xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 0f87ac23)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33 
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
62 
63 #include <trace/events/kvm.h>
64 
65 #include <asm/debugreg.h>
66 #include <asm/msr.h>
67 #include <asm/desc.h>
68 #include <asm/mce.h>
69 #include <asm/pkru.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/api.h>
72 #include <asm/fpu/xcr.h>
73 #include <asm/fpu/xstate.h>
74 #include <asm/pvclock.h>
75 #include <asm/div64.h>
76 #include <asm/irq_remapping.h>
77 #include <asm/mshyperv.h>
78 #include <asm/hypervisor.h>
79 #include <asm/tlbflush.h>
80 #include <asm/intel_pt.h>
81 #include <asm/emulate_prefix.h>
82 #include <asm/sgx.h>
83 #include <clocksource/hyperv_timer.h>
84 
85 #define CREATE_TRACE_POINTS
86 #include "trace.h"
87 
88 #define MAX_IO_MSRS 256
89 #define KVM_MAX_MCE_BANKS 32
90 
91 struct kvm_caps kvm_caps __read_mostly = {
92 	.supported_mce_cap = MCG_CTL_P | MCG_SER_P,
93 };
94 EXPORT_SYMBOL_GPL(kvm_caps);
95 
96 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
97 
98 #define emul_to_vcpu(ctxt) \
99 	((struct kvm_vcpu *)(ctxt)->vcpu)
100 
101 /* EFER defaults:
102  * - enable syscall per default because its emulated by KVM
103  * - enable LME and LMA per default on 64 bit KVM
104  */
105 #ifdef CONFIG_X86_64
106 static
107 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
108 #else
109 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
110 #endif
111 
112 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
113 
114 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
115 
116 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
117 
118 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
119                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
120 
121 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
122 static void process_nmi(struct kvm_vcpu *vcpu);
123 static void process_smi(struct kvm_vcpu *vcpu);
124 static void enter_smm(struct kvm_vcpu *vcpu);
125 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
126 static void store_regs(struct kvm_vcpu *vcpu);
127 static int sync_regs(struct kvm_vcpu *vcpu);
128 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
129 
130 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
131 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
132 
133 struct kvm_x86_ops kvm_x86_ops __read_mostly;
134 
135 #define KVM_X86_OP(func)					     \
136 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
137 				*(((struct kvm_x86_ops *)0)->func));
138 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
139 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
140 #include <asm/kvm-x86-ops.h>
141 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
142 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
143 
144 static bool __read_mostly ignore_msrs = 0;
145 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
146 
147 bool __read_mostly report_ignored_msrs = true;
148 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
149 EXPORT_SYMBOL_GPL(report_ignored_msrs);
150 
151 unsigned int min_timer_period_us = 200;
152 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
153 
154 static bool __read_mostly kvmclock_periodic_sync = true;
155 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
156 
157 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
158 static u32 __read_mostly tsc_tolerance_ppm = 250;
159 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
160 
161 /*
162  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
163  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
164  * advancement entirely.  Any other value is used as-is and disables adaptive
165  * tuning, i.e. allows privileged userspace to set an exact advancement time.
166  */
167 static int __read_mostly lapic_timer_advance_ns = -1;
168 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
169 
170 static bool __read_mostly vector_hashing = true;
171 module_param(vector_hashing, bool, S_IRUGO);
172 
173 bool __read_mostly enable_vmware_backdoor = false;
174 module_param(enable_vmware_backdoor, bool, S_IRUGO);
175 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
176 
177 static bool __read_mostly force_emulation_prefix = false;
178 module_param(force_emulation_prefix, bool, S_IRUGO);
179 
180 int __read_mostly pi_inject_timer = -1;
181 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
182 
183 /* Enable/disable PMU virtualization */
184 bool __read_mostly enable_pmu = true;
185 EXPORT_SYMBOL_GPL(enable_pmu);
186 module_param(enable_pmu, bool, 0444);
187 
188 bool __read_mostly eager_page_split = true;
189 module_param(eager_page_split, bool, 0644);
190 
191 /*
192  * Restoring the host value for MSRs that are only consumed when running in
193  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
194  * returns to userspace, i.e. the kernel can run with the guest's value.
195  */
196 #define KVM_MAX_NR_USER_RETURN_MSRS 16
197 
198 struct kvm_user_return_msrs {
199 	struct user_return_notifier urn;
200 	bool registered;
201 	struct kvm_user_return_msr_values {
202 		u64 host;
203 		u64 curr;
204 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
205 };
206 
207 u32 __read_mostly kvm_nr_uret_msrs;
208 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
209 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
210 static struct kvm_user_return_msrs __percpu *user_return_msrs;
211 
212 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
213 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
214 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
215 				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
216 
217 u64 __read_mostly host_efer;
218 EXPORT_SYMBOL_GPL(host_efer);
219 
220 bool __read_mostly allow_smaller_maxphyaddr = 0;
221 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
222 
223 bool __read_mostly enable_apicv = true;
224 EXPORT_SYMBOL_GPL(enable_apicv);
225 
226 u64 __read_mostly host_xss;
227 EXPORT_SYMBOL_GPL(host_xss);
228 
229 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
230 	KVM_GENERIC_VM_STATS(),
231 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
232 	STATS_DESC_COUNTER(VM, mmu_pte_write),
233 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
234 	STATS_DESC_COUNTER(VM, mmu_flooded),
235 	STATS_DESC_COUNTER(VM, mmu_recycled),
236 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
237 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
238 	STATS_DESC_ICOUNTER(VM, pages_4k),
239 	STATS_DESC_ICOUNTER(VM, pages_2m),
240 	STATS_DESC_ICOUNTER(VM, pages_1g),
241 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
242 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
243 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
244 };
245 
246 const struct kvm_stats_header kvm_vm_stats_header = {
247 	.name_size = KVM_STATS_NAME_SIZE,
248 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
249 	.id_offset = sizeof(struct kvm_stats_header),
250 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
251 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
252 		       sizeof(kvm_vm_stats_desc),
253 };
254 
255 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
256 	KVM_GENERIC_VCPU_STATS(),
257 	STATS_DESC_COUNTER(VCPU, pf_taken),
258 	STATS_DESC_COUNTER(VCPU, pf_fixed),
259 	STATS_DESC_COUNTER(VCPU, pf_emulate),
260 	STATS_DESC_COUNTER(VCPU, pf_spurious),
261 	STATS_DESC_COUNTER(VCPU, pf_fast),
262 	STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
263 	STATS_DESC_COUNTER(VCPU, pf_guest),
264 	STATS_DESC_COUNTER(VCPU, tlb_flush),
265 	STATS_DESC_COUNTER(VCPU, invlpg),
266 	STATS_DESC_COUNTER(VCPU, exits),
267 	STATS_DESC_COUNTER(VCPU, io_exits),
268 	STATS_DESC_COUNTER(VCPU, mmio_exits),
269 	STATS_DESC_COUNTER(VCPU, signal_exits),
270 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
271 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
272 	STATS_DESC_COUNTER(VCPU, l1d_flush),
273 	STATS_DESC_COUNTER(VCPU, halt_exits),
274 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
275 	STATS_DESC_COUNTER(VCPU, irq_exits),
276 	STATS_DESC_COUNTER(VCPU, host_state_reload),
277 	STATS_DESC_COUNTER(VCPU, fpu_reload),
278 	STATS_DESC_COUNTER(VCPU, insn_emulation),
279 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
280 	STATS_DESC_COUNTER(VCPU, hypercalls),
281 	STATS_DESC_COUNTER(VCPU, irq_injections),
282 	STATS_DESC_COUNTER(VCPU, nmi_injections),
283 	STATS_DESC_COUNTER(VCPU, req_event),
284 	STATS_DESC_COUNTER(VCPU, nested_run),
285 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
286 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
287 	STATS_DESC_COUNTER(VCPU, preemption_reported),
288 	STATS_DESC_COUNTER(VCPU, preemption_other),
289 	STATS_DESC_ICOUNTER(VCPU, guest_mode),
290 	STATS_DESC_COUNTER(VCPU, notify_window_exits),
291 };
292 
293 const struct kvm_stats_header kvm_vcpu_stats_header = {
294 	.name_size = KVM_STATS_NAME_SIZE,
295 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
296 	.id_offset = sizeof(struct kvm_stats_header),
297 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
298 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
299 		       sizeof(kvm_vcpu_stats_desc),
300 };
301 
302 u64 __read_mostly host_xcr0;
303 
304 static struct kmem_cache *x86_emulator_cache;
305 
306 /*
307  * When called, it means the previous get/set msr reached an invalid msr.
308  * Return true if we want to ignore/silent this failed msr access.
309  */
310 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
311 {
312 	const char *op = write ? "wrmsr" : "rdmsr";
313 
314 	if (ignore_msrs) {
315 		if (report_ignored_msrs)
316 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
317 				      op, msr, data);
318 		/* Mask the error */
319 		return true;
320 	} else {
321 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
322 				      op, msr, data);
323 		return false;
324 	}
325 }
326 
327 static struct kmem_cache *kvm_alloc_emulator_cache(void)
328 {
329 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
330 	unsigned int size = sizeof(struct x86_emulate_ctxt);
331 
332 	return kmem_cache_create_usercopy("x86_emulator", size,
333 					  __alignof__(struct x86_emulate_ctxt),
334 					  SLAB_ACCOUNT, useroffset,
335 					  size - useroffset, NULL);
336 }
337 
338 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
339 
340 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
341 {
342 	int i;
343 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
344 		vcpu->arch.apf.gfns[i] = ~0;
345 }
346 
347 static void kvm_on_user_return(struct user_return_notifier *urn)
348 {
349 	unsigned slot;
350 	struct kvm_user_return_msrs *msrs
351 		= container_of(urn, struct kvm_user_return_msrs, urn);
352 	struct kvm_user_return_msr_values *values;
353 	unsigned long flags;
354 
355 	/*
356 	 * Disabling irqs at this point since the following code could be
357 	 * interrupted and executed through kvm_arch_hardware_disable()
358 	 */
359 	local_irq_save(flags);
360 	if (msrs->registered) {
361 		msrs->registered = false;
362 		user_return_notifier_unregister(urn);
363 	}
364 	local_irq_restore(flags);
365 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
366 		values = &msrs->values[slot];
367 		if (values->host != values->curr) {
368 			wrmsrl(kvm_uret_msrs_list[slot], values->host);
369 			values->curr = values->host;
370 		}
371 	}
372 }
373 
374 static int kvm_probe_user_return_msr(u32 msr)
375 {
376 	u64 val;
377 	int ret;
378 
379 	preempt_disable();
380 	ret = rdmsrl_safe(msr, &val);
381 	if (ret)
382 		goto out;
383 	ret = wrmsrl_safe(msr, val);
384 out:
385 	preempt_enable();
386 	return ret;
387 }
388 
389 int kvm_add_user_return_msr(u32 msr)
390 {
391 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
392 
393 	if (kvm_probe_user_return_msr(msr))
394 		return -1;
395 
396 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
397 	return kvm_nr_uret_msrs++;
398 }
399 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
400 
401 int kvm_find_user_return_msr(u32 msr)
402 {
403 	int i;
404 
405 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
406 		if (kvm_uret_msrs_list[i] == msr)
407 			return i;
408 	}
409 	return -1;
410 }
411 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
412 
413 static void kvm_user_return_msr_cpu_online(void)
414 {
415 	unsigned int cpu = smp_processor_id();
416 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
417 	u64 value;
418 	int i;
419 
420 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
421 		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
422 		msrs->values[i].host = value;
423 		msrs->values[i].curr = value;
424 	}
425 }
426 
427 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
428 {
429 	unsigned int cpu = smp_processor_id();
430 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
431 	int err;
432 
433 	value = (value & mask) | (msrs->values[slot].host & ~mask);
434 	if (value == msrs->values[slot].curr)
435 		return 0;
436 	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
437 	if (err)
438 		return 1;
439 
440 	msrs->values[slot].curr = value;
441 	if (!msrs->registered) {
442 		msrs->urn.on_user_return = kvm_on_user_return;
443 		user_return_notifier_register(&msrs->urn);
444 		msrs->registered = true;
445 	}
446 	return 0;
447 }
448 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
449 
450 static void drop_user_return_notifiers(void)
451 {
452 	unsigned int cpu = smp_processor_id();
453 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
454 
455 	if (msrs->registered)
456 		kvm_on_user_return(&msrs->urn);
457 }
458 
459 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
460 {
461 	return vcpu->arch.apic_base;
462 }
463 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
464 
465 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
466 {
467 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
468 }
469 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
470 
471 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
472 {
473 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
474 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
475 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
476 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
477 
478 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
479 		return 1;
480 	if (!msr_info->host_initiated) {
481 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
482 			return 1;
483 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
484 			return 1;
485 	}
486 
487 	kvm_lapic_set_base(vcpu, msr_info->data);
488 	kvm_recalculate_apic_map(vcpu->kvm);
489 	return 0;
490 }
491 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
492 
493 /*
494  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
495  *
496  * Hardware virtualization extension instructions may fault if a reboot turns
497  * off virtualization while processes are running.  Usually after catching the
498  * fault we just panic; during reboot instead the instruction is ignored.
499  */
500 noinstr void kvm_spurious_fault(void)
501 {
502 	/* Fault while not rebooting.  We want the trace. */
503 	BUG_ON(!kvm_rebooting);
504 }
505 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
506 
507 #define EXCPT_BENIGN		0
508 #define EXCPT_CONTRIBUTORY	1
509 #define EXCPT_PF		2
510 
511 static int exception_class(int vector)
512 {
513 	switch (vector) {
514 	case PF_VECTOR:
515 		return EXCPT_PF;
516 	case DE_VECTOR:
517 	case TS_VECTOR:
518 	case NP_VECTOR:
519 	case SS_VECTOR:
520 	case GP_VECTOR:
521 		return EXCPT_CONTRIBUTORY;
522 	default:
523 		break;
524 	}
525 	return EXCPT_BENIGN;
526 }
527 
528 #define EXCPT_FAULT		0
529 #define EXCPT_TRAP		1
530 #define EXCPT_ABORT		2
531 #define EXCPT_INTERRUPT		3
532 
533 static int exception_type(int vector)
534 {
535 	unsigned int mask;
536 
537 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
538 		return EXCPT_INTERRUPT;
539 
540 	mask = 1 << vector;
541 
542 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
543 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
544 		return EXCPT_TRAP;
545 
546 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
547 		return EXCPT_ABORT;
548 
549 	/* Reserved exceptions will result in fault */
550 	return EXCPT_FAULT;
551 }
552 
553 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
554 {
555 	unsigned nr = vcpu->arch.exception.nr;
556 	bool has_payload = vcpu->arch.exception.has_payload;
557 	unsigned long payload = vcpu->arch.exception.payload;
558 
559 	if (!has_payload)
560 		return;
561 
562 	switch (nr) {
563 	case DB_VECTOR:
564 		/*
565 		 * "Certain debug exceptions may clear bit 0-3.  The
566 		 * remaining contents of the DR6 register are never
567 		 * cleared by the processor".
568 		 */
569 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
570 		/*
571 		 * In order to reflect the #DB exception payload in guest
572 		 * dr6, three components need to be considered: active low
573 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
574 		 * DR6_BS and DR6_BT)
575 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
576 		 * In the target guest dr6:
577 		 * FIXED_1 bits should always be set.
578 		 * Active low bits should be cleared if 1-setting in payload.
579 		 * Active high bits should be set if 1-setting in payload.
580 		 *
581 		 * Note, the payload is compatible with the pending debug
582 		 * exceptions/exit qualification under VMX, that active_low bits
583 		 * are active high in payload.
584 		 * So they need to be flipped for DR6.
585 		 */
586 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
587 		vcpu->arch.dr6 |= payload;
588 		vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
589 
590 		/*
591 		 * The #DB payload is defined as compatible with the 'pending
592 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
593 		 * defined in the 'pending debug exceptions' field (enabled
594 		 * breakpoint), it is reserved and must be zero in DR6.
595 		 */
596 		vcpu->arch.dr6 &= ~BIT(12);
597 		break;
598 	case PF_VECTOR:
599 		vcpu->arch.cr2 = payload;
600 		break;
601 	}
602 
603 	vcpu->arch.exception.has_payload = false;
604 	vcpu->arch.exception.payload = 0;
605 }
606 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
607 
608 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
609 		unsigned nr, bool has_error, u32 error_code,
610 	        bool has_payload, unsigned long payload, bool reinject)
611 {
612 	u32 prev_nr;
613 	int class1, class2;
614 
615 	kvm_make_request(KVM_REQ_EVENT, vcpu);
616 
617 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
618 	queue:
619 		if (reinject) {
620 			/*
621 			 * On vmentry, vcpu->arch.exception.pending is only
622 			 * true if an event injection was blocked by
623 			 * nested_run_pending.  In that case, however,
624 			 * vcpu_enter_guest requests an immediate exit,
625 			 * and the guest shouldn't proceed far enough to
626 			 * need reinjection.
627 			 */
628 			WARN_ON_ONCE(vcpu->arch.exception.pending);
629 			vcpu->arch.exception.injected = true;
630 			if (WARN_ON_ONCE(has_payload)) {
631 				/*
632 				 * A reinjected event has already
633 				 * delivered its payload.
634 				 */
635 				has_payload = false;
636 				payload = 0;
637 			}
638 		} else {
639 			vcpu->arch.exception.pending = true;
640 			vcpu->arch.exception.injected = false;
641 		}
642 		vcpu->arch.exception.has_error_code = has_error;
643 		vcpu->arch.exception.nr = nr;
644 		vcpu->arch.exception.error_code = error_code;
645 		vcpu->arch.exception.has_payload = has_payload;
646 		vcpu->arch.exception.payload = payload;
647 		if (!is_guest_mode(vcpu))
648 			kvm_deliver_exception_payload(vcpu);
649 		return;
650 	}
651 
652 	/* to check exception */
653 	prev_nr = vcpu->arch.exception.nr;
654 	if (prev_nr == DF_VECTOR) {
655 		/* triple fault -> shutdown */
656 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
657 		return;
658 	}
659 	class1 = exception_class(prev_nr);
660 	class2 = exception_class(nr);
661 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
662 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
663 		/*
664 		 * Generate double fault per SDM Table 5-5.  Set
665 		 * exception.pending = true so that the double fault
666 		 * can trigger a nested vmexit.
667 		 */
668 		vcpu->arch.exception.pending = true;
669 		vcpu->arch.exception.injected = false;
670 		vcpu->arch.exception.has_error_code = true;
671 		vcpu->arch.exception.nr = DF_VECTOR;
672 		vcpu->arch.exception.error_code = 0;
673 		vcpu->arch.exception.has_payload = false;
674 		vcpu->arch.exception.payload = 0;
675 	} else
676 		/* replace previous exception with a new one in a hope
677 		   that instruction re-execution will regenerate lost
678 		   exception */
679 		goto queue;
680 }
681 
682 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
683 {
684 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
685 }
686 EXPORT_SYMBOL_GPL(kvm_queue_exception);
687 
688 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
689 {
690 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
691 }
692 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
693 
694 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
695 			   unsigned long payload)
696 {
697 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
698 }
699 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
700 
701 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
702 				    u32 error_code, unsigned long payload)
703 {
704 	kvm_multiple_exception(vcpu, nr, true, error_code,
705 			       true, payload, false);
706 }
707 
708 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
709 {
710 	if (err)
711 		kvm_inject_gp(vcpu, 0);
712 	else
713 		return kvm_skip_emulated_instruction(vcpu);
714 
715 	return 1;
716 }
717 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
718 
719 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
720 {
721 	if (err) {
722 		kvm_inject_gp(vcpu, 0);
723 		return 1;
724 	}
725 
726 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
727 				       EMULTYPE_COMPLETE_USER_EXIT);
728 }
729 
730 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
731 {
732 	++vcpu->stat.pf_guest;
733 	vcpu->arch.exception.nested_apf =
734 		is_guest_mode(vcpu) && fault->async_page_fault;
735 	if (vcpu->arch.exception.nested_apf) {
736 		vcpu->arch.apf.nested_apf_token = fault->address;
737 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
738 	} else {
739 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
740 					fault->address);
741 	}
742 }
743 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
744 
745 /* Returns true if the page fault was immediately morphed into a VM-Exit. */
746 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
747 				    struct x86_exception *fault)
748 {
749 	struct kvm_mmu *fault_mmu;
750 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
751 
752 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
753 					       vcpu->arch.walk_mmu;
754 
755 	/*
756 	 * Invalidate the TLB entry for the faulting address, if it exists,
757 	 * else the access will fault indefinitely (and to emulate hardware).
758 	 */
759 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
760 	    !(fault->error_code & PFERR_RSVD_MASK))
761 		kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
762 				       fault_mmu->root.hpa);
763 
764 	/*
765 	 * A workaround for KVM's bad exception handling.  If KVM injected an
766 	 * exception into L2, and L2 encountered a #PF while vectoring the
767 	 * injected exception, manually check to see if L1 wants to intercept
768 	 * #PF, otherwise queuing the #PF will lead to #DF or a lost exception.
769 	 * In all other cases, defer the check to nested_ops->check_events(),
770 	 * which will correctly handle priority (this does not).  Note, other
771 	 * exceptions, e.g. #GP, are theoretically affected, #PF is simply the
772 	 * most problematic, e.g. when L0 and L1 are both intercepting #PF for
773 	 * shadow paging.
774 	 *
775 	 * TODO: Rewrite exception handling to track injected and pending
776 	 *       (VM-Exit) exceptions separately.
777 	 */
778 	if (unlikely(vcpu->arch.exception.injected && is_guest_mode(vcpu)) &&
779 	    kvm_x86_ops.nested_ops->handle_page_fault_workaround(vcpu, fault))
780 		return true;
781 
782 	fault_mmu->inject_page_fault(vcpu, fault);
783 	return false;
784 }
785 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
786 
787 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
788 {
789 	atomic_inc(&vcpu->arch.nmi_queued);
790 	kvm_make_request(KVM_REQ_NMI, vcpu);
791 }
792 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
793 
794 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
795 {
796 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
797 }
798 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
799 
800 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
801 {
802 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
803 }
804 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
805 
806 /*
807  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
808  * a #GP and return false.
809  */
810 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
811 {
812 	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
813 		return true;
814 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
815 	return false;
816 }
817 EXPORT_SYMBOL_GPL(kvm_require_cpl);
818 
819 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
820 {
821 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
822 		return true;
823 
824 	kvm_queue_exception(vcpu, UD_VECTOR);
825 	return false;
826 }
827 EXPORT_SYMBOL_GPL(kvm_require_dr);
828 
829 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
830 {
831 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
832 }
833 
834 /*
835  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
836  */
837 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
838 {
839 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
840 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
841 	gpa_t real_gpa;
842 	int i;
843 	int ret;
844 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
845 
846 	/*
847 	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
848 	 * to an L1 GPA.
849 	 */
850 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
851 				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
852 	if (real_gpa == UNMAPPED_GVA)
853 		return 0;
854 
855 	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
856 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
857 				       cr3 & GENMASK(11, 5), sizeof(pdpte));
858 	if (ret < 0)
859 		return 0;
860 
861 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
862 		if ((pdpte[i] & PT_PRESENT_MASK) &&
863 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
864 			return 0;
865 		}
866 	}
867 
868 	/*
869 	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
870 	 * Shadow page roots need to be reconstructed instead.
871 	 */
872 	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
873 		kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
874 
875 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
876 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
877 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
878 	vcpu->arch.pdptrs_from_userspace = false;
879 
880 	return 1;
881 }
882 EXPORT_SYMBOL_GPL(load_pdptrs);
883 
884 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
885 {
886 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
887 		kvm_clear_async_pf_completion_queue(vcpu);
888 		kvm_async_pf_hash_reset(vcpu);
889 
890 		/*
891 		 * Clearing CR0.PG is defined to flush the TLB from the guest's
892 		 * perspective.
893 		 */
894 		if (!(cr0 & X86_CR0_PG))
895 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
896 	}
897 
898 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
899 		kvm_mmu_reset_context(vcpu);
900 
901 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
902 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
903 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
904 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
905 }
906 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
907 
908 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
909 {
910 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
911 
912 	cr0 |= X86_CR0_ET;
913 
914 #ifdef CONFIG_X86_64
915 	if (cr0 & 0xffffffff00000000UL)
916 		return 1;
917 #endif
918 
919 	cr0 &= ~CR0_RESERVED_BITS;
920 
921 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
922 		return 1;
923 
924 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
925 		return 1;
926 
927 #ifdef CONFIG_X86_64
928 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
929 	    (cr0 & X86_CR0_PG)) {
930 		int cs_db, cs_l;
931 
932 		if (!is_pae(vcpu))
933 			return 1;
934 		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
935 		if (cs_l)
936 			return 1;
937 	}
938 #endif
939 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
940 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
941 	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
942 		return 1;
943 
944 	if (!(cr0 & X86_CR0_PG) &&
945 	    (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)))
946 		return 1;
947 
948 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
949 
950 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
951 
952 	return 0;
953 }
954 EXPORT_SYMBOL_GPL(kvm_set_cr0);
955 
956 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
957 {
958 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
959 }
960 EXPORT_SYMBOL_GPL(kvm_lmsw);
961 
962 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
963 {
964 	if (vcpu->arch.guest_state_protected)
965 		return;
966 
967 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
968 
969 		if (vcpu->arch.xcr0 != host_xcr0)
970 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
971 
972 		if (vcpu->arch.xsaves_enabled &&
973 		    vcpu->arch.ia32_xss != host_xss)
974 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
975 	}
976 
977 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
978 	if (static_cpu_has(X86_FEATURE_PKU) &&
979 	    vcpu->arch.pkru != vcpu->arch.host_pkru &&
980 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
981 	     kvm_read_cr4_bits(vcpu, X86_CR4_PKE)))
982 		write_pkru(vcpu->arch.pkru);
983 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
984 }
985 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
986 
987 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
988 {
989 	if (vcpu->arch.guest_state_protected)
990 		return;
991 
992 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
993 	if (static_cpu_has(X86_FEATURE_PKU) &&
994 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
995 	     kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) {
996 		vcpu->arch.pkru = rdpkru();
997 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
998 			write_pkru(vcpu->arch.host_pkru);
999 	}
1000 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1001 
1002 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
1003 
1004 		if (vcpu->arch.xcr0 != host_xcr0)
1005 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1006 
1007 		if (vcpu->arch.xsaves_enabled &&
1008 		    vcpu->arch.ia32_xss != host_xss)
1009 			wrmsrl(MSR_IA32_XSS, host_xss);
1010 	}
1011 
1012 }
1013 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1014 
1015 static inline u64 kvm_guest_supported_xcr0(struct kvm_vcpu *vcpu)
1016 {
1017 	return vcpu->arch.guest_fpu.fpstate->user_xfeatures;
1018 }
1019 
1020 #ifdef CONFIG_X86_64
1021 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1022 {
1023 	return kvm_guest_supported_xcr0(vcpu) & XFEATURE_MASK_USER_DYNAMIC;
1024 }
1025 #endif
1026 
1027 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1028 {
1029 	u64 xcr0 = xcr;
1030 	u64 old_xcr0 = vcpu->arch.xcr0;
1031 	u64 valid_bits;
1032 
1033 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1034 	if (index != XCR_XFEATURE_ENABLED_MASK)
1035 		return 1;
1036 	if (!(xcr0 & XFEATURE_MASK_FP))
1037 		return 1;
1038 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1039 		return 1;
1040 
1041 	/*
1042 	 * Do not allow the guest to set bits that we do not support
1043 	 * saving.  However, xcr0 bit 0 is always set, even if the
1044 	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1045 	 */
1046 	valid_bits = kvm_guest_supported_xcr0(vcpu) | XFEATURE_MASK_FP;
1047 	if (xcr0 & ~valid_bits)
1048 		return 1;
1049 
1050 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1051 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1052 		return 1;
1053 
1054 	if (xcr0 & XFEATURE_MASK_AVX512) {
1055 		if (!(xcr0 & XFEATURE_MASK_YMM))
1056 			return 1;
1057 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1058 			return 1;
1059 	}
1060 
1061 	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1062 	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1063 		return 1;
1064 
1065 	vcpu->arch.xcr0 = xcr0;
1066 
1067 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1068 		kvm_update_cpuid_runtime(vcpu);
1069 	return 0;
1070 }
1071 
1072 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1073 {
1074 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1075 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1076 		kvm_inject_gp(vcpu, 0);
1077 		return 1;
1078 	}
1079 
1080 	return kvm_skip_emulated_instruction(vcpu);
1081 }
1082 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1083 
1084 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1085 {
1086 	if (cr4 & cr4_reserved_bits)
1087 		return false;
1088 
1089 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1090 		return false;
1091 
1092 	return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1093 }
1094 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1095 
1096 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1097 {
1098 	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1099 		kvm_mmu_reset_context(vcpu);
1100 
1101 	/*
1102 	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1103 	 * according to the SDM; however, stale prev_roots could be reused
1104 	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1105 	 * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1106 	 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1107 	 * so fall through.
1108 	 */
1109 	if (!tdp_enabled &&
1110 	    (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1111 		kvm_mmu_unload(vcpu);
1112 
1113 	/*
1114 	 * The TLB has to be flushed for all PCIDs if any of the following
1115 	 * (architecturally required) changes happen:
1116 	 * - CR4.PCIDE is changed from 1 to 0
1117 	 * - CR4.PGE is toggled
1118 	 *
1119 	 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1120 	 */
1121 	if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1122 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1123 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1124 
1125 	/*
1126 	 * The TLB has to be flushed for the current PCID if any of the
1127 	 * following (architecturally required) changes happen:
1128 	 * - CR4.SMEP is changed from 0 to 1
1129 	 * - CR4.PAE is toggled
1130 	 */
1131 	else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1132 		 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1133 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1134 
1135 }
1136 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1137 
1138 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1139 {
1140 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1141 
1142 	if (!kvm_is_valid_cr4(vcpu, cr4))
1143 		return 1;
1144 
1145 	if (is_long_mode(vcpu)) {
1146 		if (!(cr4 & X86_CR4_PAE))
1147 			return 1;
1148 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1149 			return 1;
1150 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1151 		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1152 		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1153 		return 1;
1154 
1155 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1156 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1157 			return 1;
1158 
1159 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1160 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1161 			return 1;
1162 	}
1163 
1164 	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1165 
1166 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1167 
1168 	return 0;
1169 }
1170 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1171 
1172 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1173 {
1174 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1175 	unsigned long roots_to_free = 0;
1176 	int i;
1177 
1178 	/*
1179 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1180 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1181 	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1182 	 * the invalidation, but the guest's TLB entries need to be flushed as
1183 	 * the CPU may have cached entries in its TLB for the target PCID.
1184 	 */
1185 	if (unlikely(tdp_enabled)) {
1186 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1187 		return;
1188 	}
1189 
1190 	/*
1191 	 * If neither the current CR3 nor any of the prev_roots use the given
1192 	 * PCID, then nothing needs to be done here because a resync will
1193 	 * happen anyway before switching to any other CR3.
1194 	 */
1195 	if (kvm_get_active_pcid(vcpu) == pcid) {
1196 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1197 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1198 	}
1199 
1200 	/*
1201 	 * If PCID is disabled, there is no need to free prev_roots even if the
1202 	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1203 	 * with PCIDE=0.
1204 	 */
1205 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1206 		return;
1207 
1208 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1209 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1210 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1211 
1212 	kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1213 }
1214 
1215 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1216 {
1217 	bool skip_tlb_flush = false;
1218 	unsigned long pcid = 0;
1219 #ifdef CONFIG_X86_64
1220 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1221 
1222 	if (pcid_enabled) {
1223 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1224 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1225 		pcid = cr3 & X86_CR3_PCID_MASK;
1226 	}
1227 #endif
1228 
1229 	/* PDPTRs are always reloaded for PAE paging. */
1230 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1231 		goto handle_tlb_flush;
1232 
1233 	/*
1234 	 * Do not condition the GPA check on long mode, this helper is used to
1235 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1236 	 * the current vCPU mode is accurate.
1237 	 */
1238 	if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1239 		return 1;
1240 
1241 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1242 		return 1;
1243 
1244 	if (cr3 != kvm_read_cr3(vcpu))
1245 		kvm_mmu_new_pgd(vcpu, cr3);
1246 
1247 	vcpu->arch.cr3 = cr3;
1248 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1249 	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1250 
1251 handle_tlb_flush:
1252 	/*
1253 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1254 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1255 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1256 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1257 	 * i.e. only PCID=0 can be relevant.
1258 	 */
1259 	if (!skip_tlb_flush)
1260 		kvm_invalidate_pcid(vcpu, pcid);
1261 
1262 	return 0;
1263 }
1264 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1265 
1266 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1267 {
1268 	if (cr8 & CR8_RESERVED_BITS)
1269 		return 1;
1270 	if (lapic_in_kernel(vcpu))
1271 		kvm_lapic_set_tpr(vcpu, cr8);
1272 	else
1273 		vcpu->arch.cr8 = cr8;
1274 	return 0;
1275 }
1276 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1277 
1278 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1279 {
1280 	if (lapic_in_kernel(vcpu))
1281 		return kvm_lapic_get_cr8(vcpu);
1282 	else
1283 		return vcpu->arch.cr8;
1284 }
1285 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1286 
1287 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1288 {
1289 	int i;
1290 
1291 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1292 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1293 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1294 	}
1295 }
1296 
1297 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1298 {
1299 	unsigned long dr7;
1300 
1301 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1302 		dr7 = vcpu->arch.guest_debug_dr7;
1303 	else
1304 		dr7 = vcpu->arch.dr7;
1305 	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1306 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1307 	if (dr7 & DR7_BP_EN_MASK)
1308 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1309 }
1310 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1311 
1312 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1313 {
1314 	u64 fixed = DR6_FIXED_1;
1315 
1316 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1317 		fixed |= DR6_RTM;
1318 
1319 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1320 		fixed |= DR6_BUS_LOCK;
1321 	return fixed;
1322 }
1323 
1324 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1325 {
1326 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1327 
1328 	switch (dr) {
1329 	case 0 ... 3:
1330 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1331 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1332 			vcpu->arch.eff_db[dr] = val;
1333 		break;
1334 	case 4:
1335 	case 6:
1336 		if (!kvm_dr6_valid(val))
1337 			return 1; /* #GP */
1338 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1339 		break;
1340 	case 5:
1341 	default: /* 7 */
1342 		if (!kvm_dr7_valid(val))
1343 			return 1; /* #GP */
1344 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1345 		kvm_update_dr7(vcpu);
1346 		break;
1347 	}
1348 
1349 	return 0;
1350 }
1351 EXPORT_SYMBOL_GPL(kvm_set_dr);
1352 
1353 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1354 {
1355 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1356 
1357 	switch (dr) {
1358 	case 0 ... 3:
1359 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1360 		break;
1361 	case 4:
1362 	case 6:
1363 		*val = vcpu->arch.dr6;
1364 		break;
1365 	case 5:
1366 	default: /* 7 */
1367 		*val = vcpu->arch.dr7;
1368 		break;
1369 	}
1370 }
1371 EXPORT_SYMBOL_GPL(kvm_get_dr);
1372 
1373 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1374 {
1375 	u32 ecx = kvm_rcx_read(vcpu);
1376 	u64 data;
1377 
1378 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1379 		kvm_inject_gp(vcpu, 0);
1380 		return 1;
1381 	}
1382 
1383 	kvm_rax_write(vcpu, (u32)data);
1384 	kvm_rdx_write(vcpu, data >> 32);
1385 	return kvm_skip_emulated_instruction(vcpu);
1386 }
1387 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1388 
1389 /*
1390  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1391  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1392  *
1393  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1394  * extract the supported MSRs from the related const lists.
1395  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1396  * capabilities of the host cpu. This capabilities test skips MSRs that are
1397  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1398  * may depend on host virtualization features rather than host cpu features.
1399  */
1400 
1401 static const u32 msrs_to_save_all[] = {
1402 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1403 	MSR_STAR,
1404 #ifdef CONFIG_X86_64
1405 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1406 #endif
1407 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1408 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1409 	MSR_IA32_SPEC_CTRL,
1410 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1411 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1412 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1413 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1414 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1415 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1416 	MSR_IA32_UMWAIT_CONTROL,
1417 
1418 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1419 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1420 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1421 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1422 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1423 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1424 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1425 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1426 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1427 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1428 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1429 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1430 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1431 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1432 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1433 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1434 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1435 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1436 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1437 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1438 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1439 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1440 	MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1441 
1442 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1443 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1444 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1445 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1446 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1447 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1448 	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1449 };
1450 
1451 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1452 static unsigned num_msrs_to_save;
1453 
1454 static const u32 emulated_msrs_all[] = {
1455 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1456 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1457 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1458 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1459 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1460 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1461 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1462 	HV_X64_MSR_RESET,
1463 	HV_X64_MSR_VP_INDEX,
1464 	HV_X64_MSR_VP_RUNTIME,
1465 	HV_X64_MSR_SCONTROL,
1466 	HV_X64_MSR_STIMER0_CONFIG,
1467 	HV_X64_MSR_VP_ASSIST_PAGE,
1468 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1469 	HV_X64_MSR_TSC_EMULATION_STATUS,
1470 	HV_X64_MSR_SYNDBG_OPTIONS,
1471 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1472 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1473 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1474 
1475 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1476 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1477 
1478 	MSR_IA32_TSC_ADJUST,
1479 	MSR_IA32_TSC_DEADLINE,
1480 	MSR_IA32_ARCH_CAPABILITIES,
1481 	MSR_IA32_PERF_CAPABILITIES,
1482 	MSR_IA32_MISC_ENABLE,
1483 	MSR_IA32_MCG_STATUS,
1484 	MSR_IA32_MCG_CTL,
1485 	MSR_IA32_MCG_EXT_CTL,
1486 	MSR_IA32_SMBASE,
1487 	MSR_SMI_COUNT,
1488 	MSR_PLATFORM_INFO,
1489 	MSR_MISC_FEATURES_ENABLES,
1490 	MSR_AMD64_VIRT_SPEC_CTRL,
1491 	MSR_AMD64_TSC_RATIO,
1492 	MSR_IA32_POWER_CTL,
1493 	MSR_IA32_UCODE_REV,
1494 
1495 	/*
1496 	 * The following list leaves out MSRs whose values are determined
1497 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1498 	 * We always support the "true" VMX control MSRs, even if the host
1499 	 * processor does not, so I am putting these registers here rather
1500 	 * than in msrs_to_save_all.
1501 	 */
1502 	MSR_IA32_VMX_BASIC,
1503 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1504 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1505 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1506 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1507 	MSR_IA32_VMX_MISC,
1508 	MSR_IA32_VMX_CR0_FIXED0,
1509 	MSR_IA32_VMX_CR4_FIXED0,
1510 	MSR_IA32_VMX_VMCS_ENUM,
1511 	MSR_IA32_VMX_PROCBASED_CTLS2,
1512 	MSR_IA32_VMX_EPT_VPID_CAP,
1513 	MSR_IA32_VMX_VMFUNC,
1514 
1515 	MSR_K7_HWCR,
1516 	MSR_KVM_POLL_CONTROL,
1517 };
1518 
1519 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1520 static unsigned num_emulated_msrs;
1521 
1522 /*
1523  * List of msr numbers which are used to expose MSR-based features that
1524  * can be used by a hypervisor to validate requested CPU features.
1525  */
1526 static const u32 msr_based_features_all[] = {
1527 	MSR_IA32_VMX_BASIC,
1528 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1529 	MSR_IA32_VMX_PINBASED_CTLS,
1530 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1531 	MSR_IA32_VMX_PROCBASED_CTLS,
1532 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1533 	MSR_IA32_VMX_EXIT_CTLS,
1534 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1535 	MSR_IA32_VMX_ENTRY_CTLS,
1536 	MSR_IA32_VMX_MISC,
1537 	MSR_IA32_VMX_CR0_FIXED0,
1538 	MSR_IA32_VMX_CR0_FIXED1,
1539 	MSR_IA32_VMX_CR4_FIXED0,
1540 	MSR_IA32_VMX_CR4_FIXED1,
1541 	MSR_IA32_VMX_VMCS_ENUM,
1542 	MSR_IA32_VMX_PROCBASED_CTLS2,
1543 	MSR_IA32_VMX_EPT_VPID_CAP,
1544 	MSR_IA32_VMX_VMFUNC,
1545 
1546 	MSR_F10H_DECFG,
1547 	MSR_IA32_UCODE_REV,
1548 	MSR_IA32_ARCH_CAPABILITIES,
1549 	MSR_IA32_PERF_CAPABILITIES,
1550 };
1551 
1552 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1553 static unsigned int num_msr_based_features;
1554 
1555 static u64 kvm_get_arch_capabilities(void)
1556 {
1557 	u64 data = 0;
1558 
1559 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1560 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1561 
1562 	/*
1563 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1564 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1565 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1566 	 * L1 guests, so it need not worry about its own (L2) guests.
1567 	 */
1568 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1569 
1570 	/*
1571 	 * If we're doing cache flushes (either "always" or "cond")
1572 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1573 	 * If an outer hypervisor is doing the cache flush for us
1574 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1575 	 * capability to the guest too, and if EPT is disabled we're not
1576 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1577 	 * require a nested hypervisor to do a flush of its own.
1578 	 */
1579 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1580 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1581 
1582 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1583 		data |= ARCH_CAP_RDCL_NO;
1584 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1585 		data |= ARCH_CAP_SSB_NO;
1586 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1587 		data |= ARCH_CAP_MDS_NO;
1588 
1589 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1590 		/*
1591 		 * If RTM=0 because the kernel has disabled TSX, the host might
1592 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1593 		 * and therefore knows that there cannot be TAA) but keep
1594 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1595 		 * and we want to allow migrating those guests to tsx=off hosts.
1596 		 */
1597 		data &= ~ARCH_CAP_TAA_NO;
1598 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1599 		data |= ARCH_CAP_TAA_NO;
1600 	} else {
1601 		/*
1602 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1603 		 * host so the guest can choose between disabling TSX or
1604 		 * using VERW to clear CPU buffers.
1605 		 */
1606 	}
1607 
1608 	return data;
1609 }
1610 
1611 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1612 {
1613 	switch (msr->index) {
1614 	case MSR_IA32_ARCH_CAPABILITIES:
1615 		msr->data = kvm_get_arch_capabilities();
1616 		break;
1617 	case MSR_IA32_UCODE_REV:
1618 		rdmsrl_safe(msr->index, &msr->data);
1619 		break;
1620 	default:
1621 		return static_call(kvm_x86_get_msr_feature)(msr);
1622 	}
1623 	return 0;
1624 }
1625 
1626 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1627 {
1628 	struct kvm_msr_entry msr;
1629 	int r;
1630 
1631 	msr.index = index;
1632 	r = kvm_get_msr_feature(&msr);
1633 
1634 	if (r == KVM_MSR_RET_INVALID) {
1635 		/* Unconditionally clear the output for simplicity */
1636 		*data = 0;
1637 		if (kvm_msr_ignored_check(index, 0, false))
1638 			r = 0;
1639 	}
1640 
1641 	if (r)
1642 		return r;
1643 
1644 	*data = msr.data;
1645 
1646 	return 0;
1647 }
1648 
1649 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1650 {
1651 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1652 		return false;
1653 
1654 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1655 		return false;
1656 
1657 	if (efer & (EFER_LME | EFER_LMA) &&
1658 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1659 		return false;
1660 
1661 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1662 		return false;
1663 
1664 	return true;
1665 
1666 }
1667 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1668 {
1669 	if (efer & efer_reserved_bits)
1670 		return false;
1671 
1672 	return __kvm_valid_efer(vcpu, efer);
1673 }
1674 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1675 
1676 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1677 {
1678 	u64 old_efer = vcpu->arch.efer;
1679 	u64 efer = msr_info->data;
1680 	int r;
1681 
1682 	if (efer & efer_reserved_bits)
1683 		return 1;
1684 
1685 	if (!msr_info->host_initiated) {
1686 		if (!__kvm_valid_efer(vcpu, efer))
1687 			return 1;
1688 
1689 		if (is_paging(vcpu) &&
1690 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1691 			return 1;
1692 	}
1693 
1694 	efer &= ~EFER_LMA;
1695 	efer |= vcpu->arch.efer & EFER_LMA;
1696 
1697 	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1698 	if (r) {
1699 		WARN_ON(r > 0);
1700 		return r;
1701 	}
1702 
1703 	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1704 		kvm_mmu_reset_context(vcpu);
1705 
1706 	return 0;
1707 }
1708 
1709 void kvm_enable_efer_bits(u64 mask)
1710 {
1711        efer_reserved_bits &= ~mask;
1712 }
1713 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1714 
1715 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1716 {
1717 	struct kvm_x86_msr_filter *msr_filter;
1718 	struct msr_bitmap_range *ranges;
1719 	struct kvm *kvm = vcpu->kvm;
1720 	bool allowed;
1721 	int idx;
1722 	u32 i;
1723 
1724 	/* x2APIC MSRs do not support filtering. */
1725 	if (index >= 0x800 && index <= 0x8ff)
1726 		return true;
1727 
1728 	idx = srcu_read_lock(&kvm->srcu);
1729 
1730 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1731 	if (!msr_filter) {
1732 		allowed = true;
1733 		goto out;
1734 	}
1735 
1736 	allowed = msr_filter->default_allow;
1737 	ranges = msr_filter->ranges;
1738 
1739 	for (i = 0; i < msr_filter->count; i++) {
1740 		u32 start = ranges[i].base;
1741 		u32 end = start + ranges[i].nmsrs;
1742 		u32 flags = ranges[i].flags;
1743 		unsigned long *bitmap = ranges[i].bitmap;
1744 
1745 		if ((index >= start) && (index < end) && (flags & type)) {
1746 			allowed = !!test_bit(index - start, bitmap);
1747 			break;
1748 		}
1749 	}
1750 
1751 out:
1752 	srcu_read_unlock(&kvm->srcu, idx);
1753 
1754 	return allowed;
1755 }
1756 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1757 
1758 /*
1759  * Write @data into the MSR specified by @index.  Select MSR specific fault
1760  * checks are bypassed if @host_initiated is %true.
1761  * Returns 0 on success, non-0 otherwise.
1762  * Assumes vcpu_load() was already called.
1763  */
1764 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1765 			 bool host_initiated)
1766 {
1767 	struct msr_data msr;
1768 
1769 	switch (index) {
1770 	case MSR_FS_BASE:
1771 	case MSR_GS_BASE:
1772 	case MSR_KERNEL_GS_BASE:
1773 	case MSR_CSTAR:
1774 	case MSR_LSTAR:
1775 		if (is_noncanonical_address(data, vcpu))
1776 			return 1;
1777 		break;
1778 	case MSR_IA32_SYSENTER_EIP:
1779 	case MSR_IA32_SYSENTER_ESP:
1780 		/*
1781 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1782 		 * non-canonical address is written on Intel but not on
1783 		 * AMD (which ignores the top 32-bits, because it does
1784 		 * not implement 64-bit SYSENTER).
1785 		 *
1786 		 * 64-bit code should hence be able to write a non-canonical
1787 		 * value on AMD.  Making the address canonical ensures that
1788 		 * vmentry does not fail on Intel after writing a non-canonical
1789 		 * value, and that something deterministic happens if the guest
1790 		 * invokes 64-bit SYSENTER.
1791 		 */
1792 		data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1793 		break;
1794 	case MSR_TSC_AUX:
1795 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1796 			return 1;
1797 
1798 		if (!host_initiated &&
1799 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1800 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1801 			return 1;
1802 
1803 		/*
1804 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1805 		 * incomplete and conflicting architectural behavior.  Current
1806 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1807 		 * reserved and always read as zeros.  Enforce Intel's reserved
1808 		 * bits check if and only if the guest CPU is Intel, and clear
1809 		 * the bits in all other cases.  This ensures cross-vendor
1810 		 * migration will provide consistent behavior for the guest.
