xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 01cc2ec6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/sched/isolation.h>
58 #include <linux/mem_encrypt.h>
59 #include <linux/entry-kvm.h>
60 
61 #include <trace/events/kvm.h>
62 
63 #include <asm/debugreg.h>
64 #include <asm/msr.h>
65 #include <asm/desc.h>
66 #include <asm/mce.h>
67 #include <linux/kernel_stat.h>
68 #include <asm/fpu/internal.h> /* Ugh! */
69 #include <asm/pvclock.h>
70 #include <asm/div64.h>
71 #include <asm/irq_remapping.h>
72 #include <asm/mshyperv.h>
73 #include <asm/hypervisor.h>
74 #include <asm/intel_pt.h>
75 #include <asm/emulate_prefix.h>
76 #include <clocksource/hyperv_timer.h>
77 
78 #define CREATE_TRACE_POINTS
79 #include "trace.h"
80 
81 #define MAX_IO_MSRS 256
82 #define KVM_MAX_MCE_BANKS 32
83 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
84 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
85 
86 #define emul_to_vcpu(ctxt) \
87 	((struct kvm_vcpu *)(ctxt)->vcpu)
88 
89 /* EFER defaults:
90  * - enable syscall per default because its emulated by KVM
91  * - enable LME and LMA per default on 64 bit KVM
92  */
93 #ifdef CONFIG_X86_64
94 static
95 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
96 #else
97 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
98 #endif
99 
100 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
101 
102 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
103                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
104 
105 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
106 static void process_nmi(struct kvm_vcpu *vcpu);
107 static void enter_smm(struct kvm_vcpu *vcpu);
108 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
109 static void store_regs(struct kvm_vcpu *vcpu);
110 static int sync_regs(struct kvm_vcpu *vcpu);
111 
112 struct kvm_x86_ops kvm_x86_ops __read_mostly;
113 EXPORT_SYMBOL_GPL(kvm_x86_ops);
114 
115 static bool __read_mostly ignore_msrs = 0;
116 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
117 
118 static bool __read_mostly report_ignored_msrs = true;
119 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
120 
121 unsigned int min_timer_period_us = 200;
122 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
123 
124 static bool __read_mostly kvmclock_periodic_sync = true;
125 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
126 
127 bool __read_mostly kvm_has_tsc_control;
128 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
129 u32  __read_mostly kvm_max_guest_tsc_khz;
130 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
131 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
132 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
133 u64  __read_mostly kvm_max_tsc_scaling_ratio;
134 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
135 u64 __read_mostly kvm_default_tsc_scaling_ratio;
136 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
137 
138 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
139 static u32 __read_mostly tsc_tolerance_ppm = 250;
140 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
141 
142 /*
143  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
144  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
145  * advancement entirely.  Any other value is used as-is and disables adaptive
146  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
147  */
148 static int __read_mostly lapic_timer_advance_ns = -1;
149 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
150 
151 static bool __read_mostly vector_hashing = true;
152 module_param(vector_hashing, bool, S_IRUGO);
153 
154 bool __read_mostly enable_vmware_backdoor = false;
155 module_param(enable_vmware_backdoor, bool, S_IRUGO);
156 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
157 
158 static bool __read_mostly force_emulation_prefix = false;
159 module_param(force_emulation_prefix, bool, S_IRUGO);
160 
161 int __read_mostly pi_inject_timer = -1;
162 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
163 
164 #define KVM_NR_SHARED_MSRS 16
165 
166 struct kvm_shared_msrs_global {
167 	int nr;
168 	u32 msrs[KVM_NR_SHARED_MSRS];
169 };
170 
171 struct kvm_shared_msrs {
172 	struct user_return_notifier urn;
173 	bool registered;
174 	struct kvm_shared_msr_values {
175 		u64 host;
176 		u64 curr;
177 	} values[KVM_NR_SHARED_MSRS];
178 };
179 
180 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
181 static struct kvm_shared_msrs __percpu *shared_msrs;
182 
183 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
184 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
185 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
186 				| XFEATURE_MASK_PKRU)
187 
188 u64 __read_mostly host_efer;
189 EXPORT_SYMBOL_GPL(host_efer);
190 
191 bool __read_mostly allow_smaller_maxphyaddr;
192 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
193 
194 static u64 __read_mostly host_xss;
195 u64 __read_mostly supported_xss;
196 EXPORT_SYMBOL_GPL(supported_xss);
197 
198 struct kvm_stats_debugfs_item debugfs_entries[] = {
199 	VCPU_STAT("pf_fixed", pf_fixed),
200 	VCPU_STAT("pf_guest", pf_guest),
201 	VCPU_STAT("tlb_flush", tlb_flush),
202 	VCPU_STAT("invlpg", invlpg),
203 	VCPU_STAT("exits", exits),
204 	VCPU_STAT("io_exits", io_exits),
205 	VCPU_STAT("mmio_exits", mmio_exits),
206 	VCPU_STAT("signal_exits", signal_exits),
207 	VCPU_STAT("irq_window", irq_window_exits),
208 	VCPU_STAT("nmi_window", nmi_window_exits),
209 	VCPU_STAT("halt_exits", halt_exits),
210 	VCPU_STAT("halt_successful_poll", halt_successful_poll),
211 	VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
212 	VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
213 	VCPU_STAT("halt_wakeup", halt_wakeup),
214 	VCPU_STAT("hypercalls", hypercalls),
215 	VCPU_STAT("request_irq", request_irq_exits),
216 	VCPU_STAT("irq_exits", irq_exits),
217 	VCPU_STAT("host_state_reload", host_state_reload),
218 	VCPU_STAT("fpu_reload", fpu_reload),
219 	VCPU_STAT("insn_emulation", insn_emulation),
220 	VCPU_STAT("insn_emulation_fail", insn_emulation_fail),
221 	VCPU_STAT("irq_injections", irq_injections),
222 	VCPU_STAT("nmi_injections", nmi_injections),
223 	VCPU_STAT("req_event", req_event),
224 	VCPU_STAT("l1d_flush", l1d_flush),
225 	VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
226 	VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
227 	VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped),
228 	VM_STAT("mmu_pte_write", mmu_pte_write),
229 	VM_STAT("mmu_pte_updated", mmu_pte_updated),
230 	VM_STAT("mmu_pde_zapped", mmu_pde_zapped),
231 	VM_STAT("mmu_flooded", mmu_flooded),
232 	VM_STAT("mmu_recycled", mmu_recycled),
233 	VM_STAT("mmu_cache_miss", mmu_cache_miss),
234 	VM_STAT("mmu_unsync", mmu_unsync),
235 	VM_STAT("remote_tlb_flush", remote_tlb_flush),
236 	VM_STAT("largepages", lpages, .mode = 0444),
237 	VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444),
238 	VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions),
239 	{ NULL }
240 };
241 
242 u64 __read_mostly host_xcr0;
243 u64 __read_mostly supported_xcr0;
244 EXPORT_SYMBOL_GPL(supported_xcr0);
245 
246 static struct kmem_cache *x86_fpu_cache;
247 
248 static struct kmem_cache *x86_emulator_cache;
249 
250 /*
251  * When called, it means the previous get/set msr reached an invalid msr.
252  * Return 0 if we want to ignore/silent this failed msr access, or 1 if we want
253  * to fail the caller.
254  */
255 static int kvm_msr_ignored_check(struct kvm_vcpu *vcpu, u32 msr,
256 				 u64 data, bool write)
257 {
258 	const char *op = write ? "wrmsr" : "rdmsr";
259 
260 	if (ignore_msrs) {
261 		if (report_ignored_msrs)
262 			vcpu_unimpl(vcpu, "ignored %s: 0x%x data 0x%llx\n",
263 				    op, msr, data);
264 		/* Mask the error */
265 		return 0;
266 	} else {
267 		vcpu_debug_ratelimited(vcpu, "unhandled %s: 0x%x data 0x%llx\n",
268 				       op, msr, data);
269 		return 1;
270 	}
271 }
272 
273 static struct kmem_cache *kvm_alloc_emulator_cache(void)
274 {
275 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
276 	unsigned int size = sizeof(struct x86_emulate_ctxt);
277 
278 	return kmem_cache_create_usercopy("x86_emulator", size,
279 					  __alignof__(struct x86_emulate_ctxt),
280 					  SLAB_ACCOUNT, useroffset,
281 					  size - useroffset, NULL);
282 }
283 
284 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
285 
286 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
287 {
288 	int i;
289 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
290 		vcpu->arch.apf.gfns[i] = ~0;
291 }
292 
293 static void kvm_on_user_return(struct user_return_notifier *urn)
294 {
295 	unsigned slot;
296 	struct kvm_shared_msrs *locals
297 		= container_of(urn, struct kvm_shared_msrs, urn);
298 	struct kvm_shared_msr_values *values;
299 	unsigned long flags;
300 
301 	/*
302 	 * Disabling irqs at this point since the following code could be
303 	 * interrupted and executed through kvm_arch_hardware_disable()
304 	 */
305 	local_irq_save(flags);
306 	if (locals->registered) {
307 		locals->registered = false;
308 		user_return_notifier_unregister(urn);
309 	}
310 	local_irq_restore(flags);
311 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
312 		values = &locals->values[slot];
313 		if (values->host != values->curr) {
314 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
315 			values->curr = values->host;
316 		}
317 	}
318 }
319 
320 void kvm_define_shared_msr(unsigned slot, u32 msr)
321 {
322 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
323 	shared_msrs_global.msrs[slot] = msr;
324 	if (slot >= shared_msrs_global.nr)
325 		shared_msrs_global.nr = slot + 1;
326 }
327 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
328 
329 static void kvm_shared_msr_cpu_online(void)
330 {
331 	unsigned int cpu = smp_processor_id();
332 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
333 	u64 value;
334 	int i;
335 
336 	for (i = 0; i < shared_msrs_global.nr; ++i) {
337 		rdmsrl_safe(shared_msrs_global.msrs[i], &value);
338 		smsr->values[i].host = value;
339 		smsr->values[i].curr = value;
340 	}
341 }
342 
343 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
344 {
345 	unsigned int cpu = smp_processor_id();
346 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
347 	int err;
348 
349 	value = (value & mask) | (smsr->values[slot].host & ~mask);
350 	if (value == smsr->values[slot].curr)
351 		return 0;
352 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
353 	if (err)
354 		return 1;
355 
356 	smsr->values[slot].curr = value;
357 	if (!smsr->registered) {
358 		smsr->urn.on_user_return = kvm_on_user_return;
359 		user_return_notifier_register(&smsr->urn);
360 		smsr->registered = true;
361 	}
362 	return 0;
363 }
364 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
365 
366 static void drop_user_return_notifiers(void)
367 {
368 	unsigned int cpu = smp_processor_id();
369 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
370 
371 	if (smsr->registered)
372 		kvm_on_user_return(&smsr->urn);
373 }
374 
375 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
376 {
377 	return vcpu->arch.apic_base;
378 }
379 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
380 
381 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
382 {
383 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
384 }
385 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
386 
387 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
388 {
389 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
390 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
391 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
392 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
393 
394 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
395 		return 1;
396 	if (!msr_info->host_initiated) {
397 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
398 			return 1;
399 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
400 			return 1;
401 	}
402 
403 	kvm_lapic_set_base(vcpu, msr_info->data);
404 	kvm_recalculate_apic_map(vcpu->kvm);
405 	return 0;
406 }
407 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
408 
409 asmlinkage __visible noinstr void kvm_spurious_fault(void)
410 {
411 	/* Fault while not rebooting.  We want the trace. */
412 	BUG_ON(!kvm_rebooting);
413 }
414 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
415 
416 #define EXCPT_BENIGN		0
417 #define EXCPT_CONTRIBUTORY	1
418 #define EXCPT_PF		2
419 
420 static int exception_class(int vector)
421 {
422 	switch (vector) {
423 	case PF_VECTOR:
424 		return EXCPT_PF;
425 	case DE_VECTOR:
426 	case TS_VECTOR:
427 	case NP_VECTOR:
428 	case SS_VECTOR:
429 	case GP_VECTOR:
430 		return EXCPT_CONTRIBUTORY;
431 	default:
432 		break;
433 	}
434 	return EXCPT_BENIGN;
435 }
436 
437 #define EXCPT_FAULT		0
438 #define EXCPT_TRAP		1
439 #define EXCPT_ABORT		2
440 #define EXCPT_INTERRUPT		3
441 
442 static int exception_type(int vector)
443 {
444 	unsigned int mask;
445 
446 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
447 		return EXCPT_INTERRUPT;
448 
449 	mask = 1 << vector;
450 
451 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
452 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
453 		return EXCPT_TRAP;
454 
455 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
456 		return EXCPT_ABORT;
457 
458 	/* Reserved exceptions will result in fault */
459 	return EXCPT_FAULT;
460 }
461 
462 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
463 {
464 	unsigned nr = vcpu->arch.exception.nr;
465 	bool has_payload = vcpu->arch.exception.has_payload;
466 	unsigned long payload = vcpu->arch.exception.payload;
467 
468 	if (!has_payload)
469 		return;
470 
471 	switch (nr) {
472 	case DB_VECTOR:
473 		/*
474 		 * "Certain debug exceptions may clear bit 0-3.  The
475 		 * remaining contents of the DR6 register are never
476 		 * cleared by the processor".
477 		 */
478 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
479 		/*
480 		 * DR6.RTM is set by all #DB exceptions that don't clear it.
481 		 */
482 		vcpu->arch.dr6 |= DR6_RTM;
483 		vcpu->arch.dr6 |= payload;
484 		/*
485 		 * Bit 16 should be set in the payload whenever the #DB
486 		 * exception should clear DR6.RTM. This makes the payload
487 		 * compatible with the pending debug exceptions under VMX.
488 		 * Though not currently documented in the SDM, this also
489 		 * makes the payload compatible with the exit qualification
490 		 * for #DB exceptions under VMX.
491 		 */
492 		vcpu->arch.dr6 ^= payload & DR6_RTM;
493 
494 		/*
495 		 * The #DB payload is defined as compatible with the 'pending
496 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
497 		 * defined in the 'pending debug exceptions' field (enabled
498 		 * breakpoint), it is reserved and must be zero in DR6.
499 		 */
500 		vcpu->arch.dr6 &= ~BIT(12);
501 		break;
502 	case PF_VECTOR:
503 		vcpu->arch.cr2 = payload;
504 		break;
505 	}
506 
507 	vcpu->arch.exception.has_payload = false;
508 	vcpu->arch.exception.payload = 0;
509 }
510 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
511 
512 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
513 		unsigned nr, bool has_error, u32 error_code,
514 	        bool has_payload, unsigned long payload, bool reinject)
515 {
516 	u32 prev_nr;
517 	int class1, class2;
518 
519 	kvm_make_request(KVM_REQ_EVENT, vcpu);
520 
521 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
522 	queue:
523 		if (has_error && !is_protmode(vcpu))
524 			has_error = false;
525 		if (reinject) {
526 			/*
527 			 * On vmentry, vcpu->arch.exception.pending is only
528 			 * true if an event injection was blocked by
529 			 * nested_run_pending.  In that case, however,
530 			 * vcpu_enter_guest requests an immediate exit,
531 			 * and the guest shouldn't proceed far enough to
532 			 * need reinjection.
533 			 */
534 			WARN_ON_ONCE(vcpu->arch.exception.pending);
535 			vcpu->arch.exception.injected = true;
536 			if (WARN_ON_ONCE(has_payload)) {
537 				/*
538 				 * A reinjected event has already
539 				 * delivered its payload.
540 				 */
541 				has_payload = false;
542 				payload = 0;
543 			}
544 		} else {
545 			vcpu->arch.exception.pending = true;
546 			vcpu->arch.exception.injected = false;
547 		}
548 		vcpu->arch.exception.has_error_code = has_error;
549 		vcpu->arch.exception.nr = nr;
550 		vcpu->arch.exception.error_code = error_code;
551 		vcpu->arch.exception.has_payload = has_payload;
552 		vcpu->arch.exception.payload = payload;
553 		if (!is_guest_mode(vcpu))
554 			kvm_deliver_exception_payload(vcpu);
555 		return;
556 	}
557 
558 	/* to check exception */
559 	prev_nr = vcpu->arch.exception.nr;
560 	if (prev_nr == DF_VECTOR) {
561 		/* triple fault -> shutdown */
562 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
563 		return;
564 	}
565 	class1 = exception_class(prev_nr);
566 	class2 = exception_class(nr);
567 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
568 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
569 		/*
570 		 * Generate double fault per SDM Table 5-5.  Set
571 		 * exception.pending = true so that the double fault
572 		 * can trigger a nested vmexit.
573 		 */
574 		vcpu->arch.exception.pending = true;
575 		vcpu->arch.exception.injected = false;
576 		vcpu->arch.exception.has_error_code = true;
577 		vcpu->arch.exception.nr = DF_VECTOR;
578 		vcpu->arch.exception.error_code = 0;
579 		vcpu->arch.exception.has_payload = false;
580 		vcpu->arch.exception.payload = 0;
581 	} else
582 		/* replace previous exception with a new one in a hope
583 		   that instruction re-execution will regenerate lost
584 		   exception */
585 		goto queue;
586 }
587 
588 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
589 {
590 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
591 }
592 EXPORT_SYMBOL_GPL(kvm_queue_exception);
593 
594 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
595 {
596 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
597 }
598 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
599 
600 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
601 			   unsigned long payload)
602 {
603 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
604 }
605 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
606 
607 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
608 				    u32 error_code, unsigned long payload)
609 {
610 	kvm_multiple_exception(vcpu, nr, true, error_code,
611 			       true, payload, false);
612 }
613 
614 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
615 {
616 	if (err)
617 		kvm_inject_gp(vcpu, 0);
618 	else
619 		return kvm_skip_emulated_instruction(vcpu);
620 
621 	return 1;
622 }
623 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
624 
625 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
626 {
627 	++vcpu->stat.pf_guest;
628 	vcpu->arch.exception.nested_apf =
629 		is_guest_mode(vcpu) && fault->async_page_fault;
630 	if (vcpu->arch.exception.nested_apf) {
631 		vcpu->arch.apf.nested_apf_token = fault->address;
632 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
633 	} else {
634 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
635 					fault->address);
636 	}
637 }
638 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
639 
640 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
641 				    struct x86_exception *fault)
642 {
643 	struct kvm_mmu *fault_mmu;
644 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
645 
646 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
647 					       vcpu->arch.walk_mmu;
648 
649 	/*
650 	 * Invalidate the TLB entry for the faulting address, if it exists,
651 	 * else the access will fault indefinitely (and to emulate hardware).
652 	 */
653 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
654 	    !(fault->error_code & PFERR_RSVD_MASK))
655 		kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
656 				       fault_mmu->root_hpa);
657 
658 	fault_mmu->inject_page_fault(vcpu, fault);
659 	return fault->nested_page_fault;
660 }
661 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
662 
663 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
664 {
665 	atomic_inc(&vcpu->arch.nmi_queued);
666 	kvm_make_request(KVM_REQ_NMI, vcpu);
667 }
668 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
669 
670 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
671 {
672 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
673 }
674 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
675 
676 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
677 {
678 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
679 }
680 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
681 
682 /*
683  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
684  * a #GP and return false.
685  */
686 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
687 {
688 	if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl)
689 		return true;
690 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
691 	return false;
692 }
693 EXPORT_SYMBOL_GPL(kvm_require_cpl);
694 
695 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
696 {
697 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
698 		return true;
699 
700 	kvm_queue_exception(vcpu, UD_VECTOR);
701 	return false;
702 }
703 EXPORT_SYMBOL_GPL(kvm_require_dr);
704 
705 /*
706  * This function will be used to read from the physical memory of the currently
707  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
708  * can read from guest physical or from the guest's guest physical memory.
709  */
710 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
711 			    gfn_t ngfn, void *data, int offset, int len,
712 			    u32 access)
713 {
714 	struct x86_exception exception;
715 	gfn_t real_gfn;
716 	gpa_t ngpa;
717 
718 	ngpa     = gfn_to_gpa(ngfn);
719 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
720 	if (real_gfn == UNMAPPED_GVA)
721 		return -EFAULT;
722 
723 	real_gfn = gpa_to_gfn(real_gfn);
724 
725 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
726 }
727 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
728 
729 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
730 			       void *data, int offset, int len, u32 access)
731 {
732 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
733 				       data, offset, len, access);
734 }
735 
736 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
737 {
738 	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
739 	       rsvd_bits(1, 2);
740 }
741 
742 /*
743  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
744  */
745 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
746 {
747 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
748 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
749 	int i;
750 	int ret;
751 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
752 
753 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
754 				      offset * sizeof(u64), sizeof(pdpte),
755 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
756 	if (ret < 0) {
757 		ret = 0;
758 		goto out;
759 	}
760 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
761 		if ((pdpte[i] & PT_PRESENT_MASK) &&
762 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
763 			ret = 0;
764 			goto out;
765 		}
766 	}
767 	ret = 1;
768 
769 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
770 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
771 
772 out:
773 
774 	return ret;
775 }
776 EXPORT_SYMBOL_GPL(load_pdptrs);
777 
778 bool pdptrs_changed(struct kvm_vcpu *vcpu)
779 {
780 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
781 	int offset;
782 	gfn_t gfn;
783 	int r;
784 
785 	if (!is_pae_paging(vcpu))
786 		return false;
787 
788 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
789 		return true;
790 
791 	gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
792 	offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
793 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
794 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
795 	if (r < 0)
796 		return true;
797 
798 	return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
799 }
800 EXPORT_SYMBOL_GPL(pdptrs_changed);
801 
802 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
803 {
804 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
805 	unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
806 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
807 
808 	cr0 |= X86_CR0_ET;
809 
810 #ifdef CONFIG_X86_64
811 	if (cr0 & 0xffffffff00000000UL)
812 		return 1;
813 #endif
814 
815 	cr0 &= ~CR0_RESERVED_BITS;
816 
817 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
818 		return 1;
819 
820 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
821 		return 1;
822 
823 #ifdef CONFIG_X86_64
824 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
825 	    (cr0 & X86_CR0_PG)) {
826 		int cs_db, cs_l;
827 
828 		if (!is_pae(vcpu))
829 			return 1;
830 		kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
831 		if (cs_l)
832 			return 1;
833 	}
834 #endif
835 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
836 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
837 	    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
838 		return 1;
839 
840 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
841 		return 1;
842 
843 	kvm_x86_ops.set_cr0(vcpu, cr0);
844 
845 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
846 		kvm_clear_async_pf_completion_queue(vcpu);
847 		kvm_async_pf_hash_reset(vcpu);
848 	}
849 
850 	if ((cr0 ^ old_cr0) & update_bits)
851 		kvm_mmu_reset_context(vcpu);
852 
853 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
854 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
855 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
856 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
857 
858 	return 0;
859 }
860 EXPORT_SYMBOL_GPL(kvm_set_cr0);
861 
862 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
863 {
864 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
865 }
866 EXPORT_SYMBOL_GPL(kvm_lmsw);
867 
868 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
869 {
870 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
871 
872 		if (vcpu->arch.xcr0 != host_xcr0)
873 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
874 
875 		if (vcpu->arch.xsaves_enabled &&
876 		    vcpu->arch.ia32_xss != host_xss)
877 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
878 	}
879 
880 	if (static_cpu_has(X86_FEATURE_PKU) &&
881 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
882 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
883 	    vcpu->arch.pkru != vcpu->arch.host_pkru)
884 		__write_pkru(vcpu->arch.pkru);
885 }
886 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
887 
888 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
889 {
890 	if (static_cpu_has(X86_FEATURE_PKU) &&
891 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
892 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
893 		vcpu->arch.pkru = rdpkru();
894 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
895 			__write_pkru(vcpu->arch.host_pkru);
896 	}
897 
898 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
899 
900 		if (vcpu->arch.xcr0 != host_xcr0)
901 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
902 
903 		if (vcpu->arch.xsaves_enabled &&
904 		    vcpu->arch.ia32_xss != host_xss)
905 			wrmsrl(MSR_IA32_XSS, host_xss);
906 	}
907 
908 }
909 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
910 
911 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
912 {
913 	u64 xcr0 = xcr;
914 	u64 old_xcr0 = vcpu->arch.xcr0;
915 	u64 valid_bits;
916 
917 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
918 	if (index != XCR_XFEATURE_ENABLED_MASK)
919 		return 1;
920 	if (!(xcr0 & XFEATURE_MASK_FP))
921 		return 1;
922 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
923 		return 1;
924 
925 	/*
926 	 * Do not allow the guest to set bits that we do not support
927 	 * saving.  However, xcr0 bit 0 is always set, even if the
928 	 * emulated CPU does not support XSAVE (see fx_init).
929 	 */
930 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
931 	if (xcr0 & ~valid_bits)
932 		return 1;
933 
934 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
935 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
936 		return 1;
937 
938 	if (xcr0 & XFEATURE_MASK_AVX512) {
939 		if (!(xcr0 & XFEATURE_MASK_YMM))
940 			return 1;
941 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
942 			return 1;
943 	}
944 	vcpu->arch.xcr0 = xcr0;
945 
946 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
947 		kvm_update_cpuid_runtime(vcpu);
948 	return 0;
949 }
950 
951 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
952 {
953 	if (kvm_x86_ops.get_cpl(vcpu) != 0 ||
954 	    __kvm_set_xcr(vcpu, index, xcr)) {
955 		kvm_inject_gp(vcpu, 0);
956 		return 1;
957 	}
958 	return 0;
959 }
960 EXPORT_SYMBOL_GPL(kvm_set_xcr);
961 
962 int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
963 {
964 	if (cr4 & cr4_reserved_bits)
965 		return -EINVAL;
966 
967 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
968 		return -EINVAL;
969 
970 	return 0;
971 }
972 EXPORT_SYMBOL_GPL(kvm_valid_cr4);
973 
974 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
975 {
976 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
977 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
978 				   X86_CR4_SMEP;
979 
980 	if (kvm_valid_cr4(vcpu, cr4))
981 		return 1;
982 
983 	if (is_long_mode(vcpu)) {
984 		if (!(cr4 & X86_CR4_PAE))
985 			return 1;
986 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
987 			return 1;
988 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
989 		   && ((cr4 ^ old_cr4) & pdptr_bits)
990 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
991 				   kvm_read_cr3(vcpu)))
992 		return 1;
993 
994 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
995 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
996 			return 1;
997 
998 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
999 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1000 			return 1;
1001 	}
1002 
1003 	if (kvm_x86_ops.set_cr4(vcpu, cr4))
1004 		return 1;
1005 
1006 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
1007 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1008 		kvm_mmu_reset_context(vcpu);
1009 
1010 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1011 		kvm_update_cpuid_runtime(vcpu);
1012 
1013 	return 0;
1014 }
1015 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1016 
1017 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1018 {
1019 	bool skip_tlb_flush = false;
1020 #ifdef CONFIG_X86_64
1021 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1022 
1023 	if (pcid_enabled) {
1024 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1025 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1026 	}
1027 #endif
1028 
1029 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1030 		if (!skip_tlb_flush) {
1031 			kvm_mmu_sync_roots(vcpu);
1032 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1033 		}
1034 		return 0;
1035 	}
1036 
1037 	if (is_long_mode(vcpu) &&
1038 	    (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
1039 		return 1;
1040 	else if (is_pae_paging(vcpu) &&
1041 		 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1042 		return 1;
1043 
1044 	kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush);
1045 	vcpu->arch.cr3 = cr3;
1046 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1047 
1048 	return 0;
1049 }
1050 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1051 
1052 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1053 {
1054 	if (cr8 & CR8_RESERVED_BITS)
1055 		return 1;
1056 	if (lapic_in_kernel(vcpu))
1057 		kvm_lapic_set_tpr(vcpu, cr8);
1058 	else
1059 		vcpu->arch.cr8 = cr8;
1060 	return 0;
1061 }
1062 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1063 
1064 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1065 {
1066 	if (lapic_in_kernel(vcpu))
1067 		return kvm_lapic_get_cr8(vcpu);
1068 	else
1069 		return vcpu->arch.cr8;
1070 }
1071 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1072 
1073 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1074 {
1075 	int i;
1076 
1077 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1078 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1079 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1080 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1081 	}
1082 }
1083 
1084 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1085 {
1086 	unsigned long dr7;
1087 
1088 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1089 		dr7 = vcpu->arch.guest_debug_dr7;
1090 	else
1091 		dr7 = vcpu->arch.dr7;
1092 	kvm_x86_ops.set_dr7(vcpu, dr7);
1093 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1094 	if (dr7 & DR7_BP_EN_MASK)
1095 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1096 }
1097 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1098 
1099 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1100 {
1101 	u64 fixed = DR6_FIXED_1;
1102 
1103 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1104 		fixed |= DR6_RTM;
1105 	return fixed;
1106 }
1107 
1108 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1109 {
1110 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1111 
1112 	switch (dr) {
1113 	case 0 ... 3:
1114 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1115 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1116 			vcpu->arch.eff_db[dr] = val;
1117 		break;
1118 	case 4:
1119 	case 6:
1120 		if (!kvm_dr6_valid(val))
1121 			return -1; /* #GP */
1122 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1123 		break;
1124 	case 5:
1125 	default: /* 7 */
1126 		if (!kvm_dr7_valid(val))
1127 			return -1; /* #GP */
1128 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1129 		kvm_update_dr7(vcpu);
1130 		break;
1131 	}
1132 
1133 	return 0;
1134 }
1135 
1136 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1137 {
1138 	if (__kvm_set_dr(vcpu, dr, val)) {
1139 		kvm_inject_gp(vcpu, 0);
1140 		return 1;
1141 	}
1142 	return 0;
1143 }
1144 EXPORT_SYMBOL_GPL(kvm_set_dr);
1145 
1146 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1147 {
1148 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1149 
1150 	switch (dr) {
1151 	case 0 ... 3:
1152 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1153 		break;
1154 	case 4:
1155 	case 6:
1156 		*val = vcpu->arch.dr6;
1157 		break;
1158 	case 5:
1159 	default: /* 7 */
1160 		*val = vcpu->arch.dr7;
1161 		break;
1162 	}
1163 	return 0;
1164 }
1165 EXPORT_SYMBOL_GPL(kvm_get_dr);
1166 
1167 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1168 {
1169 	u32 ecx = kvm_rcx_read(vcpu);
1170 	u64 data;
1171 	int err;
1172 
1173 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1174 	if (err)
1175 		return err;
1176 	kvm_rax_write(vcpu, (u32)data);
1177 	kvm_rdx_write(vcpu, data >> 32);
1178 	return err;
1179 }
1180 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1181 
1182 /*
1183  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1184  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1185  *
1186  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1187  * extract the supported MSRs from the related const lists.
1188  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1189  * capabilities of the host cpu. This capabilities test skips MSRs that are
1190  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1191  * may depend on host virtualization features rather than host cpu features.
1192  */
1193 
1194 static const u32 msrs_to_save_all[] = {
1195 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1196 	MSR_STAR,
1197 #ifdef CONFIG_X86_64
1198 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1199 #endif
1200 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1201 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1202 	MSR_IA32_SPEC_CTRL,
1203 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1204 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1205 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1206 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1207 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1208 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1209 	MSR_IA32_UMWAIT_CONTROL,
1210 
1211 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1212 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1213 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1214 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1215 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1216 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1217 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1218 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1219 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1220 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1221 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1222 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1223 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1224 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1225 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1226 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1227 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1228 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1229 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1230 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1231 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1232 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1233 };
1234 
1235 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1236 static unsigned num_msrs_to_save;
1237 
1238 static const u32 emulated_msrs_all[] = {
1239 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1240 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1241 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1242 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1243 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1244 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1245 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1246 	HV_X64_MSR_RESET,
1247 	HV_X64_MSR_VP_INDEX,
1248 	HV_X64_MSR_VP_RUNTIME,
1249 	HV_X64_MSR_SCONTROL,
1250 	HV_X64_MSR_STIMER0_CONFIG,
1251 	HV_X64_MSR_VP_ASSIST_PAGE,
1252 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1253 	HV_X64_MSR_TSC_EMULATION_STATUS,
1254 	HV_X64_MSR_SYNDBG_OPTIONS,
1255 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1256 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1257 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1258 
1259 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1260 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1261 
1262 	MSR_IA32_TSC_ADJUST,
1263 	MSR_IA32_TSCDEADLINE,
1264 	MSR_IA32_ARCH_CAPABILITIES,
1265 	MSR_IA32_PERF_CAPABILITIES,
1266 	MSR_IA32_MISC_ENABLE,
1267 	MSR_IA32_MCG_STATUS,
1268 	MSR_IA32_MCG_CTL,
1269 	MSR_IA32_MCG_EXT_CTL,
1270 	MSR_IA32_SMBASE,
1271 	MSR_SMI_COUNT,
1272 	MSR_PLATFORM_INFO,
1273 	MSR_MISC_FEATURES_ENABLES,
1274 	MSR_AMD64_VIRT_SPEC_CTRL,
1275 	MSR_IA32_POWER_CTL,
1276 	MSR_IA32_UCODE_REV,
1277 
1278 	/*
1279 	 * The following list leaves out MSRs whose values are determined
1280 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1281 	 * We always support the "true" VMX control MSRs, even if the host
1282 	 * processor does not, so I am putting these registers here rather
1283 	 * than in msrs_to_save_all.
1284 	 */
1285 	MSR_IA32_VMX_BASIC,
1286 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1287 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1288 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1289 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1290 	MSR_IA32_VMX_MISC,
1291 	MSR_IA32_VMX_CR0_FIXED0,
1292 	MSR_IA32_VMX_CR4_FIXED0,
1293 	MSR_IA32_VMX_VMCS_ENUM,
1294 	MSR_IA32_VMX_PROCBASED_CTLS2,
1295 	MSR_IA32_VMX_EPT_VPID_CAP,
1296 	MSR_IA32_VMX_VMFUNC,
1297 
1298 	MSR_K7_HWCR,
1299 	MSR_KVM_POLL_CONTROL,
1300 };
1301 
1302 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1303 static unsigned num_emulated_msrs;
1304 
1305 /*
1306  * List of msr numbers which are used to expose MSR-based features that
1307  * can be used by a hypervisor to validate requested CPU features.
1308  */
1309 static const u32 msr_based_features_all[] = {
1310 	MSR_IA32_VMX_BASIC,
1311 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1312 	MSR_IA32_VMX_PINBASED_CTLS,
1313 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1314 	MSR_IA32_VMX_PROCBASED_CTLS,
1315 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1316 	MSR_IA32_VMX_EXIT_CTLS,
1317 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1318 	MSR_IA32_VMX_ENTRY_CTLS,
1319 	MSR_IA32_VMX_MISC,
1320 	MSR_IA32_VMX_CR0_FIXED0,
1321 	MSR_IA32_VMX_CR0_FIXED1,
1322 	MSR_IA32_VMX_CR4_FIXED0,
1323 	MSR_IA32_VMX_CR4_FIXED1,
1324 	MSR_IA32_VMX_VMCS_ENUM,
1325 	MSR_IA32_VMX_PROCBASED_CTLS2,
1326 	MSR_IA32_VMX_EPT_VPID_CAP,
1327 	MSR_IA32_VMX_VMFUNC,
1328 
1329 	MSR_F10H_DECFG,
1330 	MSR_IA32_UCODE_REV,
1331 	MSR_IA32_ARCH_CAPABILITIES,
1332 	MSR_IA32_PERF_CAPABILITIES,
1333 };
1334 
1335 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1336 static unsigned int num_msr_based_features;
1337 
1338 static u64 kvm_get_arch_capabilities(void)
1339 {
1340 	u64 data = 0;
1341 
1342 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1343 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1344 
1345 	/*
1346 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1347 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1348 	 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1349 	 * L1 guests, so it need not worry about its own (L2) guests.
1350 	 */
1351 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1352 
1353 	/*
1354 	 * If we're doing cache flushes (either "always" or "cond")
1355 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1356 	 * If an outer hypervisor is doing the cache flush for us
1357 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1358 	 * capability to the guest too, and if EPT is disabled we're not
1359 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1360 	 * require a nested hypervisor to do a flush of its own.
1361 	 */
1362 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1363 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1364 
1365 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1366 		data |= ARCH_CAP_RDCL_NO;
1367 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1368 		data |= ARCH_CAP_SSB_NO;
1369 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1370 		data |= ARCH_CAP_MDS_NO;
1371 
1372 	/*
1373 	 * On TAA affected systems:
1374 	 *      - nothing to do if TSX is disabled on the host.
1375 	 *      - we emulate TSX_CTRL if present on the host.
1376 	 *	  This lets the guest use VERW to clear CPU buffers.
1377 	 */
1378 	if (!boot_cpu_has(X86_FEATURE_RTM))
1379 		data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR);
1380 	else if (!boot_cpu_has_bug(X86_BUG_TAA))
1381 		data |= ARCH_CAP_TAA_NO;
1382 
1383 	return data;
1384 }
1385 
1386 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1387 {
1388 	switch (msr->index) {
1389 	case MSR_IA32_ARCH_CAPABILITIES:
1390 		msr->data = kvm_get_arch_capabilities();
1391 		break;
1392 	case MSR_IA32_UCODE_REV:
1393 		rdmsrl_safe(msr->index, &msr->data);
1394 		break;
1395 	default:
1396 		return kvm_x86_ops.get_msr_feature(msr);
1397 	}
1398 	return 0;
1399 }
1400 
1401 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1402 {
1403 	struct kvm_msr_entry msr;
1404 	int r;
1405 
1406 	msr.index = index;
1407 	r = kvm_get_msr_feature(&msr);
1408 
1409 	if (r == KVM_MSR_RET_INVALID) {
1410 		/* Unconditionally clear the output for simplicity */
1411 		*data = 0;
1412 		r = kvm_msr_ignored_check(vcpu, index, 0, false);
1413 	}
1414 
1415 	if (r)
1416 		return r;
1417 
1418 	*data = msr.data;
1419 
1420 	return 0;
1421 }
1422 
1423 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1424 {
1425 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1426 		return false;
1427 
1428 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1429 		return false;
1430 
1431 	if (efer & (EFER_LME | EFER_LMA) &&
1432 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1433 		return false;
1434 
1435 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1436 		return false;
1437 
1438 	return true;
1439 
1440 }
1441 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1442 {
1443 	if (efer & efer_reserved_bits)
1444 		return false;
1445 
1446 	return __kvm_valid_efer(vcpu, efer);
1447 }
1448 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1449 
1450 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1451 {
1452 	u64 old_efer = vcpu->arch.efer;
1453 	u64 efer = msr_info->data;
1454 
1455 	if (efer & efer_reserved_bits)
1456 		return 1;
1457 
1458 	if (!msr_info->host_initiated) {
1459 		if (!__kvm_valid_efer(vcpu, efer))
1460 			return 1;
1461 
1462 		if (is_paging(vcpu) &&
1463 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1464 			return 1;
1465 	}
1466 
1467 	efer &= ~EFER_LMA;
1468 	efer |= vcpu->arch.efer & EFER_LMA;
1469 
1470 	kvm_x86_ops.set_efer(vcpu, efer);
1471 
1472 	/* Update reserved bits */
1473 	if ((efer ^ old_efer) & EFER_NX)
1474 		kvm_mmu_reset_context(vcpu);
1475 
1476 	return 0;
1477 }
1478 
1479 void kvm_enable_efer_bits(u64 mask)
1480 {
1481        efer_reserved_bits &= ~mask;
1482 }
1483 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1484 
1485 /*
1486  * Write @data into the MSR specified by @index.  Select MSR specific fault
1487  * checks are bypassed if @host_initiated is %true.
1488  * Returns 0 on success, non-0 otherwise.
