1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef __KVM_X86_VMX_H 3 #define __KVM_X86_VMX_H 4 5 #include <linux/kvm_host.h> 6 7 #include <asm/kvm.h> 8 #include <asm/intel_pt.h> 9 10 #include "capabilities.h" 11 #include "kvm_cache_regs.h" 12 #include "posted_intr.h" 13 #include "vmcs.h" 14 #include "vmx_ops.h" 15 #include "cpuid.h" 16 17 #define MSR_TYPE_R 1 18 #define MSR_TYPE_W 2 19 #define MSR_TYPE_RW 3 20 21 #define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4)) 22 23 #ifdef CONFIG_X86_64 24 #define MAX_NR_USER_RETURN_MSRS 7 25 #else 26 #define MAX_NR_USER_RETURN_MSRS 4 27 #endif 28 29 #define MAX_NR_LOADSTORE_MSRS 8 30 31 struct vmx_msrs { 32 unsigned int nr; 33 struct vmx_msr_entry val[MAX_NR_LOADSTORE_MSRS]; 34 }; 35 36 struct vmx_uret_msr { 37 bool load_into_hardware; 38 u64 data; 39 u64 mask; 40 }; 41 42 enum segment_cache_field { 43 SEG_FIELD_SEL = 0, 44 SEG_FIELD_BASE = 1, 45 SEG_FIELD_LIMIT = 2, 46 SEG_FIELD_AR = 3, 47 48 SEG_FIELD_NR = 4 49 }; 50 51 #define RTIT_ADDR_RANGE 4 52 53 struct pt_ctx { 54 u64 ctl; 55 u64 status; 56 u64 output_base; 57 u64 output_mask; 58 u64 cr3_match; 59 u64 addr_a[RTIT_ADDR_RANGE]; 60 u64 addr_b[RTIT_ADDR_RANGE]; 61 }; 62 63 struct pt_desc { 64 u64 ctl_bitmask; 65 u32 addr_range; 66 u32 caps[PT_CPUID_REGS_NUM * PT_CPUID_LEAVES]; 67 struct pt_ctx host; 68 struct pt_ctx guest; 69 }; 70 71 union vmx_exit_reason { 72 struct { 73 u32 basic : 16; 74 u32 reserved16 : 1; 75 u32 reserved17 : 1; 76 u32 reserved18 : 1; 77 u32 reserved19 : 1; 78 u32 reserved20 : 1; 79 u32 reserved21 : 1; 80 u32 reserved22 : 1; 81 u32 reserved23 : 1; 82 u32 reserved24 : 1; 83 u32 reserved25 : 1; 84 u32 bus_lock_detected : 1; 85 u32 enclave_mode : 1; 86 u32 smi_pending_mtf : 1; 87 u32 smi_from_vmx_root : 1; 88 u32 reserved30 : 1; 89 u32 failed_vmentry : 1; 90 }; 91 u32 full; 92 }; 93 94 #define vcpu_to_lbr_desc(vcpu) (&to_vmx(vcpu)->lbr_desc) 95 #define vcpu_to_lbr_records(vcpu) (&to_vmx(vcpu)->lbr_desc.records) 96 97 bool intel_pmu_lbr_is_compatible(struct kvm_vcpu *vcpu); 98 bool intel_pmu_lbr_is_enabled(struct kvm_vcpu *vcpu); 99 100 int intel_pmu_create_guest_lbr_event(struct kvm_vcpu *vcpu); 101 void vmx_passthrough_lbr_msrs(struct kvm_vcpu *vcpu); 102 103 struct lbr_desc { 104 /* Basic info about guest LBR records. */ 105 struct x86_pmu_lbr records; 106 107 /* 108 * Emulate LBR feature via passthrough LBR registers when the 109 * per-vcpu guest LBR event is scheduled on the current pcpu. 110 * 111 * The records may be inaccurate if the host reclaims the LBR. 112 */ 113 struct perf_event *event; 114 115 /* True if LBRs are marked as not intercepted in the MSR bitmap */ 116 bool msr_passthrough; 117 }; 118 119 /* 120 * The nested_vmx structure is part of vcpu_vmx, and holds information we need 121 * for correct emulation of VMX (i.e., nested VMX) on this vcpu. 122 */ 123 struct nested_vmx { 124 /* Has the level1 guest done vmxon? */ 125 bool vmxon; 126 gpa_t vmxon_ptr; 127 bool pml_full; 128 129 /* The guest-physical address of the current VMCS L1 keeps for L2 */ 130 gpa_t current_vmptr; 131 /* 132 * Cache of the guest's VMCS, existing outside of guest memory. 133 * Loaded from guest memory during VMPTRLD. Flushed to guest 134 * memory during VMCLEAR and VMPTRLD. 135 */ 136 struct vmcs12 *cached_vmcs12; 137 /* 138 * Cache of the guest's shadow VMCS, existing outside of guest 139 * memory. Loaded from guest memory during VM entry. Flushed 140 * to guest memory during VM exit. 141 */ 142 struct vmcs12 *cached_shadow_vmcs12; 143 144 /* 145 * Indicates if the shadow vmcs or enlightened vmcs must be updated 146 * with the data held by struct vmcs12. 147 */ 148 bool need_vmcs12_to_shadow_sync; 149 bool dirty_vmcs12; 150 151 /* 152 * Indicates lazily loaded guest state has not yet been decached from 153 * vmcs02. 