1811 		 */
1812 		if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1813 			return 1;
1814 
1815 		data = (u32)data;
1816 		break;
1817 	}
1818 
1819 	msr.data = data;
1820 	msr.index = index;
1821 	msr.host_initiated = host_initiated;
1822 
1823 	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1824 }
1825 
1826 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1827 				     u32 index, u64 data, bool host_initiated)
1828 {
1829 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1830 
1831 	if (ret == KVM_MSR_RET_INVALID)
1832 		if (kvm_msr_ignored_check(index, data, true))
1833 			ret = 0;
1834 
1835 	return ret;
1836 }
1837 
1838 /*
1839  * Read the MSR specified by @index into @data.  Select MSR specific fault
1840  * checks are bypassed if @host_initiated is %true.
1841  * Returns 0 on success, non-0 otherwise.
1842  * Assumes vcpu_load() was already called.
1843  */
1844 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1845 		  bool host_initiated)
1846 {
1847 	struct msr_data msr;
1848 	int ret;
1849 
1850 	switch (index) {
1851 	case MSR_TSC_AUX:
1852 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1853 			return 1;
1854 
1855 		if (!host_initiated &&
1856 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1857 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1858 			return 1;
1859 		break;
1860 	}
1861 
1862 	msr.index = index;
1863 	msr.host_initiated = host_initiated;
1864 
1865 	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1866 	if (!ret)
1867 		*data = msr.data;
1868 	return ret;
1869 }
1870 
1871 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1872 				     u32 index, u64 *data, bool host_initiated)
1873 {
1874 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1875 
1876 	if (ret == KVM_MSR_RET_INVALID) {
1877 		/* Unconditionally clear *data for simplicity */
1878 		*data = 0;
1879 		if (kvm_msr_ignored_check(index, 0, false))
1880 			ret = 0;
1881 	}
1882 
1883 	return ret;
1884 }
1885 
1886 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1887 {
1888 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1889 		return KVM_MSR_RET_FILTERED;
1890 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1891 }
1892 
1893 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1894 {
1895 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1896 		return KVM_MSR_RET_FILTERED;
1897 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1898 }
1899 
1900 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1901 {
1902 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1903 }
1904 EXPORT_SYMBOL_GPL(kvm_get_msr);
1905 
1906 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1907 {
1908 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1909 }
1910 EXPORT_SYMBOL_GPL(kvm_set_msr);
1911 
1912 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1913 {
1914 	if (!vcpu->run->msr.error) {
1915 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1916 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1917 	}
1918 }
1919 
1920 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1921 {
1922 	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1923 }
1924 
1925 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1926 {
1927 	complete_userspace_rdmsr(vcpu);
1928 	return complete_emulated_msr_access(vcpu);
1929 }
1930 
1931 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1932 {
1933 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1934 }
1935 
1936 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1937 {
1938 	complete_userspace_rdmsr(vcpu);
1939 	return complete_fast_msr_access(vcpu);
1940 }
1941 
1942 static u64 kvm_msr_reason(int r)
1943 {
1944 	switch (r) {
1945 	case KVM_MSR_RET_INVALID:
1946 		return KVM_MSR_EXIT_REASON_UNKNOWN;
1947 	case KVM_MSR_RET_FILTERED:
1948 		return KVM_MSR_EXIT_REASON_FILTER;
1949 	default:
1950 		return KVM_MSR_EXIT_REASON_INVAL;
1951 	}
1952 }
1953 
1954 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1955 			      u32 exit_reason, u64 data,
1956 			      int (*completion)(struct kvm_vcpu *vcpu),
1957 			      int r)
1958 {
1959 	u64 msr_reason = kvm_msr_reason(r);
1960 
1961 	/* Check if the user wanted to know about this MSR fault */
1962 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1963 		return 0;
1964 
1965 	vcpu->run->exit_reason = exit_reason;
1966 	vcpu->run->msr.error = 0;
1967 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1968 	vcpu->run->msr.reason = msr_reason;
1969 	vcpu->run->msr.index = index;
1970 	vcpu->run->msr.data = data;
1971 	vcpu->arch.complete_userspace_io = completion;
1972 
1973 	return 1;
1974 }
1975 
1976 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1977 {
1978 	u32 ecx = kvm_rcx_read(vcpu);
1979 	u64 data;
1980 	int r;
1981 
1982 	r = kvm_get_msr_with_filter(vcpu, ecx, &data);
1983 
1984 	if (!r) {
1985 		trace_kvm_msr_read(ecx, data);
1986 
1987 		kvm_rax_write(vcpu, data & -1u);
1988 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
1989 	} else {
1990 		/* MSR read failed? See if we should ask user space */
1991 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
1992 				       complete_fast_rdmsr, r))
1993 			return 0;
1994 		trace_kvm_msr_read_ex(ecx);
1995 	}
1996 
1997 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1998 }
1999 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2000 
2001 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2002 {
2003 	u32 ecx = kvm_rcx_read(vcpu);
2004 	u64 data = kvm_read_edx_eax(vcpu);
2005 	int r;
2006 
2007 	r = kvm_set_msr_with_filter(vcpu, ecx, data);
2008 
2009 	if (!r) {
2010 		trace_kvm_msr_write(ecx, data);
2011 	} else {
2012 		/* MSR write failed? See if we should ask user space */
2013 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2014 				       complete_fast_msr_access, r))
2015 			return 0;
2016 		/* Signal all other negative errors to userspace */
2017 		if (r < 0)
2018 			return r;
2019 		trace_kvm_msr_write_ex(ecx, data);
2020 	}
2021 
2022 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2023 }
2024 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2025 
2026 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2027 {
2028 	return kvm_skip_emulated_instruction(vcpu);
2029 }
2030 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
2031 
2032 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2033 {
2034 	/* Treat an INVD instruction as a NOP and just skip it. */
2035 	return kvm_emulate_as_nop(vcpu);
2036 }
2037 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2038 
2039 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2040 {
2041 	kvm_queue_exception(vcpu, UD_VECTOR);
2042 	return 1;
2043 }
2044 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2045 
2046 
2047 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2048 {
2049 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_FAULTS) &&
2050 	    !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2051 		return kvm_handle_invalid_op(vcpu);
2052 
2053 	pr_warn_once("kvm: %s instruction emulated as NOP!\n", insn);
2054 	return kvm_emulate_as_nop(vcpu);
2055 }
2056 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2057 {
2058 	return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2059 }
2060 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2061 
2062 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2063 {
2064 	return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2065 }
2066 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2067 
2068 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2069 {
2070 	xfer_to_guest_mode_prepare();
2071 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2072 		xfer_to_guest_mode_work_pending();
2073 }
2074 
2075 /*
2076  * The fast path for frequent and performance sensitive wrmsr emulation,
2077  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2078  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2079  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2080  * other cases which must be called after interrupts are enabled on the host.
2081  */
2082 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2083 {
2084 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2085 		return 1;
2086 
2087 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2088 	    ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2089 	    ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2090 	    ((u32)(data >> 32) != X2APIC_BROADCAST))
2091 		return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2092 
2093 	return 1;
2094 }
2095 
2096 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2097 {
2098 	if (!kvm_can_use_hv_timer(vcpu))
2099 		return 1;
2100 
2101 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2102 	return 0;
2103 }
2104 
2105 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2106 {
2107 	u32 msr = kvm_rcx_read(vcpu);
2108 	u64 data;
2109 	fastpath_t ret = EXIT_FASTPATH_NONE;
2110 
2111 	switch (msr) {
2112 	case APIC_BASE_MSR + (APIC_ICR >> 4):
2113 		data = kvm_read_edx_eax(vcpu);
2114 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2115 			kvm_skip_emulated_instruction(vcpu);
2116 			ret = EXIT_FASTPATH_EXIT_HANDLED;
2117 		}
2118 		break;
2119 	case MSR_IA32_TSC_DEADLINE:
2120 		data = kvm_read_edx_eax(vcpu);
2121 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2122 			kvm_skip_emulated_instruction(vcpu);
2123 			ret = EXIT_FASTPATH_REENTER_GUEST;
2124 		}
2125 		break;
2126 	default:
2127 		break;
2128 	}
2129 
2130 	if (ret != EXIT_FASTPATH_NONE)
2131 		trace_kvm_msr_write(msr, data);
2132 
2133 	return ret;
2134 }
2135 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2136 
2137 /*
2138  * Adapt set_msr() to msr_io()'s calling convention
2139  */
2140 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2141 {
2142 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2143 }
2144 
2145 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2146 {
2147 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2148 }
2149 
2150 #ifdef CONFIG_X86_64
2151 struct pvclock_clock {
2152 	int vclock_mode;
2153 	u64 cycle_last;
2154 	u64 mask;
2155 	u32 mult;
2156 	u32 shift;
2157 	u64 base_cycles;
2158 	u64 offset;
2159 };
2160 
2161 struct pvclock_gtod_data {
2162 	seqcount_t	seq;
2163 
2164 	struct pvclock_clock clock; /* extract of a clocksource struct */
2165 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2166 
2167 	ktime_t		offs_boot;
2168 	u64		wall_time_sec;
2169 };
2170 
2171 static struct pvclock_gtod_data pvclock_gtod_data;
2172 
2173 static void update_pvclock_gtod(struct timekeeper *tk)
2174 {
2175 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2176 
2177 	write_seqcount_begin(&vdata->seq);
2178 
2179 	/* copy pvclock gtod data */
2180 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2181 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2182 	vdata->clock.mask		= tk->tkr_mono.mask;
2183 	vdata->clock.mult		= tk->tkr_mono.mult;
2184 	vdata->clock.shift		= tk->tkr_mono.shift;
2185 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2186 	vdata->clock.offset		= tk->tkr_mono.base;
2187 
2188 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2189 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2190 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2191 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2192 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2193 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2194 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2195 
2196 	vdata->wall_time_sec            = tk->xtime_sec;
2197 
2198 	vdata->offs_boot		= tk->offs_boot;
2199 
2200 	write_seqcount_end(&vdata->seq);
2201 }
2202 
2203 static s64 get_kvmclock_base_ns(void)
2204 {
2205 	/* Count up from boot time, but with the frequency of the raw clock.  */
2206 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2207 }
2208 #else
2209 static s64 get_kvmclock_base_ns(void)
2210 {
2211 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2212 	return ktime_get_boottime_ns();
2213 }
2214 #endif
2215 
2216 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2217 {
2218 	int version;
2219 	int r;
2220 	struct pvclock_wall_clock wc;
2221 	u32 wc_sec_hi;
2222 	u64 wall_nsec;
2223 
2224 	if (!wall_clock)
2225 		return;
2226 
2227 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2228 	if (r)
2229 		return;
2230 
2231 	if (version & 1)
2232 		++version;  /* first time write, random junk */
2233 
2234 	++version;
2235 
2236 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2237 		return;
2238 
2239 	/*
2240 	 * The guest calculates current wall clock time by adding
2241 	 * system time (updated by kvm_guest_time_update below) to the
2242 	 * wall clock specified here.  We do the reverse here.
2243 	 */
2244 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2245 
2246 	wc.nsec = do_div(wall_nsec, 1000000000);
2247 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2248 	wc.version = version;
2249 
2250 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2251 
2252 	if (sec_hi_ofs) {
2253 		wc_sec_hi = wall_nsec >> 32;
2254 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2255 				&wc_sec_hi, sizeof(wc_sec_hi));
2256 	}
2257 
2258 	version++;
2259 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2260 }
2261 
2262 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2263 				  bool old_msr, bool host_initiated)
2264 {
2265 	struct kvm_arch *ka = &vcpu->kvm->arch;
2266 
2267 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2268 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2269 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2270 
2271 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2272 	}
2273 
2274 	vcpu->arch.time = system_time;
2275 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2276 
2277 	/* we verify if the enable bit is set... */
2278 	if (system_time & 1) {
2279 		kvm_gfn_to_pfn_cache_init(vcpu->kvm, &vcpu->arch.pv_time, vcpu,
2280 					  KVM_HOST_USES_PFN, system_time & ~1ULL,
2281 					  sizeof(struct pvclock_vcpu_time_info));
2282 	} else {
2283 		kvm_gfn_to_pfn_cache_destroy(vcpu->kvm, &vcpu->arch.pv_time);
2284 	}
2285 
2286 	return;
2287 }
2288 
2289 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2290 {
2291 	do_shl32_div32(dividend, divisor);
2292 	return dividend;
2293 }
2294 
2295 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2296 			       s8 *pshift, u32 *pmultiplier)
2297 {
2298 	uint64_t scaled64;
2299 	int32_t  shift = 0;
2300 	uint64_t tps64;
2301 	uint32_t tps32;
2302 
2303 	tps64 = base_hz;
2304 	scaled64 = scaled_hz;
2305 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2306 		tps64 >>= 1;
2307 		shift--;
2308 	}
2309 
2310 	tps32 = (uint32_t)tps64;
2311 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2312 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2313 			scaled64 >>= 1;
2314 		else
2315 			tps32 <<= 1;
2316 		shift++;
2317 	}
2318 
2319 	*pshift = shift;
2320 	*pmultiplier = div_frac(scaled64, tps32);
2321 }
2322 
2323 #ifdef CONFIG_X86_64
2324 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2325 #endif
2326 
2327 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2328 static unsigned long max_tsc_khz;
2329 
2330 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2331 {
2332 	u64 v = (u64)khz * (1000000 + ppm);
2333 	do_div(v, 1000000);
2334 	return v;
2335 }
2336 
2337 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2338 
2339 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2340 {
2341 	u64 ratio;
2342 
2343 	/* Guest TSC same frequency as host TSC? */
2344 	if (!scale) {
2345 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2346 		return 0;
2347 	}
2348 
2349 	/* TSC scaling supported? */
2350 	if (!kvm_caps.has_tsc_control) {
2351 		if (user_tsc_khz > tsc_khz) {
2352 			vcpu->arch.tsc_catchup = 1;
2353 			vcpu->arch.tsc_always_catchup = 1;
2354 			return 0;
2355 		} else {
2356 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2357 			return -1;
2358 		}
2359 	}
2360 
2361 	/* TSC scaling required  - calculate ratio */
2362 	ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2363 				user_tsc_khz, tsc_khz);
2364 
2365 	if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2366 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2367 			            user_tsc_khz);
2368 		return -1;
2369 	}
2370 
2371 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2372 	return 0;
2373 }
2374 
2375 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2376 {
2377 	u32 thresh_lo, thresh_hi;
2378 	int use_scaling = 0;
2379 
2380 	/* tsc_khz can be zero if TSC calibration fails */
2381 	if (user_tsc_khz == 0) {
2382 		/* set tsc_scaling_ratio to a safe value */
2383 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2384 		return -1;
2385 	}
2386 
2387 	/* Compute a scale to convert nanoseconds in TSC cycles */
2388 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2389 			   &vcpu->arch.virtual_tsc_shift,
2390 			   &vcpu->arch.virtual_tsc_mult);
2391 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2392 
2393 	/*
2394 	 * Compute the variation in TSC rate which is acceptable
2395 	 * within the range of tolerance and decide if the
2396 	 * rate being applied is within that bounds of the hardware
2397 	 * rate.  If so, no scaling or compensation need be done.
2398 	 */
2399 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2400 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2401 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2402 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2403 		use_scaling = 1;
2404 	}
2405 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2406 }
2407 
2408 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2409 {
2410 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2411 				      vcpu->arch.virtual_tsc_mult,
2412 				      vcpu->arch.virtual_tsc_shift);
2413 	tsc += vcpu->arch.this_tsc_write;
2414 	return tsc;
2415 }
2416 
2417 #ifdef CONFIG_X86_64
2418 static inline int gtod_is_based_on_tsc(int mode)
2419 {
2420 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2421 }
2422 #endif
2423 
2424 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2425 {
2426 #ifdef CONFIG_X86_64
2427 	bool vcpus_matched;
2428 	struct kvm_arch *ka = &vcpu->kvm->arch;
2429 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2430 
2431 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2432 			 atomic_read(&vcpu->kvm->online_vcpus));
2433 
2434 	/*
2435 	 * Once the masterclock is enabled, always perform request in
2436 	 * order to update it.
2437 	 *
2438 	 * In order to enable masterclock, the host clocksource must be TSC
2439 	 * and the vcpus need to have matched TSCs.  When that happens,
2440 	 * perform request to enable masterclock.
2441 	 */
2442 	if (ka->use_master_clock ||
2443 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2444 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2445 
2446 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2447 			    atomic_read(&vcpu->kvm->online_vcpus),
2448 		            ka->use_master_clock, gtod->clock.vclock_mode);
2449 #endif
2450 }
2451 
2452 /*
2453  * Multiply tsc by a fixed point number represented by ratio.
2454  *
2455  * The most significant 64-N bits (mult) of ratio represent the
2456  * integral part of the fixed point number; the remaining N bits
2457  * (frac) represent the fractional part, ie. ratio represents a fixed
2458  * point number (mult + frac * 2^(-N)).
2459  *
2460  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2461  */
2462 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2463 {
2464 	return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2465 }
2466 
2467 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2468 {
2469 	u64 _tsc = tsc;
2470 
2471 	if (ratio != kvm_caps.default_tsc_scaling_ratio)
2472 		_tsc = __scale_tsc(ratio, tsc);
2473 
2474 	return _tsc;
2475 }
2476 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2477 
2478 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2479 {
2480 	u64 tsc;
2481 
2482 	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2483 
2484 	return target_tsc - tsc;
2485 }
2486 
2487 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2488 {
2489 	return vcpu->arch.l1_tsc_offset +
2490 		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2491 }
2492 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2493 
2494 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2495 {
2496 	u64 nested_offset;
2497 
2498 	if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2499 		nested_offset = l1_offset;
2500 	else
2501 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2502 						kvm_caps.tsc_scaling_ratio_frac_bits);
2503 
2504 	nested_offset += l2_offset;
2505 	return nested_offset;
2506 }
2507 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2508 
2509 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2510 {
2511 	if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2512 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2513 				       kvm_caps.tsc_scaling_ratio_frac_bits);
2514 
2515 	return l1_multiplier;
2516 }
2517 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2518 
2519 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2520 {
2521 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2522 				   vcpu->arch.l1_tsc_offset,
2523 				   l1_offset);
2524 
2525 	vcpu->arch.l1_tsc_offset = l1_offset;
2526 
2527 	/*
2528 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2529 	 * according to the spec this should set L1's TSC (as opposed to
2530 	 * setting L1's offset for L2).
2531 	 */
2532 	if (is_guest_mode(vcpu))
2533 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2534 			l1_offset,
2535 			static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2536 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2537 	else
2538 		vcpu->arch.tsc_offset = l1_offset;
2539 
2540 	static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2541 }
2542 
2543 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2544 {
2545 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2546 
2547 	/* Userspace is changing the multiplier while L2 is active */
2548 	if (is_guest_mode(vcpu))
2549 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2550 			l1_multiplier,
2551 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2552 	else
2553 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2554 
2555 	if (kvm_caps.has_tsc_control)
2556 		static_call(kvm_x86_write_tsc_multiplier)(
2557 			vcpu, vcpu->arch.tsc_scaling_ratio);
2558 }
2559 
2560 static inline bool kvm_check_tsc_unstable(void)
2561 {
2562 #ifdef CONFIG_X86_64
2563 	/*
2564 	 * TSC is marked unstable when we're running on Hyper-V,
2565 	 * 'TSC page' clocksource is good.
2566 	 */
2567 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2568 		return false;
2569 #endif
2570 	return check_tsc_unstable();
2571 }
2572 
2573 /*
2574  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2575  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2576  * participates in.
2577  */
2578 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2579 				  u64 ns, bool matched)
2580 {
2581 	struct kvm *kvm = vcpu->kvm;
2582 
2583 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2584 
2585 	/*
2586 	 * We also track th most recent recorded KHZ, write and time to
2587 	 * allow the matching interval to be extended at each write.
2588 	 */
2589 	kvm->arch.last_tsc_nsec = ns;
2590 	kvm->arch.last_tsc_write = tsc;
2591 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2592 	kvm->arch.last_tsc_offset = offset;
2593 
2594 	vcpu->arch.last_guest_tsc = tsc;
2595 
2596 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2597 
2598 	if (!matched) {
2599 		/*
2600 		 * We split periods of matched TSC writes into generations.
2601 		 * For each generation, we track the original measured
2602 		 * nanosecond time, offset, and write, so if TSCs are in
2603 		 * sync, we can match exact offset, and if not, we can match
2604 		 * exact software computation in compute_guest_tsc()
2605 		 *
2606 		 * These values are tracked in kvm->arch.cur_xxx variables.
2607 		 */
2608 		kvm->arch.cur_tsc_generation++;
2609 		kvm->arch.cur_tsc_nsec = ns;
2610 		kvm->arch.cur_tsc_write = tsc;
2611 		kvm->arch.cur_tsc_offset = offset;
2612 		kvm->arch.nr_vcpus_matched_tsc = 0;
2613 	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2614 		kvm->arch.nr_vcpus_matched_tsc++;
2615 	}
2616 
2617 	/* Keep track of which generation this VCPU has synchronized to */
2618 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2619 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2620 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2621 
2622 	kvm_track_tsc_matching(vcpu);
2623 }
2624 
2625 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2626 {
2627 	struct kvm *kvm = vcpu->kvm;
2628 	u64 offset, ns, elapsed;
2629 	unsigned long flags;
2630 	bool matched = false;
2631 	bool synchronizing = false;
2632 
2633 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2634 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2635 	ns = get_kvmclock_base_ns();
2636 	elapsed = ns - kvm->arch.last_tsc_nsec;
2637 
2638 	if (vcpu->arch.virtual_tsc_khz) {
2639 		if (data == 0) {
2640 			/*
2641 			 * detection of vcpu initialization -- need to sync
2642 			 * with other vCPUs. This particularly helps to keep
2643 			 * kvm_clock stable after CPU hotplug
2644 			 */
2645 			synchronizing = true;
2646 		} else {
2647 			u64 tsc_exp = kvm->arch.last_tsc_write +
2648 						nsec_to_cycles(vcpu, elapsed);
2649 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2650 			/*
2651 			 * Special case: TSC write with a small delta (1 second)
2652 			 * of virtual cycle time against real time is
2653 			 * interpreted as an attempt to synchronize the CPU.
2654 			 */
2655 			synchronizing = data < tsc_exp + tsc_hz &&
2656 					data + tsc_hz > tsc_exp;
2657 		}
2658 	}
2659 
2660 	/*
2661 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2662 	 * TSC, we add elapsed time in this computation.  We could let the
2663 	 * compensation code attempt to catch up if we fall behind, but
2664 	 * it's better to try to match offsets from the beginning.
2665          */
2666 	if (synchronizing &&
2667 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2668 		if (!kvm_check_tsc_unstable()) {
2669 			offset = kvm->arch.cur_tsc_offset;
2670 		} else {
2671 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2672 			data += delta;
2673 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2674 		}
2675 		matched = true;
2676 	}
2677 
2678 	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2679 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2680 }
2681 
2682 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2683 					   s64 adjustment)
2684 {
2685 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2686 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2687 }
2688 
2689 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2690 {
2691 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2692 		WARN_ON(adjustment < 0);
2693 	adjustment = kvm_scale_tsc((u64) adjustment,
2694 				   vcpu->arch.l1_tsc_scaling_ratio);
2695 	adjust_tsc_offset_guest(vcpu, adjustment);
2696 }
2697 
2698 #ifdef CONFIG_X86_64
2699 
2700 static u64 read_tsc(void)
2701 {
2702 	u64 ret = (u64)rdtsc_ordered();
2703 	u64 last = pvclock_gtod_data.clock.cycle_last;
2704 
2705 	if (likely(ret >= last))
2706 		return ret;
2707 
2708 	/*
2709 	 * GCC likes to generate cmov here, but this branch is extremely
2710 	 * predictable (it's just a function of time and the likely is
2711 	 * very likely) and there's a data dependence, so force GCC
2712 	 * to generate a branch instead.  I don't barrier() because
2713 	 * we don't actually need a barrier, and if this function
2714 	 * ever gets inlined it will generate worse code.
2715 	 */
2716 	asm volatile ("");
2717 	return last;
2718 }
2719 
2720 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2721 			  int *mode)
2722 {
2723 	long v;
2724 	u64 tsc_pg_val;
2725 
2726 	switch (clock->vclock_mode) {
2727 	case VDSO_CLOCKMODE_HVCLOCK:
2728 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2729 						  tsc_timestamp);
2730 		if (tsc_pg_val != U64_MAX) {
2731 			/* TSC page valid */
2732 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2733 			v = (tsc_pg_val - clock->cycle_last) &
2734 				clock->mask;
2735 		} else {
2736 			/* TSC page invalid */
2737 			*mode = VDSO_CLOCKMODE_NONE;
2738 		}
2739 		break;
2740 	case VDSO_CLOCKMODE_TSC:
2741 		*mode = VDSO_CLOCKMODE_TSC;
2742 		*tsc_timestamp = read_tsc();
2743 		v = (*tsc_timestamp - clock->cycle_last) &
2744 			clock->mask;
2745 		break;
2746 	default:
2747 		*mode = VDSO_CLOCKMODE_NONE;
2748 	}
2749 
2750 	if (*mode == VDSO_CLOCKMODE_NONE)
2751 		*tsc_timestamp = v = 0;
2752 
2753 	return v * clock->mult;
2754 }
2755 
2756 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2757 {
2758 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2759 	unsigned long seq;
2760 	int mode;
2761 	u64 ns;
2762 
2763 	do {
2764 		seq = read_seqcount_begin(&gtod->seq);
2765 		ns = gtod->raw_clock.base_cycles;
2766 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2767 		ns >>= gtod->raw_clock.shift;
2768 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2769 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2770 	*t = ns;
2771 
2772 	return mode;
2773 }
2774 
2775 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2776 {
2777 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2778 	unsigned long seq;
2779 	int mode;
2780 	u64 ns;
2781 
2782 	do {
2783 		seq = read_seqcount_begin(&gtod->seq);
2784 		ts->tv_sec = gtod->wall_time_sec;
2785 		ns = gtod->clock.base_cycles;
2786 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2787 		ns >>= gtod->clock.shift;
2788 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2789 
2790 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2791 	ts->tv_nsec = ns;
2792 
2793 	return mode;
2794 }
2795 
2796 /* returns true if host is using TSC based clocksource */
2797 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2798 {
2799 	/* checked again under seqlock below */
2800 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2801 		return false;
2802 
2803 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2804 						      tsc_timestamp));
2805 }
2806 
2807 /* returns true if host is using TSC based clocksource */
2808 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2809 					   u64 *tsc_timestamp)
2810 {
2811 	/* checked again under seqlock below */
2812 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2813 		return false;
2814 
2815 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2816 }
2817 #endif
2818 
2819 /*
2820  *
2821  * Assuming a stable TSC across physical CPUS, and a stable TSC
2822  * across virtual CPUs, the following condition is possible.
2823  * Each numbered line represents an event visible to both
2824  * CPUs at the next numbered event.
2825  *
2826  * "timespecX" represents host monotonic time. "tscX" represents
2827  * RDTSC value.
2828  *
2829  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2830  *
2831  * 1.  read timespec0,tsc0
2832  * 2.					| timespec1 = timespec0 + N
2833  * 					| tsc1 = tsc0 + M
2834  * 3. transition to guest		| transition to guest
2835  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2836  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2837  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2838  *
2839  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2840  *
2841  * 	- ret0 < ret1
2842  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2843  *		...
2844  *	- 0 < N - M => M < N
2845  *
2846  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2847  * always the case (the difference between two distinct xtime instances
2848  * might be smaller then the difference between corresponding TSC reads,
2849  * when updating guest vcpus pvclock areas).
2850  *
2851  * To avoid that problem, do not allow visibility of distinct
2852  * system_timestamp/tsc_timestamp values simultaneously: use a master
2853  * copy of host monotonic time values. Update that master copy
2854  * in lockstep.
2855  *
2856  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2857  *
2858  */
2859 
2860 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2861 {
2862 #ifdef CONFIG_X86_64
2863 	struct kvm_arch *ka = &kvm->arch;
2864 	int vclock_mode;
2865 	bool host_tsc_clocksource, vcpus_matched;
2866 
2867 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2868 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2869 			atomic_read(&kvm->online_vcpus));
2870 
2871 	/*
2872 	 * If the host uses TSC clock, then passthrough TSC as stable
2873 	 * to the guest.
2874 	 */
2875 	host_tsc_clocksource = kvm_get_time_and_clockread(
2876 					&ka->master_kernel_ns,
2877 					&ka->master_cycle_now);
2878 
2879 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2880 				&& !ka->backwards_tsc_observed
2881 				&& !ka->boot_vcpu_runs_old_kvmclock;
2882 
2883 	if (ka->use_master_clock)
2884 		atomic_set(&kvm_guest_has_master_clock, 1);
2885 
2886 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2887 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2888 					vcpus_matched);
2889 #endif
2890 }
2891 
2892 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2893 {
2894 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2895 }
2896 
2897 static void __kvm_start_pvclock_update(struct kvm *kvm)
2898 {
2899 	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2900 	write_seqcount_begin(&kvm->arch.pvclock_sc);
2901 }
2902 
2903 static void kvm_start_pvclock_update(struct kvm *kvm)
2904 {
2905 	kvm_make_mclock_inprogress_request(kvm);
2906 
2907 	/* no guest entries from this point */
2908 	__kvm_start_pvclock_update(kvm);
2909 }
2910 
2911 static void kvm_end_pvclock_update(struct kvm *kvm)
2912 {
2913 	struct kvm_arch *ka = &kvm->arch;
2914 	struct kvm_vcpu *vcpu;
2915 	unsigned long i;
2916 
2917 	write_seqcount_end(&ka->pvclock_sc);
2918 	raw_spin_unlock_irq(&ka->tsc_write_lock);
2919 	kvm_for_each_vcpu(i, vcpu, kvm)
2920 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2921 
2922 	/* guest entries allowed */
2923 	kvm_for_each_vcpu(i, vcpu, kvm)
2924 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2925 }
2926 
2927 static void kvm_update_masterclock(struct kvm *kvm)
2928 {
2929 	kvm_hv_request_tsc_page_update(kvm);
2930 	kvm_start_pvclock_update(kvm);
2931 	pvclock_update_vm_gtod_copy(kvm);
2932 	kvm_end_pvclock_update(kvm);
2933 }
2934 
2935 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
2936 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2937 {
2938 	struct kvm_arch *ka = &kvm->arch;
2939 	struct pvclock_vcpu_time_info hv_clock;
2940 
2941 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2942 	get_cpu();
2943 
2944 	data->flags = 0;
2945 	if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) {
2946 #ifdef CONFIG_X86_64
2947 		struct timespec64 ts;
2948 
2949 		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
2950 			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
2951 			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
2952 		} else
2953 #endif
2954 		data->host_tsc = rdtsc();
2955 
2956 		data->flags |= KVM_CLOCK_TSC_STABLE;
2957 		hv_clock.tsc_timestamp = ka->master_cycle_now;
2958 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2959 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2960 				   &hv_clock.tsc_shift,
2961 				   &hv_clock.tsc_to_system_mul);
2962 		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
2963 	} else {
2964 		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
2965 	}
2966 
2967 	put_cpu();
2968 }
2969 
2970 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2971 {
2972 	struct kvm_arch *ka = &kvm->arch;
2973 	unsigned seq;
2974 
2975 	do {
2976 		seq = read_seqcount_begin(&ka->pvclock_sc);
2977 		__get_kvmclock(kvm, data);
2978 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
2979 }
2980 
2981 u64 get_kvmclock_ns(struct kvm *kvm)
2982 {
2983 	struct kvm_clock_data data;
2984 
2985 	get_kvmclock(kvm, &data);
2986 	return data.clock;
2987 }
2988 
2989 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
2990 				    struct gfn_to_pfn_cache *gpc,
2991 				    unsigned int offset)
2992 {
2993 	struct kvm_vcpu_arch *vcpu = &v->arch;
2994 	struct pvclock_vcpu_time_info *guest_hv_clock;
2995 	unsigned long flags;
2996 
2997 	read_lock_irqsave(&gpc->lock, flags);
2998 	while (!kvm_gfn_to_pfn_cache_check(v->kvm, gpc, gpc->gpa,
2999 					   offset + sizeof(*guest_hv_clock))) {
3000 		read_unlock_irqrestore(&gpc->lock, flags);
3001 
3002 		if (kvm_gfn_to_pfn_cache_refresh(v->kvm, gpc, gpc->gpa,
3003 						 offset + sizeof(*guest_hv_clock)))
3004 			return;
3005 
3006 		read_lock_irqsave(&gpc->lock, flags);
3007 	}
3008 
3009 	guest_hv_clock = (void *)(gpc->khva + offset);
3010 
3011 	/*
3012 	 * This VCPU is paused, but it's legal for a guest to read another
3013 	 * VCPU's kvmclock, so we really have to follow the specification where
3014 	 * it says that version is odd if data is being modified, and even after
3015 	 * it is consistent.
3016 	 */
3017 
3018 	guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3019 	smp_wmb();
3020 
3021 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3022 	vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3023 
3024 	if (vcpu->pvclock_set_guest_stopped_request) {
3025 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3026 		vcpu->pvclock_set_guest_stopped_request = false;
3027 	}
3028 
3029 	memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3030 	smp_wmb();
3031 
3032 	guest_hv_clock->version = ++vcpu->hv_clock.version;
3033 
3034 	mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3035 	read_unlock_irqrestore(&gpc->lock, flags);
3036 
3037 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3038 }
3039 
3040 static int kvm_guest_time_update(struct kvm_vcpu *v)
3041 {
3042 	unsigned long flags, tgt_tsc_khz;
3043 	unsigned seq;
3044 	struct kvm_vcpu_arch *vcpu = &v->arch;
3045 	struct kvm_arch *ka = &v->kvm->arch;
3046 	s64 kernel_ns;
3047 	u64 tsc_timestamp, host_tsc;
3048 	u8 pvclock_flags;
3049 	bool use_master_clock;
3050 
3051 	kernel_ns = 0;
3052 	host_tsc = 0;
3053 
3054 	/*
3055 	 * If the host uses TSC clock, then passthrough TSC as stable
3056 	 * to the guest.
3057 	 */
3058 	do {
3059 		seq = read_seqcount_begin(&ka->pvclock_sc);
3060 		use_master_clock = ka->use_master_clock;
3061 		if (use_master_clock) {
3062 			host_tsc = ka->master_cycle_now;
3063 			kernel_ns = ka->master_kernel_ns;
3064 		}
3065 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3066 
3067 	/* Keep irq disabled to prevent changes to the clock */
3068 	local_irq_save(flags);
3069 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
3070 	if (unlikely(tgt_tsc_khz == 0)) {
3071 		local_irq_restore(flags);
3072 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3073 		return 1;
3074 	}
3075 	if (!use_master_clock) {
3076 		host_tsc = rdtsc();
3077 		kernel_ns = get_kvmclock_base_ns();
3078 	}
3079 
3080 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3081 
3082 	/*
3083 	 * We may have to catch up the TSC to match elapsed wall clock
3084 	 * time for two reasons, even if kvmclock is used.
3085 	 *   1) CPU could have been running below the maximum TSC rate
3086 	 *   2) Broken TSC compensation resets the base at each VCPU
3087 	 *      entry to avoid unknown leaps of TSC even when running
3088 	 *      again on the same CPU.  This may cause apparent elapsed
3089 	 *      time to disappear, and the guest to stand still or run
3090 	 *	very slowly.
3091 	 */
3092 	if (vcpu->tsc_catchup) {
3093 		u64 tsc = compute_guest_tsc(v, kernel_ns);
3094 		if (tsc > tsc_timestamp) {
3095 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3096 			tsc_timestamp = tsc;
3097 		}
3098 	}
3099 
3100 	local_irq_restore(flags);
3101 
3102 	/* With all the info we got, fill in the values */
3103 
3104 	if (kvm_caps.has_tsc_control)
3105 		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3106 					    v->arch.l1_tsc_scaling_ratio);
3107 
3108 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3109 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3110 				   &vcpu->hv_clock.tsc_shift,
3111 				   &vcpu->hv_clock.tsc_to_system_mul);
3112 		vcpu->hw_tsc_khz = tgt_tsc_khz;
3113 	}
3114 
3115 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3116 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3117 	vcpu->last_guest_tsc = tsc_timestamp;
3118 
3119 	/* If the host uses TSC clocksource, then it is stable */
3120 	pvclock_flags = 0;
3121 	if (use_master_clock)
3122 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3123 
3124 	vcpu->hv_clock.flags = pvclock_flags;
3125 
3126 	if (vcpu->pv_time.active)
3127 		kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3128 	if (vcpu->xen.vcpu_info_cache.active)
3129 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3130 					offsetof(struct compat_vcpu_info, time));
3131 	if (vcpu->xen.vcpu_time_info_cache.active)
3132 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3133 	kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3134 	return 0;
3135 }
3136 
3137 /*
3138  * kvmclock updates which are isolated to a given vcpu, such as
3139  * vcpu->cpu migration, should not allow system_timestamp from
3140  * the rest of the vcpus to remain static. Otherwise ntp frequency
3141  * correction applies to one vcpu's system_timestamp but not
3142  * the others.
3143  *
3144  * So in those cases, request a kvmclock update for all vcpus.
3145  * We need to rate-limit these requests though, as they can
3146  * considerably slow guests that have a large number of vcpus.
3147  * The time for a remote vcpu to update its kvmclock is bound
3148  * by the delay we use to rate-limit the updates.
3149  */
3150 
3151 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3152 
3153 static void kvmclock_update_fn(struct work_struct *work)
3154 {
3155 	unsigned long i;
3156 	struct delayed_work *dwork = to_delayed_work(work);
3157 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3158 					   kvmclock_update_work);
3159 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3160 	struct kvm_vcpu *vcpu;
3161 
3162 	kvm_for_each_vcpu(i, vcpu, kvm) {
3163 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3164 		kvm_vcpu_kick(vcpu);
3165 	}
3166 }
3167 
3168 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3169 {
3170 	struct kvm *kvm = v->kvm;
3171 
3172 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3173 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3174 					KVMCLOCK_UPDATE_DELAY);
3175 }
3176 
3177 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3178 
3179 static void kvmclock_sync_fn(struct work_struct *work)
3180 {
3181 	struct delayed_work *dwork = to_delayed_work(work);
3182 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3183 					   kvmclock_sync_work);
3184 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3185 
3186 	if (!kvmclock_periodic_sync)
3187 		return;
3188 
3189 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3190 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3191 					KVMCLOCK_SYNC_PERIOD);
3192 }
3193 
3194 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3195 static bool is_mci_control_msr(u32 msr)
3196 {
3197 	return (msr & 3) == 0;
3198 }
3199 static bool is_mci_status_msr(u32 msr)
3200 {
3201 	return (msr & 3) == 1;
3202 }
3203 
3204 /*
3205  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3206  */
3207 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3208 {
3209 	/* McStatusWrEn enabled? */
3210 	if (guest_cpuid_is_amd_or_hygon(vcpu))
3211 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3212 
3213 	return false;
3214 }
3215 
3216 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3217 {
3218 	u64 mcg_cap = vcpu->arch.mcg_cap;
3219 	unsigned bank_num = mcg_cap & 0xff;
3220 	u32 msr = msr_info->index;
3221 	u64 data = msr_info->data;
3222 	u32 offset, last_msr;
3223 
3224 	switch (msr) {
3225 	case MSR_IA32_MCG_STATUS:
3226 		vcpu->arch.mcg_status = data;
3227 		break;
3228 	case MSR_IA32_MCG_CTL:
3229 		if (!(mcg_cap & MCG_CTL_P) &&
3230 		    (data || !msr_info->host_initiated))
3231 			return 1;
3232 		if (data != 0 && data != ~(u64)0)
3233 			return 1;
3234 		vcpu->arch.mcg_ctl = data;
3235 		break;
3236 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3237 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3238 		if (msr > last_msr)
3239 			return 1;
3240 
3241 		if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3242 			return 1;
3243 		/* An attempt to write a 1 to a reserved bit raises #GP */
3244 		if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3245 			return 1;
3246 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3247 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3248 		vcpu->arch.mci_ctl2_banks[offset] = data;
3249 		break;
3250 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3251 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3252 		if (msr > last_msr)
3253 			return 1;
3254 
3255 		/*
3256 		 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3257 		 * values are architecturally undefined.  But, some Linux
3258 		 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3259 		 * issue on AMD K8s, allow bit 10 to be clear when setting all
3260 		 * other bits in order to avoid an uncaught #GP in the guest.
3261 			 *
3262 			 * UNIXWARE clears bit 0 of MC1_CTL to ignore
3263 			 * correctable, single-bit ECC data errors.
3264 		 */
3265 		if (is_mci_control_msr(msr) &&
3266 		    data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3267 			return 1;
3268 
3269 		/*
3270 		 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3271 		 * AMD-based CPUs allow non-zero values, but if and only if
3272 		 * HWCR[McStatusWrEn] is set.
3273 		 */
3274 		if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3275 		    data != 0 && !can_set_mci_status(vcpu))
3276 			return 1;
3277 
3278 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3279 					    last_msr + 1 - MSR_IA32_MC0_CTL);
3280 		vcpu->arch.mce_banks[offset] = data;
3281 		break;
3282 	default:
3283 		return 1;
3284 	}
3285 	return 0;
3286 }
3287 
3288 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3289 {
3290 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3291 
3292 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3293 }
3294 
3295 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3296 {
3297 	gpa_t gpa = data & ~0x3f;
3298 
3299 	/* Bits 4:5 are reserved, Should be zero */
3300 	if (data & 0x30)
3301 		return 1;
3302 
3303 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3304 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3305 		return 1;
3306 
3307 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3308 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3309 		return 1;
3310 
3311 	if (!lapic_in_kernel(vcpu))
3312 		return data ? 1 : 0;
3313 
3314 	vcpu->arch.apf.msr_en_val = data;
3315 
3316 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3317 		kvm_clear_async_pf_completion_queue(vcpu);
3318 		kvm_async_pf_hash_reset(vcpu);
3319 		return 0;
3320 	}
3321 
3322 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3323 					sizeof(u64)))
3324 		return 1;
3325 
3326 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3327 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3328 
3329 	kvm_async_pf_wakeup_all(vcpu);
3330 
3331 	return 0;
3332 }
3333 
3334 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3335 {
3336 	/* Bits 8-63 are reserved */
3337 	if (data >> 8)
3338 		return 1;
3339 
3340 	if (!lapic_in_kernel(vcpu))
3341 		return 1;
3342 
3343 	vcpu->arch.apf.msr_int_val = data;
3344 
3345 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3346 
3347 	return 0;
3348 }
3349 
3350 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3351 {
3352 	kvm_gfn_to_pfn_cache_destroy(vcpu->kvm, &vcpu->arch.pv_time);
3353 	vcpu->arch.time = 0;
3354 }
3355 
3356 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3357 {
3358 	++vcpu->stat.tlb_flush;
3359 	static_call(kvm_x86_flush_tlb_all)(vcpu);
3360 }
3361 
3362 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3363 {
3364 	++vcpu->stat.tlb_flush;
3365 
3366 	if (!tdp_enabled) {
3367 		/*
3368 		 * A TLB flush on behalf of the guest is equivalent to
3369 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3370 		 * a forced sync of the shadow page tables.  Ensure all the
3371 		 * roots are synced and the guest TLB in hardware is clean.
3372 		 */
3373 		kvm_mmu_sync_roots(vcpu);
3374 		kvm_mmu_sync_prev_roots(vcpu);
3375 	}
3376 
3377 	static_call(kvm_x86_flush_tlb_guest)(vcpu);
3378 }
3379 
3380 
3381 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3382 {
3383 	++vcpu->stat.tlb_flush;
3384 	static_call(kvm_x86_flush_tlb_current)(vcpu);
3385 }
3386 
3387 /*
3388  * Service "local" TLB flush requests, which are specific to the current MMU
3389  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3390  * TLB flushes that are targeted at an MMU context also need to be serviced
3391  * prior before nested VM-Enter/VM-Exit.
3392  */
3393 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3394 {
3395 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3396 		kvm_vcpu_flush_tlb_current(vcpu);
3397 
3398 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3399 		kvm_vcpu_flush_tlb_guest(vcpu);
3400 }
3401 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3402 
3403 static void record_steal_time(struct kvm_vcpu *vcpu)
3404 {
3405 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3406 	struct kvm_steal_time __user *st;
3407 	struct kvm_memslots *slots;
3408 	u64 steal;
3409 	u32 version;
3410 
3411 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3412 		kvm_xen_runstate_set_running(vcpu);
3413 		return;
3414 	}
3415 
3416 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3417 		return;
3418 
3419 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3420 		return;
3421 
3422 	slots = kvm_memslots(vcpu->kvm);
3423 
3424 	if (unlikely(slots->generation != ghc->generation ||
3425 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3426 		gfn_t gfn = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3427 
3428 		/* We rely on the fact that it fits in a single page. */
3429 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3430 
3431 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gfn, sizeof(*st)) ||
3432 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3433 			return;
3434 	}
3435 
3436 	st = (struct kvm_steal_time __user *)ghc->hva;
3437 	/*
3438 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3439 	 * expensive IPIs.
3440 	 */
3441 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3442 		u8 st_preempted = 0;
3443 		int err = -EFAULT;
3444 
3445 		if (!user_access_begin(st, sizeof(*st)))
3446 			return;
3447 
3448 		asm volatile("1: xchgb %0, %2\n"
3449 			     "xor %1, %1\n"
3450 			     "2:\n"
3451 			     _ASM_EXTABLE_UA(1b, 2b)
3452 			     : "+q" (st_preempted),
3453 			       "+&r" (err),
3454 			       "+m" (st->preempted));
3455 		if (err)
3456 			goto out;
3457 
3458 		user_access_end();
3459 
3460 		vcpu->arch.st.preempted = 0;
3461 
3462 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3463 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3464 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3465 			kvm_vcpu_flush_tlb_guest(vcpu);
3466 
3467 		if (!user_access_begin(st, sizeof(*st)))
3468 			goto dirty;
3469 	} else {
3470 		if (!user_access_begin(st, sizeof(*st)))
3471 			return;
3472 
3473 		unsafe_put_user(0, &st->preempted, out);
3474 		vcpu->arch.st.preempted = 0;
3475 	}
3476 
3477 	unsafe_get_user(version, &st->version, out);
3478 	if (version & 1)
3479 		version += 1;  /* first time write, random junk */
3480 
3481 	version += 1;
3482 	unsafe_put_user(version, &st->version, out);
3483 
3484 	smp_wmb();
3485 
3486 	unsafe_get_user(steal, &st->steal, out);
3487 	steal += current->sched_info.run_delay -
3488 		vcpu->arch.st.last_steal;
3489 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3490 	unsafe_put_user(steal, &st->steal, out);
3491 
3492 	version += 1;
3493 	unsafe_put_user(version, &st->version, out);
3494 
3495  out:
3496 	user_access_end();
3497  dirty:
3498 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3499 }
3500 
3501 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3502 {
3503 	bool pr = false;
3504 	u32 msr = msr_info->index;
3505 	u64 data = msr_info->data;
3506 
3507 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3508 		return kvm_xen_write_hypercall_page(vcpu, data);
3509 
3510 	switch (msr) {
3511 	case MSR_AMD64_NB_CFG:
3512 	case MSR_IA32_UCODE_WRITE:
3513 	case MSR_VM_HSAVE_PA:
3514 	case MSR_AMD64_PATCH_LOADER:
3515 	case MSR_AMD64_BU_CFG2:
3516 	case MSR_AMD64_DC_CFG:
3517 	case MSR_F15H_EX_CFG:
3518 		break;
3519 
3520 	case MSR_IA32_UCODE_REV:
3521 		if (msr_info->host_initiated)
3522 			vcpu->arch.microcode_version = data;
3523 		break;
3524 	case MSR_IA32_ARCH_CAPABILITIES:
3525 		if (!msr_info->host_initiated)
3526 			return 1;
3527 		vcpu->arch.arch_capabilities = data;
3528 		break;
3529 	case MSR_IA32_PERF_CAPABILITIES: {
3530 		struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3531 
3532 		if (!msr_info->host_initiated)
3533 			return 1;
3534 		if (kvm_get_msr_feature(&msr_ent))
3535 			return 1;
3536 		if (data & ~msr_ent.data)
3537 			return 1;
3538 
3539 		vcpu->arch.perf_capabilities = data;
3540 
3541 		return 0;
3542 		}
3543 	case MSR_EFER:
3544 		return set_efer(vcpu, msr_info);
3545 	case MSR_K7_HWCR:
3546 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3547 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3548 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3549 
3550 		/* Handle McStatusWrEn */
3551 		if (data == BIT_ULL(18)) {
3552 			vcpu->arch.msr_hwcr = data;
3553 		} else if (data != 0) {
3554 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3555 				    data);
3556 			return 1;
3557 		}
3558 		break;
3559 	case MSR_FAM10H_MMIO_CONF_BASE:
3560 		if (data != 0) {
3561 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3562 				    "0x%llx\n", data);
3563 			return 1;
3564 		}
3565 		break;
3566 	case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
3567 	case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff:
3568 		return kvm_mtrr_set_msr(vcpu, msr, data);
3569 	case MSR_IA32_APICBASE:
3570 		return kvm_set_apic_base(vcpu, msr_info);
3571 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3572 		return kvm_x2apic_msr_write(vcpu, msr, data);
3573 	case MSR_IA32_TSC_DEADLINE:
3574 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3575 		break;
3576 	case MSR_IA32_TSC_ADJUST:
3577 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3578 			if (!msr_info->host_initiated) {
3579 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3580 				adjust_tsc_offset_guest(vcpu, adj);
3581 				/* Before back to guest, tsc_timestamp must be adjusted
3582 				 * as well, otherwise guest's percpu pvclock time could jump.
