xref: /openbmc/linux/arch/x86/kvm/vmx/vmx.h (revision b9df3997)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __KVM_X86_VMX_H
3 #define __KVM_X86_VMX_H
4 
5 #include <linux/kvm_host.h>
6 
7 #include <asm/kvm.h>
8 #include <asm/intel_pt.h>
9 
10 #include "capabilities.h"
11 #include "ops.h"
12 #include "vmcs.h"
13 
14 extern const u32 vmx_msr_index[];
15 extern u64 host_efer;
16 
17 extern u32 get_umwait_control_msr(void);
18 
19 #define MSR_TYPE_R	1
20 #define MSR_TYPE_W	2
21 #define MSR_TYPE_RW	3
22 
23 #define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
24 
25 #define NR_AUTOLOAD_MSRS 8
26 
27 struct vmx_msrs {
28 	unsigned int		nr;
29 	struct vmx_msr_entry	val[NR_AUTOLOAD_MSRS];
30 };
31 
32 struct shared_msr_entry {
33 	unsigned index;
34 	u64 data;
35 	u64 mask;
36 };
37 
38 enum segment_cache_field {
39 	SEG_FIELD_SEL = 0,
40 	SEG_FIELD_BASE = 1,
41 	SEG_FIELD_LIMIT = 2,
42 	SEG_FIELD_AR = 3,
43 
44 	SEG_FIELD_NR = 4
45 };
46 
47 /* Posted-Interrupt Descriptor */
48 struct pi_desc {
49 	u32 pir[8];     /* Posted interrupt requested */
50 	union {
51 		struct {
52 				/* bit 256 - Outstanding Notification */
53 			u16	on	: 1,
54 				/* bit 257 - Suppress Notification */
55 				sn	: 1,
56 				/* bit 271:258 - Reserved */
57 				rsvd_1	: 14;
58 				/* bit 279:272 - Notification Vector */
59 			u8	nv;
60 				/* bit 287:280 - Reserved */
61 			u8	rsvd_2;
62 				/* bit 319:288 - Notification Destination */
63 			u32	ndst;
64 		};
65 		u64 control;
66 	};
67 	u32 rsvd[6];
68 } __aligned(64);
69 
70 #define RTIT_ADDR_RANGE		4
71 
72 struct pt_ctx {
73 	u64 ctl;
74 	u64 status;
75 	u64 output_base;
76 	u64 output_mask;
77 	u64 cr3_match;
78 	u64 addr_a[RTIT_ADDR_RANGE];
79 	u64 addr_b[RTIT_ADDR_RANGE];
80 };
81 
82 struct pt_desc {
83 	u64 ctl_bitmask;
84 	u32 addr_range;
85 	u32 caps[PT_CPUID_REGS_NUM * PT_CPUID_LEAVES];
86 	struct pt_ctx host;
87 	struct pt_ctx guest;
88 };
89 
90 /*
91  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
92  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
93  */
94 struct nested_vmx {
95 	/* Has the level1 guest done vmxon? */
96 	bool vmxon;
97 	gpa_t vmxon_ptr;
98 	bool pml_full;
99 
100 	/* The guest-physical address of the current VMCS L1 keeps for L2 */
101 	gpa_t current_vmptr;
102 	/*
103 	 * Cache of the guest's VMCS, existing outside of guest memory.
104 	 * Loaded from guest memory during VMPTRLD. Flushed to guest
105 	 * memory during VMCLEAR and VMPTRLD.
106 	 */
107 	struct vmcs12 *cached_vmcs12;
108 	/*
109 	 * Cache of the guest's shadow VMCS, existing outside of guest
110 	 * memory. Loaded from guest memory during VM entry. Flushed
111 	 * to guest memory during VM exit.
112 	 */
113 	struct vmcs12 *cached_shadow_vmcs12;
114 
115 	/*
116 	 * Indicates if the shadow vmcs or enlightened vmcs must be updated
117 	 * with the data held by struct vmcs12.
118 	 */
119 	bool need_vmcs12_to_shadow_sync;
120 	bool dirty_vmcs12;
121 
122 	/*
123 	 * Indicates lazily loaded guest state has not yet been decached from
124 	 * vmcs02.
