1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef __KVM_X86_VMX_H 3 #define __KVM_X86_VMX_H 4 5 #include <linux/kvm_host.h> 6 7 #include <asm/kvm.h> 8 #include <asm/intel_pt.h> 9 10 #include "capabilities.h" 11 #include "ops.h" 12 #include "vmcs.h" 13 14 extern const u32 vmx_msr_index[]; 15 extern u64 host_efer; 16 17 extern u32 get_umwait_control_msr(void); 18 19 #define MSR_TYPE_R 1 20 #define MSR_TYPE_W 2 21 #define MSR_TYPE_RW 3 22 23 #define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4)) 24 25 #ifdef CONFIG_X86_64 26 #define NR_SHARED_MSRS 7 27 #else 28 #define NR_SHARED_MSRS 4 29 #endif 30 31 #define NR_LOADSTORE_MSRS 8 32 33 struct vmx_msrs { 34 unsigned int nr; 35 struct vmx_msr_entry val[NR_LOADSTORE_MSRS]; 36 }; 37 38 struct shared_msr_entry { 39 unsigned index; 40 u64 data; 41 u64 mask; 42 }; 43 44 enum segment_cache_field { 45 SEG_FIELD_SEL = 0, 46 SEG_FIELD_BASE = 1, 47 SEG_FIELD_LIMIT = 2, 48 SEG_FIELD_AR = 3, 49 50 SEG_FIELD_NR = 4 51 }; 52 53 /* Posted-Interrupt Descriptor */ 54 struct pi_desc { 55 u32 pir[8]; /* Posted interrupt requested */ 56 union { 57 struct { 58 /* bit 256 - Outstanding Notification */ 59 u16 on : 1, 60 /* bit 257 - Suppress Notification */ 61 sn : 1, 62 /* bit 271:258 - Reserved */ 63 rsvd_1 : 14; 64 /* bit 279:272 - Notification Vector */ 65 u8 nv; 66 /* bit 287:280 - Reserved */ 67 u8 rsvd_2; 68 /* bit 319:288 - Notification Destination */ 69 u32 ndst; 70 }; 71 u64 control; 72 }; 73 u32 rsvd[6]; 74 } __aligned(64); 75 76 #define RTIT_ADDR_RANGE 4 77 78 struct pt_ctx { 79 u64 ctl; 80 u64 status; 81 u64 output_base; 82 u64 output_mask; 83 u64 cr3_match; 84 u64 addr_a[RTIT_ADDR_RANGE]; 85 u64 addr_b[RTIT_ADDR_RANGE]; 86 }; 87 88 struct pt_desc { 89 u64 ctl_bitmask; 90 u32 addr_range; 91 u32 caps[PT_CPUID_REGS_NUM * PT_CPUID_LEAVES]; 92 struct pt_ctx host; 93 struct pt_ctx guest; 94 }; 95 96 /* 97 * The nested_vmx structure is part of vcpu_vmx, and holds information we need 98 * for correct emulation of VMX (i.e., nested VMX) on this vcpu. 99 */ 100 struct nested_vmx { 101 /* Has the level1 guest done vmxon? */ 102 bool vmxon; 103 gpa_t vmxon_ptr; 104 bool pml_full; 105 106 /* The guest-physical address of the current VMCS L1 keeps for L2 */ 107 gpa_t current_vmptr; 108 /* 109 * Cache of the guest's VMCS, existing outside of guest memory. 110 * Loaded from guest memory during VMPTRLD. Flushed to guest 111 * memory during VMCLEAR and VMPTRLD. 112 */ 113 struct vmcs12 *cached_vmcs12; 114 /* 115 * Cache of the guest's shadow VMCS, existing outside of guest 116 * memory. Loaded from guest memory during VM entry. Flushed 117 * to guest memory during VM exit. 118 */ 119 struct vmcs12 *cached_shadow_vmcs12; 120 121 /* 122 * Indicates if the shadow vmcs or enlightened vmcs must be updated 123 * with the data held by struct vmcs12. 124 */ 125 bool need_vmcs12_to_shadow_sync; 126 bool dirty_vmcs12; 127 128 /* 129 * Indicates lazily loaded guest state has not yet been decached from 130 * vmcs02. 131 */ 132 bool need_sync_vmcs02_to_vmcs12_rare; 133 134 /* 135 * vmcs02 has been initialized, i.e. state that is constant for 136 * vmcs02 has been written to the backing VMCS. Initialization 137 * is delayed until L1 actually attempts to run a nested VM. 138 */ 139 bool vmcs02_initialized; 140 141 bool change_vmcs01_virtual_apic_mode; 142 143 /* 144 * Enlightened VMCS has been enabled. It does not mean that L1 has to 145 * use it. However, VMX features available to L1 will be limited based 146 * on what the enlightened VMCS supports. 