xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 015d239a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "mmu.h"
22 #include "i8254.h"
23 #include "tss.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26 #include "cpuid.h"
27 #include "pmu.h"
28 #include "hyperv.h"
29 #include "lapic.h"
30 
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/export.h>
37 #include <linux/moduleparam.h>
38 #include <linux/mman.h>
39 #include <linux/highmem.h>
40 #include <linux/iommu.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/cpufreq.h>
43 #include <linux/user-return-notifier.h>
44 #include <linux/srcu.h>
45 #include <linux/slab.h>
46 #include <linux/perf_event.h>
47 #include <linux/uaccess.h>
48 #include <linux/hash.h>
49 #include <linux/pci.h>
50 #include <linux/timekeeper_internal.h>
51 #include <linux/pvclock_gtod.h>
52 #include <linux/kvm_irqfd.h>
53 #include <linux/irqbypass.h>
54 #include <linux/sched/stat.h>
55 #include <linux/sched/isolation.h>
56 #include <linux/mem_encrypt.h>
57 
58 #include <trace/events/kvm.h>
59 
60 #include <asm/debugreg.h>
61 #include <asm/msr.h>
62 #include <asm/desc.h>
63 #include <asm/mce.h>
64 #include <linux/kernel_stat.h>
65 #include <asm/fpu/internal.h> /* Ugh! */
66 #include <asm/pvclock.h>
67 #include <asm/div64.h>
68 #include <asm/irq_remapping.h>
69 #include <asm/mshyperv.h>
70 #include <asm/hypervisor.h>
71 #include <asm/intel_pt.h>
72 #include <asm/emulate_prefix.h>
73 #include <clocksource/hyperv_timer.h>
74 
75 #define CREATE_TRACE_POINTS
76 #include "trace.h"
77 
78 #define MAX_IO_MSRS 256
79 #define KVM_MAX_MCE_BANKS 32
80 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
81 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
82 
83 #define emul_to_vcpu(ctxt) \
84 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
85 
86 /* EFER defaults:
87  * - enable syscall per default because its emulated by KVM
88  * - enable LME and LMA per default on 64 bit KVM
89  */
90 #ifdef CONFIG_X86_64
91 static
92 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
93 #else
94 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
95 #endif
96 
97 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
98 
99 #define VM_STAT(x, ...) offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__
100 #define VCPU_STAT(x, ...) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__
101 
102 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
103                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
104 
105 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
106 static void process_nmi(struct kvm_vcpu *vcpu);
107 static void enter_smm(struct kvm_vcpu *vcpu);
108 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
109 static void store_regs(struct kvm_vcpu *vcpu);
110 static int sync_regs(struct kvm_vcpu *vcpu);
111 
112 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
113 EXPORT_SYMBOL_GPL(kvm_x86_ops);
114 
115 static bool __read_mostly ignore_msrs = 0;
116 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
117 
118 static bool __read_mostly report_ignored_msrs = true;
119 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
120 
121 unsigned int min_timer_period_us = 200;
122 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
123 
124 static bool __read_mostly kvmclock_periodic_sync = true;
125 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
126 
127 bool __read_mostly kvm_has_tsc_control;
128 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
129 u32  __read_mostly kvm_max_guest_tsc_khz;
130 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
131 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
132 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
133 u64  __read_mostly kvm_max_tsc_scaling_ratio;
134 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
135 u64 __read_mostly kvm_default_tsc_scaling_ratio;
136 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
137 
138 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
139 static u32 __read_mostly tsc_tolerance_ppm = 250;
140 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
141 
142 /*
143  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
144  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
145  * advancement entirely.  Any other value is used as-is and disables adaptive
146  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
147  */
148 static int __read_mostly lapic_timer_advance_ns = -1;
149 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
150 
151 static bool __read_mostly vector_hashing = true;
152 module_param(vector_hashing, bool, S_IRUGO);
153 
154 bool __read_mostly enable_vmware_backdoor = false;
155 module_param(enable_vmware_backdoor, bool, S_IRUGO);
156 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
157 
158 static bool __read_mostly force_emulation_prefix = false;
159 module_param(force_emulation_prefix, bool, S_IRUGO);
160 
161 int __read_mostly pi_inject_timer = -1;
162 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
163 
164 #define KVM_NR_SHARED_MSRS 16
165 
166 struct kvm_shared_msrs_global {
167 	int nr;
168 	u32 msrs[KVM_NR_SHARED_MSRS];
169 };
170 
171 struct kvm_shared_msrs {
172 	struct user_return_notifier urn;
173 	bool registered;
174 	struct kvm_shared_msr_values {
175 		u64 host;
176 		u64 curr;
177 	} values[KVM_NR_SHARED_MSRS];
178 };
179 
180 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
181 static struct kvm_shared_msrs __percpu *shared_msrs;
182 
183 static u64 __read_mostly host_xss;
184 
185 struct kvm_stats_debugfs_item debugfs_entries[] = {
186 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
187 	{ "pf_guest", VCPU_STAT(pf_guest) },
188 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
189 	{ "invlpg", VCPU_STAT(invlpg) },
190 	{ "exits", VCPU_STAT(exits) },
191 	{ "io_exits", VCPU_STAT(io_exits) },
192 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
193 	{ "signal_exits", VCPU_STAT(signal_exits) },
194 	{ "irq_window", VCPU_STAT(irq_window_exits) },
195 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
196 	{ "halt_exits", VCPU_STAT(halt_exits) },
197 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
198 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
199 	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
200 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
201 	{ "hypercalls", VCPU_STAT(hypercalls) },
202 	{ "request_irq", VCPU_STAT(request_irq_exits) },
203 	{ "irq_exits", VCPU_STAT(irq_exits) },
204 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
205 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
206 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
207 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
208 	{ "irq_injections", VCPU_STAT(irq_injections) },
209 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
210 	{ "req_event", VCPU_STAT(req_event) },
211 	{ "l1d_flush", VCPU_STAT(l1d_flush) },
212 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
213 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
214 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
215 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
216 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
217 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
218 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
219 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
220 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
221 	{ "largepages", VM_STAT(lpages, .mode = 0444) },
222 	{ "nx_largepages_splitted", VM_STAT(nx_lpage_splits, .mode = 0444) },
223 	{ "max_mmu_page_hash_collisions",
224 		VM_STAT(max_mmu_page_hash_collisions) },
225 	{ NULL }
226 };
227 
228 u64 __read_mostly host_xcr0;
229 
230 struct kmem_cache *x86_fpu_cache;
231 EXPORT_SYMBOL_GPL(x86_fpu_cache);
232 
233 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
234 
235 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
236 {
237 	int i;
238 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
239 		vcpu->arch.apf.gfns[i] = ~0;
240 }
241 
242 static void kvm_on_user_return(struct user_return_notifier *urn)
243 {
244 	unsigned slot;
245 	struct kvm_shared_msrs *locals
246 		= container_of(urn, struct kvm_shared_msrs, urn);
247 	struct kvm_shared_msr_values *values;
248 	unsigned long flags;
249 
250 	/*
251 	 * Disabling irqs at this point since the following code could be
252 	 * interrupted and executed through kvm_arch_hardware_disable()
253 	 */
254 	local_irq_save(flags);
255 	if (locals->registered) {
256 		locals->registered = false;
257 		user_return_notifier_unregister(urn);
258 	}
259 	local_irq_restore(flags);
260 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
261 		values = &locals->values[slot];
262 		if (values->host != values->curr) {
263 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
264 			values->curr = values->host;
265 		}
266 	}
267 }
268 
269 void kvm_define_shared_msr(unsigned slot, u32 msr)
270 {
271 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
272 	shared_msrs_global.msrs[slot] = msr;
273 	if (slot >= shared_msrs_global.nr)
274 		shared_msrs_global.nr = slot + 1;
275 }
276 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
277 
278 static void kvm_shared_msr_cpu_online(void)
279 {
280 	unsigned int cpu = smp_processor_id();
281 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
282 	u64 value;
283 	int i;
284 
285 	for (i = 0; i < shared_msrs_global.nr; ++i) {
286 		rdmsrl_safe(shared_msrs_global.msrs[i], &value);
287 		smsr->values[i].host = value;
288 		smsr->values[i].curr = value;
289 	}
290 }
291 
292 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
293 {
294 	unsigned int cpu = smp_processor_id();
295 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
296 	int err;
297 
298 	value = (value & mask) | (smsr->values[slot].host & ~mask);
299 	if (value == smsr->values[slot].curr)
300 		return 0;
301 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
302 	if (err)
303 		return 1;
304 
305 	smsr->values[slot].curr = value;
306 	if (!smsr->registered) {
307 		smsr->urn.on_user_return = kvm_on_user_return;
308 		user_return_notifier_register(&smsr->urn);
309 		smsr->registered = true;
310 	}
311 	return 0;
312 }
313 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
314 
315 static void drop_user_return_notifiers(void)
316 {
317 	unsigned int cpu = smp_processor_id();
318 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
319 
320 	if (smsr->registered)
321 		kvm_on_user_return(&smsr->urn);
322 }
323 
324 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
325 {
326 	return vcpu->arch.apic_base;
327 }
328 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
329 
330 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
331 {
332 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
333 }
334 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
335 
336 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
337 {
338 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
339 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
340 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
341 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
342 
343 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
344 		return 1;
345 	if (!msr_info->host_initiated) {
346 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
347 			return 1;
348 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
349 			return 1;
350 	}
351 
352 	kvm_lapic_set_base(vcpu, msr_info->data);
353 	return 0;
354 }
355 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
356 
357 asmlinkage __visible void kvm_spurious_fault(void)
358 {
359 	/* Fault while not rebooting.  We want the trace. */
360 	BUG_ON(!kvm_rebooting);
361 }
362 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
363 
364 #define EXCPT_BENIGN		0
365 #define EXCPT_CONTRIBUTORY	1
366 #define EXCPT_PF		2
367 
368 static int exception_class(int vector)
369 {
370 	switch (vector) {
371 	case PF_VECTOR:
372 		return EXCPT_PF;
373 	case DE_VECTOR:
374 	case TS_VECTOR:
375 	case NP_VECTOR:
376 	case SS_VECTOR:
377 	case GP_VECTOR:
378 		return EXCPT_CONTRIBUTORY;
379 	default:
380 		break;
381 	}
382 	return EXCPT_BENIGN;
383 }
384 
385 #define EXCPT_FAULT		0
386 #define EXCPT_TRAP		1
387 #define EXCPT_ABORT		2
388 #define EXCPT_INTERRUPT		3
389 
390 static int exception_type(int vector)
391 {
392 	unsigned int mask;
393 
394 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
395 		return EXCPT_INTERRUPT;
396 
397 	mask = 1 << vector;
398 
399 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
400 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
401 		return EXCPT_TRAP;
402 
403 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
404 		return EXCPT_ABORT;
405 
406 	/* Reserved exceptions will result in fault */
407 	return EXCPT_FAULT;
408 }
409 
410 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
411 {
412 	unsigned nr = vcpu->arch.exception.nr;
413 	bool has_payload = vcpu->arch.exception.has_payload;
414 	unsigned long payload = vcpu->arch.exception.payload;
415 
416 	if (!has_payload)
417 		return;
418 
419 	switch (nr) {
420 	case DB_VECTOR:
421 		/*
422 		 * "Certain debug exceptions may clear bit 0-3.  The
423 		 * remaining contents of the DR6 register are never
424 		 * cleared by the processor".
425 		 */
426 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
427 		/*
428 		 * DR6.RTM is set by all #DB exceptions that don't clear it.
429 		 */
430 		vcpu->arch.dr6 |= DR6_RTM;
431 		vcpu->arch.dr6 |= payload;
432 		/*
433 		 * Bit 16 should be set in the payload whenever the #DB
434 		 * exception should clear DR6.RTM. This makes the payload
435 		 * compatible with the pending debug exceptions under VMX.
436 		 * Though not currently documented in the SDM, this also
437 		 * makes the payload compatible with the exit qualification
438 		 * for #DB exceptions under VMX.
439 		 */
440 		vcpu->arch.dr6 ^= payload & DR6_RTM;
441 		break;
442 	case PF_VECTOR:
443 		vcpu->arch.cr2 = payload;
444 		break;
445 	}
446 
447 	vcpu->arch.exception.has_payload = false;
448 	vcpu->arch.exception.payload = 0;
449 }
450 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
451 
452 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
453 		unsigned nr, bool has_error, u32 error_code,
454 	        bool has_payload, unsigned long payload, bool reinject)
455 {
456 	u32 prev_nr;
457 	int class1, class2;
458 
459 	kvm_make_request(KVM_REQ_EVENT, vcpu);
460 
461 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
462 	queue:
463 		if (has_error && !is_protmode(vcpu))
464 			has_error = false;
465 		if (reinject) {
466 			/*
467 			 * On vmentry, vcpu->arch.exception.pending is only
468 			 * true if an event injection was blocked by
469 			 * nested_run_pending.  In that case, however,
470 			 * vcpu_enter_guest requests an immediate exit,
471 			 * and the guest shouldn't proceed far enough to
472 			 * need reinjection.
473 			 */
474 			WARN_ON_ONCE(vcpu->arch.exception.pending);
475 			vcpu->arch.exception.injected = true;
476 			if (WARN_ON_ONCE(has_payload)) {
477 				/*
478 				 * A reinjected event has already
479 				 * delivered its payload.
480 				 */
481 				has_payload = false;
482 				payload = 0;
483 			}
484 		} else {
485 			vcpu->arch.exception.pending = true;
486 			vcpu->arch.exception.injected = false;
487 		}
488 		vcpu->arch.exception.has_error_code = has_error;
489 		vcpu->arch.exception.nr = nr;
490 		vcpu->arch.exception.error_code = error_code;
491 		vcpu->arch.exception.has_payload = has_payload;
492 		vcpu->arch.exception.payload = payload;
493 		/*
494 		 * In guest mode, payload delivery should be deferred,
495 		 * so that the L1 hypervisor can intercept #PF before
496 		 * CR2 is modified (or intercept #DB before DR6 is
497 		 * modified under nVMX).  However, for ABI
498 		 * compatibility with KVM_GET_VCPU_EVENTS and
499 		 * KVM_SET_VCPU_EVENTS, we can't delay payload
500 		 * delivery unless userspace has enabled this
501 		 * functionality via the per-VM capability,
502 		 * KVM_CAP_EXCEPTION_PAYLOAD.
503 		 */
504 		if (!vcpu->kvm->arch.exception_payload_enabled ||
505 		    !is_guest_mode(vcpu))
506 			kvm_deliver_exception_payload(vcpu);
507 		return;
508 	}
509 
510 	/* to check exception */
511 	prev_nr = vcpu->arch.exception.nr;
512 	if (prev_nr == DF_VECTOR) {
513 		/* triple fault -> shutdown */
514 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
515 		return;
516 	}
517 	class1 = exception_class(prev_nr);
518 	class2 = exception_class(nr);
519 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
520 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
521 		/*
522 		 * Generate double fault per SDM Table 5-5.  Set
523 		 * exception.pending = true so that the double fault
524 		 * can trigger a nested vmexit.
525 		 */
526 		vcpu->arch.exception.pending = true;
527 		vcpu->arch.exception.injected = false;
528 		vcpu->arch.exception.has_error_code = true;
529 		vcpu->arch.exception.nr = DF_VECTOR;
530 		vcpu->arch.exception.error_code = 0;
531 		vcpu->arch.exception.has_payload = false;
532 		vcpu->arch.exception.payload = 0;
533 	} else
534 		/* replace previous exception with a new one in a hope
535 		   that instruction re-execution will regenerate lost
536 		   exception */
537 		goto queue;
538 }
539 
540 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
541 {
542 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
543 }
544 EXPORT_SYMBOL_GPL(kvm_queue_exception);
545 
546 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
547 {
548 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
549 }
550 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
551 
552 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
553 				  unsigned long payload)
554 {
555 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
556 }
557 
558 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
559 				    u32 error_code, unsigned long payload)
560 {
561 	kvm_multiple_exception(vcpu, nr, true, error_code,
562 			       true, payload, false);
563 }
564 
565 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
566 {
567 	if (err)
568 		kvm_inject_gp(vcpu, 0);
569 	else
570 		return kvm_skip_emulated_instruction(vcpu);
571 
572 	return 1;
573 }
574 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
575 
576 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
577 {
578 	++vcpu->stat.pf_guest;
579 	vcpu->arch.exception.nested_apf =
580 		is_guest_mode(vcpu) && fault->async_page_fault;
581 	if (vcpu->arch.exception.nested_apf) {
582 		vcpu->arch.apf.nested_apf_token = fault->address;
583 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
584 	} else {
585 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
586 					fault->address);
587 	}
588 }
589 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
590 
591 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
592 {
593 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
594 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
595 	else
596 		vcpu->arch.mmu->inject_page_fault(vcpu, fault);
597 
598 	return fault->nested_page_fault;
599 }
600 
601 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
602 {
603 	atomic_inc(&vcpu->arch.nmi_queued);
604 	kvm_make_request(KVM_REQ_NMI, vcpu);
605 }
606 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
607 
608 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
609 {
610 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
611 }
612 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
613 
614 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
615 {
616 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
617 }
618 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
619 
620 /*
621  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
622  * a #GP and return false.
623  */
624 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
625 {
626 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
627 		return true;
628 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
629 	return false;
630 }
631 EXPORT_SYMBOL_GPL(kvm_require_cpl);
632 
633 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
634 {
635 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
636 		return true;
637 
638 	kvm_queue_exception(vcpu, UD_VECTOR);
639 	return false;
640 }
641 EXPORT_SYMBOL_GPL(kvm_require_dr);
642 
643 /*
644  * This function will be used to read from the physical memory of the currently
645  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
646  * can read from guest physical or from the guest's guest physical memory.
647  */
648 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
649 			    gfn_t ngfn, void *data, int offset, int len,
650 			    u32 access)
651 {
652 	struct x86_exception exception;
653 	gfn_t real_gfn;
654 	gpa_t ngpa;
655 
656 	ngpa     = gfn_to_gpa(ngfn);
657 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
658 	if (real_gfn == UNMAPPED_GVA)
659 		return -EFAULT;
660 
661 	real_gfn = gpa_to_gfn(real_gfn);
662 
663 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
664 }
665 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
666 
667 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
668 			       void *data, int offset, int len, u32 access)
669 {
670 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
671 				       data, offset, len, access);
672 }
673 
674 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
675 {
676 	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
677 	       rsvd_bits(1, 2);
678 }
679 
680 /*
681  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
682  */
683 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
684 {
685 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
686 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
687 	int i;
688 	int ret;
689 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
690 
691 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
692 				      offset * sizeof(u64), sizeof(pdpte),
693 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
694 	if (ret < 0) {
695 		ret = 0;
696 		goto out;
697 	}
698 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
699 		if ((pdpte[i] & PT_PRESENT_MASK) &&
700 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
701 			ret = 0;
702 			goto out;
703 		}
704 	}
705 	ret = 1;
706 
707 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
708 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
709 
710 out:
711 
712 	return ret;
713 }
714 EXPORT_SYMBOL_GPL(load_pdptrs);
715 
716 bool pdptrs_changed(struct kvm_vcpu *vcpu)
717 {
718 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
719 	int offset;
720 	gfn_t gfn;
721 	int r;
722 
723 	if (!is_pae_paging(vcpu))
724 		return false;
725 
726 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
727 		return true;
728 
729 	gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
730 	offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
731 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
732 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
733 	if (r < 0)
734 		return true;
735 
736 	return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
737 }
738 EXPORT_SYMBOL_GPL(pdptrs_changed);
739 
740 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
741 {
742 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
743 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
744 
745 	cr0 |= X86_CR0_ET;
746 
747 #ifdef CONFIG_X86_64
748 	if (cr0 & 0xffffffff00000000UL)
749 		return 1;
750 #endif
751 
752 	cr0 &= ~CR0_RESERVED_BITS;
753 
754 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
755 		return 1;
756 
757 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
758 		return 1;
759 
760 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
761 #ifdef CONFIG_X86_64
762 		if ((vcpu->arch.efer & EFER_LME)) {
763 			int cs_db, cs_l;
764 
765 			if (!is_pae(vcpu))
766 				return 1;
767 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
768 			if (cs_l)
769 				return 1;
770 		} else
771 #endif
772 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
773 						 kvm_read_cr3(vcpu)))
774 			return 1;
775 	}
776 
777 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
778 		return 1;
779 
780 	kvm_x86_ops->set_cr0(vcpu, cr0);
781 
782 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
783 		kvm_clear_async_pf_completion_queue(vcpu);
784 		kvm_async_pf_hash_reset(vcpu);
785 	}
786 
787 	if ((cr0 ^ old_cr0) & update_bits)
788 		kvm_mmu_reset_context(vcpu);
789 
790 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
791 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
792 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
793 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
794 
795 	return 0;
796 }
797 EXPORT_SYMBOL_GPL(kvm_set_cr0);
798 
799 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
800 {
801 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
802 }
803 EXPORT_SYMBOL_GPL(kvm_lmsw);
804 
805 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
806 {
807 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
808 
809 		if (vcpu->arch.xcr0 != host_xcr0)
810 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
811 
812 		if (vcpu->arch.xsaves_enabled &&
813 		    vcpu->arch.ia32_xss != host_xss)
814 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
815 	}
816 }
817 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
818 
819 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
820 {
821 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
822 
823 		if (vcpu->arch.xcr0 != host_xcr0)
824 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
825 
826 		if (vcpu->arch.xsaves_enabled &&
827 		    vcpu->arch.ia32_xss != host_xss)
828 			wrmsrl(MSR_IA32_XSS, host_xss);
829 	}
830 
831 }
832 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
833 
834 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
835 {
836 	u64 xcr0 = xcr;
837 	u64 old_xcr0 = vcpu->arch.xcr0;
838 	u64 valid_bits;
839 
840 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
841 	if (index != XCR_XFEATURE_ENABLED_MASK)
842 		return 1;
843 	if (!(xcr0 & XFEATURE_MASK_FP))
844 		return 1;
845 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
846 		return 1;
847 
848 	/*
849 	 * Do not allow the guest to set bits that we do not support
850 	 * saving.  However, xcr0 bit 0 is always set, even if the
851 	 * emulated CPU does not support XSAVE (see fx_init).
852 	 */
853 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
854 	if (xcr0 & ~valid_bits)
855 		return 1;
856 
857 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
858 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
859 		return 1;
860 
861 	if (xcr0 & XFEATURE_MASK_AVX512) {
862 		if (!(xcr0 & XFEATURE_MASK_YMM))
863 			return 1;
864 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
865 			return 1;
866 	}
867 	vcpu->arch.xcr0 = xcr0;
868 
869 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
870 		kvm_update_cpuid(vcpu);
871 	return 0;
872 }
873 
874 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
875 {
876 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
877 	    __kvm_set_xcr(vcpu, index, xcr)) {
878 		kvm_inject_gp(vcpu, 0);
879 		return 1;
880 	}
881 	return 0;
882 }
883 EXPORT_SYMBOL_GPL(kvm_set_xcr);
884 
885 #define __cr4_reserved_bits(__cpu_has, __c)		\
886 ({							\
887 	u64 __reserved_bits = CR4_RESERVED_BITS;	\
888 							\
889 	if (!__cpu_has(__c, X86_FEATURE_XSAVE))		\
890 		__reserved_bits |= X86_CR4_OSXSAVE;	\
891 	if (!__cpu_has(__c, X86_FEATURE_SMEP))		\
892 		__reserved_bits |= X86_CR4_SMEP;	\
893 	if (!__cpu_has(__c, X86_FEATURE_SMAP))		\
894 		__reserved_bits |= X86_CR4_SMAP;	\
895 	if (!__cpu_has(__c, X86_FEATURE_FSGSBASE))	\
896 		__reserved_bits |= X86_CR4_FSGSBASE;	\
897 	if (!__cpu_has(__c, X86_FEATURE_PKU))		\
898 		__reserved_bits |= X86_CR4_PKE;		\
899 	if (!__cpu_has(__c, X86_FEATURE_LA57))		\
900 		__reserved_bits |= X86_CR4_LA57;	\
901 	if (!__cpu_has(__c, X86_FEATURE_UMIP))		\
902 		__reserved_bits |= X86_CR4_UMIP;	\
903 	__reserved_bits;				\
904 })
905 
906 static u64 kvm_host_cr4_reserved_bits(struct cpuinfo_x86 *c)
907 {
908 	u64 reserved_bits = __cr4_reserved_bits(cpu_has, c);
909 
910 	if (cpuid_ecx(0x7) & feature_bit(LA57))
911 		reserved_bits &= ~X86_CR4_LA57;
912 
913 	if (kvm_x86_ops->umip_emulated())
914 		reserved_bits &= ~X86_CR4_UMIP;
915 
916 	return reserved_bits;
917 }
918 
919 static int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
920 {
921 	if (cr4 & cr4_reserved_bits)
922 		return -EINVAL;
923 
924 	if (cr4 & __cr4_reserved_bits(guest_cpuid_has, vcpu))
925 		return -EINVAL;
926 
927 	return 0;
928 }
929 
930 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
931 {
932 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
933 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
934 				   X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
935 
936 	if (kvm_valid_cr4(vcpu, cr4))
937 		return 1;
938 
939 	if (is_long_mode(vcpu)) {
940 		if (!(cr4 & X86_CR4_PAE))
941 			return 1;
942 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
943 		   && ((cr4 ^ old_cr4) & pdptr_bits)
944 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
945 				   kvm_read_cr3(vcpu)))
946 		return 1;
947 
948 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
949 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
950 			return 1;
951 
952 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
953 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
954 			return 1;
955 	}
956 
957 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
958 		return 1;
959 
960 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
961 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
962 		kvm_mmu_reset_context(vcpu);
963 
964 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
965 		kvm_update_cpuid(vcpu);
966 
967 	return 0;
968 }
969 EXPORT_SYMBOL_GPL(kvm_set_cr4);
970 
971 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
972 {
973 	bool skip_tlb_flush = false;
974 #ifdef CONFIG_X86_64
975 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
976 
977 	if (pcid_enabled) {
978 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
979 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
980 	}
981 #endif
982 
983 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
984 		if (!skip_tlb_flush) {
985 			kvm_mmu_sync_roots(vcpu);
986 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
987 		}
988 		return 0;
989 	}
990 
991 	if (is_long_mode(vcpu) &&
992 	    (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
993 		return 1;
994 	else if (is_pae_paging(vcpu) &&
995 		 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
996 		return 1;
997 
998 	kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
999 	vcpu->arch.cr3 = cr3;
1000 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1001 
1002 	return 0;
1003 }
1004 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1005 
1006 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1007 {
1008 	if (cr8 & CR8_RESERVED_BITS)
1009 		return 1;
1010 	if (lapic_in_kernel(vcpu))
1011 		kvm_lapic_set_tpr(vcpu, cr8);
1012 	else
1013 		vcpu->arch.cr8 = cr8;
1014 	return 0;
1015 }
1016 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1017 
1018 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1019 {
1020 	if (lapic_in_kernel(vcpu))
1021 		return kvm_lapic_get_cr8(vcpu);
1022 	else
1023 		return vcpu->arch.cr8;
1024 }
1025 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1026 
1027 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1028 {
1029 	int i;
1030 
1031 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1032 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1033 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1034 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1035 	}
1036 }
1037 
1038 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1039 {
1040 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1041 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
1042 }
1043 
1044 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1045 {
1046 	unsigned long dr7;
1047 
1048 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1049 		dr7 = vcpu->arch.guest_debug_dr7;
1050 	else
1051 		dr7 = vcpu->arch.dr7;
1052 	kvm_x86_ops->set_dr7(vcpu, dr7);
1053 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1054 	if (dr7 & DR7_BP_EN_MASK)
1055 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1056 }
1057 
1058 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1059 {
1060 	u64 fixed = DR6_FIXED_1;
1061 
1062 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1063 		fixed |= DR6_RTM;
1064 	return fixed;
1065 }
1066 
1067 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1068 {
1069 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1070 
1071 	switch (dr) {
1072 	case 0 ... 3:
1073 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1074 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1075 			vcpu->arch.eff_db[dr] = val;
1076 		break;
1077 	case 4:
1078 		/* fall through */
1079 	case 6:
1080 		if (val & 0xffffffff00000000ULL)
1081 			return -1; /* #GP */
1082 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1083 		kvm_update_dr6(vcpu);
1084 		break;
1085 	case 5:
1086 		/* fall through */
1087 	default: /* 7 */
1088 		if (!kvm_dr7_valid(val))
1089 			return -1; /* #GP */
1090 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1091 		kvm_update_dr7(vcpu);
1092 		break;
1093 	}
1094 
1095 	return 0;
1096 }
1097 
1098 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1099 {
1100 	if (__kvm_set_dr(vcpu, dr, val)) {
1101 		kvm_inject_gp(vcpu, 0);
1102 		return 1;
1103 	}
1104 	return 0;
1105 }
1106 EXPORT_SYMBOL_GPL(kvm_set_dr);
1107 
1108 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1109 {
1110 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1111 
1112 	switch (dr) {
1113 	case 0 ... 3:
1114 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1115 		break;
1116 	case 4:
1117 		/* fall through */
1118 	case 6:
1119 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1120 			*val = vcpu->arch.dr6;
1121 		else
1122 			*val = kvm_x86_ops->get_dr6(vcpu);
1123 		break;
1124 	case 5:
1125 		/* fall through */
1126 	default: /* 7 */
1127 		*val = vcpu->arch.dr7;
1128 		break;
1129 	}
1130 	return 0;
1131 }
1132 EXPORT_SYMBOL_GPL(kvm_get_dr);
1133 
1134 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1135 {
1136 	u32 ecx = kvm_rcx_read(vcpu);
1137 	u64 data;
1138 	int err;
1139 
1140 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1141 	if (err)
1142 		return err;
1143 	kvm_rax_write(vcpu, (u32)data);
1144 	kvm_rdx_write(vcpu, data >> 32);
1145 	return err;
1146 }
1147 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1148 
1149 /*
1150  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1151  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1152  *
1153  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1154  * extract the supported MSRs from the related const lists.
1155  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1156  * capabilities of the host cpu. This capabilities test skips MSRs that are
1157  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1158  * may depend on host virtualization features rather than host cpu features.
1159  */
1160 
1161 static const u32 msrs_to_save_all[] = {
1162 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1163 	MSR_STAR,
1164 #ifdef CONFIG_X86_64
1165 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1166 #endif
1167 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1168 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1169 	MSR_IA32_SPEC_CTRL,
1170 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1171 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1172 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1173 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1174 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1175 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1176 	MSR_IA32_UMWAIT_CONTROL,
1177 
1178 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1179 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1180 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1181 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1182 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1183 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1184 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1185 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1186 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1187 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1188 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1189 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1190 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1191 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1192 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1193 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1194 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1195 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1196 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1197 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1198 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1199 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1200 };
1201 
1202 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1203 static unsigned num_msrs_to_save;
1204 
1205 static const u32 emulated_msrs_all[] = {
1206 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1207 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1208 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1209 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1210 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1211 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1212 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1213 	HV_X64_MSR_RESET,
1214 	HV_X64_MSR_VP_INDEX,
1215 	HV_X64_MSR_VP_RUNTIME,
1216 	HV_X64_MSR_SCONTROL,
1217 	HV_X64_MSR_STIMER0_CONFIG,
1218 	HV_X64_MSR_VP_ASSIST_PAGE,
1219 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1220 	HV_X64_MSR_TSC_EMULATION_STATUS,
1221 
1222 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1223 	MSR_KVM_PV_EOI_EN,
1224 
1225 	MSR_IA32_TSC_ADJUST,
1226 	MSR_IA32_TSCDEADLINE,
1227 	MSR_IA32_ARCH_CAPABILITIES,
1228 	MSR_IA32_MISC_ENABLE,
1229 	MSR_IA32_MCG_STATUS,
1230 	MSR_IA32_MCG_CTL,
1231 	MSR_IA32_MCG_EXT_CTL,
1232 	MSR_IA32_SMBASE,
1233 	MSR_SMI_COUNT,
1234 	MSR_PLATFORM_INFO,
1235 	MSR_MISC_FEATURES_ENABLES,
1236 	MSR_AMD64_VIRT_SPEC_CTRL,
1237 	MSR_IA32_POWER_CTL,
1238 	MSR_IA32_UCODE_REV,
1239 
1240 	/*
1241 	 * The following list leaves out MSRs whose values are determined
1242 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1243 	 * We always support the "true" VMX control MSRs, even if the host
1244 	 * processor does not, so I am putting these registers here rather
1245 	 * than in msrs_to_save_all.
1246 	 */
1247 	MSR_IA32_VMX_BASIC,
1248 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1249 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1250 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1251 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1252 	MSR_IA32_VMX_MISC,
1253 	MSR_IA32_VMX_CR0_FIXED0,
1254 	MSR_IA32_VMX_CR4_FIXED0,
1255 	MSR_IA32_VMX_VMCS_ENUM,
1256 	MSR_IA32_VMX_PROCBASED_CTLS2,
1257 	MSR_IA32_VMX_EPT_VPID_CAP,
1258 	MSR_IA32_VMX_VMFUNC,
1259 
1260 	MSR_K7_HWCR,
1261 	MSR_KVM_POLL_CONTROL,
1262 };
1263 
1264 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1265 static unsigned num_emulated_msrs;
1266 
1267 /*
1268  * List of msr numbers which are used to expose MSR-based features that
1269  * can be used by a hypervisor to validate requested CPU features.
1270  */
1271 static const u32 msr_based_features_all[] = {
1272 	MSR_IA32_VMX_BASIC,
1273 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1274 	MSR_IA32_VMX_PINBASED_CTLS,
1275 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1276 	MSR_IA32_VMX_PROCBASED_CTLS,
1277 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1278 	MSR_IA32_VMX_EXIT_CTLS,
1279 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1280 	MSR_IA32_VMX_ENTRY_CTLS,
1281 	MSR_IA32_VMX_MISC,
1282 	MSR_IA32_VMX_CR0_FIXED0,
1283 	MSR_IA32_VMX_CR0_FIXED1,
1284 	MSR_IA32_VMX_CR4_FIXED0,
1285 	MSR_IA32_VMX_CR4_FIXED1,
1286 	MSR_IA32_VMX_VMCS_ENUM,
1287 	MSR_IA32_VMX_PROCBASED_CTLS2,
1288 	MSR_IA32_VMX_EPT_VPID_CAP,
1289 	MSR_IA32_VMX_VMFUNC,
1290 
1291 	MSR_F10H_DECFG,
1292 	MSR_IA32_UCODE_REV,
1293 	MSR_IA32_ARCH_CAPABILITIES,
1294 };
1295 
1296 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1297 static unsigned int num_msr_based_features;
1298 
1299 static u64 kvm_get_arch_capabilities(void)
1300 {
1301 	u64 data = 0;
1302 
1303 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1304 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1305 
1306 	/*
1307 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1308 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1309 	 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1310 	 * L1 guests, so it need not worry about its own (L2) guests.
1311 	 */
1312 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1313 
1314 	/*
1315 	 * If we're doing cache flushes (either "always" or "cond")
1316 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1317 	 * If an outer hypervisor is doing the cache flush for us
1318 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1319 	 * capability to the guest too, and if EPT is disabled we're not
1320 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1321 	 * require a nested hypervisor to do a flush of its own.
1322 	 */
1323 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1324 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1325 
1326 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1327 		data |= ARCH_CAP_RDCL_NO;
1328 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1329 		data |= ARCH_CAP_SSB_NO;
1330 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1331 		data |= ARCH_CAP_MDS_NO;
1332 
1333 	/*
1334 	 * On TAA affected systems:
1335 	 *      - nothing to do if TSX is disabled on the host.
1336 	 *      - we emulate TSX_CTRL if present on the host.
1337 	 *	  This lets the guest use VERW to clear CPU buffers.
1338 	 */
1339 	if (!boot_cpu_has(X86_FEATURE_RTM))
1340 		data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR);
1341 	else if (!boot_cpu_has_bug(X86_BUG_TAA))
1342 		data |= ARCH_CAP_TAA_NO;
1343 
1344 	return data;
1345 }
1346 
1347 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1348 {
1349 	switch (msr->index) {
1350 	case MSR_IA32_ARCH_CAPABILITIES:
1351 		msr->data = kvm_get_arch_capabilities();
1352 		break;
1353 	case MSR_IA32_UCODE_REV:
1354 		rdmsrl_safe(msr->index, &msr->data);
1355 		break;
1356 	default:
1357 		if (kvm_x86_ops->get_msr_feature(msr))
1358 			return 1;
1359 	}
1360 	return 0;
1361 }
1362 
1363 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1364 {
1365 	struct kvm_msr_entry msr;
1366 	int r;
1367 
1368 	msr.index = index;
1369 	r = kvm_get_msr_feature(&msr);
1370 	if (r)
1371 		return r;
1372 
1373 	*data = msr.data;
1374 
1375 	return 0;
1376 }
1377 
1378 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1379 {
1380 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1381 		return false;
1382 
1383 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1384 		return false;
1385 
1386 	if (efer & (EFER_LME | EFER_LMA) &&
1387 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1388 		return false;
1389 
1390 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1391 		return false;
1392 
1393 	return true;
1394 
1395 }
1396 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1397 {
1398 	if (efer & efer_reserved_bits)
1399 		return false;
1400 
1401 	return __kvm_valid_efer(vcpu, efer);
1402 }
1403 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1404 
1405 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1406 {
1407 	u64 old_efer = vcpu->arch.efer;
1408 	u64 efer = msr_info->data;
1409 
1410 	if (efer & efer_reserved_bits)
1411 		return 1;
1412 
1413 	if (!msr_info->host_initiated) {
1414 		if (!__kvm_valid_efer(vcpu, efer))
1415 			return 1;
1416 
1417 		if (is_paging(vcpu) &&
1418 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1419 			return 1;
1420 	}
1421 
1422 	efer &= ~EFER_LMA;
1423 	efer |= vcpu->arch.efer & EFER_LMA;
1424 
1425 	kvm_x86_ops->set_efer(vcpu, efer);
1426 
1427 	/* Update reserved bits */
1428 	if ((efer ^ old_efer) & EFER_NX)
1429 		kvm_mmu_reset_context(vcpu);
1430 
1431 	return 0;
1432 }
1433 
1434 void kvm_enable_efer_bits(u64 mask)
1435 {
1436        efer_reserved_bits &= ~mask;
1437 }
1438 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1439 
1440 /*
1441  * Write @data into the MSR specified by @index.  Select MSR specific fault
1442  * checks are bypassed if @host_initiated is %true.