1489  * Assumes vcpu_load() was already called.
1490  */
1491 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1492 			 bool host_initiated)
1493 {
1494 	struct msr_data msr;
1495 
1496 	switch (index) {
1497 	case MSR_FS_BASE:
1498 	case MSR_GS_BASE:
1499 	case MSR_KERNEL_GS_BASE:
1500 	case MSR_CSTAR:
1501 	case MSR_LSTAR:
1502 		if (is_noncanonical_address(data, vcpu))
1503 			return 1;
1504 		break;
1505 	case MSR_IA32_SYSENTER_EIP:
1506 	case MSR_IA32_SYSENTER_ESP:
1507 		/*
1508 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1509 		 * non-canonical address is written on Intel but not on
1510 		 * AMD (which ignores the top 32-bits, because it does
1511 		 * not implement 64-bit SYSENTER).
1512 		 *
1513 		 * 64-bit code should hence be able to write a non-canonical
1514 		 * value on AMD.  Making the address canonical ensures that
1515 		 * vmentry does not fail on Intel after writing a non-canonical
1516 		 * value, and that something deterministic happens if the guest
1517 		 * invokes 64-bit SYSENTER.
1518 		 */
1519 		data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1520 	}
1521 
1522 	msr.data = data;
1523 	msr.index = index;
1524 	msr.host_initiated = host_initiated;
1525 
1526 	return kvm_x86_ops.set_msr(vcpu, &msr);
1527 }
1528 
1529 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1530 				     u32 index, u64 data, bool host_initiated)
1531 {
1532 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1533 
1534 	if (ret == KVM_MSR_RET_INVALID)
1535 		ret = kvm_msr_ignored_check(vcpu, index, data, true);
1536 
1537 	return ret;
1538 }
1539 
1540 /*
1541  * Read the MSR specified by @index into @data.  Select MSR specific fault
1542  * checks are bypassed if @host_initiated is %true.
1543  * Returns 0 on success, non-0 otherwise.
1544  * Assumes vcpu_load() was already called.
1545  */
1546 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1547 		  bool host_initiated)
1548 {
1549 	struct msr_data msr;
1550 	int ret;
1551 
1552 	msr.index = index;
1553 	msr.host_initiated = host_initiated;
1554 
1555 	ret = kvm_x86_ops.get_msr(vcpu, &msr);
1556 	if (!ret)
1557 		*data = msr.data;
1558 	return ret;
1559 }
1560 
1561 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1562 				     u32 index, u64 *data, bool host_initiated)
1563 {
1564 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1565 
1566 	if (ret == KVM_MSR_RET_INVALID) {
1567 		/* Unconditionally clear *data for simplicity */
1568 		*data = 0;
1569 		ret = kvm_msr_ignored_check(vcpu, index, 0, false);
1570 	}
1571 
1572 	return ret;
1573 }
1574 
1575 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1576 {
1577 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1578 }
1579 EXPORT_SYMBOL_GPL(kvm_get_msr);
1580 
1581 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1582 {
1583 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1584 }
1585 EXPORT_SYMBOL_GPL(kvm_set_msr);
1586 
1587 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1588 {
1589 	u32 ecx = kvm_rcx_read(vcpu);
1590 	u64 data;
1591 
1592 	if (kvm_get_msr(vcpu, ecx, &data)) {
1593 		trace_kvm_msr_read_ex(ecx);
1594 		kvm_inject_gp(vcpu, 0);
1595 		return 1;
1596 	}
1597 
1598 	trace_kvm_msr_read(ecx, data);
1599 
1600 	kvm_rax_write(vcpu, data & -1u);
1601 	kvm_rdx_write(vcpu, (data >> 32) & -1u);
1602 	return kvm_skip_emulated_instruction(vcpu);
1603 }
1604 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1605 
1606 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1607 {
1608 	u32 ecx = kvm_rcx_read(vcpu);
1609 	u64 data = kvm_read_edx_eax(vcpu);
1610 
1611 	if (kvm_set_msr(vcpu, ecx, data)) {
1612 		trace_kvm_msr_write_ex(ecx, data);
1613 		kvm_inject_gp(vcpu, 0);
1614 		return 1;
1615 	}
1616 
1617 	trace_kvm_msr_write(ecx, data);
1618 	return kvm_skip_emulated_instruction(vcpu);
1619 }
1620 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1621 
1622 bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1623 {
1624 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1625 		xfer_to_guest_mode_work_pending();
1626 }
1627 EXPORT_SYMBOL_GPL(kvm_vcpu_exit_request);
1628 
1629 /*
1630  * The fast path for frequent and performance sensitive wrmsr emulation,
1631  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1632  * the latency of virtual IPI by avoiding the expensive bits of transitioning
1633  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1634  * other cases which must be called after interrupts are enabled on the host.
1635  */
1636 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1637 {
1638 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1639 		return 1;
1640 
1641 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1642 		((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1643 		((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1644 		((u32)(data >> 32) != X2APIC_BROADCAST)) {
1645 
1646 		data &= ~(1 << 12);
1647 		kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1648 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1649 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1650 		trace_kvm_apic_write(APIC_ICR, (u32)data);
1651 		return 0;
1652 	}
1653 
1654 	return 1;
1655 }
1656 
1657 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1658 {
1659 	if (!kvm_can_use_hv_timer(vcpu))
1660 		return 1;
1661 
1662 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
1663 	return 0;
1664 }
1665 
1666 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1667 {
1668 	u32 msr = kvm_rcx_read(vcpu);
1669 	u64 data;
1670 	fastpath_t ret = EXIT_FASTPATH_NONE;
1671 
1672 	switch (msr) {
1673 	case APIC_BASE_MSR + (APIC_ICR >> 4):
1674 		data = kvm_read_edx_eax(vcpu);
1675 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1676 			kvm_skip_emulated_instruction(vcpu);
1677 			ret = EXIT_FASTPATH_EXIT_HANDLED;
1678 		}
1679 		break;
1680 	case MSR_IA32_TSCDEADLINE:
1681 		data = kvm_read_edx_eax(vcpu);
1682 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1683 			kvm_skip_emulated_instruction(vcpu);
1684 			ret = EXIT_FASTPATH_REENTER_GUEST;
1685 		}
1686 		break;
1687 	default:
1688 		break;
1689 	}
1690 
1691 	if (ret != EXIT_FASTPATH_NONE)
1692 		trace_kvm_msr_write(msr, data);
1693 
1694 	return ret;
1695 }
1696 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1697 
1698 /*
1699  * Adapt set_msr() to msr_io()'s calling convention
1700  */
1701 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1702 {
1703 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
1704 }
1705 
1706 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1707 {
1708 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
1709 }
1710 
1711 #ifdef CONFIG_X86_64
1712 struct pvclock_clock {
1713 	int vclock_mode;
1714 	u64 cycle_last;
1715 	u64 mask;
1716 	u32 mult;
1717 	u32 shift;
1718 	u64 base_cycles;
1719 	u64 offset;
1720 };
1721 
1722 struct pvclock_gtod_data {
1723 	seqcount_t	seq;
1724 
1725 	struct pvclock_clock clock; /* extract of a clocksource struct */
1726 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1727 
1728 	ktime_t		offs_boot;
1729 	u64		wall_time_sec;
1730 };
1731 
1732 static struct pvclock_gtod_data pvclock_gtod_data;
1733 
1734 static void update_pvclock_gtod(struct timekeeper *tk)
1735 {
1736 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1737 
1738 	write_seqcount_begin(&vdata->seq);
1739 
1740 	/* copy pvclock gtod data */
1741 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
1742 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1743 	vdata->clock.mask		= tk->tkr_mono.mask;
1744 	vdata->clock.mult		= tk->tkr_mono.mult;
1745 	vdata->clock.shift		= tk->tkr_mono.shift;
1746 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
1747 	vdata->clock.offset		= tk->tkr_mono.base;
1748 
1749 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
1750 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
1751 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
1752 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
1753 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
1754 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
1755 	vdata->raw_clock.offset		= tk->tkr_raw.base;
1756 
1757 	vdata->wall_time_sec            = tk->xtime_sec;
1758 
1759 	vdata->offs_boot		= tk->offs_boot;
1760 
1761 	write_seqcount_end(&vdata->seq);
1762 }
1763 
1764 static s64 get_kvmclock_base_ns(void)
1765 {
1766 	/* Count up from boot time, but with the frequency of the raw clock.  */
1767 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1768 }
1769 #else
1770 static s64 get_kvmclock_base_ns(void)
1771 {
1772 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
1773 	return ktime_get_boottime_ns();
1774 }
1775 #endif
1776 
1777 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1778 {
1779 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1780 	kvm_vcpu_kick(vcpu);
1781 }
1782 
1783 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1784 {
1785 	int version;
1786 	int r;
1787 	struct pvclock_wall_clock wc;
1788 	u64 wall_nsec;
1789 
1790 	if (!wall_clock)
1791 		return;
1792 
1793 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1794 	if (r)
1795 		return;
1796 
1797 	if (version & 1)
1798 		++version;  /* first time write, random junk */
1799 
1800 	++version;
1801 
1802 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1803 		return;
1804 
1805 	/*
1806 	 * The guest calculates current wall clock time by adding
1807 	 * system time (updated by kvm_guest_time_update below) to the
1808 	 * wall clock specified here.  We do the reverse here.
1809 	 */
1810 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
1811 
1812 	wc.nsec = do_div(wall_nsec, 1000000000);
1813 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
1814 	wc.version = version;
1815 
1816 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1817 
1818 	version++;
1819 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1820 }
1821 
1822 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1823 {
1824 	do_shl32_div32(dividend, divisor);
1825 	return dividend;
1826 }
1827 
1828 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1829 			       s8 *pshift, u32 *pmultiplier)
1830 {
1831 	uint64_t scaled64;
1832 	int32_t  shift = 0;
1833 	uint64_t tps64;
1834 	uint32_t tps32;
1835 
1836 	tps64 = base_hz;
1837 	scaled64 = scaled_hz;
1838 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1839 		tps64 >>= 1;
1840 		shift--;
1841 	}
1842 
1843 	tps32 = (uint32_t)tps64;
1844 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1845 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1846 			scaled64 >>= 1;
1847 		else
1848 			tps32 <<= 1;
1849 		shift++;
1850 	}
1851 
1852 	*pshift = shift;
1853 	*pmultiplier = div_frac(scaled64, tps32);
1854 }
1855 
1856 #ifdef CONFIG_X86_64
1857 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1858 #endif
1859 
1860 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1861 static unsigned long max_tsc_khz;
1862 
1863 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1864 {
1865 	u64 v = (u64)khz * (1000000 + ppm);
1866 	do_div(v, 1000000);
1867 	return v;
1868 }
1869 
1870 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1871 {
1872 	u64 ratio;
1873 
1874 	/* Guest TSC same frequency as host TSC? */
1875 	if (!scale) {
1876 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1877 		return 0;
1878 	}
1879 
1880 	/* TSC scaling supported? */
1881 	if (!kvm_has_tsc_control) {
1882 		if (user_tsc_khz > tsc_khz) {
1883 			vcpu->arch.tsc_catchup = 1;
1884 			vcpu->arch.tsc_always_catchup = 1;
1885 			return 0;
1886 		} else {
1887 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
1888 			return -1;
1889 		}
1890 	}
1891 
1892 	/* TSC scaling required  - calculate ratio */
1893 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1894 				user_tsc_khz, tsc_khz);
1895 
1896 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1897 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1898 			            user_tsc_khz);
1899 		return -1;
1900 	}
1901 
1902 	vcpu->arch.tsc_scaling_ratio = ratio;
1903 	return 0;
1904 }
1905 
1906 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1907 {
1908 	u32 thresh_lo, thresh_hi;
1909 	int use_scaling = 0;
1910 
1911 	/* tsc_khz can be zero if TSC calibration fails */
1912 	if (user_tsc_khz == 0) {
1913 		/* set tsc_scaling_ratio to a safe value */
1914 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1915 		return -1;
1916 	}
1917 
1918 	/* Compute a scale to convert nanoseconds in TSC cycles */
1919 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1920 			   &vcpu->arch.virtual_tsc_shift,
1921 			   &vcpu->arch.virtual_tsc_mult);
1922 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1923 
1924 	/*
1925 	 * Compute the variation in TSC rate which is acceptable
1926 	 * within the range of tolerance and decide if the
1927 	 * rate being applied is within that bounds of the hardware
1928 	 * rate.  If so, no scaling or compensation need be done.
1929 	 */
1930 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1931 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1932 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1933 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1934 		use_scaling = 1;
1935 	}
1936 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1937 }
1938 
1939 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1940 {
1941 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1942 				      vcpu->arch.virtual_tsc_mult,
1943 				      vcpu->arch.virtual_tsc_shift);
1944 	tsc += vcpu->arch.this_tsc_write;
1945 	return tsc;
1946 }
1947 
1948 static inline int gtod_is_based_on_tsc(int mode)
1949 {
1950 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
1951 }
1952 
1953 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1954 {
1955 #ifdef CONFIG_X86_64
1956 	bool vcpus_matched;
1957 	struct kvm_arch *ka = &vcpu->kvm->arch;
1958 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1959 
1960 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1961 			 atomic_read(&vcpu->kvm->online_vcpus));
1962 
1963 	/*
1964 	 * Once the masterclock is enabled, always perform request in
1965 	 * order to update it.
1966 	 *
1967 	 * In order to enable masterclock, the host clocksource must be TSC
1968 	 * and the vcpus need to have matched TSCs.  When that happens,
1969 	 * perform request to enable masterclock.
1970 	 */
1971 	if (ka->use_master_clock ||
1972 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1973 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1974 
1975 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1976 			    atomic_read(&vcpu->kvm->online_vcpus),
1977 		            ka->use_master_clock, gtod->clock.vclock_mode);
1978 #endif
1979 }
1980 
1981 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1982 {
1983 	u64 curr_offset = vcpu->arch.l1_tsc_offset;
1984 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1985 }
1986 
1987 /*
1988  * Multiply tsc by a fixed point number represented by ratio.
1989  *
1990  * The most significant 64-N bits (mult) of ratio represent the
1991  * integral part of the fixed point number; the remaining N bits
1992  * (frac) represent the fractional part, ie. ratio represents a fixed
1993  * point number (mult + frac * 2^(-N)).
1994  *
1995  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1996  */
1997 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1998 {
1999 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2000 }
2001 
2002 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
2003 {
2004 	u64 _tsc = tsc;
2005 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
2006 
2007 	if (ratio != kvm_default_tsc_scaling_ratio)
2008 		_tsc = __scale_tsc(ratio, tsc);
2009 
2010 	return _tsc;
2011 }
2012 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2013 
2014 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2015 {
2016 	u64 tsc;
2017 
2018 	tsc = kvm_scale_tsc(vcpu, rdtsc());
2019 
2020 	return target_tsc - tsc;
2021 }
2022 
2023 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2024 {
2025 	return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
2026 }
2027 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2028 
2029 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2030 {
2031 	vcpu->arch.l1_tsc_offset = offset;
2032 	vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset);
2033 }
2034 
2035 static inline bool kvm_check_tsc_unstable(void)
2036 {
2037 #ifdef CONFIG_X86_64
2038 	/*
2039 	 * TSC is marked unstable when we're running on Hyper-V,
2040 	 * 'TSC page' clocksource is good.
2041 	 */
2042 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2043 		return false;
2044 #endif
2045 	return check_tsc_unstable();
2046 }
2047 
2048 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
2049 {
2050 	struct kvm *kvm = vcpu->kvm;
2051 	u64 offset, ns, elapsed;
2052 	unsigned long flags;
2053 	bool matched;
2054 	bool already_matched;
2055 	u64 data = msr->data;
2056 	bool synchronizing = false;
2057 
2058 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2059 	offset = kvm_compute_tsc_offset(vcpu, data);
2060 	ns = get_kvmclock_base_ns();
2061 	elapsed = ns - kvm->arch.last_tsc_nsec;
2062 
2063 	if (vcpu->arch.virtual_tsc_khz) {
2064 		if (data == 0 && msr->host_initiated) {
2065 			/*
2066 			 * detection of vcpu initialization -- need to sync
2067 			 * with other vCPUs. This particularly helps to keep
2068 			 * kvm_clock stable after CPU hotplug
2069 			 */
2070 			synchronizing = true;
2071 		} else {
2072 			u64 tsc_exp = kvm->arch.last_tsc_write +
2073 						nsec_to_cycles(vcpu, elapsed);
2074 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2075 			/*
2076 			 * Special case: TSC write with a small delta (1 second)
2077 			 * of virtual cycle time against real time is
2078 			 * interpreted as an attempt to synchronize the CPU.
2079 			 */
2080 			synchronizing = data < tsc_exp + tsc_hz &&
2081 					data + tsc_hz > tsc_exp;
2082 		}
2083 	}
2084 
2085 	/*
2086 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2087 	 * TSC, we add elapsed time in this computation.  We could let the
2088 	 * compensation code attempt to catch up if we fall behind, but
2089 	 * it's better to try to match offsets from the beginning.
2090          */
2091 	if (synchronizing &&
2092 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2093 		if (!kvm_check_tsc_unstable()) {
2094 			offset = kvm->arch.cur_tsc_offset;
2095 		} else {
2096 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2097 			data += delta;
2098 			offset = kvm_compute_tsc_offset(vcpu, data);
2099 		}
2100 		matched = true;
2101 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2102 	} else {
2103 		/*
2104 		 * We split periods of matched TSC writes into generations.
2105 		 * For each generation, we track the original measured
2106 		 * nanosecond time, offset, and write, so if TSCs are in
2107 		 * sync, we can match exact offset, and if not, we can match
2108 		 * exact software computation in compute_guest_tsc()
2109 		 *
2110 		 * These values are tracked in kvm->arch.cur_xxx variables.
2111 		 */
2112 		kvm->arch.cur_tsc_generation++;
2113 		kvm->arch.cur_tsc_nsec = ns;
2114 		kvm->arch.cur_tsc_write = data;
2115 		kvm->arch.cur_tsc_offset = offset;
2116 		matched = false;
2117 	}
2118 
2119 	/*
2120 	 * We also track th most recent recorded KHZ, write and time to
2121 	 * allow the matching interval to be extended at each write.
2122 	 */
2123 	kvm->arch.last_tsc_nsec = ns;
2124 	kvm->arch.last_tsc_write = data;
2125 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2126 
2127 	vcpu->arch.last_guest_tsc = data;
2128 
2129 	/* Keep track of which generation this VCPU has synchronized to */
2130 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2131 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2132 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2133 
2134 	if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
2135 		update_ia32_tsc_adjust_msr(vcpu, offset);
2136 
2137 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2138 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2139 
2140 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
2141 	if (!matched) {
2142 		kvm->arch.nr_vcpus_matched_tsc = 0;
2143 	} else if (!already_matched) {
2144 		kvm->arch.nr_vcpus_matched_tsc++;
2145 	}
2146 
2147 	kvm_track_tsc_matching(vcpu);
2148 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
2149 }
2150 
2151 EXPORT_SYMBOL_GPL(kvm_write_tsc);
2152 
2153 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2154 					   s64 adjustment)
2155 {
2156 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2157 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2158 }
2159 
2160 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2161 {
2162 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2163 		WARN_ON(adjustment < 0);
2164 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2165 	adjust_tsc_offset_guest(vcpu, adjustment);
2166 }
2167 
2168 #ifdef CONFIG_X86_64
2169 
2170 static u64 read_tsc(void)
2171 {
2172 	u64 ret = (u64)rdtsc_ordered();
2173 	u64 last = pvclock_gtod_data.clock.cycle_last;
2174 
2175 	if (likely(ret >= last))
2176 		return ret;
2177 
2178 	/*
2179 	 * GCC likes to generate cmov here, but this branch is extremely
2180 	 * predictable (it's just a function of time and the likely is
2181 	 * very likely) and there's a data dependence, so force GCC
2182 	 * to generate a branch instead.  I don't barrier() because
2183 	 * we don't actually need a barrier, and if this function
2184 	 * ever gets inlined it will generate worse code.
2185 	 */
2186 	asm volatile ("");
2187 	return last;
2188 }
2189 
2190 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2191 			  int *mode)
2192 {
2193 	long v;
2194 	u64 tsc_pg_val;
2195 
2196 	switch (clock->vclock_mode) {
2197 	case VDSO_CLOCKMODE_HVCLOCK:
2198 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2199 						  tsc_timestamp);
2200 		if (tsc_pg_val != U64_MAX) {
2201 			/* TSC page valid */
2202 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2203 			v = (tsc_pg_val - clock->cycle_last) &
2204 				clock->mask;
2205 		} else {
2206 			/* TSC page invalid */
2207 			*mode = VDSO_CLOCKMODE_NONE;
2208 		}
2209 		break;
2210 	case VDSO_CLOCKMODE_TSC:
2211 		*mode = VDSO_CLOCKMODE_TSC;
2212 		*tsc_timestamp = read_tsc();
2213 		v = (*tsc_timestamp - clock->cycle_last) &
2214 			clock->mask;
2215 		break;
2216 	default:
2217 		*mode = VDSO_CLOCKMODE_NONE;
2218 	}
2219 
2220 	if (*mode == VDSO_CLOCKMODE_NONE)
2221 		*tsc_timestamp = v = 0;
2222 
2223 	return v * clock->mult;
2224 }
2225 
2226 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2227 {
2228 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2229 	unsigned long seq;
2230 	int mode;
2231 	u64 ns;
2232 
2233 	do {
2234 		seq = read_seqcount_begin(&gtod->seq);
2235 		ns = gtod->raw_clock.base_cycles;
2236 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2237 		ns >>= gtod->raw_clock.shift;
2238 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2239 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2240 	*t = ns;
2241 
2242 	return mode;
2243 }
2244 
2245 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2246 {
2247 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2248 	unsigned long seq;
2249 	int mode;
2250 	u64 ns;
2251 
2252 	do {
2253 		seq = read_seqcount_begin(&gtod->seq);
2254 		ts->tv_sec = gtod->wall_time_sec;
2255 		ns = gtod->clock.base_cycles;
2256 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2257 		ns >>= gtod->clock.shift;
2258 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2259 
2260 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2261 	ts->tv_nsec = ns;
2262 
2263 	return mode;
2264 }
2265 
2266 /* returns true if host is using TSC based clocksource */
2267 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2268 {
2269 	/* checked again under seqlock below */
2270 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2271 		return false;
2272 
2273 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2274 						      tsc_timestamp));
2275 }
2276 
2277 /* returns true if host is using TSC based clocksource */
2278 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2279 					   u64 *tsc_timestamp)
2280 {
2281 	/* checked again under seqlock below */
2282 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2283 		return false;
2284 
2285 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2286 }
2287 #endif
2288 
2289 /*
2290  *
2291  * Assuming a stable TSC across physical CPUS, and a stable TSC
2292  * across virtual CPUs, the following condition is possible.
2293  * Each numbered line represents an event visible to both
2294  * CPUs at the next numbered event.
2295  *
2296  * "timespecX" represents host monotonic time. "tscX" represents
2297  * RDTSC value.
2298  *
2299  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2300  *
2301  * 1.  read timespec0,tsc0
2302  * 2.					| timespec1 = timespec0 + N
2303  * 					| tsc1 = tsc0 + M
2304  * 3. transition to guest		| transition to guest
2305  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2306  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2307  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2308  *
2309  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2310  *
2311  * 	- ret0 < ret1
2312  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2313  *		...
2314  *	- 0 < N - M => M < N
2315  *
2316  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2317  * always the case (the difference between two distinct xtime instances
2318  * might be smaller then the difference between corresponding TSC reads,
2319  * when updating guest vcpus pvclock areas).
2320  *
2321  * To avoid that problem, do not allow visibility of distinct
2322  * system_timestamp/tsc_timestamp values simultaneously: use a master
2323  * copy of host monotonic time values. Update that master copy
2324  * in lockstep.
2325  *
2326  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2327  *
2328  */
2329 
2330 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2331 {
2332 #ifdef CONFIG_X86_64
2333 	struct kvm_arch *ka = &kvm->arch;
2334 	int vclock_mode;
2335 	bool host_tsc_clocksource, vcpus_matched;
2336 
2337 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2338 			atomic_read(&kvm->online_vcpus));
2339 
2340 	/*
2341 	 * If the host uses TSC clock, then passthrough TSC as stable
2342 	 * to the guest.
2343 	 */
2344 	host_tsc_clocksource = kvm_get_time_and_clockread(
2345 					&ka->master_kernel_ns,
2346 					&ka->master_cycle_now);
2347 
2348 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2349 				&& !ka->backwards_tsc_observed
2350 				&& !ka->boot_vcpu_runs_old_kvmclock;
2351 
2352 	if (ka->use_master_clock)
2353 		atomic_set(&kvm_guest_has_master_clock, 1);
2354 
2355 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2356 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2357 					vcpus_matched);
2358 #endif
2359 }
2360 
2361 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2362 {
2363 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2364 }
2365 
2366 static void kvm_gen_update_masterclock(struct kvm *kvm)
2367 {
2368 #ifdef CONFIG_X86_64
2369 	int i;
2370 	struct kvm_vcpu *vcpu;
2371 	struct kvm_arch *ka = &kvm->arch;
2372 
2373 	spin_lock(&ka->pvclock_gtod_sync_lock);
2374 	kvm_make_mclock_inprogress_request(kvm);
2375 	/* no guest entries from this point */
2376 	pvclock_update_vm_gtod_copy(kvm);
2377 
2378 	kvm_for_each_vcpu(i, vcpu, kvm)
2379 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2380 
2381 	/* guest entries allowed */
2382 	kvm_for_each_vcpu(i, vcpu, kvm)
2383 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2384 
2385 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2386 #endif
2387 }
2388 
2389 u64 get_kvmclock_ns(struct kvm *kvm)
2390 {
2391 	struct kvm_arch *ka = &kvm->arch;
2392 	struct pvclock_vcpu_time_info hv_clock;
2393 	u64 ret;
2394 
2395 	spin_lock(&ka->pvclock_gtod_sync_lock);
2396 	if (!ka->use_master_clock) {
2397 		spin_unlock(&ka->pvclock_gtod_sync_lock);
2398 		return get_kvmclock_base_ns() + ka->kvmclock_offset;
2399 	}
2400 
2401 	hv_clock.tsc_timestamp = ka->master_cycle_now;
2402 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2403 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2404 
2405 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2406 	get_cpu();
2407 
2408 	if (__this_cpu_read(cpu_tsc_khz)) {
2409 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2410 				   &hv_clock.tsc_shift,
2411 				   &hv_clock.tsc_to_system_mul);
2412 		ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2413 	} else
2414 		ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2415 
2416 	put_cpu();
2417 
2418 	return ret;
2419 }
2420 
2421 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2422 {
2423 	struct kvm_vcpu_arch *vcpu = &v->arch;
2424 	struct pvclock_vcpu_time_info guest_hv_clock;
2425 
2426 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2427 		&guest_hv_clock, sizeof(guest_hv_clock))))
2428 		return;
2429 
2430 	/* This VCPU is paused, but it's legal for a guest to read another
2431 	 * VCPU's kvmclock, so we really have to follow the specification where
2432 	 * it says that version is odd if data is being modified, and even after
2433 	 * it is consistent.
2434 	 *
2435 	 * Version field updates must be kept separate.  This is because
2436 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
2437 	 * writes within a string instruction are weakly ordered.  So there
2438 	 * are three writes overall.
2439 	 *
2440 	 * As a small optimization, only write the version field in the first
2441 	 * and third write.  The vcpu->pv_time cache is still valid, because the
2442 	 * version field is the first in the struct.
2443 	 */
2444 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2445 
2446 	if (guest_hv_clock.version & 1)
2447 		++guest_hv_clock.version;  /* first time write, random junk */
2448 
2449 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2450 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2451 				&vcpu->hv_clock,
2452 				sizeof(vcpu->hv_clock.version));
2453 
2454 	smp_wmb();
2455 
2456 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2457 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2458 
2459 	if (vcpu->pvclock_set_guest_stopped_request) {
2460 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2461 		vcpu->pvclock_set_guest_stopped_request = false;
2462 	}
2463 
2464 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2465 
2466 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2467 				&vcpu->hv_clock,
2468 				sizeof(vcpu->hv_clock));
2469 
2470 	smp_wmb();
2471 
2472 	vcpu->hv_clock.version++;
2473 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2474 				&vcpu->hv_clock,
2475 				sizeof(vcpu->hv_clock.version));
2476 }
2477 
2478 static int kvm_guest_time_update(struct kvm_vcpu *v)
2479 {
2480 	unsigned long flags, tgt_tsc_khz;
2481 	struct kvm_vcpu_arch *vcpu = &v->arch;
2482 	struct kvm_arch *ka = &v->kvm->arch;
2483 	s64 kernel_ns;
2484 	u64 tsc_timestamp, host_tsc;
2485 	u8 pvclock_flags;
2486 	bool use_master_clock;
2487 
2488 	kernel_ns = 0;
2489 	host_tsc = 0;
2490 
2491 	/*
2492 	 * If the host uses TSC clock, then passthrough TSC as stable
2493 	 * to the guest.
2494 	 */
2495 	spin_lock(&ka->pvclock_gtod_sync_lock);
2496 	use_master_clock = ka->use_master_clock;
2497 	if (use_master_clock) {
2498 		host_tsc = ka->master_cycle_now;
2499 		kernel_ns = ka->master_kernel_ns;
2500 	}
2501 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2502 
2503 	/* Keep irq disabled to prevent changes to the clock */
2504 	local_irq_save(flags);
2505 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2506 	if (unlikely(tgt_tsc_khz == 0)) {
2507 		local_irq_restore(flags);
2508 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2509 		return 1;
2510 	}
2511 	if (!use_master_clock) {
2512 		host_tsc = rdtsc();
2513 		kernel_ns = get_kvmclock_base_ns();
2514 	}
2515 
2516 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2517 
2518 	/*
2519 	 * We may have to catch up the TSC to match elapsed wall clock
2520 	 * time for two reasons, even if kvmclock is used.
2521 	 *   1) CPU could have been running below the maximum TSC rate
2522 	 *   2) Broken TSC compensation resets the base at each VCPU
2523 	 *      entry to avoid unknown leaps of TSC even when running
2524 	 *      again on the same CPU.  This may cause apparent elapsed
2525 	 *      time to disappear, and the guest to stand still or run
2526 	 *	very slowly.
2527 	 */
2528 	if (vcpu->tsc_catchup) {
2529 		u64 tsc = compute_guest_tsc(v, kernel_ns);
2530 		if (tsc > tsc_timestamp) {
2531 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2532 			tsc_timestamp = tsc;
2533 		}
2534 	}
2535 
2536 	local_irq_restore(flags);
2537 
2538 	/* With all the info we got, fill in the values */
2539 
2540 	if (kvm_has_tsc_control)
2541 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2542 
2543 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2544 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2545 				   &vcpu->hv_clock.tsc_shift,
2546 				   &vcpu->hv_clock.tsc_to_system_mul);
2547 		vcpu->hw_tsc_khz = tgt_tsc_khz;
2548 	}
2549 
2550 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2551 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2552 	vcpu->last_guest_tsc = tsc_timestamp;
2553 
2554 	/* If the host uses TSC clocksource, then it is stable */
2555 	pvclock_flags = 0;
2556 	if (use_master_clock)
2557 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2558 
2559 	vcpu->hv_clock.flags = pvclock_flags;
2560 
2561 	if (vcpu->pv_time_enabled)
2562 		kvm_setup_pvclock_page(v);
2563 	if (v == kvm_get_vcpu(v->kvm, 0))
2564 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2565 	return 0;
2566 }
2567 
2568 /*
2569  * kvmclock updates which are isolated to a given vcpu, such as
2570  * vcpu->cpu migration, should not allow system_timestamp from
2571  * the rest of the vcpus to remain static. Otherwise ntp frequency
2572  * correction applies to one vcpu's system_timestamp but not
2573  * the others.
2574  *
2575  * So in those cases, request a kvmclock update for all vcpus.
2576  * We need to rate-limit these requests though, as they can
2577  * considerably slow guests that have a large number of vcpus.
2578  * The time for a remote vcpu to update its kvmclock is bound
2579  * by the delay we use to rate-limit the updates.
2580  */
2581 
2582 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2583 
2584 static void kvmclock_update_fn(struct work_struct *work)
2585 {
2586 	int i;
2587 	struct delayed_work *dwork = to_delayed_work(work);
2588 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2589 					   kvmclock_update_work);
2590 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2591 	struct kvm_vcpu *vcpu;
2592 
2593 	kvm_for_each_vcpu(i, vcpu, kvm) {
2594 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2595 		kvm_vcpu_kick(vcpu);
2596 	}
2597 }
2598 
2599 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2600 {
2601 	struct kvm *kvm = v->kvm;
2602 
2603 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2604 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2605 					KVMCLOCK_UPDATE_DELAY);
2606 }
2607 
2608 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2609 
2610 static void kvmclock_sync_fn(struct work_struct *work)
2611 {
2612 	struct delayed_work *dwork = to_delayed_work(work);
2613 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2614 					   kvmclock_sync_work);
2615 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2616 
2617 	if (!kvmclock_periodic_sync)
2618 		return;
2619 
2620 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2621 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2622 					KVMCLOCK_SYNC_PERIOD);
2623 }
2624 
2625 /*
2626  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2627  */
2628 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2629 {
2630 	/* McStatusWrEn enabled? */
2631 	if (guest_cpuid_is_amd_or_hygon(vcpu))
2632 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2633 
2634 	return false;
2635 }
2636 
2637 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2638 {
2639 	u64 mcg_cap = vcpu->arch.mcg_cap;
2640 	unsigned bank_num = mcg_cap & 0xff;
2641 	u32 msr = msr_info->index;
2642 	u64 data = msr_info->data;
2643 
2644 	switch (msr) {
2645 	case MSR_IA32_MCG_STATUS:
2646 		vcpu->arch.mcg_status = data;
2647 		break;
2648 	case MSR_IA32_MCG_CTL:
2649 		if (!(mcg_cap & MCG_CTL_P) &&
2650 		    (data || !msr_info->host_initiated))
2651 			return 1;
2652 		if (data != 0 && data != ~(u64)0)
2653 			return 1;
2654 		vcpu->arch.mcg_ctl = data;
2655 		break;
2656 	default:
2657 		if (msr >= MSR_IA32_MC0_CTL &&
2658 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2659 			u32 offset = array_index_nospec(
2660 				msr - MSR_IA32_MC0_CTL,
2661 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2662 
2663 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2664 			 * some Linux kernels though clear bit 10 in bank 4 to
2665 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2666 			 * this to avoid an uncatched #GP in the guest
2667 			 */
2668 			if ((offset & 0x3) == 0 &&
2669 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
2670 				return -1;
2671 
2672 			/* MCi_STATUS */
2673 			if (!msr_info->host_initiated &&
2674 			    (offset & 0x3) == 1 && data != 0) {
2675 				if (!can_set_mci_status(vcpu))
2676 					return -1;
2677 			}
2678 
2679 			vcpu->arch.mce_banks[offset] = data;
2680 			break;
2681 		}
2682 		return 1;
2683 	}
2684 	return 0;
2685 }
2686 
2687 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2688 {
2689 	struct kvm *kvm = vcpu->kvm;
2690 	int lm = is_long_mode(vcpu);
2691 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2692 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2693 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2694 		: kvm->arch.xen_hvm_config.blob_size_32;
2695 	u32 page_num = data & ~PAGE_MASK;
2696 	u64 page_addr = data & PAGE_MASK;
2697 	u8 *page;
2698 	int r;
2699 
2700 	r = -E2BIG;
2701 	if (page_num >= blob_size)
2702 		goto out;
2703 	r = -ENOMEM;
2704 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2705 	if (IS_ERR(page)) {
2706 		r = PTR_ERR(page);
2707 		goto out;
2708 	}
2709 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2710 		goto out_free;
2711 	r = 0;
2712 out_free:
2713 	kfree(page);
2714 out:
2715 	return r;
2716 }
2717 
2718 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
2719 {
2720 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
2721 
2722 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
2723 }
2724 
2725 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2726 {
2727 	gpa_t gpa = data & ~0x3f;
2728 
2729 	/* Bits 4:5 are reserved, Should be zero */
2730 	if (data & 0x30)
2731 		return 1;
2732 
2733 	if (!lapic_in_kernel(vcpu))
2734 		return 1;
2735 
2736 	vcpu->arch.apf.msr_en_val = data;
2737 
2738 	if (!kvm_pv_async_pf_enabled(vcpu)) {
2739 		kvm_clear_async_pf_completion_queue(vcpu);
2740 		kvm_async_pf_hash_reset(vcpu);
2741 		return 0;
2742 	}
2743 
2744 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2745 					sizeof(u64)))
2746 		return 1;
2747 
2748 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2749 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2750 
2751 	kvm_async_pf_wakeup_all(vcpu);
2752 
2753 	return 0;
2754 }
2755 
2756 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
2757 {
2758 	/* Bits 8-63 are reserved */
2759 	if (data >> 8)
2760 		return 1;
2761 
2762 	if (!lapic_in_kernel(vcpu))
2763 		return 1;
2764 
2765 	vcpu->arch.apf.msr_int_val = data;
2766 
2767 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
2768 
2769 	return 0;
2770 }
2771 
2772 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2773 {
2774 	vcpu->arch.pv_time_enabled = false;
2775 	vcpu->arch.time = 0;
2776 }
2777 
2778 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
2779 {
2780 	++vcpu->stat.tlb_flush;
2781 	kvm_x86_ops.tlb_flush_all(vcpu);
2782 }
2783 
2784 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
2785 {
2786 	++vcpu->stat.tlb_flush;
2787 	kvm_x86_ops.tlb_flush_guest(vcpu);
2788 }
2789 
2790 static void record_steal_time(struct kvm_vcpu *vcpu)
2791 {
2792 	struct kvm_host_map map;
2793 	struct kvm_steal_time *st;
2794 
2795 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2796 		return;
2797 
2798 	/* -EAGAIN is returned in atomic context so we can just return. */
2799 	if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
2800 			&map, &vcpu->arch.st.cache, false))
2801 		return;
2802 
2803 	st = map.hva +
2804 		offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
2805 
2806 	/*
2807 	 * Doing a TLB flush here, on the guest's behalf, can avoid
2808 	 * expensive IPIs.
