1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 19 #include <linux/kvm_host.h> 20 #include "irq.h" 21 #include "ioapic.h" 22 #include "mmu.h" 23 #include "i8254.h" 24 #include "tss.h" 25 #include "kvm_cache_regs.h" 26 #include "kvm_emulate.h" 27 #include "x86.h" 28 #include "cpuid.h" 29 #include "pmu.h" 30 #include "hyperv.h" 31 #include "lapic.h" 32 #include "xen.h" 33 34 #include <linux/clocksource.h> 35 #include <linux/interrupt.h> 36 #include <linux/kvm.h> 37 #include <linux/fs.h> 38 #include <linux/vmalloc.h> 39 #include <linux/export.h> 40 #include <linux/moduleparam.h> 41 #include <linux/mman.h> 42 #include <linux/highmem.h> 43 #include <linux/iommu.h> 44 #include <linux/cpufreq.h> 45 #include <linux/user-return-notifier.h> 46 #include <linux/srcu.h> 47 #include <linux/slab.h> 48 #include <linux/perf_event.h> 49 #include <linux/uaccess.h> 50 #include <linux/hash.h> 51 #include <linux/pci.h> 52 #include <linux/timekeeper_internal.h> 53 #include <linux/pvclock_gtod.h> 54 #include <linux/kvm_irqfd.h> 55 #include <linux/irqbypass.h> 56 #include <linux/sched/stat.h> 57 #include <linux/sched/isolation.h> 58 #include <linux/mem_encrypt.h> 59 #include <linux/entry-kvm.h> 60 #include <linux/suspend.h> 61 62 #include <trace/events/kvm.h> 63 64 #include <asm/debugreg.h> 65 #include <asm/msr.h> 66 #include <asm/desc.h> 67 #include <asm/mce.h> 68 #include <asm/pkru.h> 69 #include <linux/kernel_stat.h> 70 #include <asm/fpu/api.h> 71 #include <asm/fpu/xcr.h> 72 #include <asm/fpu/xstate.h> 73 #include <asm/pvclock.h> 74 #include <asm/div64.h> 75 #include <asm/irq_remapping.h> 76 #include <asm/mshyperv.h> 77 #include <asm/hypervisor.h> 78 #include <asm/tlbflush.h> 79 #include <asm/intel_pt.h> 80 #include <asm/emulate_prefix.h> 81 #include <asm/sgx.h> 82 #include <clocksource/hyperv_timer.h> 83 84 #define CREATE_TRACE_POINTS 85 #include "trace.h" 86 87 #define MAX_IO_MSRS 256 88 #define KVM_MAX_MCE_BANKS 32 89 90 struct kvm_caps kvm_caps __read_mostly = { 91 .supported_mce_cap = MCG_CTL_P | MCG_SER_P, 92 }; 93 EXPORT_SYMBOL_GPL(kvm_caps); 94 95 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 96 97 #define emul_to_vcpu(ctxt) \ 98 ((struct kvm_vcpu *)(ctxt)->vcpu) 99 100 /* EFER defaults: 101 * - enable syscall per default because its emulated by KVM 102 * - enable LME and LMA per default on 64 bit KVM 103 */ 104 #ifdef CONFIG_X86_64 105 static 106 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 107 #else 108 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 109 #endif 110 111 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 112 113 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 114 115 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 116 117 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 118 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 119 120 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 121 static void process_nmi(struct kvm_vcpu *vcpu); 122 static void process_smi(struct kvm_vcpu *vcpu); 123 static void enter_smm(struct kvm_vcpu *vcpu); 124 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 125 static void store_regs(struct kvm_vcpu *vcpu); 126 static int sync_regs(struct kvm_vcpu *vcpu); 127 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 128 129 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 130 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 131 132 struct kvm_x86_ops kvm_x86_ops __read_mostly; 133 134 #define KVM_X86_OP(func) \ 135 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 136 *(((struct kvm_x86_ops *)0)->func)); 137 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 138 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 139 #include <asm/kvm-x86-ops.h> 140 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 141 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 142 143 static bool __read_mostly ignore_msrs = 0; 144 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 145 146 bool __read_mostly report_ignored_msrs = true; 147 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 148 EXPORT_SYMBOL_GPL(report_ignored_msrs); 149 150 unsigned int min_timer_period_us = 200; 151 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 152 153 static bool __read_mostly kvmclock_periodic_sync = true; 154 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 155 156 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 157 static u32 __read_mostly tsc_tolerance_ppm = 250; 158 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 159 160 /* 161 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 162 * adaptive tuning starting from default advancement of 1000ns. '0' disables 163 * advancement entirely. Any other value is used as-is and disables adaptive 164 * tuning, i.e. allows privileged userspace to set an exact advancement time. 165 */ 166 static int __read_mostly lapic_timer_advance_ns = -1; 167 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 168 169 static bool __read_mostly vector_hashing = true; 170 module_param(vector_hashing, bool, S_IRUGO); 171 172 bool __read_mostly enable_vmware_backdoor = false; 173 module_param(enable_vmware_backdoor, bool, S_IRUGO); 174 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 175 176 static bool __read_mostly force_emulation_prefix = false; 177 module_param(force_emulation_prefix, bool, S_IRUGO); 178 179 int __read_mostly pi_inject_timer = -1; 180 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 181 182 /* Enable/disable PMU virtualization */ 183 bool __read_mostly enable_pmu = true; 184 EXPORT_SYMBOL_GPL(enable_pmu); 185 module_param(enable_pmu, bool, 0444); 186 187 bool __read_mostly eager_page_split = true; 188 module_param(eager_page_split, bool, 0644); 189 190 /* 191 * Restoring the host value for MSRs that are only consumed when running in 192 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 193 * returns to userspace, i.e. the kernel can run with the guest's value. 194 */ 195 #define KVM_MAX_NR_USER_RETURN_MSRS 16 196 197 struct kvm_user_return_msrs { 198 struct user_return_notifier urn; 199 bool registered; 200 struct kvm_user_return_msr_values { 201 u64 host; 202 u64 curr; 203 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 204 }; 205 206 u32 __read_mostly kvm_nr_uret_msrs; 207 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 208 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 209 static struct kvm_user_return_msrs __percpu *user_return_msrs; 210 211 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 212 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 213 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 214 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 215 216 u64 __read_mostly host_efer; 217 EXPORT_SYMBOL_GPL(host_efer); 218 219 bool __read_mostly allow_smaller_maxphyaddr = 0; 220 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 221 222 bool __read_mostly enable_apicv = true; 223 EXPORT_SYMBOL_GPL(enable_apicv); 224 225 u64 __read_mostly host_xss; 226 EXPORT_SYMBOL_GPL(host_xss); 227 228 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 229 KVM_GENERIC_VM_STATS(), 230 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 231 STATS_DESC_COUNTER(VM, mmu_pte_write), 232 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 233 STATS_DESC_COUNTER(VM, mmu_flooded), 234 STATS_DESC_COUNTER(VM, mmu_recycled), 235 STATS_DESC_COUNTER(VM, mmu_cache_miss), 236 STATS_DESC_ICOUNTER(VM, mmu_unsync), 237 STATS_DESC_ICOUNTER(VM, pages_4k), 238 STATS_DESC_ICOUNTER(VM, pages_2m), 239 STATS_DESC_ICOUNTER(VM, pages_1g), 240 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 241 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 242 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 243 }; 244 245 const struct kvm_stats_header kvm_vm_stats_header = { 246 .name_size = KVM_STATS_NAME_SIZE, 247 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 248 .id_offset = sizeof(struct kvm_stats_header), 249 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 250 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 251 sizeof(kvm_vm_stats_desc), 252 }; 253 254 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 255 KVM_GENERIC_VCPU_STATS(), 256 STATS_DESC_COUNTER(VCPU, pf_taken), 257 STATS_DESC_COUNTER(VCPU, pf_fixed), 258 STATS_DESC_COUNTER(VCPU, pf_emulate), 259 STATS_DESC_COUNTER(VCPU, pf_spurious), 260 STATS_DESC_COUNTER(VCPU, pf_fast), 261 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 262 STATS_DESC_COUNTER(VCPU, pf_guest), 263 STATS_DESC_COUNTER(VCPU, tlb_flush), 264 STATS_DESC_COUNTER(VCPU, invlpg), 265 STATS_DESC_COUNTER(VCPU, exits), 266 STATS_DESC_COUNTER(VCPU, io_exits), 267 STATS_DESC_COUNTER(VCPU, mmio_exits), 268 STATS_DESC_COUNTER(VCPU, signal_exits), 269 STATS_DESC_COUNTER(VCPU, irq_window_exits), 270 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 271 STATS_DESC_COUNTER(VCPU, l1d_flush), 272 STATS_DESC_COUNTER(VCPU, halt_exits), 273 STATS_DESC_COUNTER(VCPU, request_irq_exits), 274 STATS_DESC_COUNTER(VCPU, irq_exits), 275 STATS_DESC_COUNTER(VCPU, host_state_reload), 276 STATS_DESC_COUNTER(VCPU, fpu_reload), 277 STATS_DESC_COUNTER(VCPU, insn_emulation), 278 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 279 STATS_DESC_COUNTER(VCPU, hypercalls), 280 STATS_DESC_COUNTER(VCPU, irq_injections), 281 STATS_DESC_COUNTER(VCPU, nmi_injections), 282 STATS_DESC_COUNTER(VCPU, req_event), 283 STATS_DESC_COUNTER(VCPU, nested_run), 284 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 285 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 286 STATS_DESC_COUNTER(VCPU, preemption_reported), 287 STATS_DESC_COUNTER(VCPU, preemption_other), 288 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 289 STATS_DESC_COUNTER(VCPU, notify_window_exits), 290 }; 291 292 const struct kvm_stats_header kvm_vcpu_stats_header = { 293 .name_size = KVM_STATS_NAME_SIZE, 294 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 295 .id_offset = sizeof(struct kvm_stats_header), 296 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 297 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 298 sizeof(kvm_vcpu_stats_desc), 299 }; 300 301 u64 __read_mostly host_xcr0; 302 303 static struct kmem_cache *x86_emulator_cache; 304 305 /* 306 * When called, it means the previous get/set msr reached an invalid msr. 307 * Return true if we want to ignore/silent this failed msr access. 308 */ 309 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 310 { 311 const char *op = write ? "wrmsr" : "rdmsr"; 312 313 if (ignore_msrs) { 314 if (report_ignored_msrs) 315 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 316 op, msr, data); 317 /* Mask the error */ 318 return true; 319 } else { 320 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 321 op, msr, data); 322 return false; 323 } 324 } 325 326 static struct kmem_cache *kvm_alloc_emulator_cache(void) 327 { 328 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 329 unsigned int size = sizeof(struct x86_emulate_ctxt); 330 331 return kmem_cache_create_usercopy("x86_emulator", size, 332 __alignof__(struct x86_emulate_ctxt), 333 SLAB_ACCOUNT, useroffset, 334 size - useroffset, NULL); 335 } 336 337 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 338 339 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 340 { 341 int i; 342 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 343 vcpu->arch.apf.gfns[i] = ~0; 344 } 345 346 static void kvm_on_user_return(struct user_return_notifier *urn) 347 { 348 unsigned slot; 349 struct kvm_user_return_msrs *msrs 350 = container_of(urn, struct kvm_user_return_msrs, urn); 351 struct kvm_user_return_msr_values *values; 352 unsigned long flags; 353 354 /* 355 * Disabling irqs at this point since the following code could be 356 * interrupted and executed through kvm_arch_hardware_disable() 357 */ 358 local_irq_save(flags); 359 if (msrs->registered) { 360 msrs->registered = false; 361 user_return_notifier_unregister(urn); 362 } 363 local_irq_restore(flags); 364 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 365 values = &msrs->values[slot]; 366 if (values->host != values->curr) { 367 wrmsrl(kvm_uret_msrs_list[slot], values->host); 368 values->curr = values->host; 369 } 370 } 371 } 372 373 static int kvm_probe_user_return_msr(u32 msr) 374 { 375 u64 val; 376 int ret; 377 378 preempt_disable(); 379 ret = rdmsrl_safe(msr, &val); 380 if (ret) 381 goto out; 382 ret = wrmsrl_safe(msr, val); 383 out: 384 preempt_enable(); 385 return ret; 386 } 387 388 int kvm_add_user_return_msr(u32 msr) 389 { 390 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 391 392 if (kvm_probe_user_return_msr(msr)) 393 return -1; 394 395 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 396 return kvm_nr_uret_msrs++; 397 } 398 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 399 400 int kvm_find_user_return_msr(u32 msr) 401 { 402 int i; 403 404 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 405 if (kvm_uret_msrs_list[i] == msr) 406 return i; 407 } 408 return -1; 409 } 410 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 411 412 static void kvm_user_return_msr_cpu_online(void) 413 { 414 unsigned int cpu = smp_processor_id(); 415 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 416 u64 value; 417 int i; 418 419 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 420 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 421 msrs->values[i].host = value; 422 msrs->values[i].curr = value; 423 } 424 } 425 426 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 427 { 428 unsigned int cpu = smp_processor_id(); 429 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 430 int err; 431 432 value = (value & mask) | (msrs->values[slot].host & ~mask); 433 if (value == msrs->values[slot].curr) 434 return 0; 435 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 436 if (err) 437 return 1; 438 439 msrs->values[slot].curr = value; 440 if (!msrs->registered) { 441 msrs->urn.on_user_return = kvm_on_user_return; 442 user_return_notifier_register(&msrs->urn); 443 msrs->registered = true; 444 } 445 return 0; 446 } 447 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 448 449 static void drop_user_return_notifiers(void) 450 { 451 unsigned int cpu = smp_processor_id(); 452 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 453 454 if (msrs->registered) 455 kvm_on_user_return(&msrs->urn); 456 } 457 458 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 459 { 460 return vcpu->arch.apic_base; 461 } 462 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 463 464 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 465 { 466 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 467 } 468 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 469 470 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 471 { 472 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 473 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 474 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 475 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 476 477 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 478 return 1; 479 if (!msr_info->host_initiated) { 480 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 481 return 1; 482 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 483 return 1; 484 } 485 486 kvm_lapic_set_base(vcpu, msr_info->data); 487 kvm_recalculate_apic_map(vcpu->kvm); 488 return 0; 489 } 490 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 491 492 /* 493 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 494 * 495 * Hardware virtualization extension instructions may fault if a reboot turns 496 * off virtualization while processes are running. Usually after catching the 497 * fault we just panic; during reboot instead the instruction is ignored. 498 */ 499 noinstr void kvm_spurious_fault(void) 500 { 501 /* Fault while not rebooting. We want the trace. */ 502 BUG_ON(!kvm_rebooting); 503 } 504 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 505 506 #define EXCPT_BENIGN 0 507 #define EXCPT_CONTRIBUTORY 1 508 #define EXCPT_PF 2 509 510 static int exception_class(int vector) 511 { 512 switch (vector) { 513 case PF_VECTOR: 514 return EXCPT_PF; 515 case DE_VECTOR: 516 case TS_VECTOR: 517 case NP_VECTOR: 518 case SS_VECTOR: 519 case GP_VECTOR: 520 return EXCPT_CONTRIBUTORY; 521 default: 522 break; 523 } 524 return EXCPT_BENIGN; 525 } 526 527 #define EXCPT_FAULT 0 528 #define EXCPT_TRAP 1 529 #define EXCPT_ABORT 2 530 #define EXCPT_INTERRUPT 3 531 532 static int exception_type(int vector) 533 { 534 unsigned int mask; 535 536 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 537 return EXCPT_INTERRUPT; 538 539 mask = 1 << vector; 540 541 /* #DB is trap, as instruction watchpoints are handled elsewhere */ 542 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR))) 543 return EXCPT_TRAP; 544 545 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 546 return EXCPT_ABORT; 547 548 /* Reserved exceptions will result in fault */ 549 return EXCPT_FAULT; 550 } 551 552 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu) 553 { 554 unsigned nr = vcpu->arch.exception.nr; 555 bool has_payload = vcpu->arch.exception.has_payload; 556 unsigned long payload = vcpu->arch.exception.payload; 557 558 if (!has_payload) 559 return; 560 561 switch (nr) { 562 case DB_VECTOR: 563 /* 564 * "Certain debug exceptions may clear bit 0-3. The 565 * remaining contents of the DR6 register are never 566 * cleared by the processor". 567 */ 568 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 569 /* 570 * In order to reflect the #DB exception payload in guest 571 * dr6, three components need to be considered: active low 572 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 573 * DR6_BS and DR6_BT) 574 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 575 * In the target guest dr6: 576 * FIXED_1 bits should always be set. 577 * Active low bits should be cleared if 1-setting in payload. 578 * Active high bits should be set if 1-setting in payload. 579 * 580 * Note, the payload is compatible with the pending debug 581 * exceptions/exit qualification under VMX, that active_low bits 582 * are active high in payload. 583 * So they need to be flipped for DR6. 584 */ 585 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 586 vcpu->arch.dr6 |= payload; 587 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW; 588 589 /* 590 * The #DB payload is defined as compatible with the 'pending 591 * debug exceptions' field under VMX, not DR6. While bit 12 is 592 * defined in the 'pending debug exceptions' field (enabled 593 * breakpoint), it is reserved and must be zero in DR6. 594 */ 595 vcpu->arch.dr6 &= ~BIT(12); 596 break; 597 case PF_VECTOR: 598 vcpu->arch.cr2 = payload; 599 break; 600 } 601 602 vcpu->arch.exception.has_payload = false; 603 vcpu->arch.exception.payload = 0; 604 } 605 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 606 607 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 608 unsigned nr, bool has_error, u32 error_code, 609 bool has_payload, unsigned long payload, bool reinject) 610 { 611 u32 prev_nr; 612 int class1, class2; 613 614 kvm_make_request(KVM_REQ_EVENT, vcpu); 615 616 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 617 queue: 618 if (reinject) { 619 /* 620 * On vmentry, vcpu->arch.exception.pending is only 621 * true if an event injection was blocked by 622 * nested_run_pending. In that case, however, 623 * vcpu_enter_guest requests an immediate exit, 624 * and the guest shouldn't proceed far enough to 625 * need reinjection. 626 */ 627 WARN_ON_ONCE(vcpu->arch.exception.pending); 628 vcpu->arch.exception.injected = true; 629 if (WARN_ON_ONCE(has_payload)) { 630 /* 631 * A reinjected event has already 632 * delivered its payload. 633 */ 634 has_payload = false; 635 payload = 0; 636 } 637 } else { 638 vcpu->arch.exception.pending = true; 639 vcpu->arch.exception.injected = false; 640 } 641 vcpu->arch.exception.has_error_code = has_error; 642 vcpu->arch.exception.nr = nr; 643 vcpu->arch.exception.error_code = error_code; 644 vcpu->arch.exception.has_payload = has_payload; 645 vcpu->arch.exception.payload = payload; 646 if (!is_guest_mode(vcpu)) 647 kvm_deliver_exception_payload(vcpu); 648 return; 649 } 650 651 /* to check exception */ 652 prev_nr = vcpu->arch.exception.nr; 653 if (prev_nr == DF_VECTOR) { 654 /* triple fault -> shutdown */ 655 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 656 return; 657 } 658 class1 = exception_class(prev_nr); 659 class2 = exception_class(nr); 660 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 661 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 662 /* 663 * Generate double fault per SDM Table 5-5. Set 664 * exception.pending = true so that the double fault 665 * can trigger a nested vmexit. 666 */ 667 vcpu->arch.exception.pending = true; 668 vcpu->arch.exception.injected = false; 669 vcpu->arch.exception.has_error_code = true; 670 vcpu->arch.exception.nr = DF_VECTOR; 671 vcpu->arch.exception.error_code = 0; 672 vcpu->arch.exception.has_payload = false; 673 vcpu->arch.exception.payload = 0; 674 } else 675 /* replace previous exception with a new one in a hope 676 that instruction re-execution will regenerate lost 677 exception */ 678 goto queue; 679 } 680 681 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 682 { 683 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 684 } 685 EXPORT_SYMBOL_GPL(kvm_queue_exception); 686 687 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 688 { 689 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 690 } 691 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 692 693 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 694 unsigned long payload) 695 { 696 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 697 } 698 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 699 700 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 701 u32 error_code, unsigned long payload) 702 { 703 kvm_multiple_exception(vcpu, nr, true, error_code, 704 true, payload, false); 705 } 706 707 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 708 { 709 if (err) 710 kvm_inject_gp(vcpu, 0); 711 else 712 return kvm_skip_emulated_instruction(vcpu); 713 714 return 1; 715 } 716 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 717 718 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 719 { 720 if (err) { 721 kvm_inject_gp(vcpu, 0); 722 return 1; 723 } 724 725 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 726 EMULTYPE_COMPLETE_USER_EXIT); 727 } 728 729 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 730 { 731 ++vcpu->stat.pf_guest; 732 vcpu->arch.exception.nested_apf = 733 is_guest_mode(vcpu) && fault->async_page_fault; 734 if (vcpu->arch.exception.nested_apf) { 735 vcpu->arch.apf.nested_apf_token = fault->address; 736 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 737 } else { 738 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 739 fault->address); 740 } 741 } 742 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 743 744 /* Returns true if the page fault was immediately morphed into a VM-Exit. */ 745 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 746 struct x86_exception *fault) 747 { 748 struct kvm_mmu *fault_mmu; 749 WARN_ON_ONCE(fault->vector != PF_VECTOR); 750 751 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 752 vcpu->arch.walk_mmu; 753 754 /* 755 * Invalidate the TLB entry for the faulting address, if it exists, 756 * else the access will fault indefinitely (and to emulate hardware). 757 */ 758 if ((fault->error_code & PFERR_PRESENT_MASK) && 759 !(fault->error_code & PFERR_RSVD_MASK)) 760 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address, 761 fault_mmu->root.hpa); 762 763 /* 764 * A workaround for KVM's bad exception handling. If KVM injected an 765 * exception into L2, and L2 encountered a #PF while vectoring the 766 * injected exception, manually check to see if L1 wants to intercept 767 * #PF, otherwise queuing the #PF will lead to #DF or a lost exception. 768 * In all other cases, defer the check to nested_ops->check_events(), 769 * which will correctly handle priority (this does not). Note, other 770 * exceptions, e.g. #GP, are theoretically affected, #PF is simply the 771 * most problematic, e.g. when L0 and L1 are both intercepting #PF for 772 * shadow paging. 773 * 774 * TODO: Rewrite exception handling to track injected and pending 775 * (VM-Exit) exceptions separately. 776 */ 777 if (unlikely(vcpu->arch.exception.injected && is_guest_mode(vcpu)) && 778 kvm_x86_ops.nested_ops->handle_page_fault_workaround(vcpu, fault)) 779 return true; 780 781 fault_mmu->inject_page_fault(vcpu, fault); 782 return false; 783 } 784 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 785 786 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 787 { 788 atomic_inc(&vcpu->arch.nmi_queued); 789 kvm_make_request(KVM_REQ_NMI, vcpu); 790 } 791 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 792 793 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 794 { 795 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 796 } 797 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 798 799 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 800 { 801 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 802 } 803 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 804 805 /* 806 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 807 * a #GP and return false. 808 */ 809 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 810 { 811 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 812 return true; 813 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 814 return false; 815 } 816 EXPORT_SYMBOL_GPL(kvm_require_cpl); 817 818 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 819 { 820 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 821 return true; 822 823 kvm_queue_exception(vcpu, UD_VECTOR); 824 return false; 825 } 826 EXPORT_SYMBOL_GPL(kvm_require_dr); 827 828 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 829 { 830 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 831 } 832 833 /* 834 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 835 */ 836 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 837 { 838 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 839 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 840 gpa_t real_gpa; 841 int i; 842 int ret; 843 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 844 845 /* 846 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 847 * to an L1 GPA. 848 */ 849 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 850 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 851 if (real_gpa == INVALID_GPA) 852 return 0; 853 854 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 855 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 856 cr3 & GENMASK(11, 5), sizeof(pdpte)); 857 if (ret < 0) 858 return 0; 859 860 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 861 if ((pdpte[i] & PT_PRESENT_MASK) && 862 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 863 return 0; 864 } 865 } 866 867 /* 868 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 869 * Shadow page roots need to be reconstructed instead. 870 */ 871 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 872 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 873 874 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 875 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 876 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 877 vcpu->arch.pdptrs_from_userspace = false; 878 879 return 1; 880 } 881 EXPORT_SYMBOL_GPL(load_pdptrs); 882 883 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 884 { 885 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 886 kvm_clear_async_pf_completion_queue(vcpu); 887 kvm_async_pf_hash_reset(vcpu); 888 889 /* 890 * Clearing CR0.PG is defined to flush the TLB from the guest's 891 * perspective. 892 */ 893 if (!(cr0 & X86_CR0_PG)) 894 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 895 } 896 897 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 898 kvm_mmu_reset_context(vcpu); 899 900 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 901 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 902 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 903 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 904 } 905 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 906 907 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 908 { 909 unsigned long old_cr0 = kvm_read_cr0(vcpu); 910 911 cr0 |= X86_CR0_ET; 912 913 #ifdef CONFIG_X86_64 914 if (cr0 & 0xffffffff00000000UL) 915 return 1; 916 #endif 917 918 cr0 &= ~CR0_RESERVED_BITS; 919 920 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 921 return 1; 922 923 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 924 return 1; 925 926 #ifdef CONFIG_X86_64 927 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 928 (cr0 & X86_CR0_PG)) { 929 int cs_db, cs_l; 930 931 if (!is_pae(vcpu)) 932 return 1; 933 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 934 if (cs_l) 935 return 1; 936 } 937 #endif 938 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 939 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 940 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 941 return 1; 942 943 if (!(cr0 & X86_CR0_PG) && 944 (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))) 945 return 1; 946 947 static_call(kvm_x86_set_cr0)(vcpu, cr0); 948 949 kvm_post_set_cr0(vcpu, old_cr0, cr0); 950 951 return 0; 952 } 953 EXPORT_SYMBOL_GPL(kvm_set_cr0); 954 955 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 956 { 957 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 958 } 959 EXPORT_SYMBOL_GPL(kvm_lmsw); 960 961 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 962 { 963 if (vcpu->arch.guest_state_protected) 964 return; 965 966 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 967 968 if (vcpu->arch.xcr0 != host_xcr0) 969 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 970 971 if (vcpu->arch.xsaves_enabled && 972 vcpu->arch.ia32_xss != host_xss) 973 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 974 } 975 976 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 977 if (static_cpu_has(X86_FEATURE_PKU) && 978 vcpu->arch.pkru != vcpu->arch.host_pkru && 979 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 980 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) 981 write_pkru(vcpu->arch.pkru); 982 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 983 } 984 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 985 986 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 987 { 988 if (vcpu->arch.guest_state_protected) 989 return; 990 991 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 992 if (static_cpu_has(X86_FEATURE_PKU) && 993 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 994 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) { 995 vcpu->arch.pkru = rdpkru(); 996 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 997 write_pkru(vcpu->arch.host_pkru); 998 } 999 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 1000 1001 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 1002 1003 if (vcpu->arch.xcr0 != host_xcr0) 1004 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 1005 1006 if (vcpu->arch.xsaves_enabled && 1007 vcpu->arch.ia32_xss != host_xss) 1008 wrmsrl(MSR_IA32_XSS, host_xss); 1009 } 1010 1011 } 1012 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1013 1014 #ifdef CONFIG_X86_64 1015 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1016 { 1017 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; 1018 } 1019 #endif 1020 1021 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1022 { 1023 u64 xcr0 = xcr; 1024 u64 old_xcr0 = vcpu->arch.xcr0; 1025 u64 valid_bits; 1026 1027 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1028 if (index != XCR_XFEATURE_ENABLED_MASK) 1029 return 1; 1030 if (!(xcr0 & XFEATURE_MASK_FP)) 1031 return 1; 1032 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1033 return 1; 1034 1035 /* 1036 * Do not allow the guest to set bits that we do not support 1037 * saving. However, xcr0 bit 0 is always set, even if the 1038 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1039 */ 1040 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1041 if (xcr0 & ~valid_bits) 1042 return 1; 1043 1044 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1045 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1046 return 1; 1047 1048 if (xcr0 & XFEATURE_MASK_AVX512) { 1049 if (!(xcr0 & XFEATURE_MASK_YMM)) 1050 return 1; 1051 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1052 return 1; 1053 } 1054 1055 if ((xcr0 & XFEATURE_MASK_XTILE) && 1056 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1057 return 1; 1058 1059 vcpu->arch.xcr0 = xcr0; 1060 1061 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1062 kvm_update_cpuid_runtime(vcpu); 1063 return 0; 1064 } 1065 1066 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1067 { 1068 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ 1069 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || 1070 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1071 kvm_inject_gp(vcpu, 0); 1072 return 1; 1073 } 1074 1075 return kvm_skip_emulated_instruction(vcpu); 1076 } 1077 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1078 1079 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1080 { 1081 if (cr4 & cr4_reserved_bits) 1082 return false; 1083 1084 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1085 return false; 1086 1087 return true; 1088 } 1089 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4); 1090 1091 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1092 { 1093 return __kvm_is_valid_cr4(vcpu, cr4) && 1094 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1095 } 1096 1097 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1098 { 1099 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1100 kvm_mmu_reset_context(vcpu); 1101 1102 /* 1103 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1104 * according to the SDM; however, stale prev_roots could be reused 1105 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1106 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1107 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1108 * so fall through. 1109 */ 1110 if (!tdp_enabled && 1111 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1112 kvm_mmu_unload(vcpu); 1113 1114 /* 1115 * The TLB has to be flushed for all PCIDs if any of the following 1116 * (architecturally required) changes happen: 1117 * - CR4.PCIDE is changed from 1 to 0 1118 * - CR4.PGE is toggled 1119 * 1120 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1121 */ 1122 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1123 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1124 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1125 1126 /* 1127 * The TLB has to be flushed for the current PCID if any of the 1128 * following (architecturally required) changes happen: 1129 * - CR4.SMEP is changed from 0 to 1 1130 * - CR4.PAE is toggled 1131 */ 1132 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1133 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1134 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1135 1136 } 1137 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1138 1139 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1140 { 1141 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1142 1143 if (!kvm_is_valid_cr4(vcpu, cr4)) 1144 return 1; 1145 1146 if (is_long_mode(vcpu)) { 1147 if (!(cr4 & X86_CR4_PAE)) 1148 return 1; 1149 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1150 return 1; 1151 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1152 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1153 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1154 return 1; 1155 1156 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1157 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 1158 return 1; 1159 1160 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1161 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1162 return 1; 1163 } 1164 1165 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1166 1167 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1168 1169 return 0; 1170 } 1171 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1172 1173 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1174 { 1175 struct kvm_mmu *mmu = vcpu->arch.mmu; 1176 unsigned long roots_to_free = 0; 1177 int i; 1178 1179 /* 1180 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1181 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1182 * also via the emulator. KVM's TDP page tables are not in the scope of 1183 * the invalidation, but the guest's TLB entries need to be flushed as 1184 * the CPU may have cached entries in its TLB for the target PCID. 1185 */ 1186 if (unlikely(tdp_enabled)) { 1187 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1188 return; 1189 } 1190 1191 /* 1192 * If neither the current CR3 nor any of the prev_roots use the given 1193 * PCID, then nothing needs to be done here because a resync will 1194 * happen anyway before switching to any other CR3. 1195 */ 1196 if (kvm_get_active_pcid(vcpu) == pcid) { 1197 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1198 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1199 } 1200 1201 /* 1202 * If PCID is disabled, there is no need to free prev_roots even if the 1203 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1204 * with PCIDE=0. 1205 */ 1206 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 1207 return; 1208 1209 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1210 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1211 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1212 1213 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1214 } 1215 1216 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1217 { 1218 bool skip_tlb_flush = false; 1219 unsigned long pcid = 0; 1220 #ifdef CONFIG_X86_64 1221 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 1222 1223 if (pcid_enabled) { 1224 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1225 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1226 pcid = cr3 & X86_CR3_PCID_MASK; 1227 } 1228 #endif 1229 1230 /* PDPTRs are always reloaded for PAE paging. */ 1231 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1232 goto handle_tlb_flush; 1233 1234 /* 1235 * Do not condition the GPA check on long mode, this helper is used to 1236 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1237 * the current vCPU mode is accurate. 1238 */ 1239 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3)) 1240 return 1; 1241 1242 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1243 return 1; 1244 1245 if (cr3 != kvm_read_cr3(vcpu)) 1246 kvm_mmu_new_pgd(vcpu, cr3); 1247 1248 vcpu->arch.cr3 = cr3; 1249 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1250 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1251 1252 handle_tlb_flush: 1253 /* 1254 * A load of CR3 that flushes the TLB flushes only the current PCID, 1255 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1256 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1257 * and it's impossible to use a non-zero PCID when PCID is disabled, 1258 * i.e. only PCID=0 can be relevant. 1259 */ 1260 if (!skip_tlb_flush) 1261 kvm_invalidate_pcid(vcpu, pcid); 1262 1263 return 0; 1264 } 1265 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1266 1267 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1268 { 1269 if (cr8 & CR8_RESERVED_BITS) 1270 return 1; 1271 if (lapic_in_kernel(vcpu)) 1272 kvm_lapic_set_tpr(vcpu, cr8); 1273 else 1274 vcpu->arch.cr8 = cr8; 1275 return 0; 1276 } 1277 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1278 1279 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1280 { 1281 if (lapic_in_kernel(vcpu)) 1282 return kvm_lapic_get_cr8(vcpu); 1283 else 1284 return vcpu->arch.cr8; 1285 } 1286 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1287 1288 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1289 { 1290 int i; 1291 1292 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1293 for (i = 0; i < KVM_NR_DB_REGS; i++) 1294 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1295 } 1296 } 1297 1298 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1299 { 1300 unsigned long dr7; 1301 1302 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1303 dr7 = vcpu->arch.guest_debug_dr7; 1304 else 1305 dr7 = vcpu->arch.dr7; 1306 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1307 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1308 if (dr7 & DR7_BP_EN_MASK) 1309 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1310 } 1311 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1312 1313 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1314 { 1315 u64 fixed = DR6_FIXED_1; 1316 1317 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1318 fixed |= DR6_RTM; 1319 1320 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1321 fixed |= DR6_BUS_LOCK; 1322 return fixed; 1323 } 1324 1325 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1326 { 1327 size_t size = ARRAY_SIZE(vcpu->arch.db); 1328 1329 switch (dr) { 1330 case 0 ... 3: 1331 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1332 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1333 vcpu->arch.eff_db[dr] = val; 1334 break; 1335 case 4: 1336 case 6: 1337 if (!kvm_dr6_valid(val)) 1338 return 1; /* #GP */ 1339 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1340 break; 1341 case 5: 1342 default: /* 7 */ 1343 if (!kvm_dr7_valid(val)) 1344 return 1; /* #GP */ 1345 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1346 kvm_update_dr7(vcpu); 1347 break; 1348 } 1349 1350 return 0; 1351 } 1352 EXPORT_SYMBOL_GPL(kvm_set_dr); 1353 1354 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1355 { 1356 size_t size = ARRAY_SIZE(vcpu->arch.db); 1357 1358 switch (dr) { 1359 case 0 ... 3: 1360 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1361 break; 1362 case 4: 1363 case 6: 1364 *val = vcpu->arch.dr6; 1365 break; 1366 case 5: 1367 default: /* 7 */ 1368 *val = vcpu->arch.dr7; 1369 break; 1370 } 1371 } 1372 EXPORT_SYMBOL_GPL(kvm_get_dr); 1373 1374 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1375 { 1376 u32 ecx = kvm_rcx_read(vcpu); 1377 u64 data; 1378 1379 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1380 kvm_inject_gp(vcpu, 0); 1381 return 1; 1382 } 1383 1384 kvm_rax_write(vcpu, (u32)data); 1385 kvm_rdx_write(vcpu, data >> 32); 1386 return kvm_skip_emulated_instruction(vcpu); 1387 } 1388 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1389 1390 /* 1391 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1392 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1393 * 1394 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) 1395 * extract the supported MSRs from the related const lists. 1396 * msrs_to_save is selected from the msrs_to_save_all to reflect the 1397 * capabilities of the host cpu. This capabilities test skips MSRs that are 1398 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs 1399 * may depend on host virtualization features rather than host cpu features. 1400 */ 1401 1402 static const u32 msrs_to_save_all[] = { 1403 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1404 MSR_STAR, 1405 #ifdef CONFIG_X86_64 1406 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1407 #endif 1408 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1409 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1410 MSR_IA32_SPEC_CTRL, 1411 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1412 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1413 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1414 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1415 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1416 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1417 MSR_IA32_UMWAIT_CONTROL, 1418 1419 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1420 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1421 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1422 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1423 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1424 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1425 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1426 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1427 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9, 1428 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11, 1429 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13, 1430 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15, 1431 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17, 1432 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1433 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1434 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1435 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1436 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9, 1437 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11, 1438 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13, 1439 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15, 1440 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17, 1441 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 1442 1443 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1444 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1445 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1446 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1447 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1448 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1449 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 1450 }; 1451 1452 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)]; 1453 static unsigned num_msrs_to_save; 1454 1455 static const u32 emulated_msrs_all[] = { 1456 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1457 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1458 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1459 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1460 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1461 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1462 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1463 HV_X64_MSR_RESET, 1464 HV_X64_MSR_VP_INDEX, 1465 HV_X64_MSR_VP_RUNTIME, 1466 HV_X64_MSR_SCONTROL, 1467 HV_X64_MSR_STIMER0_CONFIG, 1468 HV_X64_MSR_VP_ASSIST_PAGE, 1469 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1470 HV_X64_MSR_TSC_EMULATION_STATUS, 1471 HV_X64_MSR_SYNDBG_OPTIONS, 1472 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1473 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1474 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1475 1476 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1477 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1478 1479 MSR_IA32_TSC_ADJUST, 1480 MSR_IA32_TSC_DEADLINE, 1481 MSR_IA32_ARCH_CAPABILITIES, 1482 MSR_IA32_PERF_CAPABILITIES, 1483 MSR_IA32_MISC_ENABLE, 1484 MSR_IA32_MCG_STATUS, 1485 MSR_IA32_MCG_CTL, 1486 MSR_IA32_MCG_EXT_CTL, 1487 MSR_IA32_SMBASE, 1488 MSR_SMI_COUNT, 1489 MSR_PLATFORM_INFO, 1490 MSR_MISC_FEATURES_ENABLES, 1491 MSR_AMD64_VIRT_SPEC_CTRL, 1492 MSR_AMD64_TSC_RATIO, 1493 MSR_IA32_POWER_CTL, 1494 MSR_IA32_UCODE_REV, 1495 1496 /* 1497 * The following list leaves out MSRs whose values are determined 1498 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs. 1499 * We always support the "true" VMX control MSRs, even if the host 1500 * processor does not, so I am putting these registers here rather 1501 * than in msrs_to_save_all. 1502 */ 1503 MSR_IA32_VMX_BASIC, 1504 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1505 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1506 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1507 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1508 MSR_IA32_VMX_MISC, 1509 MSR_IA32_VMX_CR0_FIXED0, 1510 MSR_IA32_VMX_CR4_FIXED0, 1511 MSR_IA32_VMX_VMCS_ENUM, 1512 MSR_IA32_VMX_PROCBASED_CTLS2, 1513 MSR_IA32_VMX_EPT_VPID_CAP, 1514 MSR_IA32_VMX_VMFUNC, 1515 1516 MSR_K7_HWCR, 1517 MSR_KVM_POLL_CONTROL, 1518 }; 1519 1520 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1521 static unsigned num_emulated_msrs; 1522 1523 /* 1524 * List of msr numbers which are used to expose MSR-based features that 1525 * can be used by a hypervisor to validate requested CPU features. 1526 */ 1527 static const u32 msr_based_features_all[] = { 1528 MSR_IA32_VMX_BASIC, 1529 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1530 MSR_IA32_VMX_PINBASED_CTLS, 1531 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1532 MSR_IA32_VMX_PROCBASED_CTLS, 1533 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1534 MSR_IA32_VMX_EXIT_CTLS, 1535 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1536 MSR_IA32_VMX_ENTRY_CTLS, 1537 MSR_IA32_VMX_MISC, 1538 MSR_IA32_VMX_CR0_FIXED0, 1539 MSR_IA32_VMX_CR0_FIXED1, 1540 MSR_IA32_VMX_CR4_FIXED0, 1541 MSR_IA32_VMX_CR4_FIXED1, 1542 MSR_IA32_VMX_VMCS_ENUM, 1543 MSR_IA32_VMX_PROCBASED_CTLS2, 1544 MSR_IA32_VMX_EPT_VPID_CAP, 1545 MSR_IA32_VMX_VMFUNC, 1546 1547 MSR_F10H_DECFG, 1548 MSR_IA32_UCODE_REV, 1549 MSR_IA32_ARCH_CAPABILITIES, 1550 MSR_IA32_PERF_CAPABILITIES, 1551 }; 1552 1553 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)]; 1554 static unsigned int num_msr_based_features; 1555 1556 /* 1557 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1558 * does not yet virtualize. These include: 1559 * 10 - MISC_PACKAGE_CTRLS 1560 * 11 - ENERGY_FILTERING_CTL 1561 * 12 - DOITM 1562 * 18 - FB_CLEAR_CTRL 1563 * 21 - XAPIC_DISABLE_STATUS 1564 * 23 - OVERCLOCKING_STATUS 1565 */ 1566 1567 #define KVM_SUPPORTED_ARCH_CAP \ 1568 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1569 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1570 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1571 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1572 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO) 1573 1574 static u64 kvm_get_arch_capabilities(void) 1575 { 1576 u64 data = 0; 1577 1578 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 1579 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1580 data &= KVM_SUPPORTED_ARCH_CAP; 1581 } 1582 1583 /* 1584 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1585 * the nested hypervisor runs with NX huge pages. If it is not, 1586 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1587 * L1 guests, so it need not worry about its own (L2) guests. 