xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 0edbfea5)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/module.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <trace/events/kvm.h>
57 
58 #define CREATE_TRACE_POINTS
59 #include "trace.h"
60 
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 
71 #define MAX_IO_MSRS 256
72 #define KVM_MAX_MCE_BANKS 32
73 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
74 
75 #define emul_to_vcpu(ctxt) \
76 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
77 
78 /* EFER defaults:
79  * - enable syscall per default because its emulated by KVM
80  * - enable LME and LMA per default on 64 bit KVM
81  */
82 #ifdef CONFIG_X86_64
83 static
84 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
85 #else
86 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
87 #endif
88 
89 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
90 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
91 
92 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
93 static void process_nmi(struct kvm_vcpu *vcpu);
94 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
95 
96 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
97 EXPORT_SYMBOL_GPL(kvm_x86_ops);
98 
99 static bool __read_mostly ignore_msrs = 0;
100 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
101 
102 unsigned int min_timer_period_us = 500;
103 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
104 
105 static bool __read_mostly kvmclock_periodic_sync = true;
106 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
107 
108 bool __read_mostly kvm_has_tsc_control;
109 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
110 u32  __read_mostly kvm_max_guest_tsc_khz;
111 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
112 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
113 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
114 u64  __read_mostly kvm_max_tsc_scaling_ratio;
115 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
116 static u64 __read_mostly kvm_default_tsc_scaling_ratio;
117 
118 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
119 static u32 __read_mostly tsc_tolerance_ppm = 250;
120 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
121 
122 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
123 unsigned int __read_mostly lapic_timer_advance_ns = 0;
124 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
125 
126 static bool __read_mostly vector_hashing = true;
127 module_param(vector_hashing, bool, S_IRUGO);
128 
129 static bool __read_mostly backwards_tsc_observed = false;
130 
131 #define KVM_NR_SHARED_MSRS 16
132 
133 struct kvm_shared_msrs_global {
134 	int nr;
135 	u32 msrs[KVM_NR_SHARED_MSRS];
136 };
137 
138 struct kvm_shared_msrs {
139 	struct user_return_notifier urn;
140 	bool registered;
141 	struct kvm_shared_msr_values {
142 		u64 host;
143 		u64 curr;
144 	} values[KVM_NR_SHARED_MSRS];
145 };
146 
147 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
148 static struct kvm_shared_msrs __percpu *shared_msrs;
149 
150 struct kvm_stats_debugfs_item debugfs_entries[] = {
151 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
152 	{ "pf_guest", VCPU_STAT(pf_guest) },
153 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
154 	{ "invlpg", VCPU_STAT(invlpg) },
155 	{ "exits", VCPU_STAT(exits) },
156 	{ "io_exits", VCPU_STAT(io_exits) },
157 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
158 	{ "signal_exits", VCPU_STAT(signal_exits) },
159 	{ "irq_window", VCPU_STAT(irq_window_exits) },
160 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
161 	{ "halt_exits", VCPU_STAT(halt_exits) },
162 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
163 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
164 	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
165 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
166 	{ "hypercalls", VCPU_STAT(hypercalls) },
167 	{ "request_irq", VCPU_STAT(request_irq_exits) },
168 	{ "irq_exits", VCPU_STAT(irq_exits) },
169 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
170 	{ "efer_reload", VCPU_STAT(efer_reload) },
171 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
172 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
173 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
174 	{ "irq_injections", VCPU_STAT(irq_injections) },
175 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
176 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
177 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
178 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
179 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
180 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
181 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
182 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
183 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
184 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
185 	{ "largepages", VM_STAT(lpages) },
186 	{ NULL }
187 };
188 
189 u64 __read_mostly host_xcr0;
190 
191 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
192 
193 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
194 {
195 	int i;
196 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
197 		vcpu->arch.apf.gfns[i] = ~0;
198 }
199 
200 static void kvm_on_user_return(struct user_return_notifier *urn)
201 {
202 	unsigned slot;
203 	struct kvm_shared_msrs *locals
204 		= container_of(urn, struct kvm_shared_msrs, urn);
205 	struct kvm_shared_msr_values *values;
206 
207 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
208 		values = &locals->values[slot];
209 		if (values->host != values->curr) {
210 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
211 			values->curr = values->host;
212 		}
213 	}
214 	locals->registered = false;
215 	user_return_notifier_unregister(urn);
216 }
217 
218 static void shared_msr_update(unsigned slot, u32 msr)
219 {
220 	u64 value;
221 	unsigned int cpu = smp_processor_id();
222 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
223 
224 	/* only read, and nobody should modify it at this time,
225 	 * so don't need lock */
226 	if (slot >= shared_msrs_global.nr) {
227 		printk(KERN_ERR "kvm: invalid MSR slot!");
228 		return;
229 	}
230 	rdmsrl_safe(msr, &value);
231 	smsr->values[slot].host = value;
232 	smsr->values[slot].curr = value;
233 }
234 
235 void kvm_define_shared_msr(unsigned slot, u32 msr)
236 {
237 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
238 	shared_msrs_global.msrs[slot] = msr;
239 	if (slot >= shared_msrs_global.nr)
240 		shared_msrs_global.nr = slot + 1;
241 }
242 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
243 
244 static void kvm_shared_msr_cpu_online(void)
245 {
246 	unsigned i;
247 
248 	for (i = 0; i < shared_msrs_global.nr; ++i)
249 		shared_msr_update(i, shared_msrs_global.msrs[i]);
250 }
251 
252 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
253 {
254 	unsigned int cpu = smp_processor_id();
255 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
256 	int err;
257 
258 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
259 		return 0;
260 	smsr->values[slot].curr = value;
261 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
262 	if (err)
263 		return 1;
264 
265 	if (!smsr->registered) {
266 		smsr->urn.on_user_return = kvm_on_user_return;
267 		user_return_notifier_register(&smsr->urn);
268 		smsr->registered = true;
269 	}
270 	return 0;
271 }
272 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
273 
274 static void drop_user_return_notifiers(void)
275 {
276 	unsigned int cpu = smp_processor_id();
277 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
278 
279 	if (smsr->registered)
280 		kvm_on_user_return(&smsr->urn);
281 }
282 
283 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
284 {
285 	return vcpu->arch.apic_base;
286 }
287 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
288 
289 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
290 {
291 	u64 old_state = vcpu->arch.apic_base &
292 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
293 	u64 new_state = msr_info->data &
294 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
295 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
296 		0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
297 
298 	if (!msr_info->host_initiated &&
299 	    ((msr_info->data & reserved_bits) != 0 ||
300 	     new_state == X2APIC_ENABLE ||
301 	     (new_state == MSR_IA32_APICBASE_ENABLE &&
302 	      old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
303 	     (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
304 	      old_state == 0)))
305 		return 1;
306 
307 	kvm_lapic_set_base(vcpu, msr_info->data);
308 	return 0;
309 }
310 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
311 
312 asmlinkage __visible void kvm_spurious_fault(void)
313 {
314 	/* Fault while not rebooting.  We want the trace. */
315 	BUG();
316 }
317 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
318 
319 #define EXCPT_BENIGN		0
320 #define EXCPT_CONTRIBUTORY	1
321 #define EXCPT_PF		2
322 
323 static int exception_class(int vector)
324 {
325 	switch (vector) {
326 	case PF_VECTOR:
327 		return EXCPT_PF;
328 	case DE_VECTOR:
329 	case TS_VECTOR:
330 	case NP_VECTOR:
331 	case SS_VECTOR:
332 	case GP_VECTOR:
333 		return EXCPT_CONTRIBUTORY;
334 	default:
335 		break;
336 	}
337 	return EXCPT_BENIGN;
338 }
339 
340 #define EXCPT_FAULT		0
341 #define EXCPT_TRAP		1
342 #define EXCPT_ABORT		2
343 #define EXCPT_INTERRUPT		3
344 
345 static int exception_type(int vector)
346 {
347 	unsigned int mask;
348 
349 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
350 		return EXCPT_INTERRUPT;
351 
352 	mask = 1 << vector;
353 
354 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
355 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
356 		return EXCPT_TRAP;
357 
358 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
359 		return EXCPT_ABORT;
360 
361 	/* Reserved exceptions will result in fault */
362 	return EXCPT_FAULT;
363 }
364 
365 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
366 		unsigned nr, bool has_error, u32 error_code,
367 		bool reinject)
368 {
369 	u32 prev_nr;
370 	int class1, class2;
371 
372 	kvm_make_request(KVM_REQ_EVENT, vcpu);
373 
374 	if (!vcpu->arch.exception.pending) {
375 	queue:
376 		if (has_error && !is_protmode(vcpu))
377 			has_error = false;
378 		vcpu->arch.exception.pending = true;
379 		vcpu->arch.exception.has_error_code = has_error;
380 		vcpu->arch.exception.nr = nr;
381 		vcpu->arch.exception.error_code = error_code;
382 		vcpu->arch.exception.reinject = reinject;
383 		return;
384 	}
385 
386 	/* to check exception */
387 	prev_nr = vcpu->arch.exception.nr;
388 	if (prev_nr == DF_VECTOR) {
389 		/* triple fault -> shutdown */
390 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
391 		return;
392 	}
393 	class1 = exception_class(prev_nr);
394 	class2 = exception_class(nr);
395 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
396 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
397 		/* generate double fault per SDM Table 5-5 */
398 		vcpu->arch.exception.pending = true;
399 		vcpu->arch.exception.has_error_code = true;
400 		vcpu->arch.exception.nr = DF_VECTOR;
401 		vcpu->arch.exception.error_code = 0;
402 	} else
403 		/* replace previous exception with a new one in a hope
404 		   that instruction re-execution will regenerate lost
405 		   exception */
406 		goto queue;
407 }
408 
409 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
410 {
411 	kvm_multiple_exception(vcpu, nr, false, 0, false);
412 }
413 EXPORT_SYMBOL_GPL(kvm_queue_exception);
414 
415 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
416 {
417 	kvm_multiple_exception(vcpu, nr, false, 0, true);
418 }
419 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
420 
421 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
422 {
423 	if (err)
424 		kvm_inject_gp(vcpu, 0);
425 	else
426 		kvm_x86_ops->skip_emulated_instruction(vcpu);
427 }
428 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
429 
430 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
431 {
432 	++vcpu->stat.pf_guest;
433 	vcpu->arch.cr2 = fault->address;
434 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
435 }
436 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
437 
438 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
439 {
440 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
441 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
442 	else
443 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
444 
445 	return fault->nested_page_fault;
446 }
447 
448 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
449 {
450 	atomic_inc(&vcpu->arch.nmi_queued);
451 	kvm_make_request(KVM_REQ_NMI, vcpu);
452 }
453 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
454 
455 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
456 {
457 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
458 }
459 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
460 
461 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
462 {
463 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
464 }
465 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
466 
467 /*
468  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
469  * a #GP and return false.
470  */
471 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
472 {
473 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
474 		return true;
475 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
476 	return false;
477 }
478 EXPORT_SYMBOL_GPL(kvm_require_cpl);
479 
480 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
481 {
482 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
483 		return true;
484 
485 	kvm_queue_exception(vcpu, UD_VECTOR);
486 	return false;
487 }
488 EXPORT_SYMBOL_GPL(kvm_require_dr);
489 
490 /*
491  * This function will be used to read from the physical memory of the currently
492  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
493  * can read from guest physical or from the guest's guest physical memory.
494  */
495 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
496 			    gfn_t ngfn, void *data, int offset, int len,
497 			    u32 access)
498 {
499 	struct x86_exception exception;
500 	gfn_t real_gfn;
501 	gpa_t ngpa;
502 
503 	ngpa     = gfn_to_gpa(ngfn);
504 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
505 	if (real_gfn == UNMAPPED_GVA)
506 		return -EFAULT;
507 
508 	real_gfn = gpa_to_gfn(real_gfn);
509 
510 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
511 }
512 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
513 
514 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
515 			       void *data, int offset, int len, u32 access)
516 {
517 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
518 				       data, offset, len, access);
519 }
520 
521 /*
522  * Load the pae pdptrs.  Return true is they are all valid.
523  */
524 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
525 {
526 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
527 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
528 	int i;
529 	int ret;
530 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
531 
532 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
533 				      offset * sizeof(u64), sizeof(pdpte),
534 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
535 	if (ret < 0) {
536 		ret = 0;
537 		goto out;
538 	}
539 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
540 		if (is_present_gpte(pdpte[i]) &&
541 		    (pdpte[i] &
542 		     vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
543 			ret = 0;
544 			goto out;
545 		}
546 	}
547 	ret = 1;
548 
549 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
550 	__set_bit(VCPU_EXREG_PDPTR,
551 		  (unsigned long *)&vcpu->arch.regs_avail);
552 	__set_bit(VCPU_EXREG_PDPTR,
553 		  (unsigned long *)&vcpu->arch.regs_dirty);
554 out:
555 
556 	return ret;
557 }
558 EXPORT_SYMBOL_GPL(load_pdptrs);
559 
560 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
561 {
562 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
563 	bool changed = true;
564 	int offset;
565 	gfn_t gfn;
566 	int r;
567 
568 	if (is_long_mode(vcpu) || !is_pae(vcpu))
569 		return false;
570 
571 	if (!test_bit(VCPU_EXREG_PDPTR,
572 		      (unsigned long *)&vcpu->arch.regs_avail))
573 		return true;
574 
575 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
576 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
577 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
578 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
579 	if (r < 0)
580 		goto out;
581 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
582 out:
583 
584 	return changed;
585 }
586 
587 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
588 {
589 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
590 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
591 
592 	cr0 |= X86_CR0_ET;
593 
594 #ifdef CONFIG_X86_64
595 	if (cr0 & 0xffffffff00000000UL)
596 		return 1;
597 #endif
598 
599 	cr0 &= ~CR0_RESERVED_BITS;
600 
601 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
602 		return 1;
603 
604 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
605 		return 1;
606 
607 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
608 #ifdef CONFIG_X86_64
609 		if ((vcpu->arch.efer & EFER_LME)) {
610 			int cs_db, cs_l;
611 
612 			if (!is_pae(vcpu))
613 				return 1;
614 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
615 			if (cs_l)
616 				return 1;
617 		} else
618 #endif
619 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
620 						 kvm_read_cr3(vcpu)))
621 			return 1;
622 	}
623 
624 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
625 		return 1;
626 
627 	kvm_x86_ops->set_cr0(vcpu, cr0);
628 
629 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
630 		kvm_clear_async_pf_completion_queue(vcpu);
631 		kvm_async_pf_hash_reset(vcpu);
632 	}
633 
634 	if ((cr0 ^ old_cr0) & update_bits)
635 		kvm_mmu_reset_context(vcpu);
636 
637 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
638 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
639 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
640 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
641 
642 	return 0;
643 }
644 EXPORT_SYMBOL_GPL(kvm_set_cr0);
645 
646 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
647 {
648 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
649 }
650 EXPORT_SYMBOL_GPL(kvm_lmsw);
651 
652 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
653 {
654 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
655 			!vcpu->guest_xcr0_loaded) {
656 		/* kvm_set_xcr() also depends on this */
657 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
658 		vcpu->guest_xcr0_loaded = 1;
659 	}
660 }
661 
662 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
663 {
664 	if (vcpu->guest_xcr0_loaded) {
665 		if (vcpu->arch.xcr0 != host_xcr0)
666 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
667 		vcpu->guest_xcr0_loaded = 0;
668 	}
669 }
670 
671 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
672 {
673 	u64 xcr0 = xcr;
674 	u64 old_xcr0 = vcpu->arch.xcr0;
675 	u64 valid_bits;
676 
677 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
678 	if (index != XCR_XFEATURE_ENABLED_MASK)
679 		return 1;
680 	if (!(xcr0 & XFEATURE_MASK_FP))
681 		return 1;
682 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
683 		return 1;
684 
685 	/*
686 	 * Do not allow the guest to set bits that we do not support
687 	 * saving.  However, xcr0 bit 0 is always set, even if the
688 	 * emulated CPU does not support XSAVE (see fx_init).
689 	 */
690 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
691 	if (xcr0 & ~valid_bits)
692 		return 1;
693 
694 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
695 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
696 		return 1;
697 
698 	if (xcr0 & XFEATURE_MASK_AVX512) {
699 		if (!(xcr0 & XFEATURE_MASK_YMM))
700 			return 1;
701 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
702 			return 1;
703 	}
704 	vcpu->arch.xcr0 = xcr0;
705 
706 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
707 		kvm_update_cpuid(vcpu);
708 	return 0;
709 }
710 
711 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
712 {
713 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
714 	    __kvm_set_xcr(vcpu, index, xcr)) {
715 		kvm_inject_gp(vcpu, 0);
716 		return 1;
717 	}
718 	return 0;
719 }
720 EXPORT_SYMBOL_GPL(kvm_set_xcr);
721 
722 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
723 {
724 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
725 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
726 				   X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
727 
728 	if (cr4 & CR4_RESERVED_BITS)
729 		return 1;
730 
731 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
732 		return 1;
733 
734 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
735 		return 1;
736 
737 	if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
738 		return 1;
739 
740 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
741 		return 1;
742 
743 	if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
744 		return 1;
745 
746 	if (is_long_mode(vcpu)) {
747 		if (!(cr4 & X86_CR4_PAE))
748 			return 1;
749 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
750 		   && ((cr4 ^ old_cr4) & pdptr_bits)
751 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
752 				   kvm_read_cr3(vcpu)))
753 		return 1;
754 
755 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
756 		if (!guest_cpuid_has_pcid(vcpu))
757 			return 1;
758 
759 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
760 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
761 			return 1;
762 	}
763 
764 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
765 		return 1;
766 
767 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
768 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
769 		kvm_mmu_reset_context(vcpu);
770 
771 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
772 		kvm_update_cpuid(vcpu);
773 
774 	return 0;
775 }
776 EXPORT_SYMBOL_GPL(kvm_set_cr4);
777 
778 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
779 {
780 #ifdef CONFIG_X86_64
781 	cr3 &= ~CR3_PCID_INVD;
782 #endif
783 
784 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
785 		kvm_mmu_sync_roots(vcpu);
786 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
787 		return 0;
788 	}
789 
790 	if (is_long_mode(vcpu)) {
791 		if (cr3 & CR3_L_MODE_RESERVED_BITS)
792 			return 1;
793 	} else if (is_pae(vcpu) && is_paging(vcpu) &&
794 		   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
795 		return 1;
796 
797 	vcpu->arch.cr3 = cr3;
798 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
799 	kvm_mmu_new_cr3(vcpu);
800 	return 0;
801 }
802 EXPORT_SYMBOL_GPL(kvm_set_cr3);
803 
804 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
805 {
806 	if (cr8 & CR8_RESERVED_BITS)
807 		return 1;
808 	if (lapic_in_kernel(vcpu))
809 		kvm_lapic_set_tpr(vcpu, cr8);
810 	else
811 		vcpu->arch.cr8 = cr8;
812 	return 0;
813 }
814 EXPORT_SYMBOL_GPL(kvm_set_cr8);
815 
816 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
817 {
818 	if (lapic_in_kernel(vcpu))
819 		return kvm_lapic_get_cr8(vcpu);
820 	else
821 		return vcpu->arch.cr8;
822 }
823 EXPORT_SYMBOL_GPL(kvm_get_cr8);
824 
825 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
826 {
827 	int i;
828 
829 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
830 		for (i = 0; i < KVM_NR_DB_REGS; i++)
831 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
832 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
833 	}
834 }
835 
836 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
837 {
838 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
839 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
840 }
841 
842 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
843 {
844 	unsigned long dr7;
845 
846 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
847 		dr7 = vcpu->arch.guest_debug_dr7;
848 	else
849 		dr7 = vcpu->arch.dr7;
850 	kvm_x86_ops->set_dr7(vcpu, dr7);
851 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
852 	if (dr7 & DR7_BP_EN_MASK)
853 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
854 }
855 
856 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
857 {
858 	u64 fixed = DR6_FIXED_1;
859 
860 	if (!guest_cpuid_has_rtm(vcpu))
861 		fixed |= DR6_RTM;
862 	return fixed;
863 }
864 
865 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
866 {
867 	switch (dr) {
868 	case 0 ... 3:
869 		vcpu->arch.db[dr] = val;
870 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
871 			vcpu->arch.eff_db[dr] = val;
872 		break;
873 	case 4:
874 		/* fall through */
875 	case 6:
876 		if (val & 0xffffffff00000000ULL)
877 			return -1; /* #GP */
878 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
879 		kvm_update_dr6(vcpu);
880 		break;
881 	case 5:
882 		/* fall through */
883 	default: /* 7 */
884 		if (val & 0xffffffff00000000ULL)
885 			return -1; /* #GP */
886 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
887 		kvm_update_dr7(vcpu);
888 		break;
889 	}
890 
891 	return 0;
892 }
893 
894 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
895 {
896 	if (__kvm_set_dr(vcpu, dr, val)) {
897 		kvm_inject_gp(vcpu, 0);
898 		return 1;
899 	}
900 	return 0;
901 }
902 EXPORT_SYMBOL_GPL(kvm_set_dr);
903 
904 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
905 {
906 	switch (dr) {
907 	case 0 ... 3:
908 		*val = vcpu->arch.db[dr];
909 		break;
910 	case 4:
911 		/* fall through */
912 	case 6:
913 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
914 			*val = vcpu->arch.dr6;
915 		else
916 			*val = kvm_x86_ops->get_dr6(vcpu);
917 		break;
918 	case 5:
919 		/* fall through */
920 	default: /* 7 */
921 		*val = vcpu->arch.dr7;
922 		break;
923 	}
924 	return 0;
925 }
926 EXPORT_SYMBOL_GPL(kvm_get_dr);
927 
928 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
929 {
930 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
931 	u64 data;
932 	int err;
933 
934 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
935 	if (err)
936 		return err;
937 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
938 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
939 	return err;
940 }
941 EXPORT_SYMBOL_GPL(kvm_rdpmc);
942 
943 /*
944  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
945  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
946  *
947  * This list is modified at module load time to reflect the
948  * capabilities of the host cpu. This capabilities test skips MSRs that are
949  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
950  * may depend on host virtualization features rather than host cpu features.
951  */
952 
953 static u32 msrs_to_save[] = {
954 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
955 	MSR_STAR,
956 #ifdef CONFIG_X86_64
957 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
958 #endif
959 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
960 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
961 };
962 
963 static unsigned num_msrs_to_save;
964 
965 static u32 emulated_msrs[] = {
966 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
967 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
968 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
969 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
970 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
971 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
972 	HV_X64_MSR_RESET,
973 	HV_X64_MSR_VP_INDEX,
974 	HV_X64_MSR_VP_RUNTIME,
975 	HV_X64_MSR_SCONTROL,
976 	HV_X64_MSR_STIMER0_CONFIG,
977 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
978 	MSR_KVM_PV_EOI_EN,
979 
980 	MSR_IA32_TSC_ADJUST,
981 	MSR_IA32_TSCDEADLINE,
982 	MSR_IA32_MISC_ENABLE,
983 	MSR_IA32_MCG_STATUS,
984 	MSR_IA32_MCG_CTL,
985 	MSR_IA32_SMBASE,
986 };
987 
988 static unsigned num_emulated_msrs;
989 
990 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
991 {
992 	if (efer & efer_reserved_bits)
993 		return false;
994 
995 	if (efer & EFER_FFXSR) {
996 		struct kvm_cpuid_entry2 *feat;
997 
998 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
999 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1000 			return false;
1001 	}
1002 
1003 	if (efer & EFER_SVME) {
1004 		struct kvm_cpuid_entry2 *feat;
1005 
1006 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1007 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1008 			return false;
1009 	}
1010 
1011 	return true;
1012 }
1013 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1014 
1015 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1016 {
1017 	u64 old_efer = vcpu->arch.efer;
1018 
1019 	if (!kvm_valid_efer(vcpu, efer))
1020 		return 1;
1021 
1022 	if (is_paging(vcpu)
1023 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1024 		return 1;
1025 
1026 	efer &= ~EFER_LMA;
1027 	efer |= vcpu->arch.efer & EFER_LMA;
1028 
1029 	kvm_x86_ops->set_efer(vcpu, efer);
1030 
1031 	/* Update reserved bits */
1032 	if ((efer ^ old_efer) & EFER_NX)
1033 		kvm_mmu_reset_context(vcpu);
1034 
1035 	return 0;
1036 }
1037 
1038 void kvm_enable_efer_bits(u64 mask)
1039 {
1040        efer_reserved_bits &= ~mask;
1041 }
1042 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1043 
1044 /*
1045  * Writes msr value into into the appropriate "register".
1046  * Returns 0 on success, non-0 otherwise.
1047  * Assumes vcpu_load() was already called.
1048  */
1049 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1050 {
1051 	switch (msr->index) {
1052 	case MSR_FS_BASE:
1053 	case MSR_GS_BASE:
1054 	case MSR_KERNEL_GS_BASE:
1055 	case MSR_CSTAR:
1056 	case MSR_LSTAR:
1057 		if (is_noncanonical_address(msr->data))
1058 			return 1;
1059 		break;
1060 	case MSR_IA32_SYSENTER_EIP:
1061 	case MSR_IA32_SYSENTER_ESP:
1062 		/*
1063 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1064 		 * non-canonical address is written on Intel but not on
1065 		 * AMD (which ignores the top 32-bits, because it does
1066 		 * not implement 64-bit SYSENTER).
1067 		 *
1068 		 * 64-bit code should hence be able to write a non-canonical
1069 		 * value on AMD.  Making the address canonical ensures that
1070 		 * vmentry does not fail on Intel after writing a non-canonical
1071 		 * value, and that something deterministic happens if the guest
1072 		 * invokes 64-bit SYSENTER.
1073 		 */
1074 		msr->data = get_canonical(msr->data);
1075 	}
1076 	return kvm_x86_ops->set_msr(vcpu, msr);
1077 }
1078 EXPORT_SYMBOL_GPL(kvm_set_msr);
1079 
1080 /*
1081  * Adapt set_msr() to msr_io()'s calling convention
1082  */
1083 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1084 {
1085 	struct msr_data msr;
1086 	int r;
1087 
1088 	msr.index = index;
1089 	msr.host_initiated = true;
1090 	r = kvm_get_msr(vcpu, &msr);
1091 	if (r)
1092 		return r;
1093 
1094 	*data = msr.data;
1095 	return 0;
1096 }
1097 
1098 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1099 {
1100 	struct msr_data msr;
1101 
1102 	msr.data = *data;
1103 	msr.index = index;
1104 	msr.host_initiated = true;
1105 	return kvm_set_msr(vcpu, &msr);
1106 }
1107 
1108 #ifdef CONFIG_X86_64
1109 struct pvclock_gtod_data {
1110 	seqcount_t	seq;
1111 
1112 	struct { /* extract of a clocksource struct */
1113 		int vclock_mode;
1114 		cycle_t	cycle_last;
1115 		cycle_t	mask;
1116 		u32	mult;
1117 		u32	shift;
1118 	} clock;
1119 
1120 	u64		boot_ns;
1121 	u64		nsec_base;
1122 };
1123 
1124 static struct pvclock_gtod_data pvclock_gtod_data;
1125 
1126 static void update_pvclock_gtod(struct timekeeper *tk)
1127 {
1128 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1129 	u64 boot_ns;
1130 
1131 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1132 
1133 	write_seqcount_begin(&vdata->seq);
1134 
1135 	/* copy pvclock gtod data */
1136 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1137 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1138 	vdata->clock.mask		= tk->tkr_mono.mask;
1139 	vdata->clock.mult		= tk->tkr_mono.mult;
1140 	vdata->clock.shift		= tk->tkr_mono.shift;
1141 
1142 	vdata->boot_ns			= boot_ns;
1143 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1144 
1145 	write_seqcount_end(&vdata->seq);
1146 }
1147 #endif
1148 
1149 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1150 {
1151 	/*
1152 	 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1153 	 * vcpu_enter_guest.  This function is only called from
1154 	 * the physical CPU that is running vcpu.
1155 	 */
1156 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1157 }
1158 
1159 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1160 {
1161 	int version;
1162 	int r;
1163 	struct pvclock_wall_clock wc;
1164 	struct timespec boot;
1165 
1166 	if (!wall_clock)
1167 		return;
1168 
1169 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1170 	if (r)
1171 		return;
1172 
1173 	if (version & 1)
1174 		++version;  /* first time write, random junk */
1175 
1176 	++version;
1177 
1178 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1179 		return;
1180 
1181 	/*
1182 	 * The guest calculates current wall clock time by adding
1183 	 * system time (updated by kvm_guest_time_update below) to the
1184 	 * wall clock specified here.  guest system time equals host
1185 	 * system time for us, thus we must fill in host boot time here.