125 	 */
126 	bool need_sync_vmcs02_to_vmcs12_rare;
127 
128 	/*
129 	 * vmcs02 has been initialized, i.e. state that is constant for
130 	 * vmcs02 has been written to the backing VMCS.  Initialization
131 	 * is delayed until L1 actually attempts to run a nested VM.
132 	 */
133 	bool vmcs02_initialized;
134 
135 	bool change_vmcs01_virtual_apic_mode;
136 
137 	/*
138 	 * Enlightened VMCS has been enabled. It does not mean that L1 has to
139 	 * use it. However, VMX features available to L1 will be limited based
140 	 * on what the enlightened VMCS supports.
141 	 */
142 	bool enlightened_vmcs_enabled;
143 
144 	/* L2 must run next, and mustn't decide to exit to L1. */
145 	bool nested_run_pending;
146 
147 	struct loaded_vmcs vmcs02;
148 
149 	/*
150 	 * Guest pages referred to in the vmcs02 with host-physical
151 	 * pointers, so we must keep them pinned while L2 runs.
152 	 */
153 	struct page *apic_access_page;
154 	struct kvm_host_map virtual_apic_map;
155 	struct kvm_host_map pi_desc_map;
156 
157 	struct kvm_host_map msr_bitmap_map;
158 
159 	struct pi_desc *pi_desc;
160 	bool pi_pending;
161 	u16 posted_intr_nv;
162 
163 	struct hrtimer preemption_timer;
164 	bool preemption_timer_expired;
165 
166 	/* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
167 	u64 vmcs01_debugctl;
168 	u64 vmcs01_guest_bndcfgs;
169 
170 	u16 vpid02;
171 	u16 last_vpid;
172 
173 	struct nested_vmx_msrs msrs;
174 
175 	/* SMM related state */
176 	struct {
177 		/* in VMX operation on SMM entry? */
178 		bool vmxon;
179 		/* in guest mode on SMM entry? */
180 		bool guest_mode;
181 	} smm;
182 
183 	gpa_t hv_evmcs_vmptr;
184 	struct kvm_host_map hv_evmcs_map;
185 	struct hv_enlightened_vmcs *hv_evmcs;
186 };
187 
188 struct vcpu_vmx {
189 	struct kvm_vcpu       vcpu;
190 	u8                    fail;
191 	u8		      msr_bitmap_mode;
192 
193 	/*
194 	 * If true, host state has been stored in vmx->loaded_vmcs for
195 	 * the CPU registers that only need to be switched when transitioning
196 	 * to/from the kernel, and the registers have been loaded with guest
197 	 * values.  If false, host state is loaded in the CPU registers
198 	 * and vmx->loaded_vmcs->host_state is invalid.
199 	 */
200 	bool		      guest_state_loaded;
201 
202 	u32                   exit_intr_info;
203 	u32                   idt_vectoring_info;
204 	ulong                 rflags;
205 
206 	struct shared_msr_entry *guest_msrs;
207 	int                   nmsrs;
208 	int                   save_nmsrs;
209 	bool                  guest_msrs_ready;
210 #ifdef CONFIG_X86_64
211 	u64		      msr_host_kernel_gs_base;
212 	u64		      msr_guest_kernel_gs_base;
213 #endif
214 
215 	u64		      spec_ctrl;
216 	u32		      msr_ia32_umwait_control;
217 
218 	u32 secondary_exec_control;
219 
220 	/*
221 	 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
222 	 * non-nested (L1) guest, it always points to vmcs01. For a nested
223 	 * guest (L2), it points to a different VMCS.
224 	 */
225 	struct loaded_vmcs    vmcs01;
226 	struct loaded_vmcs   *loaded_vmcs;
227 
228 	struct msr_autoload {
229 		struct vmx_msrs guest;
230 		struct vmx_msrs host;
231 	} msr_autoload;
232 
233 	struct {
234 		int vm86_active;
235 		ulong save_rflags;
236 		struct kvm_segment segs[8];
237 	} rmode;
238 	struct {
239 		u32 bitmask; /* 4 bits per segment (1 bit per field) */
240 		struct kvm_save_segment {
241 			u16 selector;
242 			unsigned long base;
243 			u32 limit;
244 			u32 ar;
245 		} seg[8];
246 	} segment_cache;
247 	int vpid;
248 	bool emulation_required;
249 
250 	u32 exit_reason;
251 
252 	/* Posted interrupt descriptor */
253 	struct pi_desc pi_desc;
254 
255 	/* Support for a guest hypervisor (nested VMX) */
256 	struct nested_vmx nested;
257 
258 	/* Dynamic PLE window. */
259 	unsigned int ple_window;
260 	bool ple_window_dirty;
261 
262 	bool req_immediate_exit;
263 
264 	/* Support for PML */
265 #define PML_ENTITY_NUM		512
266 	struct page *pml_pg;
267 
268 	/* apic deadline value in host tsc */
269 	u64 hv_deadline_tsc;
270 
271 	u64 current_tsc_ratio;
272 
273 	u32 host_pkru;
274 
275 	unsigned long host_debugctlmsr;
276 
277 	/*
278 	 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
279 	 * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
280 	 * in msr_ia32_feature_control_valid_bits.
