1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * derived from drivers/kvm/kvm_main.c 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2008 Qumranet, Inc. 8 * Copyright IBM Corporation, 2008 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 * Amit Shah <amit.shah@qumranet.com> 15 * Ben-Ami Yassour <benami@il.ibm.com> 16 * 17 * This work is licensed under the terms of the GNU GPL, version 2. See 18 * the COPYING file in the top-level directory. 19 * 20 */ 21 22 #include <linux/kvm_host.h> 23 #include "irq.h" 24 #include "mmu.h" 25 #include "i8254.h" 26 #include "tss.h" 27 #include "kvm_cache_regs.h" 28 #include "x86.h" 29 #include "cpuid.h" 30 31 #include <linux/clocksource.h> 32 #include <linux/interrupt.h> 33 #include <linux/kvm.h> 34 #include <linux/fs.h> 35 #include <linux/vmalloc.h> 36 #include <linux/module.h> 37 #include <linux/mman.h> 38 #include <linux/highmem.h> 39 #include <linux/iommu.h> 40 #include <linux/intel-iommu.h> 41 #include <linux/cpufreq.h> 42 #include <linux/user-return-notifier.h> 43 #include <linux/srcu.h> 44 #include <linux/slab.h> 45 #include <linux/perf_event.h> 46 #include <linux/uaccess.h> 47 #include <linux/hash.h> 48 #include <linux/pci.h> 49 #include <trace/events/kvm.h> 50 51 #define CREATE_TRACE_POINTS 52 #include "trace.h" 53 54 #include <asm/debugreg.h> 55 #include <asm/msr.h> 56 #include <asm/desc.h> 57 #include <asm/mtrr.h> 58 #include <asm/mce.h> 59 #include <asm/i387.h> 60 #include <asm/fpu-internal.h> /* Ugh! */ 61 #include <asm/xcr.h> 62 #include <asm/pvclock.h> 63 #include <asm/div64.h> 64 65 #define MAX_IO_MSRS 256 66 #define KVM_MAX_MCE_BANKS 32 67 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P) 68 69 #define emul_to_vcpu(ctxt) \ 70 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt) 71 72 /* EFER defaults: 73 * - enable syscall per default because its emulated by KVM 74 * - enable LME and LMA per default on 64 bit KVM 75 */ 76 #ifdef CONFIG_X86_64 77 static 78 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 79 #else 80 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 81 #endif 82 83 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM 84 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU 85 86 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 87 static void process_nmi(struct kvm_vcpu *vcpu); 88 89 struct kvm_x86_ops *kvm_x86_ops; 90 EXPORT_SYMBOL_GPL(kvm_x86_ops); 91 92 static bool ignore_msrs = 0; 93 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 94 95 bool kvm_has_tsc_control; 96 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 97 u32 kvm_max_guest_tsc_khz; 98 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 99 100 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 101 static u32 tsc_tolerance_ppm = 250; 102 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 103 104 #define KVM_NR_SHARED_MSRS 16 105 106 struct kvm_shared_msrs_global { 107 int nr; 108 u32 msrs[KVM_NR_SHARED_MSRS]; 109 }; 110 111 struct kvm_shared_msrs { 112 struct user_return_notifier urn; 113 bool registered; 114 struct kvm_shared_msr_values { 115 u64 host; 116 u64 curr; 117 } values[KVM_NR_SHARED_MSRS]; 118 }; 119 120 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; 121 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs); 122 123 struct kvm_stats_debugfs_item debugfs_entries[] = { 124 { "pf_fixed", VCPU_STAT(pf_fixed) }, 125 { "pf_guest", VCPU_STAT(pf_guest) }, 126 { "tlb_flush", VCPU_STAT(tlb_flush) }, 127 { "invlpg", VCPU_STAT(invlpg) }, 128 { "exits", VCPU_STAT(exits) }, 129 { "io_exits", VCPU_STAT(io_exits) }, 130 { "mmio_exits", VCPU_STAT(mmio_exits) }, 131 { "signal_exits", VCPU_STAT(signal_exits) }, 132 { "irq_window", VCPU_STAT(irq_window_exits) }, 133 { "nmi_window", VCPU_STAT(nmi_window_exits) }, 134 { "halt_exits", VCPU_STAT(halt_exits) }, 135 { "halt_wakeup", VCPU_STAT(halt_wakeup) }, 136 { "hypercalls", VCPU_STAT(hypercalls) }, 137 { "request_irq", VCPU_STAT(request_irq_exits) }, 138 { "irq_exits", VCPU_STAT(irq_exits) }, 139 { "host_state_reload", VCPU_STAT(host_state_reload) }, 140 { "efer_reload", VCPU_STAT(efer_reload) }, 141 { "fpu_reload", VCPU_STAT(fpu_reload) }, 142 { "insn_emulation", VCPU_STAT(insn_emulation) }, 143 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, 144 { "irq_injections", VCPU_STAT(irq_injections) }, 145 { "nmi_injections", VCPU_STAT(nmi_injections) }, 146 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, 147 { "mmu_pte_write", VM_STAT(mmu_pte_write) }, 148 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, 149 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, 150 { "mmu_flooded", VM_STAT(mmu_flooded) }, 151 { "mmu_recycled", VM_STAT(mmu_recycled) }, 152 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, 153 { "mmu_unsync", VM_STAT(mmu_unsync) }, 154 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, 155 { "largepages", VM_STAT(lpages) }, 156 { NULL } 157 }; 158 159 u64 __read_mostly host_xcr0; 160 161 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 162 163 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 164 { 165 int i; 166 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) 167 vcpu->arch.apf.gfns[i] = ~0; 168 } 169 170 static void kvm_on_user_return(struct user_return_notifier *urn) 171 { 172 unsigned slot; 173 struct kvm_shared_msrs *locals 174 = container_of(urn, struct kvm_shared_msrs, urn); 175 struct kvm_shared_msr_values *values; 176 177 for (slot = 0; slot < shared_msrs_global.nr; ++slot) { 178 values = &locals->values[slot]; 179 if (values->host != values->curr) { 180 wrmsrl(shared_msrs_global.msrs[slot], values->host); 181 values->curr = values->host; 182 } 183 } 184 locals->registered = false; 185 user_return_notifier_unregister(urn); 186 } 187 188 static void shared_msr_update(unsigned slot, u32 msr) 189 { 190 struct kvm_shared_msrs *smsr; 191 u64 value; 192 193 smsr = &__get_cpu_var(shared_msrs); 194 /* only read, and nobody should modify it at this time, 195 * so don't need lock */ 196 if (slot >= shared_msrs_global.nr) { 197 printk(KERN_ERR "kvm: invalid MSR slot!"); 198 return; 199 } 200 rdmsrl_safe(msr, &value); 201 smsr->values[slot].host = value; 202 smsr->values[slot].curr = value; 203 } 204 205 void kvm_define_shared_msr(unsigned slot, u32 msr) 206 { 207 if (slot >= shared_msrs_global.nr) 208 shared_msrs_global.nr = slot + 1; 209 shared_msrs_global.msrs[slot] = msr; 210 /* we need ensured the shared_msr_global have been updated */ 211 smp_wmb(); 212 } 213 EXPORT_SYMBOL_GPL(kvm_define_shared_msr); 214 215 static void kvm_shared_msr_cpu_online(void) 216 { 217 unsigned i; 218 219 for (i = 0; i < shared_msrs_global.nr; ++i) 220 shared_msr_update(i, shared_msrs_global.msrs[i]); 221 } 222 223 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) 224 { 225 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs); 226 227 if (((value ^ smsr->values[slot].curr) & mask) == 0) 228 return; 229 smsr->values[slot].curr = value; 230 wrmsrl(shared_msrs_global.msrs[slot], value); 231 if (!smsr->registered) { 232 smsr->urn.on_user_return = kvm_on_user_return; 233 user_return_notifier_register(&smsr->urn); 234 smsr->registered = true; 235 } 236 } 237 EXPORT_SYMBOL_GPL(kvm_set_shared_msr); 238 239 static void drop_user_return_notifiers(void *ignore) 240 { 241 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs); 242 243 if (smsr->registered) 244 kvm_on_user_return(&smsr->urn); 245 } 246 247 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 248 { 249 return vcpu->arch.apic_base; 250 } 251 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 252 253 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data) 254 { 255 /* TODO: reserve bits check */ 256 kvm_lapic_set_base(vcpu, data); 257 } 258 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 259 260 #define EXCPT_BENIGN 0 261 #define EXCPT_CONTRIBUTORY 1 262 #define EXCPT_PF 2 263 264 static int exception_class(int vector) 265 { 266 switch (vector) { 267 case PF_VECTOR: 268 return EXCPT_PF; 269 case DE_VECTOR: 270 case TS_VECTOR: 271 case NP_VECTOR: 272 case SS_VECTOR: 273 case GP_VECTOR: 274 return EXCPT_CONTRIBUTORY; 275 default: 276 break; 277 } 278 return EXCPT_BENIGN; 279 } 280 281 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 282 unsigned nr, bool has_error, u32 error_code, 283 bool reinject) 284 { 285 u32 prev_nr; 286 int class1, class2; 287 288 kvm_make_request(KVM_REQ_EVENT, vcpu); 289 290 if (!vcpu->arch.exception.pending) { 291 queue: 292 vcpu->arch.exception.pending = true; 293 vcpu->arch.exception.has_error_code = has_error; 294 vcpu->arch.exception.nr = nr; 295 vcpu->arch.exception.error_code = error_code; 296 vcpu->arch.exception.reinject = reinject; 297 return; 298 } 299 300 /* to check exception */ 301 prev_nr = vcpu->arch.exception.nr; 302 if (prev_nr == DF_VECTOR) { 303 /* triple fault -> shutdown */ 304 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 305 return; 306 } 307 class1 = exception_class(prev_nr); 308 class2 = exception_class(nr); 309 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 310 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 311 /* generate double fault per SDM Table 5-5 */ 312 vcpu->arch.exception.pending = true; 313 vcpu->arch.exception.has_error_code = true; 314 vcpu->arch.exception.nr = DF_VECTOR; 315 vcpu->arch.exception.error_code = 0; 316 } else 317 /* replace previous exception with a new one in a hope 318 that instruction re-execution will regenerate lost 319 exception */ 320 goto queue; 321 } 322 323 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 324 { 325 kvm_multiple_exception(vcpu, nr, false, 0, false); 326 } 327 EXPORT_SYMBOL_GPL(kvm_queue_exception); 328 329 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 330 { 331 kvm_multiple_exception(vcpu, nr, false, 0, true); 332 } 333 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 334 335 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 336 { 337 if (err) 338 kvm_inject_gp(vcpu, 0); 339 else 340 kvm_x86_ops->skip_emulated_instruction(vcpu); 341 } 342 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 343 344 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 345 { 346 ++vcpu->stat.pf_guest; 347 vcpu->arch.cr2 = fault->address; 348 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 349 } 350 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 351 352 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 353 { 354 if (mmu_is_nested(vcpu) && !fault->nested_page_fault) 355 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); 356 else 357 vcpu->arch.mmu.inject_page_fault(vcpu, fault); 358 } 359 360 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 361 { 362 atomic_inc(&vcpu->arch.nmi_queued); 363 kvm_make_request(KVM_REQ_NMI, vcpu); 364 } 365 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 366 367 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 368 { 369 kvm_multiple_exception(vcpu, nr, true, error_code, false); 370 } 371 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 372 373 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 374 { 375 kvm_multiple_exception(vcpu, nr, true, error_code, true); 376 } 377 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 378 379 /* 380 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 381 * a #GP and return false. 382 */ 383 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 384 { 385 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) 386 return true; 387 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 388 return false; 389 } 390 EXPORT_SYMBOL_GPL(kvm_require_cpl); 391 392 /* 393 * This function will be used to read from the physical memory of the currently 394 * running guest. The difference to kvm_read_guest_page is that this function 395 * can read from guest physical or from the guest's guest physical memory. 396 */ 397 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 398 gfn_t ngfn, void *data, int offset, int len, 399 u32 access) 400 { 401 gfn_t real_gfn; 402 gpa_t ngpa; 403 404 ngpa = gfn_to_gpa(ngfn); 405 real_gfn = mmu->translate_gpa(vcpu, ngpa, access); 406 if (real_gfn == UNMAPPED_GVA) 407 return -EFAULT; 408 409 real_gfn = gpa_to_gfn(real_gfn); 410 411 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len); 412 } 413 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); 414 415 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 416 void *data, int offset, int len, u32 access) 417 { 418 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, 419 data, offset, len, access); 420 } 421 422 /* 423 * Load the pae pdptrs. Return true is they are all valid. 424 */ 425 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) 426 { 427 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 428 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; 429 int i; 430 int ret; 431 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 432 433 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, 434 offset * sizeof(u64), sizeof(pdpte), 435 PFERR_USER_MASK|PFERR_WRITE_MASK); 436 if (ret < 0) { 437 ret = 0; 438 goto out; 439 } 440 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 441 if (is_present_gpte(pdpte[i]) && 442 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) { 443 ret = 0; 444 goto out; 445 } 446 } 447 ret = 1; 448 449 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 450 __set_bit(VCPU_EXREG_PDPTR, 451 (unsigned long *)&vcpu->arch.regs_avail); 452 __set_bit(VCPU_EXREG_PDPTR, 453 (unsigned long *)&vcpu->arch.regs_dirty); 454 out: 455 456 return ret; 457 } 458 EXPORT_SYMBOL_GPL(load_pdptrs); 459 460 static bool pdptrs_changed(struct kvm_vcpu *vcpu) 461 { 462 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; 463 bool changed = true; 464 int offset; 465 gfn_t gfn; 466 int r; 467 468 if (is_long_mode(vcpu) || !is_pae(vcpu)) 469 return false; 470 471 if (!test_bit(VCPU_EXREG_PDPTR, 472 (unsigned long *)&vcpu->arch.regs_avail)) 473 return true; 474 475 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT; 476 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1); 477 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), 478 PFERR_USER_MASK | PFERR_WRITE_MASK); 479 if (r < 0) 480 goto out; 481 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; 482 out: 483 484 return changed; 485 } 486 487 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 488 { 489 unsigned long old_cr0 = kvm_read_cr0(vcpu); 490 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP | 491 X86_CR0_CD | X86_CR0_NW; 492 493 cr0 |= X86_CR0_ET; 494 495 #ifdef CONFIG_X86_64 496 if (cr0 & 0xffffffff00000000UL) 497 return 1; 498 #endif 499 500 cr0 &= ~CR0_RESERVED_BITS; 501 502 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 503 return 1; 504 505 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 506 return 1; 507 508 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 509 #ifdef CONFIG_X86_64 510 if ((vcpu->arch.efer & EFER_LME)) { 511 int cs_db, cs_l; 512 513 if (!is_pae(vcpu)) 514 return 1; 515 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 516 if (cs_l) 517 return 1; 518 } else 519 #endif 520 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 521 kvm_read_cr3(vcpu))) 522 return 1; 523 } 524 525 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 526 return 1; 527 528 kvm_x86_ops->set_cr0(vcpu, cr0); 529 530 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 531 kvm_clear_async_pf_completion_queue(vcpu); 532 kvm_async_pf_hash_reset(vcpu); 533 } 534 535 if ((cr0 ^ old_cr0) & update_bits) 536 kvm_mmu_reset_context(vcpu); 537 return 0; 538 } 539 EXPORT_SYMBOL_GPL(kvm_set_cr0); 540 541 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 542 { 543 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 544 } 545 EXPORT_SYMBOL_GPL(kvm_lmsw); 546 547 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 548 { 549 u64 xcr0; 550 551 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 552 if (index != XCR_XFEATURE_ENABLED_MASK) 553 return 1; 554 xcr0 = xcr; 555 if (kvm_x86_ops->get_cpl(vcpu) != 0) 556 return 1; 557 if (!(xcr0 & XSTATE_FP)) 558 return 1; 559 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE)) 560 return 1; 561 if (xcr0 & ~host_xcr0) 562 return 1; 563 vcpu->arch.xcr0 = xcr0; 564 vcpu->guest_xcr0_loaded = 0; 565 return 0; 566 } 567 568 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 569 { 570 if (__kvm_set_xcr(vcpu, index, xcr)) { 571 kvm_inject_gp(vcpu, 0); 572 return 1; 573 } 574 return 0; 575 } 576 EXPORT_SYMBOL_GPL(kvm_set_xcr); 577 578 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 579 { 580 unsigned long old_cr4 = kvm_read_cr4(vcpu); 581 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | 582 X86_CR4_PAE | X86_CR4_SMEP; 583 if (cr4 & CR4_RESERVED_BITS) 584 return 1; 585 586 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE)) 587 return 1; 588 589 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP)) 590 return 1; 591 592 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS)) 593 return 1; 594 595 if (is_long_mode(vcpu)) { 596 if (!(cr4 & X86_CR4_PAE)) 597 return 1; 598 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 599 && ((cr4 ^ old_cr4) & pdptr_bits) 600 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 601 kvm_read_cr3(vcpu))) 602 return 1; 603 604 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 605 if (!guest_cpuid_has_pcid(vcpu)) 606 return 1; 607 608 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 609 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 610 return 1; 611 } 612 613 if (kvm_x86_ops->set_cr4(vcpu, cr4)) 614 return 1; 615 616 if (((cr4 ^ old_cr4) & pdptr_bits) || 617 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 618 kvm_mmu_reset_context(vcpu); 619 620 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE) 621 kvm_update_cpuid(vcpu); 622 623 return 0; 624 } 625 EXPORT_SYMBOL_GPL(kvm_set_cr4); 626 627 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 628 { 629 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { 630 kvm_mmu_sync_roots(vcpu); 631 kvm_mmu_flush_tlb(vcpu); 632 return 0; 633 } 634 635 if (is_long_mode(vcpu)) { 636 if (kvm_read_cr4(vcpu) & X86_CR4_PCIDE) { 637 if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS) 638 return 1; 639 } else 640 if (cr3 & CR3_L_MODE_RESERVED_BITS) 641 return 1; 642 } else { 643 if (is_pae(vcpu)) { 644 if (cr3 & CR3_PAE_RESERVED_BITS) 645 return 1; 646 if (is_paging(vcpu) && 647 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) 648 return 1; 649 } 650 /* 651 * We don't check reserved bits in nonpae mode, because 652 * this isn't enforced, and VMware depends on this. 653 */ 654 } 655 656 /* 657 * Does the new cr3 value map to physical memory? (Note, we 658 * catch an invalid cr3 even in real-mode, because it would 659 * cause trouble later on when we turn on paging anyway.) 660 * 661 * A real CPU would silently accept an invalid cr3 and would 662 * attempt to use it - with largely undefined (and often hard 663 * to debug) behavior on the guest side. 664 */ 665 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT))) 666 return 1; 667 vcpu->arch.cr3 = cr3; 668 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 669 vcpu->arch.mmu.new_cr3(vcpu); 670 return 0; 671 } 672 EXPORT_SYMBOL_GPL(kvm_set_cr3); 673 674 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 675 { 676 if (cr8 & CR8_RESERVED_BITS) 677 return 1; 678 if (irqchip_in_kernel(vcpu->kvm)) 679 kvm_lapic_set_tpr(vcpu, cr8); 680 else 681 vcpu->arch.cr8 = cr8; 682 return 0; 683 } 684 EXPORT_SYMBOL_GPL(kvm_set_cr8); 685 686 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 687 { 688 if (irqchip_in_kernel(vcpu->kvm)) 689 return kvm_lapic_get_cr8(vcpu); 690 else 691 return vcpu->arch.cr8; 692 } 693 EXPORT_SYMBOL_GPL(kvm_get_cr8); 694 695 static void kvm_update_dr7(struct kvm_vcpu *vcpu) 696 { 697 unsigned long dr7; 698 699 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 700 dr7 = vcpu->arch.guest_debug_dr7; 701 else 702 dr7 = vcpu->arch.dr7; 703 kvm_x86_ops->set_dr7(vcpu, dr7); 704 vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK); 705 } 706 707 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 708 { 709 switch (dr) { 710 case 0 ... 3: 711 vcpu->arch.db[dr] = val; 712 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 713 vcpu->arch.eff_db[dr] = val; 714 break; 715 case 4: 716 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 717 return 1; /* #UD */ 718 /* fall through */ 719 case 6: 720 if (val & 0xffffffff00000000ULL) 721 return -1; /* #GP */ 722 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1; 723 break; 724 case 5: 725 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 726 return 1; /* #UD */ 727 /* fall through */ 728 default: /* 7 */ 729 if (val & 0xffffffff00000000ULL) 730 return -1; /* #GP */ 731 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 732 kvm_update_dr7(vcpu); 733 break; 734 } 735 736 return 0; 737 } 738 739 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 740 { 741 int res; 742 743 res = __kvm_set_dr(vcpu, dr, val); 744 if (res > 0) 745 kvm_queue_exception(vcpu, UD_VECTOR); 746 else if (res < 0) 747 kvm_inject_gp(vcpu, 0); 748 749 return res; 750 } 751 EXPORT_SYMBOL_GPL(kvm_set_dr); 752 753 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 754 { 755 switch (dr) { 756 case 0 ... 3: 757 *val = vcpu->arch.db[dr]; 758 break; 759 case 4: 760 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 761 return 1; 762 /* fall through */ 763 case 6: 764 *val = vcpu->arch.dr6; 765 break; 766 case 5: 767 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 768 return 1; 769 /* fall through */ 770 default: /* 7 */ 771 *val = vcpu->arch.dr7; 772 break; 773 } 774 775 return 0; 776 } 777 778 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 779 { 780 if (_kvm_get_dr(vcpu, dr, val)) { 781 kvm_queue_exception(vcpu, UD_VECTOR); 782 return 1; 783 } 784 return 0; 785 } 786 EXPORT_SYMBOL_GPL(kvm_get_dr); 787 788 bool kvm_rdpmc(struct kvm_vcpu *vcpu) 789 { 790 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); 791 u64 data; 792 int err; 793 794 err = kvm_pmu_read_pmc(vcpu, ecx, &data); 795 if (err) 796 return err; 797 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data); 798 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32); 799 return err; 800 } 801 EXPORT_SYMBOL_GPL(kvm_rdpmc); 802 803 /* 804 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 805 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 806 * 807 * This list is modified at module load time to reflect the 808 * capabilities of the host cpu. This capabilities test skips MSRs that are 809 * kvm-specific. Those are put in the beginning of the list. 810 */ 811 812 #define KVM_SAVE_MSRS_BEGIN 10 813 static u32 msrs_to_save[] = { 814 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 815 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 816 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 817 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 818 MSR_KVM_PV_EOI_EN, 819 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 820 MSR_STAR, 821 #ifdef CONFIG_X86_64 822 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 823 #endif 824 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA 825 }; 826 827 static unsigned num_msrs_to_save; 828 829 static const u32 emulated_msrs[] = { 830 MSR_IA32_TSCDEADLINE, 831 MSR_IA32_MISC_ENABLE, 832 MSR_IA32_MCG_STATUS, 833 MSR_IA32_MCG_CTL, 834 }; 835 836 static int set_efer(struct kvm_vcpu *vcpu, u64 efer) 837 { 838 u64 old_efer = vcpu->arch.efer; 839 840 if (efer & efer_reserved_bits) 841 return 1; 842 843 if (is_paging(vcpu) 844 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 845 return 1; 846 847 if (efer & EFER_FFXSR) { 848 struct kvm_cpuid_entry2 *feat; 849 850 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 851 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) 852 return 1; 853 } 854 855 if (efer & EFER_SVME) { 856 struct kvm_cpuid_entry2 *feat; 857 858 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 859 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) 860 return 1; 861 } 862 863 efer &= ~EFER_LMA; 864 efer |= vcpu->arch.efer & EFER_LMA; 865 866 kvm_x86_ops->set_efer(vcpu, efer); 867 868 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled; 869 870 /* Update reserved bits */ 871 if ((efer ^ old_efer) & EFER_NX) 872 kvm_mmu_reset_context(vcpu); 873 874 return 0; 875 } 876 877 void kvm_enable_efer_bits(u64 mask) 878 { 879 efer_reserved_bits &= ~mask; 880 } 881 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 882 883 884 /* 885 * Writes msr value into into the appropriate "register". 