2809 	 */
2810 	trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2811 		st->preempted & KVM_VCPU_FLUSH_TLB);
2812 	if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
2813 		kvm_vcpu_flush_tlb_guest(vcpu);
2814 
2815 	vcpu->arch.st.preempted = 0;
2816 
2817 	if (st->version & 1)
2818 		st->version += 1;  /* first time write, random junk */
2819 
2820 	st->version += 1;
2821 
2822 	smp_wmb();
2823 
2824 	st->steal += current->sched_info.run_delay -
2825 		vcpu->arch.st.last_steal;
2826 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2827 
2828 	smp_wmb();
2829 
2830 	st->version += 1;
2831 
2832 	kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
2833 }
2834 
2835 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2836 {
2837 	bool pr = false;
2838 	u32 msr = msr_info->index;
2839 	u64 data = msr_info->data;
2840 
2841 	switch (msr) {
2842 	case MSR_AMD64_NB_CFG:
2843 	case MSR_IA32_UCODE_WRITE:
2844 	case MSR_VM_HSAVE_PA:
2845 	case MSR_AMD64_PATCH_LOADER:
2846 	case MSR_AMD64_BU_CFG2:
2847 	case MSR_AMD64_DC_CFG:
2848 	case MSR_F15H_EX_CFG:
2849 		break;
2850 
2851 	case MSR_IA32_UCODE_REV:
2852 		if (msr_info->host_initiated)
2853 			vcpu->arch.microcode_version = data;
2854 		break;
2855 	case MSR_IA32_ARCH_CAPABILITIES:
2856 		if (!msr_info->host_initiated)
2857 			return 1;
2858 		vcpu->arch.arch_capabilities = data;
2859 		break;
2860 	case MSR_IA32_PERF_CAPABILITIES: {
2861 		struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
2862 
2863 		if (!msr_info->host_initiated)
2864 			return 1;
2865 		if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
2866 			return 1;
2867 		if (data & ~msr_ent.data)
2868 			return 1;
2869 
2870 		vcpu->arch.perf_capabilities = data;
2871 
2872 		return 0;
2873 		}
2874 	case MSR_EFER:
2875 		return set_efer(vcpu, msr_info);
2876 	case MSR_K7_HWCR:
2877 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2878 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2879 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2880 
2881 		/* Handle McStatusWrEn */
2882 		if (data == BIT_ULL(18)) {
2883 			vcpu->arch.msr_hwcr = data;
2884 		} else if (data != 0) {
2885 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2886 				    data);
2887 			return 1;
2888 		}
2889 		break;
2890 	case MSR_FAM10H_MMIO_CONF_BASE:
2891 		if (data != 0) {
2892 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2893 				    "0x%llx\n", data);
2894 			return 1;
2895 		}
2896 		break;
2897 	case MSR_IA32_DEBUGCTLMSR:
2898 		if (!data) {
2899 			/* We support the non-activated case already */
2900 			break;
2901 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2902 			/* Values other than LBR and BTF are vendor-specific,
2903 			   thus reserved and should throw a #GP */
2904 			return 1;
2905 		}
2906 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2907 			    __func__, data);
2908 		break;
2909 	case 0x200 ... 0x2ff:
2910 		return kvm_mtrr_set_msr(vcpu, msr, data);
2911 	case MSR_IA32_APICBASE:
2912 		return kvm_set_apic_base(vcpu, msr_info);
2913 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
2914 		return kvm_x2apic_msr_write(vcpu, msr, data);
2915 	case MSR_IA32_TSCDEADLINE:
2916 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2917 		break;
2918 	case MSR_IA32_TSC_ADJUST:
2919 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2920 			if (!msr_info->host_initiated) {
2921 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2922 				adjust_tsc_offset_guest(vcpu, adj);
2923 			}
2924 			vcpu->arch.ia32_tsc_adjust_msr = data;
2925 		}
2926 		break;
2927 	case MSR_IA32_MISC_ENABLE:
2928 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
2929 		    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
2930 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
2931 				return 1;
2932 			vcpu->arch.ia32_misc_enable_msr = data;
2933 			kvm_update_cpuid_runtime(vcpu);
2934 		} else {
2935 			vcpu->arch.ia32_misc_enable_msr = data;
2936 		}
2937 		break;
2938 	case MSR_IA32_SMBASE:
2939 		if (!msr_info->host_initiated)
2940 			return 1;
2941 		vcpu->arch.smbase = data;
2942 		break;
2943 	case MSR_IA32_POWER_CTL:
2944 		vcpu->arch.msr_ia32_power_ctl = data;
2945 		break;
2946 	case MSR_IA32_TSC:
2947 		kvm_write_tsc(vcpu, msr_info);
2948 		break;
2949 	case MSR_IA32_XSS:
2950 		if (!msr_info->host_initiated &&
2951 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
2952 			return 1;
2953 		/*
2954 		 * KVM supports exposing PT to the guest, but does not support
2955 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
2956 		 * XSAVES/XRSTORS to save/restore PT MSRs.
2957 		 */
2958 		if (data & ~supported_xss)
2959 			return 1;
2960 		vcpu->arch.ia32_xss = data;
2961 		break;
2962 	case MSR_SMI_COUNT:
2963 		if (!msr_info->host_initiated)
2964 			return 1;
2965 		vcpu->arch.smi_count = data;
2966 		break;
2967 	case MSR_KVM_WALL_CLOCK_NEW:
2968 	case MSR_KVM_WALL_CLOCK:
2969 		vcpu->kvm->arch.wall_clock = data;
2970 		kvm_write_wall_clock(vcpu->kvm, data);
2971 		break;
2972 	case MSR_KVM_SYSTEM_TIME_NEW:
2973 	case MSR_KVM_SYSTEM_TIME: {
2974 		struct kvm_arch *ka = &vcpu->kvm->arch;
2975 
2976 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2977 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2978 
2979 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2980 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2981 
2982 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2983 		}
2984 
2985 		vcpu->arch.time = data;
2986 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2987 
2988 		/* we verify if the enable bit is set... */
2989 		vcpu->arch.pv_time_enabled = false;
2990 		if (!(data & 1))
2991 			break;
2992 
2993 		if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2994 		     &vcpu->arch.pv_time, data & ~1ULL,
2995 		     sizeof(struct pvclock_vcpu_time_info)))
2996 			vcpu->arch.pv_time_enabled = true;
2997 
2998 		break;
2999 	}
3000 	case MSR_KVM_ASYNC_PF_EN:
3001 		if (kvm_pv_enable_async_pf(vcpu, data))
3002 			return 1;
3003 		break;
3004 	case MSR_KVM_ASYNC_PF_INT:
3005 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3006 			return 1;
3007 		break;
3008 	case MSR_KVM_ASYNC_PF_ACK:
3009 		if (data & 0x1) {
3010 			vcpu->arch.apf.pageready_pending = false;
3011 			kvm_check_async_pf_completion(vcpu);
3012 		}
3013 		break;
3014 	case MSR_KVM_STEAL_TIME:
3015 
3016 		if (unlikely(!sched_info_on()))
3017 			return 1;
3018 
3019 		if (data & KVM_STEAL_RESERVED_MASK)
3020 			return 1;
3021 
3022 		vcpu->arch.st.msr_val = data;
3023 
3024 		if (!(data & KVM_MSR_ENABLED))
3025 			break;
3026 
3027 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3028 
3029 		break;
3030 	case MSR_KVM_PV_EOI_EN:
3031 		if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3032 			return 1;
3033 		break;
3034 
3035 	case MSR_KVM_POLL_CONTROL:
3036 		/* only enable bit supported */
3037 		if (data & (-1ULL << 1))
3038 			return 1;
3039 
3040 		vcpu->arch.msr_kvm_poll_control = data;
3041 		break;
3042 
3043 	case MSR_IA32_MCG_CTL:
3044 	case MSR_IA32_MCG_STATUS:
3045 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3046 		return set_msr_mce(vcpu, msr_info);
3047 
3048 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3049 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3050 		pr = true;
3051 		fallthrough;
3052 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3053 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3054 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3055 			return kvm_pmu_set_msr(vcpu, msr_info);
3056 
3057 		if (pr || data != 0)
3058 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3059 				    "0x%x data 0x%llx\n", msr, data);
3060 		break;
3061 	case MSR_K7_CLK_CTL:
3062 		/*
3063 		 * Ignore all writes to this no longer documented MSR.
3064 		 * Writes are only relevant for old K7 processors,
3065 		 * all pre-dating SVM, but a recommended workaround from
3066 		 * AMD for these chips. It is possible to specify the
3067 		 * affected processor models on the command line, hence
3068 		 * the need to ignore the workaround.
3069 		 */
3070 		break;
3071 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3072 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3073 	case HV_X64_MSR_SYNDBG_OPTIONS:
3074 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3075 	case HV_X64_MSR_CRASH_CTL:
3076 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3077 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3078 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3079 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3080 		return kvm_hv_set_msr_common(vcpu, msr, data,
3081 					     msr_info->host_initiated);
3082 	case MSR_IA32_BBL_CR_CTL3:
3083 		/* Drop writes to this legacy MSR -- see rdmsr
3084 		 * counterpart for further detail.
3085 		 */
3086 		if (report_ignored_msrs)
3087 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3088 				msr, data);
3089 		break;
3090 	case MSR_AMD64_OSVW_ID_LENGTH:
3091 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3092 			return 1;
3093 		vcpu->arch.osvw.length = data;
3094 		break;
3095 	case MSR_AMD64_OSVW_STATUS:
3096 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3097 			return 1;
3098 		vcpu->arch.osvw.status = data;
3099 		break;
3100 	case MSR_PLATFORM_INFO:
3101 		if (!msr_info->host_initiated ||
3102 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3103 		     cpuid_fault_enabled(vcpu)))
3104 			return 1;
3105 		vcpu->arch.msr_platform_info = data;
3106 		break;
3107 	case MSR_MISC_FEATURES_ENABLES:
3108 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3109 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3110 		     !supports_cpuid_fault(vcpu)))
3111 			return 1;
3112 		vcpu->arch.msr_misc_features_enables = data;
3113 		break;
3114 	default:
3115 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
3116 			return xen_hvm_config(vcpu, data);
3117 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3118 			return kvm_pmu_set_msr(vcpu, msr_info);
3119 		return KVM_MSR_RET_INVALID;
3120 	}
3121 	return 0;
3122 }
3123 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3124 
3125 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3126 {
3127 	u64 data;
3128 	u64 mcg_cap = vcpu->arch.mcg_cap;
3129 	unsigned bank_num = mcg_cap & 0xff;
3130 
3131 	switch (msr) {
3132 	case MSR_IA32_P5_MC_ADDR:
3133 	case MSR_IA32_P5_MC_TYPE:
3134 		data = 0;
3135 		break;
3136 	case MSR_IA32_MCG_CAP:
3137 		data = vcpu->arch.mcg_cap;
3138 		break;
3139 	case MSR_IA32_MCG_CTL:
3140 		if (!(mcg_cap & MCG_CTL_P) && !host)
3141 			return 1;
3142 		data = vcpu->arch.mcg_ctl;
3143 		break;
3144 	case MSR_IA32_MCG_STATUS:
3145 		data = vcpu->arch.mcg_status;
3146 		break;
3147 	default:
3148 		if (msr >= MSR_IA32_MC0_CTL &&
3149 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3150 			u32 offset = array_index_nospec(
3151 				msr - MSR_IA32_MC0_CTL,
3152 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3153 
3154 			data = vcpu->arch.mce_banks[offset];
3155 			break;
3156 		}
3157 		return 1;
3158 	}
3159 	*pdata = data;
3160 	return 0;
3161 }
3162 
3163 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3164 {
3165 	switch (msr_info->index) {
3166 	case MSR_IA32_PLATFORM_ID:
3167 	case MSR_IA32_EBL_CR_POWERON:
3168 	case MSR_IA32_DEBUGCTLMSR:
3169 	case MSR_IA32_LASTBRANCHFROMIP:
3170 	case MSR_IA32_LASTBRANCHTOIP:
3171 	case MSR_IA32_LASTINTFROMIP:
3172 	case MSR_IA32_LASTINTTOIP:
3173 	case MSR_K8_SYSCFG:
3174 	case MSR_K8_TSEG_ADDR:
3175 	case MSR_K8_TSEG_MASK:
3176 	case MSR_VM_HSAVE_PA:
3177 	case MSR_K8_INT_PENDING_MSG:
3178 	case MSR_AMD64_NB_CFG:
3179 	case MSR_FAM10H_MMIO_CONF_BASE:
3180 	case MSR_AMD64_BU_CFG2:
3181 	case MSR_IA32_PERF_CTL:
3182 	case MSR_AMD64_DC_CFG:
3183 	case MSR_F15H_EX_CFG:
3184 	/*
3185 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3186 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3187 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3188 	 * so for existing CPU-specific MSRs.
3189 	 */
3190 	case MSR_RAPL_POWER_UNIT:
3191 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3192 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3193 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3194 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3195 		msr_info->data = 0;
3196 		break;
3197 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3198 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3199 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3200 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3201 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3202 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3203 			return kvm_pmu_get_msr(vcpu, msr_info);
3204 		msr_info->data = 0;
3205 		break;
3206 	case MSR_IA32_UCODE_REV:
3207 		msr_info->data = vcpu->arch.microcode_version;
3208 		break;
3209 	case MSR_IA32_ARCH_CAPABILITIES:
3210 		if (!msr_info->host_initiated &&
3211 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3212 			return 1;
3213 		msr_info->data = vcpu->arch.arch_capabilities;
3214 		break;
3215 	case MSR_IA32_PERF_CAPABILITIES:
3216 		if (!msr_info->host_initiated &&
3217 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3218 			return 1;
3219 		msr_info->data = vcpu->arch.perf_capabilities;
3220 		break;
3221 	case MSR_IA32_POWER_CTL:
3222 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3223 		break;
3224 	case MSR_IA32_TSC:
3225 		msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
3226 		break;
3227 	case MSR_MTRRcap:
3228 	case 0x200 ... 0x2ff:
3229 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3230 	case 0xcd: /* fsb frequency */
3231 		msr_info->data = 3;
3232 		break;
3233 		/*
3234 		 * MSR_EBC_FREQUENCY_ID
3235 		 * Conservative value valid for even the basic CPU models.
3236 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3237 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3238 		 * and 266MHz for model 3, or 4. Set Core Clock
3239 		 * Frequency to System Bus Frequency Ratio to 1 (bits
3240 		 * 31:24) even though these are only valid for CPU
3241 		 * models > 2, however guests may end up dividing or
3242 		 * multiplying by zero otherwise.
3243 		 */
3244 	case MSR_EBC_FREQUENCY_ID:
3245 		msr_info->data = 1 << 24;
3246 		break;
3247 	case MSR_IA32_APICBASE:
3248 		msr_info->data = kvm_get_apic_base(vcpu);
3249 		break;
3250 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3251 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3252 	case MSR_IA32_TSCDEADLINE:
3253 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3254 		break;
3255 	case MSR_IA32_TSC_ADJUST:
3256 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3257 		break;
3258 	case MSR_IA32_MISC_ENABLE:
3259 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3260 		break;
3261 	case MSR_IA32_SMBASE:
3262 		if (!msr_info->host_initiated)
3263 			return 1;
3264 		msr_info->data = vcpu->arch.smbase;
3265 		break;
3266 	case MSR_SMI_COUNT:
3267 		msr_info->data = vcpu->arch.smi_count;
3268 		break;
3269 	case MSR_IA32_PERF_STATUS:
3270 		/* TSC increment by tick */
3271 		msr_info->data = 1000ULL;
3272 		/* CPU multiplier */
3273 		msr_info->data |= (((uint64_t)4ULL) << 40);
3274 		break;
3275 	case MSR_EFER:
3276 		msr_info->data = vcpu->arch.efer;
3277 		break;
3278 	case MSR_KVM_WALL_CLOCK:
3279 	case MSR_KVM_WALL_CLOCK_NEW:
3280 		msr_info->data = vcpu->kvm->arch.wall_clock;
3281 		break;
3282 	case MSR_KVM_SYSTEM_TIME:
3283 	case MSR_KVM_SYSTEM_TIME_NEW:
3284 		msr_info->data = vcpu->arch.time;
3285 		break;
3286 	case MSR_KVM_ASYNC_PF_EN:
3287 		msr_info->data = vcpu->arch.apf.msr_en_val;
3288 		break;
3289 	case MSR_KVM_ASYNC_PF_INT:
3290 		msr_info->data = vcpu->arch.apf.msr_int_val;
3291 		break;
3292 	case MSR_KVM_ASYNC_PF_ACK:
3293 		msr_info->data = 0;
3294 		break;
3295 	case MSR_KVM_STEAL_TIME:
3296 		msr_info->data = vcpu->arch.st.msr_val;
3297 		break;
3298 	case MSR_KVM_PV_EOI_EN:
3299 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
3300 		break;
3301 	case MSR_KVM_POLL_CONTROL:
3302 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
3303 		break;
3304 	case MSR_IA32_P5_MC_ADDR:
3305 	case MSR_IA32_P5_MC_TYPE:
3306 	case MSR_IA32_MCG_CAP:
3307 	case MSR_IA32_MCG_CTL:
3308 	case MSR_IA32_MCG_STATUS:
3309 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3310 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3311 				   msr_info->host_initiated);
3312 	case MSR_IA32_XSS:
3313 		if (!msr_info->host_initiated &&
3314 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3315 			return 1;
3316 		msr_info->data = vcpu->arch.ia32_xss;
3317 		break;
3318 	case MSR_K7_CLK_CTL:
3319 		/*
3320 		 * Provide expected ramp-up count for K7. All other
3321 		 * are set to zero, indicating minimum divisors for
3322 		 * every field.
3323 		 *
3324 		 * This prevents guest kernels on AMD host with CPU
3325 		 * type 6, model 8 and higher from exploding due to
3326 		 * the rdmsr failing.
3327 		 */
3328 		msr_info->data = 0x20000000;
3329 		break;
3330 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3331 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3332 	case HV_X64_MSR_SYNDBG_OPTIONS:
3333 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3334 	case HV_X64_MSR_CRASH_CTL:
3335 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3336 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3337 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3338 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3339 		return kvm_hv_get_msr_common(vcpu,
3340 					     msr_info->index, &msr_info->data,
3341 					     msr_info->host_initiated);
3342 	case MSR_IA32_BBL_CR_CTL3:
3343 		/* This legacy MSR exists but isn't fully documented in current
3344 		 * silicon.  It is however accessed by winxp in very narrow
3345 		 * scenarios where it sets bit #19, itself documented as
3346 		 * a "reserved" bit.  Best effort attempt to source coherent
3347 		 * read data here should the balance of the register be
3348 		 * interpreted by the guest:
3349 		 *
3350 		 * L2 cache control register 3: 64GB range, 256KB size,
3351 		 * enabled, latency 0x1, configured
3352 		 */
3353 		msr_info->data = 0xbe702111;
3354 		break;
3355 	case MSR_AMD64_OSVW_ID_LENGTH:
3356 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3357 			return 1;
3358 		msr_info->data = vcpu->arch.osvw.length;
3359 		break;
3360 	case MSR_AMD64_OSVW_STATUS:
3361 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3362 			return 1;
3363 		msr_info->data = vcpu->arch.osvw.status;
3364 		break;
3365 	case MSR_PLATFORM_INFO:
3366 		if (!msr_info->host_initiated &&
3367 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3368 			return 1;
3369 		msr_info->data = vcpu->arch.msr_platform_info;
3370 		break;
3371 	case MSR_MISC_FEATURES_ENABLES:
3372 		msr_info->data = vcpu->arch.msr_misc_features_enables;
3373 		break;
3374 	case MSR_K7_HWCR:
3375 		msr_info->data = vcpu->arch.msr_hwcr;
3376 		break;
3377 	default:
3378 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3379 			return kvm_pmu_get_msr(vcpu, msr_info);
3380 		return KVM_MSR_RET_INVALID;
3381 	}
3382 	return 0;
3383 }
3384 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3385 
3386 /*
3387  * Read or write a bunch of msrs. All parameters are kernel addresses.
3388  *
3389  * @return number of msrs set successfully.
3390  */
3391 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3392 		    struct kvm_msr_entry *entries,
3393 		    int (*do_msr)(struct kvm_vcpu *vcpu,
3394 				  unsigned index, u64 *data))
3395 {
3396 	int i;
3397 
3398 	for (i = 0; i < msrs->nmsrs; ++i)
3399 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
3400 			break;
3401 
3402 	return i;
3403 }
3404 
3405 /*
3406  * Read or write a bunch of msrs. Parameters are user addresses.
3407  *
3408  * @return number of msrs set successfully.
3409  */
3410 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3411 		  int (*do_msr)(struct kvm_vcpu *vcpu,
3412 				unsigned index, u64 *data),
3413 		  int writeback)
3414 {
3415 	struct kvm_msrs msrs;
3416 	struct kvm_msr_entry *entries;
3417 	int r, n;
3418 	unsigned size;
3419 
3420 	r = -EFAULT;
3421 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3422 		goto out;
3423 
3424 	r = -E2BIG;
3425 	if (msrs.nmsrs >= MAX_IO_MSRS)
3426 		goto out;
3427 
3428 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3429 	entries = memdup_user(user_msrs->entries, size);
3430 	if (IS_ERR(entries)) {
3431 		r = PTR_ERR(entries);
3432 		goto out;
3433 	}
3434 
3435 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3436 	if (r < 0)
3437 		goto out_free;
3438 
3439 	r = -EFAULT;
3440 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
3441 		goto out_free;
3442 
3443 	r = n;
3444 
3445 out_free:
3446 	kfree(entries);
3447 out:
3448 	return r;
3449 }
3450 
3451 static inline bool kvm_can_mwait_in_guest(void)
3452 {
3453 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
3454 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
3455 		boot_cpu_has(X86_FEATURE_ARAT);
3456 }
3457 
3458 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3459 {
3460 	int r = 0;
3461 
3462 	switch (ext) {
3463 	case KVM_CAP_IRQCHIP:
3464 	case KVM_CAP_HLT:
3465 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3466 	case KVM_CAP_SET_TSS_ADDR:
3467 	case KVM_CAP_EXT_CPUID:
3468 	case KVM_CAP_EXT_EMUL_CPUID:
3469 	case KVM_CAP_CLOCKSOURCE:
3470 	case KVM_CAP_PIT:
3471 	case KVM_CAP_NOP_IO_DELAY:
3472 	case KVM_CAP_MP_STATE:
3473 	case KVM_CAP_SYNC_MMU:
3474 	case KVM_CAP_USER_NMI:
3475 	case KVM_CAP_REINJECT_CONTROL:
3476 	case KVM_CAP_IRQ_INJECT_STATUS:
3477 	case KVM_CAP_IOEVENTFD:
3478 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
3479 	case KVM_CAP_PIT2:
3480 	case KVM_CAP_PIT_STATE2:
3481 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3482 	case KVM_CAP_XEN_HVM:
3483 	case KVM_CAP_VCPU_EVENTS:
3484 	case KVM_CAP_HYPERV:
3485 	case KVM_CAP_HYPERV_VAPIC:
3486 	case KVM_CAP_HYPERV_SPIN:
3487 	case KVM_CAP_HYPERV_SYNIC:
3488 	case KVM_CAP_HYPERV_SYNIC2:
3489 	case KVM_CAP_HYPERV_VP_INDEX:
3490 	case KVM_CAP_HYPERV_EVENTFD:
3491 	case KVM_CAP_HYPERV_TLBFLUSH:
3492 	case KVM_CAP_HYPERV_SEND_IPI:
3493 	case KVM_CAP_HYPERV_CPUID:
3494 	case KVM_CAP_PCI_SEGMENT:
3495 	case KVM_CAP_DEBUGREGS:
3496 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
3497 	case KVM_CAP_XSAVE:
3498 	case KVM_CAP_ASYNC_PF:
3499 	case KVM_CAP_ASYNC_PF_INT:
3500 	case KVM_CAP_GET_TSC_KHZ:
3501 	case KVM_CAP_KVMCLOCK_CTRL:
3502 	case KVM_CAP_READONLY_MEM:
3503 	case KVM_CAP_HYPERV_TIME:
3504 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3505 	case KVM_CAP_TSC_DEADLINE_TIMER:
3506 	case KVM_CAP_DISABLE_QUIRKS:
3507 	case KVM_CAP_SET_BOOT_CPU_ID:
3508  	case KVM_CAP_SPLIT_IRQCHIP:
3509 	case KVM_CAP_IMMEDIATE_EXIT:
3510 	case KVM_CAP_PMU_EVENT_FILTER:
3511 	case KVM_CAP_GET_MSR_FEATURES:
3512 	case KVM_CAP_MSR_PLATFORM_INFO:
3513 	case KVM_CAP_EXCEPTION_PAYLOAD:
3514 	case KVM_CAP_SET_GUEST_DEBUG:
3515 	case KVM_CAP_LAST_CPU:
3516 		r = 1;
3517 		break;
3518 	case KVM_CAP_SYNC_REGS:
3519 		r = KVM_SYNC_X86_VALID_FIELDS;
3520 		break;
3521 	case KVM_CAP_ADJUST_CLOCK:
3522 		r = KVM_CLOCK_TSC_STABLE;
3523 		break;
3524 	case KVM_CAP_X86_DISABLE_EXITS:
3525 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3526 		      KVM_X86_DISABLE_EXITS_CSTATE;
3527 		if(kvm_can_mwait_in_guest())
3528 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
3529 		break;
3530 	case KVM_CAP_X86_SMM:
3531 		/* SMBASE is usually relocated above 1M on modern chipsets,
3532 		 * and SMM handlers might indeed rely on 4G segment limits,
3533 		 * so do not report SMM to be available if real mode is
3534 		 * emulated via vm86 mode.  Still, do not go to great lengths
3535 		 * to avoid userspace's usage of the feature, because it is a
3536 		 * fringe case that is not enabled except via specific settings
3537 		 * of the module parameters.
3538 		 */
3539 		r = kvm_x86_ops.has_emulated_msr(MSR_IA32_SMBASE);
3540 		break;
3541 	case KVM_CAP_VAPIC:
3542 		r = !kvm_x86_ops.cpu_has_accelerated_tpr();
3543 		break;
3544 	case KVM_CAP_NR_VCPUS:
3545 		r = KVM_SOFT_MAX_VCPUS;
3546 		break;
3547 	case KVM_CAP_MAX_VCPUS:
3548 		r = KVM_MAX_VCPUS;
3549 		break;
3550 	case KVM_CAP_MAX_VCPU_ID:
3551 		r = KVM_MAX_VCPU_ID;
3552 		break;
3553 	case KVM_CAP_PV_MMU:	/* obsolete */
3554 		r = 0;
3555 		break;
3556 	case KVM_CAP_MCE:
3557 		r = KVM_MAX_MCE_BANKS;
3558 		break;
3559 	case KVM_CAP_XCRS:
3560 		r = boot_cpu_has(X86_FEATURE_XSAVE);
3561 		break;
3562 	case KVM_CAP_TSC_CONTROL:
3563 		r = kvm_has_tsc_control;
3564 		break;
3565 	case KVM_CAP_X2APIC_API:
3566 		r = KVM_X2APIC_API_VALID_FLAGS;
3567 		break;
3568 	case KVM_CAP_NESTED_STATE:
3569 		r = kvm_x86_ops.nested_ops->get_state ?
3570 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
3571 		break;
3572 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3573 		r = kvm_x86_ops.enable_direct_tlbflush != NULL;
3574 		break;
3575 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3576 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
3577 		break;
3578 	case KVM_CAP_SMALLER_MAXPHYADDR:
3579 		r = (int) allow_smaller_maxphyaddr;
3580 		break;
3581 	default:
3582 		break;
3583 	}
3584 	return r;
3585 
3586 }
3587 
3588 long kvm_arch_dev_ioctl(struct file *filp,
3589 			unsigned int ioctl, unsigned long arg)
3590 {
3591 	void __user *argp = (void __user *)arg;
3592 	long r;
3593 
3594 	switch (ioctl) {
3595 	case KVM_GET_MSR_INDEX_LIST: {
3596 		struct kvm_msr_list __user *user_msr_list = argp;
3597 		struct kvm_msr_list msr_list;
3598 		unsigned n;
3599 
3600 		r = -EFAULT;
3601 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3602 			goto out;
3603 		n = msr_list.nmsrs;
3604 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3605 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3606 			goto out;
3607 		r = -E2BIG;
3608 		if (n < msr_list.nmsrs)
3609 			goto out;
3610 		r = -EFAULT;
3611 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3612 				 num_msrs_to_save * sizeof(u32)))
3613 			goto out;
3614 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3615 				 &emulated_msrs,
3616 				 num_emulated_msrs * sizeof(u32)))
3617 			goto out;
3618 		r = 0;
3619 		break;
3620 	}
3621 	case KVM_GET_SUPPORTED_CPUID:
3622 	case KVM_GET_EMULATED_CPUID: {
3623 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3624 		struct kvm_cpuid2 cpuid;
3625 
3626 		r = -EFAULT;
3627 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3628 			goto out;
3629 
3630 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3631 					    ioctl);
3632 		if (r)
3633 			goto out;
3634 
3635 		r = -EFAULT;
3636 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3637 			goto out;
3638 		r = 0;
3639 		break;
3640 	}
3641 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
3642 		r = -EFAULT;
3643 		if (copy_to_user(argp, &kvm_mce_cap_supported,
3644 				 sizeof(kvm_mce_cap_supported)))
3645 			goto out;
3646 		r = 0;
3647 		break;
3648 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3649 		struct kvm_msr_list __user *user_msr_list = argp;
3650 		struct kvm_msr_list msr_list;
3651 		unsigned int n;
3652 
3653 		r = -EFAULT;
3654 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3655 			goto out;
3656 		n = msr_list.nmsrs;
3657 		msr_list.nmsrs = num_msr_based_features;
3658 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3659 			goto out;
3660 		r = -E2BIG;
3661 		if (n < msr_list.nmsrs)
3662 			goto out;
3663 		r = -EFAULT;
3664 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
3665 				 num_msr_based_features * sizeof(u32)))
3666 			goto out;
3667 		r = 0;
3668 		break;
3669 	}
3670 	case KVM_GET_MSRS:
3671 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
3672 		break;
3673 	default:
3674 		r = -EINVAL;
3675 		break;
3676 	}
3677 out:
3678 	return r;
3679 }
3680 
3681 static void wbinvd_ipi(void *garbage)
3682 {
3683 	wbinvd();
3684 }
3685 
3686 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3687 {
3688 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3689 }
3690 
3691 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3692 {
3693 	/* Address WBINVD may be executed by guest */
3694 	if (need_emulate_wbinvd(vcpu)) {
3695 		if (kvm_x86_ops.has_wbinvd_exit())
3696 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3697 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3698 			smp_call_function_single(vcpu->cpu,
3699 					wbinvd_ipi, NULL, 1);
3700 	}
3701 
3702 	kvm_x86_ops.vcpu_load(vcpu, cpu);
3703 
3704 	/* Save host pkru register if supported */
3705 	vcpu->arch.host_pkru = read_pkru();
3706 
3707 	/* Apply any externally detected TSC adjustments (due to suspend) */
3708 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3709 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3710 		vcpu->arch.tsc_offset_adjustment = 0;
3711 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3712 	}
3713 
3714 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3715 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3716 				rdtsc() - vcpu->arch.last_host_tsc;
3717 		if (tsc_delta < 0)
3718 			mark_tsc_unstable("KVM discovered backwards TSC");
3719 
3720 		if (kvm_check_tsc_unstable()) {
3721 			u64 offset = kvm_compute_tsc_offset(vcpu,
3722 						vcpu->arch.last_guest_tsc);
3723 			kvm_vcpu_write_tsc_offset(vcpu, offset);
3724 			vcpu->arch.tsc_catchup = 1;
3725 		}
3726 
3727 		if (kvm_lapic_hv_timer_in_use(vcpu))
3728 			kvm_lapic_restart_hv_timer(vcpu);
3729 
3730 		/*
3731 		 * On a host with synchronized TSC, there is no need to update
3732 		 * kvmclock on vcpu->cpu migration
3733 		 */
3734 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3735 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3736 		if (vcpu->cpu != cpu)
3737 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3738 		vcpu->cpu = cpu;
3739 	}
3740 
3741 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3742 }
3743 
3744 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3745 {
3746 	struct kvm_host_map map;
3747 	struct kvm_steal_time *st;
3748 
3749 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3750 		return;
3751 
3752 	if (vcpu->arch.st.preempted)
3753 		return;
3754 
3755 	if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
3756 			&vcpu->arch.st.cache, true))
3757 		return;
3758 
3759 	st = map.hva +
3760 		offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
3761 
3762 	st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
3763 
3764 	kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
3765 }
3766 
3767 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3768 {
3769 	int idx;
3770 
3771 	if (vcpu->preempted)
3772 		vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu);
3773 
3774 	/*
3775 	 * Disable page faults because we're in atomic context here.
3776 	 * kvm_write_guest_offset_cached() would call might_fault()
3777 	 * that relies on pagefault_disable() to tell if there's a
3778 	 * bug. NOTE: the write to guest memory may not go through if
3779 	 * during postcopy live migration or if there's heavy guest
3780 	 * paging.
3781 	 */
3782 	pagefault_disable();
3783 	/*
3784 	 * kvm_memslots() will be called by
3785 	 * kvm_write_guest_offset_cached() so take the srcu lock.
3786 	 */
3787 	idx = srcu_read_lock(&vcpu->kvm->srcu);
3788 	kvm_steal_time_set_preempted(vcpu);
3789 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3790 	pagefault_enable();
3791 	kvm_x86_ops.vcpu_put(vcpu);
3792 	vcpu->arch.last_host_tsc = rdtsc();
3793 	/*
3794 	 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3795 	 * on every vmexit, but if not, we might have a stale dr6 from the
3796 	 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3797 	 */
3798 	set_debugreg(0, 6);
3799 }
3800 
3801 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3802 				    struct kvm_lapic_state *s)
3803 {
3804 	if (vcpu->arch.apicv_active)
3805 		kvm_x86_ops.sync_pir_to_irr(vcpu);
3806 
3807 	return kvm_apic_get_state(vcpu, s);
3808 }
3809 
3810 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3811 				    struct kvm_lapic_state *s)
3812 {
3813 	int r;
3814 
3815 	r = kvm_apic_set_state(vcpu, s);
3816 	if (r)
3817 		return r;
3818 	update_cr8_intercept(vcpu);
3819 
3820 	return 0;
3821 }
3822 
3823 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3824 {
3825 	return (!lapic_in_kernel(vcpu) ||
3826 		kvm_apic_accept_pic_intr(vcpu));
3827 }
3828 
3829 /*
3830  * if userspace requested an interrupt window, check that the
3831  * interrupt window is open.
3832  *
3833  * No need to exit to userspace if we already have an interrupt queued.
3834  */
3835 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3836 {
3837 	return kvm_arch_interrupt_allowed(vcpu) &&
3838 		!kvm_cpu_has_interrupt(vcpu) &&
3839 		!kvm_event_needs_reinjection(vcpu) &&
3840 		kvm_cpu_accept_dm_intr(vcpu);
3841 }
3842 
3843 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3844 				    struct kvm_interrupt *irq)
3845 {
3846 	if (irq->irq >= KVM_NR_INTERRUPTS)
3847 		return -EINVAL;
3848 
3849 	if (!irqchip_in_kernel(vcpu->kvm)) {
3850 		kvm_queue_interrupt(vcpu, irq->irq, false);
3851 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3852 		return 0;
3853 	}
3854 
3855 	/*
3856 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3857 	 * fail for in-kernel 8259.
3858 	 */
3859 	if (pic_in_kernel(vcpu->kvm))
3860 		return -ENXIO;
3861 
3862 	if (vcpu->arch.pending_external_vector != -1)
3863 		return -EEXIST;
3864 
3865 	vcpu->arch.pending_external_vector = irq->irq;
3866 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3867 	return 0;
3868 }
3869 
3870 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3871 {
3872 	kvm_inject_nmi(vcpu);
3873 
3874 	return 0;
3875 }
3876 
3877 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3878 {
3879 	kvm_make_request(KVM_REQ_SMI, vcpu);
3880 
3881 	return 0;
3882 }
3883 
3884 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3885 					   struct kvm_tpr_access_ctl *tac)
3886 {
3887 	if (tac->flags)
3888 		return -EINVAL;
3889 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
3890 	return 0;
3891 }
3892 
3893 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3894 					u64 mcg_cap)
3895 {
3896 	int r;
3897 	unsigned bank_num = mcg_cap & 0xff, bank;
3898 
3899 	r = -EINVAL;
3900 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
3901 		goto out;
3902 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3903 		goto out;
3904 	r = 0;
3905 	vcpu->arch.mcg_cap = mcg_cap;
3906 	/* Init IA32_MCG_CTL to all 1s */
3907 	if (mcg_cap & MCG_CTL_P)
3908 		vcpu->arch.mcg_ctl = ~(u64)0;
3909 	/* Init IA32_MCi_CTL to all 1s */
3910 	for (bank = 0; bank < bank_num; bank++)
3911 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3912 
3913 	kvm_x86_ops.setup_mce(vcpu);
3914 out:
3915 	return r;
3916 }
3917 
3918 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3919 				      struct kvm_x86_mce *mce)
3920 {
3921 	u64 mcg_cap = vcpu->arch.mcg_cap;
3922 	unsigned bank_num = mcg_cap & 0xff;
3923 	u64 *banks = vcpu->arch.mce_banks;
3924 
3925 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3926 		return -EINVAL;
3927 	/*
3928 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3929 	 * reporting is disabled
3930 	 */
3931 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3932 	    vcpu->arch.mcg_ctl != ~(u64)0)
3933 		return 0;
3934 	banks += 4 * mce->bank;
3935 	/*
3936 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3937 	 * reporting is disabled for the bank
3938 	 */
3939 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3940 		return 0;
3941 	if (mce->status & MCI_STATUS_UC) {
3942 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3943 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3944 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3945 			return 0;
3946 		}
3947 		if (banks[1] & MCI_STATUS_VAL)
3948 			mce->status |= MCI_STATUS_OVER;
3949 		banks[2] = mce->addr;
3950 		banks[3] = mce->misc;
3951 		vcpu->arch.mcg_status = mce->mcg_status;
3952 		banks[1] = mce->status;
3953 		kvm_queue_exception(vcpu, MC_VECTOR);
3954 	} else if (!(banks[1] & MCI_STATUS_VAL)
3955 		   || !(banks[1] & MCI_STATUS_UC)) {
3956 		if (banks[1] & MCI_STATUS_VAL)
3957 			mce->status |= MCI_STATUS_OVER;
3958 		banks[2] = mce->addr;
3959 		banks[3] = mce->misc;
3960 		banks[1] = mce->status;
3961 	} else
3962 		banks[1] |= MCI_STATUS_OVER;
3963 	return 0;
3964 }
3965 
3966 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3967 					       struct kvm_vcpu_events *events)
3968 {
3969 	process_nmi(vcpu);
3970 
3971 	/*
3972 	 * In guest mode, payload delivery should be deferred,
3973 	 * so that the L1 hypervisor can intercept #PF before
3974 	 * CR2 is modified (or intercept #DB before DR6 is
3975 	 * modified under nVMX). Unless the per-VM capability,
3976 	 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
3977 	 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
3978 	 * opportunistically defer the exception payload, deliver it if the
3979 	 * capability hasn't been requested before processing a
3980 	 * KVM_GET_VCPU_EVENTS.
3981 	 */
3982 	if (!vcpu->kvm->arch.exception_payload_enabled &&
3983 	    vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
3984 		kvm_deliver_exception_payload(vcpu);
3985 
3986 	/*
3987 	 * The API doesn't provide the instruction length for software
3988 	 * exceptions, so don't report them. As long as the guest RIP
3989 	 * isn't advanced, we should expect to encounter the exception
3990 	 * again.