1588 */ 1589 data |= ARCH_CAP_PSCHANGE_MC_NO; 1590 1591 /* 1592 * If we're doing cache flushes (either "always" or "cond") 1593 * we will do one whenever the guest does a vmlaunch/vmresume. 1594 * If an outer hypervisor is doing the cache flush for us 1595 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1596 * capability to the guest too, and if EPT is disabled we're not 1597 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1598 * require a nested hypervisor to do a flush of its own. 1599 */ 1600 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1601 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1602 1603 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1604 data |= ARCH_CAP_RDCL_NO; 1605 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1606 data |= ARCH_CAP_SSB_NO; 1607 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1608 data |= ARCH_CAP_MDS_NO; 1609 1610 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1611 /* 1612 * If RTM=0 because the kernel has disabled TSX, the host might 1613 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1614 * and therefore knows that there cannot be TAA) but keep 1615 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1616 * and we want to allow migrating those guests to tsx=off hosts. 1617 */ 1618 data &= ~ARCH_CAP_TAA_NO; 1619 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1620 data |= ARCH_CAP_TAA_NO; 1621 } else { 1622 /* 1623 * Nothing to do here; we emulate TSX_CTRL if present on the 1624 * host so the guest can choose between disabling TSX or 1625 * using VERW to clear CPU buffers. 1626 */ 1627 } 1628 1629 return data; 1630 } 1631 1632 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1633 { 1634 switch (msr->index) { 1635 case MSR_IA32_ARCH_CAPABILITIES: 1636 msr->data = kvm_get_arch_capabilities(); 1637 break; 1638 case MSR_IA32_UCODE_REV: 1639 rdmsrl_safe(msr->index, &msr->data); 1640 break; 1641 default: 1642 return static_call(kvm_x86_get_msr_feature)(msr); 1643 } 1644 return 0; 1645 } 1646 1647 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1648 { 1649 struct kvm_msr_entry msr; 1650 int r; 1651 1652 msr.index = index; 1653 r = kvm_get_msr_feature(&msr); 1654 1655 if (r == KVM_MSR_RET_INVALID) { 1656 /* Unconditionally clear the output for simplicity */ 1657 *data = 0; 1658 if (kvm_msr_ignored_check(index, 0, false)) 1659 r = 0; 1660 } 1661 1662 if (r) 1663 return r; 1664 1665 *data = msr.data; 1666 1667 return 0; 1668 } 1669 1670 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1671 { 1672 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1673 return false; 1674 1675 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1676 return false; 1677 1678 if (efer & (EFER_LME | EFER_LMA) && 1679 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1680 return false; 1681 1682 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1683 return false; 1684 1685 return true; 1686 1687 } 1688 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1689 { 1690 if (efer & efer_reserved_bits) 1691 return false; 1692 1693 return __kvm_valid_efer(vcpu, efer); 1694 } 1695 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1696 1697 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1698 { 1699 u64 old_efer = vcpu->arch.efer; 1700 u64 efer = msr_info->data; 1701 int r; 1702 1703 if (efer & efer_reserved_bits) 1704 return 1; 1705 1706 if (!msr_info->host_initiated) { 1707 if (!__kvm_valid_efer(vcpu, efer)) 1708 return 1; 1709 1710 if (is_paging(vcpu) && 1711 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1712 return 1; 1713 } 1714 1715 efer &= ~EFER_LMA; 1716 efer |= vcpu->arch.efer & EFER_LMA; 1717 1718 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1719 if (r) { 1720 WARN_ON(r > 0); 1721 return r; 1722 } 1723 1724 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1725 kvm_mmu_reset_context(vcpu); 1726 1727 return 0; 1728 } 1729 1730 void kvm_enable_efer_bits(u64 mask) 1731 { 1732 efer_reserved_bits &= ~mask; 1733 } 1734 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1735 1736 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1737 { 1738 struct kvm_x86_msr_filter *msr_filter; 1739 struct msr_bitmap_range *ranges; 1740 struct kvm *kvm = vcpu->kvm; 1741 bool allowed; 1742 int idx; 1743 u32 i; 1744 1745 /* x2APIC MSRs do not support filtering. */ 1746 if (index >= 0x800 && index <= 0x8ff) 1747 return true; 1748 1749 idx = srcu_read_lock(&kvm->srcu); 1750 1751 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1752 if (!msr_filter) { 1753 allowed = true; 1754 goto out; 1755 } 1756 1757 allowed = msr_filter->default_allow; 1758 ranges = msr_filter->ranges; 1759 1760 for (i = 0; i < msr_filter->count; i++) { 1761 u32 start = ranges[i].base; 1762 u32 end = start + ranges[i].nmsrs; 1763 u32 flags = ranges[i].flags; 1764 unsigned long *bitmap = ranges[i].bitmap; 1765 1766 if ((index >= start) && (index < end) && (flags & type)) { 1767 allowed = !!test_bit(index - start, bitmap); 1768 break; 1769 } 1770 } 1771 1772 out: 1773 srcu_read_unlock(&kvm->srcu, idx); 1774 1775 return allowed; 1776 } 1777 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1778 1779 /* 1780 * Write @data into the MSR specified by @index. Select MSR specific fault 1781 * checks are bypassed if @host_initiated is %true. 1782 * Returns 0 on success, non-0 otherwise. 1783 * Assumes vcpu_load() was already called. 1784 */ 1785 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1786 bool host_initiated) 1787 { 1788 struct msr_data msr; 1789 1790 switch (index) { 1791 case MSR_FS_BASE: 1792 case MSR_GS_BASE: 1793 case MSR_KERNEL_GS_BASE: 1794 case MSR_CSTAR: 1795 case MSR_LSTAR: 1796 if (is_noncanonical_address(data, vcpu)) 1797 return 1; 1798 break; 1799 case MSR_IA32_SYSENTER_EIP: 1800 case MSR_IA32_SYSENTER_ESP: 1801 /* 1802 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1803 * non-canonical address is written on Intel but not on 1804 * AMD (which ignores the top 32-bits, because it does 1805 * not implement 64-bit SYSENTER). 1806 * 1807 * 64-bit code should hence be able to write a non-canonical 1808 * value on AMD. Making the address canonical ensures that 1809 * vmentry does not fail on Intel after writing a non-canonical 1810 * value, and that something deterministic happens if the guest 1811 * invokes 64-bit SYSENTER. 1812 */ 1813 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1814 break; 1815 case MSR_TSC_AUX: 1816 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1817 return 1; 1818 1819 if (!host_initiated && 1820 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1821 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1822 return 1; 1823 1824 /* 1825 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1826 * incomplete and conflicting architectural behavior. Current 1827 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1828 * reserved and always read as zeros. Enforce Intel's reserved 1829 * bits check if and only if the guest CPU is Intel, and clear 1830 * the bits in all other cases. This ensures cross-vendor 1831 * migration will provide consistent behavior for the guest. 1832 */ 1833 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) 1834 return 1; 1835 1836 data = (u32)data; 1837 break; 1838 } 1839 1840 msr.data = data; 1841 msr.index = index; 1842 msr.host_initiated = host_initiated; 1843 1844 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1845 } 1846 1847 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1848 u32 index, u64 data, bool host_initiated) 1849 { 1850 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1851 1852 if (ret == KVM_MSR_RET_INVALID) 1853 if (kvm_msr_ignored_check(index, data, true)) 1854 ret = 0; 1855 1856 return ret; 1857 } 1858 1859 /* 1860 * Read the MSR specified by @index into @data. Select MSR specific fault 1861 * checks are bypassed if @host_initiated is %true. 1862 * Returns 0 on success, non-0 otherwise. 1863 * Assumes vcpu_load() was already called. 1864 */ 1865 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1866 bool host_initiated) 1867 { 1868 struct msr_data msr; 1869 int ret; 1870 1871 switch (index) { 1872 case MSR_TSC_AUX: 1873 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1874 return 1; 1875 1876 if (!host_initiated && 1877 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1878 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1879 return 1; 1880 break; 1881 } 1882 1883 msr.index = index; 1884 msr.host_initiated = host_initiated; 1885 1886 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1887 if (!ret) 1888 *data = msr.data; 1889 return ret; 1890 } 1891 1892 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1893 u32 index, u64 *data, bool host_initiated) 1894 { 1895 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1896 1897 if (ret == KVM_MSR_RET_INVALID) { 1898 /* Unconditionally clear *data for simplicity */ 1899 *data = 0; 1900 if (kvm_msr_ignored_check(index, 0, false)) 1901 ret = 0; 1902 } 1903 1904 return ret; 1905 } 1906 1907 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1908 { 1909 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1910 return KVM_MSR_RET_FILTERED; 1911 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1912 } 1913 1914 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1915 { 1916 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1917 return KVM_MSR_RET_FILTERED; 1918 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1919 } 1920 1921 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1922 { 1923 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1924 } 1925 EXPORT_SYMBOL_GPL(kvm_get_msr); 1926 1927 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1928 { 1929 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1930 } 1931 EXPORT_SYMBOL_GPL(kvm_set_msr); 1932 1933 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1934 { 1935 if (!vcpu->run->msr.error) { 1936 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1937 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1938 } 1939 } 1940 1941 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 1942 { 1943 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 1944 } 1945 1946 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 1947 { 1948 complete_userspace_rdmsr(vcpu); 1949 return complete_emulated_msr_access(vcpu); 1950 } 1951 1952 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 1953 { 1954 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 1955 } 1956 1957 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 1958 { 1959 complete_userspace_rdmsr(vcpu); 1960 return complete_fast_msr_access(vcpu); 1961 } 1962 1963 static u64 kvm_msr_reason(int r) 1964 { 1965 switch (r) { 1966 case KVM_MSR_RET_INVALID: 1967 return KVM_MSR_EXIT_REASON_UNKNOWN; 1968 case KVM_MSR_RET_FILTERED: 1969 return KVM_MSR_EXIT_REASON_FILTER; 1970 default: 1971 return KVM_MSR_EXIT_REASON_INVAL; 1972 } 1973 } 1974 1975 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 1976 u32 exit_reason, u64 data, 1977 int (*completion)(struct kvm_vcpu *vcpu), 1978 int r) 1979 { 1980 u64 msr_reason = kvm_msr_reason(r); 1981 1982 /* Check if the user wanted to know about this MSR fault */ 1983 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 1984 return 0; 1985 1986 vcpu->run->exit_reason = exit_reason; 1987 vcpu->run->msr.error = 0; 1988 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 1989 vcpu->run->msr.reason = msr_reason; 1990 vcpu->run->msr.index = index; 1991 vcpu->run->msr.data = data; 1992 vcpu->arch.complete_userspace_io = completion; 1993 1994 return 1; 1995 } 1996 1997 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 1998 { 1999 u32 ecx = kvm_rcx_read(vcpu); 2000 u64 data; 2001 int r; 2002 2003 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 2004 2005 if (!r) { 2006 trace_kvm_msr_read(ecx, data); 2007 2008 kvm_rax_write(vcpu, data & -1u); 2009 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2010 } else { 2011 /* MSR read failed? See if we should ask user space */ 2012 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2013 complete_fast_rdmsr, r)) 2014 return 0; 2015 trace_kvm_msr_read_ex(ecx); 2016 } 2017 2018 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2019 } 2020 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2021 2022 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2023 { 2024 u32 ecx = kvm_rcx_read(vcpu); 2025 u64 data = kvm_read_edx_eax(vcpu); 2026 int r; 2027 2028 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2029 2030 if (!r) { 2031 trace_kvm_msr_write(ecx, data); 2032 } else { 2033 /* MSR write failed? See if we should ask user space */ 2034 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2035 complete_fast_msr_access, r)) 2036 return 0; 2037 /* Signal all other negative errors to userspace */ 2038 if (r < 0) 2039 return r; 2040 trace_kvm_msr_write_ex(ecx, data); 2041 } 2042 2043 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2044 } 2045 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2046 2047 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2048 { 2049 return kvm_skip_emulated_instruction(vcpu); 2050 } 2051 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop); 2052 2053 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2054 { 2055 /* Treat an INVD instruction as a NOP and just skip it. */ 2056 return kvm_emulate_as_nop(vcpu); 2057 } 2058 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2059 2060 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2061 { 2062 kvm_queue_exception(vcpu, UD_VECTOR); 2063 return 1; 2064 } 2065 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2066 2067 2068 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2069 { 2070 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) && 2071 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT)) 2072 return kvm_handle_invalid_op(vcpu); 2073 2074 pr_warn_once("kvm: %s instruction emulated as NOP!\n", insn); 2075 return kvm_emulate_as_nop(vcpu); 2076 } 2077 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2078 { 2079 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2080 } 2081 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2082 2083 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2084 { 2085 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2086 } 2087 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2088 2089 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2090 { 2091 xfer_to_guest_mode_prepare(); 2092 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2093 xfer_to_guest_mode_work_pending(); 2094 } 2095 2096 /* 2097 * The fast path for frequent and performance sensitive wrmsr emulation, 2098 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2099 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2100 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2101 * other cases which must be called after interrupts are enabled on the host. 2102 */ 2103 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2104 { 2105 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2106 return 1; 2107 2108 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2109 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2110 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2111 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2112 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2113 2114 return 1; 2115 } 2116 2117 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2118 { 2119 if (!kvm_can_use_hv_timer(vcpu)) 2120 return 1; 2121 2122 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2123 return 0; 2124 } 2125 2126 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2127 { 2128 u32 msr = kvm_rcx_read(vcpu); 2129 u64 data; 2130 fastpath_t ret = EXIT_FASTPATH_NONE; 2131 2132 switch (msr) { 2133 case APIC_BASE_MSR + (APIC_ICR >> 4): 2134 data = kvm_read_edx_eax(vcpu); 2135 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 2136 kvm_skip_emulated_instruction(vcpu); 2137 ret = EXIT_FASTPATH_EXIT_HANDLED; 2138 } 2139 break; 2140 case MSR_IA32_TSC_DEADLINE: 2141 data = kvm_read_edx_eax(vcpu); 2142 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 2143 kvm_skip_emulated_instruction(vcpu); 2144 ret = EXIT_FASTPATH_REENTER_GUEST; 2145 } 2146 break; 2147 default: 2148 break; 2149 } 2150 2151 if (ret != EXIT_FASTPATH_NONE) 2152 trace_kvm_msr_write(msr, data); 2153 2154 return ret; 2155 } 2156 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2157 2158 /* 2159 * Adapt set_msr() to msr_io()'s calling convention 2160 */ 2161 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2162 { 2163 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2164 } 2165 2166 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2167 { 2168 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2169 } 2170 2171 #ifdef CONFIG_X86_64 2172 struct pvclock_clock { 2173 int vclock_mode; 2174 u64 cycle_last; 2175 u64 mask; 2176 u32 mult; 2177 u32 shift; 2178 u64 base_cycles; 2179 u64 offset; 2180 }; 2181 2182 struct pvclock_gtod_data { 2183 seqcount_t seq; 2184 2185 struct pvclock_clock clock; /* extract of a clocksource struct */ 2186 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2187 2188 ktime_t offs_boot; 2189 u64 wall_time_sec; 2190 }; 2191 2192 static struct pvclock_gtod_data pvclock_gtod_data; 2193 2194 static void update_pvclock_gtod(struct timekeeper *tk) 2195 { 2196 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2197 2198 write_seqcount_begin(&vdata->seq); 2199 2200 /* copy pvclock gtod data */ 2201 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2202 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2203 vdata->clock.mask = tk->tkr_mono.mask; 2204 vdata->clock.mult = tk->tkr_mono.mult; 2205 vdata->clock.shift = tk->tkr_mono.shift; 2206 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2207 vdata->clock.offset = tk->tkr_mono.base; 2208 2209 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2210 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2211 vdata->raw_clock.mask = tk->tkr_raw.mask; 2212 vdata->raw_clock.mult = tk->tkr_raw.mult; 2213 vdata->raw_clock.shift = tk->tkr_raw.shift; 2214 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2215 vdata->raw_clock.offset = tk->tkr_raw.base; 2216 2217 vdata->wall_time_sec = tk->xtime_sec; 2218 2219 vdata->offs_boot = tk->offs_boot; 2220 2221 write_seqcount_end(&vdata->seq); 2222 } 2223 2224 static s64 get_kvmclock_base_ns(void) 2225 { 2226 /* Count up from boot time, but with the frequency of the raw clock. */ 2227 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2228 } 2229 #else 2230 static s64 get_kvmclock_base_ns(void) 2231 { 2232 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2233 return ktime_get_boottime_ns(); 2234 } 2235 #endif 2236 2237 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2238 { 2239 int version; 2240 int r; 2241 struct pvclock_wall_clock wc; 2242 u32 wc_sec_hi; 2243 u64 wall_nsec; 2244 2245 if (!wall_clock) 2246 return; 2247 2248 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2249 if (r) 2250 return; 2251 2252 if (version & 1) 2253 ++version; /* first time write, random junk */ 2254 2255 ++version; 2256 2257 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2258 return; 2259 2260 /* 2261 * The guest calculates current wall clock time by adding 2262 * system time (updated by kvm_guest_time_update below) to the 2263 * wall clock specified here. We do the reverse here. 2264 */ 2265 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 2266 2267 wc.nsec = do_div(wall_nsec, 1000000000); 2268 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2269 wc.version = version; 2270 2271 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2272 2273 if (sec_hi_ofs) { 2274 wc_sec_hi = wall_nsec >> 32; 2275 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2276 &wc_sec_hi, sizeof(wc_sec_hi)); 2277 } 2278 2279 version++; 2280 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2281 } 2282 2283 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2284 bool old_msr, bool host_initiated) 2285 { 2286 struct kvm_arch *ka = &vcpu->kvm->arch; 2287 2288 if (vcpu->vcpu_id == 0 && !host_initiated) { 2289 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2290 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2291 2292 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2293 } 2294 2295 vcpu->arch.time = system_time; 2296 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2297 2298 /* we verify if the enable bit is set... */ 2299 if (system_time & 1) { 2300 kvm_gfn_to_pfn_cache_init(vcpu->kvm, &vcpu->arch.pv_time, vcpu, 2301 KVM_HOST_USES_PFN, system_time & ~1ULL, 2302 sizeof(struct pvclock_vcpu_time_info)); 2303 } else { 2304 kvm_gfn_to_pfn_cache_destroy(vcpu->kvm, &vcpu->arch.pv_time); 2305 } 2306 2307 return; 2308 } 2309 2310 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2311 { 2312 do_shl32_div32(dividend, divisor); 2313 return dividend; 2314 } 2315 2316 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2317 s8 *pshift, u32 *pmultiplier) 2318 { 2319 uint64_t scaled64; 2320 int32_t shift = 0; 2321 uint64_t tps64; 2322 uint32_t tps32; 2323 2324 tps64 = base_hz; 2325 scaled64 = scaled_hz; 2326 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2327 tps64 >>= 1; 2328 shift--; 2329 } 2330 2331 tps32 = (uint32_t)tps64; 2332 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2333 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2334 scaled64 >>= 1; 2335 else 2336 tps32 <<= 1; 2337 shift++; 2338 } 2339 2340 *pshift = shift; 2341 *pmultiplier = div_frac(scaled64, tps32); 2342 } 2343 2344 #ifdef CONFIG_X86_64 2345 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2346 #endif 2347 2348 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2349 static unsigned long max_tsc_khz; 2350 2351 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2352 { 2353 u64 v = (u64)khz * (1000000 + ppm); 2354 do_div(v, 1000000); 2355 return v; 2356 } 2357 2358 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2359 2360 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2361 { 2362 u64 ratio; 2363 2364 /* Guest TSC same frequency as host TSC? */ 2365 if (!scale) { 2366 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2367 return 0; 2368 } 2369 2370 /* TSC scaling supported? */ 2371 if (!kvm_caps.has_tsc_control) { 2372 if (user_tsc_khz > tsc_khz) { 2373 vcpu->arch.tsc_catchup = 1; 2374 vcpu->arch.tsc_always_catchup = 1; 2375 return 0; 2376 } else { 2377 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2378 return -1; 2379 } 2380 } 2381 2382 /* TSC scaling required - calculate ratio */ 2383 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2384 user_tsc_khz, tsc_khz); 2385 2386 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2387 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2388 user_tsc_khz); 2389 return -1; 2390 } 2391 2392 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2393 return 0; 2394 } 2395 2396 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2397 { 2398 u32 thresh_lo, thresh_hi; 2399 int use_scaling = 0; 2400 2401 /* tsc_khz can be zero if TSC calibration fails */ 2402 if (user_tsc_khz == 0) { 2403 /* set tsc_scaling_ratio to a safe value */ 2404 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2405 return -1; 2406 } 2407 2408 /* Compute a scale to convert nanoseconds in TSC cycles */ 2409 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2410 &vcpu->arch.virtual_tsc_shift, 2411 &vcpu->arch.virtual_tsc_mult); 2412 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2413 2414 /* 2415 * Compute the variation in TSC rate which is acceptable 2416 * within the range of tolerance and decide if the 2417 * rate being applied is within that bounds of the hardware 2418 * rate. If so, no scaling or compensation need be done. 2419 */ 2420 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2421 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2422 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2423 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); 2424 use_scaling = 1; 2425 } 2426 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2427 } 2428 2429 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2430 { 2431 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2432 vcpu->arch.virtual_tsc_mult, 2433 vcpu->arch.virtual_tsc_shift); 2434 tsc += vcpu->arch.this_tsc_write; 2435 return tsc; 2436 } 2437 2438 #ifdef CONFIG_X86_64 2439 static inline int gtod_is_based_on_tsc(int mode) 2440 { 2441 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2442 } 2443 #endif 2444 2445 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 2446 { 2447 #ifdef CONFIG_X86_64 2448 bool vcpus_matched; 2449 struct kvm_arch *ka = &vcpu->kvm->arch; 2450 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2451 2452 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2453 atomic_read(&vcpu->kvm->online_vcpus)); 2454 2455 /* 2456 * Once the masterclock is enabled, always perform request in 2457 * order to update it. 2458 * 2459 * In order to enable masterclock, the host clocksource must be TSC 2460 * and the vcpus need to have matched TSCs. When that happens, 2461 * perform request to enable masterclock. 2462 */ 2463 if (ka->use_master_clock || 2464 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 2465 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2466 2467 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2468 atomic_read(&vcpu->kvm->online_vcpus), 2469 ka->use_master_clock, gtod->clock.vclock_mode); 2470 #endif 2471 } 2472 2473 /* 2474 * Multiply tsc by a fixed point number represented by ratio. 2475 * 2476 * The most significant 64-N bits (mult) of ratio represent the 2477 * integral part of the fixed point number; the remaining N bits 2478 * (frac) represent the fractional part, ie. ratio represents a fixed 2479 * point number (mult + frac * 2^(-N)). 2480 * 2481 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2482 */ 2483 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2484 { 2485 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2486 } 2487 2488 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2489 { 2490 u64 _tsc = tsc; 2491 2492 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2493 _tsc = __scale_tsc(ratio, tsc); 2494 2495 return _tsc; 2496 } 2497 EXPORT_SYMBOL_GPL(kvm_scale_tsc); 2498 2499 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2500 { 2501 u64 tsc; 2502 2503 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2504 2505 return target_tsc - tsc; 2506 } 2507 2508 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2509 { 2510 return vcpu->arch.l1_tsc_offset + 2511 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2512 } 2513 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2514 2515 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2516 { 2517 u64 nested_offset; 2518 2519 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2520 nested_offset = l1_offset; 2521 else 2522 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2523 kvm_caps.tsc_scaling_ratio_frac_bits); 2524 2525 nested_offset += l2_offset; 2526 return nested_offset; 2527 } 2528 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2529 2530 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2531 { 2532 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2533 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2534 kvm_caps.tsc_scaling_ratio_frac_bits); 2535 2536 return l1_multiplier; 2537 } 2538 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2539 2540 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2541 { 2542 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2543 vcpu->arch.l1_tsc_offset, 2544 l1_offset); 2545 2546 vcpu->arch.l1_tsc_offset = l1_offset; 2547 2548 /* 2549 * If we are here because L1 chose not to trap WRMSR to TSC then 2550 * according to the spec this should set L1's TSC (as opposed to 2551 * setting L1's offset for L2). 2552 */ 2553 if (is_guest_mode(vcpu)) 2554 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2555 l1_offset, 2556 static_call(kvm_x86_get_l2_tsc_offset)(vcpu), 2557 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2558 else 2559 vcpu->arch.tsc_offset = l1_offset; 2560 2561 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset); 2562 } 2563 2564 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2565 { 2566 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2567 2568 /* Userspace is changing the multiplier while L2 is active */ 2569 if (is_guest_mode(vcpu)) 2570 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2571 l1_multiplier, 2572 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2573 else 2574 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2575 2576 if (kvm_caps.has_tsc_control) 2577 static_call(kvm_x86_write_tsc_multiplier)( 2578 vcpu, vcpu->arch.tsc_scaling_ratio); 2579 } 2580 2581 static inline bool kvm_check_tsc_unstable(void) 2582 { 2583 #ifdef CONFIG_X86_64 2584 /* 2585 * TSC is marked unstable when we're running on Hyper-V, 2586 * 'TSC page' clocksource is good. 2587 */ 2588 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2589 return false; 2590 #endif 2591 return check_tsc_unstable(); 2592 } 2593 2594 /* 2595 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2596 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2597 * participates in. 2598 */ 2599 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2600 u64 ns, bool matched) 2601 { 2602 struct kvm *kvm = vcpu->kvm; 2603 2604 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2605 2606 /* 2607 * We also track th most recent recorded KHZ, write and time to 2608 * allow the matching interval to be extended at each write. 2609 */ 2610 kvm->arch.last_tsc_nsec = ns; 2611 kvm->arch.last_tsc_write = tsc; 2612 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2613 kvm->arch.last_tsc_offset = offset; 2614 2615 vcpu->arch.last_guest_tsc = tsc; 2616 2617 kvm_vcpu_write_tsc_offset(vcpu, offset); 2618 2619 if (!matched) { 2620 /* 2621 * We split periods of matched TSC writes into generations. 2622 * For each generation, we track the original measured 2623 * nanosecond time, offset, and write, so if TSCs are in 2624 * sync, we can match exact offset, and if not, we can match 2625 * exact software computation in compute_guest_tsc() 2626 * 2627 * These values are tracked in kvm->arch.cur_xxx variables. 2628 */ 2629 kvm->arch.cur_tsc_generation++; 2630 kvm->arch.cur_tsc_nsec = ns; 2631 kvm->arch.cur_tsc_write = tsc; 2632 kvm->arch.cur_tsc_offset = offset; 2633 kvm->arch.nr_vcpus_matched_tsc = 0; 2634 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2635 kvm->arch.nr_vcpus_matched_tsc++; 2636 } 2637 2638 /* Keep track of which generation this VCPU has synchronized to */ 2639 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2640 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2641 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2642 2643 kvm_track_tsc_matching(vcpu); 2644 } 2645 2646 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) 2647 { 2648 struct kvm *kvm = vcpu->kvm; 2649 u64 offset, ns, elapsed; 2650 unsigned long flags; 2651 bool matched = false; 2652 bool synchronizing = false; 2653 2654 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2655 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2656 ns = get_kvmclock_base_ns(); 2657 elapsed = ns - kvm->arch.last_tsc_nsec; 2658 2659 if (vcpu->arch.virtual_tsc_khz) { 2660 if (data == 0) { 2661 /* 2662 * detection of vcpu initialization -- need to sync 2663 * with other vCPUs. This particularly helps to keep 2664 * kvm_clock stable after CPU hotplug 2665 */ 2666 synchronizing = true; 2667 } else { 2668 u64 tsc_exp = kvm->arch.last_tsc_write + 2669 nsec_to_cycles(vcpu, elapsed); 2670 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2671 /* 2672 * Special case: TSC write with a small delta (1 second) 2673 * of virtual cycle time against real time is 2674 * interpreted as an attempt to synchronize the CPU. 2675 */ 2676 synchronizing = data < tsc_exp + tsc_hz && 2677 data + tsc_hz > tsc_exp; 2678 } 2679 } 2680 2681 /* 2682 * For a reliable TSC, we can match TSC offsets, and for an unstable 2683 * TSC, we add elapsed time in this computation. We could let the 2684 * compensation code attempt to catch up if we fall behind, but 2685 * it's better to try to match offsets from the beginning. 2686 */ 2687 if (synchronizing && 2688 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2689 if (!kvm_check_tsc_unstable()) { 2690 offset = kvm->arch.cur_tsc_offset; 2691 } else { 2692 u64 delta = nsec_to_cycles(vcpu, elapsed); 2693 data += delta; 2694 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2695 } 2696 matched = true; 2697 } 2698 2699 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2700 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2701 } 2702 2703 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2704 s64 adjustment) 2705 { 2706 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2707 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2708 } 2709 2710 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2711 { 2712 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2713 WARN_ON(adjustment < 0); 2714 adjustment = kvm_scale_tsc((u64) adjustment, 2715 vcpu->arch.l1_tsc_scaling_ratio); 2716 adjust_tsc_offset_guest(vcpu, adjustment); 2717 } 2718 2719 #ifdef CONFIG_X86_64 2720 2721 static u64 read_tsc(void) 2722 { 2723 u64 ret = (u64)rdtsc_ordered(); 2724 u64 last = pvclock_gtod_data.clock.cycle_last; 2725 2726 if (likely(ret >= last)) 2727 return ret; 2728 2729 /* 2730 * GCC likes to generate cmov here, but this branch is extremely 2731 * predictable (it's just a function of time and the likely is 2732 * very likely) and there's a data dependence, so force GCC 2733 * to generate a branch instead. I don't barrier() because 2734 * we don't actually need a barrier, and if this function 2735 * ever gets inlined it will generate worse code. 2736 */ 2737 asm volatile (""); 2738 return last; 2739 } 2740 2741 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2742 int *mode) 2743 { 2744 long v; 2745 u64 tsc_pg_val; 2746 2747 switch (clock->vclock_mode) { 2748 case VDSO_CLOCKMODE_HVCLOCK: 2749 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 2750 tsc_timestamp); 2751 if (tsc_pg_val != U64_MAX) { 2752 /* TSC page valid */ 2753 *mode = VDSO_CLOCKMODE_HVCLOCK; 2754 v = (tsc_pg_val - clock->cycle_last) & 2755 clock->mask; 2756 } else { 2757 /* TSC page invalid */ 2758 *mode = VDSO_CLOCKMODE_NONE; 2759 } 2760 break; 2761 case VDSO_CLOCKMODE_TSC: 2762 *mode = VDSO_CLOCKMODE_TSC; 2763 *tsc_timestamp = read_tsc(); 2764 v = (*tsc_timestamp - clock->cycle_last) & 2765 clock->mask; 2766 break; 2767 default: 2768 *mode = VDSO_CLOCKMODE_NONE; 2769 } 2770 2771 if (*mode == VDSO_CLOCKMODE_NONE) 2772 *tsc_timestamp = v = 0; 2773 2774 return v * clock->mult; 2775 } 2776 2777 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2778 { 2779 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2780 unsigned long seq; 2781 int mode; 2782 u64 ns; 2783 2784 do { 2785 seq = read_seqcount_begin(>od->seq); 2786 ns = gtod->raw_clock.base_cycles; 2787 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2788 ns >>= gtod->raw_clock.shift; 2789 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2790 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2791 *t = ns; 2792 2793 return mode; 2794 } 2795 2796 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2797 { 2798 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2799 unsigned long seq; 2800 int mode; 2801 u64 ns; 2802 2803 do { 2804 seq = read_seqcount_begin(>od->seq); 2805 ts->tv_sec = gtod->wall_time_sec; 2806 ns = gtod->clock.base_cycles; 2807 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2808 ns >>= gtod->clock.shift; 2809 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2810 2811 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2812 ts->tv_nsec = ns; 2813 2814 return mode; 2815 } 2816 2817 /* returns true if host is using TSC based clocksource */ 2818 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2819 { 2820 /* checked again under seqlock below */ 2821 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2822 return false; 2823 2824 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2825 tsc_timestamp)); 2826 } 2827 2828 /* returns true if host is using TSC based clocksource */ 2829 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2830 u64 *tsc_timestamp) 2831 { 2832 /* checked again under seqlock below */ 2833 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2834 return false; 2835 2836 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2837 } 2838 #endif 2839 2840 /* 2841 * 2842 * Assuming a stable TSC across physical CPUS, and a stable TSC 2843 * across virtual CPUs, the following condition is possible. 2844 * Each numbered line represents an event visible to both 2845 * CPUs at the next numbered event. 2846 * 2847 * "timespecX" represents host monotonic time. "tscX" represents 2848 * RDTSC value. 2849 * 2850 * VCPU0 on CPU0 | VCPU1 on CPU1 2851 * 2852 * 1. read timespec0,tsc0 2853 * 2. | timespec1 = timespec0 + N 2854 * | tsc1 = tsc0 + M 2855 * 3. transition to guest | transition to guest 2856 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2857 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2858 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2859 * 2860 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2861 * 2862 * - ret0 < ret1 2863 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2864 * ... 2865 * - 0 < N - M => M < N 2866 * 2867 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2868 * always the case (the difference between two distinct xtime instances 2869 * might be smaller then the difference between corresponding TSC reads, 2870 * when updating guest vcpus pvclock areas). 2871 * 2872 * To avoid that problem, do not allow visibility of distinct 2873 * system_timestamp/tsc_timestamp values simultaneously: use a master 2874 * copy of host monotonic time values. Update that master copy 2875 * in lockstep. 2876 * 2877 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2878 * 2879 */ 2880 2881 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2882 { 2883 #ifdef CONFIG_X86_64 2884 struct kvm_arch *ka = &kvm->arch; 2885 int vclock_mode; 2886 bool host_tsc_clocksource, vcpus_matched; 2887 2888 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2889 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2890 atomic_read(&kvm->online_vcpus)); 2891 2892 /* 2893 * If the host uses TSC clock, then passthrough TSC as stable 2894 * to the guest. 2895 */ 2896 host_tsc_clocksource = kvm_get_time_and_clockread( 2897 &ka->master_kernel_ns, 2898 &ka->master_cycle_now); 2899 2900 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2901 && !ka->backwards_tsc_observed 2902 && !ka->boot_vcpu_runs_old_kvmclock; 2903 2904 if (ka->use_master_clock) 2905 atomic_set(&kvm_guest_has_master_clock, 1); 2906 2907 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2908 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2909 vcpus_matched); 2910 #endif 2911 } 2912 2913 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2914 { 2915 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2916 } 2917 2918 static void __kvm_start_pvclock_update(struct kvm *kvm) 2919 { 2920 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 2921 write_seqcount_begin(&kvm->arch.pvclock_sc); 2922 } 2923 2924 static void kvm_start_pvclock_update(struct kvm *kvm) 2925 { 2926 kvm_make_mclock_inprogress_request(kvm); 2927 2928 /* no guest entries from this point */ 2929 __kvm_start_pvclock_update(kvm); 2930 } 2931 2932 static void kvm_end_pvclock_update(struct kvm *kvm) 2933 { 2934 struct kvm_arch *ka = &kvm->arch; 2935 struct kvm_vcpu *vcpu; 2936 unsigned long i; 2937 2938 write_seqcount_end(&ka->pvclock_sc); 2939 raw_spin_unlock_irq(&ka->tsc_write_lock); 2940 kvm_for_each_vcpu(i, vcpu, kvm) 2941 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2942 2943 /* guest entries allowed */ 2944 kvm_for_each_vcpu(i, vcpu, kvm) 2945 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 2946 } 2947 2948 static void kvm_update_masterclock(struct kvm *kvm) 2949 { 2950 kvm_hv_request_tsc_page_update(kvm); 2951 kvm_start_pvclock_update(kvm); 2952 pvclock_update_vm_gtod_copy(kvm); 2953 kvm_end_pvclock_update(kvm); 2954 } 2955 2956 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 2957 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 2958 { 2959 struct kvm_arch *ka = &kvm->arch; 2960 struct pvclock_vcpu_time_info hv_clock; 2961 2962 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 2963 get_cpu(); 2964 2965 data->flags = 0; 2966 if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) { 2967 #ifdef CONFIG_X86_64 2968 struct timespec64 ts; 2969 2970 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 2971 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 2972 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 2973 } else 2974 #endif 2975 data->host_tsc = rdtsc(); 2976 2977 data->flags |= KVM_CLOCK_TSC_STABLE; 2978 hv_clock.tsc_timestamp = ka->master_cycle_now; 2979 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 2980 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL, 2981 &hv_clock.tsc_shift, 2982 &hv_clock.tsc_to_system_mul); 2983 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 2984 } else { 2985 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 2986 } 2987 2988 put_cpu(); 2989 } 2990 2991 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 2992 { 2993 struct kvm_arch *ka = &kvm->arch; 2994 unsigned seq; 2995 2996 do { 2997 seq = read_seqcount_begin(&ka->pvclock_sc); 2998 __get_kvmclock(kvm, data); 2999 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3000 } 3001 3002 u64 get_kvmclock_ns(struct kvm *kvm) 3003 { 3004 struct kvm_clock_data data; 3005 3006 get_kvmclock(kvm, &data); 3007 return data.clock; 3008 } 3009 3010 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, 3011 struct gfn_to_pfn_cache *gpc, 3012 unsigned int offset) 3013 { 3014 struct kvm_vcpu_arch *vcpu = &v->arch; 3015 struct pvclock_vcpu_time_info *guest_hv_clock; 3016 unsigned long flags; 3017 3018 read_lock_irqsave(&gpc->lock, flags); 3019 while (!kvm_gfn_to_pfn_cache_check(v->kvm, gpc, gpc->gpa, 3020 offset + sizeof(*guest_hv_clock))) { 3021 read_unlock_irqrestore(&gpc->lock, flags); 3022 3023 if (kvm_gfn_to_pfn_cache_refresh(v->kvm, gpc, gpc->gpa, 3024 offset + sizeof(*guest_hv_clock))) 3025 return; 3026 3027 read_lock_irqsave(&gpc->lock, flags); 3028 } 3029 3030 guest_hv_clock = (void *)(gpc->khva + offset); 3031 3032 /* 3033 * This VCPU is paused, but it's legal for a guest to read another 3034 * VCPU's kvmclock, so we really have to follow the specification where 3035 * it says that version is odd if data is being modified, and even after 3036 * it is consistent. 3037 */ 3038 3039 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; 3040 smp_wmb(); 3041 3042 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3043 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3044 3045 if (vcpu->pvclock_set_guest_stopped_request) { 3046 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3047 vcpu->pvclock_set_guest_stopped_request = false; 3048 } 3049 3050 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); 3051 smp_wmb(); 3052 3053 guest_hv_clock->version = ++vcpu->hv_clock.version; 3054 3055 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT); 3056 read_unlock_irqrestore(&gpc->lock, flags); 3057 3058 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3059 } 3060 3061 static int kvm_guest_time_update(struct kvm_vcpu *v) 3062 { 3063 unsigned long flags, tgt_tsc_khz; 3064 unsigned seq; 3065 struct kvm_vcpu_arch *vcpu = &v->arch; 3066 struct kvm_arch *ka = &v->kvm->arch; 3067 s64 kernel_ns; 3068 u64 tsc_timestamp, host_tsc; 3069 u8 pvclock_flags; 3070 bool use_master_clock; 3071 3072 kernel_ns = 0; 3073 host_tsc = 0; 3074 3075 /* 3076 * If the host uses TSC clock, then passthrough TSC as stable 3077 * to the guest. 3078 */ 3079 do { 3080 seq = read_seqcount_begin(&ka->pvclock_sc); 3081 use_master_clock = ka->use_master_clock; 3082 if (use_master_clock) { 3083 host_tsc = ka->master_cycle_now; 3084 kernel_ns = ka->master_kernel_ns; 3085 } 3086 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3087 3088 /* Keep irq disabled to prevent changes to the clock */ 3089 local_irq_save(flags); 3090 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz); 3091 if (unlikely(tgt_tsc_khz == 0)) { 3092 local_irq_restore(flags); 3093 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3094 return 1; 3095 } 3096 if (!use_master_clock) { 3097 host_tsc = rdtsc(); 3098 kernel_ns = get_kvmclock_base_ns(); 3099 } 3100 3101 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3102 3103 /* 3104 * We may have to catch up the TSC to match elapsed wall clock 3105 * time for two reasons, even if kvmclock is used. 3106 * 1) CPU could have been running below the maximum TSC rate 3107 * 2) Broken TSC compensation resets the base at each VCPU 3108 * entry to avoid unknown leaps of TSC even when running 3109 * again on the same CPU. This may cause apparent elapsed 3110 * time to disappear, and the guest to stand still or run 3111 * very slowly. 3112 */ 3113 if (vcpu->tsc_catchup) { 3114 u64 tsc = compute_guest_tsc(v, kernel_ns); 3115 if (tsc > tsc_timestamp) { 3116 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3117 tsc_timestamp = tsc; 3118 } 3119 } 3120 3121 local_irq_restore(flags); 3122 3123 /* With all the info we got, fill in the values */ 3124 3125 if (kvm_caps.has_tsc_control) 3126 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3127 v->arch.l1_tsc_scaling_ratio); 3128 3129 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3130 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3131 &vcpu->hv_clock.tsc_shift, 3132 &vcpu->hv_clock.tsc_to_system_mul); 3133 vcpu->hw_tsc_khz = tgt_tsc_khz; 3134 } 3135 3136 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3137 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3138 vcpu->last_guest_tsc = tsc_timestamp; 3139 3140 /* If the host uses TSC clocksource, then it is stable */ 3141 pvclock_flags = 0; 3142 if (use_master_clock) 3143 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3144 3145 vcpu->hv_clock.flags = pvclock_flags; 3146 3147 if (vcpu->pv_time.active) 3148 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0); 3149 if (vcpu->xen.vcpu_info_cache.active) 3150 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, 3151 offsetof(struct compat_vcpu_info, time)); 3152 if (vcpu->xen.vcpu_time_info_cache.active) 3153 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0); 3154 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3155 return 0; 3156 } 3157 3158 /* 3159 * kvmclock updates which are isolated to a given vcpu, such as 3160 * vcpu->cpu migration, should not allow system_timestamp from 3161 * the rest of the vcpus to remain static. Otherwise ntp frequency 3162 * correction applies to one vcpu's system_timestamp but not 3163 * the others. 3164 * 3165 * So in those cases, request a kvmclock update for all vcpus. 3166 * We need to rate-limit these requests though, as they can 3167 * considerably slow guests that have a large number of vcpus. 3168 * The time for a remote vcpu to update its kvmclock is bound 3169 * by the delay we use to rate-limit the updates. 3170 */ 3171 3172 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3173 3174 static void kvmclock_update_fn(struct work_struct *work) 3175 { 3176 unsigned long i; 3177 struct delayed_work *dwork = to_delayed_work(work); 3178 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3179 kvmclock_update_work); 3180 struct kvm *kvm = container_of(ka, struct kvm, arch); 3181 struct kvm_vcpu *vcpu; 3182 3183 kvm_for_each_vcpu(i, vcpu, kvm) { 3184 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3185 kvm_vcpu_kick(vcpu); 3186 } 3187 } 3188 3189 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3190 { 3191 struct kvm *kvm = v->kvm; 3192 3193 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3194 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3195 KVMCLOCK_UPDATE_DELAY); 3196 } 3197 3198 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3199 3200 static void kvmclock_sync_fn(struct work_struct *work) 3201 { 3202 struct delayed_work *dwork = to_delayed_work(work); 3203 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3204 kvmclock_sync_work); 3205 struct kvm *kvm = container_of(ka, struct kvm, arch); 3206 3207 if (!kvmclock_periodic_sync) 3208 return; 3209 3210 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3211 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3212 KVMCLOCK_SYNC_PERIOD); 3213 } 3214 3215 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ 3216 static bool is_mci_control_msr(u32 msr) 3217 { 3218 return (msr & 3) == 0; 3219 } 3220 static bool is_mci_status_msr(u32 msr) 3221 { 3222 return (msr & 3) == 1; 3223 } 3224 3225 /* 3226 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3227 */ 3228 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3229 { 3230 /* McStatusWrEn enabled? */ 3231 if (guest_cpuid_is_amd_or_hygon(vcpu)) 3232 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3233 3234 return false; 3235 } 3236 3237 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3238 { 3239 u64 mcg_cap = vcpu->arch.mcg_cap; 3240 unsigned bank_num = mcg_cap & 0xff; 3241 u32 msr = msr_info->index; 3242 u64 data = msr_info->data; 3243 u32 offset, last_msr; 3244 3245 switch (msr) { 3246 case MSR_IA32_MCG_STATUS: 3247 vcpu->arch.mcg_status = data; 3248 break; 3249 case MSR_IA32_MCG_CTL: 3250 if (!(mcg_cap & MCG_CTL_P) && 3251 (data || !msr_info->host_initiated)) 3252 return 1; 3253 if (data != 0 && data != ~(u64)0) 3254 return 1; 3255 vcpu->arch.mcg_ctl = data; 3256 break; 3257 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3258 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3259 if (msr > last_msr) 3260 return 1; 3261 3262 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3263 return 1; 3264 /* An attempt to write a 1 to a reserved bit raises #GP */ 3265 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3266 return 1; 3267 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3268 last_msr + 1 - MSR_IA32_MC0_CTL2); 3269 vcpu->arch.mci_ctl2_banks[offset] = data; 3270 break; 3271 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3272 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3273 if (msr > last_msr) 3274 return 1; 3275 3276 /* 3277 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3278 * values are architecturally undefined. But, some Linux 3279 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3280 * issue on AMD K8s, allow bit 10 to be clear when setting all 3281 * other bits in order to avoid an uncaught #GP in the guest. 