xref: /openbmc/linux/arch/x86/kvm/vmx/vmx.c (revision f94909ce)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <linux/highmem.h>
17 #include <linux/hrtimer.h>
18 #include <linux/kernel.h>
19 #include <linux/kvm_host.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mm.h>
24 #include <linux/objtool.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 #include <linux/entry-kvm.h>
31 
32 #include <asm/apic.h>
33 #include <asm/asm.h>
34 #include <asm/cpu.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/debugreg.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/api.h>
39 #include <asm/idtentry.h>
40 #include <asm/io.h>
41 #include <asm/irq_remapping.h>
42 #include <asm/kexec.h>
43 #include <asm/perf_event.h>
44 #include <asm/mmu_context.h>
45 #include <asm/mshyperv.h>
46 #include <asm/mwait.h>
47 #include <asm/spec-ctrl.h>
48 #include <asm/virtext.h>
49 #include <asm/vmx.h>
50 
51 #include "capabilities.h"
52 #include "cpuid.h"
53 #include "evmcs.h"
54 #include "hyperv.h"
55 #include "kvm_onhyperv.h"
56 #include "irq.h"
57 #include "kvm_cache_regs.h"
58 #include "lapic.h"
59 #include "mmu.h"
60 #include "nested.h"
61 #include "pmu.h"
62 #include "sgx.h"
63 #include "trace.h"
64 #include "vmcs.h"
65 #include "vmcs12.h"
66 #include "vmx.h"
67 #include "x86.h"
68 
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71 
72 #ifdef MODULE
73 static const struct x86_cpu_id vmx_cpu_id[] = {
74 	X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
75 	{}
76 };
77 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
78 #endif
79 
80 bool __read_mostly enable_vpid = 1;
81 module_param_named(vpid, enable_vpid, bool, 0444);
82 
83 static bool __read_mostly enable_vnmi = 1;
84 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
85 
86 bool __read_mostly flexpriority_enabled = 1;
87 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
88 
89 bool __read_mostly enable_ept = 1;
90 module_param_named(ept, enable_ept, bool, S_IRUGO);
91 
92 bool __read_mostly enable_unrestricted_guest = 1;
93 module_param_named(unrestricted_guest,
94 			enable_unrestricted_guest, bool, S_IRUGO);
95 
96 bool __read_mostly enable_ept_ad_bits = 1;
97 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
98 
99 static bool __read_mostly emulate_invalid_guest_state = true;
100 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
101 
102 static bool __read_mostly fasteoi = 1;
103 module_param(fasteoi, bool, S_IRUGO);
104 
105 module_param(enable_apicv, bool, S_IRUGO);
106 
107 /*
108  * If nested=1, nested virtualization is supported, i.e., guests may use
109  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
110  * use VMX instructions.
111  */
112 static bool __read_mostly nested = 1;
113 module_param(nested, bool, S_IRUGO);
114 
115 bool __read_mostly enable_pml = 1;
116 module_param_named(pml, enable_pml, bool, S_IRUGO);
117 
118 static bool __read_mostly dump_invalid_vmcs = 0;
119 module_param(dump_invalid_vmcs, bool, 0644);
120 
121 #define MSR_BITMAP_MODE_X2APIC		1
122 #define MSR_BITMAP_MODE_X2APIC_APICV	2
123 
124 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
125 
126 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
127 static int __read_mostly cpu_preemption_timer_multi;
128 static bool __read_mostly enable_preemption_timer = 1;
129 #ifdef CONFIG_X86_64
130 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
131 #endif
132 
133 extern bool __read_mostly allow_smaller_maxphyaddr;
134 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
135 
136 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
137 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
138 #define KVM_VM_CR0_ALWAYS_ON				\
139 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
140 
141 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
142 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
143 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
144 
145 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
146 
147 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
148 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
149 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
150 	RTIT_STATUS_BYTECNT))
151 
152 /*
153  * List of MSRs that can be directly passed to the guest.
154  * In addition to these x2apic and PT MSRs are handled specially.
155  */
156 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
157 	MSR_IA32_SPEC_CTRL,
158 	MSR_IA32_PRED_CMD,
159 	MSR_IA32_TSC,
160 #ifdef CONFIG_X86_64
161 	MSR_FS_BASE,
162 	MSR_GS_BASE,
163 	MSR_KERNEL_GS_BASE,
164 #endif
165 	MSR_IA32_SYSENTER_CS,
166 	MSR_IA32_SYSENTER_ESP,
167 	MSR_IA32_SYSENTER_EIP,
168 	MSR_CORE_C1_RES,
169 	MSR_CORE_C3_RESIDENCY,
170 	MSR_CORE_C6_RESIDENCY,
171 	MSR_CORE_C7_RESIDENCY,
172 };
173 
174 /*
175  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
176  * ple_gap:    upper bound on the amount of time between two successive
177  *             executions of PAUSE in a loop. Also indicate if ple enabled.
178  *             According to test, this time is usually smaller than 128 cycles.
179  * ple_window: upper bound on the amount of time a guest is allowed to execute
180  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
181  *             less than 2^12 cycles
182  * Time is measured based on a counter that runs at the same rate as the TSC,
183  * refer SDM volume 3b section 21.6.13 & 22.1.3.
184  */
185 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
186 module_param(ple_gap, uint, 0444);
187 
188 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
189 module_param(ple_window, uint, 0444);
190 
191 /* Default doubles per-vcpu window every exit. */
192 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
193 module_param(ple_window_grow, uint, 0444);
194 
195 /* Default resets per-vcpu window every exit to ple_window. */
196 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
197 module_param(ple_window_shrink, uint, 0444);
198 
199 /* Default is to compute the maximum so we can never overflow. */
200 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
201 module_param(ple_window_max, uint, 0444);
202 
203 /* Default is SYSTEM mode, 1 for host-guest mode */
204 int __read_mostly pt_mode = PT_MODE_SYSTEM;
205 module_param(pt_mode, int, S_IRUGO);
206 
207 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
208 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
209 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
210 
211 /* Storage for pre module init parameter parsing */
212 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
213 
214 static const struct {
215 	const char *option;
216 	bool for_parse;
217 } vmentry_l1d_param[] = {
218 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
219 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
220 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
221 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
222 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
223 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
224 };
225 
226 #define L1D_CACHE_ORDER 4
227 static void *vmx_l1d_flush_pages;
228 
229 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
230 {
231 	struct page *page;
232 	unsigned int i;
233 
234 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
235 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
236 		return 0;
237 	}
238 
239 	if (!enable_ept) {
240 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
241 		return 0;
242 	}
243 
244 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
245 		u64 msr;
246 
247 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
248 		if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
249 			l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
250 			return 0;
251 		}
252 	}
253 
254 	/* If set to auto use the default l1tf mitigation method */
255 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
256 		switch (l1tf_mitigation) {
257 		case L1TF_MITIGATION_OFF:
258 			l1tf = VMENTER_L1D_FLUSH_NEVER;
259 			break;
260 		case L1TF_MITIGATION_FLUSH_NOWARN:
261 		case L1TF_MITIGATION_FLUSH:
262 		case L1TF_MITIGATION_FLUSH_NOSMT:
263 			l1tf = VMENTER_L1D_FLUSH_COND;
264 			break;
265 		case L1TF_MITIGATION_FULL:
266 		case L1TF_MITIGATION_FULL_FORCE:
267 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
268 			break;
269 		}
270 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
271 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
272 	}
273 
274 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
275 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
276 		/*
277 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
278 		 * lifetime and so should not be charged to a memcg.
279 		 */
280 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
281 		if (!page)
282 			return -ENOMEM;
283 		vmx_l1d_flush_pages = page_address(page);
284 
285 		/*
286 		 * Initialize each page with a different pattern in
287 		 * order to protect against KSM in the nested
288 		 * virtualization case.
289 		 */
290 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
291 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
292 			       PAGE_SIZE);
293 		}
294 	}
295 
296 	l1tf_vmx_mitigation = l1tf;
297 
298 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
299 		static_branch_enable(&vmx_l1d_should_flush);
300 	else
301 		static_branch_disable(&vmx_l1d_should_flush);
302 
303 	if (l1tf == VMENTER_L1D_FLUSH_COND)
304 		static_branch_enable(&vmx_l1d_flush_cond);
305 	else
306 		static_branch_disable(&vmx_l1d_flush_cond);
307 	return 0;
308 }
309 
310 static int vmentry_l1d_flush_parse(const char *s)
311 {
312 	unsigned int i;
313 
314 	if (s) {
315 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
316 			if (vmentry_l1d_param[i].for_parse &&
317 			    sysfs_streq(s, vmentry_l1d_param[i].option))
318 				return i;
319 		}
320 	}
321 	return -EINVAL;
322 }
323 
324 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
325 {
326 	int l1tf, ret;
327 
328 	l1tf = vmentry_l1d_flush_parse(s);
329 	if (l1tf < 0)
330 		return l1tf;
331 
332 	if (!boot_cpu_has(X86_BUG_L1TF))
333 		return 0;
334 
335 	/*
336 	 * Has vmx_init() run already? If not then this is the pre init
337 	 * parameter parsing. In that case just store the value and let
338 	 * vmx_init() do the proper setup after enable_ept has been
339 	 * established.
340 	 */
341 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
342 		vmentry_l1d_flush_param = l1tf;
343 		return 0;
344 	}
345 
346 	mutex_lock(&vmx_l1d_flush_mutex);
347 	ret = vmx_setup_l1d_flush(l1tf);
348 	mutex_unlock(&vmx_l1d_flush_mutex);
349 	return ret;
350 }
351 
352 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
353 {
354 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
355 		return sprintf(s, "???\n");
356 
357 	return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
358 }
359 
360 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
361 	.set = vmentry_l1d_flush_set,
362 	.get = vmentry_l1d_flush_get,
363 };
364 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
365 
366 static u32 vmx_segment_access_rights(struct kvm_segment *var);
367 
368 void vmx_vmexit(void);
369 
370 #define vmx_insn_failed(fmt...)		\
371 do {					\
372 	WARN_ONCE(1, fmt);		\
373 	pr_warn_ratelimited(fmt);	\
374 } while (0)
375 
376 asmlinkage void vmread_error(unsigned long field, bool fault)
377 {
378 	if (fault)
379 		kvm_spurious_fault();
380 	else
381 		vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
382 }
383 
384 noinline void vmwrite_error(unsigned long field, unsigned long value)
385 {
386 	vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
387 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
388 }
389 
390 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
391 {
392 	vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
393 }
394 
395 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
396 {
397 	vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
398 }
399 
400 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
401 {
402 	vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
403 			ext, vpid, gva);
404 }
405 
406 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
407 {
408 	vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
409 			ext, eptp, gpa);
410 }
411 
412 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
413 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
414 /*
415  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
416  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
417  */
418 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
419 
420 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
421 static DEFINE_SPINLOCK(vmx_vpid_lock);
422 
423 struct vmcs_config vmcs_config;
424 struct vmx_capability vmx_capability;
425 
426 #define VMX_SEGMENT_FIELD(seg)					\
427 	[VCPU_SREG_##seg] = {                                   \
428 		.selector = GUEST_##seg##_SELECTOR,		\
429 		.base = GUEST_##seg##_BASE,		   	\
430 		.limit = GUEST_##seg##_LIMIT,		   	\
431 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
432 	}
433 
434 static const struct kvm_vmx_segment_field {
435 	unsigned selector;
436 	unsigned base;
437 	unsigned limit;
438 	unsigned ar_bytes;
439 } kvm_vmx_segment_fields[] = {
440 	VMX_SEGMENT_FIELD(CS),
441 	VMX_SEGMENT_FIELD(DS),
442 	VMX_SEGMENT_FIELD(ES),
443 	VMX_SEGMENT_FIELD(FS),
444 	VMX_SEGMENT_FIELD(GS),
445 	VMX_SEGMENT_FIELD(SS),
446 	VMX_SEGMENT_FIELD(TR),
447 	VMX_SEGMENT_FIELD(LDTR),
448 };
449 
450 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
451 {
452 	vmx->segment_cache.bitmask = 0;
453 }
454 
455 static unsigned long host_idt_base;
456 
457 #if IS_ENABLED(CONFIG_HYPERV)
458 static bool __read_mostly enlightened_vmcs = true;
459 module_param(enlightened_vmcs, bool, 0444);
460 
461 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
462 {
463 	struct hv_enlightened_vmcs *evmcs;
464 	struct hv_partition_assist_pg **p_hv_pa_pg =
465 			&to_kvm_hv(vcpu->kvm)->hv_pa_pg;
466 	/*
467 	 * Synthetic VM-Exit is not enabled in current code and so All
468 	 * evmcs in singe VM shares same assist page.
469 	 */
470 	if (!*p_hv_pa_pg)
471 		*p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
472 
473 	if (!*p_hv_pa_pg)
474 		return -ENOMEM;
475 
476 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
477 
478 	evmcs->partition_assist_page =
479 		__pa(*p_hv_pa_pg);
480 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
481 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
482 
483 	return 0;
484 }
485 
486 #endif /* IS_ENABLED(CONFIG_HYPERV) */
487 
488 /*
489  * Comment's format: document - errata name - stepping - processor name.
490  * Refer from
491  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
492  */
493 static u32 vmx_preemption_cpu_tfms[] = {
494 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
495 0x000206E6,
496 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
497 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
498 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
499 0x00020652,
500 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
501 0x00020655,
502 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
503 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
504 /*
505  * 320767.pdf - AAP86  - B1 -
506  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
507  */
508 0x000106E5,
509 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
510 0x000106A0,
511 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
512 0x000106A1,
513 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
514 0x000106A4,
515  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
516  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
517  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
518 0x000106A5,
519  /* Xeon E3-1220 V2 */
520 0x000306A8,
521 };
522 
523 static inline bool cpu_has_broken_vmx_preemption_timer(void)
524 {
525 	u32 eax = cpuid_eax(0x00000001), i;
526 
527 	/* Clear the reserved bits */
528 	eax &= ~(0x3U << 14 | 0xfU << 28);
529 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
530 		if (eax == vmx_preemption_cpu_tfms[i])
531 			return true;
532 
533 	return false;
534 }
535 
536 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
537 {
538 	return flexpriority_enabled && lapic_in_kernel(vcpu);
539 }
540 
541 static inline bool report_flexpriority(void)
542 {
543 	return flexpriority_enabled;
544 }
545 
546 static int possible_passthrough_msr_slot(u32 msr)
547 {
548 	u32 i;
549 
550 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
551 		if (vmx_possible_passthrough_msrs[i] == msr)
552 			return i;
553 
554 	return -ENOENT;
555 }
556 
557 static bool is_valid_passthrough_msr(u32 msr)
558 {
559 	bool r;
560 
561 	switch (msr) {
562 	case 0x800 ... 0x8ff:
563 		/* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
564 		return true;
565 	case MSR_IA32_RTIT_STATUS:
566 	case MSR_IA32_RTIT_OUTPUT_BASE:
567 	case MSR_IA32_RTIT_OUTPUT_MASK:
568 	case MSR_IA32_RTIT_CR3_MATCH:
569 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
570 		/* PT MSRs. These are handled in pt_update_intercept_for_msr() */
571 	case MSR_LBR_SELECT:
572 	case MSR_LBR_TOS:
573 	case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
574 	case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
575 	case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
576 	case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
577 	case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
578 		/* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
579 		return true;
580 	}
581 
582 	r = possible_passthrough_msr_slot(msr) != -ENOENT;
583 
584 	WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
585 
586 	return r;
587 }
588 
589 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
590 {
591 	int i;
592 
593 	i = kvm_find_user_return_msr(msr);
594 	if (i >= 0)
595 		return &vmx->guest_uret_msrs[i];
596 	return NULL;
597 }
598 
599 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
600 				  struct vmx_uret_msr *msr, u64 data)
601 {
602 	unsigned int slot = msr - vmx->guest_uret_msrs;
603 	int ret = 0;
604 
605 	u64 old_msr_data = msr->data;
606 	msr->data = data;
607 	if (msr->load_into_hardware) {
608 		preempt_disable();
609 		ret = kvm_set_user_return_msr(slot, msr->data, msr->mask);
610 		preempt_enable();
611 		if (ret)
612 			msr->data = old_msr_data;
613 	}
614 	return ret;
615 }
616 
617 #ifdef CONFIG_KEXEC_CORE
618 static void crash_vmclear_local_loaded_vmcss(void)
619 {
620 	int cpu = raw_smp_processor_id();
621 	struct loaded_vmcs *v;
622 
623 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
624 			    loaded_vmcss_on_cpu_link)
625 		vmcs_clear(v->vmcs);
626 }
627 #endif /* CONFIG_KEXEC_CORE */
628 
629 static void __loaded_vmcs_clear(void *arg)
630 {
631 	struct loaded_vmcs *loaded_vmcs = arg;
632 	int cpu = raw_smp_processor_id();
633 
634 	if (loaded_vmcs->cpu != cpu)
635 		return; /* vcpu migration can race with cpu offline */
636 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
637 		per_cpu(current_vmcs, cpu) = NULL;
638 
639 	vmcs_clear(loaded_vmcs->vmcs);
640 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
641 		vmcs_clear(loaded_vmcs->shadow_vmcs);
642 
643 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
644 
645 	/*
646 	 * Ensure all writes to loaded_vmcs, including deleting it from its
647 	 * current percpu list, complete before setting loaded_vmcs->vcpu to
648 	 * -1, otherwise a different cpu can see vcpu == -1 first and add
649 	 * loaded_vmcs to its percpu list before it's deleted from this cpu's
650 	 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
651 	 */
652 	smp_wmb();
653 
654 	loaded_vmcs->cpu = -1;
655 	loaded_vmcs->launched = 0;
656 }
657 
658 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
659 {
660 	int cpu = loaded_vmcs->cpu;
661 
662 	if (cpu != -1)
663 		smp_call_function_single(cpu,
664 			 __loaded_vmcs_clear, loaded_vmcs, 1);
665 }
666 
667 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
668 				       unsigned field)
669 {
670 	bool ret;
671 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
672 
673 	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
674 		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
675 		vmx->segment_cache.bitmask = 0;
676 	}
677 	ret = vmx->segment_cache.bitmask & mask;
678 	vmx->segment_cache.bitmask |= mask;
679 	return ret;
680 }
681 
682 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
683 {
684 	u16 *p = &vmx->segment_cache.seg[seg].selector;
685 
686 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
687 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
688 	return *p;
689 }
690 
691 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
692 {
693 	ulong *p = &vmx->segment_cache.seg[seg].base;
694 
695 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
696 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
697 	return *p;
698 }
699 
700 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
701 {
702 	u32 *p = &vmx->segment_cache.seg[seg].limit;
703 
704 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
705 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
706 	return *p;
707 }
708 
709 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
710 {
711 	u32 *p = &vmx->segment_cache.seg[seg].ar;
712 
713 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
714 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
715 	return *p;
716 }
717 
718 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
719 {
720 	u32 eb;
721 
722 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
723 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
724 	/*
725 	 * Guest access to VMware backdoor ports could legitimately
726 	 * trigger #GP because of TSS I/O permission bitmap.
727 	 * We intercept those #GP and allow access to them anyway
728 	 * as VMware does.
729 	 */
730 	if (enable_vmware_backdoor)
731 		eb |= (1u << GP_VECTOR);
732 	if ((vcpu->guest_debug &
733 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
734 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
735 		eb |= 1u << BP_VECTOR;
736 	if (to_vmx(vcpu)->rmode.vm86_active)
737 		eb = ~0;
738 	if (!vmx_need_pf_intercept(vcpu))
739 		eb &= ~(1u << PF_VECTOR);
740 
741 	/* When we are running a nested L2 guest and L1 specified for it a
742 	 * certain exception bitmap, we must trap the same exceptions and pass
743 	 * them to L1. When running L2, we will only handle the exceptions
744 	 * specified above if L1 did not want them.
745 	 */
746 	if (is_guest_mode(vcpu))
747 		eb |= get_vmcs12(vcpu)->exception_bitmap;
748         else {
749 		int mask = 0, match = 0;
750 
751 		if (enable_ept && (eb & (1u << PF_VECTOR))) {
752 			/*
753 			 * If EPT is enabled, #PF is currently only intercepted
754 			 * if MAXPHYADDR is smaller on the guest than on the
755 			 * host.  In that case we only care about present,
756 			 * non-reserved faults.  For vmcs02, however, PFEC_MASK
757 			 * and PFEC_MATCH are set in prepare_vmcs02_rare.
758 			 */
759 			mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
760 			match = PFERR_PRESENT_MASK;
761 		}
762 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
763 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
764 	}
765 
766 	vmcs_write32(EXCEPTION_BITMAP, eb);
767 }
768 
769 /*
770  * Check if MSR is intercepted for currently loaded MSR bitmap.
771  */
772 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
773 {
774 	if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
775 		return true;
776 
777 	return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap,
778 					 MSR_IA32_SPEC_CTRL);
779 }
780 
781 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
782 		unsigned long entry, unsigned long exit)
783 {
784 	vm_entry_controls_clearbit(vmx, entry);
785 	vm_exit_controls_clearbit(vmx, exit);
786 }
787 
788 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
789 {
790 	unsigned int i;
791 
792 	for (i = 0; i < m->nr; ++i) {
793 		if (m->val[i].index == msr)
794 			return i;
795 	}
796 	return -ENOENT;
797 }
798 
799 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
800 {
801 	int i;
802 	struct msr_autoload *m = &vmx->msr_autoload;
803 
804 	switch (msr) {
805 	case MSR_EFER:
806 		if (cpu_has_load_ia32_efer()) {
807 			clear_atomic_switch_msr_special(vmx,
808 					VM_ENTRY_LOAD_IA32_EFER,
809 					VM_EXIT_LOAD_IA32_EFER);
810 			return;
811 		}
812 		break;
813 	case MSR_CORE_PERF_GLOBAL_CTRL:
814 		if (cpu_has_load_perf_global_ctrl()) {
815 			clear_atomic_switch_msr_special(vmx,
816 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
817 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
818 			return;
819 		}
820 		break;
821 	}
822 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
823 	if (i < 0)
824 		goto skip_guest;
825 	--m->guest.nr;
826 	m->guest.val[i] = m->guest.val[m->guest.nr];
827 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
828 
829 skip_guest:
830 	i = vmx_find_loadstore_msr_slot(&m->host, msr);
831 	if (i < 0)
832 		return;
833 
834 	--m->host.nr;
835 	m->host.val[i] = m->host.val[m->host.nr];
836 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
837 }
838 
839 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
840 		unsigned long entry, unsigned long exit,
841 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
842 		u64 guest_val, u64 host_val)
843 {
844 	vmcs_write64(guest_val_vmcs, guest_val);
845 	if (host_val_vmcs != HOST_IA32_EFER)
846 		vmcs_write64(host_val_vmcs, host_val);
847 	vm_entry_controls_setbit(vmx, entry);
848 	vm_exit_controls_setbit(vmx, exit);
849 }
850 
851 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
852 				  u64 guest_val, u64 host_val, bool entry_only)
853 {
854 	int i, j = 0;
855 	struct msr_autoload *m = &vmx->msr_autoload;
856 
857 	switch (msr) {
858 	case MSR_EFER:
859 		if (cpu_has_load_ia32_efer()) {
860 			add_atomic_switch_msr_special(vmx,
861 					VM_ENTRY_LOAD_IA32_EFER,
862 					VM_EXIT_LOAD_IA32_EFER,
863 					GUEST_IA32_EFER,
864 					HOST_IA32_EFER,
865 					guest_val, host_val);
866 			return;
867 		}
868 		break;
869 	case MSR_CORE_PERF_GLOBAL_CTRL:
870 		if (cpu_has_load_perf_global_ctrl()) {
871 			add_atomic_switch_msr_special(vmx,
872 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
873 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
874 					GUEST_IA32_PERF_GLOBAL_CTRL,
875 					HOST_IA32_PERF_GLOBAL_CTRL,
876 					guest_val, host_val);
877 			return;
878 		}
879 		break;
880 	case MSR_IA32_PEBS_ENABLE:
881 		/* PEBS needs a quiescent period after being disabled (to write
882 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
883 		 * provide that period, so a CPU could write host's record into
884 		 * guest's memory.
885 		 */
886 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
887 	}
888 
889 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
890 	if (!entry_only)
891 		j = vmx_find_loadstore_msr_slot(&m->host, msr);
892 
893 	if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
894 	    (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
895 		printk_once(KERN_WARNING "Not enough msr switch entries. "
896 				"Can't add msr %x\n", msr);
897 		return;
898 	}
899 	if (i < 0) {
900 		i = m->guest.nr++;
901 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
902 	}
903 	m->guest.val[i].index = msr;
904 	m->guest.val[i].value = guest_val;
905 
906 	if (entry_only)
907 		return;
908 
909 	if (j < 0) {
910 		j = m->host.nr++;
911 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
912 	}
913 	m->host.val[j].index = msr;
914 	m->host.val[j].value = host_val;
915 }
916 
917 static bool update_transition_efer(struct vcpu_vmx *vmx)
918 {
919 	u64 guest_efer = vmx->vcpu.arch.efer;
920 	u64 ignore_bits = 0;
921 	int i;
922 
923 	/* Shadow paging assumes NX to be available.  */
924 	if (!enable_ept)
925 		guest_efer |= EFER_NX;
926 
927 	/*
928 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
929 	 */
930 	ignore_bits |= EFER_SCE;
931 #ifdef CONFIG_X86_64
932 	ignore_bits |= EFER_LMA | EFER_LME;
933 	/* SCE is meaningful only in long mode on Intel */
934 	if (guest_efer & EFER_LMA)
935 		ignore_bits &= ~(u64)EFER_SCE;
936 #endif
937 
938 	/*
939 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
940 	 * On CPUs that support "load IA32_EFER", always switch EFER
941 	 * atomically, since it's faster than switching it manually.
942 	 */
943 	if (cpu_has_load_ia32_efer() ||
944 	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
945 		if (!(guest_efer & EFER_LMA))
946 			guest_efer &= ~EFER_LME;
947 		if (guest_efer != host_efer)
948 			add_atomic_switch_msr(vmx, MSR_EFER,
949 					      guest_efer, host_efer, false);
950 		else
951 			clear_atomic_switch_msr(vmx, MSR_EFER);
952 		return false;
953 	}
954 
955 	i = kvm_find_user_return_msr(MSR_EFER);
956 	if (i < 0)
957 		return false;
958 
959 	clear_atomic_switch_msr(vmx, MSR_EFER);
960 
961 	guest_efer &= ~ignore_bits;
962 	guest_efer |= host_efer & ignore_bits;
963 
964 	vmx->guest_uret_msrs[i].data = guest_efer;
965 	vmx->guest_uret_msrs[i].mask = ~ignore_bits;
966 
967 	return true;
968 }
969 
970 #ifdef CONFIG_X86_32
971 /*
972  * On 32-bit kernels, VM exits still load the FS and GS bases from the
973  * VMCS rather than the segment table.  KVM uses this helper to figure
974  * out the current bases to poke them into the VMCS before entry.
975  */
976 static unsigned long segment_base(u16 selector)
977 {
978 	struct desc_struct *table;
979 	unsigned long v;
980 
981 	if (!(selector & ~SEGMENT_RPL_MASK))
982 		return 0;
983 
984 	table = get_current_gdt_ro();
985 
986 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
987 		u16 ldt_selector = kvm_read_ldt();
988 
989 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
990 			return 0;
991 
992 		table = (struct desc_struct *)segment_base(ldt_selector);
993 	}
994 	v = get_desc_base(&table[selector >> 3]);
995 	return v;
996 }
997 #endif
998 
999 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1000 {
1001 	return vmx_pt_mode_is_host_guest() &&
1002 	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1003 }
1004 
1005 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1006 {
1007 	/* The base must be 128-byte aligned and a legal physical address. */
1008 	return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1009 }
1010 
1011 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1012 {
1013 	u32 i;
1014 
1015 	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1016 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1017 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1018 	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1019 	for (i = 0; i < addr_range; i++) {
1020 		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1021 		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1022 	}
1023 }
1024 
1025 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1026 {
1027 	u32 i;
1028 
1029 	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1030 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1031 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1032 	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1033 	for (i = 0; i < addr_range; i++) {
1034 		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1035 		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1036 	}
1037 }
1038 
1039 static void pt_guest_enter(struct vcpu_vmx *vmx)
1040 {
1041 	if (vmx_pt_mode_is_system())
1042 		return;
1043 
1044 	/*
1045 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1046 	 * Save host state before VM entry.
1047 	 */
1048 	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1049 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1050 		wrmsrl(MSR_IA32_RTIT_CTL, 0);
1051 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1052 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1053 	}
1054 }
1055 
1056 static void pt_guest_exit(struct vcpu_vmx *vmx)
1057 {
1058 	if (vmx_pt_mode_is_system())
1059 		return;
1060 
1061 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1062 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1063 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1064 	}
1065 
1066 	/*
1067 	 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1068 	 * i.e. RTIT_CTL is always cleared on VM-Exit.  Restore it if necessary.