3583 				 */
3584 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3585 			}
3586 			vcpu->arch.ia32_tsc_adjust_msr = data;
3587 		}
3588 		break;
3589 	case MSR_IA32_MISC_ENABLE: {
3590 		u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3591 
3592 		if (!msr_info->host_initiated) {
3593 			/* RO bits */
3594 			if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3595 				return 1;
3596 
3597 			/* R bits, i.e. writes are ignored, but don't fault. */
3598 			data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3599 			data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3600 		}
3601 
3602 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3603 		    ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3604 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3605 				return 1;
3606 			vcpu->arch.ia32_misc_enable_msr = data;
3607 			kvm_update_cpuid_runtime(vcpu);
3608 		} else {
3609 			vcpu->arch.ia32_misc_enable_msr = data;
3610 		}
3611 		break;
3612 	}
3613 	case MSR_IA32_SMBASE:
3614 		if (!msr_info->host_initiated)
3615 			return 1;
3616 		vcpu->arch.smbase = data;
3617 		break;
3618 	case MSR_IA32_POWER_CTL:
3619 		vcpu->arch.msr_ia32_power_ctl = data;
3620 		break;
3621 	case MSR_IA32_TSC:
3622 		if (msr_info->host_initiated) {
3623 			kvm_synchronize_tsc(vcpu, data);
3624 		} else {
3625 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3626 			adjust_tsc_offset_guest(vcpu, adj);
3627 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3628 		}
3629 		break;
3630 	case MSR_IA32_XSS:
3631 		if (!msr_info->host_initiated &&
3632 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3633 			return 1;
3634 		/*
3635 		 * KVM supports exposing PT to the guest, but does not support
3636 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3637 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3638 		 */
3639 		if (data & ~kvm_caps.supported_xss)
3640 			return 1;
3641 		vcpu->arch.ia32_xss = data;
3642 		kvm_update_cpuid_runtime(vcpu);
3643 		break;
3644 	case MSR_SMI_COUNT:
3645 		if (!msr_info->host_initiated)
3646 			return 1;
3647 		vcpu->arch.smi_count = data;
3648 		break;
3649 	case MSR_KVM_WALL_CLOCK_NEW:
3650 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3651 			return 1;
3652 
3653 		vcpu->kvm->arch.wall_clock = data;
3654 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3655 		break;
3656 	case MSR_KVM_WALL_CLOCK:
3657 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3658 			return 1;
3659 
3660 		vcpu->kvm->arch.wall_clock = data;
3661 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3662 		break;
3663 	case MSR_KVM_SYSTEM_TIME_NEW:
3664 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3665 			return 1;
3666 
3667 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3668 		break;
3669 	case MSR_KVM_SYSTEM_TIME:
3670 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3671 			return 1;
3672 
3673 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3674 		break;
3675 	case MSR_KVM_ASYNC_PF_EN:
3676 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3677 			return 1;
3678 
3679 		if (kvm_pv_enable_async_pf(vcpu, data))
3680 			return 1;
3681 		break;
3682 	case MSR_KVM_ASYNC_PF_INT:
3683 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3684 			return 1;
3685 
3686 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3687 			return 1;
3688 		break;
3689 	case MSR_KVM_ASYNC_PF_ACK:
3690 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3691 			return 1;
3692 		if (data & 0x1) {
3693 			vcpu->arch.apf.pageready_pending = false;
3694 			kvm_check_async_pf_completion(vcpu);
3695 		}
3696 		break;
3697 	case MSR_KVM_STEAL_TIME:
3698 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3699 			return 1;
3700 
3701 		if (unlikely(!sched_info_on()))
3702 			return 1;
3703 
3704 		if (data & KVM_STEAL_RESERVED_MASK)
3705 			return 1;
3706 
3707 		vcpu->arch.st.msr_val = data;
3708 
3709 		if (!(data & KVM_MSR_ENABLED))
3710 			break;
3711 
3712 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3713 
3714 		break;
3715 	case MSR_KVM_PV_EOI_EN:
3716 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3717 			return 1;
3718 
3719 		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3720 			return 1;
3721 		break;
3722 
3723 	case MSR_KVM_POLL_CONTROL:
3724 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3725 			return 1;
3726 
3727 		/* only enable bit supported */
3728 		if (data & (-1ULL << 1))
3729 			return 1;
3730 
3731 		vcpu->arch.msr_kvm_poll_control = data;
3732 		break;
3733 
3734 	case MSR_IA32_MCG_CTL:
3735 	case MSR_IA32_MCG_STATUS:
3736 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3737 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3738 		return set_msr_mce(vcpu, msr_info);
3739 
3740 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3741 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3742 		pr = true;
3743 		fallthrough;
3744 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3745 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3746 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3747 			return kvm_pmu_set_msr(vcpu, msr_info);
3748 
3749 		if (pr || data != 0)
3750 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3751 				    "0x%x data 0x%llx\n", msr, data);
3752 		break;
3753 	case MSR_K7_CLK_CTL:
3754 		/*
3755 		 * Ignore all writes to this no longer documented MSR.
3756 		 * Writes are only relevant for old K7 processors,
3757 		 * all pre-dating SVM, but a recommended workaround from
3758 		 * AMD for these chips. It is possible to specify the
3759 		 * affected processor models on the command line, hence
3760 		 * the need to ignore the workaround.
3761 		 */
3762 		break;
3763 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3764 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3765 	case HV_X64_MSR_SYNDBG_OPTIONS:
3766 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3767 	case HV_X64_MSR_CRASH_CTL:
3768 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3769 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3770 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3771 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3772 		return kvm_hv_set_msr_common(vcpu, msr, data,
3773 					     msr_info->host_initiated);
3774 	case MSR_IA32_BBL_CR_CTL3:
3775 		/* Drop writes to this legacy MSR -- see rdmsr
3776 		 * counterpart for further detail.
3777 		 */
3778 		if (report_ignored_msrs)
3779 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3780 				msr, data);
3781 		break;
3782 	case MSR_AMD64_OSVW_ID_LENGTH:
3783 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3784 			return 1;
3785 		vcpu->arch.osvw.length = data;
3786 		break;
3787 	case MSR_AMD64_OSVW_STATUS:
3788 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3789 			return 1;
3790 		vcpu->arch.osvw.status = data;
3791 		break;
3792 	case MSR_PLATFORM_INFO:
3793 		if (!msr_info->host_initiated ||
3794 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3795 		     cpuid_fault_enabled(vcpu)))
3796 			return 1;
3797 		vcpu->arch.msr_platform_info = data;
3798 		break;
3799 	case MSR_MISC_FEATURES_ENABLES:
3800 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3801 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3802 		     !supports_cpuid_fault(vcpu)))
3803 			return 1;
3804 		vcpu->arch.msr_misc_features_enables = data;
3805 		break;
3806 #ifdef CONFIG_X86_64
3807 	case MSR_IA32_XFD:
3808 		if (!msr_info->host_initiated &&
3809 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3810 			return 1;
3811 
3812 		if (data & ~kvm_guest_supported_xfd(vcpu))
3813 			return 1;
3814 
3815 		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3816 		break;
3817 	case MSR_IA32_XFD_ERR:
3818 		if (!msr_info->host_initiated &&
3819 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3820 			return 1;
3821 
3822 		if (data & ~kvm_guest_supported_xfd(vcpu))
3823 			return 1;
3824 
3825 		vcpu->arch.guest_fpu.xfd_err = data;
3826 		break;
3827 #endif
3828 	case MSR_IA32_PEBS_ENABLE:
3829 	case MSR_IA32_DS_AREA:
3830 	case MSR_PEBS_DATA_CFG:
3831 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3832 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3833 			return kvm_pmu_set_msr(vcpu, msr_info);
3834 		/*
3835 		 * Userspace is allowed to write '0' to MSRs that KVM reports
3836 		 * as to-be-saved, even if an MSRs isn't fully supported.
3837 		 */
3838 		return !msr_info->host_initiated || data;
3839 	default:
3840 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3841 			return kvm_pmu_set_msr(vcpu, msr_info);
3842 		return KVM_MSR_RET_INVALID;
3843 	}
3844 	return 0;
3845 }
3846 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3847 
3848 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3849 {
3850 	u64 data;
3851 	u64 mcg_cap = vcpu->arch.mcg_cap;
3852 	unsigned bank_num = mcg_cap & 0xff;
3853 	u32 offset, last_msr;
3854 
3855 	switch (msr) {
3856 	case MSR_IA32_P5_MC_ADDR:
3857 	case MSR_IA32_P5_MC_TYPE:
3858 		data = 0;
3859 		break;
3860 	case MSR_IA32_MCG_CAP:
3861 		data = vcpu->arch.mcg_cap;
3862 		break;
3863 	case MSR_IA32_MCG_CTL:
3864 		if (!(mcg_cap & MCG_CTL_P) && !host)
3865 			return 1;
3866 		data = vcpu->arch.mcg_ctl;
3867 		break;
3868 	case MSR_IA32_MCG_STATUS:
3869 		data = vcpu->arch.mcg_status;
3870 		break;
3871 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3872 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3873 		if (msr > last_msr)
3874 			return 1;
3875 
3876 		if (!(mcg_cap & MCG_CMCI_P) && !host)
3877 			return 1;
3878 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3879 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3880 		data = vcpu->arch.mci_ctl2_banks[offset];
3881 		break;
3882 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3883 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3884 		if (msr > last_msr)
3885 			return 1;
3886 
3887 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3888 					    last_msr + 1 - MSR_IA32_MC0_CTL);
3889 		data = vcpu->arch.mce_banks[offset];
3890 		break;
3891 	default:
3892 		return 1;
3893 	}
3894 	*pdata = data;
3895 	return 0;
3896 }
3897 
3898 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3899 {
3900 	switch (msr_info->index) {
3901 	case MSR_IA32_PLATFORM_ID:
3902 	case MSR_IA32_EBL_CR_POWERON:
3903 	case MSR_IA32_LASTBRANCHFROMIP:
3904 	case MSR_IA32_LASTBRANCHTOIP:
3905 	case MSR_IA32_LASTINTFROMIP:
3906 	case MSR_IA32_LASTINTTOIP:
3907 	case MSR_AMD64_SYSCFG:
3908 	case MSR_K8_TSEG_ADDR:
3909 	case MSR_K8_TSEG_MASK:
3910 	case MSR_VM_HSAVE_PA:
3911 	case MSR_K8_INT_PENDING_MSG:
3912 	case MSR_AMD64_NB_CFG:
3913 	case MSR_FAM10H_MMIO_CONF_BASE:
3914 	case MSR_AMD64_BU_CFG2:
3915 	case MSR_IA32_PERF_CTL:
3916 	case MSR_AMD64_DC_CFG:
3917 	case MSR_F15H_EX_CFG:
3918 	/*
3919 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3920 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3921 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3922 	 * so for existing CPU-specific MSRs.
3923 	 */
3924 	case MSR_RAPL_POWER_UNIT:
3925 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3926 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3927 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3928 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3929 		msr_info->data = 0;
3930 		break;
3931 	case MSR_IA32_PEBS_ENABLE:
3932 	case MSR_IA32_DS_AREA:
3933 	case MSR_PEBS_DATA_CFG:
3934 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3935 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3936 			return kvm_pmu_get_msr(vcpu, msr_info);
3937 		/*
3938 		 * Userspace is allowed to read MSRs that KVM reports as
3939 		 * to-be-saved, even if an MSR isn't fully supported.
3940 		 */
3941 		if (!msr_info->host_initiated)
3942 			return 1;
3943 		msr_info->data = 0;
3944 		break;
3945 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3946 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3947 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3948 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3949 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3950 			return kvm_pmu_get_msr(vcpu, msr_info);
3951 		msr_info->data = 0;
3952 		break;
3953 	case MSR_IA32_UCODE_REV:
3954 		msr_info->data = vcpu->arch.microcode_version;
3955 		break;
3956 	case MSR_IA32_ARCH_CAPABILITIES:
3957 		if (!msr_info->host_initiated &&
3958 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3959 			return 1;
3960 		msr_info->data = vcpu->arch.arch_capabilities;
3961 		break;
3962 	case MSR_IA32_PERF_CAPABILITIES:
3963 		if (!msr_info->host_initiated &&
3964 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3965 			return 1;
3966 		msr_info->data = vcpu->arch.perf_capabilities;
3967 		break;
3968 	case MSR_IA32_POWER_CTL:
3969 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3970 		break;
3971 	case MSR_IA32_TSC: {
3972 		/*
3973 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3974 		 * even when not intercepted. AMD manual doesn't explicitly
3975 		 * state this but appears to behave the same.
3976 		 *
3977 		 * On userspace reads and writes, however, we unconditionally
3978 		 * return L1's TSC value to ensure backwards-compatible
3979 		 * behavior for migration.
3980 		 */
3981 		u64 offset, ratio;
3982 
3983 		if (msr_info->host_initiated) {
3984 			offset = vcpu->arch.l1_tsc_offset;
3985 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
3986 		} else {
3987 			offset = vcpu->arch.tsc_offset;
3988 			ratio = vcpu->arch.tsc_scaling_ratio;
3989 		}
3990 
3991 		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
3992 		break;
3993 	}
3994 	case MSR_MTRRcap:
3995 	case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
3996 	case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff:
3997 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3998 	case 0xcd: /* fsb frequency */
3999 		msr_info->data = 3;
4000 		break;
4001 		/*
4002 		 * MSR_EBC_FREQUENCY_ID
4003 		 * Conservative value valid for even the basic CPU models.
4004 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4005 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4006 		 * and 266MHz for model 3, or 4. Set Core Clock
4007 		 * Frequency to System Bus Frequency Ratio to 1 (bits
4008 		 * 31:24) even though these are only valid for CPU
4009 		 * models > 2, however guests may end up dividing or
4010 		 * multiplying by zero otherwise.
4011 		 */
4012 	case MSR_EBC_FREQUENCY_ID:
4013 		msr_info->data = 1 << 24;
4014 		break;
4015 	case MSR_IA32_APICBASE:
4016 		msr_info->data = kvm_get_apic_base(vcpu);
4017 		break;
4018 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4019 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4020 	case MSR_IA32_TSC_DEADLINE:
4021 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4022 		break;
4023 	case MSR_IA32_TSC_ADJUST:
4024 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4025 		break;
4026 	case MSR_IA32_MISC_ENABLE:
4027 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4028 		break;
4029 	case MSR_IA32_SMBASE:
4030 		if (!msr_info->host_initiated)
4031 			return 1;
4032 		msr_info->data = vcpu->arch.smbase;
4033 		break;
4034 	case MSR_SMI_COUNT:
4035 		msr_info->data = vcpu->arch.smi_count;
4036 		break;
4037 	case MSR_IA32_PERF_STATUS:
4038 		/* TSC increment by tick */
4039 		msr_info->data = 1000ULL;
4040 		/* CPU multiplier */
4041 		msr_info->data |= (((uint64_t)4ULL) << 40);
4042 		break;
4043 	case MSR_EFER:
4044 		msr_info->data = vcpu->arch.efer;
4045 		break;
4046 	case MSR_KVM_WALL_CLOCK:
4047 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4048 			return 1;
4049 
4050 		msr_info->data = vcpu->kvm->arch.wall_clock;
4051 		break;
4052 	case MSR_KVM_WALL_CLOCK_NEW:
4053 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4054 			return 1;
4055 
4056 		msr_info->data = vcpu->kvm->arch.wall_clock;
4057 		break;
4058 	case MSR_KVM_SYSTEM_TIME:
4059 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4060 			return 1;
4061 
4062 		msr_info->data = vcpu->arch.time;
4063 		break;
4064 	case MSR_KVM_SYSTEM_TIME_NEW:
4065 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4066 			return 1;
4067 
4068 		msr_info->data = vcpu->arch.time;
4069 		break;
4070 	case MSR_KVM_ASYNC_PF_EN:
4071 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4072 			return 1;
4073 
4074 		msr_info->data = vcpu->arch.apf.msr_en_val;
4075 		break;
4076 	case MSR_KVM_ASYNC_PF_INT:
4077 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4078 			return 1;
4079 
4080 		msr_info->data = vcpu->arch.apf.msr_int_val;
4081 		break;
4082 	case MSR_KVM_ASYNC_PF_ACK:
4083 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4084 			return 1;
4085 
4086 		msr_info->data = 0;
4087 		break;
4088 	case MSR_KVM_STEAL_TIME:
4089 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4090 			return 1;
4091 
4092 		msr_info->data = vcpu->arch.st.msr_val;
4093 		break;
4094 	case MSR_KVM_PV_EOI_EN:
4095 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4096 			return 1;
4097 
4098 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
4099 		break;
4100 	case MSR_KVM_POLL_CONTROL:
4101 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4102 			return 1;
4103 
4104 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
4105 		break;
4106 	case MSR_IA32_P5_MC_ADDR:
4107 	case MSR_IA32_P5_MC_TYPE:
4108 	case MSR_IA32_MCG_CAP:
4109 	case MSR_IA32_MCG_CTL:
4110 	case MSR_IA32_MCG_STATUS:
4111 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4112 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4113 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4114 				   msr_info->host_initiated);
4115 	case MSR_IA32_XSS:
4116 		if (!msr_info->host_initiated &&
4117 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4118 			return 1;
4119 		msr_info->data = vcpu->arch.ia32_xss;
4120 		break;
4121 	case MSR_K7_CLK_CTL:
4122 		/*
4123 		 * Provide expected ramp-up count for K7. All other
4124 		 * are set to zero, indicating minimum divisors for
4125 		 * every field.
4126 		 *
4127 		 * This prevents guest kernels on AMD host with CPU
4128 		 * type 6, model 8 and higher from exploding due to
4129 		 * the rdmsr failing.
4130 		 */
4131 		msr_info->data = 0x20000000;
4132 		break;
4133 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4134 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4135 	case HV_X64_MSR_SYNDBG_OPTIONS:
4136 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4137 	case HV_X64_MSR_CRASH_CTL:
4138 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4139 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4140 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4141 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4142 		return kvm_hv_get_msr_common(vcpu,
4143 					     msr_info->index, &msr_info->data,
4144 					     msr_info->host_initiated);
4145 	case MSR_IA32_BBL_CR_CTL3:
4146 		/* This legacy MSR exists but isn't fully documented in current
4147 		 * silicon.  It is however accessed by winxp in very narrow
4148 		 * scenarios where it sets bit #19, itself documented as
4149 		 * a "reserved" bit.  Best effort attempt to source coherent
4150 		 * read data here should the balance of the register be
4151 		 * interpreted by the guest:
4152 		 *
4153 		 * L2 cache control register 3: 64GB range, 256KB size,
4154 		 * enabled, latency 0x1, configured
4155 		 */
4156 		msr_info->data = 0xbe702111;
4157 		break;
4158 	case MSR_AMD64_OSVW_ID_LENGTH:
4159 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4160 			return 1;
4161 		msr_info->data = vcpu->arch.osvw.length;
4162 		break;
4163 	case MSR_AMD64_OSVW_STATUS:
4164 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4165 			return 1;
4166 		msr_info->data = vcpu->arch.osvw.status;
4167 		break;
4168 	case MSR_PLATFORM_INFO:
4169 		if (!msr_info->host_initiated &&
4170 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4171 			return 1;
4172 		msr_info->data = vcpu->arch.msr_platform_info;
4173 		break;
4174 	case MSR_MISC_FEATURES_ENABLES:
4175 		msr_info->data = vcpu->arch.msr_misc_features_enables;
4176 		break;
4177 	case MSR_K7_HWCR:
4178 		msr_info->data = vcpu->arch.msr_hwcr;
4179 		break;
4180 #ifdef CONFIG_X86_64
4181 	case MSR_IA32_XFD:
4182 		if (!msr_info->host_initiated &&
4183 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4184 			return 1;
4185 
4186 		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4187 		break;
4188 	case MSR_IA32_XFD_ERR:
4189 		if (!msr_info->host_initiated &&
4190 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4191 			return 1;
4192 
4193 		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4194 		break;
4195 #endif
4196 	default:
4197 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4198 			return kvm_pmu_get_msr(vcpu, msr_info);
4199 		return KVM_MSR_RET_INVALID;
4200 	}
4201 	return 0;
4202 }
4203 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4204 
4205 /*
4206  * Read or write a bunch of msrs. All parameters are kernel addresses.
4207  *
4208  * @return number of msrs set successfully.
4209  */
4210 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4211 		    struct kvm_msr_entry *entries,
4212 		    int (*do_msr)(struct kvm_vcpu *vcpu,
4213 				  unsigned index, u64 *data))
4214 {
4215 	int i;
4216 
4217 	for (i = 0; i < msrs->nmsrs; ++i)
4218 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4219 			break;
4220 
4221 	return i;
4222 }
4223 
4224 /*
4225  * Read or write a bunch of msrs. Parameters are user addresses.
4226  *
4227  * @return number of msrs set successfully.
4228  */
4229 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4230 		  int (*do_msr)(struct kvm_vcpu *vcpu,
4231 				unsigned index, u64 *data),
4232 		  int writeback)
4233 {
4234 	struct kvm_msrs msrs;
4235 	struct kvm_msr_entry *entries;
4236 	int r, n;
4237 	unsigned size;
4238 
4239 	r = -EFAULT;
4240 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4241 		goto out;
4242 
4243 	r = -E2BIG;
4244 	if (msrs.nmsrs >= MAX_IO_MSRS)
4245 		goto out;
4246 
4247 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4248 	entries = memdup_user(user_msrs->entries, size);
4249 	if (IS_ERR(entries)) {
4250 		r = PTR_ERR(entries);
4251 		goto out;
4252 	}
4253 
4254 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4255 	if (r < 0)
4256 		goto out_free;
4257 
4258 	r = -EFAULT;
4259 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4260 		goto out_free;
4261 
4262 	r = n;
4263 
4264 out_free:
4265 	kfree(entries);
4266 out:
4267 	return r;
4268 }
4269 
4270 static inline bool kvm_can_mwait_in_guest(void)
4271 {
4272 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4273 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4274 		boot_cpu_has(X86_FEATURE_ARAT);
4275 }
4276 
4277 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4278 					    struct kvm_cpuid2 __user *cpuid_arg)
4279 {
4280 	struct kvm_cpuid2 cpuid;
4281 	int r;
4282 
4283 	r = -EFAULT;
4284 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4285 		return r;
4286 
4287 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4288 	if (r)
4289 		return r;
4290 
4291 	r = -EFAULT;
4292 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4293 		return r;
4294 
4295 	return 0;
4296 }
4297 
4298 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4299 {
4300 	int r = 0;
4301 
4302 	switch (ext) {
4303 	case KVM_CAP_IRQCHIP:
4304 	case KVM_CAP_HLT:
4305 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4306 	case KVM_CAP_SET_TSS_ADDR:
4307 	case KVM_CAP_EXT_CPUID:
4308 	case KVM_CAP_EXT_EMUL_CPUID:
4309 	case KVM_CAP_CLOCKSOURCE:
4310 	case KVM_CAP_PIT:
4311 	case KVM_CAP_NOP_IO_DELAY:
4312 	case KVM_CAP_MP_STATE:
4313 	case KVM_CAP_SYNC_MMU:
4314 	case KVM_CAP_USER_NMI:
4315 	case KVM_CAP_REINJECT_CONTROL:
4316 	case KVM_CAP_IRQ_INJECT_STATUS:
4317 	case KVM_CAP_IOEVENTFD:
4318 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4319 	case KVM_CAP_PIT2:
4320 	case KVM_CAP_PIT_STATE2:
4321 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4322 	case KVM_CAP_VCPU_EVENTS:
4323 	case KVM_CAP_HYPERV:
4324 	case KVM_CAP_HYPERV_VAPIC:
4325 	case KVM_CAP_HYPERV_SPIN:
4326 	case KVM_CAP_HYPERV_SYNIC:
4327 	case KVM_CAP_HYPERV_SYNIC2:
4328 	case KVM_CAP_HYPERV_VP_INDEX:
4329 	case KVM_CAP_HYPERV_EVENTFD:
4330 	case KVM_CAP_HYPERV_TLBFLUSH:
4331 	case KVM_CAP_HYPERV_SEND_IPI:
4332 	case KVM_CAP_HYPERV_CPUID:
4333 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4334 	case KVM_CAP_SYS_HYPERV_CPUID:
4335 	case KVM_CAP_PCI_SEGMENT:
4336 	case KVM_CAP_DEBUGREGS:
4337 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4338 	case KVM_CAP_XSAVE:
4339 	case KVM_CAP_ASYNC_PF:
4340 	case KVM_CAP_ASYNC_PF_INT:
4341 	case KVM_CAP_GET_TSC_KHZ:
4342 	case KVM_CAP_KVMCLOCK_CTRL:
4343 	case KVM_CAP_READONLY_MEM:
4344 	case KVM_CAP_HYPERV_TIME:
4345 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4346 	case KVM_CAP_TSC_DEADLINE_TIMER:
4347 	case KVM_CAP_DISABLE_QUIRKS:
4348 	case KVM_CAP_SET_BOOT_CPU_ID:
4349  	case KVM_CAP_SPLIT_IRQCHIP:
4350 	case KVM_CAP_IMMEDIATE_EXIT:
4351 	case KVM_CAP_PMU_EVENT_FILTER:
4352 	case KVM_CAP_GET_MSR_FEATURES:
4353 	case KVM_CAP_MSR_PLATFORM_INFO:
4354 	case KVM_CAP_EXCEPTION_PAYLOAD:
4355 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4356 	case KVM_CAP_SET_GUEST_DEBUG:
4357 	case KVM_CAP_LAST_CPU:
4358 	case KVM_CAP_X86_USER_SPACE_MSR:
4359 	case KVM_CAP_X86_MSR_FILTER:
4360 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4361 #ifdef CONFIG_X86_SGX_KVM
4362 	case KVM_CAP_SGX_ATTRIBUTE:
4363 #endif
4364 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4365 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4366 	case KVM_CAP_SREGS2:
4367 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4368 	case KVM_CAP_VCPU_ATTRIBUTES:
4369 	case KVM_CAP_SYS_ATTRIBUTES:
4370 	case KVM_CAP_VAPIC:
4371 	case KVM_CAP_ENABLE_CAP:
4372 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4373 		r = 1;
4374 		break;
4375 	case KVM_CAP_EXIT_HYPERCALL:
4376 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4377 		break;
4378 	case KVM_CAP_SET_GUEST_DEBUG2:
4379 		return KVM_GUESTDBG_VALID_MASK;
4380 #ifdef CONFIG_KVM_XEN
4381 	case KVM_CAP_XEN_HVM:
4382 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4383 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4384 		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4385 		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4386 		    KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4387 		if (sched_info_on())
4388 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4389 		break;
4390 #endif
4391 	case KVM_CAP_SYNC_REGS:
4392 		r = KVM_SYNC_X86_VALID_FIELDS;
4393 		break;
4394 	case KVM_CAP_ADJUST_CLOCK:
4395 		r = KVM_CLOCK_VALID_FLAGS;
4396 		break;
4397 	case KVM_CAP_X86_DISABLE_EXITS:
4398 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4399 		      KVM_X86_DISABLE_EXITS_CSTATE;
4400 		if(kvm_can_mwait_in_guest())
4401 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
4402 		break;
4403 	case KVM_CAP_X86_SMM:
4404 		/* SMBASE is usually relocated above 1M on modern chipsets,
4405 		 * and SMM handlers might indeed rely on 4G segment limits,
4406 		 * so do not report SMM to be available if real mode is
4407 		 * emulated via vm86 mode.  Still, do not go to great lengths
4408 		 * to avoid userspace's usage of the feature, because it is a
4409 		 * fringe case that is not enabled except via specific settings
4410 		 * of the module parameters.
4411 		 */
4412 		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4413 		break;
4414 	case KVM_CAP_NR_VCPUS:
4415 		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4416 		break;
4417 	case KVM_CAP_MAX_VCPUS:
4418 		r = KVM_MAX_VCPUS;
4419 		break;
4420 	case KVM_CAP_MAX_VCPU_ID:
4421 		r = KVM_MAX_VCPU_IDS;
4422 		break;
4423 	case KVM_CAP_PV_MMU:	/* obsolete */
4424 		r = 0;
4425 		break;
4426 	case KVM_CAP_MCE:
4427 		r = KVM_MAX_MCE_BANKS;
4428 		break;
4429 	case KVM_CAP_XCRS:
4430 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4431 		break;
4432 	case KVM_CAP_TSC_CONTROL:
4433 	case KVM_CAP_VM_TSC_CONTROL:
4434 		r = kvm_caps.has_tsc_control;
4435 		break;
4436 	case KVM_CAP_X2APIC_API:
4437 		r = KVM_X2APIC_API_VALID_FLAGS;
4438 		break;
4439 	case KVM_CAP_NESTED_STATE:
4440 		r = kvm_x86_ops.nested_ops->get_state ?
4441 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4442 		break;
4443 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4444 		r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4445 		break;
4446 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4447 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4448 		break;
4449 	case KVM_CAP_SMALLER_MAXPHYADDR:
4450 		r = (int) allow_smaller_maxphyaddr;
4451 		break;
4452 	case KVM_CAP_STEAL_TIME:
4453 		r = sched_info_on();
4454 		break;
4455 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4456 		if (kvm_caps.has_bus_lock_exit)
4457 			r = KVM_BUS_LOCK_DETECTION_OFF |
4458 			    KVM_BUS_LOCK_DETECTION_EXIT;
4459 		else
4460 			r = 0;
4461 		break;
4462 	case KVM_CAP_XSAVE2: {
4463 		u64 guest_perm = xstate_get_guest_group_perm();
4464 
4465 		r = xstate_required_size(kvm_caps.supported_xcr0 & guest_perm, false);
4466 		if (r < sizeof(struct kvm_xsave))
4467 			r = sizeof(struct kvm_xsave);
4468 		break;
4469 	}
4470 	case KVM_CAP_PMU_CAPABILITY:
4471 		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4472 		break;
4473 	case KVM_CAP_DISABLE_QUIRKS2:
4474 		r = KVM_X86_VALID_QUIRKS;
4475 		break;
4476 	case KVM_CAP_X86_NOTIFY_VMEXIT:
4477 		r = kvm_caps.has_notify_vmexit;
4478 		break;
4479 	default:
4480 		break;
4481 	}
4482 	return r;
4483 }
4484 
4485 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4486 {
4487 	void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4488 
4489 	if ((u64)(unsigned long)uaddr != attr->addr)
4490 		return ERR_PTR_USR(-EFAULT);
4491 	return uaddr;
4492 }
4493 
4494 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4495 {
4496 	u64 __user *uaddr = kvm_get_attr_addr(attr);
4497 
4498 	if (attr->group)
4499 		return -ENXIO;
4500 
4501 	if (IS_ERR(uaddr))
4502 		return PTR_ERR(uaddr);
4503 
4504 	switch (attr->attr) {
4505 	case KVM_X86_XCOMP_GUEST_SUPP:
4506 		if (put_user(kvm_caps.supported_xcr0, uaddr))
4507 			return -EFAULT;
4508 		return 0;
4509 	default:
4510 		return -ENXIO;
4511 		break;
4512 	}
4513 }
4514 
4515 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4516 {
4517 	if (attr->group)
4518 		return -ENXIO;
4519 
4520 	switch (attr->attr) {
4521 	case KVM_X86_XCOMP_GUEST_SUPP:
4522 		return 0;
4523 	default:
4524 		return -ENXIO;
4525 	}
4526 }
4527 
4528 long kvm_arch_dev_ioctl(struct file *filp,
4529 			unsigned int ioctl, unsigned long arg)
4530 {
4531 	void __user *argp = (void __user *)arg;
4532 	long r;
4533 
4534 	switch (ioctl) {
4535 	case KVM_GET_MSR_INDEX_LIST: {
4536 		struct kvm_msr_list __user *user_msr_list = argp;
4537 		struct kvm_msr_list msr_list;
4538 		unsigned n;
4539 
4540 		r = -EFAULT;
4541 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4542 			goto out;
4543 		n = msr_list.nmsrs;
4544 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4545 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4546 			goto out;
4547 		r = -E2BIG;
4548 		if (n < msr_list.nmsrs)
4549 			goto out;
4550 		r = -EFAULT;
4551 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4552 				 num_msrs_to_save * sizeof(u32)))
4553 			goto out;
4554 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4555 				 &emulated_msrs,
4556 				 num_emulated_msrs * sizeof(u32)))
4557 			goto out;
4558 		r = 0;
4559 		break;
4560 	}
4561 	case KVM_GET_SUPPORTED_CPUID:
4562 	case KVM_GET_EMULATED_CPUID: {
4563 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4564 		struct kvm_cpuid2 cpuid;
4565 
4566 		r = -EFAULT;
4567 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4568 			goto out;
4569 
4570 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4571 					    ioctl);
4572 		if (r)
4573 			goto out;
4574 
4575 		r = -EFAULT;
4576 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4577 			goto out;
4578 		r = 0;
4579 		break;
4580 	}
4581 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4582 		r = -EFAULT;
4583 		if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4584 				 sizeof(kvm_caps.supported_mce_cap)))
4585 			goto out;
4586 		r = 0;
4587 		break;
4588 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4589 		struct kvm_msr_list __user *user_msr_list = argp;
4590 		struct kvm_msr_list msr_list;
4591 		unsigned int n;
4592 
4593 		r = -EFAULT;
4594 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4595 			goto out;
4596 		n = msr_list.nmsrs;
4597 		msr_list.nmsrs = num_msr_based_features;
4598 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4599 			goto out;
4600 		r = -E2BIG;
4601 		if (n < msr_list.nmsrs)
4602 			goto out;
4603 		r = -EFAULT;
4604 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4605 				 num_msr_based_features * sizeof(u32)))
4606 			goto out;
4607 		r = 0;
4608 		break;
4609 	}
4610 	case KVM_GET_MSRS:
4611 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4612 		break;
4613 	case KVM_GET_SUPPORTED_HV_CPUID:
4614 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4615 		break;
4616 	case KVM_GET_DEVICE_ATTR: {
4617 		struct kvm_device_attr attr;
4618 		r = -EFAULT;
4619 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4620 			break;
4621 		r = kvm_x86_dev_get_attr(&attr);
4622 		break;
4623 	}
4624 	case KVM_HAS_DEVICE_ATTR: {
4625 		struct kvm_device_attr attr;
4626 		r = -EFAULT;
4627 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4628 			break;
4629 		r = kvm_x86_dev_has_attr(&attr);
4630 		break;
4631 	}
4632 	default:
4633 		r = -EINVAL;
4634 		break;
4635 	}
4636 out:
4637 	return r;
4638 }
4639 
4640 static void wbinvd_ipi(void *garbage)
4641 {
4642 	wbinvd();
4643 }
4644 
4645 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4646 {
4647 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4648 }
4649 
4650 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4651 {
4652 	/* Address WBINVD may be executed by guest */
4653 	if (need_emulate_wbinvd(vcpu)) {
4654 		if (static_call(kvm_x86_has_wbinvd_exit)())
4655 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4656 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4657 			smp_call_function_single(vcpu->cpu,
4658 					wbinvd_ipi, NULL, 1);
4659 	}
4660 
4661 	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4662 
4663 	/* Save host pkru register if supported */
4664 	vcpu->arch.host_pkru = read_pkru();
4665 
4666 	/* Apply any externally detected TSC adjustments (due to suspend) */
4667 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4668 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4669 		vcpu->arch.tsc_offset_adjustment = 0;
4670 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4671 	}
4672 
4673 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4674 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4675 				rdtsc() - vcpu->arch.last_host_tsc;
4676 		if (tsc_delta < 0)
4677 			mark_tsc_unstable("KVM discovered backwards TSC");
4678 
4679 		if (kvm_check_tsc_unstable()) {
4680 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4681 						vcpu->arch.last_guest_tsc);
4682 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4683 			vcpu->arch.tsc_catchup = 1;
4684 		}
4685 
4686 		if (kvm_lapic_hv_timer_in_use(vcpu))
4687 			kvm_lapic_restart_hv_timer(vcpu);
4688 
4689 		/*
4690 		 * On a host with synchronized TSC, there is no need to update
4691 		 * kvmclock on vcpu->cpu migration
4692 		 */
4693 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4694 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4695 		if (vcpu->cpu != cpu)
4696 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4697 		vcpu->cpu = cpu;
4698 	}
4699 
4700 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4701 }
4702 
4703 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4704 {
4705 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4706 	struct kvm_steal_time __user *st;
4707 	struct kvm_memslots *slots;
4708 	static const u8 preempted = KVM_VCPU_PREEMPTED;
4709 
4710 	/*
4711 	 * The vCPU can be marked preempted if and only if the VM-Exit was on
4712 	 * an instruction boundary and will not trigger guest emulation of any
4713 	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
4714 	 * when this is true, for example allowing the vCPU to be marked
4715 	 * preempted if and only if the VM-Exit was due to a host interrupt.
4716 	 */
4717 	if (!vcpu->arch.at_instruction_boundary) {
4718 		vcpu->stat.preemption_other++;
4719 		return;
4720 	}
4721 
4722 	vcpu->stat.preemption_reported++;
4723 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4724 		return;
4725 
4726 	if (vcpu->arch.st.preempted)
4727 		return;
4728 
4729 	/* This happens on process exit */
4730 	if (unlikely(current->mm != vcpu->kvm->mm))
4731 		return;
4732 
4733 	slots = kvm_memslots(vcpu->kvm);
4734 
4735 	if (unlikely(slots->generation != ghc->generation ||
4736 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4737 		return;
4738 
4739 	st = (struct kvm_steal_time __user *)ghc->hva;
4740 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4741 
4742 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4743 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4744 
4745 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4746 }
4747 
4748 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4749 {
4750 	int idx;
4751 
4752 	if (vcpu->preempted) {
4753 		if (!vcpu->arch.guest_state_protected)
4754 			vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4755 
4756 		/*
4757 		 * Take the srcu lock as memslots will be accessed to check the gfn
4758 		 * cache generation against the memslots generation.
4759 		 */
4760 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4761 		if (kvm_xen_msr_enabled(vcpu->kvm))
4762 			kvm_xen_runstate_set_preempted(vcpu);
4763 		else
4764 			kvm_steal_time_set_preempted(vcpu);
4765 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4766 	}
4767 
4768 	static_call(kvm_x86_vcpu_put)(vcpu);
4769 	vcpu->arch.last_host_tsc = rdtsc();
4770 }
4771 
4772 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4773 				    struct kvm_lapic_state *s)
4774 {
4775 	static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4776 
4777 	return kvm_apic_get_state(vcpu, s);
4778 }
4779 
4780 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4781 				    struct kvm_lapic_state *s)
4782 {
4783 	int r;
4784 
4785 	r = kvm_apic_set_state(vcpu, s);
4786 	if (r)
4787 		return r;
4788 	update_cr8_intercept(vcpu);
4789 
4790 	return 0;
4791 }
4792 
4793 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4794 {
4795 	/*
4796 	 * We can accept userspace's request for interrupt injection
4797 	 * as long as we have a place to store the interrupt number.
4798 	 * The actual injection will happen when the CPU is able to
4799 	 * deliver the interrupt.
4800 	 */
4801 	if (kvm_cpu_has_extint(vcpu))
4802 		return false;
4803 
4804 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4805 	return (!lapic_in_kernel(vcpu) ||
4806 		kvm_apic_accept_pic_intr(vcpu));
4807 }
4808 
4809 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4810 {
4811 	/*
4812 	 * Do not cause an interrupt window exit if an exception
4813 	 * is pending or an event needs reinjection; userspace
4814 	 * might want to inject the interrupt manually using KVM_SET_REGS
4815 	 * or KVM_SET_SREGS.  For that to work, we must be at an
4816 	 * instruction boundary and with no events half-injected.
4817 	 */
4818 	return (kvm_arch_interrupt_allowed(vcpu) &&
4819 		kvm_cpu_accept_dm_intr(vcpu) &&
4820 		!kvm_event_needs_reinjection(vcpu) &&
4821 		!vcpu->arch.exception.pending);
4822 }
4823 
4824 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4825 				    struct kvm_interrupt *irq)
4826 {
4827 	if (irq->irq >= KVM_NR_INTERRUPTS)
4828 		return -EINVAL;
4829 
4830 	if (!irqchip_in_kernel(vcpu->kvm)) {
4831 		kvm_queue_interrupt(vcpu, irq->irq, false);
4832 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4833 		return 0;
4834 	}
4835 
4836 	/*
4837 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4838 	 * fail for in-kernel 8259.
4839 	 */
4840 	if (pic_in_kernel(vcpu->kvm))
4841 		return -ENXIO;
4842 
4843 	if (vcpu->arch.pending_external_vector != -1)
4844 		return -EEXIST;
4845 
4846 	vcpu->arch.pending_external_vector = irq->irq;
4847 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4848 	return 0;
4849 }
4850 
4851 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4852 {
4853 	kvm_inject_nmi(vcpu);
4854 
4855 	return 0;
4856 }
4857 
4858 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4859 {
4860 	kvm_make_request(KVM_REQ_SMI, vcpu);
4861 
4862 	return 0;
4863 }
4864 
4865 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4866 					   struct kvm_tpr_access_ctl *tac)
4867 {
4868 	if (tac->flags)
4869 		return -EINVAL;
4870 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
4871 	return 0;
4872 }
4873 
4874 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4875 					u64 mcg_cap)
4876 {
4877 	int r;
4878 	unsigned bank_num = mcg_cap & 0xff, bank;
4879 
4880 	r = -EINVAL;
4881 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4882 		goto out;
4883 	if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
4884 		goto out;
4885 	r = 0;
4886 	vcpu->arch.mcg_cap = mcg_cap;
4887 	/* Init IA32_MCG_CTL to all 1s */
4888 	if (mcg_cap & MCG_CTL_P)
4889 		vcpu->arch.mcg_ctl = ~(u64)0;
4890 	/* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
4891 	for (bank = 0; bank < bank_num; bank++) {
4892 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4893 		if (mcg_cap & MCG_CMCI_P)
4894 			vcpu->arch.mci_ctl2_banks[bank] = 0;
4895 	}
4896 	vcpu->arch.apic->nr_lvt_entries =
4897 		KVM_APIC_MAX_NR_LVT_ENTRIES - !(mcg_cap & MCG_CMCI_P);
4898 
4899 	static_call(kvm_x86_setup_mce)(vcpu);
4900 out:
4901 	return r;
4902 }
4903 
4904 /*
4905  * Validate this is an UCNA (uncorrectable no action) error by checking the
4906  * MCG_STATUS and MCi_STATUS registers:
4907  * - none of the bits for Machine Check Exceptions are set
4908  * - both the VAL (valid) and UC (uncorrectable) bits are set
4909  * MCI_STATUS_PCC - Processor Context Corrupted
4910  * MCI_STATUS_S - Signaled as a Machine Check Exception
4911  * MCI_STATUS_AR - Software recoverable Action Required
4912  */
4913 static bool is_ucna(struct kvm_x86_mce *mce)
4914 {
4915 	return	!mce->mcg_status &&
4916 		!(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
4917 		(mce->status & MCI_STATUS_VAL) &&
4918 		(mce->status & MCI_STATUS_UC);
4919 }
4920 
4921 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
4922 {
4923 	u64 mcg_cap = vcpu->arch.mcg_cap;
4924 
4925 	banks[1] = mce->status;
4926 	banks[2] = mce->addr;
4927 	banks[3] = mce->misc;
4928 	vcpu->arch.mcg_status = mce->mcg_status;
4929 
4930 	if (!(mcg_cap & MCG_CMCI_P) ||
4931 	    !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
4932 		return 0;
4933 
4934 	if (lapic_in_kernel(vcpu))
4935 		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
4936 
4937 	return 0;
4938 }
4939 
4940 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4941 				      struct kvm_x86_mce *mce)
4942 {
4943 	u64 mcg_cap = vcpu->arch.mcg_cap;
4944 	unsigned bank_num = mcg_cap & 0xff;
4945 	u64 *banks = vcpu->arch.mce_banks;
4946 
4947 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4948 		return -EINVAL;
4949 
4950 	banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
4951 
4952 	if (is_ucna(mce))
4953 		return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
4954 
4955 	/*
4956 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4957 	 * reporting is disabled
4958 	 */
4959 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4960 	    vcpu->arch.mcg_ctl != ~(u64)0)
4961 		return 0;
4962 	/*
4963 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4964 	 * reporting is disabled for the bank
4965 	 */
4966 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4967 		return 0;
4968 	if (mce->status & MCI_STATUS_UC) {
4969 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4970 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4971 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4972 			return 0;
4973 		}
4974 		if (banks[1] & MCI_STATUS_VAL)
4975 			mce->status |= MCI_STATUS_OVER;
4976 		banks[2] = mce->addr;
4977 		banks[3] = mce->misc;
4978 		vcpu->arch.mcg_status = mce->mcg_status;
4979 		banks[1] = mce->status;
4980 		kvm_queue_exception(vcpu, MC_VECTOR);
4981 	} else if (!(banks[1] & MCI_STATUS_VAL)
4982 		   || !(banks[1] & MCI_STATUS_UC)) {
4983 		if (banks[1] & MCI_STATUS_VAL)
4984 			mce->status |= MCI_STATUS_OVER;
4985 		banks[2] = mce->addr;
4986 		banks[3] = mce->misc;
4987 		banks[1] = mce->status;
4988 	} else
4989 		banks[1] |= MCI_STATUS_OVER;
4990 	return 0;
4991 }
4992 
4993 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4994 					       struct kvm_vcpu_events *events)
4995 {
4996 	process_nmi(vcpu);
4997 
4998 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
4999 		process_smi(vcpu);
5000 
5001 	/*
5002 	 * In guest mode, payload delivery should be deferred,
5003 	 * so that the L1 hypervisor can intercept #PF before
5004 	 * CR2 is modified (or intercept #DB before DR6 is
5005 	 * modified under nVMX). Unless the per-VM capability,
5006 	 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
5007 	 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
5008 	 * opportunistically defer the exception payload, deliver it if the
5009 	 * capability hasn't been requested before processing a
5010 	 * KVM_GET_VCPU_EVENTS.