3282 * 3283 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3284 * single-bit ECC data errors. 3285 */ 3286 if (is_mci_control_msr(msr) && 3287 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3288 return 1; 3289 3290 /* 3291 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3292 * AMD-based CPUs allow non-zero values, but if and only if 3293 * HWCR[McStatusWrEn] is set. 3294 */ 3295 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3296 data != 0 && !can_set_mci_status(vcpu)) 3297 return 1; 3298 3299 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3300 last_msr + 1 - MSR_IA32_MC0_CTL); 3301 vcpu->arch.mce_banks[offset] = data; 3302 break; 3303 default: 3304 return 1; 3305 } 3306 return 0; 3307 } 3308 3309 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3310 { 3311 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3312 3313 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3314 } 3315 3316 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3317 { 3318 gpa_t gpa = data & ~0x3f; 3319 3320 /* Bits 4:5 are reserved, Should be zero */ 3321 if (data & 0x30) 3322 return 1; 3323 3324 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3325 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3326 return 1; 3327 3328 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3329 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3330 return 1; 3331 3332 if (!lapic_in_kernel(vcpu)) 3333 return data ? 1 : 0; 3334 3335 vcpu->arch.apf.msr_en_val = data; 3336 3337 if (!kvm_pv_async_pf_enabled(vcpu)) { 3338 kvm_clear_async_pf_completion_queue(vcpu); 3339 kvm_async_pf_hash_reset(vcpu); 3340 return 0; 3341 } 3342 3343 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3344 sizeof(u64))) 3345 return 1; 3346 3347 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3348 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3349 3350 kvm_async_pf_wakeup_all(vcpu); 3351 3352 return 0; 3353 } 3354 3355 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3356 { 3357 /* Bits 8-63 are reserved */ 3358 if (data >> 8) 3359 return 1; 3360 3361 if (!lapic_in_kernel(vcpu)) 3362 return 1; 3363 3364 vcpu->arch.apf.msr_int_val = data; 3365 3366 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3367 3368 return 0; 3369 } 3370 3371 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3372 { 3373 kvm_gfn_to_pfn_cache_destroy(vcpu->kvm, &vcpu->arch.pv_time); 3374 vcpu->arch.time = 0; 3375 } 3376 3377 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3378 { 3379 ++vcpu->stat.tlb_flush; 3380 static_call(kvm_x86_flush_tlb_all)(vcpu); 3381 } 3382 3383 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3384 { 3385 ++vcpu->stat.tlb_flush; 3386 3387 if (!tdp_enabled) { 3388 /* 3389 * A TLB flush on behalf of the guest is equivalent to 3390 * INVPCID(all), toggling CR4.PGE, etc., which requires 3391 * a forced sync of the shadow page tables. Ensure all the 3392 * roots are synced and the guest TLB in hardware is clean. 3393 */ 3394 kvm_mmu_sync_roots(vcpu); 3395 kvm_mmu_sync_prev_roots(vcpu); 3396 } 3397 3398 static_call(kvm_x86_flush_tlb_guest)(vcpu); 3399 } 3400 3401 3402 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3403 { 3404 ++vcpu->stat.tlb_flush; 3405 static_call(kvm_x86_flush_tlb_current)(vcpu); 3406 } 3407 3408 /* 3409 * Service "local" TLB flush requests, which are specific to the current MMU 3410 * context. In addition to the generic event handling in vcpu_enter_guest(), 3411 * TLB flushes that are targeted at an MMU context also need to be serviced 3412 * prior before nested VM-Enter/VM-Exit. 3413 */ 3414 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3415 { 3416 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3417 kvm_vcpu_flush_tlb_current(vcpu); 3418 3419 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3420 kvm_vcpu_flush_tlb_guest(vcpu); 3421 } 3422 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3423 3424 static void record_steal_time(struct kvm_vcpu *vcpu) 3425 { 3426 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3427 struct kvm_steal_time __user *st; 3428 struct kvm_memslots *slots; 3429 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3430 u64 steal; 3431 u32 version; 3432 3433 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3434 kvm_xen_runstate_set_running(vcpu); 3435 return; 3436 } 3437 3438 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3439 return; 3440 3441 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3442 return; 3443 3444 slots = kvm_memslots(vcpu->kvm); 3445 3446 if (unlikely(slots->generation != ghc->generation || 3447 gpa != ghc->gpa || 3448 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3449 /* We rely on the fact that it fits in a single page. */ 3450 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3451 3452 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3453 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3454 return; 3455 } 3456 3457 st = (struct kvm_steal_time __user *)ghc->hva; 3458 /* 3459 * Doing a TLB flush here, on the guest's behalf, can avoid 3460 * expensive IPIs. 3461 */ 3462 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3463 u8 st_preempted = 0; 3464 int err = -EFAULT; 3465 3466 if (!user_access_begin(st, sizeof(*st))) 3467 return; 3468 3469 asm volatile("1: xchgb %0, %2\n" 3470 "xor %1, %1\n" 3471 "2:\n" 3472 _ASM_EXTABLE_UA(1b, 2b) 3473 : "+q" (st_preempted), 3474 "+&r" (err), 3475 "+m" (st->preempted)); 3476 if (err) 3477 goto out; 3478 3479 user_access_end(); 3480 3481 vcpu->arch.st.preempted = 0; 3482 3483 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3484 st_preempted & KVM_VCPU_FLUSH_TLB); 3485 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3486 kvm_vcpu_flush_tlb_guest(vcpu); 3487 3488 if (!user_access_begin(st, sizeof(*st))) 3489 goto dirty; 3490 } else { 3491 if (!user_access_begin(st, sizeof(*st))) 3492 return; 3493 3494 unsafe_put_user(0, &st->preempted, out); 3495 vcpu->arch.st.preempted = 0; 3496 } 3497 3498 unsafe_get_user(version, &st->version, out); 3499 if (version & 1) 3500 version += 1; /* first time write, random junk */ 3501 3502 version += 1; 3503 unsafe_put_user(version, &st->version, out); 3504 3505 smp_wmb(); 3506 3507 unsafe_get_user(steal, &st->steal, out); 3508 steal += current->sched_info.run_delay - 3509 vcpu->arch.st.last_steal; 3510 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3511 unsafe_put_user(steal, &st->steal, out); 3512 3513 version += 1; 3514 unsafe_put_user(version, &st->version, out); 3515 3516 out: 3517 user_access_end(); 3518 dirty: 3519 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3520 } 3521 3522 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3523 { 3524 bool pr = false; 3525 u32 msr = msr_info->index; 3526 u64 data = msr_info->data; 3527 3528 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3529 return kvm_xen_write_hypercall_page(vcpu, data); 3530 3531 switch (msr) { 3532 case MSR_AMD64_NB_CFG: 3533 case MSR_IA32_UCODE_WRITE: 3534 case MSR_VM_HSAVE_PA: 3535 case MSR_AMD64_PATCH_LOADER: 3536 case MSR_AMD64_BU_CFG2: 3537 case MSR_AMD64_DC_CFG: 3538 case MSR_F15H_EX_CFG: 3539 break; 3540 3541 case MSR_IA32_UCODE_REV: 3542 if (msr_info->host_initiated) 3543 vcpu->arch.microcode_version = data; 3544 break; 3545 case MSR_IA32_ARCH_CAPABILITIES: 3546 if (!msr_info->host_initiated) 3547 return 1; 3548 vcpu->arch.arch_capabilities = data; 3549 break; 3550 case MSR_IA32_PERF_CAPABILITIES: { 3551 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0}; 3552 3553 if (!msr_info->host_initiated) 3554 return 1; 3555 if (kvm_get_msr_feature(&msr_ent)) 3556 return 1; 3557 if (data & ~msr_ent.data) 3558 return 1; 3559 3560 vcpu->arch.perf_capabilities = data; 3561 kvm_pmu_refresh(vcpu); 3562 return 0; 3563 } 3564 case MSR_EFER: 3565 return set_efer(vcpu, msr_info); 3566 case MSR_K7_HWCR: 3567 data &= ~(u64)0x40; /* ignore flush filter disable */ 3568 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3569 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3570 3571 /* Handle McStatusWrEn */ 3572 if (data == BIT_ULL(18)) { 3573 vcpu->arch.msr_hwcr = data; 3574 } else if (data != 0) { 3575 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 3576 data); 3577 return 1; 3578 } 3579 break; 3580 case MSR_FAM10H_MMIO_CONF_BASE: 3581 if (data != 0) { 3582 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 3583 "0x%llx\n", data); 3584 return 1; 3585 } 3586 break; 3587 case 0x200 ... MSR_IA32_MC0_CTL2 - 1: 3588 case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff: 3589 return kvm_mtrr_set_msr(vcpu, msr, data); 3590 case MSR_IA32_APICBASE: 3591 return kvm_set_apic_base(vcpu, msr_info); 3592 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3593 return kvm_x2apic_msr_write(vcpu, msr, data); 3594 case MSR_IA32_TSC_DEADLINE: 3595 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3596 break; 3597 case MSR_IA32_TSC_ADJUST: 3598 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3599 if (!msr_info->host_initiated) { 3600 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3601 adjust_tsc_offset_guest(vcpu, adj); 3602 /* Before back to guest, tsc_timestamp must be adjusted 3603 * as well, otherwise guest's percpu pvclock time could jump. 3604 */ 3605 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3606 } 3607 vcpu->arch.ia32_tsc_adjust_msr = data; 3608 } 3609 break; 3610 case MSR_IA32_MISC_ENABLE: { 3611 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 3612 3613 if (!msr_info->host_initiated) { 3614 /* RO bits */ 3615 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 3616 return 1; 3617 3618 /* R bits, i.e. writes are ignored, but don't fault. */ 3619 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 3620 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 3621 } 3622 3623 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3624 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3625 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3626 return 1; 3627 vcpu->arch.ia32_misc_enable_msr = data; 3628 kvm_update_cpuid_runtime(vcpu); 3629 } else { 3630 vcpu->arch.ia32_misc_enable_msr = data; 3631 } 3632 break; 3633 } 3634 case MSR_IA32_SMBASE: 3635 if (!msr_info->host_initiated) 3636 return 1; 3637 vcpu->arch.smbase = data; 3638 break; 3639 case MSR_IA32_POWER_CTL: 3640 vcpu->arch.msr_ia32_power_ctl = data; 3641 break; 3642 case MSR_IA32_TSC: 3643 if (msr_info->host_initiated) { 3644 kvm_synchronize_tsc(vcpu, data); 3645 } else { 3646 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3647 adjust_tsc_offset_guest(vcpu, adj); 3648 vcpu->arch.ia32_tsc_adjust_msr += adj; 3649 } 3650 break; 3651 case MSR_IA32_XSS: 3652 if (!msr_info->host_initiated && 3653 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3654 return 1; 3655 /* 3656 * KVM supports exposing PT to the guest, but does not support 3657 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3658 * XSAVES/XRSTORS to save/restore PT MSRs. 3659 */ 3660 if (data & ~kvm_caps.supported_xss) 3661 return 1; 3662 vcpu->arch.ia32_xss = data; 3663 kvm_update_cpuid_runtime(vcpu); 3664 break; 3665 case MSR_SMI_COUNT: 3666 if (!msr_info->host_initiated) 3667 return 1; 3668 vcpu->arch.smi_count = data; 3669 break; 3670 case MSR_KVM_WALL_CLOCK_NEW: 3671 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3672 return 1; 3673 3674 vcpu->kvm->arch.wall_clock = data; 3675 kvm_write_wall_clock(vcpu->kvm, data, 0); 3676 break; 3677 case MSR_KVM_WALL_CLOCK: 3678 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3679 return 1; 3680 3681 vcpu->kvm->arch.wall_clock = data; 3682 kvm_write_wall_clock(vcpu->kvm, data, 0); 3683 break; 3684 case MSR_KVM_SYSTEM_TIME_NEW: 3685 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3686 return 1; 3687 3688 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3689 break; 3690 case MSR_KVM_SYSTEM_TIME: 3691 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3692 return 1; 3693 3694 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3695 break; 3696 case MSR_KVM_ASYNC_PF_EN: 3697 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3698 return 1; 3699 3700 if (kvm_pv_enable_async_pf(vcpu, data)) 3701 return 1; 3702 break; 3703 case MSR_KVM_ASYNC_PF_INT: 3704 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3705 return 1; 3706 3707 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3708 return 1; 3709 break; 3710 case MSR_KVM_ASYNC_PF_ACK: 3711 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3712 return 1; 3713 if (data & 0x1) { 3714 vcpu->arch.apf.pageready_pending = false; 3715 kvm_check_async_pf_completion(vcpu); 3716 } 3717 break; 3718 case MSR_KVM_STEAL_TIME: 3719 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3720 return 1; 3721 3722 if (unlikely(!sched_info_on())) 3723 return 1; 3724 3725 if (data & KVM_STEAL_RESERVED_MASK) 3726 return 1; 3727 3728 vcpu->arch.st.msr_val = data; 3729 3730 if (!(data & KVM_MSR_ENABLED)) 3731 break; 3732 3733 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3734 3735 break; 3736 case MSR_KVM_PV_EOI_EN: 3737 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3738 return 1; 3739 3740 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 3741 return 1; 3742 break; 3743 3744 case MSR_KVM_POLL_CONTROL: 3745 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3746 return 1; 3747 3748 /* only enable bit supported */ 3749 if (data & (-1ULL << 1)) 3750 return 1; 3751 3752 vcpu->arch.msr_kvm_poll_control = data; 3753 break; 3754 3755 case MSR_IA32_MCG_CTL: 3756 case MSR_IA32_MCG_STATUS: 3757 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3758 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3759 return set_msr_mce(vcpu, msr_info); 3760 3761 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3762 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3763 pr = true; 3764 fallthrough; 3765 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3766 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3767 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3768 return kvm_pmu_set_msr(vcpu, msr_info); 3769 3770 if (pr || data != 0) 3771 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 3772 "0x%x data 0x%llx\n", msr, data); 3773 break; 3774 case MSR_K7_CLK_CTL: 3775 /* 3776 * Ignore all writes to this no longer documented MSR. 3777 * Writes are only relevant for old K7 processors, 3778 * all pre-dating SVM, but a recommended workaround from 3779 * AMD for these chips. It is possible to specify the 3780 * affected processor models on the command line, hence 3781 * the need to ignore the workaround. 3782 */ 3783 break; 3784 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3785 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3786 case HV_X64_MSR_SYNDBG_OPTIONS: 3787 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3788 case HV_X64_MSR_CRASH_CTL: 3789 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3790 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3791 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3792 case HV_X64_MSR_TSC_EMULATION_STATUS: 3793 return kvm_hv_set_msr_common(vcpu, msr, data, 3794 msr_info->host_initiated); 3795 case MSR_IA32_BBL_CR_CTL3: 3796 /* Drop writes to this legacy MSR -- see rdmsr 3797 * counterpart for further detail. 3798 */ 3799 if (report_ignored_msrs) 3800 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", 3801 msr, data); 3802 break; 3803 case MSR_AMD64_OSVW_ID_LENGTH: 3804 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3805 return 1; 3806 vcpu->arch.osvw.length = data; 3807 break; 3808 case MSR_AMD64_OSVW_STATUS: 3809 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3810 return 1; 3811 vcpu->arch.osvw.status = data; 3812 break; 3813 case MSR_PLATFORM_INFO: 3814 if (!msr_info->host_initiated || 3815 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3816 cpuid_fault_enabled(vcpu))) 3817 return 1; 3818 vcpu->arch.msr_platform_info = data; 3819 break; 3820 case MSR_MISC_FEATURES_ENABLES: 3821 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3822 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3823 !supports_cpuid_fault(vcpu))) 3824 return 1; 3825 vcpu->arch.msr_misc_features_enables = data; 3826 break; 3827 #ifdef CONFIG_X86_64 3828 case MSR_IA32_XFD: 3829 if (!msr_info->host_initiated && 3830 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3831 return 1; 3832 3833 if (data & ~kvm_guest_supported_xfd(vcpu)) 3834 return 1; 3835 3836 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 3837 break; 3838 case MSR_IA32_XFD_ERR: 3839 if (!msr_info->host_initiated && 3840 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3841 return 1; 3842 3843 if (data & ~kvm_guest_supported_xfd(vcpu)) 3844 return 1; 3845 3846 vcpu->arch.guest_fpu.xfd_err = data; 3847 break; 3848 #endif 3849 case MSR_IA32_PEBS_ENABLE: 3850 case MSR_IA32_DS_AREA: 3851 case MSR_PEBS_DATA_CFG: 3852 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3853 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3854 return kvm_pmu_set_msr(vcpu, msr_info); 3855 /* 3856 * Userspace is allowed to write '0' to MSRs that KVM reports 3857 * as to-be-saved, even if an MSRs isn't fully supported. 3858 */ 3859 return !msr_info->host_initiated || data; 3860 default: 3861 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3862 return kvm_pmu_set_msr(vcpu, msr_info); 3863 return KVM_MSR_RET_INVALID; 3864 } 3865 return 0; 3866 } 3867 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 3868 3869 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 3870 { 3871 u64 data; 3872 u64 mcg_cap = vcpu->arch.mcg_cap; 3873 unsigned bank_num = mcg_cap & 0xff; 3874 u32 offset, last_msr; 3875 3876 switch (msr) { 3877 case MSR_IA32_P5_MC_ADDR: 3878 case MSR_IA32_P5_MC_TYPE: 3879 data = 0; 3880 break; 3881 case MSR_IA32_MCG_CAP: 3882 data = vcpu->arch.mcg_cap; 3883 break; 3884 case MSR_IA32_MCG_CTL: 3885 if (!(mcg_cap & MCG_CTL_P) && !host) 3886 return 1; 3887 data = vcpu->arch.mcg_ctl; 3888 break; 3889 case MSR_IA32_MCG_STATUS: 3890 data = vcpu->arch.mcg_status; 3891 break; 3892 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3893 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3894 if (msr > last_msr) 3895 return 1; 3896 3897 if (!(mcg_cap & MCG_CMCI_P) && !host) 3898 return 1; 3899 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3900 last_msr + 1 - MSR_IA32_MC0_CTL2); 3901 data = vcpu->arch.mci_ctl2_banks[offset]; 3902 break; 3903 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3904 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3905 if (msr > last_msr) 3906 return 1; 3907 3908 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3909 last_msr + 1 - MSR_IA32_MC0_CTL); 3910 data = vcpu->arch.mce_banks[offset]; 3911 break; 3912 default: 3913 return 1; 3914 } 3915 *pdata = data; 3916 return 0; 3917 } 3918 3919 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3920 { 3921 switch (msr_info->index) { 3922 case MSR_IA32_PLATFORM_ID: 3923 case MSR_IA32_EBL_CR_POWERON: 3924 case MSR_IA32_LASTBRANCHFROMIP: 3925 case MSR_IA32_LASTBRANCHTOIP: 3926 case MSR_IA32_LASTINTFROMIP: 3927 case MSR_IA32_LASTINTTOIP: 3928 case MSR_AMD64_SYSCFG: 3929 case MSR_K8_TSEG_ADDR: 3930 case MSR_K8_TSEG_MASK: 3931 case MSR_VM_HSAVE_PA: 3932 case MSR_K8_INT_PENDING_MSG: 3933 case MSR_AMD64_NB_CFG: 3934 case MSR_FAM10H_MMIO_CONF_BASE: 3935 case MSR_AMD64_BU_CFG2: 3936 case MSR_IA32_PERF_CTL: 3937 case MSR_AMD64_DC_CFG: 3938 case MSR_F15H_EX_CFG: 3939 /* 3940 * Intel Sandy Bridge CPUs must support the RAPL (running average power 3941 * limit) MSRs. Just return 0, as we do not want to expose the host 3942 * data here. Do not conditionalize this on CPUID, as KVM does not do 3943 * so for existing CPU-specific MSRs. 3944 */ 3945 case MSR_RAPL_POWER_UNIT: 3946 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 3947 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 3948 case MSR_PKG_ENERGY_STATUS: /* Total package */ 3949 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 3950 msr_info->data = 0; 3951 break; 3952 case MSR_IA32_PEBS_ENABLE: 3953 case MSR_IA32_DS_AREA: 3954 case MSR_PEBS_DATA_CFG: 3955 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3956 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3957 return kvm_pmu_get_msr(vcpu, msr_info); 3958 /* 3959 * Userspace is allowed to read MSRs that KVM reports as 3960 * to-be-saved, even if an MSR isn't fully supported. 3961 */ 3962 if (!msr_info->host_initiated) 3963 return 1; 3964 msr_info->data = 0; 3965 break; 3966 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3967 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3968 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3969 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3970 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3971 return kvm_pmu_get_msr(vcpu, msr_info); 3972 msr_info->data = 0; 3973 break; 3974 case MSR_IA32_UCODE_REV: 3975 msr_info->data = vcpu->arch.microcode_version; 3976 break; 3977 case MSR_IA32_ARCH_CAPABILITIES: 3978 if (!msr_info->host_initiated && 3979 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 3980 return 1; 3981 msr_info->data = vcpu->arch.arch_capabilities; 3982 break; 3983 case MSR_IA32_PERF_CAPABILITIES: 3984 if (!msr_info->host_initiated && 3985 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 3986 return 1; 3987 msr_info->data = vcpu->arch.perf_capabilities; 3988 break; 3989 case MSR_IA32_POWER_CTL: 3990 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 3991 break; 3992 case MSR_IA32_TSC: { 3993 /* 3994 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 3995 * even when not intercepted. AMD manual doesn't explicitly 3996 * state this but appears to behave the same. 3997 * 3998 * On userspace reads and writes, however, we unconditionally 3999 * return L1's TSC value to ensure backwards-compatible 4000 * behavior for migration. 4001 */ 4002 u64 offset, ratio; 4003 4004 if (msr_info->host_initiated) { 4005 offset = vcpu->arch.l1_tsc_offset; 4006 ratio = vcpu->arch.l1_tsc_scaling_ratio; 4007 } else { 4008 offset = vcpu->arch.tsc_offset; 4009 ratio = vcpu->arch.tsc_scaling_ratio; 4010 } 4011 4012 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4013 break; 4014 } 4015 case MSR_MTRRcap: 4016 case 0x200 ... MSR_IA32_MC0_CTL2 - 1: 4017 case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff: 4018 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4019 case 0xcd: /* fsb frequency */ 4020 msr_info->data = 3; 4021 break; 4022 /* 4023 * MSR_EBC_FREQUENCY_ID 4024 * Conservative value valid for even the basic CPU models. 4025 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4026 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4027 * and 266MHz for model 3, or 4. Set Core Clock 4028 * Frequency to System Bus Frequency Ratio to 1 (bits 4029 * 31:24) even though these are only valid for CPU 4030 * models > 2, however guests may end up dividing or 4031 * multiplying by zero otherwise. 4032 */ 4033 case MSR_EBC_FREQUENCY_ID: 4034 msr_info->data = 1 << 24; 4035 break; 4036 case MSR_IA32_APICBASE: 4037 msr_info->data = kvm_get_apic_base(vcpu); 4038 break; 4039 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4040 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4041 case MSR_IA32_TSC_DEADLINE: 4042 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4043 break; 4044 case MSR_IA32_TSC_ADJUST: 4045 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4046 break; 4047 case MSR_IA32_MISC_ENABLE: 4048 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4049 break; 4050 case MSR_IA32_SMBASE: 4051 if (!msr_info->host_initiated) 4052 return 1; 4053 msr_info->data = vcpu->arch.smbase; 4054 break; 4055 case MSR_SMI_COUNT: 4056 msr_info->data = vcpu->arch.smi_count; 4057 break; 4058 case MSR_IA32_PERF_STATUS: 4059 /* TSC increment by tick */ 4060 msr_info->data = 1000ULL; 4061 /* CPU multiplier */ 4062 msr_info->data |= (((uint64_t)4ULL) << 40); 4063 break; 4064 case MSR_EFER: 4065 msr_info->data = vcpu->arch.efer; 4066 break; 4067 case MSR_KVM_WALL_CLOCK: 4068 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4069 return 1; 4070 4071 msr_info->data = vcpu->kvm->arch.wall_clock; 4072 break; 4073 case MSR_KVM_WALL_CLOCK_NEW: 4074 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4075 return 1; 4076 4077 msr_info->data = vcpu->kvm->arch.wall_clock; 4078 break; 4079 case MSR_KVM_SYSTEM_TIME: 4080 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4081 return 1; 4082 4083 msr_info->data = vcpu->arch.time; 4084 break; 4085 case MSR_KVM_SYSTEM_TIME_NEW: 4086 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4087 return 1; 4088 4089 msr_info->data = vcpu->arch.time; 4090 break; 4091 case MSR_KVM_ASYNC_PF_EN: 4092 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4093 return 1; 4094 4095 msr_info->data = vcpu->arch.apf.msr_en_val; 4096 break; 4097 case MSR_KVM_ASYNC_PF_INT: 4098 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4099 return 1; 4100 4101 msr_info->data = vcpu->arch.apf.msr_int_val; 4102 break; 4103 case MSR_KVM_ASYNC_PF_ACK: 4104 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4105 return 1; 4106 4107 msr_info->data = 0; 4108 break; 4109 case MSR_KVM_STEAL_TIME: 4110 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4111 return 1; 4112 4113 msr_info->data = vcpu->arch.st.msr_val; 4114 break; 4115 case MSR_KVM_PV_EOI_EN: 4116 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4117 return 1; 4118 4119 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4120 break; 4121 case MSR_KVM_POLL_CONTROL: 4122 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4123 return 1; 4124 4125 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4126 break; 4127 case MSR_IA32_P5_MC_ADDR: 4128 case MSR_IA32_P5_MC_TYPE: 4129 case MSR_IA32_MCG_CAP: 4130 case MSR_IA32_MCG_CTL: 4131 case MSR_IA32_MCG_STATUS: 4132 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4133 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4134 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4135 msr_info->host_initiated); 4136 case MSR_IA32_XSS: 4137 if (!msr_info->host_initiated && 4138 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4139 return 1; 4140 msr_info->data = vcpu->arch.ia32_xss; 4141 break; 4142 case MSR_K7_CLK_CTL: 4143 /* 4144 * Provide expected ramp-up count for K7. All other 4145 * are set to zero, indicating minimum divisors for 4146 * every field. 4147 * 4148 * This prevents guest kernels on AMD host with CPU 4149 * type 6, model 8 and higher from exploding due to 4150 * the rdmsr failing. 4151 */ 4152 msr_info->data = 0x20000000; 4153 break; 4154 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4155 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4156 case HV_X64_MSR_SYNDBG_OPTIONS: 4157 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4158 case HV_X64_MSR_CRASH_CTL: 4159 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4160 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4161 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4162 case HV_X64_MSR_TSC_EMULATION_STATUS: 4163 return kvm_hv_get_msr_common(vcpu, 4164 msr_info->index, &msr_info->data, 4165 msr_info->host_initiated); 4166 case MSR_IA32_BBL_CR_CTL3: 4167 /* This legacy MSR exists but isn't fully documented in current 4168 * silicon. It is however accessed by winxp in very narrow 4169 * scenarios where it sets bit #19, itself documented as 4170 * a "reserved" bit. Best effort attempt to source coherent 4171 * read data here should the balance of the register be 4172 * interpreted by the guest: 4173 * 4174 * L2 cache control register 3: 64GB range, 256KB size, 4175 * enabled, latency 0x1, configured 4176 */ 4177 msr_info->data = 0xbe702111; 4178 break; 4179 case MSR_AMD64_OSVW_ID_LENGTH: 4180 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4181 return 1; 4182 msr_info->data = vcpu->arch.osvw.length; 4183 break; 4184 case MSR_AMD64_OSVW_STATUS: 4185 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4186 return 1; 4187 msr_info->data = vcpu->arch.osvw.status; 4188 break; 4189 case MSR_PLATFORM_INFO: 4190 if (!msr_info->host_initiated && 4191 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4192 return 1; 4193 msr_info->data = vcpu->arch.msr_platform_info; 4194 break; 4195 case MSR_MISC_FEATURES_ENABLES: 4196 msr_info->data = vcpu->arch.msr_misc_features_enables; 4197 break; 4198 case MSR_K7_HWCR: 4199 msr_info->data = vcpu->arch.msr_hwcr; 4200 break; 4201 #ifdef CONFIG_X86_64 4202 case MSR_IA32_XFD: 4203 if (!msr_info->host_initiated && 4204 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4205 return 1; 4206 4207 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4208 break; 4209 case MSR_IA32_XFD_ERR: 4210 if (!msr_info->host_initiated && 4211 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4212 return 1; 4213 4214 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4215 break; 4216 #endif 4217 default: 4218 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4219 return kvm_pmu_get_msr(vcpu, msr_info); 4220 return KVM_MSR_RET_INVALID; 4221 } 4222 return 0; 4223 } 4224 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4225 4226 /* 4227 * Read or write a bunch of msrs. All parameters are kernel addresses. 4228 * 4229 * @return number of msrs set successfully. 4230 */ 4231 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4232 struct kvm_msr_entry *entries, 4233 int (*do_msr)(struct kvm_vcpu *vcpu, 4234 unsigned index, u64 *data)) 4235 { 4236 int i; 4237 4238 for (i = 0; i < msrs->nmsrs; ++i) 4239 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4240 break; 4241 4242 return i; 4243 } 4244 4245 /* 4246 * Read or write a bunch of msrs. Parameters are user addresses. 4247 * 4248 * @return number of msrs set successfully. 4249 */ 4250 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4251 int (*do_msr)(struct kvm_vcpu *vcpu, 4252 unsigned index, u64 *data), 4253 int writeback) 4254 { 4255 struct kvm_msrs msrs; 4256 struct kvm_msr_entry *entries; 4257 int r, n; 4258 unsigned size; 4259 4260 r = -EFAULT; 4261 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4262 goto out; 4263 4264 r = -E2BIG; 4265 if (msrs.nmsrs >= MAX_IO_MSRS) 4266 goto out; 4267 4268 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4269 entries = memdup_user(user_msrs->entries, size); 4270 if (IS_ERR(entries)) { 4271 r = PTR_ERR(entries); 4272 goto out; 4273 } 4274 4275 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 4276 if (r < 0) 4277 goto out_free; 4278 4279 r = -EFAULT; 4280 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4281 goto out_free; 4282 4283 r = n; 4284 4285 out_free: 4286 kfree(entries); 4287 out: 4288 return r; 4289 } 4290 4291 static inline bool kvm_can_mwait_in_guest(void) 4292 { 4293 return boot_cpu_has(X86_FEATURE_MWAIT) && 4294 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4295 boot_cpu_has(X86_FEATURE_ARAT); 4296 } 4297 4298 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4299 struct kvm_cpuid2 __user *cpuid_arg) 4300 { 4301 struct kvm_cpuid2 cpuid; 4302 int r; 4303 4304 r = -EFAULT; 4305 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4306 return r; 4307 4308 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4309 if (r) 4310 return r; 4311 4312 r = -EFAULT; 4313 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4314 return r; 4315 4316 return 0; 4317 } 4318 4319 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4320 { 4321 int r = 0; 4322 4323 switch (ext) { 4324 case KVM_CAP_IRQCHIP: 4325 case KVM_CAP_HLT: 4326 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4327 case KVM_CAP_SET_TSS_ADDR: 4328 case KVM_CAP_EXT_CPUID: 4329 case KVM_CAP_EXT_EMUL_CPUID: 4330 case KVM_CAP_CLOCKSOURCE: 4331 case KVM_CAP_PIT: 4332 case KVM_CAP_NOP_IO_DELAY: 4333 case KVM_CAP_MP_STATE: 4334 case KVM_CAP_SYNC_MMU: 4335 case KVM_CAP_USER_NMI: 4336 case KVM_CAP_REINJECT_CONTROL: 4337 case KVM_CAP_IRQ_INJECT_STATUS: 4338 case KVM_CAP_IOEVENTFD: 4339 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4340 case KVM_CAP_PIT2: 4341 case KVM_CAP_PIT_STATE2: 4342 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4343 case KVM_CAP_VCPU_EVENTS: 4344 case KVM_CAP_HYPERV: 4345 case KVM_CAP_HYPERV_VAPIC: 4346 case KVM_CAP_HYPERV_SPIN: 4347 case KVM_CAP_HYPERV_SYNIC: 4348 case KVM_CAP_HYPERV_SYNIC2: 4349 case KVM_CAP_HYPERV_VP_INDEX: 4350 case KVM_CAP_HYPERV_EVENTFD: 4351 case KVM_CAP_HYPERV_TLBFLUSH: 4352 case KVM_CAP_HYPERV_SEND_IPI: 4353 case KVM_CAP_HYPERV_CPUID: 4354 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4355 case KVM_CAP_SYS_HYPERV_CPUID: 4356 case KVM_CAP_PCI_SEGMENT: 4357 case KVM_CAP_DEBUGREGS: 4358 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4359 case KVM_CAP_XSAVE: 4360 case KVM_CAP_ASYNC_PF: 4361 case KVM_CAP_ASYNC_PF_INT: 4362 case KVM_CAP_GET_TSC_KHZ: 4363 case KVM_CAP_KVMCLOCK_CTRL: 4364 case KVM_CAP_READONLY_MEM: 4365 case KVM_CAP_HYPERV_TIME: 4366 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4367 case KVM_CAP_TSC_DEADLINE_TIMER: 4368 case KVM_CAP_DISABLE_QUIRKS: 4369 case KVM_CAP_SET_BOOT_CPU_ID: 4370 case KVM_CAP_SPLIT_IRQCHIP: 4371 case KVM_CAP_IMMEDIATE_EXIT: 4372 case KVM_CAP_PMU_EVENT_FILTER: 4373 case KVM_CAP_GET_MSR_FEATURES: 4374 case KVM_CAP_MSR_PLATFORM_INFO: 4375 case KVM_CAP_EXCEPTION_PAYLOAD: 4376 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4377 case KVM_CAP_SET_GUEST_DEBUG: 4378 case KVM_CAP_LAST_CPU: 4379 case KVM_CAP_X86_USER_SPACE_MSR: 4380 case KVM_CAP_X86_MSR_FILTER: 4381 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4382 #ifdef CONFIG_X86_SGX_KVM 4383 case KVM_CAP_SGX_ATTRIBUTE: 4384 #endif 4385 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4386 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4387 case KVM_CAP_SREGS2: 4388 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4389 case KVM_CAP_VCPU_ATTRIBUTES: 4390 case KVM_CAP_SYS_ATTRIBUTES: 4391 case KVM_CAP_VAPIC: 4392 case KVM_CAP_ENABLE_CAP: 4393 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4394 r = 1; 4395 break; 4396 case KVM_CAP_EXIT_HYPERCALL: 4397 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4398 break; 4399 case KVM_CAP_SET_GUEST_DEBUG2: 4400 return KVM_GUESTDBG_VALID_MASK; 4401 #ifdef CONFIG_KVM_XEN 4402 case KVM_CAP_XEN_HVM: 4403 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4404 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4405 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4406 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4407 KVM_XEN_HVM_CONFIG_EVTCHN_SEND; 4408 if (sched_info_on()) 4409 r |= KVM_XEN_HVM_CONFIG_RUNSTATE; 4410 break; 4411 #endif 4412 case KVM_CAP_SYNC_REGS: 4413 r = KVM_SYNC_X86_VALID_FIELDS; 4414 break; 4415 case KVM_CAP_ADJUST_CLOCK: 4416 r = KVM_CLOCK_VALID_FLAGS; 4417 break; 4418 case KVM_CAP_X86_DISABLE_EXITS: 4419 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE | 4420 KVM_X86_DISABLE_EXITS_CSTATE; 4421 if(kvm_can_mwait_in_guest()) 4422 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4423 break; 4424 case KVM_CAP_X86_SMM: 4425 /* SMBASE is usually relocated above 1M on modern chipsets, 4426 * and SMM handlers might indeed rely on 4G segment limits, 4427 * so do not report SMM to be available if real mode is 4428 * emulated via vm86 mode. Still, do not go to great lengths 4429 * to avoid userspace's usage of the feature, because it is a 4430 * fringe case that is not enabled except via specific settings 4431 * of the module parameters. 4432 */ 4433 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4434 break; 4435 case KVM_CAP_NR_VCPUS: 4436 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4437 break; 4438 case KVM_CAP_MAX_VCPUS: 4439 r = KVM_MAX_VCPUS; 4440 break; 4441 case KVM_CAP_MAX_VCPU_ID: 4442 r = KVM_MAX_VCPU_IDS; 4443 break; 4444 case KVM_CAP_PV_MMU: /* obsolete */ 4445 r = 0; 4446 break; 4447 case KVM_CAP_MCE: 4448 r = KVM_MAX_MCE_BANKS; 4449 break; 4450 case KVM_CAP_XCRS: 4451 r = boot_cpu_has(X86_FEATURE_XSAVE); 4452 break; 4453 case KVM_CAP_TSC_CONTROL: 4454 case KVM_CAP_VM_TSC_CONTROL: 4455 r = kvm_caps.has_tsc_control; 4456 break; 4457 case KVM_CAP_X2APIC_API: 4458 r = KVM_X2APIC_API_VALID_FLAGS; 4459 break; 4460 case KVM_CAP_NESTED_STATE: 4461 r = kvm_x86_ops.nested_ops->get_state ? 4462 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4463 break; 4464 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4465 r = kvm_x86_ops.enable_direct_tlbflush != NULL; 4466 break; 4467 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4468 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4469 break; 4470 case KVM_CAP_SMALLER_MAXPHYADDR: 4471 r = (int) allow_smaller_maxphyaddr; 4472 break; 4473 case KVM_CAP_STEAL_TIME: 4474 r = sched_info_on(); 4475 break; 4476 case KVM_CAP_X86_BUS_LOCK_EXIT: 4477 if (kvm_caps.has_bus_lock_exit) 4478 r = KVM_BUS_LOCK_DETECTION_OFF | 4479 KVM_BUS_LOCK_DETECTION_EXIT; 4480 else 4481 r = 0; 4482 break; 4483 case KVM_CAP_XSAVE2: { 4484 u64 guest_perm = xstate_get_guest_group_perm(); 4485 4486 r = xstate_required_size(kvm_caps.supported_xcr0 & guest_perm, false); 4487 if (r < sizeof(struct kvm_xsave)) 4488 r = sizeof(struct kvm_xsave); 4489 break; 4490 } 4491 case KVM_CAP_PMU_CAPABILITY: 4492 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4493 break; 4494 case KVM_CAP_DISABLE_QUIRKS2: 4495 r = KVM_X86_VALID_QUIRKS; 4496 break; 4497 case KVM_CAP_X86_NOTIFY_VMEXIT: 4498 r = kvm_caps.has_notify_vmexit; 4499 break; 4500 default: 4501 break; 4502 } 4503 return r; 4504 } 4505 4506 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr) 4507 { 4508 void __user *uaddr = (void __user*)(unsigned long)attr->addr; 4509 4510 if ((u64)(unsigned long)uaddr != attr->addr) 4511 return ERR_PTR_USR(-EFAULT); 4512 return uaddr; 4513 } 4514 4515 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4516 { 4517 u64 __user *uaddr = kvm_get_attr_addr(attr); 4518 4519 if (attr->group) 4520 return -ENXIO; 4521 4522 if (IS_ERR(uaddr)) 4523 return PTR_ERR(uaddr); 4524 4525 switch (attr->attr) { 4526 case KVM_X86_XCOMP_GUEST_SUPP: 4527 if (put_user(kvm_caps.supported_xcr0, uaddr)) 4528 return -EFAULT; 4529 return 0; 4530 default: 4531 return -ENXIO; 4532 break; 4533 } 4534 } 4535 4536 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4537 { 4538 if (attr->group) 4539 return -ENXIO; 4540 4541 switch (attr->attr) { 4542 case KVM_X86_XCOMP_GUEST_SUPP: 4543 return 0; 4544 default: 4545 return -ENXIO; 4546 } 4547 } 4548 4549 long kvm_arch_dev_ioctl(struct file *filp, 4550 unsigned int ioctl, unsigned long arg) 4551 { 4552 void __user *argp = (void __user *)arg; 4553 long r; 4554 4555 switch (ioctl) { 4556 case KVM_GET_MSR_INDEX_LIST: { 4557 struct kvm_msr_list __user *user_msr_list = argp; 4558 struct kvm_msr_list msr_list; 4559 unsigned n; 4560 4561 r = -EFAULT; 4562 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4563 goto out; 4564 n = msr_list.nmsrs; 4565 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4566 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4567 goto out; 4568 r = -E2BIG; 4569 if (n < msr_list.nmsrs) 4570 goto out; 4571 r = -EFAULT; 4572 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4573 num_msrs_to_save * sizeof(u32))) 4574 goto out; 4575 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4576 &emulated_msrs, 4577 num_emulated_msrs * sizeof(u32))) 4578 goto out; 4579 r = 0; 4580 break; 4581 } 4582 case KVM_GET_SUPPORTED_CPUID: 4583 case KVM_GET_EMULATED_CPUID: { 4584 struct kvm_cpuid2 __user *cpuid_arg = argp; 4585 struct kvm_cpuid2 cpuid; 4586 4587 r = -EFAULT; 4588 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4589 goto out; 4590 4591 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4592 ioctl); 4593 if (r) 4594 goto out; 4595 4596 r = -EFAULT; 4597 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4598 goto out; 4599 r = 0; 4600 break; 4601 } 4602 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4603 r = -EFAULT; 4604 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 4605 sizeof(kvm_caps.supported_mce_cap))) 4606 goto out; 4607 r = 0; 4608 break; 4609 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4610 struct kvm_msr_list __user *user_msr_list = argp; 4611 struct kvm_msr_list msr_list; 4612 unsigned int n; 4613 4614 r = -EFAULT; 4615 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4616 goto out; 4617 n = msr_list.nmsrs; 4618 msr_list.nmsrs = num_msr_based_features; 4619 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4620 goto out; 4621 r = -E2BIG; 4622 if (n < msr_list.nmsrs) 4623 goto out; 4624 r = -EFAULT; 4625 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4626 num_msr_based_features * sizeof(u32))) 4627 goto out; 4628 r = 0; 4629 break; 4630 } 4631 case KVM_GET_MSRS: 4632 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4633 break; 4634 case KVM_GET_SUPPORTED_HV_CPUID: 4635 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4636 break; 4637 case KVM_GET_DEVICE_ATTR: { 4638 struct kvm_device_attr attr; 4639 r = -EFAULT; 4640 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4641 break; 4642 r = kvm_x86_dev_get_attr(&attr); 4643 break; 4644 } 4645 case KVM_HAS_DEVICE_ATTR: { 4646 struct kvm_device_attr attr; 4647 r = -EFAULT; 4648 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4649 break; 4650 r = kvm_x86_dev_has_attr(&attr); 4651 break; 4652 } 4653 default: 4654 r = -EINVAL; 4655 break; 4656 } 4657 out: 4658 return r; 4659 } 4660 4661 static void wbinvd_ipi(void *garbage) 4662 { 4663 wbinvd(); 4664 } 4665 4666 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4667 { 4668 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4669 } 4670 4671 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4672 { 4673 /* Address WBINVD may be executed by guest */ 4674 if (need_emulate_wbinvd(vcpu)) { 4675 if (static_call(kvm_x86_has_wbinvd_exit)()) 4676 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4677 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4678 smp_call_function_single(vcpu->cpu, 4679 wbinvd_ipi, NULL, 1); 4680 } 4681 4682 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 4683 4684 /* Save host pkru register if supported */ 4685 vcpu->arch.host_pkru = read_pkru(); 4686 4687 /* Apply any externally detected TSC adjustments (due to suspend) */ 4688 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 4689 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 4690 vcpu->arch.tsc_offset_adjustment = 0; 4691 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4692 } 4693 4694 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 4695 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 4696 rdtsc() - vcpu->arch.last_host_tsc; 4697 if (tsc_delta < 0) 4698 mark_tsc_unstable("KVM discovered backwards TSC"); 4699 4700 if (kvm_check_tsc_unstable()) { 4701 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 4702 vcpu->arch.last_guest_tsc); 4703 kvm_vcpu_write_tsc_offset(vcpu, offset); 4704 vcpu->arch.tsc_catchup = 1; 4705 } 4706 4707 if (kvm_lapic_hv_timer_in_use(vcpu)) 4708 kvm_lapic_restart_hv_timer(vcpu); 4709 4710 /* 4711 * On a host with synchronized TSC, there is no need to update 4712 * kvmclock on vcpu->cpu migration 4713 */ 4714 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 4715 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 4716 if (vcpu->cpu != cpu) 4717 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 4718 vcpu->cpu = cpu; 4719 } 4720 4721 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4722 } 4723 4724 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 4725 { 4726 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 4727 struct kvm_steal_time __user *st; 4728 struct kvm_memslots *slots; 4729 static const u8 preempted = KVM_VCPU_PREEMPTED; 4730 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 4731 4732 /* 4733 * The vCPU can be marked preempted if and only if the VM-Exit was on 4734 * an instruction boundary and will not trigger guest emulation of any 4735 * kind (see vcpu_run). Vendor specific code controls (conservatively) 4736 * when this is true, for example allowing the vCPU to be marked 4737 * preempted if and only if the VM-Exit was due to a host interrupt. 4738 */ 4739 if (!vcpu->arch.at_instruction_boundary) { 4740 vcpu->stat.preemption_other++; 4741 return; 4742 } 4743 4744 vcpu->stat.preemption_reported++; 4745 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 4746 return; 4747 4748 if (vcpu->arch.st.preempted) 4749 return; 4750 4751 /* This happens on process exit */ 4752 if (unlikely(current->mm != vcpu->kvm->mm)) 4753 return; 4754 4755 slots = kvm_memslots(vcpu->kvm); 4756 4757 if (unlikely(slots->generation != ghc->generation || 4758 gpa != ghc->gpa || 4759 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 4760 return; 4761 4762 st = (struct kvm_steal_time __user *)ghc->hva; 4763 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 4764 4765 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 4766 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 4767 4768 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 4769 } 4770 4771 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 4772 { 4773 int idx; 4774 4775 if (vcpu->preempted) { 4776 if (!vcpu->arch.guest_state_protected) 4777 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); 4778 4779 /* 4780 * Take the srcu lock as memslots will be accessed to check the gfn 4781 * cache generation against the memslots generation. 4782 */ 4783 idx = srcu_read_lock(&vcpu->kvm->srcu); 4784 if (kvm_xen_msr_enabled(vcpu->kvm)) 4785 kvm_xen_runstate_set_preempted(vcpu); 4786 else 4787 kvm_steal_time_set_preempted(vcpu); 4788 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4789 } 4790 4791 static_call(kvm_x86_vcpu_put)(vcpu); 4792 vcpu->arch.last_host_tsc = rdtsc(); 4793 } 4794 4795 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 4796 struct kvm_lapic_state *s) 4797 { 4798 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 4799 4800 return kvm_apic_get_state(vcpu, s); 4801 } 4802 4803 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 4804 struct kvm_lapic_state *s) 4805 { 4806 int r; 4807 4808 r = kvm_apic_set_state(vcpu, s); 4809 if (r) 4810 return r; 4811 update_cr8_intercept(vcpu); 4812 4813 return 0; 4814 } 4815 4816 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 4817 { 4818 /* 4819 * We can accept userspace's request for interrupt injection 4820 * as long as we have a place to store the interrupt number. 4821 * The actual injection will happen when the CPU is able to 4822 * deliver the interrupt. 4823 */ 4824 if (kvm_cpu_has_extint(vcpu)) 4825 return false; 4826 4827 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 4828 return (!lapic_in_kernel(vcpu) || 4829 kvm_apic_accept_pic_intr(vcpu)); 4830 } 4831 4832 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 4833 { 4834 /* 4835 * Do not cause an interrupt window exit if an exception 4836 * is pending or an event needs reinjection; userspace 4837 * might want to inject the interrupt manually using KVM_SET_REGS 4838 * or KVM_SET_SREGS. For that to work, we must be at an 4839 * instruction boundary and with no events half-injected. 4840 */ 4841 return (kvm_arch_interrupt_allowed(vcpu) && 4842 kvm_cpu_accept_dm_intr(vcpu) && 4843 !kvm_event_needs_reinjection(vcpu) && 4844 !vcpu->arch.exception.pending); 4845 } 4846 4847 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 4848 struct kvm_interrupt *irq) 4849 { 4850 if (irq->irq >= KVM_NR_INTERRUPTS) 4851 return -EINVAL; 4852 4853 if (!irqchip_in_kernel(vcpu->kvm)) { 4854 kvm_queue_interrupt(vcpu, irq->irq, false); 4855 kvm_make_request(KVM_REQ_EVENT, vcpu); 4856 return 0; 4857 } 4858 4859 /* 4860 * With in-kernel LAPIC, we only use this to inject EXTINT, so 4861 * fail for in-kernel 8259. 4862 */ 4863 if (pic_in_kernel(vcpu->kvm)) 4864 return -ENXIO; 4865 4866 if (vcpu->arch.pending_external_vector != -1) 4867 return -EEXIST; 4868 4869 vcpu->arch.pending_external_vector = irq->irq; 4870 kvm_make_request(KVM_REQ_EVENT, vcpu); 4871 return 0; 4872 } 4873 4874 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 4875 { 4876 kvm_inject_nmi(vcpu); 4877 4878 return 0; 4879 } 4880 4881 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu) 4882 { 4883 kvm_make_request(KVM_REQ_SMI, vcpu); 4884 4885 return 0; 4886 } 4887 4888 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 4889 struct kvm_tpr_access_ctl *tac) 4890 { 4891 if (tac->flags) 4892 return -EINVAL; 4893 vcpu->arch.tpr_access_reporting = !!tac->enabled; 4894 return 0; 4895 } 4896 4897 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 4898 u64 mcg_cap) 4899 { 4900 int r; 4901 unsigned bank_num = mcg_cap & 0xff, bank; 4902 4903 r = -EINVAL; 4904 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 4905 goto out; 4906 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 4907 goto out; 4908 r = 0; 4909 vcpu->arch.mcg_cap = mcg_cap; 4910 /* Init IA32_MCG_CTL to all 1s */ 4911 if (mcg_cap & MCG_CTL_P) 4912 vcpu->arch.mcg_ctl = ~(u64)0; 4913 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 4914 for (bank = 0; bank < bank_num; bank++) { 4915 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 4916 if (mcg_cap & MCG_CMCI_P) 4917 vcpu->arch.mci_ctl2_banks[bank] = 0; 4918 } 4919 4920 kvm_apic_after_set_mcg_cap(vcpu); 4921 4922 static_call(kvm_x86_setup_mce)(vcpu); 4923 out: 4924 return r; 4925 } 4926 4927 /* 4928 * Validate this is an UCNA (uncorrectable no action) error by checking the 4929 * MCG_STATUS and MCi_STATUS registers: 4930 * - none of the bits for Machine Check Exceptions are set 4931 * - both the VAL (valid) and UC (uncorrectable) bits are set 4932 * MCI_STATUS_PCC - Processor Context Corrupted 4933 * MCI_STATUS_S - Signaled as a Machine Check Exception 4934 * MCI_STATUS_AR - Software recoverable Action Required 4935 */ 4936 static bool is_ucna(struct kvm_x86_mce *mce) 4937 { 4938 return !mce->mcg_status && 4939 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 4940 (mce->status & MCI_STATUS_VAL) && 4941 (mce->status & MCI_STATUS_UC); 4942 } 4943 4944 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 4945 { 4946 u64 mcg_cap = vcpu->arch.mcg_cap; 4947 4948 banks[1] = mce->status; 4949 banks[2] = mce->addr; 4950 banks[3] = mce->misc; 4951 vcpu->arch.mcg_status = mce->mcg_status; 4952 4953 if (!