1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/highmem.h> 18 #include <linux/hrtimer.h> 19 #include <linux/kernel.h> 20 #include <linux/kvm_host.h> 21 #include <linux/module.h> 22 #include <linux/moduleparam.h> 23 #include <linux/mod_devicetable.h> 24 #include <linux/mm.h> 25 #include <linux/objtool.h> 26 #include <linux/sched.h> 27 #include <linux/sched/smt.h> 28 #include <linux/slab.h> 29 #include <linux/tboot.h> 30 #include <linux/trace_events.h> 31 #include <linux/entry-kvm.h> 32 33 #include <asm/apic.h> 34 #include <asm/asm.h> 35 #include <asm/cpu.h> 36 #include <asm/cpu_device_id.h> 37 #include <asm/debugreg.h> 38 #include <asm/desc.h> 39 #include <asm/fpu/api.h> 40 #include <asm/fpu/xstate.h> 41 #include <asm/idtentry.h> 42 #include <asm/io.h> 43 #include <asm/irq_remapping.h> 44 #include <asm/reboot.h> 45 #include <asm/perf_event.h> 46 #include <asm/mmu_context.h> 47 #include <asm/mshyperv.h> 48 #include <asm/mwait.h> 49 #include <asm/spec-ctrl.h> 50 #include <asm/vmx.h> 51 52 #include "capabilities.h" 53 #include "cpuid.h" 54 #include "hyperv.h" 55 #include "kvm_onhyperv.h" 56 #include "irq.h" 57 #include "kvm_cache_regs.h" 58 #include "lapic.h" 59 #include "mmu.h" 60 #include "nested.h" 61 #include "pmu.h" 62 #include "sgx.h" 63 #include "trace.h" 64 #include "vmcs.h" 65 #include "vmcs12.h" 66 #include "vmx.h" 67 #include "x86.h" 68 #include "smm.h" 69 #include "vmx_onhyperv.h" 70 #include "posted_intr.h" 71 72 MODULE_AUTHOR("Qumranet"); 73 MODULE_LICENSE("GPL"); 74 75 #ifdef MODULE 76 static const struct x86_cpu_id vmx_cpu_id[] = { 77 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL), 78 {} 79 }; 80 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); 81 #endif 82 83 bool __read_mostly enable_vpid = 1; 84 module_param_named(vpid, enable_vpid, bool, 0444); 85 86 static bool __read_mostly enable_vnmi = 1; 87 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO); 88 89 bool __read_mostly flexpriority_enabled = 1; 90 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO); 91 92 bool __read_mostly enable_ept = 1; 93 module_param_named(ept, enable_ept, bool, S_IRUGO); 94 95 bool __read_mostly enable_unrestricted_guest = 1; 96 module_param_named(unrestricted_guest, 97 enable_unrestricted_guest, bool, S_IRUGO); 98 99 bool __read_mostly enable_ept_ad_bits = 1; 100 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO); 101 102 static bool __read_mostly emulate_invalid_guest_state = true; 103 module_param(emulate_invalid_guest_state, bool, S_IRUGO); 104 105 static bool __read_mostly fasteoi = 1; 106 module_param(fasteoi, bool, S_IRUGO); 107 108 module_param(enable_apicv, bool, S_IRUGO); 109 110 bool __read_mostly enable_ipiv = true; 111 module_param(enable_ipiv, bool, 0444); 112 113 /* 114 * If nested=1, nested virtualization is supported, i.e., guests may use 115 * VMX and be a hypervisor for its own guests. If nested=0, guests may not 116 * use VMX instructions. 117 */ 118 static bool __read_mostly nested = 1; 119 module_param(nested, bool, S_IRUGO); 120 121 bool __read_mostly enable_pml = 1; 122 module_param_named(pml, enable_pml, bool, S_IRUGO); 123 124 static bool __read_mostly error_on_inconsistent_vmcs_config = true; 125 module_param(error_on_inconsistent_vmcs_config, bool, 0444); 126 127 static bool __read_mostly dump_invalid_vmcs = 0; 128 module_param(dump_invalid_vmcs, bool, 0644); 129 130 #define MSR_BITMAP_MODE_X2APIC 1 131 #define MSR_BITMAP_MODE_X2APIC_APICV 2 132 133 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL 134 135 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */ 136 static int __read_mostly cpu_preemption_timer_multi; 137 static bool __read_mostly enable_preemption_timer = 1; 138 #ifdef CONFIG_X86_64 139 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); 140 #endif 141 142 extern bool __read_mostly allow_smaller_maxphyaddr; 143 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO); 144 145 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD) 146 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE 147 #define KVM_VM_CR0_ALWAYS_ON \ 148 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE) 149 150 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE 151 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) 152 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) 153 154 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) 155 156 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \ 157 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \ 158 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \ 159 RTIT_STATUS_BYTECNT)) 160 161 /* 162 * List of MSRs that can be directly passed to the guest. 163 * In addition to these x2apic and PT MSRs are handled specially. 164 */ 165 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = { 166 MSR_IA32_SPEC_CTRL, 167 MSR_IA32_PRED_CMD, 168 MSR_IA32_FLUSH_CMD, 169 MSR_IA32_TSC, 170 #ifdef CONFIG_X86_64 171 MSR_FS_BASE, 172 MSR_GS_BASE, 173 MSR_KERNEL_GS_BASE, 174 MSR_IA32_XFD, 175 MSR_IA32_XFD_ERR, 176 #endif 177 MSR_IA32_SYSENTER_CS, 178 MSR_IA32_SYSENTER_ESP, 179 MSR_IA32_SYSENTER_EIP, 180 MSR_CORE_C1_RES, 181 MSR_CORE_C3_RESIDENCY, 182 MSR_CORE_C6_RESIDENCY, 183 MSR_CORE_C7_RESIDENCY, 184 }; 185 186 /* 187 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 188 * ple_gap: upper bound on the amount of time between two successive 189 * executions of PAUSE in a loop. Also indicate if ple enabled. 190 * According to test, this time is usually smaller than 128 cycles. 191 * ple_window: upper bound on the amount of time a guest is allowed to execute 192 * in a PAUSE loop. Tests indicate that most spinlocks are held for 193 * less than 2^12 cycles 194 * Time is measured based on a counter that runs at the same rate as the TSC, 195 * refer SDM volume 3b section 21.6.13 & 22.1.3. 196 */ 197 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP; 198 module_param(ple_gap, uint, 0444); 199 200 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; 201 module_param(ple_window, uint, 0444); 202 203 /* Default doubles per-vcpu window every exit. */ 204 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 205 module_param(ple_window_grow, uint, 0444); 206 207 /* Default resets per-vcpu window every exit to ple_window. */ 208 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 209 module_param(ple_window_shrink, uint, 0444); 210 211 /* Default is to compute the maximum so we can never overflow. */ 212 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; 213 module_param(ple_window_max, uint, 0444); 214 215 /* Default is SYSTEM mode, 1 for host-guest mode (which is BROKEN) */ 216 int __read_mostly pt_mode = PT_MODE_SYSTEM; 217 #ifdef CONFIG_BROKEN 218 module_param(pt_mode, int, S_IRUGO); 219 #endif 220 221 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); 222 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); 223 static DEFINE_MUTEX(vmx_l1d_flush_mutex); 224 225 /* Storage for pre module init parameter parsing */ 226 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; 227 228 static const struct { 229 const char *option; 230 bool for_parse; 231 } vmentry_l1d_param[] = { 232 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, 233 [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, 234 [VMENTER_L1D_FLUSH_COND] = {"cond", true}, 235 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, 236 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, 237 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, 238 }; 239 240 #define L1D_CACHE_ORDER 4 241 static void *vmx_l1d_flush_pages; 242 243 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) 244 { 245 struct page *page; 246 unsigned int i; 247 248 if (!boot_cpu_has_bug(X86_BUG_L1TF)) { 249 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 250 return 0; 251 } 252 253 if (!enable_ept) { 254 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; 255 return 0; 256 } 257 258 if (host_arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { 259 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 260 return 0; 261 } 262 263 /* If set to auto use the default l1tf mitigation method */ 264 if (l1tf == VMENTER_L1D_FLUSH_AUTO) { 265 switch (l1tf_mitigation) { 266 case L1TF_MITIGATION_OFF: 267 l1tf = VMENTER_L1D_FLUSH_NEVER; 268 break; 269 case L1TF_MITIGATION_FLUSH_NOWARN: 270 case L1TF_MITIGATION_FLUSH: 271 case L1TF_MITIGATION_FLUSH_NOSMT: 272 l1tf = VMENTER_L1D_FLUSH_COND; 273 break; 274 case L1TF_MITIGATION_FULL: 275 case L1TF_MITIGATION_FULL_FORCE: 276 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 277 break; 278 } 279 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { 280 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 281 } 282 283 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && 284 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { 285 /* 286 * This allocation for vmx_l1d_flush_pages is not tied to a VM 287 * lifetime and so should not be charged to a memcg. 288 */ 289 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); 290 if (!page) 291 return -ENOMEM; 292 vmx_l1d_flush_pages = page_address(page); 293 294 /* 295 * Initialize each page with a different pattern in 296 * order to protect against KSM in the nested 297 * virtualization case. 298 */ 299 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { 300 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, 301 PAGE_SIZE); 302 } 303 } 304 305 l1tf_vmx_mitigation = l1tf; 306 307 if (l1tf != VMENTER_L1D_FLUSH_NEVER) 308 static_branch_enable(&vmx_l1d_should_flush); 309 else 310 static_branch_disable(&vmx_l1d_should_flush); 311 312 if (l1tf == VMENTER_L1D_FLUSH_COND) 313 static_branch_enable(&vmx_l1d_flush_cond); 314 else 315 static_branch_disable(&vmx_l1d_flush_cond); 316 return 0; 317 } 318 319 static int vmentry_l1d_flush_parse(const char *s) 320 { 321 unsigned int i; 322 323 if (s) { 324 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { 325 if (vmentry_l1d_param[i].for_parse && 326 sysfs_streq(s, vmentry_l1d_param[i].option)) 327 return i; 328 } 329 } 330 return -EINVAL; 331 } 332 333 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) 334 { 335 int l1tf, ret; 336 337 l1tf = vmentry_l1d_flush_parse(s); 338 if (l1tf < 0) 339 return l1tf; 340 341 if (!boot_cpu_has(X86_BUG_L1TF)) 342 return 0; 343 344 /* 345 * Has vmx_init() run already? If not then this is the pre init 346 * parameter parsing. In that case just store the value and let 347 * vmx_init() do the proper setup after enable_ept has been 348 * established. 349 */ 350 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { 351 vmentry_l1d_flush_param = l1tf; 352 return 0; 353 } 354 355 mutex_lock(&vmx_l1d_flush_mutex); 356 ret = vmx_setup_l1d_flush(l1tf); 357 mutex_unlock(&vmx_l1d_flush_mutex); 358 return ret; 359 } 360 361 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) 362 { 363 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) 364 return sysfs_emit(s, "???\n"); 365 366 return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); 367 } 368 369 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx) 370 { 371 u64 msr; 372 373 if (!vmx->disable_fb_clear) 374 return; 375 376 msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL); 377 msr |= FB_CLEAR_DIS; 378 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr); 379 /* Cache the MSR value to avoid reading it later */ 380 vmx->msr_ia32_mcu_opt_ctrl = msr; 381 } 382 383 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx) 384 { 385 if (!vmx->disable_fb_clear) 386 return; 387 388 vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS; 389 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl); 390 } 391 392 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx) 393 { 394 /* 395 * Disable VERW's behavior of clearing CPU buffers for the guest if the 396 * CPU isn't affected by MDS/TAA, and the host hasn't forcefully enabled 397 * the mitigation. Disabling the clearing behavior provides a 398 * performance boost for guests that aren't aware that manually clearing 399 * CPU buffers is unnecessary, at the cost of MSR accesses on VM-Entry 400 * and VM-Exit. 401 */ 402 vmx->disable_fb_clear = !cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF) && 403 (host_arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) && 404 !boot_cpu_has_bug(X86_BUG_MDS) && 405 !boot_cpu_has_bug(X86_BUG_TAA); 406 407 /* 408 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS 409 * at VMEntry. Skip the MSR read/write when a guest has no use case to 410 * execute VERW. 411 */ 412 if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) || 413 ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) && 414 (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) && 415 (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) && 416 (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) && 417 (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO))) 418 vmx->disable_fb_clear = false; 419 } 420 421 static const struct kernel_param_ops vmentry_l1d_flush_ops = { 422 .set = vmentry_l1d_flush_set, 423 .get = vmentry_l1d_flush_get, 424 }; 425 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); 426 427 static u32 vmx_segment_access_rights(struct kvm_segment *var); 428 429 void vmx_vmexit(void); 430 431 #define vmx_insn_failed(fmt...) \ 432 do { \ 433 WARN_ONCE(1, fmt); \ 434 pr_warn_ratelimited(fmt); \ 435 } while (0) 436 437 noinline void vmread_error(unsigned long field) 438 { 439 vmx_insn_failed("vmread failed: field=%lx\n", field); 440 } 441 442 #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT 443 noinstr void vmread_error_trampoline2(unsigned long field, bool fault) 444 { 445 if (fault) { 446 kvm_spurious_fault(); 447 } else { 448 instrumentation_begin(); 449 vmread_error(field); 450 instrumentation_end(); 451 } 452 } 453 #endif 454 455 noinline void vmwrite_error(unsigned long field, unsigned long value) 456 { 457 vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n", 458 field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); 459 } 460 461 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr) 462 { 463 vmx_insn_failed("vmclear failed: %p/%llx err=%u\n", 464 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR)); 465 } 466 467 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr) 468 { 469 vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n", 470 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR)); 471 } 472 473 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva) 474 { 475 vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n", 476 ext, vpid, gva); 477 } 478 479 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa) 480 { 481 vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n", 482 ext, eptp, gpa); 483 } 484 485 static DEFINE_PER_CPU(struct vmcs *, vmxarea); 486 DEFINE_PER_CPU(struct vmcs *, current_vmcs); 487 /* 488 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed 489 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. 490 */ 491 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); 492 493 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); 494 static DEFINE_SPINLOCK(vmx_vpid_lock); 495 496 struct vmcs_config vmcs_config __ro_after_init; 497 struct vmx_capability vmx_capability __ro_after_init; 498 499 #define VMX_SEGMENT_FIELD(seg) \ 500 [VCPU_SREG_##seg] = { \ 501 .selector = GUEST_##seg##_SELECTOR, \ 502 .base = GUEST_##seg##_BASE, \ 503 .limit = GUEST_##seg##_LIMIT, \ 504 .ar_bytes = GUEST_##seg##_AR_BYTES, \ 505 } 506 507 static const struct kvm_vmx_segment_field { 508 unsigned selector; 509 unsigned base; 510 unsigned limit; 511 unsigned ar_bytes; 512 } kvm_vmx_segment_fields[] = { 513 VMX_SEGMENT_FIELD(CS), 514 VMX_SEGMENT_FIELD(DS), 515 VMX_SEGMENT_FIELD(ES), 516 VMX_SEGMENT_FIELD(FS), 517 VMX_SEGMENT_FIELD(GS), 518 VMX_SEGMENT_FIELD(SS), 519 VMX_SEGMENT_FIELD(TR), 520 VMX_SEGMENT_FIELD(LDTR), 521 }; 522 523 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx) 524 { 525 vmx->segment_cache.bitmask = 0; 526 } 527 528 static unsigned long host_idt_base; 529 530 #if IS_ENABLED(CONFIG_HYPERV) 531 static struct kvm_x86_ops vmx_x86_ops __initdata; 532 533 static bool __read_mostly enlightened_vmcs = true; 534 module_param(enlightened_vmcs, bool, 0444); 535 536 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu) 537 { 538 struct hv_enlightened_vmcs *evmcs; 539 struct hv_partition_assist_pg **p_hv_pa_pg = 540 &to_kvm_hv(vcpu->kvm)->hv_pa_pg; 541 /* 542 * Synthetic VM-Exit is not enabled in current code and so All 543 * evmcs in singe VM shares same assist page. 544 */ 545 if (!*p_hv_pa_pg) 546 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT); 547 548 if (!*p_hv_pa_pg) 549 return -ENOMEM; 550 551 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs; 552 553 evmcs->partition_assist_page = 554 __pa(*p_hv_pa_pg); 555 evmcs->hv_vm_id = (unsigned long)vcpu->kvm; 556 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1; 557 558 return 0; 559 } 560 561 static __init void hv_init_evmcs(void) 562 { 563 int cpu; 564 565 if (!enlightened_vmcs) 566 return; 567 568 /* 569 * Enlightened VMCS usage should be recommended and the host needs 570 * to support eVMCS v1 or above. 571 */ 572 if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED && 573 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >= 574 KVM_EVMCS_VERSION) { 575 576 /* Check that we have assist pages on all online CPUs */ 577 for_each_online_cpu(cpu) { 578 if (!hv_get_vp_assist_page(cpu)) { 579 enlightened_vmcs = false; 580 break; 581 } 582 } 583 584 if (enlightened_vmcs) { 585 pr_info("Using Hyper-V Enlightened VMCS\n"); 586 static_branch_enable(&__kvm_is_using_evmcs); 587 } 588 589 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH) 590 vmx_x86_ops.enable_l2_tlb_flush 591 = hv_enable_l2_tlb_flush; 592 593 } else { 594 enlightened_vmcs = false; 595 } 596 } 597 598 static void hv_reset_evmcs(void) 599 { 600 struct hv_vp_assist_page *vp_ap; 601 602 if (!kvm_is_using_evmcs()) 603 return; 604 605 /* 606 * KVM should enable eVMCS if and only if all CPUs have a VP assist 607 * page, and should reject CPU onlining if eVMCS is enabled the CPU 608 * doesn't have a VP assist page allocated. 609 */ 610 vp_ap = hv_get_vp_assist_page(smp_processor_id()); 611 if (WARN_ON_ONCE(!vp_ap)) 612 return; 613 614 /* 615 * Reset everything to support using non-enlightened VMCS access later 616 * (e.g. when we reload the module with enlightened_vmcs=0) 617 */ 618 vp_ap->nested_control.features.directhypercall = 0; 619 vp_ap->current_nested_vmcs = 0; 620 vp_ap->enlighten_vmentry = 0; 621 } 622 623 #else /* IS_ENABLED(CONFIG_HYPERV) */ 624 static void hv_init_evmcs(void) {} 625 static void hv_reset_evmcs(void) {} 626 #endif /* IS_ENABLED(CONFIG_HYPERV) */ 627 628 /* 629 * Comment's format: document - errata name - stepping - processor name. 630 * Refer from 631 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp 632 */ 633 static u32 vmx_preemption_cpu_tfms[] = { 634 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ 635 0x000206E6, 636 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */ 637 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ 638 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ 639 0x00020652, 640 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ 641 0x00020655, 642 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ 643 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ 644 /* 645 * 320767.pdf - AAP86 - B1 - 646 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile 647 */ 648 0x000106E5, 649 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */ 650 0x000106A0, 651 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */ 652 0x000106A1, 653 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ 654 0x000106A4, 655 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ 656 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ 657 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ 658 0x000106A5, 659 /* Xeon E3-1220 V2 */ 660 0x000306A8, 661 }; 662 663 static inline bool cpu_has_broken_vmx_preemption_timer(void) 664 { 665 u32 eax = cpuid_eax(0x00000001), i; 666 667 /* Clear the reserved bits */ 668 eax &= ~(0x3U << 14 | 0xfU << 28); 669 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) 670 if (eax == vmx_preemption_cpu_tfms[i]) 671 return true; 672 673 return false; 674 } 675 676 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) 677 { 678 return flexpriority_enabled && lapic_in_kernel(vcpu); 679 } 680 681 static int possible_passthrough_msr_slot(u32 msr) 682 { 683 u32 i; 684 685 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) 686 if (vmx_possible_passthrough_msrs[i] == msr) 687 return i; 688 689 return -ENOENT; 690 } 691 692 static bool is_valid_passthrough_msr(u32 msr) 693 { 694 bool r; 695 696 switch (msr) { 697 case 0x800 ... 0x8ff: 698 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */ 699 return true; 700 case MSR_IA32_RTIT_STATUS: 701 case MSR_IA32_RTIT_OUTPUT_BASE: 702 case MSR_IA32_RTIT_OUTPUT_MASK: 703 case MSR_IA32_RTIT_CR3_MATCH: 704 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 705 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */ 706 case MSR_LBR_SELECT: 707 case MSR_LBR_TOS: 708 case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31: 709 case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31: 710 case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31: 711 case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8: 712 case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8: 713 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */ 714 return true; 715 } 716 717 r = possible_passthrough_msr_slot(msr) != -ENOENT; 718 719 WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr); 720 721 return r; 722 } 723 724 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr) 725 { 726 int i; 727 728 i = kvm_find_user_return_msr(msr); 729 if (i >= 0) 730 return &vmx->guest_uret_msrs[i]; 731 return NULL; 732 } 733 734 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx, 735 struct vmx_uret_msr *msr, u64 data) 736 { 737 unsigned int slot = msr - vmx->guest_uret_msrs; 738 int ret = 0; 739 740 if (msr->load_into_hardware) { 741 preempt_disable(); 742 ret = kvm_set_user_return_msr(slot, data, msr->mask); 743 preempt_enable(); 744 } 745 if (!ret) 746 msr->data = data; 747 return ret; 748 } 749 750 /* 751 * Disable VMX and clear CR4.VMXE (even if VMXOFF faults) 752 * 753 * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to 754 * atomically track post-VMXON state, e.g. this may be called in NMI context. 755 * Eat all faults as all other faults on VMXOFF faults are mode related, i.e. 756 * faults are guaranteed to be due to the !post-VMXON check unless the CPU is 757 * magically in RM, VM86, compat mode, or at CPL>0. 758 */ 759 static int kvm_cpu_vmxoff(void) 760 { 761 asm goto("1: vmxoff\n\t" 762 _ASM_EXTABLE(1b, %l[fault]) 763 ::: "cc", "memory" : fault); 764 765 cr4_clear_bits(X86_CR4_VMXE); 766 return 0; 767 768 fault: 769 cr4_clear_bits(X86_CR4_VMXE); 770 return -EIO; 771 } 772 773 static void vmx_emergency_disable(void) 774 { 775 int cpu = raw_smp_processor_id(); 776 struct loaded_vmcs *v; 777 778 kvm_rebooting = true; 779 780 /* 781 * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be 782 * set in task context. If this races with VMX is disabled by an NMI, 783 * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to 784 * kvm_rebooting set. 785 */ 786 if (!(__read_cr4() & X86_CR4_VMXE)) 787 return; 788 789 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), 790 loaded_vmcss_on_cpu_link) 791 vmcs_clear(v->vmcs); 792 793 kvm_cpu_vmxoff(); 794 } 795 796 static void __loaded_vmcs_clear(void *arg) 797 { 798 struct loaded_vmcs *loaded_vmcs = arg; 799 int cpu = raw_smp_processor_id(); 800 801 if (loaded_vmcs->cpu != cpu) 802 return; /* vcpu migration can race with cpu offline */ 803 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) 804 per_cpu(current_vmcs, cpu) = NULL; 805 806 vmcs_clear(loaded_vmcs->vmcs); 807 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) 808 vmcs_clear(loaded_vmcs->shadow_vmcs); 809 810 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); 811 812 /* 813 * Ensure all writes to loaded_vmcs, including deleting it from its 814 * current percpu list, complete before setting loaded_vmcs->cpu to 815 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first 816 * and add loaded_vmcs to its percpu list before it's deleted from this 817 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs(). 818 */ 819 smp_wmb(); 820 821 loaded_vmcs->cpu = -1; 822 loaded_vmcs->launched = 0; 823 } 824 825 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) 826 { 827 int cpu = loaded_vmcs->cpu; 828 829 if (cpu != -1) 830 smp_call_function_single(cpu, 831 __loaded_vmcs_clear, loaded_vmcs, 1); 832 } 833 834 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, 835 unsigned field) 836 { 837 bool ret; 838 u32 mask = 1 << (seg * SEG_FIELD_NR + field); 839 840 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) { 841 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS); 842 vmx->segment_cache.bitmask = 0; 843 } 844 ret = vmx->segment_cache.bitmask & mask; 845 vmx->segment_cache.bitmask |= mask; 846 return ret; 847 } 848 849 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) 850 { 851 u16 *p = &vmx->segment_cache.seg[seg].selector; 852 853 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) 854 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); 855 return *p; 856 } 857 858 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) 859 { 860 ulong *p = &vmx->segment_cache.seg[seg].base; 861 862 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) 863 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); 864 return *p; 865 } 866 867 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) 868 { 869 u32 *p = &vmx->segment_cache.seg[seg].limit; 870 871 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) 872 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); 873 return *p; 874 } 875 876 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) 877 { 878 u32 *p = &vmx->segment_cache.seg[seg].ar; 879 880 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) 881 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); 882 return *p; 883 } 884 885 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu) 886 { 887 u32 eb; 888 889 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | 890 (1u << DB_VECTOR) | (1u << AC_VECTOR); 891 /* 892 * Guest access to VMware backdoor ports could legitimately 893 * trigger #GP because of TSS I/O permission bitmap. 894 * We intercept those #GP and allow access to them anyway 895 * as VMware does. 896 */ 897 if (enable_vmware_backdoor) 898 eb |= (1u << GP_VECTOR); 899 if ((vcpu->guest_debug & 900 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == 901 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) 902 eb |= 1u << BP_VECTOR; 903 if (to_vmx(vcpu)->rmode.vm86_active) 904 eb = ~0; 905 if (!vmx_need_pf_intercept(vcpu)) 906 eb &= ~(1u << PF_VECTOR); 907 908 /* When we are running a nested L2 guest and L1 specified for it a 909 * certain exception bitmap, we must trap the same exceptions and pass 910 * them to L1. When running L2, we will only handle the exceptions 911 * specified above if L1 did not want them. 912 */ 913 if (is_guest_mode(vcpu)) 914 eb |= get_vmcs12(vcpu)->exception_bitmap; 915 else { 916 int mask = 0, match = 0; 917 918 if (enable_ept && (eb & (1u << PF_VECTOR))) { 919 /* 920 * If EPT is enabled, #PF is currently only intercepted 921 * if MAXPHYADDR is smaller on the guest than on the 922 * host. In that case we only care about present, 923 * non-reserved faults. For vmcs02, however, PFEC_MASK 924 * and PFEC_MATCH are set in prepare_vmcs02_rare. 925 */ 926 mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK; 927 match = PFERR_PRESENT_MASK; 928 } 929 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask); 930 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match); 931 } 932 933 /* 934 * Disabling xfd interception indicates that dynamic xfeatures 935 * might be used in the guest. Always trap #NM in this case 936 * to save guest xfd_err timely. 937 */ 938 if (vcpu->arch.xfd_no_write_intercept) 939 eb |= (1u << NM_VECTOR); 940 941 vmcs_write32(EXCEPTION_BITMAP, eb); 942 } 943 944 /* 945 * Check if MSR is intercepted for currently loaded MSR bitmap. 946 */ 947 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr) 948 { 949 if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS)) 950 return true; 951 952 return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr); 953 } 954 955 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx) 956 { 957 unsigned int flags = 0; 958 959 if (vmx->loaded_vmcs->launched) 960 flags |= VMX_RUN_VMRESUME; 961 962 /* 963 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free 964 * to change it directly without causing a vmexit. In that case read 965 * it after vmexit and store it in vmx->spec_ctrl. 966 */ 967 if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL)) 968 flags |= VMX_RUN_SAVE_SPEC_CTRL; 969 970 return flags; 971 } 972 973 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, 974 unsigned long entry, unsigned long exit) 975 { 976 vm_entry_controls_clearbit(vmx, entry); 977 vm_exit_controls_clearbit(vmx, exit); 978 } 979 980 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr) 981 { 982 unsigned int i; 983 984 for (i = 0; i < m->nr; ++i) { 985 if (m->val[i].index == msr) 986 return i; 987 } 988 return -ENOENT; 989 } 990 991 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) 992 { 993 int i; 994 struct msr_autoload *m = &vmx->msr_autoload; 995 996 switch (msr) { 997 case MSR_EFER: 998 if (cpu_has_load_ia32_efer()) { 999 clear_atomic_switch_msr_special(vmx, 1000 VM_ENTRY_LOAD_IA32_EFER, 1001 VM_EXIT_LOAD_IA32_EFER); 1002 return; 1003 } 1004 break; 1005 case MSR_CORE_PERF_GLOBAL_CTRL: 1006 if (cpu_has_load_perf_global_ctrl()) { 1007 clear_atomic_switch_msr_special(vmx, 1008 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 1009 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); 1010 return; 1011 } 1012 break; 1013 } 1014 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 1015 if (i < 0) 1016 goto skip_guest; 1017 --m->guest.nr; 1018 m->guest.val[i] = m->guest.val[m->guest.nr]; 1019 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 1020 1021 skip_guest: 1022 i = vmx_find_loadstore_msr_slot(&m->host, msr); 1023 if (i < 0) 1024 return; 1025 1026 --m->host.nr; 1027 m->host.val[i] = m->host.val[m->host.nr]; 1028 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 1029 } 1030 1031 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, 1032 unsigned long entry, unsigned long exit, 1033 unsigned long guest_val_vmcs, unsigned long host_val_vmcs, 1034 u64 guest_val, u64 host_val) 1035 { 1036 vmcs_write64(guest_val_vmcs, guest_val); 1037 if (host_val_vmcs != HOST_IA32_EFER) 1038 vmcs_write64(host_val_vmcs, host_val); 1039 vm_entry_controls_setbit(vmx, entry); 1040 vm_exit_controls_setbit(vmx, exit); 1041 } 1042 1043 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, 1044 u64 guest_val, u64 host_val, bool entry_only) 1045 { 1046 int i, j = 0; 1047 struct msr_autoload *m = &vmx->msr_autoload; 1048 1049 switch (msr) { 1050 case MSR_EFER: 1051 if (cpu_has_load_ia32_efer()) { 1052 add_atomic_switch_msr_special(vmx, 1053 VM_ENTRY_LOAD_IA32_EFER, 1054 VM_EXIT_LOAD_IA32_EFER, 1055 GUEST_IA32_EFER, 1056 HOST_IA32_EFER, 1057 guest_val, host_val); 1058 return; 1059 } 1060 break; 1061 case MSR_CORE_PERF_GLOBAL_CTRL: 1062 if (cpu_has_load_perf_global_ctrl()) { 1063 add_atomic_switch_msr_special(vmx, 1064 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 1065 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, 1066 GUEST_IA32_PERF_GLOBAL_CTRL, 1067 HOST_IA32_PERF_GLOBAL_CTRL, 1068 guest_val, host_val); 1069 return; 1070 } 1071 break; 1072 case MSR_IA32_PEBS_ENABLE: 1073 /* PEBS needs a quiescent period after being disabled (to write 1074 * a record). Disabling PEBS through VMX MSR swapping doesn't 1075 * provide that period, so a CPU could write host's record into 1076 * guest's memory. 1077 */ 1078 wrmsrl(MSR_IA32_PEBS_ENABLE, 0); 1079 } 1080 1081 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 1082 if (!entry_only) 1083 j = vmx_find_loadstore_msr_slot(&m->host, msr); 1084 1085 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) || 1086 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) { 1087 printk_once(KERN_WARNING "Not enough msr switch entries. " 1088 "Can't add msr %x\n", msr); 1089 return; 1090 } 1091 if (i < 0) { 1092 i = m->guest.nr++; 1093 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 1094 } 1095 m->guest.val[i].index = msr; 1096 m->guest.val[i].value = guest_val; 1097 1098 if (entry_only) 1099 return; 1100 1101 if (j < 0) { 1102 j = m->host.nr++; 1103 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 1104 } 1105 m->host.val[j].index = msr; 1106 m->host.val[j].value = host_val; 1107 } 1108 1109 static bool update_transition_efer(struct vcpu_vmx *vmx) 1110 { 1111 u64 guest_efer = vmx->vcpu.arch.efer; 1112 u64 ignore_bits = 0; 1113 int i; 1114 1115 /* Shadow paging assumes NX to be available. */ 1116 if (!enable_ept) 1117 guest_efer |= EFER_NX; 1118 1119 /* 1120 * LMA and LME handled by hardware; SCE meaningless outside long mode. 1121 */ 1122 ignore_bits |= EFER_SCE; 1123 #ifdef CONFIG_X86_64 1124 ignore_bits |= EFER_LMA | EFER_LME; 1125 /* SCE is meaningful only in long mode on Intel */ 1126 if (guest_efer & EFER_LMA) 1127 ignore_bits &= ~(u64)EFER_SCE; 1128 #endif 1129 1130 /* 1131 * On EPT, we can't emulate NX, so we must switch EFER atomically. 1132 * On CPUs that support "load IA32_EFER", always switch EFER 1133 * atomically, since it's faster than switching it manually. 1134 */ 1135 if (cpu_has_load_ia32_efer() || 1136 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) { 1137 if (!(guest_efer & EFER_LMA)) 1138 guest_efer &= ~EFER_LME; 1139 if (guest_efer != host_efer) 1140 add_atomic_switch_msr(vmx, MSR_EFER, 1141 guest_efer, host_efer, false); 1142 else 1143 clear_atomic_switch_msr(vmx, MSR_EFER); 1144 return false; 1145 } 1146 1147 i = kvm_find_user_return_msr(MSR_EFER); 1148 if (i < 0) 1149 return false; 1150 1151 clear_atomic_switch_msr(vmx, MSR_EFER); 1152 1153 guest_efer &= ~ignore_bits; 1154 guest_efer |= host_efer & ignore_bits; 1155 1156 vmx->guest_uret_msrs[i].data = guest_efer; 1157 vmx->guest_uret_msrs[i].mask = ~ignore_bits; 1158 1159 return true; 1160 } 1161 1162 #ifdef CONFIG_X86_32 1163 /* 1164 * On 32-bit kernels, VM exits still load the FS and GS bases from the 1165 * VMCS rather than the segment table. KVM uses this helper to figure 1166 * out the current bases to poke them into the VMCS before entry. 1167 */ 1168 static unsigned long segment_base(u16 selector) 1169 { 1170 struct desc_struct *table; 1171 unsigned long v; 1172 1173 if (!(selector & ~SEGMENT_RPL_MASK)) 1174 return 0; 1175 1176 table = get_current_gdt_ro(); 1177 1178 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { 1179 u16 ldt_selector = kvm_read_ldt(); 1180 1181 if (!