3991 	 */
3992 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3993 		events->exception.injected = 0;
3994 		events->exception.pending = 0;
3995 	} else {
3996 		events->exception.injected = vcpu->arch.exception.injected;
3997 		events->exception.pending = vcpu->arch.exception.pending;
3998 		/*
3999 		 * For ABI compatibility, deliberately conflate
4000 		 * pending and injected exceptions when
4001 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4002 		 */
4003 		if (!vcpu->kvm->arch.exception_payload_enabled)
4004 			events->exception.injected |=
4005 				vcpu->arch.exception.pending;
4006 	}
4007 	events->exception.nr = vcpu->arch.exception.nr;
4008 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4009 	events->exception.error_code = vcpu->arch.exception.error_code;
4010 	events->exception_has_payload = vcpu->arch.exception.has_payload;
4011 	events->exception_payload = vcpu->arch.exception.payload;
4012 
4013 	events->interrupt.injected =
4014 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4015 	events->interrupt.nr = vcpu->arch.interrupt.nr;
4016 	events->interrupt.soft = 0;
4017 	events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
4018 
4019 	events->nmi.injected = vcpu->arch.nmi_injected;
4020 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
4021 	events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu);
4022 	events->nmi.pad = 0;
4023 
4024 	events->sipi_vector = 0; /* never valid when reporting to user space */
4025 
4026 	events->smi.smm = is_smm(vcpu);
4027 	events->smi.pending = vcpu->arch.smi_pending;
4028 	events->smi.smm_inside_nmi =
4029 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4030 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4031 
4032 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4033 			 | KVM_VCPUEVENT_VALID_SHADOW
4034 			 | KVM_VCPUEVENT_VALID_SMM);
4035 	if (vcpu->kvm->arch.exception_payload_enabled)
4036 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4037 
4038 	memset(&events->reserved, 0, sizeof(events->reserved));
4039 }
4040 
4041 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
4042 
4043 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4044 					      struct kvm_vcpu_events *events)
4045 {
4046 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4047 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4048 			      | KVM_VCPUEVENT_VALID_SHADOW
4049 			      | KVM_VCPUEVENT_VALID_SMM
4050 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
4051 		return -EINVAL;
4052 
4053 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4054 		if (!vcpu->kvm->arch.exception_payload_enabled)
4055 			return -EINVAL;
4056 		if (events->exception.pending)
4057 			events->exception.injected = 0;
4058 		else
4059 			events->exception_has_payload = 0;
4060 	} else {
4061 		events->exception.pending = 0;
4062 		events->exception_has_payload = 0;
4063 	}
4064 
4065 	if ((events->exception.injected || events->exception.pending) &&
4066 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4067 		return -EINVAL;
4068 
4069 	/* INITs are latched while in SMM */
4070 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4071 	    (events->smi.smm || events->smi.pending) &&
4072 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4073 		return -EINVAL;
4074 
4075 	process_nmi(vcpu);
4076 	vcpu->arch.exception.injected = events->exception.injected;
4077 	vcpu->arch.exception.pending = events->exception.pending;
4078 	vcpu->arch.exception.nr = events->exception.nr;
4079 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4080 	vcpu->arch.exception.error_code = events->exception.error_code;
4081 	vcpu->arch.exception.has_payload = events->exception_has_payload;
4082 	vcpu->arch.exception.payload = events->exception_payload;
4083 
4084 	vcpu->arch.interrupt.injected = events->interrupt.injected;
4085 	vcpu->arch.interrupt.nr = events->interrupt.nr;
4086 	vcpu->arch.interrupt.soft = events->interrupt.soft;
4087 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4088 		kvm_x86_ops.set_interrupt_shadow(vcpu,
4089 						  events->interrupt.shadow);
4090 
4091 	vcpu->arch.nmi_injected = events->nmi.injected;
4092 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4093 		vcpu->arch.nmi_pending = events->nmi.pending;
4094 	kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked);
4095 
4096 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4097 	    lapic_in_kernel(vcpu))
4098 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
4099 
4100 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4101 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4102 			if (events->smi.smm)
4103 				vcpu->arch.hflags |= HF_SMM_MASK;
4104 			else
4105 				vcpu->arch.hflags &= ~HF_SMM_MASK;
4106 			kvm_smm_changed(vcpu);
4107 		}
4108 
4109 		vcpu->arch.smi_pending = events->smi.pending;
4110 
4111 		if (events->smi.smm) {
4112 			if (events->smi.smm_inside_nmi)
4113 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4114 			else
4115 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4116 		}
4117 
4118 		if (lapic_in_kernel(vcpu)) {
4119 			if (events->smi.latched_init)
4120 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4121 			else
4122 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4123 		}
4124 	}
4125 
4126 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4127 
4128 	return 0;
4129 }
4130 
4131 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4132 					     struct kvm_debugregs *dbgregs)
4133 {
4134 	unsigned long val;
4135 
4136 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4137 	kvm_get_dr(vcpu, 6, &val);
4138 	dbgregs->dr6 = val;
4139 	dbgregs->dr7 = vcpu->arch.dr7;
4140 	dbgregs->flags = 0;
4141 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4142 }
4143 
4144 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4145 					    struct kvm_debugregs *dbgregs)
4146 {
4147 	if (dbgregs->flags)
4148 		return -EINVAL;
4149 
4150 	if (dbgregs->dr6 & ~0xffffffffull)
4151 		return -EINVAL;
4152 	if (dbgregs->dr7 & ~0xffffffffull)
4153 		return -EINVAL;
4154 
4155 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4156 	kvm_update_dr0123(vcpu);
4157 	vcpu->arch.dr6 = dbgregs->dr6;
4158 	vcpu->arch.dr7 = dbgregs->dr7;
4159 	kvm_update_dr7(vcpu);
4160 
4161 	return 0;
4162 }
4163 
4164 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4165 
4166 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4167 {
4168 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4169 	u64 xstate_bv = xsave->header.xfeatures;
4170 	u64 valid;
4171 
4172 	/*
4173 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4174 	 * leaves 0 and 1 in the loop below.
4175 	 */
4176 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4177 
4178 	/* Set XSTATE_BV */
4179 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4180 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4181 
4182 	/*
4183 	 * Copy each region from the possibly compacted offset to the
4184 	 * non-compacted offset.
4185 	 */
4186 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4187 	while (valid) {
4188 		u64 xfeature_mask = valid & -valid;
4189 		int xfeature_nr = fls64(xfeature_mask) - 1;
4190 		void *src = get_xsave_addr(xsave, xfeature_nr);
4191 
4192 		if (src) {
4193 			u32 size, offset, ecx, edx;
4194 			cpuid_count(XSTATE_CPUID, xfeature_nr,
4195 				    &size, &offset, &ecx, &edx);
4196 			if (xfeature_nr == XFEATURE_PKRU)
4197 				memcpy(dest + offset, &vcpu->arch.pkru,
4198 				       sizeof(vcpu->arch.pkru));
4199 			else
4200 				memcpy(dest + offset, src, size);
4201 
4202 		}
4203 
4204 		valid -= xfeature_mask;
4205 	}
4206 }
4207 
4208 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4209 {
4210 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4211 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4212 	u64 valid;
4213 
4214 	/*
4215 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4216 	 * leaves 0 and 1 in the loop below.
4217 	 */
4218 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
4219 
4220 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
4221 	xsave->header.xfeatures = xstate_bv;
4222 	if (boot_cpu_has(X86_FEATURE_XSAVES))
4223 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4224 
4225 	/*
4226 	 * Copy each region from the non-compacted offset to the
4227 	 * possibly compacted offset.
4228 	 */
4229 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4230 	while (valid) {
4231 		u64 xfeature_mask = valid & -valid;
4232 		int xfeature_nr = fls64(xfeature_mask) - 1;
4233 		void *dest = get_xsave_addr(xsave, xfeature_nr);
4234 
4235 		if (dest) {
4236 			u32 size, offset, ecx, edx;
4237 			cpuid_count(XSTATE_CPUID, xfeature_nr,
4238 				    &size, &offset, &ecx, &edx);
4239 			if (xfeature_nr == XFEATURE_PKRU)
4240 				memcpy(&vcpu->arch.pkru, src + offset,
4241 				       sizeof(vcpu->arch.pkru));
4242 			else
4243 				memcpy(dest, src + offset, size);
4244 		}
4245 
4246 		valid -= xfeature_mask;
4247 	}
4248 }
4249 
4250 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4251 					 struct kvm_xsave *guest_xsave)
4252 {
4253 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4254 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4255 		fill_xsave((u8 *) guest_xsave->region, vcpu);
4256 	} else {
4257 		memcpy(guest_xsave->region,
4258 			&vcpu->arch.guest_fpu->state.fxsave,
4259 			sizeof(struct fxregs_state));
4260 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4261 			XFEATURE_MASK_FPSSE;
4262 	}
4263 }
4264 
4265 #define XSAVE_MXCSR_OFFSET 24
4266 
4267 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4268 					struct kvm_xsave *guest_xsave)
4269 {
4270 	u64 xstate_bv =
4271 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4272 	u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4273 
4274 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4275 		/*
4276 		 * Here we allow setting states that are not present in
4277 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4278 		 * with old userspace.
4279 		 */
4280 		if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4281 			return -EINVAL;
4282 		load_xsave(vcpu, (u8 *)guest_xsave->region);
4283 	} else {
4284 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4285 			mxcsr & ~mxcsr_feature_mask)
4286 			return -EINVAL;
4287 		memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4288 			guest_xsave->region, sizeof(struct fxregs_state));
4289 	}
4290 	return 0;
4291 }
4292 
4293 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4294 					struct kvm_xcrs *guest_xcrs)
4295 {
4296 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4297 		guest_xcrs->nr_xcrs = 0;
4298 		return;
4299 	}
4300 
4301 	guest_xcrs->nr_xcrs = 1;
4302 	guest_xcrs->flags = 0;
4303 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4304 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4305 }
4306 
4307 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4308 				       struct kvm_xcrs *guest_xcrs)
4309 {
4310 	int i, r = 0;
4311 
4312 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
4313 		return -EINVAL;
4314 
4315 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4316 		return -EINVAL;
4317 
4318 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4319 		/* Only support XCR0 currently */
4320 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4321 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4322 				guest_xcrs->xcrs[i].value);
4323 			break;
4324 		}
4325 	if (r)
4326 		r = -EINVAL;
4327 	return r;
4328 }
4329 
4330 /*
4331  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4332  * stopped by the hypervisor.  This function will be called from the host only.
4333  * EINVAL is returned when the host attempts to set the flag for a guest that
4334  * does not support pv clocks.
4335  */
4336 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4337 {
4338 	if (!vcpu->arch.pv_time_enabled)
4339 		return -EINVAL;
4340 	vcpu->arch.pvclock_set_guest_stopped_request = true;
4341 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4342 	return 0;
4343 }
4344 
4345 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4346 				     struct kvm_enable_cap *cap)
4347 {
4348 	int r;
4349 	uint16_t vmcs_version;
4350 	void __user *user_ptr;
4351 
4352 	if (cap->flags)
4353 		return -EINVAL;
4354 
4355 	switch (cap->cap) {
4356 	case KVM_CAP_HYPERV_SYNIC2:
4357 		if (cap->args[0])
4358 			return -EINVAL;
4359 		fallthrough;
4360 
4361 	case KVM_CAP_HYPERV_SYNIC:
4362 		if (!irqchip_in_kernel(vcpu->kvm))
4363 			return -EINVAL;
4364 		return kvm_hv_activate_synic(vcpu, cap->cap ==
4365 					     KVM_CAP_HYPERV_SYNIC2);
4366 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4367 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
4368 			return -ENOTTY;
4369 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4370 		if (!r) {
4371 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
4372 			if (copy_to_user(user_ptr, &vmcs_version,
4373 					 sizeof(vmcs_version)))
4374 				r = -EFAULT;
4375 		}
4376 		return r;
4377 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4378 		if (!kvm_x86_ops.enable_direct_tlbflush)
4379 			return -ENOTTY;
4380 
4381 		return kvm_x86_ops.enable_direct_tlbflush(vcpu);
4382 
4383 	default:
4384 		return -EINVAL;
4385 	}
4386 }
4387 
4388 long kvm_arch_vcpu_ioctl(struct file *filp,
4389 			 unsigned int ioctl, unsigned long arg)
4390 {
4391 	struct kvm_vcpu *vcpu = filp->private_data;
4392 	void __user *argp = (void __user *)arg;
4393 	int r;
4394 	union {
4395 		struct kvm_lapic_state *lapic;
4396 		struct kvm_xsave *xsave;
4397 		struct kvm_xcrs *xcrs;
4398 		void *buffer;
4399 	} u;
4400 
4401 	vcpu_load(vcpu);
4402 
4403 	u.buffer = NULL;
4404 	switch (ioctl) {
4405 	case KVM_GET_LAPIC: {
4406 		r = -EINVAL;
4407 		if (!lapic_in_kernel(vcpu))
4408 			goto out;
4409 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4410 				GFP_KERNEL_ACCOUNT);
4411 
4412 		r = -ENOMEM;
4413 		if (!u.lapic)
4414 			goto out;
4415 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4416 		if (r)
4417 			goto out;
4418 		r = -EFAULT;
4419 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4420 			goto out;
4421 		r = 0;
4422 		break;
4423 	}
4424 	case KVM_SET_LAPIC: {
4425 		r = -EINVAL;
4426 		if (!lapic_in_kernel(vcpu))
4427 			goto out;
4428 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
4429 		if (IS_ERR(u.lapic)) {
4430 			r = PTR_ERR(u.lapic);
4431 			goto out_nofree;
4432 		}
4433 
4434 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4435 		break;
4436 	}
4437 	case KVM_INTERRUPT: {
4438 		struct kvm_interrupt irq;
4439 
4440 		r = -EFAULT;
4441 		if (copy_from_user(&irq, argp, sizeof(irq)))
4442 			goto out;
4443 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4444 		break;
4445 	}
4446 	case KVM_NMI: {
4447 		r = kvm_vcpu_ioctl_nmi(vcpu);
4448 		break;
4449 	}
4450 	case KVM_SMI: {
4451 		r = kvm_vcpu_ioctl_smi(vcpu);
4452 		break;
4453 	}
4454 	case KVM_SET_CPUID: {
4455 		struct kvm_cpuid __user *cpuid_arg = argp;
4456 		struct kvm_cpuid cpuid;
4457 
4458 		r = -EFAULT;
4459 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4460 			goto out;
4461 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4462 		break;
4463 	}
4464 	case KVM_SET_CPUID2: {
4465 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4466 		struct kvm_cpuid2 cpuid;
4467 
4468 		r = -EFAULT;
4469 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4470 			goto out;
4471 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4472 					      cpuid_arg->entries);
4473 		break;
4474 	}
4475 	case KVM_GET_CPUID2: {
4476 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4477 		struct kvm_cpuid2 cpuid;
4478 
4479 		r = -EFAULT;
4480 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4481 			goto out;
4482 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4483 					      cpuid_arg->entries);
4484 		if (r)
4485 			goto out;
4486 		r = -EFAULT;
4487 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4488 			goto out;
4489 		r = 0;
4490 		break;
4491 	}
4492 	case KVM_GET_MSRS: {
4493 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4494 		r = msr_io(vcpu, argp, do_get_msr, 1);
4495 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4496 		break;
4497 	}
4498 	case KVM_SET_MSRS: {
4499 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4500 		r = msr_io(vcpu, argp, do_set_msr, 0);
4501 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4502 		break;
4503 	}
4504 	case KVM_TPR_ACCESS_REPORTING: {
4505 		struct kvm_tpr_access_ctl tac;
4506 
4507 		r = -EFAULT;
4508 		if (copy_from_user(&tac, argp, sizeof(tac)))
4509 			goto out;
4510 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4511 		if (r)
4512 			goto out;
4513 		r = -EFAULT;
4514 		if (copy_to_user(argp, &tac, sizeof(tac)))
4515 			goto out;
4516 		r = 0;
4517 		break;
4518 	};
4519 	case KVM_SET_VAPIC_ADDR: {
4520 		struct kvm_vapic_addr va;
4521 		int idx;
4522 
4523 		r = -EINVAL;
4524 		if (!lapic_in_kernel(vcpu))
4525 			goto out;
4526 		r = -EFAULT;
4527 		if (copy_from_user(&va, argp, sizeof(va)))
4528 			goto out;
4529 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4530 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4531 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4532 		break;
4533 	}
4534 	case KVM_X86_SETUP_MCE: {
4535 		u64 mcg_cap;
4536 
4537 		r = -EFAULT;
4538 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4539 			goto out;
4540 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4541 		break;
4542 	}
4543 	case KVM_X86_SET_MCE: {
4544 		struct kvm_x86_mce mce;
4545 
4546 		r = -EFAULT;
4547 		if (copy_from_user(&mce, argp, sizeof(mce)))
4548 			goto out;
4549 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4550 		break;
4551 	}
4552 	case KVM_GET_VCPU_EVENTS: {
4553 		struct kvm_vcpu_events events;
4554 
4555 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4556 
4557 		r = -EFAULT;
4558 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4559 			break;
4560 		r = 0;
4561 		break;
4562 	}
4563 	case KVM_SET_VCPU_EVENTS: {
4564 		struct kvm_vcpu_events events;
4565 
4566 		r = -EFAULT;
4567 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4568 			break;
4569 
4570 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4571 		break;
4572 	}
4573 	case KVM_GET_DEBUGREGS: {
4574 		struct kvm_debugregs dbgregs;
4575 
4576 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4577 
4578 		r = -EFAULT;
4579 		if (copy_to_user(argp, &dbgregs,
4580 				 sizeof(struct kvm_debugregs)))
4581 			break;
4582 		r = 0;
4583 		break;
4584 	}
4585 	case KVM_SET_DEBUGREGS: {
4586 		struct kvm_debugregs dbgregs;
4587 
4588 		r = -EFAULT;
4589 		if (copy_from_user(&dbgregs, argp,
4590 				   sizeof(struct kvm_debugregs)))
4591 			break;
4592 
4593 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4594 		break;
4595 	}
4596 	case KVM_GET_XSAVE: {
4597 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4598 		r = -ENOMEM;
4599 		if (!u.xsave)
4600 			break;
4601 
4602 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4603 
4604 		r = -EFAULT;
4605 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4606 			break;
4607 		r = 0;
4608 		break;
4609 	}
4610 	case KVM_SET_XSAVE: {
4611 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
4612 		if (IS_ERR(u.xsave)) {
4613 			r = PTR_ERR(u.xsave);
4614 			goto out_nofree;
4615 		}
4616 
4617 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4618 		break;
4619 	}
4620 	case KVM_GET_XCRS: {
4621 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4622 		r = -ENOMEM;
4623 		if (!u.xcrs)
4624 			break;
4625 
4626 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4627 
4628 		r = -EFAULT;
4629 		if (copy_to_user(argp, u.xcrs,
4630 				 sizeof(struct kvm_xcrs)))
4631 			break;
4632 		r = 0;
4633 		break;
4634 	}
4635 	case KVM_SET_XCRS: {
4636 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4637 		if (IS_ERR(u.xcrs)) {
4638 			r = PTR_ERR(u.xcrs);
4639 			goto out_nofree;
4640 		}
4641 
4642 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4643 		break;
4644 	}
4645 	case KVM_SET_TSC_KHZ: {
4646 		u32 user_tsc_khz;
4647 
4648 		r = -EINVAL;
4649 		user_tsc_khz = (u32)arg;
4650 
4651 		if (kvm_has_tsc_control &&
4652 		    user_tsc_khz >= kvm_max_guest_tsc_khz)
4653 			goto out;
4654 
4655 		if (user_tsc_khz == 0)
4656 			user_tsc_khz = tsc_khz;
4657 
4658 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4659 			r = 0;
4660 
4661 		goto out;
4662 	}
4663 	case KVM_GET_TSC_KHZ: {
4664 		r = vcpu->arch.virtual_tsc_khz;
4665 		goto out;
4666 	}
4667 	case KVM_KVMCLOCK_CTRL: {
4668 		r = kvm_set_guest_paused(vcpu);
4669 		goto out;
4670 	}
4671 	case KVM_ENABLE_CAP: {
4672 		struct kvm_enable_cap cap;
4673 
4674 		r = -EFAULT;
4675 		if (copy_from_user(&cap, argp, sizeof(cap)))
4676 			goto out;
4677 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4678 		break;
4679 	}
4680 	case KVM_GET_NESTED_STATE: {
4681 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4682 		u32 user_data_size;
4683 
4684 		r = -EINVAL;
4685 		if (!kvm_x86_ops.nested_ops->get_state)
4686 			break;
4687 
4688 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4689 		r = -EFAULT;
4690 		if (get_user(user_data_size, &user_kvm_nested_state->size))
4691 			break;
4692 
4693 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
4694 						     user_data_size);
4695 		if (r < 0)
4696 			break;
4697 
4698 		if (r > user_data_size) {
4699 			if (put_user(r, &user_kvm_nested_state->size))
4700 				r = -EFAULT;
4701 			else
4702 				r = -E2BIG;
4703 			break;
4704 		}
4705 
4706 		r = 0;
4707 		break;
4708 	}
4709 	case KVM_SET_NESTED_STATE: {
4710 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4711 		struct kvm_nested_state kvm_state;
4712 		int idx;
4713 
4714 		r = -EINVAL;
4715 		if (!kvm_x86_ops.nested_ops->set_state)
4716 			break;
4717 
4718 		r = -EFAULT;
4719 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4720 			break;
4721 
4722 		r = -EINVAL;
4723 		if (kvm_state.size < sizeof(kvm_state))
4724 			break;
4725 
4726 		if (kvm_state.flags &
4727 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4728 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
4729 		      | KVM_STATE_NESTED_GIF_SET))
4730 			break;
4731 
4732 		/* nested_run_pending implies guest_mode.  */
4733 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4734 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4735 			break;
4736 
4737 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4738 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
4739 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4740 		break;
4741 	}
4742 	case KVM_GET_SUPPORTED_HV_CPUID: {
4743 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4744 		struct kvm_cpuid2 cpuid;
4745 
4746 		r = -EFAULT;
4747 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4748 			goto out;
4749 
4750 		r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4751 						cpuid_arg->entries);
4752 		if (r)
4753 			goto out;
4754 
4755 		r = -EFAULT;
4756 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4757 			goto out;
4758 		r = 0;
4759 		break;
4760 	}
4761 	default:
4762 		r = -EINVAL;
4763 	}
4764 out:
4765 	kfree(u.buffer);
4766 out_nofree:
4767 	vcpu_put(vcpu);
4768 	return r;
4769 }
4770 
4771 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4772 {
4773 	return VM_FAULT_SIGBUS;
4774 }
4775 
4776 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4777 {
4778 	int ret;
4779 
4780 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
4781 		return -EINVAL;
4782 	ret = kvm_x86_ops.set_tss_addr(kvm, addr);
4783 	return ret;
4784 }
4785 
4786 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4787 					      u64 ident_addr)
4788 {
4789 	return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr);
4790 }
4791 
4792 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4793 					 unsigned long kvm_nr_mmu_pages)
4794 {
4795 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4796 		return -EINVAL;
4797 
4798 	mutex_lock(&kvm->slots_lock);
4799 
4800 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4801 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4802 
4803 	mutex_unlock(&kvm->slots_lock);
4804 	return 0;
4805 }
4806 
4807 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4808 {
4809 	return kvm->arch.n_max_mmu_pages;
4810 }
4811 
4812 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4813 {
4814 	struct kvm_pic *pic = kvm->arch.vpic;
4815 	int r;
4816 
4817 	r = 0;
4818 	switch (chip->chip_id) {
4819 	case KVM_IRQCHIP_PIC_MASTER:
4820 		memcpy(&chip->chip.pic, &pic->pics[0],
4821 			sizeof(struct kvm_pic_state));
4822 		break;
4823 	case KVM_IRQCHIP_PIC_SLAVE:
4824 		memcpy(&chip->chip.pic, &pic->pics[1],
4825 			sizeof(struct kvm_pic_state));
4826 		break;
4827 	case KVM_IRQCHIP_IOAPIC:
4828 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
4829 		break;
4830 	default:
4831 		r = -EINVAL;
4832 		break;
4833 	}
4834 	return r;
4835 }
4836 
4837 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4838 {
4839 	struct kvm_pic *pic = kvm->arch.vpic;
4840 	int r;
4841 
4842 	r = 0;
4843 	switch (chip->chip_id) {
4844 	case KVM_IRQCHIP_PIC_MASTER:
4845 		spin_lock(&pic->lock);
4846 		memcpy(&pic->pics[0], &chip->chip.pic,
4847 			sizeof(struct kvm_pic_state));
4848 		spin_unlock(&pic->lock);
4849 		break;
4850 	case KVM_IRQCHIP_PIC_SLAVE:
4851 		spin_lock(&pic->lock);
4852 		memcpy(&pic->pics[1], &chip->chip.pic,
4853 			sizeof(struct kvm_pic_state));
4854 		spin_unlock(&pic->lock);
4855 		break;
4856 	case KVM_IRQCHIP_IOAPIC:
4857 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
4858 		break;
4859 	default:
4860 		r = -EINVAL;
4861 		break;
4862 	}
4863 	kvm_pic_update_irq(pic);
4864 	return r;
4865 }
4866 
4867 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4868 {
4869 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4870 
4871 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4872 
4873 	mutex_lock(&kps->lock);
4874 	memcpy(ps, &kps->channels, sizeof(*ps));
4875 	mutex_unlock(&kps->lock);
4876 	return 0;
4877 }
4878 
4879 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4880 {
4881 	int i;
4882 	struct kvm_pit *pit = kvm->arch.vpit;
4883 
4884 	mutex_lock(&pit->pit_state.lock);
4885 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4886 	for (i = 0; i < 3; i++)
4887 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4888 	mutex_unlock(&pit->pit_state.lock);
4889 	return 0;
4890 }
4891 
4892 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4893 {
4894 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
4895 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4896 		sizeof(ps->channels));
4897 	ps->flags = kvm->arch.vpit->pit_state.flags;
4898 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4899 	memset(&ps->reserved, 0, sizeof(ps->reserved));
4900 	return 0;
4901 }
4902 
4903 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4904 {
4905 	int start = 0;
4906 	int i;
4907 	u32 prev_legacy, cur_legacy;
4908 	struct kvm_pit *pit = kvm->arch.vpit;
4909 
4910 	mutex_lock(&pit->pit_state.lock);
4911 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4912 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4913 	if (!prev_legacy && cur_legacy)
4914 		start = 1;
4915 	memcpy(&pit->pit_state.channels, &ps->channels,
4916 	       sizeof(pit->pit_state.channels));
4917 	pit->pit_state.flags = ps->flags;
4918 	for (i = 0; i < 3; i++)
4919 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4920 				   start && i == 0);
4921 	mutex_unlock(&pit->pit_state.lock);
4922 	return 0;
4923 }
4924 
4925 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4926 				 struct kvm_reinject_control *control)
4927 {
4928 	struct kvm_pit *pit = kvm->arch.vpit;
4929 
4930 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
4931 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4932 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4933 	 */
4934 	mutex_lock(&pit->pit_state.lock);
4935 	kvm_pit_set_reinject(pit, control->pit_reinject);
4936 	mutex_unlock(&pit->pit_state.lock);
4937 
4938 	return 0;
4939 }
4940 
4941 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
4942 {
4943 	/*
4944 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4945 	 */
4946 	if (kvm_x86_ops.flush_log_dirty)
4947 		kvm_x86_ops.flush_log_dirty(kvm);
4948 }
4949 
4950 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4951 			bool line_status)
4952 {
4953 	if (!irqchip_in_kernel(kvm))
4954 		return -ENXIO;
4955 
4956 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4957 					irq_event->irq, irq_event->level,
4958 					line_status);
4959 	return 0;
4960 }
4961 
4962 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4963 			    struct kvm_enable_cap *cap)
4964 {
4965 	int r;
4966 
4967 	if (cap->flags)
4968 		return -EINVAL;
4969 
4970 	switch (cap->cap) {
4971 	case KVM_CAP_DISABLE_QUIRKS:
4972 		kvm->arch.disabled_quirks = cap->args[0];
4973 		r = 0;
4974 		break;
4975 	case KVM_CAP_SPLIT_IRQCHIP: {
4976 		mutex_lock(&kvm->lock);
4977 		r = -EINVAL;
4978 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4979 			goto split_irqchip_unlock;
4980 		r = -EEXIST;
4981 		if (irqchip_in_kernel(kvm))
4982 			goto split_irqchip_unlock;
4983 		if (kvm->created_vcpus)
4984 			goto split_irqchip_unlock;
4985 		r = kvm_setup_empty_irq_routing(kvm);
4986 		if (r)
4987 			goto split_irqchip_unlock;
4988 		/* Pairs with irqchip_in_kernel. */
4989 		smp_wmb();
4990 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4991 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4992 		r = 0;
4993 split_irqchip_unlock:
4994 		mutex_unlock(&kvm->lock);
4995 		break;
4996 	}
4997 	case KVM_CAP_X2APIC_API:
4998 		r = -EINVAL;
4999 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5000 			break;
5001 
5002 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5003 			kvm->arch.x2apic_format = true;
5004 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5005 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
5006 
5007 		r = 0;
5008 		break;
5009 	case KVM_CAP_X86_DISABLE_EXITS:
5010 		r = -EINVAL;
5011 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5012 			break;
5013 
5014 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5015 			kvm_can_mwait_in_guest())
5016 			kvm->arch.mwait_in_guest = true;
5017 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5018 			kvm->arch.hlt_in_guest = true;
5019 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5020 			kvm->arch.pause_in_guest = true;
5021 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5022 			kvm->arch.cstate_in_guest = true;
5023 		r = 0;
5024 		break;
5025 	case KVM_CAP_MSR_PLATFORM_INFO:
5026 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5027 		r = 0;
5028 		break;
5029 	case KVM_CAP_EXCEPTION_PAYLOAD:
5030 		kvm->arch.exception_payload_enabled = cap->args[0];
5031 		r = 0;
5032 		break;
5033 	default:
5034 		r = -EINVAL;
5035 		break;
5036 	}
5037 	return r;
5038 }
5039 
5040 long kvm_arch_vm_ioctl(struct file *filp,
5041 		       unsigned int ioctl, unsigned long arg)
5042 {
5043 	struct kvm *kvm = filp->private_data;
5044 	void __user *argp = (void __user *)arg;
5045 	int r = -ENOTTY;
5046 	/*
5047 	 * This union makes it completely explicit to gcc-3.x
5048 	 * that these two variables' stack usage should be
5049 	 * combined, not added together.
5050 	 */
5051 	union {
5052 		struct kvm_pit_state ps;
5053 		struct kvm_pit_state2 ps2;
5054 		struct kvm_pit_config pit_config;
5055 	} u;
5056 
5057 	switch (ioctl) {
5058 	case KVM_SET_TSS_ADDR:
5059 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5060 		break;
5061 	case KVM_SET_IDENTITY_MAP_ADDR: {
5062 		u64 ident_addr;
5063 
5064 		mutex_lock(&kvm->lock);
5065 		r = -EINVAL;
5066 		if (kvm->created_vcpus)
5067 			goto set_identity_unlock;
5068 		r = -EFAULT;
5069 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5070 			goto set_identity_unlock;
5071 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5072 set_identity_unlock:
5073 		mutex_unlock(&kvm->lock);
5074 		break;
5075 	}
5076 	case KVM_SET_NR_MMU_PAGES:
5077 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5078 		break;
5079 	case KVM_GET_NR_MMU_PAGES:
5080 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5081 		break;
5082 	case KVM_CREATE_IRQCHIP: {
5083 		mutex_lock(&kvm->lock);
5084 
5085 		r = -EEXIST;
5086 		if (irqchip_in_kernel(kvm))
5087 			goto create_irqchip_unlock;
5088 
5089 		r = -EINVAL;
5090 		if (kvm->created_vcpus)
5091 			goto create_irqchip_unlock;
5092 
5093 		r = kvm_pic_init(kvm);
5094 		if (r)
5095 			goto create_irqchip_unlock;
5096 
5097 		r = kvm_ioapic_init(kvm);
5098 		if (r) {
5099 			kvm_pic_destroy(kvm);
5100 			goto create_irqchip_unlock;
5101 		}
5102 
5103 		r = kvm_setup_default_irq_routing(kvm);
5104 		if (r) {
5105 			kvm_ioapic_destroy(kvm);
5106 			kvm_pic_destroy(kvm);
5107 			goto create_irqchip_unlock;
5108 		}
5109 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5110 		smp_wmb();
5111 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5112 	create_irqchip_unlock:
5113 		mutex_unlock(&kvm->lock);
5114 		break;
5115 	}
5116 	case KVM_CREATE_PIT:
5117 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5118 		goto create_pit;
5119 	case KVM_CREATE_PIT2:
5120 		r = -EFAULT;
5121 		if (copy_from_user(&u.pit_config, argp,
5122 				   sizeof(struct kvm_pit_config)))
5123 			goto out;
5124 	create_pit:
5125 		mutex_lock(&kvm->lock);
5126 		r = -EEXIST;
5127 		if (kvm->arch.vpit)
5128 			goto create_pit_unlock;
5129 		r = -ENOMEM;
5130 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5131 		if (kvm->arch.vpit)
5132 			r = 0;
5133 	create_pit_unlock:
5134 		mutex_unlock(&kvm->lock);
5135 		break;
5136 	case KVM_GET_IRQCHIP: {
5137 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5138 		struct kvm_irqchip *chip;
5139 
5140 		chip = memdup_user(argp, sizeof(*chip));
5141 		if (IS_ERR(chip)) {
5142 			r = PTR_ERR(chip);
5143 			goto out;
5144 		}
5145 
5146 		r = -ENXIO;
5147 		if (!irqchip_kernel(kvm))
5148 			goto get_irqchip_out;
5149 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5150 		if (r)
5151 			goto get_irqchip_out;
5152 		r = -EFAULT;
5153 		if (copy_to_user(argp, chip, sizeof(*chip)))
5154 			goto get_irqchip_out;
5155 		r = 0;
5156 	get_irqchip_out:
5157 		kfree(chip);
5158 		break;
5159 	}
5160 	case KVM_SET_IRQCHIP: {
5161 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5162 		struct kvm_irqchip *chip;
5163 
5164 		chip = memdup_user(argp, sizeof(*chip));
5165 		if (IS_ERR(chip)) {
5166 			r = PTR_ERR(chip);
5167 			goto out;
5168 		}
5169 
5170 		r = -ENXIO;
5171 		if (!irqchip_kernel(kvm))
5172 			goto set_irqchip_out;
5173 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5174 	set_irqchip_out:
5175 		kfree(chip);
5176 		break;
5177 	}
5178 	case KVM_GET_PIT: {
5179 		r = -EFAULT;
5180 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5181 			goto out;
5182 		r = -ENXIO;
5183 		if (!kvm->arch.vpit)
5184 			goto out;
5185 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5186 		if (r)
5187 			goto out;
5188 		r = -EFAULT;
5189 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5190 			goto out;
5191 		r = 0;
5192 		break;
5193 	}
5194 	case KVM_SET_PIT: {
5195 		r = -EFAULT;
5196 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5197 			goto out;
5198 		mutex_lock(&kvm->lock);
5199 		r = -ENXIO;
5200 		if (!kvm->arch.vpit)
5201 			goto set_pit_out;
5202 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5203 set_pit_out:
5204 		mutex_unlock(&kvm->lock);
5205 		break;
5206 	}
5207 	case KVM_GET_PIT2: {
5208 		r = -ENXIO;
5209 		if (!kvm->arch.vpit)
5210 			goto out;
5211 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5212 		if (r)
5213 			goto out;
5214 		r = -EFAULT;
5215 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5216 			goto out;
5217 		r = 0;
5218 		break;
5219 	}
5220 	case KVM_SET_PIT2: {
5221 		r = -EFAULT;
5222 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5223 			goto out;
5224 		mutex_lock(&kvm->lock);
5225 		r = -ENXIO;
5226 		if (!kvm->arch.vpit)
5227 			goto set_pit2_out;
5228 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5229 set_pit2_out:
5230 		mutex_unlock(&kvm->lock);
5231 		break;
5232 	}
5233 	case KVM_REINJECT_CONTROL: {
5234 		struct kvm_reinject_control control;
5235 		r =  -EFAULT;
5236 		if (copy_from_user(&control, argp, sizeof(control)))
5237 			goto out;
5238 		r = -ENXIO;
5239 		if (!kvm->arch.vpit)
5240 			goto out;
5241 		r = kvm_vm_ioctl_reinject(kvm, &control);
5242 		break;
5243 	}
5244 	case KVM_SET_BOOT_CPU_ID:
5245 		r = 0;
5246 		mutex_lock(&kvm->lock);
5247 		if (kvm->created_vcpus)
5248 			r = -EBUSY;
5249 		else
5250 			kvm->arch.bsp_vcpu_id = arg;
5251 		mutex_unlock(&kvm->lock);
5252 		break;
5253 	case KVM_XEN_HVM_CONFIG: {
5254 		struct kvm_xen_hvm_config xhc;
5255 		r = -EFAULT;
5256 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
5257 			goto out;
5258 		r = -EINVAL;
5259 		if (xhc.flags)
5260 			goto out;
5261 		memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5262 		r = 0;
5263 		break;
5264 	}
5265 	case KVM_SET_CLOCK: {
5266 		struct kvm_clock_data user_ns;
5267 		u64 now_ns;
5268 
5269 		r = -EFAULT;
5270 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5271 			goto out;
5272 
5273 		r = -EINVAL;
5274 		if (user_ns.flags)
5275 			goto out;
5276 
5277 		r = 0;
5278 		/*
5279 		 * TODO: userspace has to take care of races with VCPU_RUN, so
5280 		 * kvm_gen_update_masterclock() can be cut down to locked
5281 		 * pvclock_update_vm_gtod_copy().
5282 		 */
5283 		kvm_gen_update_masterclock(kvm);
5284 		now_ns = get_kvmclock_ns(kvm);
5285 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5286 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5287 		break;
5288 	}
5289 	case KVM_GET_CLOCK: {
5290 		struct kvm_clock_data user_ns;
5291 		u64 now_ns;
5292 
5293 		now_ns = get_kvmclock_ns(kvm);
5294 		user_ns.clock = now_ns;
5295 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5296 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5297 
5298 		r = -EFAULT;
5299 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5300 			goto out;
5301 		r = 0;
5302 		break;
5303 	}
5304 	case KVM_MEMORY_ENCRYPT_OP: {
5305 		r = -ENOTTY;
5306 		if (kvm_x86_ops.mem_enc_op)
5307 			r = kvm_x86_ops.mem_enc_op(kvm, argp);
5308 		break;
5309 	}
5310 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
5311 		struct kvm_enc_region region;
5312 
5313 		r = -EFAULT;
5314 		if (copy_from_user(&region, argp, sizeof(region)))
5315 			goto out;
5316 
5317 		r = -ENOTTY;
5318 		if (kvm_x86_ops.mem_enc_reg_region)
5319 			r = kvm_x86_ops.mem_enc_reg_region(kvm, &region);
5320 		break;
5321 	}
5322 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5323 		struct kvm_enc_region region;
5324 
5325 		r = -EFAULT;
5326 		if (copy_from_user(&region, argp, sizeof(region)))
5327 			goto out;
5328 
5329 		r = -ENOTTY;
5330 		if (kvm_x86_ops.mem_enc_unreg_region)
5331 			r = kvm_x86_ops.mem_enc_unreg_region(kvm, &region);
5332 		break;
5333 	}
5334 	case KVM_HYPERV_EVENTFD: {
5335 		struct kvm_hyperv_eventfd hvevfd;
5336 
5337 		r = -EFAULT;
5338 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5339 			goto out;
5340 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5341 		break;
5342 	}
5343 	case KVM_SET_PMU_EVENT_FILTER:
5344 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5345 		break;
5346 	default:
5347 		r = -ENOTTY;
5348 	}
5349 out:
5350 	return r;
5351 }
5352 
5353 static void kvm_init_msr_list(void)
5354 {
5355 	struct x86_pmu_capability x86_pmu;
5356 	u32 dummy[2];
5357 	unsigned i;
5358 
5359 	BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5360 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
5361 
5362 	perf_get_x86_pmu_capability(&x86_pmu);
5363 
5364 	num_msrs_to_save = 0;
5365 	num_emulated_msrs = 0;
5366 	num_msr_based_features = 0;
5367 
5368 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5369 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5370 			continue;
5371 
5372 		/*
5373 		 * Even MSRs that are valid in the host may not be exposed
5374 		 * to the guests in some cases.
