a #GP and return false.
469  */
470 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
471 {
472 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
473 		return true;
474 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
475 	return false;
476 }
477 EXPORT_SYMBOL_GPL(kvm_require_cpl);
478 
479 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
480 {
481 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
482 		return true;
483 
484 	kvm_queue_exception(vcpu, UD_VECTOR);
485 	return false;
486 }
487 EXPORT_SYMBOL_GPL(kvm_require_dr);
488 
489 /*
490  * This function will be used to read from the physical memory of the currently
491  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
492  * can read from guest physical or from the guest's guest physical memory.
493  */
494 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
495 			    gfn_t ngfn, void *data, int offset, int len,
496 			    u32 access)
497 {
498 	struct x86_exception exception;
499 	gfn_t real_gfn;
500 	gpa_t ngpa;
501 
502 	ngpa     = gfn_to_gpa(ngfn);
503 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
504 	if (real_gfn == UNMAPPED_GVA)
505 		return -EFAULT;
506 
507 	real_gfn = gpa_to_gfn(real_gfn);
508 
509 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
510 }
511 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
512 
513 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
514 			       void *data, int offset, int len, u32 access)
515 {
516 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
517 				       data, offset, len, access);
518 }
519 
520 /*
521  * Load the pae pdptrs.  Return true is they are all valid.
522  */
523 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
524 {
525 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
526 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
527 	int i;
528 	int ret;
529 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
530 
531 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
532 				      offset * sizeof(u64), sizeof(pdpte),
533 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
534 	if (ret < 0) {
535 		ret = 0;
536 		goto out;
537 	}
538 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
539 		if (is_present_gpte(pdpte[i]) &&
540 		    (pdpte[i] &
541 		     vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
542 			ret = 0;
543 			goto out;
544 		}
545 	}
546 	ret = 1;
547 
548 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
549 	__set_bit(VCPU_EXREG_PDPTR,
550 		  (unsigned long *)&vcpu->arch.regs_avail);
551 	__set_bit(VCPU_EXREG_PDPTR,
552 		  (unsigned long *)&vcpu->arch.regs_dirty);
553 out:
554 
555 	return ret;
556 }
557 EXPORT_SYMBOL_GPL(load_pdptrs);
558 
559 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
560 {
561 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
562 	bool changed = true;
563 	int offset;
564 	gfn_t gfn;
565 	int r;
566 
567 	if (is_long_mode(vcpu) || !is_pae(vcpu))
568 		return false;
569 
570 	if (!test_bit(VCPU_EXREG_PDPTR,
571 		      (unsigned long *)&vcpu->arch.regs_avail))
572 		return true;
573 
574 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
575 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
576 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
577 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
578 	if (r < 0)
579 		goto out;
580 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
581 out:
582 
583 	return changed;
584 }
585 
586 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
587 {
588 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
589 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
590 
591 	cr0 |= X86_CR0_ET;
592 
593 #ifdef CONFIG_X86_64
594 	if (cr0 & 0xffffffff00000000UL)
595 		return 1;
596 #endif
597 
598 	cr0 &= ~CR0_RESERVED_BITS;
599 
600 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
601 		return 1;
602 
603 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
604 		return 1;
605 
606 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
607 #ifdef CONFIG_X86_64
608 		if ((vcpu->arch.efer & EFER_LME)) {
609 			int cs_db, cs_l;
610 
611 			if (!is_pae(vcpu))
612 				return 1;
613 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
614 			if (cs_l)
615 				return 1;
616 		} else
617 #endif
618 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
619 						 kvm_read_cr3(vcpu)))
620 			return 1;
621 	}
622 
623 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
624 		return 1;
625 
626 	kvm_x86_ops->set_cr0(vcpu, cr0);
627 
628 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
629 		kvm_clear_async_pf_completion_queue(vcpu);
630 		kvm_async_pf_hash_reset(vcpu);
631 	}
632 
633 	if ((cr0 ^ old_cr0) & update_bits)
634 		kvm_mmu_reset_context(vcpu);
635 
636 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
637 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
638 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
639 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
640 
641 	return 0;
642 }
643 EXPORT_SYMBOL_GPL(kvm_set_cr0);
644 
645 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
646 {
647 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
648 }
649 EXPORT_SYMBOL_GPL(kvm_lmsw);
650 
651 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
652 {
653 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
654 			!vcpu->guest_xcr0_loaded) {
655 		/* kvm_set_xcr() also depends on this */
656 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
657 		vcpu->guest_xcr0_loaded = 1;
658 	}
659 }
660 
661 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
662 {
663 	if (vcpu->guest_xcr0_loaded) {
664 		if (vcpu->arch.xcr0 != host_xcr0)
665 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
666 		vcpu->guest_xcr0_loaded = 0;
667 	}
668 }
669 
670 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
671 {
672 	u64 xcr0 = xcr;
673 	u64 old_xcr0 = vcpu->arch.xcr0;
674 	u64 valid_bits;
675 
676 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
677 	if (index != XCR_XFEATURE_ENABLED_MASK)
678 		return 1;
679 	if (!(xcr0 & XFEATURE_MASK_FP))
680 		return 1;
681 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
682 		return 1;
683 
684 	/*
685 	 * Do not allow the guest to set bits that we do not support
686 	 * saving.  However, xcr0 bit 0 is always set, even if the
687 	 * emulated CPU does not support XSAVE (see fx_init).
688 	 */
689 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
690 	if (xcr0 & ~valid_bits)
691 		return 1;
692 
693 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
694 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
695 		return 1;
696 
697 	if (xcr0 & XFEATURE_MASK_AVX512) {
698 		if (!(xcr0 & XFEATURE_MASK_YMM))
699 			return 1;
700 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
701 			return 1;
702 	}
703 	kvm_put_guest_xcr0(vcpu);
704 	vcpu->arch.xcr0 = xcr0;
705 
706 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
707 		kvm_update_cpuid(vcpu);
708 	return 0;
709 }
710 
711 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
712 {
713 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
714 	    __kvm_set_xcr(vcpu, index, xcr)) {
715 		kvm_inject_gp(vcpu, 0);
716 		return 1;
717 	}
718 	return 0;
719 }
720 EXPORT_SYMBOL_GPL(kvm_set_xcr);
721 
722 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
723 {
724 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
725 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
726 				   X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
727 
728 	if (cr4 & CR4_RESERVED_BITS)
729 		return 1;
730 
731 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
732 		return 1;
733 
734 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
735 		return 1;
736 
737 	if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
738 		return 1;
739 
740 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
741 		return 1;
742 
743 	if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
744 		return 1;
745 
746 	if (is_long_mode(vcpu)) {
747 		if (!(cr4 & X86_CR4_PAE))
748 			return 1;
749 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
750 		   && ((cr4 ^ old_cr4) & pdptr_bits)
751 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
752 				   kvm_read_cr3(vcpu)))
753 		return 1;
754 
755 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
756 		if (!guest_cpuid_has_pcid(vcpu))
757 			return 1;
758 
759 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
760 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
761 			return 1;
762 	}
763 
764 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
765 		return 1;
766 
767 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
768 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
769 		kvm_mmu_reset_context(vcpu);
770 
771 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
772 		kvm_update_cpuid(vcpu);
773 
774 	return 0;
775 }
776 EXPORT_SYMBOL_GPL(kvm_set_cr4);
777 
778 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
779 {
780 #ifdef CONFIG_X86_64
781 	cr3 &= ~CR3_PCID_INVD;
782 #endif
783 
784 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
785 		kvm_mmu_sync_roots(vcpu);
786 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
787 		return 0;
788 	}
789 
790 	if (is_long_mode(vcpu)) {
791 		if (cr3 & CR3_L_MODE_RESERVED_BITS)
792 			return 1;
793 	} else if (is_pae(vcpu) && is_paging(vcpu) &&
794 		   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
795 		return 1;
796 
797 	vcpu->arch.cr3 = cr3;
798 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
799 	kvm_mmu_new_cr3(vcpu);
800 	return 0;
801 }
802 EXPORT_SYMBOL_GPL(kvm_set_cr3);
803 
804 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
805 {
806 	if (cr8 & CR8_RESERVED_BITS)
807 		return 1;
808 	if (lapic_in_kernel(vcpu))
809 		kvm_lapic_set_tpr(vcpu, cr8);
810 	else
811 		vcpu->arch.cr8 = cr8;
812 	return 0;
813 }
814 EXPORT_SYMBOL_GPL(kvm_set_cr8);
815 
816 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
817 {
818 	if (lapic_in_kernel(vcpu))
819 		return kvm_lapic_get_cr8(vcpu);
820 	else
821 		return vcpu->arch.cr8;
822 }
823 EXPORT_SYMBOL_GPL(kvm_get_cr8);
824 
825 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
826 {
827 	int i;
828 
829 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
830 		for (i = 0; i < KVM_NR_DB_REGS; i++)
831 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
832 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
833 	}
834 }
835 
836 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
837 {
838 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
839 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
840 }
841 
842 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
843 {
844 	unsigned long dr7;
845 
846 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
847 		dr7 = vcpu->arch.guest_debug_dr7;
848 	else
849 		dr7 = vcpu->arch.dr7;
850 	kvm_x86_ops->set_dr7(vcpu, dr7);
851 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
852 	if (dr7 & DR7_BP_EN_MASK)
853 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
854 }
855 
856 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
857 {
858 	u64 fixed = DR6_FIXED_1;
859 
860 	if (!guest_cpuid_has_rtm(vcpu))
861 		fixed |= DR6_RTM;
862 	return fixed;
863 }
864 
865 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
866 {
867 	switch (dr) {
868 	case 0 ... 3:
869 		vcpu->arch.db[dr] = val;
870 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
871 			vcpu->arch.eff_db[dr] = val;
872 		break;
873 	case 4:
874 		/* fall through */
875 	case 6:
876 		if (val & 0xffffffff00000000ULL)
877 			return -1; /* #GP */
878 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
879 		kvm_update_dr6(vcpu);
880 		break;
881 	case 5:
882 		/* fall through */
883 	default: /* 7 */
884 		if (val & 0xffffffff00000000ULL)
885 			return -1; /* #GP */
886 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
887 		kvm_update_dr7(vcpu);
888 		break;
889 	}
890 
891 	return 0;
892 }
893 
894 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
895 {
896 	if (__kvm_set_dr(vcpu, dr, val)) {
897 		kvm_inject_gp(vcpu, 0);
898 		return 1;
899 	}
900 	return 0;
901 }
902 EXPORT_SYMBOL_GPL(kvm_set_dr);
903 
904 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
905 {
906 	switch (dr) {
907 	case 0 ... 3:
908 		*val = vcpu->arch.db[dr];
909 		break;
910 	case 4:
911 		/* fall through */
912 	case 6:
913 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
914 			*val = vcpu->arch.dr6;
915 		else
916 			*val = kvm_x86_ops->get_dr6(vcpu);
917 		break;
918 	case 5:
919 		/* fall through */
920 	default: /* 7 */
921 		*val = vcpu->arch.dr7;
922 		break;
923 	}
924 	return 0;
925 }
926 EXPORT_SYMBOL_GPL(kvm_get_dr);
927 
928 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
929 {
930 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
931 	u64 data;
932 	int err;
933 
934 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
935 	if (err)
936 		return err;
937 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
938 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
939 	return err;
940 }
941 EXPORT_SYMBOL_GPL(kvm_rdpmc);
942 
943 /*
944  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
945  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
946  *
947  * This list is modified at module load time to reflect the
948  * capabilities of the host cpu. This capabilities test skips MSRs that are
949  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
950  * may depend on host virtualization features rather than host cpu features.
951  */
952 
953 static u32 msrs_to_save[] = {
954 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
955 	MSR_STAR,
956 #ifdef CONFIG_X86_64
957 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
958 #endif
959 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
960 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
961 };
962 
963 static unsigned num_msrs_to_save;
964 
965 static u32 emulated_msrs[] = {
966 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
967 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
968 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
969 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
970 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
971 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
972 	HV_X64_MSR_RESET,
973 	HV_X64_MSR_VP_INDEX,
974 	HV_X64_MSR_VP_RUNTIME,
975 	HV_X64_MSR_SCONTROL,
976 	HV_X64_MSR_STIMER0_CONFIG,
977 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
978 	MSR_KVM_PV_EOI_EN,
979 
980 	MSR_IA32_TSC_ADJUST,
981 	MSR_IA32_TSCDEADLINE,
982 	MSR_IA32_MISC_ENABLE,
983 	MSR_IA32_MCG_STATUS,
984 	MSR_IA32_MCG_CTL,
985 	MSR_IA32_SMBASE,
986 };
987 
988 static unsigned num_emulated_msrs;
989 
990 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
991 {
992 	if (efer & efer_reserved_bits)
993 		return false;
994 
995 	if (efer & EFER_FFXSR) {
996 		struct kvm_cpuid_entry2 *feat;
997 
998 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
999 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1000 			return false;
1001 	}
1002 
1003 	if (efer & EFER_SVME) {
1004 		struct kvm_cpuid_entry2 *feat;
1005 
1006 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1007 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1008 			return false;
1009 	}
1010 
1011 	return true;
1012 }
1013 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1014 
1015 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1016 {
1017 	u64 old_efer = vcpu->arch.efer;
1018 
1019 	if (!kvm_valid_efer(vcpu, efer))
1020 		return 1;
1021 
1022 	if (is_paging(vcpu)
1023 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1024 		return 1;
1025 
1026 	efer &= ~EFER_LMA;
1027 	efer |= vcpu->arch.efer & EFER_LMA;
1028 
1029 	kvm_x86_ops->set_efer(vcpu, efer);
1030 
1031 	/* Update reserved bits */
1032 	if ((efer ^ old_efer) & EFER_NX)
1033 		kvm_mmu_reset_context(vcpu);
1034 
1035 	return 0;
1036 }
1037 
1038 void kvm_enable_efer_bits(u64 mask)
1039 {
1040        efer_reserved_bits &= ~mask;
1041 }
1042 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1043 
1044 /*
1045  * Writes msr value into into the appropriate "register".
1046  * Returns 0 on success, non-0 otherwise.
1047  * Assumes vcpu_load() was already called.
1048  */
1049 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1050 {
1051 	switch (msr->index) {
1052 	case MSR_FS_BASE:
1053 	case MSR_GS_BASE:
1054 	case MSR_KERNEL_GS_BASE:
1055 	case MSR_CSTAR:
1056 	case MSR_LSTAR:
1057 		if (is_noncanonical_address(msr->data))
1058 			return 1;
1059 		break;
1060 	case MSR_IA32_SYSENTER_EIP:
1061 	case MSR_IA32_SYSENTER_ESP:
1062 		/*
1063 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1064 		 * non-canonical address is written on Intel but not on
1065 		 * AMD (which ignores the top 32-bits, because it does
1066 		 * not implement 64-bit SYSENTER).
1067 		 *
1068 		 * 64-bit code should hence be able to write a non-canonical
1069 		 * value on AMD.  Making the address canonical ensures that
1070 		 * vmentry does not fail on Intel after writing a non-canonical
1071 		 * value, and that something deterministic happens if the guest
1072 		 * invokes 64-bit SYSENTER.
1073 		 */
1074 		msr->data = get_canonical(msr->data);
1075 	}
1076 	return kvm_x86_ops->set_msr(vcpu, msr);
1077 }
1078 EXPORT_SYMBOL_GPL(kvm_set_msr);
1079 
1080 /*
1081  * Adapt set_msr() to msr_io()'s calling convention
1082  */
1083 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1084 {
1085 	struct msr_data msr;
1086 	int r;
1087 
1088 	msr.index = index;
1089 	msr.host_initiated = true;
1090 	r = kvm_get_msr(vcpu, &msr);
1091 	if (r)
1092 		return r;
1093 
1094 	*data = msr.data;
1095 	return 0;
1096 }
1097 
1098 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1099 {
1100 	struct msr_data msr;
1101 
1102 	msr.data = *data;
1103 	msr.index = index;
1104 	msr.host_initiated = true;
1105 	return kvm_set_msr(vcpu, &msr);
1106 }
1107 
1108 #ifdef CONFIG_X86_64
1109 struct pvclock_gtod_data {
1110 	seqcount_t	seq;
1111 
1112 	struct { /* extract of a clocksource struct */
1113 		int vclock_mode;
1114 		cycle_t	cycle_last;
1115 		cycle_t	mask;
1116 		u32	mult;
1117 		u32	shift;
1118 	} clock;
1119 
1120 	u64		boot_ns;
1121 	u64		nsec_base;
1122 };
1123 
1124 static struct pvclock_gtod_data pvclock_gtod_data;
1125 
1126 static void update_pvclock_gtod(struct timekeeper *tk)
1127 {
1128 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1129 	u64 boot_ns;
1130 
1131 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1132 
1133 	write_seqcount_begin(&vdata->seq);
1134 
1135 	/* copy pvclock gtod data */
1136 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1137 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1138 	vdata->clock.mask		= tk->tkr_mono.mask;
1139 	vdata->clock.mult		= tk->tkr_mono.mult;
1140 	vdata->clock.shift		= tk->tkr_mono.shift;
1141 
1142 	vdata->boot_ns			= boot_ns;
1143 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1144 
1145 	write_seqcount_end(&vdata->seq);
1146 }
1147 #endif
1148 
1149 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1150 {
1151 	/*
1152 	 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1153 	 * vcpu_enter_guest.  This function is only called from
1154 	 * the physical CPU that is running vcpu.
1155 	 */
1156 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1157 }
1158 
1159 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1160 {
1161 	int version;
1162 	int r;
1163 	struct pvclock_wall_clock wc;
1164 	struct timespec boot;
1165 
1166 	if (!wall_clock)
1167 		return;
1168 
1169 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1170 	if (r)
1171 		return;
1172 
1173 	if (version & 1)
1174 		++version;  /* first time write, random junk */
1175 
1176 	++version;
1177 
1178 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1179 		return;
1180 
1181 	/*
1182 	 * The guest calculates current wall clock time by adding
1183 	 * system time (updated by kvm_guest_time_update below) to the
1184 	 * wall clock specified here.  guest system time equals host
1185 	 * system time for us, thus we must fill in host boot time here.
1186 	 */
1187 	getboottime(&boot);
1188 
1189 	if (kvm->arch.kvmclock_offset) {
1190 		struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1191 		boot = timespec_sub(boot, ts);
1192 	}
1193 	wc.sec = boot.tv_sec;
1194 	wc.nsec = boot.tv_nsec;
1195 	wc.version = version;
1196 
1197 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1198 
1199 	version++;
1200 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1201 }
1202 
1203 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1204 {
1205 	do_shl32_div32(dividend, divisor);
1206 	return dividend;
1207 }
1208 
1209 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1210 			       s8 *pshift, u32 *pmultiplier)
1211 {
1212 	uint64_t scaled64;
1213 	int32_t  shift = 0;
1214 	uint64_t tps64;
1215 	uint32_t tps32;
1216 
1217 	tps64 = base_hz;
1218 	scaled64 = scaled_hz;
1219 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1220 		tps64 >>= 1;
1221 		shift--;
1222 	}
1223 
1224 	tps32 = (uint32_t)tps64;
1225 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1226 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1227 			scaled64 >>= 1;
1228 		else
1229 			tps32 <<= 1;
1230 		shift++;
1231 	}
1232 
1233 	*pshift = shift;
1234 	*pmultiplier = div_frac(scaled64, tps32);
1235 
1236 	pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1237 		 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1238 }
1239 
1240 #ifdef CONFIG_X86_64
1241 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1242 #endif
1243 
1244 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1245 static unsigned long max_tsc_khz;
1246 
1247 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1248 {
1249 	return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1250 				   vcpu->arch.virtual_tsc_shift);
1251 }
1252 
1253 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1254 {
1255 	u64 v = (u64)khz * (1000000 + ppm);
1256 	do_div(v, 1000000);
1257 	return v;
1258 }
1259 
1260 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1261 {
1262 	u64 ratio;
1263 
1264 	/* Guest TSC same frequency as host TSC? */
1265 	if (!scale) {
1266 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1267 		return 0;
1268 	}
1269 
1270 	/* TSC scaling supported? */
1271 	if (!kvm_has_tsc_control) {
1272 		if (user_tsc_khz > tsc_khz) {
1273 			vcpu->arch.tsc_catchup = 1;
1274 			vcpu->arch.tsc_always_catchup = 1;
1275 			return 0;
1276 		} else {
1277 			WARN(1, "user requested TSC rate below hardware speed\n");
1278 			return -1;
1279 		}
1280 	}
1281 
1282 	/* TSC scaling required  - calculate ratio */
1283 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1284 				user_tsc_khz, tsc_khz);
1285 
1286 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1287 		WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1288 			  user_tsc_khz);
1289 		return -1;
1290 	}
1291 
1292 	vcpu->arch.tsc_scaling_ratio = ratio;
1293 	return 0;
1294 }
1295 
1296 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1297 {
1298 	u32 thresh_lo, thresh_hi;
1299 	int use_scaling = 0;
1300 
1301 	/* tsc_khz can be zero if TSC calibration fails */
1302 	if (user_tsc_khz == 0) {
1303 		/* set tsc_scaling_ratio to a safe value */
1304 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1305 		return -1;
1306 	}
1307 
1308 	/* Compute a scale to convert nanoseconds in TSC cycles */
1309 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1310 			   &vcpu->arch.virtual_tsc_shift,
1311 			   &vcpu->arch.virtual_tsc_mult);
1312 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1313 
1314 	/*
1315 	 * Compute the variation in TSC rate which is acceptable
1316 	 * within the range of tolerance and decide if the
1317 	 * rate being applied is within that bounds of the hardware
1318 	 * rate.  If so, no scaling or compensation need be done.
1319 	 */
1320 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1321 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1322 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1323 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1324 		use_scaling = 1;
1325 	}
1326 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1327 }
1328 
1329 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1330 {
1331 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1332 				      vcpu->arch.virtual_tsc_mult,
1333 				      vcpu->arch.virtual_tsc_shift);
1334 	tsc += vcpu->arch.this_tsc_write;
1335 	return tsc;
1336 }
1337 
1338 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1339 {
1340 #ifdef CONFIG_X86_64
1341 	bool vcpus_matched;
1342 	struct kvm_arch *ka = &vcpu->kvm->arch;
1343 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1344 
1345 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1346 			 atomic_read(&vcpu->kvm->online_vcpus));
1347 
1348 	/*
1349 	 * Once the masterclock is enabled, always perform request in
1350 	 * order to update it.
1351 	 *
1352 	 * In order to enable masterclock, the host clocksource must be TSC
1353 	 * and the vcpus need to have matched TSCs.  When that happens,
1354 	 * perform request to enable masterclock.
1355 	 */
1356 	if (ka->use_master_clock ||
1357 	    (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1358 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1359 
1360 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1361 			    atomic_read(&vcpu->kvm->online_vcpus),
1362 		            ka->use_master_clock, gtod->clock.vclock_mode);
1363 #endif
1364 }
1365 
1366 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1367 {
1368 	u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1369 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1370 }
1371 
1372 /*
1373  * Multiply tsc by a fixed point number represented by ratio.
1374  *
1375  * The most significant 64-N bits (mult) of ratio represent the
1376  * integral part of the fixed point number; the remaining N bits
1377  * (frac) represent the fractional part, ie. ratio represents a fixed
1378  * point number (mult + frac * 2^(-N)).
1379  *
1380  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1381  */
1382 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1383 {
1384 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1385 }
1386 
1387 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1388 {
1389 	u64 _tsc = tsc;
1390 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1391 
1392 	if (ratio != kvm_default_tsc_scaling_ratio)
1393 		_tsc = __scale_tsc(ratio, tsc);
1394 
1395 	return _tsc;
1396 }
1397 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1398 
1399 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1400 {
1401 	u64 tsc;
1402 
1403 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1404 
1405 	return target_tsc - tsc;
1406 }
1407 
1408 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1409 {
1410 	return kvm_x86_ops->read_l1_tsc(vcpu, kvm_scale_tsc(vcpu, host_tsc));
1411 }
1412 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1413 
1414 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1415 {
1416 	struct kvm *kvm = vcpu->kvm;
1417 	u64 offset, ns, elapsed;
1418 	unsigned long flags;
1419 	s64 usdiff;
1420 	bool matched;
1421 	bool already_matched;
1422 	u64 data = msr->data;
1423 
1424 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1425 	offset = kvm_compute_tsc_offset(vcpu, data);
1426 	ns = get_kernel_ns();
1427 	elapsed = ns - kvm->arch.last_tsc_nsec;
1428 
1429 	if (vcpu->arch.virtual_tsc_khz) {
1430 		int faulted = 0;
1431 
1432 		/* n.b - signed multiplication and division required */
1433 		usdiff = data - kvm->arch.last_tsc_write;
1434 #ifdef CONFIG_X86_64
1435 		usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1436 #else
1437 		/* do_div() only does unsigned */
1438 		asm("1: idivl %[divisor]\n"
1439 		    "2: xor %%edx, %%edx\n"
1440 		    "   movl $0, %[faulted]\n"
1441 		    "3:\n"
1442 		    ".section .fixup,\"ax\"\n"
1443 		    "4: movl $1, %[faulted]\n"
1444 		    "   jmp  3b\n"
1445 		    ".previous\n"
1446 
1447 		_ASM_EXTABLE(1b, 4b)
1448 
1449 		: "=A"(usdiff), [faulted] "=r" (faulted)
1450 		: "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1451 
1452 #endif
1453 		do_div(elapsed, 1000);
1454 		usdiff -= elapsed;
1455 		if (usdiff < 0)
1456 			usdiff = -usdiff;
1457 
1458 		/* idivl overflow => difference is larger than USEC_PER_SEC */
1459 		if (faulted)
1460 			usdiff = USEC_PER_SEC;
1461 	} else
1462 		usdiff = USEC_PER_SEC; /* disable TSC match window below */
1463 
1464 	/*
1465 	 * Special case: TSC write with a small delta (1 second) of virtual
1466 	 * cycle time against real time is interpreted as an attempt to
1467 	 * synchronize the CPU.
1468          *
1469 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1470 	 * TSC, we add elapsed time in this computation.  We could let the
1471 	 * compensation code attempt to catch up if we fall behind, but
1472 	 * it's better to try to match offsets from the beginning.
1473          */
1474 	if (usdiff < USEC_PER_SEC &&
1475 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1476 		if (!check_tsc_unstable()) {
1477 			offset = kvm->arch.cur_tsc_offset;
1478 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1479 		} else {
1480 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1481 			data += delta;
1482 			offset = kvm_compute_tsc_offset(vcpu, data);
1483 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1484 		}
1485 		matched = true;
1486 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1487 	} else {
1488 		/*
1489 		 * We split periods of matched TSC writes into generations.
1490 		 * For each generation, we track the original measured
1491 		 * nanosecond time, offset, and write, so if TSCs are in
1492 		 * sync, we can match exact offset, and if not, we can match
1493 		 * exact software computation in compute_guest_tsc()
1494 		 *
1495 		 * These values are tracked in kvm->arch.cur_xxx variables.
1496 		 */
1497 		kvm->arch.cur_tsc_generation++;
1498 		kvm->arch.cur_tsc_nsec = ns;
1499 		kvm->arch.cur_tsc_write = data;
1500 		kvm->arch.cur_tsc_offset = offset;
1501 		matched = false;
1502 		pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1503 			 kvm->arch.cur_tsc_generation, data);
1504 	}
1505 
1506 	/*
1507 	 * We also track th most recent recorded KHZ, write and time to
1508 	 * allow the matching interval to be extended at each write.
1509 	 */
1510 	kvm->arch.last_tsc_nsec = ns;
1511 	kvm->arch.last_tsc_write = data;
1512 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1513 
1514 	vcpu->arch.last_guest_tsc = data;
1515 
1516 	/* Keep track of which generation this VCPU has synchronized to */
1517 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1518 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1519 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1520 
1521 	if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1522 		update_ia32_tsc_adjust_msr(vcpu, offset);
1523 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1524 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1525 
1526 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1527 	if (!matched) {
1528 		kvm->arch.nr_vcpus_matched_tsc = 0;
1529 	} else if (!already_matched) {
1530 		kvm->arch.nr_vcpus_matched_tsc++;
1531 	}
1532 
1533 	kvm_track_tsc_matching(vcpu);
1534 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1535 }
1536 
1537 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1538 
1539 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1540 					   s64 adjustment)
1541 {
1542 	kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1543 }
1544 
1545 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1546 {
1547 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1548 		WARN_ON(adjustment < 0);
1549 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1550 	kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1551 }
1552 
1553 #ifdef CONFIG_X86_64
1554 
1555 static cycle_t read_tsc(void)
1556 {
1557 	cycle_t ret = (cycle_t)rdtsc_ordered();
1558 	u64 last = pvclock_gtod_data.clock.cycle_last;
1559 
1560 	if (likely(ret >= last))
1561 		return ret;
1562 
1563 	/*
1564 	 * GCC likes to generate cmov here, but this branch is extremely
1565 	 * predictable (it's just a function of time and the likely is
1566 	 * very likely) and there's a data dependence, so force GCC
1567 	 * to generate a branch instead.  I don't barrier() because
1568 	 * we don't actually need a barrier, and if this function
1569 	 * ever gets inlined it will generate worse code.