(mcg_cap & MCG_CMCI_P) || 4954 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 4955 return 0; 4956 4957 if (lapic_in_kernel(vcpu)) 4958 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 4959 4960 return 0; 4961 } 4962 4963 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 4964 struct kvm_x86_mce *mce) 4965 { 4966 u64 mcg_cap = vcpu->arch.mcg_cap; 4967 unsigned bank_num = mcg_cap & 0xff; 4968 u64 *banks = vcpu->arch.mce_banks; 4969 4970 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 4971 return -EINVAL; 4972 4973 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 4974 4975 if (is_ucna(mce)) 4976 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 4977 4978 /* 4979 * if IA32_MCG_CTL is not all 1s, the uncorrected error 4980 * reporting is disabled 4981 */ 4982 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 4983 vcpu->arch.mcg_ctl != ~(u64)0) 4984 return 0; 4985 /* 4986 * if IA32_MCi_CTL is not all 1s, the uncorrected error 4987 * reporting is disabled for the bank 4988 */ 4989 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 4990 return 0; 4991 if (mce->status & MCI_STATUS_UC) { 4992 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 4993 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 4994 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4995 return 0; 4996 } 4997 if (banks[1] & MCI_STATUS_VAL) 4998 mce->status |= MCI_STATUS_OVER; 4999 banks[2] = mce->addr; 5000 banks[3] = mce->misc; 5001 vcpu->arch.mcg_status = mce->mcg_status; 5002 banks[1] = mce->status; 5003 kvm_queue_exception(vcpu, MC_VECTOR); 5004 } else if (!(banks[1] & MCI_STATUS_VAL) 5005 || !(banks[1] & MCI_STATUS_UC)) { 5006 if (banks[1] & MCI_STATUS_VAL) 5007 mce->status |= MCI_STATUS_OVER; 5008 banks[2] = mce->addr; 5009 banks[3] = mce->misc; 5010 banks[1] = mce->status; 5011 } else 5012 banks[1] |= MCI_STATUS_OVER; 5013 return 0; 5014 } 5015 5016 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5017 struct kvm_vcpu_events *events) 5018 { 5019 process_nmi(vcpu); 5020 5021 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5022 process_smi(vcpu); 5023 5024 /* 5025 * In guest mode, payload delivery should be deferred, 5026 * so that the L1 hypervisor can intercept #PF before 5027 * CR2 is modified (or intercept #DB before DR6 is 5028 * modified under nVMX). Unless the per-VM capability, 5029 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of 5030 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we 5031 * opportunistically defer the exception payload, deliver it if the 5032 * capability hasn't been requested before processing a 5033 * KVM_GET_VCPU_EVENTS. 5034 */ 5035 if (!vcpu->kvm->arch.exception_payload_enabled && 5036 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload) 5037 kvm_deliver_exception_payload(vcpu); 5038 5039 /* 5040 * The API doesn't provide the instruction length for software 5041 * exceptions, so don't report them. As long as the guest RIP 5042 * isn't advanced, we should expect to encounter the exception 5043 * again. 5044 */ 5045 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) { 5046 events->exception.injected = 0; 5047 events->exception.pending = 0; 5048 } else { 5049 events->exception.injected = vcpu->arch.exception.injected; 5050 events->exception.pending = vcpu->arch.exception.pending; 5051 /* 5052 * For ABI compatibility, deliberately conflate 5053 * pending and injected exceptions when 5054 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5055 */ 5056 if (!vcpu->kvm->arch.exception_payload_enabled) 5057 events->exception.injected |= 5058 vcpu->arch.exception.pending; 5059 } 5060 events->exception.nr = vcpu->arch.exception.nr; 5061 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 5062 events->exception.error_code = vcpu->arch.exception.error_code; 5063 events->exception_has_payload = vcpu->arch.exception.has_payload; 5064 events->exception_payload = vcpu->arch.exception.payload; 5065 5066 events->interrupt.injected = 5067 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5068 events->interrupt.nr = vcpu->arch.interrupt.nr; 5069 events->interrupt.soft = 0; 5070 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 5071 5072 events->nmi.injected = vcpu->arch.nmi_injected; 5073 events->nmi.pending = vcpu->arch.nmi_pending != 0; 5074 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 5075 events->nmi.pad = 0; 5076 5077 events->sipi_vector = 0; /* never valid when reporting to user space */ 5078 5079 events->smi.smm = is_smm(vcpu); 5080 events->smi.pending = vcpu->arch.smi_pending; 5081 events->smi.smm_inside_nmi = 5082 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5083 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5084 5085 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5086 | KVM_VCPUEVENT_VALID_SHADOW 5087 | KVM_VCPUEVENT_VALID_SMM); 5088 if (vcpu->kvm->arch.exception_payload_enabled) 5089 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5090 if (vcpu->kvm->arch.triple_fault_event) { 5091 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5092 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5093 } 5094 5095 memset(&events->reserved, 0, sizeof(events->reserved)); 5096 } 5097 5098 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm); 5099 5100 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5101 struct kvm_vcpu_events *events) 5102 { 5103 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5104 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5105 | KVM_VCPUEVENT_VALID_SHADOW 5106 | KVM_VCPUEVENT_VALID_SMM 5107 | KVM_VCPUEVENT_VALID_PAYLOAD 5108 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5109 return -EINVAL; 5110 5111 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5112 if (!vcpu->kvm->arch.exception_payload_enabled) 5113 return -EINVAL; 5114 if (events->exception.pending) 5115 events->exception.injected = 0; 5116 else 5117 events->exception_has_payload = 0; 5118 } else { 5119 events->exception.pending = 0; 5120 events->exception_has_payload = 0; 5121 } 5122 5123 if ((events->exception.injected || events->exception.pending) && 5124 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5125 return -EINVAL; 5126 5127 /* INITs are latched while in SMM */ 5128 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 5129 (events->smi.smm || events->smi.pending) && 5130 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 5131 return -EINVAL; 5132 5133 process_nmi(vcpu); 5134 vcpu->arch.exception.injected = events->exception.injected; 5135 vcpu->arch.exception.pending = events->exception.pending; 5136 vcpu->arch.exception.nr = events->exception.nr; 5137 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5138 vcpu->arch.exception.error_code = events->exception.error_code; 5139 vcpu->arch.exception.has_payload = events->exception_has_payload; 5140 vcpu->arch.exception.payload = events->exception_payload; 5141 5142 vcpu->arch.interrupt.injected = events->interrupt.injected; 5143 vcpu->arch.interrupt.nr = events->interrupt.nr; 5144 vcpu->arch.interrupt.soft = events->interrupt.soft; 5145 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5146 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 5147 events->interrupt.shadow); 5148 5149 vcpu->arch.nmi_injected = events->nmi.injected; 5150 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 5151 vcpu->arch.nmi_pending = events->nmi.pending; 5152 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 5153 5154 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5155 lapic_in_kernel(vcpu)) 5156 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5157 5158 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5159 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5160 kvm_x86_ops.nested_ops->leave_nested(vcpu); 5161 kvm_smm_changed(vcpu, events->smi.smm); 5162 } 5163 5164 vcpu->arch.smi_pending = events->smi.pending; 5165 5166 if (events->smi.smm) { 5167 if (events->smi.smm_inside_nmi) 5168 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5169 else 5170 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5171 } 5172 5173 if (lapic_in_kernel(vcpu)) { 5174 if (events->smi.latched_init) 5175 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5176 else 5177 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5178 } 5179 } 5180 5181 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5182 if (!vcpu->kvm->arch.triple_fault_event) 5183 return -EINVAL; 5184 if (events->triple_fault.pending) 5185 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5186 else 5187 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5188 } 5189 5190 kvm_make_request(KVM_REQ_EVENT, vcpu); 5191 5192 return 0; 5193 } 5194 5195 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5196 struct kvm_debugregs *dbgregs) 5197 { 5198 unsigned long val; 5199 5200 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 5201 kvm_get_dr(vcpu, 6, &val); 5202 dbgregs->dr6 = val; 5203 dbgregs->dr7 = vcpu->arch.dr7; 5204 dbgregs->flags = 0; 5205 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 5206 } 5207 5208 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5209 struct kvm_debugregs *dbgregs) 5210 { 5211 if (dbgregs->flags) 5212 return -EINVAL; 5213 5214 if (!kvm_dr6_valid(dbgregs->dr6)) 5215 return -EINVAL; 5216 if (!kvm_dr7_valid(dbgregs->dr7)) 5217 return -EINVAL; 5218 5219 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 5220 kvm_update_dr0123(vcpu); 5221 vcpu->arch.dr6 = dbgregs->dr6; 5222 vcpu->arch.dr7 = dbgregs->dr7; 5223 kvm_update_dr7(vcpu); 5224 5225 return 0; 5226 } 5227 5228 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5229 struct kvm_xsave *guest_xsave) 5230 { 5231 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5232 return; 5233 5234 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5235 guest_xsave->region, 5236 sizeof(guest_xsave->region), 5237 vcpu->arch.pkru); 5238 } 5239 5240 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5241 u8 *state, unsigned int size) 5242 { 5243 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5244 return; 5245 5246 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5247 state, size, vcpu->arch.pkru); 5248 } 5249 5250 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5251 struct kvm_xsave *guest_xsave) 5252 { 5253 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5254 return 0; 5255 5256 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5257 guest_xsave->region, 5258 kvm_caps.supported_xcr0, 5259 &vcpu->arch.pkru); 5260 } 5261 5262 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5263 struct kvm_xcrs *guest_xcrs) 5264 { 5265 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5266 guest_xcrs->nr_xcrs = 0; 5267 return; 5268 } 5269 5270 guest_xcrs->nr_xcrs = 1; 5271 guest_xcrs->flags = 0; 5272 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5273 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5274 } 5275 5276 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5277 struct kvm_xcrs *guest_xcrs) 5278 { 5279 int i, r = 0; 5280 5281 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5282 return -EINVAL; 5283 5284 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5285 return -EINVAL; 5286 5287 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5288 /* Only support XCR0 currently */ 5289 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5290 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5291 guest_xcrs->xcrs[i].value); 5292 break; 5293 } 5294 if (r) 5295 r = -EINVAL; 5296 return r; 5297 } 5298 5299 /* 5300 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5301 * stopped by the hypervisor. This function will be called from the host only. 5302 * EINVAL is returned when the host attempts to set the flag for a guest that 5303 * does not support pv clocks. 5304 */ 5305 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5306 { 5307 if (!vcpu->arch.pv_time.active) 5308 return -EINVAL; 5309 vcpu->arch.pvclock_set_guest_stopped_request = true; 5310 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5311 return 0; 5312 } 5313 5314 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5315 struct kvm_device_attr *attr) 5316 { 5317 int r; 5318 5319 switch (attr->attr) { 5320 case KVM_VCPU_TSC_OFFSET: 5321 r = 0; 5322 break; 5323 default: 5324 r = -ENXIO; 5325 } 5326 5327 return r; 5328 } 5329 5330 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5331 struct kvm_device_attr *attr) 5332 { 5333 u64 __user *uaddr = kvm_get_attr_addr(attr); 5334 int r; 5335 5336 if (IS_ERR(uaddr)) 5337 return PTR_ERR(uaddr); 5338 5339 switch (attr->attr) { 5340 case KVM_VCPU_TSC_OFFSET: 5341 r = -EFAULT; 5342 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5343 break; 5344 r = 0; 5345 break; 5346 default: 5347 r = -ENXIO; 5348 } 5349 5350 return r; 5351 } 5352 5353 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5354 struct kvm_device_attr *attr) 5355 { 5356 u64 __user *uaddr = kvm_get_attr_addr(attr); 5357 struct kvm *kvm = vcpu->kvm; 5358 int r; 5359 5360 if (IS_ERR(uaddr)) 5361 return PTR_ERR(uaddr); 5362 5363 switch (attr->attr) { 5364 case KVM_VCPU_TSC_OFFSET: { 5365 u64 offset, tsc, ns; 5366 unsigned long flags; 5367 bool matched; 5368 5369 r = -EFAULT; 5370 if (get_user(offset, uaddr)) 5371 break; 5372 5373 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5374 5375 matched = (vcpu->arch.virtual_tsc_khz && 5376 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5377 kvm->arch.last_tsc_offset == offset); 5378 5379 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5380 ns = get_kvmclock_base_ns(); 5381 5382 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5383 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5384 5385 r = 0; 5386 break; 5387 } 5388 default: 5389 r = -ENXIO; 5390 } 5391 5392 return r; 5393 } 5394 5395 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5396 unsigned int ioctl, 5397 void __user *argp) 5398 { 5399 struct kvm_device_attr attr; 5400 int r; 5401 5402 if (copy_from_user(&attr, argp, sizeof(attr))) 5403 return -EFAULT; 5404 5405 if (attr.group != KVM_VCPU_TSC_CTRL) 5406 return -ENXIO; 5407 5408 switch (ioctl) { 5409 case KVM_HAS_DEVICE_ATTR: 5410 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5411 break; 5412 case KVM_GET_DEVICE_ATTR: 5413 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5414 break; 5415 case KVM_SET_DEVICE_ATTR: 5416 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5417 break; 5418 } 5419 5420 return r; 5421 } 5422 5423 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5424 struct kvm_enable_cap *cap) 5425 { 5426 int r; 5427 uint16_t vmcs_version; 5428 void __user *user_ptr; 5429 5430 if (cap->flags) 5431 return -EINVAL; 5432 5433 switch (cap->cap) { 5434 case KVM_CAP_HYPERV_SYNIC2: 5435 if (cap->args[0]) 5436 return -EINVAL; 5437 fallthrough; 5438 5439 case KVM_CAP_HYPERV_SYNIC: 5440 if (!irqchip_in_kernel(vcpu->kvm)) 5441 return -EINVAL; 5442 return kvm_hv_activate_synic(vcpu, cap->cap == 5443 KVM_CAP_HYPERV_SYNIC2); 5444 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5445 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5446 return -ENOTTY; 5447 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5448 if (!r) { 5449 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5450 if (copy_to_user(user_ptr, &vmcs_version, 5451 sizeof(vmcs_version))) 5452 r = -EFAULT; 5453 } 5454 return r; 5455 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5456 if (!kvm_x86_ops.enable_direct_tlbflush) 5457 return -ENOTTY; 5458 5459 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu); 5460 5461 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5462 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5463 5464 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5465 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5466 if (vcpu->arch.pv_cpuid.enforce) 5467 kvm_update_pv_runtime(vcpu); 5468 5469 return 0; 5470 default: 5471 return -EINVAL; 5472 } 5473 } 5474 5475 long kvm_arch_vcpu_ioctl(struct file *filp, 5476 unsigned int ioctl, unsigned long arg) 5477 { 5478 struct kvm_vcpu *vcpu = filp->private_data; 5479 void __user *argp = (void __user *)arg; 5480 int r; 5481 union { 5482 struct kvm_sregs2 *sregs2; 5483 struct kvm_lapic_state *lapic; 5484 struct kvm_xsave *xsave; 5485 struct kvm_xcrs *xcrs; 5486 void *buffer; 5487 } u; 5488 5489 vcpu_load(vcpu); 5490 5491 u.buffer = NULL; 5492 switch (ioctl) { 5493 case KVM_GET_LAPIC: { 5494 r = -EINVAL; 5495 if (!lapic_in_kernel(vcpu)) 5496 goto out; 5497 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 5498 GFP_KERNEL_ACCOUNT); 5499 5500 r = -ENOMEM; 5501 if (!u.lapic) 5502 goto out; 5503 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5504 if (r) 5505 goto out; 5506 r = -EFAULT; 5507 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5508 goto out; 5509 r = 0; 5510 break; 5511 } 5512 case KVM_SET_LAPIC: { 5513 r = -EINVAL; 5514 if (!lapic_in_kernel(vcpu)) 5515 goto out; 5516 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5517 if (IS_ERR(u.lapic)) { 5518 r = PTR_ERR(u.lapic); 5519 goto out_nofree; 5520 } 5521 5522 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5523 break; 5524 } 5525 case KVM_INTERRUPT: { 5526 struct kvm_interrupt irq; 5527 5528 r = -EFAULT; 5529 if (copy_from_user(&irq, argp, sizeof(irq))) 5530 goto out; 5531 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5532 break; 5533 } 5534 case KVM_NMI: { 5535 r = kvm_vcpu_ioctl_nmi(vcpu); 5536 break; 5537 } 5538 case KVM_SMI: { 5539 r = kvm_vcpu_ioctl_smi(vcpu); 5540 break; 5541 } 5542 case KVM_SET_CPUID: { 5543 struct kvm_cpuid __user *cpuid_arg = argp; 5544 struct kvm_cpuid cpuid; 5545 5546 r = -EFAULT; 5547 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5548 goto out; 5549 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5550 break; 5551 } 5552 case KVM_SET_CPUID2: { 5553 struct kvm_cpuid2 __user *cpuid_arg = argp; 5554 struct kvm_cpuid2 cpuid; 5555 5556 r = -EFAULT; 5557 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5558 goto out; 5559 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5560 cpuid_arg->entries); 5561 break; 5562 } 5563 case KVM_GET_CPUID2: { 5564 struct kvm_cpuid2 __user *cpuid_arg = argp; 5565 struct kvm_cpuid2 cpuid; 5566 5567 r = -EFAULT; 5568 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5569 goto out; 5570 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5571 cpuid_arg->entries); 5572 if (r) 5573 goto out; 5574 r = -EFAULT; 5575 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5576 goto out; 5577 r = 0; 5578 break; 5579 } 5580 case KVM_GET_MSRS: { 5581 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5582 r = msr_io(vcpu, argp, do_get_msr, 1); 5583 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5584 break; 5585 } 5586 case KVM_SET_MSRS: { 5587 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5588 r = msr_io(vcpu, argp, do_set_msr, 0); 5589 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5590 break; 5591 } 5592 case KVM_TPR_ACCESS_REPORTING: { 5593 struct kvm_tpr_access_ctl tac; 5594 5595 r = -EFAULT; 5596 if (copy_from_user(&tac, argp, sizeof(tac))) 5597 goto out; 5598 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5599 if (r) 5600 goto out; 5601 r = -EFAULT; 5602 if (copy_to_user(argp, &tac, sizeof(tac))) 5603 goto out; 5604 r = 0; 5605 break; 5606 }; 5607 case KVM_SET_VAPIC_ADDR: { 5608 struct kvm_vapic_addr va; 5609 int idx; 5610 5611 r = -EINVAL; 5612 if (!lapic_in_kernel(vcpu)) 5613 goto out; 5614 r = -EFAULT; 5615 if (copy_from_user(&va, argp, sizeof(va))) 5616 goto out; 5617 idx = srcu_read_lock(&vcpu->kvm->srcu); 5618 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5619 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5620 break; 5621 } 5622 case KVM_X86_SETUP_MCE: { 5623 u64 mcg_cap; 5624 5625 r = -EFAULT; 5626 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 5627 goto out; 5628 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 5629 break; 5630 } 5631 case KVM_X86_SET_MCE: { 5632 struct kvm_x86_mce mce; 5633 5634 r = -EFAULT; 5635 if (copy_from_user(&mce, argp, sizeof(mce))) 5636 goto out; 5637 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 5638 break; 5639 } 5640 case KVM_GET_VCPU_EVENTS: { 5641 struct kvm_vcpu_events events; 5642 5643 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 5644 5645 r = -EFAULT; 5646 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 5647 break; 5648 r = 0; 5649 break; 5650 } 5651 case KVM_SET_VCPU_EVENTS: { 5652 struct kvm_vcpu_events events; 5653 5654 r = -EFAULT; 5655 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 5656 break; 5657 5658 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 5659 break; 5660 } 5661 case KVM_GET_DEBUGREGS: { 5662 struct kvm_debugregs dbgregs; 5663 5664 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 5665 5666 r = -EFAULT; 5667 if (copy_to_user(argp, &dbgregs, 5668 sizeof(struct kvm_debugregs))) 5669 break; 5670 r = 0; 5671 break; 5672 } 5673 case KVM_SET_DEBUGREGS: { 5674 struct kvm_debugregs dbgregs; 5675 5676 r = -EFAULT; 5677 if (copy_from_user(&dbgregs, argp, 5678 sizeof(struct kvm_debugregs))) 5679 break; 5680 5681 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 5682 break; 5683 } 5684 case KVM_GET_XSAVE: { 5685 r = -EINVAL; 5686 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 5687 break; 5688 5689 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 5690 r = -ENOMEM; 5691 if (!u.xsave) 5692 break; 5693 5694 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 5695 5696 r = -EFAULT; 5697 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 5698 break; 5699 r = 0; 5700 break; 5701 } 5702 case KVM_SET_XSAVE: { 5703 int size = vcpu->arch.guest_fpu.uabi_size; 5704 5705 u.xsave = memdup_user(argp, size); 5706 if (IS_ERR(u.xsave)) { 5707 r = PTR_ERR(u.xsave); 5708 goto out_nofree; 5709 } 5710 5711 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 5712 break; 5713 } 5714 5715 case KVM_GET_XSAVE2: { 5716 int size = vcpu->arch.guest_fpu.uabi_size; 5717 5718 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); 5719 r = -ENOMEM; 5720 if (!u.xsave) 5721 break; 5722 5723 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 5724 5725 r = -EFAULT; 5726 if (copy_to_user(argp, u.xsave, size)) 5727 break; 5728 5729 r = 0; 5730 break; 5731 } 5732 5733 case KVM_GET_XCRS: { 5734 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 5735 r = -ENOMEM; 5736 if (!u.xcrs) 5737 break; 5738 5739 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 5740 5741 r = -EFAULT; 5742 if (copy_to_user(argp, u.xcrs, 5743 sizeof(struct kvm_xcrs))) 5744 break; 5745 r = 0; 5746 break; 5747 } 5748 case KVM_SET_XCRS: { 5749 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 5750 if (IS_ERR(u.xcrs)) { 5751 r = PTR_ERR(u.xcrs); 5752 goto out_nofree; 5753 } 5754 5755 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 5756 break; 5757 } 5758 case KVM_SET_TSC_KHZ: { 5759 u32 user_tsc_khz; 5760 5761 r = -EINVAL; 5762 user_tsc_khz = (u32)arg; 5763 5764 if (kvm_caps.has_tsc_control && 5765 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 5766 goto out; 5767 5768 if (user_tsc_khz == 0) 5769 user_tsc_khz = tsc_khz; 5770 5771 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 5772 r = 0; 5773 5774 goto out; 5775 } 5776 case KVM_GET_TSC_KHZ: { 5777 r = vcpu->arch.virtual_tsc_khz; 5778 goto out; 5779 } 5780 case KVM_KVMCLOCK_CTRL: { 5781 r = kvm_set_guest_paused(vcpu); 5782 goto out; 5783 } 5784 case KVM_ENABLE_CAP: { 5785 struct kvm_enable_cap cap; 5786 5787 r = -EFAULT; 5788 if (copy_from_user(&cap, argp, sizeof(cap))) 5789 goto out; 5790 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5791 break; 5792 } 5793 case KVM_GET_NESTED_STATE: { 5794 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5795 u32 user_data_size; 5796 5797 r = -EINVAL; 5798 if (!kvm_x86_ops.nested_ops->get_state) 5799 break; 5800 5801 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 5802 r = -EFAULT; 5803 if (get_user(user_data_size, &user_kvm_nested_state->size)) 5804 break; 5805 5806 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 5807 user_data_size); 5808 if (r < 0) 5809 break; 5810 5811 if (r > user_data_size) { 5812 if (put_user(r, &user_kvm_nested_state->size)) 5813 r = -EFAULT; 5814 else 5815 r = -E2BIG; 5816 break; 5817 } 5818 5819 r = 0; 5820 break; 5821 } 5822 case KVM_SET_NESTED_STATE: { 5823 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5824 struct kvm_nested_state kvm_state; 5825 int idx; 5826 5827 r = -EINVAL; 5828 if (!kvm_x86_ops.nested_ops->set_state) 5829 break; 5830 5831 r = -EFAULT; 5832 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 5833 break; 5834 5835 r = -EINVAL; 5836 if (kvm_state.size < sizeof(kvm_state)) 5837 break; 5838 5839 if (kvm_state.flags & 5840 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 5841 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 5842 | KVM_STATE_NESTED_GIF_SET)) 5843 break; 5844 5845 /* nested_run_pending implies guest_mode. */ 5846 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 5847 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 5848 break; 5849 5850 idx = srcu_read_lock(&vcpu->kvm->srcu); 5851 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 5852 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5853 break; 5854 } 5855 case KVM_GET_SUPPORTED_HV_CPUID: 5856 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 5857 break; 5858 #ifdef CONFIG_KVM_XEN 5859 case KVM_XEN_VCPU_GET_ATTR: { 5860 struct kvm_xen_vcpu_attr xva; 5861 5862 r = -EFAULT; 5863 if (copy_from_user(&xva, argp, sizeof(xva))) 5864 goto out; 5865 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 5866 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 5867 r = -EFAULT; 5868 break; 5869 } 5870 case KVM_XEN_VCPU_SET_ATTR: { 5871 struct kvm_xen_vcpu_attr xva; 5872 5873 r = -EFAULT; 5874 if (copy_from_user(&xva, argp, sizeof(xva))) 5875 goto out; 5876 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 5877 break; 5878 } 5879 #endif 5880 case KVM_GET_SREGS2: { 5881 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 5882 r = -ENOMEM; 5883 if (!u.sregs2) 5884 goto out; 5885 __get_sregs2(vcpu, u.sregs2); 5886 r = -EFAULT; 5887 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 5888 goto out; 5889 r = 0; 5890 break; 5891 } 5892 case KVM_SET_SREGS2: { 5893 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 5894 if (IS_ERR(u.sregs2)) { 5895 r = PTR_ERR(u.sregs2); 5896 u.sregs2 = NULL; 5897 goto out; 5898 } 5899 r = __set_sregs2(vcpu, u.sregs2); 5900 break; 5901 } 5902 case KVM_HAS_DEVICE_ATTR: 5903 case KVM_GET_DEVICE_ATTR: 5904 case KVM_SET_DEVICE_ATTR: 5905 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 5906 break; 5907 default: 5908 r = -EINVAL; 5909 } 5910 out: 5911 kfree(u.buffer); 5912 out_nofree: 5913 vcpu_put(vcpu); 5914 return r; 5915 } 5916 5917 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 5918 { 5919 return VM_FAULT_SIGBUS; 5920 } 5921 5922 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 5923 { 5924 int ret; 5925 5926 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 5927 return -EINVAL; 5928 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 5929 return ret; 5930 } 5931 5932 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 5933 u64 ident_addr) 5934 { 5935 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 5936 } 5937 5938 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 5939 unsigned long kvm_nr_mmu_pages) 5940 { 5941 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 5942 return -EINVAL; 5943 5944 mutex_lock(&kvm->slots_lock); 5945 5946 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 5947 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 5948 5949 mutex_unlock(&kvm->slots_lock); 5950 return 0; 5951 } 5952 5953 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 5954 { 5955 return kvm->arch.n_max_mmu_pages; 5956 } 5957 5958 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 5959 { 5960 struct kvm_pic *pic = kvm->arch.vpic; 5961 int r; 5962 5963 r = 0; 5964 switch (chip->chip_id) { 5965 case KVM_IRQCHIP_PIC_MASTER: 5966 memcpy(&chip->chip.pic, &pic->pics[0], 5967 sizeof(struct kvm_pic_state)); 5968 break; 5969 case KVM_IRQCHIP_PIC_SLAVE: 5970 memcpy(&chip->chip.pic, &pic->pics[1], 5971 sizeof(struct kvm_pic_state)); 5972 break; 5973 case KVM_IRQCHIP_IOAPIC: 5974 kvm_get_ioapic(kvm, &chip->chip.ioapic); 5975 break; 5976 default: 5977 r = -EINVAL; 5978 break; 5979 } 5980 return r; 5981 } 5982 5983 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 5984 { 5985 struct kvm_pic *pic = kvm->arch.vpic; 5986 int r; 5987 5988 r = 0; 5989 switch (chip->chip_id) { 5990 case KVM_IRQCHIP_PIC_MASTER: 5991 spin_lock(&pic->lock); 5992 memcpy(&pic->pics[0], &chip->chip.pic, 5993 sizeof(struct kvm_pic_state)); 5994 spin_unlock(&pic->lock); 5995 break; 5996 case KVM_IRQCHIP_PIC_SLAVE: 5997 spin_lock(&pic->lock); 5998 memcpy(&pic->pics[1], &chip->chip.pic, 5999 sizeof(struct kvm_pic_state)); 6000 spin_unlock(&pic->lock); 6001 break; 6002 case KVM_IRQCHIP_IOAPIC: 6003 kvm_set_ioapic(kvm, &chip->chip.ioapic); 6004 break; 6005 default: 6006 r = -EINVAL; 6007 break; 6008 } 6009 kvm_pic_update_irq(pic); 6010 return r; 6011 } 6012 6013 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6014 { 6015 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 6016 6017 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 6018 6019 mutex_lock(&kps->lock); 6020 memcpy(ps, &kps->channels, sizeof(*ps)); 6021 mutex_unlock(&kps->lock); 6022 return 0; 6023 } 6024 6025 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6026 { 6027 int i; 6028 struct kvm_pit *pit = kvm->arch.vpit; 6029 6030 mutex_lock(&pit->pit_state.lock); 6031 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 6032 for (i = 0; i < 3; i++) 6033 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 6034 mutex_unlock(&pit->pit_state.lock); 6035 return 0; 6036 } 6037 6038 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6039 { 6040 mutex_lock(&kvm->arch.vpit->pit_state.lock); 6041 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 6042 sizeof(ps->channels)); 6043 ps->flags = kvm->arch.vpit->pit_state.flags; 6044 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 6045 memset(&ps->reserved, 0, sizeof(ps->reserved)); 6046 return 0; 6047 } 6048 6049 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6050 { 6051 int start = 0; 6052 int i; 6053 u32 prev_legacy, cur_legacy; 6054 struct kvm_pit *pit = kvm->arch.vpit; 6055 6056 mutex_lock(&pit->pit_state.lock); 6057 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 6058 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 6059 if (!prev_legacy && cur_legacy) 6060 start = 1; 6061 memcpy(&pit->pit_state.channels, &ps->channels, 6062 sizeof(pit->pit_state.channels)); 6063 pit->pit_state.flags = ps->flags; 6064 for (i = 0; i < 3; i++) 6065 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 6066 start && i == 0); 6067 mutex_unlock(&pit->pit_state.lock); 6068 return 0; 6069 } 6070 6071 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 6072 struct kvm_reinject_control *control) 6073 { 6074 struct kvm_pit *pit = kvm->arch.vpit; 6075 6076 /* pit->pit_state.lock was overloaded to prevent userspace from getting 6077 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 6078 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 6079 */ 6080 mutex_lock(&pit->pit_state.lock); 6081 kvm_pit_set_reinject(pit, control->pit_reinject); 6082 mutex_unlock(&pit->pit_state.lock); 6083 6084 return 0; 6085 } 6086 6087 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6088 { 6089 6090 /* 6091 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6092 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6093 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6094 * VM-Exit. 6095 */ 6096 struct kvm_vcpu *vcpu; 6097 unsigned long i; 6098 6099 kvm_for_each_vcpu(i, vcpu, kvm) 6100 kvm_vcpu_kick(vcpu); 6101 } 6102 6103 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 6104 bool line_status) 6105 { 6106 if (!irqchip_in_kernel(kvm)) 6107 return -ENXIO; 6108 6109 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 6110 irq_event->irq, irq_event->level, 6111 line_status); 6112 return 0; 6113 } 6114 6115 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6116 struct kvm_enable_cap *cap) 6117 { 6118 int r; 6119 6120 if (cap->flags) 6121 return -EINVAL; 6122 6123 switch (cap->cap) { 6124 case KVM_CAP_DISABLE_QUIRKS2: 6125 r = -EINVAL; 6126 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 6127 break; 6128 fallthrough; 6129 case KVM_CAP_DISABLE_QUIRKS: 6130 kvm->arch.disabled_quirks = cap->args[0]; 6131 r = 0; 6132 break; 6133 case KVM_CAP_SPLIT_IRQCHIP: { 6134 mutex_lock(&kvm->lock); 6135 r = -EINVAL; 6136 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6137 goto split_irqchip_unlock; 6138 r = -EEXIST; 6139 if (irqchip_in_kernel(kvm)) 6140 goto split_irqchip_unlock; 6141 if (kvm->created_vcpus) 6142 goto split_irqchip_unlock; 6143 r = kvm_setup_empty_irq_routing(kvm); 6144 if (r) 6145 goto split_irqchip_unlock; 6146 /* Pairs with irqchip_in_kernel. */ 6147 smp_wmb(); 6148 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6149 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6150 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6151 r = 0; 6152 split_irqchip_unlock: 6153 mutex_unlock(&kvm->lock); 6154 break; 6155 } 6156 case KVM_CAP_X2APIC_API: 6157 r = -EINVAL; 6158 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6159 break; 6160 6161 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6162 kvm->arch.x2apic_format = true; 6163 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6164 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6165 6166 r = 0; 6167 break; 6168 case KVM_CAP_X86_DISABLE_EXITS: 6169 r = -EINVAL; 6170 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 6171 break; 6172 6173 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 6174 kvm_can_mwait_in_guest()) 6175 kvm->arch.mwait_in_guest = true; 6176 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 6177 kvm->arch.hlt_in_guest = true; 6178 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 6179 kvm->arch.pause_in_guest = true; 6180 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6181 kvm->arch.cstate_in_guest = true; 6182 r = 0; 6183 break; 6184 case KVM_CAP_MSR_PLATFORM_INFO: 6185 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6186 r = 0; 6187 break; 6188 case KVM_CAP_EXCEPTION_PAYLOAD: 6189 kvm->arch.exception_payload_enabled = cap->args[0]; 6190 r = 0; 6191 break; 6192 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6193 kvm->arch.triple_fault_event = cap->args[0]; 6194 r = 0; 6195 break; 6196 case KVM_CAP_X86_USER_SPACE_MSR: 6197 r = -EINVAL; 6198 if (cap->args[0] & ~(KVM_MSR_EXIT_REASON_INVAL | 6199 KVM_MSR_EXIT_REASON_UNKNOWN | 6200 KVM_MSR_EXIT_REASON_FILTER)) 6201 break; 6202 kvm->arch.user_space_msr_mask = cap->args[0]; 6203 r = 0; 6204 break; 6205 case KVM_CAP_X86_BUS_LOCK_EXIT: 6206 r = -EINVAL; 6207 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6208 break; 6209 6210 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6211 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6212 break; 6213 6214 if (kvm_caps.has_bus_lock_exit && 6215 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6216 kvm->arch.bus_lock_detection_enabled = true; 6217 r = 0; 6218 break; 6219 #ifdef CONFIG_X86_SGX_KVM 6220 case KVM_CAP_SGX_ATTRIBUTE: { 6221 unsigned long allowed_attributes = 0; 6222 6223 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6224 if (r) 6225 break; 6226 6227 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6228 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6229 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6230 kvm->arch.sgx_provisioning_allowed = true; 6231 else 6232 r = -EINVAL; 6233 break; 6234 } 6235 #endif 6236 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6237 r = -EINVAL; 6238 if (!kvm_x86_ops.vm_copy_enc_context_from) 6239 break; 6240 6241 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]); 6242 break; 6243 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6244 r = -EINVAL; 6245 if (!kvm_x86_ops.vm_move_enc_context_from) 6246 break; 6247 6248 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]); 6249 break; 6250 case KVM_CAP_EXIT_HYPERCALL: 6251 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6252 r = -EINVAL; 6253 break; 6254 } 6255 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6256 r = 0; 6257 break; 6258 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6259 r = -EINVAL; 6260 if (cap->args[0] & ~1) 6261 break; 6262 kvm->arch.exit_on_emulation_error = cap->args[0]; 6263 r = 0; 6264 break; 6265 case KVM_CAP_PMU_CAPABILITY: 6266 r = -EINVAL; 6267 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6268 break; 6269 6270 mutex_lock(&kvm->lock); 6271 if (!kvm->created_vcpus) { 6272 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6273 r = 0; 6274 } 6275 mutex_unlock(&kvm->lock); 6276 break; 6277 case KVM_CAP_MAX_VCPU_ID: 6278 r = -EINVAL; 6279 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6280 break; 6281 6282 mutex_lock(&kvm->lock); 6283 if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6284 r = 0; 6285 } else if (!kvm->arch.max_vcpu_ids) { 6286 kvm->arch.max_vcpu_ids = cap->args[0]; 6287 r = 0; 6288 } 6289 mutex_unlock(&kvm->lock); 6290 break; 6291 case KVM_CAP_X86_NOTIFY_VMEXIT: 6292 r = -EINVAL; 6293 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6294 break; 6295 if (!kvm_caps.has_notify_vmexit) 6296 break; 6297 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6298 break; 6299 mutex_lock(&kvm->lock); 6300 if (!kvm->created_vcpus) { 6301 kvm->arch.notify_window = cap->args[0] >> 32; 6302 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6303 r = 0; 6304 } 6305 mutex_unlock(&kvm->lock); 6306 break; 6307 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6308 r = -EINVAL; 6309 6310 /* 6311 * Since the risk of disabling NX hugepages is a guest crashing 6312 * the system, ensure the userspace process has permission to 6313 * reboot the system. 6314 * 6315 * Note that unlike the reboot() syscall, the process must have 6316 * this capability in the root namespace because exposing 6317 * /dev/kvm into a container does not limit the scope of the 6318 * iTLB multihit bug to that container. In other words, 6319 * this must use capable(), not ns_capable(). 6320 */ 6321 if (!capable(CAP_SYS_BOOT)) { 6322 r = -EPERM; 6323 break; 6324 } 6325 6326 if (cap->args[0]) 6327 break; 6328 6329 mutex_lock(&kvm->lock); 6330 if (!kvm->created_vcpus) { 6331 kvm->arch.disable_nx_huge_pages = true; 6332 r = 0; 6333 } 6334 mutex_unlock(&kvm->lock); 6335 break; 6336 default: 6337 r = -EINVAL; 6338 break; 6339 } 6340 return r; 6341 } 6342 6343 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6344 { 6345 struct kvm_x86_msr_filter *msr_filter; 6346 6347 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6348 if (!msr_filter) 6349 return NULL; 6350 6351 msr_filter->default_allow = default_allow; 6352 return msr_filter; 6353 } 6354 6355 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6356 { 6357 u32 i; 6358 6359 if (!msr_filter) 6360 return; 6361 6362 for (i = 0; i < msr_filter->count; i++) 6363 kfree(msr_filter->ranges[i].bitmap); 6364 6365 kfree(msr_filter); 6366 } 6367 6368 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6369 struct kvm_msr_filter_range *user_range) 6370 { 6371 unsigned long *bitmap = NULL; 6372 size_t bitmap_size; 6373 6374 if (!user_range->nmsrs) 6375 return 0; 6376 6377 if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) 6378 return -EINVAL; 6379 6380 if (!user_range->flags) 6381 return -EINVAL; 6382 6383 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6384 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6385 return -EINVAL; 6386 6387 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6388 if (IS_ERR(bitmap)) 6389 return PTR_ERR(bitmap); 6390 6391 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6392 .flags = user_range->flags, 6393 .base = user_range->base, 6394 .nmsrs = user_range->nmsrs, 6395 .bitmap = bitmap, 6396 }; 6397 6398 msr_filter->count++; 6399 return 0; 6400 } 6401 6402 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp) 6403 { 6404 struct kvm_msr_filter __user *user_msr_filter = argp; 6405 struct kvm_x86_msr_filter *new_filter, *old_filter; 6406 struct kvm_msr_filter filter; 6407 bool default_allow; 6408 bool empty = true; 6409 int r = 0; 6410 u32 i; 6411 6412 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 6413 return -EFAULT; 6414 6415 if (filter.flags & ~KVM_MSR_FILTER_DEFAULT_DENY) 6416 return -EINVAL; 6417 6418 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) 6419 empty &= !filter.ranges[i].nmsrs; 6420 6421 default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY); 6422 if (empty && !default_allow) 6423 return -EINVAL; 6424 6425 new_filter = kvm_alloc_msr_filter(default_allow); 6426 if (!new_filter) 6427 return -ENOMEM; 6428 6429 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6430 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]); 6431 if (r) { 6432 kvm_free_msr_filter(new_filter); 6433 return r; 6434 } 6435 } 6436 6437 mutex_lock(&kvm->lock); 6438 6439 /* The per-VM filter is protected by kvm->lock... */ 6440 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1); 6441 6442 rcu_assign_pointer(kvm->arch.msr_filter, new_filter); 6443 synchronize_srcu(&kvm->srcu); 6444 6445 kvm_free_msr_filter(old_filter); 6446 6447 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6448 mutex_unlock(&kvm->lock); 6449 6450 return 0; 6451 } 6452 6453 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6454 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6455 { 6456 struct kvm_vcpu *vcpu; 6457 unsigned long i; 6458 int ret = 0; 6459 6460 mutex_lock(&kvm->lock); 6461 kvm_for_each_vcpu(i, vcpu, kvm) { 6462 if (!vcpu->arch.pv_time.active) 6463 continue; 6464 6465 ret = kvm_set_guest_paused(vcpu); 6466 if (ret) { 6467 kvm_err("Failed to pause guest VCPU%d: %d\n", 6468 vcpu->vcpu_id, ret); 6469 break; 6470 } 6471 } 6472 mutex_unlock(&kvm->lock); 6473 6474 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6475 } 6476 6477 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6478 { 6479 switch (state) { 6480 case PM_HIBERNATION_PREPARE: 6481 case PM_SUSPEND_PREPARE: 6482 return kvm_arch_suspend_notifier(kvm); 6483 } 6484 6485 return NOTIFY_DONE; 6486 } 6487 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6488 6489 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6490 { 6491 struct kvm_clock_data data = { 0 }; 6492 6493 get_kvmclock(kvm, &data); 6494 if (copy_to_user(argp, &data, sizeof(data))) 6495 return -EFAULT; 6496 6497 return 0; 6498 } 6499 6500 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6501 { 6502 struct kvm_arch *ka = &kvm->arch; 6503 struct kvm_clock_data data; 6504 u64 now_raw_ns; 6505 6506 if (copy_from_user(&data, argp, sizeof(data))) 6507 return -EFAULT; 6508 6509 /* 6510 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6511 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6512 */ 6513 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6514 return -EINVAL; 6515 6516 kvm_hv_request_tsc_page_update(kvm); 6517 kvm_start_pvclock_update(kvm); 6518 pvclock_update_vm_gtod_copy(kvm); 6519 6520 /* 6521 * This pairs with kvm_guest_time_update(): when masterclock is 6522 * in use, we use master_kernel_ns + kvmclock_offset to set 6523 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6524 * is slightly ahead) here we risk going negative on unsigned 6525 * 'system_time' when 'data.clock' is very small. 6526 */ 6527 if (data.flags & KVM_CLOCK_REALTIME) { 6528 u64 now_real_ns = ktime_get_real_ns(); 6529 6530 /* 6531 * Avoid stepping the kvmclock backwards. 6532 */ 6533 if (now_real_ns > data.realtime) 6534 data.clock += now_real_ns - data.realtime; 6535 } 6536 6537 if (ka->use_master_clock) 6538 now_raw_ns = ka->master_kernel_ns; 6539 else 6540 now_raw_ns = get_kvmclock_base_ns(); 6541 ka->kvmclock_offset = data.clock - now_raw_ns; 6542 kvm_end_pvclock_update(kvm); 6543 return 0; 6544 } 6545 6546 long kvm_arch_vm_ioctl(struct file *filp, 6547 unsigned int ioctl, unsigned long arg) 6548 { 6549 struct kvm *kvm = filp->private_data; 6550 void __user *argp = (void __user *)arg; 6551 int r = -ENOTTY; 6552 /* 6553 * This union makes it completely explicit to gcc-3.x 6554 * that these two variables' stack usage should be 6555 * combined, not added together. 6556 */ 6557 union { 6558 struct kvm_pit_state ps; 6559 struct kvm_pit_state2 ps2; 6560 struct kvm_pit_config pit_config; 6561 } u; 6562 6563 switch (ioctl) { 6564 case KVM_SET_TSS_ADDR: 6565 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 6566 break; 6567 case KVM_SET_IDENTITY_MAP_ADDR: { 6568 u64 ident_addr; 6569 6570 mutex_lock(&kvm->lock); 6571 r = -EINVAL; 6572 if (kvm->created_vcpus) 6573 goto set_identity_unlock; 6574 r = -EFAULT; 6575 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 6576 goto set_identity_unlock; 6577 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 6578 set_identity_unlock: 6579 mutex_unlock(&kvm->lock); 6580 break; 6581 } 6582 case KVM_SET_NR_MMU_PAGES: 6583 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 6584 break; 6585 case KVM_GET_NR_MMU_PAGES: 6586 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 6587 break; 6588 case KVM_CREATE_IRQCHIP: { 6589 mutex_lock(&kvm->lock); 6590 6591 r = -EEXIST; 6592 if (irqchip_in_kernel(kvm)) 6593 goto create_irqchip_unlock; 6594 6595 r = -EINVAL; 6596 if (kvm->created_vcpus) 6597 goto create_irqchip_unlock; 6598 6599 r = kvm_pic_init(kvm); 6600 if (r) 6601 goto create_irqchip_unlock; 6602 6603 r = kvm_ioapic_init(kvm); 6604 if (r) { 6605 kvm_pic_destroy(kvm); 6606 goto create_irqchip_unlock; 6607 } 6608 6609 r = kvm_setup_default_irq_routing(kvm); 6610 if (r) { 6611 kvm_ioapic_destroy(kvm); 6612 kvm_pic_destroy(kvm); 6613 goto create_irqchip_unlock; 6614 } 6615 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 6616 smp_wmb(); 6617 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 6618 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6619 create_irqchip_unlock: 6620 mutex_unlock(&kvm->lock); 6621 break; 6622 } 6623 case KVM_CREATE_PIT: 6624 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 6625 goto create_pit; 6626 case KVM_CREATE_PIT2: 6627 r = -EFAULT; 6628 if (copy_from_user(&u.pit_config, argp, 6629 sizeof(struct kvm_pit_config))) 6630 goto out; 6631 create_pit: 6632 mutex_lock(&kvm->lock); 6633 r = -EEXIST; 6634 if (kvm->arch.vpit) 6635 goto create_pit_unlock; 6636 r = -ENOMEM; 6637 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 6638 if (kvm->arch.vpit) 6639 r = 0; 6640 create_pit_unlock: 6641 mutex_unlock(&kvm->lock); 6642 break; 6643 case KVM_GET_IRQCHIP: { 6644 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6645 struct kvm_irqchip *chip; 6646 6647 chip = memdup_user(argp, sizeof(*chip)); 6648 if (IS_ERR(chip)) { 6649 r = PTR_ERR(chip); 6650 goto out; 6651 } 6652 6653 r = -ENXIO; 6654 if (!irqchip_kernel(kvm)) 6655 goto get_irqchip_out; 6656 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 6657 if (r) 6658 goto get_irqchip_out; 6659 r = -EFAULT; 6660 if (copy_to_user(argp, chip, sizeof(*chip))) 6661 goto get_irqchip_out; 6662 r = 0; 6663 get_irqchip_out: 6664 kfree(chip); 6665 break; 6666 } 6667 case KVM_SET_IRQCHIP: { 6668 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6669 struct kvm_irqchip *chip; 6670 6671 chip = memdup_user(argp, sizeof(*chip)); 6672 if (IS_ERR(chip)) { 6673 r = PTR_ERR(chip); 6674 goto out; 6675 } 6676 6677 r = -ENXIO; 6678 if (!irqchip_kernel(kvm)) 6679 goto set_irqchip_out; 6680 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 6681 set_irqchip_out: 6682 kfree(chip); 6683 break; 6684 } 6685 case KVM_GET_PIT: { 6686 r = -EFAULT; 6687 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 6688 goto out; 6689 r = -ENXIO; 6690 if (!kvm->arch.vpit) 6691 goto out; 6692 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 6693 if (r) 6694 goto out; 6695 r = -EFAULT; 6696 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 6697 goto out; 6698 r = 0; 6699 break; 6700 } 6701 case KVM_SET_PIT: { 6702 r = -EFAULT; 6703 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 6704 goto out; 6705 mutex_lock(&kvm->lock); 6706 r = -ENXIO; 6707 if (!kvm->arch.vpit) 6708 goto set_pit_out; 6709 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 6710 set_pit_out: 6711 mutex_unlock(&kvm->lock); 6712 break; 6713 } 6714 case KVM_GET_PIT2: { 6715 r = -ENXIO; 6716 if (!kvm->arch.vpit) 6717 goto out; 6718 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 6719 if (r) 6720 goto out; 6721 r = -EFAULT; 6722 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 6723 goto out; 6724 r = 0; 6725 break; 6726 } 6727 case KVM_SET_PIT2: { 6728 r = -EFAULT; 6729 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 6730 goto out; 6731 mutex_lock(&kvm->lock); 6732 r = -ENXIO; 6733 if (!kvm->arch.vpit) 6734 goto set_pit2_out; 6735 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 6736 set_pit2_out: 6737 mutex_unlock(&kvm->lock); 6738 break; 6739 } 6740 case KVM_REINJECT_CONTROL: { 6741 struct kvm_reinject_control control; 6742 r = -EFAULT; 6743 if (copy_from_user(&control, argp, sizeof(control))) 6744 goto out; 6745 r = -ENXIO; 6746 if (!kvm->arch.vpit) 6747 goto out; 6748 r = kvm_vm_ioctl_reinject(kvm, &control); 6749 break; 6750 } 6751 case KVM_SET_BOOT_CPU_ID: 6752 r = 0; 6753 mutex_lock(&kvm->lock); 6754 if (kvm->created_vcpus) 6755 r = -EBUSY; 6756 else 6757 kvm->arch.bsp_vcpu_id = arg; 6758 mutex_unlock(&kvm->lock); 6759 break; 6760 #ifdef CONFIG_KVM_XEN 6761 case KVM_XEN_HVM_CONFIG: { 6762 struct kvm_xen_hvm_config xhc; 6763 r = -EFAULT; 6764 if (copy_from_user(&xhc, argp, sizeof(xhc))) 6765 goto out; 6766 r = kvm_xen_hvm_config(kvm, &xhc); 6767 break; 6768 } 6769 case KVM_XEN_HVM_GET_ATTR: { 6770 struct kvm_xen_hvm_attr xha; 6771 6772 r = -EFAULT; 6773 if (copy_from_user(&xha, argp, sizeof(xha))) 6774 goto out; 6775 r = kvm_xen_hvm_get_attr(kvm, &xha); 6776 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 6777 r = -EFAULT; 6778 break; 6779 } 6780 case KVM_XEN_HVM_SET_ATTR: { 6781 struct kvm_xen_hvm_attr xha; 6782 6783 r = -EFAULT; 6784 if (copy_from_user(&xha, argp, sizeof(xha))) 6785 goto out; 6786 r = kvm_xen_hvm_set_attr(kvm, &xha); 6787 break; 6788 } 6789 case KVM_XEN_HVM_EVTCHN_SEND: { 6790 struct kvm_irq_routing_xen_evtchn uxe; 6791 6792 r = -EFAULT; 6793 if (copy_from_user(&uxe, argp, sizeof(uxe))) 6794 goto out; 6795 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 6796 break; 6797 } 6798 #endif 6799 case KVM_SET_CLOCK: 6800 r = kvm_vm_ioctl_set_clock(kvm, argp); 6801 break; 6802 case KVM_GET_CLOCK: 6803 r = kvm_vm_ioctl_get_clock(kvm, argp); 6804 break; 6805 case KVM_SET_TSC_KHZ: { 6806 u32 user_tsc_khz; 6807 6808 r = -EINVAL; 6809 user_tsc_khz = (u32)arg; 6810 6811 if (kvm_caps.has_tsc_control && 6812 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 6813 goto out; 6814 6815 if (user_tsc_khz == 0) 6816 user_tsc_khz = tsc_khz; 6817 6818 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 6819 r = 0; 6820 6821 goto out; 6822 } 6823 case KVM_GET_TSC_KHZ: { 6824 r = READ_ONCE(kvm->arch.default_tsc_khz); 6825 goto out; 6826 } 6827 case KVM_MEMORY_ENCRYPT_OP: { 6828 r = -ENOTTY; 6829 if (!kvm_x86_ops.mem_enc_ioctl) 6830 goto out; 6831 6832 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp); 6833 break; 6834 } 6835 case KVM_MEMORY_ENCRYPT_REG_REGION: { 6836 struct kvm_enc_region region; 6837 6838 r = -EFAULT; 6839 if (copy_from_user(®ion, argp, sizeof(region))) 6840 goto out; 6841 6842 r = -ENOTTY; 6843 if (!kvm_x86_ops.mem_enc_register_region) 6844 goto out; 6845 6846 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion); 6847 break; 6848 } 6849 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 6850 struct kvm_enc_region region; 6851 6852 r = -EFAULT; 6853 if (copy_from_user(®ion, argp, sizeof(region))) 6854 goto out; 6855 6856 r = -ENOTTY; 6857 if (!kvm_x86_ops.mem_enc_unregister_region) 6858 goto out; 6859 6860 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion); 6861 break; 6862 } 6863 case KVM_HYPERV_EVENTFD: { 6864 struct kvm_hyperv_eventfd hvevfd; 6865 6866 r = -EFAULT; 6867 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 6868 goto out; 6869 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 6870 break; 6871 } 6872 case KVM_SET_PMU_EVENT_FILTER: 6873 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 6874 break; 6875 case KVM_X86_SET_MSR_FILTER: 6876 r = kvm_vm_ioctl_set_msr_filter(kvm, argp); 6877 break; 6878 default: 6879 r = -ENOTTY; 6880 } 6881 out: 6882 return r; 6883 } 6884 6885 static void kvm_init_msr_list(void) 6886 { 6887 u32 dummy[2]; 6888 unsigned i; 6889 6890 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3, 6891 "Please update the fixed PMCs in msrs_to_saved_all[]"); 6892 6893 num_msrs_to_save = 0; 6894 num_emulated_msrs = 0; 6895 num_msr_based_features = 0; 6896 6897 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) { 6898 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0) 6899 continue; 6900 6901 /* 6902 * Even MSRs that are valid in the host may not be exposed 6903 * to the guests in some cases. 