xref: /openbmc/linux/arch/x86/kvm/vmx/vmx.h (revision ccf988b6)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __KVM_X86_VMX_H
3 #define __KVM_X86_VMX_H
4 
5 #include <linux/kvm_host.h>
6 
7 #include <asm/kvm.h>
8 #include <asm/intel_pt.h>
9 
10 #include "capabilities.h"
11 #include "ops.h"
12 #include "vmcs.h"
13 
14 extern const u32 vmx_msr_index[];
15 extern u64 host_efer;
16 
17 #define MSR_TYPE_R	1
18 #define MSR_TYPE_W	2
19 #define MSR_TYPE_RW	3
20 
21 #define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
22 
23 #define NR_AUTOLOAD_MSRS 8
24 
25 struct vmx_msrs {
26 	unsigned int		nr;
27 	struct vmx_msr_entry	val[NR_AUTOLOAD_MSRS];
28 };
29 
30 struct shared_msr_entry {
31 	unsigned index;
32 	u64 data;
33 	u64 mask;
34 };
35 
36 enum segment_cache_field {
37 	SEG_FIELD_SEL = 0,
38 	SEG_FIELD_BASE = 1,
39 	SEG_FIELD_LIMIT = 2,
40 	SEG_FIELD_AR = 3,
41 
42 	SEG_FIELD_NR = 4
43 };
44 
45 /* Posted-Interrupt Descriptor */
46 struct pi_desc {
47 	u32 pir[8];     /* Posted interrupt requested */
48 	union {
49 		struct {
50 				/* bit 256 - Outstanding Notification */
51 			u16	on	: 1,
52 				/* bit 257 - Suppress Notification */
53 				sn	: 1,
54 				/* bit 271:258 - Reserved */
55 				rsvd_1	: 14;
56 				/* bit 279:272 - Notification Vector */
57 			u8	nv;
58 				/* bit 287:280 - Reserved */
59 			u8	rsvd_2;
60 				/* bit 319:288 - Notification Destination */
61 			u32	ndst;
62 		};
63 		u64 control;
64 	};
65 	u32 rsvd[6];
66 } __aligned(64);
67 
68 #define RTIT_ADDR_RANGE		4
69 
70 struct pt_ctx {
71 	u64 ctl;
72 	u64 status;
73 	u64 output_base;
74 	u64 output_mask;
75 	u64 cr3_match;
76 	u64 addr_a[RTIT_ADDR_RANGE];
77 	u64 addr_b[RTIT_ADDR_RANGE];
78 };
79 
80 struct pt_desc {
81 	u64 ctl_bitmask;
82 	u32 addr_range;
83 	u32 caps[PT_CPUID_REGS_NUM * PT_CPUID_LEAVES];
84 	struct pt_ctx host;
85 	struct pt_ctx guest;
86 };
87 
88 /*
89  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
90  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
91  */
92 struct nested_vmx {
93 	/* Has the level1 guest done vmxon? */
94 	bool vmxon;
95 	gpa_t vmxon_ptr;
96 	bool pml_full;
97 
98 	/* The guest-physical address of the current VMCS L1 keeps for L2 */
99 	gpa_t current_vmptr;
100 	/*
101 	 * Cache of the guest's VMCS, existing outside of guest memory.
102 	 * Loaded from guest memory during VMPTRLD. Flushed to guest
103 	 * memory during VMCLEAR and VMPTRLD.
104 	 */
105 	struct vmcs12 *cached_vmcs12;
106 	/*
107 	 * Cache of the guest's shadow VMCS, existing outside of guest
108 	 * memory. Loaded from guest memory during VM entry. Flushed
109 	 * to guest memory during VM exit.
110 	 */
111 	struct vmcs12 *cached_shadow_vmcs12;
112 
113 	/*
114 	 * Indicates if the shadow vmcs or enlightened vmcs must be updated
115 	 * with the data held by struct vmcs12.
116 	 */
117 	bool need_vmcs12_to_shadow_sync;
118 	bool dirty_vmcs12;
119 
120 	/*
121 	 * Indicates lazily loaded guest state has not yet been decached from
122 	 * vmcs02.