1570 	 */
1571 	asm volatile ("");
1572 	return last;
1573 }
1574 
1575 static inline u64 vgettsc(cycle_t *cycle_now)
1576 {
1577 	long v;
1578 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1579 
1580 	*cycle_now = read_tsc();
1581 
1582 	v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1583 	return v * gtod->clock.mult;
1584 }
1585 
1586 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1587 {
1588 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1589 	unsigned long seq;
1590 	int mode;
1591 	u64 ns;
1592 
1593 	do {
1594 		seq = read_seqcount_begin(&gtod->seq);
1595 		mode = gtod->clock.vclock_mode;
1596 		ns = gtod->nsec_base;
1597 		ns += vgettsc(cycle_now);
1598 		ns >>= gtod->clock.shift;
1599 		ns += gtod->boot_ns;
1600 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1601 	*t = ns;
1602 
1603 	return mode;
1604 }
1605 
1606 /* returns true if host is using tsc clocksource */
1607 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1608 {
1609 	/* checked again under seqlock below */
1610 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1611 		return false;
1612 
1613 	return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1614 }
1615 #endif
1616 
1617 /*
1618  *
1619  * Assuming a stable TSC across physical CPUS, and a stable TSC
1620  * across virtual CPUs, the following condition is possible.
1621  * Each numbered line represents an event visible to both
1622  * CPUs at the next numbered event.
1623  *
1624  * "timespecX" represents host monotonic time. "tscX" represents
1625  * RDTSC value.
1626  *
1627  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1628  *
1629  * 1.  read timespec0,tsc0
1630  * 2.					| timespec1 = timespec0 + N
1631  * 					| tsc1 = tsc0 + M
1632  * 3. transition to guest		| transition to guest
1633  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1634  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1635  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1636  *
1637  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1638  *
1639  * 	- ret0 < ret1
1640  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1641  *		...
1642  *	- 0 < N - M => M < N
1643  *
1644  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1645  * always the case (the difference between two distinct xtime instances
1646  * might be smaller then the difference between corresponding TSC reads,
1647  * when updating guest vcpus pvclock areas).
1648  *
1649  * To avoid that problem, do not allow visibility of distinct
1650  * system_timestamp/tsc_timestamp values simultaneously: use a master
1651  * copy of host monotonic time values. Update that master copy
1652  * in lockstep.
1653  *
1654  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1655  *
1656  */
1657 
1658 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1659 {
1660 #ifdef CONFIG_X86_64
1661 	struct kvm_arch *ka = &kvm->arch;
1662 	int vclock_mode;
1663 	bool host_tsc_clocksource, vcpus_matched;
1664 
1665 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1666 			atomic_read(&kvm->online_vcpus));
1667 
1668 	/*
1669 	 * If the host uses TSC clock, then passthrough TSC as stable
1670 	 * to the guest.
1671 	 */
1672 	host_tsc_clocksource = kvm_get_time_and_clockread(
1673 					&ka->master_kernel_ns,
1674 					&ka->master_cycle_now);
1675 
1676 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1677 				&& !backwards_tsc_observed
1678 				&& !ka->boot_vcpu_runs_old_kvmclock;
1679 
1680 	if (ka->use_master_clock)
1681 		atomic_set(&kvm_guest_has_master_clock, 1);
1682 
1683 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1684 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1685 					vcpus_matched);
1686 #endif
1687 }
1688 
1689 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1690 {
1691 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1692 }
1693 
1694 static void kvm_gen_update_masterclock(struct kvm *kvm)
1695 {
1696 #ifdef CONFIG_X86_64
1697 	int i;
1698 	struct kvm_vcpu *vcpu;
1699 	struct kvm_arch *ka = &kvm->arch;
1700 
1701 	spin_lock(&ka->pvclock_gtod_sync_lock);
1702 	kvm_make_mclock_inprogress_request(kvm);
1703 	/* no guest entries from this point */
1704 	pvclock_update_vm_gtod_copy(kvm);
1705 
1706 	kvm_for_each_vcpu(i, vcpu, kvm)
1707 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1708 
1709 	/* guest entries allowed */
1710 	kvm_for_each_vcpu(i, vcpu, kvm)
1711 		clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1712 
1713 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1714 #endif
1715 }
1716 
1717 static int kvm_guest_time_update(struct kvm_vcpu *v)
1718 {
1719 	unsigned long flags, tgt_tsc_khz;
1720 	struct kvm_vcpu_arch *vcpu = &v->arch;
1721 	struct kvm_arch *ka = &v->kvm->arch;
1722 	s64 kernel_ns;
1723 	u64 tsc_timestamp, host_tsc;
1724 	struct pvclock_vcpu_time_info guest_hv_clock;
1725 	u8 pvclock_flags;
1726 	bool use_master_clock;
1727 
1728 	kernel_ns = 0;
1729 	host_tsc = 0;
1730 
1731 	/*
1732 	 * If the host uses TSC clock, then passthrough TSC as stable
1733 	 * to the guest.
1734 	 */
1735 	spin_lock(&ka->pvclock_gtod_sync_lock);
1736 	use_master_clock = ka->use_master_clock;
1737 	if (use_master_clock) {
1738 		host_tsc = ka->master_cycle_now;
1739 		kernel_ns = ka->master_kernel_ns;
1740 	}
1741 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1742 
1743 	/* Keep irq disabled to prevent changes to the clock */
1744 	local_irq_save(flags);
1745 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1746 	if (unlikely(tgt_tsc_khz == 0)) {
1747 		local_irq_restore(flags);
1748 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1749 		return 1;
1750 	}
1751 	if (!use_master_clock) {
1752 		host_tsc = rdtsc();
1753 		kernel_ns = get_kernel_ns();
1754 	}
1755 
1756 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1757 
1758 	/*
1759 	 * We may have to catch up the TSC to match elapsed wall clock
1760 	 * time for two reasons, even if kvmclock is used.
1761 	 *   1) CPU could have been running below the maximum TSC rate
1762 	 *   2) Broken TSC compensation resets the base at each VCPU
1763 	 *      entry to avoid unknown leaps of TSC even when running
1764 	 *      again on the same CPU.  This may cause apparent elapsed
1765 	 *      time to disappear, and the guest to stand still or run
1766 	 *	very slowly.
1767 	 */
1768 	if (vcpu->tsc_catchup) {
1769 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1770 		if (tsc > tsc_timestamp) {
1771 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1772 			tsc_timestamp = tsc;
1773 		}
1774 	}
1775 
1776 	local_irq_restore(flags);
1777 
1778 	if (!vcpu->pv_time_enabled)
1779 		return 0;
1780 
1781 	if (kvm_has_tsc_control)
1782 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1783 
1784 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1785 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1786 				   &vcpu->hv_clock.tsc_shift,
1787 				   &vcpu->hv_clock.tsc_to_system_mul);
1788 		vcpu->hw_tsc_khz = tgt_tsc_khz;
1789 	}
1790 
1791 	/* With all the info we got, fill in the values */
1792 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1793 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1794 	vcpu->last_guest_tsc = tsc_timestamp;
1795 
1796 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1797 		&guest_hv_clock, sizeof(guest_hv_clock))))
1798 		return 0;
1799 
1800 	/* This VCPU is paused, but it's legal for a guest to read another
1801 	 * VCPU's kvmclock, so we really have to follow the specification where
1802 	 * it says that version is odd if data is being modified, and even after
1803 	 * it is consistent.
1804 	 *
1805 	 * Version field updates must be kept separate.  This is because
1806 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
1807 	 * writes within a string instruction are weakly ordered.  So there
1808 	 * are three writes overall.
1809 	 *
1810 	 * As a small optimization, only write the version field in the first
1811 	 * and third write.  The vcpu->pv_time cache is still valid, because the
1812 	 * version field is the first in the struct.
1813 	 */
1814 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1815 
1816 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
1817 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1818 				&vcpu->hv_clock,
1819 				sizeof(vcpu->hv_clock.version));
1820 
1821 	smp_wmb();
1822 
1823 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1824 	pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1825 
1826 	if (vcpu->pvclock_set_guest_stopped_request) {
1827 		pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1828 		vcpu->pvclock_set_guest_stopped_request = false;
1829 	}
1830 
1831 	/* If the host uses TSC clocksource, then it is stable */
1832 	if (use_master_clock)
1833 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1834 
1835 	vcpu->hv_clock.flags = pvclock_flags;
1836 
1837 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1838 
1839 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1840 				&vcpu->hv_clock,
1841 				sizeof(vcpu->hv_clock));
1842 
1843 	smp_wmb();
1844 
1845 	vcpu->hv_clock.version++;
1846 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1847 				&vcpu->hv_clock,
1848 				sizeof(vcpu->hv_clock.version));
1849 	return 0;
1850 }
1851 
1852 /*
1853  * kvmclock updates which are isolated to a given vcpu, such as
1854  * vcpu->cpu migration, should not allow system_timestamp from
1855  * the rest of the vcpus to remain static. Otherwise ntp frequency
1856  * correction applies to one vcpu's system_timestamp but not
1857  * the others.
1858  *
1859  * So in those cases, request a kvmclock update for all vcpus.
1860  * We need to rate-limit these requests though, as they can
1861  * considerably slow guests that have a large number of vcpus.
1862  * The time for a remote vcpu to update its kvmclock is bound
1863  * by the delay we use to rate-limit the updates.
1864  */
1865 
1866 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1867 
1868 static void kvmclock_update_fn(struct work_struct *work)
1869 {
1870 	int i;
1871 	struct delayed_work *dwork = to_delayed_work(work);
1872 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1873 					   kvmclock_update_work);
1874 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1875 	struct kvm_vcpu *vcpu;
1876 
1877 	kvm_for_each_vcpu(i, vcpu, kvm) {
1878 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1879 		kvm_vcpu_kick(vcpu);
1880 	}
1881 }
1882 
1883 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1884 {
1885 	struct kvm *kvm = v->kvm;
1886 
1887 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1888 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1889 					KVMCLOCK_UPDATE_DELAY);
1890 }
1891 
1892 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1893 
1894 static void kvmclock_sync_fn(struct work_struct *work)
1895 {
1896 	struct delayed_work *dwork = to_delayed_work(work);
1897 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1898 					   kvmclock_sync_work);
1899 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1900 
1901 	if (!kvmclock_periodic_sync)
1902 		return;
1903 
1904 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1905 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1906 					KVMCLOCK_SYNC_PERIOD);
1907 }
1908 
1909 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1910 {
1911 	u64 mcg_cap = vcpu->arch.mcg_cap;
1912 	unsigned bank_num = mcg_cap & 0xff;
1913 
1914 	switch (msr) {
1915 	case MSR_IA32_MCG_STATUS:
1916 		vcpu->arch.mcg_status = data;
1917 		break;
1918 	case MSR_IA32_MCG_CTL:
1919 		if (!(mcg_cap & MCG_CTL_P))
1920 			return 1;
1921 		if (data != 0 && data != ~(u64)0)
1922 			return -1;
1923 		vcpu->arch.mcg_ctl = data;
1924 		break;
1925 	default:
1926 		if (msr >= MSR_IA32_MC0_CTL &&
1927 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
1928 			u32 offset = msr - MSR_IA32_MC0_CTL;
1929 			/* only 0 or all 1s can be written to IA32_MCi_CTL
1930 			 * some Linux kernels though clear bit 10 in bank 4 to
1931 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1932 			 * this to avoid an uncatched #GP in the guest
1933 			 */
1934 			if ((offset & 0x3) == 0 &&
1935 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
1936 				return -1;
1937 			vcpu->arch.mce_banks[offset] = data;
1938 			break;
1939 		}
1940 		return 1;
1941 	}
1942 	return 0;
1943 }
1944 
1945 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1946 {
1947 	struct kvm *kvm = vcpu->kvm;
1948 	int lm = is_long_mode(vcpu);
1949 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1950 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1951 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1952 		: kvm->arch.xen_hvm_config.blob_size_32;
1953 	u32 page_num = data & ~PAGE_MASK;
1954 	u64 page_addr = data & PAGE_MASK;
1955 	u8 *page;
1956 	int r;
1957 
1958 	r = -E2BIG;
1959 	if (page_num >= blob_size)
1960 		goto out;
1961 	r = -ENOMEM;
1962 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1963 	if (IS_ERR(page)) {
1964 		r = PTR_ERR(page);
1965 		goto out;
1966 	}
1967 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
1968 		goto out_free;
1969 	r = 0;
1970 out_free:
1971 	kfree(page);
1972 out:
1973 	return r;
1974 }
1975 
1976 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1977 {
1978 	gpa_t gpa = data & ~0x3f;
1979 
1980 	/* Bits 2:5 are reserved, Should be zero */
1981 	if (data & 0x3c)
1982 		return 1;
1983 
1984 	vcpu->arch.apf.msr_val = data;
1985 
1986 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
1987 		kvm_clear_async_pf_completion_queue(vcpu);
1988 		kvm_async_pf_hash_reset(vcpu);
1989 		return 0;
1990 	}
1991 
1992 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1993 					sizeof(u32)))
1994 		return 1;
1995 
1996 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1997 	kvm_async_pf_wakeup_all(vcpu);
1998 	return 0;
1999 }
2000 
2001 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2002 {
2003 	vcpu->arch.pv_time_enabled = false;
2004 }
2005 
2006 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2007 {
2008 	u64 delta;
2009 
2010 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2011 		return;
2012 
2013 	delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2014 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2015 	vcpu->arch.st.accum_steal = delta;
2016 }
2017 
2018 static void record_steal_time(struct kvm_vcpu *vcpu)
2019 {
2020 	accumulate_steal_time(vcpu);
2021 
2022 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2023 		return;
2024 
2025 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2026 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2027 		return;
2028 
2029 	vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2030 	vcpu->arch.st.steal.version += 2;
2031 	vcpu->arch.st.accum_steal = 0;
2032 
2033 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2034 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2035 }
2036 
2037 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2038 {
2039 	bool pr = false;
2040 	u32 msr = msr_info->index;
2041 	u64 data = msr_info->data;
2042 
2043 	switch (msr) {
2044 	case MSR_AMD64_NB_CFG:
2045 	case MSR_IA32_UCODE_REV:
2046 	case MSR_IA32_UCODE_WRITE:
2047 	case MSR_VM_HSAVE_PA:
2048 	case MSR_AMD64_PATCH_LOADER:
2049 	case MSR_AMD64_BU_CFG2:
2050 		break;
2051 
2052 	case MSR_EFER:
2053 		return set_efer(vcpu, data);
2054 	case MSR_K7_HWCR:
2055 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2056 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2057 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2058 		data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2059 		if (data != 0) {
2060 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2061 				    data);
2062 			return 1;
2063 		}
2064 		break;
2065 	case MSR_FAM10H_MMIO_CONF_BASE:
2066 		if (data != 0) {
2067 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2068 				    "0x%llx\n", data);
2069 			return 1;
2070 		}
2071 		break;
2072 	case MSR_IA32_DEBUGCTLMSR:
2073 		if (!data) {
2074 			/* We support the non-activated case already */
2075 			break;
2076 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2077 			/* Values other than LBR and BTF are vendor-specific,
2078 			   thus reserved and should throw a #GP */
2079 			return 1;
2080 		}
2081 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2082 			    __func__, data);
2083 		break;
2084 	case 0x200 ... 0x2ff:
2085 		return kvm_mtrr_set_msr(vcpu, msr, data);
2086 	case MSR_IA32_APICBASE:
2087 		return kvm_set_apic_base(vcpu, msr_info);
2088 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2089 		return kvm_x2apic_msr_write(vcpu, msr, data);
2090 	case MSR_IA32_TSCDEADLINE:
2091 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2092 		break;
2093 	case MSR_IA32_TSC_ADJUST:
2094 		if (guest_cpuid_has_tsc_adjust(vcpu)) {
2095 			if (!msr_info->host_initiated) {
2096 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2097 				adjust_tsc_offset_guest(vcpu, adj);
2098 			}
2099 			vcpu->arch.ia32_tsc_adjust_msr = data;
2100 		}
2101 		break;
2102 	case MSR_IA32_MISC_ENABLE:
2103 		vcpu->arch.ia32_misc_enable_msr = data;
2104 		break;
2105 	case MSR_IA32_SMBASE:
2106 		if (!msr_info->host_initiated)
2107 			return 1;
2108 		vcpu->arch.smbase = data;
2109 		break;
2110 	case MSR_KVM_WALL_CLOCK_NEW:
2111 	case MSR_KVM_WALL_CLOCK:
2112 		vcpu->kvm->arch.wall_clock = data;
2113 		kvm_write_wall_clock(vcpu->kvm, data);
2114 		break;
2115 	case MSR_KVM_SYSTEM_TIME_NEW:
2116 	case MSR_KVM_SYSTEM_TIME: {
2117 		u64 gpa_offset;
2118 		struct kvm_arch *ka = &vcpu->kvm->arch;
2119 
2120 		kvmclock_reset(vcpu);
2121 
2122 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2123 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2124 
2125 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2126 				set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2127 					&vcpu->requests);
2128 
2129 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2130 		}
2131 
2132 		vcpu->arch.time = data;
2133 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2134 
2135 		/* we verify if the enable bit is set... */
2136 		if (!(data & 1))
2137 			break;
2138 
2139 		gpa_offset = data & ~(PAGE_MASK | 1);
2140 
2141 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2142 		     &vcpu->arch.pv_time, data & ~1ULL,
2143 		     sizeof(struct pvclock_vcpu_time_info)))
2144 			vcpu->arch.pv_time_enabled = false;
2145 		else
2146 			vcpu->arch.pv_time_enabled = true;
2147 
2148 		break;
2149 	}
2150 	case MSR_KVM_ASYNC_PF_EN:
2151 		if (kvm_pv_enable_async_pf(vcpu, data))
2152 			return 1;
2153 		break;
2154 	case MSR_KVM_STEAL_TIME:
2155 
2156 		if (unlikely(!sched_info_on()))
2157 			return 1;
2158 
2159 		if (data & KVM_STEAL_RESERVED_MASK)
2160 			return 1;
2161 
2162 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2163 						data & KVM_STEAL_VALID_BITS,
2164 						sizeof(struct kvm_steal_time)))
2165 			return 1;
2166 
2167 		vcpu->arch.st.msr_val = data;
2168 
2169 		if (!(data & KVM_MSR_ENABLED))
2170 			break;
2171 
2172 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2173 
2174 		break;
2175 	case MSR_KVM_PV_EOI_EN:
2176 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2177 			return 1;
2178 		break;
2179 
2180 	case MSR_IA32_MCG_CTL:
2181 	case MSR_IA32_MCG_STATUS:
2182 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2183 		return set_msr_mce(vcpu, msr, data);
2184 
2185 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2186 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2187 		pr = true; /* fall through */
2188 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2189 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2190 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2191 			return kvm_pmu_set_msr(vcpu, msr_info);
2192 
2193 		if (pr || data != 0)
2194 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2195 				    "0x%x data 0x%llx\n", msr, data);
2196 		break;
2197 	case MSR_K7_CLK_CTL:
2198 		/*
2199 		 * Ignore all writes to this no longer documented MSR.
2200 		 * Writes are only relevant for old K7 processors,
2201 		 * all pre-dating SVM, but a recommended workaround from
2202 		 * AMD for these chips. It is possible to specify the
2203 		 * affected processor models on the command line, hence
2204 		 * the need to ignore the workaround.
2205 		 */
2206 		break;
2207 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2208 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2209 	case HV_X64_MSR_CRASH_CTL:
2210 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2211 		return kvm_hv_set_msr_common(vcpu, msr, data,
2212 					     msr_info->host_initiated);
2213 	case MSR_IA32_BBL_CR_CTL3:
2214 		/* Drop writes to this legacy MSR -- see rdmsr
2215 		 * counterpart for further detail.
2216 		 */
2217 		vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2218 		break;
2219 	case MSR_AMD64_OSVW_ID_LENGTH:
2220 		if (!guest_cpuid_has_osvw(vcpu))
2221 			return 1;
2222 		vcpu->arch.osvw.length = data;
2223 		break;
2224 	case MSR_AMD64_OSVW_STATUS:
2225 		if (!guest_cpuid_has_osvw(vcpu))
2226 			return 1;
2227 		vcpu->arch.osvw.status = data;
2228 		break;
2229 	default:
2230 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2231 			return xen_hvm_config(vcpu, data);
2232 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2233 			return kvm_pmu_set_msr(vcpu, msr_info);
2234 		if (!ignore_msrs) {
2235 			vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2236 				    msr, data);
2237 			return 1;
2238 		} else {
2239 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2240 				    msr, data);
2241 			break;
2242 		}
2243 	}
2244 	return 0;
2245 }
2246 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2247 
2248 
2249 /*
2250  * Reads an msr value (of 'msr_index') into 'pdata'.
2251  * Returns 0 on success, non-0 otherwise.
2252  * Assumes vcpu_load() was already called.
2253  */
2254 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2255 {
2256 	return kvm_x86_ops->get_msr(vcpu, msr);
2257 }
2258 EXPORT_SYMBOL_GPL(kvm_get_msr);
2259 
2260 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2261 {
2262 	u64 data;
2263 	u64 mcg_cap = vcpu->arch.mcg_cap;
2264 	unsigned bank_num = mcg_cap & 0xff;
2265 
2266 	switch (msr) {
2267 	case MSR_IA32_P5_MC_ADDR:
2268 	case MSR_IA32_P5_MC_TYPE:
2269 		data = 0;
2270 		break;
2271 	case MSR_IA32_MCG_CAP:
2272 		data = vcpu->arch.mcg_cap;
2273 		break;
2274 	case MSR_IA32_MCG_CTL:
2275 		if (!(mcg_cap & MCG_CTL_P))
2276 			return 1;
2277 		data = vcpu->arch.mcg_ctl;
2278 		break;
2279 	case MSR_IA32_MCG_STATUS:
2280 		data = vcpu->arch.mcg_status;
2281 		break;
2282 	default:
2283 		if (msr >= MSR_IA32_MC0_CTL &&
2284 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2285 			u32 offset = msr - MSR_IA32_MC0_CTL;
2286 			data = vcpu->arch.mce_banks[offset];
2287 			break;
2288 		}
2289 		return 1;
2290 	}
2291 	*pdata = data;
2292 	return 0;
2293 }
2294 
2295 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2296 {
2297 	switch (msr_info->index) {
2298 	case MSR_IA32_PLATFORM_ID:
2299 	case MSR_IA32_EBL_CR_POWERON:
2300 	case MSR_IA32_DEBUGCTLMSR:
2301 	case MSR_IA32_LASTBRANCHFROMIP:
2302 	case MSR_IA32_LASTBRANCHTOIP:
2303 	case MSR_IA32_LASTINTFROMIP:
2304 	case MSR_IA32_LASTINTTOIP:
2305 	case MSR_K8_SYSCFG:
2306 	case MSR_K8_TSEG_ADDR:
2307 	case MSR_K8_TSEG_MASK:
2308 	case MSR_K7_HWCR:
2309 	case MSR_VM_HSAVE_PA:
2310 	case MSR_K8_INT_PENDING_MSG:
2311 	case MSR_AMD64_NB_CFG:
2312 	case MSR_FAM10H_MMIO_CONF_BASE:
2313 	case MSR_AMD64_BU_CFG2:
2314 		msr_info->data = 0;
2315 		break;
2316 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2317 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2318 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2319 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2320 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2321 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2322 		msr_info->data = 0;
2323 		break;
2324 	case MSR_IA32_UCODE_REV:
2325 		msr_info->data = 0x100000000ULL;
2326 		break;
2327 	case MSR_MTRRcap:
2328 	case 0x200 ... 0x2ff:
2329 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2330 	case 0xcd: /* fsb frequency */
2331 		msr_info->data = 3;
2332 		break;
2333 		/*
2334 		 * MSR_EBC_FREQUENCY_ID
2335 		 * Conservative value valid for even the basic CPU models.
2336 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2337 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2338 		 * and 266MHz for model 3, or 4. Set Core Clock
2339 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2340 		 * 31:24) even though these are only valid for CPU
2341 		 * models > 2, however guests may end up dividing or
2342 		 * multiplying by zero otherwise.
2343 		 */
2344 	case MSR_EBC_FREQUENCY_ID:
2345 		msr_info->data = 1 << 24;
2346 		break;
2347 	case MSR_IA32_APICBASE:
2348 		msr_info->data = kvm_get_apic_base(vcpu);
2349 		break;
2350 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2351 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2352 		break;
2353 	case MSR_IA32_TSCDEADLINE:
2354 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2355 		break;
2356 	case MSR_IA32_TSC_ADJUST:
2357 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2358 		break;
2359 	case MSR_IA32_MISC_ENABLE:
2360 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2361 		break;
2362 	case MSR_IA32_SMBASE:
2363 		if (!msr_info->host_initiated)
2364 			return 1;
2365 		msr_info->data = vcpu->arch.smbase;
2366 		break;
2367 	case MSR_IA32_PERF_STATUS:
2368 		/* TSC increment by tick */
2369 		msr_info->data = 1000ULL;
2370 		/* CPU multiplier */
2371 		msr_info->data |= (((uint64_t)4ULL) << 40);
2372 		break;
2373 	case MSR_EFER:
2374 		msr_info->data = vcpu->arch.efer;
2375 		break;
2376 	case MSR_KVM_WALL_CLOCK:
2377 	case MSR_KVM_WALL_CLOCK_NEW:
2378 		msr_info->data = vcpu->kvm->arch.wall_clock;
2379 		break;
2380 	case MSR_KVM_SYSTEM_TIME:
2381 	case MSR_KVM_SYSTEM_TIME_NEW:
2382 		msr_info->data = vcpu->arch.time;
2383 		break;
2384 	case MSR_KVM_ASYNC_PF_EN:
2385 		msr_info->data = vcpu->arch.apf.msr_val;
2386 		break;
2387 	case MSR_KVM_STEAL_TIME:
2388 		msr_info->data = vcpu->arch.st.msr_val;
2389 		break;
2390 	case MSR_KVM_PV_EOI_EN:
2391 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
2392 		break;
2393 	case MSR_IA32_P5_MC_ADDR:
2394 	case MSR_IA32_P5_MC_TYPE:
2395 	case MSR_IA32_MCG_CAP:
2396 	case MSR_IA32_MCG_CTL:
2397 	case MSR_IA32_MCG_STATUS:
2398 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2399 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2400 	case MSR_K7_CLK_CTL:
2401 		/*
2402 		 * Provide expected ramp-up count for K7. All other
2403 		 * are set to zero, indicating minimum divisors for
2404 		 * every field.
2405 		 *
2406 		 * This prevents guest kernels on AMD host with CPU
2407 		 * type 6, model 8 and higher from exploding due to
2408 		 * the rdmsr failing.
2409 		 */
2410 		msr_info->data = 0x20000000;
2411 		break;
2412 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2413 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2414 	case HV_X64_MSR_CRASH_CTL:
2415 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2416 		return kvm_hv_get_msr_common(vcpu,
2417 					     msr_info->index, &msr_info->data);
2418 		break;
2419 	case MSR_IA32_BBL_CR_CTL3:
2420 		/* This legacy MSR exists but isn't fully documented in current
2421 		 * silicon.  It is however accessed by winxp in very narrow
2422 		 * scenarios where it sets bit #19, itself documented as
2423 		 * a "reserved" bit.  Best effort attempt to source coherent
2424 		 * read data here should the balance of the register be
2425 		 * interpreted by the guest:
2426 		 *
2427 		 * L2 cache control register 3: 64GB range, 256KB size,
2428 		 * enabled, latency 0x1, configured
2429 		 */
2430 		msr_info->data = 0xbe702111;
2431 		break;
2432 	case MSR_AMD64_OSVW_ID_LENGTH:
2433 		if (!guest_cpuid_has_osvw(vcpu))
2434 			return 1;
2435 		msr_info->data = vcpu->arch.osvw.length;
2436 		break;
2437 	case MSR_AMD64_OSVW_STATUS:
2438 		if (!guest_cpuid_has_osvw(vcpu))
2439 			return 1;
2440 		msr_info->data = vcpu->arch.osvw.status;
2441 		break;
2442 	default:
2443 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2444 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2445 		if (!ignore_msrs) {
2446 			vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2447 			return 1;
2448 		} else {
2449 			vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2450 			msr_info->data = 0;
2451 		}
2452 		break;
2453 	}
2454 	return 0;
2455 }
2456 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2457 
2458 /*
2459  * Read or write a bunch of msrs. All parameters are kernel addresses.