886 * Returns 0 on success, non-0 otherwise. 887 * Assumes vcpu_load() was already called. 888 */ 889 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data) 890 { 891 return kvm_x86_ops->set_msr(vcpu, msr_index, data); 892 } 893 894 /* 895 * Adapt set_msr() to msr_io()'s calling convention 896 */ 897 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 898 { 899 return kvm_set_msr(vcpu, index, *data); 900 } 901 902 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) 903 { 904 int version; 905 int r; 906 struct pvclock_wall_clock wc; 907 struct timespec boot; 908 909 if (!wall_clock) 910 return; 911 912 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 913 if (r) 914 return; 915 916 if (version & 1) 917 ++version; /* first time write, random junk */ 918 919 ++version; 920 921 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 922 923 /* 924 * The guest calculates current wall clock time by adding 925 * system time (updated by kvm_guest_time_update below) to the 926 * wall clock specified here. guest system time equals host 927 * system time for us, thus we must fill in host boot time here. 928 */ 929 getboottime(&boot); 930 931 if (kvm->arch.kvmclock_offset) { 932 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset); 933 boot = timespec_sub(boot, ts); 934 } 935 wc.sec = boot.tv_sec; 936 wc.nsec = boot.tv_nsec; 937 wc.version = version; 938 939 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 940 941 version++; 942 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 943 } 944 945 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 946 { 947 uint32_t quotient, remainder; 948 949 /* Don't try to replace with do_div(), this one calculates 950 * "(dividend << 32) / divisor" */ 951 __asm__ ( "divl %4" 952 : "=a" (quotient), "=d" (remainder) 953 : "0" (0), "1" (dividend), "r" (divisor) ); 954 return quotient; 955 } 956 957 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz, 958 s8 *pshift, u32 *pmultiplier) 959 { 960 uint64_t scaled64; 961 int32_t shift = 0; 962 uint64_t tps64; 963 uint32_t tps32; 964 965 tps64 = base_khz * 1000LL; 966 scaled64 = scaled_khz * 1000LL; 967 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 968 tps64 >>= 1; 969 shift--; 970 } 971 972 tps32 = (uint32_t)tps64; 973 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 974 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 975 scaled64 >>= 1; 976 else 977 tps32 <<= 1; 978 shift++; 979 } 980 981 *pshift = shift; 982 *pmultiplier = div_frac(scaled64, tps32); 983 984 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n", 985 __func__, base_khz, scaled_khz, shift, *pmultiplier); 986 } 987 988 static inline u64 get_kernel_ns(void) 989 { 990 struct timespec ts; 991 992 WARN_ON(preemptible()); 993 ktime_get_ts(&ts); 994 monotonic_to_bootbased(&ts); 995 return timespec_to_ns(&ts); 996 } 997 998 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 999 unsigned long max_tsc_khz; 1000 1001 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec) 1002 { 1003 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult, 1004 vcpu->arch.virtual_tsc_shift); 1005 } 1006 1007 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 1008 { 1009 u64 v = (u64)khz * (1000000 + ppm); 1010 do_div(v, 1000000); 1011 return v; 1012 } 1013 1014 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz) 1015 { 1016 u32 thresh_lo, thresh_hi; 1017 int use_scaling = 0; 1018 1019 /* Compute a scale to convert nanoseconds in TSC cycles */ 1020 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000, 1021 &vcpu->arch.virtual_tsc_shift, 1022 &vcpu->arch.virtual_tsc_mult); 1023 vcpu->arch.virtual_tsc_khz = this_tsc_khz; 1024 1025 /* 1026 * Compute the variation in TSC rate which is acceptable 1027 * within the range of tolerance and decide if the 1028 * rate being applied is within that bounds of the hardware 1029 * rate. If so, no scaling or compensation need be done. 1030 */ 1031 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 1032 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 1033 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) { 1034 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi); 1035 use_scaling = 1; 1036 } 1037 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling); 1038 } 1039 1040 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 1041 { 1042 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 1043 vcpu->arch.virtual_tsc_mult, 1044 vcpu->arch.virtual_tsc_shift); 1045 tsc += vcpu->arch.this_tsc_write; 1046 return tsc; 1047 } 1048 1049 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data) 1050 { 1051 struct kvm *kvm = vcpu->kvm; 1052 u64 offset, ns, elapsed; 1053 unsigned long flags; 1054 s64 usdiff; 1055 1056 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 1057 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); 1058 ns = get_kernel_ns(); 1059 elapsed = ns - kvm->arch.last_tsc_nsec; 1060 1061 /* n.b - signed multiplication and division required */ 1062 usdiff = data - kvm->arch.last_tsc_write; 1063 #ifdef CONFIG_X86_64 1064 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz; 1065 #else 1066 /* do_div() only does unsigned */ 1067 asm("idivl %2; xor %%edx, %%edx" 1068 : "=A"(usdiff) 1069 : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz)); 1070 #endif 1071 do_div(elapsed, 1000); 1072 usdiff -= elapsed; 1073 if (usdiff < 0) 1074 usdiff = -usdiff; 1075 1076 /* 1077 * Special case: TSC write with a small delta (1 second) of virtual 1078 * cycle time against real time is interpreted as an attempt to 1079 * synchronize the CPU. 1080 * 1081 * For a reliable TSC, we can match TSC offsets, and for an unstable 1082 * TSC, we add elapsed time in this computation. We could let the 1083 * compensation code attempt to catch up if we fall behind, but 1084 * it's better to try to match offsets from the beginning. 1085 */ 1086 if (usdiff < USEC_PER_SEC && 1087 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 1088 if (!check_tsc_unstable()) { 1089 offset = kvm->arch.cur_tsc_offset; 1090 pr_debug("kvm: matched tsc offset for %llu\n", data); 1091 } else { 1092 u64 delta = nsec_to_cycles(vcpu, elapsed); 1093 data += delta; 1094 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); 1095 pr_debug("kvm: adjusted tsc offset by %llu\n", delta); 1096 } 1097 } else { 1098 /* 1099 * We split periods of matched TSC writes into generations. 1100 * For each generation, we track the original measured 1101 * nanosecond time, offset, and write, so if TSCs are in 1102 * sync, we can match exact offset, and if not, we can match 1103 * exact software computation in compute_guest_tsc() 1104 * 1105 * These values are tracked in kvm->arch.cur_xxx variables. 1106 */ 1107 kvm->arch.cur_tsc_generation++; 1108 kvm->arch.cur_tsc_nsec = ns; 1109 kvm->arch.cur_tsc_write = data; 1110 kvm->arch.cur_tsc_offset = offset; 1111 pr_debug("kvm: new tsc generation %u, clock %llu\n", 1112 kvm->arch.cur_tsc_generation, data); 1113 } 1114 1115 /* 1116 * We also track th most recent recorded KHZ, write and time to 1117 * allow the matching interval to be extended at each write. 1118 */ 1119 kvm->arch.last_tsc_nsec = ns; 1120 kvm->arch.last_tsc_write = data; 1121 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 1122 1123 /* Reset of TSC must disable overshoot protection below */ 1124 vcpu->arch.hv_clock.tsc_timestamp = 0; 1125 vcpu->arch.last_guest_tsc = data; 1126 1127 /* Keep track of which generation this VCPU has synchronized to */ 1128 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 1129 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 1130 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 1131 1132 kvm_x86_ops->write_tsc_offset(vcpu, offset); 1133 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 1134 } 1135 1136 EXPORT_SYMBOL_GPL(kvm_write_tsc); 1137 1138 static int kvm_guest_time_update(struct kvm_vcpu *v) 1139 { 1140 unsigned long flags; 1141 struct kvm_vcpu_arch *vcpu = &v->arch; 1142 void *shared_kaddr; 1143 unsigned long this_tsc_khz; 1144 s64 kernel_ns, max_kernel_ns; 1145 u64 tsc_timestamp; 1146 u8 pvclock_flags; 1147 1148 /* Keep irq disabled to prevent changes to the clock */ 1149 local_irq_save(flags); 1150 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v); 1151 kernel_ns = get_kernel_ns(); 1152 this_tsc_khz = __get_cpu_var(cpu_tsc_khz); 1153 if (unlikely(this_tsc_khz == 0)) { 1154 local_irq_restore(flags); 1155 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 1156 return 1; 1157 } 1158 1159 /* 1160 * We may have to catch up the TSC to match elapsed wall clock 1161 * time for two reasons, even if kvmclock is used. 1162 * 1) CPU could have been running below the maximum TSC rate 1163 * 2) Broken TSC compensation resets the base at each VCPU 1164 * entry to avoid unknown leaps of TSC even when running 1165 * again on the same CPU. This may cause apparent elapsed 1166 * time to disappear, and the guest to stand still or run 1167 * very slowly. 1168 */ 1169 if (vcpu->tsc_catchup) { 1170 u64 tsc = compute_guest_tsc(v, kernel_ns); 1171 if (tsc > tsc_timestamp) { 1172 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 1173 tsc_timestamp = tsc; 1174 } 1175 } 1176 1177 local_irq_restore(flags); 1178 1179 if (!vcpu->time_page) 1180 return 0; 1181 1182 /* 1183 * Time as measured by the TSC may go backwards when resetting the base 1184 * tsc_timestamp. The reason for this is that the TSC resolution is 1185 * higher than the resolution of the other clock scales. Thus, many 1186 * possible measurments of the TSC correspond to one measurement of any 1187 * other clock, and so a spread of values is possible. This is not a 1188 * problem for the computation of the nanosecond clock; with TSC rates 1189 * around 1GHZ, there can only be a few cycles which correspond to one 1190 * nanosecond value, and any path through this code will inevitably 1191 * take longer than that. However, with the kernel_ns value itself, 1192 * the precision may be much lower, down to HZ granularity. If the 1193 * first sampling of TSC against kernel_ns ends in the low part of the 1194 * range, and the second in the high end of the range, we can get: 1195 * 1196 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new 1197 * 1198 * As the sampling errors potentially range in the thousands of cycles, 1199 * it is possible such a time value has already been observed by the 1200 * guest. To protect against this, we must compute the system time as 1201 * observed by the guest and ensure the new system time is greater. 1202 */ 1203 max_kernel_ns = 0; 1204 if (vcpu->hv_clock.tsc_timestamp) { 1205 max_kernel_ns = vcpu->last_guest_tsc - 1206 vcpu->hv_clock.tsc_timestamp; 1207 max_kernel_ns = pvclock_scale_delta(max_kernel_ns, 1208 vcpu->hv_clock.tsc_to_system_mul, 1209 vcpu->hv_clock.tsc_shift); 1210 max_kernel_ns += vcpu->last_kernel_ns; 1211 } 1212 1213 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) { 1214 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz, 1215 &vcpu->hv_clock.tsc_shift, 1216 &vcpu->hv_clock.tsc_to_system_mul); 1217 vcpu->hw_tsc_khz = this_tsc_khz; 1218 } 1219 1220 if (max_kernel_ns > kernel_ns) 1221 kernel_ns = max_kernel_ns; 1222 1223 /* With all the info we got, fill in the values */ 1224 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 1225 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 1226 vcpu->last_kernel_ns = kernel_ns; 1227 vcpu->last_guest_tsc = tsc_timestamp; 1228 1229 pvclock_flags = 0; 1230 if (vcpu->pvclock_set_guest_stopped_request) { 1231 pvclock_flags |= PVCLOCK_GUEST_STOPPED; 1232 vcpu->pvclock_set_guest_stopped_request = false; 1233 } 1234 1235 vcpu->hv_clock.flags = pvclock_flags; 1236 1237 /* 1238 * The interface expects us to write an even number signaling that the 1239 * update is finished. Since the guest won't see the intermediate 1240 * state, we just increase by 2 at the end. 1241 */ 1242 vcpu->hv_clock.version += 2; 1243 1244 shared_kaddr = kmap_atomic(vcpu->time_page); 1245 1246 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock, 1247 sizeof(vcpu->hv_clock)); 1248 1249 kunmap_atomic(shared_kaddr); 1250 1251 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT); 1252 return 0; 1253 } 1254 1255 static bool msr_mtrr_valid(unsigned msr) 1256 { 1257 switch (msr) { 1258 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1: 1259 case MSR_MTRRfix64K_00000: 1260 case MSR_MTRRfix16K_80000: 1261 case MSR_MTRRfix16K_A0000: 1262 case MSR_MTRRfix4K_C0000: 1263 case MSR_MTRRfix4K_C8000: 1264 case MSR_MTRRfix4K_D0000: 1265 case MSR_MTRRfix4K_D8000: 1266 case MSR_MTRRfix4K_E0000: 1267 case MSR_MTRRfix4K_E8000: 1268 case MSR_MTRRfix4K_F0000: 1269 case MSR_MTRRfix4K_F8000: 1270 case MSR_MTRRdefType: 1271 case MSR_IA32_CR_PAT: 1272 return true; 1273 case 0x2f8: 1274 return true; 1275 } 1276 return false; 1277 } 1278 1279 static bool valid_pat_type(unsigned t) 1280 { 1281 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */ 1282 } 1283 1284 static bool valid_mtrr_type(unsigned t) 1285 { 1286 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */ 1287 } 1288 1289 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1290 { 1291 int i; 1292 1293 if (!msr_mtrr_valid(msr)) 1294 return false; 1295 1296 if (msr == MSR_IA32_CR_PAT) { 1297 for (i = 0; i < 8; i++) 1298 if (!valid_pat_type((data >> (i * 8)) & 0xff)) 1299 return false; 1300 return true; 1301 } else if (msr == MSR_MTRRdefType) { 1302 if (data & ~0xcff) 1303 return false; 1304 return valid_mtrr_type(data & 0xff); 1305 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) { 1306 for (i = 0; i < 8 ; i++) 1307 if (!valid_mtrr_type((data >> (i * 8)) & 0xff)) 1308 return false; 1309 return true; 1310 } 1311 1312 /* variable MTRRs */ 1313 return valid_mtrr_type(data & 0xff); 1314 } 1315 1316 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1317 { 1318 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; 1319 1320 if (!mtrr_valid(vcpu, msr, data)) 1321 return 1; 1322 1323 if (msr == MSR_MTRRdefType) { 1324 vcpu->arch.mtrr_state.def_type = data; 1325 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10; 1326 } else if (msr == MSR_MTRRfix64K_00000) 1327 p[0] = data; 1328 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) 1329 p[1 + msr - MSR_MTRRfix16K_80000] = data; 1330 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) 1331 p[3 + msr - MSR_MTRRfix4K_C0000] = data; 1332 else if (msr == MSR_IA32_CR_PAT) 1333 vcpu->arch.pat = data; 1334 else { /* Variable MTRRs */ 1335 int idx, is_mtrr_mask; 1336 u64 *pt; 1337 1338 idx = (msr - 0x200) / 2; 1339 is_mtrr_mask = msr - 0x200 - 2 * idx; 1340 if (!is_mtrr_mask) 1341 pt = 1342 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; 1343 else 1344 pt = 1345 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; 1346 *pt = data; 1347 } 1348 1349 kvm_mmu_reset_context(vcpu); 1350 return 0; 1351 } 1352 1353 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1354 { 1355 u64 mcg_cap = vcpu->arch.mcg_cap; 1356 unsigned bank_num = mcg_cap & 0xff; 1357 1358 switch (msr) { 1359 case MSR_IA32_MCG_STATUS: 1360 vcpu->arch.mcg_status = data; 1361 break; 1362 case MSR_IA32_MCG_CTL: 1363 if (!(mcg_cap & MCG_CTL_P)) 1364 return 1; 1365 if (data != 0 && data != ~(u64)0) 1366 return -1; 1367 vcpu->arch.mcg_ctl = data; 1368 break; 1369 default: 1370 if (msr >= MSR_IA32_MC0_CTL && 1371 msr < MSR_IA32_MC0_CTL + 4 * bank_num) { 1372 u32 offset = msr - MSR_IA32_MC0_CTL; 1373 /* only 0 or all 1s can be written to IA32_MCi_CTL 1374 * some Linux kernels though clear bit 10 in bank 4 to 1375 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 1376 * this to avoid an uncatched #GP in the guest 1377 */ 1378 if ((offset & 0x3) == 0 && 1379 data != 0 && (data | (1 << 10)) != ~(u64)0) 1380 return -1; 1381 vcpu->arch.mce_banks[offset] = data; 1382 break; 1383 } 1384 return 1; 1385 } 1386 return 0; 1387 } 1388 1389 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) 1390 { 1391 struct kvm *kvm = vcpu->kvm; 1392 int lm = is_long_mode(vcpu); 1393 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 1394 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; 1395 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 1396 : kvm->arch.xen_hvm_config.blob_size_32; 1397 u32 page_num = data & ~PAGE_MASK; 1398 u64 page_addr = data & PAGE_MASK; 1399 u8 *page; 1400 int r; 1401 1402 r = -E2BIG; 1403 if (page_num >= blob_size) 1404 goto out; 1405 r = -ENOMEM; 1406 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); 1407 if (IS_ERR(page)) { 1408 r = PTR_ERR(page); 1409 goto out; 1410 } 1411 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE)) 1412 goto out_free; 1413 r = 0; 1414 out_free: 1415 kfree(page); 1416 out: 1417 return r; 1418 } 1419 1420 static bool kvm_hv_hypercall_enabled(struct kvm *kvm) 1421 { 1422 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE; 1423 } 1424 1425 static bool kvm_hv_msr_partition_wide(u32 msr) 1426 { 1427 bool r = false; 1428 switch (msr) { 1429 case HV_X64_MSR_GUEST_OS_ID: 1430 case HV_X64_MSR_HYPERCALL: 1431 r = true; 1432 break; 1433 } 1434 1435 return r; 1436 } 1437 1438 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1439 { 1440 struct kvm *kvm = vcpu->kvm; 1441 1442 switch (msr) { 1443 case HV_X64_MSR_GUEST_OS_ID: 1444 kvm->arch.hv_guest_os_id = data; 1445 /* setting guest os id to zero disables hypercall page */ 1446 if (!kvm->arch.hv_guest_os_id) 1447 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE; 1448 break; 1449 case HV_X64_MSR_HYPERCALL: { 1450 u64 gfn; 1451 unsigned long addr; 1452 u8 instructions[4]; 1453 1454 /* if guest os id is not set hypercall should remain disabled */ 1455 if (!kvm->arch.hv_guest_os_id) 1456 break; 1457 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) { 1458 kvm->arch.hv_hypercall = data; 1459 break; 1460 } 1461 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT; 1462 addr = gfn_to_hva(kvm, gfn); 1463 if (kvm_is_error_hva(addr)) 1464 return 1; 1465 kvm_x86_ops->patch_hypercall(vcpu, instructions); 1466 ((unsigned char *)instructions)[3] = 0xc3; /* ret */ 1467 if (__copy_to_user((void __user *)addr, instructions, 4)) 1468 return 1; 1469 kvm->arch.hv_hypercall = data; 1470 break; 1471 } 1472 default: 1473 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " 1474 "data 0x%llx\n", msr, data); 1475 return 1; 1476 } 1477 return 0; 1478 } 1479 1480 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1481 { 1482 switch (msr) { 1483 case HV_X64_MSR_APIC_ASSIST_PAGE: { 1484 unsigned long addr; 1485 1486 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) { 1487 vcpu->arch.hv_vapic = data; 1488 break; 1489 } 1490 addr = gfn_to_hva(vcpu->kvm, data >> 1491 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT); 1492 if (kvm_is_error_hva(addr)) 1493 return 1; 1494 if (__clear_user((void __user *)addr, PAGE_SIZE)) 1495 return 1; 1496 vcpu->arch.hv_vapic = data; 1497 break; 1498 } 1499 case HV_X64_MSR_EOI: 1500 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data); 1501 case HV_X64_MSR_ICR: 1502 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data); 1503 case HV_X64_MSR_TPR: 1504 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data); 1505 default: 1506 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " 1507 "data 0x%llx\n", msr, data); 1508 return 1; 1509 } 1510 1511 return 0; 1512 } 1513 1514 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 1515 { 1516 gpa_t gpa = data & ~0x3f; 1517 1518 /* Bits 2:5 are reserved, Should be zero */ 1519 if (data & 0x3c) 1520 return 1; 1521 1522 vcpu->arch.apf.msr_val = data; 1523 1524 if (!(data & KVM_ASYNC_PF_ENABLED)) { 1525 kvm_clear_async_pf_completion_queue(vcpu); 1526 kvm_async_pf_hash_reset(vcpu); 1527 return 0; 1528 } 1529 1530 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa)) 1531 return 1; 1532 1533 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 1534 kvm_async_pf_wakeup_all(vcpu); 1535 return 0; 1536 } 1537 1538 static void kvmclock_reset(struct kvm_vcpu *vcpu) 1539 { 1540 if (vcpu->arch.time_page) { 1541 kvm_release_page_dirty(vcpu->arch.time_page); 1542 vcpu->arch.time_page = NULL; 1543 } 1544 } 1545 1546 static void accumulate_steal_time(struct kvm_vcpu *vcpu) 1547 { 1548 u64 delta; 1549 1550 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 1551 return; 1552 1553 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal; 1554 vcpu->arch.st.last_steal = current->sched_info.run_delay; 1555 vcpu->arch.st.accum_steal = delta; 1556 } 1557 1558 static void record_steal_time(struct kvm_vcpu *vcpu) 1559 { 1560 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 1561 return; 1562 1563 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 1564 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)))) 1565 return; 1566 1567 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal; 1568 vcpu->arch.st.steal.version += 2; 1569 vcpu->arch.st.accum_steal = 0; 1570 1571 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 1572 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 1573 } 1574 1575 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1576 { 1577 bool pr = false; 1578 1579 switch (msr) { 1580 case MSR_EFER: 1581 return set_efer(vcpu, data); 1582 case MSR_K7_HWCR: 1583 data &= ~(u64)0x40; /* ignore flush filter disable */ 1584 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 1585 data &= ~(u64)0x8; /* ignore TLB cache disable */ 1586 if (data != 0) { 1587 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 1588 data); 1589 return 1; 1590 } 1591 break; 1592 case MSR_FAM10H_MMIO_CONF_BASE: 1593 if (data != 0) { 1594 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 1595 "0x%llx\n", data); 1596 return 1; 1597 } 1598 break; 1599 case MSR_AMD64_NB_CFG: 1600 break; 1601 case MSR_IA32_DEBUGCTLMSR: 1602 if (!data) { 1603 /* We support the non-activated case already */ 1604 break; 1605 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { 1606 /* Values other than LBR and BTF are vendor-specific, 1607 thus reserved and should throw a #GP */ 1608 return 1; 1609 } 1610 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", 1611 __func__, data); 1612 break; 1613 case MSR_IA32_UCODE_REV: 1614 case MSR_IA32_UCODE_WRITE: 1615 case MSR_VM_HSAVE_PA: 1616 case MSR_AMD64_PATCH_LOADER: 1617 break; 1618 case 0x200 ... 0x2ff: 1619 return set_msr_mtrr(vcpu, msr, data); 1620 case MSR_IA32_APICBASE: 1621 kvm_set_apic_base(vcpu, data); 1622 break; 1623 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 1624 return kvm_x2apic_msr_write(vcpu, msr, data); 1625 case MSR_IA32_TSCDEADLINE: 1626 kvm_set_lapic_tscdeadline_msr(vcpu, data); 1627 break; 1628 case MSR_IA32_MISC_ENABLE: 1629 vcpu->arch.ia32_misc_enable_msr = data; 1630 break; 1631 case MSR_KVM_WALL_CLOCK_NEW: 1632 case MSR_KVM_WALL_CLOCK: 1633 vcpu->kvm->arch.wall_clock = data; 1634 kvm_write_wall_clock(vcpu->kvm, data); 1635 break; 1636 case MSR_KVM_SYSTEM_TIME_NEW: 1637 case MSR_KVM_SYSTEM_TIME: { 1638 kvmclock_reset(vcpu); 1639 1640 vcpu->arch.time = data; 1641 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 1642 1643 /* we verify if the enable bit is set... */ 1644 if (!