123 	 */
124 	bool need_sync_vmcs02_to_vmcs12_rare;
125 
126 	/*
127 	 * vmcs02 has been initialized, i.e. state that is constant for
128 	 * vmcs02 has been written to the backing VMCS.  Initialization
129 	 * is delayed until L1 actually attempts to run a nested VM.
130 	 */
131 	bool vmcs02_initialized;
132 
133 	bool change_vmcs01_virtual_apic_mode;
134 
135 	/*
136 	 * Enlightened VMCS has been enabled. It does not mean that L1 has to
137 	 * use it. However, VMX features available to L1 will be limited based
138 	 * on what the enlightened VMCS supports.
139 	 */
140 	bool enlightened_vmcs_enabled;
141 
142 	/* L2 must run next, and mustn't decide to exit to L1. */
143 	bool nested_run_pending;
144 
145 	struct loaded_vmcs vmcs02;
146 
147 	/*
148 	 * Guest pages referred to in the vmcs02 with host-physical
149 	 * pointers, so we must keep them pinned while L2 runs.
150 	 */
151 	struct page *apic_access_page;
152 	struct kvm_host_map virtual_apic_map;
153 	struct kvm_host_map pi_desc_map;
154 
155 	struct kvm_host_map msr_bitmap_map;
156 
157 	struct pi_desc *pi_desc;
158 	bool pi_pending;
159 	u16 posted_intr_nv;
160 
161 	struct hrtimer preemption_timer;
162 	bool preemption_timer_expired;
163 
164 	/* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
165 	u64 vmcs01_debugctl;
166 	u64 vmcs01_guest_bndcfgs;
167 
168 	u16 vpid02;
169 	u16 last_vpid;
170 
171 	struct nested_vmx_msrs msrs;
172 
173 	/* SMM related state */
174 	struct {
175 		/* in VMX operation on SMM entry? */
176 		bool vmxon;
177 		/* in guest mode on SMM entry? */
178 		bool guest_mode;
179 	} smm;
180 
181 	gpa_t hv_evmcs_vmptr;
182 	struct kvm_host_map hv_evmcs_map;
183 	struct hv_enlightened_vmcs *hv_evmcs;
184 };
185 
186 struct vcpu_vmx {
187 	struct kvm_vcpu       vcpu;
188 	u8                    fail;
189 	u8		      msr_bitmap_mode;
190 
191 	/*
192 	 * If true, host state has been stored in vmx->loaded_vmcs for
193 	 * the CPU registers that only need to be switched when transitioning
194 	 * to/from the kernel, and the registers have been loaded with guest
195 	 * values.  If false, host state is loaded in the CPU registers
196 	 * and vmx->loaded_vmcs->host_state is invalid.
197 	 */
198 	bool		      guest_state_loaded;
199 
200 	u32                   exit_intr_info;
201 	u32                   idt_vectoring_info;
202 	ulong                 rflags;
203 
204 	struct shared_msr_entry *guest_msrs;
205 	int                   nmsrs;
206 	int                   save_nmsrs;
207 	bool                  guest_msrs_ready;
208 #ifdef CONFIG_X86_64
209 	u64		      msr_host_kernel_gs_base;
210 	u64		      msr_guest_kernel_gs_base;
211 #endif
212 
213 	u64		      spec_ctrl;
214 
215 	u32 secondary_exec_control;
216 
217 	/*
218 	 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
219 	 * non-nested (L1) guest, it always points to vmcs01. For a nested
220 	 * guest (L2), it points to a different VMCS.