6904 */ 6905 switch (msrs_to_save_all[i]) { 6906 case MSR_IA32_BNDCFGS: 6907 if (!kvm_mpx_supported()) 6908 continue; 6909 break; 6910 case MSR_TSC_AUX: 6911 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 6912 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 6913 continue; 6914 break; 6915 case MSR_IA32_UMWAIT_CONTROL: 6916 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 6917 continue; 6918 break; 6919 case MSR_IA32_RTIT_CTL: 6920 case MSR_IA32_RTIT_STATUS: 6921 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 6922 continue; 6923 break; 6924 case MSR_IA32_RTIT_CR3_MATCH: 6925 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 6926 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 6927 continue; 6928 break; 6929 case MSR_IA32_RTIT_OUTPUT_BASE: 6930 case MSR_IA32_RTIT_OUTPUT_MASK: 6931 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 6932 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 6933 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 6934 continue; 6935 break; 6936 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 6937 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 6938 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >= 6939 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2) 6940 continue; 6941 break; 6942 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17: 6943 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >= 6944 min(INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp)) 6945 continue; 6946 break; 6947 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17: 6948 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >= 6949 min(INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp)) 6950 continue; 6951 break; 6952 case MSR_IA32_XFD: 6953 case MSR_IA32_XFD_ERR: 6954 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 6955 continue; 6956 break; 6957 default: 6958 break; 6959 } 6960 6961 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i]; 6962 } 6963 6964 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 6965 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 6966 continue; 6967 6968 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 6969 } 6970 6971 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) { 6972 struct kvm_msr_entry msr; 6973 6974 msr.index = msr_based_features_all[i]; 6975 if (kvm_get_msr_feature(&msr)) 6976 continue; 6977 6978 msr_based_features[num_msr_based_features++] = msr_based_features_all[i]; 6979 } 6980 } 6981 6982 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 6983 const void *v) 6984 { 6985 int handled = 0; 6986 int n; 6987 6988 do { 6989 n = min(len, 8); 6990 if (!(lapic_in_kernel(vcpu) && 6991 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 6992 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 6993 break; 6994 handled += n; 6995 addr += n; 6996 len -= n; 6997 v += n; 6998 } while (len); 6999 7000 return handled; 7001 } 7002 7003 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 7004 { 7005 int handled = 0; 7006 int n; 7007 7008 do { 7009 n = min(len, 8); 7010 if (!(lapic_in_kernel(vcpu) && 7011 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 7012 addr, n, v)) 7013 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 7014 break; 7015 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7016 handled += n; 7017 addr += n; 7018 len -= n; 7019 v += n; 7020 } while (len); 7021 7022 return handled; 7023 } 7024 7025 static void kvm_set_segment(struct kvm_vcpu *vcpu, 7026 struct kvm_segment *var, int seg) 7027 { 7028 static_call(kvm_x86_set_segment)(vcpu, var, seg); 7029 } 7030 7031 void kvm_get_segment(struct kvm_vcpu *vcpu, 7032 struct kvm_segment *var, int seg) 7033 { 7034 static_call(kvm_x86_get_segment)(vcpu, var, seg); 7035 } 7036 7037 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7038 struct x86_exception *exception) 7039 { 7040 struct kvm_mmu *mmu = vcpu->arch.mmu; 7041 gpa_t t_gpa; 7042 7043 BUG_ON(!mmu_is_nested(vcpu)); 7044 7045 /* NPT walks are always user-walks */ 7046 access |= PFERR_USER_MASK; 7047 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7048 7049 return t_gpa; 7050 } 7051 7052 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7053 struct x86_exception *exception) 7054 { 7055 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7056 7057 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7058 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7059 } 7060 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 7061 7062 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 7063 struct x86_exception *exception) 7064 { 7065 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7066 7067 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7068 access |= PFERR_FETCH_MASK; 7069 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7070 } 7071 7072 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7073 struct x86_exception *exception) 7074 { 7075 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7076 7077 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7078 access |= PFERR_WRITE_MASK; 7079 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7080 } 7081 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 7082 7083 /* uses this to access any guest's mapped memory without checking CPL */ 7084 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7085 struct x86_exception *exception) 7086 { 7087 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7088 7089 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7090 } 7091 7092 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7093 struct kvm_vcpu *vcpu, u64 access, 7094 struct x86_exception *exception) 7095 { 7096 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7097 void *data = val; 7098 int r = X86EMUL_CONTINUE; 7099 7100 while (bytes) { 7101 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7102 unsigned offset = addr & (PAGE_SIZE-1); 7103 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7104 int ret; 7105 7106 if (gpa == INVALID_GPA) 7107 return X86EMUL_PROPAGATE_FAULT; 7108 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7109 offset, toread); 7110 if (ret < 0) { 7111 r = X86EMUL_IO_NEEDED; 7112 goto out; 7113 } 7114 7115 bytes -= toread; 7116 data += toread; 7117 addr += toread; 7118 } 7119 out: 7120 return r; 7121 } 7122 7123 /* used for instruction fetching */ 7124 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7125 gva_t addr, void *val, unsigned int bytes, 7126 struct x86_exception *exception) 7127 { 7128 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7129 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7130 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7131 unsigned offset; 7132 int ret; 7133 7134 /* Inline kvm_read_guest_virt_helper for speed. */ 7135 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7136 exception); 7137 if (unlikely(gpa == INVALID_GPA)) 7138 return X86EMUL_PROPAGATE_FAULT; 7139 7140 offset = addr & (PAGE_SIZE-1); 7141 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7142 bytes = (unsigned)PAGE_SIZE - offset; 7143 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7144 offset, bytes); 7145 if (unlikely(ret < 0)) 7146 return X86EMUL_IO_NEEDED; 7147 7148 return X86EMUL_CONTINUE; 7149 } 7150 7151 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7152 gva_t addr, void *val, unsigned int bytes, 7153 struct x86_exception *exception) 7154 { 7155 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7156 7157 /* 7158 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7159 * is returned, but our callers are not ready for that and they blindly 7160 * call kvm_inject_page_fault. Ensure that they at least do not leak 7161 * uninitialized kernel stack memory into cr2 and error code. 7162 */ 7163 memset(exception, 0, sizeof(*exception)); 7164 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7165 exception); 7166 } 7167 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 7168 7169 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7170 gva_t addr, void *val, unsigned int bytes, 7171 struct x86_exception *exception, bool system) 7172 { 7173 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7174 u64 access = 0; 7175 7176 if (system) 7177 access |= PFERR_IMPLICIT_ACCESS; 7178 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7179 access |= PFERR_USER_MASK; 7180 7181 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7182 } 7183 7184 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, 7185 unsigned long addr, void *val, unsigned int bytes) 7186 { 7187 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7188 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes); 7189 7190 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE; 7191 } 7192 7193 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7194 struct kvm_vcpu *vcpu, u64 access, 7195 struct x86_exception *exception) 7196 { 7197 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7198 void *data = val; 7199 int r = X86EMUL_CONTINUE; 7200 7201 while (bytes) { 7202 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7203 unsigned offset = addr & (PAGE_SIZE-1); 7204 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7205 int ret; 7206 7207 if (gpa == INVALID_GPA) 7208 return X86EMUL_PROPAGATE_FAULT; 7209 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7210 if (ret < 0) { 7211 r = X86EMUL_IO_NEEDED; 7212 goto out; 7213 } 7214 7215 bytes -= towrite; 7216 data += towrite; 7217 addr += towrite; 7218 } 7219 out: 7220 return r; 7221 } 7222 7223 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7224 unsigned int bytes, struct x86_exception *exception, 7225 bool system) 7226 { 7227 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7228 u64 access = PFERR_WRITE_MASK; 7229 7230 if (system) 7231 access |= PFERR_IMPLICIT_ACCESS; 7232 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7233 access |= PFERR_USER_MASK; 7234 7235 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7236 access, exception); 7237 } 7238 7239 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7240 unsigned int bytes, struct x86_exception *exception) 7241 { 7242 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7243 vcpu->arch.l1tf_flush_l1d = true; 7244 7245 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7246 PFERR_WRITE_MASK, exception); 7247 } 7248 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7249 7250 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7251 void *insn, int insn_len) 7252 { 7253 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type, 7254 insn, insn_len); 7255 } 7256 7257 int handle_ud(struct kvm_vcpu *vcpu) 7258 { 7259 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7260 int emul_type = EMULTYPE_TRAP_UD; 7261 char sig[5]; /* ud2; .ascii "kvm" */ 7262 struct x86_exception e; 7263 7264 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0))) 7265 return 1; 7266 7267 if (force_emulation_prefix && 7268 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7269 sig, sizeof(sig), &e) == 0 && 7270 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7271 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7272 emul_type = EMULTYPE_TRAP_UD_FORCED; 7273 } 7274 7275 return kvm_emulate_instruction(vcpu, emul_type); 7276 } 7277 EXPORT_SYMBOL_GPL(handle_ud); 7278 7279 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7280 gpa_t gpa, bool write) 7281 { 7282 /* For APIC access vmexit */ 7283 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7284 return 1; 7285 7286 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7287 trace_vcpu_match_mmio(gva, gpa, write, true); 7288 return 1; 7289 } 7290 7291 return 0; 7292 } 7293 7294 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7295 gpa_t *gpa, struct x86_exception *exception, 7296 bool write) 7297 { 7298 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7299 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7300 | (write ? PFERR_WRITE_MASK : 0); 7301 7302 /* 7303 * currently PKRU is only applied to ept enabled guest so 7304 * there is no pkey in EPT page table for L1 guest or EPT 7305 * shadow page table for L2 guest. 7306 */ 7307 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7308 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7309 vcpu->arch.mmio_access, 0, access))) { 7310 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7311 (gva & (PAGE_SIZE - 1)); 7312 trace_vcpu_match_mmio(gva, *gpa, write, false); 7313 return 1; 7314 } 7315 7316 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7317 7318 if (*gpa == INVALID_GPA) 7319 return -1; 7320 7321 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7322 } 7323 7324 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7325 const void *val, int bytes) 7326 { 7327 int ret; 7328 7329 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7330 if (ret < 0) 7331 return 0; 7332 kvm_page_track_write(vcpu, gpa, val, bytes); 7333 return 1; 7334 } 7335 7336 struct read_write_emulator_ops { 7337 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7338 int bytes); 7339 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7340 void *val, int bytes); 7341 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7342 int bytes, void *val); 7343 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7344 void *val, int bytes); 7345 bool write; 7346 }; 7347 7348 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7349 { 7350 if (vcpu->mmio_read_completed) { 7351 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7352 vcpu->mmio_fragments[0].gpa, val); 7353 vcpu->mmio_read_completed = 0; 7354 return 1; 7355 } 7356 7357 return 0; 7358 } 7359 7360 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7361 void *val, int bytes) 7362 { 7363 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7364 } 7365 7366 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7367 void *val, int bytes) 7368 { 7369 return emulator_write_phys(vcpu, gpa, val, bytes); 7370 } 7371 7372 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7373 { 7374 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7375 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7376 } 7377 7378 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7379 void *val, int bytes) 7380 { 7381 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7382 return X86EMUL_IO_NEEDED; 7383 } 7384 7385 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7386 void *val, int bytes) 7387 { 7388 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7389 7390 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7391 return X86EMUL_CONTINUE; 7392 } 7393 7394 static const struct read_write_emulator_ops read_emultor = { 7395 .read_write_prepare = read_prepare, 7396 .read_write_emulate = read_emulate, 7397 .read_write_mmio = vcpu_mmio_read, 7398 .read_write_exit_mmio = read_exit_mmio, 7399 }; 7400 7401 static const struct read_write_emulator_ops write_emultor = { 7402 .read_write_emulate = write_emulate, 7403 .read_write_mmio = write_mmio, 7404 .read_write_exit_mmio = write_exit_mmio, 7405 .write = true, 7406 }; 7407 7408 static int emulator_read_write_onepage(unsigned long addr, void *val, 7409 unsigned int bytes, 7410 struct x86_exception *exception, 7411 struct kvm_vcpu *vcpu, 7412 const struct read_write_emulator_ops *ops) 7413 { 7414 gpa_t gpa; 7415 int handled, ret; 7416 bool write = ops->write; 7417 struct kvm_mmio_fragment *frag; 7418 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7419 7420 /* 7421 * If the exit was due to a NPF we may already have a GPA. 7422 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7423 * Note, this cannot be used on string operations since string 7424 * operation using rep will only have the initial GPA from the NPF 7425 * occurred. 7426 */ 7427 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7428 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7429 gpa = ctxt->gpa_val; 7430 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7431 } else { 7432 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7433 if (ret < 0) 7434 return X86EMUL_PROPAGATE_FAULT; 7435 } 7436 7437 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7438 return X86EMUL_CONTINUE; 7439 7440 /* 7441 * Is this MMIO handled locally? 7442 */ 7443 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7444 if (handled == bytes) 7445 return X86EMUL_CONTINUE; 7446 7447 gpa += handled; 7448 bytes -= handled; 7449 val += handled; 7450 7451 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7452 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7453 frag->gpa = gpa; 7454 frag->data = val; 7455 frag->len = bytes; 7456 return X86EMUL_CONTINUE; 7457 } 7458 7459 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7460 unsigned long addr, 7461 void *val, unsigned int bytes, 7462 struct x86_exception *exception, 7463 const struct read_write_emulator_ops *ops) 7464 { 7465 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7466 gpa_t gpa; 7467 int rc; 7468 7469 if (ops->read_write_prepare && 7470 ops->read_write_prepare(vcpu, val, bytes)) 7471 return X86EMUL_CONTINUE; 7472 7473 vcpu->mmio_nr_fragments = 0; 7474 7475 /* Crossing a page boundary? */ 7476 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7477 int now; 7478 7479 now = -addr & ~PAGE_MASK; 7480 rc = emulator_read_write_onepage(addr, val, now, exception, 7481 vcpu, ops); 7482 7483 if (rc != X86EMUL_CONTINUE) 7484 return rc; 7485 addr += now; 7486 if (ctxt->mode != X86EMUL_MODE_PROT64) 7487 addr = (u32)addr; 7488 val += now; 7489 bytes -= now; 7490 } 7491 7492 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7493 vcpu, ops); 7494 if (rc != X86EMUL_CONTINUE) 7495 return rc; 7496 7497 if (!vcpu->mmio_nr_fragments) 7498 return rc; 7499 7500 gpa = vcpu->mmio_fragments[0].gpa; 7501 7502 vcpu->mmio_needed = 1; 7503 vcpu->mmio_cur_fragment = 0; 7504 7505 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7506 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7507 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7508 vcpu->run->mmio.phys_addr = gpa; 7509 7510 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 7511 } 7512 7513 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 7514 unsigned long addr, 7515 void *val, 7516 unsigned int bytes, 7517 struct x86_exception *exception) 7518 { 7519 return emulator_read_write(ctxt, addr, val, bytes, 7520 exception, &read_emultor); 7521 } 7522 7523 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 7524 unsigned long addr, 7525 const void *val, 7526 unsigned int bytes, 7527 struct x86_exception *exception) 7528 { 7529 return emulator_read_write(ctxt, addr, (void *)val, bytes, 7530 exception, &write_emultor); 7531 } 7532 7533 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 7534 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 7535 7536 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 7537 unsigned long addr, 7538 const void *old, 7539 const void *new, 7540 unsigned int bytes, 7541 struct x86_exception *exception) 7542 { 7543 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7544 u64 page_line_mask; 7545 unsigned long hva; 7546 gpa_t gpa; 7547 int r; 7548 7549 /* guests cmpxchg8b have to be emulated atomically */ 7550 if (bytes > 8 || (bytes & (bytes - 1))) 7551 goto emul_write; 7552 7553 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 7554 7555 if (gpa == INVALID_GPA || 7556 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7557 goto emul_write; 7558 7559 /* 7560 * Emulate the atomic as a straight write to avoid #AC if SLD is 7561 * enabled in the host and the access splits a cache line. 7562 */ 7563 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 7564 page_line_mask = ~(cache_line_size() - 1); 7565 else 7566 page_line_mask = PAGE_MASK; 7567 7568 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 7569 goto emul_write; 7570 7571 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 7572 if (kvm_is_error_hva(hva)) 7573 goto emul_write; 7574 7575 hva += offset_in_page(gpa); 7576 7577 switch (bytes) { 7578 case 1: 7579 r = emulator_try_cmpxchg_user(u8, hva, old, new); 7580 break; 7581 case 2: 7582 r = emulator_try_cmpxchg_user(u16, hva, old, new); 7583 break; 7584 case 4: 7585 r = emulator_try_cmpxchg_user(u32, hva, old, new); 7586 break; 7587 case 8: 7588 r = emulator_try_cmpxchg_user(u64, hva, old, new); 7589 break; 7590 default: 7591 BUG(); 7592 } 7593 7594 if (r < 0) 7595 return X86EMUL_UNHANDLEABLE; 7596 if (r) 7597 return X86EMUL_CMPXCHG_FAILED; 7598 7599 kvm_page_track_write(vcpu, gpa, new, bytes); 7600 7601 return X86EMUL_CONTINUE; 7602 7603 emul_write: 7604 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 7605 7606 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 7607 } 7608 7609 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 7610 unsigned short port, void *data, 7611 unsigned int count, bool in) 7612 { 7613 unsigned i; 7614 int r; 7615 7616 WARN_ON_ONCE(vcpu->arch.pio.count); 7617 for (i = 0; i < count; i++) { 7618 if (in) 7619 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 7620 else 7621 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 7622 7623 if (r) { 7624 if (i == 0) 7625 goto userspace_io; 7626 7627 /* 7628 * Userspace must have unregistered the device while PIO 7629 * was running. Drop writes / read as 0. 7630 */ 7631 if (in) 7632 memset(data, 0, size * (count - i)); 7633 break; 7634 } 7635 7636 data += size; 7637 } 7638 return 1; 7639 7640 userspace_io: 7641 vcpu->arch.pio.port = port; 7642 vcpu->arch.pio.in = in; 7643 vcpu->arch.pio.count = count; 7644 vcpu->arch.pio.size = size; 7645 7646 if (in) 7647 memset(vcpu->arch.pio_data, 0, size * count); 7648 else 7649 memcpy(vcpu->arch.pio_data, data, size * count); 7650 7651 vcpu->run->exit_reason = KVM_EXIT_IO; 7652 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 7653 vcpu->run->io.size = size; 7654 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 7655 vcpu->run->io.count = count; 7656 vcpu->run->io.port = port; 7657 return 0; 7658 } 7659 7660 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 7661 unsigned short port, void *val, unsigned int count) 7662 { 7663 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 7664 if (r) 7665 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 7666 7667 return r; 7668 } 7669 7670 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 7671 { 7672 int size = vcpu->arch.pio.size; 7673 unsigned int count = vcpu->arch.pio.count; 7674 memcpy(val, vcpu->arch.pio_data, size * count); 7675 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 7676 vcpu->arch.pio.count = 0; 7677 } 7678 7679 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 7680 int size, unsigned short port, void *val, 7681 unsigned int count) 7682 { 7683 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7684 if (vcpu->arch.pio.count) { 7685 /* 7686 * Complete a previous iteration that required userspace I/O. 7687 * Note, @count isn't guaranteed to match pio.count as userspace 7688 * can modify ECX before rerunning the vCPU. Ignore any such 7689 * shenanigans as KVM doesn't support modifying the rep count, 7690 * and the emulator ensures @count doesn't overflow the buffer. 7691 */ 7692 complete_emulator_pio_in(vcpu, val); 7693 return 1; 7694 } 7695 7696 return emulator_pio_in(vcpu, size, port, val, count); 7697 } 7698 7699 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 7700 unsigned short port, const void *val, 7701 unsigned int count) 7702 { 7703 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 7704 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 7705 } 7706 7707 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 7708 int size, unsigned short port, 7709 const void *val, unsigned int count) 7710 { 7711 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 7712 } 7713 7714 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 7715 { 7716 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 7717 } 7718 7719 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 7720 { 7721 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 7722 } 7723 7724 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 7725 { 7726 if (!need_emulate_wbinvd(vcpu)) 7727 return X86EMUL_CONTINUE; 7728 7729 if (static_call(kvm_x86_has_wbinvd_exit)()) { 7730 int cpu = get_cpu(); 7731 7732 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 7733 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 7734 wbinvd_ipi, NULL, 1); 7735 put_cpu(); 7736 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 7737 } else 7738 wbinvd(); 7739 return X86EMUL_CONTINUE; 7740 } 7741 7742 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 7743 { 7744 kvm_emulate_wbinvd_noskip(vcpu); 7745 return kvm_skip_emulated_instruction(vcpu); 7746 } 7747 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 7748 7749 7750 7751 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 7752 { 7753 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 7754 } 7755 7756 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 7757 unsigned long *dest) 7758 { 7759 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 7760 } 7761 7762 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 7763 unsigned long value) 7764 { 7765 7766 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 7767 } 7768 7769 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 7770 { 7771 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 7772 } 7773 7774 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 7775 { 7776 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7777 unsigned long value; 7778 7779 switch (cr) { 7780 case 0: 7781 value = kvm_read_cr0(vcpu); 7782 break; 7783 case 2: 7784 value = vcpu->arch.cr2; 7785 break; 7786 case 3: 7787 value = kvm_read_cr3(vcpu); 7788 break; 7789 case 4: 7790 value = kvm_read_cr4(vcpu); 7791 break; 7792 case 8: 7793 value = kvm_get_cr8(vcpu); 7794 break; 7795 default: 7796 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7797 return 0; 7798 } 7799 7800 return value; 7801 } 7802 7803 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 7804 { 7805 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7806 int res = 0; 7807 7808 switch (cr) { 7809 case 0: 7810 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 7811 break; 7812 case 2: 7813 vcpu->arch.cr2 = val; 7814 break; 7815 case 3: 7816 res = kvm_set_cr3(vcpu, val); 7817 break; 7818 case 4: 7819 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 7820 break; 7821 case 8: 7822 res = kvm_set_cr8(vcpu, val); 7823 break; 7824 default: 7825 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7826 res = -1; 7827 } 7828 7829 return res; 7830 } 7831 7832 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 7833 { 7834 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 7835 } 7836 7837 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7838 { 7839 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 7840 } 7841 7842 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7843 { 7844 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 7845 } 7846 7847 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7848 { 7849 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 7850 } 7851 7852 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7853 { 7854 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 7855 } 7856 7857 static unsigned long emulator_get_cached_segment_base( 7858 struct x86_emulate_ctxt *ctxt, int seg) 7859 { 7860 return get_segment_base(emul_to_vcpu(ctxt), seg); 7861 } 7862 7863 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 7864 struct desc_struct *desc, u32 *base3, 7865 int seg) 7866 { 7867 struct kvm_segment var; 7868 7869 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 7870 *selector = var.selector; 7871 7872 if (var.unusable) { 7873 memset(desc, 0, sizeof(*desc)); 7874 if (base3) 7875 *base3 = 0; 7876 return false; 7877 } 7878 7879 if (var.g) 7880 var.limit >>= 12; 7881 set_desc_limit(desc, var.limit); 7882 set_desc_base(desc, (unsigned long)var.base); 7883 #ifdef CONFIG_X86_64 7884 if (base3) 7885 *base3 = var.base >> 32; 7886 #endif 7887 desc->type = var.type; 7888 desc->s = var.s; 7889 desc->dpl = var.dpl; 7890 desc->p = var.present; 7891 desc->avl = var.avl; 7892 desc->l = var.l; 7893 desc->d = var.db; 7894 desc->g = var.g; 7895 7896 return true; 7897 } 7898 7899 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 7900 struct desc_struct *desc, u32 base3, 7901 int seg) 7902 { 7903 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7904 struct kvm_segment var; 7905 7906 var.selector = selector; 7907 var.base = get_desc_base(desc); 7908 #ifdef CONFIG_X86_64 7909 var.base |= ((u64)base3) << 32; 7910 #endif 7911 var.limit = get_desc_limit(desc); 7912 if (desc->g) 7913 var.limit = (var.limit << 12) | 0xfff; 7914 var.type = desc->type; 7915 var.dpl = desc->dpl; 7916 var.db = desc->d; 7917 var.s = desc->s; 7918 var.l = desc->l; 7919 var.g = desc->g; 7920 var.avl = desc->avl; 7921 var.present = desc->p; 7922 var.unusable = !var.present; 7923 var.padding = 0; 7924 7925 kvm_set_segment(vcpu, &var, seg); 7926 return; 7927 } 7928 7929 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 7930 u32 msr_index, u64 *pdata) 7931 { 7932 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7933 int r; 7934 7935 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 7936 7937 if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 7938 complete_emulated_rdmsr, r)) { 7939 /* Bounce to user space */ 7940 return X86EMUL_IO_NEEDED; 7941 } 7942 7943 return r; 7944 } 7945 7946 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 7947 u32 msr_index, u64 data) 7948 { 7949 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7950 int r; 7951 7952 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 7953 7954 if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 7955 complete_emulated_msr_access, r)) { 7956 /* Bounce to user space */ 7957 return X86EMUL_IO_NEEDED; 7958 } 7959 7960 return r; 7961 } 7962 7963 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 7964 u32 msr_index, u64 *pdata) 7965 { 7966 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 7967 } 7968 7969 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 7970 u32 msr_index, u64 data) 7971 { 7972 return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data); 7973 } 7974 7975 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt) 7976 { 7977 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7978 7979 return vcpu->arch.smbase; 7980 } 7981 7982 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase) 7983 { 7984 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7985 7986 vcpu->arch.smbase = smbase; 7987 } 7988 7989 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 7990 u32 pmc) 7991 { 7992 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc)) 7993 return 0; 7994 return -EINVAL; 7995 } 7996 7997 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 7998 u32 pmc, u64 *pdata) 7999 { 8000 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 8001 } 8002 8003 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 8004 { 8005 emul_to_vcpu(ctxt)->arch.halt_request = 1; 8006 } 8007 8008 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 8009 struct x86_instruction_info *info, 8010 enum x86_intercept_stage stage) 8011 { 8012 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 8013 &ctxt->exception); 8014 } 8015 8016 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8017 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8018 bool exact_only) 8019 { 8020 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8021 } 8022 8023 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt) 8024 { 8025 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM); 8026 } 8027 8028 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8029 { 8030 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8031 } 8032 8033 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8034 { 8035 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8036 } 8037 8038 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8039 { 8040 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8041 } 8042 8043 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8044 { 8045 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8046 } 8047 8048 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8049 { 8050 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8051 } 8052 8053 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8054 { 8055 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8056 } 8057 8058 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 8059 { 8060 return emul_to_vcpu(ctxt)->arch.hflags; 8061 } 8062 8063 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt) 8064 { 8065 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8066 8067 kvm_smm_changed(vcpu, false); 8068 } 8069 8070 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt, 8071 const char *smstate) 8072 { 8073 return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate); 8074 } 8075 8076 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8077 { 8078 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8079 } 8080 8081 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8082 { 8083 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8084 } 8085 8086 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8087 { 8088 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8089 8090 if (!kvm->vm_bugged) 8091 kvm_vm_bugged(kvm); 8092 } 8093 8094 static const struct x86_emulate_ops emulate_ops = { 8095 .vm_bugged = emulator_vm_bugged, 8096 .read_gpr = emulator_read_gpr, 8097 .write_gpr = emulator_write_gpr, 8098 .read_std = emulator_read_std, 8099 .write_std = emulator_write_std, 8100 .read_phys = kvm_read_guest_phys_system, 8101 .fetch = kvm_fetch_guest_virt, 8102 .read_emulated = emulator_read_emulated, 8103 .write_emulated = emulator_write_emulated, 8104 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8105 .invlpg = emulator_invlpg, 8106 .pio_in_emulated = emulator_pio_in_emulated, 8107 .pio_out_emulated = emulator_pio_out_emulated, 8108 .get_segment = emulator_get_segment, 8109 .set_segment = emulator_set_segment, 8110 .get_cached_segment_base = emulator_get_cached_segment_base, 8111 .get_gdt = emulator_get_gdt, 8112 .get_idt = emulator_get_idt, 8113 .set_gdt = emulator_set_gdt, 8114 .set_idt = emulator_set_idt, 8115 .get_cr = emulator_get_cr, 8116 .set_cr = emulator_set_cr, 8117 .cpl = emulator_get_cpl, 8118 .get_dr = emulator_get_dr, 8119 .set_dr = emulator_set_dr, 8120 .get_smbase = emulator_get_smbase, 8121 .set_smbase = emulator_set_smbase, 8122 .set_msr_with_filter = emulator_set_msr_with_filter, 8123 .get_msr_with_filter = emulator_get_msr_with_filter, 8124 .set_msr = emulator_set_msr, 8125 .get_msr = emulator_get_msr, 8126 .check_pmc = emulator_check_pmc, 8127 .read_pmc = emulator_read_pmc, 8128 .halt = emulator_halt, 8129 .wbinvd = emulator_wbinvd, 8130 .fix_hypercall = emulator_fix_hypercall, 8131 .intercept = emulator_intercept, 8132 .get_cpuid = emulator_get_cpuid, 8133 .guest_has_long_mode = emulator_guest_has_long_mode, 8134 .guest_has_movbe = emulator_guest_has_movbe, 8135 .guest_has_fxsr = emulator_guest_has_fxsr, 8136 .guest_has_rdpid = emulator_guest_has_rdpid, 8137 .set_nmi_mask = emulator_set_nmi_mask, 8138 .get_hflags = emulator_get_hflags, 8139 .exiting_smm = emulator_exiting_smm, 8140 .leave_smm = emulator_leave_smm, 8141 .triple_fault = emulator_triple_fault, 8142 .set_xcr = emulator_set_xcr, 8143 }; 8144 8145 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8146 { 8147 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8148 /* 8149 * an sti; sti; sequence only disable interrupts for the first 8150 * instruction. So, if the last instruction, be it emulated or 8151 * not, left the system with the INT_STI flag enabled, it 8152 * means that the last instruction is an sti. We should not 8153 * leave the flag on in this case. The same goes for mov ss 8154 */ 8155 if (int_shadow & mask) 8156 mask = 0; 8157 if (unlikely(int_shadow || mask)) { 8158 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 8159 if (!mask) 8160 kvm_make_request(KVM_REQ_EVENT, vcpu); 8161 } 8162 } 8163 8164 static bool inject_emulated_exception(struct kvm_vcpu *vcpu) 8165 { 8166 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8167 if (ctxt->exception.vector == PF_VECTOR) 8168 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8169 8170 if (ctxt->exception.error_code_valid) 8171 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8172 ctxt->exception.error_code); 8173 else 8174 kvm_queue_exception(vcpu, ctxt->exception.vector); 8175 return false; 8176 } 8177 8178 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8179 { 8180 struct x86_emulate_ctxt *ctxt; 8181 8182 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8183 if (!ctxt) { 8184 pr_err("kvm: failed to allocate vcpu's emulator\n"); 8185 return NULL; 8186 } 8187 8188 ctxt->vcpu = vcpu; 8189 ctxt->ops = &emulate_ops; 8190 vcpu->arch.emulate_ctxt = ctxt; 8191 8192 return ctxt; 8193 } 8194 8195 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8196 { 8197 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8198 int cs_db, cs_l; 8199 8200 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8201 8202 ctxt->gpa_available = false; 8203 ctxt->eflags = kvm_get_rflags(vcpu); 8204 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8205 8206 ctxt->eip = kvm_rip_read(vcpu); 8207 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8208 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8209 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8210 cs_db ? X86EMUL_MODE_PROT32 : 8211 X86EMUL_MODE_PROT16; 8212 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 8213 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK); 8214 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK); 8215 8216 ctxt->interruptibility = 0; 8217 ctxt->have_exception = false; 8218 ctxt->exception.vector = -1; 8219 ctxt->perm_ok = false; 8220 8221 init_decode_cache(ctxt); 8222 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8223 } 8224 8225 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 8226 { 8227 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8228 int ret; 8229 8230 init_emulate_ctxt(vcpu); 8231 8232 ctxt->op_bytes = 2; 8233 ctxt->ad_bytes = 2; 8234 ctxt->_eip = ctxt->eip + inc_eip; 8235 ret = emulate_int_real(ctxt, irq); 8236 8237 if (ret != X86EMUL_CONTINUE) { 8238 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8239 } else { 8240 ctxt->eip = ctxt->_eip; 8241 kvm_rip_write(vcpu, ctxt->eip); 8242 kvm_set_rflags(vcpu, ctxt->eflags); 8243 } 8244 } 8245 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8246 8247 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8248 u8 ndata, u8 *insn_bytes, u8 insn_size) 8249 { 8250 struct kvm_run *run = vcpu->run; 8251 u64 info[5]; 8252 u8 info_start; 8253 8254 /* 8255 * Zero the whole array used to retrieve the exit info, as casting to 8256 * u32 for select entries will leave some chunks uninitialized. 8257 */ 8258 memset(&info, 0, sizeof(info)); 8259 8260 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], 8261 &info[2], (u32 *)&info[3], 8262 (u32 *)&info[4]); 8263 8264 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8265 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8266 8267 /* 8268 * There's currently space for 13 entries, but 5 are used for the exit 8269 * reason and info. Restrict to 4 to reduce the maintenance burden 8270 * when expanding kvm_run.emulation_failure in the future. 8271 */ 8272 if (WARN_ON_ONCE(ndata > 4)) 8273 ndata = 4; 8274 8275 /* Always include the flags as a 'data' entry. */ 8276 info_start = 1; 8277 run->emulation_failure.flags = 0; 8278 8279 if (insn_size) { 8280 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8281 sizeof(run->emulation_failure.insn_bytes) != 16)); 8282 info_start += 2; 8283 run->emulation_failure.flags |= 8284 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8285 run->emulation_failure.insn_size = insn_size; 8286 memset(run->emulation_failure.insn_bytes, 0x90, 8287 sizeof(run->emulation_failure.insn_bytes)); 8288 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8289 } 8290 8291 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8292 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8293 ndata * sizeof(data[0])); 8294 8295 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8296 } 8297 8298 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8299 { 8300 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8301 8302 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8303 ctxt->fetch.end - ctxt->fetch.data); 8304 } 8305 8306 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8307 u8 ndata) 8308 { 8309 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8310 } 8311 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8312 8313 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8314 { 8315 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8316 } 8317 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8318 8319 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8320 { 8321 struct kvm *kvm = vcpu->kvm; 8322 8323 ++vcpu->stat.insn_emulation_fail; 8324 trace_kvm_emulate_insn_failed(vcpu); 8325 8326 if (emulation_type & EMULTYPE_VMWARE_GP) { 8327 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8328 return 1; 8329 } 8330 8331 if (kvm->arch.exit_on_emulation_error || 8332 (emulation_type & EMULTYPE_SKIP)) { 8333 prepare_emulation_ctxt_failure_exit(vcpu); 8334 return 0; 8335 } 8336 8337 kvm_queue_exception(vcpu, UD_VECTOR); 8338 8339 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 8340 prepare_emulation_ctxt_failure_exit(vcpu); 8341 return 0; 8342 } 8343 8344 return 1; 8345 } 8346 8347 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8348 bool write_fault_to_shadow_pgtable, 8349 int emulation_type) 8350 { 8351 gpa_t gpa = cr2_or_gpa; 8352 kvm_pfn_t pfn; 8353 8354 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8355 return false; 8356 8357 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8358 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8359 return false; 8360 8361 if (!vcpu->arch.mmu->root_role.direct) { 8362 /* 8363 * Write permission should be allowed since only 8364 * write access need to be emulated. 8365 */ 8366 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8367 8368 /* 8369 * If the mapping is invalid in guest, let cpu retry 8370 * it to generate fault. 8371 */ 8372 if (gpa == INVALID_GPA) 8373 return true; 8374 } 8375 8376 /* 8377 * Do not retry the unhandleable instruction if it faults on the 8378 * readonly host memory, otherwise it will goto a infinite loop: 8379 * retry instruction -> write #PF -> emulation fail -> retry 8380 * instruction -> ... 8381 */ 8382 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 8383 8384 /* 8385 * If the instruction failed on the error pfn, it can not be fixed, 8386 * report the error to userspace. 8387 */ 8388 if (is_error_noslot_pfn(pfn)) 8389 return false; 8390 8391 kvm_release_pfn_clean(pfn); 8392 8393 /* The instructions are well-emulated on direct mmu. */ 8394 if (vcpu->arch.mmu->root_role.direct) { 8395 unsigned int indirect_shadow_pages; 8396 8397 write_lock(&vcpu->kvm->mmu_lock); 8398 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 8399 write_unlock(&vcpu->kvm->mmu_lock); 8400 8401 if (indirect_shadow_pages) 8402 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8403 8404 return true; 8405 } 8406 8407 /* 8408 * if emulation was due to access to shadowed page table 8409 * and it failed try to unshadow page and re-enter the 8410 * guest to let CPU execute the instruction. 8411 */ 8412 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8413 8414 /* 8415 * If the access faults on its page table, it can not 8416 * be fixed by unprotecting shadow page and it should 8417 * be reported to userspace. 8418 */ 8419 return !write_fault_to_shadow_pgtable; 8420 } 8421 8422 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8423 gpa_t cr2_or_gpa, int emulation_type) 8424 { 8425 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8426 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8427 8428 last_retry_eip = vcpu->arch.last_retry_eip; 8429 last_retry_addr = vcpu->arch.last_retry_addr; 8430 8431 /* 8432 * If the emulation is caused by #PF and it is non-page_table 8433 * writing instruction, it means the VM-EXIT is caused by shadow 8434 * page protected, we can zap the shadow page and retry this 8435 * instruction directly. 8436 * 8437 * Note: if the guest uses a non-page-table modifying instruction 8438 * on the PDE that points to the instruction, then we will unmap 8439 * the instruction and go to an infinite loop. So, we cache the 8440 * last retried eip and the last fault address, if we meet the eip 8441 * and the address again, we can break out of the potential infinite 8442 * loop. 8443 */ 8444 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8445 8446 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8447 return false; 8448 8449 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8450 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8451 return false; 8452 8453 if (x86_page_table_writing_insn(ctxt)) 8454 return false; 8455 8456 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8457 return false; 8458 8459 vcpu->arch.last_retry_eip = ctxt->eip; 8460 vcpu->arch.last_retry_addr = cr2_or_gpa; 8461 8462 if (!vcpu->arch.mmu->root_role.direct) 8463 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8464 8465 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8466 8467 return true; 8468 } 8469 8470 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8471 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8472 8473 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm) 8474 { 8475 trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm); 8476 8477 if (entering_smm) { 8478 vcpu->arch.hflags |= HF_SMM_MASK; 8479 } else { 8480 vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK); 8481 8482 /* Process a latched INIT or SMI, if any. */ 8483 kvm_make_request(KVM_REQ_EVENT, vcpu); 8484 8485 /* 8486 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band, 8487 * on SMM exit we still need to reload them from 8488 * guest memory 8489 */ 8490 vcpu->arch.pdptrs_from_userspace = false; 8491 } 8492 8493 kvm_mmu_reset_context(vcpu); 8494 } 8495 8496 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8497 unsigned long *db) 8498 { 8499 u32 dr6 = 0; 8500 int i; 8501 u32 enable, rwlen; 8502 8503 enable = dr7; 8504 rwlen = dr7 >> 16; 8505 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8506 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8507 dr6 |= (1 << i); 8508 return dr6; 8509 } 8510 8511 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8512 { 8513 struct kvm_run *kvm_run = vcpu->run; 8514 8515 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8516 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8517 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8518 kvm_run->debug.arch.exception = DB_VECTOR; 8519 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8520 return 0; 8521 } 8522 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8523 return 1; 8524 } 8525 8526 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8527 { 8528 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8529 int r; 8530 8531 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 8532 if (unlikely(!r)) 8533 return 0; 8534 8535 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8536 8537 /* 8538 * rflags is the old, "raw" value of the flags. The new value has 8539 * not been saved yet. 8540 * 8541 * This is correct even for TF set by the guest, because "the 8542 * processor will not generate this exception after the instruction 8543 * that sets the TF flag". 