5375 		 */
5376 		switch (msrs_to_save_all[i]) {
5377 		case MSR_IA32_BNDCFGS:
5378 			if (!kvm_mpx_supported())
5379 				continue;
5380 			break;
5381 		case MSR_TSC_AUX:
5382 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
5383 				continue;
5384 			break;
5385 		case MSR_IA32_UMWAIT_CONTROL:
5386 			if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
5387 				continue;
5388 			break;
5389 		case MSR_IA32_RTIT_CTL:
5390 		case MSR_IA32_RTIT_STATUS:
5391 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
5392 				continue;
5393 			break;
5394 		case MSR_IA32_RTIT_CR3_MATCH:
5395 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5396 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5397 				continue;
5398 			break;
5399 		case MSR_IA32_RTIT_OUTPUT_BASE:
5400 		case MSR_IA32_RTIT_OUTPUT_MASK:
5401 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5402 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5403 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5404 				continue;
5405 			break;
5406 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
5407 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5408 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5409 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5410 				continue;
5411 			break;
5412 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5413 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5414 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5415 				continue;
5416 			break;
5417 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5418 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5419 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5420 				continue;
5421 			break;
5422 		default:
5423 			break;
5424 		}
5425 
5426 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5427 	}
5428 
5429 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5430 		if (!kvm_x86_ops.has_emulated_msr(emulated_msrs_all[i]))
5431 			continue;
5432 
5433 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5434 	}
5435 
5436 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5437 		struct kvm_msr_entry msr;
5438 
5439 		msr.index = msr_based_features_all[i];
5440 		if (kvm_get_msr_feature(&msr))
5441 			continue;
5442 
5443 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5444 	}
5445 }
5446 
5447 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5448 			   const void *v)
5449 {
5450 	int handled = 0;
5451 	int n;
5452 
5453 	do {
5454 		n = min(len, 8);
5455 		if (!(lapic_in_kernel(vcpu) &&
5456 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5457 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5458 			break;
5459 		handled += n;
5460 		addr += n;
5461 		len -= n;
5462 		v += n;
5463 	} while (len);
5464 
5465 	return handled;
5466 }
5467 
5468 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5469 {
5470 	int handled = 0;
5471 	int n;
5472 
5473 	do {
5474 		n = min(len, 8);
5475 		if (!(lapic_in_kernel(vcpu) &&
5476 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5477 					 addr, n, v))
5478 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5479 			break;
5480 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5481 		handled += n;
5482 		addr += n;
5483 		len -= n;
5484 		v += n;
5485 	} while (len);
5486 
5487 	return handled;
5488 }
5489 
5490 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5491 			struct kvm_segment *var, int seg)
5492 {
5493 	kvm_x86_ops.set_segment(vcpu, var, seg);
5494 }
5495 
5496 void kvm_get_segment(struct kvm_vcpu *vcpu,
5497 		     struct kvm_segment *var, int seg)
5498 {
5499 	kvm_x86_ops.get_segment(vcpu, var, seg);
5500 }
5501 
5502 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5503 			   struct x86_exception *exception)
5504 {
5505 	gpa_t t_gpa;
5506 
5507 	BUG_ON(!mmu_is_nested(vcpu));
5508 
5509 	/* NPT walks are always user-walks */
5510 	access |= PFERR_USER_MASK;
5511 	t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5512 
5513 	return t_gpa;
5514 }
5515 
5516 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5517 			      struct x86_exception *exception)
5518 {
5519 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5520 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5521 }
5522 
5523  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5524 				struct x86_exception *exception)
5525 {
5526 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5527 	access |= PFERR_FETCH_MASK;
5528 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5529 }
5530 
5531 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5532 			       struct x86_exception *exception)
5533 {
5534 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5535 	access |= PFERR_WRITE_MASK;
5536 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5537 }
5538 
5539 /* uses this to access any guest's mapped memory without checking CPL */
5540 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5541 				struct x86_exception *exception)
5542 {
5543 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5544 }
5545 
5546 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5547 				      struct kvm_vcpu *vcpu, u32 access,
5548 				      struct x86_exception *exception)
5549 {
5550 	void *data = val;
5551 	int r = X86EMUL_CONTINUE;
5552 
5553 	while (bytes) {
5554 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5555 							    exception);
5556 		unsigned offset = addr & (PAGE_SIZE-1);
5557 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5558 		int ret;
5559 
5560 		if (gpa == UNMAPPED_GVA)
5561 			return X86EMUL_PROPAGATE_FAULT;
5562 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5563 					       offset, toread);
5564 		if (ret < 0) {
5565 			r = X86EMUL_IO_NEEDED;
5566 			goto out;
5567 		}
5568 
5569 		bytes -= toread;
5570 		data += toread;
5571 		addr += toread;
5572 	}
5573 out:
5574 	return r;
5575 }
5576 
5577 /* used for instruction fetching */
5578 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5579 				gva_t addr, void *val, unsigned int bytes,
5580 				struct x86_exception *exception)
5581 {
5582 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5583 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5584 	unsigned offset;
5585 	int ret;
5586 
5587 	/* Inline kvm_read_guest_virt_helper for speed.  */
5588 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5589 						    exception);
5590 	if (unlikely(gpa == UNMAPPED_GVA))
5591 		return X86EMUL_PROPAGATE_FAULT;
5592 
5593 	offset = addr & (PAGE_SIZE-1);
5594 	if (WARN_ON(offset + bytes > PAGE_SIZE))
5595 		bytes = (unsigned)PAGE_SIZE - offset;
5596 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5597 				       offset, bytes);
5598 	if (unlikely(ret < 0))
5599 		return X86EMUL_IO_NEEDED;
5600 
5601 	return X86EMUL_CONTINUE;
5602 }
5603 
5604 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5605 			       gva_t addr, void *val, unsigned int bytes,
5606 			       struct x86_exception *exception)
5607 {
5608 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5609 
5610 	/*
5611 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5612 	 * is returned, but our callers are not ready for that and they blindly
5613 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
5614 	 * uninitialized kernel stack memory into cr2 and error code.
5615 	 */
5616 	memset(exception, 0, sizeof(*exception));
5617 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5618 					  exception);
5619 }
5620 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5621 
5622 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5623 			     gva_t addr, void *val, unsigned int bytes,
5624 			     struct x86_exception *exception, bool system)
5625 {
5626 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5627 	u32 access = 0;
5628 
5629 	if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
5630 		access |= PFERR_USER_MASK;
5631 
5632 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5633 }
5634 
5635 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5636 		unsigned long addr, void *val, unsigned int bytes)
5637 {
5638 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5639 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5640 
5641 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5642 }
5643 
5644 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5645 				      struct kvm_vcpu *vcpu, u32 access,
5646 				      struct x86_exception *exception)
5647 {
5648 	void *data = val;
5649 	int r = X86EMUL_CONTINUE;
5650 
5651 	while (bytes) {
5652 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5653 							     access,
5654 							     exception);
5655 		unsigned offset = addr & (PAGE_SIZE-1);
5656 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5657 		int ret;
5658 
5659 		if (gpa == UNMAPPED_GVA)
5660 			return X86EMUL_PROPAGATE_FAULT;
5661 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5662 		if (ret < 0) {
5663 			r = X86EMUL_IO_NEEDED;
5664 			goto out;
5665 		}
5666 
5667 		bytes -= towrite;
5668 		data += towrite;
5669 		addr += towrite;
5670 	}
5671 out:
5672 	return r;
5673 }
5674 
5675 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5676 			      unsigned int bytes, struct x86_exception *exception,
5677 			      bool system)
5678 {
5679 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5680 	u32 access = PFERR_WRITE_MASK;
5681 
5682 	if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
5683 		access |= PFERR_USER_MASK;
5684 
5685 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5686 					   access, exception);
5687 }
5688 
5689 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5690 				unsigned int bytes, struct x86_exception *exception)
5691 {
5692 	/* kvm_write_guest_virt_system can pull in tons of pages. */
5693 	vcpu->arch.l1tf_flush_l1d = true;
5694 
5695 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5696 					   PFERR_WRITE_MASK, exception);
5697 }
5698 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5699 
5700 int handle_ud(struct kvm_vcpu *vcpu)
5701 {
5702 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
5703 	int emul_type = EMULTYPE_TRAP_UD;
5704 	char sig[5]; /* ud2; .ascii "kvm" */
5705 	struct x86_exception e;
5706 
5707 	if (force_emulation_prefix &&
5708 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5709 				sig, sizeof(sig), &e) == 0 &&
5710 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
5711 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5712 		emul_type = EMULTYPE_TRAP_UD_FORCED;
5713 	}
5714 
5715 	return kvm_emulate_instruction(vcpu, emul_type);
5716 }
5717 EXPORT_SYMBOL_GPL(handle_ud);
5718 
5719 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5720 			    gpa_t gpa, bool write)
5721 {
5722 	/* For APIC access vmexit */
5723 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5724 		return 1;
5725 
5726 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5727 		trace_vcpu_match_mmio(gva, gpa, write, true);
5728 		return 1;
5729 	}
5730 
5731 	return 0;
5732 }
5733 
5734 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5735 				gpa_t *gpa, struct x86_exception *exception,
5736 				bool write)
5737 {
5738 	u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5739 		| (write ? PFERR_WRITE_MASK : 0);
5740 
5741 	/*
5742 	 * currently PKRU is only applied to ept enabled guest so
5743 	 * there is no pkey in EPT page table for L1 guest or EPT
5744 	 * shadow page table for L2 guest.
5745 	 */
5746 	if (vcpu_match_mmio_gva(vcpu, gva)
5747 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5748 				 vcpu->arch.mmio_access, 0, access)) {
5749 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5750 					(gva & (PAGE_SIZE - 1));
5751 		trace_vcpu_match_mmio(gva, *gpa, write, false);
5752 		return 1;
5753 	}
5754 
5755 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5756 
5757 	if (*gpa == UNMAPPED_GVA)
5758 		return -1;
5759 
5760 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5761 }
5762 
5763 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5764 			const void *val, int bytes)
5765 {
5766 	int ret;
5767 
5768 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5769 	if (ret < 0)
5770 		return 0;
5771 	kvm_page_track_write(vcpu, gpa, val, bytes);
5772 	return 1;
5773 }
5774 
5775 struct read_write_emulator_ops {
5776 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5777 				  int bytes);
5778 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5779 				  void *val, int bytes);
5780 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5781 			       int bytes, void *val);
5782 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5783 				    void *val, int bytes);
5784 	bool write;
5785 };
5786 
5787 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5788 {
5789 	if (vcpu->mmio_read_completed) {
5790 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5791 			       vcpu->mmio_fragments[0].gpa, val);
5792 		vcpu->mmio_read_completed = 0;
5793 		return 1;
5794 	}
5795 
5796 	return 0;
5797 }
5798 
5799 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5800 			void *val, int bytes)
5801 {
5802 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5803 }
5804 
5805 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5806 			 void *val, int bytes)
5807 {
5808 	return emulator_write_phys(vcpu, gpa, val, bytes);
5809 }
5810 
5811 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5812 {
5813 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5814 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
5815 }
5816 
5817 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5818 			  void *val, int bytes)
5819 {
5820 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5821 	return X86EMUL_IO_NEEDED;
5822 }
5823 
5824 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5825 			   void *val, int bytes)
5826 {
5827 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5828 
5829 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5830 	return X86EMUL_CONTINUE;
5831 }
5832 
5833 static const struct read_write_emulator_ops read_emultor = {
5834 	.read_write_prepare = read_prepare,
5835 	.read_write_emulate = read_emulate,
5836 	.read_write_mmio = vcpu_mmio_read,
5837 	.read_write_exit_mmio = read_exit_mmio,
5838 };
5839 
5840 static const struct read_write_emulator_ops write_emultor = {
5841 	.read_write_emulate = write_emulate,
5842 	.read_write_mmio = write_mmio,
5843 	.read_write_exit_mmio = write_exit_mmio,
5844 	.write = true,
5845 };
5846 
5847 static int emulator_read_write_onepage(unsigned long addr, void *val,
5848 				       unsigned int bytes,
5849 				       struct x86_exception *exception,
5850 				       struct kvm_vcpu *vcpu,
5851 				       const struct read_write_emulator_ops *ops)
5852 {
5853 	gpa_t gpa;
5854 	int handled, ret;
5855 	bool write = ops->write;
5856 	struct kvm_mmio_fragment *frag;
5857 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
5858 
5859 	/*
5860 	 * If the exit was due to a NPF we may already have a GPA.
5861 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
5862 	 * Note, this cannot be used on string operations since string
5863 	 * operation using rep will only have the initial GPA from the NPF
5864 	 * occurred.
5865 	 */
5866 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
5867 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
5868 		gpa = ctxt->gpa_val;
5869 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5870 	} else {
5871 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5872 		if (ret < 0)
5873 			return X86EMUL_PROPAGATE_FAULT;
5874 	}
5875 
5876 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5877 		return X86EMUL_CONTINUE;
5878 
5879 	/*
5880 	 * Is this MMIO handled locally?
5881 	 */
5882 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5883 	if (handled == bytes)
5884 		return X86EMUL_CONTINUE;
5885 
5886 	gpa += handled;
5887 	bytes -= handled;
5888 	val += handled;
5889 
5890 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5891 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5892 	frag->gpa = gpa;
5893 	frag->data = val;
5894 	frag->len = bytes;
5895 	return X86EMUL_CONTINUE;
5896 }
5897 
5898 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5899 			unsigned long addr,
5900 			void *val, unsigned int bytes,
5901 			struct x86_exception *exception,
5902 			const struct read_write_emulator_ops *ops)
5903 {
5904 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5905 	gpa_t gpa;
5906 	int rc;
5907 
5908 	if (ops->read_write_prepare &&
5909 		  ops->read_write_prepare(vcpu, val, bytes))
5910 		return X86EMUL_CONTINUE;
5911 
5912 	vcpu->mmio_nr_fragments = 0;
5913 
5914 	/* Crossing a page boundary? */
5915 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5916 		int now;
5917 
5918 		now = -addr & ~PAGE_MASK;
5919 		rc = emulator_read_write_onepage(addr, val, now, exception,
5920 						 vcpu, ops);
5921 
5922 		if (rc != X86EMUL_CONTINUE)
5923 			return rc;
5924 		addr += now;
5925 		if (ctxt->mode != X86EMUL_MODE_PROT64)
5926 			addr = (u32)addr;
5927 		val += now;
5928 		bytes -= now;
5929 	}
5930 
5931 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
5932 					 vcpu, ops);
5933 	if (rc != X86EMUL_CONTINUE)
5934 		return rc;
5935 
5936 	if (!vcpu->mmio_nr_fragments)
5937 		return rc;
5938 
5939 	gpa = vcpu->mmio_fragments[0].gpa;
5940 
5941 	vcpu->mmio_needed = 1;
5942 	vcpu->mmio_cur_fragment = 0;
5943 
5944 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5945 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5946 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
5947 	vcpu->run->mmio.phys_addr = gpa;
5948 
5949 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5950 }
5951 
5952 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5953 				  unsigned long addr,
5954 				  void *val,
5955 				  unsigned int bytes,
5956 				  struct x86_exception *exception)
5957 {
5958 	return emulator_read_write(ctxt, addr, val, bytes,
5959 				   exception, &read_emultor);
5960 }
5961 
5962 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5963 			    unsigned long addr,
5964 			    const void *val,
5965 			    unsigned int bytes,
5966 			    struct x86_exception *exception)
5967 {
5968 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
5969 				   exception, &write_emultor);
5970 }
5971 
5972 #define CMPXCHG_TYPE(t, ptr, old, new) \
5973 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5974 
5975 #ifdef CONFIG_X86_64
5976 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5977 #else
5978 #  define CMPXCHG64(ptr, old, new) \
5979 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5980 #endif
5981 
5982 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5983 				     unsigned long addr,
5984 				     const void *old,
5985 				     const void *new,
5986 				     unsigned int bytes,
5987 				     struct x86_exception *exception)
5988 {
5989 	struct kvm_host_map map;
5990 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5991 	u64 page_line_mask;
5992 	gpa_t gpa;
5993 	char *kaddr;
5994 	bool exchanged;
5995 
5996 	/* guests cmpxchg8b have to be emulated atomically */
5997 	if (bytes > 8 || (bytes & (bytes - 1)))
5998 		goto emul_write;
5999 
6000 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6001 
6002 	if (gpa == UNMAPPED_GVA ||
6003 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6004 		goto emul_write;
6005 
6006 	/*
6007 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
6008 	 * enabled in the host and the access splits a cache line.
6009 	 */
6010 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6011 		page_line_mask = ~(cache_line_size() - 1);
6012 	else
6013 		page_line_mask = PAGE_MASK;
6014 
6015 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6016 		goto emul_write;
6017 
6018 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6019 		goto emul_write;
6020 
6021 	kaddr = map.hva + offset_in_page(gpa);
6022 
6023 	switch (bytes) {
6024 	case 1:
6025 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6026 		break;
6027 	case 2:
6028 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6029 		break;
6030 	case 4:
6031 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6032 		break;
6033 	case 8:
6034 		exchanged = CMPXCHG64(kaddr, old, new);
6035 		break;
6036 	default:
6037 		BUG();
6038 	}
6039 
6040 	kvm_vcpu_unmap(vcpu, &map, true);
6041 
6042 	if (!exchanged)
6043 		return X86EMUL_CMPXCHG_FAILED;
6044 
6045 	kvm_page_track_write(vcpu, gpa, new, bytes);
6046 
6047 	return X86EMUL_CONTINUE;
6048 
6049 emul_write:
6050 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6051 
6052 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6053 }
6054 
6055 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6056 {
6057 	int r = 0, i;
6058 
6059 	for (i = 0; i < vcpu->arch.pio.count; i++) {
6060 		if (vcpu->arch.pio.in)
6061 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6062 					    vcpu->arch.pio.size, pd);
6063 		else
6064 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6065 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
6066 					     pd);
6067 		if (r)
6068 			break;
6069 		pd += vcpu->arch.pio.size;
6070 	}
6071 	return r;
6072 }
6073 
6074 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6075 			       unsigned short port, void *val,
6076 			       unsigned int count, bool in)
6077 {
6078 	vcpu->arch.pio.port = port;
6079 	vcpu->arch.pio.in = in;
6080 	vcpu->arch.pio.count  = count;
6081 	vcpu->arch.pio.size = size;
6082 
6083 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6084 		vcpu->arch.pio.count = 0;
6085 		return 1;
6086 	}
6087 
6088 	vcpu->run->exit_reason = KVM_EXIT_IO;
6089 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6090 	vcpu->run->io.size = size;
6091 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6092 	vcpu->run->io.count = count;
6093 	vcpu->run->io.port = port;
6094 
6095 	return 0;
6096 }
6097 
6098 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6099 			   unsigned short port, void *val, unsigned int count)
6100 {
6101 	int ret;
6102 
6103 	if (vcpu->arch.pio.count)
6104 		goto data_avail;
6105 
6106 	memset(vcpu->arch.pio_data, 0, size * count);
6107 
6108 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6109 	if (ret) {
6110 data_avail:
6111 		memcpy(val, vcpu->arch.pio_data, size * count);
6112 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6113 		vcpu->arch.pio.count = 0;
6114 		return 1;
6115 	}
6116 
6117 	return 0;
6118 }
6119 
6120 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6121 				    int size, unsigned short port, void *val,
6122 				    unsigned int count)
6123 {
6124 	return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6125 
6126 }
6127 
6128 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6129 			    unsigned short port, const void *val,
6130 			    unsigned int count)
6131 {
6132 	memcpy(vcpu->arch.pio_data, val, size * count);
6133 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6134 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6135 }
6136 
6137 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6138 				     int size, unsigned short port,
6139 				     const void *val, unsigned int count)
6140 {
6141 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6142 }
6143 
6144 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6145 {
6146 	return kvm_x86_ops.get_segment_base(vcpu, seg);
6147 }
6148 
6149 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6150 {
6151 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6152 }
6153 
6154 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6155 {
6156 	if (!need_emulate_wbinvd(vcpu))
6157 		return X86EMUL_CONTINUE;
6158 
6159 	if (kvm_x86_ops.has_wbinvd_exit()) {
6160 		int cpu = get_cpu();
6161 
6162 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6163 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
6164 				wbinvd_ipi, NULL, 1);
6165 		put_cpu();
6166 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6167 	} else
6168 		wbinvd();
6169 	return X86EMUL_CONTINUE;
6170 }
6171 
6172 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6173 {
6174 	kvm_emulate_wbinvd_noskip(vcpu);
6175 	return kvm_skip_emulated_instruction(vcpu);
6176 }
6177 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6178 
6179 
6180 
6181 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6182 {
6183 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6184 }
6185 
6186 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6187 			   unsigned long *dest)
6188 {
6189 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6190 }
6191 
6192 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6193 			   unsigned long value)
6194 {
6195 
6196 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6197 }
6198 
6199 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6200 {
6201 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6202 }
6203 
6204 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6205 {
6206 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6207 	unsigned long value;
6208 
6209 	switch (cr) {
6210 	case 0:
6211 		value = kvm_read_cr0(vcpu);
6212 		break;
6213 	case 2:
6214 		value = vcpu->arch.cr2;
6215 		break;
6216 	case 3:
6217 		value = kvm_read_cr3(vcpu);
6218 		break;
6219 	case 4:
6220 		value = kvm_read_cr4(vcpu);
6221 		break;
6222 	case 8:
6223 		value = kvm_get_cr8(vcpu);
6224 		break;
6225 	default:
6226 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6227 		return 0;
6228 	}
6229 
6230 	return value;
6231 }
6232 
6233 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6234 {
6235 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6236 	int res = 0;
6237 
6238 	switch (cr) {
6239 	case 0:
6240 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6241 		break;
6242 	case 2:
6243 		vcpu->arch.cr2 = val;
6244 		break;
6245 	case 3:
6246 		res = kvm_set_cr3(vcpu, val);
6247 		break;
6248 	case 4:
6249 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6250 		break;
6251 	case 8:
6252 		res = kvm_set_cr8(vcpu, val);
6253 		break;
6254 	default:
6255 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6256 		res = -1;
6257 	}
6258 
6259 	return res;
6260 }
6261 
6262 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6263 {
6264 	return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt));
6265 }
6266 
6267 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6268 {
6269 	kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt);
6270 }
6271 
6272 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6273 {
6274 	kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt);
6275 }
6276 
6277 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6278 {
6279 	kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt);
6280 }
6281 
6282 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6283 {
6284 	kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt);
6285 }
6286 
6287 static unsigned long emulator_get_cached_segment_base(
6288 	struct x86_emulate_ctxt *ctxt, int seg)
6289 {
6290 	return get_segment_base(emul_to_vcpu(ctxt), seg);
6291 }
6292 
6293 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6294 				 struct desc_struct *desc, u32 *base3,
6295 				 int seg)
6296 {
6297 	struct kvm_segment var;
6298 
6299 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6300 	*selector = var.selector;
6301 
6302 	if (var.unusable) {
6303 		memset(desc, 0, sizeof(*desc));
6304 		if (base3)
6305 			*base3 = 0;
6306 		return false;
6307 	}
6308 
6309 	if (var.g)
6310 		var.limit >>= 12;
6311 	set_desc_limit(desc, var.limit);
6312 	set_desc_base(desc, (unsigned long)var.base);
6313 #ifdef CONFIG_X86_64
6314 	if (base3)
6315 		*base3 = var.base >> 32;
6316 #endif
6317 	desc->type = var.type;
6318 	desc->s = var.s;
6319 	desc->dpl = var.dpl;
6320 	desc->p = var.present;
6321 	desc->avl = var.avl;
6322 	desc->l = var.l;
6323 	desc->d = var.db;
6324 	desc->g = var.g;
6325 
6326 	return true;
6327 }
6328 
6329 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6330 				 struct desc_struct *desc, u32 base3,
6331 				 int seg)
6332 {
6333 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6334 	struct kvm_segment var;
6335 
6336 	var.selector = selector;
6337 	var.base = get_desc_base(desc);
6338 #ifdef CONFIG_X86_64
6339 	var.base |= ((u64)base3) << 32;
6340 #endif
6341 	var.limit = get_desc_limit(desc);
6342 	if (desc->g)
6343 		var.limit = (var.limit << 12) | 0xfff;
6344 	var.type = desc->type;
6345 	var.dpl = desc->dpl;
6346 	var.db = desc->d;
6347 	var.s = desc->s;
6348 	var.l = desc->l;
6349 	var.g = desc->g;
6350 	var.avl = desc->avl;
6351 	var.present = desc->p;
6352 	var.unusable = !var.present;
6353 	var.padding = 0;
6354 
6355 	kvm_set_segment(vcpu, &var, seg);
6356 	return;
6357 }
6358 
6359 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6360 			    u32 msr_index, u64 *pdata)
6361 {
6362 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
6363 }
6364 
6365 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6366 			    u32 msr_index, u64 data)
6367 {
6368 	return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
6369 }
6370 
6371 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6372 {
6373 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6374 
6375 	return vcpu->arch.smbase;
6376 }
6377 
6378 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6379 {
6380 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6381 
6382 	vcpu->arch.smbase = smbase;
6383 }
6384 
6385 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6386 			      u32 pmc)
6387 {
6388 	return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6389 }
6390 
6391 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6392 			     u32 pmc, u64 *pdata)
6393 {
6394 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6395 }
6396 
6397 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6398 {
6399 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
6400 }
6401 
6402 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6403 			      struct x86_instruction_info *info,
6404 			      enum x86_intercept_stage stage)
6405 {
6406 	return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage,
6407 					    &ctxt->exception);
6408 }
6409 
6410 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6411 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
6412 			      bool exact_only)
6413 {
6414 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
6415 }
6416 
6417 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
6418 {
6419 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
6420 }
6421 
6422 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
6423 {
6424 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
6425 }
6426 
6427 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
6428 {
6429 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
6430 }
6431 
6432 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6433 {
6434 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
6435 }
6436 
6437 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6438 {
6439 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6440 }
6441 
6442 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6443 {
6444 	kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked);
6445 }
6446 
6447 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6448 {
6449 	return emul_to_vcpu(ctxt)->arch.hflags;
6450 }
6451 
6452 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6453 {
6454 	emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6455 }
6456 
6457 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6458 				  const char *smstate)
6459 {
6460 	return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6461 }
6462 
6463 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6464 {
6465 	kvm_smm_changed(emul_to_vcpu(ctxt));
6466 }
6467 
6468 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6469 {
6470 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6471 }
6472 
6473 static const struct x86_emulate_ops emulate_ops = {
6474 	.read_gpr            = emulator_read_gpr,
6475 	.write_gpr           = emulator_write_gpr,
6476 	.read_std            = emulator_read_std,
6477 	.write_std           = emulator_write_std,
6478 	.read_phys           = kvm_read_guest_phys_system,
6479 	.fetch               = kvm_fetch_guest_virt,
6480 	.read_emulated       = emulator_read_emulated,
6481 	.write_emulated      = emulator_write_emulated,
6482 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
6483 	.invlpg              = emulator_invlpg,
6484 	.pio_in_emulated     = emulator_pio_in_emulated,
6485 	.pio_out_emulated    = emulator_pio_out_emulated,
6486 	.get_segment         = emulator_get_segment,
6487 	.set_segment         = emulator_set_segment,
6488 	.get_cached_segment_base = emulator_get_cached_segment_base,
6489 	.get_gdt             = emulator_get_gdt,
6490 	.get_idt	     = emulator_get_idt,
6491 	.set_gdt             = emulator_set_gdt,
6492 	.set_idt	     = emulator_set_idt,
6493 	.get_cr              = emulator_get_cr,
6494 	.set_cr              = emulator_set_cr,
6495 	.cpl                 = emulator_get_cpl,
6496 	.get_dr              = emulator_get_dr,
6497 	.set_dr              = emulator_set_dr,
6498 	.get_smbase          = emulator_get_smbase,
6499 	.set_smbase          = emulator_set_smbase,
6500 	.set_msr             = emulator_set_msr,
6501 	.get_msr             = emulator_get_msr,
6502 	.check_pmc	     = emulator_check_pmc,
6503 	.read_pmc            = emulator_read_pmc,
6504 	.halt                = emulator_halt,
6505 	.wbinvd              = emulator_wbinvd,
6506 	.fix_hypercall       = emulator_fix_hypercall,
6507 	.intercept           = emulator_intercept,
6508 	.get_cpuid           = emulator_get_cpuid,
6509 	.guest_has_long_mode = emulator_guest_has_long_mode,
6510 	.guest_has_movbe     = emulator_guest_has_movbe,
6511 	.guest_has_fxsr      = emulator_guest_has_fxsr,
6512 	.set_nmi_mask        = emulator_set_nmi_mask,
6513 	.get_hflags          = emulator_get_hflags,
6514 	.set_hflags          = emulator_set_hflags,
6515 	.pre_leave_smm       = emulator_pre_leave_smm,
6516 	.post_leave_smm      = emulator_post_leave_smm,
6517 	.set_xcr             = emulator_set_xcr,
6518 };
6519 
6520 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6521 {
6522 	u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
6523 	/*
6524 	 * an sti; sti; sequence only disable interrupts for the first
6525 	 * instruction. So, if the last instruction, be it emulated or
6526 	 * not, left the system with the INT_STI flag enabled, it
6527 	 * means that the last instruction is an sti. We should not
6528 	 * leave the flag on in this case. The same goes for mov ss
6529 	 */
6530 	if (int_shadow & mask)
6531 		mask = 0;
6532 	if (unlikely(int_shadow || mask)) {
6533 		kvm_x86_ops.set_interrupt_shadow(vcpu, mask);
6534 		if (!mask)
6535 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6536 	}
6537 }
6538 
6539 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6540 {
6541 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6542 	if (ctxt->exception.vector == PF_VECTOR)
6543 		return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
6544 
6545 	if (ctxt->exception.error_code_valid)
6546 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6547 				      ctxt->exception.error_code);
6548 	else
6549 		kvm_queue_exception(vcpu, ctxt->exception.vector);
6550 	return false;
6551 }
6552 
6553 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
6554 {
6555 	struct x86_emulate_ctxt *ctxt;
6556 
6557 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
6558 	if (!ctxt) {
6559 		pr_err("kvm: failed to allocate vcpu's emulator\n");
6560 		return NULL;
6561 	}
6562 
6563 	ctxt->vcpu = vcpu;
6564 	ctxt->ops = &emulate_ops;
6565 	vcpu->arch.emulate_ctxt = ctxt;
6566 
6567 	return ctxt;
6568 }
6569 
6570 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6571 {
6572 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6573 	int cs_db, cs_l;
6574 
6575 	kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6576 
6577 	ctxt->gpa_available = false;
6578 	ctxt->eflags = kvm_get_rflags(vcpu);
6579 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6580 
6581 	ctxt->eip = kvm_rip_read(vcpu);
6582 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
6583 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
6584 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
6585 		     cs_db				? X86EMUL_MODE_PROT32 :
6586 							  X86EMUL_MODE_PROT16;
6587 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6588 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6589 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6590 
6591 	init_decode_cache(ctxt);
6592 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6593 }
6594 
6595 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6596 {
6597 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6598 	int ret;
6599 
6600 	init_emulate_ctxt(vcpu);
6601 
6602 	ctxt->op_bytes = 2;
6603 	ctxt->ad_bytes = 2;
6604 	ctxt->_eip = ctxt->eip + inc_eip;
6605 	ret = emulate_int_real(ctxt, irq);
6606 
6607 	if (ret != X86EMUL_CONTINUE) {
6608 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6609 	} else {
6610 		ctxt->eip = ctxt->_eip;
6611 		kvm_rip_write(vcpu, ctxt->eip);
6612 		kvm_set_rflags(vcpu, ctxt->eflags);
6613 	}
6614 }
6615 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6616 
6617 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6618 {
6619 	++vcpu->stat.insn_emulation_fail;
6620 	trace_kvm_emulate_insn_failed(vcpu);
6621 
6622 	if (emulation_type & EMULTYPE_VMWARE_GP) {
6623 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6624 		return 1;
6625 	}
6626 
6627 	if (emulation_type & EMULTYPE_SKIP) {
6628 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6629 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6630 		vcpu->run->internal.ndata = 0;
6631 		return 0;
6632 	}
6633 
6634 	kvm_queue_exception(vcpu, UD_VECTOR);
6635 
6636 	if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) {
6637 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6638 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6639 		vcpu->run->internal.ndata = 0;
6640 		return 0;
6641 	}
6642 
6643 	return 1;
6644 }
6645 
6646 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6647 				  bool write_fault_to_shadow_pgtable,
6648 				  int emulation_type)
6649 {
6650 	gpa_t gpa = cr2_or_gpa;
6651 	kvm_pfn_t pfn;
6652 
6653 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
6654 		return false;
6655 
6656 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
6657 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
6658 		return false;
6659 
6660 	if (!vcpu->arch.mmu->direct_map) {
6661 		/*
6662 		 * Write permission should be allowed since only
6663 		 * write access need to be emulated.
6664 		 */
6665 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
6666 
6667 		/*
6668 		 * If the mapping is invalid in guest, let cpu retry
6669 		 * it to generate fault.
6670 		 */
6671 		if (gpa == UNMAPPED_GVA)
6672 			return true;
6673 	}
6674 
6675 	/*
6676 	 * Do not retry the unhandleable instruction if it faults on the
6677 	 * readonly host memory, otherwise it will goto a infinite loop:
6678 	 * retry instruction -> write #PF -> emulation fail -> retry
6679 	 * instruction -> ...
6680 	 */
6681 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6682 
6683 	/*
6684 	 * If the instruction failed on the error pfn, it can not be fixed,
6685 	 * report the error to userspace.
6686 	 */
6687 	if (is_error_noslot_pfn(pfn))
6688 		return false;
6689 
6690 	kvm_release_pfn_clean(pfn);
6691 
6692 	/* The instructions are well-emulated on direct mmu. */
6693 	if (vcpu->arch.mmu->direct_map) {
6694 		unsigned int indirect_shadow_pages;
6695 
6696 		spin_lock(&vcpu->kvm->mmu_lock);
6697 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6698 		spin_unlock(&vcpu->kvm->mmu_lock);
6699 
6700 		if (indirect_shadow_pages)
6701 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6702 
6703 		return true;
6704 	}
6705 
6706 	/*
6707 	 * if emulation was due to access to shadowed page table
6708 	 * and it failed try to unshadow page and re-enter the
6709 	 * guest to let CPU execute the instruction.
6710 	 */
6711 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6712 
6713 	/*
6714 	 * If the access faults on its page table, it can not
6715 	 * be fixed by unprotecting shadow page and it should
6716 	 * be reported to userspace.
6717 	 */
6718 	return !write_fault_to_shadow_pgtable;
6719 }
6720 
6721 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6722 			      gpa_t cr2_or_gpa,  int emulation_type)
6723 {
6724 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6725 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
6726 
6727 	last_retry_eip = vcpu->arch.last_retry_eip;
6728 	last_retry_addr = vcpu->arch.last_retry_addr;
6729 
6730 	/*
6731 	 * If the emulation is caused by #PF and it is non-page_table
6732 	 * writing instruction, it means the VM-EXIT is caused by shadow
6733 	 * page protected, we can zap the shadow page and retry this
6734 	 * instruction directly.
6735 	 *
6736 	 * Note: if the guest uses a non-page-table modifying instruction
6737 	 * on the PDE that points to the instruction, then we will unmap
6738 	 * the instruction and go to an infinite loop. So, we cache the
6739 	 * last retried eip and the last fault address, if we meet the eip
6740 	 * and the address again, we can break out of the potential infinite
6741 	 * loop.
6742 	 */
6743 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6744 
6745 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
6746 		return false;
6747 
6748 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
6749 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
6750 		return false;
6751 
6752 	if (x86_page_table_writing_insn(ctxt))
6753 		return false;
6754 
6755 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
6756 		return false;
6757 
6758 	vcpu->arch.last_retry_eip = ctxt->eip;
6759 	vcpu->arch.last_retry_addr = cr2_or_gpa;
6760 
6761 	if (!vcpu->arch.mmu->direct_map)
6762 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
6763 
6764 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6765 
6766 	return true;
6767 }
6768 
6769 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6770 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6771 
6772 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6773 {
6774 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6775 		/* This is a good place to trace that we are exiting SMM.  */
6776 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6777 
6778 		/* Process a latched INIT or SMI, if any.  */
6779 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6780 	}
6781 
6782 	kvm_mmu_reset_context(vcpu);
6783 }
6784 
6785 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6786 				unsigned long *db)
6787 {
6788 	u32 dr6 = 0;
6789 	int i;
6790 	u32 enable, rwlen;
6791 
6792 	enable = dr7;
6793 	rwlen = dr7 >> 16;
6794 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6795 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6796 			dr6 |= (1 << i);
6797 	return dr6;
6798 }
6799 
6800 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
6801 {
6802 	struct kvm_run *kvm_run = vcpu->run;
6803 
6804 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6805 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6806 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
6807 		kvm_run->debug.arch.exception = DB_VECTOR;
6808 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
6809 		return 0;
6810 	}
6811 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6812 	return 1;
6813 }
6814 
6815 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6816 {
6817 	unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
6818 	int r;
6819 
6820 	r = kvm_x86_ops.skip_emulated_instruction(vcpu);
6821 	if (unlikely(!r))
6822 		return 0;
6823 
6824 	/*
6825 	 * rflags is the old, "raw" value of the flags.  The new value has
6826 	 * not been saved yet.
6827 	 *
6828 	 * This is correct even for TF set by the guest, because "the
6829 	 * processor will not generate this exception after the instruction
6830 	 * that sets the TF flag".
6831 	 */
6832 	if (unlikely(rflags & X86_EFLAGS_TF))
6833 		r = kvm_vcpu_do_singlestep(vcpu);
6834 	return r;
6835 }
6836 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6837 
6838 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6839 {
6840 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6841 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6842 		struct kvm_run *kvm_run = vcpu->run;
6843 		unsigned long eip = kvm_get_linear_rip(vcpu);
6844 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6845 					   vcpu->arch.guest_debug_dr7,
6846 					   vcpu->arch.eff_db);
6847 
6848 		if (dr6 != 0) {
6849 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6850 			kvm_run->debug.arch.pc = eip;
6851 			kvm_run->debug.arch.exception = DB_VECTOR;
6852 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
6853 			*r = 0;
6854 			return true;
6855 		}
6856 	}
6857 
6858 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6859 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6860 		unsigned long eip = kvm_get_linear_rip(vcpu);
6861 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6862 					   vcpu->arch.dr7,
6863 					   vcpu->arch.db);
6864 
6865 		if (dr6 != 0) {
6866 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
6867 			*r = 1;
6868 			return true;
6869 		}
6870 	}
6871 
6872 	return false;
6873 }
6874 
6875 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6876 {
6877 	switch (ctxt->opcode_len) {
6878 	case 1:
6879 		switch (ctxt->b) {
6880 		case 0xe4:	/* IN */
6881 		case 0xe5:
6882 		case 0xec:
6883 		case 0xed:
6884 		case 0xe6:	/* OUT */
6885 		case 0xe7:
6886 		case 0xee:
6887 		case 0xef:
6888 		case 0x6c:	/* INS */
6889 		case 0x6d:
6890 		case 0x6e:	/* OUTS */
6891 		case 0x6f:
6892 			return true;
6893 		}
6894 		break;
6895 	case 2:
6896 		switch (ctxt->b) {
6897 		case 0x33:	/* RDPMC */
6898 			return true;
6899 		}
6900 		break;
6901 	}
6902 
6903 	return false;
6904 }
6905 
6906 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6907 			    int emulation_type, void *insn, int insn_len)
6908 {
6909 	int r;
6910 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6911 	bool writeback = true;
6912 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6913 
6914 	vcpu->arch.l1tf_flush_l1d = true;
6915 
6916 	/*
6917 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
6918 	 * never reused.