1186 	 */
1187 	getboottime(&boot);
1188 
1189 	if (kvm->arch.kvmclock_offset) {
1190 		struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1191 		boot = timespec_sub(boot, ts);
1192 	}
1193 	wc.sec = boot.tv_sec;
1194 	wc.nsec = boot.tv_nsec;
1195 	wc.version = version;
1196 
1197 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1198 
1199 	version++;
1200 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1201 }
1202 
1203 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1204 {
1205 	do_shl32_div32(dividend, divisor);
1206 	return dividend;
1207 }
1208 
1209 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1210 			       s8 *pshift, u32 *pmultiplier)
1211 {
1212 	uint64_t scaled64;
1213 	int32_t  shift = 0;
1214 	uint64_t tps64;
1215 	uint32_t tps32;
1216 
1217 	tps64 = base_hz;
1218 	scaled64 = scaled_hz;
1219 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1220 		tps64 >>= 1;
1221 		shift--;
1222 	}
1223 
1224 	tps32 = (uint32_t)tps64;
1225 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1226 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1227 			scaled64 >>= 1;
1228 		else
1229 			tps32 <<= 1;
1230 		shift++;
1231 	}
1232 
1233 	*pshift = shift;
1234 	*pmultiplier = div_frac(scaled64, tps32);
1235 
1236 	pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1237 		 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1238 }
1239 
1240 #ifdef CONFIG_X86_64
1241 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1242 #endif
1243 
1244 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1245 static unsigned long max_tsc_khz;
1246 
1247 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1248 {
1249 	return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1250 				   vcpu->arch.virtual_tsc_shift);
1251 }
1252 
1253 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1254 {
1255 	u64 v = (u64)khz * (1000000 + ppm);
1256 	do_div(v, 1000000);
1257 	return v;
1258 }
1259 
1260 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1261 {
1262 	u64 ratio;
1263 
1264 	/* Guest TSC same frequency as host TSC? */
1265 	if (!scale) {
1266 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1267 		return 0;
1268 	}
1269 
1270 	/* TSC scaling supported? */
1271 	if (!kvm_has_tsc_control) {
1272 		if (user_tsc_khz > tsc_khz) {
1273 			vcpu->arch.tsc_catchup = 1;
1274 			vcpu->arch.tsc_always_catchup = 1;
1275 			return 0;
1276 		} else {
1277 			WARN(1, "user requested TSC rate below hardware speed\n");
1278 			return -1;
1279 		}
1280 	}
1281 
1282 	/* TSC scaling required  - calculate ratio */
1283 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1284 				user_tsc_khz, tsc_khz);
1285 
1286 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1287 		WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1288 			  user_tsc_khz);
1289 		return -1;
1290 	}
1291 
1292 	vcpu->arch.tsc_scaling_ratio = ratio;
1293 	return 0;
1294 }
1295 
1296 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1297 {
1298 	u32 thresh_lo, thresh_hi;
1299 	int use_scaling = 0;
1300 
1301 	/* tsc_khz can be zero if TSC calibration fails */
1302 	if (user_tsc_khz == 0) {
1303 		/* set tsc_scaling_ratio to a safe value */
1304 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1305 		return -1;
1306 	}
1307 
1308 	/* Compute a scale to convert nanoseconds in TSC cycles */
1309 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1310 			   &vcpu->arch.virtual_tsc_shift,
1311 			   &vcpu->arch.virtual_tsc_mult);
1312 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1313 
1314 	/*
1315 	 * Compute the variation in TSC rate which is acceptable
1316 	 * within the range of tolerance and decide if the
1317 	 * rate being applied is within that bounds of the hardware
1318 	 * rate.  If so, no scaling or compensation need be done.
1319 	 */
1320 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1321 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1322 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1323 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1324 		use_scaling = 1;
1325 	}
1326 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1327 }
1328 
1329 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1330 {
1331 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1332 				      vcpu->arch.virtual_tsc_mult,
1333 				      vcpu->arch.virtual_tsc_shift);
1334 	tsc += vcpu->arch.this_tsc_write;
1335 	return tsc;
1336 }
1337 
1338 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1339 {
1340 #ifdef CONFIG_X86_64
1341 	bool vcpus_matched;
1342 	struct kvm_arch *ka = &vcpu->kvm->arch;
1343 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1344 
1345 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1346 			 atomic_read(&vcpu->kvm->online_vcpus));
1347 
1348 	/*
1349 	 * Once the masterclock is enabled, always perform request in
1350 	 * order to update it.
1351 	 *
1352 	 * In order to enable masterclock, the host clocksource must be TSC
1353 	 * and the vcpus need to have matched TSCs.  When that happens,
1354 	 * perform request to enable masterclock.
1355 	 */
1356 	if (ka->use_master_clock ||
1357 	    (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1358 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1359 
1360 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1361 			    atomic_read(&vcpu->kvm->online_vcpus),
1362 		            ka->use_master_clock, gtod->clock.vclock_mode);
1363 #endif
1364 }
1365 
1366 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1367 {
1368 	u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1369 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1370 }
1371 
1372 /*
1373  * Multiply tsc by a fixed point number represented by ratio.
1374  *
1375  * The most significant 64-N bits (mult) of ratio represent the
1376  * integral part of the fixed point number; the remaining N bits
1377  * (frac) represent the fractional part, ie. ratio represents a fixed
1378  * point number (mult + frac * 2^(-N)).
1379  *
1380  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1381  */
1382 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1383 {
1384 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1385 }
1386 
1387 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1388 {
1389 	u64 _tsc = tsc;
1390 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1391 
1392 	if (ratio != kvm_default_tsc_scaling_ratio)
1393 		_tsc = __scale_tsc(ratio, tsc);
1394 
1395 	return _tsc;
1396 }
1397 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1398 
1399 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1400 {
1401 	u64 tsc;
1402 
1403 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1404 
1405 	return target_tsc - tsc;
1406 }
1407 
1408 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1409 {
1410 	return kvm_x86_ops->read_l1_tsc(vcpu, kvm_scale_tsc(vcpu, host_tsc));
1411 }
1412 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1413 
1414 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1415 {
1416 	struct kvm *kvm = vcpu->kvm;
1417 	u64 offset, ns, elapsed;
1418 	unsigned long flags;
1419 	s64 usdiff;
1420 	bool matched;
1421 	bool already_matched;
1422 	u64 data = msr->data;
1423 
1424 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1425 	offset = kvm_compute_tsc_offset(vcpu, data);
1426 	ns = get_kernel_ns();
1427 	elapsed = ns - kvm->arch.last_tsc_nsec;
1428 
1429 	if (vcpu->arch.virtual_tsc_khz) {
1430 		int faulted = 0;
1431 
1432 		/* n.b - signed multiplication and division required */
1433 		usdiff = data - kvm->arch.last_tsc_write;
1434 #ifdef CONFIG_X86_64
1435 		usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1436 #else
1437 		/* do_div() only does unsigned */
1438 		asm("1: idivl %[divisor]\n"
1439 		    "2: xor %%edx, %%edx\n"
1440 		    "   movl $0, %[faulted]\n"
1441 		    "3:\n"
1442 		    ".section .fixup,\"ax\"\n"
1443 		    "4: movl $1, %[faulted]\n"
1444 		    "   jmp  3b\n"
1445 		    ".previous\n"
1446 
1447 		_ASM_EXTABLE(1b, 4b)
1448 
1449 		: "=A"(usdiff), [faulted] "=r" (faulted)
1450 		: "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1451 
1452 #endif
1453 		do_div(elapsed, 1000);
1454 		usdiff -= elapsed;
1455 		if (usdiff < 0)
1456 			usdiff = -usdiff;
1457 
1458 		/* idivl overflow => difference is larger than USEC_PER_SEC */
1459 		if (faulted)
1460 			usdiff = USEC_PER_SEC;
1461 	} else
1462 		usdiff = USEC_PER_SEC; /* disable TSC match window below */
1463 
1464 	/*
1465 	 * Special case: TSC write with a small delta (1 second) of virtual
1466 	 * cycle time against real time is interpreted as an attempt to
1467 	 * synchronize the CPU.
1468          *
1469 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1470 	 * TSC, we add elapsed time in this computation.  We could let the
1471 	 * compensation code attempt to catch up if we fall behind, but
1472 	 * it's better to try to match offsets from the beginning.
1473          */
1474 	if (usdiff < USEC_PER_SEC &&
1475 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1476 		if (!check_tsc_unstable()) {
1477 			offset = kvm->arch.cur_tsc_offset;
1478 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1479 		} else {
1480 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1481 			data += delta;
1482 			offset = kvm_compute_tsc_offset(vcpu, data);
1483 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1484 		}
1485 		matched = true;
1486 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1487 	} else {
1488 		/*
1489 		 * We split periods of matched TSC writes into generations.
1490 		 * For each generation, we track the original measured
1491 		 * nanosecond time, offset, and write, so if TSCs are in
1492 		 * sync, we can match exact offset, and if not, we can match
1493 		 * exact software computation in compute_guest_tsc()
1494 		 *
1495 		 * These values are tracked in kvm->arch.cur_xxx variables.
1496 		 */
1497 		kvm->arch.cur_tsc_generation++;
1498 		kvm->arch.cur_tsc_nsec = ns;
1499 		kvm->arch.cur_tsc_write = data;
1500 		kvm->arch.cur_tsc_offset = offset;
1501 		matched = false;
1502 		pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1503 			 kvm->arch.cur_tsc_generation, data);
1504 	}
1505 
1506 	/*
1507 	 * We also track th most recent recorded KHZ, write and time to
1508 	 * allow the matching interval to be extended at each write.
1509 	 */
1510 	kvm->arch.last_tsc_nsec = ns;
1511 	kvm->arch.last_tsc_write = data;
1512 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1513 
1514 	vcpu->arch.last_guest_tsc = data;
1515 
1516 	/* Keep track of which generation this VCPU has synchronized to */
1517 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1518 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1519 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1520 
1521 	if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1522 		update_ia32_tsc_adjust_msr(vcpu, offset);
1523 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1524 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1525 
1526 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1527 	if (!matched) {
1528 		kvm->arch.nr_vcpus_matched_tsc = 0;
1529 	} else if (!already_matched) {
1530 		kvm->arch.nr_vcpus_matched_tsc++;
1531 	}
1532 
1533 	kvm_track_tsc_matching(vcpu);
1534 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1535 }
1536 
1537 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1538 
1539 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1540 					   s64 adjustment)
1541 {
1542 	kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1543 }
1544 
1545 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1546 {
1547 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1548 		WARN_ON(adjustment < 0);
1549 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1550 	kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1551 }
1552 
1553 #ifdef CONFIG_X86_64
1554 
1555 static cycle_t read_tsc(void)
1556 {
1557 	cycle_t ret = (cycle_t)rdtsc_ordered();
1558 	u64 last = pvclock_gtod_data.clock.cycle_last;
1559 
1560 	if (likely(ret >= last))
1561 		return ret;
1562 
1563 	/*
1564 	 * GCC likes to generate cmov here, but this branch is extremely
1565 	 * predictable (it's just a function of time and the likely is
1566 	 * very likely) and there's a data dependence, so force GCC
1567 	 * to generate a branch instead.  I don't barrier() because
1568 	 * we don't actually need a barrier, and if this function
1569 	 * ever gets inlined it will generate worse code.
1570 	 */
1571 	asm volatile ("");
1572 	return last;
1573 }
1574 
1575 static inline u64 vgettsc(cycle_t *cycle_now)
1576 {
1577 	long v;
1578 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1579 
1580 	*cycle_now = read_tsc();
1581 
1582 	v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1583 	return v * gtod->clock.mult;
1584 }
1585 
1586 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1587 {
1588 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1589 	unsigned long seq;
1590 	int mode;
1591 	u64 ns;
1592 
1593 	do {
1594 		seq = read_seqcount_begin(&gtod->seq);
1595 		mode = gtod->clock.vclock_mode;
1596 		ns = gtod->nsec_base;
1597 		ns += vgettsc(cycle_now);
1598 		ns >>= gtod->clock.shift;
1599 		ns += gtod->boot_ns;
1600 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1601 	*t = ns;
1602 
1603 	return mode;
1604 }
1605 
1606 /* returns true if host is using tsc clocksource */
1607 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1608 {
1609 	/* checked again under seqlock below */
1610 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1611 		return false;
1612 
1613 	return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1614 }
1615 #endif
1616 
1617 /*
1618  *
1619  * Assuming a stable TSC across physical CPUS, and a stable TSC
1620  * across virtual CPUs, the following condition is possible.
1621  * Each numbered line represents an event visible to both
1622  * CPUs at the next numbered event.
1623  *
1624  * "timespecX" represents host monotonic time. "tscX" represents
1625  * RDTSC value.
1626  *
1627  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1628  *
1629  * 1.  read timespec0,tsc0
1630  * 2.					| timespec1 = timespec0 + N
1631  * 					| tsc1 = tsc0 + M
1632  * 3. transition to guest		| transition to guest
1633  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1634  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1635  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1636  *
1637  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1638  *
1639  * 	- ret0 < ret1
1640  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1641  *		...
1642  *	- 0 < N - M => M < N
1643  *
1644  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1645  * always the case (the difference between two distinct xtime instances
1646  * might be smaller then the difference between corresponding TSC reads,
1647  * when updating guest vcpus pvclock areas).
1648  *
1649  * To avoid that problem, do not allow visibility of distinct
1650  * system_timestamp/tsc_timestamp values simultaneously: use a master
1651  * copy of host monotonic time values. Update that master copy
1652  * in lockstep.
1653  *
1654  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1655  *
1656  */
1657 
1658 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1659 {
1660 #ifdef CONFIG_X86_64
1661 	struct kvm_arch *ka = &kvm->arch;
1662 	int vclock_mode;
1663 	bool host_tsc_clocksource, vcpus_matched;
1664 
1665 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1666 			atomic_read(&kvm->online_vcpus));
1667 
1668 	/*
1669 	 * If the host uses TSC clock, then passthrough TSC as stable
1670 	 * to the guest.
1671 	 */
1672 	host_tsc_clocksource = kvm_get_time_and_clockread(
1673 					&ka->master_kernel_ns,
1674 					&ka->master_cycle_now);
1675 
1676 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1677 				&& !backwards_tsc_observed
1678 				&& !ka->boot_vcpu_runs_old_kvmclock;
1679 
1680 	if (ka->use_master_clock)
1681 		atomic_set(&kvm_guest_has_master_clock, 1);
1682 
1683 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1684 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1685 					vcpus_matched);
1686 #endif
1687 }
1688 
1689 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1690 {
1691 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1692 }
1693 
1694 static void kvm_gen_update_masterclock(struct kvm *kvm)
1695 {
1696 #ifdef CONFIG_X86_64
1697 	int i;
1698 	struct kvm_vcpu *vcpu;
1699 	struct kvm_arch *ka = &kvm->arch;
1700 
1701 	spin_lock(&ka->pvclock_gtod_sync_lock);
1702 	kvm_make_mclock_inprogress_request(kvm);
1703 	/* no guest entries from this point */
1704 	pvclock_update_vm_gtod_copy(kvm);
1705 
1706 	kvm_for_each_vcpu(i, vcpu, kvm)
1707 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1708 
1709 	/* guest entries allowed */
1710 	kvm_for_each_vcpu(i, vcpu, kvm)
1711 		clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1712 
1713 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1714 #endif
1715 }
1716 
1717 static int kvm_guest_time_update(struct kvm_vcpu *v)
1718 {
1719 	unsigned long flags, tgt_tsc_khz;
1720 	struct kvm_vcpu_arch *vcpu = &v->arch;
1721 	struct kvm_arch *ka = &v->kvm->arch;
1722 	s64 kernel_ns;
1723 	u64 tsc_timestamp, host_tsc;
1724 	struct pvclock_vcpu_time_info guest_hv_clock;
1725 	u8 pvclock_flags;
1726 	bool use_master_clock;
1727 
1728 	kernel_ns = 0;
1729 	host_tsc = 0;
1730 
1731 	/*
1732 	 * If the host uses TSC clock, then passthrough TSC as stable
1733 	 * to the guest.
1734 	 */
1735 	spin_lock(&ka->pvclock_gtod_sync_lock);
1736 	use_master_clock = ka->use_master_clock;
1737 	if (use_master_clock) {
1738 		host_tsc = ka->master_cycle_now;
1739 		kernel_ns = ka->master_kernel_ns;
1740 	}
1741 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1742 
1743 	/* Keep irq disabled to prevent changes to the clock */
1744 	local_irq_save(flags);
1745 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1746 	if (unlikely(tgt_tsc_khz == 0)) {
1747 		local_irq_restore(flags);
1748 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1749 		return 1;
1750 	}
1751 	if (!use_master_clock) {
1752 		host_tsc = rdtsc();
1753 		kernel_ns = get_kernel_ns();
1754 	}
1755 
1756 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1757 
1758 	/*
1759 	 * We may have to catch up the TSC to match elapsed wall clock
1760 	 * time for two reasons, even if kvmclock is used.
1761 	 *   1) CPU could have been running below the maximum TSC rate
1762 	 *   2) Broken TSC compensation resets the base at each VCPU
1763 	 *      entry to avoid unknown leaps of TSC even when running
1764 	 *      again on the same CPU.  This may cause apparent elapsed
1765 	 *      time to disappear, and the guest to stand still or run
1766 	 *	very slowly.
1767 	 */
1768 	if (vcpu->tsc_catchup) {
1769 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1770 		if (tsc > tsc_timestamp) {
1771 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1772 			tsc_timestamp = tsc;
1773 		}
1774 	}
1775 
1776 	local_irq_restore(flags);
1777 
1778 	if (!vcpu->pv_time_enabled)
1779 		return 0;
1780 
1781 	if (kvm_has_tsc_control)
1782 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1783 
1784 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1785 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1786 				   &vcpu->hv_clock.tsc_shift,
1787 				   &vcpu->hv_clock.tsc_to_system_mul);
1788 		vcpu->hw_tsc_khz = tgt_tsc_khz;
1789 	}
1790 
1791 	/* With all the info we got, fill in the values */
1792 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1793 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1794 	vcpu->last_guest_tsc = tsc_timestamp;
1795 
1796 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1797 		&guest_hv_clock, sizeof(guest_hv_clock))))
1798 		return 0;
1799 
1800 	/* This VCPU is paused, but it's legal for a guest to read another
1801 	 * VCPU's kvmclock, so we really have to follow the specification where
1802 	 * it says that version is odd if data is being modified, and even after
1803 	 * it is consistent.
1804 	 *
1805 	 * Version field updates must be kept separate.  This is because
1806 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
1807 	 * writes within a string instruction are weakly ordered.  So there
1808 	 * are three writes overall.
1809 	 *
1810 	 * As a small optimization, only write the version field in the first
1811 	 * and third write.  The vcpu->pv_time cache is still valid, because the
1812 	 * version field is the first in the struct.
1813 	 */
1814 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1815 
1816 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
1817 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1818 				&vcpu->hv_clock,
1819 				sizeof(vcpu->hv_clock.version));
1820 
1821 	smp_wmb();
1822 
1823 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1824 	pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1825 
1826 	if (vcpu->pvclock_set_guest_stopped_request) {
1827 		pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1828 		vcpu->pvclock_set_guest_stopped_request = false;
1829 	}
1830 
1831 	/* If the host uses TSC clocksource, then it is stable */
1832 	if (use_master_clock)
1833 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1834 
1835 	vcpu->hv_clock.flags = pvclock_flags;
1836 
1837 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1838 
1839 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1840 				&vcpu->hv_clock,
1841 				sizeof(vcpu->hv_clock));
1842 
1843 	smp_wmb();
1844 
1845 	vcpu->hv_clock.version++;
1846 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1847 				&vcpu->hv_clock,
1848 				sizeof(vcpu->hv_clock.version));
1849 	return 0;
1850 }
1851 
1852 /*
1853  * kvmclock updates which are isolated to a given vcpu, such as
1854  * vcpu->cpu migration, should not allow system_timestamp from
1855  * the rest of the vcpus to remain static. Otherwise ntp frequency
1856  * correction applies to one vcpu's system_timestamp but not
1857  * the others.
1858  *
1859  * So in those cases, request a kvmclock update for all vcpus.
1860  * We need to rate-limit these requests though, as they can
1861  * considerably slow guests that have a large number of vcpus.
1862  * The time for a remote vcpu to update its kvmclock is bound
1863  * by the delay we use to rate-limit the updates.
1864  */
1865 
1866 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1867 
1868 static void kvmclock_update_fn(struct work_struct *work)
1869 {
1870 	int i;
1871 	struct delayed_work *dwork = to_delayed_work(work);
1872 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1873 					   kvmclock_update_work);
1874 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1875 	struct kvm_vcpu *vcpu;
1876 
1877 	kvm_for_each_vcpu(i, vcpu, kvm) {
1878 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1879 		kvm_vcpu_kick(vcpu);
1880 	}
1881 }
1882 
1883 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1884 {
1885 	struct kvm *kvm = v->kvm;
1886 
1887 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1888 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1889 					KVMCLOCK_UPDATE_DELAY);
1890 }
1891 
1892 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1893 
1894 static void kvmclock_sync_fn(struct work_struct *work)
1895 {
1896 	struct delayed_work *dwork = to_delayed_work(work);
1897 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1898 					   kvmclock_sync_work);
1899 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1900 
1901 	if (!kvmclock_periodic_sync)
1902 		return;
1903 
1904 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1905 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1906 					KVMCLOCK_SYNC_PERIOD);
1907 }
1908 
1909 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1910 {
1911 	u64 mcg_cap = vcpu->arch.mcg_cap;
1912 	unsigned bank_num = mcg_cap & 0xff;
1913 
1914 	switch (msr) {
1915 	case MSR_IA32_MCG_STATUS:
1916 		vcpu->arch.mcg_status = data;
1917 		break;
1918 	case MSR_IA32_MCG_CTL:
1919 		if (!(mcg_cap & MCG_CTL_P))
1920 			return 1;
1921 		if (data != 0 && data != ~(u64)0)
1922 			return -1;
1923 		vcpu->arch.mcg_ctl = data;
1924 		break;
1925 	default:
1926 		if (msr >= MSR_IA32_MC0_CTL &&
1927 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
1928 			u32 offset = msr - MSR_IA32_MC0_CTL;
1929 			/* only 0 or all 1s can be written to IA32_MCi_CTL
1930 			 * some Linux kernels though clear bit 10 in bank 4 to
1931 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1932 			 * this to avoid an uncatched #GP in the guest
1933 			 */
1934 			if ((offset & 0x3) == 0 &&
1935 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
1936 				return -1;
1937 			vcpu->arch.mce_banks[offset] = data;
1938 			break;
1939 		}
1940 		return 1;
1941 	}
1942 	return 0;
1943 }
1944 
1945 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1946 {
1947 	struct kvm *kvm = vcpu->kvm;
1948 	int lm = is_long_mode(vcpu);
1949 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1950 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1951 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1952 		: kvm->arch.xen_hvm_config.blob_size_32;
1953 	u32 page_num = data & ~PAGE_MASK;
1954 	u64 page_addr = data & PAGE_MASK;
1955 	u8 *page;
1956 	int r;
1957 
1958 	r = -E2BIG;
1959 	if (page_num >= blob_size)
1960 		goto out;
1961 	r = -ENOMEM;
1962 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1963 	if (IS_ERR(page)) {
1964 		r = PTR_ERR(page);
1965 		goto out;
1966 	}
1967 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
1968 		goto out_free;
1969 	r = 0;
1970 out_free:
1971 	kfree(page);
1972 out:
1973 	return r;
1974 }
1975 
1976 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1977 {
1978 	gpa_t gpa = data & ~0x3f;
1979 
1980 	/* Bits 2:5 are reserved, Should be zero */
1981 	if (data & 0x3c)
1982 		return 1;
1983 
1984 	vcpu->arch.apf.msr_val = data;
1985 
1986 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
1987 		kvm_clear_async_pf_completion_queue(vcpu);
1988 		kvm_async_pf_hash_reset(vcpu);
1989 		return 0;
1990 	}
1991 
1992 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1993 					sizeof(u32)))
1994 		return 1;
1995 
1996 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1997 	kvm_async_pf_wakeup_all(vcpu);
1998 	return 0;
1999 }
2000 
2001 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2002 {
2003 	vcpu->arch.pv_time_enabled = false;
2004 }
2005 
2006 static void record_steal_time(struct kvm_vcpu *vcpu)
2007 {
2008 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2009 		return;
2010 
2011 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2012 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2013 		return;
2014 
2015 	if (vcpu->arch.st.steal.version & 1)
2016 		vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2017 
2018 	vcpu->arch.st.steal.version += 1;
2019 
2020 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2021 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2022 
2023 	smp_wmb();
2024 
2025 	vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2026 		vcpu->arch.st.last_steal;
2027 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2028 
2029 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2030 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2031 
2032 	smp_wmb();
2033 
2034 	vcpu->arch.st.steal.version += 1;
2035 
2036 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2037 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2038 }
2039 
2040 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2041 {
2042 	bool pr = false;
2043 	u32 msr = msr_info->index;
2044 	u64 data = msr_info->data;
2045 
2046 	switch (msr) {
2047 	case MSR_AMD64_NB_CFG:
2048 	case MSR_IA32_UCODE_REV:
2049 	case MSR_IA32_UCODE_WRITE:
2050 	case MSR_VM_HSAVE_PA:
2051 	case MSR_AMD64_PATCH_LOADER:
2052 	case MSR_AMD64_BU_CFG2:
2053 		break;
2054 
2055 	case MSR_EFER:
2056 		return set_efer(vcpu, data);
2057 	case MSR_K7_HWCR:
2058 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2059 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2060 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2061 		data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2062 		if (data != 0) {
2063 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2064 				    data);
2065 			return 1;
2066 		}
2067 		break;
2068 	case MSR_FAM10H_MMIO_CONF_BASE:
2069 		if (data != 0) {
2070 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2071 				    "0x%llx\n", data);
2072 			return 1;
2073 		}
2074 		break;
2075 	case MSR_IA32_DEBUGCTLMSR:
2076 		if (!data) {
2077 			/* We support the non-activated case already */
2078 			break;
2079 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2080 			/* Values other than LBR and BTF are vendor-specific,
2081 			   thus reserved and should throw a #GP */
2082 			return 1;
2083 		}
2084 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2085 			    __func__, data);
2086 		break;
2087 	case 0x200 ... 0x2ff:
2088 		return kvm_mtrr_set_msr(vcpu, msr, data);
2089 	case MSR_IA32_APICBASE:
2090 		return kvm_set_apic_base(vcpu, msr_info);
2091 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2092 		return kvm_x2apic_msr_write(vcpu, msr, data);
2093 	case MSR_IA32_TSCDEADLINE:
2094 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2095 		break;
2096 	case MSR_IA32_TSC_ADJUST:
2097 		if (guest_cpuid_has_tsc_adjust(vcpu)) {
2098 			if (!msr_info->host_initiated) {
2099 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2100 				adjust_tsc_offset_guest(vcpu, adj);
2101 			}
2102 			vcpu->arch.ia32_tsc_adjust_msr = data;
2103 		}
2104 		break;
2105 	case MSR_IA32_MISC_ENABLE:
2106 		vcpu->arch.ia32_misc_enable_msr = data;
2107 		break;
2108 	case MSR_IA32_SMBASE:
2109 		if (!msr_info->host_initiated)
2110 			return 1;
2111 		vcpu->arch.smbase = data;
2112 		break;
2113 	case MSR_KVM_WALL_CLOCK_NEW:
2114 	case MSR_KVM_WALL_CLOCK:
2115 		vcpu->kvm->arch.wall_clock = data;
2116 		kvm_write_wall_clock(vcpu->kvm, data);
2117 		break;
2118 	case MSR_KVM_SYSTEM_TIME_NEW:
2119 	case MSR_KVM_SYSTEM_TIME: {
2120 		u64 gpa_offset;
2121 		struct kvm_arch *ka = &vcpu->kvm->arch;
2122 
2123 		kvmclock_reset(vcpu);
2124 
2125 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2126 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2127 
2128 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2129 				set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2130 					&vcpu->requests);
2131 
2132 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2133 		}
2134 
2135 		vcpu->arch.time = data;
2136 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2137 
2138 		/* we verify if the enable bit is set... */
2139 		if (!(data & 1))
2140 			break;
2141 
2142 		gpa_offset = data & ~(PAGE_MASK | 1);
2143 
2144 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2145 		     &vcpu->arch.pv_time, data & ~1ULL,
2146 		     sizeof(struct pvclock_vcpu_time_info)))
2147 			vcpu->arch.pv_time_enabled = false;
2148 		else
2149 			vcpu->arch.pv_time_enabled = true;
2150 
2151 		break;
2152 	}
2153 	case MSR_KVM_ASYNC_PF_EN:
2154 		if (kvm_pv_enable_async_pf(vcpu, data))
2155 			return 1;
2156 		break;
2157 	case MSR_KVM_STEAL_TIME:
2158 
2159 		if (unlikely(!sched_info_on()))
2160 			return 1;
2161 
2162 		if (data & KVM_STEAL_RESERVED_MASK)
2163 			return 1;
2164 
2165 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2166 						data & KVM_STEAL_VALID_BITS,
2167 						sizeof(struct kvm_steal_time)))
2168 			return 1;
2169 
2170 		vcpu->arch.st.msr_val = data;
2171 
2172 		if (!(data & KVM_MSR_ENABLED))
2173 			break;
2174 
2175 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2176 
2177 		break;
2178 	case MSR_KVM_PV_EOI_EN:
2179 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2180 			return 1;
2181 		break;
2182 
2183 	case MSR_IA32_MCG_CTL:
2184 	case MSR_IA32_MCG_STATUS:
2185 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2186 		return set_msr_mce(vcpu, msr, data);
2187 
2188 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2189 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2190 		pr = true; /* fall through */
2191 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2192 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2193 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2194 			return kvm_pmu_set_msr(vcpu, msr_info);
2195 
2196 		if (pr || data != 0)
2197 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2198 				    "0x%x data 0x%llx\n", msr, data);
2199 		break;
2200 	case MSR_K7_CLK_CTL:
2201 		/*
2202 		 * Ignore all writes to this no longer documented MSR.
2203 		 * Writes are only relevant for old K7 processors,
2204 		 * all pre-dating SVM, but a recommended workaround from
2205 		 * AMD for these chips. It is possible to specify the
2206 		 * affected processor models on the command line, hence
2207 		 * the need to ignore the workaround.
2208 		 */
2209 		break;
2210 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2211 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2212 	case HV_X64_MSR_CRASH_CTL:
2213 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2214 		return kvm_hv_set_msr_common(vcpu, msr, data,
2215 					     msr_info->host_initiated);
2216 	case MSR_IA32_BBL_CR_CTL3:
2217 		/* Drop writes to this legacy MSR -- see rdmsr
2218 		 * counterpart for further detail.
2219 		 */
2220 		vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2221 		break;
2222 	case MSR_AMD64_OSVW_ID_LENGTH:
2223 		if (!guest_cpuid_has_osvw(vcpu))
2224 			return 1;
2225 		vcpu->arch.osvw.length = data;
2226 		break;
2227 	case MSR_AMD64_OSVW_STATUS:
2228 		if (!guest_cpuid_has_osvw(vcpu))
2229 			return 1;
2230 		vcpu->arch.osvw.status = data;
2231 		break;
2232 	default:
2233 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2234 			return xen_hvm_config(vcpu, data);
2235 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2236 			return kvm_pmu_set_msr(vcpu, msr_info);
2237 		if (!ignore_msrs) {
2238 			vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2239 				    msr, data);
2240 			return 1;
2241 		} else {
2242 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2243 				    msr, data);
2244 			break;
2245 		}
2246 	}
2247 	return 0;
2248 }
2249 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2250 
2251 
2252 /*
2253  * Reads an msr value (of 'msr_index') into 'pdata'.