8544 */ 8545 if (unlikely(rflags & X86_EFLAGS_TF)) 8546 r = kvm_vcpu_do_singlestep(vcpu); 8547 return r; 8548 } 8549 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8550 8551 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, int *r) 8552 { 8553 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 8554 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 8555 struct kvm_run *kvm_run = vcpu->run; 8556 unsigned long eip = kvm_get_linear_rip(vcpu); 8557 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8558 vcpu->arch.guest_debug_dr7, 8559 vcpu->arch.eff_db); 8560 8561 if (dr6 != 0) { 8562 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 8563 kvm_run->debug.arch.pc = eip; 8564 kvm_run->debug.arch.exception = DB_VECTOR; 8565 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8566 *r = 0; 8567 return true; 8568 } 8569 } 8570 8571 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 8572 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) { 8573 unsigned long eip = kvm_get_linear_rip(vcpu); 8574 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8575 vcpu->arch.dr7, 8576 vcpu->arch.db); 8577 8578 if (dr6 != 0) { 8579 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 8580 *r = 1; 8581 return true; 8582 } 8583 } 8584 8585 return false; 8586 } 8587 8588 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 8589 { 8590 switch (ctxt->opcode_len) { 8591 case 1: 8592 switch (ctxt->b) { 8593 case 0xe4: /* IN */ 8594 case 0xe5: 8595 case 0xec: 8596 case 0xed: 8597 case 0xe6: /* OUT */ 8598 case 0xe7: 8599 case 0xee: 8600 case 0xef: 8601 case 0x6c: /* INS */ 8602 case 0x6d: 8603 case 0x6e: /* OUTS */ 8604 case 0x6f: 8605 return true; 8606 } 8607 break; 8608 case 2: 8609 switch (ctxt->b) { 8610 case 0x33: /* RDPMC */ 8611 return true; 8612 } 8613 break; 8614 } 8615 8616 return false; 8617 } 8618 8619 /* 8620 * Decode an instruction for emulation. The caller is responsible for handling 8621 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 8622 * (and wrong) when emulating on an intercepted fault-like exception[*], as 8623 * code breakpoints have higher priority and thus have already been done by 8624 * hardware. 8625 * 8626 * [*] Except #MC, which is higher priority, but KVM should never emulate in 8627 * response to a machine check. 8628 */ 8629 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 8630 void *insn, int insn_len) 8631 { 8632 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8633 int r; 8634 8635 init_emulate_ctxt(vcpu); 8636 8637 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 8638 8639 trace_kvm_emulate_insn_start(vcpu); 8640 ++vcpu->stat.insn_emulation; 8641 8642 return r; 8643 } 8644 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 8645 8646 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8647 int emulation_type, void *insn, int insn_len) 8648 { 8649 int r; 8650 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8651 bool writeback = true; 8652 bool write_fault_to_spt; 8653 8654 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len))) 8655 return 1; 8656 8657 vcpu->arch.l1tf_flush_l1d = true; 8658 8659 /* 8660 * Clear write_fault_to_shadow_pgtable here to ensure it is 8661 * never reused. 8662 */ 8663 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 8664 vcpu->arch.write_fault_to_shadow_pgtable = false; 8665 8666 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 8667 kvm_clear_exception_queue(vcpu); 8668 8669 /* 8670 * Return immediately if RIP hits a code breakpoint, such #DBs 8671 * are fault-like and are higher priority than any faults on 8672 * the code fetch itself. 8673 */ 8674 if (!(emulation_type & EMULTYPE_SKIP) && 8675 kvm_vcpu_check_code_breakpoint(vcpu, &r)) 8676 return r; 8677 8678 r = x86_decode_emulated_instruction(vcpu, emulation_type, 8679 insn, insn_len); 8680 if (r != EMULATION_OK) { 8681 if ((emulation_type & EMULTYPE_TRAP_UD) || 8682 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 8683 kvm_queue_exception(vcpu, UD_VECTOR); 8684 return 1; 8685 } 8686 if (reexecute_instruction(vcpu, cr2_or_gpa, 8687 write_fault_to_spt, 8688 emulation_type)) 8689 return 1; 8690 if (ctxt->have_exception) { 8691 /* 8692 * #UD should result in just EMULATION_FAILED, and trap-like 8693 * exception should not be encountered during decode. 8694 */ 8695 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 8696 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 8697 inject_emulated_exception(vcpu); 8698 return 1; 8699 } 8700 return handle_emulation_failure(vcpu, emulation_type); 8701 } 8702 } 8703 8704 if ((emulation_type & EMULTYPE_VMWARE_GP) && 8705 !is_vmware_backdoor_opcode(ctxt)) { 8706 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8707 return 1; 8708 } 8709 8710 /* 8711 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 8712 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 8713 * The caller is responsible for updating interruptibility state and 8714 * injecting single-step #DBs. 8715 */ 8716 if (emulation_type & EMULTYPE_SKIP) { 8717 if (ctxt->mode != X86EMUL_MODE_PROT64) 8718 ctxt->eip = (u32)ctxt->_eip; 8719 else 8720 ctxt->eip = ctxt->_eip; 8721 8722 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 8723 r = 1; 8724 goto writeback; 8725 } 8726 8727 kvm_rip_write(vcpu, ctxt->eip); 8728 if (ctxt->eflags & X86_EFLAGS_RF) 8729 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 8730 return 1; 8731 } 8732 8733 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 8734 return 1; 8735 8736 /* this is needed for vmware backdoor interface to work since it 8737 changes registers values during IO operation */ 8738 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 8739 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8740 emulator_invalidate_register_cache(ctxt); 8741 } 8742 8743 restart: 8744 if (emulation_type & EMULTYPE_PF) { 8745 /* Save the faulting GPA (cr2) in the address field */ 8746 ctxt->exception.address = cr2_or_gpa; 8747 8748 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 8749 if (vcpu->arch.mmu->root_role.direct) { 8750 ctxt->gpa_available = true; 8751 ctxt->gpa_val = cr2_or_gpa; 8752 } 8753 } else { 8754 /* Sanitize the address out of an abundance of paranoia. */ 8755 ctxt->exception.address = 0; 8756 } 8757 8758 r = x86_emulate_insn(ctxt); 8759 8760 if (r == EMULATION_INTERCEPTED) 8761 return 1; 8762 8763 if (r == EMULATION_FAILED) { 8764 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt, 8765 emulation_type)) 8766 return 1; 8767 8768 return handle_emulation_failure(vcpu, emulation_type); 8769 } 8770 8771 if (ctxt->have_exception) { 8772 r = 1; 8773 if (inject_emulated_exception(vcpu)) 8774 return r; 8775 } else if (vcpu->arch.pio.count) { 8776 if (!vcpu->arch.pio.in) { 8777 /* FIXME: return into emulator if single-stepping. */ 8778 vcpu->arch.pio.count = 0; 8779 } else { 8780 writeback = false; 8781 vcpu->arch.complete_userspace_io = complete_emulated_pio; 8782 } 8783 r = 0; 8784 } else if (vcpu->mmio_needed) { 8785 ++vcpu->stat.mmio_exits; 8786 8787 if (!vcpu->mmio_is_write) 8788 writeback = false; 8789 r = 0; 8790 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 8791 } else if (vcpu->arch.complete_userspace_io) { 8792 writeback = false; 8793 r = 0; 8794 } else if (r == EMULATION_RESTART) 8795 goto restart; 8796 else 8797 r = 1; 8798 8799 writeback: 8800 if (writeback) { 8801 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8802 toggle_interruptibility(vcpu, ctxt->interruptibility); 8803 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8804 if (!ctxt->have_exception || 8805 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 8806 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8807 if (ctxt->is_branch) 8808 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 8809 kvm_rip_write(vcpu, ctxt->eip); 8810 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 8811 r = kvm_vcpu_do_singlestep(vcpu); 8812 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu); 8813 __kvm_set_rflags(vcpu, ctxt->eflags); 8814 } 8815 8816 /* 8817 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 8818 * do nothing, and it will be requested again as soon as 8819 * the shadow expires. But we still need to check here, 8820 * because POPF has no interrupt shadow. 8821 */ 8822 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 8823 kvm_make_request(KVM_REQ_EVENT, vcpu); 8824 } else 8825 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 8826 8827 return r; 8828 } 8829 8830 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 8831 { 8832 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 8833 } 8834 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 8835 8836 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 8837 void *insn, int insn_len) 8838 { 8839 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 8840 } 8841 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 8842 8843 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 8844 { 8845 vcpu->arch.pio.count = 0; 8846 return 1; 8847 } 8848 8849 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 8850 { 8851 vcpu->arch.pio.count = 0; 8852 8853 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 8854 return 1; 8855 8856 return kvm_skip_emulated_instruction(vcpu); 8857 } 8858 8859 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 8860 unsigned short port) 8861 { 8862 unsigned long val = kvm_rax_read(vcpu); 8863 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 8864 8865 if (ret) 8866 return ret; 8867 8868 /* 8869 * Workaround userspace that relies on old KVM behavior of %rip being 8870 * incremented prior to exiting to userspace to handle "OUT 0x7e". 8871 */ 8872 if (port == 0x7e && 8873 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 8874 vcpu->arch.complete_userspace_io = 8875 complete_fast_pio_out_port_0x7e; 8876 kvm_skip_emulated_instruction(vcpu); 8877 } else { 8878 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 8879 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 8880 } 8881 return 0; 8882 } 8883 8884 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 8885 { 8886 unsigned long val; 8887 8888 /* We should only ever be called with arch.pio.count equal to 1 */ 8889 BUG_ON(vcpu->arch.pio.count != 1); 8890 8891 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 8892 vcpu->arch.pio.count = 0; 8893 return 1; 8894 } 8895 8896 /* For size less than 4 we merge, else we zero extend */ 8897 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 8898 8899 complete_emulator_pio_in(vcpu, &val); 8900 kvm_rax_write(vcpu, val); 8901 8902 return kvm_skip_emulated_instruction(vcpu); 8903 } 8904 8905 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 8906 unsigned short port) 8907 { 8908 unsigned long val; 8909 int ret; 8910 8911 /* For size less than 4 we merge, else we zero extend */ 8912 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 8913 8914 ret = emulator_pio_in(vcpu, size, port, &val, 1); 8915 if (ret) { 8916 kvm_rax_write(vcpu, val); 8917 return ret; 8918 } 8919 8920 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 8921 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 8922 8923 return 0; 8924 } 8925 8926 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 8927 { 8928 int ret; 8929 8930 if (in) 8931 ret = kvm_fast_pio_in(vcpu, size, port); 8932 else 8933 ret = kvm_fast_pio_out(vcpu, size, port); 8934 return ret && kvm_skip_emulated_instruction(vcpu); 8935 } 8936 EXPORT_SYMBOL_GPL(kvm_fast_pio); 8937 8938 static int kvmclock_cpu_down_prep(unsigned int cpu) 8939 { 8940 __this_cpu_write(cpu_tsc_khz, 0); 8941 return 0; 8942 } 8943 8944 static void tsc_khz_changed(void *data) 8945 { 8946 struct cpufreq_freqs *freq = data; 8947 unsigned long khz = 0; 8948 8949 if (data) 8950 khz = freq->new; 8951 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 8952 khz = cpufreq_quick_get(raw_smp_processor_id()); 8953 if (!khz) 8954 khz = tsc_khz; 8955 __this_cpu_write(cpu_tsc_khz, khz); 8956 } 8957 8958 #ifdef CONFIG_X86_64 8959 static void kvm_hyperv_tsc_notifier(void) 8960 { 8961 struct kvm *kvm; 8962 int cpu; 8963 8964 mutex_lock(&kvm_lock); 8965 list_for_each_entry(kvm, &vm_list, vm_list) 8966 kvm_make_mclock_inprogress_request(kvm); 8967 8968 /* no guest entries from this point */ 8969 hyperv_stop_tsc_emulation(); 8970 8971 /* TSC frequency always matches when on Hyper-V */ 8972 for_each_present_cpu(cpu) 8973 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 8974 kvm_caps.max_guest_tsc_khz = tsc_khz; 8975 8976 list_for_each_entry(kvm, &vm_list, vm_list) { 8977 __kvm_start_pvclock_update(kvm); 8978 pvclock_update_vm_gtod_copy(kvm); 8979 kvm_end_pvclock_update(kvm); 8980 } 8981 8982 mutex_unlock(&kvm_lock); 8983 } 8984 #endif 8985 8986 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 8987 { 8988 struct kvm *kvm; 8989 struct kvm_vcpu *vcpu; 8990 int send_ipi = 0; 8991 unsigned long i; 8992 8993 /* 8994 * We allow guests to temporarily run on slowing clocks, 8995 * provided we notify them after, or to run on accelerating 8996 * clocks, provided we notify them before. Thus time never 8997 * goes backwards. 8998 * 8999 * However, we have a problem. We can't atomically update 9000 * the frequency of a given CPU from this function; it is 9001 * merely a notifier, which can be called from any CPU. 9002 * Changing the TSC frequency at arbitrary points in time 9003 * requires a recomputation of local variables related to 9004 * the TSC for each VCPU. We must flag these local variables 9005 * to be updated and be sure the update takes place with the 9006 * new frequency before any guests proceed. 9007 * 9008 * Unfortunately, the combination of hotplug CPU and frequency 9009 * change creates an intractable locking scenario; the order 9010 * of when these callouts happen is undefined with respect to 9011 * CPU hotplug, and they can race with each other. As such, 9012 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 9013 * undefined; you can actually have a CPU frequency change take 9014 * place in between the computation of X and the setting of the 9015 * variable. To protect against this problem, all updates of 9016 * the per_cpu tsc_khz variable are done in an interrupt 9017 * protected IPI, and all callers wishing to update the value 9018 * must wait for a synchronous IPI to complete (which is trivial 9019 * if the caller is on the CPU already). This establishes the 9020 * necessary total order on variable updates. 9021 * 9022 * Note that because a guest time update may take place 9023 * anytime after the setting of the VCPU's request bit, the 9024 * correct TSC value must be set before the request. However, 9025 * to ensure the update actually makes it to any guest which 9026 * starts running in hardware virtualization between the set 9027 * and the acquisition of the spinlock, we must also ping the 9028 * CPU after setting the request bit. 9029 * 9030 */ 9031 9032 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9033 9034 mutex_lock(&kvm_lock); 9035 list_for_each_entry(kvm, &vm_list, vm_list) { 9036 kvm_for_each_vcpu(i, vcpu, kvm) { 9037 if (vcpu->cpu != cpu) 9038 continue; 9039 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9040 if (vcpu->cpu != raw_smp_processor_id()) 9041 send_ipi = 1; 9042 } 9043 } 9044 mutex_unlock(&kvm_lock); 9045 9046 if (freq->old < freq->new && send_ipi) { 9047 /* 9048 * We upscale the frequency. Must make the guest 9049 * doesn't see old kvmclock values while running with 9050 * the new frequency, otherwise we risk the guest sees 9051 * time go backwards. 9052 * 9053 * In case we update the frequency for another cpu 9054 * (which might be in guest context) send an interrupt 9055 * to kick the cpu out of guest context. Next time 9056 * guest context is entered kvmclock will be updated, 9057 * so the guest will not see stale values. 9058 */ 9059 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9060 } 9061 } 9062 9063 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9064 void *data) 9065 { 9066 struct cpufreq_freqs *freq = data; 9067 int cpu; 9068 9069 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9070 return 0; 9071 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9072 return 0; 9073 9074 for_each_cpu(cpu, freq->policy->cpus) 9075 __kvmclock_cpufreq_notifier(freq, cpu); 9076 9077 return 0; 9078 } 9079 9080 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9081 .notifier_call = kvmclock_cpufreq_notifier 9082 }; 9083 9084 static int kvmclock_cpu_online(unsigned int cpu) 9085 { 9086 tsc_khz_changed(NULL); 9087 return 0; 9088 } 9089 9090 static void kvm_timer_init(void) 9091 { 9092 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9093 max_tsc_khz = tsc_khz; 9094 9095 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9096 struct cpufreq_policy *policy; 9097 int cpu; 9098 9099 cpu = get_cpu(); 9100 policy = cpufreq_cpu_get(cpu); 9101 if (policy) { 9102 if (policy->cpuinfo.max_freq) 9103 max_tsc_khz = policy->cpuinfo.max_freq; 9104 cpufreq_cpu_put(policy); 9105 } 9106 put_cpu(); 9107 } 9108 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9109 CPUFREQ_TRANSITION_NOTIFIER); 9110 } 9111 9112 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9113 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9114 } 9115 9116 #ifdef CONFIG_X86_64 9117 static void pvclock_gtod_update_fn(struct work_struct *work) 9118 { 9119 struct kvm *kvm; 9120 struct kvm_vcpu *vcpu; 9121 unsigned long i; 9122 9123 mutex_lock(&kvm_lock); 9124 list_for_each_entry(kvm, &vm_list, vm_list) 9125 kvm_for_each_vcpu(i, vcpu, kvm) 9126 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9127 atomic_set(&kvm_guest_has_master_clock, 0); 9128 mutex_unlock(&kvm_lock); 9129 } 9130 9131 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9132 9133 /* 9134 * Indirection to move queue_work() out of the tk_core.seq write held 9135 * region to prevent possible deadlocks against time accessors which 9136 * are invoked with work related locks held. 9137 */ 9138 static void pvclock_irq_work_fn(struct irq_work *w) 9139 { 9140 queue_work(system_long_wq, &pvclock_gtod_work); 9141 } 9142 9143 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9144 9145 /* 9146 * Notification about pvclock gtod data update. 9147 */ 9148 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9149 void *priv) 9150 { 9151 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9152 struct timekeeper *tk = priv; 9153 9154 update_pvclock_gtod(tk); 9155 9156 /* 9157 * Disable master clock if host does not trust, or does not use, 9158 * TSC based clocksource. Delegate queue_work() to irq_work as 9159 * this is invoked with tk_core.seq write held. 9160 */ 9161 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9162 atomic_read(&kvm_guest_has_master_clock) != 0) 9163 irq_work_queue(&pvclock_irq_work); 9164 return 0; 9165 } 9166 9167 static struct notifier_block pvclock_gtod_notifier = { 9168 .notifier_call = pvclock_gtod_notify, 9169 }; 9170 #endif 9171 9172 int kvm_arch_init(void *opaque) 9173 { 9174 struct kvm_x86_init_ops *ops = opaque; 9175 u64 host_pat; 9176 int r; 9177 9178 if (kvm_x86_ops.hardware_enable) { 9179 pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name); 9180 return -EEXIST; 9181 } 9182 9183 if (!ops->cpu_has_kvm_support()) { 9184 pr_err_ratelimited("kvm: no hardware support for '%s'\n", 9185 ops->runtime_ops->name); 9186 return -EOPNOTSUPP; 9187 } 9188 if (ops->disabled_by_bios()) { 9189 pr_err_ratelimited("kvm: support for '%s' disabled by bios\n", 9190 ops->runtime_ops->name); 9191 return -EOPNOTSUPP; 9192 } 9193 9194 /* 9195 * KVM explicitly assumes that the guest has an FPU and 9196 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9197 * vCPU's FPU state as a fxregs_state struct. 9198 */ 9199 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9200 printk(KERN_ERR "kvm: inadequate fpu\n"); 9201 return -EOPNOTSUPP; 9202 } 9203 9204 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9205 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 9206 return -EOPNOTSUPP; 9207 } 9208 9209 /* 9210 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes 9211 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 9212 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 9213 * with an exception. PAT[0] is set to WB on RESET and also by the 9214 * kernel, i.e. failure indicates a kernel bug or broken firmware. 9215 */ 9216 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) || 9217 (host_pat & GENMASK(2, 0)) != 6) { 9218 pr_err("kvm: host PAT[0] is not WB\n"); 9219 return -EIO; 9220 } 9221 9222 x86_emulator_cache = kvm_alloc_emulator_cache(); 9223 if (!x86_emulator_cache) { 9224 pr_err("kvm: failed to allocate cache for x86 emulator\n"); 9225 return -ENOMEM; 9226 } 9227 9228 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 9229 if (!user_return_msrs) { 9230 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n"); 9231 r = -ENOMEM; 9232 goto out_free_x86_emulator_cache; 9233 } 9234 kvm_nr_uret_msrs = 0; 9235 9236 r = kvm_mmu_vendor_module_init(); 9237 if (r) 9238 goto out_free_percpu; 9239 9240 kvm_timer_init(); 9241 9242 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9243 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9244 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 9245 } 9246 9247 if (pi_inject_timer == -1) 9248 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9249 #ifdef CONFIG_X86_64 9250 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9251 9252 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9253 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9254 #endif 9255 9256 return 0; 9257 9258 out_free_percpu: 9259 free_percpu(user_return_msrs); 9260 out_free_x86_emulator_cache: 9261 kmem_cache_destroy(x86_emulator_cache); 9262 return r; 9263 } 9264 9265 void kvm_arch_exit(void) 9266 { 9267 #ifdef CONFIG_X86_64 9268 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9269 clear_hv_tscchange_cb(); 9270 #endif 9271 kvm_lapic_exit(); 9272 9273 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 9274 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9275 CPUFREQ_TRANSITION_NOTIFIER); 9276 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9277 #ifdef CONFIG_X86_64 9278 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9279 irq_work_sync(&pvclock_irq_work); 9280 cancel_work_sync(&pvclock_gtod_work); 9281 #endif 9282 kvm_x86_ops.hardware_enable = NULL; 9283 kvm_mmu_vendor_module_exit(); 9284 free_percpu(user_return_msrs); 9285 kmem_cache_destroy(x86_emulator_cache); 9286 #ifdef CONFIG_KVM_XEN 9287 static_key_deferred_flush(&kvm_xen_enabled); 9288 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9289 #endif 9290 } 9291 9292 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 9293 { 9294 /* 9295 * The vCPU has halted, e.g. executed HLT. Update the run state if the 9296 * local APIC is in-kernel, the run loop will detect the non-runnable 9297 * state and halt the vCPU. Exit to userspace if the local APIC is 9298 * managed by userspace, in which case userspace is responsible for 9299 * handling wake events. 9300 */ 9301 ++vcpu->stat.halt_exits; 9302 if (lapic_in_kernel(vcpu)) { 9303 vcpu->arch.mp_state = state; 9304 return 1; 9305 } else { 9306 vcpu->run->exit_reason = reason; 9307 return 0; 9308 } 9309 } 9310 9311 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 9312 { 9313 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 9314 } 9315 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 9316 9317 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 9318 { 9319 int ret = kvm_skip_emulated_instruction(vcpu); 9320 /* 9321 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 9322 * KVM_EXIT_DEBUG here. 9323 */ 9324 return kvm_emulate_halt_noskip(vcpu) && ret; 9325 } 9326 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 9327 9328 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 9329 { 9330 int ret = kvm_skip_emulated_instruction(vcpu); 9331 9332 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 9333 KVM_EXIT_AP_RESET_HOLD) && ret; 9334 } 9335 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 9336 9337 #ifdef CONFIG_X86_64 9338 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9339 unsigned long clock_type) 9340 { 9341 struct kvm_clock_pairing clock_pairing; 9342 struct timespec64 ts; 9343 u64 cycle; 9344 int ret; 9345 9346 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9347 return -KVM_EOPNOTSUPP; 9348 9349 /* 9350 * When tsc is in permanent catchup mode guests won't be able to use 9351 * pvclock_read_retry loop to get consistent view of pvclock 9352 */ 9353 if (vcpu->arch.tsc_always_catchup) 9354 return -KVM_EOPNOTSUPP; 9355 9356 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9357 return -KVM_EOPNOTSUPP; 9358 9359 clock_pairing.sec = ts.tv_sec; 9360 clock_pairing.nsec = ts.tv_nsec; 9361 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9362 clock_pairing.flags = 0; 9363 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9364 9365 ret = 0; 9366 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9367 sizeof(struct kvm_clock_pairing))) 9368 ret = -KVM_EFAULT; 9369 9370 return ret; 9371 } 9372 #endif 9373 9374 /* 9375 * kvm_pv_kick_cpu_op: Kick a vcpu. 9376 * 9377 * @apicid - apicid of vcpu to be kicked. 9378 */ 9379 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9380 { 9381 /* 9382 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 9383 * common code, e.g. for tracing. Defer initialization to the compiler. 9384 */ 9385 struct kvm_lapic_irq lapic_irq = { 9386 .delivery_mode = APIC_DM_REMRD, 9387 .dest_mode = APIC_DEST_PHYSICAL, 9388 .shorthand = APIC_DEST_NOSHORT, 9389 .dest_id = apicid, 9390 }; 9391 9392 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9393 } 9394 9395 bool kvm_apicv_activated(struct kvm *kvm) 9396 { 9397 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9398 } 9399 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9400 9401 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 9402 { 9403 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 9404 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu); 9405 9406 return (vm_reasons | vcpu_reasons) == 0; 9407 } 9408 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 9409 9410 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9411 enum kvm_apicv_inhibit reason, bool set) 9412 { 9413 if (set) 9414 __set_bit(reason, inhibits); 9415 else 9416 __clear_bit(reason, inhibits); 9417 9418 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9419 } 9420 9421 static void kvm_apicv_init(struct kvm *kvm) 9422 { 9423 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons; 9424 9425 init_rwsem(&kvm->arch.apicv_update_lock); 9426 9427 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true); 9428 9429 if (!enable_apicv) 9430 set_or_clear_apicv_inhibit(inhibits, 9431 APICV_INHIBIT_REASON_DISABLE, true); 9432 } 9433 9434 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9435 { 9436 struct kvm_vcpu *target = NULL; 9437 struct kvm_apic_map *map; 9438 9439 vcpu->stat.directed_yield_attempted++; 9440 9441 if (single_task_running()) 9442 goto no_yield; 9443 9444 rcu_read_lock(); 9445 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9446 9447 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9448 target = map->phys_map[dest_id]->vcpu; 9449 9450 rcu_read_unlock(); 9451 9452 if (!target || !READ_ONCE(target->ready)) 9453 goto no_yield; 9454 9455 /* Ignore requests to yield to self */ 9456 if (vcpu == target) 9457 goto no_yield; 9458 9459 if (kvm_vcpu_yield_to(target) <= 0) 9460 goto no_yield; 9461 9462 vcpu->stat.directed_yield_successful++; 9463 9464 no_yield: 9465 return; 9466 } 9467 9468 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 9469 { 9470 u64 ret = vcpu->run->hypercall.ret; 9471 9472 if (!is_64_bit_mode(vcpu)) 9473 ret = (u32)ret; 9474 kvm_rax_write(vcpu, ret); 9475 ++vcpu->stat.hypercalls; 9476 return kvm_skip_emulated_instruction(vcpu); 9477 } 9478 9479 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 9480 { 9481 unsigned long nr, a0, a1, a2, a3, ret; 9482 int op_64_bit; 9483 9484 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 9485 return kvm_xen_hypercall(vcpu); 9486 9487 if (kvm_hv_hypercall_enabled(vcpu)) 9488 return kvm_hv_hypercall(vcpu); 9489 9490 nr = kvm_rax_read(vcpu); 9491 a0 = kvm_rbx_read(vcpu); 9492 a1 = kvm_rcx_read(vcpu); 9493 a2 = kvm_rdx_read(vcpu); 9494 a3 = kvm_rsi_read(vcpu); 9495 9496 trace_kvm_hypercall(nr, a0, a1, a2, a3); 9497 9498 op_64_bit = is_64_bit_hypercall(vcpu); 9499 if (!op_64_bit) { 9500 nr &= 0xFFFFFFFF; 9501 a0 &= 0xFFFFFFFF; 9502 a1 &= 0xFFFFFFFF; 9503 a2 &= 0xFFFFFFFF; 9504 a3 &= 0xFFFFFFFF; 9505 } 9506 9507 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { 9508 ret = -KVM_EPERM; 9509 goto out; 9510 } 9511 9512 ret = -KVM_ENOSYS; 9513 9514 switch (nr) { 9515 case KVM_HC_VAPIC_POLL_IRQ: 9516 ret = 0; 9517 break; 9518 case KVM_HC_KICK_CPU: 9519 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 9520 break; 9521 9522 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 9523 kvm_sched_yield(vcpu, a1); 9524 ret = 0; 9525 break; 9526 #ifdef CONFIG_X86_64 9527 case KVM_HC_CLOCK_PAIRING: 9528 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 9529 break; 9530 #endif 9531 case KVM_HC_SEND_IPI: 9532 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 9533 break; 9534 9535 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 9536 break; 9537 case KVM_HC_SCHED_YIELD: 9538 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 9539 break; 9540 9541 kvm_sched_yield(vcpu, a0); 9542 ret = 0; 9543 break; 9544 case KVM_HC_MAP_GPA_RANGE: { 9545 u64 gpa = a0, npages = a1, attrs = a2; 9546 9547 ret = -KVM_ENOSYS; 9548 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 9549 break; 9550 9551 if (!PAGE_ALIGNED(gpa) || !npages || 9552 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 9553 ret = -KVM_EINVAL; 9554 break; 9555 } 9556 9557 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 9558 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 9559 vcpu->run->hypercall.args[0] = gpa; 9560 vcpu->run->hypercall.args[1] = npages; 9561 vcpu->run->hypercall.args[2] = attrs; 9562 vcpu->run->hypercall.longmode = op_64_bit; 9563 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 9564 return 0; 9565 } 9566 default: 9567 ret = -KVM_ENOSYS; 9568 break; 9569 } 9570 out: 9571 if (!op_64_bit) 9572 ret = (u32)ret; 9573 kvm_rax_write(vcpu, ret); 9574 9575 ++vcpu->stat.hypercalls; 9576 return kvm_skip_emulated_instruction(vcpu); 9577 } 9578 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 9579 9580 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 9581 { 9582 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 9583 char instruction[3]; 9584 unsigned long rip = kvm_rip_read(vcpu); 9585 9586 /* 9587 * If the quirk is disabled, synthesize a #UD and let the guest pick up 9588 * the pieces. 9589 */ 9590 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 9591 ctxt->exception.error_code_valid = false; 9592 ctxt->exception.vector = UD_VECTOR; 9593 ctxt->have_exception = true; 9594 return X86EMUL_PROPAGATE_FAULT; 9595 } 9596 9597 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 9598 9599 return emulator_write_emulated(ctxt, rip, instruction, 3, 9600 &ctxt->exception); 9601 } 9602 9603 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 9604 { 9605 return vcpu->run->request_interrupt_window && 9606 likely(!pic_in_kernel(vcpu->kvm)); 9607 } 9608 9609 /* Called within kvm->srcu read side. */ 9610 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 9611 { 9612 struct kvm_run *kvm_run = vcpu->run; 9613 9614 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); 9615 kvm_run->cr8 = kvm_get_cr8(vcpu); 9616 kvm_run->apic_base = kvm_get_apic_base(vcpu); 9617 9618 kvm_run->ready_for_interrupt_injection = 9619 pic_in_kernel(vcpu->kvm) || 9620 kvm_vcpu_ready_for_interrupt_injection(vcpu); 9621 9622 if (is_smm(vcpu)) 9623 kvm_run->flags |= KVM_RUN_X86_SMM; 9624 } 9625 9626 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 9627 { 9628 int max_irr, tpr; 9629 9630 if (!kvm_x86_ops.update_cr8_intercept) 9631 return; 9632 9633 if (!lapic_in_kernel(vcpu)) 9634 return; 9635 9636 if (vcpu->arch.apic->apicv_active) 9637 return; 9638 9639 if (!vcpu->arch.apic->vapic_addr) 9640 max_irr = kvm_lapic_find_highest_irr(vcpu); 9641 else 9642 max_irr = -1; 9643 9644 if (max_irr != -1) 9645 max_irr >>= 4; 9646 9647 tpr = kvm_lapic_get_cr8(vcpu); 9648 9649 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 9650 } 9651 9652 9653 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 9654 { 9655 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 9656 kvm_x86_ops.nested_ops->triple_fault(vcpu); 9657 return 1; 9658 } 9659 9660 return kvm_x86_ops.nested_ops->check_events(vcpu); 9661 } 9662 9663 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 9664 { 9665 trace_kvm_inj_exception(vcpu->arch.exception.nr, 9666 vcpu->arch.exception.has_error_code, 9667 vcpu->arch.exception.error_code, 9668 vcpu->arch.exception.injected); 9669 9670 if (vcpu->arch.exception.error_code && !is_protmode(vcpu)) 9671 vcpu->arch.exception.error_code = false; 9672 static_call(kvm_x86_queue_exception)(vcpu); 9673 } 9674 9675 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit) 9676 { 9677 int r; 9678 bool can_inject = true; 9679 9680 /* try to reinject previous events if any */ 9681 9682 if (vcpu->arch.exception.injected) { 9683 kvm_inject_exception(vcpu); 9684 can_inject = false; 9685 } 9686 /* 9687 * Do not inject an NMI or interrupt if there is a pending 9688 * exception. Exceptions and interrupts are recognized at 9689 * instruction boundaries, i.e. the start of an instruction. 9690 * Trap-like exceptions, e.g. #DB, have higher priority than 9691 * NMIs and interrupts, i.e. traps are recognized before an 9692 * NMI/interrupt that's pending on the same instruction. 9693 * Fault-like exceptions, e.g. #GP and #PF, are the lowest 9694 * priority, but are only generated (pended) during instruction 9695 * execution, i.e. a pending fault-like exception means the 9696 * fault occurred on the *previous* instruction and must be 9697 * serviced prior to recognizing any new events in order to 9698 * fully complete the previous instruction. 9699 */ 9700 else if (!vcpu->arch.exception.pending) { 9701 if (vcpu->arch.nmi_injected) { 9702 static_call(kvm_x86_inject_nmi)(vcpu); 9703 can_inject = false; 9704 } else if (vcpu->arch.interrupt.injected) { 9705 static_call(kvm_x86_inject_irq)(vcpu, true); 9706 can_inject = false; 9707 } 9708 } 9709 9710 WARN_ON_ONCE(vcpu->arch.exception.injected && 9711 vcpu->arch.exception.pending); 9712 9713 /* 9714 * Call check_nested_events() even if we reinjected a previous event 9715 * in order for caller to determine if it should require immediate-exit 9716 * from L2 to L1 due to pending L1 events which require exit 9717 * from L2 to L1. 9718 */ 9719 if (is_guest_mode(vcpu)) { 9720 r = kvm_check_nested_events(vcpu); 9721 if (r < 0) 9722 goto out; 9723 } 9724 9725 /* try to inject new event if pending */ 9726 if (vcpu->arch.exception.pending) { 9727 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT) 9728 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 9729 X86_EFLAGS_RF); 9730 9731 if (vcpu->arch.exception.nr == DB_VECTOR) { 9732 kvm_deliver_exception_payload(vcpu); 9733 if (vcpu->arch.dr7 & DR7_GD) { 9734 vcpu->arch.dr7 &= ~DR7_GD; 9735 kvm_update_dr7(vcpu); 9736 } 9737 } 9738 9739 kvm_inject_exception(vcpu); 9740 9741 vcpu->arch.exception.pending = false; 9742 vcpu->arch.exception.injected = true; 9743 9744 can_inject = false; 9745 } 9746 9747 /* Don't inject interrupts if the user asked to avoid doing so */ 9748 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 9749 return 0; 9750 9751 /* 9752 * Finally, inject interrupt events. If an event cannot be injected 9753 * due to architectural conditions (e.g. IF=0) a window-open exit 9754 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 9755 * and can architecturally be injected, but we cannot do it right now: 9756 * an interrupt could have arrived just now and we have to inject it 9757 * as a vmexit, or there could already an event in the queue, which is 9758 * indicated by can_inject. In that case we request an immediate exit 9759 * in order to make progress and get back here for another iteration. 9760 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 9761 */ 9762 if (vcpu->arch.smi_pending) { 9763 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 9764 if (r < 0) 9765 goto out; 9766 if (r) { 9767 vcpu->arch.smi_pending = false; 9768 ++vcpu->arch.smi_count; 9769 enter_smm(vcpu); 9770 can_inject = false; 9771 } else 9772 static_call(kvm_x86_enable_smi_window)(vcpu); 9773 } 9774 9775 if (vcpu->arch.nmi_pending) { 9776 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 9777 if (r < 0) 9778 goto out; 9779 if (r) { 9780 --vcpu->arch.nmi_pending; 9781 vcpu->arch.nmi_injected = true; 9782 static_call(kvm_x86_inject_nmi)(vcpu); 9783 can_inject = false; 9784 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 9785 } 9786 if (vcpu->arch.nmi_pending) 9787 static_call(kvm_x86_enable_nmi_window)(vcpu); 9788 } 9789 9790 if (kvm_cpu_has_injectable_intr(vcpu)) { 9791 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 9792 if (r < 0) 9793 goto out; 9794 if (r) { 9795 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false); 9796 static_call(kvm_x86_inject_irq)(vcpu, false); 9797 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 9798 } 9799 if (kvm_cpu_has_injectable_intr(vcpu)) 9800 static_call(kvm_x86_enable_irq_window)(vcpu); 9801 } 9802 9803 if (is_guest_mode(vcpu) && 9804 kvm_x86_ops.nested_ops->hv_timer_pending && 9805 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu)) 9806 *req_immediate_exit = true; 9807 9808 WARN_ON(vcpu->arch.exception.pending); 9809 return 0; 9810 9811 out: 9812 if (r == -EBUSY) { 9813 *req_immediate_exit = true; 9814 r = 0; 9815 } 9816 return r; 9817 } 9818 9819 static void process_nmi(struct kvm_vcpu *vcpu) 9820 { 9821 unsigned limit = 2; 9822 9823 /* 9824 * x86 is limited to one NMI running, and one NMI pending after it. 9825 * If an NMI is already in progress, limit further NMIs to just one. 9826 * Otherwise, allow two (and we'll inject the first one immediately). 9827 */ 9828 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 9829 limit = 1; 9830 9831 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 9832 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 9833 kvm_make_request(KVM_REQ_EVENT, vcpu); 9834 } 9835 9836 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg) 9837 { 9838 u32 flags = 0; 9839 flags |= seg->g << 23; 9840 flags |= seg->db << 22; 9841 flags |= seg->l << 21; 9842 flags |= seg->avl << 20; 9843 flags |= seg->present << 15; 9844 flags |= seg->dpl << 13; 9845 flags |= seg->s << 12; 9846 flags |= seg->type << 8; 9847 return flags; 9848 } 9849 9850 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n) 9851 { 9852 struct kvm_segment seg; 9853 int offset; 9854 9855 kvm_get_segment(vcpu, &seg, n); 9856 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector); 9857 9858 if (n < 3) 9859 offset = 0x7f84 + n * 12; 9860 else 9861 offset = 0x7f2c + (n - 3) * 12; 9862 9863 put_smstate(u32, buf, offset + 8, seg.base); 9864 put_smstate(u32, buf, offset + 4, seg.limit); 9865 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg)); 9866 } 9867 9868 #ifdef CONFIG_X86_64 9869 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n) 9870 { 9871 struct kvm_segment seg; 9872 int offset; 9873 u16 flags; 9874 9875 kvm_get_segment(vcpu, &seg, n); 9876 offset = 0x7e00 + n * 16; 9877 9878 flags = enter_smm_get_segment_flags(&seg) >> 8; 9879 put_smstate(u16, buf, offset, seg.selector); 9880 put_smstate(u16, buf, offset + 2, flags); 9881 put_smstate(u32, buf, offset + 4, seg.limit); 9882 put_smstate(u64, buf, offset + 8, seg.base); 9883 } 9884 #endif 9885 9886 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf) 9887 { 9888 struct desc_ptr dt; 9889 struct kvm_segment seg; 9890 unsigned long val; 9891 int i; 9892 9893 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu)); 9894 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu)); 9895 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu)); 9896 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu)); 9897 9898 for (i = 0; i < 8; i++) 9899 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i)); 9900 9901 kvm_get_dr(vcpu, 6, &val); 9902 put_smstate(u32, buf, 0x7fcc, (u32)val); 9903 kvm_get_dr(vcpu, 7, &val); 9904 put_smstate(u32, buf, 0x7fc8, (u32)val); 9905 9906 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 9907 put_smstate(u32, buf, 0x7fc4, seg.selector); 9908 put_smstate(u32, buf, 0x7f64, seg.base); 9909 put_smstate(u32, buf, 0x7f60, seg.limit); 9910 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg)); 9911 9912 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 9913 put_smstate(u32, buf, 0x7fc0, seg.selector); 9914 put_smstate(u32, buf, 0x7f80, seg.base); 9915 put_smstate(u32, buf, 0x7f7c, seg.limit); 9916 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg)); 9917 9918 static_call(kvm_x86_get_gdt)(vcpu, &dt); 9919 put_smstate(u32, buf, 0x7f74, dt.address); 9920 put_smstate(u32, buf, 0x7f70, dt.size); 9921 9922 static_call(kvm_x86_get_idt)(vcpu, &dt); 9923 put_smstate(u32, buf, 0x7f58, dt.address); 9924 put_smstate(u32, buf, 0x7f54, dt.size); 9925 9926 for (i = 0; i < 6; i++) 9927 enter_smm_save_seg_32(vcpu, buf, i); 9928 9929 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu)); 9930 9931 /* revision id */ 9932 put_smstate(u32, buf, 0x7efc, 0x00020000); 9933 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase); 9934 } 9935 9936 #ifdef CONFIG_X86_64 9937 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf) 9938 { 9939 struct desc_ptr dt; 9940 struct kvm_segment seg; 9941 unsigned long val; 9942 int i; 9943 9944 for (i = 0; i < 16; i++) 9945 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i)); 9946 9947 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu)); 9948 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu)); 9949 9950 kvm_get_dr(vcpu, 6, &val); 9951 put_smstate(u64, buf, 0x7f68, val); 9952 kvm_get_dr(vcpu, 7, &val); 9953 put_smstate(u64, buf, 0x7f60, val); 9954 9955 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu)); 9956 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu)); 9957 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu)); 9958 9959 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase); 9960 9961 /* revision id */ 9962 put_smstate(u32, buf, 0x7efc, 0x00020064); 9963 9964 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer); 9965 9966 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 9967 put_smstate(u16, buf, 0x7e90, seg.selector); 9968 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8); 9969 put_smstate(u32, buf, 0x7e94, seg.limit); 9970 put_smstate(u64, buf, 0x7e98, seg.base); 9971 9972 static_call(kvm_x86_get_idt)(vcpu, &dt); 9973 put_smstate(u32, buf, 0x7e84, dt.size); 9974 put_smstate(u64, buf, 0x7e88, dt.address); 9975 9976 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 9977 put_smstate(u16, buf, 0x7e70, seg.selector); 9978 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8); 9979 put_smstate(u32, buf, 0x7e74, seg.limit); 9980 put_smstate(u64, buf, 0x7e78, seg.base); 9981 9982 static_call(kvm_x86_get_gdt)(vcpu, &dt); 9983 put_smstate(u32, buf, 0x7e64, dt.size); 9984 put_smstate(u64, buf, 0x7e68, dt.address); 9985 9986 for (i = 0; i < 6; i++) 9987 enter_smm_save_seg_64(vcpu, buf, i); 9988 } 9989 #endif 9990 9991 static void enter_smm(struct kvm_vcpu *vcpu) 9992 { 9993 struct kvm_segment cs, ds; 9994 struct desc_ptr dt; 9995 unsigned long cr0; 9996 char buf[512]; 9997 9998 memset(buf, 0, 512); 9999 #ifdef CONFIG_X86_64 10000 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 10001 enter_smm_save_state_64(vcpu, buf); 10002 else 10003 #endif 10004 enter_smm_save_state_32(vcpu, buf); 10005 10006 /* 10007 * Give enter_smm() a chance to make ISA-specific changes to the vCPU 10008 * state (e.g. leave guest mode) after we've saved the state into the 10009 * SMM state-save area. 10010 */ 10011 static_call(kvm_x86_enter_smm)(vcpu, buf); 10012 10013 kvm_smm_changed(vcpu, true); 10014 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf)); 10015 10016 if (static_call(kvm_x86_get_nmi_mask)(vcpu)) 10017 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 10018 else 10019 static_call(kvm_x86_set_nmi_mask)(vcpu, true); 10020 10021 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 10022 kvm_rip_write(vcpu, 0x8000); 10023 10024 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG); 10025 static_call(kvm_x86_set_cr0)(vcpu, cr0); 10026 vcpu->arch.cr0 = cr0; 10027 10028 static_call(kvm_x86_set_cr4)(vcpu, 0); 10029 10030 /* Undocumented: IDT limit is set to zero on entry to SMM. */ 10031 dt.address = dt.size = 0; 10032 static_call(kvm_x86_set_idt)(vcpu, &dt); 10033 10034 kvm_set_dr(vcpu, 7, DR7_FIXED_1); 10035 10036 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff; 10037 cs.base = vcpu->arch.smbase; 10038 10039 ds.selector = 0; 10040 ds.base = 0; 10041 10042 cs.limit = ds.limit = 0xffffffff; 10043 cs.type = ds.type = 0x3; 10044 cs.dpl = ds.dpl = 0; 10045 cs.db = ds.db = 0; 10046 cs.s = ds.s = 1; 10047 cs.l = ds.l = 0; 10048 cs.g = ds.g = 1; 10049 cs.avl = ds.avl = 0; 10050 cs.present = ds.present = 1; 10051 cs.unusable = ds.unusable = 0; 10052 cs.padding = ds.padding = 0; 10053 10054 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 10055 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS); 10056 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES); 10057 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS); 10058 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS); 10059 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS); 10060 10061 #ifdef CONFIG_X86_64 10062 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 10063 static_call(kvm_x86_set_efer)(vcpu, 0); 10064 #endif 10065 10066 kvm_update_cpuid_runtime(vcpu); 10067 kvm_mmu_reset_context(vcpu); 10068 } 10069 10070 static void process_smi(struct kvm_vcpu *vcpu) 10071 { 10072 vcpu->arch.smi_pending = true; 10073 kvm_make_request(KVM_REQ_EVENT, vcpu); 10074 } 10075 10076 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10077 unsigned long *vcpu_bitmap) 10078 { 10079 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10080 } 10081 10082 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10083 { 10084 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10085 } 10086 10087 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10088 { 10089 struct kvm_lapic *apic = vcpu->arch.apic; 10090 bool activate; 10091 10092 if (!lapic_in_kernel(vcpu)) 10093 return; 10094 10095 down_read(&vcpu->kvm->arch.apicv_update_lock); 10096 preempt_disable(); 10097 10098 /* Do not activate APICV when APIC is disabled */ 10099 activate = kvm_vcpu_apicv_activated(vcpu) && 10100 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10101 10102 if (apic->apicv_active == activate) 10103 goto out; 10104 10105 apic->apicv_active = activate; 10106 kvm_apic_update_apicv(vcpu); 10107 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 10108 10109 /* 10110 * When APICv gets disabled, we may still have injected interrupts 10111 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10112 * still active when the interrupt got accepted. Make sure 10113 * inject_pending_event() is called to check for that. 10114 */ 10115 if (!apic->apicv_active) 10116 kvm_make_request(KVM_REQ_EVENT, vcpu); 10117 10118 out: 10119 preempt_enable(); 10120 up_read(&vcpu->kvm->arch.apicv_update_lock); 10121 } 10122 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv); 10123 10124 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10125 enum kvm_apicv_inhibit reason, bool set) 10126 { 10127 unsigned long old, new; 10128 10129 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10130 10131 if (!static_call(kvm_x86_check_apicv_inhibit_reasons)(reason)) 10132 return; 10133 10134 old = new = kvm->arch.apicv_inhibit_reasons; 10135 10136 set_or_clear_apicv_inhibit(&new, reason, set); 10137 10138 if (!!old != !!new) { 10139 /* 10140 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10141 * false positives in the sanity check WARN in svm_vcpu_run(). 10142 * This task will wait for all vCPUs to ack the kick IRQ before 10143 * updating apicv_inhibit_reasons, and all other vCPUs will 10144 * block on acquiring apicv_update_lock so that vCPUs can't 10145 * redo svm_vcpu_run() without seeing the new inhibit state. 10146 * 10147 * Note, holding apicv_update_lock and taking it in the read 10148 * side (handling the request) also prevents other vCPUs from 10149 * servicing the request with a stale apicv_inhibit_reasons. 10150 */ 10151 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10152 kvm->arch.apicv_inhibit_reasons = new; 10153 if (new) { 10154 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10155 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10156 } 10157 } else { 10158 kvm->arch.apicv_inhibit_reasons = new; 10159 } 10160 } 10161 10162 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10163 enum kvm_apicv_inhibit reason, bool set) 10164 { 10165 if (!enable_apicv) 10166 return; 10167 10168 down_write(&kvm->arch.apicv_update_lock); 10169 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10170 up_write(&kvm->arch.apicv_update_lock); 10171 } 10172 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 10173 10174 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10175 { 10176 if (!kvm_apic_present(vcpu)) 10177 return; 10178 10179 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10180 10181 if (irqchip_split(vcpu->kvm)) 10182 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10183 else { 10184 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10185 if (ioapic_in_kernel(vcpu->kvm)) 10186 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10187 } 10188 10189 if (is_guest_mode(vcpu)) 10190 vcpu->arch.load_eoi_exitmap_pending = true; 10191 else 10192 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10193 } 10194 10195 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10196 { 10197 u64 eoi_exit_bitmap[4]; 10198 10199 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10200 return; 10201 10202 if (to_hv_vcpu(vcpu)) { 10203 bitmap_or((ulong *)eoi_exit_bitmap, 10204 vcpu->arch.ioapic_handled_vectors, 10205 to_hv_synic(vcpu)->vec_bitmap, 256); 10206 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 10207 return; 10208 } 10209 10210 static_call_cond(kvm_x86_load_eoi_exitmap)( 10211 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 10212 } 10213 10214 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 10215 unsigned long start, unsigned long end) 10216 { 10217 unsigned long apic_address; 10218 10219 /* 10220 * The physical address of apic access page is stored in the VMCS. 10221 * Update it when it becomes invalid. 