(ldt_selector & ~SEGMENT_RPL_MASK)) 1182 return 0; 1183 1184 table = (struct desc_struct *)segment_base(ldt_selector); 1185 } 1186 v = get_desc_base(&table[selector >> 3]); 1187 return v; 1188 } 1189 #endif 1190 1191 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx) 1192 { 1193 return vmx_pt_mode_is_host_guest() && 1194 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 1195 } 1196 1197 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base) 1198 { 1199 /* The base must be 128-byte aligned and a legal physical address. */ 1200 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128); 1201 } 1202 1203 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range) 1204 { 1205 u32 i; 1206 1207 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1208 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1209 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1210 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1211 for (i = 0; i < addr_range; i++) { 1212 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1213 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1214 } 1215 } 1216 1217 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range) 1218 { 1219 u32 i; 1220 1221 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1222 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1223 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1224 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1225 for (i = 0; i < addr_range; i++) { 1226 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1227 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1228 } 1229 } 1230 1231 static void pt_guest_enter(struct vcpu_vmx *vmx) 1232 { 1233 if (vmx_pt_mode_is_system()) 1234 return; 1235 1236 /* 1237 * GUEST_IA32_RTIT_CTL is already set in the VMCS. 1238 * Save host state before VM entry. 1239 */ 1240 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1241 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1242 wrmsrl(MSR_IA32_RTIT_CTL, 0); 1243 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1244 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1245 } 1246 } 1247 1248 static void pt_guest_exit(struct vcpu_vmx *vmx) 1249 { 1250 if (vmx_pt_mode_is_system()) 1251 return; 1252 1253 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1254 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1255 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1256 } 1257 1258 /* 1259 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest, 1260 * i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary. 1261 */ 1262 if (vmx->pt_desc.host.ctl) 1263 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1264 } 1265 1266 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel, 1267 unsigned long fs_base, unsigned long gs_base) 1268 { 1269 if (unlikely(fs_sel != host->fs_sel)) { 1270 if (!(fs_sel & 7)) 1271 vmcs_write16(HOST_FS_SELECTOR, fs_sel); 1272 else 1273 vmcs_write16(HOST_FS_SELECTOR, 0); 1274 host->fs_sel = fs_sel; 1275 } 1276 if (unlikely(gs_sel != host->gs_sel)) { 1277 if (!(gs_sel & 7)) 1278 vmcs_write16(HOST_GS_SELECTOR, gs_sel); 1279 else 1280 vmcs_write16(HOST_GS_SELECTOR, 0); 1281 host->gs_sel = gs_sel; 1282 } 1283 if (unlikely(fs_base != host->fs_base)) { 1284 vmcs_writel(HOST_FS_BASE, fs_base); 1285 host->fs_base = fs_base; 1286 } 1287 if (unlikely(gs_base != host->gs_base)) { 1288 vmcs_writel(HOST_GS_BASE, gs_base); 1289 host->gs_base = gs_base; 1290 } 1291 } 1292 1293 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1294 { 1295 struct vcpu_vmx *vmx = to_vmx(vcpu); 1296 struct vmcs_host_state *host_state; 1297 #ifdef CONFIG_X86_64 1298 int cpu = raw_smp_processor_id(); 1299 #endif 1300 unsigned long fs_base, gs_base; 1301 u16 fs_sel, gs_sel; 1302 int i; 1303 1304 vmx->req_immediate_exit = false; 1305 1306 /* 1307 * Note that guest MSRs to be saved/restored can also be changed 1308 * when guest state is loaded. This happens when guest transitions 1309 * to/from long-mode by setting MSR_EFER.LMA. 1310 */ 1311 if (!vmx->guest_uret_msrs_loaded) { 1312 vmx->guest_uret_msrs_loaded = true; 1313 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 1314 if (!vmx->guest_uret_msrs[i].load_into_hardware) 1315 continue; 1316 1317 kvm_set_user_return_msr(i, 1318 vmx->guest_uret_msrs[i].data, 1319 vmx->guest_uret_msrs[i].mask); 1320 } 1321 } 1322 1323 if (vmx->nested.need_vmcs12_to_shadow_sync) 1324 nested_sync_vmcs12_to_shadow(vcpu); 1325 1326 if (vmx->guest_state_loaded) 1327 return; 1328 1329 host_state = &vmx->loaded_vmcs->host_state; 1330 1331 /* 1332 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not 1333 * allow segment selectors with cpl > 0 or ti == 1. 1334 */ 1335 host_state->ldt_sel = kvm_read_ldt(); 1336 1337 #ifdef CONFIG_X86_64 1338 savesegment(ds, host_state->ds_sel); 1339 savesegment(es, host_state->es_sel); 1340 1341 gs_base = cpu_kernelmode_gs_base(cpu); 1342 if (likely(is_64bit_mm(current->mm))) { 1343 current_save_fsgs(); 1344 fs_sel = current->thread.fsindex; 1345 gs_sel = current->thread.gsindex; 1346 fs_base = current->thread.fsbase; 1347 vmx->msr_host_kernel_gs_base = current->thread.gsbase; 1348 } else { 1349 savesegment(fs, fs_sel); 1350 savesegment(gs, gs_sel); 1351 fs_base = read_msr(MSR_FS_BASE); 1352 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); 1353 } 1354 1355 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1356 #else 1357 savesegment(fs, fs_sel); 1358 savesegment(gs, gs_sel); 1359 fs_base = segment_base(fs_sel); 1360 gs_base = segment_base(gs_sel); 1361 #endif 1362 1363 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base); 1364 vmx->guest_state_loaded = true; 1365 } 1366 1367 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx) 1368 { 1369 struct vmcs_host_state *host_state; 1370 1371 if (!vmx->guest_state_loaded) 1372 return; 1373 1374 host_state = &vmx->loaded_vmcs->host_state; 1375 1376 ++vmx->vcpu.stat.host_state_reload; 1377 1378 #ifdef CONFIG_X86_64 1379 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1380 #endif 1381 if (host_state->ldt_sel || (host_state->gs_sel & 7)) { 1382 kvm_load_ldt(host_state->ldt_sel); 1383 #ifdef CONFIG_X86_64 1384 load_gs_index(host_state->gs_sel); 1385 #else 1386 loadsegment(gs, host_state->gs_sel); 1387 #endif 1388 } 1389 if (host_state->fs_sel & 7) 1390 loadsegment(fs, host_state->fs_sel); 1391 #ifdef CONFIG_X86_64 1392 if (unlikely(host_state->ds_sel | host_state->es_sel)) { 1393 loadsegment(ds, host_state->ds_sel); 1394 loadsegment(es, host_state->es_sel); 1395 } 1396 #endif 1397 invalidate_tss_limit(); 1398 #ifdef CONFIG_X86_64 1399 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); 1400 #endif 1401 load_fixmap_gdt(raw_smp_processor_id()); 1402 vmx->guest_state_loaded = false; 1403 vmx->guest_uret_msrs_loaded = false; 1404 } 1405 1406 #ifdef CONFIG_X86_64 1407 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx) 1408 { 1409 preempt_disable(); 1410 if (vmx->guest_state_loaded) 1411 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1412 preempt_enable(); 1413 return vmx->msr_guest_kernel_gs_base; 1414 } 1415 1416 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data) 1417 { 1418 preempt_disable(); 1419 if (vmx->guest_state_loaded) 1420 wrmsrl(MSR_KERNEL_GS_BASE, data); 1421 preempt_enable(); 1422 vmx->msr_guest_kernel_gs_base = data; 1423 } 1424 #endif 1425 1426 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu, 1427 struct loaded_vmcs *buddy) 1428 { 1429 struct vcpu_vmx *vmx = to_vmx(vcpu); 1430 bool already_loaded = vmx->loaded_vmcs->cpu == cpu; 1431 struct vmcs *prev; 1432 1433 if (!already_loaded) { 1434 loaded_vmcs_clear(vmx->loaded_vmcs); 1435 local_irq_disable(); 1436 1437 /* 1438 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to 1439 * this cpu's percpu list, otherwise it may not yet be deleted 1440 * from its previous cpu's percpu list. Pairs with the 1441 * smb_wmb() in __loaded_vmcs_clear(). 1442 */ 1443 smp_rmb(); 1444 1445 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, 1446 &per_cpu(loaded_vmcss_on_cpu, cpu)); 1447 local_irq_enable(); 1448 } 1449 1450 prev = per_cpu(current_vmcs, cpu); 1451 if (prev != vmx->loaded_vmcs->vmcs) { 1452 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; 1453 vmcs_load(vmx->loaded_vmcs->vmcs); 1454 1455 /* 1456 * No indirect branch prediction barrier needed when switching 1457 * the active VMCS within a vCPU, unless IBRS is advertised to 1458 * the vCPU. To minimize the number of IBPBs executed, KVM 1459 * performs IBPB on nested VM-Exit (a single nested transition 1460 * may switch the active VMCS multiple times). 1461 */ 1462 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev)) 1463 indirect_branch_prediction_barrier(); 1464 } 1465 1466 if (!already_loaded) { 1467 void *gdt = get_current_gdt_ro(); 1468 1469 /* 1470 * Flush all EPTP/VPID contexts, the new pCPU may have stale 1471 * TLB entries from its previous association with the vCPU. 1472 */ 1473 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 1474 1475 /* 1476 * Linux uses per-cpu TSS and GDT, so set these when switching 1477 * processors. See 22.2.4. 1478 */ 1479 vmcs_writel(HOST_TR_BASE, 1480 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); 1481 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ 1482 1483 if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) { 1484 /* 22.2.3 */ 1485 vmcs_writel(HOST_IA32_SYSENTER_ESP, 1486 (unsigned long)(cpu_entry_stack(cpu) + 1)); 1487 } 1488 1489 vmx->loaded_vmcs->cpu = cpu; 1490 } 1491 } 1492 1493 /* 1494 * Switches to specified vcpu, until a matching vcpu_put(), but assumes 1495 * vcpu mutex is already taken. 1496 */ 1497 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1498 { 1499 struct vcpu_vmx *vmx = to_vmx(vcpu); 1500 1501 vmx_vcpu_load_vmcs(vcpu, cpu, NULL); 1502 1503 vmx_vcpu_pi_load(vcpu, cpu); 1504 1505 vmx->host_debugctlmsr = get_debugctlmsr(); 1506 } 1507 1508 static void vmx_vcpu_put(struct kvm_vcpu *vcpu) 1509 { 1510 vmx_vcpu_pi_put(vcpu); 1511 1512 vmx_prepare_switch_to_host(to_vmx(vcpu)); 1513 } 1514 1515 bool vmx_emulation_required(struct kvm_vcpu *vcpu) 1516 { 1517 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu); 1518 } 1519 1520 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) 1521 { 1522 struct vcpu_vmx *vmx = to_vmx(vcpu); 1523 unsigned long rflags, save_rflags; 1524 1525 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) { 1526 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1527 rflags = vmcs_readl(GUEST_RFLAGS); 1528 if (vmx->rmode.vm86_active) { 1529 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 1530 save_rflags = vmx->rmode.save_rflags; 1531 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 1532 } 1533 vmx->rflags = rflags; 1534 } 1535 return vmx->rflags; 1536 } 1537 1538 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1539 { 1540 struct vcpu_vmx *vmx = to_vmx(vcpu); 1541 unsigned long old_rflags; 1542 1543 /* 1544 * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU 1545 * is an unrestricted guest in order to mark L2 as needing emulation 1546 * if L1 runs L2 as a restricted guest. 1547 */ 1548 if (is_unrestricted_guest(vcpu)) { 1549 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1550 vmx->rflags = rflags; 1551 vmcs_writel(GUEST_RFLAGS, rflags); 1552 return; 1553 } 1554 1555 old_rflags = vmx_get_rflags(vcpu); 1556 vmx->rflags = rflags; 1557 if (vmx->rmode.vm86_active) { 1558 vmx->rmode.save_rflags = rflags; 1559 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 1560 } 1561 vmcs_writel(GUEST_RFLAGS, rflags); 1562 1563 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM) 1564 vmx->emulation_required = vmx_emulation_required(vcpu); 1565 } 1566 1567 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu) 1568 { 1569 return vmx_get_rflags(vcpu) & X86_EFLAGS_IF; 1570 } 1571 1572 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) 1573 { 1574 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1575 int ret = 0; 1576 1577 if (interruptibility & GUEST_INTR_STATE_STI) 1578 ret |= KVM_X86_SHADOW_INT_STI; 1579 if (interruptibility & GUEST_INTR_STATE_MOV_SS) 1580 ret |= KVM_X86_SHADOW_INT_MOV_SS; 1581 1582 return ret; 1583 } 1584 1585 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 1586 { 1587 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1588 u32 interruptibility = interruptibility_old; 1589 1590 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); 1591 1592 if (mask & KVM_X86_SHADOW_INT_MOV_SS) 1593 interruptibility |= GUEST_INTR_STATE_MOV_SS; 1594 else if (mask & KVM_X86_SHADOW_INT_STI) 1595 interruptibility |= GUEST_INTR_STATE_STI; 1596 1597 if ((interruptibility != interruptibility_old)) 1598 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); 1599 } 1600 1601 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data) 1602 { 1603 struct vcpu_vmx *vmx = to_vmx(vcpu); 1604 unsigned long value; 1605 1606 /* 1607 * Any MSR write that attempts to change bits marked reserved will 1608 * case a #GP fault. 1609 */ 1610 if (data & vmx->pt_desc.ctl_bitmask) 1611 return 1; 1612 1613 /* 1614 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will 1615 * result in a #GP unless the same write also clears TraceEn. 1616 */ 1617 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) && 1618 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN)) 1619 return 1; 1620 1621 /* 1622 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit 1623 * and FabricEn would cause #GP, if 1624 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0 1625 */ 1626 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) && 1627 !(data & RTIT_CTL_FABRIC_EN) && 1628 !intel_pt_validate_cap(vmx->pt_desc.caps, 1629 PT_CAP_single_range_output)) 1630 return 1; 1631 1632 /* 1633 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that 1634 * utilize encodings marked reserved will cause a #GP fault. 1635 */ 1636 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods); 1637 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) && 1638 !test_bit((data & RTIT_CTL_MTC_RANGE) >> 1639 RTIT_CTL_MTC_RANGE_OFFSET, &value)) 1640 return 1; 1641 value = intel_pt_validate_cap(vmx->pt_desc.caps, 1642 PT_CAP_cycle_thresholds); 1643 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1644 !test_bit((data & RTIT_CTL_CYC_THRESH) >> 1645 RTIT_CTL_CYC_THRESH_OFFSET, &value)) 1646 return 1; 1647 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods); 1648 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1649 !test_bit((data & RTIT_CTL_PSB_FREQ) >> 1650 RTIT_CTL_PSB_FREQ_OFFSET, &value)) 1651 return 1; 1652 1653 /* 1654 * If ADDRx_CFG is reserved or the encodings is >2 will 1655 * cause a #GP fault. 1656 */ 1657 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET; 1658 if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2)) 1659 return 1; 1660 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET; 1661 if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2)) 1662 return 1; 1663 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET; 1664 if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2)) 1665 return 1; 1666 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET; 1667 if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2)) 1668 return 1; 1669 1670 return 0; 1671 } 1672 1673 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 1674 void *insn, int insn_len) 1675 { 1676 /* 1677 * Emulation of instructions in SGX enclaves is impossible as RIP does 1678 * not point at the failing instruction, and even if it did, the code 1679 * stream is inaccessible. Inject #UD instead of exiting to userspace 1680 * so that guest userspace can't DoS the guest simply by triggering 1681 * emulation (enclaves are CPL3 only). 1682 */ 1683 if (to_vmx(vcpu)->exit_reason.enclave_mode) { 1684 kvm_queue_exception(vcpu, UD_VECTOR); 1685 return false; 1686 } 1687 return true; 1688 } 1689 1690 static int skip_emulated_instruction(struct kvm_vcpu *vcpu) 1691 { 1692 union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason; 1693 unsigned long rip, orig_rip; 1694 u32 instr_len; 1695 1696 /* 1697 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on 1698 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be 1699 * set when EPT misconfig occurs. In practice, real hardware updates 1700 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors 1701 * (namely Hyper-V) don't set it due to it being undefined behavior, 1702 * i.e. we end up advancing IP with some random value. 1703 */ 1704 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) || 1705 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) { 1706 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 1707 1708 /* 1709 * Emulating an enclave's instructions isn't supported as KVM 1710 * cannot access the enclave's memory or its true RIP, e.g. the 1711 * vmcs.GUEST_RIP points at the exit point of the enclave, not 1712 * the RIP that actually triggered the VM-Exit. But, because 1713 * most instructions that cause VM-Exit will #UD in an enclave, 1714 * most instruction-based VM-Exits simply do not occur. 1715 * 1716 * There are a few exceptions, notably the debug instructions 1717 * INT1ICEBRK and INT3, as they are allowed in debug enclaves 1718 * and generate #DB/#BP as expected, which KVM might intercept. 1719 * But again, the CPU does the dirty work and saves an instr 1720 * length of zero so VMMs don't shoot themselves in the foot. 1721 * WARN if KVM tries to skip a non-zero length instruction on 1722 * a VM-Exit from an enclave. 1723 */ 1724 if (!instr_len) 1725 goto rip_updated; 1726 1727 WARN_ONCE(exit_reason.enclave_mode, 1728 "skipping instruction after SGX enclave VM-Exit"); 1729 1730 orig_rip = kvm_rip_read(vcpu); 1731 rip = orig_rip + instr_len; 1732 #ifdef CONFIG_X86_64 1733 /* 1734 * We need to mask out the high 32 bits of RIP if not in 64-bit 1735 * mode, but just finding out that we are in 64-bit mode is 1736 * quite expensive. Only do it if there was a carry. 1737 */ 1738 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu)) 1739 rip = (u32)rip; 1740 #endif 1741 kvm_rip_write(vcpu, rip); 1742 } else { 1743 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 1744 return 0; 1745 } 1746 1747 rip_updated: 1748 /* skipping an emulated instruction also counts */ 1749 vmx_set_interrupt_shadow(vcpu, 0); 1750 1751 return 1; 1752 } 1753 1754 /* 1755 * Recognizes a pending MTF VM-exit and records the nested state for later 1756 * delivery. 1757 */ 1758 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu) 1759 { 1760 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1761 struct vcpu_vmx *vmx = to_vmx(vcpu); 1762 1763 if (!is_guest_mode(vcpu)) 1764 return; 1765 1766 /* 1767 * Per the SDM, MTF takes priority over debug-trap exceptions besides 1768 * TSS T-bit traps and ICEBP (INT1). KVM doesn't emulate T-bit traps 1769 * or ICEBP (in the emulator proper), and skipping of ICEBP after an 1770 * intercepted #DB deliberately avoids single-step #DB and MTF updates 1771 * as ICEBP is higher priority than both. As instruction emulation is 1772 * completed at this point (i.e. KVM is at the instruction boundary), 1773 * any #DB exception pending delivery must be a debug-trap of lower 1774 * priority than MTF. Record the pending MTF state to be delivered in 1775 * vmx_check_nested_events(). 1776 */ 1777 if (nested_cpu_has_mtf(vmcs12) && 1778 (!vcpu->arch.exception.pending || 1779 vcpu->arch.exception.vector == DB_VECTOR) && 1780 (!vcpu->arch.exception_vmexit.pending || 1781 vcpu->arch.exception_vmexit.vector == DB_VECTOR)) { 1782 vmx->nested.mtf_pending = true; 1783 kvm_make_request(KVM_REQ_EVENT, vcpu); 1784 } else { 1785 vmx->nested.mtf_pending = false; 1786 } 1787 } 1788 1789 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu) 1790 { 1791 vmx_update_emulated_instruction(vcpu); 1792 return skip_emulated_instruction(vcpu); 1793 } 1794 1795 static void vmx_clear_hlt(struct kvm_vcpu *vcpu) 1796 { 1797 /* 1798 * Ensure that we clear the HLT state in the VMCS. We don't need to 1799 * explicitly skip the instruction because if the HLT state is set, 1800 * then the instruction is already executing and RIP has already been 1801 * advanced. 1802 */ 1803 if (kvm_hlt_in_guest(vcpu->kvm) && 1804 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) 1805 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 1806 } 1807 1808 static void vmx_inject_exception(struct kvm_vcpu *vcpu) 1809 { 1810 struct kvm_queued_exception *ex = &vcpu->arch.exception; 1811 u32 intr_info = ex->vector | INTR_INFO_VALID_MASK; 1812 struct vcpu_vmx *vmx = to_vmx(vcpu); 1813 1814 kvm_deliver_exception_payload(vcpu, ex); 1815 1816 if (ex->has_error_code) { 1817 /* 1818 * Despite the error code being architecturally defined as 32 1819 * bits, and the VMCS field being 32 bits, Intel CPUs and thus 1820 * VMX don't actually supporting setting bits 31:16. Hardware 1821 * will (should) never provide a bogus error code, but AMD CPUs 1822 * do generate error codes with bits 31:16 set, and so KVM's 1823 * ABI lets userspace shove in arbitrary 32-bit values. Drop 1824 * the upper bits to avoid VM-Fail, losing information that 1825 * does't really exist is preferable to killing the VM. 1826 */ 1827 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code); 1828 intr_info |= INTR_INFO_DELIVER_CODE_MASK; 1829 } 1830 1831 if (vmx->rmode.vm86_active) { 1832 int inc_eip = 0; 1833 if (kvm_exception_is_soft(ex->vector)) 1834 inc_eip = vcpu->arch.event_exit_inst_len; 1835 kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip); 1836 return; 1837 } 1838 1839 WARN_ON_ONCE(vmx->emulation_required); 1840 1841 if (kvm_exception_is_soft(ex->vector)) { 1842 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1843 vmx->vcpu.arch.event_exit_inst_len); 1844 intr_info |= INTR_TYPE_SOFT_EXCEPTION; 1845 } else 1846 intr_info |= INTR_TYPE_HARD_EXCEPTION; 1847 1848 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); 1849 1850 vmx_clear_hlt(vcpu); 1851 } 1852 1853 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr, 1854 bool load_into_hardware) 1855 { 1856 struct vmx_uret_msr *uret_msr; 1857 1858 uret_msr = vmx_find_uret_msr(vmx, msr); 1859 if (!uret_msr) 1860 return; 1861 1862 uret_msr->load_into_hardware = load_into_hardware; 1863 } 1864 1865 /* 1866 * Configuring user return MSRs to automatically save, load, and restore MSRs 1867 * that need to be shoved into hardware when running the guest. Note, omitting 1868 * an MSR here does _NOT_ mean it's not emulated, only that it will not be 1869 * loaded into hardware when running the guest. 1870 */ 1871 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx) 1872 { 1873 #ifdef CONFIG_X86_64 1874 bool load_syscall_msrs; 1875 1876 /* 1877 * The SYSCALL MSRs are only needed on long mode guests, and only 1878 * when EFER.SCE is set. 1879 */ 1880 load_syscall_msrs = is_long_mode(&vmx->vcpu) && 1881 (vmx->vcpu.arch.efer & EFER_SCE); 1882 1883 vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs); 1884 vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs); 1885 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs); 1886 #endif 1887 vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx)); 1888 1889 vmx_setup_uret_msr(vmx, MSR_TSC_AUX, 1890 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) || 1891 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID)); 1892 1893 /* 1894 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new 1895 * kernel and old userspace. If those guests run on a tsx=off host, do 1896 * allow guests to use TSX_CTRL, but don't change the value in hardware 1897 * so that TSX remains always disabled. 1898 */ 1899 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM)); 1900 1901 /* 1902 * The set of MSRs to load may have changed, reload MSRs before the 1903 * next VM-Enter. 1904 */ 1905 vmx->guest_uret_msrs_loaded = false; 1906 } 1907 1908 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1909 { 1910 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1911 1912 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) 1913 return vmcs12->tsc_offset; 1914 1915 return 0; 1916 } 1917 1918 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1919 { 1920 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1921 1922 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) && 1923 nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING)) 1924 return vmcs12->tsc_multiplier; 1925 1926 return kvm_caps.default_tsc_scaling_ratio; 1927 } 1928 1929 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu) 1930 { 1931 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset); 1932 } 1933 1934 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu) 1935 { 1936 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio); 1937 } 1938 1939 /* 1940 * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of 1941 * guest CPUID. Note, KVM allows userspace to set "VMX in SMX" to maintain 1942 * backwards compatibility even though KVM doesn't support emulating SMX. And 1943 * because userspace set "VMX in SMX", the guest must also be allowed to set it, 1944 * e.g. if the MSR is left unlocked and the guest does a RMW operation. 1945 */ 1946 #define KVM_SUPPORTED_FEATURE_CONTROL (FEAT_CTL_LOCKED | \ 1947 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | \ 1948 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \ 1949 FEAT_CTL_SGX_LC_ENABLED | \ 1950 FEAT_CTL_SGX_ENABLED | \ 1951 FEAT_CTL_LMCE_ENABLED) 1952 1953 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx, 1954 struct msr_data *msr) 1955 { 1956 uint64_t valid_bits; 1957 1958 /* 1959 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are 1960 * exposed to the guest. 1961 */ 1962 WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits & 1963 ~KVM_SUPPORTED_FEATURE_CONTROL); 1964 1965 if (!msr->host_initiated && 1966 (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED)) 1967 return false; 1968 1969 if (msr->host_initiated) 1970 valid_bits = KVM_SUPPORTED_FEATURE_CONTROL; 1971 else 1972 valid_bits = vmx->msr_ia32_feature_control_valid_bits; 1973 1974 return !(msr->data & ~valid_bits); 1975 } 1976 1977 static int vmx_get_msr_feature(struct kvm_msr_entry *msr) 1978 { 1979 switch (msr->index) { 1980 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 1981 if (!nested) 1982 return 1; 1983 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data); 1984 default: 1985 return KVM_MSR_RET_INVALID; 1986 } 1987 } 1988 1989 /* 1990 * Reads an msr value (of 'msr_info->index') into 'msr_info->data'. 1991 * Returns 0 on success, non-0 otherwise. 1992 * Assumes vcpu_load() was already called. 1993 */ 1994 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1995 { 1996 struct vcpu_vmx *vmx = to_vmx(vcpu); 1997 struct vmx_uret_msr *msr; 1998 u32 index; 1999 2000 switch (msr_info->index) { 2001 #ifdef CONFIG_X86_64 2002 case MSR_FS_BASE: 2003 msr_info->data = vmcs_readl(GUEST_FS_BASE); 2004 break; 2005 case MSR_GS_BASE: 2006 msr_info->data = vmcs_readl(GUEST_GS_BASE); 2007 break; 2008 case MSR_KERNEL_GS_BASE: 2009 msr_info->data = vmx_read_guest_kernel_gs_base(vmx); 2010 break; 2011 #endif 2012 case MSR_EFER: 2013 return kvm_get_msr_common(vcpu, msr_info); 2014 case MSR_IA32_TSX_CTRL: 2015 if (!msr_info->host_initiated && 2016 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 2017 return 1; 2018 goto find_uret_msr; 2019 case MSR_IA32_UMWAIT_CONTROL: 2020 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 2021 return 1; 2022 2023 msr_info->data = vmx->msr_ia32_umwait_control; 2024 break; 2025 case MSR_IA32_SPEC_CTRL: 2026 if (!msr_info->host_initiated && 2027 !guest_has_spec_ctrl_msr(vcpu)) 2028 return 1; 2029 2030 msr_info->data = to_vmx(vcpu)->spec_ctrl; 2031 break; 2032 case MSR_IA32_SYSENTER_CS: 2033 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); 2034 break; 2035 case MSR_IA32_SYSENTER_EIP: 2036 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); 2037 break; 2038 case MSR_IA32_SYSENTER_ESP: 2039 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); 2040 break; 2041 case MSR_IA32_BNDCFGS: 2042 if (!kvm_mpx_supported() || 2043 (!msr_info->host_initiated && 2044 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 2045 return 1; 2046 msr_info->data = vmcs_read64(GUEST_BNDCFGS); 2047 break; 2048 case MSR_IA32_MCG_EXT_CTL: 2049 if (!msr_info->host_initiated && 2050 !(vmx->msr_ia32_feature_control & 2051 FEAT_CTL_LMCE_ENABLED)) 2052 return 1; 2053 msr_info->data = vcpu->arch.mcg_ext_ctl; 2054 break; 2055 case MSR_IA32_FEAT_CTL: 2056 msr_info->data = vmx->msr_ia32_feature_control; 2057 break; 2058 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 2059 if (!msr_info->host_initiated && 2060 !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 2061 return 1; 2062 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash 2063 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0]; 2064 break; 2065 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 2066 if (!guest_can_use(vcpu, X86_FEATURE_VMX)) 2067 return 1; 2068 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index, 2069 &msr_info->data)) 2070 return 1; 2071 /* 2072 * Enlightened VMCS v1 doesn't have certain VMCS fields but 2073 * instead of just ignoring the features, different Hyper-V 2074 * versions are either trying to use them and fail or do some 2075 * sanity checking and refuse to boot. Filter all unsupported 2076 * features out. 2077 */ 2078 if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu)) 2079 nested_evmcs_filter_control_msr(vcpu, msr_info->index, 2080 &msr_info->data); 2081 break; 2082 case MSR_IA32_RTIT_CTL: 2083 if (!vmx_pt_mode_is_host_guest()) 2084 return 1; 2085 msr_info->data = vmx->pt_desc.guest.ctl; 2086 break; 2087 case MSR_IA32_RTIT_STATUS: 2088 if (!vmx_pt_mode_is_host_guest()) 2089 return 1; 2090 msr_info->data = vmx->pt_desc.guest.status; 2091 break; 2092 case MSR_IA32_RTIT_CR3_MATCH: 2093 if (!vmx_pt_mode_is_host_guest() || 2094 !intel_pt_validate_cap(vmx->pt_desc.caps, 2095 PT_CAP_cr3_filtering)) 2096 return 1; 2097 msr_info->data = vmx->pt_desc.guest.cr3_match; 2098 break; 2099 case MSR_IA32_RTIT_OUTPUT_BASE: 2100 if (!vmx_pt_mode_is_host_guest() || 2101 (!intel_pt_validate_cap(vmx->pt_desc.caps, 2102 PT_CAP_topa_output) && 2103 !intel_pt_validate_cap(vmx->pt_desc.caps, 2104 PT_CAP_single_range_output))) 2105 return 1; 2106 msr_info->data = vmx->pt_desc.guest.output_base; 2107 break; 2108 case MSR_IA32_RTIT_OUTPUT_MASK: 2109 if (!vmx_pt_mode_is_host_guest() || 2110 (!intel_pt_validate_cap(vmx->pt_desc.caps, 2111 PT_CAP_topa_output) && 2112 !intel_pt_validate_cap(vmx->pt_desc.caps, 2113 PT_CAP_single_range_output))) 2114 return 1; 2115 msr_info->data = vmx->pt_desc.guest.output_mask; 2116 break; 2117 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2118 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2119 if (!vmx_pt_mode_is_host_guest() || 2120 (index >= 2 * vmx->pt_desc.num_address_ranges)) 2121 return 1; 2122 if (index % 2) 2123 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2]; 2124 else 2125 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2]; 2126 break; 2127 case MSR_IA32_DEBUGCTLMSR: 2128 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL); 2129 break; 2130 default: 2131 find_uret_msr: 2132 msr = vmx_find_uret_msr(vmx, msr_info->index); 2133 if (msr) { 2134 msr_info->data = msr->data; 2135 break; 2136 } 2137 return kvm_get_msr_common(vcpu, msr_info); 2138 } 2139 2140 return 0; 2141 } 2142 2143 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu, 2144 u64 data) 2145 { 2146 #ifdef CONFIG_X86_64 2147 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 2148 return (u32)data; 2149 #endif 2150 return (unsigned long)data; 2151 } 2152 2153 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated) 2154 { 2155 u64 debugctl = 0; 2156 2157 if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) && 2158 (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))) 2159 debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT; 2160 2161 if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) && 2162 (host_initiated || intel_pmu_lbr_is_enabled(vcpu))) 2163 debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI; 2164 2165 return debugctl; 2166 } 2167 2168 /* 2169 * Writes msr value into the appropriate "register". 2170 * Returns 0 on success, non-0 otherwise. 2171 * Assumes vcpu_load() was already called. 2172 */ 2173 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2174 { 2175 struct vcpu_vmx *vmx = to_vmx(vcpu); 2176 struct vmx_uret_msr *msr; 2177 int ret = 0; 2178 u32 msr_index = msr_info->index; 2179 u64 data = msr_info->data; 2180 u32 index; 2181 2182 switch (msr_index) { 2183 case MSR_EFER: 2184 ret = kvm_set_msr_common(vcpu, msr_info); 2185 break; 2186 #ifdef CONFIG_X86_64 2187 case MSR_FS_BASE: 2188 vmx_segment_cache_clear(vmx); 2189 vmcs_writel(GUEST_FS_BASE, data); 2190 break; 2191 case MSR_GS_BASE: 2192 vmx_segment_cache_clear(vmx); 2193 vmcs_writel(GUEST_GS_BASE, data); 2194 break; 2195 case MSR_KERNEL_GS_BASE: 2196 vmx_write_guest_kernel_gs_base(vmx, data); 2197 break; 2198 case MSR_IA32_XFD: 2199 ret = kvm_set_msr_common(vcpu, msr_info); 2200 /* 2201 * Always intercepting WRMSR could incur non-negligible 2202 * overhead given xfd might be changed frequently in 2203 * guest context switch. Disable write interception 2204 * upon the first write with a non-zero value (indicating 2205 * potential usage on dynamic xfeatures). Also update 2206 * exception bitmap to trap #NM for proper virtualization 2207 * of guest xfd_err. 2208 */ 2209 if (!ret && data) { 2210 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD, 2211 MSR_TYPE_RW); 2212 vcpu->arch.xfd_no_write_intercept = true; 2213 vmx_update_exception_bitmap(vcpu); 2214 } 2215 break; 2216 #endif 2217 case MSR_IA32_SYSENTER_CS: 2218 if (is_guest_mode(vcpu)) 2219 get_vmcs12(vcpu)->guest_sysenter_cs = data; 2220 vmcs_write32(GUEST_SYSENTER_CS, data); 2221 break; 2222 case MSR_IA32_SYSENTER_EIP: 2223 if (is_guest_mode(vcpu)) { 2224 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 2225 get_vmcs12(vcpu)->guest_sysenter_eip = data; 2226 } 2227 vmcs_writel(GUEST_SYSENTER_EIP, data); 2228 break; 2229 case MSR_IA32_SYSENTER_ESP: 2230 if (is_guest_mode(vcpu)) { 2231 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 2232 get_vmcs12(vcpu)->guest_sysenter_esp = data; 2233 } 2234 vmcs_writel(GUEST_SYSENTER_ESP, data); 2235 break; 2236 case MSR_IA32_DEBUGCTLMSR: { 2237 u64 invalid; 2238 2239 invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated); 2240 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) { 2241 kvm_pr_unimpl_wrmsr(vcpu, msr_index, data); 2242 data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 2243 invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 2244 } 2245 2246 if (invalid) 2247 return 1; 2248 2249 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls & 2250 VM_EXIT_SAVE_DEBUG_CONTROLS) 2251 get_vmcs12(vcpu)->guest_ia32_debugctl = data; 2252 2253 vmcs_write64(GUEST_IA32_DEBUGCTL, data); 2254 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event && 2255 (data & DEBUGCTLMSR_LBR)) 2256 intel_pmu_create_guest_lbr_event(vcpu); 2257 return 0; 2258 } 2259 case MSR_IA32_BNDCFGS: 2260 if (!kvm_mpx_supported() || 2261 (!msr_info->host_initiated && 2262 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 2263 return 1; 2264 if (is_noncanonical_address(data & PAGE_MASK, vcpu) || 2265 (data & MSR_IA32_BNDCFGS_RSVD)) 2266 return 1; 2267 2268 if (is_guest_mode(vcpu) && 2269 ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) || 2270 (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS))) 2271 get_vmcs12(vcpu)->guest_bndcfgs = data; 2272 2273 vmcs_write64(GUEST_BNDCFGS, data); 2274 break; 2275 case MSR_IA32_UMWAIT_CONTROL: 2276 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 2277 return 1; 2278 2279 /* The reserved bit 1 and non-32 bit [63:32] should be zero */ 2280 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32))) 2281 return 1; 2282 2283 vmx->msr_ia32_umwait_control = data; 2284 break; 2285 case MSR_IA32_SPEC_CTRL: 2286 if (!msr_info->host_initiated && 2287 !guest_has_spec_ctrl_msr(vcpu)) 2288 return 1; 2289 2290 if (kvm_spec_ctrl_test_value(data)) 2291 return 1; 2292 2293 vmx->spec_ctrl = data; 2294 if (!data) 2295 break; 2296 2297 /* 2298 * For non-nested: 2299 * When it's written (to non-zero) for the first time, pass 2300 * it through. 