xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 0d07cf5e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "mmu.h"
22 #include "i8254.h"
23 #include "tss.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26 #include "cpuid.h"
27 #include "pmu.h"
28 #include "hyperv.h"
29 
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/export.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <linux/kvm_irqfd.h>
52 #include <linux/irqbypass.h>
53 #include <linux/sched/stat.h>
54 #include <linux/mem_encrypt.h>
55 
56 #include <trace/events/kvm.h>
57 
58 #include <asm/debugreg.h>
59 #include <asm/msr.h>
60 #include <asm/desc.h>
61 #include <asm/mce.h>
62 #include <linux/kernel_stat.h>
63 #include <asm/fpu/internal.h> /* Ugh! */
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66 #include <asm/irq_remapping.h>
67 #include <asm/mshyperv.h>
68 #include <asm/hypervisor.h>
69 #include <asm/intel_pt.h>
70 #include <clocksource/hyperv_timer.h>
71 
72 #define CREATE_TRACE_POINTS
73 #include "trace.h"
74 
75 #define MAX_IO_MSRS 256
76 #define KVM_MAX_MCE_BANKS 32
77 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
78 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
79 
80 #define emul_to_vcpu(ctxt) \
81 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
82 
83 /* EFER defaults:
84  * - enable syscall per default because its emulated by KVM
85  * - enable LME and LMA per default on 64 bit KVM
86  */
87 #ifdef CONFIG_X86_64
88 static
89 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
90 #else
91 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
92 #endif
93 
94 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
95 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
96 
97 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
98                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
99 
100 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
101 static void process_nmi(struct kvm_vcpu *vcpu);
102 static void enter_smm(struct kvm_vcpu *vcpu);
103 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
104 static void store_regs(struct kvm_vcpu *vcpu);
105 static int sync_regs(struct kvm_vcpu *vcpu);
106 
107 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
108 EXPORT_SYMBOL_GPL(kvm_x86_ops);
109 
110 static bool __read_mostly ignore_msrs = 0;
111 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
112 
113 static bool __read_mostly report_ignored_msrs = true;
114 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
115 
116 unsigned int min_timer_period_us = 200;
117 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
118 
119 static bool __read_mostly kvmclock_periodic_sync = true;
120 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
121 
122 bool __read_mostly kvm_has_tsc_control;
123 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
124 u32  __read_mostly kvm_max_guest_tsc_khz;
125 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
126 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
127 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
128 u64  __read_mostly kvm_max_tsc_scaling_ratio;
129 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
130 u64 __read_mostly kvm_default_tsc_scaling_ratio;
131 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
132 
133 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
134 static u32 __read_mostly tsc_tolerance_ppm = 250;
135 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
136 
137 /*
138  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
139  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
140  * advancement entirely.  Any other value is used as-is and disables adaptive
141  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
142  */
143 static int __read_mostly lapic_timer_advance_ns = -1;
144 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
145 
146 static bool __read_mostly vector_hashing = true;
147 module_param(vector_hashing, bool, S_IRUGO);
148 
149 bool __read_mostly enable_vmware_backdoor = false;
150 module_param(enable_vmware_backdoor, bool, S_IRUGO);
151 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
152 
153 static bool __read_mostly force_emulation_prefix = false;
154 module_param(force_emulation_prefix, bool, S_IRUGO);
155 
156 #define KVM_NR_SHARED_MSRS 16
157 
158 struct kvm_shared_msrs_global {
159 	int nr;
160 	u32 msrs[KVM_NR_SHARED_MSRS];
161 };
162 
163 struct kvm_shared_msrs {
164 	struct user_return_notifier urn;
165 	bool registered;
166 	struct kvm_shared_msr_values {
167 		u64 host;
168 		u64 curr;
169 	} values[KVM_NR_SHARED_MSRS];
170 };
171 
172 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
173 static struct kvm_shared_msrs __percpu *shared_msrs;
174 
175 struct kvm_stats_debugfs_item debugfs_entries[] = {
176 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
177 	{ "pf_guest", VCPU_STAT(pf_guest) },
178 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
179 	{ "invlpg", VCPU_STAT(invlpg) },
180 	{ "exits", VCPU_STAT(exits) },
181 	{ "io_exits", VCPU_STAT(io_exits) },
182 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
183 	{ "signal_exits", VCPU_STAT(signal_exits) },
184 	{ "irq_window", VCPU_STAT(irq_window_exits) },
185 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
186 	{ "halt_exits", VCPU_STAT(halt_exits) },
187 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
188 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
189 	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
190 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
191 	{ "hypercalls", VCPU_STAT(hypercalls) },
192 	{ "request_irq", VCPU_STAT(request_irq_exits) },
193 	{ "irq_exits", VCPU_STAT(irq_exits) },
194 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
195 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
196 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
197 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
198 	{ "irq_injections", VCPU_STAT(irq_injections) },
199 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
200 	{ "req_event", VCPU_STAT(req_event) },
201 	{ "l1d_flush", VCPU_STAT(l1d_flush) },
202 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
203 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
204 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
205 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
206 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
207 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
208 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
209 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
210 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
211 	{ "largepages", VM_STAT(lpages) },
212 	{ "max_mmu_page_hash_collisions",
213 		VM_STAT(max_mmu_page_hash_collisions) },
214 	{ NULL }
215 };
216 
217 u64 __read_mostly host_xcr0;
218 
219 struct kmem_cache *x86_fpu_cache;
220 EXPORT_SYMBOL_GPL(x86_fpu_cache);
221 
222 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
223 
224 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
225 {
226 	int i;
227 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
228 		vcpu->arch.apf.gfns[i] = ~0;
229 }
230 
231 static void kvm_on_user_return(struct user_return_notifier *urn)
232 {
233 	unsigned slot;
234 	struct kvm_shared_msrs *locals
235 		= container_of(urn, struct kvm_shared_msrs, urn);
236 	struct kvm_shared_msr_values *values;
237 	unsigned long flags;
238 
239 	/*
240 	 * Disabling irqs at this point since the following code could be
241 	 * interrupted and executed through kvm_arch_hardware_disable()
242 	 */
243 	local_irq_save(flags);
244 	if (locals->registered) {
245 		locals->registered = false;
246 		user_return_notifier_unregister(urn);
247 	}
248 	local_irq_restore(flags);
249 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
250 		values = &locals->values[slot];
251 		if (values->host != values->curr) {
252 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
253 			values->curr = values->host;
254 		}
255 	}
256 }
257 
258 static void shared_msr_update(unsigned slot, u32 msr)
259 {
260 	u64 value;
261 	unsigned int cpu = smp_processor_id();
262 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
263 
264 	/* only read, and nobody should modify it at this time,
265 	 * so don't need lock */
266 	if (slot >= shared_msrs_global.nr) {
267 		printk(KERN_ERR "kvm: invalid MSR slot!");
268 		return;
269 	}
270 	rdmsrl_safe(msr, &value);
271 	smsr->values[slot].host = value;
272 	smsr->values[slot].curr = value;
273 }
274 
275 void kvm_define_shared_msr(unsigned slot, u32 msr)
276 {
277 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
278 	shared_msrs_global.msrs[slot] = msr;
279 	if (slot >= shared_msrs_global.nr)
280 		shared_msrs_global.nr = slot + 1;
281 }
282 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
283 
284 static void kvm_shared_msr_cpu_online(void)
285 {
286 	unsigned i;
287 
288 	for (i = 0; i < shared_msrs_global.nr; ++i)
289 		shared_msr_update(i, shared_msrs_global.msrs[i]);
290 }
291 
292 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
293 {
294 	unsigned int cpu = smp_processor_id();
295 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
296 	int err;
297 
298 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
299 		return 0;
300 	smsr->values[slot].curr = value;
301 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
302 	if (err)
303 		return 1;
304 
305 	if (!smsr->registered) {
306 		smsr->urn.on_user_return = kvm_on_user_return;
307 		user_return_notifier_register(&smsr->urn);
308 		smsr->registered = true;
309 	}
310 	return 0;
311 }
312 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
313 
314 static void drop_user_return_notifiers(void)
315 {
316 	unsigned int cpu = smp_processor_id();
317 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
318 
319 	if (smsr->registered)
320 		kvm_on_user_return(&smsr->urn);
321 }
322 
323 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
324 {
325 	return vcpu->arch.apic_base;
326 }
327 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
328 
329 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
330 {
331 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
332 }
333 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
334 
335 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
336 {
337 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
338 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
339 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
340 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
341 
342 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
343 		return 1;
344 	if (!msr_info->host_initiated) {
345 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
346 			return 1;
347 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
348 			return 1;
349 	}
350 
351 	kvm_lapic_set_base(vcpu, msr_info->data);
352 	return 0;
353 }
354 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
355 
356 asmlinkage __visible void kvm_spurious_fault(void)
357 {
358 	/* Fault while not rebooting.  We want the trace. */
359 	BUG();
360 }
361 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
362 
363 #define EXCPT_BENIGN		0
364 #define EXCPT_CONTRIBUTORY	1
365 #define EXCPT_PF		2
366 
367 static int exception_class(int vector)
368 {
369 	switch (vector) {
370 	case PF_VECTOR:
371 		return EXCPT_PF;
372 	case DE_VECTOR:
373 	case TS_VECTOR:
374 	case NP_VECTOR:
375 	case SS_VECTOR:
376 	case GP_VECTOR:
377 		return EXCPT_CONTRIBUTORY;
378 	default:
379 		break;
380 	}
381 	return EXCPT_BENIGN;
382 }
383 
384 #define EXCPT_FAULT		0
385 #define EXCPT_TRAP		1
386 #define EXCPT_ABORT		2
387 #define EXCPT_INTERRUPT		3
388 
389 static int exception_type(int vector)
390 {
391 	unsigned int mask;
392 
393 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
394 		return EXCPT_INTERRUPT;
395 
396 	mask = 1 << vector;
397 
398 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
399 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
400 		return EXCPT_TRAP;
401 
402 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
403 		return EXCPT_ABORT;
404 
405 	/* Reserved exceptions will result in fault */
406 	return EXCPT_FAULT;
407 }
408 
409 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
410 {
411 	unsigned nr = vcpu->arch.exception.nr;
412 	bool has_payload = vcpu->arch.exception.has_payload;
413 	unsigned long payload = vcpu->arch.exception.payload;
414 
415 	if (!has_payload)
416 		return;
417 
418 	switch (nr) {
419 	case DB_VECTOR:
420 		/*
421 		 * "Certain debug exceptions may clear bit 0-3.  The
422 		 * remaining contents of the DR6 register are never
423 		 * cleared by the processor".
424 		 */
425 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
426 		/*
427 		 * DR6.RTM is set by all #DB exceptions that don't clear it.
428 		 */
429 		vcpu->arch.dr6 |= DR6_RTM;
430 		vcpu->arch.dr6 |= payload;
431 		/*
432 		 * Bit 16 should be set in the payload whenever the #DB
433 		 * exception should clear DR6.RTM. This makes the payload
434 		 * compatible with the pending debug exceptions under VMX.
435 		 * Though not currently documented in the SDM, this also
436 		 * makes the payload compatible with the exit qualification
437 		 * for #DB exceptions under VMX.
438 		 */
439 		vcpu->arch.dr6 ^= payload & DR6_RTM;
440 		break;
441 	case PF_VECTOR:
442 		vcpu->arch.cr2 = payload;
443 		break;
444 	}
445 
446 	vcpu->arch.exception.has_payload = false;
447 	vcpu->arch.exception.payload = 0;
448 }
449 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
450 
451 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
452 		unsigned nr, bool has_error, u32 error_code,
453 	        bool has_payload, unsigned long payload, bool reinject)
454 {
455 	u32 prev_nr;
456 	int class1, class2;
457 
458 	kvm_make_request(KVM_REQ_EVENT, vcpu);
459 
460 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
461 	queue:
462 		if (has_error && !is_protmode(vcpu))
463 			has_error = false;
464 		if (reinject) {
465 			/*
466 			 * On vmentry, vcpu->arch.exception.pending is only
467 			 * true if an event injection was blocked by
468 			 * nested_run_pending.  In that case, however,
469 			 * vcpu_enter_guest requests an immediate exit,
470 			 * and the guest shouldn't proceed far enough to
471 			 * need reinjection.
472 			 */
473 			WARN_ON_ONCE(vcpu->arch.exception.pending);
474 			vcpu->arch.exception.injected = true;
475 			if (WARN_ON_ONCE(has_payload)) {
476 				/*
477 				 * A reinjected event has already
478 				 * delivered its payload.
479 				 */
480 				has_payload = false;
481 				payload = 0;
482 			}
483 		} else {
484 			vcpu->arch.exception.pending = true;
485 			vcpu->arch.exception.injected = false;
486 		}
487 		vcpu->arch.exception.has_error_code = has_error;
488 		vcpu->arch.exception.nr = nr;
489 		vcpu->arch.exception.error_code = error_code;
490 		vcpu->arch.exception.has_payload = has_payload;
491 		vcpu->arch.exception.payload = payload;
492 		/*
493 		 * In guest mode, payload delivery should be deferred,
494 		 * so that the L1 hypervisor can intercept #PF before
495 		 * CR2 is modified (or intercept #DB before DR6 is
496 		 * modified under nVMX).  However, for ABI
497 		 * compatibility with KVM_GET_VCPU_EVENTS and
498 		 * KVM_SET_VCPU_EVENTS, we can't delay payload
499 		 * delivery unless userspace has enabled this
500 		 * functionality via the per-VM capability,
501 		 * KVM_CAP_EXCEPTION_PAYLOAD.
502 		 */
503 		if (!vcpu->kvm->arch.exception_payload_enabled ||
504 		    !is_guest_mode(vcpu))
505 			kvm_deliver_exception_payload(vcpu);
506 		return;
507 	}
508 
509 	/* to check exception */
510 	prev_nr = vcpu->arch.exception.nr;
511 	if (prev_nr == DF_VECTOR) {
512 		/* triple fault -> shutdown */
513 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
514 		return;
515 	}
516 	class1 = exception_class(prev_nr);
517 	class2 = exception_class(nr);
518 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
519 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
520 		/*
521 		 * Generate double fault per SDM Table 5-5.  Set
522 		 * exception.pending = true so that the double fault
523 		 * can trigger a nested vmexit.
524 		 */
525 		vcpu->arch.exception.pending = true;
526 		vcpu->arch.exception.injected = false;
527 		vcpu->arch.exception.has_error_code = true;
528 		vcpu->arch.exception.nr = DF_VECTOR;
529 		vcpu->arch.exception.error_code = 0;
530 		vcpu->arch.exception.has_payload = false;
531 		vcpu->arch.exception.payload = 0;
532 	} else
533 		/* replace previous exception with a new one in a hope
534 		   that instruction re-execution will regenerate lost
535 		   exception */
536 		goto queue;
537 }
538 
539 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
540 {
541 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
542 }
543 EXPORT_SYMBOL_GPL(kvm_queue_exception);
544 
545 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
546 {
547 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
548 }
549 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
550 
551 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
552 				  unsigned long payload)
553 {
554 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
555 }
556 
557 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
558 				    u32 error_code, unsigned long payload)
559 {
560 	kvm_multiple_exception(vcpu, nr, true, error_code,
561 			       true, payload, false);
562 }
563 
564 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
565 {
566 	if (err)
567 		kvm_inject_gp(vcpu, 0);
568 	else
569 		return kvm_skip_emulated_instruction(vcpu);
570 
571 	return 1;
572 }
573 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
574 
575 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
576 {
577 	++vcpu->stat.pf_guest;
578 	vcpu->arch.exception.nested_apf =
579 		is_guest_mode(vcpu) && fault->async_page_fault;
580 	if (vcpu->arch.exception.nested_apf) {
581 		vcpu->arch.apf.nested_apf_token = fault->address;
582 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
583 	} else {
584 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
585 					fault->address);
586 	}
587 }
588 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
589 
590 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
591 {
592 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
593 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
594 	else
595 		vcpu->arch.mmu->inject_page_fault(vcpu, fault);
596 
597 	return fault->nested_page_fault;
598 }
599 
600 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
601 {
602 	atomic_inc(&vcpu->arch.nmi_queued);
603 	kvm_make_request(KVM_REQ_NMI, vcpu);
604 }
605 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
606 
607 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
608 {
609 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
610 }
611 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
612 
613 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
614 {
615 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
616 }
617 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
618 
619 /*
620  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
621  * a #GP and return false.
622  */
623 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
624 {
625 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
626 		return true;
627 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
628 	return false;
629 }
630 EXPORT_SYMBOL_GPL(kvm_require_cpl);
631 
632 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
633 {
634 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
635 		return true;
636 
637 	kvm_queue_exception(vcpu, UD_VECTOR);
638 	return false;
639 }
640 EXPORT_SYMBOL_GPL(kvm_require_dr);
641 
642 /*
643  * This function will be used to read from the physical memory of the currently
644  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
645  * can read from guest physical or from the guest's guest physical memory.
646  */
647 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
648 			    gfn_t ngfn, void *data, int offset, int len,
649 			    u32 access)
650 {
651 	struct x86_exception exception;
652 	gfn_t real_gfn;
653 	gpa_t ngpa;
654 
655 	ngpa     = gfn_to_gpa(ngfn);
656 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
657 	if (real_gfn == UNMAPPED_GVA)
658 		return -EFAULT;
659 
660 	real_gfn = gpa_to_gfn(real_gfn);
661 
662 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
663 }
664 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
665 
666 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
667 			       void *data, int offset, int len, u32 access)
668 {
669 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
670 				       data, offset, len, access);
671 }
672 
673 /*
674  * Load the pae pdptrs.  Return true is they are all valid.
675  */
676 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
677 {
678 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
679 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
680 	int i;
681 	int ret;
682 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
683 
684 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
685 				      offset * sizeof(u64), sizeof(pdpte),
686 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
687 	if (ret < 0) {
688 		ret = 0;
689 		goto out;
690 	}
691 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
692 		if ((pdpte[i] & PT_PRESENT_MASK) &&
693 		    (pdpte[i] &
694 		     vcpu->arch.mmu->guest_rsvd_check.rsvd_bits_mask[0][2])) {
695 			ret = 0;
696 			goto out;
697 		}
698 	}
699 	ret = 1;
700 
701 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
702 	__set_bit(VCPU_EXREG_PDPTR,
703 		  (unsigned long *)&vcpu->arch.regs_avail);
704 	__set_bit(VCPU_EXREG_PDPTR,
705 		  (unsigned long *)&vcpu->arch.regs_dirty);
706 out:
707 
708 	return ret;
709 }
710 EXPORT_SYMBOL_GPL(load_pdptrs);
711 
712 bool pdptrs_changed(struct kvm_vcpu *vcpu)
713 {
714 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
715 	bool changed = true;
716 	int offset;
717 	gfn_t gfn;
718 	int r;
719 
720 	if (!is_pae_paging(vcpu))
721 		return false;
722 
723 	if (!test_bit(VCPU_EXREG_PDPTR,
724 		      (unsigned long *)&vcpu->arch.regs_avail))
725 		return true;
726 
727 	gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
728 	offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
729 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
730 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
731 	if (r < 0)
732 		goto out;
733 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
734 out:
735 
736 	return changed;
737 }
738 EXPORT_SYMBOL_GPL(pdptrs_changed);
739 
740 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
741 {
742 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
743 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
744 
745 	cr0 |= X86_CR0_ET;
746 
747 #ifdef CONFIG_X86_64
748 	if (cr0 & 0xffffffff00000000UL)
749 		return 1;
750 #endif
751 
752 	cr0 &= ~CR0_RESERVED_BITS;
753 
754 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
755 		return 1;
756 
757 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
758 		return 1;
759 
760 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
761 #ifdef CONFIG_X86_64
762 		if ((vcpu->arch.efer & EFER_LME)) {
763 			int cs_db, cs_l;
764 
765 			if (!is_pae(vcpu))
766 				return 1;
767 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
768 			if (cs_l)
769 				return 1;
770 		} else
771 #endif
772 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
773 						 kvm_read_cr3(vcpu)))
774 			return 1;
775 	}
776 
777 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
778 		return 1;
779 
780 	kvm_x86_ops->set_cr0(vcpu, cr0);
781 
782 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
783 		kvm_clear_async_pf_completion_queue(vcpu);
784 		kvm_async_pf_hash_reset(vcpu);
785 	}
786 
787 	if ((cr0 ^ old_cr0) & update_bits)
788 		kvm_mmu_reset_context(vcpu);
789 
790 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
791 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
792 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
793 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
794 
795 	return 0;
796 }
797 EXPORT_SYMBOL_GPL(kvm_set_cr0);
798 
799 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
800 {
801 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
802 }
803 EXPORT_SYMBOL_GPL(kvm_lmsw);
804 
805 void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
806 {
807 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
808 			!vcpu->guest_xcr0_loaded) {
809 		/* kvm_set_xcr() also depends on this */
810 		if (vcpu->arch.xcr0 != host_xcr0)
811 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
812 		vcpu->guest_xcr0_loaded = 1;
813 	}
814 }
815 EXPORT_SYMBOL_GPL(kvm_load_guest_xcr0);
816 
817 void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
818 {
819 	if (vcpu->guest_xcr0_loaded) {
820 		if (vcpu->arch.xcr0 != host_xcr0)
821 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
822 		vcpu->guest_xcr0_loaded = 0;
823 	}
824 }
825 EXPORT_SYMBOL_GPL(kvm_put_guest_xcr0);
826 
827 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
828 {
829 	u64 xcr0 = xcr;
830 	u64 old_xcr0 = vcpu->arch.xcr0;
831 	u64 valid_bits;
832 
833 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
834 	if (index != XCR_XFEATURE_ENABLED_MASK)
835 		return 1;
836 	if (!(xcr0 & XFEATURE_MASK_FP))
837 		return 1;
838 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
839 		return 1;
840 
841 	/*
842 	 * Do not allow the guest to set bits that we do not support
843 	 * saving.  However, xcr0 bit 0 is always set, even if the
844 	 * emulated CPU does not support XSAVE (see fx_init).
845 	 */
846 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
847 	if (xcr0 & ~valid_bits)
848 		return 1;
849 
850 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
851 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
852 		return 1;
853 
854 	if (xcr0 & XFEATURE_MASK_AVX512) {
855 		if (!(xcr0 & XFEATURE_MASK_YMM))
856 			return 1;
857 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
858 			return 1;
859 	}
860 	vcpu->arch.xcr0 = xcr0;
861 
862 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
863 		kvm_update_cpuid(vcpu);
864 	return 0;
865 }
866 
867 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
868 {
869 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
870 	    __kvm_set_xcr(vcpu, index, xcr)) {
871 		kvm_inject_gp(vcpu, 0);
872 		return 1;
873 	}
874 	return 0;
875 }
876 EXPORT_SYMBOL_GPL(kvm_set_xcr);
877 
878 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
879 {
880 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
881 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
882 				   X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
883 
884 	if (cr4 & CR4_RESERVED_BITS)
885 		return 1;
886 
887 	if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
888 		return 1;
889 
890 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
891 		return 1;
892 
893 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
894 		return 1;
895 
896 	if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
897 		return 1;
898 
899 	if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
900 		return 1;
901 
902 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
903 		return 1;
904 
905 	if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
906 		return 1;
907 
908 	if (is_long_mode(vcpu)) {
909 		if (!(cr4 & X86_CR4_PAE))
910 			return 1;
911 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
912 		   && ((cr4 ^ old_cr4) & pdptr_bits)
913 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
914 				   kvm_read_cr3(vcpu)))
915 		return 1;
916 
917 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
918 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
919 			return 1;
920 
921 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
922 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
923 			return 1;
924 	}
925 
926 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
927 		return 1;
928 
929 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
930 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
931 		kvm_mmu_reset_context(vcpu);
932 
933 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
934 		kvm_update_cpuid(vcpu);
935 
936 	return 0;
937 }
938 EXPORT_SYMBOL_GPL(kvm_set_cr4);
939 
940 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
941 {
942 	bool skip_tlb_flush = false;
943 #ifdef CONFIG_X86_64
944 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
945 
946 	if (pcid_enabled) {
947 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
948 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
949 	}
950 #endif
951 
952 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
953 		if (!skip_tlb_flush) {
954 			kvm_mmu_sync_roots(vcpu);
955 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
956 		}
957 		return 0;
958 	}
959 
960 	if (is_long_mode(vcpu) &&
961 	    (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
962 		return 1;
963 	else if (is_pae_paging(vcpu) &&
964 		 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
965 		return 1;
966 
967 	kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
968 	vcpu->arch.cr3 = cr3;
969 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
970 
971 	return 0;
972 }
973 EXPORT_SYMBOL_GPL(kvm_set_cr3);
974 
975 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
976 {
977 	if (cr8 & CR8_RESERVED_BITS)
978 		return 1;
979 	if (lapic_in_kernel(vcpu))
980 		kvm_lapic_set_tpr(vcpu, cr8);
981 	else
982 		vcpu->arch.cr8 = cr8;
983 	return 0;
984 }
985 EXPORT_SYMBOL_GPL(kvm_set_cr8);
986 
987 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
988 {
989 	if (lapic_in_kernel(vcpu))
990 		return kvm_lapic_get_cr8(vcpu);
991 	else
992 		return vcpu->arch.cr8;
993 }
994 EXPORT_SYMBOL_GPL(kvm_get_cr8);
995 
996 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
997 {
998 	int i;
999 
1000 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1001 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1002 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1003 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1004 	}
1005 }
1006 
1007 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1008 {
1009 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1010 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
1011 }
1012 
1013 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1014 {
1015 	unsigned long dr7;
1016 
1017 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1018 		dr7 = vcpu->arch.guest_debug_dr7;
1019 	else
1020 		dr7 = vcpu->arch.dr7;
1021 	kvm_x86_ops->set_dr7(vcpu, dr7);
1022 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1023 	if (dr7 & DR7_BP_EN_MASK)
1024 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1025 }
1026 
1027 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1028 {
1029 	u64 fixed = DR6_FIXED_1;
1030 
1031 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1032 		fixed |= DR6_RTM;
1033 	return fixed;
1034 }
1035 
1036 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1037 {
1038 	switch (dr) {
1039 	case 0 ... 3:
1040 		vcpu->arch.db[dr] = val;
1041 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1042 			vcpu->arch.eff_db[dr] = val;
1043 		break;
1044 	case 4:
1045 		/* fall through */
1046 	case 6:
1047 		if (val & 0xffffffff00000000ULL)
1048 			return -1; /* #GP */
1049 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1050 		kvm_update_dr6(vcpu);
1051 		break;
1052 	case 5:
1053 		/* fall through */
1054 	default: /* 7 */
1055 		if (val & 0xffffffff00000000ULL)
1056 			return -1; /* #GP */
1057 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1058 		kvm_update_dr7(vcpu);
1059 		break;
1060 	}
1061 
1062 	return 0;
1063 }
1064 
1065 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1066 {
1067 	if (__kvm_set_dr(vcpu, dr, val)) {
1068 		kvm_inject_gp(vcpu, 0);
1069 		return 1;
1070 	}
1071 	return 0;
1072 }
1073 EXPORT_SYMBOL_GPL(kvm_set_dr);
1074 
1075 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1076 {
1077 	switch (dr) {
1078 	case 0 ... 3:
1079 		*val = vcpu->arch.db[dr];
1080 		break;
1081 	case 4:
1082 		/* fall through */
1083 	case 6:
1084 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1085 			*val = vcpu->arch.dr6;
1086 		else
1087 			*val = kvm_x86_ops->get_dr6(vcpu);
1088 		break;
1089 	case 5:
1090 		/* fall through */
1091 	default: /* 7 */
1092 		*val = vcpu->arch.dr7;
1093 		break;
1094 	}
1095 	return 0;
1096 }
1097 EXPORT_SYMBOL_GPL(kvm_get_dr);
1098 
1099 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1100 {
1101 	u32 ecx = kvm_rcx_read(vcpu);
1102 	u64 data;
1103 	int err;
1104 
1105 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1106 	if (err)
1107 		return err;
1108 	kvm_rax_write(vcpu, (u32)data);
1109 	kvm_rdx_write(vcpu, data >> 32);
1110 	return err;
1111 }
1112 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1113 
1114 /*
1115  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1116  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1117  *
1118  * This list is modified at module load time to reflect the
1119  * capabilities of the host cpu. This capabilities test skips MSRs that are
1120  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1121  * may depend on host virtualization features rather than host cpu features.
1122  */
1123 
1124 static u32 msrs_to_save[] = {
1125 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1126 	MSR_STAR,
1127 #ifdef CONFIG_X86_64
1128 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1129 #endif
1130 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1131 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1132 	MSR_IA32_SPEC_CTRL,
1133 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1134 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1135 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1136 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1137 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1138 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1139 };
1140 
1141 static unsigned num_msrs_to_save;
1142 
1143 static u32 emulated_msrs[] = {
1144 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1145 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1146 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1147 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1148 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1149 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1150 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1151 	HV_X64_MSR_RESET,
1152 	HV_X64_MSR_VP_INDEX,
1153 	HV_X64_MSR_VP_RUNTIME,
1154 	HV_X64_MSR_SCONTROL,
1155 	HV_X64_MSR_STIMER0_CONFIG,
1156 	HV_X64_MSR_VP_ASSIST_PAGE,
1157 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1158 	HV_X64_MSR_TSC_EMULATION_STATUS,
1159 
1160 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1161 	MSR_KVM_PV_EOI_EN,
1162 
1163 	MSR_IA32_TSC_ADJUST,
1164 	MSR_IA32_TSCDEADLINE,
1165 	MSR_IA32_ARCH_CAPABILITIES,
1166 	MSR_IA32_MISC_ENABLE,
1167 	MSR_IA32_MCG_STATUS,
1168 	MSR_IA32_MCG_CTL,
1169 	MSR_IA32_MCG_EXT_CTL,
1170 	MSR_IA32_SMBASE,
1171 	MSR_SMI_COUNT,
1172 	MSR_PLATFORM_INFO,
1173 	MSR_MISC_FEATURES_ENABLES,
1174 	MSR_AMD64_VIRT_SPEC_CTRL,
1175 	MSR_IA32_POWER_CTL,
1176 
1177 	/*
1178 	 * The following list leaves out MSRs whose values are determined
1179 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1180 	 * We always support the "true" VMX control MSRs, even if the host
1181 	 * processor does not, so I am putting these registers here rather
1182 	 * than in msrs_to_save.
1183 	 */
1184 	MSR_IA32_VMX_BASIC,
1185 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1186 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1187 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1188 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1189 	MSR_IA32_VMX_MISC,
1190 	MSR_IA32_VMX_CR0_FIXED0,
1191 	MSR_IA32_VMX_CR4_FIXED0,
1192 	MSR_IA32_VMX_VMCS_ENUM,
1193 	MSR_IA32_VMX_PROCBASED_CTLS2,
1194 	MSR_IA32_VMX_EPT_VPID_CAP,
1195 	MSR_IA32_VMX_VMFUNC,
1196 
1197 	MSR_K7_HWCR,
1198 	MSR_KVM_POLL_CONTROL,
1199 };
1200 
1201 static unsigned num_emulated_msrs;
1202 
1203 /*
1204  * List of msr numbers which are used to expose MSR-based features that
1205  * can be used by a hypervisor to validate requested CPU features.
1206  */
1207 static u32 msr_based_features[] = {
1208 	MSR_IA32_VMX_BASIC,
1209 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1210 	MSR_IA32_VMX_PINBASED_CTLS,
1211 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1212 	MSR_IA32_VMX_PROCBASED_CTLS,
1213 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1214 	MSR_IA32_VMX_EXIT_CTLS,
1215 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1216 	MSR_IA32_VMX_ENTRY_CTLS,
1217 	MSR_IA32_VMX_MISC,
1218 	MSR_IA32_VMX_CR0_FIXED0,
1219 	MSR_IA32_VMX_CR0_FIXED1,
1220 	MSR_IA32_VMX_CR4_FIXED0,
1221 	MSR_IA32_VMX_CR4_FIXED1,
1222 	MSR_IA32_VMX_VMCS_ENUM,
1223 	MSR_IA32_VMX_PROCBASED_CTLS2,
1224 	MSR_IA32_VMX_EPT_VPID_CAP,
1225 	MSR_IA32_VMX_VMFUNC,
1226 
1227 	MSR_F10H_DECFG,
1228 	MSR_IA32_UCODE_REV,
1229 	MSR_IA32_ARCH_CAPABILITIES,
1230 };
1231 
1232 static unsigned int num_msr_based_features;
1233 
1234 static u64 kvm_get_arch_capabilities(void)
1235 {
1236 	u64 data = 0;
1237 
1238 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1239 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1240 
1241 	/*
1242 	 * If we're doing cache flushes (either "always" or "cond")
1243 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1244 	 * If an outer hypervisor is doing the cache flush for us
1245 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1246 	 * capability to the guest too, and if EPT is disabled we're not
1247 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1248 	 * require a nested hypervisor to do a flush of its own.
1249 	 */
1250 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1251 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1252 
1253 	return data;
1254 }
1255 
1256 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1257 {
1258 	switch (msr->index) {
1259 	case MSR_IA32_ARCH_CAPABILITIES:
1260 		msr->data = kvm_get_arch_capabilities();
1261 		break;
1262 	case MSR_IA32_UCODE_REV:
1263 		rdmsrl_safe(msr->index, &msr->data);
1264 		break;
1265 	default:
1266 		if (kvm_x86_ops->get_msr_feature(msr))
1267 			return 1;
1268 	}
1269 	return 0;
1270 }
1271 
1272 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1273 {
1274 	struct kvm_msr_entry msr;
1275 	int r;
1276 
1277 	msr.index = index;
1278 	r = kvm_get_msr_feature(&msr);
1279 	if (r)
1280 		return r;
1281 
1282 	*data = msr.data;
1283 
1284 	return 0;
1285 }
1286 
1287 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1288 {
1289 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1290 		return false;
1291 
1292 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1293 		return false;
1294 
1295 	if (efer & (EFER_LME | EFER_LMA) &&
1296 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1297 		return false;
1298 
1299 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1300 		return false;
1301 
1302 	return true;
1303 
1304 }
1305 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1306 {
1307 	if (efer & efer_reserved_bits)
1308 		return false;
1309 
1310 	return __kvm_valid_efer(vcpu, efer);
1311 }
1312 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1313 
1314 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1315 {
1316 	u64 old_efer = vcpu->arch.efer;
1317 	u64 efer = msr_info->data;
1318 
1319 	if (efer & efer_reserved_bits)
1320 		return 1;
1321 
1322 	if (!msr_info->host_initiated) {
1323 		if (!__kvm_valid_efer(vcpu, efer))
1324 			return 1;
1325 
1326 		if (is_paging(vcpu) &&
1327 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1328 			return 1;
1329 	}
1330 
1331 	efer &= ~EFER_LMA;
1332 	efer |= vcpu->arch.efer & EFER_LMA;
1333 
1334 	kvm_x86_ops->set_efer(vcpu, efer);
1335 
1336 	/* Update reserved bits */
1337 	if ((efer ^ old_efer) & EFER_NX)
1338 		kvm_mmu_reset_context(vcpu);
1339 
1340 	return 0;
1341 }
1342 
1343 void kvm_enable_efer_bits(u64 mask)
1344 {
1345        efer_reserved_bits &= ~mask;
1346 }
1347 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1348 
1349 /*
1350  * Writes msr value into into the appropriate "register".
1351  * Returns 0 on success, non-0 otherwise.
1352  * Assumes vcpu_load() was already called.
1353  */
1354 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1355 {
1356 	switch (msr->index) {
1357 	case MSR_FS_BASE:
1358 	case MSR_GS_BASE:
1359 	case MSR_KERNEL_GS_BASE:
1360 	case MSR_CSTAR:
1361 	case MSR_LSTAR:
1362 		if (is_noncanonical_address(msr->data, vcpu))
1363 			return 1;
1364 		break;
1365 	case MSR_IA32_SYSENTER_EIP:
1366 	case MSR_IA32_SYSENTER_ESP:
1367 		/*
1368 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1369 		 * non-canonical address is written on Intel but not on
1370 		 * AMD (which ignores the top 32-bits, because it does
1371 		 * not implement 64-bit SYSENTER).
1372 		 *
1373 		 * 64-bit code should hence be able to write a non-canonical
1374 		 * value on AMD.  Making the address canonical ensures that
1375 		 * vmentry does not fail on Intel after writing a non-canonical
1376 		 * value, and that something deterministic happens if the guest
1377 		 * invokes 64-bit SYSENTER.