5011 	 */
5012 	if (!vcpu->kvm->arch.exception_payload_enabled &&
5013 	    vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
5014 		kvm_deliver_exception_payload(vcpu);
5015 
5016 	/*
5017 	 * The API doesn't provide the instruction length for software
5018 	 * exceptions, so don't report them. As long as the guest RIP
5019 	 * isn't advanced, we should expect to encounter the exception
5020 	 * again.
5021 	 */
5022 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
5023 		events->exception.injected = 0;
5024 		events->exception.pending = 0;
5025 	} else {
5026 		events->exception.injected = vcpu->arch.exception.injected;
5027 		events->exception.pending = vcpu->arch.exception.pending;
5028 		/*
5029 		 * For ABI compatibility, deliberately conflate
5030 		 * pending and injected exceptions when
5031 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5032 		 */
5033 		if (!vcpu->kvm->arch.exception_payload_enabled)
5034 			events->exception.injected |=
5035 				vcpu->arch.exception.pending;
5036 	}
5037 	events->exception.nr = vcpu->arch.exception.nr;
5038 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
5039 	events->exception.error_code = vcpu->arch.exception.error_code;
5040 	events->exception_has_payload = vcpu->arch.exception.has_payload;
5041 	events->exception_payload = vcpu->arch.exception.payload;
5042 
5043 	events->interrupt.injected =
5044 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5045 	events->interrupt.nr = vcpu->arch.interrupt.nr;
5046 	events->interrupt.soft = 0;
5047 	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5048 
5049 	events->nmi.injected = vcpu->arch.nmi_injected;
5050 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
5051 	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5052 	events->nmi.pad = 0;
5053 
5054 	events->sipi_vector = 0; /* never valid when reporting to user space */
5055 
5056 	events->smi.smm = is_smm(vcpu);
5057 	events->smi.pending = vcpu->arch.smi_pending;
5058 	events->smi.smm_inside_nmi =
5059 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5060 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5061 
5062 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5063 			 | KVM_VCPUEVENT_VALID_SHADOW
5064 			 | KVM_VCPUEVENT_VALID_SMM);
5065 	if (vcpu->kvm->arch.exception_payload_enabled)
5066 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5067 	if (vcpu->kvm->arch.triple_fault_event) {
5068 		events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5069 		events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5070 	}
5071 
5072 	memset(&events->reserved, 0, sizeof(events->reserved));
5073 }
5074 
5075 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
5076 
5077 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5078 					      struct kvm_vcpu_events *events)
5079 {
5080 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5081 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5082 			      | KVM_VCPUEVENT_VALID_SHADOW
5083 			      | KVM_VCPUEVENT_VALID_SMM
5084 			      | KVM_VCPUEVENT_VALID_PAYLOAD
5085 			      | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5086 		return -EINVAL;
5087 
5088 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5089 		if (!vcpu->kvm->arch.exception_payload_enabled)
5090 			return -EINVAL;
5091 		if (events->exception.pending)
5092 			events->exception.injected = 0;
5093 		else
5094 			events->exception_has_payload = 0;
5095 	} else {
5096 		events->exception.pending = 0;
5097 		events->exception_has_payload = 0;
5098 	}
5099 
5100 	if ((events->exception.injected || events->exception.pending) &&
5101 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5102 		return -EINVAL;
5103 
5104 	/* INITs are latched while in SMM */
5105 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5106 	    (events->smi.smm || events->smi.pending) &&
5107 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5108 		return -EINVAL;
5109 
5110 	process_nmi(vcpu);
5111 	vcpu->arch.exception.injected = events->exception.injected;
5112 	vcpu->arch.exception.pending = events->exception.pending;
5113 	vcpu->arch.exception.nr = events->exception.nr;
5114 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5115 	vcpu->arch.exception.error_code = events->exception.error_code;
5116 	vcpu->arch.exception.has_payload = events->exception_has_payload;
5117 	vcpu->arch.exception.payload = events->exception_payload;
5118 
5119 	vcpu->arch.interrupt.injected = events->interrupt.injected;
5120 	vcpu->arch.interrupt.nr = events->interrupt.nr;
5121 	vcpu->arch.interrupt.soft = events->interrupt.soft;
5122 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5123 		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5124 						events->interrupt.shadow);
5125 
5126 	vcpu->arch.nmi_injected = events->nmi.injected;
5127 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
5128 		vcpu->arch.nmi_pending = events->nmi.pending;
5129 	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5130 
5131 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5132 	    lapic_in_kernel(vcpu))
5133 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
5134 
5135 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5136 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5137 			kvm_x86_ops.nested_ops->leave_nested(vcpu);
5138 			kvm_smm_changed(vcpu, events->smi.smm);
5139 		}
5140 
5141 		vcpu->arch.smi_pending = events->smi.pending;
5142 
5143 		if (events->smi.smm) {
5144 			if (events->smi.smm_inside_nmi)
5145 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5146 			else
5147 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5148 		}
5149 
5150 		if (lapic_in_kernel(vcpu)) {
5151 			if (events->smi.latched_init)
5152 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5153 			else
5154 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5155 		}
5156 	}
5157 
5158 	if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5159 		if (!vcpu->kvm->arch.triple_fault_event)
5160 			return -EINVAL;
5161 		if (events->triple_fault.pending)
5162 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5163 		else
5164 			kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5165 	}
5166 
5167 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5168 
5169 	return 0;
5170 }
5171 
5172 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5173 					     struct kvm_debugregs *dbgregs)
5174 {
5175 	unsigned long val;
5176 
5177 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5178 	kvm_get_dr(vcpu, 6, &val);
5179 	dbgregs->dr6 = val;
5180 	dbgregs->dr7 = vcpu->arch.dr7;
5181 	dbgregs->flags = 0;
5182 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
5183 }
5184 
5185 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5186 					    struct kvm_debugregs *dbgregs)
5187 {
5188 	if (dbgregs->flags)
5189 		return -EINVAL;
5190 
5191 	if (!kvm_dr6_valid(dbgregs->dr6))
5192 		return -EINVAL;
5193 	if (!kvm_dr7_valid(dbgregs->dr7))
5194 		return -EINVAL;
5195 
5196 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5197 	kvm_update_dr0123(vcpu);
5198 	vcpu->arch.dr6 = dbgregs->dr6;
5199 	vcpu->arch.dr7 = dbgregs->dr7;
5200 	kvm_update_dr7(vcpu);
5201 
5202 	return 0;
5203 }
5204 
5205 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5206 					 struct kvm_xsave *guest_xsave)
5207 {
5208 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5209 		return;
5210 
5211 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5212 				       guest_xsave->region,
5213 				       sizeof(guest_xsave->region),
5214 				       vcpu->arch.pkru);
5215 }
5216 
5217 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5218 					  u8 *state, unsigned int size)
5219 {
5220 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5221 		return;
5222 
5223 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5224 				       state, size, vcpu->arch.pkru);
5225 }
5226 
5227 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5228 					struct kvm_xsave *guest_xsave)
5229 {
5230 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5231 		return 0;
5232 
5233 	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5234 					      guest_xsave->region,
5235 					      kvm_caps.supported_xcr0,
5236 					      &vcpu->arch.pkru);
5237 }
5238 
5239 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5240 					struct kvm_xcrs *guest_xcrs)
5241 {
5242 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5243 		guest_xcrs->nr_xcrs = 0;
5244 		return;
5245 	}
5246 
5247 	guest_xcrs->nr_xcrs = 1;
5248 	guest_xcrs->flags = 0;
5249 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5250 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5251 }
5252 
5253 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5254 				       struct kvm_xcrs *guest_xcrs)
5255 {
5256 	int i, r = 0;
5257 
5258 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5259 		return -EINVAL;
5260 
5261 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5262 		return -EINVAL;
5263 
5264 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5265 		/* Only support XCR0 currently */
5266 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5267 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5268 				guest_xcrs->xcrs[i].value);
5269 			break;
5270 		}
5271 	if (r)
5272 		r = -EINVAL;
5273 	return r;
5274 }
5275 
5276 /*
5277  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5278  * stopped by the hypervisor.  This function will be called from the host only.
5279  * EINVAL is returned when the host attempts to set the flag for a guest that
5280  * does not support pv clocks.
5281  */
5282 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5283 {
5284 	if (!vcpu->arch.pv_time.active)
5285 		return -EINVAL;
5286 	vcpu->arch.pvclock_set_guest_stopped_request = true;
5287 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5288 	return 0;
5289 }
5290 
5291 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5292 				 struct kvm_device_attr *attr)
5293 {
5294 	int r;
5295 
5296 	switch (attr->attr) {
5297 	case KVM_VCPU_TSC_OFFSET:
5298 		r = 0;
5299 		break;
5300 	default:
5301 		r = -ENXIO;
5302 	}
5303 
5304 	return r;
5305 }
5306 
5307 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5308 				 struct kvm_device_attr *attr)
5309 {
5310 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5311 	int r;
5312 
5313 	if (IS_ERR(uaddr))
5314 		return PTR_ERR(uaddr);
5315 
5316 	switch (attr->attr) {
5317 	case KVM_VCPU_TSC_OFFSET:
5318 		r = -EFAULT;
5319 		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5320 			break;
5321 		r = 0;
5322 		break;
5323 	default:
5324 		r = -ENXIO;
5325 	}
5326 
5327 	return r;
5328 }
5329 
5330 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5331 				 struct kvm_device_attr *attr)
5332 {
5333 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5334 	struct kvm *kvm = vcpu->kvm;
5335 	int r;
5336 
5337 	if (IS_ERR(uaddr))
5338 		return PTR_ERR(uaddr);
5339 
5340 	switch (attr->attr) {
5341 	case KVM_VCPU_TSC_OFFSET: {
5342 		u64 offset, tsc, ns;
5343 		unsigned long flags;
5344 		bool matched;
5345 
5346 		r = -EFAULT;
5347 		if (get_user(offset, uaddr))
5348 			break;
5349 
5350 		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5351 
5352 		matched = (vcpu->arch.virtual_tsc_khz &&
5353 			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5354 			   kvm->arch.last_tsc_offset == offset);
5355 
5356 		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5357 		ns = get_kvmclock_base_ns();
5358 
5359 		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5360 		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5361 
5362 		r = 0;
5363 		break;
5364 	}
5365 	default:
5366 		r = -ENXIO;
5367 	}
5368 
5369 	return r;
5370 }
5371 
5372 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5373 				      unsigned int ioctl,
5374 				      void __user *argp)
5375 {
5376 	struct kvm_device_attr attr;
5377 	int r;
5378 
5379 	if (copy_from_user(&attr, argp, sizeof(attr)))
5380 		return -EFAULT;
5381 
5382 	if (attr.group != KVM_VCPU_TSC_CTRL)
5383 		return -ENXIO;
5384 
5385 	switch (ioctl) {
5386 	case KVM_HAS_DEVICE_ATTR:
5387 		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5388 		break;
5389 	case KVM_GET_DEVICE_ATTR:
5390 		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5391 		break;
5392 	case KVM_SET_DEVICE_ATTR:
5393 		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5394 		break;
5395 	}
5396 
5397 	return r;
5398 }
5399 
5400 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5401 				     struct kvm_enable_cap *cap)
5402 {
5403 	int r;
5404 	uint16_t vmcs_version;
5405 	void __user *user_ptr;
5406 
5407 	if (cap->flags)
5408 		return -EINVAL;
5409 
5410 	switch (cap->cap) {
5411 	case KVM_CAP_HYPERV_SYNIC2:
5412 		if (cap->args[0])
5413 			return -EINVAL;
5414 		fallthrough;
5415 
5416 	case KVM_CAP_HYPERV_SYNIC:
5417 		if (!irqchip_in_kernel(vcpu->kvm))
5418 			return -EINVAL;
5419 		return kvm_hv_activate_synic(vcpu, cap->cap ==
5420 					     KVM_CAP_HYPERV_SYNIC2);
5421 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5422 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
5423 			return -ENOTTY;
5424 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5425 		if (!r) {
5426 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
5427 			if (copy_to_user(user_ptr, &vmcs_version,
5428 					 sizeof(vmcs_version)))
5429 				r = -EFAULT;
5430 		}
5431 		return r;
5432 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5433 		if (!kvm_x86_ops.enable_direct_tlbflush)
5434 			return -ENOTTY;
5435 
5436 		return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
5437 
5438 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5439 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5440 
5441 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5442 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5443 		if (vcpu->arch.pv_cpuid.enforce)
5444 			kvm_update_pv_runtime(vcpu);
5445 
5446 		return 0;
5447 	default:
5448 		return -EINVAL;
5449 	}
5450 }
5451 
5452 long kvm_arch_vcpu_ioctl(struct file *filp,
5453 			 unsigned int ioctl, unsigned long arg)
5454 {
5455 	struct kvm_vcpu *vcpu = filp->private_data;
5456 	void __user *argp = (void __user *)arg;
5457 	int r;
5458 	union {
5459 		struct kvm_sregs2 *sregs2;
5460 		struct kvm_lapic_state *lapic;
5461 		struct kvm_xsave *xsave;
5462 		struct kvm_xcrs *xcrs;
5463 		void *buffer;
5464 	} u;
5465 
5466 	vcpu_load(vcpu);
5467 
5468 	u.buffer = NULL;
5469 	switch (ioctl) {
5470 	case KVM_GET_LAPIC: {
5471 		r = -EINVAL;
5472 		if (!lapic_in_kernel(vcpu))
5473 			goto out;
5474 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5475 				GFP_KERNEL_ACCOUNT);
5476 
5477 		r = -ENOMEM;
5478 		if (!u.lapic)
5479 			goto out;
5480 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5481 		if (r)
5482 			goto out;
5483 		r = -EFAULT;
5484 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5485 			goto out;
5486 		r = 0;
5487 		break;
5488 	}
5489 	case KVM_SET_LAPIC: {
5490 		r = -EINVAL;
5491 		if (!lapic_in_kernel(vcpu))
5492 			goto out;
5493 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5494 		if (IS_ERR(u.lapic)) {
5495 			r = PTR_ERR(u.lapic);
5496 			goto out_nofree;
5497 		}
5498 
5499 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5500 		break;
5501 	}
5502 	case KVM_INTERRUPT: {
5503 		struct kvm_interrupt irq;
5504 
5505 		r = -EFAULT;
5506 		if (copy_from_user(&irq, argp, sizeof(irq)))
5507 			goto out;
5508 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5509 		break;
5510 	}
5511 	case KVM_NMI: {
5512 		r = kvm_vcpu_ioctl_nmi(vcpu);
5513 		break;
5514 	}
5515 	case KVM_SMI: {
5516 		r = kvm_vcpu_ioctl_smi(vcpu);
5517 		break;
5518 	}
5519 	case KVM_SET_CPUID: {
5520 		struct kvm_cpuid __user *cpuid_arg = argp;
5521 		struct kvm_cpuid cpuid;
5522 
5523 		r = -EFAULT;
5524 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5525 			goto out;
5526 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5527 		break;
5528 	}
5529 	case KVM_SET_CPUID2: {
5530 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5531 		struct kvm_cpuid2 cpuid;
5532 
5533 		r = -EFAULT;
5534 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5535 			goto out;
5536 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5537 					      cpuid_arg->entries);
5538 		break;
5539 	}
5540 	case KVM_GET_CPUID2: {
5541 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5542 		struct kvm_cpuid2 cpuid;
5543 
5544 		r = -EFAULT;
5545 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5546 			goto out;
5547 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5548 					      cpuid_arg->entries);
5549 		if (r)
5550 			goto out;
5551 		r = -EFAULT;
5552 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5553 			goto out;
5554 		r = 0;
5555 		break;
5556 	}
5557 	case KVM_GET_MSRS: {
5558 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5559 		r = msr_io(vcpu, argp, do_get_msr, 1);
5560 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5561 		break;
5562 	}
5563 	case KVM_SET_MSRS: {
5564 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5565 		r = msr_io(vcpu, argp, do_set_msr, 0);
5566 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5567 		break;
5568 	}
5569 	case KVM_TPR_ACCESS_REPORTING: {
5570 		struct kvm_tpr_access_ctl tac;
5571 
5572 		r = -EFAULT;
5573 		if (copy_from_user(&tac, argp, sizeof(tac)))
5574 			goto out;
5575 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5576 		if (r)
5577 			goto out;
5578 		r = -EFAULT;
5579 		if (copy_to_user(argp, &tac, sizeof(tac)))
5580 			goto out;
5581 		r = 0;
5582 		break;
5583 	};
5584 	case KVM_SET_VAPIC_ADDR: {
5585 		struct kvm_vapic_addr va;
5586 		int idx;
5587 
5588 		r = -EINVAL;
5589 		if (!lapic_in_kernel(vcpu))
5590 			goto out;
5591 		r = -EFAULT;
5592 		if (copy_from_user(&va, argp, sizeof(va)))
5593 			goto out;
5594 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5595 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5596 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5597 		break;
5598 	}
5599 	case KVM_X86_SETUP_MCE: {
5600 		u64 mcg_cap;
5601 
5602 		r = -EFAULT;
5603 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5604 			goto out;
5605 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5606 		break;
5607 	}
5608 	case KVM_X86_SET_MCE: {
5609 		struct kvm_x86_mce mce;
5610 
5611 		r = -EFAULT;
5612 		if (copy_from_user(&mce, argp, sizeof(mce)))
5613 			goto out;
5614 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5615 		break;
5616 	}
5617 	case KVM_GET_VCPU_EVENTS: {
5618 		struct kvm_vcpu_events events;
5619 
5620 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5621 
5622 		r = -EFAULT;
5623 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5624 			break;
5625 		r = 0;
5626 		break;
5627 	}
5628 	case KVM_SET_VCPU_EVENTS: {
5629 		struct kvm_vcpu_events events;
5630 
5631 		r = -EFAULT;
5632 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5633 			break;
5634 
5635 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5636 		break;
5637 	}
5638 	case KVM_GET_DEBUGREGS: {
5639 		struct kvm_debugregs dbgregs;
5640 
5641 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5642 
5643 		r = -EFAULT;
5644 		if (copy_to_user(argp, &dbgregs,
5645 				 sizeof(struct kvm_debugregs)))
5646 			break;
5647 		r = 0;
5648 		break;
5649 	}
5650 	case KVM_SET_DEBUGREGS: {
5651 		struct kvm_debugregs dbgregs;
5652 
5653 		r = -EFAULT;
5654 		if (copy_from_user(&dbgregs, argp,
5655 				   sizeof(struct kvm_debugregs)))
5656 			break;
5657 
5658 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5659 		break;
5660 	}
5661 	case KVM_GET_XSAVE: {
5662 		r = -EINVAL;
5663 		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5664 			break;
5665 
5666 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5667 		r = -ENOMEM;
5668 		if (!u.xsave)
5669 			break;
5670 
5671 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5672 
5673 		r = -EFAULT;
5674 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5675 			break;
5676 		r = 0;
5677 		break;
5678 	}
5679 	case KVM_SET_XSAVE: {
5680 		int size = vcpu->arch.guest_fpu.uabi_size;
5681 
5682 		u.xsave = memdup_user(argp, size);
5683 		if (IS_ERR(u.xsave)) {
5684 			r = PTR_ERR(u.xsave);
5685 			goto out_nofree;
5686 		}
5687 
5688 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5689 		break;
5690 	}
5691 
5692 	case KVM_GET_XSAVE2: {
5693 		int size = vcpu->arch.guest_fpu.uabi_size;
5694 
5695 		u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5696 		r = -ENOMEM;
5697 		if (!u.xsave)
5698 			break;
5699 
5700 		kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5701 
5702 		r = -EFAULT;
5703 		if (copy_to_user(argp, u.xsave, size))
5704 			break;
5705 
5706 		r = 0;
5707 		break;
5708 	}
5709 
5710 	case KVM_GET_XCRS: {
5711 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5712 		r = -ENOMEM;
5713 		if (!u.xcrs)
5714 			break;
5715 
5716 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5717 
5718 		r = -EFAULT;
5719 		if (copy_to_user(argp, u.xcrs,
5720 				 sizeof(struct kvm_xcrs)))
5721 			break;
5722 		r = 0;
5723 		break;
5724 	}
5725 	case KVM_SET_XCRS: {
5726 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5727 		if (IS_ERR(u.xcrs)) {
5728 			r = PTR_ERR(u.xcrs);
5729 			goto out_nofree;
5730 		}
5731 
5732 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5733 		break;
5734 	}
5735 	case KVM_SET_TSC_KHZ: {
5736 		u32 user_tsc_khz;
5737 
5738 		r = -EINVAL;
5739 		user_tsc_khz = (u32)arg;
5740 
5741 		if (kvm_caps.has_tsc_control &&
5742 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
5743 			goto out;
5744 
5745 		if (user_tsc_khz == 0)
5746 			user_tsc_khz = tsc_khz;
5747 
5748 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5749 			r = 0;
5750 
5751 		goto out;
5752 	}
5753 	case KVM_GET_TSC_KHZ: {
5754 		r = vcpu->arch.virtual_tsc_khz;
5755 		goto out;
5756 	}
5757 	case KVM_KVMCLOCK_CTRL: {
5758 		r = kvm_set_guest_paused(vcpu);
5759 		goto out;
5760 	}
5761 	case KVM_ENABLE_CAP: {
5762 		struct kvm_enable_cap cap;
5763 
5764 		r = -EFAULT;
5765 		if (copy_from_user(&cap, argp, sizeof(cap)))
5766 			goto out;
5767 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5768 		break;
5769 	}
5770 	case KVM_GET_NESTED_STATE: {
5771 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5772 		u32 user_data_size;
5773 
5774 		r = -EINVAL;
5775 		if (!kvm_x86_ops.nested_ops->get_state)
5776 			break;
5777 
5778 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5779 		r = -EFAULT;
5780 		if (get_user(user_data_size, &user_kvm_nested_state->size))
5781 			break;
5782 
5783 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5784 						     user_data_size);
5785 		if (r < 0)
5786 			break;
5787 
5788 		if (r > user_data_size) {
5789 			if (put_user(r, &user_kvm_nested_state->size))
5790 				r = -EFAULT;
5791 			else
5792 				r = -E2BIG;
5793 			break;
5794 		}
5795 
5796 		r = 0;
5797 		break;
5798 	}
5799 	case KVM_SET_NESTED_STATE: {
5800 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5801 		struct kvm_nested_state kvm_state;
5802 		int idx;
5803 
5804 		r = -EINVAL;
5805 		if (!kvm_x86_ops.nested_ops->set_state)
5806 			break;
5807 
5808 		r = -EFAULT;
5809 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5810 			break;
5811 
5812 		r = -EINVAL;
5813 		if (kvm_state.size < sizeof(kvm_state))
5814 			break;
5815 
5816 		if (kvm_state.flags &
5817 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5818 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5819 		      | KVM_STATE_NESTED_GIF_SET))
5820 			break;
5821 
5822 		/* nested_run_pending implies guest_mode.  */
5823 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5824 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5825 			break;
5826 
5827 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5828 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5829 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5830 		break;
5831 	}
5832 	case KVM_GET_SUPPORTED_HV_CPUID:
5833 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5834 		break;
5835 #ifdef CONFIG_KVM_XEN
5836 	case KVM_XEN_VCPU_GET_ATTR: {
5837 		struct kvm_xen_vcpu_attr xva;
5838 
5839 		r = -EFAULT;
5840 		if (copy_from_user(&xva, argp, sizeof(xva)))
5841 			goto out;
5842 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5843 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5844 			r = -EFAULT;
5845 		break;
5846 	}
5847 	case KVM_XEN_VCPU_SET_ATTR: {
5848 		struct kvm_xen_vcpu_attr xva;
5849 
5850 		r = -EFAULT;
5851 		if (copy_from_user(&xva, argp, sizeof(xva)))
5852 			goto out;
5853 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5854 		break;
5855 	}
5856 #endif
5857 	case KVM_GET_SREGS2: {
5858 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5859 		r = -ENOMEM;
5860 		if (!u.sregs2)
5861 			goto out;
5862 		__get_sregs2(vcpu, u.sregs2);
5863 		r = -EFAULT;
5864 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5865 			goto out;
5866 		r = 0;
5867 		break;
5868 	}
5869 	case KVM_SET_SREGS2: {
5870 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5871 		if (IS_ERR(u.sregs2)) {
5872 			r = PTR_ERR(u.sregs2);
5873 			u.sregs2 = NULL;
5874 			goto out;
5875 		}
5876 		r = __set_sregs2(vcpu, u.sregs2);
5877 		break;
5878 	}
5879 	case KVM_HAS_DEVICE_ATTR:
5880 	case KVM_GET_DEVICE_ATTR:
5881 	case KVM_SET_DEVICE_ATTR:
5882 		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5883 		break;
5884 	default:
5885 		r = -EINVAL;
5886 	}
5887 out:
5888 	kfree(u.buffer);
5889 out_nofree:
5890 	vcpu_put(vcpu);
5891 	return r;
5892 }
5893 
5894 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5895 {
5896 	return VM_FAULT_SIGBUS;
5897 }
5898 
5899 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5900 {
5901 	int ret;
5902 
5903 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
5904 		return -EINVAL;
5905 	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5906 	return ret;
5907 }
5908 
5909 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5910 					      u64 ident_addr)
5911 {
5912 	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5913 }
5914 
5915 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5916 					 unsigned long kvm_nr_mmu_pages)
5917 {
5918 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5919 		return -EINVAL;
5920 
5921 	mutex_lock(&kvm->slots_lock);
5922 
5923 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5924 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5925 
5926 	mutex_unlock(&kvm->slots_lock);
5927 	return 0;
5928 }
5929 
5930 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5931 {
5932 	return kvm->arch.n_max_mmu_pages;
5933 }
5934 
5935 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5936 {
5937 	struct kvm_pic *pic = kvm->arch.vpic;
5938 	int r;
5939 
5940 	r = 0;
5941 	switch (chip->chip_id) {
5942 	case KVM_IRQCHIP_PIC_MASTER:
5943 		memcpy(&chip->chip.pic, &pic->pics[0],
5944 			sizeof(struct kvm_pic_state));
5945 		break;
5946 	case KVM_IRQCHIP_PIC_SLAVE:
5947 		memcpy(&chip->chip.pic, &pic->pics[1],
5948 			sizeof(struct kvm_pic_state));
5949 		break;
5950 	case KVM_IRQCHIP_IOAPIC:
5951 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
5952 		break;
5953 	default:
5954 		r = -EINVAL;
5955 		break;
5956 	}
5957 	return r;
5958 }
5959 
5960 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5961 {
5962 	struct kvm_pic *pic = kvm->arch.vpic;
5963 	int r;
5964 
5965 	r = 0;
5966 	switch (chip->chip_id) {
5967 	case KVM_IRQCHIP_PIC_MASTER:
5968 		spin_lock(&pic->lock);
5969 		memcpy(&pic->pics[0], &chip->chip.pic,
5970 			sizeof(struct kvm_pic_state));
5971 		spin_unlock(&pic->lock);
5972 		break;
5973 	case KVM_IRQCHIP_PIC_SLAVE:
5974 		spin_lock(&pic->lock);
5975 		memcpy(&pic->pics[1], &chip->chip.pic,
5976 			sizeof(struct kvm_pic_state));
5977 		spin_unlock(&pic->lock);
5978 		break;
5979 	case KVM_IRQCHIP_IOAPIC:
5980 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
5981 		break;
5982 	default:
5983 		r = -EINVAL;
5984 		break;
5985 	}
5986 	kvm_pic_update_irq(pic);
5987 	return r;
5988 }
5989 
5990 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5991 {
5992 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5993 
5994 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5995 
5996 	mutex_lock(&kps->lock);
5997 	memcpy(ps, &kps->channels, sizeof(*ps));
5998 	mutex_unlock(&kps->lock);
5999 	return 0;
6000 }
6001 
6002 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6003 {
6004 	int i;
6005 	struct kvm_pit *pit = kvm->arch.vpit;
6006 
6007 	mutex_lock(&pit->pit_state.lock);
6008 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6009 	for (i = 0; i < 3; i++)
6010 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6011 	mutex_unlock(&pit->pit_state.lock);
6012 	return 0;
6013 }
6014 
6015 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6016 {
6017 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
6018 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6019 		sizeof(ps->channels));
6020 	ps->flags = kvm->arch.vpit->pit_state.flags;
6021 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6022 	memset(&ps->reserved, 0, sizeof(ps->reserved));
6023 	return 0;
6024 }
6025 
6026 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6027 {
6028 	int start = 0;
6029 	int i;
6030 	u32 prev_legacy, cur_legacy;
6031 	struct kvm_pit *pit = kvm->arch.vpit;
6032 
6033 	mutex_lock(&pit->pit_state.lock);
6034 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6035 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6036 	if (!prev_legacy && cur_legacy)
6037 		start = 1;
6038 	memcpy(&pit->pit_state.channels, &ps->channels,
6039 	       sizeof(pit->pit_state.channels));
6040 	pit->pit_state.flags = ps->flags;
6041 	for (i = 0; i < 3; i++)
6042 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6043 				   start && i == 0);
6044 	mutex_unlock(&pit->pit_state.lock);
6045 	return 0;
6046 }
6047 
6048 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6049 				 struct kvm_reinject_control *control)
6050 {
6051 	struct kvm_pit *pit = kvm->arch.vpit;
6052 
6053 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
6054 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6055 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6056 	 */
6057 	mutex_lock(&pit->pit_state.lock);
6058 	kvm_pit_set_reinject(pit, control->pit_reinject);
6059 	mutex_unlock(&pit->pit_state.lock);
6060 
6061 	return 0;
6062 }
6063 
6064 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6065 {
6066 
6067 	/*
6068 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6069 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6070 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6071 	 * VM-Exit.
6072 	 */
6073 	struct kvm_vcpu *vcpu;
6074 	unsigned long i;
6075 
6076 	kvm_for_each_vcpu(i, vcpu, kvm)
6077 		kvm_vcpu_kick(vcpu);
6078 }
6079 
6080 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6081 			bool line_status)
6082 {
6083 	if (!irqchip_in_kernel(kvm))
6084 		return -ENXIO;
6085 
6086 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6087 					irq_event->irq, irq_event->level,
6088 					line_status);
6089 	return 0;
6090 }
6091 
6092 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6093 			    struct kvm_enable_cap *cap)
6094 {
6095 	int r;
6096 
6097 	if (cap->flags)
6098 		return -EINVAL;
6099 
6100 	switch (cap->cap) {
6101 	case KVM_CAP_DISABLE_QUIRKS2:
6102 		r = -EINVAL;
6103 		if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6104 			break;
6105 		fallthrough;
6106 	case KVM_CAP_DISABLE_QUIRKS:
6107 		kvm->arch.disabled_quirks = cap->args[0];
6108 		r = 0;
6109 		break;
6110 	case KVM_CAP_SPLIT_IRQCHIP: {
6111 		mutex_lock(&kvm->lock);
6112 		r = -EINVAL;
6113 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6114 			goto split_irqchip_unlock;
6115 		r = -EEXIST;
6116 		if (irqchip_in_kernel(kvm))
6117 			goto split_irqchip_unlock;
6118 		if (kvm->created_vcpus)
6119 			goto split_irqchip_unlock;
6120 		r = kvm_setup_empty_irq_routing(kvm);
6121 		if (r)
6122 			goto split_irqchip_unlock;
6123 		/* Pairs with irqchip_in_kernel. */
6124 		smp_wmb();
6125 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6126 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6127 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6128 		r = 0;
6129 split_irqchip_unlock:
6130 		mutex_unlock(&kvm->lock);
6131 		break;
6132 	}
6133 	case KVM_CAP_X2APIC_API:
6134 		r = -EINVAL;
6135 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6136 			break;
6137 
6138 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6139 			kvm->arch.x2apic_format = true;
6140 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6141 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
6142 
6143 		r = 0;
6144 		break;
6145 	case KVM_CAP_X86_DISABLE_EXITS:
6146 		r = -EINVAL;
6147 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6148 			break;
6149 
6150 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6151 			kvm_can_mwait_in_guest())
6152 			kvm->arch.mwait_in_guest = true;
6153 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6154 			kvm->arch.hlt_in_guest = true;
6155 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6156 			kvm->arch.pause_in_guest = true;
6157 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6158 			kvm->arch.cstate_in_guest = true;
6159 		r = 0;
6160 		break;
6161 	case KVM_CAP_MSR_PLATFORM_INFO:
6162 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6163 		r = 0;
6164 		break;
6165 	case KVM_CAP_EXCEPTION_PAYLOAD:
6166 		kvm->arch.exception_payload_enabled = cap->args[0];
6167 		r = 0;
6168 		break;
6169 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6170 		kvm->arch.triple_fault_event = cap->args[0];
6171 		r = 0;
6172 		break;
6173 	case KVM_CAP_X86_USER_SPACE_MSR:
6174 		kvm->arch.user_space_msr_mask = cap->args[0];
6175 		r = 0;
6176 		break;
6177 	case KVM_CAP_X86_BUS_LOCK_EXIT:
6178 		r = -EINVAL;
6179 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6180 			break;
6181 
6182 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6183 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6184 			break;
6185 
6186 		if (kvm_caps.has_bus_lock_exit &&
6187 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6188 			kvm->arch.bus_lock_detection_enabled = true;
6189 		r = 0;
6190 		break;
6191 #ifdef CONFIG_X86_SGX_KVM
6192 	case KVM_CAP_SGX_ATTRIBUTE: {
6193 		unsigned long allowed_attributes = 0;
6194 
6195 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6196 		if (r)
6197 			break;
6198 
6199 		/* KVM only supports the PROVISIONKEY privileged attribute. */
6200 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6201 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6202 			kvm->arch.sgx_provisioning_allowed = true;
6203 		else
6204 			r = -EINVAL;
6205 		break;
6206 	}
6207 #endif
6208 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6209 		r = -EINVAL;
6210 		if (!kvm_x86_ops.vm_copy_enc_context_from)
6211 			break;
6212 
6213 		r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6214 		break;
6215 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6216 		r = -EINVAL;
6217 		if (!kvm_x86_ops.vm_move_enc_context_from)
6218 			break;
6219 
6220 		r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6221 		break;
6222 	case KVM_CAP_EXIT_HYPERCALL:
6223 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6224 			r = -EINVAL;
6225 			break;
6226 		}
6227 		kvm->arch.hypercall_exit_enabled = cap->args[0];
6228 		r = 0;
6229 		break;
6230 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6231 		r = -EINVAL;
6232 		if (cap->args[0] & ~1)
6233 			break;
6234 		kvm->arch.exit_on_emulation_error = cap->args[0];
6235 		r = 0;
6236 		break;
6237 	case KVM_CAP_PMU_CAPABILITY:
6238 		r = -EINVAL;
6239 		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6240 			break;
6241 
6242 		mutex_lock(&kvm->lock);
6243 		if (!kvm->created_vcpus) {
6244 			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6245 			r = 0;
6246 		}
6247 		mutex_unlock(&kvm->lock);
6248 		break;
6249 	case KVM_CAP_MAX_VCPU_ID:
6250 		r = -EINVAL;
6251 		if (cap->args[0] > KVM_MAX_VCPU_IDS)
6252 			break;
6253 
6254 		mutex_lock(&kvm->lock);
6255 		if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6256 			r = 0;
6257 		} else if (!kvm->arch.max_vcpu_ids) {
6258 			kvm->arch.max_vcpu_ids = cap->args[0];
6259 			r = 0;
6260 		}
6261 		mutex_unlock(&kvm->lock);
6262 		break;
6263 	case KVM_CAP_X86_NOTIFY_VMEXIT:
6264 		r = -EINVAL;
6265 		if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6266 			break;
6267 		if (!kvm_caps.has_notify_vmexit)
6268 			break;
6269 		if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6270 			break;
6271 		mutex_lock(&kvm->lock);
6272 		if (!kvm->created_vcpus) {
6273 			kvm->arch.notify_window = cap->args[0] >> 32;
6274 			kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6275 			r = 0;
6276 		}
6277 		mutex_unlock(&kvm->lock);
6278 		break;
6279 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6280 		r = -EINVAL;
6281 
6282 		/*
6283 		 * Since the risk of disabling NX hugepages is a guest crashing
6284 		 * the system, ensure the userspace process has permission to
6285 		 * reboot the system.
6286 		 *
6287 		 * Note that unlike the reboot() syscall, the process must have
6288 		 * this capability in the root namespace because exposing
6289 		 * /dev/kvm into a container does not limit the scope of the
6290 		 * iTLB multihit bug to that container. In other words,
6291 		 * this must use capable(), not ns_capable().
6292 		 */
6293 		if (!capable(CAP_SYS_BOOT)) {
6294 			r = -EPERM;
6295 			break;
6296 		}
6297 
6298 		if (cap->args[0])
6299 			break;
6300 
6301 		mutex_lock(&kvm->lock);
6302 		if (!kvm->created_vcpus) {
6303 			kvm->arch.disable_nx_huge_pages = true;
6304 			r = 0;
6305 		}
6306 		mutex_unlock(&kvm->lock);
6307 		break;
6308 	default:
6309 		r = -EINVAL;
6310 		break;
6311 	}
6312 	return r;
6313 }
6314 
6315 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6316 {
6317 	struct kvm_x86_msr_filter *msr_filter;
6318 
6319 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6320 	if (!msr_filter)
6321 		return NULL;
6322 
6323 	msr_filter->default_allow = default_allow;
6324 	return msr_filter;
6325 }
6326 
6327 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6328 {
6329 	u32 i;
6330 
6331 	if (!msr_filter)
6332 		return;
6333 
6334 	for (i = 0; i < msr_filter->count; i++)
6335 		kfree(msr_filter->ranges[i].bitmap);
6336 
6337 	kfree(msr_filter);
6338 }
6339 
6340 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6341 			      struct kvm_msr_filter_range *user_range)
6342 {
6343 	unsigned long *bitmap = NULL;
6344 	size_t bitmap_size;
6345 
6346 	if (!user_range->nmsrs)
6347 		return 0;
6348 
6349 	if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
6350 		return -EINVAL;
6351 
6352 	if (!user_range->flags)
6353 		return -EINVAL;
6354 
6355 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6356 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6357 		return -EINVAL;
6358 
6359 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6360 	if (IS_ERR(bitmap))
6361 		return PTR_ERR(bitmap);
6362 
6363 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6364 		.flags = user_range->flags,
6365 		.base = user_range->base,
6366 		.nmsrs = user_range->nmsrs,
6367 		.bitmap = bitmap,
6368 	};
6369 
6370 	msr_filter->count++;
6371 	return 0;
6372 }
6373 
6374 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
6375 {
6376 	struct kvm_msr_filter __user *user_msr_filter = argp;
6377 	struct kvm_x86_msr_filter *new_filter, *old_filter;
6378 	struct kvm_msr_filter filter;
6379 	bool default_allow;
6380 	bool empty = true;
6381 	int r = 0;
6382 	u32 i;
6383 
6384 	if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
6385 		return -EFAULT;
6386 
6387 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
6388 		empty &= !filter.ranges[i].nmsrs;
6389 
6390 	default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
6391 	if (empty && !default_allow)
6392 		return -EINVAL;
6393 
6394 	new_filter = kvm_alloc_msr_filter(default_allow);
6395 	if (!new_filter)
6396 		return -ENOMEM;
6397 
6398 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6399 		r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
6400 		if (r) {
6401 			kvm_free_msr_filter(new_filter);
6402 			return r;
6403 		}
6404 	}
6405 
6406 	mutex_lock(&kvm->lock);
6407 
6408 	/* The per-VM filter is protected by kvm->lock... */
6409 	old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
6410 
6411 	rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
6412 	synchronize_srcu(&kvm->srcu);
6413 
6414 	kvm_free_msr_filter(old_filter);
6415 
6416 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6417 	mutex_unlock(&kvm->lock);
6418 
6419 	return 0;
6420 }
6421 
6422 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6423 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6424 {
6425 	struct kvm_vcpu *vcpu;
6426 	unsigned long i;
6427 	int ret = 0;
6428 
6429 	mutex_lock(&kvm->lock);
6430 	kvm_for_each_vcpu(i, vcpu, kvm) {
6431 		if (!vcpu->arch.pv_time.active)
6432 			continue;
6433 
6434 		ret = kvm_set_guest_paused(vcpu);
6435 		if (ret) {
6436 			kvm_err("Failed to pause guest VCPU%d: %d\n",
6437 				vcpu->vcpu_id, ret);
6438 			break;
6439 		}
6440 	}
6441 	mutex_unlock(&kvm->lock);
6442 
6443 	return ret ? NOTIFY_BAD : NOTIFY_DONE;
6444 }
6445 
6446 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6447 {
6448 	switch (state) {
6449 	case PM_HIBERNATION_PREPARE:
6450 	case PM_SUSPEND_PREPARE:
6451 		return kvm_arch_suspend_notifier(kvm);
6452 	}
6453 
6454 	return NOTIFY_DONE;
6455 }
6456 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6457 
6458 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6459 {
6460 	struct kvm_clock_data data = { 0 };
6461 
6462 	get_kvmclock(kvm, &data);
6463 	if (copy_to_user(argp, &data, sizeof(data)))
6464 		return -EFAULT;
6465 
6466 	return 0;
6467 }
6468 
6469 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6470 {
6471 	struct kvm_arch *ka = &kvm->arch;
6472 	struct kvm_clock_data data;
6473 	u64 now_raw_ns;
6474 
6475 	if (copy_from_user(&data, argp, sizeof(data)))
6476 		return -EFAULT;
6477 
6478 	/*
6479 	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6480 	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6481 	 */
6482 	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6483 		return -EINVAL;
6484 
6485 	kvm_hv_request_tsc_page_update(kvm);
6486 	kvm_start_pvclock_update(kvm);
6487 	pvclock_update_vm_gtod_copy(kvm);
6488 
6489 	/*
6490 	 * This pairs with kvm_guest_time_update(): when masterclock is
6491 	 * in use, we use master_kernel_ns + kvmclock_offset to set
6492 	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6493 	 * is slightly ahead) here we risk going negative on unsigned
6494 	 * 'system_time' when 'data.clock' is very small.
6495 	 */
6496 	if (data.flags & KVM_CLOCK_REALTIME) {
6497 		u64 now_real_ns = ktime_get_real_ns();
6498 
6499 		/*
6500 		 * Avoid stepping the kvmclock backwards.
6501 		 */
6502 		if (now_real_ns > data.realtime)
6503 			data.clock += now_real_ns - data.realtime;
6504 	}
6505 
6506 	if (ka->use_master_clock)
6507 		now_raw_ns = ka->master_kernel_ns;
6508 	else
6509 		now_raw_ns = get_kvmclock_base_ns();
6510 	ka->kvmclock_offset = data.clock - now_raw_ns;
6511 	kvm_end_pvclock_update(kvm);
6512 	return 0;
6513 }
6514 
6515 long kvm_arch_vm_ioctl(struct file *filp,
6516 		       unsigned int ioctl, unsigned long arg)
6517 {
6518 	struct kvm *kvm = filp->private_data;
6519 	void __user *argp = (void __user *)arg;
6520 	int r = -ENOTTY;
6521 	/*
6522 	 * This union makes it completely explicit to gcc-3.x
6523 	 * that these two variables' stack usage should be
6524 	 * combined, not added together.