2301 * 2302 * For nested: 2303 * The handling of the MSR bitmap for L2 guests is done in 2304 * nested_vmx_prepare_msr_bitmap. We should not touch the 2305 * vmcs02.msr_bitmap here since it gets completely overwritten 2306 * in the merging. We update the vmcs01 here for L1 as well 2307 * since it will end up touching the MSR anyway now. 2308 */ 2309 vmx_disable_intercept_for_msr(vcpu, 2310 MSR_IA32_SPEC_CTRL, 2311 MSR_TYPE_RW); 2312 break; 2313 case MSR_IA32_TSX_CTRL: 2314 if (!msr_info->host_initiated && 2315 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 2316 return 1; 2317 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR)) 2318 return 1; 2319 goto find_uret_msr; 2320 case MSR_IA32_CR_PAT: 2321 ret = kvm_set_msr_common(vcpu, msr_info); 2322 if (ret) 2323 break; 2324 2325 if (is_guest_mode(vcpu) && 2326 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) 2327 get_vmcs12(vcpu)->guest_ia32_pat = data; 2328 2329 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 2330 vmcs_write64(GUEST_IA32_PAT, data); 2331 break; 2332 case MSR_IA32_MCG_EXT_CTL: 2333 if ((!msr_info->host_initiated && 2334 !(to_vmx(vcpu)->msr_ia32_feature_control & 2335 FEAT_CTL_LMCE_ENABLED)) || 2336 (data & ~MCG_EXT_CTL_LMCE_EN)) 2337 return 1; 2338 vcpu->arch.mcg_ext_ctl = data; 2339 break; 2340 case MSR_IA32_FEAT_CTL: 2341 if (!is_vmx_feature_control_msr_valid(vmx, msr_info)) 2342 return 1; 2343 2344 vmx->msr_ia32_feature_control = data; 2345 if (msr_info->host_initiated && data == 0) 2346 vmx_leave_nested(vcpu); 2347 2348 /* SGX may be enabled/disabled by guest's firmware */ 2349 vmx_write_encls_bitmap(vcpu, NULL); 2350 break; 2351 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 2352 /* 2353 * On real hardware, the LE hash MSRs are writable before 2354 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX), 2355 * at which point SGX related bits in IA32_FEATURE_CONTROL 2356 * become writable. 2357 * 2358 * KVM does not emulate SGX activation for simplicity, so 2359 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL 2360 * is unlocked. This is technically not architectural 2361 * behavior, but it's close enough. 2362 */ 2363 if (!msr_info->host_initiated && 2364 (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) || 2365 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) && 2366 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED)))) 2367 return 1; 2368 vmx->msr_ia32_sgxlepubkeyhash 2369 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data; 2370 break; 2371 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 2372 if (!msr_info->host_initiated) 2373 return 1; /* they are read-only */ 2374 if (!guest_can_use(vcpu, X86_FEATURE_VMX)) 2375 return 1; 2376 return vmx_set_vmx_msr(vcpu, msr_index, data); 2377 case MSR_IA32_RTIT_CTL: 2378 if (!vmx_pt_mode_is_host_guest() || 2379 vmx_rtit_ctl_check(vcpu, data) || 2380 vmx->nested.vmxon) 2381 return 1; 2382 vmcs_write64(GUEST_IA32_RTIT_CTL, data); 2383 vmx->pt_desc.guest.ctl = data; 2384 pt_update_intercept_for_msr(vcpu); 2385 break; 2386 case MSR_IA32_RTIT_STATUS: 2387 if (!pt_can_write_msr(vmx)) 2388 return 1; 2389 if (data & MSR_IA32_RTIT_STATUS_MASK) 2390 return 1; 2391 vmx->pt_desc.guest.status = data; 2392 break; 2393 case MSR_IA32_RTIT_CR3_MATCH: 2394 if (!pt_can_write_msr(vmx)) 2395 return 1; 2396 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2397 PT_CAP_cr3_filtering)) 2398 return 1; 2399 vmx->pt_desc.guest.cr3_match = data; 2400 break; 2401 case MSR_IA32_RTIT_OUTPUT_BASE: 2402 if (!pt_can_write_msr(vmx)) 2403 return 1; 2404 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2405 PT_CAP_topa_output) && 2406 !intel_pt_validate_cap(vmx->pt_desc.caps, 2407 PT_CAP_single_range_output)) 2408 return 1; 2409 if (!pt_output_base_valid(vcpu, data)) 2410 return 1; 2411 vmx->pt_desc.guest.output_base = data; 2412 break; 2413 case MSR_IA32_RTIT_OUTPUT_MASK: 2414 if (!pt_can_write_msr(vmx)) 2415 return 1; 2416 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2417 PT_CAP_topa_output) && 2418 !intel_pt_validate_cap(vmx->pt_desc.caps, 2419 PT_CAP_single_range_output)) 2420 return 1; 2421 vmx->pt_desc.guest.output_mask = data; 2422 break; 2423 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2424 if (!pt_can_write_msr(vmx)) 2425 return 1; 2426 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2427 if (index >= 2 * vmx->pt_desc.num_address_ranges) 2428 return 1; 2429 if (is_noncanonical_address(data, vcpu)) 2430 return 1; 2431 if (index % 2) 2432 vmx->pt_desc.guest.addr_b[index / 2] = data; 2433 else 2434 vmx->pt_desc.guest.addr_a[index / 2] = data; 2435 break; 2436 case MSR_IA32_PERF_CAPABILITIES: 2437 if (data && !vcpu_to_pmu(vcpu)->version) 2438 return 1; 2439 if (data & PMU_CAP_LBR_FMT) { 2440 if ((data & PMU_CAP_LBR_FMT) != 2441 (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT)) 2442 return 1; 2443 if (!cpuid_model_is_consistent(vcpu)) 2444 return 1; 2445 } 2446 if (data & PERF_CAP_PEBS_FORMAT) { 2447 if ((data & PERF_CAP_PEBS_MASK) != 2448 (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK)) 2449 return 1; 2450 if (!guest_cpuid_has(vcpu, X86_FEATURE_DS)) 2451 return 1; 2452 if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64)) 2453 return 1; 2454 if (!cpuid_model_is_consistent(vcpu)) 2455 return 1; 2456 } 2457 ret = kvm_set_msr_common(vcpu, msr_info); 2458 break; 2459 2460 default: 2461 find_uret_msr: 2462 msr = vmx_find_uret_msr(vmx, msr_index); 2463 if (msr) 2464 ret = vmx_set_guest_uret_msr(vmx, msr, data); 2465 else 2466 ret = kvm_set_msr_common(vcpu, msr_info); 2467 } 2468 2469 /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */ 2470 if (msr_index == MSR_IA32_ARCH_CAPABILITIES) 2471 vmx_update_fb_clear_dis(vcpu, vmx); 2472 2473 return ret; 2474 } 2475 2476 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 2477 { 2478 unsigned long guest_owned_bits; 2479 2480 kvm_register_mark_available(vcpu, reg); 2481 2482 switch (reg) { 2483 case VCPU_REGS_RSP: 2484 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); 2485 break; 2486 case VCPU_REGS_RIP: 2487 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); 2488 break; 2489 case VCPU_EXREG_PDPTR: 2490 if (enable_ept) 2491 ept_save_pdptrs(vcpu); 2492 break; 2493 case VCPU_EXREG_CR0: 2494 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; 2495 2496 vcpu->arch.cr0 &= ~guest_owned_bits; 2497 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits; 2498 break; 2499 case VCPU_EXREG_CR3: 2500 /* 2501 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's 2502 * CR3 is loaded into hardware, not the guest's CR3. 2503 */ 2504 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING)) 2505 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); 2506 break; 2507 case VCPU_EXREG_CR4: 2508 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; 2509 2510 vcpu->arch.cr4 &= ~guest_owned_bits; 2511 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits; 2512 break; 2513 default: 2514 KVM_BUG_ON(1, vcpu->kvm); 2515 break; 2516 } 2517 } 2518 2519 /* 2520 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID 2521 * directly instead of going through cpu_has(), to ensure KVM is trapping 2522 * ENCLS whenever it's supported in hardware. It does not matter whether 2523 * the host OS supports or has enabled SGX. 2524 */ 2525 static bool cpu_has_sgx(void) 2526 { 2527 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0)); 2528 } 2529 2530 /* 2531 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they 2532 * can't be used due to errata where VM Exit may incorrectly clear 2533 * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the 2534 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL. 2535 */ 2536 static bool cpu_has_perf_global_ctrl_bug(void) 2537 { 2538 if (boot_cpu_data.x86 == 0x6) { 2539 switch (boot_cpu_data.x86_model) { 2540 case INTEL_FAM6_NEHALEM_EP: /* AAK155 */ 2541 case INTEL_FAM6_NEHALEM: /* AAP115 */ 2542 case INTEL_FAM6_WESTMERE: /* AAT100 */ 2543 case INTEL_FAM6_WESTMERE_EP: /* BC86,AAY89,BD102 */ 2544 case INTEL_FAM6_NEHALEM_EX: /* BA97 */ 2545 return true; 2546 default: 2547 break; 2548 } 2549 } 2550 2551 return false; 2552 } 2553 2554 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result) 2555 { 2556 u32 vmx_msr_low, vmx_msr_high; 2557 u32 ctl = ctl_min | ctl_opt; 2558 2559 rdmsr(msr, vmx_msr_low, vmx_msr_high); 2560 2561 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ 2562 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ 2563 2564 /* Ensure minimum (required) set of control bits are supported. */ 2565 if (ctl_min & ~ctl) 2566 return -EIO; 2567 2568 *result = ctl; 2569 return 0; 2570 } 2571 2572 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr) 2573 { 2574 u64 allowed; 2575 2576 rdmsrl(msr, allowed); 2577 2578 return ctl_opt & allowed; 2579 } 2580 2581 static int setup_vmcs_config(struct vmcs_config *vmcs_conf, 2582 struct vmx_capability *vmx_cap) 2583 { 2584 u32 vmx_msr_low, vmx_msr_high; 2585 u32 _pin_based_exec_control = 0; 2586 u32 _cpu_based_exec_control = 0; 2587 u32 _cpu_based_2nd_exec_control = 0; 2588 u64 _cpu_based_3rd_exec_control = 0; 2589 u32 _vmexit_control = 0; 2590 u32 _vmentry_control = 0; 2591 u64 misc_msr; 2592 int i; 2593 2594 /* 2595 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory. 2596 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always 2597 * intercepts writes to PAT and EFER, i.e. never enables those controls. 2598 */ 2599 struct { 2600 u32 entry_control; 2601 u32 exit_control; 2602 } const vmcs_entry_exit_pairs[] = { 2603 { VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL }, 2604 { VM_ENTRY_LOAD_IA32_PAT, VM_EXIT_LOAD_IA32_PAT }, 2605 { VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER }, 2606 { VM_ENTRY_LOAD_BNDCFGS, VM_EXIT_CLEAR_BNDCFGS }, 2607 { VM_ENTRY_LOAD_IA32_RTIT_CTL, VM_EXIT_CLEAR_IA32_RTIT_CTL }, 2608 }; 2609 2610 memset(vmcs_conf, 0, sizeof(*vmcs_conf)); 2611 2612 if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL, 2613 KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL, 2614 MSR_IA32_VMX_PROCBASED_CTLS, 2615 &_cpu_based_exec_control)) 2616 return -EIO; 2617 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { 2618 if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL, 2619 KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL, 2620 MSR_IA32_VMX_PROCBASED_CTLS2, 2621 &_cpu_based_2nd_exec_control)) 2622 return -EIO; 2623 } 2624 #ifndef CONFIG_X86_64 2625 if (!(_cpu_based_2nd_exec_control & 2626 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 2627 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; 2628 #endif 2629 2630 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2631 _cpu_based_2nd_exec_control &= ~( 2632 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2633 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2634 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 2635 2636 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP, 2637 &vmx_cap->ept, &vmx_cap->vpid); 2638 2639 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) && 2640 vmx_cap->ept) { 2641 pr_warn_once("EPT CAP should not exist if not support " 2642 "1-setting enable EPT VM-execution control\n"); 2643 2644 if (error_on_inconsistent_vmcs_config) 2645 return -EIO; 2646 2647 vmx_cap->ept = 0; 2648 } 2649 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) && 2650 vmx_cap->vpid) { 2651 pr_warn_once("VPID CAP should not exist if not support " 2652 "1-setting enable VPID VM-execution control\n"); 2653 2654 if (error_on_inconsistent_vmcs_config) 2655 return -EIO; 2656 2657 vmx_cap->vpid = 0; 2658 } 2659 2660 if (!cpu_has_sgx()) 2661 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING; 2662 2663 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS) 2664 _cpu_based_3rd_exec_control = 2665 adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL, 2666 MSR_IA32_VMX_PROCBASED_CTLS3); 2667 2668 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS, 2669 KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS, 2670 MSR_IA32_VMX_EXIT_CTLS, 2671 &_vmexit_control)) 2672 return -EIO; 2673 2674 if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL, 2675 KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL, 2676 MSR_IA32_VMX_PINBASED_CTLS, 2677 &_pin_based_exec_control)) 2678 return -EIO; 2679 2680 if (cpu_has_broken_vmx_preemption_timer()) 2681 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 2682 if (!(_cpu_based_2nd_exec_control & 2683 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) 2684 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; 2685 2686 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS, 2687 KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS, 2688 MSR_IA32_VMX_ENTRY_CTLS, 2689 &_vmentry_control)) 2690 return -EIO; 2691 2692 for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) { 2693 u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control; 2694 u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control; 2695 2696 if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl)) 2697 continue; 2698 2699 pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n", 2700 _vmentry_control & n_ctrl, _vmexit_control & x_ctrl); 2701 2702 if (error_on_inconsistent_vmcs_config) 2703 return -EIO; 2704 2705 _vmentry_control &= ~n_ctrl; 2706 _vmexit_control &= ~x_ctrl; 2707 } 2708 2709 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); 2710 2711 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ 2712 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) 2713 return -EIO; 2714 2715 #ifdef CONFIG_X86_64 2716 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ 2717 if (vmx_msr_high & (1u<<16)) 2718 return -EIO; 2719 #endif 2720 2721 /* Require Write-Back (WB) memory type for VMCS accesses. */ 2722 if (((vmx_msr_high >> 18) & 15) != 6) 2723 return -EIO; 2724 2725 rdmsrl(MSR_IA32_VMX_MISC, misc_msr); 2726 2727 vmcs_conf->size = vmx_msr_high & 0x1fff; 2728 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff; 2729 2730 vmcs_conf->revision_id = vmx_msr_low; 2731 2732 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; 2733 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; 2734 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; 2735 vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control; 2736 vmcs_conf->vmexit_ctrl = _vmexit_control; 2737 vmcs_conf->vmentry_ctrl = _vmentry_control; 2738 vmcs_conf->misc = misc_msr; 2739 2740 #if IS_ENABLED(CONFIG_HYPERV) 2741 if (enlightened_vmcs) 2742 evmcs_sanitize_exec_ctrls(vmcs_conf); 2743 #endif 2744 2745 return 0; 2746 } 2747 2748 static bool __kvm_is_vmx_supported(void) 2749 { 2750 int cpu = smp_processor_id(); 2751 2752 if (!(cpuid_ecx(1) & feature_bit(VMX))) { 2753 pr_err("VMX not supported by CPU %d\n", cpu); 2754 return false; 2755 } 2756 2757 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 2758 !this_cpu_has(X86_FEATURE_VMX)) { 2759 pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu); 2760 return false; 2761 } 2762 2763 return true; 2764 } 2765 2766 static bool kvm_is_vmx_supported(void) 2767 { 2768 bool supported; 2769 2770 migrate_disable(); 2771 supported = __kvm_is_vmx_supported(); 2772 migrate_enable(); 2773 2774 return supported; 2775 } 2776 2777 static int vmx_check_processor_compat(void) 2778 { 2779 int cpu = raw_smp_processor_id(); 2780 struct vmcs_config vmcs_conf; 2781 struct vmx_capability vmx_cap; 2782 2783 if (!__kvm_is_vmx_supported()) 2784 return -EIO; 2785 2786 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) { 2787 pr_err("Failed to setup VMCS config on CPU %d\n", cpu); 2788 return -EIO; 2789 } 2790 if (nested) 2791 nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept); 2792 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) { 2793 pr_err("Inconsistent VMCS config on CPU %d\n", cpu); 2794 return -EIO; 2795 } 2796 return 0; 2797 } 2798 2799 static int kvm_cpu_vmxon(u64 vmxon_pointer) 2800 { 2801 u64 msr; 2802 2803 cr4_set_bits(X86_CR4_VMXE); 2804 2805 asm goto("1: vmxon %[vmxon_pointer]\n\t" 2806 _ASM_EXTABLE(1b, %l[fault]) 2807 : : [vmxon_pointer] "m"(vmxon_pointer) 2808 : : fault); 2809 return 0; 2810 2811 fault: 2812 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n", 2813 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr); 2814 cr4_clear_bits(X86_CR4_VMXE); 2815 2816 return -EFAULT; 2817 } 2818 2819 static int vmx_hardware_enable(void) 2820 { 2821 int cpu = raw_smp_processor_id(); 2822 u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); 2823 int r; 2824 2825 if (cr4_read_shadow() & X86_CR4_VMXE) 2826 return -EBUSY; 2827 2828 /* 2829 * This can happen if we hot-added a CPU but failed to allocate 2830 * VP assist page for it. 2831 */ 2832 if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu)) 2833 return -EFAULT; 2834 2835 intel_pt_handle_vmx(1); 2836 2837 r = kvm_cpu_vmxon(phys_addr); 2838 if (r) { 2839 intel_pt_handle_vmx(0); 2840 return r; 2841 } 2842 2843 if (enable_ept) 2844 ept_sync_global(); 2845 2846 return 0; 2847 } 2848 2849 static void vmclear_local_loaded_vmcss(void) 2850 { 2851 int cpu = raw_smp_processor_id(); 2852 struct loaded_vmcs *v, *n; 2853 2854 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), 2855 loaded_vmcss_on_cpu_link) 2856 __loaded_vmcs_clear(v); 2857 } 2858 2859 static void vmx_hardware_disable(void) 2860 { 2861 vmclear_local_loaded_vmcss(); 2862 2863 if (kvm_cpu_vmxoff()) 2864 kvm_spurious_fault(); 2865 2866 hv_reset_evmcs(); 2867 2868 intel_pt_handle_vmx(0); 2869 } 2870 2871 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags) 2872 { 2873 int node = cpu_to_node(cpu); 2874 struct page *pages; 2875 struct vmcs *vmcs; 2876 2877 pages = __alloc_pages_node(node, flags, 0); 2878 if (!pages) 2879 return NULL; 2880 vmcs = page_address(pages); 2881 memset(vmcs, 0, vmcs_config.size); 2882 2883 /* KVM supports Enlightened VMCS v1 only */ 2884 if (kvm_is_using_evmcs()) 2885 vmcs->hdr.revision_id = KVM_EVMCS_VERSION; 2886 else 2887 vmcs->hdr.revision_id = vmcs_config.revision_id; 2888 2889 if (shadow) 2890 vmcs->hdr.shadow_vmcs = 1; 2891 return vmcs; 2892 } 2893 2894 void free_vmcs(struct vmcs *vmcs) 2895 { 2896 free_page((unsigned long)vmcs); 2897 } 2898 2899 /* 2900 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded 2901 */ 2902 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2903 { 2904 if (!loaded_vmcs->vmcs) 2905 return; 2906 loaded_vmcs_clear(loaded_vmcs); 2907 free_vmcs(loaded_vmcs->vmcs); 2908 loaded_vmcs->vmcs = NULL; 2909 if (loaded_vmcs->msr_bitmap) 2910 free_page((unsigned long)loaded_vmcs->msr_bitmap); 2911 WARN_ON(loaded_vmcs->shadow_vmcs != NULL); 2912 } 2913 2914 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2915 { 2916 loaded_vmcs->vmcs = alloc_vmcs(false); 2917 if (!loaded_vmcs->vmcs) 2918 return -ENOMEM; 2919 2920 vmcs_clear(loaded_vmcs->vmcs); 2921 2922 loaded_vmcs->shadow_vmcs = NULL; 2923 loaded_vmcs->hv_timer_soft_disabled = false; 2924 loaded_vmcs->cpu = -1; 2925 loaded_vmcs->launched = 0; 2926 2927 if (cpu_has_vmx_msr_bitmap()) { 2928 loaded_vmcs->msr_bitmap = (unsigned long *) 2929 __get_free_page(GFP_KERNEL_ACCOUNT); 2930 if (!loaded_vmcs->msr_bitmap) 2931 goto out_vmcs; 2932 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); 2933 } 2934 2935 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state)); 2936 memset(&loaded_vmcs->controls_shadow, 0, 2937 sizeof(struct vmcs_controls_shadow)); 2938 2939 return 0; 2940 2941 out_vmcs: 2942 free_loaded_vmcs(loaded_vmcs); 2943 return -ENOMEM; 2944 } 2945 2946 static void free_kvm_area(void) 2947 { 2948 int cpu; 2949 2950 for_each_possible_cpu(cpu) { 2951 free_vmcs(per_cpu(vmxarea, cpu)); 2952 per_cpu(vmxarea, cpu) = NULL; 2953 } 2954 } 2955 2956 static __init int alloc_kvm_area(void) 2957 { 2958 int cpu; 2959 2960 for_each_possible_cpu(cpu) { 2961 struct vmcs *vmcs; 2962 2963 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL); 2964 if (!vmcs) { 2965 free_kvm_area(); 2966 return -ENOMEM; 2967 } 2968 2969 /* 2970 * When eVMCS is enabled, alloc_vmcs_cpu() sets 2971 * vmcs->revision_id to KVM_EVMCS_VERSION instead of 2972 * revision_id reported by MSR_IA32_VMX_BASIC. 2973 * 2974 * However, even though not explicitly documented by 2975 * TLFS, VMXArea passed as VMXON argument should 2976 * still be marked with revision_id reported by 2977 * physical CPU. 2978 */ 2979 if (kvm_is_using_evmcs()) 2980 vmcs->hdr.revision_id = vmcs_config.revision_id; 2981 2982 per_cpu(vmxarea, cpu) = vmcs; 2983 } 2984 return 0; 2985 } 2986 2987 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, 2988 struct kvm_segment *save) 2989 { 2990 if (!emulate_invalid_guest_state) { 2991 /* 2992 * CS and SS RPL should be equal during guest entry according 2993 * to VMX spec, but in reality it is not always so. Since vcpu 2994 * is in the middle of the transition from real mode to 2995 * protected mode it is safe to assume that RPL 0 is a good 2996 * default value. 2997 */ 2998 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) 2999 save->selector &= ~SEGMENT_RPL_MASK; 3000 save->dpl = save->selector & SEGMENT_RPL_MASK; 3001 save->s = 1; 3002 } 3003 __vmx_set_segment(vcpu, save, seg); 3004 } 3005 3006 static void enter_pmode(struct kvm_vcpu *vcpu) 3007 { 3008 unsigned long flags; 3009 struct vcpu_vmx *vmx = to_vmx(vcpu); 3010 3011 /* 3012 * Update real mode segment cache. It may be not up-to-date if segment 3013 * register was written while vcpu was in a guest mode. 3014 */ 3015 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 3016 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 3017 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 3018 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 3019 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 3020 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 3021 3022 vmx->rmode.vm86_active = 0; 3023 3024 __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 3025 3026 flags = vmcs_readl(GUEST_RFLAGS); 3027 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 3028 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 3029 vmcs_writel(GUEST_RFLAGS, flags); 3030 3031 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | 3032 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); 3033 3034 vmx_update_exception_bitmap(vcpu); 3035 3036 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 3037 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 3038 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 3039 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 3040 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 3041 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 3042 } 3043 3044 static void fix_rmode_seg(int seg, struct kvm_segment *save) 3045 { 3046 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3047 struct kvm_segment var = *save; 3048 3049 var.dpl = 0x3; 3050 if (seg == VCPU_SREG_CS) 3051 var.type = 0x3; 3052 3053 if (!emulate_invalid_guest_state) { 3054 var.selector = var.base >> 4; 3055 var.base = var.base & 0xffff0; 3056 var.limit = 0xffff; 3057 var.g = 0; 3058 var.db = 0; 3059 var.present = 1; 3060 var.s = 1; 3061 var.l = 0; 3062 var.unusable = 0; 3063 var.type = 0x3; 3064 var.avl = 0; 3065 if (save->base & 0xf) 3066 pr_warn_once("segment base is not paragraph aligned " 3067 "when entering protected mode (seg=%d)", seg); 3068 } 3069 3070 vmcs_write16(sf->selector, var.selector); 3071 vmcs_writel(sf->base, var.base); 3072 vmcs_write32(sf->limit, var.limit); 3073 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); 3074 } 3075 3076 static void enter_rmode(struct kvm_vcpu *vcpu) 3077 { 3078 unsigned long flags; 3079 struct vcpu_vmx *vmx = to_vmx(vcpu); 3080 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); 3081 3082 /* 3083 * KVM should never use VM86 to virtualize Real Mode when L2 is active, 3084 * as using VM86 is unnecessary if unrestricted guest is enabled, and 3085 * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0 3086 * should VM-Fail and KVM should reject userspace attempts to stuff 3087 * CR0.PG=0 when L2 is active. 3088 */ 3089 WARN_ON_ONCE(is_guest_mode(vcpu)); 3090 3091 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 3092 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 3093 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 3094 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 3095 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 3096 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 3097 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 3098 3099 vmx->rmode.vm86_active = 1; 3100 3101 vmx_segment_cache_clear(vmx); 3102 3103 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr); 3104 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); 3105 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 3106 3107 flags = vmcs_readl(GUEST_RFLAGS); 3108 vmx->rmode.save_rflags = flags; 3109 3110 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 3111 3112 vmcs_writel(GUEST_RFLAGS, flags); 3113 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); 3114 vmx_update_exception_bitmap(vcpu); 3115 3116 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 3117 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 3118 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 3119 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 3120 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 3121 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 3122 } 3123 3124 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) 3125 { 3126 struct vcpu_vmx *vmx = to_vmx(vcpu); 3127 3128 /* Nothing to do if hardware doesn't support EFER. */ 3129 if (!vmx_find_uret_msr(vmx, MSR_EFER)) 3130 return 0; 3131 3132 vcpu->arch.efer = efer; 3133 #ifdef CONFIG_X86_64 3134 if (efer & EFER_LMA) 3135 vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE); 3136 else 3137 vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE); 3138 #else 3139 if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm)) 3140 return 1; 3141 #endif 3142 3143 vmx_setup_uret_msrs(vmx); 3144 return 0; 3145 } 3146 3147 #ifdef CONFIG_X86_64 3148 3149 static void enter_lmode(struct kvm_vcpu *vcpu) 3150 { 3151 u32 guest_tr_ar; 3152 3153 vmx_segment_cache_clear(to_vmx(vcpu)); 3154 3155 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); 3156 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { 3157 pr_debug_ratelimited("%s: tss fixup for long mode. \n", 3158 __func__); 3159 vmcs_write32(GUEST_TR_AR_BYTES, 3160 (guest_tr_ar & ~VMX_AR_TYPE_MASK) 3161 | VMX_AR_TYPE_BUSY_64_TSS); 3162 } 3163 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); 3164 } 3165 3166 static void exit_lmode(struct kvm_vcpu *vcpu) 3167 { 3168 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); 3169 } 3170 3171 #endif 3172 3173 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu) 3174 { 3175 struct vcpu_vmx *vmx = to_vmx(vcpu); 3176 3177 /* 3178 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as 3179 * the CPU is not required to invalidate guest-physical mappings on 3180 * VM-Entry, even if VPID is disabled. Guest-physical mappings are 3181 * associated with the root EPT structure and not any particular VPID 3182 * (INVVPID also isn't required to invalidate guest-physical mappings). 3183 */ 3184 if (enable_ept) { 3185 ept_sync_global(); 3186 } else if (enable_vpid) { 3187 if (cpu_has_vmx_invvpid_global()) { 3188 vpid_sync_vcpu_global(); 3189 } else { 3190 vpid_sync_vcpu_single(vmx->vpid); 3191 vpid_sync_vcpu_single(vmx->nested.vpid02); 3192 } 3193 } 3194 } 3195 3196 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu) 3197 { 3198 if (is_guest_mode(vcpu) && nested_cpu_has_vpid(get_vmcs12(vcpu))) 3199 return nested_get_vpid02(vcpu); 3200 return to_vmx(vcpu)->vpid; 3201 } 3202 3203 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu) 3204 { 3205 struct kvm_mmu *mmu = vcpu->arch.mmu; 3206 u64 root_hpa = mmu->root.hpa; 3207 3208 /* No flush required if the current context is invalid. */ 3209 if (!VALID_PAGE(root_hpa)) 3210 return; 3211 3212 if (enable_ept) 3213 ept_sync_context(construct_eptp(vcpu, root_hpa, 3214 mmu->root_role.level)); 3215 else 3216 vpid_sync_context(vmx_get_current_vpid(vcpu)); 3217 } 3218 3219 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr) 3220 { 3221 /* 3222 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in 3223 * vmx_flush_tlb_guest() for an explanation of why this is ok. 3224 */ 3225 vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr); 3226 } 3227 3228 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu) 3229 { 3230 /* 3231 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a 3232 * vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are 3233 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is 3234 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed), 3235 * i.e. no explicit INVVPID is necessary. 3236 */ 3237 vpid_sync_context(vmx_get_current_vpid(vcpu)); 3238 } 3239 3240 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu) 3241 { 3242 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 3243 3244 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR)) 3245 return; 3246 3247 if (is_pae_paging(vcpu)) { 3248 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); 3249 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); 3250 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); 3251 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); 3252 } 3253 } 3254 3255 void ept_save_pdptrs(struct kvm_vcpu *vcpu) 3256 { 3257 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 3258 3259 if (WARN_ON_ONCE(!is_pae_paging(vcpu))) 3260 return; 3261 3262 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); 3263 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); 3264 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); 3265 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); 3266 3267 kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR); 3268 } 3269 3270 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \ 3271 CPU_BASED_CR3_STORE_EXITING) 3272 3273 static bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 3274 { 3275 if (is_guest_mode(vcpu)) 3276 return nested_guest_cr0_valid(vcpu, cr0); 3277 3278 if (to_vmx(vcpu)->nested.vmxon) 3279 return nested_host_cr0_valid(vcpu, cr0); 3280 3281 return true; 3282 } 3283 3284 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 3285 { 3286 struct vcpu_vmx *vmx = to_vmx(vcpu); 3287 unsigned long hw_cr0, old_cr0_pg; 3288 u32 tmp; 3289 3290 old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG); 3291 3292 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF); 3293 if (enable_unrestricted_guest) 3294 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; 3295 else { 3296 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; 3297 if (!enable_ept) 3298 hw_cr0 |= X86_CR0_WP; 3299 3300 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) 3301 enter_pmode(vcpu); 3302 3303 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) 3304 enter_rmode(vcpu); 3305 } 3306 3307 vmcs_writel(CR0_READ_SHADOW, cr0); 3308 vmcs_writel(GUEST_CR0, hw_cr0); 3309 vcpu->arch.cr0 = cr0; 3310 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0); 3311 3312 #ifdef CONFIG_X86_64 3313 if (vcpu->arch.efer & EFER_LME) { 3314 if (!old_cr0_pg && (cr0 & X86_CR0_PG)) 3315 enter_lmode(vcpu); 3316 else if (old_cr0_pg && !(cr0 & X86_CR0_PG)) 3317 exit_lmode(vcpu); 3318 } 3319 #endif 3320 3321 if (enable_ept && !enable_unrestricted_guest) { 3322 /* 3323 * Ensure KVM has an up-to-date snapshot of the guest's CR3. If 3324 * the below code _enables_ CR3 exiting, vmx_cache_reg() will 3325 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks 3326 * KVM's CR3 is installed. 3327 */ 3328 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3)) 3329 vmx_cache_reg(vcpu, VCPU_EXREG_CR3); 3330 3331 /* 3332 * When running with EPT but not unrestricted guest, KVM must 3333 * intercept CR3 accesses when paging is _disabled_. This is 3334 * necessary because restricted guests can't actually run with 3335 * paging disabled, and so KVM stuffs its own CR3 in order to 3336 * run the guest when identity mapped page tables. 3337 * 3338 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the 3339 * update, it may be stale with respect to CR3 interception, 3340 * e.g. after nested VM-Enter. 3341 * 3342 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or 3343 * stores to forward them to L1, even if KVM does not need to 3344 * intercept them to preserve its identity mapped page tables. 3345 */ 3346 if (!