2254  * Returns 0 on success, non-0 otherwise.
2255  * Assumes vcpu_load() was already called.
2256  */
2257 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2258 {
2259 	return kvm_x86_ops->get_msr(vcpu, msr);
2260 }
2261 EXPORT_SYMBOL_GPL(kvm_get_msr);
2262 
2263 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2264 {
2265 	u64 data;
2266 	u64 mcg_cap = vcpu->arch.mcg_cap;
2267 	unsigned bank_num = mcg_cap & 0xff;
2268 
2269 	switch (msr) {
2270 	case MSR_IA32_P5_MC_ADDR:
2271 	case MSR_IA32_P5_MC_TYPE:
2272 		data = 0;
2273 		break;
2274 	case MSR_IA32_MCG_CAP:
2275 		data = vcpu->arch.mcg_cap;
2276 		break;
2277 	case MSR_IA32_MCG_CTL:
2278 		if (!(mcg_cap & MCG_CTL_P))
2279 			return 1;
2280 		data = vcpu->arch.mcg_ctl;
2281 		break;
2282 	case MSR_IA32_MCG_STATUS:
2283 		data = vcpu->arch.mcg_status;
2284 		break;
2285 	default:
2286 		if (msr >= MSR_IA32_MC0_CTL &&
2287 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2288 			u32 offset = msr - MSR_IA32_MC0_CTL;
2289 			data = vcpu->arch.mce_banks[offset];
2290 			break;
2291 		}
2292 		return 1;
2293 	}
2294 	*pdata = data;
2295 	return 0;
2296 }
2297 
2298 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2299 {
2300 	switch (msr_info->index) {
2301 	case MSR_IA32_PLATFORM_ID:
2302 	case MSR_IA32_EBL_CR_POWERON:
2303 	case MSR_IA32_DEBUGCTLMSR:
2304 	case MSR_IA32_LASTBRANCHFROMIP:
2305 	case MSR_IA32_LASTBRANCHTOIP:
2306 	case MSR_IA32_LASTINTFROMIP:
2307 	case MSR_IA32_LASTINTTOIP:
2308 	case MSR_K8_SYSCFG:
2309 	case MSR_K8_TSEG_ADDR:
2310 	case MSR_K8_TSEG_MASK:
2311 	case MSR_K7_HWCR:
2312 	case MSR_VM_HSAVE_PA:
2313 	case MSR_K8_INT_PENDING_MSG:
2314 	case MSR_AMD64_NB_CFG:
2315 	case MSR_FAM10H_MMIO_CONF_BASE:
2316 	case MSR_AMD64_BU_CFG2:
2317 	case MSR_IA32_PERF_CTL:
2318 		msr_info->data = 0;
2319 		break;
2320 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2321 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2322 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2323 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2324 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2325 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2326 		msr_info->data = 0;
2327 		break;
2328 	case MSR_IA32_UCODE_REV:
2329 		msr_info->data = 0x100000000ULL;
2330 		break;
2331 	case MSR_MTRRcap:
2332 	case 0x200 ... 0x2ff:
2333 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2334 	case 0xcd: /* fsb frequency */
2335 		msr_info->data = 3;
2336 		break;
2337 		/*
2338 		 * MSR_EBC_FREQUENCY_ID
2339 		 * Conservative value valid for even the basic CPU models.
2340 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2341 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2342 		 * and 266MHz for model 3, or 4. Set Core Clock
2343 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2344 		 * 31:24) even though these are only valid for CPU
2345 		 * models > 2, however guests may end up dividing or
2346 		 * multiplying by zero otherwise.
2347 		 */
2348 	case MSR_EBC_FREQUENCY_ID:
2349 		msr_info->data = 1 << 24;
2350 		break;
2351 	case MSR_IA32_APICBASE:
2352 		msr_info->data = kvm_get_apic_base(vcpu);
2353 		break;
2354 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2355 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2356 		break;
2357 	case MSR_IA32_TSCDEADLINE:
2358 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2359 		break;
2360 	case MSR_IA32_TSC_ADJUST:
2361 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2362 		break;
2363 	case MSR_IA32_MISC_ENABLE:
2364 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2365 		break;
2366 	case MSR_IA32_SMBASE:
2367 		if (!msr_info->host_initiated)
2368 			return 1;
2369 		msr_info->data = vcpu->arch.smbase;
2370 		break;
2371 	case MSR_IA32_PERF_STATUS:
2372 		/* TSC increment by tick */
2373 		msr_info->data = 1000ULL;
2374 		/* CPU multiplier */
2375 		msr_info->data |= (((uint64_t)4ULL) << 40);
2376 		break;
2377 	case MSR_EFER:
2378 		msr_info->data = vcpu->arch.efer;
2379 		break;
2380 	case MSR_KVM_WALL_CLOCK:
2381 	case MSR_KVM_WALL_CLOCK_NEW:
2382 		msr_info->data = vcpu->kvm->arch.wall_clock;
2383 		break;
2384 	case MSR_KVM_SYSTEM_TIME:
2385 	case MSR_KVM_SYSTEM_TIME_NEW:
2386 		msr_info->data = vcpu->arch.time;
2387 		break;
2388 	case MSR_KVM_ASYNC_PF_EN:
2389 		msr_info->data = vcpu->arch.apf.msr_val;
2390 		break;
2391 	case MSR_KVM_STEAL_TIME:
2392 		msr_info->data = vcpu->arch.st.msr_val;
2393 		break;
2394 	case MSR_KVM_PV_EOI_EN:
2395 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
2396 		break;
2397 	case MSR_IA32_P5_MC_ADDR:
2398 	case MSR_IA32_P5_MC_TYPE:
2399 	case MSR_IA32_MCG_CAP:
2400 	case MSR_IA32_MCG_CTL:
2401 	case MSR_IA32_MCG_STATUS:
2402 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2403 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2404 	case MSR_K7_CLK_CTL:
2405 		/*
2406 		 * Provide expected ramp-up count for K7. All other
2407 		 * are set to zero, indicating minimum divisors for
2408 		 * every field.
2409 		 *
2410 		 * This prevents guest kernels on AMD host with CPU
2411 		 * type 6, model 8 and higher from exploding due to
2412 		 * the rdmsr failing.
2413 		 */
2414 		msr_info->data = 0x20000000;
2415 		break;
2416 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2417 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2418 	case HV_X64_MSR_CRASH_CTL:
2419 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2420 		return kvm_hv_get_msr_common(vcpu,
2421 					     msr_info->index, &msr_info->data);
2422 		break;
2423 	case MSR_IA32_BBL_CR_CTL3:
2424 		/* This legacy MSR exists but isn't fully documented in current
2425 		 * silicon.  It is however accessed by winxp in very narrow
2426 		 * scenarios where it sets bit #19, itself documented as
2427 		 * a "reserved" bit.  Best effort attempt to source coherent
2428 		 * read data here should the balance of the register be
2429 		 * interpreted by the guest:
2430 		 *
2431 		 * L2 cache control register 3: 64GB range, 256KB size,
2432 		 * enabled, latency 0x1, configured
2433 		 */
2434 		msr_info->data = 0xbe702111;
2435 		break;
2436 	case MSR_AMD64_OSVW_ID_LENGTH:
2437 		if (!guest_cpuid_has_osvw(vcpu))
2438 			return 1;
2439 		msr_info->data = vcpu->arch.osvw.length;
2440 		break;
2441 	case MSR_AMD64_OSVW_STATUS:
2442 		if (!guest_cpuid_has_osvw(vcpu))
2443 			return 1;
2444 		msr_info->data = vcpu->arch.osvw.status;
2445 		break;
2446 	default:
2447 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2448 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2449 		if (!ignore_msrs) {
2450 			vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2451 			return 1;
2452 		} else {
2453 			vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2454 			msr_info->data = 0;
2455 		}
2456 		break;
2457 	}
2458 	return 0;
2459 }
2460 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2461 
2462 /*
2463  * Read or write a bunch of msrs. All parameters are kernel addresses.
2464  *
2465  * @return number of msrs set successfully.
2466  */
2467 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2468 		    struct kvm_msr_entry *entries,
2469 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2470 				  unsigned index, u64 *data))
2471 {
2472 	int i, idx;
2473 
2474 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2475 	for (i = 0; i < msrs->nmsrs; ++i)
2476 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2477 			break;
2478 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2479 
2480 	return i;
2481 }
2482 
2483 /*
2484  * Read or write a bunch of msrs. Parameters are user addresses.
2485  *
2486  * @return number of msrs set successfully.
2487  */
2488 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2489 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2490 				unsigned index, u64 *data),
2491 		  int writeback)
2492 {
2493 	struct kvm_msrs msrs;
2494 	struct kvm_msr_entry *entries;
2495 	int r, n;
2496 	unsigned size;
2497 
2498 	r = -EFAULT;
2499 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2500 		goto out;
2501 
2502 	r = -E2BIG;
2503 	if (msrs.nmsrs >= MAX_IO_MSRS)
2504 		goto out;
2505 
2506 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2507 	entries = memdup_user(user_msrs->entries, size);
2508 	if (IS_ERR(entries)) {
2509 		r = PTR_ERR(entries);
2510 		goto out;
2511 	}
2512 
2513 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2514 	if (r < 0)
2515 		goto out_free;
2516 
2517 	r = -EFAULT;
2518 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2519 		goto out_free;
2520 
2521 	r = n;
2522 
2523 out_free:
2524 	kfree(entries);
2525 out:
2526 	return r;
2527 }
2528 
2529 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2530 {
2531 	int r;
2532 
2533 	switch (ext) {
2534 	case KVM_CAP_IRQCHIP:
2535 	case KVM_CAP_HLT:
2536 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2537 	case KVM_CAP_SET_TSS_ADDR:
2538 	case KVM_CAP_EXT_CPUID:
2539 	case KVM_CAP_EXT_EMUL_CPUID:
2540 	case KVM_CAP_CLOCKSOURCE:
2541 	case KVM_CAP_PIT:
2542 	case KVM_CAP_NOP_IO_DELAY:
2543 	case KVM_CAP_MP_STATE:
2544 	case KVM_CAP_SYNC_MMU:
2545 	case KVM_CAP_USER_NMI:
2546 	case KVM_CAP_REINJECT_CONTROL:
2547 	case KVM_CAP_IRQ_INJECT_STATUS:
2548 	case KVM_CAP_IOEVENTFD:
2549 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
2550 	case KVM_CAP_PIT2:
2551 	case KVM_CAP_PIT_STATE2:
2552 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2553 	case KVM_CAP_XEN_HVM:
2554 	case KVM_CAP_ADJUST_CLOCK:
2555 	case KVM_CAP_VCPU_EVENTS:
2556 	case KVM_CAP_HYPERV:
2557 	case KVM_CAP_HYPERV_VAPIC:
2558 	case KVM_CAP_HYPERV_SPIN:
2559 	case KVM_CAP_HYPERV_SYNIC:
2560 	case KVM_CAP_PCI_SEGMENT:
2561 	case KVM_CAP_DEBUGREGS:
2562 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2563 	case KVM_CAP_XSAVE:
2564 	case KVM_CAP_ASYNC_PF:
2565 	case KVM_CAP_GET_TSC_KHZ:
2566 	case KVM_CAP_KVMCLOCK_CTRL:
2567 	case KVM_CAP_READONLY_MEM:
2568 	case KVM_CAP_HYPERV_TIME:
2569 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2570 	case KVM_CAP_TSC_DEADLINE_TIMER:
2571 	case KVM_CAP_ENABLE_CAP_VM:
2572 	case KVM_CAP_DISABLE_QUIRKS:
2573 	case KVM_CAP_SET_BOOT_CPU_ID:
2574  	case KVM_CAP_SPLIT_IRQCHIP:
2575 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2576 	case KVM_CAP_ASSIGN_DEV_IRQ:
2577 	case KVM_CAP_PCI_2_3:
2578 #endif
2579 		r = 1;
2580 		break;
2581 	case KVM_CAP_X86_SMM:
2582 		/* SMBASE is usually relocated above 1M on modern chipsets,
2583 		 * and SMM handlers might indeed rely on 4G segment limits,
2584 		 * so do not report SMM to be available if real mode is
2585 		 * emulated via vm86 mode.  Still, do not go to great lengths
2586 		 * to avoid userspace's usage of the feature, because it is a
2587 		 * fringe case that is not enabled except via specific settings
2588 		 * of the module parameters.
2589 		 */
2590 		r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2591 		break;
2592 	case KVM_CAP_COALESCED_MMIO:
2593 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2594 		break;
2595 	case KVM_CAP_VAPIC:
2596 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2597 		break;
2598 	case KVM_CAP_NR_VCPUS:
2599 		r = KVM_SOFT_MAX_VCPUS;
2600 		break;
2601 	case KVM_CAP_MAX_VCPUS:
2602 		r = KVM_MAX_VCPUS;
2603 		break;
2604 	case KVM_CAP_NR_MEMSLOTS:
2605 		r = KVM_USER_MEM_SLOTS;
2606 		break;
2607 	case KVM_CAP_PV_MMU:	/* obsolete */
2608 		r = 0;
2609 		break;
2610 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2611 	case KVM_CAP_IOMMU:
2612 		r = iommu_present(&pci_bus_type);
2613 		break;
2614 #endif
2615 	case KVM_CAP_MCE:
2616 		r = KVM_MAX_MCE_BANKS;
2617 		break;
2618 	case KVM_CAP_XCRS:
2619 		r = boot_cpu_has(X86_FEATURE_XSAVE);
2620 		break;
2621 	case KVM_CAP_TSC_CONTROL:
2622 		r = kvm_has_tsc_control;
2623 		break;
2624 	default:
2625 		r = 0;
2626 		break;
2627 	}
2628 	return r;
2629 
2630 }
2631 
2632 long kvm_arch_dev_ioctl(struct file *filp,
2633 			unsigned int ioctl, unsigned long arg)
2634 {
2635 	void __user *argp = (void __user *)arg;
2636 	long r;
2637 
2638 	switch (ioctl) {
2639 	case KVM_GET_MSR_INDEX_LIST: {
2640 		struct kvm_msr_list __user *user_msr_list = argp;
2641 		struct kvm_msr_list msr_list;
2642 		unsigned n;
2643 
2644 		r = -EFAULT;
2645 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2646 			goto out;
2647 		n = msr_list.nmsrs;
2648 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2649 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2650 			goto out;
2651 		r = -E2BIG;
2652 		if (n < msr_list.nmsrs)
2653 			goto out;
2654 		r = -EFAULT;
2655 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2656 				 num_msrs_to_save * sizeof(u32)))
2657 			goto out;
2658 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2659 				 &emulated_msrs,
2660 				 num_emulated_msrs * sizeof(u32)))
2661 			goto out;
2662 		r = 0;
2663 		break;
2664 	}
2665 	case KVM_GET_SUPPORTED_CPUID:
2666 	case KVM_GET_EMULATED_CPUID: {
2667 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2668 		struct kvm_cpuid2 cpuid;
2669 
2670 		r = -EFAULT;
2671 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2672 			goto out;
2673 
2674 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2675 					    ioctl);
2676 		if (r)
2677 			goto out;
2678 
2679 		r = -EFAULT;
2680 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2681 			goto out;
2682 		r = 0;
2683 		break;
2684 	}
2685 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2686 		u64 mce_cap;
2687 
2688 		mce_cap = KVM_MCE_CAP_SUPPORTED;
2689 		r = -EFAULT;
2690 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2691 			goto out;
2692 		r = 0;
2693 		break;
2694 	}
2695 	default:
2696 		r = -EINVAL;
2697 	}
2698 out:
2699 	return r;
2700 }
2701 
2702 static void wbinvd_ipi(void *garbage)
2703 {
2704 	wbinvd();
2705 }
2706 
2707 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2708 {
2709 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2710 }
2711 
2712 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu)
2713 {
2714 	set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests);
2715 }
2716 
2717 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2718 {
2719 	/* Address WBINVD may be executed by guest */
2720 	if (need_emulate_wbinvd(vcpu)) {
2721 		if (kvm_x86_ops->has_wbinvd_exit())
2722 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2723 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2724 			smp_call_function_single(vcpu->cpu,
2725 					wbinvd_ipi, NULL, 1);
2726 	}
2727 
2728 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2729 
2730 	/* Apply any externally detected TSC adjustments (due to suspend) */
2731 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2732 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2733 		vcpu->arch.tsc_offset_adjustment = 0;
2734 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2735 	}
2736 
2737 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2738 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2739 				rdtsc() - vcpu->arch.last_host_tsc;
2740 		if (tsc_delta < 0)
2741 			mark_tsc_unstable("KVM discovered backwards TSC");
2742 		if (check_tsc_unstable()) {
2743 			u64 offset = kvm_compute_tsc_offset(vcpu,
2744 						vcpu->arch.last_guest_tsc);
2745 			kvm_x86_ops->write_tsc_offset(vcpu, offset);
2746 			vcpu->arch.tsc_catchup = 1;
2747 		}
2748 		/*
2749 		 * On a host with synchronized TSC, there is no need to update
2750 		 * kvmclock on vcpu->cpu migration
2751 		 */
2752 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2753 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2754 		if (vcpu->cpu != cpu)
2755 			kvm_migrate_timers(vcpu);
2756 		vcpu->cpu = cpu;
2757 	}
2758 
2759 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2760 }
2761 
2762 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2763 {
2764 	kvm_x86_ops->vcpu_put(vcpu);
2765 	kvm_put_guest_fpu(vcpu);
2766 	vcpu->arch.last_host_tsc = rdtsc();
2767 }
2768 
2769 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2770 				    struct kvm_lapic_state *s)
2771 {
2772 	if (vcpu->arch.apicv_active)
2773 		kvm_x86_ops->sync_pir_to_irr(vcpu);
2774 
2775 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2776 
2777 	return 0;
2778 }
2779 
2780 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2781 				    struct kvm_lapic_state *s)
2782 {
2783 	kvm_apic_post_state_restore(vcpu, s);
2784 	update_cr8_intercept(vcpu);
2785 
2786 	return 0;
2787 }
2788 
2789 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2790 {
2791 	return (!lapic_in_kernel(vcpu) ||
2792 		kvm_apic_accept_pic_intr(vcpu));
2793 }
2794 
2795 /*
2796  * if userspace requested an interrupt window, check that the
2797  * interrupt window is open.
2798  *
2799  * No need to exit to userspace if we already have an interrupt queued.
2800  */
2801 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2802 {
2803 	return kvm_arch_interrupt_allowed(vcpu) &&
2804 		!kvm_cpu_has_interrupt(vcpu) &&
2805 		!kvm_event_needs_reinjection(vcpu) &&
2806 		kvm_cpu_accept_dm_intr(vcpu);
2807 }
2808 
2809 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2810 				    struct kvm_interrupt *irq)
2811 {
2812 	if (irq->irq >= KVM_NR_INTERRUPTS)
2813 		return -EINVAL;
2814 
2815 	if (!irqchip_in_kernel(vcpu->kvm)) {
2816 		kvm_queue_interrupt(vcpu, irq->irq, false);
2817 		kvm_make_request(KVM_REQ_EVENT, vcpu);
2818 		return 0;
2819 	}
2820 
2821 	/*
2822 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2823 	 * fail for in-kernel 8259.
2824 	 */
2825 	if (pic_in_kernel(vcpu->kvm))
2826 		return -ENXIO;
2827 
2828 	if (vcpu->arch.pending_external_vector != -1)
2829 		return -EEXIST;
2830 
2831 	vcpu->arch.pending_external_vector = irq->irq;
2832 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2833 	return 0;
2834 }
2835 
2836 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2837 {
2838 	kvm_inject_nmi(vcpu);
2839 
2840 	return 0;
2841 }
2842 
2843 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2844 {
2845 	kvm_make_request(KVM_REQ_SMI, vcpu);
2846 
2847 	return 0;
2848 }
2849 
2850 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2851 					   struct kvm_tpr_access_ctl *tac)
2852 {
2853 	if (tac->flags)
2854 		return -EINVAL;
2855 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
2856 	return 0;
2857 }
2858 
2859 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2860 					u64 mcg_cap)
2861 {
2862 	int r;
2863 	unsigned bank_num = mcg_cap & 0xff, bank;
2864 
2865 	r = -EINVAL;
2866 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2867 		goto out;
2868 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2869 		goto out;
2870 	r = 0;
2871 	vcpu->arch.mcg_cap = mcg_cap;
2872 	/* Init IA32_MCG_CTL to all 1s */
2873 	if (mcg_cap & MCG_CTL_P)
2874 		vcpu->arch.mcg_ctl = ~(u64)0;
2875 	/* Init IA32_MCi_CTL to all 1s */
2876 	for (bank = 0; bank < bank_num; bank++)
2877 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2878 out:
2879 	return r;
2880 }
2881 
2882 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2883 				      struct kvm_x86_mce *mce)
2884 {
2885 	u64 mcg_cap = vcpu->arch.mcg_cap;
2886 	unsigned bank_num = mcg_cap & 0xff;
2887 	u64 *banks = vcpu->arch.mce_banks;
2888 
2889 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2890 		return -EINVAL;
2891 	/*
2892 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2893 	 * reporting is disabled
2894 	 */
2895 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2896 	    vcpu->arch.mcg_ctl != ~(u64)0)
2897 		return 0;
2898 	banks += 4 * mce->bank;
2899 	/*
2900 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2901 	 * reporting is disabled for the bank
2902 	 */
2903 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2904 		return 0;
2905 	if (mce->status & MCI_STATUS_UC) {
2906 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2907 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2908 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2909 			return 0;
2910 		}
2911 		if (banks[1] & MCI_STATUS_VAL)
2912 			mce->status |= MCI_STATUS_OVER;
2913 		banks[2] = mce->addr;
2914 		banks[3] = mce->misc;
2915 		vcpu->arch.mcg_status = mce->mcg_status;
2916 		banks[1] = mce->status;
2917 		kvm_queue_exception(vcpu, MC_VECTOR);
2918 	} else if (!(banks[1] & MCI_STATUS_VAL)
2919 		   || !(banks[1] & MCI_STATUS_UC)) {
2920 		if (banks[1] & MCI_STATUS_VAL)
2921 			mce->status |= MCI_STATUS_OVER;
2922 		banks[2] = mce->addr;
2923 		banks[3] = mce->misc;
2924 		banks[1] = mce->status;
2925 	} else
2926 		banks[1] |= MCI_STATUS_OVER;
2927 	return 0;
2928 }
2929 
2930 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2931 					       struct kvm_vcpu_events *events)
2932 {
2933 	process_nmi(vcpu);
2934 	events->exception.injected =
2935 		vcpu->arch.exception.pending &&
2936 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
2937 	events->exception.nr = vcpu->arch.exception.nr;
2938 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2939 	events->exception.pad = 0;
2940 	events->exception.error_code = vcpu->arch.exception.error_code;
2941 
2942 	events->interrupt.injected =
2943 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2944 	events->interrupt.nr = vcpu->arch.interrupt.nr;
2945 	events->interrupt.soft = 0;
2946 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
2947 
2948 	events->nmi.injected = vcpu->arch.nmi_injected;
2949 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
2950 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2951 	events->nmi.pad = 0;
2952 
2953 	events->sipi_vector = 0; /* never valid when reporting to user space */
2954 
2955 	events->smi.smm = is_smm(vcpu);
2956 	events->smi.pending = vcpu->arch.smi_pending;
2957 	events->smi.smm_inside_nmi =
2958 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
2959 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
2960 
2961 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2962 			 | KVM_VCPUEVENT_VALID_SHADOW
2963 			 | KVM_VCPUEVENT_VALID_SMM);
2964 	memset(&events->reserved, 0, sizeof(events->reserved));
2965 }
2966 
2967 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2968 					      struct kvm_vcpu_events *events)
2969 {
2970 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2971 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2972 			      | KVM_VCPUEVENT_VALID_SHADOW
2973 			      | KVM_VCPUEVENT_VALID_SMM))
2974 		return -EINVAL;
2975 
2976 	if (events->exception.injected &&
2977 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
2978 		return -EINVAL;
2979 
2980 	process_nmi(vcpu);
2981 	vcpu->arch.exception.pending = events->exception.injected;
2982 	vcpu->arch.exception.nr = events->exception.nr;
2983 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2984 	vcpu->arch.exception.error_code = events->exception.error_code;
2985 
2986 	vcpu->arch.interrupt.pending = events->interrupt.injected;
2987 	vcpu->arch.interrupt.nr = events->interrupt.nr;
2988 	vcpu->arch.interrupt.soft = events->interrupt.soft;
2989 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2990 		kvm_x86_ops->set_interrupt_shadow(vcpu,
2991 						  events->interrupt.shadow);
2992 
2993 	vcpu->arch.nmi_injected = events->nmi.injected;
2994 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2995 		vcpu->arch.nmi_pending = events->nmi.pending;
2996 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2997 
2998 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2999 	    lapic_in_kernel(vcpu))
3000 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3001 
3002 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3003 		if (events->smi.smm)
3004 			vcpu->arch.hflags |= HF_SMM_MASK;
3005 		else
3006 			vcpu->arch.hflags &= ~HF_SMM_MASK;
3007 		vcpu->arch.smi_pending = events->smi.pending;
3008 		if (events->smi.smm_inside_nmi)
3009 			vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3010 		else
3011 			vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3012 		if (lapic_in_kernel(vcpu)) {
3013 			if (events->smi.latched_init)
3014 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3015 			else
3016 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3017 		}
3018 	}
3019 
3020 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3021 
3022 	return 0;
3023 }
3024 
3025 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3026 					     struct kvm_debugregs *dbgregs)
3027 {
3028 	unsigned long val;
3029 
3030 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3031 	kvm_get_dr(vcpu, 6, &val);
3032 	dbgregs->dr6 = val;
3033 	dbgregs->dr7 = vcpu->arch.dr7;
3034 	dbgregs->flags = 0;
3035 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3036 }
3037 
3038 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3039 					    struct kvm_debugregs *dbgregs)
3040 {
3041 	if (dbgregs->flags)
3042 		return -EINVAL;
3043 
3044 	if (dbgregs->dr6 & ~0xffffffffull)
3045 		return -EINVAL;
3046 	if (dbgregs->dr7 & ~0xffffffffull)
3047 		return -EINVAL;
3048 
3049 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3050 	kvm_update_dr0123(vcpu);
3051 	vcpu->arch.dr6 = dbgregs->dr6;
3052 	kvm_update_dr6(vcpu);
3053 	vcpu->arch.dr7 = dbgregs->dr7;
3054 	kvm_update_dr7(vcpu);
3055 
3056 	return 0;
3057 }
3058 
3059 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3060 
3061 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3062 {
3063 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3064 	u64 xstate_bv = xsave->header.xfeatures;
3065 	u64 valid;
3066 
3067 	/*
3068 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3069 	 * leaves 0 and 1 in the loop below.
3070 	 */
3071 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3072 
3073 	/* Set XSTATE_BV */
3074 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3075 
3076 	/*
3077 	 * Copy each region from the possibly compacted offset to the
3078 	 * non-compacted offset.
3079 	 */
3080 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3081 	while (valid) {
3082 		u64 feature = valid & -valid;
3083 		int index = fls64(feature) - 1;
3084 		void *src = get_xsave_addr(xsave, feature);
3085 
3086 		if (src) {
3087 			u32 size, offset, ecx, edx;
3088 			cpuid_count(XSTATE_CPUID, index,
3089 				    &size, &offset, &ecx, &edx);
3090 			memcpy(dest + offset, src, size);
3091 		}
3092 
3093 		valid -= feature;
3094 	}
3095 }
3096 
3097 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3098 {
3099 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3100 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3101 	u64 valid;
3102 
3103 	/*
3104 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3105 	 * leaves 0 and 1 in the loop below.
3106 	 */
3107 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3108 
3109 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3110 	xsave->header.xfeatures = xstate_bv;
3111 	if (boot_cpu_has(X86_FEATURE_XSAVES))
3112 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3113 
3114 	/*
3115 	 * Copy each region from the non-compacted offset to the
3116 	 * possibly compacted offset.
3117 	 */
3118 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3119 	while (valid) {
3120 		u64 feature = valid & -valid;
3121 		int index = fls64(feature) - 1;
3122 		void *dest = get_xsave_addr(xsave, feature);
3123 
3124 		if (dest) {
3125 			u32 size, offset, ecx, edx;
3126 			cpuid_count(XSTATE_CPUID, index,
3127 				    &size, &offset, &ecx, &edx);
3128 			memcpy(dest, src + offset, size);
3129 		}
3130 
3131 		valid -= feature;
3132 	}
3133 }
3134 
3135 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3136 					 struct kvm_xsave *guest_xsave)
3137 {
3138 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3139 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3140 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3141 	} else {
3142 		memcpy(guest_xsave->region,
3143 			&vcpu->arch.guest_fpu.state.fxsave,
3144 			sizeof(struct fxregs_state));
3145 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3146 			XFEATURE_MASK_FPSSE;
3147 	}
3148 }
3149 
3150 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3151 					struct kvm_xsave *guest_xsave)
3152 {
3153 	u64 xstate_bv =
3154 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3155 
3156 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3157 		/*
3158 		 * Here we allow setting states that are not present in
3159 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3160 		 * with old userspace.