2460  *
2461  * @return number of msrs set successfully.
2462  */
2463 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2464 		    struct kvm_msr_entry *entries,
2465 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2466 				  unsigned index, u64 *data))
2467 {
2468 	int i, idx;
2469 
2470 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2471 	for (i = 0; i < msrs->nmsrs; ++i)
2472 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2473 			break;
2474 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2475 
2476 	return i;
2477 }
2478 
2479 /*
2480  * Read or write a bunch of msrs. Parameters are user addresses.
2481  *
2482  * @return number of msrs set successfully.
2483  */
2484 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2485 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2486 				unsigned index, u64 *data),
2487 		  int writeback)
2488 {
2489 	struct kvm_msrs msrs;
2490 	struct kvm_msr_entry *entries;
2491 	int r, n;
2492 	unsigned size;
2493 
2494 	r = -EFAULT;
2495 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2496 		goto out;
2497 
2498 	r = -E2BIG;
2499 	if (msrs.nmsrs >= MAX_IO_MSRS)
2500 		goto out;
2501 
2502 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2503 	entries = memdup_user(user_msrs->entries, size);
2504 	if (IS_ERR(entries)) {
2505 		r = PTR_ERR(entries);
2506 		goto out;
2507 	}
2508 
2509 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2510 	if (r < 0)
2511 		goto out_free;
2512 
2513 	r = -EFAULT;
2514 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2515 		goto out_free;
2516 
2517 	r = n;
2518 
2519 out_free:
2520 	kfree(entries);
2521 out:
2522 	return r;
2523 }
2524 
2525 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2526 {
2527 	int r;
2528 
2529 	switch (ext) {
2530 	case KVM_CAP_IRQCHIP:
2531 	case KVM_CAP_HLT:
2532 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2533 	case KVM_CAP_SET_TSS_ADDR:
2534 	case KVM_CAP_EXT_CPUID:
2535 	case KVM_CAP_EXT_EMUL_CPUID:
2536 	case KVM_CAP_CLOCKSOURCE:
2537 	case KVM_CAP_PIT:
2538 	case KVM_CAP_NOP_IO_DELAY:
2539 	case KVM_CAP_MP_STATE:
2540 	case KVM_CAP_SYNC_MMU:
2541 	case KVM_CAP_USER_NMI:
2542 	case KVM_CAP_REINJECT_CONTROL:
2543 	case KVM_CAP_IRQ_INJECT_STATUS:
2544 	case KVM_CAP_IOEVENTFD:
2545 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
2546 	case KVM_CAP_PIT2:
2547 	case KVM_CAP_PIT_STATE2:
2548 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2549 	case KVM_CAP_XEN_HVM:
2550 	case KVM_CAP_ADJUST_CLOCK:
2551 	case KVM_CAP_VCPU_EVENTS:
2552 	case KVM_CAP_HYPERV:
2553 	case KVM_CAP_HYPERV_VAPIC:
2554 	case KVM_CAP_HYPERV_SPIN:
2555 	case KVM_CAP_HYPERV_SYNIC:
2556 	case KVM_CAP_PCI_SEGMENT:
2557 	case KVM_CAP_DEBUGREGS:
2558 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2559 	case KVM_CAP_XSAVE:
2560 	case KVM_CAP_ASYNC_PF:
2561 	case KVM_CAP_GET_TSC_KHZ:
2562 	case KVM_CAP_KVMCLOCK_CTRL:
2563 	case KVM_CAP_READONLY_MEM:
2564 	case KVM_CAP_HYPERV_TIME:
2565 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2566 	case KVM_CAP_TSC_DEADLINE_TIMER:
2567 	case KVM_CAP_ENABLE_CAP_VM:
2568 	case KVM_CAP_DISABLE_QUIRKS:
2569 	case KVM_CAP_SET_BOOT_CPU_ID:
2570  	case KVM_CAP_SPLIT_IRQCHIP:
2571 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2572 	case KVM_CAP_ASSIGN_DEV_IRQ:
2573 	case KVM_CAP_PCI_2_3:
2574 #endif
2575 		r = 1;
2576 		break;
2577 	case KVM_CAP_X86_SMM:
2578 		/* SMBASE is usually relocated above 1M on modern chipsets,
2579 		 * and SMM handlers might indeed rely on 4G segment limits,
2580 		 * so do not report SMM to be available if real mode is
2581 		 * emulated via vm86 mode.  Still, do not go to great lengths
2582 		 * to avoid userspace's usage of the feature, because it is a
2583 		 * fringe case that is not enabled except via specific settings
2584 		 * of the module parameters.
2585 		 */
2586 		r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2587 		break;
2588 	case KVM_CAP_COALESCED_MMIO:
2589 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2590 		break;
2591 	case KVM_CAP_VAPIC:
2592 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2593 		break;
2594 	case KVM_CAP_NR_VCPUS:
2595 		r = KVM_SOFT_MAX_VCPUS;
2596 		break;
2597 	case KVM_CAP_MAX_VCPUS:
2598 		r = KVM_MAX_VCPUS;
2599 		break;
2600 	case KVM_CAP_NR_MEMSLOTS:
2601 		r = KVM_USER_MEM_SLOTS;
2602 		break;
2603 	case KVM_CAP_PV_MMU:	/* obsolete */
2604 		r = 0;
2605 		break;
2606 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2607 	case KVM_CAP_IOMMU:
2608 		r = iommu_present(&pci_bus_type);
2609 		break;
2610 #endif
2611 	case KVM_CAP_MCE:
2612 		r = KVM_MAX_MCE_BANKS;
2613 		break;
2614 	case KVM_CAP_XCRS:
2615 		r = cpu_has_xsave;
2616 		break;
2617 	case KVM_CAP_TSC_CONTROL:
2618 		r = kvm_has_tsc_control;
2619 		break;
2620 	default:
2621 		r = 0;
2622 		break;
2623 	}
2624 	return r;
2625 
2626 }
2627 
2628 long kvm_arch_dev_ioctl(struct file *filp,
2629 			unsigned int ioctl, unsigned long arg)
2630 {
2631 	void __user *argp = (void __user *)arg;
2632 	long r;
2633 
2634 	switch (ioctl) {
2635 	case KVM_GET_MSR_INDEX_LIST: {
2636 		struct kvm_msr_list __user *user_msr_list = argp;
2637 		struct kvm_msr_list msr_list;
2638 		unsigned n;
2639 
2640 		r = -EFAULT;
2641 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2642 			goto out;
2643 		n = msr_list.nmsrs;
2644 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2645 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2646 			goto out;
2647 		r = -E2BIG;
2648 		if (n < msr_list.nmsrs)
2649 			goto out;
2650 		r = -EFAULT;
2651 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2652 				 num_msrs_to_save * sizeof(u32)))
2653 			goto out;
2654 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2655 				 &emulated_msrs,
2656 				 num_emulated_msrs * sizeof(u32)))
2657 			goto out;
2658 		r = 0;
2659 		break;
2660 	}
2661 	case KVM_GET_SUPPORTED_CPUID:
2662 	case KVM_GET_EMULATED_CPUID: {
2663 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2664 		struct kvm_cpuid2 cpuid;
2665 
2666 		r = -EFAULT;
2667 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2668 			goto out;
2669 
2670 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2671 					    ioctl);
2672 		if (r)
2673 			goto out;
2674 
2675 		r = -EFAULT;
2676 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2677 			goto out;
2678 		r = 0;
2679 		break;
2680 	}
2681 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2682 		u64 mce_cap;
2683 
2684 		mce_cap = KVM_MCE_CAP_SUPPORTED;
2685 		r = -EFAULT;
2686 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2687 			goto out;
2688 		r = 0;
2689 		break;
2690 	}
2691 	default:
2692 		r = -EINVAL;
2693 	}
2694 out:
2695 	return r;
2696 }
2697 
2698 static void wbinvd_ipi(void *garbage)
2699 {
2700 	wbinvd();
2701 }
2702 
2703 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2704 {
2705 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2706 }
2707 
2708 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu)
2709 {
2710 	set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests);
2711 }
2712 
2713 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2714 {
2715 	/* Address WBINVD may be executed by guest */
2716 	if (need_emulate_wbinvd(vcpu)) {
2717 		if (kvm_x86_ops->has_wbinvd_exit())
2718 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2719 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2720 			smp_call_function_single(vcpu->cpu,
2721 					wbinvd_ipi, NULL, 1);
2722 	}
2723 
2724 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2725 
2726 	/* Apply any externally detected TSC adjustments (due to suspend) */
2727 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2728 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2729 		vcpu->arch.tsc_offset_adjustment = 0;
2730 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2731 	}
2732 
2733 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2734 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2735 				rdtsc() - vcpu->arch.last_host_tsc;
2736 		if (tsc_delta < 0)
2737 			mark_tsc_unstable("KVM discovered backwards TSC");
2738 		if (check_tsc_unstable()) {
2739 			u64 offset = kvm_compute_tsc_offset(vcpu,
2740 						vcpu->arch.last_guest_tsc);
2741 			kvm_x86_ops->write_tsc_offset(vcpu, offset);
2742 			vcpu->arch.tsc_catchup = 1;
2743 		}
2744 		/*
2745 		 * On a host with synchronized TSC, there is no need to update
2746 		 * kvmclock on vcpu->cpu migration
2747 		 */
2748 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2749 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2750 		if (vcpu->cpu != cpu)
2751 			kvm_migrate_timers(vcpu);
2752 		vcpu->cpu = cpu;
2753 	}
2754 
2755 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2756 }
2757 
2758 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2759 {
2760 	kvm_x86_ops->vcpu_put(vcpu);
2761 	kvm_put_guest_fpu(vcpu);
2762 	vcpu->arch.last_host_tsc = rdtsc();
2763 }
2764 
2765 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2766 				    struct kvm_lapic_state *s)
2767 {
2768 	if (vcpu->arch.apicv_active)
2769 		kvm_x86_ops->sync_pir_to_irr(vcpu);
2770 
2771 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2772 
2773 	return 0;
2774 }
2775 
2776 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2777 				    struct kvm_lapic_state *s)
2778 {
2779 	kvm_apic_post_state_restore(vcpu, s);
2780 	update_cr8_intercept(vcpu);
2781 
2782 	return 0;
2783 }
2784 
2785 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2786 {
2787 	return (!lapic_in_kernel(vcpu) ||
2788 		kvm_apic_accept_pic_intr(vcpu));
2789 }
2790 
2791 /*
2792  * if userspace requested an interrupt window, check that the
2793  * interrupt window is open.
2794  *
2795  * No need to exit to userspace if we already have an interrupt queued.
2796  */
2797 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2798 {
2799 	return kvm_arch_interrupt_allowed(vcpu) &&
2800 		!kvm_cpu_has_interrupt(vcpu) &&
2801 		!kvm_event_needs_reinjection(vcpu) &&
2802 		kvm_cpu_accept_dm_intr(vcpu);
2803 }
2804 
2805 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2806 				    struct kvm_interrupt *irq)
2807 {
2808 	if (irq->irq >= KVM_NR_INTERRUPTS)
2809 		return -EINVAL;
2810 
2811 	if (!irqchip_in_kernel(vcpu->kvm)) {
2812 		kvm_queue_interrupt(vcpu, irq->irq, false);
2813 		kvm_make_request(KVM_REQ_EVENT, vcpu);
2814 		return 0;
2815 	}
2816 
2817 	/*
2818 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2819 	 * fail for in-kernel 8259.
2820 	 */
2821 	if (pic_in_kernel(vcpu->kvm))
2822 		return -ENXIO;
2823 
2824 	if (vcpu->arch.pending_external_vector != -1)
2825 		return -EEXIST;
2826 
2827 	vcpu->arch.pending_external_vector = irq->irq;
2828 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2829 	return 0;
2830 }
2831 
2832 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2833 {
2834 	kvm_inject_nmi(vcpu);
2835 
2836 	return 0;
2837 }
2838 
2839 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2840 {
2841 	kvm_make_request(KVM_REQ_SMI, vcpu);
2842 
2843 	return 0;
2844 }
2845 
2846 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2847 					   struct kvm_tpr_access_ctl *tac)
2848 {
2849 	if (tac->flags)
2850 		return -EINVAL;
2851 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
2852 	return 0;
2853 }
2854 
2855 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2856 					u64 mcg_cap)
2857 {
2858 	int r;
2859 	unsigned bank_num = mcg_cap & 0xff, bank;
2860 
2861 	r = -EINVAL;
2862 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2863 		goto out;
2864 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2865 		goto out;
2866 	r = 0;
2867 	vcpu->arch.mcg_cap = mcg_cap;
2868 	/* Init IA32_MCG_CTL to all 1s */
2869 	if (mcg_cap & MCG_CTL_P)
2870 		vcpu->arch.mcg_ctl = ~(u64)0;
2871 	/* Init IA32_MCi_CTL to all 1s */
2872 	for (bank = 0; bank < bank_num; bank++)
2873 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2874 out:
2875 	return r;
2876 }
2877 
2878 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2879 				      struct kvm_x86_mce *mce)
2880 {
2881 	u64 mcg_cap = vcpu->arch.mcg_cap;
2882 	unsigned bank_num = mcg_cap & 0xff;
2883 	u64 *banks = vcpu->arch.mce_banks;
2884 
2885 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2886 		return -EINVAL;
2887 	/*
2888 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2889 	 * reporting is disabled
2890 	 */
2891 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2892 	    vcpu->arch.mcg_ctl != ~(u64)0)
2893 		return 0;
2894 	banks += 4 * mce->bank;
2895 	/*
2896 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2897 	 * reporting is disabled for the bank
2898 	 */
2899 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2900 		return 0;
2901 	if (mce->status & MCI_STATUS_UC) {
2902 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2903 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2904 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2905 			return 0;
2906 		}
2907 		if (banks[1] & MCI_STATUS_VAL)
2908 			mce->status |= MCI_STATUS_OVER;
2909 		banks[2] = mce->addr;
2910 		banks[3] = mce->misc;
2911 		vcpu->arch.mcg_status = mce->mcg_status;
2912 		banks[1] = mce->status;
2913 		kvm_queue_exception(vcpu, MC_VECTOR);
2914 	} else if (!(banks[1] & MCI_STATUS_VAL)
2915 		   || !(banks[1] & MCI_STATUS_UC)) {
2916 		if (banks[1] & MCI_STATUS_VAL)
2917 			mce->status |= MCI_STATUS_OVER;
2918 		banks[2] = mce->addr;
2919 		banks[3] = mce->misc;
2920 		banks[1] = mce->status;
2921 	} else
2922 		banks[1] |= MCI_STATUS_OVER;
2923 	return 0;
2924 }
2925 
2926 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2927 					       struct kvm_vcpu_events *events)
2928 {
2929 	process_nmi(vcpu);
2930 	events->exception.injected =
2931 		vcpu->arch.exception.pending &&
2932 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
2933 	events->exception.nr = vcpu->arch.exception.nr;
2934 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2935 	events->exception.pad = 0;
2936 	events->exception.error_code = vcpu->arch.exception.error_code;
2937 
2938 	events->interrupt.injected =
2939 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2940 	events->interrupt.nr = vcpu->arch.interrupt.nr;
2941 	events->interrupt.soft = 0;
2942 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
2943 
2944 	events->nmi.injected = vcpu->arch.nmi_injected;
2945 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
2946 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2947 	events->nmi.pad = 0;
2948 
2949 	events->sipi_vector = 0; /* never valid when reporting to user space */
2950 
2951 	events->smi.smm = is_smm(vcpu);
2952 	events->smi.pending = vcpu->arch.smi_pending;
2953 	events->smi.smm_inside_nmi =
2954 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
2955 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
2956 
2957 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2958 			 | KVM_VCPUEVENT_VALID_SHADOW
2959 			 | KVM_VCPUEVENT_VALID_SMM);
2960 	memset(&events->reserved, 0, sizeof(events->reserved));
2961 }
2962 
2963 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2964 					      struct kvm_vcpu_events *events)
2965 {
2966 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2967 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2968 			      | KVM_VCPUEVENT_VALID_SHADOW
2969 			      | KVM_VCPUEVENT_VALID_SMM))
2970 		return -EINVAL;
2971 
2972 	process_nmi(vcpu);
2973 	vcpu->arch.exception.pending = events->exception.injected;
2974 	vcpu->arch.exception.nr = events->exception.nr;
2975 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2976 	vcpu->arch.exception.error_code = events->exception.error_code;
2977 
2978 	vcpu->arch.interrupt.pending = events->interrupt.injected;
2979 	vcpu->arch.interrupt.nr = events->interrupt.nr;
2980 	vcpu->arch.interrupt.soft = events->interrupt.soft;
2981 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2982 		kvm_x86_ops->set_interrupt_shadow(vcpu,
2983 						  events->interrupt.shadow);
2984 
2985 	vcpu->arch.nmi_injected = events->nmi.injected;
2986 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2987 		vcpu->arch.nmi_pending = events->nmi.pending;
2988 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2989 
2990 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2991 	    lapic_in_kernel(vcpu))
2992 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
2993 
2994 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
2995 		if (events->smi.smm)
2996 			vcpu->arch.hflags |= HF_SMM_MASK;
2997 		else
2998 			vcpu->arch.hflags &= ~HF_SMM_MASK;
2999 		vcpu->arch.smi_pending = events->smi.pending;
3000 		if (events->smi.smm_inside_nmi)
3001 			vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3002 		else
3003 			vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3004 		if (lapic_in_kernel(vcpu)) {
3005 			if (events->smi.latched_init)
3006 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3007 			else
3008 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3009 		}
3010 	}
3011 
3012 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3013 
3014 	return 0;
3015 }
3016 
3017 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3018 					     struct kvm_debugregs *dbgregs)
3019 {
3020 	unsigned long val;
3021 
3022 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3023 	kvm_get_dr(vcpu, 6, &val);
3024 	dbgregs->dr6 = val;
3025 	dbgregs->dr7 = vcpu->arch.dr7;
3026 	dbgregs->flags = 0;
3027 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3028 }
3029 
3030 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3031 					    struct kvm_debugregs *dbgregs)
3032 {
3033 	if (dbgregs->flags)
3034 		return -EINVAL;
3035 
3036 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3037 	kvm_update_dr0123(vcpu);
3038 	vcpu->arch.dr6 = dbgregs->dr6;
3039 	kvm_update_dr6(vcpu);
3040 	vcpu->arch.dr7 = dbgregs->dr7;
3041 	kvm_update_dr7(vcpu);
3042 
3043 	return 0;
3044 }
3045 
3046 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3047 
3048 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3049 {
3050 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3051 	u64 xstate_bv = xsave->header.xfeatures;
3052 	u64 valid;
3053 
3054 	/*
3055 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3056 	 * leaves 0 and 1 in the loop below.
3057 	 */
3058 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3059 
3060 	/* Set XSTATE_BV */
3061 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3062 
3063 	/*
3064 	 * Copy each region from the possibly compacted offset to the
3065 	 * non-compacted offset.
3066 	 */
3067 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3068 	while (valid) {
3069 		u64 feature = valid & -valid;
3070 		int index = fls64(feature) - 1;
3071 		void *src = get_xsave_addr(xsave, feature);
3072 
3073 		if (src) {
3074 			u32 size, offset, ecx, edx;
3075 			cpuid_count(XSTATE_CPUID, index,
3076 				    &size, &offset, &ecx, &edx);
3077 			memcpy(dest + offset, src, size);
3078 		}
3079 
3080 		valid -= feature;
3081 	}
3082 }
3083 
3084 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3085 {
3086 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3087 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3088 	u64 valid;
3089 
3090 	/*
3091 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3092 	 * leaves 0 and 1 in the loop below.
3093 	 */
3094 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3095 
3096 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3097 	xsave->header.xfeatures = xstate_bv;
3098 	if (cpu_has_xsaves)
3099 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3100 
3101 	/*
3102 	 * Copy each region from the non-compacted offset to the
3103 	 * possibly compacted offset.
3104 	 */
3105 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3106 	while (valid) {
3107 		u64 feature = valid & -valid;
3108 		int index = fls64(feature) - 1;
3109 		void *dest = get_xsave_addr(xsave, feature);
3110 
3111 		if (dest) {
3112 			u32 size, offset, ecx, edx;
3113 			cpuid_count(XSTATE_CPUID, index,
3114 				    &size, &offset, &ecx, &edx);
3115 			memcpy(dest, src + offset, size);
3116 		}
3117 
3118 		valid -= feature;
3119 	}
3120 }
3121 
3122 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3123 					 struct kvm_xsave *guest_xsave)
3124 {
3125 	if (cpu_has_xsave) {
3126 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3127 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3128 	} else {
3129 		memcpy(guest_xsave->region,
3130 			&vcpu->arch.guest_fpu.state.fxsave,
3131 			sizeof(struct fxregs_state));
3132 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3133 			XFEATURE_MASK_FPSSE;
3134 	}
3135 }
3136 
3137 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3138 					struct kvm_xsave *guest_xsave)
3139 {
3140 	u64 xstate_bv =
3141 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3142 
3143 	if (cpu_has_xsave) {
3144 		/*
3145 		 * Here we allow setting states that are not present in
3146 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3147 		 * with old userspace.
3148 		 */
3149 		if (xstate_bv & ~kvm_supported_xcr0())
3150 			return -EINVAL;
3151 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3152 	} else {
3153 		if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3154 			return -EINVAL;
3155 		memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3156 			guest_xsave->region, sizeof(struct fxregs_state));
3157 	}
3158 	return 0;
3159 }
3160 
3161 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3162 					struct kvm_xcrs *guest_xcrs)
3163 {
3164 	if (!cpu_has_xsave) {
3165 		guest_xcrs->nr_xcrs = 0;
3166 		return;
3167 	}
3168 
3169 	guest_xcrs->nr_xcrs = 1;
3170 	guest_xcrs->flags = 0;
3171 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3172 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3173 }
3174 
3175 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3176 				       struct kvm_xcrs *guest_xcrs)
3177 {
3178 	int i, r = 0;
3179 
3180 	if (!cpu_has_xsave)
3181 		return -EINVAL;
3182 
3183 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3184 		return -EINVAL;
3185 
3186 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3187 		/* Only support XCR0 currently */
3188 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3189 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3190 				guest_xcrs->xcrs[i].value);
3191 			break;
3192 		}
3193 	if (r)
3194 		r = -EINVAL;
3195 	return r;
3196 }
3197 
3198 /*
3199  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3200  * stopped by the hypervisor.  This function will be called from the host only.
3201  * EINVAL is returned when the host attempts to set the flag for a guest that
3202  * does not support pv clocks.