(cr0 & X86_CR0_PG)) { 3347 exec_controls_setbit(vmx, CR3_EXITING_BITS); 3348 } else if (!is_guest_mode(vcpu)) { 3349 exec_controls_clearbit(vmx, CR3_EXITING_BITS); 3350 } else { 3351 tmp = exec_controls_get(vmx); 3352 tmp &= ~CR3_EXITING_BITS; 3353 tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS; 3354 exec_controls_set(vmx, tmp); 3355 } 3356 3357 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */ 3358 if ((old_cr0_pg ^ cr0) & X86_CR0_PG) 3359 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); 3360 3361 /* 3362 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but 3363 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG. 3364 */ 3365 if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG)) 3366 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 3367 } 3368 3369 /* depends on vcpu->arch.cr0 to be set to a new value */ 3370 vmx->emulation_required = vmx_emulation_required(vcpu); 3371 } 3372 3373 static int vmx_get_max_ept_level(void) 3374 { 3375 if (cpu_has_vmx_ept_5levels()) 3376 return 5; 3377 return 4; 3378 } 3379 3380 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level) 3381 { 3382 u64 eptp = VMX_EPTP_MT_WB; 3383 3384 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; 3385 3386 if (enable_ept_ad_bits && 3387 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) 3388 eptp |= VMX_EPTP_AD_ENABLE_BIT; 3389 eptp |= root_hpa; 3390 3391 return eptp; 3392 } 3393 3394 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 3395 int root_level) 3396 { 3397 struct kvm *kvm = vcpu->kvm; 3398 bool update_guest_cr3 = true; 3399 unsigned long guest_cr3; 3400 u64 eptp; 3401 3402 if (enable_ept) { 3403 eptp = construct_eptp(vcpu, root_hpa, root_level); 3404 vmcs_write64(EPT_POINTER, eptp); 3405 3406 hv_track_root_tdp(vcpu, root_hpa); 3407 3408 if (!enable_unrestricted_guest && !is_paging(vcpu)) 3409 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr; 3410 else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3)) 3411 guest_cr3 = vcpu->arch.cr3; 3412 else /* vmcs.GUEST_CR3 is already up-to-date. */ 3413 update_guest_cr3 = false; 3414 vmx_ept_load_pdptrs(vcpu); 3415 } else { 3416 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu); 3417 } 3418 3419 if (update_guest_cr3) 3420 vmcs_writel(GUEST_CR3, guest_cr3); 3421 } 3422 3423 3424 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3425 { 3426 /* 3427 * We operate under the default treatment of SMM, so VMX cannot be 3428 * enabled under SMM. Note, whether or not VMXE is allowed at all, 3429 * i.e. is a reserved bit, is handled by common x86 code. 3430 */ 3431 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu)) 3432 return false; 3433 3434 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) 3435 return false; 3436 3437 return true; 3438 } 3439 3440 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3441 { 3442 unsigned long old_cr4 = kvm_read_cr4(vcpu); 3443 struct vcpu_vmx *vmx = to_vmx(vcpu); 3444 unsigned long hw_cr4; 3445 3446 /* 3447 * Pass through host's Machine Check Enable value to hw_cr4, which 3448 * is in force while we are in guest mode. Do not let guests control 3449 * this bit, even if host CR4.MCE == 0. 3450 */ 3451 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE); 3452 if (enable_unrestricted_guest) 3453 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST; 3454 else if (vmx->rmode.vm86_active) 3455 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON; 3456 else 3457 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON; 3458 3459 if (vmx_umip_emulated()) { 3460 if (cr4 & X86_CR4_UMIP) { 3461 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC); 3462 hw_cr4 &= ~X86_CR4_UMIP; 3463 } else if (!is_guest_mode(vcpu) || 3464 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) { 3465 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC); 3466 } 3467 } 3468 3469 vcpu->arch.cr4 = cr4; 3470 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4); 3471 3472 if (!enable_unrestricted_guest) { 3473 if (enable_ept) { 3474 if (!is_paging(vcpu)) { 3475 hw_cr4 &= ~X86_CR4_PAE; 3476 hw_cr4 |= X86_CR4_PSE; 3477 } else if (!(cr4 & X86_CR4_PAE)) { 3478 hw_cr4 &= ~X86_CR4_PAE; 3479 } 3480 } 3481 3482 /* 3483 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in 3484 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs 3485 * to be manually disabled when guest switches to non-paging 3486 * mode. 3487 * 3488 * If !enable_unrestricted_guest, the CPU is always running 3489 * with CR0.PG=1 and CR4 needs to be modified. 3490 * If enable_unrestricted_guest, the CPU automatically 3491 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. 3492 */ 3493 if (!is_paging(vcpu)) 3494 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 3495 } 3496 3497 vmcs_writel(CR4_READ_SHADOW, cr4); 3498 vmcs_writel(GUEST_CR4, hw_cr4); 3499 3500 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 3501 kvm_update_cpuid_runtime(vcpu); 3502 } 3503 3504 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3505 { 3506 struct vcpu_vmx *vmx = to_vmx(vcpu); 3507 u32 ar; 3508 3509 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3510 *var = vmx->rmode.segs[seg]; 3511 if (seg == VCPU_SREG_TR 3512 || var->selector == vmx_read_guest_seg_selector(vmx, seg)) 3513 return; 3514 var->base = vmx_read_guest_seg_base(vmx, seg); 3515 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3516 return; 3517 } 3518 var->base = vmx_read_guest_seg_base(vmx, seg); 3519 var->limit = vmx_read_guest_seg_limit(vmx, seg); 3520 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3521 ar = vmx_read_guest_seg_ar(vmx, seg); 3522 var->unusable = (ar >> 16) & 1; 3523 var->type = ar & 15; 3524 var->s = (ar >> 4) & 1; 3525 var->dpl = (ar >> 5) & 3; 3526 /* 3527 * Some userspaces do not preserve unusable property. Since usable 3528 * segment has to be present according to VMX spec we can use present 3529 * property to amend userspace bug by making unusable segment always 3530 * nonpresent. vmx_segment_access_rights() already marks nonpresent 3531 * segment as unusable. 3532 */ 3533 var->present = !var->unusable; 3534 var->avl = (ar >> 12) & 1; 3535 var->l = (ar >> 13) & 1; 3536 var->db = (ar >> 14) & 1; 3537 var->g = (ar >> 15) & 1; 3538 } 3539 3540 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) 3541 { 3542 struct kvm_segment s; 3543 3544 if (to_vmx(vcpu)->rmode.vm86_active) { 3545 vmx_get_segment(vcpu, &s, seg); 3546 return s.base; 3547 } 3548 return vmx_read_guest_seg_base(to_vmx(vcpu), seg); 3549 } 3550 3551 int vmx_get_cpl(struct kvm_vcpu *vcpu) 3552 { 3553 struct vcpu_vmx *vmx = to_vmx(vcpu); 3554 3555 if (unlikely(vmx->rmode.vm86_active)) 3556 return 0; 3557 else { 3558 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); 3559 return VMX_AR_DPL(ar); 3560 } 3561 } 3562 3563 static u32 vmx_segment_access_rights(struct kvm_segment *var) 3564 { 3565 u32 ar; 3566 3567 ar = var->type & 15; 3568 ar |= (var->s & 1) << 4; 3569 ar |= (var->dpl & 3) << 5; 3570 ar |= (var->present & 1) << 7; 3571 ar |= (var->avl & 1) << 12; 3572 ar |= (var->l & 1) << 13; 3573 ar |= (var->db & 1) << 14; 3574 ar |= (var->g & 1) << 15; 3575 ar |= (var->unusable || !var->present) << 16; 3576 3577 return ar; 3578 } 3579 3580 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3581 { 3582 struct vcpu_vmx *vmx = to_vmx(vcpu); 3583 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3584 3585 vmx_segment_cache_clear(vmx); 3586 3587 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3588 vmx->rmode.segs[seg] = *var; 3589 if (seg == VCPU_SREG_TR) 3590 vmcs_write16(sf->selector, var->selector); 3591 else if (var->s) 3592 fix_rmode_seg(seg, &vmx->rmode.segs[seg]); 3593 return; 3594 } 3595 3596 vmcs_writel(sf->base, var->base); 3597 vmcs_write32(sf->limit, var->limit); 3598 vmcs_write16(sf->selector, var->selector); 3599 3600 /* 3601 * Fix the "Accessed" bit in AR field of segment registers for older 3602 * qemu binaries. 3603 * IA32 arch specifies that at the time of processor reset the 3604 * "Accessed" bit in the AR field of segment registers is 1. And qemu 3605 * is setting it to 0 in the userland code. This causes invalid guest 3606 * state vmexit when "unrestricted guest" mode is turned on. 3607 * Fix for this setup issue in cpu_reset is being pushed in the qemu 3608 * tree. Newer qemu binaries with that qemu fix would not need this 3609 * kvm hack. 3610 */ 3611 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR)) 3612 var->type |= 0x1; /* Accessed */ 3613 3614 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); 3615 } 3616 3617 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3618 { 3619 __vmx_set_segment(vcpu, var, seg); 3620 3621 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu); 3622 } 3623 3624 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 3625 { 3626 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); 3627 3628 *db = (ar >> 14) & 1; 3629 *l = (ar >> 13) & 1; 3630 } 3631 3632 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3633 { 3634 dt->size = vmcs_read32(GUEST_IDTR_LIMIT); 3635 dt->address = vmcs_readl(GUEST_IDTR_BASE); 3636 } 3637 3638 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3639 { 3640 vmcs_write32(GUEST_IDTR_LIMIT, dt->size); 3641 vmcs_writel(GUEST_IDTR_BASE, dt->address); 3642 } 3643 3644 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3645 { 3646 dt->size = vmcs_read32(GUEST_GDTR_LIMIT); 3647 dt->address = vmcs_readl(GUEST_GDTR_BASE); 3648 } 3649 3650 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3651 { 3652 vmcs_write32(GUEST_GDTR_LIMIT, dt->size); 3653 vmcs_writel(GUEST_GDTR_BASE, dt->address); 3654 } 3655 3656 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) 3657 { 3658 struct kvm_segment var; 3659 u32 ar; 3660 3661 vmx_get_segment(vcpu, &var, seg); 3662 var.dpl = 0x3; 3663 if (seg == VCPU_SREG_CS) 3664 var.type = 0x3; 3665 ar = vmx_segment_access_rights(&var); 3666 3667 if (var.base != (var.selector << 4)) 3668 return false; 3669 if (var.limit != 0xffff) 3670 return false; 3671 if (ar != 0xf3) 3672 return false; 3673 3674 return true; 3675 } 3676 3677 static bool code_segment_valid(struct kvm_vcpu *vcpu) 3678 { 3679 struct kvm_segment cs; 3680 unsigned int cs_rpl; 3681 3682 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3683 cs_rpl = cs.selector & SEGMENT_RPL_MASK; 3684 3685 if (cs.unusable) 3686 return false; 3687 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) 3688 return false; 3689 if (!cs.s) 3690 return false; 3691 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { 3692 if (cs.dpl > cs_rpl) 3693 return false; 3694 } else { 3695 if (cs.dpl != cs_rpl) 3696 return false; 3697 } 3698 if (!cs.present) 3699 return false; 3700 3701 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ 3702 return true; 3703 } 3704 3705 static bool stack_segment_valid(struct kvm_vcpu *vcpu) 3706 { 3707 struct kvm_segment ss; 3708 unsigned int ss_rpl; 3709 3710 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3711 ss_rpl = ss.selector & SEGMENT_RPL_MASK; 3712 3713 if (ss.unusable) 3714 return true; 3715 if (ss.type != 3 && ss.type != 7) 3716 return false; 3717 if (!ss.s) 3718 return false; 3719 if (ss.dpl != ss_rpl) /* DPL != RPL */ 3720 return false; 3721 if (!ss.present) 3722 return false; 3723 3724 return true; 3725 } 3726 3727 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) 3728 { 3729 struct kvm_segment var; 3730 unsigned int rpl; 3731 3732 vmx_get_segment(vcpu, &var, seg); 3733 rpl = var.selector & SEGMENT_RPL_MASK; 3734 3735 if (var.unusable) 3736 return true; 3737 if (!var.s) 3738 return false; 3739 if (!var.present) 3740 return false; 3741 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { 3742 if (var.dpl < rpl) /* DPL < RPL */ 3743 return false; 3744 } 3745 3746 /* TODO: Add other members to kvm_segment_field to allow checking for other access 3747 * rights flags 3748 */ 3749 return true; 3750 } 3751 3752 static bool tr_valid(struct kvm_vcpu *vcpu) 3753 { 3754 struct kvm_segment tr; 3755 3756 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); 3757 3758 if (tr.unusable) 3759 return false; 3760 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3761 return false; 3762 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ 3763 return false; 3764 if (!tr.present) 3765 return false; 3766 3767 return true; 3768 } 3769 3770 static bool ldtr_valid(struct kvm_vcpu *vcpu) 3771 { 3772 struct kvm_segment ldtr; 3773 3774 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); 3775 3776 if (ldtr.unusable) 3777 return true; 3778 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3779 return false; 3780 if (ldtr.type != 2) 3781 return false; 3782 if (!ldtr.present) 3783 return false; 3784 3785 return true; 3786 } 3787 3788 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) 3789 { 3790 struct kvm_segment cs, ss; 3791 3792 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3793 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3794 3795 return ((cs.selector & SEGMENT_RPL_MASK) == 3796 (ss.selector & SEGMENT_RPL_MASK)); 3797 } 3798 3799 /* 3800 * Check if guest state is valid. Returns true if valid, false if 3801 * not. 3802 * We assume that registers are always usable 3803 */ 3804 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu) 3805 { 3806 /* real mode guest state checks */ 3807 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { 3808 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) 3809 return false; 3810 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) 3811 return false; 3812 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) 3813 return false; 3814 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) 3815 return false; 3816 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) 3817 return false; 3818 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) 3819 return false; 3820 } else { 3821 /* protected mode guest state checks */ 3822 if (!cs_ss_rpl_check(vcpu)) 3823 return false; 3824 if (!code_segment_valid(vcpu)) 3825 return false; 3826 if (!stack_segment_valid(vcpu)) 3827 return false; 3828 if (!data_segment_valid(vcpu, VCPU_SREG_DS)) 3829 return false; 3830 if (!data_segment_valid(vcpu, VCPU_SREG_ES)) 3831 return false; 3832 if (!data_segment_valid(vcpu, VCPU_SREG_FS)) 3833 return false; 3834 if (!data_segment_valid(vcpu, VCPU_SREG_GS)) 3835 return false; 3836 if (!tr_valid(vcpu)) 3837 return false; 3838 if (!ldtr_valid(vcpu)) 3839 return false; 3840 } 3841 /* TODO: 3842 * - Add checks on RIP 3843 * - Add checks on RFLAGS 3844 */ 3845 3846 return true; 3847 } 3848 3849 static int init_rmode_tss(struct kvm *kvm, void __user *ua) 3850 { 3851 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3852 u16 data; 3853 int i; 3854 3855 for (i = 0; i < 3; i++) { 3856 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE)) 3857 return -EFAULT; 3858 } 3859 3860 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; 3861 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16))) 3862 return -EFAULT; 3863 3864 data = ~0; 3865 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8))) 3866 return -EFAULT; 3867 3868 return 0; 3869 } 3870 3871 static int init_rmode_identity_map(struct kvm *kvm) 3872 { 3873 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 3874 int i, r = 0; 3875 void __user *uaddr; 3876 u32 tmp; 3877 3878 /* Protect kvm_vmx->ept_identity_pagetable_done. */ 3879 mutex_lock(&kvm->slots_lock); 3880 3881 if (likely(kvm_vmx->ept_identity_pagetable_done)) 3882 goto out; 3883 3884 if (!kvm_vmx->ept_identity_map_addr) 3885 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; 3886 3887 uaddr = __x86_set_memory_region(kvm, 3888 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 3889 kvm_vmx->ept_identity_map_addr, 3890 PAGE_SIZE); 3891 if (IS_ERR(uaddr)) { 3892 r = PTR_ERR(uaddr); 3893 goto out; 3894 } 3895 3896 /* Set up identity-mapping pagetable for EPT in real mode */ 3897 for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) { 3898 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | 3899 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); 3900 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) { 3901 r = -EFAULT; 3902 goto out; 3903 } 3904 } 3905 kvm_vmx->ept_identity_pagetable_done = true; 3906 3907 out: 3908 mutex_unlock(&kvm->slots_lock); 3909 return r; 3910 } 3911 3912 static void seg_setup(int seg) 3913 { 3914 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3915 unsigned int ar; 3916 3917 vmcs_write16(sf->selector, 0); 3918 vmcs_writel(sf->base, 0); 3919 vmcs_write32(sf->limit, 0xffff); 3920 ar = 0x93; 3921 if (seg == VCPU_SREG_CS) 3922 ar |= 0x08; /* code segment */ 3923 3924 vmcs_write32(sf->ar_bytes, ar); 3925 } 3926 3927 int allocate_vpid(void) 3928 { 3929 int vpid; 3930 3931 if (!enable_vpid) 3932 return 0; 3933 spin_lock(&vmx_vpid_lock); 3934 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); 3935 if (vpid < VMX_NR_VPIDS) 3936 __set_bit(vpid, vmx_vpid_bitmap); 3937 else 3938 vpid = 0; 3939 spin_unlock(&vmx_vpid_lock); 3940 return vpid; 3941 } 3942 3943 void free_vpid(int vpid) 3944 { 3945 if (!enable_vpid || vpid == 0) 3946 return; 3947 spin_lock(&vmx_vpid_lock); 3948 __clear_bit(vpid, vmx_vpid_bitmap); 3949 spin_unlock(&vmx_vpid_lock); 3950 } 3951 3952 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx) 3953 { 3954 /* 3955 * When KVM is a nested hypervisor on top of Hyper-V and uses 3956 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR 3957 * bitmap has changed. 3958 */ 3959 if (kvm_is_using_evmcs()) { 3960 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs; 3961 3962 if (evmcs->hv_enlightenments_control.msr_bitmap) 3963 evmcs->hv_clean_fields &= 3964 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP; 3965 } 3966 3967 vmx->nested.force_msr_bitmap_recalc = true; 3968 } 3969 3970 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3971 { 3972 struct vcpu_vmx *vmx = to_vmx(vcpu); 3973 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3974 3975 if (!cpu_has_vmx_msr_bitmap()) 3976 return; 3977 3978 vmx_msr_bitmap_l01_changed(vmx); 3979 3980 /* 3981 * Mark the desired intercept state in shadow bitmap, this is needed 3982 * for resync when the MSR filters change. 3983 */ 3984 if (is_valid_passthrough_msr(msr)) { 3985 int idx = possible_passthrough_msr_slot(msr); 3986 3987 if (idx != -ENOENT) { 3988 if (type & MSR_TYPE_R) 3989 clear_bit(idx, vmx->shadow_msr_intercept.read); 3990 if (type & MSR_TYPE_W) 3991 clear_bit(idx, vmx->shadow_msr_intercept.write); 3992 } 3993 } 3994 3995 if ((type & MSR_TYPE_R) && 3996 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) { 3997 vmx_set_msr_bitmap_read(msr_bitmap, msr); 3998 type &= ~MSR_TYPE_R; 3999 } 4000 4001 if ((type & MSR_TYPE_W) && 4002 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) { 4003 vmx_set_msr_bitmap_write(msr_bitmap, msr); 4004 type &= ~MSR_TYPE_W; 4005 } 4006 4007 if (type & MSR_TYPE_R) 4008 vmx_clear_msr_bitmap_read(msr_bitmap, msr); 4009 4010 if (type & MSR_TYPE_W) 4011 vmx_clear_msr_bitmap_write(msr_bitmap, msr); 4012 } 4013 4014 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 4015 { 4016 struct vcpu_vmx *vmx = to_vmx(vcpu); 4017 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 4018 4019 if (!cpu_has_vmx_msr_bitmap()) 4020 return; 4021 4022 vmx_msr_bitmap_l01_changed(vmx); 4023 4024 /* 4025 * Mark the desired intercept state in shadow bitmap, this is needed 4026 * for resync when the MSR filter changes. 4027 */ 4028 if (is_valid_passthrough_msr(msr)) { 4029 int idx = possible_passthrough_msr_slot(msr); 4030 4031 if (idx != -ENOENT) { 4032 if (type & MSR_TYPE_R) 4033 set_bit(idx, vmx->shadow_msr_intercept.read); 4034 if (type & MSR_TYPE_W) 4035 set_bit(idx, vmx->shadow_msr_intercept.write); 4036 } 4037 } 4038 4039 if (type & MSR_TYPE_R) 4040 vmx_set_msr_bitmap_read(msr_bitmap, msr); 4041 4042 if (type & MSR_TYPE_W) 4043 vmx_set_msr_bitmap_write(msr_bitmap, msr); 4044 } 4045 4046 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu) 4047 { 4048 /* 4049 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves 4050 * of the MSR bitmap. KVM emulates APIC registers up through 0x3f0, 4051 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits. 4052 */ 4053 const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG; 4054 const int write_idx = read_idx + (0x800 / sizeof(u64)); 4055 struct vcpu_vmx *vmx = to_vmx(vcpu); 4056 u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap; 4057 u8 mode; 4058 4059 if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu))) 4060 return; 4061 4062 if (cpu_has_secondary_exec_ctrls() && 4063 (secondary_exec_controls_get(vmx) & 4064 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { 4065 mode = MSR_BITMAP_MODE_X2APIC; 4066 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) 4067 mode |= MSR_BITMAP_MODE_X2APIC_APICV; 4068 } else { 4069 mode = 0; 4070 } 4071 4072 if (mode == vmx->x2apic_msr_bitmap_mode) 4073 return; 4074 4075 vmx->x2apic_msr_bitmap_mode = mode; 4076 4077 /* 4078 * Reset the bitmap for MSRs 0x800 - 0x83f. Leave AMD's uber-extended 4079 * registers (0x840 and above) intercepted, KVM doesn't support them. 4080 * Intercept all writes by default and poke holes as needed. Pass 4081 * through reads for all valid registers by default in x2APIC+APICv 4082 * mode, only the current timer count needs on-demand emulation by KVM. 4083 */ 4084 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) 4085 msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic); 4086 else 4087 msr_bitmap[read_idx] = ~0ull; 4088 msr_bitmap[write_idx] = ~0ull; 4089 4090 /* 4091 * TPR reads and writes can be virtualized even if virtual interrupt 4092 * delivery is not in use. 4093 */ 4094 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW, 4095 !(mode & MSR_BITMAP_MODE_X2APIC)); 4096 4097 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { 4098 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW); 4099 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); 4100 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); 4101 if (enable_ipiv) 4102 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW); 4103 } 4104 } 4105 4106 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu) 4107 { 4108 struct vcpu_vmx *vmx = to_vmx(vcpu); 4109 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 4110 u32 i; 4111 4112 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag); 4113 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag); 4114 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag); 4115 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag); 4116 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) { 4117 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag); 4118 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag); 4119 } 4120 } 4121 4122 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 4123 { 4124 struct vcpu_vmx *vmx = to_vmx(vcpu); 4125 void *vapic_page; 4126 u32 vppr; 4127 int rvi; 4128 4129 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) || 4130 !nested_cpu_has_vid(get_vmcs12(vcpu)) || 4131 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn)) 4132 return false; 4133 4134 rvi = vmx_get_rvi(); 4135 4136 vapic_page = vmx->nested.virtual_apic_map.hva; 4137 vppr = *((u32 *)(vapic_page + APIC_PROCPRI)); 4138 4139 return ((rvi & 0xf0) > (vppr & 0xf0)); 4140 } 4141 4142 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu) 4143 { 4144 struct vcpu_vmx *vmx = to_vmx(vcpu); 4145 u32 i; 4146 4147 /* 4148 * Redo intercept permissions for MSRs that KVM is passing through to 4149 * the guest. Disabling interception will check the new MSR filter and 4150 * ensure that KVM enables interception if usersepace wants to filter 4151 * the MSR. MSRs that KVM is already intercepting don't need to be 4152 * refreshed since KVM is going to intercept them regardless of what 4153 * userspace wants. 4154 */ 4155 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) { 4156 u32 msr = vmx_possible_passthrough_msrs[i]; 4157 4158 if (!test_bit(i, vmx->shadow_msr_intercept.read)) 4159 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R); 4160 4161 if (!test_bit(i, vmx->shadow_msr_intercept.write)) 4162 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W); 4163 } 4164 4165 /* PT MSRs can be passed through iff PT is exposed to the guest. */ 4166 if (vmx_pt_mode_is_host_guest()) 4167 pt_update_intercept_for_msr(vcpu); 4168 } 4169 4170 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu, 4171 int pi_vec) 4172 { 4173 #ifdef CONFIG_SMP 4174 if (vcpu->mode == IN_GUEST_MODE) { 4175 /* 4176 * The vector of the virtual has already been set in the PIR. 4177 * Send a notification event to deliver the virtual interrupt 4178 * unless the vCPU is the currently running vCPU, i.e. the 4179 * event is being sent from a fastpath VM-Exit handler, in 4180 * which case the PIR will be synced to the vIRR before 4181 * re-entering the guest. 4182 * 4183 * When the target is not the running vCPU, the following 4184 * possibilities emerge: 4185 * 4186 * Case 1: vCPU stays in non-root mode. Sending a notification 4187 * event posts the interrupt to the vCPU. 4188 * 4189 * Case 2: vCPU exits to root mode and is still runnable. The 4190 * PIR will be synced to the vIRR before re-entering the guest. 4191 * Sending a notification event is ok as the host IRQ handler 4192 * will ignore the spurious event. 4193 * 4194 * Case 3: vCPU exits to root mode and is blocked. vcpu_block() 4195 * has already synced PIR to vIRR and never blocks the vCPU if 4196 * the vIRR is not empty. Therefore, a blocked vCPU here does 4197 * not wait for any requested interrupts in PIR, and sending a 4198 * notification event also results in a benign, spurious event. 4199 */ 4200 4201 if (vcpu != kvm_get_running_vcpu()) 4202 __apic_send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec); 4203 return; 4204 } 4205 #endif 4206 /* 4207 * The vCPU isn't in the guest; wake the vCPU in case it is blocking, 4208 * otherwise do nothing as KVM will grab the highest priority pending 4209 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest(). 4210 */ 4211 kvm_vcpu_wake_up(vcpu); 4212 } 4213 4214 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, 4215 int vector) 4216 { 4217 struct vcpu_vmx *vmx = to_vmx(vcpu); 4218 4219 if (is_guest_mode(vcpu) && 4220 vector == vmx->nested.posted_intr_nv) { 4221 /* 4222 * If a posted intr is not recognized by hardware, 4223 * we will accomplish it in the next vmentry. 4224 */ 4225 vmx->nested.pi_pending = true; 4226 kvm_make_request(KVM_REQ_EVENT, vcpu); 4227 4228 /* 4229 * This pairs with the smp_mb_*() after setting vcpu->mode in 4230 * vcpu_enter_guest() to guarantee the vCPU sees the event 4231 * request if triggering a posted interrupt "fails" because 4232 * vcpu->mode != IN_GUEST_MODE. The extra barrier is needed as 4233 * the smb_wmb() in kvm_make_request() only ensures everything 4234 * done before making the request is visible when the request 4235 * is visible, it doesn't ensure ordering between the store to 4236 * vcpu->requests and the load from vcpu->mode. 4237 */ 4238 smp_mb__after_atomic(); 4239 4240 /* the PIR and ON have been set by L1. */ 4241 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR); 4242 return 0; 4243 } 4244 return -1; 4245 } 4246 /* 4247 * Send interrupt to vcpu via posted interrupt way. 4248 * 1. If target vcpu is running(non-root mode), send posted interrupt 4249 * notification to vcpu and hardware will sync PIR to vIRR atomically. 4250 * 2. If target vcpu isn't running(root mode), kick it to pick up the 4251 * interrupt from PIR in next vmentry. 4252 */ 4253 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) 4254 { 4255 struct vcpu_vmx *vmx = to_vmx(vcpu); 4256 int r; 4257 4258 r = vmx_deliver_nested_posted_interrupt(vcpu, vector); 4259 if (!r) 4260 return 0; 4261 4262 /* Note, this is called iff the local APIC is in-kernel. */ 4263 if (!vcpu->arch.apic->apicv_active) 4264 return -1; 4265 4266 if (pi_test_and_set_pir(vector, &vmx->pi_desc)) 4267 return 0; 4268 4269 /* If a previous notification has sent the IPI, nothing to do. */ 4270 if (pi_test_and_set_on(&vmx->pi_desc)) 4271 return 0; 4272 4273 /* 4274 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*() 4275 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is 4276 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a 4277 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE. 4278 */ 4279 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR); 4280 return 0; 4281 } 4282 4283 static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, 4284 int trig_mode, int vector) 4285 { 4286 struct kvm_vcpu *vcpu = apic->vcpu; 4287 4288 if (vmx_deliver_posted_interrupt(vcpu, vector)) { 4289 kvm_lapic_set_irr(vector, apic); 4290 kvm_make_request(KVM_REQ_EVENT, vcpu); 4291 kvm_vcpu_kick(vcpu); 4292 } else { 4293 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, 4294 trig_mode, vector); 4295 } 4296 } 4297 4298 /* 4299 * Set up the vmcs's constant host-state fields, i.e., host-state fields that 4300 * will not change in the lifetime of the guest. 4301 * Note that host-state that does change is set elsewhere. E.g., host-state 4302 * that is set differently for each CPU is set in vmx_vcpu_load(), not here. 4303 */ 4304 void vmx_set_constant_host_state(struct vcpu_vmx *vmx) 4305 { 4306 u32 low32, high32; 4307 unsigned long tmpl; 4308 unsigned long cr0, cr3, cr4; 4309 4310 cr0 = read_cr0(); 4311 WARN_ON(cr0 & X86_CR0_TS); 4312 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ 4313 4314 /* 4315 * Save the most likely value for this task's CR3 in the VMCS. 4316 * We can't use __get_current_cr3_fast() because we're not atomic. 4317 */ 4318 cr3 = __read_cr3(); 4319 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ 4320 vmx->loaded_vmcs->host_state.cr3 = cr3; 4321 4322 /* Save the most likely value for this task's CR4 in the VMCS. */ 4323 cr4 = cr4_read_shadow(); 4324 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ 4325 vmx->loaded_vmcs->host_state.cr4 = cr4; 4326 4327 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ 4328 #ifdef CONFIG_X86_64 4329 /* 4330 * Load null selectors, so we can avoid reloading them in 4331 * vmx_prepare_switch_to_host(), in case userspace uses 4332 * the null selectors too (the expected case). 4333 */ 4334 vmcs_write16(HOST_DS_SELECTOR, 0); 4335 vmcs_write16(HOST_ES_SELECTOR, 0); 4336 #else 4337 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4338 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4339 #endif 4340 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4341 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ 4342 4343 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */ 4344 4345 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */ 4346 4347 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); 4348 vmcs_write32(HOST_IA32_SYSENTER_CS, low32); 4349 4350 /* 4351 * SYSENTER is used for 32-bit system calls on either 32-bit or 4352 * 64-bit kernels. It is always zero If neither is allowed, otherwise 4353 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may 4354 * have already done so!). 4355 */ 4356 if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32)) 4357 vmcs_writel(HOST_IA32_SYSENTER_ESP, 0); 4358 4359 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); 4360 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ 4361 4362 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { 4363 rdmsr(MSR_IA32_CR_PAT, low32, high32); 4364 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); 4365 } 4366 4367 if (cpu_has_load_ia32_efer()) 4368 vmcs_write64(HOST_IA32_EFER, host_efer); 4369 } 4370 4371 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) 4372 { 4373 struct kvm_vcpu *vcpu = &vmx->vcpu; 4374 4375 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS & 4376 ~vcpu->arch.cr4_guest_rsvd_bits; 4377 if (!enable_ept) { 4378 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS; 4379 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS; 4380 } 4381 if (is_guest_mode(&vmx->vcpu)) 4382 vcpu->arch.cr4_guest_owned_bits &= 4383 ~get_vmcs12(vcpu)->cr4_guest_host_mask; 4384 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits); 4385 } 4386 4387 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) 4388 { 4389 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; 4390 4391 if (!kvm_vcpu_apicv_active(&vmx->vcpu)) 4392 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; 4393 4394 if (!enable_vnmi) 4395 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS; 4396 4397 if (!enable_preemption_timer) 4398 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 4399 4400 return pin_based_exec_ctrl; 4401 } 4402 4403 static u32 vmx_vmentry_ctrl(void) 4404 { 4405 u32 vmentry_ctrl = vmcs_config.vmentry_ctrl; 4406 4407 if (vmx_pt_mode_is_system()) 4408 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP | 4409 VM_ENTRY_LOAD_IA32_RTIT_CTL); 4410 /* 4411 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically. 4412 */ 4413 vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | 4414 VM_ENTRY_LOAD_IA32_EFER | 4415 VM_ENTRY_IA32E_MODE); 4416 4417 if (cpu_has_perf_global_ctrl_bug()) 4418 vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; 4419 4420 return vmentry_ctrl; 4421 } 4422 4423 static u32 vmx_vmexit_ctrl(void) 4424 { 4425 u32 vmexit_ctrl = vmcs_config.vmexit_ctrl; 4426 4427 /* 4428 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for 4429 * nested virtualization and thus allowed to be set in vmcs12. 4430 */ 4431 vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER | 4432 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER); 4433 4434 if (vmx_pt_mode_is_system()) 4435 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP | 4436 VM_EXIT_CLEAR_IA32_RTIT_CTL); 4437 4438 if (cpu_has_perf_global_ctrl_bug()) 4439 vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; 4440 4441 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ 4442 return vmexit_ctrl & 4443 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER); 4444 } 4445 4446 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) 4447 { 4448 struct vcpu_vmx *vmx = to_vmx(vcpu); 4449 4450 if (is_guest_mode(vcpu)) { 4451 vmx->nested.update_vmcs01_apicv_status = true; 4452 return; 4453 } 4454 4455 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4456 4457 if (kvm_vcpu_apicv_active(vcpu)) { 4458 secondary_exec_controls_setbit(vmx, 4459 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4460 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4461 if (enable_ipiv) 4462 tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT); 4463 } else { 4464 secondary_exec_controls_clearbit(vmx, 4465 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4466 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4467 if (enable_ipiv) 4468 tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT); 4469 } 4470 4471 vmx_update_msr_bitmap_x2apic(vcpu); 4472 } 4473 4474 static u32 vmx_exec_control(struct vcpu_vmx *vmx) 4475 { 4476 u32 exec_control = vmcs_config.cpu_based_exec_ctrl; 4477 4478 /* 4479 * Not used by KVM, but fully supported for nesting, i.e. are allowed in 4480 * vmcs12 and propagated to vmcs02 when set in vmcs12. 4481 */ 4482 exec_control &= ~(CPU_BASED_RDTSC_EXITING | 4483 CPU_BASED_USE_IO_BITMAPS | 4484 CPU_BASED_MONITOR_TRAP_FLAG | 4485 CPU_BASED_PAUSE_EXITING); 4486 4487 /* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */ 4488 exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING | 4489 CPU_BASED_NMI_WINDOW_EXITING); 4490 4491 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) 4492 exec_control &= ~CPU_BASED_MOV_DR_EXITING; 4493 4494 if (!cpu_need_tpr_shadow(&vmx->vcpu)) 4495 exec_control &= ~CPU_BASED_TPR_SHADOW; 4496 4497 #ifdef CONFIG_X86_64 4498 if (exec_control & CPU_BASED_TPR_SHADOW) 4499 exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING | 4500 CPU_BASED_CR8_STORE_EXITING); 4501 else 4502 exec_control |= CPU_BASED_CR8_STORE_EXITING | 4503 CPU_BASED_CR8_LOAD_EXITING; 4504 #endif 4505 /* No need to intercept CR3 access or INVPLG when using EPT. */ 4506 if (enable_ept) 4507 exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | 4508 CPU_BASED_CR3_STORE_EXITING | 4509 CPU_BASED_INVLPG_EXITING); 4510 if (kvm_mwait_in_guest(vmx->vcpu.kvm)) 4511 exec_control &= ~(CPU_BASED_MWAIT_EXITING | 4512 CPU_BASED_MONITOR_EXITING); 4513 if (kvm_hlt_in_guest(vmx->vcpu.kvm)) 4514 exec_control &= ~CPU_BASED_HLT_EXITING; 4515 return exec_control; 4516 } 4517 4518 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx) 4519 { 4520 u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl; 4521 4522 /* 4523 * IPI virtualization relies on APICv. Disable IPI virtualization if 4524 * APICv is inhibited. 