10222 */ 10223 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 10224 if (start <= apic_address && apic_address < end) 10225 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 10226 } 10227 10228 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 10229 { 10230 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm); 10231 } 10232 10233 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10234 { 10235 if (!lapic_in_kernel(vcpu)) 10236 return; 10237 10238 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu); 10239 } 10240 10241 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 10242 { 10243 smp_send_reschedule(vcpu->cpu); 10244 } 10245 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 10246 10247 /* 10248 * Called within kvm->srcu read side. 10249 * Returns 1 to let vcpu_run() continue the guest execution loop without 10250 * exiting to the userspace. Otherwise, the value will be returned to the 10251 * userspace. 10252 */ 10253 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10254 { 10255 int r; 10256 bool req_int_win = 10257 dm_request_for_irq_injection(vcpu) && 10258 kvm_cpu_accept_dm_intr(vcpu); 10259 fastpath_t exit_fastpath; 10260 10261 bool req_immediate_exit = false; 10262 10263 /* Forbid vmenter if vcpu dirty ring is soft-full */ 10264 if (unlikely(vcpu->kvm->dirty_ring_size && 10265 kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) { 10266 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL; 10267 trace_kvm_dirty_ring_exit(vcpu); 10268 r = 0; 10269 goto out; 10270 } 10271 10272 if (kvm_request_pending(vcpu)) { 10273 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10274 r = -EIO; 10275 goto out; 10276 } 10277 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10278 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10279 r = 0; 10280 goto out; 10281 } 10282 } 10283 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10284 kvm_mmu_free_obsolete_roots(vcpu); 10285 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10286 __kvm_migrate_timers(vcpu); 10287 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10288 kvm_update_masterclock(vcpu->kvm); 10289 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10290 kvm_gen_kvmclock_update(vcpu); 10291 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10292 r = kvm_guest_time_update(vcpu); 10293 if (unlikely(r)) 10294 goto out; 10295 } 10296 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10297 kvm_mmu_sync_roots(vcpu); 10298 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10299 kvm_mmu_load_pgd(vcpu); 10300 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { 10301 kvm_vcpu_flush_tlb_all(vcpu); 10302 10303 /* Flushing all ASIDs flushes the current ASID... */ 10304 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 10305 } 10306 kvm_service_local_tlb_flush_requests(vcpu); 10307 10308 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10309 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10310 r = 0; 10311 goto out; 10312 } 10313 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10314 if (is_guest_mode(vcpu)) { 10315 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10316 } else { 10317 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10318 vcpu->mmio_needed = 0; 10319 r = 0; 10320 goto out; 10321 } 10322 } 10323 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10324 /* Page is swapped out. Do synthetic halt */ 10325 vcpu->arch.apf.halted = true; 10326 r = 1; 10327 goto out; 10328 } 10329 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10330 record_steal_time(vcpu); 10331 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10332 process_smi(vcpu); 10333 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10334 process_nmi(vcpu); 10335 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10336 kvm_pmu_handle_event(vcpu); 10337 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10338 kvm_pmu_deliver_pmi(vcpu); 10339 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10340 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10341 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10342 vcpu->arch.ioapic_handled_vectors)) { 10343 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10344 vcpu->run->eoi.vector = 10345 vcpu->arch.pending_ioapic_eoi; 10346 r = 0; 10347 goto out; 10348 } 10349 } 10350 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10351 vcpu_scan_ioapic(vcpu); 10352 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10353 vcpu_load_eoi_exitmap(vcpu); 10354 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10355 kvm_vcpu_reload_apic_access_page(vcpu); 10356 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10357 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10358 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10359 vcpu->run->system_event.ndata = 0; 10360 r = 0; 10361 goto out; 10362 } 10363 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10364 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10365 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10366 vcpu->run->system_event.ndata = 0; 10367 r = 0; 10368 goto out; 10369 } 10370 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10371 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10372 10373 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10374 vcpu->run->hyperv = hv_vcpu->exit; 10375 r = 0; 10376 goto out; 10377 } 10378 10379 /* 10380 * KVM_REQ_HV_STIMER has to be processed after 10381 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10382 * depend on the guest clock being up-to-date 10383 */ 10384 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10385 kvm_hv_process_stimers(vcpu); 10386 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10387 kvm_vcpu_update_apicv(vcpu); 10388 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10389 kvm_check_async_pf_completion(vcpu); 10390 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10391 static_call(kvm_x86_msr_filter_changed)(vcpu); 10392 10393 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10394 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 10395 } 10396 10397 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10398 kvm_xen_has_interrupt(vcpu)) { 10399 ++vcpu->stat.req_event; 10400 r = kvm_apic_accept_events(vcpu); 10401 if (r < 0) { 10402 r = 0; 10403 goto out; 10404 } 10405 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10406 r = 1; 10407 goto out; 10408 } 10409 10410 r = inject_pending_event(vcpu, &req_immediate_exit); 10411 if (r < 0) { 10412 r = 0; 10413 goto out; 10414 } 10415 if (req_int_win) 10416 static_call(kvm_x86_enable_irq_window)(vcpu); 10417 10418 if (kvm_lapic_enabled(vcpu)) { 10419 update_cr8_intercept(vcpu); 10420 kvm_lapic_sync_to_vapic(vcpu); 10421 } 10422 } 10423 10424 r = kvm_mmu_reload(vcpu); 10425 if (unlikely(r)) { 10426 goto cancel_injection; 10427 } 10428 10429 preempt_disable(); 10430 10431 static_call(kvm_x86_prepare_switch_to_guest)(vcpu); 10432 10433 /* 10434 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10435 * IPI are then delayed after guest entry, which ensures that they 10436 * result in virtual interrupt delivery. 10437 */ 10438 local_irq_disable(); 10439 10440 /* Store vcpu->apicv_active before vcpu->mode. */ 10441 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10442 10443 kvm_vcpu_srcu_read_unlock(vcpu); 10444 10445 /* 10446 * 1) We should set ->mode before checking ->requests. Please see 10447 * the comment in kvm_vcpu_exiting_guest_mode(). 10448 * 10449 * 2) For APICv, we should set ->mode before checking PID.ON. This 10450 * pairs with the memory barrier implicit in pi_test_and_set_on 10451 * (see vmx_deliver_posted_interrupt). 10452 * 10453 * 3) This also orders the write to mode from any reads to the page 10454 * tables done while the VCPU is running. Please see the comment 10455 * in kvm_flush_remote_tlbs. 10456 */ 10457 smp_mb__after_srcu_read_unlock(); 10458 10459 /* 10460 * Process pending posted interrupts to handle the case where the 10461 * notification IRQ arrived in the host, or was never sent (because the 10462 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10463 * status, KVM doesn't update assigned devices when APICv is inhibited, 10464 * i.e. they can post interrupts even if APICv is temporarily disabled. 10465 */ 10466 if (kvm_lapic_enabled(vcpu)) 10467 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10468 10469 if (kvm_vcpu_exit_request(vcpu)) { 10470 vcpu->mode = OUTSIDE_GUEST_MODE; 10471 smp_wmb(); 10472 local_irq_enable(); 10473 preempt_enable(); 10474 kvm_vcpu_srcu_read_lock(vcpu); 10475 r = 1; 10476 goto cancel_injection; 10477 } 10478 10479 if (req_immediate_exit) { 10480 kvm_make_request(KVM_REQ_EVENT, vcpu); 10481 static_call(kvm_x86_request_immediate_exit)(vcpu); 10482 } 10483 10484 fpregs_assert_state_consistent(); 10485 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10486 switch_fpu_return(); 10487 10488 if (vcpu->arch.guest_fpu.xfd_err) 10489 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10490 10491 if (unlikely(vcpu->arch.switch_db_regs)) { 10492 set_debugreg(0, 7); 10493 set_debugreg(vcpu->arch.eff_db[0], 0); 10494 set_debugreg(vcpu->arch.eff_db[1], 1); 10495 set_debugreg(vcpu->arch.eff_db[2], 2); 10496 set_debugreg(vcpu->arch.eff_db[3], 3); 10497 } else if (unlikely(hw_breakpoint_active())) { 10498 set_debugreg(0, 7); 10499 } 10500 10501 guest_timing_enter_irqoff(); 10502 10503 for (;;) { 10504 /* 10505 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10506 * update must kick and wait for all vCPUs before toggling the 10507 * per-VM state, and responsing vCPUs must wait for the update 10508 * to complete before servicing KVM_REQ_APICV_UPDATE. 10509 */ 10510 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 10511 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 10512 10513 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu); 10514 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 10515 break; 10516 10517 if (kvm_lapic_enabled(vcpu)) 10518 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10519 10520 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 10521 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 10522 break; 10523 } 10524 } 10525 10526 /* 10527 * Do this here before restoring debug registers on the host. And 10528 * since we do this before handling the vmexit, a DR access vmexit 10529 * can (a) read the correct value of the debug registers, (b) set 10530 * KVM_DEBUGREG_WONT_EXIT again. 10531 */ 10532 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 10533 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 10534 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 10535 kvm_update_dr0123(vcpu); 10536 kvm_update_dr7(vcpu); 10537 } 10538 10539 /* 10540 * If the guest has used debug registers, at least dr7 10541 * will be disabled while returning to the host. 10542 * If we don't have active breakpoints in the host, we don't 10543 * care about the messed up debug address registers. But if 10544 * we have some of them active, restore the old state. 10545 */ 10546 if (hw_breakpoint_active()) 10547 hw_breakpoint_restore(); 10548 10549 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 10550 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 10551 10552 vcpu->mode = OUTSIDE_GUEST_MODE; 10553 smp_wmb(); 10554 10555 /* 10556 * Sync xfd before calling handle_exit_irqoff() which may 10557 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 10558 * in #NM irqoff handler). 10559 */ 10560 if (vcpu->arch.xfd_no_write_intercept) 10561 fpu_sync_guest_vmexit_xfd_state(); 10562 10563 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 10564 10565 if (vcpu->arch.guest_fpu.xfd_err) 10566 wrmsrl(MSR_IA32_XFD_ERR, 0); 10567 10568 /* 10569 * Consume any pending interrupts, including the possible source of 10570 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 10571 * An instruction is required after local_irq_enable() to fully unblock 10572 * interrupts on processors that implement an interrupt shadow, the 10573 * stat.exits increment will do nicely. 10574 */ 10575 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 10576 local_irq_enable(); 10577 ++vcpu->stat.exits; 10578 local_irq_disable(); 10579 kvm_after_interrupt(vcpu); 10580 10581 /* 10582 * Wait until after servicing IRQs to account guest time so that any 10583 * ticks that occurred while running the guest are properly accounted 10584 * to the guest. Waiting until IRQs are enabled degrades the accuracy 10585 * of accounting via context tracking, but the loss of accuracy is 10586 * acceptable for all known use cases. 10587 */ 10588 guest_timing_exit_irqoff(); 10589 10590 local_irq_enable(); 10591 preempt_enable(); 10592 10593 kvm_vcpu_srcu_read_lock(vcpu); 10594 10595 /* 10596 * Profile KVM exit RIPs: 10597 */ 10598 if (unlikely(prof_on == KVM_PROFILING)) { 10599 unsigned long rip = kvm_rip_read(vcpu); 10600 profile_hit(KVM_PROFILING, (void *)rip); 10601 } 10602 10603 if (unlikely(vcpu->arch.tsc_always_catchup)) 10604 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 10605 10606 if (vcpu->arch.apic_attention) 10607 kvm_lapic_sync_from_vapic(vcpu); 10608 10609 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 10610 return r; 10611 10612 cancel_injection: 10613 if (req_immediate_exit) 10614 kvm_make_request(KVM_REQ_EVENT, vcpu); 10615 static_call(kvm_x86_cancel_injection)(vcpu); 10616 if (unlikely(vcpu->arch.apic_attention)) 10617 kvm_lapic_sync_from_vapic(vcpu); 10618 out: 10619 return r; 10620 } 10621 10622 /* Called within kvm->srcu read side. */ 10623 static inline int vcpu_block(struct kvm_vcpu *vcpu) 10624 { 10625 bool hv_timer; 10626 10627 if (!kvm_arch_vcpu_runnable(vcpu)) { 10628 /* 10629 * Switch to the software timer before halt-polling/blocking as 10630 * the guest's timer may be a break event for the vCPU, and the 10631 * hypervisor timer runs only when the CPU is in guest mode. 10632 * Switch before halt-polling so that KVM recognizes an expired 10633 * timer before blocking. 10634 */ 10635 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 10636 if (hv_timer) 10637 kvm_lapic_switch_to_sw_timer(vcpu); 10638 10639 kvm_vcpu_srcu_read_unlock(vcpu); 10640 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 10641 kvm_vcpu_halt(vcpu); 10642 else 10643 kvm_vcpu_block(vcpu); 10644 kvm_vcpu_srcu_read_lock(vcpu); 10645 10646 if (hv_timer) 10647 kvm_lapic_switch_to_hv_timer(vcpu); 10648 10649 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu)) 10650 return 1; 10651 } 10652 10653 if (kvm_apic_accept_events(vcpu) < 0) 10654 return 0; 10655 switch(vcpu->arch.mp_state) { 10656 case KVM_MP_STATE_HALTED: 10657 case KVM_MP_STATE_AP_RESET_HOLD: 10658 vcpu->arch.pv.pv_unhalted = false; 10659 vcpu->arch.mp_state = 10660 KVM_MP_STATE_RUNNABLE; 10661 fallthrough; 10662 case KVM_MP_STATE_RUNNABLE: 10663 vcpu->arch.apf.halted = false; 10664 break; 10665 case KVM_MP_STATE_INIT_RECEIVED: 10666 break; 10667 default: 10668 WARN_ON_ONCE(1); 10669 break; 10670 } 10671 return 1; 10672 } 10673 10674 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 10675 { 10676 if (is_guest_mode(vcpu)) 10677 kvm_check_nested_events(vcpu); 10678 10679 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 10680 !vcpu->arch.apf.halted); 10681 } 10682 10683 /* Called within kvm->srcu read side. */ 10684 static int vcpu_run(struct kvm_vcpu *vcpu) 10685 { 10686 int r; 10687 10688 vcpu->arch.l1tf_flush_l1d = true; 10689 10690 for (;;) { 10691 /* 10692 * If another guest vCPU requests a PV TLB flush in the middle 10693 * of instruction emulation, the rest of the emulation could 10694 * use a stale page translation. Assume that any code after 10695 * this point can start executing an instruction. 10696 */ 10697 vcpu->arch.at_instruction_boundary = false; 10698 if (kvm_vcpu_running(vcpu)) { 10699 r = vcpu_enter_guest(vcpu); 10700 } else { 10701 r = vcpu_block(vcpu); 10702 } 10703 10704 if (r <= 0) 10705 break; 10706 10707 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 10708 if (kvm_xen_has_pending_events(vcpu)) 10709 kvm_xen_inject_pending_events(vcpu); 10710 10711 if (kvm_cpu_has_pending_timer(vcpu)) 10712 kvm_inject_pending_timer_irqs(vcpu); 10713 10714 if (dm_request_for_irq_injection(vcpu) && 10715 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 10716 r = 0; 10717 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 10718 ++vcpu->stat.request_irq_exits; 10719 break; 10720 } 10721 10722 if (__xfer_to_guest_mode_work_pending()) { 10723 kvm_vcpu_srcu_read_unlock(vcpu); 10724 r = xfer_to_guest_mode_handle_work(vcpu); 10725 kvm_vcpu_srcu_read_lock(vcpu); 10726 if (r) 10727 return r; 10728 } 10729 } 10730 10731 return r; 10732 } 10733 10734 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 10735 { 10736 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 10737 } 10738 10739 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 10740 { 10741 BUG_ON(!vcpu->arch.pio.count); 10742 10743 return complete_emulated_io(vcpu); 10744 } 10745 10746 /* 10747 * Implements the following, as a state machine: 10748 * 10749 * read: 10750 * for each fragment 10751 * for each mmio piece in the fragment 10752 * write gpa, len 10753 * exit 10754 * copy data 10755 * execute insn 10756 * 10757 * write: 10758 * for each fragment 10759 * for each mmio piece in the fragment 10760 * write gpa, len 10761 * copy data 10762 * exit 10763 */ 10764 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 10765 { 10766 struct kvm_run *run = vcpu->run; 10767 struct kvm_mmio_fragment *frag; 10768 unsigned len; 10769 10770 BUG_ON(!vcpu->mmio_needed); 10771 10772 /* Complete previous fragment */ 10773 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 10774 len = min(8u, frag->len); 10775 if (!vcpu->mmio_is_write) 10776 memcpy(frag->data, run->mmio.data, len); 10777 10778 if (frag->len <= 8) { 10779 /* Switch to the next fragment. */ 10780 frag++; 10781 vcpu->mmio_cur_fragment++; 10782 } else { 10783 /* Go forward to the next mmio piece. */ 10784 frag->data += len; 10785 frag->gpa += len; 10786 frag->len -= len; 10787 } 10788 10789 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 10790 vcpu->mmio_needed = 0; 10791 10792 /* FIXME: return into emulator if single-stepping. */ 10793 if (vcpu->mmio_is_write) 10794 return 1; 10795 vcpu->mmio_read_completed = 1; 10796 return complete_emulated_io(vcpu); 10797 } 10798 10799 run->exit_reason = KVM_EXIT_MMIO; 10800 run->mmio.phys_addr = frag->gpa; 10801 if (vcpu->mmio_is_write) 10802 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 10803 run->mmio.len = min(8u, frag->len); 10804 run->mmio.is_write = vcpu->mmio_is_write; 10805 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 10806 return 0; 10807 } 10808 10809 /* Swap (qemu) user FPU context for the guest FPU context. */ 10810 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 10811 { 10812 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 10813 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 10814 trace_kvm_fpu(1); 10815 } 10816 10817 /* When vcpu_run ends, restore user space FPU context. */ 10818 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 10819 { 10820 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 10821 ++vcpu->stat.fpu_reload; 10822 trace_kvm_fpu(0); 10823 } 10824 10825 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 10826 { 10827 struct kvm_run *kvm_run = vcpu->run; 10828 int r; 10829 10830 vcpu_load(vcpu); 10831 kvm_sigset_activate(vcpu); 10832 kvm_run->flags = 0; 10833 kvm_load_guest_fpu(vcpu); 10834 10835 kvm_vcpu_srcu_read_lock(vcpu); 10836 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 10837 if (kvm_run->immediate_exit) { 10838 r = -EINTR; 10839 goto out; 10840 } 10841 /* 10842 * It should be impossible for the hypervisor timer to be in 10843 * use before KVM has ever run the vCPU. 10844 */ 10845 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu)); 10846 10847 kvm_vcpu_srcu_read_unlock(vcpu); 10848 kvm_vcpu_block(vcpu); 10849 kvm_vcpu_srcu_read_lock(vcpu); 10850 10851 if (kvm_apic_accept_events(vcpu) < 0) { 10852 r = 0; 10853 goto out; 10854 } 10855 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 10856 r = -EAGAIN; 10857 if (signal_pending(current)) { 10858 r = -EINTR; 10859 kvm_run->exit_reason = KVM_EXIT_INTR; 10860 ++vcpu->stat.signal_exits; 10861 } 10862 goto out; 10863 } 10864 10865 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 10866 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 10867 r = -EINVAL; 10868 goto out; 10869 } 10870 10871 if (kvm_run->kvm_dirty_regs) { 10872 r = sync_regs(vcpu); 10873 if (r != 0) 10874 goto out; 10875 } 10876 10877 /* re-sync apic's tpr */ 10878 if (!lapic_in_kernel(vcpu)) { 10879 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 10880 r = -EINVAL; 10881 goto out; 10882 } 10883 } 10884 10885 if (unlikely(vcpu->arch.complete_userspace_io)) { 10886 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 10887 vcpu->arch.complete_userspace_io = NULL; 10888 r = cui(vcpu); 10889 if (r <= 0) 10890 goto out; 10891 } else { 10892 WARN_ON_ONCE(vcpu->arch.pio.count); 10893 WARN_ON_ONCE(vcpu->mmio_needed); 10894 } 10895 10896 if (kvm_run->immediate_exit) { 10897 r = -EINTR; 10898 goto out; 10899 } 10900 10901 r = static_call(kvm_x86_vcpu_pre_run)(vcpu); 10902 if (r <= 0) 10903 goto out; 10904 10905 r = vcpu_run(vcpu); 10906 10907 out: 10908 kvm_put_guest_fpu(vcpu); 10909 if (kvm_run->kvm_valid_regs) 10910 store_regs(vcpu); 10911 post_kvm_run_save(vcpu); 10912 kvm_vcpu_srcu_read_unlock(vcpu); 10913 10914 kvm_sigset_deactivate(vcpu); 10915 vcpu_put(vcpu); 10916 return r; 10917 } 10918 10919 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10920 { 10921 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 10922 /* 10923 * We are here if userspace calls get_regs() in the middle of 10924 * instruction emulation. Registers state needs to be copied 10925 * back from emulation context to vcpu. Userspace shouldn't do 10926 * that usually, but some bad designed PV devices (vmware 10927 * backdoor interface) need this to work 10928 */ 10929 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 10930 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 10931 } 10932 regs->rax = kvm_rax_read(vcpu); 10933 regs->rbx = kvm_rbx_read(vcpu); 10934 regs->rcx = kvm_rcx_read(vcpu); 10935 regs->rdx = kvm_rdx_read(vcpu); 10936 regs->rsi = kvm_rsi_read(vcpu); 10937 regs->rdi = kvm_rdi_read(vcpu); 10938 regs->rsp = kvm_rsp_read(vcpu); 10939 regs->rbp = kvm_rbp_read(vcpu); 10940 #ifdef CONFIG_X86_64 10941 regs->r8 = kvm_r8_read(vcpu); 10942 regs->r9 = kvm_r9_read(vcpu); 10943 regs->r10 = kvm_r10_read(vcpu); 10944 regs->r11 = kvm_r11_read(vcpu); 10945 regs->r12 = kvm_r12_read(vcpu); 10946 regs->r13 = kvm_r13_read(vcpu); 10947 regs->r14 = kvm_r14_read(vcpu); 10948 regs->r15 = kvm_r15_read(vcpu); 10949 #endif 10950 10951 regs->rip = kvm_rip_read(vcpu); 10952 regs->rflags = kvm_get_rflags(vcpu); 10953 } 10954 10955 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10956 { 10957 vcpu_load(vcpu); 10958 __get_regs(vcpu, regs); 10959 vcpu_put(vcpu); 10960 return 0; 10961 } 10962 10963 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10964 { 10965 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 10966 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 10967 10968 kvm_rax_write(vcpu, regs->rax); 10969 kvm_rbx_write(vcpu, regs->rbx); 10970 kvm_rcx_write(vcpu, regs->rcx); 10971 kvm_rdx_write(vcpu, regs->rdx); 10972 kvm_rsi_write(vcpu, regs->rsi); 10973 kvm_rdi_write(vcpu, regs->rdi); 10974 kvm_rsp_write(vcpu, regs->rsp); 10975 kvm_rbp_write(vcpu, regs->rbp); 10976 #ifdef CONFIG_X86_64 10977 kvm_r8_write(vcpu, regs->r8); 10978 kvm_r9_write(vcpu, regs->r9); 10979 kvm_r10_write(vcpu, regs->r10); 10980 kvm_r11_write(vcpu, regs->r11); 10981 kvm_r12_write(vcpu, regs->r12); 10982 kvm_r13_write(vcpu, regs->r13); 10983 kvm_r14_write(vcpu, regs->r14); 10984 kvm_r15_write(vcpu, regs->r15); 10985 #endif 10986 10987 kvm_rip_write(vcpu, regs->rip); 10988 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 10989 10990 vcpu->arch.exception.pending = false; 10991 10992 kvm_make_request(KVM_REQ_EVENT, vcpu); 10993 } 10994 10995 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10996 { 10997 vcpu_load(vcpu); 10998 __set_regs(vcpu, regs); 10999 vcpu_put(vcpu); 11000 return 0; 11001 } 11002 11003 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11004 { 11005 struct desc_ptr dt; 11006 11007 if (vcpu->arch.guest_state_protected) 11008 goto skip_protected_regs; 11009 11010 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11011 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11012 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11013 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11014 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11015 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11016 11017 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11018 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11019 11020 static_call(kvm_x86_get_idt)(vcpu, &dt); 11021 sregs->idt.limit = dt.size; 11022 sregs->idt.base = dt.address; 11023 static_call(kvm_x86_get_gdt)(vcpu, &dt); 11024 sregs->gdt.limit = dt.size; 11025 sregs->gdt.base = dt.address; 11026 11027 sregs->cr2 = vcpu->arch.cr2; 11028 sregs->cr3 = kvm_read_cr3(vcpu); 11029 11030 skip_protected_regs: 11031 sregs->cr0 = kvm_read_cr0(vcpu); 11032 sregs->cr4 = kvm_read_cr4(vcpu); 11033 sregs->cr8 = kvm_get_cr8(vcpu); 11034 sregs->efer = vcpu->arch.efer; 11035 sregs->apic_base = kvm_get_apic_base(vcpu); 11036 } 11037 11038 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11039 { 11040 __get_sregs_common(vcpu, sregs); 11041 11042 if (vcpu->arch.guest_state_protected) 11043 return; 11044 11045 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 11046 set_bit(vcpu->arch.interrupt.nr, 11047 (unsigned long *)sregs->interrupt_bitmap); 11048 } 11049 11050 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11051 { 11052 int i; 11053 11054 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 11055 11056 if (vcpu->arch.guest_state_protected) 11057 return; 11058 11059 if (is_pae_paging(vcpu)) { 11060 for (i = 0 ; i < 4 ; i++) 11061 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 11062 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 11063 } 11064 } 11065 11066 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 11067 struct kvm_sregs *sregs) 11068 { 11069 vcpu_load(vcpu); 11070 __get_sregs(vcpu, sregs); 11071 vcpu_put(vcpu); 11072 return 0; 11073 } 11074 11075 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 11076 struct kvm_mp_state *mp_state) 11077 { 11078 int r; 11079 11080 vcpu_load(vcpu); 11081 if (kvm_mpx_supported()) 11082 kvm_load_guest_fpu(vcpu); 11083 11084 r = kvm_apic_accept_events(vcpu); 11085 if (r < 0) 11086 goto out; 11087 r = 0; 11088 11089 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 11090 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 11091 vcpu->arch.pv.pv_unhalted) 11092 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 11093 else 11094 mp_state->mp_state = vcpu->arch.mp_state; 11095 11096 out: 11097 if (kvm_mpx_supported()) 11098 kvm_put_guest_fpu(vcpu); 11099 vcpu_put(vcpu); 11100 return r; 11101 } 11102 11103 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 11104 struct kvm_mp_state *mp_state) 11105 { 11106 int ret = -EINVAL; 11107 11108 vcpu_load(vcpu); 11109 11110 switch (mp_state->mp_state) { 11111 case KVM_MP_STATE_UNINITIALIZED: 11112 case KVM_MP_STATE_HALTED: 11113 case KVM_MP_STATE_AP_RESET_HOLD: 11114 case KVM_MP_STATE_INIT_RECEIVED: 11115 case KVM_MP_STATE_SIPI_RECEIVED: 11116 if (!lapic_in_kernel(vcpu)) 11117 goto out; 11118 break; 11119 11120 case KVM_MP_STATE_RUNNABLE: 11121 break; 11122 11123 default: 11124 goto out; 11125 } 11126 11127 /* 11128 * KVM_MP_STATE_INIT_RECEIVED means the processor is in 11129 * INIT state; latched init should be reported using 11130 * KVM_SET_VCPU_EVENTS, so reject it here. 11131 */ 11132 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) && 11133 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 11134 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 11135 goto out; 11136 11137 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 11138 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 11139 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 11140 } else 11141 vcpu->arch.mp_state = mp_state->mp_state; 11142 kvm_make_request(KVM_REQ_EVENT, vcpu); 11143 11144 ret = 0; 11145 out: 11146 vcpu_put(vcpu); 11147 return ret; 11148 } 11149 11150 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 11151 int reason, bool has_error_code, u32 error_code) 11152 { 11153 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 11154 int ret; 11155 11156 init_emulate_ctxt(vcpu); 11157 11158 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 11159 has_error_code, error_code); 11160 if (ret) { 11161 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11162 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11163 vcpu->run->internal.ndata = 0; 11164 return 0; 11165 } 11166 11167 kvm_rip_write(vcpu, ctxt->eip); 11168 kvm_set_rflags(vcpu, ctxt->eflags); 11169 return 1; 11170 } 11171 EXPORT_SYMBOL_GPL(kvm_task_switch); 11172 11173 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11174 { 11175 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 11176 /* 11177 * When EFER.LME and CR0.PG are set, the processor is in 11178 * 64-bit mode (though maybe in a 32-bit code segment). 11179 * CR4.PAE and EFER.LMA must be set. 11180 */ 11181 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 11182 return false; 11183 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3)) 11184 return false; 11185 } else { 11186 /* 11187 * Not in 64-bit mode: EFER.LMA is clear and the code 11188 * segment cannot be 64-bit. 11189 */ 11190 if (sregs->efer & EFER_LMA || sregs->cs.l) 11191 return false; 11192 } 11193 11194 return kvm_is_valid_cr4(vcpu, sregs->cr4); 11195 } 11196 11197 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 11198 int *mmu_reset_needed, bool update_pdptrs) 11199 { 11200 struct msr_data apic_base_msr; 11201 int idx; 11202 struct desc_ptr dt; 11203 11204 if (!kvm_is_valid_sregs(vcpu, sregs)) 11205 return -EINVAL; 11206 11207 apic_base_msr.data = sregs->apic_base; 11208 apic_base_msr.host_initiated = true; 11209 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 11210 return -EINVAL; 11211 11212 if (vcpu->arch.guest_state_protected) 11213 return 0; 11214 11215 dt.size = sregs->idt.limit; 11216 dt.address = sregs->idt.base; 11217 static_call(kvm_x86_set_idt)(vcpu, &dt); 11218 dt.size = sregs->gdt.limit; 11219 dt.address = sregs->gdt.base; 11220 static_call(kvm_x86_set_gdt)(vcpu, &dt); 11221 11222 vcpu->arch.cr2 = sregs->cr2; 11223 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 11224 vcpu->arch.cr3 = sregs->cr3; 11225 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11226 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); 11227 11228 kvm_set_cr8(vcpu, sregs->cr8); 11229 11230 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 11231 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 11232 11233 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 11234 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 11235 vcpu->arch.cr0 = sregs->cr0; 11236 11237 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 11238 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 11239 11240 if (update_pdptrs) { 11241 idx = srcu_read_lock(&vcpu->kvm->srcu); 11242 if (is_pae_paging(vcpu)) { 11243 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11244 *mmu_reset_needed = 1; 11245 } 11246 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11247 } 11248 11249 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11250 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11251 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11252 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11253 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11254 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11255 11256 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11257 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11258 11259 update_cr8_intercept(vcpu); 11260 11261 /* Older userspace won't unhalt the vcpu on reset. */ 11262 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11263 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11264 !is_protmode(vcpu)) 11265 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11266 11267 return 0; 11268 } 11269 11270 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11271 { 11272 int pending_vec, max_bits; 11273 int mmu_reset_needed = 0; 11274 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11275 11276 if (ret) 11277 return ret; 11278 11279 if (mmu_reset_needed) 11280 kvm_mmu_reset_context(vcpu); 11281 11282 max_bits = KVM_NR_INTERRUPTS; 11283 pending_vec = find_first_bit( 11284 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 11285 11286 if (pending_vec < max_bits) { 11287 kvm_queue_interrupt(vcpu, pending_vec, false); 11288 pr_debug("Set back pending irq %d\n", pending_vec); 11289 kvm_make_request(KVM_REQ_EVENT, vcpu); 11290 } 11291 return 0; 11292 } 11293 11294 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11295 { 11296 int mmu_reset_needed = 0; 11297 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 11298 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 11299 !(sregs2->efer & EFER_LMA); 11300 int i, ret; 11301 11302 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 11303 return -EINVAL; 11304 11305 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 11306 return -EINVAL; 11307 11308 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 11309 &mmu_reset_needed, !valid_pdptrs); 11310 if (ret) 11311 return ret; 11312 11313 if (valid_pdptrs) { 11314 for (i = 0; i < 4 ; i++) 11315 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 11316 11317 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 11318 mmu_reset_needed = 1; 11319 vcpu->arch.pdptrs_from_userspace = true; 11320 } 11321 if (mmu_reset_needed) 11322 kvm_mmu_reset_context(vcpu); 11323 return 0; 11324 } 11325 11326 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 11327 struct kvm_sregs *sregs) 11328 { 11329 int ret; 11330 11331 vcpu_load(vcpu); 11332 ret = __set_sregs(vcpu, sregs); 11333 vcpu_put(vcpu); 11334 return ret; 11335 } 11336 11337 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 11338 { 11339 bool set = false; 11340 struct kvm_vcpu *vcpu; 11341 unsigned long i; 11342 11343 if (!enable_apicv) 11344 return; 11345 11346 down_write(&kvm->arch.apicv_update_lock); 11347 11348 kvm_for_each_vcpu(i, vcpu, kvm) { 11349 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 11350 set = true; 11351 break; 11352 } 11353 } 11354 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 11355 up_write(&kvm->arch.apicv_update_lock); 11356 } 11357 11358 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 11359 struct kvm_guest_debug *dbg) 11360 { 11361 unsigned long rflags; 11362 int i, r; 11363 11364 if (vcpu->arch.guest_state_protected) 11365 return -EINVAL; 11366 11367 vcpu_load(vcpu); 11368 11369 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 11370 r = -EBUSY; 11371 if (vcpu->arch.exception.pending) 11372 goto out; 11373 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 11374 kvm_queue_exception(vcpu, DB_VECTOR); 11375 else 11376 kvm_queue_exception(vcpu, BP_VECTOR); 11377 } 11378 11379 /* 11380 * Read rflags as long as potentially injected trace flags are still 11381 * filtered out. 11382 */ 11383 rflags = kvm_get_rflags(vcpu); 11384 11385 vcpu->guest_debug = dbg->control; 11386 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 11387 vcpu->guest_debug = 0; 11388 11389 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 11390 for (i = 0; i < KVM_NR_DB_REGS; ++i) 11391 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 11392 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 11393 } else { 11394 for (i = 0; i < KVM_NR_DB_REGS; i++) 11395 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 11396 } 11397 kvm_update_dr7(vcpu); 11398 11399 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 11400 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 11401 11402 /* 11403 * Trigger an rflags update that will inject or remove the trace 11404 * flags. 11405 */ 11406 kvm_set_rflags(vcpu, rflags); 11407 11408 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11409 11410 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 11411 11412 r = 0; 11413 11414 out: 11415 vcpu_put(vcpu); 11416 return r; 11417 } 11418 11419 /* 11420 * Translate a guest virtual address to a guest physical address. 11421 */ 11422 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 11423 struct kvm_translation *tr) 11424 { 11425 unsigned long vaddr = tr->linear_address; 11426 gpa_t gpa; 11427 int idx; 11428 11429 vcpu_load(vcpu); 11430 11431 idx = srcu_read_lock(&vcpu->kvm->srcu); 11432 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 11433 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11434 tr->physical_address = gpa; 11435 tr->valid = gpa != INVALID_GPA; 11436 tr->writeable = 1; 11437 tr->usermode = 0; 11438 11439 vcpu_put(vcpu); 11440 return 0; 11441 } 11442 11443 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11444 { 11445 struct fxregs_state *fxsave; 11446 11447 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11448 return 0; 11449 11450 vcpu_load(vcpu); 11451 11452 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11453 memcpy(fpu->fpr, fxsave->st_space, 128); 11454 fpu->fcw = fxsave->cwd; 11455 fpu->fsw = fxsave->swd; 11456 fpu->ftwx = fxsave->twd; 11457 fpu->last_opcode = fxsave->fop; 11458 fpu->last_ip = fxsave->rip; 11459 fpu->last_dp = fxsave->rdp; 11460 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 11461 11462 vcpu_put(vcpu); 11463 return 0; 11464 } 11465 11466 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11467 { 11468 struct fxregs_state *fxsave; 11469 11470 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11471 return 0; 11472 11473 vcpu_load(vcpu); 11474 11475 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11476 11477 memcpy(fxsave->st_space, fpu->fpr, 128); 11478 fxsave->cwd = fpu->fcw; 11479 fxsave->swd = fpu->fsw; 11480 fxsave->twd = fpu->ftwx; 11481 fxsave->fop = fpu->last_opcode; 11482 fxsave->rip = fpu->last_ip; 11483 fxsave->rdp = fpu->last_dp; 11484 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 11485 11486 vcpu_put(vcpu); 11487 return 0; 11488 } 11489 11490 static void store_regs(struct kvm_vcpu *vcpu) 11491 { 11492 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 11493 11494 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 11495 __get_regs(vcpu, &vcpu->run->s.regs.regs); 11496 11497 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 11498 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 11499 11500 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 11501 kvm_vcpu_ioctl_x86_get_vcpu_events( 11502 vcpu, &vcpu->run->s.regs.events); 11503 } 11504 11505 static int sync_regs(struct kvm_vcpu *vcpu) 11506 { 11507 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 11508 __set_regs(vcpu, &vcpu->run->s.regs.regs); 11509 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 11510 } 11511 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 11512 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 11513 return -EINVAL; 11514 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 11515 } 11516 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 11517 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 11518 vcpu, &vcpu->run->s.regs.events)) 11519 return -EINVAL; 11520 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 11521 } 11522 11523 return 0; 11524 } 11525 11526 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 11527 { 11528 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 11529 pr_warn_once("kvm: SMP vm created on host with unstable TSC; " 11530 "guest TSC will not be reliable\n"); 11531 11532 if (!kvm->arch.max_vcpu_ids) 11533 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 11534 11535 if (id >= kvm->arch.max_vcpu_ids) 11536 return -EINVAL; 11537 11538 return static_call(kvm_x86_vcpu_precreate)(kvm); 11539 } 11540 11541 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 11542 { 11543 struct page *page; 11544 int r; 11545 11546 vcpu->arch.last_vmentry_cpu = -1; 11547 vcpu->arch.regs_avail = ~0; 11548 vcpu->arch.regs_dirty = ~0; 11549 11550 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 11551 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11552 else 11553 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 11554 11555 r = kvm_mmu_create(vcpu); 11556 if (r < 0) 11557 return r; 11558 11559 if (irqchip_in_kernel(vcpu->kvm)) { 11560 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 11561 if (r < 0) 11562 goto fail_mmu_destroy; 11563 11564 /* 11565 * Defer evaluating inhibits until the vCPU is first run, as 11566 * this vCPU will not get notified of any changes until this 11567 * vCPU is visible to other vCPUs (marked online and added to 11568 * the set of vCPUs). Opportunistically mark APICv active as 11569 * VMX in particularly is highly unlikely to have inhibits. 11570 * Ignore the current per-VM APICv state so that vCPU creation 11571 * is guaranteed to run with a deterministic value, the request 11572 * will ensure the vCPU gets the correct state before VM-Entry. 11573 */ 11574 if (enable_apicv) { 11575 vcpu->arch.apic->apicv_active = true; 11576 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 11577 } 11578 } else 11579 static_branch_inc(&kvm_has_noapic_vcpu); 11580 11581 r = -ENOMEM; 11582 11583 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 11584 if (!page) 11585 goto fail_free_lapic; 11586 vcpu->arch.pio_data = page_address(page); 11587 11588 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 11589 GFP_KERNEL_ACCOUNT); 11590 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 11591 GFP_KERNEL_ACCOUNT); 11592 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 11593 goto fail_free_mce_banks; 11594 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 11595 11596 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 11597 GFP_KERNEL_ACCOUNT)) 11598 goto fail_free_mce_banks; 11599 11600 if (!alloc_emulate_ctxt(vcpu)) 11601 goto free_wbinvd_dirty_mask; 11602 11603 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 11604 pr_err("kvm: failed to allocate vcpu's fpu\n"); 11605 goto free_emulate_ctxt; 11606 } 11607 11608 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 11609 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 11610 11611 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 11612 11613 kvm_async_pf_hash_reset(vcpu); 11614 kvm_pmu_init(vcpu); 11615 11616 vcpu->arch.pending_external_vector = -1; 11617 vcpu->arch.preempted_in_kernel = false; 11618 11619 #if IS_ENABLED(CONFIG_HYPERV) 11620 vcpu->arch.hv_root_tdp = INVALID_PAGE; 11621 #endif 11622 11623 r = static_call(kvm_x86_vcpu_create)(vcpu); 11624 if (r) 11625 goto free_guest_fpu; 11626 11627 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 11628 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 11629 kvm_xen_init_vcpu(vcpu); 11630 kvm_vcpu_mtrr_init(vcpu); 11631 vcpu_load(vcpu); 11632 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 11633 kvm_vcpu_reset(vcpu, false); 11634 kvm_init_mmu(vcpu); 11635 vcpu_put(vcpu); 11636 return 0; 11637 11638 free_guest_fpu: 11639 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11640 free_emulate_ctxt: 11641 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11642 free_wbinvd_dirty_mask: 11643 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11644 fail_free_mce_banks: 11645 kfree(vcpu->arch.mce_banks); 11646 kfree(vcpu->arch.mci_ctl2_banks); 11647 free_page((unsigned long)vcpu->arch.pio_data); 11648 fail_free_lapic: 11649 kvm_free_lapic(vcpu); 11650 fail_mmu_destroy: 11651 kvm_mmu_destroy(vcpu); 11652 return r; 11653 } 11654 11655 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 11656 { 11657 struct kvm *kvm = vcpu->kvm; 11658 11659 if (mutex_lock_killable(&vcpu->mutex)) 11660 return; 11661 vcpu_load(vcpu); 11662 kvm_synchronize_tsc(vcpu, 0); 11663 vcpu_put(vcpu); 11664 11665 /* poll control enabled by default */ 11666 vcpu->arch.msr_kvm_poll_control = 1; 11667 11668 mutex_unlock(&vcpu->mutex); 11669 11670 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 11671 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 11672 KVMCLOCK_SYNC_PERIOD); 11673 } 11674 11675 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 11676 { 11677 int idx; 11678 11679 kvmclock_reset(vcpu); 11680 11681 static_call(kvm_x86_vcpu_free)(vcpu); 11682 11683 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11684 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11685 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11686 11687 kvm_xen_destroy_vcpu(vcpu); 11688 kvm_hv_vcpu_uninit(vcpu); 11689 kvm_pmu_destroy(vcpu); 11690 kfree(vcpu->arch.mce_banks); 11691 kfree(vcpu->arch.mci_ctl2_banks); 11692 kvm_free_lapic(vcpu); 11693 idx = srcu_read_lock(&vcpu->kvm->srcu); 11694 kvm_mmu_destroy(vcpu); 11695 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11696 free_page((unsigned long)vcpu->arch.pio_data); 11697 kvfree(vcpu->arch.cpuid_entries); 11698 if (!lapic_in_kernel(vcpu)) 11699 static_branch_dec(&kvm_has_noapic_vcpu); 11700 } 11701 11702 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 11703 { 11704 struct kvm_cpuid_entry2 *cpuid_0x1; 11705 unsigned long old_cr0 = kvm_read_cr0(vcpu); 11706 unsigned long new_cr0; 11707 11708 /* 11709 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 11710 * to handle side effects. RESET emulation hits those flows and relies 11711 * on emulated/virtualized registers, including those that are loaded 11712 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 11713 * to detect improper or missing initialization. 11714 */ 11715 WARN_ON_ONCE(!init_event && 11716 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 11717 11718 kvm_lapic_reset(vcpu, init_event); 11719 11720 vcpu->arch.hflags = 0; 11721 11722 vcpu->arch.smi_pending = 0; 11723 vcpu->arch.smi_count = 0; 11724 atomic_set(&vcpu->arch.nmi_queued, 0); 11725 vcpu->arch.nmi_pending = 0; 11726 vcpu->arch.nmi_injected = false; 11727 kvm_clear_interrupt_queue(vcpu); 11728 kvm_clear_exception_queue(vcpu); 11729 11730 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 11731 kvm_update_dr0123(vcpu); 11732 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 11733 vcpu->arch.dr7 = DR7_FIXED_1; 11734 kvm_update_dr7(vcpu); 11735 11736 vcpu->arch.cr2 = 0; 11737 11738 kvm_make_request(KVM_REQ_EVENT, vcpu); 11739 vcpu->arch.apf.msr_en_val = 0; 11740 vcpu->arch.apf.msr_int_val = 0; 11741 vcpu->arch.st.msr_val = 0; 11742 11743 kvmclock_reset(vcpu); 11744 11745 kvm_clear_async_pf_completion_queue(vcpu); 11746 kvm_async_pf_hash_reset(vcpu); 11747 vcpu->arch.apf.halted = false; 11748 11749 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 11750 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 11751 11752 /* 11753 * To avoid have the INIT path from kvm_apic_has_events() that be 11754 * called with loaded FPU and does not let userspace fix the state. 11755 */ 11756 if (init_event) 11757 kvm_put_guest_fpu(vcpu); 11758 11759 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 11760 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 11761 11762 if (init_event) 11763 kvm_load_guest_fpu(vcpu); 11764 } 11765 11766 if (!init_event) { 11767 kvm_pmu_reset(vcpu); 11768 vcpu->arch.smbase = 0x30000; 11769 11770 vcpu->arch.msr_misc_features_enables = 0; 11771 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 11772 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 11773 11774 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 11775 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 11776 } 11777 11778 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 11779 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 11780 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 11781 11782 /* 11783 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 11784 * if no CPUID match is found. Note, it's impossible to get a match at 11785 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 11786 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 11787 * on RESET. But, go through the motions in case that's ever remedied. 11788 */ 11789 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 11790 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 11791 11792 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 11793 11794 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 11795 kvm_rip_write(vcpu, 0xfff0); 11796 11797 vcpu->arch.cr3 = 0; 11798 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11799 11800 /* 11801 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 11802 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 11803 * (or qualify) that with a footnote stating that CD/NW are preserved. 11804 */ 11805 new_cr0 = X86_CR0_ET; 11806 if (init_event) 11807 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 11808 else 11809 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 11810 11811 static_call(kvm_x86_set_cr0)(vcpu, new_cr0); 11812 static_call(kvm_x86_set_cr4)(vcpu, 0); 11813 static_call(kvm_x86_set_efer)(vcpu, 0); 11814 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11815 11816 /* 11817 * On the standard CR0/CR4/EFER modification paths, there are several 11818 * complex conditions determining whether the MMU has to be reset and/or 11819 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 11820 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 11821 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 11822 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 11823 */ 11824 if (old_cr0 & X86_CR0_PG) { 11825 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11826 kvm_mmu_reset_context(vcpu); 11827 } 11828 11829 /* 11830 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 11831 * APM states the TLBs are untouched by INIT, but it also states that 11832 * the TLBs are flushed on "External initialization of the processor." 11833 * Flush the guest TLB regardless of vendor, there is no meaningful 11834 * benefit in relying on the guest to flush the TLB immediately after 11835 * INIT. A spurious TLB flush is benign and likely negligible from a 11836 * performance perspective. 