(data & 1)) 1645 break; 1646 1647 /* ...but clean it before doing the actual write */ 1648 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1); 1649 1650 vcpu->arch.time_page = 1651 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT); 1652 1653 if (is_error_page(vcpu->arch.time_page)) 1654 vcpu->arch.time_page = NULL; 1655 1656 break; 1657 } 1658 case MSR_KVM_ASYNC_PF_EN: 1659 if (kvm_pv_enable_async_pf(vcpu, data)) 1660 return 1; 1661 break; 1662 case MSR_KVM_STEAL_TIME: 1663 1664 if (unlikely(!sched_info_on())) 1665 return 1; 1666 1667 if (data & KVM_STEAL_RESERVED_MASK) 1668 return 1; 1669 1670 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime, 1671 data & KVM_STEAL_VALID_BITS)) 1672 return 1; 1673 1674 vcpu->arch.st.msr_val = data; 1675 1676 if (!(data & KVM_MSR_ENABLED)) 1677 break; 1678 1679 vcpu->arch.st.last_steal = current->sched_info.run_delay; 1680 1681 preempt_disable(); 1682 accumulate_steal_time(vcpu); 1683 preempt_enable(); 1684 1685 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 1686 1687 break; 1688 case MSR_KVM_PV_EOI_EN: 1689 if (kvm_lapic_enable_pv_eoi(vcpu, data)) 1690 return 1; 1691 break; 1692 1693 case MSR_IA32_MCG_CTL: 1694 case MSR_IA32_MCG_STATUS: 1695 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: 1696 return set_msr_mce(vcpu, msr, data); 1697 1698 /* Performance counters are not protected by a CPUID bit, 1699 * so we should check all of them in the generic path for the sake of 1700 * cross vendor migration. 1701 * Writing a zero into the event select MSRs disables them, 1702 * which we perfectly emulate ;-). Any other value should be at least 1703 * reported, some guests depend on them. 1704 */ 1705 case MSR_K7_EVNTSEL0: 1706 case MSR_K7_EVNTSEL1: 1707 case MSR_K7_EVNTSEL2: 1708 case MSR_K7_EVNTSEL3: 1709 if (data != 0) 1710 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " 1711 "0x%x data 0x%llx\n", msr, data); 1712 break; 1713 /* at least RHEL 4 unconditionally writes to the perfctr registers, 1714 * so we ignore writes to make it happy. 1715 */ 1716 case MSR_K7_PERFCTR0: 1717 case MSR_K7_PERFCTR1: 1718 case MSR_K7_PERFCTR2: 1719 case MSR_K7_PERFCTR3: 1720 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " 1721 "0x%x data 0x%llx\n", msr, data); 1722 break; 1723 case MSR_P6_PERFCTR0: 1724 case MSR_P6_PERFCTR1: 1725 pr = true; 1726 case MSR_P6_EVNTSEL0: 1727 case MSR_P6_EVNTSEL1: 1728 if (kvm_pmu_msr(vcpu, msr)) 1729 return kvm_pmu_set_msr(vcpu, msr, data); 1730 1731 if (pr || data != 0) 1732 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 1733 "0x%x data 0x%llx\n", msr, data); 1734 break; 1735 case MSR_K7_CLK_CTL: 1736 /* 1737 * Ignore all writes to this no longer documented MSR. 1738 * Writes are only relevant for old K7 processors, 1739 * all pre-dating SVM, but a recommended workaround from 1740 * AMD for these chips. It is possible to specify the 1741 * affected processor models on the command line, hence 1742 * the need to ignore the workaround. 1743 */ 1744 break; 1745 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 1746 if (kvm_hv_msr_partition_wide(msr)) { 1747 int r; 1748 mutex_lock(&vcpu->kvm->lock); 1749 r = set_msr_hyperv_pw(vcpu, msr, data); 1750 mutex_unlock(&vcpu->kvm->lock); 1751 return r; 1752 } else 1753 return set_msr_hyperv(vcpu, msr, data); 1754 break; 1755 case MSR_IA32_BBL_CR_CTL3: 1756 /* Drop writes to this legacy MSR -- see rdmsr 1757 * counterpart for further detail. 1758 */ 1759 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data); 1760 break; 1761 case MSR_AMD64_OSVW_ID_LENGTH: 1762 if (!guest_cpuid_has_osvw(vcpu)) 1763 return 1; 1764 vcpu->arch.osvw.length = data; 1765 break; 1766 case MSR_AMD64_OSVW_STATUS: 1767 if (!guest_cpuid_has_osvw(vcpu)) 1768 return 1; 1769 vcpu->arch.osvw.status = data; 1770 break; 1771 default: 1772 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) 1773 return xen_hvm_config(vcpu, data); 1774 if (kvm_pmu_msr(vcpu, msr)) 1775 return kvm_pmu_set_msr(vcpu, msr, data); 1776 if (!ignore_msrs) { 1777 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", 1778 msr, data); 1779 return 1; 1780 } else { 1781 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", 1782 msr, data); 1783 break; 1784 } 1785 } 1786 return 0; 1787 } 1788 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 1789 1790 1791 /* 1792 * Reads an msr value (of 'msr_index') into 'pdata'. 1793 * Returns 0 on success, non-0 otherwise. 1794 * Assumes vcpu_load() was already called. 1795 */ 1796 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) 1797 { 1798 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata); 1799 } 1800 1801 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 1802 { 1803 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; 1804 1805 if (!msr_mtrr_valid(msr)) 1806 return 1; 1807 1808 if (msr == MSR_MTRRdefType) 1809 *pdata = vcpu->arch.mtrr_state.def_type + 1810 (vcpu->arch.mtrr_state.enabled << 10); 1811 else if (msr == MSR_MTRRfix64K_00000) 1812 *pdata = p[0]; 1813 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) 1814 *pdata = p[1 + msr - MSR_MTRRfix16K_80000]; 1815 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) 1816 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000]; 1817 else if (msr == MSR_IA32_CR_PAT) 1818 *pdata = vcpu->arch.pat; 1819 else { /* Variable MTRRs */ 1820 int idx, is_mtrr_mask; 1821 u64 *pt; 1822 1823 idx = (msr - 0x200) / 2; 1824 is_mtrr_mask = msr - 0x200 - 2 * idx; 1825 if (!is_mtrr_mask) 1826 pt = 1827 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; 1828 else 1829 pt = 1830 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; 1831 *pdata = *pt; 1832 } 1833 1834 return 0; 1835 } 1836 1837 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 1838 { 1839 u64 data; 1840 u64 mcg_cap = vcpu->arch.mcg_cap; 1841 unsigned bank_num = mcg_cap & 0xff; 1842 1843 switch (msr) { 1844 case MSR_IA32_P5_MC_ADDR: 1845 case MSR_IA32_P5_MC_TYPE: 1846 data = 0; 1847 break; 1848 case MSR_IA32_MCG_CAP: 1849 data = vcpu->arch.mcg_cap; 1850 break; 1851 case MSR_IA32_MCG_CTL: 1852 if (!(mcg_cap & MCG_CTL_P)) 1853 return 1; 1854 data = vcpu->arch.mcg_ctl; 1855 break; 1856 case MSR_IA32_MCG_STATUS: 1857 data = vcpu->arch.mcg_status; 1858 break; 1859 default: 1860 if (msr >= MSR_IA32_MC0_CTL && 1861 msr < MSR_IA32_MC0_CTL + 4 * bank_num) { 1862 u32 offset = msr - MSR_IA32_MC0_CTL; 1863 data = vcpu->arch.mce_banks[offset]; 1864 break; 1865 } 1866 return 1; 1867 } 1868 *pdata = data; 1869 return 0; 1870 } 1871 1872 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 1873 { 1874 u64 data = 0; 1875 struct kvm *kvm = vcpu->kvm; 1876 1877 switch (msr) { 1878 case HV_X64_MSR_GUEST_OS_ID: 1879 data = kvm->arch.hv_guest_os_id; 1880 break; 1881 case HV_X64_MSR_HYPERCALL: 1882 data = kvm->arch.hv_hypercall; 1883 break; 1884 default: 1885 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); 1886 return 1; 1887 } 1888 1889 *pdata = data; 1890 return 0; 1891 } 1892 1893 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 1894 { 1895 u64 data = 0; 1896 1897 switch (msr) { 1898 case HV_X64_MSR_VP_INDEX: { 1899 int r; 1900 struct kvm_vcpu *v; 1901 kvm_for_each_vcpu(r, v, vcpu->kvm) 1902 if (v == vcpu) 1903 data = r; 1904 break; 1905 } 1906 case HV_X64_MSR_EOI: 1907 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata); 1908 case HV_X64_MSR_ICR: 1909 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata); 1910 case HV_X64_MSR_TPR: 1911 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata); 1912 case HV_X64_MSR_APIC_ASSIST_PAGE: 1913 data = vcpu->arch.hv_vapic; 1914 break; 1915 default: 1916 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); 1917 return 1; 1918 } 1919 *pdata = data; 1920 return 0; 1921 } 1922 1923 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 1924 { 1925 u64 data; 1926 1927 switch (msr) { 1928 case MSR_IA32_PLATFORM_ID: 1929 case MSR_IA32_EBL_CR_POWERON: 1930 case MSR_IA32_DEBUGCTLMSR: 1931 case MSR_IA32_LASTBRANCHFROMIP: 1932 case MSR_IA32_LASTBRANCHTOIP: 1933 case MSR_IA32_LASTINTFROMIP: 1934 case MSR_IA32_LASTINTTOIP: 1935 case MSR_K8_SYSCFG: 1936 case MSR_K7_HWCR: 1937 case MSR_VM_HSAVE_PA: 1938 case MSR_K7_EVNTSEL0: 1939 case MSR_K7_PERFCTR0: 1940 case MSR_K8_INT_PENDING_MSG: 1941 case MSR_AMD64_NB_CFG: 1942 case MSR_FAM10H_MMIO_CONF_BASE: 1943 data = 0; 1944 break; 1945 case MSR_P6_PERFCTR0: 1946 case MSR_P6_PERFCTR1: 1947 case MSR_P6_EVNTSEL0: 1948 case MSR_P6_EVNTSEL1: 1949 if (kvm_pmu_msr(vcpu, msr)) 1950 return kvm_pmu_get_msr(vcpu, msr, pdata); 1951 data = 0; 1952 break; 1953 case MSR_IA32_UCODE_REV: 1954 data = 0x100000000ULL; 1955 break; 1956 case MSR_MTRRcap: 1957 data = 0x500 | KVM_NR_VAR_MTRR; 1958 break; 1959 case 0x200 ... 0x2ff: 1960 return get_msr_mtrr(vcpu, msr, pdata); 1961 case 0xcd: /* fsb frequency */ 1962 data = 3; 1963 break; 1964 /* 1965 * MSR_EBC_FREQUENCY_ID 1966 * Conservative value valid for even the basic CPU models. 1967 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 1968 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 1969 * and 266MHz for model 3, or 4. Set Core Clock 1970 * Frequency to System Bus Frequency Ratio to 1 (bits 1971 * 31:24) even though these are only valid for CPU 1972 * models > 2, however guests may end up dividing or 1973 * multiplying by zero otherwise. 1974 */ 1975 case MSR_EBC_FREQUENCY_ID: 1976 data = 1 << 24; 1977 break; 1978 case MSR_IA32_APICBASE: 1979 data = kvm_get_apic_base(vcpu); 1980 break; 1981 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 1982 return kvm_x2apic_msr_read(vcpu, msr, pdata); 1983 break; 1984 case MSR_IA32_TSCDEADLINE: 1985 data = kvm_get_lapic_tscdeadline_msr(vcpu); 1986 break; 1987 case MSR_IA32_MISC_ENABLE: 1988 data = vcpu->arch.ia32_misc_enable_msr; 1989 break; 1990 case MSR_IA32_PERF_STATUS: 1991 /* TSC increment by tick */ 1992 data = 1000ULL; 1993 /* CPU multiplier */ 1994 data |= (((uint64_t)4ULL) << 40); 1995 break; 1996 case MSR_EFER: 1997 data = vcpu->arch.efer; 1998 break; 1999 case MSR_KVM_WALL_CLOCK: 2000 case MSR_KVM_WALL_CLOCK_NEW: 2001 data = vcpu->kvm->arch.wall_clock; 2002 break; 2003 case MSR_KVM_SYSTEM_TIME: 2004 case MSR_KVM_SYSTEM_TIME_NEW: 2005 data = vcpu->arch.time; 2006 break; 2007 case MSR_KVM_ASYNC_PF_EN: 2008 data = vcpu->arch.apf.msr_val; 2009 break; 2010 case MSR_KVM_STEAL_TIME: 2011 data = vcpu->arch.st.msr_val; 2012 break; 2013 case MSR_KVM_PV_EOI_EN: 2014 data = vcpu->arch.pv_eoi.msr_val; 2015 break; 2016 case MSR_IA32_P5_MC_ADDR: 2017 case MSR_IA32_P5_MC_TYPE: 2018 case MSR_IA32_MCG_CAP: 2019 case MSR_IA32_MCG_CTL: 2020 case MSR_IA32_MCG_STATUS: 2021 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: 2022 return get_msr_mce(vcpu, msr, pdata); 2023 case MSR_K7_CLK_CTL: 2024 /* 2025 * Provide expected ramp-up count for K7. All other 2026 * are set to zero, indicating minimum divisors for 2027 * every field. 2028 * 2029 * This prevents guest kernels on AMD host with CPU 2030 * type 6, model 8 and higher from exploding due to 2031 * the rdmsr failing. 2032 */ 2033 data = 0x20000000; 2034 break; 2035 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2036 if (kvm_hv_msr_partition_wide(msr)) { 2037 int r; 2038 mutex_lock(&vcpu->kvm->lock); 2039 r = get_msr_hyperv_pw(vcpu, msr, pdata); 2040 mutex_unlock(&vcpu->kvm->lock); 2041 return r; 2042 } else 2043 return get_msr_hyperv(vcpu, msr, pdata); 2044 break; 2045 case MSR_IA32_BBL_CR_CTL3: 2046 /* This legacy MSR exists but isn't fully documented in current 2047 * silicon. It is however accessed by winxp in very narrow 2048 * scenarios where it sets bit #19, itself documented as 2049 * a "reserved" bit. Best effort attempt to source coherent 2050 * read data here should the balance of the register be 2051 * interpreted by the guest: 2052 * 2053 * L2 cache control register 3: 64GB range, 256KB size, 2054 * enabled, latency 0x1, configured 2055 */ 2056 data = 0xbe702111; 2057 break; 2058 case MSR_AMD64_OSVW_ID_LENGTH: 2059 if (!guest_cpuid_has_osvw(vcpu)) 2060 return 1; 2061 data = vcpu->arch.osvw.length; 2062 break; 2063 case MSR_AMD64_OSVW_STATUS: 2064 if (!guest_cpuid_has_osvw(vcpu)) 2065 return 1; 2066 data = vcpu->arch.osvw.status; 2067 break; 2068 default: 2069 if (kvm_pmu_msr(vcpu, msr)) 2070 return kvm_pmu_get_msr(vcpu, msr, pdata); 2071 if (!ignore_msrs) { 2072 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr); 2073 return 1; 2074 } else { 2075 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr); 2076 data = 0; 2077 } 2078 break; 2079 } 2080 *pdata = data; 2081 return 0; 2082 } 2083 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 2084 2085 /* 2086 * Read or write a bunch of msrs. All parameters are kernel addresses. 2087 * 2088 * @return number of msrs set successfully. 2089 */ 2090 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 2091 struct kvm_msr_entry *entries, 2092 int (*do_msr)(struct kvm_vcpu *vcpu, 2093 unsigned index, u64 *data)) 2094 { 2095 int i, idx; 2096 2097 idx = srcu_read_lock(&vcpu->kvm->srcu); 2098 for (i = 0; i < msrs->nmsrs; ++i) 2099 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 2100 break; 2101 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2102 2103 return i; 2104 } 2105 2106 /* 2107 * Read or write a bunch of msrs. Parameters are user addresses. 2108 * 2109 * @return number of msrs set successfully. 2110 */ 2111 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 2112 int (*do_msr)(struct kvm_vcpu *vcpu, 2113 unsigned index, u64 *data), 2114 int writeback) 2115 { 2116 struct kvm_msrs msrs; 2117 struct kvm_msr_entry *entries; 2118 int r, n; 2119 unsigned size; 2120 2121 r = -EFAULT; 2122 if (copy_from_user(&msrs, user_msrs, sizeof msrs)) 2123 goto out; 2124 2125 r = -E2BIG; 2126 if (msrs.nmsrs >= MAX_IO_MSRS) 2127 goto out; 2128 2129 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 2130 entries = memdup_user(user_msrs->entries, size); 2131 if (IS_ERR(entries)) { 2132 r = PTR_ERR(entries); 2133 goto out; 2134 } 2135 2136 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 2137 if (r < 0) 2138 goto out_free; 2139 2140 r = -EFAULT; 2141 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 2142 goto out_free; 2143 2144 r = n; 2145 2146 out_free: 2147 kfree(entries); 2148 out: 2149 return r; 2150 } 2151 2152 int kvm_dev_ioctl_check_extension(long ext) 2153 { 2154 int r; 2155 2156 switch (ext) { 2157 case KVM_CAP_IRQCHIP: 2158 case KVM_CAP_HLT: 2159 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 2160 case KVM_CAP_SET_TSS_ADDR: 2161 case KVM_CAP_EXT_CPUID: 2162 case KVM_CAP_CLOCKSOURCE: 2163 case KVM_CAP_PIT: 2164 case KVM_CAP_NOP_IO_DELAY: 2165 case KVM_CAP_MP_STATE: 2166 case KVM_CAP_SYNC_MMU: 2167 case KVM_CAP_USER_NMI: 2168 case KVM_CAP_REINJECT_CONTROL: 2169 case KVM_CAP_IRQ_INJECT_STATUS: 2170 case KVM_CAP_ASSIGN_DEV_IRQ: 2171 case KVM_CAP_IRQFD: 2172 case KVM_CAP_IOEVENTFD: 2173 case KVM_CAP_PIT2: 2174 case KVM_CAP_PIT_STATE2: 2175 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 2176 case KVM_CAP_XEN_HVM: 2177 case KVM_CAP_ADJUST_CLOCK: 2178 case KVM_CAP_VCPU_EVENTS: 2179 case KVM_CAP_HYPERV: 2180 case KVM_CAP_HYPERV_VAPIC: 2181 case KVM_CAP_HYPERV_SPIN: 2182 case KVM_CAP_PCI_SEGMENT: 2183 case KVM_CAP_DEBUGREGS: 2184 case KVM_CAP_X86_ROBUST_SINGLESTEP: 2185 case KVM_CAP_XSAVE: 2186 case KVM_CAP_ASYNC_PF: 2187 case KVM_CAP_GET_TSC_KHZ: 2188 case KVM_CAP_PCI_2_3: 2189 case KVM_CAP_KVMCLOCK_CTRL: 2190 case KVM_CAP_READONLY_MEM: 2191 case KVM_CAP_IRQFD_RESAMPLE: 2192 r = 1; 2193 break; 2194 case KVM_CAP_COALESCED_MMIO: 2195 r = KVM_COALESCED_MMIO_PAGE_OFFSET; 2196 break; 2197 case KVM_CAP_VAPIC: 2198 r = !kvm_x86_ops->cpu_has_accelerated_tpr(); 2199 break; 2200 case KVM_CAP_NR_VCPUS: 2201 r = KVM_SOFT_MAX_VCPUS; 2202 break; 2203 case KVM_CAP_MAX_VCPUS: 2204 r = KVM_MAX_VCPUS; 2205 break; 2206 case KVM_CAP_NR_MEMSLOTS: 2207 r = KVM_MEMORY_SLOTS; 2208 break; 2209 case KVM_CAP_PV_MMU: /* obsolete */ 2210 r = 0; 2211 break; 2212 case KVM_CAP_IOMMU: 2213 r = iommu_present(&pci_bus_type); 2214 break; 2215 case KVM_CAP_MCE: 2216 r = KVM_MAX_MCE_BANKS; 2217 break; 2218 case KVM_CAP_XCRS: 2219 r = cpu_has_xsave; 2220 break; 2221 case KVM_CAP_TSC_CONTROL: 2222 r = kvm_has_tsc_control; 2223 break; 2224 case KVM_CAP_TSC_DEADLINE_TIMER: 2225 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER); 2226 break; 2227 default: 2228 r = 0; 2229 break; 2230 } 2231 return r; 2232 2233 } 2234 2235 long kvm_arch_dev_ioctl(struct file *filp, 2236 unsigned int ioctl, unsigned long arg) 2237 { 2238 void __user *argp = (void __user *)arg; 2239 long r; 2240 2241 switch (ioctl) { 2242 case KVM_GET_MSR_INDEX_LIST: { 2243 struct kvm_msr_list __user *user_msr_list = argp; 2244 struct kvm_msr_list msr_list; 2245 unsigned n; 2246 2247 r = -EFAULT; 2248 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) 2249 goto out; 2250 n = msr_list.nmsrs; 2251 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs); 2252 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) 2253 goto out; 2254 r = -E2BIG; 2255 if (n < msr_list.nmsrs) 2256 goto out; 2257 r = -EFAULT; 2258 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 2259 num_msrs_to_save * sizeof(u32))) 2260 goto out; 2261 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 2262 &emulated_msrs, 2263 ARRAY_SIZE(emulated_msrs) * sizeof(u32))) 2264 goto out; 2265 r = 0; 2266 break; 2267 } 2268 case KVM_GET_SUPPORTED_CPUID: { 2269 struct kvm_cpuid2 __user *cpuid_arg = argp; 2270 struct kvm_cpuid2 cpuid; 2271 2272 r = -EFAULT; 2273 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2274 goto out; 2275 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid, 2276 cpuid_arg->entries); 2277 if (r) 2278 goto out; 2279 2280 r = -EFAULT; 2281 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 2282 goto out; 2283 r = 0; 2284 break; 2285 } 2286 case KVM_X86_GET_MCE_CAP_SUPPORTED: { 2287 u64 mce_cap; 2288 2289 mce_cap = KVM_MCE_CAP_SUPPORTED; 2290 r = -EFAULT; 2291 if (copy_to_user(argp, &mce_cap, sizeof mce_cap)) 2292 goto out; 2293 r = 0; 2294 break; 2295 } 2296 default: 2297 r = -EINVAL; 2298 } 2299 out: 2300 return r; 2301 } 2302 2303 static void wbinvd_ipi(void *garbage) 2304 { 2305 wbinvd(); 2306 } 2307 2308 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 2309 { 2310 return vcpu->kvm->arch.iommu_domain && 2311 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY); 2312 } 2313 2314 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 2315 { 2316 /* Address WBINVD may be executed by guest */ 2317 if (need_emulate_wbinvd(vcpu)) { 2318 if (kvm_x86_ops->has_wbinvd_exit()) 2319 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 2320 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 2321 smp_call_function_single(vcpu->cpu, 2322 wbinvd_ipi, NULL, 1); 2323 } 2324 2325 kvm_x86_ops->vcpu_load(vcpu, cpu); 2326 2327 /* Apply any externally detected TSC adjustments (due to suspend) */ 2328 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 2329 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 2330 vcpu->arch.tsc_offset_adjustment = 0; 2331 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 2332 } 2333 2334 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) { 2335 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 2336 native_read_tsc() - vcpu->arch.last_host_tsc; 2337 if (tsc_delta < 0) 2338 mark_tsc_unstable("KVM discovered backwards TSC"); 2339 if (check_tsc_unstable()) { 2340 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu, 2341 vcpu->arch.last_guest_tsc); 2342 kvm_x86_ops->write_tsc_offset(vcpu, offset); 2343 vcpu->arch.tsc_catchup = 1; 2344 } 2345 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2346 if (vcpu->cpu != cpu) 2347 kvm_migrate_timers(vcpu); 2348 vcpu->cpu = cpu; 2349 } 2350 2351 accumulate_steal_time(vcpu); 2352 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2353 } 2354 2355 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 2356 { 2357 kvm_x86_ops->vcpu_put(vcpu); 2358 kvm_put_guest_fpu(vcpu); 2359 vcpu->arch.last_host_tsc = native_read_tsc(); 2360 } 2361 2362 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 2363 struct kvm_lapic_state *s) 2364 { 2365 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s); 2366 2367 return 0; 2368 } 2369 2370 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 2371 struct kvm_lapic_state *s) 2372 { 2373 kvm_apic_post_state_restore(vcpu, s); 2374 update_cr8_intercept(vcpu); 2375 2376 return 0; 2377 } 2378 2379 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 2380 struct kvm_interrupt *irq) 2381 { 2382 if (irq->irq < 0 || irq->irq >= KVM_NR_INTERRUPTS) 2383 return -EINVAL; 2384 if (irqchip_in_kernel(vcpu->kvm)) 2385 return -ENXIO; 2386 2387 kvm_queue_interrupt(vcpu, irq->irq, false); 2388 kvm_make_request(KVM_REQ_EVENT, vcpu); 2389 2390 return 0; 2391 } 2392 2393 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 2394 { 2395 kvm_inject_nmi(vcpu); 2396 2397 return 0; 2398 } 2399 2400 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 2401 struct kvm_tpr_access_ctl *tac) 2402 { 2403 if (tac->flags) 2404 return -EINVAL; 2405 vcpu->arch.tpr_access_reporting = !!tac->enabled; 2406 return 0; 2407 } 2408 2409 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 2410 u64 mcg_cap) 2411 { 2412 int r; 2413 unsigned bank_num = mcg_cap & 0xff, bank; 2414 2415 r = -EINVAL; 2416 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) 2417 goto out; 2418 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000)) 2419 goto out; 2420 r = 0; 2421 vcpu->arch.mcg_cap = mcg_cap; 2422 /* Init IA32_MCG_CTL to all 1s */ 2423 if (mcg_cap & MCG_CTL_P) 2424 vcpu->arch.mcg_ctl = ~(u64)0; 2425 /* Init IA32_MCi_CTL to all 1s */ 2426 for (bank = 0; bank < bank_num; bank++) 2427 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 2428 out: 2429 return r; 2430 } 2431 2432 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 2433 struct kvm_x86_mce *mce) 2434 { 2435 u64 mcg_cap = vcpu->arch.mcg_cap; 2436 unsigned bank_num = mcg_cap & 0xff; 2437 u64 *banks = vcpu->arch.mce_banks; 2438 2439 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 2440 return -EINVAL; 2441 /* 2442 * if IA32_MCG_CTL is not all 1s, the uncorrected error 2443 * reporting is disabled 2444 */ 2445 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 2446 vcpu->arch.mcg_ctl != ~(u64)0) 2447 return 0; 2448 banks += 4 * mce->bank; 2449 /* 2450 * if IA32_MCi_CTL is not all 1s, the uncorrected error 2451 * reporting is disabled for the bank 2452 */ 2453 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 2454 return 0; 2455 if (mce->status & MCI_STATUS_UC) { 2456 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 2457 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 2458 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 2459 return 0; 2460 } 2461 if (banks[1] & MCI_STATUS_VAL) 2462 mce->status |= MCI_STATUS_OVER; 2463 banks[2] = mce->addr; 2464 banks[3] = mce->misc; 2465 vcpu->arch.mcg_status = mce->mcg_status; 2466 banks[1] = mce->status; 2467 kvm_queue_exception(vcpu, MC_VECTOR); 2468 } else if (!(banks[1] & MCI_STATUS_VAL) 2469 || !