3161 		 */
3162 		if (xstate_bv & ~kvm_supported_xcr0())
3163 			return -EINVAL;
3164 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3165 	} else {
3166 		if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3167 			return -EINVAL;
3168 		memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3169 			guest_xsave->region, sizeof(struct fxregs_state));
3170 	}
3171 	return 0;
3172 }
3173 
3174 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3175 					struct kvm_xcrs *guest_xcrs)
3176 {
3177 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3178 		guest_xcrs->nr_xcrs = 0;
3179 		return;
3180 	}
3181 
3182 	guest_xcrs->nr_xcrs = 1;
3183 	guest_xcrs->flags = 0;
3184 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3185 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3186 }
3187 
3188 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3189 				       struct kvm_xcrs *guest_xcrs)
3190 {
3191 	int i, r = 0;
3192 
3193 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
3194 		return -EINVAL;
3195 
3196 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3197 		return -EINVAL;
3198 
3199 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3200 		/* Only support XCR0 currently */
3201 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3202 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3203 				guest_xcrs->xcrs[i].value);
3204 			break;
3205 		}
3206 	if (r)
3207 		r = -EINVAL;
3208 	return r;
3209 }
3210 
3211 /*
3212  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3213  * stopped by the hypervisor.  This function will be called from the host only.
3214  * EINVAL is returned when the host attempts to set the flag for a guest that
3215  * does not support pv clocks.
3216  */
3217 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3218 {
3219 	if (!vcpu->arch.pv_time_enabled)
3220 		return -EINVAL;
3221 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3222 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3223 	return 0;
3224 }
3225 
3226 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3227 				     struct kvm_enable_cap *cap)
3228 {
3229 	if (cap->flags)
3230 		return -EINVAL;
3231 
3232 	switch (cap->cap) {
3233 	case KVM_CAP_HYPERV_SYNIC:
3234 		return kvm_hv_activate_synic(vcpu);
3235 	default:
3236 		return -EINVAL;
3237 	}
3238 }
3239 
3240 long kvm_arch_vcpu_ioctl(struct file *filp,
3241 			 unsigned int ioctl, unsigned long arg)
3242 {
3243 	struct kvm_vcpu *vcpu = filp->private_data;
3244 	void __user *argp = (void __user *)arg;
3245 	int r;
3246 	union {
3247 		struct kvm_lapic_state *lapic;
3248 		struct kvm_xsave *xsave;
3249 		struct kvm_xcrs *xcrs;
3250 		void *buffer;
3251 	} u;
3252 
3253 	u.buffer = NULL;
3254 	switch (ioctl) {
3255 	case KVM_GET_LAPIC: {
3256 		r = -EINVAL;
3257 		if (!lapic_in_kernel(vcpu))
3258 			goto out;
3259 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3260 
3261 		r = -ENOMEM;
3262 		if (!u.lapic)
3263 			goto out;
3264 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3265 		if (r)
3266 			goto out;
3267 		r = -EFAULT;
3268 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3269 			goto out;
3270 		r = 0;
3271 		break;
3272 	}
3273 	case KVM_SET_LAPIC: {
3274 		r = -EINVAL;
3275 		if (!lapic_in_kernel(vcpu))
3276 			goto out;
3277 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3278 		if (IS_ERR(u.lapic))
3279 			return PTR_ERR(u.lapic);
3280 
3281 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3282 		break;
3283 	}
3284 	case KVM_INTERRUPT: {
3285 		struct kvm_interrupt irq;
3286 
3287 		r = -EFAULT;
3288 		if (copy_from_user(&irq, argp, sizeof irq))
3289 			goto out;
3290 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3291 		break;
3292 	}
3293 	case KVM_NMI: {
3294 		r = kvm_vcpu_ioctl_nmi(vcpu);
3295 		break;
3296 	}
3297 	case KVM_SMI: {
3298 		r = kvm_vcpu_ioctl_smi(vcpu);
3299 		break;
3300 	}
3301 	case KVM_SET_CPUID: {
3302 		struct kvm_cpuid __user *cpuid_arg = argp;
3303 		struct kvm_cpuid cpuid;
3304 
3305 		r = -EFAULT;
3306 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3307 			goto out;
3308 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3309 		break;
3310 	}
3311 	case KVM_SET_CPUID2: {
3312 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3313 		struct kvm_cpuid2 cpuid;
3314 
3315 		r = -EFAULT;
3316 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3317 			goto out;
3318 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3319 					      cpuid_arg->entries);
3320 		break;
3321 	}
3322 	case KVM_GET_CPUID2: {
3323 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3324 		struct kvm_cpuid2 cpuid;
3325 
3326 		r = -EFAULT;
3327 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3328 			goto out;
3329 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3330 					      cpuid_arg->entries);
3331 		if (r)
3332 			goto out;
3333 		r = -EFAULT;
3334 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3335 			goto out;
3336 		r = 0;
3337 		break;
3338 	}
3339 	case KVM_GET_MSRS:
3340 		r = msr_io(vcpu, argp, do_get_msr, 1);
3341 		break;
3342 	case KVM_SET_MSRS:
3343 		r = msr_io(vcpu, argp, do_set_msr, 0);
3344 		break;
3345 	case KVM_TPR_ACCESS_REPORTING: {
3346 		struct kvm_tpr_access_ctl tac;
3347 
3348 		r = -EFAULT;
3349 		if (copy_from_user(&tac, argp, sizeof tac))
3350 			goto out;
3351 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3352 		if (r)
3353 			goto out;
3354 		r = -EFAULT;
3355 		if (copy_to_user(argp, &tac, sizeof tac))
3356 			goto out;
3357 		r = 0;
3358 		break;
3359 	};
3360 	case KVM_SET_VAPIC_ADDR: {
3361 		struct kvm_vapic_addr va;
3362 
3363 		r = -EINVAL;
3364 		if (!lapic_in_kernel(vcpu))
3365 			goto out;
3366 		r = -EFAULT;
3367 		if (copy_from_user(&va, argp, sizeof va))
3368 			goto out;
3369 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3370 		break;
3371 	}
3372 	case KVM_X86_SETUP_MCE: {
3373 		u64 mcg_cap;
3374 
3375 		r = -EFAULT;
3376 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3377 			goto out;
3378 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3379 		break;
3380 	}
3381 	case KVM_X86_SET_MCE: {
3382 		struct kvm_x86_mce mce;
3383 
3384 		r = -EFAULT;
3385 		if (copy_from_user(&mce, argp, sizeof mce))
3386 			goto out;
3387 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3388 		break;
3389 	}
3390 	case KVM_GET_VCPU_EVENTS: {
3391 		struct kvm_vcpu_events events;
3392 
3393 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3394 
3395 		r = -EFAULT;
3396 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3397 			break;
3398 		r = 0;
3399 		break;
3400 	}
3401 	case KVM_SET_VCPU_EVENTS: {
3402 		struct kvm_vcpu_events events;
3403 
3404 		r = -EFAULT;
3405 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3406 			break;
3407 
3408 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3409 		break;
3410 	}
3411 	case KVM_GET_DEBUGREGS: {
3412 		struct kvm_debugregs dbgregs;
3413 
3414 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3415 
3416 		r = -EFAULT;
3417 		if (copy_to_user(argp, &dbgregs,
3418 				 sizeof(struct kvm_debugregs)))
3419 			break;
3420 		r = 0;
3421 		break;
3422 	}
3423 	case KVM_SET_DEBUGREGS: {
3424 		struct kvm_debugregs dbgregs;
3425 
3426 		r = -EFAULT;
3427 		if (copy_from_user(&dbgregs, argp,
3428 				   sizeof(struct kvm_debugregs)))
3429 			break;
3430 
3431 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3432 		break;
3433 	}
3434 	case KVM_GET_XSAVE: {
3435 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3436 		r = -ENOMEM;
3437 		if (!u.xsave)
3438 			break;
3439 
3440 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3441 
3442 		r = -EFAULT;
3443 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3444 			break;
3445 		r = 0;
3446 		break;
3447 	}
3448 	case KVM_SET_XSAVE: {
3449 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3450 		if (IS_ERR(u.xsave))
3451 			return PTR_ERR(u.xsave);
3452 
3453 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3454 		break;
3455 	}
3456 	case KVM_GET_XCRS: {
3457 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3458 		r = -ENOMEM;
3459 		if (!u.xcrs)
3460 			break;
3461 
3462 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3463 
3464 		r = -EFAULT;
3465 		if (copy_to_user(argp, u.xcrs,
3466 				 sizeof(struct kvm_xcrs)))
3467 			break;
3468 		r = 0;
3469 		break;
3470 	}
3471 	case KVM_SET_XCRS: {
3472 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3473 		if (IS_ERR(u.xcrs))
3474 			return PTR_ERR(u.xcrs);
3475 
3476 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3477 		break;
3478 	}
3479 	case KVM_SET_TSC_KHZ: {
3480 		u32 user_tsc_khz;
3481 
3482 		r = -EINVAL;
3483 		user_tsc_khz = (u32)arg;
3484 
3485 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3486 			goto out;
3487 
3488 		if (user_tsc_khz == 0)
3489 			user_tsc_khz = tsc_khz;
3490 
3491 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3492 			r = 0;
3493 
3494 		goto out;
3495 	}
3496 	case KVM_GET_TSC_KHZ: {
3497 		r = vcpu->arch.virtual_tsc_khz;
3498 		goto out;
3499 	}
3500 	case KVM_KVMCLOCK_CTRL: {
3501 		r = kvm_set_guest_paused(vcpu);
3502 		goto out;
3503 	}
3504 	case KVM_ENABLE_CAP: {
3505 		struct kvm_enable_cap cap;
3506 
3507 		r = -EFAULT;
3508 		if (copy_from_user(&cap, argp, sizeof(cap)))
3509 			goto out;
3510 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3511 		break;
3512 	}
3513 	default:
3514 		r = -EINVAL;
3515 	}
3516 out:
3517 	kfree(u.buffer);
3518 	return r;
3519 }
3520 
3521 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3522 {
3523 	return VM_FAULT_SIGBUS;
3524 }
3525 
3526 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3527 {
3528 	int ret;
3529 
3530 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3531 		return -EINVAL;
3532 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3533 	return ret;
3534 }
3535 
3536 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3537 					      u64 ident_addr)
3538 {
3539 	kvm->arch.ept_identity_map_addr = ident_addr;
3540 	return 0;
3541 }
3542 
3543 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3544 					  u32 kvm_nr_mmu_pages)
3545 {
3546 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3547 		return -EINVAL;
3548 
3549 	mutex_lock(&kvm->slots_lock);
3550 
3551 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3552 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3553 
3554 	mutex_unlock(&kvm->slots_lock);
3555 	return 0;
3556 }
3557 
3558 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3559 {
3560 	return kvm->arch.n_max_mmu_pages;
3561 }
3562 
3563 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3564 {
3565 	int r;
3566 
3567 	r = 0;
3568 	switch (chip->chip_id) {
3569 	case KVM_IRQCHIP_PIC_MASTER:
3570 		memcpy(&chip->chip.pic,
3571 			&pic_irqchip(kvm)->pics[0],
3572 			sizeof(struct kvm_pic_state));
3573 		break;
3574 	case KVM_IRQCHIP_PIC_SLAVE:
3575 		memcpy(&chip->chip.pic,
3576 			&pic_irqchip(kvm)->pics[1],
3577 			sizeof(struct kvm_pic_state));
3578 		break;
3579 	case KVM_IRQCHIP_IOAPIC:
3580 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3581 		break;
3582 	default:
3583 		r = -EINVAL;
3584 		break;
3585 	}
3586 	return r;
3587 }
3588 
3589 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3590 {
3591 	int r;
3592 
3593 	r = 0;
3594 	switch (chip->chip_id) {
3595 	case KVM_IRQCHIP_PIC_MASTER:
3596 		spin_lock(&pic_irqchip(kvm)->lock);
3597 		memcpy(&pic_irqchip(kvm)->pics[0],
3598 			&chip->chip.pic,
3599 			sizeof(struct kvm_pic_state));
3600 		spin_unlock(&pic_irqchip(kvm)->lock);
3601 		break;
3602 	case KVM_IRQCHIP_PIC_SLAVE:
3603 		spin_lock(&pic_irqchip(kvm)->lock);
3604 		memcpy(&pic_irqchip(kvm)->pics[1],
3605 			&chip->chip.pic,
3606 			sizeof(struct kvm_pic_state));
3607 		spin_unlock(&pic_irqchip(kvm)->lock);
3608 		break;
3609 	case KVM_IRQCHIP_IOAPIC:
3610 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3611 		break;
3612 	default:
3613 		r = -EINVAL;
3614 		break;
3615 	}
3616 	kvm_pic_update_irq(pic_irqchip(kvm));
3617 	return r;
3618 }
3619 
3620 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3621 {
3622 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3623 
3624 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3625 
3626 	mutex_lock(&kps->lock);
3627 	memcpy(ps, &kps->channels, sizeof(*ps));
3628 	mutex_unlock(&kps->lock);
3629 	return 0;
3630 }
3631 
3632 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3633 {
3634 	int i;
3635 	struct kvm_pit *pit = kvm->arch.vpit;
3636 
3637 	mutex_lock(&pit->pit_state.lock);
3638 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3639 	for (i = 0; i < 3; i++)
3640 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3641 	mutex_unlock(&pit->pit_state.lock);
3642 	return 0;
3643 }
3644 
3645 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3646 {
3647 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3648 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3649 		sizeof(ps->channels));
3650 	ps->flags = kvm->arch.vpit->pit_state.flags;
3651 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3652 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3653 	return 0;
3654 }
3655 
3656 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3657 {
3658 	int start = 0;
3659 	int i;
3660 	u32 prev_legacy, cur_legacy;
3661 	struct kvm_pit *pit = kvm->arch.vpit;
3662 
3663 	mutex_lock(&pit->pit_state.lock);
3664 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3665 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3666 	if (!prev_legacy && cur_legacy)
3667 		start = 1;
3668 	memcpy(&pit->pit_state.channels, &ps->channels,
3669 	       sizeof(pit->pit_state.channels));
3670 	pit->pit_state.flags = ps->flags;
3671 	for (i = 0; i < 3; i++)
3672 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3673 				   start && i == 0);
3674 	mutex_unlock(&pit->pit_state.lock);
3675 	return 0;
3676 }
3677 
3678 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3679 				 struct kvm_reinject_control *control)
3680 {
3681 	struct kvm_pit *pit = kvm->arch.vpit;
3682 
3683 	if (!pit)
3684 		return -ENXIO;
3685 
3686 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
3687 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3688 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3689 	 */
3690 	mutex_lock(&pit->pit_state.lock);
3691 	kvm_pit_set_reinject(pit, control->pit_reinject);
3692 	mutex_unlock(&pit->pit_state.lock);
3693 
3694 	return 0;
3695 }
3696 
3697 /**
3698  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3699  * @kvm: kvm instance
3700  * @log: slot id and address to which we copy the log
3701  *
3702  * Steps 1-4 below provide general overview of dirty page logging. See
3703  * kvm_get_dirty_log_protect() function description for additional details.
3704  *
3705  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3706  * always flush the TLB (step 4) even if previous step failed  and the dirty
3707  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3708  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3709  * writes will be marked dirty for next log read.
3710  *
3711  *   1. Take a snapshot of the bit and clear it if needed.
3712  *   2. Write protect the corresponding page.
3713  *   3. Copy the snapshot to the userspace.
3714  *   4. Flush TLB's if needed.
3715  */
3716 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3717 {
3718 	bool is_dirty = false;
3719 	int r;
3720 
3721 	mutex_lock(&kvm->slots_lock);
3722 
3723 	/*
3724 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3725 	 */
3726 	if (kvm_x86_ops->flush_log_dirty)
3727 		kvm_x86_ops->flush_log_dirty(kvm);
3728 
3729 	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3730 
3731 	/*
3732 	 * All the TLBs can be flushed out of mmu lock, see the comments in
3733 	 * kvm_mmu_slot_remove_write_access().
3734 	 */
3735 	lockdep_assert_held(&kvm->slots_lock);
3736 	if (is_dirty)
3737 		kvm_flush_remote_tlbs(kvm);
3738 
3739 	mutex_unlock(&kvm->slots_lock);
3740 	return r;
3741 }
3742 
3743 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3744 			bool line_status)
3745 {
3746 	if (!irqchip_in_kernel(kvm))
3747 		return -ENXIO;
3748 
3749 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3750 					irq_event->irq, irq_event->level,
3751 					line_status);
3752 	return 0;
3753 }
3754 
3755 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3756 				   struct kvm_enable_cap *cap)
3757 {
3758 	int r;
3759 
3760 	if (cap->flags)
3761 		return -EINVAL;
3762 
3763 	switch (cap->cap) {
3764 	case KVM_CAP_DISABLE_QUIRKS:
3765 		kvm->arch.disabled_quirks = cap->args[0];
3766 		r = 0;
3767 		break;
3768 	case KVM_CAP_SPLIT_IRQCHIP: {
3769 		mutex_lock(&kvm->lock);
3770 		r = -EINVAL;
3771 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3772 			goto split_irqchip_unlock;
3773 		r = -EEXIST;
3774 		if (irqchip_in_kernel(kvm))
3775 			goto split_irqchip_unlock;
3776 		if (atomic_read(&kvm->online_vcpus))
3777 			goto split_irqchip_unlock;
3778 		r = kvm_setup_empty_irq_routing(kvm);
3779 		if (r)
3780 			goto split_irqchip_unlock;
3781 		/* Pairs with irqchip_in_kernel. */
3782 		smp_wmb();
3783 		kvm->arch.irqchip_split = true;
3784 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3785 		r = 0;
3786 split_irqchip_unlock:
3787 		mutex_unlock(&kvm->lock);
3788 		break;
3789 	}
3790 	default:
3791 		r = -EINVAL;
3792 		break;
3793 	}
3794 	return r;
3795 }
3796 
3797 long kvm_arch_vm_ioctl(struct file *filp,
3798 		       unsigned int ioctl, unsigned long arg)
3799 {
3800 	struct kvm *kvm = filp->private_data;
3801 	void __user *argp = (void __user *)arg;
3802 	int r = -ENOTTY;
3803 	/*
3804 	 * This union makes it completely explicit to gcc-3.x
3805 	 * that these two variables' stack usage should be
3806 	 * combined, not added together.
3807 	 */
3808 	union {
3809 		struct kvm_pit_state ps;
3810 		struct kvm_pit_state2 ps2;
3811 		struct kvm_pit_config pit_config;
3812 	} u;
3813 
3814 	switch (ioctl) {
3815 	case KVM_SET_TSS_ADDR:
3816 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3817 		break;
3818 	case KVM_SET_IDENTITY_MAP_ADDR: {
3819 		u64 ident_addr;
3820 
3821 		r = -EFAULT;
3822 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3823 			goto out;
3824 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3825 		break;
3826 	}
3827 	case KVM_SET_NR_MMU_PAGES:
3828 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3829 		break;
3830 	case KVM_GET_NR_MMU_PAGES:
3831 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3832 		break;
3833 	case KVM_CREATE_IRQCHIP: {
3834 		struct kvm_pic *vpic;
3835 
3836 		mutex_lock(&kvm->lock);
3837 		r = -EEXIST;
3838 		if (kvm->arch.vpic)
3839 			goto create_irqchip_unlock;
3840 		r = -EINVAL;
3841 		if (atomic_read(&kvm->online_vcpus))
3842 			goto create_irqchip_unlock;
3843 		r = -ENOMEM;
3844 		vpic = kvm_create_pic(kvm);
3845 		if (vpic) {
3846 			r = kvm_ioapic_init(kvm);
3847 			if (r) {
3848 				mutex_lock(&kvm->slots_lock);
3849 				kvm_destroy_pic(vpic);
3850 				mutex_unlock(&kvm->slots_lock);
3851 				goto create_irqchip_unlock;
3852 			}
3853 		} else
3854 			goto create_irqchip_unlock;
3855 		r = kvm_setup_default_irq_routing(kvm);
3856 		if (r) {
3857 			mutex_lock(&kvm->slots_lock);
3858 			mutex_lock(&kvm->irq_lock);
3859 			kvm_ioapic_destroy(kvm);
3860 			kvm_destroy_pic(vpic);
3861 			mutex_unlock(&kvm->irq_lock);
3862 			mutex_unlock(&kvm->slots_lock);
3863 			goto create_irqchip_unlock;
3864 		}
3865 		/* Write kvm->irq_routing before kvm->arch.vpic.  */
3866 		smp_wmb();
3867 		kvm->arch.vpic = vpic;
3868 	create_irqchip_unlock:
3869 		mutex_unlock(&kvm->lock);
3870 		break;
3871 	}
3872 	case KVM_CREATE_PIT:
3873 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3874 		goto create_pit;
3875 	case KVM_CREATE_PIT2:
3876 		r = -EFAULT;
3877 		if (copy_from_user(&u.pit_config, argp,
3878 				   sizeof(struct kvm_pit_config)))
3879 			goto out;
3880 	create_pit:
3881 		mutex_lock(&kvm->slots_lock);
3882 		r = -EEXIST;
3883 		if (kvm->arch.vpit)
3884 			goto create_pit_unlock;
3885 		r = -ENOMEM;
3886 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3887 		if (kvm->arch.vpit)
3888 			r = 0;
3889 	create_pit_unlock:
3890 		mutex_unlock(&kvm->slots_lock);
3891 		break;
3892 	case KVM_GET_IRQCHIP: {
3893 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3894 		struct kvm_irqchip *chip;
3895 
3896 		chip = memdup_user(argp, sizeof(*chip));
3897 		if (IS_ERR(chip)) {
3898 			r = PTR_ERR(chip);
3899 			goto out;
3900 		}
3901 
3902 		r = -ENXIO;
3903 		if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3904 			goto get_irqchip_out;
3905 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3906 		if (r)
3907 			goto get_irqchip_out;
3908 		r = -EFAULT;
3909 		if (copy_to_user(argp, chip, sizeof *chip))
3910 			goto get_irqchip_out;
3911 		r = 0;
3912 	get_irqchip_out:
3913 		kfree(chip);
3914 		break;
3915 	}
3916 	case KVM_SET_IRQCHIP: {
3917 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3918 		struct kvm_irqchip *chip;
3919 
3920 		chip = memdup_user(argp, sizeof(*chip));
3921 		if (IS_ERR(chip)) {
3922 			r = PTR_ERR(chip);
3923 			goto out;
3924 		}
3925 
3926 		r = -ENXIO;
3927 		if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3928 			goto set_irqchip_out;
3929 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3930 		if (r)
3931 			goto set_irqchip_out;
3932 		r = 0;
3933 	set_irqchip_out:
3934 		kfree(chip);
3935 		break;
3936 	}
3937 	case KVM_GET_PIT: {
3938 		r = -EFAULT;
3939 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3940 			goto out;
3941 		r = -ENXIO;
3942 		if (!kvm->arch.vpit)
3943 			goto out;
3944 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3945 		if (r)
3946 			goto out;
3947 		r = -EFAULT;
3948 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3949 			goto out;
3950 		r = 0;
3951 		break;
3952 	}
3953 	case KVM_SET_PIT: {
3954 		r = -EFAULT;
3955 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
3956 			goto out;
3957 		r = -ENXIO;
3958 		if (!kvm->arch.vpit)
3959 			goto out;
3960 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3961 		break;
3962 	}
3963 	case KVM_GET_PIT2: {
3964 		r = -ENXIO;
3965 		if (!kvm->arch.vpit)
3966 			goto out;
3967 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3968 		if (r)
3969 			goto out;
3970 		r = -EFAULT;
3971 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3972 			goto out;
3973 		r = 0;
3974 		break;
3975 	}
3976 	case KVM_SET_PIT2: {
3977 		r = -EFAULT;
3978 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3979 			goto out;
3980 		r = -ENXIO;
3981 		if (!kvm->arch.vpit)
3982 			goto out;
3983 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3984 		break;
3985 	}
3986 	case KVM_REINJECT_CONTROL: {
3987 		struct kvm_reinject_control control;
3988 		r =  -EFAULT;
3989 		if (copy_from_user(&control, argp, sizeof(control)))
3990 			goto out;
3991 		r = kvm_vm_ioctl_reinject(kvm, &control);
3992 		break;
3993 	}
3994 	case KVM_SET_BOOT_CPU_ID:
3995 		r = 0;
3996 		mutex_lock(&kvm->lock);
3997 		if (atomic_read(&kvm->online_vcpus) != 0)
3998 			r = -EBUSY;
3999 		else
4000 			kvm->arch.bsp_vcpu_id = arg;
4001 		mutex_unlock(&kvm->lock);
4002 		break;
4003 	case KVM_XEN_HVM_CONFIG: {
4004 		r = -EFAULT;
4005 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4006 				   sizeof(struct kvm_xen_hvm_config)))
4007 			goto out;
4008 		r = -EINVAL;
4009 		if (kvm->arch.xen_hvm_config.flags)
4010 			goto out;
4011 		r = 0;
4012 		break;
4013 	}
4014 	case KVM_SET_CLOCK: {
4015 		struct kvm_clock_data user_ns;
4016 		u64 now_ns;
4017 		s64 delta;
4018 
4019 		r = -EFAULT;
4020 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4021 			goto out;
4022 
4023 		r = -EINVAL;
4024 		if (user_ns.flags)
4025 			goto out;
4026 
4027 		r = 0;
4028 		local_irq_disable();
4029 		now_ns = get_kernel_ns();
4030 		delta = user_ns.clock - now_ns;
4031 		local_irq_enable();
4032 		kvm->arch.kvmclock_offset = delta;
4033 		kvm_gen_update_masterclock(kvm);
4034 		break;
4035 	}
4036 	case KVM_GET_CLOCK: {
4037 		struct kvm_clock_data user_ns;
4038 		u64 now_ns;
4039 
4040 		local_irq_disable();
4041 		now_ns = get_kernel_ns();
4042 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4043 		local_irq_enable();
4044 		user_ns.flags = 0;
4045 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4046 
4047 		r = -EFAULT;
4048 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4049 			goto out;
4050 		r = 0;
4051 		break;
4052 	}
4053 	case KVM_ENABLE_CAP: {
4054 		struct kvm_enable_cap cap;
4055 
4056 		r = -EFAULT;
4057 		if (copy_from_user(&cap, argp, sizeof(cap)))
4058 			goto out;
4059 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4060 		break;
4061 	}
4062 	default:
4063 		r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4064 	}
4065 out:
4066 	return r;
4067 }
4068 
4069 static void kvm_init_msr_list(void)
4070 {
4071 	u32 dummy[2];
4072 	unsigned i, j;
4073 
4074 	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4075 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4076 			continue;
4077 
4078 		/*
4079 		 * Even MSRs that are valid in the host may not be exposed
4080 		 * to the guests in some cases.
4081 		 */
4082 		switch (msrs_to_save[i]) {
4083 		case MSR_IA32_BNDCFGS:
4084 			if (!kvm_x86_ops->mpx_supported())
4085 				continue;
4086 			break;
4087 		case MSR_TSC_AUX:
4088 			if (!kvm_x86_ops->rdtscp_supported())
4089 				continue;
4090 			break;
4091 		default:
4092 			break;
4093 		}
4094 
4095 		if (j < i)
4096 			msrs_to_save[j] = msrs_to_save[i];
4097 		j++;
4098 	}
4099 	num_msrs_to_save = j;
4100 
4101 	for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4102 		switch (emulated_msrs[i]) {
4103 		case MSR_IA32_SMBASE:
4104 			if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4105 				continue;
4106 			break;
4107 		default:
4108 			break;
4109 		}
4110 
4111 		if (j < i)
4112 			emulated_msrs[j] = emulated_msrs[i];
4113 		j++;
4114 	}
4115 	num_emulated_msrs = j;
4116 }
4117 
4118 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4119 			   const void *v)
4120 {
4121 	int handled = 0;
4122 	int n;
4123 
4124 	do {
4125 		n = min(len, 8);
4126 		if (!(lapic_in_kernel(vcpu) &&
4127 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4128 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4129 			break;
4130 		handled += n;
4131 		addr += n;
4132 		len -= n;
4133 		v += n;
4134 	} while (len);
4135 
4136 	return handled;
4137 }
4138 
4139 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4140 {
4141 	int handled = 0;
4142 	int n;
4143 
4144 	do {
4145 		n = min(len, 8);
4146 		if (!(lapic_in_kernel(vcpu) &&
4147 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4148 					 addr, n, v))
4149 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4150 			break;
4151 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4152 		handled += n;
4153 		addr += n;
4154 		len -= n;
4155 		v += n;
4156 	} while (len);
4157 
4158 	return handled;
4159 }
4160 
4161 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4162 			struct kvm_segment *var, int seg)
4163 {
4164 	kvm_x86_ops->set_segment(vcpu, var, seg);
4165 }
4166 
4167 void kvm_get_segment(struct kvm_vcpu *vcpu,
4168 		     struct kvm_segment *var, int seg)
4169 {
4170 	kvm_x86_ops->get_segment(vcpu, var, seg);
4171 }
4172 
4173 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4174 			   struct x86_exception *exception)
4175 {
4176 	gpa_t t_gpa;
4177 
4178 	BUG_ON(!mmu_is_nested(vcpu));
4179 
4180 	/* NPT walks are always user-walks */
4181 	access |= PFERR_USER_MASK;
4182 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4183 
4184 	return t_gpa;
4185 }
4186 
4187 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4188 			      struct x86_exception *exception)
4189 {
4190 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4191 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4192 }
4193 
4194  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4195 				struct x86_exception *exception)
4196 {
4197 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4198 	access |= PFERR_FETCH_MASK;
4199 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4200 }
4201 
4202 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4203 			       struct x86_exception *exception)
4204 {
4205 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4206 	access |= PFERR_WRITE_MASK;
4207 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4208 }
4209 
4210 /* uses this to access any guest's mapped memory without checking CPL */
4211 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4212 				struct x86_exception *exception)
4213 {
4214 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4215 }
4216 
4217 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4218 				      struct kvm_vcpu *vcpu, u32 access,
4219 				      struct x86_exception *exception)
4220 {
4221 	void *data = val;
4222 	int r = X86EMUL_CONTINUE;
4223 
4224 	while (bytes) {
4225 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4226 							    exception);
4227 		unsigned offset = addr & (PAGE_SIZE-1);
4228 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4229 		int ret;
4230 
4231 		if (gpa == UNMAPPED_GVA)
4232 			return X86EMUL_PROPAGATE_FAULT;
4233 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4234 					       offset, toread);
4235 		if (ret < 0) {
4236 			r = X86EMUL_IO_NEEDED;
4237 			goto out;
4238 		}
4239 
4240 		bytes -= toread;
4241 		data += toread;
4242 		addr += toread;
4243 	}
4244 out:
4245 	return r;
4246 }
4247 
4248 /* used for instruction fetching */
4249 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4250 				gva_t addr, void *val, unsigned int bytes,
4251 				struct x86_exception *exception)
4252 {
4253 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4254 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4255 	unsigned offset;
4256 	int ret;
4257 
4258 	/* Inline kvm_read_guest_virt_helper for speed.  */
4259 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4260 						    exception);
4261 	if (unlikely(gpa == UNMAPPED_GVA))
4262 		return X86EMUL_PROPAGATE_FAULT;
4263 
4264 	offset = addr & (PAGE_SIZE-1);
4265 	if (WARN_ON(offset + bytes > PAGE_SIZE))
4266 		bytes = (unsigned)PAGE_SIZE - offset;
4267 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4268 				       offset, bytes);
4269 	if (unlikely(ret < 0))
4270 		return X86EMUL_IO_NEEDED;
4271 
4272 	return X86EMUL_CONTINUE;
4273 }
4274 
4275 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4276 			       gva_t addr, void *val, unsigned int bytes,
4277 			       struct x86_exception *exception)
4278 {
4279 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4280 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4281 
4282 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4283 					  exception);
4284 }
4285 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4286 
4287 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4288 				      gva_t addr, void *val, unsigned int bytes,
4289 				      struct x86_exception *exception)
4290 {
4291 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4292 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4293 }
4294 
4295 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4296 		unsigned long addr, void *val, unsigned int bytes)
4297 {
4298 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4299 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4300 
4301 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4302 }
4303 
4304 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4305 				       gva_t addr, void *val,
4306 				       unsigned int bytes,
4307 				       struct x86_exception *exception)
4308 {
4309 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4310 	void *data = val;
4311 	int r = X86EMUL_CONTINUE;
4312 
4313 	while (bytes) {
4314 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4315 							     PFERR_WRITE_MASK,
4316 							     exception);
4317 		unsigned offset = addr & (PAGE_SIZE-1);
4318 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4319 		int ret;
4320 
4321 		if (gpa == UNMAPPED_GVA)
4322 			return X86EMUL_PROPAGATE_FAULT;
4323 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4324 		if (ret < 0) {
4325 			r = X86EMUL_IO_NEEDED;
4326 			goto out;
4327 		}
4328 
4329 		bytes -= towrite;
4330 		data += towrite;
4331 		addr += towrite;
4332 	}
4333 out:
4334 	return r;
4335 }
4336 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4337 
4338 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4339 				gpa_t *gpa, struct x86_exception *exception,
4340 				bool write)
4341 {
4342 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4343 		| (write ? PFERR_WRITE_MASK : 0);
4344 
4345 	/*
4346 	 * currently PKRU is only applied to ept enabled guest so
4347 	 * there is no pkey in EPT page table for L1 guest or EPT
4348 	 * shadow page table for L2 guest.
