1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 19 #include <linux/kvm_host.h> 20 #include "irq.h" 21 #include "ioapic.h" 22 #include "mmu.h" 23 #include "i8254.h" 24 #include "tss.h" 25 #include "kvm_cache_regs.h" 26 #include "kvm_emulate.h" 27 #include "x86.h" 28 #include "cpuid.h" 29 #include "pmu.h" 30 #include "hyperv.h" 31 #include "lapic.h" 32 #include "xen.h" 33 34 #include <linux/clocksource.h> 35 #include <linux/interrupt.h> 36 #include <linux/kvm.h> 37 #include <linux/fs.h> 38 #include <linux/vmalloc.h> 39 #include <linux/export.h> 40 #include <linux/moduleparam.h> 41 #include <linux/mman.h> 42 #include <linux/highmem.h> 43 #include <linux/iommu.h> 44 #include <linux/cpufreq.h> 45 #include <linux/user-return-notifier.h> 46 #include <linux/srcu.h> 47 #include <linux/slab.h> 48 #include <linux/perf_event.h> 49 #include <linux/uaccess.h> 50 #include <linux/hash.h> 51 #include <linux/pci.h> 52 #include <linux/timekeeper_internal.h> 53 #include <linux/pvclock_gtod.h> 54 #include <linux/kvm_irqfd.h> 55 #include <linux/irqbypass.h> 56 #include <linux/sched/stat.h> 57 #include <linux/sched/isolation.h> 58 #include <linux/mem_encrypt.h> 59 #include <linux/entry-kvm.h> 60 #include <linux/suspend.h> 61 62 #include <trace/events/kvm.h> 63 64 #include <asm/debugreg.h> 65 #include <asm/msr.h> 66 #include <asm/desc.h> 67 #include <asm/mce.h> 68 #include <asm/pkru.h> 69 #include <linux/kernel_stat.h> 70 #include <asm/fpu/api.h> 71 #include <asm/fpu/xcr.h> 72 #include <asm/fpu/xstate.h> 73 #include <asm/pvclock.h> 74 #include <asm/div64.h> 75 #include <asm/irq_remapping.h> 76 #include <asm/mshyperv.h> 77 #include <asm/hypervisor.h> 78 #include <asm/tlbflush.h> 79 #include <asm/intel_pt.h> 80 #include <asm/emulate_prefix.h> 81 #include <asm/sgx.h> 82 #include <clocksource/hyperv_timer.h> 83 84 #define CREATE_TRACE_POINTS 85 #include "trace.h" 86 87 #define MAX_IO_MSRS 256 88 #define KVM_MAX_MCE_BANKS 32 89 90 struct kvm_caps kvm_caps __read_mostly = { 91 .supported_mce_cap = MCG_CTL_P | MCG_SER_P, 92 }; 93 EXPORT_SYMBOL_GPL(kvm_caps); 94 95 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 96 97 #define emul_to_vcpu(ctxt) \ 98 ((struct kvm_vcpu *)(ctxt)->vcpu) 99 100 /* EFER defaults: 101 * - enable syscall per default because its emulated by KVM 102 * - enable LME and LMA per default on 64 bit KVM 103 */ 104 #ifdef CONFIG_X86_64 105 static 106 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 107 #else 108 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 109 #endif 110 111 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 112 113 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 114 115 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 116 117 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 118 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 119 120 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 121 static void process_nmi(struct kvm_vcpu *vcpu); 122 static void process_smi(struct kvm_vcpu *vcpu); 123 static void enter_smm(struct kvm_vcpu *vcpu); 124 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 125 static void store_regs(struct kvm_vcpu *vcpu); 126 static int sync_regs(struct kvm_vcpu *vcpu); 127 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 128 129 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 130 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 131 132 struct kvm_x86_ops kvm_x86_ops __read_mostly; 133 134 #define KVM_X86_OP(func) \ 135 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 136 *(((struct kvm_x86_ops *)0)->func)); 137 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 138 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 139 #include <asm/kvm-x86-ops.h> 140 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 141 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 142 143 static bool __read_mostly ignore_msrs = 0; 144 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 145 146 bool __read_mostly report_ignored_msrs = true; 147 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 148 EXPORT_SYMBOL_GPL(report_ignored_msrs); 149 150 unsigned int min_timer_period_us = 200; 151 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 152 153 static bool __read_mostly kvmclock_periodic_sync = true; 154 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 155 156 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 157 static u32 __read_mostly tsc_tolerance_ppm = 250; 158 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 159 160 /* 161 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 162 * adaptive tuning starting from default advancement of 1000ns. '0' disables 163 * advancement entirely. Any other value is used as-is and disables adaptive 164 * tuning, i.e. allows privileged userspace to set an exact advancement time. 165 */ 166 static int __read_mostly lapic_timer_advance_ns = -1; 167 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 168 169 static bool __read_mostly vector_hashing = true; 170 module_param(vector_hashing, bool, S_IRUGO); 171 172 bool __read_mostly enable_vmware_backdoor = false; 173 module_param(enable_vmware_backdoor, bool, S_IRUGO); 174 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 175 176 /* 177 * Flags to manipulate forced emulation behavior (any non-zero value will 178 * enable forced emulation). 179 */ 180 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) 181 static int __read_mostly force_emulation_prefix; 182 module_param(force_emulation_prefix, int, 0644); 183 184 int __read_mostly pi_inject_timer = -1; 185 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 186 187 /* Enable/disable PMU virtualization */ 188 bool __read_mostly enable_pmu = true; 189 EXPORT_SYMBOL_GPL(enable_pmu); 190 module_param(enable_pmu, bool, 0444); 191 192 bool __read_mostly eager_page_split = true; 193 module_param(eager_page_split, bool, 0644); 194 195 /* 196 * Restoring the host value for MSRs that are only consumed when running in 197 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 198 * returns to userspace, i.e. the kernel can run with the guest's value. 199 */ 200 #define KVM_MAX_NR_USER_RETURN_MSRS 16 201 202 struct kvm_user_return_msrs { 203 struct user_return_notifier urn; 204 bool registered; 205 struct kvm_user_return_msr_values { 206 u64 host; 207 u64 curr; 208 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 209 }; 210 211 u32 __read_mostly kvm_nr_uret_msrs; 212 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 213 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 214 static struct kvm_user_return_msrs __percpu *user_return_msrs; 215 216 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 217 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 218 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 219 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 220 221 u64 __read_mostly host_efer; 222 EXPORT_SYMBOL_GPL(host_efer); 223 224 bool __read_mostly allow_smaller_maxphyaddr = 0; 225 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 226 227 bool __read_mostly enable_apicv = true; 228 EXPORT_SYMBOL_GPL(enable_apicv); 229 230 u64 __read_mostly host_xss; 231 EXPORT_SYMBOL_GPL(host_xss); 232 233 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 234 KVM_GENERIC_VM_STATS(), 235 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 236 STATS_DESC_COUNTER(VM, mmu_pte_write), 237 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 238 STATS_DESC_COUNTER(VM, mmu_flooded), 239 STATS_DESC_COUNTER(VM, mmu_recycled), 240 STATS_DESC_COUNTER(VM, mmu_cache_miss), 241 STATS_DESC_ICOUNTER(VM, mmu_unsync), 242 STATS_DESC_ICOUNTER(VM, pages_4k), 243 STATS_DESC_ICOUNTER(VM, pages_2m), 244 STATS_DESC_ICOUNTER(VM, pages_1g), 245 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 246 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 247 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 248 }; 249 250 const struct kvm_stats_header kvm_vm_stats_header = { 251 .name_size = KVM_STATS_NAME_SIZE, 252 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 253 .id_offset = sizeof(struct kvm_stats_header), 254 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 255 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 256 sizeof(kvm_vm_stats_desc), 257 }; 258 259 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 260 KVM_GENERIC_VCPU_STATS(), 261 STATS_DESC_COUNTER(VCPU, pf_taken), 262 STATS_DESC_COUNTER(VCPU, pf_fixed), 263 STATS_DESC_COUNTER(VCPU, pf_emulate), 264 STATS_DESC_COUNTER(VCPU, pf_spurious), 265 STATS_DESC_COUNTER(VCPU, pf_fast), 266 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 267 STATS_DESC_COUNTER(VCPU, pf_guest), 268 STATS_DESC_COUNTER(VCPU, tlb_flush), 269 STATS_DESC_COUNTER(VCPU, invlpg), 270 STATS_DESC_COUNTER(VCPU, exits), 271 STATS_DESC_COUNTER(VCPU, io_exits), 272 STATS_DESC_COUNTER(VCPU, mmio_exits), 273 STATS_DESC_COUNTER(VCPU, signal_exits), 274 STATS_DESC_COUNTER(VCPU, irq_window_exits), 275 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 276 STATS_DESC_COUNTER(VCPU, l1d_flush), 277 STATS_DESC_COUNTER(VCPU, halt_exits), 278 STATS_DESC_COUNTER(VCPU, request_irq_exits), 279 STATS_DESC_COUNTER(VCPU, irq_exits), 280 STATS_DESC_COUNTER(VCPU, host_state_reload), 281 STATS_DESC_COUNTER(VCPU, fpu_reload), 282 STATS_DESC_COUNTER(VCPU, insn_emulation), 283 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 284 STATS_DESC_COUNTER(VCPU, hypercalls), 285 STATS_DESC_COUNTER(VCPU, irq_injections), 286 STATS_DESC_COUNTER(VCPU, nmi_injections), 287 STATS_DESC_COUNTER(VCPU, req_event), 288 STATS_DESC_COUNTER(VCPU, nested_run), 289 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 290 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 291 STATS_DESC_COUNTER(VCPU, preemption_reported), 292 STATS_DESC_COUNTER(VCPU, preemption_other), 293 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 294 STATS_DESC_COUNTER(VCPU, notify_window_exits), 295 }; 296 297 const struct kvm_stats_header kvm_vcpu_stats_header = { 298 .name_size = KVM_STATS_NAME_SIZE, 299 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 300 .id_offset = sizeof(struct kvm_stats_header), 301 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 302 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 303 sizeof(kvm_vcpu_stats_desc), 304 }; 305 306 u64 __read_mostly host_xcr0; 307 308 static struct kmem_cache *x86_emulator_cache; 309 310 /* 311 * When called, it means the previous get/set msr reached an invalid msr. 312 * Return true if we want to ignore/silent this failed msr access. 313 */ 314 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 315 { 316 const char *op = write ? "wrmsr" : "rdmsr"; 317 318 if (ignore_msrs) { 319 if (report_ignored_msrs) 320 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 321 op, msr, data); 322 /* Mask the error */ 323 return true; 324 } else { 325 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 326 op, msr, data); 327 return false; 328 } 329 } 330 331 static struct kmem_cache *kvm_alloc_emulator_cache(void) 332 { 333 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 334 unsigned int size = sizeof(struct x86_emulate_ctxt); 335 336 return kmem_cache_create_usercopy("x86_emulator", size, 337 __alignof__(struct x86_emulate_ctxt), 338 SLAB_ACCOUNT, useroffset, 339 size - useroffset, NULL); 340 } 341 342 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 343 344 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 345 { 346 int i; 347 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 348 vcpu->arch.apf.gfns[i] = ~0; 349 } 350 351 static void kvm_on_user_return(struct user_return_notifier *urn) 352 { 353 unsigned slot; 354 struct kvm_user_return_msrs *msrs 355 = container_of(urn, struct kvm_user_return_msrs, urn); 356 struct kvm_user_return_msr_values *values; 357 unsigned long flags; 358 359 /* 360 * Disabling irqs at this point since the following code could be 361 * interrupted and executed through kvm_arch_hardware_disable() 362 */ 363 local_irq_save(flags); 364 if (msrs->registered) { 365 msrs->registered = false; 366 user_return_notifier_unregister(urn); 367 } 368 local_irq_restore(flags); 369 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 370 values = &msrs->values[slot]; 371 if (values->host != values->curr) { 372 wrmsrl(kvm_uret_msrs_list[slot], values->host); 373 values->curr = values->host; 374 } 375 } 376 } 377 378 static int kvm_probe_user_return_msr(u32 msr) 379 { 380 u64 val; 381 int ret; 382 383 preempt_disable(); 384 ret = rdmsrl_safe(msr, &val); 385 if (ret) 386 goto out; 387 ret = wrmsrl_safe(msr, val); 388 out: 389 preempt_enable(); 390 return ret; 391 } 392 393 int kvm_add_user_return_msr(u32 msr) 394 { 395 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 396 397 if (kvm_probe_user_return_msr(msr)) 398 return -1; 399 400 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 401 return kvm_nr_uret_msrs++; 402 } 403 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 404 405 int kvm_find_user_return_msr(u32 msr) 406 { 407 int i; 408 409 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 410 if (kvm_uret_msrs_list[i] == msr) 411 return i; 412 } 413 return -1; 414 } 415 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 416 417 static void kvm_user_return_msr_cpu_online(void) 418 { 419 unsigned int cpu = smp_processor_id(); 420 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 421 u64 value; 422 int i; 423 424 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 425 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 426 msrs->values[i].host = value; 427 msrs->values[i].curr = value; 428 } 429 } 430 431 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 432 { 433 unsigned int cpu = smp_processor_id(); 434 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 435 int err; 436 437 value = (value & mask) | (msrs->values[slot].host & ~mask); 438 if (value == msrs->values[slot].curr) 439 return 0; 440 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 441 if (err) 442 return 1; 443 444 msrs->values[slot].curr = value; 445 if (!msrs->registered) { 446 msrs->urn.on_user_return = kvm_on_user_return; 447 user_return_notifier_register(&msrs->urn); 448 msrs->registered = true; 449 } 450 return 0; 451 } 452 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 453 454 static void drop_user_return_notifiers(void) 455 { 456 unsigned int cpu = smp_processor_id(); 457 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 458 459 if (msrs->registered) 460 kvm_on_user_return(&msrs->urn); 461 } 462 463 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 464 { 465 return vcpu->arch.apic_base; 466 } 467 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 468 469 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 470 { 471 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 472 } 473 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 474 475 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 476 { 477 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 478 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 479 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 480 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 481 482 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 483 return 1; 484 if (!msr_info->host_initiated) { 485 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 486 return 1; 487 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 488 return 1; 489 } 490 491 kvm_lapic_set_base(vcpu, msr_info->data); 492 kvm_recalculate_apic_map(vcpu->kvm); 493 return 0; 494 } 495 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 496 497 /* 498 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 499 * 500 * Hardware virtualization extension instructions may fault if a reboot turns 501 * off virtualization while processes are running. Usually after catching the 502 * fault we just panic; during reboot instead the instruction is ignored. 503 */ 504 noinstr void kvm_spurious_fault(void) 505 { 506 /* Fault while not rebooting. We want the trace. */ 507 BUG_ON(!kvm_rebooting); 508 } 509 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 510 511 #define EXCPT_BENIGN 0 512 #define EXCPT_CONTRIBUTORY 1 513 #define EXCPT_PF 2 514 515 static int exception_class(int vector) 516 { 517 switch (vector) { 518 case PF_VECTOR: 519 return EXCPT_PF; 520 case DE_VECTOR: 521 case TS_VECTOR: 522 case NP_VECTOR: 523 case SS_VECTOR: 524 case GP_VECTOR: 525 return EXCPT_CONTRIBUTORY; 526 default: 527 break; 528 } 529 return EXCPT_BENIGN; 530 } 531 532 #define EXCPT_FAULT 0 533 #define EXCPT_TRAP 1 534 #define EXCPT_ABORT 2 535 #define EXCPT_INTERRUPT 3 536 #define EXCPT_DB 4 537 538 static int exception_type(int vector) 539 { 540 unsigned int mask; 541 542 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 543 return EXCPT_INTERRUPT; 544 545 mask = 1 << vector; 546 547 /* 548 * #DBs can be trap-like or fault-like, the caller must check other CPU 549 * state, e.g. DR6, to determine whether a #DB is a trap or fault. 550 */ 551 if (mask & (1 << DB_VECTOR)) 552 return EXCPT_DB; 553 554 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) 555 return EXCPT_TRAP; 556 557 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 558 return EXCPT_ABORT; 559 560 /* Reserved exceptions will result in fault */ 561 return EXCPT_FAULT; 562 } 563 564 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 565 struct kvm_queued_exception *ex) 566 { 567 if (!ex->has_payload) 568 return; 569 570 switch (ex->vector) { 571 case DB_VECTOR: 572 /* 573 * "Certain debug exceptions may clear bit 0-3. The 574 * remaining contents of the DR6 register are never 575 * cleared by the processor". 576 */ 577 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 578 /* 579 * In order to reflect the #DB exception payload in guest 580 * dr6, three components need to be considered: active low 581 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 582 * DR6_BS and DR6_BT) 583 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 584 * In the target guest dr6: 585 * FIXED_1 bits should always be set. 586 * Active low bits should be cleared if 1-setting in payload. 587 * Active high bits should be set if 1-setting in payload. 588 * 589 * Note, the payload is compatible with the pending debug 590 * exceptions/exit qualification under VMX, that active_low bits 591 * are active high in payload. 592 * So they need to be flipped for DR6. 593 */ 594 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 595 vcpu->arch.dr6 |= ex->payload; 596 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; 597 598 /* 599 * The #DB payload is defined as compatible with the 'pending 600 * debug exceptions' field under VMX, not DR6. While bit 12 is 601 * defined in the 'pending debug exceptions' field (enabled 602 * breakpoint), it is reserved and must be zero in DR6. 603 */ 604 vcpu->arch.dr6 &= ~BIT(12); 605 break; 606 case PF_VECTOR: 607 vcpu->arch.cr2 = ex->payload; 608 break; 609 } 610 611 ex->has_payload = false; 612 ex->payload = 0; 613 } 614 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 615 616 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, 617 bool has_error_code, u32 error_code, 618 bool has_payload, unsigned long payload) 619 { 620 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 621 622 ex->vector = vector; 623 ex->injected = false; 624 ex->pending = true; 625 ex->has_error_code = has_error_code; 626 ex->error_code = error_code; 627 ex->has_payload = has_payload; 628 ex->payload = payload; 629 } 630 631 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 632 unsigned nr, bool has_error, u32 error_code, 633 bool has_payload, unsigned long payload, bool reinject) 634 { 635 u32 prev_nr; 636 int class1, class2; 637 638 kvm_make_request(KVM_REQ_EVENT, vcpu); 639 640 /* 641 * If the exception is destined for L2 and isn't being reinjected, 642 * morph it to a VM-Exit if L1 wants to intercept the exception. A 643 * previously injected exception is not checked because it was checked 644 * when it was original queued, and re-checking is incorrect if _L1_ 645 * injected the exception, in which case it's exempt from interception. 646 */ 647 if (!reinject && is_guest_mode(vcpu) && 648 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { 649 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, 650 has_payload, payload); 651 return; 652 } 653 654 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 655 queue: 656 if (reinject) { 657 /* 658 * On VM-Entry, an exception can be pending if and only 659 * if event injection was blocked by nested_run_pending. 660 * In that case, however, vcpu_enter_guest() requests an 661 * immediate exit, and the guest shouldn't proceed far 662 * enough to need reinjection. 663 */ 664 WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); 665 vcpu->arch.exception.injected = true; 666 if (WARN_ON_ONCE(has_payload)) { 667 /* 668 * A reinjected event has already 669 * delivered its payload. 670 */ 671 has_payload = false; 672 payload = 0; 673 } 674 } else { 675 vcpu->arch.exception.pending = true; 676 vcpu->arch.exception.injected = false; 677 } 678 vcpu->arch.exception.has_error_code = has_error; 679 vcpu->arch.exception.vector = nr; 680 vcpu->arch.exception.error_code = error_code; 681 vcpu->arch.exception.has_payload = has_payload; 682 vcpu->arch.exception.payload = payload; 683 if (!is_guest_mode(vcpu)) 684 kvm_deliver_exception_payload(vcpu, 685 &vcpu->arch.exception); 686 return; 687 } 688 689 /* to check exception */ 690 prev_nr = vcpu->arch.exception.vector; 691 if (prev_nr == DF_VECTOR) { 692 /* triple fault -> shutdown */ 693 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 694 return; 695 } 696 class1 = exception_class(prev_nr); 697 class2 = exception_class(nr); 698 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || 699 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 700 /* 701 * Synthesize #DF. Clear the previously injected or pending 702 * exception so as not to incorrectly trigger shutdown. 703 */ 704 vcpu->arch.exception.injected = false; 705 vcpu->arch.exception.pending = false; 706 707 kvm_queue_exception_e(vcpu, DF_VECTOR, 0); 708 } else { 709 /* replace previous exception with a new one in a hope 710 that instruction re-execution will regenerate lost 711 exception */ 712 goto queue; 713 } 714 } 715 716 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 717 { 718 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 719 } 720 EXPORT_SYMBOL_GPL(kvm_queue_exception); 721 722 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 723 { 724 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 725 } 726 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 727 728 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 729 unsigned long payload) 730 { 731 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 732 } 733 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 734 735 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 736 u32 error_code, unsigned long payload) 737 { 738 kvm_multiple_exception(vcpu, nr, true, error_code, 739 true, payload, false); 740 } 741 742 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 743 { 744 if (err) 745 kvm_inject_gp(vcpu, 0); 746 else 747 return kvm_skip_emulated_instruction(vcpu); 748 749 return 1; 750 } 751 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 752 753 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 754 { 755 if (err) { 756 kvm_inject_gp(vcpu, 0); 757 return 1; 758 } 759 760 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 761 EMULTYPE_COMPLETE_USER_EXIT); 762 } 763 764 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 765 { 766 ++vcpu->stat.pf_guest; 767 768 /* 769 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of 770 * whether or not L1 wants to intercept "regular" #PF. 771 */ 772 if (is_guest_mode(vcpu) && fault->async_page_fault) 773 kvm_queue_exception_vmexit(vcpu, PF_VECTOR, 774 true, fault->error_code, 775 true, fault->address); 776 else 777 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 778 fault->address); 779 } 780 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 781 782 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 783 struct x86_exception *fault) 784 { 785 struct kvm_mmu *fault_mmu; 786 WARN_ON_ONCE(fault->vector != PF_VECTOR); 787 788 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 789 vcpu->arch.walk_mmu; 790 791 /* 792 * Invalidate the TLB entry for the faulting address, if it exists, 793 * else the access will fault indefinitely (and to emulate hardware). 794 */ 795 if ((fault->error_code & PFERR_PRESENT_MASK) && 796 !(fault->error_code & PFERR_RSVD_MASK)) 797 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address, 798 fault_mmu->root.hpa); 799 800 fault_mmu->inject_page_fault(vcpu, fault); 801 } 802 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 803 804 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 805 { 806 atomic_inc(&vcpu->arch.nmi_queued); 807 kvm_make_request(KVM_REQ_NMI, vcpu); 808 } 809 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 810 811 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 812 { 813 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 814 } 815 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 816 817 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 818 { 819 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 820 } 821 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 822 823 /* 824 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 825 * a #GP and return false. 826 */ 827 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 828 { 829 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 830 return true; 831 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 832 return false; 833 } 834 EXPORT_SYMBOL_GPL(kvm_require_cpl); 835 836 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 837 { 838 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 839 return true; 840 841 kvm_queue_exception(vcpu, UD_VECTOR); 842 return false; 843 } 844 EXPORT_SYMBOL_GPL(kvm_require_dr); 845 846 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 847 { 848 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 849 } 850 851 /* 852 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 853 */ 854 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 855 { 856 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 857 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 858 gpa_t real_gpa; 859 int i; 860 int ret; 861 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 862 863 /* 864 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 865 * to an L1 GPA. 866 */ 867 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 868 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 869 if (real_gpa == INVALID_GPA) 870 return 0; 871 872 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 873 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 874 cr3 & GENMASK(11, 5), sizeof(pdpte)); 875 if (ret < 0) 876 return 0; 877 878 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 879 if ((pdpte[i] & PT_PRESENT_MASK) && 880 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 881 return 0; 882 } 883 } 884 885 /* 886 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 887 * Shadow page roots need to be reconstructed instead. 888 */ 889 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 890 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 891 892 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 893 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 894 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 895 vcpu->arch.pdptrs_from_userspace = false; 896 897 return 1; 898 } 899 EXPORT_SYMBOL_GPL(load_pdptrs); 900 901 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 902 { 903 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 904 kvm_clear_async_pf_completion_queue(vcpu); 905 kvm_async_pf_hash_reset(vcpu); 906 907 /* 908 * Clearing CR0.PG is defined to flush the TLB from the guest's 909 * perspective. 910 */ 911 if (!(cr0 & X86_CR0_PG)) 912 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 913 } 914 915 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 916 kvm_mmu_reset_context(vcpu); 917 918 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 919 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 920 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 921 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 922 } 923 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 924 925 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 926 { 927 unsigned long old_cr0 = kvm_read_cr0(vcpu); 928 929 cr0 |= X86_CR0_ET; 930 931 #ifdef CONFIG_X86_64 932 if (cr0 & 0xffffffff00000000UL) 933 return 1; 934 #endif 935 936 cr0 &= ~CR0_RESERVED_BITS; 937 938 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 939 return 1; 940 941 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 942 return 1; 943 944 #ifdef CONFIG_X86_64 945 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 946 (cr0 & X86_CR0_PG)) { 947 int cs_db, cs_l; 948 949 if (!is_pae(vcpu)) 950 return 1; 951 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 952 if (cs_l) 953 return 1; 954 } 955 #endif 956 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 957 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 958 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 959 return 1; 960 961 if (!(cr0 & X86_CR0_PG) && 962 (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))) 963 return 1; 964 965 static_call(kvm_x86_set_cr0)(vcpu, cr0); 966 967 kvm_post_set_cr0(vcpu, old_cr0, cr0); 968 969 return 0; 970 } 971 EXPORT_SYMBOL_GPL(kvm_set_cr0); 972 973 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 974 { 975 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 976 } 977 EXPORT_SYMBOL_GPL(kvm_lmsw); 978 979 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 980 { 981 if (vcpu->arch.guest_state_protected) 982 return; 983 984 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 985 986 if (vcpu->arch.xcr0 != host_xcr0) 987 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 988 989 if (vcpu->arch.xsaves_enabled && 990 vcpu->arch.ia32_xss != host_xss) 991 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 992 } 993 994 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 995 if (static_cpu_has(X86_FEATURE_PKU) && 996 vcpu->arch.pkru != vcpu->arch.host_pkru && 997 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 998 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) 999 write_pkru(vcpu->arch.pkru); 1000 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 1001 } 1002 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 1003 1004 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1005 { 1006 if (vcpu->arch.guest_state_protected) 1007 return; 1008 1009 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 1010 if (static_cpu_has(X86_FEATURE_PKU) && 1011 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1012 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) { 1013 vcpu->arch.pkru = rdpkru(); 1014 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1015 write_pkru(vcpu->arch.host_pkru); 1016 } 1017 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 1018 1019 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 1020 1021 if (vcpu->arch.xcr0 != host_xcr0) 1022 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 1023 1024 if (vcpu->arch.xsaves_enabled && 1025 vcpu->arch.ia32_xss != host_xss) 1026 wrmsrl(MSR_IA32_XSS, host_xss); 1027 } 1028 1029 } 1030 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1031 1032 #ifdef CONFIG_X86_64 1033 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1034 { 1035 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; 1036 } 1037 #endif 1038 1039 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1040 { 1041 u64 xcr0 = xcr; 1042 u64 old_xcr0 = vcpu->arch.xcr0; 1043 u64 valid_bits; 1044 1045 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1046 if (index != XCR_XFEATURE_ENABLED_MASK) 1047 return 1; 1048 if (!(xcr0 & XFEATURE_MASK_FP)) 1049 return 1; 1050 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1051 return 1; 1052 1053 /* 1054 * Do not allow the guest to set bits that we do not support 1055 * saving. However, xcr0 bit 0 is always set, even if the 1056 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1057 */ 1058 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1059 if (xcr0 & ~valid_bits) 1060 return 1; 1061 1062 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1063 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1064 return 1; 1065 1066 if (xcr0 & XFEATURE_MASK_AVX512) { 1067 if (!(xcr0 & XFEATURE_MASK_YMM)) 1068 return 1; 1069 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1070 return 1; 1071 } 1072 1073 if ((xcr0 & XFEATURE_MASK_XTILE) && 1074 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1075 return 1; 1076 1077 vcpu->arch.xcr0 = xcr0; 1078 1079 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1080 kvm_update_cpuid_runtime(vcpu); 1081 return 0; 1082 } 1083 1084 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1085 { 1086 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ 1087 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || 1088 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1089 kvm_inject_gp(vcpu, 0); 1090 return 1; 1091 } 1092 1093 return kvm_skip_emulated_instruction(vcpu); 1094 } 1095 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1096 1097 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1098 { 1099 if (cr4 & cr4_reserved_bits) 1100 return false; 1101 1102 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1103 return false; 1104 1105 return true; 1106 } 1107 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4); 1108 1109 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1110 { 1111 return __kvm_is_valid_cr4(vcpu, cr4) && 1112 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1113 } 1114 1115 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1116 { 1117 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1118 kvm_mmu_reset_context(vcpu); 1119 1120 /* 1121 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1122 * according to the SDM; however, stale prev_roots could be reused 1123 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1124 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1125 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1126 * so fall through. 1127 */ 1128 if (!tdp_enabled && 1129 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1130 kvm_mmu_unload(vcpu); 1131 1132 /* 1133 * The TLB has to be flushed for all PCIDs if any of the following 1134 * (architecturally required) changes happen: 1135 * - CR4.PCIDE is changed from 1 to 0 1136 * - CR4.PGE is toggled 1137 * 1138 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1139 */ 1140 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1141 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1142 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1143 1144 /* 1145 * The TLB has to be flushed for the current PCID if any of the 1146 * following (architecturally required) changes happen: 1147 * - CR4.SMEP is changed from 0 to 1 1148 * - CR4.PAE is toggled 1149 */ 1150 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1151 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1152 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1153 1154 } 1155 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1156 1157 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1158 { 1159 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1160 1161 if (!kvm_is_valid_cr4(vcpu, cr4)) 1162 return 1; 1163 1164 if (is_long_mode(vcpu)) { 1165 if (!(cr4 & X86_CR4_PAE)) 1166 return 1; 1167 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1168 return 1; 1169 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1170 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1171 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1172 return 1; 1173 1174 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1175 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 1176 return 1; 1177 1178 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1179 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1180 return 1; 1181 } 1182 1183 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1184 1185 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1186 1187 return 0; 1188 } 1189 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1190 1191 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1192 { 1193 struct kvm_mmu *mmu = vcpu->arch.mmu; 1194 unsigned long roots_to_free = 0; 1195 int i; 1196 1197 /* 1198 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1199 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1200 * also via the emulator. KVM's TDP page tables are not in the scope of 1201 * the invalidation, but the guest's TLB entries need to be flushed as 1202 * the CPU may have cached entries in its TLB for the target PCID. 1203 */ 1204 if (unlikely(tdp_enabled)) { 1205 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1206 return; 1207 } 1208 1209 /* 1210 * If neither the current CR3 nor any of the prev_roots use the given 1211 * PCID, then nothing needs to be done here because a resync will 1212 * happen anyway before switching to any other CR3. 1213 */ 1214 if (kvm_get_active_pcid(vcpu) == pcid) { 1215 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1216 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1217 } 1218 1219 /* 1220 * If PCID is disabled, there is no need to free prev_roots even if the 1221 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1222 * with PCIDE=0. 1223 */ 1224 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 1225 return; 1226 1227 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1228 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1229 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1230 1231 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1232 } 1233 1234 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1235 { 1236 bool skip_tlb_flush = false; 1237 unsigned long pcid = 0; 1238 #ifdef CONFIG_X86_64 1239 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 1240 1241 if (pcid_enabled) { 1242 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1243 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1244 pcid = cr3 & X86_CR3_PCID_MASK; 1245 } 1246 #endif 1247 1248 /* PDPTRs are always reloaded for PAE paging. */ 1249 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1250 goto handle_tlb_flush; 1251 1252 /* 1253 * Do not condition the GPA check on long mode, this helper is used to 1254 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1255 * the current vCPU mode is accurate. 1256 */ 1257 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3)) 1258 return 1; 1259 1260 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1261 return 1; 1262 1263 if (cr3 != kvm_read_cr3(vcpu)) 1264 kvm_mmu_new_pgd(vcpu, cr3); 1265 1266 vcpu->arch.cr3 = cr3; 1267 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1268 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1269 1270 handle_tlb_flush: 1271 /* 1272 * A load of CR3 that flushes the TLB flushes only the current PCID, 1273 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1274 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1275 * and it's impossible to use a non-zero PCID when PCID is disabled, 1276 * i.e. only PCID=0 can be relevant. 1277 */ 1278 if (!skip_tlb_flush) 1279 kvm_invalidate_pcid(vcpu, pcid); 1280 1281 return 0; 1282 } 1283 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1284 1285 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1286 { 1287 if (cr8 & CR8_RESERVED_BITS) 1288 return 1; 1289 if (lapic_in_kernel(vcpu)) 1290 kvm_lapic_set_tpr(vcpu, cr8); 1291 else 1292 vcpu->arch.cr8 = cr8; 1293 return 0; 1294 } 1295 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1296 1297 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1298 { 1299 if (lapic_in_kernel(vcpu)) 1300 return kvm_lapic_get_cr8(vcpu); 1301 else 1302 return vcpu->arch.cr8; 1303 } 1304 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1305 1306 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1307 { 1308 int i; 1309 1310 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1311 for (i = 0; i < KVM_NR_DB_REGS; i++) 1312 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1313 } 1314 } 1315 1316 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1317 { 1318 unsigned long dr7; 1319 1320 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1321 dr7 = vcpu->arch.guest_debug_dr7; 1322 else 1323 dr7 = vcpu->arch.dr7; 1324 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1325 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1326 if (dr7 & DR7_BP_EN_MASK) 1327 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1328 } 1329 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1330 1331 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1332 { 1333 u64 fixed = DR6_FIXED_1; 1334 1335 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1336 fixed |= DR6_RTM; 1337 1338 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1339 fixed |= DR6_BUS_LOCK; 1340 return fixed; 1341 } 1342 1343 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1344 { 1345 size_t size = ARRAY_SIZE(vcpu->arch.db); 1346 1347 switch (dr) { 1348 case 0 ... 3: 1349 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1350 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1351 vcpu->arch.eff_db[dr] = val; 1352 break; 1353 case 4: 1354 case 6: 1355 if (!kvm_dr6_valid(val)) 1356 return 1; /* #GP */ 1357 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1358 break; 1359 case 5: 1360 default: /* 7 */ 1361 if (!kvm_dr7_valid(val)) 1362 return 1; /* #GP */ 1363 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1364 kvm_update_dr7(vcpu); 1365 break; 1366 } 1367 1368 return 0; 1369 } 1370 EXPORT_SYMBOL_GPL(kvm_set_dr); 1371 1372 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1373 { 1374 size_t size = ARRAY_SIZE(vcpu->arch.db); 1375 1376 switch (dr) { 1377 case 0 ... 3: 1378 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1379 break; 1380 case 4: 1381 case 6: 1382 *val = vcpu->arch.dr6; 1383 break; 1384 case 5: 1385 default: /* 7 */ 1386 *val = vcpu->arch.dr7; 1387 break; 1388 } 1389 } 1390 EXPORT_SYMBOL_GPL(kvm_get_dr); 1391 1392 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1393 { 1394 u32 ecx = kvm_rcx_read(vcpu); 1395 u64 data; 1396 1397 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1398 kvm_inject_gp(vcpu, 0); 1399 return 1; 1400 } 1401 1402 kvm_rax_write(vcpu, (u32)data); 1403 kvm_rdx_write(vcpu, data >> 32); 1404 return kvm_skip_emulated_instruction(vcpu); 1405 } 1406 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1407 1408 /* 1409 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1410 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1411 * 1412 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) 1413 * extract the supported MSRs from the related const lists. 1414 * msrs_to_save is selected from the msrs_to_save_all to reflect the 1415 * capabilities of the host cpu. This capabilities test skips MSRs that are 1416 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs 1417 * may depend on host virtualization features rather than host cpu features. 1418 */ 1419 1420 static const u32 msrs_to_save_all[] = { 1421 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1422 MSR_STAR, 1423 #ifdef CONFIG_X86_64 1424 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1425 #endif 1426 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1427 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1428 MSR_IA32_SPEC_CTRL, 1429 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1430 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1431 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1432 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1433 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1434 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1435 MSR_IA32_UMWAIT_CONTROL, 1436 1437 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1438 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1439 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1440 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1441 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1442 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1443 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1444 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1445 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9, 1446 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11, 1447 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13, 1448 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15, 1449 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17, 1450 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1451 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1452 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1453 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1454 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9, 1455 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11, 1456 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13, 1457 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15, 1458 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17, 1459 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 1460 1461 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1462 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1463 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1464 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1465 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1466 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1467 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 1468 }; 1469 1470 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)]; 1471 static unsigned num_msrs_to_save; 1472 1473 static const u32 emulated_msrs_all[] = { 1474 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1475 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1476 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1477 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1478 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1479 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1480 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1481 HV_X64_MSR_RESET, 1482 HV_X64_MSR_VP_INDEX, 1483 HV_X64_MSR_VP_RUNTIME, 1484 HV_X64_MSR_SCONTROL, 1485 HV_X64_MSR_STIMER0_CONFIG, 1486 HV_X64_MSR_VP_ASSIST_PAGE, 1487 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1488 HV_X64_MSR_TSC_EMULATION_STATUS, 1489 HV_X64_MSR_SYNDBG_OPTIONS, 1490 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1491 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1492 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1493 1494 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1495 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1496 1497 MSR_IA32_TSC_ADJUST, 1498 MSR_IA32_TSC_DEADLINE, 1499 MSR_IA32_ARCH_CAPABILITIES, 1500 MSR_IA32_PERF_CAPABILITIES, 1501 MSR_IA32_MISC_ENABLE, 1502 MSR_IA32_MCG_STATUS, 1503 MSR_IA32_MCG_CTL, 1504 MSR_IA32_MCG_EXT_CTL, 1505 MSR_IA32_SMBASE, 1506 MSR_SMI_COUNT, 1507 MSR_PLATFORM_INFO, 1508 MSR_MISC_FEATURES_ENABLES, 1509 MSR_AMD64_VIRT_SPEC_CTRL, 1510 MSR_AMD64_TSC_RATIO, 1511 MSR_IA32_POWER_CTL, 1512 MSR_IA32_UCODE_REV, 1513 1514 /* 1515 * The following list leaves out MSRs whose values are determined 1516 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs. 1517 * We always support the "true" VMX control MSRs, even if the host 1518 * processor does not, so I am putting these registers here rather 1519 * than in msrs_to_save_all. 1520 */ 1521 MSR_IA32_VMX_BASIC, 1522 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1523 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1524 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1525 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1526 MSR_IA32_VMX_MISC, 1527 MSR_IA32_VMX_CR0_FIXED0, 1528 MSR_IA32_VMX_CR4_FIXED0, 1529 MSR_IA32_VMX_VMCS_ENUM, 1530 MSR_IA32_VMX_PROCBASED_CTLS2, 1531 MSR_IA32_VMX_EPT_VPID_CAP, 1532 MSR_IA32_VMX_VMFUNC, 1533 1534 MSR_K7_HWCR, 1535 MSR_KVM_POLL_CONTROL, 1536 }; 1537 1538 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1539 static unsigned num_emulated_msrs; 1540 1541 /* 1542 * List of msr numbers which are used to expose MSR-based features that 1543 * can be used by a hypervisor to validate requested CPU features. 1544 */ 1545 static const u32 msr_based_features_all[] = { 1546 MSR_IA32_VMX_BASIC, 1547 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1548 MSR_IA32_VMX_PINBASED_CTLS, 1549 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1550 MSR_IA32_VMX_PROCBASED_CTLS, 1551 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1552 MSR_IA32_VMX_EXIT_CTLS, 1553 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1554 MSR_IA32_VMX_ENTRY_CTLS, 1555 MSR_IA32_VMX_MISC, 1556 MSR_IA32_VMX_CR0_FIXED0, 1557 MSR_IA32_VMX_CR0_FIXED1, 1558 MSR_IA32_VMX_CR4_FIXED0, 1559 MSR_IA32_VMX_CR4_FIXED1, 1560 MSR_IA32_VMX_VMCS_ENUM, 1561 MSR_IA32_VMX_PROCBASED_CTLS2, 1562 MSR_IA32_VMX_EPT_VPID_CAP, 1563 MSR_IA32_VMX_VMFUNC, 1564 1565 MSR_F10H_DECFG, 1566 MSR_IA32_UCODE_REV, 1567 MSR_IA32_ARCH_CAPABILITIES, 1568 MSR_IA32_PERF_CAPABILITIES, 1569 }; 1570 1571 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)]; 1572 static unsigned int num_msr_based_features; 1573 1574 /* 1575 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1576 * does not yet virtualize. These include: 1577 * 10 - MISC_PACKAGE_CTRLS 1578 * 11 - ENERGY_FILTERING_CTL 1579 * 12 - DOITM 1580 * 18 - FB_CLEAR_CTRL 1581 * 21 - XAPIC_DISABLE_STATUS 1582 * 23 - OVERCLOCKING_STATUS 1583 */ 1584 1585 #define KVM_SUPPORTED_ARCH_CAP \ 1586 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1587 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1588 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1589 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1590 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO) 1591 1592 static u64 kvm_get_arch_capabilities(void) 1593 { 1594 u64 data = 0; 1595 1596 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 1597 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1598 data &= KVM_SUPPORTED_ARCH_CAP; 1599 } 1600 1601 /* 1602 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1603 * the nested hypervisor runs with NX huge pages. If it is not, 1604 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1605 * L1 guests, so it need not worry about its own (L2) guests. 1606 */ 1607 data |= ARCH_CAP_PSCHANGE_MC_NO; 1608 1609 /* 1610 * If we're doing cache flushes (either "always" or "cond") 1611 * we will do one whenever the guest does a vmlaunch/vmresume. 1612 * If an outer hypervisor is doing the cache flush for us 1613 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1614 * capability to the guest too, and if EPT is disabled we're not 1615 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1616 * require a nested hypervisor to do a flush of its own. 1617 */ 1618 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1619 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1620 1621 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1622 data |= ARCH_CAP_RDCL_NO; 1623 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1624 data |= ARCH_CAP_SSB_NO; 1625 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1626 data |= ARCH_CAP_MDS_NO; 1627 1628 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1629 /* 1630 * If RTM=0 because the kernel has disabled TSX, the host might 1631 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1632 * and therefore knows that there cannot be TAA) but keep 1633 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1634 * and we want to allow migrating those guests to tsx=off hosts. 