(banks[1] & MCI_STATUS_UC)) { 2470 if (banks[1] & MCI_STATUS_VAL) 2471 mce->status |= MCI_STATUS_OVER; 2472 banks[2] = mce->addr; 2473 banks[3] = mce->misc; 2474 banks[1] = mce->status; 2475 } else 2476 banks[1] |= MCI_STATUS_OVER; 2477 return 0; 2478 } 2479 2480 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 2481 struct kvm_vcpu_events *events) 2482 { 2483 process_nmi(vcpu); 2484 events->exception.injected = 2485 vcpu->arch.exception.pending && 2486 !kvm_exception_is_soft(vcpu->arch.exception.nr); 2487 events->exception.nr = vcpu->arch.exception.nr; 2488 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 2489 events->exception.pad = 0; 2490 events->exception.error_code = vcpu->arch.exception.error_code; 2491 2492 events->interrupt.injected = 2493 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft; 2494 events->interrupt.nr = vcpu->arch.interrupt.nr; 2495 events->interrupt.soft = 0; 2496 events->interrupt.shadow = 2497 kvm_x86_ops->get_interrupt_shadow(vcpu, 2498 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI); 2499 2500 events->nmi.injected = vcpu->arch.nmi_injected; 2501 events->nmi.pending = vcpu->arch.nmi_pending != 0; 2502 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); 2503 events->nmi.pad = 0; 2504 2505 events->sipi_vector = vcpu->arch.sipi_vector; 2506 2507 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 2508 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 2509 | KVM_VCPUEVENT_VALID_SHADOW); 2510 memset(&events->reserved, 0, sizeof(events->reserved)); 2511 } 2512 2513 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 2514 struct kvm_vcpu_events *events) 2515 { 2516 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 2517 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 2518 | KVM_VCPUEVENT_VALID_SHADOW)) 2519 return -EINVAL; 2520 2521 process_nmi(vcpu); 2522 vcpu->arch.exception.pending = events->exception.injected; 2523 vcpu->arch.exception.nr = events->exception.nr; 2524 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 2525 vcpu->arch.exception.error_code = events->exception.error_code; 2526 2527 vcpu->arch.interrupt.pending = events->interrupt.injected; 2528 vcpu->arch.interrupt.nr = events->interrupt.nr; 2529 vcpu->arch.interrupt.soft = events->interrupt.soft; 2530 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 2531 kvm_x86_ops->set_interrupt_shadow(vcpu, 2532 events->interrupt.shadow); 2533 2534 vcpu->arch.nmi_injected = events->nmi.injected; 2535 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 2536 vcpu->arch.nmi_pending = events->nmi.pending; 2537 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); 2538 2539 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR) 2540 vcpu->arch.sipi_vector = events->sipi_vector; 2541 2542 kvm_make_request(KVM_REQ_EVENT, vcpu); 2543 2544 return 0; 2545 } 2546 2547 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 2548 struct kvm_debugregs *dbgregs) 2549 { 2550 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 2551 dbgregs->dr6 = vcpu->arch.dr6; 2552 dbgregs->dr7 = vcpu->arch.dr7; 2553 dbgregs->flags = 0; 2554 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 2555 } 2556 2557 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 2558 struct kvm_debugregs *dbgregs) 2559 { 2560 if (dbgregs->flags) 2561 return -EINVAL; 2562 2563 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 2564 vcpu->arch.dr6 = dbgregs->dr6; 2565 vcpu->arch.dr7 = dbgregs->dr7; 2566 2567 return 0; 2568 } 2569 2570 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 2571 struct kvm_xsave *guest_xsave) 2572 { 2573 if (cpu_has_xsave) 2574 memcpy(guest_xsave->region, 2575 &vcpu->arch.guest_fpu.state->xsave, 2576 xstate_size); 2577 else { 2578 memcpy(guest_xsave->region, 2579 &vcpu->arch.guest_fpu.state->fxsave, 2580 sizeof(struct i387_fxsave_struct)); 2581 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = 2582 XSTATE_FPSSE; 2583 } 2584 } 2585 2586 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 2587 struct kvm_xsave *guest_xsave) 2588 { 2589 u64 xstate_bv = 2590 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; 2591 2592 if (cpu_has_xsave) 2593 memcpy(&vcpu->arch.guest_fpu.state->xsave, 2594 guest_xsave->region, xstate_size); 2595 else { 2596 if (xstate_bv & ~XSTATE_FPSSE) 2597 return -EINVAL; 2598 memcpy(&vcpu->arch.guest_fpu.state->fxsave, 2599 guest_xsave->region, sizeof(struct i387_fxsave_struct)); 2600 } 2601 return 0; 2602 } 2603 2604 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 2605 struct kvm_xcrs *guest_xcrs) 2606 { 2607 if (!cpu_has_xsave) { 2608 guest_xcrs->nr_xcrs = 0; 2609 return; 2610 } 2611 2612 guest_xcrs->nr_xcrs = 1; 2613 guest_xcrs->flags = 0; 2614 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 2615 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 2616 } 2617 2618 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 2619 struct kvm_xcrs *guest_xcrs) 2620 { 2621 int i, r = 0; 2622 2623 if (!cpu_has_xsave) 2624 return -EINVAL; 2625 2626 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 2627 return -EINVAL; 2628 2629 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 2630 /* Only support XCR0 currently */ 2631 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) { 2632 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 2633 guest_xcrs->xcrs[0].value); 2634 break; 2635 } 2636 if (r) 2637 r = -EINVAL; 2638 return r; 2639 } 2640 2641 /* 2642 * kvm_set_guest_paused() indicates to the guest kernel that it has been 2643 * stopped by the hypervisor. This function will be called from the host only. 2644 * EINVAL is returned when the host attempts to set the flag for a guest that 2645 * does not support pv clocks. 2646 */ 2647 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 2648 { 2649 if (!vcpu->arch.time_page) 2650 return -EINVAL; 2651 vcpu->arch.pvclock_set_guest_stopped_request = true; 2652 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2653 return 0; 2654 } 2655 2656 long kvm_arch_vcpu_ioctl(struct file *filp, 2657 unsigned int ioctl, unsigned long arg) 2658 { 2659 struct kvm_vcpu *vcpu = filp->private_data; 2660 void __user *argp = (void __user *)arg; 2661 int r; 2662 union { 2663 struct kvm_lapic_state *lapic; 2664 struct kvm_xsave *xsave; 2665 struct kvm_xcrs *xcrs; 2666 void *buffer; 2667 } u; 2668 2669 u.buffer = NULL; 2670 switch (ioctl) { 2671 case KVM_GET_LAPIC: { 2672 r = -EINVAL; 2673 if (!vcpu->arch.apic) 2674 goto out; 2675 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); 2676 2677 r = -ENOMEM; 2678 if (!u.lapic) 2679 goto out; 2680 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 2681 if (r) 2682 goto out; 2683 r = -EFAULT; 2684 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 2685 goto out; 2686 r = 0; 2687 break; 2688 } 2689 case KVM_SET_LAPIC: { 2690 r = -EINVAL; 2691 if (!vcpu->arch.apic) 2692 goto out; 2693 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 2694 if (IS_ERR(u.lapic)) { 2695 r = PTR_ERR(u.lapic); 2696 goto out; 2697 } 2698 2699 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 2700 if (r) 2701 goto out; 2702 r = 0; 2703 break; 2704 } 2705 case KVM_INTERRUPT: { 2706 struct kvm_interrupt irq; 2707 2708 r = -EFAULT; 2709 if (copy_from_user(&irq, argp, sizeof irq)) 2710 goto out; 2711 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 2712 if (r) 2713 goto out; 2714 r = 0; 2715 break; 2716 } 2717 case KVM_NMI: { 2718 r = kvm_vcpu_ioctl_nmi(vcpu); 2719 if (r) 2720 goto out; 2721 r = 0; 2722 break; 2723 } 2724 case KVM_SET_CPUID: { 2725 struct kvm_cpuid __user *cpuid_arg = argp; 2726 struct kvm_cpuid cpuid; 2727 2728 r = -EFAULT; 2729 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2730 goto out; 2731 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 2732 if (r) 2733 goto out; 2734 break; 2735 } 2736 case KVM_SET_CPUID2: { 2737 struct kvm_cpuid2 __user *cpuid_arg = argp; 2738 struct kvm_cpuid2 cpuid; 2739 2740 r = -EFAULT; 2741 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2742 goto out; 2743 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 2744 cpuid_arg->entries); 2745 if (r) 2746 goto out; 2747 break; 2748 } 2749 case KVM_GET_CPUID2: { 2750 struct kvm_cpuid2 __user *cpuid_arg = argp; 2751 struct kvm_cpuid2 cpuid; 2752 2753 r = -EFAULT; 2754 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2755 goto out; 2756 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 2757 cpuid_arg->entries); 2758 if (r) 2759 goto out; 2760 r = -EFAULT; 2761 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 2762 goto out; 2763 r = 0; 2764 break; 2765 } 2766 case KVM_GET_MSRS: 2767 r = msr_io(vcpu, argp, kvm_get_msr, 1); 2768 break; 2769 case KVM_SET_MSRS: 2770 r = msr_io(vcpu, argp, do_set_msr, 0); 2771 break; 2772 case KVM_TPR_ACCESS_REPORTING: { 2773 struct kvm_tpr_access_ctl tac; 2774 2775 r = -EFAULT; 2776 if (copy_from_user(&tac, argp, sizeof tac)) 2777 goto out; 2778 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 2779 if (r) 2780 goto out; 2781 r = -EFAULT; 2782 if (copy_to_user(argp, &tac, sizeof tac)) 2783 goto out; 2784 r = 0; 2785 break; 2786 }; 2787 case KVM_SET_VAPIC_ADDR: { 2788 struct kvm_vapic_addr va; 2789 2790 r = -EINVAL; 2791 if (!irqchip_in_kernel(vcpu->kvm)) 2792 goto out; 2793 r = -EFAULT; 2794 if (copy_from_user(&va, argp, sizeof va)) 2795 goto out; 2796 r = 0; 2797 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 2798 break; 2799 } 2800 case KVM_X86_SETUP_MCE: { 2801 u64 mcg_cap; 2802 2803 r = -EFAULT; 2804 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap)) 2805 goto out; 2806 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 2807 break; 2808 } 2809 case KVM_X86_SET_MCE: { 2810 struct kvm_x86_mce mce; 2811 2812 r = -EFAULT; 2813 if (copy_from_user(&mce, argp, sizeof mce)) 2814 goto out; 2815 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 2816 break; 2817 } 2818 case KVM_GET_VCPU_EVENTS: { 2819 struct kvm_vcpu_events events; 2820 2821 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 2822 2823 r = -EFAULT; 2824 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 2825 break; 2826 r = 0; 2827 break; 2828 } 2829 case KVM_SET_VCPU_EVENTS: { 2830 struct kvm_vcpu_events events; 2831 2832 r = -EFAULT; 2833 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 2834 break; 2835 2836 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 2837 break; 2838 } 2839 case KVM_GET_DEBUGREGS: { 2840 struct kvm_debugregs dbgregs; 2841 2842 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 2843 2844 r = -EFAULT; 2845 if (copy_to_user(argp, &dbgregs, 2846 sizeof(struct kvm_debugregs))) 2847 break; 2848 r = 0; 2849 break; 2850 } 2851 case KVM_SET_DEBUGREGS: { 2852 struct kvm_debugregs dbgregs; 2853 2854 r = -EFAULT; 2855 if (copy_from_user(&dbgregs, argp, 2856 sizeof(struct kvm_debugregs))) 2857 break; 2858 2859 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 2860 break; 2861 } 2862 case KVM_GET_XSAVE: { 2863 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); 2864 r = -ENOMEM; 2865 if (!u.xsave) 2866 break; 2867 2868 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 2869 2870 r = -EFAULT; 2871 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 2872 break; 2873 r = 0; 2874 break; 2875 } 2876 case KVM_SET_XSAVE: { 2877 u.xsave = memdup_user(argp, sizeof(*u.xsave)); 2878 if (IS_ERR(u.xsave)) { 2879 r = PTR_ERR(u.xsave); 2880 goto out; 2881 } 2882 2883 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 2884 break; 2885 } 2886 case KVM_GET_XCRS: { 2887 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); 2888 r = -ENOMEM; 2889 if (!u.xcrs) 2890 break; 2891 2892 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 2893 2894 r = -EFAULT; 2895 if (copy_to_user(argp, u.xcrs, 2896 sizeof(struct kvm_xcrs))) 2897 break; 2898 r = 0; 2899 break; 2900 } 2901 case KVM_SET_XCRS: { 2902 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 2903 if (IS_ERR(u.xcrs)) { 2904 r = PTR_ERR(u.xcrs); 2905 goto out; 2906 } 2907 2908 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 2909 break; 2910 } 2911 case KVM_SET_TSC_KHZ: { 2912 u32 user_tsc_khz; 2913 2914 r = -EINVAL; 2915 user_tsc_khz = (u32)arg; 2916 2917 if (user_tsc_khz >= kvm_max_guest_tsc_khz) 2918 goto out; 2919 2920 if (user_tsc_khz == 0) 2921 user_tsc_khz = tsc_khz; 2922 2923 kvm_set_tsc_khz(vcpu, user_tsc_khz); 2924 2925 r = 0; 2926 goto out; 2927 } 2928 case KVM_GET_TSC_KHZ: { 2929 r = vcpu->arch.virtual_tsc_khz; 2930 goto out; 2931 } 2932 case KVM_KVMCLOCK_CTRL: { 2933 r = kvm_set_guest_paused(vcpu); 2934 goto out; 2935 } 2936 default: 2937 r = -EINVAL; 2938 } 2939 out: 2940 kfree(u.buffer); 2941 return r; 2942 } 2943 2944 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 2945 { 2946 return VM_FAULT_SIGBUS; 2947 } 2948 2949 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 2950 { 2951 int ret; 2952 2953 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 2954 return -1; 2955 ret = kvm_x86_ops->set_tss_addr(kvm, addr); 2956 return ret; 2957 } 2958 2959 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 2960 u64 ident_addr) 2961 { 2962 kvm->arch.ept_identity_map_addr = ident_addr; 2963 return 0; 2964 } 2965 2966 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 2967 u32 kvm_nr_mmu_pages) 2968 { 2969 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 2970 return -EINVAL; 2971 2972 mutex_lock(&kvm->slots_lock); 2973 spin_lock(&kvm->mmu_lock); 2974 2975 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 2976 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 2977 2978 spin_unlock(&kvm->mmu_lock); 2979 mutex_unlock(&kvm->slots_lock); 2980 return 0; 2981 } 2982 2983 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 2984 { 2985 return kvm->arch.n_max_mmu_pages; 2986 } 2987 2988 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 2989 { 2990 int r; 2991 2992 r = 0; 2993 switch (chip->chip_id) { 2994 case KVM_IRQCHIP_PIC_MASTER: 2995 memcpy(&chip->chip.pic, 2996 &pic_irqchip(kvm)->pics[0], 2997 sizeof(struct kvm_pic_state)); 2998 break; 2999 case KVM_IRQCHIP_PIC_SLAVE: 3000 memcpy(&chip->chip.pic, 3001 &pic_irqchip(kvm)->pics[1], 3002 sizeof(struct kvm_pic_state)); 3003 break; 3004 case KVM_IRQCHIP_IOAPIC: 3005 r = kvm_get_ioapic(kvm, &chip->chip.ioapic); 3006 break; 3007 default: 3008 r = -EINVAL; 3009 break; 3010 } 3011 return r; 3012 } 3013 3014 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 3015 { 3016 int r; 3017 3018 r = 0; 3019 switch (chip->chip_id) { 3020 case KVM_IRQCHIP_PIC_MASTER: 3021 spin_lock(&pic_irqchip(kvm)->lock); 3022 memcpy(&pic_irqchip(kvm)->pics[0], 3023 &chip->chip.pic, 3024 sizeof(struct kvm_pic_state)); 3025 spin_unlock(&pic_irqchip(kvm)->lock); 3026 break; 3027 case KVM_IRQCHIP_PIC_SLAVE: 3028 spin_lock(&pic_irqchip(kvm)->lock); 3029 memcpy(&pic_irqchip(kvm)->pics[1], 3030 &chip->chip.pic, 3031 sizeof(struct kvm_pic_state)); 3032 spin_unlock(&pic_irqchip(kvm)->lock); 3033 break; 3034 case KVM_IRQCHIP_IOAPIC: 3035 r = kvm_set_ioapic(kvm, &chip->chip.ioapic); 3036 break; 3037 default: 3038 r = -EINVAL; 3039 break; 3040 } 3041 kvm_pic_update_irq(pic_irqchip(kvm)); 3042 return r; 3043 } 3044 3045 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 3046 { 3047 int r = 0; 3048 3049 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3050 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state)); 3051 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3052 return r; 3053 } 3054 3055 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 3056 { 3057 int r = 0; 3058 3059 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3060 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state)); 3061 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0); 3062 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3063 return r; 3064 } 3065 3066 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3067 { 3068 int r = 0; 3069 3070 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3071 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 3072 sizeof(ps->channels)); 3073 ps->flags = kvm->arch.vpit->pit_state.flags; 3074 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3075 memset(&ps->reserved, 0, sizeof(ps->reserved)); 3076 return r; 3077 } 3078 3079 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3080 { 3081 int r = 0, start = 0; 3082 u32 prev_legacy, cur_legacy; 3083 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3084 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 3085 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 3086 if (!prev_legacy && cur_legacy) 3087 start = 1; 3088 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels, 3089 sizeof(kvm->arch.vpit->pit_state.channels)); 3090 kvm->arch.vpit->pit_state.flags = ps->flags; 3091 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start); 3092 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3093 return r; 3094 } 3095 3096 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 3097 struct kvm_reinject_control *control) 3098 { 3099 if (!kvm->arch.vpit) 3100 return -ENXIO; 3101 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3102 kvm->arch.vpit->pit_state.reinject = control->pit_reinject; 3103 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3104 return 0; 3105 } 3106 3107 /** 3108 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 3109 * @kvm: kvm instance 3110 * @log: slot id and address to which we copy the log 3111 * 3112 * We need to keep it in mind that VCPU threads can write to the bitmap 3113 * concurrently. So, to avoid losing data, we keep the following order for 3114 * each bit: 3115 * 3116 * 1. Take a snapshot of the bit and clear it if needed. 3117 * 2. Write protect the corresponding page. 3118 * 3. Flush TLB's if needed. 3119 * 4. Copy the snapshot to the userspace. 3120 * 3121 * Between 2 and 3, the guest may write to the page using the remaining TLB 3122 * entry. This is not a problem because the page will be reported dirty at 3123 * step 4 using the snapshot taken before and step 3 ensures that successive 3124 * writes will be logged for the next call. 3125 */ 3126 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) 3127 { 3128 int r; 3129 struct kvm_memory_slot *memslot; 3130 unsigned long n, i; 3131 unsigned long *dirty_bitmap; 3132 unsigned long *dirty_bitmap_buffer; 3133 bool is_dirty = false; 3134 3135 mutex_lock(&kvm->slots_lock); 3136 3137 r = -EINVAL; 3138 if (log->slot >= KVM_MEMORY_SLOTS) 3139 goto out; 3140 3141 memslot = id_to_memslot(kvm->memslots, log->slot); 3142 3143 dirty_bitmap = memslot->dirty_bitmap; 3144 r = -ENOENT; 3145 if (!dirty_bitmap) 3146 goto out; 3147 3148 n = kvm_dirty_bitmap_bytes(memslot); 3149 3150 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); 3151 memset(dirty_bitmap_buffer, 0, n); 3152 3153 spin_lock(&kvm->mmu_lock); 3154 3155 for (i = 0; i < n / sizeof(long); i++) { 3156 unsigned long mask; 3157 gfn_t offset; 3158 3159 if (!dirty_bitmap[i]) 3160 continue; 3161 3162 is_dirty = true; 3163 3164 mask = xchg(&dirty_bitmap[i], 0); 3165 dirty_bitmap_buffer[i] = mask; 3166 3167 offset = i * BITS_PER_LONG; 3168 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask); 3169 } 3170 if (is_dirty) 3171 kvm_flush_remote_tlbs(kvm); 3172 3173 spin_unlock(&kvm->mmu_lock); 3174 3175 r = -EFAULT; 3176 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 3177 goto out; 3178 3179 r = 0; 3180 out: 3181 mutex_unlock(&kvm->slots_lock); 3182 return r; 3183 } 3184 3185 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event) 3186 { 3187 if (!irqchip_in_kernel(kvm)) 3188 return -ENXIO; 3189 3190 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 3191 irq_event->irq, irq_event->level); 3192 return 0; 3193 } 3194 3195 long kvm_arch_vm_ioctl(struct file *filp, 3196 unsigned int ioctl, unsigned long arg) 3197 { 3198 struct kvm *kvm = filp->private_data; 3199 void __user *argp = (void __user *)arg; 3200 int r = -ENOTTY; 3201 /* 3202 * This union makes it completely explicit to gcc-3.x 3203 * that these two variables' stack usage should be 3204 * combined, not added together. 3205 */ 3206 union { 3207 struct kvm_pit_state ps; 3208 struct kvm_pit_state2 ps2; 3209 struct kvm_pit_config pit_config; 3210 } u; 3211 3212 switch (ioctl) { 3213 case KVM_SET_TSS_ADDR: 3214 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 3215 if (r < 0) 3216 goto out; 3217 break; 3218 case KVM_SET_IDENTITY_MAP_ADDR: { 3219 u64 ident_addr; 3220 3221 r = -EFAULT; 3222 if (copy_from_user(&ident_addr, argp, sizeof ident_addr)) 3223 goto out; 3224 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 3225 if (r < 0) 3226 goto out; 3227 break; 3228 } 3229 case KVM_SET_NR_MMU_PAGES: 3230 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 3231 if (r) 3232 goto out; 3233 break; 3234 case KVM_GET_NR_MMU_PAGES: 3235 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 3236 break; 3237 case KVM_CREATE_IRQCHIP: { 3238 struct kvm_pic *vpic; 3239 3240 mutex_lock(&kvm->lock); 3241 r = -EEXIST; 3242 if (kvm->arch.vpic) 3243 goto create_irqchip_unlock; 3244 r = -EINVAL; 3245 if (atomic_read(&kvm->online_vcpus)) 3246 goto create_irqchip_unlock; 3247 r = -ENOMEM; 3248 vpic = kvm_create_pic(kvm); 3249 if (vpic) { 3250 r = kvm_ioapic_init(kvm); 3251 if (r) { 3252 mutex_lock(&kvm->slots_lock); 3253 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3254 &vpic->dev_master); 3255 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3256 &vpic->dev_slave); 3257 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3258 &vpic->dev_eclr); 3259 mutex_unlock(&kvm->slots_lock); 3260 kfree(vpic); 3261 goto create_irqchip_unlock; 3262 } 3263 } else 3264 goto create_irqchip_unlock; 3265 smp_wmb(); 3266 kvm->arch.vpic = vpic; 3267 smp_wmb(); 3268 r = kvm_setup_default_irq_routing(kvm); 3269 if (r) { 3270 mutex_lock(&kvm->slots_lock); 3271 mutex_lock(&kvm->irq_lock); 3272 kvm_ioapic_destroy(kvm); 3273 kvm_destroy_pic(kvm); 3274 mutex_unlock(&kvm->irq_lock); 3275 mutex_unlock(&kvm->slots_lock); 3276 } 3277 create_irqchip_unlock: 3278 mutex_unlock(&kvm->lock); 3279 break; 3280 } 3281 case KVM_CREATE_PIT: 3282 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 3283 goto create_pit; 3284 case KVM_CREATE_PIT2: 3285 r = -EFAULT; 3286 if (copy_from_user(&u.pit_config, argp, 3287 sizeof(struct kvm_pit_config))) 3288 goto out; 3289 create_pit: 3290 mutex_lock(&kvm->slots_lock); 3291 r = -EEXIST; 3292 if (kvm->arch.vpit) 3293 goto create_pit_unlock; 3294 r = -ENOMEM; 3295 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 3296 if (kvm->arch.vpit) 3297 r = 0; 3298 create_pit_unlock: 3299 mutex_unlock(&kvm->slots_lock); 3300 break; 3301 case KVM_GET_IRQCHIP: { 3302 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 3303 struct kvm_irqchip *chip; 3304 3305 chip = memdup_user(argp, sizeof(*chip)); 3306 if (IS_ERR(chip)) { 3307 r = PTR_ERR(chip); 3308 goto out; 3309 } 3310 3311 r = -ENXIO; 3312 if (!irqchip_in_kernel(kvm)) 3313 goto get_irqchip_out; 3314 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 3315 if (r) 3316 goto get_irqchip_out; 3317 r = -EFAULT; 3318 if (copy_to_user(argp, chip, sizeof *chip)) 3319 goto get_irqchip_out; 3320 r = 0; 3321 get_irqchip_out: 3322 kfree(chip); 3323 if (r) 3324 goto out; 3325 break; 3326 } 3327 case KVM_SET_IRQCHIP: { 3328 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 3329 struct kvm_irqchip *chip; 3330 3331 chip = memdup_user(argp, sizeof(*chip)); 3332 if (IS_ERR(chip)) { 3333 r = PTR_ERR(chip); 3334 goto out; 3335 } 3336 3337 r = -ENXIO; 3338 if (!irqchip_in_kernel(kvm)) 3339 goto set_irqchip_out; 3340 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 3341 if (r) 3342 goto set_irqchip_out; 3343 r = 0; 3344 set_irqchip_out: 3345 kfree(chip); 3346 if (r) 3347 goto out; 3348 break; 3349 } 3350 case KVM_GET_PIT: { 3351 r = -EFAULT; 3352 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 3353 goto out; 3354 r = -ENXIO; 3355 if (!kvm->arch.vpit) 3356 goto out; 3357 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 3358 if (r) 3359 goto out; 3360 r = -EFAULT; 3361 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 3362 goto out; 3363 r = 0; 3364 break; 3365 } 3366 case KVM_SET_PIT: { 3367 r = -EFAULT; 3368 if (copy_from_user(&u.ps, argp, sizeof u.ps)) 3369 goto out; 3370 r = -ENXIO; 3371 if (!kvm->arch.vpit) 3372 goto out; 3373 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 3374 if (r) 3375 goto out; 3376 r = 0; 3377 break; 3378 } 3379 case KVM_GET_PIT2: { 3380 r = -ENXIO; 3381 if (!kvm->arch.vpit) 3382 goto out; 3383 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 3384 if (r) 3385 goto out; 3386 r = -EFAULT; 3387 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 3388 goto out; 3389 r = 0; 3390 break; 3391 } 3392 case KVM_SET_PIT2: { 3393 r = -EFAULT; 3394 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 3395 goto out; 3396 r = -ENXIO; 3397 if (!kvm->arch.vpit) 3398 goto out; 3399 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 3400 if (r) 3401 goto out; 3402 r = 0; 3403 break; 3404 } 3405 case KVM_REINJECT_CONTROL: { 3406 struct kvm_reinject_control control; 3407 r = -EFAULT; 3408 if (copy_from_user(&control, argp, sizeof(control))) 3409 goto out; 3410 r = kvm_vm_ioctl_reinject(kvm, &control); 3411 if (r) 3412 goto out; 3413 r = 0; 3414 break; 3415 } 3416 case KVM_XEN_HVM_CONFIG: { 3417 r = -EFAULT; 3418 if (copy_from_user(&kvm->arch.xen_hvm_config, argp, 3419 sizeof(struct kvm_xen_hvm_config))) 3420 goto out; 3421 r = -EINVAL; 3422 if (kvm->arch.xen_hvm_config.flags) 3423 goto out; 3424 r = 0; 3425 break; 3426 } 3427 case KVM_SET_CLOCK: { 3428 struct kvm_clock_data user_ns; 3429 u64 now_ns; 3430 s64 delta; 3431 3432 r = -EFAULT; 3433 if (copy_from_user(&user_ns, argp, sizeof(user_ns))) 3434 goto out; 3435 3436 r = -EINVAL; 3437 if (user_ns.flags) 3438 goto out; 3439 3440 r = 0; 3441 local_irq_disable(); 3442 now_ns = get_kernel_ns(); 3443 delta = user_ns.clock - now_ns; 3444 local_irq_enable(); 3445 kvm->arch.kvmclock_offset = delta; 3446 break; 3447 } 3448 case KVM_GET_CLOCK: { 3449 struct kvm_clock_data user_ns; 3450 u64 now_ns; 3451 3452 local_irq_disable(); 3453 now_ns = get_kernel_ns(); 3454 user_ns.clock = kvm->arch.kvmclock_offset + now_ns; 3455 local_irq_enable(); 3456 user_ns.flags = 0; 3457 memset(&user_ns.pad, 0, sizeof(user_ns.pad)); 3458 3459 r = -EFAULT; 3460 if (copy_to_user(argp, &user_ns, sizeof(user_ns))) 3461 goto out; 3462 r = 0; 3463 break; 3464 } 3465 3466 default: 3467 ; 3468 } 3469 out: 3470 return r; 3471 } 3472 3473 static void kvm_init_msr_list(void) 3474 { 3475 u32 dummy[2]; 3476 unsigned i, j; 3477 3478 /* skip the first msrs in the list. KVM-specific */ 3479 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) { 3480 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) 3481 continue; 3482 if (j < i) 3483 msrs_to_save[j] = msrs_to_save[i]; 3484 j++; 3485 } 3486 num_msrs_to_save = j; 3487 } 3488 3489 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 3490 const void *v) 3491 { 3492 int handled = 0; 3493 int n; 3494 3495 do { 3496 n = min(len, 8); 3497 if (!