1443  * Returns 0 on success, non-0 otherwise.
1444  * Assumes vcpu_load() was already called.
1445  */
1446 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1447 			 bool host_initiated)
1448 {
1449 	struct msr_data msr;
1450 
1451 	switch (index) {
1452 	case MSR_FS_BASE:
1453 	case MSR_GS_BASE:
1454 	case MSR_KERNEL_GS_BASE:
1455 	case MSR_CSTAR:
1456 	case MSR_LSTAR:
1457 		if (is_noncanonical_address(data, vcpu))
1458 			return 1;
1459 		break;
1460 	case MSR_IA32_SYSENTER_EIP:
1461 	case MSR_IA32_SYSENTER_ESP:
1462 		/*
1463 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1464 		 * non-canonical address is written on Intel but not on
1465 		 * AMD (which ignores the top 32-bits, because it does
1466 		 * not implement 64-bit SYSENTER).
1467 		 *
1468 		 * 64-bit code should hence be able to write a non-canonical
1469 		 * value on AMD.  Making the address canonical ensures that
1470 		 * vmentry does not fail on Intel after writing a non-canonical
1471 		 * value, and that something deterministic happens if the guest
1472 		 * invokes 64-bit SYSENTER.
1473 		 */
1474 		data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1475 	}
1476 
1477 	msr.data = data;
1478 	msr.index = index;
1479 	msr.host_initiated = host_initiated;
1480 
1481 	return kvm_x86_ops->set_msr(vcpu, &msr);
1482 }
1483 
1484 /*
1485  * Read the MSR specified by @index into @data.  Select MSR specific fault
1486  * checks are bypassed if @host_initiated is %true.
1487  * Returns 0 on success, non-0 otherwise.
1488  * Assumes vcpu_load() was already called.
1489  */
1490 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1491 		  bool host_initiated)
1492 {
1493 	struct msr_data msr;
1494 	int ret;
1495 
1496 	msr.index = index;
1497 	msr.host_initiated = host_initiated;
1498 
1499 	ret = kvm_x86_ops->get_msr(vcpu, &msr);
1500 	if (!ret)
1501 		*data = msr.data;
1502 	return ret;
1503 }
1504 
1505 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1506 {
1507 	return __kvm_get_msr(vcpu, index, data, false);
1508 }
1509 EXPORT_SYMBOL_GPL(kvm_get_msr);
1510 
1511 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1512 {
1513 	return __kvm_set_msr(vcpu, index, data, false);
1514 }
1515 EXPORT_SYMBOL_GPL(kvm_set_msr);
1516 
1517 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1518 {
1519 	u32 ecx = kvm_rcx_read(vcpu);
1520 	u64 data;
1521 
1522 	if (kvm_get_msr(vcpu, ecx, &data)) {
1523 		trace_kvm_msr_read_ex(ecx);
1524 		kvm_inject_gp(vcpu, 0);
1525 		return 1;
1526 	}
1527 
1528 	trace_kvm_msr_read(ecx, data);
1529 
1530 	kvm_rax_write(vcpu, data & -1u);
1531 	kvm_rdx_write(vcpu, (data >> 32) & -1u);
1532 	return kvm_skip_emulated_instruction(vcpu);
1533 }
1534 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1535 
1536 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1537 {
1538 	u32 ecx = kvm_rcx_read(vcpu);
1539 	u64 data = kvm_read_edx_eax(vcpu);
1540 
1541 	if (kvm_set_msr(vcpu, ecx, data)) {
1542 		trace_kvm_msr_write_ex(ecx, data);
1543 		kvm_inject_gp(vcpu, 0);
1544 		return 1;
1545 	}
1546 
1547 	trace_kvm_msr_write(ecx, data);
1548 	return kvm_skip_emulated_instruction(vcpu);
1549 }
1550 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1551 
1552 /*
1553  * The fast path for frequent and performance sensitive wrmsr emulation,
1554  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1555  * the latency of virtual IPI by avoiding the expensive bits of transitioning
1556  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1557  * other cases which must be called after interrupts are enabled on the host.
1558  */
1559 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1560 {
1561 	if (lapic_in_kernel(vcpu) && apic_x2apic_mode(vcpu->arch.apic) &&
1562 		((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1563 		((data & APIC_MODE_MASK) == APIC_DM_FIXED)) {
1564 
1565 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1566 		return kvm_lapic_reg_write(vcpu->arch.apic, APIC_ICR, (u32)data);
1567 	}
1568 
1569 	return 1;
1570 }
1571 
1572 enum exit_fastpath_completion handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1573 {
1574 	u32 msr = kvm_rcx_read(vcpu);
1575 	u64 data = kvm_read_edx_eax(vcpu);
1576 	int ret = 0;
1577 
1578 	switch (msr) {
1579 	case APIC_BASE_MSR + (APIC_ICR >> 4):
1580 		ret = handle_fastpath_set_x2apic_icr_irqoff(vcpu, data);
1581 		break;
1582 	default:
1583 		return EXIT_FASTPATH_NONE;
1584 	}
1585 
1586 	if (!ret) {
1587 		trace_kvm_msr_write(msr, data);
1588 		return EXIT_FASTPATH_SKIP_EMUL_INS;
1589 	}
1590 
1591 	return EXIT_FASTPATH_NONE;
1592 }
1593 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1594 
1595 /*
1596  * Adapt set_msr() to msr_io()'s calling convention
1597  */
1598 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1599 {
1600 	return __kvm_get_msr(vcpu, index, data, true);
1601 }
1602 
1603 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1604 {
1605 	return __kvm_set_msr(vcpu, index, *data, true);
1606 }
1607 
1608 #ifdef CONFIG_X86_64
1609 struct pvclock_clock {
1610 	int vclock_mode;
1611 	u64 cycle_last;
1612 	u64 mask;
1613 	u32 mult;
1614 	u32 shift;
1615 	u64 base_cycles;
1616 	u64 offset;
1617 };
1618 
1619 struct pvclock_gtod_data {
1620 	seqcount_t	seq;
1621 
1622 	struct pvclock_clock clock; /* extract of a clocksource struct */
1623 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1624 
1625 	ktime_t		offs_boot;
1626 	u64		wall_time_sec;
1627 };
1628 
1629 static struct pvclock_gtod_data pvclock_gtod_data;
1630 
1631 static void update_pvclock_gtod(struct timekeeper *tk)
1632 {
1633 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1634 
1635 	write_seqcount_begin(&vdata->seq);
1636 
1637 	/* copy pvclock gtod data */
1638 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1639 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1640 	vdata->clock.mask		= tk->tkr_mono.mask;
1641 	vdata->clock.mult		= tk->tkr_mono.mult;
1642 	vdata->clock.shift		= tk->tkr_mono.shift;
1643 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
1644 	vdata->clock.offset		= tk->tkr_mono.base;
1645 
1646 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->archdata.vclock_mode;
1647 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
1648 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
1649 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
1650 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
1651 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
1652 	vdata->raw_clock.offset		= tk->tkr_raw.base;
1653 
1654 	vdata->wall_time_sec            = tk->xtime_sec;
1655 
1656 	vdata->offs_boot		= tk->offs_boot;
1657 
1658 	write_seqcount_end(&vdata->seq);
1659 }
1660 
1661 static s64 get_kvmclock_base_ns(void)
1662 {
1663 	/* Count up from boot time, but with the frequency of the raw clock.  */
1664 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1665 }
1666 #else
1667 static s64 get_kvmclock_base_ns(void)
1668 {
1669 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
1670 	return ktime_get_boottime_ns();
1671 }
1672 #endif
1673 
1674 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1675 {
1676 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1677 	kvm_vcpu_kick(vcpu);
1678 }
1679 
1680 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1681 {
1682 	int version;
1683 	int r;
1684 	struct pvclock_wall_clock wc;
1685 	u64 wall_nsec;
1686 
1687 	if (!wall_clock)
1688 		return;
1689 
1690 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1691 	if (r)
1692 		return;
1693 
1694 	if (version & 1)
1695 		++version;  /* first time write, random junk */
1696 
1697 	++version;
1698 
1699 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1700 		return;
1701 
1702 	/*
1703 	 * The guest calculates current wall clock time by adding
1704 	 * system time (updated by kvm_guest_time_update below) to the
1705 	 * wall clock specified here.  We do the reverse here.
1706 	 */
1707 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
1708 
1709 	wc.nsec = do_div(wall_nsec, 1000000000);
1710 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
1711 	wc.version = version;
1712 
1713 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1714 
1715 	version++;
1716 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1717 }
1718 
1719 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1720 {
1721 	do_shl32_div32(dividend, divisor);
1722 	return dividend;
1723 }
1724 
1725 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1726 			       s8 *pshift, u32 *pmultiplier)
1727 {
1728 	uint64_t scaled64;
1729 	int32_t  shift = 0;
1730 	uint64_t tps64;
1731 	uint32_t tps32;
1732 
1733 	tps64 = base_hz;
1734 	scaled64 = scaled_hz;
1735 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1736 		tps64 >>= 1;
1737 		shift--;
1738 	}
1739 
1740 	tps32 = (uint32_t)tps64;
1741 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1742 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1743 			scaled64 >>= 1;
1744 		else
1745 			tps32 <<= 1;
1746 		shift++;
1747 	}
1748 
1749 	*pshift = shift;
1750 	*pmultiplier = div_frac(scaled64, tps32);
1751 }
1752 
1753 #ifdef CONFIG_X86_64
1754 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1755 #endif
1756 
1757 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1758 static unsigned long max_tsc_khz;
1759 
1760 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1761 {
1762 	u64 v = (u64)khz * (1000000 + ppm);
1763 	do_div(v, 1000000);
1764 	return v;
1765 }
1766 
1767 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1768 {
1769 	u64 ratio;
1770 
1771 	/* Guest TSC same frequency as host TSC? */
1772 	if (!scale) {
1773 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1774 		return 0;
1775 	}
1776 
1777 	/* TSC scaling supported? */
1778 	if (!kvm_has_tsc_control) {
1779 		if (user_tsc_khz > tsc_khz) {
1780 			vcpu->arch.tsc_catchup = 1;
1781 			vcpu->arch.tsc_always_catchup = 1;
1782 			return 0;
1783 		} else {
1784 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
1785 			return -1;
1786 		}
1787 	}
1788 
1789 	/* TSC scaling required  - calculate ratio */
1790 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1791 				user_tsc_khz, tsc_khz);
1792 
1793 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1794 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1795 			            user_tsc_khz);
1796 		return -1;
1797 	}
1798 
1799 	vcpu->arch.tsc_scaling_ratio = ratio;
1800 	return 0;
1801 }
1802 
1803 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1804 {
1805 	u32 thresh_lo, thresh_hi;
1806 	int use_scaling = 0;
1807 
1808 	/* tsc_khz can be zero if TSC calibration fails */
1809 	if (user_tsc_khz == 0) {
1810 		/* set tsc_scaling_ratio to a safe value */
1811 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1812 		return -1;
1813 	}
1814 
1815 	/* Compute a scale to convert nanoseconds in TSC cycles */
1816 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1817 			   &vcpu->arch.virtual_tsc_shift,
1818 			   &vcpu->arch.virtual_tsc_mult);
1819 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1820 
1821 	/*
1822 	 * Compute the variation in TSC rate which is acceptable
1823 	 * within the range of tolerance and decide if the
1824 	 * rate being applied is within that bounds of the hardware
1825 	 * rate.  If so, no scaling or compensation need be done.
1826 	 */
1827 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1828 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1829 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1830 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1831 		use_scaling = 1;
1832 	}
1833 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1834 }
1835 
1836 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1837 {
1838 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1839 				      vcpu->arch.virtual_tsc_mult,
1840 				      vcpu->arch.virtual_tsc_shift);
1841 	tsc += vcpu->arch.this_tsc_write;
1842 	return tsc;
1843 }
1844 
1845 static inline int gtod_is_based_on_tsc(int mode)
1846 {
1847 	return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1848 }
1849 
1850 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1851 {
1852 #ifdef CONFIG_X86_64
1853 	bool vcpus_matched;
1854 	struct kvm_arch *ka = &vcpu->kvm->arch;
1855 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1856 
1857 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1858 			 atomic_read(&vcpu->kvm->online_vcpus));
1859 
1860 	/*
1861 	 * Once the masterclock is enabled, always perform request in
1862 	 * order to update it.
1863 	 *
1864 	 * In order to enable masterclock, the host clocksource must be TSC
1865 	 * and the vcpus need to have matched TSCs.  When that happens,
1866 	 * perform request to enable masterclock.
1867 	 */
1868 	if (ka->use_master_clock ||
1869 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1870 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1871 
1872 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1873 			    atomic_read(&vcpu->kvm->online_vcpus),
1874 		            ka->use_master_clock, gtod->clock.vclock_mode);
1875 #endif
1876 }
1877 
1878 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1879 {
1880 	u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1881 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1882 }
1883 
1884 /*
1885  * Multiply tsc by a fixed point number represented by ratio.
1886  *
1887  * The most significant 64-N bits (mult) of ratio represent the
1888  * integral part of the fixed point number; the remaining N bits
1889  * (frac) represent the fractional part, ie. ratio represents a fixed
1890  * point number (mult + frac * 2^(-N)).
1891  *
1892  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1893  */
1894 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1895 {
1896 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1897 }
1898 
1899 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1900 {
1901 	u64 _tsc = tsc;
1902 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1903 
1904 	if (ratio != kvm_default_tsc_scaling_ratio)
1905 		_tsc = __scale_tsc(ratio, tsc);
1906 
1907 	return _tsc;
1908 }
1909 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1910 
1911 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1912 {
1913 	u64 tsc;
1914 
1915 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1916 
1917 	return target_tsc - tsc;
1918 }
1919 
1920 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1921 {
1922 	u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1923 
1924 	return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1925 }
1926 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1927 
1928 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1929 {
1930 	vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset);
1931 }
1932 
1933 static inline bool kvm_check_tsc_unstable(void)
1934 {
1935 #ifdef CONFIG_X86_64
1936 	/*
1937 	 * TSC is marked unstable when we're running on Hyper-V,
1938 	 * 'TSC page' clocksource is good.
1939 	 */
1940 	if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1941 		return false;
1942 #endif
1943 	return check_tsc_unstable();
1944 }
1945 
1946 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1947 {
1948 	struct kvm *kvm = vcpu->kvm;
1949 	u64 offset, ns, elapsed;
1950 	unsigned long flags;
1951 	bool matched;
1952 	bool already_matched;
1953 	u64 data = msr->data;
1954 	bool synchronizing = false;
1955 
1956 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1957 	offset = kvm_compute_tsc_offset(vcpu, data);
1958 	ns = get_kvmclock_base_ns();
1959 	elapsed = ns - kvm->arch.last_tsc_nsec;
1960 
1961 	if (vcpu->arch.virtual_tsc_khz) {
1962 		if (data == 0 && msr->host_initiated) {
1963 			/*
1964 			 * detection of vcpu initialization -- need to sync
1965 			 * with other vCPUs. This particularly helps to keep
1966 			 * kvm_clock stable after CPU hotplug
1967 			 */
1968 			synchronizing = true;
1969 		} else {
1970 			u64 tsc_exp = kvm->arch.last_tsc_write +
1971 						nsec_to_cycles(vcpu, elapsed);
1972 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1973 			/*
1974 			 * Special case: TSC write with a small delta (1 second)
1975 			 * of virtual cycle time against real time is
1976 			 * interpreted as an attempt to synchronize the CPU.
1977 			 */
1978 			synchronizing = data < tsc_exp + tsc_hz &&
1979 					data + tsc_hz > tsc_exp;
1980 		}
1981 	}
1982 
1983 	/*
1984 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1985 	 * TSC, we add elapsed time in this computation.  We could let the
1986 	 * compensation code attempt to catch up if we fall behind, but
1987 	 * it's better to try to match offsets from the beginning.
1988          */
1989 	if (synchronizing &&
1990 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1991 		if (!kvm_check_tsc_unstable()) {
1992 			offset = kvm->arch.cur_tsc_offset;
1993 		} else {
1994 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1995 			data += delta;
1996 			offset = kvm_compute_tsc_offset(vcpu, data);
1997 		}
1998 		matched = true;
1999 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2000 	} else {
2001 		/*
2002 		 * We split periods of matched TSC writes into generations.
2003 		 * For each generation, we track the original measured
2004 		 * nanosecond time, offset, and write, so if TSCs are in
2005 		 * sync, we can match exact offset, and if not, we can match
2006 		 * exact software computation in compute_guest_tsc()
2007 		 *
2008 		 * These values are tracked in kvm->arch.cur_xxx variables.
2009 		 */
2010 		kvm->arch.cur_tsc_generation++;
2011 		kvm->arch.cur_tsc_nsec = ns;
2012 		kvm->arch.cur_tsc_write = data;
2013 		kvm->arch.cur_tsc_offset = offset;
2014 		matched = false;
2015 	}
2016 
2017 	/*
2018 	 * We also track th most recent recorded KHZ, write and time to
2019 	 * allow the matching interval to be extended at each write.
2020 	 */
2021 	kvm->arch.last_tsc_nsec = ns;
2022 	kvm->arch.last_tsc_write = data;
2023 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2024 
2025 	vcpu->arch.last_guest_tsc = data;
2026 
2027 	/* Keep track of which generation this VCPU has synchronized to */
2028 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2029 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2030 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2031 
2032 	if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
2033 		update_ia32_tsc_adjust_msr(vcpu, offset);
2034 
2035 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2036 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2037 
2038 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
2039 	if (!matched) {
2040 		kvm->arch.nr_vcpus_matched_tsc = 0;
2041 	} else if (!already_matched) {
2042 		kvm->arch.nr_vcpus_matched_tsc++;
2043 	}
2044 
2045 	kvm_track_tsc_matching(vcpu);
2046 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
2047 }
2048 
2049 EXPORT_SYMBOL_GPL(kvm_write_tsc);
2050 
2051 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2052 					   s64 adjustment)
2053 {
2054 	u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
2055 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2056 }
2057 
2058 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2059 {
2060 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2061 		WARN_ON(adjustment < 0);
2062 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2063 	adjust_tsc_offset_guest(vcpu, adjustment);
2064 }
2065 
2066 #ifdef CONFIG_X86_64
2067 
2068 static u64 read_tsc(void)
2069 {
2070 	u64 ret = (u64)rdtsc_ordered();
2071 	u64 last = pvclock_gtod_data.clock.cycle_last;
2072 
2073 	if (likely(ret >= last))
2074 		return ret;
2075 
2076 	/*
2077 	 * GCC likes to generate cmov here, but this branch is extremely
2078 	 * predictable (it's just a function of time and the likely is
2079 	 * very likely) and there's a data dependence, so force GCC
2080 	 * to generate a branch instead.  I don't barrier() because
2081 	 * we don't actually need a barrier, and if this function
2082 	 * ever gets inlined it will generate worse code.
2083 	 */
2084 	asm volatile ("");
2085 	return last;
2086 }
2087 
2088 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2089 			  int *mode)
2090 {
2091 	long v;
2092 	u64 tsc_pg_val;
2093 
2094 	switch (clock->vclock_mode) {
2095 	case VCLOCK_HVCLOCK:
2096 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2097 						  tsc_timestamp);
2098 		if (tsc_pg_val != U64_MAX) {
2099 			/* TSC page valid */
2100 			*mode = VCLOCK_HVCLOCK;
2101 			v = (tsc_pg_val - clock->cycle_last) &
2102 				clock->mask;
2103 		} else {
2104 			/* TSC page invalid */
2105 			*mode = VCLOCK_NONE;
2106 		}
2107 		break;
2108 	case VCLOCK_TSC:
2109 		*mode = VCLOCK_TSC;
2110 		*tsc_timestamp = read_tsc();
2111 		v = (*tsc_timestamp - clock->cycle_last) &
2112 			clock->mask;
2113 		break;
2114 	default:
2115 		*mode = VCLOCK_NONE;
2116 	}
2117 
2118 	if (*mode == VCLOCK_NONE)
2119 		*tsc_timestamp = v = 0;
2120 
2121 	return v * clock->mult;
2122 }
2123 
2124 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2125 {
2126 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2127 	unsigned long seq;
2128 	int mode;
2129 	u64 ns;
2130 
2131 	do {
2132 		seq = read_seqcount_begin(&gtod->seq);
2133 		ns = gtod->raw_clock.base_cycles;
2134 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2135 		ns >>= gtod->raw_clock.shift;
2136 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2137 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2138 	*t = ns;
2139 
2140 	return mode;
2141 }
2142 
2143 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2144 {
2145 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2146 	unsigned long seq;
2147 	int mode;
2148 	u64 ns;
2149 
2150 	do {
2151 		seq = read_seqcount_begin(&gtod->seq);
2152 		ts->tv_sec = gtod->wall_time_sec;
2153 		ns = gtod->clock.base_cycles;
2154 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2155 		ns >>= gtod->clock.shift;
2156 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2157 
2158 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2159 	ts->tv_nsec = ns;
2160 
2161 	return mode;
2162 }
2163 
2164 /* returns true if host is using TSC based clocksource */
2165 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2166 {
2167 	/* checked again under seqlock below */
2168 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2169 		return false;
2170 
2171 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2172 						      tsc_timestamp));
2173 }
2174 
2175 /* returns true if host is using TSC based clocksource */
2176 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2177 					   u64 *tsc_timestamp)
2178 {
2179 	/* checked again under seqlock below */
2180 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2181 		return false;
2182 
2183 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2184 }
2185 #endif
2186 
2187 /*
2188  *
2189  * Assuming a stable TSC across physical CPUS, and a stable TSC
2190  * across virtual CPUs, the following condition is possible.
2191  * Each numbered line represents an event visible to both
2192  * CPUs at the next numbered event.
2193  *
2194  * "timespecX" represents host monotonic time. "tscX" represents
2195  * RDTSC value.
2196  *
2197  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2198  *
2199  * 1.  read timespec0,tsc0
2200  * 2.					| timespec1 = timespec0 + N
2201  * 					| tsc1 = tsc0 + M
2202  * 3. transition to guest		| transition to guest
2203  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2204  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2205  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2206  *
2207  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2208  *
2209  * 	- ret0 < ret1
2210  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2211  *		...
2212  *	- 0 < N - M => M < N
2213  *
2214  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2215  * always the case (the difference between two distinct xtime instances
2216  * might be smaller then the difference between corresponding TSC reads,
2217  * when updating guest vcpus pvclock areas).
2218  *
2219  * To avoid that problem, do not allow visibility of distinct
2220  * system_timestamp/tsc_timestamp values simultaneously: use a master
2221  * copy of host monotonic time values. Update that master copy
2222  * in lockstep.
2223  *
2224  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2225  *
2226  */
2227 
2228 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2229 {
2230 #ifdef CONFIG_X86_64
2231 	struct kvm_arch *ka = &kvm->arch;
2232 	int vclock_mode;
2233 	bool host_tsc_clocksource, vcpus_matched;
2234 
2235 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2236 			atomic_read(&kvm->online_vcpus));
2237 
2238 	/*
2239 	 * If the host uses TSC clock, then passthrough TSC as stable
2240 	 * to the guest.
2241 	 */
2242 	host_tsc_clocksource = kvm_get_time_and_clockread(
2243 					&ka->master_kernel_ns,
2244 					&ka->master_cycle_now);
2245 
2246 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2247 				&& !ka->backwards_tsc_observed
2248 				&& !ka->boot_vcpu_runs_old_kvmclock;
2249 
2250 	if (ka->use_master_clock)
2251 		atomic_set(&kvm_guest_has_master_clock, 1);
2252 
2253 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2254 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2255 					vcpus_matched);
2256 #endif
2257 }
2258 
2259 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2260 {
2261 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2262 }
2263 
2264 static void kvm_gen_update_masterclock(struct kvm *kvm)
2265 {
2266 #ifdef CONFIG_X86_64
2267 	int i;
2268 	struct kvm_vcpu *vcpu;
2269 	struct kvm_arch *ka = &kvm->arch;
2270 
2271 	spin_lock(&ka->pvclock_gtod_sync_lock);
2272 	kvm_make_mclock_inprogress_request(kvm);
2273 	/* no guest entries from this point */
2274 	pvclock_update_vm_gtod_copy(kvm);
2275 
2276 	kvm_for_each_vcpu(i, vcpu, kvm)
2277 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2278 
2279 	/* guest entries allowed */
2280 	kvm_for_each_vcpu(i, vcpu, kvm)
2281 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2282 
2283 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2284 #endif
2285 }
2286 
2287 u64 get_kvmclock_ns(struct kvm *kvm)
2288 {
2289 	struct kvm_arch *ka = &kvm->arch;
2290 	struct pvclock_vcpu_time_info hv_clock;
2291 	u64 ret;
2292 
2293 	spin_lock(&ka->pvclock_gtod_sync_lock);
2294 	if (!ka->use_master_clock) {
2295 		spin_unlock(&ka->pvclock_gtod_sync_lock);
2296 		return get_kvmclock_base_ns() + ka->kvmclock_offset;
2297 	}
2298 
2299 	hv_clock.tsc_timestamp = ka->master_cycle_now;
2300 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2301 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2302 
2303 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2304 	get_cpu();
2305 
2306 	if (__this_cpu_read(cpu_tsc_khz)) {
2307 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2308 				   &hv_clock.tsc_shift,
2309 				   &hv_clock.tsc_to_system_mul);
2310 		ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2311 	} else
2312 		ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2313 
2314 	put_cpu();
2315 
2316 	return ret;
2317 }
2318 
2319 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2320 {
2321 	struct kvm_vcpu_arch *vcpu = &v->arch;
2322 	struct pvclock_vcpu_time_info guest_hv_clock;
2323 
2324 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2325 		&guest_hv_clock, sizeof(guest_hv_clock))))
2326 		return;
2327 
2328 	/* This VCPU is paused, but it's legal for a guest to read another
2329 	 * VCPU's kvmclock, so we really have to follow the specification where
2330 	 * it says that version is odd if data is being modified, and even after
2331 	 * it is consistent.
2332 	 *
2333 	 * Version field updates must be kept separate.  This is because
2334 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
2335 	 * writes within a string instruction are weakly ordered.  So there
2336 	 * are three writes overall.
2337 	 *
2338 	 * As a small optimization, only write the version field in the first
2339 	 * and third write.  The vcpu->pv_time cache is still valid, because the
2340 	 * version field is the first in the struct.
2341 	 */
2342 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2343 
2344 	if (guest_hv_clock.version & 1)
2345 		++guest_hv_clock.version;  /* first time write, random junk */
2346 
2347 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2348 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2349 				&vcpu->hv_clock,
2350 				sizeof(vcpu->hv_clock.version));
2351 
2352 	smp_wmb();
2353 
2354 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2355 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2356 
2357 	if (vcpu->pvclock_set_guest_stopped_request) {
2358 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2359 		vcpu->pvclock_set_guest_stopped_request = false;
2360 	}
2361 
2362 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2363 
2364 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2365 				&vcpu->hv_clock,
2366 				sizeof(vcpu->hv_clock));
2367 
2368 	smp_wmb();
2369 
2370 	vcpu->hv_clock.version++;
2371 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2372 				&vcpu->hv_clock,
2373 				sizeof(vcpu->hv_clock.version));
2374 }
2375 
2376 static int kvm_guest_time_update(struct kvm_vcpu *v)
2377 {
2378 	unsigned long flags, tgt_tsc_khz;
2379 	struct kvm_vcpu_arch *vcpu = &v->arch;
2380 	struct kvm_arch *ka = &v->kvm->arch;
2381 	s64 kernel_ns;
2382 	u64 tsc_timestamp, host_tsc;
2383 	u8 pvclock_flags;
2384 	bool use_master_clock;
2385 
2386 	kernel_ns = 0;
2387 	host_tsc = 0;
2388 
2389 	/*
2390 	 * If the host uses TSC clock, then passthrough TSC as stable
2391 	 * to the guest.
2392 	 */
2393 	spin_lock(&ka->pvclock_gtod_sync_lock);
2394 	use_master_clock = ka->use_master_clock;
2395 	if (use_master_clock) {
2396 		host_tsc = ka->master_cycle_now;
2397 		kernel_ns = ka->master_kernel_ns;
2398 	}
2399 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2400 
2401 	/* Keep irq disabled to prevent changes to the clock */
2402 	local_irq_save(flags);
2403 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2404 	if (unlikely(tgt_tsc_khz == 0)) {
2405 		local_irq_restore(flags);
2406 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2407 		return 1;
2408 	}
2409 	if (!use_master_clock) {
2410 		host_tsc = rdtsc();
2411 		kernel_ns = get_kvmclock_base_ns();
2412 	}
2413 
2414 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2415 
2416 	/*
2417 	 * We may have to catch up the TSC to match elapsed wall clock
2418 	 * time for two reasons, even if kvmclock is used.
2419 	 *   1) CPU could have been running below the maximum TSC rate
2420 	 *   2) Broken TSC compensation resets the base at each VCPU
2421 	 *      entry to avoid unknown leaps of TSC even when running
2422 	 *      again on the same CPU.  This may cause apparent elapsed
2423 	 *      time to disappear, and the guest to stand still or run
2424 	 *	very slowly.
2425 	 */
2426 	if (vcpu->tsc_catchup) {
2427 		u64 tsc = compute_guest_tsc(v, kernel_ns);
2428 		if (tsc > tsc_timestamp) {
2429 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2430 			tsc_timestamp = tsc;
2431 		}
2432 	}
2433 
2434 	local_irq_restore(flags);
2435 
2436 	/* With all the info we got, fill in the values */
2437 
2438 	if (kvm_has_tsc_control)
2439 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2440 
2441 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2442 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2443 				   &vcpu->hv_clock.tsc_shift,
2444 				   &vcpu->hv_clock.tsc_to_system_mul);
2445 		vcpu->hw_tsc_khz = tgt_tsc_khz;
2446 	}
2447 
2448 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2449 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2450 	vcpu->last_guest_tsc = tsc_timestamp;
2451 	WARN_ON(vcpu->hv_clock.system_time < 0);
2452 
2453 	/* If the host uses TSC clocksource, then it is stable */
2454 	pvclock_flags = 0;
2455 	if (use_master_clock)
2456 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2457 
2458 	vcpu->hv_clock.flags = pvclock_flags;
2459 
2460 	if (vcpu->pv_time_enabled)
2461 		kvm_setup_pvclock_page(v);
2462 	if (v == kvm_get_vcpu(v->kvm, 0))
2463 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2464 	return 0;
2465 }
2466 
2467 /*
2468  * kvmclock updates which are isolated to a given vcpu, such as
2469  * vcpu->cpu migration, should not allow system_timestamp from
2470  * the rest of the vcpus to remain static. Otherwise ntp frequency
2471  * correction applies to one vcpu's system_timestamp but not
2472  * the others.
2473  *
2474  * So in those cases, request a kvmclock update for all vcpus.
2475  * We need to rate-limit these requests though, as they can
2476  * considerably slow guests that have a large number of vcpus.
2477  * The time for a remote vcpu to update its kvmclock is bound
2478  * by the delay we use to rate-limit the updates.
2479  */
2480 
2481 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2482 
2483 static void kvmclock_update_fn(struct work_struct *work)
2484 {
2485 	int i;
2486 	struct delayed_work *dwork = to_delayed_work(work);
2487 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2488 					   kvmclock_update_work);
2489 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2490 	struct kvm_vcpu *vcpu;
2491 
2492 	kvm_for_each_vcpu(i, vcpu, kvm) {
2493 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2494 		kvm_vcpu_kick(vcpu);
2495 	}
2496 }
2497 
2498 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2499 {
2500 	struct kvm *kvm = v->kvm;
2501 
2502 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2503 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2504 					KVMCLOCK_UPDATE_DELAY);
2505 }
2506 
2507 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2508 
2509 static void kvmclock_sync_fn(struct work_struct *work)
2510 {
2511 	struct delayed_work *dwork = to_delayed_work(work);
2512 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2513 					   kvmclock_sync_work);
2514 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2515 
2516 	if (!kvmclock_periodic_sync)
2517 		return;
2518 
2519 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2520 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2521 					KVMCLOCK_SYNC_PERIOD);
2522 }
2523 
2524 /*
2525  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2526  */
2527 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2528 {
2529 	/* McStatusWrEn enabled? */
2530 	if (guest_cpuid_is_amd(vcpu))
2531 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2532 
2533 	return false;
2534 }
2535 
2536 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2537 {
2538 	u64 mcg_cap = vcpu->arch.mcg_cap;
2539 	unsigned bank_num = mcg_cap & 0xff;
2540 	u32 msr = msr_info->index;
2541 	u64 data = msr_info->data;
2542 
2543 	switch (msr) {
2544 	case MSR_IA32_MCG_STATUS:
2545 		vcpu->arch.mcg_status = data;
2546 		break;
2547 	case MSR_IA32_MCG_CTL:
2548 		if (!(mcg_cap & MCG_CTL_P) &&
2549 		    (data || !msr_info->host_initiated))
2550 			return 1;
2551 		if (data != 0 && data != ~(u64)0)
2552 			return 1;
2553 		vcpu->arch.mcg_ctl = data;
2554 		break;
2555 	default:
2556 		if (msr >= MSR_IA32_MC0_CTL &&
2557 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2558 			u32 offset = array_index_nospec(
2559 				msr - MSR_IA32_MC0_CTL,
2560 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2561 
2562 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2563 			 * some Linux kernels though clear bit 10 in bank 4 to
2564 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2565 			 * this to avoid an uncatched #GP in the guest
2566 			 */
2567 			if ((offset & 0x3) == 0 &&
2568 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
2569 				return -1;
2570 
2571 			/* MCi_STATUS */
2572 			if (!msr_info->host_initiated &&
2573 			    (offset & 0x3) == 1 && data != 0) {
2574 				if (!can_set_mci_status(vcpu))
2575 					return -1;
2576 			}
2577 
2578 			vcpu->arch.mce_banks[offset] = data;
2579 			break;
2580 		}
2581 		return 1;
2582 	}
2583 	return 0;
2584 }
2585 
2586 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2587 {
2588 	struct kvm *kvm = vcpu->kvm;
2589 	int lm = is_long_mode(vcpu);
2590 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2591 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2592 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2593 		: kvm->arch.xen_hvm_config.blob_size_32;
2594 	u32 page_num = data & ~PAGE_MASK;
2595 	u64 page_addr = data & PAGE_MASK;
2596 	u8 *page;
2597 	int r;
2598 
2599 	r = -E2BIG;
2600 	if (page_num >= blob_size)
2601 		goto out;
2602 	r = -ENOMEM;
2603 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2604 	if (IS_ERR(page)) {
2605 		r = PTR_ERR(page);
2606 		goto out;
2607 	}
2608 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2609 		goto out_free;
2610 	r = 0;
2611 out_free:
2612 	kfree(page);
2613 out:
2614 	return r;
2615 }
2616 
2617 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2618 {
2619 	gpa_t gpa = data & ~0x3f;
2620 
2621 	/* Bits 3:5 are reserved, Should be zero */
2622 	if (data & 0x38)
2623 		return 1;
2624 
2625 	vcpu->arch.apf.msr_val = data;
2626 
2627 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
2628 		kvm_clear_async_pf_completion_queue(vcpu);
2629 		kvm_async_pf_hash_reset(vcpu);
2630 		return 0;
2631 	}
2632 
2633 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2634 					sizeof(u32)))
2635 		return 1;
2636 
2637 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2638 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2639 	kvm_async_pf_wakeup_all(vcpu);
2640 	return 0;
2641 }
2642 
2643 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2644 {
2645 	vcpu->arch.pv_time_enabled = false;
2646 	vcpu->arch.time = 0;
2647 }
2648 
2649 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2650 {
2651 	++vcpu->stat.tlb_flush;
2652 	kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2653 }
2654 
2655 static void record_steal_time(struct kvm_vcpu *vcpu)
2656 {
2657 	struct kvm_host_map map;
2658 	struct kvm_steal_time *st;
2659 
2660 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2661 		return;
2662 
2663 	/* -EAGAIN is returned in atomic context so we can just return. */
2664 	if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
2665 			&map, &vcpu->arch.st.cache, false))
2666 		return;
2667 
2668 	st = map.hva +
2669 		offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
2670 
2671 	/*
2672 	 * Doing a TLB flush here, on the guest's behalf, can avoid
2673 	 * expensive IPIs.