3203  */
3204 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3205 {
3206 	if (!vcpu->arch.pv_time_enabled)
3207 		return -EINVAL;
3208 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3209 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3210 	return 0;
3211 }
3212 
3213 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3214 				     struct kvm_enable_cap *cap)
3215 {
3216 	if (cap->flags)
3217 		return -EINVAL;
3218 
3219 	switch (cap->cap) {
3220 	case KVM_CAP_HYPERV_SYNIC:
3221 		return kvm_hv_activate_synic(vcpu);
3222 	default:
3223 		return -EINVAL;
3224 	}
3225 }
3226 
3227 long kvm_arch_vcpu_ioctl(struct file *filp,
3228 			 unsigned int ioctl, unsigned long arg)
3229 {
3230 	struct kvm_vcpu *vcpu = filp->private_data;
3231 	void __user *argp = (void __user *)arg;
3232 	int r;
3233 	union {
3234 		struct kvm_lapic_state *lapic;
3235 		struct kvm_xsave *xsave;
3236 		struct kvm_xcrs *xcrs;
3237 		void *buffer;
3238 	} u;
3239 
3240 	u.buffer = NULL;
3241 	switch (ioctl) {
3242 	case KVM_GET_LAPIC: {
3243 		r = -EINVAL;
3244 		if (!lapic_in_kernel(vcpu))
3245 			goto out;
3246 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3247 
3248 		r = -ENOMEM;
3249 		if (!u.lapic)
3250 			goto out;
3251 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3252 		if (r)
3253 			goto out;
3254 		r = -EFAULT;
3255 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3256 			goto out;
3257 		r = 0;
3258 		break;
3259 	}
3260 	case KVM_SET_LAPIC: {
3261 		r = -EINVAL;
3262 		if (!lapic_in_kernel(vcpu))
3263 			goto out;
3264 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3265 		if (IS_ERR(u.lapic))
3266 			return PTR_ERR(u.lapic);
3267 
3268 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3269 		break;
3270 	}
3271 	case KVM_INTERRUPT: {
3272 		struct kvm_interrupt irq;
3273 
3274 		r = -EFAULT;
3275 		if (copy_from_user(&irq, argp, sizeof irq))
3276 			goto out;
3277 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3278 		break;
3279 	}
3280 	case KVM_NMI: {
3281 		r = kvm_vcpu_ioctl_nmi(vcpu);
3282 		break;
3283 	}
3284 	case KVM_SMI: {
3285 		r = kvm_vcpu_ioctl_smi(vcpu);
3286 		break;
3287 	}
3288 	case KVM_SET_CPUID: {
3289 		struct kvm_cpuid __user *cpuid_arg = argp;
3290 		struct kvm_cpuid cpuid;
3291 
3292 		r = -EFAULT;
3293 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3294 			goto out;
3295 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3296 		break;
3297 	}
3298 	case KVM_SET_CPUID2: {
3299 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3300 		struct kvm_cpuid2 cpuid;
3301 
3302 		r = -EFAULT;
3303 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3304 			goto out;
3305 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3306 					      cpuid_arg->entries);
3307 		break;
3308 	}
3309 	case KVM_GET_CPUID2: {
3310 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3311 		struct kvm_cpuid2 cpuid;
3312 
3313 		r = -EFAULT;
3314 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3315 			goto out;
3316 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3317 					      cpuid_arg->entries);
3318 		if (r)
3319 			goto out;
3320 		r = -EFAULT;
3321 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3322 			goto out;
3323 		r = 0;
3324 		break;
3325 	}
3326 	case KVM_GET_MSRS:
3327 		r = msr_io(vcpu, argp, do_get_msr, 1);
3328 		break;
3329 	case KVM_SET_MSRS:
3330 		r = msr_io(vcpu, argp, do_set_msr, 0);
3331 		break;
3332 	case KVM_TPR_ACCESS_REPORTING: {
3333 		struct kvm_tpr_access_ctl tac;
3334 
3335 		r = -EFAULT;
3336 		if (copy_from_user(&tac, argp, sizeof tac))
3337 			goto out;
3338 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3339 		if (r)
3340 			goto out;
3341 		r = -EFAULT;
3342 		if (copy_to_user(argp, &tac, sizeof tac))
3343 			goto out;
3344 		r = 0;
3345 		break;
3346 	};
3347 	case KVM_SET_VAPIC_ADDR: {
3348 		struct kvm_vapic_addr va;
3349 
3350 		r = -EINVAL;
3351 		if (!lapic_in_kernel(vcpu))
3352 			goto out;
3353 		r = -EFAULT;
3354 		if (copy_from_user(&va, argp, sizeof va))
3355 			goto out;
3356 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3357 		break;
3358 	}
3359 	case KVM_X86_SETUP_MCE: {
3360 		u64 mcg_cap;
3361 
3362 		r = -EFAULT;
3363 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3364 			goto out;
3365 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3366 		break;
3367 	}
3368 	case KVM_X86_SET_MCE: {
3369 		struct kvm_x86_mce mce;
3370 
3371 		r = -EFAULT;
3372 		if (copy_from_user(&mce, argp, sizeof mce))
3373 			goto out;
3374 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3375 		break;
3376 	}
3377 	case KVM_GET_VCPU_EVENTS: {
3378 		struct kvm_vcpu_events events;
3379 
3380 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3381 
3382 		r = -EFAULT;
3383 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3384 			break;
3385 		r = 0;
3386 		break;
3387 	}
3388 	case KVM_SET_VCPU_EVENTS: {
3389 		struct kvm_vcpu_events events;
3390 
3391 		r = -EFAULT;
3392 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3393 			break;
3394 
3395 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3396 		break;
3397 	}
3398 	case KVM_GET_DEBUGREGS: {
3399 		struct kvm_debugregs dbgregs;
3400 
3401 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3402 
3403 		r = -EFAULT;
3404 		if (copy_to_user(argp, &dbgregs,
3405 				 sizeof(struct kvm_debugregs)))
3406 			break;
3407 		r = 0;
3408 		break;
3409 	}
3410 	case KVM_SET_DEBUGREGS: {
3411 		struct kvm_debugregs dbgregs;
3412 
3413 		r = -EFAULT;
3414 		if (copy_from_user(&dbgregs, argp,
3415 				   sizeof(struct kvm_debugregs)))
3416 			break;
3417 
3418 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3419 		break;
3420 	}
3421 	case KVM_GET_XSAVE: {
3422 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3423 		r = -ENOMEM;
3424 		if (!u.xsave)
3425 			break;
3426 
3427 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3428 
3429 		r = -EFAULT;
3430 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3431 			break;
3432 		r = 0;
3433 		break;
3434 	}
3435 	case KVM_SET_XSAVE: {
3436 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3437 		if (IS_ERR(u.xsave))
3438 			return PTR_ERR(u.xsave);
3439 
3440 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3441 		break;
3442 	}
3443 	case KVM_GET_XCRS: {
3444 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3445 		r = -ENOMEM;
3446 		if (!u.xcrs)
3447 			break;
3448 
3449 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3450 
3451 		r = -EFAULT;
3452 		if (copy_to_user(argp, u.xcrs,
3453 				 sizeof(struct kvm_xcrs)))
3454 			break;
3455 		r = 0;
3456 		break;
3457 	}
3458 	case KVM_SET_XCRS: {
3459 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3460 		if (IS_ERR(u.xcrs))
3461 			return PTR_ERR(u.xcrs);
3462 
3463 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3464 		break;
3465 	}
3466 	case KVM_SET_TSC_KHZ: {
3467 		u32 user_tsc_khz;
3468 
3469 		r = -EINVAL;
3470 		user_tsc_khz = (u32)arg;
3471 
3472 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3473 			goto out;
3474 
3475 		if (user_tsc_khz == 0)
3476 			user_tsc_khz = tsc_khz;
3477 
3478 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3479 			r = 0;
3480 
3481 		goto out;
3482 	}
3483 	case KVM_GET_TSC_KHZ: {
3484 		r = vcpu->arch.virtual_tsc_khz;
3485 		goto out;
3486 	}
3487 	case KVM_KVMCLOCK_CTRL: {
3488 		r = kvm_set_guest_paused(vcpu);
3489 		goto out;
3490 	}
3491 	case KVM_ENABLE_CAP: {
3492 		struct kvm_enable_cap cap;
3493 
3494 		r = -EFAULT;
3495 		if (copy_from_user(&cap, argp, sizeof(cap)))
3496 			goto out;
3497 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3498 		break;
3499 	}
3500 	default:
3501 		r = -EINVAL;
3502 	}
3503 out:
3504 	kfree(u.buffer);
3505 	return r;
3506 }
3507 
3508 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3509 {
3510 	return VM_FAULT_SIGBUS;
3511 }
3512 
3513 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3514 {
3515 	int ret;
3516 
3517 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3518 		return -EINVAL;
3519 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3520 	return ret;
3521 }
3522 
3523 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3524 					      u64 ident_addr)
3525 {
3526 	kvm->arch.ept_identity_map_addr = ident_addr;
3527 	return 0;
3528 }
3529 
3530 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3531 					  u32 kvm_nr_mmu_pages)
3532 {
3533 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3534 		return -EINVAL;
3535 
3536 	mutex_lock(&kvm->slots_lock);
3537 
3538 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3539 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3540 
3541 	mutex_unlock(&kvm->slots_lock);
3542 	return 0;
3543 }
3544 
3545 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3546 {
3547 	return kvm->arch.n_max_mmu_pages;
3548 }
3549 
3550 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3551 {
3552 	int r;
3553 
3554 	r = 0;
3555 	switch (chip->chip_id) {
3556 	case KVM_IRQCHIP_PIC_MASTER:
3557 		memcpy(&chip->chip.pic,
3558 			&pic_irqchip(kvm)->pics[0],
3559 			sizeof(struct kvm_pic_state));
3560 		break;
3561 	case KVM_IRQCHIP_PIC_SLAVE:
3562 		memcpy(&chip->chip.pic,
3563 			&pic_irqchip(kvm)->pics[1],
3564 			sizeof(struct kvm_pic_state));
3565 		break;
3566 	case KVM_IRQCHIP_IOAPIC:
3567 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3568 		break;
3569 	default:
3570 		r = -EINVAL;
3571 		break;
3572 	}
3573 	return r;
3574 }
3575 
3576 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3577 {
3578 	int r;
3579 
3580 	r = 0;
3581 	switch (chip->chip_id) {
3582 	case KVM_IRQCHIP_PIC_MASTER:
3583 		spin_lock(&pic_irqchip(kvm)->lock);
3584 		memcpy(&pic_irqchip(kvm)->pics[0],
3585 			&chip->chip.pic,
3586 			sizeof(struct kvm_pic_state));
3587 		spin_unlock(&pic_irqchip(kvm)->lock);
3588 		break;
3589 	case KVM_IRQCHIP_PIC_SLAVE:
3590 		spin_lock(&pic_irqchip(kvm)->lock);
3591 		memcpy(&pic_irqchip(kvm)->pics[1],
3592 			&chip->chip.pic,
3593 			sizeof(struct kvm_pic_state));
3594 		spin_unlock(&pic_irqchip(kvm)->lock);
3595 		break;
3596 	case KVM_IRQCHIP_IOAPIC:
3597 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3598 		break;
3599 	default:
3600 		r = -EINVAL;
3601 		break;
3602 	}
3603 	kvm_pic_update_irq(pic_irqchip(kvm));
3604 	return r;
3605 }
3606 
3607 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3608 {
3609 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3610 
3611 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3612 
3613 	mutex_lock(&kps->lock);
3614 	memcpy(ps, &kps->channels, sizeof(*ps));
3615 	mutex_unlock(&kps->lock);
3616 	return 0;
3617 }
3618 
3619 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3620 {
3621 	int i;
3622 	struct kvm_pit *pit = kvm->arch.vpit;
3623 
3624 	mutex_lock(&pit->pit_state.lock);
3625 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3626 	for (i = 0; i < 3; i++)
3627 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3628 	mutex_unlock(&pit->pit_state.lock);
3629 	return 0;
3630 }
3631 
3632 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3633 {
3634 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3635 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3636 		sizeof(ps->channels));
3637 	ps->flags = kvm->arch.vpit->pit_state.flags;
3638 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3639 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3640 	return 0;
3641 }
3642 
3643 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3644 {
3645 	int start = 0;
3646 	int i;
3647 	u32 prev_legacy, cur_legacy;
3648 	struct kvm_pit *pit = kvm->arch.vpit;
3649 
3650 	mutex_lock(&pit->pit_state.lock);
3651 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3652 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3653 	if (!prev_legacy && cur_legacy)
3654 		start = 1;
3655 	memcpy(&pit->pit_state.channels, &ps->channels,
3656 	       sizeof(pit->pit_state.channels));
3657 	pit->pit_state.flags = ps->flags;
3658 	for (i = 0; i < 3; i++)
3659 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3660 				   start && i == 0);
3661 	mutex_unlock(&pit->pit_state.lock);
3662 	return 0;
3663 }
3664 
3665 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3666 				 struct kvm_reinject_control *control)
3667 {
3668 	struct kvm_pit *pit = kvm->arch.vpit;
3669 
3670 	if (!pit)
3671 		return -ENXIO;
3672 
3673 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
3674 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3675 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3676 	 */
3677 	mutex_lock(&pit->pit_state.lock);
3678 	kvm_pit_set_reinject(pit, control->pit_reinject);
3679 	mutex_unlock(&pit->pit_state.lock);
3680 
3681 	return 0;
3682 }
3683 
3684 /**
3685  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3686  * @kvm: kvm instance
3687  * @log: slot id and address to which we copy the log
3688  *
3689  * Steps 1-4 below provide general overview of dirty page logging. See
3690  * kvm_get_dirty_log_protect() function description for additional details.
3691  *
3692  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3693  * always flush the TLB (step 4) even if previous step failed  and the dirty
3694  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3695  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3696  * writes will be marked dirty for next log read.
3697  *
3698  *   1. Take a snapshot of the bit and clear it if needed.
3699  *   2. Write protect the corresponding page.
3700  *   3. Copy the snapshot to the userspace.
3701  *   4. Flush TLB's if needed.
3702  */
3703 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3704 {
3705 	bool is_dirty = false;
3706 	int r;
3707 
3708 	mutex_lock(&kvm->slots_lock);
3709 
3710 	/*
3711 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3712 	 */
3713 	if (kvm_x86_ops->flush_log_dirty)
3714 		kvm_x86_ops->flush_log_dirty(kvm);
3715 
3716 	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3717 
3718 	/*
3719 	 * All the TLBs can be flushed out of mmu lock, see the comments in
3720 	 * kvm_mmu_slot_remove_write_access().
3721 	 */
3722 	lockdep_assert_held(&kvm->slots_lock);
3723 	if (is_dirty)
3724 		kvm_flush_remote_tlbs(kvm);
3725 
3726 	mutex_unlock(&kvm->slots_lock);
3727 	return r;
3728 }
3729 
3730 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3731 			bool line_status)
3732 {
3733 	if (!irqchip_in_kernel(kvm))
3734 		return -ENXIO;
3735 
3736 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3737 					irq_event->irq, irq_event->level,
3738 					line_status);
3739 	return 0;
3740 }
3741 
3742 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3743 				   struct kvm_enable_cap *cap)
3744 {
3745 	int r;
3746 
3747 	if (cap->flags)
3748 		return -EINVAL;
3749 
3750 	switch (cap->cap) {
3751 	case KVM_CAP_DISABLE_QUIRKS:
3752 		kvm->arch.disabled_quirks = cap->args[0];
3753 		r = 0;
3754 		break;
3755 	case KVM_CAP_SPLIT_IRQCHIP: {
3756 		mutex_lock(&kvm->lock);
3757 		r = -EINVAL;
3758 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3759 			goto split_irqchip_unlock;
3760 		r = -EEXIST;
3761 		if (irqchip_in_kernel(kvm))
3762 			goto split_irqchip_unlock;
3763 		if (atomic_read(&kvm->online_vcpus))
3764 			goto split_irqchip_unlock;
3765 		r = kvm_setup_empty_irq_routing(kvm);
3766 		if (r)
3767 			goto split_irqchip_unlock;
3768 		/* Pairs with irqchip_in_kernel. */
3769 		smp_wmb();
3770 		kvm->arch.irqchip_split = true;
3771 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3772 		r = 0;
3773 split_irqchip_unlock:
3774 		mutex_unlock(&kvm->lock);
3775 		break;
3776 	}
3777 	default:
3778 		r = -EINVAL;
3779 		break;
3780 	}
3781 	return r;
3782 }
3783 
3784 long kvm_arch_vm_ioctl(struct file *filp,
3785 		       unsigned int ioctl, unsigned long arg)
3786 {
3787 	struct kvm *kvm = filp->private_data;
3788 	void __user *argp = (void __user *)arg;
3789 	int r = -ENOTTY;
3790 	/*
3791 	 * This union makes it completely explicit to gcc-3.x
3792 	 * that these two variables' stack usage should be
3793 	 * combined, not added together.
3794 	 */
3795 	union {
3796 		struct kvm_pit_state ps;
3797 		struct kvm_pit_state2 ps2;
3798 		struct kvm_pit_config pit_config;
3799 	} u;
3800 
3801 	switch (ioctl) {
3802 	case KVM_SET_TSS_ADDR:
3803 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3804 		break;
3805 	case KVM_SET_IDENTITY_MAP_ADDR: {
3806 		u64 ident_addr;
3807 
3808 		r = -EFAULT;
3809 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3810 			goto out;
3811 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3812 		break;
3813 	}
3814 	case KVM_SET_NR_MMU_PAGES:
3815 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3816 		break;
3817 	case KVM_GET_NR_MMU_PAGES:
3818 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3819 		break;
3820 	case KVM_CREATE_IRQCHIP: {
3821 		struct kvm_pic *vpic;
3822 
3823 		mutex_lock(&kvm->lock);
3824 		r = -EEXIST;
3825 		if (kvm->arch.vpic)
3826 			goto create_irqchip_unlock;
3827 		r = -EINVAL;
3828 		if (atomic_read(&kvm->online_vcpus))
3829 			goto create_irqchip_unlock;
3830 		r = -ENOMEM;
3831 		vpic = kvm_create_pic(kvm);
3832 		if (vpic) {
3833 			r = kvm_ioapic_init(kvm);
3834 			if (r) {
3835 				mutex_lock(&kvm->slots_lock);
3836 				kvm_destroy_pic(vpic);
3837 				mutex_unlock(&kvm->slots_lock);
3838 				goto create_irqchip_unlock;
3839 			}
3840 		} else
3841 			goto create_irqchip_unlock;
3842 		r = kvm_setup_default_irq_routing(kvm);
3843 		if (r) {
3844 			mutex_lock(&kvm->slots_lock);
3845 			mutex_lock(&kvm->irq_lock);
3846 			kvm_ioapic_destroy(kvm);
3847 			kvm_destroy_pic(vpic);
3848 			mutex_unlock(&kvm->irq_lock);
3849 			mutex_unlock(&kvm->slots_lock);
3850 			goto create_irqchip_unlock;
3851 		}
3852 		/* Write kvm->irq_routing before kvm->arch.vpic.  */
3853 		smp_wmb();
3854 		kvm->arch.vpic = vpic;
3855 	create_irqchip_unlock:
3856 		mutex_unlock(&kvm->lock);
3857 		break;
3858 	}
3859 	case KVM_CREATE_PIT:
3860 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3861 		goto create_pit;
3862 	case KVM_CREATE_PIT2:
3863 		r = -EFAULT;
3864 		if (copy_from_user(&u.pit_config, argp,
3865 				   sizeof(struct kvm_pit_config)))
3866 			goto out;
3867 	create_pit:
3868 		mutex_lock(&kvm->slots_lock);
3869 		r = -EEXIST;
3870 		if (kvm->arch.vpit)
3871 			goto create_pit_unlock;
3872 		r = -ENOMEM;
3873 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3874 		if (kvm->arch.vpit)
3875 			r = 0;
3876 	create_pit_unlock:
3877 		mutex_unlock(&kvm->slots_lock);
3878 		break;
3879 	case KVM_GET_IRQCHIP: {
3880 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3881 		struct kvm_irqchip *chip;
3882 
3883 		chip = memdup_user(argp, sizeof(*chip));
3884 		if (IS_ERR(chip)) {
3885 			r = PTR_ERR(chip);
3886 			goto out;
3887 		}
3888 
3889 		r = -ENXIO;
3890 		if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3891 			goto get_irqchip_out;
3892 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3893 		if (r)
3894 			goto get_irqchip_out;
3895 		r = -EFAULT;
3896 		if (copy_to_user(argp, chip, sizeof *chip))
3897 			goto get_irqchip_out;
3898 		r = 0;
3899 	get_irqchip_out:
3900 		kfree(chip);
3901 		break;
3902 	}
3903 	case KVM_SET_IRQCHIP: {
3904 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3905 		struct kvm_irqchip *chip;
3906 
3907 		chip = memdup_user(argp, sizeof(*chip));
3908 		if (IS_ERR(chip)) {
3909 			r = PTR_ERR(chip);
3910 			goto out;
3911 		}
3912 
3913 		r = -ENXIO;
3914 		if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3915 			goto set_irqchip_out;
3916 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3917 		if (r)
3918 			goto set_irqchip_out;
3919 		r = 0;
3920 	set_irqchip_out:
3921 		kfree(chip);
3922 		break;
3923 	}
3924 	case KVM_GET_PIT: {
3925 		r = -EFAULT;
3926 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3927 			goto out;
3928 		r = -ENXIO;
3929 		if (!kvm->arch.vpit)
3930 			goto out;
3931 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3932 		if (r)
3933 			goto out;
3934 		r = -EFAULT;
3935 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3936 			goto out;
3937 		r = 0;
3938 		break;
3939 	}
3940 	case KVM_SET_PIT: {
3941 		r = -EFAULT;
3942 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
3943 			goto out;
3944 		r = -ENXIO;
3945 		if (!kvm->arch.vpit)
3946 			goto out;
3947 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3948 		break;
3949 	}
3950 	case KVM_GET_PIT2: {
3951 		r = -ENXIO;
3952 		if (!kvm->arch.vpit)
3953 			goto out;
3954 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3955 		if (r)
3956 			goto out;
3957 		r = -EFAULT;
3958 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3959 			goto out;
3960 		r = 0;
3961 		break;
3962 	}
3963 	case KVM_SET_PIT2: {
3964 		r = -EFAULT;
3965 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3966 			goto out;
3967 		r = -ENXIO;
3968 		if (!kvm->arch.vpit)
3969 			goto out;
3970 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3971 		break;
3972 	}
3973 	case KVM_REINJECT_CONTROL: {
3974 		struct kvm_reinject_control control;
3975 		r =  -EFAULT;
3976 		if (copy_from_user(&control, argp, sizeof(control)))
3977 			goto out;
3978 		r = kvm_vm_ioctl_reinject(kvm, &control);
3979 		break;
3980 	}
3981 	case KVM_SET_BOOT_CPU_ID:
3982 		r = 0;
3983 		mutex_lock(&kvm->lock);
3984 		if (atomic_read(&kvm->online_vcpus) != 0)
3985 			r = -EBUSY;
3986 		else
3987 			kvm->arch.bsp_vcpu_id = arg;
3988 		mutex_unlock(&kvm->lock);
3989 		break;
3990 	case KVM_XEN_HVM_CONFIG: {
3991 		r = -EFAULT;
3992 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3993 				   sizeof(struct kvm_xen_hvm_config)))
3994 			goto out;
3995 		r = -EINVAL;
3996 		if (kvm->arch.xen_hvm_config.flags)
3997 			goto out;
3998 		r = 0;
3999 		break;
4000 	}
4001 	case KVM_SET_CLOCK: {
4002 		struct kvm_clock_data user_ns;
4003 		u64 now_ns;
4004 		s64 delta;
4005 
4006 		r = -EFAULT;
4007 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4008 			goto out;
4009 
4010 		r = -EINVAL;
4011 		if (user_ns.flags)
4012 			goto out;
4013 
4014 		r = 0;
4015 		local_irq_disable();
4016 		now_ns = get_kernel_ns();
4017 		delta = user_ns.clock - now_ns;
4018 		local_irq_enable();
4019 		kvm->arch.kvmclock_offset = delta;
4020 		kvm_gen_update_masterclock(kvm);
4021 		break;
4022 	}
4023 	case KVM_GET_CLOCK: {
4024 		struct kvm_clock_data user_ns;
4025 		u64 now_ns;
4026 
4027 		local_irq_disable();
4028 		now_ns = get_kernel_ns();
4029 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4030 		local_irq_enable();
4031 		user_ns.flags = 0;
4032 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4033 
4034 		r = -EFAULT;
4035 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4036 			goto out;
4037 		r = 0;
4038 		break;
4039 	}
4040 	case KVM_ENABLE_CAP: {
4041 		struct kvm_enable_cap cap;
4042 
4043 		r = -EFAULT;
4044 		if (copy_from_user(&cap, argp, sizeof(cap)))
4045 			goto out;
4046 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4047 		break;
4048 	}
4049 	default:
4050 		r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4051 	}
4052 out:
4053 	return r;
4054 }
4055 
4056 static void kvm_init_msr_list(void)
4057 {
4058 	u32 dummy[2];
4059 	unsigned i, j;
4060 
4061 	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4062 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4063 			continue;
4064 
4065 		/*
4066 		 * Even MSRs that are valid in the host may not be exposed
4067 		 * to the guests in some cases.
4068 		 */
4069 		switch (msrs_to_save[i]) {
4070 		case MSR_IA32_BNDCFGS:
4071 			if (!kvm_x86_ops->mpx_supported())
4072 				continue;
4073 			break;
4074 		case MSR_TSC_AUX:
4075 			if (!kvm_x86_ops->rdtscp_supported())
4076 				continue;
4077 			break;
4078 		default:
4079 			break;
4080 		}
4081 
4082 		if (j < i)
4083 			msrs_to_save[j] = msrs_to_save[i];
4084 		j++;
4085 	}
4086 	num_msrs_to_save = j;
4087 
4088 	for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4089 		switch (emulated_msrs[i]) {
4090 		case MSR_IA32_SMBASE:
4091 			if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4092 				continue;
4093 			break;
4094 		default:
4095 			break;
4096 		}
4097 
4098 		if (j < i)
4099 			emulated_msrs[j] = emulated_msrs[i];
4100 		j++;
4101 	}
4102 	num_emulated_msrs = j;
4103 }
4104 
4105 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4106 			   const void *v)
4107 {
4108 	int handled = 0;
4109 	int n;
4110 
4111 	do {
4112 		n = min(len, 8);
4113 		if (!(lapic_in_kernel(vcpu) &&
4114 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4115 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4116 			break;
4117 		handled += n;
4118 		addr += n;
4119 		len -= n;
4120 		v += n;
4121 	} while (len);
4122 
4123 	return handled;
4124 }
4125 
4126 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4127 {
4128 	int handled = 0;
4129 	int n;
4130 
4131 	do {
4132 		n = min(len, 8);
4133 		if (!(lapic_in_kernel(vcpu) &&
4134 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4135 					 addr, n, v))
4136 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4137 			break;
4138 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4139 		handled += n;
4140 		addr += n;
4141 		len -= n;
4142 		v += n;
4143 	} while (len);
4144 
4145 	return handled;
4146 }
4147 
4148 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4149 			struct kvm_segment *var, int seg)
4150 {
4151 	kvm_x86_ops->set_segment(vcpu, var, seg);
4152 }
4153 
4154 void kvm_get_segment(struct kvm_vcpu *vcpu,
4155 		     struct kvm_segment *var, int seg)
4156 {
4157 	kvm_x86_ops->get_segment(vcpu, var, seg);
4158 }
4159 
4160 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4161 			   struct x86_exception *exception)
4162 {
4163 	gpa_t t_gpa;
4164 
4165 	BUG_ON(!mmu_is_nested(vcpu));
4166 
4167 	/* NPT walks are always user-walks */
4168 	access |= PFERR_USER_MASK;
4169 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4170 
4171 	return t_gpa;
4172 }
4173 
4174 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4175 			      struct x86_exception *exception)
4176 {
4177 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4178 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4179 }
4180 
4181  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4182 				struct x86_exception *exception)
4183 {
4184 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4185 	access |= PFERR_FETCH_MASK;
4186 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4187 }
4188 
4189 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4190 			       struct x86_exception *exception)
4191 {
4192 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4193 	access |= PFERR_WRITE_MASK;
4194 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4195 }
4196 
4197 /* uses this to access any guest's mapped memory without checking CPL */
4198 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4199 				struct x86_exception *exception)
4200 {
4201 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4202 }
4203 
4204 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4205 				      struct kvm_vcpu *vcpu, u32 access,
4206 				      struct x86_exception *exception)
4207 {
4208 	void *data = val;
4209 	int r = X86EMUL_CONTINUE;
4210 
4211 	while (bytes) {
4212 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4213 							    exception);
4214 		unsigned offset = addr & (PAGE_SIZE-1);
4215 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4216 		int ret;
4217 
4218 		if (gpa == UNMAPPED_GVA)
4219 			return X86EMUL_PROPAGATE_FAULT;
4220 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4221 					       offset, toread);
4222 		if (ret < 0) {
4223 			r = X86EMUL_IO_NEEDED;
4224 			goto out;
4225 		}
4226 
4227 		bytes -= toread;
4228 		data += toread;
4229 		addr += toread;
4230 	}
4231 out:
4232 	return r;
4233 }
4234 
4235 /* used for instruction fetching */
4236 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4237 				gva_t addr, void *val, unsigned int bytes,
4238 				struct x86_exception *exception)
4239 {
4240 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4241 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4242 	unsigned offset;
4243 	int ret;
4244 
4245 	/* Inline kvm_read_guest_virt_helper for speed.  */
4246 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4247 						    exception);
4248 	if (unlikely(gpa == UNMAPPED_GVA))
4249 		return X86EMUL_PROPAGATE_FAULT;
4250 
4251 	offset = addr & (PAGE_SIZE-1);
4252 	if (WARN_ON(offset + bytes > PAGE_SIZE))
4253 		bytes = (unsigned)PAGE_SIZE - offset;
4254 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4255 				       offset, bytes);
4256 	if (unlikely(ret < 0))
4257 		return X86EMUL_IO_NEEDED;
4258 
4259 	return X86EMUL_CONTINUE;
4260 }
4261 
4262 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4263 			       gva_t addr, void *val, unsigned int bytes,
4264 			       struct x86_exception *exception)
4265 {
4266 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4267 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4268 
4269 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4270 					  exception);
4271 }
4272 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4273 
4274 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4275 				      gva_t addr, void *val, unsigned int bytes,
4276 				      struct x86_exception *exception)
4277 {
4278 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4279 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4280 }
4281 
4282 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4283 		unsigned long addr, void *val, unsigned int bytes)
4284 {
4285 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4286 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4287 
4288 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4289 }
4290 
4291 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4292 				       gva_t addr, void *val,
4293 				       unsigned int bytes,
4294 				       struct x86_exception *exception)
4295 {
4296 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4297 	void *data = val;
4298 	int r = X86EMUL_CONTINUE;
4299 
4300 	while (bytes) {
4301 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4302 							     PFERR_WRITE_MASK,
4303 							     exception);
4304 		unsigned offset = addr & (PAGE_SIZE-1);
4305 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4306 		int ret;
4307 
4308 		if (gpa == UNMAPPED_GVA)
4309 			return X86EMUL_PROPAGATE_FAULT;
4310 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4311 		if (ret < 0) {
4312 			r = X86EMUL_IO_NEEDED;
4313 			goto out;
4314 		}
4315 
4316 		bytes -= towrite;
4317 		data += towrite;
4318 		addr += towrite;
4319 	}
4320 out:
4321 	return r;
4322 }
4323 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4324 
4325 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4326 				gpa_t *gpa, struct x86_exception *exception,
4327 				bool write)
4328 {
4329 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4330 		| (write ? PFERR_WRITE_MASK : 0);
4331 
4332 	/*
4333 	 * currently PKRU is only applied to ept enabled guest so
4334 	 * there is no pkey in EPT page table for L1 guest or EPT
4335 	 * shadow page table for L2 guest.
4336 	 */
4337 	if (vcpu_match_mmio_gva(vcpu, gva)
4338 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4339 				 vcpu->arch.access, 0, access)) {
4340 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4341 					(gva & (PAGE_SIZE - 1));
4342 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4343 		return 1;
4344 	}
4345 
4346 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4347 
4348 	if (*gpa == UNMAPPED_GVA)
4349 		return -1;
4350 
4351 	/* For APIC access vmexit */
4352 	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4353 		return 1;
4354 
4355 	if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4356 		trace_vcpu_match_mmio(gva, *gpa, write, true);
4357 		return 1;
4358 	}
4359 
4360 	return 0;
4361 }
4362 
4363 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4364 			const void *val, int bytes)
4365 {
4366 	int ret;
4367 
4368 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4369 	if (ret < 0)
4370 		return 0;
4371 	kvm_page_track_write(vcpu, gpa, val, bytes);
4372 	return 1;
4373 }
4374 
4375 struct read_write_emulator_ops {
4376 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4377 				  int bytes);
4378 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4379 				  void *val, int bytes);
4380 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4381 			       int bytes, void *val);
4382 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4383 				    void *val, int bytes);
4384 	bool write;
4385 };
4386 
4387 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4388 {
4389 	if (vcpu->mmio_read_completed) {
4390 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4391 			       vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4392 		vcpu->mmio_read_completed = 0;
4393 		return 1;
4394 	}
4395 
4396 	return 0;
4397 }
4398 
4399 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4400 			void *val, int bytes)
4401 {
4402 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4403 }
4404 
4405 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4406 			 void *val, int bytes)
4407 {
4408 	return emulator_write_phys(vcpu, gpa, val, bytes);
4409 }
4410 
4411 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4412 {
4413 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4414 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4415 }
4416 
4417 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4418 			  void *val, int bytes)
4419 {
4420 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4421 	return X86EMUL_IO_NEEDED;
4422 }
4423 
4424 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4425 			   void *val, int bytes)
4426 {
4427 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4428 
4429 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4430 	return X86EMUL_CONTINUE;
4431 }
4432 
4433 static const struct read_write_emulator_ops read_emultor = {
4434 	.read_write_prepare = read_prepare,
4435 	.read_write_emulate = read_emulate,
4436 	.read_write_mmio = vcpu_mmio_read,
4437 	.read_write_exit_mmio = read_exit_mmio,
4438 };
4439 
4440 static const struct read_write_emulator_ops write_emultor = {
4441 	.read_write_emulate = write_emulate,
4442 	.read_write_mmio = write_mmio,
4443 	.read_write_exit_mmio = write_exit_mmio,
4444 	.write = true,
4445 };
4446 
4447 static int emulator_read_write_onepage(unsigned long addr, void *val,
4448 				       unsigned int bytes,
4449 				       struct x86_exception *exception,
4450 				       struct kvm_vcpu *vcpu,
4451 				       const struct read_write_emulator_ops *ops)
4452 {
4453 	gpa_t gpa;
4454 	int handled, ret;
4455 	bool write = ops->write;
4456 	struct kvm_mmio_fragment *frag;
4457 
4458 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4459 
4460 	if (ret < 0)
4461 		return X86EMUL_PROPAGATE_FAULT;
4462 
4463 	/* For APIC access vmexit */
4464 	if (ret)
4465 		goto mmio;
4466 
4467 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4468 		return X86EMUL_CONTINUE;
4469 
4470 mmio:
4471 	/*
4472 	 * Is this MMIO handled locally?