6919 	 */
6920 	vcpu->arch.write_fault_to_shadow_pgtable = false;
6921 	kvm_clear_exception_queue(vcpu);
6922 
6923 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6924 		init_emulate_ctxt(vcpu);
6925 
6926 		/*
6927 		 * We will reenter on the same instruction since
6928 		 * we do not set complete_userspace_io.  This does not
6929 		 * handle watchpoints yet, those would be handled in
6930 		 * the emulate_ops.
6931 		 */
6932 		if (!(emulation_type & EMULTYPE_SKIP) &&
6933 		    kvm_vcpu_check_breakpoint(vcpu, &r))
6934 			return r;
6935 
6936 		ctxt->interruptibility = 0;
6937 		ctxt->have_exception = false;
6938 		ctxt->exception.vector = -1;
6939 		ctxt->perm_ok = false;
6940 
6941 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6942 
6943 		r = x86_decode_insn(ctxt, insn, insn_len);
6944 
6945 		trace_kvm_emulate_insn_start(vcpu);
6946 		++vcpu->stat.insn_emulation;
6947 		if (r != EMULATION_OK)  {
6948 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
6949 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
6950 				kvm_queue_exception(vcpu, UD_VECTOR);
6951 				return 1;
6952 			}
6953 			if (reexecute_instruction(vcpu, cr2_or_gpa,
6954 						  write_fault_to_spt,
6955 						  emulation_type))
6956 				return 1;
6957 			if (ctxt->have_exception) {
6958 				/*
6959 				 * #UD should result in just EMULATION_FAILED, and trap-like
6960 				 * exception should not be encountered during decode.
6961 				 */
6962 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
6963 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
6964 				inject_emulated_exception(vcpu);
6965 				return 1;
6966 			}
6967 			return handle_emulation_failure(vcpu, emulation_type);
6968 		}
6969 	}
6970 
6971 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
6972 	    !is_vmware_backdoor_opcode(ctxt)) {
6973 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6974 		return 1;
6975 	}
6976 
6977 	/*
6978 	 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
6979 	 * for kvm_skip_emulated_instruction().  The caller is responsible for
6980 	 * updating interruptibility state and injecting single-step #DBs.
6981 	 */
6982 	if (emulation_type & EMULTYPE_SKIP) {
6983 		kvm_rip_write(vcpu, ctxt->_eip);
6984 		if (ctxt->eflags & X86_EFLAGS_RF)
6985 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6986 		return 1;
6987 	}
6988 
6989 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
6990 		return 1;
6991 
6992 	/* this is needed for vmware backdoor interface to work since it
6993 	   changes registers values  during IO operation */
6994 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6995 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6996 		emulator_invalidate_register_cache(ctxt);
6997 	}
6998 
6999 restart:
7000 	if (emulation_type & EMULTYPE_PF) {
7001 		/* Save the faulting GPA (cr2) in the address field */
7002 		ctxt->exception.address = cr2_or_gpa;
7003 
7004 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
7005 		if (vcpu->arch.mmu->direct_map) {
7006 			ctxt->gpa_available = true;
7007 			ctxt->gpa_val = cr2_or_gpa;
7008 		}
7009 	} else {
7010 		/* Sanitize the address out of an abundance of paranoia. */
7011 		ctxt->exception.address = 0;
7012 	}
7013 
7014 	r = x86_emulate_insn(ctxt);
7015 
7016 	if (r == EMULATION_INTERCEPTED)
7017 		return 1;
7018 
7019 	if (r == EMULATION_FAILED) {
7020 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7021 					emulation_type))
7022 			return 1;
7023 
7024 		return handle_emulation_failure(vcpu, emulation_type);
7025 	}
7026 
7027 	if (ctxt->have_exception) {
7028 		r = 1;
7029 		if (inject_emulated_exception(vcpu))
7030 			return r;
7031 	} else if (vcpu->arch.pio.count) {
7032 		if (!vcpu->arch.pio.in) {
7033 			/* FIXME: return into emulator if single-stepping.  */
7034 			vcpu->arch.pio.count = 0;
7035 		} else {
7036 			writeback = false;
7037 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
7038 		}
7039 		r = 0;
7040 	} else if (vcpu->mmio_needed) {
7041 		++vcpu->stat.mmio_exits;
7042 
7043 		if (!vcpu->mmio_is_write)
7044 			writeback = false;
7045 		r = 0;
7046 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7047 	} else if (r == EMULATION_RESTART)
7048 		goto restart;
7049 	else
7050 		r = 1;
7051 
7052 	if (writeback) {
7053 		unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
7054 		toggle_interruptibility(vcpu, ctxt->interruptibility);
7055 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7056 		if (!ctxt->have_exception ||
7057 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7058 			kvm_rip_write(vcpu, ctxt->eip);
7059 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7060 				r = kvm_vcpu_do_singlestep(vcpu);
7061 			if (kvm_x86_ops.update_emulated_instruction)
7062 				kvm_x86_ops.update_emulated_instruction(vcpu);
7063 			__kvm_set_rflags(vcpu, ctxt->eflags);
7064 		}
7065 
7066 		/*
7067 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7068 		 * do nothing, and it will be requested again as soon as
7069 		 * the shadow expires.  But we still need to check here,
7070 		 * because POPF has no interrupt shadow.
7071 		 */
7072 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7073 			kvm_make_request(KVM_REQ_EVENT, vcpu);
7074 	} else
7075 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7076 
7077 	return r;
7078 }
7079 
7080 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7081 {
7082 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7083 }
7084 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7085 
7086 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7087 					void *insn, int insn_len)
7088 {
7089 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7090 }
7091 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7092 
7093 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7094 {
7095 	vcpu->arch.pio.count = 0;
7096 	return 1;
7097 }
7098 
7099 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7100 {
7101 	vcpu->arch.pio.count = 0;
7102 
7103 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7104 		return 1;
7105 
7106 	return kvm_skip_emulated_instruction(vcpu);
7107 }
7108 
7109 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
7110 			    unsigned short port)
7111 {
7112 	unsigned long val = kvm_rax_read(vcpu);
7113 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
7114 
7115 	if (ret)
7116 		return ret;
7117 
7118 	/*
7119 	 * Workaround userspace that relies on old KVM behavior of %rip being
7120 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
7121 	 */
7122 	if (port == 0x7e &&
7123 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
7124 		vcpu->arch.complete_userspace_io =
7125 			complete_fast_pio_out_port_0x7e;
7126 		kvm_skip_emulated_instruction(vcpu);
7127 	} else {
7128 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7129 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
7130 	}
7131 	return 0;
7132 }
7133 
7134 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
7135 {
7136 	unsigned long val;
7137 
7138 	/* We should only ever be called with arch.pio.count equal to 1 */
7139 	BUG_ON(vcpu->arch.pio.count != 1);
7140 
7141 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7142 		vcpu->arch.pio.count = 0;
7143 		return 1;
7144 	}
7145 
7146 	/* For size less than 4 we merge, else we zero extend */
7147 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
7148 
7149 	/*
7150 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
7151 	 * the copy and tracing
7152 	 */
7153 	emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
7154 	kvm_rax_write(vcpu, val);
7155 
7156 	return kvm_skip_emulated_instruction(vcpu);
7157 }
7158 
7159 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7160 			   unsigned short port)
7161 {
7162 	unsigned long val;
7163 	int ret;
7164 
7165 	/* For size less than 4 we merge, else we zero extend */
7166 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7167 
7168 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
7169 	if (ret) {
7170 		kvm_rax_write(vcpu, val);
7171 		return ret;
7172 	}
7173 
7174 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7175 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7176 
7177 	return 0;
7178 }
7179 
7180 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7181 {
7182 	int ret;
7183 
7184 	if (in)
7185 		ret = kvm_fast_pio_in(vcpu, size, port);
7186 	else
7187 		ret = kvm_fast_pio_out(vcpu, size, port);
7188 	return ret && kvm_skip_emulated_instruction(vcpu);
7189 }
7190 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7191 
7192 static int kvmclock_cpu_down_prep(unsigned int cpu)
7193 {
7194 	__this_cpu_write(cpu_tsc_khz, 0);
7195 	return 0;
7196 }
7197 
7198 static void tsc_khz_changed(void *data)
7199 {
7200 	struct cpufreq_freqs *freq = data;
7201 	unsigned long khz = 0;
7202 
7203 	if (data)
7204 		khz = freq->new;
7205 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7206 		khz = cpufreq_quick_get(raw_smp_processor_id());
7207 	if (!khz)
7208 		khz = tsc_khz;
7209 	__this_cpu_write(cpu_tsc_khz, khz);
7210 }
7211 
7212 #ifdef CONFIG_X86_64
7213 static void kvm_hyperv_tsc_notifier(void)
7214 {
7215 	struct kvm *kvm;
7216 	struct kvm_vcpu *vcpu;
7217 	int cpu;
7218 
7219 	mutex_lock(&kvm_lock);
7220 	list_for_each_entry(kvm, &vm_list, vm_list)
7221 		kvm_make_mclock_inprogress_request(kvm);
7222 
7223 	hyperv_stop_tsc_emulation();
7224 
7225 	/* TSC frequency always matches when on Hyper-V */
7226 	for_each_present_cpu(cpu)
7227 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7228 	kvm_max_guest_tsc_khz = tsc_khz;
7229 
7230 	list_for_each_entry(kvm, &vm_list, vm_list) {
7231 		struct kvm_arch *ka = &kvm->arch;
7232 
7233 		spin_lock(&ka->pvclock_gtod_sync_lock);
7234 
7235 		pvclock_update_vm_gtod_copy(kvm);
7236 
7237 		kvm_for_each_vcpu(cpu, vcpu, kvm)
7238 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7239 
7240 		kvm_for_each_vcpu(cpu, vcpu, kvm)
7241 			kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7242 
7243 		spin_unlock(&ka->pvclock_gtod_sync_lock);
7244 	}
7245 	mutex_unlock(&kvm_lock);
7246 }
7247 #endif
7248 
7249 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7250 {
7251 	struct kvm *kvm;
7252 	struct kvm_vcpu *vcpu;
7253 	int i, send_ipi = 0;
7254 
7255 	/*
7256 	 * We allow guests to temporarily run on slowing clocks,
7257 	 * provided we notify them after, or to run on accelerating
7258 	 * clocks, provided we notify them before.  Thus time never
7259 	 * goes backwards.
7260 	 *
7261 	 * However, we have a problem.  We can't atomically update
7262 	 * the frequency of a given CPU from this function; it is
7263 	 * merely a notifier, which can be called from any CPU.
7264 	 * Changing the TSC frequency at arbitrary points in time
7265 	 * requires a recomputation of local variables related to
7266 	 * the TSC for each VCPU.  We must flag these local variables
7267 	 * to be updated and be sure the update takes place with the
7268 	 * new frequency before any guests proceed.
7269 	 *
7270 	 * Unfortunately, the combination of hotplug CPU and frequency
7271 	 * change creates an intractable locking scenario; the order
7272 	 * of when these callouts happen is undefined with respect to
7273 	 * CPU hotplug, and they can race with each other.  As such,
7274 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7275 	 * undefined; you can actually have a CPU frequency change take
7276 	 * place in between the computation of X and the setting of the
7277 	 * variable.  To protect against this problem, all updates of
7278 	 * the per_cpu tsc_khz variable are done in an interrupt
7279 	 * protected IPI, and all callers wishing to update the value
7280 	 * must wait for a synchronous IPI to complete (which is trivial
7281 	 * if the caller is on the CPU already).  This establishes the
7282 	 * necessary total order on variable updates.
7283 	 *
7284 	 * Note that because a guest time update may take place
7285 	 * anytime after the setting of the VCPU's request bit, the
7286 	 * correct TSC value must be set before the request.  However,
7287 	 * to ensure the update actually makes it to any guest which
7288 	 * starts running in hardware virtualization between the set
7289 	 * and the acquisition of the spinlock, we must also ping the
7290 	 * CPU after setting the request bit.
7291 	 *
7292 	 */
7293 
7294 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7295 
7296 	mutex_lock(&kvm_lock);
7297 	list_for_each_entry(kvm, &vm_list, vm_list) {
7298 		kvm_for_each_vcpu(i, vcpu, kvm) {
7299 			if (vcpu->cpu != cpu)
7300 				continue;
7301 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7302 			if (vcpu->cpu != raw_smp_processor_id())
7303 				send_ipi = 1;
7304 		}
7305 	}
7306 	mutex_unlock(&kvm_lock);
7307 
7308 	if (freq->old < freq->new && send_ipi) {
7309 		/*
7310 		 * We upscale the frequency.  Must make the guest
7311 		 * doesn't see old kvmclock values while running with
7312 		 * the new frequency, otherwise we risk the guest sees
7313 		 * time go backwards.
7314 		 *
7315 		 * In case we update the frequency for another cpu
7316 		 * (which might be in guest context) send an interrupt
7317 		 * to kick the cpu out of guest context.  Next time
7318 		 * guest context is entered kvmclock will be updated,
7319 		 * so the guest will not see stale values.
7320 		 */
7321 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7322 	}
7323 }
7324 
7325 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7326 				     void *data)
7327 {
7328 	struct cpufreq_freqs *freq = data;
7329 	int cpu;
7330 
7331 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7332 		return 0;
7333 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7334 		return 0;
7335 
7336 	for_each_cpu(cpu, freq->policy->cpus)
7337 		__kvmclock_cpufreq_notifier(freq, cpu);
7338 
7339 	return 0;
7340 }
7341 
7342 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7343 	.notifier_call  = kvmclock_cpufreq_notifier
7344 };
7345 
7346 static int kvmclock_cpu_online(unsigned int cpu)
7347 {
7348 	tsc_khz_changed(NULL);
7349 	return 0;
7350 }
7351 
7352 static void kvm_timer_init(void)
7353 {
7354 	max_tsc_khz = tsc_khz;
7355 
7356 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7357 #ifdef CONFIG_CPU_FREQ
7358 		struct cpufreq_policy *policy;
7359 		int cpu;
7360 
7361 		cpu = get_cpu();
7362 		policy = cpufreq_cpu_get(cpu);
7363 		if (policy) {
7364 			if (policy->cpuinfo.max_freq)
7365 				max_tsc_khz = policy->cpuinfo.max_freq;
7366 			cpufreq_cpu_put(policy);
7367 		}
7368 		put_cpu();
7369 #endif
7370 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7371 					  CPUFREQ_TRANSITION_NOTIFIER);
7372 	}
7373 
7374 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7375 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
7376 }
7377 
7378 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7379 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7380 
7381 int kvm_is_in_guest(void)
7382 {
7383 	return __this_cpu_read(current_vcpu) != NULL;
7384 }
7385 
7386 static int kvm_is_user_mode(void)
7387 {
7388 	int user_mode = 3;
7389 
7390 	if (__this_cpu_read(current_vcpu))
7391 		user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu));
7392 
7393 	return user_mode != 0;
7394 }
7395 
7396 static unsigned long kvm_get_guest_ip(void)
7397 {
7398 	unsigned long ip = 0;
7399 
7400 	if (__this_cpu_read(current_vcpu))
7401 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7402 
7403 	return ip;
7404 }
7405 
7406 static void kvm_handle_intel_pt_intr(void)
7407 {
7408 	struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7409 
7410 	kvm_make_request(KVM_REQ_PMI, vcpu);
7411 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7412 			(unsigned long *)&vcpu->arch.pmu.global_status);
7413 }
7414 
7415 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7416 	.is_in_guest		= kvm_is_in_guest,
7417 	.is_user_mode		= kvm_is_user_mode,
7418 	.get_guest_ip		= kvm_get_guest_ip,
7419 	.handle_intel_pt_intr	= kvm_handle_intel_pt_intr,
7420 };
7421 
7422 #ifdef CONFIG_X86_64
7423 static void pvclock_gtod_update_fn(struct work_struct *work)
7424 {
7425 	struct kvm *kvm;
7426 
7427 	struct kvm_vcpu *vcpu;
7428 	int i;
7429 
7430 	mutex_lock(&kvm_lock);
7431 	list_for_each_entry(kvm, &vm_list, vm_list)
7432 		kvm_for_each_vcpu(i, vcpu, kvm)
7433 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7434 	atomic_set(&kvm_guest_has_master_clock, 0);
7435 	mutex_unlock(&kvm_lock);
7436 }
7437 
7438 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7439 
7440 /*
7441  * Notification about pvclock gtod data update.
7442  */
7443 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7444 			       void *priv)
7445 {
7446 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7447 	struct timekeeper *tk = priv;
7448 
7449 	update_pvclock_gtod(tk);
7450 
7451 	/* disable master clock if host does not trust, or does not
7452 	 * use, TSC based clocksource.
7453 	 */
7454 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7455 	    atomic_read(&kvm_guest_has_master_clock) != 0)
7456 		queue_work(system_long_wq, &pvclock_gtod_work);
7457 
7458 	return 0;
7459 }
7460 
7461 static struct notifier_block pvclock_gtod_notifier = {
7462 	.notifier_call = pvclock_gtod_notify,
7463 };
7464 #endif
7465 
7466 int kvm_arch_init(void *opaque)
7467 {
7468 	struct kvm_x86_init_ops *ops = opaque;
7469 	int r;
7470 
7471 	if (kvm_x86_ops.hardware_enable) {
7472 		printk(KERN_ERR "kvm: already loaded the other module\n");
7473 		r = -EEXIST;
7474 		goto out;
7475 	}
7476 
7477 	if (!ops->cpu_has_kvm_support()) {
7478 		pr_err_ratelimited("kvm: no hardware support\n");
7479 		r = -EOPNOTSUPP;
7480 		goto out;
7481 	}
7482 	if (ops->disabled_by_bios()) {
7483 		pr_err_ratelimited("kvm: disabled by bios\n");
7484 		r = -EOPNOTSUPP;
7485 		goto out;
7486 	}
7487 
7488 	/*
7489 	 * KVM explicitly assumes that the guest has an FPU and
7490 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7491 	 * vCPU's FPU state as a fxregs_state struct.
7492 	 */
7493 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7494 		printk(KERN_ERR "kvm: inadequate fpu\n");
7495 		r = -EOPNOTSUPP;
7496 		goto out;
7497 	}
7498 
7499 	r = -ENOMEM;
7500 	x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7501 					  __alignof__(struct fpu), SLAB_ACCOUNT,
7502 					  NULL);
7503 	if (!x86_fpu_cache) {
7504 		printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7505 		goto out;
7506 	}
7507 
7508 	x86_emulator_cache = kvm_alloc_emulator_cache();
7509 	if (!x86_emulator_cache) {
7510 		pr_err("kvm: failed to allocate cache for x86 emulator\n");
7511 		goto out_free_x86_fpu_cache;
7512 	}
7513 
7514 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
7515 	if (!shared_msrs) {
7516 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
7517 		goto out_free_x86_emulator_cache;
7518 	}
7519 
7520 	r = kvm_mmu_module_init();
7521 	if (r)
7522 		goto out_free_percpu;
7523 
7524 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7525 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
7526 			PT_PRESENT_MASK, 0, sme_me_mask);
7527 	kvm_timer_init();
7528 
7529 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
7530 
7531 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
7532 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7533 		supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
7534 	}
7535 
7536 	kvm_lapic_init();
7537 	if (pi_inject_timer == -1)
7538 		pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7539 #ifdef CONFIG_X86_64
7540 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7541 
7542 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7543 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7544 #endif
7545 
7546 	return 0;
7547 
7548 out_free_percpu:
7549 	free_percpu(shared_msrs);
7550 out_free_x86_emulator_cache:
7551 	kmem_cache_destroy(x86_emulator_cache);
7552 out_free_x86_fpu_cache:
7553 	kmem_cache_destroy(x86_fpu_cache);
7554 out:
7555 	return r;
7556 }
7557 
7558 void kvm_arch_exit(void)
7559 {
7560 #ifdef CONFIG_X86_64
7561 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7562 		clear_hv_tscchange_cb();
7563 #endif
7564 	kvm_lapic_exit();
7565 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7566 
7567 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7568 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7569 					    CPUFREQ_TRANSITION_NOTIFIER);
7570 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7571 #ifdef CONFIG_X86_64
7572 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7573 #endif
7574 	kvm_x86_ops.hardware_enable = NULL;
7575 	kvm_mmu_module_exit();
7576 	free_percpu(shared_msrs);
7577 	kmem_cache_destroy(x86_fpu_cache);
7578 }
7579 
7580 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7581 {
7582 	++vcpu->stat.halt_exits;
7583 	if (lapic_in_kernel(vcpu)) {
7584 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7585 		return 1;
7586 	} else {
7587 		vcpu->run->exit_reason = KVM_EXIT_HLT;
7588 		return 0;
7589 	}
7590 }
7591 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7592 
7593 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7594 {
7595 	int ret = kvm_skip_emulated_instruction(vcpu);
7596 	/*
7597 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7598 	 * KVM_EXIT_DEBUG here.
7599 	 */
7600 	return kvm_vcpu_halt(vcpu) && ret;
7601 }
7602 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7603 
7604 #ifdef CONFIG_X86_64
7605 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7606 			        unsigned long clock_type)
7607 {
7608 	struct kvm_clock_pairing clock_pairing;
7609 	struct timespec64 ts;
7610 	u64 cycle;
7611 	int ret;
7612 
7613 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7614 		return -KVM_EOPNOTSUPP;
7615 
7616 	if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7617 		return -KVM_EOPNOTSUPP;
7618 
7619 	clock_pairing.sec = ts.tv_sec;
7620 	clock_pairing.nsec = ts.tv_nsec;
7621 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7622 	clock_pairing.flags = 0;
7623 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7624 
7625 	ret = 0;
7626 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7627 			    sizeof(struct kvm_clock_pairing)))
7628 		ret = -KVM_EFAULT;
7629 
7630 	return ret;
7631 }
7632 #endif
7633 
7634 /*
7635  * kvm_pv_kick_cpu_op:  Kick a vcpu.
7636  *
7637  * @apicid - apicid of vcpu to be kicked.
7638  */
7639 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7640 {
7641 	struct kvm_lapic_irq lapic_irq;
7642 
7643 	lapic_irq.shorthand = APIC_DEST_NOSHORT;
7644 	lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
7645 	lapic_irq.level = 0;
7646 	lapic_irq.dest_id = apicid;
7647 	lapic_irq.msi_redir_hint = false;
7648 
7649 	lapic_irq.delivery_mode = APIC_DM_REMRD;
7650 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7651 }
7652 
7653 bool kvm_apicv_activated(struct kvm *kvm)
7654 {
7655 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
7656 }
7657 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
7658 
7659 void kvm_apicv_init(struct kvm *kvm, bool enable)
7660 {
7661 	if (enable)
7662 		clear_bit(APICV_INHIBIT_REASON_DISABLE,
7663 			  &kvm->arch.apicv_inhibit_reasons);
7664 	else
7665 		set_bit(APICV_INHIBIT_REASON_DISABLE,
7666 			&kvm->arch.apicv_inhibit_reasons);
7667 }
7668 EXPORT_SYMBOL_GPL(kvm_apicv_init);
7669 
7670 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
7671 {
7672 	struct kvm_vcpu *target = NULL;
7673 	struct kvm_apic_map *map;
7674 
7675 	rcu_read_lock();
7676 	map = rcu_dereference(kvm->arch.apic_map);
7677 
7678 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
7679 		target = map->phys_map[dest_id]->vcpu;
7680 
7681 	rcu_read_unlock();
7682 
7683 	if (target && READ_ONCE(target->ready))
7684 		kvm_vcpu_yield_to(target);
7685 }
7686 
7687 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7688 {
7689 	unsigned long nr, a0, a1, a2, a3, ret;
7690 	int op_64_bit;
7691 
7692 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
7693 		return kvm_hv_hypercall(vcpu);
7694 
7695 	nr = kvm_rax_read(vcpu);
7696 	a0 = kvm_rbx_read(vcpu);
7697 	a1 = kvm_rcx_read(vcpu);
7698 	a2 = kvm_rdx_read(vcpu);
7699 	a3 = kvm_rsi_read(vcpu);
7700 
7701 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
7702 
7703 	op_64_bit = is_64_bit_mode(vcpu);
7704 	if (!op_64_bit) {
7705 		nr &= 0xFFFFFFFF;
7706 		a0 &= 0xFFFFFFFF;
7707 		a1 &= 0xFFFFFFFF;
7708 		a2 &= 0xFFFFFFFF;
7709 		a3 &= 0xFFFFFFFF;
7710 	}
7711 
7712 	if (kvm_x86_ops.get_cpl(vcpu) != 0) {
7713 		ret = -KVM_EPERM;
7714 		goto out;
7715 	}
7716 
7717 	switch (nr) {
7718 	case KVM_HC_VAPIC_POLL_IRQ:
7719 		ret = 0;
7720 		break;
7721 	case KVM_HC_KICK_CPU:
7722 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7723 		kvm_sched_yield(vcpu->kvm, a1);
7724 		ret = 0;
7725 		break;
7726 #ifdef CONFIG_X86_64
7727 	case KVM_HC_CLOCK_PAIRING:
7728 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7729 		break;
7730 #endif
7731 	case KVM_HC_SEND_IPI:
7732 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7733 		break;
7734 	case KVM_HC_SCHED_YIELD:
7735 		kvm_sched_yield(vcpu->kvm, a0);
7736 		ret = 0;
7737 		break;
7738 	default:
7739 		ret = -KVM_ENOSYS;
7740 		break;
7741 	}
7742 out:
7743 	if (!op_64_bit)
7744 		ret = (u32)ret;
7745 	kvm_rax_write(vcpu, ret);
7746 
7747 	++vcpu->stat.hypercalls;
7748 	return kvm_skip_emulated_instruction(vcpu);
7749 }
7750 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7751 
7752 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7753 {
7754 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7755 	char instruction[3];
7756 	unsigned long rip = kvm_rip_read(vcpu);
7757 
7758 	kvm_x86_ops.patch_hypercall(vcpu, instruction);
7759 
7760 	return emulator_write_emulated(ctxt, rip, instruction, 3,
7761 		&ctxt->exception);
7762 }
7763 
7764 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7765 {
7766 	return vcpu->run->request_interrupt_window &&
7767 		likely(!pic_in_kernel(vcpu->kvm));
7768 }
7769 
7770 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7771 {
7772 	struct kvm_run *kvm_run = vcpu->run;
7773 
7774 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7775 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7776 	kvm_run->cr8 = kvm_get_cr8(vcpu);
7777 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
7778 	kvm_run->ready_for_interrupt_injection =
7779 		pic_in_kernel(vcpu->kvm) ||
7780 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
7781 }
7782 
7783 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7784 {
7785 	int max_irr, tpr;
7786 
7787 	if (!kvm_x86_ops.update_cr8_intercept)
7788 		return;
7789 
7790 	if (!lapic_in_kernel(vcpu))
7791 		return;
7792 
7793 	if (vcpu->arch.apicv_active)
7794 		return;
7795 
7796 	if (!vcpu->arch.apic->vapic_addr)
7797 		max_irr = kvm_lapic_find_highest_irr(vcpu);
7798 	else
7799 		max_irr = -1;
7800 
7801 	if (max_irr != -1)
7802 		max_irr >>= 4;
7803 
7804 	tpr = kvm_lapic_get_cr8(vcpu);
7805 
7806 	kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr);
7807 }
7808 
7809 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
7810 {
7811 	int r;
7812 	bool can_inject = true;
7813 
7814 	/* try to reinject previous events if any */
7815 
7816 	if (vcpu->arch.exception.injected) {
7817 		kvm_x86_ops.queue_exception(vcpu);
7818 		can_inject = false;
7819 	}
7820 	/*
7821 	 * Do not inject an NMI or interrupt if there is a pending
7822 	 * exception.  Exceptions and interrupts are recognized at
7823 	 * instruction boundaries, i.e. the start of an instruction.
7824 	 * Trap-like exceptions, e.g. #DB, have higher priority than
7825 	 * NMIs and interrupts, i.e. traps are recognized before an
7826 	 * NMI/interrupt that's pending on the same instruction.
7827 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7828 	 * priority, but are only generated (pended) during instruction
7829 	 * execution, i.e. a pending fault-like exception means the
7830 	 * fault occurred on the *previous* instruction and must be
7831 	 * serviced prior to recognizing any new events in order to
7832 	 * fully complete the previous instruction.
7833 	 */
7834 	else if (!vcpu->arch.exception.pending) {
7835 		if (vcpu->arch.nmi_injected) {
7836 			kvm_x86_ops.set_nmi(vcpu);
7837 			can_inject = false;
7838 		} else if (vcpu->arch.interrupt.injected) {
7839 			kvm_x86_ops.set_irq(vcpu);
7840 			can_inject = false;
7841 		}
7842 	}
7843 
7844 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
7845 		     vcpu->arch.exception.pending);
7846 
7847 	/*
7848 	 * Call check_nested_events() even if we reinjected a previous event
7849 	 * in order for caller to determine if it should require immediate-exit
7850 	 * from L2 to L1 due to pending L1 events which require exit
7851 	 * from L2 to L1.
7852 	 */
7853 	if (is_guest_mode(vcpu)) {
7854 		r = kvm_x86_ops.nested_ops->check_events(vcpu);
7855 		if (r < 0)
7856 			goto busy;
7857 	}
7858 
7859 	/* try to inject new event if pending */
7860 	if (vcpu->arch.exception.pending) {
7861 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
7862 					vcpu->arch.exception.has_error_code,
7863 					vcpu->arch.exception.error_code);
7864 
7865 		vcpu->arch.exception.pending = false;
7866 		vcpu->arch.exception.injected = true;
7867 
7868 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7869 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7870 					     X86_EFLAGS_RF);
7871 
7872 		if (vcpu->arch.exception.nr == DB_VECTOR) {
7873 			kvm_deliver_exception_payload(vcpu);
7874 			if (vcpu->arch.dr7 & DR7_GD) {
7875 				vcpu->arch.dr7 &= ~DR7_GD;
7876 				kvm_update_dr7(vcpu);
7877 			}
7878 		}
7879 
7880 		kvm_x86_ops.queue_exception(vcpu);
7881 		can_inject = false;
7882 	}
7883 
7884 	/*
7885 	 * Finally, inject interrupt events.  If an event cannot be injected
7886 	 * due to architectural conditions (e.g. IF=0) a window-open exit
7887 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
7888 	 * and can architecturally be injected, but we cannot do it right now:
7889 	 * an interrupt could have arrived just now and we have to inject it
7890 	 * as a vmexit, or there could already an event in the queue, which is
7891 	 * indicated by can_inject.  In that case we request an immediate exit
7892 	 * in order to make progress and get back here for another iteration.
7893 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
7894 	 */
7895 	if (vcpu->arch.smi_pending) {
7896 		r = can_inject ? kvm_x86_ops.smi_allowed(vcpu, true) : -EBUSY;
7897 		if (r < 0)
7898 			goto busy;
7899 		if (r) {
7900 			vcpu->arch.smi_pending = false;
7901 			++vcpu->arch.smi_count;
7902 			enter_smm(vcpu);
7903 			can_inject = false;
7904 		} else
7905 			kvm_x86_ops.enable_smi_window(vcpu);
7906 	}
7907 
7908 	if (vcpu->arch.nmi_pending) {
7909 		r = can_inject ? kvm_x86_ops.nmi_allowed(vcpu, true) : -EBUSY;
7910 		if (r < 0)
7911 			goto busy;
7912 		if (r) {
7913 			--vcpu->arch.nmi_pending;
7914 			vcpu->arch.nmi_injected = true;
7915 			kvm_x86_ops.set_nmi(vcpu);
7916 			can_inject = false;
7917 			WARN_ON(kvm_x86_ops.nmi_allowed(vcpu, true) < 0);
7918 		}
7919 		if (vcpu->arch.nmi_pending)
7920 			kvm_x86_ops.enable_nmi_window(vcpu);
7921 	}
7922 
7923 	if (kvm_cpu_has_injectable_intr(vcpu)) {
7924 		r = can_inject ? kvm_x86_ops.interrupt_allowed(vcpu, true) : -EBUSY;
7925 		if (r < 0)
7926 			goto busy;
7927 		if (r) {
7928 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
7929 			kvm_x86_ops.set_irq(vcpu);
7930 			WARN_ON(kvm_x86_ops.interrupt_allowed(vcpu, true) < 0);
7931 		}
7932 		if (kvm_cpu_has_injectable_intr(vcpu))
7933 			kvm_x86_ops.enable_irq_window(vcpu);
7934 	}
7935 
7936 	if (is_guest_mode(vcpu) &&
7937 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
7938 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
7939 		*req_immediate_exit = true;
7940 
7941 	WARN_ON(vcpu->arch.exception.pending);
7942 	return;
7943 
7944 busy:
7945 	*req_immediate_exit = true;
7946 	return;
7947 }
7948 
7949 static void process_nmi(struct kvm_vcpu *vcpu)
7950 {
7951 	unsigned limit = 2;
7952 
7953 	/*
7954 	 * x86 is limited to one NMI running, and one NMI pending after it.
7955 	 * If an NMI is already in progress, limit further NMIs to just one.
7956 	 * Otherwise, allow two (and we'll inject the first one immediately).
7957 	 */
7958 	if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7959 		limit = 1;
7960 
7961 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7962 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7963 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7964 }
7965 
7966 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7967 {
7968 	u32 flags = 0;
7969 	flags |= seg->g       << 23;
7970 	flags |= seg->db      << 22;
7971 	flags |= seg->l       << 21;
7972 	flags |= seg->avl     << 20;
7973 	flags |= seg->present << 15;
7974 	flags |= seg->dpl     << 13;
7975 	flags |= seg->s       << 12;
7976 	flags |= seg->type    << 8;
7977 	return flags;
7978 }
7979 
7980 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7981 {
7982 	struct kvm_segment seg;
7983 	int offset;
7984 
7985 	kvm_get_segment(vcpu, &seg, n);
7986 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7987 
7988 	if (n < 3)
7989 		offset = 0x7f84 + n * 12;
7990 	else
7991 		offset = 0x7f2c + (n - 3) * 12;
7992 
7993 	put_smstate(u32, buf, offset + 8, seg.base);
7994 	put_smstate(u32, buf, offset + 4, seg.limit);
7995 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7996 }
7997 
7998 #ifdef CONFIG_X86_64
7999 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
8000 {
8001 	struct kvm_segment seg;
8002 	int offset;
8003 	u16 flags;
8004 
8005 	kvm_get_segment(vcpu, &seg, n);
8006 	offset = 0x7e00 + n * 16;
8007 
8008 	flags = enter_smm_get_segment_flags(&seg) >> 8;
8009 	put_smstate(u16, buf, offset, seg.selector);
8010 	put_smstate(u16, buf, offset + 2, flags);
8011 	put_smstate(u32, buf, offset + 4, seg.limit);
8012 	put_smstate(u64, buf, offset + 8, seg.base);
8013 }
8014 #endif
8015 
8016 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
8017 {
8018 	struct desc_ptr dt;
8019 	struct kvm_segment seg;
8020 	unsigned long val;
8021 	int i;
8022 
8023 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
8024 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
8025 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
8026 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
8027 
8028 	for (i = 0; i < 8; i++)
8029 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
8030 
8031 	kvm_get_dr(vcpu, 6, &val);
8032 	put_smstate(u32, buf, 0x7fcc, (u32)val);
8033 	kvm_get_dr(vcpu, 7, &val);
8034 	put_smstate(u32, buf, 0x7fc8, (u32)val);
8035 
8036 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8037 	put_smstate(u32, buf, 0x7fc4, seg.selector);
8038 	put_smstate(u32, buf, 0x7f64, seg.base);
8039 	put_smstate(u32, buf, 0x7f60, seg.limit);
8040 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
8041 
8042 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8043 	put_smstate(u32, buf, 0x7fc0, seg.selector);
8044 	put_smstate(u32, buf, 0x7f80, seg.base);
8045 	put_smstate(u32, buf, 0x7f7c, seg.limit);
8046 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
8047 
8048 	kvm_x86_ops.get_gdt(vcpu, &dt);
8049 	put_smstate(u32, buf, 0x7f74, dt.address);
8050 	put_smstate(u32, buf, 0x7f70, dt.size);
8051 
8052 	kvm_x86_ops.get_idt(vcpu, &dt);
8053 	put_smstate(u32, buf, 0x7f58, dt.address);
8054 	put_smstate(u32, buf, 0x7f54, dt.size);
8055 
8056 	for (i = 0; i < 6; i++)
8057 		enter_smm_save_seg_32(vcpu, buf, i);
8058 
8059 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
8060 
8061 	/* revision id */
8062 	put_smstate(u32, buf, 0x7efc, 0x00020000);
8063 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
8064 }
8065 
8066 #ifdef CONFIG_X86_64
8067 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
8068 {
8069 	struct desc_ptr dt;
8070 	struct kvm_segment seg;
8071 	unsigned long val;
8072 	int i;
8073 
8074 	for (i = 0; i < 16; i++)
8075 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
8076 
8077 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
8078 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
8079 
8080 	kvm_get_dr(vcpu, 6, &val);
8081 	put_smstate(u64, buf, 0x7f68, val);
8082 	kvm_get_dr(vcpu, 7, &val);
8083 	put_smstate(u64, buf, 0x7f60, val);
8084 
8085 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
8086 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
8087 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
8088 
8089 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
8090 
8091 	/* revision id */
8092 	put_smstate(u32, buf, 0x7efc, 0x00020064);
8093 
8094 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
8095 
8096 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8097 	put_smstate(u16, buf, 0x7e90, seg.selector);
8098 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
8099 	put_smstate(u32, buf, 0x7e94, seg.limit);
8100 	put_smstate(u64, buf, 0x7e98, seg.base);
8101 
8102 	kvm_x86_ops.get_idt(vcpu, &dt);
8103 	put_smstate(u32, buf, 0x7e84, dt.size);
8104 	put_smstate(u64, buf, 0x7e88, dt.address);
8105 
8106 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8107 	put_smstate(u16, buf, 0x7e70, seg.selector);
8108 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
8109 	put_smstate(u32, buf, 0x7e74, seg.limit);
8110 	put_smstate(u64, buf, 0x7e78, seg.base);
8111 
8112 	kvm_x86_ops.get_gdt(vcpu, &dt);
8113 	put_smstate(u32, buf, 0x7e64, dt.size);
8114 	put_smstate(u64, buf, 0x7e68, dt.address);
8115 
8116 	for (i = 0; i < 6; i++)
8117 		enter_smm_save_seg_64(vcpu, buf, i);
8118 }
8119 #endif
8120 
8121 static void enter_smm(struct kvm_vcpu *vcpu)
8122 {
8123 	struct kvm_segment cs, ds;
8124 	struct desc_ptr dt;
8125 	char buf[512];
8126 	u32 cr0;
8127 
8128 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
8129 	memset(buf, 0, 512);
8130 #ifdef CONFIG_X86_64
8131 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8132 		enter_smm_save_state_64(vcpu, buf);
8133 	else
8134 #endif
8135 		enter_smm_save_state_32(vcpu, buf);
8136 
8137 	/*
8138 	 * Give pre_enter_smm() a chance to make ISA-specific changes to the
8139 	 * vCPU state (e.g. leave guest mode) after we've saved the state into
8140 	 * the SMM state-save area.