147 */ 148 bool enlightened_vmcs_enabled; 149 150 /* L2 must run next, and mustn't decide to exit to L1. */ 151 bool nested_run_pending; 152 153 /* Pending MTF VM-exit into L1. */ 154 bool mtf_pending; 155 156 struct loaded_vmcs vmcs02; 157 158 /* 159 * Guest pages referred to in the vmcs02 with host-physical 160 * pointers, so we must keep them pinned while L2 runs. 161 */ 162 struct page *apic_access_page; 163 struct kvm_host_map virtual_apic_map; 164 struct kvm_host_map pi_desc_map; 165 166 struct kvm_host_map msr_bitmap_map; 167 168 struct pi_desc *pi_desc; 169 bool pi_pending; 170 u16 posted_intr_nv; 171 172 struct hrtimer preemption_timer; 173 bool preemption_timer_expired; 174 175 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */ 176 u64 vmcs01_debugctl; 177 u64 vmcs01_guest_bndcfgs; 178 179 /* to migrate it to L1 if L2 writes to L1's CR8 directly */ 180 int l1_tpr_threshold; 181 182 u16 vpid02; 183 u16 last_vpid; 184 185 struct nested_vmx_msrs msrs; 186 187 /* SMM related state */ 188 struct { 189 /* in VMX operation on SMM entry? */ 190 bool vmxon; 191 /* in guest mode on SMM entry? */ 192 bool guest_mode; 193 } smm; 194 195 gpa_t hv_evmcs_vmptr; 196 struct kvm_host_map hv_evmcs_map; 197 struct hv_enlightened_vmcs *hv_evmcs; 198 }; 199 200 struct vcpu_vmx { 201 struct kvm_vcpu vcpu; 202 u8 fail; 203 u8 msr_bitmap_mode; 204 205 /* 206 * If true, host state has been stored in vmx->loaded_vmcs for 207 * the CPU registers that only need to be switched when transitioning 208 * to/from the kernel, and the registers have been loaded with guest 209 * values. If false, host state is loaded in the CPU registers 210 * and vmx->loaded_vmcs->host_state is invalid. 211 */ 212 bool guest_state_loaded; 213 214 u32 exit_intr_info; 215 u32 idt_vectoring_info; 216 ulong rflags; 217 218 struct shared_msr_entry guest_msrs[NR_SHARED_MSRS]; 219 int nmsrs; 220 int save_nmsrs; 221 bool guest_msrs_ready; 222 #ifdef CONFIG_X86_64 223 u64 msr_host_kernel_gs_base; 224 u64 msr_guest_kernel_gs_base; 225 #endif 226 227 u64 spec_ctrl; 228 u32 msr_ia32_umwait_control; 229 230 u32 secondary_exec_control; 231 232 /* 233 * loaded_vmcs points to the VMCS currently used in this vcpu. For a 234 * non-nested (L1) guest, it always points to vmcs01. For a nested 235 * guest (L2), it points to a different VMCS. 236 */ 237 struct loaded_vmcs vmcs01; 238 struct loaded_vmcs *loaded_vmcs; 239 240 struct msr_autoload { 241 struct vmx_msrs guest; 242 struct vmx_msrs host; 243 } msr_autoload; 244 245 struct msr_autostore { 246 struct vmx_msrs guest; 247 } msr_autostore; 248 249 struct { 250 int vm86_active; 251 ulong save_rflags; 252 struct kvm_segment segs[8]; 253 } rmode; 254 struct { 255 u32 bitmask; /* 4 bits per segment (1 bit per field) */ 256 struct kvm_save_segment { 257 u16 selector; 258 unsigned long base; 259 u32 limit; 260 u32 ar; 261 } seg[8]; 262 } segment_cache; 263 int vpid; 264 bool emulation_required; 265 266 u32 exit_reason; 267 268 /* Posted interrupt descriptor */ 269 struct pi_desc pi_desc; 270 271 /* Support for a guest hypervisor (nested VMX) */ 272 struct nested_vmx nested; 273 274 /* Dynamic PLE window. */ 275 unsigned int ple_window; 276 bool ple_window_dirty; 277 278 bool req_immediate_exit; 279 280 /* Support for PML */ 281 #define PML_ENTITY_NUM 512 282 struct page *pml_pg; 283 284 /* apic deadline value in host tsc */ 285 u64 hv_deadline_tsc; 286 287 u64 current_tsc_ratio; 288 289 u32 host_pkru; 290 291 unsigned long host_debugctlmsr; 292 293 /* 294 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in 295 * msr_ia32_feature_control. FEAT_CTL_LOCKED is always included 296 * in msr_ia32_feature_control_valid_bits. 297 */ 298 u64 msr_ia32_feature_control; 299 u64 msr_ia32_feature_control_valid_bits; 300 u64 ept_pointer; 301 302 struct pt_desc pt_desc; 303 }; 304 305 enum ept_pointers_status { 306 EPT_POINTERS_CHECK = 0, 307 EPT_POINTERS_MATCH = 1, 308 EPT_POINTERS_MISMATCH = 2 309 }; 310 311 struct kvm_vmx { 312 struct kvm kvm; 313 314 unsigned int tss_addr; 315 bool ept_identity_pagetable_done; 316 gpa_t ept_identity_map_addr; 317 318 enum