1069 	 */
1070 	if (vmx->pt_desc.host.ctl)
1071 		wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1072 }
1073 
1074 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1075 			unsigned long fs_base, unsigned long gs_base)
1076 {
1077 	if (unlikely(fs_sel != host->fs_sel)) {
1078 		if (!(fs_sel & 7))
1079 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1080 		else
1081 			vmcs_write16(HOST_FS_SELECTOR, 0);
1082 		host->fs_sel = fs_sel;
1083 	}
1084 	if (unlikely(gs_sel != host->gs_sel)) {
1085 		if (!(gs_sel & 7))
1086 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1087 		else
1088 			vmcs_write16(HOST_GS_SELECTOR, 0);
1089 		host->gs_sel = gs_sel;
1090 	}
1091 	if (unlikely(fs_base != host->fs_base)) {
1092 		vmcs_writel(HOST_FS_BASE, fs_base);
1093 		host->fs_base = fs_base;
1094 	}
1095 	if (unlikely(gs_base != host->gs_base)) {
1096 		vmcs_writel(HOST_GS_BASE, gs_base);
1097 		host->gs_base = gs_base;
1098 	}
1099 }
1100 
1101 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1102 {
1103 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1104 	struct vmcs_host_state *host_state;
1105 #ifdef CONFIG_X86_64
1106 	int cpu = raw_smp_processor_id();
1107 #endif
1108 	unsigned long fs_base, gs_base;
1109 	u16 fs_sel, gs_sel;
1110 	int i;
1111 
1112 	vmx->req_immediate_exit = false;
1113 
1114 	/*
1115 	 * Note that guest MSRs to be saved/restored can also be changed
1116 	 * when guest state is loaded. This happens when guest transitions
1117 	 * to/from long-mode by setting MSR_EFER.LMA.
1118 	 */
1119 	if (!vmx->guest_uret_msrs_loaded) {
1120 		vmx->guest_uret_msrs_loaded = true;
1121 		for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1122 			if (!vmx->guest_uret_msrs[i].load_into_hardware)
1123 				continue;
1124 
1125 			kvm_set_user_return_msr(i,
1126 						vmx->guest_uret_msrs[i].data,
1127 						vmx->guest_uret_msrs[i].mask);
1128 		}
1129 	}
1130 
1131     	if (vmx->nested.need_vmcs12_to_shadow_sync)
1132 		nested_sync_vmcs12_to_shadow(vcpu);
1133 
1134 	if (vmx->guest_state_loaded)
1135 		return;
1136 
1137 	host_state = &vmx->loaded_vmcs->host_state;
1138 
1139 	/*
1140 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1141 	 * allow segment selectors with cpl > 0 or ti == 1.
1142 	 */
1143 	host_state->ldt_sel = kvm_read_ldt();
1144 
1145 #ifdef CONFIG_X86_64
1146 	savesegment(ds, host_state->ds_sel);
1147 	savesegment(es, host_state->es_sel);
1148 
1149 	gs_base = cpu_kernelmode_gs_base(cpu);
1150 	if (likely(is_64bit_mm(current->mm))) {
1151 		current_save_fsgs();
1152 		fs_sel = current->thread.fsindex;
1153 		gs_sel = current->thread.gsindex;
1154 		fs_base = current->thread.fsbase;
1155 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1156 	} else {
1157 		savesegment(fs, fs_sel);
1158 		savesegment(gs, gs_sel);
1159 		fs_base = read_msr(MSR_FS_BASE);
1160 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1161 	}
1162 
1163 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1164 #else
1165 	savesegment(fs, fs_sel);
1166 	savesegment(gs, gs_sel);
1167 	fs_base = segment_base(fs_sel);
1168 	gs_base = segment_base(gs_sel);
1169 #endif
1170 
1171 	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1172 	vmx->guest_state_loaded = true;
1173 }
1174 
1175 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1176 {
1177 	struct vmcs_host_state *host_state;
1178 
1179 	if (!vmx->guest_state_loaded)
1180 		return;
1181 
1182 	host_state = &vmx->loaded_vmcs->host_state;
1183 
1184 	++vmx->vcpu.stat.host_state_reload;
1185 
1186 #ifdef CONFIG_X86_64
1187 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1188 #endif
1189 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1190 		kvm_load_ldt(host_state->ldt_sel);
1191 #ifdef CONFIG_X86_64
1192 		load_gs_index(host_state->gs_sel);
1193 #else
1194 		loadsegment(gs, host_state->gs_sel);
1195 #endif
1196 	}
1197 	if (host_state->fs_sel & 7)
1198 		loadsegment(fs, host_state->fs_sel);
1199 #ifdef CONFIG_X86_64
1200 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1201 		loadsegment(ds, host_state->ds_sel);
1202 		loadsegment(es, host_state->es_sel);
1203 	}
1204 #endif
1205 	invalidate_tss_limit();
1206 #ifdef CONFIG_X86_64
1207 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1208 #endif
1209 	load_fixmap_gdt(raw_smp_processor_id());
1210 	vmx->guest_state_loaded = false;
1211 	vmx->guest_uret_msrs_loaded = false;
1212 }
1213 
1214 #ifdef CONFIG_X86_64
1215 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1216 {
1217 	preempt_disable();
1218 	if (vmx->guest_state_loaded)
1219 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1220 	preempt_enable();
1221 	return vmx->msr_guest_kernel_gs_base;
1222 }
1223 
1224 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1225 {
1226 	preempt_disable();
1227 	if (vmx->guest_state_loaded)
1228 		wrmsrl(MSR_KERNEL_GS_BASE, data);
1229 	preempt_enable();
1230 	vmx->msr_guest_kernel_gs_base = data;
1231 }
1232 #endif
1233 
1234 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1235 			struct loaded_vmcs *buddy)
1236 {
1237 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1238 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1239 	struct vmcs *prev;
1240 
1241 	if (!already_loaded) {
1242 		loaded_vmcs_clear(vmx->loaded_vmcs);
1243 		local_irq_disable();
1244 
1245 		/*
1246 		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1247 		 * this cpu's percpu list, otherwise it may not yet be deleted
1248 		 * from its previous cpu's percpu list.  Pairs with the
1249 		 * smb_wmb() in __loaded_vmcs_clear().
1250 		 */
1251 		smp_rmb();
1252 
1253 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1254 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1255 		local_irq_enable();
1256 	}
1257 
1258 	prev = per_cpu(current_vmcs, cpu);
1259 	if (prev != vmx->loaded_vmcs->vmcs) {
1260 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1261 		vmcs_load(vmx->loaded_vmcs->vmcs);
1262 
1263 		/*
1264 		 * No indirect branch prediction barrier needed when switching
1265 		 * the active VMCS within a guest, e.g. on nested VM-Enter.
1266 		 * The L1 VMM can protect itself with retpolines, IBPB or IBRS.
1267 		 */
1268 		if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1269 			indirect_branch_prediction_barrier();
1270 	}
1271 
1272 	if (!already_loaded) {
1273 		void *gdt = get_current_gdt_ro();
1274 		unsigned long sysenter_esp;
1275 
1276 		/*
1277 		 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1278 		 * TLB entries from its previous association with the vCPU.
1279 		 */
1280 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1281 
1282 		/*
1283 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1284 		 * processors.  See 22.2.4.
1285 		 */
1286 		vmcs_writel(HOST_TR_BASE,
1287 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1288 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1289 
1290 		rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1291 		vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1292 
1293 		vmx->loaded_vmcs->cpu = cpu;
1294 	}
1295 }
1296 
1297 /*
1298  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1299  * vcpu mutex is already taken.
1300  */
1301 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1302 {
1303 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1304 
1305 	vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1306 
1307 	vmx_vcpu_pi_load(vcpu, cpu);
1308 
1309 	vmx->host_debugctlmsr = get_debugctlmsr();
1310 }
1311 
1312 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1313 {
1314 	vmx_vcpu_pi_put(vcpu);
1315 
1316 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1317 }
1318 
1319 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1320 {
1321 	return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1322 }
1323 
1324 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1325 {
1326 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1327 	unsigned long rflags, save_rflags;
1328 
1329 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1330 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1331 		rflags = vmcs_readl(GUEST_RFLAGS);
1332 		if (vmx->rmode.vm86_active) {
1333 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1334 			save_rflags = vmx->rmode.save_rflags;
1335 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1336 		}
1337 		vmx->rflags = rflags;
1338 	}
1339 	return vmx->rflags;
1340 }
1341 
1342 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1343 {
1344 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1345 	unsigned long old_rflags;
1346 
1347 	if (is_unrestricted_guest(vcpu)) {
1348 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1349 		vmx->rflags = rflags;
1350 		vmcs_writel(GUEST_RFLAGS, rflags);
1351 		return;
1352 	}
1353 
1354 	old_rflags = vmx_get_rflags(vcpu);
1355 	vmx->rflags = rflags;
1356 	if (vmx->rmode.vm86_active) {
1357 		vmx->rmode.save_rflags = rflags;
1358 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1359 	}
1360 	vmcs_writel(GUEST_RFLAGS, rflags);
1361 
1362 	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1363 		vmx->emulation_required = vmx_emulation_required(vcpu);
1364 }
1365 
1366 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1367 {
1368 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1369 	int ret = 0;
1370 
1371 	if (interruptibility & GUEST_INTR_STATE_STI)
1372 		ret |= KVM_X86_SHADOW_INT_STI;
1373 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1374 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1375 
1376 	return ret;
1377 }
1378 
1379 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1380 {
1381 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1382 	u32 interruptibility = interruptibility_old;
1383 
1384 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1385 
1386 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1387 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1388 	else if (mask & KVM_X86_SHADOW_INT_STI)
1389 		interruptibility |= GUEST_INTR_STATE_STI;
1390 
1391 	if ((interruptibility != interruptibility_old))
1392 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1393 }
1394 
1395 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1396 {
1397 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1398 	unsigned long value;
1399 
1400 	/*
1401 	 * Any MSR write that attempts to change bits marked reserved will
1402 	 * case a #GP fault.
1403 	 */
1404 	if (data & vmx->pt_desc.ctl_bitmask)
1405 		return 1;
1406 
1407 	/*
1408 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1409 	 * result in a #GP unless the same write also clears TraceEn.
1410 	 */
1411 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1412 		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1413 		return 1;
1414 
1415 	/*
1416 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1417 	 * and FabricEn would cause #GP, if
1418 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1419 	 */
1420 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1421 		!(data & RTIT_CTL_FABRIC_EN) &&
1422 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1423 					PT_CAP_single_range_output))
1424 		return 1;
1425 
1426 	/*
1427 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1428 	 * utilize encodings marked reserved will cause a #GP fault.
1429 	 */
1430 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1431 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1432 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1433 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1434 		return 1;
1435 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1436 						PT_CAP_cycle_thresholds);
1437 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1438 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1439 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1440 		return 1;
1441 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1442 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1443 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1444 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1445 		return 1;
1446 
1447 	/*
1448 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1449 	 * cause a #GP fault.
1450 	 */
1451 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1452 	if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1453 		return 1;
1454 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1455 	if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1456 		return 1;
1457 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1458 	if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1459 		return 1;
1460 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1461 	if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1462 		return 1;
1463 
1464 	return 0;
1465 }
1466 
1467 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
1468 {
1469 	/*
1470 	 * Emulation of instructions in SGX enclaves is impossible as RIP does
1471 	 * not point  tthe failing instruction, and even if it did, the code
1472 	 * stream is inaccessible.  Inject #UD instead of exiting to userspace
1473 	 * so that guest userspace can't DoS the guest simply by triggering
1474 	 * emulation (enclaves are CPL3 only).
1475 	 */
1476 	if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1477 		kvm_queue_exception(vcpu, UD_VECTOR);
1478 		return false;
1479 	}
1480 	return true;
1481 }
1482 
1483 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1484 {
1485 	union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1486 	unsigned long rip, orig_rip;
1487 	u32 instr_len;
1488 
1489 	/*
1490 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1491 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1492 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1493 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1494 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1495 	 * i.e. we end up advancing IP with some random value.
1496 	 */
1497 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1498 	    exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1499 		instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1500 
1501 		/*
1502 		 * Emulating an enclave's instructions isn't supported as KVM
1503 		 * cannot access the enclave's memory or its true RIP, e.g. the
1504 		 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1505 		 * the RIP that actually triggered the VM-Exit.  But, because
1506 		 * most instructions that cause VM-Exit will #UD in an enclave,
1507 		 * most instruction-based VM-Exits simply do not occur.
1508 		 *
1509 		 * There are a few exceptions, notably the debug instructions
1510 		 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1511 		 * and generate #DB/#BP as expected, which KVM might intercept.
1512 		 * But again, the CPU does the dirty work and saves an instr
1513 		 * length of zero so VMMs don't shoot themselves in the foot.
1514 		 * WARN if KVM tries to skip a non-zero length instruction on
1515 		 * a VM-Exit from an enclave.
1516 		 */
1517 		if (!instr_len)
1518 			goto rip_updated;
1519 
1520 		WARN(exit_reason.enclave_mode,
1521 		     "KVM: skipping instruction after SGX enclave VM-Exit");
1522 
1523 		orig_rip = kvm_rip_read(vcpu);
1524 		rip = orig_rip + instr_len;
1525 #ifdef CONFIG_X86_64
1526 		/*
1527 		 * We need to mask out the high 32 bits of RIP if not in 64-bit
1528 		 * mode, but just finding out that we are in 64-bit mode is
1529 		 * quite expensive.  Only do it if there was a carry.
1530 		 */
1531 		if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1532 			rip = (u32)rip;
1533 #endif
1534 		kvm_rip_write(vcpu, rip);
1535 	} else {
1536 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1537 			return 0;
1538 	}
1539 
1540 rip_updated:
1541 	/* skipping an emulated instruction also counts */
1542 	vmx_set_interrupt_shadow(vcpu, 0);
1543 
1544 	return 1;
1545 }
1546 
1547 /*
1548  * Recognizes a pending MTF VM-exit and records the nested state for later
1549  * delivery.
1550  */
1551 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1552 {
1553 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1554 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1555 
1556 	if (!is_guest_mode(vcpu))
1557 		return;
1558 
1559 	/*
1560 	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1561 	 * T-bit traps. As instruction emulation is completed (i.e. at the
1562 	 * instruction boundary), any #DB exception pending delivery must be a
1563 	 * debug-trap. Record the pending MTF state to be delivered in
1564 	 * vmx_check_nested_events().
1565 	 */
1566 	if (nested_cpu_has_mtf(vmcs12) &&
1567 	    (!vcpu->arch.exception.pending ||
1568 	     vcpu->arch.exception.nr == DB_VECTOR))
1569 		vmx->nested.mtf_pending = true;
1570 	else
1571 		vmx->nested.mtf_pending = false;
1572 }
1573 
1574 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1575 {
1576 	vmx_update_emulated_instruction(vcpu);
1577 	return skip_emulated_instruction(vcpu);
1578 }
1579 
1580 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1581 {
1582 	/*
1583 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1584 	 * explicitly skip the instruction because if the HLT state is set,
1585 	 * then the instruction is already executing and RIP has already been
1586 	 * advanced.
1587 	 */
1588 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1589 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1590 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1591 }
1592 
1593 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1594 {
1595 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1596 	unsigned nr = vcpu->arch.exception.nr;
1597 	bool has_error_code = vcpu->arch.exception.has_error_code;
1598 	u32 error_code = vcpu->arch.exception.error_code;
1599 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
1600 
1601 	kvm_deliver_exception_payload(vcpu);
1602 
1603 	if (has_error_code) {
1604 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1605 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1606 	}
1607 
1608 	if (vmx->rmode.vm86_active) {
1609 		int inc_eip = 0;
1610 		if (kvm_exception_is_soft(nr))
1611 			inc_eip = vcpu->arch.event_exit_inst_len;
1612 		kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1613 		return;
1614 	}
1615 
1616 	WARN_ON_ONCE(vmx->emulation_required);
1617 
1618 	if (kvm_exception_is_soft(nr)) {
1619 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1620 			     vmx->vcpu.arch.event_exit_inst_len);
1621 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1622 	} else
1623 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1624 
1625 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1626 
1627 	vmx_clear_hlt(vcpu);
1628 }
1629 
1630 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1631 			       bool load_into_hardware)
1632 {
1633 	struct vmx_uret_msr *uret_msr;
1634 
1635 	uret_msr = vmx_find_uret_msr(vmx, msr);
1636 	if (!uret_msr)
1637 		return;
1638 
1639 	uret_msr->load_into_hardware = load_into_hardware;
1640 }
1641 
1642 /*
1643  * Configuring user return MSRs to automatically save, load, and restore MSRs
1644  * that need to be shoved into hardware when running the guest.  Note, omitting
1645  * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1646  * loaded into hardware when running the guest.
1647  */
1648 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1649 {
1650 #ifdef CONFIG_X86_64
1651 	bool load_syscall_msrs;
1652 
1653 	/*
1654 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1655 	 * when EFER.SCE is set.
1656 	 */
1657 	load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1658 			    (vmx->vcpu.arch.efer & EFER_SCE);
1659 
1660 	vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1661 	vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1662 	vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1663 #endif
1664 	vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1665 
1666 	vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1667 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1668 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1669 
1670 	/*
1671 	 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1672 	 * kernel and old userspace.  If those guests run on a tsx=off host, do
1673 	 * allow guests to use TSX_CTRL, but don't change the value in hardware
1674 	 * so that TSX remains always disabled.
1675 	 */
1676 	vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1677 
1678 	/*
1679 	 * The set of MSRs to load may have changed, reload MSRs before the
1680 	 * next VM-Enter.
1681 	 */
1682 	vmx->guest_uret_msrs_loaded = false;
1683 }
1684 
1685 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1686 {
1687 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1688 
1689 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1690 		return vmcs12->tsc_offset;
1691 
1692 	return 0;
1693 }
1694 
1695 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1696 {
1697 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1698 
1699 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1700 	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1701 		return vmcs12->tsc_multiplier;
1702 
1703 	return kvm_default_tsc_scaling_ratio;
1704 }
1705 
1706 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1707 {
1708 	vmcs_write64(TSC_OFFSET, offset);
1709 }
1710 
1711 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1712 {
1713 	vmcs_write64(TSC_MULTIPLIER, multiplier);
1714 }
1715 
1716 /*
1717  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1718  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1719  * all guests if the "nested" module option is off, and can also be disabled
1720  * for a single guest by disabling its VMX cpuid bit.
1721  */
1722 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1723 {
1724 	return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1725 }
1726 
1727 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1728 						 uint64_t val)
1729 {
1730 	uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1731 
1732 	return !(val & ~valid_bits);
1733 }
1734 
1735 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1736 {
1737 	switch (msr->index) {
1738 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1739 		if (!nested)
1740 			return 1;
1741 		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1742 	case MSR_IA32_PERF_CAPABILITIES:
1743 		msr->data = vmx_get_perf_capabilities();
1744 		return 0;
1745 	default:
1746 		return KVM_MSR_RET_INVALID;
1747 	}
1748 }
1749 
1750 /*
1751  * Reads an msr value (of 'msr_index') into 'pdata'.
1752  * Returns 0 on success, non-0 otherwise.
1753  * Assumes vcpu_load() was already called.
1754  */
1755 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1756 {
1757 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1758 	struct vmx_uret_msr *msr;
1759 	u32 index;
1760 
1761 	switch (msr_info->index) {
1762 #ifdef CONFIG_X86_64
1763 	case MSR_FS_BASE:
1764 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
1765 		break;
1766 	case MSR_GS_BASE:
1767 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
1768 		break;
1769 	case MSR_KERNEL_GS_BASE:
1770 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1771 		break;
1772 #endif
1773 	case MSR_EFER:
1774 		return kvm_get_msr_common(vcpu, msr_info);
1775 	case MSR_IA32_TSX_CTRL:
1776 		if (!msr_info->host_initiated &&
1777 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1778 			return 1;
1779 		goto find_uret_msr;
1780 	case MSR_IA32_UMWAIT_CONTROL:
1781 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1782 			return 1;
1783 
1784 		msr_info->data = vmx->msr_ia32_umwait_control;
1785 		break;
1786 	case MSR_IA32_SPEC_CTRL:
1787 		if (!msr_info->host_initiated &&
1788 		    !guest_has_spec_ctrl_msr(vcpu))
1789 			return 1;
1790 
1791 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
1792 		break;
1793 	case MSR_IA32_SYSENTER_CS:
1794 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1795 		break;
1796 	case MSR_IA32_SYSENTER_EIP:
1797 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1798 		break;
1799 	case MSR_IA32_SYSENTER_ESP:
1800 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1801 		break;
1802 	case MSR_IA32_BNDCFGS:
1803 		if (!kvm_mpx_supported() ||
1804 		    (!msr_info->host_initiated &&
1805 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1806 			return 1;
1807 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1808 		break;
1809 	case MSR_IA32_MCG_EXT_CTL:
1810 		if (!msr_info->host_initiated &&
1811 		    !(vmx->msr_ia32_feature_control &
1812 		      FEAT_CTL_LMCE_ENABLED))
1813 			return 1;
1814 		msr_info->data = vcpu->arch.mcg_ext_ctl;
1815 		break;
1816 	case MSR_IA32_FEAT_CTL:
1817 		msr_info->data = vmx->msr_ia32_feature_control;
1818 		break;
1819 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
1820 		if (!msr_info->host_initiated &&
1821 		    !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
1822 			return 1;
1823 		msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
1824 			[msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
1825 		break;
1826 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1827 		if (!nested_vmx_allowed(vcpu))
1828 			return 1;
1829 		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1830 				    &msr_info->data))
1831 			return 1;
1832 		/*
1833 		 * Enlightened VMCS v1 doesn't have certain VMCS fields but
1834 		 * instead of just ignoring the features, different Hyper-V
1835 		 * versions are either trying to use them and fail or do some
1836 		 * sanity checking and refuse to boot. Filter all unsupported
1837 		 * features out.
1838 		 */
1839 		if (!msr_info->host_initiated &&
1840 		    vmx->nested.enlightened_vmcs_enabled)
1841 			nested_evmcs_filter_control_msr(msr_info->index,
1842 							&msr_info->data);
1843 		break;
1844 	case MSR_IA32_RTIT_CTL:
1845 		if (!vmx_pt_mode_is_host_guest())
1846 			return 1;
1847 		msr_info->data = vmx->pt_desc.guest.ctl;
1848 		break;
1849 	case MSR_IA32_RTIT_STATUS:
1850 		if (!vmx_pt_mode_is_host_guest())
1851 			return 1;
1852 		msr_info->data = vmx->pt_desc.guest.status;
1853 		break;
1854 	case MSR_IA32_RTIT_CR3_MATCH:
1855 		if (!vmx_pt_mode_is_host_guest() ||
1856 			!intel_pt_validate_cap(vmx->pt_desc.caps,
1857 						PT_CAP_cr3_filtering))
1858 			return 1;
1859 		msr_info->data = vmx->pt_desc.guest.cr3_match;
1860 		break;
1861 	case MSR_IA32_RTIT_OUTPUT_BASE:
1862 		if (!vmx_pt_mode_is_host_guest() ||
1863 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1864 					PT_CAP_topa_output) &&
1865 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1866 					PT_CAP_single_range_output)))
1867 			return 1;
1868 		msr_info->data = vmx->pt_desc.guest.output_base;
1869 		break;
1870 	case MSR_IA32_RTIT_OUTPUT_MASK:
1871 		if (!vmx_pt_mode_is_host_guest() ||
1872 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1873 					PT_CAP_topa_output) &&
1874 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1875 					PT_CAP_single_range_output)))
1876 			return 1;
1877 		msr_info->data = vmx->pt_desc.guest.output_mask;
1878 		break;
1879 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1880 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1881 		if (!vmx_pt_mode_is_host_guest() ||
1882 		    (index >= 2 * vmx->pt_desc.num_address_ranges))
1883 			return 1;
1884 		if (index % 2)
1885 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1886 		else
1887 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1888 		break;
1889 	case MSR_IA32_DEBUGCTLMSR:
1890 		msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
1891 		break;
1892 	default:
1893 	find_uret_msr:
1894 		msr = vmx_find_uret_msr(vmx, msr_info->index);
1895 		if (msr) {
1896 			msr_info->data = msr->data;
1897 			break;
1898 		}
1899 		return kvm_get_msr_common(vcpu, msr_info);
1900 	}
1901 
1902 	return 0;
1903 }
1904 
1905 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
1906 						    u64 data)
1907 {
1908 #ifdef CONFIG_X86_64
1909 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
1910 		return (u32)data;
1911 #endif
1912 	return (unsigned long)data;
1913 }
1914 
1915 static u64 vcpu_supported_debugctl(struct kvm_vcpu *vcpu)
1916 {
1917 	u64 debugctl = vmx_supported_debugctl();
1918 
1919 	if (!intel_pmu_lbr_is_enabled(vcpu))
1920 		debugctl &= ~DEBUGCTLMSR_LBR_MASK;
1921 
1922 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1923 		debugctl &= ~DEBUGCTLMSR_BUS_LOCK_DETECT;
1924 
1925 	return debugctl;
1926 }
1927 
1928 /*
1929  * Writes msr value into the appropriate "register".
1930  * Returns 0 on success, non-0 otherwise.
1931  * Assumes vcpu_load() was already called.
1932  */
1933 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1934 {
1935 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1936 	struct vmx_uret_msr *msr;
1937 	int ret = 0;
1938 	u32 msr_index = msr_info->index;
1939 	u64 data = msr_info->data;
1940 	u32 index;
1941 
1942 	switch (msr_index) {
1943 	case MSR_EFER:
1944 		ret = kvm_set_msr_common(vcpu, msr_info);
1945 		break;
1946 #ifdef CONFIG_X86_64
1947 	case MSR_FS_BASE:
1948 		vmx_segment_cache_clear(vmx);
1949 		vmcs_writel(GUEST_FS_BASE, data);
1950 		break;
1951 	case MSR_GS_BASE:
1952 		vmx_segment_cache_clear(vmx);
1953 		vmcs_writel(GUEST_GS_BASE, data);
1954 		break;
1955 	case MSR_KERNEL_GS_BASE:
1956 		vmx_write_guest_kernel_gs_base(vmx, data);
1957 		break;
1958 #endif
1959 	case MSR_IA32_SYSENTER_CS:
1960 		if (is_guest_mode(vcpu))
1961 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
1962 		vmcs_write32(GUEST_SYSENTER_CS, data);
1963 		break;
1964 	case MSR_IA32_SYSENTER_EIP:
1965 		if (is_guest_mode(vcpu)) {
1966 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
1967 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
1968 		}
1969 		vmcs_writel(GUEST_SYSENTER_EIP, data);
1970 		break;
1971 	case MSR_IA32_SYSENTER_ESP:
1972 		if (is_guest_mode(vcpu)) {
1973 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
1974 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
1975 		}
1976 		vmcs_writel(GUEST_SYSENTER_ESP, data);
1977 		break;
1978 	case MSR_IA32_DEBUGCTLMSR: {
1979 		u64 invalid = data & ~vcpu_supported_debugctl(vcpu);
1980 		if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
1981 			if (report_ignored_msrs)
1982 				vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n",
1983 					    __func__, data);
1984 			data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
1985 			invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
1986 		}
1987 
1988 		if (invalid)
1989 			return 1;
1990 
1991 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
1992 						VM_EXIT_SAVE_DEBUG_CONTROLS)
1993 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
1994 
1995 		vmcs_write64(GUEST_IA32_DEBUGCTL, data);
1996 		if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
1997 		    (data & DEBUGCTLMSR_LBR))
1998 			intel_pmu_create_guest_lbr_event(vcpu);
1999 		return 0;
2000 	}
2001 	case MSR_IA32_BNDCFGS:
2002 		if (!kvm_mpx_supported() ||
2003 		    (!msr_info->host_initiated &&
2004 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2005 			return 1;
2006 		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2007 		    (data & MSR_IA32_BNDCFGS_RSVD))
2008 			return 1;
2009 		vmcs_write64(GUEST_BNDCFGS, data);
2010 		break;
2011 	case MSR_IA32_UMWAIT_CONTROL:
2012 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2013 			return 1;
2014 
2015 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2016 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2017 			return 1;
2018 
2019 		vmx->msr_ia32_umwait_control = data;
2020 		break;
2021 	case MSR_IA32_SPEC_CTRL:
2022 		if (!msr_info->host_initiated &&
2023 		    !guest_has_spec_ctrl_msr(vcpu))
2024 			return 1;
2025 
2026 		if (kvm_spec_ctrl_test_value(data))
2027 			return 1;
2028 
2029 		vmx->spec_ctrl = data;
2030 		if (!data)
2031 			break;
2032 
2033 		/*
2034 		 * For non-nested:
2035 		 * When it's written (to non-zero) for the first time, pass
2036 		 * it through.
2037 		 *
2038 		 * For nested:
2039 		 * The handling of the MSR bitmap for L2 guests is done in
2040 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2041 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2042 		 * in the merging. We update the vmcs01 here for L1 as well
2043 		 * since it will end up touching the MSR anyway now.