8141 	 */
8142 	kvm_x86_ops.pre_enter_smm(vcpu, buf);
8143 
8144 	vcpu->arch.hflags |= HF_SMM_MASK;
8145 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
8146 
8147 	if (kvm_x86_ops.get_nmi_mask(vcpu))
8148 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
8149 	else
8150 		kvm_x86_ops.set_nmi_mask(vcpu, true);
8151 
8152 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
8153 	kvm_rip_write(vcpu, 0x8000);
8154 
8155 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
8156 	kvm_x86_ops.set_cr0(vcpu, cr0);
8157 	vcpu->arch.cr0 = cr0;
8158 
8159 	kvm_x86_ops.set_cr4(vcpu, 0);
8160 
8161 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
8162 	dt.address = dt.size = 0;
8163 	kvm_x86_ops.set_idt(vcpu, &dt);
8164 
8165 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
8166 
8167 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
8168 	cs.base = vcpu->arch.smbase;
8169 
8170 	ds.selector = 0;
8171 	ds.base = 0;
8172 
8173 	cs.limit    = ds.limit = 0xffffffff;
8174 	cs.type     = ds.type = 0x3;
8175 	cs.dpl      = ds.dpl = 0;
8176 	cs.db       = ds.db = 0;
8177 	cs.s        = ds.s = 1;
8178 	cs.l        = ds.l = 0;
8179 	cs.g        = ds.g = 1;
8180 	cs.avl      = ds.avl = 0;
8181 	cs.present  = ds.present = 1;
8182 	cs.unusable = ds.unusable = 0;
8183 	cs.padding  = ds.padding = 0;
8184 
8185 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8186 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8187 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8188 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8189 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8190 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8191 
8192 #ifdef CONFIG_X86_64
8193 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8194 		kvm_x86_ops.set_efer(vcpu, 0);
8195 #endif
8196 
8197 	kvm_update_cpuid_runtime(vcpu);
8198 	kvm_mmu_reset_context(vcpu);
8199 }
8200 
8201 static void process_smi(struct kvm_vcpu *vcpu)
8202 {
8203 	vcpu->arch.smi_pending = true;
8204 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8205 }
8206 
8207 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8208 				       unsigned long *vcpu_bitmap)
8209 {
8210 	cpumask_var_t cpus;
8211 
8212 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8213 
8214 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8215 				    NULL, vcpu_bitmap, cpus);
8216 
8217 	free_cpumask_var(cpus);
8218 }
8219 
8220 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8221 {
8222 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8223 }
8224 
8225 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8226 {
8227 	if (!lapic_in_kernel(vcpu))
8228 		return;
8229 
8230 	vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8231 	kvm_apic_update_apicv(vcpu);
8232 	kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu);
8233 }
8234 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8235 
8236 /*
8237  * NOTE: Do not hold any lock prior to calling this.
8238  *
8239  * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8240  * locked, because it calls __x86_set_memory_region() which does
8241  * synchronize_srcu(&kvm->srcu).
8242  */
8243 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8244 {
8245 	struct kvm_vcpu *except;
8246 	unsigned long old, new, expected;
8247 
8248 	if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
8249 	    !kvm_x86_ops.check_apicv_inhibit_reasons(bit))
8250 		return;
8251 
8252 	old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8253 	do {
8254 		expected = new = old;
8255 		if (activate)
8256 			__clear_bit(bit, &new);
8257 		else
8258 			__set_bit(bit, &new);
8259 		if (new == old)
8260 			break;
8261 		old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
8262 	} while (old != expected);
8263 
8264 	if (!!old == !!new)
8265 		return;
8266 
8267 	trace_kvm_apicv_update_request(activate, bit);
8268 	if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
8269 		kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate);
8270 
8271 	/*
8272 	 * Sending request to update APICV for all other vcpus,
8273 	 * while update the calling vcpu immediately instead of
8274 	 * waiting for another #VMEXIT to handle the request.
8275 	 */
8276 	except = kvm_get_running_vcpu();
8277 	kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE,
8278 					 except);
8279 	if (except)
8280 		kvm_vcpu_update_apicv(except);
8281 }
8282 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8283 
8284 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8285 {
8286 	if (!kvm_apic_present(vcpu))
8287 		return;
8288 
8289 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8290 
8291 	if (irqchip_split(vcpu->kvm))
8292 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
8293 	else {
8294 		if (vcpu->arch.apicv_active)
8295 			kvm_x86_ops.sync_pir_to_irr(vcpu);
8296 		if (ioapic_in_kernel(vcpu->kvm))
8297 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
8298 	}
8299 
8300 	if (is_guest_mode(vcpu))
8301 		vcpu->arch.load_eoi_exitmap_pending = true;
8302 	else
8303 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8304 }
8305 
8306 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8307 {
8308 	u64 eoi_exit_bitmap[4];
8309 
8310 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8311 		return;
8312 
8313 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
8314 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
8315 	kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap);
8316 }
8317 
8318 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8319 					    unsigned long start, unsigned long end)
8320 {
8321 	unsigned long apic_address;
8322 
8323 	/*
8324 	 * The physical address of apic access page is stored in the VMCS.
8325 	 * Update it when it becomes invalid.
8326 	 */
8327 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8328 	if (start <= apic_address && apic_address < end)
8329 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
8330 }
8331 
8332 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8333 {
8334 	if (!lapic_in_kernel(vcpu))
8335 		return;
8336 
8337 	if (!kvm_x86_ops.set_apic_access_page_addr)
8338 		return;
8339 
8340 	kvm_x86_ops.set_apic_access_page_addr(vcpu);
8341 }
8342 
8343 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
8344 {
8345 	smp_send_reschedule(vcpu->cpu);
8346 }
8347 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
8348 
8349 /*
8350  * Returns 1 to let vcpu_run() continue the guest execution loop without
8351  * exiting to the userspace.  Otherwise, the value will be returned to the
8352  * userspace.
8353  */
8354 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
8355 {
8356 	int r;
8357 	bool req_int_win =
8358 		dm_request_for_irq_injection(vcpu) &&
8359 		kvm_cpu_accept_dm_intr(vcpu);
8360 	fastpath_t exit_fastpath;
8361 
8362 	bool req_immediate_exit = false;
8363 
8364 	if (kvm_request_pending(vcpu)) {
8365 		if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu)) {
8366 			if (unlikely(!kvm_x86_ops.nested_ops->get_vmcs12_pages(vcpu))) {
8367 				r = 0;
8368 				goto out;
8369 			}
8370 		}
8371 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
8372 			kvm_mmu_unload(vcpu);
8373 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
8374 			__kvm_migrate_timers(vcpu);
8375 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8376 			kvm_gen_update_masterclock(vcpu->kvm);
8377 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8378 			kvm_gen_kvmclock_update(vcpu);
8379 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8380 			r = kvm_guest_time_update(vcpu);
8381 			if (unlikely(r))
8382 				goto out;
8383 		}
8384 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
8385 			kvm_mmu_sync_roots(vcpu);
8386 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
8387 			kvm_mmu_load_pgd(vcpu);
8388 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
8389 			kvm_vcpu_flush_tlb_all(vcpu);
8390 
8391 			/* Flushing all ASIDs flushes the current ASID... */
8392 			kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
8393 		}
8394 		if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
8395 			kvm_vcpu_flush_tlb_current(vcpu);
8396 		if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu))
8397 			kvm_vcpu_flush_tlb_guest(vcpu);
8398 
8399 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
8400 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
8401 			r = 0;
8402 			goto out;
8403 		}
8404 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8405 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8406 			vcpu->mmio_needed = 0;
8407 			r = 0;
8408 			goto out;
8409 		}
8410 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8411 			/* Page is swapped out. Do synthetic halt */
8412 			vcpu->arch.apf.halted = true;
8413 			r = 1;
8414 			goto out;
8415 		}
8416 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8417 			record_steal_time(vcpu);
8418 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
8419 			process_smi(vcpu);
8420 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
8421 			process_nmi(vcpu);
8422 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
8423 			kvm_pmu_handle_event(vcpu);
8424 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
8425 			kvm_pmu_deliver_pmi(vcpu);
8426 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8427 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8428 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
8429 				     vcpu->arch.ioapic_handled_vectors)) {
8430 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8431 				vcpu->run->eoi.vector =
8432 						vcpu->arch.pending_ioapic_eoi;
8433 				r = 0;
8434 				goto out;
8435 			}
8436 		}
8437 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8438 			vcpu_scan_ioapic(vcpu);
8439 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8440 			vcpu_load_eoi_exitmap(vcpu);
8441 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8442 			kvm_vcpu_reload_apic_access_page(vcpu);
8443 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8444 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8445 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8446 			r = 0;
8447 			goto out;
8448 		}
8449 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8450 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8451 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8452 			r = 0;
8453 			goto out;
8454 		}
8455 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8456 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8457 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
8458 			r = 0;
8459 			goto out;
8460 		}
8461 
8462 		/*
8463 		 * KVM_REQ_HV_STIMER has to be processed after
8464 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8465 		 * depend on the guest clock being up-to-date
8466 		 */
8467 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8468 			kvm_hv_process_stimers(vcpu);
8469 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
8470 			kvm_vcpu_update_apicv(vcpu);
8471 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
8472 			kvm_check_async_pf_completion(vcpu);
8473 	}
8474 
8475 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
8476 		++vcpu->stat.req_event;
8477 		kvm_apic_accept_events(vcpu);
8478 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
8479 			r = 1;
8480 			goto out;
8481 		}
8482 
8483 		inject_pending_event(vcpu, &req_immediate_exit);
8484 		if (req_int_win)
8485 			kvm_x86_ops.enable_irq_window(vcpu);
8486 
8487 		if (kvm_lapic_enabled(vcpu)) {
8488 			update_cr8_intercept(vcpu);
8489 			kvm_lapic_sync_to_vapic(vcpu);
8490 		}
8491 	}
8492 
8493 	r = kvm_mmu_reload(vcpu);
8494 	if (unlikely(r)) {
8495 		goto cancel_injection;
8496 	}
8497 
8498 	preempt_disable();
8499 
8500 	kvm_x86_ops.prepare_guest_switch(vcpu);
8501 
8502 	/*
8503 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
8504 	 * IPI are then delayed after guest entry, which ensures that they
8505 	 * result in virtual interrupt delivery.
8506 	 */
8507 	local_irq_disable();
8508 	vcpu->mode = IN_GUEST_MODE;
8509 
8510 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8511 
8512 	/*
8513 	 * 1) We should set ->mode before checking ->requests.  Please see
8514 	 * the comment in kvm_vcpu_exiting_guest_mode().
8515 	 *
8516 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
8517 	 * pairs with the memory barrier implicit in pi_test_and_set_on
8518 	 * (see vmx_deliver_posted_interrupt).
8519 	 *
8520 	 * 3) This also orders the write to mode from any reads to the page
8521 	 * tables done while the VCPU is running.  Please see the comment
8522 	 * in kvm_flush_remote_tlbs.
8523 	 */
8524 	smp_mb__after_srcu_read_unlock();
8525 
8526 	/*
8527 	 * This handles the case where a posted interrupt was
8528 	 * notified with kvm_vcpu_kick.
8529 	 */
8530 	if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
8531 		kvm_x86_ops.sync_pir_to_irr(vcpu);
8532 
8533 	if (kvm_vcpu_exit_request(vcpu)) {
8534 		vcpu->mode = OUTSIDE_GUEST_MODE;
8535 		smp_wmb();
8536 		local_irq_enable();
8537 		preempt_enable();
8538 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8539 		r = 1;
8540 		goto cancel_injection;
8541 	}
8542 
8543 	if (req_immediate_exit) {
8544 		kvm_make_request(KVM_REQ_EVENT, vcpu);
8545 		kvm_x86_ops.request_immediate_exit(vcpu);
8546 	}
8547 
8548 	trace_kvm_entry(vcpu->vcpu_id);
8549 
8550 	fpregs_assert_state_consistent();
8551 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
8552 		switch_fpu_return();
8553 
8554 	if (unlikely(vcpu->arch.switch_db_regs)) {
8555 		set_debugreg(0, 7);
8556 		set_debugreg(vcpu->arch.eff_db[0], 0);
8557 		set_debugreg(vcpu->arch.eff_db[1], 1);
8558 		set_debugreg(vcpu->arch.eff_db[2], 2);
8559 		set_debugreg(vcpu->arch.eff_db[3], 3);
8560 		set_debugreg(vcpu->arch.dr6, 6);
8561 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8562 	}
8563 
8564 	exit_fastpath = kvm_x86_ops.run(vcpu);
8565 
8566 	/*
8567 	 * Do this here before restoring debug registers on the host.  And
8568 	 * since we do this before handling the vmexit, a DR access vmexit
8569 	 * can (a) read the correct value of the debug registers, (b) set
8570 	 * KVM_DEBUGREG_WONT_EXIT again.
8571 	 */
8572 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
8573 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
8574 		kvm_x86_ops.sync_dirty_debug_regs(vcpu);
8575 		kvm_update_dr0123(vcpu);
8576 		kvm_update_dr7(vcpu);
8577 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8578 	}
8579 
8580 	/*
8581 	 * If the guest has used debug registers, at least dr7
8582 	 * will be disabled while returning to the host.
8583 	 * If we don't have active breakpoints in the host, we don't
8584 	 * care about the messed up debug address registers. But if
8585 	 * we have some of them active, restore the old state.
8586 	 */
8587 	if (hw_breakpoint_active())
8588 		hw_breakpoint_restore();
8589 
8590 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
8591 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8592 
8593 	vcpu->mode = OUTSIDE_GUEST_MODE;
8594 	smp_wmb();
8595 
8596 	kvm_x86_ops.handle_exit_irqoff(vcpu);
8597 
8598 	/*
8599 	 * Consume any pending interrupts, including the possible source of
8600 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
8601 	 * An instruction is required after local_irq_enable() to fully unblock
8602 	 * interrupts on processors that implement an interrupt shadow, the
8603 	 * stat.exits increment will do nicely.
8604 	 */
8605 	kvm_before_interrupt(vcpu);
8606 	local_irq_enable();
8607 	++vcpu->stat.exits;
8608 	local_irq_disable();
8609 	kvm_after_interrupt(vcpu);
8610 
8611 	if (lapic_in_kernel(vcpu)) {
8612 		s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
8613 		if (delta != S64_MIN) {
8614 			trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
8615 			vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
8616 		}
8617 	}
8618 
8619 	local_irq_enable();
8620 	preempt_enable();
8621 
8622 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8623 
8624 	/*
8625 	 * Profile KVM exit RIPs:
8626 	 */
8627 	if (unlikely(prof_on == KVM_PROFILING)) {
8628 		unsigned long rip = kvm_rip_read(vcpu);
8629 		profile_hit(KVM_PROFILING, (void *)rip);
8630 	}
8631 
8632 	if (unlikely(vcpu->arch.tsc_always_catchup))
8633 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8634 
8635 	if (vcpu->arch.apic_attention)
8636 		kvm_lapic_sync_from_vapic(vcpu);
8637 
8638 	r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath);
8639 	return r;
8640 
8641 cancel_injection:
8642 	if (req_immediate_exit)
8643 		kvm_make_request(KVM_REQ_EVENT, vcpu);
8644 	kvm_x86_ops.cancel_injection(vcpu);
8645 	if (unlikely(vcpu->arch.apic_attention))
8646 		kvm_lapic_sync_from_vapic(vcpu);
8647 out:
8648 	return r;
8649 }
8650 
8651 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
8652 {
8653 	if (!kvm_arch_vcpu_runnable(vcpu) &&
8654 	    (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) {
8655 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8656 		kvm_vcpu_block(vcpu);
8657 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8658 
8659 		if (kvm_x86_ops.post_block)
8660 			kvm_x86_ops.post_block(vcpu);
8661 
8662 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
8663 			return 1;
8664 	}
8665 
8666 	kvm_apic_accept_events(vcpu);
8667 	switch(vcpu->arch.mp_state) {
8668 	case KVM_MP_STATE_HALTED:
8669 		vcpu->arch.pv.pv_unhalted = false;
8670 		vcpu->arch.mp_state =
8671 			KVM_MP_STATE_RUNNABLE;
8672 		fallthrough;
8673 	case KVM_MP_STATE_RUNNABLE:
8674 		vcpu->arch.apf.halted = false;
8675 		break;
8676 	case KVM_MP_STATE_INIT_RECEIVED:
8677 		break;
8678 	default:
8679 		return -EINTR;
8680 	}
8681 	return 1;
8682 }
8683 
8684 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8685 {
8686 	if (is_guest_mode(vcpu))
8687 		kvm_x86_ops.nested_ops->check_events(vcpu);
8688 
8689 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8690 		!vcpu->arch.apf.halted);
8691 }
8692 
8693 static int vcpu_run(struct kvm_vcpu *vcpu)
8694 {
8695 	int r;
8696 	struct kvm *kvm = vcpu->kvm;
8697 
8698 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8699 	vcpu->arch.l1tf_flush_l1d = true;
8700 
8701 	for (;;) {
8702 		if (kvm_vcpu_running(vcpu)) {
8703 			r = vcpu_enter_guest(vcpu);
8704 		} else {
8705 			r = vcpu_block(kvm, vcpu);
8706 		}
8707 
8708 		if (r <= 0)
8709 			break;
8710 
8711 		kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8712 		if (kvm_cpu_has_pending_timer(vcpu))
8713 			kvm_inject_pending_timer_irqs(vcpu);
8714 
8715 		if (dm_request_for_irq_injection(vcpu) &&
8716 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8717 			r = 0;
8718 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8719 			++vcpu->stat.request_irq_exits;
8720 			break;
8721 		}
8722 
8723 		if (__xfer_to_guest_mode_work_pending()) {
8724 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8725 			r = xfer_to_guest_mode_handle_work(vcpu);
8726 			if (r)
8727 				return r;
8728 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8729 		}
8730 	}
8731 
8732 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8733 
8734 	return r;
8735 }
8736 
8737 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8738 {
8739 	int r;
8740 
8741 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8742 	r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8743 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8744 	return r;
8745 }
8746 
8747 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8748 {
8749 	BUG_ON(!vcpu->arch.pio.count);
8750 
8751 	return complete_emulated_io(vcpu);
8752 }
8753 
8754 /*
8755  * Implements the following, as a state machine:
8756  *
8757  * read:
8758  *   for each fragment
8759  *     for each mmio piece in the fragment
8760  *       write gpa, len
8761  *       exit
8762  *       copy data
8763  *   execute insn
8764  *
8765  * write:
8766  *   for each fragment
8767  *     for each mmio piece in the fragment
8768  *       write gpa, len
8769  *       copy data
8770  *       exit
8771  */
8772 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8773 {
8774 	struct kvm_run *run = vcpu->run;
8775 	struct kvm_mmio_fragment *frag;
8776 	unsigned len;
8777 
8778 	BUG_ON(!vcpu->mmio_needed);
8779 
8780 	/* Complete previous fragment */
8781 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8782 	len = min(8u, frag->len);
8783 	if (!vcpu->mmio_is_write)
8784 		memcpy(frag->data, run->mmio.data, len);
8785 
8786 	if (frag->len <= 8) {
8787 		/* Switch to the next fragment. */
8788 		frag++;
8789 		vcpu->mmio_cur_fragment++;
8790 	} else {
8791 		/* Go forward to the next mmio piece. */
8792 		frag->data += len;
8793 		frag->gpa += len;
8794 		frag->len -= len;
8795 	}
8796 
8797 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8798 		vcpu->mmio_needed = 0;
8799 
8800 		/* FIXME: return into emulator if single-stepping.  */
8801 		if (vcpu->mmio_is_write)
8802 			return 1;
8803 		vcpu->mmio_read_completed = 1;
8804 		return complete_emulated_io(vcpu);
8805 	}
8806 
8807 	run->exit_reason = KVM_EXIT_MMIO;
8808 	run->mmio.phys_addr = frag->gpa;
8809 	if (vcpu->mmio_is_write)
8810 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8811 	run->mmio.len = min(8u, frag->len);
8812 	run->mmio.is_write = vcpu->mmio_is_write;
8813 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8814 	return 0;
8815 }
8816 
8817 static void kvm_save_current_fpu(struct fpu *fpu)
8818 {
8819 	/*
8820 	 * If the target FPU state is not resident in the CPU registers, just
8821 	 * memcpy() from current, else save CPU state directly to the target.
8822 	 */
8823 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
8824 		memcpy(&fpu->state, &current->thread.fpu.state,
8825 		       fpu_kernel_xstate_size);
8826 	else
8827 		copy_fpregs_to_fpstate(fpu);
8828 }
8829 
8830 /* Swap (qemu) user FPU context for the guest FPU context. */
8831 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8832 {
8833 	fpregs_lock();
8834 
8835 	kvm_save_current_fpu(vcpu->arch.user_fpu);
8836 
8837 	/* PKRU is separately restored in kvm_x86_ops.run.  */
8838 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8839 				~XFEATURE_MASK_PKRU);
8840 
8841 	fpregs_mark_activate();
8842 	fpregs_unlock();
8843 
8844 	trace_kvm_fpu(1);
8845 }
8846 
8847 /* When vcpu_run ends, restore user space FPU context. */
8848 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8849 {
8850 	fpregs_lock();
8851 
8852 	kvm_save_current_fpu(vcpu->arch.guest_fpu);
8853 
8854 	copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
8855 
8856 	fpregs_mark_activate();
8857 	fpregs_unlock();
8858 
8859 	++vcpu->stat.fpu_reload;
8860 	trace_kvm_fpu(0);
8861 }
8862 
8863 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
8864 {
8865 	struct kvm_run *kvm_run = vcpu->run;
8866 	int r;
8867 
8868 	vcpu_load(vcpu);
8869 	kvm_sigset_activate(vcpu);
8870 	kvm_load_guest_fpu(vcpu);
8871 
8872 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8873 		if (kvm_run->immediate_exit) {
8874 			r = -EINTR;
8875 			goto out;
8876 		}
8877 		kvm_vcpu_block(vcpu);
8878 		kvm_apic_accept_events(vcpu);
8879 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8880 		r = -EAGAIN;
8881 		if (signal_pending(current)) {
8882 			r = -EINTR;
8883 			kvm_run->exit_reason = KVM_EXIT_INTR;
8884 			++vcpu->stat.signal_exits;
8885 		}
8886 		goto out;
8887 	}
8888 
8889 	if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8890 		r = -EINVAL;
8891 		goto out;
8892 	}
8893 
8894 	if (kvm_run->kvm_dirty_regs) {
8895 		r = sync_regs(vcpu);
8896 		if (r != 0)
8897 			goto out;
8898 	}
8899 
8900 	/* re-sync apic's tpr */
8901 	if (!lapic_in_kernel(vcpu)) {
8902 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8903 			r = -EINVAL;
8904 			goto out;
8905 		}
8906 	}
8907 
8908 	if (unlikely(vcpu->arch.complete_userspace_io)) {
8909 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8910 		vcpu->arch.complete_userspace_io = NULL;
8911 		r = cui(vcpu);
8912 		if (r <= 0)
8913 			goto out;
8914 	} else
8915 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8916 
8917 	if (kvm_run->immediate_exit)
8918 		r = -EINTR;
8919 	else
8920 		r = vcpu_run(vcpu);
8921 
8922 out:
8923 	kvm_put_guest_fpu(vcpu);
8924 	if (kvm_run->kvm_valid_regs)
8925 		store_regs(vcpu);
8926 	post_kvm_run_save(vcpu);
8927 	kvm_sigset_deactivate(vcpu);
8928 
8929 	vcpu_put(vcpu);
8930 	return r;
8931 }
8932 
8933 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8934 {
8935 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8936 		/*
8937 		 * We are here if userspace calls get_regs() in the middle of
8938 		 * instruction emulation. Registers state needs to be copied
8939 		 * back from emulation context to vcpu. Userspace shouldn't do
8940 		 * that usually, but some bad designed PV devices (vmware
8941 		 * backdoor interface) need this to work
8942 		 */
8943 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
8944 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8945 	}
8946 	regs->rax = kvm_rax_read(vcpu);
8947 	regs->rbx = kvm_rbx_read(vcpu);
8948 	regs->rcx = kvm_rcx_read(vcpu);
8949 	regs->rdx = kvm_rdx_read(vcpu);
8950 	regs->rsi = kvm_rsi_read(vcpu);
8951 	regs->rdi = kvm_rdi_read(vcpu);
8952 	regs->rsp = kvm_rsp_read(vcpu);
8953 	regs->rbp = kvm_rbp_read(vcpu);
8954 #ifdef CONFIG_X86_64
8955 	regs->r8 = kvm_r8_read(vcpu);
8956 	regs->r9 = kvm_r9_read(vcpu);
8957 	regs->r10 = kvm_r10_read(vcpu);
8958 	regs->r11 = kvm_r11_read(vcpu);
8959 	regs->r12 = kvm_r12_read(vcpu);
8960 	regs->r13 = kvm_r13_read(vcpu);
8961 	regs->r14 = kvm_r14_read(vcpu);
8962 	regs->r15 = kvm_r15_read(vcpu);
8963 #endif
8964 
8965 	regs->rip = kvm_rip_read(vcpu);
8966 	regs->rflags = kvm_get_rflags(vcpu);
8967 }
8968 
8969 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8970 {
8971 	vcpu_load(vcpu);
8972 	__get_regs(vcpu, regs);
8973 	vcpu_put(vcpu);
8974 	return 0;
8975 }
8976 
8977 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8978 {
8979 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8980 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8981 
8982 	kvm_rax_write(vcpu, regs->rax);
8983 	kvm_rbx_write(vcpu, regs->rbx);
8984 	kvm_rcx_write(vcpu, regs->rcx);
8985 	kvm_rdx_write(vcpu, regs->rdx);
8986 	kvm_rsi_write(vcpu, regs->rsi);
8987 	kvm_rdi_write(vcpu, regs->rdi);
8988 	kvm_rsp_write(vcpu, regs->rsp);
8989 	kvm_rbp_write(vcpu, regs->rbp);
8990 #ifdef CONFIG_X86_64
8991 	kvm_r8_write(vcpu, regs->r8);
8992 	kvm_r9_write(vcpu, regs->r9);
8993 	kvm_r10_write(vcpu, regs->r10);
8994 	kvm_r11_write(vcpu, regs->r11);
8995 	kvm_r12_write(vcpu, regs->r12);
8996 	kvm_r13_write(vcpu, regs->r13);
8997 	kvm_r14_write(vcpu, regs->r14);
8998 	kvm_r15_write(vcpu, regs->r15);
8999 #endif
9000 
9001 	kvm_rip_write(vcpu, regs->rip);
9002 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
9003 
9004 	vcpu->arch.exception.pending = false;
9005 
9006 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9007 }
9008 
9009 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9010 {
9011 	vcpu_load(vcpu);
9012 	__set_regs(vcpu, regs);
9013 	vcpu_put(vcpu);
9014 	return 0;
9015 }
9016 
9017 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
9018 {
9019 	struct kvm_segment cs;
9020 
9021 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9022 	*db = cs.db;
9023 	*l = cs.l;
9024 }
9025 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
9026 
9027 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9028 {
9029 	struct desc_ptr dt;
9030 
9031 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9032 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9033 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9034 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9035 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9036 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9037 
9038 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9039 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9040 
9041 	kvm_x86_ops.get_idt(vcpu, &dt);
9042 	sregs->idt.limit = dt.size;
9043 	sregs->idt.base = dt.address;
9044 	kvm_x86_ops.get_gdt(vcpu, &dt);
9045 	sregs->gdt.limit = dt.size;
9046 	sregs->gdt.base = dt.address;
9047 
9048 	sregs->cr0 = kvm_read_cr0(vcpu);
9049 	sregs->cr2 = vcpu->arch.cr2;
9050 	sregs->cr3 = kvm_read_cr3(vcpu);
9051 	sregs->cr4 = kvm_read_cr4(vcpu);
9052 	sregs->cr8 = kvm_get_cr8(vcpu);
9053 	sregs->efer = vcpu->arch.efer;
9054 	sregs->apic_base = kvm_get_apic_base(vcpu);
9055 
9056 	memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
9057 
9058 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
9059 		set_bit(vcpu->arch.interrupt.nr,
9060 			(unsigned long *)sregs->interrupt_bitmap);
9061 }
9062 
9063 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
9064 				  struct kvm_sregs *sregs)
9065 {
9066 	vcpu_load(vcpu);
9067 	__get_sregs(vcpu, sregs);
9068 	vcpu_put(vcpu);
9069 	return 0;
9070 }
9071 
9072 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
9073 				    struct kvm_mp_state *mp_state)
9074 {
9075 	vcpu_load(vcpu);
9076 	if (kvm_mpx_supported())
9077 		kvm_load_guest_fpu(vcpu);
9078 
9079 	kvm_apic_accept_events(vcpu);
9080 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
9081 					vcpu->arch.pv.pv_unhalted)
9082 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
9083 	else
9084 		mp_state->mp_state = vcpu->arch.mp_state;
9085 
9086 	if (kvm_mpx_supported())
9087 		kvm_put_guest_fpu(vcpu);
9088 	vcpu_put(vcpu);
9089 	return 0;
9090 }
9091 
9092 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
9093 				    struct kvm_mp_state *mp_state)
9094 {
9095 	int ret = -EINVAL;
9096 
9097 	vcpu_load(vcpu);
9098 
9099 	if (!lapic_in_kernel(vcpu) &&
9100 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
9101 		goto out;
9102 
9103 	/*
9104 	 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
9105 	 * INIT state; latched init should be reported using
9106 	 * KVM_SET_VCPU_EVENTS, so reject it here.
9107 	 */
9108 	if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
9109 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
9110 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
9111 		goto out;
9112 
9113 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
9114 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
9115 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
9116 	} else
9117 		vcpu->arch.mp_state = mp_state->mp_state;
9118 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9119 
9120 	ret = 0;
9121 out:
9122 	vcpu_put(vcpu);
9123 	return ret;
9124 }
9125 
9126 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
9127 		    int reason, bool has_error_code, u32 error_code)
9128 {
9129 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9130 	int ret;
9131 
9132 	init_emulate_ctxt(vcpu);
9133 
9134 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
9135 				   has_error_code, error_code);
9136 	if (ret) {
9137 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9138 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
9139 		vcpu->run->internal.ndata = 0;
9140 		return 0;
9141 	}
9142 
9143 	kvm_rip_write(vcpu, ctxt->eip);
9144 	kvm_set_rflags(vcpu, ctxt->eflags);
9145 	return 1;
9146 }
9147 EXPORT_SYMBOL_GPL(kvm_task_switch);
9148 
9149 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9150 {
9151 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
9152 		/*
9153 		 * When EFER.LME and CR0.PG are set, the processor is in
9154 		 * 64-bit mode (though maybe in a 32-bit code segment).
9155 		 * CR4.PAE and EFER.LMA must be set.
9156 		 */
9157 		if (!(sregs->cr4 & X86_CR4_PAE)
9158 		    || !(sregs->efer & EFER_LMA))
9159 			return -EINVAL;
9160 	} else {
9161 		/*
9162 		 * Not in 64-bit mode: EFER.LMA is clear and the code
9163 		 * segment cannot be 64-bit.
9164 		 */
9165 		if (sregs->efer & EFER_LMA || sregs->cs.l)
9166 			return -EINVAL;
9167 	}
9168 
9169 	return kvm_valid_cr4(vcpu, sregs->cr4);
9170 }
9171 
9172 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9173 {
9174 	struct msr_data apic_base_msr;
9175 	int mmu_reset_needed = 0;
9176 	int cpuid_update_needed = 0;
9177 	int pending_vec, max_bits, idx;
9178 	struct desc_ptr dt;
9179 	int ret = -EINVAL;
9180 
9181 	if (kvm_valid_sregs(vcpu, sregs))
9182 		goto out;
9183 
9184 	apic_base_msr.data = sregs->apic_base;
9185 	apic_base_msr.host_initiated = true;
9186 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
9187 		goto out;
9188 
9189 	dt.size = sregs->idt.limit;
9190 	dt.address = sregs->idt.base;
9191 	kvm_x86_ops.set_idt(vcpu, &dt);
9192 	dt.size = sregs->gdt.limit;
9193 	dt.address = sregs->gdt.base;
9194 	kvm_x86_ops.set_gdt(vcpu, &dt);
9195 
9196 	vcpu->arch.cr2 = sregs->cr2;
9197 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
9198 	vcpu->arch.cr3 = sregs->cr3;
9199 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9200 
9201 	kvm_set_cr8(vcpu, sregs->cr8);
9202 
9203 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9204 	kvm_x86_ops.set_efer(vcpu, sregs->efer);
9205 
9206 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9207 	kvm_x86_ops.set_cr0(vcpu, sregs->cr0);
9208 	vcpu->arch.cr0 = sregs->cr0;
9209 
9210 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9211 	cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
9212 				(X86_CR4_OSXSAVE | X86_CR4_PKE));
9213 	kvm_x86_ops.set_cr4(vcpu, sregs->cr4);
9214 	if (cpuid_update_needed)
9215 		kvm_update_cpuid_runtime(vcpu);
9216 
9217 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9218 	if (is_pae_paging(vcpu)) {
9219 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9220 		mmu_reset_needed = 1;
9221 	}
9222 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9223 
9224 	if (mmu_reset_needed)
9225 		kvm_mmu_reset_context(vcpu);
9226 
9227 	max_bits = KVM_NR_INTERRUPTS;
9228 	pending_vec = find_first_bit(
9229 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
9230 	if (pending_vec < max_bits) {
9231 		kvm_queue_interrupt(vcpu, pending_vec, false);
9232 		pr_debug("Set back pending irq %d\n", pending_vec);
9233 	}
9234 
9235 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9236 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9237 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9238 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9239 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9240 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9241 
9242 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9243 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9244 
9245 	update_cr8_intercept(vcpu);
9246 
9247 	/* Older userspace won't unhalt the vcpu on reset. */
9248 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9249 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9250 	    !is_protmode(vcpu))
9251 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9252 
9253 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9254 
9255 	ret = 0;
9256 out:
9257 	return ret;
9258 }
9259 
9260 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9261 				  struct kvm_sregs *sregs)
9262 {
9263 	int ret;
9264 
9265 	vcpu_load(vcpu);
9266 	ret = __set_sregs(vcpu, sregs);
9267 	vcpu_put(vcpu);
9268 	return ret;
9269 }
9270 
9271 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
9272 					struct kvm_guest_debug *dbg)
9273 {
9274 	unsigned long rflags;
9275 	int i, r;
9276 
9277 	vcpu_load(vcpu);
9278 
9279 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9280 		r = -EBUSY;
9281 		if (vcpu->arch.exception.pending)
9282 			goto out;
9283 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
9284 			kvm_queue_exception(vcpu, DB_VECTOR);
9285 		else
9286 			kvm_queue_exception(vcpu, BP_VECTOR);
9287 	}
9288 
9289 	/*
9290 	 * Read rflags as long as potentially injected trace flags are still
9291 	 * filtered out.
9292 	 */
9293 	rflags = kvm_get_rflags(vcpu);
9294 
9295 	vcpu->guest_debug = dbg->control;
9296 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
9297 		vcpu->guest_debug = 0;
9298 
9299 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
9300 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
9301 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
9302 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
9303 	} else {
9304 		for (i = 0; i < KVM_NR_DB_REGS; i++)
9305 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
9306 	}
9307 	kvm_update_dr7(vcpu);
9308 
9309 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9310 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
9311 			get_segment_base(vcpu, VCPU_SREG_CS);
9312 
9313 	/*
9314 	 * Trigger an rflags update that will inject or remove the trace
9315 	 * flags.
9316 	 */
9317 	kvm_set_rflags(vcpu, rflags);
9318 
9319 	kvm_x86_ops.update_exception_bitmap(vcpu);
9320 
9321 	r = 0;
9322 
9323 out:
9324 	vcpu_put(vcpu);
9325 	return r;
9326 }
9327 
9328 /*
9329  * Translate a guest virtual address to a guest physical address.