221 	 */
222 	struct loaded_vmcs    vmcs01;
223 	struct loaded_vmcs   *loaded_vmcs;
224 
225 	struct msr_autoload {
226 		struct vmx_msrs guest;
227 		struct vmx_msrs host;
228 	} msr_autoload;
229 
230 	struct {
231 		int vm86_active;
232 		ulong save_rflags;
233 		struct kvm_segment segs[8];
234 	} rmode;
235 	struct {
236 		u32 bitmask; /* 4 bits per segment (1 bit per field) */
237 		struct kvm_save_segment {
238 			u16 selector;
239 			unsigned long base;
240 			u32 limit;
241 			u32 ar;
242 		} seg[8];
243 	} segment_cache;
244 	int vpid;
245 	bool emulation_required;
246 
247 	u32 exit_reason;
248 
249 	/* Posted interrupt descriptor */
250 	struct pi_desc pi_desc;
251 
252 	/* Support for a guest hypervisor (nested VMX) */
253 	struct nested_vmx nested;
254 
255 	/* Dynamic PLE window. */
256 	int ple_window;
257 	bool ple_window_dirty;
258 
259 	bool req_immediate_exit;
260 
261 	/* Support for PML */
262 #define PML_ENTITY_NUM		512
263 	struct page *pml_pg;
264 
265 	/* apic deadline value in host tsc */
266 	u64 hv_deadline_tsc;
267 
268 	u64 current_tsc_ratio;
269 
270 	u32 host_pkru;
271 
272 	unsigned long host_debugctlmsr;
273 
274 	/*
275 	 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
276 	 * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
277 	 * in msr_ia32_feature_control_valid_bits.
278 	 */
279 	u64 msr_ia32_feature_control;
280 	u64 msr_ia32_feature_control_valid_bits;
281 	u64 ept_pointer;
282 
283 	struct pt_desc pt_desc;
284 };
285 
286 enum ept_pointers_status {
287 	EPT_POINTERS_CHECK = 0,
288 	EPT_POINTERS_MATCH = 1,
289 	EPT_POINTERS_MISMATCH = 2
290 };
291 
292 struct kvm_vmx {
293 	struct kvm kvm;
294 
295 	unsigned int tss_addr;
296 	bool ept_identity_pagetable_done;
297 	gpa_t ept_identity_map_addr;
298 
299 	enum ept_pointers_status ept_pointers_match;
300 	spinlock_t ept_pointer_lock;
301 };
302 
303 bool nested_vmx_allowed(struct kvm_vcpu *vcpu);
304 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu);
305 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
306 int allocate_vpid(void);
307 void free_vpid(int vpid);
308 void vmx_set_constant_host_state(struct vcpu_vmx *vmx);
309 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu);
310 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
311 			unsigned long fs_base, unsigned long gs_base);
312 int vmx_get_cpl(struct kvm_vcpu *vcpu);
313 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu);
314 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
315 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu);
316 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask);
317 void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer);
318 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
319 void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
320 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
321 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx);
322 void ept_save_pdptrs(struct kvm_vcpu *vcpu);
323 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
324 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
325 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
326 void update_exception_bitmap(struct kvm_vcpu *vcpu);
327 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu);
328 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
329 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
330 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu);
331 struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr);
332 void pt_update_intercept_for_msr(struct vcpu_vmx *vmx);
333 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp);
334 
335 #define POSTED_INTR_ON  0
336 #define POSTED_INTR_SN  1
337 
338 static inline bool pi_test_and_set_on(struct pi_desc *pi_desc)
339 {
340 	return test_and_set_bit(POSTED_INTR_ON,
341 			(unsigned long *)&pi_desc->control);
342 }
343 
344 static inline bool pi_test_and_clear_on(struct pi_desc *pi_desc)
345 {
346 	return test_and_clear_bit(POSTED_INTR_ON,
347 			(unsigned long *)&pi_desc->control);
348 }
349 
350 static inline int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
351 {
352 	return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
353 }
354 
355 static inline void pi_set_sn(struct pi_desc *pi_desc)
356 {
357 	set_bit(POSTED_INTR_SN,
358 		(unsigned long *)&pi_desc->control);
359 }
360 
361 static inline void pi_set_on(struct pi_desc *pi_desc)
362 {
363 	set_bit(POSTED_INTR_ON,
364 		(unsigned long *)&pi_desc->control);
365 }
366 
367 static inline void pi_clear_on(struct pi_desc *pi_desc)
368 {