2044 		 */
2045 		vmx_disable_intercept_for_msr(vcpu,
2046 					      MSR_IA32_SPEC_CTRL,
2047 					      MSR_TYPE_RW);
2048 		break;
2049 	case MSR_IA32_TSX_CTRL:
2050 		if (!msr_info->host_initiated &&
2051 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2052 			return 1;
2053 		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2054 			return 1;
2055 		goto find_uret_msr;
2056 	case MSR_IA32_PRED_CMD:
2057 		if (!msr_info->host_initiated &&
2058 		    !guest_has_pred_cmd_msr(vcpu))
2059 			return 1;
2060 
2061 		if (data & ~PRED_CMD_IBPB)
2062 			return 1;
2063 		if (!boot_cpu_has(X86_FEATURE_IBPB))
2064 			return 1;
2065 		if (!data)
2066 			break;
2067 
2068 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2069 
2070 		/*
2071 		 * For non-nested:
2072 		 * When it's written (to non-zero) for the first time, pass
2073 		 * it through.
2074 		 *
2075 		 * For nested:
2076 		 * The handling of the MSR bitmap for L2 guests is done in
2077 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2078 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2079 		 * in the merging.
2080 		 */
2081 		vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W);
2082 		break;
2083 	case MSR_IA32_CR_PAT:
2084 		if (!kvm_pat_valid(data))
2085 			return 1;
2086 
2087 		if (is_guest_mode(vcpu) &&
2088 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2089 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2090 
2091 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2092 			vmcs_write64(GUEST_IA32_PAT, data);
2093 			vcpu->arch.pat = data;
2094 			break;
2095 		}
2096 		ret = kvm_set_msr_common(vcpu, msr_info);
2097 		break;
2098 	case MSR_IA32_TSC_ADJUST:
2099 		ret = kvm_set_msr_common(vcpu, msr_info);
2100 		break;
2101 	case MSR_IA32_MCG_EXT_CTL:
2102 		if ((!msr_info->host_initiated &&
2103 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2104 		       FEAT_CTL_LMCE_ENABLED)) ||
2105 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2106 			return 1;
2107 		vcpu->arch.mcg_ext_ctl = data;
2108 		break;
2109 	case MSR_IA32_FEAT_CTL:
2110 		if (!vmx_feature_control_msr_valid(vcpu, data) ||
2111 		    (to_vmx(vcpu)->msr_ia32_feature_control &
2112 		     FEAT_CTL_LOCKED && !msr_info->host_initiated))
2113 			return 1;
2114 		vmx->msr_ia32_feature_control = data;
2115 		if (msr_info->host_initiated && data == 0)
2116 			vmx_leave_nested(vcpu);
2117 
2118 		/* SGX may be enabled/disabled by guest's firmware */
2119 		vmx_write_encls_bitmap(vcpu, NULL);
2120 		break;
2121 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2122 		/*
2123 		 * On real hardware, the LE hash MSRs are writable before
2124 		 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2125 		 * at which point SGX related bits in IA32_FEATURE_CONTROL
2126 		 * become writable.
2127 		 *
2128 		 * KVM does not emulate SGX activation for simplicity, so
2129 		 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2130 		 * is unlocked.  This is technically not architectural
2131 		 * behavior, but it's close enough.
2132 		 */
2133 		if (!msr_info->host_initiated &&
2134 		    (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2135 		    ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2136 		    !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2137 			return 1;
2138 		vmx->msr_ia32_sgxlepubkeyhash
2139 			[msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2140 		break;
2141 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2142 		if (!msr_info->host_initiated)
2143 			return 1; /* they are read-only */
2144 		if (!nested_vmx_allowed(vcpu))
2145 			return 1;
2146 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2147 	case MSR_IA32_RTIT_CTL:
2148 		if (!vmx_pt_mode_is_host_guest() ||
2149 			vmx_rtit_ctl_check(vcpu, data) ||
2150 			vmx->nested.vmxon)
2151 			return 1;
2152 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2153 		vmx->pt_desc.guest.ctl = data;
2154 		pt_update_intercept_for_msr(vcpu);
2155 		break;
2156 	case MSR_IA32_RTIT_STATUS:
2157 		if (!pt_can_write_msr(vmx))
2158 			return 1;
2159 		if (data & MSR_IA32_RTIT_STATUS_MASK)
2160 			return 1;
2161 		vmx->pt_desc.guest.status = data;
2162 		break;
2163 	case MSR_IA32_RTIT_CR3_MATCH:
2164 		if (!pt_can_write_msr(vmx))
2165 			return 1;
2166 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2167 					   PT_CAP_cr3_filtering))
2168 			return 1;
2169 		vmx->pt_desc.guest.cr3_match = data;
2170 		break;
2171 	case MSR_IA32_RTIT_OUTPUT_BASE:
2172 		if (!pt_can_write_msr(vmx))
2173 			return 1;
2174 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2175 					   PT_CAP_topa_output) &&
2176 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2177 					   PT_CAP_single_range_output))
2178 			return 1;
2179 		if (!pt_output_base_valid(vcpu, data))
2180 			return 1;
2181 		vmx->pt_desc.guest.output_base = data;
2182 		break;
2183 	case MSR_IA32_RTIT_OUTPUT_MASK:
2184 		if (!pt_can_write_msr(vmx))
2185 			return 1;
2186 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2187 					   PT_CAP_topa_output) &&
2188 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2189 					   PT_CAP_single_range_output))
2190 			return 1;
2191 		vmx->pt_desc.guest.output_mask = data;
2192 		break;
2193 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2194 		if (!pt_can_write_msr(vmx))
2195 			return 1;
2196 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2197 		if (index >= 2 * vmx->pt_desc.num_address_ranges)
2198 			return 1;
2199 		if (is_noncanonical_address(data, vcpu))
2200 			return 1;
2201 		if (index % 2)
2202 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2203 		else
2204 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2205 		break;
2206 	case MSR_IA32_PERF_CAPABILITIES:
2207 		if (data && !vcpu_to_pmu(vcpu)->version)
2208 			return 1;
2209 		if (data & PMU_CAP_LBR_FMT) {
2210 			if ((data & PMU_CAP_LBR_FMT) !=
2211 			    (vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT))
2212 				return 1;
2213 			if (!intel_pmu_lbr_is_compatible(vcpu))
2214 				return 1;
2215 		}
2216 		ret = kvm_set_msr_common(vcpu, msr_info);
2217 		break;
2218 
2219 	default:
2220 	find_uret_msr:
2221 		msr = vmx_find_uret_msr(vmx, msr_index);
2222 		if (msr)
2223 			ret = vmx_set_guest_uret_msr(vmx, msr, data);
2224 		else
2225 			ret = kvm_set_msr_common(vcpu, msr_info);
2226 	}
2227 
2228 	return ret;
2229 }
2230 
2231 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2232 {
2233 	unsigned long guest_owned_bits;
2234 
2235 	kvm_register_mark_available(vcpu, reg);
2236 
2237 	switch (reg) {
2238 	case VCPU_REGS_RSP:
2239 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2240 		break;
2241 	case VCPU_REGS_RIP:
2242 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2243 		break;
2244 	case VCPU_EXREG_PDPTR:
2245 		if (enable_ept)
2246 			ept_save_pdptrs(vcpu);
2247 		break;
2248 	case VCPU_EXREG_CR0:
2249 		guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2250 
2251 		vcpu->arch.cr0 &= ~guest_owned_bits;
2252 		vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2253 		break;
2254 	case VCPU_EXREG_CR3:
2255 		/*
2256 		 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2257 		 * CR3 is loaded into hardware, not the guest's CR3.
2258 		 */
2259 		if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2260 			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2261 		break;
2262 	case VCPU_EXREG_CR4:
2263 		guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2264 
2265 		vcpu->arch.cr4 &= ~guest_owned_bits;
2266 		vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2267 		break;
2268 	default:
2269 		KVM_BUG_ON(1, vcpu->kvm);
2270 		break;
2271 	}
2272 }
2273 
2274 static __init int cpu_has_kvm_support(void)
2275 {
2276 	return cpu_has_vmx();
2277 }
2278 
2279 static __init int vmx_disabled_by_bios(void)
2280 {
2281 	return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2282 	       !boot_cpu_has(X86_FEATURE_VMX);
2283 }
2284 
2285 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2286 {
2287 	u64 msr;
2288 
2289 	cr4_set_bits(X86_CR4_VMXE);
2290 
2291 	asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2292 			  _ASM_EXTABLE(1b, %l[fault])
2293 			  : : [vmxon_pointer] "m"(vmxon_pointer)
2294 			  : : fault);
2295 	return 0;
2296 
2297 fault:
2298 	WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2299 		  rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2300 	cr4_clear_bits(X86_CR4_VMXE);
2301 
2302 	return -EFAULT;
2303 }
2304 
2305 static int hardware_enable(void)
2306 {
2307 	int cpu = raw_smp_processor_id();
2308 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2309 	int r;
2310 
2311 	if (cr4_read_shadow() & X86_CR4_VMXE)
2312 		return -EBUSY;
2313 
2314 	/*
2315 	 * This can happen if we hot-added a CPU but failed to allocate
2316 	 * VP assist page for it.
2317 	 */
2318 	if (static_branch_unlikely(&enable_evmcs) &&
2319 	    !hv_get_vp_assist_page(cpu))
2320 		return -EFAULT;
2321 
2322 	intel_pt_handle_vmx(1);
2323 
2324 	r = kvm_cpu_vmxon(phys_addr);
2325 	if (r) {
2326 		intel_pt_handle_vmx(0);
2327 		return r;
2328 	}
2329 
2330 	if (enable_ept)
2331 		ept_sync_global();
2332 
2333 	return 0;
2334 }
2335 
2336 static void vmclear_local_loaded_vmcss(void)
2337 {
2338 	int cpu = raw_smp_processor_id();
2339 	struct loaded_vmcs *v, *n;
2340 
2341 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2342 				 loaded_vmcss_on_cpu_link)
2343 		__loaded_vmcs_clear(v);
2344 }
2345 
2346 static void hardware_disable(void)
2347 {
2348 	vmclear_local_loaded_vmcss();
2349 
2350 	if (cpu_vmxoff())
2351 		kvm_spurious_fault();
2352 
2353 	intel_pt_handle_vmx(0);
2354 }
2355 
2356 /*
2357  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2358  * directly instead of going through cpu_has(), to ensure KVM is trapping
2359  * ENCLS whenever it's supported in hardware.  It does not matter whether
2360  * the host OS supports or has enabled SGX.
2361  */
2362 static bool cpu_has_sgx(void)
2363 {
2364 	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2365 }
2366 
2367 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2368 				      u32 msr, u32 *result)
2369 {
2370 	u32 vmx_msr_low, vmx_msr_high;
2371 	u32 ctl = ctl_min | ctl_opt;
2372 
2373 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2374 
2375 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2376 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2377 
2378 	/* Ensure minimum (required) set of control bits are supported. */
2379 	if (ctl_min & ~ctl)
2380 		return -EIO;
2381 
2382 	*result = ctl;
2383 	return 0;
2384 }
2385 
2386 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2387 				    struct vmx_capability *vmx_cap)
2388 {
2389 	u32 vmx_msr_low, vmx_msr_high;
2390 	u32 min, opt, min2, opt2;
2391 	u32 _pin_based_exec_control = 0;
2392 	u32 _cpu_based_exec_control = 0;
2393 	u32 _cpu_based_2nd_exec_control = 0;
2394 	u32 _vmexit_control = 0;
2395 	u32 _vmentry_control = 0;
2396 
2397 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2398 	min = CPU_BASED_HLT_EXITING |
2399 #ifdef CONFIG_X86_64
2400 	      CPU_BASED_CR8_LOAD_EXITING |
2401 	      CPU_BASED_CR8_STORE_EXITING |
2402 #endif
2403 	      CPU_BASED_CR3_LOAD_EXITING |
2404 	      CPU_BASED_CR3_STORE_EXITING |
2405 	      CPU_BASED_UNCOND_IO_EXITING |
2406 	      CPU_BASED_MOV_DR_EXITING |
2407 	      CPU_BASED_USE_TSC_OFFSETTING |
2408 	      CPU_BASED_MWAIT_EXITING |
2409 	      CPU_BASED_MONITOR_EXITING |
2410 	      CPU_BASED_INVLPG_EXITING |
2411 	      CPU_BASED_RDPMC_EXITING;
2412 
2413 	opt = CPU_BASED_TPR_SHADOW |
2414 	      CPU_BASED_USE_MSR_BITMAPS |
2415 	      CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2416 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2417 				&_cpu_based_exec_control) < 0)
2418 		return -EIO;
2419 #ifdef CONFIG_X86_64
2420 	if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2421 		_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2422 					   ~CPU_BASED_CR8_STORE_EXITING;
2423 #endif
2424 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2425 		min2 = 0;
2426 		opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2427 			SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2428 			SECONDARY_EXEC_WBINVD_EXITING |
2429 			SECONDARY_EXEC_ENABLE_VPID |
2430 			SECONDARY_EXEC_ENABLE_EPT |
2431 			SECONDARY_EXEC_UNRESTRICTED_GUEST |
2432 			SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2433 			SECONDARY_EXEC_DESC |
2434 			SECONDARY_EXEC_ENABLE_RDTSCP |
2435 			SECONDARY_EXEC_ENABLE_INVPCID |
2436 			SECONDARY_EXEC_APIC_REGISTER_VIRT |
2437 			SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2438 			SECONDARY_EXEC_SHADOW_VMCS |
2439 			SECONDARY_EXEC_XSAVES |
2440 			SECONDARY_EXEC_RDSEED_EXITING |
2441 			SECONDARY_EXEC_RDRAND_EXITING |
2442 			SECONDARY_EXEC_ENABLE_PML |
2443 			SECONDARY_EXEC_TSC_SCALING |
2444 			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2445 			SECONDARY_EXEC_PT_USE_GPA |
2446 			SECONDARY_EXEC_PT_CONCEAL_VMX |
2447 			SECONDARY_EXEC_ENABLE_VMFUNC |
2448 			SECONDARY_EXEC_BUS_LOCK_DETECTION;
2449 		if (cpu_has_sgx())
2450 			opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2451 		if (adjust_vmx_controls(min2, opt2,
2452 					MSR_IA32_VMX_PROCBASED_CTLS2,
2453 					&_cpu_based_2nd_exec_control) < 0)
2454 			return -EIO;
2455 	}
2456 #ifndef CONFIG_X86_64
2457 	if (!(_cpu_based_2nd_exec_control &
2458 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2459 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2460 #endif
2461 
2462 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2463 		_cpu_based_2nd_exec_control &= ~(
2464 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2465 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2466 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2467 
2468 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2469 		&vmx_cap->ept, &vmx_cap->vpid);
2470 
2471 	if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2472 		/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2473 		   enabled */
2474 		_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2475 					     CPU_BASED_CR3_STORE_EXITING |
2476 					     CPU_BASED_INVLPG_EXITING);
2477 	} else if (vmx_cap->ept) {
2478 		vmx_cap->ept = 0;
2479 		pr_warn_once("EPT CAP should not exist if not support "
2480 				"1-setting enable EPT VM-execution control\n");
2481 	}
2482 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2483 		vmx_cap->vpid) {
2484 		vmx_cap->vpid = 0;
2485 		pr_warn_once("VPID CAP should not exist if not support "
2486 				"1-setting enable VPID VM-execution control\n");
2487 	}
2488 
2489 	min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2490 #ifdef CONFIG_X86_64
2491 	min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2492 #endif
2493 	opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2494 	      VM_EXIT_LOAD_IA32_PAT |
2495 	      VM_EXIT_LOAD_IA32_EFER |
2496 	      VM_EXIT_CLEAR_BNDCFGS |
2497 	      VM_EXIT_PT_CONCEAL_PIP |
2498 	      VM_EXIT_CLEAR_IA32_RTIT_CTL;
2499 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2500 				&_vmexit_control) < 0)
2501 		return -EIO;
2502 
2503 	min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2504 	opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2505 		 PIN_BASED_VMX_PREEMPTION_TIMER;
2506 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2507 				&_pin_based_exec_control) < 0)
2508 		return -EIO;
2509 
2510 	if (cpu_has_broken_vmx_preemption_timer())
2511 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2512 	if (!(_cpu_based_2nd_exec_control &
2513 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2514 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2515 
2516 	min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2517 	opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2518 	      VM_ENTRY_LOAD_IA32_PAT |
2519 	      VM_ENTRY_LOAD_IA32_EFER |
2520 	      VM_ENTRY_LOAD_BNDCFGS |
2521 	      VM_ENTRY_PT_CONCEAL_PIP |
2522 	      VM_ENTRY_LOAD_IA32_RTIT_CTL;
2523 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2524 				&_vmentry_control) < 0)
2525 		return -EIO;
2526 
2527 	/*
2528 	 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2529 	 * can't be used due to an errata where VM Exit may incorrectly clear
2530 	 * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2531 	 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2532 	 */
2533 	if (boot_cpu_data.x86 == 0x6) {
2534 		switch (boot_cpu_data.x86_model) {
2535 		case 26: /* AAK155 */
2536 		case 30: /* AAP115 */
2537 		case 37: /* AAT100 */
2538 		case 44: /* BC86,AAY89,BD102 */
2539 		case 46: /* BA97 */
2540 			_vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2541 			_vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2542 			pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2543 					"does not work properly. Using workaround\n");
2544 			break;
2545 		default:
2546 			break;
2547 		}
2548 	}
2549 
2550 
2551 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2552 
2553 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2554 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2555 		return -EIO;
2556 
2557 #ifdef CONFIG_X86_64
2558 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2559 	if (vmx_msr_high & (1u<<16))
2560 		return -EIO;
2561 #endif
2562 
2563 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2564 	if (((vmx_msr_high >> 18) & 15) != 6)
2565 		return -EIO;
2566 
2567 	vmcs_conf->size = vmx_msr_high & 0x1fff;
2568 	vmcs_conf->order = get_order(vmcs_conf->size);
2569 	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2570 
2571 	vmcs_conf->revision_id = vmx_msr_low;
2572 
2573 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2574 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2575 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2576 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2577 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2578 
2579 #if IS_ENABLED(CONFIG_HYPERV)
2580 	if (enlightened_vmcs)
2581 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2582 #endif
2583 
2584 	return 0;
2585 }
2586 
2587 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2588 {
2589 	int node = cpu_to_node(cpu);
2590 	struct page *pages;
2591 	struct vmcs *vmcs;
2592 
2593 	pages = __alloc_pages_node(node, flags, vmcs_config.order);
2594 	if (!pages)
2595 		return NULL;
2596 	vmcs = page_address(pages);
2597 	memset(vmcs, 0, vmcs_config.size);
2598 
2599 	/* KVM supports Enlightened VMCS v1 only */
2600 	if (static_branch_unlikely(&enable_evmcs))
2601 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2602 	else
2603 		vmcs->hdr.revision_id = vmcs_config.revision_id;
2604 
2605 	if (shadow)
2606 		vmcs->hdr.shadow_vmcs = 1;
2607 	return vmcs;
2608 }
2609 
2610 void free_vmcs(struct vmcs *vmcs)
2611 {
2612 	free_pages((unsigned long)vmcs, vmcs_config.order);
2613 }
2614 
2615 /*
2616  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2617  */
2618 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2619 {
2620 	if (!loaded_vmcs->vmcs)
2621 		return;
2622 	loaded_vmcs_clear(loaded_vmcs);
2623 	free_vmcs(loaded_vmcs->vmcs);
2624 	loaded_vmcs->vmcs = NULL;
2625 	if (loaded_vmcs->msr_bitmap)
2626 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2627 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2628 }
2629 
2630 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2631 {
2632 	loaded_vmcs->vmcs = alloc_vmcs(false);
2633 	if (!loaded_vmcs->vmcs)
2634 		return -ENOMEM;
2635 
2636 	vmcs_clear(loaded_vmcs->vmcs);
2637 
2638 	loaded_vmcs->shadow_vmcs = NULL;
2639 	loaded_vmcs->hv_timer_soft_disabled = false;
2640 	loaded_vmcs->cpu = -1;
2641 	loaded_vmcs->launched = 0;
2642 
2643 	if (cpu_has_vmx_msr_bitmap()) {
2644 		loaded_vmcs->msr_bitmap = (unsigned long *)
2645 				__get_free_page(GFP_KERNEL_ACCOUNT);
2646 		if (!loaded_vmcs->msr_bitmap)
2647 			goto out_vmcs;
2648 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2649 
2650 		if (IS_ENABLED(CONFIG_HYPERV) &&
2651 		    static_branch_unlikely(&enable_evmcs) &&
2652 		    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2653 			struct hv_enlightened_vmcs *evmcs =
2654 				(struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2655 
2656 			evmcs->hv_enlightenments_control.msr_bitmap = 1;
2657 		}
2658 	}
2659 
2660 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2661 	memset(&loaded_vmcs->controls_shadow, 0,
2662 		sizeof(struct vmcs_controls_shadow));
2663 
2664 	return 0;
2665 
2666 out_vmcs:
2667 	free_loaded_vmcs(loaded_vmcs);
2668 	return -ENOMEM;
2669 }
2670 
2671 static void free_kvm_area(void)
2672 {
2673 	int cpu;
2674 
2675 	for_each_possible_cpu(cpu) {
2676 		free_vmcs(per_cpu(vmxarea, cpu));
2677 		per_cpu(vmxarea, cpu) = NULL;
2678 	}
2679 }
2680 
2681 static __init int alloc_kvm_area(void)
2682 {
2683 	int cpu;
2684 
2685 	for_each_possible_cpu(cpu) {
2686 		struct vmcs *vmcs;
2687 
2688 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2689 		if (!vmcs) {
2690 			free_kvm_area();
2691 			return -ENOMEM;
2692 		}
2693 
2694 		/*
2695 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2696 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2697 		 * revision_id reported by MSR_IA32_VMX_BASIC.
2698 		 *
2699 		 * However, even though not explicitly documented by
2700 		 * TLFS, VMXArea passed as VMXON argument should
2701 		 * still be marked with revision_id reported by
2702 		 * physical CPU.
2703 		 */
2704 		if (static_branch_unlikely(&enable_evmcs))
2705 			vmcs->hdr.revision_id = vmcs_config.revision_id;
2706 
2707 		per_cpu(vmxarea, cpu) = vmcs;
2708 	}
2709 	return 0;
2710 }
2711 
2712 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2713 		struct kvm_segment *save)
2714 {
2715 	if (!emulate_invalid_guest_state) {
2716 		/*
2717 		 * CS and SS RPL should be equal during guest entry according
2718 		 * to VMX spec, but in reality it is not always so. Since vcpu
2719 		 * is in the middle of the transition from real mode to
2720 		 * protected mode it is safe to assume that RPL 0 is a good
2721 		 * default value.
2722 		 */
2723 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2724 			save->selector &= ~SEGMENT_RPL_MASK;
2725 		save->dpl = save->selector & SEGMENT_RPL_MASK;
2726 		save->s = 1;
2727 	}
2728 	__vmx_set_segment(vcpu, save, seg);
2729 }
2730 
2731 static void enter_pmode(struct kvm_vcpu *vcpu)
2732 {
2733 	unsigned long flags;
2734 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2735 
2736 	/*
2737 	 * Update real mode segment cache. It may be not up-to-date if segment
2738 	 * register was written while vcpu was in a guest mode.
2739 	 */
2740 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2741 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2742 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2743 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2744 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2745 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2746 
2747 	vmx->rmode.vm86_active = 0;
2748 
2749 	__vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2750 
2751 	flags = vmcs_readl(GUEST_RFLAGS);
2752 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2753 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2754 	vmcs_writel(GUEST_RFLAGS, flags);
2755 
2756 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2757 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2758 
2759 	vmx_update_exception_bitmap(vcpu);
2760 
2761 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2762 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2763 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2764 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2765 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2766 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2767 }
2768 
2769 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2770 {
2771 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2772 	struct kvm_segment var = *save;
2773 
2774 	var.dpl = 0x3;
2775 	if (seg == VCPU_SREG_CS)
2776 		var.type = 0x3;
2777 
2778 	if (!emulate_invalid_guest_state) {
2779 		var.selector = var.base >> 4;
2780 		var.base = var.base & 0xffff0;
2781 		var.limit = 0xffff;
2782 		var.g = 0;
2783 		var.db = 0;
2784 		var.present = 1;
2785 		var.s = 1;
2786 		var.l = 0;
2787 		var.unusable = 0;
2788 		var.type = 0x3;
2789 		var.avl = 0;
2790 		if (save->base & 0xf)
2791 			printk_once(KERN_WARNING "kvm: segment base is not "
2792 					"paragraph aligned when entering "
2793 					"protected mode (seg=%d)", seg);
2794 	}
2795 
2796 	vmcs_write16(sf->selector, var.selector);
2797 	vmcs_writel(sf->base, var.base);
2798 	vmcs_write32(sf->limit, var.limit);
2799 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2800 }
2801 
2802 static void enter_rmode(struct kvm_vcpu *vcpu)
2803 {
2804 	unsigned long flags;
2805 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2806 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2807 
2808 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2809 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2810 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2811 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2812 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2813 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2814 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2815 
2816 	vmx->rmode.vm86_active = 1;
2817 
2818 	/*
2819 	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2820 	 * vcpu. Warn the user that an update is overdue.
2821 	 */
2822 	if (!kvm_vmx->tss_addr)
2823 		printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2824 			     "called before entering vcpu\n");
2825 
2826 	vmx_segment_cache_clear(vmx);
2827 
2828 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2829 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2830 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2831 
2832 	flags = vmcs_readl(GUEST_RFLAGS);
2833 	vmx->rmode.save_rflags = flags;
2834 
2835 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2836 
2837 	vmcs_writel(GUEST_RFLAGS, flags);
2838 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2839 	vmx_update_exception_bitmap(vcpu);
2840 
2841 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2842 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2843 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2844 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2845 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2846 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2847 }
2848 
2849 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2850 {
2851 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2852 	struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER);
2853 
2854 	/* Nothing to do if hardware doesn't support EFER. */
2855 	if (!msr)
2856 		return 0;
2857 
2858 	vcpu->arch.efer = efer;
2859 	if (efer & EFER_LMA) {
2860 		vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2861 		msr->data = efer;
2862 	} else {
2863 		vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2864 
2865 		msr->data = efer & ~EFER_LME;
2866 	}
2867 	vmx_setup_uret_msrs(vmx);
2868 	return 0;
2869 }
2870 
2871 #ifdef CONFIG_X86_64
2872 
2873 static void enter_lmode(struct kvm_vcpu *vcpu)
2874 {
2875 	u32 guest_tr_ar;
2876 
2877 	vmx_segment_cache_clear(to_vmx(vcpu));
2878 
2879 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2880 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2881 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2882 				     __func__);
2883 		vmcs_write32(GUEST_TR_AR_BYTES,
2884 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2885 			     | VMX_AR_TYPE_BUSY_64_TSS);
2886 	}
2887 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2888 }
2889 
2890 static void exit_lmode(struct kvm_vcpu *vcpu)
2891 {
2892 	vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2893 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2894 }
2895 
2896 #endif
2897 
2898 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
2899 {
2900 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2901 
2902 	/*
2903 	 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
2904 	 * the CPU is not required to invalidate guest-physical mappings on
2905 	 * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
2906 	 * associated with the root EPT structure and not any particular VPID
2907 	 * (INVVPID also isn't required to invalidate guest-physical mappings).
2908 	 */
2909 	if (enable_ept) {
2910 		ept_sync_global();
2911 	} else if (enable_vpid) {
2912 		if (cpu_has_vmx_invvpid_global()) {
2913 			vpid_sync_vcpu_global();
2914 		} else {
2915 			vpid_sync_vcpu_single(vmx->vpid);
2916 			vpid_sync_vcpu_single(vmx->nested.vpid02);
2917 		}
2918 	}
2919 }
2920 
2921 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
2922 {
2923 	if (is_guest_mode(vcpu))
2924 		return nested_get_vpid02(vcpu);
2925 	return to_vmx(vcpu)->vpid;
2926 }
2927 
2928 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
2929 {
2930 	struct kvm_mmu *mmu = vcpu->arch.mmu;
2931 	u64 root_hpa = mmu->root_hpa;
2932 
2933 	/* No flush required if the current context is invalid. */
2934 	if (!VALID_PAGE(root_hpa))
2935 		return;
2936 
2937 	if (enable_ept)
2938 		ept_sync_context(construct_eptp(vcpu, root_hpa,
2939 						mmu->shadow_root_level));
2940 	else
2941 		vpid_sync_context(vmx_get_current_vpid(vcpu));
2942 }
2943 
2944 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2945 {
2946 	/*
2947 	 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
2948 	 * vmx_flush_tlb_guest() for an explanation of why this is ok.
2949 	 */
2950 	vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
2951 }
2952 
2953 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
2954 {
2955 	/*
2956 	 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
2957 	 * vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit are
2958 	 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
2959 	 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
2960 	 * i.e. no explicit INVVPID is necessary.