2674 	 */
2675 	trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2676 		st->preempted & KVM_VCPU_FLUSH_TLB);
2677 	if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
2678 		kvm_vcpu_flush_tlb(vcpu, false);
2679 
2680 	vcpu->arch.st.preempted = 0;
2681 
2682 	if (st->version & 1)
2683 		st->version += 1;  /* first time write, random junk */
2684 
2685 	st->version += 1;
2686 
2687 	smp_wmb();
2688 
2689 	st->steal += current->sched_info.run_delay -
2690 		vcpu->arch.st.last_steal;
2691 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2692 
2693 	smp_wmb();
2694 
2695 	st->version += 1;
2696 
2697 	kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
2698 }
2699 
2700 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2701 {
2702 	bool pr = false;
2703 	u32 msr = msr_info->index;
2704 	u64 data = msr_info->data;
2705 
2706 	switch (msr) {
2707 	case MSR_AMD64_NB_CFG:
2708 	case MSR_IA32_UCODE_WRITE:
2709 	case MSR_VM_HSAVE_PA:
2710 	case MSR_AMD64_PATCH_LOADER:
2711 	case MSR_AMD64_BU_CFG2:
2712 	case MSR_AMD64_DC_CFG:
2713 	case MSR_F15H_EX_CFG:
2714 		break;
2715 
2716 	case MSR_IA32_UCODE_REV:
2717 		if (msr_info->host_initiated)
2718 			vcpu->arch.microcode_version = data;
2719 		break;
2720 	case MSR_IA32_ARCH_CAPABILITIES:
2721 		if (!msr_info->host_initiated)
2722 			return 1;
2723 		vcpu->arch.arch_capabilities = data;
2724 		break;
2725 	case MSR_EFER:
2726 		return set_efer(vcpu, msr_info);
2727 	case MSR_K7_HWCR:
2728 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2729 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2730 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2731 
2732 		/* Handle McStatusWrEn */
2733 		if (data == BIT_ULL(18)) {
2734 			vcpu->arch.msr_hwcr = data;
2735 		} else if (data != 0) {
2736 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2737 				    data);
2738 			return 1;
2739 		}
2740 		break;
2741 	case MSR_FAM10H_MMIO_CONF_BASE:
2742 		if (data != 0) {
2743 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2744 				    "0x%llx\n", data);
2745 			return 1;
2746 		}
2747 		break;
2748 	case MSR_IA32_DEBUGCTLMSR:
2749 		if (!data) {
2750 			/* We support the non-activated case already */
2751 			break;
2752 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2753 			/* Values other than LBR and BTF are vendor-specific,
2754 			   thus reserved and should throw a #GP */
2755 			return 1;
2756 		}
2757 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2758 			    __func__, data);
2759 		break;
2760 	case 0x200 ... 0x2ff:
2761 		return kvm_mtrr_set_msr(vcpu, msr, data);
2762 	case MSR_IA32_APICBASE:
2763 		return kvm_set_apic_base(vcpu, msr_info);
2764 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2765 		return kvm_x2apic_msr_write(vcpu, msr, data);
2766 	case MSR_IA32_TSCDEADLINE:
2767 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2768 		break;
2769 	case MSR_IA32_TSC_ADJUST:
2770 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2771 			if (!msr_info->host_initiated) {
2772 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2773 				adjust_tsc_offset_guest(vcpu, adj);
2774 			}
2775 			vcpu->arch.ia32_tsc_adjust_msr = data;
2776 		}
2777 		break;
2778 	case MSR_IA32_MISC_ENABLE:
2779 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
2780 		    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
2781 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
2782 				return 1;
2783 			vcpu->arch.ia32_misc_enable_msr = data;
2784 			kvm_update_cpuid(vcpu);
2785 		} else {
2786 			vcpu->arch.ia32_misc_enable_msr = data;
2787 		}
2788 		break;
2789 	case MSR_IA32_SMBASE:
2790 		if (!msr_info->host_initiated)
2791 			return 1;
2792 		vcpu->arch.smbase = data;
2793 		break;
2794 	case MSR_IA32_POWER_CTL:
2795 		vcpu->arch.msr_ia32_power_ctl = data;
2796 		break;
2797 	case MSR_IA32_TSC:
2798 		kvm_write_tsc(vcpu, msr_info);
2799 		break;
2800 	case MSR_IA32_XSS:
2801 		if (!msr_info->host_initiated &&
2802 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
2803 			return 1;
2804 		/*
2805 		 * We do support PT if kvm_x86_ops->pt_supported(), but we do
2806 		 * not support IA32_XSS[bit 8]. Guests will have to use
2807 		 * RDMSR/WRMSR rather than XSAVES/XRSTORS to save/restore PT
2808 		 * MSRs.
2809 		 */
2810 		if (data != 0)
2811 			return 1;
2812 		vcpu->arch.ia32_xss = data;
2813 		break;
2814 	case MSR_SMI_COUNT:
2815 		if (!msr_info->host_initiated)
2816 			return 1;
2817 		vcpu->arch.smi_count = data;
2818 		break;
2819 	case MSR_KVM_WALL_CLOCK_NEW:
2820 	case MSR_KVM_WALL_CLOCK:
2821 		vcpu->kvm->arch.wall_clock = data;
2822 		kvm_write_wall_clock(vcpu->kvm, data);
2823 		break;
2824 	case MSR_KVM_SYSTEM_TIME_NEW:
2825 	case MSR_KVM_SYSTEM_TIME: {
2826 		struct kvm_arch *ka = &vcpu->kvm->arch;
2827 
2828 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2829 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2830 
2831 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2832 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2833 
2834 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2835 		}
2836 
2837 		vcpu->arch.time = data;
2838 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2839 
2840 		/* we verify if the enable bit is set... */
2841 		vcpu->arch.pv_time_enabled = false;
2842 		if (!(data & 1))
2843 			break;
2844 
2845 		if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2846 		     &vcpu->arch.pv_time, data & ~1ULL,
2847 		     sizeof(struct pvclock_vcpu_time_info)))
2848 			vcpu->arch.pv_time_enabled = true;
2849 
2850 		break;
2851 	}
2852 	case MSR_KVM_ASYNC_PF_EN:
2853 		if (kvm_pv_enable_async_pf(vcpu, data))
2854 			return 1;
2855 		break;
2856 	case MSR_KVM_STEAL_TIME:
2857 
2858 		if (unlikely(!sched_info_on()))
2859 			return 1;
2860 
2861 		if (data & KVM_STEAL_RESERVED_MASK)
2862 			return 1;
2863 
2864 		vcpu->arch.st.msr_val = data;
2865 
2866 		if (!(data & KVM_MSR_ENABLED))
2867 			break;
2868 
2869 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2870 
2871 		break;
2872 	case MSR_KVM_PV_EOI_EN:
2873 		if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2874 			return 1;
2875 		break;
2876 
2877 	case MSR_KVM_POLL_CONTROL:
2878 		/* only enable bit supported */
2879 		if (data & (-1ULL << 1))
2880 			return 1;
2881 
2882 		vcpu->arch.msr_kvm_poll_control = data;
2883 		break;
2884 
2885 	case MSR_IA32_MCG_CTL:
2886 	case MSR_IA32_MCG_STATUS:
2887 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2888 		return set_msr_mce(vcpu, msr_info);
2889 
2890 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2891 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2892 		pr = true; /* fall through */
2893 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2894 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2895 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2896 			return kvm_pmu_set_msr(vcpu, msr_info);
2897 
2898 		if (pr || data != 0)
2899 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2900 				    "0x%x data 0x%llx\n", msr, data);
2901 		break;
2902 	case MSR_K7_CLK_CTL:
2903 		/*
2904 		 * Ignore all writes to this no longer documented MSR.
2905 		 * Writes are only relevant for old K7 processors,
2906 		 * all pre-dating SVM, but a recommended workaround from
2907 		 * AMD for these chips. It is possible to specify the
2908 		 * affected processor models on the command line, hence
2909 		 * the need to ignore the workaround.
2910 		 */
2911 		break;
2912 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2913 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2914 	case HV_X64_MSR_CRASH_CTL:
2915 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2916 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2917 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
2918 	case HV_X64_MSR_TSC_EMULATION_STATUS:
2919 		return kvm_hv_set_msr_common(vcpu, msr, data,
2920 					     msr_info->host_initiated);
2921 	case MSR_IA32_BBL_CR_CTL3:
2922 		/* Drop writes to this legacy MSR -- see rdmsr
2923 		 * counterpart for further detail.
2924 		 */
2925 		if (report_ignored_msrs)
2926 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2927 				msr, data);
2928 		break;
2929 	case MSR_AMD64_OSVW_ID_LENGTH:
2930 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2931 			return 1;
2932 		vcpu->arch.osvw.length = data;
2933 		break;
2934 	case MSR_AMD64_OSVW_STATUS:
2935 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2936 			return 1;
2937 		vcpu->arch.osvw.status = data;
2938 		break;
2939 	case MSR_PLATFORM_INFO:
2940 		if (!msr_info->host_initiated ||
2941 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2942 		     cpuid_fault_enabled(vcpu)))
2943 			return 1;
2944 		vcpu->arch.msr_platform_info = data;
2945 		break;
2946 	case MSR_MISC_FEATURES_ENABLES:
2947 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2948 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2949 		     !supports_cpuid_fault(vcpu)))
2950 			return 1;
2951 		vcpu->arch.msr_misc_features_enables = data;
2952 		break;
2953 	default:
2954 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2955 			return xen_hvm_config(vcpu, data);
2956 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2957 			return kvm_pmu_set_msr(vcpu, msr_info);
2958 		if (!ignore_msrs) {
2959 			vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2960 				    msr, data);
2961 			return 1;
2962 		} else {
2963 			if (report_ignored_msrs)
2964 				vcpu_unimpl(vcpu,
2965 					"ignored wrmsr: 0x%x data 0x%llx\n",
2966 					msr, data);
2967 			break;
2968 		}
2969 	}
2970 	return 0;
2971 }
2972 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2973 
2974 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2975 {
2976 	u64 data;
2977 	u64 mcg_cap = vcpu->arch.mcg_cap;
2978 	unsigned bank_num = mcg_cap & 0xff;
2979 
2980 	switch (msr) {
2981 	case MSR_IA32_P5_MC_ADDR:
2982 	case MSR_IA32_P5_MC_TYPE:
2983 		data = 0;
2984 		break;
2985 	case MSR_IA32_MCG_CAP:
2986 		data = vcpu->arch.mcg_cap;
2987 		break;
2988 	case MSR_IA32_MCG_CTL:
2989 		if (!(mcg_cap & MCG_CTL_P) && !host)
2990 			return 1;
2991 		data = vcpu->arch.mcg_ctl;
2992 		break;
2993 	case MSR_IA32_MCG_STATUS:
2994 		data = vcpu->arch.mcg_status;
2995 		break;
2996 	default:
2997 		if (msr >= MSR_IA32_MC0_CTL &&
2998 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2999 			u32 offset = array_index_nospec(
3000 				msr - MSR_IA32_MC0_CTL,
3001 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3002 
3003 			data = vcpu->arch.mce_banks[offset];
3004 			break;
3005 		}
3006 		return 1;
3007 	}
3008 	*pdata = data;
3009 	return 0;
3010 }
3011 
3012 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3013 {
3014 	switch (msr_info->index) {
3015 	case MSR_IA32_PLATFORM_ID:
3016 	case MSR_IA32_EBL_CR_POWERON:
3017 	case MSR_IA32_DEBUGCTLMSR:
3018 	case MSR_IA32_LASTBRANCHFROMIP:
3019 	case MSR_IA32_LASTBRANCHTOIP:
3020 	case MSR_IA32_LASTINTFROMIP:
3021 	case MSR_IA32_LASTINTTOIP:
3022 	case MSR_K8_SYSCFG:
3023 	case MSR_K8_TSEG_ADDR:
3024 	case MSR_K8_TSEG_MASK:
3025 	case MSR_VM_HSAVE_PA:
3026 	case MSR_K8_INT_PENDING_MSG:
3027 	case MSR_AMD64_NB_CFG:
3028 	case MSR_FAM10H_MMIO_CONF_BASE:
3029 	case MSR_AMD64_BU_CFG2:
3030 	case MSR_IA32_PERF_CTL:
3031 	case MSR_AMD64_DC_CFG:
3032 	case MSR_F15H_EX_CFG:
3033 		msr_info->data = 0;
3034 		break;
3035 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3036 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3037 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3038 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3039 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3040 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3041 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
3042 		msr_info->data = 0;
3043 		break;
3044 	case MSR_IA32_UCODE_REV:
3045 		msr_info->data = vcpu->arch.microcode_version;
3046 		break;
3047 	case MSR_IA32_ARCH_CAPABILITIES:
3048 		if (!msr_info->host_initiated &&
3049 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3050 			return 1;
3051 		msr_info->data = vcpu->arch.arch_capabilities;
3052 		break;
3053 	case MSR_IA32_POWER_CTL:
3054 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3055 		break;
3056 	case MSR_IA32_TSC:
3057 		msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
3058 		break;
3059 	case MSR_MTRRcap:
3060 	case 0x200 ... 0x2ff:
3061 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3062 	case 0xcd: /* fsb frequency */
3063 		msr_info->data = 3;
3064 		break;
3065 		/*
3066 		 * MSR_EBC_FREQUENCY_ID
3067 		 * Conservative value valid for even the basic CPU models.
3068 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3069 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3070 		 * and 266MHz for model 3, or 4. Set Core Clock
3071 		 * Frequency to System Bus Frequency Ratio to 1 (bits
3072 		 * 31:24) even though these are only valid for CPU
3073 		 * models > 2, however guests may end up dividing or
3074 		 * multiplying by zero otherwise.
3075 		 */
3076 	case MSR_EBC_FREQUENCY_ID:
3077 		msr_info->data = 1 << 24;
3078 		break;
3079 	case MSR_IA32_APICBASE:
3080 		msr_info->data = kvm_get_apic_base(vcpu);
3081 		break;
3082 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
3083 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3084 		break;
3085 	case MSR_IA32_TSCDEADLINE:
3086 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3087 		break;
3088 	case MSR_IA32_TSC_ADJUST:
3089 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3090 		break;
3091 	case MSR_IA32_MISC_ENABLE:
3092 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3093 		break;
3094 	case MSR_IA32_SMBASE:
3095 		if (!msr_info->host_initiated)
3096 			return 1;
3097 		msr_info->data = vcpu->arch.smbase;
3098 		break;
3099 	case MSR_SMI_COUNT:
3100 		msr_info->data = vcpu->arch.smi_count;
3101 		break;
3102 	case MSR_IA32_PERF_STATUS:
3103 		/* TSC increment by tick */
3104 		msr_info->data = 1000ULL;
3105 		/* CPU multiplier */
3106 		msr_info->data |= (((uint64_t)4ULL) << 40);
3107 		break;
3108 	case MSR_EFER:
3109 		msr_info->data = vcpu->arch.efer;
3110 		break;
3111 	case MSR_KVM_WALL_CLOCK:
3112 	case MSR_KVM_WALL_CLOCK_NEW:
3113 		msr_info->data = vcpu->kvm->arch.wall_clock;
3114 		break;
3115 	case MSR_KVM_SYSTEM_TIME:
3116 	case MSR_KVM_SYSTEM_TIME_NEW:
3117 		msr_info->data = vcpu->arch.time;
3118 		break;
3119 	case MSR_KVM_ASYNC_PF_EN:
3120 		msr_info->data = vcpu->arch.apf.msr_val;
3121 		break;
3122 	case MSR_KVM_STEAL_TIME:
3123 		msr_info->data = vcpu->arch.st.msr_val;
3124 		break;
3125 	case MSR_KVM_PV_EOI_EN:
3126 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
3127 		break;
3128 	case MSR_KVM_POLL_CONTROL:
3129 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
3130 		break;
3131 	case MSR_IA32_P5_MC_ADDR:
3132 	case MSR_IA32_P5_MC_TYPE:
3133 	case MSR_IA32_MCG_CAP:
3134 	case MSR_IA32_MCG_CTL:
3135 	case MSR_IA32_MCG_STATUS:
3136 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3137 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3138 				   msr_info->host_initiated);
3139 	case MSR_IA32_XSS:
3140 		if (!msr_info->host_initiated &&
3141 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3142 			return 1;
3143 		msr_info->data = vcpu->arch.ia32_xss;
3144 		break;
3145 	case MSR_K7_CLK_CTL:
3146 		/*
3147 		 * Provide expected ramp-up count for K7. All other
3148 		 * are set to zero, indicating minimum divisors for
3149 		 * every field.
3150 		 *
3151 		 * This prevents guest kernels on AMD host with CPU
3152 		 * type 6, model 8 and higher from exploding due to
3153 		 * the rdmsr failing.
3154 		 */
3155 		msr_info->data = 0x20000000;
3156 		break;
3157 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3158 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3159 	case HV_X64_MSR_CRASH_CTL:
3160 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3161 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3162 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3163 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3164 		return kvm_hv_get_msr_common(vcpu,
3165 					     msr_info->index, &msr_info->data,
3166 					     msr_info->host_initiated);
3167 		break;
3168 	case MSR_IA32_BBL_CR_CTL3:
3169 		/* This legacy MSR exists but isn't fully documented in current
3170 		 * silicon.  It is however accessed by winxp in very narrow
3171 		 * scenarios where it sets bit #19, itself documented as
3172 		 * a "reserved" bit.  Best effort attempt to source coherent
3173 		 * read data here should the balance of the register be
3174 		 * interpreted by the guest:
3175 		 *
3176 		 * L2 cache control register 3: 64GB range, 256KB size,
3177 		 * enabled, latency 0x1, configured
3178 		 */
3179 		msr_info->data = 0xbe702111;
3180 		break;
3181 	case MSR_AMD64_OSVW_ID_LENGTH:
3182 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3183 			return 1;
3184 		msr_info->data = vcpu->arch.osvw.length;
3185 		break;
3186 	case MSR_AMD64_OSVW_STATUS:
3187 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3188 			return 1;
3189 		msr_info->data = vcpu->arch.osvw.status;
3190 		break;
3191 	case MSR_PLATFORM_INFO:
3192 		if (!msr_info->host_initiated &&
3193 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3194 			return 1;
3195 		msr_info->data = vcpu->arch.msr_platform_info;
3196 		break;
3197 	case MSR_MISC_FEATURES_ENABLES:
3198 		msr_info->data = vcpu->arch.msr_misc_features_enables;
3199 		break;
3200 	case MSR_K7_HWCR:
3201 		msr_info->data = vcpu->arch.msr_hwcr;
3202 		break;
3203 	default:
3204 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3205 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
3206 		if (!ignore_msrs) {
3207 			vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
3208 					       msr_info->index);
3209 			return 1;
3210 		} else {
3211 			if (report_ignored_msrs)
3212 				vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
3213 					msr_info->index);
3214 			msr_info->data = 0;
3215 		}
3216 		break;
3217 	}
3218 	return 0;
3219 }
3220 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3221 
3222 /*
3223  * Read or write a bunch of msrs. All parameters are kernel addresses.
3224  *
3225  * @return number of msrs set successfully.
3226  */
3227 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3228 		    struct kvm_msr_entry *entries,
3229 		    int (*do_msr)(struct kvm_vcpu *vcpu,
3230 				  unsigned index, u64 *data))
3231 {
3232 	int i;
3233 
3234 	for (i = 0; i < msrs->nmsrs; ++i)
3235 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
3236 			break;
3237 
3238 	return i;
3239 }
3240 
3241 /*
3242  * Read or write a bunch of msrs. Parameters are user addresses.
3243  *
3244  * @return number of msrs set successfully.
3245  */
3246 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3247 		  int (*do_msr)(struct kvm_vcpu *vcpu,
3248 				unsigned index, u64 *data),
3249 		  int writeback)
3250 {
3251 	struct kvm_msrs msrs;
3252 	struct kvm_msr_entry *entries;
3253 	int r, n;
3254 	unsigned size;
3255 
3256 	r = -EFAULT;
3257 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3258 		goto out;
3259 
3260 	r = -E2BIG;
3261 	if (msrs.nmsrs >= MAX_IO_MSRS)
3262 		goto out;
3263 
3264 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3265 	entries = memdup_user(user_msrs->entries, size);
3266 	if (IS_ERR(entries)) {
3267 		r = PTR_ERR(entries);
3268 		goto out;
3269 	}
3270 
3271 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3272 	if (r < 0)
3273 		goto out_free;
3274 
3275 	r = -EFAULT;
3276 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
3277 		goto out_free;
3278 
3279 	r = n;
3280 
3281 out_free:
3282 	kfree(entries);
3283 out:
3284 	return r;
3285 }
3286 
3287 static inline bool kvm_can_mwait_in_guest(void)
3288 {
3289 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
3290 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
3291 		boot_cpu_has(X86_FEATURE_ARAT);
3292 }
3293 
3294 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3295 {
3296 	int r = 0;
3297 
3298 	switch (ext) {
3299 	case KVM_CAP_IRQCHIP:
3300 	case KVM_CAP_HLT:
3301 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3302 	case KVM_CAP_SET_TSS_ADDR:
3303 	case KVM_CAP_EXT_CPUID:
3304 	case KVM_CAP_EXT_EMUL_CPUID:
3305 	case KVM_CAP_CLOCKSOURCE:
3306 	case KVM_CAP_PIT:
3307 	case KVM_CAP_NOP_IO_DELAY:
3308 	case KVM_CAP_MP_STATE:
3309 	case KVM_CAP_SYNC_MMU:
3310 	case KVM_CAP_USER_NMI:
3311 	case KVM_CAP_REINJECT_CONTROL:
3312 	case KVM_CAP_IRQ_INJECT_STATUS:
3313 	case KVM_CAP_IOEVENTFD:
3314 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
3315 	case KVM_CAP_PIT2:
3316 	case KVM_CAP_PIT_STATE2:
3317 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3318 	case KVM_CAP_XEN_HVM:
3319 	case KVM_CAP_VCPU_EVENTS:
3320 	case KVM_CAP_HYPERV:
3321 	case KVM_CAP_HYPERV_VAPIC:
3322 	case KVM_CAP_HYPERV_SPIN:
3323 	case KVM_CAP_HYPERV_SYNIC:
3324 	case KVM_CAP_HYPERV_SYNIC2:
3325 	case KVM_CAP_HYPERV_VP_INDEX:
3326 	case KVM_CAP_HYPERV_EVENTFD:
3327 	case KVM_CAP_HYPERV_TLBFLUSH:
3328 	case KVM_CAP_HYPERV_SEND_IPI:
3329 	case KVM_CAP_HYPERV_CPUID:
3330 	case KVM_CAP_PCI_SEGMENT:
3331 	case KVM_CAP_DEBUGREGS:
3332 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
3333 	case KVM_CAP_XSAVE:
3334 	case KVM_CAP_ASYNC_PF:
3335 	case KVM_CAP_GET_TSC_KHZ:
3336 	case KVM_CAP_KVMCLOCK_CTRL:
3337 	case KVM_CAP_READONLY_MEM:
3338 	case KVM_CAP_HYPERV_TIME:
3339 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3340 	case KVM_CAP_TSC_DEADLINE_TIMER:
3341 	case KVM_CAP_DISABLE_QUIRKS:
3342 	case KVM_CAP_SET_BOOT_CPU_ID:
3343  	case KVM_CAP_SPLIT_IRQCHIP:
3344 	case KVM_CAP_IMMEDIATE_EXIT:
3345 	case KVM_CAP_PMU_EVENT_FILTER:
3346 	case KVM_CAP_GET_MSR_FEATURES:
3347 	case KVM_CAP_MSR_PLATFORM_INFO:
3348 	case KVM_CAP_EXCEPTION_PAYLOAD:
3349 		r = 1;
3350 		break;
3351 	case KVM_CAP_SYNC_REGS:
3352 		r = KVM_SYNC_X86_VALID_FIELDS;
3353 		break;
3354 	case KVM_CAP_ADJUST_CLOCK:
3355 		r = KVM_CLOCK_TSC_STABLE;
3356 		break;
3357 	case KVM_CAP_X86_DISABLE_EXITS:
3358 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3359 		      KVM_X86_DISABLE_EXITS_CSTATE;
3360 		if(kvm_can_mwait_in_guest())
3361 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
3362 		break;
3363 	case KVM_CAP_X86_SMM:
3364 		/* SMBASE is usually relocated above 1M on modern chipsets,
3365 		 * and SMM handlers might indeed rely on 4G segment limits,
3366 		 * so do not report SMM to be available if real mode is
3367 		 * emulated via vm86 mode.  Still, do not go to great lengths
3368 		 * to avoid userspace's usage of the feature, because it is a
3369 		 * fringe case that is not enabled except via specific settings
3370 		 * of the module parameters.
3371 		 */
3372 		r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
3373 		break;
3374 	case KVM_CAP_VAPIC:
3375 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
3376 		break;
3377 	case KVM_CAP_NR_VCPUS:
3378 		r = KVM_SOFT_MAX_VCPUS;
3379 		break;
3380 	case KVM_CAP_MAX_VCPUS:
3381 		r = KVM_MAX_VCPUS;
3382 		break;
3383 	case KVM_CAP_MAX_VCPU_ID:
3384 		r = KVM_MAX_VCPU_ID;
3385 		break;
3386 	case KVM_CAP_PV_MMU:	/* obsolete */
3387 		r = 0;
3388 		break;
3389 	case KVM_CAP_MCE:
3390 		r = KVM_MAX_MCE_BANKS;
3391 		break;
3392 	case KVM_CAP_XCRS:
3393 		r = boot_cpu_has(X86_FEATURE_XSAVE);
3394 		break;
3395 	case KVM_CAP_TSC_CONTROL:
3396 		r = kvm_has_tsc_control;
3397 		break;
3398 	case KVM_CAP_X2APIC_API:
3399 		r = KVM_X2APIC_API_VALID_FLAGS;
3400 		break;
3401 	case KVM_CAP_NESTED_STATE:
3402 		r = kvm_x86_ops->get_nested_state ?
3403 			kvm_x86_ops->get_nested_state(NULL, NULL, 0) : 0;
3404 		break;
3405 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3406 		r = kvm_x86_ops->enable_direct_tlbflush != NULL;
3407 		break;
3408 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3409 		r = kvm_x86_ops->nested_enable_evmcs != NULL;
3410 		break;
3411 	default:
3412 		break;
3413 	}
3414 	return r;
3415 
3416 }
3417 
3418 long kvm_arch_dev_ioctl(struct file *filp,
3419 			unsigned int ioctl, unsigned long arg)
3420 {
3421 	void __user *argp = (void __user *)arg;
3422 	long r;
3423 
3424 	switch (ioctl) {
3425 	case KVM_GET_MSR_INDEX_LIST: {
3426 		struct kvm_msr_list __user *user_msr_list = argp;
3427 		struct kvm_msr_list msr_list;
3428 		unsigned n;
3429 
3430 		r = -EFAULT;
3431 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3432 			goto out;
3433 		n = msr_list.nmsrs;
3434 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3435 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3436 			goto out;
3437 		r = -E2BIG;
3438 		if (n < msr_list.nmsrs)
3439 			goto out;
3440 		r = -EFAULT;
3441 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3442 				 num_msrs_to_save * sizeof(u32)))
3443 			goto out;
3444 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3445 				 &emulated_msrs,
3446 				 num_emulated_msrs * sizeof(u32)))
3447 			goto out;
3448 		r = 0;
3449 		break;
3450 	}
3451 	case KVM_GET_SUPPORTED_CPUID:
3452 	case KVM_GET_EMULATED_CPUID: {
3453 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3454 		struct kvm_cpuid2 cpuid;
3455 
3456 		r = -EFAULT;
3457 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3458 			goto out;
3459 
3460 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3461 					    ioctl);
3462 		if (r)
3463 			goto out;
3464 
3465 		r = -EFAULT;
3466 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3467 			goto out;
3468 		r = 0;
3469 		break;
3470 	}
3471 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3472 		r = -EFAULT;
3473 		if (copy_to_user(argp, &kvm_mce_cap_supported,
3474 				 sizeof(kvm_mce_cap_supported)))
3475 			goto out;
3476 		r = 0;
3477 		break;
3478 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3479 		struct kvm_msr_list __user *user_msr_list = argp;
3480 		struct kvm_msr_list msr_list;
3481 		unsigned int n;
3482 
3483 		r = -EFAULT;
3484 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3485 			goto out;
3486 		n = msr_list.nmsrs;
3487 		msr_list.nmsrs = num_msr_based_features;
3488 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3489 			goto out;
3490 		r = -E2BIG;
3491 		if (n < msr_list.nmsrs)
3492 			goto out;
3493 		r = -EFAULT;
3494 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
3495 				 num_msr_based_features * sizeof(u32)))
3496 			goto out;
3497 		r = 0;
3498 		break;
3499 	}
3500 	case KVM_GET_MSRS:
3501 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
3502 		break;
3503 	}
3504 	default:
3505 		r = -EINVAL;
3506 	}
3507 out:
3508 	return r;
3509 }
3510 
3511 static void wbinvd_ipi(void *garbage)
3512 {
3513 	wbinvd();
3514 }
3515 
3516 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3517 {
3518 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3519 }
3520 
3521 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3522 {
3523 	/* Address WBINVD may be executed by guest */
3524 	if (need_emulate_wbinvd(vcpu)) {
3525 		if (kvm_x86_ops->has_wbinvd_exit())
3526 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3527 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3528 			smp_call_function_single(vcpu->cpu,
3529 					wbinvd_ipi, NULL, 1);
3530 	}
3531 
3532 	kvm_x86_ops->vcpu_load(vcpu, cpu);
3533 
3534 	/* Apply any externally detected TSC adjustments (due to suspend) */
3535 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3536 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3537 		vcpu->arch.tsc_offset_adjustment = 0;
3538 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3539 	}
3540 
3541 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3542 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3543 				rdtsc() - vcpu->arch.last_host_tsc;
3544 		if (tsc_delta < 0)
3545 			mark_tsc_unstable("KVM discovered backwards TSC");
3546 
3547 		if (kvm_check_tsc_unstable()) {
3548 			u64 offset = kvm_compute_tsc_offset(vcpu,
3549 						vcpu->arch.last_guest_tsc);
3550 			kvm_vcpu_write_tsc_offset(vcpu, offset);
3551 			vcpu->arch.tsc_catchup = 1;
3552 		}
3553 
3554 		if (kvm_lapic_hv_timer_in_use(vcpu))
3555 			kvm_lapic_restart_hv_timer(vcpu);
3556 
3557 		/*
3558 		 * On a host with synchronized TSC, there is no need to update
3559 		 * kvmclock on vcpu->cpu migration
3560 		 */
3561 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3562 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3563 		if (vcpu->cpu != cpu)
3564 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3565 		vcpu->cpu = cpu;
3566 	}
3567 
3568 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3569 }
3570 
3571 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3572 {
3573 	struct kvm_host_map map;
3574 	struct kvm_steal_time *st;
3575 
3576 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3577 		return;
3578 
3579 	if (vcpu->arch.st.preempted)
3580 		return;
3581 
3582 	if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
3583 			&vcpu->arch.st.cache, true))
3584 		return;
3585 
3586 	st = map.hva +
3587 		offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
3588 
3589 	st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
3590 
3591 	kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
3592 }
3593 
3594 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3595 {
3596 	int idx;
3597 
3598 	if (vcpu->preempted)
3599 		vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3600 
3601 	/*
3602 	 * Disable page faults because we're in atomic context here.
3603 	 * kvm_write_guest_offset_cached() would call might_fault()
3604 	 * that relies on pagefault_disable() to tell if there's a
3605 	 * bug. NOTE: the write to guest memory may not go through if
3606 	 * during postcopy live migration or if there's heavy guest
3607 	 * paging.
3608 	 */
3609 	pagefault_disable();
3610 	/*
3611 	 * kvm_memslots() will be called by
3612 	 * kvm_write_guest_offset_cached() so take the srcu lock.
3613 	 */
3614 	idx = srcu_read_lock(&vcpu->kvm->srcu);
3615 	kvm_steal_time_set_preempted(vcpu);
3616 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3617 	pagefault_enable();
3618 	kvm_x86_ops->vcpu_put(vcpu);
3619 	vcpu->arch.last_host_tsc = rdtsc();
3620 	/*
3621 	 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3622 	 * on every vmexit, but if not, we might have a stale dr6 from the
3623 	 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3624 	 */
3625 	set_debugreg(0, 6);
3626 }
3627 
3628 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3629 				    struct kvm_lapic_state *s)
3630 {
3631 	if (vcpu->arch.apicv_active)
3632 		kvm_x86_ops->sync_pir_to_irr(vcpu);
3633 
3634 	return kvm_apic_get_state(vcpu, s);
3635 }
3636 
3637 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3638 				    struct kvm_lapic_state *s)
3639 {
3640 	int r;
3641 
3642 	r = kvm_apic_set_state(vcpu, s);
3643 	if (r)
3644 		return r;
3645 	update_cr8_intercept(vcpu);
3646 
3647 	return 0;
3648 }
3649 
3650 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3651 {
3652 	return (!lapic_in_kernel(vcpu) ||
3653 		kvm_apic_accept_pic_intr(vcpu));
3654 }
3655 
3656 /*
3657  * if userspace requested an interrupt window, check that the
3658  * interrupt window is open.
3659  *
3660  * No need to exit to userspace if we already have an interrupt queued.
3661  */
3662 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3663 {
3664 	return kvm_arch_interrupt_allowed(vcpu) &&
3665 		!kvm_cpu_has_interrupt(vcpu) &&
3666 		!kvm_event_needs_reinjection(vcpu) &&
3667 		kvm_cpu_accept_dm_intr(vcpu);
3668 }
3669 
3670 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3671 				    struct kvm_interrupt *irq)
3672 {
3673 	if (irq->irq >= KVM_NR_INTERRUPTS)
3674 		return -EINVAL;
3675 
3676 	if (!irqchip_in_kernel(vcpu->kvm)) {
3677 		kvm_queue_interrupt(vcpu, irq->irq, false);
3678 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3679 		return 0;
3680 	}
3681 
3682 	/*
3683 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3684 	 * fail for in-kernel 8259.
3685 	 */
3686 	if (pic_in_kernel(vcpu->kvm))
3687 		return -ENXIO;
3688 
3689 	if (vcpu->arch.pending_external_vector != -1)
3690 		return -EEXIST;
3691 
3692 	vcpu->arch.pending_external_vector = irq->irq;
3693 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3694 	return 0;
3695 }
3696 
3697 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3698 {
3699 	kvm_inject_nmi(vcpu);
3700 
3701 	return 0;
3702 }
3703 
3704 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3705 {
3706 	kvm_make_request(KVM_REQ_SMI, vcpu);
3707 
3708 	return 0;
3709 }
3710 
3711 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3712 					   struct kvm_tpr_access_ctl *tac)
3713 {
3714 	if (tac->flags)
3715 		return -EINVAL;
3716 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
3717 	return 0;
3718 }
3719 
3720 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3721 					u64 mcg_cap)
3722 {
3723 	int r;
3724 	unsigned bank_num = mcg_cap & 0xff, bank;
3725 
3726 	r = -EINVAL;
3727 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3728 		goto out;
3729 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3730 		goto out;
3731 	r = 0;
3732 	vcpu->arch.mcg_cap = mcg_cap;
3733 	/* Init IA32_MCG_CTL to all 1s */
3734 	if (mcg_cap & MCG_CTL_P)
3735 		vcpu->arch.mcg_ctl = ~(u64)0;
3736 	/* Init IA32_MCi_CTL to all 1s */
3737 	for (bank = 0; bank < bank_num; bank++)
3738 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3739 
3740 	kvm_x86_ops->setup_mce(vcpu);
3741 out:
3742 	return r;
3743 }
3744 
3745 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3746 				      struct kvm_x86_mce *mce)
3747 {
3748 	u64 mcg_cap = vcpu->arch.mcg_cap;
3749 	unsigned bank_num = mcg_cap & 0xff;
3750 	u64 *banks = vcpu->arch.mce_banks;
3751 
3752 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3753 		return -EINVAL;
3754 	/*
3755 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3756 	 * reporting is disabled
3757 	 */
3758 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3759 	    vcpu->arch.mcg_ctl != ~(u64)0)
3760 		return 0;
3761 	banks += 4 * mce->bank;
3762 	/*
3763 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3764 	 * reporting is disabled for the bank
3765 	 */
3766 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3767 		return 0;
3768 	if (mce->status & MCI_STATUS_UC) {
3769 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3770 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3771 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3772 			return 0;
3773 		}
3774 		if (banks[1] & MCI_STATUS_VAL)
3775 			mce->status |= MCI_STATUS_OVER;
3776 		banks[2] = mce->addr;
3777 		banks[3] = mce->misc;
3778 		vcpu->arch.mcg_status = mce->mcg_status;
3779 		banks[1] = mce->status;
3780 		kvm_queue_exception(vcpu, MC_VECTOR);
3781 	} else if (!(banks[1] & MCI_STATUS_VAL)
3782 		   || !(banks[1] & MCI_STATUS_UC)) {
3783 		if (banks[1] & MCI_STATUS_VAL)
3784 			mce->status |= MCI_STATUS_OVER;
3785 		banks[2] = mce->addr;
3786 		banks[3] = mce->misc;
3787 		banks[1] = mce->status;
3788 	} else
3789 		banks[1] |= MCI_STATUS_OVER;
3790 	return 0;
3791 }
3792 
3793 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3794 					       struct kvm_vcpu_events *events)
3795 {
3796 	process_nmi(vcpu);
3797 
3798 	/*
3799 	 * The API doesn't provide the instruction length for software
3800 	 * exceptions, so don't report them. As long as the guest RIP
3801 	 * isn't advanced, we should expect to encounter the exception
3802 	 * again.
3803 	 */
3804 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3805 		events->exception.injected = 0;
3806 		events->exception.pending = 0;
3807 	} else {
3808 		events->exception.injected = vcpu->arch.exception.injected;
3809 		events->exception.pending = vcpu->arch.exception.pending;
3810 		/*
3811 		 * For ABI compatibility, deliberately conflate
3812 		 * pending and injected exceptions when
3813 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3814 		 */
3815 		if (!vcpu->kvm->arch.exception_payload_enabled)
3816 			events->exception.injected |=
3817 				vcpu->arch.exception.pending;
3818 	}
3819 	events->exception.nr = vcpu->arch.exception.nr;
3820 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3821 	events->exception.error_code = vcpu->arch.exception.error_code;
3822 	events->exception_has_payload = vcpu->arch.exception.has_payload;
3823 	events->exception_payload = vcpu->arch.exception.payload;
3824 
3825 	events->interrupt.injected =
3826 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3827 	events->interrupt.nr = vcpu->arch.interrupt.nr;
3828 	events->interrupt.soft = 0;
3829 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3830 
3831 	events->nmi.injected = vcpu->arch.nmi_injected;
3832 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
3833 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3834 	events->nmi.pad = 0;
3835 
3836 	events->sipi_vector = 0; /* never valid when reporting to user space */
3837 
3838 	events->smi.smm = is_smm(vcpu);
3839 	events->smi.pending = vcpu->arch.smi_pending;
3840 	events->smi.smm_inside_nmi =
3841 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3842 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3843 
3844 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3845 			 | KVM_VCPUEVENT_VALID_SHADOW
3846 			 | KVM_VCPUEVENT_VALID_SMM);
3847 	if (vcpu->kvm->arch.exception_payload_enabled)
3848 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3849 
3850 	memset(&events->reserved, 0, sizeof(events->reserved));
3851 }
3852 
3853 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
3854 
3855 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3856 					      struct kvm_vcpu_events *events)
3857 {
3858 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3859 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3860 			      | KVM_VCPUEVENT_VALID_SHADOW
3861 			      | KVM_VCPUEVENT_VALID_SMM
3862 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
3863 		return -EINVAL;
3864 
3865 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3866 		if (!vcpu->kvm->arch.exception_payload_enabled)
3867 			return -EINVAL;
3868 		if (events->exception.pending)
3869 			events->exception.injected = 0;
3870 		else
3871 			events->exception_has_payload = 0;
3872 	} else {
3873 		events->exception.pending = 0;
3874 		events->exception_has_payload = 0;
3875 	}
3876 
3877 	if ((events->exception.injected || events->exception.pending) &&
3878 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3879 		return -EINVAL;
3880 
3881 	/* INITs are latched while in SMM */
3882 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3883 	    (events->smi.smm || events->smi.pending) &&
3884 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3885 		return -EINVAL;
3886 
3887 	process_nmi(vcpu);
3888 	vcpu->arch.exception.injected = events->exception.injected;
3889 	vcpu->arch.exception.pending = events->exception.pending;
3890 	vcpu->arch.exception.nr = events->exception.nr;
3891 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3892 	vcpu->arch.exception.error_code = events->exception.error_code;
3893 	vcpu->arch.exception.has_payload = events->exception_has_payload;
3894 	vcpu->arch.exception.payload = events->exception_payload;
3895 
3896 	vcpu->arch.interrupt.injected = events->interrupt.injected;
3897 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3898 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3899 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3900 		kvm_x86_ops->set_interrupt_shadow(vcpu,
3901 						  events->interrupt.shadow);
3902 
3903 	vcpu->arch.nmi_injected = events->nmi.injected;
3904 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3905 		vcpu->arch.nmi_pending = events->nmi.pending;
3906 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3907 
3908 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3909 	    lapic_in_kernel(vcpu))
3910 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3911 
3912 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3913 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
3914 			if (events->smi.smm)
3915 				vcpu->arch.hflags |= HF_SMM_MASK;
3916 			else
3917 				vcpu->arch.hflags &= ~HF_SMM_MASK;
3918 			kvm_smm_changed(vcpu);
3919 		}
3920 
3921 		vcpu->arch.smi_pending = events->smi.pending;
3922 
3923 		if (events->smi.smm) {
3924 			if (events->smi.smm_inside_nmi)
3925 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3926 			else
3927 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3928 		}
3929 
3930 		if (lapic_in_kernel(vcpu)) {
3931 			if (events->smi.latched_init)
3932 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3933 			else
3934 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3935 		}
3936 	}
3937 
3938 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3939 
3940 	return 0;
3941 }
3942 
3943 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3944 					     struct kvm_debugregs *dbgregs)
3945 {
3946 	unsigned long val;
3947 
3948 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3949 	kvm_get_dr(vcpu, 6, &val);
3950 	dbgregs->dr6 = val;
3951 	dbgregs->dr7 = vcpu->arch.dr7;
3952 	dbgregs->flags = 0;
3953 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3954 }
3955 
3956 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3957 					    struct kvm_debugregs *dbgregs)
3958 {
3959 	if (dbgregs->flags)
3960 		return -EINVAL;
3961 
3962 	if (dbgregs->dr6 & ~0xffffffffull)
3963 		return -EINVAL;
3964 	if (dbgregs->dr7 & ~0xffffffffull)
3965 		return -EINVAL;
3966 
3967 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3968 	kvm_update_dr0123(vcpu);
3969 	vcpu->arch.dr6 = dbgregs->dr6;
3970 	kvm_update_dr6(vcpu);
3971 	vcpu->arch.dr7 = dbgregs->dr7;
3972 	kvm_update_dr7(vcpu);
3973 
3974 	return 0;
3975 }
3976 
3977 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3978 
3979 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3980 {
3981 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3982 	u64 xstate_bv = xsave->header.xfeatures;
3983 	u64 valid;
3984 
3985 	/*
3986 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3987 	 * leaves 0 and 1 in the loop below.