154 */ 155 bool need_sync_vmcs02_to_vmcs12_rare; 156 157 /* 158 * vmcs02 has been initialized, i.e. state that is constant for 159 * vmcs02 has been written to the backing VMCS. Initialization 160 * is delayed until L1 actually attempts to run a nested VM. 161 */ 162 bool vmcs02_initialized; 163 164 bool change_vmcs01_virtual_apic_mode; 165 bool reload_vmcs01_apic_access_page; 166 bool update_vmcs01_cpu_dirty_logging; 167 168 /* 169 * Enlightened VMCS has been enabled. It does not mean that L1 has to 170 * use it. However, VMX features available to L1 will be limited based 171 * on what the enlightened VMCS supports. 172 */ 173 bool enlightened_vmcs_enabled; 174 175 /* L2 must run next, and mustn't decide to exit to L1. */ 176 bool nested_run_pending; 177 178 /* Pending MTF VM-exit into L1. */ 179 bool mtf_pending; 180 181 struct loaded_vmcs vmcs02; 182 183 /* 184 * Guest pages referred to in the vmcs02 with host-physical 185 * pointers, so we must keep them pinned while L2 runs. 186 */ 187 struct page *apic_access_page; 188 struct kvm_host_map virtual_apic_map; 189 struct kvm_host_map pi_desc_map; 190 191 struct kvm_host_map msr_bitmap_map; 192 193 struct pi_desc *pi_desc; 194 bool pi_pending; 195 u16 posted_intr_nv; 196 197 struct hrtimer preemption_timer; 198 u64 preemption_timer_deadline; 199 bool has_preemption_timer_deadline; 200 bool preemption_timer_expired; 201 202 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */ 203 u64 vmcs01_debugctl; 204 u64 vmcs01_guest_bndcfgs; 205 206 /* to migrate it to L1 if L2 writes to L1's CR8 directly */ 207 int l1_tpr_threshold; 208 209 u16 vpid02; 210 u16 last_vpid; 211 212 struct nested_vmx_msrs msrs; 213 214 /* SMM related state */ 215 struct { 216 /* in VMX operation on SMM entry? */ 217 bool vmxon; 218 /* in guest mode on SMM entry? */ 219 bool guest_mode; 220 } smm; 221 222 gpa_t hv_evmcs_vmptr; 223 struct kvm_host_map hv_evmcs_map; 224 struct hv_enlightened_vmcs *hv_evmcs; 225 }; 226 227 struct vcpu_vmx { 228 struct kvm_vcpu vcpu; 229 u8 fail; 230 u8 x2apic_msr_bitmap_mode; 231 232 /* 233 * If true, host state has been stored in vmx->loaded_vmcs for 234 * the CPU registers that only need to be switched when transitioning 235 * to/from the kernel, and the registers have been loaded with guest 236 * values. If false, host state is loaded in the CPU registers 237 * and vmx->loaded_vmcs->host_state is invalid. 238 */ 239 bool guest_state_loaded; 240 241 unsigned long exit_qualification; 242 u32 exit_intr_info; 243 u32 idt_vectoring_info; 244 ulong rflags; 245 246 /* 247 * User return MSRs are always emulated when enabled in the guest, but 248 * only loaded into hardware when necessary, e.g. SYSCALL #UDs outside 249 * of 64-bit mode or if EFER.SCE=1, thus the SYSCALL MSRs don't need to 250 * be loaded into hardware if those conditions aren't met. 251 */ 252 struct vmx_uret_msr guest_uret_msrs[MAX_NR_USER_RETURN_MSRS]; 253 bool guest_uret_msrs_loaded; 254 #ifdef CONFIG_X86_64 255 u64 msr_host_kernel_gs_base; 256 u64 msr_guest_kernel_gs_base; 257 #endif 258 259 u64 spec_ctrl; 260 u32 msr_ia32_umwait_control; 261 262 /* 263 * loaded_vmcs points to the VMCS currently used in this vcpu. For a 264 * non-nested (L1) guest, it always points to vmcs01. For a nested 265 * guest (L2), it points to a different VMCS. 266 */ 267 struct loaded_vmcs vmcs01; 268 struct loaded_vmcs *loaded_vmcs; 269 270 struct msr_autoload { 271 struct vmx_msrs guest; 272 struct vmx_msrs host; 273 } msr_autoload; 274 275 struct msr_autostore { 276 struct vmx_msrs guest; 277 } msr_autostore; 278 279 struct { 280 int vm86_active; 281 ulong save_rflags; 282 struct kvm_segment segs[8]; 283 } rmode; 284 struct { 285 u32 bitmask; /* 4 bits per segment (1 bit per field) */ 286 struct kvm_save_segment { 287 u16 selector; 288 unsigned long base; 289 u32 limit; 290 u32 ar; 291 } seg[8]; 292 } segment_cache; 293 int vpid; 294 bool emulation_required; 295 296 union vmx_exit_reason exit_reason; 297 298 /* Posted interrupt descriptor */ 299 struct pi_desc pi_desc; 300 301 /* Support for a guest hypervisor (nested VMX) */ 302 struct