4349 	 */
4350 	if (vcpu_match_mmio_gva(vcpu, gva)
4351 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4352 				 vcpu->arch.access, 0, access)) {
4353 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4354 					(gva & (PAGE_SIZE - 1));
4355 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4356 		return 1;
4357 	}
4358 
4359 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4360 
4361 	if (*gpa == UNMAPPED_GVA)
4362 		return -1;
4363 
4364 	/* For APIC access vmexit */
4365 	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4366 		return 1;
4367 
4368 	if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4369 		trace_vcpu_match_mmio(gva, *gpa, write, true);
4370 		return 1;
4371 	}
4372 
4373 	return 0;
4374 }
4375 
4376 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4377 			const void *val, int bytes)
4378 {
4379 	int ret;
4380 
4381 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4382 	if (ret < 0)
4383 		return 0;
4384 	kvm_page_track_write(vcpu, gpa, val, bytes);
4385 	return 1;
4386 }
4387 
4388 struct read_write_emulator_ops {
4389 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4390 				  int bytes);
4391 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4392 				  void *val, int bytes);
4393 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4394 			       int bytes, void *val);
4395 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4396 				    void *val, int bytes);
4397 	bool write;
4398 };
4399 
4400 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4401 {
4402 	if (vcpu->mmio_read_completed) {
4403 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4404 			       vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4405 		vcpu->mmio_read_completed = 0;
4406 		return 1;
4407 	}
4408 
4409 	return 0;
4410 }
4411 
4412 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4413 			void *val, int bytes)
4414 {
4415 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4416 }
4417 
4418 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4419 			 void *val, int bytes)
4420 {
4421 	return emulator_write_phys(vcpu, gpa, val, bytes);
4422 }
4423 
4424 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4425 {
4426 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4427 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4428 }
4429 
4430 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4431 			  void *val, int bytes)
4432 {
4433 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4434 	return X86EMUL_IO_NEEDED;
4435 }
4436 
4437 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4438 			   void *val, int bytes)
4439 {
4440 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4441 
4442 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4443 	return X86EMUL_CONTINUE;
4444 }
4445 
4446 static const struct read_write_emulator_ops read_emultor = {
4447 	.read_write_prepare = read_prepare,
4448 	.read_write_emulate = read_emulate,
4449 	.read_write_mmio = vcpu_mmio_read,
4450 	.read_write_exit_mmio = read_exit_mmio,
4451 };
4452 
4453 static const struct read_write_emulator_ops write_emultor = {
4454 	.read_write_emulate = write_emulate,
4455 	.read_write_mmio = write_mmio,
4456 	.read_write_exit_mmio = write_exit_mmio,
4457 	.write = true,
4458 };
4459 
4460 static int emulator_read_write_onepage(unsigned long addr, void *val,
4461 				       unsigned int bytes,
4462 				       struct x86_exception *exception,
4463 				       struct kvm_vcpu *vcpu,
4464 				       const struct read_write_emulator_ops *ops)
4465 {
4466 	gpa_t gpa;
4467 	int handled, ret;
4468 	bool write = ops->write;
4469 	struct kvm_mmio_fragment *frag;
4470 
4471 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4472 
4473 	if (ret < 0)
4474 		return X86EMUL_PROPAGATE_FAULT;
4475 
4476 	/* For APIC access vmexit */
4477 	if (ret)
4478 		goto mmio;
4479 
4480 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4481 		return X86EMUL_CONTINUE;
4482 
4483 mmio:
4484 	/*
4485 	 * Is this MMIO handled locally?
4486 	 */
4487 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4488 	if (handled == bytes)
4489 		return X86EMUL_CONTINUE;
4490 
4491 	gpa += handled;
4492 	bytes -= handled;
4493 	val += handled;
4494 
4495 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4496 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4497 	frag->gpa = gpa;
4498 	frag->data = val;
4499 	frag->len = bytes;
4500 	return X86EMUL_CONTINUE;
4501 }
4502 
4503 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4504 			unsigned long addr,
4505 			void *val, unsigned int bytes,
4506 			struct x86_exception *exception,
4507 			const struct read_write_emulator_ops *ops)
4508 {
4509 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4510 	gpa_t gpa;
4511 	int rc;
4512 
4513 	if (ops->read_write_prepare &&
4514 		  ops->read_write_prepare(vcpu, val, bytes))
4515 		return X86EMUL_CONTINUE;
4516 
4517 	vcpu->mmio_nr_fragments = 0;
4518 
4519 	/* Crossing a page boundary? */
4520 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4521 		int now;
4522 
4523 		now = -addr & ~PAGE_MASK;
4524 		rc = emulator_read_write_onepage(addr, val, now, exception,
4525 						 vcpu, ops);
4526 
4527 		if (rc != X86EMUL_CONTINUE)
4528 			return rc;
4529 		addr += now;
4530 		if (ctxt->mode != X86EMUL_MODE_PROT64)
4531 			addr = (u32)addr;
4532 		val += now;
4533 		bytes -= now;
4534 	}
4535 
4536 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
4537 					 vcpu, ops);
4538 	if (rc != X86EMUL_CONTINUE)
4539 		return rc;
4540 
4541 	if (!vcpu->mmio_nr_fragments)
4542 		return rc;
4543 
4544 	gpa = vcpu->mmio_fragments[0].gpa;
4545 
4546 	vcpu->mmio_needed = 1;
4547 	vcpu->mmio_cur_fragment = 0;
4548 
4549 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4550 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4551 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
4552 	vcpu->run->mmio.phys_addr = gpa;
4553 
4554 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4555 }
4556 
4557 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4558 				  unsigned long addr,
4559 				  void *val,
4560 				  unsigned int bytes,
4561 				  struct x86_exception *exception)
4562 {
4563 	return emulator_read_write(ctxt, addr, val, bytes,
4564 				   exception, &read_emultor);
4565 }
4566 
4567 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4568 			    unsigned long addr,
4569 			    const void *val,
4570 			    unsigned int bytes,
4571 			    struct x86_exception *exception)
4572 {
4573 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
4574 				   exception, &write_emultor);
4575 }
4576 
4577 #define CMPXCHG_TYPE(t, ptr, old, new) \
4578 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4579 
4580 #ifdef CONFIG_X86_64
4581 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4582 #else
4583 #  define CMPXCHG64(ptr, old, new) \
4584 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4585 #endif
4586 
4587 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4588 				     unsigned long addr,
4589 				     const void *old,
4590 				     const void *new,
4591 				     unsigned int bytes,
4592 				     struct x86_exception *exception)
4593 {
4594 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4595 	gpa_t gpa;
4596 	struct page *page;
4597 	char *kaddr;
4598 	bool exchanged;
4599 
4600 	/* guests cmpxchg8b have to be emulated atomically */
4601 	if (bytes > 8 || (bytes & (bytes - 1)))
4602 		goto emul_write;
4603 
4604 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4605 
4606 	if (gpa == UNMAPPED_GVA ||
4607 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4608 		goto emul_write;
4609 
4610 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4611 		goto emul_write;
4612 
4613 	page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4614 	if (is_error_page(page))
4615 		goto emul_write;
4616 
4617 	kaddr = kmap_atomic(page);
4618 	kaddr += offset_in_page(gpa);
4619 	switch (bytes) {
4620 	case 1:
4621 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4622 		break;
4623 	case 2:
4624 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4625 		break;
4626 	case 4:
4627 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4628 		break;
4629 	case 8:
4630 		exchanged = CMPXCHG64(kaddr, old, new);
4631 		break;
4632 	default:
4633 		BUG();
4634 	}
4635 	kunmap_atomic(kaddr);
4636 	kvm_release_page_dirty(page);
4637 
4638 	if (!exchanged)
4639 		return X86EMUL_CMPXCHG_FAILED;
4640 
4641 	kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4642 	kvm_page_track_write(vcpu, gpa, new, bytes);
4643 
4644 	return X86EMUL_CONTINUE;
4645 
4646 emul_write:
4647 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4648 
4649 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4650 }
4651 
4652 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4653 {
4654 	/* TODO: String I/O for in kernel device */
4655 	int r;
4656 
4657 	if (vcpu->arch.pio.in)
4658 		r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4659 				    vcpu->arch.pio.size, pd);
4660 	else
4661 		r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4662 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
4663 				     pd);
4664 	return r;
4665 }
4666 
4667 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4668 			       unsigned short port, void *val,
4669 			       unsigned int count, bool in)
4670 {
4671 	vcpu->arch.pio.port = port;
4672 	vcpu->arch.pio.in = in;
4673 	vcpu->arch.pio.count  = count;
4674 	vcpu->arch.pio.size = size;
4675 
4676 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4677 		vcpu->arch.pio.count = 0;
4678 		return 1;
4679 	}
4680 
4681 	vcpu->run->exit_reason = KVM_EXIT_IO;
4682 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4683 	vcpu->run->io.size = size;
4684 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4685 	vcpu->run->io.count = count;
4686 	vcpu->run->io.port = port;
4687 
4688 	return 0;
4689 }
4690 
4691 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4692 				    int size, unsigned short port, void *val,
4693 				    unsigned int count)
4694 {
4695 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4696 	int ret;
4697 
4698 	if (vcpu->arch.pio.count)
4699 		goto data_avail;
4700 
4701 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4702 	if (ret) {
4703 data_avail:
4704 		memcpy(val, vcpu->arch.pio_data, size * count);
4705 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4706 		vcpu->arch.pio.count = 0;
4707 		return 1;
4708 	}
4709 
4710 	return 0;
4711 }
4712 
4713 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4714 				     int size, unsigned short port,
4715 				     const void *val, unsigned int count)
4716 {
4717 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4718 
4719 	memcpy(vcpu->arch.pio_data, val, size * count);
4720 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4721 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4722 }
4723 
4724 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4725 {
4726 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4727 }
4728 
4729 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4730 {
4731 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4732 }
4733 
4734 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4735 {
4736 	if (!need_emulate_wbinvd(vcpu))
4737 		return X86EMUL_CONTINUE;
4738 
4739 	if (kvm_x86_ops->has_wbinvd_exit()) {
4740 		int cpu = get_cpu();
4741 
4742 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4743 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4744 				wbinvd_ipi, NULL, 1);
4745 		put_cpu();
4746 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4747 	} else
4748 		wbinvd();
4749 	return X86EMUL_CONTINUE;
4750 }
4751 
4752 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4753 {
4754 	kvm_x86_ops->skip_emulated_instruction(vcpu);
4755 	return kvm_emulate_wbinvd_noskip(vcpu);
4756 }
4757 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4758 
4759 
4760 
4761 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4762 {
4763 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4764 }
4765 
4766 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4767 			   unsigned long *dest)
4768 {
4769 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4770 }
4771 
4772 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4773 			   unsigned long value)
4774 {
4775 
4776 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4777 }
4778 
4779 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4780 {
4781 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4782 }
4783 
4784 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4785 {
4786 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4787 	unsigned long value;
4788 
4789 	switch (cr) {
4790 	case 0:
4791 		value = kvm_read_cr0(vcpu);
4792 		break;
4793 	case 2:
4794 		value = vcpu->arch.cr2;
4795 		break;
4796 	case 3:
4797 		value = kvm_read_cr3(vcpu);
4798 		break;
4799 	case 4:
4800 		value = kvm_read_cr4(vcpu);
4801 		break;
4802 	case 8:
4803 		value = kvm_get_cr8(vcpu);
4804 		break;
4805 	default:
4806 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4807 		return 0;
4808 	}
4809 
4810 	return value;
4811 }
4812 
4813 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4814 {
4815 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4816 	int res = 0;
4817 
4818 	switch (cr) {
4819 	case 0:
4820 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4821 		break;
4822 	case 2:
4823 		vcpu->arch.cr2 = val;
4824 		break;
4825 	case 3:
4826 		res = kvm_set_cr3(vcpu, val);
4827 		break;
4828 	case 4:
4829 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4830 		break;
4831 	case 8:
4832 		res = kvm_set_cr8(vcpu, val);
4833 		break;
4834 	default:
4835 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4836 		res = -1;
4837 	}
4838 
4839 	return res;
4840 }
4841 
4842 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4843 {
4844 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4845 }
4846 
4847 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4848 {
4849 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4850 }
4851 
4852 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4853 {
4854 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4855 }
4856 
4857 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4858 {
4859 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4860 }
4861 
4862 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4863 {
4864 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4865 }
4866 
4867 static unsigned long emulator_get_cached_segment_base(
4868 	struct x86_emulate_ctxt *ctxt, int seg)
4869 {
4870 	return get_segment_base(emul_to_vcpu(ctxt), seg);
4871 }
4872 
4873 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4874 				 struct desc_struct *desc, u32 *base3,
4875 				 int seg)
4876 {
4877 	struct kvm_segment var;
4878 
4879 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4880 	*selector = var.selector;
4881 
4882 	if (var.unusable) {
4883 		memset(desc, 0, sizeof(*desc));
4884 		return false;
4885 	}
4886 
4887 	if (var.g)
4888 		var.limit >>= 12;
4889 	set_desc_limit(desc, var.limit);
4890 	set_desc_base(desc, (unsigned long)var.base);
4891 #ifdef CONFIG_X86_64
4892 	if (base3)
4893 		*base3 = var.base >> 32;
4894 #endif
4895 	desc->type = var.type;
4896 	desc->s = var.s;
4897 	desc->dpl = var.dpl;
4898 	desc->p = var.present;
4899 	desc->avl = var.avl;
4900 	desc->l = var.l;
4901 	desc->d = var.db;
4902 	desc->g = var.g;
4903 
4904 	return true;
4905 }
4906 
4907 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4908 				 struct desc_struct *desc, u32 base3,
4909 				 int seg)
4910 {
4911 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4912 	struct kvm_segment var;
4913 
4914 	var.selector = selector;
4915 	var.base = get_desc_base(desc);
4916 #ifdef CONFIG_X86_64
4917 	var.base |= ((u64)base3) << 32;
4918 #endif
4919 	var.limit = get_desc_limit(desc);
4920 	if (desc->g)
4921 		var.limit = (var.limit << 12) | 0xfff;
4922 	var.type = desc->type;
4923 	var.dpl = desc->dpl;
4924 	var.db = desc->d;
4925 	var.s = desc->s;
4926 	var.l = desc->l;
4927 	var.g = desc->g;
4928 	var.avl = desc->avl;
4929 	var.present = desc->p;
4930 	var.unusable = !var.present;
4931 	var.padding = 0;
4932 
4933 	kvm_set_segment(vcpu, &var, seg);
4934 	return;
4935 }
4936 
4937 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4938 			    u32 msr_index, u64 *pdata)
4939 {
4940 	struct msr_data msr;
4941 	int r;
4942 
4943 	msr.index = msr_index;
4944 	msr.host_initiated = false;
4945 	r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
4946 	if (r)
4947 		return r;
4948 
4949 	*pdata = msr.data;
4950 	return 0;
4951 }
4952 
4953 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4954 			    u32 msr_index, u64 data)
4955 {
4956 	struct msr_data msr;
4957 
4958 	msr.data = data;
4959 	msr.index = msr_index;
4960 	msr.host_initiated = false;
4961 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4962 }
4963 
4964 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
4965 {
4966 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4967 
4968 	return vcpu->arch.smbase;
4969 }
4970 
4971 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
4972 {
4973 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4974 
4975 	vcpu->arch.smbase = smbase;
4976 }
4977 
4978 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4979 			      u32 pmc)
4980 {
4981 	return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
4982 }
4983 
4984 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4985 			     u32 pmc, u64 *pdata)
4986 {
4987 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
4988 }
4989 
4990 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4991 {
4992 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
4993 }
4994 
4995 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4996 {
4997 	preempt_disable();
4998 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4999 	/*
5000 	 * CR0.TS may reference the host fpu state, not the guest fpu state,
5001 	 * so it may be clear at this point.
5002 	 */
5003 	clts();
5004 }
5005 
5006 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5007 {
5008 	preempt_enable();
5009 }
5010 
5011 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5012 			      struct x86_instruction_info *info,
5013 			      enum x86_intercept_stage stage)
5014 {
5015 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5016 }
5017 
5018 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5019 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5020 {
5021 	kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5022 }
5023 
5024 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5025 {
5026 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
5027 }
5028 
5029 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5030 {
5031 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5032 }
5033 
5034 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5035 {
5036 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5037 }
5038 
5039 static const struct x86_emulate_ops emulate_ops = {
5040 	.read_gpr            = emulator_read_gpr,
5041 	.write_gpr           = emulator_write_gpr,
5042 	.read_std            = kvm_read_guest_virt_system,
5043 	.write_std           = kvm_write_guest_virt_system,
5044 	.read_phys           = kvm_read_guest_phys_system,
5045 	.fetch               = kvm_fetch_guest_virt,
5046 	.read_emulated       = emulator_read_emulated,
5047 	.write_emulated      = emulator_write_emulated,
5048 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
5049 	.invlpg              = emulator_invlpg,
5050 	.pio_in_emulated     = emulator_pio_in_emulated,
5051 	.pio_out_emulated    = emulator_pio_out_emulated,
5052 	.get_segment         = emulator_get_segment,
5053 	.set_segment         = emulator_set_segment,
5054 	.get_cached_segment_base = emulator_get_cached_segment_base,
5055 	.get_gdt             = emulator_get_gdt,
5056 	.get_idt	     = emulator_get_idt,
5057 	.set_gdt             = emulator_set_gdt,
5058 	.set_idt	     = emulator_set_idt,
5059 	.get_cr              = emulator_get_cr,
5060 	.set_cr              = emulator_set_cr,
5061 	.cpl                 = emulator_get_cpl,
5062 	.get_dr              = emulator_get_dr,
5063 	.set_dr              = emulator_set_dr,
5064 	.get_smbase          = emulator_get_smbase,
5065 	.set_smbase          = emulator_set_smbase,
5066 	.set_msr             = emulator_set_msr,
5067 	.get_msr             = emulator_get_msr,
5068 	.check_pmc	     = emulator_check_pmc,
5069 	.read_pmc            = emulator_read_pmc,
5070 	.halt                = emulator_halt,
5071 	.wbinvd              = emulator_wbinvd,
5072 	.fix_hypercall       = emulator_fix_hypercall,
5073 	.get_fpu             = emulator_get_fpu,
5074 	.put_fpu             = emulator_put_fpu,
5075 	.intercept           = emulator_intercept,
5076 	.get_cpuid           = emulator_get_cpuid,
5077 	.set_nmi_mask        = emulator_set_nmi_mask,
5078 };
5079 
5080 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5081 {
5082 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5083 	/*
5084 	 * an sti; sti; sequence only disable interrupts for the first
5085 	 * instruction. So, if the last instruction, be it emulated or
5086 	 * not, left the system with the INT_STI flag enabled, it
5087 	 * means that the last instruction is an sti. We should not
5088 	 * leave the flag on in this case. The same goes for mov ss
5089 	 */
5090 	if (int_shadow & mask)
5091 		mask = 0;
5092 	if (unlikely(int_shadow || mask)) {
5093 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5094 		if (!mask)
5095 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5096 	}
5097 }
5098 
5099 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5100 {
5101 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5102 	if (ctxt->exception.vector == PF_VECTOR)
5103 		return kvm_propagate_fault(vcpu, &ctxt->exception);
5104 
5105 	if (ctxt->exception.error_code_valid)
5106 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5107 				      ctxt->exception.error_code);
5108 	else
5109 		kvm_queue_exception(vcpu, ctxt->exception.vector);
5110 	return false;
5111 }
5112 
5113 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5114 {
5115 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5116 	int cs_db, cs_l;
5117 
5118 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5119 
5120 	ctxt->eflags = kvm_get_rflags(vcpu);
5121 	ctxt->eip = kvm_rip_read(vcpu);
5122 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
5123 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
5124 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
5125 		     cs_db				? X86EMUL_MODE_PROT32 :
5126 							  X86EMUL_MODE_PROT16;
5127 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5128 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5129 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5130 	ctxt->emul_flags = vcpu->arch.hflags;
5131 
5132 	init_decode_cache(ctxt);
5133 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5134 }
5135 
5136 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5137 {
5138 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5139 	int ret;
5140 
5141 	init_emulate_ctxt(vcpu);
5142 
5143 	ctxt->op_bytes = 2;
5144 	ctxt->ad_bytes = 2;
5145 	ctxt->_eip = ctxt->eip + inc_eip;
5146 	ret = emulate_int_real(ctxt, irq);
5147 
5148 	if (ret != X86EMUL_CONTINUE)
5149 		return EMULATE_FAIL;
5150 
5151 	ctxt->eip = ctxt->_eip;
5152 	kvm_rip_write(vcpu, ctxt->eip);
5153 	kvm_set_rflags(vcpu, ctxt->eflags);
5154 
5155 	if (irq == NMI_VECTOR)
5156 		vcpu->arch.nmi_pending = 0;
5157 	else
5158 		vcpu->arch.interrupt.pending = false;
5159 
5160 	return EMULATE_DONE;
5161 }
5162 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5163 
5164 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5165 {
5166 	int r = EMULATE_DONE;
5167 
5168 	++vcpu->stat.insn_emulation_fail;
5169 	trace_kvm_emulate_insn_failed(vcpu);
5170 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5171 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5172 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5173 		vcpu->run->internal.ndata = 0;
5174 		r = EMULATE_FAIL;
5175 	}
5176 	kvm_queue_exception(vcpu, UD_VECTOR);
5177 
5178 	return r;
5179 }
5180 
5181 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5182 				  bool write_fault_to_shadow_pgtable,
5183 				  int emulation_type)
5184 {
5185 	gpa_t gpa = cr2;
5186 	kvm_pfn_t pfn;
5187 
5188 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
5189 		return false;
5190 
5191 	if (!vcpu->arch.mmu.direct_map) {
5192 		/*
5193 		 * Write permission should be allowed since only
5194 		 * write access need to be emulated.
5195 		 */
5196 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5197 
5198 		/*
5199 		 * If the mapping is invalid in guest, let cpu retry
5200 		 * it to generate fault.
5201 		 */
5202 		if (gpa == UNMAPPED_GVA)
5203 			return true;
5204 	}
5205 
5206 	/*
5207 	 * Do not retry the unhandleable instruction if it faults on the
5208 	 * readonly host memory, otherwise it will goto a infinite loop:
5209 	 * retry instruction -> write #PF -> emulation fail -> retry
5210 	 * instruction -> ...
5211 	 */
5212 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5213 
5214 	/*
5215 	 * If the instruction failed on the error pfn, it can not be fixed,
5216 	 * report the error to userspace.
5217 	 */
5218 	if (is_error_noslot_pfn(pfn))
5219 		return false;
5220 
5221 	kvm_release_pfn_clean(pfn);
5222 
5223 	/* The instructions are well-emulated on direct mmu. */
5224 	if (vcpu->arch.mmu.direct_map) {
5225 		unsigned int indirect_shadow_pages;
5226 
5227 		spin_lock(&vcpu->kvm->mmu_lock);
5228 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5229 		spin_unlock(&vcpu->kvm->mmu_lock);
5230 
5231 		if (indirect_shadow_pages)
5232 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5233 
5234 		return true;
5235 	}
5236 
5237 	/*
5238 	 * if emulation was due to access to shadowed page table
5239 	 * and it failed try to unshadow page and re-enter the
5240 	 * guest to let CPU execute the instruction.
5241 	 */
5242 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5243 
5244 	/*
5245 	 * If the access faults on its page table, it can not
5246 	 * be fixed by unprotecting shadow page and it should
5247 	 * be reported to userspace.
5248 	 */
5249 	return !write_fault_to_shadow_pgtable;
5250 }
5251 
5252 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5253 			      unsigned long cr2,  int emulation_type)
5254 {
5255 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5256 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5257 
5258 	last_retry_eip = vcpu->arch.last_retry_eip;
5259 	last_retry_addr = vcpu->arch.last_retry_addr;
5260 
5261 	/*
5262 	 * If the emulation is caused by #PF and it is non-page_table
5263 	 * writing instruction, it means the VM-EXIT is caused by shadow
5264 	 * page protected, we can zap the shadow page and retry this
5265 	 * instruction directly.
5266 	 *
5267 	 * Note: if the guest uses a non-page-table modifying instruction
5268 	 * on the PDE that points to the instruction, then we will unmap
5269 	 * the instruction and go to an infinite loop. So, we cache the
5270 	 * last retried eip and the last fault address, if we meet the eip
5271 	 * and the address again, we can break out of the potential infinite
5272 	 * loop.
5273 	 */
5274 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5275 
5276 	if (!(emulation_type & EMULTYPE_RETRY))
5277 		return false;
5278 
5279 	if (x86_page_table_writing_insn(ctxt))
5280 		return false;
5281 
5282 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5283 		return false;
5284 
5285 	vcpu->arch.last_retry_eip = ctxt->eip;
5286 	vcpu->arch.last_retry_addr = cr2;
5287 
5288 	if (!vcpu->arch.mmu.direct_map)
5289 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5290 
5291 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5292 
5293 	return true;
5294 }
5295 
5296 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5297 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5298 
5299 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5300 {
5301 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5302 		/* This is a good place to trace that we are exiting SMM.  */
5303 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5304 
5305 		if (unlikely(vcpu->arch.smi_pending)) {
5306 			kvm_make_request(KVM_REQ_SMI, vcpu);
5307 			vcpu->arch.smi_pending = 0;
5308 		} else {
5309 			/* Process a latched INIT, if any.  */
5310 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5311 		}
5312 	}
5313 
5314 	kvm_mmu_reset_context(vcpu);
5315 }
5316 
5317 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5318 {
5319 	unsigned changed = vcpu->arch.hflags ^ emul_flags;
5320 
5321 	vcpu->arch.hflags = emul_flags;
5322 
5323 	if (changed & HF_SMM_MASK)
5324 		kvm_smm_changed(vcpu);
5325 }
5326 
5327 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5328 				unsigned long *db)
5329 {
5330 	u32 dr6 = 0;
5331 	int i;
5332 	u32 enable, rwlen;
5333 
5334 	enable = dr7;
5335 	rwlen = dr7 >> 16;
5336 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5337 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5338 			dr6 |= (1 << i);
5339 	return dr6;
5340 }
5341 
5342 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5343 {
5344 	struct kvm_run *kvm_run = vcpu->run;
5345 
5346 	/*
5347 	 * rflags is the old, "raw" value of the flags.  The new value has
5348 	 * not been saved yet.
5349 	 *
5350 	 * This is correct even for TF set by the guest, because "the
5351 	 * processor will not generate this exception after the instruction
5352 	 * that sets the TF flag".
5353 	 */
5354 	if (unlikely(rflags & X86_EFLAGS_TF)) {
5355 		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5356 			kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5357 						  DR6_RTM;
5358 			kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5359 			kvm_run->debug.arch.exception = DB_VECTOR;
5360 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5361 			*r = EMULATE_USER_EXIT;
5362 		} else {
5363 			vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5364 			/*
5365 			 * "Certain debug exceptions may clear bit 0-3.  The
5366 			 * remaining contents of the DR6 register are never
5367 			 * cleared by the processor".