1378 		 */
1379 		msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1380 	}
1381 	return kvm_x86_ops->set_msr(vcpu, msr);
1382 }
1383 EXPORT_SYMBOL_GPL(kvm_set_msr);
1384 
1385 /*
1386  * Adapt set_msr() to msr_io()'s calling convention
1387  */
1388 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1389 {
1390 	struct msr_data msr;
1391 	int r;
1392 
1393 	msr.index = index;
1394 	msr.host_initiated = true;
1395 	r = kvm_get_msr(vcpu, &msr);
1396 	if (r)
1397 		return r;
1398 
1399 	*data = msr.data;
1400 	return 0;
1401 }
1402 
1403 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1404 {
1405 	struct msr_data msr;
1406 
1407 	msr.data = *data;
1408 	msr.index = index;
1409 	msr.host_initiated = true;
1410 	return kvm_set_msr(vcpu, &msr);
1411 }
1412 
1413 #ifdef CONFIG_X86_64
1414 struct pvclock_gtod_data {
1415 	seqcount_t	seq;
1416 
1417 	struct { /* extract of a clocksource struct */
1418 		int vclock_mode;
1419 		u64	cycle_last;
1420 		u64	mask;
1421 		u32	mult;
1422 		u32	shift;
1423 	} clock;
1424 
1425 	u64		boot_ns;
1426 	u64		nsec_base;
1427 	u64		wall_time_sec;
1428 };
1429 
1430 static struct pvclock_gtod_data pvclock_gtod_data;
1431 
1432 static void update_pvclock_gtod(struct timekeeper *tk)
1433 {
1434 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1435 	u64 boot_ns;
1436 
1437 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1438 
1439 	write_seqcount_begin(&vdata->seq);
1440 
1441 	/* copy pvclock gtod data */
1442 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1443 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1444 	vdata->clock.mask		= tk->tkr_mono.mask;
1445 	vdata->clock.mult		= tk->tkr_mono.mult;
1446 	vdata->clock.shift		= tk->tkr_mono.shift;
1447 
1448 	vdata->boot_ns			= boot_ns;
1449 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1450 
1451 	vdata->wall_time_sec            = tk->xtime_sec;
1452 
1453 	write_seqcount_end(&vdata->seq);
1454 }
1455 #endif
1456 
1457 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1458 {
1459 	/*
1460 	 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1461 	 * vcpu_enter_guest.  This function is only called from
1462 	 * the physical CPU that is running vcpu.
1463 	 */
1464 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1465 }
1466 
1467 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1468 {
1469 	int version;
1470 	int r;
1471 	struct pvclock_wall_clock wc;
1472 	struct timespec64 boot;
1473 
1474 	if (!wall_clock)
1475 		return;
1476 
1477 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1478 	if (r)
1479 		return;
1480 
1481 	if (version & 1)
1482 		++version;  /* first time write, random junk */
1483 
1484 	++version;
1485 
1486 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1487 		return;
1488 
1489 	/*
1490 	 * The guest calculates current wall clock time by adding
1491 	 * system time (updated by kvm_guest_time_update below) to the
1492 	 * wall clock specified here.  guest system time equals host
1493 	 * system time for us, thus we must fill in host boot time here.
1494 	 */
1495 	getboottime64(&boot);
1496 
1497 	if (kvm->arch.kvmclock_offset) {
1498 		struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1499 		boot = timespec64_sub(boot, ts);
1500 	}
1501 	wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1502 	wc.nsec = boot.tv_nsec;
1503 	wc.version = version;
1504 
1505 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1506 
1507 	version++;
1508 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1509 }
1510 
1511 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1512 {
1513 	do_shl32_div32(dividend, divisor);
1514 	return dividend;
1515 }
1516 
1517 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1518 			       s8 *pshift, u32 *pmultiplier)
1519 {
1520 	uint64_t scaled64;
1521 	int32_t  shift = 0;
1522 	uint64_t tps64;
1523 	uint32_t tps32;
1524 
1525 	tps64 = base_hz;
1526 	scaled64 = scaled_hz;
1527 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1528 		tps64 >>= 1;
1529 		shift--;
1530 	}
1531 
1532 	tps32 = (uint32_t)tps64;
1533 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1534 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1535 			scaled64 >>= 1;
1536 		else
1537 			tps32 <<= 1;
1538 		shift++;
1539 	}
1540 
1541 	*pshift = shift;
1542 	*pmultiplier = div_frac(scaled64, tps32);
1543 
1544 	pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1545 		 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1546 }
1547 
1548 #ifdef CONFIG_X86_64
1549 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1550 #endif
1551 
1552 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1553 static unsigned long max_tsc_khz;
1554 
1555 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1556 {
1557 	u64 v = (u64)khz * (1000000 + ppm);
1558 	do_div(v, 1000000);
1559 	return v;
1560 }
1561 
1562 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1563 {
1564 	u64 ratio;
1565 
1566 	/* Guest TSC same frequency as host TSC? */
1567 	if (!scale) {
1568 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1569 		return 0;
1570 	}
1571 
1572 	/* TSC scaling supported? */
1573 	if (!kvm_has_tsc_control) {
1574 		if (user_tsc_khz > tsc_khz) {
1575 			vcpu->arch.tsc_catchup = 1;
1576 			vcpu->arch.tsc_always_catchup = 1;
1577 			return 0;
1578 		} else {
1579 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
1580 			return -1;
1581 		}
1582 	}
1583 
1584 	/* TSC scaling required  - calculate ratio */
1585 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1586 				user_tsc_khz, tsc_khz);
1587 
1588 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1589 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1590 			            user_tsc_khz);
1591 		return -1;
1592 	}
1593 
1594 	vcpu->arch.tsc_scaling_ratio = ratio;
1595 	return 0;
1596 }
1597 
1598 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1599 {
1600 	u32 thresh_lo, thresh_hi;
1601 	int use_scaling = 0;
1602 
1603 	/* tsc_khz can be zero if TSC calibration fails */
1604 	if (user_tsc_khz == 0) {
1605 		/* set tsc_scaling_ratio to a safe value */
1606 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1607 		return -1;
1608 	}
1609 
1610 	/* Compute a scale to convert nanoseconds in TSC cycles */
1611 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1612 			   &vcpu->arch.virtual_tsc_shift,
1613 			   &vcpu->arch.virtual_tsc_mult);
1614 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1615 
1616 	/*
1617 	 * Compute the variation in TSC rate which is acceptable
1618 	 * within the range of tolerance and decide if the
1619 	 * rate being applied is within that bounds of the hardware
1620 	 * rate.  If so, no scaling or compensation need be done.
1621 	 */
1622 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1623 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1624 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1625 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1626 		use_scaling = 1;
1627 	}
1628 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1629 }
1630 
1631 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1632 {
1633 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1634 				      vcpu->arch.virtual_tsc_mult,
1635 				      vcpu->arch.virtual_tsc_shift);
1636 	tsc += vcpu->arch.this_tsc_write;
1637 	return tsc;
1638 }
1639 
1640 static inline int gtod_is_based_on_tsc(int mode)
1641 {
1642 	return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1643 }
1644 
1645 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1646 {
1647 #ifdef CONFIG_X86_64
1648 	bool vcpus_matched;
1649 	struct kvm_arch *ka = &vcpu->kvm->arch;
1650 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1651 
1652 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1653 			 atomic_read(&vcpu->kvm->online_vcpus));
1654 
1655 	/*
1656 	 * Once the masterclock is enabled, always perform request in
1657 	 * order to update it.
1658 	 *
1659 	 * In order to enable masterclock, the host clocksource must be TSC
1660 	 * and the vcpus need to have matched TSCs.  When that happens,
1661 	 * perform request to enable masterclock.
1662 	 */
1663 	if (ka->use_master_clock ||
1664 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1665 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1666 
1667 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1668 			    atomic_read(&vcpu->kvm->online_vcpus),
1669 		            ka->use_master_clock, gtod->clock.vclock_mode);
1670 #endif
1671 }
1672 
1673 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1674 {
1675 	u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1676 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1677 }
1678 
1679 /*
1680  * Multiply tsc by a fixed point number represented by ratio.
1681  *
1682  * The most significant 64-N bits (mult) of ratio represent the
1683  * integral part of the fixed point number; the remaining N bits
1684  * (frac) represent the fractional part, ie. ratio represents a fixed
1685  * point number (mult + frac * 2^(-N)).
1686  *
1687  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1688  */
1689 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1690 {
1691 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1692 }
1693 
1694 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1695 {
1696 	u64 _tsc = tsc;
1697 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1698 
1699 	if (ratio != kvm_default_tsc_scaling_ratio)
1700 		_tsc = __scale_tsc(ratio, tsc);
1701 
1702 	return _tsc;
1703 }
1704 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1705 
1706 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1707 {
1708 	u64 tsc;
1709 
1710 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1711 
1712 	return target_tsc - tsc;
1713 }
1714 
1715 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1716 {
1717 	u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1718 
1719 	return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1720 }
1721 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1722 
1723 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1724 {
1725 	vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset);
1726 }
1727 
1728 static inline bool kvm_check_tsc_unstable(void)
1729 {
1730 #ifdef CONFIG_X86_64
1731 	/*
1732 	 * TSC is marked unstable when we're running on Hyper-V,
1733 	 * 'TSC page' clocksource is good.
1734 	 */
1735 	if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1736 		return false;
1737 #endif
1738 	return check_tsc_unstable();
1739 }
1740 
1741 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1742 {
1743 	struct kvm *kvm = vcpu->kvm;
1744 	u64 offset, ns, elapsed;
1745 	unsigned long flags;
1746 	bool matched;
1747 	bool already_matched;
1748 	u64 data = msr->data;
1749 	bool synchronizing = false;
1750 
1751 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1752 	offset = kvm_compute_tsc_offset(vcpu, data);
1753 	ns = ktime_get_boottime_ns();
1754 	elapsed = ns - kvm->arch.last_tsc_nsec;
1755 
1756 	if (vcpu->arch.virtual_tsc_khz) {
1757 		if (data == 0 && msr->host_initiated) {
1758 			/*
1759 			 * detection of vcpu initialization -- need to sync
1760 			 * with other vCPUs. This particularly helps to keep
1761 			 * kvm_clock stable after CPU hotplug
1762 			 */
1763 			synchronizing = true;
1764 		} else {
1765 			u64 tsc_exp = kvm->arch.last_tsc_write +
1766 						nsec_to_cycles(vcpu, elapsed);
1767 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1768 			/*
1769 			 * Special case: TSC write with a small delta (1 second)
1770 			 * of virtual cycle time against real time is
1771 			 * interpreted as an attempt to synchronize the CPU.
1772 			 */
1773 			synchronizing = data < tsc_exp + tsc_hz &&
1774 					data + tsc_hz > tsc_exp;
1775 		}
1776 	}
1777 
1778 	/*
1779 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1780 	 * TSC, we add elapsed time in this computation.  We could let the
1781 	 * compensation code attempt to catch up if we fall behind, but
1782 	 * it's better to try to match offsets from the beginning.
1783          */
1784 	if (synchronizing &&
1785 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1786 		if (!kvm_check_tsc_unstable()) {
1787 			offset = kvm->arch.cur_tsc_offset;
1788 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1789 		} else {
1790 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1791 			data += delta;
1792 			offset = kvm_compute_tsc_offset(vcpu, data);
1793 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1794 		}
1795 		matched = true;
1796 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1797 	} else {
1798 		/*
1799 		 * We split periods of matched TSC writes into generations.
1800 		 * For each generation, we track the original measured
1801 		 * nanosecond time, offset, and write, so if TSCs are in
1802 		 * sync, we can match exact offset, and if not, we can match
1803 		 * exact software computation in compute_guest_tsc()
1804 		 *
1805 		 * These values are tracked in kvm->arch.cur_xxx variables.
1806 		 */
1807 		kvm->arch.cur_tsc_generation++;
1808 		kvm->arch.cur_tsc_nsec = ns;
1809 		kvm->arch.cur_tsc_write = data;
1810 		kvm->arch.cur_tsc_offset = offset;
1811 		matched = false;
1812 		pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1813 			 kvm->arch.cur_tsc_generation, data);
1814 	}
1815 
1816 	/*
1817 	 * We also track th most recent recorded KHZ, write and time to
1818 	 * allow the matching interval to be extended at each write.
1819 	 */
1820 	kvm->arch.last_tsc_nsec = ns;
1821 	kvm->arch.last_tsc_write = data;
1822 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1823 
1824 	vcpu->arch.last_guest_tsc = data;
1825 
1826 	/* Keep track of which generation this VCPU has synchronized to */
1827 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1828 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1829 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1830 
1831 	if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1832 		update_ia32_tsc_adjust_msr(vcpu, offset);
1833 
1834 	kvm_vcpu_write_tsc_offset(vcpu, offset);
1835 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1836 
1837 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1838 	if (!matched) {
1839 		kvm->arch.nr_vcpus_matched_tsc = 0;
1840 	} else if (!already_matched) {
1841 		kvm->arch.nr_vcpus_matched_tsc++;
1842 	}
1843 
1844 	kvm_track_tsc_matching(vcpu);
1845 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1846 }
1847 
1848 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1849 
1850 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1851 					   s64 adjustment)
1852 {
1853 	u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1854 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
1855 }
1856 
1857 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1858 {
1859 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1860 		WARN_ON(adjustment < 0);
1861 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1862 	adjust_tsc_offset_guest(vcpu, adjustment);
1863 }
1864 
1865 #ifdef CONFIG_X86_64
1866 
1867 static u64 read_tsc(void)
1868 {
1869 	u64 ret = (u64)rdtsc_ordered();
1870 	u64 last = pvclock_gtod_data.clock.cycle_last;
1871 
1872 	if (likely(ret >= last))
1873 		return ret;
1874 
1875 	/*
1876 	 * GCC likes to generate cmov here, but this branch is extremely
1877 	 * predictable (it's just a function of time and the likely is
1878 	 * very likely) and there's a data dependence, so force GCC
1879 	 * to generate a branch instead.  I don't barrier() because
1880 	 * we don't actually need a barrier, and if this function
1881 	 * ever gets inlined it will generate worse code.
1882 	 */
1883 	asm volatile ("");
1884 	return last;
1885 }
1886 
1887 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1888 {
1889 	long v;
1890 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1891 	u64 tsc_pg_val;
1892 
1893 	switch (gtod->clock.vclock_mode) {
1894 	case VCLOCK_HVCLOCK:
1895 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1896 						  tsc_timestamp);
1897 		if (tsc_pg_val != U64_MAX) {
1898 			/* TSC page valid */
1899 			*mode = VCLOCK_HVCLOCK;
1900 			v = (tsc_pg_val - gtod->clock.cycle_last) &
1901 				gtod->clock.mask;
1902 		} else {
1903 			/* TSC page invalid */
1904 			*mode = VCLOCK_NONE;
1905 		}
1906 		break;
1907 	case VCLOCK_TSC:
1908 		*mode = VCLOCK_TSC;
1909 		*tsc_timestamp = read_tsc();
1910 		v = (*tsc_timestamp - gtod->clock.cycle_last) &
1911 			gtod->clock.mask;
1912 		break;
1913 	default:
1914 		*mode = VCLOCK_NONE;
1915 	}
1916 
1917 	if (*mode == VCLOCK_NONE)
1918 		*tsc_timestamp = v = 0;
1919 
1920 	return v * gtod->clock.mult;
1921 }
1922 
1923 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1924 {
1925 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1926 	unsigned long seq;
1927 	int mode;
1928 	u64 ns;
1929 
1930 	do {
1931 		seq = read_seqcount_begin(&gtod->seq);
1932 		ns = gtod->nsec_base;
1933 		ns += vgettsc(tsc_timestamp, &mode);
1934 		ns >>= gtod->clock.shift;
1935 		ns += gtod->boot_ns;
1936 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1937 	*t = ns;
1938 
1939 	return mode;
1940 }
1941 
1942 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
1943 {
1944 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1945 	unsigned long seq;
1946 	int mode;
1947 	u64 ns;
1948 
1949 	do {
1950 		seq = read_seqcount_begin(&gtod->seq);
1951 		ts->tv_sec = gtod->wall_time_sec;
1952 		ns = gtod->nsec_base;
1953 		ns += vgettsc(tsc_timestamp, &mode);
1954 		ns >>= gtod->clock.shift;
1955 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1956 
1957 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1958 	ts->tv_nsec = ns;
1959 
1960 	return mode;
1961 }
1962 
1963 /* returns true if host is using TSC based clocksource */
1964 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1965 {
1966 	/* checked again under seqlock below */
1967 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1968 		return false;
1969 
1970 	return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1971 						      tsc_timestamp));
1972 }
1973 
1974 /* returns true if host is using TSC based clocksource */
1975 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
1976 					   u64 *tsc_timestamp)
1977 {
1978 	/* checked again under seqlock below */
1979 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1980 		return false;
1981 
1982 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1983 }
1984 #endif
1985 
1986 /*
1987  *
1988  * Assuming a stable TSC across physical CPUS, and a stable TSC
1989  * across virtual CPUs, the following condition is possible.
1990  * Each numbered line represents an event visible to both
1991  * CPUs at the next numbered event.
1992  *
1993  * "timespecX" represents host monotonic time. "tscX" represents
1994  * RDTSC value.
1995  *
1996  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1997  *
1998  * 1.  read timespec0,tsc0
1999  * 2.					| timespec1 = timespec0 + N
2000  * 					| tsc1 = tsc0 + M
2001  * 3. transition to guest		| transition to guest
2002  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2003  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2004  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2005  *
2006  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2007  *
2008  * 	- ret0 < ret1
2009  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2010  *		...
2011  *	- 0 < N - M => M < N
2012  *
2013  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2014  * always the case (the difference between two distinct xtime instances
2015  * might be smaller then the difference between corresponding TSC reads,
2016  * when updating guest vcpus pvclock areas).
2017  *
2018  * To avoid that problem, do not allow visibility of distinct
2019  * system_timestamp/tsc_timestamp values simultaneously: use a master
2020  * copy of host monotonic time values. Update that master copy
2021  * in lockstep.
2022  *
2023  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2024  *
2025  */
2026 
2027 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2028 {
2029 #ifdef CONFIG_X86_64
2030 	struct kvm_arch *ka = &kvm->arch;
2031 	int vclock_mode;
2032 	bool host_tsc_clocksource, vcpus_matched;
2033 
2034 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2035 			atomic_read(&kvm->online_vcpus));
2036 
2037 	/*
2038 	 * If the host uses TSC clock, then passthrough TSC as stable
2039 	 * to the guest.
2040 	 */
2041 	host_tsc_clocksource = kvm_get_time_and_clockread(
2042 					&ka->master_kernel_ns,
2043 					&ka->master_cycle_now);
2044 
2045 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2046 				&& !ka->backwards_tsc_observed
2047 				&& !ka->boot_vcpu_runs_old_kvmclock;
2048 
2049 	if (ka->use_master_clock)
2050 		atomic_set(&kvm_guest_has_master_clock, 1);
2051 
2052 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2053 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2054 					vcpus_matched);
2055 #endif
2056 }
2057 
2058 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2059 {
2060 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2061 }
2062 
2063 static void kvm_gen_update_masterclock(struct kvm *kvm)
2064 {
2065 #ifdef CONFIG_X86_64
2066 	int i;
2067 	struct kvm_vcpu *vcpu;
2068 	struct kvm_arch *ka = &kvm->arch;
2069 
2070 	spin_lock(&ka->pvclock_gtod_sync_lock);
2071 	kvm_make_mclock_inprogress_request(kvm);
2072 	/* no guest entries from this point */
2073 	pvclock_update_vm_gtod_copy(kvm);
2074 
2075 	kvm_for_each_vcpu(i, vcpu, kvm)
2076 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2077 
2078 	/* guest entries allowed */
2079 	kvm_for_each_vcpu(i, vcpu, kvm)
2080 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2081 
2082 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2083 #endif
2084 }
2085 
2086 u64 get_kvmclock_ns(struct kvm *kvm)
2087 {
2088 	struct kvm_arch *ka = &kvm->arch;
2089 	struct pvclock_vcpu_time_info hv_clock;
2090 	u64 ret;
2091 
2092 	spin_lock(&ka->pvclock_gtod_sync_lock);
2093 	if (!ka->use_master_clock) {
2094 		spin_unlock(&ka->pvclock_gtod_sync_lock);
2095 		return ktime_get_boottime_ns() + ka->kvmclock_offset;
2096 	}
2097 
2098 	hv_clock.tsc_timestamp = ka->master_cycle_now;
2099 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2100 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2101 
2102 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2103 	get_cpu();
2104 
2105 	if (__this_cpu_read(cpu_tsc_khz)) {
2106 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2107 				   &hv_clock.tsc_shift,
2108 				   &hv_clock.tsc_to_system_mul);
2109 		ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2110 	} else
2111 		ret = ktime_get_boottime_ns() + ka->kvmclock_offset;
2112 
2113 	put_cpu();
2114 
2115 	return ret;
2116 }
2117 
2118 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2119 {
2120 	struct kvm_vcpu_arch *vcpu = &v->arch;
2121 	struct pvclock_vcpu_time_info guest_hv_clock;
2122 
2123 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2124 		&guest_hv_clock, sizeof(guest_hv_clock))))
2125 		return;
2126 
2127 	/* This VCPU is paused, but it's legal for a guest to read another
2128 	 * VCPU's kvmclock, so we really have to follow the specification where
2129 	 * it says that version is odd if data is being modified, and even after
2130 	 * it is consistent.
2131 	 *
2132 	 * Version field updates must be kept separate.  This is because
2133 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
2134 	 * writes within a string instruction are weakly ordered.  So there
2135 	 * are three writes overall.
2136 	 *
2137 	 * As a small optimization, only write the version field in the first
2138 	 * and third write.  The vcpu->pv_time cache is still valid, because the
2139 	 * version field is the first in the struct.
2140 	 */
2141 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2142 
2143 	if (guest_hv_clock.version & 1)
2144 		++guest_hv_clock.version;  /* first time write, random junk */
2145 
2146 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2147 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2148 				&vcpu->hv_clock,
2149 				sizeof(vcpu->hv_clock.version));
2150 
2151 	smp_wmb();
2152 
2153 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2154 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2155 
2156 	if (vcpu->pvclock_set_guest_stopped_request) {
2157 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2158 		vcpu->pvclock_set_guest_stopped_request = false;
2159 	}
2160 
2161 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2162 
2163 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2164 				&vcpu->hv_clock,
2165 				sizeof(vcpu->hv_clock));
2166 
2167 	smp_wmb();
2168 
2169 	vcpu->hv_clock.version++;
2170 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2171 				&vcpu->hv_clock,
2172 				sizeof(vcpu->hv_clock.version));
2173 }
2174 
2175 static int kvm_guest_time_update(struct kvm_vcpu *v)
2176 {
2177 	unsigned long flags, tgt_tsc_khz;
2178 	struct kvm_vcpu_arch *vcpu = &v->arch;
2179 	struct kvm_arch *ka = &v->kvm->arch;
2180 	s64 kernel_ns;
2181 	u64 tsc_timestamp, host_tsc;
2182 	u8 pvclock_flags;
2183 	bool use_master_clock;
2184 
2185 	kernel_ns = 0;
2186 	host_tsc = 0;
2187 
2188 	/*
2189 	 * If the host uses TSC clock, then passthrough TSC as stable
2190 	 * to the guest.
2191 	 */
2192 	spin_lock(&ka->pvclock_gtod_sync_lock);
2193 	use_master_clock = ka->use_master_clock;
2194 	if (use_master_clock) {
2195 		host_tsc = ka->master_cycle_now;
2196 		kernel_ns = ka->master_kernel_ns;
2197 	}
2198 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2199 
2200 	/* Keep irq disabled to prevent changes to the clock */
2201 	local_irq_save(flags);
2202 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2203 	if (unlikely(tgt_tsc_khz == 0)) {
2204 		local_irq_restore(flags);
2205 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2206 		return 1;
2207 	}
2208 	if (!use_master_clock) {
2209 		host_tsc = rdtsc();
2210 		kernel_ns = ktime_get_boottime_ns();
2211 	}
2212 
2213 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2214 
2215 	/*
2216 	 * We may have to catch up the TSC to match elapsed wall clock
2217 	 * time for two reasons, even if kvmclock is used.
2218 	 *   1) CPU could have been running below the maximum TSC rate
2219 	 *   2) Broken TSC compensation resets the base at each VCPU
2220 	 *      entry to avoid unknown leaps of TSC even when running
2221 	 *      again on the same CPU.  This may cause apparent elapsed
2222 	 *      time to disappear, and the guest to stand still or run
2223 	 *	very slowly.
2224 	 */
2225 	if (vcpu->tsc_catchup) {
2226 		u64 tsc = compute_guest_tsc(v, kernel_ns);
2227 		if (tsc > tsc_timestamp) {
2228 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2229 			tsc_timestamp = tsc;
2230 		}
2231 	}
2232 
2233 	local_irq_restore(flags);
2234 
2235 	/* With all the info we got, fill in the values */
2236 
2237 	if (kvm_has_tsc_control)
2238 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2239 
2240 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2241 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2242 				   &vcpu->hv_clock.tsc_shift,
2243 				   &vcpu->hv_clock.tsc_to_system_mul);
2244 		vcpu->hw_tsc_khz = tgt_tsc_khz;
2245 	}
2246 
2247 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2248 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2249 	vcpu->last_guest_tsc = tsc_timestamp;
2250 
2251 	/* If the host uses TSC clocksource, then it is stable */
2252 	pvclock_flags = 0;
2253 	if (use_master_clock)
2254 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2255 
2256 	vcpu->hv_clock.flags = pvclock_flags;
2257 
2258 	if (vcpu->pv_time_enabled)
2259 		kvm_setup_pvclock_page(v);
2260 	if (v == kvm_get_vcpu(v->kvm, 0))
2261 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2262 	return 0;
2263 }
2264 
2265 /*
2266  * kvmclock updates which are isolated to a given vcpu, such as
2267  * vcpu->cpu migration, should not allow system_timestamp from
2268  * the rest of the vcpus to remain static. Otherwise ntp frequency
2269  * correction applies to one vcpu's system_timestamp but not
2270  * the others.
2271  *
2272  * So in those cases, request a kvmclock update for all vcpus.
2273  * We need to rate-limit these requests though, as they can
2274  * considerably slow guests that have a large number of vcpus.
2275  * The time for a remote vcpu to update its kvmclock is bound
2276  * by the delay we use to rate-limit the updates.
2277  */
2278 
2279 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2280 
2281 static void kvmclock_update_fn(struct work_struct *work)
2282 {
2283 	int i;
2284 	struct delayed_work *dwork = to_delayed_work(work);
2285 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2286 					   kvmclock_update_work);
2287 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2288 	struct kvm_vcpu *vcpu;
2289 
2290 	kvm_for_each_vcpu(i, vcpu, kvm) {
2291 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2292 		kvm_vcpu_kick(vcpu);
2293 	}
2294 }
2295 
2296 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2297 {
2298 	struct kvm *kvm = v->kvm;
2299 
2300 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2301 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2302 					KVMCLOCK_UPDATE_DELAY);
2303 }
2304 
2305 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2306 
2307 static void kvmclock_sync_fn(struct work_struct *work)
2308 {
2309 	struct delayed_work *dwork = to_delayed_work(work);
2310 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2311 					   kvmclock_sync_work);
2312 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2313 
2314 	if (!kvmclock_periodic_sync)
2315 		return;
2316 
2317 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2318 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2319 					KVMCLOCK_SYNC_PERIOD);
2320 }
2321 
2322 /*
2323  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2324  */
2325 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2326 {
2327 	/* McStatusWrEn enabled? */
2328 	if (guest_cpuid_is_amd(vcpu))
2329 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2330 
2331 	return false;
2332 }
2333 
2334 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2335 {
2336 	u64 mcg_cap = vcpu->arch.mcg_cap;
2337 	unsigned bank_num = mcg_cap & 0xff;
2338 	u32 msr = msr_info->index;
2339 	u64 data = msr_info->data;
2340 
2341 	switch (msr) {
2342 	case MSR_IA32_MCG_STATUS:
2343 		vcpu->arch.mcg_status = data;
2344 		break;
2345 	case MSR_IA32_MCG_CTL:
2346 		if (!(mcg_cap & MCG_CTL_P) &&
2347 		    (data || !msr_info->host_initiated))
2348 			return 1;
2349 		if (data != 0 && data != ~(u64)0)
2350 			return 1;
2351 		vcpu->arch.mcg_ctl = data;
2352 		break;
2353 	default:
2354 		if (msr >= MSR_IA32_MC0_CTL &&
2355 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2356 			u32 offset = msr - MSR_IA32_MC0_CTL;
2357 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2358 			 * some Linux kernels though clear bit 10 in bank 4 to
2359 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2360 			 * this to avoid an uncatched #GP in the guest
2361 			 */
2362 			if ((offset & 0x3) == 0 &&
2363 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
2364 				return -1;
2365 
2366 			/* MCi_STATUS */
2367 			if (!msr_info->host_initiated &&
2368 			    (offset & 0x3) == 1 && data != 0) {
2369 				if (!can_set_mci_status(vcpu))
2370 					return -1;
2371 			}
2372 
2373 			vcpu->arch.mce_banks[offset] = data;
2374 			break;
2375 		}
2376 		return 1;
2377 	}
2378 	return 0;
2379 }
2380 
2381 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2382 {
2383 	struct kvm *kvm = vcpu->kvm;
2384 	int lm = is_long_mode(vcpu);
2385 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2386 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2387 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2388 		: kvm->arch.xen_hvm_config.blob_size_32;
2389 	u32 page_num = data & ~PAGE_MASK;
2390 	u64 page_addr = data & PAGE_MASK;
2391 	u8 *page;
2392 	int r;
2393 
2394 	r = -E2BIG;
2395 	if (page_num >= blob_size)
2396 		goto out;
2397 	r = -ENOMEM;
2398 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2399 	if (IS_ERR(page)) {
2400 		r = PTR_ERR(page);
2401 		goto out;
2402 	}
2403 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2404 		goto out_free;
2405 	r = 0;
2406 out_free:
2407 	kfree(page);
2408 out:
2409 	return r;
2410 }
2411 
2412 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2413 {
2414 	gpa_t gpa = data & ~0x3f;
2415 
2416 	/* Bits 3:5 are reserved, Should be zero */
2417 	if (data & 0x38)
2418 		return 1;
2419 
2420 	vcpu->arch.apf.msr_val = data;
2421 
2422 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
2423 		kvm_clear_async_pf_completion_queue(vcpu);
2424 		kvm_async_pf_hash_reset(vcpu);
2425 		return 0;
2426 	}
2427 
2428 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2429 					sizeof(u32)))
2430 		return 1;
2431 
2432 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2433 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2434 	kvm_async_pf_wakeup_all(vcpu);
2435 	return 0;
2436 }
2437 
2438 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2439 {
2440 	vcpu->arch.pv_time_enabled = false;
2441 }
2442 
2443 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2444 {
2445 	++vcpu->stat.tlb_flush;
2446 	kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2447 }
2448 
2449 static void record_steal_time(struct kvm_vcpu *vcpu)
2450 {
2451 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2452 		return;
2453 
2454 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2455 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2456 		return;
2457 
2458 	/*
2459 	 * Doing a TLB flush here, on the guest's behalf, can avoid
2460 	 * expensive IPIs.
2461 	 */
2462 	if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2463 		kvm_vcpu_flush_tlb(vcpu, false);
2464 
2465 	if (vcpu->arch.st.steal.version & 1)
2466 		vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2467 
2468 	vcpu->arch.st.steal.version += 1;
2469 
2470 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2471 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2472 
2473 	smp_wmb();
2474 
2475 	vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2476 		vcpu->arch.st.last_steal;
2477 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2478 
2479 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2480 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2481 
2482 	smp_wmb();
2483 
2484 	vcpu->arch.st.steal.version += 1;
2485 
2486 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2487 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2488 }
2489 
2490 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2491 {
2492 	bool pr = false;
2493 	u32 msr = msr_info->index;
2494 	u64 data = msr_info->data;
2495 
2496 	switch (msr) {
2497 	case MSR_AMD64_NB_CFG:
2498 	case MSR_IA32_UCODE_WRITE:
2499 	case MSR_VM_HSAVE_PA:
2500 	case MSR_AMD64_PATCH_LOADER:
2501 	case MSR_AMD64_BU_CFG2:
2502 	case MSR_AMD64_DC_CFG:
2503 	case MSR_F15H_EX_CFG:
2504 		break;
2505 
2506 	case MSR_IA32_UCODE_REV:
2507 		if (msr_info->host_initiated)
2508 			vcpu->arch.microcode_version = data;
2509 		break;
2510 	case MSR_IA32_ARCH_CAPABILITIES:
2511 		if (!msr_info->host_initiated)
2512 			return 1;
2513 		vcpu->arch.arch_capabilities = data;
2514 		break;
2515 	case MSR_EFER:
2516 		return set_efer(vcpu, msr_info);
2517 	case MSR_K7_HWCR:
2518 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2519 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2520 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2521 
2522 		/* Handle McStatusWrEn */
2523 		if (data == BIT_ULL(18)) {
2524 			vcpu->arch.msr_hwcr = data;
2525 		} else if (data != 0) {
2526 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2527 				    data);
2528 			return 1;
2529 		}
2530 		break;
2531 	case MSR_FAM10H_MMIO_CONF_BASE:
2532 		if (data != 0) {
2533 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2534 				    "0x%llx\n", data);
2535 			return 1;
2536 		}
2537 		break;
2538 	case MSR_IA32_DEBUGCTLMSR:
2539 		if (!data) {
2540 			/* We support the non-activated case already */
2541 			break;
2542 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2543 			/* Values other than LBR and BTF are vendor-specific,
2544 			   thus reserved and should throw a #GP */
2545 			return 1;
2546 		}
2547 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2548 			    __func__, data);
2549 		break;
2550 	case 0x200 ... 0x2ff:
2551 		return kvm_mtrr_set_msr(vcpu, msr, data);
2552 	case MSR_IA32_APICBASE:
2553 		return kvm_set_apic_base(vcpu, msr_info);
2554 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2555 		return kvm_x2apic_msr_write(vcpu, msr, data);
2556 	case MSR_IA32_TSCDEADLINE:
2557 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2558 		break;
2559 	case MSR_IA32_TSC_ADJUST:
2560 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2561 			if (!msr_info->host_initiated) {
2562 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2563 				adjust_tsc_offset_guest(vcpu, adj);
2564 			}
2565 			vcpu->arch.ia32_tsc_adjust_msr = data;
2566 		}
2567 		break;
2568 	case MSR_IA32_MISC_ENABLE:
2569 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
2570 		    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
2571 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
2572 				return 1;
2573 			vcpu->arch.ia32_misc_enable_msr = data;
2574 			kvm_update_cpuid(vcpu);
2575 		} else {
2576 			vcpu->arch.ia32_misc_enable_msr = data;
2577 		}
2578 		break;
2579 	case MSR_IA32_SMBASE:
2580 		if (!msr_info->host_initiated)
2581 			return 1;
2582 		vcpu->arch.smbase = data;
2583 		break;
2584 	case MSR_IA32_POWER_CTL:
2585 		vcpu->arch.msr_ia32_power_ctl = data;
2586 		break;
2587 	case MSR_IA32_TSC:
2588 		kvm_write_tsc(vcpu, msr_info);
2589 		break;
2590 	case MSR_SMI_COUNT:
2591 		if (!msr_info->host_initiated)
2592 			return 1;
2593 		vcpu->arch.smi_count = data;
2594 		break;
2595 	case MSR_KVM_WALL_CLOCK_NEW:
2596 	case MSR_KVM_WALL_CLOCK:
2597 		vcpu->kvm->arch.wall_clock = data;
2598 		kvm_write_wall_clock(vcpu->kvm, data);
2599 		break;
2600 	case MSR_KVM_SYSTEM_TIME_NEW:
2601 	case MSR_KVM_SYSTEM_TIME: {
2602 		struct kvm_arch *ka = &vcpu->kvm->arch;
2603 
2604 		kvmclock_reset(vcpu);
2605 
2606 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2607 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2608 
2609 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2610 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2611 
2612 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2613 		}
2614 
2615 		vcpu->arch.time = data;
2616 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2617 
2618 		/* we verify if the enable bit is set... */
2619 		if (!(data & 1))
2620 			break;
2621 
2622 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2623 		     &vcpu->arch.pv_time, data & ~1ULL,
2624 		     sizeof(struct pvclock_vcpu_time_info)))
2625 			vcpu->arch.pv_time_enabled = false;
2626 		else
2627 			vcpu->arch.pv_time_enabled = true;
2628 
2629 		break;
2630 	}
2631 	case MSR_KVM_ASYNC_PF_EN:
2632 		if (kvm_pv_enable_async_pf(vcpu, data))
2633 			return 1;
2634 		break;
2635 	case MSR_KVM_STEAL_TIME:
2636 
2637 		if (unlikely(!sched_info_on()))
2638 			return 1;
2639 
2640 		if (data & KVM_STEAL_RESERVED_MASK)
2641 			return 1;
2642 
2643 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2644 						data & KVM_STEAL_VALID_BITS,
2645 						sizeof(struct kvm_steal_time)))
2646 			return 1;
2647 
2648 		vcpu->arch.st.msr_val = data;
2649 
2650 		if (!(data & KVM_MSR_ENABLED))
2651 			break;
2652 
2653 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2654 
2655 		break;
2656 	case MSR_KVM_PV_EOI_EN:
2657 		if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2658 			return 1;
2659 		break;
2660 
2661 	case MSR_KVM_POLL_CONTROL:
2662 		/* only enable bit supported */
2663 		if (data & (-1ULL << 1))
2664 			return 1;
2665 
2666 		vcpu->arch.msr_kvm_poll_control = data;
2667 		break;
2668 
2669 	case MSR_IA32_MCG_CTL:
2670 	case MSR_IA32_MCG_STATUS:
2671 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2672 		return set_msr_mce(vcpu, msr_info);
2673 
2674 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2675 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2676 		pr = true; /* fall through */
2677 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2678 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2679 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2680 			return kvm_pmu_set_msr(vcpu, msr_info);
2681 
2682 		if (pr || data != 0)
2683 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2684 				    "0x%x data 0x%llx\n", msr, data);
2685 		break;
2686 	case MSR_K7_CLK_CTL:
2687 		/*
2688 		 * Ignore all writes to this no longer documented MSR.