4525 */ 4526 if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu)) 4527 exec_control &= ~TERTIARY_EXEC_IPI_VIRT; 4528 4529 return exec_control; 4530 } 4531 4532 /* 4533 * Adjust a single secondary execution control bit to intercept/allow an 4534 * instruction in the guest. This is usually done based on whether or not a 4535 * feature has been exposed to the guest in order to correctly emulate faults. 4536 */ 4537 static inline void 4538 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control, 4539 u32 control, bool enabled, bool exiting) 4540 { 4541 /* 4542 * If the control is for an opt-in feature, clear the control if the 4543 * feature is not exposed to the guest, i.e. not enabled. If the 4544 * control is opt-out, i.e. an exiting control, clear the control if 4545 * the feature _is_ exposed to the guest, i.e. exiting/interception is 4546 * disabled for the associated instruction. Note, the caller is 4547 * responsible presetting exec_control to set all supported bits. 4548 */ 4549 if (enabled == exiting) 4550 *exec_control &= ~control; 4551 4552 /* 4553 * Update the nested MSR settings so that a nested VMM can/can't set 4554 * controls for features that are/aren't exposed to the guest. 4555 */ 4556 if (nested) { 4557 /* 4558 * All features that can be added or removed to VMX MSRs must 4559 * be supported in the first place for nested virtualization. 4560 */ 4561 if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control))) 4562 enabled = false; 4563 4564 if (enabled) 4565 vmx->nested.msrs.secondary_ctls_high |= control; 4566 else 4567 vmx->nested.msrs.secondary_ctls_high &= ~control; 4568 } 4569 } 4570 4571 /* 4572 * Wrapper macro for the common case of adjusting a secondary execution control 4573 * based on a single guest CPUID bit, with a dedicated feature bit. This also 4574 * verifies that the control is actually supported by KVM and hardware. 4575 */ 4576 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \ 4577 ({ \ 4578 struct kvm_vcpu *__vcpu = &(vmx)->vcpu; \ 4579 bool __enabled; \ 4580 \ 4581 if (cpu_has_vmx_##name()) { \ 4582 if (kvm_is_governed_feature(X86_FEATURE_##feat_name)) \ 4583 __enabled = guest_can_use(__vcpu, X86_FEATURE_##feat_name); \ 4584 else \ 4585 __enabled = guest_cpuid_has(__vcpu, X86_FEATURE_##feat_name); \ 4586 vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\ 4587 __enabled, exiting); \ 4588 } \ 4589 }) 4590 4591 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */ 4592 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \ 4593 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false) 4594 4595 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \ 4596 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true) 4597 4598 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx) 4599 { 4600 struct kvm_vcpu *vcpu = &vmx->vcpu; 4601 4602 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; 4603 4604 if (vmx_pt_mode_is_system()) 4605 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX); 4606 if (!cpu_need_virtualize_apic_accesses(vcpu)) 4607 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 4608 if (vmx->vpid == 0) 4609 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; 4610 if (!enable_ept) { 4611 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; 4612 enable_unrestricted_guest = 0; 4613 } 4614 if (!enable_unrestricted_guest) 4615 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; 4616 if (kvm_pause_in_guest(vmx->vcpu.kvm)) 4617 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; 4618 if (!kvm_vcpu_apicv_active(vcpu)) 4619 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | 4620 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4621 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 4622 4623 /* 4624 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's 4625 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2. 4626 */ 4627 exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC; 4628 4629 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP, 4630 * in vmx_set_cr4. */ 4631 exec_control &= ~SECONDARY_EXEC_DESC; 4632 4633 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD 4634 (handle_vmptrld). 4635 We can NOT enable shadow_vmcs here because we don't have yet 4636 a current VMCS12 4637 */ 4638 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; 4639 4640 /* 4641 * PML is enabled/disabled when dirty logging of memsmlots changes, but 4642 * it needs to be set here when dirty logging is already active, e.g. 4643 * if this vCPU was created after dirty logging was enabled. 4644 */ 4645 if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging)) 4646 exec_control &= ~SECONDARY_EXEC_ENABLE_PML; 4647 4648 vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES); 4649 4650 /* 4651 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either 4652 * feature is exposed to the guest. This creates a virtualization hole 4653 * if both are supported in hardware but only one is exposed to the 4654 * guest, but letting the guest execute RDTSCP or RDPID when either one 4655 * is advertised is preferable to emulating the advertised instruction 4656 * in KVM on #UD, and obviously better than incorrectly injecting #UD. 4657 */ 4658 if (cpu_has_vmx_rdtscp()) { 4659 bool rdpid_or_rdtscp_enabled = 4660 guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) || 4661 guest_cpuid_has(vcpu, X86_FEATURE_RDPID); 4662 4663 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4664 SECONDARY_EXEC_ENABLE_RDTSCP, 4665 rdpid_or_rdtscp_enabled, false); 4666 } 4667 4668 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID); 4669 4670 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND); 4671 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED); 4672 4673 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG, 4674 ENABLE_USR_WAIT_PAUSE, false); 4675 4676 if (!vcpu->kvm->arch.bus_lock_detection_enabled) 4677 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION; 4678 4679 if (!kvm_notify_vmexit_enabled(vcpu->kvm)) 4680 exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING; 4681 4682 return exec_control; 4683 } 4684 4685 static inline int vmx_get_pid_table_order(struct kvm *kvm) 4686 { 4687 return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table)); 4688 } 4689 4690 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm) 4691 { 4692 struct page *pages; 4693 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 4694 4695 if (!irqchip_in_kernel(kvm) || !enable_ipiv) 4696 return 0; 4697 4698 if (kvm_vmx->pid_table) 4699 return 0; 4700 4701 pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO, 4702 vmx_get_pid_table_order(kvm)); 4703 if (!pages) 4704 return -ENOMEM; 4705 4706 kvm_vmx->pid_table = (void *)page_address(pages); 4707 return 0; 4708 } 4709 4710 static int vmx_vcpu_precreate(struct kvm *kvm) 4711 { 4712 return vmx_alloc_ipiv_pid_table(kvm); 4713 } 4714 4715 #define VMX_XSS_EXIT_BITMAP 0 4716 4717 static void init_vmcs(struct vcpu_vmx *vmx) 4718 { 4719 struct kvm *kvm = vmx->vcpu.kvm; 4720 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 4721 4722 if (nested) 4723 nested_vmx_set_vmcs_shadowing_bitmap(); 4724 4725 if (cpu_has_vmx_msr_bitmap()) 4726 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); 4727 4728 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */ 4729 4730 /* Control */ 4731 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4732 4733 exec_controls_set(vmx, vmx_exec_control(vmx)); 4734 4735 if (cpu_has_secondary_exec_ctrls()) 4736 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx)); 4737 4738 if (cpu_has_tertiary_exec_ctrls()) 4739 tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx)); 4740 4741 if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) { 4742 vmcs_write64(EOI_EXIT_BITMAP0, 0); 4743 vmcs_write64(EOI_EXIT_BITMAP1, 0); 4744 vmcs_write64(EOI_EXIT_BITMAP2, 0); 4745 vmcs_write64(EOI_EXIT_BITMAP3, 0); 4746 4747 vmcs_write16(GUEST_INTR_STATUS, 0); 4748 4749 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); 4750 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); 4751 } 4752 4753 if (vmx_can_use_ipiv(&vmx->vcpu)) { 4754 vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table)); 4755 vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1); 4756 } 4757 4758 if (!kvm_pause_in_guest(kvm)) { 4759 vmcs_write32(PLE_GAP, ple_gap); 4760 vmx->ple_window = ple_window; 4761 vmx->ple_window_dirty = true; 4762 } 4763 4764 if (kvm_notify_vmexit_enabled(kvm)) 4765 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window); 4766 4767 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); 4768 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); 4769 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ 4770 4771 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ 4772 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ 4773 vmx_set_constant_host_state(vmx); 4774 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ 4775 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ 4776 4777 if (cpu_has_vmx_vmfunc()) 4778 vmcs_write64(VM_FUNCTION_CONTROL, 0); 4779 4780 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); 4781 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); 4782 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); 4783 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); 4784 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); 4785 4786 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 4787 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); 4788 4789 vm_exit_controls_set(vmx, vmx_vmexit_ctrl()); 4790 4791 /* 22.2.1, 20.8.1 */ 4792 vm_entry_controls_set(vmx, vmx_vmentry_ctrl()); 4793 4794 vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits(); 4795 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits); 4796 4797 set_cr4_guest_host_mask(vmx); 4798 4799 if (vmx->vpid != 0) 4800 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); 4801 4802 if (cpu_has_vmx_xsaves()) 4803 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); 4804 4805 if (enable_pml) { 4806 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); 4807 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 4808 } 4809 4810 vmx_write_encls_bitmap(&vmx->vcpu, NULL); 4811 4812 if (vmx_pt_mode_is_host_guest()) { 4813 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc)); 4814 /* Bit[6~0] are forced to 1, writes are ignored. */ 4815 vmx->pt_desc.guest.output_mask = 0x7F; 4816 vmcs_write64(GUEST_IA32_RTIT_CTL, 0); 4817 } 4818 4819 vmcs_write32(GUEST_SYSENTER_CS, 0); 4820 vmcs_writel(GUEST_SYSENTER_ESP, 0); 4821 vmcs_writel(GUEST_SYSENTER_EIP, 0); 4822 vmcs_write64(GUEST_IA32_DEBUGCTL, 0); 4823 4824 if (cpu_has_vmx_tpr_shadow()) { 4825 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); 4826 if (cpu_need_tpr_shadow(&vmx->vcpu)) 4827 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 4828 __pa(vmx->vcpu.arch.apic->regs)); 4829 vmcs_write32(TPR_THRESHOLD, 0); 4830 } 4831 4832 vmx_setup_uret_msrs(vmx); 4833 } 4834 4835 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu) 4836 { 4837 struct vcpu_vmx *vmx = to_vmx(vcpu); 4838 4839 init_vmcs(vmx); 4840 4841 if (nested) 4842 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs)); 4843 4844 vcpu_setup_sgx_lepubkeyhash(vcpu); 4845 4846 vmx->nested.posted_intr_nv = -1; 4847 vmx->nested.vmxon_ptr = INVALID_GPA; 4848 vmx->nested.current_vmptr = INVALID_GPA; 4849 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID; 4850 4851 vcpu->arch.microcode_version = 0x100000000ULL; 4852 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED; 4853 4854 /* 4855 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR 4856 * or POSTED_INTR_WAKEUP_VECTOR. 4857 */ 4858 vmx->pi_desc.nv = POSTED_INTR_VECTOR; 4859 vmx->pi_desc.sn = 1; 4860 } 4861 4862 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 4863 { 4864 struct vcpu_vmx *vmx = to_vmx(vcpu); 4865 4866 if (!init_event) 4867 __vmx_vcpu_reset(vcpu); 4868 4869 vmx->rmode.vm86_active = 0; 4870 vmx->spec_ctrl = 0; 4871 4872 vmx->msr_ia32_umwait_control = 0; 4873 4874 vmx->hv_deadline_tsc = -1; 4875 kvm_set_cr8(vcpu, 0); 4876 4877 vmx_segment_cache_clear(vmx); 4878 kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS); 4879 4880 seg_setup(VCPU_SREG_CS); 4881 vmcs_write16(GUEST_CS_SELECTOR, 0xf000); 4882 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); 4883 4884 seg_setup(VCPU_SREG_DS); 4885 seg_setup(VCPU_SREG_ES); 4886 seg_setup(VCPU_SREG_FS); 4887 seg_setup(VCPU_SREG_GS); 4888 seg_setup(VCPU_SREG_SS); 4889 4890 vmcs_write16(GUEST_TR_SELECTOR, 0); 4891 vmcs_writel(GUEST_TR_BASE, 0); 4892 vmcs_write32(GUEST_TR_LIMIT, 0xffff); 4893 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 4894 4895 vmcs_write16(GUEST_LDTR_SELECTOR, 0); 4896 vmcs_writel(GUEST_LDTR_BASE, 0); 4897 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); 4898 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); 4899 4900 vmcs_writel(GUEST_GDTR_BASE, 0); 4901 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); 4902 4903 vmcs_writel(GUEST_IDTR_BASE, 0); 4904 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); 4905 4906 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 4907 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); 4908 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); 4909 if (kvm_mpx_supported()) 4910 vmcs_write64(GUEST_BNDCFGS, 0); 4911 4912 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ 4913 4914 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 4915 4916 vpid_sync_context(vmx->vpid); 4917 4918 vmx_update_fb_clear_dis(vcpu, vmx); 4919 } 4920 4921 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu) 4922 { 4923 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 4924 } 4925 4926 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu) 4927 { 4928 if (!enable_vnmi || 4929 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { 4930 vmx_enable_irq_window(vcpu); 4931 return; 4932 } 4933 4934 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 4935 } 4936 4937 static void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected) 4938 { 4939 struct vcpu_vmx *vmx = to_vmx(vcpu); 4940 uint32_t intr; 4941 int irq = vcpu->arch.interrupt.nr; 4942 4943 trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected); 4944 4945 ++vcpu->stat.irq_injections; 4946 if (vmx->rmode.vm86_active) { 4947 int inc_eip = 0; 4948 if (vcpu->arch.interrupt.soft) 4949 inc_eip = vcpu->arch.event_exit_inst_len; 4950 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip); 4951 return; 4952 } 4953 intr = irq | INTR_INFO_VALID_MASK; 4954 if (vcpu->arch.interrupt.soft) { 4955 intr |= INTR_TYPE_SOFT_INTR; 4956 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 4957 vmx->vcpu.arch.event_exit_inst_len); 4958 } else 4959 intr |= INTR_TYPE_EXT_INTR; 4960 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); 4961 4962 vmx_clear_hlt(vcpu); 4963 } 4964 4965 static void vmx_inject_nmi(struct kvm_vcpu *vcpu) 4966 { 4967 struct vcpu_vmx *vmx = to_vmx(vcpu); 4968 4969 if (!enable_vnmi) { 4970 /* 4971 * Tracking the NMI-blocked state in software is built upon 4972 * finding the next open IRQ window. This, in turn, depends on 4973 * well-behaving guests: They have to keep IRQs disabled at 4974 * least as long as the NMI handler runs. Otherwise we may 4975 * cause NMI nesting, maybe breaking the guest. But as this is 4976 * highly unlikely, we can live with the residual risk. 4977 */ 4978 vmx->loaded_vmcs->soft_vnmi_blocked = 1; 4979 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4980 } 4981 4982 ++vcpu->stat.nmi_injections; 4983 vmx->loaded_vmcs->nmi_known_unmasked = false; 4984 4985 if (vmx->rmode.vm86_active) { 4986 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0); 4987 return; 4988 } 4989 4990 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 4991 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); 4992 4993 vmx_clear_hlt(vcpu); 4994 } 4995 4996 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) 4997 { 4998 struct vcpu_vmx *vmx = to_vmx(vcpu); 4999 bool masked; 5000 5001 if (!enable_vnmi) 5002 return vmx->loaded_vmcs->soft_vnmi_blocked; 5003 if (vmx->loaded_vmcs->nmi_known_unmasked) 5004 return false; 5005 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; 5006 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 5007 return masked; 5008 } 5009 5010 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 5011 { 5012 struct vcpu_vmx *vmx = to_vmx(vcpu); 5013 5014 if (!enable_vnmi) { 5015 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { 5016 vmx->loaded_vmcs->soft_vnmi_blocked = masked; 5017 vmx->loaded_vmcs->vnmi_blocked_time = 0; 5018 } 5019 } else { 5020 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 5021 if (masked) 5022 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5023 GUEST_INTR_STATE_NMI); 5024 else 5025 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, 5026 GUEST_INTR_STATE_NMI); 5027 } 5028 } 5029 5030 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu) 5031 { 5032 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 5033 return false; 5034 5035 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) 5036 return true; 5037 5038 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 5039 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI | 5040 GUEST_INTR_STATE_NMI)); 5041 } 5042 5043 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 5044 { 5045 if (to_vmx(vcpu)->nested.nested_run_pending) 5046 return -EBUSY; 5047 5048 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 5049 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 5050 return -EBUSY; 5051 5052 return !vmx_nmi_blocked(vcpu); 5053 } 5054 5055 bool __vmx_interrupt_blocked(struct kvm_vcpu *vcpu) 5056 { 5057 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) || 5058 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 5059 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); 5060 } 5061 5062 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu) 5063 { 5064 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 5065 return false; 5066 5067 return __vmx_interrupt_blocked(vcpu); 5068 } 5069 5070 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 5071 { 5072 if (to_vmx(vcpu)->nested.nested_run_pending) 5073 return -EBUSY; 5074 5075 /* 5076 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 5077 * e.g. if the IRQ arrived asynchronously after checking nested events. 5078 */ 5079 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 5080 return -EBUSY; 5081 5082 return !vmx_interrupt_blocked(vcpu); 5083 } 5084 5085 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) 5086 { 5087 void __user *ret; 5088 5089 if (enable_unrestricted_guest) 5090 return 0; 5091 5092 mutex_lock(&kvm->slots_lock); 5093 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, 5094 PAGE_SIZE * 3); 5095 mutex_unlock(&kvm->slots_lock); 5096 5097 if (IS_ERR(ret)) 5098 return PTR_ERR(ret); 5099 5100 to_kvm_vmx(kvm)->tss_addr = addr; 5101 5102 return init_rmode_tss(kvm, ret); 5103 } 5104 5105 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 5106 { 5107 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr; 5108 return 0; 5109 } 5110 5111 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) 5112 { 5113 switch (vec) { 5114 case BP_VECTOR: 5115 /* 5116 * Update instruction length as we may reinject the exception 5117 * from user space while in guest debugging mode. 5118 */ 5119 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = 5120 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 5121 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 5122 return false; 5123 fallthrough; 5124 case DB_VECTOR: 5125 return !(vcpu->guest_debug & 5126 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)); 5127 case DE_VECTOR: 5128 case OF_VECTOR: 5129 case BR_VECTOR: 5130 case UD_VECTOR: 5131 case DF_VECTOR: 5132 case SS_VECTOR: 5133 case GP_VECTOR: 5134 case MF_VECTOR: 5135 return true; 5136 } 5137 return false; 5138 } 5139 5140 static int handle_rmode_exception(struct kvm_vcpu *vcpu, 5141 int vec, u32 err_code) 5142 { 5143 /* 5144 * Instruction with address size override prefix opcode 0x67 5145 * Cause the #SS fault with 0 error code in VM86 mode. 5146 */ 5147 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { 5148 if (kvm_emulate_instruction(vcpu, 0)) { 5149 if (vcpu->arch.halt_request) { 5150 vcpu->arch.halt_request = 0; 5151 return kvm_emulate_halt_noskip(vcpu); 5152 } 5153 return 1; 5154 } 5155 return 0; 5156 } 5157 5158 /* 5159 * Forward all other exceptions that are valid in real mode. 5160 * FIXME: Breaks guest debugging in real mode, needs to be fixed with 5161 * the required debugging infrastructure rework. 5162 */ 5163 kvm_queue_exception(vcpu, vec); 5164 return 1; 5165 } 5166 5167 static int handle_machine_check(struct kvm_vcpu *vcpu) 5168 { 5169 /* handled by vmx_vcpu_run() */ 5170 return 1; 5171 } 5172 5173 /* 5174 * If the host has split lock detection disabled, then #AC is 5175 * unconditionally injected into the guest, which is the pre split lock 5176 * detection behaviour. 5177 * 5178 * If the host has split lock detection enabled then #AC is 5179 * only injected into the guest when: 5180 * - Guest CPL == 3 (user mode) 5181 * - Guest has #AC detection enabled in CR0 5182 * - Guest EFLAGS has AC bit set 5183 */ 5184 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu) 5185 { 5186 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 5187 return true; 5188 5189 return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) && 5190 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC); 5191 } 5192 5193 static int handle_exception_nmi(struct kvm_vcpu *vcpu) 5194 { 5195 struct vcpu_vmx *vmx = to_vmx(vcpu); 5196 struct kvm_run *kvm_run = vcpu->run; 5197 u32 intr_info, ex_no, error_code; 5198 unsigned long cr2, dr6; 5199 u32 vect_info; 5200 5201 vect_info = vmx->idt_vectoring_info; 5202 intr_info = vmx_get_intr_info(vcpu); 5203 5204 /* 5205 * Machine checks are handled by handle_exception_irqoff(), or by 5206 * vmx_vcpu_run() if a #MC occurs on VM-Entry. NMIs are handled by 5207 * vmx_vcpu_enter_exit(). 5208 */ 5209 if (is_machine_check(intr_info) || is_nmi(intr_info)) 5210 return 1; 5211 5212 /* 5213 * Queue the exception here instead of in handle_nm_fault_irqoff(). 5214 * This ensures the nested_vmx check is not skipped so vmexit can 5215 * be reflected to L1 (when it intercepts #NM) before reaching this 5216 * point. 5217 */ 5218 if (is_nm_fault(intr_info)) { 5219 kvm_queue_exception(vcpu, NM_VECTOR); 5220 return 1; 5221 } 5222 5223 if (is_invalid_opcode(intr_info)) 5224 return handle_ud(vcpu); 5225 5226 error_code = 0; 5227 if (intr_info & INTR_INFO_DELIVER_CODE_MASK) 5228 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 5229 5230 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) { 5231 WARN_ON_ONCE(!enable_vmware_backdoor); 5232 5233 /* 5234 * VMware backdoor emulation on #GP interception only handles 5235 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero 5236 * error code on #GP. 5237 */ 5238 if (error_code) { 5239 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 5240 return 1; 5241 } 5242 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP); 5243 } 5244 5245 /* 5246 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing 5247 * MMIO, it is better to report an internal error. 5248 * See the comments in vmx_handle_exit. 5249 */ 5250 if ((vect_info & VECTORING_INFO_VALID_MASK) && 5251 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { 5252 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5253 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; 5254 vcpu->run->internal.ndata = 4; 5255 vcpu->run->internal.data[0] = vect_info; 5256 vcpu->run->internal.data[1] = intr_info; 5257 vcpu->run->internal.data[2] = error_code; 5258 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu; 5259 return 0; 5260 } 5261 5262 if (is_page_fault(intr_info)) { 5263 cr2 = vmx_get_exit_qual(vcpu); 5264 if (enable_ept && !vcpu->arch.apf.host_apf_flags) { 5265 /* 5266 * EPT will cause page fault only if we need to 5267 * detect illegal GPAs. 5268 */ 5269 WARN_ON_ONCE(!allow_smaller_maxphyaddr); 5270 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code); 5271 return 1; 5272 } else 5273 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0); 5274 } 5275 5276 ex_no = intr_info & INTR_INFO_VECTOR_MASK; 5277 5278 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) 5279 return handle_rmode_exception(vcpu, ex_no, error_code); 5280 5281 switch (ex_no) { 5282 case DB_VECTOR: 5283 dr6 = vmx_get_exit_qual(vcpu); 5284 if (!(vcpu->guest_debug & 5285 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { 5286 /* 5287 * If the #DB was due to ICEBP, a.k.a. INT1, skip the 5288 * instruction. ICEBP generates a trap-like #DB, but 5289 * despite its interception control being tied to #DB, 5290 * is an instruction intercept, i.e. the VM-Exit occurs 5291 * on the ICEBP itself. Use the inner "skip" helper to 5292 * avoid single-step #DB and MTF updates, as ICEBP is 5293 * higher priority. Note, skipping ICEBP still clears 5294 * STI and MOVSS blocking. 5295 * 5296 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS 5297 * if single-step is enabled in RFLAGS and STI or MOVSS 5298 * blocking is active, as the CPU doesn't set the bit 5299 * on VM-Exit due to #DB interception. VM-Entry has a 5300 * consistency check that a single-step #DB is pending 5301 * in this scenario as the previous instruction cannot 5302 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV 5303 * don't modify RFLAGS), therefore the one instruction 5304 * delay when activating single-step breakpoints must 5305 * have already expired. Note, the CPU sets/clears BS 5306 * as appropriate for all other VM-Exits types. 5307 */ 5308 if (is_icebp(intr_info)) 5309 WARN_ON(!skip_emulated_instruction(vcpu)); 5310 else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) && 5311 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 5312 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS))) 5313 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 5314 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS); 5315 5316 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 5317 return 1; 5318 } 5319 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 5320 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); 5321 fallthrough; 5322 case BP_VECTOR: 5323 /* 5324 * Update instruction length as we may reinject #BP from 5325 * user space while in guest debugging mode. Reading it for 5326 * #DB as well causes no harm, it is not used in that case. 5327 */ 5328 vmx->vcpu.arch.event_exit_inst_len = 5329 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 5330 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5331 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5332 kvm_run->debug.arch.exception = ex_no; 5333 break; 5334 case AC_VECTOR: 5335 if (vmx_guest_inject_ac(vcpu)) { 5336 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); 5337 return 1; 5338 } 5339 5340 /* 5341 * Handle split lock. Depending on detection mode this will 5342 * either warn and disable split lock detection for this 5343 * task or force SIGBUS on it. 5344 */ 5345 if (handle_guest_split_lock(kvm_rip_read(vcpu))) 5346 return 1; 5347 fallthrough; 5348 default: 5349 kvm_run->exit_reason = KVM_EXIT_EXCEPTION; 5350 kvm_run->ex.exception = ex_no; 5351 kvm_run->ex.error_code = error_code; 5352 break; 5353 } 5354 return 0; 5355 } 5356 5357 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu) 5358 { 5359 ++vcpu->stat.irq_exits; 5360 return 1; 5361 } 5362 5363 static int handle_triple_fault(struct kvm_vcpu *vcpu) 5364 { 5365 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 5366 vcpu->mmio_needed = 0; 5367 return 0; 5368 } 5369 5370 static int handle_io(struct kvm_vcpu *vcpu) 5371 { 5372 unsigned long exit_qualification; 5373 int size, in, string; 5374 unsigned port; 5375 5376 exit_qualification = vmx_get_exit_qual(vcpu); 5377 string = (exit_qualification & 16) != 0; 5378 5379 ++vcpu->stat.io_exits; 5380 5381 if (string) 5382 return kvm_emulate_instruction(vcpu, 0); 5383 5384 port = exit_qualification >> 16; 5385 size = (exit_qualification & 7) + 1; 5386 in = (exit_qualification & 8) != 0; 5387 5388 return kvm_fast_pio(vcpu, size, port, in); 5389 } 5390 5391 static void 5392 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 5393 { 5394 /* 5395 * Patch in the VMCALL instruction: 5396 */ 5397 hypercall[0] = 0x0f; 5398 hypercall[1] = 0x01; 5399 hypercall[2] = 0xc1; 5400 } 5401 5402 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */ 5403 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) 5404 { 5405 if (is_guest_mode(vcpu)) { 5406 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5407 unsigned long orig_val = val; 5408 5409 /* 5410 * We get here when L2 changed cr0 in a way that did not change 5411 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), 5412 * but did change L0 shadowed bits. So we first calculate the 5413 * effective cr0 value that L1 would like to write into the 5414 * hardware. It consists of the L2-owned bits from the new 5415 * value combined with the L1-owned bits from L1's guest_cr0. 5416 */ 5417 val = (val & ~vmcs12->cr0_guest_host_mask) | 5418 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); 5419 5420 if (kvm_set_cr0(vcpu, val)) 5421 return 1; 5422 vmcs_writel(CR0_READ_SHADOW, orig_val); 5423 return 0; 5424 } else { 5425 return kvm_set_cr0(vcpu, val); 5426 } 5427 } 5428 5429 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) 5430 { 5431 if (is_guest_mode(vcpu)) { 5432 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5433 unsigned long orig_val = val; 5434 5435 /* analogously to handle_set_cr0 */ 5436 val = (val & ~vmcs12->cr4_guest_host_mask) | 5437 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); 5438 if (kvm_set_cr4(vcpu, val)) 5439 return 1; 5440 vmcs_writel(CR4_READ_SHADOW, orig_val); 5441 return 0; 5442 } else 5443 return kvm_set_cr4(vcpu, val); 5444 } 5445 5446 static int handle_desc(struct kvm_vcpu *vcpu) 5447 { 5448 /* 5449 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this 5450 * and other code needs to be updated if UMIP can be guest owned. 5451 */ 5452 BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP); 5453 5454 WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP)); 5455 return kvm_emulate_instruction(vcpu, 0); 5456 } 5457 5458 static int handle_cr(struct kvm_vcpu *vcpu) 5459 { 5460 unsigned long exit_qualification, val; 5461 int cr; 5462 int reg; 5463 int err; 5464 int ret; 5465 5466 exit_qualification = vmx_get_exit_qual(vcpu); 5467 cr = exit_qualification & 15; 5468 reg = (exit_qualification >> 8) & 15; 5469 switch ((exit_qualification >> 4) & 3) { 5470 case 0: /* mov to cr */ 5471 val = kvm_register_read(vcpu, reg); 5472 trace_kvm_cr_write(cr, val); 5473 switch (cr) { 5474 case 0: 5475 err = handle_set_cr0(vcpu, val); 5476 return kvm_complete_insn_gp(vcpu, err); 5477 case 3: 5478 WARN_ON_ONCE(enable_unrestricted_guest); 5479 5480 err = kvm_set_cr3(vcpu, val); 5481 return kvm_complete_insn_gp(vcpu, err); 5482 case 4: 5483 err = handle_set_cr4(vcpu, val); 5484 return kvm_complete_insn_gp(vcpu, err); 5485 case 8: { 5486 u8 cr8_prev = kvm_get_cr8(vcpu); 5487 u8 cr8 = (u8)val; 5488 err = kvm_set_cr8(vcpu, cr8); 5489 ret = kvm_complete_insn_gp(vcpu, err); 5490 if (lapic_in_kernel(vcpu)) 5491 return ret; 5492 if (cr8_prev <= cr8) 5493 return ret; 5494 /* 5495 * TODO: we might be squashing a 5496 * KVM_GUESTDBG_SINGLESTEP-triggered 5497 * KVM_EXIT_DEBUG here. 5498 */ 5499 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 5500 return 0; 5501 } 5502 } 5503 break; 5504 case 2: /* clts */ 5505 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS"); 5506 return -EIO; 5507 case 1: /*mov from cr*/ 5508 switch (cr) { 5509 case 3: 5510 WARN_ON_ONCE(enable_unrestricted_guest); 5511 5512 val = kvm_read_cr3(vcpu); 5513 kvm_register_write(vcpu, reg, val); 5514 trace_kvm_cr_read(cr, val); 5515 return kvm_skip_emulated_instruction(vcpu); 5516 case 8: 5517 val = kvm_get_cr8(vcpu); 5518 kvm_register_write(vcpu, reg, val); 5519 trace_kvm_cr_read(cr, val); 5520 return kvm_skip_emulated_instruction(vcpu); 5521 } 5522 break; 5523 case 3: /* lmsw */ 5524 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; 5525 trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val)); 5526 kvm_lmsw(vcpu, val); 5527 5528 return kvm_skip_emulated_instruction(vcpu); 5529 default: 5530 break; 5531 } 5532 vcpu->run->exit_reason = 0; 5533 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", 5534 (int)(exit_qualification >> 4) & 3, cr); 5535 return 0; 5536 } 5537 5538 static int handle_dr(struct kvm_vcpu *vcpu) 5539 { 5540 unsigned long exit_qualification; 5541 int dr, dr7, reg; 5542 int err = 1; 5543 5544 exit_qualification = vmx_get_exit_qual(vcpu); 5545 dr = exit_qualification & DEBUG_REG_ACCESS_NUM; 5546 5547 /* First, if DR does not exist, trigger UD */ 5548 if (!kvm_require_dr(vcpu, dr)) 5549 return 1; 5550 5551 if (vmx_get_cpl(vcpu) > 0) 5552 goto out; 5553 5554 dr7 = vmcs_readl(GUEST_DR7); 5555 if (dr7 & DR7_GD) { 5556 /* 5557 * As the vm-exit takes precedence over the debug trap, we 5558 * need to emulate the latter, either for the host or the 5559 * guest debugging itself. 5560 */ 5561 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 5562 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW; 5563 vcpu->run->debug.arch.dr7 = dr7; 5564 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5565 vcpu->run->debug.arch.exception = DB_VECTOR; 5566 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 5567 return 0; 5568 } else { 5569 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD); 5570 return 1; 5571 } 5572 } 5573 5574 if (vcpu->guest_debug == 0) { 5575 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5576 5577 /* 5578 * No more DR vmexits; force a reload of the debug registers 5579 * and reenter on this instruction. The next vmexit will 5580 * retrieve the full state of the debug registers. 5581 */ 5582 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 5583 return 1; 5584 } 5585 5586 reg = DEBUG_REG_ACCESS_REG(exit_qualification); 5587 if (exit_qualification & TYPE_MOV_FROM_DR) { 5588 unsigned long val; 5589 5590 kvm_get_dr(vcpu, dr, &val); 5591 kvm_register_write(vcpu, reg, val); 5592 err = 0; 5593 } else { 5594 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)); 5595 } 5596 5597 out: 5598 return kvm_complete_insn_gp(vcpu, err); 5599 } 5600 5601 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 5602 { 5603 get_debugreg(vcpu->arch.db[0], 0); 5604 get_debugreg(vcpu->arch.db[1], 1); 5605 get_debugreg(vcpu->arch.db[2], 2); 5606 get_debugreg(vcpu->arch.db[3], 3); 5607 get_debugreg(vcpu->arch.dr6, 6); 5608 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); 5609 5610 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 5611 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5612 5613 /* 5614 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees 5615 * a stale dr6 from the guest. 