2961 	 */
2962 	vpid_sync_context(vmx_get_current_vpid(vcpu));
2963 }
2964 
2965 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
2966 {
2967 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2968 
2969 	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
2970 		return;
2971 
2972 	if (is_pae_paging(vcpu)) {
2973 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2974 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2975 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2976 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2977 	}
2978 }
2979 
2980 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2981 {
2982 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2983 
2984 	if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
2985 		return;
2986 
2987 	mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2988 	mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2989 	mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2990 	mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2991 
2992 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
2993 }
2994 
2995 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
2996 			  CPU_BASED_CR3_STORE_EXITING)
2997 
2998 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2999 {
3000 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3001 	unsigned long hw_cr0, old_cr0_pg;
3002 	u32 tmp;
3003 
3004 	old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3005 
3006 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3007 	if (is_unrestricted_guest(vcpu))
3008 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3009 	else {
3010 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3011 		if (!enable_ept)
3012 			hw_cr0 |= X86_CR0_WP;
3013 
3014 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3015 			enter_pmode(vcpu);
3016 
3017 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3018 			enter_rmode(vcpu);
3019 	}
3020 
3021 	vmcs_writel(CR0_READ_SHADOW, cr0);
3022 	vmcs_writel(GUEST_CR0, hw_cr0);
3023 	vcpu->arch.cr0 = cr0;
3024 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3025 
3026 #ifdef CONFIG_X86_64
3027 	if (vcpu->arch.efer & EFER_LME) {
3028 		if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3029 			enter_lmode(vcpu);
3030 		else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3031 			exit_lmode(vcpu);
3032 	}
3033 #endif
3034 
3035 	if (enable_ept && !is_unrestricted_guest(vcpu)) {
3036 		/*
3037 		 * Ensure KVM has an up-to-date snapshot of the guest's CR3.  If
3038 		 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3039 		 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3040 		 * KVM's CR3 is installed.
3041 		 */
3042 		if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3043 			vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3044 
3045 		/*
3046 		 * When running with EPT but not unrestricted guest, KVM must
3047 		 * intercept CR3 accesses when paging is _disabled_.  This is
3048 		 * necessary because restricted guests can't actually run with
3049 		 * paging disabled, and so KVM stuffs its own CR3 in order to
3050 		 * run the guest when identity mapped page tables.
3051 		 *
3052 		 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3053 		 * update, it may be stale with respect to CR3 interception,
3054 		 * e.g. after nested VM-Enter.
3055 		 *
3056 		 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3057 		 * stores to forward them to L1, even if KVM does not need to
3058 		 * intercept them to preserve its identity mapped page tables.
3059 		 */
3060 		if (!(cr0 & X86_CR0_PG)) {
3061 			exec_controls_setbit(vmx, CR3_EXITING_BITS);
3062 		} else if (!is_guest_mode(vcpu)) {
3063 			exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3064 		} else {
3065 			tmp = exec_controls_get(vmx);
3066 			tmp &= ~CR3_EXITING_BITS;
3067 			tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3068 			exec_controls_set(vmx, tmp);
3069 		}
3070 
3071 		/* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3072 		if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3073 			vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3074 	}
3075 
3076 	/* depends on vcpu->arch.cr0 to be set to a new value */
3077 	vmx->emulation_required = vmx_emulation_required(vcpu);
3078 }
3079 
3080 static int vmx_get_max_tdp_level(void)
3081 {
3082 	if (cpu_has_vmx_ept_5levels())
3083 		return 5;
3084 	return 4;
3085 }
3086 
3087 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3088 {
3089 	u64 eptp = VMX_EPTP_MT_WB;
3090 
3091 	eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3092 
3093 	if (enable_ept_ad_bits &&
3094 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3095 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
3096 	eptp |= root_hpa;
3097 
3098 	return eptp;
3099 }
3100 
3101 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3102 			     int root_level)
3103 {
3104 	struct kvm *kvm = vcpu->kvm;
3105 	bool update_guest_cr3 = true;
3106 	unsigned long guest_cr3;
3107 	u64 eptp;
3108 
3109 	if (enable_ept) {
3110 		eptp = construct_eptp(vcpu, root_hpa, root_level);
3111 		vmcs_write64(EPT_POINTER, eptp);
3112 
3113 		hv_track_root_tdp(vcpu, root_hpa);
3114 
3115 		if (!enable_unrestricted_guest && !is_paging(vcpu))
3116 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3117 		else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3118 			guest_cr3 = vcpu->arch.cr3;
3119 		else /* vmcs01.GUEST_CR3 is already up-to-date. */
3120 			update_guest_cr3 = false;
3121 		vmx_ept_load_pdptrs(vcpu);
3122 	} else {
3123 		guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu);
3124 	}
3125 
3126 	if (update_guest_cr3)
3127 		vmcs_writel(GUEST_CR3, guest_cr3);
3128 }
3129 
3130 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3131 {
3132 	/*
3133 	 * We operate under the default treatment of SMM, so VMX cannot be
3134 	 * enabled under SMM.  Note, whether or not VMXE is allowed at all is
3135 	 * handled by kvm_is_valid_cr4().
3136 	 */
3137 	if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3138 		return false;
3139 
3140 	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3141 		return false;
3142 
3143 	return true;
3144 }
3145 
3146 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3147 {
3148 	unsigned long old_cr4 = vcpu->arch.cr4;
3149 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3150 	/*
3151 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3152 	 * is in force while we are in guest mode.  Do not let guests control
3153 	 * this bit, even if host CR4.MCE == 0.
3154 	 */
3155 	unsigned long hw_cr4;
3156 
3157 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3158 	if (is_unrestricted_guest(vcpu))
3159 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3160 	else if (vmx->rmode.vm86_active)
3161 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3162 	else
3163 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3164 
3165 	if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3166 		if (cr4 & X86_CR4_UMIP) {
3167 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3168 			hw_cr4 &= ~X86_CR4_UMIP;
3169 		} else if (!is_guest_mode(vcpu) ||
3170 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3171 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3172 		}
3173 	}
3174 
3175 	vcpu->arch.cr4 = cr4;
3176 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3177 
3178 	if (!is_unrestricted_guest(vcpu)) {
3179 		if (enable_ept) {
3180 			if (!is_paging(vcpu)) {
3181 				hw_cr4 &= ~X86_CR4_PAE;
3182 				hw_cr4 |= X86_CR4_PSE;
3183 			} else if (!(cr4 & X86_CR4_PAE)) {
3184 				hw_cr4 &= ~X86_CR4_PAE;
3185 			}
3186 		}
3187 
3188 		/*
3189 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3190 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3191 		 * to be manually disabled when guest switches to non-paging
3192 		 * mode.
3193 		 *
3194 		 * If !enable_unrestricted_guest, the CPU is always running
3195 		 * with CR0.PG=1 and CR4 needs to be modified.
3196 		 * If enable_unrestricted_guest, the CPU automatically
3197 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3198 		 */
3199 		if (!is_paging(vcpu))
3200 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3201 	}
3202 
3203 	vmcs_writel(CR4_READ_SHADOW, cr4);
3204 	vmcs_writel(GUEST_CR4, hw_cr4);
3205 
3206 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3207 		kvm_update_cpuid_runtime(vcpu);
3208 }
3209 
3210 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3211 {
3212 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3213 	u32 ar;
3214 
3215 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3216 		*var = vmx->rmode.segs[seg];
3217 		if (seg == VCPU_SREG_TR
3218 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3219 			return;
3220 		var->base = vmx_read_guest_seg_base(vmx, seg);
3221 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3222 		return;
3223 	}
3224 	var->base = vmx_read_guest_seg_base(vmx, seg);
3225 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3226 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3227 	ar = vmx_read_guest_seg_ar(vmx, seg);
3228 	var->unusable = (ar >> 16) & 1;
3229 	var->type = ar & 15;
3230 	var->s = (ar >> 4) & 1;
3231 	var->dpl = (ar >> 5) & 3;
3232 	/*
3233 	 * Some userspaces do not preserve unusable property. Since usable
3234 	 * segment has to be present according to VMX spec we can use present
3235 	 * property to amend userspace bug by making unusable segment always
3236 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3237 	 * segment as unusable.
3238 	 */
3239 	var->present = !var->unusable;
3240 	var->avl = (ar >> 12) & 1;
3241 	var->l = (ar >> 13) & 1;
3242 	var->db = (ar >> 14) & 1;
3243 	var->g = (ar >> 15) & 1;
3244 }
3245 
3246 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3247 {
3248 	struct kvm_segment s;
3249 
3250 	if (to_vmx(vcpu)->rmode.vm86_active) {
3251 		vmx_get_segment(vcpu, &s, seg);
3252 		return s.base;
3253 	}
3254 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3255 }
3256 
3257 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3258 {
3259 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3260 
3261 	if (unlikely(vmx->rmode.vm86_active))
3262 		return 0;
3263 	else {
3264 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3265 		return VMX_AR_DPL(ar);
3266 	}
3267 }
3268 
3269 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3270 {
3271 	u32 ar;
3272 
3273 	if (var->unusable || !var->present)
3274 		ar = 1 << 16;
3275 	else {
3276 		ar = var->type & 15;
3277 		ar |= (var->s & 1) << 4;
3278 		ar |= (var->dpl & 3) << 5;
3279 		ar |= (var->present & 1) << 7;
3280 		ar |= (var->avl & 1) << 12;
3281 		ar |= (var->l & 1) << 13;
3282 		ar |= (var->db & 1) << 14;
3283 		ar |= (var->g & 1) << 15;
3284 	}
3285 
3286 	return ar;
3287 }
3288 
3289 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3290 {
3291 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3292 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3293 
3294 	vmx_segment_cache_clear(vmx);
3295 
3296 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3297 		vmx->rmode.segs[seg] = *var;
3298 		if (seg == VCPU_SREG_TR)
3299 			vmcs_write16(sf->selector, var->selector);
3300 		else if (var->s)
3301 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3302 		return;
3303 	}
3304 
3305 	vmcs_writel(sf->base, var->base);
3306 	vmcs_write32(sf->limit, var->limit);
3307 	vmcs_write16(sf->selector, var->selector);
3308 
3309 	/*
3310 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3311 	 * qemu binaries.
3312 	 *   IA32 arch specifies that at the time of processor reset the
3313 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3314 	 * is setting it to 0 in the userland code. This causes invalid guest
3315 	 * state vmexit when "unrestricted guest" mode is turned on.
3316 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3317 	 * tree. Newer qemu binaries with that qemu fix would not need this
3318 	 * kvm hack.
3319 	 */
3320 	if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3321 		var->type |= 0x1; /* Accessed */
3322 
3323 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3324 }
3325 
3326 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3327 {
3328 	__vmx_set_segment(vcpu, var, seg);
3329 
3330 	to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3331 }
3332 
3333 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3334 {
3335 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3336 
3337 	*db = (ar >> 14) & 1;
3338 	*l = (ar >> 13) & 1;
3339 }
3340 
3341 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3342 {
3343 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3344 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3345 }
3346 
3347 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3348 {
3349 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3350 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3351 }
3352 
3353 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3354 {
3355 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3356 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3357 }
3358 
3359 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3360 {
3361 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3362 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3363 }
3364 
3365 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3366 {
3367 	struct kvm_segment var;
3368 	u32 ar;
3369 
3370 	vmx_get_segment(vcpu, &var, seg);
3371 	var.dpl = 0x3;
3372 	if (seg == VCPU_SREG_CS)
3373 		var.type = 0x3;
3374 	ar = vmx_segment_access_rights(&var);
3375 
3376 	if (var.base != (var.selector << 4))
3377 		return false;
3378 	if (var.limit != 0xffff)
3379 		return false;
3380 	if (ar != 0xf3)
3381 		return false;
3382 
3383 	return true;
3384 }
3385 
3386 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3387 {
3388 	struct kvm_segment cs;
3389 	unsigned int cs_rpl;
3390 
3391 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3392 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3393 
3394 	if (cs.unusable)
3395 		return false;
3396 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3397 		return false;
3398 	if (!cs.s)
3399 		return false;
3400 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3401 		if (cs.dpl > cs_rpl)
3402 			return false;
3403 	} else {
3404 		if (cs.dpl != cs_rpl)
3405 			return false;
3406 	}
3407 	if (!cs.present)
3408 		return false;
3409 
3410 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3411 	return true;
3412 }
3413 
3414 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3415 {
3416 	struct kvm_segment ss;
3417 	unsigned int ss_rpl;
3418 
3419 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3420 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3421 
3422 	if (ss.unusable)
3423 		return true;
3424 	if (ss.type != 3 && ss.type != 7)
3425 		return false;
3426 	if (!ss.s)
3427 		return false;
3428 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3429 		return false;
3430 	if (!ss.present)
3431 		return false;
3432 
3433 	return true;
3434 }
3435 
3436 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3437 {
3438 	struct kvm_segment var;
3439 	unsigned int rpl;
3440 
3441 	vmx_get_segment(vcpu, &var, seg);
3442 	rpl = var.selector & SEGMENT_RPL_MASK;
3443 
3444 	if (var.unusable)
3445 		return true;
3446 	if (!var.s)
3447 		return false;
3448 	if (!var.present)
3449 		return false;
3450 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3451 		if (var.dpl < rpl) /* DPL < RPL */
3452 			return false;
3453 	}
3454 
3455 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3456 	 * rights flags
3457 	 */
3458 	return true;
3459 }
3460 
3461 static bool tr_valid(struct kvm_vcpu *vcpu)
3462 {
3463 	struct kvm_segment tr;
3464 
3465 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3466 
3467 	if (tr.unusable)
3468 		return false;
3469 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3470 		return false;
3471 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3472 		return false;
3473 	if (!tr.present)
3474 		return false;
3475 
3476 	return true;
3477 }
3478 
3479 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3480 {
3481 	struct kvm_segment ldtr;
3482 
3483 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3484 
3485 	if (ldtr.unusable)
3486 		return true;
3487 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3488 		return false;
3489 	if (ldtr.type != 2)
3490 		return false;
3491 	if (!ldtr.present)
3492 		return false;
3493 
3494 	return true;
3495 }
3496 
3497 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3498 {
3499 	struct kvm_segment cs, ss;
3500 
3501 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3502 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3503 
3504 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3505 		 (ss.selector & SEGMENT_RPL_MASK));
3506 }
3507 
3508 /*
3509  * Check if guest state is valid. Returns true if valid, false if
3510  * not.
3511  * We assume that registers are always usable
3512  */
3513 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3514 {
3515 	/* real mode guest state checks */
3516 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3517 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3518 			return false;
3519 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3520 			return false;
3521 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3522 			return false;
3523 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3524 			return false;
3525 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3526 			return false;
3527 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3528 			return false;
3529 	} else {
3530 	/* protected mode guest state checks */
3531 		if (!cs_ss_rpl_check(vcpu))
3532 			return false;
3533 		if (!code_segment_valid(vcpu))
3534 			return false;
3535 		if (!stack_segment_valid(vcpu))
3536 			return false;
3537 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3538 			return false;
3539 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3540 			return false;
3541 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3542 			return false;
3543 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3544 			return false;
3545 		if (!tr_valid(vcpu))
3546 			return false;
3547 		if (!ldtr_valid(vcpu))
3548 			return false;
3549 	}
3550 	/* TODO:
3551 	 * - Add checks on RIP
3552 	 * - Add checks on RFLAGS
3553 	 */
3554 
3555 	return true;
3556 }
3557 
3558 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3559 {
3560 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3561 	u16 data;
3562 	int i;
3563 
3564 	for (i = 0; i < 3; i++) {
3565 		if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3566 			return -EFAULT;
3567 	}
3568 
3569 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3570 	if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3571 		return -EFAULT;
3572 
3573 	data = ~0;
3574 	if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3575 		return -EFAULT;
3576 
3577 	return 0;
3578 }
3579 
3580 static int init_rmode_identity_map(struct kvm *kvm)
3581 {
3582 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3583 	int i, r = 0;
3584 	void __user *uaddr;
3585 	u32 tmp;
3586 
3587 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3588 	mutex_lock(&kvm->slots_lock);
3589 
3590 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3591 		goto out;
3592 
3593 	if (!kvm_vmx->ept_identity_map_addr)
3594 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3595 
3596 	uaddr = __x86_set_memory_region(kvm,
3597 					IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3598 					kvm_vmx->ept_identity_map_addr,
3599 					PAGE_SIZE);
3600 	if (IS_ERR(uaddr)) {
3601 		r = PTR_ERR(uaddr);
3602 		goto out;
3603 	}
3604 
3605 	/* Set up identity-mapping pagetable for EPT in real mode */
3606 	for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3607 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3608 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3609 		if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3610 			r = -EFAULT;
3611 			goto out;
3612 		}
3613 	}
3614 	kvm_vmx->ept_identity_pagetable_done = true;
3615 
3616 out:
3617 	mutex_unlock(&kvm->slots_lock);
3618 	return r;
3619 }
3620 
3621 static void seg_setup(int seg)
3622 {
3623 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3624 	unsigned int ar;
3625 
3626 	vmcs_write16(sf->selector, 0);
3627 	vmcs_writel(sf->base, 0);
3628 	vmcs_write32(sf->limit, 0xffff);
3629 	ar = 0x93;
3630 	if (seg == VCPU_SREG_CS)
3631 		ar |= 0x08; /* code segment */
3632 
3633 	vmcs_write32(sf->ar_bytes, ar);
3634 }
3635 
3636 static int alloc_apic_access_page(struct kvm *kvm)
3637 {
3638 	struct page *page;
3639 	void __user *hva;
3640 	int ret = 0;
3641 
3642 	mutex_lock(&kvm->slots_lock);
3643 	if (kvm->arch.apic_access_memslot_enabled)
3644 		goto out;
3645 	hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3646 				      APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3647 	if (IS_ERR(hva)) {
3648 		ret = PTR_ERR(hva);
3649 		goto out;
3650 	}
3651 
3652 	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3653 	if (is_error_page(page)) {
3654 		ret = -EFAULT;
3655 		goto out;
3656 	}
3657 
3658 	/*
3659 	 * Do not pin the page in memory, so that memory hot-unplug
3660 	 * is able to migrate it.
3661 	 */
3662 	put_page(page);
3663 	kvm->arch.apic_access_memslot_enabled = true;
3664 out:
3665 	mutex_unlock(&kvm->slots_lock);
3666 	return ret;
3667 }
3668 
3669 int allocate_vpid(void)
3670 {
3671 	int vpid;
3672 
3673 	if (!enable_vpid)
3674 		return 0;
3675 	spin_lock(&vmx_vpid_lock);
3676 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3677 	if (vpid < VMX_NR_VPIDS)
3678 		__set_bit(vpid, vmx_vpid_bitmap);
3679 	else
3680 		vpid = 0;
3681 	spin_unlock(&vmx_vpid_lock);
3682 	return vpid;
3683 }
3684 
3685 void free_vpid(int vpid)
3686 {
3687 	if (!enable_vpid || vpid == 0)
3688 		return;
3689 	spin_lock(&vmx_vpid_lock);
3690 	__clear_bit(vpid, vmx_vpid_bitmap);
3691 	spin_unlock(&vmx_vpid_lock);
3692 }
3693 
3694 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3695 {
3696 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3697 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3698 
3699 	if (!cpu_has_vmx_msr_bitmap())
3700 		return;
3701 
3702 	if (static_branch_unlikely(&enable_evmcs))
3703 		evmcs_touch_msr_bitmap();
3704 
3705 	/*
3706 	 * Mark the desired intercept state in shadow bitmap, this is needed
3707 	 * for resync when the MSR filters change.
3708 	*/
3709 	if (is_valid_passthrough_msr(msr)) {
3710 		int idx = possible_passthrough_msr_slot(msr);
3711 
3712 		if (idx != -ENOENT) {
3713 			if (type & MSR_TYPE_R)
3714 				clear_bit(idx, vmx->shadow_msr_intercept.read);
3715 			if (type & MSR_TYPE_W)
3716 				clear_bit(idx, vmx->shadow_msr_intercept.write);
3717 		}
3718 	}
3719 
3720 	if ((type & MSR_TYPE_R) &&
3721 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3722 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3723 		type &= ~MSR_TYPE_R;
3724 	}
3725 
3726 	if ((type & MSR_TYPE_W) &&
3727 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3728 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3729 		type &= ~MSR_TYPE_W;
3730 	}
3731 
3732 	if (type & MSR_TYPE_R)
3733 		vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3734 
3735 	if (type & MSR_TYPE_W)
3736 		vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3737 }
3738 
3739 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3740 {
3741 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3742 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3743 
3744 	if (!cpu_has_vmx_msr_bitmap())
3745 		return;
3746 
3747 	if (static_branch_unlikely(&enable_evmcs))
3748 		evmcs_touch_msr_bitmap();
3749 
3750 	/*
3751 	 * Mark the desired intercept state in shadow bitmap, this is needed
3752 	 * for resync when the MSR filter changes.
3753 	*/
3754 	if (is_valid_passthrough_msr(msr)) {
3755 		int idx = possible_passthrough_msr_slot(msr);
3756 
3757 		if (idx != -ENOENT) {
3758 			if (type & MSR_TYPE_R)
3759 				set_bit(idx, vmx->shadow_msr_intercept.read);
3760 			if (type & MSR_TYPE_W)
3761 				set_bit(idx, vmx->shadow_msr_intercept.write);
3762 		}
3763 	}
3764 
3765 	if (type & MSR_TYPE_R)
3766 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3767 
3768 	if (type & MSR_TYPE_W)
3769 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3770 }
3771 
3772 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode)
3773 {
3774 	unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
3775 	unsigned long read_intercept;
3776 	int msr;
3777 
3778 	read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3779 
3780 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3781 		unsigned int read_idx = msr / BITS_PER_LONG;
3782 		unsigned int write_idx = read_idx + (0x800 / sizeof(long));
3783 
3784 		msr_bitmap[read_idx] = read_intercept;
3785 		msr_bitmap[write_idx] = ~0ul;
3786 	}
3787 }
3788 
3789 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
3790 {
3791 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3792 	u8 mode;
3793 
3794 	if (!cpu_has_vmx_msr_bitmap())
3795 		return;
3796 
3797 	if (cpu_has_secondary_exec_ctrls() &&
3798 	    (secondary_exec_controls_get(vmx) &
3799 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3800 		mode = MSR_BITMAP_MODE_X2APIC;
3801 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3802 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3803 	} else {
3804 		mode = 0;
3805 	}
3806 
3807 	if (mode == vmx->x2apic_msr_bitmap_mode)
3808 		return;
3809 
3810 	vmx->x2apic_msr_bitmap_mode = mode;
3811 
3812 	vmx_reset_x2apic_msrs(vcpu, mode);
3813 
3814 	/*
3815 	 * TPR reads and writes can be virtualized even if virtual interrupt
3816 	 * delivery is not in use.
3817 	 */
3818 	vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
3819 				  !(mode & MSR_BITMAP_MODE_X2APIC));
3820 
3821 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3822 		vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
3823 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3824 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3825 	}
3826 }
3827 
3828 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
3829 {
3830 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3831 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3832 	u32 i;
3833 
3834 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
3835 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
3836 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
3837 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
3838 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
3839 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3840 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3841 	}
3842 }
3843 
3844 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3845 {
3846 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3847 	void *vapic_page;
3848 	u32 vppr;
3849 	int rvi;
3850 
3851 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3852 		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3853 		WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3854 		return false;
3855 
3856 	rvi = vmx_get_rvi();
3857 
3858 	vapic_page = vmx->nested.virtual_apic_map.hva;
3859 	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3860 
3861 	return ((rvi & 0xf0) > (vppr & 0xf0));
3862 }
3863 
3864 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
3865 {
3866 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3867 	u32 i;
3868 
3869 	/*
3870 	 * Set intercept permissions for all potentially passed through MSRs
3871 	 * again. They will automatically get filtered through the MSR filter,
3872 	 * so we are back in sync after this.
3873 	 */
3874 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
3875 		u32 msr = vmx_possible_passthrough_msrs[i];
3876 		bool read = test_bit(i, vmx->shadow_msr_intercept.read);
3877 		bool write = test_bit(i, vmx->shadow_msr_intercept.write);
3878 
3879 		vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read);
3880 		vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write);
3881 	}
3882 
3883 	pt_update_intercept_for_msr(vcpu);
3884 }
3885 
3886 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3887 						     bool nested)
3888 {
3889 #ifdef CONFIG_SMP
3890 	int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3891 
3892 	if (vcpu->mode == IN_GUEST_MODE) {
3893 		/*
3894 		 * The vector of interrupt to be delivered to vcpu had
3895 		 * been set in PIR before this function.
3896 		 *
3897 		 * Following cases will be reached in this block, and
3898 		 * we always send a notification event in all cases as
3899 		 * explained below.
3900 		 *
3901 		 * Case 1: vcpu keeps in non-root mode. Sending a
3902 		 * notification event posts the interrupt to vcpu.
3903 		 *
3904 		 * Case 2: vcpu exits to root mode and is still
3905 		 * runnable. PIR will be synced to vIRR before the
3906 		 * next vcpu entry. Sending a notification event in
3907 		 * this case has no effect, as vcpu is not in root
3908 		 * mode.
3909 		 *
3910 		 * Case 3: vcpu exits to root mode and is blocked.
3911 		 * vcpu_block() has already synced PIR to vIRR and
3912 		 * never blocks vcpu if vIRR is not cleared. Therefore,
3913 		 * a blocked vcpu here does not wait for any requested
3914 		 * interrupts in PIR, and sending a notification event
3915 		 * which has no effect is safe here.
3916 		 */
3917 
3918 		apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3919 		return true;
3920 	}
3921 #endif
3922 	return false;
3923 }
3924 
3925 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3926 						int vector)
3927 {
3928 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3929 
3930 	if (is_guest_mode(vcpu) &&
3931 	    vector == vmx->nested.posted_intr_nv) {
3932 		/*
3933 		 * If a posted intr is not recognized by hardware,
3934 		 * we will accomplish it in the next vmentry.
3935 		 */
3936 		vmx->nested.pi_pending = true;
3937 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3938 		/* the PIR and ON have been set by L1. */
3939 		if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3940 			kvm_vcpu_kick(vcpu);
3941 		return 0;
3942 	}
3943 	return -1;
3944 }
3945 /*
3946  * Send interrupt to vcpu via posted interrupt way.
3947  * 1. If target vcpu is running(non-root mode), send posted interrupt
3948  * notification to vcpu and hardware will sync PIR to vIRR atomically.
3949  * 2. If target vcpu isn't running(root mode), kick it to pick up the
3950  * interrupt from PIR in next vmentry.
3951  */
3952 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3953 {
3954 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3955 	int r;
3956 
3957 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3958 	if (!r)
3959 		return 0;
3960 
3961 	if (!vcpu->arch.apicv_active)
3962 		return -1;
3963 
3964 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3965 		return 0;
3966 
3967 	/* If a previous notification has sent the IPI, nothing to do.  */
3968 	if (pi_test_and_set_on(&vmx->pi_desc))
3969 		return 0;
3970 
3971 	if (vcpu != kvm_get_running_vcpu() &&
3972 	    !kvm_vcpu_trigger_posted_interrupt(vcpu, false))
3973 		kvm_vcpu_kick(vcpu);
3974 
3975 	return 0;
3976 }
3977 
3978 /*
3979  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3980  * will not change in the lifetime of the guest.
3981  * Note that host-state that does change is set elsewhere. E.g., host-state
3982  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3983  */
3984 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
3985 {
3986 	u32 low32, high32;
3987 	unsigned long tmpl;
3988 	unsigned long cr0, cr3, cr4;
3989 
3990 	cr0 = read_cr0();
3991 	WARN_ON(cr0 & X86_CR0_TS);
3992 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
3993 
3994 	/*
3995 	 * Save the most likely value for this task's CR3 in the VMCS.
3996 	 * We can't use __get_current_cr3_fast() because we're not atomic.
3997 	 */
3998 	cr3 = __read_cr3();
3999 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
4000 	vmx->loaded_vmcs->host_state.cr3 = cr3;
4001 
4002 	/* Save the most likely value for this task's CR4 in the VMCS. */
4003 	cr4 = cr4_read_shadow();
4004 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
4005 	vmx->loaded_vmcs->host_state.cr4 = cr4;
4006 
4007 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4008 #ifdef CONFIG_X86_64
4009 	/*
4010 	 * Load null selectors, so we can avoid reloading them in
4011 	 * vmx_prepare_switch_to_host(), in case userspace uses
4012 	 * the null selectors too (the expected case).