1635 */ 1636 data &= ~ARCH_CAP_TAA_NO; 1637 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1638 data |= ARCH_CAP_TAA_NO; 1639 } else { 1640 /* 1641 * Nothing to do here; we emulate TSX_CTRL if present on the 1642 * host so the guest can choose between disabling TSX or 1643 * using VERW to clear CPU buffers. 1644 */ 1645 } 1646 1647 return data; 1648 } 1649 1650 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1651 { 1652 switch (msr->index) { 1653 case MSR_IA32_ARCH_CAPABILITIES: 1654 msr->data = kvm_get_arch_capabilities(); 1655 break; 1656 case MSR_IA32_UCODE_REV: 1657 rdmsrl_safe(msr->index, &msr->data); 1658 break; 1659 default: 1660 return static_call(kvm_x86_get_msr_feature)(msr); 1661 } 1662 return 0; 1663 } 1664 1665 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1666 { 1667 struct kvm_msr_entry msr; 1668 int r; 1669 1670 msr.index = index; 1671 r = kvm_get_msr_feature(&msr); 1672 1673 if (r == KVM_MSR_RET_INVALID) { 1674 /* Unconditionally clear the output for simplicity */ 1675 *data = 0; 1676 if (kvm_msr_ignored_check(index, 0, false)) 1677 r = 0; 1678 } 1679 1680 if (r) 1681 return r; 1682 1683 *data = msr.data; 1684 1685 return 0; 1686 } 1687 1688 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1689 { 1690 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1691 return false; 1692 1693 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1694 return false; 1695 1696 if (efer & (EFER_LME | EFER_LMA) && 1697 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1698 return false; 1699 1700 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1701 return false; 1702 1703 return true; 1704 1705 } 1706 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1707 { 1708 if (efer & efer_reserved_bits) 1709 return false; 1710 1711 return __kvm_valid_efer(vcpu, efer); 1712 } 1713 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1714 1715 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1716 { 1717 u64 old_efer = vcpu->arch.efer; 1718 u64 efer = msr_info->data; 1719 int r; 1720 1721 if (efer & efer_reserved_bits) 1722 return 1; 1723 1724 if (!msr_info->host_initiated) { 1725 if (!__kvm_valid_efer(vcpu, efer)) 1726 return 1; 1727 1728 if (is_paging(vcpu) && 1729 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1730 return 1; 1731 } 1732 1733 efer &= ~EFER_LMA; 1734 efer |= vcpu->arch.efer & EFER_LMA; 1735 1736 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1737 if (r) { 1738 WARN_ON(r > 0); 1739 return r; 1740 } 1741 1742 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1743 kvm_mmu_reset_context(vcpu); 1744 1745 return 0; 1746 } 1747 1748 void kvm_enable_efer_bits(u64 mask) 1749 { 1750 efer_reserved_bits &= ~mask; 1751 } 1752 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1753 1754 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1755 { 1756 struct kvm_x86_msr_filter *msr_filter; 1757 struct msr_bitmap_range *ranges; 1758 struct kvm *kvm = vcpu->kvm; 1759 bool allowed; 1760 int idx; 1761 u32 i; 1762 1763 /* x2APIC MSRs do not support filtering. */ 1764 if (index >= 0x800 && index <= 0x8ff) 1765 return true; 1766 1767 idx = srcu_read_lock(&kvm->srcu); 1768 1769 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1770 if (!msr_filter) { 1771 allowed = true; 1772 goto out; 1773 } 1774 1775 allowed = msr_filter->default_allow; 1776 ranges = msr_filter->ranges; 1777 1778 for (i = 0; i < msr_filter->count; i++) { 1779 u32 start = ranges[i].base; 1780 u32 end = start + ranges[i].nmsrs; 1781 u32 flags = ranges[i].flags; 1782 unsigned long *bitmap = ranges[i].bitmap; 1783 1784 if ((index >= start) && (index < end) && (flags & type)) { 1785 allowed = !!test_bit(index - start, bitmap); 1786 break; 1787 } 1788 } 1789 1790 out: 1791 srcu_read_unlock(&kvm->srcu, idx); 1792 1793 return allowed; 1794 } 1795 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1796 1797 /* 1798 * Write @data into the MSR specified by @index. Select MSR specific fault 1799 * checks are bypassed if @host_initiated is %true. 1800 * Returns 0 on success, non-0 otherwise. 1801 * Assumes vcpu_load() was already called. 1802 */ 1803 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1804 bool host_initiated) 1805 { 1806 struct msr_data msr; 1807 1808 switch (index) { 1809 case MSR_FS_BASE: 1810 case MSR_GS_BASE: 1811 case MSR_KERNEL_GS_BASE: 1812 case MSR_CSTAR: 1813 case MSR_LSTAR: 1814 if (is_noncanonical_address(data, vcpu)) 1815 return 1; 1816 break; 1817 case MSR_IA32_SYSENTER_EIP: 1818 case MSR_IA32_SYSENTER_ESP: 1819 /* 1820 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1821 * non-canonical address is written on Intel but not on 1822 * AMD (which ignores the top 32-bits, because it does 1823 * not implement 64-bit SYSENTER). 1824 * 1825 * 64-bit code should hence be able to write a non-canonical 1826 * value on AMD. Making the address canonical ensures that 1827 * vmentry does not fail on Intel after writing a non-canonical 1828 * value, and that something deterministic happens if the guest 1829 * invokes 64-bit SYSENTER. 1830 */ 1831 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1832 break; 1833 case MSR_TSC_AUX: 1834 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1835 return 1; 1836 1837 if (!host_initiated && 1838 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1839 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1840 return 1; 1841 1842 /* 1843 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1844 * incomplete and conflicting architectural behavior. Current 1845 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1846 * reserved and always read as zeros. Enforce Intel's reserved 1847 * bits check if and only if the guest CPU is Intel, and clear 1848 * the bits in all other cases. This ensures cross-vendor 1849 * migration will provide consistent behavior for the guest. 1850 */ 1851 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) 1852 return 1; 1853 1854 data = (u32)data; 1855 break; 1856 } 1857 1858 msr.data = data; 1859 msr.index = index; 1860 msr.host_initiated = host_initiated; 1861 1862 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1863 } 1864 1865 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1866 u32 index, u64 data, bool host_initiated) 1867 { 1868 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1869 1870 if (ret == KVM_MSR_RET_INVALID) 1871 if (kvm_msr_ignored_check(index, data, true)) 1872 ret = 0; 1873 1874 return ret; 1875 } 1876 1877 /* 1878 * Read the MSR specified by @index into @data. Select MSR specific fault 1879 * checks are bypassed if @host_initiated is %true. 1880 * Returns 0 on success, non-0 otherwise. 1881 * Assumes vcpu_load() was already called. 1882 */ 1883 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1884 bool host_initiated) 1885 { 1886 struct msr_data msr; 1887 int ret; 1888 1889 switch (index) { 1890 case MSR_TSC_AUX: 1891 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1892 return 1; 1893 1894 if (!host_initiated && 1895 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1896 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1897 return 1; 1898 break; 1899 } 1900 1901 msr.index = index; 1902 msr.host_initiated = host_initiated; 1903 1904 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1905 if (!ret) 1906 *data = msr.data; 1907 return ret; 1908 } 1909 1910 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1911 u32 index, u64 *data, bool host_initiated) 1912 { 1913 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1914 1915 if (ret == KVM_MSR_RET_INVALID) { 1916 /* Unconditionally clear *data for simplicity */ 1917 *data = 0; 1918 if (kvm_msr_ignored_check(index, 0, false)) 1919 ret = 0; 1920 } 1921 1922 return ret; 1923 } 1924 1925 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1926 { 1927 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1928 return KVM_MSR_RET_FILTERED; 1929 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1930 } 1931 1932 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1933 { 1934 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1935 return KVM_MSR_RET_FILTERED; 1936 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1937 } 1938 1939 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1940 { 1941 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1942 } 1943 EXPORT_SYMBOL_GPL(kvm_get_msr); 1944 1945 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1946 { 1947 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1948 } 1949 EXPORT_SYMBOL_GPL(kvm_set_msr); 1950 1951 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1952 { 1953 if (!vcpu->run->msr.error) { 1954 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1955 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1956 } 1957 } 1958 1959 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 1960 { 1961 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 1962 } 1963 1964 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 1965 { 1966 complete_userspace_rdmsr(vcpu); 1967 return complete_emulated_msr_access(vcpu); 1968 } 1969 1970 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 1971 { 1972 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 1973 } 1974 1975 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 1976 { 1977 complete_userspace_rdmsr(vcpu); 1978 return complete_fast_msr_access(vcpu); 1979 } 1980 1981 static u64 kvm_msr_reason(int r) 1982 { 1983 switch (r) { 1984 case KVM_MSR_RET_INVALID: 1985 return KVM_MSR_EXIT_REASON_UNKNOWN; 1986 case KVM_MSR_RET_FILTERED: 1987 return KVM_MSR_EXIT_REASON_FILTER; 1988 default: 1989 return KVM_MSR_EXIT_REASON_INVAL; 1990 } 1991 } 1992 1993 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 1994 u32 exit_reason, u64 data, 1995 int (*completion)(struct kvm_vcpu *vcpu), 1996 int r) 1997 { 1998 u64 msr_reason = kvm_msr_reason(r); 1999 2000 /* Check if the user wanted to know about this MSR fault */ 2001 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 2002 return 0; 2003 2004 vcpu->run->exit_reason = exit_reason; 2005 vcpu->run->msr.error = 0; 2006 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 2007 vcpu->run->msr.reason = msr_reason; 2008 vcpu->run->msr.index = index; 2009 vcpu->run->msr.data = data; 2010 vcpu->arch.complete_userspace_io = completion; 2011 2012 return 1; 2013 } 2014 2015 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 2016 { 2017 u32 ecx = kvm_rcx_read(vcpu); 2018 u64 data; 2019 int r; 2020 2021 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 2022 2023 if (!r) { 2024 trace_kvm_msr_read(ecx, data); 2025 2026 kvm_rax_write(vcpu, data & -1u); 2027 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2028 } else { 2029 /* MSR read failed? See if we should ask user space */ 2030 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2031 complete_fast_rdmsr, r)) 2032 return 0; 2033 trace_kvm_msr_read_ex(ecx); 2034 } 2035 2036 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2037 } 2038 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2039 2040 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2041 { 2042 u32 ecx = kvm_rcx_read(vcpu); 2043 u64 data = kvm_read_edx_eax(vcpu); 2044 int r; 2045 2046 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2047 2048 if (!r) { 2049 trace_kvm_msr_write(ecx, data); 2050 } else { 2051 /* MSR write failed? See if we should ask user space */ 2052 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2053 complete_fast_msr_access, r)) 2054 return 0; 2055 /* Signal all other negative errors to userspace */ 2056 if (r < 0) 2057 return r; 2058 trace_kvm_msr_write_ex(ecx, data); 2059 } 2060 2061 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2062 } 2063 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2064 2065 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2066 { 2067 return kvm_skip_emulated_instruction(vcpu); 2068 } 2069 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop); 2070 2071 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2072 { 2073 /* Treat an INVD instruction as a NOP and just skip it. */ 2074 return kvm_emulate_as_nop(vcpu); 2075 } 2076 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2077 2078 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2079 { 2080 kvm_queue_exception(vcpu, UD_VECTOR); 2081 return 1; 2082 } 2083 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2084 2085 2086 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2087 { 2088 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) && 2089 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT)) 2090 return kvm_handle_invalid_op(vcpu); 2091 2092 pr_warn_once("kvm: %s instruction emulated as NOP!\n", insn); 2093 return kvm_emulate_as_nop(vcpu); 2094 } 2095 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2096 { 2097 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2098 } 2099 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2100 2101 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2102 { 2103 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2104 } 2105 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2106 2107 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2108 { 2109 xfer_to_guest_mode_prepare(); 2110 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2111 xfer_to_guest_mode_work_pending(); 2112 } 2113 2114 /* 2115 * The fast path for frequent and performance sensitive wrmsr emulation, 2116 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2117 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2118 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2119 * other cases which must be called after interrupts are enabled on the host. 2120 */ 2121 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2122 { 2123 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2124 return 1; 2125 2126 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2127 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2128 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2129 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2130 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2131 2132 return 1; 2133 } 2134 2135 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2136 { 2137 if (!kvm_can_use_hv_timer(vcpu)) 2138 return 1; 2139 2140 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2141 return 0; 2142 } 2143 2144 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2145 { 2146 u32 msr = kvm_rcx_read(vcpu); 2147 u64 data; 2148 fastpath_t ret = EXIT_FASTPATH_NONE; 2149 2150 switch (msr) { 2151 case APIC_BASE_MSR + (APIC_ICR >> 4): 2152 data = kvm_read_edx_eax(vcpu); 2153 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 2154 kvm_skip_emulated_instruction(vcpu); 2155 ret = EXIT_FASTPATH_EXIT_HANDLED; 2156 } 2157 break; 2158 case MSR_IA32_TSC_DEADLINE: 2159 data = kvm_read_edx_eax(vcpu); 2160 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 2161 kvm_skip_emulated_instruction(vcpu); 2162 ret = EXIT_FASTPATH_REENTER_GUEST; 2163 } 2164 break; 2165 default: 2166 break; 2167 } 2168 2169 if (ret != EXIT_FASTPATH_NONE) 2170 trace_kvm_msr_write(msr, data); 2171 2172 return ret; 2173 } 2174 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2175 2176 /* 2177 * Adapt set_msr() to msr_io()'s calling convention 2178 */ 2179 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2180 { 2181 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2182 } 2183 2184 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2185 { 2186 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2187 } 2188 2189 #ifdef CONFIG_X86_64 2190 struct pvclock_clock { 2191 int vclock_mode; 2192 u64 cycle_last; 2193 u64 mask; 2194 u32 mult; 2195 u32 shift; 2196 u64 base_cycles; 2197 u64 offset; 2198 }; 2199 2200 struct pvclock_gtod_data { 2201 seqcount_t seq; 2202 2203 struct pvclock_clock clock; /* extract of a clocksource struct */ 2204 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2205 2206 ktime_t offs_boot; 2207 u64 wall_time_sec; 2208 }; 2209 2210 static struct pvclock_gtod_data pvclock_gtod_data; 2211 2212 static void update_pvclock_gtod(struct timekeeper *tk) 2213 { 2214 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2215 2216 write_seqcount_begin(&vdata->seq); 2217 2218 /* copy pvclock gtod data */ 2219 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2220 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2221 vdata->clock.mask = tk->tkr_mono.mask; 2222 vdata->clock.mult = tk->tkr_mono.mult; 2223 vdata->clock.shift = tk->tkr_mono.shift; 2224 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2225 vdata->clock.offset = tk->tkr_mono.base; 2226 2227 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2228 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2229 vdata->raw_clock.mask = tk->tkr_raw.mask; 2230 vdata->raw_clock.mult = tk->tkr_raw.mult; 2231 vdata->raw_clock.shift = tk->tkr_raw.shift; 2232 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2233 vdata->raw_clock.offset = tk->tkr_raw.base; 2234 2235 vdata->wall_time_sec = tk->xtime_sec; 2236 2237 vdata->offs_boot = tk->offs_boot; 2238 2239 write_seqcount_end(&vdata->seq); 2240 } 2241 2242 static s64 get_kvmclock_base_ns(void) 2243 { 2244 /* Count up from boot time, but with the frequency of the raw clock. */ 2245 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2246 } 2247 #else 2248 static s64 get_kvmclock_base_ns(void) 2249 { 2250 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2251 return ktime_get_boottime_ns(); 2252 } 2253 #endif 2254 2255 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2256 { 2257 int version; 2258 int r; 2259 struct pvclock_wall_clock wc; 2260 u32 wc_sec_hi; 2261 u64 wall_nsec; 2262 2263 if (!wall_clock) 2264 return; 2265 2266 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2267 if (r) 2268 return; 2269 2270 if (version & 1) 2271 ++version; /* first time write, random junk */ 2272 2273 ++version; 2274 2275 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2276 return; 2277 2278 /* 2279 * The guest calculates current wall clock time by adding 2280 * system time (updated by kvm_guest_time_update below) to the 2281 * wall clock specified here. We do the reverse here. 2282 */ 2283 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 2284 2285 wc.nsec = do_div(wall_nsec, 1000000000); 2286 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2287 wc.version = version; 2288 2289 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2290 2291 if (sec_hi_ofs) { 2292 wc_sec_hi = wall_nsec >> 32; 2293 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2294 &wc_sec_hi, sizeof(wc_sec_hi)); 2295 } 2296 2297 version++; 2298 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2299 } 2300 2301 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2302 bool old_msr, bool host_initiated) 2303 { 2304 struct kvm_arch *ka = &vcpu->kvm->arch; 2305 2306 if (vcpu->vcpu_id == 0 && !host_initiated) { 2307 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2308 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2309 2310 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2311 } 2312 2313 vcpu->arch.time = system_time; 2314 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2315 2316 /* we verify if the enable bit is set... */ 2317 if (system_time & 1) { 2318 kvm_gpc_activate(vcpu->kvm, &vcpu->arch.pv_time, vcpu, 2319 KVM_HOST_USES_PFN, system_time & ~1ULL, 2320 sizeof(struct pvclock_vcpu_time_info)); 2321 } else { 2322 kvm_gpc_deactivate(vcpu->kvm, &vcpu->arch.pv_time); 2323 } 2324 2325 return; 2326 } 2327 2328 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2329 { 2330 do_shl32_div32(dividend, divisor); 2331 return dividend; 2332 } 2333 2334 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2335 s8 *pshift, u32 *pmultiplier) 2336 { 2337 uint64_t scaled64; 2338 int32_t shift = 0; 2339 uint64_t tps64; 2340 uint32_t tps32; 2341 2342 tps64 = base_hz; 2343 scaled64 = scaled_hz; 2344 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2345 tps64 >>= 1; 2346 shift--; 2347 } 2348 2349 tps32 = (uint32_t)tps64; 2350 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2351 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2352 scaled64 >>= 1; 2353 else 2354 tps32 <<= 1; 2355 shift++; 2356 } 2357 2358 *pshift = shift; 2359 *pmultiplier = div_frac(scaled64, tps32); 2360 } 2361 2362 #ifdef CONFIG_X86_64 2363 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2364 #endif 2365 2366 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2367 static unsigned long max_tsc_khz; 2368 2369 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2370 { 2371 u64 v = (u64)khz * (1000000 + ppm); 2372 do_div(v, 1000000); 2373 return v; 2374 } 2375 2376 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2377 2378 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2379 { 2380 u64 ratio; 2381 2382 /* Guest TSC same frequency as host TSC? */ 2383 if (!scale) { 2384 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2385 return 0; 2386 } 2387 2388 /* TSC scaling supported? */ 2389 if (!kvm_caps.has_tsc_control) { 2390 if (user_tsc_khz > tsc_khz) { 2391 vcpu->arch.tsc_catchup = 1; 2392 vcpu->arch.tsc_always_catchup = 1; 2393 return 0; 2394 } else { 2395 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2396 return -1; 2397 } 2398 } 2399 2400 /* TSC scaling required - calculate ratio */ 2401 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2402 user_tsc_khz, tsc_khz); 2403 2404 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2405 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2406 user_tsc_khz); 2407 return -1; 2408 } 2409 2410 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2411 return 0; 2412 } 2413 2414 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2415 { 2416 u32 thresh_lo, thresh_hi; 2417 int use_scaling = 0; 2418 2419 /* tsc_khz can be zero if TSC calibration fails */ 2420 if (user_tsc_khz == 0) { 2421 /* set tsc_scaling_ratio to a safe value */ 2422 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2423 return -1; 2424 } 2425 2426 /* Compute a scale to convert nanoseconds in TSC cycles */ 2427 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2428 &vcpu->arch.virtual_tsc_shift, 2429 &vcpu->arch.virtual_tsc_mult); 2430 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2431 2432 /* 2433 * Compute the variation in TSC rate which is acceptable 2434 * within the range of tolerance and decide if the 2435 * rate being applied is within that bounds of the hardware 2436 * rate. If so, no scaling or compensation need be done. 2437 */ 2438 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2439 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2440 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2441 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); 2442 use_scaling = 1; 2443 } 2444 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2445 } 2446 2447 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2448 { 2449 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2450 vcpu->arch.virtual_tsc_mult, 2451 vcpu->arch.virtual_tsc_shift); 2452 tsc += vcpu->arch.this_tsc_write; 2453 return tsc; 2454 } 2455 2456 #ifdef CONFIG_X86_64 2457 static inline int gtod_is_based_on_tsc(int mode) 2458 { 2459 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2460 } 2461 #endif 2462 2463 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 2464 { 2465 #ifdef CONFIG_X86_64 2466 bool vcpus_matched; 2467 struct kvm_arch *ka = &vcpu->kvm->arch; 2468 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2469 2470 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2471 atomic_read(&vcpu->kvm->online_vcpus)); 2472 2473 /* 2474 * Once the masterclock is enabled, always perform request in 2475 * order to update it. 2476 * 2477 * In order to enable masterclock, the host clocksource must be TSC 2478 * and the vcpus need to have matched TSCs. When that happens, 2479 * perform request to enable masterclock. 2480 */ 2481 if (ka->use_master_clock || 2482 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 2483 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2484 2485 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2486 atomic_read(&vcpu->kvm->online_vcpus), 2487 ka->use_master_clock, gtod->clock.vclock_mode); 2488 #endif 2489 } 2490 2491 /* 2492 * Multiply tsc by a fixed point number represented by ratio. 2493 * 2494 * The most significant 64-N bits (mult) of ratio represent the 2495 * integral part of the fixed point number; the remaining N bits 2496 * (frac) represent the fractional part, ie. ratio represents a fixed 2497 * point number (mult + frac * 2^(-N)). 2498 * 2499 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2500 */ 2501 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2502 { 2503 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2504 } 2505 2506 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2507 { 2508 u64 _tsc = tsc; 2509 2510 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2511 _tsc = __scale_tsc(ratio, tsc); 2512 2513 return _tsc; 2514 } 2515 EXPORT_SYMBOL_GPL(kvm_scale_tsc); 2516 2517 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2518 { 2519 u64 tsc; 2520 2521 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2522 2523 return target_tsc - tsc; 2524 } 2525 2526 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2527 { 2528 return vcpu->arch.l1_tsc_offset + 2529 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2530 } 2531 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2532 2533 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2534 { 2535 u64 nested_offset; 2536 2537 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2538 nested_offset = l1_offset; 2539 else 2540 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2541 kvm_caps.tsc_scaling_ratio_frac_bits); 2542 2543 nested_offset += l2_offset; 2544 return nested_offset; 2545 } 2546 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2547 2548 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2549 { 2550 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2551 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2552 kvm_caps.tsc_scaling_ratio_frac_bits); 2553 2554 return l1_multiplier; 2555 } 2556 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2557 2558 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2559 { 2560 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2561 vcpu->arch.l1_tsc_offset, 2562 l1_offset); 2563 2564 vcpu->arch.l1_tsc_offset = l1_offset; 2565 2566 /* 2567 * If we are here because L1 chose not to trap WRMSR to TSC then 2568 * according to the spec this should set L1's TSC (as opposed to 2569 * setting L1's offset for L2). 2570 */ 2571 if (is_guest_mode(vcpu)) 2572 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2573 l1_offset, 2574 static_call(kvm_x86_get_l2_tsc_offset)(vcpu), 2575 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2576 else 2577 vcpu->arch.tsc_offset = l1_offset; 2578 2579 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset); 2580 } 2581 2582 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2583 { 2584 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2585 2586 /* Userspace is changing the multiplier while L2 is active */ 2587 if (is_guest_mode(vcpu)) 2588 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2589 l1_multiplier, 2590 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2591 else 2592 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2593 2594 if (kvm_caps.has_tsc_control) 2595 static_call(kvm_x86_write_tsc_multiplier)( 2596 vcpu, vcpu->arch.tsc_scaling_ratio); 2597 } 2598 2599 static inline bool kvm_check_tsc_unstable(void) 2600 { 2601 #ifdef CONFIG_X86_64 2602 /* 2603 * TSC is marked unstable when we're running on Hyper-V, 2604 * 'TSC page' clocksource is good. 2605 */ 2606 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2607 return false; 2608 #endif 2609 return check_tsc_unstable(); 2610 } 2611 2612 /* 2613 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2614 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2615 * participates in. 2616 */ 2617 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2618 u64 ns, bool matched) 2619 { 2620 struct kvm *kvm = vcpu->kvm; 2621 2622 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2623 2624 /* 2625 * We also track th most recent recorded KHZ, write and time to 2626 * allow the matching interval to be extended at each write. 2627 */ 2628 kvm->arch.last_tsc_nsec = ns; 2629 kvm->arch.last_tsc_write = tsc; 2630 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2631 kvm->arch.last_tsc_offset = offset; 2632 2633 vcpu->arch.last_guest_tsc = tsc; 2634 2635 kvm_vcpu_write_tsc_offset(vcpu, offset); 2636 2637 if (!matched) { 2638 /* 2639 * We split periods of matched TSC writes into generations. 2640 * For each generation, we track the original measured 2641 * nanosecond time, offset, and write, so if TSCs are in 2642 * sync, we can match exact offset, and if not, we can match 2643 * exact software computation in compute_guest_tsc() 2644 * 2645 * These values are tracked in kvm->arch.cur_xxx variables. 2646 */ 2647 kvm->arch.cur_tsc_generation++; 2648 kvm->arch.cur_tsc_nsec = ns; 2649 kvm->arch.cur_tsc_write = tsc; 2650 kvm->arch.cur_tsc_offset = offset; 2651 kvm->arch.nr_vcpus_matched_tsc = 0; 2652 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2653 kvm->arch.nr_vcpus_matched_tsc++; 2654 } 2655 2656 /* Keep track of which generation this VCPU has synchronized to */ 2657 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2658 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2659 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2660 2661 kvm_track_tsc_matching(vcpu); 2662 } 2663 2664 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) 2665 { 2666 struct kvm *kvm = vcpu->kvm; 2667 u64 offset, ns, elapsed; 2668 unsigned long flags; 2669 bool matched = false; 2670 bool synchronizing = false; 2671 2672 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2673 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2674 ns = get_kvmclock_base_ns(); 2675 elapsed = ns - kvm->arch.last_tsc_nsec; 2676 2677 if (vcpu->arch.virtual_tsc_khz) { 2678 if (data == 0) { 2679 /* 2680 * detection of vcpu initialization -- need to sync 2681 * with other vCPUs. This particularly helps to keep 2682 * kvm_clock stable after CPU hotplug 2683 */ 2684 synchronizing = true; 2685 } else { 2686 u64 tsc_exp = kvm->arch.last_tsc_write + 2687 nsec_to_cycles(vcpu, elapsed); 2688 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2689 /* 2690 * Special case: TSC write with a small delta (1 second) 2691 * of virtual cycle time against real time is 2692 * interpreted as an attempt to synchronize the CPU. 2693 */ 2694 synchronizing = data < tsc_exp + tsc_hz && 2695 data + tsc_hz > tsc_exp; 2696 } 2697 } 2698 2699 /* 2700 * For a reliable TSC, we can match TSC offsets, and for an unstable 2701 * TSC, we add elapsed time in this computation. We could let the 2702 * compensation code attempt to catch up if we fall behind, but 2703 * it's better to try to match offsets from the beginning. 2704 */ 2705 if (synchronizing && 2706 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2707 if (!kvm_check_tsc_unstable()) { 2708 offset = kvm->arch.cur_tsc_offset; 2709 } else { 2710 u64 delta = nsec_to_cycles(vcpu, elapsed); 2711 data += delta; 2712 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2713 } 2714 matched = true; 2715 } 2716 2717 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2718 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2719 } 2720 2721 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2722 s64 adjustment) 2723 { 2724 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2725 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2726 } 2727 2728 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2729 { 2730 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2731 WARN_ON(adjustment < 0); 2732 adjustment = kvm_scale_tsc((u64) adjustment, 2733 vcpu->arch.l1_tsc_scaling_ratio); 2734 adjust_tsc_offset_guest(vcpu, adjustment); 2735 } 2736 2737 #ifdef CONFIG_X86_64 2738 2739 static u64 read_tsc(void) 2740 { 2741 u64 ret = (u64)rdtsc_ordered(); 2742 u64 last = pvclock_gtod_data.clock.cycle_last; 2743 2744 if (likely(ret >= last)) 2745 return ret; 2746 2747 /* 2748 * GCC likes to generate cmov here, but this branch is extremely 2749 * predictable (it's just a function of time and the likely is 2750 * very likely) and there's a data dependence, so force GCC 2751 * to generate a branch instead. I don't barrier() because 2752 * we don't actually need a barrier, and if this function 2753 * ever gets inlined it will generate worse code. 2754 */ 2755 asm volatile (""); 2756 return last; 2757 } 2758 2759 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2760 int *mode) 2761 { 2762 long v; 2763 u64 tsc_pg_val; 2764 2765 switch (clock->vclock_mode) { 2766 case VDSO_CLOCKMODE_HVCLOCK: 2767 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 2768 tsc_timestamp); 2769 if (tsc_pg_val != U64_MAX) { 2770 /* TSC page valid */ 2771 *mode = VDSO_CLOCKMODE_HVCLOCK; 2772 v = (tsc_pg_val - clock->cycle_last) & 2773 clock->mask; 2774 } else { 2775 /* TSC page invalid */ 2776 *mode = VDSO_CLOCKMODE_NONE; 2777 } 2778 break; 2779 case VDSO_CLOCKMODE_TSC: 2780 *mode = VDSO_CLOCKMODE_TSC; 2781 *tsc_timestamp = read_tsc(); 2782 v = (*tsc_timestamp - clock->cycle_last) & 2783 clock->mask; 2784 break; 2785 default: 2786 *mode = VDSO_CLOCKMODE_NONE; 2787 } 2788 2789 if (*mode == VDSO_CLOCKMODE_NONE) 2790 *tsc_timestamp = v = 0; 2791 2792 return v * clock->mult; 2793 } 2794 2795 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2796 { 2797 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2798 unsigned long seq; 2799 int mode; 2800 u64 ns; 2801 2802 do { 2803 seq = read_seqcount_begin(>od->seq); 2804 ns = gtod->raw_clock.base_cycles; 2805 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2806 ns >>= gtod->raw_clock.shift; 2807 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2808 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2809 *t = ns; 2810 2811 return mode; 2812 } 2813 2814 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2815 { 2816 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2817 unsigned long seq; 2818 int mode; 2819 u64 ns; 2820 2821 do { 2822 seq = read_seqcount_begin(>od->seq); 2823 ts->tv_sec = gtod->wall_time_sec; 2824 ns = gtod->clock.base_cycles; 2825 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2826 ns >>= gtod->clock.shift; 2827 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2828 2829 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2830 ts->tv_nsec = ns; 2831 2832 return mode; 2833 } 2834 2835 /* returns true if host is using TSC based clocksource */ 2836 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2837 { 2838 /* checked again under seqlock below */ 2839 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2840 return false; 2841 2842 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2843 tsc_timestamp)); 2844 } 2845 2846 /* returns true if host is using TSC based clocksource */ 2847 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2848 u64 *tsc_timestamp) 2849 { 2850 /* checked again under seqlock below */ 2851 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2852 return false; 2853 2854 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2855 } 2856 #endif 2857 2858 /* 2859 * 2860 * Assuming a stable TSC across physical CPUS, and a stable TSC 2861 * across virtual CPUs, the following condition is possible. 2862 * Each numbered line represents an event visible to both 2863 * CPUs at the next numbered event. 2864 * 2865 * "timespecX" represents host monotonic time. "tscX" represents 2866 * RDTSC value. 2867 * 2868 * VCPU0 on CPU0 | VCPU1 on CPU1 2869 * 2870 * 1. read timespec0,tsc0 2871 * 2. | timespec1 = timespec0 + N 2872 * | tsc1 = tsc0 + M 2873 * 3. transition to guest | transition to guest 2874 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2875 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2876 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2877 * 2878 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2879 * 2880 * - ret0 < ret1 2881 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2882 * ... 2883 * - 0 < N - M => M < N 2884 * 2885 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2886 * always the case (the difference between two distinct xtime instances 2887 * might be smaller then the difference between corresponding TSC reads, 2888 * when updating guest vcpus pvclock areas). 2889 * 2890 * To avoid that problem, do not allow visibility of distinct 2891 * system_timestamp/tsc_timestamp values simultaneously: use a master 2892 * copy of host monotonic time values. Update that master copy 2893 * in lockstep. 2894 * 2895 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2896 * 2897 */ 2898 2899 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2900 { 2901 #ifdef CONFIG_X86_64 2902 struct kvm_arch *ka = &kvm->arch; 2903 int vclock_mode; 2904 bool host_tsc_clocksource, vcpus_matched; 2905 2906 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2907 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2908 atomic_read(&kvm->online_vcpus)); 2909 2910 /* 2911 * If the host uses TSC clock, then passthrough TSC as stable 2912 * to the guest. 2913 */ 2914 host_tsc_clocksource = kvm_get_time_and_clockread( 2915 &ka->master_kernel_ns, 2916 &ka->master_cycle_now); 2917 2918 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2919 && !ka->backwards_tsc_observed 2920 && !ka->boot_vcpu_runs_old_kvmclock; 2921 2922 if (ka->use_master_clock) 2923 atomic_set(&kvm_guest_has_master_clock, 1); 2924 2925 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2926 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2927 vcpus_matched); 2928 #endif 2929 } 2930 2931 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2932 { 2933 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2934 } 2935 2936 static void __kvm_start_pvclock_update(struct kvm *kvm) 2937 { 2938 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 2939 write_seqcount_begin(&kvm->arch.pvclock_sc); 2940 } 2941 2942 static void kvm_start_pvclock_update(struct kvm *kvm) 2943 { 2944 kvm_make_mclock_inprogress_request(kvm); 2945 2946 /* no guest entries from this point */ 2947 __kvm_start_pvclock_update(kvm); 2948 } 2949 2950 static void kvm_end_pvclock_update(struct kvm *kvm) 2951 { 2952 struct kvm_arch *ka = &kvm->arch; 2953 struct kvm_vcpu *vcpu; 2954 unsigned long i; 2955 2956 write_seqcount_end(&ka->pvclock_sc); 2957 raw_spin_unlock_irq(&ka->tsc_write_lock); 2958 kvm_for_each_vcpu(i, vcpu, kvm) 2959 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2960 2961 /* guest entries allowed */ 2962 kvm_for_each_vcpu(i, vcpu, kvm) 2963 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 2964 } 2965 2966 static void kvm_update_masterclock(struct kvm *kvm) 2967 { 2968 kvm_hv_request_tsc_page_update(kvm); 2969 kvm_start_pvclock_update(kvm); 2970 pvclock_update_vm_gtod_copy(kvm); 2971 kvm_end_pvclock_update(kvm); 2972 } 2973 2974 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 2975 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 2976 { 2977 struct kvm_arch *ka = &kvm->arch; 2978 struct pvclock_vcpu_time_info hv_clock; 2979 2980 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 2981 get_cpu(); 2982 2983 data->flags = 0; 2984 if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) { 2985 #ifdef CONFIG_X86_64 2986 struct timespec64 ts; 2987 2988 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 2989 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 2990 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 2991 } else 2992 #endif 2993 data->host_tsc = rdtsc(); 2994 2995 data->flags |= KVM_CLOCK_TSC_STABLE; 2996 hv_clock.tsc_timestamp = ka->master_cycle_now; 2997 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 2998 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL, 2999 &hv_clock.tsc_shift, 3000 &hv_clock.tsc_to_system_mul); 3001 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 3002 } else { 3003 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 3004 } 3005 3006 put_cpu(); 3007 } 3008 3009 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3010 { 3011 struct kvm_arch *ka = &kvm->arch; 3012 unsigned seq; 3013 3014 do { 3015 seq = read_seqcount_begin(&ka->pvclock_sc); 3016 __get_kvmclock(kvm, data); 3017 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3018 } 3019 3020 u64 get_kvmclock_ns(struct kvm *kvm) 3021 { 3022 struct kvm_clock_data data; 3023 3024 get_kvmclock(kvm, &data); 3025 return data.clock; 3026 } 3027 3028 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, 3029 struct gfn_to_pfn_cache *gpc, 3030 unsigned int offset) 3031 { 3032 struct kvm_vcpu_arch *vcpu = &v->arch; 3033 struct pvclock_vcpu_time_info *guest_hv_clock; 3034 unsigned long flags; 3035 3036 read_lock_irqsave(&gpc->lock, flags); 3037 while (!kvm_gfn_to_pfn_cache_check(v->kvm, gpc, gpc->gpa, 3038 offset + sizeof(*guest_hv_clock))) { 3039 read_unlock_irqrestore(&gpc->lock, flags); 3040 3041 if (kvm_gfn_to_pfn_cache_refresh(v->kvm, gpc, gpc->gpa, 3042 offset + sizeof(*guest_hv_clock))) 3043 return; 3044 3045 read_lock_irqsave(&gpc->lock, flags); 3046 } 3047 3048 guest_hv_clock = (void *)(gpc->khva + offset); 3049 3050 /* 3051 * This VCPU is paused, but it's legal for a guest to read another 3052 * VCPU's kvmclock, so we really have to follow the specification where 3053 * it says that version is odd if data is being modified, and even after 3054 * it is consistent. 3055 */ 3056 3057 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; 3058 smp_wmb(); 3059 3060 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3061 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3062 3063 if (vcpu->pvclock_set_guest_stopped_request) { 3064 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3065 vcpu->pvclock_set_guest_stopped_request = false; 3066 } 3067 3068 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); 3069 smp_wmb(); 3070 3071 guest_hv_clock->version = ++vcpu->hv_clock.version; 3072 3073 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT); 3074 read_unlock_irqrestore(&gpc->lock, flags); 3075 3076 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3077 } 3078 3079 static int kvm_guest_time_update(struct kvm_vcpu *v) 3080 { 3081 unsigned long flags, tgt_tsc_khz; 3082 unsigned seq; 3083 struct kvm_vcpu_arch *vcpu = &v->arch; 3084 struct kvm_arch *ka = &v->kvm->arch; 3085 s64 kernel_ns; 3086 u64 tsc_timestamp, host_tsc; 3087 u8 pvclock_flags; 3088 bool use_master_clock; 3089 3090 kernel_ns = 0; 3091 host_tsc = 0; 3092 3093 /* 3094 * If the host uses TSC clock, then passthrough TSC as stable 3095 * to the guest. 3096 */ 3097 do { 3098 seq = read_seqcount_begin(&ka->pvclock_sc); 3099 use_master_clock = ka->use_master_clock; 3100 if (use_master_clock) { 3101 host_tsc = ka->master_cycle_now; 3102 kernel_ns = ka->master_kernel_ns; 3103 } 3104 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3105 3106 /* Keep irq disabled to prevent changes to the clock */ 3107 local_irq_save(flags); 3108 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz); 3109 if (unlikely(tgt_tsc_khz == 0)) { 3110 local_irq_restore(flags); 3111 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3112 return 1; 3113 } 3114 if (!use_master_clock) { 3115 host_tsc = rdtsc(); 3116 kernel_ns = get_kvmclock_base_ns(); 3117 } 3118 3119 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3120 3121 /* 3122 * We may have to catch up the TSC to match elapsed wall clock 3123 * time for two reasons, even if kvmclock is used. 3124 * 1) CPU could have been running below the maximum TSC rate 3125 * 2) Broken TSC compensation resets the base at each VCPU 3126 * entry to avoid unknown leaps of TSC even when running 3127 * again on the same CPU. This may cause apparent elapsed 3128 * time to disappear, and the guest to stand still or run 3129 * very slowly. 3130 */ 3131 if (vcpu->tsc_catchup) { 3132 u64 tsc = compute_guest_tsc(v, kernel_ns); 3133 if (tsc > tsc_timestamp) { 3134 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3135 tsc_timestamp = tsc; 3136 } 3137 } 3138 3139 local_irq_restore(flags); 3140 3141 /* With all the info we got, fill in the values */ 3142 3143 if (kvm_caps.has_tsc_control) 3144 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3145 v->arch.l1_tsc_scaling_ratio); 3146 3147 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3148 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3149 &vcpu->hv_clock.tsc_shift, 3150 &vcpu->hv_clock.tsc_to_system_mul); 3151 vcpu->hw_tsc_khz = tgt_tsc_khz; 3152 } 3153 3154 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3155 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3156 vcpu->last_guest_tsc = tsc_timestamp; 3157 3158 /* If the host uses TSC clocksource, then it is stable */ 3159 pvclock_flags = 0; 3160 if (use_master_clock) 3161 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3162 3163 vcpu->hv_clock.flags = pvclock_flags; 3164 3165 if (vcpu->pv_time.active) 3166 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0); 3167 if (vcpu->xen.vcpu_info_cache.active) 3168 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, 3169 offsetof(struct compat_vcpu_info, time)); 3170 if (vcpu->xen.vcpu_time_info_cache.active) 3171 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0); 3172 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3173 return 0; 3174 } 3175 3176 /* 3177 * kvmclock updates which are isolated to a given vcpu, such as 3178 * vcpu->cpu migration, should not allow system_timestamp from 3179 * the rest of the vcpus to remain static. Otherwise ntp frequency 3180 * correction applies to one vcpu's system_timestamp but not 3181 * the others. 3182 * 3183 * So in those cases, request a kvmclock update for all vcpus. 3184 * We need to rate-limit these requests though, as they can 3185 * considerably slow guests that have a large number of vcpus. 3186 * The time for a remote vcpu to update its kvmclock is bound 3187 * by the delay we use to rate-limit the updates. 3188 */ 3189 3190 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3191 3192 static void kvmclock_update_fn(struct work_struct *work) 3193 { 3194 unsigned long i; 3195 struct delayed_work *dwork = to_delayed_work(work); 3196 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3197 kvmclock_update_work); 3198 struct kvm *kvm = container_of(ka, struct kvm, arch); 3199 struct kvm_vcpu *vcpu; 3200 3201 kvm_for_each_vcpu(i, vcpu, kvm) { 3202 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3203 kvm_vcpu_kick(vcpu); 3204 } 3205 } 3206 3207 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3208 { 3209 struct kvm *kvm = v->kvm; 3210 3211 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3212 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3213 KVMCLOCK_UPDATE_DELAY); 3214 } 3215 3216 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3217 3218 static void kvmclock_sync_fn(struct work_struct *work) 3219 { 3220 struct delayed_work *dwork = to_delayed_work(work); 3221 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3222 kvmclock_sync_work); 3223 struct kvm *kvm = container_of(ka, struct kvm, arch); 3224 3225 if (!kvmclock_periodic_sync) 3226 return; 3227 3228 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3229 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3230 KVMCLOCK_SYNC_PERIOD); 3231 } 3232 3233 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ 3234 static bool is_mci_control_msr(u32 msr) 3235 { 3236 return (msr & 3) == 0; 3237 } 3238 static bool is_mci_status_msr(u32 msr) 3239 { 3240 return (msr & 3) == 1; 3241 } 3242 3243 /* 3244 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3245 */ 3246 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3247 { 3248 /* McStatusWrEn enabled? */ 3249 if (guest_cpuid_is_amd_or_hygon(vcpu)) 3250 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3251 3252 return false; 3253 } 3254 3255 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3256 { 3257 u64 mcg_cap = vcpu->arch.mcg_cap; 3258 unsigned bank_num = mcg_cap & 0xff; 3259 u32 msr = msr_info->index; 3260 u64 data = msr_info->data; 3261 u32 offset, last_msr; 3262 3263 switch (msr) { 3264 case MSR_IA32_MCG_STATUS: 3265 vcpu->arch.mcg_status = data; 3266 break; 3267 case MSR_IA32_MCG_CTL: 3268 if (!(mcg_cap & MCG_CTL_P) && 3269 (data || !msr_info->host_initiated)) 3270 return 1; 3271 if (data != 0 && data != ~(u64)0) 3272 return 1; 3273 vcpu->arch.mcg_ctl = data; 3274 break; 3275 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3276 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3277 if (msr > last_msr) 3278 return 1; 3279 3280 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3281 return 1; 3282 /* An attempt to write a 1 to a reserved bit raises #GP */ 3283 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3284 return 1; 3285 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3286 last_msr + 1 - MSR_IA32_MC0_CTL2); 3287 vcpu->arch.mci_ctl2_banks[offset] = data; 3288 break; 3289 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3290 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3291 if (msr > last_msr) 3292 return 1; 3293 3294 /* 3295 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3296 * values are architecturally undefined. But, some Linux 3297 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3298 * issue on AMD K8s, allow bit 10 to be clear when setting all 3299 * other bits in order to avoid an uncaught #GP in the guest. 3300 * 3301 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3302 * single-bit ECC data errors. 3303 */ 3304 if (is_mci_control_msr(msr) && 3305 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3306 return 1; 3307 3308 /* 3309 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3310 * AMD-based CPUs allow non-zero values, but if and only if 3311 * HWCR[McStatusWrEn] is set. 3312 */ 3313 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3314 data != 0 && !can_set_mci_status(vcpu)) 3315 return 1; 3316 3317 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3318 last_msr + 1 - MSR_IA32_MC0_CTL); 3319 vcpu->arch.mce_banks[offset] = data; 3320 break; 3321 default: 3322 return 1; 3323 } 3324 return 0; 3325 } 3326 3327 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3328 { 3329 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3330 3331 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3332 } 3333 3334 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3335 { 3336 gpa_t gpa = data & ~0x3f; 3337 3338 /* Bits 4:5 are reserved, Should be zero */ 3339 if (data & 0x30) 3340 return 1; 3341 3342 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3343 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3344 return 1; 3345 3346 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3347 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3348 return 1; 3349 3350 if (!lapic_in_kernel(vcpu)) 3351 return data ? 1 : 0; 3352 3353 vcpu->arch.apf.msr_en_val = data; 3354 3355 if (!kvm_pv_async_pf_enabled(vcpu)) { 3356 kvm_clear_async_pf_completion_queue(vcpu); 3357 kvm_async_pf_hash_reset(vcpu); 3358 return 0; 3359 } 3360 3361 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3362 sizeof(u64))) 3363 return 1; 3364 3365 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3366 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3367 3368 kvm_async_pf_wakeup_all(vcpu); 3369 3370 return 0; 3371 } 3372 3373 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3374 { 3375 /* Bits 8-63 are reserved */ 3376 if (data >> 8) 3377 return 1; 3378 3379 if (!lapic_in_kernel(vcpu)) 3380 return 1; 3381 3382 vcpu->arch.apf.msr_int_val = data; 3383 3384 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3385 3386 return 0; 3387 } 3388 3389 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3390 { 3391 kvm_gpc_deactivate(vcpu->kvm, &vcpu->arch.pv_time); 3392 vcpu->arch.time = 0; 3393 } 3394 3395 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3396 { 3397 ++vcpu->stat.tlb_flush; 3398 static_call(kvm_x86_flush_tlb_all)(vcpu); 3399 } 3400 3401 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3402 { 3403 ++vcpu->stat.tlb_flush; 3404 3405 if (!tdp_enabled) { 3406 /* 3407 * A TLB flush on behalf of the guest is equivalent to 3408 * INVPCID(all), toggling CR4.PGE, etc., which requires 3409 * a forced sync of the shadow page tables. Ensure all the 3410 * roots are synced and the guest TLB in hardware is clean. 