5368 			 */
5369 			vcpu->arch.dr6 &= ~15;
5370 			vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5371 			kvm_queue_exception(vcpu, DB_VECTOR);
5372 		}
5373 	}
5374 }
5375 
5376 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5377 {
5378 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5379 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5380 		struct kvm_run *kvm_run = vcpu->run;
5381 		unsigned long eip = kvm_get_linear_rip(vcpu);
5382 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5383 					   vcpu->arch.guest_debug_dr7,
5384 					   vcpu->arch.eff_db);
5385 
5386 		if (dr6 != 0) {
5387 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5388 			kvm_run->debug.arch.pc = eip;
5389 			kvm_run->debug.arch.exception = DB_VECTOR;
5390 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5391 			*r = EMULATE_USER_EXIT;
5392 			return true;
5393 		}
5394 	}
5395 
5396 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5397 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5398 		unsigned long eip = kvm_get_linear_rip(vcpu);
5399 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5400 					   vcpu->arch.dr7,
5401 					   vcpu->arch.db);
5402 
5403 		if (dr6 != 0) {
5404 			vcpu->arch.dr6 &= ~15;
5405 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
5406 			kvm_queue_exception(vcpu, DB_VECTOR);
5407 			*r = EMULATE_DONE;
5408 			return true;
5409 		}
5410 	}
5411 
5412 	return false;
5413 }
5414 
5415 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5416 			    unsigned long cr2,
5417 			    int emulation_type,
5418 			    void *insn,
5419 			    int insn_len)
5420 {
5421 	int r;
5422 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5423 	bool writeback = true;
5424 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5425 
5426 	/*
5427 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
5428 	 * never reused.
5429 	 */
5430 	vcpu->arch.write_fault_to_shadow_pgtable = false;
5431 	kvm_clear_exception_queue(vcpu);
5432 
5433 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5434 		init_emulate_ctxt(vcpu);
5435 
5436 		/*
5437 		 * We will reenter on the same instruction since
5438 		 * we do not set complete_userspace_io.  This does not
5439 		 * handle watchpoints yet, those would be handled in
5440 		 * the emulate_ops.
5441 		 */
5442 		if (kvm_vcpu_check_breakpoint(vcpu, &r))
5443 			return r;
5444 
5445 		ctxt->interruptibility = 0;
5446 		ctxt->have_exception = false;
5447 		ctxt->exception.vector = -1;
5448 		ctxt->perm_ok = false;
5449 
5450 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5451 
5452 		r = x86_decode_insn(ctxt, insn, insn_len);
5453 
5454 		trace_kvm_emulate_insn_start(vcpu);
5455 		++vcpu->stat.insn_emulation;
5456 		if (r != EMULATION_OK)  {
5457 			if (emulation_type & EMULTYPE_TRAP_UD)
5458 				return EMULATE_FAIL;
5459 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5460 						emulation_type))
5461 				return EMULATE_DONE;
5462 			if (emulation_type & EMULTYPE_SKIP)
5463 				return EMULATE_FAIL;
5464 			return handle_emulation_failure(vcpu);
5465 		}
5466 	}
5467 
5468 	if (emulation_type & EMULTYPE_SKIP) {
5469 		kvm_rip_write(vcpu, ctxt->_eip);
5470 		if (ctxt->eflags & X86_EFLAGS_RF)
5471 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5472 		return EMULATE_DONE;
5473 	}
5474 
5475 	if (retry_instruction(ctxt, cr2, emulation_type))
5476 		return EMULATE_DONE;
5477 
5478 	/* this is needed for vmware backdoor interface to work since it
5479 	   changes registers values  during IO operation */
5480 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5481 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5482 		emulator_invalidate_register_cache(ctxt);
5483 	}
5484 
5485 restart:
5486 	r = x86_emulate_insn(ctxt);
5487 
5488 	if (r == EMULATION_INTERCEPTED)
5489 		return EMULATE_DONE;
5490 
5491 	if (r == EMULATION_FAILED) {
5492 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5493 					emulation_type))
5494 			return EMULATE_DONE;
5495 
5496 		return handle_emulation_failure(vcpu);
5497 	}
5498 
5499 	if (ctxt->have_exception) {
5500 		r = EMULATE_DONE;
5501 		if (inject_emulated_exception(vcpu))
5502 			return r;
5503 	} else if (vcpu->arch.pio.count) {
5504 		if (!vcpu->arch.pio.in) {
5505 			/* FIXME: return into emulator if single-stepping.  */
5506 			vcpu->arch.pio.count = 0;
5507 		} else {
5508 			writeback = false;
5509 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
5510 		}
5511 		r = EMULATE_USER_EXIT;
5512 	} else if (vcpu->mmio_needed) {
5513 		if (!vcpu->mmio_is_write)
5514 			writeback = false;
5515 		r = EMULATE_USER_EXIT;
5516 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5517 	} else if (r == EMULATION_RESTART)
5518 		goto restart;
5519 	else
5520 		r = EMULATE_DONE;
5521 
5522 	if (writeback) {
5523 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5524 		toggle_interruptibility(vcpu, ctxt->interruptibility);
5525 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5526 		if (vcpu->arch.hflags != ctxt->emul_flags)
5527 			kvm_set_hflags(vcpu, ctxt->emul_flags);
5528 		kvm_rip_write(vcpu, ctxt->eip);
5529 		if (r == EMULATE_DONE)
5530 			kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5531 		if (!ctxt->have_exception ||
5532 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5533 			__kvm_set_rflags(vcpu, ctxt->eflags);
5534 
5535 		/*
5536 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5537 		 * do nothing, and it will be requested again as soon as
5538 		 * the shadow expires.  But we still need to check here,
5539 		 * because POPF has no interrupt shadow.
5540 		 */
5541 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5542 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5543 	} else
5544 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5545 
5546 	return r;
5547 }
5548 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5549 
5550 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5551 {
5552 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5553 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5554 					    size, port, &val, 1);
5555 	/* do not return to emulator after return from userspace */
5556 	vcpu->arch.pio.count = 0;
5557 	return ret;
5558 }
5559 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5560 
5561 static void tsc_bad(void *info)
5562 {
5563 	__this_cpu_write(cpu_tsc_khz, 0);
5564 }
5565 
5566 static void tsc_khz_changed(void *data)
5567 {
5568 	struct cpufreq_freqs *freq = data;
5569 	unsigned long khz = 0;
5570 
5571 	if (data)
5572 		khz = freq->new;
5573 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5574 		khz = cpufreq_quick_get(raw_smp_processor_id());
5575 	if (!khz)
5576 		khz = tsc_khz;
5577 	__this_cpu_write(cpu_tsc_khz, khz);
5578 }
5579 
5580 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5581 				     void *data)
5582 {
5583 	struct cpufreq_freqs *freq = data;
5584 	struct kvm *kvm;
5585 	struct kvm_vcpu *vcpu;
5586 	int i, send_ipi = 0;
5587 
5588 	/*
5589 	 * We allow guests to temporarily run on slowing clocks,
5590 	 * provided we notify them after, or to run on accelerating
5591 	 * clocks, provided we notify them before.  Thus time never
5592 	 * goes backwards.
5593 	 *
5594 	 * However, we have a problem.  We can't atomically update
5595 	 * the frequency of a given CPU from this function; it is
5596 	 * merely a notifier, which can be called from any CPU.
5597 	 * Changing the TSC frequency at arbitrary points in time
5598 	 * requires a recomputation of local variables related to
5599 	 * the TSC for each VCPU.  We must flag these local variables
5600 	 * to be updated and be sure the update takes place with the
5601 	 * new frequency before any guests proceed.
5602 	 *
5603 	 * Unfortunately, the combination of hotplug CPU and frequency
5604 	 * change creates an intractable locking scenario; the order
5605 	 * of when these callouts happen is undefined with respect to
5606 	 * CPU hotplug, and they can race with each other.  As such,
5607 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5608 	 * undefined; you can actually have a CPU frequency change take
5609 	 * place in between the computation of X and the setting of the
5610 	 * variable.  To protect against this problem, all updates of
5611 	 * the per_cpu tsc_khz variable are done in an interrupt
5612 	 * protected IPI, and all callers wishing to update the value
5613 	 * must wait for a synchronous IPI to complete (which is trivial
5614 	 * if the caller is on the CPU already).  This establishes the
5615 	 * necessary total order on variable updates.
5616 	 *
5617 	 * Note that because a guest time update may take place
5618 	 * anytime after the setting of the VCPU's request bit, the
5619 	 * correct TSC value must be set before the request.  However,
5620 	 * to ensure the update actually makes it to any guest which
5621 	 * starts running in hardware virtualization between the set
5622 	 * and the acquisition of the spinlock, we must also ping the
5623 	 * CPU after setting the request bit.
5624 	 *
5625 	 */
5626 
5627 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5628 		return 0;
5629 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5630 		return 0;
5631 
5632 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5633 
5634 	spin_lock(&kvm_lock);
5635 	list_for_each_entry(kvm, &vm_list, vm_list) {
5636 		kvm_for_each_vcpu(i, vcpu, kvm) {
5637 			if (vcpu->cpu != freq->cpu)
5638 				continue;
5639 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5640 			if (vcpu->cpu != smp_processor_id())
5641 				send_ipi = 1;
5642 		}
5643 	}
5644 	spin_unlock(&kvm_lock);
5645 
5646 	if (freq->old < freq->new && send_ipi) {
5647 		/*
5648 		 * We upscale the frequency.  Must make the guest
5649 		 * doesn't see old kvmclock values while running with
5650 		 * the new frequency, otherwise we risk the guest sees
5651 		 * time go backwards.
5652 		 *
5653 		 * In case we update the frequency for another cpu
5654 		 * (which might be in guest context) send an interrupt
5655 		 * to kick the cpu out of guest context.  Next time
5656 		 * guest context is entered kvmclock will be updated,
5657 		 * so the guest will not see stale values.
5658 		 */
5659 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5660 	}
5661 	return 0;
5662 }
5663 
5664 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5665 	.notifier_call  = kvmclock_cpufreq_notifier
5666 };
5667 
5668 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5669 					unsigned long action, void *hcpu)
5670 {
5671 	unsigned int cpu = (unsigned long)hcpu;
5672 
5673 	switch (action) {
5674 		case CPU_ONLINE:
5675 		case CPU_DOWN_FAILED:
5676 			smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5677 			break;
5678 		case CPU_DOWN_PREPARE:
5679 			smp_call_function_single(cpu, tsc_bad, NULL, 1);
5680 			break;
5681 	}
5682 	return NOTIFY_OK;
5683 }
5684 
5685 static struct notifier_block kvmclock_cpu_notifier_block = {
5686 	.notifier_call  = kvmclock_cpu_notifier,
5687 	.priority = -INT_MAX
5688 };
5689 
5690 static void kvm_timer_init(void)
5691 {
5692 	int cpu;
5693 
5694 	max_tsc_khz = tsc_khz;
5695 
5696 	cpu_notifier_register_begin();
5697 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5698 #ifdef CONFIG_CPU_FREQ
5699 		struct cpufreq_policy policy;
5700 		memset(&policy, 0, sizeof(policy));
5701 		cpu = get_cpu();
5702 		cpufreq_get_policy(&policy, cpu);
5703 		if (policy.cpuinfo.max_freq)
5704 			max_tsc_khz = policy.cpuinfo.max_freq;
5705 		put_cpu();
5706 #endif
5707 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5708 					  CPUFREQ_TRANSITION_NOTIFIER);
5709 	}
5710 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5711 	for_each_online_cpu(cpu)
5712 		smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5713 
5714 	__register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5715 	cpu_notifier_register_done();
5716 
5717 }
5718 
5719 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5720 
5721 int kvm_is_in_guest(void)
5722 {
5723 	return __this_cpu_read(current_vcpu) != NULL;
5724 }
5725 
5726 static int kvm_is_user_mode(void)
5727 {
5728 	int user_mode = 3;
5729 
5730 	if (__this_cpu_read(current_vcpu))
5731 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5732 
5733 	return user_mode != 0;
5734 }
5735 
5736 static unsigned long kvm_get_guest_ip(void)
5737 {
5738 	unsigned long ip = 0;
5739 
5740 	if (__this_cpu_read(current_vcpu))
5741 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5742 
5743 	return ip;
5744 }
5745 
5746 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5747 	.is_in_guest		= kvm_is_in_guest,
5748 	.is_user_mode		= kvm_is_user_mode,
5749 	.get_guest_ip		= kvm_get_guest_ip,
5750 };
5751 
5752 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5753 {
5754 	__this_cpu_write(current_vcpu, vcpu);
5755 }
5756 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5757 
5758 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5759 {
5760 	__this_cpu_write(current_vcpu, NULL);
5761 }
5762 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5763 
5764 static void kvm_set_mmio_spte_mask(void)
5765 {
5766 	u64 mask;
5767 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
5768 
5769 	/*
5770 	 * Set the reserved bits and the present bit of an paging-structure
5771 	 * entry to generate page fault with PFER.RSV = 1.
5772 	 */
5773 	 /* Mask the reserved physical address bits. */
5774 	mask = rsvd_bits(maxphyaddr, 51);
5775 
5776 	/* Bit 62 is always reserved for 32bit host. */
5777 	mask |= 0x3ull << 62;
5778 
5779 	/* Set the present bit. */
5780 	mask |= 1ull;
5781 
5782 #ifdef CONFIG_X86_64
5783 	/*
5784 	 * If reserved bit is not supported, clear the present bit to disable
5785 	 * mmio page fault.
5786 	 */
5787 	if (maxphyaddr == 52)
5788 		mask &= ~1ull;
5789 #endif
5790 
5791 	kvm_mmu_set_mmio_spte_mask(mask);
5792 }
5793 
5794 #ifdef CONFIG_X86_64
5795 static void pvclock_gtod_update_fn(struct work_struct *work)
5796 {
5797 	struct kvm *kvm;
5798 
5799 	struct kvm_vcpu *vcpu;
5800 	int i;
5801 
5802 	spin_lock(&kvm_lock);
5803 	list_for_each_entry(kvm, &vm_list, vm_list)
5804 		kvm_for_each_vcpu(i, vcpu, kvm)
5805 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5806 	atomic_set(&kvm_guest_has_master_clock, 0);
5807 	spin_unlock(&kvm_lock);
5808 }
5809 
5810 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5811 
5812 /*
5813  * Notification about pvclock gtod data update.
5814  */
5815 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5816 			       void *priv)
5817 {
5818 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5819 	struct timekeeper *tk = priv;
5820 
5821 	update_pvclock_gtod(tk);
5822 
5823 	/* disable master clock if host does not trust, or does not
5824 	 * use, TSC clocksource
5825 	 */
5826 	if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5827 	    atomic_read(&kvm_guest_has_master_clock) != 0)
5828 		queue_work(system_long_wq, &pvclock_gtod_work);
5829 
5830 	return 0;
5831 }
5832 
5833 static struct notifier_block pvclock_gtod_notifier = {
5834 	.notifier_call = pvclock_gtod_notify,
5835 };
5836 #endif
5837 
5838 int kvm_arch_init(void *opaque)
5839 {
5840 	int r;
5841 	struct kvm_x86_ops *ops = opaque;
5842 
5843 	if (kvm_x86_ops) {
5844 		printk(KERN_ERR "kvm: already loaded the other module\n");
5845 		r = -EEXIST;
5846 		goto out;
5847 	}
5848 
5849 	if (!ops->cpu_has_kvm_support()) {
5850 		printk(KERN_ERR "kvm: no hardware support\n");
5851 		r = -EOPNOTSUPP;
5852 		goto out;
5853 	}
5854 	if (ops->disabled_by_bios()) {
5855 		printk(KERN_ERR "kvm: disabled by bios\n");
5856 		r = -EOPNOTSUPP;
5857 		goto out;
5858 	}
5859 
5860 	r = -ENOMEM;
5861 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5862 	if (!shared_msrs) {
5863 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5864 		goto out;
5865 	}
5866 
5867 	r = kvm_mmu_module_init();
5868 	if (r)
5869 		goto out_free_percpu;
5870 
5871 	kvm_set_mmio_spte_mask();
5872 
5873 	kvm_x86_ops = ops;
5874 
5875 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5876 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
5877 
5878 	kvm_timer_init();
5879 
5880 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5881 
5882 	if (boot_cpu_has(X86_FEATURE_XSAVE))
5883 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5884 
5885 	kvm_lapic_init();
5886 #ifdef CONFIG_X86_64
5887 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5888 #endif
5889 
5890 	return 0;
5891 
5892 out_free_percpu:
5893 	free_percpu(shared_msrs);
5894 out:
5895 	return r;
5896 }
5897 
5898 void kvm_arch_exit(void)
5899 {
5900 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5901 
5902 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5903 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5904 					    CPUFREQ_TRANSITION_NOTIFIER);
5905 	unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5906 #ifdef CONFIG_X86_64
5907 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5908 #endif
5909 	kvm_x86_ops = NULL;
5910 	kvm_mmu_module_exit();
5911 	free_percpu(shared_msrs);
5912 }
5913 
5914 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5915 {
5916 	++vcpu->stat.halt_exits;
5917 	if (lapic_in_kernel(vcpu)) {
5918 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5919 		return 1;
5920 	} else {
5921 		vcpu->run->exit_reason = KVM_EXIT_HLT;
5922 		return 0;
5923 	}
5924 }
5925 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5926 
5927 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5928 {
5929 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5930 	return kvm_vcpu_halt(vcpu);
5931 }
5932 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5933 
5934 /*
5935  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5936  *
5937  * @apicid - apicid of vcpu to be kicked.
5938  */
5939 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5940 {
5941 	struct kvm_lapic_irq lapic_irq;
5942 
5943 	lapic_irq.shorthand = 0;
5944 	lapic_irq.dest_mode = 0;
5945 	lapic_irq.dest_id = apicid;
5946 	lapic_irq.msi_redir_hint = false;
5947 
5948 	lapic_irq.delivery_mode = APIC_DM_REMRD;
5949 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5950 }
5951 
5952 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
5953 {
5954 	vcpu->arch.apicv_active = false;
5955 	kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
5956 }
5957 
5958 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5959 {
5960 	unsigned long nr, a0, a1, a2, a3, ret;
5961 	int op_64_bit, r = 1;
5962 
5963 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5964 
5965 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
5966 		return kvm_hv_hypercall(vcpu);
5967 
5968 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5969 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5970 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5971 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5972 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5973 
5974 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
5975 
5976 	op_64_bit = is_64_bit_mode(vcpu);
5977 	if (!op_64_bit) {
5978 		nr &= 0xFFFFFFFF;
5979 		a0 &= 0xFFFFFFFF;
5980 		a1 &= 0xFFFFFFFF;
5981 		a2 &= 0xFFFFFFFF;
5982 		a3 &= 0xFFFFFFFF;
5983 	}
5984 
5985 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5986 		ret = -KVM_EPERM;
5987 		goto out;
5988 	}
5989 
5990 	switch (nr) {
5991 	case KVM_HC_VAPIC_POLL_IRQ:
5992 		ret = 0;
5993 		break;
5994 	case KVM_HC_KICK_CPU:
5995 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5996 		ret = 0;
5997 		break;
5998 	default:
5999 		ret = -KVM_ENOSYS;
6000 		break;
6001 	}
6002 out:
6003 	if (!op_64_bit)
6004 		ret = (u32)ret;
6005 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6006 	++vcpu->stat.hypercalls;
6007 	return r;
6008 }
6009 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6010 
6011 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6012 {
6013 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6014 	char instruction[3];
6015 	unsigned long rip = kvm_rip_read(vcpu);
6016 
6017 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
6018 
6019 	return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6020 }
6021 
6022 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6023 {
6024 	return vcpu->run->request_interrupt_window &&
6025 		likely(!pic_in_kernel(vcpu->kvm));
6026 }
6027 
6028 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6029 {
6030 	struct kvm_run *kvm_run = vcpu->run;
6031 
6032 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6033 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6034 	kvm_run->cr8 = kvm_get_cr8(vcpu);
6035 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
6036 	kvm_run->ready_for_interrupt_injection =
6037 		pic_in_kernel(vcpu->kvm) ||
6038 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
6039 }
6040 
6041 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6042 {
6043 	int max_irr, tpr;
6044 
6045 	if (!kvm_x86_ops->update_cr8_intercept)
6046 		return;
6047 
6048 	if (!lapic_in_kernel(vcpu))
6049 		return;
6050 
6051 	if (vcpu->arch.apicv_active)
6052 		return;
6053 
6054 	if (!vcpu->arch.apic->vapic_addr)
6055 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6056 	else
6057 		max_irr = -1;
6058 
6059 	if (max_irr != -1)
6060 		max_irr >>= 4;
6061 
6062 	tpr = kvm_lapic_get_cr8(vcpu);
6063 
6064 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6065 }
6066 
6067 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6068 {
6069 	int r;
6070 
6071 	/* try to reinject previous events if any */
6072 	if (vcpu->arch.exception.pending) {
6073 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
6074 					vcpu->arch.exception.has_error_code,
6075 					vcpu->arch.exception.error_code);
6076 
6077 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6078 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6079 					     X86_EFLAGS_RF);
6080 
6081 		if (vcpu->arch.exception.nr == DB_VECTOR &&
6082 		    (vcpu->arch.dr7 & DR7_GD)) {
6083 			vcpu->arch.dr7 &= ~DR7_GD;
6084 			kvm_update_dr7(vcpu);
6085 		}
6086 
6087 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6088 					  vcpu->arch.exception.has_error_code,
6089 					  vcpu->arch.exception.error_code,
6090 					  vcpu->arch.exception.reinject);
6091 		return 0;
6092 	}
6093 
6094 	if (vcpu->arch.nmi_injected) {
6095 		kvm_x86_ops->set_nmi(vcpu);
6096 		return 0;
6097 	}
6098 
6099 	if (vcpu->arch.interrupt.pending) {
6100 		kvm_x86_ops->set_irq(vcpu);
6101 		return 0;
6102 	}
6103 
6104 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6105 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6106 		if (r != 0)
6107 			return r;
6108 	}
6109 
6110 	/* try to inject new event if pending */
6111 	if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6112 		--vcpu->arch.nmi_pending;
6113 		vcpu->arch.nmi_injected = true;
6114 		kvm_x86_ops->set_nmi(vcpu);
6115 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
6116 		/*
6117 		 * Because interrupts can be injected asynchronously, we are
6118 		 * calling check_nested_events again here to avoid a race condition.
6119 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6120 		 * proposal and current concerns.  Perhaps we should be setting
6121 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
6122 		 */
6123 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6124 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6125 			if (r != 0)
6126 				return r;
6127 		}
6128 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6129 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6130 					    false);
6131 			kvm_x86_ops->set_irq(vcpu);
6132 		}
6133 	}
6134 	return 0;
6135 }
6136 
6137 static void process_nmi(struct kvm_vcpu *vcpu)
6138 {
6139 	unsigned limit = 2;
6140 
6141 	/*
6142 	 * x86 is limited to one NMI running, and one NMI pending after it.
6143 	 * If an NMI is already in progress, limit further NMIs to just one.
6144 	 * Otherwise, allow two (and we'll inject the first one immediately).
6145 	 */
6146 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6147 		limit = 1;
6148 
6149 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6150 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6151 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6152 }
6153 
6154 #define put_smstate(type, buf, offset, val)			  \
6155 	*(type *)((buf) + (offset) - 0x7e00) = val
6156 
6157 static u32 process_smi_get_segment_flags(struct kvm_segment *seg)
6158 {
6159 	u32 flags = 0;
6160 	flags |= seg->g       << 23;
6161 	flags |= seg->db      << 22;
6162 	flags |= seg->l       << 21;
6163 	flags |= seg->avl     << 20;
6164 	flags |= seg->present << 15;
6165 	flags |= seg->dpl     << 13;
6166 	flags |= seg->s       << 12;
6167 	flags |= seg->type    << 8;
6168 	return flags;
6169 }
6170 
6171 static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6172 {
6173 	struct kvm_segment seg;
6174 	int offset;
6175 
6176 	kvm_get_segment(vcpu, &seg, n);
6177 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6178 
6179 	if (n < 3)
6180 		offset = 0x7f84 + n * 12;
6181 	else
6182 		offset = 0x7f2c + (n - 3) * 12;
6183 
6184 	put_smstate(u32, buf, offset + 8, seg.base);
6185 	put_smstate(u32, buf, offset + 4, seg.limit);
6186 	put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg));
6187 }
6188 
6189 #ifdef CONFIG_X86_64
6190 static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6191 {
6192 	struct kvm_segment seg;
6193 	int offset;
6194 	u16 flags;
6195 
6196 	kvm_get_segment(vcpu, &seg, n);
6197 	offset = 0x7e00 + n * 16;
6198 
6199 	flags = process_smi_get_segment_flags(&seg) >> 8;
6200 	put_smstate(u16, buf, offset, seg.selector);
6201 	put_smstate(u16, buf, offset + 2, flags);
6202 	put_smstate(u32, buf, offset + 4, seg.limit);
6203 	put_smstate(u64, buf, offset + 8, seg.base);
6204 }
6205 #endif
6206 
6207 static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6208 {
6209 	struct desc_ptr dt;
6210 	struct kvm_segment seg;
6211 	unsigned long val;
6212 	int i;
6213 
6214 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6215 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6216 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6217 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6218 
6219 	for (i = 0; i < 8; i++)
6220 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6221 
6222 	kvm_get_dr(vcpu, 6, &val);
6223 	put_smstate(u32, buf, 0x7fcc, (u32)val);
6224 	kvm_get_dr(vcpu, 7, &val);
6225 	put_smstate(u32, buf, 0x7fc8, (u32)val);
6226 
6227 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6228 	put_smstate(u32, buf, 0x7fc4, seg.selector);
6229 	put_smstate(u32, buf, 0x7f64, seg.base);
6230 	put_smstate(u32, buf, 0x7f60, seg.limit);
6231 	put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg));
6232 
6233 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6234 	put_smstate(u32, buf, 0x7fc0, seg.selector);
6235 	put_smstate(u32, buf, 0x7f80, seg.base);
6236 	put_smstate(u32, buf, 0x7f7c, seg.limit);
6237 	put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg));
6238 
6239 	kvm_x86_ops->get_gdt(vcpu, &dt);
6240 	put_smstate(u32, buf, 0x7f74, dt.address);
6241 	put_smstate(u32, buf, 0x7f70, dt.size);
6242 
6243 	kvm_x86_ops->get_idt(vcpu, &dt);
6244 	put_smstate(u32, buf, 0x7f58, dt.address);
6245 	put_smstate(u32, buf, 0x7f54, dt.size);
6246 
6247 	for (i = 0; i < 6; i++)
6248 		process_smi_save_seg_32(vcpu, buf, i);
6249 
6250 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6251 
6252 	/* revision id */
6253 	put_smstate(u32, buf, 0x7efc, 0x00020000);
6254 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6255 }
6256 
6257 static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6258 {
6259 #ifdef CONFIG_X86_64
6260 	struct desc_ptr dt;
6261 	struct kvm_segment seg;
6262 	unsigned long val;
6263 	int i;
6264 
6265 	for (i = 0; i < 16; i++)
6266 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6267 
6268 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6269 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6270 
6271 	kvm_get_dr(vcpu, 6, &val);
6272 	put_smstate(u64, buf, 0x7f68, val);
6273 	kvm_get_dr(vcpu, 7, &val);
6274 	put_smstate(u64, buf, 0x7f60, val);
6275 
6276 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6277 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6278 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6279 
6280 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6281 
6282 	/* revision id */
6283 	put_smstate(u32, buf, 0x7efc, 0x00020064);
6284 
6285 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6286 
6287 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6288 	put_smstate(u16, buf, 0x7e90, seg.selector);
6289 	put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8);
6290 	put_smstate(u32, buf, 0x7e94, seg.limit);
6291 	put_smstate(u64, buf, 0x7e98, seg.base);
6292 
6293 	kvm_x86_ops->get_idt(vcpu, &dt);
6294 	put_smstate(u32, buf, 0x7e84, dt.size);
6295 	put_smstate(u64, buf, 0x7e88, dt.address);
6296 
6297 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6298 	put_smstate(u16, buf, 0x7e70, seg.selector);
6299 	put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8);
6300 	put_smstate(u32, buf, 0x7e74, seg.limit);
6301 	put_smstate(u64, buf, 0x7e78, seg.base);
6302 
6303 	kvm_x86_ops->get_gdt(vcpu, &dt);
6304 	put_smstate(u32, buf, 0x7e64, dt.size);
6305 	put_smstate(u64, buf, 0x7e68, dt.address);
6306 
6307 	for (i = 0; i < 6; i++)
6308 		process_smi_save_seg_64(vcpu, buf, i);
6309 #else
6310 	WARN_ON_ONCE(1);
6311 #endif
6312 }
6313 
6314 static void process_smi(struct kvm_vcpu *vcpu)
6315 {
6316 	struct kvm_segment cs, ds;
6317 	struct desc_ptr dt;
6318 	char buf[512];
6319 	u32 cr0;
6320 
6321 	if (is_smm(vcpu)) {
6322 		vcpu->arch.smi_pending = true;
6323 		return;
6324 	}
6325 
6326 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6327 	vcpu->arch.hflags |= HF_SMM_MASK;
6328 	memset(buf, 0, 512);
6329 	if (guest_cpuid_has_longmode(vcpu))
6330 		process_smi_save_state_64(vcpu, buf);
6331 	else
6332 		process_smi_save_state_32(vcpu, buf);
6333 
6334 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6335 
6336 	if (kvm_x86_ops->get_nmi_mask(vcpu))
6337 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6338 	else
6339 		kvm_x86_ops->set_nmi_mask(vcpu, true);
6340 
6341 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6342 	kvm_rip_write(vcpu, 0x8000);
6343 
6344 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6345 	kvm_x86_ops->set_cr0(vcpu, cr0);
6346 	vcpu->arch.cr0 = cr0;
6347 
6348 	kvm_x86_ops->set_cr4(vcpu, 0);
6349 
6350 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
6351 	dt.address = dt.size = 0;
6352 	kvm_x86_ops->set_idt(vcpu, &dt);
6353 
6354 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6355 
6356 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6357 	cs.base = vcpu->arch.smbase;
6358 
6359 	ds.selector = 0;
6360 	ds.base = 0;
6361 
6362 	cs.limit    = ds.limit = 0xffffffff;
6363 	cs.type     = ds.type = 0x3;
6364 	cs.dpl      = ds.dpl = 0;
6365 	cs.db       = ds.db = 0;
6366 	cs.s        = ds.s = 1;
6367 	cs.l        = ds.l = 0;
6368 	cs.g        = ds.g = 1;
6369 	cs.avl      = ds.avl = 0;
6370 	cs.present  = ds.present = 1;
6371 	cs.unusable = ds.unusable = 0;
6372 	cs.padding  = ds.padding = 0;
6373 
6374 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6375 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6376 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6377 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6378 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6379 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6380 
6381 	if (guest_cpuid_has_longmode(vcpu))
6382 		kvm_x86_ops->set_efer(vcpu, 0);
6383 
6384 	kvm_update_cpuid(vcpu);
6385 	kvm_mmu_reset_context(vcpu);
6386 }
6387 
6388 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6389 {
6390 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6391 }
6392 
6393 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6394 {
6395 	u64 eoi_exit_bitmap[4];
6396 
6397 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6398 		return;
6399 
6400 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6401 
6402 	if (irqchip_split(vcpu->kvm))
6403 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6404 	else {
6405 		if (vcpu->arch.apicv_active)
6406 			kvm_x86_ops->sync_pir_to_irr(vcpu);
6407 		kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6408 	}
6409 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6410 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
6411 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6412 }
6413 
6414 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6415 {
6416 	++vcpu->stat.tlb_flush;
6417 	kvm_x86_ops->tlb_flush(vcpu);
6418 }
6419 
6420 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6421 {
6422 	struct page *page = NULL;
6423 
6424 	if (!lapic_in_kernel(vcpu))
6425 		return;
6426 
6427 	if (!kvm_x86_ops->set_apic_access_page_addr)
6428 		return;
6429 
6430 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6431 	if (is_error_page(page))
6432 		return;
6433 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6434 
6435 	/*
6436 	 * Do not pin apic access page in memory, the MMU notifier
6437 	 * will call us again if it is migrated or swapped out.