nested_vmx nested; 303 304 /* Dynamic PLE window. */ 305 unsigned int ple_window; 306 bool ple_window_dirty; 307 308 bool req_immediate_exit; 309 310 /* Support for PML */ 311 #define PML_ENTITY_NUM 512 312 struct page *pml_pg; 313 314 /* apic deadline value in host tsc */ 315 u64 hv_deadline_tsc; 316 317 unsigned long host_debugctlmsr; 318 319 /* 320 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in 321 * msr_ia32_feature_control. FEAT_CTL_LOCKED is always included 322 * in msr_ia32_feature_control_valid_bits. 323 */ 324 u64 msr_ia32_feature_control; 325 u64 msr_ia32_feature_control_valid_bits; 326 /* SGX Launch Control public key hash */ 327 u64 msr_ia32_sgxlepubkeyhash[4]; 328 329 struct pt_desc pt_desc; 330 struct lbr_desc lbr_desc; 331 332 /* Save desired MSR intercept (read: pass-through) state */ 333 #define MAX_POSSIBLE_PASSTHROUGH_MSRS 13 334 struct { 335 DECLARE_BITMAP(read, MAX_POSSIBLE_PASSTHROUGH_MSRS); 336 DECLARE_BITMAP(write, MAX_POSSIBLE_PASSTHROUGH_MSRS); 337 } shadow_msr_intercept; 338 }; 339 340 struct kvm_vmx { 341 struct kvm kvm; 342 343 unsigned int tss_addr; 344 bool ept_identity_pagetable_done; 345 gpa_t ept_identity_map_addr; 346 }; 347 348 bool nested_vmx_allowed(struct kvm_vcpu *vcpu); 349 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu, 350 struct loaded_vmcs *buddy); 351 int allocate_vpid(void); 352 void free_vpid(int vpid); 353 void vmx_set_constant_host_state(struct vcpu_vmx *vmx); 354 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu); 355 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel, 356 unsigned long fs_base, unsigned long gs_base); 357 int vmx_get_cpl(struct kvm_vcpu *vcpu); 358 bool vmx_emulation_required(struct kvm_vcpu *vcpu); 359 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu); 360 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 361 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu); 362 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask); 363 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer); 364 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); 365 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); 366 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx); 367 void ept_save_pdptrs(struct kvm_vcpu *vcpu); 368 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 369 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 370 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level); 371 372 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu); 373 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu); 374 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu); 375 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu); 376 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu); 377 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked); 378 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu); 379 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr); 380 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu); 381 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp); 382 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched); 383 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr); 384 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu); 385 386 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type); 387 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type); 388 389 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu); 390 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu); 391 392 static inline void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, 393 int type, bool value) 394 { 395 if (value) 396 vmx_enable_intercept_for_msr(vcpu, msr, type); 397 else 398 vmx_disable_intercept_for_msr(vcpu, msr, type); 399 } 400 401 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu); 402 403 static inline u8 vmx_get_rvi(void) 404 { 405 return vmcs_read16(GUEST_INTR_STATUS) & 0xff; 406 } 407 408 #define BUILD_CONTROLS_SHADOW(lname, uname) \ 