3988 	 */
3989 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3990 
3991 	/* Set XSTATE_BV */
3992 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3993 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3994 
3995 	/*
3996 	 * Copy each region from the possibly compacted offset to the
3997 	 * non-compacted offset.
3998 	 */
3999 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4000 	while (valid) {
4001 		u64 xfeature_mask = valid & -valid;
4002 		int xfeature_nr = fls64(xfeature_mask) - 1;
4003 		void *src = get_xsave_addr(xsave, xfeature_nr);
4004 
4005 		if (src) {
4006 			u32 size, offset, ecx, edx;
4007 			cpuid_count(XSTATE_CPUID, xfeature_nr,
4008 				    &size, &offset, &ecx, &edx);
4009 			if (xfeature_nr == XFEATURE_PKRU)
4010 				memcpy(dest + offset, &vcpu->arch.pkru,
4011 				       sizeof(vcpu->arch.pkru));
4012 			else
4013 				memcpy(dest + offset, src, size);
4014 
4015 		}
4016 
4017 		valid -= xfeature_mask;
4018 	}
4019 }
4020 
4021 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4022 {
4023 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4024 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4025 	u64 valid;
4026 
4027 	/*
4028 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4029 	 * leaves 0 and 1 in the loop below.
4030 	 */
4031 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
4032 
4033 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
4034 	xsave->header.xfeatures = xstate_bv;
4035 	if (boot_cpu_has(X86_FEATURE_XSAVES))
4036 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4037 
4038 	/*
4039 	 * Copy each region from the non-compacted offset to the
4040 	 * possibly compacted offset.
4041 	 */
4042 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4043 	while (valid) {
4044 		u64 xfeature_mask = valid & -valid;
4045 		int xfeature_nr = fls64(xfeature_mask) - 1;
4046 		void *dest = get_xsave_addr(xsave, xfeature_nr);
4047 
4048 		if (dest) {
4049 			u32 size, offset, ecx, edx;
4050 			cpuid_count(XSTATE_CPUID, xfeature_nr,
4051 				    &size, &offset, &ecx, &edx);
4052 			if (xfeature_nr == XFEATURE_PKRU)
4053 				memcpy(&vcpu->arch.pkru, src + offset,
4054 				       sizeof(vcpu->arch.pkru));
4055 			else
4056 				memcpy(dest, src + offset, size);
4057 		}
4058 
4059 		valid -= xfeature_mask;
4060 	}
4061 }
4062 
4063 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4064 					 struct kvm_xsave *guest_xsave)
4065 {
4066 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4067 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4068 		fill_xsave((u8 *) guest_xsave->region, vcpu);
4069 	} else {
4070 		memcpy(guest_xsave->region,
4071 			&vcpu->arch.guest_fpu->state.fxsave,
4072 			sizeof(struct fxregs_state));
4073 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4074 			XFEATURE_MASK_FPSSE;
4075 	}
4076 }
4077 
4078 #define XSAVE_MXCSR_OFFSET 24
4079 
4080 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4081 					struct kvm_xsave *guest_xsave)
4082 {
4083 	u64 xstate_bv =
4084 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4085 	u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4086 
4087 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4088 		/*
4089 		 * Here we allow setting states that are not present in
4090 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4091 		 * with old userspace.
4092 		 */
4093 		if (xstate_bv & ~kvm_supported_xcr0() ||
4094 			mxcsr & ~mxcsr_feature_mask)
4095 			return -EINVAL;
4096 		load_xsave(vcpu, (u8 *)guest_xsave->region);
4097 	} else {
4098 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4099 			mxcsr & ~mxcsr_feature_mask)
4100 			return -EINVAL;
4101 		memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4102 			guest_xsave->region, sizeof(struct fxregs_state));
4103 	}
4104 	return 0;
4105 }
4106 
4107 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4108 					struct kvm_xcrs *guest_xcrs)
4109 {
4110 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4111 		guest_xcrs->nr_xcrs = 0;
4112 		return;
4113 	}
4114 
4115 	guest_xcrs->nr_xcrs = 1;
4116 	guest_xcrs->flags = 0;
4117 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4118 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4119 }
4120 
4121 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4122 				       struct kvm_xcrs *guest_xcrs)
4123 {
4124 	int i, r = 0;
4125 
4126 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
4127 		return -EINVAL;
4128 
4129 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4130 		return -EINVAL;
4131 
4132 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4133 		/* Only support XCR0 currently */
4134 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4135 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4136 				guest_xcrs->xcrs[i].value);
4137 			break;
4138 		}
4139 	if (r)
4140 		r = -EINVAL;
4141 	return r;
4142 }
4143 
4144 /*
4145  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4146  * stopped by the hypervisor.  This function will be called from the host only.
4147  * EINVAL is returned when the host attempts to set the flag for a guest that
4148  * does not support pv clocks.
4149  */
4150 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4151 {
4152 	if (!vcpu->arch.pv_time_enabled)
4153 		return -EINVAL;
4154 	vcpu->arch.pvclock_set_guest_stopped_request = true;
4155 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4156 	return 0;
4157 }
4158 
4159 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4160 				     struct kvm_enable_cap *cap)
4161 {
4162 	int r;
4163 	uint16_t vmcs_version;
4164 	void __user *user_ptr;
4165 
4166 	if (cap->flags)
4167 		return -EINVAL;
4168 
4169 	switch (cap->cap) {
4170 	case KVM_CAP_HYPERV_SYNIC2:
4171 		if (cap->args[0])
4172 			return -EINVAL;
4173 		/* fall through */
4174 
4175 	case KVM_CAP_HYPERV_SYNIC:
4176 		if (!irqchip_in_kernel(vcpu->kvm))
4177 			return -EINVAL;
4178 		return kvm_hv_activate_synic(vcpu, cap->cap ==
4179 					     KVM_CAP_HYPERV_SYNIC2);
4180 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4181 		if (!kvm_x86_ops->nested_enable_evmcs)
4182 			return -ENOTTY;
4183 		r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
4184 		if (!r) {
4185 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
4186 			if (copy_to_user(user_ptr, &vmcs_version,
4187 					 sizeof(vmcs_version)))
4188 				r = -EFAULT;
4189 		}
4190 		return r;
4191 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4192 		if (!kvm_x86_ops->enable_direct_tlbflush)
4193 			return -ENOTTY;
4194 
4195 		return kvm_x86_ops->enable_direct_tlbflush(vcpu);
4196 
4197 	default:
4198 		return -EINVAL;
4199 	}
4200 }
4201 
4202 long kvm_arch_vcpu_ioctl(struct file *filp,
4203 			 unsigned int ioctl, unsigned long arg)
4204 {
4205 	struct kvm_vcpu *vcpu = filp->private_data;
4206 	void __user *argp = (void __user *)arg;
4207 	int r;
4208 	union {
4209 		struct kvm_lapic_state *lapic;
4210 		struct kvm_xsave *xsave;
4211 		struct kvm_xcrs *xcrs;
4212 		void *buffer;
4213 	} u;
4214 
4215 	vcpu_load(vcpu);
4216 
4217 	u.buffer = NULL;
4218 	switch (ioctl) {
4219 	case KVM_GET_LAPIC: {
4220 		r = -EINVAL;
4221 		if (!lapic_in_kernel(vcpu))
4222 			goto out;
4223 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4224 				GFP_KERNEL_ACCOUNT);
4225 
4226 		r = -ENOMEM;
4227 		if (!u.lapic)
4228 			goto out;
4229 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4230 		if (r)
4231 			goto out;
4232 		r = -EFAULT;
4233 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4234 			goto out;
4235 		r = 0;
4236 		break;
4237 	}
4238 	case KVM_SET_LAPIC: {
4239 		r = -EINVAL;
4240 		if (!lapic_in_kernel(vcpu))
4241 			goto out;
4242 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
4243 		if (IS_ERR(u.lapic)) {
4244 			r = PTR_ERR(u.lapic);
4245 			goto out_nofree;
4246 		}
4247 
4248 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4249 		break;
4250 	}
4251 	case KVM_INTERRUPT: {
4252 		struct kvm_interrupt irq;
4253 
4254 		r = -EFAULT;
4255 		if (copy_from_user(&irq, argp, sizeof(irq)))
4256 			goto out;
4257 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4258 		break;
4259 	}
4260 	case KVM_NMI: {
4261 		r = kvm_vcpu_ioctl_nmi(vcpu);
4262 		break;
4263 	}
4264 	case KVM_SMI: {
4265 		r = kvm_vcpu_ioctl_smi(vcpu);
4266 		break;
4267 	}
4268 	case KVM_SET_CPUID: {
4269 		struct kvm_cpuid __user *cpuid_arg = argp;
4270 		struct kvm_cpuid cpuid;
4271 
4272 		r = -EFAULT;
4273 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4274 			goto out;
4275 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4276 		break;
4277 	}
4278 	case KVM_SET_CPUID2: {
4279 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4280 		struct kvm_cpuid2 cpuid;
4281 
4282 		r = -EFAULT;
4283 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4284 			goto out;
4285 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4286 					      cpuid_arg->entries);
4287 		break;
4288 	}
4289 	case KVM_GET_CPUID2: {
4290 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4291 		struct kvm_cpuid2 cpuid;
4292 
4293 		r = -EFAULT;
4294 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4295 			goto out;
4296 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4297 					      cpuid_arg->entries);
4298 		if (r)
4299 			goto out;
4300 		r = -EFAULT;
4301 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4302 			goto out;
4303 		r = 0;
4304 		break;
4305 	}
4306 	case KVM_GET_MSRS: {
4307 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4308 		r = msr_io(vcpu, argp, do_get_msr, 1);
4309 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4310 		break;
4311 	}
4312 	case KVM_SET_MSRS: {
4313 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4314 		r = msr_io(vcpu, argp, do_set_msr, 0);
4315 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4316 		break;
4317 	}
4318 	case KVM_TPR_ACCESS_REPORTING: {
4319 		struct kvm_tpr_access_ctl tac;
4320 
4321 		r = -EFAULT;
4322 		if (copy_from_user(&tac, argp, sizeof(tac)))
4323 			goto out;
4324 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4325 		if (r)
4326 			goto out;
4327 		r = -EFAULT;
4328 		if (copy_to_user(argp, &tac, sizeof(tac)))
4329 			goto out;
4330 		r = 0;
4331 		break;
4332 	};
4333 	case KVM_SET_VAPIC_ADDR: {
4334 		struct kvm_vapic_addr va;
4335 		int idx;
4336 
4337 		r = -EINVAL;
4338 		if (!lapic_in_kernel(vcpu))
4339 			goto out;
4340 		r = -EFAULT;
4341 		if (copy_from_user(&va, argp, sizeof(va)))
4342 			goto out;
4343 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4344 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4345 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4346 		break;
4347 	}
4348 	case KVM_X86_SETUP_MCE: {
4349 		u64 mcg_cap;
4350 
4351 		r = -EFAULT;
4352 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4353 			goto out;
4354 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4355 		break;
4356 	}
4357 	case KVM_X86_SET_MCE: {
4358 		struct kvm_x86_mce mce;
4359 
4360 		r = -EFAULT;
4361 		if (copy_from_user(&mce, argp, sizeof(mce)))
4362 			goto out;
4363 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4364 		break;
4365 	}
4366 	case KVM_GET_VCPU_EVENTS: {
4367 		struct kvm_vcpu_events events;
4368 
4369 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4370 
4371 		r = -EFAULT;
4372 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4373 			break;
4374 		r = 0;
4375 		break;
4376 	}
4377 	case KVM_SET_VCPU_EVENTS: {
4378 		struct kvm_vcpu_events events;
4379 
4380 		r = -EFAULT;
4381 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4382 			break;
4383 
4384 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4385 		break;
4386 	}
4387 	case KVM_GET_DEBUGREGS: {
4388 		struct kvm_debugregs dbgregs;
4389 
4390 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4391 
4392 		r = -EFAULT;
4393 		if (copy_to_user(argp, &dbgregs,
4394 				 sizeof(struct kvm_debugregs)))
4395 			break;
4396 		r = 0;
4397 		break;
4398 	}
4399 	case KVM_SET_DEBUGREGS: {
4400 		struct kvm_debugregs dbgregs;
4401 
4402 		r = -EFAULT;
4403 		if (copy_from_user(&dbgregs, argp,
4404 				   sizeof(struct kvm_debugregs)))
4405 			break;
4406 
4407 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4408 		break;
4409 	}
4410 	case KVM_GET_XSAVE: {
4411 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4412 		r = -ENOMEM;
4413 		if (!u.xsave)
4414 			break;
4415 
4416 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4417 
4418 		r = -EFAULT;
4419 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4420 			break;
4421 		r = 0;
4422 		break;
4423 	}
4424 	case KVM_SET_XSAVE: {
4425 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
4426 		if (IS_ERR(u.xsave)) {
4427 			r = PTR_ERR(u.xsave);
4428 			goto out_nofree;
4429 		}
4430 
4431 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4432 		break;
4433 	}
4434 	case KVM_GET_XCRS: {
4435 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4436 		r = -ENOMEM;
4437 		if (!u.xcrs)
4438 			break;
4439 
4440 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4441 
4442 		r = -EFAULT;
4443 		if (copy_to_user(argp, u.xcrs,
4444 				 sizeof(struct kvm_xcrs)))
4445 			break;
4446 		r = 0;
4447 		break;
4448 	}
4449 	case KVM_SET_XCRS: {
4450 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4451 		if (IS_ERR(u.xcrs)) {
4452 			r = PTR_ERR(u.xcrs);
4453 			goto out_nofree;
4454 		}
4455 
4456 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4457 		break;
4458 	}
4459 	case KVM_SET_TSC_KHZ: {
4460 		u32 user_tsc_khz;
4461 
4462 		r = -EINVAL;
4463 		user_tsc_khz = (u32)arg;
4464 
4465 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4466 			goto out;
4467 
4468 		if (user_tsc_khz == 0)
4469 			user_tsc_khz = tsc_khz;
4470 
4471 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4472 			r = 0;
4473 
4474 		goto out;
4475 	}
4476 	case KVM_GET_TSC_KHZ: {
4477 		r = vcpu->arch.virtual_tsc_khz;
4478 		goto out;
4479 	}
4480 	case KVM_KVMCLOCK_CTRL: {
4481 		r = kvm_set_guest_paused(vcpu);
4482 		goto out;
4483 	}
4484 	case KVM_ENABLE_CAP: {
4485 		struct kvm_enable_cap cap;
4486 
4487 		r = -EFAULT;
4488 		if (copy_from_user(&cap, argp, sizeof(cap)))
4489 			goto out;
4490 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4491 		break;
4492 	}
4493 	case KVM_GET_NESTED_STATE: {
4494 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4495 		u32 user_data_size;
4496 
4497 		r = -EINVAL;
4498 		if (!kvm_x86_ops->get_nested_state)
4499 			break;
4500 
4501 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4502 		r = -EFAULT;
4503 		if (get_user(user_data_size, &user_kvm_nested_state->size))
4504 			break;
4505 
4506 		r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4507 						  user_data_size);
4508 		if (r < 0)
4509 			break;
4510 
4511 		if (r > user_data_size) {
4512 			if (put_user(r, &user_kvm_nested_state->size))
4513 				r = -EFAULT;
4514 			else
4515 				r = -E2BIG;
4516 			break;
4517 		}
4518 
4519 		r = 0;
4520 		break;
4521 	}
4522 	case KVM_SET_NESTED_STATE: {
4523 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4524 		struct kvm_nested_state kvm_state;
4525 		int idx;
4526 
4527 		r = -EINVAL;
4528 		if (!kvm_x86_ops->set_nested_state)
4529 			break;
4530 
4531 		r = -EFAULT;
4532 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4533 			break;
4534 
4535 		r = -EINVAL;
4536 		if (kvm_state.size < sizeof(kvm_state))
4537 			break;
4538 
4539 		if (kvm_state.flags &
4540 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4541 		      | KVM_STATE_NESTED_EVMCS))
4542 			break;
4543 
4544 		/* nested_run_pending implies guest_mode.  */
4545 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4546 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4547 			break;
4548 
4549 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4550 		r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4551 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4552 		break;
4553 	}
4554 	case KVM_GET_SUPPORTED_HV_CPUID: {
4555 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4556 		struct kvm_cpuid2 cpuid;
4557 
4558 		r = -EFAULT;
4559 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4560 			goto out;
4561 
4562 		r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4563 						cpuid_arg->entries);
4564 		if (r)
4565 			goto out;
4566 
4567 		r = -EFAULT;
4568 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4569 			goto out;
4570 		r = 0;
4571 		break;
4572 	}
4573 	default:
4574 		r = -EINVAL;
4575 	}
4576 out:
4577 	kfree(u.buffer);
4578 out_nofree:
4579 	vcpu_put(vcpu);
4580 	return r;
4581 }
4582 
4583 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4584 {
4585 	return VM_FAULT_SIGBUS;
4586 }
4587 
4588 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4589 {
4590 	int ret;
4591 
4592 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
4593 		return -EINVAL;
4594 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4595 	return ret;
4596 }
4597 
4598 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4599 					      u64 ident_addr)
4600 {
4601 	return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4602 }
4603 
4604 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4605 					 unsigned long kvm_nr_mmu_pages)
4606 {
4607 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4608 		return -EINVAL;
4609 
4610 	mutex_lock(&kvm->slots_lock);
4611 
4612 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4613 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4614 
4615 	mutex_unlock(&kvm->slots_lock);
4616 	return 0;
4617 }
4618 
4619 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4620 {
4621 	return kvm->arch.n_max_mmu_pages;
4622 }
4623 
4624 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4625 {
4626 	struct kvm_pic *pic = kvm->arch.vpic;
4627 	int r;
4628 
4629 	r = 0;
4630 	switch (chip->chip_id) {
4631 	case KVM_IRQCHIP_PIC_MASTER:
4632 		memcpy(&chip->chip.pic, &pic->pics[0],
4633 			sizeof(struct kvm_pic_state));
4634 		break;
4635 	case KVM_IRQCHIP_PIC_SLAVE:
4636 		memcpy(&chip->chip.pic, &pic->pics[1],
4637 			sizeof(struct kvm_pic_state));
4638 		break;
4639 	case KVM_IRQCHIP_IOAPIC:
4640 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
4641 		break;
4642 	default:
4643 		r = -EINVAL;
4644 		break;
4645 	}
4646 	return r;
4647 }
4648 
4649 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4650 {
4651 	struct kvm_pic *pic = kvm->arch.vpic;
4652 	int r;
4653 
4654 	r = 0;
4655 	switch (chip->chip_id) {
4656 	case KVM_IRQCHIP_PIC_MASTER:
4657 		spin_lock(&pic->lock);
4658 		memcpy(&pic->pics[0], &chip->chip.pic,
4659 			sizeof(struct kvm_pic_state));
4660 		spin_unlock(&pic->lock);
4661 		break;
4662 	case KVM_IRQCHIP_PIC_SLAVE:
4663 		spin_lock(&pic->lock);
4664 		memcpy(&pic->pics[1], &chip->chip.pic,
4665 			sizeof(struct kvm_pic_state));
4666 		spin_unlock(&pic->lock);
4667 		break;
4668 	case KVM_IRQCHIP_IOAPIC:
4669 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
4670 		break;
4671 	default:
4672 		r = -EINVAL;
4673 		break;
4674 	}
4675 	kvm_pic_update_irq(pic);
4676 	return r;
4677 }
4678 
4679 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4680 {
4681 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4682 
4683 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4684 
4685 	mutex_lock(&kps->lock);
4686 	memcpy(ps, &kps->channels, sizeof(*ps));
4687 	mutex_unlock(&kps->lock);
4688 	return 0;
4689 }
4690 
4691 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4692 {
4693 	int i;
4694 	struct kvm_pit *pit = kvm->arch.vpit;
4695 
4696 	mutex_lock(&pit->pit_state.lock);
4697 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4698 	for (i = 0; i < 3; i++)
4699 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4700 	mutex_unlock(&pit->pit_state.lock);
4701 	return 0;
4702 }
4703 
4704 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4705 {
4706 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
4707 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4708 		sizeof(ps->channels));
4709 	ps->flags = kvm->arch.vpit->pit_state.flags;
4710 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4711 	memset(&ps->reserved, 0, sizeof(ps->reserved));
4712 	return 0;
4713 }
4714 
4715 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4716 {
4717 	int start = 0;
4718 	int i;
4719 	u32 prev_legacy, cur_legacy;
4720 	struct kvm_pit *pit = kvm->arch.vpit;
4721 
4722 	mutex_lock(&pit->pit_state.lock);
4723 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4724 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4725 	if (!prev_legacy && cur_legacy)
4726 		start = 1;
4727 	memcpy(&pit->pit_state.channels, &ps->channels,
4728 	       sizeof(pit->pit_state.channels));
4729 	pit->pit_state.flags = ps->flags;
4730 	for (i = 0; i < 3; i++)
4731 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4732 				   start && i == 0);
4733 	mutex_unlock(&pit->pit_state.lock);
4734 	return 0;
4735 }
4736 
4737 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4738 				 struct kvm_reinject_control *control)
4739 {
4740 	struct kvm_pit *pit = kvm->arch.vpit;
4741 
4742 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
4743 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4744 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4745 	 */
4746 	mutex_lock(&pit->pit_state.lock);
4747 	kvm_pit_set_reinject(pit, control->pit_reinject);
4748 	mutex_unlock(&pit->pit_state.lock);
4749 
4750 	return 0;
4751 }
4752 
4753 /**
4754  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4755  * @kvm: kvm instance
4756  * @log: slot id and address to which we copy the log
4757  *
4758  * Steps 1-4 below provide general overview of dirty page logging. See
4759  * kvm_get_dirty_log_protect() function description for additional details.
4760  *
4761  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4762  * always flush the TLB (step 4) even if previous step failed  and the dirty
4763  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4764  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4765  * writes will be marked dirty for next log read.
4766  *
4767  *   1. Take a snapshot of the bit and clear it if needed.
4768  *   2. Write protect the corresponding page.
4769  *   3. Copy the snapshot to the userspace.
4770  *   4. Flush TLB's if needed.
4771  */
4772 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4773 {
4774 	bool flush = false;
4775 	int r;
4776 
4777 	mutex_lock(&kvm->slots_lock);
4778 
4779 	/*
4780 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4781 	 */
4782 	if (kvm_x86_ops->flush_log_dirty)
4783 		kvm_x86_ops->flush_log_dirty(kvm);
4784 
4785 	r = kvm_get_dirty_log_protect(kvm, log, &flush);
4786 
4787 	/*
4788 	 * All the TLBs can be flushed out of mmu lock, see the comments in
4789 	 * kvm_mmu_slot_remove_write_access().
4790 	 */
4791 	lockdep_assert_held(&kvm->slots_lock);
4792 	if (flush)
4793 		kvm_flush_remote_tlbs(kvm);
4794 
4795 	mutex_unlock(&kvm->slots_lock);
4796 	return r;
4797 }
4798 
4799 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
4800 {
4801 	bool flush = false;
4802 	int r;
4803 
4804 	mutex_lock(&kvm->slots_lock);
4805 
4806 	/*
4807 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4808 	 */
4809 	if (kvm_x86_ops->flush_log_dirty)
4810 		kvm_x86_ops->flush_log_dirty(kvm);
4811 
4812 	r = kvm_clear_dirty_log_protect(kvm, log, &flush);
4813 
4814 	/*
4815 	 * All the TLBs can be flushed out of mmu lock, see the comments in
4816 	 * kvm_mmu_slot_remove_write_access().
4817 	 */
4818 	lockdep_assert_held(&kvm->slots_lock);
4819 	if (flush)
4820 		kvm_flush_remote_tlbs(kvm);
4821 
4822 	mutex_unlock(&kvm->slots_lock);
4823 	return r;
4824 }
4825 
4826 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4827 			bool line_status)
4828 {
4829 	if (!irqchip_in_kernel(kvm))
4830 		return -ENXIO;
4831 
4832 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4833 					irq_event->irq, irq_event->level,
4834 					line_status);
4835 	return 0;
4836 }
4837 
4838 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4839 			    struct kvm_enable_cap *cap)
4840 {
4841 	int r;
4842 
4843 	if (cap->flags)
4844 		return -EINVAL;
4845 
4846 	switch (cap->cap) {
4847 	case KVM_CAP_DISABLE_QUIRKS:
4848 		kvm->arch.disabled_quirks = cap->args[0];
4849 		r = 0;
4850 		break;
4851 	case KVM_CAP_SPLIT_IRQCHIP: {
4852 		mutex_lock(&kvm->lock);
4853 		r = -EINVAL;
4854 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4855 			goto split_irqchip_unlock;
4856 		r = -EEXIST;
4857 		if (irqchip_in_kernel(kvm))
4858 			goto split_irqchip_unlock;
4859 		if (kvm->created_vcpus)
4860 			goto split_irqchip_unlock;
4861 		r = kvm_setup_empty_irq_routing(kvm);
4862 		if (r)
4863 			goto split_irqchip_unlock;
4864 		/* Pairs with irqchip_in_kernel. */
4865 		smp_wmb();
4866 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4867 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4868 		r = 0;
4869 split_irqchip_unlock:
4870 		mutex_unlock(&kvm->lock);
4871 		break;
4872 	}
4873 	case KVM_CAP_X2APIC_API:
4874 		r = -EINVAL;
4875 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4876 			break;
4877 
4878 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4879 			kvm->arch.x2apic_format = true;
4880 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4881 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
4882 
4883 		r = 0;
4884 		break;
4885 	case KVM_CAP_X86_DISABLE_EXITS:
4886 		r = -EINVAL;
4887 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4888 			break;
4889 
4890 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4891 			kvm_can_mwait_in_guest())
4892 			kvm->arch.mwait_in_guest = true;
4893 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4894 			kvm->arch.hlt_in_guest = true;
4895 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4896 			kvm->arch.pause_in_guest = true;
4897 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
4898 			kvm->arch.cstate_in_guest = true;
4899 		r = 0;
4900 		break;
4901 	case KVM_CAP_MSR_PLATFORM_INFO:
4902 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4903 		r = 0;
4904 		break;
4905 	case KVM_CAP_EXCEPTION_PAYLOAD:
4906 		kvm->arch.exception_payload_enabled = cap->args[0];
4907 		r = 0;
4908 		break;
4909 	default:
4910 		r = -EINVAL;
4911 		break;
4912 	}
4913 	return r;
4914 }
4915 
4916 long kvm_arch_vm_ioctl(struct file *filp,
4917 		       unsigned int ioctl, unsigned long arg)
4918 {
4919 	struct kvm *kvm = filp->private_data;
4920 	void __user *argp = (void __user *)arg;
4921 	int r = -ENOTTY;
4922 	/*
4923 	 * This union makes it completely explicit to gcc-3.x
4924 	 * that these two variables' stack usage should be
4925 	 * combined, not added together.
4926 	 */
4927 	union {
4928 		struct kvm_pit_state ps;
4929 		struct kvm_pit_state2 ps2;
4930 		struct kvm_pit_config pit_config;
4931 	} u;
4932 
4933 	switch (ioctl) {
4934 	case KVM_SET_TSS_ADDR:
4935 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4936 		break;
4937 	case KVM_SET_IDENTITY_MAP_ADDR: {
4938 		u64 ident_addr;
4939 
4940 		mutex_lock(&kvm->lock);
4941 		r = -EINVAL;
4942 		if (kvm->created_vcpus)
4943 			goto set_identity_unlock;
4944 		r = -EFAULT;
4945 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
4946 			goto set_identity_unlock;
4947 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4948 set_identity_unlock:
4949 		mutex_unlock(&kvm->lock);
4950 		break;
4951 	}
4952 	case KVM_SET_NR_MMU_PAGES:
4953 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4954 		break;
4955 	case KVM_GET_NR_MMU_PAGES:
4956 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4957 		break;
4958 	case KVM_CREATE_IRQCHIP: {
4959 		mutex_lock(&kvm->lock);
4960 
4961 		r = -EEXIST;
4962 		if (irqchip_in_kernel(kvm))
4963 			goto create_irqchip_unlock;
4964 
4965 		r = -EINVAL;
4966 		if (kvm->created_vcpus)
4967 			goto create_irqchip_unlock;
4968 
4969 		r = kvm_pic_init(kvm);
4970 		if (r)
4971 			goto create_irqchip_unlock;
4972 
4973 		r = kvm_ioapic_init(kvm);
4974 		if (r) {
4975 			kvm_pic_destroy(kvm);
4976 			goto create_irqchip_unlock;
4977 		}
4978 
4979 		r = kvm_setup_default_irq_routing(kvm);
4980 		if (r) {
4981 			kvm_ioapic_destroy(kvm);
4982 			kvm_pic_destroy(kvm);
4983 			goto create_irqchip_unlock;
4984 		}
4985 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4986 		smp_wmb();
4987 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4988 	create_irqchip_unlock:
4989 		mutex_unlock(&kvm->lock);
4990 		break;
4991 	}
4992 	case KVM_CREATE_PIT:
4993 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4994 		goto create_pit;
4995 	case KVM_CREATE_PIT2:
4996 		r = -EFAULT;
4997 		if (copy_from_user(&u.pit_config, argp,
4998 				   sizeof(struct kvm_pit_config)))
4999 			goto out;
5000 	create_pit:
5001 		mutex_lock(&kvm->lock);
5002 		r = -EEXIST;
5003 		if (kvm->arch.vpit)
5004 			goto create_pit_unlock;
5005 		r = -ENOMEM;
5006 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5007 		if (kvm->arch.vpit)
5008 			r = 0;
5009 	create_pit_unlock:
5010 		mutex_unlock(&kvm->lock);
5011 		break;
5012 	case KVM_GET_IRQCHIP: {
5013 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5014 		struct kvm_irqchip *chip;
5015 
5016 		chip = memdup_user(argp, sizeof(*chip));
5017 		if (IS_ERR(chip)) {
5018 			r = PTR_ERR(chip);
5019 			goto out;
5020 		}
5021 
5022 		r = -ENXIO;
5023 		if (!irqchip_kernel(kvm))
5024 			goto get_irqchip_out;
5025 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5026 		if (r)
5027 			goto get_irqchip_out;
5028 		r = -EFAULT;
5029 		if (copy_to_user(argp, chip, sizeof(*chip)))
5030 			goto get_irqchip_out;
5031 		r = 0;
5032 	get_irqchip_out:
5033 		kfree(chip);
5034 		break;
5035 	}
5036 	case KVM_SET_IRQCHIP: {
5037 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5038 		struct kvm_irqchip *chip;
5039 
5040 		chip = memdup_user(argp, sizeof(*chip));
5041 		if (IS_ERR(chip)) {
5042 			r = PTR_ERR(chip);
5043 			goto out;
5044 		}
5045 
5046 		r = -ENXIO;
5047 		if (!irqchip_kernel(kvm))
5048 			goto set_irqchip_out;
5049 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5050 	set_irqchip_out:
5051 		kfree(chip);
5052 		break;
5053 	}
5054 	case KVM_GET_PIT: {
5055 		r = -EFAULT;
5056 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5057 			goto out;
5058 		r = -ENXIO;
5059 		if (!kvm->arch.vpit)
5060 			goto out;
5061 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5062 		if (r)
5063 			goto out;
5064 		r = -EFAULT;
5065 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5066 			goto out;
5067 		r = 0;
5068 		break;
5069 	}
5070 	case KVM_SET_PIT: {
5071 		r = -EFAULT;
5072 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5073 			goto out;
5074 		r = -ENXIO;
5075 		if (!kvm->arch.vpit)
5076 			goto out;
5077 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5078 		break;
5079 	}
5080 	case KVM_GET_PIT2: {
5081 		r = -ENXIO;
5082 		if (!kvm->arch.vpit)
5083 			goto out;
5084 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5085 		if (r)
5086 			goto out;
5087 		r = -EFAULT;
5088 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5089 			goto out;
5090 		r = 0;
5091 		break;
5092 	}
5093 	case KVM_SET_PIT2: {
5094 		r = -EFAULT;
5095 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5096 			goto out;
5097 		r = -ENXIO;
5098 		if (!kvm->arch.vpit)
5099 			goto out;
5100 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5101 		break;
5102 	}
5103 	case KVM_REINJECT_CONTROL: {
5104 		struct kvm_reinject_control control;
5105 		r =  -EFAULT;
5106 		if (copy_from_user(&control, argp, sizeof(control)))
5107 			goto out;
5108 		r = -ENXIO;
5109 		if (!kvm->arch.vpit)
5110 			goto out;
5111 		r = kvm_vm_ioctl_reinject(kvm, &control);
5112 		break;
5113 	}
5114 	case KVM_SET_BOOT_CPU_ID:
5115 		r = 0;
5116 		mutex_lock(&kvm->lock);
5117 		if (kvm->created_vcpus)
5118 			r = -EBUSY;
5119 		else
5120 			kvm->arch.bsp_vcpu_id = arg;
5121 		mutex_unlock(&kvm->lock);
5122 		break;
5123 	case KVM_XEN_HVM_CONFIG: {
5124 		struct kvm_xen_hvm_config xhc;
5125 		r = -EFAULT;
5126 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
5127 			goto out;
5128 		r = -EINVAL;
5129 		if (xhc.flags)
5130 			goto out;
5131 		memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5132 		r = 0;
5133 		break;
5134 	}
5135 	case KVM_SET_CLOCK: {
5136 		struct kvm_clock_data user_ns;
5137 		u64 now_ns;
5138 
5139 		r = -EFAULT;
5140 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5141 			goto out;
5142 
5143 		r = -EINVAL;
5144 		if (user_ns.flags)
5145 			goto out;
5146 
5147 		r = 0;
5148 		/*
5149 		 * TODO: userspace has to take care of races with VCPU_RUN, so
5150 		 * kvm_gen_update_masterclock() can be cut down to locked
5151 		 * pvclock_update_vm_gtod_copy().
5152 		 */
5153 		kvm_gen_update_masterclock(kvm);
5154 		now_ns = get_kvmclock_ns(kvm);
5155 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5156 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5157 		break;
5158 	}
5159 	case KVM_GET_CLOCK: {
5160 		struct kvm_clock_data user_ns;
5161 		u64 now_ns;
5162 
5163 		now_ns = get_kvmclock_ns(kvm);
5164 		user_ns.clock = now_ns;
5165 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5166 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5167 
5168 		r = -EFAULT;
5169 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5170 			goto out;
5171 		r = 0;
5172 		break;
5173 	}
5174 	case KVM_MEMORY_ENCRYPT_OP: {
5175 		r = -ENOTTY;
5176 		if (kvm_x86_ops->mem_enc_op)
5177 			r = kvm_x86_ops->mem_enc_op(kvm, argp);
5178 		break;
5179 	}
5180 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
5181 		struct kvm_enc_region region;
5182 
5183 		r = -EFAULT;
5184 		if (copy_from_user(&region, argp, sizeof(region)))
5185 			goto out;
5186 
5187 		r = -ENOTTY;
5188 		if (kvm_x86_ops->mem_enc_reg_region)
5189 			r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
5190 		break;
5191 	}
5192 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5193 		struct kvm_enc_region region;
5194 
5195 		r = -EFAULT;
5196 		if (copy_from_user(&region, argp, sizeof(region)))
5197 			goto out;
5198 
5199 		r = -ENOTTY;
5200 		if (kvm_x86_ops->mem_enc_unreg_region)
5201 			r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
5202 		break;
5203 	}
5204 	case KVM_HYPERV_EVENTFD: {
5205 		struct kvm_hyperv_eventfd hvevfd;
5206 
5207 		r = -EFAULT;
5208 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5209 			goto out;
5210 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5211 		break;
5212 	}
5213 	case KVM_SET_PMU_EVENT_FILTER:
5214 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5215 		break;
5216 	default:
5217 		r = -ENOTTY;
5218 	}
5219 out:
5220 	return r;
5221 }
5222 
5223 static void kvm_init_msr_list(void)
5224 {
5225 	struct x86_pmu_capability x86_pmu;
5226 	u32 dummy[2];
5227 	unsigned i;
5228 
5229 	BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5230 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
5231 
5232 	perf_get_x86_pmu_capability(&x86_pmu);
5233 
5234 	num_msrs_to_save = 0;
5235 	num_emulated_msrs = 0;
5236 	num_msr_based_features = 0;
5237 
5238 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5239 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5240 			continue;
5241 
5242 		/*
5243 		 * Even MSRs that are valid in the host may not be exposed
5244 		 * to the guests in some cases.