(vcpu->arch.apic && 3498 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v)) 3499 && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) 3500 break; 3501 handled += n; 3502 addr += n; 3503 len -= n; 3504 v += n; 3505 } while (len); 3506 3507 return handled; 3508 } 3509 3510 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 3511 { 3512 int handled = 0; 3513 int n; 3514 3515 do { 3516 n = min(len, 8); 3517 if (!(vcpu->arch.apic && 3518 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v)) 3519 && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) 3520 break; 3521 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v); 3522 handled += n; 3523 addr += n; 3524 len -= n; 3525 v += n; 3526 } while (len); 3527 3528 return handled; 3529 } 3530 3531 static void kvm_set_segment(struct kvm_vcpu *vcpu, 3532 struct kvm_segment *var, int seg) 3533 { 3534 kvm_x86_ops->set_segment(vcpu, var, seg); 3535 } 3536 3537 void kvm_get_segment(struct kvm_vcpu *vcpu, 3538 struct kvm_segment *var, int seg) 3539 { 3540 kvm_x86_ops->get_segment(vcpu, var, seg); 3541 } 3542 3543 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access) 3544 { 3545 gpa_t t_gpa; 3546 struct x86_exception exception; 3547 3548 BUG_ON(!mmu_is_nested(vcpu)); 3549 3550 /* NPT walks are always user-walks */ 3551 access |= PFERR_USER_MASK; 3552 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception); 3553 3554 return t_gpa; 3555 } 3556 3557 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 3558 struct x86_exception *exception) 3559 { 3560 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3561 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3562 } 3563 3564 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 3565 struct x86_exception *exception) 3566 { 3567 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3568 access |= PFERR_FETCH_MASK; 3569 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3570 } 3571 3572 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 3573 struct x86_exception *exception) 3574 { 3575 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3576 access |= PFERR_WRITE_MASK; 3577 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3578 } 3579 3580 /* uses this to access any guest's mapped memory without checking CPL */ 3581 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 3582 struct x86_exception *exception) 3583 { 3584 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); 3585 } 3586 3587 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 3588 struct kvm_vcpu *vcpu, u32 access, 3589 struct x86_exception *exception) 3590 { 3591 void *data = val; 3592 int r = X86EMUL_CONTINUE; 3593 3594 while (bytes) { 3595 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, 3596 exception); 3597 unsigned offset = addr & (PAGE_SIZE-1); 3598 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 3599 int ret; 3600 3601 if (gpa == UNMAPPED_GVA) 3602 return X86EMUL_PROPAGATE_FAULT; 3603 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread); 3604 if (ret < 0) { 3605 r = X86EMUL_IO_NEEDED; 3606 goto out; 3607 } 3608 3609 bytes -= toread; 3610 data += toread; 3611 addr += toread; 3612 } 3613 out: 3614 return r; 3615 } 3616 3617 /* used for instruction fetching */ 3618 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 3619 gva_t addr, void *val, unsigned int bytes, 3620 struct x86_exception *exception) 3621 { 3622 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3623 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3624 3625 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 3626 access | PFERR_FETCH_MASK, 3627 exception); 3628 } 3629 3630 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt, 3631 gva_t addr, void *val, unsigned int bytes, 3632 struct x86_exception *exception) 3633 { 3634 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3635 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3636 3637 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 3638 exception); 3639 } 3640 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 3641 3642 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt, 3643 gva_t addr, void *val, unsigned int bytes, 3644 struct x86_exception *exception) 3645 { 3646 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3647 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception); 3648 } 3649 3650 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt, 3651 gva_t addr, void *val, 3652 unsigned int bytes, 3653 struct x86_exception *exception) 3654 { 3655 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3656 void *data = val; 3657 int r = X86EMUL_CONTINUE; 3658 3659 while (bytes) { 3660 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, 3661 PFERR_WRITE_MASK, 3662 exception); 3663 unsigned offset = addr & (PAGE_SIZE-1); 3664 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 3665 int ret; 3666 3667 if (gpa == UNMAPPED_GVA) 3668 return X86EMUL_PROPAGATE_FAULT; 3669 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite); 3670 if (ret < 0) { 3671 r = X86EMUL_IO_NEEDED; 3672 goto out; 3673 } 3674 3675 bytes -= towrite; 3676 data += towrite; 3677 addr += towrite; 3678 } 3679 out: 3680 return r; 3681 } 3682 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 3683 3684 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 3685 gpa_t *gpa, struct x86_exception *exception, 3686 bool write) 3687 { 3688 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) 3689 | (write ? PFERR_WRITE_MASK : 0); 3690 3691 if (vcpu_match_mmio_gva(vcpu, gva) 3692 && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) { 3693 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 3694 (gva & (PAGE_SIZE - 1)); 3695 trace_vcpu_match_mmio(gva, *gpa, write, false); 3696 return 1; 3697 } 3698 3699 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3700 3701 if (*gpa == UNMAPPED_GVA) 3702 return -1; 3703 3704 /* For APIC access vmexit */ 3705 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 3706 return 1; 3707 3708 if (vcpu_match_mmio_gpa(vcpu, *gpa)) { 3709 trace_vcpu_match_mmio(gva, *gpa, write, true); 3710 return 1; 3711 } 3712 3713 return 0; 3714 } 3715 3716 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 3717 const void *val, int bytes) 3718 { 3719 int ret; 3720 3721 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes); 3722 if (ret < 0) 3723 return 0; 3724 kvm_mmu_pte_write(vcpu, gpa, val, bytes); 3725 return 1; 3726 } 3727 3728 struct read_write_emulator_ops { 3729 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 3730 int bytes); 3731 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 3732 void *val, int bytes); 3733 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 3734 int bytes, void *val); 3735 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 3736 void *val, int bytes); 3737 bool write; 3738 }; 3739 3740 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 3741 { 3742 if (vcpu->mmio_read_completed) { 3743 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 3744 vcpu->mmio_fragments[0].gpa, *(u64 *)val); 3745 vcpu->mmio_read_completed = 0; 3746 return 1; 3747 } 3748 3749 return 0; 3750 } 3751 3752 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 3753 void *val, int bytes) 3754 { 3755 return !kvm_read_guest(vcpu->kvm, gpa, val, bytes); 3756 } 3757 3758 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 3759 void *val, int bytes) 3760 { 3761 return emulator_write_phys(vcpu, gpa, val, bytes); 3762 } 3763 3764 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 3765 { 3766 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val); 3767 return vcpu_mmio_write(vcpu, gpa, bytes, val); 3768 } 3769 3770 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 3771 void *val, int bytes) 3772 { 3773 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0); 3774 return X86EMUL_IO_NEEDED; 3775 } 3776 3777 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 3778 void *val, int bytes) 3779 { 3780 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 3781 3782 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 3783 return X86EMUL_CONTINUE; 3784 } 3785 3786 static const struct read_write_emulator_ops read_emultor = { 3787 .read_write_prepare = read_prepare, 3788 .read_write_emulate = read_emulate, 3789 .read_write_mmio = vcpu_mmio_read, 3790 .read_write_exit_mmio = read_exit_mmio, 3791 }; 3792 3793 static const struct read_write_emulator_ops write_emultor = { 3794 .read_write_emulate = write_emulate, 3795 .read_write_mmio = write_mmio, 3796 .read_write_exit_mmio = write_exit_mmio, 3797 .write = true, 3798 }; 3799 3800 static int emulator_read_write_onepage(unsigned long addr, void *val, 3801 unsigned int bytes, 3802 struct x86_exception *exception, 3803 struct kvm_vcpu *vcpu, 3804 const struct read_write_emulator_ops *ops) 3805 { 3806 gpa_t gpa; 3807 int handled, ret; 3808 bool write = ops->write; 3809 struct kvm_mmio_fragment *frag; 3810 3811 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 3812 3813 if (ret < 0) 3814 return X86EMUL_PROPAGATE_FAULT; 3815 3816 /* For APIC access vmexit */ 3817 if (ret) 3818 goto mmio; 3819 3820 if (ops->read_write_emulate(vcpu, gpa, val, bytes)) 3821 return X86EMUL_CONTINUE; 3822 3823 mmio: 3824 /* 3825 * Is this MMIO handled locally? 3826 */ 3827 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 3828 if (handled == bytes) 3829 return X86EMUL_CONTINUE; 3830 3831 gpa += handled; 3832 bytes -= handled; 3833 val += handled; 3834 3835 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 3836 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 3837 frag->gpa = gpa; 3838 frag->data = val; 3839 frag->len = bytes; 3840 return X86EMUL_CONTINUE; 3841 } 3842 3843 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr, 3844 void *val, unsigned int bytes, 3845 struct x86_exception *exception, 3846 const struct read_write_emulator_ops *ops) 3847 { 3848 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3849 gpa_t gpa; 3850 int rc; 3851 3852 if (ops->read_write_prepare && 3853 ops->read_write_prepare(vcpu, val, bytes)) 3854 return X86EMUL_CONTINUE; 3855 3856 vcpu->mmio_nr_fragments = 0; 3857 3858 /* Crossing a page boundary? */ 3859 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 3860 int now; 3861 3862 now = -addr & ~PAGE_MASK; 3863 rc = emulator_read_write_onepage(addr, val, now, exception, 3864 vcpu, ops); 3865 3866 if (rc != X86EMUL_CONTINUE) 3867 return rc; 3868 addr += now; 3869 val += now; 3870 bytes -= now; 3871 } 3872 3873 rc = emulator_read_write_onepage(addr, val, bytes, exception, 3874 vcpu, ops); 3875 if (rc != X86EMUL_CONTINUE) 3876 return rc; 3877 3878 if (!vcpu->mmio_nr_fragments) 3879 return rc; 3880 3881 gpa = vcpu->mmio_fragments[0].gpa; 3882 3883 vcpu->mmio_needed = 1; 3884 vcpu->mmio_cur_fragment = 0; 3885 3886 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 3887 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 3888 vcpu->run->exit_reason = KVM_EXIT_MMIO; 3889 vcpu->run->mmio.phys_addr = gpa; 3890 3891 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 3892 } 3893 3894 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 3895 unsigned long addr, 3896 void *val, 3897 unsigned int bytes, 3898 struct x86_exception *exception) 3899 { 3900 return emulator_read_write(ctxt, addr, val, bytes, 3901 exception, &read_emultor); 3902 } 3903 3904 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 3905 unsigned long addr, 3906 const void *val, 3907 unsigned int bytes, 3908 struct x86_exception *exception) 3909 { 3910 return emulator_read_write(ctxt, addr, (void *)val, bytes, 3911 exception, &write_emultor); 3912 } 3913 3914 #define CMPXCHG_TYPE(t, ptr, old, new) \ 3915 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 3916 3917 #ifdef CONFIG_X86_64 3918 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 3919 #else 3920 # define CMPXCHG64(ptr, old, new) \ 3921 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 3922 #endif 3923 3924 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 3925 unsigned long addr, 3926 const void *old, 3927 const void *new, 3928 unsigned int bytes, 3929 struct x86_exception *exception) 3930 { 3931 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3932 gpa_t gpa; 3933 struct page *page; 3934 char *kaddr; 3935 bool exchanged; 3936 3937 /* guests cmpxchg8b have to be emulated atomically */ 3938 if (bytes > 8 || (bytes & (bytes - 1))) 3939 goto emul_write; 3940 3941 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 3942 3943 if (gpa == UNMAPPED_GVA || 3944 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 3945 goto emul_write; 3946 3947 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) 3948 goto emul_write; 3949 3950 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT); 3951 if (is_error_page(page)) 3952 goto emul_write; 3953 3954 kaddr = kmap_atomic(page); 3955 kaddr += offset_in_page(gpa); 3956 switch (bytes) { 3957 case 1: 3958 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 3959 break; 3960 case 2: 3961 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 3962 break; 3963 case 4: 3964 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 3965 break; 3966 case 8: 3967 exchanged = CMPXCHG64(kaddr, old, new); 3968 break; 3969 default: 3970 BUG(); 3971 } 3972 kunmap_atomic(kaddr); 3973 kvm_release_page_dirty(page); 3974 3975 if (!exchanged) 3976 return X86EMUL_CMPXCHG_FAILED; 3977 3978 kvm_mmu_pte_write(vcpu, gpa, new, bytes); 3979 3980 return X86EMUL_CONTINUE; 3981 3982 emul_write: 3983 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 3984 3985 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 3986 } 3987 3988 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 3989 { 3990 /* TODO: String I/O for in kernel device */ 3991 int r; 3992 3993 if (vcpu->arch.pio.in) 3994 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port, 3995 vcpu->arch.pio.size, pd); 3996 else 3997 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS, 3998 vcpu->arch.pio.port, vcpu->arch.pio.size, 3999 pd); 4000 return r; 4001 } 4002 4003 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 4004 unsigned short port, void *val, 4005 unsigned int count, bool in) 4006 { 4007 trace_kvm_pio(!in, port, size, count); 4008 4009 vcpu->arch.pio.port = port; 4010 vcpu->arch.pio.in = in; 4011 vcpu->arch.pio.count = count; 4012 vcpu->arch.pio.size = size; 4013 4014 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { 4015 vcpu->arch.pio.count = 0; 4016 return 1; 4017 } 4018 4019 vcpu->run->exit_reason = KVM_EXIT_IO; 4020 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 4021 vcpu->run->io.size = size; 4022 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 4023 vcpu->run->io.count = count; 4024 vcpu->run->io.port = port; 4025 4026 return 0; 4027 } 4028 4029 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 4030 int size, unsigned short port, void *val, 4031 unsigned int count) 4032 { 4033 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4034 int ret; 4035 4036 if (vcpu->arch.pio.count) 4037 goto data_avail; 4038 4039 ret = emulator_pio_in_out(vcpu, size, port, val, count, true); 4040 if (ret) { 4041 data_avail: 4042 memcpy(val, vcpu->arch.pio_data, size * count); 4043 vcpu->arch.pio.count = 0; 4044 return 1; 4045 } 4046 4047 return 0; 4048 } 4049 4050 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 4051 int size, unsigned short port, 4052 const void *val, unsigned int count) 4053 { 4054 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4055 4056 memcpy(vcpu->arch.pio_data, val, size * count); 4057 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 4058 } 4059 4060 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 4061 { 4062 return kvm_x86_ops->get_segment_base(vcpu, seg); 4063 } 4064 4065 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 4066 { 4067 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 4068 } 4069 4070 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 4071 { 4072 if (!need_emulate_wbinvd(vcpu)) 4073 return X86EMUL_CONTINUE; 4074 4075 if (kvm_x86_ops->has_wbinvd_exit()) { 4076 int cpu = get_cpu(); 4077 4078 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4079 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, 4080 wbinvd_ipi, NULL, 1); 4081 put_cpu(); 4082 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 4083 } else 4084 wbinvd(); 4085 return X86EMUL_CONTINUE; 4086 } 4087 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 4088 4089 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 4090 { 4091 kvm_emulate_wbinvd(emul_to_vcpu(ctxt)); 4092 } 4093 4094 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest) 4095 { 4096 return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 4097 } 4098 4099 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value) 4100 { 4101 4102 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 4103 } 4104 4105 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 4106 { 4107 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 4108 } 4109 4110 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 4111 { 4112 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4113 unsigned long value; 4114 4115 switch (cr) { 4116 case 0: 4117 value = kvm_read_cr0(vcpu); 4118 break; 4119 case 2: 4120 value = vcpu->arch.cr2; 4121 break; 4122 case 3: 4123 value = kvm_read_cr3(vcpu); 4124 break; 4125 case 4: 4126 value = kvm_read_cr4(vcpu); 4127 break; 4128 case 8: 4129 value = kvm_get_cr8(vcpu); 4130 break; 4131 default: 4132 kvm_err("%s: unexpected cr %u\n", __func__, cr); 4133 return 0; 4134 } 4135 4136 return value; 4137 } 4138 4139 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 4140 { 4141 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4142 int res = 0; 4143 4144 switch (cr) { 4145 case 0: 4146 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 4147 break; 4148 case 2: 4149 vcpu->arch.cr2 = val; 4150 break; 4151 case 3: 4152 res = kvm_set_cr3(vcpu, val); 4153 break; 4154 case 4: 4155 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 4156 break; 4157 case 8: 4158 res = kvm_set_cr8(vcpu, val); 4159 break; 4160 default: 4161 kvm_err("%s: unexpected cr %u\n", __func__, cr); 4162 res = -1; 4163 } 4164 4165 return res; 4166 } 4167 4168 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val) 4169 { 4170 kvm_set_rflags(emul_to_vcpu(ctxt), val); 4171 } 4172 4173 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 4174 { 4175 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt)); 4176 } 4177 4178 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4179 { 4180 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt); 4181 } 4182 4183 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4184 { 4185 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt); 4186 } 4187 4188 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4189 { 4190 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt); 4191 } 4192 4193 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4194 { 4195 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt); 4196 } 4197 4198 static unsigned long emulator_get_cached_segment_base( 4199 struct x86_emulate_ctxt *ctxt, int seg) 4200 { 4201 return get_segment_base(emul_to_vcpu(ctxt), seg); 4202 } 4203 4204 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 4205 struct desc_struct *desc, u32 *base3, 4206 int seg) 4207 { 4208 struct kvm_segment var; 4209 4210 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 4211 *selector = var.selector; 4212 4213 if (var.unusable) 4214 return false; 4215 4216 if (var.g) 4217 var.limit >>= 12; 4218 set_desc_limit(desc, var.limit); 4219 set_desc_base(desc, (unsigned long)var.base); 4220 #ifdef CONFIG_X86_64 4221 if (base3) 4222 *base3 = var.base >> 32; 4223 #endif 4224 desc->type = var.type; 4225 desc->s = var.s; 4226 desc->dpl = var.dpl; 4227 desc->p = var.present; 4228 desc->avl = var.avl; 4229 desc->l = var.l; 4230 desc->d = var.db; 4231 desc->g = var.g; 4232 4233 return true; 4234 } 4235 4236 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 4237 struct desc_struct *desc, u32 base3, 4238 int seg) 4239 { 4240 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4241 struct kvm_segment var; 4242 4243 var.selector = selector; 4244 var.base = get_desc_base(desc); 4245 #ifdef CONFIG_X86_64 4246 var.base |= ((u64)base3) << 32; 4247 #endif 4248 var.limit = get_desc_limit(desc); 4249 if (desc->g) 4250 var.limit = (var.limit << 12) | 0xfff; 4251 var.type = desc->type; 4252 var.present = desc->p; 4253 var.dpl = desc->dpl; 4254 var.db = desc->d; 4255 var.s = desc->s; 4256 var.l = desc->l; 4257 var.g = desc->g; 4258 var.avl = desc->avl; 4259 var.present = desc->p; 4260 var.unusable = !var.present; 4261 var.padding = 0; 4262 4263 kvm_set_segment(vcpu, &var, seg); 4264 return; 4265 } 4266 4267 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 4268 u32 msr_index, u64 *pdata) 4269 { 4270 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 4271 } 4272 4273 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 4274 u32 msr_index, u64 data) 4275 { 4276 return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data); 4277 } 4278 4279 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 4280 u32 pmc, u64 *pdata) 4281 { 4282 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata); 4283 } 4284 4285 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 4286 { 4287 emul_to_vcpu(ctxt)->arch.halt_request = 1; 4288 } 4289 4290 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt) 4291 { 4292 preempt_disable(); 4293 kvm_load_guest_fpu(emul_to_vcpu(ctxt)); 4294 /* 4295 * CR0.TS may reference the host fpu state, not the guest fpu state, 4296 * so it may be clear at this point. 