4473 	 */
4474 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4475 	if (handled == bytes)
4476 		return X86EMUL_CONTINUE;
4477 
4478 	gpa += handled;
4479 	bytes -= handled;
4480 	val += handled;
4481 
4482 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4483 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4484 	frag->gpa = gpa;
4485 	frag->data = val;
4486 	frag->len = bytes;
4487 	return X86EMUL_CONTINUE;
4488 }
4489 
4490 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4491 			unsigned long addr,
4492 			void *val, unsigned int bytes,
4493 			struct x86_exception *exception,
4494 			const struct read_write_emulator_ops *ops)
4495 {
4496 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4497 	gpa_t gpa;
4498 	int rc;
4499 
4500 	if (ops->read_write_prepare &&
4501 		  ops->read_write_prepare(vcpu, val, bytes))
4502 		return X86EMUL_CONTINUE;
4503 
4504 	vcpu->mmio_nr_fragments = 0;
4505 
4506 	/* Crossing a page boundary? */
4507 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4508 		int now;
4509 
4510 		now = -addr & ~PAGE_MASK;
4511 		rc = emulator_read_write_onepage(addr, val, now, exception,
4512 						 vcpu, ops);
4513 
4514 		if (rc != X86EMUL_CONTINUE)
4515 			return rc;
4516 		addr += now;
4517 		if (ctxt->mode != X86EMUL_MODE_PROT64)
4518 			addr = (u32)addr;
4519 		val += now;
4520 		bytes -= now;
4521 	}
4522 
4523 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
4524 					 vcpu, ops);
4525 	if (rc != X86EMUL_CONTINUE)
4526 		return rc;
4527 
4528 	if (!vcpu->mmio_nr_fragments)
4529 		return rc;
4530 
4531 	gpa = vcpu->mmio_fragments[0].gpa;
4532 
4533 	vcpu->mmio_needed = 1;
4534 	vcpu->mmio_cur_fragment = 0;
4535 
4536 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4537 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4538 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
4539 	vcpu->run->mmio.phys_addr = gpa;
4540 
4541 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4542 }
4543 
4544 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4545 				  unsigned long addr,
4546 				  void *val,
4547 				  unsigned int bytes,
4548 				  struct x86_exception *exception)
4549 {
4550 	return emulator_read_write(ctxt, addr, val, bytes,
4551 				   exception, &read_emultor);
4552 }
4553 
4554 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4555 			    unsigned long addr,
4556 			    const void *val,
4557 			    unsigned int bytes,
4558 			    struct x86_exception *exception)
4559 {
4560 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
4561 				   exception, &write_emultor);
4562 }
4563 
4564 #define CMPXCHG_TYPE(t, ptr, old, new) \
4565 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4566 
4567 #ifdef CONFIG_X86_64
4568 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4569 #else
4570 #  define CMPXCHG64(ptr, old, new) \
4571 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4572 #endif
4573 
4574 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4575 				     unsigned long addr,
4576 				     const void *old,
4577 				     const void *new,
4578 				     unsigned int bytes,
4579 				     struct x86_exception *exception)
4580 {
4581 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4582 	gpa_t gpa;
4583 	struct page *page;
4584 	char *kaddr;
4585 	bool exchanged;
4586 
4587 	/* guests cmpxchg8b have to be emulated atomically */
4588 	if (bytes > 8 || (bytes & (bytes - 1)))
4589 		goto emul_write;
4590 
4591 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4592 
4593 	if (gpa == UNMAPPED_GVA ||
4594 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4595 		goto emul_write;
4596 
4597 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4598 		goto emul_write;
4599 
4600 	page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4601 	if (is_error_page(page))
4602 		goto emul_write;
4603 
4604 	kaddr = kmap_atomic(page);
4605 	kaddr += offset_in_page(gpa);
4606 	switch (bytes) {
4607 	case 1:
4608 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4609 		break;
4610 	case 2:
4611 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4612 		break;
4613 	case 4:
4614 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4615 		break;
4616 	case 8:
4617 		exchanged = CMPXCHG64(kaddr, old, new);
4618 		break;
4619 	default:
4620 		BUG();
4621 	}
4622 	kunmap_atomic(kaddr);
4623 	kvm_release_page_dirty(page);
4624 
4625 	if (!exchanged)
4626 		return X86EMUL_CMPXCHG_FAILED;
4627 
4628 	kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4629 	kvm_page_track_write(vcpu, gpa, new, bytes);
4630 
4631 	return X86EMUL_CONTINUE;
4632 
4633 emul_write:
4634 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4635 
4636 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4637 }
4638 
4639 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4640 {
4641 	/* TODO: String I/O for in kernel device */
4642 	int r;
4643 
4644 	if (vcpu->arch.pio.in)
4645 		r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4646 				    vcpu->arch.pio.size, pd);
4647 	else
4648 		r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4649 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
4650 				     pd);
4651 	return r;
4652 }
4653 
4654 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4655 			       unsigned short port, void *val,
4656 			       unsigned int count, bool in)
4657 {
4658 	vcpu->arch.pio.port = port;
4659 	vcpu->arch.pio.in = in;
4660 	vcpu->arch.pio.count  = count;
4661 	vcpu->arch.pio.size = size;
4662 
4663 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4664 		vcpu->arch.pio.count = 0;
4665 		return 1;
4666 	}
4667 
4668 	vcpu->run->exit_reason = KVM_EXIT_IO;
4669 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4670 	vcpu->run->io.size = size;
4671 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4672 	vcpu->run->io.count = count;
4673 	vcpu->run->io.port = port;
4674 
4675 	return 0;
4676 }
4677 
4678 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4679 				    int size, unsigned short port, void *val,
4680 				    unsigned int count)
4681 {
4682 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4683 	int ret;
4684 
4685 	if (vcpu->arch.pio.count)
4686 		goto data_avail;
4687 
4688 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4689 	if (ret) {
4690 data_avail:
4691 		memcpy(val, vcpu->arch.pio_data, size * count);
4692 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4693 		vcpu->arch.pio.count = 0;
4694 		return 1;
4695 	}
4696 
4697 	return 0;
4698 }
4699 
4700 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4701 				     int size, unsigned short port,
4702 				     const void *val, unsigned int count)
4703 {
4704 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4705 
4706 	memcpy(vcpu->arch.pio_data, val, size * count);
4707 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4708 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4709 }
4710 
4711 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4712 {
4713 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4714 }
4715 
4716 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4717 {
4718 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4719 }
4720 
4721 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4722 {
4723 	if (!need_emulate_wbinvd(vcpu))
4724 		return X86EMUL_CONTINUE;
4725 
4726 	if (kvm_x86_ops->has_wbinvd_exit()) {
4727 		int cpu = get_cpu();
4728 
4729 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4730 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4731 				wbinvd_ipi, NULL, 1);
4732 		put_cpu();
4733 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4734 	} else
4735 		wbinvd();
4736 	return X86EMUL_CONTINUE;
4737 }
4738 
4739 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4740 {
4741 	kvm_x86_ops->skip_emulated_instruction(vcpu);
4742 	return kvm_emulate_wbinvd_noskip(vcpu);
4743 }
4744 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4745 
4746 
4747 
4748 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4749 {
4750 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4751 }
4752 
4753 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4754 			   unsigned long *dest)
4755 {
4756 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4757 }
4758 
4759 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4760 			   unsigned long value)
4761 {
4762 
4763 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4764 }
4765 
4766 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4767 {
4768 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4769 }
4770 
4771 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4772 {
4773 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4774 	unsigned long value;
4775 
4776 	switch (cr) {
4777 	case 0:
4778 		value = kvm_read_cr0(vcpu);
4779 		break;
4780 	case 2:
4781 		value = vcpu->arch.cr2;
4782 		break;
4783 	case 3:
4784 		value = kvm_read_cr3(vcpu);
4785 		break;
4786 	case 4:
4787 		value = kvm_read_cr4(vcpu);
4788 		break;
4789 	case 8:
4790 		value = kvm_get_cr8(vcpu);
4791 		break;
4792 	default:
4793 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4794 		return 0;
4795 	}
4796 
4797 	return value;
4798 }
4799 
4800 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4801 {
4802 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4803 	int res = 0;
4804 
4805 	switch (cr) {
4806 	case 0:
4807 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4808 		break;
4809 	case 2:
4810 		vcpu->arch.cr2 = val;
4811 		break;
4812 	case 3:
4813 		res = kvm_set_cr3(vcpu, val);
4814 		break;
4815 	case 4:
4816 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4817 		break;
4818 	case 8:
4819 		res = kvm_set_cr8(vcpu, val);
4820 		break;
4821 	default:
4822 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4823 		res = -1;
4824 	}
4825 
4826 	return res;
4827 }
4828 
4829 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4830 {
4831 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4832 }
4833 
4834 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4835 {
4836 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4837 }
4838 
4839 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4840 {
4841 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4842 }
4843 
4844 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4845 {
4846 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4847 }
4848 
4849 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4850 {
4851 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4852 }
4853 
4854 static unsigned long emulator_get_cached_segment_base(
4855 	struct x86_emulate_ctxt *ctxt, int seg)
4856 {
4857 	return get_segment_base(emul_to_vcpu(ctxt), seg);
4858 }
4859 
4860 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4861 				 struct desc_struct *desc, u32 *base3,
4862 				 int seg)
4863 {
4864 	struct kvm_segment var;
4865 
4866 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4867 	*selector = var.selector;
4868 
4869 	if (var.unusable) {
4870 		memset(desc, 0, sizeof(*desc));
4871 		return false;
4872 	}
4873 
4874 	if (var.g)
4875 		var.limit >>= 12;
4876 	set_desc_limit(desc, var.limit);
4877 	set_desc_base(desc, (unsigned long)var.base);
4878 #ifdef CONFIG_X86_64
4879 	if (base3)
4880 		*base3 = var.base >> 32;
4881 #endif
4882 	desc->type = var.type;
4883 	desc->s = var.s;
4884 	desc->dpl = var.dpl;
4885 	desc->p = var.present;
4886 	desc->avl = var.avl;
4887 	desc->l = var.l;
4888 	desc->d = var.db;
4889 	desc->g = var.g;
4890 
4891 	return true;
4892 }
4893 
4894 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4895 				 struct desc_struct *desc, u32 base3,
4896 				 int seg)
4897 {
4898 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4899 	struct kvm_segment var;
4900 
4901 	var.selector = selector;
4902 	var.base = get_desc_base(desc);
4903 #ifdef CONFIG_X86_64
4904 	var.base |= ((u64)base3) << 32;
4905 #endif
4906 	var.limit = get_desc_limit(desc);
4907 	if (desc->g)
4908 		var.limit = (var.limit << 12) | 0xfff;
4909 	var.type = desc->type;
4910 	var.dpl = desc->dpl;
4911 	var.db = desc->d;
4912 	var.s = desc->s;
4913 	var.l = desc->l;
4914 	var.g = desc->g;
4915 	var.avl = desc->avl;
4916 	var.present = desc->p;
4917 	var.unusable = !var.present;
4918 	var.padding = 0;
4919 
4920 	kvm_set_segment(vcpu, &var, seg);
4921 	return;
4922 }
4923 
4924 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4925 			    u32 msr_index, u64 *pdata)
4926 {
4927 	struct msr_data msr;
4928 	int r;
4929 
4930 	msr.index = msr_index;
4931 	msr.host_initiated = false;
4932 	r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
4933 	if (r)
4934 		return r;
4935 
4936 	*pdata = msr.data;
4937 	return 0;
4938 }
4939 
4940 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4941 			    u32 msr_index, u64 data)
4942 {
4943 	struct msr_data msr;
4944 
4945 	msr.data = data;
4946 	msr.index = msr_index;
4947 	msr.host_initiated = false;
4948 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4949 }
4950 
4951 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
4952 {
4953 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4954 
4955 	return vcpu->arch.smbase;
4956 }
4957 
4958 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
4959 {
4960 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4961 
4962 	vcpu->arch.smbase = smbase;
4963 }
4964 
4965 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4966 			      u32 pmc)
4967 {
4968 	return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
4969 }
4970 
4971 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4972 			     u32 pmc, u64 *pdata)
4973 {
4974 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
4975 }
4976 
4977 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4978 {
4979 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
4980 }
4981 
4982 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4983 {
4984 	preempt_disable();
4985 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4986 	/*
4987 	 * CR0.TS may reference the host fpu state, not the guest fpu state,
4988 	 * so it may be clear at this point.
4989 	 */
4990 	clts();
4991 }
4992 
4993 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4994 {
4995 	preempt_enable();
4996 }
4997 
4998 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4999 			      struct x86_instruction_info *info,
5000 			      enum x86_intercept_stage stage)
5001 {
5002 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5003 }
5004 
5005 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5006 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5007 {
5008 	kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5009 }
5010 
5011 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5012 {
5013 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
5014 }
5015 
5016 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5017 {
5018 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5019 }
5020 
5021 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5022 {
5023 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5024 }
5025 
5026 static const struct x86_emulate_ops emulate_ops = {
5027 	.read_gpr            = emulator_read_gpr,
5028 	.write_gpr           = emulator_write_gpr,
5029 	.read_std            = kvm_read_guest_virt_system,
5030 	.write_std           = kvm_write_guest_virt_system,
5031 	.read_phys           = kvm_read_guest_phys_system,
5032 	.fetch               = kvm_fetch_guest_virt,
5033 	.read_emulated       = emulator_read_emulated,
5034 	.write_emulated      = emulator_write_emulated,
5035 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
5036 	.invlpg              = emulator_invlpg,
5037 	.pio_in_emulated     = emulator_pio_in_emulated,
5038 	.pio_out_emulated    = emulator_pio_out_emulated,
5039 	.get_segment         = emulator_get_segment,
5040 	.set_segment         = emulator_set_segment,
5041 	.get_cached_segment_base = emulator_get_cached_segment_base,
5042 	.get_gdt             = emulator_get_gdt,
5043 	.get_idt	     = emulator_get_idt,
5044 	.set_gdt             = emulator_set_gdt,
5045 	.set_idt	     = emulator_set_idt,
5046 	.get_cr              = emulator_get_cr,
5047 	.set_cr              = emulator_set_cr,
5048 	.cpl                 = emulator_get_cpl,
5049 	.get_dr              = emulator_get_dr,
5050 	.set_dr              = emulator_set_dr,
5051 	.get_smbase          = emulator_get_smbase,
5052 	.set_smbase          = emulator_set_smbase,
5053 	.set_msr             = emulator_set_msr,
5054 	.get_msr             = emulator_get_msr,
5055 	.check_pmc	     = emulator_check_pmc,
5056 	.read_pmc            = emulator_read_pmc,
5057 	.halt                = emulator_halt,
5058 	.wbinvd              = emulator_wbinvd,
5059 	.fix_hypercall       = emulator_fix_hypercall,
5060 	.get_fpu             = emulator_get_fpu,
5061 	.put_fpu             = emulator_put_fpu,
5062 	.intercept           = emulator_intercept,
5063 	.get_cpuid           = emulator_get_cpuid,
5064 	.set_nmi_mask        = emulator_set_nmi_mask,
5065 };
5066 
5067 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5068 {
5069 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5070 	/*
5071 	 * an sti; sti; sequence only disable interrupts for the first
5072 	 * instruction. So, if the last instruction, be it emulated or
5073 	 * not, left the system with the INT_STI flag enabled, it
5074 	 * means that the last instruction is an sti. We should not
5075 	 * leave the flag on in this case. The same goes for mov ss
5076 	 */
5077 	if (int_shadow & mask)
5078 		mask = 0;
5079 	if (unlikely(int_shadow || mask)) {
5080 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5081 		if (!mask)
5082 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5083 	}
5084 }
5085 
5086 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5087 {
5088 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5089 	if (ctxt->exception.vector == PF_VECTOR)
5090 		return kvm_propagate_fault(vcpu, &ctxt->exception);
5091 
5092 	if (ctxt->exception.error_code_valid)
5093 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5094 				      ctxt->exception.error_code);
5095 	else
5096 		kvm_queue_exception(vcpu, ctxt->exception.vector);
5097 	return false;
5098 }
5099 
5100 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5101 {
5102 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5103 	int cs_db, cs_l;
5104 
5105 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5106 
5107 	ctxt->eflags = kvm_get_rflags(vcpu);
5108 	ctxt->eip = kvm_rip_read(vcpu);
5109 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
5110 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
5111 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
5112 		     cs_db				? X86EMUL_MODE_PROT32 :
5113 							  X86EMUL_MODE_PROT16;
5114 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5115 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5116 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5117 	ctxt->emul_flags = vcpu->arch.hflags;
5118 
5119 	init_decode_cache(ctxt);
5120 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5121 }
5122 
5123 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5124 {
5125 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5126 	int ret;
5127 
5128 	init_emulate_ctxt(vcpu);
5129 
5130 	ctxt->op_bytes = 2;
5131 	ctxt->ad_bytes = 2;
5132 	ctxt->_eip = ctxt->eip + inc_eip;
5133 	ret = emulate_int_real(ctxt, irq);
5134 
5135 	if (ret != X86EMUL_CONTINUE)
5136 		return EMULATE_FAIL;
5137 
5138 	ctxt->eip = ctxt->_eip;
5139 	kvm_rip_write(vcpu, ctxt->eip);
5140 	kvm_set_rflags(vcpu, ctxt->eflags);
5141 
5142 	if (irq == NMI_VECTOR)
5143 		vcpu->arch.nmi_pending = 0;
5144 	else
5145 		vcpu->arch.interrupt.pending = false;
5146 
5147 	return EMULATE_DONE;
5148 }
5149 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5150 
5151 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5152 {
5153 	int r = EMULATE_DONE;
5154 
5155 	++vcpu->stat.insn_emulation_fail;
5156 	trace_kvm_emulate_insn_failed(vcpu);
5157 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5158 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5159 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5160 		vcpu->run->internal.ndata = 0;
5161 		r = EMULATE_FAIL;
5162 	}
5163 	kvm_queue_exception(vcpu, UD_VECTOR);
5164 
5165 	return r;
5166 }
5167 
5168 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5169 				  bool write_fault_to_shadow_pgtable,
5170 				  int emulation_type)
5171 {
5172 	gpa_t gpa = cr2;
5173 	kvm_pfn_t pfn;
5174 
5175 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
5176 		return false;
5177 
5178 	if (!vcpu->arch.mmu.direct_map) {
5179 		/*
5180 		 * Write permission should be allowed since only
5181 		 * write access need to be emulated.
5182 		 */
5183 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5184 
5185 		/*
5186 		 * If the mapping is invalid in guest, let cpu retry
5187 		 * it to generate fault.
5188 		 */
5189 		if (gpa == UNMAPPED_GVA)
5190 			return true;
5191 	}
5192 
5193 	/*
5194 	 * Do not retry the unhandleable instruction if it faults on the
5195 	 * readonly host memory, otherwise it will goto a infinite loop:
5196 	 * retry instruction -> write #PF -> emulation fail -> retry
5197 	 * instruction -> ...
5198 	 */
5199 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5200 
5201 	/*
5202 	 * If the instruction failed on the error pfn, it can not be fixed,
5203 	 * report the error to userspace.
5204 	 */
5205 	if (is_error_noslot_pfn(pfn))
5206 		return false;
5207 
5208 	kvm_release_pfn_clean(pfn);
5209 
5210 	/* The instructions are well-emulated on direct mmu. */
5211 	if (vcpu->arch.mmu.direct_map) {
5212 		unsigned int indirect_shadow_pages;
5213 
5214 		spin_lock(&vcpu->kvm->mmu_lock);
5215 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5216 		spin_unlock(&vcpu->kvm->mmu_lock);
5217 
5218 		if (indirect_shadow_pages)
5219 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5220 
5221 		return true;
5222 	}
5223 
5224 	/*
5225 	 * if emulation was due to access to shadowed page table
5226 	 * and it failed try to unshadow page and re-enter the
5227 	 * guest to let CPU execute the instruction.
5228 	 */
5229 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5230 
5231 	/*
5232 	 * If the access faults on its page table, it can not
5233 	 * be fixed by unprotecting shadow page and it should
5234 	 * be reported to userspace.
5235 	 */
5236 	return !write_fault_to_shadow_pgtable;
5237 }
5238 
5239 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5240 			      unsigned long cr2,  int emulation_type)
5241 {
5242 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5243 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5244 
5245 	last_retry_eip = vcpu->arch.last_retry_eip;
5246 	last_retry_addr = vcpu->arch.last_retry_addr;
5247 
5248 	/*
5249 	 * If the emulation is caused by #PF and it is non-page_table
5250 	 * writing instruction, it means the VM-EXIT is caused by shadow
5251 	 * page protected, we can zap the shadow page and retry this
5252 	 * instruction directly.
5253 	 *
5254 	 * Note: if the guest uses a non-page-table modifying instruction
5255 	 * on the PDE that points to the instruction, then we will unmap
5256 	 * the instruction and go to an infinite loop. So, we cache the
5257 	 * last retried eip and the last fault address, if we meet the eip
5258 	 * and the address again, we can break out of the potential infinite
5259 	 * loop.
5260 	 */
5261 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5262 
5263 	if (!(emulation_type & EMULTYPE_RETRY))
5264 		return false;
5265 
5266 	if (x86_page_table_writing_insn(ctxt))
5267 		return false;
5268 
5269 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5270 		return false;
5271 
5272 	vcpu->arch.last_retry_eip = ctxt->eip;
5273 	vcpu->arch.last_retry_addr = cr2;
5274 
5275 	if (!vcpu->arch.mmu.direct_map)
5276 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5277 
5278 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5279 
5280 	return true;
5281 }
5282 
5283 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5284 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5285 
5286 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5287 {
5288 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5289 		/* This is a good place to trace that we are exiting SMM.  */
5290 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5291 
5292 		if (unlikely(vcpu->arch.smi_pending)) {
5293 			kvm_make_request(KVM_REQ_SMI, vcpu);
5294 			vcpu->arch.smi_pending = 0;
5295 		} else {
5296 			/* Process a latched INIT, if any.  */
5297 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5298 		}
5299 	}
5300 
5301 	kvm_mmu_reset_context(vcpu);
5302 }
5303 
5304 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5305 {
5306 	unsigned changed = vcpu->arch.hflags ^ emul_flags;
5307 
5308 	vcpu->arch.hflags = emul_flags;
5309 
5310 	if (changed & HF_SMM_MASK)
5311 		kvm_smm_changed(vcpu);
5312 }
5313 
5314 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5315 				unsigned long *db)
5316 {
5317 	u32 dr6 = 0;
5318 	int i;
5319 	u32 enable, rwlen;
5320 
5321 	enable = dr7;
5322 	rwlen = dr7 >> 16;
5323 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5324 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5325 			dr6 |= (1 << i);
5326 	return dr6;
5327 }
5328 
5329 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5330 {
5331 	struct kvm_run *kvm_run = vcpu->run;
5332 
5333 	/*
5334 	 * rflags is the old, "raw" value of the flags.  The new value has
5335 	 * not been saved yet.
5336 	 *
5337 	 * This is correct even for TF set by the guest, because "the
5338 	 * processor will not generate this exception after the instruction
5339 	 * that sets the TF flag".
5340 	 */
5341 	if (unlikely(rflags & X86_EFLAGS_TF)) {
5342 		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5343 			kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5344 						  DR6_RTM;
5345 			kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5346 			kvm_run->debug.arch.exception = DB_VECTOR;
5347 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5348 			*r = EMULATE_USER_EXIT;
5349 		} else {
5350 			vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5351 			/*
5352 			 * "Certain debug exceptions may clear bit 0-3.  The
5353 			 * remaining contents of the DR6 register are never
5354 			 * cleared by the processor".
5355 			 */
5356 			vcpu->arch.dr6 &= ~15;
5357 			vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5358 			kvm_queue_exception(vcpu, DB_VECTOR);
5359 		}
5360 	}
5361 }
5362 
5363 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5364 {
5365 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5366 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5367 		struct kvm_run *kvm_run = vcpu->run;
5368 		unsigned long eip = kvm_get_linear_rip(vcpu);
5369 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5370 					   vcpu->arch.guest_debug_dr7,
5371 					   vcpu->arch.eff_db);
5372 
5373 		if (dr6 != 0) {
5374 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5375 			kvm_run->debug.arch.pc = eip;
5376 			kvm_run->debug.arch.exception = DB_VECTOR;
5377 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5378 			*r = EMULATE_USER_EXIT;
5379 			return true;
5380 		}
5381 	}
5382 
5383 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5384 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5385 		unsigned long eip = kvm_get_linear_rip(vcpu);
5386 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5387 					   vcpu->arch.dr7,
5388 					   vcpu->arch.db);
5389 
5390 		if (dr6 != 0) {
5391 			vcpu->arch.dr6 &= ~15;
5392 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
5393 			kvm_queue_exception(vcpu, DB_VECTOR);
5394 			*r = EMULATE_DONE;
5395 			return true;
5396 		}
5397 	}
5398 
5399 	return false;
5400 }
5401 
5402 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5403 			    unsigned long cr2,
5404 			    int emulation_type,
5405 			    void *insn,
5406 			    int insn_len)
5407 {
5408 	int r;
5409 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5410 	bool writeback = true;
5411 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5412 
5413 	/*
5414 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
5415 	 * never reused.
5416 	 */
5417 	vcpu->arch.write_fault_to_shadow_pgtable = false;
5418 	kvm_clear_exception_queue(vcpu);
5419 
5420 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5421 		init_emulate_ctxt(vcpu);
5422 
5423 		/*
5424 		 * We will reenter on the same instruction since
5425 		 * we do not set complete_userspace_io.  This does not
5426 		 * handle watchpoints yet, those would be handled in
5427 		 * the emulate_ops.
5428 		 */
5429 		if (kvm_vcpu_check_breakpoint(vcpu, &r))
5430 			return r;
5431 
5432 		ctxt->interruptibility = 0;
5433 		ctxt->have_exception = false;
5434 		ctxt->exception.vector = -1;
5435 		ctxt->perm_ok = false;
5436 
5437 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5438 
5439 		r = x86_decode_insn(ctxt, insn, insn_len);
5440 
5441 		trace_kvm_emulate_insn_start(vcpu);
5442 		++vcpu->stat.insn_emulation;
5443 		if (r != EMULATION_OK)  {
5444 			if (emulation_type & EMULTYPE_TRAP_UD)
5445 				return EMULATE_FAIL;
5446 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5447 						emulation_type))
5448 				return EMULATE_DONE;
5449 			if (emulation_type & EMULTYPE_SKIP)
5450 				return EMULATE_FAIL;
5451 			return handle_emulation_failure(vcpu);
5452 		}
5453 	}
5454 
5455 	if (emulation_type & EMULTYPE_SKIP) {
5456 		kvm_rip_write(vcpu, ctxt->_eip);
5457 		if (ctxt->eflags & X86_EFLAGS_RF)
5458 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5459 		return EMULATE_DONE;
5460 	}
5461 
5462 	if (retry_instruction(ctxt, cr2, emulation_type))
5463 		return EMULATE_DONE;
5464 
5465 	/* this is needed for vmware backdoor interface to work since it
5466 	   changes registers values  during IO operation */
5467 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5468 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5469 		emulator_invalidate_register_cache(ctxt);
5470 	}
5471 
5472 restart:
5473 	r = x86_emulate_insn(ctxt);
5474 
5475 	if (r == EMULATION_INTERCEPTED)
5476 		return EMULATE_DONE;
5477 
5478 	if (r == EMULATION_FAILED) {
5479 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5480 					emulation_type))
5481 			return EMULATE_DONE;
5482 
5483 		return handle_emulation_failure(vcpu);
5484 	}
5485 
5486 	if (ctxt->have_exception) {
5487 		r = EMULATE_DONE;
5488 		if (inject_emulated_exception(vcpu))
5489 			return r;
5490 	} else if (vcpu->arch.pio.count) {
5491 		if (!vcpu->arch.pio.in) {
5492 			/* FIXME: return into emulator if single-stepping.  */
5493 			vcpu->arch.pio.count = 0;
5494 		} else {
5495 			writeback = false;
5496 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
5497 		}
5498 		r = EMULATE_USER_EXIT;
5499 	} else if (vcpu->mmio_needed) {
5500 		if (!vcpu->mmio_is_write)
5501 			writeback = false;
5502 		r = EMULATE_USER_EXIT;
5503 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5504 	} else if (r == EMULATION_RESTART)
5505 		goto restart;
5506 	else
5507 		r = EMULATE_DONE;
5508 
5509 	if (writeback) {
5510 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5511 		toggle_interruptibility(vcpu, ctxt->interruptibility);
5512 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5513 		if (vcpu->arch.hflags != ctxt->emul_flags)
5514 			kvm_set_hflags(vcpu, ctxt->emul_flags);
5515 		kvm_rip_write(vcpu, ctxt->eip);
5516 		if (r == EMULATE_DONE)
5517 			kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5518 		if (!ctxt->have_exception ||
5519 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5520 			__kvm_set_rflags(vcpu, ctxt->eflags);
5521 
5522 		/*
5523 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5524 		 * do nothing, and it will be requested again as soon as
5525 		 * the shadow expires.  But we still need to check here,
5526 		 * because POPF has no interrupt shadow.