3411 */ 3412 kvm_mmu_sync_roots(vcpu); 3413 kvm_mmu_sync_prev_roots(vcpu); 3414 } 3415 3416 static_call(kvm_x86_flush_tlb_guest)(vcpu); 3417 } 3418 3419 3420 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3421 { 3422 ++vcpu->stat.tlb_flush; 3423 static_call(kvm_x86_flush_tlb_current)(vcpu); 3424 } 3425 3426 /* 3427 * Service "local" TLB flush requests, which are specific to the current MMU 3428 * context. In addition to the generic event handling in vcpu_enter_guest(), 3429 * TLB flushes that are targeted at an MMU context also need to be serviced 3430 * prior before nested VM-Enter/VM-Exit. 3431 */ 3432 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3433 { 3434 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3435 kvm_vcpu_flush_tlb_current(vcpu); 3436 3437 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3438 kvm_vcpu_flush_tlb_guest(vcpu); 3439 } 3440 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3441 3442 static void record_steal_time(struct kvm_vcpu *vcpu) 3443 { 3444 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3445 struct kvm_steal_time __user *st; 3446 struct kvm_memslots *slots; 3447 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3448 u64 steal; 3449 u32 version; 3450 3451 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3452 kvm_xen_runstate_set_running(vcpu); 3453 return; 3454 } 3455 3456 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3457 return; 3458 3459 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3460 return; 3461 3462 slots = kvm_memslots(vcpu->kvm); 3463 3464 if (unlikely(slots->generation != ghc->generation || 3465 gpa != ghc->gpa || 3466 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3467 /* We rely on the fact that it fits in a single page. */ 3468 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3469 3470 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3471 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3472 return; 3473 } 3474 3475 st = (struct kvm_steal_time __user *)ghc->hva; 3476 /* 3477 * Doing a TLB flush here, on the guest's behalf, can avoid 3478 * expensive IPIs. 3479 */ 3480 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3481 u8 st_preempted = 0; 3482 int err = -EFAULT; 3483 3484 if (!user_access_begin(st, sizeof(*st))) 3485 return; 3486 3487 asm volatile("1: xchgb %0, %2\n" 3488 "xor %1, %1\n" 3489 "2:\n" 3490 _ASM_EXTABLE_UA(1b, 2b) 3491 : "+q" (st_preempted), 3492 "+&r" (err), 3493 "+m" (st->preempted)); 3494 if (err) 3495 goto out; 3496 3497 user_access_end(); 3498 3499 vcpu->arch.st.preempted = 0; 3500 3501 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3502 st_preempted & KVM_VCPU_FLUSH_TLB); 3503 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3504 kvm_vcpu_flush_tlb_guest(vcpu); 3505 3506 if (!user_access_begin(st, sizeof(*st))) 3507 goto dirty; 3508 } else { 3509 if (!user_access_begin(st, sizeof(*st))) 3510 return; 3511 3512 unsafe_put_user(0, &st->preempted, out); 3513 vcpu->arch.st.preempted = 0; 3514 } 3515 3516 unsafe_get_user(version, &st->version, out); 3517 if (version & 1) 3518 version += 1; /* first time write, random junk */ 3519 3520 version += 1; 3521 unsafe_put_user(version, &st->version, out); 3522 3523 smp_wmb(); 3524 3525 unsafe_get_user(steal, &st->steal, out); 3526 steal += current->sched_info.run_delay - 3527 vcpu->arch.st.last_steal; 3528 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3529 unsafe_put_user(steal, &st->steal, out); 3530 3531 version += 1; 3532 unsafe_put_user(version, &st->version, out); 3533 3534 out: 3535 user_access_end(); 3536 dirty: 3537 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3538 } 3539 3540 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3541 { 3542 bool pr = false; 3543 u32 msr = msr_info->index; 3544 u64 data = msr_info->data; 3545 3546 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3547 return kvm_xen_write_hypercall_page(vcpu, data); 3548 3549 switch (msr) { 3550 case MSR_AMD64_NB_CFG: 3551 case MSR_IA32_UCODE_WRITE: 3552 case MSR_VM_HSAVE_PA: 3553 case MSR_AMD64_PATCH_LOADER: 3554 case MSR_AMD64_BU_CFG2: 3555 case MSR_AMD64_DC_CFG: 3556 case MSR_F15H_EX_CFG: 3557 break; 3558 3559 case MSR_IA32_UCODE_REV: 3560 if (msr_info->host_initiated) 3561 vcpu->arch.microcode_version = data; 3562 break; 3563 case MSR_IA32_ARCH_CAPABILITIES: 3564 if (!msr_info->host_initiated) 3565 return 1; 3566 vcpu->arch.arch_capabilities = data; 3567 break; 3568 case MSR_IA32_PERF_CAPABILITIES: { 3569 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0}; 3570 3571 if (!msr_info->host_initiated) 3572 return 1; 3573 if (kvm_get_msr_feature(&msr_ent)) 3574 return 1; 3575 if (data & ~msr_ent.data) 3576 return 1; 3577 3578 vcpu->arch.perf_capabilities = data; 3579 kvm_pmu_refresh(vcpu); 3580 return 0; 3581 } 3582 case MSR_EFER: 3583 return set_efer(vcpu, msr_info); 3584 case MSR_K7_HWCR: 3585 data &= ~(u64)0x40; /* ignore flush filter disable */ 3586 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3587 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3588 3589 /* Handle McStatusWrEn */ 3590 if (data == BIT_ULL(18)) { 3591 vcpu->arch.msr_hwcr = data; 3592 } else if (data != 0) { 3593 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 3594 data); 3595 return 1; 3596 } 3597 break; 3598 case MSR_FAM10H_MMIO_CONF_BASE: 3599 if (data != 0) { 3600 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 3601 "0x%llx\n", data); 3602 return 1; 3603 } 3604 break; 3605 case 0x200 ... MSR_IA32_MC0_CTL2 - 1: 3606 case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff: 3607 return kvm_mtrr_set_msr(vcpu, msr, data); 3608 case MSR_IA32_APICBASE: 3609 return kvm_set_apic_base(vcpu, msr_info); 3610 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3611 return kvm_x2apic_msr_write(vcpu, msr, data); 3612 case MSR_IA32_TSC_DEADLINE: 3613 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3614 break; 3615 case MSR_IA32_TSC_ADJUST: 3616 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3617 if (!msr_info->host_initiated) { 3618 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3619 adjust_tsc_offset_guest(vcpu, adj); 3620 /* Before back to guest, tsc_timestamp must be adjusted 3621 * as well, otherwise guest's percpu pvclock time could jump. 3622 */ 3623 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3624 } 3625 vcpu->arch.ia32_tsc_adjust_msr = data; 3626 } 3627 break; 3628 case MSR_IA32_MISC_ENABLE: { 3629 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 3630 3631 if (!msr_info->host_initiated) { 3632 /* RO bits */ 3633 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 3634 return 1; 3635 3636 /* R bits, i.e. writes are ignored, but don't fault. */ 3637 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 3638 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 3639 } 3640 3641 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3642 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3643 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3644 return 1; 3645 vcpu->arch.ia32_misc_enable_msr = data; 3646 kvm_update_cpuid_runtime(vcpu); 3647 } else { 3648 vcpu->arch.ia32_misc_enable_msr = data; 3649 } 3650 break; 3651 } 3652 case MSR_IA32_SMBASE: 3653 if (!msr_info->host_initiated) 3654 return 1; 3655 vcpu->arch.smbase = data; 3656 break; 3657 case MSR_IA32_POWER_CTL: 3658 vcpu->arch.msr_ia32_power_ctl = data; 3659 break; 3660 case MSR_IA32_TSC: 3661 if (msr_info->host_initiated) { 3662 kvm_synchronize_tsc(vcpu, data); 3663 } else { 3664 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3665 adjust_tsc_offset_guest(vcpu, adj); 3666 vcpu->arch.ia32_tsc_adjust_msr += adj; 3667 } 3668 break; 3669 case MSR_IA32_XSS: 3670 if (!msr_info->host_initiated && 3671 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3672 return 1; 3673 /* 3674 * KVM supports exposing PT to the guest, but does not support 3675 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3676 * XSAVES/XRSTORS to save/restore PT MSRs. 3677 */ 3678 if (data & ~kvm_caps.supported_xss) 3679 return 1; 3680 vcpu->arch.ia32_xss = data; 3681 kvm_update_cpuid_runtime(vcpu); 3682 break; 3683 case MSR_SMI_COUNT: 3684 if (!msr_info->host_initiated) 3685 return 1; 3686 vcpu->arch.smi_count = data; 3687 break; 3688 case MSR_KVM_WALL_CLOCK_NEW: 3689 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3690 return 1; 3691 3692 vcpu->kvm->arch.wall_clock = data; 3693 kvm_write_wall_clock(vcpu->kvm, data, 0); 3694 break; 3695 case MSR_KVM_WALL_CLOCK: 3696 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3697 return 1; 3698 3699 vcpu->kvm->arch.wall_clock = data; 3700 kvm_write_wall_clock(vcpu->kvm, data, 0); 3701 break; 3702 case MSR_KVM_SYSTEM_TIME_NEW: 3703 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3704 return 1; 3705 3706 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3707 break; 3708 case MSR_KVM_SYSTEM_TIME: 3709 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3710 return 1; 3711 3712 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3713 break; 3714 case MSR_KVM_ASYNC_PF_EN: 3715 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3716 return 1; 3717 3718 if (kvm_pv_enable_async_pf(vcpu, data)) 3719 return 1; 3720 break; 3721 case MSR_KVM_ASYNC_PF_INT: 3722 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3723 return 1; 3724 3725 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3726 return 1; 3727 break; 3728 case MSR_KVM_ASYNC_PF_ACK: 3729 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3730 return 1; 3731 if (data & 0x1) { 3732 vcpu->arch.apf.pageready_pending = false; 3733 kvm_check_async_pf_completion(vcpu); 3734 } 3735 break; 3736 case MSR_KVM_STEAL_TIME: 3737 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3738 return 1; 3739 3740 if (unlikely(!sched_info_on())) 3741 return 1; 3742 3743 if (data & KVM_STEAL_RESERVED_MASK) 3744 return 1; 3745 3746 vcpu->arch.st.msr_val = data; 3747 3748 if (!(data & KVM_MSR_ENABLED)) 3749 break; 3750 3751 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3752 3753 break; 3754 case MSR_KVM_PV_EOI_EN: 3755 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3756 return 1; 3757 3758 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 3759 return 1; 3760 break; 3761 3762 case MSR_KVM_POLL_CONTROL: 3763 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3764 return 1; 3765 3766 /* only enable bit supported */ 3767 if (data & (-1ULL << 1)) 3768 return 1; 3769 3770 vcpu->arch.msr_kvm_poll_control = data; 3771 break; 3772 3773 case MSR_IA32_MCG_CTL: 3774 case MSR_IA32_MCG_STATUS: 3775 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3776 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3777 return set_msr_mce(vcpu, msr_info); 3778 3779 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3780 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3781 pr = true; 3782 fallthrough; 3783 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3784 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3785 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3786 return kvm_pmu_set_msr(vcpu, msr_info); 3787 3788 if (pr || data != 0) 3789 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 3790 "0x%x data 0x%llx\n", msr, data); 3791 break; 3792 case MSR_K7_CLK_CTL: 3793 /* 3794 * Ignore all writes to this no longer documented MSR. 3795 * Writes are only relevant for old K7 processors, 3796 * all pre-dating SVM, but a recommended workaround from 3797 * AMD for these chips. It is possible to specify the 3798 * affected processor models on the command line, hence 3799 * the need to ignore the workaround. 3800 */ 3801 break; 3802 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3803 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3804 case HV_X64_MSR_SYNDBG_OPTIONS: 3805 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3806 case HV_X64_MSR_CRASH_CTL: 3807 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3808 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3809 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3810 case HV_X64_MSR_TSC_EMULATION_STATUS: 3811 return kvm_hv_set_msr_common(vcpu, msr, data, 3812 msr_info->host_initiated); 3813 case MSR_IA32_BBL_CR_CTL3: 3814 /* Drop writes to this legacy MSR -- see rdmsr 3815 * counterpart for further detail. 3816 */ 3817 if (report_ignored_msrs) 3818 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", 3819 msr, data); 3820 break; 3821 case MSR_AMD64_OSVW_ID_LENGTH: 3822 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3823 return 1; 3824 vcpu->arch.osvw.length = data; 3825 break; 3826 case MSR_AMD64_OSVW_STATUS: 3827 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3828 return 1; 3829 vcpu->arch.osvw.status = data; 3830 break; 3831 case MSR_PLATFORM_INFO: 3832 if (!msr_info->host_initiated || 3833 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3834 cpuid_fault_enabled(vcpu))) 3835 return 1; 3836 vcpu->arch.msr_platform_info = data; 3837 break; 3838 case MSR_MISC_FEATURES_ENABLES: 3839 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3840 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3841 !supports_cpuid_fault(vcpu))) 3842 return 1; 3843 vcpu->arch.msr_misc_features_enables = data; 3844 break; 3845 #ifdef CONFIG_X86_64 3846 case MSR_IA32_XFD: 3847 if (!msr_info->host_initiated && 3848 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3849 return 1; 3850 3851 if (data & ~kvm_guest_supported_xfd(vcpu)) 3852 return 1; 3853 3854 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 3855 break; 3856 case MSR_IA32_XFD_ERR: 3857 if (!msr_info->host_initiated && 3858 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3859 return 1; 3860 3861 if (data & ~kvm_guest_supported_xfd(vcpu)) 3862 return 1; 3863 3864 vcpu->arch.guest_fpu.xfd_err = data; 3865 break; 3866 #endif 3867 case MSR_IA32_PEBS_ENABLE: 3868 case MSR_IA32_DS_AREA: 3869 case MSR_PEBS_DATA_CFG: 3870 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3871 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3872 return kvm_pmu_set_msr(vcpu, msr_info); 3873 /* 3874 * Userspace is allowed to write '0' to MSRs that KVM reports 3875 * as to-be-saved, even if an MSRs isn't fully supported. 3876 */ 3877 return !msr_info->host_initiated || data; 3878 default: 3879 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3880 return kvm_pmu_set_msr(vcpu, msr_info); 3881 return KVM_MSR_RET_INVALID; 3882 } 3883 return 0; 3884 } 3885 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 3886 3887 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 3888 { 3889 u64 data; 3890 u64 mcg_cap = vcpu->arch.mcg_cap; 3891 unsigned bank_num = mcg_cap & 0xff; 3892 u32 offset, last_msr; 3893 3894 switch (msr) { 3895 case MSR_IA32_P5_MC_ADDR: 3896 case MSR_IA32_P5_MC_TYPE: 3897 data = 0; 3898 break; 3899 case MSR_IA32_MCG_CAP: 3900 data = vcpu->arch.mcg_cap; 3901 break; 3902 case MSR_IA32_MCG_CTL: 3903 if (!(mcg_cap & MCG_CTL_P) && !host) 3904 return 1; 3905 data = vcpu->arch.mcg_ctl; 3906 break; 3907 case MSR_IA32_MCG_STATUS: 3908 data = vcpu->arch.mcg_status; 3909 break; 3910 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3911 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3912 if (msr > last_msr) 3913 return 1; 3914 3915 if (!(mcg_cap & MCG_CMCI_P) && !host) 3916 return 1; 3917 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3918 last_msr + 1 - MSR_IA32_MC0_CTL2); 3919 data = vcpu->arch.mci_ctl2_banks[offset]; 3920 break; 3921 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3922 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3923 if (msr > last_msr) 3924 return 1; 3925 3926 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3927 last_msr + 1 - MSR_IA32_MC0_CTL); 3928 data = vcpu->arch.mce_banks[offset]; 3929 break; 3930 default: 3931 return 1; 3932 } 3933 *pdata = data; 3934 return 0; 3935 } 3936 3937 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3938 { 3939 switch (msr_info->index) { 3940 case MSR_IA32_PLATFORM_ID: 3941 case MSR_IA32_EBL_CR_POWERON: 3942 case MSR_IA32_LASTBRANCHFROMIP: 3943 case MSR_IA32_LASTBRANCHTOIP: 3944 case MSR_IA32_LASTINTFROMIP: 3945 case MSR_IA32_LASTINTTOIP: 3946 case MSR_AMD64_SYSCFG: 3947 case MSR_K8_TSEG_ADDR: 3948 case MSR_K8_TSEG_MASK: 3949 case MSR_VM_HSAVE_PA: 3950 case MSR_K8_INT_PENDING_MSG: 3951 case MSR_AMD64_NB_CFG: 3952 case MSR_FAM10H_MMIO_CONF_BASE: 3953 case MSR_AMD64_BU_CFG2: 3954 case MSR_IA32_PERF_CTL: 3955 case MSR_AMD64_DC_CFG: 3956 case MSR_F15H_EX_CFG: 3957 /* 3958 * Intel Sandy Bridge CPUs must support the RAPL (running average power 3959 * limit) MSRs. Just return 0, as we do not want to expose the host 3960 * data here. Do not conditionalize this on CPUID, as KVM does not do 3961 * so for existing CPU-specific MSRs. 3962 */ 3963 case MSR_RAPL_POWER_UNIT: 3964 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 3965 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 3966 case MSR_PKG_ENERGY_STATUS: /* Total package */ 3967 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 3968 msr_info->data = 0; 3969 break; 3970 case MSR_IA32_PEBS_ENABLE: 3971 case MSR_IA32_DS_AREA: 3972 case MSR_PEBS_DATA_CFG: 3973 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3974 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3975 return kvm_pmu_get_msr(vcpu, msr_info); 3976 /* 3977 * Userspace is allowed to read MSRs that KVM reports as 3978 * to-be-saved, even if an MSR isn't fully supported. 3979 */ 3980 if (!msr_info->host_initiated) 3981 return 1; 3982 msr_info->data = 0; 3983 break; 3984 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3985 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3986 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3987 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3988 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3989 return kvm_pmu_get_msr(vcpu, msr_info); 3990 msr_info->data = 0; 3991 break; 3992 case MSR_IA32_UCODE_REV: 3993 msr_info->data = vcpu->arch.microcode_version; 3994 break; 3995 case MSR_IA32_ARCH_CAPABILITIES: 3996 if (!msr_info->host_initiated && 3997 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 3998 return 1; 3999 msr_info->data = vcpu->arch.arch_capabilities; 4000 break; 4001 case MSR_IA32_PERF_CAPABILITIES: 4002 if (!msr_info->host_initiated && 4003 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 4004 return 1; 4005 msr_info->data = vcpu->arch.perf_capabilities; 4006 break; 4007 case MSR_IA32_POWER_CTL: 4008 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 4009 break; 4010 case MSR_IA32_TSC: { 4011 /* 4012 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 4013 * even when not intercepted. AMD manual doesn't explicitly 4014 * state this but appears to behave the same. 4015 * 4016 * On userspace reads and writes, however, we unconditionally 4017 * return L1's TSC value to ensure backwards-compatible 4018 * behavior for migration. 4019 */ 4020 u64 offset, ratio; 4021 4022 if (msr_info->host_initiated) { 4023 offset = vcpu->arch.l1_tsc_offset; 4024 ratio = vcpu->arch.l1_tsc_scaling_ratio; 4025 } else { 4026 offset = vcpu->arch.tsc_offset; 4027 ratio = vcpu->arch.tsc_scaling_ratio; 4028 } 4029 4030 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4031 break; 4032 } 4033 case MSR_MTRRcap: 4034 case 0x200 ... MSR_IA32_MC0_CTL2 - 1: 4035 case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff: 4036 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4037 case 0xcd: /* fsb frequency */ 4038 msr_info->data = 3; 4039 break; 4040 /* 4041 * MSR_EBC_FREQUENCY_ID 4042 * Conservative value valid for even the basic CPU models. 4043 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4044 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4045 * and 266MHz for model 3, or 4. Set Core Clock 4046 * Frequency to System Bus Frequency Ratio to 1 (bits 4047 * 31:24) even though these are only valid for CPU 4048 * models > 2, however guests may end up dividing or 4049 * multiplying by zero otherwise. 4050 */ 4051 case MSR_EBC_FREQUENCY_ID: 4052 msr_info->data = 1 << 24; 4053 break; 4054 case MSR_IA32_APICBASE: 4055 msr_info->data = kvm_get_apic_base(vcpu); 4056 break; 4057 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4058 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4059 case MSR_IA32_TSC_DEADLINE: 4060 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4061 break; 4062 case MSR_IA32_TSC_ADJUST: 4063 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4064 break; 4065 case MSR_IA32_MISC_ENABLE: 4066 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4067 break; 4068 case MSR_IA32_SMBASE: 4069 if (!msr_info->host_initiated) 4070 return 1; 4071 msr_info->data = vcpu->arch.smbase; 4072 break; 4073 case MSR_SMI_COUNT: 4074 msr_info->data = vcpu->arch.smi_count; 4075 break; 4076 case MSR_IA32_PERF_STATUS: 4077 /* TSC increment by tick */ 4078 msr_info->data = 1000ULL; 4079 /* CPU multiplier */ 4080 msr_info->data |= (((uint64_t)4ULL) << 40); 4081 break; 4082 case MSR_EFER: 4083 msr_info->data = vcpu->arch.efer; 4084 break; 4085 case MSR_KVM_WALL_CLOCK: 4086 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4087 return 1; 4088 4089 msr_info->data = vcpu->kvm->arch.wall_clock; 4090 break; 4091 case MSR_KVM_WALL_CLOCK_NEW: 4092 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4093 return 1; 4094 4095 msr_info->data = vcpu->kvm->arch.wall_clock; 4096 break; 4097 case MSR_KVM_SYSTEM_TIME: 4098 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4099 return 1; 4100 4101 msr_info->data = vcpu->arch.time; 4102 break; 4103 case MSR_KVM_SYSTEM_TIME_NEW: 4104 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4105 return 1; 4106 4107 msr_info->data = vcpu->arch.time; 4108 break; 4109 case MSR_KVM_ASYNC_PF_EN: 4110 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4111 return 1; 4112 4113 msr_info->data = vcpu->arch.apf.msr_en_val; 4114 break; 4115 case MSR_KVM_ASYNC_PF_INT: 4116 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4117 return 1; 4118 4119 msr_info->data = vcpu->arch.apf.msr_int_val; 4120 break; 4121 case MSR_KVM_ASYNC_PF_ACK: 4122 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4123 return 1; 4124 4125 msr_info->data = 0; 4126 break; 4127 case MSR_KVM_STEAL_TIME: 4128 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4129 return 1; 4130 4131 msr_info->data = vcpu->arch.st.msr_val; 4132 break; 4133 case MSR_KVM_PV_EOI_EN: 4134 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4135 return 1; 4136 4137 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4138 break; 4139 case MSR_KVM_POLL_CONTROL: 4140 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4141 return 1; 4142 4143 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4144 break; 4145 case MSR_IA32_P5_MC_ADDR: 4146 case MSR_IA32_P5_MC_TYPE: 4147 case MSR_IA32_MCG_CAP: 4148 case MSR_IA32_MCG_CTL: 4149 case MSR_IA32_MCG_STATUS: 4150 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4151 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4152 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4153 msr_info->host_initiated); 4154 case MSR_IA32_XSS: 4155 if (!msr_info->host_initiated && 4156 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4157 return 1; 4158 msr_info->data = vcpu->arch.ia32_xss; 4159 break; 4160 case MSR_K7_CLK_CTL: 4161 /* 4162 * Provide expected ramp-up count for K7. All other 4163 * are set to zero, indicating minimum divisors for 4164 * every field. 4165 * 4166 * This prevents guest kernels on AMD host with CPU 4167 * type 6, model 8 and higher from exploding due to 4168 * the rdmsr failing. 4169 */ 4170 msr_info->data = 0x20000000; 4171 break; 4172 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4173 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4174 case HV_X64_MSR_SYNDBG_OPTIONS: 4175 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4176 case HV_X64_MSR_CRASH_CTL: 4177 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4178 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4179 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4180 case HV_X64_MSR_TSC_EMULATION_STATUS: 4181 return kvm_hv_get_msr_common(vcpu, 4182 msr_info->index, &msr_info->data, 4183 msr_info->host_initiated); 4184 case MSR_IA32_BBL_CR_CTL3: 4185 /* This legacy MSR exists but isn't fully documented in current 4186 * silicon. It is however accessed by winxp in very narrow 4187 * scenarios where it sets bit #19, itself documented as 4188 * a "reserved" bit. Best effort attempt to source coherent 4189 * read data here should the balance of the register be 4190 * interpreted by the guest: 4191 * 4192 * L2 cache control register 3: 64GB range, 256KB size, 4193 * enabled, latency 0x1, configured 4194 */ 4195 msr_info->data = 0xbe702111; 4196 break; 4197 case MSR_AMD64_OSVW_ID_LENGTH: 4198 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4199 return 1; 4200 msr_info->data = vcpu->arch.osvw.length; 4201 break; 4202 case MSR_AMD64_OSVW_STATUS: 4203 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4204 return 1; 4205 msr_info->data = vcpu->arch.osvw.status; 4206 break; 4207 case MSR_PLATFORM_INFO: 4208 if (!msr_info->host_initiated && 4209 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4210 return 1; 4211 msr_info->data = vcpu->arch.msr_platform_info; 4212 break; 4213 case MSR_MISC_FEATURES_ENABLES: 4214 msr_info->data = vcpu->arch.msr_misc_features_enables; 4215 break; 4216 case MSR_K7_HWCR: 4217 msr_info->data = vcpu->arch.msr_hwcr; 4218 break; 4219 #ifdef CONFIG_X86_64 4220 case MSR_IA32_XFD: 4221 if (!msr_info->host_initiated && 4222 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4223 return 1; 4224 4225 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4226 break; 4227 case MSR_IA32_XFD_ERR: 4228 if (!msr_info->host_initiated && 4229 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4230 return 1; 4231 4232 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4233 break; 4234 #endif 4235 default: 4236 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4237 return kvm_pmu_get_msr(vcpu, msr_info); 4238 return KVM_MSR_RET_INVALID; 4239 } 4240 return 0; 4241 } 4242 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4243 4244 /* 4245 * Read or write a bunch of msrs. All parameters are kernel addresses. 4246 * 4247 * @return number of msrs set successfully. 4248 */ 4249 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4250 struct kvm_msr_entry *entries, 4251 int (*do_msr)(struct kvm_vcpu *vcpu, 4252 unsigned index, u64 *data)) 4253 { 4254 int i; 4255 4256 for (i = 0; i < msrs->nmsrs; ++i) 4257 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4258 break; 4259 4260 return i; 4261 } 4262 4263 /* 4264 * Read or write a bunch of msrs. Parameters are user addresses. 4265 * 4266 * @return number of msrs set successfully. 4267 */ 4268 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4269 int (*do_msr)(struct kvm_vcpu *vcpu, 4270 unsigned index, u64 *data), 4271 int writeback) 4272 { 4273 struct kvm_msrs msrs; 4274 struct kvm_msr_entry *entries; 4275 int r, n; 4276 unsigned size; 4277 4278 r = -EFAULT; 4279 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4280 goto out; 4281 4282 r = -E2BIG; 4283 if (msrs.nmsrs >= MAX_IO_MSRS) 4284 goto out; 4285 4286 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4287 entries = memdup_user(user_msrs->entries, size); 4288 if (IS_ERR(entries)) { 4289 r = PTR_ERR(entries); 4290 goto out; 4291 } 4292 4293 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 4294 if (r < 0) 4295 goto out_free; 4296 4297 r = -EFAULT; 4298 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4299 goto out_free; 4300 4301 r = n; 4302 4303 out_free: 4304 kfree(entries); 4305 out: 4306 return r; 4307 } 4308 4309 static inline bool kvm_can_mwait_in_guest(void) 4310 { 4311 return boot_cpu_has(X86_FEATURE_MWAIT) && 4312 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4313 boot_cpu_has(X86_FEATURE_ARAT); 4314 } 4315 4316 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4317 struct kvm_cpuid2 __user *cpuid_arg) 4318 { 4319 struct kvm_cpuid2 cpuid; 4320 int r; 4321 4322 r = -EFAULT; 4323 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4324 return r; 4325 4326 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4327 if (r) 4328 return r; 4329 4330 r = -EFAULT; 4331 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4332 return r; 4333 4334 return 0; 4335 } 4336 4337 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4338 { 4339 int r = 0; 4340 4341 switch (ext) { 4342 case KVM_CAP_IRQCHIP: 4343 case KVM_CAP_HLT: 4344 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4345 case KVM_CAP_SET_TSS_ADDR: 4346 case KVM_CAP_EXT_CPUID: 4347 case KVM_CAP_EXT_EMUL_CPUID: 4348 case KVM_CAP_CLOCKSOURCE: 4349 case KVM_CAP_PIT: 4350 case KVM_CAP_NOP_IO_DELAY: 4351 case KVM_CAP_MP_STATE: 4352 case KVM_CAP_SYNC_MMU: 4353 case KVM_CAP_USER_NMI: 4354 case KVM_CAP_REINJECT_CONTROL: 4355 case KVM_CAP_IRQ_INJECT_STATUS: 4356 case KVM_CAP_IOEVENTFD: 4357 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4358 case KVM_CAP_PIT2: 4359 case KVM_CAP_PIT_STATE2: 4360 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4361 case KVM_CAP_VCPU_EVENTS: 4362 case KVM_CAP_HYPERV: 4363 case KVM_CAP_HYPERV_VAPIC: 4364 case KVM_CAP_HYPERV_SPIN: 4365 case KVM_CAP_HYPERV_SYNIC: 4366 case KVM_CAP_HYPERV_SYNIC2: 4367 case KVM_CAP_HYPERV_VP_INDEX: 4368 case KVM_CAP_HYPERV_EVENTFD: 4369 case KVM_CAP_HYPERV_TLBFLUSH: 4370 case KVM_CAP_HYPERV_SEND_IPI: 4371 case KVM_CAP_HYPERV_CPUID: 4372 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4373 case KVM_CAP_SYS_HYPERV_CPUID: 4374 case KVM_CAP_PCI_SEGMENT: 4375 case KVM_CAP_DEBUGREGS: 4376 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4377 case KVM_CAP_XSAVE: 4378 case KVM_CAP_ASYNC_PF: 4379 case KVM_CAP_ASYNC_PF_INT: 4380 case KVM_CAP_GET_TSC_KHZ: 4381 case KVM_CAP_KVMCLOCK_CTRL: 4382 case KVM_CAP_READONLY_MEM: 4383 case KVM_CAP_HYPERV_TIME: 4384 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4385 case KVM_CAP_TSC_DEADLINE_TIMER: 4386 case KVM_CAP_DISABLE_QUIRKS: 4387 case KVM_CAP_SET_BOOT_CPU_ID: 4388 case KVM_CAP_SPLIT_IRQCHIP: 4389 case KVM_CAP_IMMEDIATE_EXIT: 4390 case KVM_CAP_PMU_EVENT_FILTER: 4391 case KVM_CAP_GET_MSR_FEATURES: 4392 case KVM_CAP_MSR_PLATFORM_INFO: 4393 case KVM_CAP_EXCEPTION_PAYLOAD: 4394 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4395 case KVM_CAP_SET_GUEST_DEBUG: 4396 case KVM_CAP_LAST_CPU: 4397 case KVM_CAP_X86_USER_SPACE_MSR: 4398 case KVM_CAP_X86_MSR_FILTER: 4399 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4400 #ifdef CONFIG_X86_SGX_KVM 4401 case KVM_CAP_SGX_ATTRIBUTE: 4402 #endif 4403 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4404 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4405 case KVM_CAP_SREGS2: 4406 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4407 case KVM_CAP_VCPU_ATTRIBUTES: 4408 case KVM_CAP_SYS_ATTRIBUTES: 4409 case KVM_CAP_VAPIC: 4410 case KVM_CAP_ENABLE_CAP: 4411 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4412 r = 1; 4413 break; 4414 case KVM_CAP_EXIT_HYPERCALL: 4415 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4416 break; 4417 case KVM_CAP_SET_GUEST_DEBUG2: 4418 return KVM_GUESTDBG_VALID_MASK; 4419 #ifdef CONFIG_KVM_XEN 4420 case KVM_CAP_XEN_HVM: 4421 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4422 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4423 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4424 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4425 KVM_XEN_HVM_CONFIG_EVTCHN_SEND; 4426 if (sched_info_on()) 4427 r |= KVM_XEN_HVM_CONFIG_RUNSTATE; 4428 break; 4429 #endif 4430 case KVM_CAP_SYNC_REGS: 4431 r = KVM_SYNC_X86_VALID_FIELDS; 4432 break; 4433 case KVM_CAP_ADJUST_CLOCK: 4434 r = KVM_CLOCK_VALID_FLAGS; 4435 break; 4436 case KVM_CAP_X86_DISABLE_EXITS: 4437 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE | 4438 KVM_X86_DISABLE_EXITS_CSTATE; 4439 if(kvm_can_mwait_in_guest()) 4440 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4441 break; 4442 case KVM_CAP_X86_SMM: 4443 /* SMBASE is usually relocated above 1M on modern chipsets, 4444 * and SMM handlers might indeed rely on 4G segment limits, 4445 * so do not report SMM to be available if real mode is 4446 * emulated via vm86 mode. Still, do not go to great lengths 4447 * to avoid userspace's usage of the feature, because it is a 4448 * fringe case that is not enabled except via specific settings 4449 * of the module parameters. 4450 */ 4451 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4452 break; 4453 case KVM_CAP_NR_VCPUS: 4454 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4455 break; 4456 case KVM_CAP_MAX_VCPUS: 4457 r = KVM_MAX_VCPUS; 4458 break; 4459 case KVM_CAP_MAX_VCPU_ID: 4460 r = KVM_MAX_VCPU_IDS; 4461 break; 4462 case KVM_CAP_PV_MMU: /* obsolete */ 4463 r = 0; 4464 break; 4465 case KVM_CAP_MCE: 4466 r = KVM_MAX_MCE_BANKS; 4467 break; 4468 case KVM_CAP_XCRS: 4469 r = boot_cpu_has(X86_FEATURE_XSAVE); 4470 break; 4471 case KVM_CAP_TSC_CONTROL: 4472 case KVM_CAP_VM_TSC_CONTROL: 4473 r = kvm_caps.has_tsc_control; 4474 break; 4475 case KVM_CAP_X2APIC_API: 4476 r = KVM_X2APIC_API_VALID_FLAGS; 4477 break; 4478 case KVM_CAP_NESTED_STATE: 4479 r = kvm_x86_ops.nested_ops->get_state ? 4480 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4481 break; 4482 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4483 r = kvm_x86_ops.enable_direct_tlbflush != NULL; 4484 break; 4485 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4486 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4487 break; 4488 case KVM_CAP_SMALLER_MAXPHYADDR: 4489 r = (int) allow_smaller_maxphyaddr; 4490 break; 4491 case KVM_CAP_STEAL_TIME: 4492 r = sched_info_on(); 4493 break; 4494 case KVM_CAP_X86_BUS_LOCK_EXIT: 4495 if (kvm_caps.has_bus_lock_exit) 4496 r = KVM_BUS_LOCK_DETECTION_OFF | 4497 KVM_BUS_LOCK_DETECTION_EXIT; 4498 else 4499 r = 0; 4500 break; 4501 case KVM_CAP_XSAVE2: { 4502 u64 guest_perm = xstate_get_guest_group_perm(); 4503 4504 r = xstate_required_size(kvm_caps.supported_xcr0 & guest_perm, false); 4505 if (r < sizeof(struct kvm_xsave)) 4506 r = sizeof(struct kvm_xsave); 4507 break; 4508 } 4509 case KVM_CAP_PMU_CAPABILITY: 4510 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4511 break; 4512 case KVM_CAP_DISABLE_QUIRKS2: 4513 r = KVM_X86_VALID_QUIRKS; 4514 break; 4515 case KVM_CAP_X86_NOTIFY_VMEXIT: 4516 r = kvm_caps.has_notify_vmexit; 4517 break; 4518 default: 4519 break; 4520 } 4521 return r; 4522 } 4523 4524 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr) 4525 { 4526 void __user *uaddr = (void __user*)(unsigned long)attr->addr; 4527 4528 if ((u64)(unsigned long)uaddr != attr->addr) 4529 return ERR_PTR_USR(-EFAULT); 4530 return uaddr; 4531 } 4532 4533 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4534 { 4535 u64 __user *uaddr = kvm_get_attr_addr(attr); 4536 4537 if (attr->group) 4538 return -ENXIO; 4539 4540 if (IS_ERR(uaddr)) 4541 return PTR_ERR(uaddr); 4542 4543 switch (attr->attr) { 4544 case KVM_X86_XCOMP_GUEST_SUPP: 4545 if (put_user(kvm_caps.supported_xcr0, uaddr)) 4546 return -EFAULT; 4547 return 0; 4548 default: 4549 return -ENXIO; 4550 break; 4551 } 4552 } 4553 4554 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4555 { 4556 if (attr->group) 4557 return -ENXIO; 4558 4559 switch (attr->attr) { 4560 case KVM_X86_XCOMP_GUEST_SUPP: 4561 return 0; 4562 default: 4563 return -ENXIO; 4564 } 4565 } 4566 4567 long kvm_arch_dev_ioctl(struct file *filp, 4568 unsigned int ioctl, unsigned long arg) 4569 { 4570 void __user *argp = (void __user *)arg; 4571 long r; 4572 4573 switch (ioctl) { 4574 case KVM_GET_MSR_INDEX_LIST: { 4575 struct kvm_msr_list __user *user_msr_list = argp; 4576 struct kvm_msr_list msr_list; 4577 unsigned n; 4578 4579 r = -EFAULT; 4580 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4581 goto out; 4582 n = msr_list.nmsrs; 4583 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4584 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4585 goto out; 4586 r = -E2BIG; 4587 if (n < msr_list.nmsrs) 4588 goto out; 4589 r = -EFAULT; 4590 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4591 num_msrs_to_save * sizeof(u32))) 4592 goto out; 4593 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4594 &emulated_msrs, 4595 num_emulated_msrs * sizeof(u32))) 4596 goto out; 4597 r = 0; 4598 break; 4599 } 4600 case KVM_GET_SUPPORTED_CPUID: 4601 case KVM_GET_EMULATED_CPUID: { 4602 struct kvm_cpuid2 __user *cpuid_arg = argp; 4603 struct kvm_cpuid2 cpuid; 4604 4605 r = -EFAULT; 4606 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4607 goto out; 4608 4609 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4610 ioctl); 4611 if (r) 4612 goto out; 4613 4614 r = -EFAULT; 4615 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4616 goto out; 4617 r = 0; 4618 break; 4619 } 4620 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4621 r = -EFAULT; 4622 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 4623 sizeof(kvm_caps.supported_mce_cap))) 4624 goto out; 4625 r = 0; 4626 break; 4627 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4628 struct kvm_msr_list __user *user_msr_list = argp; 4629 struct kvm_msr_list msr_list; 4630 unsigned int n; 4631 4632 r = -EFAULT; 4633 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4634 goto out; 4635 n = msr_list.nmsrs; 4636 msr_list.nmsrs = num_msr_based_features; 4637 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4638 goto out; 4639 r = -E2BIG; 4640 if (n < msr_list.nmsrs) 4641 goto out; 4642 r = -EFAULT; 4643 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4644 num_msr_based_features * sizeof(u32))) 4645 goto out; 4646 r = 0; 4647 break; 4648 } 4649 case KVM_GET_MSRS: 4650 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4651 break; 4652 case KVM_GET_SUPPORTED_HV_CPUID: 4653 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4654 break; 4655 case KVM_GET_DEVICE_ATTR: { 4656 struct kvm_device_attr attr; 4657 r = -EFAULT; 4658 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4659 break; 4660 r = kvm_x86_dev_get_attr(&attr); 4661 break; 4662 } 4663 case KVM_HAS_DEVICE_ATTR: { 4664 struct kvm_device_attr attr; 4665 r = -EFAULT; 4666 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4667 break; 4668 r = kvm_x86_dev_has_attr(&attr); 4669 break; 4670 } 4671 default: 4672 r = -EINVAL; 4673 break; 4674 } 4675 out: 4676 return r; 4677 } 4678 4679 static void wbinvd_ipi(void *garbage) 4680 { 4681 wbinvd(); 4682 } 4683 4684 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4685 { 4686 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4687 } 4688 4689 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4690 { 4691 /* Address WBINVD may be executed by guest */ 4692 if (need_emulate_wbinvd(vcpu)) { 4693 if (static_call(kvm_x86_has_wbinvd_exit)()) 4694 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4695 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4696 smp_call_function_single(vcpu->cpu, 4697 wbinvd_ipi, NULL, 1); 4698 } 4699 4700 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 4701 4702 /* Save host pkru register if supported */ 4703 vcpu->arch.host_pkru = read_pkru(); 4704 4705 /* Apply any externally detected TSC adjustments (due to suspend) */ 4706 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 4707 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 4708 vcpu->arch.tsc_offset_adjustment = 0; 4709 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4710 } 4711 4712 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 4713 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 4714 rdtsc() - vcpu->arch.last_host_tsc; 4715 if (tsc_delta < 0) 4716 mark_tsc_unstable("KVM discovered backwards TSC"); 4717 4718 if (kvm_check_tsc_unstable()) { 4719 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 4720 vcpu->arch.last_guest_tsc); 4721 kvm_vcpu_write_tsc_offset(vcpu, offset); 4722 vcpu->arch.tsc_catchup = 1; 4723 } 4724 4725 if (kvm_lapic_hv_timer_in_use(vcpu)) 4726 kvm_lapic_restart_hv_timer(vcpu); 4727 4728 /* 4729 * On a host with synchronized TSC, there is no need to update 4730 * kvmclock on vcpu->cpu migration 4731 */ 4732 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 4733 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 4734 if (vcpu->cpu != cpu) 4735 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 4736 vcpu->cpu = cpu; 4737 } 4738 4739 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4740 } 4741 4742 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 4743 { 4744 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 4745 struct kvm_steal_time __user *st; 4746 struct kvm_memslots *slots; 4747 static const u8 preempted = KVM_VCPU_PREEMPTED; 4748 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 4749 4750 /* 4751 * The vCPU can be marked preempted if and only if the VM-Exit was on 4752 * an instruction boundary and will not trigger guest emulation of any 4753 * kind (see vcpu_run). Vendor specific code controls (conservatively) 4754 * when this is true, for example allowing the vCPU to be marked 4755 * preempted if and only if the VM-Exit was due to a host interrupt. 4756 */ 4757 if (!vcpu->arch.at_instruction_boundary) { 4758 vcpu->stat.preemption_other++; 4759 return; 4760 } 4761 4762 vcpu->stat.preemption_reported++; 4763 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 4764 return; 4765 4766 if (vcpu->arch.st.preempted) 4767 return; 4768 4769 /* This happens on process exit */ 4770 if (unlikely(current->mm != vcpu->kvm->mm)) 4771 return; 4772 4773 slots = kvm_memslots(vcpu->kvm); 4774 4775 if (unlikely(slots->generation != ghc->generation || 4776 gpa != ghc->gpa || 4777 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 4778 return; 4779 4780 st = (struct kvm_steal_time __user *)ghc->hva; 4781 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 4782 4783 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 4784 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 4785 4786 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 4787 } 4788 4789 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 4790 { 4791 int idx; 4792 4793 if (vcpu->preempted) { 4794 if (!vcpu->arch.guest_state_protected) 4795 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); 4796 4797 /* 4798 * Take the srcu lock as memslots will be accessed to check the gfn 4799 * cache generation against the memslots generation. 4800 */ 4801 idx = srcu_read_lock(&vcpu->kvm->srcu); 4802 if (kvm_xen_msr_enabled(vcpu->kvm)) 4803 kvm_xen_runstate_set_preempted(vcpu); 4804 else 4805 kvm_steal_time_set_preempted(vcpu); 4806 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4807 } 4808 4809 static_call(kvm_x86_vcpu_put)(vcpu); 4810 vcpu->arch.last_host_tsc = rdtsc(); 4811 } 4812 4813 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 4814 struct kvm_lapic_state *s) 4815 { 4816 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 4817 4818 return kvm_apic_get_state(vcpu, s); 4819 } 4820 4821 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 4822 struct kvm_lapic_state *s) 4823 { 4824 int r; 4825 4826 r = kvm_apic_set_state(vcpu, s); 4827 if (r) 4828 return r; 4829 update_cr8_intercept(vcpu); 4830 4831 return 0; 4832 } 4833 4834 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 4835 { 4836 /* 4837 * We can accept userspace's request for interrupt injection 4838 * as long as we have a place to store the interrupt number. 4839 * The actual injection will happen when the CPU is able to 4840 * deliver the interrupt. 4841 */ 4842 if (kvm_cpu_has_extint(vcpu)) 4843 return false; 4844 4845 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 4846 return (!lapic_in_kernel(vcpu) || 4847 kvm_apic_accept_pic_intr(vcpu)); 4848 } 4849 4850 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 4851 { 4852 /* 4853 * Do not cause an interrupt window exit if an exception 4854 * is pending or an event needs reinjection; userspace 4855 * might want to inject the interrupt manually using KVM_SET_REGS 4856 * or KVM_SET_SREGS. For that to work, we must be at an 4857 * instruction boundary and with no events half-injected. 4858 */ 4859 return (kvm_arch_interrupt_allowed(vcpu) && 4860 kvm_cpu_accept_dm_intr(vcpu) && 4861 !kvm_event_needs_reinjection(vcpu) && 4862 !kvm_is_exception_pending(vcpu)); 4863 } 4864 4865 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 4866 struct kvm_interrupt *irq) 4867 { 4868 if (irq->irq >= KVM_NR_INTERRUPTS) 4869 return -EINVAL; 4870 4871 if (!irqchip_in_kernel(vcpu->kvm)) { 4872 kvm_queue_interrupt(vcpu, irq->irq, false); 4873 kvm_make_request(KVM_REQ_EVENT, vcpu); 4874 return 0; 4875 } 4876 4877 /* 4878 * With in-kernel LAPIC, we only use this to inject EXTINT, so 4879 * fail for in-kernel 8259. 4880 */ 4881 if (pic_in_kernel(vcpu->kvm)) 4882 return -ENXIO; 4883 4884 if (vcpu->arch.pending_external_vector != -1) 4885 return -EEXIST; 4886 4887 vcpu->arch.pending_external_vector = irq->irq; 4888 kvm_make_request(KVM_REQ_EVENT, vcpu); 4889 return 0; 4890 } 4891 4892 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 4893 { 4894 kvm_inject_nmi(vcpu); 4895 4896 return 0; 4897 } 4898 4899 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu) 4900 { 4901 kvm_make_request(KVM_REQ_SMI, vcpu); 4902 4903 return 0; 4904 } 4905 4906 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 4907 struct kvm_tpr_access_ctl *tac) 4908 { 4909 if (tac->flags) 4910 return -EINVAL; 4911 vcpu->arch.tpr_access_reporting = !!tac->enabled; 4912 return 0; 4913 } 4914 4915 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 4916 u64 mcg_cap) 4917 { 4918 int r; 4919 unsigned bank_num = mcg_cap & 0xff, bank; 4920 4921 r = -EINVAL; 4922 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 4923 goto out; 4924 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 4925 goto out; 4926 r = 0; 4927 vcpu->arch.mcg_cap = mcg_cap; 4928 /* Init IA32_MCG_CTL to all 1s */ 4929 if (mcg_cap & MCG_CTL_P) 4930 vcpu->arch.mcg_ctl = ~(u64)0; 4931 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 4932 for (bank = 0; bank < bank_num; bank++) { 4933 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 4934 if (mcg_cap & MCG_CMCI_P) 4935 vcpu->arch.mci_ctl2_banks[bank] = 0; 4936 } 4937 4938 kvm_apic_after_set_mcg_cap(vcpu); 4939 4940 static_call(kvm_x86_setup_mce)(vcpu); 4941 out: 4942 return r; 4943 } 4944 4945 /* 4946 * Validate this is an UCNA (uncorrectable no action) error by checking the 4947 * MCG_STATUS and MCi_STATUS registers: 4948 * - none of the bits for Machine Check Exceptions are set 4949 * - both the VAL (valid) and UC (uncorrectable) bits are set 4950 * MCI_STATUS_PCC - Processor Context Corrupted 4951 * MCI_STATUS_S - Signaled as a Machine Check Exception 4952 * MCI_STATUS_AR - Software recoverable Action Required 4953 */ 4954 static bool is_ucna(struct kvm_x86_mce *mce) 4955 { 4956 return !mce->mcg_status && 4957 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 4958 (mce->status & MCI_STATUS_VAL) && 4959 (mce->status & MCI_STATUS_UC); 4960 } 4961 4962 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 4963 { 4964 u64 mcg_cap = vcpu->arch.mcg_cap; 4965 4966 banks[1] = mce->status; 4967 banks[2] = mce->addr; 4968 banks[3] = mce->misc; 4969 vcpu->arch.mcg_status = mce->mcg_status; 4970 4971 if (!(mcg_cap & MCG_CMCI_P) || 4972 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 4973 return 0; 4974 4975 if (lapic_in_kernel(vcpu)) 4976 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 4977 4978 return 0; 4979 } 4980 4981 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 4982 struct kvm_x86_mce *mce) 4983 { 4984 u64 mcg_cap = vcpu->arch.mcg_cap; 4985 unsigned bank_num = mcg_cap & 0xff; 4986 u64 *banks = vcpu->arch.mce_banks; 4987 4988 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 4989 return -EINVAL; 4990 4991 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 4992 4993 if (is_ucna(mce)) 4994 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 4995 4996 /* 4997 * if IA32_MCG_CTL is not all 1s, the uncorrected error 4998 * reporting is disabled 4999 */ 5000 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 5001 vcpu->arch.mcg_ctl != ~(u64)0) 5002 return 0; 5003 /* 5004 * if IA32_MCi_CTL is not all 1s, the uncorrected error 5005 * reporting is disabled for the bank 5006 */ 5007 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 5008 return 0; 5009 if (mce->status & MCI_STATUS_UC) { 5010 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 5011 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 5012 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5013 return 0; 5014 } 5015 if (banks[1] & MCI_STATUS_VAL) 5016 mce->status |= MCI_STATUS_OVER; 5017 banks[2] = mce->addr; 5018 banks[3] = mce->misc; 5019 vcpu->arch.mcg_status = mce->mcg_status; 5020 banks[1] = mce->status; 5021 kvm_queue_exception(vcpu, MC_VECTOR); 5022 } else if (!(banks[1] & MCI_STATUS_VAL) 5023 || !(banks[1] & MCI_STATUS_UC)) { 5024 if (banks[1] & MCI_STATUS_VAL) 5025 mce->status |= MCI_STATUS_OVER; 5026 banks[2] = mce->addr; 5027 banks[3] = mce->misc; 5028 banks[1] = mce->status; 5029 } else 5030 banks[1] |= MCI_STATUS_OVER; 5031 return 0; 5032 } 5033 5034 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5035 struct kvm_vcpu_events *events) 5036 { 5037 struct kvm_queued_exception *ex; 5038 5039 process_nmi(vcpu); 5040 5041 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5042 process_smi(vcpu); 5043 5044 /* 5045 * KVM's ABI only allows for one exception to be migrated. Luckily, 5046 * the only time there can be two queued exceptions is if there's a 5047 * non-exiting _injected_ exception, and a pending exiting exception. 5048 * In that case, ignore the VM-Exiting exception as it's an extension 5049 * of the injected exception. 5050 */ 5051 if (vcpu->arch.exception_vmexit.pending && 5052 !vcpu->arch.exception.pending && 5053 !vcpu->arch.exception.injected) 5054 ex = &vcpu->arch.exception_vmexit; 5055 else 5056 ex = &vcpu->arch.exception; 5057 5058 /* 5059 * In guest mode, payload delivery should be deferred if the exception 5060 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 5061 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, 5062 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not 5063 * propagate the payload and so it cannot be safely deferred. Deliver 5064 * the payload if the capability hasn't been requested. 5065 */ 5066 if (!vcpu->kvm->arch.exception_payload_enabled && 5067 ex->pending && ex->has_payload) 5068 kvm_deliver_exception_payload(vcpu, ex); 5069 5070 /* 5071 * The API doesn't provide the instruction length for software 5072 * exceptions, so don't report them. As long as the guest RIP 5073 * isn't advanced, we should expect to encounter the exception 5074 * again. 