409 static inline void lname##_controls_set(struct vcpu_vmx *vmx, u32 val) \ 410 { \ 411 if (vmx->loaded_vmcs->controls_shadow.lname != val) { \ 412 vmcs_write32(uname, val); \ 413 vmx->loaded_vmcs->controls_shadow.lname = val; \ 414 } \ 415 } \ 416 static inline u32 __##lname##_controls_get(struct loaded_vmcs *vmcs) \ 417 { \ 418 return vmcs->controls_shadow.lname; \ 419 } \ 420 static inline u32 lname##_controls_get(struct vcpu_vmx *vmx) \ 421 { \ 422 return __##lname##_controls_get(vmx->loaded_vmcs); \ 423 } \ 424 static inline void lname##_controls_setbit(struct vcpu_vmx *vmx, u32 val) \ 425 { \ 426 lname##_controls_set(vmx, lname##_controls_get(vmx) | val); \ 427 } \ 428 static inline void lname##_controls_clearbit(struct vcpu_vmx *vmx, u32 val) \ 429 { \ 430 lname##_controls_set(vmx, lname##_controls_get(vmx) & ~val); \ 431 } 432 BUILD_CONTROLS_SHADOW(vm_entry, VM_ENTRY_CONTROLS) 433 BUILD_CONTROLS_SHADOW(vm_exit, VM_EXIT_CONTROLS) 434 BUILD_CONTROLS_SHADOW(pin, PIN_BASED_VM_EXEC_CONTROL) 435 BUILD_CONTROLS_SHADOW(exec, CPU_BASED_VM_EXEC_CONTROL) 436 BUILD_CONTROLS_SHADOW(secondary_exec, SECONDARY_VM_EXEC_CONTROL) 437 438 static inline void vmx_register_cache_reset(struct kvm_vcpu *vcpu) 439 { 440 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP) 441 | (1 << VCPU_EXREG_RFLAGS) 442 | (1 << VCPU_EXREG_PDPTR) 443 | (1 << VCPU_EXREG_SEGMENTS) 444 | (1 << VCPU_EXREG_CR0) 445 | (1 << VCPU_EXREG_CR3) 446 | (1 << VCPU_EXREG_CR4) 447 | (1 << VCPU_EXREG_EXIT_INFO_1) 448 | (1 << VCPU_EXREG_EXIT_INFO_2)); 449 vcpu->arch.regs_dirty = 0; 450 } 451 452 static inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm) 453 { 454 return container_of(kvm, struct kvm_vmx, kvm); 455 } 456 457 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu) 458 { 459 return container_of(vcpu, struct vcpu_vmx, vcpu); 460 } 461 462 static inline unsigned long vmx_get_exit_qual(struct kvm_vcpu *vcpu) 463 { 464 struct vcpu_vmx *vmx = to_vmx(vcpu); 465 466 if (!kvm_register_is_available(vcpu, VCPU_EXREG_EXIT_INFO_1)) { 467 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1); 468 vmx->exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 469 } 470 return vmx->exit_qualification; 471 } 472 473 static inline u32 vmx_get_intr_info(struct kvm_vcpu *vcpu) 474 { 475 struct vcpu_vmx *vmx = to_vmx(vcpu); 476 477 if (!kvm_register_is_available(vcpu, VCPU_EXREG_EXIT_INFO_2)) { 478 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2); 479 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); 480 } 481 return vmx->exit_intr_info; 482 } 483 484 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags); 485 void free_vmcs(struct vmcs *vmcs); 486 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs); 487 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs); 488 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs); 489 490 static inline struct vmcs *alloc_vmcs(bool shadow) 491 { 492 return alloc_vmcs_cpu(shadow, raw_smp_processor_id(), 493 GFP_KERNEL_ACCOUNT); 494 } 495 496 static inline bool vmx_has_waitpkg(struct vcpu_vmx *vmx) 497 { 498 return secondary_exec_controls_get(vmx) & 499 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE; 500 } 501 502 static inline bool vmx_need_pf_intercept(struct kvm_vcpu *vcpu) 503 { 504 if (!enable_ept) 505 return true; 506 507 return allow_smaller_maxphyaddr && cpuid_maxphyaddr(vcpu) < boot_cpu_data.x86_phys_bits; 508 } 509 510 static inline bool is_unrestricted_guest(struct kvm_vcpu *vcpu) 511 { 512 return enable_unrestricted_guest && (!is_guest_mode(vcpu) || 513 (secondary_exec_controls_get(to_vmx(vcpu)) & 514 SECONDARY_EXEC_UNRESTRICTED_GUEST)); 515 } 516 517 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu); 518 static inline bool vmx_guest_state_valid(struct kvm_vcpu *vcpu) 519 { 520 return is_unrestricted_guest(vcpu) || __vmx_guest_state_valid(vcpu); 521 } 522 523 void dump_vmcs(struct kvm_vcpu *vcpu); 524 525 #endif /* __KVM_X86_VMX_H */ 526