5616 */ 5617 set_debugreg(DR6_RESERVED, 6); 5618 } 5619 5620 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) 5621 { 5622 vmcs_writel(GUEST_DR7, val); 5623 } 5624 5625 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) 5626 { 5627 kvm_apic_update_ppr(vcpu); 5628 return 1; 5629 } 5630 5631 static int handle_interrupt_window(struct kvm_vcpu *vcpu) 5632 { 5633 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 5634 5635 kvm_make_request(KVM_REQ_EVENT, vcpu); 5636 5637 ++vcpu->stat.irq_window_exits; 5638 return 1; 5639 } 5640 5641 static int handle_invlpg(struct kvm_vcpu *vcpu) 5642 { 5643 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5644 5645 kvm_mmu_invlpg(vcpu, exit_qualification); 5646 return kvm_skip_emulated_instruction(vcpu); 5647 } 5648 5649 static int handle_apic_access(struct kvm_vcpu *vcpu) 5650 { 5651 if (likely(fasteoi)) { 5652 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5653 int access_type, offset; 5654 5655 access_type = exit_qualification & APIC_ACCESS_TYPE; 5656 offset = exit_qualification & APIC_ACCESS_OFFSET; 5657 /* 5658 * Sane guest uses MOV to write EOI, with written value 5659 * not cared. So make a short-circuit here by avoiding 5660 * heavy instruction emulation. 5661 */ 5662 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && 5663 (offset == APIC_EOI)) { 5664 kvm_lapic_set_eoi(vcpu); 5665 return kvm_skip_emulated_instruction(vcpu); 5666 } 5667 } 5668 return kvm_emulate_instruction(vcpu, 0); 5669 } 5670 5671 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) 5672 { 5673 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5674 int vector = exit_qualification & 0xff; 5675 5676 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ 5677 kvm_apic_set_eoi_accelerated(vcpu, vector); 5678 return 1; 5679 } 5680 5681 static int handle_apic_write(struct kvm_vcpu *vcpu) 5682 { 5683 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5684 5685 /* 5686 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and 5687 * hardware has done any necessary aliasing, offset adjustments, etc... 5688 * for the access. I.e. the correct value has already been written to 5689 * the vAPIC page for the correct 16-byte chunk. KVM needs only to 5690 * retrieve the register value and emulate the access. 5691 */ 5692 u32 offset = exit_qualification & 0xff0; 5693 5694 kvm_apic_write_nodecode(vcpu, offset); 5695 return 1; 5696 } 5697 5698 static int handle_task_switch(struct kvm_vcpu *vcpu) 5699 { 5700 struct vcpu_vmx *vmx = to_vmx(vcpu); 5701 unsigned long exit_qualification; 5702 bool has_error_code = false; 5703 u32 error_code = 0; 5704 u16 tss_selector; 5705 int reason, type, idt_v, idt_index; 5706 5707 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); 5708 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); 5709 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); 5710 5711 exit_qualification = vmx_get_exit_qual(vcpu); 5712 5713 reason = (u32)exit_qualification >> 30; 5714 if (reason == TASK_SWITCH_GATE && idt_v) { 5715 switch (type) { 5716 case INTR_TYPE_NMI_INTR: 5717 vcpu->arch.nmi_injected = false; 5718 vmx_set_nmi_mask(vcpu, true); 5719 break; 5720 case INTR_TYPE_EXT_INTR: 5721 case INTR_TYPE_SOFT_INTR: 5722 kvm_clear_interrupt_queue(vcpu); 5723 break; 5724 case INTR_TYPE_HARD_EXCEPTION: 5725 if (vmx->idt_vectoring_info & 5726 VECTORING_INFO_DELIVER_CODE_MASK) { 5727 has_error_code = true; 5728 error_code = 5729 vmcs_read32(IDT_VECTORING_ERROR_CODE); 5730 } 5731 fallthrough; 5732 case INTR_TYPE_SOFT_EXCEPTION: 5733 kvm_clear_exception_queue(vcpu); 5734 break; 5735 default: 5736 break; 5737 } 5738 } 5739 tss_selector = exit_qualification; 5740 5741 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && 5742 type != INTR_TYPE_EXT_INTR && 5743 type != INTR_TYPE_NMI_INTR)) 5744 WARN_ON(!skip_emulated_instruction(vcpu)); 5745 5746 /* 5747 * TODO: What about debug traps on tss switch? 5748 * Are we supposed to inject them and update dr6? 5749 */ 5750 return kvm_task_switch(vcpu, tss_selector, 5751 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, 5752 reason, has_error_code, error_code); 5753 } 5754 5755 static int handle_ept_violation(struct kvm_vcpu *vcpu) 5756 { 5757 unsigned long exit_qualification; 5758 gpa_t gpa; 5759 u64 error_code; 5760 5761 exit_qualification = vmx_get_exit_qual(vcpu); 5762 5763 /* 5764 * EPT violation happened while executing iret from NMI, 5765 * "blocked by NMI" bit has to be set before next VM entry. 5766 * There are errata that may cause this bit to not be set: 5767 * AAK134, BY25. 5768 */ 5769 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5770 enable_vnmi && 5771 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5772 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); 5773 5774 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5775 trace_kvm_page_fault(vcpu, gpa, exit_qualification); 5776 5777 /* Is it a read fault? */ 5778 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) 5779 ? PFERR_USER_MASK : 0; 5780 /* Is it a write fault? */ 5781 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) 5782 ? PFERR_WRITE_MASK : 0; 5783 /* Is it a fetch fault? */ 5784 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) 5785 ? PFERR_FETCH_MASK : 0; 5786 /* ept page table entry is present? */ 5787 error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK) 5788 ? PFERR_PRESENT_MASK : 0; 5789 5790 error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ? 5791 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK; 5792 5793 vcpu->arch.exit_qualification = exit_qualification; 5794 5795 /* 5796 * Check that the GPA doesn't exceed physical memory limits, as that is 5797 * a guest page fault. We have to emulate the instruction here, because 5798 * if the illegal address is that of a paging structure, then 5799 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we 5800 * would also use advanced VM-exit information for EPT violations to 5801 * reconstruct the page fault error code. 5802 */ 5803 if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa))) 5804 return kvm_emulate_instruction(vcpu, 0); 5805 5806 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); 5807 } 5808 5809 static int handle_ept_misconfig(struct kvm_vcpu *vcpu) 5810 { 5811 gpa_t gpa; 5812 5813 if (!vmx_can_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0)) 5814 return 1; 5815 5816 /* 5817 * A nested guest cannot optimize MMIO vmexits, because we have an 5818 * nGPA here instead of the required GPA. 5819 */ 5820 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5821 if (!is_guest_mode(vcpu) && 5822 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { 5823 trace_kvm_fast_mmio(gpa); 5824 return kvm_skip_emulated_instruction(vcpu); 5825 } 5826 5827 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); 5828 } 5829 5830 static int handle_nmi_window(struct kvm_vcpu *vcpu) 5831 { 5832 if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm)) 5833 return -EIO; 5834 5835 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 5836 ++vcpu->stat.nmi_window_exits; 5837 kvm_make_request(KVM_REQ_EVENT, vcpu); 5838 5839 return 1; 5840 } 5841 5842 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu) 5843 { 5844 struct vcpu_vmx *vmx = to_vmx(vcpu); 5845 5846 return vmx->emulation_required && !vmx->rmode.vm86_active && 5847 (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected); 5848 } 5849 5850 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) 5851 { 5852 struct vcpu_vmx *vmx = to_vmx(vcpu); 5853 bool intr_window_requested; 5854 unsigned count = 130; 5855 5856 intr_window_requested = exec_controls_get(vmx) & 5857 CPU_BASED_INTR_WINDOW_EXITING; 5858 5859 while (vmx->emulation_required && count-- != 0) { 5860 if (intr_window_requested && !vmx_interrupt_blocked(vcpu)) 5861 return handle_interrupt_window(&vmx->vcpu); 5862 5863 if (kvm_test_request(KVM_REQ_EVENT, vcpu)) 5864 return 1; 5865 5866 if (!kvm_emulate_instruction(vcpu, 0)) 5867 return 0; 5868 5869 if (vmx_emulation_required_with_pending_exception(vcpu)) { 5870 kvm_prepare_emulation_failure_exit(vcpu); 5871 return 0; 5872 } 5873 5874 if (vcpu->arch.halt_request) { 5875 vcpu->arch.halt_request = 0; 5876 return kvm_emulate_halt_noskip(vcpu); 5877 } 5878 5879 /* 5880 * Note, return 1 and not 0, vcpu_run() will invoke 5881 * xfer_to_guest_mode() which will create a proper return 5882 * code. 5883 */ 5884 if (__xfer_to_guest_mode_work_pending()) 5885 return 1; 5886 } 5887 5888 return 1; 5889 } 5890 5891 static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu) 5892 { 5893 if (vmx_emulation_required_with_pending_exception(vcpu)) { 5894 kvm_prepare_emulation_failure_exit(vcpu); 5895 return 0; 5896 } 5897 5898 return 1; 5899 } 5900 5901 static void grow_ple_window(struct kvm_vcpu *vcpu) 5902 { 5903 struct vcpu_vmx *vmx = to_vmx(vcpu); 5904 unsigned int old = vmx->ple_window; 5905 5906 vmx->ple_window = __grow_ple_window(old, ple_window, 5907 ple_window_grow, 5908 ple_window_max); 5909 5910 if (vmx->ple_window != old) { 5911 vmx->ple_window_dirty = true; 5912 trace_kvm_ple_window_update(vcpu->vcpu_id, 5913 vmx->ple_window, old); 5914 } 5915 } 5916 5917 static void shrink_ple_window(struct kvm_vcpu *vcpu) 5918 { 5919 struct vcpu_vmx *vmx = to_vmx(vcpu); 5920 unsigned int old = vmx->ple_window; 5921 5922 vmx->ple_window = __shrink_ple_window(old, ple_window, 5923 ple_window_shrink, 5924 ple_window); 5925 5926 if (vmx->ple_window != old) { 5927 vmx->ple_window_dirty = true; 5928 trace_kvm_ple_window_update(vcpu->vcpu_id, 5929 vmx->ple_window, old); 5930 } 5931 } 5932 5933 /* 5934 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE 5935 * exiting, so only get here on cpu with PAUSE-Loop-Exiting. 5936 */ 5937 static int handle_pause(struct kvm_vcpu *vcpu) 5938 { 5939 if (!kvm_pause_in_guest(vcpu->kvm)) 5940 grow_ple_window(vcpu); 5941 5942 /* 5943 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" 5944 * VM-execution control is ignored if CPL > 0. OTOH, KVM 5945 * never set PAUSE_EXITING and just set PLE if supported, 5946 * so the vcpu must be CPL=0 if it gets a PAUSE exit. 5947 */ 5948 kvm_vcpu_on_spin(vcpu, true); 5949 return kvm_skip_emulated_instruction(vcpu); 5950 } 5951 5952 static int handle_monitor_trap(struct kvm_vcpu *vcpu) 5953 { 5954 return 1; 5955 } 5956 5957 static int handle_invpcid(struct kvm_vcpu *vcpu) 5958 { 5959 u32 vmx_instruction_info; 5960 unsigned long type; 5961 gva_t gva; 5962 struct { 5963 u64 pcid; 5964 u64 gla; 5965 } operand; 5966 int gpr_index; 5967 5968 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 5969 kvm_queue_exception(vcpu, UD_VECTOR); 5970 return 1; 5971 } 5972 5973 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); 5974 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info); 5975 type = kvm_register_read(vcpu, gpr_index); 5976 5977 /* According to the Intel instruction reference, the memory operand 5978 * is read even if it isn't needed (e.g., for type==all) 5979 */ 5980 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu), 5981 vmx_instruction_info, false, 5982 sizeof(operand), &gva)) 5983 return 1; 5984 5985 return kvm_handle_invpcid(vcpu, type, gva); 5986 } 5987 5988 static int handle_pml_full(struct kvm_vcpu *vcpu) 5989 { 5990 unsigned long exit_qualification; 5991 5992 trace_kvm_pml_full(vcpu->vcpu_id); 5993 5994 exit_qualification = vmx_get_exit_qual(vcpu); 5995 5996 /* 5997 * PML buffer FULL happened while executing iret from NMI, 5998 * "blocked by NMI" bit has to be set before next VM entry. 5999 */ 6000 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 6001 enable_vnmi && 6002 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 6003 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 6004 GUEST_INTR_STATE_NMI); 6005 6006 /* 6007 * PML buffer already flushed at beginning of VMEXIT. Nothing to do 6008 * here.., and there's no userspace involvement needed for PML. 6009 */ 6010 return 1; 6011 } 6012 6013 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu) 6014 { 6015 struct vcpu_vmx *vmx = to_vmx(vcpu); 6016 6017 if (!vmx->req_immediate_exit && 6018 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) { 6019 kvm_lapic_expired_hv_timer(vcpu); 6020 return EXIT_FASTPATH_REENTER_GUEST; 6021 } 6022 6023 return EXIT_FASTPATH_NONE; 6024 } 6025 6026 static int handle_preemption_timer(struct kvm_vcpu *vcpu) 6027 { 6028 handle_fastpath_preemption_timer(vcpu); 6029 return 1; 6030 } 6031 6032 /* 6033 * When nested=0, all VMX instruction VM Exits filter here. The handlers 6034 * are overwritten by nested_vmx_setup() when nested=1. 6035 */ 6036 static int handle_vmx_instruction(struct kvm_vcpu *vcpu) 6037 { 6038 kvm_queue_exception(vcpu, UD_VECTOR); 6039 return 1; 6040 } 6041 6042 #ifndef CONFIG_X86_SGX_KVM 6043 static int handle_encls(struct kvm_vcpu *vcpu) 6044 { 6045 /* 6046 * SGX virtualization is disabled. There is no software enable bit for 6047 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent 6048 * the guest from executing ENCLS (when SGX is supported by hardware). 6049 */ 6050 kvm_queue_exception(vcpu, UD_VECTOR); 6051 return 1; 6052 } 6053 #endif /* CONFIG_X86_SGX_KVM */ 6054 6055 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu) 6056 { 6057 /* 6058 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK 6059 * VM-Exits. Unconditionally set the flag here and leave the handling to 6060 * vmx_handle_exit(). 6061 */ 6062 to_vmx(vcpu)->exit_reason.bus_lock_detected = true; 6063 return 1; 6064 } 6065 6066 static int handle_notify(struct kvm_vcpu *vcpu) 6067 { 6068 unsigned long exit_qual = vmx_get_exit_qual(vcpu); 6069 bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID; 6070 6071 ++vcpu->stat.notify_window_exits; 6072 6073 /* 6074 * Notify VM exit happened while executing iret from NMI, 6075 * "blocked by NMI" bit has to be set before next VM entry. 6076 */ 6077 if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI)) 6078 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 6079 GUEST_INTR_STATE_NMI); 6080 6081 if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER || 6082 context_invalid) { 6083 vcpu->run->exit_reason = KVM_EXIT_NOTIFY; 6084 vcpu->run->notify.flags = context_invalid ? 6085 KVM_NOTIFY_CONTEXT_INVALID : 0; 6086 return 0; 6087 } 6088 6089 return 1; 6090 } 6091 6092 /* 6093 * The exit handlers return 1 if the exit was handled fully and guest execution 6094 * may resume. Otherwise they set the kvm_run parameter to indicate what needs 6095 * to be done to userspace and return 0. 6096 */ 6097 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { 6098 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi, 6099 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, 6100 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, 6101 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, 6102 [EXIT_REASON_IO_INSTRUCTION] = handle_io, 6103 [EXIT_REASON_CR_ACCESS] = handle_cr, 6104 [EXIT_REASON_DR_ACCESS] = handle_dr, 6105 [EXIT_REASON_CPUID] = kvm_emulate_cpuid, 6106 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr, 6107 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr, 6108 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window, 6109 [EXIT_REASON_HLT] = kvm_emulate_halt, 6110 [EXIT_REASON_INVD] = kvm_emulate_invd, 6111 [EXIT_REASON_INVLPG] = handle_invlpg, 6112 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc, 6113 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall, 6114 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction, 6115 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction, 6116 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction, 6117 [EXIT_REASON_VMPTRST] = handle_vmx_instruction, 6118 [EXIT_REASON_VMREAD] = handle_vmx_instruction, 6119 [EXIT_REASON_VMRESUME] = handle_vmx_instruction, 6120 [EXIT_REASON_VMWRITE] = handle_vmx_instruction, 6121 [EXIT_REASON_VMOFF] = handle_vmx_instruction, 6122 [EXIT_REASON_VMON] = handle_vmx_instruction, 6123 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, 6124 [EXIT_REASON_APIC_ACCESS] = handle_apic_access, 6125 [EXIT_REASON_APIC_WRITE] = handle_apic_write, 6126 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, 6127 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd, 6128 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv, 6129 [EXIT_REASON_TASK_SWITCH] = handle_task_switch, 6130 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, 6131 [EXIT_REASON_GDTR_IDTR] = handle_desc, 6132 [EXIT_REASON_LDTR_TR] = handle_desc, 6133 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, 6134 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, 6135 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, 6136 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait, 6137 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, 6138 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor, 6139 [EXIT_REASON_INVEPT] = handle_vmx_instruction, 6140 [EXIT_REASON_INVVPID] = handle_vmx_instruction, 6141 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op, 6142 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op, 6143 [EXIT_REASON_PML_FULL] = handle_pml_full, 6144 [EXIT_REASON_INVPCID] = handle_invpcid, 6145 [EXIT_REASON_VMFUNC] = handle_vmx_instruction, 6146 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, 6147 [EXIT_REASON_ENCLS] = handle_encls, 6148 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit, 6149 [EXIT_REASON_NOTIFY] = handle_notify, 6150 }; 6151 6152 static const int kvm_vmx_max_exit_handlers = 6153 ARRAY_SIZE(kvm_vmx_exit_handlers); 6154 6155 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 6156 u64 *info1, u64 *info2, 6157 u32 *intr_info, u32 *error_code) 6158 { 6159 struct vcpu_vmx *vmx = to_vmx(vcpu); 6160 6161 *reason = vmx->exit_reason.full; 6162 *info1 = vmx_get_exit_qual(vcpu); 6163 if (!(vmx->exit_reason.failed_vmentry)) { 6164 *info2 = vmx->idt_vectoring_info; 6165 *intr_info = vmx_get_intr_info(vcpu); 6166 if (is_exception_with_error_code(*intr_info)) 6167 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 6168 else 6169 *error_code = 0; 6170 } else { 6171 *info2 = 0; 6172 *intr_info = 0; 6173 *error_code = 0; 6174 } 6175 } 6176 6177 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) 6178 { 6179 if (vmx->pml_pg) { 6180 __free_page(vmx->pml_pg); 6181 vmx->pml_pg = NULL; 6182 } 6183 } 6184 6185 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) 6186 { 6187 struct vcpu_vmx *vmx = to_vmx(vcpu); 6188 u64 *pml_buf; 6189 u16 pml_idx; 6190 6191 pml_idx = vmcs_read16(GUEST_PML_INDEX); 6192 6193 /* Do nothing if PML buffer is empty */ 6194 if (pml_idx == (PML_ENTITY_NUM - 1)) 6195 return; 6196 6197 /* PML index always points to next available PML buffer entity */ 6198 if (pml_idx >= PML_ENTITY_NUM) 6199 pml_idx = 0; 6200 else 6201 pml_idx++; 6202 6203 pml_buf = page_address(vmx->pml_pg); 6204 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) { 6205 u64 gpa; 6206 6207 gpa = pml_buf[pml_idx]; 6208 WARN_ON(gpa & (PAGE_SIZE - 1)); 6209 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); 6210 } 6211 6212 /* reset PML index */ 6213 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 6214 } 6215 6216 static void vmx_dump_sel(char *name, uint32_t sel) 6217 { 6218 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", 6219 name, vmcs_read16(sel), 6220 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), 6221 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), 6222 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); 6223 } 6224 6225 static void vmx_dump_dtsel(char *name, uint32_t limit) 6226 { 6227 pr_err("%s limit=0x%08x, base=0x%016lx\n", 6228 name, vmcs_read32(limit), 6229 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); 6230 } 6231 6232 static void vmx_dump_msrs(char *name, struct vmx_msrs *m) 6233 { 6234 unsigned int i; 6235 struct vmx_msr_entry *e; 6236 6237 pr_err("MSR %s:\n", name); 6238 for (i = 0, e = m->val; i < m->nr; ++i, ++e) 6239 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value); 6240 } 6241 6242 void dump_vmcs(struct kvm_vcpu *vcpu) 6243 { 6244 struct vcpu_vmx *vmx = to_vmx(vcpu); 6245 u32 vmentry_ctl, vmexit_ctl; 6246 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control; 6247 u64 tertiary_exec_control; 6248 unsigned long cr4; 6249 int efer_slot; 6250 6251 if (!dump_invalid_vmcs) { 6252 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n"); 6253 return; 6254 } 6255 6256 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); 6257 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); 6258 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); 6259 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); 6260 cr4 = vmcs_readl(GUEST_CR4); 6261 6262 if (cpu_has_secondary_exec_ctrls()) 6263 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); 6264 else 6265 secondary_exec_control = 0; 6266 6267 if (cpu_has_tertiary_exec_ctrls()) 6268 tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL); 6269 else 6270 tertiary_exec_control = 0; 6271 6272 pr_err("VMCS %p, last attempted VM-entry on CPU %d\n", 6273 vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu); 6274 pr_err("*** Guest State ***\n"); 6275 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 6276 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), 6277 vmcs_readl(CR0_GUEST_HOST_MASK)); 6278 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 6279 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); 6280 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); 6281 if (cpu_has_vmx_ept()) { 6282 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", 6283 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); 6284 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", 6285 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); 6286 } 6287 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", 6288 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); 6289 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", 6290 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); 6291 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 6292 vmcs_readl(GUEST_SYSENTER_ESP), 6293 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); 6294 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); 6295 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); 6296 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); 6297 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); 6298 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); 6299 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); 6300 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); 6301 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); 6302 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); 6303 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); 6304 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER); 6305 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER) 6306 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER)); 6307 else if (efer_slot >= 0) 6308 pr_err("EFER= 0x%016llx (autoload)\n", 6309 vmx->msr_autoload.guest.val[efer_slot].value); 6310 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE) 6311 pr_err("EFER= 0x%016llx (effective)\n", 6312 vcpu->arch.efer | (EFER_LMA | EFER_LME)); 6313 else 6314 pr_err("EFER= 0x%016llx (effective)\n", 6315 vcpu->arch.efer & ~(EFER_LMA | EFER_LME)); 6316 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT) 6317 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT)); 6318 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", 6319 vmcs_read64(GUEST_IA32_DEBUGCTL), 6320 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); 6321 if (cpu_has_load_perf_global_ctrl() && 6322 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) 6323 pr_err("PerfGlobCtl = 0x%016llx\n", 6324 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); 6325 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) 6326 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); 6327 pr_err("Interruptibility = %08x ActivityState = %08x\n", 6328 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), 6329 vmcs_read32(GUEST_ACTIVITY_STATE)); 6330 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) 6331 pr_err("InterruptStatus = %04x\n", 6332 vmcs_read16(GUEST_INTR_STATUS)); 6333 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0) 6334 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest); 6335 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0) 6336 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest); 6337 6338 pr_err("*** Host State ***\n"); 6339 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", 6340 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); 6341 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", 6342 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), 6343 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), 6344 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), 6345 vmcs_read16(HOST_TR_SELECTOR)); 6346 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", 6347 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), 6348 vmcs_readl(HOST_TR_BASE)); 6349 pr_err("GDTBase=%016lx IDTBase=%016lx\n", 6350 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); 6351 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", 6352 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), 6353 vmcs_readl(HOST_CR4)); 6354 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 6355 vmcs_readl(HOST_IA32_SYSENTER_ESP), 6356 vmcs_read32(HOST_IA32_SYSENTER_CS), 6357 vmcs_readl(HOST_IA32_SYSENTER_EIP)); 6358 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER) 6359 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER)); 6360 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT) 6361 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT)); 6362 if (cpu_has_load_perf_global_ctrl() && 6363 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) 6364 pr_err("PerfGlobCtl = 0x%016llx\n", 6365 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); 6366 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0) 6367 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host); 6368 6369 pr_err("*** Control State ***\n"); 6370 pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n", 6371 cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control); 6372 pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n", 6373 pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl); 6374 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", 6375 vmcs_read32(EXCEPTION_BITMAP), 6376 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), 6377 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); 6378 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", 6379 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 6380 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), 6381 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); 6382 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", 6383 vmcs_read32(VM_EXIT_INTR_INFO), 6384 vmcs_read32(VM_EXIT_INTR_ERROR_CODE), 6385 vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); 6386 pr_err(" reason=%08x qualification=%016lx\n", 6387 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); 6388 pr_err("IDTVectoring: info=%08x errcode=%08x\n", 6389 vmcs_read32(IDT_VECTORING_INFO_FIELD), 6390 vmcs_read32(IDT_VECTORING_ERROR_CODE)); 6391 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); 6392 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) 6393 pr_err("TSC Multiplier = 0x%016llx\n", 6394 vmcs_read64(TSC_MULTIPLIER)); 6395 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) { 6396 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) { 6397 u16 status = vmcs_read16(GUEST_INTR_STATUS); 6398 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff); 6399 } 6400 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); 6401 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) 6402 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR)); 6403 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR)); 6404 } 6405 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) 6406 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); 6407 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) 6408 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); 6409 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) 6410 pr_err("PLE Gap=%08x Window=%08x\n", 6411 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); 6412 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) 6413 pr_err("Virtual processor ID = 0x%04x\n", 6414 vmcs_read16(VIRTUAL_PROCESSOR_ID)); 6415 } 6416 6417 /* 6418 * The guest has exited. See if we can fix it or if we need userspace 6419 * assistance. 6420 */ 6421 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6422 { 6423 struct vcpu_vmx *vmx = to_vmx(vcpu); 6424 union vmx_exit_reason exit_reason = vmx->exit_reason; 6425 u32 vectoring_info = vmx->idt_vectoring_info; 6426 u16 exit_handler_index; 6427 6428 /* 6429 * Flush logged GPAs PML buffer, this will make dirty_bitmap more 6430 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before 6431 * querying dirty_bitmap, we only need to kick all vcpus out of guest 6432 * mode as if vcpus is in root mode, the PML buffer must has been 6433 * flushed already. Note, PML is never enabled in hardware while 6434 * running L2. 6435 */ 6436 if (enable_pml && !is_guest_mode(vcpu)) 6437 vmx_flush_pml_buffer(vcpu); 6438 6439 /* 6440 * KVM should never reach this point with a pending nested VM-Enter. 6441 * More specifically, short-circuiting VM-Entry to emulate L2 due to 6442 * invalid guest state should never happen as that means KVM knowingly 6443 * allowed a nested VM-Enter with an invalid vmcs12. More below. 6444 */ 6445 if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm)) 6446 return -EIO; 6447 6448 if (is_guest_mode(vcpu)) { 6449 /* 6450 * PML is never enabled when running L2, bail immediately if a 6451 * PML full exit occurs as something is horribly wrong. 6452 */ 6453 if (exit_reason.basic == EXIT_REASON_PML_FULL) 6454 goto unexpected_vmexit; 6455 6456 /* 6457 * The host physical addresses of some pages of guest memory 6458 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC 6459 * Page). The CPU may write to these pages via their host 6460 * physical address while L2 is running, bypassing any 6461 * address-translation-based dirty tracking (e.g. EPT write 6462 * protection). 6463 * 6464 * Mark them dirty on every exit from L2 to prevent them from 6465 * getting out of sync with dirty tracking. 6466 */ 6467 nested_mark_vmcs12_pages_dirty(vcpu); 6468 6469 /* 6470 * Synthesize a triple fault if L2 state is invalid. In normal 6471 * operation, nested VM-Enter rejects any attempt to enter L2 6472 * with invalid state. However, those checks are skipped if 6473 * state is being stuffed via RSM or KVM_SET_NESTED_STATE. If 6474 * L2 state is invalid, it means either L1 modified SMRAM state 6475 * or userspace provided bad state. Synthesize TRIPLE_FAULT as 6476 * doing so is architecturally allowed in the RSM case, and is 6477 * the least awful solution for the userspace case without 6478 * risking false positives. 6479 */ 6480 if (vmx->emulation_required) { 6481 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0); 6482 return 1; 6483 } 6484 6485 if (nested_vmx_reflect_vmexit(vcpu)) 6486 return 1; 6487 } 6488 6489 /* If guest state is invalid, start emulating. L2 is handled above. */ 6490 if (vmx->emulation_required) 6491 return handle_invalid_guest_state(vcpu); 6492 6493 if (exit_reason.failed_vmentry) { 6494 dump_vmcs(vcpu); 6495 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 6496 vcpu->run->fail_entry.hardware_entry_failure_reason 6497 = exit_reason.full; 6498 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 6499 return 0; 6500 } 6501 6502 if (unlikely(vmx->fail)) { 6503 dump_vmcs(vcpu); 6504 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 6505 vcpu->run->fail_entry.hardware_entry_failure_reason 6506 = vmcs_read32(VM_INSTRUCTION_ERROR); 6507 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 6508 return 0; 6509 } 6510 6511 /* 6512 * Note: 6513 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by 6514 * delivery event since it indicates guest is accessing MMIO. 6515 * The vm-exit can be triggered again after return to guest that 6516 * will cause infinite loop. 6517 */ 6518 if ((vectoring_info & VECTORING_INFO_VALID_MASK) && 6519 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI && 6520 exit_reason.basic != EXIT_REASON_EPT_VIOLATION && 6521 exit_reason.basic != EXIT_REASON_PML_FULL && 6522 exit_reason.basic != EXIT_REASON_APIC_ACCESS && 6523 exit_reason.basic != EXIT_REASON_TASK_SWITCH && 6524 exit_reason.basic != EXIT_REASON_NOTIFY)) { 6525 int ndata = 3; 6526 6527 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6528 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; 6529 vcpu->run->internal.data[0] = vectoring_info; 6530 vcpu->run->internal.data[1] = exit_reason.full; 6531 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification; 6532 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) { 6533 vcpu->run->internal.data[ndata++] = 6534 vmcs_read64(GUEST_PHYSICAL_ADDRESS); 6535 } 6536 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu; 6537 vcpu->run->internal.ndata = ndata; 6538 return 0; 6539 } 6540 6541 if (unlikely(!enable_vnmi && 6542 vmx->loaded_vmcs->soft_vnmi_blocked)) { 6543 if (!vmx_interrupt_blocked(vcpu)) { 6544 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6545 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && 6546 vcpu->arch.nmi_pending) { 6547 /* 6548 * This CPU don't support us in finding the end of an 6549 * NMI-blocked window if the guest runs with IRQs 6550 * disabled. So we pull the trigger after 1 s of 6551 * futile waiting, but inform the user about this. 6552 */ 6553 printk(KERN_WARNING "%s: Breaking out of NMI-blocked " 6554 "state on VCPU %d after 1 s timeout\n", 6555 __func__, vcpu->vcpu_id); 6556 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6557 } 6558 } 6559 6560 if (exit_fastpath != EXIT_FASTPATH_NONE) 6561 return 1; 6562 6563 if (exit_reason.basic >= kvm_vmx_max_exit_handlers) 6564 goto unexpected_vmexit; 6565 #ifdef CONFIG_RETPOLINE 6566 if (exit_reason.basic == EXIT_REASON_MSR_WRITE) 6567 return kvm_emulate_wrmsr(vcpu); 6568 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER) 6569 return handle_preemption_timer(vcpu); 6570 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW) 6571 return handle_interrupt_window(vcpu); 6572 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6573 return handle_external_interrupt(vcpu); 6574 else if (exit_reason.basic == EXIT_REASON_HLT) 6575 return kvm_emulate_halt(vcpu); 6576 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) 6577 return handle_ept_misconfig(vcpu); 6578 #endif 6579 6580 exit_handler_index = array_index_nospec((u16)exit_reason.basic, 6581 kvm_vmx_max_exit_handlers); 6582 if (!kvm_vmx_exit_handlers[exit_handler_index]) 6583 goto unexpected_vmexit; 6584 6585 return kvm_vmx_exit_handlers[exit_handler_index](vcpu); 6586 6587 unexpected_vmexit: 6588 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", 6589 exit_reason.full); 6590 dump_vmcs(vcpu); 6591 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6592 vcpu->run->internal.suberror = 6593 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 6594 vcpu->run->internal.ndata = 2; 6595 vcpu->run->internal.data[0] = exit_reason.full; 6596 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 6597 return 0; 6598 } 6599 6600 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6601 { 6602 int ret = __vmx_handle_exit(vcpu, exit_fastpath); 6603 6604 /* 6605 * Exit to user space when bus lock detected to inform that there is 6606 * a bus lock in guest. 