5245 		 */
5246 		switch (msrs_to_save_all[i]) {
5247 		case MSR_IA32_BNDCFGS:
5248 			if (!kvm_mpx_supported())
5249 				continue;
5250 			break;
5251 		case MSR_TSC_AUX:
5252 			if (!kvm_x86_ops->rdtscp_supported())
5253 				continue;
5254 			break;
5255 		case MSR_IA32_RTIT_CTL:
5256 		case MSR_IA32_RTIT_STATUS:
5257 			if (!kvm_x86_ops->pt_supported())
5258 				continue;
5259 			break;
5260 		case MSR_IA32_RTIT_CR3_MATCH:
5261 			if (!kvm_x86_ops->pt_supported() ||
5262 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5263 				continue;
5264 			break;
5265 		case MSR_IA32_RTIT_OUTPUT_BASE:
5266 		case MSR_IA32_RTIT_OUTPUT_MASK:
5267 			if (!kvm_x86_ops->pt_supported() ||
5268 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5269 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5270 				continue;
5271 			break;
5272 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: {
5273 			if (!kvm_x86_ops->pt_supported() ||
5274 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5275 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5276 				continue;
5277 			break;
5278 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5279 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5280 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5281 				continue;
5282 			break;
5283 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5284 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5285 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5286 				continue;
5287 		}
5288 		default:
5289 			break;
5290 		}
5291 
5292 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5293 	}
5294 
5295 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5296 		if (!kvm_x86_ops->has_emulated_msr(emulated_msrs_all[i]))
5297 			continue;
5298 
5299 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5300 	}
5301 
5302 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5303 		struct kvm_msr_entry msr;
5304 
5305 		msr.index = msr_based_features_all[i];
5306 		if (kvm_get_msr_feature(&msr))
5307 			continue;
5308 
5309 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5310 	}
5311 }
5312 
5313 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5314 			   const void *v)
5315 {
5316 	int handled = 0;
5317 	int n;
5318 
5319 	do {
5320 		n = min(len, 8);
5321 		if (!(lapic_in_kernel(vcpu) &&
5322 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5323 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5324 			break;
5325 		handled += n;
5326 		addr += n;
5327 		len -= n;
5328 		v += n;
5329 	} while (len);
5330 
5331 	return handled;
5332 }
5333 
5334 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5335 {
5336 	int handled = 0;
5337 	int n;
5338 
5339 	do {
5340 		n = min(len, 8);
5341 		if (!(lapic_in_kernel(vcpu) &&
5342 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5343 					 addr, n, v))
5344 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5345 			break;
5346 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5347 		handled += n;
5348 		addr += n;
5349 		len -= n;
5350 		v += n;
5351 	} while (len);
5352 
5353 	return handled;
5354 }
5355 
5356 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5357 			struct kvm_segment *var, int seg)
5358 {
5359 	kvm_x86_ops->set_segment(vcpu, var, seg);
5360 }
5361 
5362 void kvm_get_segment(struct kvm_vcpu *vcpu,
5363 		     struct kvm_segment *var, int seg)
5364 {
5365 	kvm_x86_ops->get_segment(vcpu, var, seg);
5366 }
5367 
5368 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5369 			   struct x86_exception *exception)
5370 {
5371 	gpa_t t_gpa;
5372 
5373 	BUG_ON(!mmu_is_nested(vcpu));
5374 
5375 	/* NPT walks are always user-walks */
5376 	access |= PFERR_USER_MASK;
5377 	t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5378 
5379 	return t_gpa;
5380 }
5381 
5382 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5383 			      struct x86_exception *exception)
5384 {
5385 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5386 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5387 }
5388 
5389  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5390 				struct x86_exception *exception)
5391 {
5392 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5393 	access |= PFERR_FETCH_MASK;
5394 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5395 }
5396 
5397 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5398 			       struct x86_exception *exception)
5399 {
5400 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5401 	access |= PFERR_WRITE_MASK;
5402 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5403 }
5404 
5405 /* uses this to access any guest's mapped memory without checking CPL */
5406 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5407 				struct x86_exception *exception)
5408 {
5409 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5410 }
5411 
5412 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5413 				      struct kvm_vcpu *vcpu, u32 access,
5414 				      struct x86_exception *exception)
5415 {
5416 	void *data = val;
5417 	int r = X86EMUL_CONTINUE;
5418 
5419 	while (bytes) {
5420 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5421 							    exception);
5422 		unsigned offset = addr & (PAGE_SIZE-1);
5423 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5424 		int ret;
5425 
5426 		if (gpa == UNMAPPED_GVA)
5427 			return X86EMUL_PROPAGATE_FAULT;
5428 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5429 					       offset, toread);
5430 		if (ret < 0) {
5431 			r = X86EMUL_IO_NEEDED;
5432 			goto out;
5433 		}
5434 
5435 		bytes -= toread;
5436 		data += toread;
5437 		addr += toread;
5438 	}
5439 out:
5440 	return r;
5441 }
5442 
5443 /* used for instruction fetching */
5444 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5445 				gva_t addr, void *val, unsigned int bytes,
5446 				struct x86_exception *exception)
5447 {
5448 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5449 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5450 	unsigned offset;
5451 	int ret;
5452 
5453 	/* Inline kvm_read_guest_virt_helper for speed.  */
5454 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5455 						    exception);
5456 	if (unlikely(gpa == UNMAPPED_GVA))
5457 		return X86EMUL_PROPAGATE_FAULT;
5458 
5459 	offset = addr & (PAGE_SIZE-1);
5460 	if (WARN_ON(offset + bytes > PAGE_SIZE))
5461 		bytes = (unsigned)PAGE_SIZE - offset;
5462 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5463 				       offset, bytes);
5464 	if (unlikely(ret < 0))
5465 		return X86EMUL_IO_NEEDED;
5466 
5467 	return X86EMUL_CONTINUE;
5468 }
5469 
5470 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5471 			       gva_t addr, void *val, unsigned int bytes,
5472 			       struct x86_exception *exception)
5473 {
5474 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5475 
5476 	/*
5477 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5478 	 * is returned, but our callers are not ready for that and they blindly
5479 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
5480 	 * uninitialized kernel stack memory into cr2 and error code.
5481 	 */
5482 	memset(exception, 0, sizeof(*exception));
5483 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5484 					  exception);
5485 }
5486 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5487 
5488 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5489 			     gva_t addr, void *val, unsigned int bytes,
5490 			     struct x86_exception *exception, bool system)
5491 {
5492 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5493 	u32 access = 0;
5494 
5495 	if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5496 		access |= PFERR_USER_MASK;
5497 
5498 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5499 }
5500 
5501 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5502 		unsigned long addr, void *val, unsigned int bytes)
5503 {
5504 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5505 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5506 
5507 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5508 }
5509 
5510 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5511 				      struct kvm_vcpu *vcpu, u32 access,
5512 				      struct x86_exception *exception)
5513 {
5514 	void *data = val;
5515 	int r = X86EMUL_CONTINUE;
5516 
5517 	while (bytes) {
5518 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5519 							     access,
5520 							     exception);
5521 		unsigned offset = addr & (PAGE_SIZE-1);
5522 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5523 		int ret;
5524 
5525 		if (gpa == UNMAPPED_GVA)
5526 			return X86EMUL_PROPAGATE_FAULT;
5527 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5528 		if (ret < 0) {
5529 			r = X86EMUL_IO_NEEDED;
5530 			goto out;
5531 		}
5532 
5533 		bytes -= towrite;
5534 		data += towrite;
5535 		addr += towrite;
5536 	}
5537 out:
5538 	return r;
5539 }
5540 
5541 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5542 			      unsigned int bytes, struct x86_exception *exception,
5543 			      bool system)
5544 {
5545 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5546 	u32 access = PFERR_WRITE_MASK;
5547 
5548 	if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5549 		access |= PFERR_USER_MASK;
5550 
5551 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5552 					   access, exception);
5553 }
5554 
5555 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5556 				unsigned int bytes, struct x86_exception *exception)
5557 {
5558 	/* kvm_write_guest_virt_system can pull in tons of pages. */
5559 	vcpu->arch.l1tf_flush_l1d = true;
5560 
5561 	/*
5562 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5563 	 * is returned, but our callers are not ready for that and they blindly
5564 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
5565 	 * uninitialized kernel stack memory into cr2 and error code.
5566 	 */
5567 	memset(exception, 0, sizeof(*exception));
5568 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5569 					   PFERR_WRITE_MASK, exception);
5570 }
5571 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5572 
5573 int handle_ud(struct kvm_vcpu *vcpu)
5574 {
5575 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
5576 	int emul_type = EMULTYPE_TRAP_UD;
5577 	char sig[5]; /* ud2; .ascii "kvm" */
5578 	struct x86_exception e;
5579 
5580 	if (force_emulation_prefix &&
5581 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5582 				sig, sizeof(sig), &e) == 0 &&
5583 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
5584 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5585 		emul_type = EMULTYPE_TRAP_UD_FORCED;
5586 	}
5587 
5588 	return kvm_emulate_instruction(vcpu, emul_type);
5589 }
5590 EXPORT_SYMBOL_GPL(handle_ud);
5591 
5592 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5593 			    gpa_t gpa, bool write)
5594 {
5595 	/* For APIC access vmexit */
5596 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5597 		return 1;
5598 
5599 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5600 		trace_vcpu_match_mmio(gva, gpa, write, true);
5601 		return 1;
5602 	}
5603 
5604 	return 0;
5605 }
5606 
5607 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5608 				gpa_t *gpa, struct x86_exception *exception,
5609 				bool write)
5610 {
5611 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5612 		| (write ? PFERR_WRITE_MASK : 0);
5613 
5614 	/*
5615 	 * currently PKRU is only applied to ept enabled guest so
5616 	 * there is no pkey in EPT page table for L1 guest or EPT
5617 	 * shadow page table for L2 guest.
5618 	 */
5619 	if (vcpu_match_mmio_gva(vcpu, gva)
5620 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5621 				 vcpu->arch.mmio_access, 0, access)) {
5622 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5623 					(gva & (PAGE_SIZE - 1));
5624 		trace_vcpu_match_mmio(gva, *gpa, write, false);
5625 		return 1;
5626 	}
5627 
5628 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5629 
5630 	if (*gpa == UNMAPPED_GVA)
5631 		return -1;
5632 
5633 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5634 }
5635 
5636 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5637 			const void *val, int bytes)
5638 {
5639 	int ret;
5640 
5641 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5642 	if (ret < 0)
5643 		return 0;
5644 	kvm_page_track_write(vcpu, gpa, val, bytes);
5645 	return 1;
5646 }
5647 
5648 struct read_write_emulator_ops {
5649 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5650 				  int bytes);
5651 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5652 				  void *val, int bytes);
5653 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5654 			       int bytes, void *val);
5655 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5656 				    void *val, int bytes);
5657 	bool write;
5658 };
5659 
5660 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5661 {
5662 	if (vcpu->mmio_read_completed) {
5663 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5664 			       vcpu->mmio_fragments[0].gpa, val);
5665 		vcpu->mmio_read_completed = 0;
5666 		return 1;
5667 	}
5668 
5669 	return 0;
5670 }
5671 
5672 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5673 			void *val, int bytes)
5674 {
5675 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5676 }
5677 
5678 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5679 			 void *val, int bytes)
5680 {
5681 	return emulator_write_phys(vcpu, gpa, val, bytes);
5682 }
5683 
5684 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5685 {
5686 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5687 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
5688 }
5689 
5690 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5691 			  void *val, int bytes)
5692 {
5693 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5694 	return X86EMUL_IO_NEEDED;
5695 }
5696 
5697 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5698 			   void *val, int bytes)
5699 {
5700 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5701 
5702 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5703 	return X86EMUL_CONTINUE;
5704 }
5705 
5706 static const struct read_write_emulator_ops read_emultor = {
5707 	.read_write_prepare = read_prepare,
5708 	.read_write_emulate = read_emulate,
5709 	.read_write_mmio = vcpu_mmio_read,
5710 	.read_write_exit_mmio = read_exit_mmio,
5711 };
5712 
5713 static const struct read_write_emulator_ops write_emultor = {
5714 	.read_write_emulate = write_emulate,
5715 	.read_write_mmio = write_mmio,
5716 	.read_write_exit_mmio = write_exit_mmio,
5717 	.write = true,
5718 };
5719 
5720 static int emulator_read_write_onepage(unsigned long addr, void *val,
5721 				       unsigned int bytes,
5722 				       struct x86_exception *exception,
5723 				       struct kvm_vcpu *vcpu,
5724 				       const struct read_write_emulator_ops *ops)
5725 {
5726 	gpa_t gpa;
5727 	int handled, ret;
5728 	bool write = ops->write;
5729 	struct kvm_mmio_fragment *frag;
5730 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5731 
5732 	/*
5733 	 * If the exit was due to a NPF we may already have a GPA.
5734 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
5735 	 * Note, this cannot be used on string operations since string
5736 	 * operation using rep will only have the initial GPA from the NPF
5737 	 * occurred.
5738 	 */
5739 	if (vcpu->arch.gpa_available &&
5740 	    emulator_can_use_gpa(ctxt) &&
5741 	    (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5742 		gpa = vcpu->arch.gpa_val;
5743 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5744 	} else {
5745 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5746 		if (ret < 0)
5747 			return X86EMUL_PROPAGATE_FAULT;
5748 	}
5749 
5750 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5751 		return X86EMUL_CONTINUE;
5752 
5753 	/*
5754 	 * Is this MMIO handled locally?
5755 	 */
5756 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5757 	if (handled == bytes)
5758 		return X86EMUL_CONTINUE;
5759 
5760 	gpa += handled;
5761 	bytes -= handled;
5762 	val += handled;
5763 
5764 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5765 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5766 	frag->gpa = gpa;
5767 	frag->data = val;
5768 	frag->len = bytes;
5769 	return X86EMUL_CONTINUE;
5770 }
5771 
5772 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5773 			unsigned long addr,
5774 			void *val, unsigned int bytes,
5775 			struct x86_exception *exception,
5776 			const struct read_write_emulator_ops *ops)
5777 {
5778 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5779 	gpa_t gpa;
5780 	int rc;
5781 
5782 	if (ops->read_write_prepare &&
5783 		  ops->read_write_prepare(vcpu, val, bytes))
5784 		return X86EMUL_CONTINUE;
5785 
5786 	vcpu->mmio_nr_fragments = 0;
5787 
5788 	/* Crossing a page boundary? */
5789 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5790 		int now;
5791 
5792 		now = -addr & ~PAGE_MASK;
5793 		rc = emulator_read_write_onepage(addr, val, now, exception,
5794 						 vcpu, ops);
5795 
5796 		if (rc != X86EMUL_CONTINUE)
5797 			return rc;
5798 		addr += now;
5799 		if (ctxt->mode != X86EMUL_MODE_PROT64)
5800 			addr = (u32)addr;
5801 		val += now;
5802 		bytes -= now;
5803 	}
5804 
5805 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
5806 					 vcpu, ops);
5807 	if (rc != X86EMUL_CONTINUE)
5808 		return rc;
5809 
5810 	if (!vcpu->mmio_nr_fragments)
5811 		return rc;
5812 
5813 	gpa = vcpu->mmio_fragments[0].gpa;
5814 
5815 	vcpu->mmio_needed = 1;
5816 	vcpu->mmio_cur_fragment = 0;
5817 
5818 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5819 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5820 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
5821 	vcpu->run->mmio.phys_addr = gpa;
5822 
5823 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5824 }
5825 
5826 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5827 				  unsigned long addr,
5828 				  void *val,
5829 				  unsigned int bytes,
5830 				  struct x86_exception *exception)
5831 {
5832 	return emulator_read_write(ctxt, addr, val, bytes,
5833 				   exception, &read_emultor);
5834 }
5835 
5836 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5837 			    unsigned long addr,
5838 			    const void *val,
5839 			    unsigned int bytes,
5840 			    struct x86_exception *exception)
5841 {
5842 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
5843 				   exception, &write_emultor);
5844 }
5845 
5846 #define CMPXCHG_TYPE(t, ptr, old, new) \
5847 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5848 
5849 #ifdef CONFIG_X86_64
5850 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5851 #else
5852 #  define CMPXCHG64(ptr, old, new) \
5853 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5854 #endif
5855 
5856 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5857 				     unsigned long addr,
5858 				     const void *old,
5859 				     const void *new,
5860 				     unsigned int bytes,
5861 				     struct x86_exception *exception)
5862 {
5863 	struct kvm_host_map map;
5864 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5865 	gpa_t gpa;
5866 	char *kaddr;
5867 	bool exchanged;
5868 
5869 	/* guests cmpxchg8b have to be emulated atomically */
5870 	if (bytes > 8 || (bytes & (bytes - 1)))
5871 		goto emul_write;
5872 
5873 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5874 
5875 	if (gpa == UNMAPPED_GVA ||
5876 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5877 		goto emul_write;
5878 
5879 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5880 		goto emul_write;
5881 
5882 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
5883 		goto emul_write;
5884 
5885 	kaddr = map.hva + offset_in_page(gpa);
5886 
5887 	switch (bytes) {
5888 	case 1:
5889 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5890 		break;
5891 	case 2:
5892 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5893 		break;
5894 	case 4:
5895 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5896 		break;
5897 	case 8:
5898 		exchanged = CMPXCHG64(kaddr, old, new);
5899 		break;
5900 	default:
5901 		BUG();
5902 	}
5903 
5904 	kvm_vcpu_unmap(vcpu, &map, true);
5905 
5906 	if (!exchanged)
5907 		return X86EMUL_CMPXCHG_FAILED;
5908 
5909 	kvm_page_track_write(vcpu, gpa, new, bytes);
5910 
5911 	return X86EMUL_CONTINUE;
5912 
5913 emul_write:
5914 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5915 
5916 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5917 }
5918 
5919 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5920 {
5921 	int r = 0, i;
5922 
5923 	for (i = 0; i < vcpu->arch.pio.count; i++) {
5924 		if (vcpu->arch.pio.in)
5925 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5926 					    vcpu->arch.pio.size, pd);
5927 		else
5928 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5929 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
5930 					     pd);
5931 		if (r)
5932 			break;
5933 		pd += vcpu->arch.pio.size;
5934 	}
5935 	return r;
5936 }
5937 
5938 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5939 			       unsigned short port, void *val,
5940 			       unsigned int count, bool in)
5941 {
5942 	vcpu->arch.pio.port = port;
5943 	vcpu->arch.pio.in = in;
5944 	vcpu->arch.pio.count  = count;
5945 	vcpu->arch.pio.size = size;
5946 
5947 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5948 		vcpu->arch.pio.count = 0;
5949 		return 1;
5950 	}
5951 
5952 	vcpu->run->exit_reason = KVM_EXIT_IO;
5953 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5954 	vcpu->run->io.size = size;
5955 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5956 	vcpu->run->io.count = count;
5957 	vcpu->run->io.port = port;
5958 
5959 	return 0;
5960 }
5961 
5962 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5963 				    int size, unsigned short port, void *val,
5964 				    unsigned int count)
5965 {
5966 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5967 	int ret;
5968 
5969 	if (vcpu->arch.pio.count)
5970 		goto data_avail;
5971 
5972 	memset(vcpu->arch.pio_data, 0, size * count);
5973 
5974 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5975 	if (ret) {
5976 data_avail:
5977 		memcpy(val, vcpu->arch.pio_data, size * count);
5978 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5979 		vcpu->arch.pio.count = 0;
5980 		return 1;
5981 	}
5982 
5983 	return 0;
5984 }
5985 
5986 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5987 				     int size, unsigned short port,
5988 				     const void *val, unsigned int count)
5989 {
5990 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5991 
5992 	memcpy(vcpu->arch.pio_data, val, size * count);
5993 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5994 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5995 }
5996 
5997 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5998 {
5999 	return kvm_x86_ops->get_segment_base(vcpu, seg);
6000 }
6001 
6002 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6003 {
6004 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6005 }
6006 
6007 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6008 {
6009 	if (!need_emulate_wbinvd(vcpu))
6010 		return X86EMUL_CONTINUE;
6011 
6012 	if (kvm_x86_ops->has_wbinvd_exit()) {
6013 		int cpu = get_cpu();
6014 
6015 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6016 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
6017 				wbinvd_ipi, NULL, 1);
6018 		put_cpu();
6019 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6020 	} else
6021 		wbinvd();
6022 	return X86EMUL_CONTINUE;
6023 }
6024 
6025 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6026 {
6027 	kvm_emulate_wbinvd_noskip(vcpu);
6028 	return kvm_skip_emulated_instruction(vcpu);
6029 }
6030 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6031 
6032 
6033 
6034 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6035 {
6036 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6037 }
6038 
6039 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6040 			   unsigned long *dest)
6041 {
6042 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6043 }
6044 
6045 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6046 			   unsigned long value)
6047 {
6048 
6049 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6050 }
6051 
6052 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6053 {
6054 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6055 }
6056 
6057 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6058 {
6059 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6060 	unsigned long value;
6061 
6062 	switch (cr) {
6063 	case 0:
6064 		value = kvm_read_cr0(vcpu);
6065 		break;
6066 	case 2:
6067 		value = vcpu->arch.cr2;
6068 		break;
6069 	case 3:
6070 		value = kvm_read_cr3(vcpu);
6071 		break;
6072 	case 4:
6073 		value = kvm_read_cr4(vcpu);
6074 		break;
6075 	case 8:
6076 		value = kvm_get_cr8(vcpu);
6077 		break;
6078 	default:
6079 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6080 		return 0;
6081 	}
6082 
6083 	return value;
6084 }
6085 
6086 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6087 {
6088 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6089 	int res = 0;
6090 
6091 	switch (cr) {
6092 	case 0:
6093 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6094 		break;
6095 	case 2:
6096 		vcpu->arch.cr2 = val;
6097 		break;
6098 	case 3:
6099 		res = kvm_set_cr3(vcpu, val);
6100 		break;
6101 	case 4:
6102 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6103 		break;
6104 	case 8:
6105 		res = kvm_set_cr8(vcpu, val);
6106 		break;
6107 	default:
6108 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6109 		res = -1;
6110 	}
6111 
6112 	return res;
6113 }
6114 
6115 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6116 {
6117 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
6118 }
6119 
6120 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6121 {
6122 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
6123 }
6124 
6125 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6126 {
6127 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
6128 }
6129 
6130 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6131 {
6132 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
6133 }
6134 
6135 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6136 {
6137 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
6138 }
6139 
6140 static unsigned long emulator_get_cached_segment_base(
6141 	struct x86_emulate_ctxt *ctxt, int seg)
6142 {
6143 	return get_segment_base(emul_to_vcpu(ctxt), seg);
6144 }
6145 
6146 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6147 				 struct desc_struct *desc, u32 *base3,
6148 				 int seg)
6149 {
6150 	struct kvm_segment var;
6151 
6152 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6153 	*selector = var.selector;
6154 
6155 	if (var.unusable) {
6156 		memset(desc, 0, sizeof(*desc));
6157 		if (base3)
6158 			*base3 = 0;
6159 		return false;
6160 	}
6161 
6162 	if (var.g)
6163 		var.limit >>= 12;
6164 	set_desc_limit(desc, var.limit);
6165 	set_desc_base(desc, (unsigned long)var.base);
6166 #ifdef CONFIG_X86_64
6167 	if (base3)
6168 		*base3 = var.base >> 32;
6169 #endif
6170 	desc->type = var.type;
6171 	desc->s = var.s;
6172 	desc->dpl = var.dpl;
6173 	desc->p = var.present;
6174 	desc->avl = var.avl;
6175 	desc->l = var.l;
6176 	desc->d = var.db;
6177 	desc->g = var.g;
6178 
6179 	return true;
6180 }
6181 
6182 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6183 				 struct desc_struct *desc, u32 base3,
6184 				 int seg)
6185 {
6186 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6187 	struct kvm_segment var;
6188 
6189 	var.selector = selector;
6190 	var.base = get_desc_base(desc);
6191 #ifdef CONFIG_X86_64
6192 	var.base |= ((u64)base3) << 32;
6193 #endif
6194 	var.limit = get_desc_limit(desc);
6195 	if (desc->g)
6196 		var.limit = (var.limit << 12) | 0xfff;
6197 	var.type = desc->type;
6198 	var.dpl = desc->dpl;
6199 	var.db = desc->d;
6200 	var.s = desc->s;
6201 	var.l = desc->l;
6202 	var.g = desc->g;
6203 	var.avl = desc->avl;
6204 	var.present = desc->p;
6205 	var.unusable = !var.present;
6206 	var.padding = 0;
6207 
6208 	kvm_set_segment(vcpu, &var, seg);
6209 	return;
6210 }
6211 
6212 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6213 			    u32 msr_index, u64 *pdata)
6214 {
6215 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
6216 }
6217 
6218 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6219 			    u32 msr_index, u64 data)
6220 {
6221 	return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
6222 }
6223 
6224 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6225 {
6226 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6227 
6228 	return vcpu->arch.smbase;
6229 }
6230 
6231 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6232 {
6233 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6234 
6235 	vcpu->arch.smbase = smbase;
6236 }
6237 
6238 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6239 			      u32 pmc)
6240 {
6241 	return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6242 }
6243 
6244 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6245 			     u32 pmc, u64 *pdata)
6246 {
6247 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6248 }
6249 
6250 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6251 {
6252 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
6253 }
6254 
6255 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6256 			      struct x86_instruction_info *info,
6257 			      enum x86_intercept_stage stage)
6258 {
6259 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
6260 }
6261 
6262 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6263 			u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
6264 {
6265 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
6266 }
6267 
6268 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
6269 {
6270 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
6271 }
6272 
6273 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
6274 {
6275 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
6276 }
6277 
6278 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
6279 {
6280 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
6281 }
6282 
6283 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6284 {
6285 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
6286 }
6287 
6288 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6289 {
6290 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6291 }
6292 
6293 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6294 {
6295 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
6296 }
6297 
6298 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6299 {
6300 	return emul_to_vcpu(ctxt)->arch.hflags;
6301 }
6302 
6303 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6304 {
6305 	emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6306 }
6307 
6308 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6309 				  const char *smstate)
6310 {
6311 	return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6312 }
6313 
6314 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6315 {
6316 	kvm_smm_changed(emul_to_vcpu(ctxt));
6317 }
6318 
6319 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6320 {
6321 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6322 }
6323 
6324 static const struct x86_emulate_ops emulate_ops = {
6325 	.read_gpr            = emulator_read_gpr,
6326 	.write_gpr           = emulator_write_gpr,
6327 	.read_std            = emulator_read_std,
6328 	.write_std           = emulator_write_std,
6329 	.read_phys           = kvm_read_guest_phys_system,
6330 	.fetch               = kvm_fetch_guest_virt,
6331 	.read_emulated       = emulator_read_emulated,
6332 	.write_emulated      = emulator_write_emulated,
6333 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
6334 	.invlpg              = emulator_invlpg,
6335 	.pio_in_emulated     = emulator_pio_in_emulated,
6336 	.pio_out_emulated    = emulator_pio_out_emulated,
6337 	.get_segment         = emulator_get_segment,
6338 	.set_segment         = emulator_set_segment,
6339 	.get_cached_segment_base = emulator_get_cached_segment_base,
6340 	.get_gdt             = emulator_get_gdt,
6341 	.get_idt	     = emulator_get_idt,
6342 	.set_gdt             = emulator_set_gdt,
6343 	.set_idt	     = emulator_set_idt,
6344 	.get_cr              = emulator_get_cr,
6345 	.set_cr              = emulator_set_cr,
6346 	.cpl                 = emulator_get_cpl,
6347 	.get_dr              = emulator_get_dr,
6348 	.set_dr              = emulator_set_dr,
6349 	.get_smbase          = emulator_get_smbase,
6350 	.set_smbase          = emulator_set_smbase,
6351 	.set_msr             = emulator_set_msr,
6352 	.get_msr             = emulator_get_msr,
6353 	.check_pmc	     = emulator_check_pmc,
6354 	.read_pmc            = emulator_read_pmc,
6355 	.halt                = emulator_halt,
6356 	.wbinvd              = emulator_wbinvd,
6357 	.fix_hypercall       = emulator_fix_hypercall,
6358 	.intercept           = emulator_intercept,
6359 	.get_cpuid           = emulator_get_cpuid,
6360 	.guest_has_long_mode = emulator_guest_has_long_mode,
6361 	.guest_has_movbe     = emulator_guest_has_movbe,
6362 	.guest_has_fxsr      = emulator_guest_has_fxsr,
6363 	.set_nmi_mask        = emulator_set_nmi_mask,
6364 	.get_hflags          = emulator_get_hflags,
6365 	.set_hflags          = emulator_set_hflags,
6366 	.pre_leave_smm       = emulator_pre_leave_smm,
6367 	.post_leave_smm      = emulator_post_leave_smm,
6368 	.set_xcr             = emulator_set_xcr,
6369 };
6370 
6371 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6372 {
6373 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
6374 	/*
6375 	 * an sti; sti; sequence only disable interrupts for the first
6376 	 * instruction. So, if the last instruction, be it emulated or
6377 	 * not, left the system with the INT_STI flag enabled, it
6378 	 * means that the last instruction is an sti. We should not
6379 	 * leave the flag on in this case. The same goes for mov ss
6380 	 */
6381 	if (int_shadow & mask)
6382 		mask = 0;
6383 	if (unlikely(int_shadow || mask)) {
6384 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
6385 		if (!mask)
6386 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6387 	}
6388 }
6389 
6390 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6391 {
6392 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6393 	if (ctxt->exception.vector == PF_VECTOR)
6394 		return kvm_propagate_fault(vcpu, &ctxt->exception);
6395 
6396 	if (ctxt->exception.error_code_valid)
6397 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6398 				      ctxt->exception.error_code);
6399 	else
6400 		kvm_queue_exception(vcpu, ctxt->exception.vector);
6401 	return false;
6402 }
6403 
6404 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6405 {
6406 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6407 	int cs_db, cs_l;
6408 
6409 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6410 
6411 	ctxt->eflags = kvm_get_rflags(vcpu);
6412 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6413 
6414 	ctxt->eip = kvm_rip_read(vcpu);
6415 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
6416 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
6417 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
6418 		     cs_db				? X86EMUL_MODE_PROT32 :
6419 							  X86EMUL_MODE_PROT16;
6420 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6421 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6422 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6423 
6424 	init_decode_cache(ctxt);
6425 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6426 }
6427 
6428 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6429 {
6430 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6431 	int ret;
6432 
6433 	init_emulate_ctxt(vcpu);
6434 
6435 	ctxt->op_bytes = 2;
6436 	ctxt->ad_bytes = 2;
6437 	ctxt->_eip = ctxt->eip + inc_eip;
6438 	ret = emulate_int_real(ctxt, irq);
6439 
6440 	if (ret != X86EMUL_CONTINUE) {
6441 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6442 	} else {
6443 		ctxt->eip = ctxt->_eip;
6444 		kvm_rip_write(vcpu, ctxt->eip);
6445 		kvm_set_rflags(vcpu, ctxt->eflags);
6446 	}
6447 }
6448 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6449 
6450 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6451 {
6452 	++vcpu->stat.insn_emulation_fail;
6453 	trace_kvm_emulate_insn_failed(vcpu);
6454 
6455 	if (emulation_type & EMULTYPE_VMWARE_GP) {
6456 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6457 		return 1;
6458 	}
6459 
6460 	if (emulation_type & EMULTYPE_SKIP) {
6461 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6462 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6463 		vcpu->run->internal.ndata = 0;
6464 		return 0;
6465 	}
6466 
6467 	kvm_queue_exception(vcpu, UD_VECTOR);
6468 
6469 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
6470 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6471 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6472 		vcpu->run->internal.ndata = 0;
6473 		return 0;
6474 	}
6475 
6476 	return 1;
6477 }
6478 
6479 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6480 				  bool write_fault_to_shadow_pgtable,
6481 				  int emulation_type)
6482 {
6483 	gpa_t gpa = cr2_or_gpa;
6484 	kvm_pfn_t pfn;
6485 
6486 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6487 		return false;
6488 
6489 	if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6490 		return false;
6491 
6492 	if (!vcpu->arch.mmu->direct_map) {
6493 		/*
6494 		 * Write permission should be allowed since only
6495 		 * write access need to be emulated.
6496 		 */
6497 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
6498 
6499 		/*
6500 		 * If the mapping is invalid in guest, let cpu retry
6501 		 * it to generate fault.
6502 		 */
6503 		if (gpa == UNMAPPED_GVA)
6504 			return true;
6505 	}
6506 
6507 	/*
6508 	 * Do not retry the unhandleable instruction if it faults on the
6509 	 * readonly host memory, otherwise it will goto a infinite loop:
6510 	 * retry instruction -> write #PF -> emulation fail -> retry
6511 	 * instruction -> ...
6512 	 */
6513 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6514 
6515 	/*
6516 	 * If the instruction failed on the error pfn, it can not be fixed,
6517 	 * report the error to userspace.
6518 	 */
6519 	if (is_error_noslot_pfn(pfn))
6520 		return false;
6521 
6522 	kvm_release_pfn_clean(pfn);
6523 
6524 	/* The instructions are well-emulated on direct mmu. */
6525 	if (vcpu->arch.mmu->direct_map) {
6526 		unsigned int indirect_shadow_pages;
6527 
6528 		spin_lock(&vcpu->kvm->mmu_lock);
6529 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6530 		spin_unlock(&vcpu->kvm->mmu_lock);
6531 
6532 		if (indirect_shadow_pages)
6533 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6534 
6535 		return true;
6536 	}
6537 
6538 	/*
6539 	 * if emulation was due to access to shadowed page table
6540 	 * and it failed try to unshadow page and re-enter the
6541 	 * guest to let CPU execute the instruction.
6542 	 */
6543 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6544 
6545 	/*
6546 	 * If the access faults on its page table, it can not
6547 	 * be fixed by unprotecting shadow page and it should
6548 	 * be reported to userspace.
6549 	 */
6550 	return !write_fault_to_shadow_pgtable;
6551 }
6552 
6553 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6554 			      gpa_t cr2_or_gpa,  int emulation_type)
6555 {
6556 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6557 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
6558 
6559 	last_retry_eip = vcpu->arch.last_retry_eip;
6560 	last_retry_addr = vcpu->arch.last_retry_addr;
6561 
6562 	/*
6563 	 * If the emulation is caused by #PF and it is non-page_table
6564 	 * writing instruction, it means the VM-EXIT is caused by shadow
6565 	 * page protected, we can zap the shadow page and retry this
6566 	 * instruction directly.
6567 	 *
6568 	 * Note: if the guest uses a non-page-table modifying instruction
6569 	 * on the PDE that points to the instruction, then we will unmap
6570 	 * the instruction and go to an infinite loop. So, we cache the
6571 	 * last retried eip and the last fault address, if we meet the eip
6572 	 * and the address again, we can break out of the potential infinite
6573 	 * loop.
6574 	 */
6575 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6576 
6577 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6578 		return false;
6579 
6580 	if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6581 		return false;
6582 
6583 	if (x86_page_table_writing_insn(ctxt))
6584 		return false;
6585 
6586 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
6587 		return false;
6588 
6589 	vcpu->arch.last_retry_eip = ctxt->eip;
6590 	vcpu->arch.last_retry_addr = cr2_or_gpa;
6591 
6592 	if (!vcpu->arch.mmu->direct_map)
6593 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
6594 
6595 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6596 
6597 	return true;
6598 }
6599 
6600 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6601 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6602 
6603 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6604 {
6605 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6606 		/* This is a good place to trace that we are exiting SMM.  */
6607 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6608 
6609 		/* Process a latched INIT or SMI, if any.  */
6610 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6611 	}
6612 
6613 	kvm_mmu_reset_context(vcpu);
6614 }
6615 
6616 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6617 				unsigned long *db)
6618 {
6619 	u32 dr6 = 0;
6620 	int i;
6621 	u32 enable, rwlen;
6622 
6623 	enable = dr7;
6624 	rwlen = dr7 >> 16;
6625 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6626 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6627 			dr6 |= (1 << i);
6628 	return dr6;
6629 }
6630 
6631 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
6632 {
6633 	struct kvm_run *kvm_run = vcpu->run;
6634 
6635 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6636 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6637 		kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6638 		kvm_run->debug.arch.exception = DB_VECTOR;
6639 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
6640 		return 0;
6641 	}
6642 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6643 	return 1;
6644 }
6645 
6646 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6647 {
6648 	unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6649 	int r;
6650 
6651 	r = kvm_x86_ops->skip_emulated_instruction(vcpu);
6652 	if (unlikely(!r))
6653 		return 0;
6654 
6655 	/*
6656 	 * rflags is the old, "raw" value of the flags.  The new value has
6657 	 * not been saved yet.
6658 	 *
6659 	 * This is correct even for TF set by the guest, because "the
6660 	 * processor will not generate this exception after the instruction
6661 	 * that sets the TF flag".