11837 */ 11838 if (init_event) 11839 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11840 } 11841 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 11842 11843 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 11844 { 11845 struct kvm_segment cs; 11846 11847 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 11848 cs.selector = vector << 8; 11849 cs.base = vector << 12; 11850 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 11851 kvm_rip_write(vcpu, 0); 11852 } 11853 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 11854 11855 int kvm_arch_hardware_enable(void) 11856 { 11857 struct kvm *kvm; 11858 struct kvm_vcpu *vcpu; 11859 unsigned long i; 11860 int ret; 11861 u64 local_tsc; 11862 u64 max_tsc = 0; 11863 bool stable, backwards_tsc = false; 11864 11865 kvm_user_return_msr_cpu_online(); 11866 ret = static_call(kvm_x86_hardware_enable)(); 11867 if (ret != 0) 11868 return ret; 11869 11870 local_tsc = rdtsc(); 11871 stable = !kvm_check_tsc_unstable(); 11872 list_for_each_entry(kvm, &vm_list, vm_list) { 11873 kvm_for_each_vcpu(i, vcpu, kvm) { 11874 if (!stable && vcpu->cpu == smp_processor_id()) 11875 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 11876 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 11877 backwards_tsc = true; 11878 if (vcpu->arch.last_host_tsc > max_tsc) 11879 max_tsc = vcpu->arch.last_host_tsc; 11880 } 11881 } 11882 } 11883 11884 /* 11885 * Sometimes, even reliable TSCs go backwards. This happens on 11886 * platforms that reset TSC during suspend or hibernate actions, but 11887 * maintain synchronization. We must compensate. Fortunately, we can 11888 * detect that condition here, which happens early in CPU bringup, 11889 * before any KVM threads can be running. Unfortunately, we can't 11890 * bring the TSCs fully up to date with real time, as we aren't yet far 11891 * enough into CPU bringup that we know how much real time has actually 11892 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 11893 * variables that haven't been updated yet. 11894 * 11895 * So we simply find the maximum observed TSC above, then record the 11896 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 11897 * the adjustment will be applied. Note that we accumulate 11898 * adjustments, in case multiple suspend cycles happen before some VCPU 11899 * gets a chance to run again. In the event that no KVM threads get a 11900 * chance to run, we will miss the entire elapsed period, as we'll have 11901 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 11902 * loose cycle time. This isn't too big a deal, since the loss will be 11903 * uniform across all VCPUs (not to mention the scenario is extremely 11904 * unlikely). It is possible that a second hibernate recovery happens 11905 * much faster than a first, causing the observed TSC here to be 11906 * smaller; this would require additional padding adjustment, which is 11907 * why we set last_host_tsc to the local tsc observed here. 11908 * 11909 * N.B. - this code below runs only on platforms with reliable TSC, 11910 * as that is the only way backwards_tsc is set above. Also note 11911 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 11912 * have the same delta_cyc adjustment applied if backwards_tsc 11913 * is detected. Note further, this adjustment is only done once, 11914 * as we reset last_host_tsc on all VCPUs to stop this from being 11915 * called multiple times (one for each physical CPU bringup). 11916 * 11917 * Platforms with unreliable TSCs don't have to deal with this, they 11918 * will be compensated by the logic in vcpu_load, which sets the TSC to 11919 * catchup mode. This will catchup all VCPUs to real time, but cannot 11920 * guarantee that they stay in perfect synchronization. 11921 */ 11922 if (backwards_tsc) { 11923 u64 delta_cyc = max_tsc - local_tsc; 11924 list_for_each_entry(kvm, &vm_list, vm_list) { 11925 kvm->arch.backwards_tsc_observed = true; 11926 kvm_for_each_vcpu(i, vcpu, kvm) { 11927 vcpu->arch.tsc_offset_adjustment += delta_cyc; 11928 vcpu->arch.last_host_tsc = local_tsc; 11929 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 11930 } 11931 11932 /* 11933 * We have to disable TSC offset matching.. if you were 11934 * booting a VM while issuing an S4 host suspend.... 11935 * you may have some problem. Solving this issue is 11936 * left as an exercise to the reader. 11937 */ 11938 kvm->arch.last_tsc_nsec = 0; 11939 kvm->arch.last_tsc_write = 0; 11940 } 11941 11942 } 11943 return 0; 11944 } 11945 11946 void kvm_arch_hardware_disable(void) 11947 { 11948 static_call(kvm_x86_hardware_disable)(); 11949 drop_user_return_notifiers(); 11950 } 11951 11952 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 11953 { 11954 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 11955 11956 #define __KVM_X86_OP(func) \ 11957 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 11958 #define KVM_X86_OP(func) \ 11959 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 11960 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 11961 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 11962 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 11963 (void *)__static_call_return0); 11964 #include <asm/kvm-x86-ops.h> 11965 #undef __KVM_X86_OP 11966 11967 kvm_pmu_ops_update(ops->pmu_ops); 11968 } 11969 11970 int kvm_arch_hardware_setup(void *opaque) 11971 { 11972 struct kvm_x86_init_ops *ops = opaque; 11973 int r; 11974 11975 rdmsrl_safe(MSR_EFER, &host_efer); 11976 11977 if (boot_cpu_has(X86_FEATURE_XSAVES)) 11978 rdmsrl(MSR_IA32_XSS, host_xss); 11979 11980 kvm_init_pmu_capability(); 11981 11982 r = ops->hardware_setup(); 11983 if (r != 0) 11984 return r; 11985 11986 kvm_ops_update(ops); 11987 11988 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 11989 11990 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 11991 kvm_caps.supported_xss = 0; 11992 11993 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 11994 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 11995 #undef __kvm_cpu_cap_has 11996 11997 if (kvm_caps.has_tsc_control) { 11998 /* 11999 * Make sure the user can only configure tsc_khz values that 12000 * fit into a signed integer. 12001 * A min value is not calculated because it will always 12002 * be 1 on all machines. 12003 */ 12004 u64 max = min(0x7fffffffULL, 12005 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 12006 kvm_caps.max_guest_tsc_khz = max; 12007 } 12008 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 12009 kvm_init_msr_list(); 12010 return 0; 12011 } 12012 12013 void kvm_arch_hardware_unsetup(void) 12014 { 12015 kvm_unregister_perf_callbacks(); 12016 12017 static_call(kvm_x86_hardware_unsetup)(); 12018 } 12019 12020 int kvm_arch_check_processor_compat(void *opaque) 12021 { 12022 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id()); 12023 struct kvm_x86_init_ops *ops = opaque; 12024 12025 WARN_ON(!irqs_disabled()); 12026 12027 if (__cr4_reserved_bits(cpu_has, c) != 12028 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 12029 return -EIO; 12030 12031 return ops->check_processor_compatibility(); 12032 } 12033 12034 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 12035 { 12036 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 12037 } 12038 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); 12039 12040 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 12041 { 12042 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 12043 } 12044 12045 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 12046 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 12047 12048 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 12049 { 12050 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 12051 12052 vcpu->arch.l1tf_flush_l1d = true; 12053 if (pmu->version && unlikely(pmu->event_count)) { 12054 pmu->need_cleanup = true; 12055 kvm_make_request(KVM_REQ_PMU, vcpu); 12056 } 12057 static_call(kvm_x86_sched_in)(vcpu, cpu); 12058 } 12059 12060 void kvm_arch_free_vm(struct kvm *kvm) 12061 { 12062 kfree(to_kvm_hv(kvm)->hv_pa_pg); 12063 __kvm_arch_free_vm(kvm); 12064 } 12065 12066 12067 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 12068 { 12069 int ret; 12070 unsigned long flags; 12071 12072 if (type) 12073 return -EINVAL; 12074 12075 ret = kvm_page_track_init(kvm); 12076 if (ret) 12077 goto out; 12078 12079 ret = kvm_mmu_init_vm(kvm); 12080 if (ret) 12081 goto out_page_track; 12082 12083 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 12084 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 12085 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 12086 12087 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 12088 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 12089 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 12090 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 12091 &kvm->arch.irq_sources_bitmap); 12092 12093 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 12094 mutex_init(&kvm->arch.apic_map_lock); 12095 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 12096 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 12097 12098 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 12099 pvclock_update_vm_gtod_copy(kvm); 12100 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 12101 12102 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 12103 kvm->arch.guest_can_read_msr_platform_info = true; 12104 kvm->arch.enable_pmu = enable_pmu; 12105 12106 #if IS_ENABLED(CONFIG_HYPERV) 12107 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 12108 kvm->arch.hv_root_tdp = INVALID_PAGE; 12109 #endif 12110 12111 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 12112 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 12113 12114 kvm_apicv_init(kvm); 12115 kvm_hv_init_vm(kvm); 12116 kvm_xen_init_vm(kvm); 12117 12118 return static_call(kvm_x86_vm_init)(kvm); 12119 12120 out_page_track: 12121 kvm_page_track_cleanup(kvm); 12122 out: 12123 return ret; 12124 } 12125 12126 int kvm_arch_post_init_vm(struct kvm *kvm) 12127 { 12128 return kvm_mmu_post_init_vm(kvm); 12129 } 12130 12131 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 12132 { 12133 vcpu_load(vcpu); 12134 kvm_mmu_unload(vcpu); 12135 vcpu_put(vcpu); 12136 } 12137 12138 static void kvm_unload_vcpu_mmus(struct kvm *kvm) 12139 { 12140 unsigned long i; 12141 struct kvm_vcpu *vcpu; 12142 12143 kvm_for_each_vcpu(i, vcpu, kvm) { 12144 kvm_clear_async_pf_completion_queue(vcpu); 12145 kvm_unload_vcpu_mmu(vcpu); 12146 } 12147 } 12148 12149 void kvm_arch_sync_events(struct kvm *kvm) 12150 { 12151 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 12152 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 12153 kvm_free_pit(kvm); 12154 } 12155 12156 /** 12157 * __x86_set_memory_region: Setup KVM internal memory slot 12158 * 12159 * @kvm: the kvm pointer to the VM. 12160 * @id: the slot ID to setup. 12161 * @gpa: the GPA to install the slot (unused when @size == 0). 12162 * @size: the size of the slot. Set to zero to uninstall a slot. 12163 * 12164 * This function helps to setup a KVM internal memory slot. Specify 12165 * @size > 0 to install a new slot, while @size == 0 to uninstall a 12166 * slot. The return code can be one of the following: 12167 * 12168 * HVA: on success (uninstall will return a bogus HVA) 12169 * -errno: on error 12170 * 12171 * The caller should always use IS_ERR() to check the return value 12172 * before use. Note, the KVM internal memory slots are guaranteed to 12173 * remain valid and unchanged until the VM is destroyed, i.e., the 12174 * GPA->HVA translation will not change. However, the HVA is a user 12175 * address, i.e. its accessibility is not guaranteed, and must be 12176 * accessed via __copy_{to,from}_user(). 12177 */ 12178 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 12179 u32 size) 12180 { 12181 int i, r; 12182 unsigned long hva, old_npages; 12183 struct kvm_memslots *slots = kvm_memslots(kvm); 12184 struct kvm_memory_slot *slot; 12185 12186 /* Called with kvm->slots_lock held. */ 12187 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 12188 return ERR_PTR_USR(-EINVAL); 12189 12190 slot = id_to_memslot(slots, id); 12191 if (size) { 12192 if (slot && slot->npages) 12193 return ERR_PTR_USR(-EEXIST); 12194 12195 /* 12196 * MAP_SHARED to prevent internal slot pages from being moved 12197 * by fork()/COW. 12198 */ 12199 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 12200 MAP_SHARED | MAP_ANONYMOUS, 0); 12201 if (IS_ERR((void *)hva)) 12202 return (void __user *)hva; 12203 } else { 12204 if (!slot || !slot->npages) 12205 return NULL; 12206 12207 old_npages = slot->npages; 12208 hva = slot->userspace_addr; 12209 } 12210 12211 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 12212 struct kvm_userspace_memory_region m; 12213 12214 m.slot = id | (i << 16); 12215 m.flags = 0; 12216 m.guest_phys_addr = gpa; 12217 m.userspace_addr = hva; 12218 m.memory_size = size; 12219 r = __kvm_set_memory_region(kvm, &m); 12220 if (r < 0) 12221 return ERR_PTR_USR(r); 12222 } 12223 12224 if (!size) 12225 vm_munmap(hva, old_npages * PAGE_SIZE); 12226 12227 return (void __user *)hva; 12228 } 12229 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 12230 12231 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 12232 { 12233 kvm_mmu_pre_destroy_vm(kvm); 12234 } 12235 12236 void kvm_arch_destroy_vm(struct kvm *kvm) 12237 { 12238 if (current->mm == kvm->mm) { 12239 /* 12240 * Free memory regions allocated on behalf of userspace, 12241 * unless the memory map has changed due to process exit 12242 * or fd copying. 12243 */ 12244 mutex_lock(&kvm->slots_lock); 12245 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 12246 0, 0); 12247 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 12248 0, 0); 12249 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 12250 mutex_unlock(&kvm->slots_lock); 12251 } 12252 kvm_unload_vcpu_mmus(kvm); 12253 static_call_cond(kvm_x86_vm_destroy)(kvm); 12254 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12255 kvm_pic_destroy(kvm); 12256 kvm_ioapic_destroy(kvm); 12257 kvm_destroy_vcpus(kvm); 12258 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12259 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12260 kvm_mmu_uninit_vm(kvm); 12261 kvm_page_track_cleanup(kvm); 12262 kvm_xen_destroy_vm(kvm); 12263 kvm_hv_destroy_vm(kvm); 12264 } 12265 12266 static void memslot_rmap_free(struct kvm_memory_slot *slot) 12267 { 12268 int i; 12269 12270 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12271 kvfree(slot->arch.rmap[i]); 12272 slot->arch.rmap[i] = NULL; 12273 } 12274 } 12275 12276 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12277 { 12278 int i; 12279 12280 memslot_rmap_free(slot); 12281 12282 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12283 kvfree(slot->arch.lpage_info[i - 1]); 12284 slot->arch.lpage_info[i - 1] = NULL; 12285 } 12286 12287 kvm_page_track_free_memslot(slot); 12288 } 12289 12290 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12291 { 12292 const int sz = sizeof(*slot->arch.rmap[0]); 12293 int i; 12294 12295 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12296 int level = i + 1; 12297 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12298 12299 if (slot->arch.rmap[i]) 12300 continue; 12301 12302 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12303 if (!slot->arch.rmap[i]) { 12304 memslot_rmap_free(slot); 12305 return -ENOMEM; 12306 } 12307 } 12308 12309 return 0; 12310 } 12311 12312 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12313 struct kvm_memory_slot *slot) 12314 { 12315 unsigned long npages = slot->npages; 12316 int i, r; 12317 12318 /* 12319 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12320 * old arrays will be freed by __kvm_set_memory_region() if installing 12321 * the new memslot is successful. 12322 */ 12323 memset(&slot->arch, 0, sizeof(slot->arch)); 12324 12325 if (kvm_memslots_have_rmaps(kvm)) { 12326 r = memslot_rmap_alloc(slot, npages); 12327 if (r) 12328 return r; 12329 } 12330 12331 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12332 struct kvm_lpage_info *linfo; 12333 unsigned long ugfn; 12334 int lpages; 12335 int level = i + 1; 12336 12337 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12338 12339 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12340 if (!linfo) 12341 goto out_free; 12342 12343 slot->arch.lpage_info[i - 1] = linfo; 12344 12345 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12346 linfo[0].disallow_lpage = 1; 12347 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12348 linfo[lpages - 1].disallow_lpage = 1; 12349 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12350 /* 12351 * If the gfn and userspace address are not aligned wrt each 12352 * other, disable large page support for this slot. 12353 */ 12354 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12355 unsigned long j; 12356 12357 for (j = 0; j < lpages; ++j) 12358 linfo[j].disallow_lpage = 1; 12359 } 12360 } 12361 12362 if (kvm_page_track_create_memslot(kvm, slot, npages)) 12363 goto out_free; 12364 12365 return 0; 12366 12367 out_free: 12368 memslot_rmap_free(slot); 12369 12370 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12371 kvfree(slot->arch.lpage_info[i - 1]); 12372 slot->arch.lpage_info[i - 1] = NULL; 12373 } 12374 return -ENOMEM; 12375 } 12376 12377 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 12378 { 12379 struct kvm_vcpu *vcpu; 12380 unsigned long i; 12381 12382 /* 12383 * memslots->generation has been incremented. 12384 * mmio generation may have reached its maximum value. 12385 */ 12386 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 12387 12388 /* Force re-initialization of steal_time cache */ 12389 kvm_for_each_vcpu(i, vcpu, kvm) 12390 kvm_vcpu_kick(vcpu); 12391 } 12392 12393 int kvm_arch_prepare_memory_region(struct kvm *kvm, 12394 const struct kvm_memory_slot *old, 12395 struct kvm_memory_slot *new, 12396 enum kvm_mr_change change) 12397 { 12398 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 12399 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 12400 return -EINVAL; 12401 12402 return kvm_alloc_memslot_metadata(kvm, new); 12403 } 12404 12405 if (change == KVM_MR_FLAGS_ONLY) 12406 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 12407 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 12408 return -EIO; 12409 12410 return 0; 12411 } 12412 12413 12414 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 12415 { 12416 struct kvm_arch *ka = &kvm->arch; 12417 12418 if (!kvm_x86_ops.cpu_dirty_log_size) 12419 return; 12420 12421 if ((enable && ++ka->cpu_dirty_logging_count == 1) || 12422 (!enable && --ka->cpu_dirty_logging_count == 0)) 12423 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 12424 12425 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0); 12426 } 12427 12428 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 12429 struct kvm_memory_slot *old, 12430 const struct kvm_memory_slot *new, 12431 enum kvm_mr_change change) 12432 { 12433 u32 old_flags = old ? old->flags : 0; 12434 u32 new_flags = new ? new->flags : 0; 12435 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 12436 12437 /* 12438 * Update CPU dirty logging if dirty logging is being toggled. This 12439 * applies to all operations. 12440 */ 12441 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 12442 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 12443 12444 /* 12445 * Nothing more to do for RO slots (which can't be dirtied and can't be 12446 * made writable) or CREATE/MOVE/DELETE of a slot. 12447 * 12448 * For a memslot with dirty logging disabled: 12449 * CREATE: No dirty mappings will already exist. 12450 * MOVE/DELETE: The old mappings will already have been cleaned up by 12451 * kvm_arch_flush_shadow_memslot() 12452 * 12453 * For a memslot with dirty logging enabled: 12454 * CREATE: No shadow pages exist, thus nothing to write-protect 12455 * and no dirty bits to clear. 12456 * MOVE/DELETE: The old mappings will already have been cleaned up by 12457 * kvm_arch_flush_shadow_memslot(). 12458 */ 12459 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 12460 return; 12461 12462 /* 12463 * READONLY and non-flags changes were filtered out above, and the only 12464 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 12465 * logging isn't being toggled on or off. 12466 */ 12467 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 12468 return; 12469 12470 if (!log_dirty_pages) { 12471 /* 12472 * Dirty logging tracks sptes in 4k granularity, meaning that 12473 * large sptes have to be split. If live migration succeeds, 12474 * the guest in the source machine will be destroyed and large 12475 * sptes will be created in the destination. However, if the 12476 * guest continues to run in the source machine (for example if 12477 * live migration fails), small sptes will remain around and 12478 * cause bad performance. 12479 * 12480 * Scan sptes if dirty logging has been stopped, dropping those 12481 * which can be collapsed into a single large-page spte. Later 12482 * page faults will create the large-page sptes. 12483 */ 12484 kvm_mmu_zap_collapsible_sptes(kvm, new); 12485 } else { 12486 /* 12487 * Initially-all-set does not require write protecting any page, 12488 * because they're all assumed to be dirty. 12489 */ 12490 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 12491 return; 12492 12493 if (READ_ONCE(eager_page_split)) 12494 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 12495 12496 if (kvm_x86_ops.cpu_dirty_log_size) { 12497 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 12498 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 12499 } else { 12500 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 12501 } 12502 12503 /* 12504 * Unconditionally flush the TLBs after enabling dirty logging. 12505 * A flush is almost always going to be necessary (see below), 12506 * and unconditionally flushing allows the helpers to omit 12507 * the subtly complex checks when removing write access. 12508 * 12509 * Do the flush outside of mmu_lock to reduce the amount of 12510 * time mmu_lock is held. Flushing after dropping mmu_lock is 12511 * safe as KVM only needs to guarantee the slot is fully 12512 * write-protected before returning to userspace, i.e. before 12513 * userspace can consume the dirty status. 12514 * 12515 * Flushing outside of mmu_lock requires KVM to be careful when 12516 * making decisions based on writable status of an SPTE, e.g. a 12517 * !writable SPTE doesn't guarantee a CPU can't perform writes. 12518 * 12519 * Specifically, KVM also write-protects guest page tables to 12520 * monitor changes when using shadow paging, and must guarantee 12521 * no CPUs can write to those page before mmu_lock is dropped. 12522 * Because CPUs may have stale TLB entries at this point, a 12523 * !writable SPTE doesn't guarantee CPUs can't perform writes. 12524 * 12525 * KVM also allows making SPTES writable outside of mmu_lock, 12526 * e.g. to allow dirty logging without taking mmu_lock. 12527 * 12528 * To handle these scenarios, KVM uses a separate software-only 12529 * bit (MMU-writable) to track if a SPTE is !writable due to 12530 * a guest page table being write-protected (KVM clears the 12531 * MMU-writable flag when write-protecting for shadow paging). 12532 * 12533 * The use of MMU-writable is also the primary motivation for 12534 * the unconditional flush. Because KVM must guarantee that a 12535 * CPU doesn't contain stale, writable TLB entries for a 12536 * !MMU-writable SPTE, KVM must flush if it encounters any 12537 * MMU-writable SPTE regardless of whether the actual hardware 12538 * writable bit was set. I.e. KVM is almost guaranteed to need 12539 * to flush, while unconditionally flushing allows the "remove 12540 * write access" helpers to ignore MMU-writable entirely. 12541 * 12542 * See is_writable_pte() for more details (the case involving 12543 * access-tracked SPTEs is particularly relevant). 12544 */ 12545 kvm_arch_flush_remote_tlbs_memslot(kvm, new); 12546 } 12547 } 12548 12549 void kvm_arch_commit_memory_region(struct kvm *kvm, 12550 struct kvm_memory_slot *old, 12551 const struct kvm_memory_slot *new, 12552 enum kvm_mr_change change) 12553 { 12554 if (!kvm->arch.n_requested_mmu_pages && 12555 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 12556 unsigned long nr_mmu_pages; 12557 12558 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 12559 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 12560 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 12561 } 12562 12563 kvm_mmu_slot_apply_flags(kvm, old, new, change); 12564 12565 /* Free the arrays associated with the old memslot. */ 12566 if (change == KVM_MR_MOVE) 12567 kvm_arch_free_memslot(kvm, old); 12568 } 12569 12570 void kvm_arch_flush_shadow_all(struct kvm *kvm) 12571 { 12572 kvm_mmu_zap_all(kvm); 12573 } 12574 12575 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 12576 struct kvm_memory_slot *slot) 12577 { 12578 kvm_page_track_flush_slot(kvm, slot); 12579 } 12580 12581 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 12582 { 12583 return (is_guest_mode(vcpu) && 12584 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 12585 } 12586 12587 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 12588 { 12589 if (!list_empty_careful(&vcpu->async_pf.done)) 12590 return true; 12591 12592 if (kvm_apic_has_events(vcpu)) 12593 return true; 12594 12595 if (vcpu->arch.pv.pv_unhalted) 12596 return true; 12597 12598 if (vcpu->arch.exception.pending) 12599 return true; 12600 12601 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12602 (vcpu->arch.nmi_pending && 12603 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 12604 return true; 12605 12606 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 12607 (vcpu->arch.smi_pending && 12608 static_call(kvm_x86_smi_allowed)(vcpu, false))) 12609 return true; 12610 12611 if (kvm_arch_interrupt_allowed(vcpu) && 12612 (kvm_cpu_has_interrupt(vcpu) || 12613 kvm_guest_apic_has_interrupt(vcpu))) 12614 return true; 12615 12616 if (kvm_hv_has_stimer_pending(vcpu)) 12617 return true; 12618 12619 if (is_guest_mode(vcpu) && 12620 kvm_x86_ops.nested_ops->hv_timer_pending && 12621 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu)) 12622 return true; 12623 12624 if (kvm_xen_has_pending_events(vcpu)) 12625 return true; 12626 12627 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) 12628 return true; 12629 12630 return false; 12631 } 12632 12633 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 12634 { 12635 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 12636 } 12637 12638 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 12639 { 12640 if (kvm_vcpu_apicv_active(vcpu) && 12641 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu)) 12642 return true; 12643 12644 return false; 12645 } 12646 12647 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 12648 { 12649 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 12650 return true; 12651 12652 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12653 kvm_test_request(KVM_REQ_SMI, vcpu) || 12654 kvm_test_request(KVM_REQ_EVENT, vcpu)) 12655 return true; 12656 12657 return kvm_arch_dy_has_pending_interrupt(vcpu); 12658 } 12659 12660 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 12661 { 12662 if (vcpu->arch.guest_state_protected) 12663 return true; 12664 12665 return vcpu->arch.preempted_in_kernel; 12666 } 12667 12668 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 12669 { 12670 return kvm_rip_read(vcpu); 12671 } 12672 12673 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 12674 { 12675 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 12676 } 12677 12678 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 12679 { 12680 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 12681 } 12682 12683 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 12684 { 12685 /* Can't read the RIP when guest state is protected, just return 0 */ 12686 if (vcpu->arch.guest_state_protected) 12687 return 0; 12688 12689 if (is_64_bit_mode(vcpu)) 12690 return kvm_rip_read(vcpu); 12691 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 12692 kvm_rip_read(vcpu)); 12693 } 12694 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 12695 12696 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 12697 { 12698 return kvm_get_linear_rip(vcpu) == linear_rip; 12699 } 12700 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 12701 12702 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 12703 { 12704 unsigned long rflags; 12705 12706 rflags = static_call(kvm_x86_get_rflags)(vcpu); 12707 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 12708 rflags &= ~X86_EFLAGS_TF; 12709 return rflags; 12710 } 12711 EXPORT_SYMBOL_GPL(kvm_get_rflags); 12712 12713 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12714 { 12715 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 12716 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 12717 rflags |= X86_EFLAGS_TF; 12718 static_call(kvm_x86_set_rflags)(vcpu, rflags); 12719 } 12720 12721 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12722 { 12723 __kvm_set_rflags(vcpu, rflags); 12724 kvm_make_request(KVM_REQ_EVENT, vcpu); 12725 } 12726 EXPORT_SYMBOL_GPL(kvm_set_rflags); 12727 12728 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 12729 { 12730 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 12731 12732 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 12733 } 12734 12735 static inline u32 kvm_async_pf_next_probe(u32 key) 12736 { 12737 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 12738 } 12739 12740 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12741 { 12742 u32 key = kvm_async_pf_hash_fn(gfn); 12743 12744 while (vcpu->arch.apf.gfns[key] != ~0) 12745 key = kvm_async_pf_next_probe(key); 12746 12747 vcpu->arch.apf.gfns[key] = gfn; 12748 } 12749 12750 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 12751 { 12752 int i; 12753 u32 key = kvm_async_pf_hash_fn(gfn); 12754 12755 for (i = 0; i < ASYNC_PF_PER_VCPU && 12756 (vcpu->arch.apf.gfns[key] != gfn && 12757 vcpu->arch.apf.gfns[key] != ~0); i++) 12758 key = kvm_async_pf_next_probe(key); 12759 12760 return key; 12761 } 12762 12763 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12764 { 12765 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 12766 } 12767 12768 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12769 { 12770 u32 i, j, k; 12771 12772 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 12773 12774 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 12775 return; 12776 12777 while (true) { 12778 vcpu->arch.apf.gfns[i] = ~0; 12779 do { 12780 j = kvm_async_pf_next_probe(j); 12781 if (vcpu->arch.apf.gfns[j] == ~0) 12782 return; 12783 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 12784 /* 12785 * k lies cyclically in ]i,j] 12786 * | i.k.j | 12787 * |....j i.k.| or |.k..j i...| 12788 */ 12789 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 12790 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 12791 i = j; 12792 } 12793 } 12794 12795 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 12796 { 12797 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 12798 12799 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 12800 sizeof(reason)); 12801 } 12802 12803 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 12804 { 12805 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 12806 12807 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 12808 &token, offset, sizeof(token)); 12809 } 12810 12811 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 12812 { 12813 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 12814 u32 val; 12815 12816 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 12817 &val, offset, sizeof(val))) 12818 return false; 12819 12820 return !val; 12821 } 12822 12823 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 12824 { 12825 12826 if (!kvm_pv_async_pf_enabled(vcpu)) 12827 return false; 12828 12829 if (vcpu->arch.apf.send_user_only && 12830 static_call(kvm_x86_get_cpl)(vcpu) == 0) 12831 return false; 12832 12833 if (is_guest_mode(vcpu)) { 12834 /* 12835 * L1 needs to opt into the special #PF vmexits that are 12836 * used to deliver async page faults. 12837 */ 12838 return vcpu->arch.apf.delivery_as_pf_vmexit; 12839 } else { 12840 /* 12841 * Play it safe in case the guest temporarily disables paging. 12842 * The real mode IDT in particular is unlikely to have a #PF 12843 * exception setup. 12844 */ 12845 return is_paging(vcpu); 12846 } 12847 } 12848 12849 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 12850 { 12851 if (unlikely(!lapic_in_kernel(vcpu) || 12852 kvm_event_needs_reinjection(vcpu) || 12853 vcpu->arch.exception.pending)) 12854 return false; 12855 12856 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 12857 return false; 12858 12859 /* 12860 * If interrupts are off we cannot even use an artificial 12861 * halt state. 12862 */ 12863 return kvm_arch_interrupt_allowed(vcpu); 12864 } 12865 12866 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 12867 struct kvm_async_pf *work) 12868 { 12869 struct x86_exception fault; 12870 12871 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 12872 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 12873 12874 if (kvm_can_deliver_async_pf(vcpu) && 12875 !apf_put_user_notpresent(vcpu)) { 12876 fault.vector = PF_VECTOR; 12877 fault.error_code_valid = true; 12878 fault.error_code = 0; 12879 fault.nested_page_fault = false; 12880 fault.address = work->arch.token; 12881 fault.async_page_fault = true; 12882 kvm_inject_page_fault(vcpu, &fault); 12883 return true; 12884 } else { 12885 /* 12886 * It is not possible to deliver a paravirtualized asynchronous 12887 * page fault, but putting the guest in an artificial halt state 12888 * can be beneficial nevertheless: if an interrupt arrives, we 12889 * can deliver it timely and perhaps the guest will schedule 12890 * another process. When the instruction that triggered a page 12891 * fault is retried, hopefully the page will be ready in the host. 12892 */ 12893 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 12894 return false; 12895 } 12896 } 12897 12898 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 12899 struct kvm_async_pf *work) 12900 { 12901 struct kvm_lapic_irq irq = { 12902 .delivery_mode = APIC_DM_FIXED, 12903 .vector = vcpu->arch.apf.vec 12904 }; 12905 12906 if (work->wakeup_all) 12907 work->arch.token = ~0; /* broadcast wakeup */ 12908 else 12909 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 12910 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 12911 12912 if ((work->wakeup_all || work->notpresent_injected) && 12913 kvm_pv_async_pf_enabled(vcpu) && 12914 !apf_put_user_ready(vcpu, work->arch.token)) { 12915 vcpu->arch.apf.pageready_pending = true; 12916 kvm_apic_set_irq(vcpu, &irq, NULL); 12917 } 12918 12919 vcpu->arch.apf.halted = false; 12920 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 12921 } 12922 12923 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 12924 { 12925 kvm_make_request(KVM_REQ_APF_READY, vcpu); 12926 if (!vcpu->arch.apf.pageready_pending) 12927 kvm_vcpu_kick(vcpu); 12928 } 12929 12930 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 12931 { 12932 if (!kvm_pv_async_pf_enabled(vcpu)) 12933 return true; 12934 else 12935 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 12936 } 12937 12938 void kvm_arch_start_assignment(struct kvm *kvm) 12939 { 12940 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 12941 static_call_cond(kvm_x86_pi_start_assignment)(kvm); 12942 } 12943 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 12944 12945 void kvm_arch_end_assignment(struct kvm *kvm) 12946 { 12947 atomic_dec(&kvm->arch.assigned_device_count); 12948 } 12949 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 12950 12951 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) 12952 { 12953 return arch_atomic_read(&kvm->arch.assigned_device_count); 12954 } 12955 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 12956 12957 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 12958 { 12959 atomic_inc(&kvm->arch.noncoherent_dma_count); 12960 } 12961 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 12962 12963 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 12964 { 12965 atomic_dec(&kvm->arch.noncoherent_dma_count); 12966 } 12967 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 12968 12969 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 12970 { 12971 return atomic_read(&kvm->arch.noncoherent_dma_count); 12972 } 12973 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 12974 12975 bool kvm_arch_has_irq_bypass(void) 12976 { 12977 return true; 12978 } 12979 12980 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 12981 struct irq_bypass_producer *prod) 12982 { 12983 struct kvm_kernel_irqfd *irqfd = 12984 container_of(cons, struct kvm_kernel_irqfd, consumer); 12985 int ret; 12986 12987 irqfd->producer = prod; 12988 kvm_arch_start_assignment(irqfd->kvm); 12989 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, 12990 prod->irq, irqfd->gsi, 1); 12991 12992 if (ret) 12993 kvm_arch_end_assignment(irqfd->kvm); 12994 12995 return ret; 12996 } 12997 12998 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 12999 struct irq_bypass_producer *prod) 13000 { 13001 int ret; 13002 struct kvm_kernel_irqfd *irqfd = 13003 container_of(cons, struct kvm_kernel_irqfd, consumer); 13004 13005 WARN_ON(irqfd->producer != prod); 13006 irqfd->producer = NULL; 13007 13008 /* 13009 * When producer of consumer is unregistered, we change back to 13010 * remapped mode, so we can re-use the current implementation 13011 * when the irq is masked/disabled or the consumer side (KVM 13012 * int this case doesn't want to receive the interrupts. 13013 */ 13014 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 13015 if (ret) 13016 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 13017 " fails: %d\n", irqfd->consumer.token, ret); 13018 13019 kvm_arch_end_assignment(irqfd->kvm); 13020 } 13021 13022 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 13023 uint32_t guest_irq, bool set) 13024 { 13025 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set); 13026 } 13027 13028 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 13029 struct kvm_kernel_irq_routing_entry *new) 13030 { 13031 if (new->type != KVM_IRQ_ROUTING_MSI) 13032 return true; 13033 13034 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 13035 } 13036 13037 bool kvm_vector_hashing_enabled(void) 13038 { 13039 return vector_hashing; 13040 } 13041 13042 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 13043 { 13044 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 13045 } 13046 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 13047 13048 13049 int kvm_spec_ctrl_test_value(u64 value) 13050 { 13051 /* 13052 * test that setting IA32_SPEC_CTRL to given value 13053 * is allowed by the host processor 13054 */ 13055 13056 u64 saved_value; 13057 unsigned long flags; 13058 int ret = 0; 13059 13060 local_irq_save(flags); 13061 13062 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 13063 ret = 1; 13064 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 13065 ret = 1; 13066 else 13067 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 13068 13069 local_irq_restore(flags); 13070 13071 return ret; 13072 } 13073 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 13074 13075 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13076 { 13077 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13078 struct x86_exception fault; 13079 u64 access = error_code & 13080 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 13081 13082 if (!(error_code & PFERR_PRESENT_MASK) || 13083 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 13084 /* 13085 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 13086 * tables probably do not match the TLB. Just proceed 13087 * with the error code that the processor gave. 13088 */ 13089 fault.vector = PF_VECTOR; 13090 fault.error_code_valid = true; 13091 fault.error_code = error_code; 13092 fault.nested_page_fault = false; 13093 fault.address = gva; 13094 fault.async_page_fault = false; 13095 } 13096 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 13097 } 13098 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 13099 13100 /* 13101 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 13102 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 13103 * indicates whether exit to userspace is needed. 13104 */ 13105 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 13106 struct x86_exception *e) 13107 { 13108 if (r == X86EMUL_PROPAGATE_FAULT) { 13109 kvm_inject_emulated_page_fault(vcpu, e); 13110 return 1; 13111 } 13112 13113 /* 13114 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 13115 * while handling a VMX instruction KVM could've handled the request 13116 * correctly by exiting to userspace and performing I/O but there 13117 * doesn't seem to be a real use-case behind such requests, just return 13118 * KVM_EXIT_INTERNAL_ERROR for now. 13119 */ 13120 kvm_prepare_emulation_failure_exit(vcpu); 13121 13122 return 0; 13123 } 13124 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 13125 13126 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 13127 { 13128 bool pcid_enabled; 13129 struct x86_exception e; 13130 struct { 13131 u64 pcid; 13132 u64 gla; 13133 } operand; 13134 int r; 13135 13136 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 13137 if (r != X86EMUL_CONTINUE) 13138 return kvm_handle_memory_failure(vcpu, r, &e); 13139 13140 if (operand.pcid >> 12 != 0) { 13141 kvm_inject_gp(vcpu, 0); 13142 return 1; 13143 } 13144 13145 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 13146 13147 switch (type) { 13148 case INVPCID_TYPE_INDIV_ADDR: 13149 if ((!pcid_enabled && (operand.pcid != 0)) || 13150 is_noncanonical_address(operand.gla, vcpu)) { 13151 kvm_inject_gp(vcpu, 0); 13152 return 1; 13153 } 13154 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 13155 return kvm_skip_emulated_instruction(vcpu); 13156 13157 case INVPCID_TYPE_SINGLE_CTXT: 13158 if (!pcid_enabled && (operand.pcid != 0)) { 13159 kvm_inject_gp(vcpu, 0); 13160 return 1; 13161 } 13162 13163 kvm_invalidate_pcid(vcpu, operand.pcid); 13164 return kvm_skip_emulated_instruction(vcpu); 13165 13166 case INVPCID_TYPE_ALL_NON_GLOBAL: 13167 /* 13168 * Currently, KVM doesn't mark global entries in the shadow 13169 * page tables, so a non-global flush just degenerates to a 13170 * global flush. If needed, we could optimize this later by 13171 * keeping track of global entries in shadow page tables. 13172 */ 13173 13174 fallthrough; 13175 case INVPCID_TYPE_ALL_INCL_GLOBAL: 13176 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 13177 return kvm_skip_emulated_instruction(vcpu); 13178 13179 default: 13180 kvm_inject_gp(vcpu, 0); 13181 return 1; 13182 } 13183 } 13184 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 13185 13186 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 13187 { 13188 struct kvm_run *run = vcpu->run; 13189 struct kvm_mmio_fragment *frag; 13190 unsigned int len; 13191 13192 BUG_ON(!vcpu->mmio_needed); 13193 13194 /* Complete previous fragment */ 13195 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 13196 len = min(8u, frag->len); 13197 if (!vcpu->mmio_is_write) 13198 memcpy(frag->data, run->mmio.data, len); 13199 13200 if (frag->len <= 8) { 13201 /* Switch to the next fragment. */ 13202 frag++; 13203 vcpu->mmio_cur_fragment++; 13204 } else { 13205 /* Go forward to the next mmio piece. */ 13206 frag->data += len; 13207 frag->gpa += len; 13208 frag->len -= len; 13209 } 13210 13211 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 13212 vcpu->mmio_needed = 0; 13213 13214 // VMG change, at this point, we're always done 13215 // RIP has already been advanced 13216 return 1; 13217 } 13218 13219 // More MMIO is needed 13220 run->mmio.phys_addr = frag->gpa; 13221 run->mmio.len = min(8u, frag->len); 13222 run->mmio.is_write = vcpu->mmio_is_write; 13223 if (run->mmio.is_write) 13224 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 13225 run->exit_reason = KVM_EXIT_MMIO; 13226 13227 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13228 13229 return 0; 13230 } 13231 13232 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13233 void *data) 13234 { 13235 int handled; 13236 struct kvm_mmio_fragment *frag; 13237 13238 if (!data) 13239 return -EINVAL; 13240 13241 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13242 if (handled == bytes) 13243 return 1; 13244 13245 bytes -= handled; 13246 gpa += handled; 13247 data += handled; 13248 13249 /*TODO: Check if need to increment number of frags */ 13250 frag = vcpu->mmio_fragments; 13251 vcpu->mmio_nr_fragments = 1; 13252 frag->len = bytes; 13253 frag->gpa = gpa; 13254 frag->data = data; 13255 13256 vcpu->mmio_needed = 1; 13257 vcpu->mmio_cur_fragment = 0; 13258 13259 vcpu->run->mmio.phys_addr = gpa; 13260 vcpu->run->mmio.len = min(8u, frag->len); 13261 vcpu->run->mmio.is_write = 1; 13262 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 13263 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13264 13265 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13266 13267 return 0; 13268 } 13269 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 13270 13271 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13272 void *data) 13273 { 13274 int handled; 13275 struct kvm_mmio_fragment *frag; 13276 13277 if (!data) 13278 return -EINVAL; 13279 13280 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13281 if (handled == bytes) 13282 return 1; 13283 13284 bytes -= handled; 13285 gpa += handled; 13286 data += handled; 13287 13288 /*TODO: Check if need to increment number of frags */ 13289 frag = vcpu->mmio_fragments; 13290 vcpu->mmio_nr_fragments = 1; 13291 frag->len = bytes; 13292 frag->gpa = gpa; 13293 frag->data = data; 13294 13295 vcpu->mmio_needed = 1; 13296 vcpu->mmio_cur_fragment = 0; 13297 13298 vcpu->run->mmio.phys_addr = gpa; 13299 vcpu->run->mmio.len = min(8u, frag->len); 13300 vcpu->run->mmio.is_write = 0; 13301 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13302 13303 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13304 13305 return 0; 13306 } 13307 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13308 13309 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 13310 { 13311 vcpu->arch.sev_pio_count -= count; 13312 vcpu->arch.sev_pio_data += count * size; 13313 } 13314 13315 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13316 unsigned int port); 13317 13318 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13319 { 13320 int size = vcpu->arch.pio.size; 13321 int port = vcpu->arch.pio.port; 13322 13323 vcpu->arch.pio.count = 0; 13324 if (vcpu->arch.sev_pio_count) 13325 return kvm_sev_es_outs(vcpu, size, port); 13326 return 1; 13327 } 13328 13329 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13330 unsigned int port) 13331 { 13332 for (;;) { 13333 unsigned int count = 13334 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13335 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13336 13337 /* memcpy done already by emulator_pio_out. */ 13338 advance_sev_es_emulated_pio(vcpu, count, size); 13339 if (!ret) 13340 break; 13341 13342 /* Emulation done by the kernel. */ 13343 if (!vcpu->arch.sev_pio_count) 13344 return 1; 13345 } 13346 13347 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13348 return 0; 13349 } 13350 13351 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13352 unsigned int port); 13353 13354 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13355 { 13356 unsigned count = vcpu->arch.pio.count; 13357 int size = vcpu->arch.pio.size; 13358 int port = vcpu->arch.pio.port; 13359 13360 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13361 advance_sev_es_emulated_pio(vcpu, count, size); 13362 if (vcpu->arch.sev_pio_count) 13363 return kvm_sev_es_ins(vcpu, size, port); 13364 return 1; 13365 } 13366 13367 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13368 unsigned int port) 13369 { 13370 for (;;) { 13371 unsigned int count = 13372 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13373 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 13374 break; 13375 13376 /* Emulation done by the kernel. */ 13377 advance_sev_es_emulated_pio(vcpu, count, size); 13378 if (!vcpu->arch.sev_pio_count) 13379 return 1; 13380 } 13381 13382 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13383 return 0; 13384 } 13385 13386 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 13387 unsigned int port, void *data, unsigned int count, 13388 int in) 13389 { 13390 vcpu->arch.sev_pio_data = data; 13391 vcpu->arch.sev_pio_count = count; 13392 return in ? kvm_sev_es_ins(vcpu, size, port) 13393 : kvm_sev_es_outs(vcpu, size, port); 13394 } 13395 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 13396 13397 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 13398 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 13399 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 13400 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 13401 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 13402 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 13403 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 13404 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 13405 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 13406 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 13407 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 13408 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 13409 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 13410 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 13411 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 13412 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 13413 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 13414 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 13415 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 13416 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 13417 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 13418 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 13419 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 13420 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 13421 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 13422 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 13423 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 13424 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 13425 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 13426 13427 static int __init kvm_x86_init(void) 13428 { 13429 kvm_mmu_x86_module_init(); 13430 return 0; 13431 } 13432 module_init(kvm_x86_init); 13433 13434 static void __exit kvm_x86_exit(void) 13435 { 13436 /* 13437 * If module_init() is implemented, module_exit() must also be 13438 * implemented to allow module unload. 13439 */ 13440 } 13441 module_exit(kvm_x86_exit); 13442