6438 	 */
6439 	put_page(page);
6440 }
6441 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6442 
6443 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6444 					   unsigned long address)
6445 {
6446 	/*
6447 	 * The physical address of apic access page is stored in the VMCS.
6448 	 * Update it when it becomes invalid.
6449 	 */
6450 	if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6451 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6452 }
6453 
6454 /*
6455  * Returns 1 to let vcpu_run() continue the guest execution loop without
6456  * exiting to the userspace.  Otherwise, the value will be returned to the
6457  * userspace.
6458  */
6459 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6460 {
6461 	int r;
6462 	bool req_int_win =
6463 		dm_request_for_irq_injection(vcpu) &&
6464 		kvm_cpu_accept_dm_intr(vcpu);
6465 
6466 	bool req_immediate_exit = false;
6467 
6468 	if (vcpu->requests) {
6469 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6470 			kvm_mmu_unload(vcpu);
6471 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6472 			__kvm_migrate_timers(vcpu);
6473 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6474 			kvm_gen_update_masterclock(vcpu->kvm);
6475 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6476 			kvm_gen_kvmclock_update(vcpu);
6477 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6478 			r = kvm_guest_time_update(vcpu);
6479 			if (unlikely(r))
6480 				goto out;
6481 		}
6482 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6483 			kvm_mmu_sync_roots(vcpu);
6484 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6485 			kvm_vcpu_flush_tlb(vcpu);
6486 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6487 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6488 			r = 0;
6489 			goto out;
6490 		}
6491 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6492 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6493 			r = 0;
6494 			goto out;
6495 		}
6496 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6497 			vcpu->fpu_active = 0;
6498 			kvm_x86_ops->fpu_deactivate(vcpu);
6499 		}
6500 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6501 			/* Page is swapped out. Do synthetic halt */
6502 			vcpu->arch.apf.halted = true;
6503 			r = 1;
6504 			goto out;
6505 		}
6506 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6507 			record_steal_time(vcpu);
6508 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
6509 			process_smi(vcpu);
6510 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
6511 			process_nmi(vcpu);
6512 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
6513 			kvm_pmu_handle_event(vcpu);
6514 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
6515 			kvm_pmu_deliver_pmi(vcpu);
6516 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6517 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6518 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
6519 				     vcpu->arch.ioapic_handled_vectors)) {
6520 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6521 				vcpu->run->eoi.vector =
6522 						vcpu->arch.pending_ioapic_eoi;
6523 				r = 0;
6524 				goto out;
6525 			}
6526 		}
6527 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6528 			vcpu_scan_ioapic(vcpu);
6529 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6530 			kvm_vcpu_reload_apic_access_page(vcpu);
6531 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6532 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6533 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6534 			r = 0;
6535 			goto out;
6536 		}
6537 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6538 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6539 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6540 			r = 0;
6541 			goto out;
6542 		}
6543 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6544 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6545 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6546 			r = 0;
6547 			goto out;
6548 		}
6549 
6550 		/*
6551 		 * KVM_REQ_HV_STIMER has to be processed after
6552 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6553 		 * depend on the guest clock being up-to-date
6554 		 */
6555 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6556 			kvm_hv_process_stimers(vcpu);
6557 	}
6558 
6559 	/*
6560 	 * KVM_REQ_EVENT is not set when posted interrupts are set by
6561 	 * VT-d hardware, so we have to update RVI unconditionally.
6562 	 */
6563 	if (kvm_lapic_enabled(vcpu)) {
6564 		/*
6565 		 * Update architecture specific hints for APIC
6566 		 * virtual interrupt delivery.
6567 		 */
6568 		if (vcpu->arch.apicv_active)
6569 			kvm_x86_ops->hwapic_irr_update(vcpu,
6570 				kvm_lapic_find_highest_irr(vcpu));
6571 	}
6572 
6573 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6574 		kvm_apic_accept_events(vcpu);
6575 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6576 			r = 1;
6577 			goto out;
6578 		}
6579 
6580 		if (inject_pending_event(vcpu, req_int_win) != 0)
6581 			req_immediate_exit = true;
6582 		/* enable NMI/IRQ window open exits if needed */
6583 		else {
6584 			if (vcpu->arch.nmi_pending)
6585 				kvm_x86_ops->enable_nmi_window(vcpu);
6586 			if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6587 				kvm_x86_ops->enable_irq_window(vcpu);
6588 		}
6589 
6590 		if (kvm_lapic_enabled(vcpu)) {
6591 			update_cr8_intercept(vcpu);
6592 			kvm_lapic_sync_to_vapic(vcpu);
6593 		}
6594 	}
6595 
6596 	r = kvm_mmu_reload(vcpu);
6597 	if (unlikely(r)) {
6598 		goto cancel_injection;
6599 	}
6600 
6601 	preempt_disable();
6602 
6603 	kvm_x86_ops->prepare_guest_switch(vcpu);
6604 	if (vcpu->fpu_active)
6605 		kvm_load_guest_fpu(vcpu);
6606 	vcpu->mode = IN_GUEST_MODE;
6607 
6608 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6609 
6610 	/*
6611 	 * We should set ->mode before check ->requests,
6612 	 * Please see the comment in kvm_make_all_cpus_request.
6613 	 * This also orders the write to mode from any reads
6614 	 * to the page tables done while the VCPU is running.
6615 	 * Please see the comment in kvm_flush_remote_tlbs.
6616 	 */
6617 	smp_mb__after_srcu_read_unlock();
6618 
6619 	local_irq_disable();
6620 
6621 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6622 	    || need_resched() || signal_pending(current)) {
6623 		vcpu->mode = OUTSIDE_GUEST_MODE;
6624 		smp_wmb();
6625 		local_irq_enable();
6626 		preempt_enable();
6627 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6628 		r = 1;
6629 		goto cancel_injection;
6630 	}
6631 
6632 	kvm_load_guest_xcr0(vcpu);
6633 
6634 	if (req_immediate_exit)
6635 		smp_send_reschedule(vcpu->cpu);
6636 
6637 	trace_kvm_entry(vcpu->vcpu_id);
6638 	wait_lapic_expire(vcpu);
6639 	__kvm_guest_enter();
6640 
6641 	if (unlikely(vcpu->arch.switch_db_regs)) {
6642 		set_debugreg(0, 7);
6643 		set_debugreg(vcpu->arch.eff_db[0], 0);
6644 		set_debugreg(vcpu->arch.eff_db[1], 1);
6645 		set_debugreg(vcpu->arch.eff_db[2], 2);
6646 		set_debugreg(vcpu->arch.eff_db[3], 3);
6647 		set_debugreg(vcpu->arch.dr6, 6);
6648 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6649 	}
6650 
6651 	kvm_x86_ops->run(vcpu);
6652 
6653 	/*
6654 	 * Do this here before restoring debug registers on the host.  And
6655 	 * since we do this before handling the vmexit, a DR access vmexit
6656 	 * can (a) read the correct value of the debug registers, (b) set
6657 	 * KVM_DEBUGREG_WONT_EXIT again.
6658 	 */
6659 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6660 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6661 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6662 		kvm_update_dr0123(vcpu);
6663 		kvm_update_dr6(vcpu);
6664 		kvm_update_dr7(vcpu);
6665 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6666 	}
6667 
6668 	/*
6669 	 * If the guest has used debug registers, at least dr7
6670 	 * will be disabled while returning to the host.
6671 	 * If we don't have active breakpoints in the host, we don't
6672 	 * care about the messed up debug address registers. But if
6673 	 * we have some of them active, restore the old state.
6674 	 */
6675 	if (hw_breakpoint_active())
6676 		hw_breakpoint_restore();
6677 
6678 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6679 
6680 	vcpu->mode = OUTSIDE_GUEST_MODE;
6681 	smp_wmb();
6682 
6683 	kvm_put_guest_xcr0(vcpu);
6684 
6685 	/* Interrupt is enabled by handle_external_intr() */
6686 	kvm_x86_ops->handle_external_intr(vcpu);
6687 
6688 	++vcpu->stat.exits;
6689 
6690 	/*
6691 	 * We must have an instruction between local_irq_enable() and
6692 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6693 	 * the interrupt shadow.  The stat.exits increment will do nicely.
6694 	 * But we need to prevent reordering, hence this barrier():
6695 	 */
6696 	barrier();
6697 
6698 	kvm_guest_exit();
6699 
6700 	preempt_enable();
6701 
6702 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6703 
6704 	/*
6705 	 * Profile KVM exit RIPs:
6706 	 */
6707 	if (unlikely(prof_on == KVM_PROFILING)) {
6708 		unsigned long rip = kvm_rip_read(vcpu);
6709 		profile_hit(KVM_PROFILING, (void *)rip);
6710 	}
6711 
6712 	if (unlikely(vcpu->arch.tsc_always_catchup))
6713 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6714 
6715 	if (vcpu->arch.apic_attention)
6716 		kvm_lapic_sync_from_vapic(vcpu);
6717 
6718 	r = kvm_x86_ops->handle_exit(vcpu);
6719 	return r;
6720 
6721 cancel_injection:
6722 	kvm_x86_ops->cancel_injection(vcpu);
6723 	if (unlikely(vcpu->arch.apic_attention))
6724 		kvm_lapic_sync_from_vapic(vcpu);
6725 out:
6726 	return r;
6727 }
6728 
6729 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6730 {
6731 	if (!kvm_arch_vcpu_runnable(vcpu) &&
6732 	    (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6733 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6734 		kvm_vcpu_block(vcpu);
6735 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6736 
6737 		if (kvm_x86_ops->post_block)
6738 			kvm_x86_ops->post_block(vcpu);
6739 
6740 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6741 			return 1;
6742 	}
6743 
6744 	kvm_apic_accept_events(vcpu);
6745 	switch(vcpu->arch.mp_state) {
6746 	case KVM_MP_STATE_HALTED:
6747 		vcpu->arch.pv.pv_unhalted = false;
6748 		vcpu->arch.mp_state =
6749 			KVM_MP_STATE_RUNNABLE;
6750 	case KVM_MP_STATE_RUNNABLE:
6751 		vcpu->arch.apf.halted = false;
6752 		break;
6753 	case KVM_MP_STATE_INIT_RECEIVED:
6754 		break;
6755 	default:
6756 		return -EINTR;
6757 		break;
6758 	}
6759 	return 1;
6760 }
6761 
6762 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6763 {
6764 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6765 		!vcpu->arch.apf.halted);
6766 }
6767 
6768 static int vcpu_run(struct kvm_vcpu *vcpu)
6769 {
6770 	int r;
6771 	struct kvm *kvm = vcpu->kvm;
6772 
6773 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6774 
6775 	for (;;) {
6776 		if (kvm_vcpu_running(vcpu)) {
6777 			r = vcpu_enter_guest(vcpu);
6778 		} else {
6779 			r = vcpu_block(kvm, vcpu);
6780 		}
6781 
6782 		if (r <= 0)
6783 			break;
6784 
6785 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6786 		if (kvm_cpu_has_pending_timer(vcpu))
6787 			kvm_inject_pending_timer_irqs(vcpu);
6788 
6789 		if (dm_request_for_irq_injection(vcpu) &&
6790 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
6791 			r = 0;
6792 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6793 			++vcpu->stat.request_irq_exits;
6794 			break;
6795 		}
6796 
6797 		kvm_check_async_pf_completion(vcpu);
6798 
6799 		if (signal_pending(current)) {
6800 			r = -EINTR;
6801 			vcpu->run->exit_reason = KVM_EXIT_INTR;
6802 			++vcpu->stat.signal_exits;
6803 			break;
6804 		}
6805 		if (need_resched()) {
6806 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6807 			cond_resched();
6808 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6809 		}
6810 	}
6811 
6812 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6813 
6814 	return r;
6815 }
6816 
6817 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6818 {
6819 	int r;
6820 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6821 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6822 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6823 	if (r != EMULATE_DONE)
6824 		return 0;
6825 	return 1;
6826 }
6827 
6828 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6829 {
6830 	BUG_ON(!vcpu->arch.pio.count);
6831 
6832 	return complete_emulated_io(vcpu);
6833 }
6834 
6835 /*
6836  * Implements the following, as a state machine:
6837  *
6838  * read:
6839  *   for each fragment
6840  *     for each mmio piece in the fragment
6841  *       write gpa, len
6842  *       exit
6843  *       copy data
6844  *   execute insn
6845  *
6846  * write:
6847  *   for each fragment
6848  *     for each mmio piece in the fragment
6849  *       write gpa, len
6850  *       copy data
6851  *       exit
6852  */
6853 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6854 {
6855 	struct kvm_run *run = vcpu->run;
6856 	struct kvm_mmio_fragment *frag;
6857 	unsigned len;
6858 
6859 	BUG_ON(!vcpu->mmio_needed);
6860 
6861 	/* Complete previous fragment */
6862 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6863 	len = min(8u, frag->len);
6864 	if (!vcpu->mmio_is_write)
6865 		memcpy(frag->data, run->mmio.data, len);
6866 
6867 	if (frag->len <= 8) {
6868 		/* Switch to the next fragment. */
6869 		frag++;
6870 		vcpu->mmio_cur_fragment++;
6871 	} else {
6872 		/* Go forward to the next mmio piece. */
6873 		frag->data += len;
6874 		frag->gpa += len;
6875 		frag->len -= len;
6876 	}
6877 
6878 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6879 		vcpu->mmio_needed = 0;
6880 
6881 		/* FIXME: return into emulator if single-stepping.  */
6882 		if (vcpu->mmio_is_write)
6883 			return 1;
6884 		vcpu->mmio_read_completed = 1;
6885 		return complete_emulated_io(vcpu);
6886 	}
6887 
6888 	run->exit_reason = KVM_EXIT_MMIO;
6889 	run->mmio.phys_addr = frag->gpa;
6890 	if (vcpu->mmio_is_write)
6891 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6892 	run->mmio.len = min(8u, frag->len);
6893 	run->mmio.is_write = vcpu->mmio_is_write;
6894 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6895 	return 0;
6896 }
6897 
6898 
6899 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6900 {
6901 	struct fpu *fpu = &current->thread.fpu;
6902 	int r;
6903 	sigset_t sigsaved;
6904 
6905 	fpu__activate_curr(fpu);
6906 
6907 	if (vcpu->sigset_active)
6908 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6909 
6910 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6911 		kvm_vcpu_block(vcpu);
6912 		kvm_apic_accept_events(vcpu);
6913 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6914 		r = -EAGAIN;
6915 		goto out;
6916 	}
6917 
6918 	/* re-sync apic's tpr */
6919 	if (!lapic_in_kernel(vcpu)) {
6920 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6921 			r = -EINVAL;
6922 			goto out;
6923 		}
6924 	}
6925 
6926 	if (unlikely(vcpu->arch.complete_userspace_io)) {
6927 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6928 		vcpu->arch.complete_userspace_io = NULL;
6929 		r = cui(vcpu);
6930 		if (r <= 0)
6931 			goto out;
6932 	} else
6933 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6934 
6935 	r = vcpu_run(vcpu);
6936 
6937 out:
6938 	post_kvm_run_save(vcpu);
6939 	if (vcpu->sigset_active)
6940 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6941 
6942 	return r;
6943 }
6944 
6945 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6946 {
6947 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6948 		/*
6949 		 * We are here if userspace calls get_regs() in the middle of
6950 		 * instruction emulation. Registers state needs to be copied
6951 		 * back from emulation context to vcpu. Userspace shouldn't do
6952 		 * that usually, but some bad designed PV devices (vmware
6953 		 * backdoor interface) need this to work
6954 		 */
6955 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6956 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6957 	}
6958 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6959 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6960 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6961 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6962 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6963 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6964 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6965 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6966 #ifdef CONFIG_X86_64
6967 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6968 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6969 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6970 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6971 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6972 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6973 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6974 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6975 #endif
6976 
6977 	regs->rip = kvm_rip_read(vcpu);
6978 	regs->rflags = kvm_get_rflags(vcpu);
6979 
6980 	return 0;
6981 }
6982 
6983 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6984 {
6985 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6986 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6987 
6988 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6989 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6990 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6991 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6992 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6993 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6994 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6995 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6996 #ifdef CONFIG_X86_64
6997 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6998 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6999 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7000 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7001 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7002 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7003 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7004 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7005 #endif
7006 
7007 	kvm_rip_write(vcpu, regs->rip);
7008 	kvm_set_rflags(vcpu, regs->rflags);
7009 
7010 	vcpu->arch.exception.pending = false;
7011 
7012 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7013 
7014 	return 0;
7015 }
7016 
7017 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7018 {
7019 	struct kvm_segment cs;
7020 
7021 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7022 	*db = cs.db;
7023 	*l = cs.l;
7024 }
7025 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7026 
7027 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7028 				  struct kvm_sregs *sregs)
7029 {
7030 	struct desc_ptr dt;
7031 
7032 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7033 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7034 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7035 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7036 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7037 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7038 
7039 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7040 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7041 
7042 	kvm_x86_ops->get_idt(vcpu, &dt);
7043 	sregs->idt.limit = dt.size;
7044 	sregs->idt.base = dt.address;
7045 	kvm_x86_ops->get_gdt(vcpu, &dt);
7046 	sregs->gdt.limit = dt.size;
7047 	sregs->gdt.base = dt.address;
7048 
7049 	sregs->cr0 = kvm_read_cr0(vcpu);
7050 	sregs->cr2 = vcpu->arch.cr2;
7051 	sregs->cr3 = kvm_read_cr3(vcpu);
7052 	sregs->cr4 = kvm_read_cr4(vcpu);
7053 	sregs->cr8 = kvm_get_cr8(vcpu);
7054 	sregs->efer = vcpu->arch.efer;
7055 	sregs->apic_base = kvm_get_apic_base(vcpu);
7056 
7057 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7058 
7059 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7060 		set_bit(vcpu->arch.interrupt.nr,
7061 			(unsigned long *)sregs->interrupt_bitmap);
7062 
7063 	return 0;
7064 }
7065 
7066 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7067 				    struct kvm_mp_state *mp_state)
7068 {
7069 	kvm_apic_accept_events(vcpu);
7070 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7071 					vcpu->arch.pv.pv_unhalted)
7072 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7073 	else
7074 		mp_state->mp_state = vcpu->arch.mp_state;
7075 
7076 	return 0;
7077 }
7078 
7079 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7080 				    struct kvm_mp_state *mp_state)
7081 {
7082 	if (!lapic_in_kernel(vcpu) &&
7083 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7084 		return -EINVAL;
7085 
7086 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7087 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7088 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7089 	} else
7090 		vcpu->arch.mp_state = mp_state->mp_state;
7091 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7092 	return 0;
7093 }
7094 
7095 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7096 		    int reason, bool has_error_code, u32 error_code)
7097 {
7098 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7099 	int ret;
7100 
7101 	init_emulate_ctxt(vcpu);
7102 
7103 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7104 				   has_error_code, error_code);
7105 
7106 	if (ret)
7107 		return EMULATE_FAIL;
7108 
7109 	kvm_rip_write(vcpu, ctxt->eip);
7110 	kvm_set_rflags(vcpu, ctxt->eflags);
7111 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7112 	return EMULATE_DONE;
7113 }
7114 EXPORT_SYMBOL_GPL(kvm_task_switch);
7115 
7116 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7117 				  struct kvm_sregs *sregs)
7118 {
7119 	struct msr_data apic_base_msr;
7120 	int mmu_reset_needed = 0;
7121 	int pending_vec, max_bits, idx;
7122 	struct desc_ptr dt;
7123 
7124 	if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7125 		return -EINVAL;
7126 
7127 	dt.size = sregs->idt.limit;
7128 	dt.address = sregs->idt.base;
7129 	kvm_x86_ops->set_idt(vcpu, &dt);
7130 	dt.size = sregs->gdt.limit;
7131 	dt.address = sregs->gdt.base;
7132 	kvm_x86_ops->set_gdt(vcpu, &dt);
7133 
7134 	vcpu->arch.cr2 = sregs->cr2;
7135 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7136 	vcpu->arch.cr3 = sregs->cr3;
7137 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7138 
7139 	kvm_set_cr8(vcpu, sregs->cr8);
7140 
7141 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7142 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
7143 	apic_base_msr.data = sregs->apic_base;
7144 	apic_base_msr.host_initiated = true;
7145 	kvm_set_apic_base(vcpu, &apic_base_msr);
7146 
7147 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7148 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7149 	vcpu->arch.cr0 = sregs->cr0;
7150 
7151 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7152 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7153 	if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7154 		kvm_update_cpuid(vcpu);
7155 
7156 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7157 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7158 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7159 		mmu_reset_needed = 1;
7160 	}
7161 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7162 
7163 	if (mmu_reset_needed)
7164 		kvm_mmu_reset_context(vcpu);
7165 
7166 	max_bits = KVM_NR_INTERRUPTS;
7167 	pending_vec = find_first_bit(
7168 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
7169 	if (pending_vec < max_bits) {
7170 		kvm_queue_interrupt(vcpu, pending_vec, false);
7171 		pr_debug("Set back pending irq %d\n", pending_vec);
7172 	}
7173 
7174 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7175 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7176 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7177 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7178 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7179 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7180 
7181 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7182 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7183 
7184 	update_cr8_intercept(vcpu);
7185 
7186 	/* Older userspace won't unhalt the vcpu on reset. */
7187 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7188 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7189 	    !is_protmode(vcpu))
7190 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7191 
7192 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7193 
7194 	return 0;
7195 }
7196 
7197 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7198 					struct kvm_guest_debug *dbg)
7199 {
7200 	unsigned long rflags;
7201 	int i, r;
7202 
7203 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7204 		r = -EBUSY;
7205 		if (vcpu->arch.exception.pending)
7206 			goto out;
7207 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7208 			kvm_queue_exception(vcpu, DB_VECTOR);
7209 		else
7210 			kvm_queue_exception(vcpu, BP_VECTOR);
7211 	}
7212 
7213 	/*
7214 	 * Read rflags as long as potentially injected trace flags are still
7215 	 * filtered out.
7216 	 */
7217 	rflags = kvm_get_rflags(vcpu);
7218 
7219 	vcpu->guest_debug = dbg->control;
7220 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7221 		vcpu->guest_debug = 0;
7222 
7223 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7224 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
7225 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7226 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7227 	} else {
7228 		for (i = 0; i < KVM_NR_DB_REGS; i++)
7229 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7230 	}
7231 	kvm_update_dr7(vcpu);
7232 
7233 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7234 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7235 			get_segment_base(vcpu, VCPU_SREG_CS);
7236 
7237 	/*
7238 	 * Trigger an rflags update that will inject or remove the trace
7239 	 * flags.
7240 	 */
7241 	kvm_set_rflags(vcpu, rflags);
7242 
7243 	kvm_x86_ops->update_bp_intercept(vcpu);
7244 
7245 	r = 0;
7246 
7247 out:
7248 
7249 	return r;
7250 }
7251 
7252 /*
7253  * Translate a guest virtual address to a guest physical address.
7254  */
7255 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7256 				    struct kvm_translation *tr)
7257 {
7258 	unsigned long vaddr = tr->linear_address;
7259 	gpa_t gpa;
7260 	int idx;
7261 
7262 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7263 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7264 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7265 	tr->physical_address = gpa;
7266 	tr->valid = gpa != UNMAPPED_GVA;
7267 	tr->writeable = 1;
7268 	tr->usermode = 0;
7269 
7270 	return 0;
7271 }
7272 
7273 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7274 {
7275 	struct fxregs_state *fxsave =
7276 			&vcpu->arch.guest_fpu.state.fxsave;
7277 
7278 	memcpy(fpu->fpr, fxsave->st_space, 128);
7279 	fpu->fcw = fxsave->cwd;
7280 	fpu->fsw = fxsave->swd;
7281 	fpu->ftwx = fxsave->twd;
7282 	fpu->last_opcode = fxsave->fop;
7283 	fpu->last_ip = fxsave->rip;
7284 	fpu->last_dp = fxsave->rdp;
7285 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7286 
7287 	return 0;
7288 }
7289 
7290 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7291 {
7292 	struct fxregs_state *fxsave =
7293 			&vcpu->arch.guest_fpu.state.fxsave;
7294 
7295 	memcpy(fxsave->st_space, fpu->fpr, 128);
7296 	fxsave->cwd = fpu->fcw;
7297 	fxsave->swd = fpu->fsw;
7298 	fxsave->twd = fpu->ftwx;
7299 	fxsave->fop = fpu->last_opcode;
7300 	fxsave->rip = fpu->last_ip;
7301 	fxsave->rdp = fpu->last_dp;
7302 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7303 
7304 	return 0;
7305 }
7306 
7307 static void fx_init(struct kvm_vcpu *vcpu)
7308 {
7309 	fpstate_init(&vcpu->arch.guest_fpu.state);
7310 	if (boot_cpu_has(X86_FEATURE_XSAVES))
7311 		vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7312 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
7313 
7314 	/*
7315 	 * Ensure guest xcr0 is valid for loading
7316 	 */
7317 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7318 
7319 	vcpu->arch.cr0 |= X86_CR0_ET;
7320 }
7321 
7322 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7323 {
7324 	if (vcpu->guest_fpu_loaded)
7325 		return;
7326 
7327 	/*
7328 	 * Restore all possible states in the guest,
7329 	 * and assume host would use all available bits.
7330 	 * Guest xcr0 would be loaded later.
7331 	 */
7332 	vcpu->guest_fpu_loaded = 1;
7333 	__kernel_fpu_begin();
7334 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7335 	trace_kvm_fpu(1);
7336 }
7337 
7338 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7339 {
7340 	if (!vcpu->guest_fpu_loaded) {
7341 		vcpu->fpu_counter = 0;
7342 		return;
7343 	}
7344 
7345 	vcpu->guest_fpu_loaded = 0;
7346 	copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7347 	__kernel_fpu_end();
7348 	++vcpu->stat.fpu_reload;
7349 	/*
7350 	 * If using eager FPU mode, or if the guest is a frequent user
7351 	 * of the FPU, just leave the FPU active for next time.
7352 	 * Every 255 times fpu_counter rolls over to 0; a guest that uses
7353 	 * the FPU in bursts will revert to loading it on demand.