5075 */ 5076 if (kvm_exception_is_soft(ex->vector)) { 5077 events->exception.injected = 0; 5078 events->exception.pending = 0; 5079 } else { 5080 events->exception.injected = ex->injected; 5081 events->exception.pending = ex->pending; 5082 /* 5083 * For ABI compatibility, deliberately conflate 5084 * pending and injected exceptions when 5085 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5086 */ 5087 if (!vcpu->kvm->arch.exception_payload_enabled) 5088 events->exception.injected |= ex->pending; 5089 } 5090 events->exception.nr = ex->vector; 5091 events->exception.has_error_code = ex->has_error_code; 5092 events->exception.error_code = ex->error_code; 5093 events->exception_has_payload = ex->has_payload; 5094 events->exception_payload = ex->payload; 5095 5096 events->interrupt.injected = 5097 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5098 events->interrupt.nr = vcpu->arch.interrupt.nr; 5099 events->interrupt.soft = 0; 5100 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 5101 5102 events->nmi.injected = vcpu->arch.nmi_injected; 5103 events->nmi.pending = vcpu->arch.nmi_pending != 0; 5104 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 5105 events->nmi.pad = 0; 5106 5107 events->sipi_vector = 0; /* never valid when reporting to user space */ 5108 5109 events->smi.smm = is_smm(vcpu); 5110 events->smi.pending = vcpu->arch.smi_pending; 5111 events->smi.smm_inside_nmi = 5112 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5113 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5114 5115 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5116 | KVM_VCPUEVENT_VALID_SHADOW 5117 | KVM_VCPUEVENT_VALID_SMM); 5118 if (vcpu->kvm->arch.exception_payload_enabled) 5119 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5120 if (vcpu->kvm->arch.triple_fault_event) { 5121 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5122 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5123 } 5124 5125 memset(&events->reserved, 0, sizeof(events->reserved)); 5126 } 5127 5128 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm); 5129 5130 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5131 struct kvm_vcpu_events *events) 5132 { 5133 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5134 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5135 | KVM_VCPUEVENT_VALID_SHADOW 5136 | KVM_VCPUEVENT_VALID_SMM 5137 | KVM_VCPUEVENT_VALID_PAYLOAD 5138 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5139 return -EINVAL; 5140 5141 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5142 if (!vcpu->kvm->arch.exception_payload_enabled) 5143 return -EINVAL; 5144 if (events->exception.pending) 5145 events->exception.injected = 0; 5146 else 5147 events->exception_has_payload = 0; 5148 } else { 5149 events->exception.pending = 0; 5150 events->exception_has_payload = 0; 5151 } 5152 5153 if ((events->exception.injected || events->exception.pending) && 5154 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5155 return -EINVAL; 5156 5157 /* INITs are latched while in SMM */ 5158 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 5159 (events->smi.smm || events->smi.pending) && 5160 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 5161 return -EINVAL; 5162 5163 process_nmi(vcpu); 5164 5165 /* 5166 * Flag that userspace is stuffing an exception, the next KVM_RUN will 5167 * morph the exception to a VM-Exit if appropriate. Do this only for 5168 * pending exceptions, already-injected exceptions are not subject to 5169 * intercpetion. Note, userspace that conflates pending and injected 5170 * is hosed, and will incorrectly convert an injected exception into a 5171 * pending exception, which in turn may cause a spurious VM-Exit. 5172 */ 5173 vcpu->arch.exception_from_userspace = events->exception.pending; 5174 5175 vcpu->arch.exception_vmexit.pending = false; 5176 5177 vcpu->arch.exception.injected = events->exception.injected; 5178 vcpu->arch.exception.pending = events->exception.pending; 5179 vcpu->arch.exception.vector = events->exception.nr; 5180 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5181 vcpu->arch.exception.error_code = events->exception.error_code; 5182 vcpu->arch.exception.has_payload = events->exception_has_payload; 5183 vcpu->arch.exception.payload = events->exception_payload; 5184 5185 vcpu->arch.interrupt.injected = events->interrupt.injected; 5186 vcpu->arch.interrupt.nr = events->interrupt.nr; 5187 vcpu->arch.interrupt.soft = events->interrupt.soft; 5188 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5189 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 5190 events->interrupt.shadow); 5191 5192 vcpu->arch.nmi_injected = events->nmi.injected; 5193 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 5194 vcpu->arch.nmi_pending = events->nmi.pending; 5195 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 5196 5197 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5198 lapic_in_kernel(vcpu)) 5199 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5200 5201 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5202 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5203 kvm_x86_ops.nested_ops->leave_nested(vcpu); 5204 kvm_smm_changed(vcpu, events->smi.smm); 5205 } 5206 5207 vcpu->arch.smi_pending = events->smi.pending; 5208 5209 if (events->smi.smm) { 5210 if (events->smi.smm_inside_nmi) 5211 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5212 else 5213 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5214 } 5215 5216 if (lapic_in_kernel(vcpu)) { 5217 if (events->smi.latched_init) 5218 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5219 else 5220 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5221 } 5222 } 5223 5224 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5225 if (!vcpu->kvm->arch.triple_fault_event) 5226 return -EINVAL; 5227 if (events->triple_fault.pending) 5228 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5229 else 5230 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5231 } 5232 5233 kvm_make_request(KVM_REQ_EVENT, vcpu); 5234 5235 return 0; 5236 } 5237 5238 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5239 struct kvm_debugregs *dbgregs) 5240 { 5241 unsigned long val; 5242 5243 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 5244 kvm_get_dr(vcpu, 6, &val); 5245 dbgregs->dr6 = val; 5246 dbgregs->dr7 = vcpu->arch.dr7; 5247 dbgregs->flags = 0; 5248 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 5249 } 5250 5251 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5252 struct kvm_debugregs *dbgregs) 5253 { 5254 if (dbgregs->flags) 5255 return -EINVAL; 5256 5257 if (!kvm_dr6_valid(dbgregs->dr6)) 5258 return -EINVAL; 5259 if (!kvm_dr7_valid(dbgregs->dr7)) 5260 return -EINVAL; 5261 5262 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 5263 kvm_update_dr0123(vcpu); 5264 vcpu->arch.dr6 = dbgregs->dr6; 5265 vcpu->arch.dr7 = dbgregs->dr7; 5266 kvm_update_dr7(vcpu); 5267 5268 return 0; 5269 } 5270 5271 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5272 struct kvm_xsave *guest_xsave) 5273 { 5274 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5275 return; 5276 5277 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5278 guest_xsave->region, 5279 sizeof(guest_xsave->region), 5280 vcpu->arch.pkru); 5281 } 5282 5283 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5284 u8 *state, unsigned int size) 5285 { 5286 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5287 return; 5288 5289 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5290 state, size, vcpu->arch.pkru); 5291 } 5292 5293 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5294 struct kvm_xsave *guest_xsave) 5295 { 5296 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5297 return 0; 5298 5299 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5300 guest_xsave->region, 5301 kvm_caps.supported_xcr0, 5302 &vcpu->arch.pkru); 5303 } 5304 5305 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5306 struct kvm_xcrs *guest_xcrs) 5307 { 5308 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5309 guest_xcrs->nr_xcrs = 0; 5310 return; 5311 } 5312 5313 guest_xcrs->nr_xcrs = 1; 5314 guest_xcrs->flags = 0; 5315 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5316 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5317 } 5318 5319 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5320 struct kvm_xcrs *guest_xcrs) 5321 { 5322 int i, r = 0; 5323 5324 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5325 return -EINVAL; 5326 5327 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5328 return -EINVAL; 5329 5330 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5331 /* Only support XCR0 currently */ 5332 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5333 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5334 guest_xcrs->xcrs[i].value); 5335 break; 5336 } 5337 if (r) 5338 r = -EINVAL; 5339 return r; 5340 } 5341 5342 /* 5343 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5344 * stopped by the hypervisor. This function will be called from the host only. 5345 * EINVAL is returned when the host attempts to set the flag for a guest that 5346 * does not support pv clocks. 5347 */ 5348 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5349 { 5350 if (!vcpu->arch.pv_time.active) 5351 return -EINVAL; 5352 vcpu->arch.pvclock_set_guest_stopped_request = true; 5353 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5354 return 0; 5355 } 5356 5357 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5358 struct kvm_device_attr *attr) 5359 { 5360 int r; 5361 5362 switch (attr->attr) { 5363 case KVM_VCPU_TSC_OFFSET: 5364 r = 0; 5365 break; 5366 default: 5367 r = -ENXIO; 5368 } 5369 5370 return r; 5371 } 5372 5373 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5374 struct kvm_device_attr *attr) 5375 { 5376 u64 __user *uaddr = kvm_get_attr_addr(attr); 5377 int r; 5378 5379 if (IS_ERR(uaddr)) 5380 return PTR_ERR(uaddr); 5381 5382 switch (attr->attr) { 5383 case KVM_VCPU_TSC_OFFSET: 5384 r = -EFAULT; 5385 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5386 break; 5387 r = 0; 5388 break; 5389 default: 5390 r = -ENXIO; 5391 } 5392 5393 return r; 5394 } 5395 5396 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5397 struct kvm_device_attr *attr) 5398 { 5399 u64 __user *uaddr = kvm_get_attr_addr(attr); 5400 struct kvm *kvm = vcpu->kvm; 5401 int r; 5402 5403 if (IS_ERR(uaddr)) 5404 return PTR_ERR(uaddr); 5405 5406 switch (attr->attr) { 5407 case KVM_VCPU_TSC_OFFSET: { 5408 u64 offset, tsc, ns; 5409 unsigned long flags; 5410 bool matched; 5411 5412 r = -EFAULT; 5413 if (get_user(offset, uaddr)) 5414 break; 5415 5416 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5417 5418 matched = (vcpu->arch.virtual_tsc_khz && 5419 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5420 kvm->arch.last_tsc_offset == offset); 5421 5422 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5423 ns = get_kvmclock_base_ns(); 5424 5425 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5426 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5427 5428 r = 0; 5429 break; 5430 } 5431 default: 5432 r = -ENXIO; 5433 } 5434 5435 return r; 5436 } 5437 5438 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5439 unsigned int ioctl, 5440 void __user *argp) 5441 { 5442 struct kvm_device_attr attr; 5443 int r; 5444 5445 if (copy_from_user(&attr, argp, sizeof(attr))) 5446 return -EFAULT; 5447 5448 if (attr.group != KVM_VCPU_TSC_CTRL) 5449 return -ENXIO; 5450 5451 switch (ioctl) { 5452 case KVM_HAS_DEVICE_ATTR: 5453 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5454 break; 5455 case KVM_GET_DEVICE_ATTR: 5456 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5457 break; 5458 case KVM_SET_DEVICE_ATTR: 5459 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5460 break; 5461 } 5462 5463 return r; 5464 } 5465 5466 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5467 struct kvm_enable_cap *cap) 5468 { 5469 int r; 5470 uint16_t vmcs_version; 5471 void __user *user_ptr; 5472 5473 if (cap->flags) 5474 return -EINVAL; 5475 5476 switch (cap->cap) { 5477 case KVM_CAP_HYPERV_SYNIC2: 5478 if (cap->args[0]) 5479 return -EINVAL; 5480 fallthrough; 5481 5482 case KVM_CAP_HYPERV_SYNIC: 5483 if (!irqchip_in_kernel(vcpu->kvm)) 5484 return -EINVAL; 5485 return kvm_hv_activate_synic(vcpu, cap->cap == 5486 KVM_CAP_HYPERV_SYNIC2); 5487 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5488 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5489 return -ENOTTY; 5490 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5491 if (!r) { 5492 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5493 if (copy_to_user(user_ptr, &vmcs_version, 5494 sizeof(vmcs_version))) 5495 r = -EFAULT; 5496 } 5497 return r; 5498 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5499 if (!kvm_x86_ops.enable_direct_tlbflush) 5500 return -ENOTTY; 5501 5502 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu); 5503 5504 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5505 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5506 5507 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5508 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5509 if (vcpu->arch.pv_cpuid.enforce) 5510 kvm_update_pv_runtime(vcpu); 5511 5512 return 0; 5513 default: 5514 return -EINVAL; 5515 } 5516 } 5517 5518 long kvm_arch_vcpu_ioctl(struct file *filp, 5519 unsigned int ioctl, unsigned long arg) 5520 { 5521 struct kvm_vcpu *vcpu = filp->private_data; 5522 void __user *argp = (void __user *)arg; 5523 int r; 5524 union { 5525 struct kvm_sregs2 *sregs2; 5526 struct kvm_lapic_state *lapic; 5527 struct kvm_xsave *xsave; 5528 struct kvm_xcrs *xcrs; 5529 void *buffer; 5530 } u; 5531 5532 vcpu_load(vcpu); 5533 5534 u.buffer = NULL; 5535 switch (ioctl) { 5536 case KVM_GET_LAPIC: { 5537 r = -EINVAL; 5538 if (!lapic_in_kernel(vcpu)) 5539 goto out; 5540 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 5541 GFP_KERNEL_ACCOUNT); 5542 5543 r = -ENOMEM; 5544 if (!u.lapic) 5545 goto out; 5546 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5547 if (r) 5548 goto out; 5549 r = -EFAULT; 5550 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5551 goto out; 5552 r = 0; 5553 break; 5554 } 5555 case KVM_SET_LAPIC: { 5556 r = -EINVAL; 5557 if (!lapic_in_kernel(vcpu)) 5558 goto out; 5559 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5560 if (IS_ERR(u.lapic)) { 5561 r = PTR_ERR(u.lapic); 5562 goto out_nofree; 5563 } 5564 5565 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5566 break; 5567 } 5568 case KVM_INTERRUPT: { 5569 struct kvm_interrupt irq; 5570 5571 r = -EFAULT; 5572 if (copy_from_user(&irq, argp, sizeof(irq))) 5573 goto out; 5574 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5575 break; 5576 } 5577 case KVM_NMI: { 5578 r = kvm_vcpu_ioctl_nmi(vcpu); 5579 break; 5580 } 5581 case KVM_SMI: { 5582 r = kvm_vcpu_ioctl_smi(vcpu); 5583 break; 5584 } 5585 case KVM_SET_CPUID: { 5586 struct kvm_cpuid __user *cpuid_arg = argp; 5587 struct kvm_cpuid cpuid; 5588 5589 r = -EFAULT; 5590 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5591 goto out; 5592 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5593 break; 5594 } 5595 case KVM_SET_CPUID2: { 5596 struct kvm_cpuid2 __user *cpuid_arg = argp; 5597 struct kvm_cpuid2 cpuid; 5598 5599 r = -EFAULT; 5600 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5601 goto out; 5602 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5603 cpuid_arg->entries); 5604 break; 5605 } 5606 case KVM_GET_CPUID2: { 5607 struct kvm_cpuid2 __user *cpuid_arg = argp; 5608 struct kvm_cpuid2 cpuid; 5609 5610 r = -EFAULT; 5611 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5612 goto out; 5613 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5614 cpuid_arg->entries); 5615 if (r) 5616 goto out; 5617 r = -EFAULT; 5618 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5619 goto out; 5620 r = 0; 5621 break; 5622 } 5623 case KVM_GET_MSRS: { 5624 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5625 r = msr_io(vcpu, argp, do_get_msr, 1); 5626 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5627 break; 5628 } 5629 case KVM_SET_MSRS: { 5630 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5631 r = msr_io(vcpu, argp, do_set_msr, 0); 5632 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5633 break; 5634 } 5635 case KVM_TPR_ACCESS_REPORTING: { 5636 struct kvm_tpr_access_ctl tac; 5637 5638 r = -EFAULT; 5639 if (copy_from_user(&tac, argp, sizeof(tac))) 5640 goto out; 5641 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5642 if (r) 5643 goto out; 5644 r = -EFAULT; 5645 if (copy_to_user(argp, &tac, sizeof(tac))) 5646 goto out; 5647 r = 0; 5648 break; 5649 }; 5650 case KVM_SET_VAPIC_ADDR: { 5651 struct kvm_vapic_addr va; 5652 int idx; 5653 5654 r = -EINVAL; 5655 if (!lapic_in_kernel(vcpu)) 5656 goto out; 5657 r = -EFAULT; 5658 if (copy_from_user(&va, argp, sizeof(va))) 5659 goto out; 5660 idx = srcu_read_lock(&vcpu->kvm->srcu); 5661 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5662 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5663 break; 5664 } 5665 case KVM_X86_SETUP_MCE: { 5666 u64 mcg_cap; 5667 5668 r = -EFAULT; 5669 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 5670 goto out; 5671 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 5672 break; 5673 } 5674 case KVM_X86_SET_MCE: { 5675 struct kvm_x86_mce mce; 5676 5677 r = -EFAULT; 5678 if (copy_from_user(&mce, argp, sizeof(mce))) 5679 goto out; 5680 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 5681 break; 5682 } 5683 case KVM_GET_VCPU_EVENTS: { 5684 struct kvm_vcpu_events events; 5685 5686 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 5687 5688 r = -EFAULT; 5689 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 5690 break; 5691 r = 0; 5692 break; 5693 } 5694 case KVM_SET_VCPU_EVENTS: { 5695 struct kvm_vcpu_events events; 5696 5697 r = -EFAULT; 5698 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 5699 break; 5700 5701 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 5702 break; 5703 } 5704 case KVM_GET_DEBUGREGS: { 5705 struct kvm_debugregs dbgregs; 5706 5707 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 5708 5709 r = -EFAULT; 5710 if (copy_to_user(argp, &dbgregs, 5711 sizeof(struct kvm_debugregs))) 5712 break; 5713 r = 0; 5714 break; 5715 } 5716 case KVM_SET_DEBUGREGS: { 5717 struct kvm_debugregs dbgregs; 5718 5719 r = -EFAULT; 5720 if (copy_from_user(&dbgregs, argp, 5721 sizeof(struct kvm_debugregs))) 5722 break; 5723 5724 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 5725 break; 5726 } 5727 case KVM_GET_XSAVE: { 5728 r = -EINVAL; 5729 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 5730 break; 5731 5732 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 5733 r = -ENOMEM; 5734 if (!u.xsave) 5735 break; 5736 5737 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 5738 5739 r = -EFAULT; 5740 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 5741 break; 5742 r = 0; 5743 break; 5744 } 5745 case KVM_SET_XSAVE: { 5746 int size = vcpu->arch.guest_fpu.uabi_size; 5747 5748 u.xsave = memdup_user(argp, size); 5749 if (IS_ERR(u.xsave)) { 5750 r = PTR_ERR(u.xsave); 5751 goto out_nofree; 5752 } 5753 5754 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 5755 break; 5756 } 5757 5758 case KVM_GET_XSAVE2: { 5759 int size = vcpu->arch.guest_fpu.uabi_size; 5760 5761 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); 5762 r = -ENOMEM; 5763 if (!u.xsave) 5764 break; 5765 5766 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 5767 5768 r = -EFAULT; 5769 if (copy_to_user(argp, u.xsave, size)) 5770 break; 5771 5772 r = 0; 5773 break; 5774 } 5775 5776 case KVM_GET_XCRS: { 5777 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 5778 r = -ENOMEM; 5779 if (!u.xcrs) 5780 break; 5781 5782 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 5783 5784 r = -EFAULT; 5785 if (copy_to_user(argp, u.xcrs, 5786 sizeof(struct kvm_xcrs))) 5787 break; 5788 r = 0; 5789 break; 5790 } 5791 case KVM_SET_XCRS: { 5792 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 5793 if (IS_ERR(u.xcrs)) { 5794 r = PTR_ERR(u.xcrs); 5795 goto out_nofree; 5796 } 5797 5798 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 5799 break; 5800 } 5801 case KVM_SET_TSC_KHZ: { 5802 u32 user_tsc_khz; 5803 5804 r = -EINVAL; 5805 user_tsc_khz = (u32)arg; 5806 5807 if (kvm_caps.has_tsc_control && 5808 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 5809 goto out; 5810 5811 if (user_tsc_khz == 0) 5812 user_tsc_khz = tsc_khz; 5813 5814 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 5815 r = 0; 5816 5817 goto out; 5818 } 5819 case KVM_GET_TSC_KHZ: { 5820 r = vcpu->arch.virtual_tsc_khz; 5821 goto out; 5822 } 5823 case KVM_KVMCLOCK_CTRL: { 5824 r = kvm_set_guest_paused(vcpu); 5825 goto out; 5826 } 5827 case KVM_ENABLE_CAP: { 5828 struct kvm_enable_cap cap; 5829 5830 r = -EFAULT; 5831 if (copy_from_user(&cap, argp, sizeof(cap))) 5832 goto out; 5833 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5834 break; 5835 } 5836 case KVM_GET_NESTED_STATE: { 5837 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5838 u32 user_data_size; 5839 5840 r = -EINVAL; 5841 if (!kvm_x86_ops.nested_ops->get_state) 5842 break; 5843 5844 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 5845 r = -EFAULT; 5846 if (get_user(user_data_size, &user_kvm_nested_state->size)) 5847 break; 5848 5849 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 5850 user_data_size); 5851 if (r < 0) 5852 break; 5853 5854 if (r > user_data_size) { 5855 if (put_user(r, &user_kvm_nested_state->size)) 5856 r = -EFAULT; 5857 else 5858 r = -E2BIG; 5859 break; 5860 } 5861 5862 r = 0; 5863 break; 5864 } 5865 case KVM_SET_NESTED_STATE: { 5866 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5867 struct kvm_nested_state kvm_state; 5868 int idx; 5869 5870 r = -EINVAL; 5871 if (!kvm_x86_ops.nested_ops->set_state) 5872 break; 5873 5874 r = -EFAULT; 5875 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 5876 break; 5877 5878 r = -EINVAL; 5879 if (kvm_state.size < sizeof(kvm_state)) 5880 break; 5881 5882 if (kvm_state.flags & 5883 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 5884 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 5885 | KVM_STATE_NESTED_GIF_SET)) 5886 break; 5887 5888 /* nested_run_pending implies guest_mode. */ 5889 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 5890 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 5891 break; 5892 5893 idx = srcu_read_lock(&vcpu->kvm->srcu); 5894 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 5895 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5896 break; 5897 } 5898 case KVM_GET_SUPPORTED_HV_CPUID: 5899 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 5900 break; 5901 #ifdef CONFIG_KVM_XEN 5902 case KVM_XEN_VCPU_GET_ATTR: { 5903 struct kvm_xen_vcpu_attr xva; 5904 5905 r = -EFAULT; 5906 if (copy_from_user(&xva, argp, sizeof(xva))) 5907 goto out; 5908 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 5909 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 5910 r = -EFAULT; 5911 break; 5912 } 5913 case KVM_XEN_VCPU_SET_ATTR: { 5914 struct kvm_xen_vcpu_attr xva; 5915 5916 r = -EFAULT; 5917 if (copy_from_user(&xva, argp, sizeof(xva))) 5918 goto out; 5919 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 5920 break; 5921 } 5922 #endif 5923 case KVM_GET_SREGS2: { 5924 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 5925 r = -ENOMEM; 5926 if (!u.sregs2) 5927 goto out; 5928 __get_sregs2(vcpu, u.sregs2); 5929 r = -EFAULT; 5930 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 5931 goto out; 5932 r = 0; 5933 break; 5934 } 5935 case KVM_SET_SREGS2: { 5936 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 5937 if (IS_ERR(u.sregs2)) { 5938 r = PTR_ERR(u.sregs2); 5939 u.sregs2 = NULL; 5940 goto out; 5941 } 5942 r = __set_sregs2(vcpu, u.sregs2); 5943 break; 5944 } 5945 case KVM_HAS_DEVICE_ATTR: 5946 case KVM_GET_DEVICE_ATTR: 5947 case KVM_SET_DEVICE_ATTR: 5948 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 5949 break; 5950 default: 5951 r = -EINVAL; 5952 } 5953 out: 5954 kfree(u.buffer); 5955 out_nofree: 5956 vcpu_put(vcpu); 5957 return r; 5958 } 5959 5960 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 5961 { 5962 return VM_FAULT_SIGBUS; 5963 } 5964 5965 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 5966 { 5967 int ret; 5968 5969 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 5970 return -EINVAL; 5971 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 5972 return ret; 5973 } 5974 5975 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 5976 u64 ident_addr) 5977 { 5978 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 5979 } 5980 5981 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 5982 unsigned long kvm_nr_mmu_pages) 5983 { 5984 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 5985 return -EINVAL; 5986 5987 mutex_lock(&kvm->slots_lock); 5988 5989 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 5990 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 5991 5992 mutex_unlock(&kvm->slots_lock); 5993 return 0; 5994 } 5995 5996 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 5997 { 5998 return kvm->arch.n_max_mmu_pages; 5999 } 6000 6001 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6002 { 6003 struct kvm_pic *pic = kvm->arch.vpic; 6004 int r; 6005 6006 r = 0; 6007 switch (chip->chip_id) { 6008 case KVM_IRQCHIP_PIC_MASTER: 6009 memcpy(&chip->chip.pic, &pic->pics[0], 6010 sizeof(struct kvm_pic_state)); 6011 break; 6012 case KVM_IRQCHIP_PIC_SLAVE: 6013 memcpy(&chip->chip.pic, &pic->pics[1], 6014 sizeof(struct kvm_pic_state)); 6015 break; 6016 case KVM_IRQCHIP_IOAPIC: 6017 kvm_get_ioapic(kvm, &chip->chip.ioapic); 6018 break; 6019 default: 6020 r = -EINVAL; 6021 break; 6022 } 6023 return r; 6024 } 6025 6026 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6027 { 6028 struct kvm_pic *pic = kvm->arch.vpic; 6029 int r; 6030 6031 r = 0; 6032 switch (chip->chip_id) { 6033 case KVM_IRQCHIP_PIC_MASTER: 6034 spin_lock(&pic->lock); 6035 memcpy(&pic->pics[0], &chip->chip.pic, 6036 sizeof(struct kvm_pic_state)); 6037 spin_unlock(&pic->lock); 6038 break; 6039 case KVM_IRQCHIP_PIC_SLAVE: 6040 spin_lock(&pic->lock); 6041 memcpy(&pic->pics[1], &chip->chip.pic, 6042 sizeof(struct kvm_pic_state)); 6043 spin_unlock(&pic->lock); 6044 break; 6045 case KVM_IRQCHIP_IOAPIC: 6046 kvm_set_ioapic(kvm, &chip->chip.ioapic); 6047 break; 6048 default: 6049 r = -EINVAL; 6050 break; 6051 } 6052 kvm_pic_update_irq(pic); 6053 return r; 6054 } 6055 6056 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6057 { 6058 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 6059 6060 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 6061 6062 mutex_lock(&kps->lock); 6063 memcpy(ps, &kps->channels, sizeof(*ps)); 6064 mutex_unlock(&kps->lock); 6065 return 0; 6066 } 6067 6068 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6069 { 6070 int i; 6071 struct kvm_pit *pit = kvm->arch.vpit; 6072 6073 mutex_lock(&pit->pit_state.lock); 6074 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 6075 for (i = 0; i < 3; i++) 6076 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 6077 mutex_unlock(&pit->pit_state.lock); 6078 return 0; 6079 } 6080 6081 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6082 { 6083 mutex_lock(&kvm->arch.vpit->pit_state.lock); 6084 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 6085 sizeof(ps->channels)); 6086 ps->flags = kvm->arch.vpit->pit_state.flags; 6087 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 6088 memset(&ps->reserved, 0, sizeof(ps->reserved)); 6089 return 0; 6090 } 6091 6092 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6093 { 6094 int start = 0; 6095 int i; 6096 u32 prev_legacy, cur_legacy; 6097 struct kvm_pit *pit = kvm->arch.vpit; 6098 6099 mutex_lock(&pit->pit_state.lock); 6100 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 6101 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 6102 if (!prev_legacy && cur_legacy) 6103 start = 1; 6104 memcpy(&pit->pit_state.channels, &ps->channels, 6105 sizeof(pit->pit_state.channels)); 6106 pit->pit_state.flags = ps->flags; 6107 for (i = 0; i < 3; i++) 6108 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 6109 start && i == 0); 6110 mutex_unlock(&pit->pit_state.lock); 6111 return 0; 6112 } 6113 6114 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 6115 struct kvm_reinject_control *control) 6116 { 6117 struct kvm_pit *pit = kvm->arch.vpit; 6118 6119 /* pit->pit_state.lock was overloaded to prevent userspace from getting 6120 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 6121 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 6122 */ 6123 mutex_lock(&pit->pit_state.lock); 6124 kvm_pit_set_reinject(pit, control->pit_reinject); 6125 mutex_unlock(&pit->pit_state.lock); 6126 6127 return 0; 6128 } 6129 6130 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6131 { 6132 6133 /* 6134 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6135 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6136 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6137 * VM-Exit. 6138 */ 6139 struct kvm_vcpu *vcpu; 6140 unsigned long i; 6141 6142 kvm_for_each_vcpu(i, vcpu, kvm) 6143 kvm_vcpu_kick(vcpu); 6144 } 6145 6146 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 6147 bool line_status) 6148 { 6149 if (!irqchip_in_kernel(kvm)) 6150 return -ENXIO; 6151 6152 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 6153 irq_event->irq, irq_event->level, 6154 line_status); 6155 return 0; 6156 } 6157 6158 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6159 struct kvm_enable_cap *cap) 6160 { 6161 int r; 6162 6163 if (cap->flags) 6164 return -EINVAL; 6165 6166 switch (cap->cap) { 6167 case KVM_CAP_DISABLE_QUIRKS2: 6168 r = -EINVAL; 6169 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 6170 break; 6171 fallthrough; 6172 case KVM_CAP_DISABLE_QUIRKS: 6173 kvm->arch.disabled_quirks = cap->args[0]; 6174 r = 0; 6175 break; 6176 case KVM_CAP_SPLIT_IRQCHIP: { 6177 mutex_lock(&kvm->lock); 6178 r = -EINVAL; 6179 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6180 goto split_irqchip_unlock; 6181 r = -EEXIST; 6182 if (irqchip_in_kernel(kvm)) 6183 goto split_irqchip_unlock; 6184 if (kvm->created_vcpus) 6185 goto split_irqchip_unlock; 6186 r = kvm_setup_empty_irq_routing(kvm); 6187 if (r) 6188 goto split_irqchip_unlock; 6189 /* Pairs with irqchip_in_kernel. */ 6190 smp_wmb(); 6191 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6192 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6193 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6194 r = 0; 6195 split_irqchip_unlock: 6196 mutex_unlock(&kvm->lock); 6197 break; 6198 } 6199 case KVM_CAP_X2APIC_API: 6200 r = -EINVAL; 6201 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6202 break; 6203 6204 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6205 kvm->arch.x2apic_format = true; 6206 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6207 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6208 6209 r = 0; 6210 break; 6211 case KVM_CAP_X86_DISABLE_EXITS: 6212 r = -EINVAL; 6213 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 6214 break; 6215 6216 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 6217 kvm_can_mwait_in_guest()) 6218 kvm->arch.mwait_in_guest = true; 6219 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 6220 kvm->arch.hlt_in_guest = true; 6221 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 6222 kvm->arch.pause_in_guest = true; 6223 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6224 kvm->arch.cstate_in_guest = true; 6225 r = 0; 6226 break; 6227 case KVM_CAP_MSR_PLATFORM_INFO: 6228 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6229 r = 0; 6230 break; 6231 case KVM_CAP_EXCEPTION_PAYLOAD: 6232 kvm->arch.exception_payload_enabled = cap->args[0]; 6233 r = 0; 6234 break; 6235 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6236 kvm->arch.triple_fault_event = cap->args[0]; 6237 r = 0; 6238 break; 6239 case KVM_CAP_X86_USER_SPACE_MSR: 6240 r = -EINVAL; 6241 if (cap->args[0] & ~(KVM_MSR_EXIT_REASON_INVAL | 6242 KVM_MSR_EXIT_REASON_UNKNOWN | 6243 KVM_MSR_EXIT_REASON_FILTER)) 6244 break; 6245 kvm->arch.user_space_msr_mask = cap->args[0]; 6246 r = 0; 6247 break; 6248 case KVM_CAP_X86_BUS_LOCK_EXIT: 6249 r = -EINVAL; 6250 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6251 break; 6252 6253 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6254 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6255 break; 6256 6257 if (kvm_caps.has_bus_lock_exit && 6258 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6259 kvm->arch.bus_lock_detection_enabled = true; 6260 r = 0; 6261 break; 6262 #ifdef CONFIG_X86_SGX_KVM 6263 case KVM_CAP_SGX_ATTRIBUTE: { 6264 unsigned long allowed_attributes = 0; 6265 6266 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6267 if (r) 6268 break; 6269 6270 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6271 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6272 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6273 kvm->arch.sgx_provisioning_allowed = true; 6274 else 6275 r = -EINVAL; 6276 break; 6277 } 6278 #endif 6279 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6280 r = -EINVAL; 6281 if (!kvm_x86_ops.vm_copy_enc_context_from) 6282 break; 6283 6284 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]); 6285 break; 6286 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6287 r = -EINVAL; 6288 if (!kvm_x86_ops.vm_move_enc_context_from) 6289 break; 6290 6291 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]); 6292 break; 6293 case KVM_CAP_EXIT_HYPERCALL: 6294 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6295 r = -EINVAL; 6296 break; 6297 } 6298 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6299 r = 0; 6300 break; 6301 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6302 r = -EINVAL; 6303 if (cap->args[0] & ~1) 6304 break; 6305 kvm->arch.exit_on_emulation_error = cap->args[0]; 6306 r = 0; 6307 break; 6308 case KVM_CAP_PMU_CAPABILITY: 6309 r = -EINVAL; 6310 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6311 break; 6312 6313 mutex_lock(&kvm->lock); 6314 if (!kvm->created_vcpus) { 6315 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6316 r = 0; 6317 } 6318 mutex_unlock(&kvm->lock); 6319 break; 6320 case KVM_CAP_MAX_VCPU_ID: 6321 r = -EINVAL; 6322 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6323 break; 6324 6325 mutex_lock(&kvm->lock); 6326 if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6327 r = 0; 6328 } else if (!kvm->arch.max_vcpu_ids) { 6329 kvm->arch.max_vcpu_ids = cap->args[0]; 6330 r = 0; 6331 } 6332 mutex_unlock(&kvm->lock); 6333 break; 6334 case KVM_CAP_X86_NOTIFY_VMEXIT: 6335 r = -EINVAL; 6336 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6337 break; 6338 if (!kvm_caps.has_notify_vmexit) 6339 break; 6340 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6341 break; 6342 mutex_lock(&kvm->lock); 6343 if (!kvm->created_vcpus) { 6344 kvm->arch.notify_window = cap->args[0] >> 32; 6345 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6346 r = 0; 6347 } 6348 mutex_unlock(&kvm->lock); 6349 break; 6350 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6351 r = -EINVAL; 6352 6353 /* 6354 * Since the risk of disabling NX hugepages is a guest crashing 6355 * the system, ensure the userspace process has permission to 6356 * reboot the system. 6357 * 6358 * Note that unlike the reboot() syscall, the process must have 6359 * this capability in the root namespace because exposing 6360 * /dev/kvm into a container does not limit the scope of the 6361 * iTLB multihit bug to that container. In other words, 6362 * this must use capable(), not ns_capable(). 6363 */ 6364 if (!capable(CAP_SYS_BOOT)) { 6365 r = -EPERM; 6366 break; 6367 } 6368 6369 if (cap->args[0]) 6370 break; 6371 6372 mutex_lock(&kvm->lock); 6373 if (!kvm->created_vcpus) { 6374 kvm->arch.disable_nx_huge_pages = true; 6375 r = 0; 6376 } 6377 mutex_unlock(&kvm->lock); 6378 break; 6379 default: 6380 r = -EINVAL; 6381 break; 6382 } 6383 return r; 6384 } 6385 6386 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6387 { 6388 struct kvm_x86_msr_filter *msr_filter; 6389 6390 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6391 if (!msr_filter) 6392 return NULL; 6393 6394 msr_filter->default_allow = default_allow; 6395 return msr_filter; 6396 } 6397 6398 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6399 { 6400 u32 i; 6401 6402 if (!msr_filter) 6403 return; 6404 6405 for (i = 0; i < msr_filter->count; i++) 6406 kfree(msr_filter->ranges[i].bitmap); 6407 6408 kfree(msr_filter); 6409 } 6410 6411 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6412 struct kvm_msr_filter_range *user_range) 6413 { 6414 unsigned long *bitmap = NULL; 6415 size_t bitmap_size; 6416 6417 if (!user_range->nmsrs) 6418 return 0; 6419 6420 if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) 6421 return -EINVAL; 6422 6423 if (!user_range->flags) 6424 return -EINVAL; 6425 6426 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6427 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6428 return -EINVAL; 6429 6430 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6431 if (IS_ERR(bitmap)) 6432 return PTR_ERR(bitmap); 6433 6434 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6435 .flags = user_range->flags, 6436 .base = user_range->base, 6437 .nmsrs = user_range->nmsrs, 6438 .bitmap = bitmap, 6439 }; 6440 6441 msr_filter->count++; 6442 return 0; 6443 } 6444 6445 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, 6446 struct kvm_msr_filter *filter) 6447 { 6448 struct kvm_x86_msr_filter *new_filter, *old_filter; 6449 bool default_allow; 6450 bool empty = true; 6451 int r = 0; 6452 u32 i; 6453 6454 if (filter->flags & ~KVM_MSR_FILTER_DEFAULT_DENY) 6455 return -EINVAL; 6456 6457 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) 6458 empty &= !filter->ranges[i].nmsrs; 6459 6460 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); 6461 if (empty && !default_allow) 6462 return -EINVAL; 6463 6464 new_filter = kvm_alloc_msr_filter(default_allow); 6465 if (!new_filter) 6466 return -ENOMEM; 6467 6468 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { 6469 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); 6470 if (r) { 6471 kvm_free_msr_filter(new_filter); 6472 return r; 6473 } 6474 } 6475 6476 mutex_lock(&kvm->lock); 6477 6478 /* The per-VM filter is protected by kvm->lock... */ 6479 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1); 6480 6481 rcu_assign_pointer(kvm->arch.msr_filter, new_filter); 6482 synchronize_srcu(&kvm->srcu); 6483 6484 kvm_free_msr_filter(old_filter); 6485 6486 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6487 mutex_unlock(&kvm->lock); 6488 6489 return 0; 6490 } 6491 6492 #ifdef CONFIG_KVM_COMPAT 6493 /* for KVM_X86_SET_MSR_FILTER */ 6494 struct kvm_msr_filter_range_compat { 6495 __u32 flags; 6496 __u32 nmsrs; 6497 __u32 base; 6498 __u32 bitmap; 6499 }; 6500 6501 struct kvm_msr_filter_compat { 6502 __u32 flags; 6503 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; 6504 }; 6505 6506 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) 6507 6508 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 6509 unsigned long arg) 6510 { 6511 void __user *argp = (void __user *)arg; 6512 struct kvm *kvm = filp->private_data; 6513 long r = -ENOTTY; 6514 6515 switch (ioctl) { 6516 case KVM_X86_SET_MSR_FILTER_COMPAT: { 6517 struct kvm_msr_filter __user *user_msr_filter = argp; 6518 struct kvm_msr_filter_compat filter_compat; 6519 struct kvm_msr_filter filter; 6520 int i; 6521 6522 if (copy_from_user(&filter_compat, user_msr_filter, 6523 sizeof(filter_compat))) 6524 return -EFAULT; 6525 6526 filter.flags = filter_compat.flags; 6527 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6528 struct kvm_msr_filter_range_compat *cr; 6529 6530 cr = &filter_compat.ranges[i]; 6531 filter.ranges[i] = (struct kvm_msr_filter_range) { 6532 .flags = cr->flags, 6533 .nmsrs = cr->nmsrs, 6534 .base = cr->base, 6535 .bitmap = (__u8 *)(ulong)cr->bitmap, 6536 }; 6537 } 6538 6539 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6540 break; 6541 } 6542 } 6543 6544 return r; 6545 } 6546 #endif 6547 6548 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6549 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6550 { 6551 struct kvm_vcpu *vcpu; 6552 unsigned long i; 6553 int ret = 0; 6554 6555 mutex_lock(&kvm->lock); 6556 kvm_for_each_vcpu(i, vcpu, kvm) { 6557 if (!vcpu->arch.pv_time.active) 6558 continue; 6559 6560 ret = kvm_set_guest_paused(vcpu); 6561 if (ret) { 6562 kvm_err("Failed to pause guest VCPU%d: %d\n", 6563 vcpu->vcpu_id, ret); 6564 break; 6565 } 6566 } 6567 mutex_unlock(&kvm->lock); 6568 6569 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6570 } 6571 6572 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6573 { 6574 switch (state) { 6575 case PM_HIBERNATION_PREPARE: 6576 case PM_SUSPEND_PREPARE: 6577 return kvm_arch_suspend_notifier(kvm); 6578 } 6579 6580 return NOTIFY_DONE; 6581 } 6582 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6583 6584 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6585 { 6586 struct kvm_clock_data data = { 0 }; 6587 6588 get_kvmclock(kvm, &data); 6589 if (copy_to_user(argp, &data, sizeof(data))) 6590 return -EFAULT; 6591 6592 return 0; 6593 } 6594 6595 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6596 { 6597 struct kvm_arch *ka = &kvm->arch; 6598 struct kvm_clock_data data; 6599 u64 now_raw_ns; 6600 6601 if (copy_from_user(&data, argp, sizeof(data))) 6602 return -EFAULT; 6603 6604 /* 6605 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6606 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6607 */ 6608 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6609 return -EINVAL; 6610 6611 kvm_hv_request_tsc_page_update(kvm); 6612 kvm_start_pvclock_update(kvm); 6613 pvclock_update_vm_gtod_copy(kvm); 6614 6615 /* 6616 * This pairs with kvm_guest_time_update(): when masterclock is 6617 * in use, we use master_kernel_ns + kvmclock_offset to set 6618 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6619 * is slightly ahead) here we risk going negative on unsigned 6620 * 'system_time' when 'data.clock' is very small. 6621 */ 6622 if (data.flags & KVM_CLOCK_REALTIME) { 6623 u64 now_real_ns = ktime_get_real_ns(); 6624 6625 /* 6626 * Avoid stepping the kvmclock backwards. 6627 */ 6628 if (now_real_ns > data.realtime) 6629 data.clock += now_real_ns - data.realtime; 6630 } 6631 6632 if (ka->use_master_clock) 6633 now_raw_ns = ka->master_kernel_ns; 6634 else 6635 now_raw_ns = get_kvmclock_base_ns(); 6636 ka->kvmclock_offset = data.clock - now_raw_ns; 6637 kvm_end_pvclock_update(kvm); 6638 return 0; 6639 } 6640 6641 long kvm_arch_vm_ioctl(struct file *filp, 6642 unsigned int ioctl, unsigned long arg) 6643 { 6644 struct kvm *kvm = filp->private_data; 6645 void __user *argp = (void __user *)arg; 6646 int r = -ENOTTY; 6647 /* 6648 * This union makes it completely explicit to gcc-3.x 6649 * that these two variables' stack usage should be 6650 * combined, not added together. 6651 */ 6652 union { 6653 struct kvm_pit_state ps; 6654 struct kvm_pit_state2 ps2; 6655 struct kvm_pit_config pit_config; 6656 } u; 6657 6658 switch (ioctl) { 6659 case KVM_SET_TSS_ADDR: 6660 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 6661 break; 6662 case KVM_SET_IDENTITY_MAP_ADDR: { 6663 u64 ident_addr; 6664 6665 mutex_lock(&kvm->lock); 6666 r = -EINVAL; 6667 if (kvm->created_vcpus) 6668 goto set_identity_unlock; 6669 r = -EFAULT; 6670 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 6671 goto set_identity_unlock; 6672 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 6673 set_identity_unlock: 6674 mutex_unlock(&kvm->lock); 6675 break; 6676 } 6677 case KVM_SET_NR_MMU_PAGES: 6678 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 6679 break; 6680 case KVM_GET_NR_MMU_PAGES: 6681 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 6682 break; 6683 case KVM_CREATE_IRQCHIP: { 6684 mutex_lock(&kvm->lock); 6685 6686 r = -EEXIST; 6687 if (irqchip_in_kernel(kvm)) 6688 goto create_irqchip_unlock; 6689 6690 r = -EINVAL; 6691 if (kvm->created_vcpus) 6692 goto create_irqchip_unlock; 6693 6694 r = kvm_pic_init(kvm); 6695 if (r) 6696 goto create_irqchip_unlock; 6697 6698 r = kvm_ioapic_init(kvm); 6699 if (r) { 6700 kvm_pic_destroy(kvm); 6701 goto create_irqchip_unlock; 6702 } 6703 6704 r = kvm_setup_default_irq_routing(kvm); 6705 if (r) { 6706 kvm_ioapic_destroy(kvm); 6707 kvm_pic_destroy(kvm); 6708 goto create_irqchip_unlock; 6709 } 6710 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 6711 smp_wmb(); 6712 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 6713 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6714 create_irqchip_unlock: 6715 mutex_unlock(&kvm->lock); 6716 break; 6717 } 6718 case KVM_CREATE_PIT: 6719 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 6720 goto create_pit; 6721 case KVM_CREATE_PIT2: 6722 r = -EFAULT; 6723 if (copy_from_user(&u.pit_config, argp, 6724 sizeof(struct kvm_pit_config))) 6725 goto out; 6726 create_pit: 6727 mutex_lock(&kvm->lock); 6728 r = -EEXIST; 6729 if (kvm->arch.vpit) 6730 goto create_pit_unlock; 6731 r = -ENOMEM; 6732 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 6733 if (kvm->arch.vpit) 6734 r = 0; 6735 create_pit_unlock: 6736 mutex_unlock(&kvm->lock); 6737 break; 6738 case KVM_GET_IRQCHIP: { 6739 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6740 struct kvm_irqchip *chip; 6741 6742 chip = memdup_user(argp, sizeof(*chip)); 6743 if (IS_ERR(chip)) { 6744 r = PTR_ERR(chip); 6745 goto out; 6746 } 6747 6748 r = -ENXIO; 6749 if (!irqchip_kernel(kvm)) 6750 goto get_irqchip_out; 6751 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 6752 if (r) 6753 goto get_irqchip_out; 6754 r = -EFAULT; 6755 if (copy_to_user(argp, chip, sizeof(*chip))) 6756 goto get_irqchip_out; 6757 r = 0; 6758 get_irqchip_out: 6759 kfree(chip); 6760 break; 6761 } 6762 case KVM_SET_IRQCHIP: { 6763 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6764 struct kvm_irqchip *chip; 6765 6766 chip = memdup_user(argp, sizeof(*chip)); 6767 if (IS_ERR(chip)) { 6768 r = PTR_ERR(chip); 6769 goto out; 6770 } 6771 6772 r = -ENXIO; 6773 if (!irqchip_kernel(kvm)) 6774 goto set_irqchip_out; 6775 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 6776 set_irqchip_out: 6777 kfree(chip); 6778 break; 6779 } 6780 case KVM_GET_PIT: { 6781 r = -EFAULT; 6782 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 6783 goto out; 6784 r = -ENXIO; 6785 if (!kvm->arch.vpit) 6786 goto out; 6787 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 6788 if (r) 6789 goto out; 6790 r = -EFAULT; 6791 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 6792 goto out; 6793 r = 0; 6794 break; 6795 } 6796 case KVM_SET_PIT: { 6797 r = -EFAULT; 6798 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 6799 goto out; 6800 mutex_lock(&kvm->lock); 6801 r = -ENXIO; 6802 if (!kvm->arch.vpit) 6803 goto set_pit_out; 6804 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 6805 set_pit_out: 6806 mutex_unlock(&kvm->lock); 6807 break; 6808 } 6809 case KVM_GET_PIT2: { 6810 r = -ENXIO; 6811 if (!kvm->arch.vpit) 6812 goto out; 6813 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 6814 if (r) 6815 goto out; 6816 r = -EFAULT; 6817 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 6818 goto out; 6819 r = 0; 6820 break; 6821 } 6822 case KVM_SET_PIT2: { 6823 r = -EFAULT; 6824 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 6825 goto out; 6826 mutex_lock(&kvm->lock); 6827 r = -ENXIO; 6828 if (!kvm->arch.vpit) 6829 goto set_pit2_out; 6830 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 6831 set_pit2_out: 6832 mutex_unlock(&kvm->lock); 6833 break; 6834 } 6835 case KVM_REINJECT_CONTROL: { 6836 struct kvm_reinject_control control; 6837 r = -EFAULT; 6838 if (copy_from_user(&control, argp, sizeof(control))) 6839 goto out; 6840 r = -ENXIO; 6841 if (!kvm->arch.vpit) 6842 goto out; 6843 r = kvm_vm_ioctl_reinject(kvm, &control); 6844 break; 6845 } 6846 case KVM_SET_BOOT_CPU_ID: 6847 r = 0; 6848 mutex_lock(&kvm->lock); 6849 if (kvm->created_vcpus) 6850 r = -EBUSY; 6851 else 6852 kvm->arch.bsp_vcpu_id = arg; 6853 mutex_unlock(&kvm->lock); 6854 break; 6855 #ifdef CONFIG_KVM_XEN 6856 case KVM_XEN_HVM_CONFIG: { 6857 struct kvm_xen_hvm_config xhc; 6858 r = -EFAULT; 6859 if (copy_from_user(&xhc, argp, sizeof(xhc))) 6860 goto out; 6861 r = kvm_xen_hvm_config(kvm, &xhc); 6862 break; 6863 } 6864 case KVM_XEN_HVM_GET_ATTR: { 6865 struct kvm_xen_hvm_attr xha; 6866 6867 r = -EFAULT; 6868 if (copy_from_user(&xha, argp, sizeof(xha))) 6869 goto out; 6870 r = kvm_xen_hvm_get_attr(kvm, &xha); 6871 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 6872 r = -EFAULT; 6873 break; 6874 } 6875 case KVM_XEN_HVM_SET_ATTR: { 6876 struct kvm_xen_hvm_attr xha; 6877 6878 r = -EFAULT; 6879 if (copy_from_user(&xha, argp, sizeof(xha))) 6880 goto out; 6881 r = kvm_xen_hvm_set_attr(kvm, &xha); 6882 break; 6883 } 6884 case KVM_XEN_HVM_EVTCHN_SEND: { 6885 struct kvm_irq_routing_xen_evtchn uxe; 6886 6887 r = -EFAULT; 6888 if (copy_from_user(&uxe, argp, sizeof(uxe))) 6889 goto out; 6890 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 6891 break; 6892 } 6893 #endif 6894 case KVM_SET_CLOCK: 6895 r = kvm_vm_ioctl_set_clock(kvm, argp); 6896 break; 6897 case KVM_GET_CLOCK: 6898 r = kvm_vm_ioctl_get_clock(kvm, argp); 6899 break; 6900 case KVM_SET_TSC_KHZ: { 6901 u32 user_tsc_khz; 6902 6903 r = -EINVAL; 6904 user_tsc_khz = (u32)arg; 6905 6906 if (kvm_caps.has_tsc_control && 6907 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 6908 goto out; 6909 6910 if (user_tsc_khz == 0) 6911 user_tsc_khz = tsc_khz; 6912 6913 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 6914 r = 0; 6915 6916 goto out; 6917 } 6918 case KVM_GET_TSC_KHZ: { 6919 r = READ_ONCE(kvm->arch.default_tsc_khz); 6920 goto out; 6921 } 6922 case KVM_MEMORY_ENCRYPT_OP: { 6923 r = -ENOTTY; 6924 if (!kvm_x86_ops.mem_enc_ioctl) 6925 goto out; 6926 6927 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp); 6928 break; 6929 } 6930 case KVM_MEMORY_ENCRYPT_REG_REGION: { 6931 struct kvm_enc_region region; 6932 6933 r = -EFAULT; 6934 if (copy_from_user(®ion, argp, sizeof(region))) 6935 goto out; 6936 6937 r = -ENOTTY; 6938 if (!kvm_x86_ops.mem_enc_register_region) 6939 goto out; 6940 6941 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion); 6942 break; 6943 } 6944 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 6945 struct kvm_enc_region region; 6946 6947 r = -EFAULT; 6948 if (copy_from_user(®ion, argp, sizeof(region))) 6949 goto out; 6950 6951 r = -ENOTTY; 6952 if (!kvm_x86_ops.mem_enc_unregister_region) 6953 goto out; 6954 6955 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion); 6956 break; 6957 } 6958 case KVM_HYPERV_EVENTFD: { 6959 struct kvm_hyperv_eventfd hvevfd; 6960 6961 r = -EFAULT; 6962 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 6963 goto out; 6964 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 6965 break; 6966 } 6967 case KVM_SET_PMU_EVENT_FILTER: 6968 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 6969 break; 6970 case KVM_X86_SET_MSR_FILTER: { 6971 struct kvm_msr_filter __user *user_msr_filter = argp; 6972 struct kvm_msr_filter filter; 6973 6974 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 6975 return -EFAULT; 6976 6977 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6978 break; 6979 } 6980 default: 6981 r = -ENOTTY; 6982 } 6983 out: 6984 return r; 6985 } 6986 6987 static void kvm_init_msr_list(void) 6988 { 6989 u32 dummy[2]; 6990 unsigned i; 6991 6992 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3, 6993 "Please update the fixed PMCs in msrs_to_saved_all[]"); 6994 6995 num_msrs_to_save = 0; 6996 num_emulated_msrs = 0; 6997 num_msr_based_features = 0; 6998 6999 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) { 7000 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0) 7001 continue; 7002 7003 /* 7004 * Even MSRs that are valid in the host may not be exposed 7005 * to the guests in some cases. 