4013 	 */
4014 	vmcs_write16(HOST_DS_SELECTOR, 0);
4015 	vmcs_write16(HOST_ES_SELECTOR, 0);
4016 #else
4017 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4018 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4019 #endif
4020 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4021 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4022 
4023 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4024 
4025 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4026 
4027 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4028 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4029 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4030 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4031 
4032 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4033 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4034 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4035 	}
4036 
4037 	if (cpu_has_load_ia32_efer())
4038 		vmcs_write64(HOST_IA32_EFER, host_efer);
4039 }
4040 
4041 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4042 {
4043 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4044 
4045 	vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4046 					  ~vcpu->arch.cr4_guest_rsvd_bits;
4047 	if (!enable_ept)
4048 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PGE;
4049 	if (is_guest_mode(&vmx->vcpu))
4050 		vcpu->arch.cr4_guest_owned_bits &=
4051 			~get_vmcs12(vcpu)->cr4_guest_host_mask;
4052 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4053 }
4054 
4055 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4056 {
4057 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4058 
4059 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4060 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4061 
4062 	if (!enable_vnmi)
4063 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4064 
4065 	if (!enable_preemption_timer)
4066 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4067 
4068 	return pin_based_exec_ctrl;
4069 }
4070 
4071 static u32 vmx_vmentry_ctrl(void)
4072 {
4073 	u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4074 
4075 	if (vmx_pt_mode_is_system())
4076 		vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4077 				  VM_ENTRY_LOAD_IA32_RTIT_CTL);
4078 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4079 	return vmentry_ctrl &
4080 		~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | VM_ENTRY_LOAD_IA32_EFER);
4081 }
4082 
4083 static u32 vmx_vmexit_ctrl(void)
4084 {
4085 	u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4086 
4087 	if (vmx_pt_mode_is_system())
4088 		vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4089 				 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4090 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4091 	return vmexit_ctrl &
4092 		~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4093 }
4094 
4095 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4096 {
4097 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4098 
4099 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4100 	if (cpu_has_secondary_exec_ctrls()) {
4101 		if (kvm_vcpu_apicv_active(vcpu))
4102 			secondary_exec_controls_setbit(vmx,
4103 				      SECONDARY_EXEC_APIC_REGISTER_VIRT |
4104 				      SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4105 		else
4106 			secondary_exec_controls_clearbit(vmx,
4107 					SECONDARY_EXEC_APIC_REGISTER_VIRT |
4108 					SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4109 	}
4110 
4111 	vmx_update_msr_bitmap_x2apic(vcpu);
4112 }
4113 
4114 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4115 {
4116 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4117 
4118 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4119 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4120 
4121 	if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4122 		exec_control &= ~CPU_BASED_TPR_SHADOW;
4123 #ifdef CONFIG_X86_64
4124 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4125 				CPU_BASED_CR8_LOAD_EXITING;
4126 #endif
4127 	}
4128 	if (!enable_ept)
4129 		exec_control |= CPU_BASED_CR3_STORE_EXITING |
4130 				CPU_BASED_CR3_LOAD_EXITING  |
4131 				CPU_BASED_INVLPG_EXITING;
4132 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4133 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4134 				CPU_BASED_MONITOR_EXITING);
4135 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4136 		exec_control &= ~CPU_BASED_HLT_EXITING;
4137 	return exec_control;
4138 }
4139 
4140 /*
4141  * Adjust a single secondary execution control bit to intercept/allow an
4142  * instruction in the guest.  This is usually done based on whether or not a
4143  * feature has been exposed to the guest in order to correctly emulate faults.
4144  */
4145 static inline void
4146 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4147 				  u32 control, bool enabled, bool exiting)
4148 {
4149 	/*
4150 	 * If the control is for an opt-in feature, clear the control if the
4151 	 * feature is not exposed to the guest, i.e. not enabled.  If the
4152 	 * control is opt-out, i.e. an exiting control, clear the control if
4153 	 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4154 	 * disabled for the associated instruction.  Note, the caller is
4155 	 * responsible presetting exec_control to set all supported bits.
4156 	 */
4157 	if (enabled == exiting)
4158 		*exec_control &= ~control;
4159 
4160 	/*
4161 	 * Update the nested MSR settings so that a nested VMM can/can't set
4162 	 * controls for features that are/aren't exposed to the guest.
4163 	 */
4164 	if (nested) {
4165 		if (enabled)
4166 			vmx->nested.msrs.secondary_ctls_high |= control;
4167 		else
4168 			vmx->nested.msrs.secondary_ctls_high &= ~control;
4169 	}
4170 }
4171 
4172 /*
4173  * Wrapper macro for the common case of adjusting a secondary execution control
4174  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4175  * verifies that the control is actually supported by KVM and hardware.
4176  */
4177 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4178 ({									 \
4179 	bool __enabled;							 \
4180 									 \
4181 	if (cpu_has_vmx_##name()) {					 \
4182 		__enabled = guest_cpuid_has(&(vmx)->vcpu,		 \
4183 					    X86_FEATURE_##feat_name);	 \
4184 		vmx_adjust_secondary_exec_control(vmx, exec_control,	 \
4185 			SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4186 	}								 \
4187 })
4188 
4189 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4190 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4191 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4192 
4193 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4194 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4195 
4196 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4197 {
4198 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4199 
4200 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4201 
4202 	if (vmx_pt_mode_is_system())
4203 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4204 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4205 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4206 	if (vmx->vpid == 0)
4207 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4208 	if (!enable_ept) {
4209 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4210 		enable_unrestricted_guest = 0;
4211 	}
4212 	if (!enable_unrestricted_guest)
4213 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4214 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4215 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4216 	if (!kvm_vcpu_apicv_active(vcpu))
4217 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4218 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4219 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4220 
4221 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4222 	 * in vmx_set_cr4.  */
4223 	exec_control &= ~SECONDARY_EXEC_DESC;
4224 
4225 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4226 	   (handle_vmptrld).
4227 	   We can NOT enable shadow_vmcs here because we don't have yet
4228 	   a current VMCS12
4229 	*/
4230 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4231 
4232 	/*
4233 	 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4234 	 * it needs to be set here when dirty logging is already active, e.g.
4235 	 * if this vCPU was created after dirty logging was enabled.
4236 	 */
4237 	if (!vcpu->kvm->arch.cpu_dirty_logging_count)
4238 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4239 
4240 	if (cpu_has_vmx_xsaves()) {
4241 		/* Exposing XSAVES only when XSAVE is exposed */
4242 		bool xsaves_enabled =
4243 			boot_cpu_has(X86_FEATURE_XSAVE) &&
4244 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4245 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4246 
4247 		vcpu->arch.xsaves_enabled = xsaves_enabled;
4248 
4249 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4250 						  SECONDARY_EXEC_XSAVES,
4251 						  xsaves_enabled, false);
4252 	}
4253 
4254 	/*
4255 	 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4256 	 * feature is exposed to the guest.  This creates a virtualization hole
4257 	 * if both are supported in hardware but only one is exposed to the
4258 	 * guest, but letting the guest execute RDTSCP or RDPID when either one
4259 	 * is advertised is preferable to emulating the advertised instruction
4260 	 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4261 	 */
4262 	if (cpu_has_vmx_rdtscp()) {
4263 		bool rdpid_or_rdtscp_enabled =
4264 			guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4265 			guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4266 
4267 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4268 						  SECONDARY_EXEC_ENABLE_RDTSCP,
4269 						  rdpid_or_rdtscp_enabled, false);
4270 	}
4271 	vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4272 
4273 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4274 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4275 
4276 	vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4277 				    ENABLE_USR_WAIT_PAUSE, false);
4278 
4279 	if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4280 		exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4281 
4282 	return exec_control;
4283 }
4284 
4285 #define VMX_XSS_EXIT_BITMAP 0
4286 
4287 static void init_vmcs(struct vcpu_vmx *vmx)
4288 {
4289 	if (nested)
4290 		nested_vmx_set_vmcs_shadowing_bitmap();
4291 
4292 	if (cpu_has_vmx_msr_bitmap())
4293 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4294 
4295 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4296 
4297 	/* Control */
4298 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4299 
4300 	exec_controls_set(vmx, vmx_exec_control(vmx));
4301 
4302 	if (cpu_has_secondary_exec_ctrls())
4303 		secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4304 
4305 	if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4306 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4307 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4308 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4309 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4310 
4311 		vmcs_write16(GUEST_INTR_STATUS, 0);
4312 
4313 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4314 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4315 	}
4316 
4317 	if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4318 		vmcs_write32(PLE_GAP, ple_gap);
4319 		vmx->ple_window = ple_window;
4320 		vmx->ple_window_dirty = true;
4321 	}
4322 
4323 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4324 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4325 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4326 
4327 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4328 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4329 	vmx_set_constant_host_state(vmx);
4330 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4331 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4332 
4333 	if (cpu_has_vmx_vmfunc())
4334 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4335 
4336 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4337 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4338 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4339 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4340 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4341 
4342 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4343 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4344 
4345 	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4346 
4347 	/* 22.2.1, 20.8.1 */
4348 	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4349 
4350 	vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4351 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4352 
4353 	set_cr4_guest_host_mask(vmx);
4354 
4355 	if (vmx->vpid != 0)
4356 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4357 
4358 	if (cpu_has_vmx_xsaves())
4359 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4360 
4361 	if (enable_pml) {
4362 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4363 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4364 	}
4365 
4366 	vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4367 
4368 	if (vmx_pt_mode_is_host_guest()) {
4369 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4370 		/* Bit[6~0] are forced to 1, writes are ignored. */
4371 		vmx->pt_desc.guest.output_mask = 0x7F;
4372 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4373 	}
4374 
4375 	vmcs_write32(GUEST_SYSENTER_CS, 0);
4376 	vmcs_writel(GUEST_SYSENTER_ESP, 0);
4377 	vmcs_writel(GUEST_SYSENTER_EIP, 0);
4378 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4379 
4380 	if (cpu_has_vmx_tpr_shadow()) {
4381 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4382 		if (cpu_need_tpr_shadow(&vmx->vcpu))
4383 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4384 				     __pa(vmx->vcpu.arch.apic->regs));
4385 		vmcs_write32(TPR_THRESHOLD, 0);
4386 	}
4387 
4388 	vmx_setup_uret_msrs(vmx);
4389 }
4390 
4391 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4392 {
4393 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4394 
4395 	init_vmcs(vmx);
4396 
4397 	if (nested)
4398 		memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4399 
4400 	vcpu_setup_sgx_lepubkeyhash(vcpu);
4401 
4402 	vmx->nested.posted_intr_nv = -1;
4403 	vmx->nested.vmxon_ptr = INVALID_GPA;
4404 	vmx->nested.current_vmptr = INVALID_GPA;
4405 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4406 
4407 	vcpu->arch.microcode_version = 0x100000000ULL;
4408 	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4409 
4410 	/*
4411 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4412 	 * or POSTED_INTR_WAKEUP_VECTOR.
4413 	 */
4414 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4415 	vmx->pi_desc.sn = 1;
4416 }
4417 
4418 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4419 {
4420 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4421 
4422 	if (!init_event)
4423 		__vmx_vcpu_reset(vcpu);
4424 
4425 	vmx->rmode.vm86_active = 0;
4426 	vmx->spec_ctrl = 0;
4427 
4428 	vmx->msr_ia32_umwait_control = 0;
4429 
4430 	vmx->hv_deadline_tsc = -1;
4431 	kvm_set_cr8(vcpu, 0);
4432 
4433 	vmx_segment_cache_clear(vmx);
4434 	kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4435 
4436 	seg_setup(VCPU_SREG_CS);
4437 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4438 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4439 
4440 	seg_setup(VCPU_SREG_DS);
4441 	seg_setup(VCPU_SREG_ES);
4442 	seg_setup(VCPU_SREG_FS);
4443 	seg_setup(VCPU_SREG_GS);
4444 	seg_setup(VCPU_SREG_SS);
4445 
4446 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4447 	vmcs_writel(GUEST_TR_BASE, 0);
4448 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4449 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4450 
4451 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4452 	vmcs_writel(GUEST_LDTR_BASE, 0);
4453 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4454 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4455 
4456 	vmcs_writel(GUEST_GDTR_BASE, 0);
4457 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4458 
4459 	vmcs_writel(GUEST_IDTR_BASE, 0);
4460 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4461 
4462 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4463 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4464 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4465 	if (kvm_mpx_supported())
4466 		vmcs_write64(GUEST_BNDCFGS, 0);
4467 
4468 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4469 
4470 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4471 
4472 	vpid_sync_context(vmx->vpid);
4473 }
4474 
4475 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4476 {
4477 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4478 }
4479 
4480 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4481 {
4482 	if (!enable_vnmi ||
4483 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4484 		vmx_enable_irq_window(vcpu);
4485 		return;
4486 	}
4487 
4488 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4489 }
4490 
4491 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4492 {
4493 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4494 	uint32_t intr;
4495 	int irq = vcpu->arch.interrupt.nr;
4496 
4497 	trace_kvm_inj_virq(irq);
4498 
4499 	++vcpu->stat.irq_injections;
4500 	if (vmx->rmode.vm86_active) {
4501 		int inc_eip = 0;
4502 		if (vcpu->arch.interrupt.soft)
4503 			inc_eip = vcpu->arch.event_exit_inst_len;
4504 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4505 		return;
4506 	}
4507 	intr = irq | INTR_INFO_VALID_MASK;
4508 	if (vcpu->arch.interrupt.soft) {
4509 		intr |= INTR_TYPE_SOFT_INTR;
4510 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4511 			     vmx->vcpu.arch.event_exit_inst_len);
4512 	} else
4513 		intr |= INTR_TYPE_EXT_INTR;
4514 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4515 
4516 	vmx_clear_hlt(vcpu);
4517 }
4518 
4519 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4520 {
4521 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4522 
4523 	if (!enable_vnmi) {
4524 		/*
4525 		 * Tracking the NMI-blocked state in software is built upon
4526 		 * finding the next open IRQ window. This, in turn, depends on
4527 		 * well-behaving guests: They have to keep IRQs disabled at
4528 		 * least as long as the NMI handler runs. Otherwise we may
4529 		 * cause NMI nesting, maybe breaking the guest. But as this is
4530 		 * highly unlikely, we can live with the residual risk.
4531 		 */
4532 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4533 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4534 	}
4535 
4536 	++vcpu->stat.nmi_injections;
4537 	vmx->loaded_vmcs->nmi_known_unmasked = false;
4538 
4539 	if (vmx->rmode.vm86_active) {
4540 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4541 		return;
4542 	}
4543 
4544 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4545 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4546 
4547 	vmx_clear_hlt(vcpu);
4548 }
4549 
4550 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4551 {
4552 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4553 	bool masked;
4554 
4555 	if (!enable_vnmi)
4556 		return vmx->loaded_vmcs->soft_vnmi_blocked;
4557 	if (vmx->loaded_vmcs->nmi_known_unmasked)
4558 		return false;
4559 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4560 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4561 	return masked;
4562 }
4563 
4564 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4565 {
4566 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4567 
4568 	if (!enable_vnmi) {
4569 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4570 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4571 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
4572 		}
4573 	} else {
4574 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4575 		if (masked)
4576 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4577 				      GUEST_INTR_STATE_NMI);
4578 		else
4579 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4580 					GUEST_INTR_STATE_NMI);
4581 	}
4582 }
4583 
4584 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4585 {
4586 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4587 		return false;
4588 
4589 	if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4590 		return true;
4591 
4592 	return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4593 		(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4594 		 GUEST_INTR_STATE_NMI));
4595 }
4596 
4597 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4598 {
4599 	if (to_vmx(vcpu)->nested.nested_run_pending)
4600 		return -EBUSY;
4601 
4602 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
4603 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4604 		return -EBUSY;
4605 
4606 	return !vmx_nmi_blocked(vcpu);
4607 }
4608 
4609 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4610 {
4611 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4612 		return false;
4613 
4614 	return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4615 	       (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4616 		(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4617 }
4618 
4619 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4620 {
4621 	if (to_vmx(vcpu)->nested.nested_run_pending)
4622 		return -EBUSY;
4623 
4624        /*
4625         * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4626         * e.g. if the IRQ arrived asynchronously after checking nested events.
4627         */
4628 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4629 		return -EBUSY;
4630 
4631 	return !vmx_interrupt_blocked(vcpu);
4632 }
4633 
4634 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4635 {
4636 	void __user *ret;
4637 
4638 	if (enable_unrestricted_guest)
4639 		return 0;
4640 
4641 	mutex_lock(&kvm->slots_lock);
4642 	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4643 				      PAGE_SIZE * 3);
4644 	mutex_unlock(&kvm->slots_lock);
4645 
4646 	if (IS_ERR(ret))
4647 		return PTR_ERR(ret);
4648 
4649 	to_kvm_vmx(kvm)->tss_addr = addr;
4650 
4651 	return init_rmode_tss(kvm, ret);
4652 }
4653 
4654 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4655 {
4656 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4657 	return 0;
4658 }
4659 
4660 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4661 {
4662 	switch (vec) {
4663 	case BP_VECTOR:
4664 		/*
4665 		 * Update instruction length as we may reinject the exception
4666 		 * from user space while in guest debugging mode.
4667 		 */
4668 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4669 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4670 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4671 			return false;
4672 		fallthrough;
4673 	case DB_VECTOR:
4674 		return !(vcpu->guest_debug &
4675 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
4676 	case DE_VECTOR:
4677 	case OF_VECTOR:
4678 	case BR_VECTOR:
4679 	case UD_VECTOR:
4680 	case DF_VECTOR:
4681 	case SS_VECTOR:
4682 	case GP_VECTOR:
4683 	case MF_VECTOR:
4684 		return true;
4685 	}
4686 	return false;
4687 }
4688 
4689 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4690 				  int vec, u32 err_code)
4691 {
4692 	/*
4693 	 * Instruction with address size override prefix opcode 0x67
4694 	 * Cause the #SS fault with 0 error code in VM86 mode.
4695 	 */
4696 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4697 		if (kvm_emulate_instruction(vcpu, 0)) {
4698 			if (vcpu->arch.halt_request) {
4699 				vcpu->arch.halt_request = 0;
4700 				return kvm_vcpu_halt(vcpu);
4701 			}
4702 			return 1;
4703 		}
4704 		return 0;
4705 	}
4706 
4707 	/*
4708 	 * Forward all other exceptions that are valid in real mode.
4709 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4710 	 *        the required debugging infrastructure rework.
4711 	 */
4712 	kvm_queue_exception(vcpu, vec);
4713 	return 1;
4714 }
4715 
4716 static int handle_machine_check(struct kvm_vcpu *vcpu)
4717 {
4718 	/* handled by vmx_vcpu_run() */
4719 	return 1;
4720 }
4721 
4722 /*
4723  * If the host has split lock detection disabled, then #AC is
4724  * unconditionally injected into the guest, which is the pre split lock
4725  * detection behaviour.
4726  *
4727  * If the host has split lock detection enabled then #AC is
4728  * only injected into the guest when:
4729  *  - Guest CPL == 3 (user mode)
4730  *  - Guest has #AC detection enabled in CR0
4731  *  - Guest EFLAGS has AC bit set
4732  */
4733 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
4734 {
4735 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
4736 		return true;
4737 
4738 	return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
4739 	       (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
4740 }
4741 
4742 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4743 {
4744 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4745 	struct kvm_run *kvm_run = vcpu->run;
4746 	u32 intr_info, ex_no, error_code;
4747 	unsigned long cr2, dr6;
4748 	u32 vect_info;
4749 
4750 	vect_info = vmx->idt_vectoring_info;
4751 	intr_info = vmx_get_intr_info(vcpu);
4752 
4753 	if (is_machine_check(intr_info) || is_nmi(intr_info))
4754 		return 1; /* handled by handle_exception_nmi_irqoff() */
4755 
4756 	if (is_invalid_opcode(intr_info))
4757 		return handle_ud(vcpu);
4758 
4759 	error_code = 0;
4760 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4761 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4762 
4763 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4764 		WARN_ON_ONCE(!enable_vmware_backdoor);
4765 
4766 		/*
4767 		 * VMware backdoor emulation on #GP interception only handles
4768 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4769 		 * error code on #GP.
4770 		 */
4771 		if (error_code) {
4772 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4773 			return 1;
4774 		}
4775 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4776 	}
4777 
4778 	/*
4779 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4780 	 * MMIO, it is better to report an internal error.
4781 	 * See the comments in vmx_handle_exit.
4782 	 */
4783 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4784 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4785 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4786 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4787 		vcpu->run->internal.ndata = 4;
4788 		vcpu->run->internal.data[0] = vect_info;
4789 		vcpu->run->internal.data[1] = intr_info;
4790 		vcpu->run->internal.data[2] = error_code;
4791 		vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
4792 		return 0;
4793 	}
4794 
4795 	if (is_page_fault(intr_info)) {
4796 		cr2 = vmx_get_exit_qual(vcpu);
4797 		if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
4798 			/*
4799 			 * EPT will cause page fault only if we need to
4800 			 * detect illegal GPAs.
4801 			 */
4802 			WARN_ON_ONCE(!allow_smaller_maxphyaddr);
4803 			kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
4804 			return 1;
4805 		} else
4806 			return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4807 	}
4808 
4809 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4810 
4811 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4812 		return handle_rmode_exception(vcpu, ex_no, error_code);
4813 
4814 	switch (ex_no) {
4815 	case DB_VECTOR:
4816 		dr6 = vmx_get_exit_qual(vcpu);
4817 		if (!(vcpu->guest_debug &
4818 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4819 			if (is_icebp(intr_info))
4820 				WARN_ON(!skip_emulated_instruction(vcpu));
4821 
4822 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
4823 			return 1;
4824 		}
4825 		kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
4826 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4827 		fallthrough;
4828 	case BP_VECTOR:
4829 		/*
4830 		 * Update instruction length as we may reinject #BP from
4831 		 * user space while in guest debugging mode. Reading it for
4832 		 * #DB as well causes no harm, it is not used in that case.
4833 		 */
4834 		vmx->vcpu.arch.event_exit_inst_len =
4835 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4836 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
4837 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4838 		kvm_run->debug.arch.exception = ex_no;
4839 		break;
4840 	case AC_VECTOR:
4841 		if (vmx_guest_inject_ac(vcpu)) {
4842 			kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4843 			return 1;
4844 		}
4845 
4846 		/*
4847 		 * Handle split lock. Depending on detection mode this will
4848 		 * either warn and disable split lock detection for this
4849 		 * task or force SIGBUS on it.
4850 		 */
4851 		if (handle_guest_split_lock(kvm_rip_read(vcpu)))
4852 			return 1;
4853 		fallthrough;
4854 	default:
4855 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4856 		kvm_run->ex.exception = ex_no;
4857 		kvm_run->ex.error_code = error_code;
4858 		break;
4859 	}
4860 	return 0;
4861 }
4862 
4863 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
4864 {
4865 	++vcpu->stat.irq_exits;
4866 	return 1;
4867 }
4868 
4869 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4870 {
4871 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4872 	vcpu->mmio_needed = 0;
4873 	return 0;
4874 }
4875 
4876 static int handle_io(struct kvm_vcpu *vcpu)
4877 {
4878 	unsigned long exit_qualification;
4879 	int size, in, string;
4880 	unsigned port;
4881 
4882 	exit_qualification = vmx_get_exit_qual(vcpu);
4883 	string = (exit_qualification & 16) != 0;
4884 
4885 	++vcpu->stat.io_exits;
4886 
4887 	if (string)
4888 		return kvm_emulate_instruction(vcpu, 0);
4889 
4890 	port = exit_qualification >> 16;
4891 	size = (exit_qualification & 7) + 1;
4892 	in = (exit_qualification & 8) != 0;
4893 
4894 	return kvm_fast_pio(vcpu, size, port, in);
4895 }
4896 
4897 static void
4898 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4899 {
4900 	/*
4901 	 * Patch in the VMCALL instruction:
4902 	 */
4903 	hypercall[0] = 0x0f;
4904 	hypercall[1] = 0x01;
4905 	hypercall[2] = 0xc1;
4906 }
4907 
4908 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4909 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4910 {
4911 	if (is_guest_mode(vcpu)) {
4912 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4913 		unsigned long orig_val = val;
4914 
4915 		/*
4916 		 * We get here when L2 changed cr0 in a way that did not change
4917 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4918 		 * but did change L0 shadowed bits. So we first calculate the
4919 		 * effective cr0 value that L1 would like to write into the
4920 		 * hardware. It consists of the L2-owned bits from the new
4921 		 * value combined with the L1-owned bits from L1's guest_cr0.
4922 		 */
4923 		val = (val & ~vmcs12->cr0_guest_host_mask) |
4924 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4925 
4926 		if (!nested_guest_cr0_valid(vcpu, val))
4927 			return 1;
4928 
4929 		if (kvm_set_cr0(vcpu, val))
4930 			return 1;
4931 		vmcs_writel(CR0_READ_SHADOW, orig_val);
4932 		return 0;
4933 	} else {
4934 		if (to_vmx(vcpu)->nested.vmxon &&
4935 		    !nested_host_cr0_valid(vcpu, val))
4936 			return 1;
4937 
4938 		return kvm_set_cr0(vcpu, val);
4939 	}
4940 }
4941 
4942 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4943 {
4944 	if (is_guest_mode(vcpu)) {
4945 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4946 		unsigned long orig_val = val;
4947 
4948 		/* analogously to handle_set_cr0 */
4949 		val = (val & ~vmcs12->cr4_guest_host_mask) |
4950 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4951 		if (kvm_set_cr4(vcpu, val))
4952 			return 1;
4953 		vmcs_writel(CR4_READ_SHADOW, orig_val);
4954 		return 0;
4955 	} else
4956 		return kvm_set_cr4(vcpu, val);
4957 }
4958 
4959 static int handle_desc(struct kvm_vcpu *vcpu)
4960 {
4961 	WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4962 	return kvm_emulate_instruction(vcpu, 0);
4963 }
4964 
4965 static int handle_cr(struct kvm_vcpu *vcpu)
4966 {
4967 	unsigned long exit_qualification, val;
4968 	int cr;
4969 	int reg;
4970 	int err;
4971 	int ret;
4972 
4973 	exit_qualification = vmx_get_exit_qual(vcpu);
4974 	cr = exit_qualification & 15;
4975 	reg = (exit_qualification >> 8) & 15;
4976 	switch ((exit_qualification >> 4) & 3) {
4977 	case 0: /* mov to cr */
4978 		val = kvm_register_read(vcpu, reg);
4979 		trace_kvm_cr_write(cr, val);
4980 		switch (cr) {
4981 		case 0:
4982 			err = handle_set_cr0(vcpu, val);
4983 			return kvm_complete_insn_gp(vcpu, err);
4984 		case 3:
4985 			WARN_ON_ONCE(enable_unrestricted_guest);
4986 
4987 			err = kvm_set_cr3(vcpu, val);
4988 			return kvm_complete_insn_gp(vcpu, err);
4989 		case 4:
4990 			err = handle_set_cr4(vcpu, val);
4991 			return kvm_complete_insn_gp(vcpu, err);
4992 		case 8: {
4993 				u8 cr8_prev = kvm_get_cr8(vcpu);
4994 				u8 cr8 = (u8)val;
4995 				err = kvm_set_cr8(vcpu, cr8);
4996 				ret = kvm_complete_insn_gp(vcpu, err);
4997 				if (lapic_in_kernel(vcpu))
4998 					return ret;
4999 				if (cr8_prev <= cr8)
5000 					return ret;
5001 				/*
5002 				 * TODO: we might be squashing a
5003 				 * KVM_GUESTDBG_SINGLESTEP-triggered
5004 				 * KVM_EXIT_DEBUG here.
5005 				 */
5006 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5007 				return 0;
5008 			}
5009 		}
5010 		break;
5011 	case 2: /* clts */
5012 		KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5013 		return -EIO;
5014 	case 1: /*mov from cr*/
5015 		switch (cr) {
5016 		case 3:
5017 			WARN_ON_ONCE(enable_unrestricted_guest);
5018 
5019 			val = kvm_read_cr3(vcpu);
5020 			kvm_register_write(vcpu, reg, val);
5021 			trace_kvm_cr_read(cr, val);
5022 			return kvm_skip_emulated_instruction(vcpu);
5023 		case 8:
5024 			val = kvm_get_cr8(vcpu);
5025 			kvm_register_write(vcpu, reg, val);
5026 			trace_kvm_cr_read(cr, val);
5027 			return kvm_skip_emulated_instruction(vcpu);
5028 		}
5029 		break;
5030 	case 3: /* lmsw */
5031 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5032 		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5033 		kvm_lmsw(vcpu, val);
5034 
5035 		return kvm_skip_emulated_instruction(vcpu);
5036 	default:
5037 		break;
5038 	}
5039 	vcpu->run->exit_reason = 0;
5040 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5041 	       (int)(exit_qualification >> 4) & 3, cr);
5042 	return 0;
5043 }
5044 
5045 static int handle_dr(struct kvm_vcpu *vcpu)
5046 {
5047 	unsigned long exit_qualification;
5048 	int dr, dr7, reg;
5049 	int err = 1;
5050 
5051 	exit_qualification = vmx_get_exit_qual(vcpu);
5052 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5053 
5054 	/* First, if DR does not exist, trigger UD */
5055 	if (!kvm_require_dr(vcpu, dr))
5056 		return 1;
5057 
5058 	if (kvm_x86_ops.get_cpl(vcpu) > 0)
5059 		goto out;
5060 
5061 	dr7 = vmcs_readl(GUEST_DR7);
5062 	if (dr7 & DR7_GD) {
5063 		/*
5064 		 * As the vm-exit takes precedence over the debug trap, we
5065 		 * need to emulate the latter, either for the host or the
5066 		 * guest debugging itself.