7354 	 */
7355 	if (!use_eager_fpu()) {
7356 		if (++vcpu->fpu_counter < 5)
7357 			kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7358 	}
7359 	trace_kvm_fpu(0);
7360 }
7361 
7362 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7363 {
7364 	kvmclock_reset(vcpu);
7365 
7366 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7367 	kvm_x86_ops->vcpu_free(vcpu);
7368 }
7369 
7370 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7371 						unsigned int id)
7372 {
7373 	struct kvm_vcpu *vcpu;
7374 
7375 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7376 		printk_once(KERN_WARNING
7377 		"kvm: SMP vm created on host with unstable TSC; "
7378 		"guest TSC will not be reliable\n");
7379 
7380 	vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7381 
7382 	return vcpu;
7383 }
7384 
7385 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7386 {
7387 	int r;
7388 
7389 	kvm_vcpu_mtrr_init(vcpu);
7390 	r = vcpu_load(vcpu);
7391 	if (r)
7392 		return r;
7393 	kvm_vcpu_reset(vcpu, false);
7394 	kvm_mmu_setup(vcpu);
7395 	vcpu_put(vcpu);
7396 	return r;
7397 }
7398 
7399 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7400 {
7401 	struct msr_data msr;
7402 	struct kvm *kvm = vcpu->kvm;
7403 
7404 	if (vcpu_load(vcpu))
7405 		return;
7406 	msr.data = 0x0;
7407 	msr.index = MSR_IA32_TSC;
7408 	msr.host_initiated = true;
7409 	kvm_write_tsc(vcpu, &msr);
7410 	vcpu_put(vcpu);
7411 
7412 	if (!kvmclock_periodic_sync)
7413 		return;
7414 
7415 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7416 					KVMCLOCK_SYNC_PERIOD);
7417 }
7418 
7419 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7420 {
7421 	int r;
7422 	vcpu->arch.apf.msr_val = 0;
7423 
7424 	r = vcpu_load(vcpu);
7425 	BUG_ON(r);
7426 	kvm_mmu_unload(vcpu);
7427 	vcpu_put(vcpu);
7428 
7429 	kvm_x86_ops->vcpu_free(vcpu);
7430 }
7431 
7432 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7433 {
7434 	vcpu->arch.hflags = 0;
7435 
7436 	atomic_set(&vcpu->arch.nmi_queued, 0);
7437 	vcpu->arch.nmi_pending = 0;
7438 	vcpu->arch.nmi_injected = false;
7439 	kvm_clear_interrupt_queue(vcpu);
7440 	kvm_clear_exception_queue(vcpu);
7441 
7442 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7443 	kvm_update_dr0123(vcpu);
7444 	vcpu->arch.dr6 = DR6_INIT;
7445 	kvm_update_dr6(vcpu);
7446 	vcpu->arch.dr7 = DR7_FIXED_1;
7447 	kvm_update_dr7(vcpu);
7448 
7449 	vcpu->arch.cr2 = 0;
7450 
7451 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7452 	vcpu->arch.apf.msr_val = 0;
7453 	vcpu->arch.st.msr_val = 0;
7454 
7455 	kvmclock_reset(vcpu);
7456 
7457 	kvm_clear_async_pf_completion_queue(vcpu);
7458 	kvm_async_pf_hash_reset(vcpu);
7459 	vcpu->arch.apf.halted = false;
7460 
7461 	if (!init_event) {
7462 		kvm_pmu_reset(vcpu);
7463 		vcpu->arch.smbase = 0x30000;
7464 	}
7465 
7466 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7467 	vcpu->arch.regs_avail = ~0;
7468 	vcpu->arch.regs_dirty = ~0;
7469 
7470 	kvm_x86_ops->vcpu_reset(vcpu, init_event);
7471 }
7472 
7473 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7474 {
7475 	struct kvm_segment cs;
7476 
7477 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7478 	cs.selector = vector << 8;
7479 	cs.base = vector << 12;
7480 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7481 	kvm_rip_write(vcpu, 0);
7482 }
7483 
7484 int kvm_arch_hardware_enable(void)
7485 {
7486 	struct kvm *kvm;
7487 	struct kvm_vcpu *vcpu;
7488 	int i;
7489 	int ret;
7490 	u64 local_tsc;
7491 	u64 max_tsc = 0;
7492 	bool stable, backwards_tsc = false;
7493 
7494 	kvm_shared_msr_cpu_online();
7495 	ret = kvm_x86_ops->hardware_enable();
7496 	if (ret != 0)
7497 		return ret;
7498 
7499 	local_tsc = rdtsc();
7500 	stable = !check_tsc_unstable();
7501 	list_for_each_entry(kvm, &vm_list, vm_list) {
7502 		kvm_for_each_vcpu(i, vcpu, kvm) {
7503 			if (!stable && vcpu->cpu == smp_processor_id())
7504 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7505 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7506 				backwards_tsc = true;
7507 				if (vcpu->arch.last_host_tsc > max_tsc)
7508 					max_tsc = vcpu->arch.last_host_tsc;
7509 			}
7510 		}
7511 	}
7512 
7513 	/*
7514 	 * Sometimes, even reliable TSCs go backwards.  This happens on
7515 	 * platforms that reset TSC during suspend or hibernate actions, but
7516 	 * maintain synchronization.  We must compensate.  Fortunately, we can
7517 	 * detect that condition here, which happens early in CPU bringup,
7518 	 * before any KVM threads can be running.  Unfortunately, we can't
7519 	 * bring the TSCs fully up to date with real time, as we aren't yet far
7520 	 * enough into CPU bringup that we know how much real time has actually
7521 	 * elapsed; our helper function, get_kernel_ns() will be using boot
7522 	 * variables that haven't been updated yet.
7523 	 *
7524 	 * So we simply find the maximum observed TSC above, then record the
7525 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7526 	 * the adjustment will be applied.  Note that we accumulate
7527 	 * adjustments, in case multiple suspend cycles happen before some VCPU
7528 	 * gets a chance to run again.  In the event that no KVM threads get a
7529 	 * chance to run, we will miss the entire elapsed period, as we'll have
7530 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7531 	 * loose cycle time.  This isn't too big a deal, since the loss will be
7532 	 * uniform across all VCPUs (not to mention the scenario is extremely
7533 	 * unlikely). It is possible that a second hibernate recovery happens
7534 	 * much faster than a first, causing the observed TSC here to be
7535 	 * smaller; this would require additional padding adjustment, which is
7536 	 * why we set last_host_tsc to the local tsc observed here.
7537 	 *
7538 	 * N.B. - this code below runs only on platforms with reliable TSC,
7539 	 * as that is the only way backwards_tsc is set above.  Also note
7540 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7541 	 * have the same delta_cyc adjustment applied if backwards_tsc
7542 	 * is detected.  Note further, this adjustment is only done once,
7543 	 * as we reset last_host_tsc on all VCPUs to stop this from being
7544 	 * called multiple times (one for each physical CPU bringup).
7545 	 *
7546 	 * Platforms with unreliable TSCs don't have to deal with this, they
7547 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
7548 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
7549 	 * guarantee that they stay in perfect synchronization.
7550 	 */
7551 	if (backwards_tsc) {
7552 		u64 delta_cyc = max_tsc - local_tsc;
7553 		backwards_tsc_observed = true;
7554 		list_for_each_entry(kvm, &vm_list, vm_list) {
7555 			kvm_for_each_vcpu(i, vcpu, kvm) {
7556 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
7557 				vcpu->arch.last_host_tsc = local_tsc;
7558 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7559 			}
7560 
7561 			/*
7562 			 * We have to disable TSC offset matching.. if you were
7563 			 * booting a VM while issuing an S4 host suspend....
7564 			 * you may have some problem.  Solving this issue is
7565 			 * left as an exercise to the reader.
7566 			 */
7567 			kvm->arch.last_tsc_nsec = 0;
7568 			kvm->arch.last_tsc_write = 0;
7569 		}
7570 
7571 	}
7572 	return 0;
7573 }
7574 
7575 void kvm_arch_hardware_disable(void)
7576 {
7577 	kvm_x86_ops->hardware_disable();
7578 	drop_user_return_notifiers();
7579 }
7580 
7581 int kvm_arch_hardware_setup(void)
7582 {
7583 	int r;
7584 
7585 	r = kvm_x86_ops->hardware_setup();
7586 	if (r != 0)
7587 		return r;
7588 
7589 	if (kvm_has_tsc_control) {
7590 		/*
7591 		 * Make sure the user can only configure tsc_khz values that
7592 		 * fit into a signed integer.
7593 		 * A min value is not calculated needed because it will always
7594 		 * be 1 on all machines.
7595 		 */
7596 		u64 max = min(0x7fffffffULL,
7597 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7598 		kvm_max_guest_tsc_khz = max;
7599 
7600 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7601 	}
7602 
7603 	kvm_init_msr_list();
7604 	return 0;
7605 }
7606 
7607 void kvm_arch_hardware_unsetup(void)
7608 {
7609 	kvm_x86_ops->hardware_unsetup();
7610 }
7611 
7612 void kvm_arch_check_processor_compat(void *rtn)
7613 {
7614 	kvm_x86_ops->check_processor_compatibility(rtn);
7615 }
7616 
7617 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7618 {
7619 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7620 }
7621 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7622 
7623 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7624 {
7625 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7626 }
7627 
7628 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7629 {
7630 	return irqchip_in_kernel(vcpu->kvm) == lapic_in_kernel(vcpu);
7631 }
7632 
7633 struct static_key kvm_no_apic_vcpu __read_mostly;
7634 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7635 
7636 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7637 {
7638 	struct page *page;
7639 	struct kvm *kvm;
7640 	int r;
7641 
7642 	BUG_ON(vcpu->kvm == NULL);
7643 	kvm = vcpu->kvm;
7644 
7645 	vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7646 	vcpu->arch.pv.pv_unhalted = false;
7647 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7648 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7649 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7650 	else
7651 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7652 
7653 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7654 	if (!page) {
7655 		r = -ENOMEM;
7656 		goto fail;
7657 	}
7658 	vcpu->arch.pio_data = page_address(page);
7659 
7660 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
7661 
7662 	r = kvm_mmu_create(vcpu);
7663 	if (r < 0)
7664 		goto fail_free_pio_data;
7665 
7666 	if (irqchip_in_kernel(kvm)) {
7667 		r = kvm_create_lapic(vcpu);
7668 		if (r < 0)
7669 			goto fail_mmu_destroy;
7670 	} else
7671 		static_key_slow_inc(&kvm_no_apic_vcpu);
7672 
7673 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7674 				       GFP_KERNEL);
7675 	if (!vcpu->arch.mce_banks) {
7676 		r = -ENOMEM;
7677 		goto fail_free_lapic;
7678 	}
7679 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7680 
7681 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7682 		r = -ENOMEM;
7683 		goto fail_free_mce_banks;
7684 	}
7685 
7686 	fx_init(vcpu);
7687 
7688 	vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7689 	vcpu->arch.pv_time_enabled = false;
7690 
7691 	vcpu->arch.guest_supported_xcr0 = 0;
7692 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7693 
7694 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7695 
7696 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7697 
7698 	kvm_async_pf_hash_reset(vcpu);
7699 	kvm_pmu_init(vcpu);
7700 
7701 	vcpu->arch.pending_external_vector = -1;
7702 
7703 	kvm_hv_vcpu_init(vcpu);
7704 
7705 	return 0;
7706 
7707 fail_free_mce_banks:
7708 	kfree(vcpu->arch.mce_banks);
7709 fail_free_lapic:
7710 	kvm_free_lapic(vcpu);
7711 fail_mmu_destroy:
7712 	kvm_mmu_destroy(vcpu);
7713 fail_free_pio_data:
7714 	free_page((unsigned long)vcpu->arch.pio_data);
7715 fail:
7716 	return r;
7717 }
7718 
7719 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7720 {
7721 	int idx;
7722 
7723 	kvm_hv_vcpu_uninit(vcpu);
7724 	kvm_pmu_destroy(vcpu);
7725 	kfree(vcpu->arch.mce_banks);
7726 	kvm_free_lapic(vcpu);
7727 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7728 	kvm_mmu_destroy(vcpu);
7729 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7730 	free_page((unsigned long)vcpu->arch.pio_data);
7731 	if (!lapic_in_kernel(vcpu))
7732 		static_key_slow_dec(&kvm_no_apic_vcpu);
7733 }
7734 
7735 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7736 {
7737 	kvm_x86_ops->sched_in(vcpu, cpu);
7738 }
7739 
7740 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7741 {
7742 	if (type)
7743 		return -EINVAL;
7744 
7745 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7746 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7747 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7748 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7749 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7750 
7751 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7752 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7753 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7754 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7755 		&kvm->arch.irq_sources_bitmap);
7756 
7757 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7758 	mutex_init(&kvm->arch.apic_map_lock);
7759 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7760 
7761 	pvclock_update_vm_gtod_copy(kvm);
7762 
7763 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7764 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7765 
7766 	kvm_page_track_init(kvm);
7767 	kvm_mmu_init_vm(kvm);
7768 
7769 	if (kvm_x86_ops->vm_init)
7770 		return kvm_x86_ops->vm_init(kvm);
7771 
7772 	return 0;
7773 }
7774 
7775 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7776 {
7777 	int r;
7778 	r = vcpu_load(vcpu);
7779 	BUG_ON(r);
7780 	kvm_mmu_unload(vcpu);
7781 	vcpu_put(vcpu);
7782 }
7783 
7784 static void kvm_free_vcpus(struct kvm *kvm)
7785 {
7786 	unsigned int i;
7787 	struct kvm_vcpu *vcpu;
7788 
7789 	/*
7790 	 * Unpin any mmu pages first.
7791 	 */
7792 	kvm_for_each_vcpu(i, vcpu, kvm) {
7793 		kvm_clear_async_pf_completion_queue(vcpu);
7794 		kvm_unload_vcpu_mmu(vcpu);
7795 	}
7796 	kvm_for_each_vcpu(i, vcpu, kvm)
7797 		kvm_arch_vcpu_free(vcpu);
7798 
7799 	mutex_lock(&kvm->lock);
7800 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7801 		kvm->vcpus[i] = NULL;
7802 
7803 	atomic_set(&kvm->online_vcpus, 0);
7804 	mutex_unlock(&kvm->lock);
7805 }
7806 
7807 void kvm_arch_sync_events(struct kvm *kvm)
7808 {
7809 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7810 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7811 	kvm_free_all_assigned_devices(kvm);
7812 	kvm_free_pit(kvm);
7813 }
7814 
7815 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7816 {
7817 	int i, r;
7818 	unsigned long hva;
7819 	struct kvm_memslots *slots = kvm_memslots(kvm);
7820 	struct kvm_memory_slot *slot, old;
7821 
7822 	/* Called with kvm->slots_lock held.  */
7823 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7824 		return -EINVAL;
7825 
7826 	slot = id_to_memslot(slots, id);
7827 	if (size) {
7828 		if (slot->npages)
7829 			return -EEXIST;
7830 
7831 		/*
7832 		 * MAP_SHARED to prevent internal slot pages from being moved
7833 		 * by fork()/COW.
7834 		 */
7835 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7836 			      MAP_SHARED | MAP_ANONYMOUS, 0);
7837 		if (IS_ERR((void *)hva))
7838 			return PTR_ERR((void *)hva);
7839 	} else {
7840 		if (!slot->npages)
7841 			return 0;
7842 
7843 		hva = 0;
7844 	}
7845 
7846 	old = *slot;
7847 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7848 		struct kvm_userspace_memory_region m;
7849 
7850 		m.slot = id | (i << 16);
7851 		m.flags = 0;
7852 		m.guest_phys_addr = gpa;
7853 		m.userspace_addr = hva;
7854 		m.memory_size = size;
7855 		r = __kvm_set_memory_region(kvm, &m);
7856 		if (r < 0)
7857 			return r;
7858 	}
7859 
7860 	if (!size) {
7861 		r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
7862 		WARN_ON(r < 0);
7863 	}
7864 
7865 	return 0;
7866 }
7867 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7868 
7869 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7870 {
7871 	int r;
7872 
7873 	mutex_lock(&kvm->slots_lock);
7874 	r = __x86_set_memory_region(kvm, id, gpa, size);
7875 	mutex_unlock(&kvm->slots_lock);
7876 
7877 	return r;
7878 }
7879 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7880 
7881 void kvm_arch_destroy_vm(struct kvm *kvm)
7882 {
7883 	if (current->mm == kvm->mm) {
7884 		/*
7885 		 * Free memory regions allocated on behalf of userspace,
7886 		 * unless the the memory map has changed due to process exit
7887 		 * or fd copying.
7888 		 */
7889 		x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
7890 		x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
7891 		x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
7892 	}
7893 	if (kvm_x86_ops->vm_destroy)
7894 		kvm_x86_ops->vm_destroy(kvm);
7895 	kvm_iommu_unmap_guest(kvm);
7896 	kfree(kvm->arch.vpic);
7897 	kfree(kvm->arch.vioapic);
7898 	kvm_free_vcpus(kvm);
7899 	kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7900 	kvm_mmu_uninit_vm(kvm);
7901 }
7902 
7903 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7904 			   struct kvm_memory_slot *dont)
7905 {
7906 	int i;
7907 
7908 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7909 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7910 			kvfree(free->arch.rmap[i]);
7911 			free->arch.rmap[i] = NULL;
7912 		}
7913 		if (i == 0)
7914 			continue;
7915 
7916 		if (!dont || free->arch.lpage_info[i - 1] !=
7917 			     dont->arch.lpage_info[i - 1]) {
7918 			kvfree(free->arch.lpage_info[i - 1]);
7919 			free->arch.lpage_info[i - 1] = NULL;
7920 		}
7921 	}
7922 
7923 	kvm_page_track_free_memslot(free, dont);
7924 }
7925 
7926 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7927 			    unsigned long npages)
7928 {
7929 	int i;
7930 
7931 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7932 		struct kvm_lpage_info *linfo;
7933 		unsigned long ugfn;
7934 		int lpages;
7935 		int level = i + 1;
7936 
7937 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
7938 				      slot->base_gfn, level) + 1;
7939 
7940 		slot->arch.rmap[i] =
7941 			kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7942 		if (!slot->arch.rmap[i])
7943 			goto out_free;
7944 		if (i == 0)
7945 			continue;
7946 
7947 		linfo = kvm_kvzalloc(lpages * sizeof(*linfo));
7948 		if (!linfo)
7949 			goto out_free;
7950 
7951 		slot->arch.lpage_info[i - 1] = linfo;
7952 
7953 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7954 			linfo[0].disallow_lpage = 1;
7955 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7956 			linfo[lpages - 1].disallow_lpage = 1;
7957 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
7958 		/*
7959 		 * If the gfn and userspace address are not aligned wrt each
7960 		 * other, or if explicitly asked to, disable large page
7961 		 * support for this slot
7962 		 */
7963 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7964 		    !kvm_largepages_enabled()) {
7965 			unsigned long j;
7966 
7967 			for (j = 0; j < lpages; ++j)
7968 				linfo[j].disallow_lpage = 1;
7969 		}
7970 	}
7971 
7972 	if (kvm_page_track_create_memslot(slot, npages))
7973 		goto out_free;
7974 
7975 	return 0;
7976 
7977 out_free:
7978 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7979 		kvfree(slot->arch.rmap[i]);
7980 		slot->arch.rmap[i] = NULL;
7981 		if (i == 0)
7982 			continue;
7983 
7984 		kvfree(slot->arch.lpage_info[i - 1]);
7985 		slot->arch.lpage_info[i - 1] = NULL;
7986 	}
7987 	return -ENOMEM;
7988 }
7989 
7990 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
7991 {
7992 	/*
7993 	 * memslots->generation has been incremented.
7994 	 * mmio generation may have reached its maximum value.
7995 	 */
7996 	kvm_mmu_invalidate_mmio_sptes(kvm, slots);
7997 }
7998 
7999 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8000 				struct kvm_memory_slot *memslot,
8001 				const struct kvm_userspace_memory_region *mem,
8002 				enum kvm_mr_change change)
8003 {
8004 	return 0;
8005 }
8006 
8007 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8008 				     struct kvm_memory_slot *new)
8009 {
8010 	/* Still write protect RO slot */
8011 	if (new->flags & KVM_MEM_READONLY) {
8012 		kvm_mmu_slot_remove_write_access(kvm, new);
8013 		return;
8014 	}
8015 
8016 	/*
8017 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
8018 	 *
8019 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
8020 	 *
8021 	 *  - KVM_MR_CREATE with dirty logging is disabled
8022 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8023 	 *
8024 	 * The reason is, in case of PML, we need to set D-bit for any slots
8025 	 * with dirty logging disabled in order to eliminate unnecessary GPA
8026 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
8027 	 * guarantees leaving PML enabled during guest's lifetime won't have
8028 	 * any additonal overhead from PML when guest is running with dirty
8029 	 * logging disabled for memory slots.
8030 	 *
8031 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8032 	 * to dirty logging mode.
8033 	 *
8034 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8035 	 *
8036 	 * In case of write protect:
8037 	 *
8038 	 * Write protect all pages for dirty logging.
8039 	 *
8040 	 * All the sptes including the large sptes which point to this
8041 	 * slot are set to readonly. We can not create any new large
8042 	 * spte on this slot until the end of the logging.
8043 	 *
8044 	 * See the comments in fast_page_fault().
8045 	 */
8046 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8047 		if (kvm_x86_ops->slot_enable_log_dirty)
8048 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8049 		else
8050 			kvm_mmu_slot_remove_write_access(kvm, new);
8051 	} else {
8052 		if (kvm_x86_ops->slot_disable_log_dirty)
8053 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8054 	}
8055 }
8056 
8057 void kvm_arch_commit_memory_region(struct kvm *kvm,
8058 				const struct kvm_userspace_memory_region *mem,
8059 				const struct kvm_memory_slot *old,
8060 				const struct kvm_memory_slot *new,
8061 				enum kvm_mr_change change)
8062 {
8063 	int nr_mmu_pages = 0;
8064 
8065 	if (!kvm->arch.n_requested_mmu_pages)
8066 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8067 
8068 	if (nr_mmu_pages)
8069 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8070 
8071 	/*
8072 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
8073 	 * sptes have to be split.  If live migration is successful, the guest
8074 	 * in the source machine will be destroyed and large sptes will be
8075 	 * created in the destination. However, if the guest continues to run
8076 	 * in the source machine (for example if live migration fails), small
8077 	 * sptes will remain around and cause bad performance.
8078 	 *
8079 	 * Scan sptes if dirty logging has been stopped, dropping those
8080 	 * which can be collapsed into a single large-page spte.  Later
8081 	 * page faults will create the large-page sptes.
8082 	 */
8083 	if ((change != KVM_MR_DELETE) &&
8084 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8085 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8086 		kvm_mmu_zap_collapsible_sptes(kvm, new);
8087 
8088 	/*
8089 	 * Set up write protection and/or dirty logging for the new slot.
8090 	 *
8091 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8092 	 * been zapped so no dirty logging staff is needed for old slot. For
8093 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8094 	 * new and it's also covered when dealing with the new slot.
8095 	 *
8096 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
8097 	 */
8098 	if (change != KVM_MR_DELETE)
8099 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8100 }
8101 
8102 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8103 {
8104 	kvm_mmu_invalidate_zap_all_pages(kvm);
8105 }
8106 
8107 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8108 				   struct kvm_memory_slot *slot)
8109 {
8110 	kvm_mmu_invalidate_zap_all_pages(kvm);
8111 }
8112 
8113 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8114 {
8115 	if (!list_empty_careful(&vcpu->async_pf.done))
8116 		return true;
8117 
8118 	if (kvm_apic_has_events(vcpu))
8119 		return true;
8120 
8121 	if (vcpu->arch.pv.pv_unhalted)
8122 		return true;
8123 
8124 	if (atomic_read(&vcpu->arch.nmi_queued))
8125 		return true;
8126 
8127 	if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8128 		return true;
8129 
8130 	if (kvm_arch_interrupt_allowed(vcpu) &&
8131 	    kvm_cpu_has_interrupt(vcpu))
8132 		return true;
8133 
8134 	if (kvm_hv_has_stimer_pending(vcpu))
8135 		return true;
8136 
8137 	return false;
8138 }
8139 
8140 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8141 {
8142 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8143 		kvm_x86_ops->check_nested_events(vcpu, false);
8144 
8145 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8146 }
8147 
8148 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8149 {
8150 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8151 }
8152 
8153 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8154 {
8155 	return kvm_x86_ops->interrupt_allowed(vcpu);
8156 }
8157 
8158 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8159 {
8160 	if (is_64_bit_mode(vcpu))
8161 		return kvm_rip_read(vcpu);
8162 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8163 		     kvm_rip_read(vcpu));
8164 }
8165 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8166 
8167 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8168 {
8169 	return kvm_get_linear_rip(vcpu) == linear_rip;
8170 }
8171 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8172 
8173 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8174 {
8175 	unsigned long rflags;
8176 
8177 	rflags = kvm_x86_ops->get_rflags(vcpu);
8178 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8179 		rflags &= ~X86_EFLAGS_TF;
8180 	return rflags;
8181 }
8182 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8183 
8184 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8185 {
8186 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8187 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8188 		rflags |= X86_EFLAGS_TF;
8189 	kvm_x86_ops->set_rflags(vcpu, rflags);
8190 }
8191 
8192 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8193 {
8194 	__kvm_set_rflags(vcpu, rflags);
8195 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8196 }
8197 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8198 
8199 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8200 {
8201 	int r;
8202 
8203 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8204 	      work->wakeup_all)
8205 		return;
8206 
8207 	r = kvm_mmu_reload(vcpu);
8208 	if (unlikely(r))
8209 		return;
8210 
8211 	if (!vcpu->arch.mmu.direct_map &&
8212 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8213 		return;
8214 
8215 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8216 }
8217 
8218 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8219 {
8220 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8221 }
8222 
8223 static inline u32 kvm_async_pf_next_probe(u32 key)
8224 {
8225 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8226 }
8227 
8228 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8229 {
8230 	u32 key = kvm_async_pf_hash_fn(gfn);
8231 
8232 	while (vcpu->arch.apf.gfns[key] != ~0)
8233 		key = kvm_async_pf_next_probe(key);
8234 
8235 	vcpu->arch.apf.gfns[key] = gfn;
8236 }
8237 
8238 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8239 {
8240 	int i;
8241 	u32 key = kvm_async_pf_hash_fn(gfn);
8242 
8243 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8244 		     (vcpu->arch.apf.gfns[key] != gfn &&
8245 		      vcpu->arch.apf.gfns[key] != ~0); i++)
8246 		key = kvm_async_pf_next_probe(key);
8247 
8248 	return key;
8249 }
8250 
8251 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8252 {
8253 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8254 }
8255 
8256 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8257 {
8258 	u32 i, j, k;
8259 
8260 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8261 	while (true) {
8262 		vcpu->arch.apf.gfns[i] = ~0;
8263 		do {
8264 			j = kvm_async_pf_next_probe(j);
8265 			if (vcpu->arch.apf.gfns[j] == ~0)
8266 				return;
8267 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8268 			/*
8269 			 * k lies cyclically in ]i,j]
8270 			 * |    i.k.j |
8271 			 * |....j i.k.| or  |.k..j i...|
8272 			 */
8273 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8274 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8275 		i = j;
8276 	}
8277 }
8278 
8279 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8280 {
8281 
8282 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8283 				      sizeof(val));
8284 }
8285 
8286 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8287 				     struct kvm_async_pf *work)
8288 {
8289 	struct x86_exception fault;
8290 
8291 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8292 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8293 
8294 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8295 	    (vcpu->arch.apf.send_user_only &&
8296 	     kvm_x86_ops->get_cpl(vcpu) == 0))
8297 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8298 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8299 		fault.vector = PF_VECTOR;
8300 		fault.error_code_valid = true;
8301 		fault.error_code = 0;
8302 		fault.nested_page_fault = false;
8303 		fault.address = work->arch.token;
8304 		kvm_inject_page_fault(vcpu, &fault);
8305 	}
8306 }
8307 
8308 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8309 				 struct kvm_async_pf *work)
8310 {
8311 	struct x86_exception fault;
8312 
8313 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
8314 	if (work->wakeup_all)
8315 		work->arch.token = ~0; /* broadcast wakeup */
8316 	else
8317 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8318 
8319 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8320 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8321 		fault.vector = PF_VECTOR;
8322 		fault.error_code_valid = true;
8323 		fault.error_code = 0;
8324 		fault.nested_page_fault = false;
8325 		fault.address = work->arch.token;
8326 		kvm_inject_page_fault(vcpu, &fault);
8327 	}
8328 	vcpu->arch.apf.halted = false;
8329 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8330 }
8331 
8332 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8333 {
8334 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8335 		return true;
8336 	else
8337 		return !kvm_event_needs_reinjection(vcpu) &&
8338 			kvm_x86_ops->interrupt_allowed(vcpu);
8339 }
8340 
8341 void kvm_arch_start_assignment(struct kvm *kvm)
8342 {
8343 	atomic_inc(&kvm->arch.assigned_device_count);
8344 }
8345 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8346 
8347 void kvm_arch_end_assignment(struct kvm *kvm)
8348 {
8349 	atomic_dec(&kvm->arch.assigned_device_count);
8350 }
8351 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8352 
8353 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8354 {
8355 	return atomic_read(&kvm->arch.assigned_device_count);
8356 }
8357 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8358 
8359 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8360 {
8361 	atomic_inc(&kvm->arch.noncoherent_dma_count);
8362 }
8363 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8364 
8365 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8366 {
8367 	atomic_dec(&kvm->arch.noncoherent_dma_count);
8368 }
8369 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8370 
8371 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8372 {
8373 	return atomic_read(&kvm->arch.noncoherent_dma_count);
8374 }
8375 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8376 
8377 bool kvm_arch_has_irq_bypass(void)
8378 {
8379 	return kvm_x86_ops->update_pi_irte != NULL;
8380 }
8381 
8382 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8383 				      struct irq_bypass_producer *prod)
8384 {
8385 	struct kvm_kernel_irqfd *irqfd =
8386 		container_of(cons, struct kvm_kernel_irqfd, consumer);
8387 
8388 	irqfd->producer = prod;
8389 
8390 	return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8391 					   prod->irq, irqfd->gsi, 1);
8392 }
8393 
8394 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8395 				      struct irq_bypass_producer *prod)
8396 {
8397 	int ret;
8398 	struct kvm_kernel_irqfd *irqfd =
8399 		container_of(cons, struct kvm_kernel_irqfd, consumer);
8400 
8401 	WARN_ON(irqfd->producer != prod);
8402 	irqfd->producer = NULL;
8403 
8404 	/*
8405 	 * When producer of consumer is unregistered, we change back to
8406 	 * remapped mode, so we can re-use the current implementation
8407 	 * when the irq is masked/disabed or the consumer side (KVM
8408 	 * int this case doesn't want to receive the interrupts.
8409 	*/
8410 	ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8411 	if (ret)
8412 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8413 		       " fails: %d\n", irqfd->consumer.token, ret);
8414 }
8415 
8416 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8417 				   uint32_t guest_irq, bool set)
8418 {
8419 	if (!kvm_x86_ops->update_pi_irte)
8420 		return -EINVAL;
8421 
8422 	return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8423 }
8424 
8425 bool kvm_vector_hashing_enabled(void)
8426 {
8427 	return vector_hashing;
8428 }
8429 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8430 
8431 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8432 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8433 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8434 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8435 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8436 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8437 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8438 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8439 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8440 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8441 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8442 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8443 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8444 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8445 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8446 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8447 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8448 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8449 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
8450