2689 		 * Writes are only relevant for old K7 processors,
2690 		 * all pre-dating SVM, but a recommended workaround from
2691 		 * AMD for these chips. It is possible to specify the
2692 		 * affected processor models on the command line, hence
2693 		 * the need to ignore the workaround.
2694 		 */
2695 		break;
2696 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2697 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2698 	case HV_X64_MSR_CRASH_CTL:
2699 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2700 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2701 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
2702 	case HV_X64_MSR_TSC_EMULATION_STATUS:
2703 		return kvm_hv_set_msr_common(vcpu, msr, data,
2704 					     msr_info->host_initiated);
2705 	case MSR_IA32_BBL_CR_CTL3:
2706 		/* Drop writes to this legacy MSR -- see rdmsr
2707 		 * counterpart for further detail.
2708 		 */
2709 		if (report_ignored_msrs)
2710 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2711 				msr, data);
2712 		break;
2713 	case MSR_AMD64_OSVW_ID_LENGTH:
2714 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2715 			return 1;
2716 		vcpu->arch.osvw.length = data;
2717 		break;
2718 	case MSR_AMD64_OSVW_STATUS:
2719 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2720 			return 1;
2721 		vcpu->arch.osvw.status = data;
2722 		break;
2723 	case MSR_PLATFORM_INFO:
2724 		if (!msr_info->host_initiated ||
2725 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2726 		     cpuid_fault_enabled(vcpu)))
2727 			return 1;
2728 		vcpu->arch.msr_platform_info = data;
2729 		break;
2730 	case MSR_MISC_FEATURES_ENABLES:
2731 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2732 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2733 		     !supports_cpuid_fault(vcpu)))
2734 			return 1;
2735 		vcpu->arch.msr_misc_features_enables = data;
2736 		break;
2737 	default:
2738 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2739 			return xen_hvm_config(vcpu, data);
2740 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2741 			return kvm_pmu_set_msr(vcpu, msr_info);
2742 		if (!ignore_msrs) {
2743 			vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2744 				    msr, data);
2745 			return 1;
2746 		} else {
2747 			if (report_ignored_msrs)
2748 				vcpu_unimpl(vcpu,
2749 					"ignored wrmsr: 0x%x data 0x%llx\n",
2750 					msr, data);
2751 			break;
2752 		}
2753 	}
2754 	return 0;
2755 }
2756 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2757 
2758 
2759 /*
2760  * Reads an msr value (of 'msr_index') into 'pdata'.
2761  * Returns 0 on success, non-0 otherwise.
2762  * Assumes vcpu_load() was already called.
2763  */
2764 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2765 {
2766 	return kvm_x86_ops->get_msr(vcpu, msr);
2767 }
2768 EXPORT_SYMBOL_GPL(kvm_get_msr);
2769 
2770 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2771 {
2772 	u64 data;
2773 	u64 mcg_cap = vcpu->arch.mcg_cap;
2774 	unsigned bank_num = mcg_cap & 0xff;
2775 
2776 	switch (msr) {
2777 	case MSR_IA32_P5_MC_ADDR:
2778 	case MSR_IA32_P5_MC_TYPE:
2779 		data = 0;
2780 		break;
2781 	case MSR_IA32_MCG_CAP:
2782 		data = vcpu->arch.mcg_cap;
2783 		break;
2784 	case MSR_IA32_MCG_CTL:
2785 		if (!(mcg_cap & MCG_CTL_P) && !host)
2786 			return 1;
2787 		data = vcpu->arch.mcg_ctl;
2788 		break;
2789 	case MSR_IA32_MCG_STATUS:
2790 		data = vcpu->arch.mcg_status;
2791 		break;
2792 	default:
2793 		if (msr >= MSR_IA32_MC0_CTL &&
2794 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2795 			u32 offset = msr - MSR_IA32_MC0_CTL;
2796 			data = vcpu->arch.mce_banks[offset];
2797 			break;
2798 		}
2799 		return 1;
2800 	}
2801 	*pdata = data;
2802 	return 0;
2803 }
2804 
2805 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2806 {
2807 	switch (msr_info->index) {
2808 	case MSR_IA32_PLATFORM_ID:
2809 	case MSR_IA32_EBL_CR_POWERON:
2810 	case MSR_IA32_DEBUGCTLMSR:
2811 	case MSR_IA32_LASTBRANCHFROMIP:
2812 	case MSR_IA32_LASTBRANCHTOIP:
2813 	case MSR_IA32_LASTINTFROMIP:
2814 	case MSR_IA32_LASTINTTOIP:
2815 	case MSR_K8_SYSCFG:
2816 	case MSR_K8_TSEG_ADDR:
2817 	case MSR_K8_TSEG_MASK:
2818 	case MSR_VM_HSAVE_PA:
2819 	case MSR_K8_INT_PENDING_MSG:
2820 	case MSR_AMD64_NB_CFG:
2821 	case MSR_FAM10H_MMIO_CONF_BASE:
2822 	case MSR_AMD64_BU_CFG2:
2823 	case MSR_IA32_PERF_CTL:
2824 	case MSR_AMD64_DC_CFG:
2825 	case MSR_F15H_EX_CFG:
2826 		msr_info->data = 0;
2827 		break;
2828 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2829 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2830 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2831 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2832 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2833 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2834 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2835 		msr_info->data = 0;
2836 		break;
2837 	case MSR_IA32_UCODE_REV:
2838 		msr_info->data = vcpu->arch.microcode_version;
2839 		break;
2840 	case MSR_IA32_ARCH_CAPABILITIES:
2841 		if (!msr_info->host_initiated &&
2842 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
2843 			return 1;
2844 		msr_info->data = vcpu->arch.arch_capabilities;
2845 		break;
2846 	case MSR_IA32_POWER_CTL:
2847 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
2848 		break;
2849 	case MSR_IA32_TSC:
2850 		msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2851 		break;
2852 	case MSR_MTRRcap:
2853 	case 0x200 ... 0x2ff:
2854 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2855 	case 0xcd: /* fsb frequency */
2856 		msr_info->data = 3;
2857 		break;
2858 		/*
2859 		 * MSR_EBC_FREQUENCY_ID
2860 		 * Conservative value valid for even the basic CPU models.
2861 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2862 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2863 		 * and 266MHz for model 3, or 4. Set Core Clock
2864 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2865 		 * 31:24) even though these are only valid for CPU
2866 		 * models > 2, however guests may end up dividing or
2867 		 * multiplying by zero otherwise.
2868 		 */
2869 	case MSR_EBC_FREQUENCY_ID:
2870 		msr_info->data = 1 << 24;
2871 		break;
2872 	case MSR_IA32_APICBASE:
2873 		msr_info->data = kvm_get_apic_base(vcpu);
2874 		break;
2875 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2876 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2877 		break;
2878 	case MSR_IA32_TSCDEADLINE:
2879 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2880 		break;
2881 	case MSR_IA32_TSC_ADJUST:
2882 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2883 		break;
2884 	case MSR_IA32_MISC_ENABLE:
2885 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2886 		break;
2887 	case MSR_IA32_SMBASE:
2888 		if (!msr_info->host_initiated)
2889 			return 1;
2890 		msr_info->data = vcpu->arch.smbase;
2891 		break;
2892 	case MSR_SMI_COUNT:
2893 		msr_info->data = vcpu->arch.smi_count;
2894 		break;
2895 	case MSR_IA32_PERF_STATUS:
2896 		/* TSC increment by tick */
2897 		msr_info->data = 1000ULL;
2898 		/* CPU multiplier */
2899 		msr_info->data |= (((uint64_t)4ULL) << 40);
2900 		break;
2901 	case MSR_EFER:
2902 		msr_info->data = vcpu->arch.efer;
2903 		break;
2904 	case MSR_KVM_WALL_CLOCK:
2905 	case MSR_KVM_WALL_CLOCK_NEW:
2906 		msr_info->data = vcpu->kvm->arch.wall_clock;
2907 		break;
2908 	case MSR_KVM_SYSTEM_TIME:
2909 	case MSR_KVM_SYSTEM_TIME_NEW:
2910 		msr_info->data = vcpu->arch.time;
2911 		break;
2912 	case MSR_KVM_ASYNC_PF_EN:
2913 		msr_info->data = vcpu->arch.apf.msr_val;
2914 		break;
2915 	case MSR_KVM_STEAL_TIME:
2916 		msr_info->data = vcpu->arch.st.msr_val;
2917 		break;
2918 	case MSR_KVM_PV_EOI_EN:
2919 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
2920 		break;
2921 	case MSR_KVM_POLL_CONTROL:
2922 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
2923 		break;
2924 	case MSR_IA32_P5_MC_ADDR:
2925 	case MSR_IA32_P5_MC_TYPE:
2926 	case MSR_IA32_MCG_CAP:
2927 	case MSR_IA32_MCG_CTL:
2928 	case MSR_IA32_MCG_STATUS:
2929 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2930 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
2931 				   msr_info->host_initiated);
2932 	case MSR_K7_CLK_CTL:
2933 		/*
2934 		 * Provide expected ramp-up count for K7. All other
2935 		 * are set to zero, indicating minimum divisors for
2936 		 * every field.
2937 		 *
2938 		 * This prevents guest kernels on AMD host with CPU
2939 		 * type 6, model 8 and higher from exploding due to
2940 		 * the rdmsr failing.
2941 		 */
2942 		msr_info->data = 0x20000000;
2943 		break;
2944 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2945 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2946 	case HV_X64_MSR_CRASH_CTL:
2947 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2948 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2949 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
2950 	case HV_X64_MSR_TSC_EMULATION_STATUS:
2951 		return kvm_hv_get_msr_common(vcpu,
2952 					     msr_info->index, &msr_info->data,
2953 					     msr_info->host_initiated);
2954 		break;
2955 	case MSR_IA32_BBL_CR_CTL3:
2956 		/* This legacy MSR exists but isn't fully documented in current
2957 		 * silicon.  It is however accessed by winxp in very narrow
2958 		 * scenarios where it sets bit #19, itself documented as
2959 		 * a "reserved" bit.  Best effort attempt to source coherent
2960 		 * read data here should the balance of the register be
2961 		 * interpreted by the guest:
2962 		 *
2963 		 * L2 cache control register 3: 64GB range, 256KB size,
2964 		 * enabled, latency 0x1, configured
2965 		 */
2966 		msr_info->data = 0xbe702111;
2967 		break;
2968 	case MSR_AMD64_OSVW_ID_LENGTH:
2969 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2970 			return 1;
2971 		msr_info->data = vcpu->arch.osvw.length;
2972 		break;
2973 	case MSR_AMD64_OSVW_STATUS:
2974 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2975 			return 1;
2976 		msr_info->data = vcpu->arch.osvw.status;
2977 		break;
2978 	case MSR_PLATFORM_INFO:
2979 		if (!msr_info->host_initiated &&
2980 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
2981 			return 1;
2982 		msr_info->data = vcpu->arch.msr_platform_info;
2983 		break;
2984 	case MSR_MISC_FEATURES_ENABLES:
2985 		msr_info->data = vcpu->arch.msr_misc_features_enables;
2986 		break;
2987 	case MSR_K7_HWCR:
2988 		msr_info->data = vcpu->arch.msr_hwcr;
2989 		break;
2990 	default:
2991 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2992 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2993 		if (!ignore_msrs) {
2994 			vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2995 					       msr_info->index);
2996 			return 1;
2997 		} else {
2998 			if (report_ignored_msrs)
2999 				vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
3000 					msr_info->index);
3001 			msr_info->data = 0;
3002 		}
3003 		break;
3004 	}
3005 	return 0;
3006 }
3007 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3008 
3009 /*
3010  * Read or write a bunch of msrs. All parameters are kernel addresses.
3011  *
3012  * @return number of msrs set successfully.
3013  */
3014 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3015 		    struct kvm_msr_entry *entries,
3016 		    int (*do_msr)(struct kvm_vcpu *vcpu,
3017 				  unsigned index, u64 *data))
3018 {
3019 	int i;
3020 
3021 	for (i = 0; i < msrs->nmsrs; ++i)
3022 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
3023 			break;
3024 
3025 	return i;
3026 }
3027 
3028 /*
3029  * Read or write a bunch of msrs. Parameters are user addresses.
3030  *
3031  * @return number of msrs set successfully.
3032  */
3033 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3034 		  int (*do_msr)(struct kvm_vcpu *vcpu,
3035 				unsigned index, u64 *data),
3036 		  int writeback)
3037 {
3038 	struct kvm_msrs msrs;
3039 	struct kvm_msr_entry *entries;
3040 	int r, n;
3041 	unsigned size;
3042 
3043 	r = -EFAULT;
3044 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3045 		goto out;
3046 
3047 	r = -E2BIG;
3048 	if (msrs.nmsrs >= MAX_IO_MSRS)
3049 		goto out;
3050 
3051 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3052 	entries = memdup_user(user_msrs->entries, size);
3053 	if (IS_ERR(entries)) {
3054 		r = PTR_ERR(entries);
3055 		goto out;
3056 	}
3057 
3058 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3059 	if (r < 0)
3060 		goto out_free;
3061 
3062 	r = -EFAULT;
3063 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
3064 		goto out_free;
3065 
3066 	r = n;
3067 
3068 out_free:
3069 	kfree(entries);
3070 out:
3071 	return r;
3072 }
3073 
3074 static inline bool kvm_can_mwait_in_guest(void)
3075 {
3076 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
3077 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
3078 		boot_cpu_has(X86_FEATURE_ARAT);
3079 }
3080 
3081 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3082 {
3083 	int r = 0;
3084 
3085 	switch (ext) {
3086 	case KVM_CAP_IRQCHIP:
3087 	case KVM_CAP_HLT:
3088 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3089 	case KVM_CAP_SET_TSS_ADDR:
3090 	case KVM_CAP_EXT_CPUID:
3091 	case KVM_CAP_EXT_EMUL_CPUID:
3092 	case KVM_CAP_CLOCKSOURCE:
3093 	case KVM_CAP_PIT:
3094 	case KVM_CAP_NOP_IO_DELAY:
3095 	case KVM_CAP_MP_STATE:
3096 	case KVM_CAP_SYNC_MMU:
3097 	case KVM_CAP_USER_NMI:
3098 	case KVM_CAP_REINJECT_CONTROL:
3099 	case KVM_CAP_IRQ_INJECT_STATUS:
3100 	case KVM_CAP_IOEVENTFD:
3101 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
3102 	case KVM_CAP_PIT2:
3103 	case KVM_CAP_PIT_STATE2:
3104 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3105 	case KVM_CAP_XEN_HVM:
3106 	case KVM_CAP_VCPU_EVENTS:
3107 	case KVM_CAP_HYPERV:
3108 	case KVM_CAP_HYPERV_VAPIC:
3109 	case KVM_CAP_HYPERV_SPIN:
3110 	case KVM_CAP_HYPERV_SYNIC:
3111 	case KVM_CAP_HYPERV_SYNIC2:
3112 	case KVM_CAP_HYPERV_VP_INDEX:
3113 	case KVM_CAP_HYPERV_EVENTFD:
3114 	case KVM_CAP_HYPERV_TLBFLUSH:
3115 	case KVM_CAP_HYPERV_SEND_IPI:
3116 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3117 	case KVM_CAP_HYPERV_CPUID:
3118 	case KVM_CAP_PCI_SEGMENT:
3119 	case KVM_CAP_DEBUGREGS:
3120 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
3121 	case KVM_CAP_XSAVE:
3122 	case KVM_CAP_ASYNC_PF:
3123 	case KVM_CAP_GET_TSC_KHZ:
3124 	case KVM_CAP_KVMCLOCK_CTRL:
3125 	case KVM_CAP_READONLY_MEM:
3126 	case KVM_CAP_HYPERV_TIME:
3127 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3128 	case KVM_CAP_TSC_DEADLINE_TIMER:
3129 	case KVM_CAP_DISABLE_QUIRKS:
3130 	case KVM_CAP_SET_BOOT_CPU_ID:
3131  	case KVM_CAP_SPLIT_IRQCHIP:
3132 	case KVM_CAP_IMMEDIATE_EXIT:
3133 	case KVM_CAP_PMU_EVENT_FILTER:
3134 	case KVM_CAP_GET_MSR_FEATURES:
3135 	case KVM_CAP_MSR_PLATFORM_INFO:
3136 	case KVM_CAP_EXCEPTION_PAYLOAD:
3137 		r = 1;
3138 		break;
3139 	case KVM_CAP_SYNC_REGS:
3140 		r = KVM_SYNC_X86_VALID_FIELDS;
3141 		break;
3142 	case KVM_CAP_ADJUST_CLOCK:
3143 		r = KVM_CLOCK_TSC_STABLE;
3144 		break;
3145 	case KVM_CAP_X86_DISABLE_EXITS:
3146 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3147 		      KVM_X86_DISABLE_EXITS_CSTATE;
3148 		if(kvm_can_mwait_in_guest())
3149 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
3150 		break;
3151 	case KVM_CAP_X86_SMM:
3152 		/* SMBASE is usually relocated above 1M on modern chipsets,
3153 		 * and SMM handlers might indeed rely on 4G segment limits,
3154 		 * so do not report SMM to be available if real mode is
3155 		 * emulated via vm86 mode.  Still, do not go to great lengths
3156 		 * to avoid userspace's usage of the feature, because it is a
3157 		 * fringe case that is not enabled except via specific settings
3158 		 * of the module parameters.
3159 		 */
3160 		r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
3161 		break;
3162 	case KVM_CAP_VAPIC:
3163 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
3164 		break;
3165 	case KVM_CAP_NR_VCPUS:
3166 		r = KVM_SOFT_MAX_VCPUS;
3167 		break;
3168 	case KVM_CAP_MAX_VCPUS:
3169 		r = KVM_MAX_VCPUS;
3170 		break;
3171 	case KVM_CAP_MAX_VCPU_ID:
3172 		r = KVM_MAX_VCPU_ID;
3173 		break;
3174 	case KVM_CAP_PV_MMU:	/* obsolete */
3175 		r = 0;
3176 		break;
3177 	case KVM_CAP_MCE:
3178 		r = KVM_MAX_MCE_BANKS;
3179 		break;
3180 	case KVM_CAP_XCRS:
3181 		r = boot_cpu_has(X86_FEATURE_XSAVE);
3182 		break;
3183 	case KVM_CAP_TSC_CONTROL:
3184 		r = kvm_has_tsc_control;
3185 		break;
3186 	case KVM_CAP_X2APIC_API:
3187 		r = KVM_X2APIC_API_VALID_FLAGS;
3188 		break;
3189 	case KVM_CAP_NESTED_STATE:
3190 		r = kvm_x86_ops->get_nested_state ?
3191 			kvm_x86_ops->get_nested_state(NULL, NULL, 0) : 0;
3192 		break;
3193 	default:
3194 		break;
3195 	}
3196 	return r;
3197 
3198 }
3199 
3200 long kvm_arch_dev_ioctl(struct file *filp,
3201 			unsigned int ioctl, unsigned long arg)
3202 {
3203 	void __user *argp = (void __user *)arg;
3204 	long r;
3205 
3206 	switch (ioctl) {
3207 	case KVM_GET_MSR_INDEX_LIST: {
3208 		struct kvm_msr_list __user *user_msr_list = argp;
3209 		struct kvm_msr_list msr_list;
3210 		unsigned n;
3211 
3212 		r = -EFAULT;
3213 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3214 			goto out;
3215 		n = msr_list.nmsrs;
3216 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3217 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3218 			goto out;
3219 		r = -E2BIG;
3220 		if (n < msr_list.nmsrs)
3221 			goto out;
3222 		r = -EFAULT;
3223 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3224 				 num_msrs_to_save * sizeof(u32)))
3225 			goto out;
3226 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3227 				 &emulated_msrs,
3228 				 num_emulated_msrs * sizeof(u32)))
3229 			goto out;
3230 		r = 0;
3231 		break;
3232 	}
3233 	case KVM_GET_SUPPORTED_CPUID:
3234 	case KVM_GET_EMULATED_CPUID: {
3235 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3236 		struct kvm_cpuid2 cpuid;
3237 
3238 		r = -EFAULT;
3239 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3240 			goto out;
3241 
3242 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3243 					    ioctl);
3244 		if (r)
3245 			goto out;
3246 
3247 		r = -EFAULT;
3248 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3249 			goto out;
3250 		r = 0;
3251 		break;
3252 	}
3253 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3254 		r = -EFAULT;
3255 		if (copy_to_user(argp, &kvm_mce_cap_supported,
3256 				 sizeof(kvm_mce_cap_supported)))
3257 			goto out;
3258 		r = 0;
3259 		break;
3260 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3261 		struct kvm_msr_list __user *user_msr_list = argp;
3262 		struct kvm_msr_list msr_list;
3263 		unsigned int n;
3264 
3265 		r = -EFAULT;
3266 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3267 			goto out;
3268 		n = msr_list.nmsrs;
3269 		msr_list.nmsrs = num_msr_based_features;
3270 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3271 			goto out;
3272 		r = -E2BIG;
3273 		if (n < msr_list.nmsrs)
3274 			goto out;
3275 		r = -EFAULT;
3276 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
3277 				 num_msr_based_features * sizeof(u32)))
3278 			goto out;
3279 		r = 0;
3280 		break;
3281 	}
3282 	case KVM_GET_MSRS:
3283 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
3284 		break;
3285 	}
3286 	default:
3287 		r = -EINVAL;
3288 	}
3289 out:
3290 	return r;
3291 }
3292 
3293 static void wbinvd_ipi(void *garbage)
3294 {
3295 	wbinvd();
3296 }
3297 
3298 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3299 {
3300 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3301 }
3302 
3303 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3304 {
3305 	/* Address WBINVD may be executed by guest */
3306 	if (need_emulate_wbinvd(vcpu)) {
3307 		if (kvm_x86_ops->has_wbinvd_exit())
3308 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3309 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3310 			smp_call_function_single(vcpu->cpu,
3311 					wbinvd_ipi, NULL, 1);
3312 	}
3313 
3314 	kvm_x86_ops->vcpu_load(vcpu, cpu);
3315 
3316 	/* Apply any externally detected TSC adjustments (due to suspend) */
3317 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3318 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3319 		vcpu->arch.tsc_offset_adjustment = 0;
3320 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3321 	}
3322 
3323 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3324 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3325 				rdtsc() - vcpu->arch.last_host_tsc;
3326 		if (tsc_delta < 0)
3327 			mark_tsc_unstable("KVM discovered backwards TSC");
3328 
3329 		if (kvm_check_tsc_unstable()) {
3330 			u64 offset = kvm_compute_tsc_offset(vcpu,
3331 						vcpu->arch.last_guest_tsc);
3332 			kvm_vcpu_write_tsc_offset(vcpu, offset);
3333 			vcpu->arch.tsc_catchup = 1;
3334 		}
3335 
3336 		if (kvm_lapic_hv_timer_in_use(vcpu))
3337 			kvm_lapic_restart_hv_timer(vcpu);
3338 
3339 		/*
3340 		 * On a host with synchronized TSC, there is no need to update
3341 		 * kvmclock on vcpu->cpu migration
3342 		 */
3343 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3344 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3345 		if (vcpu->cpu != cpu)
3346 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3347 		vcpu->cpu = cpu;
3348 	}
3349 
3350 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3351 }
3352 
3353 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3354 {
3355 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3356 		return;
3357 
3358 	vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3359 
3360 	kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3361 			&vcpu->arch.st.steal.preempted,
3362 			offsetof(struct kvm_steal_time, preempted),
3363 			sizeof(vcpu->arch.st.steal.preempted));
3364 }
3365 
3366 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3367 {
3368 	int idx;
3369 
3370 	if (vcpu->preempted)
3371 		vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3372 
3373 	/*
3374 	 * Disable page faults because we're in atomic context here.
3375 	 * kvm_write_guest_offset_cached() would call might_fault()
3376 	 * that relies on pagefault_disable() to tell if there's a
3377 	 * bug. NOTE: the write to guest memory may not go through if
3378 	 * during postcopy live migration or if there's heavy guest
3379 	 * paging.
3380 	 */
3381 	pagefault_disable();
3382 	/*
3383 	 * kvm_memslots() will be called by
3384 	 * kvm_write_guest_offset_cached() so take the srcu lock.
3385 	 */
3386 	idx = srcu_read_lock(&vcpu->kvm->srcu);
3387 	kvm_steal_time_set_preempted(vcpu);
3388 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3389 	pagefault_enable();
3390 	kvm_x86_ops->vcpu_put(vcpu);
3391 	vcpu->arch.last_host_tsc = rdtsc();
3392 	/*
3393 	 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3394 	 * on every vmexit, but if not, we might have a stale dr6 from the
3395 	 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3396 	 */
3397 	set_debugreg(0, 6);
3398 }
3399 
3400 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3401 				    struct kvm_lapic_state *s)
3402 {
3403 	if (vcpu->arch.apicv_active)
3404 		kvm_x86_ops->sync_pir_to_irr(vcpu);
3405 
3406 	return kvm_apic_get_state(vcpu, s);
3407 }
3408 
3409 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3410 				    struct kvm_lapic_state *s)
3411 {
3412 	int r;
3413 
3414 	r = kvm_apic_set_state(vcpu, s);
3415 	if (r)
3416 		return r;
3417 	update_cr8_intercept(vcpu);
3418 
3419 	return 0;
3420 }
3421 
3422 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3423 {
3424 	return (!lapic_in_kernel(vcpu) ||
3425 		kvm_apic_accept_pic_intr(vcpu));
3426 }
3427 
3428 /*
3429  * if userspace requested an interrupt window, check that the
3430  * interrupt window is open.
3431  *
3432  * No need to exit to userspace if we already have an interrupt queued.
3433  */
3434 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3435 {
3436 	return kvm_arch_interrupt_allowed(vcpu) &&
3437 		!kvm_cpu_has_interrupt(vcpu) &&
3438 		!kvm_event_needs_reinjection(vcpu) &&
3439 		kvm_cpu_accept_dm_intr(vcpu);
3440 }
3441 
3442 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3443 				    struct kvm_interrupt *irq)
3444 {
3445 	if (irq->irq >= KVM_NR_INTERRUPTS)
3446 		return -EINVAL;
3447 
3448 	if (!irqchip_in_kernel(vcpu->kvm)) {
3449 		kvm_queue_interrupt(vcpu, irq->irq, false);
3450 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3451 		return 0;
3452 	}
3453 
3454 	/*
3455 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3456 	 * fail for in-kernel 8259.
3457 	 */
3458 	if (pic_in_kernel(vcpu->kvm))
3459 		return -ENXIO;
3460 
3461 	if (vcpu->arch.pending_external_vector != -1)
3462 		return -EEXIST;
3463 
3464 	vcpu->arch.pending_external_vector = irq->irq;
3465 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3466 	return 0;
3467 }
3468 
3469 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3470 {
3471 	kvm_inject_nmi(vcpu);
3472 
3473 	return 0;
3474 }
3475 
3476 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3477 {
3478 	kvm_make_request(KVM_REQ_SMI, vcpu);
3479 
3480 	return 0;
3481 }
3482 
3483 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3484 					   struct kvm_tpr_access_ctl *tac)
3485 {
3486 	if (tac->flags)
3487 		return -EINVAL;
3488 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
3489 	return 0;
3490 }
3491 
3492 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3493 					u64 mcg_cap)
3494 {
3495 	int r;
3496 	unsigned bank_num = mcg_cap & 0xff, bank;
3497 
3498 	r = -EINVAL;
3499 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3500 		goto out;
3501 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3502 		goto out;
3503 	r = 0;
3504 	vcpu->arch.mcg_cap = mcg_cap;
3505 	/* Init IA32_MCG_CTL to all 1s */
3506 	if (mcg_cap & MCG_CTL_P)
3507 		vcpu->arch.mcg_ctl = ~(u64)0;
3508 	/* Init IA32_MCi_CTL to all 1s */
3509 	for (bank = 0; bank < bank_num; bank++)
3510 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3511 
3512 	if (kvm_x86_ops->setup_mce)
3513 		kvm_x86_ops->setup_mce(vcpu);
3514 out:
3515 	return r;
3516 }
3517 
3518 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3519 				      struct kvm_x86_mce *mce)
3520 {
3521 	u64 mcg_cap = vcpu->arch.mcg_cap;
3522 	unsigned bank_num = mcg_cap & 0xff;
3523 	u64 *banks = vcpu->arch.mce_banks;
3524 
3525 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3526 		return -EINVAL;
3527 	/*
3528 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3529 	 * reporting is disabled
3530 	 */
3531 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3532 	    vcpu->arch.mcg_ctl != ~(u64)0)
3533 		return 0;
3534 	banks += 4 * mce->bank;
3535 	/*
3536 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3537 	 * reporting is disabled for the bank
3538 	 */
3539 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3540 		return 0;
3541 	if (mce->status & MCI_STATUS_UC) {
3542 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3543 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3544 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3545 			return 0;
3546 		}
3547 		if (banks[1] & MCI_STATUS_VAL)
3548 			mce->status |= MCI_STATUS_OVER;
3549 		banks[2] = mce->addr;
3550 		banks[3] = mce->misc;
3551 		vcpu->arch.mcg_status = mce->mcg_status;
3552 		banks[1] = mce->status;
3553 		kvm_queue_exception(vcpu, MC_VECTOR);
3554 	} else if (!(banks[1] & MCI_STATUS_VAL)
3555 		   || !(banks[1] & MCI_STATUS_UC)) {
3556 		if (banks[1] & MCI_STATUS_VAL)
3557 			mce->status |= MCI_STATUS_OVER;
3558 		banks[2] = mce->addr;
3559 		banks[3] = mce->misc;
3560 		banks[1] = mce->status;
3561 	} else
3562 		banks[1] |= MCI_STATUS_OVER;
3563 	return 0;
3564 }
3565 
3566 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3567 					       struct kvm_vcpu_events *events)
3568 {
3569 	process_nmi(vcpu);
3570 
3571 	/*
3572 	 * The API doesn't provide the instruction length for software
3573 	 * exceptions, so don't report them. As long as the guest RIP
3574 	 * isn't advanced, we should expect to encounter the exception
3575 	 * again.
3576 	 */
3577 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3578 		events->exception.injected = 0;
3579 		events->exception.pending = 0;
3580 	} else {
3581 		events->exception.injected = vcpu->arch.exception.injected;
3582 		events->exception.pending = vcpu->arch.exception.pending;
3583 		/*
3584 		 * For ABI compatibility, deliberately conflate
3585 		 * pending and injected exceptions when
3586 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3587 		 */
3588 		if (!vcpu->kvm->arch.exception_payload_enabled)
3589 			events->exception.injected |=
3590 				vcpu->arch.exception.pending;
3591 	}
3592 	events->exception.nr = vcpu->arch.exception.nr;
3593 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3594 	events->exception.error_code = vcpu->arch.exception.error_code;
3595 	events->exception_has_payload = vcpu->arch.exception.has_payload;
3596 	events->exception_payload = vcpu->arch.exception.payload;
3597 
3598 	events->interrupt.injected =
3599 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3600 	events->interrupt.nr = vcpu->arch.interrupt.nr;
3601 	events->interrupt.soft = 0;
3602 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3603 
3604 	events->nmi.injected = vcpu->arch.nmi_injected;
3605 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
3606 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3607 	events->nmi.pad = 0;
3608 
3609 	events->sipi_vector = 0; /* never valid when reporting to user space */
3610 
3611 	events->smi.smm = is_smm(vcpu);
3612 	events->smi.pending = vcpu->arch.smi_pending;
3613 	events->smi.smm_inside_nmi =
3614 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3615 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3616 
3617 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3618 			 | KVM_VCPUEVENT_VALID_SHADOW
3619 			 | KVM_VCPUEVENT_VALID_SMM);
3620 	if (vcpu->kvm->arch.exception_payload_enabled)
3621 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3622 
3623 	memset(&events->reserved, 0, sizeof(events->reserved));
3624 }
3625 
3626 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
3627 
3628 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3629 					      struct kvm_vcpu_events *events)
3630 {
3631 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3632 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3633 			      | KVM_VCPUEVENT_VALID_SHADOW
3634 			      | KVM_VCPUEVENT_VALID_SMM
3635 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
3636 		return -EINVAL;
3637 
3638 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3639 		if (!vcpu->kvm->arch.exception_payload_enabled)
3640 			return -EINVAL;
3641 		if (events->exception.pending)
3642 			events->exception.injected = 0;
3643 		else
3644 			events->exception_has_payload = 0;
3645 	} else {
3646 		events->exception.pending = 0;
3647 		events->exception_has_payload = 0;
3648 	}
3649 
3650 	if ((events->exception.injected || events->exception.pending) &&
3651 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3652 		return -EINVAL;
3653 
3654 	/* INITs are latched while in SMM */
3655 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3656 	    (events->smi.smm || events->smi.pending) &&
3657 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3658 		return -EINVAL;
3659 
3660 	process_nmi(vcpu);
3661 	vcpu->arch.exception.injected = events->exception.injected;
3662 	vcpu->arch.exception.pending = events->exception.pending;
3663 	vcpu->arch.exception.nr = events->exception.nr;
3664 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3665 	vcpu->arch.exception.error_code = events->exception.error_code;
3666 	vcpu->arch.exception.has_payload = events->exception_has_payload;
3667 	vcpu->arch.exception.payload = events->exception_payload;
3668 
3669 	vcpu->arch.interrupt.injected = events->interrupt.injected;
3670 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3671 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3672 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3673 		kvm_x86_ops->set_interrupt_shadow(vcpu,
3674 						  events->interrupt.shadow);
3675 
3676 	vcpu->arch.nmi_injected = events->nmi.injected;
3677 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3678 		vcpu->arch.nmi_pending = events->nmi.pending;
3679 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3680 
3681 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3682 	    lapic_in_kernel(vcpu))
3683 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3684 
3685 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3686 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
3687 			if (events->smi.smm)
3688 				vcpu->arch.hflags |= HF_SMM_MASK;
3689 			else
3690 				vcpu->arch.hflags &= ~HF_SMM_MASK;
3691 			kvm_smm_changed(vcpu);
3692 		}
3693 
3694 		vcpu->arch.smi_pending = events->smi.pending;
3695 
3696 		if (events->smi.smm) {
3697 			if (events->smi.smm_inside_nmi)
3698 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3699 			else
3700 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3701 			if (lapic_in_kernel(vcpu)) {
3702 				if (events->smi.latched_init)
3703 					set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3704 				else
3705 					clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3706 			}
3707 		}
3708 	}
3709 
3710 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3711 
3712 	return 0;
3713 }
3714 
3715 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3716 					     struct kvm_debugregs *dbgregs)
3717 {
3718 	unsigned long val;
3719 
3720 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3721 	kvm_get_dr(vcpu, 6, &val);
3722 	dbgregs->dr6 = val;
3723 	dbgregs->dr7 = vcpu->arch.dr7;
3724 	dbgregs->flags = 0;
3725 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3726 }
3727 
3728 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3729 					    struct kvm_debugregs *dbgregs)
3730 {
3731 	if (dbgregs->flags)
3732 		return -EINVAL;
3733 
3734 	if (dbgregs->dr6 & ~0xffffffffull)
3735 		return -EINVAL;
3736 	if (dbgregs->dr7 & ~0xffffffffull)
3737 		return -EINVAL;
3738 
3739 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3740 	kvm_update_dr0123(vcpu);
3741 	vcpu->arch.dr6 = dbgregs->dr6;
3742 	kvm_update_dr6(vcpu);
3743 	vcpu->arch.dr7 = dbgregs->dr7;
3744 	kvm_update_dr7(vcpu);
3745 
3746 	return 0;
3747 }
3748 
3749 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3750 
3751 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3752 {
3753 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3754 	u64 xstate_bv = xsave->header.xfeatures;
3755 	u64 valid;
3756 
3757 	/*
3758 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3759 	 * leaves 0 and 1 in the loop below.