6525 	 */
6526 	union {
6527 		struct kvm_pit_state ps;
6528 		struct kvm_pit_state2 ps2;
6529 		struct kvm_pit_config pit_config;
6530 	} u;
6531 
6532 	switch (ioctl) {
6533 	case KVM_SET_TSS_ADDR:
6534 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6535 		break;
6536 	case KVM_SET_IDENTITY_MAP_ADDR: {
6537 		u64 ident_addr;
6538 
6539 		mutex_lock(&kvm->lock);
6540 		r = -EINVAL;
6541 		if (kvm->created_vcpus)
6542 			goto set_identity_unlock;
6543 		r = -EFAULT;
6544 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6545 			goto set_identity_unlock;
6546 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6547 set_identity_unlock:
6548 		mutex_unlock(&kvm->lock);
6549 		break;
6550 	}
6551 	case KVM_SET_NR_MMU_PAGES:
6552 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6553 		break;
6554 	case KVM_GET_NR_MMU_PAGES:
6555 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6556 		break;
6557 	case KVM_CREATE_IRQCHIP: {
6558 		mutex_lock(&kvm->lock);
6559 
6560 		r = -EEXIST;
6561 		if (irqchip_in_kernel(kvm))
6562 			goto create_irqchip_unlock;
6563 
6564 		r = -EINVAL;
6565 		if (kvm->created_vcpus)
6566 			goto create_irqchip_unlock;
6567 
6568 		r = kvm_pic_init(kvm);
6569 		if (r)
6570 			goto create_irqchip_unlock;
6571 
6572 		r = kvm_ioapic_init(kvm);
6573 		if (r) {
6574 			kvm_pic_destroy(kvm);
6575 			goto create_irqchip_unlock;
6576 		}
6577 
6578 		r = kvm_setup_default_irq_routing(kvm);
6579 		if (r) {
6580 			kvm_ioapic_destroy(kvm);
6581 			kvm_pic_destroy(kvm);
6582 			goto create_irqchip_unlock;
6583 		}
6584 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6585 		smp_wmb();
6586 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6587 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6588 	create_irqchip_unlock:
6589 		mutex_unlock(&kvm->lock);
6590 		break;
6591 	}
6592 	case KVM_CREATE_PIT:
6593 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6594 		goto create_pit;
6595 	case KVM_CREATE_PIT2:
6596 		r = -EFAULT;
6597 		if (copy_from_user(&u.pit_config, argp,
6598 				   sizeof(struct kvm_pit_config)))
6599 			goto out;
6600 	create_pit:
6601 		mutex_lock(&kvm->lock);
6602 		r = -EEXIST;
6603 		if (kvm->arch.vpit)
6604 			goto create_pit_unlock;
6605 		r = -ENOMEM;
6606 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6607 		if (kvm->arch.vpit)
6608 			r = 0;
6609 	create_pit_unlock:
6610 		mutex_unlock(&kvm->lock);
6611 		break;
6612 	case KVM_GET_IRQCHIP: {
6613 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6614 		struct kvm_irqchip *chip;
6615 
6616 		chip = memdup_user(argp, sizeof(*chip));
6617 		if (IS_ERR(chip)) {
6618 			r = PTR_ERR(chip);
6619 			goto out;
6620 		}
6621 
6622 		r = -ENXIO;
6623 		if (!irqchip_kernel(kvm))
6624 			goto get_irqchip_out;
6625 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6626 		if (r)
6627 			goto get_irqchip_out;
6628 		r = -EFAULT;
6629 		if (copy_to_user(argp, chip, sizeof(*chip)))
6630 			goto get_irqchip_out;
6631 		r = 0;
6632 	get_irqchip_out:
6633 		kfree(chip);
6634 		break;
6635 	}
6636 	case KVM_SET_IRQCHIP: {
6637 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6638 		struct kvm_irqchip *chip;
6639 
6640 		chip = memdup_user(argp, sizeof(*chip));
6641 		if (IS_ERR(chip)) {
6642 			r = PTR_ERR(chip);
6643 			goto out;
6644 		}
6645 
6646 		r = -ENXIO;
6647 		if (!irqchip_kernel(kvm))
6648 			goto set_irqchip_out;
6649 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6650 	set_irqchip_out:
6651 		kfree(chip);
6652 		break;
6653 	}
6654 	case KVM_GET_PIT: {
6655 		r = -EFAULT;
6656 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6657 			goto out;
6658 		r = -ENXIO;
6659 		if (!kvm->arch.vpit)
6660 			goto out;
6661 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6662 		if (r)
6663 			goto out;
6664 		r = -EFAULT;
6665 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6666 			goto out;
6667 		r = 0;
6668 		break;
6669 	}
6670 	case KVM_SET_PIT: {
6671 		r = -EFAULT;
6672 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6673 			goto out;
6674 		mutex_lock(&kvm->lock);
6675 		r = -ENXIO;
6676 		if (!kvm->arch.vpit)
6677 			goto set_pit_out;
6678 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6679 set_pit_out:
6680 		mutex_unlock(&kvm->lock);
6681 		break;
6682 	}
6683 	case KVM_GET_PIT2: {
6684 		r = -ENXIO;
6685 		if (!kvm->arch.vpit)
6686 			goto out;
6687 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6688 		if (r)
6689 			goto out;
6690 		r = -EFAULT;
6691 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6692 			goto out;
6693 		r = 0;
6694 		break;
6695 	}
6696 	case KVM_SET_PIT2: {
6697 		r = -EFAULT;
6698 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6699 			goto out;
6700 		mutex_lock(&kvm->lock);
6701 		r = -ENXIO;
6702 		if (!kvm->arch.vpit)
6703 			goto set_pit2_out;
6704 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6705 set_pit2_out:
6706 		mutex_unlock(&kvm->lock);
6707 		break;
6708 	}
6709 	case KVM_REINJECT_CONTROL: {
6710 		struct kvm_reinject_control control;
6711 		r =  -EFAULT;
6712 		if (copy_from_user(&control, argp, sizeof(control)))
6713 			goto out;
6714 		r = -ENXIO;
6715 		if (!kvm->arch.vpit)
6716 			goto out;
6717 		r = kvm_vm_ioctl_reinject(kvm, &control);
6718 		break;
6719 	}
6720 	case KVM_SET_BOOT_CPU_ID:
6721 		r = 0;
6722 		mutex_lock(&kvm->lock);
6723 		if (kvm->created_vcpus)
6724 			r = -EBUSY;
6725 		else
6726 			kvm->arch.bsp_vcpu_id = arg;
6727 		mutex_unlock(&kvm->lock);
6728 		break;
6729 #ifdef CONFIG_KVM_XEN
6730 	case KVM_XEN_HVM_CONFIG: {
6731 		struct kvm_xen_hvm_config xhc;
6732 		r = -EFAULT;
6733 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
6734 			goto out;
6735 		r = kvm_xen_hvm_config(kvm, &xhc);
6736 		break;
6737 	}
6738 	case KVM_XEN_HVM_GET_ATTR: {
6739 		struct kvm_xen_hvm_attr xha;
6740 
6741 		r = -EFAULT;
6742 		if (copy_from_user(&xha, argp, sizeof(xha)))
6743 			goto out;
6744 		r = kvm_xen_hvm_get_attr(kvm, &xha);
6745 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6746 			r = -EFAULT;
6747 		break;
6748 	}
6749 	case KVM_XEN_HVM_SET_ATTR: {
6750 		struct kvm_xen_hvm_attr xha;
6751 
6752 		r = -EFAULT;
6753 		if (copy_from_user(&xha, argp, sizeof(xha)))
6754 			goto out;
6755 		r = kvm_xen_hvm_set_attr(kvm, &xha);
6756 		break;
6757 	}
6758 	case KVM_XEN_HVM_EVTCHN_SEND: {
6759 		struct kvm_irq_routing_xen_evtchn uxe;
6760 
6761 		r = -EFAULT;
6762 		if (copy_from_user(&uxe, argp, sizeof(uxe)))
6763 			goto out;
6764 		r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
6765 		break;
6766 	}
6767 #endif
6768 	case KVM_SET_CLOCK:
6769 		r = kvm_vm_ioctl_set_clock(kvm, argp);
6770 		break;
6771 	case KVM_GET_CLOCK:
6772 		r = kvm_vm_ioctl_get_clock(kvm, argp);
6773 		break;
6774 	case KVM_SET_TSC_KHZ: {
6775 		u32 user_tsc_khz;
6776 
6777 		r = -EINVAL;
6778 		user_tsc_khz = (u32)arg;
6779 
6780 		if (kvm_caps.has_tsc_control &&
6781 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6782 			goto out;
6783 
6784 		if (user_tsc_khz == 0)
6785 			user_tsc_khz = tsc_khz;
6786 
6787 		WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
6788 		r = 0;
6789 
6790 		goto out;
6791 	}
6792 	case KVM_GET_TSC_KHZ: {
6793 		r = READ_ONCE(kvm->arch.default_tsc_khz);
6794 		goto out;
6795 	}
6796 	case KVM_MEMORY_ENCRYPT_OP: {
6797 		r = -ENOTTY;
6798 		if (!kvm_x86_ops.mem_enc_ioctl)
6799 			goto out;
6800 
6801 		r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
6802 		break;
6803 	}
6804 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
6805 		struct kvm_enc_region region;
6806 
6807 		r = -EFAULT;
6808 		if (copy_from_user(&region, argp, sizeof(region)))
6809 			goto out;
6810 
6811 		r = -ENOTTY;
6812 		if (!kvm_x86_ops.mem_enc_register_region)
6813 			goto out;
6814 
6815 		r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
6816 		break;
6817 	}
6818 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6819 		struct kvm_enc_region region;
6820 
6821 		r = -EFAULT;
6822 		if (copy_from_user(&region, argp, sizeof(region)))
6823 			goto out;
6824 
6825 		r = -ENOTTY;
6826 		if (!kvm_x86_ops.mem_enc_unregister_region)
6827 			goto out;
6828 
6829 		r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
6830 		break;
6831 	}
6832 	case KVM_HYPERV_EVENTFD: {
6833 		struct kvm_hyperv_eventfd hvevfd;
6834 
6835 		r = -EFAULT;
6836 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6837 			goto out;
6838 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6839 		break;
6840 	}
6841 	case KVM_SET_PMU_EVENT_FILTER:
6842 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6843 		break;
6844 	case KVM_X86_SET_MSR_FILTER:
6845 		r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6846 		break;
6847 	default:
6848 		r = -ENOTTY;
6849 	}
6850 out:
6851 	return r;
6852 }
6853 
6854 static void kvm_init_msr_list(void)
6855 {
6856 	u32 dummy[2];
6857 	unsigned i;
6858 
6859 	BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
6860 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
6861 
6862 	num_msrs_to_save = 0;
6863 	num_emulated_msrs = 0;
6864 	num_msr_based_features = 0;
6865 
6866 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6867 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6868 			continue;
6869 
6870 		/*
6871 		 * Even MSRs that are valid in the host may not be exposed
6872 		 * to the guests in some cases.
6873 		 */
6874 		switch (msrs_to_save_all[i]) {
6875 		case MSR_IA32_BNDCFGS:
6876 			if (!kvm_mpx_supported())
6877 				continue;
6878 			break;
6879 		case MSR_TSC_AUX:
6880 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6881 			    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6882 				continue;
6883 			break;
6884 		case MSR_IA32_UMWAIT_CONTROL:
6885 			if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6886 				continue;
6887 			break;
6888 		case MSR_IA32_RTIT_CTL:
6889 		case MSR_IA32_RTIT_STATUS:
6890 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6891 				continue;
6892 			break;
6893 		case MSR_IA32_RTIT_CR3_MATCH:
6894 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6895 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6896 				continue;
6897 			break;
6898 		case MSR_IA32_RTIT_OUTPUT_BASE:
6899 		case MSR_IA32_RTIT_OUTPUT_MASK:
6900 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6901 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6902 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6903 				continue;
6904 			break;
6905 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6906 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6907 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6908 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6909 				continue;
6910 			break;
6911 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6912 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6913 			    min(INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp))
6914 				continue;
6915 			break;
6916 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6917 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6918 			    min(INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp))
6919 				continue;
6920 			break;
6921 		case MSR_IA32_XFD:
6922 		case MSR_IA32_XFD_ERR:
6923 			if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
6924 				continue;
6925 			break;
6926 		default:
6927 			break;
6928 		}
6929 
6930 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6931 	}
6932 
6933 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6934 		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6935 			continue;
6936 
6937 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6938 	}
6939 
6940 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6941 		struct kvm_msr_entry msr;
6942 
6943 		msr.index = msr_based_features_all[i];
6944 		if (kvm_get_msr_feature(&msr))
6945 			continue;
6946 
6947 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6948 	}
6949 }
6950 
6951 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6952 			   const void *v)
6953 {
6954 	int handled = 0;
6955 	int n;
6956 
6957 	do {
6958 		n = min(len, 8);
6959 		if (!(lapic_in_kernel(vcpu) &&
6960 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6961 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6962 			break;
6963 		handled += n;
6964 		addr += n;
6965 		len -= n;
6966 		v += n;
6967 	} while (len);
6968 
6969 	return handled;
6970 }
6971 
6972 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6973 {
6974 	int handled = 0;
6975 	int n;
6976 
6977 	do {
6978 		n = min(len, 8);
6979 		if (!(lapic_in_kernel(vcpu) &&
6980 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6981 					 addr, n, v))
6982 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6983 			break;
6984 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6985 		handled += n;
6986 		addr += n;
6987 		len -= n;
6988 		v += n;
6989 	} while (len);
6990 
6991 	return handled;
6992 }
6993 
6994 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6995 			struct kvm_segment *var, int seg)
6996 {
6997 	static_call(kvm_x86_set_segment)(vcpu, var, seg);
6998 }
6999 
7000 void kvm_get_segment(struct kvm_vcpu *vcpu,
7001 		     struct kvm_segment *var, int seg)
7002 {
7003 	static_call(kvm_x86_get_segment)(vcpu, var, seg);
7004 }
7005 
7006 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7007 			   struct x86_exception *exception)
7008 {
7009 	struct kvm_mmu *mmu = vcpu->arch.mmu;
7010 	gpa_t t_gpa;
7011 
7012 	BUG_ON(!mmu_is_nested(vcpu));
7013 
7014 	/* NPT walks are always user-walks */
7015 	access |= PFERR_USER_MASK;
7016 	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7017 
7018 	return t_gpa;
7019 }
7020 
7021 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7022 			      struct x86_exception *exception)
7023 {
7024 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7025 
7026 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7027 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7028 }
7029 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7030 
7031  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
7032 				struct x86_exception *exception)
7033 {
7034 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7035 
7036 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7037 	access |= PFERR_FETCH_MASK;
7038 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7039 }
7040 
7041 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7042 			       struct x86_exception *exception)
7043 {
7044 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7045 
7046 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7047 	access |= PFERR_WRITE_MASK;
7048 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7049 }
7050 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7051 
7052 /* uses this to access any guest's mapped memory without checking CPL */
7053 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7054 				struct x86_exception *exception)
7055 {
7056 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7057 
7058 	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7059 }
7060 
7061 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7062 				      struct kvm_vcpu *vcpu, u64 access,
7063 				      struct x86_exception *exception)
7064 {
7065 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7066 	void *data = val;
7067 	int r = X86EMUL_CONTINUE;
7068 
7069 	while (bytes) {
7070 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7071 		unsigned offset = addr & (PAGE_SIZE-1);
7072 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7073 		int ret;
7074 
7075 		if (gpa == UNMAPPED_GVA)
7076 			return X86EMUL_PROPAGATE_FAULT;
7077 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7078 					       offset, toread);
7079 		if (ret < 0) {
7080 			r = X86EMUL_IO_NEEDED;
7081 			goto out;
7082 		}
7083 
7084 		bytes -= toread;
7085 		data += toread;
7086 		addr += toread;
7087 	}
7088 out:
7089 	return r;
7090 }
7091 
7092 /* used for instruction fetching */
7093 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7094 				gva_t addr, void *val, unsigned int bytes,
7095 				struct x86_exception *exception)
7096 {
7097 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7098 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7099 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7100 	unsigned offset;
7101 	int ret;
7102 
7103 	/* Inline kvm_read_guest_virt_helper for speed.  */
7104 	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7105 				    exception);
7106 	if (unlikely(gpa == UNMAPPED_GVA))
7107 		return X86EMUL_PROPAGATE_FAULT;
7108 
7109 	offset = addr & (PAGE_SIZE-1);
7110 	if (WARN_ON(offset + bytes > PAGE_SIZE))
7111 		bytes = (unsigned)PAGE_SIZE - offset;
7112 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7113 				       offset, bytes);
7114 	if (unlikely(ret < 0))
7115 		return X86EMUL_IO_NEEDED;
7116 
7117 	return X86EMUL_CONTINUE;
7118 }
7119 
7120 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7121 			       gva_t addr, void *val, unsigned int bytes,
7122 			       struct x86_exception *exception)
7123 {
7124 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7125 
7126 	/*
7127 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7128 	 * is returned, but our callers are not ready for that and they blindly
7129 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
7130 	 * uninitialized kernel stack memory into cr2 and error code.
7131 	 */
7132 	memset(exception, 0, sizeof(*exception));
7133 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7134 					  exception);
7135 }
7136 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7137 
7138 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7139 			     gva_t addr, void *val, unsigned int bytes,
7140 			     struct x86_exception *exception, bool system)
7141 {
7142 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7143 	u64 access = 0;
7144 
7145 	if (system)
7146 		access |= PFERR_IMPLICIT_ACCESS;
7147 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7148 		access |= PFERR_USER_MASK;
7149 
7150 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7151 }
7152 
7153 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
7154 		unsigned long addr, void *val, unsigned int bytes)
7155 {
7156 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7157 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
7158 
7159 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
7160 }
7161 
7162 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7163 				      struct kvm_vcpu *vcpu, u64 access,
7164 				      struct x86_exception *exception)
7165 {
7166 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7167 	void *data = val;
7168 	int r = X86EMUL_CONTINUE;
7169 
7170 	while (bytes) {
7171 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7172 		unsigned offset = addr & (PAGE_SIZE-1);
7173 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7174 		int ret;
7175 
7176 		if (gpa == UNMAPPED_GVA)
7177 			return X86EMUL_PROPAGATE_FAULT;
7178 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7179 		if (ret < 0) {
7180 			r = X86EMUL_IO_NEEDED;
7181 			goto out;
7182 		}
7183 
7184 		bytes -= towrite;
7185 		data += towrite;
7186 		addr += towrite;
7187 	}
7188 out:
7189 	return r;
7190 }
7191 
7192 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7193 			      unsigned int bytes, struct x86_exception *exception,
7194 			      bool system)
7195 {
7196 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7197 	u64 access = PFERR_WRITE_MASK;
7198 
7199 	if (system)
7200 		access |= PFERR_IMPLICIT_ACCESS;
7201 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7202 		access |= PFERR_USER_MASK;
7203 
7204 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7205 					   access, exception);
7206 }
7207 
7208 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7209 				unsigned int bytes, struct x86_exception *exception)
7210 {
7211 	/* kvm_write_guest_virt_system can pull in tons of pages. */
7212 	vcpu->arch.l1tf_flush_l1d = true;
7213 
7214 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7215 					   PFERR_WRITE_MASK, exception);
7216 }
7217 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7218 
7219 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7220 				void *insn, int insn_len)
7221 {
7222 	return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
7223 							    insn, insn_len);
7224 }
7225 
7226 int handle_ud(struct kvm_vcpu *vcpu)
7227 {
7228 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7229 	int emul_type = EMULTYPE_TRAP_UD;
7230 	char sig[5]; /* ud2; .ascii "kvm" */
7231 	struct x86_exception e;
7232 
7233 	if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
7234 		return 1;
7235 
7236 	if (force_emulation_prefix &&
7237 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7238 				sig, sizeof(sig), &e) == 0 &&
7239 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7240 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7241 		emul_type = EMULTYPE_TRAP_UD_FORCED;
7242 	}
7243 
7244 	return kvm_emulate_instruction(vcpu, emul_type);
7245 }
7246 EXPORT_SYMBOL_GPL(handle_ud);
7247 
7248 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7249 			    gpa_t gpa, bool write)
7250 {
7251 	/* For APIC access vmexit */
7252 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7253 		return 1;
7254 
7255 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7256 		trace_vcpu_match_mmio(gva, gpa, write, true);
7257 		return 1;
7258 	}
7259 
7260 	return 0;
7261 }
7262 
7263 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7264 				gpa_t *gpa, struct x86_exception *exception,
7265 				bool write)
7266 {
7267 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7268 	u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7269 		| (write ? PFERR_WRITE_MASK : 0);
7270 
7271 	/*
7272 	 * currently PKRU is only applied to ept enabled guest so
7273 	 * there is no pkey in EPT page table for L1 guest or EPT
7274 	 * shadow page table for L2 guest.
7275 	 */
7276 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7277 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
7278 			      vcpu->arch.mmio_access, 0, access))) {
7279 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7280 					(gva & (PAGE_SIZE - 1));
7281 		trace_vcpu_match_mmio(gva, *gpa, write, false);
7282 		return 1;
7283 	}
7284 
7285 	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7286 
7287 	if (*gpa == UNMAPPED_GVA)
7288 		return -1;
7289 
7290 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7291 }
7292 
7293 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7294 			const void *val, int bytes)
7295 {
7296 	int ret;
7297 
7298 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7299 	if (ret < 0)
7300 		return 0;
7301 	kvm_page_track_write(vcpu, gpa, val, bytes);
7302 	return 1;
7303 }
7304 
7305 struct read_write_emulator_ops {
7306 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7307 				  int bytes);
7308 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7309 				  void *val, int bytes);
7310 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7311 			       int bytes, void *val);
7312 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7313 				    void *val, int bytes);
7314 	bool write;
7315 };
7316 
7317 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7318 {
7319 	if (vcpu->mmio_read_completed) {
7320 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7321 			       vcpu->mmio_fragments[0].gpa, val);
7322 		vcpu->mmio_read_completed = 0;
7323 		return 1;
7324 	}
7325 
7326 	return 0;
7327 }
7328 
7329 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7330 			void *val, int bytes)
7331 {
7332 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7333 }
7334 
7335 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7336 			 void *val, int bytes)
7337 {
7338 	return emulator_write_phys(vcpu, gpa, val, bytes);
7339 }
7340 
7341 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7342 {
7343 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7344 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
7345 }
7346 
7347 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7348 			  void *val, int bytes)
7349 {
7350 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7351 	return X86EMUL_IO_NEEDED;
7352 }
7353 
7354 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7355 			   void *val, int bytes)
7356 {
7357 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7358 
7359 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7360 	return X86EMUL_CONTINUE;
7361 }
7362 
7363 static const struct read_write_emulator_ops read_emultor = {
7364 	.read_write_prepare = read_prepare,
7365 	.read_write_emulate = read_emulate,
7366 	.read_write_mmio = vcpu_mmio_read,
7367 	.read_write_exit_mmio = read_exit_mmio,
7368 };
7369 
7370 static const struct read_write_emulator_ops write_emultor = {
7371 	.read_write_emulate = write_emulate,
7372 	.read_write_mmio = write_mmio,
7373 	.read_write_exit_mmio = write_exit_mmio,
7374 	.write = true,
7375 };
7376 
7377 static int emulator_read_write_onepage(unsigned long addr, void *val,
7378 				       unsigned int bytes,
7379 				       struct x86_exception *exception,
7380 				       struct kvm_vcpu *vcpu,
7381 				       const struct read_write_emulator_ops *ops)
7382 {
7383 	gpa_t gpa;
7384 	int handled, ret;
7385 	bool write = ops->write;
7386 	struct kvm_mmio_fragment *frag;
7387 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7388 
7389 	/*
7390 	 * If the exit was due to a NPF we may already have a GPA.
7391 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7392 	 * Note, this cannot be used on string operations since string
7393 	 * operation using rep will only have the initial GPA from the NPF
7394 	 * occurred.
7395 	 */
7396 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7397 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7398 		gpa = ctxt->gpa_val;
7399 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7400 	} else {
7401 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7402 		if (ret < 0)
7403 			return X86EMUL_PROPAGATE_FAULT;
7404 	}
7405 
7406 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7407 		return X86EMUL_CONTINUE;
7408 
7409 	/*
7410 	 * Is this MMIO handled locally?
7411 	 */
7412 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7413 	if (handled == bytes)
7414 		return X86EMUL_CONTINUE;
7415 
7416 	gpa += handled;
7417 	bytes -= handled;
7418 	val += handled;
7419 
7420 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7421 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7422 	frag->gpa = gpa;
7423 	frag->data = val;
7424 	frag->len = bytes;
7425 	return X86EMUL_CONTINUE;
7426 }
7427 
7428 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7429 			unsigned long addr,
7430 			void *val, unsigned int bytes,
7431 			struct x86_exception *exception,
7432 			const struct read_write_emulator_ops *ops)
7433 {
7434 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7435 	gpa_t gpa;
7436 	int rc;
7437 
7438 	if (ops->read_write_prepare &&
7439 		  ops->read_write_prepare(vcpu, val, bytes))
7440 		return X86EMUL_CONTINUE;
7441 
7442 	vcpu->mmio_nr_fragments = 0;
7443 
7444 	/* Crossing a page boundary? */
7445 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7446 		int now;
7447 
7448 		now = -addr & ~PAGE_MASK;
7449 		rc = emulator_read_write_onepage(addr, val, now, exception,
7450 						 vcpu, ops);
7451 
7452 		if (rc != X86EMUL_CONTINUE)
7453 			return rc;
7454 		addr += now;
7455 		if (ctxt->mode != X86EMUL_MODE_PROT64)
7456 			addr = (u32)addr;
7457 		val += now;
7458 		bytes -= now;
7459 	}
7460 
7461 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
7462 					 vcpu, ops);
7463 	if (rc != X86EMUL_CONTINUE)
7464 		return rc;
7465 
7466 	if (!vcpu->mmio_nr_fragments)
7467 		return rc;
7468 
7469 	gpa = vcpu->mmio_fragments[0].gpa;
7470 
7471 	vcpu->mmio_needed = 1;
7472 	vcpu->mmio_cur_fragment = 0;
7473 
7474 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7475 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7476 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
7477 	vcpu->run->mmio.phys_addr = gpa;
7478 
7479 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7480 }
7481 
7482 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7483 				  unsigned long addr,
7484 				  void *val,
7485 				  unsigned int bytes,
7486 				  struct x86_exception *exception)
7487 {
7488 	return emulator_read_write(ctxt, addr, val, bytes,
7489 				   exception, &read_emultor);
7490 }
7491 
7492 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7493 			    unsigned long addr,
7494 			    const void *val,
7495 			    unsigned int bytes,
7496 			    struct x86_exception *exception)
7497 {
7498 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
7499 				   exception, &write_emultor);
7500 }
7501 
7502 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7503 	(__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7504 
7505 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7506 				     unsigned long addr,
7507 				     const void *old,
7508 				     const void *new,
7509 				     unsigned int bytes,
7510 				     struct x86_exception *exception)
7511 {
7512 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7513 	u64 page_line_mask;
7514 	unsigned long hva;
7515 	gpa_t gpa;
7516 	int r;
7517 
7518 	/* guests cmpxchg8b have to be emulated atomically */
7519 	if (bytes > 8 || (bytes & (bytes - 1)))
7520 		goto emul_write;
7521 
7522 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7523 
7524 	if (gpa == UNMAPPED_GVA ||
7525 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7526 		goto emul_write;
7527 
7528 	/*
7529 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
7530 	 * enabled in the host and the access splits a cache line.
7531 	 */
7532 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7533 		page_line_mask = ~(cache_line_size() - 1);
7534 	else
7535 		page_line_mask = PAGE_MASK;
7536 
7537 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7538 		goto emul_write;
7539 
7540 	hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7541 	if (kvm_is_error_hva(hva))
7542 		goto emul_write;
7543 
7544 	hva += offset_in_page(gpa);
7545 
7546 	switch (bytes) {
7547 	case 1:
7548 		r = emulator_try_cmpxchg_user(u8, hva, old, new);
7549 		break;
7550 	case 2:
7551 		r = emulator_try_cmpxchg_user(u16, hva, old, new);
7552 		break;
7553 	case 4:
7554 		r = emulator_try_cmpxchg_user(u32, hva, old, new);
7555 		break;
7556 	case 8:
7557 		r = emulator_try_cmpxchg_user(u64, hva, old, new);
7558 		break;
7559 	default:
7560 		BUG();
7561 	}
7562 
7563 	if (r < 0)
7564 		return X86EMUL_UNHANDLEABLE;
7565 	if (r)
7566 		return X86EMUL_CMPXCHG_FAILED;
7567 
7568 	kvm_page_track_write(vcpu, gpa, new, bytes);
7569 
7570 	return X86EMUL_CONTINUE;
7571 
7572 emul_write:
7573 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
7574 
7575 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7576 }
7577 
7578 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7579 			       unsigned short port,
7580 			       unsigned int count, bool in)
7581 {
7582 	void *data = vcpu->arch.pio_data;
7583 	unsigned i;
7584 	int r;
7585 
7586 	vcpu->arch.pio.port = port;
7587 	vcpu->arch.pio.in = in;
7588 	vcpu->arch.pio.count = count;
7589 	vcpu->arch.pio.size = size;
7590 
7591 	for (i = 0; i < count; i++) {
7592 		if (in)
7593 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
7594 		else
7595 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
7596 		if (r)
7597 			goto userspace_io;
7598 		data += size;
7599 	}
7600 	return 1;
7601 
7602 userspace_io:
7603 	vcpu->run->exit_reason = KVM_EXIT_IO;
7604 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7605 	vcpu->run->io.size = size;
7606 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7607 	vcpu->run->io.count = count;
7608 	vcpu->run->io.port = port;
7609 
7610 	return 0;
7611 }
7612 
7613 static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7614 			     unsigned short port, unsigned int count)
7615 {
7616 	WARN_ON(vcpu->arch.pio.count);
7617 	memset(vcpu->arch.pio_data, 0, size * count);
7618 	return emulator_pio_in_out(vcpu, size, port, count, true);
7619 }
7620 
7621 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7622 {
7623 	int size = vcpu->arch.pio.size;
7624 	unsigned count = vcpu->arch.pio.count;
7625 	memcpy(val, vcpu->arch.pio_data, size * count);
7626 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7627 	vcpu->arch.pio.count = 0;
7628 }
7629 
7630 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7631 			   unsigned short port, void *val, unsigned int count)
7632 {
7633 	if (vcpu->arch.pio.count) {
7634 		/*
7635 		 * Complete a previous iteration that required userspace I/O.
7636 		 * Note, @count isn't guaranteed to match pio.count as userspace
7637 		 * can modify ECX before rerunning the vCPU.  Ignore any such
7638 		 * shenanigans as KVM doesn't support modifying the rep count,
7639 		 * and the emulator ensures @count doesn't overflow the buffer.
7640 		 */
7641 	} else {
7642 		int r = __emulator_pio_in(vcpu, size, port, count);
7643 		if (!r)
7644 			return r;
7645 
7646 		/* Results already available, fall through.  */
7647 	}
7648 
7649 	complete_emulator_pio_in(vcpu, val);
7650 	return 1;
7651 }
7652 
7653 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7654 				    int size, unsigned short port, void *val,
7655 				    unsigned int count)
7656 {
7657 	return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
7658 
7659 }
7660 
7661 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7662 			    unsigned short port, const void *val,
7663 			    unsigned int count)
7664 {
7665 	int ret;
7666 
7667 	memcpy(vcpu->arch.pio_data, val, size * count);
7668 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
7669 	ret = emulator_pio_in_out(vcpu, size, port, count, false);
7670 	if (ret)
7671                 vcpu->arch.pio.count = 0;
7672 
7673         return ret;
7674 }
7675 
7676 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7677 				     int size, unsigned short port,
7678 				     const void *val, unsigned int count)
7679 {
7680 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7681 }
7682 
7683 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7684 {
7685 	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7686 }
7687 
7688 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7689 {
7690 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7691 }
7692 
7693 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7694 {
7695 	if (!need_emulate_wbinvd(vcpu))
7696 		return X86EMUL_CONTINUE;
7697 
7698 	if (static_call(kvm_x86_has_wbinvd_exit)()) {
7699 		int cpu = get_cpu();
7700 
7701 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7702 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7703 				wbinvd_ipi, NULL, 1);
7704 		put_cpu();
7705 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7706 	} else
7707 		wbinvd();
7708 	return X86EMUL_CONTINUE;
7709 }
7710 
7711 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7712 {
7713 	kvm_emulate_wbinvd_noskip(vcpu);
7714 	return kvm_skip_emulated_instruction(vcpu);
7715 }
7716 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7717 
7718 
7719 
7720 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7721 {
7722 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7723 }
7724 
7725 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7726 			    unsigned long *dest)
7727 {
7728 	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7729 }
7730 
7731 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7732 			   unsigned long value)
7733 {
7734 
7735 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7736 }
7737 
7738 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7739 {
7740 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7741 }
7742 
7743 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7744 {
7745 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7746 	unsigned long value;
7747 
7748 	switch (cr) {
7749 	case 0:
7750 		value = kvm_read_cr0(vcpu);
7751 		break;
7752 	case 2:
7753 		value = vcpu->arch.cr2;
7754 		break;
7755 	case 3:
7756 		value = kvm_read_cr3(vcpu);
7757 		break;
7758 	case 4:
7759 		value = kvm_read_cr4(vcpu);
7760 		break;
7761 	case 8:
7762 		value = kvm_get_cr8(vcpu);
7763 		break;
7764 	default:
7765 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7766 		return 0;
7767 	}
7768 
7769 	return value;
7770 }
7771 
7772 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7773 {
7774 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7775 	int res = 0;
7776 
7777 	switch (cr) {
7778 	case 0:
7779 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7780 		break;
7781 	case 2:
7782 		vcpu->arch.cr2 = val;
7783 		break;
7784 	case 3:
7785 		res = kvm_set_cr3(vcpu, val);
7786 		break;
7787 	case 4:
7788 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7789 		break;
7790 	case 8:
7791 		res = kvm_set_cr8(vcpu, val);
7792 		break;
7793 	default:
7794 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7795 		res = -1;
7796 	}
7797 
7798 	return res;
7799 }
7800 
7801 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7802 {
7803 	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7804 }
7805 
7806 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7807 {
7808 	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7809 }
7810 
7811 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7812 {
7813 	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7814 }
7815 
7816 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7817 {
7818 	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7819 }
7820 
7821 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7822 {
7823 	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7824 }
7825 
7826 static unsigned long emulator_get_cached_segment_base(
7827 	struct x86_emulate_ctxt *ctxt, int seg)
7828 {
7829 	return get_segment_base(emul_to_vcpu(ctxt), seg);
7830 }
7831 
7832 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7833 				 struct desc_struct *desc, u32 *base3,
7834 				 int seg)
7835 {
7836 	struct kvm_segment var;
7837 
7838 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7839 	*selector = var.selector;
7840 
7841 	if (var.unusable) {
7842 		memset(desc, 0, sizeof(*desc));
7843 		if (base3)
7844 			*base3 = 0;
7845 		return false;
7846 	}
7847 
7848 	if (var.g)
7849 		var.limit >>= 12;
7850 	set_desc_limit(desc, var.limit);
7851 	set_desc_base(desc, (unsigned long)var.base);
7852 #ifdef CONFIG_X86_64
7853 	if (base3)
7854 		*base3 = var.base >> 32;
7855 #endif
7856 	desc->type = var.type;
7857 	desc->s = var.s;
7858 	desc->dpl = var.dpl;
7859 	desc->p = var.present;
7860 	desc->avl = var.avl;
7861 	desc->l = var.l;
7862 	desc->d = var.db;
7863 	desc->g = var.g;
7864 
7865 	return true;
7866 }
7867 
7868 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7869 				 struct desc_struct *desc, u32 base3,
7870 				 int seg)
7871 {
7872 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7873 	struct kvm_segment var;
7874 
7875 	var.selector = selector;
7876 	var.base = get_desc_base(desc);
7877 #ifdef CONFIG_X86_64
7878 	var.base |= ((u64)base3) << 32;
7879 #endif
7880 	var.limit = get_desc_limit(desc);
7881 	if (desc->g)
7882 		var.limit = (var.limit << 12) | 0xfff;
7883 	var.type = desc->type;
7884 	var.dpl = desc->dpl;
7885 	var.db = desc->d;
7886 	var.s = desc->s;
7887 	var.l = desc->l;
7888 	var.g = desc->g;
7889 	var.avl = desc->avl;
7890 	var.present = desc->p;
7891 	var.unusable = !var.present;
7892 	var.padding = 0;
7893 
7894 	kvm_set_segment(vcpu, &var, seg);
7895 	return;
7896 }
7897 
7898 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
7899 					u32 msr_index, u64 *pdata)
7900 {
7901 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7902 	int r;
7903 
7904 	r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
7905 
7906 	if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
7907 				    complete_emulated_rdmsr, r)) {
7908 		/* Bounce to user space */
7909 		return X86EMUL_IO_NEEDED;
7910 	}
7911 
7912 	return r;
7913 }
7914 
7915 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
7916 					u32 msr_index, u64 data)
7917 {
7918 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7919 	int r;
7920 
7921 	r = kvm_set_msr_with_filter(vcpu, msr_index, data);
7922 
7923 	if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
7924 				    complete_emulated_msr_access, r)) {
7925 		/* Bounce to user space */
7926 		return X86EMUL_IO_NEEDED;
7927 	}
7928 
7929 	return r;
7930 }
7931 
7932 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7933 			    u32 msr_index, u64 *pdata)
7934 {
7935 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
7936 }
7937 
7938 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7939 			    u32 msr_index, u64 data)
7940 {
7941 	return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
7942 }
7943 
7944 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7945 {
7946 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7947 
7948 	return vcpu->arch.smbase;
7949 }
7950 
7951 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7952 {
7953 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7954 
7955 	vcpu->arch.smbase = smbase;
7956 }
7957 
7958 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7959 			      u32 pmc)
7960 {
7961 	if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
7962 		return 0;
7963 	return -EINVAL;
7964 }
7965 
7966 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7967 			     u32 pmc, u64 *pdata)
7968 {
7969 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7970 }
7971 
7972 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7973 {
7974 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
7975 }
7976 
7977 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7978 			      struct x86_instruction_info *info,
7979 			      enum x86_intercept_stage stage)
7980 {
7981 	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7982 					    &ctxt->exception);
7983 }
7984 
7985 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7986 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7987 			      bool exact_only)
7988 {
7989 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7990 }
7991 
7992 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7993 {
7994 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7995 }
7996 
7997 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7998 {
7999 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8000 }
8001 
8002 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8003 {
8004 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8005 }
8006 
8007 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8008 {
8009 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8010 }
8011 
8012 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8013 {
8014 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8015 }
8016 
8017 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8018 {
8019 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8020 }
8021 
8022 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8023 {
8024 	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8025 }
8026 
8027 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
8028 {
8029 	return emul_to_vcpu(ctxt)->arch.hflags;
8030 }
8031 
8032 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
8033 {
8034 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8035 
8036 	kvm_smm_changed(vcpu, false);
8037 }
8038 
8039 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
8040 				  const char *smstate)
8041 {
8042 	return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
8043 }
8044 
8045 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8046 {
8047 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8048 }
8049 
8050 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8051 {
8052 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8053 }
8054 
8055 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8056 {
8057 	struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8058 
8059 	if (!kvm->vm_bugged)
8060 		kvm_vm_bugged(kvm);
8061 }
8062 
8063 static const struct x86_emulate_ops emulate_ops = {
8064 	.vm_bugged           = emulator_vm_bugged,
8065 	.read_gpr            = emulator_read_gpr,
8066 	.write_gpr           = emulator_write_gpr,
8067 	.read_std            = emulator_read_std,
8068 	.write_std           = emulator_write_std,
8069 	.read_phys           = kvm_read_guest_phys_system,
8070 	.fetch               = kvm_fetch_guest_virt,
8071 	.read_emulated       = emulator_read_emulated,
8072 	.write_emulated      = emulator_write_emulated,
8073 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
8074 	.invlpg              = emulator_invlpg,
8075 	.pio_in_emulated     = emulator_pio_in_emulated,
8076 	.pio_out_emulated    = emulator_pio_out_emulated,
8077 	.get_segment         = emulator_get_segment,
8078 	.set_segment         = emulator_set_segment,
8079 	.get_cached_segment_base = emulator_get_cached_segment_base,
8080 	.get_gdt             = emulator_get_gdt,
8081 	.get_idt	     = emulator_get_idt,
8082 	.set_gdt             = emulator_set_gdt,
8083 	.set_idt	     = emulator_set_idt,
8084 	.get_cr              = emulator_get_cr,
8085 	.set_cr              = emulator_set_cr,
8086 	.cpl                 = emulator_get_cpl,
8087 	.get_dr              = emulator_get_dr,
8088 	.set_dr              = emulator_set_dr,
8089 	.get_smbase          = emulator_get_smbase,
8090 	.set_smbase          = emulator_set_smbase,
8091 	.set_msr_with_filter = emulator_set_msr_with_filter,
8092 	.get_msr_with_filter = emulator_get_msr_with_filter,
8093 	.set_msr             = emulator_set_msr,
8094 	.get_msr             = emulator_get_msr,
8095 	.check_pmc	     = emulator_check_pmc,
8096 	.read_pmc            = emulator_read_pmc,
8097 	.halt                = emulator_halt,
8098 	.wbinvd              = emulator_wbinvd,
8099 	.fix_hypercall       = emulator_fix_hypercall,
8100 	.intercept           = emulator_intercept,
8101 	.get_cpuid           = emulator_get_cpuid,
8102 	.guest_has_long_mode = emulator_guest_has_long_mode,
8103 	.guest_has_movbe     = emulator_guest_has_movbe,
8104 	.guest_has_fxsr      = emulator_guest_has_fxsr,
8105 	.guest_has_rdpid     = emulator_guest_has_rdpid,
8106 	.set_nmi_mask        = emulator_set_nmi_mask,
8107 	.get_hflags          = emulator_get_hflags,
8108 	.exiting_smm         = emulator_exiting_smm,
8109 	.leave_smm           = emulator_leave_smm,
8110 	.triple_fault        = emulator_triple_fault,
8111 	.set_xcr             = emulator_set_xcr,
8112 };
8113 
8114 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8115 {
8116 	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8117 	/*
8118 	 * an sti; sti; sequence only disable interrupts for the first
8119 	 * instruction. So, if the last instruction, be it emulated or
8120 	 * not, left the system with the INT_STI flag enabled, it
8121 	 * means that the last instruction is an sti. We should not
8122 	 * leave the flag on in this case. The same goes for mov ss
8123 	 */
8124 	if (int_shadow & mask)
8125 		mask = 0;
8126 	if (unlikely(int_shadow || mask)) {
8127 		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8128 		if (!mask)
8129 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8130 	}
8131 }
8132 
8133 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
8134 {
8135 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8136 	if (ctxt->exception.vector == PF_VECTOR)
8137 		return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8138 
8139 	if (ctxt->exception.error_code_valid)
8140 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8141 				      ctxt->exception.error_code);
8142 	else
8143 		kvm_queue_exception(vcpu, ctxt->exception.vector);
8144 	return false;
8145 }
8146 
8147 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8148 {
8149 	struct x86_emulate_ctxt *ctxt;
8150 
8151 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8152 	if (!ctxt) {
8153 		pr_err("kvm: failed to allocate vcpu's emulator\n");
8154 		return NULL;
8155 	}
8156 
8157 	ctxt->vcpu = vcpu;
8158 	ctxt->ops = &emulate_ops;
8159 	vcpu->arch.emulate_ctxt = ctxt;
8160 
8161 	return ctxt;
8162 }
8163 
8164 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8165 {
8166 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8167 	int cs_db, cs_l;
8168 
8169 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8170 
8171 	ctxt->gpa_available = false;
8172 	ctxt->eflags = kvm_get_rflags(vcpu);
8173 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8174 
8175 	ctxt->eip = kvm_rip_read(vcpu);
8176 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
8177 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
8178 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
8179 		     cs_db				? X86EMUL_MODE_PROT32 :
8180 							  X86EMUL_MODE_PROT16;
8181 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
8182 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
8183 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
8184 
8185 	ctxt->interruptibility = 0;
8186 	ctxt->have_exception = false;
8187 	ctxt->exception.vector = -1;
8188 	ctxt->perm_ok = false;
8189 
8190 	init_decode_cache(ctxt);
8191 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8192 }
8193 
8194 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8195 {
8196 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8197 	int ret;
8198 
8199 	init_emulate_ctxt(vcpu);
8200 
8201 	ctxt->op_bytes = 2;
8202 	ctxt->ad_bytes = 2;
8203 	ctxt->_eip = ctxt->eip + inc_eip;
8204 	ret = emulate_int_real(ctxt, irq);
8205 
8206 	if (ret != X86EMUL_CONTINUE) {
8207 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8208 	} else {
8209 		ctxt->eip = ctxt->_eip;
8210 		kvm_rip_write(vcpu, ctxt->eip);
8211 		kvm_set_rflags(vcpu, ctxt->eflags);
8212 	}
8213 }
8214 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8215 
8216 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8217 					   u8 ndata, u8 *insn_bytes, u8 insn_size)
8218 {
8219 	struct kvm_run *run = vcpu->run;
8220 	u64 info[5];
8221 	u8 info_start;
8222 
8223 	/*
8224 	 * Zero the whole array used to retrieve the exit info, as casting to
8225 	 * u32 for select entries will leave some chunks uninitialized.
8226 	 */
8227 	memset(&info, 0, sizeof(info));
8228 
8229 	static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8230 					   &info[2], (u32 *)&info[3],
8231 					   (u32 *)&info[4]);
8232 
8233 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8234 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8235 
8236 	/*
8237 	 * There's currently space for 13 entries, but 5 are used for the exit
8238 	 * reason and info.  Restrict to 4 to reduce the maintenance burden
8239 	 * when expanding kvm_run.emulation_failure in the future.
8240 	 */
8241 	if (WARN_ON_ONCE(ndata > 4))
8242 		ndata = 4;
8243 
8244 	/* Always include the flags as a 'data' entry. */
8245 	info_start = 1;
8246 	run->emulation_failure.flags = 0;
8247 
8248 	if (insn_size) {
8249 		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8250 			      sizeof(run->emulation_failure.insn_bytes) != 16));
8251 		info_start += 2;
8252 		run->emulation_failure.flags |=
8253 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8254 		run->emulation_failure.insn_size = insn_size;
8255 		memset(run->emulation_failure.insn_bytes, 0x90,
8256 		       sizeof(run->emulation_failure.insn_bytes));
8257 		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8258 	}
8259 
8260 	memcpy(&run->internal.data[info_start], info, sizeof(info));
8261 	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8262 	       ndata * sizeof(data[0]));
8263 
8264 	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8265 }
8266 
8267 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8268 {
8269 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8270 
8271 	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8272 				       ctxt->fetch.end - ctxt->fetch.data);
8273 }
8274 
8275 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8276 					  u8 ndata)
8277 {
8278 	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8279 }
8280 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8281 
8282 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8283 {
8284 	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8285 }
8286 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8287 
8288 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8289 {
8290 	struct kvm *kvm = vcpu->kvm;
8291 
8292 	++vcpu->stat.insn_emulation_fail;
8293 	trace_kvm_emulate_insn_failed(vcpu);
8294 
8295 	if (emulation_type & EMULTYPE_VMWARE_GP) {
8296 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8297 		return 1;
8298 	}
8299 
8300 	if (kvm->arch.exit_on_emulation_error ||
8301 	    (emulation_type & EMULTYPE_SKIP)) {
8302 		prepare_emulation_ctxt_failure_exit(vcpu);
8303 		return 0;
8304 	}
8305 
8306 	kvm_queue_exception(vcpu, UD_VECTOR);
8307 
8308 	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8309 		prepare_emulation_ctxt_failure_exit(vcpu);
8310 		return 0;
8311 	}
8312 
8313 	return 1;
8314 }
8315 
8316 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8317 				  bool write_fault_to_shadow_pgtable,
8318 				  int emulation_type)
8319 {
8320 	gpa_t gpa = cr2_or_gpa;
8321 	kvm_pfn_t pfn;
8322 
8323 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8324 		return false;
8325 
8326 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8327 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8328 		return false;
8329 
8330 	if (!vcpu->arch.mmu->root_role.direct) {
8331 		/*
8332 		 * Write permission should be allowed since only
8333 		 * write access need to be emulated.
8334 		 */
8335 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8336 
8337 		/*
8338 		 * If the mapping is invalid in guest, let cpu retry
8339 		 * it to generate fault.
8340 		 */
8341 		if (gpa == UNMAPPED_GVA)
8342 			return true;
8343 	}
8344 
8345 	/*
8346 	 * Do not retry the unhandleable instruction if it faults on the
8347 	 * readonly host memory, otherwise it will goto a infinite loop:
8348 	 * retry instruction -> write #PF -> emulation fail -> retry
8349 	 * instruction -> ...
8350 	 */
8351 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8352 
8353 	/*
8354 	 * If the instruction failed on the error pfn, it can not be fixed,
8355 	 * report the error to userspace.
8356 	 */
8357 	if (is_error_noslot_pfn(pfn))
8358 		return false;
8359 
8360 	kvm_release_pfn_clean(pfn);
8361 
8362 	/* The instructions are well-emulated on direct mmu. */
8363 	if (vcpu->arch.mmu->root_role.direct) {
8364 		unsigned int indirect_shadow_pages;
8365 
8366 		write_lock(&vcpu->kvm->mmu_lock);
8367 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8368 		write_unlock(&vcpu->kvm->mmu_lock);
8369 
8370 		if (indirect_shadow_pages)
8371 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8372 
8373 		return true;
8374 	}
8375 
8376 	/*
8377 	 * if emulation was due to access to shadowed page table
8378 	 * and it failed try to unshadow page and re-enter the
8379 	 * guest to let CPU execute the instruction.
8380 	 */
8381 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8382 
8383 	/*
8384 	 * If the access faults on its page table, it can not
8385 	 * be fixed by unprotecting shadow page and it should
8386 	 * be reported to userspace.
8387 	 */
8388 	return !write_fault_to_shadow_pgtable;
8389 }
8390 
8391 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8392 			      gpa_t cr2_or_gpa,  int emulation_type)
8393 {
8394 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8395 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8396 
8397 	last_retry_eip = vcpu->arch.last_retry_eip;
8398 	last_retry_addr = vcpu->arch.last_retry_addr;
8399 
8400 	/*
8401 	 * If the emulation is caused by #PF and it is non-page_table
8402 	 * writing instruction, it means the VM-EXIT is caused by shadow
8403 	 * page protected, we can zap the shadow page and retry this
8404 	 * instruction directly.
8405 	 *
8406 	 * Note: if the guest uses a non-page-table modifying instruction
8407 	 * on the PDE that points to the instruction, then we will unmap
8408 	 * the instruction and go to an infinite loop. So, we cache the
8409 	 * last retried eip and the last fault address, if we meet the eip
8410 	 * and the address again, we can break out of the potential infinite
8411 	 * loop.