5067 		 */
5068 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5069 			vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5070 			vcpu->run->debug.arch.dr7 = dr7;
5071 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5072 			vcpu->run->debug.arch.exception = DB_VECTOR;
5073 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5074 			return 0;
5075 		} else {
5076 			kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5077 			return 1;
5078 		}
5079 	}
5080 
5081 	if (vcpu->guest_debug == 0) {
5082 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5083 
5084 		/*
5085 		 * No more DR vmexits; force a reload of the debug registers
5086 		 * and reenter on this instruction.  The next vmexit will
5087 		 * retrieve the full state of the debug registers.
5088 		 */
5089 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5090 		return 1;
5091 	}
5092 
5093 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5094 	if (exit_qualification & TYPE_MOV_FROM_DR) {
5095 		unsigned long val;
5096 
5097 		kvm_get_dr(vcpu, dr, &val);
5098 		kvm_register_write(vcpu, reg, val);
5099 		err = 0;
5100 	} else {
5101 		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5102 	}
5103 
5104 out:
5105 	return kvm_complete_insn_gp(vcpu, err);
5106 }
5107 
5108 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5109 {
5110 	get_debugreg(vcpu->arch.db[0], 0);
5111 	get_debugreg(vcpu->arch.db[1], 1);
5112 	get_debugreg(vcpu->arch.db[2], 2);
5113 	get_debugreg(vcpu->arch.db[3], 3);
5114 	get_debugreg(vcpu->arch.dr6, 6);
5115 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5116 
5117 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5118 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5119 
5120 	/*
5121 	 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5122 	 * a stale dr6 from the guest.
5123 	 */
5124 	set_debugreg(DR6_RESERVED, 6);
5125 }
5126 
5127 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5128 {
5129 	vmcs_writel(GUEST_DR7, val);
5130 }
5131 
5132 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5133 {
5134 	kvm_apic_update_ppr(vcpu);
5135 	return 1;
5136 }
5137 
5138 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5139 {
5140 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5141 
5142 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5143 
5144 	++vcpu->stat.irq_window_exits;
5145 	return 1;
5146 }
5147 
5148 static int handle_invlpg(struct kvm_vcpu *vcpu)
5149 {
5150 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5151 
5152 	kvm_mmu_invlpg(vcpu, exit_qualification);
5153 	return kvm_skip_emulated_instruction(vcpu);
5154 }
5155 
5156 static int handle_apic_access(struct kvm_vcpu *vcpu)
5157 {
5158 	if (likely(fasteoi)) {
5159 		unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5160 		int access_type, offset;
5161 
5162 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5163 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5164 		/*
5165 		 * Sane guest uses MOV to write EOI, with written value
5166 		 * not cared. So make a short-circuit here by avoiding
5167 		 * heavy instruction emulation.
5168 		 */
5169 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5170 		    (offset == APIC_EOI)) {
5171 			kvm_lapic_set_eoi(vcpu);
5172 			return kvm_skip_emulated_instruction(vcpu);
5173 		}
5174 	}
5175 	return kvm_emulate_instruction(vcpu, 0);
5176 }
5177 
5178 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5179 {
5180 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5181 	int vector = exit_qualification & 0xff;
5182 
5183 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5184 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5185 	return 1;
5186 }
5187 
5188 static int handle_apic_write(struct kvm_vcpu *vcpu)
5189 {
5190 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5191 	u32 offset = exit_qualification & 0xfff;
5192 
5193 	/* APIC-write VM exit is trap-like and thus no need to adjust IP */
5194 	kvm_apic_write_nodecode(vcpu, offset);
5195 	return 1;
5196 }
5197 
5198 static int handle_task_switch(struct kvm_vcpu *vcpu)
5199 {
5200 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5201 	unsigned long exit_qualification;
5202 	bool has_error_code = false;
5203 	u32 error_code = 0;
5204 	u16 tss_selector;
5205 	int reason, type, idt_v, idt_index;
5206 
5207 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5208 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5209 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5210 
5211 	exit_qualification = vmx_get_exit_qual(vcpu);
5212 
5213 	reason = (u32)exit_qualification >> 30;
5214 	if (reason == TASK_SWITCH_GATE && idt_v) {
5215 		switch (type) {
5216 		case INTR_TYPE_NMI_INTR:
5217 			vcpu->arch.nmi_injected = false;
5218 			vmx_set_nmi_mask(vcpu, true);
5219 			break;
5220 		case INTR_TYPE_EXT_INTR:
5221 		case INTR_TYPE_SOFT_INTR:
5222 			kvm_clear_interrupt_queue(vcpu);
5223 			break;
5224 		case INTR_TYPE_HARD_EXCEPTION:
5225 			if (vmx->idt_vectoring_info &
5226 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5227 				has_error_code = true;
5228 				error_code =
5229 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5230 			}
5231 			fallthrough;
5232 		case INTR_TYPE_SOFT_EXCEPTION:
5233 			kvm_clear_exception_queue(vcpu);
5234 			break;
5235 		default:
5236 			break;
5237 		}
5238 	}
5239 	tss_selector = exit_qualification;
5240 
5241 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5242 		       type != INTR_TYPE_EXT_INTR &&
5243 		       type != INTR_TYPE_NMI_INTR))
5244 		WARN_ON(!skip_emulated_instruction(vcpu));
5245 
5246 	/*
5247 	 * TODO: What about debug traps on tss switch?
5248 	 *       Are we supposed to inject them and update dr6?
5249 	 */
5250 	return kvm_task_switch(vcpu, tss_selector,
5251 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5252 			       reason, has_error_code, error_code);
5253 }
5254 
5255 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5256 {
5257 	unsigned long exit_qualification;
5258 	gpa_t gpa;
5259 	u64 error_code;
5260 
5261 	exit_qualification = vmx_get_exit_qual(vcpu);
5262 
5263 	/*
5264 	 * EPT violation happened while executing iret from NMI,
5265 	 * "blocked by NMI" bit has to be set before next VM entry.
5266 	 * There are errata that may cause this bit to not be set:
5267 	 * AAK134, BY25.
5268 	 */
5269 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5270 			enable_vnmi &&
5271 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5272 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5273 
5274 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5275 	trace_kvm_page_fault(gpa, exit_qualification);
5276 
5277 	/* Is it a read fault? */
5278 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5279 		     ? PFERR_USER_MASK : 0;
5280 	/* Is it a write fault? */
5281 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5282 		      ? PFERR_WRITE_MASK : 0;
5283 	/* Is it a fetch fault? */
5284 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5285 		      ? PFERR_FETCH_MASK : 0;
5286 	/* ept page table entry is present? */
5287 	error_code |= (exit_qualification &
5288 		       (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5289 			EPT_VIOLATION_EXECUTABLE))
5290 		      ? PFERR_PRESENT_MASK : 0;
5291 
5292 	error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5293 	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5294 
5295 	vcpu->arch.exit_qualification = exit_qualification;
5296 
5297 	/*
5298 	 * Check that the GPA doesn't exceed physical memory limits, as that is
5299 	 * a guest page fault.  We have to emulate the instruction here, because
5300 	 * if the illegal address is that of a paging structure, then
5301 	 * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5302 	 * would also use advanced VM-exit information for EPT violations to
5303 	 * reconstruct the page fault error code.
5304 	 */
5305 	if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5306 		return kvm_emulate_instruction(vcpu, 0);
5307 
5308 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5309 }
5310 
5311 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5312 {
5313 	gpa_t gpa;
5314 
5315 	if (!vmx_can_emulate_instruction(vcpu, NULL, 0))
5316 		return 1;
5317 
5318 	/*
5319 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5320 	 * nGPA here instead of the required GPA.
5321 	 */
5322 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5323 	if (!is_guest_mode(vcpu) &&
5324 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5325 		trace_kvm_fast_mmio(gpa);
5326 		return kvm_skip_emulated_instruction(vcpu);
5327 	}
5328 
5329 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5330 }
5331 
5332 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5333 {
5334 	if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5335 		return -EIO;
5336 
5337 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5338 	++vcpu->stat.nmi_window_exits;
5339 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5340 
5341 	return 1;
5342 }
5343 
5344 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5345 {
5346 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5347 	bool intr_window_requested;
5348 	unsigned count = 130;
5349 
5350 	intr_window_requested = exec_controls_get(vmx) &
5351 				CPU_BASED_INTR_WINDOW_EXITING;
5352 
5353 	while (vmx->emulation_required && count-- != 0) {
5354 		if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5355 			return handle_interrupt_window(&vmx->vcpu);
5356 
5357 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5358 			return 1;
5359 
5360 		if (!kvm_emulate_instruction(vcpu, 0))
5361 			return 0;
5362 
5363 		if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5364 		    vcpu->arch.exception.pending) {
5365 			kvm_prepare_emulation_failure_exit(vcpu);
5366 			return 0;
5367 		}
5368 
5369 		if (vcpu->arch.halt_request) {
5370 			vcpu->arch.halt_request = 0;
5371 			return kvm_vcpu_halt(vcpu);
5372 		}
5373 
5374 		/*
5375 		 * Note, return 1 and not 0, vcpu_run() will invoke
5376 		 * xfer_to_guest_mode() which will create a proper return
5377 		 * code.
5378 		 */
5379 		if (__xfer_to_guest_mode_work_pending())
5380 			return 1;
5381 	}
5382 
5383 	return 1;
5384 }
5385 
5386 static void grow_ple_window(struct kvm_vcpu *vcpu)
5387 {
5388 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5389 	unsigned int old = vmx->ple_window;
5390 
5391 	vmx->ple_window = __grow_ple_window(old, ple_window,
5392 					    ple_window_grow,
5393 					    ple_window_max);
5394 
5395 	if (vmx->ple_window != old) {
5396 		vmx->ple_window_dirty = true;
5397 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5398 					    vmx->ple_window, old);
5399 	}
5400 }
5401 
5402 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5403 {
5404 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5405 	unsigned int old = vmx->ple_window;
5406 
5407 	vmx->ple_window = __shrink_ple_window(old, ple_window,
5408 					      ple_window_shrink,
5409 					      ple_window);
5410 
5411 	if (vmx->ple_window != old) {
5412 		vmx->ple_window_dirty = true;
5413 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5414 					    vmx->ple_window, old);
5415 	}
5416 }
5417 
5418 /*
5419  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5420  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5421  */
5422 static int handle_pause(struct kvm_vcpu *vcpu)
5423 {
5424 	if (!kvm_pause_in_guest(vcpu->kvm))
5425 		grow_ple_window(vcpu);
5426 
5427 	/*
5428 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5429 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5430 	 * never set PAUSE_EXITING and just set PLE if supported,
5431 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5432 	 */
5433 	kvm_vcpu_on_spin(vcpu, true);
5434 	return kvm_skip_emulated_instruction(vcpu);
5435 }
5436 
5437 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5438 {
5439 	return 1;
5440 }
5441 
5442 static int handle_invpcid(struct kvm_vcpu *vcpu)
5443 {
5444 	u32 vmx_instruction_info;
5445 	unsigned long type;
5446 	gva_t gva;
5447 	struct {
5448 		u64 pcid;
5449 		u64 gla;
5450 	} operand;
5451 	int gpr_index;
5452 
5453 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5454 		kvm_queue_exception(vcpu, UD_VECTOR);
5455 		return 1;
5456 	}
5457 
5458 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5459 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5460 	type = kvm_register_read(vcpu, gpr_index);
5461 
5462 	/* According to the Intel instruction reference, the memory operand
5463 	 * is read even if it isn't needed (e.g., for type==all)
5464 	 */
5465 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5466 				vmx_instruction_info, false,
5467 				sizeof(operand), &gva))
5468 		return 1;
5469 
5470 	return kvm_handle_invpcid(vcpu, type, gva);
5471 }
5472 
5473 static int handle_pml_full(struct kvm_vcpu *vcpu)
5474 {
5475 	unsigned long exit_qualification;
5476 
5477 	trace_kvm_pml_full(vcpu->vcpu_id);
5478 
5479 	exit_qualification = vmx_get_exit_qual(vcpu);
5480 
5481 	/*
5482 	 * PML buffer FULL happened while executing iret from NMI,
5483 	 * "blocked by NMI" bit has to be set before next VM entry.
5484 	 */
5485 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5486 			enable_vnmi &&
5487 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5488 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5489 				GUEST_INTR_STATE_NMI);
5490 
5491 	/*
5492 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5493 	 * here.., and there's no userspace involvement needed for PML.
5494 	 */
5495 	return 1;
5496 }
5497 
5498 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5499 {
5500 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5501 
5502 	if (!vmx->req_immediate_exit &&
5503 	    !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5504 		kvm_lapic_expired_hv_timer(vcpu);
5505 		return EXIT_FASTPATH_REENTER_GUEST;
5506 	}
5507 
5508 	return EXIT_FASTPATH_NONE;
5509 }
5510 
5511 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5512 {
5513 	handle_fastpath_preemption_timer(vcpu);
5514 	return 1;
5515 }
5516 
5517 /*
5518  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5519  * are overwritten by nested_vmx_setup() when nested=1.
5520  */
5521 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5522 {
5523 	kvm_queue_exception(vcpu, UD_VECTOR);
5524 	return 1;
5525 }
5526 
5527 #ifndef CONFIG_X86_SGX_KVM
5528 static int handle_encls(struct kvm_vcpu *vcpu)
5529 {
5530 	/*
5531 	 * SGX virtualization is disabled.  There is no software enable bit for
5532 	 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
5533 	 * the guest from executing ENCLS (when SGX is supported by hardware).
5534 	 */
5535 	kvm_queue_exception(vcpu, UD_VECTOR);
5536 	return 1;
5537 }
5538 #endif /* CONFIG_X86_SGX_KVM */
5539 
5540 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
5541 {
5542 	/*
5543 	 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
5544 	 * VM-Exits. Unconditionally set the flag here and leave the handling to
5545 	 * vmx_handle_exit().
5546 	 */
5547 	to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
5548 	return 1;
5549 }
5550 
5551 /*
5552  * The exit handlers return 1 if the exit was handled fully and guest execution
5553  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5554  * to be done to userspace and return 0.
5555  */
5556 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5557 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5558 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5559 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5560 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
5561 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5562 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
5563 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
5564 	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
5565 	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
5566 	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
5567 	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
5568 	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
5569 	[EXIT_REASON_INVD]		      = kvm_emulate_invd,
5570 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
5571 	[EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
5572 	[EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
5573 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
5574 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
5575 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
5576 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
5577 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
5578 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
5579 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
5580 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
5581 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
5582 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5583 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5584 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5585 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5586 	[EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
5587 	[EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
5588 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5589 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5590 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
5591 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
5592 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
5593 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5594 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5595 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = kvm_emulate_mwait,
5596 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5597 	[EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
5598 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5599 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5600 	[EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
5601 	[EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
5602 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
5603 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
5604 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
5605 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
5606 	[EXIT_REASON_ENCLS]		      = handle_encls,
5607 	[EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
5608 };
5609 
5610 static const int kvm_vmx_max_exit_handlers =
5611 	ARRAY_SIZE(kvm_vmx_exit_handlers);
5612 
5613 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
5614 			      u64 *info1, u64 *info2,
5615 			      u32 *intr_info, u32 *error_code)
5616 {
5617 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5618 
5619 	*reason = vmx->exit_reason.full;
5620 	*info1 = vmx_get_exit_qual(vcpu);
5621 	if (!(vmx->exit_reason.failed_vmentry)) {
5622 		*info2 = vmx->idt_vectoring_info;
5623 		*intr_info = vmx_get_intr_info(vcpu);
5624 		if (is_exception_with_error_code(*intr_info))
5625 			*error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5626 		else
5627 			*error_code = 0;
5628 	} else {
5629 		*info2 = 0;
5630 		*intr_info = 0;
5631 		*error_code = 0;
5632 	}
5633 }
5634 
5635 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5636 {
5637 	if (vmx->pml_pg) {
5638 		__free_page(vmx->pml_pg);
5639 		vmx->pml_pg = NULL;
5640 	}
5641 }
5642 
5643 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5644 {
5645 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5646 	u64 *pml_buf;
5647 	u16 pml_idx;
5648 
5649 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
5650 
5651 	/* Do nothing if PML buffer is empty */
5652 	if (pml_idx == (PML_ENTITY_NUM - 1))
5653 		return;
5654 
5655 	/* PML index always points to next available PML buffer entity */
5656 	if (pml_idx >= PML_ENTITY_NUM)
5657 		pml_idx = 0;
5658 	else
5659 		pml_idx++;
5660 
5661 	pml_buf = page_address(vmx->pml_pg);
5662 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5663 		u64 gpa;
5664 
5665 		gpa = pml_buf[pml_idx];
5666 		WARN_ON(gpa & (PAGE_SIZE - 1));
5667 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5668 	}
5669 
5670 	/* reset PML index */
5671 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5672 }
5673 
5674 static void vmx_dump_sel(char *name, uint32_t sel)
5675 {
5676 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5677 	       name, vmcs_read16(sel),
5678 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5679 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5680 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5681 }
5682 
5683 static void vmx_dump_dtsel(char *name, uint32_t limit)
5684 {
5685 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5686 	       name, vmcs_read32(limit),
5687 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5688 }
5689 
5690 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
5691 {
5692 	unsigned int i;
5693 	struct vmx_msr_entry *e;
5694 
5695 	pr_err("MSR %s:\n", name);
5696 	for (i = 0, e = m->val; i < m->nr; ++i, ++e)
5697 		pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
5698 }
5699 
5700 void dump_vmcs(struct kvm_vcpu *vcpu)
5701 {
5702 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5703 	u32 vmentry_ctl, vmexit_ctl;
5704 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5705 	unsigned long cr4;
5706 	int efer_slot;
5707 
5708 	if (!dump_invalid_vmcs) {
5709 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5710 		return;
5711 	}
5712 
5713 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5714 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5715 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5716 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5717 	cr4 = vmcs_readl(GUEST_CR4);
5718 	secondary_exec_control = 0;
5719 	if (cpu_has_secondary_exec_ctrls())
5720 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5721 
5722 	pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
5723 	       vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
5724 	pr_err("*** Guest State ***\n");
5725 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5726 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5727 	       vmcs_readl(CR0_GUEST_HOST_MASK));
5728 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5729 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5730 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5731 	if (cpu_has_vmx_ept()) {
5732 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5733 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5734 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5735 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5736 	}
5737 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5738 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5739 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5740 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5741 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5742 	       vmcs_readl(GUEST_SYSENTER_ESP),
5743 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5744 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5745 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5746 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5747 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5748 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5749 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5750 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5751 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5752 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5753 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5754 	efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
5755 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
5756 		pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
5757 	else if (efer_slot >= 0)
5758 		pr_err("EFER= 0x%016llx (autoload)\n",
5759 		       vmx->msr_autoload.guest.val[efer_slot].value);
5760 	else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
5761 		pr_err("EFER= 0x%016llx (effective)\n",
5762 		       vcpu->arch.efer | (EFER_LMA | EFER_LME));
5763 	else
5764 		pr_err("EFER= 0x%016llx (effective)\n",
5765 		       vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
5766 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
5767 		pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
5768 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5769 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
5770 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5771 	if (cpu_has_load_perf_global_ctrl() &&
5772 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5773 		pr_err("PerfGlobCtl = 0x%016llx\n",
5774 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5775 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5776 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5777 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5778 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5779 	       vmcs_read32(GUEST_ACTIVITY_STATE));
5780 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5781 		pr_err("InterruptStatus = %04x\n",
5782 		       vmcs_read16(GUEST_INTR_STATUS));
5783 	if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
5784 		vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
5785 	if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
5786 		vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
5787 
5788 	pr_err("*** Host State ***\n");
5789 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5790 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5791 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5792 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5793 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5794 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5795 	       vmcs_read16(HOST_TR_SELECTOR));
5796 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5797 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5798 	       vmcs_readl(HOST_TR_BASE));
5799 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5800 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5801 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5802 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5803 	       vmcs_readl(HOST_CR4));
5804 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5805 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
5806 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
5807 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
5808 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
5809 		pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
5810 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
5811 		pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
5812 	if (cpu_has_load_perf_global_ctrl() &&
5813 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5814 		pr_err("PerfGlobCtl = 0x%016llx\n",
5815 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5816 	if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
5817 		vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
5818 
5819 	pr_err("*** Control State ***\n");
5820 	pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5821 	       pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5822 	pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5823 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5824 	       vmcs_read32(EXCEPTION_BITMAP),
5825 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5826 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5827 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5828 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5829 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5830 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5831 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5832 	       vmcs_read32(VM_EXIT_INTR_INFO),
5833 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5834 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5835 	pr_err("        reason=%08x qualification=%016lx\n",
5836 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5837 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5838 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
5839 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
5840 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5841 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5842 		pr_err("TSC Multiplier = 0x%016llx\n",
5843 		       vmcs_read64(TSC_MULTIPLIER));
5844 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5845 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5846 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
5847 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5848 		}
5849 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5850 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5851 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5852 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5853 	}
5854 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5855 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5856 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5857 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5858 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5859 		pr_err("PLE Gap=%08x Window=%08x\n",
5860 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5861 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5862 		pr_err("Virtual processor ID = 0x%04x\n",
5863 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
5864 }
5865 
5866 /*
5867  * The guest has exited.  See if we can fix it or if we need userspace
5868  * assistance.
5869  */
5870 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
5871 {
5872 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5873 	union vmx_exit_reason exit_reason = vmx->exit_reason;
5874 	u32 vectoring_info = vmx->idt_vectoring_info;
5875 	u16 exit_handler_index;
5876 
5877 	/*
5878 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5879 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5880 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
5881 	 * mode as if vcpus is in root mode, the PML buffer must has been
5882 	 * flushed already.  Note, PML is never enabled in hardware while
5883 	 * running L2.
5884 	 */
5885 	if (enable_pml && !is_guest_mode(vcpu))
5886 		vmx_flush_pml_buffer(vcpu);
5887 
5888 	/*
5889 	 * We should never reach this point with a pending nested VM-Enter, and
5890 	 * more specifically emulation of L2 due to invalid guest state (see
5891 	 * below) should never happen as that means we incorrectly allowed a
5892 	 * nested VM-Enter with an invalid vmcs12.
5893 	 */
5894 	if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
5895 		return -EIO;
5896 
5897 	/* If guest state is invalid, start emulating */
5898 	if (vmx->emulation_required)
5899 		return handle_invalid_guest_state(vcpu);
5900 
5901 	if (is_guest_mode(vcpu)) {
5902 		/*
5903 		 * PML is never enabled when running L2, bail immediately if a
5904 		 * PML full exit occurs as something is horribly wrong.
5905 		 */
5906 		if (exit_reason.basic == EXIT_REASON_PML_FULL)
5907 			goto unexpected_vmexit;
5908 
5909 		/*
5910 		 * The host physical addresses of some pages of guest memory
5911 		 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5912 		 * Page). The CPU may write to these pages via their host
5913 		 * physical address while L2 is running, bypassing any
5914 		 * address-translation-based dirty tracking (e.g. EPT write
5915 		 * protection).
5916 		 *
5917 		 * Mark them dirty on every exit from L2 to prevent them from
5918 		 * getting out of sync with dirty tracking.
5919 		 */
5920 		nested_mark_vmcs12_pages_dirty(vcpu);
5921 
5922 		if (nested_vmx_reflect_vmexit(vcpu))
5923 			return 1;
5924 	}
5925 
5926 	if (exit_reason.failed_vmentry) {
5927 		dump_vmcs(vcpu);
5928 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5929 		vcpu->run->fail_entry.hardware_entry_failure_reason
5930 			= exit_reason.full;
5931 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
5932 		return 0;
5933 	}
5934 
5935 	if (unlikely(vmx->fail)) {
5936 		dump_vmcs(vcpu);
5937 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5938 		vcpu->run->fail_entry.hardware_entry_failure_reason
5939 			= vmcs_read32(VM_INSTRUCTION_ERROR);
5940 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
5941 		return 0;
5942 	}
5943 
5944 	/*
5945 	 * Note:
5946 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5947 	 * delivery event since it indicates guest is accessing MMIO.
5948 	 * The vm-exit can be triggered again after return to guest that
5949 	 * will cause infinite loop.
5950 	 */
5951 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5952 	    (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
5953 	     exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
5954 	     exit_reason.basic != EXIT_REASON_PML_FULL &&
5955 	     exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
5956 	     exit_reason.basic != EXIT_REASON_TASK_SWITCH)) {
5957 		int ndata = 3;
5958 
5959 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5960 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
5961 		vcpu->run->internal.data[0] = vectoring_info;
5962 		vcpu->run->internal.data[1] = exit_reason.full;
5963 		vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
5964 		if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
5965 			vcpu->run->internal.data[ndata++] =
5966 				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5967 		}
5968 		vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
5969 		vcpu->run->internal.ndata = ndata;
5970 		return 0;
5971 	}
5972 
5973 	if (unlikely(!enable_vnmi &&
5974 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
5975 		if (!vmx_interrupt_blocked(vcpu)) {
5976 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5977 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
5978 			   vcpu->arch.nmi_pending) {
5979 			/*
5980 			 * This CPU don't support us in finding the end of an
5981 			 * NMI-blocked window if the guest runs with IRQs
5982 			 * disabled. So we pull the trigger after 1 s of
5983 			 * futile waiting, but inform the user about this.
5984 			 */
5985 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5986 			       "state on VCPU %d after 1 s timeout\n",
5987 			       __func__, vcpu->vcpu_id);
5988 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5989 		}
5990 	}
5991 
5992 	if (exit_fastpath != EXIT_FASTPATH_NONE)
5993 		return 1;
5994 
5995 	if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
5996 		goto unexpected_vmexit;
5997 #ifdef CONFIG_RETPOLINE
5998 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
5999 		return kvm_emulate_wrmsr(vcpu);
6000 	else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6001 		return handle_preemption_timer(vcpu);
6002 	else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6003 		return handle_interrupt_window(vcpu);
6004 	else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6005 		return handle_external_interrupt(vcpu);
6006 	else if (exit_reason.basic == EXIT_REASON_HLT)
6007 		return kvm_emulate_halt(vcpu);
6008 	else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6009 		return handle_ept_misconfig(vcpu);
6010 #endif
6011 
6012 	exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6013 						kvm_vmx_max_exit_handlers);
6014 	if (!kvm_vmx_exit_handlers[exit_handler_index])
6015 		goto unexpected_vmexit;
6016 
6017 	return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6018 
6019 unexpected_vmexit:
6020 	vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6021 		    exit_reason.full);
6022 	dump_vmcs(vcpu);
6023 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6024 	vcpu->run->internal.suberror =
6025 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6026 	vcpu->run->internal.ndata = 2;
6027 	vcpu->run->internal.data[0] = exit_reason.full;
6028 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6029 	return 0;
6030 }
6031 
6032 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6033 {
6034 	int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6035 
6036 	/*
6037 	 * Exit to user space when bus lock detected to inform that there is
6038 	 * a bus lock in guest.
6039 	 */
6040 	if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6041 		if (ret > 0)
6042 			vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6043 
6044 		vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6045 		return 0;
6046 	}
6047 	return ret;
6048 }
6049 
6050 /*
6051  * Software based L1D cache flush which is used when microcode providing
6052  * the cache control MSR is not loaded.
6053  *
6054  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6055  * flush it is required to read in 64 KiB because the replacement algorithm
6056  * is not exactly LRU. This could be sized at runtime via topology
6057  * information but as all relevant affected CPUs have 32KiB L1D cache size
6058  * there is no point in doing so.
6059  */
6060 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6061 {
6062 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
6063 
6064 	/*
6065 	 * This code is only executed when the the flush mode is 'cond' or
6066 	 * 'always'
6067 	 */
6068 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
6069 		bool flush_l1d;
6070 
6071 		/*
6072 		 * Clear the per-vcpu flush bit, it gets set again
6073 		 * either from vcpu_run() or from one of the unsafe
6074 		 * VMEXIT handlers.
6075 		 */
6076 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
6077 		vcpu->arch.l1tf_flush_l1d = false;
6078 
6079 		/*
6080 		 * Clear the per-cpu flush bit, it gets set again from
6081 		 * the interrupt handlers.