ept_pointers_status ept_pointers_match; 319 spinlock_t ept_pointer_lock; 320 }; 321 322 bool nested_vmx_allowed(struct kvm_vcpu *vcpu); 323 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu); 324 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 325 int allocate_vpid(void); 326 void free_vpid(int vpid); 327 void vmx_set_constant_host_state(struct vcpu_vmx *vmx); 328 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu); 329 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel, 330 unsigned long fs_base, unsigned long gs_base); 331 int vmx_get_cpl(struct kvm_vcpu *vcpu); 332 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu); 333 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 334 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu); 335 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask); 336 void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer); 337 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); 338 void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3); 339 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); 340 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx); 341 void ept_save_pdptrs(struct kvm_vcpu *vcpu); 342 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 343 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 344 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa); 345 void update_exception_bitmap(struct kvm_vcpu *vcpu); 346 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu); 347 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu); 348 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked); 349 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu); 350 struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr); 351 void pt_update_intercept_for_msr(struct vcpu_vmx *vmx); 352 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp); 353 int vmx_find_msr_index(struct vmx_msrs *m, u32 msr); 354 355 #define POSTED_INTR_ON 0 356 #define POSTED_INTR_SN 1 357 358 static inline bool pi_test_and_set_on(struct pi_desc *pi_desc) 359 { 360 return test_and_set_bit(POSTED_INTR_ON, 361 (unsigned long *)&pi_desc->control); 362 } 363 364 static inline bool pi_test_and_clear_on(struct pi_desc *pi_desc) 365 { 366 return test_and_clear_bit(POSTED_INTR_ON, 367 (unsigned long *)&pi_desc->control); 368 } 369 370 static inline int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc) 371 { 372 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir); 373 } 374 375 static inline bool pi_is_pir_empty(struct pi_desc *pi_desc) 376 { 377 return bitmap_empty((unsigned long *)pi_desc->pir, NR_VECTORS); 378 } 379 380 static inline void pi_set_sn(struct pi_desc *pi_desc) 381 { 382 set_bit(POSTED_INTR_SN, 383 (unsigned long *)&pi_desc->control); 384 } 385 386 static inline void pi_set_on(struct pi_desc *pi_desc) 387 { 388 set_bit(POSTED_INTR_ON, 389 (unsigned long *)&pi_desc->control); 390 } 391 392 static inline void pi_clear_on(struct pi_desc *pi_desc) 393 { 394 clear_bit(POSTED_INTR_ON, 395 (unsigned long *)&pi_desc->control); 396 } 397 398 static inline void pi_clear_sn(struct pi_desc *pi_desc) 399 { 400 clear_bit(POSTED_INTR_SN, 401 (unsigned long *)&pi_desc->control); 402 } 403 404 static inline int pi_test_on(struct pi_desc *pi_desc) 405 { 406 return test_bit(POSTED_INTR_ON, 407 (unsigned long *)&pi_desc->control); 408 } 409 410 static inline int pi_test_sn(struct pi_desc *pi_desc) 411 { 412 return test_bit(POSTED_INTR_SN, 413 (unsigned long *)&pi_desc->control); 414 } 415 416 static inline u8 vmx_get_rvi(void) 417 { 418 return vmcs_read16(GUEST_INTR_STATUS) & 0xff; 419 } 420 421 #define BUILD_CONTROLS_SHADOW(lname, uname) \ 422 static inline void lname##_controls_set(struct vcpu_vmx *vmx, u32 val) \ 423 { \ 424 if (vmx->loaded_vmcs->controls_shadow.lname != val) { \ 425 