6662 	 */
6663 	if (unlikely(rflags & X86_EFLAGS_TF))
6664 		r = kvm_vcpu_do_singlestep(vcpu);
6665 	return r;
6666 }
6667 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6668 
6669 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6670 {
6671 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6672 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6673 		struct kvm_run *kvm_run = vcpu->run;
6674 		unsigned long eip = kvm_get_linear_rip(vcpu);
6675 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6676 					   vcpu->arch.guest_debug_dr7,
6677 					   vcpu->arch.eff_db);
6678 
6679 		if (dr6 != 0) {
6680 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6681 			kvm_run->debug.arch.pc = eip;
6682 			kvm_run->debug.arch.exception = DB_VECTOR;
6683 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
6684 			*r = 0;
6685 			return true;
6686 		}
6687 	}
6688 
6689 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6690 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6691 		unsigned long eip = kvm_get_linear_rip(vcpu);
6692 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6693 					   vcpu->arch.dr7,
6694 					   vcpu->arch.db);
6695 
6696 		if (dr6 != 0) {
6697 			vcpu->arch.dr6 &= ~DR_TRAP_BITS;
6698 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
6699 			kvm_queue_exception(vcpu, DB_VECTOR);
6700 			*r = 1;
6701 			return true;
6702 		}
6703 	}
6704 
6705 	return false;
6706 }
6707 
6708 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6709 {
6710 	switch (ctxt->opcode_len) {
6711 	case 1:
6712 		switch (ctxt->b) {
6713 		case 0xe4:	/* IN */
6714 		case 0xe5:
6715 		case 0xec:
6716 		case 0xed:
6717 		case 0xe6:	/* OUT */
6718 		case 0xe7:
6719 		case 0xee:
6720 		case 0xef:
6721 		case 0x6c:	/* INS */
6722 		case 0x6d:
6723 		case 0x6e:	/* OUTS */
6724 		case 0x6f:
6725 			return true;
6726 		}
6727 		break;
6728 	case 2:
6729 		switch (ctxt->b) {
6730 		case 0x33:	/* RDPMC */
6731 			return true;
6732 		}
6733 		break;
6734 	}
6735 
6736 	return false;
6737 }
6738 
6739 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6740 			    int emulation_type, void *insn, int insn_len)
6741 {
6742 	int r;
6743 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6744 	bool writeback = true;
6745 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6746 
6747 	vcpu->arch.l1tf_flush_l1d = true;
6748 
6749 	/*
6750 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
6751 	 * never reused.
6752 	 */
6753 	vcpu->arch.write_fault_to_shadow_pgtable = false;
6754 	kvm_clear_exception_queue(vcpu);
6755 
6756 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6757 		init_emulate_ctxt(vcpu);
6758 
6759 		/*
6760 		 * We will reenter on the same instruction since
6761 		 * we do not set complete_userspace_io.  This does not
6762 		 * handle watchpoints yet, those would be handled in
6763 		 * the emulate_ops.
6764 		 */
6765 		if (!(emulation_type & EMULTYPE_SKIP) &&
6766 		    kvm_vcpu_check_breakpoint(vcpu, &r))
6767 			return r;
6768 
6769 		ctxt->interruptibility = 0;
6770 		ctxt->have_exception = false;
6771 		ctxt->exception.vector = -1;
6772 		ctxt->perm_ok = false;
6773 
6774 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6775 
6776 		r = x86_decode_insn(ctxt, insn, insn_len);
6777 
6778 		trace_kvm_emulate_insn_start(vcpu);
6779 		++vcpu->stat.insn_emulation;
6780 		if (r != EMULATION_OK)  {
6781 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
6782 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
6783 				kvm_queue_exception(vcpu, UD_VECTOR);
6784 				return 1;
6785 			}
6786 			if (reexecute_instruction(vcpu, cr2_or_gpa,
6787 						  write_fault_to_spt,
6788 						  emulation_type))
6789 				return 1;
6790 			if (ctxt->have_exception) {
6791 				/*
6792 				 * #UD should result in just EMULATION_FAILED, and trap-like
6793 				 * exception should not be encountered during decode.
6794 				 */
6795 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
6796 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
6797 				inject_emulated_exception(vcpu);
6798 				return 1;
6799 			}
6800 			return handle_emulation_failure(vcpu, emulation_type);
6801 		}
6802 	}
6803 
6804 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
6805 	    !is_vmware_backdoor_opcode(ctxt)) {
6806 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6807 		return 1;
6808 	}
6809 
6810 	/*
6811 	 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
6812 	 * for kvm_skip_emulated_instruction().  The caller is responsible for
6813 	 * updating interruptibility state and injecting single-step #DBs.
6814 	 */
6815 	if (emulation_type & EMULTYPE_SKIP) {
6816 		kvm_rip_write(vcpu, ctxt->_eip);
6817 		if (ctxt->eflags & X86_EFLAGS_RF)
6818 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6819 		return 1;
6820 	}
6821 
6822 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
6823 		return 1;
6824 
6825 	/* this is needed for vmware backdoor interface to work since it
6826 	   changes registers values  during IO operation */
6827 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6828 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6829 		emulator_invalidate_register_cache(ctxt);
6830 	}
6831 
6832 restart:
6833 	/* Save the faulting GPA (cr2) in the address field */
6834 	ctxt->exception.address = cr2_or_gpa;
6835 
6836 	r = x86_emulate_insn(ctxt);
6837 
6838 	if (r == EMULATION_INTERCEPTED)
6839 		return 1;
6840 
6841 	if (r == EMULATION_FAILED) {
6842 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
6843 					emulation_type))
6844 			return 1;
6845 
6846 		return handle_emulation_failure(vcpu, emulation_type);
6847 	}
6848 
6849 	if (ctxt->have_exception) {
6850 		r = 1;
6851 		if (inject_emulated_exception(vcpu))
6852 			return r;
6853 	} else if (vcpu->arch.pio.count) {
6854 		if (!vcpu->arch.pio.in) {
6855 			/* FIXME: return into emulator if single-stepping.  */
6856 			vcpu->arch.pio.count = 0;
6857 		} else {
6858 			writeback = false;
6859 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
6860 		}
6861 		r = 0;
6862 	} else if (vcpu->mmio_needed) {
6863 		++vcpu->stat.mmio_exits;
6864 
6865 		if (!vcpu->mmio_is_write)
6866 			writeback = false;
6867 		r = 0;
6868 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6869 	} else if (r == EMULATION_RESTART)
6870 		goto restart;
6871 	else
6872 		r = 1;
6873 
6874 	if (writeback) {
6875 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6876 		toggle_interruptibility(vcpu, ctxt->interruptibility);
6877 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6878 		if (!ctxt->have_exception ||
6879 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
6880 			kvm_rip_write(vcpu, ctxt->eip);
6881 			if (r && ctxt->tf)
6882 				r = kvm_vcpu_do_singlestep(vcpu);
6883 			__kvm_set_rflags(vcpu, ctxt->eflags);
6884 		}
6885 
6886 		/*
6887 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6888 		 * do nothing, and it will be requested again as soon as
6889 		 * the shadow expires.  But we still need to check here,
6890 		 * because POPF has no interrupt shadow.
6891 		 */
6892 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6893 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6894 	} else
6895 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6896 
6897 	return r;
6898 }
6899 
6900 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6901 {
6902 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6903 }
6904 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6905 
6906 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6907 					void *insn, int insn_len)
6908 {
6909 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6910 }
6911 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6912 
6913 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
6914 {
6915 	vcpu->arch.pio.count = 0;
6916 	return 1;
6917 }
6918 
6919 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
6920 {
6921 	vcpu->arch.pio.count = 0;
6922 
6923 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
6924 		return 1;
6925 
6926 	return kvm_skip_emulated_instruction(vcpu);
6927 }
6928 
6929 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6930 			    unsigned short port)
6931 {
6932 	unsigned long val = kvm_rax_read(vcpu);
6933 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6934 					    size, port, &val, 1);
6935 	if (ret)
6936 		return ret;
6937 
6938 	/*
6939 	 * Workaround userspace that relies on old KVM behavior of %rip being
6940 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
6941 	 */
6942 	if (port == 0x7e &&
6943 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
6944 		vcpu->arch.complete_userspace_io =
6945 			complete_fast_pio_out_port_0x7e;
6946 		kvm_skip_emulated_instruction(vcpu);
6947 	} else {
6948 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6949 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
6950 	}
6951 	return 0;
6952 }
6953 
6954 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6955 {
6956 	unsigned long val;
6957 
6958 	/* We should only ever be called with arch.pio.count equal to 1 */
6959 	BUG_ON(vcpu->arch.pio.count != 1);
6960 
6961 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
6962 		vcpu->arch.pio.count = 0;
6963 		return 1;
6964 	}
6965 
6966 	/* For size less than 4 we merge, else we zero extend */
6967 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
6968 
6969 	/*
6970 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6971 	 * the copy and tracing
6972 	 */
6973 	emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6974 				 vcpu->arch.pio.port, &val, 1);
6975 	kvm_rax_write(vcpu, val);
6976 
6977 	return kvm_skip_emulated_instruction(vcpu);
6978 }
6979 
6980 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6981 			   unsigned short port)
6982 {
6983 	unsigned long val;
6984 	int ret;
6985 
6986 	/* For size less than 4 we merge, else we zero extend */
6987 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
6988 
6989 	ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6990 				       &val, 1);
6991 	if (ret) {
6992 		kvm_rax_write(vcpu, val);
6993 		return ret;
6994 	}
6995 
6996 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6997 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6998 
6999 	return 0;
7000 }
7001 
7002 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7003 {
7004 	int ret;
7005 
7006 	if (in)
7007 		ret = kvm_fast_pio_in(vcpu, size, port);
7008 	else
7009 		ret = kvm_fast_pio_out(vcpu, size, port);
7010 	return ret && kvm_skip_emulated_instruction(vcpu);
7011 }
7012 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7013 
7014 static int kvmclock_cpu_down_prep(unsigned int cpu)
7015 {
7016 	__this_cpu_write(cpu_tsc_khz, 0);
7017 	return 0;
7018 }
7019 
7020 static void tsc_khz_changed(void *data)
7021 {
7022 	struct cpufreq_freqs *freq = data;
7023 	unsigned long khz = 0;
7024 
7025 	if (data)
7026 		khz = freq->new;
7027 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7028 		khz = cpufreq_quick_get(raw_smp_processor_id());
7029 	if (!khz)
7030 		khz = tsc_khz;
7031 	__this_cpu_write(cpu_tsc_khz, khz);
7032 }
7033 
7034 #ifdef CONFIG_X86_64
7035 static void kvm_hyperv_tsc_notifier(void)
7036 {
7037 	struct kvm *kvm;
7038 	struct kvm_vcpu *vcpu;
7039 	int cpu;
7040 
7041 	mutex_lock(&kvm_lock);
7042 	list_for_each_entry(kvm, &vm_list, vm_list)
7043 		kvm_make_mclock_inprogress_request(kvm);
7044 
7045 	hyperv_stop_tsc_emulation();
7046 
7047 	/* TSC frequency always matches when on Hyper-V */
7048 	for_each_present_cpu(cpu)
7049 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7050 	kvm_max_guest_tsc_khz = tsc_khz;
7051 
7052 	list_for_each_entry(kvm, &vm_list, vm_list) {
7053 		struct kvm_arch *ka = &kvm->arch;
7054 
7055 		spin_lock(&ka->pvclock_gtod_sync_lock);
7056 
7057 		pvclock_update_vm_gtod_copy(kvm);
7058 
7059 		kvm_for_each_vcpu(cpu, vcpu, kvm)
7060 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7061 
7062 		kvm_for_each_vcpu(cpu, vcpu, kvm)
7063 			kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7064 
7065 		spin_unlock(&ka->pvclock_gtod_sync_lock);
7066 	}
7067 	mutex_unlock(&kvm_lock);
7068 }
7069 #endif
7070 
7071 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7072 {
7073 	struct kvm *kvm;
7074 	struct kvm_vcpu *vcpu;
7075 	int i, send_ipi = 0;
7076 
7077 	/*
7078 	 * We allow guests to temporarily run on slowing clocks,
7079 	 * provided we notify them after, or to run on accelerating
7080 	 * clocks, provided we notify them before.  Thus time never
7081 	 * goes backwards.
7082 	 *
7083 	 * However, we have a problem.  We can't atomically update
7084 	 * the frequency of a given CPU from this function; it is
7085 	 * merely a notifier, which can be called from any CPU.
7086 	 * Changing the TSC frequency at arbitrary points in time
7087 	 * requires a recomputation of local variables related to
7088 	 * the TSC for each VCPU.  We must flag these local variables
7089 	 * to be updated and be sure the update takes place with the
7090 	 * new frequency before any guests proceed.
7091 	 *
7092 	 * Unfortunately, the combination of hotplug CPU and frequency
7093 	 * change creates an intractable locking scenario; the order
7094 	 * of when these callouts happen is undefined with respect to
7095 	 * CPU hotplug, and they can race with each other.  As such,
7096 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7097 	 * undefined; you can actually have a CPU frequency change take
7098 	 * place in between the computation of X and the setting of the
7099 	 * variable.  To protect against this problem, all updates of
7100 	 * the per_cpu tsc_khz variable are done in an interrupt
7101 	 * protected IPI, and all callers wishing to update the value
7102 	 * must wait for a synchronous IPI to complete (which is trivial
7103 	 * if the caller is on the CPU already).  This establishes the
7104 	 * necessary total order on variable updates.
7105 	 *
7106 	 * Note that because a guest time update may take place
7107 	 * anytime after the setting of the VCPU's request bit, the
7108 	 * correct TSC value must be set before the request.  However,
7109 	 * to ensure the update actually makes it to any guest which
7110 	 * starts running in hardware virtualization between the set
7111 	 * and the acquisition of the spinlock, we must also ping the
7112 	 * CPU after setting the request bit.
7113 	 *
7114 	 */
7115 
7116 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7117 
7118 	mutex_lock(&kvm_lock);
7119 	list_for_each_entry(kvm, &vm_list, vm_list) {
7120 		kvm_for_each_vcpu(i, vcpu, kvm) {
7121 			if (vcpu->cpu != cpu)
7122 				continue;
7123 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7124 			if (vcpu->cpu != raw_smp_processor_id())
7125 				send_ipi = 1;
7126 		}
7127 	}
7128 	mutex_unlock(&kvm_lock);
7129 
7130 	if (freq->old < freq->new && send_ipi) {
7131 		/*
7132 		 * We upscale the frequency.  Must make the guest
7133 		 * doesn't see old kvmclock values while running with
7134 		 * the new frequency, otherwise we risk the guest sees
7135 		 * time go backwards.
7136 		 *
7137 		 * In case we update the frequency for another cpu
7138 		 * (which might be in guest context) send an interrupt
7139 		 * to kick the cpu out of guest context.  Next time
7140 		 * guest context is entered kvmclock will be updated,
7141 		 * so the guest will not see stale values.
7142 		 */
7143 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7144 	}
7145 }
7146 
7147 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7148 				     void *data)
7149 {
7150 	struct cpufreq_freqs *freq = data;
7151 	int cpu;
7152 
7153 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7154 		return 0;
7155 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7156 		return 0;
7157 
7158 	for_each_cpu(cpu, freq->policy->cpus)
7159 		__kvmclock_cpufreq_notifier(freq, cpu);
7160 
7161 	return 0;
7162 }
7163 
7164 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7165 	.notifier_call  = kvmclock_cpufreq_notifier
7166 };
7167 
7168 static int kvmclock_cpu_online(unsigned int cpu)
7169 {
7170 	tsc_khz_changed(NULL);
7171 	return 0;
7172 }
7173 
7174 static void kvm_timer_init(void)
7175 {
7176 	max_tsc_khz = tsc_khz;
7177 
7178 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7179 #ifdef CONFIG_CPU_FREQ
7180 		struct cpufreq_policy policy;
7181 		int cpu;
7182 
7183 		memset(&policy, 0, sizeof(policy));
7184 		cpu = get_cpu();
7185 		cpufreq_get_policy(&policy, cpu);
7186 		if (policy.cpuinfo.max_freq)
7187 			max_tsc_khz = policy.cpuinfo.max_freq;
7188 		put_cpu();
7189 #endif
7190 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7191 					  CPUFREQ_TRANSITION_NOTIFIER);
7192 	}
7193 
7194 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7195 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
7196 }
7197 
7198 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7199 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7200 
7201 int kvm_is_in_guest(void)
7202 {
7203 	return __this_cpu_read(current_vcpu) != NULL;
7204 }
7205 
7206 static int kvm_is_user_mode(void)
7207 {
7208 	int user_mode = 3;
7209 
7210 	if (__this_cpu_read(current_vcpu))
7211 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
7212 
7213 	return user_mode != 0;
7214 }
7215 
7216 static unsigned long kvm_get_guest_ip(void)
7217 {
7218 	unsigned long ip = 0;
7219 
7220 	if (__this_cpu_read(current_vcpu))
7221 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7222 
7223 	return ip;
7224 }
7225 
7226 static void kvm_handle_intel_pt_intr(void)
7227 {
7228 	struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7229 
7230 	kvm_make_request(KVM_REQ_PMI, vcpu);
7231 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7232 			(unsigned long *)&vcpu->arch.pmu.global_status);
7233 }
7234 
7235 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7236 	.is_in_guest		= kvm_is_in_guest,
7237 	.is_user_mode		= kvm_is_user_mode,
7238 	.get_guest_ip		= kvm_get_guest_ip,
7239 	.handle_intel_pt_intr	= kvm_handle_intel_pt_intr,
7240 };
7241 
7242 #ifdef CONFIG_X86_64
7243 static void pvclock_gtod_update_fn(struct work_struct *work)
7244 {
7245 	struct kvm *kvm;
7246 
7247 	struct kvm_vcpu *vcpu;
7248 	int i;
7249 
7250 	mutex_lock(&kvm_lock);
7251 	list_for_each_entry(kvm, &vm_list, vm_list)
7252 		kvm_for_each_vcpu(i, vcpu, kvm)
7253 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7254 	atomic_set(&kvm_guest_has_master_clock, 0);
7255 	mutex_unlock(&kvm_lock);
7256 }
7257 
7258 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7259 
7260 /*
7261  * Notification about pvclock gtod data update.
7262  */
7263 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7264 			       void *priv)
7265 {
7266 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7267 	struct timekeeper *tk = priv;
7268 
7269 	update_pvclock_gtod(tk);
7270 
7271 	/* disable master clock if host does not trust, or does not
7272 	 * use, TSC based clocksource.
7273 	 */
7274 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7275 	    atomic_read(&kvm_guest_has_master_clock) != 0)
7276 		queue_work(system_long_wq, &pvclock_gtod_work);
7277 
7278 	return 0;
7279 }
7280 
7281 static struct notifier_block pvclock_gtod_notifier = {
7282 	.notifier_call = pvclock_gtod_notify,
7283 };
7284 #endif
7285 
7286 int kvm_arch_init(void *opaque)
7287 {
7288 	int r;
7289 	struct kvm_x86_ops *ops = opaque;
7290 
7291 	if (kvm_x86_ops) {
7292 		printk(KERN_ERR "kvm: already loaded the other module\n");
7293 		r = -EEXIST;
7294 		goto out;
7295 	}
7296 
7297 	if (!ops->cpu_has_kvm_support()) {
7298 		printk(KERN_ERR "kvm: no hardware support\n");
7299 		r = -EOPNOTSUPP;
7300 		goto out;
7301 	}
7302 	if (ops->disabled_by_bios()) {
7303 		printk(KERN_ERR "kvm: disabled by bios\n");
7304 		r = -EOPNOTSUPP;
7305 		goto out;
7306 	}
7307 
7308 	/*
7309 	 * KVM explicitly assumes that the guest has an FPU and
7310 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7311 	 * vCPU's FPU state as a fxregs_state struct.
7312 	 */
7313 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7314 		printk(KERN_ERR "kvm: inadequate fpu\n");
7315 		r = -EOPNOTSUPP;
7316 		goto out;
7317 	}
7318 
7319 	r = -ENOMEM;
7320 	x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7321 					  __alignof__(struct fpu), SLAB_ACCOUNT,
7322 					  NULL);
7323 	if (!x86_fpu_cache) {
7324 		printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7325 		goto out;
7326 	}
7327 
7328 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
7329 	if (!shared_msrs) {
7330 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
7331 		goto out_free_x86_fpu_cache;
7332 	}
7333 
7334 	r = kvm_mmu_module_init();
7335 	if (r)
7336 		goto out_free_percpu;
7337 
7338 	kvm_x86_ops = ops;
7339 
7340 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7341 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
7342 			PT_PRESENT_MASK, 0, sme_me_mask);
7343 	kvm_timer_init();
7344 
7345 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
7346 
7347 	if (boot_cpu_has(X86_FEATURE_XSAVE))
7348 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7349 
7350 	kvm_lapic_init();
7351 	if (pi_inject_timer == -1)
7352 		pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7353 #ifdef CONFIG_X86_64
7354 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7355 
7356 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7357 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7358 #endif
7359 
7360 	return 0;
7361 
7362 out_free_percpu:
7363 	free_percpu(shared_msrs);
7364 out_free_x86_fpu_cache:
7365 	kmem_cache_destroy(x86_fpu_cache);
7366 out:
7367 	return r;
7368 }
7369 
7370 void kvm_arch_exit(void)
7371 {
7372 #ifdef CONFIG_X86_64
7373 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7374 		clear_hv_tscchange_cb();
7375 #endif
7376 	kvm_lapic_exit();
7377 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7378 
7379 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7380 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7381 					    CPUFREQ_TRANSITION_NOTIFIER);
7382 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7383 #ifdef CONFIG_X86_64
7384 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7385 #endif
7386 	kvm_x86_ops = NULL;
7387 	kvm_mmu_module_exit();
7388 	free_percpu(shared_msrs);
7389 	kmem_cache_destroy(x86_fpu_cache);
7390 }
7391 
7392 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7393 {
7394 	++vcpu->stat.halt_exits;
7395 	if (lapic_in_kernel(vcpu)) {
7396 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7397 		return 1;
7398 	} else {
7399 		vcpu->run->exit_reason = KVM_EXIT_HLT;
7400 		return 0;
7401 	}
7402 }
7403 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7404 
7405 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7406 {
7407 	int ret = kvm_skip_emulated_instruction(vcpu);
7408 	/*
7409 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7410 	 * KVM_EXIT_DEBUG here.
7411 	 */
7412 	return kvm_vcpu_halt(vcpu) && ret;
7413 }
7414 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7415 
7416 #ifdef CONFIG_X86_64
7417 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7418 			        unsigned long clock_type)
7419 {
7420 	struct kvm_clock_pairing clock_pairing;
7421 	struct timespec64 ts;
7422 	u64 cycle;
7423 	int ret;
7424 
7425 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7426 		return -KVM_EOPNOTSUPP;
7427 
7428 	if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7429 		return -KVM_EOPNOTSUPP;
7430 
7431 	clock_pairing.sec = ts.tv_sec;
7432 	clock_pairing.nsec = ts.tv_nsec;
7433 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7434 	clock_pairing.flags = 0;
7435 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7436 
7437 	ret = 0;
7438 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7439 			    sizeof(struct kvm_clock_pairing)))
7440 		ret = -KVM_EFAULT;
7441 
7442 	return ret;
7443 }
7444 #endif
7445 
7446 /*
7447  * kvm_pv_kick_cpu_op:  Kick a vcpu.
7448  *
7449  * @apicid - apicid of vcpu to be kicked.
7450  */
7451 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7452 {
7453 	struct kvm_lapic_irq lapic_irq;
7454 
7455 	lapic_irq.shorthand = APIC_DEST_NOSHORT;
7456 	lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
7457 	lapic_irq.level = 0;
7458 	lapic_irq.dest_id = apicid;
7459 	lapic_irq.msi_redir_hint = false;
7460 
7461 	lapic_irq.delivery_mode = APIC_DM_REMRD;
7462 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7463 }
7464 
7465 bool kvm_apicv_activated(struct kvm *kvm)
7466 {
7467 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
7468 }
7469 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
7470 
7471 void kvm_apicv_init(struct kvm *kvm, bool enable)
7472 {
7473 	if (enable)
7474 		clear_bit(APICV_INHIBIT_REASON_DISABLE,
7475 			  &kvm->arch.apicv_inhibit_reasons);
7476 	else
7477 		set_bit(APICV_INHIBIT_REASON_DISABLE,
7478 			&kvm->arch.apicv_inhibit_reasons);
7479 }
7480 EXPORT_SYMBOL_GPL(kvm_apicv_init);
7481 
7482 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
7483 {
7484 	struct kvm_vcpu *target = NULL;
7485 	struct kvm_apic_map *map;
7486 
7487 	rcu_read_lock();
7488 	map = rcu_dereference(kvm->arch.apic_map);
7489 
7490 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
7491 		target = map->phys_map[dest_id]->vcpu;
7492 
7493 	rcu_read_unlock();
7494 
7495 	if (target && READ_ONCE(target->ready))
7496 		kvm_vcpu_yield_to(target);
7497 }
7498 
7499 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7500 {
7501 	unsigned long nr, a0, a1, a2, a3, ret;
7502 	int op_64_bit;
7503 
7504 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
7505 		return kvm_hv_hypercall(vcpu);
7506 
7507 	nr = kvm_rax_read(vcpu);
7508 	a0 = kvm_rbx_read(vcpu);
7509 	a1 = kvm_rcx_read(vcpu);
7510 	a2 = kvm_rdx_read(vcpu);
7511 	a3 = kvm_rsi_read(vcpu);
7512 
7513 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
7514 
7515 	op_64_bit = is_64_bit_mode(vcpu);
7516 	if (!op_64_bit) {
7517 		nr &= 0xFFFFFFFF;
7518 		a0 &= 0xFFFFFFFF;
7519 		a1 &= 0xFFFFFFFF;
7520 		a2 &= 0xFFFFFFFF;
7521 		a3 &= 0xFFFFFFFF;
7522 	}
7523 
7524 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
7525 		ret = -KVM_EPERM;
7526 		goto out;
7527 	}
7528 
7529 	switch (nr) {
7530 	case KVM_HC_VAPIC_POLL_IRQ:
7531 		ret = 0;
7532 		break;
7533 	case KVM_HC_KICK_CPU:
7534 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7535 		kvm_sched_yield(vcpu->kvm, a1);
7536 		ret = 0;
7537 		break;
7538 #ifdef CONFIG_X86_64
7539 	case KVM_HC_CLOCK_PAIRING:
7540 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7541 		break;
7542 #endif
7543 	case KVM_HC_SEND_IPI:
7544 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7545 		break;
7546 	case KVM_HC_SCHED_YIELD:
7547 		kvm_sched_yield(vcpu->kvm, a0);
7548 		ret = 0;
7549 		break;
7550 	default:
7551 		ret = -KVM_ENOSYS;
7552 		break;
7553 	}
7554 out:
7555 	if (!op_64_bit)
7556 		ret = (u32)ret;
7557 	kvm_rax_write(vcpu, ret);
7558 
7559 	++vcpu->stat.hypercalls;
7560 	return kvm_skip_emulated_instruction(vcpu);
7561 }
7562 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7563 
7564 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7565 {
7566 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7567 	char instruction[3];
7568 	unsigned long rip = kvm_rip_read(vcpu);
7569 
7570 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
7571 
7572 	return emulator_write_emulated(ctxt, rip, instruction, 3,
7573 		&ctxt->exception);
7574 }
7575 
7576 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7577 {
7578 	return vcpu->run->request_interrupt_window &&
7579 		likely(!pic_in_kernel(vcpu->kvm));
7580 }
7581 
7582 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7583 {
7584 	struct kvm_run *kvm_run = vcpu->run;
7585 
7586 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7587 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7588 	kvm_run->cr8 = kvm_get_cr8(vcpu);
7589 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
7590 	kvm_run->ready_for_interrupt_injection =
7591 		pic_in_kernel(vcpu->kvm) ||
7592 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
7593 }
7594 
7595 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7596 {
7597 	int max_irr, tpr;
7598 
7599 	if (!kvm_x86_ops->update_cr8_intercept)
7600 		return;
7601 
7602 	if (!lapic_in_kernel(vcpu))
7603 		return;
7604 
7605 	if (vcpu->arch.apicv_active)
7606 		return;
7607 
7608 	if (!vcpu->arch.apic->vapic_addr)
7609 		max_irr = kvm_lapic_find_highest_irr(vcpu);
7610 	else
7611 		max_irr = -1;
7612 
7613 	if (max_irr != -1)
7614 		max_irr >>= 4;
7615 
7616 	tpr = kvm_lapic_get_cr8(vcpu);
7617 
7618 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
7619 }
7620 
7621 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
7622 {
7623 	int r;
7624 
7625 	/* try to reinject previous events if any */
7626 
7627 	if (vcpu->arch.exception.injected)
7628 		kvm_x86_ops->queue_exception(vcpu);
7629 	/*
7630 	 * Do not inject an NMI or interrupt if there is a pending
7631 	 * exception.  Exceptions and interrupts are recognized at
7632 	 * instruction boundaries, i.e. the start of an instruction.
7633 	 * Trap-like exceptions, e.g. #DB, have higher priority than
7634 	 * NMIs and interrupts, i.e. traps are recognized before an
7635 	 * NMI/interrupt that's pending on the same instruction.
7636 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7637 	 * priority, but are only generated (pended) during instruction
7638 	 * execution, i.e. a pending fault-like exception means the
7639 	 * fault occurred on the *previous* instruction and must be
7640 	 * serviced prior to recognizing any new events in order to
7641 	 * fully complete the previous instruction.
7642 	 */
7643 	else if (!vcpu->arch.exception.pending) {
7644 		if (vcpu->arch.nmi_injected)
7645 			kvm_x86_ops->set_nmi(vcpu);
7646 		else if (vcpu->arch.interrupt.injected)
7647 			kvm_x86_ops->set_irq(vcpu);
7648 	}
7649 
7650 	/*
7651 	 * Call check_nested_events() even if we reinjected a previous event
7652 	 * in order for caller to determine if it should require immediate-exit
7653 	 * from L2 to L1 due to pending L1 events which require exit
7654 	 * from L2 to L1.
7655 	 */
7656 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7657 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7658 		if (r != 0)
7659 			return r;
7660 	}
7661 
7662 	/* try to inject new event if pending */
7663 	if (vcpu->arch.exception.pending) {
7664 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
7665 					vcpu->arch.exception.has_error_code,
7666 					vcpu->arch.exception.error_code);
7667 
7668 		WARN_ON_ONCE(vcpu->arch.exception.injected);
7669 		vcpu->arch.exception.pending = false;
7670 		vcpu->arch.exception.injected = true;
7671 
7672 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7673 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7674 					     X86_EFLAGS_RF);
7675 
7676 		if (vcpu->arch.exception.nr == DB_VECTOR) {
7677 			/*
7678 			 * This code assumes that nSVM doesn't use
7679 			 * check_nested_events(). If it does, the
7680 			 * DR6/DR7 changes should happen before L1
7681 			 * gets a #VMEXIT for an intercepted #DB in
7682 			 * L2.  (Under VMX, on the other hand, the
7683 			 * DR6/DR7 changes should not happen in the
7684 			 * event of a VM-exit to L1 for an intercepted
7685 			 * #DB in L2.)
7686 			 */
7687 			kvm_deliver_exception_payload(vcpu);
7688 			if (vcpu->arch.dr7 & DR7_GD) {
7689 				vcpu->arch.dr7 &= ~DR7_GD;
7690 				kvm_update_dr7(vcpu);
7691 			}
7692 		}
7693 
7694 		kvm_x86_ops->queue_exception(vcpu);
7695 	}
7696 
7697 	/* Don't consider new event if we re-injected an event */
7698 	if (kvm_event_needs_reinjection(vcpu))
7699 		return 0;
7700 
7701 	if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7702 	    kvm_x86_ops->smi_allowed(vcpu)) {
7703 		vcpu->arch.smi_pending = false;
7704 		++vcpu->arch.smi_count;
7705 		enter_smm(vcpu);
7706 	} else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7707 		--vcpu->arch.nmi_pending;
7708 		vcpu->arch.nmi_injected = true;
7709 		kvm_x86_ops->set_nmi(vcpu);
7710 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
7711 		/*
7712 		 * Because interrupts can be injected asynchronously, we are
7713 		 * calling check_nested_events again here to avoid a race condition.
7714 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7715 		 * proposal and current concerns.  Perhaps we should be setting
7716 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
7717 		 */
7718 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7719 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7720 			if (r != 0)
7721 				return r;
7722 		}
7723 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7724 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7725 					    false);
7726 			kvm_x86_ops->set_irq(vcpu);
7727 		}
7728 	}
7729 
7730 	return 0;
7731 }
7732 
7733 static void process_nmi(struct kvm_vcpu *vcpu)
7734 {
7735 	unsigned limit = 2;
7736 
7737 	/*
7738 	 * x86 is limited to one NMI running, and one NMI pending after it.
7739 	 * If an NMI is already in progress, limit further NMIs to just one.
7740 	 * Otherwise, allow two (and we'll inject the first one immediately).
7741 	 */
7742 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7743 		limit = 1;
7744 
7745 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7746 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7747 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7748 }
7749 
7750 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7751 {
7752 	u32 flags = 0;
7753 	flags |= seg->g       << 23;
7754 	flags |= seg->db      << 22;
7755 	flags |= seg->l       << 21;
7756 	flags |= seg->avl     << 20;
7757 	flags |= seg->present << 15;
7758 	flags |= seg->dpl     << 13;
7759 	flags |= seg->s       << 12;
7760 	flags |= seg->type    << 8;
7761 	return flags;
7762 }
7763 
7764 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7765 {
7766 	struct kvm_segment seg;
7767 	int offset;
7768 
7769 	kvm_get_segment(vcpu, &seg, n);
7770 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7771 
7772 	if (n < 3)
7773 		offset = 0x7f84 + n * 12;
7774 	else
7775 		offset = 0x7f2c + (n - 3) * 12;
7776 
7777 	put_smstate(u32, buf, offset + 8, seg.base);
7778 	put_smstate(u32, buf, offset + 4, seg.limit);
7779 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7780 }
7781 
7782 #ifdef CONFIG_X86_64
7783 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7784 {
7785 	struct kvm_segment seg;
7786 	int offset;
7787 	u16 flags;
7788 
7789 	kvm_get_segment(vcpu, &seg, n);
7790 	offset = 0x7e00 + n * 16;
7791 
7792 	flags = enter_smm_get_segment_flags(&seg) >> 8;
7793 	put_smstate(u16, buf, offset, seg.selector);
7794 	put_smstate(u16, buf, offset + 2, flags);
7795 	put_smstate(u32, buf, offset + 4, seg.limit);
7796 	put_smstate(u64, buf, offset + 8, seg.base);
7797 }
7798 #endif
7799 
7800 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7801 {
7802 	struct desc_ptr dt;
7803 	struct kvm_segment seg;
7804 	unsigned long val;
7805 	int i;
7806 
7807 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7808 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7809 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7810 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7811 
7812 	for (i = 0; i < 8; i++)
7813 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7814 
7815 	kvm_get_dr(vcpu, 6, &val);
7816 	put_smstate(u32, buf, 0x7fcc, (u32)val);
7817 	kvm_get_dr(vcpu, 7, &val);
7818 	put_smstate(u32, buf, 0x7fc8, (u32)val);
7819 
7820 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7821 	put_smstate(u32, buf, 0x7fc4, seg.selector);
7822 	put_smstate(u32, buf, 0x7f64, seg.base);
7823 	put_smstate(u32, buf, 0x7f60, seg.limit);
7824 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7825 
7826 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7827 	put_smstate(u32, buf, 0x7fc0, seg.selector);
7828 	put_smstate(u32, buf, 0x7f80, seg.base);
7829 	put_smstate(u32, buf, 0x7f7c, seg.limit);
7830 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7831 
7832 	kvm_x86_ops->get_gdt(vcpu, &dt);
7833 	put_smstate(u32, buf, 0x7f74, dt.address);
7834 	put_smstate(u32, buf, 0x7f70, dt.size);
7835 
7836 	kvm_x86_ops->get_idt(vcpu, &dt);
7837 	put_smstate(u32, buf, 0x7f58, dt.address);
7838 	put_smstate(u32, buf, 0x7f54, dt.size);
7839 
7840 	for (i = 0; i < 6; i++)
7841 		enter_smm_save_seg_32(vcpu, buf, i);
7842 
7843 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7844 
7845 	/* revision id */
7846 	put_smstate(u32, buf, 0x7efc, 0x00020000);
7847 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7848 }
7849 
7850 #ifdef CONFIG_X86_64
7851 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7852 {
7853 	struct desc_ptr dt;
7854 	struct kvm_segment seg;
7855 	unsigned long val;
7856 	int i;
7857 
7858 	for (i = 0; i < 16; i++)
7859 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7860 
7861 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7862 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7863 
7864 	kvm_get_dr(vcpu, 6, &val);
7865 	put_smstate(u64, buf, 0x7f68, val);
7866 	kvm_get_dr(vcpu, 7, &val);
7867 	put_smstate(u64, buf, 0x7f60, val);
7868 
7869 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7870 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7871 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7872 
7873 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7874 
7875 	/* revision id */
7876 	put_smstate(u32, buf, 0x7efc, 0x00020064);
7877 
7878 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7879 
7880 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7881 	put_smstate(u16, buf, 0x7e90, seg.selector);
7882 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7883 	put_smstate(u32, buf, 0x7e94, seg.limit);
7884 	put_smstate(u64, buf, 0x7e98, seg.base);
7885 
7886 	kvm_x86_ops->get_idt(vcpu, &dt);
7887 	put_smstate(u32, buf, 0x7e84, dt.size);
7888 	put_smstate(u64, buf, 0x7e88, dt.address);
7889 
7890 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7891 	put_smstate(u16, buf, 0x7e70, seg.selector);
7892 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7893 	put_smstate(u32, buf, 0x7e74, seg.limit);
7894 	put_smstate(u64, buf, 0x7e78, seg.base);
7895 
7896 	kvm_x86_ops->get_gdt(vcpu, &dt);
7897 	put_smstate(u32, buf, 0x7e64, dt.size);
7898 	put_smstate(u64, buf, 0x7e68, dt.address);
7899 
7900 	for (i = 0; i < 6; i++)
7901 		enter_smm_save_seg_64(vcpu, buf, i);
7902 }
7903 #endif
7904 
7905 static void enter_smm(struct kvm_vcpu *vcpu)
7906 {
7907 	struct kvm_segment cs, ds;
7908 	struct desc_ptr dt;
7909 	char buf[512];
7910 	u32 cr0;
7911 
7912 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7913 	memset(buf, 0, 512);
7914 #ifdef CONFIG_X86_64
7915 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7916 		enter_smm_save_state_64(vcpu, buf);
7917 	else
7918 #endif
7919 		enter_smm_save_state_32(vcpu, buf);
7920 
7921 	/*
7922 	 * Give pre_enter_smm() a chance to make ISA-specific changes to the
7923 	 * vCPU state (e.g. leave guest mode) after we've saved the state into
7924 	 * the SMM state-save area.