7006 */ 7007 switch (msrs_to_save_all[i]) { 7008 case MSR_IA32_BNDCFGS: 7009 if (!kvm_mpx_supported()) 7010 continue; 7011 break; 7012 case MSR_TSC_AUX: 7013 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 7014 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 7015 continue; 7016 break; 7017 case MSR_IA32_UMWAIT_CONTROL: 7018 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 7019 continue; 7020 break; 7021 case MSR_IA32_RTIT_CTL: 7022 case MSR_IA32_RTIT_STATUS: 7023 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 7024 continue; 7025 break; 7026 case MSR_IA32_RTIT_CR3_MATCH: 7027 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7028 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 7029 continue; 7030 break; 7031 case MSR_IA32_RTIT_OUTPUT_BASE: 7032 case MSR_IA32_RTIT_OUTPUT_MASK: 7033 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7034 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 7035 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 7036 continue; 7037 break; 7038 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 7039 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7040 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >= 7041 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2) 7042 continue; 7043 break; 7044 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17: 7045 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >= 7046 min(INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp)) 7047 continue; 7048 break; 7049 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17: 7050 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >= 7051 min(INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp)) 7052 continue; 7053 break; 7054 case MSR_IA32_XFD: 7055 case MSR_IA32_XFD_ERR: 7056 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 7057 continue; 7058 break; 7059 default: 7060 break; 7061 } 7062 7063 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i]; 7064 } 7065 7066 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 7067 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 7068 continue; 7069 7070 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 7071 } 7072 7073 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) { 7074 struct kvm_msr_entry msr; 7075 7076 msr.index = msr_based_features_all[i]; 7077 if (kvm_get_msr_feature(&msr)) 7078 continue; 7079 7080 msr_based_features[num_msr_based_features++] = msr_based_features_all[i]; 7081 } 7082 } 7083 7084 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 7085 const void *v) 7086 { 7087 int handled = 0; 7088 int n; 7089 7090 do { 7091 n = min(len, 8); 7092 if (!(lapic_in_kernel(vcpu) && 7093 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 7094 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 7095 break; 7096 handled += n; 7097 addr += n; 7098 len -= n; 7099 v += n; 7100 } while (len); 7101 7102 return handled; 7103 } 7104 7105 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 7106 { 7107 int handled = 0; 7108 int n; 7109 7110 do { 7111 n = min(len, 8); 7112 if (!(lapic_in_kernel(vcpu) && 7113 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 7114 addr, n, v)) 7115 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 7116 break; 7117 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7118 handled += n; 7119 addr += n; 7120 len -= n; 7121 v += n; 7122 } while (len); 7123 7124 return handled; 7125 } 7126 7127 static void kvm_set_segment(struct kvm_vcpu *vcpu, 7128 struct kvm_segment *var, int seg) 7129 { 7130 static_call(kvm_x86_set_segment)(vcpu, var, seg); 7131 } 7132 7133 void kvm_get_segment(struct kvm_vcpu *vcpu, 7134 struct kvm_segment *var, int seg) 7135 { 7136 static_call(kvm_x86_get_segment)(vcpu, var, seg); 7137 } 7138 7139 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7140 struct x86_exception *exception) 7141 { 7142 struct kvm_mmu *mmu = vcpu->arch.mmu; 7143 gpa_t t_gpa; 7144 7145 BUG_ON(!mmu_is_nested(vcpu)); 7146 7147 /* NPT walks are always user-walks */ 7148 access |= PFERR_USER_MASK; 7149 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7150 7151 return t_gpa; 7152 } 7153 7154 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7155 struct x86_exception *exception) 7156 { 7157 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7158 7159 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7160 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7161 } 7162 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 7163 7164 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 7165 struct x86_exception *exception) 7166 { 7167 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7168 7169 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7170 access |= PFERR_FETCH_MASK; 7171 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7172 } 7173 7174 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7175 struct x86_exception *exception) 7176 { 7177 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7178 7179 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7180 access |= PFERR_WRITE_MASK; 7181 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7182 } 7183 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 7184 7185 /* uses this to access any guest's mapped memory without checking CPL */ 7186 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7187 struct x86_exception *exception) 7188 { 7189 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7190 7191 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7192 } 7193 7194 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7195 struct kvm_vcpu *vcpu, u64 access, 7196 struct x86_exception *exception) 7197 { 7198 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7199 void *data = val; 7200 int r = X86EMUL_CONTINUE; 7201 7202 while (bytes) { 7203 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7204 unsigned offset = addr & (PAGE_SIZE-1); 7205 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7206 int ret; 7207 7208 if (gpa == INVALID_GPA) 7209 return X86EMUL_PROPAGATE_FAULT; 7210 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7211 offset, toread); 7212 if (ret < 0) { 7213 r = X86EMUL_IO_NEEDED; 7214 goto out; 7215 } 7216 7217 bytes -= toread; 7218 data += toread; 7219 addr += toread; 7220 } 7221 out: 7222 return r; 7223 } 7224 7225 /* used for instruction fetching */ 7226 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7227 gva_t addr, void *val, unsigned int bytes, 7228 struct x86_exception *exception) 7229 { 7230 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7231 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7232 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7233 unsigned offset; 7234 int ret; 7235 7236 /* Inline kvm_read_guest_virt_helper for speed. */ 7237 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7238 exception); 7239 if (unlikely(gpa == INVALID_GPA)) 7240 return X86EMUL_PROPAGATE_FAULT; 7241 7242 offset = addr & (PAGE_SIZE-1); 7243 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7244 bytes = (unsigned)PAGE_SIZE - offset; 7245 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7246 offset, bytes); 7247 if (unlikely(ret < 0)) 7248 return X86EMUL_IO_NEEDED; 7249 7250 return X86EMUL_CONTINUE; 7251 } 7252 7253 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7254 gva_t addr, void *val, unsigned int bytes, 7255 struct x86_exception *exception) 7256 { 7257 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7258 7259 /* 7260 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7261 * is returned, but our callers are not ready for that and they blindly 7262 * call kvm_inject_page_fault. Ensure that they at least do not leak 7263 * uninitialized kernel stack memory into cr2 and error code. 7264 */ 7265 memset(exception, 0, sizeof(*exception)); 7266 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7267 exception); 7268 } 7269 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 7270 7271 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7272 gva_t addr, void *val, unsigned int bytes, 7273 struct x86_exception *exception, bool system) 7274 { 7275 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7276 u64 access = 0; 7277 7278 if (system) 7279 access |= PFERR_IMPLICIT_ACCESS; 7280 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7281 access |= PFERR_USER_MASK; 7282 7283 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7284 } 7285 7286 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, 7287 unsigned long addr, void *val, unsigned int bytes) 7288 { 7289 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7290 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes); 7291 7292 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE; 7293 } 7294 7295 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7296 struct kvm_vcpu *vcpu, u64 access, 7297 struct x86_exception *exception) 7298 { 7299 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7300 void *data = val; 7301 int r = X86EMUL_CONTINUE; 7302 7303 while (bytes) { 7304 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7305 unsigned offset = addr & (PAGE_SIZE-1); 7306 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7307 int ret; 7308 7309 if (gpa == INVALID_GPA) 7310 return X86EMUL_PROPAGATE_FAULT; 7311 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7312 if (ret < 0) { 7313 r = X86EMUL_IO_NEEDED; 7314 goto out; 7315 } 7316 7317 bytes -= towrite; 7318 data += towrite; 7319 addr += towrite; 7320 } 7321 out: 7322 return r; 7323 } 7324 7325 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7326 unsigned int bytes, struct x86_exception *exception, 7327 bool system) 7328 { 7329 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7330 u64 access = PFERR_WRITE_MASK; 7331 7332 if (system) 7333 access |= PFERR_IMPLICIT_ACCESS; 7334 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7335 access |= PFERR_USER_MASK; 7336 7337 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7338 access, exception); 7339 } 7340 7341 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7342 unsigned int bytes, struct x86_exception *exception) 7343 { 7344 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7345 vcpu->arch.l1tf_flush_l1d = true; 7346 7347 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7348 PFERR_WRITE_MASK, exception); 7349 } 7350 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7351 7352 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7353 void *insn, int insn_len) 7354 { 7355 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type, 7356 insn, insn_len); 7357 } 7358 7359 int handle_ud(struct kvm_vcpu *vcpu) 7360 { 7361 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7362 int fep_flags = READ_ONCE(force_emulation_prefix); 7363 int emul_type = EMULTYPE_TRAP_UD; 7364 char sig[5]; /* ud2; .ascii "kvm" */ 7365 struct x86_exception e; 7366 7367 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0))) 7368 return 1; 7369 7370 if (fep_flags && 7371 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7372 sig, sizeof(sig), &e) == 0 && 7373 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7374 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) 7375 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); 7376 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7377 emul_type = EMULTYPE_TRAP_UD_FORCED; 7378 } 7379 7380 return kvm_emulate_instruction(vcpu, emul_type); 7381 } 7382 EXPORT_SYMBOL_GPL(handle_ud); 7383 7384 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7385 gpa_t gpa, bool write) 7386 { 7387 /* For APIC access vmexit */ 7388 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7389 return 1; 7390 7391 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7392 trace_vcpu_match_mmio(gva, gpa, write, true); 7393 return 1; 7394 } 7395 7396 return 0; 7397 } 7398 7399 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7400 gpa_t *gpa, struct x86_exception *exception, 7401 bool write) 7402 { 7403 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7404 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7405 | (write ? PFERR_WRITE_MASK : 0); 7406 7407 /* 7408 * currently PKRU is only applied to ept enabled guest so 7409 * there is no pkey in EPT page table for L1 guest or EPT 7410 * shadow page table for L2 guest. 7411 */ 7412 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7413 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7414 vcpu->arch.mmio_access, 0, access))) { 7415 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7416 (gva & (PAGE_SIZE - 1)); 7417 trace_vcpu_match_mmio(gva, *gpa, write, false); 7418 return 1; 7419 } 7420 7421 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7422 7423 if (*gpa == INVALID_GPA) 7424 return -1; 7425 7426 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7427 } 7428 7429 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7430 const void *val, int bytes) 7431 { 7432 int ret; 7433 7434 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7435 if (ret < 0) 7436 return 0; 7437 kvm_page_track_write(vcpu, gpa, val, bytes); 7438 return 1; 7439 } 7440 7441 struct read_write_emulator_ops { 7442 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7443 int bytes); 7444 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7445 void *val, int bytes); 7446 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7447 int bytes, void *val); 7448 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7449 void *val, int bytes); 7450 bool write; 7451 }; 7452 7453 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7454 { 7455 if (vcpu->mmio_read_completed) { 7456 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7457 vcpu->mmio_fragments[0].gpa, val); 7458 vcpu->mmio_read_completed = 0; 7459 return 1; 7460 } 7461 7462 return 0; 7463 } 7464 7465 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7466 void *val, int bytes) 7467 { 7468 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7469 } 7470 7471 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7472 void *val, int bytes) 7473 { 7474 return emulator_write_phys(vcpu, gpa, val, bytes); 7475 } 7476 7477 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7478 { 7479 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7480 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7481 } 7482 7483 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7484 void *val, int bytes) 7485 { 7486 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7487 return X86EMUL_IO_NEEDED; 7488 } 7489 7490 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7491 void *val, int bytes) 7492 { 7493 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7494 7495 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7496 return X86EMUL_CONTINUE; 7497 } 7498 7499 static const struct read_write_emulator_ops read_emultor = { 7500 .read_write_prepare = read_prepare, 7501 .read_write_emulate = read_emulate, 7502 .read_write_mmio = vcpu_mmio_read, 7503 .read_write_exit_mmio = read_exit_mmio, 7504 }; 7505 7506 static const struct read_write_emulator_ops write_emultor = { 7507 .read_write_emulate = write_emulate, 7508 .read_write_mmio = write_mmio, 7509 .read_write_exit_mmio = write_exit_mmio, 7510 .write = true, 7511 }; 7512 7513 static int emulator_read_write_onepage(unsigned long addr, void *val, 7514 unsigned int bytes, 7515 struct x86_exception *exception, 7516 struct kvm_vcpu *vcpu, 7517 const struct read_write_emulator_ops *ops) 7518 { 7519 gpa_t gpa; 7520 int handled, ret; 7521 bool write = ops->write; 7522 struct kvm_mmio_fragment *frag; 7523 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7524 7525 /* 7526 * If the exit was due to a NPF we may already have a GPA. 7527 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7528 * Note, this cannot be used on string operations since string 7529 * operation using rep will only have the initial GPA from the NPF 7530 * occurred. 7531 */ 7532 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7533 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7534 gpa = ctxt->gpa_val; 7535 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7536 } else { 7537 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7538 if (ret < 0) 7539 return X86EMUL_PROPAGATE_FAULT; 7540 } 7541 7542 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7543 return X86EMUL_CONTINUE; 7544 7545 /* 7546 * Is this MMIO handled locally? 7547 */ 7548 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7549 if (handled == bytes) 7550 return X86EMUL_CONTINUE; 7551 7552 gpa += handled; 7553 bytes -= handled; 7554 val += handled; 7555 7556 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7557 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7558 frag->gpa = gpa; 7559 frag->data = val; 7560 frag->len = bytes; 7561 return X86EMUL_CONTINUE; 7562 } 7563 7564 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7565 unsigned long addr, 7566 void *val, unsigned int bytes, 7567 struct x86_exception *exception, 7568 const struct read_write_emulator_ops *ops) 7569 { 7570 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7571 gpa_t gpa; 7572 int rc; 7573 7574 if (ops->read_write_prepare && 7575 ops->read_write_prepare(vcpu, val, bytes)) 7576 return X86EMUL_CONTINUE; 7577 7578 vcpu->mmio_nr_fragments = 0; 7579 7580 /* Crossing a page boundary? */ 7581 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7582 int now; 7583 7584 now = -addr & ~PAGE_MASK; 7585 rc = emulator_read_write_onepage(addr, val, now, exception, 7586 vcpu, ops); 7587 7588 if (rc != X86EMUL_CONTINUE) 7589 return rc; 7590 addr += now; 7591 if (ctxt->mode != X86EMUL_MODE_PROT64) 7592 addr = (u32)addr; 7593 val += now; 7594 bytes -= now; 7595 } 7596 7597 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7598 vcpu, ops); 7599 if (rc != X86EMUL_CONTINUE) 7600 return rc; 7601 7602 if (!vcpu->mmio_nr_fragments) 7603 return rc; 7604 7605 gpa = vcpu->mmio_fragments[0].gpa; 7606 7607 vcpu->mmio_needed = 1; 7608 vcpu->mmio_cur_fragment = 0; 7609 7610 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7611 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7612 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7613 vcpu->run->mmio.phys_addr = gpa; 7614 7615 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 7616 } 7617 7618 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 7619 unsigned long addr, 7620 void *val, 7621 unsigned int bytes, 7622 struct x86_exception *exception) 7623 { 7624 return emulator_read_write(ctxt, addr, val, bytes, 7625 exception, &read_emultor); 7626 } 7627 7628 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 7629 unsigned long addr, 7630 const void *val, 7631 unsigned int bytes, 7632 struct x86_exception *exception) 7633 { 7634 return emulator_read_write(ctxt, addr, (void *)val, bytes, 7635 exception, &write_emultor); 7636 } 7637 7638 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 7639 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 7640 7641 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 7642 unsigned long addr, 7643 const void *old, 7644 const void *new, 7645 unsigned int bytes, 7646 struct x86_exception *exception) 7647 { 7648 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7649 u64 page_line_mask; 7650 unsigned long hva; 7651 gpa_t gpa; 7652 int r; 7653 7654 /* guests cmpxchg8b have to be emulated atomically */ 7655 if (bytes > 8 || (bytes & (bytes - 1))) 7656 goto emul_write; 7657 7658 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 7659 7660 if (gpa == INVALID_GPA || 7661 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7662 goto emul_write; 7663 7664 /* 7665 * Emulate the atomic as a straight write to avoid #AC if SLD is 7666 * enabled in the host and the access splits a cache line. 7667 */ 7668 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 7669 page_line_mask = ~(cache_line_size() - 1); 7670 else 7671 page_line_mask = PAGE_MASK; 7672 7673 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 7674 goto emul_write; 7675 7676 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 7677 if (kvm_is_error_hva(hva)) 7678 goto emul_write; 7679 7680 hva += offset_in_page(gpa); 7681 7682 switch (bytes) { 7683 case 1: 7684 r = emulator_try_cmpxchg_user(u8, hva, old, new); 7685 break; 7686 case 2: 7687 r = emulator_try_cmpxchg_user(u16, hva, old, new); 7688 break; 7689 case 4: 7690 r = emulator_try_cmpxchg_user(u32, hva, old, new); 7691 break; 7692 case 8: 7693 r = emulator_try_cmpxchg_user(u64, hva, old, new); 7694 break; 7695 default: 7696 BUG(); 7697 } 7698 7699 if (r < 0) 7700 return X86EMUL_UNHANDLEABLE; 7701 if (r) 7702 return X86EMUL_CMPXCHG_FAILED; 7703 7704 kvm_page_track_write(vcpu, gpa, new, bytes); 7705 7706 return X86EMUL_CONTINUE; 7707 7708 emul_write: 7709 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 7710 7711 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 7712 } 7713 7714 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 7715 unsigned short port, void *data, 7716 unsigned int count, bool in) 7717 { 7718 unsigned i; 7719 int r; 7720 7721 WARN_ON_ONCE(vcpu->arch.pio.count); 7722 for (i = 0; i < count; i++) { 7723 if (in) 7724 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 7725 else 7726 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 7727 7728 if (r) { 7729 if (i == 0) 7730 goto userspace_io; 7731 7732 /* 7733 * Userspace must have unregistered the device while PIO 7734 * was running. Drop writes / read as 0. 7735 */ 7736 if (in) 7737 memset(data, 0, size * (count - i)); 7738 break; 7739 } 7740 7741 data += size; 7742 } 7743 return 1; 7744 7745 userspace_io: 7746 vcpu->arch.pio.port = port; 7747 vcpu->arch.pio.in = in; 7748 vcpu->arch.pio.count = count; 7749 vcpu->arch.pio.size = size; 7750 7751 if (in) 7752 memset(vcpu->arch.pio_data, 0, size * count); 7753 else 7754 memcpy(vcpu->arch.pio_data, data, size * count); 7755 7756 vcpu->run->exit_reason = KVM_EXIT_IO; 7757 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 7758 vcpu->run->io.size = size; 7759 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 7760 vcpu->run->io.count = count; 7761 vcpu->run->io.port = port; 7762 return 0; 7763 } 7764 7765 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 7766 unsigned short port, void *val, unsigned int count) 7767 { 7768 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 7769 if (r) 7770 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 7771 7772 return r; 7773 } 7774 7775 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 7776 { 7777 int size = vcpu->arch.pio.size; 7778 unsigned int count = vcpu->arch.pio.count; 7779 memcpy(val, vcpu->arch.pio_data, size * count); 7780 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 7781 vcpu->arch.pio.count = 0; 7782 } 7783 7784 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 7785 int size, unsigned short port, void *val, 7786 unsigned int count) 7787 { 7788 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7789 if (vcpu->arch.pio.count) { 7790 /* 7791 * Complete a previous iteration that required userspace I/O. 7792 * Note, @count isn't guaranteed to match pio.count as userspace 7793 * can modify ECX before rerunning the vCPU. Ignore any such 7794 * shenanigans as KVM doesn't support modifying the rep count, 7795 * and the emulator ensures @count doesn't overflow the buffer. 7796 */ 7797 complete_emulator_pio_in(vcpu, val); 7798 return 1; 7799 } 7800 7801 return emulator_pio_in(vcpu, size, port, val, count); 7802 } 7803 7804 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 7805 unsigned short port, const void *val, 7806 unsigned int count) 7807 { 7808 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 7809 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 7810 } 7811 7812 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 7813 int size, unsigned short port, 7814 const void *val, unsigned int count) 7815 { 7816 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 7817 } 7818 7819 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 7820 { 7821 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 7822 } 7823 7824 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 7825 { 7826 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 7827 } 7828 7829 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 7830 { 7831 if (!need_emulate_wbinvd(vcpu)) 7832 return X86EMUL_CONTINUE; 7833 7834 if (static_call(kvm_x86_has_wbinvd_exit)()) { 7835 int cpu = get_cpu(); 7836 7837 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 7838 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 7839 wbinvd_ipi, NULL, 1); 7840 put_cpu(); 7841 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 7842 } else 7843 wbinvd(); 7844 return X86EMUL_CONTINUE; 7845 } 7846 7847 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 7848 { 7849 kvm_emulate_wbinvd_noskip(vcpu); 7850 return kvm_skip_emulated_instruction(vcpu); 7851 } 7852 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 7853 7854 7855 7856 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 7857 { 7858 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 7859 } 7860 7861 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 7862 unsigned long *dest) 7863 { 7864 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 7865 } 7866 7867 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 7868 unsigned long value) 7869 { 7870 7871 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 7872 } 7873 7874 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 7875 { 7876 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 7877 } 7878 7879 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 7880 { 7881 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7882 unsigned long value; 7883 7884 switch (cr) { 7885 case 0: 7886 value = kvm_read_cr0(vcpu); 7887 break; 7888 case 2: 7889 value = vcpu->arch.cr2; 7890 break; 7891 case 3: 7892 value = kvm_read_cr3(vcpu); 7893 break; 7894 case 4: 7895 value = kvm_read_cr4(vcpu); 7896 break; 7897 case 8: 7898 value = kvm_get_cr8(vcpu); 7899 break; 7900 default: 7901 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7902 return 0; 7903 } 7904 7905 return value; 7906 } 7907 7908 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 7909 { 7910 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7911 int res = 0; 7912 7913 switch (cr) { 7914 case 0: 7915 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 7916 break; 7917 case 2: 7918 vcpu->arch.cr2 = val; 7919 break; 7920 case 3: 7921 res = kvm_set_cr3(vcpu, val); 7922 break; 7923 case 4: 7924 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 7925 break; 7926 case 8: 7927 res = kvm_set_cr8(vcpu, val); 7928 break; 7929 default: 7930 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7931 res = -1; 7932 } 7933 7934 return res; 7935 } 7936 7937 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 7938 { 7939 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 7940 } 7941 7942 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7943 { 7944 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 7945 } 7946 7947 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7948 { 7949 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 7950 } 7951 7952 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7953 { 7954 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 7955 } 7956 7957 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7958 { 7959 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 7960 } 7961 7962 static unsigned long emulator_get_cached_segment_base( 7963 struct x86_emulate_ctxt *ctxt, int seg) 7964 { 7965 return get_segment_base(emul_to_vcpu(ctxt), seg); 7966 } 7967 7968 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 7969 struct desc_struct *desc, u32 *base3, 7970 int seg) 7971 { 7972 struct kvm_segment var; 7973 7974 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 7975 *selector = var.selector; 7976 7977 if (var.unusable) { 7978 memset(desc, 0, sizeof(*desc)); 7979 if (base3) 7980 *base3 = 0; 7981 return false; 7982 } 7983 7984 if (var.g) 7985 var.limit >>= 12; 7986 set_desc_limit(desc, var.limit); 7987 set_desc_base(desc, (unsigned long)var.base); 7988 #ifdef CONFIG_X86_64 7989 if (base3) 7990 *base3 = var.base >> 32; 7991 #endif 7992 desc->type = var.type; 7993 desc->s = var.s; 7994 desc->dpl = var.dpl; 7995 desc->p = var.present; 7996 desc->avl = var.avl; 7997 desc->l = var.l; 7998 desc->d = var.db; 7999 desc->g = var.g; 8000 8001 return true; 8002 } 8003 8004 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 8005 struct desc_struct *desc, u32 base3, 8006 int seg) 8007 { 8008 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8009 struct kvm_segment var; 8010 8011 var.selector = selector; 8012 var.base = get_desc_base(desc); 8013 #ifdef CONFIG_X86_64 8014 var.base |= ((u64)base3) << 32; 8015 #endif 8016 var.limit = get_desc_limit(desc); 8017 if (desc->g) 8018 var.limit = (var.limit << 12) | 0xfff; 8019 var.type = desc->type; 8020 var.dpl = desc->dpl; 8021 var.db = desc->d; 8022 var.s = desc->s; 8023 var.l = desc->l; 8024 var.g = desc->g; 8025 var.avl = desc->avl; 8026 var.present = desc->p; 8027 var.unusable = !var.present; 8028 var.padding = 0; 8029 8030 kvm_set_segment(vcpu, &var, seg); 8031 return; 8032 } 8033 8034 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8035 u32 msr_index, u64 *pdata) 8036 { 8037 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8038 int r; 8039 8040 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 8041 if (r < 0) 8042 return X86EMUL_UNHANDLEABLE; 8043 8044 if (r) { 8045 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 8046 complete_emulated_rdmsr, r)) 8047 return X86EMUL_IO_NEEDED; 8048 8049 trace_kvm_msr_read_ex(msr_index); 8050 return X86EMUL_PROPAGATE_FAULT; 8051 } 8052 8053 trace_kvm_msr_read(msr_index, *pdata); 8054 return X86EMUL_CONTINUE; 8055 } 8056 8057 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8058 u32 msr_index, u64 data) 8059 { 8060 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8061 int r; 8062 8063 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 8064 if (r < 0) 8065 return X86EMUL_UNHANDLEABLE; 8066 8067 if (r) { 8068 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 8069 complete_emulated_msr_access, r)) 8070 return X86EMUL_IO_NEEDED; 8071 8072 trace_kvm_msr_write_ex(msr_index, data); 8073 return X86EMUL_PROPAGATE_FAULT; 8074 } 8075 8076 trace_kvm_msr_write(msr_index, data); 8077 return X86EMUL_CONTINUE; 8078 } 8079 8080 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 8081 u32 msr_index, u64 *pdata) 8082 { 8083 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 8084 } 8085 8086 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 8087 u32 msr_index, u64 data) 8088 { 8089 return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data); 8090 } 8091 8092 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt) 8093 { 8094 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8095 8096 return vcpu->arch.smbase; 8097 } 8098 8099 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase) 8100 { 8101 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8102 8103 vcpu->arch.smbase = smbase; 8104 } 8105 8106 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 8107 u32 pmc) 8108 { 8109 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc)) 8110 return 0; 8111 return -EINVAL; 8112 } 8113 8114 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 8115 u32 pmc, u64 *pdata) 8116 { 8117 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 8118 } 8119 8120 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 8121 { 8122 emul_to_vcpu(ctxt)->arch.halt_request = 1; 8123 } 8124 8125 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 8126 struct x86_instruction_info *info, 8127 enum x86_intercept_stage stage) 8128 { 8129 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 8130 &ctxt->exception); 8131 } 8132 8133 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8134 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8135 bool exact_only) 8136 { 8137 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8138 } 8139 8140 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt) 8141 { 8142 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM); 8143 } 8144 8145 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8146 { 8147 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8148 } 8149 8150 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8151 { 8152 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8153 } 8154 8155 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8156 { 8157 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8158 } 8159 8160 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8161 { 8162 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8163 } 8164 8165 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8166 { 8167 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8168 } 8169 8170 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8171 { 8172 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8173 } 8174 8175 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 8176 { 8177 return emul_to_vcpu(ctxt)->arch.hflags; 8178 } 8179 8180 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt) 8181 { 8182 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8183 8184 kvm_smm_changed(vcpu, false); 8185 } 8186 8187 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt, 8188 const char *smstate) 8189 { 8190 return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate); 8191 } 8192 8193 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8194 { 8195 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8196 } 8197 8198 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8199 { 8200 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8201 } 8202 8203 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8204 { 8205 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8206 8207 if (!kvm->vm_bugged) 8208 kvm_vm_bugged(kvm); 8209 } 8210 8211 static const struct x86_emulate_ops emulate_ops = { 8212 .vm_bugged = emulator_vm_bugged, 8213 .read_gpr = emulator_read_gpr, 8214 .write_gpr = emulator_write_gpr, 8215 .read_std = emulator_read_std, 8216 .write_std = emulator_write_std, 8217 .read_phys = kvm_read_guest_phys_system, 8218 .fetch = kvm_fetch_guest_virt, 8219 .read_emulated = emulator_read_emulated, 8220 .write_emulated = emulator_write_emulated, 8221 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8222 .invlpg = emulator_invlpg, 8223 .pio_in_emulated = emulator_pio_in_emulated, 8224 .pio_out_emulated = emulator_pio_out_emulated, 8225 .get_segment = emulator_get_segment, 8226 .set_segment = emulator_set_segment, 8227 .get_cached_segment_base = emulator_get_cached_segment_base, 8228 .get_gdt = emulator_get_gdt, 8229 .get_idt = emulator_get_idt, 8230 .set_gdt = emulator_set_gdt, 8231 .set_idt = emulator_set_idt, 8232 .get_cr = emulator_get_cr, 8233 .set_cr = emulator_set_cr, 8234 .cpl = emulator_get_cpl, 8235 .get_dr = emulator_get_dr, 8236 .set_dr = emulator_set_dr, 8237 .get_smbase = emulator_get_smbase, 8238 .set_smbase = emulator_set_smbase, 8239 .set_msr_with_filter = emulator_set_msr_with_filter, 8240 .get_msr_with_filter = emulator_get_msr_with_filter, 8241 .set_msr = emulator_set_msr, 8242 .get_msr = emulator_get_msr, 8243 .check_pmc = emulator_check_pmc, 8244 .read_pmc = emulator_read_pmc, 8245 .halt = emulator_halt, 8246 .wbinvd = emulator_wbinvd, 8247 .fix_hypercall = emulator_fix_hypercall, 8248 .intercept = emulator_intercept, 8249 .get_cpuid = emulator_get_cpuid, 8250 .guest_has_long_mode = emulator_guest_has_long_mode, 8251 .guest_has_movbe = emulator_guest_has_movbe, 8252 .guest_has_fxsr = emulator_guest_has_fxsr, 8253 .guest_has_rdpid = emulator_guest_has_rdpid, 8254 .set_nmi_mask = emulator_set_nmi_mask, 8255 .get_hflags = emulator_get_hflags, 8256 .exiting_smm = emulator_exiting_smm, 8257 .leave_smm = emulator_leave_smm, 8258 .triple_fault = emulator_triple_fault, 8259 .set_xcr = emulator_set_xcr, 8260 }; 8261 8262 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8263 { 8264 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8265 /* 8266 * an sti; sti; sequence only disable interrupts for the first 8267 * instruction. So, if the last instruction, be it emulated or 8268 * not, left the system with the INT_STI flag enabled, it 8269 * means that the last instruction is an sti. We should not 8270 * leave the flag on in this case. The same goes for mov ss 8271 */ 8272 if (int_shadow & mask) 8273 mask = 0; 8274 if (unlikely(int_shadow || mask)) { 8275 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 8276 if (!mask) 8277 kvm_make_request(KVM_REQ_EVENT, vcpu); 8278 } 8279 } 8280 8281 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 8282 { 8283 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8284 8285 if (ctxt->exception.vector == PF_VECTOR) 8286 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8287 else if (ctxt->exception.error_code_valid) 8288 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8289 ctxt->exception.error_code); 8290 else 8291 kvm_queue_exception(vcpu, ctxt->exception.vector); 8292 } 8293 8294 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8295 { 8296 struct x86_emulate_ctxt *ctxt; 8297 8298 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8299 if (!ctxt) { 8300 pr_err("kvm: failed to allocate vcpu's emulator\n"); 8301 return NULL; 8302 } 8303 8304 ctxt->vcpu = vcpu; 8305 ctxt->ops = &emulate_ops; 8306 vcpu->arch.emulate_ctxt = ctxt; 8307 8308 return ctxt; 8309 } 8310 8311 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8312 { 8313 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8314 int cs_db, cs_l; 8315 8316 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8317 8318 ctxt->gpa_available = false; 8319 ctxt->eflags = kvm_get_rflags(vcpu); 8320 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8321 8322 ctxt->eip = kvm_rip_read(vcpu); 8323 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8324 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8325 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8326 cs_db ? X86EMUL_MODE_PROT32 : 8327 X86EMUL_MODE_PROT16; 8328 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 8329 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK); 8330 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK); 8331 8332 ctxt->interruptibility = 0; 8333 ctxt->have_exception = false; 8334 ctxt->exception.vector = -1; 8335 ctxt->perm_ok = false; 8336 8337 init_decode_cache(ctxt); 8338 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8339 } 8340 8341 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 8342 { 8343 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8344 int ret; 8345 8346 init_emulate_ctxt(vcpu); 8347 8348 ctxt->op_bytes = 2; 8349 ctxt->ad_bytes = 2; 8350 ctxt->_eip = ctxt->eip + inc_eip; 8351 ret = emulate_int_real(ctxt, irq); 8352 8353 if (ret != X86EMUL_CONTINUE) { 8354 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8355 } else { 8356 ctxt->eip = ctxt->_eip; 8357 kvm_rip_write(vcpu, ctxt->eip); 8358 kvm_set_rflags(vcpu, ctxt->eflags); 8359 } 8360 } 8361 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8362 8363 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8364 u8 ndata, u8 *insn_bytes, u8 insn_size) 8365 { 8366 struct kvm_run *run = vcpu->run; 8367 u64 info[5]; 8368 u8 info_start; 8369 8370 /* 8371 * Zero the whole array used to retrieve the exit info, as casting to 8372 * u32 for select entries will leave some chunks uninitialized. 8373 */ 8374 memset(&info, 0, sizeof(info)); 8375 8376 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], 8377 &info[2], (u32 *)&info[3], 8378 (u32 *)&info[4]); 8379 8380 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8381 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8382 8383 /* 8384 * There's currently space for 13 entries, but 5 are used for the exit 8385 * reason and info. Restrict to 4 to reduce the maintenance burden 8386 * when expanding kvm_run.emulation_failure in the future. 8387 */ 8388 if (WARN_ON_ONCE(ndata > 4)) 8389 ndata = 4; 8390 8391 /* Always include the flags as a 'data' entry. */ 8392 info_start = 1; 8393 run->emulation_failure.flags = 0; 8394 8395 if (insn_size) { 8396 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8397 sizeof(run->emulation_failure.insn_bytes) != 16)); 8398 info_start += 2; 8399 run->emulation_failure.flags |= 8400 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8401 run->emulation_failure.insn_size = insn_size; 8402 memset(run->emulation_failure.insn_bytes, 0x90, 8403 sizeof(run->emulation_failure.insn_bytes)); 8404 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8405 } 8406 8407 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8408 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8409 ndata * sizeof(data[0])); 8410 8411 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8412 } 8413 8414 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8415 { 8416 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8417 8418 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8419 ctxt->fetch.end - ctxt->fetch.data); 8420 } 8421 8422 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8423 u8 ndata) 8424 { 8425 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8426 } 8427 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8428 8429 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8430 { 8431 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8432 } 8433 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8434 8435 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8436 { 8437 struct kvm *kvm = vcpu->kvm; 8438 8439 ++vcpu->stat.insn_emulation_fail; 8440 trace_kvm_emulate_insn_failed(vcpu); 8441 8442 if (emulation_type & EMULTYPE_VMWARE_GP) { 8443 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8444 return 1; 8445 } 8446 8447 if (kvm->arch.exit_on_emulation_error || 8448 (emulation_type & EMULTYPE_SKIP)) { 8449 prepare_emulation_ctxt_failure_exit(vcpu); 8450 return 0; 8451 } 8452 8453 kvm_queue_exception(vcpu, UD_VECTOR); 8454 8455 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 8456 prepare_emulation_ctxt_failure_exit(vcpu); 8457 return 0; 8458 } 8459 8460 return 1; 8461 } 8462 8463 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8464 bool write_fault_to_shadow_pgtable, 8465 int emulation_type) 8466 { 8467 gpa_t gpa = cr2_or_gpa; 8468 kvm_pfn_t pfn; 8469 8470 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8471 return false; 8472 8473 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8474 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8475 return false; 8476 8477 if (!vcpu->arch.mmu->root_role.direct) { 8478 /* 8479 * Write permission should be allowed since only 8480 * write access need to be emulated. 8481 */ 8482 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8483 8484 /* 8485 * If the mapping is invalid in guest, let cpu retry 8486 * it to generate fault. 8487 */ 8488 if (gpa == INVALID_GPA) 8489 return true; 8490 } 8491 8492 /* 8493 * Do not retry the unhandleable instruction if it faults on the 8494 * readonly host memory, otherwise it will goto a infinite loop: 8495 * retry instruction -> write #PF -> emulation fail -> retry 8496 * instruction -> ... 8497 */ 8498 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 8499 8500 /* 8501 * If the instruction failed on the error pfn, it can not be fixed, 8502 * report the error to userspace. 8503 */ 8504 if (is_error_noslot_pfn(pfn)) 8505 return false; 8506 8507 kvm_release_pfn_clean(pfn); 8508 8509 /* The instructions are well-emulated on direct mmu. */ 8510 if (vcpu->arch.mmu->root_role.direct) { 8511 unsigned int indirect_shadow_pages; 8512 8513 write_lock(&vcpu->kvm->mmu_lock); 8514 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 8515 write_unlock(&vcpu->kvm->mmu_lock); 8516 8517 if (indirect_shadow_pages) 8518 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8519 8520 return true; 8521 } 8522 8523 /* 8524 * if emulation was due to access to shadowed page table 8525 * and it failed try to unshadow page and re-enter the 8526 * guest to let CPU execute the instruction. 8527 */ 8528 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8529 8530 /* 8531 * If the access faults on its page table, it can not 8532 * be fixed by unprotecting shadow page and it should 8533 * be reported to userspace. 8534 */ 8535 return !write_fault_to_shadow_pgtable; 8536 } 8537 8538 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8539 gpa_t cr2_or_gpa, int emulation_type) 8540 { 8541 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8542 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8543 8544 last_retry_eip = vcpu->arch.last_retry_eip; 8545 last_retry_addr = vcpu->arch.last_retry_addr; 8546 8547 /* 8548 * If the emulation is caused by #PF and it is non-page_table 8549 * writing instruction, it means the VM-EXIT is caused by shadow 8550 * page protected, we can zap the shadow page and retry this 8551 * instruction directly. 8552 * 8553 * Note: if the guest uses a non-page-table modifying instruction 8554 * on the PDE that points to the instruction, then we will unmap 8555 * the instruction and go to an infinite loop. So, we cache the 8556 * last retried eip and the last fault address, if we meet the eip 8557 * and the address again, we can break out of the potential infinite 8558 * loop. 8559 */ 8560 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8561 8562 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8563 return false; 8564 8565 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8566 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8567 return false; 8568 8569 if (x86_page_table_writing_insn(ctxt)) 8570 return false; 8571 8572 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8573 return false; 8574 8575 vcpu->arch.last_retry_eip = ctxt->eip; 8576 vcpu->arch.last_retry_addr = cr2_or_gpa; 8577 8578 if (!vcpu->arch.mmu->root_role.direct) 8579 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8580 8581 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8582 8583 return true; 8584 } 8585 8586 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8587 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8588 8589 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm) 8590 { 8591 trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm); 8592 8593 if (entering_smm) { 8594 vcpu->arch.hflags |= HF_SMM_MASK; 8595 } else { 8596 vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK); 8597 8598 /* Process a latched INIT or SMI, if any. */ 8599 kvm_make_request(KVM_REQ_EVENT, vcpu); 8600 8601 /* 8602 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band, 8603 * on SMM exit we still need to reload them from 8604 * guest memory 8605 */ 8606 vcpu->arch.pdptrs_from_userspace = false; 8607 } 8608 8609 kvm_mmu_reset_context(vcpu); 8610 } 8611 8612 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8613 unsigned long *db) 8614 { 8615 u32 dr6 = 0; 8616 int i; 8617 u32 enable, rwlen; 8618 8619 enable = dr7; 8620 rwlen = dr7 >> 16; 8621 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8622 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8623 dr6 |= (1 << i); 8624 return dr6; 8625 } 8626 8627 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8628 { 8629 struct kvm_run *kvm_run = vcpu->run; 8630 8631 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8632 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8633 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8634 kvm_run->debug.arch.exception = DB_VECTOR; 8635 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8636 return 0; 8637 } 8638 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8639 return 1; 8640 } 8641 8642 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8643 { 8644 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8645 int r; 8646 8647 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 8648 if (unlikely(!r)) 8649 return 0; 8650 8651 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8652 8653 /* 8654 * rflags is the old, "raw" value of the flags. The new value has 8655 * not been saved yet. 8656 * 8657 * This is correct even for TF set by the guest, because "the 8658 * processor will not generate this exception after the instruction 8659 * that sets the TF flag". 8660 */ 8661 if (unlikely(rflags & X86_EFLAGS_TF)) 8662 r = kvm_vcpu_do_singlestep(vcpu); 8663 return r; 8664 } 8665 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8666 8667 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) 8668 { 8669 u32 shadow; 8670 8671 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) 8672 return true; 8673 8674 /* 8675 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active, 8676 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first 8677 * to avoid the relatively expensive CPUID lookup. 8678 */ 8679 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8680 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) && 8681 guest_cpuid_is_intel(vcpu); 8682 } 8683 8684 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, 8685 int emulation_type, int *r) 8686 { 8687 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); 8688 8689 /* 8690 * Do not check for code breakpoints if hardware has already done the 8691 * checks, as inferred from the emulation type. On NO_DECODE and SKIP, 8692 * the instruction has passed all exception checks, and all intercepted 8693 * exceptions that trigger emulation have lower priority than code 8694 * breakpoints, i.e. the fact that the intercepted exception occurred 8695 * means any code breakpoints have already been serviced. 8696 * 8697 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as 8698 * hardware has checked the RIP of the magic prefix, but not the RIP of 8699 * the instruction being emulated. The intent of forced emulation is 8700 * to behave as if KVM intercepted the instruction without an exception 8701 * and without a prefix. 8702 */ 8703 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 8704 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) 8705 return false; 8706 8707 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 8708 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 8709 struct kvm_run *kvm_run = vcpu->run; 8710 unsigned long eip = kvm_get_linear_rip(vcpu); 8711 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8712 vcpu->arch.guest_debug_dr7, 8713 vcpu->arch.eff_db); 8714 8715 if (dr6 != 0) { 8716 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 8717 kvm_run->debug.arch.pc = eip; 8718 kvm_run->debug.arch.exception = DB_VECTOR; 8719 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8720 *r = 0; 8721 return true; 8722 } 8723 } 8724 8725 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 8726 !kvm_is_code_breakpoint_inhibited(vcpu)) { 8727 unsigned long eip = kvm_get_linear_rip(vcpu); 8728 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8729 vcpu->arch.dr7, 8730 vcpu->arch.db); 8731 8732 if (dr6 != 0) { 8733 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 8734 *r = 1; 8735 return true; 8736 } 8737 } 8738 8739 return false; 8740 } 8741 8742 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 8743 { 8744 switch (ctxt->opcode_len) { 8745 case 1: 8746 switch (ctxt->b) { 8747 case 0xe4: /* IN */ 8748 case 0xe5: 8749 case 0xec: 8750 case 0xed: 8751 case 0xe6: /* OUT */ 8752 case 0xe7: 8753 case 0xee: 8754 case 0xef: 8755 case 0x6c: /* INS */ 8756 case 0x6d: 8757 case 0x6e: /* OUTS */ 8758 case 0x6f: 8759 return true; 8760 } 8761 break; 8762 case 2: 8763 switch (ctxt->b) { 8764 case 0x33: /* RDPMC */ 8765 return true; 8766 } 8767 break; 8768 } 8769 8770 return false; 8771 } 8772 8773 /* 8774 * Decode an instruction for emulation. The caller is responsible for handling 8775 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 8776 * (and wrong) when emulating on an intercepted fault-like exception[*], as 8777 * code breakpoints have higher priority and thus have already been done by 8778 * hardware. 8779 * 8780 * [*] Except #MC, which is higher priority, but KVM should never emulate in 8781 * response to a machine check. 8782 */ 8783 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 8784 void *insn, int insn_len) 8785 { 8786 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8787 int r; 8788 8789 init_emulate_ctxt(vcpu); 8790 8791 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 8792 8793 trace_kvm_emulate_insn_start(vcpu); 8794 ++vcpu->stat.insn_emulation; 8795 8796 return r; 8797 } 8798 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 8799 8800 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8801 int emulation_type, void *insn, int insn_len) 8802 { 8803 int r; 8804 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8805 bool writeback = true; 8806 bool write_fault_to_spt; 8807 8808 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len))) 8809 return 1; 8810 8811 vcpu->arch.l1tf_flush_l1d = true; 8812 8813 /* 8814 * Clear write_fault_to_shadow_pgtable here to ensure it is 8815 * never reused. 8816 */ 8817 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 8818 vcpu->arch.write_fault_to_shadow_pgtable = false; 8819 8820 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 8821 kvm_clear_exception_queue(vcpu); 8822 8823 /* 8824 * Return immediately if RIP hits a code breakpoint, such #DBs 8825 * are fault-like and are higher priority than any faults on 8826 * the code fetch itself. 