369 	clear_bit(POSTED_INTR_ON,
370 		(unsigned long *)&pi_desc->control);
371 }
372 
373 static inline int pi_test_on(struct pi_desc *pi_desc)
374 {
375 	return test_bit(POSTED_INTR_ON,
376 			(unsigned long *)&pi_desc->control);
377 }
378 
379 static inline int pi_test_sn(struct pi_desc *pi_desc)
380 {
381 	return test_bit(POSTED_INTR_SN,
382 			(unsigned long *)&pi_desc->control);
383 }
384 
385 static inline u8 vmx_get_rvi(void)
386 {
387 	return vmcs_read16(GUEST_INTR_STATUS) & 0xff;
388 }
389 
390 #define BUILD_CONTROLS_SHADOW(lname, uname)				    \
391 static inline void lname##_controls_set(struct vcpu_vmx *vmx, u32 val)	    \
392 {									    \
393 	if (vmx->loaded_vmcs->controls_shadow.lname != val) {		    \
394 		vmcs_write32(uname, val);				    \
395 		vmx->loaded_vmcs->controls_shadow.lname = val;		    \
396 	}								    \
397 }									    \
398 static inline u32 lname##_controls_get(struct vcpu_vmx *vmx)		    \
399 {									    \
400 	return vmx->loaded_vmcs->controls_shadow.lname;			    \
401 }									    \
402 static inline void lname##_controls_setbit(struct vcpu_vmx *vmx, u32 val)   \
403 {									    \
404 	lname##_controls_set(vmx, lname##_controls_get(vmx) | val);	    \
405 }									    \
406 static inline void lname##_controls_clearbit(struct vcpu_vmx *vmx, u32 val) \
407 {									    \
408 	lname##_controls_set(vmx, lname##_controls_get(vmx) & ~val);	    \
409 }
410 BUILD_CONTROLS_SHADOW(vm_entry, VM_ENTRY_CONTROLS)
411 BUILD_CONTROLS_SHADOW(vm_exit, VM_EXIT_CONTROLS)
412 BUILD_CONTROLS_SHADOW(pin, PIN_BASED_VM_EXEC_CONTROL)
413 BUILD_CONTROLS_SHADOW(exec, CPU_BASED_VM_EXEC_CONTROL)
414 BUILD_CONTROLS_SHADOW(secondary_exec, SECONDARY_VM_EXEC_CONTROL)
415 
416 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
417 {
418 	vmx->segment_cache.bitmask = 0;
419 }
420 
421 static inline u32 vmx_vmentry_ctrl(void)
422 {
423 	u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
424 	if (pt_mode == PT_MODE_SYSTEM)
425 		vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
426 				  VM_ENTRY_LOAD_IA32_RTIT_CTL);
427 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
428 	return vmentry_ctrl &
429 		~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | VM_ENTRY_LOAD_IA32_EFER);
430 }
431 
432 static inline u32 vmx_vmexit_ctrl(void)
433 {
434 	u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
435 	if (pt_mode == PT_MODE_SYSTEM)
436 		vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
437 				 VM_EXIT_CLEAR_IA32_RTIT_CTL);
438 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
439 	return vmexit_ctrl &
440 		~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
441 }
442 
443 u32 vmx_exec_control(struct vcpu_vmx *vmx);
444 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx);
445 
446 static inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm)
447 {
448 	return container_of(kvm, struct kvm_vmx, kvm);
449 }
450 
451 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
452 {
453 	return container_of(vcpu, struct vcpu_vmx, vcpu);
454 }
455 
456 static inline struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
457 {
458 	return &(to_vmx(vcpu)->pi_desc);
459 }
460 
461 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags);
462 void free_vmcs(struct vmcs *vmcs);
463 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
464 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
465 void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs);
466 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs);
467 
468 static inline struct vmcs *alloc_vmcs(bool shadow)
469 {
470 	return alloc_vmcs_cpu(shadow, raw_smp_processor_id(),
471 			      GFP_KERNEL_ACCOUNT);
472 }
473 
474 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
475 
476 static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid,
477 				bool invalidate_gpa)
478 {
479 	if (enable_ept && (invalidate_gpa || !enable_vpid)) {
480 		if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
481 			return;
482 		ept_sync_context(construct_eptp(vcpu,
483 						vcpu->arch.mmu->root_hpa));
484 	} else {
485 		vpid_sync_context(vpid);
486 	}
487 }
488 
489 static inline void vmx_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
490 {
491 	__vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid, invalidate_gpa);
492 }
493 
494 static inline void decache_tsc_multiplier(struct vcpu_vmx *vmx)
495 {
496 	vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
497 	vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
498 }
499 
500 void dump_vmcs(void);
501 
502 #endif /* __KVM_X86_VMX_H */
503