4297 */ 4298 clts(); 4299 } 4300 4301 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt) 4302 { 4303 preempt_enable(); 4304 } 4305 4306 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 4307 struct x86_instruction_info *info, 4308 enum x86_intercept_stage stage) 4309 { 4310 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage); 4311 } 4312 4313 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 4314 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx) 4315 { 4316 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx); 4317 } 4318 4319 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 4320 { 4321 return kvm_register_read(emul_to_vcpu(ctxt), reg); 4322 } 4323 4324 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 4325 { 4326 kvm_register_write(emul_to_vcpu(ctxt), reg, val); 4327 } 4328 4329 static const struct x86_emulate_ops emulate_ops = { 4330 .read_gpr = emulator_read_gpr, 4331 .write_gpr = emulator_write_gpr, 4332 .read_std = kvm_read_guest_virt_system, 4333 .write_std = kvm_write_guest_virt_system, 4334 .fetch = kvm_fetch_guest_virt, 4335 .read_emulated = emulator_read_emulated, 4336 .write_emulated = emulator_write_emulated, 4337 .cmpxchg_emulated = emulator_cmpxchg_emulated, 4338 .invlpg = emulator_invlpg, 4339 .pio_in_emulated = emulator_pio_in_emulated, 4340 .pio_out_emulated = emulator_pio_out_emulated, 4341 .get_segment = emulator_get_segment, 4342 .set_segment = emulator_set_segment, 4343 .get_cached_segment_base = emulator_get_cached_segment_base, 4344 .get_gdt = emulator_get_gdt, 4345 .get_idt = emulator_get_idt, 4346 .set_gdt = emulator_set_gdt, 4347 .set_idt = emulator_set_idt, 4348 .get_cr = emulator_get_cr, 4349 .set_cr = emulator_set_cr, 4350 .set_rflags = emulator_set_rflags, 4351 .cpl = emulator_get_cpl, 4352 .get_dr = emulator_get_dr, 4353 .set_dr = emulator_set_dr, 4354 .set_msr = emulator_set_msr, 4355 .get_msr = emulator_get_msr, 4356 .read_pmc = emulator_read_pmc, 4357 .halt = emulator_halt, 4358 .wbinvd = emulator_wbinvd, 4359 .fix_hypercall = emulator_fix_hypercall, 4360 .get_fpu = emulator_get_fpu, 4361 .put_fpu = emulator_put_fpu, 4362 .intercept = emulator_intercept, 4363 .get_cpuid = emulator_get_cpuid, 4364 }; 4365 4366 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 4367 { 4368 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask); 4369 /* 4370 * an sti; sti; sequence only disable interrupts for the first 4371 * instruction. So, if the last instruction, be it emulated or 4372 * not, left the system with the INT_STI flag enabled, it 4373 * means that the last instruction is an sti. We should not 4374 * leave the flag on in this case. The same goes for mov ss 4375 */ 4376 if (!(int_shadow & mask)) 4377 kvm_x86_ops->set_interrupt_shadow(vcpu, mask); 4378 } 4379 4380 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 4381 { 4382 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4383 if (ctxt->exception.vector == PF_VECTOR) 4384 kvm_propagate_fault(vcpu, &ctxt->exception); 4385 else if (ctxt->exception.error_code_valid) 4386 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 4387 ctxt->exception.error_code); 4388 else 4389 kvm_queue_exception(vcpu, ctxt->exception.vector); 4390 } 4391 4392 static void init_decode_cache(struct x86_emulate_ctxt *ctxt) 4393 { 4394 memset(&ctxt->twobyte, 0, 4395 (void *)&ctxt->_regs - (void *)&ctxt->twobyte); 4396 4397 ctxt->fetch.start = 0; 4398 ctxt->fetch.end = 0; 4399 ctxt->io_read.pos = 0; 4400 ctxt->io_read.end = 0; 4401 ctxt->mem_read.pos = 0; 4402 ctxt->mem_read.end = 0; 4403 } 4404 4405 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 4406 { 4407 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4408 int cs_db, cs_l; 4409 4410 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 4411 4412 ctxt->eflags = kvm_get_rflags(vcpu); 4413 ctxt->eip = kvm_rip_read(vcpu); 4414 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 4415 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 4416 cs_l ? X86EMUL_MODE_PROT64 : 4417 cs_db ? X86EMUL_MODE_PROT32 : 4418 X86EMUL_MODE_PROT16; 4419 ctxt->guest_mode = is_guest_mode(vcpu); 4420 4421 init_decode_cache(ctxt); 4422 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 4423 } 4424 4425 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 4426 { 4427 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4428 int ret; 4429 4430 init_emulate_ctxt(vcpu); 4431 4432 ctxt->op_bytes = 2; 4433 ctxt->ad_bytes = 2; 4434 ctxt->_eip = ctxt->eip + inc_eip; 4435 ret = emulate_int_real(ctxt, irq); 4436 4437 if (ret != X86EMUL_CONTINUE) 4438 return EMULATE_FAIL; 4439 4440 ctxt->eip = ctxt->_eip; 4441 kvm_rip_write(vcpu, ctxt->eip); 4442 kvm_set_rflags(vcpu, ctxt->eflags); 4443 4444 if (irq == NMI_VECTOR) 4445 vcpu->arch.nmi_pending = 0; 4446 else 4447 vcpu->arch.interrupt.pending = false; 4448 4449 return EMULATE_DONE; 4450 } 4451 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 4452 4453 static int handle_emulation_failure(struct kvm_vcpu *vcpu) 4454 { 4455 int r = EMULATE_DONE; 4456 4457 ++vcpu->stat.insn_emulation_fail; 4458 trace_kvm_emulate_insn_failed(vcpu); 4459 if (!is_guest_mode(vcpu)) { 4460 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4461 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 4462 vcpu->run->internal.ndata = 0; 4463 r = EMULATE_FAIL; 4464 } 4465 kvm_queue_exception(vcpu, UD_VECTOR); 4466 4467 return r; 4468 } 4469 4470 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva) 4471 { 4472 gpa_t gpa; 4473 pfn_t pfn; 4474 4475 if (tdp_enabled) 4476 return false; 4477 4478 /* 4479 * if emulation was due to access to shadowed page table 4480 * and it failed try to unshadow page and re-enter the 4481 * guest to let CPU execute the instruction. 4482 */ 4483 if (kvm_mmu_unprotect_page_virt(vcpu, gva)) 4484 return true; 4485 4486 gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL); 4487 4488 if (gpa == UNMAPPED_GVA) 4489 return true; /* let cpu generate fault */ 4490 4491 /* 4492 * Do not retry the unhandleable instruction if it faults on the 4493 * readonly host memory, otherwise it will goto a infinite loop: 4494 * retry instruction -> write #PF -> emulation fail -> retry 4495 * instruction -> ... 4496 */ 4497 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 4498 if (!is_error_pfn(pfn)) { 4499 kvm_release_pfn_clean(pfn); 4500 return true; 4501 } 4502 4503 return false; 4504 } 4505 4506 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 4507 unsigned long cr2, int emulation_type) 4508 { 4509 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4510 unsigned long last_retry_eip, last_retry_addr, gpa = cr2; 4511 4512 last_retry_eip = vcpu->arch.last_retry_eip; 4513 last_retry_addr = vcpu->arch.last_retry_addr; 4514 4515 /* 4516 * If the emulation is caused by #PF and it is non-page_table 4517 * writing instruction, it means the VM-EXIT is caused by shadow 4518 * page protected, we can zap the shadow page and retry this 4519 * instruction directly. 4520 * 4521 * Note: if the guest uses a non-page-table modifying instruction 4522 * on the PDE that points to the instruction, then we will unmap 4523 * the instruction and go to an infinite loop. So, we cache the 4524 * last retried eip and the last fault address, if we meet the eip 4525 * and the address again, we can break out of the potential infinite 4526 * loop. 4527 */ 4528 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 4529 4530 if (!(emulation_type & EMULTYPE_RETRY)) 4531 return false; 4532 4533 if (x86_page_table_writing_insn(ctxt)) 4534 return false; 4535 4536 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2) 4537 return false; 4538 4539 vcpu->arch.last_retry_eip = ctxt->eip; 4540 vcpu->arch.last_retry_addr = cr2; 4541 4542 if (!vcpu->arch.mmu.direct_map) 4543 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 4544 4545 kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); 4546 4547 return true; 4548 } 4549 4550 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 4551 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 4552 4553 int x86_emulate_instruction(struct kvm_vcpu *vcpu, 4554 unsigned long cr2, 4555 int emulation_type, 4556 void *insn, 4557 int insn_len) 4558 { 4559 int r; 4560 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4561 bool writeback = true; 4562 4563 kvm_clear_exception_queue(vcpu); 4564 4565 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 4566 init_emulate_ctxt(vcpu); 4567 ctxt->interruptibility = 0; 4568 ctxt->have_exception = false; 4569 ctxt->perm_ok = false; 4570 4571 ctxt->only_vendor_specific_insn 4572 = emulation_type & EMULTYPE_TRAP_UD; 4573 4574 r = x86_decode_insn(ctxt, insn, insn_len); 4575 4576 trace_kvm_emulate_insn_start(vcpu); 4577 ++vcpu->stat.insn_emulation; 4578 if (r != EMULATION_OK) { 4579 if (emulation_type & EMULTYPE_TRAP_UD) 4580 return EMULATE_FAIL; 4581 if (reexecute_instruction(vcpu, cr2)) 4582 return EMULATE_DONE; 4583 if (emulation_type & EMULTYPE_SKIP) 4584 return EMULATE_FAIL; 4585 return handle_emulation_failure(vcpu); 4586 } 4587 } 4588 4589 if (emulation_type & EMULTYPE_SKIP) { 4590 kvm_rip_write(vcpu, ctxt->_eip); 4591 return EMULATE_DONE; 4592 } 4593 4594 if (retry_instruction(ctxt, cr2, emulation_type)) 4595 return EMULATE_DONE; 4596 4597 /* this is needed for vmware backdoor interface to work since it 4598 changes registers values during IO operation */ 4599 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 4600 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 4601 emulator_invalidate_register_cache(ctxt); 4602 } 4603 4604 restart: 4605 r = x86_emulate_insn(ctxt); 4606 4607 if (r == EMULATION_INTERCEPTED) 4608 return EMULATE_DONE; 4609 4610 if (r == EMULATION_FAILED) { 4611 if (reexecute_instruction(vcpu, cr2)) 4612 return EMULATE_DONE; 4613 4614 return handle_emulation_failure(vcpu); 4615 } 4616 4617 if (ctxt->have_exception) { 4618 inject_emulated_exception(vcpu); 4619 r = EMULATE_DONE; 4620 } else if (vcpu->arch.pio.count) { 4621 if (!vcpu->arch.pio.in) 4622 vcpu->arch.pio.count = 0; 4623 else { 4624 writeback = false; 4625 vcpu->arch.complete_userspace_io = complete_emulated_pio; 4626 } 4627 r = EMULATE_DO_MMIO; 4628 } else if (vcpu->mmio_needed) { 4629 if (!vcpu->mmio_is_write) 4630 writeback = false; 4631 r = EMULATE_DO_MMIO; 4632 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 4633 } else if (r == EMULATION_RESTART) 4634 goto restart; 4635 else 4636 r = EMULATE_DONE; 4637 4638 if (writeback) { 4639 toggle_interruptibility(vcpu, ctxt->interruptibility); 4640 kvm_set_rflags(vcpu, ctxt->eflags); 4641 kvm_make_request(KVM_REQ_EVENT, vcpu); 4642 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 4643 kvm_rip_write(vcpu, ctxt->eip); 4644 } else 4645 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 4646 4647 return r; 4648 } 4649 EXPORT_SYMBOL_GPL(x86_emulate_instruction); 4650 4651 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port) 4652 { 4653 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX); 4654 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt, 4655 size, port, &val, 1); 4656 /* do not return to emulator after return from userspace */ 4657 vcpu->arch.pio.count = 0; 4658 return ret; 4659 } 4660 EXPORT_SYMBOL_GPL(kvm_fast_pio_out); 4661 4662 static void tsc_bad(void *info) 4663 { 4664 __this_cpu_write(cpu_tsc_khz, 0); 4665 } 4666 4667 static void tsc_khz_changed(void *data) 4668 { 4669 struct cpufreq_freqs *freq = data; 4670 unsigned long khz = 0; 4671 4672 if (data) 4673 khz = freq->new; 4674 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 4675 khz = cpufreq_quick_get(raw_smp_processor_id()); 4676 if (!khz) 4677 khz = tsc_khz; 4678 __this_cpu_write(cpu_tsc_khz, khz); 4679 } 4680 4681 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 4682 void *data) 4683 { 4684 struct cpufreq_freqs *freq = data; 4685 struct kvm *kvm; 4686 struct kvm_vcpu *vcpu; 4687 int i, send_ipi = 0; 4688 4689 /* 4690 * We allow guests to temporarily run on slowing clocks, 4691 * provided we notify them after, or to run on accelerating 4692 * clocks, provided we notify them before. Thus time never 4693 * goes backwards. 4694 * 4695 * However, we have a problem. We can't atomically update 4696 * the frequency of a given CPU from this function; it is 4697 * merely a notifier, which can be called from any CPU. 4698 * Changing the TSC frequency at arbitrary points in time 4699 * requires a recomputation of local variables related to 4700 * the TSC for each VCPU. We must flag these local variables 4701 * to be updated and be sure the update takes place with the 4702 * new frequency before any guests proceed. 4703 * 4704 * Unfortunately, the combination of hotplug CPU and frequency 4705 * change creates an intractable locking scenario; the order 4706 * of when these callouts happen is undefined with respect to 4707 * CPU hotplug, and they can race with each other. As such, 4708 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 4709 * undefined; you can actually have a CPU frequency change take 4710 * place in between the computation of X and the setting of the 4711 * variable. To protect against this problem, all updates of 4712 * the per_cpu tsc_khz variable are done in an interrupt 4713 * protected IPI, and all callers wishing to update the value 4714 * must wait for a synchronous IPI to complete (which is trivial 4715 * if the caller is on the CPU already). This establishes the 4716 * necessary total order on variable updates. 4717 * 4718 * Note that because a guest time update may take place 4719 * anytime after the setting of the VCPU's request bit, the 4720 * correct TSC value must be set before the request. However, 4721 * to ensure the update actually makes it to any guest which 4722 * starts running in hardware virtualization between the set 4723 * and the acquisition of the spinlock, we must also ping the 4724 * CPU after setting the request bit. 4725 * 4726 */ 4727 4728 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 4729 return 0; 4730 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 4731 return 0; 4732 4733 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 4734 4735 raw_spin_lock(&kvm_lock); 4736 list_for_each_entry(kvm, &vm_list, vm_list) { 4737 kvm_for_each_vcpu(i, vcpu, kvm) { 4738 if (vcpu->cpu != freq->cpu) 4739 continue; 4740 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4741 if (vcpu->cpu != smp_processor_id()) 4742 send_ipi = 1; 4743 } 4744 } 4745 raw_spin_unlock(&kvm_lock); 4746 4747 if (freq->old < freq->new && send_ipi) { 4748 /* 4749 * We upscale the frequency. Must make the guest 4750 * doesn't see old kvmclock values while running with 4751 * the new frequency, otherwise we risk the guest sees 4752 * time go backwards. 4753 * 4754 * In case we update the frequency for another cpu 4755 * (which might be in guest context) send an interrupt 4756 * to kick the cpu out of guest context. Next time 4757 * guest context is entered kvmclock will be updated, 4758 * so the guest will not see stale values. 4759 */ 4760 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 4761 } 4762 return 0; 4763 } 4764 4765 static struct notifier_block kvmclock_cpufreq_notifier_block = { 4766 .notifier_call = kvmclock_cpufreq_notifier 4767 }; 4768 4769 static int kvmclock_cpu_notifier(struct notifier_block *nfb, 4770 unsigned long action, void *hcpu) 4771 { 4772 unsigned int cpu = (unsigned long)hcpu; 4773 4774 switch (action) { 4775 case CPU_ONLINE: 4776 case CPU_DOWN_FAILED: 4777 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); 4778 break; 4779 case CPU_DOWN_PREPARE: 4780 smp_call_function_single(cpu, tsc_bad, NULL, 1); 4781 break; 4782 } 4783 return NOTIFY_OK; 4784 } 4785 4786 static struct notifier_block kvmclock_cpu_notifier_block = { 4787 .notifier_call = kvmclock_cpu_notifier, 4788 .priority = -INT_MAX 4789 }; 4790 4791 static void kvm_timer_init(void) 4792 { 4793 int cpu; 4794 4795 max_tsc_khz = tsc_khz; 4796 register_hotcpu_notifier(&kvmclock_cpu_notifier_block); 4797 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 4798 #ifdef CONFIG_CPU_FREQ 4799 struct cpufreq_policy policy; 4800 memset(&policy, 0, sizeof(policy)); 4801 cpu = get_cpu(); 4802 cpufreq_get_policy(&policy, cpu); 4803 if (policy.cpuinfo.max_freq) 4804 max_tsc_khz = policy.cpuinfo.max_freq; 4805 put_cpu(); 4806 #endif 4807 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 4808 CPUFREQ_TRANSITION_NOTIFIER); 4809 } 4810 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz); 4811 for_each_online_cpu(cpu) 4812 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); 4813 } 4814 4815 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); 4816 4817 int kvm_is_in_guest(void) 4818 { 4819 return __this_cpu_read(current_vcpu) != NULL; 4820 } 4821 4822 static int kvm_is_user_mode(void) 4823 { 4824 int user_mode = 3; 4825 4826 if (__this_cpu_read(current_vcpu)) 4827 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu)); 4828 4829 return user_mode != 0; 4830 } 4831 4832 static unsigned long kvm_get_guest_ip(void) 4833 { 4834 unsigned long ip = 0; 4835 4836 if (__this_cpu_read(current_vcpu)) 4837 ip = kvm_rip_read(__this_cpu_read(current_vcpu)); 4838 4839 return ip; 4840 } 4841 4842 static struct perf_guest_info_callbacks kvm_guest_cbs = { 4843 .is_in_guest = kvm_is_in_guest, 4844 .is_user_mode = kvm_is_user_mode, 4845 .get_guest_ip = kvm_get_guest_ip, 4846 }; 4847 4848 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu) 4849 { 4850 __this_cpu_write(current_vcpu, vcpu); 4851 } 4852 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi); 4853 4854 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu) 4855 { 4856 __this_cpu_write(current_vcpu, NULL); 4857 } 4858 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi); 4859 4860 static void kvm_set_mmio_spte_mask(void) 4861 { 4862 u64 mask; 4863 int maxphyaddr = boot_cpu_data.x86_phys_bits; 4864 4865 /* 4866 * Set the reserved bits and the present bit of an paging-structure 4867 * entry to generate page fault with PFER.RSV = 1. 4868 */ 4869 mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr; 4870 mask |= 1ull; 4871 4872 #ifdef CONFIG_X86_64 4873 /* 4874 * If reserved bit is not supported, clear the present bit to disable 4875 * mmio page fault. 4876 */ 4877 if (maxphyaddr == 52) 4878 mask &= ~1ull; 4879 #endif 4880 4881 kvm_mmu_set_mmio_spte_mask(mask); 4882 } 4883 4884 int kvm_arch_init(void *opaque) 4885 { 4886 int r; 4887 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque; 4888 4889 if (kvm_x86_ops) { 4890 printk(KERN_ERR "kvm: already loaded the other module\n"); 4891 r = -EEXIST; 4892 goto out; 4893 } 4894 4895 if (!ops->cpu_has_kvm_support()) { 4896 printk(KERN_ERR "kvm: no hardware support\n"); 4897 r = -EOPNOTSUPP; 4898 goto out; 4899 } 4900 if (ops->disabled_by_bios()) { 4901 printk(KERN_ERR "kvm: disabled by bios\n"); 4902 r = -EOPNOTSUPP; 4903 goto out; 4904 } 4905 4906 r = kvm_mmu_module_init(); 4907 if (r) 4908 goto out; 4909 4910 kvm_set_mmio_spte_mask(); 4911 kvm_init_msr_list(); 4912 4913 kvm_x86_ops = ops; 4914 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, 4915 PT_DIRTY_MASK, PT64_NX_MASK, 0); 4916 4917 kvm_timer_init(); 4918 4919 perf_register_guest_info_callbacks(&kvm_guest_cbs); 4920 4921 if (cpu_has_xsave) 4922 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 4923 4924 kvm_lapic_init(); 4925 return 0; 4926 4927 out: 4928 return r; 4929 } 4930 4931 void kvm_arch_exit(void) 4932 { 4933 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 4934 4935 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 4936 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 4937 CPUFREQ_TRANSITION_NOTIFIER); 4938 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block); 4939 kvm_x86_ops = NULL; 4940 kvm_mmu_module_exit(); 4941 } 4942 4943 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 4944 { 4945 ++vcpu->stat.halt_exits; 4946 if (irqchip_in_kernel(vcpu->kvm)) { 4947 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 4948 return 1; 4949 } else { 4950 vcpu->run->exit_reason = KVM_EXIT_HLT; 4951 return 0; 4952 } 4953 } 4954 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 4955 4956 int kvm_hv_hypercall(struct kvm_vcpu *vcpu) 4957 { 4958 u64 param, ingpa, outgpa, ret; 4959 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0; 4960 bool fast, longmode; 4961 int cs_db, cs_l; 4962 4963 /* 4964 * hypercall generates UD from non zero cpl and real mode 4965 * per HYPER-V spec 4966 */ 4967 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) { 4968 kvm_queue_exception(vcpu, UD_VECTOR); 4969 return 0; 4970 } 4971 4972 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 4973 longmode = is_long_mode(vcpu) && cs_l == 1; 4974 4975 if (!longmode) { 4976 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) | 4977 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff); 4978 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) | 4979 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff); 4980 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) | 4981 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff); 4982 } 4983 #ifdef CONFIG_X86_64 4984 else { 4985 param = kvm_register_read(vcpu, VCPU_REGS_RCX); 4986 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX); 4987 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8); 4988 } 4989 #endif 4990 4991 code = param & 0xffff; 4992 fast = (param >> 16) & 0x1; 4993 rep_cnt = (param >> 32) & 0xfff; 4994 rep_idx = (param >> 48) & 0xfff; 4995 4996 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa); 4997 4998 switch (code) { 4999 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT: 5000 kvm_vcpu_on_spin(vcpu); 5001 break; 5002 default: 5003 res = HV_STATUS_INVALID_HYPERCALL_CODE; 5004 break; 5005 } 5006 5007 ret = res | (((u64)rep_done & 0xfff) << 32); 5008 if (longmode) { 5009 kvm_register_write(vcpu, VCPU_REGS_RAX, ret); 5010 } else { 5011 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32); 5012 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff); 5013 } 5014 5015 return 1; 5016 } 5017 5018 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 5019 { 5020 unsigned long nr, a0, a1, a2, a3, ret; 5021 int r = 1; 5022 5023 if (kvm_hv_hypercall_enabled(vcpu->kvm)) 5024 return kvm_hv_hypercall(vcpu); 5025 5026 nr = kvm_register_read(vcpu, VCPU_REGS_RAX); 5027 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX); 5028 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX); 5029 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX); 5030 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI); 5031 5032 trace_kvm_hypercall(nr, a0, a1, a2, a3); 5033 5034 if (!is_long_mode(vcpu)) { 5035 nr &= 0xFFFFFFFF; 5036 a0 &= 0xFFFFFFFF; 5037 a1 &= 0xFFFFFFFF; 5038 a2 &= 0xFFFFFFFF; 5039 a3 &= 0xFFFFFFFF; 5040 } 5041 5042 if (kvm_x86_ops->get_cpl(vcpu) != 0) { 5043 ret = -KVM_EPERM; 5044 goto out; 5045 } 5046 5047 switch (nr) { 5048 case KVM_HC_VAPIC_POLL_IRQ: 5049 ret = 0; 5050 break; 5051 default: 5052 ret = -KVM_ENOSYS; 5053 break; 5054 } 5055 out: 5056 kvm_register_write(vcpu, VCPU_REGS_RAX, ret); 5057 ++vcpu->stat.hypercalls; 5058 return r; 5059 } 5060 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 5061 5062 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 5063 { 5064 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5065 char instruction[3]; 5066 unsigned long rip = kvm_rip_read(vcpu); 5067 5068 /* 5069 * Blow out the MMU to ensure that no other VCPU has an active mapping 5070 * to ensure that the updated hypercall appears atomically across all 5071 * VCPUs. 5072 */ 5073 kvm_mmu_zap_all(vcpu->kvm); 5074 5075 kvm_x86_ops->patch_hypercall(vcpu, instruction); 5076 5077 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL); 5078 } 5079 5080 /* 5081 * Check if userspace requested an interrupt window, and that the 5082 * interrupt window is open. 5083 * 5084 * No need to exit to userspace if we already have an interrupt queued. 