8412 	 */
8413 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8414 
8415 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8416 		return false;
8417 
8418 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8419 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8420 		return false;
8421 
8422 	if (x86_page_table_writing_insn(ctxt))
8423 		return false;
8424 
8425 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8426 		return false;
8427 
8428 	vcpu->arch.last_retry_eip = ctxt->eip;
8429 	vcpu->arch.last_retry_addr = cr2_or_gpa;
8430 
8431 	if (!vcpu->arch.mmu->root_role.direct)
8432 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8433 
8434 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8435 
8436 	return true;
8437 }
8438 
8439 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8440 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8441 
8442 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
8443 {
8444 	trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
8445 
8446 	if (entering_smm) {
8447 		vcpu->arch.hflags |= HF_SMM_MASK;
8448 	} else {
8449 		vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
8450 
8451 		/* Process a latched INIT or SMI, if any.  */
8452 		kvm_make_request(KVM_REQ_EVENT, vcpu);
8453 
8454 		/*
8455 		 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
8456 		 * on SMM exit we still need to reload them from
8457 		 * guest memory
8458 		 */
8459 		vcpu->arch.pdptrs_from_userspace = false;
8460 	}
8461 
8462 	kvm_mmu_reset_context(vcpu);
8463 }
8464 
8465 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8466 				unsigned long *db)
8467 {
8468 	u32 dr6 = 0;
8469 	int i;
8470 	u32 enable, rwlen;
8471 
8472 	enable = dr7;
8473 	rwlen = dr7 >> 16;
8474 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8475 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8476 			dr6 |= (1 << i);
8477 	return dr6;
8478 }
8479 
8480 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8481 {
8482 	struct kvm_run *kvm_run = vcpu->run;
8483 
8484 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8485 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8486 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8487 		kvm_run->debug.arch.exception = DB_VECTOR;
8488 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
8489 		return 0;
8490 	}
8491 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8492 	return 1;
8493 }
8494 
8495 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8496 {
8497 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8498 	int r;
8499 
8500 	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8501 	if (unlikely(!r))
8502 		return 0;
8503 
8504 	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8505 
8506 	/*
8507 	 * rflags is the old, "raw" value of the flags.  The new value has
8508 	 * not been saved yet.
8509 	 *
8510 	 * This is correct even for TF set by the guest, because "the
8511 	 * processor will not generate this exception after the instruction
8512 	 * that sets the TF flag".
8513 	 */
8514 	if (unlikely(rflags & X86_EFLAGS_TF))
8515 		r = kvm_vcpu_do_singlestep(vcpu);
8516 	return r;
8517 }
8518 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8519 
8520 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, int *r)
8521 {
8522 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8523 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8524 		struct kvm_run *kvm_run = vcpu->run;
8525 		unsigned long eip = kvm_get_linear_rip(vcpu);
8526 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8527 					   vcpu->arch.guest_debug_dr7,
8528 					   vcpu->arch.eff_db);
8529 
8530 		if (dr6 != 0) {
8531 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8532 			kvm_run->debug.arch.pc = eip;
8533 			kvm_run->debug.arch.exception = DB_VECTOR;
8534 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
8535 			*r = 0;
8536 			return true;
8537 		}
8538 	}
8539 
8540 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8541 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
8542 		unsigned long eip = kvm_get_linear_rip(vcpu);
8543 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8544 					   vcpu->arch.dr7,
8545 					   vcpu->arch.db);
8546 
8547 		if (dr6 != 0) {
8548 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8549 			*r = 1;
8550 			return true;
8551 		}
8552 	}
8553 
8554 	return false;
8555 }
8556 
8557 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8558 {
8559 	switch (ctxt->opcode_len) {
8560 	case 1:
8561 		switch (ctxt->b) {
8562 		case 0xe4:	/* IN */
8563 		case 0xe5:
8564 		case 0xec:
8565 		case 0xed:
8566 		case 0xe6:	/* OUT */
8567 		case 0xe7:
8568 		case 0xee:
8569 		case 0xef:
8570 		case 0x6c:	/* INS */
8571 		case 0x6d:
8572 		case 0x6e:	/* OUTS */
8573 		case 0x6f:
8574 			return true;
8575 		}
8576 		break;
8577 	case 2:
8578 		switch (ctxt->b) {
8579 		case 0x33:	/* RDPMC */
8580 			return true;
8581 		}
8582 		break;
8583 	}
8584 
8585 	return false;
8586 }
8587 
8588 /*
8589  * Decode an instruction for emulation.  The caller is responsible for handling
8590  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
8591  * (and wrong) when emulating on an intercepted fault-like exception[*], as
8592  * code breakpoints have higher priority and thus have already been done by
8593  * hardware.
8594  *
8595  * [*] Except #MC, which is higher priority, but KVM should never emulate in
8596  *     response to a machine check.
8597  */
8598 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8599 				    void *insn, int insn_len)
8600 {
8601 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8602 	int r;
8603 
8604 	init_emulate_ctxt(vcpu);
8605 
8606 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8607 
8608 	trace_kvm_emulate_insn_start(vcpu);
8609 	++vcpu->stat.insn_emulation;
8610 
8611 	return r;
8612 }
8613 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8614 
8615 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8616 			    int emulation_type, void *insn, int insn_len)
8617 {
8618 	int r;
8619 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8620 	bool writeback = true;
8621 	bool write_fault_to_spt;
8622 
8623 	if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8624 		return 1;
8625 
8626 	vcpu->arch.l1tf_flush_l1d = true;
8627 
8628 	/*
8629 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
8630 	 * never reused.
8631 	 */
8632 	write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8633 	vcpu->arch.write_fault_to_shadow_pgtable = false;
8634 
8635 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8636 		kvm_clear_exception_queue(vcpu);
8637 
8638 		/*
8639 		 * Return immediately if RIP hits a code breakpoint, such #DBs
8640 		 * are fault-like and are higher priority than any faults on
8641 		 * the code fetch itself.
8642 		 */
8643 		if (!(emulation_type & EMULTYPE_SKIP) &&
8644 		    kvm_vcpu_check_code_breakpoint(vcpu, &r))
8645 			return r;
8646 
8647 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
8648 						    insn, insn_len);
8649 		if (r != EMULATION_OK)  {
8650 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
8651 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8652 				kvm_queue_exception(vcpu, UD_VECTOR);
8653 				return 1;
8654 			}
8655 			if (reexecute_instruction(vcpu, cr2_or_gpa,
8656 						  write_fault_to_spt,
8657 						  emulation_type))
8658 				return 1;
8659 			if (ctxt->have_exception) {
8660 				/*
8661 				 * #UD should result in just EMULATION_FAILED, and trap-like
8662 				 * exception should not be encountered during decode.
8663 				 */
8664 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8665 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8666 				inject_emulated_exception(vcpu);
8667 				return 1;
8668 			}
8669 			return handle_emulation_failure(vcpu, emulation_type);
8670 		}
8671 	}
8672 
8673 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8674 	    !is_vmware_backdoor_opcode(ctxt)) {
8675 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8676 		return 1;
8677 	}
8678 
8679 	/*
8680 	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8681 	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8682 	 * The caller is responsible for updating interruptibility state and
8683 	 * injecting single-step #DBs.
8684 	 */
8685 	if (emulation_type & EMULTYPE_SKIP) {
8686 		if (ctxt->mode != X86EMUL_MODE_PROT64)
8687 			ctxt->eip = (u32)ctxt->_eip;
8688 		else
8689 			ctxt->eip = ctxt->_eip;
8690 
8691 		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8692 			r = 1;
8693 			goto writeback;
8694 		}
8695 
8696 		kvm_rip_write(vcpu, ctxt->eip);
8697 		if (ctxt->eflags & X86_EFLAGS_RF)
8698 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8699 		return 1;
8700 	}
8701 
8702 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8703 		return 1;
8704 
8705 	/* this is needed for vmware backdoor interface to work since it
8706 	   changes registers values  during IO operation */
8707 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8708 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8709 		emulator_invalidate_register_cache(ctxt);
8710 	}
8711 
8712 restart:
8713 	if (emulation_type & EMULTYPE_PF) {
8714 		/* Save the faulting GPA (cr2) in the address field */
8715 		ctxt->exception.address = cr2_or_gpa;
8716 
8717 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
8718 		if (vcpu->arch.mmu->root_role.direct) {
8719 			ctxt->gpa_available = true;
8720 			ctxt->gpa_val = cr2_or_gpa;
8721 		}
8722 	} else {
8723 		/* Sanitize the address out of an abundance of paranoia. */
8724 		ctxt->exception.address = 0;
8725 	}
8726 
8727 	r = x86_emulate_insn(ctxt);
8728 
8729 	if (r == EMULATION_INTERCEPTED)
8730 		return 1;
8731 
8732 	if (r == EMULATION_FAILED) {
8733 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8734 					emulation_type))
8735 			return 1;
8736 
8737 		return handle_emulation_failure(vcpu, emulation_type);
8738 	}
8739 
8740 	if (ctxt->have_exception) {
8741 		r = 1;
8742 		if (inject_emulated_exception(vcpu))
8743 			return r;
8744 	} else if (vcpu->arch.pio.count) {
8745 		if (!vcpu->arch.pio.in) {
8746 			/* FIXME: return into emulator if single-stepping.  */
8747 			vcpu->arch.pio.count = 0;
8748 		} else {
8749 			writeback = false;
8750 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
8751 		}
8752 		r = 0;
8753 	} else if (vcpu->mmio_needed) {
8754 		++vcpu->stat.mmio_exits;
8755 
8756 		if (!vcpu->mmio_is_write)
8757 			writeback = false;
8758 		r = 0;
8759 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8760 	} else if (vcpu->arch.complete_userspace_io) {
8761 		writeback = false;
8762 		r = 0;
8763 	} else if (r == EMULATION_RESTART)
8764 		goto restart;
8765 	else
8766 		r = 1;
8767 
8768 writeback:
8769 	if (writeback) {
8770 		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8771 		toggle_interruptibility(vcpu, ctxt->interruptibility);
8772 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8773 		if (!ctxt->have_exception ||
8774 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8775 			kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8776 			if (ctxt->is_branch)
8777 				kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
8778 			kvm_rip_write(vcpu, ctxt->eip);
8779 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8780 				r = kvm_vcpu_do_singlestep(vcpu);
8781 			static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
8782 			__kvm_set_rflags(vcpu, ctxt->eflags);
8783 		}
8784 
8785 		/*
8786 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8787 		 * do nothing, and it will be requested again as soon as
8788 		 * the shadow expires.  But we still need to check here,
8789 		 * because POPF has no interrupt shadow.
8790 		 */
8791 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8792 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8793 	} else
8794 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8795 
8796 	return r;
8797 }
8798 
8799 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8800 {
8801 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8802 }
8803 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8804 
8805 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8806 					void *insn, int insn_len)
8807 {
8808 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8809 }
8810 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8811 
8812 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8813 {
8814 	vcpu->arch.pio.count = 0;
8815 	return 1;
8816 }
8817 
8818 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8819 {
8820 	vcpu->arch.pio.count = 0;
8821 
8822 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8823 		return 1;
8824 
8825 	return kvm_skip_emulated_instruction(vcpu);
8826 }
8827 
8828 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8829 			    unsigned short port)
8830 {
8831 	unsigned long val = kvm_rax_read(vcpu);
8832 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8833 
8834 	if (ret)
8835 		return ret;
8836 
8837 	/*
8838 	 * Workaround userspace that relies on old KVM behavior of %rip being
8839 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
8840 	 */
8841 	if (port == 0x7e &&
8842 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8843 		vcpu->arch.complete_userspace_io =
8844 			complete_fast_pio_out_port_0x7e;
8845 		kvm_skip_emulated_instruction(vcpu);
8846 	} else {
8847 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8848 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8849 	}
8850 	return 0;
8851 }
8852 
8853 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8854 {
8855 	unsigned long val;
8856 
8857 	/* We should only ever be called with arch.pio.count equal to 1 */
8858 	BUG_ON(vcpu->arch.pio.count != 1);
8859 
8860 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8861 		vcpu->arch.pio.count = 0;
8862 		return 1;
8863 	}
8864 
8865 	/* For size less than 4 we merge, else we zero extend */
8866 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8867 
8868 	complete_emulator_pio_in(vcpu, &val);
8869 	kvm_rax_write(vcpu, val);
8870 
8871 	return kvm_skip_emulated_instruction(vcpu);
8872 }
8873 
8874 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8875 			   unsigned short port)
8876 {
8877 	unsigned long val;
8878 	int ret;
8879 
8880 	/* For size less than 4 we merge, else we zero extend */
8881 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8882 
8883 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
8884 	if (ret) {
8885 		kvm_rax_write(vcpu, val);
8886 		return ret;
8887 	}
8888 
8889 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8890 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8891 
8892 	return 0;
8893 }
8894 
8895 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8896 {
8897 	int ret;
8898 
8899 	if (in)
8900 		ret = kvm_fast_pio_in(vcpu, size, port);
8901 	else
8902 		ret = kvm_fast_pio_out(vcpu, size, port);
8903 	return ret && kvm_skip_emulated_instruction(vcpu);
8904 }
8905 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8906 
8907 static int kvmclock_cpu_down_prep(unsigned int cpu)
8908 {
8909 	__this_cpu_write(cpu_tsc_khz, 0);
8910 	return 0;
8911 }
8912 
8913 static void tsc_khz_changed(void *data)
8914 {
8915 	struct cpufreq_freqs *freq = data;
8916 	unsigned long khz = 0;
8917 
8918 	if (data)
8919 		khz = freq->new;
8920 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8921 		khz = cpufreq_quick_get(raw_smp_processor_id());
8922 	if (!khz)
8923 		khz = tsc_khz;
8924 	__this_cpu_write(cpu_tsc_khz, khz);
8925 }
8926 
8927 #ifdef CONFIG_X86_64
8928 static void kvm_hyperv_tsc_notifier(void)
8929 {
8930 	struct kvm *kvm;
8931 	int cpu;
8932 
8933 	mutex_lock(&kvm_lock);
8934 	list_for_each_entry(kvm, &vm_list, vm_list)
8935 		kvm_make_mclock_inprogress_request(kvm);
8936 
8937 	/* no guest entries from this point */
8938 	hyperv_stop_tsc_emulation();
8939 
8940 	/* TSC frequency always matches when on Hyper-V */
8941 	for_each_present_cpu(cpu)
8942 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8943 	kvm_caps.max_guest_tsc_khz = tsc_khz;
8944 
8945 	list_for_each_entry(kvm, &vm_list, vm_list) {
8946 		__kvm_start_pvclock_update(kvm);
8947 		pvclock_update_vm_gtod_copy(kvm);
8948 		kvm_end_pvclock_update(kvm);
8949 	}
8950 
8951 	mutex_unlock(&kvm_lock);
8952 }
8953 #endif
8954 
8955 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8956 {
8957 	struct kvm *kvm;
8958 	struct kvm_vcpu *vcpu;
8959 	int send_ipi = 0;
8960 	unsigned long i;
8961 
8962 	/*
8963 	 * We allow guests to temporarily run on slowing clocks,
8964 	 * provided we notify them after, or to run on accelerating
8965 	 * clocks, provided we notify them before.  Thus time never
8966 	 * goes backwards.
8967 	 *
8968 	 * However, we have a problem.  We can't atomically update
8969 	 * the frequency of a given CPU from this function; it is
8970 	 * merely a notifier, which can be called from any CPU.
8971 	 * Changing the TSC frequency at arbitrary points in time
8972 	 * requires a recomputation of local variables related to
8973 	 * the TSC for each VCPU.  We must flag these local variables
8974 	 * to be updated and be sure the update takes place with the
8975 	 * new frequency before any guests proceed.
8976 	 *
8977 	 * Unfortunately, the combination of hotplug CPU and frequency
8978 	 * change creates an intractable locking scenario; the order
8979 	 * of when these callouts happen is undefined with respect to
8980 	 * CPU hotplug, and they can race with each other.  As such,
8981 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8982 	 * undefined; you can actually have a CPU frequency change take
8983 	 * place in between the computation of X and the setting of the
8984 	 * variable.  To protect against this problem, all updates of
8985 	 * the per_cpu tsc_khz variable are done in an interrupt
8986 	 * protected IPI, and all callers wishing to update the value
8987 	 * must wait for a synchronous IPI to complete (which is trivial
8988 	 * if the caller is on the CPU already).  This establishes the
8989 	 * necessary total order on variable updates.
8990 	 *
8991 	 * Note that because a guest time update may take place
8992 	 * anytime after the setting of the VCPU's request bit, the
8993 	 * correct TSC value must be set before the request.  However,
8994 	 * to ensure the update actually makes it to any guest which
8995 	 * starts running in hardware virtualization between the set
8996 	 * and the acquisition of the spinlock, we must also ping the
8997 	 * CPU after setting the request bit.
8998 	 *
8999 	 */
9000 
9001 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9002 
9003 	mutex_lock(&kvm_lock);
9004 	list_for_each_entry(kvm, &vm_list, vm_list) {
9005 		kvm_for_each_vcpu(i, vcpu, kvm) {
9006 			if (vcpu->cpu != cpu)
9007 				continue;
9008 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9009 			if (vcpu->cpu != raw_smp_processor_id())
9010 				send_ipi = 1;
9011 		}
9012 	}
9013 	mutex_unlock(&kvm_lock);
9014 
9015 	if (freq->old < freq->new && send_ipi) {
9016 		/*
9017 		 * We upscale the frequency.  Must make the guest
9018 		 * doesn't see old kvmclock values while running with
9019 		 * the new frequency, otherwise we risk the guest sees
9020 		 * time go backwards.
9021 		 *
9022 		 * In case we update the frequency for another cpu
9023 		 * (which might be in guest context) send an interrupt
9024 		 * to kick the cpu out of guest context.  Next time
9025 		 * guest context is entered kvmclock will be updated,
9026 		 * so the guest will not see stale values.
9027 		 */
9028 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9029 	}
9030 }
9031 
9032 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9033 				     void *data)
9034 {
9035 	struct cpufreq_freqs *freq = data;
9036 	int cpu;
9037 
9038 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9039 		return 0;
9040 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9041 		return 0;
9042 
9043 	for_each_cpu(cpu, freq->policy->cpus)
9044 		__kvmclock_cpufreq_notifier(freq, cpu);
9045 
9046 	return 0;
9047 }
9048 
9049 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9050 	.notifier_call  = kvmclock_cpufreq_notifier
9051 };
9052 
9053 static int kvmclock_cpu_online(unsigned int cpu)
9054 {
9055 	tsc_khz_changed(NULL);
9056 	return 0;
9057 }
9058 
9059 static void kvm_timer_init(void)
9060 {
9061 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9062 		max_tsc_khz = tsc_khz;
9063 
9064 		if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9065 			struct cpufreq_policy *policy;
9066 			int cpu;
9067 
9068 			cpu = get_cpu();
9069 			policy = cpufreq_cpu_get(cpu);
9070 			if (policy) {
9071 				if (policy->cpuinfo.max_freq)
9072 					max_tsc_khz = policy->cpuinfo.max_freq;
9073 				cpufreq_cpu_put(policy);
9074 			}
9075 			put_cpu();
9076 		}
9077 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9078 					  CPUFREQ_TRANSITION_NOTIFIER);
9079 	}
9080 
9081 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9082 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
9083 }
9084 
9085 #ifdef CONFIG_X86_64
9086 static void pvclock_gtod_update_fn(struct work_struct *work)
9087 {
9088 	struct kvm *kvm;
9089 	struct kvm_vcpu *vcpu;
9090 	unsigned long i;
9091 
9092 	mutex_lock(&kvm_lock);
9093 	list_for_each_entry(kvm, &vm_list, vm_list)
9094 		kvm_for_each_vcpu(i, vcpu, kvm)
9095 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9096 	atomic_set(&kvm_guest_has_master_clock, 0);
9097 	mutex_unlock(&kvm_lock);
9098 }
9099 
9100 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9101 
9102 /*
9103  * Indirection to move queue_work() out of the tk_core.seq write held
9104  * region to prevent possible deadlocks against time accessors which
9105  * are invoked with work related locks held.
9106  */
9107 static void pvclock_irq_work_fn(struct irq_work *w)
9108 {
9109 	queue_work(system_long_wq, &pvclock_gtod_work);
9110 }
9111 
9112 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9113 
9114 /*
9115  * Notification about pvclock gtod data update.
9116  */
9117 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9118 			       void *priv)
9119 {
9120 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9121 	struct timekeeper *tk = priv;
9122 
9123 	update_pvclock_gtod(tk);
9124 
9125 	/*
9126 	 * Disable master clock if host does not trust, or does not use,
9127 	 * TSC based clocksource. Delegate queue_work() to irq_work as
9128 	 * this is invoked with tk_core.seq write held.
9129 	 */
9130 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9131 	    atomic_read(&kvm_guest_has_master_clock) != 0)
9132 		irq_work_queue(&pvclock_irq_work);
9133 	return 0;
9134 }
9135 
9136 static struct notifier_block pvclock_gtod_notifier = {
9137 	.notifier_call = pvclock_gtod_notify,
9138 };
9139 #endif
9140 
9141 int kvm_arch_init(void *opaque)
9142 {
9143 	struct kvm_x86_init_ops *ops = opaque;
9144 	int r;
9145 
9146 	if (kvm_x86_ops.hardware_enable) {
9147 		pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name);
9148 		r = -EEXIST;
9149 		goto out;
9150 	}
9151 
9152 	if (!ops->cpu_has_kvm_support()) {
9153 		pr_err_ratelimited("kvm: no hardware support for '%s'\n",
9154 				   ops->runtime_ops->name);
9155 		r = -EOPNOTSUPP;
9156 		goto out;
9157 	}
9158 	if (ops->disabled_by_bios()) {
9159 		pr_err_ratelimited("kvm: support for '%s' disabled by bios\n",
9160 				   ops->runtime_ops->name);
9161 		r = -EOPNOTSUPP;
9162 		goto out;
9163 	}
9164 
9165 	/*
9166 	 * KVM explicitly assumes that the guest has an FPU and
9167 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9168 	 * vCPU's FPU state as a fxregs_state struct.
9169 	 */
9170 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9171 		printk(KERN_ERR "kvm: inadequate fpu\n");
9172 		r = -EOPNOTSUPP;
9173 		goto out;
9174 	}
9175 
9176 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9177 		pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9178 		r = -EOPNOTSUPP;
9179 		goto out;
9180 	}
9181 
9182 	r = -ENOMEM;
9183 
9184 	x86_emulator_cache = kvm_alloc_emulator_cache();
9185 	if (!x86_emulator_cache) {
9186 		pr_err("kvm: failed to allocate cache for x86 emulator\n");
9187 		goto out;
9188 	}
9189 
9190 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9191 	if (!user_return_msrs) {
9192 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
9193 		goto out_free_x86_emulator_cache;
9194 	}
9195 	kvm_nr_uret_msrs = 0;
9196 
9197 	r = kvm_mmu_vendor_module_init();
9198 	if (r)
9199 		goto out_free_percpu;
9200 
9201 	kvm_timer_init();
9202 
9203 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9204 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9205 		kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9206 	}
9207 
9208 	if (pi_inject_timer == -1)
9209 		pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9210 #ifdef CONFIG_X86_64
9211 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9212 
9213 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9214 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9215 #endif
9216 
9217 	return 0;
9218 
9219 out_free_percpu:
9220 	free_percpu(user_return_msrs);
9221 out_free_x86_emulator_cache:
9222 	kmem_cache_destroy(x86_emulator_cache);
9223 out:
9224 	return r;
9225 }
9226 
9227 void kvm_arch_exit(void)
9228 {
9229 #ifdef CONFIG_X86_64
9230 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9231 		clear_hv_tscchange_cb();
9232 #endif
9233 	kvm_lapic_exit();
9234 
9235 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
9236 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9237 					    CPUFREQ_TRANSITION_NOTIFIER);
9238 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9239 #ifdef CONFIG_X86_64
9240 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9241 	irq_work_sync(&pvclock_irq_work);
9242 	cancel_work_sync(&pvclock_gtod_work);
9243 #endif
9244 	kvm_x86_ops.hardware_enable = NULL;
9245 	kvm_mmu_vendor_module_exit();
9246 	free_percpu(user_return_msrs);
9247 	kmem_cache_destroy(x86_emulator_cache);
9248 #ifdef CONFIG_KVM_XEN
9249 	static_key_deferred_flush(&kvm_xen_enabled);
9250 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9251 #endif
9252 }
9253 
9254 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9255 {
9256 	/*
9257 	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9258 	 * local APIC is in-kernel, the run loop will detect the non-runnable
9259 	 * state and halt the vCPU.  Exit to userspace if the local APIC is
9260 	 * managed by userspace, in which case userspace is responsible for
9261 	 * handling wake events.
9262 	 */
9263 	++vcpu->stat.halt_exits;
9264 	if (lapic_in_kernel(vcpu)) {
9265 		vcpu->arch.mp_state = state;
9266 		return 1;
9267 	} else {
9268 		vcpu->run->exit_reason = reason;
9269 		return 0;
9270 	}
9271 }
9272 
9273 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9274 {
9275 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9276 }
9277 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9278 
9279 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9280 {
9281 	int ret = kvm_skip_emulated_instruction(vcpu);
9282 	/*
9283 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9284 	 * KVM_EXIT_DEBUG here.
9285 	 */
9286 	return kvm_emulate_halt_noskip(vcpu) && ret;
9287 }
9288 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9289 
9290 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9291 {
9292 	int ret = kvm_skip_emulated_instruction(vcpu);
9293 
9294 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9295 					KVM_EXIT_AP_RESET_HOLD) && ret;
9296 }
9297 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9298 
9299 #ifdef CONFIG_X86_64
9300 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9301 			        unsigned long clock_type)
9302 {
9303 	struct kvm_clock_pairing clock_pairing;
9304 	struct timespec64 ts;
9305 	u64 cycle;
9306 	int ret;
9307 
9308 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9309 		return -KVM_EOPNOTSUPP;
9310 
9311 	/*
9312 	 * When tsc is in permanent catchup mode guests won't be able to use
9313 	 * pvclock_read_retry loop to get consistent view of pvclock
9314 	 */
9315 	if (vcpu->arch.tsc_always_catchup)
9316 		return -KVM_EOPNOTSUPP;
9317 
9318 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9319 		return -KVM_EOPNOTSUPP;
9320 
9321 	clock_pairing.sec = ts.tv_sec;
9322 	clock_pairing.nsec = ts.tv_nsec;
9323 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9324 	clock_pairing.flags = 0;
9325 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9326 
9327 	ret = 0;
9328 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9329 			    sizeof(struct kvm_clock_pairing)))
9330 		ret = -KVM_EFAULT;
9331 
9332 	return ret;
9333 }
9334 #endif
9335 
9336 /*
9337  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9338  *
9339  * @apicid - apicid of vcpu to be kicked.
9340  */
9341 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9342 {
9343 	struct kvm_lapic_irq lapic_irq;
9344 
9345 	lapic_irq.shorthand = APIC_DEST_NOSHORT;
9346 	lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
9347 	lapic_irq.level = 0;
9348 	lapic_irq.dest_id = apicid;
9349 	lapic_irq.msi_redir_hint = false;
9350 
9351 	lapic_irq.delivery_mode = APIC_DM_REMRD;
9352 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9353 }
9354 
9355 bool kvm_apicv_activated(struct kvm *kvm)
9356 {
9357 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9358 }
9359 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9360 
9361 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9362 {
9363 	ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9364 	ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9365 
9366 	return (vm_reasons | vcpu_reasons) == 0;
9367 }
9368 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9369 
9370 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9371 				       enum kvm_apicv_inhibit reason, bool set)
9372 {
9373 	if (set)
9374 		__set_bit(reason, inhibits);
9375 	else
9376 		__clear_bit(reason, inhibits);
9377 
9378 	trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9379 }
9380 
9381 static void kvm_apicv_init(struct kvm *kvm)
9382 {
9383 	unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9384 
9385 	init_rwsem(&kvm->arch.apicv_update_lock);
9386 
9387 	set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9388 
9389 	if (!enable_apicv)
9390 		set_or_clear_apicv_inhibit(inhibits,
9391 					   APICV_INHIBIT_REASON_DISABLE, true);
9392 }
9393 
9394 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9395 {
9396 	struct kvm_vcpu *target = NULL;
9397 	struct kvm_apic_map *map;
9398 
9399 	vcpu->stat.directed_yield_attempted++;
9400 
9401 	if (single_task_running())
9402 		goto no_yield;
9403 
9404 	rcu_read_lock();
9405 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
9406 
9407 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9408 		target = map->phys_map[dest_id]->vcpu;
9409 
9410 	rcu_read_unlock();
9411 
9412 	if (!target || !READ_ONCE(target->ready))
9413 		goto no_yield;
9414 
9415 	/* Ignore requests to yield to self */
9416 	if (vcpu == target)
9417 		goto no_yield;
9418 
9419 	if (kvm_vcpu_yield_to(target) <= 0)
9420 		goto no_yield;
9421 
9422 	vcpu->stat.directed_yield_successful++;
9423 
9424 no_yield:
9425 	return;
9426 }
9427 
9428 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9429 {
9430 	u64 ret = vcpu->run->hypercall.ret;
9431 
9432 	if (!is_64_bit_mode(vcpu))
9433 		ret = (u32)ret;
9434 	kvm_rax_write(vcpu, ret);
9435 	++vcpu->stat.hypercalls;
9436 	return kvm_skip_emulated_instruction(vcpu);
9437 }
9438 
9439 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9440 {
9441 	unsigned long nr, a0, a1, a2, a3, ret;
9442 	int op_64_bit;
9443 
9444 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
9445 		return kvm_xen_hypercall(vcpu);
9446 
9447 	if (kvm_hv_hypercall_enabled(vcpu))
9448 		return kvm_hv_hypercall(vcpu);
9449 
9450 	nr = kvm_rax_read(vcpu);
9451 	a0 = kvm_rbx_read(vcpu);
9452 	a1 = kvm_rcx_read(vcpu);
9453 	a2 = kvm_rdx_read(vcpu);
9454 	a3 = kvm_rsi_read(vcpu);
9455 
9456 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
9457 
9458 	op_64_bit = is_64_bit_hypercall(vcpu);
9459 	if (!op_64_bit) {
9460 		nr &= 0xFFFFFFFF;
9461 		a0 &= 0xFFFFFFFF;
9462 		a1 &= 0xFFFFFFFF;
9463 		a2 &= 0xFFFFFFFF;
9464 		a3 &= 0xFFFFFFFF;
9465 	}
9466 
9467 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9468 		ret = -KVM_EPERM;
9469 		goto out;
9470 	}
9471 
9472 	ret = -KVM_ENOSYS;
9473 
9474 	switch (nr) {
9475 	case KVM_HC_VAPIC_POLL_IRQ:
9476 		ret = 0;
9477 		break;
9478 	case KVM_HC_KICK_CPU:
9479 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9480 			break;
9481 
9482 		kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9483 		kvm_sched_yield(vcpu, a1);
9484 		ret = 0;
9485 		break;
9486 #ifdef CONFIG_X86_64
9487 	case KVM_HC_CLOCK_PAIRING:
9488 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9489 		break;
9490 #endif
9491 	case KVM_HC_SEND_IPI:
9492 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9493 			break;
9494 
9495 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9496 		break;
9497 	case KVM_HC_SCHED_YIELD:
9498 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9499 			break;
9500 
9501 		kvm_sched_yield(vcpu, a0);
9502 		ret = 0;
9503 		break;
9504 	case KVM_HC_MAP_GPA_RANGE: {
9505 		u64 gpa = a0, npages = a1, attrs = a2;
9506 
9507 		ret = -KVM_ENOSYS;
9508 		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9509 			break;
9510 
9511 		if (!PAGE_ALIGNED(gpa) || !npages ||
9512 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9513 			ret = -KVM_EINVAL;
9514 			break;
9515 		}
9516 
9517 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9518 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9519 		vcpu->run->hypercall.args[0]  = gpa;
9520 		vcpu->run->hypercall.args[1]  = npages;
9521 		vcpu->run->hypercall.args[2]  = attrs;
9522 		vcpu->run->hypercall.longmode = op_64_bit;
9523 		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9524 		return 0;
9525 	}
9526 	default:
9527 		ret = -KVM_ENOSYS;
9528 		break;
9529 	}
9530 out:
9531 	if (!op_64_bit)
9532 		ret = (u32)ret;
9533 	kvm_rax_write(vcpu, ret);
9534 
9535 	++vcpu->stat.hypercalls;
9536 	return kvm_skip_emulated_instruction(vcpu);
9537 }
9538 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9539 
9540 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9541 {
9542 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9543 	char instruction[3];
9544 	unsigned long rip = kvm_rip_read(vcpu);
9545 
9546 	/*
9547 	 * If the quirk is disabled, synthesize a #UD and let the guest pick up
9548 	 * the pieces.
9549 	 */
9550 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
9551 		ctxt->exception.error_code_valid = false;
9552 		ctxt->exception.vector = UD_VECTOR;
9553 		ctxt->have_exception = true;
9554 		return X86EMUL_PROPAGATE_FAULT;
9555 	}
9556 
9557 	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9558 
9559 	return emulator_write_emulated(ctxt, rip, instruction, 3,
9560 		&ctxt->exception);
9561 }
9562 
9563 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9564 {
9565 	return vcpu->run->request_interrupt_window &&
9566 		likely(!pic_in_kernel(vcpu->kvm));
9567 }
9568 
9569 /* Called within kvm->srcu read side.  */
9570 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9571 {
9572 	struct kvm_run *kvm_run = vcpu->run;
9573 
9574 	kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9575 	kvm_run->cr8 = kvm_get_cr8(vcpu);
9576 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
9577 
9578 	kvm_run->ready_for_interrupt_injection =
9579 		pic_in_kernel(vcpu->kvm) ||
9580 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
9581 
9582 	if (is_smm(vcpu))
9583 		kvm_run->flags |= KVM_RUN_X86_SMM;
9584 }
9585 
9586 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9587 {
9588 	int max_irr, tpr;
9589 
9590 	if (!kvm_x86_ops.update_cr8_intercept)
9591 		return;
9592 
9593 	if (!lapic_in_kernel(vcpu))
9594 		return;
9595 
9596 	if (vcpu->arch.apic->apicv_active)
9597 		return;
9598 
9599 	if (!vcpu->arch.apic->vapic_addr)
9600 		max_irr = kvm_lapic_find_highest_irr(vcpu);
9601 	else
9602 		max_irr = -1;
9603 
9604 	if (max_irr != -1)
9605 		max_irr >>= 4;
9606 
9607 	tpr = kvm_lapic_get_cr8(vcpu);
9608 
9609 	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9610 }
9611 
9612 
9613 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9614 {
9615 	if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9616 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
9617 		return 1;
9618 	}
9619 
9620 	return kvm_x86_ops.nested_ops->check_events(vcpu);
9621 }
9622 
9623 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9624 {
9625 	trace_kvm_inj_exception(vcpu->arch.exception.nr,
9626 				vcpu->arch.exception.has_error_code,
9627 				vcpu->arch.exception.error_code,
9628 				vcpu->arch.exception.injected);
9629 
9630 	if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9631 		vcpu->arch.exception.error_code = false;
9632 	static_call(kvm_x86_queue_exception)(vcpu);
9633 }
9634 
9635 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
9636 {
9637 	int r;
9638 	bool can_inject = true;
9639 
9640 	/* try to reinject previous events if any */
9641 
9642 	if (vcpu->arch.exception.injected) {
9643 		kvm_inject_exception(vcpu);
9644 		can_inject = false;
9645 	}
9646 	/*
9647 	 * Do not inject an NMI or interrupt if there is a pending
9648 	 * exception.  Exceptions and interrupts are recognized at
9649 	 * instruction boundaries, i.e. the start of an instruction.
9650 	 * Trap-like exceptions, e.g. #DB, have higher priority than
9651 	 * NMIs and interrupts, i.e. traps are recognized before an
9652 	 * NMI/interrupt that's pending on the same instruction.
9653 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
9654 	 * priority, but are only generated (pended) during instruction
9655 	 * execution, i.e. a pending fault-like exception means the
9656 	 * fault occurred on the *previous* instruction and must be
9657 	 * serviced prior to recognizing any new events in order to
9658 	 * fully complete the previous instruction.
9659 	 */
9660 	else if (!vcpu->arch.exception.pending) {
9661 		if (vcpu->arch.nmi_injected) {
9662 			static_call(kvm_x86_inject_nmi)(vcpu);
9663 			can_inject = false;
9664 		} else if (vcpu->arch.interrupt.injected) {
9665 			static_call(kvm_x86_inject_irq)(vcpu, true);
9666 			can_inject = false;
9667 		}
9668 	}
9669 
9670 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
9671 		     vcpu->arch.exception.pending);
9672 
9673 	/*
9674 	 * Call check_nested_events() even if we reinjected a previous event
9675 	 * in order for caller to determine if it should require immediate-exit
9676 	 * from L2 to L1 due to pending L1 events which require exit
9677 	 * from L2 to L1.
9678 	 */
9679 	if (is_guest_mode(vcpu)) {
9680 		r = kvm_check_nested_events(vcpu);
9681 		if (r < 0)
9682 			goto out;
9683 	}
9684 
9685 	/* try to inject new event if pending */
9686 	if (vcpu->arch.exception.pending) {
9687 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
9688 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
9689 					     X86_EFLAGS_RF);
9690 
9691 		if (vcpu->arch.exception.nr == DB_VECTOR) {
9692 			kvm_deliver_exception_payload(vcpu);
9693 			if (vcpu->arch.dr7 & DR7_GD) {
9694 				vcpu->arch.dr7 &= ~DR7_GD;
9695 				kvm_update_dr7(vcpu);
9696 			}
9697 		}
9698 
9699 		kvm_inject_exception(vcpu);
9700 
9701 		vcpu->arch.exception.pending = false;
9702 		vcpu->arch.exception.injected = true;
9703 
9704 		can_inject = false;
9705 	}
9706 
9707 	/* Don't inject interrupts if the user asked to avoid doing so */
9708 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
9709 		return 0;
9710 
9711 	/*
9712 	 * Finally, inject interrupt events.  If an event cannot be injected
9713 	 * due to architectural conditions (e.g. IF=0) a window-open exit
9714 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
9715 	 * and can architecturally be injected, but we cannot do it right now:
9716 	 * an interrupt could have arrived just now and we have to inject it
9717 	 * as a vmexit, or there could already an event in the queue, which is
9718 	 * indicated by can_inject.  In that case we request an immediate exit
9719 	 * in order to make progress and get back here for another iteration.
9720 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
9721 	 */
9722 	if (vcpu->arch.smi_pending) {
9723 		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
9724 		if (r < 0)
9725 			goto out;
9726 		if (r) {
9727 			vcpu->arch.smi_pending = false;
9728 			++vcpu->arch.smi_count;
9729 			enter_smm(vcpu);
9730 			can_inject = false;
9731 		} else
9732 			static_call(kvm_x86_enable_smi_window)(vcpu);
9733 	}
9734 
9735 	if (vcpu->arch.nmi_pending) {
9736 		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
9737 		if (r < 0)
9738 			goto out;
9739 		if (r) {
9740 			--vcpu->arch.nmi_pending;
9741 			vcpu->arch.nmi_injected = true;
9742 			static_call(kvm_x86_inject_nmi)(vcpu);
9743 			can_inject = false;
9744 			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
9745 		}
9746 		if (vcpu->arch.nmi_pending)
9747 			static_call(kvm_x86_enable_nmi_window)(vcpu);
9748 	}
9749 
9750 	if (kvm_cpu_has_injectable_intr(vcpu)) {
9751 		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
9752 		if (r < 0)
9753 			goto out;
9754 		if (r) {
9755 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
9756 			static_call(kvm_x86_inject_irq)(vcpu, false);
9757 			WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
9758 		}
9759 		if (kvm_cpu_has_injectable_intr(vcpu))
9760 			static_call(kvm_x86_enable_irq_window)(vcpu);
9761 	}
9762 
9763 	if (is_guest_mode(vcpu) &&
9764 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
9765 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
9766 		*req_immediate_exit = true;
9767 
9768 	WARN_ON(vcpu->arch.exception.pending);
9769 	return 0;
9770 
9771 out:
9772 	if (r == -EBUSY) {
9773 		*req_immediate_exit = true;
9774 		r = 0;
9775 	}
9776 	return r;
9777 }
9778 
9779 static void process_nmi(struct kvm_vcpu *vcpu)
9780 {
9781 	unsigned limit = 2;
9782 
9783 	/*
9784 	 * x86 is limited to one NMI running, and one NMI pending after it.
9785 	 * If an NMI is already in progress, limit further NMIs to just one.
9786 	 * Otherwise, allow two (and we'll inject the first one immediately).
9787 	 */
9788 	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
9789 		limit = 1;
9790 
9791 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9792 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9793 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9794 }
9795 
9796 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9797 {
9798 	u32 flags = 0;
9799 	flags |= seg->g       << 23;
9800 	flags |= seg->db      << 22;
9801 	flags |= seg->l       << 21;
9802 	flags |= seg->avl     << 20;
9803 	flags |= seg->present << 15;
9804 	flags |= seg->dpl     << 13;
9805 	flags |= seg->s       << 12;
9806 	flags |= seg->type    << 8;
9807 	return flags;
9808 }
9809 
9810 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9811 {
9812 	struct kvm_segment seg;
9813 	int offset;
9814 
9815 	kvm_get_segment(vcpu, &seg, n);
9816 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9817 
9818 	if (n < 3)
9819 		offset = 0x7f84 + n * 12;
9820 	else
9821 		offset = 0x7f2c + (n - 3) * 12;
9822 
9823 	put_smstate(u32, buf, offset + 8, seg.base);
9824 	put_smstate(u32, buf, offset + 4, seg.limit);
9825 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9826 }
9827 
9828 #ifdef CONFIG_X86_64
9829 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9830 {
9831 	struct kvm_segment seg;
9832 	int offset;
9833 	u16 flags;
9834 
9835 	kvm_get_segment(vcpu, &seg, n);
9836 	offset = 0x7e00 + n * 16;
9837 
9838 	flags = enter_smm_get_segment_flags(&seg) >> 8;
9839 	put_smstate(u16, buf, offset, seg.selector);
9840 	put_smstate(u16, buf, offset + 2, flags);
9841 	put_smstate(u32, buf, offset + 4, seg.limit);
9842 	put_smstate(u64, buf, offset + 8, seg.base);
9843 }
9844 #endif
9845 
9846 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9847 {
9848 	struct desc_ptr dt;
9849 	struct kvm_segment seg;
9850 	unsigned long val;
9851 	int i;
9852 
9853 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9854 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9855 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9856 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9857 
9858 	for (i = 0; i < 8; i++)
9859 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9860 
9861 	kvm_get_dr(vcpu, 6, &val);
9862 	put_smstate(u32, buf, 0x7fcc, (u32)val);
9863 	kvm_get_dr(vcpu, 7, &val);
9864 	put_smstate(u32, buf, 0x7fc8, (u32)val);
9865 
9866 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9867 	put_smstate(u32, buf, 0x7fc4, seg.selector);
9868 	put_smstate(u32, buf, 0x7f64, seg.base);
9869 	put_smstate(u32, buf, 0x7f60, seg.limit);
9870 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9871 
9872 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9873 	put_smstate(u32, buf, 0x7fc0, seg.selector);
9874 	put_smstate(u32, buf, 0x7f80, seg.base);
9875 	put_smstate(u32, buf, 0x7f7c, seg.limit);
9876 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9877 
9878 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
9879 	put_smstate(u32, buf, 0x7f74, dt.address);
9880 	put_smstate(u32, buf, 0x7f70, dt.size);
9881 
9882 	static_call(kvm_x86_get_idt)(vcpu, &dt);
9883 	put_smstate(u32, buf, 0x7f58, dt.address);
9884 	put_smstate(u32, buf, 0x7f54, dt.size);
9885 
9886 	for (i = 0; i < 6; i++)
9887 		enter_smm_save_seg_32(vcpu, buf, i);
9888 
9889 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9890 
9891 	/* revision id */
9892 	put_smstate(u32, buf, 0x7efc, 0x00020000);
9893 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9894 }
9895 
9896 #ifdef CONFIG_X86_64
9897 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9898 {
9899 	struct desc_ptr dt;
9900 	struct kvm_segment seg;
9901 	unsigned long val;
9902 	int i;
9903 
9904 	for (i = 0; i < 16; i++)
9905 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9906 
9907 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9908 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9909 
9910 	kvm_get_dr(vcpu, 6, &val);
9911 	put_smstate(u64, buf, 0x7f68, val);
9912 	kvm_get_dr(vcpu, 7, &val);
9913 	put_smstate(u64, buf, 0x7f60, val);
9914 
9915 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9916 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9917 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9918 
9919 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9920 
9921 	/* revision id */
9922 	put_smstate(u32, buf, 0x7efc, 0x00020064);
9923 
9924 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9925 
9926 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9927 	put_smstate(u16, buf, 0x7e90, seg.selector);
9928 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9929 	put_smstate(u32, buf, 0x7e94, seg.limit);
9930 	put_smstate(u64, buf, 0x7e98, seg.base);
9931 
9932 	static_call(kvm_x86_get_idt)(vcpu, &dt);
9933 	put_smstate(u32, buf, 0x7e84, dt.size);
9934 	put_smstate(u64, buf, 0x7e88, dt.address);
9935 
9936 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9937 	put_smstate(u16, buf, 0x7e70, seg.selector);
9938 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9939 	put_smstate(u32, buf, 0x7e74, seg.limit);
9940 	put_smstate(u64, buf, 0x7e78, seg.base);
9941 
9942 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
9943 	put_smstate(u32, buf, 0x7e64, dt.size);
9944 	put_smstate(u64, buf, 0x7e68, dt.address);
9945 
9946 	for (i = 0; i < 6; i++)
9947 		enter_smm_save_seg_64(vcpu, buf, i);
9948 }
9949 #endif
9950 
9951 static void enter_smm(struct kvm_vcpu *vcpu)
9952 {
9953 	struct kvm_segment cs, ds;
9954 	struct desc_ptr dt;
9955 	unsigned long cr0;
9956 	char buf[512];
9957 
9958 	memset(buf, 0, 512);
9959 #ifdef CONFIG_X86_64
9960 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9961 		enter_smm_save_state_64(vcpu, buf);
9962 	else
9963 #endif
9964 		enter_smm_save_state_32(vcpu, buf);
9965 
9966 	/*
9967 	 * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9968 	 * state (e.g. leave guest mode) after we've saved the state into the
9969 	 * SMM state-save area.
9970 	 */
9971 	static_call(kvm_x86_enter_smm)(vcpu, buf);
9972 
9973 	kvm_smm_changed(vcpu, true);
9974 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9975 
9976 	if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9977 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9978 	else
9979 		static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9980 
9981 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9982 	kvm_rip_write(vcpu, 0x8000);
9983 
9984 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9985 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
9986 	vcpu->arch.cr0 = cr0;
9987 
9988 	static_call(kvm_x86_set_cr4)(vcpu, 0);
9989 
9990 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
9991 	dt.address = dt.size = 0;
9992 	static_call(kvm_x86_set_idt)(vcpu, &dt);
9993 
9994 	kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9995 
9996 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9997 	cs.base = vcpu->arch.smbase;
9998 
9999 	ds.selector = 0;
10000 	ds.base = 0;
10001 
10002 	cs.limit    = ds.limit = 0xffffffff;
10003 	cs.type     = ds.type = 0x3;
10004 	cs.dpl      = ds.dpl = 0;
10005 	cs.db       = ds.db = 0;
10006 	cs.s        = ds.s = 1;
10007 	cs.l        = ds.l = 0;
10008 	cs.g        = ds.g = 1;
10009 	cs.avl      = ds.avl = 0;
10010 	cs.present  = ds.present = 1;
10011 	cs.unusable = ds.unusable = 0;
10012 	cs.padding  = ds.padding = 0;
10013 
10014 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10015 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
10016 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
10017 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
10018 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
10019 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
10020 
10021 #ifdef CONFIG_X86_64
10022 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
10023 		static_call(kvm_x86_set_efer)(vcpu, 0);
10024 #endif
10025 
10026 	kvm_update_cpuid_runtime(vcpu);
10027 	kvm_mmu_reset_context(vcpu);
10028 }
10029 
10030 static void process_smi(struct kvm_vcpu *vcpu)
10031 {
10032 	vcpu->arch.smi_pending = true;
10033 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10034 }
10035 
10036 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10037 				       unsigned long *vcpu_bitmap)
10038 {
10039 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10040 }
10041 
10042 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10043 {
10044 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10045 }
10046 
10047 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10048 {
10049 	struct kvm_lapic *apic = vcpu->arch.apic;
10050 	bool activate;
10051 
10052 	if (!lapic_in_kernel(vcpu))
10053 		return;
10054 
10055 	down_read(&vcpu->kvm->arch.apicv_update_lock);
10056 	preempt_disable();
10057 
10058 	/* Do not activate APICV when APIC is disabled */
10059 	activate = kvm_vcpu_apicv_activated(vcpu) &&
10060 		   (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10061 
10062 	if (apic->apicv_active == activate)
10063 		goto out;
10064 
10065 	apic->apicv_active = activate;
10066 	kvm_apic_update_apicv(vcpu);
10067 	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10068 
10069 	/*
10070 	 * When APICv gets disabled, we may still have injected interrupts
10071 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10072 	 * still active when the interrupt got accepted. Make sure
10073 	 * inject_pending_event() is called to check for that.
