1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef __KVM_X86_VMX_H 3 #define __KVM_X86_VMX_H 4 5 #include <linux/kvm_host.h> 6 7 #include <asm/kvm.h> 8 #include <asm/intel_pt.h> 9 10 #include "capabilities.h" 11 #include "kvm_cache_regs.h" 12 #include "posted_intr.h" 13 #include "vmcs.h" 14 #include "vmx_ops.h" 15 #include "cpuid.h" 16 17 extern const u32 vmx_msr_index[]; 18 19 #define MSR_TYPE_R 1 20 #define MSR_TYPE_W 2 21 #define MSR_TYPE_RW 3 22 23 #define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4)) 24 25 #ifdef CONFIG_X86_64 26 #define MAX_NR_USER_RETURN_MSRS 7 27 #else 28 #define MAX_NR_USER_RETURN_MSRS 4 29 #endif 30 31 #define MAX_NR_LOADSTORE_MSRS 8 32 33 struct vmx_msrs { 34 unsigned int nr; 35 struct vmx_msr_entry val[MAX_NR_LOADSTORE_MSRS]; 36 }; 37 38 struct vmx_uret_msr { 39 unsigned int slot; /* The MSR's slot in kvm_user_return_msrs. */ 40 u64 data; 41 u64 mask; 42 }; 43 44 enum segment_cache_field { 45 SEG_FIELD_SEL = 0, 46 SEG_FIELD_BASE = 1, 47 SEG_FIELD_LIMIT = 2, 48 SEG_FIELD_AR = 3, 49 50 SEG_FIELD_NR = 4 51 }; 52 53 #define RTIT_ADDR_RANGE 4 54 55 struct pt_ctx { 56 u64 ctl; 57 u64 status; 58 u64 output_base; 59 u64 output_mask; 60 u64 cr3_match; 61 u64 addr_a[RTIT_ADDR_RANGE]; 62 u64 addr_b[RTIT_ADDR_RANGE]; 63 }; 64 65 struct pt_desc { 66 u64 ctl_bitmask; 67 u32 addr_range; 68 u32 caps[PT_CPUID_REGS_NUM * PT_CPUID_LEAVES]; 69 struct pt_ctx host; 70 struct pt_ctx guest; 71 }; 72 73 /* 74 * The nested_vmx structure is part of vcpu_vmx, and holds information we need 75 * for correct emulation of VMX (i.e., nested VMX) on this vcpu. 76 */ 77 struct nested_vmx { 78 /* Has the level1 guest done vmxon? */ 79 bool vmxon; 80 gpa_t vmxon_ptr; 81 bool pml_full; 82 83 /* The guest-physical address of the current VMCS L1 keeps for L2 */ 84 gpa_t current_vmptr; 85 /* 86 * Cache of the guest's VMCS, existing outside of guest memory. 87 * Loaded from guest memory during VMPTRLD. Flushed to guest 88 * memory during VMCLEAR and VMPTRLD. 89 */ 90 struct vmcs12 *cached_vmcs12; 91 /* 92 * Cache of the guest's shadow VMCS, existing outside of guest 93 * memory. Loaded from guest memory during VM entry. Flushed 94 * to guest memory during VM exit. 95 */ 96 struct vmcs12 *cached_shadow_vmcs12; 97 98 /* 99 * Indicates if the shadow vmcs or enlightened vmcs must be updated 100 * with the data held by struct vmcs12. 101 */ 102 bool need_vmcs12_to_shadow_sync; 103 bool dirty_vmcs12; 104 105 /* 106 * Indicates lazily loaded guest state has not yet been decached from 107 * vmcs02. 108 */ 109 bool need_sync_vmcs02_to_vmcs12_rare; 110 111 /* 112 * vmcs02 has been initialized, i.e. state that is constant for 113 * vmcs02 has been written to the backing VMCS. Initialization 114 * is delayed until L1 actually attempts to run a nested VM. 115 */ 116 bool vmcs02_initialized; 117 118 bool change_vmcs01_virtual_apic_mode; 119 bool reload_vmcs01_apic_access_page; 120 121 /* 122 * Enlightened VMCS has been enabled. It does not mean that L1 has to 123 * use it. However, VMX features available to L1 will be limited based 124 * on what the enlightened VMCS supports. 125 */ 126 bool enlightened_vmcs_enabled; 127 128 /* L2 must run next, and mustn't decide to exit to L1. */ 129 bool nested_run_pending; 130 131 /* Pending MTF VM-exit into L1. */ 132 bool mtf_pending; 133 134 struct loaded_vmcs vmcs02; 135 136 /* 137 * Guest pages referred to in the vmcs02 with host-physical 138 * pointers, so we must keep them pinned while L2 runs. 139 */ 140 struct page *apic_access_page; 141 struct kvm_host_map virtual_apic_map; 142 struct kvm_host_map pi_desc_map; 143 144 struct kvm_host_map msr_bitmap_map; 145 146 struct pi_desc *pi_desc; 147 bool pi_pending; 148 u16 posted_intr_nv; 149 150 struct hrtimer preemption_timer; 151 u64 preemption_timer_deadline; 152 bool has_preemption_timer_deadline; 153 bool preemption_timer_expired; 154 155 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */ 156 u64 vmcs01_debugctl; 157 u64 vmcs01_guest_bndcfgs; 158 159 /* to migrate it to L1 if L2 writes to L1's CR8 directly */ 160 int l1_tpr_threshold; 161 162 u16 vpid02; 163 u16 last_vpid; 164 165 struct nested_vmx_msrs msrs; 166 167 /* SMM related state */ 168 struct { 169 /* in VMX operation on SMM entry? */ 170 bool vmxon; 171 /* in guest mode on SMM entry? */ 172 bool guest_mode; 173 } smm; 174 175 gpa_t hv_evmcs_vmptr; 176 struct kvm_host_map hv_evmcs_map; 177 struct hv_enlightened_vmcs *hv_evmcs; 178 }; 179 180 struct vcpu_vmx { 181 struct kvm_vcpu vcpu; 182 u8 fail; 183 u8 msr_bitmap_mode; 184 185 /* 186 * If true, host state has been stored in vmx->loaded_vmcs for 187 * the CPU registers that only need to be switched when transitioning 188 * to/from the kernel, and the registers have been loaded with guest 189 * values. If false, host state is loaded in the CPU registers 190 * and vmx->loaded_vmcs->host_state is invalid. 191 */ 192 bool guest_state_loaded; 193 194 unsigned long exit_qualification; 195 u32 exit_intr_info; 196 u32 idt_vectoring_info; 197 ulong rflags; 198 199 struct vmx_uret_msr guest_uret_msrs[MAX_NR_USER_RETURN_MSRS]; 200 int nr_uret_msrs; 201 int nr_active_uret_msrs; 202 bool guest_uret_msrs_loaded; 203 #ifdef CONFIG_X86_64 204 u64 msr_host_kernel_gs_base; 205 u64 msr_guest_kernel_gs_base; 206 #endif 207 208 u64 spec_ctrl; 209 u32 msr_ia32_umwait_control; 210 211 u32 secondary_exec_control; 212 213 /* 214 * loaded_vmcs points to the VMCS currently used in this vcpu. For a 215 * non-nested (L1) guest, it always points to vmcs01. For a nested 216 * guest (L2), it points to a different VMCS. 217 */ 218 struct loaded_vmcs vmcs01; 219 struct loaded_vmcs *loaded_vmcs; 220 221 struct msr_autoload { 222 struct vmx_msrs guest; 223 struct vmx_msrs host; 224 } msr_autoload; 225 226 struct msr_autostore { 227 struct vmx_msrs guest; 228 } msr_autostore; 229 230 struct { 231 int vm86_active; 232 ulong save_rflags; 233 struct kvm_segment segs[8]; 234 } rmode; 235 struct { 236 u32 bitmask; /* 4 bits per segment (1 bit per field) */ 237 struct kvm_save_segment { 238 u16 selector; 239 unsigned long base; 240 u32 limit; 241 u32 ar; 242 } seg[8]; 243 } segment_cache; 244 int vpid; 245 bool emulation_required; 246 247 u32 exit_reason; 248 249 /* Posted interrupt descriptor */ 250 struct pi_desc pi_desc; 251 252 /* Support for a guest hypervisor (nested VMX) */ 253 struct nested_vmx nested; 254 255 /* Dynamic PLE window. */ 256 unsigned int ple_window; 257 bool ple_window_dirty; 258 259 bool req_immediate_exit; 260 261 /* Support for PML */ 262 #define PML_ENTITY_NUM 512 263 struct page *pml_pg; 264 265 /* apic deadline value in host tsc */ 266 u64 hv_deadline_tsc; 267 268 u64 current_tsc_ratio; 269 270 unsigned long host_debugctlmsr; 271 272 /* 273 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in 274 * msr_ia32_feature_control. FEAT_CTL_LOCKED is always included 275 * in msr_ia32_feature_control_valid_bits. 276 */ 277 u64 msr_ia32_feature_control; 278 u64 msr_ia32_feature_control_valid_bits; 279 u64 ept_pointer; 280 281 struct pt_desc pt_desc; 282 283 /* Save desired MSR intercept (read: pass-through) state */ 284 #define MAX_POSSIBLE_PASSTHROUGH_MSRS 13 285 struct { 286 DECLARE_BITMAP(read, MAX_POSSIBLE_PASSTHROUGH_MSRS); 287 DECLARE_BITMAP(write, MAX_POSSIBLE_PASSTHROUGH_MSRS); 288 } shadow_msr_intercept; 289 }; 290 291 enum