5085 */ 5086 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 5087 { 5088 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) && 5089 vcpu->run->request_interrupt_window && 5090 kvm_arch_interrupt_allowed(vcpu)); 5091 } 5092 5093 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 5094 { 5095 struct kvm_run *kvm_run = vcpu->run; 5096 5097 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; 5098 kvm_run->cr8 = kvm_get_cr8(vcpu); 5099 kvm_run->apic_base = kvm_get_apic_base(vcpu); 5100 if (irqchip_in_kernel(vcpu->kvm)) 5101 kvm_run->ready_for_interrupt_injection = 1; 5102 else 5103 kvm_run->ready_for_interrupt_injection = 5104 kvm_arch_interrupt_allowed(vcpu) && 5105 !kvm_cpu_has_interrupt(vcpu) && 5106 !kvm_event_needs_reinjection(vcpu); 5107 } 5108 5109 static int vapic_enter(struct kvm_vcpu *vcpu) 5110 { 5111 struct kvm_lapic *apic = vcpu->arch.apic; 5112 struct page *page; 5113 5114 if (!apic || !apic->vapic_addr) 5115 return 0; 5116 5117 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); 5118 if (is_error_page(page)) 5119 return -EFAULT; 5120 5121 vcpu->arch.apic->vapic_page = page; 5122 return 0; 5123 } 5124 5125 static void vapic_exit(struct kvm_vcpu *vcpu) 5126 { 5127 struct kvm_lapic *apic = vcpu->arch.apic; 5128 int idx; 5129 5130 if (!apic || !apic->vapic_addr) 5131 return; 5132 5133 idx = srcu_read_lock(&vcpu->kvm->srcu); 5134 kvm_release_page_dirty(apic->vapic_page); 5135 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); 5136 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5137 } 5138 5139 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 5140 { 5141 int max_irr, tpr; 5142 5143 if (!kvm_x86_ops->update_cr8_intercept) 5144 return; 5145 5146 if (!vcpu->arch.apic) 5147 return; 5148 5149 if (!vcpu->arch.apic->vapic_addr) 5150 max_irr = kvm_lapic_find_highest_irr(vcpu); 5151 else 5152 max_irr = -1; 5153 5154 if (max_irr != -1) 5155 max_irr >>= 4; 5156 5157 tpr = kvm_lapic_get_cr8(vcpu); 5158 5159 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); 5160 } 5161 5162 static void inject_pending_event(struct kvm_vcpu *vcpu) 5163 { 5164 /* try to reinject previous events if any */ 5165 if (vcpu->arch.exception.pending) { 5166 trace_kvm_inj_exception(vcpu->arch.exception.nr, 5167 vcpu->arch.exception.has_error_code, 5168 vcpu->arch.exception.error_code); 5169 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr, 5170 vcpu->arch.exception.has_error_code, 5171 vcpu->arch.exception.error_code, 5172 vcpu->arch.exception.reinject); 5173 return; 5174 } 5175 5176 if (vcpu->arch.nmi_injected) { 5177 kvm_x86_ops->set_nmi(vcpu); 5178 return; 5179 } 5180 5181 if (vcpu->arch.interrupt.pending) { 5182 kvm_x86_ops->set_irq(vcpu); 5183 return; 5184 } 5185 5186 /* try to inject new event if pending */ 5187 if (vcpu->arch.nmi_pending) { 5188 if (kvm_x86_ops->nmi_allowed(vcpu)) { 5189 --vcpu->arch.nmi_pending; 5190 vcpu->arch.nmi_injected = true; 5191 kvm_x86_ops->set_nmi(vcpu); 5192 } 5193 } else if (kvm_cpu_has_interrupt(vcpu)) { 5194 if (kvm_x86_ops->interrupt_allowed(vcpu)) { 5195 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), 5196 false); 5197 kvm_x86_ops->set_irq(vcpu); 5198 } 5199 } 5200 } 5201 5202 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu) 5203 { 5204 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) && 5205 !vcpu->guest_xcr0_loaded) { 5206 /* kvm_set_xcr() also depends on this */ 5207 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 5208 vcpu->guest_xcr0_loaded = 1; 5209 } 5210 } 5211 5212 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu) 5213 { 5214 if (vcpu->guest_xcr0_loaded) { 5215 if (vcpu->arch.xcr0 != host_xcr0) 5216 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 5217 vcpu->guest_xcr0_loaded = 0; 5218 } 5219 } 5220 5221 static void process_nmi(struct kvm_vcpu *vcpu) 5222 { 5223 unsigned limit = 2; 5224 5225 /* 5226 * x86 is limited to one NMI running, and one NMI pending after it. 5227 * If an NMI is already in progress, limit further NMIs to just one. 5228 * Otherwise, allow two (and we'll inject the first one immediately). 5229 */ 5230 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) 5231 limit = 1; 5232 5233 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 5234 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 5235 kvm_make_request(KVM_REQ_EVENT, vcpu); 5236 } 5237 5238 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 5239 { 5240 int r; 5241 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) && 5242 vcpu->run->request_interrupt_window; 5243 bool req_immediate_exit = 0; 5244 5245 if (vcpu->requests) { 5246 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) 5247 kvm_mmu_unload(vcpu); 5248 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 5249 __kvm_migrate_timers(vcpu); 5250 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 5251 r = kvm_guest_time_update(vcpu); 5252 if (unlikely(r)) 5253 goto out; 5254 } 5255 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 5256 kvm_mmu_sync_roots(vcpu); 5257 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 5258 kvm_x86_ops->tlb_flush(vcpu); 5259 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 5260 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 5261 r = 0; 5262 goto out; 5263 } 5264 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 5265 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 5266 r = 0; 5267 goto out; 5268 } 5269 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) { 5270 vcpu->fpu_active = 0; 5271 kvm_x86_ops->fpu_deactivate(vcpu); 5272 } 5273 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 5274 /* Page is swapped out. Do synthetic halt */ 5275 vcpu->arch.apf.halted = true; 5276 r = 1; 5277 goto out; 5278 } 5279 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 5280 record_steal_time(vcpu); 5281 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 5282 process_nmi(vcpu); 5283 req_immediate_exit = 5284 kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu); 5285 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 5286 kvm_handle_pmu_event(vcpu); 5287 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 5288 kvm_deliver_pmi(vcpu); 5289 } 5290 5291 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { 5292 inject_pending_event(vcpu); 5293 5294 /* enable NMI/IRQ window open exits if needed */ 5295 if (vcpu->arch.nmi_pending) 5296 kvm_x86_ops->enable_nmi_window(vcpu); 5297 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win) 5298 kvm_x86_ops->enable_irq_window(vcpu); 5299 5300 if (kvm_lapic_enabled(vcpu)) { 5301 update_cr8_intercept(vcpu); 5302 kvm_lapic_sync_to_vapic(vcpu); 5303 } 5304 } 5305 5306 r = kvm_mmu_reload(vcpu); 5307 if (unlikely(r)) { 5308 goto cancel_injection; 5309 } 5310 5311 preempt_disable(); 5312 5313 kvm_x86_ops->prepare_guest_switch(vcpu); 5314 if (vcpu->fpu_active) 5315 kvm_load_guest_fpu(vcpu); 5316 kvm_load_guest_xcr0(vcpu); 5317 5318 vcpu->mode = IN_GUEST_MODE; 5319 5320 /* We should set ->mode before check ->requests, 5321 * see the comment in make_all_cpus_request. 5322 */ 5323 smp_mb(); 5324 5325 local_irq_disable(); 5326 5327 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests 5328 || need_resched() || signal_pending(current)) { 5329 vcpu->mode = OUTSIDE_GUEST_MODE; 5330 smp_wmb(); 5331 local_irq_enable(); 5332 preempt_enable(); 5333 r = 1; 5334 goto cancel_injection; 5335 } 5336 5337 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 5338 5339 if (req_immediate_exit) 5340 smp_send_reschedule(vcpu->cpu); 5341 5342 kvm_guest_enter(); 5343 5344 if (unlikely(vcpu->arch.switch_db_regs)) { 5345 set_debugreg(0, 7); 5346 set_debugreg(vcpu->arch.eff_db[0], 0); 5347 set_debugreg(vcpu->arch.eff_db[1], 1); 5348 set_debugreg(vcpu->arch.eff_db[2], 2); 5349 set_debugreg(vcpu->arch.eff_db[3], 3); 5350 } 5351 5352 trace_kvm_entry(vcpu->vcpu_id); 5353 kvm_x86_ops->run(vcpu); 5354 5355 /* 5356 * If the guest has used debug registers, at least dr7 5357 * will be disabled while returning to the host. 5358 * If we don't have active breakpoints in the host, we don't 5359 * care about the messed up debug address registers. But if 5360 * we have some of them active, restore the old state. 5361 */ 5362 if (hw_breakpoint_active()) 5363 hw_breakpoint_restore(); 5364 5365 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu); 5366 5367 vcpu->mode = OUTSIDE_GUEST_MODE; 5368 smp_wmb(); 5369 local_irq_enable(); 5370 5371 ++vcpu->stat.exits; 5372 5373 /* 5374 * We must have an instruction between local_irq_enable() and 5375 * kvm_guest_exit(), so the timer interrupt isn't delayed by 5376 * the interrupt shadow. The stat.exits increment will do nicely. 5377 * But we need to prevent reordering, hence this barrier(): 5378 */ 5379 barrier(); 5380 5381 kvm_guest_exit(); 5382 5383 preempt_enable(); 5384 5385 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 5386 5387 /* 5388 * Profile KVM exit RIPs: 5389 */ 5390 if (unlikely(prof_on == KVM_PROFILING)) { 5391 unsigned long rip = kvm_rip_read(vcpu); 5392 profile_hit(KVM_PROFILING, (void *)rip); 5393 } 5394 5395 if (unlikely(vcpu->arch.tsc_always_catchup)) 5396 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5397 5398 if (vcpu->arch.apic_attention) 5399 kvm_lapic_sync_from_vapic(vcpu); 5400 5401 r = kvm_x86_ops->handle_exit(vcpu); 5402 return r; 5403 5404 cancel_injection: 5405 kvm_x86_ops->cancel_injection(vcpu); 5406 if (unlikely(vcpu->arch.apic_attention)) 5407 kvm_lapic_sync_from_vapic(vcpu); 5408 out: 5409 return r; 5410 } 5411 5412 5413 static int __vcpu_run(struct kvm_vcpu *vcpu) 5414 { 5415 int r; 5416 struct kvm *kvm = vcpu->kvm; 5417 5418 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) { 5419 pr_debug("vcpu %d received sipi with vector # %x\n", 5420 vcpu->vcpu_id, vcpu->arch.sipi_vector); 5421 kvm_lapic_reset(vcpu); 5422 r = kvm_arch_vcpu_reset(vcpu); 5423 if (r) 5424 return r; 5425 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 5426 } 5427 5428 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 5429 r = vapic_enter(vcpu); 5430 if (r) { 5431 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 5432 return r; 5433 } 5434 5435 r = 1; 5436 while (r > 0) { 5437 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 5438 !vcpu->arch.apf.halted) 5439 r = vcpu_enter_guest(vcpu); 5440 else { 5441 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 5442 kvm_vcpu_block(vcpu); 5443 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 5444 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) 5445 { 5446 switch(vcpu->arch.mp_state) { 5447 case KVM_MP_STATE_HALTED: 5448 vcpu->arch.mp_state = 5449 KVM_MP_STATE_RUNNABLE; 5450 case KVM_MP_STATE_RUNNABLE: 5451 vcpu->arch.apf.halted = false; 5452 break; 5453 case KVM_MP_STATE_SIPI_RECEIVED: 5454 default: 5455 r = -EINTR; 5456 break; 5457 } 5458 } 5459 } 5460 5461 if (r <= 0) 5462 break; 5463 5464 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests); 5465 if (kvm_cpu_has_pending_timer(vcpu)) 5466 kvm_inject_pending_timer_irqs(vcpu); 5467 5468 if (dm_request_for_irq_injection(vcpu)) { 5469 r = -EINTR; 5470 vcpu->run->exit_reason = KVM_EXIT_INTR; 5471 ++vcpu->stat.request_irq_exits; 5472 } 5473 5474 kvm_check_async_pf_completion(vcpu); 5475 5476 if (signal_pending(current)) { 5477 r = -EINTR; 5478 vcpu->run->exit_reason = KVM_EXIT_INTR; 5479 ++vcpu->stat.signal_exits; 5480 } 5481 if (need_resched()) { 5482 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 5483 kvm_resched(vcpu); 5484 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 5485 } 5486 } 5487 5488 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 5489 5490 vapic_exit(vcpu); 5491 5492 return r; 5493 } 5494 5495 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 5496 { 5497 int r; 5498 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 5499 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 5500 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 5501 if (r != EMULATE_DONE) 5502 return 0; 5503 return 1; 5504 } 5505 5506 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 5507 { 5508 BUG_ON(!vcpu->arch.pio.count); 5509 5510 return complete_emulated_io(vcpu); 5511 } 5512 5513 /* 5514 * Implements the following, as a state machine: 5515 * 5516 * read: 5517 * for each fragment 5518 * for each mmio piece in the fragment 5519 * write gpa, len 5520 * exit 5521 * copy data 5522 * execute insn 5523 * 5524 * write: 5525 * for each fragment 5526 * for each mmio piece in the fragment 5527 * write gpa, len 5528 * copy data 5529 * exit 5530 */ 5531 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 5532 { 5533 struct kvm_run *run = vcpu->run; 5534 struct kvm_mmio_fragment *frag; 5535 unsigned len; 5536 5537 BUG_ON(!vcpu->mmio_needed); 5538 5539 /* Complete previous fragment */ 5540 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 5541 len = min(8u, frag->len); 5542 if (!vcpu->mmio_is_write) 5543 memcpy(frag->data, run->mmio.data, len); 5544 5545 if (frag->len <= 8) { 5546 /* Switch to the next fragment. */ 5547 frag++; 5548 vcpu->mmio_cur_fragment++; 5549 } else { 5550 /* Go forward to the next mmio piece. */ 5551 frag->data += len; 5552 frag->gpa += len; 5553 frag->len -= len; 5554 } 5555 5556 if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) { 5557 vcpu->mmio_needed = 0; 5558 if (vcpu->mmio_is_write) 5559 return 1; 5560 vcpu->mmio_read_completed = 1; 5561 return complete_emulated_io(vcpu); 5562 } 5563 5564 run->exit_reason = KVM_EXIT_MMIO; 5565 run->mmio.phys_addr = frag->gpa; 5566 if (vcpu->mmio_is_write) 5567 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 5568 run->mmio.len = min(8u, frag->len); 5569 run->mmio.is_write = vcpu->mmio_is_write; 5570 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 5571 return 0; 5572 } 5573 5574 5575 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 5576 { 5577 int r; 5578 sigset_t sigsaved; 5579 5580 if (!tsk_used_math(current) && init_fpu(current)) 5581 return -ENOMEM; 5582 5583 if (vcpu->sigset_active) 5584 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); 5585 5586 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 5587 kvm_vcpu_block(vcpu); 5588 clear_bit(KVM_REQ_UNHALT, &vcpu->requests); 5589 r = -EAGAIN; 5590 goto out; 5591 } 5592 5593 /* re-sync apic's tpr */ 5594 if (!irqchip_in_kernel(vcpu->kvm)) { 5595 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 5596 r = -EINVAL; 5597 goto out; 5598 } 5599 } 5600 5601 if (unlikely(vcpu->arch.complete_userspace_io)) { 5602 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 5603 vcpu->arch.complete_userspace_io = NULL; 5604 r = cui(vcpu); 5605 if (r <= 0) 5606 goto out; 5607 } else 5608 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); 5609 5610 r = __vcpu_run(vcpu); 5611 5612 out: 5613 post_kvm_run_save(vcpu); 5614 if (vcpu->sigset_active) 5615 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 5616 5617 return r; 5618 } 5619 5620 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 5621 { 5622 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 5623 /* 5624 * We are here if userspace calls get_regs() in the middle of 5625 * instruction emulation. Registers state needs to be copied 5626 * back from emulation context to vcpu. Userspace shouldn't do 5627 * that usually, but some bad designed PV devices (vmware 5628 * backdoor interface) need this to work 5629 */ 5630 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt); 5631 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 5632 } 5633 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX); 5634 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX); 5635 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX); 5636 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX); 5637 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI); 5638 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI); 5639 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); 5640 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP); 5641 #ifdef CONFIG_X86_64 5642 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8); 5643 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9); 5644 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10); 5645 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11); 5646 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12); 5647 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13); 5648 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14); 5649 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15); 5650 #endif 5651 5652 regs->rip = kvm_rip_read(vcpu); 5653 regs->rflags = kvm_get_rflags(vcpu); 5654 5655 return 0; 5656 } 5657 5658 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 5659 { 5660 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 5661 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 5662 5663 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax); 5664 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx); 5665 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx); 5666 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx); 5667 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi); 5668 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi); 5669 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp); 5670 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp); 5671 #ifdef CONFIG_X86_64 5672 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8); 5673 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9); 5674 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10); 5675 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11); 5676 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12); 5677 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13); 5678 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14); 5679 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15); 5680 #endif 5681 5682 kvm_rip_write(vcpu, regs->rip); 5683 kvm_set_rflags(vcpu, regs->rflags); 5684 5685 vcpu->arch.exception.pending = false; 5686 5687 kvm_make_request(KVM_REQ_EVENT, vcpu); 5688 5689 return 0; 5690 } 5691 5692 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 5693 { 5694 struct kvm_segment cs; 5695 5696 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 5697 *db = cs.db; 5698 *l = cs.l; 5699 } 5700 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); 5701 5702 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 5703 struct kvm_sregs *sregs) 5704 { 5705 struct desc_ptr dt; 5706 5707 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 5708 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 5709 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 5710 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 5711 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 5712 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 5713 5714 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 5715 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 5716 5717 kvm_x86_ops->get_idt(vcpu, &dt); 5718 sregs->idt.limit = dt.size; 5719 sregs->idt.base = dt.address; 5720 kvm_x86_ops->get_gdt(vcpu, &dt); 5721 sregs->gdt.limit = dt.size; 5722 sregs->gdt.base = dt.address; 5723 5724 sregs->cr0 = kvm_read_cr0(vcpu); 5725 sregs->cr2 = vcpu->arch.cr2; 5726 sregs->cr3 = kvm_read_cr3(vcpu); 5727 sregs->cr4 = kvm_read_cr4(vcpu); 5728 sregs->cr8 = kvm_get_cr8(vcpu); 5729 sregs->efer = vcpu->arch.efer; 5730 sregs->apic_base = kvm_get_apic_base(vcpu); 5731 5732 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap); 5733 5734 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft) 5735 set_bit(vcpu->arch.interrupt.nr, 5736 (unsigned long *)sregs->interrupt_bitmap); 5737 5738 return 0; 5739 } 5740 5741 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 5742 struct kvm_mp_state *mp_state) 5743 { 5744 mp_state->mp_state = vcpu->arch.mp_state; 5745 return 0; 5746 } 5747 5748 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 5749 struct kvm_mp_state *mp_state) 5750 { 5751 vcpu->arch.mp_state = mp_state->mp_state; 5752 kvm_make_request(KVM_REQ_EVENT, vcpu); 5753 return 0; 5754 } 5755 5756 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 5757 int reason, bool has_error_code, u32 error_code) 5758 { 5759 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5760 int ret; 5761 5762 init_emulate_ctxt(vcpu); 5763 5764 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 5765 has_error_code, error_code); 5766 5767 if (ret) 5768 return EMULATE_FAIL; 5769 5770 kvm_rip_write(vcpu, ctxt->eip); 5771 kvm_set_rflags(vcpu, ctxt->eflags); 5772 kvm_make_request(KVM_REQ_EVENT, vcpu); 5773 return EMULATE_DONE; 5774 } 5775 EXPORT_SYMBOL_GPL(kvm_task_switch); 5776 5777 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 5778 struct kvm_sregs *sregs) 5779 { 5780 int mmu_reset_needed = 0; 5781 int pending_vec, max_bits, idx; 5782 struct desc_ptr dt; 5783 5784 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE)) 5785 return -EINVAL; 5786 5787 dt.size = sregs->idt.limit; 5788 dt.address = sregs->idt.base; 5789 kvm_x86_ops->set_idt(vcpu, &dt); 5790 dt.size = sregs->gdt.limit; 5791 dt.address = sregs->gdt.base; 5792 kvm_x86_ops->set_gdt(vcpu, &dt); 5793 5794 vcpu->arch.cr2 = sregs->cr2; 5795 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 5796 vcpu->arch.cr3 = sregs->cr3; 5797 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 5798 5799 kvm_set_cr8(vcpu, sregs->cr8); 5800 5801 mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 5802 kvm_x86_ops->set_efer(vcpu, sregs->efer); 5803 kvm_set_apic_base(vcpu, sregs->apic_base); 5804 5805 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 5806 kvm_x86_ops->set_cr0(vcpu, sregs->cr0); 5807 vcpu->arch.cr0 = sregs->cr0; 5808 5809 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 5810 kvm_x86_ops->set_cr4(vcpu, sregs->cr4); 5811 if (sregs->cr4 & X86_CR4_OSXSAVE) 5812 kvm_update_cpuid(vcpu); 5813 5814 idx = srcu_read_lock(&vcpu->kvm->srcu); 5815 if (!is_long_mode(vcpu) && is_pae(vcpu)) { 5816 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 5817 mmu_reset_needed = 1; 5818 } 5819 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5820 5821 if (mmu_reset_needed) 5822 kvm_mmu_reset_context(vcpu); 5823 5824 max_bits = KVM_NR_INTERRUPTS; 5825 pending_vec = find_first_bit( 5826 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 5827 if (pending_vec < max_bits) { 5828 kvm_queue_interrupt(vcpu, pending_vec, false); 5829 pr_debug("Set back pending irq %d\n", pending_vec); 5830 } 5831 5832 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 5833 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 5834 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 5835 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 5836 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 5837 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 5838 5839 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 5840 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 5841 5842 update_cr8_intercept(vcpu); 5843 5844 /* Older userspace won't unhalt the vcpu on reset. */ 5845 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 5846 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 5847 !is_protmode(vcpu)) 5848 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 5849 5850 kvm_make_request(KVM_REQ_EVENT, vcpu); 5851 5852 return 0; 5853 } 5854 5855 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 5856 struct kvm_guest_debug *dbg) 5857 { 5858 unsigned long rflags; 5859 int i, r; 5860 5861 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 5862 r = -EBUSY; 5863 if (vcpu->arch.exception.pending) 5864 goto out; 5865 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 5866 kvm_queue_exception(vcpu, DB_VECTOR); 5867 else 5868 kvm_queue_exception(vcpu, BP_VECTOR); 5869 } 5870 5871 /* 5872 * Read rflags as long as potentially injected trace flags are still 5873 * filtered out. 5874 */ 5875 rflags = kvm_get_rflags(vcpu); 5876 5877 vcpu->guest_debug = dbg->control; 5878 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 5879 vcpu->guest_debug = 0; 5880 5881 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 5882 for (i = 0; i < KVM_NR_DB_REGS; ++i) 5883 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 5884 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 5885 } else { 5886 for (i = 0; i < KVM_NR_DB_REGS; i++) 5887 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 5888 } 5889 kvm_update_dr7(vcpu); 5890 5891 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 5892 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + 5893 get_segment_base(vcpu, VCPU_SREG_CS); 5894 5895 /* 5896 * Trigger an rflags update that will inject or remove the trace 5897 * flags. 5898 */ 5899 kvm_set_rflags(vcpu, rflags); 5900 5901 kvm_x86_ops->update_db_bp_intercept(vcpu); 5902 5903 r = 0; 5904 5905 out: 5906 5907 return r; 5908 } 5909 5910 /* 5911 * Translate a guest virtual address to a guest physical address. 