3760 	 */
3761 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3762 
3763 	/* Set XSTATE_BV */
3764 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3765 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3766 
3767 	/*
3768 	 * Copy each region from the possibly compacted offset to the
3769 	 * non-compacted offset.
3770 	 */
3771 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3772 	while (valid) {
3773 		u64 xfeature_mask = valid & -valid;
3774 		int xfeature_nr = fls64(xfeature_mask) - 1;
3775 		void *src = get_xsave_addr(xsave, xfeature_nr);
3776 
3777 		if (src) {
3778 			u32 size, offset, ecx, edx;
3779 			cpuid_count(XSTATE_CPUID, xfeature_nr,
3780 				    &size, &offset, &ecx, &edx);
3781 			if (xfeature_nr == XFEATURE_PKRU)
3782 				memcpy(dest + offset, &vcpu->arch.pkru,
3783 				       sizeof(vcpu->arch.pkru));
3784 			else
3785 				memcpy(dest + offset, src, size);
3786 
3787 		}
3788 
3789 		valid -= xfeature_mask;
3790 	}
3791 }
3792 
3793 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3794 {
3795 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3796 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3797 	u64 valid;
3798 
3799 	/*
3800 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3801 	 * leaves 0 and 1 in the loop below.
3802 	 */
3803 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3804 
3805 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3806 	xsave->header.xfeatures = xstate_bv;
3807 	if (boot_cpu_has(X86_FEATURE_XSAVES))
3808 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3809 
3810 	/*
3811 	 * Copy each region from the non-compacted offset to the
3812 	 * possibly compacted offset.
3813 	 */
3814 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3815 	while (valid) {
3816 		u64 xfeature_mask = valid & -valid;
3817 		int xfeature_nr = fls64(xfeature_mask) - 1;
3818 		void *dest = get_xsave_addr(xsave, xfeature_nr);
3819 
3820 		if (dest) {
3821 			u32 size, offset, ecx, edx;
3822 			cpuid_count(XSTATE_CPUID, xfeature_nr,
3823 				    &size, &offset, &ecx, &edx);
3824 			if (xfeature_nr == XFEATURE_PKRU)
3825 				memcpy(&vcpu->arch.pkru, src + offset,
3826 				       sizeof(vcpu->arch.pkru));
3827 			else
3828 				memcpy(dest, src + offset, size);
3829 		}
3830 
3831 		valid -= xfeature_mask;
3832 	}
3833 }
3834 
3835 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3836 					 struct kvm_xsave *guest_xsave)
3837 {
3838 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3839 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3840 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3841 	} else {
3842 		memcpy(guest_xsave->region,
3843 			&vcpu->arch.guest_fpu->state.fxsave,
3844 			sizeof(struct fxregs_state));
3845 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3846 			XFEATURE_MASK_FPSSE;
3847 	}
3848 }
3849 
3850 #define XSAVE_MXCSR_OFFSET 24
3851 
3852 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3853 					struct kvm_xsave *guest_xsave)
3854 {
3855 	u64 xstate_bv =
3856 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3857 	u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3858 
3859 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3860 		/*
3861 		 * Here we allow setting states that are not present in
3862 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3863 		 * with old userspace.
3864 		 */
3865 		if (xstate_bv & ~kvm_supported_xcr0() ||
3866 			mxcsr & ~mxcsr_feature_mask)
3867 			return -EINVAL;
3868 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3869 	} else {
3870 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3871 			mxcsr & ~mxcsr_feature_mask)
3872 			return -EINVAL;
3873 		memcpy(&vcpu->arch.guest_fpu->state.fxsave,
3874 			guest_xsave->region, sizeof(struct fxregs_state));
3875 	}
3876 	return 0;
3877 }
3878 
3879 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3880 					struct kvm_xcrs *guest_xcrs)
3881 {
3882 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3883 		guest_xcrs->nr_xcrs = 0;
3884 		return;
3885 	}
3886 
3887 	guest_xcrs->nr_xcrs = 1;
3888 	guest_xcrs->flags = 0;
3889 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3890 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3891 }
3892 
3893 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3894 				       struct kvm_xcrs *guest_xcrs)
3895 {
3896 	int i, r = 0;
3897 
3898 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
3899 		return -EINVAL;
3900 
3901 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3902 		return -EINVAL;
3903 
3904 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3905 		/* Only support XCR0 currently */
3906 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3907 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3908 				guest_xcrs->xcrs[i].value);
3909 			break;
3910 		}
3911 	if (r)
3912 		r = -EINVAL;
3913 	return r;
3914 }
3915 
3916 /*
3917  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3918  * stopped by the hypervisor.  This function will be called from the host only.
3919  * EINVAL is returned when the host attempts to set the flag for a guest that
3920  * does not support pv clocks.
3921  */
3922 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3923 {
3924 	if (!vcpu->arch.pv_time_enabled)
3925 		return -EINVAL;
3926 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3927 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3928 	return 0;
3929 }
3930 
3931 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3932 				     struct kvm_enable_cap *cap)
3933 {
3934 	int r;
3935 	uint16_t vmcs_version;
3936 	void __user *user_ptr;
3937 
3938 	if (cap->flags)
3939 		return -EINVAL;
3940 
3941 	switch (cap->cap) {
3942 	case KVM_CAP_HYPERV_SYNIC2:
3943 		if (cap->args[0])
3944 			return -EINVAL;
3945 		/* fall through */
3946 
3947 	case KVM_CAP_HYPERV_SYNIC:
3948 		if (!irqchip_in_kernel(vcpu->kvm))
3949 			return -EINVAL;
3950 		return kvm_hv_activate_synic(vcpu, cap->cap ==
3951 					     KVM_CAP_HYPERV_SYNIC2);
3952 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3953 		if (!kvm_x86_ops->nested_enable_evmcs)
3954 			return -ENOTTY;
3955 		r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
3956 		if (!r) {
3957 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
3958 			if (copy_to_user(user_ptr, &vmcs_version,
3959 					 sizeof(vmcs_version)))
3960 				r = -EFAULT;
3961 		}
3962 		return r;
3963 
3964 	default:
3965 		return -EINVAL;
3966 	}
3967 }
3968 
3969 long kvm_arch_vcpu_ioctl(struct file *filp,
3970 			 unsigned int ioctl, unsigned long arg)
3971 {
3972 	struct kvm_vcpu *vcpu = filp->private_data;
3973 	void __user *argp = (void __user *)arg;
3974 	int r;
3975 	union {
3976 		struct kvm_lapic_state *lapic;
3977 		struct kvm_xsave *xsave;
3978 		struct kvm_xcrs *xcrs;
3979 		void *buffer;
3980 	} u;
3981 
3982 	vcpu_load(vcpu);
3983 
3984 	u.buffer = NULL;
3985 	switch (ioctl) {
3986 	case KVM_GET_LAPIC: {
3987 		r = -EINVAL;
3988 		if (!lapic_in_kernel(vcpu))
3989 			goto out;
3990 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
3991 				GFP_KERNEL_ACCOUNT);
3992 
3993 		r = -ENOMEM;
3994 		if (!u.lapic)
3995 			goto out;
3996 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3997 		if (r)
3998 			goto out;
3999 		r = -EFAULT;
4000 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4001 			goto out;
4002 		r = 0;
4003 		break;
4004 	}
4005 	case KVM_SET_LAPIC: {
4006 		r = -EINVAL;
4007 		if (!lapic_in_kernel(vcpu))
4008 			goto out;
4009 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
4010 		if (IS_ERR(u.lapic)) {
4011 			r = PTR_ERR(u.lapic);
4012 			goto out_nofree;
4013 		}
4014 
4015 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4016 		break;
4017 	}
4018 	case KVM_INTERRUPT: {
4019 		struct kvm_interrupt irq;
4020 
4021 		r = -EFAULT;
4022 		if (copy_from_user(&irq, argp, sizeof(irq)))
4023 			goto out;
4024 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4025 		break;
4026 	}
4027 	case KVM_NMI: {
4028 		r = kvm_vcpu_ioctl_nmi(vcpu);
4029 		break;
4030 	}
4031 	case KVM_SMI: {
4032 		r = kvm_vcpu_ioctl_smi(vcpu);
4033 		break;
4034 	}
4035 	case KVM_SET_CPUID: {
4036 		struct kvm_cpuid __user *cpuid_arg = argp;
4037 		struct kvm_cpuid cpuid;
4038 
4039 		r = -EFAULT;
4040 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4041 			goto out;
4042 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4043 		break;
4044 	}
4045 	case KVM_SET_CPUID2: {
4046 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4047 		struct kvm_cpuid2 cpuid;
4048 
4049 		r = -EFAULT;
4050 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4051 			goto out;
4052 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4053 					      cpuid_arg->entries);
4054 		break;
4055 	}
4056 	case KVM_GET_CPUID2: {
4057 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4058 		struct kvm_cpuid2 cpuid;
4059 
4060 		r = -EFAULT;
4061 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4062 			goto out;
4063 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4064 					      cpuid_arg->entries);
4065 		if (r)
4066 			goto out;
4067 		r = -EFAULT;
4068 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4069 			goto out;
4070 		r = 0;
4071 		break;
4072 	}
4073 	case KVM_GET_MSRS: {
4074 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4075 		r = msr_io(vcpu, argp, do_get_msr, 1);
4076 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4077 		break;
4078 	}
4079 	case KVM_SET_MSRS: {
4080 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4081 		r = msr_io(vcpu, argp, do_set_msr, 0);
4082 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4083 		break;
4084 	}
4085 	case KVM_TPR_ACCESS_REPORTING: {
4086 		struct kvm_tpr_access_ctl tac;
4087 
4088 		r = -EFAULT;
4089 		if (copy_from_user(&tac, argp, sizeof(tac)))
4090 			goto out;
4091 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4092 		if (r)
4093 			goto out;
4094 		r = -EFAULT;
4095 		if (copy_to_user(argp, &tac, sizeof(tac)))
4096 			goto out;
4097 		r = 0;
4098 		break;
4099 	};
4100 	case KVM_SET_VAPIC_ADDR: {
4101 		struct kvm_vapic_addr va;
4102 		int idx;
4103 
4104 		r = -EINVAL;
4105 		if (!lapic_in_kernel(vcpu))
4106 			goto out;
4107 		r = -EFAULT;
4108 		if (copy_from_user(&va, argp, sizeof(va)))
4109 			goto out;
4110 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4111 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4112 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4113 		break;
4114 	}
4115 	case KVM_X86_SETUP_MCE: {
4116 		u64 mcg_cap;
4117 
4118 		r = -EFAULT;
4119 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4120 			goto out;
4121 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4122 		break;
4123 	}
4124 	case KVM_X86_SET_MCE: {
4125 		struct kvm_x86_mce mce;
4126 
4127 		r = -EFAULT;
4128 		if (copy_from_user(&mce, argp, sizeof(mce)))
4129 			goto out;
4130 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4131 		break;
4132 	}
4133 	case KVM_GET_VCPU_EVENTS: {
4134 		struct kvm_vcpu_events events;
4135 
4136 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4137 
4138 		r = -EFAULT;
4139 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4140 			break;
4141 		r = 0;
4142 		break;
4143 	}
4144 	case KVM_SET_VCPU_EVENTS: {
4145 		struct kvm_vcpu_events events;
4146 
4147 		r = -EFAULT;
4148 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4149 			break;
4150 
4151 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4152 		break;
4153 	}
4154 	case KVM_GET_DEBUGREGS: {
4155 		struct kvm_debugregs dbgregs;
4156 
4157 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4158 
4159 		r = -EFAULT;
4160 		if (copy_to_user(argp, &dbgregs,
4161 				 sizeof(struct kvm_debugregs)))
4162 			break;
4163 		r = 0;
4164 		break;
4165 	}
4166 	case KVM_SET_DEBUGREGS: {
4167 		struct kvm_debugregs dbgregs;
4168 
4169 		r = -EFAULT;
4170 		if (copy_from_user(&dbgregs, argp,
4171 				   sizeof(struct kvm_debugregs)))
4172 			break;
4173 
4174 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4175 		break;
4176 	}
4177 	case KVM_GET_XSAVE: {
4178 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4179 		r = -ENOMEM;
4180 		if (!u.xsave)
4181 			break;
4182 
4183 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4184 
4185 		r = -EFAULT;
4186 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4187 			break;
4188 		r = 0;
4189 		break;
4190 	}
4191 	case KVM_SET_XSAVE: {
4192 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
4193 		if (IS_ERR(u.xsave)) {
4194 			r = PTR_ERR(u.xsave);
4195 			goto out_nofree;
4196 		}
4197 
4198 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4199 		break;
4200 	}
4201 	case KVM_GET_XCRS: {
4202 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4203 		r = -ENOMEM;
4204 		if (!u.xcrs)
4205 			break;
4206 
4207 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4208 
4209 		r = -EFAULT;
4210 		if (copy_to_user(argp, u.xcrs,
4211 				 sizeof(struct kvm_xcrs)))
4212 			break;
4213 		r = 0;
4214 		break;
4215 	}
4216 	case KVM_SET_XCRS: {
4217 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4218 		if (IS_ERR(u.xcrs)) {
4219 			r = PTR_ERR(u.xcrs);
4220 			goto out_nofree;
4221 		}
4222 
4223 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4224 		break;
4225 	}
4226 	case KVM_SET_TSC_KHZ: {
4227 		u32 user_tsc_khz;
4228 
4229 		r = -EINVAL;
4230 		user_tsc_khz = (u32)arg;
4231 
4232 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4233 			goto out;
4234 
4235 		if (user_tsc_khz == 0)
4236 			user_tsc_khz = tsc_khz;
4237 
4238 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4239 			r = 0;
4240 
4241 		goto out;
4242 	}
4243 	case KVM_GET_TSC_KHZ: {
4244 		r = vcpu->arch.virtual_tsc_khz;
4245 		goto out;
4246 	}
4247 	case KVM_KVMCLOCK_CTRL: {
4248 		r = kvm_set_guest_paused(vcpu);
4249 		goto out;
4250 	}
4251 	case KVM_ENABLE_CAP: {
4252 		struct kvm_enable_cap cap;
4253 
4254 		r = -EFAULT;
4255 		if (copy_from_user(&cap, argp, sizeof(cap)))
4256 			goto out;
4257 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4258 		break;
4259 	}
4260 	case KVM_GET_NESTED_STATE: {
4261 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4262 		u32 user_data_size;
4263 
4264 		r = -EINVAL;
4265 		if (!kvm_x86_ops->get_nested_state)
4266 			break;
4267 
4268 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4269 		r = -EFAULT;
4270 		if (get_user(user_data_size, &user_kvm_nested_state->size))
4271 			break;
4272 
4273 		r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4274 						  user_data_size);
4275 		if (r < 0)
4276 			break;
4277 
4278 		if (r > user_data_size) {
4279 			if (put_user(r, &user_kvm_nested_state->size))
4280 				r = -EFAULT;
4281 			else
4282 				r = -E2BIG;
4283 			break;
4284 		}
4285 
4286 		r = 0;
4287 		break;
4288 	}
4289 	case KVM_SET_NESTED_STATE: {
4290 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4291 		struct kvm_nested_state kvm_state;
4292 
4293 		r = -EINVAL;
4294 		if (!kvm_x86_ops->set_nested_state)
4295 			break;
4296 
4297 		r = -EFAULT;
4298 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4299 			break;
4300 
4301 		r = -EINVAL;
4302 		if (kvm_state.size < sizeof(kvm_state))
4303 			break;
4304 
4305 		if (kvm_state.flags &
4306 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4307 		      | KVM_STATE_NESTED_EVMCS))
4308 			break;
4309 
4310 		/* nested_run_pending implies guest_mode.  */
4311 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4312 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4313 			break;
4314 
4315 		r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4316 		break;
4317 	}
4318 	case KVM_GET_SUPPORTED_HV_CPUID: {
4319 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4320 		struct kvm_cpuid2 cpuid;
4321 
4322 		r = -EFAULT;
4323 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4324 			goto out;
4325 
4326 		r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4327 						cpuid_arg->entries);
4328 		if (r)
4329 			goto out;
4330 
4331 		r = -EFAULT;
4332 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4333 			goto out;
4334 		r = 0;
4335 		break;
4336 	}
4337 	default:
4338 		r = -EINVAL;
4339 	}
4340 out:
4341 	kfree(u.buffer);
4342 out_nofree:
4343 	vcpu_put(vcpu);
4344 	return r;
4345 }
4346 
4347 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4348 {
4349 	return VM_FAULT_SIGBUS;
4350 }
4351 
4352 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4353 {
4354 	int ret;
4355 
4356 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
4357 		return -EINVAL;
4358 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4359 	return ret;
4360 }
4361 
4362 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4363 					      u64 ident_addr)
4364 {
4365 	return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4366 }
4367 
4368 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4369 					 unsigned long kvm_nr_mmu_pages)
4370 {
4371 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4372 		return -EINVAL;
4373 
4374 	mutex_lock(&kvm->slots_lock);
4375 
4376 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4377 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4378 
4379 	mutex_unlock(&kvm->slots_lock);
4380 	return 0;
4381 }
4382 
4383 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4384 {
4385 	return kvm->arch.n_max_mmu_pages;
4386 }
4387 
4388 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4389 {
4390 	struct kvm_pic *pic = kvm->arch.vpic;
4391 	int r;
4392 
4393 	r = 0;
4394 	switch (chip->chip_id) {
4395 	case KVM_IRQCHIP_PIC_MASTER:
4396 		memcpy(&chip->chip.pic, &pic->pics[0],
4397 			sizeof(struct kvm_pic_state));
4398 		break;
4399 	case KVM_IRQCHIP_PIC_SLAVE:
4400 		memcpy(&chip->chip.pic, &pic->pics[1],
4401 			sizeof(struct kvm_pic_state));
4402 		break;
4403 	case KVM_IRQCHIP_IOAPIC:
4404 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
4405 		break;
4406 	default:
4407 		r = -EINVAL;
4408 		break;
4409 	}
4410 	return r;
4411 }
4412 
4413 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4414 {
4415 	struct kvm_pic *pic = kvm->arch.vpic;
4416 	int r;
4417 
4418 	r = 0;
4419 	switch (chip->chip_id) {
4420 	case KVM_IRQCHIP_PIC_MASTER:
4421 		spin_lock(&pic->lock);
4422 		memcpy(&pic->pics[0], &chip->chip.pic,
4423 			sizeof(struct kvm_pic_state));
4424 		spin_unlock(&pic->lock);
4425 		break;
4426 	case KVM_IRQCHIP_PIC_SLAVE:
4427 		spin_lock(&pic->lock);
4428 		memcpy(&pic->pics[1], &chip->chip.pic,
4429 			sizeof(struct kvm_pic_state));
4430 		spin_unlock(&pic->lock);
4431 		break;
4432 	case KVM_IRQCHIP_IOAPIC:
4433 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
4434 		break;
4435 	default:
4436 		r = -EINVAL;
4437 		break;
4438 	}
4439 	kvm_pic_update_irq(pic);
4440 	return r;
4441 }
4442 
4443 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4444 {
4445 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4446 
4447 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4448 
4449 	mutex_lock(&kps->lock);
4450 	memcpy(ps, &kps->channels, sizeof(*ps));
4451 	mutex_unlock(&kps->lock);
4452 	return 0;
4453 }
4454 
4455 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4456 {
4457 	int i;
4458 	struct kvm_pit *pit = kvm->arch.vpit;
4459 
4460 	mutex_lock(&pit->pit_state.lock);
4461 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4462 	for (i = 0; i < 3; i++)
4463 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4464 	mutex_unlock(&pit->pit_state.lock);
4465 	return 0;
4466 }
4467 
4468 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4469 {
4470 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
4471 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4472 		sizeof(ps->channels));
4473 	ps->flags = kvm->arch.vpit->pit_state.flags;
4474 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4475 	memset(&ps->reserved, 0, sizeof(ps->reserved));
4476 	return 0;
4477 }
4478 
4479 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4480 {
4481 	int start = 0;
4482 	int i;
4483 	u32 prev_legacy, cur_legacy;
4484 	struct kvm_pit *pit = kvm->arch.vpit;
4485 
4486 	mutex_lock(&pit->pit_state.lock);
4487 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4488 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4489 	if (!prev_legacy && cur_legacy)
4490 		start = 1;
4491 	memcpy(&pit->pit_state.channels, &ps->channels,
4492 	       sizeof(pit->pit_state.channels));
4493 	pit->pit_state.flags = ps->flags;
4494 	for (i = 0; i < 3; i++)
4495 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4496 				   start && i == 0);
4497 	mutex_unlock(&pit->pit_state.lock);
4498 	return 0;
4499 }
4500 
4501 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4502 				 struct kvm_reinject_control *control)
4503 {
4504 	struct kvm_pit *pit = kvm->arch.vpit;
4505 
4506 	if (!pit)
4507 		return -ENXIO;
4508 
4509 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
4510 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4511 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4512 	 */
4513 	mutex_lock(&pit->pit_state.lock);
4514 	kvm_pit_set_reinject(pit, control->pit_reinject);
4515 	mutex_unlock(&pit->pit_state.lock);
4516 
4517 	return 0;
4518 }
4519 
4520 /**
4521  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4522  * @kvm: kvm instance
4523  * @log: slot id and address to which we copy the log
4524  *
4525  * Steps 1-4 below provide general overview of dirty page logging. See
4526  * kvm_get_dirty_log_protect() function description for additional details.
4527  *
4528  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4529  * always flush the TLB (step 4) even if previous step failed  and the dirty
4530  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4531  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4532  * writes will be marked dirty for next log read.
4533  *
4534  *   1. Take a snapshot of the bit and clear it if needed.
4535  *   2. Write protect the corresponding page.
4536  *   3. Copy the snapshot to the userspace.
4537  *   4. Flush TLB's if needed.
4538  */
4539 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4540 {
4541 	bool flush = false;
4542 	int r;
4543 
4544 	mutex_lock(&kvm->slots_lock);
4545 
4546 	/*
4547 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4548 	 */
4549 	if (kvm_x86_ops->flush_log_dirty)
4550 		kvm_x86_ops->flush_log_dirty(kvm);
4551 
4552 	r = kvm_get_dirty_log_protect(kvm, log, &flush);
4553 
4554 	/*
4555 	 * All the TLBs can be flushed out of mmu lock, see the comments in
4556 	 * kvm_mmu_slot_remove_write_access().
4557 	 */
4558 	lockdep_assert_held(&kvm->slots_lock);
4559 	if (flush)
4560 		kvm_flush_remote_tlbs(kvm);
4561 
4562 	mutex_unlock(&kvm->slots_lock);
4563 	return r;
4564 }
4565 
4566 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
4567 {
4568 	bool flush = false;
4569 	int r;
4570 
4571 	mutex_lock(&kvm->slots_lock);
4572 
4573 	/*
4574 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4575 	 */
4576 	if (kvm_x86_ops->flush_log_dirty)
4577 		kvm_x86_ops->flush_log_dirty(kvm);
4578 
4579 	r = kvm_clear_dirty_log_protect(kvm, log, &flush);
4580 
4581 	/*
4582 	 * All the TLBs can be flushed out of mmu lock, see the comments in
4583 	 * kvm_mmu_slot_remove_write_access().
4584 	 */
4585 	lockdep_assert_held(&kvm->slots_lock);
4586 	if (flush)
4587 		kvm_flush_remote_tlbs(kvm);
4588 
4589 	mutex_unlock(&kvm->slots_lock);
4590 	return r;
4591 }
4592 
4593 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4594 			bool line_status)
4595 {
4596 	if (!irqchip_in_kernel(kvm))
4597 		return -ENXIO;
4598 
4599 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4600 					irq_event->irq, irq_event->level,
4601 					line_status);
4602 	return 0;
4603 }
4604 
4605 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4606 			    struct kvm_enable_cap *cap)
4607 {
4608 	int r;
4609 
4610 	if (cap->flags)
4611 		return -EINVAL;
4612 
4613 	switch (cap->cap) {
4614 	case KVM_CAP_DISABLE_QUIRKS:
4615 		kvm->arch.disabled_quirks = cap->args[0];
4616 		r = 0;
4617 		break;
4618 	case KVM_CAP_SPLIT_IRQCHIP: {
4619 		mutex_lock(&kvm->lock);
4620 		r = -EINVAL;
4621 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4622 			goto split_irqchip_unlock;
4623 		r = -EEXIST;
4624 		if (irqchip_in_kernel(kvm))
4625 			goto split_irqchip_unlock;
4626 		if (kvm->created_vcpus)
4627 			goto split_irqchip_unlock;
4628 		r = kvm_setup_empty_irq_routing(kvm);
4629 		if (r)
4630 			goto split_irqchip_unlock;
4631 		/* Pairs with irqchip_in_kernel. */
4632 		smp_wmb();
4633 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4634 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4635 		r = 0;
4636 split_irqchip_unlock:
4637 		mutex_unlock(&kvm->lock);
4638 		break;
4639 	}
4640 	case KVM_CAP_X2APIC_API:
4641 		r = -EINVAL;
4642 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4643 			break;
4644 
4645 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4646 			kvm->arch.x2apic_format = true;
4647 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4648 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
4649 
4650 		r = 0;
4651 		break;
4652 	case KVM_CAP_X86_DISABLE_EXITS:
4653 		r = -EINVAL;
4654 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4655 			break;
4656 
4657 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4658 			kvm_can_mwait_in_guest())
4659 			kvm->arch.mwait_in_guest = true;
4660 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4661 			kvm->arch.hlt_in_guest = true;
4662 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4663 			kvm->arch.pause_in_guest = true;
4664 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
4665 			kvm->arch.cstate_in_guest = true;
4666 		r = 0;
4667 		break;
4668 	case KVM_CAP_MSR_PLATFORM_INFO:
4669 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4670 		r = 0;
4671 		break;
4672 	case KVM_CAP_EXCEPTION_PAYLOAD:
4673 		kvm->arch.exception_payload_enabled = cap->args[0];
4674 		r = 0;
4675 		break;
4676 	default:
4677 		r = -EINVAL;
4678 		break;
4679 	}
4680 	return r;
4681 }
4682 
4683 long kvm_arch_vm_ioctl(struct file *filp,
4684 		       unsigned int ioctl, unsigned long arg)
4685 {
4686 	struct kvm *kvm = filp->private_data;
4687 	void __user *argp = (void __user *)arg;
4688 	int r = -ENOTTY;
4689 	/*
4690 	 * This union makes it completely explicit to gcc-3.x
4691 	 * that these two variables' stack usage should be
4692 	 * combined, not added together.
4693 	 */
4694 	union {
4695 		struct kvm_pit_state ps;
4696 		struct kvm_pit_state2 ps2;
4697 		struct kvm_pit_config pit_config;
4698 	} u;
4699 
4700 	switch (ioctl) {
4701 	case KVM_SET_TSS_ADDR:
4702 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4703 		break;
4704 	case KVM_SET_IDENTITY_MAP_ADDR: {
4705 		u64 ident_addr;
4706 
4707 		mutex_lock(&kvm->lock);
4708 		r = -EINVAL;
4709 		if (kvm->created_vcpus)
4710 			goto set_identity_unlock;
4711 		r = -EFAULT;
4712 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
4713 			goto set_identity_unlock;
4714 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4715 set_identity_unlock:
4716 		mutex_unlock(&kvm->lock);
4717 		break;
4718 	}
4719 	case KVM_SET_NR_MMU_PAGES:
4720 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4721 		break;
4722 	case KVM_GET_NR_MMU_PAGES:
4723 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4724 		break;
4725 	case KVM_CREATE_IRQCHIP: {
4726 		mutex_lock(&kvm->lock);
4727 
4728 		r = -EEXIST;
4729 		if (irqchip_in_kernel(kvm))
4730 			goto create_irqchip_unlock;
4731 
4732 		r = -EINVAL;
4733 		if (kvm->created_vcpus)
4734 			goto create_irqchip_unlock;
4735 
4736 		r = kvm_pic_init(kvm);
4737 		if (r)
4738 			goto create_irqchip_unlock;
4739 
4740 		r = kvm_ioapic_init(kvm);
4741 		if (r) {
4742 			kvm_pic_destroy(kvm);
4743 			goto create_irqchip_unlock;
4744 		}
4745 
4746 		r = kvm_setup_default_irq_routing(kvm);
4747 		if (r) {
4748 			kvm_ioapic_destroy(kvm);
4749 			kvm_pic_destroy(kvm);
4750 			goto create_irqchip_unlock;
4751 		}
4752 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4753 		smp_wmb();
4754 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4755 	create_irqchip_unlock:
4756 		mutex_unlock(&kvm->lock);
4757 		break;
4758 	}
4759 	case KVM_CREATE_PIT:
4760 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4761 		goto create_pit;
4762 	case KVM_CREATE_PIT2:
4763 		r = -EFAULT;
4764 		if (copy_from_user(&u.pit_config, argp,
4765 				   sizeof(struct kvm_pit_config)))
4766 			goto out;
4767 	create_pit:
4768 		mutex_lock(&kvm->lock);
4769 		r = -EEXIST;
4770 		if (kvm->arch.vpit)
4771 			goto create_pit_unlock;
4772 		r = -ENOMEM;
4773 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4774 		if (kvm->arch.vpit)
4775 			r = 0;
4776 	create_pit_unlock:
4777 		mutex_unlock(&kvm->lock);
4778 		break;
4779 	case KVM_GET_IRQCHIP: {
4780 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4781 		struct kvm_irqchip *chip;
4782 
4783 		chip = memdup_user(argp, sizeof(*chip));
4784 		if (IS_ERR(chip)) {
4785 			r = PTR_ERR(chip);
4786 			goto out;
4787 		}
4788 
4789 		r = -ENXIO;
4790 		if (!irqchip_kernel(kvm))
4791 			goto get_irqchip_out;
4792 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4793 		if (r)
4794 			goto get_irqchip_out;
4795 		r = -EFAULT;
4796 		if (copy_to_user(argp, chip, sizeof(*chip)))
4797 			goto get_irqchip_out;
4798 		r = 0;
4799 	get_irqchip_out:
4800 		kfree(chip);
4801 		break;
4802 	}
4803 	case KVM_SET_IRQCHIP: {
4804 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4805 		struct kvm_irqchip *chip;
4806 
4807 		chip = memdup_user(argp, sizeof(*chip));
4808 		if (IS_ERR(chip)) {
4809 			r = PTR_ERR(chip);
4810 			goto out;
4811 		}
4812 
4813 		r = -ENXIO;
4814 		if (!irqchip_kernel(kvm))
4815 			goto set_irqchip_out;
4816 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4817 		if (r)
4818 			goto set_irqchip_out;
4819 		r = 0;
4820 	set_irqchip_out:
4821 		kfree(chip);
4822 		break;
4823 	}
4824 	case KVM_GET_PIT: {
4825 		r = -EFAULT;
4826 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4827 			goto out;
4828 		r = -ENXIO;
4829 		if (!kvm->arch.vpit)
4830 			goto out;
4831 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4832 		if (r)
4833 			goto out;
4834 		r = -EFAULT;
4835 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4836 			goto out;
4837 		r = 0;
4838 		break;
4839 	}
4840 	case KVM_SET_PIT: {
4841 		r = -EFAULT;
4842 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
4843 			goto out;
4844 		r = -ENXIO;
4845 		if (!kvm->arch.vpit)
4846 			goto out;
4847 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4848 		break;
4849 	}
4850 	case KVM_GET_PIT2: {
4851 		r = -ENXIO;
4852 		if (!kvm->arch.vpit)
4853 			goto out;
4854 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4855 		if (r)
4856 			goto out;
4857 		r = -EFAULT;
4858 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4859 			goto out;
4860 		r = 0;
4861 		break;
4862 	}
4863 	case KVM_SET_PIT2: {
4864 		r = -EFAULT;
4865 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4866 			goto out;
4867 		r = -ENXIO;
4868 		if (!kvm->arch.vpit)
4869 			goto out;
4870 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4871 		break;
4872 	}
4873 	case KVM_REINJECT_CONTROL: {
4874 		struct kvm_reinject_control control;
4875 		r =  -EFAULT;
4876 		if (copy_from_user(&control, argp, sizeof(control)))
4877 			goto out;
4878 		r = kvm_vm_ioctl_reinject(kvm, &control);
4879 		break;
4880 	}
4881 	case KVM_SET_BOOT_CPU_ID:
4882 		r = 0;
4883 		mutex_lock(&kvm->lock);
4884 		if (kvm->created_vcpus)
4885 			r = -EBUSY;
4886 		else
4887 			kvm->arch.bsp_vcpu_id = arg;
4888 		mutex_unlock(&kvm->lock);
4889 		break;
4890 	case KVM_XEN_HVM_CONFIG: {
4891 		struct kvm_xen_hvm_config xhc;
4892 		r = -EFAULT;
4893 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
4894 			goto out;
4895 		r = -EINVAL;
4896 		if (xhc.flags)
4897 			goto out;
4898 		memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4899 		r = 0;
4900 		break;
4901 	}
4902 	case KVM_SET_CLOCK: {
4903 		struct kvm_clock_data user_ns;
4904 		u64 now_ns;
4905 
4906 		r = -EFAULT;
4907 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4908 			goto out;
4909 
4910 		r = -EINVAL;
4911 		if (user_ns.flags)
4912 			goto out;
4913 
4914 		r = 0;
4915 		/*
4916 		 * TODO: userspace has to take care of races with VCPU_RUN, so
4917 		 * kvm_gen_update_masterclock() can be cut down to locked
4918 		 * pvclock_update_vm_gtod_copy().
4919 		 */
4920 		kvm_gen_update_masterclock(kvm);
4921 		now_ns = get_kvmclock_ns(kvm);
4922 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4923 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4924 		break;
4925 	}
4926 	case KVM_GET_CLOCK: {
4927 		struct kvm_clock_data user_ns;
4928 		u64 now_ns;
4929 
4930 		now_ns = get_kvmclock_ns(kvm);
4931 		user_ns.clock = now_ns;
4932 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4933 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4934 
4935 		r = -EFAULT;
4936 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4937 			goto out;
4938 		r = 0;
4939 		break;
4940 	}
4941 	case KVM_MEMORY_ENCRYPT_OP: {
4942 		r = -ENOTTY;
4943 		if (kvm_x86_ops->mem_enc_op)
4944 			r = kvm_x86_ops->mem_enc_op(kvm, argp);
4945 		break;
4946 	}
4947 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
4948 		struct kvm_enc_region region;
4949 
4950 		r = -EFAULT;
4951 		if (copy_from_user(&region, argp, sizeof(region)))
4952 			goto out;
4953 
4954 		r = -ENOTTY;
4955 		if (kvm_x86_ops->mem_enc_reg_region)
4956 			r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
4957 		break;
4958 	}
4959 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4960 		struct kvm_enc_region region;
4961 
4962 		r = -EFAULT;
4963 		if (copy_from_user(&region, argp, sizeof(region)))
4964 			goto out;
4965 
4966 		r = -ENOTTY;
4967 		if (kvm_x86_ops->mem_enc_unreg_region)
4968 			r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
4969 		break;
4970 	}
4971 	case KVM_HYPERV_EVENTFD: {
4972 		struct kvm_hyperv_eventfd hvevfd;
4973 
4974 		r = -EFAULT;
4975 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
4976 			goto out;
4977 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
4978 		break;
4979 	}
4980 	case KVM_SET_PMU_EVENT_FILTER:
4981 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
4982 		break;
4983 	default:
4984 		r = -ENOTTY;
4985 	}
4986 out:
4987 	return r;
4988 }
4989 
4990 static void kvm_init_msr_list(void)
4991 {
4992 	u32 dummy[2];
4993 	unsigned i, j;
4994 
4995 	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4996 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4997 			continue;
4998 
4999 		/*
5000 		 * Even MSRs that are valid in the host may not be exposed
5001 		 * to the guests in some cases.