6607 */ 6608 if (to_vmx(vcpu)->exit_reason.bus_lock_detected) { 6609 if (ret > 0) 6610 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK; 6611 6612 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK; 6613 return 0; 6614 } 6615 return ret; 6616 } 6617 6618 /* 6619 * Software based L1D cache flush which is used when microcode providing 6620 * the cache control MSR is not loaded. 6621 * 6622 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to 6623 * flush it is required to read in 64 KiB because the replacement algorithm 6624 * is not exactly LRU. This could be sized at runtime via topology 6625 * information but as all relevant affected CPUs have 32KiB L1D cache size 6626 * there is no point in doing so. 6627 */ 6628 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu) 6629 { 6630 int size = PAGE_SIZE << L1D_CACHE_ORDER; 6631 6632 /* 6633 * This code is only executed when the flush mode is 'cond' or 6634 * 'always' 6635 */ 6636 if (static_branch_likely(&vmx_l1d_flush_cond)) { 6637 bool flush_l1d; 6638 6639 /* 6640 * Clear the per-vcpu flush bit, it gets set again 6641 * either from vcpu_run() or from one of the unsafe 6642 * VMEXIT handlers. 6643 */ 6644 flush_l1d = vcpu->arch.l1tf_flush_l1d; 6645 vcpu->arch.l1tf_flush_l1d = false; 6646 6647 /* 6648 * Clear the per-cpu flush bit, it gets set again from 6649 * the interrupt handlers. 6650 */ 6651 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); 6652 kvm_clear_cpu_l1tf_flush_l1d(); 6653 6654 if (!flush_l1d) 6655 return; 6656 } 6657 6658 vcpu->stat.l1d_flush++; 6659 6660 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { 6661 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 6662 return; 6663 } 6664 6665 asm volatile( 6666 /* First ensure the pages are in the TLB */ 6667 "xorl %%eax, %%eax\n" 6668 ".Lpopulate_tlb:\n\t" 6669 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6670 "addl $4096, %%eax\n\t" 6671 "cmpl %%eax, %[size]\n\t" 6672 "jne .Lpopulate_tlb\n\t" 6673 "xorl %%eax, %%eax\n\t" 6674 "cpuid\n\t" 6675 /* Now fill the cache */ 6676 "xorl %%eax, %%eax\n" 6677 ".Lfill_cache:\n" 6678 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6679 "addl $64, %%eax\n\t" 6680 "cmpl %%eax, %[size]\n\t" 6681 "jne .Lfill_cache\n\t" 6682 "lfence\n" 6683 :: [flush_pages] "r" (vmx_l1d_flush_pages), 6684 [size] "r" (size) 6685 : "eax", "ebx", "ecx", "edx"); 6686 } 6687 6688 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 6689 { 6690 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 6691 int tpr_threshold; 6692 6693 if (is_guest_mode(vcpu) && 6694 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) 6695 return; 6696 6697 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr; 6698 if (is_guest_mode(vcpu)) 6699 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold; 6700 else 6701 vmcs_write32(TPR_THRESHOLD, tpr_threshold); 6702 } 6703 6704 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) 6705 { 6706 struct vcpu_vmx *vmx = to_vmx(vcpu); 6707 u32 sec_exec_control; 6708 6709 if (!lapic_in_kernel(vcpu)) 6710 return; 6711 6712 if (!flexpriority_enabled && 6713 !cpu_has_vmx_virtualize_x2apic_mode()) 6714 return; 6715 6716 /* Postpone execution until vmcs01 is the current VMCS. */ 6717 if (is_guest_mode(vcpu)) { 6718 vmx->nested.change_vmcs01_virtual_apic_mode = true; 6719 return; 6720 } 6721 6722 sec_exec_control = secondary_exec_controls_get(vmx); 6723 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 6724 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); 6725 6726 switch (kvm_get_apic_mode(vcpu)) { 6727 case LAPIC_MODE_INVALID: 6728 WARN_ONCE(true, "Invalid local APIC state"); 6729 break; 6730 case LAPIC_MODE_DISABLED: 6731 break; 6732 case LAPIC_MODE_XAPIC: 6733 if (flexpriority_enabled) { 6734 sec_exec_control |= 6735 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 6736 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 6737 6738 /* 6739 * Flush the TLB, reloading the APIC access page will 6740 * only do so if its physical address has changed, but 6741 * the guest may have inserted a non-APIC mapping into 6742 * the TLB while the APIC access page was disabled. 6743 */ 6744 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 6745 } 6746 break; 6747 case LAPIC_MODE_X2APIC: 6748 if (cpu_has_vmx_virtualize_x2apic_mode()) 6749 sec_exec_control |= 6750 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 6751 break; 6752 } 6753 secondary_exec_controls_set(vmx, sec_exec_control); 6754 6755 vmx_update_msr_bitmap_x2apic(vcpu); 6756 } 6757 6758 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu) 6759 { 6760 const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT; 6761 struct kvm *kvm = vcpu->kvm; 6762 struct kvm_memslots *slots = kvm_memslots(kvm); 6763 struct kvm_memory_slot *slot; 6764 unsigned long mmu_seq; 6765 kvm_pfn_t pfn; 6766 6767 /* Defer reload until vmcs01 is the current VMCS. */ 6768 if (is_guest_mode(vcpu)) { 6769 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true; 6770 return; 6771 } 6772 6773 if (!(secondary_exec_controls_get(to_vmx(vcpu)) & 6774 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 6775 return; 6776 6777 /* 6778 * Grab the memslot so that the hva lookup for the mmu_notifier retry 6779 * is guaranteed to use the same memslot as the pfn lookup, i.e. rely 6780 * on the pfn lookup's validation of the memslot to ensure a valid hva 6781 * is used for the retry check. 6782 */ 6783 slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT); 6784 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 6785 return; 6786 6787 /* 6788 * Ensure that the mmu_notifier sequence count is read before KVM 6789 * retrieves the pfn from the primary MMU. Note, the memslot is 6790 * protected by SRCU, not the mmu_notifier. Pairs with the smp_wmb() 6791 * in kvm_mmu_invalidate_end(). 6792 */ 6793 mmu_seq = kvm->mmu_invalidate_seq; 6794 smp_rmb(); 6795 6796 /* 6797 * No need to retry if the memslot does not exist or is invalid. KVM 6798 * controls the APIC-access page memslot, and only deletes the memslot 6799 * if APICv is permanently inhibited, i.e. the memslot won't reappear. 6800 */ 6801 pfn = gfn_to_pfn_memslot(slot, gfn); 6802 if (is_error_noslot_pfn(pfn)) 6803 return; 6804 6805 read_lock(&vcpu->kvm->mmu_lock); 6806 if (mmu_invalidate_retry_hva(kvm, mmu_seq, 6807 gfn_to_hva_memslot(slot, gfn))) { 6808 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 6809 read_unlock(&vcpu->kvm->mmu_lock); 6810 goto out; 6811 } 6812 6813 vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn)); 6814 read_unlock(&vcpu->kvm->mmu_lock); 6815 6816 /* 6817 * No need for a manual TLB flush at this point, KVM has already done a 6818 * flush if there were SPTEs pointing at the previous page. 6819 */ 6820 out: 6821 /* 6822 * Do not pin apic access page in memory, the MMU notifier 6823 * will call us again if it is migrated or swapped out. 6824 */ 6825 kvm_release_pfn_clean(pfn); 6826 } 6827 6828 static void vmx_hwapic_isr_update(int max_isr) 6829 { 6830 u16 status; 6831 u8 old; 6832 6833 if (max_isr == -1) 6834 max_isr = 0; 6835 6836 status = vmcs_read16(GUEST_INTR_STATUS); 6837 old = status >> 8; 6838 if (max_isr != old) { 6839 status &= 0xff; 6840 status |= max_isr << 8; 6841 vmcs_write16(GUEST_INTR_STATUS, status); 6842 } 6843 } 6844 6845 static void vmx_set_rvi(int vector) 6846 { 6847 u16 status; 6848 u8 old; 6849 6850 if (vector == -1) 6851 vector = 0; 6852 6853 status = vmcs_read16(GUEST_INTR_STATUS); 6854 old = (u8)status & 0xff; 6855 if ((u8)vector != old) { 6856 status &= ~0xff; 6857 status |= (u8)vector; 6858 vmcs_write16(GUEST_INTR_STATUS, status); 6859 } 6860 } 6861 6862 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) 6863 { 6864 /* 6865 * When running L2, updating RVI is only relevant when 6866 * vmcs12 virtual-interrupt-delivery enabled. 6867 * However, it can be enabled only when L1 also 6868 * intercepts external-interrupts and in that case 6869 * we should not update vmcs02 RVI but instead intercept 6870 * interrupt. Therefore, do nothing when running L2. 6871 */ 6872 if (!is_guest_mode(vcpu)) 6873 vmx_set_rvi(max_irr); 6874 } 6875 6876 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) 6877 { 6878 struct vcpu_vmx *vmx = to_vmx(vcpu); 6879 int max_irr; 6880 bool got_posted_interrupt; 6881 6882 if (KVM_BUG_ON(!enable_apicv, vcpu->kvm)) 6883 return -EIO; 6884 6885 if (pi_test_on(&vmx->pi_desc)) { 6886 pi_clear_on(&vmx->pi_desc); 6887 /* 6888 * IOMMU can write to PID.ON, so the barrier matters even on UP. 6889 * But on x86 this is just a compiler barrier anyway. 6890 */ 6891 smp_mb__after_atomic(); 6892 got_posted_interrupt = 6893 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr); 6894 } else { 6895 max_irr = kvm_lapic_find_highest_irr(vcpu); 6896 got_posted_interrupt = false; 6897 } 6898 6899 /* 6900 * Newly recognized interrupts are injected via either virtual interrupt 6901 * delivery (RVI) or KVM_REQ_EVENT. Virtual interrupt delivery is 6902 * disabled in two cases: 6903 * 6904 * 1) If L2 is running and the vCPU has a new pending interrupt. If L1 6905 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a 6906 * VM-Exit to L1. If L1 doesn't want to exit, the interrupt is injected 6907 * into L2, but KVM doesn't use virtual interrupt delivery to inject 6908 * interrupts into L2, and so KVM_REQ_EVENT is again needed. 6909 * 6910 * 2) If APICv is disabled for this vCPU, assigned devices may still 6911 * attempt to post interrupts. The posted interrupt vector will cause 6912 * a VM-Exit and the subsequent entry will call sync_pir_to_irr. 6913 */ 6914 if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu)) 6915 vmx_set_rvi(max_irr); 6916 else if (got_posted_interrupt) 6917 kvm_make_request(KVM_REQ_EVENT, vcpu); 6918 6919 return max_irr; 6920 } 6921 6922 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) 6923 { 6924 if (!kvm_vcpu_apicv_active(vcpu)) 6925 return; 6926 6927 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); 6928 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); 6929 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); 6930 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); 6931 } 6932 6933 static void vmx_apicv_pre_state_restore(struct kvm_vcpu *vcpu) 6934 { 6935 struct vcpu_vmx *vmx = to_vmx(vcpu); 6936 6937 pi_clear_on(&vmx->pi_desc); 6938 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); 6939 } 6940 6941 void vmx_do_interrupt_irqoff(unsigned long entry); 6942 void vmx_do_nmi_irqoff(void); 6943 6944 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu) 6945 { 6946 /* 6947 * Save xfd_err to guest_fpu before interrupt is enabled, so the 6948 * MSR value is not clobbered by the host activity before the guest 6949 * has chance to consume it. 6950 * 6951 * Do not blindly read xfd_err here, since this exception might 6952 * be caused by L1 interception on a platform which doesn't 6953 * support xfd at all. 6954 * 6955 * Do it conditionally upon guest_fpu::xfd. xfd_err matters 6956 * only when xfd contains a non-zero value. 6957 * 6958 * Queuing exception is done in vmx_handle_exit. See comment there. 6959 */ 6960 if (vcpu->arch.guest_fpu.fpstate->xfd) 6961 rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 6962 } 6963 6964 static void handle_exception_irqoff(struct vcpu_vmx *vmx) 6965 { 6966 u32 intr_info = vmx_get_intr_info(&vmx->vcpu); 6967 6968 /* if exit due to PF check for async PF */ 6969 if (is_page_fault(intr_info)) 6970 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags(); 6971 /* if exit due to NM, handle before interrupts are enabled */ 6972 else if (is_nm_fault(intr_info)) 6973 handle_nm_fault_irqoff(&vmx->vcpu); 6974 /* Handle machine checks before interrupts are enabled */ 6975 else if (is_machine_check(intr_info)) 6976 kvm_machine_check(); 6977 } 6978 6979 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu) 6980 { 6981 u32 intr_info = vmx_get_intr_info(vcpu); 6982 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK; 6983 gate_desc *desc = (gate_desc *)host_idt_base + vector; 6984 6985 if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm, 6986 "unexpected VM-Exit interrupt info: 0x%x", intr_info)) 6987 return; 6988 6989 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 6990 vmx_do_interrupt_irqoff(gate_offset(desc)); 6991 kvm_after_interrupt(vcpu); 6992 6993 vcpu->arch.at_instruction_boundary = true; 6994 } 6995 6996 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu) 6997 { 6998 struct vcpu_vmx *vmx = to_vmx(vcpu); 6999 7000 if (vmx->emulation_required) 7001 return; 7002 7003 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 7004 handle_external_interrupt_irqoff(vcpu); 7005 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI) 7006 handle_exception_irqoff(vmx); 7007 } 7008 7009 /* 7010 * The kvm parameter can be NULL (module initialization, or invocation before 7011 * VM creation). Be sure to check the kvm parameter before using it. 7012 */ 7013 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index) 7014 { 7015 switch (index) { 7016 case MSR_IA32_SMBASE: 7017 if (!IS_ENABLED(CONFIG_KVM_SMM)) 7018 return false; 7019 /* 7020 * We cannot do SMM unless we can run the guest in big 7021 * real mode. 7022 */ 7023 return enable_unrestricted_guest || emulate_invalid_guest_state; 7024 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 7025 return nested; 7026 case MSR_AMD64_VIRT_SPEC_CTRL: 7027 case MSR_AMD64_TSC_RATIO: 7028 /* This is AMD only. */ 7029 return false; 7030 default: 7031 return true; 7032 } 7033 } 7034 7035 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) 7036 { 7037 u32 exit_intr_info; 7038 bool unblock_nmi; 7039 u8 vector; 7040 bool idtv_info_valid; 7041 7042 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; 7043 7044 if (enable_vnmi) { 7045 if (vmx->loaded_vmcs->nmi_known_unmasked) 7046 return; 7047 7048 exit_intr_info = vmx_get_intr_info(&vmx->vcpu); 7049 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; 7050 vector = exit_intr_info & INTR_INFO_VECTOR_MASK; 7051 /* 7052 * SDM 3: 27.7.1.2 (September 2008) 7053 * Re-set bit "block by NMI" before VM entry if vmexit caused by 7054 * a guest IRET fault. 7055 * SDM 3: 23.2.2 (September 2008) 7056 * Bit 12 is undefined in any of the following cases: 7057 * If the VM exit sets the valid bit in the IDT-vectoring 7058 * information field. 7059 * If the VM exit is due to a double fault. 7060 */ 7061 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && 7062 vector != DF_VECTOR && !idtv_info_valid) 7063 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 7064 GUEST_INTR_STATE_NMI); 7065 else 7066 vmx->loaded_vmcs->nmi_known_unmasked = 7067 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) 7068 & GUEST_INTR_STATE_NMI); 7069 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) 7070 vmx->loaded_vmcs->vnmi_blocked_time += 7071 ktime_to_ns(ktime_sub(ktime_get(), 7072 vmx->loaded_vmcs->entry_time)); 7073 } 7074 7075 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, 7076 u32 idt_vectoring_info, 7077 int instr_len_field, 7078 int error_code_field) 7079 { 7080 u8 vector; 7081 int type; 7082 bool idtv_info_valid; 7083 7084 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; 7085 7086 vcpu->arch.nmi_injected = false; 7087 kvm_clear_exception_queue(vcpu); 7088 kvm_clear_interrupt_queue(vcpu); 7089 7090 if (!idtv_info_valid) 7091 return; 7092 7093 kvm_make_request(KVM_REQ_EVENT, vcpu); 7094 7095 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; 7096 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; 7097 7098 switch (type) { 7099 case INTR_TYPE_NMI_INTR: 7100 vcpu->arch.nmi_injected = true; 7101 /* 7102 * SDM 3: 27.7.1.2 (September 2008) 7103 * Clear bit "block by NMI" before VM entry if a NMI 7104 * delivery faulted. 7105 */ 7106 vmx_set_nmi_mask(vcpu, false); 7107 break; 7108 case INTR_TYPE_SOFT_EXCEPTION: 7109 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 7110 fallthrough; 7111 case INTR_TYPE_HARD_EXCEPTION: 7112 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { 7113 u32 err = vmcs_read32(error_code_field); 7114 kvm_requeue_exception_e(vcpu, vector, err); 7115 } else 7116 kvm_requeue_exception(vcpu, vector); 7117 break; 7118 case INTR_TYPE_SOFT_INTR: 7119 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 7120 fallthrough; 7121 case INTR_TYPE_EXT_INTR: 7122 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); 7123 break; 7124 default: 7125 break; 7126 } 7127 } 7128 7129 static void vmx_complete_interrupts(struct vcpu_vmx *vmx) 7130 { 7131 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, 7132 VM_EXIT_INSTRUCTION_LEN, 7133 IDT_VECTORING_ERROR_CODE); 7134 } 7135 7136 static void vmx_cancel_injection(struct kvm_vcpu *vcpu) 7137 { 7138 __vmx_complete_interrupts(vcpu, 7139 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 7140 VM_ENTRY_INSTRUCTION_LEN, 7141 VM_ENTRY_EXCEPTION_ERROR_CODE); 7142 7143 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); 7144 } 7145 7146 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) 7147 { 7148 int i, nr_msrs; 7149 struct perf_guest_switch_msr *msrs; 7150 struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu); 7151 7152 pmu->host_cross_mapped_mask = 0; 7153 if (pmu->pebs_enable & pmu->global_ctrl) 7154 intel_pmu_cross_mapped_check(pmu); 7155 7156 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */ 7157 msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu); 7158 if (!msrs) 7159 return; 7160 7161 for (i = 0; i < nr_msrs; i++) 7162 if (msrs[i].host == msrs[i].guest) 7163 clear_atomic_switch_msr(vmx, msrs[i].msr); 7164 else 7165 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, 7166 msrs[i].host, false); 7167 } 7168 7169 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu) 7170 { 7171 struct vcpu_vmx *vmx = to_vmx(vcpu); 7172 u64 tscl; 7173 u32 delta_tsc; 7174 7175 if (vmx->req_immediate_exit) { 7176 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0); 7177 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 7178 } else if (vmx->hv_deadline_tsc != -1) { 7179 tscl = rdtsc(); 7180 if (vmx->hv_deadline_tsc > tscl) 7181 /* set_hv_timer ensures the delta fits in 32-bits */ 7182 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> 7183 cpu_preemption_timer_multi); 7184 else 7185 delta_tsc = 0; 7186 7187 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc); 7188 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 7189 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) { 7190 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1); 7191 vmx->loaded_vmcs->hv_timer_soft_disabled = true; 7192 } 7193 } 7194 7195 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp) 7196 { 7197 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) { 7198 vmx->loaded_vmcs->host_state.rsp = host_rsp; 7199 vmcs_writel(HOST_RSP, host_rsp); 7200 } 7201 } 7202 7203 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx, 7204 unsigned int flags) 7205 { 7206 u64 hostval = this_cpu_read(x86_spec_ctrl_current); 7207 7208 if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) 7209 return; 7210 7211 if (flags & VMX_RUN_SAVE_SPEC_CTRL) 7212 vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL); 7213 7214 /* 7215 * If the guest/host SPEC_CTRL values differ, restore the host value. 7216 * 7217 * For legacy IBRS, the IBRS bit always needs to be written after 7218 * transitioning from a less privileged predictor mode, regardless of 7219 * whether the guest/host values differ. 7220 */ 7221 if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) || 7222 vmx->spec_ctrl != hostval) 7223 native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval); 7224 7225 barrier_nospec(); 7226 } 7227 7228 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 7229 { 7230 switch (to_vmx(vcpu)->exit_reason.basic) { 7231 case EXIT_REASON_MSR_WRITE: 7232 return handle_fastpath_set_msr_irqoff(vcpu); 7233 case EXIT_REASON_PREEMPTION_TIMER: 7234 return handle_fastpath_preemption_timer(vcpu); 7235 default: 7236 return EXIT_FASTPATH_NONE; 7237 } 7238 } 7239 7240 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu, 7241 unsigned int flags) 7242 { 7243 struct vcpu_vmx *vmx = to_vmx(vcpu); 7244 7245 guest_state_enter_irqoff(); 7246 7247 /* 7248 * L1D Flush includes CPU buffer clear to mitigate MDS, but VERW 7249 * mitigation for MDS is done late in VMentry and is still 7250 * executed in spite of L1D Flush. This is because an extra VERW 7251 * should not matter much after the big hammer L1D Flush. 7252 */ 7253 if (static_branch_unlikely(&vmx_l1d_should_flush)) 7254 vmx_l1d_flush(vcpu); 7255 else if (static_branch_unlikely(&mmio_stale_data_clear) && 7256 kvm_arch_has_assigned_device(vcpu->kvm)) 7257 mds_clear_cpu_buffers(); 7258 7259 vmx_disable_fb_clear(vmx); 7260 7261 if (vcpu->arch.cr2 != native_read_cr2()) 7262 native_write_cr2(vcpu->arch.cr2); 7263 7264 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs, 7265 flags); 7266 7267 vcpu->arch.cr2 = native_read_cr2(); 7268 vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET; 7269 7270 vmx->idt_vectoring_info = 0; 7271 7272 vmx_enable_fb_clear(vmx); 7273 7274 if (unlikely(vmx->fail)) { 7275 vmx->exit_reason.full = 0xdead; 7276 goto out; 7277 } 7278 7279 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON); 7280 if (likely(!vmx->exit_reason.failed_vmentry)) 7281 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); 7282 7283 if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI && 7284 is_nmi(vmx_get_intr_info(vcpu))) { 7285 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI); 7286 vmx_do_nmi_irqoff(); 7287 kvm_after_interrupt(vcpu); 7288 } 7289 7290 out: 7291 guest_state_exit_irqoff(); 7292 } 7293 7294 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu) 7295 { 7296 struct vcpu_vmx *vmx = to_vmx(vcpu); 7297 unsigned long cr3, cr4; 7298 7299 /* Record the guest's net vcpu time for enforced NMI injections. */ 7300 if (unlikely(!enable_vnmi && 7301 vmx->loaded_vmcs->soft_vnmi_blocked)) 7302 vmx->loaded_vmcs->entry_time = ktime_get(); 7303 7304 /* 7305 * Don't enter VMX if guest state is invalid, let the exit handler 7306 * start emulation until we arrive back to a valid state. Synthesize a 7307 * consistency check VM-Exit due to invalid guest state and bail. 7308 */ 7309 if (unlikely(vmx->emulation_required)) { 7310 vmx->fail = 0; 7311 7312 vmx->exit_reason.full = EXIT_REASON_INVALID_STATE; 7313 vmx->exit_reason.failed_vmentry = 1; 7314 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1); 7315 vmx->exit_qualification = ENTRY_FAIL_DEFAULT; 7316 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2); 7317 vmx->exit_intr_info = 0; 7318 return EXIT_FASTPATH_NONE; 7319 } 7320 7321 trace_kvm_entry(vcpu); 7322 7323 if (vmx->ple_window_dirty) { 7324 vmx->ple_window_dirty = false; 7325 vmcs_write32(PLE_WINDOW, vmx->ple_window); 7326 } 7327 7328 /* 7329 * We did this in prepare_switch_to_guest, because it needs to 7330 * be within srcu_read_lock. 7331 */ 7332 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync); 7333 7334 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP)) 7335 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); 7336 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP)) 7337 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); 7338 vcpu->arch.regs_dirty = 0; 7339 7340 /* 7341 * Refresh vmcs.HOST_CR3 if necessary. This must be done immediately 7342 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time 7343 * it switches back to the current->mm, which can occur in KVM context 7344 * when switching to a temporary mm to patch kernel code, e.g. if KVM 7345 * toggles a static key while handling a VM-Exit. 7346 */ 7347 cr3 = __get_current_cr3_fast(); 7348 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { 7349 vmcs_writel(HOST_CR3, cr3); 7350 vmx->loaded_vmcs->host_state.cr3 = cr3; 7351 } 7352 7353 cr4 = cr4_read_shadow(); 7354 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { 7355 vmcs_writel(HOST_CR4, cr4); 7356 vmx->loaded_vmcs->host_state.cr4 = cr4; 7357 } 7358 7359 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */ 7360 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 7361 set_debugreg(vcpu->arch.dr6, 6); 7362 7363 /* When single-stepping over STI and MOV SS, we must clear the 7364 * corresponding interruptibility bits in the guest state. Otherwise 7365 * vmentry fails as it then expects bit 14 (BS) in pending debug 7366 * exceptions being set, but that's not correct for the guest debugging 7367 * case. */ 7368 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 7369 vmx_set_interrupt_shadow(vcpu, 0); 7370 7371 kvm_load_guest_xsave_state(vcpu); 7372 7373 pt_guest_enter(vmx); 7374 7375 atomic_switch_perf_msrs(vmx); 7376 if (intel_pmu_lbr_is_enabled(vcpu)) 7377 vmx_passthrough_lbr_msrs(vcpu); 7378 7379 if (enable_preemption_timer) 7380 vmx_update_hv_timer(vcpu); 7381 7382 kvm_wait_lapic_expire(vcpu); 7383 7384 /* The actual VMENTER/EXIT is in the .noinstr.text section. */ 7385 vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx)); 7386 7387 /* All fields are clean at this point */ 7388 if (kvm_is_using_evmcs()) { 7389 current_evmcs->hv_clean_fields |= 7390 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; 7391 7392 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu); 7393 } 7394 7395 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ 7396 if (vmx->host_debugctlmsr) 7397 update_debugctlmsr(vmx->host_debugctlmsr); 7398 7399 #ifndef CONFIG_X86_64 7400 /* 7401 * The sysexit path does not restore ds/es, so we must set them to 7402 * a reasonable value ourselves. 7403 * 7404 * We can't defer this to vmx_prepare_switch_to_host() since that 7405 * function may be executed in interrupt context, which saves and 7406 * restore segments around it, nullifying its effect. 7407 */ 7408 loadsegment(ds, __USER_DS); 7409 loadsegment(es, __USER_DS); 7410 #endif 7411 7412 pt_guest_exit(vmx); 7413 7414 kvm_load_host_xsave_state(vcpu); 7415 7416 if (is_guest_mode(vcpu)) { 7417 /* 7418 * Track VMLAUNCH/VMRESUME that have made past guest state 7419 * checking. 7420 */ 7421 if (vmx->nested.nested_run_pending && 7422 !vmx->exit_reason.failed_vmentry) 7423 ++vcpu->stat.nested_run; 7424 7425 vmx->nested.nested_run_pending = 0; 7426 } 7427 7428 if (unlikely(vmx->fail)) 7429 return EXIT_FASTPATH_NONE; 7430 7431 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY)) 7432 kvm_machine_check(); 7433 7434 trace_kvm_exit(vcpu, KVM_ISA_VMX); 7435 7436 if (unlikely(vmx->exit_reason.failed_vmentry)) 7437 return EXIT_FASTPATH_NONE; 7438 7439 vmx->loaded_vmcs->launched = 1; 7440 7441 vmx_recover_nmi_blocking(vmx); 7442 vmx_complete_interrupts(vmx); 7443 7444 if (is_guest_mode(vcpu)) 7445 return EXIT_FASTPATH_NONE; 7446 7447 return vmx_exit_handlers_fastpath(vcpu); 7448 } 7449 7450 static void vmx_vcpu_free(struct kvm_vcpu *vcpu) 7451 { 7452 struct vcpu_vmx *vmx = to_vmx(vcpu); 7453 7454 if (enable_pml) 7455 vmx_destroy_pml_buffer(vmx); 7456 free_vpid(vmx->vpid); 7457 nested_vmx_free_vcpu(vcpu); 7458 free_loaded_vmcs(vmx->loaded_vmcs); 7459 } 7460 7461 static int vmx_vcpu_create(struct kvm_vcpu *vcpu) 7462 { 7463 struct vmx_uret_msr *tsx_ctrl; 7464 struct vcpu_vmx *vmx; 7465 int i, err; 7466 7467 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0); 7468 vmx = to_vmx(vcpu); 7469 7470 INIT_LIST_HEAD(&vmx->pi_wakeup_list); 7471 7472 err = -ENOMEM; 7473 7474 vmx->vpid = allocate_vpid(); 7475 7476 /* 7477 * If PML is turned on, failure on enabling PML just results in failure 7478 * of creating the vcpu, therefore we can simplify PML logic (by 7479 * avoiding dealing with cases, such as enabling PML partially on vcpus 7480 * for the guest), etc. 7481 */ 7482 if (enable_pml) { 7483 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 7484 if (!vmx->pml_pg) 7485 goto free_vpid; 7486 } 7487 7488 for (i = 0; i < kvm_nr_uret_msrs; ++i) 7489 vmx->guest_uret_msrs[i].mask = -1ull; 7490 if (boot_cpu_has(X86_FEATURE_RTM)) { 7491 /* 7492 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception. 7493 * Keep the host value unchanged to avoid changing CPUID bits 7494 * under the host kernel's feet. 7495 */ 7496 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7497 if (tsx_ctrl) 7498 tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR; 7499 } 7500 7501 err = alloc_loaded_vmcs(&vmx->vmcs01); 7502 if (err < 0) 7503 goto free_pml; 7504 7505 /* 7506 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a 7507 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the 7508 * feature only for vmcs01, KVM currently isn't equipped to realize any 7509 * performance benefits from enabling it for vmcs02. 7510 */ 7511 if (kvm_is_using_evmcs() && 7512 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) { 7513 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs; 7514 7515 evmcs->hv_enlightenments_control.msr_bitmap = 1; 7516 } 7517 7518 /* The MSR bitmap starts with all ones */ 7519 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS); 7520 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS); 7521 7522 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R); 7523 #ifdef CONFIG_X86_64 7524 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW); 7525 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW); 7526 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); 7527 #endif 7528 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); 7529 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); 7530 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); 7531 if (kvm_cstate_in_guest(vcpu->kvm)) { 7532 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R); 7533 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R); 7534 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R); 7535 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R); 7536 } 7537 7538 vmx->loaded_vmcs = &vmx->vmcs01; 7539 7540 if (cpu_need_virtualize_apic_accesses(vcpu)) { 7541 err = kvm_alloc_apic_access_page(vcpu->kvm); 7542 if (err) 7543 goto free_vmcs; 7544 } 7545 7546 if (enable_ept && !enable_unrestricted_guest) { 7547 err = init_rmode_identity_map(vcpu->kvm); 7548 if (err) 7549 goto free_vmcs; 7550 } 7551 7552 if (vmx_can_use_ipiv(vcpu)) 7553 WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id], 7554 __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID); 7555 7556 return 0; 7557 7558 free_vmcs: 7559 free_loaded_vmcs(vmx->loaded_vmcs); 7560 free_pml: 7561 vmx_destroy_pml_buffer(vmx); 7562 free_vpid: 7563 free_vpid(vmx->vpid); 7564 return err; 7565 } 7566 7567 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 7568 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 7569 7570 static int vmx_vm_init(struct kvm *kvm) 7571 { 7572 if (!ple_gap) 7573 kvm->arch.pause_in_guest = true; 7574 7575 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { 7576 switch (l1tf_mitigation) { 7577 case L1TF_MITIGATION_OFF: 7578 case L1TF_MITIGATION_FLUSH_NOWARN: 7579 /* 'I explicitly don't care' is set */ 7580 break; 7581 case L1TF_MITIGATION_FLUSH: 7582 case L1TF_MITIGATION_FLUSH_NOSMT: 7583 case L1TF_MITIGATION_FULL: 7584 /* 7585 * Warn upon starting the first VM in a potentially 7586 * insecure environment. 7587 */ 7588 if (sched_smt_active()) 7589 pr_warn_once(L1TF_MSG_SMT); 7590 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) 7591 pr_warn_once(L1TF_MSG_L1D); 7592 break; 7593 case L1TF_MITIGATION_FULL_FORCE: 7594 /* Flush is enforced */ 7595 break; 7596 } 7597 } 7598 return 0; 7599 } 7600 7601 static u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 7602 { 7603 u8 cache; 7604 7605 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in 7606 * memory aliases with conflicting memory types and sometimes MCEs. 7607 * We have to be careful as to what are honored and when. 7608 * 7609 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to 7610 * UC. The effective memory type is UC or WC depending on guest PAT. 7611 * This was historically the source of MCEs and we want to be 7612 * conservative. 7613 * 7614 * When there is no need to deal with noncoherent DMA (e.g., no VT-d 7615 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The 7616 * EPT memory type is set to WB. The effective memory type is forced 7617 * WB. 7618 * 7619 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The 7620 * EPT memory type is used to emulate guest CD/MTRR. 7621 */ 7622 7623 if (is_mmio) 7624 return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT; 7625 7626 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) 7627 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT; 7628 7629 if (kvm_read_cr0_bits(vcpu, X86_CR0_CD)) { 7630 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 7631 cache = MTRR_TYPE_WRBACK; 7632 else 7633 cache = MTRR_TYPE_UNCACHABLE; 7634 7635 return (cache << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT; 7636 } 7637 7638 return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT; 7639 } 7640 7641 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl) 7642 { 7643 /* 7644 * These bits in the secondary execution controls field 7645 * are dynamic, the others are mostly based on the hypervisor 7646 * architecture and the guest's CPUID. Do not touch the 7647 * dynamic bits. 7648 */ 7649 u32 mask = 7650 SECONDARY_EXEC_SHADOW_VMCS | 7651 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 7652 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 7653 SECONDARY_EXEC_DESC; 7654 7655 u32 cur_ctl = secondary_exec_controls_get(vmx); 7656 7657 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask)); 7658 } 7659 7660 /* 7661 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits 7662 * (indicating "allowed-1") if they are supported in the guest's CPUID. 