5912 */ 5913 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 5914 struct kvm_translation *tr) 5915 { 5916 unsigned long vaddr = tr->linear_address; 5917 gpa_t gpa; 5918 int idx; 5919 5920 idx = srcu_read_lock(&vcpu->kvm->srcu); 5921 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 5922 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5923 tr->physical_address = gpa; 5924 tr->valid = gpa != UNMAPPED_GVA; 5925 tr->writeable = 1; 5926 tr->usermode = 0; 5927 5928 return 0; 5929 } 5930 5931 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 5932 { 5933 struct i387_fxsave_struct *fxsave = 5934 &vcpu->arch.guest_fpu.state->fxsave; 5935 5936 memcpy(fpu->fpr, fxsave->st_space, 128); 5937 fpu->fcw = fxsave->cwd; 5938 fpu->fsw = fxsave->swd; 5939 fpu->ftwx = fxsave->twd; 5940 fpu->last_opcode = fxsave->fop; 5941 fpu->last_ip = fxsave->rip; 5942 fpu->last_dp = fxsave->rdp; 5943 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); 5944 5945 return 0; 5946 } 5947 5948 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 5949 { 5950 struct i387_fxsave_struct *fxsave = 5951 &vcpu->arch.guest_fpu.state->fxsave; 5952 5953 memcpy(fxsave->st_space, fpu->fpr, 128); 5954 fxsave->cwd = fpu->fcw; 5955 fxsave->swd = fpu->fsw; 5956 fxsave->twd = fpu->ftwx; 5957 fxsave->fop = fpu->last_opcode; 5958 fxsave->rip = fpu->last_ip; 5959 fxsave->rdp = fpu->last_dp; 5960 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); 5961 5962 return 0; 5963 } 5964 5965 int fx_init(struct kvm_vcpu *vcpu) 5966 { 5967 int err; 5968 5969 err = fpu_alloc(&vcpu->arch.guest_fpu); 5970 if (err) 5971 return err; 5972 5973 fpu_finit(&vcpu->arch.guest_fpu); 5974 5975 /* 5976 * Ensure guest xcr0 is valid for loading 5977 */ 5978 vcpu->arch.xcr0 = XSTATE_FP; 5979 5980 vcpu->arch.cr0 |= X86_CR0_ET; 5981 5982 return 0; 5983 } 5984 EXPORT_SYMBOL_GPL(fx_init); 5985 5986 static void fx_free(struct kvm_vcpu *vcpu) 5987 { 5988 fpu_free(&vcpu->arch.guest_fpu); 5989 } 5990 5991 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 5992 { 5993 if (vcpu->guest_fpu_loaded) 5994 return; 5995 5996 /* 5997 * Restore all possible states in the guest, 5998 * and assume host would use all available bits. 5999 * Guest xcr0 would be loaded later. 6000 */ 6001 kvm_put_guest_xcr0(vcpu); 6002 vcpu->guest_fpu_loaded = 1; 6003 __kernel_fpu_begin(); 6004 fpu_restore_checking(&vcpu->arch.guest_fpu); 6005 trace_kvm_fpu(1); 6006 } 6007 6008 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 6009 { 6010 kvm_put_guest_xcr0(vcpu); 6011 6012 if (!vcpu->guest_fpu_loaded) 6013 return; 6014 6015 vcpu->guest_fpu_loaded = 0; 6016 fpu_save_init(&vcpu->arch.guest_fpu); 6017 __kernel_fpu_end(); 6018 ++vcpu->stat.fpu_reload; 6019 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu); 6020 trace_kvm_fpu(0); 6021 } 6022 6023 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 6024 { 6025 kvmclock_reset(vcpu); 6026 6027 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 6028 fx_free(vcpu); 6029 kvm_x86_ops->vcpu_free(vcpu); 6030 } 6031 6032 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, 6033 unsigned int id) 6034 { 6035 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 6036 printk_once(KERN_WARNING 6037 "kvm: SMP vm created on host with unstable TSC; " 6038 "guest TSC will not be reliable\n"); 6039 return kvm_x86_ops->vcpu_create(kvm, id); 6040 } 6041 6042 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) 6043 { 6044 int r; 6045 6046 vcpu->arch.mtrr_state.have_fixed = 1; 6047 r = vcpu_load(vcpu); 6048 if (r) 6049 return r; 6050 r = kvm_arch_vcpu_reset(vcpu); 6051 if (r == 0) 6052 r = kvm_mmu_setup(vcpu); 6053 vcpu_put(vcpu); 6054 6055 return r; 6056 } 6057 6058 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 6059 { 6060 int r; 6061 vcpu->arch.apf.msr_val = 0; 6062 6063 r = vcpu_load(vcpu); 6064 BUG_ON(r); 6065 kvm_mmu_unload(vcpu); 6066 vcpu_put(vcpu); 6067 6068 fx_free(vcpu); 6069 kvm_x86_ops->vcpu_free(vcpu); 6070 } 6071 6072 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu) 6073 { 6074 atomic_set(&vcpu->arch.nmi_queued, 0); 6075 vcpu->arch.nmi_pending = 0; 6076 vcpu->arch.nmi_injected = false; 6077 6078 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 6079 vcpu->arch.dr6 = DR6_FIXED_1; 6080 vcpu->arch.dr7 = DR7_FIXED_1; 6081 kvm_update_dr7(vcpu); 6082 6083 kvm_make_request(KVM_REQ_EVENT, vcpu); 6084 vcpu->arch.apf.msr_val = 0; 6085 vcpu->arch.st.msr_val = 0; 6086 6087 kvmclock_reset(vcpu); 6088 6089 kvm_clear_async_pf_completion_queue(vcpu); 6090 kvm_async_pf_hash_reset(vcpu); 6091 vcpu->arch.apf.halted = false; 6092 6093 kvm_pmu_reset(vcpu); 6094 6095 return kvm_x86_ops->vcpu_reset(vcpu); 6096 } 6097 6098 int kvm_arch_hardware_enable(void *garbage) 6099 { 6100 struct kvm *kvm; 6101 struct kvm_vcpu *vcpu; 6102 int i; 6103 int ret; 6104 u64 local_tsc; 6105 u64 max_tsc = 0; 6106 bool stable, backwards_tsc = false; 6107 6108 kvm_shared_msr_cpu_online(); 6109 ret = kvm_x86_ops->hardware_enable(garbage); 6110 if (ret != 0) 6111 return ret; 6112 6113 local_tsc = native_read_tsc(); 6114 stable = !check_tsc_unstable(); 6115 list_for_each_entry(kvm, &vm_list, vm_list) { 6116 kvm_for_each_vcpu(i, vcpu, kvm) { 6117 if (!stable && vcpu->cpu == smp_processor_id()) 6118 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 6119 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 6120 backwards_tsc = true; 6121 if (vcpu->arch.last_host_tsc > max_tsc) 6122 max_tsc = vcpu->arch.last_host_tsc; 6123 } 6124 } 6125 } 6126 6127 /* 6128 * Sometimes, even reliable TSCs go backwards. This happens on 6129 * platforms that reset TSC during suspend or hibernate actions, but 6130 * maintain synchronization. We must compensate. Fortunately, we can 6131 * detect that condition here, which happens early in CPU bringup, 6132 * before any KVM threads can be running. Unfortunately, we can't 6133 * bring the TSCs fully up to date with real time, as we aren't yet far 6134 * enough into CPU bringup that we know how much real time has actually 6135 * elapsed; our helper function, get_kernel_ns() will be using boot 6136 * variables that haven't been updated yet. 6137 * 6138 * So we simply find the maximum observed TSC above, then record the 6139 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 6140 * the adjustment will be applied. Note that we accumulate 6141 * adjustments, in case multiple suspend cycles happen before some VCPU 6142 * gets a chance to run again. In the event that no KVM threads get a 6143 * chance to run, we will miss the entire elapsed period, as we'll have 6144 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 6145 * loose cycle time. This isn't too big a deal, since the loss will be 6146 * uniform across all VCPUs (not to mention the scenario is extremely 6147 * unlikely). It is possible that a second hibernate recovery happens 6148 * much faster than a first, causing the observed TSC here to be 6149 * smaller; this would require additional padding adjustment, which is 6150 * why we set last_host_tsc to the local tsc observed here. 6151 * 6152 * N.B. - this code below runs only on platforms with reliable TSC, 6153 * as that is the only way backwards_tsc is set above. Also note 6154 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 6155 * have the same delta_cyc adjustment applied if backwards_tsc 6156 * is detected. Note further, this adjustment is only done once, 6157 * as we reset last_host_tsc on all VCPUs to stop this from being 6158 * called multiple times (one for each physical CPU bringup). 6159 * 6160 * Platforms with unreliable TSCs don't have to deal with this, they 6161 * will be compensated by the logic in vcpu_load, which sets the TSC to 6162 * catchup mode. This will catchup all VCPUs to real time, but cannot 6163 * guarantee that they stay in perfect synchronization. 6164 */ 6165 if (backwards_tsc) { 6166 u64 delta_cyc = max_tsc - local_tsc; 6167 list_for_each_entry(kvm, &vm_list, vm_list) { 6168 kvm_for_each_vcpu(i, vcpu, kvm) { 6169 vcpu->arch.tsc_offset_adjustment += delta_cyc; 6170 vcpu->arch.last_host_tsc = local_tsc; 6171 } 6172 6173 /* 6174 * We have to disable TSC offset matching.. if you were 6175 * booting a VM while issuing an S4 host suspend.... 6176 * you may have some problem. Solving this issue is 6177 * left as an exercise to the reader. 6178 */ 6179 kvm->arch.last_tsc_nsec = 0; 6180 kvm->arch.last_tsc_write = 0; 6181 } 6182 6183 } 6184 return 0; 6185 } 6186 6187 void kvm_arch_hardware_disable(void *garbage) 6188 { 6189 kvm_x86_ops->hardware_disable(garbage); 6190 drop_user_return_notifiers(garbage); 6191 } 6192 6193 int kvm_arch_hardware_setup(void) 6194 { 6195 return kvm_x86_ops->hardware_setup(); 6196 } 6197 6198 void kvm_arch_hardware_unsetup(void) 6199 { 6200 kvm_x86_ops->hardware_unsetup(); 6201 } 6202 6203 void kvm_arch_check_processor_compat(void *rtn) 6204 { 6205 kvm_x86_ops->check_processor_compatibility(rtn); 6206 } 6207 6208 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu) 6209 { 6210 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL); 6211 } 6212 6213 struct static_key kvm_no_apic_vcpu __read_mostly; 6214 6215 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 6216 { 6217 struct page *page; 6218 struct kvm *kvm; 6219 int r; 6220 6221 BUG_ON(vcpu->kvm == NULL); 6222 kvm = vcpu->kvm; 6223 6224 vcpu->arch.emulate_ctxt.ops = &emulate_ops; 6225 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu)) 6226 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 6227 else 6228 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 6229 6230 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 6231 if (!page) { 6232 r = -ENOMEM; 6233 goto fail; 6234 } 6235 vcpu->arch.pio_data = page_address(page); 6236 6237 kvm_set_tsc_khz(vcpu, max_tsc_khz); 6238 6239 r = kvm_mmu_create(vcpu); 6240 if (r < 0) 6241 goto fail_free_pio_data; 6242 6243 if (irqchip_in_kernel(kvm)) { 6244 r = kvm_create_lapic(vcpu); 6245 if (r < 0) 6246 goto fail_mmu_destroy; 6247 } else 6248 static_key_slow_inc(&kvm_no_apic_vcpu); 6249 6250 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 6251 GFP_KERNEL); 6252 if (!vcpu->arch.mce_banks) { 6253 r = -ENOMEM; 6254 goto fail_free_lapic; 6255 } 6256 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 6257 6258 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) 6259 goto fail_free_mce_banks; 6260 6261 kvm_async_pf_hash_reset(vcpu); 6262 kvm_pmu_init(vcpu); 6263 6264 return 0; 6265 fail_free_mce_banks: 6266 kfree(vcpu->arch.mce_banks); 6267 fail_free_lapic: 6268 kvm_free_lapic(vcpu); 6269 fail_mmu_destroy: 6270 kvm_mmu_destroy(vcpu); 6271 fail_free_pio_data: 6272 free_page((unsigned long)vcpu->arch.pio_data); 6273 fail: 6274 return r; 6275 } 6276 6277 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) 6278 { 6279 int idx; 6280 6281 kvm_pmu_destroy(vcpu); 6282 kfree(vcpu->arch.mce_banks); 6283 kvm_free_lapic(vcpu); 6284 idx = srcu_read_lock(&vcpu->kvm->srcu); 6285 kvm_mmu_destroy(vcpu); 6286 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6287 free_page((unsigned long)vcpu->arch.pio_data); 6288 if (!irqchip_in_kernel(vcpu->kvm)) 6289 static_key_slow_dec(&kvm_no_apic_vcpu); 6290 } 6291 6292 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 6293 { 6294 if (type) 6295 return -EINVAL; 6296 6297 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 6298 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 6299 6300 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 6301 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 6302 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 6303 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 6304 &kvm->arch.irq_sources_bitmap); 6305 6306 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 6307 mutex_init(&kvm->arch.apic_map_lock); 6308 6309 return 0; 6310 } 6311 6312 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 6313 { 6314 int r; 6315 r = vcpu_load(vcpu); 6316 BUG_ON(r); 6317 kvm_mmu_unload(vcpu); 6318 vcpu_put(vcpu); 6319 } 6320 6321 static void kvm_free_vcpus(struct kvm *kvm) 6322 { 6323 unsigned int i; 6324 struct kvm_vcpu *vcpu; 6325 6326 /* 6327 * Unpin any mmu pages first. 6328 */ 6329 kvm_for_each_vcpu(i, vcpu, kvm) { 6330 kvm_clear_async_pf_completion_queue(vcpu); 6331 kvm_unload_vcpu_mmu(vcpu); 6332 } 6333 kvm_for_each_vcpu(i, vcpu, kvm) 6334 kvm_arch_vcpu_free(vcpu); 6335 6336 mutex_lock(&kvm->lock); 6337 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 6338 kvm->vcpus[i] = NULL; 6339 6340 atomic_set(&kvm->online_vcpus, 0); 6341 mutex_unlock(&kvm->lock); 6342 } 6343 6344 void kvm_arch_sync_events(struct kvm *kvm) 6345 { 6346 kvm_free_all_assigned_devices(kvm); 6347 kvm_free_pit(kvm); 6348 } 6349 6350 void kvm_arch_destroy_vm(struct kvm *kvm) 6351 { 6352 kvm_iommu_unmap_guest(kvm); 6353 kfree(kvm->arch.vpic); 6354 kfree(kvm->arch.vioapic); 6355 kvm_free_vcpus(kvm); 6356 if (kvm->arch.apic_access_page) 6357 put_page(kvm->arch.apic_access_page); 6358 if (kvm->arch.ept_identity_pagetable) 6359 put_page(kvm->arch.ept_identity_pagetable); 6360 kfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 6361 } 6362 6363 void kvm_arch_free_memslot(struct kvm_memory_slot *free, 6364 struct kvm_memory_slot *dont) 6365 { 6366 int i; 6367 6368 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 6369 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) { 6370 kvm_kvfree(free->arch.rmap[i]); 6371 free->arch.rmap[i] = NULL; 6372 } 6373 if (i == 0) 6374 continue; 6375 6376 if (!dont || free->arch.lpage_info[i - 1] != 6377 dont->arch.lpage_info[i - 1]) { 6378 kvm_kvfree(free->arch.lpage_info[i - 1]); 6379 free->arch.lpage_info[i - 1] = NULL; 6380 } 6381 } 6382 } 6383 6384 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages) 6385 { 6386 int i; 6387 6388 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 6389 unsigned long ugfn; 6390 int lpages; 6391 int level = i + 1; 6392 6393 lpages = gfn_to_index(slot->base_gfn + npages - 1, 6394 slot->base_gfn, level) + 1; 6395 6396 slot->arch.rmap[i] = 6397 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i])); 6398 if (!slot->arch.rmap[i]) 6399 goto out_free; 6400 if (i == 0) 6401 continue; 6402 6403 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages * 6404 sizeof(*slot->arch.lpage_info[i - 1])); 6405 if (!slot->arch.lpage_info[i - 1]) 6406 goto out_free; 6407 6408 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 6409 slot->arch.lpage_info[i - 1][0].write_count = 1; 6410 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 6411 slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1; 6412 ugfn = slot->userspace_addr >> PAGE_SHIFT; 6413 /* 6414 * If the gfn and userspace address are not aligned wrt each 6415 * other, or if explicitly asked to, disable large page 6416 * support for this slot 6417 */ 6418 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) || 6419 !kvm_largepages_enabled()) { 6420 unsigned long j; 6421 6422 for (j = 0; j < lpages; ++j) 6423 slot->arch.lpage_info[i - 1][j].write_count = 1; 6424 } 6425 } 6426 6427 return 0; 6428 6429 out_free: 6430 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 6431 kvm_kvfree(slot->arch.rmap[i]); 6432 slot->arch.rmap[i] = NULL; 6433 if (i == 0) 6434 continue; 6435 6436 kvm_kvfree(slot->arch.lpage_info[i - 1]); 6437 slot->arch.lpage_info[i - 1] = NULL; 6438 } 6439 return -ENOMEM; 6440 } 6441 6442 int kvm_arch_prepare_memory_region(struct kvm *kvm, 6443 struct kvm_memory_slot *memslot, 6444 struct kvm_memory_slot old, 6445 struct kvm_userspace_memory_region *mem, 6446 int user_alloc) 6447 { 6448 int npages = memslot->npages; 6449 int map_flags = MAP_PRIVATE | MAP_ANONYMOUS; 6450 6451 /* Prevent internal slot pages from being moved by fork()/COW. */ 6452 if (memslot->id >= KVM_MEMORY_SLOTS) 6453 map_flags = MAP_SHARED | MAP_ANONYMOUS; 6454 6455 /*To keep backward compatibility with older userspace, 6456 *x86 needs to handle !user_alloc case. 6457 */ 6458 if (!user_alloc) { 6459 if (npages && !old.npages) { 6460 unsigned long userspace_addr; 6461 6462 userspace_addr = vm_mmap(NULL, 0, 6463 npages * PAGE_SIZE, 6464 PROT_READ | PROT_WRITE, 6465 map_flags, 6466 0); 6467 6468 if (IS_ERR((void *)userspace_addr)) 6469 return PTR_ERR((void *)userspace_addr); 6470 6471 memslot->userspace_addr = userspace_addr; 6472 } 6473 } 6474 6475 6476 return 0; 6477 } 6478 6479 void kvm_arch_commit_memory_region(struct kvm *kvm, 6480 struct kvm_userspace_memory_region *mem, 6481 struct kvm_memory_slot old, 6482 int user_alloc) 6483 { 6484 6485 int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT; 6486 6487 if (!user_alloc && !old.user_alloc && old.npages && !npages) { 6488 int ret; 6489 6490 ret = vm_munmap(old.userspace_addr, 6491 old.npages * PAGE_SIZE); 6492 if (ret < 0) 6493 printk(KERN_WARNING 6494 "kvm_vm_ioctl_set_memory_region: " 6495 "failed to munmap memory\n"); 6496 } 6497 6498 if (!kvm->arch.n_requested_mmu_pages) 6499 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); 6500 6501 spin_lock(&kvm->mmu_lock); 6502 if (nr_mmu_pages) 6503 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 6504 kvm_mmu_slot_remove_write_access(kvm, mem->slot); 6505 spin_unlock(&kvm->mmu_lock); 6506 /* 6507 * If memory slot is created, or moved, we need to clear all 6508 * mmio sptes. 6509 */ 6510 if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT) { 6511 kvm_mmu_zap_all(kvm); 6512 kvm_reload_remote_mmus(kvm); 6513 } 6514 } 6515 6516 void kvm_arch_flush_shadow_all(struct kvm *kvm) 6517 { 6518 kvm_mmu_zap_all(kvm); 6519 kvm_reload_remote_mmus(kvm); 6520 } 6521 6522 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 6523 struct kvm_memory_slot *slot) 6524 { 6525 kvm_arch_flush_shadow_all(kvm); 6526 } 6527 6528 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 6529 { 6530 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 6531 !vcpu->arch.apf.halted) 6532 || !list_empty_careful(&vcpu->async_pf.done) 6533 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED 6534 || atomic_read(&vcpu->arch.nmi_queued) || 6535 (kvm_arch_interrupt_allowed(vcpu) && 6536 kvm_cpu_has_interrupt(vcpu)); 6537 } 6538 6539 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 6540 { 6541 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 6542 } 6543 6544 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 6545 { 6546 return kvm_x86_ops->interrupt_allowed(vcpu); 6547 } 6548 6549 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 6550 { 6551 unsigned long current_rip = kvm_rip_read(vcpu) + 6552 get_segment_base(vcpu, VCPU_SREG_CS); 6553 6554 return current_rip == linear_rip; 6555 } 6556 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 6557 6558 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 6559 { 6560 unsigned long rflags; 6561 6562 rflags = kvm_x86_ops->get_rflags(vcpu); 6563 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 6564 rflags &= ~X86_EFLAGS_TF; 6565 return rflags; 6566 } 6567 EXPORT_SYMBOL_GPL(kvm_get_rflags); 6568 6569 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 6570 { 6571 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 6572 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 6573 rflags |= X86_EFLAGS_TF; 6574 kvm_x86_ops->set_rflags(vcpu, rflags); 6575 kvm_make_request(KVM_REQ_EVENT, vcpu); 6576 } 6577 EXPORT_SYMBOL_GPL(kvm_set_rflags); 6578 6579 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 6580 { 6581 int r; 6582 6583 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) || 6584 is_error_page(work->page)) 6585 return; 6586 6587 r = kvm_mmu_reload(vcpu); 6588 if (unlikely(r)) 6589 return; 6590 6591 if (!vcpu->arch.mmu.direct_map && 6592 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu)) 6593 return; 6594 6595 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true); 6596 } 6597 6598 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 6599 { 6600 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 6601 } 6602 6603 static inline u32 kvm_async_pf_next_probe(u32 key) 6604 { 6605 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); 6606 } 6607 6608 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 6609 { 6610 u32 key = kvm_async_pf_hash_fn(gfn); 6611 6612 while (vcpu->arch.apf.gfns[key] != ~0) 6613 key = kvm_async_pf_next_probe(key); 6614 6615 vcpu->arch.apf.gfns[key] = gfn; 6616 } 6617 6618 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 6619 { 6620 int i; 6621 u32 key = kvm_async_pf_hash_fn(gfn); 6622 6623 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && 6624 (vcpu->arch.apf.gfns[key] != gfn && 6625 vcpu->arch.apf.gfns[key] != ~0); i++) 6626 key = kvm_async_pf_next_probe(key); 6627 6628 return key; 6629 } 6630 6631 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 6632 { 6633 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 6634 } 6635 6636 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 6637 { 6638 u32 i, j, k; 6639 6640 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 6641 while (true) { 6642 vcpu->arch.apf.gfns[i] = ~0; 6643 do { 6644 j = kvm_async_pf_next_probe(j); 6645 if (vcpu->arch.apf.gfns[j] == ~0) 6646 return; 6647 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 6648 /* 6649 * k lies cyclically in ]i,j] 6650 * | i.k.j | 6651 * |....j i.k.| or |.k..j i...| 6652 */ 6653 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 6654 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 6655 i = j; 6656 } 6657 } 6658 6659 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) 6660 { 6661 6662 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, 6663 sizeof(val)); 6664 } 6665 6666 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 6667 struct kvm_async_pf *work) 6668 { 6669 struct x86_exception fault; 6670 6671 trace_kvm_async_pf_not_present(work->arch.token, work->gva); 6672 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 6673 6674 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || 6675 (vcpu->arch.apf.send_user_only && 6676 kvm_x86_ops->get_cpl(vcpu) == 0)) 6677 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 6678 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { 6679 fault.vector = PF_VECTOR; 6680 fault.error_code_valid = true; 6681 fault.error_code = 0; 6682 fault.nested_page_fault = false; 6683 fault.address = work->arch.token; 6684 kvm_inject_page_fault(vcpu, &fault); 6685 } 6686 } 6687 6688 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 6689 struct kvm_async_pf *work) 6690 { 6691 struct x86_exception fault; 6692 6693 trace_kvm_async_pf_ready(work->arch.token, work->gva); 6694 if (is_error_page(work->page)) 6695 work->arch.token = ~0; /* broadcast wakeup */ 6696 else 6697 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 6698 6699 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) && 6700 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { 6701 fault.vector = PF_VECTOR; 6702 fault.error_code_valid = true; 6703 fault.error_code = 0; 6704 fault.nested_page_fault = false; 6705 fault.address = work->arch.token; 6706 kvm_inject_page_fault(vcpu, &fault); 6707 } 6708 vcpu->arch.apf.halted = false; 6709 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 6710 } 6711 6712 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) 6713 { 6714 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) 6715 return true; 6716 else 6717 return !kvm_event_needs_reinjection(vcpu) && 6718 kvm_x86_ops->interrupt_allowed(vcpu); 6719 } 6720 6721 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 6722 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 6723 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 6724 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 6725 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 6726 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 6727 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 6728 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 6729 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 6730 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 6731 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 6732 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 6733