7925 	 */
7926 	kvm_x86_ops->pre_enter_smm(vcpu, buf);
7927 
7928 	vcpu->arch.hflags |= HF_SMM_MASK;
7929 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7930 
7931 	if (kvm_x86_ops->get_nmi_mask(vcpu))
7932 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7933 	else
7934 		kvm_x86_ops->set_nmi_mask(vcpu, true);
7935 
7936 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7937 	kvm_rip_write(vcpu, 0x8000);
7938 
7939 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7940 	kvm_x86_ops->set_cr0(vcpu, cr0);
7941 	vcpu->arch.cr0 = cr0;
7942 
7943 	kvm_x86_ops->set_cr4(vcpu, 0);
7944 
7945 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
7946 	dt.address = dt.size = 0;
7947 	kvm_x86_ops->set_idt(vcpu, &dt);
7948 
7949 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7950 
7951 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7952 	cs.base = vcpu->arch.smbase;
7953 
7954 	ds.selector = 0;
7955 	ds.base = 0;
7956 
7957 	cs.limit    = ds.limit = 0xffffffff;
7958 	cs.type     = ds.type = 0x3;
7959 	cs.dpl      = ds.dpl = 0;
7960 	cs.db       = ds.db = 0;
7961 	cs.s        = ds.s = 1;
7962 	cs.l        = ds.l = 0;
7963 	cs.g        = ds.g = 1;
7964 	cs.avl      = ds.avl = 0;
7965 	cs.present  = ds.present = 1;
7966 	cs.unusable = ds.unusable = 0;
7967 	cs.padding  = ds.padding = 0;
7968 
7969 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7970 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7971 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7972 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7973 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7974 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7975 
7976 #ifdef CONFIG_X86_64
7977 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7978 		kvm_x86_ops->set_efer(vcpu, 0);
7979 #endif
7980 
7981 	kvm_update_cpuid(vcpu);
7982 	kvm_mmu_reset_context(vcpu);
7983 }
7984 
7985 static void process_smi(struct kvm_vcpu *vcpu)
7986 {
7987 	vcpu->arch.smi_pending = true;
7988 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7989 }
7990 
7991 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
7992 				       unsigned long *vcpu_bitmap)
7993 {
7994 	cpumask_var_t cpus;
7995 
7996 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
7997 
7998 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
7999 				    vcpu_bitmap, cpus);
8000 
8001 	free_cpumask_var(cpus);
8002 }
8003 
8004 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8005 {
8006 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8007 }
8008 
8009 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8010 {
8011 	if (!lapic_in_kernel(vcpu))
8012 		return;
8013 
8014 	vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8015 	kvm_apic_update_apicv(vcpu);
8016 	kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
8017 }
8018 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8019 
8020 /*
8021  * NOTE: Do not hold any lock prior to calling this.
8022  *
8023  * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8024  * locked, because it calls __x86_set_memory_region() which does
8025  * synchronize_srcu(&kvm->srcu).
8026  */
8027 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8028 {
8029 	if (!kvm_x86_ops->check_apicv_inhibit_reasons ||
8030 	    !kvm_x86_ops->check_apicv_inhibit_reasons(bit))
8031 		return;
8032 
8033 	if (activate) {
8034 		if (!test_and_clear_bit(bit, &kvm->arch.apicv_inhibit_reasons) ||
8035 		    !kvm_apicv_activated(kvm))
8036 			return;
8037 	} else {
8038 		if (test_and_set_bit(bit, &kvm->arch.apicv_inhibit_reasons) ||
8039 		    kvm_apicv_activated(kvm))
8040 			return;
8041 	}
8042 
8043 	trace_kvm_apicv_update_request(activate, bit);
8044 	if (kvm_x86_ops->pre_update_apicv_exec_ctrl)
8045 		kvm_x86_ops->pre_update_apicv_exec_ctrl(kvm, activate);
8046 	kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
8047 }
8048 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8049 
8050 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8051 {
8052 	if (!kvm_apic_present(vcpu))
8053 		return;
8054 
8055 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8056 
8057 	if (irqchip_split(vcpu->kvm))
8058 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
8059 	else {
8060 		if (vcpu->arch.apicv_active)
8061 			kvm_x86_ops->sync_pir_to_irr(vcpu);
8062 		if (ioapic_in_kernel(vcpu->kvm))
8063 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
8064 	}
8065 
8066 	if (is_guest_mode(vcpu))
8067 		vcpu->arch.load_eoi_exitmap_pending = true;
8068 	else
8069 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8070 }
8071 
8072 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8073 {
8074 	u64 eoi_exit_bitmap[4];
8075 
8076 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8077 		return;
8078 
8079 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
8080 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
8081 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
8082 }
8083 
8084 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8085 		unsigned long start, unsigned long end,
8086 		bool blockable)
8087 {
8088 	unsigned long apic_address;
8089 
8090 	/*
8091 	 * The physical address of apic access page is stored in the VMCS.
8092 	 * Update it when it becomes invalid.
8093 	 */
8094 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8095 	if (start <= apic_address && apic_address < end)
8096 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
8097 
8098 	return 0;
8099 }
8100 
8101 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8102 {
8103 	struct page *page = NULL;
8104 
8105 	if (!lapic_in_kernel(vcpu))
8106 		return;
8107 
8108 	if (!kvm_x86_ops->set_apic_access_page_addr)
8109 		return;
8110 
8111 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8112 	if (is_error_page(page))
8113 		return;
8114 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
8115 
8116 	/*
8117 	 * Do not pin apic access page in memory, the MMU notifier
8118 	 * will call us again if it is migrated or swapped out.
8119 	 */
8120 	put_page(page);
8121 }
8122 
8123 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
8124 {
8125 	smp_send_reschedule(vcpu->cpu);
8126 }
8127 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
8128 
8129 /*
8130  * Returns 1 to let vcpu_run() continue the guest execution loop without
8131  * exiting to the userspace.  Otherwise, the value will be returned to the
8132  * userspace.
8133  */
8134 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
8135 {
8136 	int r;
8137 	bool req_int_win =
8138 		dm_request_for_irq_injection(vcpu) &&
8139 		kvm_cpu_accept_dm_intr(vcpu);
8140 	enum exit_fastpath_completion exit_fastpath = EXIT_FASTPATH_NONE;
8141 
8142 	bool req_immediate_exit = false;
8143 
8144 	if (kvm_request_pending(vcpu)) {
8145 		if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu)) {
8146 			if (unlikely(!kvm_x86_ops->get_vmcs12_pages(vcpu))) {
8147 				r = 0;
8148 				goto out;
8149 			}
8150 		}
8151 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
8152 			kvm_mmu_unload(vcpu);
8153 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
8154 			__kvm_migrate_timers(vcpu);
8155 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8156 			kvm_gen_update_masterclock(vcpu->kvm);
8157 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8158 			kvm_gen_kvmclock_update(vcpu);
8159 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8160 			r = kvm_guest_time_update(vcpu);
8161 			if (unlikely(r))
8162 				goto out;
8163 		}
8164 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
8165 			kvm_mmu_sync_roots(vcpu);
8166 		if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
8167 			kvm_mmu_load_cr3(vcpu);
8168 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
8169 			kvm_vcpu_flush_tlb(vcpu, true);
8170 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
8171 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
8172 			r = 0;
8173 			goto out;
8174 		}
8175 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8176 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8177 			vcpu->mmio_needed = 0;
8178 			r = 0;
8179 			goto out;
8180 		}
8181 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8182 			/* Page is swapped out. Do synthetic halt */
8183 			vcpu->arch.apf.halted = true;
8184 			r = 1;
8185 			goto out;
8186 		}
8187 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8188 			record_steal_time(vcpu);
8189 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
8190 			process_smi(vcpu);
8191 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
8192 			process_nmi(vcpu);
8193 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
8194 			kvm_pmu_handle_event(vcpu);
8195 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
8196 			kvm_pmu_deliver_pmi(vcpu);
8197 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8198 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8199 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
8200 				     vcpu->arch.ioapic_handled_vectors)) {
8201 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8202 				vcpu->run->eoi.vector =
8203 						vcpu->arch.pending_ioapic_eoi;
8204 				r = 0;
8205 				goto out;
8206 			}
8207 		}
8208 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8209 			vcpu_scan_ioapic(vcpu);
8210 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8211 			vcpu_load_eoi_exitmap(vcpu);
8212 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8213 			kvm_vcpu_reload_apic_access_page(vcpu);
8214 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8215 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8216 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8217 			r = 0;
8218 			goto out;
8219 		}
8220 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8221 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8222 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8223 			r = 0;
8224 			goto out;
8225 		}
8226 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8227 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8228 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
8229 			r = 0;
8230 			goto out;
8231 		}
8232 
8233 		/*
8234 		 * KVM_REQ_HV_STIMER has to be processed after
8235 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8236 		 * depend on the guest clock being up-to-date
8237 		 */
8238 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8239 			kvm_hv_process_stimers(vcpu);
8240 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
8241 			kvm_vcpu_update_apicv(vcpu);
8242 	}
8243 
8244 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
8245 		++vcpu->stat.req_event;
8246 		kvm_apic_accept_events(vcpu);
8247 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
8248 			r = 1;
8249 			goto out;
8250 		}
8251 
8252 		if (inject_pending_event(vcpu, req_int_win) != 0)
8253 			req_immediate_exit = true;
8254 		else {
8255 			/* Enable SMI/NMI/IRQ window open exits if needed.
8256 			 *
8257 			 * SMIs have three cases:
8258 			 * 1) They can be nested, and then there is nothing to
8259 			 *    do here because RSM will cause a vmexit anyway.
8260 			 * 2) There is an ISA-specific reason why SMI cannot be
8261 			 *    injected, and the moment when this changes can be
8262 			 *    intercepted.
8263 			 * 3) Or the SMI can be pending because
8264 			 *    inject_pending_event has completed the injection
8265 			 *    of an IRQ or NMI from the previous vmexit, and
8266 			 *    then we request an immediate exit to inject the
8267 			 *    SMI.
8268 			 */
8269 			if (vcpu->arch.smi_pending && !is_smm(vcpu))
8270 				if (!kvm_x86_ops->enable_smi_window(vcpu))
8271 					req_immediate_exit = true;
8272 			if (vcpu->arch.nmi_pending)
8273 				kvm_x86_ops->enable_nmi_window(vcpu);
8274 			if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
8275 				kvm_x86_ops->enable_irq_window(vcpu);
8276 			WARN_ON(vcpu->arch.exception.pending);
8277 		}
8278 
8279 		if (kvm_lapic_enabled(vcpu)) {
8280 			update_cr8_intercept(vcpu);
8281 			kvm_lapic_sync_to_vapic(vcpu);
8282 		}
8283 	}
8284 
8285 	r = kvm_mmu_reload(vcpu);
8286 	if (unlikely(r)) {
8287 		goto cancel_injection;
8288 	}
8289 
8290 	preempt_disable();
8291 
8292 	kvm_x86_ops->prepare_guest_switch(vcpu);
8293 
8294 	/*
8295 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
8296 	 * IPI are then delayed after guest entry, which ensures that they
8297 	 * result in virtual interrupt delivery.
8298 	 */
8299 	local_irq_disable();
8300 	vcpu->mode = IN_GUEST_MODE;
8301 
8302 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8303 
8304 	/*
8305 	 * 1) We should set ->mode before checking ->requests.  Please see
8306 	 * the comment in kvm_vcpu_exiting_guest_mode().
8307 	 *
8308 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
8309 	 * pairs with the memory barrier implicit in pi_test_and_set_on
8310 	 * (see vmx_deliver_posted_interrupt).
8311 	 *
8312 	 * 3) This also orders the write to mode from any reads to the page
8313 	 * tables done while the VCPU is running.  Please see the comment
8314 	 * in kvm_flush_remote_tlbs.
8315 	 */
8316 	smp_mb__after_srcu_read_unlock();
8317 
8318 	/*
8319 	 * This handles the case where a posted interrupt was
8320 	 * notified with kvm_vcpu_kick.
8321 	 */
8322 	if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
8323 		kvm_x86_ops->sync_pir_to_irr(vcpu);
8324 
8325 	if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
8326 	    || need_resched() || signal_pending(current)) {
8327 		vcpu->mode = OUTSIDE_GUEST_MODE;
8328 		smp_wmb();
8329 		local_irq_enable();
8330 		preempt_enable();
8331 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8332 		r = 1;
8333 		goto cancel_injection;
8334 	}
8335 
8336 	if (req_immediate_exit) {
8337 		kvm_make_request(KVM_REQ_EVENT, vcpu);
8338 		kvm_x86_ops->request_immediate_exit(vcpu);
8339 	}
8340 
8341 	trace_kvm_entry(vcpu->vcpu_id);
8342 	guest_enter_irqoff();
8343 
8344 	fpregs_assert_state_consistent();
8345 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
8346 		switch_fpu_return();
8347 
8348 	if (unlikely(vcpu->arch.switch_db_regs)) {
8349 		set_debugreg(0, 7);
8350 		set_debugreg(vcpu->arch.eff_db[0], 0);
8351 		set_debugreg(vcpu->arch.eff_db[1], 1);
8352 		set_debugreg(vcpu->arch.eff_db[2], 2);
8353 		set_debugreg(vcpu->arch.eff_db[3], 3);
8354 		set_debugreg(vcpu->arch.dr6, 6);
8355 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8356 	}
8357 
8358 	kvm_x86_ops->run(vcpu);
8359 
8360 	/*
8361 	 * Do this here before restoring debug registers on the host.  And
8362 	 * since we do this before handling the vmexit, a DR access vmexit
8363 	 * can (a) read the correct value of the debug registers, (b) set
8364 	 * KVM_DEBUGREG_WONT_EXIT again.
8365 	 */
8366 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
8367 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
8368 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
8369 		kvm_update_dr0123(vcpu);
8370 		kvm_update_dr6(vcpu);
8371 		kvm_update_dr7(vcpu);
8372 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8373 	}
8374 
8375 	/*
8376 	 * If the guest has used debug registers, at least dr7
8377 	 * will be disabled while returning to the host.
8378 	 * If we don't have active breakpoints in the host, we don't
8379 	 * care about the messed up debug address registers. But if
8380 	 * we have some of them active, restore the old state.
8381 	 */
8382 	if (hw_breakpoint_active())
8383 		hw_breakpoint_restore();
8384 
8385 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8386 
8387 	vcpu->mode = OUTSIDE_GUEST_MODE;
8388 	smp_wmb();
8389 
8390 	kvm_x86_ops->handle_exit_irqoff(vcpu, &exit_fastpath);
8391 
8392 	/*
8393 	 * Consume any pending interrupts, including the possible source of
8394 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
8395 	 * An instruction is required after local_irq_enable() to fully unblock
8396 	 * interrupts on processors that implement an interrupt shadow, the
8397 	 * stat.exits increment will do nicely.
8398 	 */
8399 	kvm_before_interrupt(vcpu);
8400 	local_irq_enable();
8401 	++vcpu->stat.exits;
8402 	local_irq_disable();
8403 	kvm_after_interrupt(vcpu);
8404 
8405 	guest_exit_irqoff();
8406 	if (lapic_in_kernel(vcpu)) {
8407 		s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
8408 		if (delta != S64_MIN) {
8409 			trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
8410 			vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
8411 		}
8412 	}
8413 
8414 	local_irq_enable();
8415 	preempt_enable();
8416 
8417 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8418 
8419 	/*
8420 	 * Profile KVM exit RIPs:
8421 	 */
8422 	if (unlikely(prof_on == KVM_PROFILING)) {
8423 		unsigned long rip = kvm_rip_read(vcpu);
8424 		profile_hit(KVM_PROFILING, (void *)rip);
8425 	}
8426 
8427 	if (unlikely(vcpu->arch.tsc_always_catchup))
8428 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8429 
8430 	if (vcpu->arch.apic_attention)
8431 		kvm_lapic_sync_from_vapic(vcpu);
8432 
8433 	vcpu->arch.gpa_available = false;
8434 	r = kvm_x86_ops->handle_exit(vcpu, exit_fastpath);
8435 	return r;
8436 
8437 cancel_injection:
8438 	kvm_x86_ops->cancel_injection(vcpu);
8439 	if (unlikely(vcpu->arch.apic_attention))
8440 		kvm_lapic_sync_from_vapic(vcpu);
8441 out:
8442 	return r;
8443 }
8444 
8445 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
8446 {
8447 	if (!kvm_arch_vcpu_runnable(vcpu) &&
8448 	    (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
8449 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8450 		kvm_vcpu_block(vcpu);
8451 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8452 
8453 		if (kvm_x86_ops->post_block)
8454 			kvm_x86_ops->post_block(vcpu);
8455 
8456 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
8457 			return 1;
8458 	}
8459 
8460 	kvm_apic_accept_events(vcpu);
8461 	switch(vcpu->arch.mp_state) {
8462 	case KVM_MP_STATE_HALTED:
8463 		vcpu->arch.pv.pv_unhalted = false;
8464 		vcpu->arch.mp_state =
8465 			KVM_MP_STATE_RUNNABLE;
8466 		/* fall through */
8467 	case KVM_MP_STATE_RUNNABLE:
8468 		vcpu->arch.apf.halted = false;
8469 		break;
8470 	case KVM_MP_STATE_INIT_RECEIVED:
8471 		break;
8472 	default:
8473 		return -EINTR;
8474 		break;
8475 	}
8476 	return 1;
8477 }
8478 
8479 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8480 {
8481 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8482 		kvm_x86_ops->check_nested_events(vcpu, false);
8483 
8484 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8485 		!vcpu->arch.apf.halted);
8486 }
8487 
8488 static int vcpu_run(struct kvm_vcpu *vcpu)
8489 {
8490 	int r;
8491 	struct kvm *kvm = vcpu->kvm;
8492 
8493 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8494 	vcpu->arch.l1tf_flush_l1d = true;
8495 
8496 	for (;;) {
8497 		if (kvm_vcpu_running(vcpu)) {
8498 			r = vcpu_enter_guest(vcpu);
8499 		} else {
8500 			r = vcpu_block(kvm, vcpu);
8501 		}
8502 
8503 		if (r <= 0)
8504 			break;
8505 
8506 		kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8507 		if (kvm_cpu_has_pending_timer(vcpu))
8508 			kvm_inject_pending_timer_irqs(vcpu);
8509 
8510 		if (dm_request_for_irq_injection(vcpu) &&
8511 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8512 			r = 0;
8513 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8514 			++vcpu->stat.request_irq_exits;
8515 			break;
8516 		}
8517 
8518 		kvm_check_async_pf_completion(vcpu);
8519 
8520 		if (signal_pending(current)) {
8521 			r = -EINTR;
8522 			vcpu->run->exit_reason = KVM_EXIT_INTR;
8523 			++vcpu->stat.signal_exits;
8524 			break;
8525 		}
8526 		if (need_resched()) {
8527 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8528 			cond_resched();
8529 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8530 		}
8531 	}
8532 
8533 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8534 
8535 	return r;
8536 }
8537 
8538 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8539 {
8540 	int r;
8541 
8542 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8543 	r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8544 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8545 	return r;
8546 }
8547 
8548 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8549 {
8550 	BUG_ON(!vcpu->arch.pio.count);
8551 
8552 	return complete_emulated_io(vcpu);
8553 }
8554 
8555 /*
8556  * Implements the following, as a state machine:
8557  *
8558  * read:
8559  *   for each fragment
8560  *     for each mmio piece in the fragment
8561  *       write gpa, len
8562  *       exit
8563  *       copy data
8564  *   execute insn
8565  *
8566  * write:
8567  *   for each fragment
8568  *     for each mmio piece in the fragment
8569  *       write gpa, len
8570  *       copy data
8571  *       exit
8572  */
8573 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8574 {
8575 	struct kvm_run *run = vcpu->run;
8576 	struct kvm_mmio_fragment *frag;
8577 	unsigned len;
8578 
8579 	BUG_ON(!vcpu->mmio_needed);
8580 
8581 	/* Complete previous fragment */
8582 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8583 	len = min(8u, frag->len);
8584 	if (!vcpu->mmio_is_write)
8585 		memcpy(frag->data, run->mmio.data, len);
8586 
8587 	if (frag->len <= 8) {
8588 		/* Switch to the next fragment. */
8589 		frag++;
8590 		vcpu->mmio_cur_fragment++;
8591 	} else {
8592 		/* Go forward to the next mmio piece. */
8593 		frag->data += len;
8594 		frag->gpa += len;
8595 		frag->len -= len;
8596 	}
8597 
8598 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8599 		vcpu->mmio_needed = 0;
8600 
8601 		/* FIXME: return into emulator if single-stepping.  */
8602 		if (vcpu->mmio_is_write)
8603 			return 1;
8604 		vcpu->mmio_read_completed = 1;
8605 		return complete_emulated_io(vcpu);
8606 	}
8607 
8608 	run->exit_reason = KVM_EXIT_MMIO;
8609 	run->mmio.phys_addr = frag->gpa;
8610 	if (vcpu->mmio_is_write)
8611 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8612 	run->mmio.len = min(8u, frag->len);
8613 	run->mmio.is_write = vcpu->mmio_is_write;
8614 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8615 	return 0;
8616 }
8617 
8618 static void kvm_save_current_fpu(struct fpu *fpu)
8619 {
8620 	/*
8621 	 * If the target FPU state is not resident in the CPU registers, just
8622 	 * memcpy() from current, else save CPU state directly to the target.
8623 	 */
8624 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
8625 		memcpy(&fpu->state, &current->thread.fpu.state,
8626 		       fpu_kernel_xstate_size);
8627 	else
8628 		copy_fpregs_to_fpstate(fpu);
8629 }
8630 
8631 /* Swap (qemu) user FPU context for the guest FPU context. */
8632 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8633 {
8634 	fpregs_lock();
8635 
8636 	kvm_save_current_fpu(vcpu->arch.user_fpu);
8637 
8638 	/* PKRU is separately restored in kvm_x86_ops->run.  */
8639 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8640 				~XFEATURE_MASK_PKRU);
8641 
8642 	fpregs_mark_activate();
8643 	fpregs_unlock();
8644 
8645 	trace_kvm_fpu(1);
8646 }
8647 
8648 /* When vcpu_run ends, restore user space FPU context. */
8649 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8650 {
8651 	fpregs_lock();
8652 
8653 	kvm_save_current_fpu(vcpu->arch.guest_fpu);
8654 
8655 	copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
8656 
8657 	fpregs_mark_activate();
8658 	fpregs_unlock();
8659 
8660 	++vcpu->stat.fpu_reload;
8661 	trace_kvm_fpu(0);
8662 }
8663 
8664 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8665 {
8666 	int r;
8667 
8668 	vcpu_load(vcpu);
8669 	kvm_sigset_activate(vcpu);
8670 	kvm_load_guest_fpu(vcpu);
8671 
8672 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8673 		if (kvm_run->immediate_exit) {
8674 			r = -EINTR;
8675 			goto out;
8676 		}
8677 		kvm_vcpu_block(vcpu);
8678 		kvm_apic_accept_events(vcpu);
8679 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8680 		r = -EAGAIN;
8681 		if (signal_pending(current)) {
8682 			r = -EINTR;
8683 			vcpu->run->exit_reason = KVM_EXIT_INTR;
8684 			++vcpu->stat.signal_exits;
8685 		}
8686 		goto out;
8687 	}
8688 
8689 	if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8690 		r = -EINVAL;
8691 		goto out;
8692 	}
8693 
8694 	if (vcpu->run->kvm_dirty_regs) {
8695 		r = sync_regs(vcpu);
8696 		if (r != 0)
8697 			goto out;
8698 	}
8699 
8700 	/* re-sync apic's tpr */
8701 	if (!lapic_in_kernel(vcpu)) {
8702 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8703 			r = -EINVAL;
8704 			goto out;
8705 		}
8706 	}
8707 
8708 	if (unlikely(vcpu->arch.complete_userspace_io)) {
8709 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8710 		vcpu->arch.complete_userspace_io = NULL;
8711 		r = cui(vcpu);
8712 		if (r <= 0)
8713 			goto out;
8714 	} else
8715 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8716 
8717 	if (kvm_run->immediate_exit)
8718 		r = -EINTR;
8719 	else
8720 		r = vcpu_run(vcpu);
8721 
8722 out:
8723 	kvm_put_guest_fpu(vcpu);
8724 	if (vcpu->run->kvm_valid_regs)
8725 		store_regs(vcpu);
8726 	post_kvm_run_save(vcpu);
8727 	kvm_sigset_deactivate(vcpu);
8728 
8729 	vcpu_put(vcpu);
8730 	return r;
8731 }
8732 
8733 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8734 {
8735 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8736 		/*
8737 		 * We are here if userspace calls get_regs() in the middle of
8738 		 * instruction emulation. Registers state needs to be copied
8739 		 * back from emulation context to vcpu. Userspace shouldn't do
8740 		 * that usually, but some bad designed PV devices (vmware
8741 		 * backdoor interface) need this to work
8742 		 */
8743 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
8744 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8745 	}
8746 	regs->rax = kvm_rax_read(vcpu);
8747 	regs->rbx = kvm_rbx_read(vcpu);
8748 	regs->rcx = kvm_rcx_read(vcpu);
8749 	regs->rdx = kvm_rdx_read(vcpu);
8750 	regs->rsi = kvm_rsi_read(vcpu);
8751 	regs->rdi = kvm_rdi_read(vcpu);
8752 	regs->rsp = kvm_rsp_read(vcpu);
8753 	regs->rbp = kvm_rbp_read(vcpu);
8754 #ifdef CONFIG_X86_64
8755 	regs->r8 = kvm_r8_read(vcpu);
8756 	regs->r9 = kvm_r9_read(vcpu);
8757 	regs->r10 = kvm_r10_read(vcpu);
8758 	regs->r11 = kvm_r11_read(vcpu);
8759 	regs->r12 = kvm_r12_read(vcpu);
8760 	regs->r13 = kvm_r13_read(vcpu);
8761 	regs->r14 = kvm_r14_read(vcpu);
8762 	regs->r15 = kvm_r15_read(vcpu);
8763 #endif
8764 
8765 	regs->rip = kvm_rip_read(vcpu);
8766 	regs->rflags = kvm_get_rflags(vcpu);
8767 }
8768 
8769 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8770 {
8771 	vcpu_load(vcpu);
8772 	__get_regs(vcpu, regs);
8773 	vcpu_put(vcpu);
8774 	return 0;
8775 }
8776 
8777 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8778 {
8779 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8780 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8781 
8782 	kvm_rax_write(vcpu, regs->rax);
8783 	kvm_rbx_write(vcpu, regs->rbx);
8784 	kvm_rcx_write(vcpu, regs->rcx);
8785 	kvm_rdx_write(vcpu, regs->rdx);
8786 	kvm_rsi_write(vcpu, regs->rsi);
8787 	kvm_rdi_write(vcpu, regs->rdi);
8788 	kvm_rsp_write(vcpu, regs->rsp);
8789 	kvm_rbp_write(vcpu, regs->rbp);
8790 #ifdef CONFIG_X86_64
8791 	kvm_r8_write(vcpu, regs->r8);
8792 	kvm_r9_write(vcpu, regs->r9);
8793 	kvm_r10_write(vcpu, regs->r10);
8794 	kvm_r11_write(vcpu, regs->r11);
8795 	kvm_r12_write(vcpu, regs->r12);
8796 	kvm_r13_write(vcpu, regs->r13);
8797 	kvm_r14_write(vcpu, regs->r14);
8798 	kvm_r15_write(vcpu, regs->r15);
8799 #endif
8800 
8801 	kvm_rip_write(vcpu, regs->rip);
8802 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8803 
8804 	vcpu->arch.exception.pending = false;
8805 
8806 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8807 }
8808 
8809 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8810 {
8811 	vcpu_load(vcpu);
8812 	__set_regs(vcpu, regs);
8813 	vcpu_put(vcpu);
8814 	return 0;
8815 }
8816 
8817 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8818 {
8819 	struct kvm_segment cs;
8820 
8821 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8822 	*db = cs.db;
8823 	*l = cs.l;
8824 }
8825 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8826 
8827 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8828 {
8829 	struct desc_ptr dt;
8830 
8831 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8832 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8833 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8834 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8835 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8836 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8837 
8838 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8839 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8840 
8841 	kvm_x86_ops->get_idt(vcpu, &dt);
8842 	sregs->idt.limit = dt.size;
8843 	sregs->idt.base = dt.address;
8844 	kvm_x86_ops->get_gdt(vcpu, &dt);
8845 	sregs->gdt.limit = dt.size;
8846 	sregs->gdt.base = dt.address;
8847 
8848 	sregs->cr0 = kvm_read_cr0(vcpu);
8849 	sregs->cr2 = vcpu->arch.cr2;
8850 	sregs->cr3 = kvm_read_cr3(vcpu);
8851 	sregs->cr4 = kvm_read_cr4(vcpu);
8852 	sregs->cr8 = kvm_get_cr8(vcpu);
8853 	sregs->efer = vcpu->arch.efer;
8854 	sregs->apic_base = kvm_get_apic_base(vcpu);
8855 
8856 	memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
8857 
8858 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8859 		set_bit(vcpu->arch.interrupt.nr,
8860 			(unsigned long *)sregs->interrupt_bitmap);
8861 }
8862 
8863 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8864 				  struct kvm_sregs *sregs)
8865 {
8866 	vcpu_load(vcpu);
8867 	__get_sregs(vcpu, sregs);
8868 	vcpu_put(vcpu);
8869 	return 0;
8870 }
8871 
8872 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8873 				    struct kvm_mp_state *mp_state)
8874 {
8875 	vcpu_load(vcpu);
8876 	if (kvm_mpx_supported())
8877 		kvm_load_guest_fpu(vcpu);
8878 
8879 	kvm_apic_accept_events(vcpu);
8880 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8881 					vcpu->arch.pv.pv_unhalted)
8882 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8883 	else
8884 		mp_state->mp_state = vcpu->arch.mp_state;
8885 
8886 	if (kvm_mpx_supported())
8887 		kvm_put_guest_fpu(vcpu);
8888 	vcpu_put(vcpu);
8889 	return 0;
8890 }
8891 
8892 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8893 				    struct kvm_mp_state *mp_state)
8894 {
8895 	int ret = -EINVAL;
8896 
8897 	vcpu_load(vcpu);
8898 
8899 	if (!lapic_in_kernel(vcpu) &&
8900 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8901 		goto out;
8902 
8903 	/*
8904 	 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
8905 	 * INIT state; latched init should be reported using
8906 	 * KVM_SET_VCPU_EVENTS, so reject it here.
8907 	 */
8908 	if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
8909 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8910 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8911 		goto out;
8912 
8913 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8914 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8915 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8916 	} else
8917 		vcpu->arch.mp_state = mp_state->mp_state;
8918 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8919 
8920 	ret = 0;
8921 out:
8922 	vcpu_put(vcpu);
8923 	return ret;
8924 }
8925 
8926 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8927 		    int reason, bool has_error_code, u32 error_code)
8928 {
8929 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8930 	int ret;
8931 
8932 	init_emulate_ctxt(vcpu);
8933 
8934 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8935 				   has_error_code, error_code);
8936 	if (ret) {
8937 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8938 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
8939 		vcpu->run->internal.ndata = 0;
8940 		return 0;
8941 	}
8942 
8943 	kvm_rip_write(vcpu, ctxt->eip);
8944 	kvm_set_rflags(vcpu, ctxt->eflags);
8945 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8946 	return 1;
8947 }
8948 EXPORT_SYMBOL_GPL(kvm_task_switch);
8949 
8950 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8951 {
8952 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8953 		/*
8954 		 * When EFER.LME and CR0.PG are set, the processor is in
8955 		 * 64-bit mode (though maybe in a 32-bit code segment).
8956 		 * CR4.PAE and EFER.LMA must be set.
8957 		 */
8958 		if (!(sregs->cr4 & X86_CR4_PAE)
8959 		    || !(sregs->efer & EFER_LMA))
8960 			return -EINVAL;
8961 	} else {
8962 		/*
8963 		 * Not in 64-bit mode: EFER.LMA is clear and the code
8964 		 * segment cannot be 64-bit.
8965 		 */
8966 		if (sregs->efer & EFER_LMA || sregs->cs.l)
8967 			return -EINVAL;
8968 	}
8969 
8970 	return kvm_valid_cr4(vcpu, sregs->cr4);
8971 }
8972 
8973 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8974 {
8975 	struct msr_data apic_base_msr;
8976 	int mmu_reset_needed = 0;
8977 	int cpuid_update_needed = 0;
8978 	int pending_vec, max_bits, idx;
8979 	struct desc_ptr dt;
8980 	int ret = -EINVAL;
8981 
8982 	if (kvm_valid_sregs(vcpu, sregs))
8983 		goto out;
8984 
8985 	apic_base_msr.data = sregs->apic_base;
8986 	apic_base_msr.host_initiated = true;
8987 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
8988 		goto out;
8989 
8990 	dt.size = sregs->idt.limit;
8991 	dt.address = sregs->idt.base;
8992 	kvm_x86_ops->set_idt(vcpu, &dt);
8993 	dt.size = sregs->gdt.limit;
8994 	dt.address = sregs->gdt.base;
8995 	kvm_x86_ops->set_gdt(vcpu, &dt);
8996 
8997 	vcpu->arch.cr2 = sregs->cr2;
8998 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8999 	vcpu->arch.cr3 = sregs->cr3;
9000 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9001 
9002 	kvm_set_cr8(vcpu, sregs->cr8);
9003 
9004 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9005 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
9006 
9007 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9008 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
9009 	vcpu->arch.cr0 = sregs->cr0;
9010 
9011 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9012 	cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
9013 				(X86_CR4_OSXSAVE | X86_CR4_PKE));
9014 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
9015 	if (cpuid_update_needed)
9016 		kvm_update_cpuid(vcpu);
9017 
9018 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9019 	if (is_pae_paging(vcpu)) {
9020 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9021 		mmu_reset_needed = 1;
9022 	}
9023 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9024 
9025 	if (mmu_reset_needed)
9026 		kvm_mmu_reset_context(vcpu);
9027 
9028 	max_bits = KVM_NR_INTERRUPTS;
9029 	pending_vec = find_first_bit(
9030 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
9031 	if (pending_vec < max_bits) {
9032 		kvm_queue_interrupt(vcpu, pending_vec, false);
9033 		pr_debug("Set back pending irq %d\n", pending_vec);
9034 	}
9035 
9036 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9037 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9038 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9039 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9040 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9041 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9042 
9043 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9044 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9045 
9046 	update_cr8_intercept(vcpu);
9047 
9048 	/* Older userspace won't unhalt the vcpu on reset. */
9049 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9050 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9051 	    !is_protmode(vcpu))
9052 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9053 
9054 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9055 
9056 	ret = 0;
9057 out:
9058 	return ret;
9059 }
9060 
9061 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9062 				  struct kvm_sregs *sregs)
9063 {
9064 	int ret;
9065 
9066 	vcpu_load(vcpu);
9067 	ret = __set_sregs(vcpu, sregs);
9068 	vcpu_put(vcpu);
9069 	return ret;
9070 }
9071 
9072 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
9073 					struct kvm_guest_debug *dbg)
9074 {
9075 	unsigned long rflags;
9076 	int i, r;
9077 
9078 	vcpu_load(vcpu);
9079 
9080 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9081 		r = -EBUSY;
9082 		if (vcpu->arch.exception.pending)
9083 			goto out;
9084 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
9085 			kvm_queue_exception(vcpu, DB_VECTOR);
9086 		else
9087 			kvm_queue_exception(vcpu, BP_VECTOR);
9088 	}
9089 
9090 	/*
9091 	 * Read rflags as long as potentially injected trace flags are still
9092 	 * filtered out.
9093 	 */
9094 	rflags = kvm_get_rflags(vcpu);
9095 
9096 	vcpu->guest_debug = dbg->control;
9097 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
9098 		vcpu->guest_debug = 0;
9099 
9100 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
9101 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
9102 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
9103 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
9104 	} else {
9105 		for (i = 0; i < KVM_NR_DB_REGS; i++)
9106 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
9107 	}
9108 	kvm_update_dr7(vcpu);
9109 
9110 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9111 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
9112 			get_segment_base(vcpu, VCPU_SREG_CS);
9113 
9114 	/*
9115 	 * Trigger an rflags update that will inject or remove the trace
9116 	 * flags.
9117 	 */
9118 	kvm_set_rflags(vcpu, rflags);
9119 
9120 	kvm_x86_ops->update_bp_intercept(vcpu);
9121 
9122 	r = 0;
9123 
9124 out:
9125 	vcpu_put(vcpu);
9126 	return r;
9127 }
9128 
9129 /*
9130  * Translate a guest virtual address to a guest physical address.