ept_pointers_status { 292 EPT_POINTERS_CHECK = 0, 293 EPT_POINTERS_MATCH = 1, 294 EPT_POINTERS_MISMATCH = 2 295 }; 296 297 struct kvm_vmx { 298 struct kvm kvm; 299 300 unsigned int tss_addr; 301 bool ept_identity_pagetable_done; 302 gpa_t ept_identity_map_addr; 303 304 enum ept_pointers_status ept_pointers_match; 305 spinlock_t ept_pointer_lock; 306 }; 307 308 bool nested_vmx_allowed(struct kvm_vcpu *vcpu); 309 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu, 310 struct loaded_vmcs *buddy); 311 int allocate_vpid(void); 312 void free_vpid(int vpid); 313 void vmx_set_constant_host_state(struct vcpu_vmx *vmx); 314 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu); 315 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel, 316 unsigned long fs_base, unsigned long gs_base); 317 int vmx_get_cpl(struct kvm_vcpu *vcpu); 318 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu); 319 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 320 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu); 321 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask); 322 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer); 323 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); 324 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); 325 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx); 326 void ept_save_pdptrs(struct kvm_vcpu *vcpu); 327 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 328 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 329 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa, 330 int root_level); 331 332 void update_exception_bitmap(struct kvm_vcpu *vcpu); 333 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu); 334 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu); 335 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu); 336 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu); 337 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked); 338 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu); 339 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr); 340 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu); 341 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp); 342 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr); 343 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu); 344 345 static inline u8 vmx_get_rvi(void) 346 { 347 return vmcs_read16(GUEST_INTR_STATUS) & 0xff; 348 } 349 350 #define BUILD_CONTROLS_SHADOW(lname, uname) \ 351 static inline void lname##_controls_set(struct vcpu_vmx *vmx, u32 val) \ 352 { \ 353 if (vmx->loaded_vmcs->controls_shadow.lname != val) { \ 354 vmcs_write32(uname, val); \ 355 vmx->loaded_vmcs->controls_shadow.lname = val; \ 356 } \ 357 } \ 358 static inline u32 lname##_controls_get(struct vcpu_vmx *vmx) \ 359 { \ 360 return vmx->loaded_vmcs->controls_shadow.lname; \ 361 } \ 362 static inline void lname##_controls_setbit(struct vcpu_vmx *vmx, u32 val) \ 363 { \ 364 lname##_controls_set(vmx, lname##_controls_get(vmx) | val); \ 365 } \ 366 static inline void lname##_controls_clearbit(struct vcpu_vmx *vmx, u32 val) \ 367 { \ 368 lname##_controls_set(vmx, lname##_controls_get(vmx) & ~val); \ 369 } 370 BUILD_CONTROLS_SHADOW(vm_entry, VM_ENTRY_CONTROLS) 371 BUILD_CONTROLS_SHADOW(vm_exit, VM_EXIT_CONTROLS) 372 BUILD_CONTROLS_SHADOW(pin, PIN_BASED_VM_EXEC_CONTROL) 373 BUILD_CONTROLS_SHADOW(exec, CPU_BASED_VM_EXEC_CONTROL) 374 BUILD_CONTROLS_SHADOW(secondary_exec, SECONDARY_VM_EXEC_CONTROL) 375 376 static inline void vmx_register_cache_reset(struct kvm_vcpu *vcpu) 377 { 378 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP) 379 | (1 << VCPU_EXREG_RFLAGS) 380 | (1 << VCPU_EXREG_PDPTR) 381 | (1 << VCPU_EXREG_SEGMENTS) 382 | (1 << VCPU_EXREG_CR0) 383 | (1 << VCPU_EXREG_CR3) 384 | (1 << VCPU_EXREG_CR4) 385 | (1 << VCPU_EXREG_EXIT_INFO_1) 386 | (1 << VCPU_EXREG_EXIT_INFO_2)); 387 vcpu->arch.regs_dirty = 0; 388 } 389 390 static inline u32 vmx_vmentry_ctrl(void) 391 { 392 u32 vmentry_ctrl = vmcs_config.vmentry_ctrl; 393 if (vmx_pt_mode_is_system()) 394 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP | 395 VM_ENTRY_LOAD_IA32_RTIT_CTL); 396 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ 397 return vmentry_ctrl & 398 ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | VM_ENTRY_LOAD_IA32_EFER); 399 } 400 401 static inline u32 vmx_vmexit_ctrl(void) 402 { 403 u32 vmexit_ctrl = vmcs_config.vmexit_ctrl; 404 if (vmx_pt_mode_is_system()) 405 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP | 406 VM_EXIT_CLEAR_IA32_RTIT_CTL); 407 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ 408 return vmexit_ctrl & 409 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER); 410 } 411 412 u32 vmx_exec_control(struct vcpu_vmx *vmx); 413 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx); 414 415 static inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm) 416 { 417 return container_of(kvm, struct kvm_vmx, kvm); 418 } 419 420 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu) 421 { 422 return container_of(vcpu, struct vcpu_vmx, vcpu); 423 } 424 425 static inline unsigned long vmx_get_exit_qual(struct kvm_vcpu *vcpu) 426 { 427 struct vcpu_vmx *vmx = to_vmx(vcpu); 428 429 if (!kvm_register_is_available(vcpu, VCPU_EXREG_EXIT_INFO_1)) { 430 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1); 431 vmx->exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 432 } 433 return vmx->exit_qualification; 434 } 435 436 static inline u32 vmx_get_intr_info(struct kvm_vcpu *vcpu) 437 { 438 struct vcpu_vmx *vmx = to_vmx(vcpu); 439 440 if (!kvm_register_is_available(vcpu, VCPU_EXREG_EXIT_INFO_2)) { 441 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2); 442 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); 443 } 444 return vmx->exit_intr_info; 445 } 446 447 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags); 448 void free_vmcs(struct vmcs *vmcs); 449 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs); 450 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs); 451 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs); 452 453 static inline struct vmcs *alloc_vmcs(bool shadow) 454 { 455 return alloc_vmcs_cpu(shadow, raw_smp_processor_id(), 456 GFP_KERNEL_ACCOUNT); 457 } 458 459 static inline void decache_tsc_multiplier(struct vcpu_vmx *vmx) 460 { 461 vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio; 462 vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio); 463 } 464 465 static inline bool vmx_has_waitpkg(struct vcpu_vmx *vmx) 466 { 467 return vmx->secondary_exec_control & 468 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE; 469 } 470 471 static inline bool vmx_need_pf_intercept(struct kvm_vcpu *vcpu) 472 { 473 if (!enable_ept) 474 return true; 475 476 return allow_smaller_maxphyaddr && cpuid_maxphyaddr(vcpu) < boot_cpu_data.x86_phys_bits; 477 } 478 479 static inline bool is_unrestricted_guest(struct kvm_vcpu *vcpu) 480 { 481 return enable_unrestricted_guest && (!is_guest_mode(vcpu) || 482 (secondary_exec_controls_get(to_vmx(vcpu)) & 483 SECONDARY_EXEC_UNRESTRICTED_GUEST)); 484 } 485 486 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu); 487 static inline bool vmx_guest_state_valid(struct kvm_vcpu *vcpu) 488 { 489 return is_unrestricted_guest(vcpu) || __vmx_guest_state_valid(vcpu); 490 } 491 492 void dump_vmcs(void); 493 494 #endif /* __KVM_X86_VMX_H */ 495