6082 		 */
6083 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6084 		kvm_clear_cpu_l1tf_flush_l1d();
6085 
6086 		if (!flush_l1d)
6087 			return;
6088 	}
6089 
6090 	vcpu->stat.l1d_flush++;
6091 
6092 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6093 		native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6094 		return;
6095 	}
6096 
6097 	asm volatile(
6098 		/* First ensure the pages are in the TLB */
6099 		"xorl	%%eax, %%eax\n"
6100 		".Lpopulate_tlb:\n\t"
6101 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6102 		"addl	$4096, %%eax\n\t"
6103 		"cmpl	%%eax, %[size]\n\t"
6104 		"jne	.Lpopulate_tlb\n\t"
6105 		"xorl	%%eax, %%eax\n\t"
6106 		"cpuid\n\t"
6107 		/* Now fill the cache */
6108 		"xorl	%%eax, %%eax\n"
6109 		".Lfill_cache:\n"
6110 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6111 		"addl	$64, %%eax\n\t"
6112 		"cmpl	%%eax, %[size]\n\t"
6113 		"jne	.Lfill_cache\n\t"
6114 		"lfence\n"
6115 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6116 		    [size] "r" (size)
6117 		: "eax", "ebx", "ecx", "edx");
6118 }
6119 
6120 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6121 {
6122 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6123 	int tpr_threshold;
6124 
6125 	if (is_guest_mode(vcpu) &&
6126 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6127 		return;
6128 
6129 	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6130 	if (is_guest_mode(vcpu))
6131 		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6132 	else
6133 		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6134 }
6135 
6136 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6137 {
6138 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6139 	u32 sec_exec_control;
6140 
6141 	if (!lapic_in_kernel(vcpu))
6142 		return;
6143 
6144 	if (!flexpriority_enabled &&
6145 	    !cpu_has_vmx_virtualize_x2apic_mode())
6146 		return;
6147 
6148 	/* Postpone execution until vmcs01 is the current VMCS. */
6149 	if (is_guest_mode(vcpu)) {
6150 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6151 		return;
6152 	}
6153 
6154 	sec_exec_control = secondary_exec_controls_get(vmx);
6155 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6156 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6157 
6158 	switch (kvm_get_apic_mode(vcpu)) {
6159 	case LAPIC_MODE_INVALID:
6160 		WARN_ONCE(true, "Invalid local APIC state");
6161 		break;
6162 	case LAPIC_MODE_DISABLED:
6163 		break;
6164 	case LAPIC_MODE_XAPIC:
6165 		if (flexpriority_enabled) {
6166 			sec_exec_control |=
6167 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6168 			kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6169 
6170 			/*
6171 			 * Flush the TLB, reloading the APIC access page will
6172 			 * only do so if its physical address has changed, but
6173 			 * the guest may have inserted a non-APIC mapping into
6174 			 * the TLB while the APIC access page was disabled.
6175 			 */
6176 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6177 		}
6178 		break;
6179 	case LAPIC_MODE_X2APIC:
6180 		if (cpu_has_vmx_virtualize_x2apic_mode())
6181 			sec_exec_control |=
6182 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6183 		break;
6184 	}
6185 	secondary_exec_controls_set(vmx, sec_exec_control);
6186 
6187 	vmx_update_msr_bitmap_x2apic(vcpu);
6188 }
6189 
6190 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6191 {
6192 	struct page *page;
6193 
6194 	/* Defer reload until vmcs01 is the current VMCS. */
6195 	if (is_guest_mode(vcpu)) {
6196 		to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6197 		return;
6198 	}
6199 
6200 	if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6201 	    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6202 		return;
6203 
6204 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6205 	if (is_error_page(page))
6206 		return;
6207 
6208 	vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6209 	vmx_flush_tlb_current(vcpu);
6210 
6211 	/*
6212 	 * Do not pin apic access page in memory, the MMU notifier
6213 	 * will call us again if it is migrated or swapped out.
6214 	 */
6215 	put_page(page);
6216 }
6217 
6218 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6219 {
6220 	u16 status;
6221 	u8 old;
6222 
6223 	if (max_isr == -1)
6224 		max_isr = 0;
6225 
6226 	status = vmcs_read16(GUEST_INTR_STATUS);
6227 	old = status >> 8;
6228 	if (max_isr != old) {
6229 		status &= 0xff;
6230 		status |= max_isr << 8;
6231 		vmcs_write16(GUEST_INTR_STATUS, status);
6232 	}
6233 }
6234 
6235 static void vmx_set_rvi(int vector)
6236 {
6237 	u16 status;
6238 	u8 old;
6239 
6240 	if (vector == -1)
6241 		vector = 0;
6242 
6243 	status = vmcs_read16(GUEST_INTR_STATUS);
6244 	old = (u8)status & 0xff;
6245 	if ((u8)vector != old) {
6246 		status &= ~0xff;
6247 		status |= (u8)vector;
6248 		vmcs_write16(GUEST_INTR_STATUS, status);
6249 	}
6250 }
6251 
6252 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6253 {
6254 	/*
6255 	 * When running L2, updating RVI is only relevant when
6256 	 * vmcs12 virtual-interrupt-delivery enabled.
6257 	 * However, it can be enabled only when L1 also
6258 	 * intercepts external-interrupts and in that case
6259 	 * we should not update vmcs02 RVI but instead intercept
6260 	 * interrupt. Therefore, do nothing when running L2.
6261 	 */
6262 	if (!is_guest_mode(vcpu))
6263 		vmx_set_rvi(max_irr);
6264 }
6265 
6266 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6267 {
6268 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6269 	int max_irr;
6270 	bool got_posted_interrupt;
6271 
6272 	if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6273 		return -EIO;
6274 
6275 	if (pi_test_on(&vmx->pi_desc)) {
6276 		pi_clear_on(&vmx->pi_desc);
6277 		/*
6278 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6279 		 * But on x86 this is just a compiler barrier anyway.
6280 		 */
6281 		smp_mb__after_atomic();
6282 		got_posted_interrupt =
6283 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6284 	} else {
6285 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6286 		got_posted_interrupt = false;
6287 	}
6288 
6289 	/*
6290 	 * Newly recognized interrupts are injected via either virtual interrupt
6291 	 * delivery (RVI) or KVM_REQ_EVENT.  Virtual interrupt delivery is
6292 	 * disabled in two cases:
6293 	 *
6294 	 * 1) If L2 is running and the vCPU has a new pending interrupt.  If L1
6295 	 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6296 	 * VM-Exit to L1.  If L1 doesn't want to exit, the interrupt is injected
6297 	 * into L2, but KVM doesn't use virtual interrupt delivery to inject
6298 	 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6299 	 *
6300 	 * 2) If APICv is disabled for this vCPU, assigned devices may still
6301 	 * attempt to post interrupts.  The posted interrupt vector will cause
6302 	 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6303 	 */
6304 	if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6305 		vmx_set_rvi(max_irr);
6306 	else if (got_posted_interrupt)
6307 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6308 
6309 	return max_irr;
6310 }
6311 
6312 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6313 {
6314 	if (!kvm_vcpu_apicv_active(vcpu))
6315 		return;
6316 
6317 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6318 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6319 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6320 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6321 }
6322 
6323 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6324 {
6325 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6326 
6327 	pi_clear_on(&vmx->pi_desc);
6328 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6329 }
6330 
6331 void vmx_do_interrupt_nmi_irqoff(unsigned long entry);
6332 
6333 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu,
6334 					unsigned long entry)
6335 {
6336 	kvm_before_interrupt(vcpu);
6337 	vmx_do_interrupt_nmi_irqoff(entry);
6338 	kvm_after_interrupt(vcpu);
6339 }
6340 
6341 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6342 {
6343 	const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist;
6344 	u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6345 
6346 	/* if exit due to PF check for async PF */
6347 	if (is_page_fault(intr_info))
6348 		vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6349 	/* Handle machine checks before interrupts are enabled */
6350 	else if (is_machine_check(intr_info))
6351 		kvm_machine_check();
6352 	/* We need to handle NMIs before interrupts are enabled */
6353 	else if (is_nmi(intr_info))
6354 		handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry);
6355 }
6356 
6357 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6358 {
6359 	u32 intr_info = vmx_get_intr_info(vcpu);
6360 	unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6361 	gate_desc *desc = (gate_desc *)host_idt_base + vector;
6362 
6363 	if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6364 	    "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6365 		return;
6366 
6367 	handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc));
6368 }
6369 
6370 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6371 {
6372 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6373 
6374 	if (vmx->emulation_required)
6375 		return;
6376 
6377 	if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6378 		handle_external_interrupt_irqoff(vcpu);
6379 	else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6380 		handle_exception_nmi_irqoff(vmx);
6381 }
6382 
6383 /*
6384  * The kvm parameter can be NULL (module initialization, or invocation before
6385  * VM creation). Be sure to check the kvm parameter before using it.
6386  */
6387 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
6388 {
6389 	switch (index) {
6390 	case MSR_IA32_SMBASE:
6391 		/*
6392 		 * We cannot do SMM unless we can run the guest in big
6393 		 * real mode.
6394 		 */
6395 		return enable_unrestricted_guest || emulate_invalid_guest_state;
6396 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6397 		return nested;
6398 	case MSR_AMD64_VIRT_SPEC_CTRL:
6399 	case MSR_AMD64_TSC_RATIO:
6400 		/* This is AMD only.  */
6401 		return false;
6402 	default:
6403 		return true;
6404 	}
6405 }
6406 
6407 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6408 {
6409 	u32 exit_intr_info;
6410 	bool unblock_nmi;
6411 	u8 vector;
6412 	bool idtv_info_valid;
6413 
6414 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6415 
6416 	if (enable_vnmi) {
6417 		if (vmx->loaded_vmcs->nmi_known_unmasked)
6418 			return;
6419 
6420 		exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6421 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6422 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6423 		/*
6424 		 * SDM 3: 27.7.1.2 (September 2008)
6425 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6426 		 * a guest IRET fault.
6427 		 * SDM 3: 23.2.2 (September 2008)
6428 		 * Bit 12 is undefined in any of the following cases:
6429 		 *  If the VM exit sets the valid bit in the IDT-vectoring
6430 		 *   information field.
6431 		 *  If the VM exit is due to a double fault.
6432 		 */
6433 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6434 		    vector != DF_VECTOR && !idtv_info_valid)
6435 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6436 				      GUEST_INTR_STATE_NMI);
6437 		else
6438 			vmx->loaded_vmcs->nmi_known_unmasked =
6439 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6440 				  & GUEST_INTR_STATE_NMI);
6441 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6442 		vmx->loaded_vmcs->vnmi_blocked_time +=
6443 			ktime_to_ns(ktime_sub(ktime_get(),
6444 					      vmx->loaded_vmcs->entry_time));
6445 }
6446 
6447 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6448 				      u32 idt_vectoring_info,
6449 				      int instr_len_field,
6450 				      int error_code_field)
6451 {
6452 	u8 vector;
6453 	int type;
6454 	bool idtv_info_valid;
6455 
6456 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6457 
6458 	vcpu->arch.nmi_injected = false;
6459 	kvm_clear_exception_queue(vcpu);
6460 	kvm_clear_interrupt_queue(vcpu);
6461 
6462 	if (!idtv_info_valid)
6463 		return;
6464 
6465 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6466 
6467 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6468 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6469 
6470 	switch (type) {
6471 	case INTR_TYPE_NMI_INTR:
6472 		vcpu->arch.nmi_injected = true;
6473 		/*
6474 		 * SDM 3: 27.7.1.2 (September 2008)
6475 		 * Clear bit "block by NMI" before VM entry if a NMI
6476 		 * delivery faulted.
6477 		 */
6478 		vmx_set_nmi_mask(vcpu, false);
6479 		break;
6480 	case INTR_TYPE_SOFT_EXCEPTION:
6481 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6482 		fallthrough;
6483 	case INTR_TYPE_HARD_EXCEPTION:
6484 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6485 			u32 err = vmcs_read32(error_code_field);
6486 			kvm_requeue_exception_e(vcpu, vector, err);
6487 		} else
6488 			kvm_requeue_exception(vcpu, vector);
6489 		break;
6490 	case INTR_TYPE_SOFT_INTR:
6491 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6492 		fallthrough;
6493 	case INTR_TYPE_EXT_INTR:
6494 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6495 		break;
6496 	default:
6497 		break;
6498 	}
6499 }
6500 
6501 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6502 {
6503 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6504 				  VM_EXIT_INSTRUCTION_LEN,
6505 				  IDT_VECTORING_ERROR_CODE);
6506 }
6507 
6508 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6509 {
6510 	__vmx_complete_interrupts(vcpu,
6511 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6512 				  VM_ENTRY_INSTRUCTION_LEN,
6513 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
6514 
6515 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6516 }
6517 
6518 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6519 {
6520 	int i, nr_msrs;
6521 	struct perf_guest_switch_msr *msrs;
6522 
6523 	/* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
6524 	msrs = perf_guest_get_msrs(&nr_msrs);
6525 	if (!msrs)
6526 		return;
6527 
6528 	for (i = 0; i < nr_msrs; i++)
6529 		if (msrs[i].host == msrs[i].guest)
6530 			clear_atomic_switch_msr(vmx, msrs[i].msr);
6531 		else
6532 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6533 					msrs[i].host, false);
6534 }
6535 
6536 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6537 {
6538 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6539 	u64 tscl;
6540 	u32 delta_tsc;
6541 
6542 	if (vmx->req_immediate_exit) {
6543 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6544 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6545 	} else if (vmx->hv_deadline_tsc != -1) {
6546 		tscl = rdtsc();
6547 		if (vmx->hv_deadline_tsc > tscl)
6548 			/* set_hv_timer ensures the delta fits in 32-bits */
6549 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6550 				cpu_preemption_timer_multi);
6551 		else
6552 			delta_tsc = 0;
6553 
6554 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6555 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6556 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6557 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6558 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6559 	}
6560 }
6561 
6562 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6563 {
6564 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6565 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
6566 		vmcs_writel(HOST_RSP, host_rsp);
6567 	}
6568 }
6569 
6570 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
6571 {
6572 	switch (to_vmx(vcpu)->exit_reason.basic) {
6573 	case EXIT_REASON_MSR_WRITE:
6574 		return handle_fastpath_set_msr_irqoff(vcpu);
6575 	case EXIT_REASON_PREEMPTION_TIMER:
6576 		return handle_fastpath_preemption_timer(vcpu);
6577 	default:
6578 		return EXIT_FASTPATH_NONE;
6579 	}
6580 }
6581 
6582 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
6583 					struct vcpu_vmx *vmx)
6584 {
6585 	kvm_guest_enter_irqoff();
6586 
6587 	/* L1D Flush includes CPU buffer clear to mitigate MDS */
6588 	if (static_branch_unlikely(&vmx_l1d_should_flush))
6589 		vmx_l1d_flush(vcpu);
6590 	else if (static_branch_unlikely(&mds_user_clear))
6591 		mds_clear_cpu_buffers();
6592 
6593 	if (vcpu->arch.cr2 != native_read_cr2())
6594 		native_write_cr2(vcpu->arch.cr2);
6595 
6596 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6597 				   vmx->loaded_vmcs->launched);
6598 
6599 	vcpu->arch.cr2 = native_read_cr2();
6600 
6601 	kvm_guest_exit_irqoff();
6602 }
6603 
6604 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
6605 {
6606 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6607 	unsigned long cr3, cr4;
6608 
6609 	/* Record the guest's net vcpu time for enforced NMI injections. */
6610 	if (unlikely(!enable_vnmi &&
6611 		     vmx->loaded_vmcs->soft_vnmi_blocked))
6612 		vmx->loaded_vmcs->entry_time = ktime_get();
6613 
6614 	/*
6615 	 * Don't enter VMX if guest state is invalid, let the exit handler
6616 	 * start emulation until we arrive back to a valid state.  Synthesize a
6617 	 * consistency check VM-Exit due to invalid guest state and bail.
6618 	 */
6619 	if (unlikely(vmx->emulation_required)) {
6620 
6621 		/* We don't emulate invalid state of a nested guest */
6622 		vmx->fail = is_guest_mode(vcpu);
6623 
6624 		vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
6625 		vmx->exit_reason.failed_vmentry = 1;
6626 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
6627 		vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
6628 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
6629 		vmx->exit_intr_info = 0;
6630 		return EXIT_FASTPATH_NONE;
6631 	}
6632 
6633 	trace_kvm_entry(vcpu);
6634 
6635 	if (vmx->ple_window_dirty) {
6636 		vmx->ple_window_dirty = false;
6637 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
6638 	}
6639 
6640 	/*
6641 	 * We did this in prepare_switch_to_guest, because it needs to
6642 	 * be within srcu_read_lock.
6643 	 */
6644 	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6645 
6646 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6647 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6648 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6649 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6650 
6651 	cr3 = __get_current_cr3_fast();
6652 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6653 		vmcs_writel(HOST_CR3, cr3);
6654 		vmx->loaded_vmcs->host_state.cr3 = cr3;
6655 	}
6656 
6657 	cr4 = cr4_read_shadow();
6658 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6659 		vmcs_writel(HOST_CR4, cr4);
6660 		vmx->loaded_vmcs->host_state.cr4 = cr4;
6661 	}
6662 
6663 	/* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
6664 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
6665 		set_debugreg(vcpu->arch.dr6, 6);
6666 
6667 	/* When single-stepping over STI and MOV SS, we must clear the
6668 	 * corresponding interruptibility bits in the guest state. Otherwise
6669 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
6670 	 * exceptions being set, but that's not correct for the guest debugging
6671 	 * case. */
6672 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6673 		vmx_set_interrupt_shadow(vcpu, 0);
6674 
6675 	kvm_load_guest_xsave_state(vcpu);
6676 
6677 	pt_guest_enter(vmx);
6678 
6679 	atomic_switch_perf_msrs(vmx);
6680 	if (intel_pmu_lbr_is_enabled(vcpu))
6681 		vmx_passthrough_lbr_msrs(vcpu);
6682 
6683 	if (enable_preemption_timer)
6684 		vmx_update_hv_timer(vcpu);
6685 
6686 	kvm_wait_lapic_expire(vcpu);
6687 
6688 	/*
6689 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6690 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
6691 	 * is no need to worry about the conditional branch over the wrmsr
6692 	 * being speculatively taken.
6693 	 */
6694 	x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6695 
6696 	/* The actual VMENTER/EXIT is in the .noinstr.text section. */
6697 	vmx_vcpu_enter_exit(vcpu, vmx);
6698 
6699 	/*
6700 	 * We do not use IBRS in the kernel. If this vCPU has used the
6701 	 * SPEC_CTRL MSR it may have left it on; save the value and
6702 	 * turn it off. This is much more efficient than blindly adding
6703 	 * it to the atomic save/restore list. Especially as the former
6704 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6705 	 *
6706 	 * For non-nested case:
6707 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
6708 	 * save it.
6709 	 *
6710 	 * For nested case:
6711 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
6712 	 * save it.
6713 	 */
6714 	if (unlikely(!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL)))
6715 		vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6716 
6717 	x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6718 
6719 	/* All fields are clean at this point */
6720 	if (static_branch_unlikely(&enable_evmcs)) {
6721 		current_evmcs->hv_clean_fields |=
6722 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6723 
6724 		current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
6725 	}
6726 
6727 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6728 	if (vmx->host_debugctlmsr)
6729 		update_debugctlmsr(vmx->host_debugctlmsr);
6730 
6731 #ifndef CONFIG_X86_64
6732 	/*
6733 	 * The sysexit path does not restore ds/es, so we must set them to
6734 	 * a reasonable value ourselves.
6735 	 *
6736 	 * We can't defer this to vmx_prepare_switch_to_host() since that
6737 	 * function may be executed in interrupt context, which saves and
6738 	 * restore segments around it, nullifying its effect.
6739 	 */
6740 	loadsegment(ds, __USER_DS);
6741 	loadsegment(es, __USER_DS);
6742 #endif
6743 
6744 	vmx_register_cache_reset(vcpu);
6745 
6746 	pt_guest_exit(vmx);
6747 
6748 	kvm_load_host_xsave_state(vcpu);
6749 
6750 	if (is_guest_mode(vcpu)) {
6751 		/*
6752 		 * Track VMLAUNCH/VMRESUME that have made past guest state
6753 		 * checking.
6754 		 */
6755 		if (vmx->nested.nested_run_pending &&
6756 		    !vmx->exit_reason.failed_vmentry)
6757 			++vcpu->stat.nested_run;
6758 
6759 		vmx->nested.nested_run_pending = 0;
6760 	}
6761 
6762 	vmx->idt_vectoring_info = 0;
6763 
6764 	if (unlikely(vmx->fail)) {
6765 		vmx->exit_reason.full = 0xdead;
6766 		return EXIT_FASTPATH_NONE;
6767 	}
6768 
6769 	vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
6770 	if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
6771 		kvm_machine_check();
6772 
6773 	if (likely(!vmx->exit_reason.failed_vmentry))
6774 		vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6775 
6776 	trace_kvm_exit(vcpu, KVM_ISA_VMX);
6777 
6778 	if (unlikely(vmx->exit_reason.failed_vmentry))
6779 		return EXIT_FASTPATH_NONE;
6780 
6781 	vmx->loaded_vmcs->launched = 1;
6782 
6783 	vmx_recover_nmi_blocking(vmx);
6784 	vmx_complete_interrupts(vmx);
6785 
6786 	if (is_guest_mode(vcpu))
6787 		return EXIT_FASTPATH_NONE;
6788 
6789 	return vmx_exit_handlers_fastpath(vcpu);
6790 }
6791 
6792 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6793 {
6794 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6795 
6796 	if (enable_pml)
6797 		vmx_destroy_pml_buffer(vmx);
6798 	free_vpid(vmx->vpid);
6799 	nested_vmx_free_vcpu(vcpu);
6800 	free_loaded_vmcs(vmx->loaded_vmcs);
6801 }
6802 
6803 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
6804 {
6805 	struct vmx_uret_msr *tsx_ctrl;
6806 	struct vcpu_vmx *vmx;
6807 	int i, err;
6808 
6809 	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
6810 	vmx = to_vmx(vcpu);
6811 
6812 	err = -ENOMEM;
6813 
6814 	vmx->vpid = allocate_vpid();
6815 
6816 	/*
6817 	 * If PML is turned on, failure on enabling PML just results in failure
6818 	 * of creating the vcpu, therefore we can simplify PML logic (by
6819 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
6820 	 * for the guest), etc.
6821 	 */
6822 	if (enable_pml) {
6823 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6824 		if (!vmx->pml_pg)
6825 			goto free_vpid;
6826 	}
6827 
6828 	for (i = 0; i < kvm_nr_uret_msrs; ++i)
6829 		vmx->guest_uret_msrs[i].mask = -1ull;
6830 	if (boot_cpu_has(X86_FEATURE_RTM)) {
6831 		/*
6832 		 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
6833 		 * Keep the host value unchanged to avoid changing CPUID bits
6834 		 * under the host kernel's feet.
6835 		 */
6836 		tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
6837 		if (tsx_ctrl)
6838 			tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
6839 	}
6840 
6841 	err = alloc_loaded_vmcs(&vmx->vmcs01);
6842 	if (err < 0)
6843 		goto free_pml;
6844 
6845 	/* The MSR bitmap starts with all ones */
6846 	bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
6847 	bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
6848 
6849 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
6850 #ifdef CONFIG_X86_64
6851 	vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
6852 	vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
6853 	vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6854 #endif
6855 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6856 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6857 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6858 	if (kvm_cstate_in_guest(vcpu->kvm)) {
6859 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
6860 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6861 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6862 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6863 	}
6864 
6865 	vmx->loaded_vmcs = &vmx->vmcs01;
6866 
6867 	if (cpu_need_virtualize_apic_accesses(vcpu)) {
6868 		err = alloc_apic_access_page(vcpu->kvm);
6869 		if (err)
6870 			goto free_vmcs;
6871 	}
6872 
6873 	if (enable_ept && !enable_unrestricted_guest) {
6874 		err = init_rmode_identity_map(vcpu->kvm);
6875 		if (err)
6876 			goto free_vmcs;
6877 	}
6878 
6879 	return 0;
6880 
6881 free_vmcs:
6882 	free_loaded_vmcs(vmx->loaded_vmcs);
6883 free_pml:
6884 	vmx_destroy_pml_buffer(vmx);
6885 free_vpid:
6886 	free_vpid(vmx->vpid);
6887 	return err;
6888 }
6889 
6890 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6891 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6892 
6893 static int vmx_vm_init(struct kvm *kvm)
6894 {
6895 	if (!ple_gap)
6896 		kvm->arch.pause_in_guest = true;
6897 
6898 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6899 		switch (l1tf_mitigation) {
6900 		case L1TF_MITIGATION_OFF:
6901 		case L1TF_MITIGATION_FLUSH_NOWARN:
6902 			/* 'I explicitly don't care' is set */
6903 			break;
6904 		case L1TF_MITIGATION_FLUSH:
6905 		case L1TF_MITIGATION_FLUSH_NOSMT:
6906 		case L1TF_MITIGATION_FULL:
6907 			/*
6908 			 * Warn upon starting the first VM in a potentially
6909 			 * insecure environment.
6910 			 */
6911 			if (sched_smt_active())
6912 				pr_warn_once(L1TF_MSG_SMT);
6913 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6914 				pr_warn_once(L1TF_MSG_L1D);
6915 			break;
6916 		case L1TF_MITIGATION_FULL_FORCE:
6917 			/* Flush is enforced */
6918 			break;
6919 		}
6920 	}
6921 	return 0;
6922 }
6923 
6924 static int __init vmx_check_processor_compat(void)
6925 {
6926 	struct vmcs_config vmcs_conf;
6927 	struct vmx_capability vmx_cap;
6928 
6929 	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
6930 	    !this_cpu_has(X86_FEATURE_VMX)) {
6931 		pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
6932 		return -EIO;
6933 	}
6934 
6935 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
6936 		return -EIO;
6937 	if (nested)
6938 		nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
6939 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6940 		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6941 				smp_processor_id());
6942 		return -EIO;
6943 	}
6944 	return 0;
6945 }
6946 
6947 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6948 {
6949 	u8 cache;
6950 	u64 ipat = 0;
6951 
6952 	/* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
6953 	 * memory aliases with conflicting memory types and sometimes MCEs.
6954 	 * We have to be careful as to what are honored and when.
6955 	 *
6956 	 * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
6957 	 * UC.  The effective memory type is UC or WC depending on guest PAT.
6958 	 * This was historically the source of MCEs and we want to be
6959 	 * conservative.
6960 	 *
6961 	 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
6962 	 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
6963 	 * EPT memory type is set to WB.  The effective memory type is forced
6964 	 * WB.
6965 	 *
6966 	 * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
6967 	 * EPT memory type is used to emulate guest CD/MTRR.
6968 	 */
6969 
6970 	if (is_mmio) {
6971 		cache = MTRR_TYPE_UNCACHABLE;
6972 		goto exit;
6973 	}
6974 
6975 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
6976 		ipat = VMX_EPT_IPAT_BIT;
6977 		cache = MTRR_TYPE_WRBACK;
6978 		goto exit;
6979 	}
6980 
6981 	if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
6982 		ipat = VMX_EPT_IPAT_BIT;
6983 		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
6984 			cache = MTRR_TYPE_WRBACK;
6985 		else
6986 			cache = MTRR_TYPE_UNCACHABLE;
6987 		goto exit;
6988 	}
6989 
6990 	cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
6991 
6992 exit:
6993 	return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
6994 }
6995 
6996 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
6997 {
6998 	/*
6999 	 * These bits in the secondary execution controls field
7000 	 * are dynamic, the others are mostly based on the hypervisor
7001 	 * architecture and the guest's CPUID.  Do not touch the
7002 	 * dynamic bits.