7663 */ 7664 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) 7665 { 7666 struct vcpu_vmx *vmx = to_vmx(vcpu); 7667 struct kvm_cpuid_entry2 *entry; 7668 7669 vmx->nested.msrs.cr0_fixed1 = 0xffffffff; 7670 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE; 7671 7672 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ 7673 if (entry && (entry->_reg & (_cpuid_mask))) \ 7674 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \ 7675 } while (0) 7676 7677 entry = kvm_find_cpuid_entry(vcpu, 0x1); 7678 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME)); 7679 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME)); 7680 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC)); 7681 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE)); 7682 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE)); 7683 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE)); 7684 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE)); 7685 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE)); 7686 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR)); 7687 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM)); 7688 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX)); 7689 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX)); 7690 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID)); 7691 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE)); 7692 7693 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0); 7694 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE)); 7695 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP)); 7696 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP)); 7697 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU)); 7698 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP)); 7699 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57)); 7700 7701 #undef cr4_fixed1_update 7702 } 7703 7704 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu) 7705 { 7706 struct vcpu_vmx *vmx = to_vmx(vcpu); 7707 struct kvm_cpuid_entry2 *best = NULL; 7708 int i; 7709 7710 for (i = 0; i < PT_CPUID_LEAVES; i++) { 7711 best = kvm_find_cpuid_entry_index(vcpu, 0x14, i); 7712 if (!best) 7713 return; 7714 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax; 7715 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx; 7716 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx; 7717 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx; 7718 } 7719 7720 /* Get the number of configurable Address Ranges for filtering */ 7721 vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps, 7722 PT_CAP_num_address_ranges); 7723 7724 /* Initialize and clear the no dependency bits */ 7725 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS | 7726 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC | 7727 RTIT_CTL_BRANCH_EN); 7728 7729 /* 7730 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise 7731 * will inject an #GP 7732 */ 7733 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering)) 7734 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN; 7735 7736 /* 7737 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and 7738 * PSBFreq can be set 7739 */ 7740 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc)) 7741 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC | 7742 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ); 7743 7744 /* 7745 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set 7746 */ 7747 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc)) 7748 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN | 7749 RTIT_CTL_MTC_RANGE); 7750 7751 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */ 7752 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite)) 7753 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW | 7754 RTIT_CTL_PTW_EN); 7755 7756 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */ 7757 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace)) 7758 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN; 7759 7760 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */ 7761 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output)) 7762 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA; 7763 7764 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */ 7765 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys)) 7766 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN; 7767 7768 /* unmask address range configure area */ 7769 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) 7770 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4)); 7771 } 7772 7773 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 7774 { 7775 struct vcpu_vmx *vmx = to_vmx(vcpu); 7776 7777 /* 7778 * XSAVES is effectively enabled if and only if XSAVE is also exposed 7779 * to the guest. XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be 7780 * set if and only if XSAVE is supported. 7781 */ 7782 if (boot_cpu_has(X86_FEATURE_XSAVE) && 7783 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE)) 7784 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_XSAVES); 7785 7786 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VMX); 7787 7788 vmx_setup_uret_msrs(vmx); 7789 7790 if (cpu_has_secondary_exec_ctrls()) 7791 vmcs_set_secondary_exec_control(vmx, 7792 vmx_secondary_exec_control(vmx)); 7793 7794 if (guest_can_use(vcpu, X86_FEATURE_VMX)) 7795 vmx->msr_ia32_feature_control_valid_bits |= 7796 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7797 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX; 7798 else 7799 vmx->msr_ia32_feature_control_valid_bits &= 7800 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7801 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX); 7802 7803 if (guest_can_use(vcpu, X86_FEATURE_VMX)) 7804 nested_vmx_cr_fixed1_bits_update(vcpu); 7805 7806 if (boot_cpu_has(X86_FEATURE_INTEL_PT) && 7807 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT)) 7808 update_intel_pt_cfg(vcpu); 7809 7810 if (boot_cpu_has(X86_FEATURE_RTM)) { 7811 struct vmx_uret_msr *msr; 7812 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7813 if (msr) { 7814 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM); 7815 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE); 7816 } 7817 } 7818 7819 if (kvm_cpu_cap_has(X86_FEATURE_XFD)) 7820 vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R, 7821 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)); 7822 7823 if (boot_cpu_has(X86_FEATURE_IBPB)) 7824 vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W, 7825 !guest_has_pred_cmd_msr(vcpu)); 7826 7827 if (boot_cpu_has(X86_FEATURE_FLUSH_L1D)) 7828 vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W, 7829 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)); 7830 7831 set_cr4_guest_host_mask(vmx); 7832 7833 vmx_write_encls_bitmap(vcpu, NULL); 7834 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX)) 7835 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED; 7836 else 7837 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED; 7838 7839 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 7840 vmx->msr_ia32_feature_control_valid_bits |= 7841 FEAT_CTL_SGX_LC_ENABLED; 7842 else 7843 vmx->msr_ia32_feature_control_valid_bits &= 7844 ~FEAT_CTL_SGX_LC_ENABLED; 7845 7846 /* Refresh #PF interception to account for MAXPHYADDR changes. */ 7847 vmx_update_exception_bitmap(vcpu); 7848 } 7849 7850 static u64 vmx_get_perf_capabilities(void) 7851 { 7852 u64 perf_cap = PMU_CAP_FW_WRITES; 7853 struct x86_pmu_lbr lbr; 7854 u64 host_perf_cap = 0; 7855 7856 if (!enable_pmu) 7857 return 0; 7858 7859 if (boot_cpu_has(X86_FEATURE_PDCM)) 7860 rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap); 7861 7862 if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) { 7863 x86_perf_get_lbr(&lbr); 7864 if (lbr.nr) 7865 perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT; 7866 } 7867 7868 if (vmx_pebs_supported()) { 7869 perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK; 7870 7871 /* 7872 * Disallow adaptive PEBS as it is functionally broken, can be 7873 * used by the guest to read *host* LBRs, and can be used to 7874 * bypass userspace event filters. To correctly and safely 7875 * support adaptive PEBS, KVM needs to: 7876 * 7877 * 1. Account for the ADAPTIVE flag when (re)programming fixed 7878 * counters. 7879 * 7880 * 2. Gain support from perf (or take direct control of counter 7881 * programming) to support events without adaptive PEBS 7882 * enabled for the hardware counter. 7883 * 7884 * 3. Ensure LBR MSRs cannot hold host data on VM-Entry with 7885 * adaptive PEBS enabled and MSR_PEBS_DATA_CFG.LBRS=1. 7886 * 7887 * 4. Document which PMU events are effectively exposed to the 7888 * guest via adaptive PEBS, and make adaptive PEBS mutually 7889 * exclusive with KVM_SET_PMU_EVENT_FILTER if necessary. 7890 */ 7891 perf_cap &= ~PERF_CAP_PEBS_BASELINE; 7892 } 7893 7894 return perf_cap; 7895 } 7896 7897 static __init void vmx_set_cpu_caps(void) 7898 { 7899 kvm_set_cpu_caps(); 7900 7901 /* CPUID 0x1 */ 7902 if (nested) 7903 kvm_cpu_cap_set(X86_FEATURE_VMX); 7904 7905 /* CPUID 0x7 */ 7906 if (kvm_mpx_supported()) 7907 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX); 7908 if (!cpu_has_vmx_invpcid()) 7909 kvm_cpu_cap_clear(X86_FEATURE_INVPCID); 7910 if (vmx_pt_mode_is_host_guest()) 7911 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT); 7912 if (vmx_pebs_supported()) { 7913 kvm_cpu_cap_check_and_set(X86_FEATURE_DS); 7914 kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64); 7915 } 7916 7917 if (!enable_pmu) 7918 kvm_cpu_cap_clear(X86_FEATURE_PDCM); 7919 kvm_caps.supported_perf_cap = vmx_get_perf_capabilities(); 7920 7921 if (!enable_sgx) { 7922 kvm_cpu_cap_clear(X86_FEATURE_SGX); 7923 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC); 7924 kvm_cpu_cap_clear(X86_FEATURE_SGX1); 7925 kvm_cpu_cap_clear(X86_FEATURE_SGX2); 7926 } 7927 7928 if (vmx_umip_emulated()) 7929 kvm_cpu_cap_set(X86_FEATURE_UMIP); 7930 7931 /* CPUID 0xD.1 */ 7932 kvm_caps.supported_xss = 0; 7933 if (!cpu_has_vmx_xsaves()) 7934 kvm_cpu_cap_clear(X86_FEATURE_XSAVES); 7935 7936 /* CPUID 0x80000001 and 0x7 (RDPID) */ 7937 if (!cpu_has_vmx_rdtscp()) { 7938 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP); 7939 kvm_cpu_cap_clear(X86_FEATURE_RDPID); 7940 } 7941 7942 if (cpu_has_vmx_waitpkg()) 7943 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG); 7944 } 7945 7946 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu) 7947 { 7948 to_vmx(vcpu)->req_immediate_exit = true; 7949 } 7950 7951 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu, 7952 struct x86_instruction_info *info) 7953 { 7954 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7955 unsigned short port; 7956 bool intercept; 7957 int size; 7958 7959 if (info->intercept == x86_intercept_in || 7960 info->intercept == x86_intercept_ins) { 7961 port = info->src_val; 7962 size = info->dst_bytes; 7963 } else { 7964 port = info->dst_val; 7965 size = info->src_bytes; 7966 } 7967 7968 /* 7969 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction 7970 * VM-exits depend on the 'unconditional IO exiting' VM-execution 7971 * control. 7972 * 7973 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps. 7974 */ 7975 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) 7976 intercept = nested_cpu_has(vmcs12, 7977 CPU_BASED_UNCOND_IO_EXITING); 7978 else 7979 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size); 7980 7981 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7982 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; 7983 } 7984 7985 static int vmx_check_intercept(struct kvm_vcpu *vcpu, 7986 struct x86_instruction_info *info, 7987 enum x86_intercept_stage stage, 7988 struct x86_exception *exception) 7989 { 7990 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7991 7992 switch (info->intercept) { 7993 /* 7994 * RDPID causes #UD if disabled through secondary execution controls. 7995 * Because it is marked as EmulateOnUD, we need to intercept it here. 7996 * Note, RDPID is hidden behind ENABLE_RDTSCP. 7997 */ 7998 case x86_intercept_rdpid: 7999 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) { 8000 exception->vector = UD_VECTOR; 8001 exception->error_code_valid = false; 8002 return X86EMUL_PROPAGATE_FAULT; 8003 } 8004 break; 8005 8006 case x86_intercept_in: 8007 case x86_intercept_ins: 8008 case x86_intercept_out: 8009 case x86_intercept_outs: 8010 return vmx_check_intercept_io(vcpu, info); 8011 8012 case x86_intercept_lgdt: 8013 case x86_intercept_lidt: 8014 case x86_intercept_lldt: 8015 case x86_intercept_ltr: 8016 case x86_intercept_sgdt: 8017 case x86_intercept_sidt: 8018 case x86_intercept_sldt: 8019 case x86_intercept_str: 8020 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC)) 8021 return X86EMUL_CONTINUE; 8022 8023 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 8024 break; 8025 8026 case x86_intercept_pause: 8027 /* 8028 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides 8029 * with vanilla NOPs in the emulator. Apply the interception 8030 * check only to actual PAUSE instructions. Don't check 8031 * PAUSE-loop-exiting, software can't expect a given PAUSE to 8032 * exit, i.e. KVM is within its rights to allow L2 to execute 8033 * the PAUSE. 8034 */ 8035 if ((info->rep_prefix != REPE_PREFIX) || 8036 !nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING)) 8037 return X86EMUL_CONTINUE; 8038 8039 break; 8040 8041 /* TODO: check more intercepts... */ 8042 default: 8043 break; 8044 } 8045 8046 return X86EMUL_UNHANDLEABLE; 8047 } 8048 8049 #ifdef CONFIG_X86_64 8050 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */ 8051 static inline int u64_shl_div_u64(u64 a, unsigned int shift, 8052 u64 divisor, u64 *result) 8053 { 8054 u64 low = a << shift, high = a >> (64 - shift); 8055 8056 /* To avoid the overflow on divq */ 8057 if (high >= divisor) 8058 return 1; 8059 8060 /* Low hold the result, high hold rem which is discarded */ 8061 asm("divq %2\n\t" : "=a" (low), "=d" (high) : 8062 "rm" (divisor), "0" (low), "1" (high)); 8063 *result = low; 8064 8065 return 0; 8066 } 8067 8068 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 8069 bool *expired) 8070 { 8071 struct vcpu_vmx *vmx; 8072 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles; 8073 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer; 8074 8075 vmx = to_vmx(vcpu); 8076 tscl = rdtsc(); 8077 guest_tscl = kvm_read_l1_tsc(vcpu, tscl); 8078 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; 8079 lapic_timer_advance_cycles = nsec_to_cycles(vcpu, 8080 ktimer->timer_advance_ns); 8081 8082 if (delta_tsc > lapic_timer_advance_cycles) 8083 delta_tsc -= lapic_timer_advance_cycles; 8084 else 8085 delta_tsc = 0; 8086 8087 /* Convert to host delta tsc if tsc scaling is enabled */ 8088 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio && 8089 delta_tsc && u64_shl_div_u64(delta_tsc, 8090 kvm_caps.tsc_scaling_ratio_frac_bits, 8091 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc)) 8092 return -ERANGE; 8093 8094 /* 8095 * If the delta tsc can't fit in the 32 bit after the multi shift, 8096 * we can't use the preemption timer. 8097 * It's possible that it fits on later vmentries, but checking 8098 * on every vmentry is costly so we just use an hrtimer. 8099 */ 8100 if (delta_tsc >> (cpu_preemption_timer_multi + 32)) 8101 return -ERANGE; 8102 8103 vmx->hv_deadline_tsc = tscl + delta_tsc; 8104 *expired = !delta_tsc; 8105 return 0; 8106 } 8107 8108 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) 8109 { 8110 to_vmx(vcpu)->hv_deadline_tsc = -1; 8111 } 8112 #endif 8113 8114 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu) 8115 { 8116 if (!kvm_pause_in_guest(vcpu->kvm)) 8117 shrink_ple_window(vcpu); 8118 } 8119 8120 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu) 8121 { 8122 struct vcpu_vmx *vmx = to_vmx(vcpu); 8123 8124 if (WARN_ON_ONCE(!enable_pml)) 8125 return; 8126 8127 if (is_guest_mode(vcpu)) { 8128 vmx->nested.update_vmcs01_cpu_dirty_logging = true; 8129 return; 8130 } 8131 8132 /* 8133 * Note, nr_memslots_dirty_logging can be changed concurrent with this 8134 * code, but in that case another update request will be made and so 8135 * the guest will never run with a stale PML value. 8136 */ 8137 if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging)) 8138 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML); 8139 else 8140 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML); 8141 } 8142 8143 static void vmx_setup_mce(struct kvm_vcpu *vcpu) 8144 { 8145 if (vcpu->arch.mcg_cap & MCG_LMCE_P) 8146 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 8147 FEAT_CTL_LMCE_ENABLED; 8148 else 8149 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 8150 ~FEAT_CTL_LMCE_ENABLED; 8151 } 8152 8153 #ifdef CONFIG_KVM_SMM 8154 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 8155 { 8156 /* we need a nested vmexit to enter SMM, postpone if run is pending */ 8157 if (to_vmx(vcpu)->nested.nested_run_pending) 8158 return -EBUSY; 8159 return !is_smm(vcpu); 8160 } 8161 8162 static int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram) 8163 { 8164 struct vcpu_vmx *vmx = to_vmx(vcpu); 8165 8166 /* 8167 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on 8168 * SMI and RSM. Using the common VM-Exit + VM-Enter routines is wrong 8169 * SMI and RSM only modify state that is saved and restored via SMRAM. 8170 * E.g. most MSRs are left untouched, but many are modified by VM-Exit 8171 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM. 8172 */ 8173 vmx->nested.smm.guest_mode = is_guest_mode(vcpu); 8174 if (vmx->nested.smm.guest_mode) 8175 nested_vmx_vmexit(vcpu, -1, 0, 0); 8176 8177 vmx->nested.smm.vmxon = vmx->nested.vmxon; 8178 vmx->nested.vmxon = false; 8179 vmx_clear_hlt(vcpu); 8180 return 0; 8181 } 8182 8183 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram) 8184 { 8185 struct vcpu_vmx *vmx = to_vmx(vcpu); 8186 int ret; 8187 8188 if (vmx->nested.smm.vmxon) { 8189 vmx->nested.vmxon = true; 8190 vmx->nested.smm.vmxon = false; 8191 } 8192 8193 if (vmx->nested.smm.guest_mode) { 8194 ret = nested_vmx_enter_non_root_mode(vcpu, false); 8195 if (ret) 8196 return ret; 8197 8198 vmx->nested.nested_run_pending = 1; 8199 vmx->nested.smm.guest_mode = false; 8200 } 8201 return 0; 8202 } 8203 8204 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu) 8205 { 8206 /* RSM will cause a vmexit anyway. */ 8207 } 8208 #endif 8209 8210 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 8211 { 8212 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu); 8213 } 8214 8215 static void vmx_migrate_timers(struct kvm_vcpu *vcpu) 8216 { 8217 if (is_guest_mode(vcpu)) { 8218 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer; 8219 8220 if (hrtimer_try_to_cancel(timer) == 1) 8221 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 8222 } 8223 } 8224 8225 static void vmx_hardware_unsetup(void) 8226 { 8227 kvm_set_posted_intr_wakeup_handler(NULL); 8228 8229 if (nested) 8230 nested_vmx_hardware_unsetup(); 8231 8232 free_kvm_area(); 8233 } 8234 8235 #define VMX_REQUIRED_APICV_INHIBITS \ 8236 ( \ 8237 BIT(APICV_INHIBIT_REASON_DISABLE)| \ 8238 BIT(APICV_INHIBIT_REASON_ABSENT) | \ 8239 BIT(APICV_INHIBIT_REASON_HYPERV) | \ 8240 BIT(APICV_INHIBIT_REASON_BLOCKIRQ) | \ 8241 BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED) | \ 8242 BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) | \ 8243 BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED) \ 8244 ) 8245 8246 static void vmx_vm_destroy(struct kvm *kvm) 8247 { 8248 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 8249 8250 free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm)); 8251 } 8252 8253 static struct kvm_x86_ops vmx_x86_ops __initdata = { 8254 .name = KBUILD_MODNAME, 8255 8256 .check_processor_compatibility = vmx_check_processor_compat, 8257 8258 .hardware_unsetup = vmx_hardware_unsetup, 8259 8260 .hardware_enable = vmx_hardware_enable, 8261 .hardware_disable = vmx_hardware_disable, 8262 .has_emulated_msr = vmx_has_emulated_msr, 8263 8264 .vm_size = sizeof(struct kvm_vmx), 8265 .vm_init = vmx_vm_init, 8266 .vm_destroy = vmx_vm_destroy, 8267 8268 .vcpu_precreate = vmx_vcpu_precreate, 8269 .vcpu_create = vmx_vcpu_create, 8270 .vcpu_free = vmx_vcpu_free, 8271 .vcpu_reset = vmx_vcpu_reset, 8272 8273 .prepare_switch_to_guest = vmx_prepare_switch_to_guest, 8274 .vcpu_load = vmx_vcpu_load, 8275 .vcpu_put = vmx_vcpu_put, 8276 8277 .update_exception_bitmap = vmx_update_exception_bitmap, 8278 .get_msr_feature = vmx_get_msr_feature, 8279 .get_msr = vmx_get_msr, 8280 .set_msr = vmx_set_msr, 8281 .get_segment_base = vmx_get_segment_base, 8282 .get_segment = vmx_get_segment, 8283 .set_segment = vmx_set_segment, 8284 .get_cpl = vmx_get_cpl, 8285 .get_cs_db_l_bits = vmx_get_cs_db_l_bits, 8286 .is_valid_cr0 = vmx_is_valid_cr0, 8287 .set_cr0 = vmx_set_cr0, 8288 .is_valid_cr4 = vmx_is_valid_cr4, 8289 .set_cr4 = vmx_set_cr4, 8290 .set_efer = vmx_set_efer, 8291 .get_idt = vmx_get_idt, 8292 .set_idt = vmx_set_idt, 8293 .get_gdt = vmx_get_gdt, 8294 .set_gdt = vmx_set_gdt, 8295 .set_dr7 = vmx_set_dr7, 8296 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs, 8297 .cache_reg = vmx_cache_reg, 8298 .get_rflags = vmx_get_rflags, 8299 .set_rflags = vmx_set_rflags, 8300 .get_if_flag = vmx_get_if_flag, 8301 8302 .flush_tlb_all = vmx_flush_tlb_all, 8303 .flush_tlb_current = vmx_flush_tlb_current, 8304 .flush_tlb_gva = vmx_flush_tlb_gva, 8305 .flush_tlb_guest = vmx_flush_tlb_guest, 8306 8307 .vcpu_pre_run = vmx_vcpu_pre_run, 8308 .vcpu_run = vmx_vcpu_run, 8309 .handle_exit = vmx_handle_exit, 8310 .skip_emulated_instruction = vmx_skip_emulated_instruction, 8311 .update_emulated_instruction = vmx_update_emulated_instruction, 8312 .set_interrupt_shadow = vmx_set_interrupt_shadow, 8313 .get_interrupt_shadow = vmx_get_interrupt_shadow, 8314 .patch_hypercall = vmx_patch_hypercall, 8315 .inject_irq = vmx_inject_irq, 8316 .inject_nmi = vmx_inject_nmi, 8317 .inject_exception = vmx_inject_exception, 8318 .cancel_injection = vmx_cancel_injection, 8319 .interrupt_allowed = vmx_interrupt_allowed, 8320 .nmi_allowed = vmx_nmi_allowed, 8321 .get_nmi_mask = vmx_get_nmi_mask, 8322 .set_nmi_mask = vmx_set_nmi_mask, 8323 .enable_nmi_window = vmx_enable_nmi_window, 8324 .enable_irq_window = vmx_enable_irq_window, 8325 .update_cr8_intercept = vmx_update_cr8_intercept, 8326 .set_virtual_apic_mode = vmx_set_virtual_apic_mode, 8327 .set_apic_access_page_addr = vmx_set_apic_access_page_addr, 8328 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl, 8329 .load_eoi_exitmap = vmx_load_eoi_exitmap, 8330 .apicv_pre_state_restore = vmx_apicv_pre_state_restore, 8331 .required_apicv_inhibits = VMX_REQUIRED_APICV_INHIBITS, 8332 .hwapic_irr_update = vmx_hwapic_irr_update, 8333 .hwapic_isr_update = vmx_hwapic_isr_update, 8334 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt, 8335 .sync_pir_to_irr = vmx_sync_pir_to_irr, 8336 .deliver_interrupt = vmx_deliver_interrupt, 8337 .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt, 8338 8339 .set_tss_addr = vmx_set_tss_addr, 8340 .set_identity_map_addr = vmx_set_identity_map_addr, 8341 .get_mt_mask = vmx_get_mt_mask, 8342 8343 .get_exit_info = vmx_get_exit_info, 8344 8345 .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid, 8346 8347 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, 8348 8349 .get_l2_tsc_offset = vmx_get_l2_tsc_offset, 8350 .get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier, 8351 .write_tsc_offset = vmx_write_tsc_offset, 8352 .write_tsc_multiplier = vmx_write_tsc_multiplier, 8353 8354 .load_mmu_pgd = vmx_load_mmu_pgd, 8355 8356 .check_intercept = vmx_check_intercept, 8357 .handle_exit_irqoff = vmx_handle_exit_irqoff, 8358 8359 .request_immediate_exit = vmx_request_immediate_exit, 8360 8361 .sched_in = vmx_sched_in, 8362 8363 .cpu_dirty_log_size = PML_ENTITY_NUM, 8364 .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging, 8365 8366 .nested_ops = &vmx_nested_ops, 8367 8368 .pi_update_irte = vmx_pi_update_irte, 8369 .pi_start_assignment = vmx_pi_start_assignment, 8370 8371 #ifdef CONFIG_X86_64 8372 .set_hv_timer = vmx_set_hv_timer, 8373 .cancel_hv_timer = vmx_cancel_hv_timer, 8374 #endif 8375 8376 .setup_mce = vmx_setup_mce, 8377 8378 #ifdef CONFIG_KVM_SMM 8379 .smi_allowed = vmx_smi_allowed, 8380 .enter_smm = vmx_enter_smm, 8381 .leave_smm = vmx_leave_smm, 8382 .enable_smi_window = vmx_enable_smi_window, 8383 #endif 8384 8385 .can_emulate_instruction = vmx_can_emulate_instruction, 8386 .apic_init_signal_blocked = vmx_apic_init_signal_blocked, 8387 .migrate_timers = vmx_migrate_timers, 8388 8389 .msr_filter_changed = vmx_msr_filter_changed, 8390 .complete_emulated_msr = kvm_complete_insn_gp, 8391 8392 .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector, 8393 }; 8394 8395 static unsigned int vmx_handle_intel_pt_intr(void) 8396 { 8397 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 8398 8399 /* '0' on failure so that the !PT case can use a RET0 static call. */ 8400 if (!vcpu || !kvm_handling_nmi_from_guest(vcpu)) 8401 return 0; 8402 8403 kvm_make_request(KVM_REQ_PMI, vcpu); 8404 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT, 8405 (unsigned long *)&vcpu->arch.pmu.global_status); 8406 return 1; 8407 } 8408 8409 static __init void vmx_setup_user_return_msrs(void) 8410 { 8411 8412 /* 8413 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm 8414 * will emulate SYSCALL in legacy mode if the vendor string in guest 8415 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To 8416 * support this emulation, MSR_STAR is included in the list for i386, 8417 * but is never loaded into hardware. MSR_CSTAR is also never loaded 8418 * into hardware and is here purely for emulation purposes. 8419 */ 8420 const u32 vmx_uret_msrs_list[] = { 8421 #ifdef CONFIG_X86_64 8422 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, 8423 #endif 8424 MSR_EFER, MSR_TSC_AUX, MSR_STAR, 8425 MSR_IA32_TSX_CTRL, 8426 }; 8427 int i; 8428 8429 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS); 8430 8431 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) 8432 kvm_add_user_return_msr(vmx_uret_msrs_list[i]); 8433 } 8434 8435 static void __init vmx_setup_me_spte_mask(void) 8436 { 8437 u64 me_mask = 0; 8438 8439 /* 8440 * kvm_get_shadow_phys_bits() returns shadow_phys_bits. Use 8441 * the former to avoid exposing shadow_phys_bits. 8442 * 8443 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to 8444 * shadow_phys_bits. On MKTME and/or TDX capable systems, 8445 * boot_cpu_data.x86_phys_bits holds the actual physical address 8446 * w/o the KeyID bits, and shadow_phys_bits equals to MAXPHYADDR 8447 * reported by CPUID. Those bits between are KeyID bits. 8448 */ 8449 if (boot_cpu_data.x86_phys_bits != kvm_get_shadow_phys_bits()) 8450 me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits, 8451 kvm_get_shadow_phys_bits() - 1); 8452 /* 8453 * Unlike SME, host kernel doesn't support setting up any 8454 * MKTME KeyID on Intel platforms. No memory encryption 8455 * bits should be included into the SPTE. 8456 */ 8457 kvm_mmu_set_me_spte_mask(0, me_mask); 8458 } 8459 8460 static struct kvm_x86_init_ops vmx_init_ops __initdata; 8461 8462 static __init int hardware_setup(void) 8463 { 8464 unsigned long host_bndcfgs; 8465 struct desc_ptr dt; 8466 int r; 8467 8468 store_idt(&dt); 8469 host_idt_base = dt.address; 8470 8471 vmx_setup_user_return_msrs(); 8472 8473 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0) 8474 return -EIO; 8475 8476 if (cpu_has_perf_global_ctrl_bug()) 8477 pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " 8478 "does not work properly. Using workaround\n"); 8479 8480 if (boot_cpu_has(X86_FEATURE_NX)) 8481 kvm_enable_efer_bits(EFER_NX); 8482 8483 if (boot_cpu_has(X86_FEATURE_MPX)) { 8484 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs); 8485 WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost"); 8486 } 8487 8488 if (!cpu_has_vmx_mpx()) 8489 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 8490 XFEATURE_MASK_BNDCSR); 8491 8492 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || 8493 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) 8494 enable_vpid = 0; 8495 8496 if (!cpu_has_vmx_ept() || 8497 !cpu_has_vmx_ept_4levels() || 8498 !cpu_has_vmx_ept_mt_wb() || 8499 !cpu_has_vmx_invept_global()) 8500 enable_ept = 0; 8501 8502 /* NX support is required for shadow paging. */ 8503 if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) { 8504 pr_err_ratelimited("NX (Execute Disable) not supported\n"); 8505 return -EOPNOTSUPP; 8506 } 8507 8508 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) 8509 enable_ept_ad_bits = 0; 8510 8511 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept) 8512 enable_unrestricted_guest = 0; 8513 8514 if (!cpu_has_vmx_flexpriority()) 8515 flexpriority_enabled = 0; 8516 8517 if (!cpu_has_virtual_nmis()) 8518 enable_vnmi = 0; 8519 8520 #ifdef CONFIG_X86_SGX_KVM 8521 if (!cpu_has_vmx_encls_vmexit()) 8522 enable_sgx = false; 8523 #endif 8524 8525 /* 8526 * set_apic_access_page_addr() is used to reload apic access 8527 * page upon invalidation. No need to do anything if not 8528 * using the APIC_ACCESS_ADDR VMCS field. 8529 */ 8530 if (!flexpriority_enabled) 8531 vmx_x86_ops.set_apic_access_page_addr = NULL; 8532 8533 if (!cpu_has_vmx_tpr_shadow()) 8534 vmx_x86_ops.update_cr8_intercept = NULL; 8535 8536 #if IS_ENABLED(CONFIG_HYPERV) 8537 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH 8538 && enable_ept) { 8539 vmx_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs; 8540 vmx_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range; 8541 } 8542 #endif 8543 8544 if (!cpu_has_vmx_ple()) { 8545 ple_gap = 0; 8546 ple_window = 0; 8547 ple_window_grow = 0; 8548 ple_window_max = 0; 8549 ple_window_shrink = 0; 8550 } 8551 8552 if (!cpu_has_vmx_apicv()) 8553 enable_apicv = 0; 8554 if (!enable_apicv) 8555 vmx_x86_ops.sync_pir_to_irr = NULL; 8556 8557 if (!enable_apicv || !cpu_has_vmx_ipiv()) 8558 enable_ipiv = false; 8559 8560 if (cpu_has_vmx_tsc_scaling()) 8561 kvm_caps.has_tsc_control = true; 8562 8563 kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; 8564 kvm_caps.tsc_scaling_ratio_frac_bits = 48; 8565 kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection(); 8566 kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit(); 8567 8568 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ 8569 8570 if (enable_ept) 8571 kvm_mmu_set_ept_masks(enable_ept_ad_bits, 8572 cpu_has_vmx_ept_execute_only()); 8573 8574 /* 8575 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID 8576 * bits to shadow_zero_check. 8577 */ 8578 vmx_setup_me_spte_mask(); 8579 8580 kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(), 8581 ept_caps_to_lpage_level(vmx_capability.ept)); 8582 8583 /* 8584 * Only enable PML when hardware supports PML feature, and both EPT 8585 * and EPT A/D bit features are enabled -- PML depends on them to work. 8586 */ 8587 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) 8588 enable_pml = 0; 8589 8590 if (!enable_pml) 8591 vmx_x86_ops.cpu_dirty_log_size = 0; 8592 8593 if (!cpu_has_vmx_preemption_timer()) 8594 enable_preemption_timer = false; 8595 8596 if (enable_preemption_timer) { 8597 u64 use_timer_freq = 5000ULL * 1000 * 1000; 8598 8599 cpu_preemption_timer_multi = 8600 vmcs_config.misc & VMX_MISC_PREEMPTION_TIMER_RATE_MASK; 8601 8602 if (tsc_khz) 8603 use_timer_freq = (u64)tsc_khz * 1000; 8604 use_timer_freq >>= cpu_preemption_timer_multi; 8605 8606 /* 8607 * KVM "disables" the preemption timer by setting it to its max 8608 * value. Don't use the timer if it might cause spurious exits 8609 * at a rate faster than 0.1 Hz (of uninterrupted guest time). 8610 */ 8611 if (use_timer_freq > 0xffffffffu / 10) 8612 enable_preemption_timer = false; 8613 } 8614 8615 if (!enable_preemption_timer) { 8616 vmx_x86_ops.set_hv_timer = NULL; 8617 vmx_x86_ops.cancel_hv_timer = NULL; 8618 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit; 8619 } 8620 8621 kvm_caps.supported_mce_cap |= MCG_LMCE_P; 8622 kvm_caps.supported_mce_cap |= MCG_CMCI_P; 8623 8624 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST) 8625 return -EINVAL; 8626 if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt()) 8627 pt_mode = PT_MODE_SYSTEM; 8628 if (pt_mode == PT_MODE_HOST_GUEST) 8629 vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr; 8630 else 8631 vmx_init_ops.handle_intel_pt_intr = NULL; 8632 8633 setup_default_sgx_lepubkeyhash(); 8634 8635 if (nested) { 8636 nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept); 8637 8638 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers); 8639 if (r) 8640 return r; 8641 } 8642 8643 vmx_set_cpu_caps(); 8644 8645 r = alloc_kvm_area(); 8646 if (r && nested) 8647 nested_vmx_hardware_unsetup(); 8648 8649 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler); 8650 8651 return r; 8652 } 8653 8654 static struct kvm_x86_init_ops vmx_init_ops __initdata = { 8655 .hardware_setup = hardware_setup, 8656 .handle_intel_pt_intr = NULL, 8657 8658 .runtime_ops = &vmx_x86_ops, 8659 .pmu_ops = &intel_pmu_ops, 8660 }; 8661 8662 static void vmx_cleanup_l1d_flush(void) 8663 { 8664 if (vmx_l1d_flush_pages) { 8665 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); 8666 vmx_l1d_flush_pages = NULL; 8667 } 8668 /* Restore state so sysfs ignores VMX */ 8669 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; 8670 } 8671 8672 static void __vmx_exit(void) 8673 { 8674 allow_smaller_maxphyaddr = false; 8675 8676 cpu_emergency_unregister_virt_callback(vmx_emergency_disable); 8677 8678 vmx_cleanup_l1d_flush(); 8679 } 8680 8681 static void vmx_exit(void) 8682 { 8683 kvm_exit(); 8684 kvm_x86_vendor_exit(); 8685 8686 __vmx_exit(); 8687 } 8688 module_exit(vmx_exit); 8689 8690 static int __init vmx_init(void) 8691 { 8692 int r, cpu; 8693 8694 if (!kvm_is_vmx_supported()) 8695 return -EOPNOTSUPP; 8696 8697 /* 8698 * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing 8699 * to unwind if a later step fails. 8700 */ 8701 hv_init_evmcs(); 8702 8703 r = kvm_x86_vendor_init(&vmx_init_ops); 8704 if (r) 8705 return r; 8706 8707 /* 8708 * Must be called after common x86 init so enable_ept is properly set 8709 * up. Hand the parameter mitigation value in which was stored in 8710 * the pre module init parser. If no parameter was given, it will 8711 * contain 'auto' which will be turned into the default 'cond' 8712 * mitigation mode. 8713 */ 8714 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); 8715 if (r) 8716 goto err_l1d_flush; 8717 8718 for_each_possible_cpu(cpu) { 8719 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); 8720 8721 pi_init_cpu(cpu); 8722 } 8723 8724 cpu_emergency_register_virt_callback(vmx_emergency_disable); 8725 8726 vmx_check_vmcs12_offsets(); 8727 8728 /* 8729 * Shadow paging doesn't have a (further) performance penalty 8730 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it 8731 * by default 8732 */ 8733 if (!enable_ept) 8734 allow_smaller_maxphyaddr = true; 8735 8736 /* 8737 * Common KVM initialization _must_ come last, after this, /dev/kvm is 8738 * exposed to userspace! 8739 */ 8740 r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx), 8741 THIS_MODULE); 8742 if (r) 8743 goto err_kvm_init; 8744 8745 return 0; 8746 8747 err_kvm_init: 8748 __vmx_exit(); 8749 err_l1d_flush: 8750 kvm_x86_vendor_exit(); 8751 return r; 8752 } 8753 module_init(vmx_init); 8754