281 	 */
282 	u64 msr_ia32_feature_control;
283 	u64 msr_ia32_feature_control_valid_bits;
284 	u64 ept_pointer;
285 
286 	struct pt_desc pt_desc;
287 };
288 
289 enum ept_pointers_status {
290 	EPT_POINTERS_CHECK = 0,
291 	EPT_POINTERS_MATCH = 1,
292 	EPT_POINTERS_MISMATCH = 2
293 };
294 
295 struct kvm_vmx {
296 	struct kvm kvm;
297 
298 	unsigned int tss_addr;
299 	bool ept_identity_pagetable_done;
300 	gpa_t ept_identity_map_addr;
301 
302 	enum ept_pointers_status ept_pointers_match;
303 	spinlock_t ept_pointer_lock;
304 };
305 
306 bool nested_vmx_allowed(struct kvm_vcpu *vcpu);
307 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu);
308 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
309 int allocate_vpid(void);
310 void free_vpid(int vpid);
311 void vmx_set_constant_host_state(struct vcpu_vmx *vmx);
312 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu);
313 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
314 			unsigned long fs_base, unsigned long gs_base);
315 int vmx_get_cpl(struct kvm_vcpu *vcpu);
316 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu);
317 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
318 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu);
319 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask);
320 void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer);
321 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
322 void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
323 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
324 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx);
325 void ept_save_pdptrs(struct kvm_vcpu *vcpu);
326 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
327 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
328 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
329 void update_exception_bitmap(struct kvm_vcpu *vcpu);
330 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu);
331 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
332 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
333 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu);
334 struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr);
335 void pt_update_intercept_for_msr(struct vcpu_vmx *vmx);
336 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp);
337 
338 #define POSTED_INTR_ON  0
339 #define POSTED_INTR_SN  1
340 
341 static inline bool pi_test_and_set_on(struct pi_desc *pi_desc)
342 {
343 	return test_and_set_bit(POSTED_INTR_ON,
344 			(unsigned long *)&pi_desc->control);
345 }
346 
347 static inline bool pi_test_and_clear_on(struct pi_desc *pi_desc)
348 {
349 	return test_and_clear_bit(POSTED_INTR_ON,
350 			(unsigned long *)&pi_desc->control);
351 }
352 
353 static inline int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
354 {
355 	return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
356 }
357 
358 static inline void pi_set_sn(struct pi_desc *pi_desc)
359 {
360 	set_bit(POSTED_INTR_SN,
361 		(unsigned long *)&pi_desc->control);
362 }
363 
364 static inline void pi_set_on(struct pi_desc *pi_desc)
365 {
366 	set_bit(POSTED_INTR_ON,
367 		(unsigned long *)&pi_desc->control);
368 }
369 
370 static inline void pi_clear_on(struct pi_desc *pi_desc)
371 {
372 	clear_bit(POSTED_INTR_ON,
373 		(unsigned long *)&pi_desc->control);
374 }
375 
376 static inline int pi_test_on(struct pi_desc *pi_desc)
377 {
378 	return test_bit(POSTED_INTR_ON,
379 			(unsigned long *)&pi_desc->control);
380 }
381 
382 static inline int pi_test_sn(struct pi_desc *pi_desc)
383 {
384 	return test_bit(POSTED_INTR_SN,
385 			(unsigned long *)&pi_desc->control);
386 }
387 
388 static inline u8 vmx_get_rvi(void)
389 {
390 	return vmcs_read16(GUEST_INTR_STATUS) & 0xff;
391 }
392 
393 #define BUILD_CONTROLS_SHADOW(lname, uname)				    \
394 static inline void lname##_controls_set(struct vcpu_vmx *vmx, u32 val)	    \
395 {									    \
396 	if (vmx->loaded_vmcs->controls_shadow.lname != val) {		    \
397 		vmcs_write32(uname, val);				    \