vmcs_write32(uname, val); \ 426 vmx->loaded_vmcs->controls_shadow.lname = val; \ 427 } \ 428 } \ 429 static inline u32 lname##_controls_get(struct vcpu_vmx *vmx) \ 430 { \ 431 return vmx->loaded_vmcs->controls_shadow.lname; \ 432 } \ 433 static inline void lname##_controls_setbit(struct vcpu_vmx *vmx, u32 val) \ 434 { \ 435 lname##_controls_set(vmx, lname##_controls_get(vmx) | val); \ 436 } \ 437 static inline void lname##_controls_clearbit(struct vcpu_vmx *vmx, u32 val) \ 438 { \ 439 lname##_controls_set(vmx, lname##_controls_get(vmx) & ~val); \ 440 } 441 BUILD_CONTROLS_SHADOW(vm_entry, VM_ENTRY_CONTROLS) 442 BUILD_CONTROLS_SHADOW(vm_exit, VM_EXIT_CONTROLS) 443 BUILD_CONTROLS_SHADOW(pin, PIN_BASED_VM_EXEC_CONTROL) 444 BUILD_CONTROLS_SHADOW(exec, CPU_BASED_VM_EXEC_CONTROL) 445 BUILD_CONTROLS_SHADOW(secondary_exec, SECONDARY_VM_EXEC_CONTROL) 446 447 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx) 448 { 449 vmx->segment_cache.bitmask = 0; 450 } 451 452 static inline u32 vmx_vmentry_ctrl(void) 453 { 454 u32 vmentry_ctrl = vmcs_config.vmentry_ctrl; 455 if (pt_mode == PT_MODE_SYSTEM) 456 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP | 457 VM_ENTRY_LOAD_IA32_RTIT_CTL); 458 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ 459 return vmentry_ctrl & 460 ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | VM_ENTRY_LOAD_IA32_EFER); 461 } 462 463 static inline u32 vmx_vmexit_ctrl(void) 464 { 465 u32 vmexit_ctrl = vmcs_config.vmexit_ctrl; 466 if (pt_mode == PT_MODE_SYSTEM) 467 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP | 468 VM_EXIT_CLEAR_IA32_RTIT_CTL); 469 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ 470 return vmexit_ctrl & 471 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER); 472 } 473 474 u32 vmx_exec_control(struct vcpu_vmx *vmx); 475 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx); 476 477 static inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm) 478 { 479 return container_of(kvm, struct kvm_vmx, kvm); 480 } 481 482 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu) 483 { 484 return container_of(vcpu, struct vcpu_vmx, vcpu); 485 } 486 487 static inline struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu) 488 { 489 return &(to_vmx(vcpu)->pi_desc); 490 } 491 492 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags); 493 void free_vmcs(struct vmcs *vmcs); 494 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs); 495 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs); 496 void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs); 497 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs); 498 499 static inline struct vmcs *alloc_vmcs(bool shadow) 500 { 501 return alloc_vmcs_cpu(shadow, raw_smp_processor_id(), 502 GFP_KERNEL_ACCOUNT); 503 } 504 505 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa); 506 507 static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid, 508 bool invalidate_gpa) 509 { 510 if (enable_ept && (invalidate_gpa || !enable_vpid)) { 511 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) 512 return; 513 ept_sync_context(construct_eptp(vcpu, 514 vcpu->arch.mmu->root_hpa)); 515 } else { 516 vpid_sync_context(vpid); 517 } 518 } 519 520 static inline void vmx_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa) 521 { 522 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid, invalidate_gpa); 523 } 524 525 static inline void decache_tsc_multiplier(struct vcpu_vmx *vmx) 526 { 527 vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio; 528 vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio); 529 } 530 531 static inline bool vmx_has_waitpkg(struct vcpu_vmx *vmx) 532 { 533 return vmx->secondary_exec_control & 534 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE; 535 } 536 537 void dump_vmcs(void); 538 539 #endif /* __KVM_X86_VMX_H */ 540