8827 */ 8828 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) 8829 return r; 8830 8831 r = x86_decode_emulated_instruction(vcpu, emulation_type, 8832 insn, insn_len); 8833 if (r != EMULATION_OK) { 8834 if ((emulation_type & EMULTYPE_TRAP_UD) || 8835 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 8836 kvm_queue_exception(vcpu, UD_VECTOR); 8837 return 1; 8838 } 8839 if (reexecute_instruction(vcpu, cr2_or_gpa, 8840 write_fault_to_spt, 8841 emulation_type)) 8842 return 1; 8843 if (ctxt->have_exception) { 8844 /* 8845 * #UD should result in just EMULATION_FAILED, and trap-like 8846 * exception should not be encountered during decode. 8847 */ 8848 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 8849 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 8850 inject_emulated_exception(vcpu); 8851 return 1; 8852 } 8853 return handle_emulation_failure(vcpu, emulation_type); 8854 } 8855 } 8856 8857 if ((emulation_type & EMULTYPE_VMWARE_GP) && 8858 !is_vmware_backdoor_opcode(ctxt)) { 8859 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8860 return 1; 8861 } 8862 8863 /* 8864 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 8865 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 8866 * The caller is responsible for updating interruptibility state and 8867 * injecting single-step #DBs. 8868 */ 8869 if (emulation_type & EMULTYPE_SKIP) { 8870 if (ctxt->mode != X86EMUL_MODE_PROT64) 8871 ctxt->eip = (u32)ctxt->_eip; 8872 else 8873 ctxt->eip = ctxt->_eip; 8874 8875 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 8876 r = 1; 8877 goto writeback; 8878 } 8879 8880 kvm_rip_write(vcpu, ctxt->eip); 8881 if (ctxt->eflags & X86_EFLAGS_RF) 8882 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 8883 return 1; 8884 } 8885 8886 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 8887 return 1; 8888 8889 /* this is needed for vmware backdoor interface to work since it 8890 changes registers values during IO operation */ 8891 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 8892 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8893 emulator_invalidate_register_cache(ctxt); 8894 } 8895 8896 restart: 8897 if (emulation_type & EMULTYPE_PF) { 8898 /* Save the faulting GPA (cr2) in the address field */ 8899 ctxt->exception.address = cr2_or_gpa; 8900 8901 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 8902 if (vcpu->arch.mmu->root_role.direct) { 8903 ctxt->gpa_available = true; 8904 ctxt->gpa_val = cr2_or_gpa; 8905 } 8906 } else { 8907 /* Sanitize the address out of an abundance of paranoia. */ 8908 ctxt->exception.address = 0; 8909 } 8910 8911 r = x86_emulate_insn(ctxt); 8912 8913 if (r == EMULATION_INTERCEPTED) 8914 return 1; 8915 8916 if (r == EMULATION_FAILED) { 8917 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt, 8918 emulation_type)) 8919 return 1; 8920 8921 return handle_emulation_failure(vcpu, emulation_type); 8922 } 8923 8924 if (ctxt->have_exception) { 8925 r = 1; 8926 inject_emulated_exception(vcpu); 8927 } else if (vcpu->arch.pio.count) { 8928 if (!vcpu->arch.pio.in) { 8929 /* FIXME: return into emulator if single-stepping. */ 8930 vcpu->arch.pio.count = 0; 8931 } else { 8932 writeback = false; 8933 vcpu->arch.complete_userspace_io = complete_emulated_pio; 8934 } 8935 r = 0; 8936 } else if (vcpu->mmio_needed) { 8937 ++vcpu->stat.mmio_exits; 8938 8939 if (!vcpu->mmio_is_write) 8940 writeback = false; 8941 r = 0; 8942 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 8943 } else if (vcpu->arch.complete_userspace_io) { 8944 writeback = false; 8945 r = 0; 8946 } else if (r == EMULATION_RESTART) 8947 goto restart; 8948 else 8949 r = 1; 8950 8951 writeback: 8952 if (writeback) { 8953 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8954 toggle_interruptibility(vcpu, ctxt->interruptibility); 8955 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8956 8957 /* 8958 * Note, EXCPT_DB is assumed to be fault-like as the emulator 8959 * only supports code breakpoints and general detect #DB, both 8960 * of which are fault-like. 8961 */ 8962 if (!ctxt->have_exception || 8963 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 8964 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8965 if (ctxt->is_branch) 8966 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 8967 kvm_rip_write(vcpu, ctxt->eip); 8968 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 8969 r = kvm_vcpu_do_singlestep(vcpu); 8970 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu); 8971 __kvm_set_rflags(vcpu, ctxt->eflags); 8972 } 8973 8974 /* 8975 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 8976 * do nothing, and it will be requested again as soon as 8977 * the shadow expires. But we still need to check here, 8978 * because POPF has no interrupt shadow. 8979 */ 8980 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 8981 kvm_make_request(KVM_REQ_EVENT, vcpu); 8982 } else 8983 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 8984 8985 return r; 8986 } 8987 8988 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 8989 { 8990 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 8991 } 8992 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 8993 8994 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 8995 void *insn, int insn_len) 8996 { 8997 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 8998 } 8999 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 9000 9001 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 9002 { 9003 vcpu->arch.pio.count = 0; 9004 return 1; 9005 } 9006 9007 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 9008 { 9009 vcpu->arch.pio.count = 0; 9010 9011 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 9012 return 1; 9013 9014 return kvm_skip_emulated_instruction(vcpu); 9015 } 9016 9017 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 9018 unsigned short port) 9019 { 9020 unsigned long val = kvm_rax_read(vcpu); 9021 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 9022 9023 if (ret) 9024 return ret; 9025 9026 /* 9027 * Workaround userspace that relies on old KVM behavior of %rip being 9028 * incremented prior to exiting to userspace to handle "OUT 0x7e". 9029 */ 9030 if (port == 0x7e && 9031 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 9032 vcpu->arch.complete_userspace_io = 9033 complete_fast_pio_out_port_0x7e; 9034 kvm_skip_emulated_instruction(vcpu); 9035 } else { 9036 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9037 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 9038 } 9039 return 0; 9040 } 9041 9042 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 9043 { 9044 unsigned long val; 9045 9046 /* We should only ever be called with arch.pio.count equal to 1 */ 9047 BUG_ON(vcpu->arch.pio.count != 1); 9048 9049 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 9050 vcpu->arch.pio.count = 0; 9051 return 1; 9052 } 9053 9054 /* For size less than 4 we merge, else we zero extend */ 9055 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 9056 9057 complete_emulator_pio_in(vcpu, &val); 9058 kvm_rax_write(vcpu, val); 9059 9060 return kvm_skip_emulated_instruction(vcpu); 9061 } 9062 9063 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 9064 unsigned short port) 9065 { 9066 unsigned long val; 9067 int ret; 9068 9069 /* For size less than 4 we merge, else we zero extend */ 9070 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 9071 9072 ret = emulator_pio_in(vcpu, size, port, &val, 1); 9073 if (ret) { 9074 kvm_rax_write(vcpu, val); 9075 return ret; 9076 } 9077 9078 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9079 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 9080 9081 return 0; 9082 } 9083 9084 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 9085 { 9086 int ret; 9087 9088 if (in) 9089 ret = kvm_fast_pio_in(vcpu, size, port); 9090 else 9091 ret = kvm_fast_pio_out(vcpu, size, port); 9092 return ret && kvm_skip_emulated_instruction(vcpu); 9093 } 9094 EXPORT_SYMBOL_GPL(kvm_fast_pio); 9095 9096 static int kvmclock_cpu_down_prep(unsigned int cpu) 9097 { 9098 __this_cpu_write(cpu_tsc_khz, 0); 9099 return 0; 9100 } 9101 9102 static void tsc_khz_changed(void *data) 9103 { 9104 struct cpufreq_freqs *freq = data; 9105 unsigned long khz = 0; 9106 9107 if (data) 9108 khz = freq->new; 9109 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 9110 khz = cpufreq_quick_get(raw_smp_processor_id()); 9111 if (!khz) 9112 khz = tsc_khz; 9113 __this_cpu_write(cpu_tsc_khz, khz); 9114 } 9115 9116 #ifdef CONFIG_X86_64 9117 static void kvm_hyperv_tsc_notifier(void) 9118 { 9119 struct kvm *kvm; 9120 int cpu; 9121 9122 mutex_lock(&kvm_lock); 9123 list_for_each_entry(kvm, &vm_list, vm_list) 9124 kvm_make_mclock_inprogress_request(kvm); 9125 9126 /* no guest entries from this point */ 9127 hyperv_stop_tsc_emulation(); 9128 9129 /* TSC frequency always matches when on Hyper-V */ 9130 for_each_present_cpu(cpu) 9131 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 9132 kvm_caps.max_guest_tsc_khz = tsc_khz; 9133 9134 list_for_each_entry(kvm, &vm_list, vm_list) { 9135 __kvm_start_pvclock_update(kvm); 9136 pvclock_update_vm_gtod_copy(kvm); 9137 kvm_end_pvclock_update(kvm); 9138 } 9139 9140 mutex_unlock(&kvm_lock); 9141 } 9142 #endif 9143 9144 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 9145 { 9146 struct kvm *kvm; 9147 struct kvm_vcpu *vcpu; 9148 int send_ipi = 0; 9149 unsigned long i; 9150 9151 /* 9152 * We allow guests to temporarily run on slowing clocks, 9153 * provided we notify them after, or to run on accelerating 9154 * clocks, provided we notify them before. Thus time never 9155 * goes backwards. 9156 * 9157 * However, we have a problem. We can't atomically update 9158 * the frequency of a given CPU from this function; it is 9159 * merely a notifier, which can be called from any CPU. 9160 * Changing the TSC frequency at arbitrary points in time 9161 * requires a recomputation of local variables related to 9162 * the TSC for each VCPU. We must flag these local variables 9163 * to be updated and be sure the update takes place with the 9164 * new frequency before any guests proceed. 9165 * 9166 * Unfortunately, the combination of hotplug CPU and frequency 9167 * change creates an intractable locking scenario; the order 9168 * of when these callouts happen is undefined with respect to 9169 * CPU hotplug, and they can race with each other. As such, 9170 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 9171 * undefined; you can actually have a CPU frequency change take 9172 * place in between the computation of X and the setting of the 9173 * variable. To protect against this problem, all updates of 9174 * the per_cpu tsc_khz variable are done in an interrupt 9175 * protected IPI, and all callers wishing to update the value 9176 * must wait for a synchronous IPI to complete (which is trivial 9177 * if the caller is on the CPU already). This establishes the 9178 * necessary total order on variable updates. 9179 * 9180 * Note that because a guest time update may take place 9181 * anytime after the setting of the VCPU's request bit, the 9182 * correct TSC value must be set before the request. However, 9183 * to ensure the update actually makes it to any guest which 9184 * starts running in hardware virtualization between the set 9185 * and the acquisition of the spinlock, we must also ping the 9186 * CPU after setting the request bit. 9187 * 9188 */ 9189 9190 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9191 9192 mutex_lock(&kvm_lock); 9193 list_for_each_entry(kvm, &vm_list, vm_list) { 9194 kvm_for_each_vcpu(i, vcpu, kvm) { 9195 if (vcpu->cpu != cpu) 9196 continue; 9197 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9198 if (vcpu->cpu != raw_smp_processor_id()) 9199 send_ipi = 1; 9200 } 9201 } 9202 mutex_unlock(&kvm_lock); 9203 9204 if (freq->old < freq->new && send_ipi) { 9205 /* 9206 * We upscale the frequency. Must make the guest 9207 * doesn't see old kvmclock values while running with 9208 * the new frequency, otherwise we risk the guest sees 9209 * time go backwards. 9210 * 9211 * In case we update the frequency for another cpu 9212 * (which might be in guest context) send an interrupt 9213 * to kick the cpu out of guest context. Next time 9214 * guest context is entered kvmclock will be updated, 9215 * so the guest will not see stale values. 9216 */ 9217 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9218 } 9219 } 9220 9221 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9222 void *data) 9223 { 9224 struct cpufreq_freqs *freq = data; 9225 int cpu; 9226 9227 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9228 return 0; 9229 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9230 return 0; 9231 9232 for_each_cpu(cpu, freq->policy->cpus) 9233 __kvmclock_cpufreq_notifier(freq, cpu); 9234 9235 return 0; 9236 } 9237 9238 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9239 .notifier_call = kvmclock_cpufreq_notifier 9240 }; 9241 9242 static int kvmclock_cpu_online(unsigned int cpu) 9243 { 9244 tsc_khz_changed(NULL); 9245 return 0; 9246 } 9247 9248 static void kvm_timer_init(void) 9249 { 9250 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9251 max_tsc_khz = tsc_khz; 9252 9253 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9254 struct cpufreq_policy *policy; 9255 int cpu; 9256 9257 cpu = get_cpu(); 9258 policy = cpufreq_cpu_get(cpu); 9259 if (policy) { 9260 if (policy->cpuinfo.max_freq) 9261 max_tsc_khz = policy->cpuinfo.max_freq; 9262 cpufreq_cpu_put(policy); 9263 } 9264 put_cpu(); 9265 } 9266 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9267 CPUFREQ_TRANSITION_NOTIFIER); 9268 } 9269 9270 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9271 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9272 } 9273 9274 #ifdef CONFIG_X86_64 9275 static void pvclock_gtod_update_fn(struct work_struct *work) 9276 { 9277 struct kvm *kvm; 9278 struct kvm_vcpu *vcpu; 9279 unsigned long i; 9280 9281 mutex_lock(&kvm_lock); 9282 list_for_each_entry(kvm, &vm_list, vm_list) 9283 kvm_for_each_vcpu(i, vcpu, kvm) 9284 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9285 atomic_set(&kvm_guest_has_master_clock, 0); 9286 mutex_unlock(&kvm_lock); 9287 } 9288 9289 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9290 9291 /* 9292 * Indirection to move queue_work() out of the tk_core.seq write held 9293 * region to prevent possible deadlocks against time accessors which 9294 * are invoked with work related locks held. 9295 */ 9296 static void pvclock_irq_work_fn(struct irq_work *w) 9297 { 9298 queue_work(system_long_wq, &pvclock_gtod_work); 9299 } 9300 9301 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9302 9303 /* 9304 * Notification about pvclock gtod data update. 9305 */ 9306 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9307 void *priv) 9308 { 9309 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9310 struct timekeeper *tk = priv; 9311 9312 update_pvclock_gtod(tk); 9313 9314 /* 9315 * Disable master clock if host does not trust, or does not use, 9316 * TSC based clocksource. Delegate queue_work() to irq_work as 9317 * this is invoked with tk_core.seq write held. 9318 */ 9319 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9320 atomic_read(&kvm_guest_has_master_clock) != 0) 9321 irq_work_queue(&pvclock_irq_work); 9322 return 0; 9323 } 9324 9325 static struct notifier_block pvclock_gtod_notifier = { 9326 .notifier_call = pvclock_gtod_notify, 9327 }; 9328 #endif 9329 9330 int kvm_arch_init(void *opaque) 9331 { 9332 struct kvm_x86_init_ops *ops = opaque; 9333 u64 host_pat; 9334 int r; 9335 9336 if (kvm_x86_ops.hardware_enable) { 9337 pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name); 9338 return -EEXIST; 9339 } 9340 9341 if (!ops->cpu_has_kvm_support()) { 9342 pr_err_ratelimited("kvm: no hardware support for '%s'\n", 9343 ops->runtime_ops->name); 9344 return -EOPNOTSUPP; 9345 } 9346 if (ops->disabled_by_bios()) { 9347 pr_err_ratelimited("kvm: support for '%s' disabled by bios\n", 9348 ops->runtime_ops->name); 9349 return -EOPNOTSUPP; 9350 } 9351 9352 /* 9353 * KVM explicitly assumes that the guest has an FPU and 9354 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9355 * vCPU's FPU state as a fxregs_state struct. 9356 */ 9357 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9358 printk(KERN_ERR "kvm: inadequate fpu\n"); 9359 return -EOPNOTSUPP; 9360 } 9361 9362 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9363 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 9364 return -EOPNOTSUPP; 9365 } 9366 9367 /* 9368 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes 9369 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 9370 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 9371 * with an exception. PAT[0] is set to WB on RESET and also by the 9372 * kernel, i.e. failure indicates a kernel bug or broken firmware. 9373 */ 9374 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) || 9375 (host_pat & GENMASK(2, 0)) != 6) { 9376 pr_err("kvm: host PAT[0] is not WB\n"); 9377 return -EIO; 9378 } 9379 9380 x86_emulator_cache = kvm_alloc_emulator_cache(); 9381 if (!x86_emulator_cache) { 9382 pr_err("kvm: failed to allocate cache for x86 emulator\n"); 9383 return -ENOMEM; 9384 } 9385 9386 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 9387 if (!user_return_msrs) { 9388 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n"); 9389 r = -ENOMEM; 9390 goto out_free_x86_emulator_cache; 9391 } 9392 kvm_nr_uret_msrs = 0; 9393 9394 r = kvm_mmu_vendor_module_init(); 9395 if (r) 9396 goto out_free_percpu; 9397 9398 kvm_timer_init(); 9399 9400 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9401 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9402 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 9403 } 9404 9405 if (pi_inject_timer == -1) 9406 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9407 #ifdef CONFIG_X86_64 9408 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9409 9410 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9411 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9412 #endif 9413 9414 return 0; 9415 9416 out_free_percpu: 9417 free_percpu(user_return_msrs); 9418 out_free_x86_emulator_cache: 9419 kmem_cache_destroy(x86_emulator_cache); 9420 return r; 9421 } 9422 9423 void kvm_arch_exit(void) 9424 { 9425 #ifdef CONFIG_X86_64 9426 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9427 clear_hv_tscchange_cb(); 9428 #endif 9429 kvm_lapic_exit(); 9430 9431 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 9432 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9433 CPUFREQ_TRANSITION_NOTIFIER); 9434 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9435 #ifdef CONFIG_X86_64 9436 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9437 irq_work_sync(&pvclock_irq_work); 9438 cancel_work_sync(&pvclock_gtod_work); 9439 #endif 9440 kvm_x86_ops.hardware_enable = NULL; 9441 kvm_mmu_vendor_module_exit(); 9442 free_percpu(user_return_msrs); 9443 kmem_cache_destroy(x86_emulator_cache); 9444 #ifdef CONFIG_KVM_XEN 9445 static_key_deferred_flush(&kvm_xen_enabled); 9446 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9447 #endif 9448 } 9449 9450 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 9451 { 9452 /* 9453 * The vCPU has halted, e.g. executed HLT. Update the run state if the 9454 * local APIC is in-kernel, the run loop will detect the non-runnable 9455 * state and halt the vCPU. Exit to userspace if the local APIC is 9456 * managed by userspace, in which case userspace is responsible for 9457 * handling wake events. 9458 */ 9459 ++vcpu->stat.halt_exits; 9460 if (lapic_in_kernel(vcpu)) { 9461 vcpu->arch.mp_state = state; 9462 return 1; 9463 } else { 9464 vcpu->run->exit_reason = reason; 9465 return 0; 9466 } 9467 } 9468 9469 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 9470 { 9471 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 9472 } 9473 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 9474 9475 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 9476 { 9477 int ret = kvm_skip_emulated_instruction(vcpu); 9478 /* 9479 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 9480 * KVM_EXIT_DEBUG here. 9481 */ 9482 return kvm_emulate_halt_noskip(vcpu) && ret; 9483 } 9484 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 9485 9486 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 9487 { 9488 int ret = kvm_skip_emulated_instruction(vcpu); 9489 9490 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 9491 KVM_EXIT_AP_RESET_HOLD) && ret; 9492 } 9493 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 9494 9495 #ifdef CONFIG_X86_64 9496 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9497 unsigned long clock_type) 9498 { 9499 struct kvm_clock_pairing clock_pairing; 9500 struct timespec64 ts; 9501 u64 cycle; 9502 int ret; 9503 9504 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9505 return -KVM_EOPNOTSUPP; 9506 9507 /* 9508 * When tsc is in permanent catchup mode guests won't be able to use 9509 * pvclock_read_retry loop to get consistent view of pvclock 9510 */ 9511 if (vcpu->arch.tsc_always_catchup) 9512 return -KVM_EOPNOTSUPP; 9513 9514 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9515 return -KVM_EOPNOTSUPP; 9516 9517 clock_pairing.sec = ts.tv_sec; 9518 clock_pairing.nsec = ts.tv_nsec; 9519 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9520 clock_pairing.flags = 0; 9521 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9522 9523 ret = 0; 9524 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9525 sizeof(struct kvm_clock_pairing))) 9526 ret = -KVM_EFAULT; 9527 9528 return ret; 9529 } 9530 #endif 9531 9532 /* 9533 * kvm_pv_kick_cpu_op: Kick a vcpu. 9534 * 9535 * @apicid - apicid of vcpu to be kicked. 9536 */ 9537 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9538 { 9539 /* 9540 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 9541 * common code, e.g. for tracing. Defer initialization to the compiler. 9542 */ 9543 struct kvm_lapic_irq lapic_irq = { 9544 .delivery_mode = APIC_DM_REMRD, 9545 .dest_mode = APIC_DEST_PHYSICAL, 9546 .shorthand = APIC_DEST_NOSHORT, 9547 .dest_id = apicid, 9548 }; 9549 9550 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9551 } 9552 9553 bool kvm_apicv_activated(struct kvm *kvm) 9554 { 9555 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9556 } 9557 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9558 9559 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 9560 { 9561 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 9562 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu); 9563 9564 return (vm_reasons | vcpu_reasons) == 0; 9565 } 9566 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 9567 9568 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9569 enum kvm_apicv_inhibit reason, bool set) 9570 { 9571 if (set) 9572 __set_bit(reason, inhibits); 9573 else 9574 __clear_bit(reason, inhibits); 9575 9576 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9577 } 9578 9579 static void kvm_apicv_init(struct kvm *kvm) 9580 { 9581 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons; 9582 9583 init_rwsem(&kvm->arch.apicv_update_lock); 9584 9585 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true); 9586 9587 if (!enable_apicv) 9588 set_or_clear_apicv_inhibit(inhibits, 9589 APICV_INHIBIT_REASON_DISABLE, true); 9590 } 9591 9592 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9593 { 9594 struct kvm_vcpu *target = NULL; 9595 struct kvm_apic_map *map; 9596 9597 vcpu->stat.directed_yield_attempted++; 9598 9599 if (single_task_running()) 9600 goto no_yield; 9601 9602 rcu_read_lock(); 9603 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9604 9605 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9606 target = map->phys_map[dest_id]->vcpu; 9607 9608 rcu_read_unlock(); 9609 9610 if (!target || !READ_ONCE(target->ready)) 9611 goto no_yield; 9612 9613 /* Ignore requests to yield to self */ 9614 if (vcpu == target) 9615 goto no_yield; 9616 9617 if (kvm_vcpu_yield_to(target) <= 0) 9618 goto no_yield; 9619 9620 vcpu->stat.directed_yield_successful++; 9621 9622 no_yield: 9623 return; 9624 } 9625 9626 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 9627 { 9628 u64 ret = vcpu->run->hypercall.ret; 9629 9630 if (!is_64_bit_mode(vcpu)) 9631 ret = (u32)ret; 9632 kvm_rax_write(vcpu, ret); 9633 ++vcpu->stat.hypercalls; 9634 return kvm_skip_emulated_instruction(vcpu); 9635 } 9636 9637 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 9638 { 9639 unsigned long nr, a0, a1, a2, a3, ret; 9640 int op_64_bit; 9641 9642 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 9643 return kvm_xen_hypercall(vcpu); 9644 9645 if (kvm_hv_hypercall_enabled(vcpu)) 9646 return kvm_hv_hypercall(vcpu); 9647 9648 nr = kvm_rax_read(vcpu); 9649 a0 = kvm_rbx_read(vcpu); 9650 a1 = kvm_rcx_read(vcpu); 9651 a2 = kvm_rdx_read(vcpu); 9652 a3 = kvm_rsi_read(vcpu); 9653 9654 trace_kvm_hypercall(nr, a0, a1, a2, a3); 9655 9656 op_64_bit = is_64_bit_hypercall(vcpu); 9657 if (!op_64_bit) { 9658 nr &= 0xFFFFFFFF; 9659 a0 &= 0xFFFFFFFF; 9660 a1 &= 0xFFFFFFFF; 9661 a2 &= 0xFFFFFFFF; 9662 a3 &= 0xFFFFFFFF; 9663 } 9664 9665 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { 9666 ret = -KVM_EPERM; 9667 goto out; 9668 } 9669 9670 ret = -KVM_ENOSYS; 9671 9672 switch (nr) { 9673 case KVM_HC_VAPIC_POLL_IRQ: 9674 ret = 0; 9675 break; 9676 case KVM_HC_KICK_CPU: 9677 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 9678 break; 9679 9680 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 9681 kvm_sched_yield(vcpu, a1); 9682 ret = 0; 9683 break; 9684 #ifdef CONFIG_X86_64 9685 case KVM_HC_CLOCK_PAIRING: 9686 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 9687 break; 9688 #endif 9689 case KVM_HC_SEND_IPI: 9690 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 9691 break; 9692 9693 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 9694 break; 9695 case KVM_HC_SCHED_YIELD: 9696 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 9697 break; 9698 9699 kvm_sched_yield(vcpu, a0); 9700 ret = 0; 9701 break; 9702 case KVM_HC_MAP_GPA_RANGE: { 9703 u64 gpa = a0, npages = a1, attrs = a2; 9704 9705 ret = -KVM_ENOSYS; 9706 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 9707 break; 9708 9709 if (!PAGE_ALIGNED(gpa) || !npages || 9710 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 9711 ret = -KVM_EINVAL; 9712 break; 9713 } 9714 9715 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 9716 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 9717 vcpu->run->hypercall.args[0] = gpa; 9718 vcpu->run->hypercall.args[1] = npages; 9719 vcpu->run->hypercall.args[2] = attrs; 9720 vcpu->run->hypercall.longmode = op_64_bit; 9721 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 9722 return 0; 9723 } 9724 default: 9725 ret = -KVM_ENOSYS; 9726 break; 9727 } 9728 out: 9729 if (!op_64_bit) 9730 ret = (u32)ret; 9731 kvm_rax_write(vcpu, ret); 9732 9733 ++vcpu->stat.hypercalls; 9734 return kvm_skip_emulated_instruction(vcpu); 9735 } 9736 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 9737 9738 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 9739 { 9740 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 9741 char instruction[3]; 9742 unsigned long rip = kvm_rip_read(vcpu); 9743 9744 /* 9745 * If the quirk is disabled, synthesize a #UD and let the guest pick up 9746 * the pieces. 9747 */ 9748 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 9749 ctxt->exception.error_code_valid = false; 9750 ctxt->exception.vector = UD_VECTOR; 9751 ctxt->have_exception = true; 9752 return X86EMUL_PROPAGATE_FAULT; 9753 } 9754 9755 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 9756 9757 return emulator_write_emulated(ctxt, rip, instruction, 3, 9758 &ctxt->exception); 9759 } 9760 9761 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 9762 { 9763 return vcpu->run->request_interrupt_window && 9764 likely(!pic_in_kernel(vcpu->kvm)); 9765 } 9766 9767 /* Called within kvm->srcu read side. */ 9768 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 9769 { 9770 struct kvm_run *kvm_run = vcpu->run; 9771 9772 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); 9773 kvm_run->cr8 = kvm_get_cr8(vcpu); 9774 kvm_run->apic_base = kvm_get_apic_base(vcpu); 9775 9776 kvm_run->ready_for_interrupt_injection = 9777 pic_in_kernel(vcpu->kvm) || 9778 kvm_vcpu_ready_for_interrupt_injection(vcpu); 9779 9780 if (is_smm(vcpu)) 9781 kvm_run->flags |= KVM_RUN_X86_SMM; 9782 } 9783 9784 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 9785 { 9786 int max_irr, tpr; 9787 9788 if (!kvm_x86_ops.update_cr8_intercept) 9789 return; 9790 9791 if (!lapic_in_kernel(vcpu)) 9792 return; 9793 9794 if (vcpu->arch.apic->apicv_active) 9795 return; 9796 9797 if (!vcpu->arch.apic->vapic_addr) 9798 max_irr = kvm_lapic_find_highest_irr(vcpu); 9799 else 9800 max_irr = -1; 9801 9802 if (max_irr != -1) 9803 max_irr >>= 4; 9804 9805 tpr = kvm_lapic_get_cr8(vcpu); 9806 9807 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 9808 } 9809 9810 9811 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 9812 { 9813 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 9814 kvm_x86_ops.nested_ops->triple_fault(vcpu); 9815 return 1; 9816 } 9817 9818 return kvm_x86_ops.nested_ops->check_events(vcpu); 9819 } 9820 9821 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 9822 { 9823 trace_kvm_inj_exception(vcpu->arch.exception.vector, 9824 vcpu->arch.exception.has_error_code, 9825 vcpu->arch.exception.error_code, 9826 vcpu->arch.exception.injected); 9827 9828 if (vcpu->arch.exception.error_code && !is_protmode(vcpu)) 9829 vcpu->arch.exception.error_code = false; 9830 static_call(kvm_x86_inject_exception)(vcpu); 9831 } 9832 9833 /* 9834 * Check for any event (interrupt or exception) that is ready to be injected, 9835 * and if there is at least one event, inject the event with the highest 9836 * priority. This handles both "pending" events, i.e. events that have never 9837 * been injected into the guest, and "injected" events, i.e. events that were 9838 * injected as part of a previous VM-Enter, but weren't successfully delivered 9839 * and need to be re-injected. 9840 * 9841 * Note, this is not guaranteed to be invoked on a guest instruction boundary, 9842 * i.e. doesn't guarantee that there's an event window in the guest. KVM must 9843 * be able to inject exceptions in the "middle" of an instruction, and so must 9844 * also be able to re-inject NMIs and IRQs in the middle of an instruction. 9845 * I.e. for exceptions and re-injected events, NOT invoking this on instruction 9846 * boundaries is necessary and correct. 9847 * 9848 * For simplicity, KVM uses a single path to inject all events (except events 9849 * that are injected directly from L1 to L2) and doesn't explicitly track 9850 * instruction boundaries for asynchronous events. However, because VM-Exits 9851 * that can occur during instruction execution typically result in KVM skipping 9852 * the instruction or injecting an exception, e.g. instruction and exception 9853 * intercepts, and because pending exceptions have higher priority than pending 9854 * interrupts, KVM still honors instruction boundaries in most scenarios. 9855 * 9856 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip 9857 * the instruction or inject an exception, then KVM can incorrecty inject a new 9858 * asynchrounous event if the event became pending after the CPU fetched the 9859 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) 9860 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be 9861 * injected on the restarted instruction instead of being deferred until the 9862 * instruction completes. 9863 * 9864 * In practice, this virtualization hole is unlikely to be observed by the 9865 * guest, and even less likely to cause functional problems. To detect the 9866 * hole, the guest would have to trigger an event on a side effect of an early 9867 * phase of instruction execution, e.g. on the instruction fetch from memory. 9868 * And for it to be a functional problem, the guest would need to depend on the 9869 * ordering between that side effect, the instruction completing, _and_ the 9870 * delivery of the asynchronous event. 9871 */ 9872 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, 9873 bool *req_immediate_exit) 9874 { 9875 bool can_inject; 9876 int r; 9877 9878 /* 9879 * Process nested events first, as nested VM-Exit supercedes event 9880 * re-injection. If there's an event queued for re-injection, it will 9881 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. 9882 */ 9883 if (is_guest_mode(vcpu)) 9884 r = kvm_check_nested_events(vcpu); 9885 else 9886 r = 0; 9887 9888 /* 9889 * Re-inject exceptions and events *especially* if immediate entry+exit 9890 * to/from L2 is needed, as any event that has already been injected 9891 * into L2 needs to complete its lifecycle before injecting a new event. 9892 * 9893 * Don't re-inject an NMI or interrupt if there is a pending exception. 9894 * This collision arises if an exception occurred while vectoring the 9895 * injected event, KVM intercepted said exception, and KVM ultimately 9896 * determined the fault belongs to the guest and queues the exception 9897 * for injection back into the guest. 9898 * 9899 * "Injected" interrupts can also collide with pending exceptions if 9900 * userspace ignores the "ready for injection" flag and blindly queues 9901 * an interrupt. In that case, prioritizing the exception is correct, 9902 * as the exception "occurred" before the exit to userspace. Trap-like 9903 * exceptions, e.g. most #DBs, have higher priority than interrupts. 9904 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest 9905 * priority, they're only generated (pended) during instruction 9906 * execution, and interrupts are recognized at instruction boundaries. 9907 * Thus a pending fault-like exception means the fault occurred on the 9908 * *previous* instruction and must be serviced prior to recognizing any 9909 * new events in order to fully complete the previous instruction. 9910 */ 9911 if (vcpu->arch.exception.injected) 9912 kvm_inject_exception(vcpu); 9913 else if (kvm_is_exception_pending(vcpu)) 9914 ; /* see above */ 9915 else if (vcpu->arch.nmi_injected) 9916 static_call(kvm_x86_inject_nmi)(vcpu); 9917 else if (vcpu->arch.interrupt.injected) 9918 static_call(kvm_x86_inject_irq)(vcpu, true); 9919 9920 /* 9921 * Exceptions that morph to VM-Exits are handled above, and pending 9922 * exceptions on top of injected exceptions that do not VM-Exit should 9923 * either morph to #DF or, sadly, override the injected exception. 9924 */ 9925 WARN_ON_ONCE(vcpu->arch.exception.injected && 9926 vcpu->arch.exception.pending); 9927 9928 /* 9929 * Bail if immediate entry+exit to/from the guest is needed to complete 9930 * nested VM-Enter or event re-injection so that a different pending 9931 * event can be serviced (or if KVM needs to exit to userspace). 9932 * 9933 * Otherwise, continue processing events even if VM-Exit occurred. The 9934 * VM-Exit will have cleared exceptions that were meant for L2, but 9935 * there may now be events that can be injected into L1. 9936 */ 9937 if (r < 0) 9938 goto out; 9939 9940 /* 9941 * A pending exception VM-Exit should either result in nested VM-Exit 9942 * or force an immediate re-entry and exit to/from L2, and exception 9943 * VM-Exits cannot be injected (flag should _never_ be set). 9944 */ 9945 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || 9946 vcpu->arch.exception_vmexit.pending); 9947 9948 /* 9949 * New events, other than exceptions, cannot be injected if KVM needs 9950 * to re-inject a previous event. See above comments on re-injecting 9951 * for why pending exceptions get priority. 9952 */ 9953 can_inject = !kvm_event_needs_reinjection(vcpu); 9954 9955 if (vcpu->arch.exception.pending) { 9956 /* 9957 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS 9958 * value pushed on the stack. Trap-like exception and all #DBs 9959 * leave RF as-is (KVM follows Intel's behavior in this regard; 9960 * AMD states that code breakpoint #DBs excplitly clear RF=0). 9961 * 9962 * Note, most versions of Intel's SDM and AMD's APM incorrectly 9963 * describe the behavior of General Detect #DBs, which are 9964 * fault-like. They do _not_ set RF, a la code breakpoints. 9965 */ 9966 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) 9967 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 9968 X86_EFLAGS_RF); 9969 9970 if (vcpu->arch.exception.vector == DB_VECTOR) { 9971 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); 9972 if (vcpu->arch.dr7 & DR7_GD) { 9973 vcpu->arch.dr7 &= ~DR7_GD; 9974 kvm_update_dr7(vcpu); 9975 } 9976 } 9977 9978 kvm_inject_exception(vcpu); 9979 9980 vcpu->arch.exception.pending = false; 9981 vcpu->arch.exception.injected = true; 9982 9983 can_inject = false; 9984 } 9985 9986 /* Don't inject interrupts if the user asked to avoid doing so */ 9987 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 9988 return 0; 9989 9990 /* 9991 * Finally, inject interrupt events. If an event cannot be injected 9992 * due to architectural conditions (e.g. IF=0) a window-open exit 9993 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 9994 * and can architecturally be injected, but we cannot do it right now: 9995 * an interrupt could have arrived just now and we have to inject it 9996 * as a vmexit, or there could already an event in the queue, which is 9997 * indicated by can_inject. In that case we request an immediate exit 9998 * in order to make progress and get back here for another iteration. 9999 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 10000 */ 10001 if (vcpu->arch.smi_pending) { 10002 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 10003 if (r < 0) 10004 goto out; 10005 if (r) { 10006 vcpu->arch.smi_pending = false; 10007 ++vcpu->arch.smi_count; 10008 enter_smm(vcpu); 10009 can_inject = false; 10010 } else 10011 static_call(kvm_x86_enable_smi_window)(vcpu); 10012 } 10013 10014 if (vcpu->arch.nmi_pending) { 10015 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 10016 if (r < 0) 10017 goto out; 10018 if (r) { 10019 --vcpu->arch.nmi_pending; 10020 vcpu->arch.nmi_injected = true; 10021 static_call(kvm_x86_inject_nmi)(vcpu); 10022 can_inject = false; 10023 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 10024 } 10025 if (vcpu->arch.nmi_pending) 10026 static_call(kvm_x86_enable_nmi_window)(vcpu); 10027 } 10028 10029 if (kvm_cpu_has_injectable_intr(vcpu)) { 10030 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 10031 if (r < 0) 10032 goto out; 10033 if (r) { 10034 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false); 10035 static_call(kvm_x86_inject_irq)(vcpu, false); 10036 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 10037 } 10038 if (kvm_cpu_has_injectable_intr(vcpu)) 10039 static_call(kvm_x86_enable_irq_window)(vcpu); 10040 } 10041 10042 if (is_guest_mode(vcpu) && 10043 kvm_x86_ops.nested_ops->has_events && 10044 kvm_x86_ops.nested_ops->has_events(vcpu)) 10045 *req_immediate_exit = true; 10046 10047 /* 10048 * KVM must never queue a new exception while injecting an event; KVM 10049 * is done emulating and should only propagate the to-be-injected event 10050 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an 10051 * infinite loop as KVM will bail from VM-Enter to inject the pending 10052 * exception and start the cycle all over. 10053 * 10054 * Exempt triple faults as they have special handling and won't put the 10055 * vCPU into an infinite loop. Triple fault can be queued when running 10056 * VMX without unrestricted guest, as that requires KVM to emulate Real 10057 * Mode events (see kvm_inject_realmode_interrupt()). 10058 */ 10059 WARN_ON_ONCE(vcpu->arch.exception.pending || 10060 vcpu->arch.exception_vmexit.pending); 10061 return 0; 10062 10063 out: 10064 if (r == -EBUSY) { 10065 *req_immediate_exit = true; 10066 r = 0; 10067 } 10068 return r; 10069 } 10070 10071 static void process_nmi(struct kvm_vcpu *vcpu) 10072 { 10073 unsigned limit = 2; 10074 10075 /* 10076 * x86 is limited to one NMI running, and one NMI pending after it. 10077 * If an NMI is already in progress, limit further NMIs to just one. 10078 * Otherwise, allow two (and we'll inject the first one immediately). 10079 */ 10080 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 10081 limit = 1; 10082 10083 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 10084 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 10085 kvm_make_request(KVM_REQ_EVENT, vcpu); 10086 } 10087 10088 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg) 10089 { 10090 u32 flags = 0; 10091 flags |= seg->g << 23; 10092 flags |= seg->db << 22; 10093 flags |= seg->l << 21; 10094 flags |= seg->avl << 20; 10095 flags |= seg->present << 15; 10096 flags |= seg->dpl << 13; 10097 flags |= seg->s << 12; 10098 flags |= seg->type << 8; 10099 return flags; 10100 } 10101 10102 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n) 10103 { 10104 struct kvm_segment seg; 10105 int offset; 10106 10107 kvm_get_segment(vcpu, &seg, n); 10108 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector); 10109 10110 if (n < 3) 10111 offset = 0x7f84 + n * 12; 10112 else 10113 offset = 0x7f2c + (n - 3) * 12; 10114 10115 put_smstate(u32, buf, offset + 8, seg.base); 10116 put_smstate(u32, buf, offset + 4, seg.limit); 10117 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg)); 10118 } 10119 10120 #ifdef CONFIG_X86_64 10121 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n) 10122 { 10123 struct kvm_segment seg; 10124 int offset; 10125 u16 flags; 10126 10127 kvm_get_segment(vcpu, &seg, n); 10128 offset = 0x7e00 + n * 16; 10129 10130 flags = enter_smm_get_segment_flags(&seg) >> 8; 10131 put_smstate(u16, buf, offset, seg.selector); 10132 put_smstate(u16, buf, offset + 2, flags); 10133 put_smstate(u32, buf, offset + 4, seg.limit); 10134 put_smstate(u64, buf, offset + 8, seg.base); 10135 } 10136 #endif 10137 10138 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf) 10139 { 10140 struct desc_ptr dt; 10141 struct kvm_segment seg; 10142 unsigned long val; 10143 int i; 10144 10145 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu)); 10146 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu)); 10147 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu)); 10148 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu)); 10149 10150 for (i = 0; i < 8; i++) 10151 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i)); 10152 10153 kvm_get_dr(vcpu, 6, &val); 10154 put_smstate(u32, buf, 0x7fcc, (u32)val); 10155 kvm_get_dr(vcpu, 7, &val); 10156 put_smstate(u32, buf, 0x7fc8, (u32)val); 10157 10158 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 10159 put_smstate(u32, buf, 0x7fc4, seg.selector); 10160 put_smstate(u32, buf, 0x7f64, seg.base); 10161 put_smstate(u32, buf, 0x7f60, seg.limit); 10162 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg)); 10163 10164 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 10165 put_smstate(u32, buf, 0x7fc0, seg.selector); 10166 put_smstate(u32, buf, 0x7f80, seg.base); 10167 put_smstate(u32, buf, 0x7f7c, seg.limit); 10168 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg)); 10169 10170 static_call(kvm_x86_get_gdt)(vcpu, &dt); 10171 put_smstate(u32, buf, 0x7f74, dt.address); 10172 put_smstate(u32, buf, 0x7f70, dt.size); 10173 10174 static_call(kvm_x86_get_idt)(vcpu, &dt); 10175 put_smstate(u32, buf, 0x7f58, dt.address); 10176 put_smstate(u32, buf, 0x7f54, dt.size); 10177 10178 for (i = 0; i < 6; i++) 10179 enter_smm_save_seg_32(vcpu, buf, i); 10180 10181 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu)); 10182 10183 /* revision id */ 10184 put_smstate(u32, buf, 0x7efc, 0x00020000); 10185 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase); 10186 } 10187 10188 #ifdef CONFIG_X86_64 10189 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf) 10190 { 10191 struct desc_ptr dt; 10192 struct kvm_segment seg; 10193 unsigned long val; 10194 int i; 10195 10196 for (i = 0; i < 16; i++) 10197 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i)); 10198 10199 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu)); 10200 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu)); 10201 10202 kvm_get_dr(vcpu, 6, &val); 10203 put_smstate(u64, buf, 0x7f68, val); 10204 kvm_get_dr(vcpu, 7, &val); 10205 put_smstate(u64, buf, 0x7f60, val); 10206 10207 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu)); 10208 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu)); 10209 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu)); 10210 10211 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase); 10212 10213 /* revision id */ 10214 put_smstate(u32, buf, 0x7efc, 0x00020064); 10215 10216 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer); 10217 10218 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 10219 put_smstate(u16, buf, 0x7e90, seg.selector); 10220 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8); 10221 put_smstate(u32, buf, 0x7e94, seg.limit); 10222 put_smstate(u64, buf, 0x7e98, seg.base); 10223 10224 static_call(kvm_x86_get_idt)(vcpu, &dt); 10225 put_smstate(u32, buf, 0x7e84, dt.size); 10226 put_smstate(u64, buf, 0x7e88, dt.address); 10227 10228 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 10229 put_smstate(u16, buf, 0x7e70, seg.selector); 10230 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8); 10231 put_smstate(u32, buf, 0x7e74, seg.limit); 10232 put_smstate(u64, buf, 0x7e78, seg.base); 10233 10234 static_call(kvm_x86_get_gdt)(vcpu, &dt); 10235 put_smstate(u32, buf, 0x7e64, dt.size); 10236 put_smstate(u64, buf, 0x7e68, dt.address); 10237 10238 for (i = 0; i < 6; i++) 10239 enter_smm_save_seg_64(vcpu, buf, i); 10240 } 10241 #endif 10242 10243 static void enter_smm(struct kvm_vcpu *vcpu) 10244 { 10245 struct kvm_segment cs, ds; 10246 struct desc_ptr dt; 10247 unsigned long cr0; 10248 char buf[512]; 10249 10250 memset(buf, 0, 512); 10251 #ifdef CONFIG_X86_64 10252 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 10253 enter_smm_save_state_64(vcpu, buf); 10254 else 10255 #endif 10256 enter_smm_save_state_32(vcpu, buf); 10257 10258 /* 10259 * Give enter_smm() a chance to make ISA-specific changes to the vCPU 10260 * state (e.g. leave guest mode) after we've saved the state into the 10261 * SMM state-save area. 10262 */ 10263 static_call(kvm_x86_enter_smm)(vcpu, buf); 10264 10265 kvm_smm_changed(vcpu, true); 10266 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf)); 10267 10268 if (static_call(kvm_x86_get_nmi_mask)(vcpu)) 10269 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 10270 else 10271 static_call(kvm_x86_set_nmi_mask)(vcpu, true); 10272 10273 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 10274 kvm_rip_write(vcpu, 0x8000); 10275 10276 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG); 10277 static_call(kvm_x86_set_cr0)(vcpu, cr0); 10278 vcpu->arch.cr0 = cr0; 10279 10280 static_call(kvm_x86_set_cr4)(vcpu, 0); 10281 10282 /* Undocumented: IDT limit is set to zero on entry to SMM. */ 10283 dt.address = dt.size = 0; 10284 static_call(kvm_x86_set_idt)(vcpu, &dt); 10285 10286 kvm_set_dr(vcpu, 7, DR7_FIXED_1); 10287 10288 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff; 10289 cs.base = vcpu->arch.smbase; 10290 10291 ds.selector = 0; 10292 ds.base = 0; 10293 10294 cs.limit = ds.limit = 0xffffffff; 10295 cs.type = ds.type = 0x3; 10296 cs.dpl = ds.dpl = 0; 10297 cs.db = ds.db = 0; 10298 cs.s = ds.s = 1; 10299 cs.l = ds.l = 0; 10300 cs.g = ds.g = 1; 10301 cs.avl = ds.avl = 0; 10302 cs.present = ds.present = 1; 10303 cs.unusable = ds.unusable = 0; 10304 cs.padding = ds.padding = 0; 10305 10306 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 10307 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS); 10308 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES); 10309 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS); 10310 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS); 10311 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS); 10312 10313 #ifdef CONFIG_X86_64 10314 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 10315 static_call(kvm_x86_set_efer)(vcpu, 0); 10316 #endif 10317 10318 kvm_update_cpuid_runtime(vcpu); 10319 kvm_mmu_reset_context(vcpu); 10320 } 10321 10322 static void process_smi(struct kvm_vcpu *vcpu) 10323 { 10324 vcpu->arch.smi_pending = true; 10325 kvm_make_request(KVM_REQ_EVENT, vcpu); 10326 } 10327 10328 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10329 unsigned long *vcpu_bitmap) 10330 { 10331 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10332 } 10333 10334 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10335 { 10336 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10337 } 10338 10339 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10340 { 10341 struct kvm_lapic *apic = vcpu->arch.apic; 10342 bool activate; 10343 10344 if (!lapic_in_kernel(vcpu)) 10345 return; 10346 10347 down_read(&vcpu->kvm->arch.apicv_update_lock); 10348 preempt_disable(); 10349 10350 /* Do not activate APICV when APIC is disabled */ 10351 activate = kvm_vcpu_apicv_activated(vcpu) && 10352 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10353 10354 if (apic->apicv_active == activate) 10355 goto out; 10356 10357 apic->apicv_active = activate; 10358 kvm_apic_update_apicv(vcpu); 10359 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 10360 10361 /* 10362 * When APICv gets disabled, we may still have injected interrupts 10363 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10364 * still active when the interrupt got accepted. Make sure 10365 * kvm_check_and_inject_events() is called to check for that. 10366 */ 10367 if (!apic->apicv_active) 10368 kvm_make_request(KVM_REQ_EVENT, vcpu); 10369 10370 out: 10371 preempt_enable(); 10372 up_read(&vcpu->kvm->arch.apicv_update_lock); 10373 } 10374 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv); 10375 10376 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10377 enum kvm_apicv_inhibit reason, bool set) 10378 { 10379 unsigned long old, new; 10380 10381 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10382 10383 if (!static_call(kvm_x86_check_apicv_inhibit_reasons)(reason)) 10384 return; 10385 10386 old = new = kvm->arch.apicv_inhibit_reasons; 10387 10388 set_or_clear_apicv_inhibit(&new, reason, set); 10389 10390 if (!!old != !!new) { 10391 /* 10392 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10393 * false positives in the sanity check WARN in svm_vcpu_run(). 10394 * This task will wait for all vCPUs to ack the kick IRQ before 10395 * updating apicv_inhibit_reasons, and all other vCPUs will 10396 * block on acquiring apicv_update_lock so that vCPUs can't 10397 * redo svm_vcpu_run() without seeing the new inhibit state. 10398 * 10399 * Note, holding apicv_update_lock and taking it in the read 10400 * side (handling the request) also prevents other vCPUs from 10401 * servicing the request with a stale apicv_inhibit_reasons. 