398 		vmx->loaded_vmcs->controls_shadow.lname = val;		    \
399 	}								    \
400 }									    \
401 static inline u32 lname##_controls_get(struct vcpu_vmx *vmx)		    \
402 {									    \
403 	return vmx->loaded_vmcs->controls_shadow.lname;			    \
404 }									    \
405 static inline void lname##_controls_setbit(struct vcpu_vmx *vmx, u32 val)   \
406 {									    \
407 	lname##_controls_set(vmx, lname##_controls_get(vmx) | val);	    \
408 }									    \
409 static inline void lname##_controls_clearbit(struct vcpu_vmx *vmx, u32 val) \
410 {									    \
411 	lname##_controls_set(vmx, lname##_controls_get(vmx) & ~val);	    \
412 }
413 BUILD_CONTROLS_SHADOW(vm_entry, VM_ENTRY_CONTROLS)
414 BUILD_CONTROLS_SHADOW(vm_exit, VM_EXIT_CONTROLS)
415 BUILD_CONTROLS_SHADOW(pin, PIN_BASED_VM_EXEC_CONTROL)
416 BUILD_CONTROLS_SHADOW(exec, CPU_BASED_VM_EXEC_CONTROL)
417 BUILD_CONTROLS_SHADOW(secondary_exec, SECONDARY_VM_EXEC_CONTROL)
418 
419 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
420 {
421 	vmx->segment_cache.bitmask = 0;
422 }
423 
424 static inline u32 vmx_vmentry_ctrl(void)
425 {
426 	u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
427 	if (pt_mode == PT_MODE_SYSTEM)
428 		vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
429 				  VM_ENTRY_LOAD_IA32_RTIT_CTL);
430 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
431 	return vmentry_ctrl &
432 		~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | VM_ENTRY_LOAD_IA32_EFER);
433 }
434 
435 static inline u32 vmx_vmexit_ctrl(void)
436 {
437 	u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
438 	if (pt_mode == PT_MODE_SYSTEM)
439 		vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
440 				 VM_EXIT_CLEAR_IA32_RTIT_CTL);
441 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
442 	return vmexit_ctrl &
443 		~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
444 }
445 
446 u32 vmx_exec_control(struct vcpu_vmx *vmx);
447 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx);
448 
449 static inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm)
450 {
451 	return container_of(kvm, struct kvm_vmx, kvm);
452 }
453 
454 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
455 {
456 	return container_of(vcpu, struct vcpu_vmx, vcpu);
457 }
458 
459 static inline struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
460 {
461 	return &(to_vmx(vcpu)->pi_desc);
462 }
463 
464 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags);
465 void free_vmcs(struct vmcs *vmcs);
466 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
467 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
468 void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs);
469 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs);
470 
471 static inline struct vmcs *alloc_vmcs(bool shadow)
472 {
473 	return alloc_vmcs_cpu(shadow, raw_smp_processor_id(),
474 			      GFP_KERNEL_ACCOUNT);
475 }
476 
477 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
478 
479 static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid,
480 				bool invalidate_gpa)
481 {
482 	if (enable_ept && (invalidate_gpa || !enable_vpid)) {
483 		if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
484 			return;
485 		ept_sync_context(construct_eptp(vcpu,
486 						vcpu->arch.mmu->root_hpa));
487 	} else {
488 		vpid_sync_context(vpid);
489 	}
490 }
491 
492 static inline void vmx_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
493 {
494 	__vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid, invalidate_gpa);
495 }
496 
497 static inline void decache_tsc_multiplier(struct vcpu_vmx *vmx)
498 {
499 	vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
500 	vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
501 }
502 
503 static inline bool vmx_has_waitpkg(struct vcpu_vmx *vmx)
504 {
505 	return vmx->secondary_exec_control &
506 		SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
507 }
508 
509 void dump_vmcs(void);
510 
511 #endif /* __KVM_X86_VMX_H */
512