10074 	 */
10075 	if (!apic->apicv_active)
10076 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10077 
10078 out:
10079 	preempt_enable();
10080 	up_read(&vcpu->kvm->arch.apicv_update_lock);
10081 }
10082 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
10083 
10084 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10085 				      enum kvm_apicv_inhibit reason, bool set)
10086 {
10087 	unsigned long old, new;
10088 
10089 	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10090 
10091 	if (!static_call(kvm_x86_check_apicv_inhibit_reasons)(reason))
10092 		return;
10093 
10094 	old = new = kvm->arch.apicv_inhibit_reasons;
10095 
10096 	set_or_clear_apicv_inhibit(&new, reason, set);
10097 
10098 	if (!!old != !!new) {
10099 		/*
10100 		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10101 		 * false positives in the sanity check WARN in svm_vcpu_run().
10102 		 * This task will wait for all vCPUs to ack the kick IRQ before
10103 		 * updating apicv_inhibit_reasons, and all other vCPUs will
10104 		 * block on acquiring apicv_update_lock so that vCPUs can't
10105 		 * redo svm_vcpu_run() without seeing the new inhibit state.
10106 		 *
10107 		 * Note, holding apicv_update_lock and taking it in the read
10108 		 * side (handling the request) also prevents other vCPUs from
10109 		 * servicing the request with a stale apicv_inhibit_reasons.
10110 		 */
10111 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10112 		kvm->arch.apicv_inhibit_reasons = new;
10113 		if (new) {
10114 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10115 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
10116 		}
10117 	} else {
10118 		kvm->arch.apicv_inhibit_reasons = new;
10119 	}
10120 }
10121 
10122 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10123 				    enum kvm_apicv_inhibit reason, bool set)
10124 {
10125 	if (!enable_apicv)
10126 		return;
10127 
10128 	down_write(&kvm->arch.apicv_update_lock);
10129 	__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10130 	up_write(&kvm->arch.apicv_update_lock);
10131 }
10132 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10133 
10134 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10135 {
10136 	if (!kvm_apic_present(vcpu))
10137 		return;
10138 
10139 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10140 
10141 	if (irqchip_split(vcpu->kvm))
10142 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10143 	else {
10144 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10145 		if (ioapic_in_kernel(vcpu->kvm))
10146 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10147 	}
10148 
10149 	if (is_guest_mode(vcpu))
10150 		vcpu->arch.load_eoi_exitmap_pending = true;
10151 	else
10152 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10153 }
10154 
10155 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10156 {
10157 	u64 eoi_exit_bitmap[4];
10158 
10159 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10160 		return;
10161 
10162 	if (to_hv_vcpu(vcpu)) {
10163 		bitmap_or((ulong *)eoi_exit_bitmap,
10164 			  vcpu->arch.ioapic_handled_vectors,
10165 			  to_hv_synic(vcpu)->vec_bitmap, 256);
10166 		static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10167 		return;
10168 	}
10169 
10170 	static_call_cond(kvm_x86_load_eoi_exitmap)(
10171 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10172 }
10173 
10174 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
10175 					    unsigned long start, unsigned long end)
10176 {
10177 	unsigned long apic_address;
10178 
10179 	/*
10180 	 * The physical address of apic access page is stored in the VMCS.
10181 	 * Update it when it becomes invalid.
10182 	 */
10183 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
10184 	if (start <= apic_address && apic_address < end)
10185 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
10186 }
10187 
10188 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10189 {
10190 	static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10191 }
10192 
10193 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10194 {
10195 	if (!lapic_in_kernel(vcpu))
10196 		return;
10197 
10198 	static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10199 }
10200 
10201 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10202 {
10203 	smp_send_reschedule(vcpu->cpu);
10204 }
10205 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10206 
10207 /*
10208  * Called within kvm->srcu read side.
10209  * Returns 1 to let vcpu_run() continue the guest execution loop without
10210  * exiting to the userspace.  Otherwise, the value will be returned to the
10211  * userspace.
10212  */
10213 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10214 {
10215 	int r;
10216 	bool req_int_win =
10217 		dm_request_for_irq_injection(vcpu) &&
10218 		kvm_cpu_accept_dm_intr(vcpu);
10219 	fastpath_t exit_fastpath;
10220 
10221 	bool req_immediate_exit = false;
10222 
10223 	/* Forbid vmenter if vcpu dirty ring is soft-full */
10224 	if (unlikely(vcpu->kvm->dirty_ring_size &&
10225 		     kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
10226 		vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
10227 		trace_kvm_dirty_ring_exit(vcpu);
10228 		r = 0;
10229 		goto out;
10230 	}
10231 
10232 	if (kvm_request_pending(vcpu)) {
10233 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10234 			r = -EIO;
10235 			goto out;
10236 		}
10237 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10238 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10239 				r = 0;
10240 				goto out;
10241 			}
10242 		}
10243 		if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10244 			kvm_mmu_free_obsolete_roots(vcpu);
10245 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10246 			__kvm_migrate_timers(vcpu);
10247 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10248 			kvm_update_masterclock(vcpu->kvm);
10249 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10250 			kvm_gen_kvmclock_update(vcpu);
10251 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10252 			r = kvm_guest_time_update(vcpu);
10253 			if (unlikely(r))
10254 				goto out;
10255 		}
10256 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10257 			kvm_mmu_sync_roots(vcpu);
10258 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10259 			kvm_mmu_load_pgd(vcpu);
10260 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
10261 			kvm_vcpu_flush_tlb_all(vcpu);
10262 
10263 			/* Flushing all ASIDs flushes the current ASID... */
10264 			kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
10265 		}
10266 		kvm_service_local_tlb_flush_requests(vcpu);
10267 
10268 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10269 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10270 			r = 0;
10271 			goto out;
10272 		}
10273 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10274 			if (is_guest_mode(vcpu)) {
10275 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
10276 			} else {
10277 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10278 				vcpu->mmio_needed = 0;
10279 				r = 0;
10280 				goto out;
10281 			}
10282 		}
10283 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10284 			/* Page is swapped out. Do synthetic halt */
10285 			vcpu->arch.apf.halted = true;
10286 			r = 1;
10287 			goto out;
10288 		}
10289 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10290 			record_steal_time(vcpu);
10291 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
10292 			process_smi(vcpu);
10293 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
10294 			process_nmi(vcpu);
10295 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
10296 			kvm_pmu_handle_event(vcpu);
10297 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
10298 			kvm_pmu_deliver_pmi(vcpu);
10299 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10300 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10301 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
10302 				     vcpu->arch.ioapic_handled_vectors)) {
10303 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10304 				vcpu->run->eoi.vector =
10305 						vcpu->arch.pending_ioapic_eoi;
10306 				r = 0;
10307 				goto out;
10308 			}
10309 		}
10310 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10311 			vcpu_scan_ioapic(vcpu);
10312 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10313 			vcpu_load_eoi_exitmap(vcpu);
10314 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10315 			kvm_vcpu_reload_apic_access_page(vcpu);
10316 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10317 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10318 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10319 			vcpu->run->system_event.ndata = 0;
10320 			r = 0;
10321 			goto out;
10322 		}
10323 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10324 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10325 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10326 			vcpu->run->system_event.ndata = 0;
10327 			r = 0;
10328 			goto out;
10329 		}
10330 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10331 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10332 
10333 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10334 			vcpu->run->hyperv = hv_vcpu->exit;
10335 			r = 0;
10336 			goto out;
10337 		}
10338 
10339 		/*
10340 		 * KVM_REQ_HV_STIMER has to be processed after
10341 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10342 		 * depend on the guest clock being up-to-date
10343 		 */
10344 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10345 			kvm_hv_process_stimers(vcpu);
10346 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10347 			kvm_vcpu_update_apicv(vcpu);
10348 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10349 			kvm_check_async_pf_completion(vcpu);
10350 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10351 			static_call(kvm_x86_msr_filter_changed)(vcpu);
10352 
10353 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10354 			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10355 	}
10356 
10357 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10358 	    kvm_xen_has_interrupt(vcpu)) {
10359 		++vcpu->stat.req_event;
10360 		r = kvm_apic_accept_events(vcpu);
10361 		if (r < 0) {
10362 			r = 0;
10363 			goto out;
10364 		}
10365 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10366 			r = 1;
10367 			goto out;
10368 		}
10369 
10370 		r = inject_pending_event(vcpu, &req_immediate_exit);
10371 		if (r < 0) {
10372 			r = 0;
10373 			goto out;
10374 		}
10375 		if (req_int_win)
10376 			static_call(kvm_x86_enable_irq_window)(vcpu);
10377 
10378 		if (kvm_lapic_enabled(vcpu)) {
10379 			update_cr8_intercept(vcpu);
10380 			kvm_lapic_sync_to_vapic(vcpu);
10381 		}
10382 	}
10383 
10384 	r = kvm_mmu_reload(vcpu);
10385 	if (unlikely(r)) {
10386 		goto cancel_injection;
10387 	}
10388 
10389 	preempt_disable();
10390 
10391 	static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10392 
10393 	/*
10394 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10395 	 * IPI are then delayed after guest entry, which ensures that they
10396 	 * result in virtual interrupt delivery.
10397 	 */
10398 	local_irq_disable();
10399 
10400 	/* Store vcpu->apicv_active before vcpu->mode.  */
10401 	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10402 
10403 	kvm_vcpu_srcu_read_unlock(vcpu);
10404 
10405 	/*
10406 	 * 1) We should set ->mode before checking ->requests.  Please see
10407 	 * the comment in kvm_vcpu_exiting_guest_mode().
10408 	 *
10409 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
10410 	 * pairs with the memory barrier implicit in pi_test_and_set_on
10411 	 * (see vmx_deliver_posted_interrupt).
10412 	 *
10413 	 * 3) This also orders the write to mode from any reads to the page
10414 	 * tables done while the VCPU is running.  Please see the comment
10415 	 * in kvm_flush_remote_tlbs.
10416 	 */
10417 	smp_mb__after_srcu_read_unlock();
10418 
10419 	/*
10420 	 * Process pending posted interrupts to handle the case where the
10421 	 * notification IRQ arrived in the host, or was never sent (because the
10422 	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10423 	 * status, KVM doesn't update assigned devices when APICv is inhibited,
10424 	 * i.e. they can post interrupts even if APICv is temporarily disabled.
10425 	 */
10426 	if (kvm_lapic_enabled(vcpu))
10427 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10428 
10429 	if (kvm_vcpu_exit_request(vcpu)) {
10430 		vcpu->mode = OUTSIDE_GUEST_MODE;
10431 		smp_wmb();
10432 		local_irq_enable();
10433 		preempt_enable();
10434 		kvm_vcpu_srcu_read_lock(vcpu);
10435 		r = 1;
10436 		goto cancel_injection;
10437 	}
10438 
10439 	if (req_immediate_exit) {
10440 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10441 		static_call(kvm_x86_request_immediate_exit)(vcpu);
10442 	}
10443 
10444 	fpregs_assert_state_consistent();
10445 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
10446 		switch_fpu_return();
10447 
10448 	if (vcpu->arch.guest_fpu.xfd_err)
10449 		wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10450 
10451 	if (unlikely(vcpu->arch.switch_db_regs)) {
10452 		set_debugreg(0, 7);
10453 		set_debugreg(vcpu->arch.eff_db[0], 0);
10454 		set_debugreg(vcpu->arch.eff_db[1], 1);
10455 		set_debugreg(vcpu->arch.eff_db[2], 2);
10456 		set_debugreg(vcpu->arch.eff_db[3], 3);
10457 	} else if (unlikely(hw_breakpoint_active())) {
10458 		set_debugreg(0, 7);
10459 	}
10460 
10461 	guest_timing_enter_irqoff();
10462 
10463 	for (;;) {
10464 		/*
10465 		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10466 		 * update must kick and wait for all vCPUs before toggling the
10467 		 * per-VM state, and responsing vCPUs must wait for the update
10468 		 * to complete before servicing KVM_REQ_APICV_UPDATE.
10469 		 */
10470 		WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10471 			     (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10472 
10473 		exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10474 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10475 			break;
10476 
10477 		if (kvm_lapic_enabled(vcpu))
10478 			static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10479 
10480 		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10481 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10482 			break;
10483 		}
10484 	}
10485 
10486 	/*
10487 	 * Do this here before restoring debug registers on the host.  And
10488 	 * since we do this before handling the vmexit, a DR access vmexit
10489 	 * can (a) read the correct value of the debug registers, (b) set
10490 	 * KVM_DEBUGREG_WONT_EXIT again.
10491 	 */
10492 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10493 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10494 		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10495 		kvm_update_dr0123(vcpu);
10496 		kvm_update_dr7(vcpu);
10497 	}
10498 
10499 	/*
10500 	 * If the guest has used debug registers, at least dr7
10501 	 * will be disabled while returning to the host.
10502 	 * If we don't have active breakpoints in the host, we don't
10503 	 * care about the messed up debug address registers. But if
10504 	 * we have some of them active, restore the old state.
10505 	 */
10506 	if (hw_breakpoint_active())
10507 		hw_breakpoint_restore();
10508 
10509 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10510 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10511 
10512 	vcpu->mode = OUTSIDE_GUEST_MODE;
10513 	smp_wmb();
10514 
10515 	/*
10516 	 * Sync xfd before calling handle_exit_irqoff() which may
10517 	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10518 	 * in #NM irqoff handler).
10519 	 */
10520 	if (vcpu->arch.xfd_no_write_intercept)
10521 		fpu_sync_guest_vmexit_xfd_state();
10522 
10523 	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10524 
10525 	if (vcpu->arch.guest_fpu.xfd_err)
10526 		wrmsrl(MSR_IA32_XFD_ERR, 0);
10527 
10528 	/*
10529 	 * Consume any pending interrupts, including the possible source of
10530 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10531 	 * An instruction is required after local_irq_enable() to fully unblock
10532 	 * interrupts on processors that implement an interrupt shadow, the
10533 	 * stat.exits increment will do nicely.
10534 	 */
10535 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10536 	local_irq_enable();
10537 	++vcpu->stat.exits;
10538 	local_irq_disable();
10539 	kvm_after_interrupt(vcpu);
10540 
10541 	/*
10542 	 * Wait until after servicing IRQs to account guest time so that any
10543 	 * ticks that occurred while running the guest are properly accounted
10544 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10545 	 * of accounting via context tracking, but the loss of accuracy is
10546 	 * acceptable for all known use cases.
10547 	 */
10548 	guest_timing_exit_irqoff();
10549 
10550 	local_irq_enable();
10551 	preempt_enable();
10552 
10553 	kvm_vcpu_srcu_read_lock(vcpu);
10554 
10555 	/*
10556 	 * Profile KVM exit RIPs:
10557 	 */
10558 	if (unlikely(prof_on == KVM_PROFILING)) {
10559 		unsigned long rip = kvm_rip_read(vcpu);
10560 		profile_hit(KVM_PROFILING, (void *)rip);
10561 	}
10562 
10563 	if (unlikely(vcpu->arch.tsc_always_catchup))
10564 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10565 
10566 	if (vcpu->arch.apic_attention)
10567 		kvm_lapic_sync_from_vapic(vcpu);
10568 
10569 	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10570 	return r;
10571 
10572 cancel_injection:
10573 	if (req_immediate_exit)
10574 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10575 	static_call(kvm_x86_cancel_injection)(vcpu);
10576 	if (unlikely(vcpu->arch.apic_attention))
10577 		kvm_lapic_sync_from_vapic(vcpu);
10578 out:
10579 	return r;
10580 }
10581 
10582 /* Called within kvm->srcu read side.  */
10583 static inline int vcpu_block(struct kvm_vcpu *vcpu)
10584 {
10585 	bool hv_timer;
10586 
10587 	if (!kvm_arch_vcpu_runnable(vcpu)) {
10588 		/*
10589 		 * Switch to the software timer before halt-polling/blocking as
10590 		 * the guest's timer may be a break event for the vCPU, and the
10591 		 * hypervisor timer runs only when the CPU is in guest mode.
10592 		 * Switch before halt-polling so that KVM recognizes an expired
10593 		 * timer before blocking.
10594 		 */
10595 		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10596 		if (hv_timer)
10597 			kvm_lapic_switch_to_sw_timer(vcpu);
10598 
10599 		kvm_vcpu_srcu_read_unlock(vcpu);
10600 		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10601 			kvm_vcpu_halt(vcpu);
10602 		else
10603 			kvm_vcpu_block(vcpu);
10604 		kvm_vcpu_srcu_read_lock(vcpu);
10605 
10606 		if (hv_timer)
10607 			kvm_lapic_switch_to_hv_timer(vcpu);
10608 
10609 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
10610 			return 1;
10611 	}
10612 
10613 	if (kvm_apic_accept_events(vcpu) < 0)
10614 		return 0;
10615 	switch(vcpu->arch.mp_state) {
10616 	case KVM_MP_STATE_HALTED:
10617 	case KVM_MP_STATE_AP_RESET_HOLD:
10618 		vcpu->arch.pv.pv_unhalted = false;
10619 		vcpu->arch.mp_state =
10620 			KVM_MP_STATE_RUNNABLE;
10621 		fallthrough;
10622 	case KVM_MP_STATE_RUNNABLE:
10623 		vcpu->arch.apf.halted = false;
10624 		break;
10625 	case KVM_MP_STATE_INIT_RECEIVED:
10626 		break;
10627 	default:
10628 		return -EINTR;
10629 	}
10630 	return 1;
10631 }
10632 
10633 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10634 {
10635 	if (is_guest_mode(vcpu))
10636 		kvm_check_nested_events(vcpu);
10637 
10638 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10639 		!vcpu->arch.apf.halted);
10640 }
10641 
10642 /* Called within kvm->srcu read side.  */
10643 static int vcpu_run(struct kvm_vcpu *vcpu)
10644 {
10645 	int r;
10646 
10647 	vcpu->arch.l1tf_flush_l1d = true;
10648 
10649 	for (;;) {
10650 		/*
10651 		 * If another guest vCPU requests a PV TLB flush in the middle
10652 		 * of instruction emulation, the rest of the emulation could
10653 		 * use a stale page translation. Assume that any code after
10654 		 * this point can start executing an instruction.
10655 		 */
10656 		vcpu->arch.at_instruction_boundary = false;
10657 		if (kvm_vcpu_running(vcpu)) {
10658 			r = vcpu_enter_guest(vcpu);
10659 		} else {
10660 			r = vcpu_block(vcpu);
10661 		}
10662 
10663 		if (r <= 0)
10664 			break;
10665 
10666 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10667 		if (kvm_xen_has_pending_events(vcpu))
10668 			kvm_xen_inject_pending_events(vcpu);
10669 
10670 		if (kvm_cpu_has_pending_timer(vcpu))
10671 			kvm_inject_pending_timer_irqs(vcpu);
10672 
10673 		if (dm_request_for_irq_injection(vcpu) &&
10674 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10675 			r = 0;
10676 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10677 			++vcpu->stat.request_irq_exits;
10678 			break;
10679 		}
10680 
10681 		if (__xfer_to_guest_mode_work_pending()) {
10682 			kvm_vcpu_srcu_read_unlock(vcpu);
10683 			r = xfer_to_guest_mode_handle_work(vcpu);
10684 			kvm_vcpu_srcu_read_lock(vcpu);
10685 			if (r)
10686 				return r;
10687 		}
10688 	}
10689 
10690 	return r;
10691 }
10692 
10693 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10694 {
10695 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10696 }
10697 
10698 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10699 {
10700 	BUG_ON(!vcpu->arch.pio.count);
10701 
10702 	return complete_emulated_io(vcpu);
10703 }
10704 
10705 /*
10706  * Implements the following, as a state machine:
10707  *
10708  * read:
10709  *   for each fragment
10710  *     for each mmio piece in the fragment
10711  *       write gpa, len
10712  *       exit
10713  *       copy data
10714  *   execute insn
10715  *
10716  * write:
10717  *   for each fragment
10718  *     for each mmio piece in the fragment
10719  *       write gpa, len
10720  *       copy data
10721  *       exit
10722  */
10723 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10724 {
10725 	struct kvm_run *run = vcpu->run;
10726 	struct kvm_mmio_fragment *frag;
10727 	unsigned len;
10728 
10729 	BUG_ON(!vcpu->mmio_needed);
10730 
10731 	/* Complete previous fragment */
10732 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10733 	len = min(8u, frag->len);
10734 	if (!vcpu->mmio_is_write)
10735 		memcpy(frag->data, run->mmio.data, len);
10736 
10737 	if (frag->len <= 8) {
10738 		/* Switch to the next fragment. */
10739 		frag++;
10740 		vcpu->mmio_cur_fragment++;
10741 	} else {
10742 		/* Go forward to the next mmio piece. */
10743 		frag->data += len;
10744 		frag->gpa += len;
10745 		frag->len -= len;
10746 	}
10747 
10748 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10749 		vcpu->mmio_needed = 0;
10750 
10751 		/* FIXME: return into emulator if single-stepping.  */
10752 		if (vcpu->mmio_is_write)
10753 			return 1;
10754 		vcpu->mmio_read_completed = 1;
10755 		return complete_emulated_io(vcpu);
10756 	}
10757 
10758 	run->exit_reason = KVM_EXIT_MMIO;
10759 	run->mmio.phys_addr = frag->gpa;
10760 	if (vcpu->mmio_is_write)
10761 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10762 	run->mmio.len = min(8u, frag->len);
10763 	run->mmio.is_write = vcpu->mmio_is_write;
10764 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10765 	return 0;
10766 }
10767 
10768 /* Swap (qemu) user FPU context for the guest FPU context. */
10769 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10770 {
10771 	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
10772 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
10773 	trace_kvm_fpu(1);
10774 }
10775 
10776 /* When vcpu_run ends, restore user space FPU context. */
10777 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10778 {
10779 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
10780 	++vcpu->stat.fpu_reload;
10781 	trace_kvm_fpu(0);
10782 }
10783 
10784 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10785 {
10786 	struct kvm_run *kvm_run = vcpu->run;
10787 	int r;
10788 
10789 	vcpu_load(vcpu);
10790 	kvm_sigset_activate(vcpu);
10791 	kvm_run->flags = 0;
10792 	kvm_load_guest_fpu(vcpu);
10793 
10794 	kvm_vcpu_srcu_read_lock(vcpu);
10795 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10796 		if (kvm_run->immediate_exit) {
10797 			r = -EINTR;
10798 			goto out;
10799 		}
10800 		/*
10801 		 * It should be impossible for the hypervisor timer to be in
10802 		 * use before KVM has ever run the vCPU.
10803 		 */
10804 		WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
10805 
10806 		kvm_vcpu_srcu_read_unlock(vcpu);
10807 		kvm_vcpu_block(vcpu);
10808 		kvm_vcpu_srcu_read_lock(vcpu);
10809 
10810 		if (kvm_apic_accept_events(vcpu) < 0) {
10811 			r = 0;
10812 			goto out;
10813 		}
10814 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
10815 		r = -EAGAIN;
10816 		if (signal_pending(current)) {
10817 			r = -EINTR;
10818 			kvm_run->exit_reason = KVM_EXIT_INTR;
10819 			++vcpu->stat.signal_exits;
10820 		}
10821 		goto out;
10822 	}
10823 
10824 	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10825 	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10826 		r = -EINVAL;
10827 		goto out;
10828 	}
10829 
10830 	if (kvm_run->kvm_dirty_regs) {
10831 		r = sync_regs(vcpu);
10832 		if (r != 0)
10833 			goto out;
10834 	}
10835 
10836 	/* re-sync apic's tpr */
10837 	if (!lapic_in_kernel(vcpu)) {
10838 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10839 			r = -EINVAL;
10840 			goto out;
10841 		}
10842 	}
10843 
10844 	if (unlikely(vcpu->arch.complete_userspace_io)) {
10845 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10846 		vcpu->arch.complete_userspace_io = NULL;
10847 		r = cui(vcpu);
10848 		if (r <= 0)
10849 			goto out;
10850 	} else
10851 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
10852 
10853 	if (kvm_run->immediate_exit) {
10854 		r = -EINTR;
10855 		goto out;
10856 	}
10857 
10858 	r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
10859 	if (r <= 0)
10860 		goto out;
10861 
10862 	r = vcpu_run(vcpu);
10863 
10864 out:
10865 	kvm_put_guest_fpu(vcpu);
10866 	if (kvm_run->kvm_valid_regs)
10867 		store_regs(vcpu);
10868 	post_kvm_run_save(vcpu);
10869 	kvm_vcpu_srcu_read_unlock(vcpu);
10870 
10871 	kvm_sigset_deactivate(vcpu);
10872 	vcpu_put(vcpu);
10873 	return r;
10874 }
10875 
10876 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10877 {
10878 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10879 		/*
10880 		 * We are here if userspace calls get_regs() in the middle of
10881 		 * instruction emulation. Registers state needs to be copied
10882 		 * back from emulation context to vcpu. Userspace shouldn't do
10883 		 * that usually, but some bad designed PV devices (vmware
10884 		 * backdoor interface) need this to work
10885 		 */
10886 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10887 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10888 	}
10889 	regs->rax = kvm_rax_read(vcpu);
10890 	regs->rbx = kvm_rbx_read(vcpu);
10891 	regs->rcx = kvm_rcx_read(vcpu);
10892 	regs->rdx = kvm_rdx_read(vcpu);
10893 	regs->rsi = kvm_rsi_read(vcpu);
10894 	regs->rdi = kvm_rdi_read(vcpu);
10895 	regs->rsp = kvm_rsp_read(vcpu);
10896 	regs->rbp = kvm_rbp_read(vcpu);
10897 #ifdef CONFIG_X86_64
10898 	regs->r8 = kvm_r8_read(vcpu);
10899 	regs->r9 = kvm_r9_read(vcpu);
10900 	regs->r10 = kvm_r10_read(vcpu);
10901 	regs->r11 = kvm_r11_read(vcpu);
10902 	regs->r12 = kvm_r12_read(vcpu);
10903 	regs->r13 = kvm_r13_read(vcpu);
10904 	regs->r14 = kvm_r14_read(vcpu);
10905 	regs->r15 = kvm_r15_read(vcpu);
10906 #endif
10907 
10908 	regs->rip = kvm_rip_read(vcpu);
10909 	regs->rflags = kvm_get_rflags(vcpu);
10910 }
10911 
10912 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10913 {
10914 	vcpu_load(vcpu);
10915 	__get_regs(vcpu, regs);
10916 	vcpu_put(vcpu);
10917 	return 0;
10918 }
10919 
10920 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10921 {
10922 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10923 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10924 
10925 	kvm_rax_write(vcpu, regs->rax);
10926 	kvm_rbx_write(vcpu, regs->rbx);
10927 	kvm_rcx_write(vcpu, regs->rcx);
10928 	kvm_rdx_write(vcpu, regs->rdx);
10929 	kvm_rsi_write(vcpu, regs->rsi);
10930 	kvm_rdi_write(vcpu, regs->rdi);
10931 	kvm_rsp_write(vcpu, regs->rsp);
10932 	kvm_rbp_write(vcpu, regs->rbp);
10933 #ifdef CONFIG_X86_64
10934 	kvm_r8_write(vcpu, regs->r8);
10935 	kvm_r9_write(vcpu, regs->r9);
10936 	kvm_r10_write(vcpu, regs->r10);
10937 	kvm_r11_write(vcpu, regs->r11);
10938 	kvm_r12_write(vcpu, regs->r12);
10939 	kvm_r13_write(vcpu, regs->r13);
10940 	kvm_r14_write(vcpu, regs->r14);
10941 	kvm_r15_write(vcpu, regs->r15);
10942 #endif
10943 
10944 	kvm_rip_write(vcpu, regs->rip);
10945 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10946 
10947 	vcpu->arch.exception.pending = false;
10948 
10949 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10950 }
10951 
10952 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10953 {
10954 	vcpu_load(vcpu);
10955 	__set_regs(vcpu, regs);
10956 	vcpu_put(vcpu);
10957 	return 0;
10958 }
10959 
10960 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10961 {
10962 	struct desc_ptr dt;
10963 
10964 	if (vcpu->arch.guest_state_protected)
10965 		goto skip_protected_regs;
10966 
10967 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10968 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10969 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10970 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10971 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10972 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10973 
10974 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10975 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10976 
10977 	static_call(kvm_x86_get_idt)(vcpu, &dt);
10978 	sregs->idt.limit = dt.size;
10979 	sregs->idt.base = dt.address;
10980 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
10981 	sregs->gdt.limit = dt.size;
10982 	sregs->gdt.base = dt.address;
10983 
10984 	sregs->cr2 = vcpu->arch.cr2;
10985 	sregs->cr3 = kvm_read_cr3(vcpu);
10986 
10987 skip_protected_regs:
10988 	sregs->cr0 = kvm_read_cr0(vcpu);
10989 	sregs->cr4 = kvm_read_cr4(vcpu);
10990 	sregs->cr8 = kvm_get_cr8(vcpu);
10991 	sregs->efer = vcpu->arch.efer;
10992 	sregs->apic_base = kvm_get_apic_base(vcpu);
10993 }
10994 
10995 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10996 {
10997 	__get_sregs_common(vcpu, sregs);
10998 
10999 	if (vcpu->arch.guest_state_protected)
11000 		return;
11001 
11002 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11003 		set_bit(vcpu->arch.interrupt.nr,
11004 			(unsigned long *)sregs->interrupt_bitmap);
11005 }
11006 
11007 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11008 {
11009 	int i;
11010 
11011 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11012 
11013 	if (vcpu->arch.guest_state_protected)
11014 		return;
11015 
11016 	if (is_pae_paging(vcpu)) {
11017 		for (i = 0 ; i < 4 ; i++)
11018 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11019 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11020 	}
11021 }
11022 
11023 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11024 				  struct kvm_sregs *sregs)
11025 {
11026 	vcpu_load(vcpu);
11027 	__get_sregs(vcpu, sregs);
11028 	vcpu_put(vcpu);
11029 	return 0;
11030 }
11031 
11032 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11033 				    struct kvm_mp_state *mp_state)
11034 {
11035 	int r;
11036 
11037 	vcpu_load(vcpu);
11038 	if (kvm_mpx_supported())
11039 		kvm_load_guest_fpu(vcpu);
11040 
11041 	r = kvm_apic_accept_events(vcpu);
11042 	if (r < 0)
11043 		goto out;
11044 	r = 0;
11045 
11046 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11047 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11048 	    vcpu->arch.pv.pv_unhalted)
11049 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11050 	else
11051 		mp_state->mp_state = vcpu->arch.mp_state;
11052 
11053 out:
11054 	if (kvm_mpx_supported())
11055 		kvm_put_guest_fpu(vcpu);
11056 	vcpu_put(vcpu);
11057 	return r;
11058 }
11059 
11060 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11061 				    struct kvm_mp_state *mp_state)
11062 {
11063 	int ret = -EINVAL;
11064 
11065 	vcpu_load(vcpu);
11066 
11067 	if (!lapic_in_kernel(vcpu) &&
11068 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
11069 		goto out;
11070 
11071 	/*
11072 	 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
11073 	 * INIT state; latched init should be reported using
11074 	 * KVM_SET_VCPU_EVENTS, so reject it here.
11075 	 */
11076 	if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
11077 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11078 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11079 		goto out;
11080 
11081 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11082 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11083 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11084 	} else
11085 		vcpu->arch.mp_state = mp_state->mp_state;
11086 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11087 
11088 	ret = 0;
11089 out:
11090 	vcpu_put(vcpu);
11091 	return ret;
11092 }
11093 
11094 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11095 		    int reason, bool has_error_code, u32 error_code)
11096 {
11097 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11098 	int ret;
11099 
11100 	init_emulate_ctxt(vcpu);
11101 
11102 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11103 				   has_error_code, error_code);
11104 	if (ret) {
11105 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11106 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11107 		vcpu->run->internal.ndata = 0;
11108 		return 0;
11109 	}
11110 
11111 	kvm_rip_write(vcpu, ctxt->eip);
11112 	kvm_set_rflags(vcpu, ctxt->eflags);
11113 	return 1;
11114 }
11115 EXPORT_SYMBOL_GPL(kvm_task_switch);
11116 
11117 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11118 {
11119 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11120 		/*
11121 		 * When EFER.LME and CR0.PG are set, the processor is in
11122 		 * 64-bit mode (though maybe in a 32-bit code segment).
11123 		 * CR4.PAE and EFER.LMA must be set.
11124 		 */
11125 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11126 			return false;
11127 		if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
11128 			return false;
11129 	} else {
11130 		/*
11131 		 * Not in 64-bit mode: EFER.LMA is clear and the code
11132 		 * segment cannot be 64-bit.
11133 		 */
11134 		if (sregs->efer & EFER_LMA || sregs->cs.l)
11135 			return false;
11136 	}
11137 
11138 	return kvm_is_valid_cr4(vcpu, sregs->cr4);
11139 }
11140 
11141 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11142 		int *mmu_reset_needed, bool update_pdptrs)
11143 {
11144 	struct msr_data apic_base_msr;
11145 	int idx;
11146 	struct desc_ptr dt;
11147 
11148 	if (!kvm_is_valid_sregs(vcpu, sregs))
11149 		return -EINVAL;
11150 
11151 	apic_base_msr.data = sregs->apic_base;
11152 	apic_base_msr.host_initiated = true;
11153 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
11154 		return -EINVAL;
11155 
11156 	if (vcpu->arch.guest_state_protected)
11157 		return 0;
11158 
11159 	dt.size = sregs->idt.limit;
11160 	dt.address = sregs->idt.base;
11161 	static_call(kvm_x86_set_idt)(vcpu, &dt);
11162 	dt.size = sregs->gdt.limit;
11163 	dt.address = sregs->gdt.base;
11164 	static_call(kvm_x86_set_gdt)(vcpu, &dt);
11165 
11166 	vcpu->arch.cr2 = sregs->cr2;
11167 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11168 	vcpu->arch.cr3 = sregs->cr3;
11169 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11170 	static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11171 
11172 	kvm_set_cr8(vcpu, sregs->cr8);
11173 
11174 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11175 	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11176 
11177 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11178 	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11179 	vcpu->arch.cr0 = sregs->cr0;
11180 
11181 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11182 	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11183 
11184 	if (update_pdptrs) {
11185 		idx = srcu_read_lock(&vcpu->kvm->srcu);
11186 		if (is_pae_paging(vcpu)) {
11187 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11188 			*mmu_reset_needed = 1;
11189 		}
11190 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
11191 	}
11192 
11193 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11194 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11195 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11196 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11197 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11198 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11199 
11200 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11201 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11202 
11203 	update_cr8_intercept(vcpu);
11204 
11205 	/* Older userspace won't unhalt the vcpu on reset. */
11206 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11207 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11208 	    !is_protmode(vcpu))
11209 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11210 
11211 	return 0;
11212 }
11213 
11214 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11215 {
11216 	int pending_vec, max_bits;
11217 	int mmu_reset_needed = 0;
11218 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11219 
11220 	if (ret)
11221 		return ret;
11222 
11223 	if (mmu_reset_needed)
11224 		kvm_mmu_reset_context(vcpu);
11225 
11226 	max_bits = KVM_NR_INTERRUPTS;
11227 	pending_vec = find_first_bit(
11228 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
11229 
11230 	if (pending_vec < max_bits) {
11231 		kvm_queue_interrupt(vcpu, pending_vec, false);
11232 		pr_debug("Set back pending irq %d\n", pending_vec);
11233 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11234 	}
11235 	return 0;
11236 }
11237 
11238 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11239 {
11240 	int mmu_reset_needed = 0;
11241 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11242 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11243 		!(sregs2->efer & EFER_LMA);
11244 	int i, ret;
11245 
11246 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11247 		return -EINVAL;
11248 
11249 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11250 		return -EINVAL;
11251 
11252 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11253 				 &mmu_reset_needed, !valid_pdptrs);
11254 	if (ret)
11255 		return ret;
11256 
11257 	if (valid_pdptrs) {
11258 		for (i = 0; i < 4 ; i++)
11259 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11260 
11261 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11262 		mmu_reset_needed = 1;
11263 		vcpu->arch.pdptrs_from_userspace = true;
11264 	}
11265 	if (mmu_reset_needed)
11266 		kvm_mmu_reset_context(vcpu);
11267 	return 0;
11268 }
11269 
11270 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11271 				  struct kvm_sregs *sregs)
11272 {
11273 	int ret;
11274 
11275 	vcpu_load(vcpu);
11276 	ret = __set_sregs(vcpu, sregs);
11277 	vcpu_put(vcpu);
11278 	return ret;
11279 }
11280 
11281 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11282 {
11283 	bool set = false;
11284 	struct kvm_vcpu *vcpu;
11285 	unsigned long i;
11286 
11287 	if (!enable_apicv)
11288 		return;
11289 
11290 	down_write(&kvm->arch.apicv_update_lock);
11291 
11292 	kvm_for_each_vcpu(i, vcpu, kvm) {
11293 		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11294 			set = true;
11295 			break;
11296 		}
11297 	}
11298 	__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11299 	up_write(&kvm->arch.apicv_update_lock);
11300 }
11301 
11302 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11303 					struct kvm_guest_debug *dbg)
11304 {
11305 	unsigned long rflags;
11306 	int i, r;
11307 
11308 	if (vcpu->arch.guest_state_protected)
11309 		return -EINVAL;
11310 
11311 	vcpu_load(vcpu);
11312 
11313 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11314 		r = -EBUSY;
11315 		if (vcpu->arch.exception.pending)
11316 			goto out;
11317 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11318 			kvm_queue_exception(vcpu, DB_VECTOR);
11319 		else
11320 			kvm_queue_exception(vcpu, BP_VECTOR);
11321 	}
11322 
11323 	/*
11324 	 * Read rflags as long as potentially injected trace flags are still
11325 	 * filtered out.
11326 	 */
11327 	rflags = kvm_get_rflags(vcpu);
11328 
11329 	vcpu->guest_debug = dbg->control;
11330 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11331 		vcpu->guest_debug = 0;
11332 
11333 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11334 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
11335 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11336 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11337 	} else {
11338 		for (i = 0; i < KVM_NR_DB_REGS; i++)
11339 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11340 	}
11341 	kvm_update_dr7(vcpu);
11342 
11343 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11344 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11345 
11346 	/*
11347 	 * Trigger an rflags update that will inject or remove the trace
11348 	 * flags.
11349 	 */
11350 	kvm_set_rflags(vcpu, rflags);
11351 
11352 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11353 
11354 	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11355 
11356 	r = 0;
11357 
11358 out:
11359 	vcpu_put(vcpu);
11360 	return r;
11361 }
11362 
11363 /*
11364  * Translate a guest virtual address to a guest physical address.
11365  */
11366 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11367 				    struct kvm_translation *tr)
11368 {
11369 	unsigned long vaddr = tr->linear_address;
11370 	gpa_t gpa;
11371 	int idx;
11372 
11373 	vcpu_load(vcpu);
11374 
11375 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11376 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11377 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11378 	tr->physical_address = gpa;
11379 	tr->valid = gpa != UNMAPPED_GVA;
11380 	tr->writeable = 1;
11381 	tr->usermode = 0;
11382 
11383 	vcpu_put(vcpu);
11384 	return 0;
11385 }
11386 
11387 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11388 {
11389 	struct fxregs_state *fxsave;
11390 
11391 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11392 		return 0;
11393 
11394 	vcpu_load(vcpu);
11395 
11396 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11397 	memcpy(fpu->fpr, fxsave->st_space, 128);
11398 	fpu->fcw = fxsave->cwd;
11399 	fpu->fsw = fxsave->swd;
11400 	fpu->ftwx = fxsave->twd;
11401 	fpu->last_opcode = fxsave->fop;
11402 	fpu->last_ip = fxsave->rip;
11403 	fpu->last_dp = fxsave->rdp;
11404 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11405 
11406 	vcpu_put(vcpu);
11407 	return 0;
11408 }
11409 
11410 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11411 {
11412 	struct fxregs_state *fxsave;
11413 
11414 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11415 		return 0;
11416 
11417 	vcpu_load(vcpu);
11418 
11419 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11420 
11421 	memcpy(fxsave->st_space, fpu->fpr, 128);
11422 	fxsave->cwd = fpu->fcw;
11423 	fxsave->swd = fpu->fsw;
11424 	fxsave->twd = fpu->ftwx;
11425 	fxsave->fop = fpu->last_opcode;
11426 	fxsave->rip = fpu->last_ip;
11427 	fxsave->rdp = fpu->last_dp;
11428 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11429 
11430 	vcpu_put(vcpu);
11431 	return 0;
11432 }
11433 
11434 static void store_regs(struct kvm_vcpu *vcpu)
11435 {
11436 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11437 
11438 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11439 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
11440 
11441 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11442 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11443 
11444 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11445 		kvm_vcpu_ioctl_x86_get_vcpu_events(
11446 				vcpu, &vcpu->run->s.regs.events);
11447 }
11448 
11449 static int sync_regs(struct kvm_vcpu *vcpu)
11450 {
11451 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11452 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
11453 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11454 	}
11455 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11456 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11457 			return -EINVAL;
11458 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11459 	}
11460 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11461 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11462 				vcpu, &vcpu->run->s.regs.events))
11463 			return -EINVAL;
11464 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11465 	}
11466 
11467 	return 0;
11468 }
11469 
11470 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11471 {
11472 	if (kvm_check_tsc_unstable() && kvm->created_vcpus)
11473 		pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
11474 			     "guest TSC will not be reliable\n");
11475 
11476 	if (!kvm->arch.max_vcpu_ids)
11477 		kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
11478 
11479 	if (id >= kvm->arch.max_vcpu_ids)
11480 		return -EINVAL;
11481 
11482 	return static_call(kvm_x86_vcpu_precreate)(kvm);
11483 }
11484 
11485 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11486 {
11487 	struct page *page;
11488 	int r;
11489 
11490 	vcpu->arch.last_vmentry_cpu = -1;
11491 	vcpu->arch.regs_avail = ~0;
11492 	vcpu->arch.regs_dirty = ~0;
11493 
11494 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11495 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11496 	else
11497 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11498 
11499 	r = kvm_mmu_create(vcpu);
11500 	if (r < 0)
11501 		return r;
11502 
11503 	if (irqchip_in_kernel(vcpu->kvm)) {
11504 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11505 		if (r < 0)
11506 			goto fail_mmu_destroy;
11507 
11508 		/*
11509 		 * Defer evaluating inhibits until the vCPU is first run, as
11510 		 * this vCPU will not get notified of any changes until this
11511 		 * vCPU is visible to other vCPUs (marked online and added to
11512 		 * the set of vCPUs).  Opportunistically mark APICv active as
11513 		 * VMX in particularly is highly unlikely to have inhibits.
11514 		 * Ignore the current per-VM APICv state so that vCPU creation
11515 		 * is guaranteed to run with a deterministic value, the request
11516 		 * will ensure the vCPU gets the correct state before VM-Entry.
11517 		 */
11518 		if (enable_apicv) {
11519 			vcpu->arch.apic->apicv_active = true;
11520 			kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11521 		}
11522 	} else
11523 		static_branch_inc(&kvm_has_noapic_vcpu);
11524 
11525 	r = -ENOMEM;
11526 
11527 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11528 	if (!page)
11529 		goto fail_free_lapic;
11530 	vcpu->arch.pio_data = page_address(page);
11531 
11532 	vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
11533 				       GFP_KERNEL_ACCOUNT);
11534 	vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
11535 					    GFP_KERNEL_ACCOUNT);
11536 	if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
11537 		goto fail_free_pio_data;
11538 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11539 
11540 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11541 				GFP_KERNEL_ACCOUNT))
11542 		goto fail_free_mce_banks;
11543 
11544 	if (!alloc_emulate_ctxt(vcpu))
11545 		goto free_wbinvd_dirty_mask;
11546 
11547 	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11548 		pr_err("kvm: failed to allocate vcpu's fpu\n");
11549 		goto free_emulate_ctxt;
11550 	}
11551 
11552 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11553 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11554 
11555 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11556 
11557 	kvm_async_pf_hash_reset(vcpu);
11558 	kvm_pmu_init(vcpu);
11559 
11560 	vcpu->arch.pending_external_vector = -1;
11561 	vcpu->arch.preempted_in_kernel = false;
11562 
11563 #if IS_ENABLED(CONFIG_HYPERV)
11564 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
11565 #endif
11566 
11567 	r = static_call(kvm_x86_vcpu_create)(vcpu);
11568 	if (r)
11569 		goto free_guest_fpu;
11570 
11571 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11572 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11573 	kvm_xen_init_vcpu(vcpu);
11574 	kvm_vcpu_mtrr_init(vcpu);
11575 	vcpu_load(vcpu);
11576 	kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
11577 	kvm_vcpu_reset(vcpu, false);
11578 	kvm_init_mmu(vcpu);
11579 	vcpu_put(vcpu);
11580 	return 0;
11581 
11582 free_guest_fpu:
11583 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11584 free_emulate_ctxt:
11585 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11586 free_wbinvd_dirty_mask:
11587 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11588 fail_free_mce_banks:
11589 	kfree(vcpu->arch.mce_banks);
11590 	kfree(vcpu->arch.mci_ctl2_banks);
11591 fail_free_pio_data:
11592 	free_page((unsigned long)vcpu->arch.pio_data);
11593 fail_free_lapic:
11594 	kvm_free_lapic(vcpu);
11595 fail_mmu_destroy:
11596 	kvm_mmu_destroy(vcpu);
11597 	return r;
11598 }
11599 
11600 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11601 {
11602 	struct kvm *kvm = vcpu->kvm;
11603 
11604 	if (mutex_lock_killable(&vcpu->mutex))
11605 		return;
11606 	vcpu_load(vcpu);
11607 	kvm_synchronize_tsc(vcpu, 0);
11608 	vcpu_put(vcpu);
11609 
11610 	/* poll control enabled by default */
11611 	vcpu->arch.msr_kvm_poll_control = 1;
11612 
11613 	mutex_unlock(&vcpu->mutex);
11614 
11615 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11616 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11617 						KVMCLOCK_SYNC_PERIOD);
11618 }
11619 
11620 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11621 {
11622 	int idx;
11623 
11624 	kvmclock_reset(vcpu);
11625 
11626 	static_call(kvm_x86_vcpu_free)(vcpu);
11627 
11628 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11629 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11630 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11631 
11632 	kvm_xen_destroy_vcpu(vcpu);
11633 	kvm_hv_vcpu_uninit(vcpu);
11634 	kvm_pmu_destroy(vcpu);
11635 	kfree(vcpu->arch.mce_banks);
11636 	kfree(vcpu->arch.mci_ctl2_banks);
11637 	kvm_free_lapic(vcpu);
11638 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11639 	kvm_mmu_destroy(vcpu);
11640 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11641 	free_page((unsigned long)vcpu->arch.pio_data);
11642 	kvfree(vcpu->arch.cpuid_entries);
11643 	if (!lapic_in_kernel(vcpu))
11644 		static_branch_dec(&kvm_has_noapic_vcpu);
11645 }
11646 
11647 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11648 {
11649 	struct kvm_cpuid_entry2 *cpuid_0x1;
11650 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
11651 	unsigned long new_cr0;
11652 
11653 	/*
11654 	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11655 	 * to handle side effects.  RESET emulation hits those flows and relies
11656 	 * on emulated/virtualized registers, including those that are loaded
11657 	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
11658 	 * to detect improper or missing initialization.