7003 	 */
7004 	u32 mask =
7005 		SECONDARY_EXEC_SHADOW_VMCS |
7006 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7007 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7008 		SECONDARY_EXEC_DESC;
7009 
7010 	u32 cur_ctl = secondary_exec_controls_get(vmx);
7011 
7012 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7013 }
7014 
7015 /*
7016  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7017  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7018  */
7019 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7020 {
7021 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7022 	struct kvm_cpuid_entry2 *entry;
7023 
7024 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7025 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7026 
7027 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
7028 	if (entry && (entry->_reg & (_cpuid_mask)))			\
7029 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
7030 } while (0)
7031 
7032 	entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
7033 	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7034 	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7035 	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7036 	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7037 	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7038 	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7039 	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7040 	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7041 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7042 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7043 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7044 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7045 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7046 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7047 
7048 	entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7049 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7050 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7051 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7052 	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7053 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7054 	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7055 
7056 #undef cr4_fixed1_update
7057 }
7058 
7059 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7060 {
7061 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7062 
7063 	if (kvm_mpx_supported()) {
7064 		bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7065 
7066 		if (mpx_enabled) {
7067 			vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7068 			vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7069 		} else {
7070 			vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7071 			vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7072 		}
7073 	}
7074 }
7075 
7076 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7077 {
7078 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7079 	struct kvm_cpuid_entry2 *best = NULL;
7080 	int i;
7081 
7082 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7083 		best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7084 		if (!best)
7085 			return;
7086 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7087 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7088 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7089 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7090 	}
7091 
7092 	/* Get the number of configurable Address Ranges for filtering */
7093 	vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7094 						PT_CAP_num_address_ranges);
7095 
7096 	/* Initialize and clear the no dependency bits */
7097 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7098 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7099 			RTIT_CTL_BRANCH_EN);
7100 
7101 	/*
7102 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7103 	 * will inject an #GP
7104 	 */
7105 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7106 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7107 
7108 	/*
7109 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7110 	 * PSBFreq can be set
7111 	 */
7112 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7113 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7114 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7115 
7116 	/*
7117 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7118 	 */
7119 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7120 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7121 					      RTIT_CTL_MTC_RANGE);
7122 
7123 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7124 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7125 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7126 							RTIT_CTL_PTW_EN);
7127 
7128 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7129 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7130 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7131 
7132 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7133 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7134 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7135 
7136 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7137 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7138 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7139 
7140 	/* unmask address range configure area */
7141 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7142 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7143 }
7144 
7145 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7146 {
7147 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7148 
7149 	/* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7150 	vcpu->arch.xsaves_enabled = false;
7151 
7152 	vmx_setup_uret_msrs(vmx);
7153 
7154 	if (cpu_has_secondary_exec_ctrls())
7155 		vmcs_set_secondary_exec_control(vmx,
7156 						vmx_secondary_exec_control(vmx));
7157 
7158 	if (nested_vmx_allowed(vcpu))
7159 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7160 			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7161 			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7162 	else
7163 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7164 			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7165 			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7166 
7167 	if (nested_vmx_allowed(vcpu)) {
7168 		nested_vmx_cr_fixed1_bits_update(vcpu);
7169 		nested_vmx_entry_exit_ctls_update(vcpu);
7170 	}
7171 
7172 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7173 			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7174 		update_intel_pt_cfg(vcpu);
7175 
7176 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7177 		struct vmx_uret_msr *msr;
7178 		msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7179 		if (msr) {
7180 			bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7181 			vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7182 		}
7183 	}
7184 
7185 	set_cr4_guest_host_mask(vmx);
7186 
7187 	vmx_write_encls_bitmap(vcpu, NULL);
7188 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7189 		vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7190 	else
7191 		vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7192 
7193 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7194 		vmx->msr_ia32_feature_control_valid_bits |=
7195 			FEAT_CTL_SGX_LC_ENABLED;
7196 	else
7197 		vmx->msr_ia32_feature_control_valid_bits &=
7198 			~FEAT_CTL_SGX_LC_ENABLED;
7199 
7200 	/* Refresh #PF interception to account for MAXPHYADDR changes. */
7201 	vmx_update_exception_bitmap(vcpu);
7202 }
7203 
7204 static __init void vmx_set_cpu_caps(void)
7205 {
7206 	kvm_set_cpu_caps();
7207 
7208 	/* CPUID 0x1 */
7209 	if (nested)
7210 		kvm_cpu_cap_set(X86_FEATURE_VMX);
7211 
7212 	/* CPUID 0x7 */
7213 	if (kvm_mpx_supported())
7214 		kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7215 	if (!cpu_has_vmx_invpcid())
7216 		kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7217 	if (vmx_pt_mode_is_host_guest())
7218 		kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7219 
7220 	if (!enable_sgx) {
7221 		kvm_cpu_cap_clear(X86_FEATURE_SGX);
7222 		kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7223 		kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7224 		kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7225 	}
7226 
7227 	if (vmx_umip_emulated())
7228 		kvm_cpu_cap_set(X86_FEATURE_UMIP);
7229 
7230 	/* CPUID 0xD.1 */
7231 	supported_xss = 0;
7232 	if (!cpu_has_vmx_xsaves())
7233 		kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7234 
7235 	/* CPUID 0x80000001 and 0x7 (RDPID) */
7236 	if (!cpu_has_vmx_rdtscp()) {
7237 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7238 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7239 	}
7240 
7241 	if (cpu_has_vmx_waitpkg())
7242 		kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7243 }
7244 
7245 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7246 {
7247 	to_vmx(vcpu)->req_immediate_exit = true;
7248 }
7249 
7250 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7251 				  struct x86_instruction_info *info)
7252 {
7253 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7254 	unsigned short port;
7255 	bool intercept;
7256 	int size;
7257 
7258 	if (info->intercept == x86_intercept_in ||
7259 	    info->intercept == x86_intercept_ins) {
7260 		port = info->src_val;
7261 		size = info->dst_bytes;
7262 	} else {
7263 		port = info->dst_val;
7264 		size = info->src_bytes;
7265 	}
7266 
7267 	/*
7268 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7269 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7270 	 * control.
7271 	 *
7272 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7273 	 */
7274 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7275 		intercept = nested_cpu_has(vmcs12,
7276 					   CPU_BASED_UNCOND_IO_EXITING);
7277 	else
7278 		intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7279 
7280 	/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7281 	return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7282 }
7283 
7284 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7285 			       struct x86_instruction_info *info,
7286 			       enum x86_intercept_stage stage,
7287 			       struct x86_exception *exception)
7288 {
7289 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7290 
7291 	switch (info->intercept) {
7292 	/*
7293 	 * RDPID causes #UD if disabled through secondary execution controls.
7294 	 * Because it is marked as EmulateOnUD, we need to intercept it here.
7295 	 * Note, RDPID is hidden behind ENABLE_RDTSCP.
7296 	 */
7297 	case x86_intercept_rdpid:
7298 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7299 			exception->vector = UD_VECTOR;
7300 			exception->error_code_valid = false;
7301 			return X86EMUL_PROPAGATE_FAULT;
7302 		}
7303 		break;
7304 
7305 	case x86_intercept_in:
7306 	case x86_intercept_ins:
7307 	case x86_intercept_out:
7308 	case x86_intercept_outs:
7309 		return vmx_check_intercept_io(vcpu, info);
7310 
7311 	case x86_intercept_lgdt:
7312 	case x86_intercept_lidt:
7313 	case x86_intercept_lldt:
7314 	case x86_intercept_ltr:
7315 	case x86_intercept_sgdt:
7316 	case x86_intercept_sidt:
7317 	case x86_intercept_sldt:
7318 	case x86_intercept_str:
7319 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7320 			return X86EMUL_CONTINUE;
7321 
7322 		/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7323 		break;
7324 
7325 	/* TODO: check more intercepts... */
7326 	default:
7327 		break;
7328 	}
7329 
7330 	return X86EMUL_UNHANDLEABLE;
7331 }
7332 
7333 #ifdef CONFIG_X86_64
7334 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7335 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7336 				  u64 divisor, u64 *result)
7337 {
7338 	u64 low = a << shift, high = a >> (64 - shift);
7339 
7340 	/* To avoid the overflow on divq */
7341 	if (high >= divisor)
7342 		return 1;
7343 
7344 	/* Low hold the result, high hold rem which is discarded */
7345 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7346 	    "rm" (divisor), "0" (low), "1" (high));
7347 	*result = low;
7348 
7349 	return 0;
7350 }
7351 
7352 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7353 			    bool *expired)
7354 {
7355 	struct vcpu_vmx *vmx;
7356 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7357 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7358 
7359 	vmx = to_vmx(vcpu);
7360 	tscl = rdtsc();
7361 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7362 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7363 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7364 						    ktimer->timer_advance_ns);
7365 
7366 	if (delta_tsc > lapic_timer_advance_cycles)
7367 		delta_tsc -= lapic_timer_advance_cycles;
7368 	else
7369 		delta_tsc = 0;
7370 
7371 	/* Convert to host delta tsc if tsc scaling is enabled */
7372 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7373 	    delta_tsc && u64_shl_div_u64(delta_tsc,
7374 				kvm_tsc_scaling_ratio_frac_bits,
7375 				vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
7376 		return -ERANGE;
7377 
7378 	/*
7379 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
7380 	 * we can't use the preemption timer.
7381 	 * It's possible that it fits on later vmentries, but checking
7382 	 * on every vmentry is costly so we just use an hrtimer.
7383 	 */
7384 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7385 		return -ERANGE;
7386 
7387 	vmx->hv_deadline_tsc = tscl + delta_tsc;
7388 	*expired = !delta_tsc;
7389 	return 0;
7390 }
7391 
7392 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7393 {
7394 	to_vmx(vcpu)->hv_deadline_tsc = -1;
7395 }
7396 #endif
7397 
7398 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7399 {
7400 	if (!kvm_pause_in_guest(vcpu->kvm))
7401 		shrink_ple_window(vcpu);
7402 }
7403 
7404 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
7405 {
7406 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7407 
7408 	if (is_guest_mode(vcpu)) {
7409 		vmx->nested.update_vmcs01_cpu_dirty_logging = true;
7410 		return;
7411 	}
7412 
7413 	/*
7414 	 * Note, cpu_dirty_logging_count can be changed concurrent with this
7415 	 * code, but in that case another update request will be made and so
7416 	 * the guest will never run with a stale PML value.
7417 	 */
7418 	if (vcpu->kvm->arch.cpu_dirty_logging_count)
7419 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7420 	else
7421 		secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7422 }
7423 
7424 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7425 {
7426 	if (pi_pre_block(vcpu))
7427 		return 1;
7428 
7429 	if (kvm_lapic_hv_timer_in_use(vcpu))
7430 		kvm_lapic_switch_to_sw_timer(vcpu);
7431 
7432 	return 0;
7433 }
7434 
7435 static void vmx_post_block(struct kvm_vcpu *vcpu)
7436 {
7437 	if (kvm_x86_ops.set_hv_timer)
7438 		kvm_lapic_switch_to_hv_timer(vcpu);
7439 
7440 	pi_post_block(vcpu);
7441 }
7442 
7443 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7444 {
7445 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7446 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7447 			FEAT_CTL_LMCE_ENABLED;
7448 	else
7449 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7450 			~FEAT_CTL_LMCE_ENABLED;
7451 }
7452 
7453 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
7454 {
7455 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
7456 	if (to_vmx(vcpu)->nested.nested_run_pending)
7457 		return -EBUSY;
7458 	return !is_smm(vcpu);
7459 }
7460 
7461 static int vmx_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7462 {
7463 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7464 
7465 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7466 	if (vmx->nested.smm.guest_mode)
7467 		nested_vmx_vmexit(vcpu, -1, 0, 0);
7468 
7469 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
7470 	vmx->nested.vmxon = false;
7471 	vmx_clear_hlt(vcpu);
7472 	return 0;
7473 }
7474 
7475 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7476 {
7477 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7478 	int ret;
7479 
7480 	if (vmx->nested.smm.vmxon) {
7481 		vmx->nested.vmxon = true;
7482 		vmx->nested.smm.vmxon = false;
7483 	}
7484 
7485 	if (vmx->nested.smm.guest_mode) {
7486 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
7487 		if (ret)
7488 			return ret;
7489 
7490 		vmx->nested.smm.guest_mode = false;
7491 	}
7492 	return 0;
7493 }
7494 
7495 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
7496 {
7497 	/* RSM will cause a vmexit anyway.  */
7498 }
7499 
7500 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7501 {
7502 	return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
7503 }
7504 
7505 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
7506 {
7507 	if (is_guest_mode(vcpu)) {
7508 		struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
7509 
7510 		if (hrtimer_try_to_cancel(timer) == 1)
7511 			hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
7512 	}
7513 }
7514 
7515 static void hardware_unsetup(void)
7516 {
7517 	kvm_set_posted_intr_wakeup_handler(NULL);
7518 
7519 	if (nested)
7520 		nested_vmx_hardware_unsetup();
7521 
7522 	free_kvm_area();
7523 }
7524 
7525 static bool vmx_check_apicv_inhibit_reasons(ulong bit)
7526 {
7527 	ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7528 			  BIT(APICV_INHIBIT_REASON_ABSENT) |
7529 			  BIT(APICV_INHIBIT_REASON_HYPERV) |
7530 			  BIT(APICV_INHIBIT_REASON_BLOCKIRQ);
7531 
7532 	return supported & BIT(bit);
7533 }
7534 
7535 static struct kvm_x86_ops vmx_x86_ops __initdata = {
7536 	.name = "kvm_intel",
7537 
7538 	.hardware_unsetup = hardware_unsetup,
7539 
7540 	.hardware_enable = hardware_enable,
7541 	.hardware_disable = hardware_disable,
7542 	.cpu_has_accelerated_tpr = report_flexpriority,
7543 	.has_emulated_msr = vmx_has_emulated_msr,
7544 
7545 	.vm_size = sizeof(struct kvm_vmx),
7546 	.vm_init = vmx_vm_init,
7547 
7548 	.vcpu_create = vmx_create_vcpu,
7549 	.vcpu_free = vmx_free_vcpu,
7550 	.vcpu_reset = vmx_vcpu_reset,
7551 
7552 	.prepare_guest_switch = vmx_prepare_switch_to_guest,
7553 	.vcpu_load = vmx_vcpu_load,
7554 	.vcpu_put = vmx_vcpu_put,
7555 
7556 	.update_exception_bitmap = vmx_update_exception_bitmap,
7557 	.get_msr_feature = vmx_get_msr_feature,
7558 	.get_msr = vmx_get_msr,
7559 	.set_msr = vmx_set_msr,
7560 	.get_segment_base = vmx_get_segment_base,
7561 	.get_segment = vmx_get_segment,
7562 	.set_segment = vmx_set_segment,
7563 	.get_cpl = vmx_get_cpl,
7564 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7565 	.set_cr0 = vmx_set_cr0,
7566 	.is_valid_cr4 = vmx_is_valid_cr4,
7567 	.set_cr4 = vmx_set_cr4,
7568 	.set_efer = vmx_set_efer,
7569 	.get_idt = vmx_get_idt,
7570 	.set_idt = vmx_set_idt,
7571 	.get_gdt = vmx_get_gdt,
7572 	.set_gdt = vmx_set_gdt,
7573 	.set_dr7 = vmx_set_dr7,
7574 	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7575 	.cache_reg = vmx_cache_reg,
7576 	.get_rflags = vmx_get_rflags,
7577 	.set_rflags = vmx_set_rflags,
7578 
7579 	.tlb_flush_all = vmx_flush_tlb_all,
7580 	.tlb_flush_current = vmx_flush_tlb_current,
7581 	.tlb_flush_gva = vmx_flush_tlb_gva,
7582 	.tlb_flush_guest = vmx_flush_tlb_guest,
7583 
7584 	.run = vmx_vcpu_run,
7585 	.handle_exit = vmx_handle_exit,
7586 	.skip_emulated_instruction = vmx_skip_emulated_instruction,
7587 	.update_emulated_instruction = vmx_update_emulated_instruction,
7588 	.set_interrupt_shadow = vmx_set_interrupt_shadow,
7589 	.get_interrupt_shadow = vmx_get_interrupt_shadow,
7590 	.patch_hypercall = vmx_patch_hypercall,
7591 	.set_irq = vmx_inject_irq,
7592 	.set_nmi = vmx_inject_nmi,
7593 	.queue_exception = vmx_queue_exception,
7594 	.cancel_injection = vmx_cancel_injection,
7595 	.interrupt_allowed = vmx_interrupt_allowed,
7596 	.nmi_allowed = vmx_nmi_allowed,
7597 	.get_nmi_mask = vmx_get_nmi_mask,
7598 	.set_nmi_mask = vmx_set_nmi_mask,
7599 	.enable_nmi_window = vmx_enable_nmi_window,
7600 	.enable_irq_window = vmx_enable_irq_window,
7601 	.update_cr8_intercept = vmx_update_cr8_intercept,
7602 	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7603 	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7604 	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7605 	.load_eoi_exitmap = vmx_load_eoi_exitmap,
7606 	.apicv_post_state_restore = vmx_apicv_post_state_restore,
7607 	.check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7608 	.hwapic_irr_update = vmx_hwapic_irr_update,
7609 	.hwapic_isr_update = vmx_hwapic_isr_update,
7610 	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7611 	.sync_pir_to_irr = vmx_sync_pir_to_irr,
7612 	.deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7613 	.dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
7614 
7615 	.set_tss_addr = vmx_set_tss_addr,
7616 	.set_identity_map_addr = vmx_set_identity_map_addr,
7617 	.get_mt_mask = vmx_get_mt_mask,
7618 
7619 	.get_exit_info = vmx_get_exit_info,
7620 
7621 	.vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
7622 
7623 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7624 
7625 	.get_l2_tsc_offset = vmx_get_l2_tsc_offset,
7626 	.get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier,
7627 	.write_tsc_offset = vmx_write_tsc_offset,
7628 	.write_tsc_multiplier = vmx_write_tsc_multiplier,
7629 
7630 	.load_mmu_pgd = vmx_load_mmu_pgd,
7631 
7632 	.check_intercept = vmx_check_intercept,
7633 	.handle_exit_irqoff = vmx_handle_exit_irqoff,
7634 
7635 	.request_immediate_exit = vmx_request_immediate_exit,
7636 
7637 	.sched_in = vmx_sched_in,
7638 
7639 	.cpu_dirty_log_size = PML_ENTITY_NUM,
7640 	.update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
7641 
7642 	.pre_block = vmx_pre_block,
7643 	.post_block = vmx_post_block,
7644 
7645 	.pmu_ops = &intel_pmu_ops,
7646 	.nested_ops = &vmx_nested_ops,
7647 
7648 	.update_pi_irte = pi_update_irte,
7649 	.start_assignment = vmx_pi_start_assignment,
7650 
7651 #ifdef CONFIG_X86_64
7652 	.set_hv_timer = vmx_set_hv_timer,
7653 	.cancel_hv_timer = vmx_cancel_hv_timer,
7654 #endif
7655 
7656 	.setup_mce = vmx_setup_mce,
7657 
7658 	.smi_allowed = vmx_smi_allowed,
7659 	.enter_smm = vmx_enter_smm,
7660 	.leave_smm = vmx_leave_smm,
7661 	.enable_smi_window = vmx_enable_smi_window,
7662 
7663 	.can_emulate_instruction = vmx_can_emulate_instruction,
7664 	.apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7665 	.migrate_timers = vmx_migrate_timers,
7666 
7667 	.msr_filter_changed = vmx_msr_filter_changed,
7668 	.complete_emulated_msr = kvm_complete_insn_gp,
7669 
7670 	.vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
7671 };
7672 
7673 static __init void vmx_setup_user_return_msrs(void)
7674 {
7675 
7676 	/*
7677 	 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
7678 	 * will emulate SYSCALL in legacy mode if the vendor string in guest
7679 	 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
7680 	 * support this emulation, MSR_STAR is included in the list for i386,
7681 	 * but is never loaded into hardware.  MSR_CSTAR is also never loaded
7682 	 * into hardware and is here purely for emulation purposes.
7683 	 */
7684 	const u32 vmx_uret_msrs_list[] = {
7685 	#ifdef CONFIG_X86_64
7686 		MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
7687 	#endif
7688 		MSR_EFER, MSR_TSC_AUX, MSR_STAR,
7689 		MSR_IA32_TSX_CTRL,
7690 	};
7691 	int i;
7692 
7693 	BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
7694 
7695 	for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
7696 		kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
7697 }
7698 
7699 static __init int hardware_setup(void)
7700 {
7701 	unsigned long host_bndcfgs;
7702 	struct desc_ptr dt;
7703 	int r, ept_lpage_level;
7704 
7705 	store_idt(&dt);
7706 	host_idt_base = dt.address;
7707 
7708 	vmx_setup_user_return_msrs();
7709 
7710 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7711 		return -EIO;
7712 
7713 	if (boot_cpu_has(X86_FEATURE_NX))
7714 		kvm_enable_efer_bits(EFER_NX);
7715 
7716 	if (boot_cpu_has(X86_FEATURE_MPX)) {
7717 		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7718 		WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7719 	}
7720 
7721 	if (!cpu_has_vmx_mpx())
7722 		supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
7723 				    XFEATURE_MASK_BNDCSR);
7724 
7725 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7726 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7727 		enable_vpid = 0;
7728 
7729 	if (!cpu_has_vmx_ept() ||
7730 	    !cpu_has_vmx_ept_4levels() ||
7731 	    !cpu_has_vmx_ept_mt_wb() ||
7732 	    !cpu_has_vmx_invept_global())
7733 		enable_ept = 0;
7734 
7735 	/* NX support is required for shadow paging. */
7736 	if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
7737 		pr_err_ratelimited("kvm: NX (Execute Disable) not supported\n");
7738 		return -EOPNOTSUPP;
7739 	}
7740 
7741 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7742 		enable_ept_ad_bits = 0;
7743 
7744 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7745 		enable_unrestricted_guest = 0;
7746 
7747 	if (!cpu_has_vmx_flexpriority())
7748 		flexpriority_enabled = 0;
7749 
7750 	if (!cpu_has_virtual_nmis())
7751 		enable_vnmi = 0;
7752 
7753 	/*
7754 	 * set_apic_access_page_addr() is used to reload apic access
7755 	 * page upon invalidation.  No need to do anything if not
7756 	 * using the APIC_ACCESS_ADDR VMCS field.
7757 	 */
7758 	if (!flexpriority_enabled)
7759 		vmx_x86_ops.set_apic_access_page_addr = NULL;
7760 
7761 	if (!cpu_has_vmx_tpr_shadow())
7762 		vmx_x86_ops.update_cr8_intercept = NULL;
7763 
7764 #if IS_ENABLED(CONFIG_HYPERV)
7765 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7766 	    && enable_ept) {
7767 		vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
7768 		vmx_x86_ops.tlb_remote_flush_with_range =
7769 				hv_remote_flush_tlb_with_range;
7770 	}
7771 #endif
7772 
7773 	if (!cpu_has_vmx_ple()) {
7774 		ple_gap = 0;
7775 		ple_window = 0;
7776 		ple_window_grow = 0;
7777 		ple_window_max = 0;
7778 		ple_window_shrink = 0;
7779 	}
7780 
7781 	if (!cpu_has_vmx_apicv())
7782 		enable_apicv = 0;
7783 	if (!enable_apicv)
7784 		vmx_x86_ops.sync_pir_to_irr = NULL;
7785 
7786 	if (cpu_has_vmx_tsc_scaling()) {
7787 		kvm_has_tsc_control = true;
7788 		kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7789 		kvm_tsc_scaling_ratio_frac_bits = 48;
7790 	}
7791 
7792 	kvm_has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
7793 
7794 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7795 
7796 	if (enable_ept)
7797 		kvm_mmu_set_ept_masks(enable_ept_ad_bits,
7798 				      cpu_has_vmx_ept_execute_only());
7799 
7800 	if (!enable_ept)
7801 		ept_lpage_level = 0;
7802 	else if (cpu_has_vmx_ept_1g_page())
7803 		ept_lpage_level = PG_LEVEL_1G;
7804 	else if (cpu_has_vmx_ept_2m_page())
7805 		ept_lpage_level = PG_LEVEL_2M;
7806 	else
7807 		ept_lpage_level = PG_LEVEL_4K;
7808 	kvm_configure_mmu(enable_ept, 0, vmx_get_max_tdp_level(),
7809 			  ept_lpage_level);
7810 
7811 	/*
7812 	 * Only enable PML when hardware supports PML feature, and both EPT
7813 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
7814 	 */
7815 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7816 		enable_pml = 0;
7817 
7818 	if (!enable_pml)
7819 		vmx_x86_ops.cpu_dirty_log_size = 0;
7820 
7821 	if (!cpu_has_vmx_preemption_timer())
7822 		enable_preemption_timer = false;
7823 
7824 	if (enable_preemption_timer) {
7825 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
7826 		u64 vmx_msr;
7827 
7828 		rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7829 		cpu_preemption_timer_multi =
7830 			vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7831 
7832 		if (tsc_khz)
7833 			use_timer_freq = (u64)tsc_khz * 1000;
7834 		use_timer_freq >>= cpu_preemption_timer_multi;
7835 
7836 		/*
7837 		 * KVM "disables" the preemption timer by setting it to its max
7838 		 * value.  Don't use the timer if it might cause spurious exits
7839 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
7840 		 */
7841 		if (use_timer_freq > 0xffffffffu / 10)
7842 			enable_preemption_timer = false;
7843 	}
7844 
7845 	if (!enable_preemption_timer) {
7846 		vmx_x86_ops.set_hv_timer = NULL;
7847 		vmx_x86_ops.cancel_hv_timer = NULL;
7848 		vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
7849 	}
7850 
7851 	kvm_mce_cap_supported |= MCG_LMCE_P;
7852 
7853 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7854 		return -EINVAL;
7855 	if (!enable_ept || !cpu_has_vmx_intel_pt())
7856 		pt_mode = PT_MODE_SYSTEM;
7857 
7858 	setup_default_sgx_lepubkeyhash();
7859 
7860 	if (nested) {
7861 		nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7862 					   vmx_capability.ept);
7863 
7864 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7865 		if (r)
7866 			return r;
7867 	}
7868 
7869 	vmx_set_cpu_caps();
7870 
7871 	r = alloc_kvm_area();
7872 	if (r)
7873 		nested_vmx_hardware_unsetup();
7874 
7875 	kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
7876 
7877 	return r;
7878 }
7879 
7880 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
7881 	.cpu_has_kvm_support = cpu_has_kvm_support,
7882 	.disabled_by_bios = vmx_disabled_by_bios,
7883 	.check_processor_compatibility = vmx_check_processor_compat,
7884 	.hardware_setup = hardware_setup,
7885 
7886 	.runtime_ops = &vmx_x86_ops,
7887 };
7888 
7889 static void vmx_cleanup_l1d_flush(void)
7890 {
7891 	if (vmx_l1d_flush_pages) {
7892 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7893 		vmx_l1d_flush_pages = NULL;
7894 	}
7895 	/* Restore state so sysfs ignores VMX */
7896 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7897 }
7898 
7899 static void vmx_exit(void)
7900 {
7901 #ifdef CONFIG_KEXEC_CORE
7902 	RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
7903 	synchronize_rcu();
7904 #endif
7905 
7906 	kvm_exit();
7907 
7908 #if IS_ENABLED(CONFIG_HYPERV)
7909 	if (static_branch_unlikely(&enable_evmcs)) {
7910 		int cpu;
7911 		struct hv_vp_assist_page *vp_ap;
7912 		/*
7913 		 * Reset everything to support using non-enlightened VMCS
7914 		 * access later (e.g. when we reload the module with
7915 		 * enlightened_vmcs=0)
7916 		 */
7917 		for_each_online_cpu(cpu) {
7918 			vp_ap =	hv_get_vp_assist_page(cpu);
7919 
7920 			if (!vp_ap)
7921 				continue;
7922 
7923 			vp_ap->nested_control.features.directhypercall = 0;
7924 			vp_ap->current_nested_vmcs = 0;
7925 			vp_ap->enlighten_vmentry = 0;
7926 		}
7927 
7928 		static_branch_disable(&enable_evmcs);
7929 	}
7930 #endif
7931 	vmx_cleanup_l1d_flush();
7932 
7933 	allow_smaller_maxphyaddr = false;
7934 }
7935 module_exit(vmx_exit);
7936 
7937 static int __init vmx_init(void)
7938 {
7939 	int r, cpu;
7940 
7941 #if IS_ENABLED(CONFIG_HYPERV)
7942 	/*
7943 	 * Enlightened VMCS usage should be recommended and the host needs
7944 	 * to support eVMCS v1 or above. We can also disable eVMCS support
7945 	 * with module parameter.
7946 	 */
7947 	if (enlightened_vmcs &&
7948 	    ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
7949 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
7950 	    KVM_EVMCS_VERSION) {
7951 		int cpu;
7952 
7953 		/* Check that we have assist pages on all online CPUs */
7954 		for_each_online_cpu(cpu) {
7955 			if (!hv_get_vp_assist_page(cpu)) {
7956 				enlightened_vmcs = false;
7957 				break;
7958 			}
7959 		}
7960 
7961 		if (enlightened_vmcs) {
7962 			pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
7963 			static_branch_enable(&enable_evmcs);
7964 		}
7965 
7966 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
7967 			vmx_x86_ops.enable_direct_tlbflush
7968 				= hv_enable_direct_tlbflush;
7969 
7970 	} else {
7971 		enlightened_vmcs = false;
7972 	}
7973 #endif
7974 
7975 	r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
7976 		     __alignof__(struct vcpu_vmx), THIS_MODULE);
7977 	if (r)
7978 		return r;
7979 
7980 	/*
7981 	 * Must be called after kvm_init() so enable_ept is properly set
7982 	 * up. Hand the parameter mitigation value in which was stored in
7983 	 * the pre module init parser. If no parameter was given, it will
7984 	 * contain 'auto' which will be turned into the default 'cond'
7985 	 * mitigation mode.
7986 	 */
7987 	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
7988 	if (r) {
7989 		vmx_exit();
7990 		return r;
7991 	}
7992 
7993 	for_each_possible_cpu(cpu) {
7994 		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
7995 
7996 		pi_init_cpu(cpu);
7997 	}
7998 
7999 #ifdef CONFIG_KEXEC_CORE
8000 	rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8001 			   crash_vmclear_local_loaded_vmcss);
8002 #endif
8003 	vmx_check_vmcs12_offsets();
8004 
8005 	/*
8006 	 * Shadow paging doesn't have a (further) performance penalty
8007 	 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8008 	 * by default
8009 	 */
8010 	if (!enable_ept)
8011 		allow_smaller_maxphyaddr = true;
8012 
8013 	return 0;
8014 }
8015 module_init(vmx_init);
8016