5002 		 */
5003 		switch (msrs_to_save[i]) {
5004 		case MSR_IA32_BNDCFGS:
5005 			if (!kvm_mpx_supported())
5006 				continue;
5007 			break;
5008 		case MSR_TSC_AUX:
5009 			if (!kvm_x86_ops->rdtscp_supported())
5010 				continue;
5011 			break;
5012 		case MSR_IA32_RTIT_CTL:
5013 		case MSR_IA32_RTIT_STATUS:
5014 			if (!kvm_x86_ops->pt_supported())
5015 				continue;
5016 			break;
5017 		case MSR_IA32_RTIT_CR3_MATCH:
5018 			if (!kvm_x86_ops->pt_supported() ||
5019 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5020 				continue;
5021 			break;
5022 		case MSR_IA32_RTIT_OUTPUT_BASE:
5023 		case MSR_IA32_RTIT_OUTPUT_MASK:
5024 			if (!kvm_x86_ops->pt_supported() ||
5025 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5026 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5027 				continue;
5028 			break;
5029 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: {
5030 			if (!kvm_x86_ops->pt_supported() ||
5031 				msrs_to_save[i] - MSR_IA32_RTIT_ADDR0_A >=
5032 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5033 				continue;
5034 			break;
5035 		}
5036 		default:
5037 			break;
5038 		}
5039 
5040 		if (j < i)
5041 			msrs_to_save[j] = msrs_to_save[i];
5042 		j++;
5043 	}
5044 	num_msrs_to_save = j;
5045 
5046 	for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
5047 		if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
5048 			continue;
5049 
5050 		if (j < i)
5051 			emulated_msrs[j] = emulated_msrs[i];
5052 		j++;
5053 	}
5054 	num_emulated_msrs = j;
5055 
5056 	for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
5057 		struct kvm_msr_entry msr;
5058 
5059 		msr.index = msr_based_features[i];
5060 		if (kvm_get_msr_feature(&msr))
5061 			continue;
5062 
5063 		if (j < i)
5064 			msr_based_features[j] = msr_based_features[i];
5065 		j++;
5066 	}
5067 	num_msr_based_features = j;
5068 }
5069 
5070 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5071 			   const void *v)
5072 {
5073 	int handled = 0;
5074 	int n;
5075 
5076 	do {
5077 		n = min(len, 8);
5078 		if (!(lapic_in_kernel(vcpu) &&
5079 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5080 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5081 			break;
5082 		handled += n;
5083 		addr += n;
5084 		len -= n;
5085 		v += n;
5086 	} while (len);
5087 
5088 	return handled;
5089 }
5090 
5091 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5092 {
5093 	int handled = 0;
5094 	int n;
5095 
5096 	do {
5097 		n = min(len, 8);
5098 		if (!(lapic_in_kernel(vcpu) &&
5099 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5100 					 addr, n, v))
5101 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5102 			break;
5103 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5104 		handled += n;
5105 		addr += n;
5106 		len -= n;
5107 		v += n;
5108 	} while (len);
5109 
5110 	return handled;
5111 }
5112 
5113 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5114 			struct kvm_segment *var, int seg)
5115 {
5116 	kvm_x86_ops->set_segment(vcpu, var, seg);
5117 }
5118 
5119 void kvm_get_segment(struct kvm_vcpu *vcpu,
5120 		     struct kvm_segment *var, int seg)
5121 {
5122 	kvm_x86_ops->get_segment(vcpu, var, seg);
5123 }
5124 
5125 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5126 			   struct x86_exception *exception)
5127 {
5128 	gpa_t t_gpa;
5129 
5130 	BUG_ON(!mmu_is_nested(vcpu));
5131 
5132 	/* NPT walks are always user-walks */
5133 	access |= PFERR_USER_MASK;
5134 	t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5135 
5136 	return t_gpa;
5137 }
5138 
5139 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5140 			      struct x86_exception *exception)
5141 {
5142 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5143 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5144 }
5145 
5146  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5147 				struct x86_exception *exception)
5148 {
5149 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5150 	access |= PFERR_FETCH_MASK;
5151 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5152 }
5153 
5154 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5155 			       struct x86_exception *exception)
5156 {
5157 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5158 	access |= PFERR_WRITE_MASK;
5159 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5160 }
5161 
5162 /* uses this to access any guest's mapped memory without checking CPL */
5163 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5164 				struct x86_exception *exception)
5165 {
5166 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5167 }
5168 
5169 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5170 				      struct kvm_vcpu *vcpu, u32 access,
5171 				      struct x86_exception *exception)
5172 {
5173 	void *data = val;
5174 	int r = X86EMUL_CONTINUE;
5175 
5176 	while (bytes) {
5177 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5178 							    exception);
5179 		unsigned offset = addr & (PAGE_SIZE-1);
5180 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5181 		int ret;
5182 
5183 		if (gpa == UNMAPPED_GVA)
5184 			return X86EMUL_PROPAGATE_FAULT;
5185 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5186 					       offset, toread);
5187 		if (ret < 0) {
5188 			r = X86EMUL_IO_NEEDED;
5189 			goto out;
5190 		}
5191 
5192 		bytes -= toread;
5193 		data += toread;
5194 		addr += toread;
5195 	}
5196 out:
5197 	return r;
5198 }
5199 
5200 /* used for instruction fetching */
5201 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5202 				gva_t addr, void *val, unsigned int bytes,
5203 				struct x86_exception *exception)
5204 {
5205 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5206 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5207 	unsigned offset;
5208 	int ret;
5209 
5210 	/* Inline kvm_read_guest_virt_helper for speed.  */
5211 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5212 						    exception);
5213 	if (unlikely(gpa == UNMAPPED_GVA))
5214 		return X86EMUL_PROPAGATE_FAULT;
5215 
5216 	offset = addr & (PAGE_SIZE-1);
5217 	if (WARN_ON(offset + bytes > PAGE_SIZE))
5218 		bytes = (unsigned)PAGE_SIZE - offset;
5219 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5220 				       offset, bytes);
5221 	if (unlikely(ret < 0))
5222 		return X86EMUL_IO_NEEDED;
5223 
5224 	return X86EMUL_CONTINUE;
5225 }
5226 
5227 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5228 			       gva_t addr, void *val, unsigned int bytes,
5229 			       struct x86_exception *exception)
5230 {
5231 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5232 
5233 	/*
5234 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5235 	 * is returned, but our callers are not ready for that and they blindly
5236 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
5237 	 * uninitialized kernel stack memory into cr2 and error code.
5238 	 */
5239 	memset(exception, 0, sizeof(*exception));
5240 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5241 					  exception);
5242 }
5243 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5244 
5245 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5246 			     gva_t addr, void *val, unsigned int bytes,
5247 			     struct x86_exception *exception, bool system)
5248 {
5249 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5250 	u32 access = 0;
5251 
5252 	if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5253 		access |= PFERR_USER_MASK;
5254 
5255 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5256 }
5257 
5258 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5259 		unsigned long addr, void *val, unsigned int bytes)
5260 {
5261 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5262 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5263 
5264 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5265 }
5266 
5267 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5268 				      struct kvm_vcpu *vcpu, u32 access,
5269 				      struct x86_exception *exception)
5270 {
5271 	void *data = val;
5272 	int r = X86EMUL_CONTINUE;
5273 
5274 	while (bytes) {
5275 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5276 							     access,
5277 							     exception);
5278 		unsigned offset = addr & (PAGE_SIZE-1);
5279 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5280 		int ret;
5281 
5282 		if (gpa == UNMAPPED_GVA)
5283 			return X86EMUL_PROPAGATE_FAULT;
5284 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5285 		if (ret < 0) {
5286 			r = X86EMUL_IO_NEEDED;
5287 			goto out;
5288 		}
5289 
5290 		bytes -= towrite;
5291 		data += towrite;
5292 		addr += towrite;
5293 	}
5294 out:
5295 	return r;
5296 }
5297 
5298 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5299 			      unsigned int bytes, struct x86_exception *exception,
5300 			      bool system)
5301 {
5302 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5303 	u32 access = PFERR_WRITE_MASK;
5304 
5305 	if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5306 		access |= PFERR_USER_MASK;
5307 
5308 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5309 					   access, exception);
5310 }
5311 
5312 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5313 				unsigned int bytes, struct x86_exception *exception)
5314 {
5315 	/* kvm_write_guest_virt_system can pull in tons of pages. */
5316 	vcpu->arch.l1tf_flush_l1d = true;
5317 
5318 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5319 					   PFERR_WRITE_MASK, exception);
5320 }
5321 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5322 
5323 int handle_ud(struct kvm_vcpu *vcpu)
5324 {
5325 	int emul_type = EMULTYPE_TRAP_UD;
5326 	enum emulation_result er;
5327 	char sig[5]; /* ud2; .ascii "kvm" */
5328 	struct x86_exception e;
5329 
5330 	if (force_emulation_prefix &&
5331 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5332 				sig, sizeof(sig), &e) == 0 &&
5333 	    memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
5334 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5335 		emul_type = 0;
5336 	}
5337 
5338 	er = kvm_emulate_instruction(vcpu, emul_type);
5339 	if (er == EMULATE_USER_EXIT)
5340 		return 0;
5341 	if (er != EMULATE_DONE)
5342 		kvm_queue_exception(vcpu, UD_VECTOR);
5343 	return 1;
5344 }
5345 EXPORT_SYMBOL_GPL(handle_ud);
5346 
5347 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5348 			    gpa_t gpa, bool write)
5349 {
5350 	/* For APIC access vmexit */
5351 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5352 		return 1;
5353 
5354 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5355 		trace_vcpu_match_mmio(gva, gpa, write, true);
5356 		return 1;
5357 	}
5358 
5359 	return 0;
5360 }
5361 
5362 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5363 				gpa_t *gpa, struct x86_exception *exception,
5364 				bool write)
5365 {
5366 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5367 		| (write ? PFERR_WRITE_MASK : 0);
5368 
5369 	/*
5370 	 * currently PKRU is only applied to ept enabled guest so
5371 	 * there is no pkey in EPT page table for L1 guest or EPT
5372 	 * shadow page table for L2 guest.
5373 	 */
5374 	if (vcpu_match_mmio_gva(vcpu, gva)
5375 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5376 				 vcpu->arch.access, 0, access)) {
5377 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5378 					(gva & (PAGE_SIZE - 1));
5379 		trace_vcpu_match_mmio(gva, *gpa, write, false);
5380 		return 1;
5381 	}
5382 
5383 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5384 
5385 	if (*gpa == UNMAPPED_GVA)
5386 		return -1;
5387 
5388 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5389 }
5390 
5391 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5392 			const void *val, int bytes)
5393 {
5394 	int ret;
5395 
5396 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5397 	if (ret < 0)
5398 		return 0;
5399 	kvm_page_track_write(vcpu, gpa, val, bytes);
5400 	return 1;
5401 }
5402 
5403 struct read_write_emulator_ops {
5404 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5405 				  int bytes);
5406 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5407 				  void *val, int bytes);
5408 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5409 			       int bytes, void *val);
5410 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5411 				    void *val, int bytes);
5412 	bool write;
5413 };
5414 
5415 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5416 {
5417 	if (vcpu->mmio_read_completed) {
5418 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5419 			       vcpu->mmio_fragments[0].gpa, val);
5420 		vcpu->mmio_read_completed = 0;
5421 		return 1;
5422 	}
5423 
5424 	return 0;
5425 }
5426 
5427 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5428 			void *val, int bytes)
5429 {
5430 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5431 }
5432 
5433 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5434 			 void *val, int bytes)
5435 {
5436 	return emulator_write_phys(vcpu, gpa, val, bytes);
5437 }
5438 
5439 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5440 {
5441 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5442 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
5443 }
5444 
5445 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5446 			  void *val, int bytes)
5447 {
5448 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5449 	return X86EMUL_IO_NEEDED;
5450 }
5451 
5452 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5453 			   void *val, int bytes)
5454 {
5455 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5456 
5457 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5458 	return X86EMUL_CONTINUE;
5459 }
5460 
5461 static const struct read_write_emulator_ops read_emultor = {
5462 	.read_write_prepare = read_prepare,
5463 	.read_write_emulate = read_emulate,
5464 	.read_write_mmio = vcpu_mmio_read,
5465 	.read_write_exit_mmio = read_exit_mmio,
5466 };
5467 
5468 static const struct read_write_emulator_ops write_emultor = {
5469 	.read_write_emulate = write_emulate,
5470 	.read_write_mmio = write_mmio,
5471 	.read_write_exit_mmio = write_exit_mmio,
5472 	.write = true,
5473 };
5474 
5475 static int emulator_read_write_onepage(unsigned long addr, void *val,
5476 				       unsigned int bytes,
5477 				       struct x86_exception *exception,
5478 				       struct kvm_vcpu *vcpu,
5479 				       const struct read_write_emulator_ops *ops)
5480 {
5481 	gpa_t gpa;
5482 	int handled, ret;
5483 	bool write = ops->write;
5484 	struct kvm_mmio_fragment *frag;
5485 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5486 
5487 	/*
5488 	 * If the exit was due to a NPF we may already have a GPA.
5489 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
5490 	 * Note, this cannot be used on string operations since string
5491 	 * operation using rep will only have the initial GPA from the NPF
5492 	 * occurred.
5493 	 */
5494 	if (vcpu->arch.gpa_available &&
5495 	    emulator_can_use_gpa(ctxt) &&
5496 	    (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5497 		gpa = vcpu->arch.gpa_val;
5498 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5499 	} else {
5500 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5501 		if (ret < 0)
5502 			return X86EMUL_PROPAGATE_FAULT;
5503 	}
5504 
5505 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5506 		return X86EMUL_CONTINUE;
5507 
5508 	/*
5509 	 * Is this MMIO handled locally?
5510 	 */
5511 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5512 	if (handled == bytes)
5513 		return X86EMUL_CONTINUE;
5514 
5515 	gpa += handled;
5516 	bytes -= handled;
5517 	val += handled;
5518 
5519 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5520 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5521 	frag->gpa = gpa;
5522 	frag->data = val;
5523 	frag->len = bytes;
5524 	return X86EMUL_CONTINUE;
5525 }
5526 
5527 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5528 			unsigned long addr,
5529 			void *val, unsigned int bytes,
5530 			struct x86_exception *exception,
5531 			const struct read_write_emulator_ops *ops)
5532 {
5533 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5534 	gpa_t gpa;
5535 	int rc;
5536 
5537 	if (ops->read_write_prepare &&
5538 		  ops->read_write_prepare(vcpu, val, bytes))
5539 		return X86EMUL_CONTINUE;
5540 
5541 	vcpu->mmio_nr_fragments = 0;
5542 
5543 	/* Crossing a page boundary? */
5544 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5545 		int now;
5546 
5547 		now = -addr & ~PAGE_MASK;
5548 		rc = emulator_read_write_onepage(addr, val, now, exception,
5549 						 vcpu, ops);
5550 
5551 		if (rc != X86EMUL_CONTINUE)
5552 			return rc;
5553 		addr += now;
5554 		if (ctxt->mode != X86EMUL_MODE_PROT64)
5555 			addr = (u32)addr;
5556 		val += now;
5557 		bytes -= now;
5558 	}
5559 
5560 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
5561 					 vcpu, ops);
5562 	if (rc != X86EMUL_CONTINUE)
5563 		return rc;
5564 
5565 	if (!vcpu->mmio_nr_fragments)
5566 		return rc;
5567 
5568 	gpa = vcpu->mmio_fragments[0].gpa;
5569 
5570 	vcpu->mmio_needed = 1;
5571 	vcpu->mmio_cur_fragment = 0;
5572 
5573 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5574 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5575 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
5576 	vcpu->run->mmio.phys_addr = gpa;
5577 
5578 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5579 }
5580 
5581 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5582 				  unsigned long addr,
5583 				  void *val,
5584 				  unsigned int bytes,
5585 				  struct x86_exception *exception)
5586 {
5587 	return emulator_read_write(ctxt, addr, val, bytes,
5588 				   exception, &read_emultor);
5589 }
5590 
5591 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5592 			    unsigned long addr,
5593 			    const void *val,
5594 			    unsigned int bytes,
5595 			    struct x86_exception *exception)
5596 {
5597 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
5598 				   exception, &write_emultor);
5599 }
5600 
5601 #define CMPXCHG_TYPE(t, ptr, old, new) \
5602 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5603 
5604 #ifdef CONFIG_X86_64
5605 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5606 #else
5607 #  define CMPXCHG64(ptr, old, new) \
5608 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5609 #endif
5610 
5611 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5612 				     unsigned long addr,
5613 				     const void *old,
5614 				     const void *new,
5615 				     unsigned int bytes,
5616 				     struct x86_exception *exception)
5617 {
5618 	struct kvm_host_map map;
5619 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5620 	gpa_t gpa;
5621 	char *kaddr;
5622 	bool exchanged;
5623 
5624 	/* guests cmpxchg8b have to be emulated atomically */
5625 	if (bytes > 8 || (bytes & (bytes - 1)))
5626 		goto emul_write;
5627 
5628 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5629 
5630 	if (gpa == UNMAPPED_GVA ||
5631 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5632 		goto emul_write;
5633 
5634 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5635 		goto emul_write;
5636 
5637 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
5638 		goto emul_write;
5639 
5640 	kaddr = map.hva + offset_in_page(gpa);
5641 
5642 	switch (bytes) {
5643 	case 1:
5644 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5645 		break;
5646 	case 2:
5647 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5648 		break;
5649 	case 4:
5650 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5651 		break;
5652 	case 8:
5653 		exchanged = CMPXCHG64(kaddr, old, new);
5654 		break;
5655 	default:
5656 		BUG();
5657 	}
5658 
5659 	kvm_vcpu_unmap(vcpu, &map, true);
5660 
5661 	if (!exchanged)
5662 		return X86EMUL_CMPXCHG_FAILED;
5663 
5664 	kvm_page_track_write(vcpu, gpa, new, bytes);
5665 
5666 	return X86EMUL_CONTINUE;
5667 
5668 emul_write:
5669 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5670 
5671 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5672 }
5673 
5674 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5675 {
5676 	int r = 0, i;
5677 
5678 	for (i = 0; i < vcpu->arch.pio.count; i++) {
5679 		if (vcpu->arch.pio.in)
5680 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5681 					    vcpu->arch.pio.size, pd);
5682 		else
5683 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5684 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
5685 					     pd);
5686 		if (r)
5687 			break;
5688 		pd += vcpu->arch.pio.size;
5689 	}
5690 	return r;
5691 }
5692 
5693 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5694 			       unsigned short port, void *val,
5695 			       unsigned int count, bool in)
5696 {
5697 	vcpu->arch.pio.port = port;
5698 	vcpu->arch.pio.in = in;
5699 	vcpu->arch.pio.count  = count;
5700 	vcpu->arch.pio.size = size;
5701 
5702 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5703 		vcpu->arch.pio.count = 0;
5704 		return 1;
5705 	}
5706 
5707 	vcpu->run->exit_reason = KVM_EXIT_IO;
5708 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5709 	vcpu->run->io.size = size;
5710 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5711 	vcpu->run->io.count = count;
5712 	vcpu->run->io.port = port;
5713 
5714 	return 0;
5715 }
5716 
5717 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5718 				    int size, unsigned short port, void *val,
5719 				    unsigned int count)
5720 {
5721 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5722 	int ret;
5723 
5724 	if (vcpu->arch.pio.count)
5725 		goto data_avail;
5726 
5727 	memset(vcpu->arch.pio_data, 0, size * count);
5728 
5729 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5730 	if (ret) {
5731 data_avail:
5732 		memcpy(val, vcpu->arch.pio_data, size * count);
5733 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5734 		vcpu->arch.pio.count = 0;
5735 		return 1;
5736 	}
5737 
5738 	return 0;
5739 }
5740 
5741 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5742 				     int size, unsigned short port,
5743 				     const void *val, unsigned int count)
5744 {
5745 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5746 
5747 	memcpy(vcpu->arch.pio_data, val, size * count);
5748 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5749 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5750 }
5751 
5752 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5753 {
5754 	return kvm_x86_ops->get_segment_base(vcpu, seg);
5755 }
5756 
5757 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5758 {
5759 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5760 }
5761 
5762 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5763 {
5764 	if (!need_emulate_wbinvd(vcpu))
5765 		return X86EMUL_CONTINUE;
5766 
5767 	if (kvm_x86_ops->has_wbinvd_exit()) {
5768 		int cpu = get_cpu();
5769 
5770 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5771 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5772 				wbinvd_ipi, NULL, 1);
5773 		put_cpu();
5774 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5775 	} else
5776 		wbinvd();
5777 	return X86EMUL_CONTINUE;
5778 }
5779 
5780 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5781 {
5782 	kvm_emulate_wbinvd_noskip(vcpu);
5783 	return kvm_skip_emulated_instruction(vcpu);
5784 }
5785 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5786 
5787 
5788 
5789 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5790 {
5791 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5792 }
5793 
5794 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5795 			   unsigned long *dest)
5796 {
5797 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5798 }
5799 
5800 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5801 			   unsigned long value)
5802 {
5803 
5804 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5805 }
5806 
5807 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5808 {
5809 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5810 }
5811 
5812 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5813 {
5814 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5815 	unsigned long value;
5816 
5817 	switch (cr) {
5818 	case 0:
5819 		value = kvm_read_cr0(vcpu);
5820 		break;
5821 	case 2:
5822 		value = vcpu->arch.cr2;
5823 		break;
5824 	case 3:
5825 		value = kvm_read_cr3(vcpu);
5826 		break;
5827 	case 4:
5828 		value = kvm_read_cr4(vcpu);
5829 		break;
5830 	case 8:
5831 		value = kvm_get_cr8(vcpu);
5832 		break;
5833 	default:
5834 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
5835 		return 0;
5836 	}
5837 
5838 	return value;
5839 }
5840 
5841 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5842 {
5843 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5844 	int res = 0;
5845 
5846 	switch (cr) {
5847 	case 0:
5848 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5849 		break;
5850 	case 2:
5851 		vcpu->arch.cr2 = val;
5852 		break;
5853 	case 3:
5854 		res = kvm_set_cr3(vcpu, val);
5855 		break;
5856 	case 4:
5857 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5858 		break;
5859 	case 8:
5860 		res = kvm_set_cr8(vcpu, val);
5861 		break;
5862 	default:
5863 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
5864 		res = -1;
5865 	}
5866 
5867 	return res;
5868 }
5869 
5870 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5871 {
5872 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5873 }
5874 
5875 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5876 {
5877 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5878 }
5879 
5880 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5881 {
5882 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5883 }
5884 
5885 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5886 {
5887 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5888 }
5889 
5890 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5891 {
5892 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5893 }
5894 
5895 static unsigned long emulator_get_cached_segment_base(
5896 	struct x86_emulate_ctxt *ctxt, int seg)
5897 {
5898 	return get_segment_base(emul_to_vcpu(ctxt), seg);
5899 }
5900 
5901 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5902 				 struct desc_struct *desc, u32 *base3,
5903 				 int seg)
5904 {
5905 	struct kvm_segment var;
5906 
5907 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5908 	*selector = var.selector;
5909 
5910 	if (var.unusable) {
5911 		memset(desc, 0, sizeof(*desc));
5912 		if (base3)
5913 			*base3 = 0;
5914 		return false;
5915 	}
5916 
5917 	if (var.g)
5918 		var.limit >>= 12;
5919 	set_desc_limit(desc, var.limit);
5920 	set_desc_base(desc, (unsigned long)var.base);
5921 #ifdef CONFIG_X86_64
5922 	if (base3)
5923 		*base3 = var.base >> 32;
5924 #endif
5925 	desc->type = var.type;
5926 	desc->s = var.s;
5927 	desc->dpl = var.dpl;
5928 	desc->p = var.present;
5929 	desc->avl = var.avl;
5930 	desc->l = var.l;
5931 	desc->d = var.db;
5932 	desc->g = var.g;
5933 
5934 	return true;
5935 }
5936 
5937 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5938 				 struct desc_struct *desc, u32 base3,
5939 				 int seg)
5940 {
5941 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5942 	struct kvm_segment var;
5943 
5944 	var.selector = selector;
5945 	var.base = get_desc_base(desc);
5946 #ifdef CONFIG_X86_64
5947 	var.base |= ((u64)base3) << 32;
5948 #endif
5949 	var.limit = get_desc_limit(desc);
5950 	if (desc->g)
5951 		var.limit = (var.limit << 12) | 0xfff;
5952 	var.type = desc->type;
5953 	var.dpl = desc->dpl;
5954 	var.db = desc->d;
5955 	var.s = desc->s;
5956 	var.l = desc->l;
5957 	var.g = desc->g;
5958 	var.avl = desc->avl;
5959 	var.present = desc->p;
5960 	var.unusable = !var.present;
5961 	var.padding = 0;
5962 
5963 	kvm_set_segment(vcpu, &var, seg);
5964 	return;
5965 }
5966 
5967 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5968 			    u32 msr_index, u64 *pdata)
5969 {
5970 	struct msr_data msr;
5971 	int r;
5972 
5973 	msr.index = msr_index;
5974 	msr.host_initiated = false;
5975 	r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5976 	if (r)
5977 		return r;
5978 
5979 	*pdata = msr.data;
5980 	return 0;
5981 }
5982 
5983 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5984 			    u32 msr_index, u64 data)
5985 {
5986 	struct msr_data msr;
5987 
5988 	msr.data = data;
5989 	msr.index = msr_index;
5990 	msr.host_initiated = false;
5991 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5992 }
5993 
5994 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5995 {
5996 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5997 
5998 	return vcpu->arch.smbase;
5999 }
6000 
6001 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6002 {
6003 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6004 
6005 	vcpu->arch.smbase = smbase;
6006 }
6007 
6008 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6009 			      u32 pmc)
6010 {
6011 	return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
6012 }
6013 
6014 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6015 			     u32 pmc, u64 *pdata)
6016 {
6017 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6018 }
6019 
6020 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6021 {
6022 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
6023 }
6024 
6025 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6026 			      struct x86_instruction_info *info,
6027 			      enum x86_intercept_stage stage)
6028 {
6029 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
6030 }
6031 
6032 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6033 			u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
6034 {
6035 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
6036 }
6037 
6038 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6039 {
6040 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
6041 }
6042 
6043 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6044 {
6045 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6046 }
6047 
6048 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6049 {
6050 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
6051 }
6052 
6053 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6054 {
6055 	return emul_to_vcpu(ctxt)->arch.hflags;
6056 }
6057 
6058 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6059 {
6060 	emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6061 }
6062 
6063 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6064 				  const char *smstate)
6065 {
6066 	return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6067 }
6068 
6069 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6070 {
6071 	kvm_smm_changed(emul_to_vcpu(ctxt));
6072 }
6073 
6074 static const struct x86_emulate_ops emulate_ops = {
6075 	.read_gpr            = emulator_read_gpr,
6076 	.write_gpr           = emulator_write_gpr,
6077 	.read_std            = emulator_read_std,
6078 	.write_std           = emulator_write_std,
6079 	.read_phys           = kvm_read_guest_phys_system,
6080 	.fetch               = kvm_fetch_guest_virt,
6081 	.read_emulated       = emulator_read_emulated,
6082 	.write_emulated      = emulator_write_emulated,
6083 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
6084 	.invlpg              = emulator_invlpg,
6085 	.pio_in_emulated     = emulator_pio_in_emulated,
6086 	.pio_out_emulated    = emulator_pio_out_emulated,
6087 	.get_segment         = emulator_get_segment,
6088 	.set_segment         = emulator_set_segment,
6089 	.get_cached_segment_base = emulator_get_cached_segment_base,
6090 	.get_gdt             = emulator_get_gdt,
6091 	.get_idt	     = emulator_get_idt,
6092 	.set_gdt             = emulator_set_gdt,
6093 	.set_idt	     = emulator_set_idt,
6094 	.get_cr              = emulator_get_cr,
6095 	.set_cr              = emulator_set_cr,
6096 	.cpl                 = emulator_get_cpl,
6097 	.get_dr              = emulator_get_dr,
6098 	.set_dr              = emulator_set_dr,
6099 	.get_smbase          = emulator_get_smbase,
6100 	.set_smbase          = emulator_set_smbase,
6101 	.set_msr             = emulator_set_msr,
6102 	.get_msr             = emulator_get_msr,
6103 	.check_pmc	     = emulator_check_pmc,
6104 	.read_pmc            = emulator_read_pmc,
6105 	.halt                = emulator_halt,
6106 	.wbinvd              = emulator_wbinvd,
6107 	.fix_hypercall       = emulator_fix_hypercall,
6108 	.intercept           = emulator_intercept,
6109 	.get_cpuid           = emulator_get_cpuid,
6110 	.set_nmi_mask        = emulator_set_nmi_mask,
6111 	.get_hflags          = emulator_get_hflags,
6112 	.set_hflags          = emulator_set_hflags,
6113 	.pre_leave_smm       = emulator_pre_leave_smm,
6114 	.post_leave_smm      = emulator_post_leave_smm,
6115 };
6116 
6117 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6118 {
6119 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
6120 	/*
6121 	 * an sti; sti; sequence only disable interrupts for the first
6122 	 * instruction. So, if the last instruction, be it emulated or
6123 	 * not, left the system with the INT_STI flag enabled, it
6124 	 * means that the last instruction is an sti. We should not
6125 	 * leave the flag on in this case. The same goes for mov ss
6126 	 */
6127 	if (int_shadow & mask)
6128 		mask = 0;
6129 	if (unlikely(int_shadow || mask)) {
6130 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
6131 		if (!mask)
6132 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6133 	}
6134 }
6135 
6136 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6137 {
6138 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6139 	if (ctxt->exception.vector == PF_VECTOR)
6140 		return kvm_propagate_fault(vcpu, &ctxt->exception);
6141 
6142 	if (ctxt->exception.error_code_valid)
6143 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6144 				      ctxt->exception.error_code);
6145 	else
6146 		kvm_queue_exception(vcpu, ctxt->exception.vector);
6147 	return false;
6148 }
6149 
6150 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6151 {
6152 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6153 	int cs_db, cs_l;
6154 
6155 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6156 
6157 	ctxt->eflags = kvm_get_rflags(vcpu);
6158 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6159 
6160 	ctxt->eip = kvm_rip_read(vcpu);
6161 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
6162 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
6163 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
6164 		     cs_db				? X86EMUL_MODE_PROT32 :
6165 							  X86EMUL_MODE_PROT16;
6166 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6167 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6168 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6169 
6170 	init_decode_cache(ctxt);
6171 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6172 }
6173 
6174 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6175 {
6176 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6177 	int ret;
6178 
6179 	init_emulate_ctxt(vcpu);
6180 
6181 	ctxt->op_bytes = 2;
6182 	ctxt->ad_bytes = 2;
6183 	ctxt->_eip = ctxt->eip + inc_eip;
6184 	ret = emulate_int_real(ctxt, irq);
6185 
6186 	if (ret != X86EMUL_CONTINUE)
6187 		return EMULATE_FAIL;
6188 
6189 	ctxt->eip = ctxt->_eip;
6190 	kvm_rip_write(vcpu, ctxt->eip);
6191 	kvm_set_rflags(vcpu, ctxt->eflags);
6192 
6193 	return EMULATE_DONE;
6194 }
6195 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6196 
6197 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6198 {
6199 	int r = EMULATE_DONE;
6200 
6201 	++vcpu->stat.insn_emulation_fail;
6202 	trace_kvm_emulate_insn_failed(vcpu);
6203 
6204 	if (emulation_type & EMULTYPE_NO_UD_ON_FAIL)
6205 		return EMULATE_FAIL;
6206 
6207 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
6208 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6209 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6210 		vcpu->run->internal.ndata = 0;
6211 		r = EMULATE_USER_EXIT;
6212 	}
6213 
6214 	kvm_queue_exception(vcpu, UD_VECTOR);
6215 
6216 	return r;
6217 }
6218 
6219 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
6220 				  bool write_fault_to_shadow_pgtable,
6221 				  int emulation_type)
6222 {
6223 	gpa_t gpa = cr2;
6224 	kvm_pfn_t pfn;
6225 
6226 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6227 		return false;
6228 
6229 	if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6230 		return false;
6231 
6232 	if (!vcpu->arch.mmu->direct_map) {
6233 		/*
6234 		 * Write permission should be allowed since only
6235 		 * write access need to be emulated.
6236 		 */
6237 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6238 
6239 		/*
6240 		 * If the mapping is invalid in guest, let cpu retry
6241 		 * it to generate fault.
6242 		 */
6243 		if (gpa == UNMAPPED_GVA)
6244 			return true;
6245 	}
6246 
6247 	/*
6248 	 * Do not retry the unhandleable instruction if it faults on the
6249 	 * readonly host memory, otherwise it will goto a infinite loop:
6250 	 * retry instruction -> write #PF -> emulation fail -> retry
6251 	 * instruction -> ...
6252 	 */
6253 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6254 
6255 	/*
6256 	 * If the instruction failed on the error pfn, it can not be fixed,
6257 	 * report the error to userspace.
6258 	 */
6259 	if (is_error_noslot_pfn(pfn))
6260 		return false;
6261 
6262 	kvm_release_pfn_clean(pfn);
6263 
6264 	/* The instructions are well-emulated on direct mmu. */
6265 	if (vcpu->arch.mmu->direct_map) {
6266 		unsigned int indirect_shadow_pages;
6267 
6268 		spin_lock(&vcpu->kvm->mmu_lock);
6269 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6270 		spin_unlock(&vcpu->kvm->mmu_lock);
6271 
6272 		if (indirect_shadow_pages)
6273 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6274 
6275 		return true;
6276 	}
6277 
6278 	/*
6279 	 * if emulation was due to access to shadowed page table
6280 	 * and it failed try to unshadow page and re-enter the
6281 	 * guest to let CPU execute the instruction.
6282 	 */
6283 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6284 
6285 	/*
6286 	 * If the access faults on its page table, it can not
6287 	 * be fixed by unprotecting shadow page and it should
6288 	 * be reported to userspace.
6289 	 */
6290 	return !write_fault_to_shadow_pgtable;
6291 }
6292 
6293 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6294 			      unsigned long cr2,  int emulation_type)
6295 {
6296 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6297 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
6298 
6299 	last_retry_eip = vcpu->arch.last_retry_eip;
6300 	last_retry_addr = vcpu->arch.last_retry_addr;
6301 
6302 	/*
6303 	 * If the emulation is caused by #PF and it is non-page_table
6304 	 * writing instruction, it means the VM-EXIT is caused by shadow
6305 	 * page protected, we can zap the shadow page and retry this
6306 	 * instruction directly.
6307 	 *
6308 	 * Note: if the guest uses a non-page-table modifying instruction
6309 	 * on the PDE that points to the instruction, then we will unmap
6310 	 * the instruction and go to an infinite loop. So, we cache the
6311 	 * last retried eip and the last fault address, if we meet the eip
6312 	 * and the address again, we can break out of the potential infinite
6313 	 * loop.
6314 	 */
6315 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6316 
6317 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6318 		return false;
6319 
6320 	if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6321 		return false;
6322 
6323 	if (x86_page_table_writing_insn(ctxt))
6324 		return false;
6325 
6326 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
6327 		return false;
6328 
6329 	vcpu->arch.last_retry_eip = ctxt->eip;
6330 	vcpu->arch.last_retry_addr = cr2;
6331 
6332 	if (!vcpu->arch.mmu->direct_map)
6333 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6334 
6335 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6336 
6337 	return true;
6338 }
6339 
6340 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6341 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6342 
6343 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6344 {
6345 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6346 		/* This is a good place to trace that we are exiting SMM.  */
6347 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6348 
6349 		/* Process a latched INIT or SMI, if any.  */
6350 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6351 	}
6352 
6353 	kvm_mmu_reset_context(vcpu);
6354 }
6355 
6356 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6357 				unsigned long *db)
6358 {
6359 	u32 dr6 = 0;
6360 	int i;
6361 	u32 enable, rwlen;
6362 
6363 	enable = dr7;
6364 	rwlen = dr7 >> 16;
6365 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6366 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6367 			dr6 |= (1 << i);
6368 	return dr6;
6369 }
6370 
6371 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
6372 {
6373 	struct kvm_run *kvm_run = vcpu->run;
6374 
6375 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6376 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6377 		kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6378 		kvm_run->debug.arch.exception = DB_VECTOR;
6379 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
6380 		*r = EMULATE_USER_EXIT;
6381 	} else {
6382 		kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6383 	}
6384 }
6385 
6386 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6387 {
6388 	unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6389 	int r = EMULATE_DONE;
6390 
6391 	kvm_x86_ops->skip_emulated_instruction(vcpu);
6392 
6393 	/*
6394 	 * rflags is the old, "raw" value of the flags.  The new value has
6395 	 * not been saved yet.
6396 	 *
6397 	 * This is correct even for TF set by the guest, because "the
6398 	 * processor will not generate this exception after the instruction
6399 	 * that sets the TF flag".