5527 		 */
5528 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5529 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5530 	} else
5531 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5532 
5533 	return r;
5534 }
5535 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5536 
5537 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5538 {
5539 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5540 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5541 					    size, port, &val, 1);
5542 	/* do not return to emulator after return from userspace */
5543 	vcpu->arch.pio.count = 0;
5544 	return ret;
5545 }
5546 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5547 
5548 static void tsc_bad(void *info)
5549 {
5550 	__this_cpu_write(cpu_tsc_khz, 0);
5551 }
5552 
5553 static void tsc_khz_changed(void *data)
5554 {
5555 	struct cpufreq_freqs *freq = data;
5556 	unsigned long khz = 0;
5557 
5558 	if (data)
5559 		khz = freq->new;
5560 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5561 		khz = cpufreq_quick_get(raw_smp_processor_id());
5562 	if (!khz)
5563 		khz = tsc_khz;
5564 	__this_cpu_write(cpu_tsc_khz, khz);
5565 }
5566 
5567 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5568 				     void *data)
5569 {
5570 	struct cpufreq_freqs *freq = data;
5571 	struct kvm *kvm;
5572 	struct kvm_vcpu *vcpu;
5573 	int i, send_ipi = 0;
5574 
5575 	/*
5576 	 * We allow guests to temporarily run on slowing clocks,
5577 	 * provided we notify them after, or to run on accelerating
5578 	 * clocks, provided we notify them before.  Thus time never
5579 	 * goes backwards.
5580 	 *
5581 	 * However, we have a problem.  We can't atomically update
5582 	 * the frequency of a given CPU from this function; it is
5583 	 * merely a notifier, which can be called from any CPU.
5584 	 * Changing the TSC frequency at arbitrary points in time
5585 	 * requires a recomputation of local variables related to
5586 	 * the TSC for each VCPU.  We must flag these local variables
5587 	 * to be updated and be sure the update takes place with the
5588 	 * new frequency before any guests proceed.
5589 	 *
5590 	 * Unfortunately, the combination of hotplug CPU and frequency
5591 	 * change creates an intractable locking scenario; the order
5592 	 * of when these callouts happen is undefined with respect to
5593 	 * CPU hotplug, and they can race with each other.  As such,
5594 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5595 	 * undefined; you can actually have a CPU frequency change take
5596 	 * place in between the computation of X and the setting of the
5597 	 * variable.  To protect against this problem, all updates of
5598 	 * the per_cpu tsc_khz variable are done in an interrupt
5599 	 * protected IPI, and all callers wishing to update the value
5600 	 * must wait for a synchronous IPI to complete (which is trivial
5601 	 * if the caller is on the CPU already).  This establishes the
5602 	 * necessary total order on variable updates.
5603 	 *
5604 	 * Note that because a guest time update may take place
5605 	 * anytime after the setting of the VCPU's request bit, the
5606 	 * correct TSC value must be set before the request.  However,
5607 	 * to ensure the update actually makes it to any guest which
5608 	 * starts running in hardware virtualization between the set
5609 	 * and the acquisition of the spinlock, we must also ping the
5610 	 * CPU after setting the request bit.
5611 	 *
5612 	 */
5613 
5614 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5615 		return 0;
5616 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5617 		return 0;
5618 
5619 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5620 
5621 	spin_lock(&kvm_lock);
5622 	list_for_each_entry(kvm, &vm_list, vm_list) {
5623 		kvm_for_each_vcpu(i, vcpu, kvm) {
5624 			if (vcpu->cpu != freq->cpu)
5625 				continue;
5626 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5627 			if (vcpu->cpu != smp_processor_id())
5628 				send_ipi = 1;
5629 		}
5630 	}
5631 	spin_unlock(&kvm_lock);
5632 
5633 	if (freq->old < freq->new && send_ipi) {
5634 		/*
5635 		 * We upscale the frequency.  Must make the guest
5636 		 * doesn't see old kvmclock values while running with
5637 		 * the new frequency, otherwise we risk the guest sees
5638 		 * time go backwards.
5639 		 *
5640 		 * In case we update the frequency for another cpu
5641 		 * (which might be in guest context) send an interrupt
5642 		 * to kick the cpu out of guest context.  Next time
5643 		 * guest context is entered kvmclock will be updated,
5644 		 * so the guest will not see stale values.
5645 		 */
5646 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5647 	}
5648 	return 0;
5649 }
5650 
5651 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5652 	.notifier_call  = kvmclock_cpufreq_notifier
5653 };
5654 
5655 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5656 					unsigned long action, void *hcpu)
5657 {
5658 	unsigned int cpu = (unsigned long)hcpu;
5659 
5660 	switch (action) {
5661 		case CPU_ONLINE:
5662 		case CPU_DOWN_FAILED:
5663 			smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5664 			break;
5665 		case CPU_DOWN_PREPARE:
5666 			smp_call_function_single(cpu, tsc_bad, NULL, 1);
5667 			break;
5668 	}
5669 	return NOTIFY_OK;
5670 }
5671 
5672 static struct notifier_block kvmclock_cpu_notifier_block = {
5673 	.notifier_call  = kvmclock_cpu_notifier,
5674 	.priority = -INT_MAX
5675 };
5676 
5677 static void kvm_timer_init(void)
5678 {
5679 	int cpu;
5680 
5681 	max_tsc_khz = tsc_khz;
5682 
5683 	cpu_notifier_register_begin();
5684 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5685 #ifdef CONFIG_CPU_FREQ
5686 		struct cpufreq_policy policy;
5687 		memset(&policy, 0, sizeof(policy));
5688 		cpu = get_cpu();
5689 		cpufreq_get_policy(&policy, cpu);
5690 		if (policy.cpuinfo.max_freq)
5691 			max_tsc_khz = policy.cpuinfo.max_freq;
5692 		put_cpu();
5693 #endif
5694 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5695 					  CPUFREQ_TRANSITION_NOTIFIER);
5696 	}
5697 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5698 	for_each_online_cpu(cpu)
5699 		smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5700 
5701 	__register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5702 	cpu_notifier_register_done();
5703 
5704 }
5705 
5706 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5707 
5708 int kvm_is_in_guest(void)
5709 {
5710 	return __this_cpu_read(current_vcpu) != NULL;
5711 }
5712 
5713 static int kvm_is_user_mode(void)
5714 {
5715 	int user_mode = 3;
5716 
5717 	if (__this_cpu_read(current_vcpu))
5718 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5719 
5720 	return user_mode != 0;
5721 }
5722 
5723 static unsigned long kvm_get_guest_ip(void)
5724 {
5725 	unsigned long ip = 0;
5726 
5727 	if (__this_cpu_read(current_vcpu))
5728 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5729 
5730 	return ip;
5731 }
5732 
5733 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5734 	.is_in_guest		= kvm_is_in_guest,
5735 	.is_user_mode		= kvm_is_user_mode,
5736 	.get_guest_ip		= kvm_get_guest_ip,
5737 };
5738 
5739 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5740 {
5741 	__this_cpu_write(current_vcpu, vcpu);
5742 }
5743 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5744 
5745 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5746 {
5747 	__this_cpu_write(current_vcpu, NULL);
5748 }
5749 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5750 
5751 static void kvm_set_mmio_spte_mask(void)
5752 {
5753 	u64 mask;
5754 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
5755 
5756 	/*
5757 	 * Set the reserved bits and the present bit of an paging-structure
5758 	 * entry to generate page fault with PFER.RSV = 1.
5759 	 */
5760 	 /* Mask the reserved physical address bits. */
5761 	mask = rsvd_bits(maxphyaddr, 51);
5762 
5763 	/* Bit 62 is always reserved for 32bit host. */
5764 	mask |= 0x3ull << 62;
5765 
5766 	/* Set the present bit. */
5767 	mask |= 1ull;
5768 
5769 #ifdef CONFIG_X86_64
5770 	/*
5771 	 * If reserved bit is not supported, clear the present bit to disable
5772 	 * mmio page fault.
5773 	 */
5774 	if (maxphyaddr == 52)
5775 		mask &= ~1ull;
5776 #endif
5777 
5778 	kvm_mmu_set_mmio_spte_mask(mask);
5779 }
5780 
5781 #ifdef CONFIG_X86_64
5782 static void pvclock_gtod_update_fn(struct work_struct *work)
5783 {
5784 	struct kvm *kvm;
5785 
5786 	struct kvm_vcpu *vcpu;
5787 	int i;
5788 
5789 	spin_lock(&kvm_lock);
5790 	list_for_each_entry(kvm, &vm_list, vm_list)
5791 		kvm_for_each_vcpu(i, vcpu, kvm)
5792 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5793 	atomic_set(&kvm_guest_has_master_clock, 0);
5794 	spin_unlock(&kvm_lock);
5795 }
5796 
5797 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5798 
5799 /*
5800  * Notification about pvclock gtod data update.
5801  */
5802 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5803 			       void *priv)
5804 {
5805 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5806 	struct timekeeper *tk = priv;
5807 
5808 	update_pvclock_gtod(tk);
5809 
5810 	/* disable master clock if host does not trust, or does not
5811 	 * use, TSC clocksource
5812 	 */
5813 	if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5814 	    atomic_read(&kvm_guest_has_master_clock) != 0)
5815 		queue_work(system_long_wq, &pvclock_gtod_work);
5816 
5817 	return 0;
5818 }
5819 
5820 static struct notifier_block pvclock_gtod_notifier = {
5821 	.notifier_call = pvclock_gtod_notify,
5822 };
5823 #endif
5824 
5825 int kvm_arch_init(void *opaque)
5826 {
5827 	int r;
5828 	struct kvm_x86_ops *ops = opaque;
5829 
5830 	if (kvm_x86_ops) {
5831 		printk(KERN_ERR "kvm: already loaded the other module\n");
5832 		r = -EEXIST;
5833 		goto out;
5834 	}
5835 
5836 	if (!ops->cpu_has_kvm_support()) {
5837 		printk(KERN_ERR "kvm: no hardware support\n");
5838 		r = -EOPNOTSUPP;
5839 		goto out;
5840 	}
5841 	if (ops->disabled_by_bios()) {
5842 		printk(KERN_ERR "kvm: disabled by bios\n");
5843 		r = -EOPNOTSUPP;
5844 		goto out;
5845 	}
5846 
5847 	r = -ENOMEM;
5848 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5849 	if (!shared_msrs) {
5850 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5851 		goto out;
5852 	}
5853 
5854 	r = kvm_mmu_module_init();
5855 	if (r)
5856 		goto out_free_percpu;
5857 
5858 	kvm_set_mmio_spte_mask();
5859 
5860 	kvm_x86_ops = ops;
5861 
5862 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5863 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
5864 
5865 	kvm_timer_init();
5866 
5867 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5868 
5869 	if (cpu_has_xsave)
5870 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5871 
5872 	kvm_lapic_init();
5873 #ifdef CONFIG_X86_64
5874 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5875 #endif
5876 
5877 	return 0;
5878 
5879 out_free_percpu:
5880 	free_percpu(shared_msrs);
5881 out:
5882 	return r;
5883 }
5884 
5885 void kvm_arch_exit(void)
5886 {
5887 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5888 
5889 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5890 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5891 					    CPUFREQ_TRANSITION_NOTIFIER);
5892 	unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5893 #ifdef CONFIG_X86_64
5894 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5895 #endif
5896 	kvm_x86_ops = NULL;
5897 	kvm_mmu_module_exit();
5898 	free_percpu(shared_msrs);
5899 }
5900 
5901 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5902 {
5903 	++vcpu->stat.halt_exits;
5904 	if (lapic_in_kernel(vcpu)) {
5905 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5906 		return 1;
5907 	} else {
5908 		vcpu->run->exit_reason = KVM_EXIT_HLT;
5909 		return 0;
5910 	}
5911 }
5912 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5913 
5914 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5915 {
5916 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5917 	return kvm_vcpu_halt(vcpu);
5918 }
5919 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5920 
5921 /*
5922  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5923  *
5924  * @apicid - apicid of vcpu to be kicked.
5925  */
5926 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5927 {
5928 	struct kvm_lapic_irq lapic_irq;
5929 
5930 	lapic_irq.shorthand = 0;
5931 	lapic_irq.dest_mode = 0;
5932 	lapic_irq.dest_id = apicid;
5933 	lapic_irq.msi_redir_hint = false;
5934 
5935 	lapic_irq.delivery_mode = APIC_DM_REMRD;
5936 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5937 }
5938 
5939 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
5940 {
5941 	vcpu->arch.apicv_active = false;
5942 	kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
5943 }
5944 
5945 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5946 {
5947 	unsigned long nr, a0, a1, a2, a3, ret;
5948 	int op_64_bit, r = 1;
5949 
5950 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5951 
5952 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
5953 		return kvm_hv_hypercall(vcpu);
5954 
5955 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5956 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5957 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5958 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5959 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5960 
5961 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
5962 
5963 	op_64_bit = is_64_bit_mode(vcpu);
5964 	if (!op_64_bit) {
5965 		nr &= 0xFFFFFFFF;
5966 		a0 &= 0xFFFFFFFF;
5967 		a1 &= 0xFFFFFFFF;
5968 		a2 &= 0xFFFFFFFF;
5969 		a3 &= 0xFFFFFFFF;
5970 	}
5971 
5972 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5973 		ret = -KVM_EPERM;
5974 		goto out;
5975 	}
5976 
5977 	switch (nr) {
5978 	case KVM_HC_VAPIC_POLL_IRQ:
5979 		ret = 0;
5980 		break;
5981 	case KVM_HC_KICK_CPU:
5982 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5983 		ret = 0;
5984 		break;
5985 	default:
5986 		ret = -KVM_ENOSYS;
5987 		break;
5988 	}
5989 out:
5990 	if (!op_64_bit)
5991 		ret = (u32)ret;
5992 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5993 	++vcpu->stat.hypercalls;
5994 	return r;
5995 }
5996 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5997 
5998 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5999 {
6000 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6001 	char instruction[3];
6002 	unsigned long rip = kvm_rip_read(vcpu);
6003 
6004 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
6005 
6006 	return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6007 }
6008 
6009 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6010 {
6011 	return vcpu->run->request_interrupt_window &&
6012 		likely(!pic_in_kernel(vcpu->kvm));
6013 }
6014 
6015 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6016 {
6017 	struct kvm_run *kvm_run = vcpu->run;
6018 
6019 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6020 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6021 	kvm_run->cr8 = kvm_get_cr8(vcpu);
6022 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
6023 	kvm_run->ready_for_interrupt_injection =
6024 		pic_in_kernel(vcpu->kvm) ||
6025 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
6026 }
6027 
6028 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6029 {
6030 	int max_irr, tpr;
6031 
6032 	if (!kvm_x86_ops->update_cr8_intercept)
6033 		return;
6034 
6035 	if (!lapic_in_kernel(vcpu))
6036 		return;
6037 
6038 	if (vcpu->arch.apicv_active)
6039 		return;
6040 
6041 	if (!vcpu->arch.apic->vapic_addr)
6042 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6043 	else
6044 		max_irr = -1;
6045 
6046 	if (max_irr != -1)
6047 		max_irr >>= 4;
6048 
6049 	tpr = kvm_lapic_get_cr8(vcpu);
6050 
6051 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6052 }
6053 
6054 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6055 {
6056 	int r;
6057 
6058 	/* try to reinject previous events if any */
6059 	if (vcpu->arch.exception.pending) {
6060 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
6061 					vcpu->arch.exception.has_error_code,
6062 					vcpu->arch.exception.error_code);
6063 
6064 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6065 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6066 					     X86_EFLAGS_RF);
6067 
6068 		if (vcpu->arch.exception.nr == DB_VECTOR &&
6069 		    (vcpu->arch.dr7 & DR7_GD)) {
6070 			vcpu->arch.dr7 &= ~DR7_GD;
6071 			kvm_update_dr7(vcpu);
6072 		}
6073 
6074 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6075 					  vcpu->arch.exception.has_error_code,
6076 					  vcpu->arch.exception.error_code,
6077 					  vcpu->arch.exception.reinject);
6078 		return 0;
6079 	}
6080 
6081 	if (vcpu->arch.nmi_injected) {
6082 		kvm_x86_ops->set_nmi(vcpu);
6083 		return 0;
6084 	}
6085 
6086 	if (vcpu->arch.interrupt.pending) {
6087 		kvm_x86_ops->set_irq(vcpu);
6088 		return 0;
6089 	}
6090 
6091 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6092 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6093 		if (r != 0)
6094 			return r;
6095 	}
6096 
6097 	/* try to inject new event if pending */
6098 	if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6099 		--vcpu->arch.nmi_pending;
6100 		vcpu->arch.nmi_injected = true;
6101 		kvm_x86_ops->set_nmi(vcpu);
6102 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
6103 		/*
6104 		 * Because interrupts can be injected asynchronously, we are
6105 		 * calling check_nested_events again here to avoid a race condition.
6106 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6107 		 * proposal and current concerns.  Perhaps we should be setting
6108 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
6109 		 */
6110 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6111 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6112 			if (r != 0)
6113 				return r;
6114 		}
6115 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6116 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6117 					    false);
6118 			kvm_x86_ops->set_irq(vcpu);
6119 		}
6120 	}
6121 	return 0;
6122 }
6123 
6124 static void process_nmi(struct kvm_vcpu *vcpu)
6125 {
6126 	unsigned limit = 2;
6127 
6128 	/*
6129 	 * x86 is limited to one NMI running, and one NMI pending after it.
6130 	 * If an NMI is already in progress, limit further NMIs to just one.
6131 	 * Otherwise, allow two (and we'll inject the first one immediately).
6132 	 */
6133 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6134 		limit = 1;
6135 
6136 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6137 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6138 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6139 }
6140 
6141 #define put_smstate(type, buf, offset, val)			  \
6142 	*(type *)((buf) + (offset) - 0x7e00) = val
6143 
6144 static u32 process_smi_get_segment_flags(struct kvm_segment *seg)
6145 {
6146 	u32 flags = 0;
6147 	flags |= seg->g       << 23;
6148 	flags |= seg->db      << 22;
6149 	flags |= seg->l       << 21;
6150 	flags |= seg->avl     << 20;
6151 	flags |= seg->present << 15;
6152 	flags |= seg->dpl     << 13;
6153 	flags |= seg->s       << 12;
6154 	flags |= seg->type    << 8;
6155 	return flags;
6156 }
6157 
6158 static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6159 {
6160 	struct kvm_segment seg;
6161 	int offset;
6162 
6163 	kvm_get_segment(vcpu, &seg, n);
6164 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6165 
6166 	if (n < 3)
6167 		offset = 0x7f84 + n * 12;
6168 	else
6169 		offset = 0x7f2c + (n - 3) * 12;
6170 
6171 	put_smstate(u32, buf, offset + 8, seg.base);
6172 	put_smstate(u32, buf, offset + 4, seg.limit);
6173 	put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg));
6174 }
6175 
6176 #ifdef CONFIG_X86_64
6177 static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6178 {
6179 	struct kvm_segment seg;
6180 	int offset;
6181 	u16 flags;
6182 
6183 	kvm_get_segment(vcpu, &seg, n);
6184 	offset = 0x7e00 + n * 16;
6185 
6186 	flags = process_smi_get_segment_flags(&seg) >> 8;
6187 	put_smstate(u16, buf, offset, seg.selector);
6188 	put_smstate(u16, buf, offset + 2, flags);
6189 	put_smstate(u32, buf, offset + 4, seg.limit);
6190 	put_smstate(u64, buf, offset + 8, seg.base);
6191 }
6192 #endif
6193 
6194 static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6195 {
6196 	struct desc_ptr dt;
6197 	struct kvm_segment seg;
6198 	unsigned long val;
6199 	int i;
6200 
6201 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6202 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6203 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6204 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6205 
6206 	for (i = 0; i < 8; i++)
6207 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6208 
6209 	kvm_get_dr(vcpu, 6, &val);
6210 	put_smstate(u32, buf, 0x7fcc, (u32)val);
6211 	kvm_get_dr(vcpu, 7, &val);
6212 	put_smstate(u32, buf, 0x7fc8, (u32)val);
6213 
6214 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6215 	put_smstate(u32, buf, 0x7fc4, seg.selector);
6216 	put_smstate(u32, buf, 0x7f64, seg.base);
6217 	put_smstate(u32, buf, 0x7f60, seg.limit);
6218 	put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg));
6219 
6220 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6221 	put_smstate(u32, buf, 0x7fc0, seg.selector);
6222 	put_smstate(u32, buf, 0x7f80, seg.base);
6223 	put_smstate(u32, buf, 0x7f7c, seg.limit);
6224 	put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg));
6225 
6226 	kvm_x86_ops->get_gdt(vcpu, &dt);
6227 	put_smstate(u32, buf, 0x7f74, dt.address);
6228 	put_smstate(u32, buf, 0x7f70, dt.size);
6229 
6230 	kvm_x86_ops->get_idt(vcpu, &dt);
6231 	put_smstate(u32, buf, 0x7f58, dt.address);
6232 	put_smstate(u32, buf, 0x7f54, dt.size);
6233 
6234 	for (i = 0; i < 6; i++)
6235 		process_smi_save_seg_32(vcpu, buf, i);
6236 
6237 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6238 
6239 	/* revision id */
6240 	put_smstate(u32, buf, 0x7efc, 0x00020000);
6241 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6242 }
6243 
6244 static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6245 {
6246 #ifdef CONFIG_X86_64
6247 	struct desc_ptr dt;
6248 	struct kvm_segment seg;
6249 	unsigned long val;
6250 	int i;
6251 
6252 	for (i = 0; i < 16; i++)
6253 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6254 
6255 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6256 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6257 
6258 	kvm_get_dr(vcpu, 6, &val);
6259 	put_smstate(u64, buf, 0x7f68, val);
6260 	kvm_get_dr(vcpu, 7, &val);
6261 	put_smstate(u64, buf, 0x7f60, val);
6262 
6263 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6264 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6265 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6266 
6267 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6268 
6269 	/* revision id */
6270 	put_smstate(u32, buf, 0x7efc, 0x00020064);
6271 
6272 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6273 
6274 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6275 	put_smstate(u16, buf, 0x7e90, seg.selector);
6276 	put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8);
6277 	put_smstate(u32, buf, 0x7e94, seg.limit);
6278 	put_smstate(u64, buf, 0x7e98, seg.base);
6279 
6280 	kvm_x86_ops->get_idt(vcpu, &dt);
6281 	put_smstate(u32, buf, 0x7e84, dt.size);
6282 	put_smstate(u64, buf, 0x7e88, dt.address);
6283 
6284 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6285 	put_smstate(u16, buf, 0x7e70, seg.selector);
6286 	put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8);
6287 	put_smstate(u32, buf, 0x7e74, seg.limit);
6288 	put_smstate(u64, buf, 0x7e78, seg.base);
6289 
6290 	kvm_x86_ops->get_gdt(vcpu, &dt);
6291 	put_smstate(u32, buf, 0x7e64, dt.size);
6292 	put_smstate(u64, buf, 0x7e68, dt.address);
6293 
6294 	for (i = 0; i < 6; i++)
6295 		process_smi_save_seg_64(vcpu, buf, i);
6296 #else
6297 	WARN_ON_ONCE(1);
6298 #endif
6299 }
6300 
6301 static void process_smi(struct kvm_vcpu *vcpu)
6302 {
6303 	struct kvm_segment cs, ds;
6304 	struct desc_ptr dt;
6305 	char buf[512];
6306 	u32 cr0;
6307 
6308 	if (is_smm(vcpu)) {
6309 		vcpu->arch.smi_pending = true;
6310 		return;
6311 	}
6312 
6313 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6314 	vcpu->arch.hflags |= HF_SMM_MASK;
6315 	memset(buf, 0, 512);
6316 	if (guest_cpuid_has_longmode(vcpu))
6317 		process_smi_save_state_64(vcpu, buf);
6318 	else
6319 		process_smi_save_state_32(vcpu, buf);
6320 
6321 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6322 
6323 	if (kvm_x86_ops->get_nmi_mask(vcpu))
6324 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6325 	else
6326 		kvm_x86_ops->set_nmi_mask(vcpu, true);
6327 
6328 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6329 	kvm_rip_write(vcpu, 0x8000);
6330 
6331 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6332 	kvm_x86_ops->set_cr0(vcpu, cr0);
6333 	vcpu->arch.cr0 = cr0;
6334 
6335 	kvm_x86_ops->set_cr4(vcpu, 0);
6336 
6337 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
6338 	dt.address = dt.size = 0;
6339 	kvm_x86_ops->set_idt(vcpu, &dt);
6340 
6341 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6342 
6343 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6344 	cs.base = vcpu->arch.smbase;
6345 
6346 	ds.selector = 0;
6347 	ds.base = 0;
6348 
6349 	cs.limit    = ds.limit = 0xffffffff;
6350 	cs.type     = ds.type = 0x3;
6351 	cs.dpl      = ds.dpl = 0;
6352 	cs.db       = ds.db = 0;
6353 	cs.s        = ds.s = 1;
6354 	cs.l        = ds.l = 0;
6355 	cs.g        = ds.g = 1;
6356 	cs.avl      = ds.avl = 0;
6357 	cs.present  = ds.present = 1;
6358 	cs.unusable = ds.unusable = 0;
6359 	cs.padding  = ds.padding = 0;
6360 
6361 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6362 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6363 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6364 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6365 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6366 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6367 
6368 	if (guest_cpuid_has_longmode(vcpu))
6369 		kvm_x86_ops->set_efer(vcpu, 0);
6370 
6371 	kvm_update_cpuid(vcpu);
6372 	kvm_mmu_reset_context(vcpu);
6373 }
6374 
6375 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6376 {
6377 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6378 }
6379 
6380 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6381 {
6382 	u64 eoi_exit_bitmap[4];
6383 
6384 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6385 		return;
6386 
6387 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6388 
6389 	if (irqchip_split(vcpu->kvm))
6390 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6391 	else {
6392 		if (vcpu->arch.apicv_active)
6393 			kvm_x86_ops->sync_pir_to_irr(vcpu);
6394 		kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6395 	}
6396 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6397 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
6398 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6399 }
6400 
6401 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6402 {
6403 	++vcpu->stat.tlb_flush;
6404 	kvm_x86_ops->tlb_flush(vcpu);
6405 }
6406 
6407 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6408 {
6409 	struct page *page = NULL;
6410 
6411 	if (!lapic_in_kernel(vcpu))
6412 		return;
6413 
6414 	if (!kvm_x86_ops->set_apic_access_page_addr)
6415 		return;
6416 
6417 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6418 	if (is_error_page(page))
6419 		return;
6420 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6421 
6422 	/*
6423 	 * Do not pin apic access page in memory, the MMU notifier
6424 	 * will call us again if it is migrated or swapped out.
6425 	 */
6426 	put_page(page);
6427 }
6428 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6429 
6430 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6431 					   unsigned long address)
6432 {
6433 	/*
6434 	 * The physical address of apic access page is stored in the VMCS.
6435 	 * Update it when it becomes invalid.