9330  */
9331 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
9332 				    struct kvm_translation *tr)
9333 {
9334 	unsigned long vaddr = tr->linear_address;
9335 	gpa_t gpa;
9336 	int idx;
9337 
9338 	vcpu_load(vcpu);
9339 
9340 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9341 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
9342 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9343 	tr->physical_address = gpa;
9344 	tr->valid = gpa != UNMAPPED_GVA;
9345 	tr->writeable = 1;
9346 	tr->usermode = 0;
9347 
9348 	vcpu_put(vcpu);
9349 	return 0;
9350 }
9351 
9352 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9353 {
9354 	struct fxregs_state *fxsave;
9355 
9356 	vcpu_load(vcpu);
9357 
9358 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9359 	memcpy(fpu->fpr, fxsave->st_space, 128);
9360 	fpu->fcw = fxsave->cwd;
9361 	fpu->fsw = fxsave->swd;
9362 	fpu->ftwx = fxsave->twd;
9363 	fpu->last_opcode = fxsave->fop;
9364 	fpu->last_ip = fxsave->rip;
9365 	fpu->last_dp = fxsave->rdp;
9366 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
9367 
9368 	vcpu_put(vcpu);
9369 	return 0;
9370 }
9371 
9372 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9373 {
9374 	struct fxregs_state *fxsave;
9375 
9376 	vcpu_load(vcpu);
9377 
9378 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9379 
9380 	memcpy(fxsave->st_space, fpu->fpr, 128);
9381 	fxsave->cwd = fpu->fcw;
9382 	fxsave->swd = fpu->fsw;
9383 	fxsave->twd = fpu->ftwx;
9384 	fxsave->fop = fpu->last_opcode;
9385 	fxsave->rip = fpu->last_ip;
9386 	fxsave->rdp = fpu->last_dp;
9387 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
9388 
9389 	vcpu_put(vcpu);
9390 	return 0;
9391 }
9392 
9393 static void store_regs(struct kvm_vcpu *vcpu)
9394 {
9395 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
9396 
9397 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
9398 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
9399 
9400 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
9401 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
9402 
9403 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
9404 		kvm_vcpu_ioctl_x86_get_vcpu_events(
9405 				vcpu, &vcpu->run->s.regs.events);
9406 }
9407 
9408 static int sync_regs(struct kvm_vcpu *vcpu)
9409 {
9410 	if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
9411 		return -EINVAL;
9412 
9413 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
9414 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
9415 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
9416 	}
9417 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
9418 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
9419 			return -EINVAL;
9420 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
9421 	}
9422 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
9423 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
9424 				vcpu, &vcpu->run->s.regs.events))
9425 			return -EINVAL;
9426 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
9427 	}
9428 
9429 	return 0;
9430 }
9431 
9432 static void fx_init(struct kvm_vcpu *vcpu)
9433 {
9434 	fpstate_init(&vcpu->arch.guest_fpu->state);
9435 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9436 		vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
9437 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
9438 
9439 	/*
9440 	 * Ensure guest xcr0 is valid for loading
9441 	 */
9442 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9443 
9444 	vcpu->arch.cr0 |= X86_CR0_ET;
9445 }
9446 
9447 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
9448 {
9449 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
9450 		pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
9451 			     "guest TSC will not be reliable\n");
9452 
9453 	return 0;
9454 }
9455 
9456 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
9457 {
9458 	struct page *page;
9459 	int r;
9460 
9461 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9462 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9463 	else
9464 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9465 
9466 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
9467 
9468 	r = kvm_mmu_create(vcpu);
9469 	if (r < 0)
9470 		return r;
9471 
9472 	if (irqchip_in_kernel(vcpu->kvm)) {
9473 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9474 		if (r < 0)
9475 			goto fail_mmu_destroy;
9476 		if (kvm_apicv_activated(vcpu->kvm))
9477 			vcpu->arch.apicv_active = true;
9478 	} else
9479 		static_key_slow_inc(&kvm_no_apic_vcpu);
9480 
9481 	r = -ENOMEM;
9482 
9483 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9484 	if (!page)
9485 		goto fail_free_lapic;
9486 	vcpu->arch.pio_data = page_address(page);
9487 
9488 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9489 				       GFP_KERNEL_ACCOUNT);
9490 	if (!vcpu->arch.mce_banks)
9491 		goto fail_free_pio_data;
9492 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9493 
9494 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9495 				GFP_KERNEL_ACCOUNT))
9496 		goto fail_free_mce_banks;
9497 
9498 	if (!alloc_emulate_ctxt(vcpu))
9499 		goto free_wbinvd_dirty_mask;
9500 
9501 	vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
9502 						GFP_KERNEL_ACCOUNT);
9503 	if (!vcpu->arch.user_fpu) {
9504 		pr_err("kvm: failed to allocate userspace's fpu\n");
9505 		goto free_emulate_ctxt;
9506 	}
9507 
9508 	vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
9509 						 GFP_KERNEL_ACCOUNT);
9510 	if (!vcpu->arch.guest_fpu) {
9511 		pr_err("kvm: failed to allocate vcpu's fpu\n");
9512 		goto free_user_fpu;
9513 	}
9514 	fx_init(vcpu);
9515 
9516 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9517 
9518 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9519 
9520 	kvm_async_pf_hash_reset(vcpu);
9521 	kvm_pmu_init(vcpu);
9522 
9523 	vcpu->arch.pending_external_vector = -1;
9524 	vcpu->arch.preempted_in_kernel = false;
9525 
9526 	kvm_hv_vcpu_init(vcpu);
9527 
9528 	r = kvm_x86_ops.vcpu_create(vcpu);
9529 	if (r)
9530 		goto free_guest_fpu;
9531 
9532 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
9533 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
9534 	kvm_vcpu_mtrr_init(vcpu);
9535 	vcpu_load(vcpu);
9536 	kvm_vcpu_reset(vcpu, false);
9537 	kvm_init_mmu(vcpu, false);
9538 	vcpu_put(vcpu);
9539 	return 0;
9540 
9541 free_guest_fpu:
9542 	kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9543 free_user_fpu:
9544 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9545 free_emulate_ctxt:
9546 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
9547 free_wbinvd_dirty_mask:
9548 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9549 fail_free_mce_banks:
9550 	kfree(vcpu->arch.mce_banks);
9551 fail_free_pio_data:
9552 	free_page((unsigned long)vcpu->arch.pio_data);
9553 fail_free_lapic:
9554 	kvm_free_lapic(vcpu);
9555 fail_mmu_destroy:
9556 	kvm_mmu_destroy(vcpu);
9557 	return r;
9558 }
9559 
9560 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
9561 {
9562 	struct msr_data msr;
9563 	struct kvm *kvm = vcpu->kvm;
9564 
9565 	kvm_hv_vcpu_postcreate(vcpu);
9566 
9567 	if (mutex_lock_killable(&vcpu->mutex))
9568 		return;
9569 	vcpu_load(vcpu);
9570 	msr.data = 0x0;
9571 	msr.index = MSR_IA32_TSC;
9572 	msr.host_initiated = true;
9573 	kvm_write_tsc(vcpu, &msr);
9574 	vcpu_put(vcpu);
9575 
9576 	/* poll control enabled by default */
9577 	vcpu->arch.msr_kvm_poll_control = 1;
9578 
9579 	mutex_unlock(&vcpu->mutex);
9580 
9581 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
9582 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
9583 						KVMCLOCK_SYNC_PERIOD);
9584 }
9585 
9586 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
9587 {
9588 	struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
9589 	int idx;
9590 
9591 	kvm_release_pfn(cache->pfn, cache->dirty, cache);
9592 
9593 	kvmclock_reset(vcpu);
9594 
9595 	kvm_x86_ops.vcpu_free(vcpu);
9596 
9597 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
9598 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9599 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9600 	kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9601 
9602 	kvm_hv_vcpu_uninit(vcpu);
9603 	kvm_pmu_destroy(vcpu);
9604 	kfree(vcpu->arch.mce_banks);
9605 	kvm_free_lapic(vcpu);
9606 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9607 	kvm_mmu_destroy(vcpu);
9608 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9609 	free_page((unsigned long)vcpu->arch.pio_data);
9610 	if (!lapic_in_kernel(vcpu))
9611 		static_key_slow_dec(&kvm_no_apic_vcpu);
9612 }
9613 
9614 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
9615 {
9616 	kvm_lapic_reset(vcpu, init_event);
9617 
9618 	vcpu->arch.hflags = 0;
9619 
9620 	vcpu->arch.smi_pending = 0;
9621 	vcpu->arch.smi_count = 0;
9622 	atomic_set(&vcpu->arch.nmi_queued, 0);
9623 	vcpu->arch.nmi_pending = 0;
9624 	vcpu->arch.nmi_injected = false;
9625 	kvm_clear_interrupt_queue(vcpu);
9626 	kvm_clear_exception_queue(vcpu);
9627 
9628 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
9629 	kvm_update_dr0123(vcpu);
9630 	vcpu->arch.dr6 = DR6_INIT;
9631 	vcpu->arch.dr7 = DR7_FIXED_1;
9632 	kvm_update_dr7(vcpu);
9633 
9634 	vcpu->arch.cr2 = 0;
9635 
9636 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9637 	vcpu->arch.apf.msr_en_val = 0;
9638 	vcpu->arch.apf.msr_int_val = 0;
9639 	vcpu->arch.st.msr_val = 0;
9640 
9641 	kvmclock_reset(vcpu);
9642 
9643 	kvm_clear_async_pf_completion_queue(vcpu);
9644 	kvm_async_pf_hash_reset(vcpu);
9645 	vcpu->arch.apf.halted = false;
9646 
9647 	if (kvm_mpx_supported()) {
9648 		void *mpx_state_buffer;
9649 
9650 		/*
9651 		 * To avoid have the INIT path from kvm_apic_has_events() that be
9652 		 * called with loaded FPU and does not let userspace fix the state.
9653 		 */
9654 		if (init_event)
9655 			kvm_put_guest_fpu(vcpu);
9656 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9657 					XFEATURE_BNDREGS);
9658 		if (mpx_state_buffer)
9659 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
9660 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9661 					XFEATURE_BNDCSR);
9662 		if (mpx_state_buffer)
9663 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
9664 		if (init_event)
9665 			kvm_load_guest_fpu(vcpu);
9666 	}
9667 
9668 	if (!init_event) {
9669 		kvm_pmu_reset(vcpu);
9670 		vcpu->arch.smbase = 0x30000;
9671 
9672 		vcpu->arch.msr_misc_features_enables = 0;
9673 
9674 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9675 	}
9676 
9677 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
9678 	vcpu->arch.regs_avail = ~0;
9679 	vcpu->arch.regs_dirty = ~0;
9680 
9681 	vcpu->arch.ia32_xss = 0;
9682 
9683 	kvm_x86_ops.vcpu_reset(vcpu, init_event);
9684 }
9685 
9686 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
9687 {
9688 	struct kvm_segment cs;
9689 
9690 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9691 	cs.selector = vector << 8;
9692 	cs.base = vector << 12;
9693 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9694 	kvm_rip_write(vcpu, 0);
9695 }
9696 
9697 int kvm_arch_hardware_enable(void)
9698 {
9699 	struct kvm *kvm;
9700 	struct kvm_vcpu *vcpu;
9701 	int i;
9702 	int ret;
9703 	u64 local_tsc;
9704 	u64 max_tsc = 0;
9705 	bool stable, backwards_tsc = false;
9706 
9707 	kvm_shared_msr_cpu_online();
9708 	ret = kvm_x86_ops.hardware_enable();
9709 	if (ret != 0)
9710 		return ret;
9711 
9712 	local_tsc = rdtsc();
9713 	stable = !kvm_check_tsc_unstable();
9714 	list_for_each_entry(kvm, &vm_list, vm_list) {
9715 		kvm_for_each_vcpu(i, vcpu, kvm) {
9716 			if (!stable && vcpu->cpu == smp_processor_id())
9717 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9718 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
9719 				backwards_tsc = true;
9720 				if (vcpu->arch.last_host_tsc > max_tsc)
9721 					max_tsc = vcpu->arch.last_host_tsc;
9722 			}
9723 		}
9724 	}
9725 
9726 	/*
9727 	 * Sometimes, even reliable TSCs go backwards.  This happens on
9728 	 * platforms that reset TSC during suspend or hibernate actions, but
9729 	 * maintain synchronization.  We must compensate.  Fortunately, we can
9730 	 * detect that condition here, which happens early in CPU bringup,
9731 	 * before any KVM threads can be running.  Unfortunately, we can't
9732 	 * bring the TSCs fully up to date with real time, as we aren't yet far
9733 	 * enough into CPU bringup that we know how much real time has actually
9734 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
9735 	 * variables that haven't been updated yet.
9736 	 *
9737 	 * So we simply find the maximum observed TSC above, then record the
9738 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
9739 	 * the adjustment will be applied.  Note that we accumulate
9740 	 * adjustments, in case multiple suspend cycles happen before some VCPU
9741 	 * gets a chance to run again.  In the event that no KVM threads get a
9742 	 * chance to run, we will miss the entire elapsed period, as we'll have
9743 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
9744 	 * loose cycle time.  This isn't too big a deal, since the loss will be
9745 	 * uniform across all VCPUs (not to mention the scenario is extremely
9746 	 * unlikely). It is possible that a second hibernate recovery happens
9747 	 * much faster than a first, causing the observed TSC here to be
9748 	 * smaller; this would require additional padding adjustment, which is
9749 	 * why we set last_host_tsc to the local tsc observed here.
9750 	 *
9751 	 * N.B. - this code below runs only on platforms with reliable TSC,
9752 	 * as that is the only way backwards_tsc is set above.  Also note
9753 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
9754 	 * have the same delta_cyc adjustment applied if backwards_tsc
9755 	 * is detected.  Note further, this adjustment is only done once,
9756 	 * as we reset last_host_tsc on all VCPUs to stop this from being
9757 	 * called multiple times (one for each physical CPU bringup).
9758 	 *
9759 	 * Platforms with unreliable TSCs don't have to deal with this, they
9760 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
9761 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
9762 	 * guarantee that they stay in perfect synchronization.
9763 	 */
9764 	if (backwards_tsc) {
9765 		u64 delta_cyc = max_tsc - local_tsc;
9766 		list_for_each_entry(kvm, &vm_list, vm_list) {
9767 			kvm->arch.backwards_tsc_observed = true;
9768 			kvm_for_each_vcpu(i, vcpu, kvm) {
9769 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
9770 				vcpu->arch.last_host_tsc = local_tsc;
9771 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9772 			}
9773 
9774 			/*
9775 			 * We have to disable TSC offset matching.. if you were
9776 			 * booting a VM while issuing an S4 host suspend....
9777 			 * you may have some problem.  Solving this issue is
9778 			 * left as an exercise to the reader.
9779 			 */
9780 			kvm->arch.last_tsc_nsec = 0;
9781 			kvm->arch.last_tsc_write = 0;
9782 		}
9783 
9784 	}
9785 	return 0;
9786 }
9787 
9788 void kvm_arch_hardware_disable(void)
9789 {
9790 	kvm_x86_ops.hardware_disable();
9791 	drop_user_return_notifiers();
9792 }
9793 
9794 int kvm_arch_hardware_setup(void *opaque)
9795 {
9796 	struct kvm_x86_init_ops *ops = opaque;
9797 	int r;
9798 
9799 	rdmsrl_safe(MSR_EFER, &host_efer);
9800 
9801 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9802 		rdmsrl(MSR_IA32_XSS, host_xss);
9803 
9804 	r = ops->hardware_setup();
9805 	if (r != 0)
9806 		return r;
9807 
9808 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9809 
9810 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9811 		supported_xss = 0;
9812 
9813 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9814 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9815 #undef __kvm_cpu_cap_has
9816 
9817 	if (kvm_has_tsc_control) {
9818 		/*
9819 		 * Make sure the user can only configure tsc_khz values that
9820 		 * fit into a signed integer.
9821 		 * A min value is not calculated because it will always
9822 		 * be 1 on all machines.
9823 		 */
9824 		u64 max = min(0x7fffffffULL,
9825 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9826 		kvm_max_guest_tsc_khz = max;
9827 
9828 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9829 	}
9830 
9831 	kvm_init_msr_list();
9832 	return 0;
9833 }
9834 
9835 void kvm_arch_hardware_unsetup(void)
9836 {
9837 	kvm_x86_ops.hardware_unsetup();
9838 }
9839 
9840 int kvm_arch_check_processor_compat(void *opaque)
9841 {
9842 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
9843 	struct kvm_x86_init_ops *ops = opaque;
9844 
9845 	WARN_ON(!irqs_disabled());
9846 
9847 	if (__cr4_reserved_bits(cpu_has, c) !=
9848 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9849 		return -EIO;
9850 
9851 	return ops->check_processor_compatibility();
9852 }
9853 
9854 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9855 {
9856 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9857 }
9858 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9859 
9860 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9861 {
9862 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9863 }
9864 
9865 struct static_key kvm_no_apic_vcpu __read_mostly;
9866 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9867 
9868 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9869 {
9870 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
9871 
9872 	vcpu->arch.l1tf_flush_l1d = true;
9873 	if (pmu->version && unlikely(pmu->event_count)) {
9874 		pmu->need_cleanup = true;
9875 		kvm_make_request(KVM_REQ_PMU, vcpu);
9876 	}
9877 	kvm_x86_ops.sched_in(vcpu, cpu);
9878 }
9879 
9880 void kvm_arch_free_vm(struct kvm *kvm)
9881 {
9882 	kfree(kvm->arch.hyperv.hv_pa_pg);
9883 	vfree(kvm);
9884 }
9885 
9886 
9887 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9888 {
9889 	if (type)
9890 		return -EINVAL;
9891 
9892 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9893 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9894 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
9895 	INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
9896 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9897 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9898 
9899 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9900 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9901 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9902 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9903 		&kvm->arch.irq_sources_bitmap);
9904 
9905 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9906 	mutex_init(&kvm->arch.apic_map_lock);
9907 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9908 
9909 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
9910 	pvclock_update_vm_gtod_copy(kvm);
9911 
9912 	kvm->arch.guest_can_read_msr_platform_info = true;
9913 
9914 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9915 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9916 
9917 	kvm_hv_init_vm(kvm);
9918 	kvm_page_track_init(kvm);
9919 	kvm_mmu_init_vm(kvm);
9920 
9921 	return kvm_x86_ops.vm_init(kvm);
9922 }
9923 
9924 int kvm_arch_post_init_vm(struct kvm *kvm)
9925 {
9926 	return kvm_mmu_post_init_vm(kvm);
9927 }
9928 
9929 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9930 {
9931 	vcpu_load(vcpu);
9932 	kvm_mmu_unload(vcpu);
9933 	vcpu_put(vcpu);
9934 }
9935 
9936 static void kvm_free_vcpus(struct kvm *kvm)
9937 {
9938 	unsigned int i;
9939 	struct kvm_vcpu *vcpu;
9940 
9941 	/*
9942 	 * Unpin any mmu pages first.
9943 	 */
9944 	kvm_for_each_vcpu(i, vcpu, kvm) {
9945 		kvm_clear_async_pf_completion_queue(vcpu);
9946 		kvm_unload_vcpu_mmu(vcpu);
9947 	}
9948 	kvm_for_each_vcpu(i, vcpu, kvm)
9949 		kvm_vcpu_destroy(vcpu);
9950 
9951 	mutex_lock(&kvm->lock);
9952 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9953 		kvm->vcpus[i] = NULL;
9954 
9955 	atomic_set(&kvm->online_vcpus, 0);
9956 	mutex_unlock(&kvm->lock);
9957 }
9958 
9959 void kvm_arch_sync_events(struct kvm *kvm)
9960 {
9961 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9962 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9963 	kvm_free_pit(kvm);
9964 }
9965 
9966 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9967 {
9968 	int i, r;
9969 	unsigned long hva, old_npages;
9970 	struct kvm_memslots *slots = kvm_memslots(kvm);
9971 	struct kvm_memory_slot *slot;
9972 
9973 	/* Called with kvm->slots_lock held.  */
9974 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9975 		return -EINVAL;
9976 
9977 	slot = id_to_memslot(slots, id);
9978 	if (size) {
9979 		if (slot && slot->npages)
9980 			return -EEXIST;
9981 
9982 		/*
9983 		 * MAP_SHARED to prevent internal slot pages from being moved
9984 		 * by fork()/COW.
9985 		 */
9986 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9987 			      MAP_SHARED | MAP_ANONYMOUS, 0);
9988 		if (IS_ERR((void *)hva))
9989 			return PTR_ERR((void *)hva);
9990 	} else {
9991 		if (!slot || !slot->npages)
9992 			return 0;
9993 
9994 		old_npages = slot->npages;
9995 		hva = 0;
9996 	}
9997 
9998 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9999 		struct kvm_userspace_memory_region m;
10000 
10001 		m.slot = id | (i << 16);
10002 		m.flags = 0;
10003 		m.guest_phys_addr = gpa;
10004 		m.userspace_addr = hva;
10005 		m.memory_size = size;
10006 		r = __kvm_set_memory_region(kvm, &m);
10007 		if (r < 0)
10008 			return r;
10009 	}
10010 
10011 	if (!size)
10012 		vm_munmap(hva, old_npages * PAGE_SIZE);
10013 
10014 	return 0;
10015 }
10016 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
10017 
10018 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
10019 {
10020 	kvm_mmu_pre_destroy_vm(kvm);
10021 }
10022 
10023 void kvm_arch_destroy_vm(struct kvm *kvm)
10024 {
10025 	if (current->mm == kvm->mm) {
10026 		/*
10027 		 * Free memory regions allocated on behalf of userspace,
10028 		 * unless the the memory map has changed due to process exit
10029 		 * or fd copying.
10030 		 */
10031 		mutex_lock(&kvm->slots_lock);
10032 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
10033 					0, 0);
10034 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
10035 					0, 0);
10036 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
10037 		mutex_unlock(&kvm->slots_lock);
10038 	}
10039 	if (kvm_x86_ops.vm_destroy)
10040 		kvm_x86_ops.vm_destroy(kvm);
10041 	kvm_pic_destroy(kvm);
10042 	kvm_ioapic_destroy(kvm);
10043 	kvm_free_vcpus(kvm);
10044 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
10045 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
10046 	kvm_mmu_uninit_vm(kvm);
10047 	kvm_page_track_cleanup(kvm);
10048 	kvm_hv_destroy_vm(kvm);
10049 }
10050 
10051 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
10052 {
10053 	int i;
10054 
10055 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10056 		kvfree(slot->arch.rmap[i]);
10057 		slot->arch.rmap[i] = NULL;
10058 
10059 		if (i == 0)
10060 			continue;
10061 
10062 		kvfree(slot->arch.lpage_info[i - 1]);
10063 		slot->arch.lpage_info[i - 1] = NULL;
10064 	}
10065 
10066 	kvm_page_track_free_memslot(slot);
10067 }
10068 
10069 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
10070 				      unsigned long npages)
10071 {
10072 	int i;
10073 
10074 	/*
10075 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
10076 	 * old arrays will be freed by __kvm_set_memory_region() if installing
10077 	 * the new memslot is successful.
10078 	 */
10079 	memset(&slot->arch, 0, sizeof(slot->arch));
10080 
10081 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10082 		struct kvm_lpage_info *linfo;
10083 		unsigned long ugfn;
10084 		int lpages;
10085 		int level = i + 1;
10086 
10087 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
10088 				      slot->base_gfn, level) + 1;
10089 
10090 		slot->arch.rmap[i] =
10091 			kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
10092 				 GFP_KERNEL_ACCOUNT);
10093 		if (!slot->arch.rmap[i])
10094 			goto out_free;
10095 		if (i == 0)
10096 			continue;
10097 
10098 		linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
10099 		if (!linfo)
10100 			goto out_free;
10101 
10102 		slot->arch.lpage_info[i - 1] = linfo;
10103 
10104 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
10105 			linfo[0].disallow_lpage = 1;
10106 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
10107 			linfo[lpages - 1].disallow_lpage = 1;
10108 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
10109 		/*
10110 		 * If the gfn and userspace address are not aligned wrt each
10111 		 * other, disable large page support for this slot.
10112 		 */
10113 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
10114 			unsigned long j;
10115 
10116 			for (j = 0; j < lpages; ++j)
10117 				linfo[j].disallow_lpage = 1;
10118 		}
10119 	}
10120 
10121 	if (kvm_page_track_create_memslot(slot, npages))
10122 		goto out_free;
10123 
10124 	return 0;
10125 
10126 out_free:
10127 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10128 		kvfree(slot->arch.rmap[i]);
10129 		slot->arch.rmap[i] = NULL;
10130 		if (i == 0)
10131 			continue;
10132 
10133 		kvfree(slot->arch.lpage_info[i - 1]);
10134 		slot->arch.lpage_info[i - 1] = NULL;
10135 	}
10136 	return -ENOMEM;
10137 }
10138 
10139 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
10140 {
10141 	struct kvm_vcpu *vcpu;
10142 	int i;
10143 
10144 	/*
10145 	 * memslots->generation has been incremented.
10146 	 * mmio generation may have reached its maximum value.
10147 	 */
10148 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
10149 
10150 	/* Force re-initialization of steal_time cache */
10151 	kvm_for_each_vcpu(i, vcpu, kvm)
10152 		kvm_vcpu_kick(vcpu);
10153 }
10154 
10155 int kvm_arch_prepare_memory_region(struct kvm *kvm,
10156 				struct kvm_memory_slot *memslot,
10157 				const struct kvm_userspace_memory_region *mem,
10158 				enum kvm_mr_change change)
10159 {
10160 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
10161 		return kvm_alloc_memslot_metadata(memslot,
10162 						  mem->memory_size >> PAGE_SHIFT);
10163 	return 0;
10164 }
10165 
10166 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
10167 				     struct kvm_memory_slot *old,
10168 				     struct kvm_memory_slot *new,
10169 				     enum kvm_mr_change change)
10170 {
10171 	/*
10172 	 * Nothing to do for RO slots or CREATE/MOVE/DELETE of a slot.
10173 	 * See comments below.
10174 	 */
10175 	if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
10176 		return;
10177 
10178 	/*
10179 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
10180 	 * sptes have to be split.  If live migration is successful, the guest
10181 	 * in the source machine will be destroyed and large sptes will be
10182 	 * created in the destination. However, if the guest continues to run
10183 	 * in the source machine (for example if live migration fails), small
10184 	 * sptes will remain around and cause bad performance.
10185 	 *
10186 	 * Scan sptes if dirty logging has been stopped, dropping those
10187 	 * which can be collapsed into a single large-page spte.  Later
10188 	 * page faults will create the large-page sptes.
10189 	 *
10190 	 * There is no need to do this in any of the following cases:
10191 	 * CREATE:      No dirty mappings will already exist.
10192 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
10193 	 *		kvm_arch_flush_shadow_memslot()
10194 	 */
10195 	if ((old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
10196 	    !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
10197 		kvm_mmu_zap_collapsible_sptes(kvm, new);
10198 
10199 	/*
10200 	 * Enable or disable dirty logging for the slot.
10201 	 *
10202 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of the old
10203 	 * slot have been zapped so no dirty logging updates are needed for
10204 	 * the old slot.
10205 	 * For KVM_MR_CREATE and KVM_MR_MOVE, once the new slot is visible
10206 	 * any mappings that might be created in it will consume the
10207 	 * properties of the new slot and do not need to be updated here.
10208 	 *
10209 	 * When PML is enabled, the kvm_x86_ops dirty logging hooks are
10210 	 * called to enable/disable dirty logging.
10211 	 *
10212 	 * When disabling dirty logging with PML enabled, the D-bit is set
10213 	 * for sptes in the slot in order to prevent unnecessary GPA
10214 	 * logging in the PML buffer (and potential PML buffer full VMEXIT).
10215 	 * This guarantees leaving PML enabled for the guest's lifetime
10216 	 * won't have any additional overhead from PML when the guest is
10217 	 * running with dirty logging disabled.
10218 	 *
10219 	 * When enabling dirty logging, large sptes are write-protected
10220 	 * so they can be split on first write.  New large sptes cannot
10221 	 * be created for this slot until the end of the logging.
10222 	 * See the comments in fast_page_fault().
10223 	 * For small sptes, nothing is done if the dirty log is in the
10224 	 * initial-all-set state.  Otherwise, depending on whether pml
10225 	 * is enabled the D-bit or the W-bit will be cleared.
10226 	 */
10227 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
10228 		if (kvm_x86_ops.slot_enable_log_dirty) {
10229 			kvm_x86_ops.slot_enable_log_dirty(kvm, new);
10230 		} else {
10231 			int level =
10232 				kvm_dirty_log_manual_protect_and_init_set(kvm) ?
10233 				PG_LEVEL_2M : PG_LEVEL_4K;
10234 
10235 			/*
10236 			 * If we're with initial-all-set, we don't need
10237 			 * to write protect any small page because
10238 			 * they're reported as dirty already.  However
10239 			 * we still need to write-protect huge pages
10240 			 * so that the page split can happen lazily on
10241 			 * the first write to the huge page.
10242 			 */
10243 			kvm_mmu_slot_remove_write_access(kvm, new, level);
10244 		}
10245 	} else {
10246 		if (kvm_x86_ops.slot_disable_log_dirty)
10247 			kvm_x86_ops.slot_disable_log_dirty(kvm, new);
10248 	}
10249 }
10250 
10251 void kvm_arch_commit_memory_region(struct kvm *kvm,
10252 				const struct kvm_userspace_memory_region *mem,
10253 				struct kvm_memory_slot *old,
10254 				const struct kvm_memory_slot *new,
10255 				enum kvm_mr_change change)
10256 {
10257 	if (!kvm->arch.n_requested_mmu_pages)
10258 		kvm_mmu_change_mmu_pages(kvm,
10259 				kvm_mmu_calculate_default_mmu_pages(kvm));
10260 
10261 	/*
10262 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
10263 	 */
10264 	kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change);
10265 
10266 	/* Free the arrays associated with the old memslot. */
10267 	if (change == KVM_MR_MOVE)
10268 		kvm_arch_free_memslot(kvm, old);
10269 }
10270 
10271 void kvm_arch_flush_shadow_all(struct kvm *kvm)
10272 {
10273 	kvm_mmu_zap_all(kvm);
10274 }
10275 
10276 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
10277 				   struct kvm_memory_slot *slot)
10278 {
10279 	kvm_page_track_flush_slot(kvm, slot);
10280 }
10281 
10282 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
10283 {
10284 	return (is_guest_mode(vcpu) &&
10285 			kvm_x86_ops.guest_apic_has_interrupt &&
10286 			kvm_x86_ops.guest_apic_has_interrupt(vcpu));
10287 }
10288 
10289 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
10290 {
10291 	if (!list_empty_careful(&vcpu->async_pf.done))
10292 		return true;
10293 
10294 	if (kvm_apic_has_events(vcpu))
10295 		return true;
10296 
10297 	if (vcpu->arch.pv.pv_unhalted)
10298 		return true;
10299 
10300 	if (vcpu->arch.exception.pending)
10301 		return true;
10302 
10303 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10304 	    (vcpu->arch.nmi_pending &&
10305 	     kvm_x86_ops.nmi_allowed(vcpu, false)))
10306 		return true;
10307 
10308 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
10309 	    (vcpu->arch.smi_pending &&
10310 	     kvm_x86_ops.smi_allowed(vcpu, false)))
10311 		return true;
10312 
10313 	if (kvm_arch_interrupt_allowed(vcpu) &&
10314 	    (kvm_cpu_has_interrupt(vcpu) ||
10315 	    kvm_guest_apic_has_interrupt(vcpu)))
10316 		return true;
10317 
10318 	if (kvm_hv_has_stimer_pending(vcpu))
10319 		return true;
10320 
10321 	if (is_guest_mode(vcpu) &&
10322 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
10323 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
10324 		return true;
10325 
10326 	return false;
10327 }
10328 
10329 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
10330 {
10331 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
10332 }
10333 
10334 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
10335 {
10336 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
10337 		return true;
10338 
10339 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10340 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
10341 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
10342 		return true;
10343 
10344 	if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu))
10345 		return true;
10346 
10347 	return false;
10348 }
10349 
10350 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
10351 {
10352 	return vcpu->arch.preempted_in_kernel;
10353 }
10354 
10355 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
10356 {
10357 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
10358 }
10359 
10360 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
10361 {
10362 	return kvm_x86_ops.interrupt_allowed(vcpu, false);
10363 }
10364 
10365 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
10366 {
10367 	if (is_64_bit_mode(vcpu))
10368 		return kvm_rip_read(vcpu);
10369 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
10370 		     kvm_rip_read(vcpu));
10371 }
10372 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
10373 
10374 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
10375 {
10376 	return kvm_get_linear_rip(vcpu) == linear_rip;
10377 }
10378 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
10379 
10380 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
10381 {
10382 	unsigned long rflags;
10383 
10384 	rflags = kvm_x86_ops.get_rflags(vcpu);
10385 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10386 		rflags &= ~X86_EFLAGS_TF;
10387 	return rflags;
10388 }
10389 EXPORT_SYMBOL_GPL(kvm_get_rflags);
10390 
10391 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10392 {
10393 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
10394 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
10395 		rflags |= X86_EFLAGS_TF;
10396 	kvm_x86_ops.set_rflags(vcpu, rflags);
10397 }
10398 
10399 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10400 {
10401 	__kvm_set_rflags(vcpu, rflags);
10402 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10403 }
10404 EXPORT_SYMBOL_GPL(kvm_set_rflags);
10405 
10406 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
10407 {
10408 	int r;
10409 
10410 	if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
10411 	      work->wakeup_all)
10412 		return;
10413 
10414 	r = kvm_mmu_reload(vcpu);
10415 	if (unlikely(r))
10416 		return;
10417 
10418 	if (!vcpu->arch.mmu->direct_map &&
10419 	      work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
10420 		return;
10421 
10422 	kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
10423 }
10424 
10425 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
10426 {
10427 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
10428 
10429 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
10430 }
10431 
10432 static inline u32 kvm_async_pf_next_probe(u32 key)
10433 {
10434 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
10435 }
10436 
10437 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10438 {
10439 	u32 key = kvm_async_pf_hash_fn(gfn);
10440 
10441 	while (vcpu->arch.apf.gfns[key] != ~0)
10442 		key = kvm_async_pf_next_probe(key);
10443 
10444 	vcpu->arch.apf.gfns[key] = gfn;
10445 }
10446 
10447 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
10448 {
10449 	int i;
10450 	u32 key = kvm_async_pf_hash_fn(gfn);
10451 
10452 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
10453 		     (vcpu->arch.apf.gfns[key] != gfn &&
10454 		      vcpu->arch.apf.gfns[key] != ~0); i++)
10455 		key = kvm_async_pf_next_probe(key);
10456 
10457 	return key;
10458 }
10459 
10460 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10461 {
10462 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
10463 }
10464 
10465 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10466 {
10467 	u32 i, j, k;
10468 
10469 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
10470 
10471 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
10472 		return;
10473 
10474 	while (true) {
10475 		vcpu->arch.apf.gfns[i] = ~0;
10476 		do {
10477 			j = kvm_async_pf_next_probe(j);
10478 			if (vcpu->arch.apf.gfns[j] == ~0)
10479 				return;
10480 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
10481 			/*
10482 			 * k lies cyclically in ]i,j]
10483 			 * |    i.k.j |
10484 			 * |....j i.k.| or  |.k..j i...|
10485 			 */
10486 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
10487 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
10488 		i = j;
10489 	}
10490 }
10491 
10492 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
10493 {
10494 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
10495 
10496 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
10497 				      sizeof(reason));
10498 }
10499 
10500 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
10501 {
10502 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
10503 
10504 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
10505 					     &token, offset, sizeof(token));
10506 }
10507 
10508 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
10509 {
10510 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
10511 	u32 val;
10512 
10513 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
10514 					 &val, offset, sizeof(val)))
10515 		return false;
10516 
10517 	return !val;
10518 }
10519 
10520 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
10521 {
10522 	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
10523 		return false;
10524 
10525 	if (!kvm_pv_async_pf_enabled(vcpu) ||
10526 	    (vcpu->arch.apf.send_user_only && kvm_x86_ops.get_cpl(vcpu) == 0))
10527 		return false;
10528 
10529 	return true;
10530 }
10531 
10532 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
10533 {
10534 	if (unlikely(!lapic_in_kernel(vcpu) ||
10535 		     kvm_event_needs_reinjection(vcpu) ||
10536 		     vcpu->arch.exception.pending))
10537 		return false;
10538 
10539 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
10540 		return false;
10541 
10542 	/*
10543 	 * If interrupts are off we cannot even use an artificial
10544 	 * halt state.
10545 	 */
10546 	return kvm_arch_interrupt_allowed(vcpu);
10547 }
10548 
10549 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
10550 				     struct kvm_async_pf *work)
10551 {
10552 	struct x86_exception fault;
10553 
10554 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
10555 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
10556 
10557 	if (kvm_can_deliver_async_pf(vcpu) &&
10558 	    !apf_put_user_notpresent(vcpu)) {
10559 		fault.vector = PF_VECTOR;
10560 		fault.error_code_valid = true;
10561 		fault.error_code = 0;
10562 		fault.nested_page_fault = false;
10563 		fault.address = work->arch.token;
10564 		fault.async_page_fault = true;
10565 		kvm_inject_page_fault(vcpu, &fault);
10566 		return true;
10567 	} else {
10568 		/*
10569 		 * It is not possible to deliver a paravirtualized asynchronous
10570 		 * page fault, but putting the guest in an artificial halt state
10571 		 * can be beneficial nevertheless: if an interrupt arrives, we
10572 		 * can deliver it timely and perhaps the guest will schedule
10573 		 * another process.  When the instruction that triggered a page
10574 		 * fault is retried, hopefully the page will be ready in the host.
10575 		 */
10576 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
10577 		return false;
10578 	}
10579 }
10580 
10581 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
10582 				 struct kvm_async_pf *work)
10583 {
10584 	struct kvm_lapic_irq irq = {
10585 		.delivery_mode = APIC_DM_FIXED,
10586 		.vector = vcpu->arch.apf.vec
10587 	};
10588 
10589 	if (work->wakeup_all)
10590 		work->arch.token = ~0; /* broadcast wakeup */
10591 	else
10592 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
10593 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
10594 
10595 	if ((work->wakeup_all || work->notpresent_injected) &&
10596 	    kvm_pv_async_pf_enabled(vcpu) &&
10597 	    !apf_put_user_ready(vcpu, work->arch.token)) {
10598 		vcpu->arch.apf.pageready_pending = true;
10599 		kvm_apic_set_irq(vcpu, &irq, NULL);
10600 	}
10601 
10602 	vcpu->arch.apf.halted = false;
10603 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10604 }
10605 
10606 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
10607 {
10608 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
10609 	if (!vcpu->arch.apf.pageready_pending)
10610 		kvm_vcpu_kick(vcpu);
10611 }
10612 
10613 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
10614 {
10615 	if (!kvm_pv_async_pf_enabled(vcpu))
10616 		return true;
10617 	else
10618 		return apf_pageready_slot_free(vcpu);
10619 }
10620 
10621 void kvm_arch_start_assignment(struct kvm *kvm)
10622 {
10623 	atomic_inc(&kvm->arch.assigned_device_count);
10624 }
10625 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
10626 
10627 void kvm_arch_end_assignment(struct kvm *kvm)
10628 {
10629 	atomic_dec(&kvm->arch.assigned_device_count);
10630 }
10631 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
10632 
10633 bool kvm_arch_has_assigned_device(struct kvm *kvm)
10634 {
10635 	return atomic_read(&kvm->arch.assigned_device_count);
10636 }
10637 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
10638 
10639 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
10640 {
10641 	atomic_inc(&kvm->arch.noncoherent_dma_count);
10642 }
10643 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
10644 
10645 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
10646 {
10647 	atomic_dec(&kvm->arch.noncoherent_dma_count);
10648 }
10649 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
10650 
10651 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
10652 {
10653 	return atomic_read(&kvm->arch.noncoherent_dma_count);
10654 }
10655 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
10656 
10657 bool kvm_arch_has_irq_bypass(void)
10658 {
10659 	return true;
10660 }
10661 
10662 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
10663 				      struct irq_bypass_producer *prod)
10664 {
10665 	struct kvm_kernel_irqfd *irqfd =
10666 		container_of(cons, struct kvm_kernel_irqfd, consumer);
10667 	int ret;
10668 
10669 	irqfd->producer = prod;
10670 	kvm_arch_start_assignment(irqfd->kvm);
10671 	ret = kvm_x86_ops.update_pi_irte(irqfd->kvm,
10672 					 prod->irq, irqfd->gsi, 1);
10673 
10674 	if (ret)
10675 		kvm_arch_end_assignment(irqfd->kvm);
10676 
10677 	return ret;
10678 }
10679 
10680 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
10681 				      struct irq_bypass_producer *prod)
10682 {
10683 	int ret;
10684 	struct kvm_kernel_irqfd *irqfd =
10685 		container_of(cons, struct kvm_kernel_irqfd, consumer);
10686 
10687 	WARN_ON(irqfd->producer != prod);
10688 	irqfd->producer = NULL;
10689 
10690 	/*
10691 	 * When producer of consumer is unregistered, we change back to
10692 	 * remapped mode, so we can re-use the current implementation
10693 	 * when the irq is masked/disabled or the consumer side (KVM
10694 	 * int this case doesn't want to receive the interrupts.
10695 	*/
10696 	ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
10697 	if (ret)
10698 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
10699 		       " fails: %d\n", irqfd->consumer.token, ret);
10700 
10701 	kvm_arch_end_assignment(irqfd->kvm);
10702 }
10703 
10704 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
10705 				   uint32_t guest_irq, bool set)
10706 {
10707 	return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set);
10708 }
10709 
10710 bool kvm_vector_hashing_enabled(void)
10711 {
10712 	return vector_hashing;
10713 }
10714 
10715 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
10716 {
10717 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
10718 }
10719 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
10720 
10721 
10722 int kvm_spec_ctrl_test_value(u64 value)
10723 {
10724 	/*
10725 	 * test that setting IA32_SPEC_CTRL to given value
10726 	 * is allowed by the host processor
10727 	 */
10728 
10729 	u64 saved_value;
10730 	unsigned long flags;
10731 	int ret = 0;
10732 
10733 	local_irq_save(flags);
10734 
10735 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
10736 		ret = 1;
10737 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
10738 		ret = 1;
10739 	else
10740 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
10741 
10742 	local_irq_restore(flags);
10743 
10744 	return ret;
10745 }
10746 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
10747 
10748 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
10749 {
10750 	struct x86_exception fault;
10751 	u32 access = error_code &
10752 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
10753 
10754 	if (!(error_code & PFERR_PRESENT_MASK) ||
10755 	    vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
10756 		/*
10757 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
10758 		 * tables probably do not match the TLB.  Just proceed
10759 		 * with the error code that the processor gave.
10760 		 */
10761 		fault.vector = PF_VECTOR;
10762 		fault.error_code_valid = true;
10763 		fault.error_code = error_code;
10764 		fault.nested_page_fault = false;
10765 		fault.address = gva;
10766 	}
10767 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
10768 }
10769 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
10770 
10771 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
10772 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
10773 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
10774 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
10775 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
10776 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
10777 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
10778 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
10779 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
10780 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
10781 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
10782 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
10783 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
10784 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
10785 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
10786 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
10787 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
10788 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
10789 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
10790 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
10791 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
10792 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
10793