6400 	 */
6401 	if (unlikely(rflags & X86_EFLAGS_TF))
6402 		kvm_vcpu_do_singlestep(vcpu, &r);
6403 	return r == EMULATE_DONE;
6404 }
6405 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6406 
6407 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6408 {
6409 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6410 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6411 		struct kvm_run *kvm_run = vcpu->run;
6412 		unsigned long eip = kvm_get_linear_rip(vcpu);
6413 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6414 					   vcpu->arch.guest_debug_dr7,
6415 					   vcpu->arch.eff_db);
6416 
6417 		if (dr6 != 0) {
6418 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6419 			kvm_run->debug.arch.pc = eip;
6420 			kvm_run->debug.arch.exception = DB_VECTOR;
6421 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
6422 			*r = EMULATE_USER_EXIT;
6423 			return true;
6424 		}
6425 	}
6426 
6427 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6428 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6429 		unsigned long eip = kvm_get_linear_rip(vcpu);
6430 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6431 					   vcpu->arch.dr7,
6432 					   vcpu->arch.db);
6433 
6434 		if (dr6 != 0) {
6435 			vcpu->arch.dr6 &= ~DR_TRAP_BITS;
6436 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
6437 			kvm_queue_exception(vcpu, DB_VECTOR);
6438 			*r = EMULATE_DONE;
6439 			return true;
6440 		}
6441 	}
6442 
6443 	return false;
6444 }
6445 
6446 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6447 {
6448 	switch (ctxt->opcode_len) {
6449 	case 1:
6450 		switch (ctxt->b) {
6451 		case 0xe4:	/* IN */
6452 		case 0xe5:
6453 		case 0xec:
6454 		case 0xed:
6455 		case 0xe6:	/* OUT */
6456 		case 0xe7:
6457 		case 0xee:
6458 		case 0xef:
6459 		case 0x6c:	/* INS */
6460 		case 0x6d:
6461 		case 0x6e:	/* OUTS */
6462 		case 0x6f:
6463 			return true;
6464 		}
6465 		break;
6466 	case 2:
6467 		switch (ctxt->b) {
6468 		case 0x33:	/* RDPMC */
6469 			return true;
6470 		}
6471 		break;
6472 	}
6473 
6474 	return false;
6475 }
6476 
6477 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6478 			    unsigned long cr2,
6479 			    int emulation_type,
6480 			    void *insn,
6481 			    int insn_len)
6482 {
6483 	int r;
6484 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6485 	bool writeback = true;
6486 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6487 
6488 	vcpu->arch.l1tf_flush_l1d = true;
6489 
6490 	/*
6491 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
6492 	 * never reused.
6493 	 */
6494 	vcpu->arch.write_fault_to_shadow_pgtable = false;
6495 	kvm_clear_exception_queue(vcpu);
6496 
6497 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6498 		init_emulate_ctxt(vcpu);
6499 
6500 		/*
6501 		 * We will reenter on the same instruction since
6502 		 * we do not set complete_userspace_io.  This does not
6503 		 * handle watchpoints yet, those would be handled in
6504 		 * the emulate_ops.
6505 		 */
6506 		if (!(emulation_type & EMULTYPE_SKIP) &&
6507 		    kvm_vcpu_check_breakpoint(vcpu, &r))
6508 			return r;
6509 
6510 		ctxt->interruptibility = 0;
6511 		ctxt->have_exception = false;
6512 		ctxt->exception.vector = -1;
6513 		ctxt->perm_ok = false;
6514 
6515 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6516 
6517 		r = x86_decode_insn(ctxt, insn, insn_len);
6518 
6519 		trace_kvm_emulate_insn_start(vcpu);
6520 		++vcpu->stat.insn_emulation;
6521 		if (r != EMULATION_OK)  {
6522 			if (emulation_type & EMULTYPE_TRAP_UD)
6523 				return EMULATE_FAIL;
6524 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6525 						emulation_type))
6526 				return EMULATE_DONE;
6527 			if (ctxt->have_exception && inject_emulated_exception(vcpu))
6528 				return EMULATE_DONE;
6529 			if (emulation_type & EMULTYPE_SKIP)
6530 				return EMULATE_FAIL;
6531 			return handle_emulation_failure(vcpu, emulation_type);
6532 		}
6533 	}
6534 
6535 	if ((emulation_type & EMULTYPE_VMWARE) &&
6536 	    !is_vmware_backdoor_opcode(ctxt))
6537 		return EMULATE_FAIL;
6538 
6539 	if (emulation_type & EMULTYPE_SKIP) {
6540 		kvm_rip_write(vcpu, ctxt->_eip);
6541 		if (ctxt->eflags & X86_EFLAGS_RF)
6542 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6543 		return EMULATE_DONE;
6544 	}
6545 
6546 	if (retry_instruction(ctxt, cr2, emulation_type))
6547 		return EMULATE_DONE;
6548 
6549 	/* this is needed for vmware backdoor interface to work since it
6550 	   changes registers values  during IO operation */
6551 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6552 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6553 		emulator_invalidate_register_cache(ctxt);
6554 	}
6555 
6556 restart:
6557 	/* Save the faulting GPA (cr2) in the address field */
6558 	ctxt->exception.address = cr2;
6559 
6560 	r = x86_emulate_insn(ctxt);
6561 
6562 	if (r == EMULATION_INTERCEPTED)
6563 		return EMULATE_DONE;
6564 
6565 	if (r == EMULATION_FAILED) {
6566 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6567 					emulation_type))
6568 			return EMULATE_DONE;
6569 
6570 		return handle_emulation_failure(vcpu, emulation_type);
6571 	}
6572 
6573 	if (ctxt->have_exception) {
6574 		r = EMULATE_DONE;
6575 		if (inject_emulated_exception(vcpu))
6576 			return r;
6577 	} else if (vcpu->arch.pio.count) {
6578 		if (!vcpu->arch.pio.in) {
6579 			/* FIXME: return into emulator if single-stepping.  */
6580 			vcpu->arch.pio.count = 0;
6581 		} else {
6582 			writeback = false;
6583 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
6584 		}
6585 		r = EMULATE_USER_EXIT;
6586 	} else if (vcpu->mmio_needed) {
6587 		if (!vcpu->mmio_is_write)
6588 			writeback = false;
6589 		r = EMULATE_USER_EXIT;
6590 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6591 	} else if (r == EMULATION_RESTART)
6592 		goto restart;
6593 	else
6594 		r = EMULATE_DONE;
6595 
6596 	if (writeback) {
6597 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6598 		toggle_interruptibility(vcpu, ctxt->interruptibility);
6599 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6600 		kvm_rip_write(vcpu, ctxt->eip);
6601 		if (r == EMULATE_DONE && ctxt->tf)
6602 			kvm_vcpu_do_singlestep(vcpu, &r);
6603 		if (!ctxt->have_exception ||
6604 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP)
6605 			__kvm_set_rflags(vcpu, ctxt->eflags);
6606 
6607 		/*
6608 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6609 		 * do nothing, and it will be requested again as soon as
6610 		 * the shadow expires.  But we still need to check here,
6611 		 * because POPF has no interrupt shadow.
6612 		 */
6613 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6614 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6615 	} else
6616 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6617 
6618 	return r;
6619 }
6620 
6621 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6622 {
6623 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6624 }
6625 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6626 
6627 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6628 					void *insn, int insn_len)
6629 {
6630 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6631 }
6632 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6633 
6634 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
6635 {
6636 	vcpu->arch.pio.count = 0;
6637 	return 1;
6638 }
6639 
6640 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
6641 {
6642 	vcpu->arch.pio.count = 0;
6643 
6644 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
6645 		return 1;
6646 
6647 	return kvm_skip_emulated_instruction(vcpu);
6648 }
6649 
6650 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6651 			    unsigned short port)
6652 {
6653 	unsigned long val = kvm_rax_read(vcpu);
6654 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6655 					    size, port, &val, 1);
6656 	if (ret)
6657 		return ret;
6658 
6659 	/*
6660 	 * Workaround userspace that relies on old KVM behavior of %rip being
6661 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
6662 	 */
6663 	if (port == 0x7e &&
6664 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
6665 		vcpu->arch.complete_userspace_io =
6666 			complete_fast_pio_out_port_0x7e;
6667 		kvm_skip_emulated_instruction(vcpu);
6668 	} else {
6669 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6670 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
6671 	}
6672 	return 0;
6673 }
6674 
6675 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6676 {
6677 	unsigned long val;
6678 
6679 	/* We should only ever be called with arch.pio.count equal to 1 */
6680 	BUG_ON(vcpu->arch.pio.count != 1);
6681 
6682 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
6683 		vcpu->arch.pio.count = 0;
6684 		return 1;
6685 	}
6686 
6687 	/* For size less than 4 we merge, else we zero extend */
6688 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
6689 
6690 	/*
6691 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6692 	 * the copy and tracing
6693 	 */
6694 	emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6695 				 vcpu->arch.pio.port, &val, 1);
6696 	kvm_rax_write(vcpu, val);
6697 
6698 	return kvm_skip_emulated_instruction(vcpu);
6699 }
6700 
6701 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6702 			   unsigned short port)
6703 {
6704 	unsigned long val;
6705 	int ret;
6706 
6707 	/* For size less than 4 we merge, else we zero extend */
6708 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
6709 
6710 	ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6711 				       &val, 1);
6712 	if (ret) {
6713 		kvm_rax_write(vcpu, val);
6714 		return ret;
6715 	}
6716 
6717 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6718 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6719 
6720 	return 0;
6721 }
6722 
6723 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6724 {
6725 	int ret;
6726 
6727 	if (in)
6728 		ret = kvm_fast_pio_in(vcpu, size, port);
6729 	else
6730 		ret = kvm_fast_pio_out(vcpu, size, port);
6731 	return ret && kvm_skip_emulated_instruction(vcpu);
6732 }
6733 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6734 
6735 static int kvmclock_cpu_down_prep(unsigned int cpu)
6736 {
6737 	__this_cpu_write(cpu_tsc_khz, 0);
6738 	return 0;
6739 }
6740 
6741 static void tsc_khz_changed(void *data)
6742 {
6743 	struct cpufreq_freqs *freq = data;
6744 	unsigned long khz = 0;
6745 
6746 	if (data)
6747 		khz = freq->new;
6748 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6749 		khz = cpufreq_quick_get(raw_smp_processor_id());
6750 	if (!khz)
6751 		khz = tsc_khz;
6752 	__this_cpu_write(cpu_tsc_khz, khz);
6753 }
6754 
6755 #ifdef CONFIG_X86_64
6756 static void kvm_hyperv_tsc_notifier(void)
6757 {
6758 	struct kvm *kvm;
6759 	struct kvm_vcpu *vcpu;
6760 	int cpu;
6761 
6762 	mutex_lock(&kvm_lock);
6763 	list_for_each_entry(kvm, &vm_list, vm_list)
6764 		kvm_make_mclock_inprogress_request(kvm);
6765 
6766 	hyperv_stop_tsc_emulation();
6767 
6768 	/* TSC frequency always matches when on Hyper-V */
6769 	for_each_present_cpu(cpu)
6770 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6771 	kvm_max_guest_tsc_khz = tsc_khz;
6772 
6773 	list_for_each_entry(kvm, &vm_list, vm_list) {
6774 		struct kvm_arch *ka = &kvm->arch;
6775 
6776 		spin_lock(&ka->pvclock_gtod_sync_lock);
6777 
6778 		pvclock_update_vm_gtod_copy(kvm);
6779 
6780 		kvm_for_each_vcpu(cpu, vcpu, kvm)
6781 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6782 
6783 		kvm_for_each_vcpu(cpu, vcpu, kvm)
6784 			kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6785 
6786 		spin_unlock(&ka->pvclock_gtod_sync_lock);
6787 	}
6788 	mutex_unlock(&kvm_lock);
6789 }
6790 #endif
6791 
6792 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
6793 {
6794 	struct kvm *kvm;
6795 	struct kvm_vcpu *vcpu;
6796 	int i, send_ipi = 0;
6797 
6798 	/*
6799 	 * We allow guests to temporarily run on slowing clocks,
6800 	 * provided we notify them after, or to run on accelerating
6801 	 * clocks, provided we notify them before.  Thus time never
6802 	 * goes backwards.
6803 	 *
6804 	 * However, we have a problem.  We can't atomically update
6805 	 * the frequency of a given CPU from this function; it is
6806 	 * merely a notifier, which can be called from any CPU.
6807 	 * Changing the TSC frequency at arbitrary points in time
6808 	 * requires a recomputation of local variables related to
6809 	 * the TSC for each VCPU.  We must flag these local variables
6810 	 * to be updated and be sure the update takes place with the
6811 	 * new frequency before any guests proceed.
6812 	 *
6813 	 * Unfortunately, the combination of hotplug CPU and frequency
6814 	 * change creates an intractable locking scenario; the order
6815 	 * of when these callouts happen is undefined with respect to
6816 	 * CPU hotplug, and they can race with each other.  As such,
6817 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6818 	 * undefined; you can actually have a CPU frequency change take
6819 	 * place in between the computation of X and the setting of the
6820 	 * variable.  To protect against this problem, all updates of
6821 	 * the per_cpu tsc_khz variable are done in an interrupt
6822 	 * protected IPI, and all callers wishing to update the value
6823 	 * must wait for a synchronous IPI to complete (which is trivial
6824 	 * if the caller is on the CPU already).  This establishes the
6825 	 * necessary total order on variable updates.
6826 	 *
6827 	 * Note that because a guest time update may take place
6828 	 * anytime after the setting of the VCPU's request bit, the
6829 	 * correct TSC value must be set before the request.  However,
6830 	 * to ensure the update actually makes it to any guest which
6831 	 * starts running in hardware virtualization between the set
6832 	 * and the acquisition of the spinlock, we must also ping the
6833 	 * CPU after setting the request bit.
6834 	 *
6835 	 */
6836 
6837 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
6838 
6839 	mutex_lock(&kvm_lock);
6840 	list_for_each_entry(kvm, &vm_list, vm_list) {
6841 		kvm_for_each_vcpu(i, vcpu, kvm) {
6842 			if (vcpu->cpu != cpu)
6843 				continue;
6844 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6845 			if (vcpu->cpu != raw_smp_processor_id())
6846 				send_ipi = 1;
6847 		}
6848 	}
6849 	mutex_unlock(&kvm_lock);
6850 
6851 	if (freq->old < freq->new && send_ipi) {
6852 		/*
6853 		 * We upscale the frequency.  Must make the guest
6854 		 * doesn't see old kvmclock values while running with
6855 		 * the new frequency, otherwise we risk the guest sees
6856 		 * time go backwards.
6857 		 *
6858 		 * In case we update the frequency for another cpu
6859 		 * (which might be in guest context) send an interrupt
6860 		 * to kick the cpu out of guest context.  Next time
6861 		 * guest context is entered kvmclock will be updated,
6862 		 * so the guest will not see stale values.
6863 		 */
6864 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
6865 	}
6866 }
6867 
6868 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6869 				     void *data)
6870 {
6871 	struct cpufreq_freqs *freq = data;
6872 	int cpu;
6873 
6874 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6875 		return 0;
6876 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6877 		return 0;
6878 
6879 	for_each_cpu(cpu, freq->policy->cpus)
6880 		__kvmclock_cpufreq_notifier(freq, cpu);
6881 
6882 	return 0;
6883 }
6884 
6885 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6886 	.notifier_call  = kvmclock_cpufreq_notifier
6887 };
6888 
6889 static int kvmclock_cpu_online(unsigned int cpu)
6890 {
6891 	tsc_khz_changed(NULL);
6892 	return 0;
6893 }
6894 
6895 static void kvm_timer_init(void)
6896 {
6897 	max_tsc_khz = tsc_khz;
6898 
6899 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6900 #ifdef CONFIG_CPU_FREQ
6901 		struct cpufreq_policy policy;
6902 		int cpu;
6903 
6904 		memset(&policy, 0, sizeof(policy));
6905 		cpu = get_cpu();
6906 		cpufreq_get_policy(&policy, cpu);
6907 		if (policy.cpuinfo.max_freq)
6908 			max_tsc_khz = policy.cpuinfo.max_freq;
6909 		put_cpu();
6910 #endif
6911 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6912 					  CPUFREQ_TRANSITION_NOTIFIER);
6913 	}
6914 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6915 
6916 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6917 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
6918 }
6919 
6920 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6921 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
6922 
6923 int kvm_is_in_guest(void)
6924 {
6925 	return __this_cpu_read(current_vcpu) != NULL;
6926 }
6927 
6928 static int kvm_is_user_mode(void)
6929 {
6930 	int user_mode = 3;
6931 
6932 	if (__this_cpu_read(current_vcpu))
6933 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6934 
6935 	return user_mode != 0;
6936 }
6937 
6938 static unsigned long kvm_get_guest_ip(void)
6939 {
6940 	unsigned long ip = 0;
6941 
6942 	if (__this_cpu_read(current_vcpu))
6943 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6944 
6945 	return ip;
6946 }
6947 
6948 static void kvm_handle_intel_pt_intr(void)
6949 {
6950 	struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
6951 
6952 	kvm_make_request(KVM_REQ_PMI, vcpu);
6953 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
6954 			(unsigned long *)&vcpu->arch.pmu.global_status);
6955 }
6956 
6957 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6958 	.is_in_guest		= kvm_is_in_guest,
6959 	.is_user_mode		= kvm_is_user_mode,
6960 	.get_guest_ip		= kvm_get_guest_ip,
6961 	.handle_intel_pt_intr	= kvm_handle_intel_pt_intr,
6962 };
6963 
6964 #ifdef CONFIG_X86_64
6965 static void pvclock_gtod_update_fn(struct work_struct *work)
6966 {
6967 	struct kvm *kvm;
6968 
6969 	struct kvm_vcpu *vcpu;
6970 	int i;
6971 
6972 	mutex_lock(&kvm_lock);
6973 	list_for_each_entry(kvm, &vm_list, vm_list)
6974 		kvm_for_each_vcpu(i, vcpu, kvm)
6975 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6976 	atomic_set(&kvm_guest_has_master_clock, 0);
6977 	mutex_unlock(&kvm_lock);
6978 }
6979 
6980 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6981 
6982 /*
6983  * Notification about pvclock gtod data update.
6984  */
6985 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6986 			       void *priv)
6987 {
6988 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6989 	struct timekeeper *tk = priv;
6990 
6991 	update_pvclock_gtod(tk);
6992 
6993 	/* disable master clock if host does not trust, or does not
6994 	 * use, TSC based clocksource.
6995 	 */
6996 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6997 	    atomic_read(&kvm_guest_has_master_clock) != 0)
6998 		queue_work(system_long_wq, &pvclock_gtod_work);
6999 
7000 	return 0;
7001 }
7002 
7003 static struct notifier_block pvclock_gtod_notifier = {
7004 	.notifier_call = pvclock_gtod_notify,
7005 };
7006 #endif
7007 
7008 int kvm_arch_init(void *opaque)
7009 {
7010 	int r;
7011 	struct kvm_x86_ops *ops = opaque;
7012 
7013 	if (kvm_x86_ops) {
7014 		printk(KERN_ERR "kvm: already loaded the other module\n");
7015 		r = -EEXIST;
7016 		goto out;
7017 	}
7018 
7019 	if (!ops->cpu_has_kvm_support()) {
7020 		printk(KERN_ERR "kvm: no hardware support\n");
7021 		r = -EOPNOTSUPP;
7022 		goto out;
7023 	}
7024 	if (ops->disabled_by_bios()) {
7025 		printk(KERN_ERR "kvm: disabled by bios\n");
7026 		r = -EOPNOTSUPP;
7027 		goto out;
7028 	}
7029 
7030 	/*
7031 	 * KVM explicitly assumes that the guest has an FPU and
7032 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7033 	 * vCPU's FPU state as a fxregs_state struct.
7034 	 */
7035 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7036 		printk(KERN_ERR "kvm: inadequate fpu\n");
7037 		r = -EOPNOTSUPP;
7038 		goto out;
7039 	}
7040 
7041 	r = -ENOMEM;
7042 	x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7043 					  __alignof__(struct fpu), SLAB_ACCOUNT,
7044 					  NULL);
7045 	if (!x86_fpu_cache) {
7046 		printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7047 		goto out;
7048 	}
7049 
7050 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
7051 	if (!shared_msrs) {
7052 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
7053 		goto out_free_x86_fpu_cache;
7054 	}
7055 
7056 	r = kvm_mmu_module_init();
7057 	if (r)
7058 		goto out_free_percpu;
7059 
7060 	kvm_x86_ops = ops;
7061 
7062 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7063 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
7064 			PT_PRESENT_MASK, 0, sme_me_mask);
7065 	kvm_timer_init();
7066 
7067 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
7068 
7069 	if (boot_cpu_has(X86_FEATURE_XSAVE))
7070 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7071 
7072 	kvm_lapic_init();
7073 #ifdef CONFIG_X86_64
7074 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7075 
7076 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7077 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7078 #endif
7079 
7080 	return 0;
7081 
7082 out_free_percpu:
7083 	free_percpu(shared_msrs);
7084 out_free_x86_fpu_cache:
7085 	kmem_cache_destroy(x86_fpu_cache);
7086 out:
7087 	return r;
7088 }
7089 
7090 void kvm_arch_exit(void)
7091 {
7092 #ifdef CONFIG_X86_64
7093 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7094 		clear_hv_tscchange_cb();
7095 #endif
7096 	kvm_lapic_exit();
7097 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7098 
7099 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7100 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7101 					    CPUFREQ_TRANSITION_NOTIFIER);
7102 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7103 #ifdef CONFIG_X86_64
7104 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7105 #endif
7106 	kvm_x86_ops = NULL;
7107 	kvm_mmu_module_exit();
7108 	free_percpu(shared_msrs);
7109 	kmem_cache_destroy(x86_fpu_cache);
7110 }
7111 
7112 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7113 {
7114 	++vcpu->stat.halt_exits;
7115 	if (lapic_in_kernel(vcpu)) {
7116 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7117 		return 1;
7118 	} else {
7119 		vcpu->run->exit_reason = KVM_EXIT_HLT;
7120 		return 0;
7121 	}
7122 }
7123 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7124 
7125 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7126 {
7127 	int ret = kvm_skip_emulated_instruction(vcpu);
7128 	/*
7129 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7130 	 * KVM_EXIT_DEBUG here.
7131 	 */
7132 	return kvm_vcpu_halt(vcpu) && ret;
7133 }
7134 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7135 
7136 #ifdef CONFIG_X86_64
7137 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7138 			        unsigned long clock_type)
7139 {
7140 	struct kvm_clock_pairing clock_pairing;
7141 	struct timespec64 ts;
7142 	u64 cycle;
7143 	int ret;
7144 
7145 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7146 		return -KVM_EOPNOTSUPP;
7147 
7148 	if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7149 		return -KVM_EOPNOTSUPP;
7150 
7151 	clock_pairing.sec = ts.tv_sec;
7152 	clock_pairing.nsec = ts.tv_nsec;
7153 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7154 	clock_pairing.flags = 0;
7155 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7156 
7157 	ret = 0;
7158 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7159 			    sizeof(struct kvm_clock_pairing)))
7160 		ret = -KVM_EFAULT;
7161 
7162 	return ret;
7163 }
7164 #endif
7165 
7166 /*
7167  * kvm_pv_kick_cpu_op:  Kick a vcpu.
7168  *
7169  * @apicid - apicid of vcpu to be kicked.
7170  */
7171 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7172 {
7173 	struct kvm_lapic_irq lapic_irq;
7174 
7175 	lapic_irq.shorthand = 0;
7176 	lapic_irq.dest_mode = 0;
7177 	lapic_irq.level = 0;
7178 	lapic_irq.dest_id = apicid;
7179 	lapic_irq.msi_redir_hint = false;
7180 
7181 	lapic_irq.delivery_mode = APIC_DM_REMRD;
7182 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7183 }
7184 
7185 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
7186 {
7187 	if (!lapic_in_kernel(vcpu)) {
7188 		WARN_ON_ONCE(vcpu->arch.apicv_active);
7189 		return;
7190 	}
7191 	if (!vcpu->arch.apicv_active)
7192 		return;
7193 
7194 	vcpu->arch.apicv_active = false;
7195 	kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
7196 }
7197 
7198 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
7199 {
7200 	struct kvm_vcpu *target = NULL;
7201 	struct kvm_apic_map *map;
7202 
7203 	rcu_read_lock();
7204 	map = rcu_dereference(kvm->arch.apic_map);
7205 
7206 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
7207 		target = map->phys_map[dest_id]->vcpu;
7208 
7209 	rcu_read_unlock();
7210 
7211 	if (target)
7212 		kvm_vcpu_yield_to(target);
7213 }
7214 
7215 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7216 {
7217 	unsigned long nr, a0, a1, a2, a3, ret;
7218 	int op_64_bit;
7219 
7220 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
7221 		return kvm_hv_hypercall(vcpu);
7222 
7223 	nr = kvm_rax_read(vcpu);
7224 	a0 = kvm_rbx_read(vcpu);
7225 	a1 = kvm_rcx_read(vcpu);
7226 	a2 = kvm_rdx_read(vcpu);
7227 	a3 = kvm_rsi_read(vcpu);
7228 
7229 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
7230 
7231 	op_64_bit = is_64_bit_mode(vcpu);
7232 	if (!op_64_bit) {
7233 		nr &= 0xFFFFFFFF;
7234 		a0 &= 0xFFFFFFFF;
7235 		a1 &= 0xFFFFFFFF;
7236 		a2 &= 0xFFFFFFFF;
7237 		a3 &= 0xFFFFFFFF;
7238 	}
7239 
7240 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
7241 		ret = -KVM_EPERM;
7242 		goto out;
7243 	}
7244 
7245 	switch (nr) {
7246 	case KVM_HC_VAPIC_POLL_IRQ:
7247 		ret = 0;
7248 		break;
7249 	case KVM_HC_KICK_CPU:
7250 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7251 		ret = 0;
7252 		break;
7253 #ifdef CONFIG_X86_64
7254 	case KVM_HC_CLOCK_PAIRING:
7255 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7256 		break;
7257 #endif
7258 	case KVM_HC_SEND_IPI:
7259 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7260 		break;
7261 	case KVM_HC_SCHED_YIELD:
7262 		kvm_sched_yield(vcpu->kvm, a0);
7263 		ret = 0;
7264 		break;
7265 	default:
7266 		ret = -KVM_ENOSYS;
7267 		break;
7268 	}
7269 out:
7270 	if (!op_64_bit)
7271 		ret = (u32)ret;
7272 	kvm_rax_write(vcpu, ret);
7273 
7274 	++vcpu->stat.hypercalls;
7275 	return kvm_skip_emulated_instruction(vcpu);
7276 }
7277 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7278 
7279 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7280 {
7281 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7282 	char instruction[3];
7283 	unsigned long rip = kvm_rip_read(vcpu);
7284 
7285 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
7286 
7287 	return emulator_write_emulated(ctxt, rip, instruction, 3,
7288 		&ctxt->exception);
7289 }
7290 
7291 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7292 {
7293 	return vcpu->run->request_interrupt_window &&
7294 		likely(!pic_in_kernel(vcpu->kvm));
7295 }
7296 
7297 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7298 {
7299 	struct kvm_run *kvm_run = vcpu->run;
7300 
7301 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7302 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7303 	kvm_run->cr8 = kvm_get_cr8(vcpu);
7304 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
7305 	kvm_run->ready_for_interrupt_injection =
7306 		pic_in_kernel(vcpu->kvm) ||
7307 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
7308 }
7309 
7310 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7311 {
7312 	int max_irr, tpr;
7313 
7314 	if (!kvm_x86_ops->update_cr8_intercept)
7315 		return;
7316 
7317 	if (!lapic_in_kernel(vcpu))
7318 		return;
7319 
7320 	if (vcpu->arch.apicv_active)
7321 		return;
7322 
7323 	if (!vcpu->arch.apic->vapic_addr)
7324 		max_irr = kvm_lapic_find_highest_irr(vcpu);
7325 	else
7326 		max_irr = -1;
7327 
7328 	if (max_irr != -1)
7329 		max_irr >>= 4;
7330 
7331 	tpr = kvm_lapic_get_cr8(vcpu);
7332 
7333 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
7334 }
7335 
7336 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
7337 {
7338 	int r;
7339 
7340 	/* try to reinject previous events if any */
7341 
7342 	if (vcpu->arch.exception.injected)
7343 		kvm_x86_ops->queue_exception(vcpu);
7344 	/*
7345 	 * Do not inject an NMI or interrupt if there is a pending
7346 	 * exception.  Exceptions and interrupts are recognized at
7347 	 * instruction boundaries, i.e. the start of an instruction.
7348 	 * Trap-like exceptions, e.g. #DB, have higher priority than
7349 	 * NMIs and interrupts, i.e. traps are recognized before an
7350 	 * NMI/interrupt that's pending on the same instruction.
7351 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7352 	 * priority, but are only generated (pended) during instruction
7353 	 * execution, i.e. a pending fault-like exception means the
7354 	 * fault occurred on the *previous* instruction and must be
7355 	 * serviced prior to recognizing any new events in order to
7356 	 * fully complete the previous instruction.
7357 	 */
7358 	else if (!vcpu->arch.exception.pending) {
7359 		if (vcpu->arch.nmi_injected)
7360 			kvm_x86_ops->set_nmi(vcpu);
7361 		else if (vcpu->arch.interrupt.injected)
7362 			kvm_x86_ops->set_irq(vcpu);
7363 	}
7364 
7365 	/*
7366 	 * Call check_nested_events() even if we reinjected a previous event
7367 	 * in order for caller to determine if it should require immediate-exit
7368 	 * from L2 to L1 due to pending L1 events which require exit
7369 	 * from L2 to L1.
7370 	 */
7371 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7372 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7373 		if (r != 0)
7374 			return r;
7375 	}
7376 
7377 	/* try to inject new event if pending */
7378 	if (vcpu->arch.exception.pending) {
7379 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
7380 					vcpu->arch.exception.has_error_code,
7381 					vcpu->arch.exception.error_code);
7382 
7383 		WARN_ON_ONCE(vcpu->arch.exception.injected);
7384 		vcpu->arch.exception.pending = false;
7385 		vcpu->arch.exception.injected = true;
7386 
7387 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7388 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7389 					     X86_EFLAGS_RF);
7390 
7391 		if (vcpu->arch.exception.nr == DB_VECTOR) {
7392 			/*
7393 			 * This code assumes that nSVM doesn't use
7394 			 * check_nested_events(). If it does, the
7395 			 * DR6/DR7 changes should happen before L1
7396 			 * gets a #VMEXIT for an intercepted #DB in
7397 			 * L2.  (Under VMX, on the other hand, the
7398 			 * DR6/DR7 changes should not happen in the
7399 			 * event of a VM-exit to L1 for an intercepted
7400 			 * #DB in L2.)
7401 			 */
7402 			kvm_deliver_exception_payload(vcpu);
7403 			if (vcpu->arch.dr7 & DR7_GD) {
7404 				vcpu->arch.dr7 &= ~DR7_GD;
7405 				kvm_update_dr7(vcpu);
7406 			}
7407 		}
7408 
7409 		kvm_x86_ops->queue_exception(vcpu);
7410 	}
7411 
7412 	/* Don't consider new event if we re-injected an event */
7413 	if (kvm_event_needs_reinjection(vcpu))
7414 		return 0;
7415 
7416 	if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7417 	    kvm_x86_ops->smi_allowed(vcpu)) {
7418 		vcpu->arch.smi_pending = false;
7419 		++vcpu->arch.smi_count;
7420 		enter_smm(vcpu);
7421 	} else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7422 		--vcpu->arch.nmi_pending;
7423 		vcpu->arch.nmi_injected = true;
7424 		kvm_x86_ops->set_nmi(vcpu);
7425 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
7426 		/*
7427 		 * Because interrupts can be injected asynchronously, we are
7428 		 * calling check_nested_events again here to avoid a race condition.
7429 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7430 		 * proposal and current concerns.  Perhaps we should be setting
7431 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
7432 		 */
7433 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7434 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7435 			if (r != 0)
7436 				return r;
7437 		}
7438 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7439 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7440 					    false);
7441 			kvm_x86_ops->set_irq(vcpu);
7442 		}
7443 	}
7444 
7445 	return 0;
7446 }
7447 
7448 static void process_nmi(struct kvm_vcpu *vcpu)
7449 {
7450 	unsigned limit = 2;
7451 
7452 	/*
7453 	 * x86 is limited to one NMI running, and one NMI pending after it.
7454 	 * If an NMI is already in progress, limit further NMIs to just one.
7455 	 * Otherwise, allow two (and we'll inject the first one immediately).
7456 	 */
7457 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7458 		limit = 1;
7459 
7460 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7461 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7462 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7463 }
7464 
7465 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7466 {
7467 	u32 flags = 0;
7468 	flags |= seg->g       << 23;
7469 	flags |= seg->db      << 22;
7470 	flags |= seg->l       << 21;
7471 	flags |= seg->avl     << 20;
7472 	flags |= seg->present << 15;
7473 	flags |= seg->dpl     << 13;
7474 	flags |= seg->s       << 12;
7475 	flags |= seg->type    << 8;
7476 	return flags;
7477 }
7478 
7479 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7480 {
7481 	struct kvm_segment seg;
7482 	int offset;
7483 
7484 	kvm_get_segment(vcpu, &seg, n);
7485 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7486 
7487 	if (n < 3)
7488 		offset = 0x7f84 + n * 12;
7489 	else
7490 		offset = 0x7f2c + (n - 3) * 12;
7491 
7492 	put_smstate(u32, buf, offset + 8, seg.base);
7493 	put_smstate(u32, buf, offset + 4, seg.limit);
7494 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7495 }
7496 
7497 #ifdef CONFIG_X86_64
7498 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7499 {
7500 	struct kvm_segment seg;
7501 	int offset;
7502 	u16 flags;
7503 
7504 	kvm_get_segment(vcpu, &seg, n);
7505 	offset = 0x7e00 + n * 16;
7506 
7507 	flags = enter_smm_get_segment_flags(&seg) >> 8;
7508 	put_smstate(u16, buf, offset, seg.selector);
7509 	put_smstate(u16, buf, offset + 2, flags);
7510 	put_smstate(u32, buf, offset + 4, seg.limit);
7511 	put_smstate(u64, buf, offset + 8, seg.base);
7512 }
7513 #endif
7514 
7515 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7516 {
7517 	struct desc_ptr dt;
7518 	struct kvm_segment seg;
7519 	unsigned long val;
7520 	int i;
7521 
7522 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7523 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7524 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7525 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7526 
7527 	for (i = 0; i < 8; i++)
7528 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7529 
7530 	kvm_get_dr(vcpu, 6, &val);
7531 	put_smstate(u32, buf, 0x7fcc, (u32)val);
7532 	kvm_get_dr(vcpu, 7, &val);
7533 	put_smstate(u32, buf, 0x7fc8, (u32)val);
7534 
7535 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7536 	put_smstate(u32, buf, 0x7fc4, seg.selector);
7537 	put_smstate(u32, buf, 0x7f64, seg.base);
7538 	put_smstate(u32, buf, 0x7f60, seg.limit);
7539 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7540 
7541 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7542 	put_smstate(u32, buf, 0x7fc0, seg.selector);
7543 	put_smstate(u32, buf, 0x7f80, seg.base);
7544 	put_smstate(u32, buf, 0x7f7c, seg.limit);
7545 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7546 
7547 	kvm_x86_ops->get_gdt(vcpu, &dt);
7548 	put_smstate(u32, buf, 0x7f74, dt.address);
7549 	put_smstate(u32, buf, 0x7f70, dt.size);
7550 
7551 	kvm_x86_ops->get_idt(vcpu, &dt);
7552 	put_smstate(u32, buf, 0x7f58, dt.address);
7553 	put_smstate(u32, buf, 0x7f54, dt.size);
7554 
7555 	for (i = 0; i < 6; i++)
7556 		enter_smm_save_seg_32(vcpu, buf, i);
7557 
7558 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7559 
7560 	/* revision id */
7561 	put_smstate(u32, buf, 0x7efc, 0x00020000);
7562 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7563 }
7564 
7565 #ifdef CONFIG_X86_64
7566 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7567 {
7568 	struct desc_ptr dt;
7569 	struct kvm_segment seg;
7570 	unsigned long val;
7571 	int i;
7572 
7573 	for (i = 0; i < 16; i++)
7574 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7575 
7576 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7577 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7578 
7579 	kvm_get_dr(vcpu, 6, &val);
7580 	put_smstate(u64, buf, 0x7f68, val);
7581 	kvm_get_dr(vcpu, 7, &val);
7582 	put_smstate(u64, buf, 0x7f60, val);
7583 
7584 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7585 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7586 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7587 
7588 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7589 
7590 	/* revision id */
7591 	put_smstate(u32, buf, 0x7efc, 0x00020064);
7592 
7593 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7594 
7595 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7596 	put_smstate(u16, buf, 0x7e90, seg.selector);
7597 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7598 	put_smstate(u32, buf, 0x7e94, seg.limit);
7599 	put_smstate(u64, buf, 0x7e98, seg.base);
7600 
7601 	kvm_x86_ops->get_idt(vcpu, &dt);
7602 	put_smstate(u32, buf, 0x7e84, dt.size);
7603 	put_smstate(u64, buf, 0x7e88, dt.address);
7604 
7605 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7606 	put_smstate(u16, buf, 0x7e70, seg.selector);
7607 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7608 	put_smstate(u32, buf, 0x7e74, seg.limit);
7609 	put_smstate(u64, buf, 0x7e78, seg.base);
7610 
7611 	kvm_x86_ops->get_gdt(vcpu, &dt);
7612 	put_smstate(u32, buf, 0x7e64, dt.size);
7613 	put_smstate(u64, buf, 0x7e68, dt.address);
7614 
7615 	for (i = 0; i < 6; i++)
7616 		enter_smm_save_seg_64(vcpu, buf, i);
7617 }
7618 #endif
7619 
7620 static void enter_smm(struct kvm_vcpu *vcpu)
7621 {
7622 	struct kvm_segment cs, ds;
7623 	struct desc_ptr dt;
7624 	char buf[512];
7625 	u32 cr0;
7626 
7627 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7628 	memset(buf, 0, 512);
7629 #ifdef CONFIG_X86_64
7630 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7631 		enter_smm_save_state_64(vcpu, buf);
7632 	else
7633 #endif
7634 		enter_smm_save_state_32(vcpu, buf);
7635 
7636 	/*
7637 	 * Give pre_enter_smm() a chance to make ISA-specific changes to the
7638 	 * vCPU state (e.g. leave guest mode) after we've saved the state into
7639 	 * the SMM state-save area.