10402 */ 10403 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10404 kvm->arch.apicv_inhibit_reasons = new; 10405 if (new) { 10406 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10407 int idx = srcu_read_lock(&kvm->srcu); 10408 10409 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10410 srcu_read_unlock(&kvm->srcu, idx); 10411 } 10412 } else { 10413 kvm->arch.apicv_inhibit_reasons = new; 10414 } 10415 } 10416 10417 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10418 enum kvm_apicv_inhibit reason, bool set) 10419 { 10420 if (!enable_apicv) 10421 return; 10422 10423 down_write(&kvm->arch.apicv_update_lock); 10424 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10425 up_write(&kvm->arch.apicv_update_lock); 10426 } 10427 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 10428 10429 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10430 { 10431 if (!kvm_apic_present(vcpu)) 10432 return; 10433 10434 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10435 10436 if (irqchip_split(vcpu->kvm)) 10437 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10438 else { 10439 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10440 if (ioapic_in_kernel(vcpu->kvm)) 10441 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10442 } 10443 10444 if (is_guest_mode(vcpu)) 10445 vcpu->arch.load_eoi_exitmap_pending = true; 10446 else 10447 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10448 } 10449 10450 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10451 { 10452 u64 eoi_exit_bitmap[4]; 10453 10454 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10455 return; 10456 10457 if (to_hv_vcpu(vcpu)) { 10458 bitmap_or((ulong *)eoi_exit_bitmap, 10459 vcpu->arch.ioapic_handled_vectors, 10460 to_hv_synic(vcpu)->vec_bitmap, 256); 10461 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 10462 return; 10463 } 10464 10465 static_call_cond(kvm_x86_load_eoi_exitmap)( 10466 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 10467 } 10468 10469 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 10470 unsigned long start, unsigned long end) 10471 { 10472 unsigned long apic_address; 10473 10474 /* 10475 * The physical address of apic access page is stored in the VMCS. 10476 * Update it when it becomes invalid. 10477 */ 10478 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 10479 if (start <= apic_address && apic_address < end) 10480 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 10481 } 10482 10483 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 10484 { 10485 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm); 10486 } 10487 10488 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10489 { 10490 if (!lapic_in_kernel(vcpu)) 10491 return; 10492 10493 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu); 10494 } 10495 10496 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 10497 { 10498 smp_send_reschedule(vcpu->cpu); 10499 } 10500 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 10501 10502 /* 10503 * Called within kvm->srcu read side. 10504 * Returns 1 to let vcpu_run() continue the guest execution loop without 10505 * exiting to the userspace. Otherwise, the value will be returned to the 10506 * userspace. 10507 */ 10508 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10509 { 10510 int r; 10511 bool req_int_win = 10512 dm_request_for_irq_injection(vcpu) && 10513 kvm_cpu_accept_dm_intr(vcpu); 10514 fastpath_t exit_fastpath; 10515 10516 bool req_immediate_exit = false; 10517 10518 /* Forbid vmenter if vcpu dirty ring is soft-full */ 10519 if (unlikely(vcpu->kvm->dirty_ring_size && 10520 kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) { 10521 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL; 10522 trace_kvm_dirty_ring_exit(vcpu); 10523 r = 0; 10524 goto out; 10525 } 10526 10527 if (kvm_request_pending(vcpu)) { 10528 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10529 r = -EIO; 10530 goto out; 10531 } 10532 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10533 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10534 r = 0; 10535 goto out; 10536 } 10537 } 10538 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10539 kvm_mmu_free_obsolete_roots(vcpu); 10540 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10541 __kvm_migrate_timers(vcpu); 10542 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10543 kvm_update_masterclock(vcpu->kvm); 10544 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10545 kvm_gen_kvmclock_update(vcpu); 10546 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10547 r = kvm_guest_time_update(vcpu); 10548 if (unlikely(r)) 10549 goto out; 10550 } 10551 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10552 kvm_mmu_sync_roots(vcpu); 10553 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10554 kvm_mmu_load_pgd(vcpu); 10555 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { 10556 kvm_vcpu_flush_tlb_all(vcpu); 10557 10558 /* Flushing all ASIDs flushes the current ASID... */ 10559 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 10560 } 10561 kvm_service_local_tlb_flush_requests(vcpu); 10562 10563 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10564 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10565 r = 0; 10566 goto out; 10567 } 10568 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10569 if (is_guest_mode(vcpu)) { 10570 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10571 } else { 10572 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10573 vcpu->mmio_needed = 0; 10574 r = 0; 10575 goto out; 10576 } 10577 } 10578 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10579 /* Page is swapped out. Do synthetic halt */ 10580 vcpu->arch.apf.halted = true; 10581 r = 1; 10582 goto out; 10583 } 10584 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10585 record_steal_time(vcpu); 10586 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10587 process_smi(vcpu); 10588 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10589 process_nmi(vcpu); 10590 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10591 kvm_pmu_handle_event(vcpu); 10592 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10593 kvm_pmu_deliver_pmi(vcpu); 10594 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10595 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10596 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10597 vcpu->arch.ioapic_handled_vectors)) { 10598 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10599 vcpu->run->eoi.vector = 10600 vcpu->arch.pending_ioapic_eoi; 10601 r = 0; 10602 goto out; 10603 } 10604 } 10605 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10606 vcpu_scan_ioapic(vcpu); 10607 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10608 vcpu_load_eoi_exitmap(vcpu); 10609 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10610 kvm_vcpu_reload_apic_access_page(vcpu); 10611 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10612 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10613 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10614 vcpu->run->system_event.ndata = 0; 10615 r = 0; 10616 goto out; 10617 } 10618 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10619 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10620 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10621 vcpu->run->system_event.ndata = 0; 10622 r = 0; 10623 goto out; 10624 } 10625 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10626 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10627 10628 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10629 vcpu->run->hyperv = hv_vcpu->exit; 10630 r = 0; 10631 goto out; 10632 } 10633 10634 /* 10635 * KVM_REQ_HV_STIMER has to be processed after 10636 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10637 * depend on the guest clock being up-to-date 10638 */ 10639 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10640 kvm_hv_process_stimers(vcpu); 10641 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10642 kvm_vcpu_update_apicv(vcpu); 10643 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10644 kvm_check_async_pf_completion(vcpu); 10645 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10646 static_call(kvm_x86_msr_filter_changed)(vcpu); 10647 10648 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10649 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 10650 } 10651 10652 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10653 kvm_xen_has_interrupt(vcpu)) { 10654 ++vcpu->stat.req_event; 10655 r = kvm_apic_accept_events(vcpu); 10656 if (r < 0) { 10657 r = 0; 10658 goto out; 10659 } 10660 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10661 r = 1; 10662 goto out; 10663 } 10664 10665 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); 10666 if (r < 0) { 10667 r = 0; 10668 goto out; 10669 } 10670 if (req_int_win) 10671 static_call(kvm_x86_enable_irq_window)(vcpu); 10672 10673 if (kvm_lapic_enabled(vcpu)) { 10674 update_cr8_intercept(vcpu); 10675 kvm_lapic_sync_to_vapic(vcpu); 10676 } 10677 } 10678 10679 r = kvm_mmu_reload(vcpu); 10680 if (unlikely(r)) { 10681 goto cancel_injection; 10682 } 10683 10684 preempt_disable(); 10685 10686 static_call(kvm_x86_prepare_switch_to_guest)(vcpu); 10687 10688 /* 10689 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10690 * IPI are then delayed after guest entry, which ensures that they 10691 * result in virtual interrupt delivery. 10692 */ 10693 local_irq_disable(); 10694 10695 /* Store vcpu->apicv_active before vcpu->mode. */ 10696 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10697 10698 kvm_vcpu_srcu_read_unlock(vcpu); 10699 10700 /* 10701 * 1) We should set ->mode before checking ->requests. Please see 10702 * the comment in kvm_vcpu_exiting_guest_mode(). 10703 * 10704 * 2) For APICv, we should set ->mode before checking PID.ON. This 10705 * pairs with the memory barrier implicit in pi_test_and_set_on 10706 * (see vmx_deliver_posted_interrupt). 10707 * 10708 * 3) This also orders the write to mode from any reads to the page 10709 * tables done while the VCPU is running. Please see the comment 10710 * in kvm_flush_remote_tlbs. 10711 */ 10712 smp_mb__after_srcu_read_unlock(); 10713 10714 /* 10715 * Process pending posted interrupts to handle the case where the 10716 * notification IRQ arrived in the host, or was never sent (because the 10717 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10718 * status, KVM doesn't update assigned devices when APICv is inhibited, 10719 * i.e. they can post interrupts even if APICv is temporarily disabled. 10720 */ 10721 if (kvm_lapic_enabled(vcpu)) 10722 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10723 10724 if (kvm_vcpu_exit_request(vcpu)) { 10725 vcpu->mode = OUTSIDE_GUEST_MODE; 10726 smp_wmb(); 10727 local_irq_enable(); 10728 preempt_enable(); 10729 kvm_vcpu_srcu_read_lock(vcpu); 10730 r = 1; 10731 goto cancel_injection; 10732 } 10733 10734 if (req_immediate_exit) { 10735 kvm_make_request(KVM_REQ_EVENT, vcpu); 10736 static_call(kvm_x86_request_immediate_exit)(vcpu); 10737 } 10738 10739 fpregs_assert_state_consistent(); 10740 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10741 switch_fpu_return(); 10742 10743 if (vcpu->arch.guest_fpu.xfd_err) 10744 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10745 10746 if (unlikely(vcpu->arch.switch_db_regs)) { 10747 set_debugreg(0, 7); 10748 set_debugreg(vcpu->arch.eff_db[0], 0); 10749 set_debugreg(vcpu->arch.eff_db[1], 1); 10750 set_debugreg(vcpu->arch.eff_db[2], 2); 10751 set_debugreg(vcpu->arch.eff_db[3], 3); 10752 } else if (unlikely(hw_breakpoint_active())) { 10753 set_debugreg(0, 7); 10754 } 10755 10756 guest_timing_enter_irqoff(); 10757 10758 for (;;) { 10759 /* 10760 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10761 * update must kick and wait for all vCPUs before toggling the 10762 * per-VM state, and responsing vCPUs must wait for the update 10763 * to complete before servicing KVM_REQ_APICV_UPDATE. 10764 */ 10765 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 10766 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 10767 10768 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu); 10769 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 10770 break; 10771 10772 if (kvm_lapic_enabled(vcpu)) 10773 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10774 10775 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 10776 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 10777 break; 10778 } 10779 } 10780 10781 /* 10782 * Do this here before restoring debug registers on the host. And 10783 * since we do this before handling the vmexit, a DR access vmexit 10784 * can (a) read the correct value of the debug registers, (b) set 10785 * KVM_DEBUGREG_WONT_EXIT again. 10786 */ 10787 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 10788 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 10789 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 10790 kvm_update_dr0123(vcpu); 10791 kvm_update_dr7(vcpu); 10792 } 10793 10794 /* 10795 * If the guest has used debug registers, at least dr7 10796 * will be disabled while returning to the host. 10797 * If we don't have active breakpoints in the host, we don't 10798 * care about the messed up debug address registers. But if 10799 * we have some of them active, restore the old state. 10800 */ 10801 if (hw_breakpoint_active()) 10802 hw_breakpoint_restore(); 10803 10804 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 10805 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 10806 10807 vcpu->mode = OUTSIDE_GUEST_MODE; 10808 smp_wmb(); 10809 10810 /* 10811 * Sync xfd before calling handle_exit_irqoff() which may 10812 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 10813 * in #NM irqoff handler). 10814 */ 10815 if (vcpu->arch.xfd_no_write_intercept) 10816 fpu_sync_guest_vmexit_xfd_state(); 10817 10818 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 10819 10820 if (vcpu->arch.guest_fpu.xfd_err) 10821 wrmsrl(MSR_IA32_XFD_ERR, 0); 10822 10823 /* 10824 * Consume any pending interrupts, including the possible source of 10825 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 10826 * An instruction is required after local_irq_enable() to fully unblock 10827 * interrupts on processors that implement an interrupt shadow, the 10828 * stat.exits increment will do nicely. 10829 */ 10830 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 10831 local_irq_enable(); 10832 ++vcpu->stat.exits; 10833 local_irq_disable(); 10834 kvm_after_interrupt(vcpu); 10835 10836 /* 10837 * Wait until after servicing IRQs to account guest time so that any 10838 * ticks that occurred while running the guest are properly accounted 10839 * to the guest. Waiting until IRQs are enabled degrades the accuracy 10840 * of accounting via context tracking, but the loss of accuracy is 10841 * acceptable for all known use cases. 10842 */ 10843 guest_timing_exit_irqoff(); 10844 10845 local_irq_enable(); 10846 preempt_enable(); 10847 10848 kvm_vcpu_srcu_read_lock(vcpu); 10849 10850 /* 10851 * Profile KVM exit RIPs: 10852 */ 10853 if (unlikely(prof_on == KVM_PROFILING)) { 10854 unsigned long rip = kvm_rip_read(vcpu); 10855 profile_hit(KVM_PROFILING, (void *)rip); 10856 } 10857 10858 if (unlikely(vcpu->arch.tsc_always_catchup)) 10859 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 10860 10861 if (vcpu->arch.apic_attention) 10862 kvm_lapic_sync_from_vapic(vcpu); 10863 10864 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 10865 return r; 10866 10867 cancel_injection: 10868 if (req_immediate_exit) 10869 kvm_make_request(KVM_REQ_EVENT, vcpu); 10870 static_call(kvm_x86_cancel_injection)(vcpu); 10871 if (unlikely(vcpu->arch.apic_attention)) 10872 kvm_lapic_sync_from_vapic(vcpu); 10873 out: 10874 return r; 10875 } 10876 10877 /* Called within kvm->srcu read side. */ 10878 static inline int vcpu_block(struct kvm_vcpu *vcpu) 10879 { 10880 bool hv_timer; 10881 10882 if (!kvm_arch_vcpu_runnable(vcpu)) { 10883 /* 10884 * Switch to the software timer before halt-polling/blocking as 10885 * the guest's timer may be a break event for the vCPU, and the 10886 * hypervisor timer runs only when the CPU is in guest mode. 10887 * Switch before halt-polling so that KVM recognizes an expired 10888 * timer before blocking. 10889 */ 10890 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 10891 if (hv_timer) 10892 kvm_lapic_switch_to_sw_timer(vcpu); 10893 10894 kvm_vcpu_srcu_read_unlock(vcpu); 10895 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 10896 kvm_vcpu_halt(vcpu); 10897 else 10898 kvm_vcpu_block(vcpu); 10899 kvm_vcpu_srcu_read_lock(vcpu); 10900 10901 if (hv_timer) 10902 kvm_lapic_switch_to_hv_timer(vcpu); 10903 10904 /* 10905 * If the vCPU is not runnable, a signal or another host event 10906 * of some kind is pending; service it without changing the 10907 * vCPU's activity state. 10908 */ 10909 if (!kvm_arch_vcpu_runnable(vcpu)) 10910 return 1; 10911 } 10912 10913 /* 10914 * Evaluate nested events before exiting the halted state. This allows 10915 * the halt state to be recorded properly in the VMCS12's activity 10916 * state field (AMD does not have a similar field and a VM-Exit always 10917 * causes a spurious wakeup from HLT). 10918 */ 10919 if (is_guest_mode(vcpu)) { 10920 if (kvm_check_nested_events(vcpu) < 0) 10921 return 0; 10922 } 10923 10924 if (kvm_apic_accept_events(vcpu) < 0) 10925 return 0; 10926 switch(vcpu->arch.mp_state) { 10927 case KVM_MP_STATE_HALTED: 10928 case KVM_MP_STATE_AP_RESET_HOLD: 10929 vcpu->arch.pv.pv_unhalted = false; 10930 vcpu->arch.mp_state = 10931 KVM_MP_STATE_RUNNABLE; 10932 fallthrough; 10933 case KVM_MP_STATE_RUNNABLE: 10934 vcpu->arch.apf.halted = false; 10935 break; 10936 case KVM_MP_STATE_INIT_RECEIVED: 10937 break; 10938 default: 10939 WARN_ON_ONCE(1); 10940 break; 10941 } 10942 return 1; 10943 } 10944 10945 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 10946 { 10947 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 10948 !vcpu->arch.apf.halted); 10949 } 10950 10951 /* Called within kvm->srcu read side. */ 10952 static int vcpu_run(struct kvm_vcpu *vcpu) 10953 { 10954 int r; 10955 10956 vcpu->arch.l1tf_flush_l1d = true; 10957 10958 for (;;) { 10959 /* 10960 * If another guest vCPU requests a PV TLB flush in the middle 10961 * of instruction emulation, the rest of the emulation could 10962 * use a stale page translation. Assume that any code after 10963 * this point can start executing an instruction. 10964 */ 10965 vcpu->arch.at_instruction_boundary = false; 10966 if (kvm_vcpu_running(vcpu)) { 10967 r = vcpu_enter_guest(vcpu); 10968 } else { 10969 r = vcpu_block(vcpu); 10970 } 10971 10972 if (r <= 0) 10973 break; 10974 10975 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 10976 if (kvm_xen_has_pending_events(vcpu)) 10977 kvm_xen_inject_pending_events(vcpu); 10978 10979 if (kvm_cpu_has_pending_timer(vcpu)) 10980 kvm_inject_pending_timer_irqs(vcpu); 10981 10982 if (dm_request_for_irq_injection(vcpu) && 10983 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 10984 r = 0; 10985 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 10986 ++vcpu->stat.request_irq_exits; 10987 break; 10988 } 10989 10990 if (__xfer_to_guest_mode_work_pending()) { 10991 kvm_vcpu_srcu_read_unlock(vcpu); 10992 r = xfer_to_guest_mode_handle_work(vcpu); 10993 kvm_vcpu_srcu_read_lock(vcpu); 10994 if (r) 10995 return r; 10996 } 10997 } 10998 10999 return r; 11000 } 11001 11002 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 11003 { 11004 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 11005 } 11006 11007 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 11008 { 11009 BUG_ON(!vcpu->arch.pio.count); 11010 11011 return complete_emulated_io(vcpu); 11012 } 11013 11014 /* 11015 * Implements the following, as a state machine: 11016 * 11017 * read: 11018 * for each fragment 11019 * for each mmio piece in the fragment 11020 * write gpa, len 11021 * exit 11022 * copy data 11023 * execute insn 11024 * 11025 * write: 11026 * for each fragment 11027 * for each mmio piece in the fragment 11028 * write gpa, len 11029 * copy data 11030 * exit 11031 */ 11032 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 11033 { 11034 struct kvm_run *run = vcpu->run; 11035 struct kvm_mmio_fragment *frag; 11036 unsigned len; 11037 11038 BUG_ON(!vcpu->mmio_needed); 11039 11040 /* Complete previous fragment */ 11041 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 11042 len = min(8u, frag->len); 11043 if (!vcpu->mmio_is_write) 11044 memcpy(frag->data, run->mmio.data, len); 11045 11046 if (frag->len <= 8) { 11047 /* Switch to the next fragment. */ 11048 frag++; 11049 vcpu->mmio_cur_fragment++; 11050 } else { 11051 /* Go forward to the next mmio piece. */ 11052 frag->data += len; 11053 frag->gpa += len; 11054 frag->len -= len; 11055 } 11056 11057 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 11058 vcpu->mmio_needed = 0; 11059 11060 /* FIXME: return into emulator if single-stepping. */ 11061 if (vcpu->mmio_is_write) 11062 return 1; 11063 vcpu->mmio_read_completed = 1; 11064 return complete_emulated_io(vcpu); 11065 } 11066 11067 run->exit_reason = KVM_EXIT_MMIO; 11068 run->mmio.phys_addr = frag->gpa; 11069 if (vcpu->mmio_is_write) 11070 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 11071 run->mmio.len = min(8u, frag->len); 11072 run->mmio.is_write = vcpu->mmio_is_write; 11073 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 11074 return 0; 11075 } 11076 11077 /* Swap (qemu) user FPU context for the guest FPU context. */ 11078 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 11079 { 11080 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 11081 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 11082 trace_kvm_fpu(1); 11083 } 11084 11085 /* When vcpu_run ends, restore user space FPU context. */ 11086 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 11087 { 11088 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 11089 ++vcpu->stat.fpu_reload; 11090 trace_kvm_fpu(0); 11091 } 11092 11093 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 11094 { 11095 struct kvm_queued_exception *ex = &vcpu->arch.exception; 11096 struct kvm_run *kvm_run = vcpu->run; 11097 int r; 11098 11099 vcpu_load(vcpu); 11100 kvm_sigset_activate(vcpu); 11101 kvm_run->flags = 0; 11102 kvm_load_guest_fpu(vcpu); 11103 11104 kvm_vcpu_srcu_read_lock(vcpu); 11105 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 11106 if (kvm_run->immediate_exit) { 11107 r = -EINTR; 11108 goto out; 11109 } 11110 /* 11111 * It should be impossible for the hypervisor timer to be in 11112 * use before KVM has ever run the vCPU. 11113 */ 11114 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu)); 11115 11116 kvm_vcpu_srcu_read_unlock(vcpu); 11117 kvm_vcpu_block(vcpu); 11118 kvm_vcpu_srcu_read_lock(vcpu); 11119 11120 if (kvm_apic_accept_events(vcpu) < 0) { 11121 r = 0; 11122 goto out; 11123 } 11124 r = -EAGAIN; 11125 if (signal_pending(current)) { 11126 r = -EINTR; 11127 kvm_run->exit_reason = KVM_EXIT_INTR; 11128 ++vcpu->stat.signal_exits; 11129 } 11130 goto out; 11131 } 11132 11133 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 11134 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 11135 r = -EINVAL; 11136 goto out; 11137 } 11138 11139 if (kvm_run->kvm_dirty_regs) { 11140 r = sync_regs(vcpu); 11141 if (r != 0) 11142 goto out; 11143 } 11144 11145 /* re-sync apic's tpr */ 11146 if (!lapic_in_kernel(vcpu)) { 11147 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 11148 r = -EINVAL; 11149 goto out; 11150 } 11151 } 11152 11153 /* 11154 * If userspace set a pending exception and L2 is active, convert it to 11155 * a pending VM-Exit if L1 wants to intercept the exception. 11156 */ 11157 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && 11158 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, 11159 ex->error_code)) { 11160 kvm_queue_exception_vmexit(vcpu, ex->vector, 11161 ex->has_error_code, ex->error_code, 11162 ex->has_payload, ex->payload); 11163 ex->injected = false; 11164 ex->pending = false; 11165 } 11166 vcpu->arch.exception_from_userspace = false; 11167 11168 if (unlikely(vcpu->arch.complete_userspace_io)) { 11169 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 11170 vcpu->arch.complete_userspace_io = NULL; 11171 r = cui(vcpu); 11172 if (r <= 0) 11173 goto out; 11174 } else { 11175 WARN_ON_ONCE(vcpu->arch.pio.count); 11176 WARN_ON_ONCE(vcpu->mmio_needed); 11177 } 11178 11179 if (kvm_run->immediate_exit) { 11180 r = -EINTR; 11181 goto out; 11182 } 11183 11184 r = static_call(kvm_x86_vcpu_pre_run)(vcpu); 11185 if (r <= 0) 11186 goto out; 11187 11188 r = vcpu_run(vcpu); 11189 11190 out: 11191 kvm_put_guest_fpu(vcpu); 11192 if (kvm_run->kvm_valid_regs) 11193 store_regs(vcpu); 11194 post_kvm_run_save(vcpu); 11195 kvm_vcpu_srcu_read_unlock(vcpu); 11196 11197 kvm_sigset_deactivate(vcpu); 11198 vcpu_put(vcpu); 11199 return r; 11200 } 11201 11202 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11203 { 11204 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 11205 /* 11206 * We are here if userspace calls get_regs() in the middle of 11207 * instruction emulation. Registers state needs to be copied 11208 * back from emulation context to vcpu. Userspace shouldn't do 11209 * that usually, but some bad designed PV devices (vmware 11210 * backdoor interface) need this to work 11211 */ 11212 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 11213 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11214 } 11215 regs->rax = kvm_rax_read(vcpu); 11216 regs->rbx = kvm_rbx_read(vcpu); 11217 regs->rcx = kvm_rcx_read(vcpu); 11218 regs->rdx = kvm_rdx_read(vcpu); 11219 regs->rsi = kvm_rsi_read(vcpu); 11220 regs->rdi = kvm_rdi_read(vcpu); 11221 regs->rsp = kvm_rsp_read(vcpu); 11222 regs->rbp = kvm_rbp_read(vcpu); 11223 #ifdef CONFIG_X86_64 11224 regs->r8 = kvm_r8_read(vcpu); 11225 regs->r9 = kvm_r9_read(vcpu); 11226 regs->r10 = kvm_r10_read(vcpu); 11227 regs->r11 = kvm_r11_read(vcpu); 11228 regs->r12 = kvm_r12_read(vcpu); 11229 regs->r13 = kvm_r13_read(vcpu); 11230 regs->r14 = kvm_r14_read(vcpu); 11231 regs->r15 = kvm_r15_read(vcpu); 11232 #endif 11233 11234 regs->rip = kvm_rip_read(vcpu); 11235 regs->rflags = kvm_get_rflags(vcpu); 11236 } 11237 11238 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11239 { 11240 vcpu_load(vcpu); 11241 __get_regs(vcpu, regs); 11242 vcpu_put(vcpu); 11243 return 0; 11244 } 11245 11246 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11247 { 11248 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 11249 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11250 11251 kvm_rax_write(vcpu, regs->rax); 11252 kvm_rbx_write(vcpu, regs->rbx); 11253 kvm_rcx_write(vcpu, regs->rcx); 11254 kvm_rdx_write(vcpu, regs->rdx); 11255 kvm_rsi_write(vcpu, regs->rsi); 11256 kvm_rdi_write(vcpu, regs->rdi); 11257 kvm_rsp_write(vcpu, regs->rsp); 11258 kvm_rbp_write(vcpu, regs->rbp); 11259 #ifdef CONFIG_X86_64 11260 kvm_r8_write(vcpu, regs->r8); 11261 kvm_r9_write(vcpu, regs->r9); 11262 kvm_r10_write(vcpu, regs->r10); 11263 kvm_r11_write(vcpu, regs->r11); 11264 kvm_r12_write(vcpu, regs->r12); 11265 kvm_r13_write(vcpu, regs->r13); 11266 kvm_r14_write(vcpu, regs->r14); 11267 kvm_r15_write(vcpu, regs->r15); 11268 #endif 11269 11270 kvm_rip_write(vcpu, regs->rip); 11271 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 11272 11273 vcpu->arch.exception.pending = false; 11274 vcpu->arch.exception_vmexit.pending = false; 11275 11276 kvm_make_request(KVM_REQ_EVENT, vcpu); 11277 } 11278 11279 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11280 { 11281 vcpu_load(vcpu); 11282 __set_regs(vcpu, regs); 11283 vcpu_put(vcpu); 11284 return 0; 11285 } 11286 11287 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11288 { 11289 struct desc_ptr dt; 11290 11291 if (vcpu->arch.guest_state_protected) 11292 goto skip_protected_regs; 11293 11294 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11295 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11296 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11297 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11298 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11299 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11300 11301 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11302 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11303 11304 static_call(kvm_x86_get_idt)(vcpu, &dt); 11305 sregs->idt.limit = dt.size; 11306 sregs->idt.base = dt.address; 11307 static_call(kvm_x86_get_gdt)(vcpu, &dt); 11308 sregs->gdt.limit = dt.size; 11309 sregs->gdt.base = dt.address; 11310 11311 sregs->cr2 = vcpu->arch.cr2; 11312 sregs->cr3 = kvm_read_cr3(vcpu); 11313 11314 skip_protected_regs: 11315 sregs->cr0 = kvm_read_cr0(vcpu); 11316 sregs->cr4 = kvm_read_cr4(vcpu); 11317 sregs->cr8 = kvm_get_cr8(vcpu); 11318 sregs->efer = vcpu->arch.efer; 11319 sregs->apic_base = kvm_get_apic_base(vcpu); 11320 } 11321 11322 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11323 { 11324 __get_sregs_common(vcpu, sregs); 11325 11326 if (vcpu->arch.guest_state_protected) 11327 return; 11328 11329 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 11330 set_bit(vcpu->arch.interrupt.nr, 11331 (unsigned long *)sregs->interrupt_bitmap); 11332 } 11333 11334 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11335 { 11336 int i; 11337 11338 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 11339 11340 if (vcpu->arch.guest_state_protected) 11341 return; 11342 11343 if (is_pae_paging(vcpu)) { 11344 for (i = 0 ; i < 4 ; i++) 11345 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 11346 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 11347 } 11348 } 11349 11350 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 11351 struct kvm_sregs *sregs) 11352 { 11353 vcpu_load(vcpu); 11354 __get_sregs(vcpu, sregs); 11355 vcpu_put(vcpu); 11356 return 0; 11357 } 11358 11359 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 11360 struct kvm_mp_state *mp_state) 11361 { 11362 int r; 11363 11364 vcpu_load(vcpu); 11365 if (kvm_mpx_supported()) 11366 kvm_load_guest_fpu(vcpu); 11367 11368 r = kvm_apic_accept_events(vcpu); 11369 if (r < 0) 11370 goto out; 11371 r = 0; 11372 11373 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 11374 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 11375 vcpu->arch.pv.pv_unhalted) 11376 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 11377 else 11378 mp_state->mp_state = vcpu->arch.mp_state; 11379 11380 out: 11381 if (kvm_mpx_supported()) 11382 kvm_put_guest_fpu(vcpu); 11383 vcpu_put(vcpu); 11384 return r; 11385 } 11386 11387 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 11388 struct kvm_mp_state *mp_state) 11389 { 11390 int ret = -EINVAL; 11391 11392 vcpu_load(vcpu); 11393 11394 switch (mp_state->mp_state) { 11395 case KVM_MP_STATE_UNINITIALIZED: 11396 case KVM_MP_STATE_HALTED: 11397 case KVM_MP_STATE_AP_RESET_HOLD: 11398 case KVM_MP_STATE_INIT_RECEIVED: 11399 case KVM_MP_STATE_SIPI_RECEIVED: 11400 if (!lapic_in_kernel(vcpu)) 11401 goto out; 11402 break; 11403 11404 case KVM_MP_STATE_RUNNABLE: 11405 break; 11406 11407 default: 11408 goto out; 11409 } 11410 11411 /* 11412 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow 11413 * forcing the guest into INIT/SIPI if those events are supposed to be 11414 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state 11415 * if an SMI is pending as well. 11416 */ 11417 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) && 11418 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 11419 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 11420 goto out; 11421 11422 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 11423 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 11424 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 11425 } else 11426 vcpu->arch.mp_state = mp_state->mp_state; 11427 kvm_make_request(KVM_REQ_EVENT, vcpu); 11428 11429 ret = 0; 11430 out: 11431 vcpu_put(vcpu); 11432 return ret; 11433 } 11434 11435 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 11436 int reason, bool has_error_code, u32 error_code) 11437 { 11438 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 11439 int ret; 11440 11441 init_emulate_ctxt(vcpu); 11442 11443 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 11444 has_error_code, error_code); 11445 if (ret) { 11446 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11447 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11448 vcpu->run->internal.ndata = 0; 11449 return 0; 11450 } 11451 11452 kvm_rip_write(vcpu, ctxt->eip); 11453 kvm_set_rflags(vcpu, ctxt->eflags); 11454 return 1; 11455 } 11456 EXPORT_SYMBOL_GPL(kvm_task_switch); 11457 11458 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11459 { 11460 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 11461 /* 11462 * When EFER.LME and CR0.PG are set, the processor is in 11463 * 64-bit mode (though maybe in a 32-bit code segment). 11464 * CR4.PAE and EFER.LMA must be set. 11465 */ 11466 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 11467 return false; 11468 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3)) 11469 return false; 11470 } else { 11471 /* 11472 * Not in 64-bit mode: EFER.LMA is clear and the code 11473 * segment cannot be 64-bit. 11474 */ 11475 if (sregs->efer & EFER_LMA || sregs->cs.l) 11476 return false; 11477 } 11478 11479 return kvm_is_valid_cr4(vcpu, sregs->cr4); 11480 } 11481 11482 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 11483 int *mmu_reset_needed, bool update_pdptrs) 11484 { 11485 struct msr_data apic_base_msr; 11486 int idx; 11487 struct desc_ptr dt; 11488 11489 if (!kvm_is_valid_sregs(vcpu, sregs)) 11490 return -EINVAL; 11491 11492 apic_base_msr.data = sregs->apic_base; 11493 apic_base_msr.host_initiated = true; 11494 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 11495 return -EINVAL; 11496 11497 if (vcpu->arch.guest_state_protected) 11498 return 0; 11499 11500 dt.size = sregs->idt.limit; 11501 dt.address = sregs->idt.base; 11502 static_call(kvm_x86_set_idt)(vcpu, &dt); 11503 dt.size = sregs->gdt.limit; 11504 dt.address = sregs->gdt.base; 11505 static_call(kvm_x86_set_gdt)(vcpu, &dt); 11506 11507 vcpu->arch.cr2 = sregs->cr2; 11508 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 11509 vcpu->arch.cr3 = sregs->cr3; 11510 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11511 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); 11512 11513 kvm_set_cr8(vcpu, sregs->cr8); 11514 11515 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 11516 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 11517 11518 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 11519 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 11520 vcpu->arch.cr0 = sregs->cr0; 11521 11522 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 11523 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 11524 11525 if (update_pdptrs) { 11526 idx = srcu_read_lock(&vcpu->kvm->srcu); 11527 if (is_pae_paging(vcpu)) { 11528 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11529 *mmu_reset_needed = 1; 11530 } 11531 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11532 } 11533 11534 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11535 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11536 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11537 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11538 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11539 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11540 11541 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11542 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11543 11544 update_cr8_intercept(vcpu); 11545 11546 /* Older userspace won't unhalt the vcpu on reset. */ 11547 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11548 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11549 !is_protmode(vcpu)) 11550 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11551 11552 return 0; 11553 } 11554 11555 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11556 { 11557 int pending_vec, max_bits; 11558 int mmu_reset_needed = 0; 11559 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11560 11561 if (ret) 11562 return ret; 11563 11564 if (mmu_reset_needed) 11565 kvm_mmu_reset_context(vcpu); 11566 11567 max_bits = KVM_NR_INTERRUPTS; 11568 pending_vec = find_first_bit( 11569 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 11570 11571 if (pending_vec < max_bits) { 11572 kvm_queue_interrupt(vcpu, pending_vec, false); 11573 pr_debug("Set back pending irq %d\n", pending_vec); 11574 kvm_make_request(KVM_REQ_EVENT, vcpu); 11575 } 11576 return 0; 11577 } 11578 11579 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11580 { 11581 int mmu_reset_needed = 0; 11582 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 11583 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 11584 !(sregs2->efer & EFER_LMA); 11585 int i, ret; 11586 11587 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 11588 return -EINVAL; 11589 11590 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 11591 return -EINVAL; 11592 11593 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 11594 &mmu_reset_needed, !valid_pdptrs); 11595 if (ret) 11596 return ret; 11597 11598 if (valid_pdptrs) { 11599 for (i = 0; i < 4 ; i++) 11600 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 11601 11602 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 11603 mmu_reset_needed = 1; 11604 vcpu->arch.pdptrs_from_userspace = true; 11605 } 11606 if (mmu_reset_needed) 11607 kvm_mmu_reset_context(vcpu); 11608 return 0; 11609 } 11610 11611 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 11612 struct kvm_sregs *sregs) 11613 { 11614 int ret; 11615 11616 vcpu_load(vcpu); 11617 ret = __set_sregs(vcpu, sregs); 11618 vcpu_put(vcpu); 11619 return ret; 11620 } 11621 11622 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 11623 { 11624 bool set = false; 11625 struct kvm_vcpu *vcpu; 11626 unsigned long i; 11627 11628 if (!enable_apicv) 11629 return; 11630 11631 down_write(&kvm->arch.apicv_update_lock); 11632 11633 kvm_for_each_vcpu(i, vcpu, kvm) { 11634 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 11635 set = true; 11636 break; 11637 } 11638 } 11639 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 11640 up_write(&kvm->arch.apicv_update_lock); 11641 } 11642 11643 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 11644 struct kvm_guest_debug *dbg) 11645 { 11646 unsigned long rflags; 11647 int i, r; 11648 11649 if (vcpu->arch.guest_state_protected) 11650 return -EINVAL; 11651 11652 vcpu_load(vcpu); 11653 11654 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 11655 r = -EBUSY; 11656 if (kvm_is_exception_pending(vcpu)) 11657 goto out; 11658 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 11659 kvm_queue_exception(vcpu, DB_VECTOR); 11660 else 11661 kvm_queue_exception(vcpu, BP_VECTOR); 11662 } 11663 11664 /* 11665 * Read rflags as long as potentially injected trace flags are still 11666 * filtered out. 11667 */ 11668 rflags = kvm_get_rflags(vcpu); 11669 11670 vcpu->guest_debug = dbg->control; 11671 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 11672 vcpu->guest_debug = 0; 11673 11674 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 11675 for (i = 0; i < KVM_NR_DB_REGS; ++i) 11676 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 11677 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 11678 } else { 11679 for (i = 0; i < KVM_NR_DB_REGS; i++) 11680 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 11681 } 11682 kvm_update_dr7(vcpu); 11683 11684 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 11685 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 11686 11687 /* 11688 * Trigger an rflags update that will inject or remove the trace 11689 * flags. 11690 */ 11691 kvm_set_rflags(vcpu, rflags); 11692 11693 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11694 11695 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 11696 11697 r = 0; 11698 11699 out: 11700 vcpu_put(vcpu); 11701 return r; 11702 } 11703 11704 /* 11705 * Translate a guest virtual address to a guest physical address. 11706 */ 11707 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 11708 struct kvm_translation *tr) 11709 { 11710 unsigned long vaddr = tr->linear_address; 11711 gpa_t gpa; 11712 int idx; 11713 11714 vcpu_load(vcpu); 11715 11716 idx = srcu_read_lock(&vcpu->kvm->srcu); 11717 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 11718 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11719 tr->physical_address = gpa; 11720 tr->valid = gpa != INVALID_GPA; 11721 tr->writeable = 1; 11722 tr->usermode = 0; 11723 11724 vcpu_put(vcpu); 11725 return 0; 11726 } 11727 11728 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11729 { 11730 struct fxregs_state *fxsave; 11731 11732 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11733 return 0; 11734 11735 vcpu_load(vcpu); 11736 11737 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11738 memcpy(fpu->fpr, fxsave->st_space, 128); 11739 fpu->fcw = fxsave->cwd; 11740 fpu->fsw = fxsave->swd; 11741 fpu->ftwx = fxsave->twd; 11742 fpu->last_opcode = fxsave->fop; 11743 fpu->last_ip = fxsave->rip; 11744 fpu->last_dp = fxsave->rdp; 11745 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 11746 11747 vcpu_put(vcpu); 11748 return 0; 11749 } 11750 11751 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11752 { 11753 struct fxregs_state *fxsave; 11754 11755 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11756 return 0; 11757 11758 vcpu_load(vcpu); 11759 11760 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11761 11762 memcpy(fxsave->st_space, fpu->fpr, 128); 11763 fxsave->cwd = fpu->fcw; 11764 fxsave->swd = fpu->fsw; 11765 fxsave->twd = fpu->ftwx; 11766 fxsave->fop = fpu->last_opcode; 11767 fxsave->rip = fpu->last_ip; 11768 fxsave->rdp = fpu->last_dp; 11769 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 11770 11771 vcpu_put(vcpu); 11772 return 0; 11773 } 11774 11775 static void store_regs(struct kvm_vcpu *vcpu) 11776 { 11777 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 11778 11779 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 11780 __get_regs(vcpu, &vcpu->run->s.regs.regs); 11781 11782 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 11783 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 11784 11785 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 11786 kvm_vcpu_ioctl_x86_get_vcpu_events( 11787 vcpu, &vcpu->run->s.regs.events); 11788 } 11789 11790 static int sync_regs(struct kvm_vcpu *vcpu) 11791 { 11792 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 11793 __set_regs(vcpu, &vcpu->run->s.regs.regs); 11794 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 11795 } 11796 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 11797 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 11798 return -EINVAL; 11799 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 11800 } 11801 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 11802 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 11803 vcpu, &vcpu->run->s.regs.events)) 11804 return -EINVAL; 11805 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 11806 } 11807 11808 return 0; 11809 } 11810 11811 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 11812 { 11813 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 11814 pr_warn_once("kvm: SMP vm created on host with unstable TSC; " 11815 "guest TSC will not be reliable\n"); 11816 11817 if (!kvm->arch.max_vcpu_ids) 11818 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 11819 11820 if (id >= kvm->arch.max_vcpu_ids) 11821 return -EINVAL; 11822 11823 return static_call(kvm_x86_vcpu_precreate)(kvm); 11824 } 11825 11826 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 11827 { 11828 struct page *page; 11829 int r; 11830 11831 vcpu->arch.last_vmentry_cpu = -1; 11832 vcpu->arch.regs_avail = ~0; 11833 vcpu->arch.regs_dirty = ~0; 11834 11835 kvm_gpc_init(&vcpu->arch.pv_time); 11836 11837 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 11838 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11839 else 11840 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 11841 11842 r = kvm_mmu_create(vcpu); 11843 if (r < 0) 11844 return r; 11845 11846 if (irqchip_in_kernel(vcpu->kvm)) { 11847 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 11848 if (r < 0) 11849 goto fail_mmu_destroy; 11850 11851 /* 11852 * Defer evaluating inhibits until the vCPU is first run, as 11853 * this vCPU will not get notified of any changes until this 11854 * vCPU is visible to other vCPUs (marked online and added to 11855 * the set of vCPUs). Opportunistically mark APICv active as 11856 * VMX in particularly is highly unlikely to have inhibits. 11857 * Ignore the current per-VM APICv state so that vCPU creation 11858 * is guaranteed to run with a deterministic value, the request 11859 * will ensure the vCPU gets the correct state before VM-Entry. 11860 */ 11861 if (enable_apicv) { 11862 vcpu->arch.apic->apicv_active = true; 11863 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 11864 } 11865 } else 11866 static_branch_inc(&kvm_has_noapic_vcpu); 11867 11868 r = -ENOMEM; 11869 11870 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 11871 if (!page) 11872 goto fail_free_lapic; 11873 vcpu->arch.pio_data = page_address(page); 11874 11875 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 11876 GFP_KERNEL_ACCOUNT); 11877 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 11878 GFP_KERNEL_ACCOUNT); 11879 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 11880 goto fail_free_mce_banks; 11881 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 11882 11883 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 11884 GFP_KERNEL_ACCOUNT)) 11885 goto fail_free_mce_banks; 11886 11887 if (!alloc_emulate_ctxt(vcpu)) 11888 goto free_wbinvd_dirty_mask; 11889 11890 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 11891 pr_err("kvm: failed to allocate vcpu's fpu\n"); 11892 goto free_emulate_ctxt; 11893 } 11894 11895 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 11896 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 11897 11898 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 11899 11900 kvm_async_pf_hash_reset(vcpu); 11901 kvm_pmu_init(vcpu); 11902 11903 vcpu->arch.pending_external_vector = -1; 11904 vcpu->arch.preempted_in_kernel = false; 11905 11906 #if IS_ENABLED(CONFIG_HYPERV) 11907 vcpu->arch.hv_root_tdp = INVALID_PAGE; 11908 #endif 11909 11910 r = static_call(kvm_x86_vcpu_create)(vcpu); 11911 if (r) 11912 goto free_guest_fpu; 11913 11914 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 11915 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 11916 kvm_xen_init_vcpu(vcpu); 11917 kvm_vcpu_mtrr_init(vcpu); 11918 vcpu_load(vcpu); 11919 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 11920 kvm_vcpu_reset(vcpu, false); 11921 kvm_init_mmu(vcpu); 11922 vcpu_put(vcpu); 11923 return 0; 11924 11925 free_guest_fpu: 11926 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11927 free_emulate_ctxt: 11928 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11929 free_wbinvd_dirty_mask: 11930 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11931 fail_free_mce_banks: 11932 kfree(vcpu->arch.mce_banks); 11933 kfree(vcpu->arch.mci_ctl2_banks); 11934 free_page((unsigned long)vcpu->arch.pio_data); 11935 fail_free_lapic: 11936 kvm_free_lapic(vcpu); 11937 fail_mmu_destroy: 11938 kvm_mmu_destroy(vcpu); 11939 return r; 11940 } 11941 11942 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 11943 { 11944 struct kvm *kvm = vcpu->kvm; 11945 11946 if (mutex_lock_killable(&vcpu->mutex)) 11947 return; 11948 vcpu_load(vcpu); 11949 kvm_synchronize_tsc(vcpu, 0); 11950 vcpu_put(vcpu); 11951 11952 /* poll control enabled by default */ 11953 vcpu->arch.msr_kvm_poll_control = 1; 11954 11955 mutex_unlock(&vcpu->mutex); 11956 11957 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 11958 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 11959 KVMCLOCK_SYNC_PERIOD); 11960 } 11961 11962 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 11963 { 11964 int idx; 11965 11966 kvmclock_reset(vcpu); 11967 11968 static_call(kvm_x86_vcpu_free)(vcpu); 11969 11970 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11971 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11972 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11973 11974 kvm_xen_destroy_vcpu(vcpu); 11975 kvm_hv_vcpu_uninit(vcpu); 11976 kvm_pmu_destroy(vcpu); 11977 kfree(vcpu->arch.mce_banks); 11978 kfree(vcpu->arch.mci_ctl2_banks); 11979 kvm_free_lapic(vcpu); 11980 idx = srcu_read_lock(&vcpu->kvm->srcu); 11981 kvm_mmu_destroy(vcpu); 11982 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11983 free_page((unsigned long)vcpu->arch.pio_data); 11984 kvfree(vcpu->arch.cpuid_entries); 11985 if (!lapic_in_kernel(vcpu)) 11986 static_branch_dec(&kvm_has_noapic_vcpu); 11987 } 11988 11989 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 11990 { 11991 struct kvm_cpuid_entry2 *cpuid_0x1; 11992 unsigned long old_cr0 = kvm_read_cr0(vcpu); 11993 unsigned long new_cr0; 11994 11995 /* 11996 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 11997 * to handle side effects. RESET emulation hits those flows and relies 11998 * on emulated/virtualized registers, including those that are loaded 11999 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 12000 * to detect improper or missing initialization. 12001 */ 12002 WARN_ON_ONCE(!init_event && 12003 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 12004 12005 kvm_lapic_reset(vcpu, init_event); 12006 12007 vcpu->arch.hflags = 0; 12008 12009 vcpu->arch.smi_pending = 0; 12010 vcpu->arch.smi_count = 0; 12011 atomic_set(&vcpu->arch.nmi_queued, 0); 12012 vcpu->arch.nmi_pending = 0; 12013 vcpu->arch.nmi_injected = false; 12014 kvm_clear_interrupt_queue(vcpu); 12015 kvm_clear_exception_queue(vcpu); 12016 12017 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 12018 kvm_update_dr0123(vcpu); 12019 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 12020 vcpu->arch.dr7 = DR7_FIXED_1; 12021 kvm_update_dr7(vcpu); 12022 12023 vcpu->arch.cr2 = 0; 12024 12025 kvm_make_request(KVM_REQ_EVENT, vcpu); 12026 vcpu->arch.apf.msr_en_val = 0; 12027 vcpu->arch.apf.msr_int_val = 0; 12028 vcpu->arch.st.msr_val = 0; 12029 12030 kvmclock_reset(vcpu); 12031 12032 kvm_clear_async_pf_completion_queue(vcpu); 12033 kvm_async_pf_hash_reset(vcpu); 12034 vcpu->arch.apf.halted = false; 12035 12036 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 12037 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 12038 12039 /* 12040 * All paths that lead to INIT are required to load the guest's 12041 * FPU state (because most paths are buried in KVM_RUN). 12042 */ 12043 if (init_event) 12044 kvm_put_guest_fpu(vcpu); 12045 12046 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 12047 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 12048 12049 if (init_event) 12050 kvm_load_guest_fpu(vcpu); 12051 } 12052 12053 if (!init_event) { 12054 kvm_pmu_reset(vcpu); 12055 vcpu->arch.smbase = 0x30000; 12056 12057 vcpu->arch.msr_misc_features_enables = 0; 12058 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 12059 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 12060 12061 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 12062 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 12063 } 12064 12065 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 12066 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 12067 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 12068 12069 /* 12070 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 12071 * if no CPUID match is found. Note, it's impossible to get a match at 12072 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 12073 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 12074 * on RESET. But, go through the motions in case that's ever remedied. 12075 */ 12076 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 12077 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 12078 12079 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 12080 12081 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 12082 kvm_rip_write(vcpu, 0xfff0); 12083 12084 vcpu->arch.cr3 = 0; 12085 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 12086 12087 /* 12088 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 12089 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 12090 * (or qualify) that with a footnote stating that CD/NW are preserved. 