11659 	 */
11660 	WARN_ON_ONCE(!init_event &&
11661 		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11662 
11663 	kvm_lapic_reset(vcpu, init_event);
11664 
11665 	vcpu->arch.hflags = 0;
11666 
11667 	vcpu->arch.smi_pending = 0;
11668 	vcpu->arch.smi_count = 0;
11669 	atomic_set(&vcpu->arch.nmi_queued, 0);
11670 	vcpu->arch.nmi_pending = 0;
11671 	vcpu->arch.nmi_injected = false;
11672 	kvm_clear_interrupt_queue(vcpu);
11673 	kvm_clear_exception_queue(vcpu);
11674 
11675 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
11676 	kvm_update_dr0123(vcpu);
11677 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
11678 	vcpu->arch.dr7 = DR7_FIXED_1;
11679 	kvm_update_dr7(vcpu);
11680 
11681 	vcpu->arch.cr2 = 0;
11682 
11683 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11684 	vcpu->arch.apf.msr_en_val = 0;
11685 	vcpu->arch.apf.msr_int_val = 0;
11686 	vcpu->arch.st.msr_val = 0;
11687 
11688 	kvmclock_reset(vcpu);
11689 
11690 	kvm_clear_async_pf_completion_queue(vcpu);
11691 	kvm_async_pf_hash_reset(vcpu);
11692 	vcpu->arch.apf.halted = false;
11693 
11694 	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
11695 		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
11696 
11697 		/*
11698 		 * To avoid have the INIT path from kvm_apic_has_events() that be
11699 		 * called with loaded FPU and does not let userspace fix the state.
11700 		 */
11701 		if (init_event)
11702 			kvm_put_guest_fpu(vcpu);
11703 
11704 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
11705 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
11706 
11707 		if (init_event)
11708 			kvm_load_guest_fpu(vcpu);
11709 	}
11710 
11711 	if (!init_event) {
11712 		kvm_pmu_reset(vcpu);
11713 		vcpu->arch.smbase = 0x30000;
11714 
11715 		vcpu->arch.msr_misc_features_enables = 0;
11716 		vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
11717 						  MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
11718 
11719 		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
11720 		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
11721 	}
11722 
11723 	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
11724 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11725 	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
11726 
11727 	/*
11728 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11729 	 * if no CPUID match is found.  Note, it's impossible to get a match at
11730 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11731 	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
11732 	 * on RESET.  But, go through the motions in case that's ever remedied.
11733 	 */
11734 	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1, 0);
11735 	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
11736 
11737 	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11738 
11739 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11740 	kvm_rip_write(vcpu, 0xfff0);
11741 
11742 	vcpu->arch.cr3 = 0;
11743 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11744 
11745 	/*
11746 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
11747 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11748 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
11749 	 */
11750 	new_cr0 = X86_CR0_ET;
11751 	if (init_event)
11752 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11753 	else
11754 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11755 
11756 	static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11757 	static_call(kvm_x86_set_cr4)(vcpu, 0);
11758 	static_call(kvm_x86_set_efer)(vcpu, 0);
11759 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11760 
11761 	/*
11762 	 * On the standard CR0/CR4/EFER modification paths, there are several
11763 	 * complex conditions determining whether the MMU has to be reset and/or
11764 	 * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
11765 	 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
11766 	 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
11767 	 * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
11768 	 */
11769 	if (old_cr0 & X86_CR0_PG) {
11770 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11771 		kvm_mmu_reset_context(vcpu);
11772 	}
11773 
11774 	/*
11775 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
11776 	 * APM states the TLBs are untouched by INIT, but it also states that
11777 	 * the TLBs are flushed on "External initialization of the processor."
11778 	 * Flush the guest TLB regardless of vendor, there is no meaningful
11779 	 * benefit in relying on the guest to flush the TLB immediately after
11780 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
11781 	 * performance perspective.
11782 	 */
11783 	if (init_event)
11784 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11785 }
11786 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11787 
11788 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11789 {
11790 	struct kvm_segment cs;
11791 
11792 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11793 	cs.selector = vector << 8;
11794 	cs.base = vector << 12;
11795 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11796 	kvm_rip_write(vcpu, 0);
11797 }
11798 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
11799 
11800 int kvm_arch_hardware_enable(void)
11801 {
11802 	struct kvm *kvm;
11803 	struct kvm_vcpu *vcpu;
11804 	unsigned long i;
11805 	int ret;
11806 	u64 local_tsc;
11807 	u64 max_tsc = 0;
11808 	bool stable, backwards_tsc = false;
11809 
11810 	kvm_user_return_msr_cpu_online();
11811 	ret = static_call(kvm_x86_hardware_enable)();
11812 	if (ret != 0)
11813 		return ret;
11814 
11815 	local_tsc = rdtsc();
11816 	stable = !kvm_check_tsc_unstable();
11817 	list_for_each_entry(kvm, &vm_list, vm_list) {
11818 		kvm_for_each_vcpu(i, vcpu, kvm) {
11819 			if (!stable && vcpu->cpu == smp_processor_id())
11820 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11821 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11822 				backwards_tsc = true;
11823 				if (vcpu->arch.last_host_tsc > max_tsc)
11824 					max_tsc = vcpu->arch.last_host_tsc;
11825 			}
11826 		}
11827 	}
11828 
11829 	/*
11830 	 * Sometimes, even reliable TSCs go backwards.  This happens on
11831 	 * platforms that reset TSC during suspend or hibernate actions, but
11832 	 * maintain synchronization.  We must compensate.  Fortunately, we can
11833 	 * detect that condition here, which happens early in CPU bringup,
11834 	 * before any KVM threads can be running.  Unfortunately, we can't
11835 	 * bring the TSCs fully up to date with real time, as we aren't yet far
11836 	 * enough into CPU bringup that we know how much real time has actually
11837 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11838 	 * variables that haven't been updated yet.
11839 	 *
11840 	 * So we simply find the maximum observed TSC above, then record the
11841 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
11842 	 * the adjustment will be applied.  Note that we accumulate
11843 	 * adjustments, in case multiple suspend cycles happen before some VCPU
11844 	 * gets a chance to run again.  In the event that no KVM threads get a
11845 	 * chance to run, we will miss the entire elapsed period, as we'll have
11846 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11847 	 * loose cycle time.  This isn't too big a deal, since the loss will be
11848 	 * uniform across all VCPUs (not to mention the scenario is extremely
11849 	 * unlikely). It is possible that a second hibernate recovery happens
11850 	 * much faster than a first, causing the observed TSC here to be
11851 	 * smaller; this would require additional padding adjustment, which is
11852 	 * why we set last_host_tsc to the local tsc observed here.
11853 	 *
11854 	 * N.B. - this code below runs only on platforms with reliable TSC,
11855 	 * as that is the only way backwards_tsc is set above.  Also note
11856 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11857 	 * have the same delta_cyc adjustment applied if backwards_tsc
11858 	 * is detected.  Note further, this adjustment is only done once,
11859 	 * as we reset last_host_tsc on all VCPUs to stop this from being
11860 	 * called multiple times (one for each physical CPU bringup).
11861 	 *
11862 	 * Platforms with unreliable TSCs don't have to deal with this, they
11863 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
11864 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
11865 	 * guarantee that they stay in perfect synchronization.
11866 	 */
11867 	if (backwards_tsc) {
11868 		u64 delta_cyc = max_tsc - local_tsc;
11869 		list_for_each_entry(kvm, &vm_list, vm_list) {
11870 			kvm->arch.backwards_tsc_observed = true;
11871 			kvm_for_each_vcpu(i, vcpu, kvm) {
11872 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
11873 				vcpu->arch.last_host_tsc = local_tsc;
11874 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11875 			}
11876 
11877 			/*
11878 			 * We have to disable TSC offset matching.. if you were
11879 			 * booting a VM while issuing an S4 host suspend....
11880 			 * you may have some problem.  Solving this issue is
11881 			 * left as an exercise to the reader.
11882 			 */
11883 			kvm->arch.last_tsc_nsec = 0;
11884 			kvm->arch.last_tsc_write = 0;
11885 		}
11886 
11887 	}
11888 	return 0;
11889 }
11890 
11891 void kvm_arch_hardware_disable(void)
11892 {
11893 	static_call(kvm_x86_hardware_disable)();
11894 	drop_user_return_notifiers();
11895 }
11896 
11897 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
11898 {
11899 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11900 
11901 #define __KVM_X86_OP(func) \
11902 	static_call_update(kvm_x86_##func, kvm_x86_ops.func);
11903 #define KVM_X86_OP(func) \
11904 	WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
11905 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
11906 #define KVM_X86_OP_OPTIONAL_RET0(func) \
11907 	static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
11908 					   (void *)__static_call_return0);
11909 #include <asm/kvm-x86-ops.h>
11910 #undef __KVM_X86_OP
11911 
11912 	kvm_pmu_ops_update(ops->pmu_ops);
11913 }
11914 
11915 int kvm_arch_hardware_setup(void *opaque)
11916 {
11917 	struct kvm_x86_init_ops *ops = opaque;
11918 	int r;
11919 
11920 	rdmsrl_safe(MSR_EFER, &host_efer);
11921 
11922 	if (boot_cpu_has(X86_FEATURE_XSAVES))
11923 		rdmsrl(MSR_IA32_XSS, host_xss);
11924 
11925 	kvm_init_pmu_capability();
11926 
11927 	r = ops->hardware_setup();
11928 	if (r != 0)
11929 		return r;
11930 
11931 	kvm_ops_update(ops);
11932 
11933 	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
11934 
11935 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11936 		kvm_caps.supported_xss = 0;
11937 
11938 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11939 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11940 #undef __kvm_cpu_cap_has
11941 
11942 	if (kvm_caps.has_tsc_control) {
11943 		/*
11944 		 * Make sure the user can only configure tsc_khz values that
11945 		 * fit into a signed integer.
11946 		 * A min value is not calculated because it will always
11947 		 * be 1 on all machines.
11948 		 */
11949 		u64 max = min(0x7fffffffULL,
11950 			      __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
11951 		kvm_caps.max_guest_tsc_khz = max;
11952 	}
11953 	kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
11954 	kvm_init_msr_list();
11955 	return 0;
11956 }
11957 
11958 void kvm_arch_hardware_unsetup(void)
11959 {
11960 	kvm_unregister_perf_callbacks();
11961 
11962 	static_call(kvm_x86_hardware_unsetup)();
11963 }
11964 
11965 int kvm_arch_check_processor_compat(void *opaque)
11966 {
11967 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11968 	struct kvm_x86_init_ops *ops = opaque;
11969 
11970 	WARN_ON(!irqs_disabled());
11971 
11972 	if (__cr4_reserved_bits(cpu_has, c) !=
11973 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11974 		return -EIO;
11975 
11976 	return ops->check_processor_compatibility();
11977 }
11978 
11979 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11980 {
11981 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11982 }
11983 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11984 
11985 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11986 {
11987 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11988 }
11989 
11990 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11991 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11992 
11993 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11994 {
11995 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11996 
11997 	vcpu->arch.l1tf_flush_l1d = true;
11998 	if (pmu->version && unlikely(pmu->event_count)) {
11999 		pmu->need_cleanup = true;
12000 		kvm_make_request(KVM_REQ_PMU, vcpu);
12001 	}
12002 	static_call(kvm_x86_sched_in)(vcpu, cpu);
12003 }
12004 
12005 void kvm_arch_free_vm(struct kvm *kvm)
12006 {
12007 	kfree(to_kvm_hv(kvm)->hv_pa_pg);
12008 	__kvm_arch_free_vm(kvm);
12009 }
12010 
12011 
12012 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12013 {
12014 	int ret;
12015 	unsigned long flags;
12016 
12017 	if (type)
12018 		return -EINVAL;
12019 
12020 	ret = kvm_page_track_init(kvm);
12021 	if (ret)
12022 		goto out;
12023 
12024 	ret = kvm_mmu_init_vm(kvm);
12025 	if (ret)
12026 		goto out_page_track;
12027 
12028 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12029 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
12030 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12031 
12032 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12033 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12034 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12035 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12036 		&kvm->arch.irq_sources_bitmap);
12037 
12038 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12039 	mutex_init(&kvm->arch.apic_map_lock);
12040 	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12041 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12042 
12043 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12044 	pvclock_update_vm_gtod_copy(kvm);
12045 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12046 
12047 	kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12048 	kvm->arch.guest_can_read_msr_platform_info = true;
12049 	kvm->arch.enable_pmu = enable_pmu;
12050 
12051 #if IS_ENABLED(CONFIG_HYPERV)
12052 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12053 	kvm->arch.hv_root_tdp = INVALID_PAGE;
12054 #endif
12055 
12056 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12057 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12058 
12059 	kvm_apicv_init(kvm);
12060 	kvm_hv_init_vm(kvm);
12061 	kvm_xen_init_vm(kvm);
12062 
12063 	return static_call(kvm_x86_vm_init)(kvm);
12064 
12065 out_page_track:
12066 	kvm_page_track_cleanup(kvm);
12067 out:
12068 	return ret;
12069 }
12070 
12071 int kvm_arch_post_init_vm(struct kvm *kvm)
12072 {
12073 	return kvm_mmu_post_init_vm(kvm);
12074 }
12075 
12076 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12077 {
12078 	vcpu_load(vcpu);
12079 	kvm_mmu_unload(vcpu);
12080 	vcpu_put(vcpu);
12081 }
12082 
12083 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12084 {
12085 	unsigned long i;
12086 	struct kvm_vcpu *vcpu;
12087 
12088 	kvm_for_each_vcpu(i, vcpu, kvm) {
12089 		kvm_clear_async_pf_completion_queue(vcpu);
12090 		kvm_unload_vcpu_mmu(vcpu);
12091 	}
12092 }
12093 
12094 void kvm_arch_sync_events(struct kvm *kvm)
12095 {
12096 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12097 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12098 	kvm_free_pit(kvm);
12099 }
12100 
12101 /**
12102  * __x86_set_memory_region: Setup KVM internal memory slot
12103  *
12104  * @kvm: the kvm pointer to the VM.
12105  * @id: the slot ID to setup.
12106  * @gpa: the GPA to install the slot (unused when @size == 0).
12107  * @size: the size of the slot. Set to zero to uninstall a slot.
12108  *
12109  * This function helps to setup a KVM internal memory slot.  Specify
12110  * @size > 0 to install a new slot, while @size == 0 to uninstall a
12111  * slot.  The return code can be one of the following:
12112  *
12113  *   HVA:           on success (uninstall will return a bogus HVA)
12114  *   -errno:        on error
12115  *
12116  * The caller should always use IS_ERR() to check the return value
12117  * before use.  Note, the KVM internal memory slots are guaranteed to
12118  * remain valid and unchanged until the VM is destroyed, i.e., the
12119  * GPA->HVA translation will not change.  However, the HVA is a user
12120  * address, i.e. its accessibility is not guaranteed, and must be
12121  * accessed via __copy_{to,from}_user().
12122  */
12123 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12124 				      u32 size)
12125 {
12126 	int i, r;
12127 	unsigned long hva, old_npages;
12128 	struct kvm_memslots *slots = kvm_memslots(kvm);
12129 	struct kvm_memory_slot *slot;
12130 
12131 	/* Called with kvm->slots_lock held.  */
12132 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12133 		return ERR_PTR_USR(-EINVAL);
12134 
12135 	slot = id_to_memslot(slots, id);
12136 	if (size) {
12137 		if (slot && slot->npages)
12138 			return ERR_PTR_USR(-EEXIST);
12139 
12140 		/*
12141 		 * MAP_SHARED to prevent internal slot pages from being moved
12142 		 * by fork()/COW.
12143 		 */
12144 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12145 			      MAP_SHARED | MAP_ANONYMOUS, 0);
12146 		if (IS_ERR((void *)hva))
12147 			return (void __user *)hva;
12148 	} else {
12149 		if (!slot || !slot->npages)
12150 			return NULL;
12151 
12152 		old_npages = slot->npages;
12153 		hva = slot->userspace_addr;
12154 	}
12155 
12156 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
12157 		struct kvm_userspace_memory_region m;
12158 
12159 		m.slot = id | (i << 16);
12160 		m.flags = 0;
12161 		m.guest_phys_addr = gpa;
12162 		m.userspace_addr = hva;
12163 		m.memory_size = size;
12164 		r = __kvm_set_memory_region(kvm, &m);
12165 		if (r < 0)
12166 			return ERR_PTR_USR(r);
12167 	}
12168 
12169 	if (!size)
12170 		vm_munmap(hva, old_npages * PAGE_SIZE);
12171 
12172 	return (void __user *)hva;
12173 }
12174 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12175 
12176 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12177 {
12178 	kvm_mmu_pre_destroy_vm(kvm);
12179 }
12180 
12181 void kvm_arch_destroy_vm(struct kvm *kvm)
12182 {
12183 	if (current->mm == kvm->mm) {
12184 		/*
12185 		 * Free memory regions allocated on behalf of userspace,
12186 		 * unless the memory map has changed due to process exit
12187 		 * or fd copying.
12188 		 */
12189 		mutex_lock(&kvm->slots_lock);
12190 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12191 					0, 0);
12192 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12193 					0, 0);
12194 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12195 		mutex_unlock(&kvm->slots_lock);
12196 	}
12197 	kvm_unload_vcpu_mmus(kvm);
12198 	static_call_cond(kvm_x86_vm_destroy)(kvm);
12199 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12200 	kvm_pic_destroy(kvm);
12201 	kvm_ioapic_destroy(kvm);
12202 	kvm_destroy_vcpus(kvm);
12203 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12204 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12205 	kvm_mmu_uninit_vm(kvm);
12206 	kvm_page_track_cleanup(kvm);
12207 	kvm_xen_destroy_vm(kvm);
12208 	kvm_hv_destroy_vm(kvm);
12209 }
12210 
12211 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12212 {
12213 	int i;
12214 
12215 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12216 		kvfree(slot->arch.rmap[i]);
12217 		slot->arch.rmap[i] = NULL;
12218 	}
12219 }
12220 
12221 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12222 {
12223 	int i;
12224 
12225 	memslot_rmap_free(slot);
12226 
12227 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12228 		kvfree(slot->arch.lpage_info[i - 1]);
12229 		slot->arch.lpage_info[i - 1] = NULL;
12230 	}
12231 
12232 	kvm_page_track_free_memslot(slot);
12233 }
12234 
12235 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12236 {
12237 	const int sz = sizeof(*slot->arch.rmap[0]);
12238 	int i;
12239 
12240 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12241 		int level = i + 1;
12242 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12243 
12244 		if (slot->arch.rmap[i])
12245 			continue;
12246 
12247 		slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12248 		if (!slot->arch.rmap[i]) {
12249 			memslot_rmap_free(slot);
12250 			return -ENOMEM;
12251 		}
12252 	}
12253 
12254 	return 0;
12255 }
12256 
12257 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12258 				      struct kvm_memory_slot *slot)
12259 {
12260 	unsigned long npages = slot->npages;
12261 	int i, r;
12262 
12263 	/*
12264 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12265 	 * old arrays will be freed by __kvm_set_memory_region() if installing
12266 	 * the new memslot is successful.
12267 	 */
12268 	memset(&slot->arch, 0, sizeof(slot->arch));
12269 
12270 	if (kvm_memslots_have_rmaps(kvm)) {
12271 		r = memslot_rmap_alloc(slot, npages);
12272 		if (r)
12273 			return r;
12274 	}
12275 
12276 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12277 		struct kvm_lpage_info *linfo;
12278 		unsigned long ugfn;
12279 		int lpages;
12280 		int level = i + 1;
12281 
12282 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12283 
12284 		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12285 		if (!linfo)
12286 			goto out_free;
12287 
12288 		slot->arch.lpage_info[i - 1] = linfo;
12289 
12290 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12291 			linfo[0].disallow_lpage = 1;
12292 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12293 			linfo[lpages - 1].disallow_lpage = 1;
12294 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
12295 		/*
12296 		 * If the gfn and userspace address are not aligned wrt each
12297 		 * other, disable large page support for this slot.
12298 		 */
12299 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12300 			unsigned long j;
12301 
12302 			for (j = 0; j < lpages; ++j)
12303 				linfo[j].disallow_lpage = 1;
12304 		}
12305 	}
12306 
12307 	if (kvm_page_track_create_memslot(kvm, slot, npages))
12308 		goto out_free;
12309 
12310 	return 0;
12311 
12312 out_free:
12313 	memslot_rmap_free(slot);
12314 
12315 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12316 		kvfree(slot->arch.lpage_info[i - 1]);
12317 		slot->arch.lpage_info[i - 1] = NULL;
12318 	}
12319 	return -ENOMEM;
12320 }
12321 
12322 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12323 {
12324 	struct kvm_vcpu *vcpu;
12325 	unsigned long i;
12326 
12327 	/*
12328 	 * memslots->generation has been incremented.
12329 	 * mmio generation may have reached its maximum value.
12330 	 */
12331 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12332 
12333 	/* Force re-initialization of steal_time cache */
12334 	kvm_for_each_vcpu(i, vcpu, kvm)
12335 		kvm_vcpu_kick(vcpu);
12336 }
12337 
12338 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12339 				   const struct kvm_memory_slot *old,
12340 				   struct kvm_memory_slot *new,
12341 				   enum kvm_mr_change change)
12342 {
12343 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12344 		if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12345 			return -EINVAL;
12346 
12347 		return kvm_alloc_memslot_metadata(kvm, new);
12348 	}
12349 
12350 	if (change == KVM_MR_FLAGS_ONLY)
12351 		memcpy(&new->arch, &old->arch, sizeof(old->arch));
12352 	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12353 		return -EIO;
12354 
12355 	return 0;
12356 }
12357 
12358 
12359 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12360 {
12361 	struct kvm_arch *ka = &kvm->arch;
12362 
12363 	if (!kvm_x86_ops.cpu_dirty_log_size)
12364 		return;
12365 
12366 	if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
12367 	    (!enable && --ka->cpu_dirty_logging_count == 0))
12368 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12369 
12370 	WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
12371 }
12372 
12373 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12374 				     struct kvm_memory_slot *old,
12375 				     const struct kvm_memory_slot *new,
12376 				     enum kvm_mr_change change)
12377 {
12378 	u32 old_flags = old ? old->flags : 0;
12379 	u32 new_flags = new ? new->flags : 0;
12380 	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12381 
12382 	/*
12383 	 * Update CPU dirty logging if dirty logging is being toggled.  This
12384 	 * applies to all operations.
12385 	 */
12386 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12387 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12388 
12389 	/*
12390 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
12391 	 * made writable) or CREATE/MOVE/DELETE of a slot.
12392 	 *
12393 	 * For a memslot with dirty logging disabled:
12394 	 * CREATE:      No dirty mappings will already exist.
12395 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12396 	 *		kvm_arch_flush_shadow_memslot()
12397 	 *
12398 	 * For a memslot with dirty logging enabled:
12399 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
12400 	 *		and no dirty bits to clear.
12401 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12402 	 *		kvm_arch_flush_shadow_memslot().
12403 	 */
12404 	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12405 		return;
12406 
12407 	/*
12408 	 * READONLY and non-flags changes were filtered out above, and the only
12409 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12410 	 * logging isn't being toggled on or off.
12411 	 */
12412 	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12413 		return;
12414 
12415 	if (!log_dirty_pages) {
12416 		/*
12417 		 * Dirty logging tracks sptes in 4k granularity, meaning that
12418 		 * large sptes have to be split.  If live migration succeeds,
12419 		 * the guest in the source machine will be destroyed and large
12420 		 * sptes will be created in the destination.  However, if the
12421 		 * guest continues to run in the source machine (for example if
12422 		 * live migration fails), small sptes will remain around and
12423 		 * cause bad performance.
12424 		 *
12425 		 * Scan sptes if dirty logging has been stopped, dropping those
12426 		 * which can be collapsed into a single large-page spte.  Later
12427 		 * page faults will create the large-page sptes.
12428 		 */
12429 		kvm_mmu_zap_collapsible_sptes(kvm, new);
12430 	} else {
12431 		/*
12432 		 * Initially-all-set does not require write protecting any page,
12433 		 * because they're all assumed to be dirty.
12434 		 */
12435 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12436 			return;
12437 
12438 		if (READ_ONCE(eager_page_split))
12439 			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12440 
12441 		if (kvm_x86_ops.cpu_dirty_log_size) {
12442 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12443 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12444 		} else {
12445 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12446 		}
12447 	}
12448 }
12449 
12450 void kvm_arch_commit_memory_region(struct kvm *kvm,
12451 				struct kvm_memory_slot *old,
12452 				const struct kvm_memory_slot *new,
12453 				enum kvm_mr_change change)
12454 {
12455 	if (!kvm->arch.n_requested_mmu_pages &&
12456 	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12457 		unsigned long nr_mmu_pages;
12458 
12459 		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12460 		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12461 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12462 	}
12463 
12464 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
12465 
12466 	/* Free the arrays associated with the old memslot. */
12467 	if (change == KVM_MR_MOVE)
12468 		kvm_arch_free_memslot(kvm, old);
12469 }
12470 
12471 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12472 {
12473 	kvm_mmu_zap_all(kvm);
12474 }
12475 
12476 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12477 				   struct kvm_memory_slot *slot)
12478 {
12479 	kvm_page_track_flush_slot(kvm, slot);
12480 }
12481 
12482 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12483 {
12484 	return (is_guest_mode(vcpu) &&
12485 		static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12486 }
12487 
12488 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12489 {
12490 	if (!list_empty_careful(&vcpu->async_pf.done))
12491 		return true;
12492 
12493 	if (kvm_apic_has_events(vcpu))
12494 		return true;
12495 
12496 	if (vcpu->arch.pv.pv_unhalted)
12497 		return true;
12498 
12499 	if (vcpu->arch.exception.pending)
12500 		return true;
12501 
12502 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12503 	    (vcpu->arch.nmi_pending &&
12504 	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12505 		return true;
12506 
12507 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12508 	    (vcpu->arch.smi_pending &&
12509 	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
12510 		return true;
12511 
12512 	if (kvm_arch_interrupt_allowed(vcpu) &&
12513 	    (kvm_cpu_has_interrupt(vcpu) ||
12514 	    kvm_guest_apic_has_interrupt(vcpu)))
12515 		return true;
12516 
12517 	if (kvm_hv_has_stimer_pending(vcpu))
12518 		return true;
12519 
12520 	if (is_guest_mode(vcpu) &&
12521 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
12522 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
12523 		return true;
12524 
12525 	if (kvm_xen_has_pending_events(vcpu))
12526 		return true;
12527 
12528 	if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu))
12529 		return true;
12530 
12531 	return false;
12532 }
12533 
12534 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12535 {
12536 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12537 }
12538 
12539 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12540 {
12541 	if (kvm_vcpu_apicv_active(vcpu) &&
12542 	    static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12543 		return true;
12544 
12545 	return false;
12546 }
12547 
12548 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12549 {
12550 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12551 		return true;
12552 
12553 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12554 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
12555 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
12556 		return true;
12557 
12558 	return kvm_arch_dy_has_pending_interrupt(vcpu);
12559 }
12560 
12561 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12562 {
12563 	if (vcpu->arch.guest_state_protected)
12564 		return true;
12565 
12566 	return vcpu->arch.preempted_in_kernel;
12567 }
12568 
12569 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12570 {
12571 	return kvm_rip_read(vcpu);
12572 }
12573 
12574 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12575 {
12576 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12577 }
12578 
12579 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12580 {
12581 	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12582 }
12583 
12584 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12585 {
12586 	/* Can't read the RIP when guest state is protected, just return 0 */
12587 	if (vcpu->arch.guest_state_protected)
12588 		return 0;
12589 
12590 	if (is_64_bit_mode(vcpu))
12591 		return kvm_rip_read(vcpu);
12592 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12593 		     kvm_rip_read(vcpu));
12594 }
12595 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12596 
12597 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12598 {
12599 	return kvm_get_linear_rip(vcpu) == linear_rip;
12600 }
12601 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12602 
12603 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12604 {
12605 	unsigned long rflags;
12606 
12607 	rflags = static_call(kvm_x86_get_rflags)(vcpu);
12608 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12609 		rflags &= ~X86_EFLAGS_TF;
12610 	return rflags;
12611 }
12612 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12613 
12614 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12615 {
12616 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12617 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12618 		rflags |= X86_EFLAGS_TF;
12619 	static_call(kvm_x86_set_rflags)(vcpu, rflags);
12620 }
12621 
12622 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12623 {
12624 	__kvm_set_rflags(vcpu, rflags);
12625 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12626 }
12627 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12628 
12629 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12630 {
12631 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12632 
12633 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12634 }
12635 
12636 static inline u32 kvm_async_pf_next_probe(u32 key)
12637 {
12638 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12639 }
12640 
12641 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12642 {
12643 	u32 key = kvm_async_pf_hash_fn(gfn);
12644 
12645 	while (vcpu->arch.apf.gfns[key] != ~0)
12646 		key = kvm_async_pf_next_probe(key);
12647 
12648 	vcpu->arch.apf.gfns[key] = gfn;
12649 }
12650 
12651 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12652 {
12653 	int i;
12654 	u32 key = kvm_async_pf_hash_fn(gfn);
12655 
12656 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
12657 		     (vcpu->arch.apf.gfns[key] != gfn &&
12658 		      vcpu->arch.apf.gfns[key] != ~0); i++)
12659 		key = kvm_async_pf_next_probe(key);
12660 
12661 	return key;
12662 }
12663 
12664 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12665 {
12666 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12667 }
12668 
12669 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12670 {
12671 	u32 i, j, k;
12672 
12673 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12674 
12675 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12676 		return;
12677 
12678 	while (true) {
12679 		vcpu->arch.apf.gfns[i] = ~0;
12680 		do {
12681 			j = kvm_async_pf_next_probe(j);
12682 			if (vcpu->arch.apf.gfns[j] == ~0)
12683 				return;
12684 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12685 			/*
12686 			 * k lies cyclically in ]i,j]
12687 			 * |    i.k.j |
12688 			 * |....j i.k.| or  |.k..j i...|
12689 			 */
12690 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12691 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
12692 		i = j;
12693 	}
12694 }
12695 
12696 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
12697 {
12698 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
12699 
12700 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
12701 				      sizeof(reason));
12702 }
12703 
12704 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12705 {
12706 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12707 
12708 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12709 					     &token, offset, sizeof(token));
12710 }
12711 
12712 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12713 {
12714 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12715 	u32 val;
12716 
12717 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12718 					 &val, offset, sizeof(val)))
12719 		return false;
12720 
12721 	return !val;
12722 }
12723 
12724 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12725 {
12726 
12727 	if (!kvm_pv_async_pf_enabled(vcpu))
12728 		return false;
12729 
12730 	if (vcpu->arch.apf.send_user_only &&
12731 	    static_call(kvm_x86_get_cpl)(vcpu) == 0)
12732 		return false;
12733 
12734 	if (is_guest_mode(vcpu)) {
12735 		/*
12736 		 * L1 needs to opt into the special #PF vmexits that are
12737 		 * used to deliver async page faults.
12738 		 */
12739 		return vcpu->arch.apf.delivery_as_pf_vmexit;
12740 	} else {
12741 		/*
12742 		 * Play it safe in case the guest temporarily disables paging.
12743 		 * The real mode IDT in particular is unlikely to have a #PF
12744 		 * exception setup.
12745 		 */
12746 		return is_paging(vcpu);
12747 	}
12748 }
12749 
12750 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12751 {
12752 	if (unlikely(!lapic_in_kernel(vcpu) ||
12753 		     kvm_event_needs_reinjection(vcpu) ||
12754 		     vcpu->arch.exception.pending))
12755 		return false;
12756 
12757 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12758 		return false;
12759 
12760 	/*
12761 	 * If interrupts are off we cannot even use an artificial
12762 	 * halt state.
12763 	 */
12764 	return kvm_arch_interrupt_allowed(vcpu);
12765 }
12766 
12767 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12768 				     struct kvm_async_pf *work)
12769 {
12770 	struct x86_exception fault;
12771 
12772 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12773 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12774 
12775 	if (kvm_can_deliver_async_pf(vcpu) &&
12776 	    !apf_put_user_notpresent(vcpu)) {
12777 		fault.vector = PF_VECTOR;
12778 		fault.error_code_valid = true;
12779 		fault.error_code = 0;
12780 		fault.nested_page_fault = false;
12781 		fault.address = work->arch.token;
12782 		fault.async_page_fault = true;
12783 		kvm_inject_page_fault(vcpu, &fault);
12784 		return true;
12785 	} else {
12786 		/*
12787 		 * It is not possible to deliver a paravirtualized asynchronous
12788 		 * page fault, but putting the guest in an artificial halt state
12789 		 * can be beneficial nevertheless: if an interrupt arrives, we
12790 		 * can deliver it timely and perhaps the guest will schedule
12791 		 * another process.  When the instruction that triggered a page
12792 		 * fault is retried, hopefully the page will be ready in the host.
12793 		 */
12794 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12795 		return false;
12796 	}
12797 }
12798 
12799 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12800 				 struct kvm_async_pf *work)
12801 {
12802 	struct kvm_lapic_irq irq = {
12803 		.delivery_mode = APIC_DM_FIXED,
12804 		.vector = vcpu->arch.apf.vec
12805 	};
12806 
12807 	if (work->wakeup_all)
12808 		work->arch.token = ~0; /* broadcast wakeup */
12809 	else
12810 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12811 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12812 
12813 	if ((work->wakeup_all || work->notpresent_injected) &&
12814 	    kvm_pv_async_pf_enabled(vcpu) &&
12815 	    !apf_put_user_ready(vcpu, work->arch.token)) {
12816 		vcpu->arch.apf.pageready_pending = true;
12817 		kvm_apic_set_irq(vcpu, &irq, NULL);
12818 	}
12819 
12820 	vcpu->arch.apf.halted = false;
12821 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12822 }
12823 
12824 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12825 {
12826 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
12827 	if (!vcpu->arch.apf.pageready_pending)
12828 		kvm_vcpu_kick(vcpu);
12829 }
12830 
12831 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12832 {
12833 	if (!kvm_pv_async_pf_enabled(vcpu))
12834 		return true;
12835 	else
12836 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12837 }
12838 
12839 void kvm_arch_start_assignment(struct kvm *kvm)
12840 {
12841 	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12842 		static_call_cond(kvm_x86_pi_start_assignment)(kvm);
12843 }
12844 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12845 
12846 void kvm_arch_end_assignment(struct kvm *kvm)
12847 {
12848 	atomic_dec(&kvm->arch.assigned_device_count);
12849 }
12850 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12851 
12852 bool kvm_arch_has_assigned_device(struct kvm *kvm)
12853 {
12854 	return atomic_read(&kvm->arch.assigned_device_count);
12855 }
12856 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12857 
12858 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12859 {
12860 	atomic_inc(&kvm->arch.noncoherent_dma_count);
12861 }
12862 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12863 
12864 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12865 {
12866 	atomic_dec(&kvm->arch.noncoherent_dma_count);
12867 }
12868 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12869 
12870 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12871 {
12872 	return atomic_read(&kvm->arch.noncoherent_dma_count);
12873 }
12874 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12875 
12876 bool kvm_arch_has_irq_bypass(void)
12877 {
12878 	return true;
12879 }
12880 
12881 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12882 				      struct irq_bypass_producer *prod)
12883 {
12884 	struct kvm_kernel_irqfd *irqfd =
12885 		container_of(cons, struct kvm_kernel_irqfd, consumer);
12886 	int ret;
12887 
12888 	irqfd->producer = prod;
12889 	kvm_arch_start_assignment(irqfd->kvm);
12890 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
12891 					 prod->irq, irqfd->gsi, 1);
12892 
12893 	if (ret)
12894 		kvm_arch_end_assignment(irqfd->kvm);
12895 
12896 	return ret;
12897 }
12898 
12899 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12900 				      struct irq_bypass_producer *prod)
12901 {
12902 	int ret;
12903 	struct kvm_kernel_irqfd *irqfd =
12904 		container_of(cons, struct kvm_kernel_irqfd, consumer);
12905 
12906 	WARN_ON(irqfd->producer != prod);
12907 	irqfd->producer = NULL;
12908 
12909 	/*
12910 	 * When producer of consumer is unregistered, we change back to
12911 	 * remapped mode, so we can re-use the current implementation
12912 	 * when the irq is masked/disabled or the consumer side (KVM
12913 	 * int this case doesn't want to receive the interrupts.
12914 	*/
12915 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12916 	if (ret)
12917 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12918 		       " fails: %d\n", irqfd->consumer.token, ret);
12919 
12920 	kvm_arch_end_assignment(irqfd->kvm);
12921 }
12922 
12923 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12924 				   uint32_t guest_irq, bool set)
12925 {
12926 	return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
12927 }
12928 
12929 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
12930 				  struct kvm_kernel_irq_routing_entry *new)
12931 {
12932 	if (new->type != KVM_IRQ_ROUTING_MSI)
12933 		return true;
12934 
12935 	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
12936 }
12937 
12938 bool kvm_vector_hashing_enabled(void)
12939 {
12940 	return vector_hashing;
12941 }
12942 
12943 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12944 {
12945 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12946 }
12947 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12948 
12949 
12950 int kvm_spec_ctrl_test_value(u64 value)
12951 {
12952 	/*
12953 	 * test that setting IA32_SPEC_CTRL to given value
12954 	 * is allowed by the host processor
12955 	 */
12956 
12957 	u64 saved_value;
12958 	unsigned long flags;
12959 	int ret = 0;
12960 
12961 	local_irq_save(flags);
12962 
12963 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12964 		ret = 1;
12965 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12966 		ret = 1;
12967 	else
12968 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12969 
12970 	local_irq_restore(flags);
12971 
12972 	return ret;
12973 }
12974 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12975 
12976 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12977 {
12978 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
12979 	struct x86_exception fault;
12980 	u64 access = error_code &
12981 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12982 
12983 	if (!(error_code & PFERR_PRESENT_MASK) ||
12984 	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != UNMAPPED_GVA) {
12985 		/*
12986 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12987 		 * tables probably do not match the TLB.  Just proceed
12988 		 * with the error code that the processor gave.
12989 		 */
12990 		fault.vector = PF_VECTOR;
12991 		fault.error_code_valid = true;
12992 		fault.error_code = error_code;
12993 		fault.nested_page_fault = false;
12994 		fault.address = gva;
12995 	}
12996 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12997 }
12998 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12999 
13000 /*
13001  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13002  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13003  * indicates whether exit to userspace is needed.
13004  */
13005 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13006 			      struct x86_exception *e)
13007 {
13008 	if (r == X86EMUL_PROPAGATE_FAULT) {
13009 		kvm_inject_emulated_page_fault(vcpu, e);
13010 		return 1;
13011 	}
13012 
13013 	/*
13014 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13015 	 * while handling a VMX instruction KVM could've handled the request
13016 	 * correctly by exiting to userspace and performing I/O but there
13017 	 * doesn't seem to be a real use-case behind such requests, just return
13018 	 * KVM_EXIT_INTERNAL_ERROR for now.
13019 	 */
13020 	kvm_prepare_emulation_failure_exit(vcpu);
13021 
13022 	return 0;
13023 }
13024 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13025 
13026 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13027 {
13028 	bool pcid_enabled;
13029 	struct x86_exception e;
13030 	struct {
13031 		u64 pcid;
13032 		u64 gla;
13033 	} operand;
13034 	int r;
13035 
13036 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13037 	if (r != X86EMUL_CONTINUE)
13038 		return kvm_handle_memory_failure(vcpu, r, &e);
13039 
13040 	if (operand.pcid >> 12 != 0) {
13041 		kvm_inject_gp(vcpu, 0);
13042 		return 1;
13043 	}
13044 
13045 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
13046 
13047 	switch (type) {
13048 	case INVPCID_TYPE_INDIV_ADDR:
13049 		if ((!pcid_enabled && (operand.pcid != 0)) ||
13050 		    is_noncanonical_address(operand.gla, vcpu)) {
13051 			kvm_inject_gp(vcpu, 0);
13052 			return 1;
13053 		}
13054 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13055 		return kvm_skip_emulated_instruction(vcpu);
13056 
13057 	case INVPCID_TYPE_SINGLE_CTXT:
13058 		if (!pcid_enabled && (operand.pcid != 0)) {
13059 			kvm_inject_gp(vcpu, 0);
13060 			return 1;
13061 		}
13062 
13063 		kvm_invalidate_pcid(vcpu, operand.pcid);
13064 		return kvm_skip_emulated_instruction(vcpu);
13065 
13066 	case INVPCID_TYPE_ALL_NON_GLOBAL:
13067 		/*
13068 		 * Currently, KVM doesn't mark global entries in the shadow
13069 		 * page tables, so a non-global flush just degenerates to a
13070 		 * global flush. If needed, we could optimize this later by
13071 		 * keeping track of global entries in shadow page tables.
13072 		 */
13073 
13074 		fallthrough;
13075 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
13076 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13077 		return kvm_skip_emulated_instruction(vcpu);
13078 
13079 	default:
13080 		kvm_inject_gp(vcpu, 0);
13081 		return 1;
13082 	}
13083 }
13084 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13085 
13086 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13087 {
13088 	struct kvm_run *run = vcpu->run;
13089 	struct kvm_mmio_fragment *frag;
13090 	unsigned int len;
13091 
13092 	BUG_ON(!vcpu->mmio_needed);
13093 
13094 	/* Complete previous fragment */
13095 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13096 	len = min(8u, frag->len);
13097 	if (!vcpu->mmio_is_write)
13098 		memcpy(frag->data, run->mmio.data, len);
13099 
13100 	if (frag->len <= 8) {
13101 		/* Switch to the next fragment. */
13102 		frag++;
13103 		vcpu->mmio_cur_fragment++;
13104 	} else {
13105 		/* Go forward to the next mmio piece. */
13106 		frag->data += len;
13107 		frag->gpa += len;
13108 		frag->len -= len;
13109 	}
13110 
13111 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13112 		vcpu->mmio_needed = 0;
13113 
13114 		// VMG change, at this point, we're always done
13115 		// RIP has already been advanced
13116 		return 1;
13117 	}
13118 
13119 	// More MMIO is needed
13120 	run->mmio.phys_addr = frag->gpa;
13121 	run->mmio.len = min(8u, frag->len);
13122 	run->mmio.is_write = vcpu->mmio_is_write;
13123 	if (run->mmio.is_write)
13124 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13125 	run->exit_reason = KVM_EXIT_MMIO;
13126 
13127 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13128 
13129 	return 0;
13130 }
13131 
13132 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13133 			  void *data)
13134 {
13135 	int handled;
13136 	struct kvm_mmio_fragment *frag;
13137 
13138 	if (!data)
13139 		return -EINVAL;
13140 
13141 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13142 	if (handled == bytes)
13143 		return 1;
13144 
13145 	bytes -= handled;
13146 	gpa += handled;
13147 	data += handled;
13148 
13149 	/*TODO: Check if need to increment number of frags */
13150 	frag = vcpu->mmio_fragments;
13151 	vcpu->mmio_nr_fragments = 1;
13152 	frag->len = bytes;
13153 	frag->gpa = gpa;
13154 	frag->data = data;
13155 
13156 	vcpu->mmio_needed = 1;
13157 	vcpu->mmio_cur_fragment = 0;
13158 
13159 	vcpu->run->mmio.phys_addr = gpa;
13160 	vcpu->run->mmio.len = min(8u, frag->len);
13161 	vcpu->run->mmio.is_write = 1;
13162 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13163 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13164 
13165 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13166 
13167 	return 0;
13168 }
13169 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13170 
13171 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13172 			 void *data)
13173 {
13174 	int handled;
13175 	struct kvm_mmio_fragment *frag;
13176 
13177 	if (!data)
13178 		return -EINVAL;
13179 
13180 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13181 	if (handled == bytes)
13182 		return 1;
13183 
13184 	bytes -= handled;
13185 	gpa += handled;
13186 	data += handled;
13187 
13188 	/*TODO: Check if need to increment number of frags */
13189 	frag = vcpu->mmio_fragments;
13190 	vcpu->mmio_nr_fragments = 1;
13191 	frag->len = bytes;
13192 	frag->gpa = gpa;
13193 	frag->data = data;
13194 
13195 	vcpu->mmio_needed = 1;
13196 	vcpu->mmio_cur_fragment = 0;
13197 
13198 	vcpu->run->mmio.phys_addr = gpa;
13199 	vcpu->run->mmio.len = min(8u, frag->len);
13200 	vcpu->run->mmio.is_write = 0;
13201 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13202 
13203 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13204 
13205 	return 0;
13206 }
13207 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13208 
13209 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13210 			   unsigned int port);
13211 
13212 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13213 {
13214 	int size = vcpu->arch.pio.size;
13215 	int port = vcpu->arch.pio.port;
13216 
13217 	vcpu->arch.pio.count = 0;
13218 	if (vcpu->arch.sev_pio_count)
13219 		return kvm_sev_es_outs(vcpu, size, port);
13220 	return 1;
13221 }
13222 
13223 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13224 			   unsigned int port)
13225 {
13226 	for (;;) {
13227 		unsigned int count =
13228 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13229 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13230 
13231 		/* memcpy done already by emulator_pio_out.  */
13232 		vcpu->arch.sev_pio_count -= count;
13233 		vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
13234 		if (!ret)
13235 			break;
13236 
13237 		/* Emulation done by the kernel.  */
13238 		if (!vcpu->arch.sev_pio_count)
13239 			return 1;
13240 	}
13241 
13242 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13243 	return 0;
13244 }
13245 
13246 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13247 			  unsigned int port);
13248 
13249 static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13250 {
13251 	unsigned count = vcpu->arch.pio.count;
13252 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13253 	vcpu->arch.sev_pio_count -= count;
13254 	vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
13255 }
13256 
13257 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13258 {
13259 	int size = vcpu->arch.pio.size;
13260 	int port = vcpu->arch.pio.port;
13261 
13262 	advance_sev_es_emulated_ins(vcpu);
13263 	if (vcpu->arch.sev_pio_count)
13264 		return kvm_sev_es_ins(vcpu, size, port);
13265 	return 1;
13266 }
13267 
13268 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13269 			  unsigned int port)
13270 {
13271 	for (;;) {
13272 		unsigned int count =
13273 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13274 		if (!__emulator_pio_in(vcpu, size, port, count))
13275 			break;
13276 
13277 		/* Emulation done by the kernel.  */
13278 		advance_sev_es_emulated_ins(vcpu);
13279 		if (!vcpu->arch.sev_pio_count)
13280 			return 1;
13281 	}
13282 
13283 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13284 	return 0;
13285 }
13286 
13287 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13288 			 unsigned int port, void *data,  unsigned int count,
13289 			 int in)
13290 {
13291 	vcpu->arch.sev_pio_data = data;
13292 	vcpu->arch.sev_pio_count = count;
13293 	return in ? kvm_sev_es_ins(vcpu, size, port)
13294 		  : kvm_sev_es_outs(vcpu, size, port);
13295 }
13296 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13297 
13298 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13299 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13300 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13301 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13302 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13303 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13304 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13305 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
13306 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13307 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13308 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13309 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13310 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13311 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13312 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13313 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13314 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13315 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13316 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13317 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13318 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13319 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13320 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13321 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13322 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13323 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13324 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13325 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13326 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13327 
13328 static int __init kvm_x86_init(void)
13329 {
13330 	kvm_mmu_x86_module_init();
13331 	return 0;
13332 }
13333 module_init(kvm_x86_init);
13334 
13335 static void __exit kvm_x86_exit(void)
13336 {
13337 	/*
13338 	 * If module_init() is implemented, module_exit() must also be
13339 	 * implemented to allow module unload.
13340 	 */
13341 }
13342 module_exit(kvm_x86_exit);
13343