7640 	 */
7641 	kvm_x86_ops->pre_enter_smm(vcpu, buf);
7642 
7643 	vcpu->arch.hflags |= HF_SMM_MASK;
7644 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7645 
7646 	if (kvm_x86_ops->get_nmi_mask(vcpu))
7647 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7648 	else
7649 		kvm_x86_ops->set_nmi_mask(vcpu, true);
7650 
7651 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7652 	kvm_rip_write(vcpu, 0x8000);
7653 
7654 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7655 	kvm_x86_ops->set_cr0(vcpu, cr0);
7656 	vcpu->arch.cr0 = cr0;
7657 
7658 	kvm_x86_ops->set_cr4(vcpu, 0);
7659 
7660 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
7661 	dt.address = dt.size = 0;
7662 	kvm_x86_ops->set_idt(vcpu, &dt);
7663 
7664 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7665 
7666 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7667 	cs.base = vcpu->arch.smbase;
7668 
7669 	ds.selector = 0;
7670 	ds.base = 0;
7671 
7672 	cs.limit    = ds.limit = 0xffffffff;
7673 	cs.type     = ds.type = 0x3;
7674 	cs.dpl      = ds.dpl = 0;
7675 	cs.db       = ds.db = 0;
7676 	cs.s        = ds.s = 1;
7677 	cs.l        = ds.l = 0;
7678 	cs.g        = ds.g = 1;
7679 	cs.avl      = ds.avl = 0;
7680 	cs.present  = ds.present = 1;
7681 	cs.unusable = ds.unusable = 0;
7682 	cs.padding  = ds.padding = 0;
7683 
7684 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7685 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7686 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7687 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7688 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7689 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7690 
7691 #ifdef CONFIG_X86_64
7692 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7693 		kvm_x86_ops->set_efer(vcpu, 0);
7694 #endif
7695 
7696 	kvm_update_cpuid(vcpu);
7697 	kvm_mmu_reset_context(vcpu);
7698 }
7699 
7700 static void process_smi(struct kvm_vcpu *vcpu)
7701 {
7702 	vcpu->arch.smi_pending = true;
7703 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7704 }
7705 
7706 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7707 {
7708 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7709 }
7710 
7711 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7712 {
7713 	if (!kvm_apic_present(vcpu))
7714 		return;
7715 
7716 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7717 
7718 	if (irqchip_split(vcpu->kvm))
7719 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7720 	else {
7721 		if (vcpu->arch.apicv_active)
7722 			kvm_x86_ops->sync_pir_to_irr(vcpu);
7723 		if (ioapic_in_kernel(vcpu->kvm))
7724 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7725 	}
7726 
7727 	if (is_guest_mode(vcpu))
7728 		vcpu->arch.load_eoi_exitmap_pending = true;
7729 	else
7730 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7731 }
7732 
7733 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7734 {
7735 	u64 eoi_exit_bitmap[4];
7736 
7737 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7738 		return;
7739 
7740 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7741 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
7742 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7743 }
7744 
7745 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7746 		unsigned long start, unsigned long end,
7747 		bool blockable)
7748 {
7749 	unsigned long apic_address;
7750 
7751 	/*
7752 	 * The physical address of apic access page is stored in the VMCS.
7753 	 * Update it when it becomes invalid.
7754 	 */
7755 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7756 	if (start <= apic_address && apic_address < end)
7757 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7758 
7759 	return 0;
7760 }
7761 
7762 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7763 {
7764 	struct page *page = NULL;
7765 
7766 	if (!lapic_in_kernel(vcpu))
7767 		return;
7768 
7769 	if (!kvm_x86_ops->set_apic_access_page_addr)
7770 		return;
7771 
7772 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7773 	if (is_error_page(page))
7774 		return;
7775 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7776 
7777 	/*
7778 	 * Do not pin apic access page in memory, the MMU notifier
7779 	 * will call us again if it is migrated or swapped out.
7780 	 */
7781 	put_page(page);
7782 }
7783 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7784 
7785 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
7786 {
7787 	smp_send_reschedule(vcpu->cpu);
7788 }
7789 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
7790 
7791 /*
7792  * Returns 1 to let vcpu_run() continue the guest execution loop without
7793  * exiting to the userspace.  Otherwise, the value will be returned to the
7794  * userspace.
7795  */
7796 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7797 {
7798 	int r;
7799 	bool req_int_win =
7800 		dm_request_for_irq_injection(vcpu) &&
7801 		kvm_cpu_accept_dm_intr(vcpu);
7802 
7803 	bool req_immediate_exit = false;
7804 
7805 	if (kvm_request_pending(vcpu)) {
7806 		if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu))
7807 			kvm_x86_ops->get_vmcs12_pages(vcpu);
7808 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7809 			kvm_mmu_unload(vcpu);
7810 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7811 			__kvm_migrate_timers(vcpu);
7812 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7813 			kvm_gen_update_masterclock(vcpu->kvm);
7814 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7815 			kvm_gen_kvmclock_update(vcpu);
7816 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7817 			r = kvm_guest_time_update(vcpu);
7818 			if (unlikely(r))
7819 				goto out;
7820 		}
7821 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7822 			kvm_mmu_sync_roots(vcpu);
7823 		if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
7824 			kvm_mmu_load_cr3(vcpu);
7825 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7826 			kvm_vcpu_flush_tlb(vcpu, true);
7827 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7828 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7829 			r = 0;
7830 			goto out;
7831 		}
7832 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7833 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7834 			vcpu->mmio_needed = 0;
7835 			r = 0;
7836 			goto out;
7837 		}
7838 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7839 			/* Page is swapped out. Do synthetic halt */
7840 			vcpu->arch.apf.halted = true;
7841 			r = 1;
7842 			goto out;
7843 		}
7844 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7845 			record_steal_time(vcpu);
7846 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
7847 			process_smi(vcpu);
7848 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
7849 			process_nmi(vcpu);
7850 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
7851 			kvm_pmu_handle_event(vcpu);
7852 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
7853 			kvm_pmu_deliver_pmi(vcpu);
7854 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7855 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7856 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
7857 				     vcpu->arch.ioapic_handled_vectors)) {
7858 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7859 				vcpu->run->eoi.vector =
7860 						vcpu->arch.pending_ioapic_eoi;
7861 				r = 0;
7862 				goto out;
7863 			}
7864 		}
7865 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7866 			vcpu_scan_ioapic(vcpu);
7867 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
7868 			vcpu_load_eoi_exitmap(vcpu);
7869 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7870 			kvm_vcpu_reload_apic_access_page(vcpu);
7871 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7872 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7873 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7874 			r = 0;
7875 			goto out;
7876 		}
7877 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7878 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7879 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7880 			r = 0;
7881 			goto out;
7882 		}
7883 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7884 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7885 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7886 			r = 0;
7887 			goto out;
7888 		}
7889 
7890 		/*
7891 		 * KVM_REQ_HV_STIMER has to be processed after
7892 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7893 		 * depend on the guest clock being up-to-date
7894 		 */
7895 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7896 			kvm_hv_process_stimers(vcpu);
7897 	}
7898 
7899 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7900 		++vcpu->stat.req_event;
7901 		kvm_apic_accept_events(vcpu);
7902 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7903 			r = 1;
7904 			goto out;
7905 		}
7906 
7907 		if (inject_pending_event(vcpu, req_int_win) != 0)
7908 			req_immediate_exit = true;
7909 		else {
7910 			/* Enable SMI/NMI/IRQ window open exits if needed.
7911 			 *
7912 			 * SMIs have three cases:
7913 			 * 1) They can be nested, and then there is nothing to
7914 			 *    do here because RSM will cause a vmexit anyway.
7915 			 * 2) There is an ISA-specific reason why SMI cannot be
7916 			 *    injected, and the moment when this changes can be
7917 			 *    intercepted.
7918 			 * 3) Or the SMI can be pending because
7919 			 *    inject_pending_event has completed the injection
7920 			 *    of an IRQ or NMI from the previous vmexit, and
7921 			 *    then we request an immediate exit to inject the
7922 			 *    SMI.
7923 			 */
7924 			if (vcpu->arch.smi_pending && !is_smm(vcpu))
7925 				if (!kvm_x86_ops->enable_smi_window(vcpu))
7926 					req_immediate_exit = true;
7927 			if (vcpu->arch.nmi_pending)
7928 				kvm_x86_ops->enable_nmi_window(vcpu);
7929 			if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7930 				kvm_x86_ops->enable_irq_window(vcpu);
7931 			WARN_ON(vcpu->arch.exception.pending);
7932 		}
7933 
7934 		if (kvm_lapic_enabled(vcpu)) {
7935 			update_cr8_intercept(vcpu);
7936 			kvm_lapic_sync_to_vapic(vcpu);
7937 		}
7938 	}
7939 
7940 	r = kvm_mmu_reload(vcpu);
7941 	if (unlikely(r)) {
7942 		goto cancel_injection;
7943 	}
7944 
7945 	preempt_disable();
7946 
7947 	kvm_x86_ops->prepare_guest_switch(vcpu);
7948 
7949 	/*
7950 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
7951 	 * IPI are then delayed after guest entry, which ensures that they
7952 	 * result in virtual interrupt delivery.
7953 	 */
7954 	local_irq_disable();
7955 	vcpu->mode = IN_GUEST_MODE;
7956 
7957 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7958 
7959 	/*
7960 	 * 1) We should set ->mode before checking ->requests.  Please see
7961 	 * the comment in kvm_vcpu_exiting_guest_mode().
7962 	 *
7963 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
7964 	 * pairs with the memory barrier implicit in pi_test_and_set_on
7965 	 * (see vmx_deliver_posted_interrupt).
7966 	 *
7967 	 * 3) This also orders the write to mode from any reads to the page
7968 	 * tables done while the VCPU is running.  Please see the comment
7969 	 * in kvm_flush_remote_tlbs.
7970 	 */
7971 	smp_mb__after_srcu_read_unlock();
7972 
7973 	/*
7974 	 * This handles the case where a posted interrupt was
7975 	 * notified with kvm_vcpu_kick.
7976 	 */
7977 	if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7978 		kvm_x86_ops->sync_pir_to_irr(vcpu);
7979 
7980 	if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7981 	    || need_resched() || signal_pending(current)) {
7982 		vcpu->mode = OUTSIDE_GUEST_MODE;
7983 		smp_wmb();
7984 		local_irq_enable();
7985 		preempt_enable();
7986 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7987 		r = 1;
7988 		goto cancel_injection;
7989 	}
7990 
7991 	if (req_immediate_exit) {
7992 		kvm_make_request(KVM_REQ_EVENT, vcpu);
7993 		kvm_x86_ops->request_immediate_exit(vcpu);
7994 	}
7995 
7996 	trace_kvm_entry(vcpu->vcpu_id);
7997 	guest_enter_irqoff();
7998 
7999 	fpregs_assert_state_consistent();
8000 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
8001 		switch_fpu_return();
8002 
8003 	if (unlikely(vcpu->arch.switch_db_regs)) {
8004 		set_debugreg(0, 7);
8005 		set_debugreg(vcpu->arch.eff_db[0], 0);
8006 		set_debugreg(vcpu->arch.eff_db[1], 1);
8007 		set_debugreg(vcpu->arch.eff_db[2], 2);
8008 		set_debugreg(vcpu->arch.eff_db[3], 3);
8009 		set_debugreg(vcpu->arch.dr6, 6);
8010 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8011 	}
8012 
8013 	kvm_x86_ops->run(vcpu);
8014 
8015 	/*
8016 	 * Do this here before restoring debug registers on the host.  And
8017 	 * since we do this before handling the vmexit, a DR access vmexit
8018 	 * can (a) read the correct value of the debug registers, (b) set
8019 	 * KVM_DEBUGREG_WONT_EXIT again.
8020 	 */
8021 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
8022 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
8023 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
8024 		kvm_update_dr0123(vcpu);
8025 		kvm_update_dr6(vcpu);
8026 		kvm_update_dr7(vcpu);
8027 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8028 	}
8029 
8030 	/*
8031 	 * If the guest has used debug registers, at least dr7
8032 	 * will be disabled while returning to the host.
8033 	 * If we don't have active breakpoints in the host, we don't
8034 	 * care about the messed up debug address registers. But if
8035 	 * we have some of them active, restore the old state.
8036 	 */
8037 	if (hw_breakpoint_active())
8038 		hw_breakpoint_restore();
8039 
8040 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8041 
8042 	vcpu->mode = OUTSIDE_GUEST_MODE;
8043 	smp_wmb();
8044 
8045 	kvm_x86_ops->handle_exit_irqoff(vcpu);
8046 
8047 	/*
8048 	 * Consume any pending interrupts, including the possible source of
8049 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
8050 	 * An instruction is required after local_irq_enable() to fully unblock
8051 	 * interrupts on processors that implement an interrupt shadow, the
8052 	 * stat.exits increment will do nicely.
8053 	 */
8054 	kvm_before_interrupt(vcpu);
8055 	local_irq_enable();
8056 	++vcpu->stat.exits;
8057 	local_irq_disable();
8058 	kvm_after_interrupt(vcpu);
8059 
8060 	guest_exit_irqoff();
8061 	if (lapic_in_kernel(vcpu)) {
8062 		s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
8063 		if (delta != S64_MIN) {
8064 			trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
8065 			vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
8066 		}
8067 	}
8068 
8069 	local_irq_enable();
8070 	preempt_enable();
8071 
8072 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8073 
8074 	/*
8075 	 * Profile KVM exit RIPs:
8076 	 */
8077 	if (unlikely(prof_on == KVM_PROFILING)) {
8078 		unsigned long rip = kvm_rip_read(vcpu);
8079 		profile_hit(KVM_PROFILING, (void *)rip);
8080 	}
8081 
8082 	if (unlikely(vcpu->arch.tsc_always_catchup))
8083 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8084 
8085 	if (vcpu->arch.apic_attention)
8086 		kvm_lapic_sync_from_vapic(vcpu);
8087 
8088 	vcpu->arch.gpa_available = false;
8089 	r = kvm_x86_ops->handle_exit(vcpu);
8090 	return r;
8091 
8092 cancel_injection:
8093 	kvm_x86_ops->cancel_injection(vcpu);
8094 	if (unlikely(vcpu->arch.apic_attention))
8095 		kvm_lapic_sync_from_vapic(vcpu);
8096 out:
8097 	return r;
8098 }
8099 
8100 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
8101 {
8102 	if (!kvm_arch_vcpu_runnable(vcpu) &&
8103 	    (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
8104 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8105 		kvm_vcpu_block(vcpu);
8106 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8107 
8108 		if (kvm_x86_ops->post_block)
8109 			kvm_x86_ops->post_block(vcpu);
8110 
8111 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
8112 			return 1;
8113 	}
8114 
8115 	kvm_apic_accept_events(vcpu);
8116 	switch(vcpu->arch.mp_state) {
8117 	case KVM_MP_STATE_HALTED:
8118 		vcpu->arch.pv.pv_unhalted = false;
8119 		vcpu->arch.mp_state =
8120 			KVM_MP_STATE_RUNNABLE;
8121 		/* fall through */
8122 	case KVM_MP_STATE_RUNNABLE:
8123 		vcpu->arch.apf.halted = false;
8124 		break;
8125 	case KVM_MP_STATE_INIT_RECEIVED:
8126 		break;
8127 	default:
8128 		return -EINTR;
8129 		break;
8130 	}
8131 	return 1;
8132 }
8133 
8134 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8135 {
8136 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8137 		kvm_x86_ops->check_nested_events(vcpu, false);
8138 
8139 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8140 		!vcpu->arch.apf.halted);
8141 }
8142 
8143 static int vcpu_run(struct kvm_vcpu *vcpu)
8144 {
8145 	int r;
8146 	struct kvm *kvm = vcpu->kvm;
8147 
8148 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8149 	vcpu->arch.l1tf_flush_l1d = true;
8150 
8151 	for (;;) {
8152 		if (kvm_vcpu_running(vcpu)) {
8153 			r = vcpu_enter_guest(vcpu);
8154 		} else {
8155 			r = vcpu_block(kvm, vcpu);
8156 		}
8157 
8158 		if (r <= 0)
8159 			break;
8160 
8161 		kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8162 		if (kvm_cpu_has_pending_timer(vcpu))
8163 			kvm_inject_pending_timer_irqs(vcpu);
8164 
8165 		if (dm_request_for_irq_injection(vcpu) &&
8166 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8167 			r = 0;
8168 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8169 			++vcpu->stat.request_irq_exits;
8170 			break;
8171 		}
8172 
8173 		kvm_check_async_pf_completion(vcpu);
8174 
8175 		if (signal_pending(current)) {
8176 			r = -EINTR;
8177 			vcpu->run->exit_reason = KVM_EXIT_INTR;
8178 			++vcpu->stat.signal_exits;
8179 			break;
8180 		}
8181 		if (need_resched()) {
8182 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8183 			cond_resched();
8184 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8185 		}
8186 	}
8187 
8188 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8189 
8190 	return r;
8191 }
8192 
8193 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8194 {
8195 	int r;
8196 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8197 	r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8198 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8199 	if (r != EMULATE_DONE)
8200 		return 0;
8201 	return 1;
8202 }
8203 
8204 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8205 {
8206 	BUG_ON(!vcpu->arch.pio.count);
8207 
8208 	return complete_emulated_io(vcpu);
8209 }
8210 
8211 /*
8212  * Implements the following, as a state machine:
8213  *
8214  * read:
8215  *   for each fragment
8216  *     for each mmio piece in the fragment
8217  *       write gpa, len
8218  *       exit
8219  *       copy data
8220  *   execute insn
8221  *
8222  * write:
8223  *   for each fragment
8224  *     for each mmio piece in the fragment
8225  *       write gpa, len
8226  *       copy data
8227  *       exit
8228  */
8229 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8230 {
8231 	struct kvm_run *run = vcpu->run;
8232 	struct kvm_mmio_fragment *frag;
8233 	unsigned len;
8234 
8235 	BUG_ON(!vcpu->mmio_needed);
8236 
8237 	/* Complete previous fragment */
8238 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8239 	len = min(8u, frag->len);
8240 	if (!vcpu->mmio_is_write)
8241 		memcpy(frag->data, run->mmio.data, len);
8242 
8243 	if (frag->len <= 8) {
8244 		/* Switch to the next fragment. */
8245 		frag++;
8246 		vcpu->mmio_cur_fragment++;
8247 	} else {
8248 		/* Go forward to the next mmio piece. */
8249 		frag->data += len;
8250 		frag->gpa += len;
8251 		frag->len -= len;
8252 	}
8253 
8254 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8255 		vcpu->mmio_needed = 0;
8256 
8257 		/* FIXME: return into emulator if single-stepping.  */
8258 		if (vcpu->mmio_is_write)
8259 			return 1;
8260 		vcpu->mmio_read_completed = 1;
8261 		return complete_emulated_io(vcpu);
8262 	}
8263 
8264 	run->exit_reason = KVM_EXIT_MMIO;
8265 	run->mmio.phys_addr = frag->gpa;
8266 	if (vcpu->mmio_is_write)
8267 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8268 	run->mmio.len = min(8u, frag->len);
8269 	run->mmio.is_write = vcpu->mmio_is_write;
8270 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8271 	return 0;
8272 }
8273 
8274 /* Swap (qemu) user FPU context for the guest FPU context. */
8275 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8276 {
8277 	fpregs_lock();
8278 
8279 	copy_fpregs_to_fpstate(&current->thread.fpu);
8280 	/* PKRU is separately restored in kvm_x86_ops->run.  */
8281 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8282 				~XFEATURE_MASK_PKRU);
8283 
8284 	fpregs_mark_activate();
8285 	fpregs_unlock();
8286 
8287 	trace_kvm_fpu(1);
8288 }
8289 
8290 /* When vcpu_run ends, restore user space FPU context. */
8291 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8292 {
8293 	fpregs_lock();
8294 
8295 	copy_fpregs_to_fpstate(vcpu->arch.guest_fpu);
8296 	copy_kernel_to_fpregs(&current->thread.fpu.state);
8297 
8298 	fpregs_mark_activate();
8299 	fpregs_unlock();
8300 
8301 	++vcpu->stat.fpu_reload;
8302 	trace_kvm_fpu(0);
8303 }
8304 
8305 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8306 {
8307 	int r;
8308 
8309 	vcpu_load(vcpu);
8310 	kvm_sigset_activate(vcpu);
8311 	kvm_load_guest_fpu(vcpu);
8312 
8313 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8314 		if (kvm_run->immediate_exit) {
8315 			r = -EINTR;
8316 			goto out;
8317 		}
8318 		kvm_vcpu_block(vcpu);
8319 		kvm_apic_accept_events(vcpu);
8320 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8321 		r = -EAGAIN;
8322 		if (signal_pending(current)) {
8323 			r = -EINTR;
8324 			vcpu->run->exit_reason = KVM_EXIT_INTR;
8325 			++vcpu->stat.signal_exits;
8326 		}
8327 		goto out;
8328 	}
8329 
8330 	if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8331 		r = -EINVAL;
8332 		goto out;
8333 	}
8334 
8335 	if (vcpu->run->kvm_dirty_regs) {
8336 		r = sync_regs(vcpu);
8337 		if (r != 0)
8338 			goto out;
8339 	}
8340 
8341 	/* re-sync apic's tpr */
8342 	if (!lapic_in_kernel(vcpu)) {
8343 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8344 			r = -EINVAL;
8345 			goto out;
8346 		}
8347 	}
8348 
8349 	if (unlikely(vcpu->arch.complete_userspace_io)) {
8350 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8351 		vcpu->arch.complete_userspace_io = NULL;
8352 		r = cui(vcpu);
8353 		if (r <= 0)
8354 			goto out;
8355 	} else
8356 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8357 
8358 	if (kvm_run->immediate_exit)
8359 		r = -EINTR;
8360 	else
8361 		r = vcpu_run(vcpu);
8362 
8363 out:
8364 	kvm_put_guest_fpu(vcpu);
8365 	if (vcpu->run->kvm_valid_regs)
8366 		store_regs(vcpu);
8367 	post_kvm_run_save(vcpu);
8368 	kvm_sigset_deactivate(vcpu);
8369 
8370 	vcpu_put(vcpu);
8371 	return r;
8372 }
8373 
8374 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8375 {
8376 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8377 		/*
8378 		 * We are here if userspace calls get_regs() in the middle of
8379 		 * instruction emulation. Registers state needs to be copied
8380 		 * back from emulation context to vcpu. Userspace shouldn't do
8381 		 * that usually, but some bad designed PV devices (vmware
8382 		 * backdoor interface) need this to work
8383 		 */
8384 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
8385 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8386 	}
8387 	regs->rax = kvm_rax_read(vcpu);
8388 	regs->rbx = kvm_rbx_read(vcpu);
8389 	regs->rcx = kvm_rcx_read(vcpu);
8390 	regs->rdx = kvm_rdx_read(vcpu);
8391 	regs->rsi = kvm_rsi_read(vcpu);
8392 	regs->rdi = kvm_rdi_read(vcpu);
8393 	regs->rsp = kvm_rsp_read(vcpu);
8394 	regs->rbp = kvm_rbp_read(vcpu);
8395 #ifdef CONFIG_X86_64
8396 	regs->r8 = kvm_r8_read(vcpu);
8397 	regs->r9 = kvm_r9_read(vcpu);
8398 	regs->r10 = kvm_r10_read(vcpu);
8399 	regs->r11 = kvm_r11_read(vcpu);
8400 	regs->r12 = kvm_r12_read(vcpu);
8401 	regs->r13 = kvm_r13_read(vcpu);
8402 	regs->r14 = kvm_r14_read(vcpu);
8403 	regs->r15 = kvm_r15_read(vcpu);
8404 #endif
8405 
8406 	regs->rip = kvm_rip_read(vcpu);
8407 	regs->rflags = kvm_get_rflags(vcpu);
8408 }
8409 
8410 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8411 {
8412 	vcpu_load(vcpu);
8413 	__get_regs(vcpu, regs);
8414 	vcpu_put(vcpu);
8415 	return 0;
8416 }
8417 
8418 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8419 {
8420 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8421 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8422 
8423 	kvm_rax_write(vcpu, regs->rax);
8424 	kvm_rbx_write(vcpu, regs->rbx);
8425 	kvm_rcx_write(vcpu, regs->rcx);
8426 	kvm_rdx_write(vcpu, regs->rdx);
8427 	kvm_rsi_write(vcpu, regs->rsi);
8428 	kvm_rdi_write(vcpu, regs->rdi);
8429 	kvm_rsp_write(vcpu, regs->rsp);
8430 	kvm_rbp_write(vcpu, regs->rbp);
8431 #ifdef CONFIG_X86_64
8432 	kvm_r8_write(vcpu, regs->r8);
8433 	kvm_r9_write(vcpu, regs->r9);
8434 	kvm_r10_write(vcpu, regs->r10);
8435 	kvm_r11_write(vcpu, regs->r11);
8436 	kvm_r12_write(vcpu, regs->r12);
8437 	kvm_r13_write(vcpu, regs->r13);
8438 	kvm_r14_write(vcpu, regs->r14);
8439 	kvm_r15_write(vcpu, regs->r15);
8440 #endif
8441 
8442 	kvm_rip_write(vcpu, regs->rip);
8443 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8444 
8445 	vcpu->arch.exception.pending = false;
8446 
8447 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8448 }
8449 
8450 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8451 {
8452 	vcpu_load(vcpu);
8453 	__set_regs(vcpu, regs);
8454 	vcpu_put(vcpu);
8455 	return 0;
8456 }
8457 
8458 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8459 {
8460 	struct kvm_segment cs;
8461 
8462 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8463 	*db = cs.db;
8464 	*l = cs.l;
8465 }
8466 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8467 
8468 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8469 {
8470 	struct desc_ptr dt;
8471 
8472 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8473 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8474 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8475 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8476 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8477 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8478 
8479 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8480 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8481 
8482 	kvm_x86_ops->get_idt(vcpu, &dt);
8483 	sregs->idt.limit = dt.size;
8484 	sregs->idt.base = dt.address;
8485 	kvm_x86_ops->get_gdt(vcpu, &dt);
8486 	sregs->gdt.limit = dt.size;
8487 	sregs->gdt.base = dt.address;
8488 
8489 	sregs->cr0 = kvm_read_cr0(vcpu);
8490 	sregs->cr2 = vcpu->arch.cr2;
8491 	sregs->cr3 = kvm_read_cr3(vcpu);
8492 	sregs->cr4 = kvm_read_cr4(vcpu);
8493 	sregs->cr8 = kvm_get_cr8(vcpu);
8494 	sregs->efer = vcpu->arch.efer;
8495 	sregs->apic_base = kvm_get_apic_base(vcpu);
8496 
8497 	memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
8498 
8499 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8500 		set_bit(vcpu->arch.interrupt.nr,
8501 			(unsigned long *)sregs->interrupt_bitmap);
8502 }
8503 
8504 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8505 				  struct kvm_sregs *sregs)
8506 {
8507 	vcpu_load(vcpu);
8508 	__get_sregs(vcpu, sregs);
8509 	vcpu_put(vcpu);
8510 	return 0;
8511 }
8512 
8513 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8514 				    struct kvm_mp_state *mp_state)
8515 {
8516 	vcpu_load(vcpu);
8517 
8518 	kvm_apic_accept_events(vcpu);
8519 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8520 					vcpu->arch.pv.pv_unhalted)
8521 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8522 	else
8523 		mp_state->mp_state = vcpu->arch.mp_state;
8524 
8525 	vcpu_put(vcpu);
8526 	return 0;
8527 }
8528 
8529 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8530 				    struct kvm_mp_state *mp_state)
8531 {
8532 	int ret = -EINVAL;
8533 
8534 	vcpu_load(vcpu);
8535 
8536 	if (!lapic_in_kernel(vcpu) &&
8537 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8538 		goto out;
8539 
8540 	/* INITs are latched while in SMM */
8541 	if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
8542 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8543 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8544 		goto out;
8545 
8546 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8547 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8548 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8549 	} else
8550 		vcpu->arch.mp_state = mp_state->mp_state;
8551 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8552 
8553 	ret = 0;
8554 out:
8555 	vcpu_put(vcpu);
8556 	return ret;
8557 }
8558 
8559 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8560 		    int reason, bool has_error_code, u32 error_code)
8561 {
8562 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8563 	int ret;
8564 
8565 	init_emulate_ctxt(vcpu);
8566 
8567 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8568 				   has_error_code, error_code);
8569 
8570 	if (ret)
8571 		return EMULATE_FAIL;
8572 
8573 	kvm_rip_write(vcpu, ctxt->eip);
8574 	kvm_set_rflags(vcpu, ctxt->eflags);
8575 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8576 	return EMULATE_DONE;
8577 }
8578 EXPORT_SYMBOL_GPL(kvm_task_switch);
8579 
8580 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8581 {
8582 	if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
8583 			(sregs->cr4 & X86_CR4_OSXSAVE))
8584 		return  -EINVAL;
8585 
8586 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8587 		/*
8588 		 * When EFER.LME and CR0.PG are set, the processor is in
8589 		 * 64-bit mode (though maybe in a 32-bit code segment).
8590 		 * CR4.PAE and EFER.LMA must be set.
8591 		 */
8592 		if (!(sregs->cr4 & X86_CR4_PAE)
8593 		    || !(sregs->efer & EFER_LMA))
8594 			return -EINVAL;
8595 	} else {
8596 		/*
8597 		 * Not in 64-bit mode: EFER.LMA is clear and the code
8598 		 * segment cannot be 64-bit.
8599 		 */
8600 		if (sregs->efer & EFER_LMA || sregs->cs.l)
8601 			return -EINVAL;
8602 	}
8603 
8604 	return 0;
8605 }
8606 
8607 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8608 {
8609 	struct msr_data apic_base_msr;
8610 	int mmu_reset_needed = 0;
8611 	int cpuid_update_needed = 0;
8612 	int pending_vec, max_bits, idx;
8613 	struct desc_ptr dt;
8614 	int ret = -EINVAL;
8615 
8616 	if (kvm_valid_sregs(vcpu, sregs))
8617 		goto out;
8618 
8619 	apic_base_msr.data = sregs->apic_base;
8620 	apic_base_msr.host_initiated = true;
8621 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
8622 		goto out;
8623 
8624 	dt.size = sregs->idt.limit;
8625 	dt.address = sregs->idt.base;
8626 	kvm_x86_ops->set_idt(vcpu, &dt);
8627 	dt.size = sregs->gdt.limit;
8628 	dt.address = sregs->gdt.base;
8629 	kvm_x86_ops->set_gdt(vcpu, &dt);
8630 
8631 	vcpu->arch.cr2 = sregs->cr2;
8632 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8633 	vcpu->arch.cr3 = sregs->cr3;
8634 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8635 
8636 	kvm_set_cr8(vcpu, sregs->cr8);
8637 
8638 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8639 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
8640 
8641 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8642 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8643 	vcpu->arch.cr0 = sregs->cr0;
8644 
8645 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8646 	cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8647 				(X86_CR4_OSXSAVE | X86_CR4_PKE));
8648 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8649 	if (cpuid_update_needed)
8650 		kvm_update_cpuid(vcpu);
8651 
8652 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8653 	if (is_pae_paging(vcpu)) {
8654 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8655 		mmu_reset_needed = 1;
8656 	}
8657 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
8658 
8659 	if (mmu_reset_needed)
8660 		kvm_mmu_reset_context(vcpu);
8661 
8662 	max_bits = KVM_NR_INTERRUPTS;
8663 	pending_vec = find_first_bit(
8664 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
8665 	if (pending_vec < max_bits) {
8666 		kvm_queue_interrupt(vcpu, pending_vec, false);
8667 		pr_debug("Set back pending irq %d\n", pending_vec);
8668 	}
8669 
8670 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8671 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8672 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8673 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8674 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8675 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8676 
8677 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8678 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8679 
8680 	update_cr8_intercept(vcpu);
8681 
8682 	/* Older userspace won't unhalt the vcpu on reset. */
8683 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8684 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8685 	    !is_protmode(vcpu))
8686 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8687 
8688 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8689 
8690 	ret = 0;
8691 out:
8692 	return ret;
8693 }
8694 
8695 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8696 				  struct kvm_sregs *sregs)
8697 {
8698 	int ret;
8699 
8700 	vcpu_load(vcpu);
8701 	ret = __set_sregs(vcpu, sregs);
8702 	vcpu_put(vcpu);
8703 	return ret;
8704 }
8705 
8706 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8707 					struct kvm_guest_debug *dbg)
8708 {
8709 	unsigned long rflags;
8710 	int i, r;
8711 
8712 	vcpu_load(vcpu);
8713 
8714 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8715 		r = -EBUSY;
8716 		if (vcpu->arch.exception.pending)
8717 			goto out;
8718 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8719 			kvm_queue_exception(vcpu, DB_VECTOR);
8720 		else
8721 			kvm_queue_exception(vcpu, BP_VECTOR);
8722 	}
8723 
8724 	/*
8725 	 * Read rflags as long as potentially injected trace flags are still
8726 	 * filtered out.
8727 	 */
8728 	rflags = kvm_get_rflags(vcpu);
8729 
8730 	vcpu->guest_debug = dbg->control;
8731 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8732 		vcpu->guest_debug = 0;
8733 
8734 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8735 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
8736 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8737 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8738 	} else {
8739 		for (i = 0; i < KVM_NR_DB_REGS; i++)
8740 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8741 	}
8742 	kvm_update_dr7(vcpu);
8743 
8744 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8745 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8746 			get_segment_base(vcpu, VCPU_SREG_CS);
8747 
8748 	/*
8749 	 * Trigger an rflags update that will inject or remove the trace
8750 	 * flags.
8751 	 */
8752 	kvm_set_rflags(vcpu, rflags);
8753 
8754 	kvm_x86_ops->update_bp_intercept(vcpu);
8755 
8756 	r = 0;
8757 
8758 out:
8759 	vcpu_put(vcpu);
8760 	return r;
8761 }
8762 
8763 /*
8764  * Translate a guest virtual address to a guest physical address.