6436 	 */
6437 	if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6438 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6439 }
6440 
6441 /*
6442  * Returns 1 to let vcpu_run() continue the guest execution loop without
6443  * exiting to the userspace.  Otherwise, the value will be returned to the
6444  * userspace.
6445  */
6446 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6447 {
6448 	int r;
6449 	bool req_int_win =
6450 		dm_request_for_irq_injection(vcpu) &&
6451 		kvm_cpu_accept_dm_intr(vcpu);
6452 
6453 	bool req_immediate_exit = false;
6454 
6455 	if (vcpu->requests) {
6456 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6457 			kvm_mmu_unload(vcpu);
6458 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6459 			__kvm_migrate_timers(vcpu);
6460 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6461 			kvm_gen_update_masterclock(vcpu->kvm);
6462 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6463 			kvm_gen_kvmclock_update(vcpu);
6464 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6465 			r = kvm_guest_time_update(vcpu);
6466 			if (unlikely(r))
6467 				goto out;
6468 		}
6469 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6470 			kvm_mmu_sync_roots(vcpu);
6471 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6472 			kvm_vcpu_flush_tlb(vcpu);
6473 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6474 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6475 			r = 0;
6476 			goto out;
6477 		}
6478 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6479 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6480 			r = 0;
6481 			goto out;
6482 		}
6483 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6484 			vcpu->fpu_active = 0;
6485 			kvm_x86_ops->fpu_deactivate(vcpu);
6486 		}
6487 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6488 			/* Page is swapped out. Do synthetic halt */
6489 			vcpu->arch.apf.halted = true;
6490 			r = 1;
6491 			goto out;
6492 		}
6493 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6494 			record_steal_time(vcpu);
6495 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
6496 			process_smi(vcpu);
6497 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
6498 			process_nmi(vcpu);
6499 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
6500 			kvm_pmu_handle_event(vcpu);
6501 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
6502 			kvm_pmu_deliver_pmi(vcpu);
6503 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6504 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6505 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
6506 				     vcpu->arch.ioapic_handled_vectors)) {
6507 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6508 				vcpu->run->eoi.vector =
6509 						vcpu->arch.pending_ioapic_eoi;
6510 				r = 0;
6511 				goto out;
6512 			}
6513 		}
6514 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6515 			vcpu_scan_ioapic(vcpu);
6516 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6517 			kvm_vcpu_reload_apic_access_page(vcpu);
6518 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6519 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6520 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6521 			r = 0;
6522 			goto out;
6523 		}
6524 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6525 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6526 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6527 			r = 0;
6528 			goto out;
6529 		}
6530 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6531 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6532 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6533 			r = 0;
6534 			goto out;
6535 		}
6536 
6537 		/*
6538 		 * KVM_REQ_HV_STIMER has to be processed after
6539 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6540 		 * depend on the guest clock being up-to-date
6541 		 */
6542 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6543 			kvm_hv_process_stimers(vcpu);
6544 	}
6545 
6546 	/*
6547 	 * KVM_REQ_EVENT is not set when posted interrupts are set by
6548 	 * VT-d hardware, so we have to update RVI unconditionally.
6549 	 */
6550 	if (kvm_lapic_enabled(vcpu)) {
6551 		/*
6552 		 * Update architecture specific hints for APIC
6553 		 * virtual interrupt delivery.
6554 		 */
6555 		if (vcpu->arch.apicv_active)
6556 			kvm_x86_ops->hwapic_irr_update(vcpu,
6557 				kvm_lapic_find_highest_irr(vcpu));
6558 	}
6559 
6560 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6561 		kvm_apic_accept_events(vcpu);
6562 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6563 			r = 1;
6564 			goto out;
6565 		}
6566 
6567 		if (inject_pending_event(vcpu, req_int_win) != 0)
6568 			req_immediate_exit = true;
6569 		/* enable NMI/IRQ window open exits if needed */
6570 		else {
6571 			if (vcpu->arch.nmi_pending)
6572 				kvm_x86_ops->enable_nmi_window(vcpu);
6573 			if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6574 				kvm_x86_ops->enable_irq_window(vcpu);
6575 		}
6576 
6577 		if (kvm_lapic_enabled(vcpu)) {
6578 			update_cr8_intercept(vcpu);
6579 			kvm_lapic_sync_to_vapic(vcpu);
6580 		}
6581 	}
6582 
6583 	r = kvm_mmu_reload(vcpu);
6584 	if (unlikely(r)) {
6585 		goto cancel_injection;
6586 	}
6587 
6588 	preempt_disable();
6589 
6590 	kvm_x86_ops->prepare_guest_switch(vcpu);
6591 	if (vcpu->fpu_active)
6592 		kvm_load_guest_fpu(vcpu);
6593 	kvm_load_guest_xcr0(vcpu);
6594 
6595 	vcpu->mode = IN_GUEST_MODE;
6596 
6597 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6598 
6599 	/*
6600 	 * We should set ->mode before check ->requests,
6601 	 * Please see the comment in kvm_make_all_cpus_request.
6602 	 * This also orders the write to mode from any reads
6603 	 * to the page tables done while the VCPU is running.
6604 	 * Please see the comment in kvm_flush_remote_tlbs.
6605 	 */
6606 	smp_mb__after_srcu_read_unlock();
6607 
6608 	local_irq_disable();
6609 
6610 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6611 	    || need_resched() || signal_pending(current)) {
6612 		vcpu->mode = OUTSIDE_GUEST_MODE;
6613 		smp_wmb();
6614 		local_irq_enable();
6615 		preempt_enable();
6616 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6617 		r = 1;
6618 		goto cancel_injection;
6619 	}
6620 
6621 	if (req_immediate_exit)
6622 		smp_send_reschedule(vcpu->cpu);
6623 
6624 	trace_kvm_entry(vcpu->vcpu_id);
6625 	wait_lapic_expire(vcpu);
6626 	__kvm_guest_enter();
6627 
6628 	if (unlikely(vcpu->arch.switch_db_regs)) {
6629 		set_debugreg(0, 7);
6630 		set_debugreg(vcpu->arch.eff_db[0], 0);
6631 		set_debugreg(vcpu->arch.eff_db[1], 1);
6632 		set_debugreg(vcpu->arch.eff_db[2], 2);
6633 		set_debugreg(vcpu->arch.eff_db[3], 3);
6634 		set_debugreg(vcpu->arch.dr6, 6);
6635 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6636 	}
6637 
6638 	kvm_x86_ops->run(vcpu);
6639 
6640 	/*
6641 	 * Do this here before restoring debug registers on the host.  And
6642 	 * since we do this before handling the vmexit, a DR access vmexit
6643 	 * can (a) read the correct value of the debug registers, (b) set
6644 	 * KVM_DEBUGREG_WONT_EXIT again.
6645 	 */
6646 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6647 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6648 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6649 		kvm_update_dr0123(vcpu);
6650 		kvm_update_dr6(vcpu);
6651 		kvm_update_dr7(vcpu);
6652 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6653 	}
6654 
6655 	/*
6656 	 * If the guest has used debug registers, at least dr7
6657 	 * will be disabled while returning to the host.
6658 	 * If we don't have active breakpoints in the host, we don't
6659 	 * care about the messed up debug address registers. But if
6660 	 * we have some of them active, restore the old state.
6661 	 */
6662 	if (hw_breakpoint_active())
6663 		hw_breakpoint_restore();
6664 
6665 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6666 
6667 	vcpu->mode = OUTSIDE_GUEST_MODE;
6668 	smp_wmb();
6669 
6670 	/* Interrupt is enabled by handle_external_intr() */
6671 	kvm_x86_ops->handle_external_intr(vcpu);
6672 
6673 	++vcpu->stat.exits;
6674 
6675 	/*
6676 	 * We must have an instruction between local_irq_enable() and
6677 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6678 	 * the interrupt shadow.  The stat.exits increment will do nicely.
6679 	 * But we need to prevent reordering, hence this barrier():
6680 	 */
6681 	barrier();
6682 
6683 	kvm_guest_exit();
6684 
6685 	preempt_enable();
6686 
6687 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6688 
6689 	/*
6690 	 * Profile KVM exit RIPs:
6691 	 */
6692 	if (unlikely(prof_on == KVM_PROFILING)) {
6693 		unsigned long rip = kvm_rip_read(vcpu);
6694 		profile_hit(KVM_PROFILING, (void *)rip);
6695 	}
6696 
6697 	if (unlikely(vcpu->arch.tsc_always_catchup))
6698 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6699 
6700 	if (vcpu->arch.apic_attention)
6701 		kvm_lapic_sync_from_vapic(vcpu);
6702 
6703 	r = kvm_x86_ops->handle_exit(vcpu);
6704 	return r;
6705 
6706 cancel_injection:
6707 	kvm_x86_ops->cancel_injection(vcpu);
6708 	if (unlikely(vcpu->arch.apic_attention))
6709 		kvm_lapic_sync_from_vapic(vcpu);
6710 out:
6711 	return r;
6712 }
6713 
6714 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6715 {
6716 	if (!kvm_arch_vcpu_runnable(vcpu) &&
6717 	    (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6718 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6719 		kvm_vcpu_block(vcpu);
6720 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6721 
6722 		if (kvm_x86_ops->post_block)
6723 			kvm_x86_ops->post_block(vcpu);
6724 
6725 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6726 			return 1;
6727 	}
6728 
6729 	kvm_apic_accept_events(vcpu);
6730 	switch(vcpu->arch.mp_state) {
6731 	case KVM_MP_STATE_HALTED:
6732 		vcpu->arch.pv.pv_unhalted = false;
6733 		vcpu->arch.mp_state =
6734 			KVM_MP_STATE_RUNNABLE;
6735 	case KVM_MP_STATE_RUNNABLE:
6736 		vcpu->arch.apf.halted = false;
6737 		break;
6738 	case KVM_MP_STATE_INIT_RECEIVED:
6739 		break;
6740 	default:
6741 		return -EINTR;
6742 		break;
6743 	}
6744 	return 1;
6745 }
6746 
6747 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6748 {
6749 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6750 		!vcpu->arch.apf.halted);
6751 }
6752 
6753 static int vcpu_run(struct kvm_vcpu *vcpu)
6754 {
6755 	int r;
6756 	struct kvm *kvm = vcpu->kvm;
6757 
6758 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6759 
6760 	for (;;) {
6761 		if (kvm_vcpu_running(vcpu)) {
6762 			r = vcpu_enter_guest(vcpu);
6763 		} else {
6764 			r = vcpu_block(kvm, vcpu);
6765 		}
6766 
6767 		if (r <= 0)
6768 			break;
6769 
6770 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6771 		if (kvm_cpu_has_pending_timer(vcpu))
6772 			kvm_inject_pending_timer_irqs(vcpu);
6773 
6774 		if (dm_request_for_irq_injection(vcpu) &&
6775 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
6776 			r = 0;
6777 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6778 			++vcpu->stat.request_irq_exits;
6779 			break;
6780 		}
6781 
6782 		kvm_check_async_pf_completion(vcpu);
6783 
6784 		if (signal_pending(current)) {
6785 			r = -EINTR;
6786 			vcpu->run->exit_reason = KVM_EXIT_INTR;
6787 			++vcpu->stat.signal_exits;
6788 			break;
6789 		}
6790 		if (need_resched()) {
6791 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6792 			cond_resched();
6793 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6794 		}
6795 	}
6796 
6797 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6798 
6799 	return r;
6800 }
6801 
6802 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6803 {
6804 	int r;
6805 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6806 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6807 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6808 	if (r != EMULATE_DONE)
6809 		return 0;
6810 	return 1;
6811 }
6812 
6813 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6814 {
6815 	BUG_ON(!vcpu->arch.pio.count);
6816 
6817 	return complete_emulated_io(vcpu);
6818 }
6819 
6820 /*
6821  * Implements the following, as a state machine:
6822  *
6823  * read:
6824  *   for each fragment
6825  *     for each mmio piece in the fragment
6826  *       write gpa, len
6827  *       exit
6828  *       copy data
6829  *   execute insn
6830  *
6831  * write:
6832  *   for each fragment
6833  *     for each mmio piece in the fragment
6834  *       write gpa, len
6835  *       copy data
6836  *       exit
6837  */
6838 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6839 {
6840 	struct kvm_run *run = vcpu->run;
6841 	struct kvm_mmio_fragment *frag;
6842 	unsigned len;
6843 
6844 	BUG_ON(!vcpu->mmio_needed);
6845 
6846 	/* Complete previous fragment */
6847 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6848 	len = min(8u, frag->len);
6849 	if (!vcpu->mmio_is_write)
6850 		memcpy(frag->data, run->mmio.data, len);
6851 
6852 	if (frag->len <= 8) {
6853 		/* Switch to the next fragment. */
6854 		frag++;
6855 		vcpu->mmio_cur_fragment++;
6856 	} else {
6857 		/* Go forward to the next mmio piece. */
6858 		frag->data += len;
6859 		frag->gpa += len;
6860 		frag->len -= len;
6861 	}
6862 
6863 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6864 		vcpu->mmio_needed = 0;
6865 
6866 		/* FIXME: return into emulator if single-stepping.  */
6867 		if (vcpu->mmio_is_write)
6868 			return 1;
6869 		vcpu->mmio_read_completed = 1;
6870 		return complete_emulated_io(vcpu);
6871 	}
6872 
6873 	run->exit_reason = KVM_EXIT_MMIO;
6874 	run->mmio.phys_addr = frag->gpa;
6875 	if (vcpu->mmio_is_write)
6876 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6877 	run->mmio.len = min(8u, frag->len);
6878 	run->mmio.is_write = vcpu->mmio_is_write;
6879 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6880 	return 0;
6881 }
6882 
6883 
6884 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6885 {
6886 	struct fpu *fpu = &current->thread.fpu;
6887 	int r;
6888 	sigset_t sigsaved;
6889 
6890 	fpu__activate_curr(fpu);
6891 
6892 	if (vcpu->sigset_active)
6893 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6894 
6895 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6896 		kvm_vcpu_block(vcpu);
6897 		kvm_apic_accept_events(vcpu);
6898 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6899 		r = -EAGAIN;
6900 		goto out;
6901 	}
6902 
6903 	/* re-sync apic's tpr */
6904 	if (!lapic_in_kernel(vcpu)) {
6905 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6906 			r = -EINVAL;
6907 			goto out;
6908 		}
6909 	}
6910 
6911 	if (unlikely(vcpu->arch.complete_userspace_io)) {
6912 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6913 		vcpu->arch.complete_userspace_io = NULL;
6914 		r = cui(vcpu);
6915 		if (r <= 0)
6916 			goto out;
6917 	} else
6918 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6919 
6920 	r = vcpu_run(vcpu);
6921 
6922 out:
6923 	post_kvm_run_save(vcpu);
6924 	if (vcpu->sigset_active)
6925 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6926 
6927 	return r;
6928 }
6929 
6930 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6931 {
6932 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6933 		/*
6934 		 * We are here if userspace calls get_regs() in the middle of
6935 		 * instruction emulation. Registers state needs to be copied
6936 		 * back from emulation context to vcpu. Userspace shouldn't do
6937 		 * that usually, but some bad designed PV devices (vmware
6938 		 * backdoor interface) need this to work
6939 		 */
6940 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6941 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6942 	}
6943 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6944 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6945 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6946 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6947 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6948 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6949 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6950 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6951 #ifdef CONFIG_X86_64
6952 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6953 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6954 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6955 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6956 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6957 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6958 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6959 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6960 #endif
6961 
6962 	regs->rip = kvm_rip_read(vcpu);
6963 	regs->rflags = kvm_get_rflags(vcpu);
6964 
6965 	return 0;
6966 }
6967 
6968 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6969 {
6970 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6971 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6972 
6973 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6974 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6975 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6976 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6977 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6978 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6979 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6980 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6981 #ifdef CONFIG_X86_64
6982 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6983 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6984 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6985 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6986 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6987 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6988 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6989 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6990 #endif
6991 
6992 	kvm_rip_write(vcpu, regs->rip);
6993 	kvm_set_rflags(vcpu, regs->rflags);
6994 
6995 	vcpu->arch.exception.pending = false;
6996 
6997 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6998 
6999 	return 0;
7000 }
7001 
7002 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7003 {
7004 	struct kvm_segment cs;
7005 
7006 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7007 	*db = cs.db;
7008 	*l = cs.l;
7009 }
7010 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7011 
7012 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7013 				  struct kvm_sregs *sregs)
7014 {
7015 	struct desc_ptr dt;
7016 
7017 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7018 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7019 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7020 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7021 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7022 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7023 
7024 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7025 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7026 
7027 	kvm_x86_ops->get_idt(vcpu, &dt);
7028 	sregs->idt.limit = dt.size;
7029 	sregs->idt.base = dt.address;
7030 	kvm_x86_ops->get_gdt(vcpu, &dt);
7031 	sregs->gdt.limit = dt.size;
7032 	sregs->gdt.base = dt.address;
7033 
7034 	sregs->cr0 = kvm_read_cr0(vcpu);
7035 	sregs->cr2 = vcpu->arch.cr2;
7036 	sregs->cr3 = kvm_read_cr3(vcpu);
7037 	sregs->cr4 = kvm_read_cr4(vcpu);
7038 	sregs->cr8 = kvm_get_cr8(vcpu);
7039 	sregs->efer = vcpu->arch.efer;
7040 	sregs->apic_base = kvm_get_apic_base(vcpu);
7041 
7042 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7043 
7044 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7045 		set_bit(vcpu->arch.interrupt.nr,
7046 			(unsigned long *)sregs->interrupt_bitmap);
7047 
7048 	return 0;
7049 }
7050 
7051 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7052 				    struct kvm_mp_state *mp_state)
7053 {
7054 	kvm_apic_accept_events(vcpu);
7055 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7056 					vcpu->arch.pv.pv_unhalted)
7057 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7058 	else
7059 		mp_state->mp_state = vcpu->arch.mp_state;
7060 
7061 	return 0;
7062 }
7063 
7064 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7065 				    struct kvm_mp_state *mp_state)
7066 {
7067 	if (!lapic_in_kernel(vcpu) &&
7068 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7069 		return -EINVAL;
7070 
7071 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7072 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7073 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7074 	} else
7075 		vcpu->arch.mp_state = mp_state->mp_state;
7076 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7077 	return 0;
7078 }
7079 
7080 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7081 		    int reason, bool has_error_code, u32 error_code)
7082 {
7083 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7084 	int ret;
7085 
7086 	init_emulate_ctxt(vcpu);
7087 
7088 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7089 				   has_error_code, error_code);
7090 
7091 	if (ret)
7092 		return EMULATE_FAIL;
7093 
7094 	kvm_rip_write(vcpu, ctxt->eip);
7095 	kvm_set_rflags(vcpu, ctxt->eflags);
7096 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7097 	return EMULATE_DONE;
7098 }
7099 EXPORT_SYMBOL_GPL(kvm_task_switch);
7100 
7101 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7102 				  struct kvm_sregs *sregs)
7103 {
7104 	struct msr_data apic_base_msr;
7105 	int mmu_reset_needed = 0;
7106 	int pending_vec, max_bits, idx;
7107 	struct desc_ptr dt;
7108 
7109 	if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7110 		return -EINVAL;
7111 
7112 	dt.size = sregs->idt.limit;
7113 	dt.address = sregs->idt.base;
7114 	kvm_x86_ops->set_idt(vcpu, &dt);
7115 	dt.size = sregs->gdt.limit;
7116 	dt.address = sregs->gdt.base;
7117 	kvm_x86_ops->set_gdt(vcpu, &dt);
7118 
7119 	vcpu->arch.cr2 = sregs->cr2;
7120 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7121 	vcpu->arch.cr3 = sregs->cr3;
7122 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7123 
7124 	kvm_set_cr8(vcpu, sregs->cr8);
7125 
7126 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7127 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
7128 	apic_base_msr.data = sregs->apic_base;
7129 	apic_base_msr.host_initiated = true;
7130 	kvm_set_apic_base(vcpu, &apic_base_msr);
7131 
7132 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7133 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7134 	vcpu->arch.cr0 = sregs->cr0;
7135 
7136 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7137 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7138 	if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7139 		kvm_update_cpuid(vcpu);
7140 
7141 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7142 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7143 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7144 		mmu_reset_needed = 1;
7145 	}
7146 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7147 
7148 	if (mmu_reset_needed)
7149 		kvm_mmu_reset_context(vcpu);
7150 
7151 	max_bits = KVM_NR_INTERRUPTS;
7152 	pending_vec = find_first_bit(
7153 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
7154 	if (pending_vec < max_bits) {
7155 		kvm_queue_interrupt(vcpu, pending_vec, false);
7156 		pr_debug("Set back pending irq %d\n", pending_vec);
7157 	}
7158 
7159 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7160 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7161 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7162 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7163 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7164 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7165 
7166 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7167 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7168 
7169 	update_cr8_intercept(vcpu);
7170 
7171 	/* Older userspace won't unhalt the vcpu on reset. */
7172 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7173 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7174 	    !is_protmode(vcpu))
7175 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7176 
7177 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7178 
7179 	return 0;
7180 }
7181 
7182 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7183 					struct kvm_guest_debug *dbg)
7184 {
7185 	unsigned long rflags;
7186 	int i, r;
7187 
7188 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7189 		r = -EBUSY;
7190 		if (vcpu->arch.exception.pending)
7191 			goto out;
7192 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7193 			kvm_queue_exception(vcpu, DB_VECTOR);
7194 		else
7195 			kvm_queue_exception(vcpu, BP_VECTOR);
7196 	}
7197 
7198 	/*
7199 	 * Read rflags as long as potentially injected trace flags are still
7200 	 * filtered out.
7201 	 */
7202 	rflags = kvm_get_rflags(vcpu);
7203 
7204 	vcpu->guest_debug = dbg->control;
7205 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7206 		vcpu->guest_debug = 0;
7207 
7208 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7209 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
7210 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7211 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7212 	} else {
7213 		for (i = 0; i < KVM_NR_DB_REGS; i++)
7214 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7215 	}
7216 	kvm_update_dr7(vcpu);
7217 
7218 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7219 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7220 			get_segment_base(vcpu, VCPU_SREG_CS);
7221 
7222 	/*
7223 	 * Trigger an rflags update that will inject or remove the trace
7224 	 * flags.
7225 	 */
7226 	kvm_set_rflags(vcpu, rflags);
7227 
7228 	kvm_x86_ops->update_bp_intercept(vcpu);
7229 
7230 	r = 0;
7231 
7232 out:
7233 
7234 	return r;
7235 }
7236 
7237 /*
7238  * Translate a guest virtual address to a guest physical address.
7239  */
7240 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7241 				    struct kvm_translation *tr)
7242 {
7243 	unsigned long vaddr = tr->linear_address;
7244 	gpa_t gpa;
7245 	int idx;
7246 
7247 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7248 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7249 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7250 	tr->physical_address = gpa;
7251 	tr->valid = gpa != UNMAPPED_GVA;
7252 	tr->writeable = 1;
7253 	tr->usermode = 0;
7254 
7255 	return 0;
7256 }
7257 
7258 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7259 {
7260 	struct fxregs_state *fxsave =
7261 			&vcpu->arch.guest_fpu.state.fxsave;
7262 
7263 	memcpy(fpu->fpr, fxsave->st_space, 128);
7264 	fpu->fcw = fxsave->cwd;
7265 	fpu->fsw = fxsave->swd;
7266 	fpu->ftwx = fxsave->twd;
7267 	fpu->last_opcode = fxsave->fop;
7268 	fpu->last_ip = fxsave->rip;
7269 	fpu->last_dp = fxsave->rdp;
7270 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7271 
7272 	return 0;
7273 }
7274 
7275 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7276 {
7277 	struct fxregs_state *fxsave =
7278 			&vcpu->arch.guest_fpu.state.fxsave;
7279 
7280 	memcpy(fxsave->st_space, fpu->fpr, 128);
7281 	fxsave->cwd = fpu->fcw;
7282 	fxsave->swd = fpu->fsw;
7283 	fxsave->twd = fpu->ftwx;
7284 	fxsave->fop = fpu->last_opcode;
7285 	fxsave->rip = fpu->last_ip;
7286 	fxsave->rdp = fpu->last_dp;
7287 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7288 
7289 	return 0;
7290 }
7291 
7292 static void fx_init(struct kvm_vcpu *vcpu)
7293 {
7294 	fpstate_init(&vcpu->arch.guest_fpu.state);
7295 	if (cpu_has_xsaves)
7296 		vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7297 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
7298 
7299 	/*
7300 	 * Ensure guest xcr0 is valid for loading
7301 	 */
7302 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7303 
7304 	vcpu->arch.cr0 |= X86_CR0_ET;
7305 }
7306 
7307 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7308 {
7309 	if (vcpu->guest_fpu_loaded)
7310 		return;
7311 
7312 	/*
7313 	 * Restore all possible states in the guest,
7314 	 * and assume host would use all available bits.
7315 	 * Guest xcr0 would be loaded later.
7316 	 */
7317 	kvm_put_guest_xcr0(vcpu);
7318 	vcpu->guest_fpu_loaded = 1;
7319 	__kernel_fpu_begin();
7320 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7321 	trace_kvm_fpu(1);
7322 }
7323 
7324 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7325 {
7326 	kvm_put_guest_xcr0(vcpu);
7327 
7328 	if (!vcpu->guest_fpu_loaded) {
7329 		vcpu->fpu_counter = 0;
7330 		return;
7331 	}
7332 
7333 	vcpu->guest_fpu_loaded = 0;
7334 	copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7335 	__kernel_fpu_end();
7336 	++vcpu->stat.fpu_reload;
7337 	/*
7338 	 * If using eager FPU mode, or if the guest is a frequent user
7339 	 * of the FPU, just leave the FPU active for next time.
7340 	 * Every 255 times fpu_counter rolls over to 0; a guest that uses
7341 	 * the FPU in bursts will revert to loading it on demand.
7342 	 */
7343 	if (!use_eager_fpu()) {
7344 		if (++vcpu->fpu_counter < 5)
7345 			kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7346 	}
7347 	trace_kvm_fpu(0);
7348 }
7349 
7350 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7351 {
7352 	kvmclock_reset(vcpu);
7353 
7354 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7355 	kvm_x86_ops->vcpu_free(vcpu);
7356 }
7357 
7358 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7359 						unsigned int id)
7360 {
7361 	struct kvm_vcpu *vcpu;
7362 
7363 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7364 		printk_once(KERN_WARNING
7365 		"kvm: SMP vm created on host with unstable TSC; "
7366 		"guest TSC will not be reliable\n");
7367 
7368 	vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7369 
7370 	return vcpu;
7371 }
7372 
7373 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7374 {
7375 	int r;
7376 
7377 	kvm_vcpu_mtrr_init(vcpu);
7378 	r = vcpu_load(vcpu);
7379 	if (r)
7380 		return r;
7381 	kvm_vcpu_reset(vcpu, false);
7382 	kvm_mmu_setup(vcpu);
7383 	vcpu_put(vcpu);
7384 	return r;
7385 }
7386 
7387 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7388 {
7389 	struct msr_data msr;
7390 	struct kvm *kvm = vcpu->kvm;
7391 
7392 	if (vcpu_load(vcpu))
7393 		return;
7394 	msr.data = 0x0;
7395 	msr.index = MSR_IA32_TSC;
7396 	msr.host_initiated = true;
7397 	kvm_write_tsc(vcpu, &msr);
7398 	vcpu_put(vcpu);
7399 
7400 	if (!kvmclock_periodic_sync)
7401 		return;
7402 
7403 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7404 					KVMCLOCK_SYNC_PERIOD);
7405 }
7406 
7407 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7408 {
7409 	int r;
7410 	vcpu->arch.apf.msr_val = 0;
7411 
7412 	r = vcpu_load(vcpu);
7413 	BUG_ON(r);
7414 	kvm_mmu_unload(vcpu);
7415 	vcpu_put(vcpu);
7416 
7417 	kvm_x86_ops->vcpu_free(vcpu);
7418 }
7419 
7420 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7421 {
7422 	vcpu->arch.hflags = 0;
7423 
7424 	atomic_set(&vcpu->arch.nmi_queued, 0);
7425 	vcpu->arch.nmi_pending = 0;
7426 	vcpu->arch.nmi_injected = false;
7427 	kvm_clear_interrupt_queue(vcpu);
7428 	kvm_clear_exception_queue(vcpu);
7429 
7430 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7431 	kvm_update_dr0123(vcpu);
7432 	vcpu->arch.dr6 = DR6_INIT;
7433 	kvm_update_dr6(vcpu);
7434 	vcpu->arch.dr7 = DR7_FIXED_1;
7435 	kvm_update_dr7(vcpu);
7436 
7437 	vcpu->arch.cr2 = 0;
7438 
7439 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7440 	vcpu->arch.apf.msr_val = 0;
7441 	vcpu->arch.st.msr_val = 0;
7442 
7443 	kvmclock_reset(vcpu);
7444 
7445 	kvm_clear_async_pf_completion_queue(vcpu);
7446 	kvm_async_pf_hash_reset(vcpu);
7447 	vcpu->arch.apf.halted = false;
7448 
7449 	if (!init_event) {
7450 		kvm_pmu_reset(vcpu);
7451 		vcpu->arch.smbase = 0x30000;
7452 	}
7453 
7454 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7455 	vcpu->arch.regs_avail = ~0;
7456 	vcpu->arch.regs_dirty = ~0;
7457 
7458 	kvm_x86_ops->vcpu_reset(vcpu, init_event);
7459 }
7460 
7461 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7462 {
7463 	struct kvm_segment cs;
7464 
7465 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7466 	cs.selector = vector << 8;
7467 	cs.base = vector << 12;
7468 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7469 	kvm_rip_write(vcpu, 0);
7470 }
7471 
7472 int kvm_arch_hardware_enable(void)
7473 {
7474 	struct kvm *kvm;
7475 	struct kvm_vcpu *vcpu;
7476 	int i;
7477 	int ret;
7478 	u64 local_tsc;
7479 	u64 max_tsc = 0;
7480 	bool stable, backwards_tsc = false;
7481 
7482 	kvm_shared_msr_cpu_online();
7483 	ret = kvm_x86_ops->hardware_enable();
7484 	if (ret != 0)
7485 		return ret;
7486 
7487 	local_tsc = rdtsc();
7488 	stable = !check_tsc_unstable();
7489 	list_for_each_entry(kvm, &vm_list, vm_list) {
7490 		kvm_for_each_vcpu(i, vcpu, kvm) {
7491 			if (!stable && vcpu->cpu == smp_processor_id())
7492 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7493 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7494 				backwards_tsc = true;
7495 				if (vcpu->arch.last_host_tsc > max_tsc)
7496 					max_tsc = vcpu->arch.last_host_tsc;
7497 			}
7498 		}
7499 	}
7500 
7501 	/*
7502 	 * Sometimes, even reliable TSCs go backwards.  This happens on
7503 	 * platforms that reset TSC during suspend or hibernate actions, but
7504 	 * maintain synchronization.  We must compensate.  Fortunately, we can
7505 	 * detect that condition here, which happens early in CPU bringup,
7506 	 * before any KVM threads can be running.  Unfortunately, we can't
7507 	 * bring the TSCs fully up to date with real time, as we aren't yet far
7508 	 * enough into CPU bringup that we know how much real time has actually
7509 	 * elapsed; our helper function, get_kernel_ns() will be using boot
7510 	 * variables that haven't been updated yet.