9131  */
9132 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
9133 				    struct kvm_translation *tr)
9134 {
9135 	unsigned long vaddr = tr->linear_address;
9136 	gpa_t gpa;
9137 	int idx;
9138 
9139 	vcpu_load(vcpu);
9140 
9141 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9142 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
9143 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9144 	tr->physical_address = gpa;
9145 	tr->valid = gpa != UNMAPPED_GVA;
9146 	tr->writeable = 1;
9147 	tr->usermode = 0;
9148 
9149 	vcpu_put(vcpu);
9150 	return 0;
9151 }
9152 
9153 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9154 {
9155 	struct fxregs_state *fxsave;
9156 
9157 	vcpu_load(vcpu);
9158 
9159 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9160 	memcpy(fpu->fpr, fxsave->st_space, 128);
9161 	fpu->fcw = fxsave->cwd;
9162 	fpu->fsw = fxsave->swd;
9163 	fpu->ftwx = fxsave->twd;
9164 	fpu->last_opcode = fxsave->fop;
9165 	fpu->last_ip = fxsave->rip;
9166 	fpu->last_dp = fxsave->rdp;
9167 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
9168 
9169 	vcpu_put(vcpu);
9170 	return 0;
9171 }
9172 
9173 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9174 {
9175 	struct fxregs_state *fxsave;
9176 
9177 	vcpu_load(vcpu);
9178 
9179 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9180 
9181 	memcpy(fxsave->st_space, fpu->fpr, 128);
9182 	fxsave->cwd = fpu->fcw;
9183 	fxsave->swd = fpu->fsw;
9184 	fxsave->twd = fpu->ftwx;
9185 	fxsave->fop = fpu->last_opcode;
9186 	fxsave->rip = fpu->last_ip;
9187 	fxsave->rdp = fpu->last_dp;
9188 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
9189 
9190 	vcpu_put(vcpu);
9191 	return 0;
9192 }
9193 
9194 static void store_regs(struct kvm_vcpu *vcpu)
9195 {
9196 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
9197 
9198 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
9199 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
9200 
9201 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
9202 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
9203 
9204 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
9205 		kvm_vcpu_ioctl_x86_get_vcpu_events(
9206 				vcpu, &vcpu->run->s.regs.events);
9207 }
9208 
9209 static int sync_regs(struct kvm_vcpu *vcpu)
9210 {
9211 	if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
9212 		return -EINVAL;
9213 
9214 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
9215 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
9216 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
9217 	}
9218 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
9219 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
9220 			return -EINVAL;
9221 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
9222 	}
9223 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
9224 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
9225 				vcpu, &vcpu->run->s.regs.events))
9226 			return -EINVAL;
9227 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
9228 	}
9229 
9230 	return 0;
9231 }
9232 
9233 static void fx_init(struct kvm_vcpu *vcpu)
9234 {
9235 	fpstate_init(&vcpu->arch.guest_fpu->state);
9236 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9237 		vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
9238 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
9239 
9240 	/*
9241 	 * Ensure guest xcr0 is valid for loading
9242 	 */
9243 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9244 
9245 	vcpu->arch.cr0 |= X86_CR0_ET;
9246 }
9247 
9248 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
9249 {
9250 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
9251 		pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
9252 			     "guest TSC will not be reliable\n");
9253 
9254 	return 0;
9255 }
9256 
9257 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
9258 {
9259 	struct page *page;
9260 	int r;
9261 
9262 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
9263 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9264 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9265 	else
9266 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9267 
9268 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
9269 
9270 	r = kvm_mmu_create(vcpu);
9271 	if (r < 0)
9272 		return r;
9273 
9274 	if (irqchip_in_kernel(vcpu->kvm)) {
9275 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9276 		if (r < 0)
9277 			goto fail_mmu_destroy;
9278 		if (kvm_apicv_activated(vcpu->kvm))
9279 			vcpu->arch.apicv_active = true;
9280 	} else
9281 		static_key_slow_inc(&kvm_no_apic_vcpu);
9282 
9283 	r = -ENOMEM;
9284 
9285 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9286 	if (!page)
9287 		goto fail_free_lapic;
9288 	vcpu->arch.pio_data = page_address(page);
9289 
9290 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9291 				       GFP_KERNEL_ACCOUNT);
9292 	if (!vcpu->arch.mce_banks)
9293 		goto fail_free_pio_data;
9294 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9295 
9296 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9297 				GFP_KERNEL_ACCOUNT))
9298 		goto fail_free_mce_banks;
9299 
9300 	vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
9301 						GFP_KERNEL_ACCOUNT);
9302 	if (!vcpu->arch.user_fpu) {
9303 		pr_err("kvm: failed to allocate userspace's fpu\n");
9304 		goto free_wbinvd_dirty_mask;
9305 	}
9306 
9307 	vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
9308 						 GFP_KERNEL_ACCOUNT);
9309 	if (!vcpu->arch.guest_fpu) {
9310 		pr_err("kvm: failed to allocate vcpu's fpu\n");
9311 		goto free_user_fpu;
9312 	}
9313 	fx_init(vcpu);
9314 
9315 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
9316 
9317 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9318 
9319 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9320 
9321 	kvm_async_pf_hash_reset(vcpu);
9322 	kvm_pmu_init(vcpu);
9323 
9324 	vcpu->arch.pending_external_vector = -1;
9325 	vcpu->arch.preempted_in_kernel = false;
9326 
9327 	kvm_hv_vcpu_init(vcpu);
9328 
9329 	r = kvm_x86_ops->vcpu_create(vcpu);
9330 	if (r)
9331 		goto free_guest_fpu;
9332 
9333 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
9334 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
9335 	kvm_vcpu_mtrr_init(vcpu);
9336 	vcpu_load(vcpu);
9337 	kvm_vcpu_reset(vcpu, false);
9338 	kvm_init_mmu(vcpu, false);
9339 	vcpu_put(vcpu);
9340 	return 0;
9341 
9342 free_guest_fpu:
9343 	kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9344 free_user_fpu:
9345 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9346 free_wbinvd_dirty_mask:
9347 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9348 fail_free_mce_banks:
9349 	kfree(vcpu->arch.mce_banks);
9350 fail_free_pio_data:
9351 	free_page((unsigned long)vcpu->arch.pio_data);
9352 fail_free_lapic:
9353 	kvm_free_lapic(vcpu);
9354 fail_mmu_destroy:
9355 	kvm_mmu_destroy(vcpu);
9356 	return r;
9357 }
9358 
9359 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
9360 {
9361 	struct msr_data msr;
9362 	struct kvm *kvm = vcpu->kvm;
9363 
9364 	kvm_hv_vcpu_postcreate(vcpu);
9365 
9366 	if (mutex_lock_killable(&vcpu->mutex))
9367 		return;
9368 	vcpu_load(vcpu);
9369 	msr.data = 0x0;
9370 	msr.index = MSR_IA32_TSC;
9371 	msr.host_initiated = true;
9372 	kvm_write_tsc(vcpu, &msr);
9373 	vcpu_put(vcpu);
9374 
9375 	/* poll control enabled by default */
9376 	vcpu->arch.msr_kvm_poll_control = 1;
9377 
9378 	mutex_unlock(&vcpu->mutex);
9379 
9380 	if (!kvmclock_periodic_sync)
9381 		return;
9382 
9383 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
9384 					KVMCLOCK_SYNC_PERIOD);
9385 }
9386 
9387 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
9388 {
9389 	struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
9390 	int idx;
9391 
9392 	kvm_release_pfn(cache->pfn, cache->dirty, cache);
9393 
9394 	kvmclock_reset(vcpu);
9395 
9396 	kvm_x86_ops->vcpu_free(vcpu);
9397 
9398 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9399 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9400 	kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9401 
9402 	kvm_hv_vcpu_uninit(vcpu);
9403 	kvm_pmu_destroy(vcpu);
9404 	kfree(vcpu->arch.mce_banks);
9405 	kvm_free_lapic(vcpu);
9406 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9407 	kvm_mmu_destroy(vcpu);
9408 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9409 	free_page((unsigned long)vcpu->arch.pio_data);
9410 	if (!lapic_in_kernel(vcpu))
9411 		static_key_slow_dec(&kvm_no_apic_vcpu);
9412 }
9413 
9414 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
9415 {
9416 	kvm_lapic_reset(vcpu, init_event);
9417 
9418 	vcpu->arch.hflags = 0;
9419 
9420 	vcpu->arch.smi_pending = 0;
9421 	vcpu->arch.smi_count = 0;
9422 	atomic_set(&vcpu->arch.nmi_queued, 0);
9423 	vcpu->arch.nmi_pending = 0;
9424 	vcpu->arch.nmi_injected = false;
9425 	kvm_clear_interrupt_queue(vcpu);
9426 	kvm_clear_exception_queue(vcpu);
9427 
9428 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
9429 	kvm_update_dr0123(vcpu);
9430 	vcpu->arch.dr6 = DR6_INIT;
9431 	kvm_update_dr6(vcpu);
9432 	vcpu->arch.dr7 = DR7_FIXED_1;
9433 	kvm_update_dr7(vcpu);
9434 
9435 	vcpu->arch.cr2 = 0;
9436 
9437 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9438 	vcpu->arch.apf.msr_val = 0;
9439 	vcpu->arch.st.msr_val = 0;
9440 
9441 	kvmclock_reset(vcpu);
9442 
9443 	kvm_clear_async_pf_completion_queue(vcpu);
9444 	kvm_async_pf_hash_reset(vcpu);
9445 	vcpu->arch.apf.halted = false;
9446 
9447 	if (kvm_mpx_supported()) {
9448 		void *mpx_state_buffer;
9449 
9450 		/*
9451 		 * To avoid have the INIT path from kvm_apic_has_events() that be
9452 		 * called with loaded FPU and does not let userspace fix the state.
9453 		 */
9454 		if (init_event)
9455 			kvm_put_guest_fpu(vcpu);
9456 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9457 					XFEATURE_BNDREGS);
9458 		if (mpx_state_buffer)
9459 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
9460 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9461 					XFEATURE_BNDCSR);
9462 		if (mpx_state_buffer)
9463 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
9464 		if (init_event)
9465 			kvm_load_guest_fpu(vcpu);
9466 	}
9467 
9468 	if (!init_event) {
9469 		kvm_pmu_reset(vcpu);
9470 		vcpu->arch.smbase = 0x30000;
9471 
9472 		vcpu->arch.msr_misc_features_enables = 0;
9473 
9474 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9475 	}
9476 
9477 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
9478 	vcpu->arch.regs_avail = ~0;
9479 	vcpu->arch.regs_dirty = ~0;
9480 
9481 	vcpu->arch.ia32_xss = 0;
9482 
9483 	kvm_x86_ops->vcpu_reset(vcpu, init_event);
9484 }
9485 
9486 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
9487 {
9488 	struct kvm_segment cs;
9489 
9490 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9491 	cs.selector = vector << 8;
9492 	cs.base = vector << 12;
9493 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9494 	kvm_rip_write(vcpu, 0);
9495 }
9496 
9497 int kvm_arch_hardware_enable(void)
9498 {
9499 	struct kvm *kvm;
9500 	struct kvm_vcpu *vcpu;
9501 	int i;
9502 	int ret;
9503 	u64 local_tsc;
9504 	u64 max_tsc = 0;
9505 	bool stable, backwards_tsc = false;
9506 
9507 	kvm_shared_msr_cpu_online();
9508 	ret = kvm_x86_ops->hardware_enable();
9509 	if (ret != 0)
9510 		return ret;
9511 
9512 	local_tsc = rdtsc();
9513 	stable = !kvm_check_tsc_unstable();
9514 	list_for_each_entry(kvm, &vm_list, vm_list) {
9515 		kvm_for_each_vcpu(i, vcpu, kvm) {
9516 			if (!stable && vcpu->cpu == smp_processor_id())
9517 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9518 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
9519 				backwards_tsc = true;
9520 				if (vcpu->arch.last_host_tsc > max_tsc)
9521 					max_tsc = vcpu->arch.last_host_tsc;
9522 			}
9523 		}
9524 	}
9525 
9526 	/*
9527 	 * Sometimes, even reliable TSCs go backwards.  This happens on
9528 	 * platforms that reset TSC during suspend or hibernate actions, but
9529 	 * maintain synchronization.  We must compensate.  Fortunately, we can
9530 	 * detect that condition here, which happens early in CPU bringup,
9531 	 * before any KVM threads can be running.  Unfortunately, we can't
9532 	 * bring the TSCs fully up to date with real time, as we aren't yet far
9533 	 * enough into CPU bringup that we know how much real time has actually
9534 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
9535 	 * variables that haven't been updated yet.
9536 	 *
9537 	 * So we simply find the maximum observed TSC above, then record the
9538 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
9539 	 * the adjustment will be applied.  Note that we accumulate
9540 	 * adjustments, in case multiple suspend cycles happen before some VCPU
9541 	 * gets a chance to run again.  In the event that no KVM threads get a
9542 	 * chance to run, we will miss the entire elapsed period, as we'll have
9543 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
9544 	 * loose cycle time.  This isn't too big a deal, since the loss will be
9545 	 * uniform across all VCPUs (not to mention the scenario is extremely
9546 	 * unlikely). It is possible that a second hibernate recovery happens
9547 	 * much faster than a first, causing the observed TSC here to be
9548 	 * smaller; this would require additional padding adjustment, which is
9549 	 * why we set last_host_tsc to the local tsc observed here.
9550 	 *
9551 	 * N.B. - this code below runs only on platforms with reliable TSC,
9552 	 * as that is the only way backwards_tsc is set above.  Also note
9553 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
9554 	 * have the same delta_cyc adjustment applied if backwards_tsc
9555 	 * is detected.  Note further, this adjustment is only done once,
9556 	 * as we reset last_host_tsc on all VCPUs to stop this from being
9557 	 * called multiple times (one for each physical CPU bringup).
9558 	 *
9559 	 * Platforms with unreliable TSCs don't have to deal with this, they
9560 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
9561 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
9562 	 * guarantee that they stay in perfect synchronization.
9563 	 */
9564 	if (backwards_tsc) {
9565 		u64 delta_cyc = max_tsc - local_tsc;
9566 		list_for_each_entry(kvm, &vm_list, vm_list) {
9567 			kvm->arch.backwards_tsc_observed = true;
9568 			kvm_for_each_vcpu(i, vcpu, kvm) {
9569 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
9570 				vcpu->arch.last_host_tsc = local_tsc;
9571 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9572 			}
9573 
9574 			/*
9575 			 * We have to disable TSC offset matching.. if you were
9576 			 * booting a VM while issuing an S4 host suspend....
9577 			 * you may have some problem.  Solving this issue is
9578 			 * left as an exercise to the reader.
9579 			 */
9580 			kvm->arch.last_tsc_nsec = 0;
9581 			kvm->arch.last_tsc_write = 0;
9582 		}
9583 
9584 	}
9585 	return 0;
9586 }
9587 
9588 void kvm_arch_hardware_disable(void)
9589 {
9590 	kvm_x86_ops->hardware_disable();
9591 	drop_user_return_notifiers();
9592 }
9593 
9594 int kvm_arch_hardware_setup(void)
9595 {
9596 	int r;
9597 
9598 	r = kvm_x86_ops->hardware_setup();
9599 	if (r != 0)
9600 		return r;
9601 
9602 	cr4_reserved_bits = kvm_host_cr4_reserved_bits(&boot_cpu_data);
9603 
9604 	if (kvm_has_tsc_control) {
9605 		/*
9606 		 * Make sure the user can only configure tsc_khz values that
9607 		 * fit into a signed integer.
9608 		 * A min value is not calculated because it will always
9609 		 * be 1 on all machines.
9610 		 */
9611 		u64 max = min(0x7fffffffULL,
9612 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9613 		kvm_max_guest_tsc_khz = max;
9614 
9615 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9616 	}
9617 
9618 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9619 		rdmsrl(MSR_IA32_XSS, host_xss);
9620 
9621 	kvm_init_msr_list();
9622 	return 0;
9623 }
9624 
9625 void kvm_arch_hardware_unsetup(void)
9626 {
9627 	kvm_x86_ops->hardware_unsetup();
9628 }
9629 
9630 int kvm_arch_check_processor_compat(void)
9631 {
9632 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
9633 
9634 	WARN_ON(!irqs_disabled());
9635 
9636 	if (kvm_host_cr4_reserved_bits(c) != cr4_reserved_bits)
9637 		return -EIO;
9638 
9639 	return kvm_x86_ops->check_processor_compatibility();
9640 }
9641 
9642 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9643 {
9644 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9645 }
9646 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9647 
9648 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9649 {
9650 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9651 }
9652 
9653 struct static_key kvm_no_apic_vcpu __read_mostly;
9654 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9655 
9656 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9657 {
9658 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
9659 
9660 	vcpu->arch.l1tf_flush_l1d = true;
9661 	if (pmu->version && unlikely(pmu->event_count)) {
9662 		pmu->need_cleanup = true;
9663 		kvm_make_request(KVM_REQ_PMU, vcpu);
9664 	}
9665 	kvm_x86_ops->sched_in(vcpu, cpu);
9666 }
9667 
9668 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9669 {
9670 	if (type)
9671 		return -EINVAL;
9672 
9673 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9674 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9675 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
9676 	INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
9677 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9678 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9679 
9680 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9681 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9682 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9683 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9684 		&kvm->arch.irq_sources_bitmap);
9685 
9686 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9687 	mutex_init(&kvm->arch.apic_map_lock);
9688 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9689 
9690 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
9691 	pvclock_update_vm_gtod_copy(kvm);
9692 
9693 	kvm->arch.guest_can_read_msr_platform_info = true;
9694 
9695 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9696 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9697 
9698 	kvm_hv_init_vm(kvm);
9699 	kvm_page_track_init(kvm);
9700 	kvm_mmu_init_vm(kvm);
9701 
9702 	return kvm_x86_ops->vm_init(kvm);
9703 }
9704 
9705 int kvm_arch_post_init_vm(struct kvm *kvm)
9706 {
9707 	return kvm_mmu_post_init_vm(kvm);
9708 }
9709 
9710 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9711 {
9712 	vcpu_load(vcpu);
9713 	kvm_mmu_unload(vcpu);
9714 	vcpu_put(vcpu);
9715 }
9716 
9717 static void kvm_free_vcpus(struct kvm *kvm)
9718 {
9719 	unsigned int i;
9720 	struct kvm_vcpu *vcpu;
9721 
9722 	/*
9723 	 * Unpin any mmu pages first.
9724 	 */
9725 	kvm_for_each_vcpu(i, vcpu, kvm) {
9726 		kvm_clear_async_pf_completion_queue(vcpu);
9727 		kvm_unload_vcpu_mmu(vcpu);
9728 	}
9729 	kvm_for_each_vcpu(i, vcpu, kvm)
9730 		kvm_vcpu_destroy(vcpu);
9731 
9732 	mutex_lock(&kvm->lock);
9733 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9734 		kvm->vcpus[i] = NULL;
9735 
9736 	atomic_set(&kvm->online_vcpus, 0);
9737 	mutex_unlock(&kvm->lock);
9738 }
9739 
9740 void kvm_arch_sync_events(struct kvm *kvm)
9741 {
9742 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9743 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9744 	kvm_free_pit(kvm);
9745 }
9746 
9747 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9748 {
9749 	int i, r;
9750 	unsigned long hva;
9751 	struct kvm_memslots *slots = kvm_memslots(kvm);
9752 	struct kvm_memory_slot *slot, old;
9753 
9754 	/* Called with kvm->slots_lock held.  */
9755 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9756 		return -EINVAL;
9757 
9758 	slot = id_to_memslot(slots, id);
9759 	if (size) {
9760 		if (slot->npages)
9761 			return -EEXIST;
9762 
9763 		/*
9764 		 * MAP_SHARED to prevent internal slot pages from being moved
9765 		 * by fork()/COW.
9766 		 */
9767 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9768 			      MAP_SHARED | MAP_ANONYMOUS, 0);
9769 		if (IS_ERR((void *)hva))
9770 			return PTR_ERR((void *)hva);
9771 	} else {
9772 		if (!slot->npages)
9773 			return 0;
9774 
9775 		hva = 0;
9776 	}
9777 
9778 	old = *slot;
9779 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9780 		struct kvm_userspace_memory_region m;
9781 
9782 		m.slot = id | (i << 16);
9783 		m.flags = 0;
9784 		m.guest_phys_addr = gpa;
9785 		m.userspace_addr = hva;
9786 		m.memory_size = size;
9787 		r = __kvm_set_memory_region(kvm, &m);
9788 		if (r < 0)
9789 			return r;
9790 	}
9791 
9792 	if (!size)
9793 		vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
9794 
9795 	return 0;
9796 }
9797 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9798 
9799 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
9800 {
9801 	kvm_mmu_pre_destroy_vm(kvm);
9802 }
9803 
9804 void kvm_arch_destroy_vm(struct kvm *kvm)
9805 {
9806 	if (current->mm == kvm->mm) {
9807 		/*
9808 		 * Free memory regions allocated on behalf of userspace,
9809 		 * unless the the memory map has changed due to process exit
9810 		 * or fd copying.
9811 		 */
9812 		mutex_lock(&kvm->slots_lock);
9813 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
9814 					0, 0);
9815 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
9816 					0, 0);
9817 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9818 		mutex_unlock(&kvm->slots_lock);
9819 	}
9820 	if (kvm_x86_ops->vm_destroy)
9821 		kvm_x86_ops->vm_destroy(kvm);
9822 	kvm_pic_destroy(kvm);
9823 	kvm_ioapic_destroy(kvm);
9824 	kvm_free_vcpus(kvm);
9825 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9826 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
9827 	kvm_mmu_uninit_vm(kvm);
9828 	kvm_page_track_cleanup(kvm);
9829 	kvm_hv_destroy_vm(kvm);
9830 }
9831 
9832 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9833 			   struct kvm_memory_slot *dont)
9834 {
9835 	int i;
9836 
9837 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9838 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9839 			kvfree(free->arch.rmap[i]);
9840 			free->arch.rmap[i] = NULL;
9841 		}
9842 		if (i == 0)
9843 			continue;
9844 
9845 		if (!dont || free->arch.lpage_info[i - 1] !=
9846 			     dont->arch.lpage_info[i - 1]) {
9847 			kvfree(free->arch.lpage_info[i - 1]);
9848 			free->arch.lpage_info[i - 1] = NULL;
9849 		}
9850 	}
9851 
9852 	kvm_page_track_free_memslot(free, dont);
9853 }
9854 
9855 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9856 			    unsigned long npages)
9857 {
9858 	int i;
9859 
9860 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9861 		struct kvm_lpage_info *linfo;
9862 		unsigned long ugfn;
9863 		int lpages;
9864 		int level = i + 1;
9865 
9866 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
9867 				      slot->base_gfn, level) + 1;
9868 
9869 		slot->arch.rmap[i] =
9870 			kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9871 				 GFP_KERNEL_ACCOUNT);
9872 		if (!slot->arch.rmap[i])
9873 			goto out_free;
9874 		if (i == 0)
9875 			continue;
9876 
9877 		linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
9878 		if (!linfo)
9879 			goto out_free;
9880 
9881 		slot->arch.lpage_info[i - 1] = linfo;
9882 
9883 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9884 			linfo[0].disallow_lpage = 1;
9885 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9886 			linfo[lpages - 1].disallow_lpage = 1;
9887 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
9888 		/*
9889 		 * If the gfn and userspace address are not aligned wrt each
9890 		 * other, or if explicitly asked to, disable large page
9891 		 * support for this slot
9892 		 */
9893 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9894 		    !kvm_largepages_enabled()) {
9895 			unsigned long j;
9896 
9897 			for (j = 0; j < lpages; ++j)
9898 				linfo[j].disallow_lpage = 1;
9899 		}
9900 	}
9901 
9902 	if (kvm_page_track_create_memslot(slot, npages))
9903 		goto out_free;
9904 
9905 	return 0;
9906 
9907 out_free:
9908 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9909 		kvfree(slot->arch.rmap[i]);
9910 		slot->arch.rmap[i] = NULL;
9911 		if (i == 0)
9912 			continue;
9913 
9914 		kvfree(slot->arch.lpage_info[i - 1]);
9915 		slot->arch.lpage_info[i - 1] = NULL;
9916 	}
9917 	return -ENOMEM;
9918 }
9919 
9920 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
9921 {
9922 	struct kvm_vcpu *vcpu;
9923 	int i;
9924 
9925 	/*
9926 	 * memslots->generation has been incremented.
9927 	 * mmio generation may have reached its maximum value.
9928 	 */
9929 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
9930 
9931 	/* Force re-initialization of steal_time cache */
9932 	kvm_for_each_vcpu(i, vcpu, kvm)
9933 		kvm_vcpu_kick(vcpu);
9934 }
9935 
9936 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9937 				struct kvm_memory_slot *memslot,
9938 				const struct kvm_userspace_memory_region *mem,
9939 				enum kvm_mr_change change)
9940 {
9941 	return 0;
9942 }
9943 
9944 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9945 				     struct kvm_memory_slot *new)
9946 {
9947 	/* Still write protect RO slot */
9948 	if (new->flags & KVM_MEM_READONLY) {
9949 		kvm_mmu_slot_remove_write_access(kvm, new);
9950 		return;
9951 	}
9952 
9953 	/*
9954 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
9955 	 *
9956 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
9957 	 *
9958 	 *  - KVM_MR_CREATE with dirty logging is disabled
9959 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9960 	 *
9961 	 * The reason is, in case of PML, we need to set D-bit for any slots
9962 	 * with dirty logging disabled in order to eliminate unnecessary GPA
9963 	 * logging in PML buffer (and potential PML buffer full VMEXIT). This
9964 	 * guarantees leaving PML enabled during guest's lifetime won't have
9965 	 * any additional overhead from PML when guest is running with dirty
9966 	 * logging disabled for memory slots.
9967 	 *
9968 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9969 	 * to dirty logging mode.
9970 	 *
9971 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9972 	 *
9973 	 * In case of write protect:
9974 	 *
9975 	 * Write protect all pages for dirty logging.
9976 	 *
9977 	 * All the sptes including the large sptes which point to this
9978 	 * slot are set to readonly. We can not create any new large
9979 	 * spte on this slot until the end of the logging.
9980 	 *
9981 	 * See the comments in fast_page_fault().
9982 	 */
9983 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9984 		if (kvm_x86_ops->slot_enable_log_dirty)
9985 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9986 		else
9987 			kvm_mmu_slot_remove_write_access(kvm, new);
9988 	} else {
9989 		if (kvm_x86_ops->slot_disable_log_dirty)
9990 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9991 	}
9992 }
9993 
9994 void kvm_arch_commit_memory_region(struct kvm *kvm,
9995 				const struct kvm_userspace_memory_region *mem,
9996 				const struct kvm_memory_slot *old,
9997 				const struct kvm_memory_slot *new,
9998 				enum kvm_mr_change change)
9999 {
10000 	if (!kvm->arch.n_requested_mmu_pages)
10001 		kvm_mmu_change_mmu_pages(kvm,
10002 				kvm_mmu_calculate_default_mmu_pages(kvm));
10003 
10004 	/*
10005 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
10006 	 * sptes have to be split.  If live migration is successful, the guest
10007 	 * in the source machine will be destroyed and large sptes will be
10008 	 * created in the destination. However, if the guest continues to run
10009 	 * in the source machine (for example if live migration fails), small
10010 	 * sptes will remain around and cause bad performance.
10011 	 *
10012 	 * Scan sptes if dirty logging has been stopped, dropping those
10013 	 * which can be collapsed into a single large-page spte.  Later
10014 	 * page faults will create the large-page sptes.
10015 	 *
10016 	 * There is no need to do this in any of the following cases:
10017 	 * CREATE:	No dirty mappings will already exist.
10018 	 * MOVE/DELETE:	The old mappings will already have been cleaned up by
10019 	 *		kvm_arch_flush_shadow_memslot()
10020 	 */
10021 	if (change == KVM_MR_FLAGS_ONLY &&
10022 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
10023 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
10024 		kvm_mmu_zap_collapsible_sptes(kvm, new);
10025 
10026 	/*
10027 	 * Set up write protection and/or dirty logging for the new slot.
10028 	 *
10029 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
10030 	 * been zapped so no dirty logging staff is needed for old slot. For
10031 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
10032 	 * new and it's also covered when dealing with the new slot.
10033 	 *
10034 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
10035 	 */
10036 	if (change != KVM_MR_DELETE)
10037 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
10038 }
10039 
10040 void kvm_arch_flush_shadow_all(struct kvm *kvm)
10041 {
10042 	kvm_mmu_zap_all(kvm);
10043 }
10044 
10045 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
10046 				   struct kvm_memory_slot *slot)
10047 {
10048 	kvm_page_track_flush_slot(kvm, slot);
10049 }
10050 
10051 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
10052 {
10053 	return (is_guest_mode(vcpu) &&
10054 			kvm_x86_ops->guest_apic_has_interrupt &&
10055 			kvm_x86_ops->guest_apic_has_interrupt(vcpu));
10056 }
10057 
10058 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
10059 {
10060 	if (!list_empty_careful(&vcpu->async_pf.done))
10061 		return true;
10062 
10063 	if (kvm_apic_has_events(vcpu))
10064 		return true;
10065 
10066 	if (vcpu->arch.pv.pv_unhalted)
10067 		return true;
10068 
10069 	if (vcpu->arch.exception.pending)
10070 		return true;
10071 
10072 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10073 	    (vcpu->arch.nmi_pending &&
10074 	     kvm_x86_ops->nmi_allowed(vcpu)))
10075 		return true;
10076 
10077 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
10078 	    (vcpu->arch.smi_pending && !is_smm(vcpu)))
10079 		return true;
10080 
10081 	if (kvm_arch_interrupt_allowed(vcpu) &&
10082 	    (kvm_cpu_has_interrupt(vcpu) ||
10083 	    kvm_guest_apic_has_interrupt(vcpu)))
10084 		return true;
10085 
10086 	if (kvm_hv_has_stimer_pending(vcpu))
10087 		return true;
10088 
10089 	return false;
10090 }
10091 
10092 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
10093 {
10094 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
10095 }
10096 
10097 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
10098 {
10099 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
10100 		return true;
10101 
10102 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10103 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
10104 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
10105 		return true;
10106 
10107 	if (vcpu->arch.apicv_active && kvm_x86_ops->dy_apicv_has_pending_interrupt(vcpu))
10108 		return true;
10109 
10110 	return false;
10111 }
10112 
10113 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
10114 {
10115 	return vcpu->arch.preempted_in_kernel;
10116 }
10117 
10118 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
10119 {
10120 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
10121 }
10122 
10123 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
10124 {
10125 	return kvm_x86_ops->interrupt_allowed(vcpu);
10126 }
10127 
10128 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
10129 {
10130 	if (is_64_bit_mode(vcpu))
10131 		return kvm_rip_read(vcpu);
10132 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
10133 		     kvm_rip_read(vcpu));
10134 }
10135 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
10136 
10137 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
10138 {
10139 	return kvm_get_linear_rip(vcpu) == linear_rip;
10140 }
10141 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
10142 
10143 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
10144 {
10145 	unsigned long rflags;
10146 
10147 	rflags = kvm_x86_ops->get_rflags(vcpu);
10148 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10149 		rflags &= ~X86_EFLAGS_TF;
10150 	return rflags;
10151 }
10152 EXPORT_SYMBOL_GPL(kvm_get_rflags);
10153 
10154 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10155 {
10156 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
10157 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
10158 		rflags |= X86_EFLAGS_TF;
10159 	kvm_x86_ops->set_rflags(vcpu, rflags);
10160 }
10161 
10162 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10163 {
10164 	__kvm_set_rflags(vcpu, rflags);
10165 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10166 }
10167 EXPORT_SYMBOL_GPL(kvm_set_rflags);
10168 
10169 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
10170 {
10171 	int r;
10172 
10173 	if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
10174 	      work->wakeup_all)
10175 		return;
10176 
10177 	r = kvm_mmu_reload(vcpu);
10178 	if (unlikely(r))
10179 		return;
10180 
10181 	if (!vcpu->arch.mmu->direct_map &&
10182 	      work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu))
10183 		return;
10184 
10185 	vcpu->arch.mmu->page_fault(vcpu, work->cr2_or_gpa, 0, true);
10186 }
10187 
10188 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
10189 {
10190 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
10191 }
10192 
10193 static inline u32 kvm_async_pf_next_probe(u32 key)
10194 {
10195 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
10196 }
10197 
10198 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10199 {
10200 	u32 key = kvm_async_pf_hash_fn(gfn);
10201 
10202 	while (vcpu->arch.apf.gfns[key] != ~0)
10203 		key = kvm_async_pf_next_probe(key);
10204 
10205 	vcpu->arch.apf.gfns[key] = gfn;
10206 }
10207 
10208 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
10209 {
10210 	int i;
10211 	u32 key = kvm_async_pf_hash_fn(gfn);
10212 
10213 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
10214 		     (vcpu->arch.apf.gfns[key] != gfn &&
10215 		      vcpu->arch.apf.gfns[key] != ~0); i++)
10216 		key = kvm_async_pf_next_probe(key);
10217 
10218 	return key;
10219 }
10220 
10221 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10222 {
10223 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
10224 }
10225 
10226 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10227 {
10228 	u32 i, j, k;
10229 
10230 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
10231 	while (true) {
10232 		vcpu->arch.apf.gfns[i] = ~0;
10233 		do {
10234 			j = kvm_async_pf_next_probe(j);
10235 			if (vcpu->arch.apf.gfns[j] == ~0)
10236 				return;
10237 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
10238 			/*
10239 			 * k lies cyclically in ]i,j]
10240 			 * |    i.k.j |
10241 			 * |....j i.k.| or  |.k..j i...|
10242 			 */
10243 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
10244 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
10245 		i = j;
10246 	}
10247 }
10248 
10249 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
10250 {
10251 
10252 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
10253 				      sizeof(val));
10254 }
10255 
10256 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
10257 {
10258 
10259 	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
10260 				      sizeof(u32));
10261 }
10262 
10263 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
10264 {
10265 	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
10266 		return false;
10267 
10268 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
10269 	    (vcpu->arch.apf.send_user_only &&
10270 	     kvm_x86_ops->get_cpl(vcpu) == 0))
10271 		return false;
10272 
10273 	return true;
10274 }
10275 
10276 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
10277 {
10278 	if (unlikely(!lapic_in_kernel(vcpu) ||
10279 		     kvm_event_needs_reinjection(vcpu) ||
10280 		     vcpu->arch.exception.pending))
10281 		return false;
10282 
10283 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
10284 		return false;
10285 
10286 	/*
10287 	 * If interrupts are off we cannot even use an artificial
10288 	 * halt state.
10289 	 */
10290 	return kvm_x86_ops->interrupt_allowed(vcpu);
10291 }
10292 
10293 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
10294 				     struct kvm_async_pf *work)
10295 {
10296 	struct x86_exception fault;
10297 
10298 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
10299 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
10300 
10301 	if (kvm_can_deliver_async_pf(vcpu) &&
10302 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
10303 		fault.vector = PF_VECTOR;
10304 		fault.error_code_valid = true;
10305 		fault.error_code = 0;
10306 		fault.nested_page_fault = false;
10307 		fault.address = work->arch.token;
10308 		fault.async_page_fault = true;
10309 		kvm_inject_page_fault(vcpu, &fault);
10310 	} else {
10311 		/*
10312 		 * It is not possible to deliver a paravirtualized asynchronous
10313 		 * page fault, but putting the guest in an artificial halt state
10314 		 * can be beneficial nevertheless: if an interrupt arrives, we
10315 		 * can deliver it timely and perhaps the guest will schedule
10316 		 * another process.  When the instruction that triggered a page
10317 		 * fault is retried, hopefully the page will be ready in the host.
10318 		 */
10319 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
10320 	}
10321 }
10322 
10323 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
10324 				 struct kvm_async_pf *work)
10325 {
10326 	struct x86_exception fault;
10327 	u32 val;
10328 
10329 	if (work->wakeup_all)
10330 		work->arch.token = ~0; /* broadcast wakeup */
10331 	else
10332 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
10333 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
10334 
10335 	if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
10336 	    !apf_get_user(vcpu, &val)) {
10337 		if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
10338 		    vcpu->arch.exception.pending &&
10339 		    vcpu->arch.exception.nr == PF_VECTOR &&
10340 		    !apf_put_user(vcpu, 0)) {
10341 			vcpu->arch.exception.injected = false;
10342 			vcpu->arch.exception.pending = false;
10343 			vcpu->arch.exception.nr = 0;
10344 			vcpu->arch.exception.has_error_code = false;
10345 			vcpu->arch.exception.error_code = 0;
10346 			vcpu->arch.exception.has_payload = false;
10347 			vcpu->arch.exception.payload = 0;
10348 		} else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
10349 			fault.vector = PF_VECTOR;
10350 			fault.error_code_valid = true;
10351 			fault.error_code = 0;
10352 			fault.nested_page_fault = false;
10353 			fault.address = work->arch.token;
10354 			fault.async_page_fault = true;
10355 			kvm_inject_page_fault(vcpu, &fault);
10356 		}
10357 	}
10358 	vcpu->arch.apf.halted = false;
10359 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10360 }
10361 
10362 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
10363 {
10364 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
10365 		return true;
10366 	else
10367 		return kvm_can_do_async_pf(vcpu);
10368 }
10369 
10370 void kvm_arch_start_assignment(struct kvm *kvm)
10371 {
10372 	atomic_inc(&kvm->arch.assigned_device_count);
10373 }
10374 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
10375 
10376 void kvm_arch_end_assignment(struct kvm *kvm)
10377 {
10378 	atomic_dec(&kvm->arch.assigned_device_count);
10379 }
10380 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
10381 
10382 bool kvm_arch_has_assigned_device(struct kvm *kvm)
10383 {
10384 	return atomic_read(&kvm->arch.assigned_device_count);
10385 }
10386 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
10387 
10388 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
10389 {
10390 	atomic_inc(&kvm->arch.noncoherent_dma_count);
10391 }
10392 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
10393 
10394 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
10395 {
10396 	atomic_dec(&kvm->arch.noncoherent_dma_count);
10397 }
10398 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
10399 
10400 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
10401 {
10402 	return atomic_read(&kvm->arch.noncoherent_dma_count);
10403 }
10404 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
10405 
10406 bool kvm_arch_has_irq_bypass(void)
10407 {
10408 	return true;
10409 }
10410 
10411 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
10412 				      struct irq_bypass_producer *prod)
10413 {
10414 	struct kvm_kernel_irqfd *irqfd =
10415 		container_of(cons, struct kvm_kernel_irqfd, consumer);
10416 
10417 	irqfd->producer = prod;
10418 
10419 	return kvm_x86_ops->update_pi_irte(irqfd->kvm,
10420 					   prod->irq, irqfd->gsi, 1);
10421 }
10422 
10423 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
10424 				      struct irq_bypass_producer *prod)
10425 {
10426 	int ret;
10427 	struct kvm_kernel_irqfd *irqfd =
10428 		container_of(cons, struct kvm_kernel_irqfd, consumer);
10429 
10430 	WARN_ON(irqfd->producer != prod);
10431 	irqfd->producer = NULL;
10432 
10433 	/*
10434 	 * When producer of consumer is unregistered, we change back to
10435 	 * remapped mode, so we can re-use the current implementation
10436 	 * when the irq is masked/disabled or the consumer side (KVM
10437 	 * int this case doesn't want to receive the interrupts.
10438 	*/
10439 	ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
10440 	if (ret)
10441 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
10442 		       " fails: %d\n", irqfd->consumer.token, ret);
10443 }
10444 
10445 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
10446 				   uint32_t guest_irq, bool set)
10447 {
10448 	return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
10449 }
10450 
10451 bool kvm_vector_hashing_enabled(void)
10452 {
10453 	return vector_hashing;
10454 }
10455 
10456 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
10457 {
10458 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
10459 }
10460 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
10461 
10462 u64 kvm_spec_ctrl_valid_bits(struct kvm_vcpu *vcpu)
10463 {
10464 	uint64_t bits = SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD;
10465 
10466 	/* The STIBP bit doesn't fault even if it's not advertised */
10467 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
10468 	    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS))
10469 		bits &= ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP);
10470 	if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL) &&
10471 	    !boot_cpu_has(X86_FEATURE_AMD_IBRS))
10472 		bits &= ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP);
10473 
10474 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL_SSBD) &&
10475 	    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
10476 		bits &= ~SPEC_CTRL_SSBD;
10477 	if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
10478 	    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
10479 		bits &= ~SPEC_CTRL_SSBD;
10480 
10481 	return bits;
10482 }
10483 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_valid_bits);
10484 
10485 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
10486 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
10487 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
10488 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
10489 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
10490 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
10491 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
10492 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
10493 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
10494 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
10495 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
10496 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
10497 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
10498 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
10499 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
10500 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
10501 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
10502 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
10503 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
10504 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
10505 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
10506