12091 */ 12092 new_cr0 = X86_CR0_ET; 12093 if (init_event) 12094 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 12095 else 12096 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 12097 12098 static_call(kvm_x86_set_cr0)(vcpu, new_cr0); 12099 static_call(kvm_x86_set_cr4)(vcpu, 0); 12100 static_call(kvm_x86_set_efer)(vcpu, 0); 12101 static_call(kvm_x86_update_exception_bitmap)(vcpu); 12102 12103 /* 12104 * On the standard CR0/CR4/EFER modification paths, there are several 12105 * complex conditions determining whether the MMU has to be reset and/or 12106 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 12107 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 12108 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 12109 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 12110 */ 12111 if (old_cr0 & X86_CR0_PG) { 12112 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12113 kvm_mmu_reset_context(vcpu); 12114 } 12115 12116 /* 12117 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 12118 * APM states the TLBs are untouched by INIT, but it also states that 12119 * the TLBs are flushed on "External initialization of the processor." 12120 * Flush the guest TLB regardless of vendor, there is no meaningful 12121 * benefit in relying on the guest to flush the TLB immediately after 12122 * INIT. A spurious TLB flush is benign and likely negligible from a 12123 * performance perspective. 12124 */ 12125 if (init_event) 12126 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12127 } 12128 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 12129 12130 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 12131 { 12132 struct kvm_segment cs; 12133 12134 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 12135 cs.selector = vector << 8; 12136 cs.base = vector << 12; 12137 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 12138 kvm_rip_write(vcpu, 0); 12139 } 12140 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 12141 12142 int kvm_arch_hardware_enable(void) 12143 { 12144 struct kvm *kvm; 12145 struct kvm_vcpu *vcpu; 12146 unsigned long i; 12147 int ret; 12148 u64 local_tsc; 12149 u64 max_tsc = 0; 12150 bool stable, backwards_tsc = false; 12151 12152 kvm_user_return_msr_cpu_online(); 12153 ret = static_call(kvm_x86_hardware_enable)(); 12154 if (ret != 0) 12155 return ret; 12156 12157 local_tsc = rdtsc(); 12158 stable = !kvm_check_tsc_unstable(); 12159 list_for_each_entry(kvm, &vm_list, vm_list) { 12160 kvm_for_each_vcpu(i, vcpu, kvm) { 12161 if (!stable && vcpu->cpu == smp_processor_id()) 12162 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 12163 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 12164 backwards_tsc = true; 12165 if (vcpu->arch.last_host_tsc > max_tsc) 12166 max_tsc = vcpu->arch.last_host_tsc; 12167 } 12168 } 12169 } 12170 12171 /* 12172 * Sometimes, even reliable TSCs go backwards. This happens on 12173 * platforms that reset TSC during suspend or hibernate actions, but 12174 * maintain synchronization. We must compensate. Fortunately, we can 12175 * detect that condition here, which happens early in CPU bringup, 12176 * before any KVM threads can be running. Unfortunately, we can't 12177 * bring the TSCs fully up to date with real time, as we aren't yet far 12178 * enough into CPU bringup that we know how much real time has actually 12179 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 12180 * variables that haven't been updated yet. 12181 * 12182 * So we simply find the maximum observed TSC above, then record the 12183 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 12184 * the adjustment will be applied. Note that we accumulate 12185 * adjustments, in case multiple suspend cycles happen before some VCPU 12186 * gets a chance to run again. In the event that no KVM threads get a 12187 * chance to run, we will miss the entire elapsed period, as we'll have 12188 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 12189 * loose cycle time. This isn't too big a deal, since the loss will be 12190 * uniform across all VCPUs (not to mention the scenario is extremely 12191 * unlikely). It is possible that a second hibernate recovery happens 12192 * much faster than a first, causing the observed TSC here to be 12193 * smaller; this would require additional padding adjustment, which is 12194 * why we set last_host_tsc to the local tsc observed here. 12195 * 12196 * N.B. - this code below runs only on platforms with reliable TSC, 12197 * as that is the only way backwards_tsc is set above. Also note 12198 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 12199 * have the same delta_cyc adjustment applied if backwards_tsc 12200 * is detected. Note further, this adjustment is only done once, 12201 * as we reset last_host_tsc on all VCPUs to stop this from being 12202 * called multiple times (one for each physical CPU bringup). 12203 * 12204 * Platforms with unreliable TSCs don't have to deal with this, they 12205 * will be compensated by the logic in vcpu_load, which sets the TSC to 12206 * catchup mode. This will catchup all VCPUs to real time, but cannot 12207 * guarantee that they stay in perfect synchronization. 12208 */ 12209 if (backwards_tsc) { 12210 u64 delta_cyc = max_tsc - local_tsc; 12211 list_for_each_entry(kvm, &vm_list, vm_list) { 12212 kvm->arch.backwards_tsc_observed = true; 12213 kvm_for_each_vcpu(i, vcpu, kvm) { 12214 vcpu->arch.tsc_offset_adjustment += delta_cyc; 12215 vcpu->arch.last_host_tsc = local_tsc; 12216 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 12217 } 12218 12219 /* 12220 * We have to disable TSC offset matching.. if you were 12221 * booting a VM while issuing an S4 host suspend.... 12222 * you may have some problem. Solving this issue is 12223 * left as an exercise to the reader. 12224 */ 12225 kvm->arch.last_tsc_nsec = 0; 12226 kvm->arch.last_tsc_write = 0; 12227 } 12228 12229 } 12230 return 0; 12231 } 12232 12233 void kvm_arch_hardware_disable(void) 12234 { 12235 static_call(kvm_x86_hardware_disable)(); 12236 drop_user_return_notifiers(); 12237 } 12238 12239 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 12240 { 12241 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 12242 12243 #define __KVM_X86_OP(func) \ 12244 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 12245 #define KVM_X86_OP(func) \ 12246 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 12247 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 12248 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 12249 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 12250 (void *)__static_call_return0); 12251 #include <asm/kvm-x86-ops.h> 12252 #undef __KVM_X86_OP 12253 12254 kvm_pmu_ops_update(ops->pmu_ops); 12255 } 12256 12257 int kvm_arch_hardware_setup(void *opaque) 12258 { 12259 struct kvm_x86_init_ops *ops = opaque; 12260 int r; 12261 12262 rdmsrl_safe(MSR_EFER, &host_efer); 12263 12264 if (boot_cpu_has(X86_FEATURE_XSAVES)) 12265 rdmsrl(MSR_IA32_XSS, host_xss); 12266 12267 kvm_init_pmu_capability(); 12268 12269 r = ops->hardware_setup(); 12270 if (r != 0) 12271 return r; 12272 12273 kvm_ops_update(ops); 12274 12275 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 12276 12277 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 12278 kvm_caps.supported_xss = 0; 12279 12280 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 12281 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 12282 #undef __kvm_cpu_cap_has 12283 12284 if (kvm_caps.has_tsc_control) { 12285 /* 12286 * Make sure the user can only configure tsc_khz values that 12287 * fit into a signed integer. 12288 * A min value is not calculated because it will always 12289 * be 1 on all machines. 12290 */ 12291 u64 max = min(0x7fffffffULL, 12292 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 12293 kvm_caps.max_guest_tsc_khz = max; 12294 } 12295 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 12296 kvm_init_msr_list(); 12297 return 0; 12298 } 12299 12300 void kvm_arch_hardware_unsetup(void) 12301 { 12302 kvm_unregister_perf_callbacks(); 12303 12304 static_call(kvm_x86_hardware_unsetup)(); 12305 } 12306 12307 int kvm_arch_check_processor_compat(void *opaque) 12308 { 12309 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id()); 12310 struct kvm_x86_init_ops *ops = opaque; 12311 12312 WARN_ON(!irqs_disabled()); 12313 12314 if (__cr4_reserved_bits(cpu_has, c) != 12315 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 12316 return -EIO; 12317 12318 return ops->check_processor_compatibility(); 12319 } 12320 12321 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 12322 { 12323 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 12324 } 12325 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); 12326 12327 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 12328 { 12329 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 12330 } 12331 12332 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 12333 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 12334 12335 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 12336 { 12337 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 12338 12339 vcpu->arch.l1tf_flush_l1d = true; 12340 if (pmu->version && unlikely(pmu->event_count)) { 12341 pmu->need_cleanup = true; 12342 kvm_make_request(KVM_REQ_PMU, vcpu); 12343 } 12344 static_call(kvm_x86_sched_in)(vcpu, cpu); 12345 } 12346 12347 void kvm_arch_free_vm(struct kvm *kvm) 12348 { 12349 kfree(to_kvm_hv(kvm)->hv_pa_pg); 12350 __kvm_arch_free_vm(kvm); 12351 } 12352 12353 12354 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 12355 { 12356 int ret; 12357 unsigned long flags; 12358 12359 if (type) 12360 return -EINVAL; 12361 12362 ret = kvm_page_track_init(kvm); 12363 if (ret) 12364 goto out; 12365 12366 ret = kvm_mmu_init_vm(kvm); 12367 if (ret) 12368 goto out_page_track; 12369 12370 ret = static_call(kvm_x86_vm_init)(kvm); 12371 if (ret) 12372 goto out_uninit_mmu; 12373 12374 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 12375 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 12376 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 12377 12378 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 12379 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 12380 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 12381 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 12382 &kvm->arch.irq_sources_bitmap); 12383 12384 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 12385 mutex_init(&kvm->arch.apic_map_lock); 12386 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 12387 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 12388 12389 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 12390 pvclock_update_vm_gtod_copy(kvm); 12391 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 12392 12393 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 12394 kvm->arch.guest_can_read_msr_platform_info = true; 12395 kvm->arch.enable_pmu = enable_pmu; 12396 12397 #if IS_ENABLED(CONFIG_HYPERV) 12398 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 12399 kvm->arch.hv_root_tdp = INVALID_PAGE; 12400 #endif 12401 12402 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 12403 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 12404 12405 kvm_apicv_init(kvm); 12406 kvm_hv_init_vm(kvm); 12407 kvm_xen_init_vm(kvm); 12408 12409 return 0; 12410 12411 out_uninit_mmu: 12412 kvm_mmu_uninit_vm(kvm); 12413 out_page_track: 12414 kvm_page_track_cleanup(kvm); 12415 out: 12416 return ret; 12417 } 12418 12419 int kvm_arch_post_init_vm(struct kvm *kvm) 12420 { 12421 return kvm_mmu_post_init_vm(kvm); 12422 } 12423 12424 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 12425 { 12426 vcpu_load(vcpu); 12427 kvm_mmu_unload(vcpu); 12428 vcpu_put(vcpu); 12429 } 12430 12431 static void kvm_unload_vcpu_mmus(struct kvm *kvm) 12432 { 12433 unsigned long i; 12434 struct kvm_vcpu *vcpu; 12435 12436 kvm_for_each_vcpu(i, vcpu, kvm) { 12437 kvm_clear_async_pf_completion_queue(vcpu); 12438 kvm_unload_vcpu_mmu(vcpu); 12439 } 12440 } 12441 12442 void kvm_arch_sync_events(struct kvm *kvm) 12443 { 12444 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 12445 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 12446 kvm_free_pit(kvm); 12447 } 12448 12449 /** 12450 * __x86_set_memory_region: Setup KVM internal memory slot 12451 * 12452 * @kvm: the kvm pointer to the VM. 12453 * @id: the slot ID to setup. 12454 * @gpa: the GPA to install the slot (unused when @size == 0). 12455 * @size: the size of the slot. Set to zero to uninstall a slot. 12456 * 12457 * This function helps to setup a KVM internal memory slot. Specify 12458 * @size > 0 to install a new slot, while @size == 0 to uninstall a 12459 * slot. The return code can be one of the following: 12460 * 12461 * HVA: on success (uninstall will return a bogus HVA) 12462 * -errno: on error 12463 * 12464 * The caller should always use IS_ERR() to check the return value 12465 * before use. Note, the KVM internal memory slots are guaranteed to 12466 * remain valid and unchanged until the VM is destroyed, i.e., the 12467 * GPA->HVA translation will not change. However, the HVA is a user 12468 * address, i.e. its accessibility is not guaranteed, and must be 12469 * accessed via __copy_{to,from}_user(). 12470 */ 12471 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 12472 u32 size) 12473 { 12474 int i, r; 12475 unsigned long hva, old_npages; 12476 struct kvm_memslots *slots = kvm_memslots(kvm); 12477 struct kvm_memory_slot *slot; 12478 12479 /* Called with kvm->slots_lock held. */ 12480 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 12481 return ERR_PTR_USR(-EINVAL); 12482 12483 slot = id_to_memslot(slots, id); 12484 if (size) { 12485 if (slot && slot->npages) 12486 return ERR_PTR_USR(-EEXIST); 12487 12488 /* 12489 * MAP_SHARED to prevent internal slot pages from being moved 12490 * by fork()/COW. 12491 */ 12492 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 12493 MAP_SHARED | MAP_ANONYMOUS, 0); 12494 if (IS_ERR((void *)hva)) 12495 return (void __user *)hva; 12496 } else { 12497 if (!slot || !slot->npages) 12498 return NULL; 12499 12500 old_npages = slot->npages; 12501 hva = slot->userspace_addr; 12502 } 12503 12504 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 12505 struct kvm_userspace_memory_region m; 12506 12507 m.slot = id | (i << 16); 12508 m.flags = 0; 12509 m.guest_phys_addr = gpa; 12510 m.userspace_addr = hva; 12511 m.memory_size = size; 12512 r = __kvm_set_memory_region(kvm, &m); 12513 if (r < 0) 12514 return ERR_PTR_USR(r); 12515 } 12516 12517 if (!size) 12518 vm_munmap(hva, old_npages * PAGE_SIZE); 12519 12520 return (void __user *)hva; 12521 } 12522 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 12523 12524 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 12525 { 12526 kvm_mmu_pre_destroy_vm(kvm); 12527 } 12528 12529 void kvm_arch_destroy_vm(struct kvm *kvm) 12530 { 12531 if (current->mm == kvm->mm) { 12532 /* 12533 * Free memory regions allocated on behalf of userspace, 12534 * unless the memory map has changed due to process exit 12535 * or fd copying. 12536 */ 12537 mutex_lock(&kvm->slots_lock); 12538 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 12539 0, 0); 12540 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 12541 0, 0); 12542 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 12543 mutex_unlock(&kvm->slots_lock); 12544 } 12545 kvm_unload_vcpu_mmus(kvm); 12546 static_call_cond(kvm_x86_vm_destroy)(kvm); 12547 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12548 kvm_pic_destroy(kvm); 12549 kvm_ioapic_destroy(kvm); 12550 kvm_destroy_vcpus(kvm); 12551 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12552 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12553 kvm_mmu_uninit_vm(kvm); 12554 kvm_page_track_cleanup(kvm); 12555 kvm_xen_destroy_vm(kvm); 12556 kvm_hv_destroy_vm(kvm); 12557 } 12558 12559 static void memslot_rmap_free(struct kvm_memory_slot *slot) 12560 { 12561 int i; 12562 12563 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12564 kvfree(slot->arch.rmap[i]); 12565 slot->arch.rmap[i] = NULL; 12566 } 12567 } 12568 12569 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12570 { 12571 int i; 12572 12573 memslot_rmap_free(slot); 12574 12575 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12576 kvfree(slot->arch.lpage_info[i - 1]); 12577 slot->arch.lpage_info[i - 1] = NULL; 12578 } 12579 12580 kvm_page_track_free_memslot(slot); 12581 } 12582 12583 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12584 { 12585 const int sz = sizeof(*slot->arch.rmap[0]); 12586 int i; 12587 12588 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12589 int level = i + 1; 12590 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12591 12592 if (slot->arch.rmap[i]) 12593 continue; 12594 12595 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12596 if (!slot->arch.rmap[i]) { 12597 memslot_rmap_free(slot); 12598 return -ENOMEM; 12599 } 12600 } 12601 12602 return 0; 12603 } 12604 12605 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12606 struct kvm_memory_slot *slot) 12607 { 12608 unsigned long npages = slot->npages; 12609 int i, r; 12610 12611 /* 12612 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12613 * old arrays will be freed by __kvm_set_memory_region() if installing 12614 * the new memslot is successful. 12615 */ 12616 memset(&slot->arch, 0, sizeof(slot->arch)); 12617 12618 if (kvm_memslots_have_rmaps(kvm)) { 12619 r = memslot_rmap_alloc(slot, npages); 12620 if (r) 12621 return r; 12622 } 12623 12624 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12625 struct kvm_lpage_info *linfo; 12626 unsigned long ugfn; 12627 int lpages; 12628 int level = i + 1; 12629 12630 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12631 12632 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12633 if (!linfo) 12634 goto out_free; 12635 12636 slot->arch.lpage_info[i - 1] = linfo; 12637 12638 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12639 linfo[0].disallow_lpage = 1; 12640 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12641 linfo[lpages - 1].disallow_lpage = 1; 12642 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12643 /* 12644 * If the gfn and userspace address are not aligned wrt each 12645 * other, disable large page support for this slot. 12646 */ 12647 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12648 unsigned long j; 12649 12650 for (j = 0; j < lpages; ++j) 12651 linfo[j].disallow_lpage = 1; 12652 } 12653 } 12654 12655 if (kvm_page_track_create_memslot(kvm, slot, npages)) 12656 goto out_free; 12657 12658 return 0; 12659 12660 out_free: 12661 memslot_rmap_free(slot); 12662 12663 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12664 kvfree(slot->arch.lpage_info[i - 1]); 12665 slot->arch.lpage_info[i - 1] = NULL; 12666 } 12667 return -ENOMEM; 12668 } 12669 12670 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 12671 { 12672 struct kvm_vcpu *vcpu; 12673 unsigned long i; 12674 12675 /* 12676 * memslots->generation has been incremented. 12677 * mmio generation may have reached its maximum value. 12678 */ 12679 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 12680 12681 /* Force re-initialization of steal_time cache */ 12682 kvm_for_each_vcpu(i, vcpu, kvm) 12683 kvm_vcpu_kick(vcpu); 12684 } 12685 12686 int kvm_arch_prepare_memory_region(struct kvm *kvm, 12687 const struct kvm_memory_slot *old, 12688 struct kvm_memory_slot *new, 12689 enum kvm_mr_change change) 12690 { 12691 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 12692 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 12693 return -EINVAL; 12694 12695 return kvm_alloc_memslot_metadata(kvm, new); 12696 } 12697 12698 if (change == KVM_MR_FLAGS_ONLY) 12699 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 12700 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 12701 return -EIO; 12702 12703 return 0; 12704 } 12705 12706 12707 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 12708 { 12709 struct kvm_arch *ka = &kvm->arch; 12710 12711 if (!kvm_x86_ops.cpu_dirty_log_size) 12712 return; 12713 12714 if ((enable && ++ka->cpu_dirty_logging_count == 1) || 12715 (!enable && --ka->cpu_dirty_logging_count == 0)) 12716 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 12717 12718 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0); 12719 } 12720 12721 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 12722 struct kvm_memory_slot *old, 12723 const struct kvm_memory_slot *new, 12724 enum kvm_mr_change change) 12725 { 12726 u32 old_flags = old ? old->flags : 0; 12727 u32 new_flags = new ? new->flags : 0; 12728 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 12729 12730 /* 12731 * Update CPU dirty logging if dirty logging is being toggled. This 12732 * applies to all operations. 12733 */ 12734 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 12735 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 12736 12737 /* 12738 * Nothing more to do for RO slots (which can't be dirtied and can't be 12739 * made writable) or CREATE/MOVE/DELETE of a slot. 12740 * 12741 * For a memslot with dirty logging disabled: 12742 * CREATE: No dirty mappings will already exist. 12743 * MOVE/DELETE: The old mappings will already have been cleaned up by 12744 * kvm_arch_flush_shadow_memslot() 12745 * 12746 * For a memslot with dirty logging enabled: 12747 * CREATE: No shadow pages exist, thus nothing to write-protect 12748 * and no dirty bits to clear. 12749 * MOVE/DELETE: The old mappings will already have been cleaned up by 12750 * kvm_arch_flush_shadow_memslot(). 12751 */ 12752 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 12753 return; 12754 12755 /* 12756 * READONLY and non-flags changes were filtered out above, and the only 12757 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 12758 * logging isn't being toggled on or off. 12759 */ 12760 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 12761 return; 12762 12763 if (!log_dirty_pages) { 12764 /* 12765 * Dirty logging tracks sptes in 4k granularity, meaning that 12766 * large sptes have to be split. If live migration succeeds, 12767 * the guest in the source machine will be destroyed and large 12768 * sptes will be created in the destination. However, if the 12769 * guest continues to run in the source machine (for example if 12770 * live migration fails), small sptes will remain around and 12771 * cause bad performance. 12772 * 12773 * Scan sptes if dirty logging has been stopped, dropping those 12774 * which can be collapsed into a single large-page spte. Later 12775 * page faults will create the large-page sptes. 12776 */ 12777 kvm_mmu_zap_collapsible_sptes(kvm, new); 12778 } else { 12779 /* 12780 * Initially-all-set does not require write protecting any page, 12781 * because they're all assumed to be dirty. 12782 */ 12783 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 12784 return; 12785 12786 if (READ_ONCE(eager_page_split)) 12787 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 12788 12789 if (kvm_x86_ops.cpu_dirty_log_size) { 12790 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 12791 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 12792 } else { 12793 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 12794 } 12795 12796 /* 12797 * Unconditionally flush the TLBs after enabling dirty logging. 12798 * A flush is almost always going to be necessary (see below), 12799 * and unconditionally flushing allows the helpers to omit 12800 * the subtly complex checks when removing write access. 12801 * 12802 * Do the flush outside of mmu_lock to reduce the amount of 12803 * time mmu_lock is held. Flushing after dropping mmu_lock is 12804 * safe as KVM only needs to guarantee the slot is fully 12805 * write-protected before returning to userspace, i.e. before 12806 * userspace can consume the dirty status. 12807 * 12808 * Flushing outside of mmu_lock requires KVM to be careful when 12809 * making decisions based on writable status of an SPTE, e.g. a 12810 * !writable SPTE doesn't guarantee a CPU can't perform writes. 12811 * 12812 * Specifically, KVM also write-protects guest page tables to 12813 * monitor changes when using shadow paging, and must guarantee 12814 * no CPUs can write to those page before mmu_lock is dropped. 12815 * Because CPUs may have stale TLB entries at this point, a 12816 * !writable SPTE doesn't guarantee CPUs can't perform writes. 12817 * 12818 * KVM also allows making SPTES writable outside of mmu_lock, 12819 * e.g. to allow dirty logging without taking mmu_lock. 12820 * 12821 * To handle these scenarios, KVM uses a separate software-only 12822 * bit (MMU-writable) to track if a SPTE is !writable due to 12823 * a guest page table being write-protected (KVM clears the 12824 * MMU-writable flag when write-protecting for shadow paging). 12825 * 12826 * The use of MMU-writable is also the primary motivation for 12827 * the unconditional flush. Because KVM must guarantee that a 12828 * CPU doesn't contain stale, writable TLB entries for a 12829 * !MMU-writable SPTE, KVM must flush if it encounters any 12830 * MMU-writable SPTE regardless of whether the actual hardware 12831 * writable bit was set. I.e. KVM is almost guaranteed to need 12832 * to flush, while unconditionally flushing allows the "remove 12833 * write access" helpers to ignore MMU-writable entirely. 12834 * 12835 * See is_writable_pte() for more details (the case involving 12836 * access-tracked SPTEs is particularly relevant). 12837 */ 12838 kvm_arch_flush_remote_tlbs_memslot(kvm, new); 12839 } 12840 } 12841 12842 void kvm_arch_commit_memory_region(struct kvm *kvm, 12843 struct kvm_memory_slot *old, 12844 const struct kvm_memory_slot *new, 12845 enum kvm_mr_change change) 12846 { 12847 if (!kvm->arch.n_requested_mmu_pages && 12848 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 12849 unsigned long nr_mmu_pages; 12850 12851 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 12852 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 12853 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 12854 } 12855 12856 kvm_mmu_slot_apply_flags(kvm, old, new, change); 12857 12858 /* Free the arrays associated with the old memslot. */ 12859 if (change == KVM_MR_MOVE) 12860 kvm_arch_free_memslot(kvm, old); 12861 } 12862 12863 void kvm_arch_flush_shadow_all(struct kvm *kvm) 12864 { 12865 kvm_mmu_zap_all(kvm); 12866 } 12867 12868 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 12869 struct kvm_memory_slot *slot) 12870 { 12871 kvm_page_track_flush_slot(kvm, slot); 12872 } 12873 12874 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 12875 { 12876 return (is_guest_mode(vcpu) && 12877 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 12878 } 12879 12880 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 12881 { 12882 if (!list_empty_careful(&vcpu->async_pf.done)) 12883 return true; 12884 12885 if (kvm_apic_has_pending_init_or_sipi(vcpu) && 12886 kvm_apic_init_sipi_allowed(vcpu)) 12887 return true; 12888 12889 if (vcpu->arch.pv.pv_unhalted) 12890 return true; 12891 12892 if (kvm_is_exception_pending(vcpu)) 12893 return true; 12894 12895 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12896 (vcpu->arch.nmi_pending && 12897 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 12898 return true; 12899 12900 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 12901 (vcpu->arch.smi_pending && 12902 static_call(kvm_x86_smi_allowed)(vcpu, false))) 12903 return true; 12904 12905 if (kvm_arch_interrupt_allowed(vcpu) && 12906 (kvm_cpu_has_interrupt(vcpu) || 12907 kvm_guest_apic_has_interrupt(vcpu))) 12908 return true; 12909 12910 if (kvm_hv_has_stimer_pending(vcpu)) 12911 return true; 12912 12913 if (is_guest_mode(vcpu) && 12914 kvm_x86_ops.nested_ops->has_events && 12915 kvm_x86_ops.nested_ops->has_events(vcpu)) 12916 return true; 12917 12918 if (kvm_xen_has_pending_events(vcpu)) 12919 return true; 12920 12921 return false; 12922 } 12923 12924 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 12925 { 12926 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 12927 } 12928 12929 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 12930 { 12931 if (kvm_vcpu_apicv_active(vcpu) && 12932 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu)) 12933 return true; 12934 12935 return false; 12936 } 12937 12938 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 12939 { 12940 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 12941 return true; 12942 12943 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12944 kvm_test_request(KVM_REQ_SMI, vcpu) || 12945 kvm_test_request(KVM_REQ_EVENT, vcpu)) 12946 return true; 12947 12948 return kvm_arch_dy_has_pending_interrupt(vcpu); 12949 } 12950 12951 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 12952 { 12953 if (vcpu->arch.guest_state_protected) 12954 return true; 12955 12956 return vcpu->arch.preempted_in_kernel; 12957 } 12958 12959 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 12960 { 12961 return kvm_rip_read(vcpu); 12962 } 12963 12964 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 12965 { 12966 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 12967 } 12968 12969 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 12970 { 12971 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 12972 } 12973 12974 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 12975 { 12976 /* Can't read the RIP when guest state is protected, just return 0 */ 12977 if (vcpu->arch.guest_state_protected) 12978 return 0; 12979 12980 if (is_64_bit_mode(vcpu)) 12981 return kvm_rip_read(vcpu); 12982 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 12983 kvm_rip_read(vcpu)); 12984 } 12985 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 12986 12987 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 12988 { 12989 return kvm_get_linear_rip(vcpu) == linear_rip; 12990 } 12991 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 12992 12993 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 12994 { 12995 unsigned long rflags; 12996 12997 rflags = static_call(kvm_x86_get_rflags)(vcpu); 12998 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 12999 rflags &= ~X86_EFLAGS_TF; 13000 return rflags; 13001 } 13002 EXPORT_SYMBOL_GPL(kvm_get_rflags); 13003 13004 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 13005 { 13006 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 13007 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 13008 rflags |= X86_EFLAGS_TF; 13009 static_call(kvm_x86_set_rflags)(vcpu, rflags); 13010 } 13011 13012 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 13013 { 13014 __kvm_set_rflags(vcpu, rflags); 13015 kvm_make_request(KVM_REQ_EVENT, vcpu); 13016 } 13017 EXPORT_SYMBOL_GPL(kvm_set_rflags); 13018 13019 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 13020 { 13021 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 13022 13023 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 13024 } 13025 13026 static inline u32 kvm_async_pf_next_probe(u32 key) 13027 { 13028 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 13029 } 13030 13031 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13032 { 13033 u32 key = kvm_async_pf_hash_fn(gfn); 13034 13035 while (vcpu->arch.apf.gfns[key] != ~0) 13036 key = kvm_async_pf_next_probe(key); 13037 13038 vcpu->arch.apf.gfns[key] = gfn; 13039 } 13040 13041 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 13042 { 13043 int i; 13044 u32 key = kvm_async_pf_hash_fn(gfn); 13045 13046 for (i = 0; i < ASYNC_PF_PER_VCPU && 13047 (vcpu->arch.apf.gfns[key] != gfn && 13048 vcpu->arch.apf.gfns[key] != ~0); i++) 13049 key = kvm_async_pf_next_probe(key); 13050 13051 return key; 13052 } 13053 13054 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13055 { 13056 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 13057 } 13058 13059 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13060 { 13061 u32 i, j, k; 13062 13063 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 13064 13065 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 13066 return; 13067 13068 while (true) { 13069 vcpu->arch.apf.gfns[i] = ~0; 13070 do { 13071 j = kvm_async_pf_next_probe(j); 13072 if (vcpu->arch.apf.gfns[j] == ~0) 13073 return; 13074 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 13075 /* 13076 * k lies cyclically in ]i,j] 13077 * | i.k.j | 13078 * |....j i.k.| or |.k..j i...| 13079 */ 13080 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 13081 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 13082 i = j; 13083 } 13084 } 13085 13086 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 13087 { 13088 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 13089 13090 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 13091 sizeof(reason)); 13092 } 13093 13094 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 13095 { 13096 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13097 13098 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13099 &token, offset, sizeof(token)); 13100 } 13101 13102 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 13103 { 13104 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13105 u32 val; 13106 13107 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13108 &val, offset, sizeof(val))) 13109 return false; 13110 13111 return !val; 13112 } 13113 13114 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 13115 { 13116 13117 if (!kvm_pv_async_pf_enabled(vcpu)) 13118 return false; 13119 13120 if (vcpu->arch.apf.send_user_only && 13121 static_call(kvm_x86_get_cpl)(vcpu) == 0) 13122 return false; 13123 13124 if (is_guest_mode(vcpu)) { 13125 /* 13126 * L1 needs to opt into the special #PF vmexits that are 13127 * used to deliver async page faults. 13128 */ 13129 return vcpu->arch.apf.delivery_as_pf_vmexit; 13130 } else { 13131 /* 13132 * Play it safe in case the guest temporarily disables paging. 13133 * The real mode IDT in particular is unlikely to have a #PF 13134 * exception setup. 13135 */ 13136 return is_paging(vcpu); 13137 } 13138 } 13139 13140 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 13141 { 13142 if (unlikely(!lapic_in_kernel(vcpu) || 13143 kvm_event_needs_reinjection(vcpu) || 13144 kvm_is_exception_pending(vcpu))) 13145 return false; 13146 13147 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 13148 return false; 13149 13150 /* 13151 * If interrupts are off we cannot even use an artificial 13152 * halt state. 13153 */ 13154 return kvm_arch_interrupt_allowed(vcpu); 13155 } 13156 13157 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 13158 struct kvm_async_pf *work) 13159 { 13160 struct x86_exception fault; 13161 13162 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 13163 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 13164 13165 if (kvm_can_deliver_async_pf(vcpu) && 13166 !apf_put_user_notpresent(vcpu)) { 13167 fault.vector = PF_VECTOR; 13168 fault.error_code_valid = true; 13169 fault.error_code = 0; 13170 fault.nested_page_fault = false; 13171 fault.address = work->arch.token; 13172 fault.async_page_fault = true; 13173 kvm_inject_page_fault(vcpu, &fault); 13174 return true; 13175 } else { 13176 /* 13177 * It is not possible to deliver a paravirtualized asynchronous 13178 * page fault, but putting the guest in an artificial halt state 13179 * can be beneficial nevertheless: if an interrupt arrives, we 13180 * can deliver it timely and perhaps the guest will schedule 13181 * another process. When the instruction that triggered a page 13182 * fault is retried, hopefully the page will be ready in the host. 13183 */ 13184 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 13185 return false; 13186 } 13187 } 13188 13189 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 13190 struct kvm_async_pf *work) 13191 { 13192 struct kvm_lapic_irq irq = { 13193 .delivery_mode = APIC_DM_FIXED, 13194 .vector = vcpu->arch.apf.vec 13195 }; 13196 13197 if (work->wakeup_all) 13198 work->arch.token = ~0; /* broadcast wakeup */ 13199 else 13200 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 13201 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 13202 13203 if ((work->wakeup_all || work->notpresent_injected) && 13204 kvm_pv_async_pf_enabled(vcpu) && 13205 !apf_put_user_ready(vcpu, work->arch.token)) { 13206 vcpu->arch.apf.pageready_pending = true; 13207 kvm_apic_set_irq(vcpu, &irq, NULL); 13208 } 13209 13210 vcpu->arch.apf.halted = false; 13211 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 13212 } 13213 13214 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 13215 { 13216 kvm_make_request(KVM_REQ_APF_READY, vcpu); 13217 if (!vcpu->arch.apf.pageready_pending) 13218 kvm_vcpu_kick(vcpu); 13219 } 13220 13221 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 13222 { 13223 if (!kvm_pv_async_pf_enabled(vcpu)) 13224 return true; 13225 else 13226 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 13227 } 13228 13229 void kvm_arch_start_assignment(struct kvm *kvm) 13230 { 13231 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 13232 static_call_cond(kvm_x86_pi_start_assignment)(kvm); 13233 } 13234 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 13235 13236 void kvm_arch_end_assignment(struct kvm *kvm) 13237 { 13238 atomic_dec(&kvm->arch.assigned_device_count); 13239 } 13240 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 13241 13242 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) 13243 { 13244 return arch_atomic_read(&kvm->arch.assigned_device_count); 13245 } 13246 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 13247 13248 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 13249 { 13250 atomic_inc(&kvm->arch.noncoherent_dma_count); 13251 } 13252 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 13253 13254 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 13255 { 13256 atomic_dec(&kvm->arch.noncoherent_dma_count); 13257 } 13258 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 13259 13260 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 13261 { 13262 return atomic_read(&kvm->arch.noncoherent_dma_count); 13263 } 13264 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 13265 13266 bool kvm_arch_has_irq_bypass(void) 13267 { 13268 return true; 13269 } 13270 13271 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 13272 struct irq_bypass_producer *prod) 13273 { 13274 struct kvm_kernel_irqfd *irqfd = 13275 container_of(cons, struct kvm_kernel_irqfd, consumer); 13276 int ret; 13277 13278 irqfd->producer = prod; 13279 kvm_arch_start_assignment(irqfd->kvm); 13280 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, 13281 prod->irq, irqfd->gsi, 1); 13282 13283 if (ret) 13284 kvm_arch_end_assignment(irqfd->kvm); 13285 13286 return ret; 13287 } 13288 13289 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 13290 struct irq_bypass_producer *prod) 13291 { 13292 int ret; 13293 struct kvm_kernel_irqfd *irqfd = 13294 container_of(cons, struct kvm_kernel_irqfd, consumer); 13295 13296 WARN_ON(irqfd->producer != prod); 13297 irqfd->producer = NULL; 13298 13299 /* 13300 * When producer of consumer is unregistered, we change back to 13301 * remapped mode, so we can re-use the current implementation 13302 * when the irq is masked/disabled or the consumer side (KVM 13303 * int this case doesn't want to receive the interrupts. 13304 */ 13305 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 13306 if (ret) 13307 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 13308 " fails: %d\n", irqfd->consumer.token, ret); 13309 13310 kvm_arch_end_assignment(irqfd->kvm); 13311 } 13312 13313 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 13314 uint32_t guest_irq, bool set) 13315 { 13316 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set); 13317 } 13318 13319 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 13320 struct kvm_kernel_irq_routing_entry *new) 13321 { 13322 if (new->type != KVM_IRQ_ROUTING_MSI) 13323 return true; 13324 13325 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 13326 } 13327 13328 bool kvm_vector_hashing_enabled(void) 13329 { 13330 return vector_hashing; 13331 } 13332 13333 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 13334 { 13335 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 13336 } 13337 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 13338 13339 13340 int kvm_spec_ctrl_test_value(u64 value) 13341 { 13342 /* 13343 * test that setting IA32_SPEC_CTRL to given value 13344 * is allowed by the host processor 13345 */ 13346 13347 u64 saved_value; 13348 unsigned long flags; 13349 int ret = 0; 13350 13351 local_irq_save(flags); 13352 13353 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 13354 ret = 1; 13355 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 13356 ret = 1; 13357 else 13358 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 13359 13360 local_irq_restore(flags); 13361 13362 return ret; 13363 } 13364 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 13365 13366 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13367 { 13368 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13369 struct x86_exception fault; 13370 u64 access = error_code & 13371 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 13372 13373 if (!(error_code & PFERR_PRESENT_MASK) || 13374 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 13375 /* 13376 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 13377 * tables probably do not match the TLB. Just proceed 13378 * with the error code that the processor gave. 13379 */ 13380 fault.vector = PF_VECTOR; 13381 fault.error_code_valid = true; 13382 fault.error_code = error_code; 13383 fault.nested_page_fault = false; 13384 fault.address = gva; 13385 fault.async_page_fault = false; 13386 } 13387 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 13388 } 13389 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 13390 13391 /* 13392 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 13393 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 13394 * indicates whether exit to userspace is needed. 13395 */ 13396 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 13397 struct x86_exception *e) 13398 { 13399 if (r == X86EMUL_PROPAGATE_FAULT) { 13400 kvm_inject_emulated_page_fault(vcpu, e); 13401 return 1; 13402 } 13403 13404 /* 13405 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 13406 * while handling a VMX instruction KVM could've handled the request 13407 * correctly by exiting to userspace and performing I/O but there 13408 * doesn't seem to be a real use-case behind such requests, just return 13409 * KVM_EXIT_INTERNAL_ERROR for now. 13410 */ 13411 kvm_prepare_emulation_failure_exit(vcpu); 13412 13413 return 0; 13414 } 13415 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 13416 13417 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 13418 { 13419 bool pcid_enabled; 13420 struct x86_exception e; 13421 struct { 13422 u64 pcid; 13423 u64 gla; 13424 } operand; 13425 int r; 13426 13427 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 13428 if (r != X86EMUL_CONTINUE) 13429 return kvm_handle_memory_failure(vcpu, r, &e); 13430 13431 if (operand.pcid >> 12 != 0) { 13432 kvm_inject_gp(vcpu, 0); 13433 return 1; 13434 } 13435 13436 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 13437 13438 switch (type) { 13439 case INVPCID_TYPE_INDIV_ADDR: 13440 if ((!pcid_enabled && (operand.pcid != 0)) || 13441 is_noncanonical_address(operand.gla, vcpu)) { 13442 kvm_inject_gp(vcpu, 0); 13443 return 1; 13444 } 13445 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 13446 return kvm_skip_emulated_instruction(vcpu); 13447 13448 case INVPCID_TYPE_SINGLE_CTXT: 13449 if (!pcid_enabled && (operand.pcid != 0)) { 13450 kvm_inject_gp(vcpu, 0); 13451 return 1; 13452 } 13453 13454 kvm_invalidate_pcid(vcpu, operand.pcid); 13455 return kvm_skip_emulated_instruction(vcpu); 13456 13457 case INVPCID_TYPE_ALL_NON_GLOBAL: 13458 /* 13459 * Currently, KVM doesn't mark global entries in the shadow 13460 * page tables, so a non-global flush just degenerates to a 13461 * global flush. If needed, we could optimize this later by 13462 * keeping track of global entries in shadow page tables. 13463 */ 13464 13465 fallthrough; 13466 case INVPCID_TYPE_ALL_INCL_GLOBAL: 13467 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 13468 return kvm_skip_emulated_instruction(vcpu); 13469 13470 default: 13471 kvm_inject_gp(vcpu, 0); 13472 return 1; 13473 } 13474 } 13475 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 13476 13477 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 13478 { 13479 struct kvm_run *run = vcpu->run; 13480 struct kvm_mmio_fragment *frag; 13481 unsigned int len; 13482 13483 BUG_ON(!vcpu->mmio_needed); 13484 13485 /* Complete previous fragment */ 13486 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 13487 len = min(8u, frag->len); 13488 if (!vcpu->mmio_is_write) 13489 memcpy(frag->data, run->mmio.data, len); 13490 13491 if (frag->len <= 8) { 13492 /* Switch to the next fragment. */ 13493 frag++; 13494 vcpu->mmio_cur_fragment++; 13495 } else { 13496 /* Go forward to the next mmio piece. */ 13497 frag->data += len; 13498 frag->gpa += len; 13499 frag->len -= len; 13500 } 13501 13502 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 13503 vcpu->mmio_needed = 0; 13504 13505 // VMG change, at this point, we're always done 13506 // RIP has already been advanced 13507 return 1; 13508 } 13509 13510 // More MMIO is needed 13511 run->mmio.phys_addr = frag->gpa; 13512 run->mmio.len = min(8u, frag->len); 13513 run->mmio.is_write = vcpu->mmio_is_write; 13514 if (run->mmio.is_write) 13515 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 13516 run->exit_reason = KVM_EXIT_MMIO; 13517 13518 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13519 13520 return 0; 13521 } 13522 13523 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13524 void *data) 13525 { 13526 int handled; 13527 struct kvm_mmio_fragment *frag; 13528 13529 if (!data) 13530 return -EINVAL; 13531 13532 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13533 if (handled == bytes) 13534 return 1; 13535 13536 bytes -= handled; 13537 gpa += handled; 13538 data += handled; 13539 13540 /*TODO: Check if need to increment number of frags */ 13541 frag = vcpu->mmio_fragments; 13542 vcpu->mmio_nr_fragments = 1; 13543 frag->len = bytes; 13544 frag->gpa = gpa; 13545 frag->data = data; 13546 13547 vcpu->mmio_needed = 1; 13548 vcpu->mmio_cur_fragment = 0; 13549 13550 vcpu->run->mmio.phys_addr = gpa; 13551 vcpu->run->mmio.len = min(8u, frag->len); 13552 vcpu->run->mmio.is_write = 1; 13553 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 13554 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13555 13556 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13557 13558 return 0; 13559 } 13560 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 13561 13562 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13563 void *data) 13564 { 13565 int handled; 13566 struct kvm_mmio_fragment *frag; 13567 13568 if (!data) 13569 return -EINVAL; 13570 13571 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13572 if (handled == bytes) 13573 return 1; 13574 13575 bytes -= handled; 13576 gpa += handled; 13577 data += handled; 13578 13579 /*TODO: Check if need to increment number of frags */ 13580 frag = vcpu->mmio_fragments; 13581 vcpu->mmio_nr_fragments = 1; 13582 frag->len = bytes; 13583 frag->gpa = gpa; 13584 frag->data = data; 13585 13586 vcpu->mmio_needed = 1; 13587 vcpu->mmio_cur_fragment = 0; 13588 13589 vcpu->run->mmio.phys_addr = gpa; 13590 vcpu->run->mmio.len = min(8u, frag->len); 13591 vcpu->run->mmio.is_write = 0; 13592 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13593 13594 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13595 13596 return 0; 13597 } 13598 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13599 13600 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 13601 { 13602 vcpu->arch.sev_pio_count -= count; 13603 vcpu->arch.sev_pio_data += count * size; 13604 } 13605 13606 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13607 unsigned int port); 13608 13609 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13610 { 13611 int size = vcpu->arch.pio.size; 13612 int port = vcpu->arch.pio.port; 13613 13614 vcpu->arch.pio.count = 0; 13615 if (vcpu->arch.sev_pio_count) 13616 return kvm_sev_es_outs(vcpu, size, port); 13617 return 1; 13618 } 13619 13620 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13621 unsigned int port) 13622 { 13623 for (;;) { 13624 unsigned int count = 13625 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13626 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13627 13628 /* memcpy done already by emulator_pio_out. */ 13629 advance_sev_es_emulated_pio(vcpu, count, size); 13630 if (!ret) 13631 break; 13632 13633 /* Emulation done by the kernel. */ 13634 if (!vcpu->arch.sev_pio_count) 13635 return 1; 13636 } 13637 13638 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13639 return 0; 13640 } 13641 13642 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13643 unsigned int port); 13644 13645 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13646 { 13647 unsigned count = vcpu->arch.pio.count; 13648 int size = vcpu->arch.pio.size; 13649 int port = vcpu->arch.pio.port; 13650 13651 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13652 advance_sev_es_emulated_pio(vcpu, count, size); 13653 if (vcpu->arch.sev_pio_count) 13654 return kvm_sev_es_ins(vcpu, size, port); 13655 return 1; 13656 } 13657 13658 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13659 unsigned int port) 13660 { 13661 for (;;) { 13662 unsigned int count = 13663 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13664 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 13665 break; 13666 13667 /* Emulation done by the kernel. */ 13668 advance_sev_es_emulated_pio(vcpu, count, size); 13669 if (!vcpu->arch.sev_pio_count) 13670 return 1; 13671 } 13672 13673 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13674 return 0; 13675 } 13676 13677 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 13678 unsigned int port, void *data, unsigned int count, 13679 int in) 13680 { 13681 vcpu->arch.sev_pio_data = data; 13682 vcpu->arch.sev_pio_count = count; 13683 return in ? kvm_sev_es_ins(vcpu, size, port) 13684 : kvm_sev_es_outs(vcpu, size, port); 13685 } 13686 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 13687 13688 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 13689 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 13690 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 13691 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 13692 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 13693 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 13694 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 13695 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); 13696 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 13697 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 13698 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 13699 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 13700 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 13701 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 13702 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 13703 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 13704 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 13705 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 13706 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 13707 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 13708 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 13709 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 13710 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 13711 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 13712 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 13713 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 13714 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 13715 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 13716 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 13717 13718 static int __init kvm_x86_init(void) 13719 { 13720 kvm_mmu_x86_module_init(); 13721 return 0; 13722 } 13723 module_init(kvm_x86_init); 13724 13725 static void __exit kvm_x86_exit(void) 13726 { 13727 /* 13728 * If module_init() is implemented, module_exit() must also be 13729 * implemented to allow module unload. 13730 */ 13731 } 13732 module_exit(kvm_x86_exit); 13733