8765  */
8766 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8767 				    struct kvm_translation *tr)
8768 {
8769 	unsigned long vaddr = tr->linear_address;
8770 	gpa_t gpa;
8771 	int idx;
8772 
8773 	vcpu_load(vcpu);
8774 
8775 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8776 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8777 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
8778 	tr->physical_address = gpa;
8779 	tr->valid = gpa != UNMAPPED_GVA;
8780 	tr->writeable = 1;
8781 	tr->usermode = 0;
8782 
8783 	vcpu_put(vcpu);
8784 	return 0;
8785 }
8786 
8787 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8788 {
8789 	struct fxregs_state *fxsave;
8790 
8791 	vcpu_load(vcpu);
8792 
8793 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8794 	memcpy(fpu->fpr, fxsave->st_space, 128);
8795 	fpu->fcw = fxsave->cwd;
8796 	fpu->fsw = fxsave->swd;
8797 	fpu->ftwx = fxsave->twd;
8798 	fpu->last_opcode = fxsave->fop;
8799 	fpu->last_ip = fxsave->rip;
8800 	fpu->last_dp = fxsave->rdp;
8801 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
8802 
8803 	vcpu_put(vcpu);
8804 	return 0;
8805 }
8806 
8807 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8808 {
8809 	struct fxregs_state *fxsave;
8810 
8811 	vcpu_load(vcpu);
8812 
8813 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8814 
8815 	memcpy(fxsave->st_space, fpu->fpr, 128);
8816 	fxsave->cwd = fpu->fcw;
8817 	fxsave->swd = fpu->fsw;
8818 	fxsave->twd = fpu->ftwx;
8819 	fxsave->fop = fpu->last_opcode;
8820 	fxsave->rip = fpu->last_ip;
8821 	fxsave->rdp = fpu->last_dp;
8822 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
8823 
8824 	vcpu_put(vcpu);
8825 	return 0;
8826 }
8827 
8828 static void store_regs(struct kvm_vcpu *vcpu)
8829 {
8830 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8831 
8832 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8833 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
8834 
8835 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8836 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8837 
8838 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8839 		kvm_vcpu_ioctl_x86_get_vcpu_events(
8840 				vcpu, &vcpu->run->s.regs.events);
8841 }
8842 
8843 static int sync_regs(struct kvm_vcpu *vcpu)
8844 {
8845 	if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8846 		return -EINVAL;
8847 
8848 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8849 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
8850 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8851 	}
8852 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8853 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8854 			return -EINVAL;
8855 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8856 	}
8857 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8858 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8859 				vcpu, &vcpu->run->s.regs.events))
8860 			return -EINVAL;
8861 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8862 	}
8863 
8864 	return 0;
8865 }
8866 
8867 static void fx_init(struct kvm_vcpu *vcpu)
8868 {
8869 	fpstate_init(&vcpu->arch.guest_fpu->state);
8870 	if (boot_cpu_has(X86_FEATURE_XSAVES))
8871 		vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
8872 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
8873 
8874 	/*
8875 	 * Ensure guest xcr0 is valid for loading
8876 	 */
8877 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8878 
8879 	vcpu->arch.cr0 |= X86_CR0_ET;
8880 }
8881 
8882 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8883 {
8884 	void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8885 
8886 	kvmclock_reset(vcpu);
8887 
8888 	kvm_x86_ops->vcpu_free(vcpu);
8889 	free_cpumask_var(wbinvd_dirty_mask);
8890 }
8891 
8892 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8893 						unsigned int id)
8894 {
8895 	struct kvm_vcpu *vcpu;
8896 
8897 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8898 		printk_once(KERN_WARNING
8899 		"kvm: SMP vm created on host with unstable TSC; "
8900 		"guest TSC will not be reliable\n");
8901 
8902 	vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8903 
8904 	return vcpu;
8905 }
8906 
8907 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8908 {
8909 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
8910 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8911 	kvm_vcpu_mtrr_init(vcpu);
8912 	vcpu_load(vcpu);
8913 	kvm_vcpu_reset(vcpu, false);
8914 	kvm_init_mmu(vcpu, false);
8915 	vcpu_put(vcpu);
8916 	return 0;
8917 }
8918 
8919 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8920 {
8921 	struct msr_data msr;
8922 	struct kvm *kvm = vcpu->kvm;
8923 
8924 	kvm_hv_vcpu_postcreate(vcpu);
8925 
8926 	if (mutex_lock_killable(&vcpu->mutex))
8927 		return;
8928 	vcpu_load(vcpu);
8929 	msr.data = 0x0;
8930 	msr.index = MSR_IA32_TSC;
8931 	msr.host_initiated = true;
8932 	kvm_write_tsc(vcpu, &msr);
8933 	vcpu_put(vcpu);
8934 
8935 	/* poll control enabled by default */
8936 	vcpu->arch.msr_kvm_poll_control = 1;
8937 
8938 	mutex_unlock(&vcpu->mutex);
8939 
8940 	if (!kvmclock_periodic_sync)
8941 		return;
8942 
8943 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8944 					KVMCLOCK_SYNC_PERIOD);
8945 }
8946 
8947 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8948 {
8949 	vcpu->arch.apf.msr_val = 0;
8950 
8951 	vcpu_load(vcpu);
8952 	kvm_mmu_unload(vcpu);
8953 	vcpu_put(vcpu);
8954 
8955 	kvm_x86_ops->vcpu_free(vcpu);
8956 }
8957 
8958 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8959 {
8960 	kvm_lapic_reset(vcpu, init_event);
8961 
8962 	vcpu->arch.hflags = 0;
8963 
8964 	vcpu->arch.smi_pending = 0;
8965 	vcpu->arch.smi_count = 0;
8966 	atomic_set(&vcpu->arch.nmi_queued, 0);
8967 	vcpu->arch.nmi_pending = 0;
8968 	vcpu->arch.nmi_injected = false;
8969 	kvm_clear_interrupt_queue(vcpu);
8970 	kvm_clear_exception_queue(vcpu);
8971 	vcpu->arch.exception.pending = false;
8972 
8973 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8974 	kvm_update_dr0123(vcpu);
8975 	vcpu->arch.dr6 = DR6_INIT;
8976 	kvm_update_dr6(vcpu);
8977 	vcpu->arch.dr7 = DR7_FIXED_1;
8978 	kvm_update_dr7(vcpu);
8979 
8980 	vcpu->arch.cr2 = 0;
8981 
8982 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8983 	vcpu->arch.apf.msr_val = 0;
8984 	vcpu->arch.st.msr_val = 0;
8985 
8986 	kvmclock_reset(vcpu);
8987 
8988 	kvm_clear_async_pf_completion_queue(vcpu);
8989 	kvm_async_pf_hash_reset(vcpu);
8990 	vcpu->arch.apf.halted = false;
8991 
8992 	if (kvm_mpx_supported()) {
8993 		void *mpx_state_buffer;
8994 
8995 		/*
8996 		 * To avoid have the INIT path from kvm_apic_has_events() that be
8997 		 * called with loaded FPU and does not let userspace fix the state.
8998 		 */
8999 		if (init_event)
9000 			kvm_put_guest_fpu(vcpu);
9001 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9002 					XFEATURE_BNDREGS);
9003 		if (mpx_state_buffer)
9004 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
9005 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9006 					XFEATURE_BNDCSR);
9007 		if (mpx_state_buffer)
9008 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
9009 		if (init_event)
9010 			kvm_load_guest_fpu(vcpu);
9011 	}
9012 
9013 	if (!init_event) {
9014 		kvm_pmu_reset(vcpu);
9015 		vcpu->arch.smbase = 0x30000;
9016 
9017 		vcpu->arch.msr_misc_features_enables = 0;
9018 
9019 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9020 	}
9021 
9022 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
9023 	vcpu->arch.regs_avail = ~0;
9024 	vcpu->arch.regs_dirty = ~0;
9025 
9026 	vcpu->arch.ia32_xss = 0;
9027 
9028 	kvm_x86_ops->vcpu_reset(vcpu, init_event);
9029 }
9030 
9031 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
9032 {
9033 	struct kvm_segment cs;
9034 
9035 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9036 	cs.selector = vector << 8;
9037 	cs.base = vector << 12;
9038 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9039 	kvm_rip_write(vcpu, 0);
9040 }
9041 
9042 int kvm_arch_hardware_enable(void)
9043 {
9044 	struct kvm *kvm;
9045 	struct kvm_vcpu *vcpu;
9046 	int i;
9047 	int ret;
9048 	u64 local_tsc;
9049 	u64 max_tsc = 0;
9050 	bool stable, backwards_tsc = false;
9051 
9052 	kvm_shared_msr_cpu_online();
9053 	ret = kvm_x86_ops->hardware_enable();
9054 	if (ret != 0)
9055 		return ret;
9056 
9057 	local_tsc = rdtsc();
9058 	stable = !kvm_check_tsc_unstable();
9059 	list_for_each_entry(kvm, &vm_list, vm_list) {
9060 		kvm_for_each_vcpu(i, vcpu, kvm) {
9061 			if (!stable && vcpu->cpu == smp_processor_id())
9062 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9063 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
9064 				backwards_tsc = true;
9065 				if (vcpu->arch.last_host_tsc > max_tsc)
9066 					max_tsc = vcpu->arch.last_host_tsc;
9067 			}
9068 		}
9069 	}
9070 
9071 	/*
9072 	 * Sometimes, even reliable TSCs go backwards.  This happens on
9073 	 * platforms that reset TSC during suspend or hibernate actions, but
9074 	 * maintain synchronization.  We must compensate.  Fortunately, we can
9075 	 * detect that condition here, which happens early in CPU bringup,
9076 	 * before any KVM threads can be running.  Unfortunately, we can't
9077 	 * bring the TSCs fully up to date with real time, as we aren't yet far
9078 	 * enough into CPU bringup that we know how much real time has actually
9079 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
9080 	 * variables that haven't been updated yet.
9081 	 *
9082 	 * So we simply find the maximum observed TSC above, then record the
9083 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
9084 	 * the adjustment will be applied.  Note that we accumulate
9085 	 * adjustments, in case multiple suspend cycles happen before some VCPU
9086 	 * gets a chance to run again.  In the event that no KVM threads get a
9087 	 * chance to run, we will miss the entire elapsed period, as we'll have
9088 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
9089 	 * loose cycle time.  This isn't too big a deal, since the loss will be
9090 	 * uniform across all VCPUs (not to mention the scenario is extremely
9091 	 * unlikely). It is possible that a second hibernate recovery happens
9092 	 * much faster than a first, causing the observed TSC here to be
9093 	 * smaller; this would require additional padding adjustment, which is
9094 	 * why we set last_host_tsc to the local tsc observed here.
9095 	 *
9096 	 * N.B. - this code below runs only on platforms with reliable TSC,
9097 	 * as that is the only way backwards_tsc is set above.  Also note
9098 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
9099 	 * have the same delta_cyc adjustment applied if backwards_tsc
9100 	 * is detected.  Note further, this adjustment is only done once,
9101 	 * as we reset last_host_tsc on all VCPUs to stop this from being
9102 	 * called multiple times (one for each physical CPU bringup).
9103 	 *
9104 	 * Platforms with unreliable TSCs don't have to deal with this, they
9105 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
9106 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
9107 	 * guarantee that they stay in perfect synchronization.
9108 	 */
9109 	if (backwards_tsc) {
9110 		u64 delta_cyc = max_tsc - local_tsc;
9111 		list_for_each_entry(kvm, &vm_list, vm_list) {
9112 			kvm->arch.backwards_tsc_observed = true;
9113 			kvm_for_each_vcpu(i, vcpu, kvm) {
9114 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
9115 				vcpu->arch.last_host_tsc = local_tsc;
9116 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9117 			}
9118 
9119 			/*
9120 			 * We have to disable TSC offset matching.. if you were
9121 			 * booting a VM while issuing an S4 host suspend....
9122 			 * you may have some problem.  Solving this issue is
9123 			 * left as an exercise to the reader.
9124 			 */
9125 			kvm->arch.last_tsc_nsec = 0;
9126 			kvm->arch.last_tsc_write = 0;
9127 		}
9128 
9129 	}
9130 	return 0;
9131 }
9132 
9133 void kvm_arch_hardware_disable(void)
9134 {
9135 	kvm_x86_ops->hardware_disable();
9136 	drop_user_return_notifiers();
9137 }
9138 
9139 int kvm_arch_hardware_setup(void)
9140 {
9141 	int r;
9142 
9143 	r = kvm_x86_ops->hardware_setup();
9144 	if (r != 0)
9145 		return r;
9146 
9147 	if (kvm_has_tsc_control) {
9148 		/*
9149 		 * Make sure the user can only configure tsc_khz values that
9150 		 * fit into a signed integer.
9151 		 * A min value is not calculated because it will always
9152 		 * be 1 on all machines.
9153 		 */
9154 		u64 max = min(0x7fffffffULL,
9155 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9156 		kvm_max_guest_tsc_khz = max;
9157 
9158 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9159 	}
9160 
9161 	kvm_init_msr_list();
9162 	return 0;
9163 }
9164 
9165 void kvm_arch_hardware_unsetup(void)
9166 {
9167 	kvm_x86_ops->hardware_unsetup();
9168 }
9169 
9170 int kvm_arch_check_processor_compat(void)
9171 {
9172 	return kvm_x86_ops->check_processor_compatibility();
9173 }
9174 
9175 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9176 {
9177 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9178 }
9179 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9180 
9181 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9182 {
9183 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9184 }
9185 
9186 struct static_key kvm_no_apic_vcpu __read_mostly;
9187 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9188 
9189 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
9190 {
9191 	struct page *page;
9192 	int r;
9193 
9194 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
9195 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9196 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9197 	else
9198 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9199 
9200 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9201 	if (!page) {
9202 		r = -ENOMEM;
9203 		goto fail;
9204 	}
9205 	vcpu->arch.pio_data = page_address(page);
9206 
9207 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
9208 
9209 	r = kvm_mmu_create(vcpu);
9210 	if (r < 0)
9211 		goto fail_free_pio_data;
9212 
9213 	if (irqchip_in_kernel(vcpu->kvm)) {
9214 		vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
9215 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9216 		if (r < 0)
9217 			goto fail_mmu_destroy;
9218 	} else
9219 		static_key_slow_inc(&kvm_no_apic_vcpu);
9220 
9221 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9222 				       GFP_KERNEL_ACCOUNT);
9223 	if (!vcpu->arch.mce_banks) {
9224 		r = -ENOMEM;
9225 		goto fail_free_lapic;
9226 	}
9227 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9228 
9229 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9230 				GFP_KERNEL_ACCOUNT)) {
9231 		r = -ENOMEM;
9232 		goto fail_free_mce_banks;
9233 	}
9234 
9235 	fx_init(vcpu);
9236 
9237 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
9238 
9239 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9240 
9241 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9242 
9243 	kvm_async_pf_hash_reset(vcpu);
9244 	kvm_pmu_init(vcpu);
9245 
9246 	vcpu->arch.pending_external_vector = -1;
9247 	vcpu->arch.preempted_in_kernel = false;
9248 
9249 	kvm_hv_vcpu_init(vcpu);
9250 
9251 	return 0;
9252 
9253 fail_free_mce_banks:
9254 	kfree(vcpu->arch.mce_banks);
9255 fail_free_lapic:
9256 	kvm_free_lapic(vcpu);
9257 fail_mmu_destroy:
9258 	kvm_mmu_destroy(vcpu);
9259 fail_free_pio_data:
9260 	free_page((unsigned long)vcpu->arch.pio_data);
9261 fail:
9262 	return r;
9263 }
9264 
9265 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
9266 {
9267 	int idx;
9268 
9269 	kvm_hv_vcpu_uninit(vcpu);
9270 	kvm_pmu_destroy(vcpu);
9271 	kfree(vcpu->arch.mce_banks);
9272 	kvm_free_lapic(vcpu);
9273 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9274 	kvm_mmu_destroy(vcpu);
9275 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9276 	free_page((unsigned long)vcpu->arch.pio_data);
9277 	if (!lapic_in_kernel(vcpu))
9278 		static_key_slow_dec(&kvm_no_apic_vcpu);
9279 }
9280 
9281 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9282 {
9283 	vcpu->arch.l1tf_flush_l1d = true;
9284 	kvm_x86_ops->sched_in(vcpu, cpu);
9285 }
9286 
9287 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9288 {
9289 	if (type)
9290 		return -EINVAL;
9291 
9292 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9293 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9294 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9295 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9296 
9297 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9298 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9299 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9300 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9301 		&kvm->arch.irq_sources_bitmap);
9302 
9303 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9304 	mutex_init(&kvm->arch.apic_map_lock);
9305 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9306 
9307 	kvm->arch.kvmclock_offset = -ktime_get_boottime_ns();
9308 	pvclock_update_vm_gtod_copy(kvm);
9309 
9310 	kvm->arch.guest_can_read_msr_platform_info = true;
9311 
9312 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9313 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9314 
9315 	kvm_hv_init_vm(kvm);
9316 	kvm_page_track_init(kvm);
9317 	kvm_mmu_init_vm(kvm);
9318 
9319 	if (kvm_x86_ops->vm_init)
9320 		return kvm_x86_ops->vm_init(kvm);
9321 
9322 	return 0;
9323 }
9324 
9325 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9326 {
9327 	vcpu_load(vcpu);
9328 	kvm_mmu_unload(vcpu);
9329 	vcpu_put(vcpu);
9330 }
9331 
9332 static void kvm_free_vcpus(struct kvm *kvm)
9333 {
9334 	unsigned int i;
9335 	struct kvm_vcpu *vcpu;
9336 
9337 	/*
9338 	 * Unpin any mmu pages first.
9339 	 */
9340 	kvm_for_each_vcpu(i, vcpu, kvm) {
9341 		kvm_clear_async_pf_completion_queue(vcpu);
9342 		kvm_unload_vcpu_mmu(vcpu);
9343 	}
9344 	kvm_for_each_vcpu(i, vcpu, kvm)
9345 		kvm_arch_vcpu_free(vcpu);
9346 
9347 	mutex_lock(&kvm->lock);
9348 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9349 		kvm->vcpus[i] = NULL;
9350 
9351 	atomic_set(&kvm->online_vcpus, 0);
9352 	mutex_unlock(&kvm->lock);
9353 }
9354 
9355 void kvm_arch_sync_events(struct kvm *kvm)
9356 {
9357 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9358 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9359 	kvm_free_pit(kvm);
9360 }
9361 
9362 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9363 {
9364 	int i, r;
9365 	unsigned long hva;
9366 	struct kvm_memslots *slots = kvm_memslots(kvm);
9367 	struct kvm_memory_slot *slot, old;
9368 
9369 	/* Called with kvm->slots_lock held.  */
9370 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9371 		return -EINVAL;
9372 
9373 	slot = id_to_memslot(slots, id);
9374 	if (size) {
9375 		if (slot->npages)
9376 			return -EEXIST;
9377 
9378 		/*
9379 		 * MAP_SHARED to prevent internal slot pages from being moved
9380 		 * by fork()/COW.
9381 		 */
9382 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9383 			      MAP_SHARED | MAP_ANONYMOUS, 0);
9384 		if (IS_ERR((void *)hva))
9385 			return PTR_ERR((void *)hva);
9386 	} else {
9387 		if (!slot->npages)
9388 			return 0;
9389 
9390 		hva = 0;
9391 	}
9392 
9393 	old = *slot;
9394 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9395 		struct kvm_userspace_memory_region m;
9396 
9397 		m.slot = id | (i << 16);
9398 		m.flags = 0;
9399 		m.guest_phys_addr = gpa;
9400 		m.userspace_addr = hva;
9401 		m.memory_size = size;
9402 		r = __kvm_set_memory_region(kvm, &m);
9403 		if (r < 0)
9404 			return r;
9405 	}
9406 
9407 	if (!size)
9408 		vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
9409 
9410 	return 0;
9411 }
9412 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9413 
9414 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9415 {
9416 	int r;
9417 
9418 	mutex_lock(&kvm->slots_lock);
9419 	r = __x86_set_memory_region(kvm, id, gpa, size);
9420 	mutex_unlock(&kvm->slots_lock);
9421 
9422 	return r;
9423 }
9424 EXPORT_SYMBOL_GPL(x86_set_memory_region);
9425 
9426 void kvm_arch_destroy_vm(struct kvm *kvm)
9427 {
9428 	if (current->mm == kvm->mm) {
9429 		/*
9430 		 * Free memory regions allocated on behalf of userspace,
9431 		 * unless the the memory map has changed due to process exit
9432 		 * or fd copying.
9433 		 */
9434 		x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
9435 		x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
9436 		x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9437 	}
9438 	if (kvm_x86_ops->vm_destroy)
9439 		kvm_x86_ops->vm_destroy(kvm);
9440 	kvm_pic_destroy(kvm);
9441 	kvm_ioapic_destroy(kvm);
9442 	kvm_free_vcpus(kvm);
9443 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9444 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
9445 	kvm_mmu_uninit_vm(kvm);
9446 	kvm_page_track_cleanup(kvm);
9447 	kvm_hv_destroy_vm(kvm);
9448 }
9449 
9450 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9451 			   struct kvm_memory_slot *dont)
9452 {
9453 	int i;
9454 
9455 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9456 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9457 			kvfree(free->arch.rmap[i]);
9458 			free->arch.rmap[i] = NULL;
9459 		}
9460 		if (i == 0)
9461 			continue;
9462 
9463 		if (!dont || free->arch.lpage_info[i - 1] !=
9464 			     dont->arch.lpage_info[i - 1]) {
9465 			kvfree(free->arch.lpage_info[i - 1]);
9466 			free->arch.lpage_info[i - 1] = NULL;
9467 		}
9468 	}
9469 
9470 	kvm_page_track_free_memslot(free, dont);
9471 }
9472 
9473 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9474 			    unsigned long npages)
9475 {
9476 	int i;
9477 
9478 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9479 		struct kvm_lpage_info *linfo;
9480 		unsigned long ugfn;
9481 		int lpages;
9482 		int level = i + 1;
9483 
9484 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
9485 				      slot->base_gfn, level) + 1;
9486 
9487 		slot->arch.rmap[i] =
9488 			kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9489 				 GFP_KERNEL_ACCOUNT);
9490 		if (!slot->arch.rmap[i])
9491 			goto out_free;
9492 		if (i == 0)
9493 			continue;
9494 
9495 		linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
9496 		if (!linfo)
9497 			goto out_free;
9498 
9499 		slot->arch.lpage_info[i - 1] = linfo;
9500 
9501 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9502 			linfo[0].disallow_lpage = 1;
9503 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9504 			linfo[lpages - 1].disallow_lpage = 1;
9505 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
9506 		/*
9507 		 * If the gfn and userspace address are not aligned wrt each
9508 		 * other, or if explicitly asked to, disable large page
9509 		 * support for this slot
9510 		 */
9511 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9512 		    !kvm_largepages_enabled()) {
9513 			unsigned long j;
9514 
9515 			for (j = 0; j < lpages; ++j)
9516 				linfo[j].disallow_lpage = 1;
9517 		}
9518 	}
9519 
9520 	if (kvm_page_track_create_memslot(slot, npages))
9521 		goto out_free;
9522 
9523 	return 0;
9524 
9525 out_free:
9526 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9527 		kvfree(slot->arch.rmap[i]);
9528 		slot->arch.rmap[i] = NULL;
9529 		if (i == 0)
9530 			continue;
9531 
9532 		kvfree(slot->arch.lpage_info[i - 1]);
9533 		slot->arch.lpage_info[i - 1] = NULL;
9534 	}
9535 	return -ENOMEM;
9536 }
9537 
9538 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
9539 {
9540 	/*
9541 	 * memslots->generation has been incremented.
9542 	 * mmio generation may have reached its maximum value.
9543 	 */
9544 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
9545 }
9546 
9547 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9548 				struct kvm_memory_slot *memslot,
9549 				const struct kvm_userspace_memory_region *mem,
9550 				enum kvm_mr_change change)
9551 {
9552 	return 0;
9553 }
9554 
9555 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9556 				     struct kvm_memory_slot *new)
9557 {
9558 	/* Still write protect RO slot */
9559 	if (new->flags & KVM_MEM_READONLY) {
9560 		kvm_mmu_slot_remove_write_access(kvm, new);
9561 		return;
9562 	}
9563 
9564 	/*
9565 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
9566 	 *
9567 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
9568 	 *
9569 	 *  - KVM_MR_CREATE with dirty logging is disabled
9570 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9571 	 *
9572 	 * The reason is, in case of PML, we need to set D-bit for any slots
9573 	 * with dirty logging disabled in order to eliminate unnecessary GPA
9574 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
9575 	 * guarantees leaving PML enabled during guest's lifetime won't have
9576 	 * any additional overhead from PML when guest is running with dirty
9577 	 * logging disabled for memory slots.
9578 	 *
9579 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9580 	 * to dirty logging mode.
9581 	 *
9582 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9583 	 *
9584 	 * In case of write protect:
9585 	 *
9586 	 * Write protect all pages for dirty logging.
9587 	 *
9588 	 * All the sptes including the large sptes which point to this
9589 	 * slot are set to readonly. We can not create any new large
9590 	 * spte on this slot until the end of the logging.
9591 	 *
9592 	 * See the comments in fast_page_fault().
9593 	 */
9594 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9595 		if (kvm_x86_ops->slot_enable_log_dirty)
9596 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9597 		else
9598 			kvm_mmu_slot_remove_write_access(kvm, new);
9599 	} else {
9600 		if (kvm_x86_ops->slot_disable_log_dirty)
9601 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9602 	}
9603 }
9604 
9605 void kvm_arch_commit_memory_region(struct kvm *kvm,
9606 				const struct kvm_userspace_memory_region *mem,
9607 				const struct kvm_memory_slot *old,
9608 				const struct kvm_memory_slot *new,
9609 				enum kvm_mr_change change)
9610 {
9611 	if (!kvm->arch.n_requested_mmu_pages)
9612 		kvm_mmu_change_mmu_pages(kvm,
9613 				kvm_mmu_calculate_default_mmu_pages(kvm));
9614 
9615 	/*
9616 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
9617 	 * sptes have to be split.  If live migration is successful, the guest
9618 	 * in the source machine will be destroyed and large sptes will be
9619 	 * created in the destination. However, if the guest continues to run
9620 	 * in the source machine (for example if live migration fails), small
9621 	 * sptes will remain around and cause bad performance.
9622 	 *
9623 	 * Scan sptes if dirty logging has been stopped, dropping those
9624 	 * which can be collapsed into a single large-page spte.  Later
9625 	 * page faults will create the large-page sptes.
9626 	 */
9627 	if ((change != KVM_MR_DELETE) &&
9628 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9629 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9630 		kvm_mmu_zap_collapsible_sptes(kvm, new);
9631 
9632 	/*
9633 	 * Set up write protection and/or dirty logging for the new slot.
9634 	 *
9635 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9636 	 * been zapped so no dirty logging staff is needed for old slot. For
9637 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9638 	 * new and it's also covered when dealing with the new slot.
9639 	 *
9640 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
9641 	 */
9642 	if (change != KVM_MR_DELETE)
9643 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9644 }
9645 
9646 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9647 {
9648 	kvm_mmu_zap_all(kvm);
9649 }
9650 
9651 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9652 				   struct kvm_memory_slot *slot)
9653 {
9654 	kvm_page_track_flush_slot(kvm, slot);
9655 }
9656 
9657 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
9658 {
9659 	return (is_guest_mode(vcpu) &&
9660 			kvm_x86_ops->guest_apic_has_interrupt &&
9661 			kvm_x86_ops->guest_apic_has_interrupt(vcpu));
9662 }
9663 
9664 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9665 {
9666 	if (!list_empty_careful(&vcpu->async_pf.done))
9667 		return true;
9668 
9669 	if (kvm_apic_has_events(vcpu))
9670 		return true;
9671 
9672 	if (vcpu->arch.pv.pv_unhalted)
9673 		return true;
9674 
9675 	if (vcpu->arch.exception.pending)
9676 		return true;
9677 
9678 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9679 	    (vcpu->arch.nmi_pending &&
9680 	     kvm_x86_ops->nmi_allowed(vcpu)))
9681 		return true;
9682 
9683 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9684 	    (vcpu->arch.smi_pending && !is_smm(vcpu)))
9685 		return true;
9686 
9687 	if (kvm_arch_interrupt_allowed(vcpu) &&
9688 	    (kvm_cpu_has_interrupt(vcpu) ||
9689 	    kvm_guest_apic_has_interrupt(vcpu)))
9690 		return true;
9691 
9692 	if (kvm_hv_has_stimer_pending(vcpu))
9693 		return true;
9694 
9695 	return false;
9696 }
9697 
9698 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9699 {
9700 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9701 }
9702 
9703 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9704 {
9705 	return vcpu->arch.preempted_in_kernel;
9706 }
9707 
9708 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9709 {
9710 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9711 }
9712 
9713 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9714 {
9715 	return kvm_x86_ops->interrupt_allowed(vcpu);
9716 }
9717 
9718 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9719 {
9720 	if (is_64_bit_mode(vcpu))
9721 		return kvm_rip_read(vcpu);
9722 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9723 		     kvm_rip_read(vcpu));
9724 }
9725 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9726 
9727 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9728 {
9729 	return kvm_get_linear_rip(vcpu) == linear_rip;
9730 }
9731 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9732 
9733 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9734 {
9735 	unsigned long rflags;
9736 
9737 	rflags = kvm_x86_ops->get_rflags(vcpu);
9738 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9739 		rflags &= ~X86_EFLAGS_TF;
9740 	return rflags;
9741 }
9742 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9743 
9744 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9745 {
9746 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9747 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9748 		rflags |= X86_EFLAGS_TF;
9749 	kvm_x86_ops->set_rflags(vcpu, rflags);
9750 }
9751 
9752 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9753 {
9754 	__kvm_set_rflags(vcpu, rflags);
9755 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9756 }
9757 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9758 
9759 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9760 {
9761 	int r;
9762 
9763 	if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
9764 	      work->wakeup_all)
9765 		return;
9766 
9767 	r = kvm_mmu_reload(vcpu);
9768 	if (unlikely(r))
9769 		return;
9770 
9771 	if (!vcpu->arch.mmu->direct_map &&
9772 	      work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu))
9773 		return;
9774 
9775 	vcpu->arch.mmu->page_fault(vcpu, work->gva, 0, true);
9776 }
9777 
9778 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9779 {
9780 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9781 }
9782 
9783 static inline u32 kvm_async_pf_next_probe(u32 key)
9784 {
9785 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9786 }
9787 
9788 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9789 {
9790 	u32 key = kvm_async_pf_hash_fn(gfn);
9791 
9792 	while (vcpu->arch.apf.gfns[key] != ~0)
9793 		key = kvm_async_pf_next_probe(key);
9794 
9795 	vcpu->arch.apf.gfns[key] = gfn;
9796 }
9797 
9798 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9799 {
9800 	int i;
9801 	u32 key = kvm_async_pf_hash_fn(gfn);
9802 
9803 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9804 		     (vcpu->arch.apf.gfns[key] != gfn &&
9805 		      vcpu->arch.apf.gfns[key] != ~0); i++)
9806 		key = kvm_async_pf_next_probe(key);
9807 
9808 	return key;
9809 }
9810 
9811 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9812 {
9813 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9814 }
9815 
9816 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9817 {
9818 	u32 i, j, k;
9819 
9820 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9821 	while (true) {
9822 		vcpu->arch.apf.gfns[i] = ~0;
9823 		do {
9824 			j = kvm_async_pf_next_probe(j);
9825 			if (vcpu->arch.apf.gfns[j] == ~0)
9826 				return;
9827 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9828 			/*
9829 			 * k lies cyclically in ]i,j]
9830 			 * |    i.k.j |
9831 			 * |....j i.k.| or  |.k..j i...|
9832 			 */
9833 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9834 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9835 		i = j;
9836 	}
9837 }
9838 
9839 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9840 {
9841 
9842 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9843 				      sizeof(val));
9844 }
9845 
9846 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9847 {
9848 
9849 	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
9850 				      sizeof(u32));
9851 }
9852 
9853 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
9854 {
9855 	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
9856 		return false;
9857 
9858 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
9859 	    (vcpu->arch.apf.send_user_only &&
9860 	     kvm_x86_ops->get_cpl(vcpu) == 0))
9861 		return false;
9862 
9863 	return true;
9864 }
9865 
9866 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
9867 {
9868 	if (unlikely(!lapic_in_kernel(vcpu) ||
9869 		     kvm_event_needs_reinjection(vcpu) ||
9870 		     vcpu->arch.exception.pending))
9871 		return false;
9872 
9873 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
9874 		return false;
9875 
9876 	/*
9877 	 * If interrupts are off we cannot even use an artificial
9878 	 * halt state.
9879 	 */
9880 	return kvm_x86_ops->interrupt_allowed(vcpu);
9881 }
9882 
9883 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
9884 				     struct kvm_async_pf *work)
9885 {
9886 	struct x86_exception fault;
9887 
9888 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
9889 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
9890 
9891 	if (kvm_can_deliver_async_pf(vcpu) &&
9892 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9893 		fault.vector = PF_VECTOR;
9894 		fault.error_code_valid = true;
9895 		fault.error_code = 0;
9896 		fault.nested_page_fault = false;
9897 		fault.address = work->arch.token;
9898 		fault.async_page_fault = true;
9899 		kvm_inject_page_fault(vcpu, &fault);
9900 	} else {
9901 		/*
9902 		 * It is not possible to deliver a paravirtualized asynchronous
9903 		 * page fault, but putting the guest in an artificial halt state
9904 		 * can be beneficial nevertheless: if an interrupt arrives, we
9905 		 * can deliver it timely and perhaps the guest will schedule
9906 		 * another process.  When the instruction that triggered a page
9907 		 * fault is retried, hopefully the page will be ready in the host.
9908 		 */
9909 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9910 	}
9911 }
9912 
9913 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9914 				 struct kvm_async_pf *work)
9915 {
9916 	struct x86_exception fault;
9917 	u32 val;
9918 
9919 	if (work->wakeup_all)
9920 		work->arch.token = ~0; /* broadcast wakeup */
9921 	else
9922 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9923 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
9924 
9925 	if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9926 	    !apf_get_user(vcpu, &val)) {
9927 		if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9928 		    vcpu->arch.exception.pending &&
9929 		    vcpu->arch.exception.nr == PF_VECTOR &&
9930 		    !apf_put_user(vcpu, 0)) {
9931 			vcpu->arch.exception.injected = false;
9932 			vcpu->arch.exception.pending = false;
9933 			vcpu->arch.exception.nr = 0;
9934 			vcpu->arch.exception.has_error_code = false;
9935 			vcpu->arch.exception.error_code = 0;
9936 			vcpu->arch.exception.has_payload = false;
9937 			vcpu->arch.exception.payload = 0;
9938 		} else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9939 			fault.vector = PF_VECTOR;
9940 			fault.error_code_valid = true;
9941 			fault.error_code = 0;
9942 			fault.nested_page_fault = false;
9943 			fault.address = work->arch.token;
9944 			fault.async_page_fault = true;
9945 			kvm_inject_page_fault(vcpu, &fault);
9946 		}
9947 	}
9948 	vcpu->arch.apf.halted = false;
9949 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9950 }
9951 
9952 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9953 {
9954 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9955 		return true;
9956 	else
9957 		return kvm_can_do_async_pf(vcpu);
9958 }
9959 
9960 void kvm_arch_start_assignment(struct kvm *kvm)
9961 {
9962 	atomic_inc(&kvm->arch.assigned_device_count);
9963 }
9964 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9965 
9966 void kvm_arch_end_assignment(struct kvm *kvm)
9967 {
9968 	atomic_dec(&kvm->arch.assigned_device_count);
9969 }
9970 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9971 
9972 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9973 {
9974 	return atomic_read(&kvm->arch.assigned_device_count);
9975 }
9976 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9977 
9978 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9979 {
9980 	atomic_inc(&kvm->arch.noncoherent_dma_count);
9981 }
9982 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9983 
9984 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9985 {
9986 	atomic_dec(&kvm->arch.noncoherent_dma_count);
9987 }
9988 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9989 
9990 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9991 {
9992 	return atomic_read(&kvm->arch.noncoherent_dma_count);
9993 }
9994 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9995 
9996 bool kvm_arch_has_irq_bypass(void)
9997 {
9998 	return kvm_x86_ops->update_pi_irte != NULL;
9999 }
10000 
10001 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
10002 				      struct irq_bypass_producer *prod)
10003 {
10004 	struct kvm_kernel_irqfd *irqfd =
10005 		container_of(cons, struct kvm_kernel_irqfd, consumer);
10006 
10007 	irqfd->producer = prod;
10008 
10009 	return kvm_x86_ops->update_pi_irte(irqfd->kvm,
10010 					   prod->irq, irqfd->gsi, 1);
10011 }
10012 
10013 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
10014 				      struct irq_bypass_producer *prod)
10015 {
10016 	int ret;
10017 	struct kvm_kernel_irqfd *irqfd =
10018 		container_of(cons, struct kvm_kernel_irqfd, consumer);
10019 
10020 	WARN_ON(irqfd->producer != prod);
10021 	irqfd->producer = NULL;
10022 
10023 	/*
10024 	 * When producer of consumer is unregistered, we change back to
10025 	 * remapped mode, so we can re-use the current implementation
10026 	 * when the irq is masked/disabled or the consumer side (KVM
10027 	 * int this case doesn't want to receive the interrupts.
10028 	*/
10029 	ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
10030 	if (ret)
10031 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
10032 		       " fails: %d\n", irqfd->consumer.token, ret);
10033 }
10034 
10035 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
10036 				   uint32_t guest_irq, bool set)
10037 {
10038 	if (!kvm_x86_ops->update_pi_irte)
10039 		return -EINVAL;
10040 
10041 	return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
10042 }
10043 
10044 bool kvm_vector_hashing_enabled(void)
10045 {
10046 	return vector_hashing;
10047 }
10048 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
10049 
10050 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
10051 {
10052 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
10053 }
10054 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
10055 
10056 
10057 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
10058 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
10059 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
10060 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
10061 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
10062 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
10063 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
10064 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
10065 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
10066 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
10067 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
10068 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
10069 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
10070 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
10071 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
10072 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
10073 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
10074 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
10075 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
10076