7511 	 *
7512 	 * So we simply find the maximum observed TSC above, then record the
7513 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7514 	 * the adjustment will be applied.  Note that we accumulate
7515 	 * adjustments, in case multiple suspend cycles happen before some VCPU
7516 	 * gets a chance to run again.  In the event that no KVM threads get a
7517 	 * chance to run, we will miss the entire elapsed period, as we'll have
7518 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7519 	 * loose cycle time.  This isn't too big a deal, since the loss will be
7520 	 * uniform across all VCPUs (not to mention the scenario is extremely
7521 	 * unlikely). It is possible that a second hibernate recovery happens
7522 	 * much faster than a first, causing the observed TSC here to be
7523 	 * smaller; this would require additional padding adjustment, which is
7524 	 * why we set last_host_tsc to the local tsc observed here.
7525 	 *
7526 	 * N.B. - this code below runs only on platforms with reliable TSC,
7527 	 * as that is the only way backwards_tsc is set above.  Also note
7528 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7529 	 * have the same delta_cyc adjustment applied if backwards_tsc
7530 	 * is detected.  Note further, this adjustment is only done once,
7531 	 * as we reset last_host_tsc on all VCPUs to stop this from being
7532 	 * called multiple times (one for each physical CPU bringup).
7533 	 *
7534 	 * Platforms with unreliable TSCs don't have to deal with this, they
7535 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
7536 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
7537 	 * guarantee that they stay in perfect synchronization.
7538 	 */
7539 	if (backwards_tsc) {
7540 		u64 delta_cyc = max_tsc - local_tsc;
7541 		backwards_tsc_observed = true;
7542 		list_for_each_entry(kvm, &vm_list, vm_list) {
7543 			kvm_for_each_vcpu(i, vcpu, kvm) {
7544 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
7545 				vcpu->arch.last_host_tsc = local_tsc;
7546 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7547 			}
7548 
7549 			/*
7550 			 * We have to disable TSC offset matching.. if you were
7551 			 * booting a VM while issuing an S4 host suspend....
7552 			 * you may have some problem.  Solving this issue is
7553 			 * left as an exercise to the reader.
7554 			 */
7555 			kvm->arch.last_tsc_nsec = 0;
7556 			kvm->arch.last_tsc_write = 0;
7557 		}
7558 
7559 	}
7560 	return 0;
7561 }
7562 
7563 void kvm_arch_hardware_disable(void)
7564 {
7565 	kvm_x86_ops->hardware_disable();
7566 	drop_user_return_notifiers();
7567 }
7568 
7569 int kvm_arch_hardware_setup(void)
7570 {
7571 	int r;
7572 
7573 	r = kvm_x86_ops->hardware_setup();
7574 	if (r != 0)
7575 		return r;
7576 
7577 	if (kvm_has_tsc_control) {
7578 		/*
7579 		 * Make sure the user can only configure tsc_khz values that
7580 		 * fit into a signed integer.
7581 		 * A min value is not calculated needed because it will always
7582 		 * be 1 on all machines.
7583 		 */
7584 		u64 max = min(0x7fffffffULL,
7585 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7586 		kvm_max_guest_tsc_khz = max;
7587 
7588 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7589 	}
7590 
7591 	kvm_init_msr_list();
7592 	return 0;
7593 }
7594 
7595 void kvm_arch_hardware_unsetup(void)
7596 {
7597 	kvm_x86_ops->hardware_unsetup();
7598 }
7599 
7600 void kvm_arch_check_processor_compat(void *rtn)
7601 {
7602 	kvm_x86_ops->check_processor_compatibility(rtn);
7603 }
7604 
7605 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7606 {
7607 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7608 }
7609 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7610 
7611 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7612 {
7613 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7614 }
7615 
7616 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7617 {
7618 	return irqchip_in_kernel(vcpu->kvm) == lapic_in_kernel(vcpu);
7619 }
7620 
7621 struct static_key kvm_no_apic_vcpu __read_mostly;
7622 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7623 
7624 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7625 {
7626 	struct page *page;
7627 	struct kvm *kvm;
7628 	int r;
7629 
7630 	BUG_ON(vcpu->kvm == NULL);
7631 	kvm = vcpu->kvm;
7632 
7633 	vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7634 	vcpu->arch.pv.pv_unhalted = false;
7635 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7636 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7637 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7638 	else
7639 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7640 
7641 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7642 	if (!page) {
7643 		r = -ENOMEM;
7644 		goto fail;
7645 	}
7646 	vcpu->arch.pio_data = page_address(page);
7647 
7648 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
7649 
7650 	r = kvm_mmu_create(vcpu);
7651 	if (r < 0)
7652 		goto fail_free_pio_data;
7653 
7654 	if (irqchip_in_kernel(kvm)) {
7655 		r = kvm_create_lapic(vcpu);
7656 		if (r < 0)
7657 			goto fail_mmu_destroy;
7658 	} else
7659 		static_key_slow_inc(&kvm_no_apic_vcpu);
7660 
7661 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7662 				       GFP_KERNEL);
7663 	if (!vcpu->arch.mce_banks) {
7664 		r = -ENOMEM;
7665 		goto fail_free_lapic;
7666 	}
7667 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7668 
7669 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7670 		r = -ENOMEM;
7671 		goto fail_free_mce_banks;
7672 	}
7673 
7674 	fx_init(vcpu);
7675 
7676 	vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7677 	vcpu->arch.pv_time_enabled = false;
7678 
7679 	vcpu->arch.guest_supported_xcr0 = 0;
7680 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7681 
7682 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7683 
7684 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7685 
7686 	kvm_async_pf_hash_reset(vcpu);
7687 	kvm_pmu_init(vcpu);
7688 
7689 	vcpu->arch.pending_external_vector = -1;
7690 
7691 	kvm_hv_vcpu_init(vcpu);
7692 
7693 	return 0;
7694 
7695 fail_free_mce_banks:
7696 	kfree(vcpu->arch.mce_banks);
7697 fail_free_lapic:
7698 	kvm_free_lapic(vcpu);
7699 fail_mmu_destroy:
7700 	kvm_mmu_destroy(vcpu);
7701 fail_free_pio_data:
7702 	free_page((unsigned long)vcpu->arch.pio_data);
7703 fail:
7704 	return r;
7705 }
7706 
7707 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7708 {
7709 	int idx;
7710 
7711 	kvm_hv_vcpu_uninit(vcpu);
7712 	kvm_pmu_destroy(vcpu);
7713 	kfree(vcpu->arch.mce_banks);
7714 	kvm_free_lapic(vcpu);
7715 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7716 	kvm_mmu_destroy(vcpu);
7717 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7718 	free_page((unsigned long)vcpu->arch.pio_data);
7719 	if (!lapic_in_kernel(vcpu))
7720 		static_key_slow_dec(&kvm_no_apic_vcpu);
7721 }
7722 
7723 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7724 {
7725 	kvm_x86_ops->sched_in(vcpu, cpu);
7726 }
7727 
7728 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7729 {
7730 	if (type)
7731 		return -EINVAL;
7732 
7733 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7734 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7735 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7736 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7737 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7738 
7739 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7740 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7741 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7742 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7743 		&kvm->arch.irq_sources_bitmap);
7744 
7745 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7746 	mutex_init(&kvm->arch.apic_map_lock);
7747 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7748 
7749 	pvclock_update_vm_gtod_copy(kvm);
7750 
7751 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7752 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7753 
7754 	kvm_page_track_init(kvm);
7755 	kvm_mmu_init_vm(kvm);
7756 
7757 	return 0;
7758 }
7759 
7760 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7761 {
7762 	int r;
7763 	r = vcpu_load(vcpu);
7764 	BUG_ON(r);
7765 	kvm_mmu_unload(vcpu);
7766 	vcpu_put(vcpu);
7767 }
7768 
7769 static void kvm_free_vcpus(struct kvm *kvm)
7770 {
7771 	unsigned int i;
7772 	struct kvm_vcpu *vcpu;
7773 
7774 	/*
7775 	 * Unpin any mmu pages first.
7776 	 */
7777 	kvm_for_each_vcpu(i, vcpu, kvm) {
7778 		kvm_clear_async_pf_completion_queue(vcpu);
7779 		kvm_unload_vcpu_mmu(vcpu);
7780 	}
7781 	kvm_for_each_vcpu(i, vcpu, kvm)
7782 		kvm_arch_vcpu_free(vcpu);
7783 
7784 	mutex_lock(&kvm->lock);
7785 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7786 		kvm->vcpus[i] = NULL;
7787 
7788 	atomic_set(&kvm->online_vcpus, 0);
7789 	mutex_unlock(&kvm->lock);
7790 }
7791 
7792 void kvm_arch_sync_events(struct kvm *kvm)
7793 {
7794 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7795 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7796 	kvm_free_all_assigned_devices(kvm);
7797 	kvm_free_pit(kvm);
7798 }
7799 
7800 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7801 {
7802 	int i, r;
7803 	unsigned long hva;
7804 	struct kvm_memslots *slots = kvm_memslots(kvm);
7805 	struct kvm_memory_slot *slot, old;
7806 
7807 	/* Called with kvm->slots_lock held.  */
7808 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7809 		return -EINVAL;
7810 
7811 	slot = id_to_memslot(slots, id);
7812 	if (size) {
7813 		if (WARN_ON(slot->npages))
7814 			return -EEXIST;
7815 
7816 		/*
7817 		 * MAP_SHARED to prevent internal slot pages from being moved
7818 		 * by fork()/COW.
7819 		 */
7820 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7821 			      MAP_SHARED | MAP_ANONYMOUS, 0);
7822 		if (IS_ERR((void *)hva))
7823 			return PTR_ERR((void *)hva);
7824 	} else {
7825 		if (!slot->npages)
7826 			return 0;
7827 
7828 		hva = 0;
7829 	}
7830 
7831 	old = *slot;
7832 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7833 		struct kvm_userspace_memory_region m;
7834 
7835 		m.slot = id | (i << 16);
7836 		m.flags = 0;
7837 		m.guest_phys_addr = gpa;
7838 		m.userspace_addr = hva;
7839 		m.memory_size = size;
7840 		r = __kvm_set_memory_region(kvm, &m);
7841 		if (r < 0)
7842 			return r;
7843 	}
7844 
7845 	if (!size) {
7846 		r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
7847 		WARN_ON(r < 0);
7848 	}
7849 
7850 	return 0;
7851 }
7852 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7853 
7854 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7855 {
7856 	int r;
7857 
7858 	mutex_lock(&kvm->slots_lock);
7859 	r = __x86_set_memory_region(kvm, id, gpa, size);
7860 	mutex_unlock(&kvm->slots_lock);
7861 
7862 	return r;
7863 }
7864 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7865 
7866 void kvm_arch_destroy_vm(struct kvm *kvm)
7867 {
7868 	if (current->mm == kvm->mm) {
7869 		/*
7870 		 * Free memory regions allocated on behalf of userspace,
7871 		 * unless the the memory map has changed due to process exit
7872 		 * or fd copying.
7873 		 */
7874 		x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
7875 		x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
7876 		x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
7877 	}
7878 	kvm_iommu_unmap_guest(kvm);
7879 	kfree(kvm->arch.vpic);
7880 	kfree(kvm->arch.vioapic);
7881 	kvm_free_vcpus(kvm);
7882 	kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7883 	kvm_mmu_uninit_vm(kvm);
7884 }
7885 
7886 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7887 			   struct kvm_memory_slot *dont)
7888 {
7889 	int i;
7890 
7891 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7892 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7893 			kvfree(free->arch.rmap[i]);
7894 			free->arch.rmap[i] = NULL;
7895 		}
7896 		if (i == 0)
7897 			continue;
7898 
7899 		if (!dont || free->arch.lpage_info[i - 1] !=
7900 			     dont->arch.lpage_info[i - 1]) {
7901 			kvfree(free->arch.lpage_info[i - 1]);
7902 			free->arch.lpage_info[i - 1] = NULL;
7903 		}
7904 	}
7905 
7906 	kvm_page_track_free_memslot(free, dont);
7907 }
7908 
7909 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7910 			    unsigned long npages)
7911 {
7912 	int i;
7913 
7914 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7915 		struct kvm_lpage_info *linfo;
7916 		unsigned long ugfn;
7917 		int lpages;
7918 		int level = i + 1;
7919 
7920 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
7921 				      slot->base_gfn, level) + 1;
7922 
7923 		slot->arch.rmap[i] =
7924 			kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7925 		if (!slot->arch.rmap[i])
7926 			goto out_free;
7927 		if (i == 0)
7928 			continue;
7929 
7930 		linfo = kvm_kvzalloc(lpages * sizeof(*linfo));
7931 		if (!linfo)
7932 			goto out_free;
7933 
7934 		slot->arch.lpage_info[i - 1] = linfo;
7935 
7936 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7937 			linfo[0].disallow_lpage = 1;
7938 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7939 			linfo[lpages - 1].disallow_lpage = 1;
7940 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
7941 		/*
7942 		 * If the gfn and userspace address are not aligned wrt each
7943 		 * other, or if explicitly asked to, disable large page
7944 		 * support for this slot
7945 		 */
7946 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7947 		    !kvm_largepages_enabled()) {
7948 			unsigned long j;
7949 
7950 			for (j = 0; j < lpages; ++j)
7951 				linfo[j].disallow_lpage = 1;
7952 		}
7953 	}
7954 
7955 	if (kvm_page_track_create_memslot(slot, npages))
7956 		goto out_free;
7957 
7958 	return 0;
7959 
7960 out_free:
7961 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7962 		kvfree(slot->arch.rmap[i]);
7963 		slot->arch.rmap[i] = NULL;
7964 		if (i == 0)
7965 			continue;
7966 
7967 		kvfree(slot->arch.lpage_info[i - 1]);
7968 		slot->arch.lpage_info[i - 1] = NULL;
7969 	}
7970 	return -ENOMEM;
7971 }
7972 
7973 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
7974 {
7975 	/*
7976 	 * memslots->generation has been incremented.
7977 	 * mmio generation may have reached its maximum value.
7978 	 */
7979 	kvm_mmu_invalidate_mmio_sptes(kvm, slots);
7980 }
7981 
7982 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7983 				struct kvm_memory_slot *memslot,
7984 				const struct kvm_userspace_memory_region *mem,
7985 				enum kvm_mr_change change)
7986 {
7987 	return 0;
7988 }
7989 
7990 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7991 				     struct kvm_memory_slot *new)
7992 {
7993 	/* Still write protect RO slot */
7994 	if (new->flags & KVM_MEM_READONLY) {
7995 		kvm_mmu_slot_remove_write_access(kvm, new);
7996 		return;
7997 	}
7998 
7999 	/*
8000 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
8001 	 *
8002 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
8003 	 *
8004 	 *  - KVM_MR_CREATE with dirty logging is disabled
8005 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8006 	 *
8007 	 * The reason is, in case of PML, we need to set D-bit for any slots
8008 	 * with dirty logging disabled in order to eliminate unnecessary GPA
8009 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
8010 	 * guarantees leaving PML enabled during guest's lifetime won't have
8011 	 * any additonal overhead from PML when guest is running with dirty
8012 	 * logging disabled for memory slots.
8013 	 *
8014 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8015 	 * to dirty logging mode.
8016 	 *
8017 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8018 	 *
8019 	 * In case of write protect:
8020 	 *
8021 	 * Write protect all pages for dirty logging.
8022 	 *
8023 	 * All the sptes including the large sptes which point to this
8024 	 * slot are set to readonly. We can not create any new large
8025 	 * spte on this slot until the end of the logging.
8026 	 *
8027 	 * See the comments in fast_page_fault().
8028 	 */
8029 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8030 		if (kvm_x86_ops->slot_enable_log_dirty)
8031 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8032 		else
8033 			kvm_mmu_slot_remove_write_access(kvm, new);
8034 	} else {
8035 		if (kvm_x86_ops->slot_disable_log_dirty)
8036 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8037 	}
8038 }
8039 
8040 void kvm_arch_commit_memory_region(struct kvm *kvm,
8041 				const struct kvm_userspace_memory_region *mem,
8042 				const struct kvm_memory_slot *old,
8043 				const struct kvm_memory_slot *new,
8044 				enum kvm_mr_change change)
8045 {
8046 	int nr_mmu_pages = 0;
8047 
8048 	if (!kvm->arch.n_requested_mmu_pages)
8049 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8050 
8051 	if (nr_mmu_pages)
8052 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8053 
8054 	/*
8055 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
8056 	 * sptes have to be split.  If live migration is successful, the guest
8057 	 * in the source machine will be destroyed and large sptes will be
8058 	 * created in the destination. However, if the guest continues to run
8059 	 * in the source machine (for example if live migration fails), small
8060 	 * sptes will remain around and cause bad performance.
8061 	 *
8062 	 * Scan sptes if dirty logging has been stopped, dropping those
8063 	 * which can be collapsed into a single large-page spte.  Later
8064 	 * page faults will create the large-page sptes.
8065 	 */
8066 	if ((change != KVM_MR_DELETE) &&
8067 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8068 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8069 		kvm_mmu_zap_collapsible_sptes(kvm, new);
8070 
8071 	/*
8072 	 * Set up write protection and/or dirty logging for the new slot.
8073 	 *
8074 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8075 	 * been zapped so no dirty logging staff is needed for old slot. For
8076 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8077 	 * new and it's also covered when dealing with the new slot.
8078 	 *
8079 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
8080 	 */
8081 	if (change != KVM_MR_DELETE)
8082 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8083 }
8084 
8085 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8086 {
8087 	kvm_mmu_invalidate_zap_all_pages(kvm);
8088 }
8089 
8090 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8091 				   struct kvm_memory_slot *slot)
8092 {
8093 	kvm_mmu_invalidate_zap_all_pages(kvm);
8094 }
8095 
8096 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8097 {
8098 	if (!list_empty_careful(&vcpu->async_pf.done))
8099 		return true;
8100 
8101 	if (kvm_apic_has_events(vcpu))
8102 		return true;
8103 
8104 	if (vcpu->arch.pv.pv_unhalted)
8105 		return true;
8106 
8107 	if (atomic_read(&vcpu->arch.nmi_queued))
8108 		return true;
8109 
8110 	if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8111 		return true;
8112 
8113 	if (kvm_arch_interrupt_allowed(vcpu) &&
8114 	    kvm_cpu_has_interrupt(vcpu))
8115 		return true;
8116 
8117 	if (kvm_hv_has_stimer_pending(vcpu))
8118 		return true;
8119 
8120 	return false;
8121 }
8122 
8123 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8124 {
8125 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8126 		kvm_x86_ops->check_nested_events(vcpu, false);
8127 
8128 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8129 }
8130 
8131 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8132 {
8133 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8134 }
8135 
8136 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8137 {
8138 	return kvm_x86_ops->interrupt_allowed(vcpu);
8139 }
8140 
8141 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8142 {
8143 	if (is_64_bit_mode(vcpu))
8144 		return kvm_rip_read(vcpu);
8145 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8146 		     kvm_rip_read(vcpu));
8147 }
8148 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8149 
8150 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8151 {
8152 	return kvm_get_linear_rip(vcpu) == linear_rip;
8153 }
8154 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8155 
8156 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8157 {
8158 	unsigned long rflags;
8159 
8160 	rflags = kvm_x86_ops->get_rflags(vcpu);
8161 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8162 		rflags &= ~X86_EFLAGS_TF;
8163 	return rflags;
8164 }
8165 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8166 
8167 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8168 {
8169 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8170 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8171 		rflags |= X86_EFLAGS_TF;
8172 	kvm_x86_ops->set_rflags(vcpu, rflags);
8173 }
8174 
8175 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8176 {
8177 	__kvm_set_rflags(vcpu, rflags);
8178 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8179 }
8180 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8181 
8182 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8183 {
8184 	int r;
8185 
8186 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8187 	      work->wakeup_all)
8188 		return;
8189 
8190 	r = kvm_mmu_reload(vcpu);
8191 	if (unlikely(r))
8192 		return;
8193 
8194 	if (!vcpu->arch.mmu.direct_map &&
8195 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8196 		return;
8197 
8198 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8199 }
8200 
8201 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8202 {
8203 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8204 }
8205 
8206 static inline u32 kvm_async_pf_next_probe(u32 key)
8207 {
8208 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8209 }
8210 
8211 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8212 {
8213 	u32 key = kvm_async_pf_hash_fn(gfn);
8214 
8215 	while (vcpu->arch.apf.gfns[key] != ~0)
8216 		key = kvm_async_pf_next_probe(key);
8217 
8218 	vcpu->arch.apf.gfns[key] = gfn;
8219 }
8220 
8221 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8222 {
8223 	int i;
8224 	u32 key = kvm_async_pf_hash_fn(gfn);
8225 
8226 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8227 		     (vcpu->arch.apf.gfns[key] != gfn &&
8228 		      vcpu->arch.apf.gfns[key] != ~0); i++)
8229 		key = kvm_async_pf_next_probe(key);
8230 
8231 	return key;
8232 }
8233 
8234 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8235 {
8236 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8237 }
8238 
8239 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8240 {
8241 	u32 i, j, k;
8242 
8243 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8244 	while (true) {
8245 		vcpu->arch.apf.gfns[i] = ~0;
8246 		do {
8247 			j = kvm_async_pf_next_probe(j);
8248 			if (vcpu->arch.apf.gfns[j] == ~0)
8249 				return;
8250 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8251 			/*
8252 			 * k lies cyclically in ]i,j]
8253 			 * |    i.k.j |
8254 			 * |....j i.k.| or  |.k..j i...|
8255 			 */
8256 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8257 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8258 		i = j;
8259 	}
8260 }
8261 
8262 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8263 {
8264 
8265 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8266 				      sizeof(val));
8267 }
8268 
8269 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8270 				     struct kvm_async_pf *work)
8271 {
8272 	struct x86_exception fault;
8273 
8274 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8275 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8276 
8277 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8278 	    (vcpu->arch.apf.send_user_only &&
8279 	     kvm_x86_ops->get_cpl(vcpu) == 0))
8280 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8281 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8282 		fault.vector = PF_VECTOR;
8283 		fault.error_code_valid = true;
8284 		fault.error_code = 0;
8285 		fault.nested_page_fault = false;
8286 		fault.address = work->arch.token;
8287 		kvm_inject_page_fault(vcpu, &fault);
8288 	}
8289 }
8290 
8291 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8292 				 struct kvm_async_pf *work)
8293 {
8294 	struct x86_exception fault;
8295 
8296 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
8297 	if (work->wakeup_all)
8298 		work->arch.token = ~0; /* broadcast wakeup */
8299 	else
8300 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8301 
8302 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8303 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8304 		fault.vector = PF_VECTOR;
8305 		fault.error_code_valid = true;
8306 		fault.error_code = 0;
8307 		fault.nested_page_fault = false;
8308 		fault.address = work->arch.token;
8309 		kvm_inject_page_fault(vcpu, &fault);
8310 	}
8311 	vcpu->arch.apf.halted = false;
8312 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8313 }
8314 
8315 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8316 {
8317 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8318 		return true;
8319 	else
8320 		return !kvm_event_needs_reinjection(vcpu) &&
8321 			kvm_x86_ops->interrupt_allowed(vcpu);
8322 }
8323 
8324 void kvm_arch_start_assignment(struct kvm *kvm)
8325 {
8326 	atomic_inc(&kvm->arch.assigned_device_count);
8327 }
8328 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8329 
8330 void kvm_arch_end_assignment(struct kvm *kvm)
8331 {
8332 	atomic_dec(&kvm->arch.assigned_device_count);
8333 }
8334 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8335 
8336 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8337 {
8338 	return atomic_read(&kvm->arch.assigned_device_count);
8339 }
8340 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8341 
8342 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8343 {
8344 	atomic_inc(&kvm->arch.noncoherent_dma_count);
8345 }
8346 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8347 
8348 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8349 {
8350 	atomic_dec(&kvm->arch.noncoherent_dma_count);
8351 }
8352 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8353 
8354 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8355 {
8356 	return atomic_read(&kvm->arch.noncoherent_dma_count);
8357 }
8358 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8359 
8360 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8361 				      struct irq_bypass_producer *prod)
8362 {
8363 	struct kvm_kernel_irqfd *irqfd =
8364 		container_of(cons, struct kvm_kernel_irqfd, consumer);
8365 
8366 	if (kvm_x86_ops->update_pi_irte) {
8367 		irqfd->producer = prod;
8368 		return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8369 				prod->irq, irqfd->gsi, 1);
8370 	}
8371 
8372 	return -EINVAL;
8373 }
8374 
8375 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8376 				      struct irq_bypass_producer *prod)
8377 {
8378 	int ret;
8379 	struct kvm_kernel_irqfd *irqfd =
8380 		container_of(cons, struct kvm_kernel_irqfd, consumer);
8381 
8382 	if (!kvm_x86_ops->update_pi_irte) {
8383 		WARN_ON(irqfd->producer != NULL);
8384 		return;
8385 	}
8386 
8387 	WARN_ON(irqfd->producer != prod);
8388 	irqfd->producer = NULL;
8389 
8390 	/*
8391 	 * When producer of consumer is unregistered, we change back to
8392 	 * remapped mode, so we can re-use the current implementation
8393 	 * when the irq is masked/disabed or the consumer side (KVM
8394 	 * int this case doesn't want to receive the interrupts.
8395 	*/
8396 	ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8397 	if (ret)
8398 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8399 		       " fails: %d\n", irqfd->consumer.token, ret);
8400 }
8401 
8402 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8403 				   uint32_t guest_irq, bool set)
8404 {
8405 	if (!kvm_x86_ops->update_pi_irte)
8406 		return -EINVAL;
8407 
8408 	return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8409 }
8410 
8411 bool kvm_vector_hashing_enabled(void)
8412 {
8413 	return vector_hashing;
8414 }
8415 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8416 
8417 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8418 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8419 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8420 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8421 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8422 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8423 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8424 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8425 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8426 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8427 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8428 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8429 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8430 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8431 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8432 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8433 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8434